Foc Qﬂiﬂgt%?léOCﬂln ‘54aji\<9€€€guf e~ UPT
Move pusttm <L9 2920 o adloed Jhsc medy %/Louiw&,
Shoadd Ao fo. alud & P10 Oxch - Spre

emecoanmacsasaeacocmamn—m—n (an wa (st KL é‘k'avof//'w K

| | | | | { | | interofft ice
¢ R T S T T A I A R T I
| | | | | | [i memor anduaum

4 Ssovsvansrnesrasssrservrene |

Amd Sup()ed’ 1@'(q9- €6t '6(/!@0? -4 -¢ C(’Jec,}

Tos List Dateg 19 Apr 43
Fromg G, M, Uhler
Depty Jupiter Engineering
Locs: MR1w2/1L85
TN (He)231+0448
Files KC10,KEND

C%Fi)fo,\—(Jjgjfj/
Distributed!? 19 Apr 83 __ .
Revisfont v A o Secdon ¢ (o)

Qdo’uss ‘J(,ata,/,;) (30\;%_,(M{'” ’\L(_acﬁ/u/('ﬂu-mf;

subjtect: KCI10 tunctional Lescription

The information in this document is subject tn change without
notice and shtould not be construed as a commitment by Diyltal
Fquipment Corporation, Digital kquipment Corporation assumes
no responsibility for any errors that may appear in thils
document ,

Mlaital Fquipment Corporation assumes no responsibility tor the

use or rellability of Its sottware on equipment that 1is not
supplied by DIGITAL,

Copyrignt (C) 14980, 1981, 1982, 1983 by Diyital Equipment
Corporation

The fpllowliny are trademarks of bigital Fquipment Corporationt

PDIGLITAYL DECsYystemm10 MASSHUS
DnC NECtape UM IRIE
KD HIpay Qs/8

DECHS ERUSYSTEM PHA

UHIDBbUS FLIk CHlp KSTS
COMPUTEL LABS FLICAL , RS X

COMTEX 1THDAC TIFESE T «8
Ly LABwYH TYPFSKETat10

bECcCunr BECSYSTEMa20 TYPFOSE T

KC10 txec
kevigion

Mode Instructions Fage 2
History

Changes made to revision 7 of KCIO to create revislon 8 on ODlwAprmwt 3

Add FXARCH MEM as a chapter,

Add the opcode maps for the instruction set and clean up
the document a bit,

Redefine some of the microcede option bLIts 1in APRID to
reflect the pew product goals,

Remorder and resformat some of the chapters to make the
conhtent more loygical,

Pemove the chapter on Address Break and include the
material as a section In the chapter on padinyg,

Chanqges made to revision § of KCIO to create revision 7 on

0Y9aJanets,

1y Fkxpand on the leyal PXCT cases,

2, HRemove most ot the legal PXCT (BLT] cases,

3, Add the LDPAC and STPAC instructions to save and restore
previous context ACs,

4, Move the description of the pnhysical EAmcalc algorithm trom
the chapter on queue instructions to the chapter 'on
Miscellany,

3¢ Make 1t clear that bit 29 in RDAPR and WRAPR actually
exists in the hardware,

by FiX some typps in WRCTX,

7. Remove support tor TOPS=10 paging and turn the WREBR bit
inte something that indicateys which features we sypport,

8, bhescribe the alyorithm used to decide if there is a valid
mapping tor a page usinyg the resujt of a MAP ipstruction,

9, Mopve the trap enable bits in WREHR apd RDERE from 8 apnd 9
to 7 and 8,

10, Fix some types in the 1ist of additional data for page tatl

codes,

KC10 Exe
Revision

11,

12,

13,

14,

15,
ie,

17,

18,

19,

20,

21,

22,

23,

24,

25,

Chanyes
OHeMaref

'

¢ Mode Instructions Paye 3
History
Declare bit 8 ip each Pointer to be available to Sottware,

Define the JRSTCI instruction a8 JRST 1, to ¢tlush the
instruction cache (read LuoXx ere) 1f the instruction
stream {s wmoditfled,

N

ltse the AC field of LOPAC and STPAC to specity the highest
previous AC to transfer to/from,

Add an IBOX flush for PMUVEM, the queue instructions,
WRITTH, and DUMPTE, :

Add the 10PMOY and 1UPMYM ingtructions,

Add the description for the RDTRAX instruction,

Twprove the documentatlon ot RHEGH and RKHGBW and 1indicate
that they now store an error code in AC {f the AC fileld is
ngn=zerg and the fnstruction times out the 1/0 bus,

Add documentation for more microcode opbption bits in ARKILID,

Clarity the AC field assiagnwent table for ApPRO, APHKI, and
AEP2 a bit,

Add a microcode option bit to APRID to 1Indicate that
unblased rounding is enabled,

Allocate words 260267 in the 10 paye for use by the ports
during the selfechecking process,

Clean thinys up a bit and expand on things that are

Add PUSHM, POPM, apnd PUSHL,

Add brief descriptions tor each word in the EbT, UPT, and
) page to the pictures in the chapter on Special System
Fages,

Add a descerliption of the Interrupt request protoco) used by
the ports,

made to revision % of KCIUO to create revision 6 on
2,

Declare X8LT to be legal {n sectlion 0,

KC10 Exec Mode Instructions Page 4

Kevision

2,

10,

11,

12,

13,

14,

15,

16,

17,

18,

19

20,

History

Document the differences hetween the KL and KC
implementation of JRST n,, Allow SKM ip apy section, Add
the XJRST (JRST 15,) instruction,

Document the occurrence of an IBOX tlush on WRCTX, WREHEK,
CLRPT, and SWPIA, '

Redesian the WRTMH and RDTMB instructions, Add the WRACT,
ROACT instructions,

Femove the 18 bilt FEA restriction from PHOVE and PMUVEM in
section 0,

Pocurent the chandes to the ledal PXCT bits,

Change SFICU from 7001006,,0 to 701000,,0,

Change KDUBK from 700040,,0 to 701400,,0,

Change the format of E+1 of the WRCTX, KDCTX, and kDK
blocks to match that of the first word of the flaqs/pPC

double word,

Make UMQVE/ZUMUOVEM generate an illegal lnstruction trap if
executed in user mode,

Add functional descriptions for WRCTX, WREHR, WRTMB, and
WRACT,

Change the polarity of bit 10 returned 4in the MAP
instruction Ac,

Remove function code 3 from the trap tunction word,

ketmove the "do not load current AC block values® bit from
the interrupt vector word,

Move the control bits around in word £ ot the WRCIX (and
RDCTX and RODUBR) block to make it easlier to implement,

Remove the "do not load AC block values® bit trom the WRCTX
hlock,

Move the mapping for exec payges 0=337 with TUPS=10 paainy
trom words 690=7%7 in the FPT tg g=1%7 ipn the EPT,

Remove the "FFA present" from the hardware gptions ftleld ip
APRID and put it in the microcode options field,

Remove the JEN instruction,

Kedefine the algorithm used to compute a physical address
for PMOVE, EMUVEM, and the gqueue instructions,

KCi10 Exec Mode Instructions Page 5

Revision

21,

23,

24,

25,

26,

27,

28,

29,

30,

31,

32,

33,

34,

35,

36,

History

Fedefine words 453=454 in the UPT (page fall block) to be
"additional data® retyrned on a page fall, These words
will be different for each type ot page fall code and wil]
be documented as such,

Modity MUUO, page fail, 1/0 page fail, and traps (Muyo
function) to "load" PAB instead ot "setting" it,

Make super sgection pointer types 1 (immediate) and 3
(indirect) leyal,

Start the page fail block In the UPT at otfset 4%1 Instead
ot 450,

Change the page npumber fleld in ap Llmmediate pointer from
bits 20=35% tg 18=135,

Document the format of the "paye address word" encountered
in polinter traces,

Add a description of the debuyyging instruction implemepnted
by the microcode,

Pescrive the paginy fnfermation cache,

Change the format of the page tai) word to include the
"level® at which the page tall was detected,

bescribe the CST update operation,

List the processor tlays in the description of the Flags/PC
double word,

Define the paye fall codes for TUOPSe20 paging,

Describe bits 0=10 of the paye fall PMA as ‘"reserved"
instead of zeros, They come back upndetinped from the MpBuX
and it didn’t seem particularly necessary to mask them
Since the monitor probably wonft use the Wword anyway,

Note that the trap 1 and trap 2 tlays are never stored {n
the LUUD/MUBL block when a trap that specifies tunction
code §| (MUOQY or 2 (LUNUY is processed,

Note that an instruction that references myltiple words
(eoday HBLT) wWill) not cause an address break for every word
in the address break ranue if the mopitor restarts the
instruction with the “iphibvlt address break® tlay set,

Add the trap enable bit to WREHR and KDEBRR and explain how
it works,

KC10 Exec Mode Ipstructions rage
Hevigion History

37,

38,

10,

Add descriptions for the debuyging instructions RUTRAX and
WHTRAX,

Add a new chapter for Miscellany and start it by describing
the halt status coudes,

Change the tormat ot the 1,0 paye fall block to make {t
more consjistent with the normal page fail block,

Docutent the eftect ot a write reterence for the varlous
combination of written and moditied bhits ip the translation

Changes made to revision 4 of KCILU to create vrevision Y on
18=AuumBy,

1,

24

Add the definition of the bhits returned by the MAP
instructionr,

Defipe Lit 0 of the microcode gptions tield in ApPKID as
"diagnostic microcode loaded",

Move the remaininag APR flaq bits in WRAPP and RDAPR to bLits
30 and 31 to right Justify them ip the field and make them
contiguous

Add the “VM mode" state bit as bit 10 in word E for WRCTX,
RDCTX, and KDUBR, Also use UPT location 431 as the VM mode
nex PC MUUD dispatch,

Add a statewment that paqer Clears caused by CLRPT and WRELE
fynore the keep me bit,

Declare the results of executing a UMUVE or IIMUVEM in user
mode as undetired,

Detipe blt 19 ipn the KHNGB? ipnstructions to pertorm a Port
init for the port specitied by bits 33=35,

Fut all the accounting meter stuft under an "avalilable with
the accountipg weter ovtlon oniy" disclaiwer,

Fetpve the "port ipnterrupt louout word® from the 170 page
and add 8 "tort interrupt 1 status words",

Fefove the SWPVA instruction from the instruction set,

KC10 Exec Mode Instructions rage 7
Revision I'istory

12,

13,

14,
15,

ie,

17,

18,

19,

20,

21,
22,

Chanqes

Chanage the spec to indicate that no flags are loaded on a
LutgQ, :

Move the address break condition bits from O=7 to 10«17 in

the WRCTX/RDCTX arqgument,

Regqulre that paying be turned on to load the address break
conditions with WRCTX oy to read them with RDCTX,

Fearrange the WRCTX control bits,

Rearrange the bits in KNGB and RNGBW one more time,

RFettove the cache look and load bits from WREBK and FUEBR
and the TB cachable bit from the page table pointer and add
cache on/off controls bits to WREBR and RUDEHR,

Do not cause an 1BOX tlush as the result of a cache sweep
instruction,

kRemove time hase | completely and remove the time base 2
Yords in the FPT (they’re now kept strictly in EHOX
scratchpad locations),

kedesidyn the time base and interval timey instructions,

Add the RDUKTM {nstruction to read the user runtime meter,
Add the page fail formats,

Renove the discussion of the UBA from the interrupt vector
definitions,

made to revision 3 of KCID tg create revision 4 on

J0=Aprety,

e
2,

Reserve bits 0=10 of the link words of physical queues,

Change the console reload bit in RNGB and RNGHW trom npit 19
to bit 18,

bescrive the relationship bhetweep the effective address
calculation and the reterence address for those
instructions that use the FA as a physical address,

Reserve bits 0«10 of AC tor the queve instructions and
define the action on bit 0 in the AC on an empty/noneempty
queye,

KC10 kxec¢ Mode Tnstructions ‘ Fage 8
Revision History

5, Document the MUUD block and the new PC dispatch vectors,
Chande the spec to reflect the npew dispatch aldgorithm
approved by the architecture commjittee, Move the paye fail
locations from Jocation startipng at 440 to locations
starting at 450 to make room for the new Miu(Q dispatch,

by Document the LD block tormat and the action of the
brocessor to an LINO,

7, Clean up the trap function word detinitions and chanye
functions 1t and 2 to ayree with the decisions of the
architecture committee,

8, Clean up the interrupt vector description and docuwent the
format ot the I1/0 paye fall block in the I/U page,

9, Clean up the gueue instruction explapations, Thank you
Judy tall,

10, Redo the entire chapter on virtuyal addressinag {and rename
it Ypayginyg*) to add much more information,

t1, Describe the changes to the MAP instruction,

Changes made to revision 2 ot KCIU to create revision 3 on
19aMureiin g

1¢ Add the SETCU {nstruction to set the CST update needed bit
in each page table entry,

2, Note that PMOVE, PMUVEM and the physical queue instructions
do not cause the CST to be updated,

3, PRewove the INSQUF and HREMQUE instructions and the
references to virtual queues,

4, Add plctures for the LPT, UPT and 1/0 page, Also provide
separate plcture tor TOPS=10 and ToPS+20 for the first two,

5, Change the tormat of the trap tuynction word that simulates
a LUUuL to specify the obkcode of the LUUD to be used ip the
function word,

6, Chanye the detinition ot the yueue maniputation
Instructiogns to sklp returp {f the eptry has been
succegstully added to the queue with bit 0 in the AC set if
the entry was added to an empty queue, The Instructlion
will not skip 1f the secondary interlock was timed out,

KC10 Exec Mode Instructions Page 9

Revision

History

Changes made to revision 1 of KCID to create revision 2 an 9sMarests

10,

Add definition of Yreserved® fields ot instruction operands
and data, ‘

Detine all bits of instruction operands and data,

Add "KL/K§ compatibility" section to each instruction
description,

Add ap enable blt tg load the CPU PIA In WRAPR,

Change the page number fileld for WRCTX, WREHR and WRLQP
from bits 18e3% to bLits 20e35

Femove the commritwent to make o PXCT ot a CLRPT work,
Define what *TOPS10" paainy really means,

Chanye the "Interrupt 2080 console" hit in RHGR and RNGHW
from bit 18 to bit 32,

Chanue the description ot the operation of pPMOVE and PMUVEM
to do a normal effective address calculatlon and use the
result as o physical address,

Change the definition of WRIOP trom an immediate mode
instruction top gnpe which takes 1{ts data from the word
addressed by E,

Page 10

INTRODUCTION

1

KC10 Exe¢ Mode Instructions

Table ot cohtents

CHAPTER
CHAPTER 2

235679@'234783h7891234550789011234.3780
E® 5P F e = NNNNNTTMI M mmam e pgmoe @ o T Tn
NNNNNNET E 6 8 8 38 EP &8 F L ES ERERE S ESEGES B

NNNNNNNNNNNNNNNNNNNNNNNNNNNN NN
. 5 o v B o=

L A R . I T T T
L A I I . T T T T S o
L -2 [T p3
CETXLNAZTILIATNLARBIVDITTIAIZTII GAAIIIIIILIEIZZTEZZIES B X
S NN IEIT O NN NS TDIRO N E NS
T T T T O

DATA

MOVE

THAT

I/0 INBTRUCTTIONS

170 INSTRUCTIONG

EXTEHNAL

UMOVEN

RECH
RNGi W
SNBSS Y
UMUVE

3
4

CHAFTER
CHAPTER

KC10 Exec Mode Instructions Page 11
Table of cgntents

4,3 PMUVE * e 9 e 8 8 e e 3 s o p ot 2 92 e e v e e g s e A4
4,4 PMOVEM Y 0 s 0 0 e o s v o o ® s 0t o 0 s s s g g 4%
4,5 LOPMOV 0y 4y 0 0 s o 0 0 o 0 % ¢ o 9 o s 3 ¢ s o A0
4,6 LOPHVM 0y 0 0 0 6 o 0 o 0 0 0 8 0 0 ¢ 0 s 4 ¢ o 40
4,7 LDEAC 4 0 4 4 0 0 0 o # o 5 9 8 2 0 8 25 9 5 0 0 4 A=t
4,4 BTEAC 4 4 4 s ¢ o v o ¢ 0 0 ¢ 2.8 9 o e s s v g o Ae9
CHARTER b SPECIAL DEBUGGING INSTKUCTIONS
5,1 EDTRAX o 4 4 o 0 0 o o 0 0 0 o 9 0 ¢ o o o o s o o 592
9,2 WHTRAK 4 g s o & 0 & o o o o 0 0 0 0 8 o 8 9 0 9 ¢ 5e3
?'3 READTB o 0 6 0 9 0 o o o o o ¢ 8 2 0 o 0 s 4 v ¢ D4
3,1 FPLTTE o v s 0 0 o 0 8 8 0 0 1 o 0 4 s 8 g e g g B
9,5 DUMETE 4 ¢ 4 o 0 o o o ¢ s o 2 ¢ o o 0 o o » + & o bell
CHAPTER o GUENES AND QUEUE MANIPULATION INSTRUCTIONS
b1 Introduction , ., , , . e e 4 8 e 4 e e g s e g g b=t
Ly2 Data stFuCtures , o 4 o o 4 o s o 2 0 o s o ¢ 9 g O0=F
b,2,1 The quenes o, 4 &\ o 4 4 4 4 o o o 0 0 9 s 9 0 ¢ b=
0e2,2 Formats ® 0 P 9 e e+ & o o s & s 4 8 s s a o ¢ o L=2
b,3 UPETAtions o 4 4 4 o o o o s o 2 o 6 ¢« s o o 9o o o b2
Led,l InSertion oy 4 4 3 o o o o o ¢ 5 0 9 ¢ 0 ¢ 8 ¢ g eI
bed,2 ReMoval 4 4 4 4 o o o o o 8 8 s 8 o 9 8 g ¢ o4 ¢ 025
by INLErlocks 4 4 4 4 4 4 o o o s 3 o ¢ 0 o ¢ s s ¢ ¢ 95
045 The InStructions o, 4 o 4 o o 4 o o 9 0 9 9 0 2 5 o 0906
byt EXTOTS 4 4 & & 0 9 o s s s ¢ 0 ¢ 0 0 0 0 8 2 1 3 s 6027
by7 INBUHT 'y 4 ¢ & 0 s o 9 @ 2 0 0 0 2 0 0 0 s 0 0 s b8
b, LNSQTI oy y 4 4 Yoo e s 1 0 9 e 8 9 p e s g g s L=Y
6,9 REMOHT 3y 0 4 ¢ 4 4 o o et 2t e e 8 o 0 9 g g bwO
6,10 REMOTT 4 4 4 o o o o o s o 8 s ¢ g o 2 93 4 bOni
CHARTER 7 FUNCTIONAL CHANGES FROM PREVIOUS MACHINES
741 MAP A R E R
7,2 JERST e s e p e e e e 9 8 b 9 9 8 e e s a g g Iwb
;93 pg?g” LI e T R N T T T T R S S T 9’7:8
L] ¥ ! L] LI .] . . Twi0)
705 BUSHLT L e ey 112
7,0 Uther tunot1unal changes * s s o s 4 1wl
Teb ot Changes to privileged 1nstructions ¢ s o s o 4 T=13
Tetrg2 kElimination ot public and supervisor modes , ¢ T1=13
74643 Uvertlow 1n eXeC mod€ ., 4 4 4 4 ¢ o o o o o o 7T=13
Tebod Cachable pade StATUS , & 4, 4 4 4 2 o o o o o o T=i3
Te645 XBLT In section Zero , , 4 4 4 4 4o 4 o o o s o 1=13
Teb ot JEST Chanaes , 4 4 4 4 4 4 o o o o 9 s o o o o Terd
?0617 PXCT , LI R 2 D I T T ST S S S N SN T S S S S S Teld
Tetr,8 tayinag , , , * 8 v 5 % e s & s s e sy 1e14
T.0,9 Flags=PC double word * e e 8t s s o s e o s g9 g TI=1b
Tebbgll Frocess context variables , , , , , 4 4 & o ¢ 7T=18
Te€y11d System tlmers 4 4 4 4 4 4 4 s e s s 0 s s s e Tm1b

KC10 Kxec Mode Instructions
Table ot contents

CHAPTER ¢ HFAGING

Byl Introduction , , , , , ¢ o e 2 o o o
8,2 Paging hardware and mlcrocode " v e 8 s e e
4,3 Caching of paging information , , , , . + o
By4 TOP5»20 paging , , , L R R B R R I
b,4,1 Pager Data Structure Pt oa e e e e s e e
Hed,2 Pointers , , , I T T T T S S B S S
8,4,2,1 Super section Pointer: P s e s e e e
Hedg2,2 Section Polnters , ., 4 , 4, 4 4 4 4 o ¢ 9 »
8149203 Map pointers T 0 & 5 8 2 2 B 2 e ¢ e 9
Bed,yd Page address words , IR ERE.
Bedod Conversion of Virtual to Physical Addresses
8’4,5 Page refiill f 0 s & 2 e 2 s Y e s e e 9
Bed,5,1 CST ubdateS o 4 4 & o o o ¢ 99 o ¢ o o o
BedoD,2 CST entry format , . . . 4 4 4y & 4 o ¢ o &
UedgH,y3 CST mask register tormat t 2 e 9 s e w o
Ho4,5,4 Process llse Register tormat P e e 0o e
8,4,5.5 Trd”sldtiun bUffer Stdte t)it& e " 8 s e @
B,4.5,0 Write references , , , . e ¢ e v s
Hed,eb Page fall conditions and tormats . . .
B,4,6,1 Tops=20 pade tall codes and addltional data
Hod,6,1,1 Additional data words tor a pointer trace
815 Address Ureak t # s o 5 5 8+ ° 4 @ s e e @
CHARTER Y PROCESS CONTEXT VARIABLES
9'1 I!)tl’Odu(’thh e @ . T
9,1,1 New flaqgepC double word * o o 8 s o o
9,1,2 ContEXt Chdngihg ¢ o ® ¢ 8 9 2 9 9 ¢ p 0
CHARTER 10 EXTENDED ADDRESSING
10,1 Reterence materlals , , , IR
10,2 Historical summary of extended Addressing
10,3 Petinition of terms , t e e e e
10,4 kftective Address Caleulatlons P s v e s n e
10,4,1 Descrivtion ot the kAmcalc alaortenm , ,
10,4,1,1 No {indexing , , , e et r e s e e e e
10,4,1,2 IFIW with)oca) 1ndex P e et s e e e as
10,4,1,3 IFIW with global Index , 4, 4 4 4 ¢ o o o »
10,4,1,4 EFIW with global index * e s s e s w e s s
10, ,1 5 Reterences to Section Zero , , . 4 4 o o .
10,4,1, Suttmary of EArcalc rules , , 4 4 ¢ o o & o
10,4,2 Results ot an KAecale , , , , , ,, ., ,
‘3,4.3 ﬁi.ﬂlple FAscalc examples N I T T B S
19,5 lise of the local/alobal tlaa , , , , , ., . ,
19,5,1 AC references , o 4 4 4 4 4 4 4 2 0 o s
10,5,2 Incrementing EA 0, o 0 0y s e e e e
10,6 Multiesection kEAmcalc’s « 9 P e e s e s @
10,7 Special case {instructions , , , . , ., , .
10,71 byte instructions , , , , , L T T

LLEEE I B B I N

w * e e e e B @

oommauconna.aaman..

Page 12

Be1
LD
He2
Bed
Bwd
8=4
=5
U=p
UENS
8wt
Be9
BeY
Hub
HelO
Hel
Bell
Beiy
Het?
gel2
Belo
He20
He22

W W Ml P W e S B B e e W

OO%..'-‘D‘Oi..ﬂﬂi.~"‘=“"".ﬂ

s 9=}
9mi
s Ym3

. B »

102
10=3
10e4
{0e8
10=8
10=8
10=9
10e9
101}
1010
{Hel)
10=tt
10m]
10et3
10wl 3
10«14
10wl
1017
IS)

."D..L‘..-"&.*“ﬂ‘.l‘..

KC10 kxec Mode Instructions
Table of contents

CHARTIR

CHAPTER

10,7,14! Byte pointer interpretation , voe e e
10,7,1,2 Byte pointer FAecale , , , 4 4 4 o o &
1‘3'7.2 &XTFND 1“5truct1°ns [] [} [] [] [] ']] [] []
10,7,2,1 Byte painter intervretation , , , , ,
10,7,2,2 Ubyte pointer EA=calc 4, 4 4 ¢ o o o s »
10,7,2,3 Extended opcode EA=calc , , o 4 ¢ o &
10474244 LDIT pattern and mark addresses T 00
10,7,3 JSP and JSR . 0 . 4y 0 e e " v .
10,7,.4 Stack Anstructions , o , , 4 4 4 o ¢
10,7,5 JEA and JEA gy g e e e s e e
10!706 Luuos . 8 % % & o 0 ¢ ¢ Q * 92 & 8 & o
10,7,7 BLT 2 2 B 8 5 e 8 4 s 2 B + s e &
10,7,8 xpLy L T I T T S T T T S S S
1?,7.9 P Tr e 4 % & g & & 8 9 8 * ® 2 & P 0
!Q.?.lo XMUYET and XHLLI S ® ¢ 9 8 8 % o 9 8 »
19,7411 XCT o ' . LI I I I
10,7,11,1 Detaylt sectlon for &A,calc P s v s e
10,7,11,2 Relationship with skip and fump instruc
10,7,11,3 PC storing instructions , , ., , . ¢
10,7.11.4 Local stack references , , , , , . , .
10,7,11,5 Generalizations for XCT , , , ., , , .
19,8 summary of default sectlons for Ehecalc
10,9 Seection zero vs, nonegero section rules
10410 speclal consideratjon tor ACs , , , ’ .
10,10,1 AC reterences , , , N R I)
10'10'2 Instruction fetches P 2 e 0 % o9 9 s
10,10,3 Storinyg PC , , TN
10,10,4 storing EA for !nvﬁ MUUD and paye fafl
10,10,5 An examble o 4 o 4 o g o o o 2 T T
1Q011 PXC LI B 4 L 2N N B D I R D R B B |
10,11,1 Previous context P t o e o s @
10,11,2 Use ot the previous uontext state varlia
10,11,3 References to previous context , , . ,
10,11,4 Applicable instructions , , . .
10,11,5 Interpretation ot the AC tield bits .
10,11,0 Modifications to the EAscalc algorithm
10,11,7 section zero vs, nonezero section rules

10,11,7,1 Stack {nstructions e 0t 2 e s e
10,11,7,2 Byte instructions ' .
10,11,7,3 EXTENDed MOVSLJY inﬁtructlon .

11 SYSTEM TIMERS

11,1 SUMRAEY 4 4 4 o o o o 8 o o o o
11,2 Time cloCksS 4 & 4 4 4 ¢ & o o »
11,2,1 Time Base $ 5 8 s 4 ¢ s s s @
11,2,2 User WKuntime Mete T 0 v e s s
11,3 Interval Timer , , o« o o o o o o
12 TRAR, UUO AND INTERRUPT HANDLING
12,1 Introduction , 4 4 ¢ 4 o s o o »

L]
L]

.

a » & . @

- » & @

L]
L
L]

. . . L I 1

L4
.
.

* & -* e« @

T8 ® @ ® B 9 8 B W BB SO ® W

—

Teo » » Me » & & @ @ » o 8

-

- B 8 9

-

. B e o @

Do = » @ 8 ® ® ¢ & @ = = » Oe & ¢ 2 » 6 9 ® 9 & % & » @ @

. »

S B W W W s P e

I * 8

aonamano«-n.o@mwamnnnmnwn-..bmaw

S W W B e W W

- @ @ e @

Fage 13

1017
10=18
10m19
10m1 Y
1019
10w21
10821
Om2t
1023
10w25
1026
10=26
10m28
1ue29y
10m2Y
10e30
10w3d0
1030
10m3t
10=31
10e3?2
10m33
10234
10m3b
10=36
1037
10w38
10e38
10m39
10=40
10w40
10e41
10w4
10m42
1042
10w4 4
1mdH
10»48
10«49
10=%0

'-‘.'ﬂ.--...“"."*.--....4.-"'.....“’..

11w}
11=}
t1e?
{1=2
112

- B » & B

12w1

KC10 Exec Mode Instructions
Table of contents

CHARTER

CHAPTER

Index

14

Trap Function Word ,
Virtual Machine Simy
MUUO nhandling , , ,
LUUO handling , , ,
]
L4
*
r

e
C
PR
3]
- »

t

fo T

1 0

Trap enable , , ,
Interrupt vectors
170 pave faijure ,
Interrupt request pro

Me & ¢ = o

Nwe & & » w p=w
o

e & ® B W e
- & 2 8 B e

- ® ® ® o »

- > e @ W

- e 9 ® & . 8 ™ w
. ® e ® @ »

- % ® 9 e e »®

O

MISCELLANY

Halt status codes , , , , o 4 o o ¢ &
Prysical FAecalC , , . 4 4 4 4 4 o o o

SEECLAL SYSTEM FAGES (EFT ¢/ UPT 7 10P)

* * ®» * € & e N

- % & B B® @ ° e

o W e e B P W e

- ® e ™ W W e W

Page 14

« 1222
1 12!4
e 12905
y 128
s 12=9
. 12=10
¢ 12210
» 12«1

13w
13m2

CHAPTER 1

TNTRODUCTIUN
R ’/O
,;,'77 PUP 7
/’L e \
1 T pedett
/1‘1.(’%/
This document describes ﬁﬁf”fﬂﬂ@liQEEAMMQRQEﬁLLQnuNQLMW£DQ#MKCLQ——QR£;‘

This information includes descriptions of the privileged /0
fnstructions, tunctional changes betweern previous fimplementations ot
the Pbbeld architecture and this one, discussions ot pading, UUO,
trap, and interrupt processing, and a lengthy chapter on extended
addressing,

Upcoudes in the range 700 throuyh 737, inclusive, are privileged
obCodes which are geperally used to control internal or externpal
devices related to the hardware itselt,

Hpcodes in the ranye 740 throuuh 777, inclusive, are legal in both

exec and user mpde, hut only a few {pnstructions are current)y defined
in tnis range,

“Deeo 1‘7L AL f /a(() O CnAANCE p Q//LQ/

e 5{214~f?/zaﬁjfwl 4 ,/h?é;.

[92

e,

INTRODUCTIQON Page 1«2

Please read thisg

in some instances, tlelds of the operands of an instruction or fields
0f the values returned by ah instruction are described as "reserved®,
This means simply that no guarantee is made of the correct opperation
0f an instruction whose "reserved"” flelds are set nonwzero by the
prodram or ot the state of the bits §n the "reserved" fie)lds returped
by an instruction, 1t you wish to experiment and find a result to
your likiny, You are hereby warned that your proyram may we)l not be
compatible with any other processor, with any other model of your
Processor, ¥with the sgame mopde) of vyour processor at some other
installation, or even with your own processar running at some other
time with a ditferent versjon of the wic€rocode or Monitor,

when the definition ot a bit is wuiven in tnis docuyment, that
detyipnjition applies when the bit {5 set to a | (upless explicitly
stated otherwlise), If the blt Is set to a zero, the Joylecal
Cowplement ot the definition avplies, For exampje, bit 8 in word k in
APRID below is descrived as "TRACKS (PC trace) microcode present®,
This means that the TRACKS feature is present in the microcode {f the
bit §s o ¥ and not present {f the bit 1s a v,

INTRODUCTIQN Fage 1«3
Upcode assiynment wmaps

fipgode assignment map

4] 1 2 3 4 5 6 7
000 uug Ligo Luyo Luun Luuo Luun Luun Luin
010 Loy Luun LUu0 Luun Lupo Luun Luuo LuuQ
0290 Luuo LUUQ Liuo Ln LuuQ LUUQ Luup LU
030 Loud Luyn Luun Luun Luuo Luun Luuyt Lugw
040 vup gug HuQ LuQ LI LG uug (VRETR]
0bo unQ yuQ yug uu) uuo uug Ul o
060 vug uuQ v TS} Hup yug uuo ERIY]
070 TR] uug v HuQ vy uug yud yug

0 1 2 3 4 5 6 7
100 treey {IRLIA) iFAD GF8H J8YS ADJS8ep GEFMp GFDY
110 DEAD DEFSH DEMp DEDV DADD vsuB DML bD1ly
120 DMOVE DMOVH FI1X EXTEND DMOVEM DMUVAM FIXR FL'lRk
130 uug tuy F&C Lup LDy Lo lepy prh
140 FAD uug FADM FADR FADR FADRIL FADRM FADRH
150 Fsi yuaQ FsBM KSR FSBR FaiipRl FSHUpM Fsupy
160 FMp T FMpM FMPH FMPR FMPRI FMPRM FMPRE
170 FOV uuy FDVM FDVEH FDYR FDVRI FDVRM tDVRY

£ 1 2 3 4 5 t 7
200 MOVE MOVE] MOVEM MOVES MOVS MOoysl1 MOYSM MOVSS
210 HOynH MUYEDY MOYNM MOYHS MUVYH MiyMl MOYMH MOYMS
220 1Mt 18U LMy HuLe HUL BULL MULN MULD
230 Inyy Ibivl IDIVHM Iblvy DIV NIvy DIYM prve
240 ASH roT LSH JEFD ASHC ROTC LSHC tHup
240 EXCH WL AP ADH N JRST JECL XC1r MAP
200 PHUSHJ PUSH pop pOpRJ JBR JSE JEA JRA
270 ADD ADD] ADDM ADDR sUb sunl SUUM subn

0 1 2 3 4) 6 7
300 CAl CALL CAlE CAILE CALA CALGE CAINM CALG
310 CAM CAMI. CAME CAMLE CAMA CAMGE CAMN CAMG
320 JUMP JUMPL JUMPE JUMPLE JUMPA JUMPGE JUMPH JUMPC
330 sKlp SK1pL SKIpE SKIpPLE SKIPA SKIpPGE SKIPN SKIpG
340 A ACnJL AnnJE ADJLE AJA ADJGE AnJN AQJG
350 ADS ADSL AQSF AOSLE AUSA AQSCGE AOSN AUSG
360 50 SQJ1 SOJE SOJLE SOJA SOJGE S0JN SOJG
370 508§ s0OsL S0O8K 508LE s0OSA 808CGE SUgN sU8G

¢ | 2 3 4 5) 7
400 SETZ SETZI SETZM SETZH AND ANDY ANDM ANDD
410 ANOCA ANDCAI ANDCAM ANDCAB 5E'IM XMOVEL SETHM SETMBY
420 ANDCM ANDCMT ANDCMM ANDCMB SFTA SETAL SETAM SETAB
430 XOR X0R1 XORM XOKR LOR 1oR1 I0RM 10RrB
4449 ANDCH ANUCBI AMLCHBM ANDCHBB ROV Q1 EQym LQVH
450 SETCA SETCAT SETCAM SETCAH URCA ORCAY OQRCAM OpRCAY
400 SETCM SETCM1 SEICMM SETCME (JRCM URCM] ORCHM URCMB

470 URCH URCE] UpCcHM UpcHy skETO skT0] SETM SETUR

INTRODUCTION rage 1wd
Ubcode assignrent maps

G i 2 3 4 5 6 ?
%00 HLL XHLLl HLLM HLLS HRL HRLI HRLM HRLS
510 HLLZ HLLZ1 HLLZM HLLZS HRLZ HRLZI HRLZM HRLZS
520 HLLO HLLOL HLLOM HLLOS HRLO HRLOI HRLOM HRLOS
530 HL.LE HLLE] HLLEM HLLES HRLE HRLE] HRLEM HRLES
540 HRH HRR]Y HERM HRRS HER HLRT HLRM HLRS
550 HRRZ HRRZ L HRRZM HRRZS HLRZ HLRZI HLRZM HLRZS
560 HRRO HRRO HRROM HRROE HLRO HLROL HLROM HLROS
570 HRRE HRREL HRREM HRRES HLRE HLRET HLREM HLRES

G i 2 3 4 5 4] 7
600 TRN TLN TRNE TLNE TRNA TLNA TRNN TLNN
610 TDN TSN TONE TSNE THNA TSNA TDNN TSNN
620 TRZ TLZ TRZE TLZF TRZA TLZA TRZMN TLEZN
v30 ™ 52 TDZE TSZE TRZA 18ZA 1hzh TSEN
LAQ TRC T1L.C TRCE TLCE TRCA TLCA TRCN TLCN
CLYY THe T8C TDCE TSCFE TOCA TSCA TDCH TSCN
) TRO TLU TRQFE TLOF TRUA TLUOA TRUN TLON
070 ™O TSsU TDAE TSOF THOA TSOA TOUM TSUN

¢ 1 2 3 4 5 6 7
700 APRO APR1 APR2 o HMOVE UMOVEM pMOVE PMIYEM
710 KNGH KNG W SNBSY L [OpMOY LOPMYM LDPRAC STPAC
720 INSOHT INSQT1 REMQHT REMQTI ULQ ung i nuy
730 Y yoo RDTRAX® wRTPAX® READTH® WRITTU® DUMpTUW UUO
140 puUsSHny pUpM Plighl TIs] U wug yuo iy
750 wug Uiy HULY e uug uuu uug uuy
760 uug uuo g uuo uug uuQ U vug
770 uuo unQ ung o TI8I] vuo vug Lno

*+ » Debuqg instructions, UHUD in production machine

FXTENDed opcode map

: G 1 2 3 4 5 6 7

000 uuo cHpsL CMESE CMPSLE EDLT CMPSGE CMpSH CMESG
010 CVIDBO CvrbBT CVvIBbO CVvribT MOVSU MOYST MOYSHL MOYSRY
020 XBLT GSHGL GhuLE Ghr X GFIX GNHETXR GFIXR DGHLTR

030 GFLTR GESC RN g s wug gy Lt

INTRUDUCTIUN Page 1e%
Upcode assignment maps

For opcodes 700«702 (APKRQ, APKH1, and APR2), the AC fleld 1s decoded to
produce 16 possible instructions, The following table uives the
ingtruction mnemonic for each AC decode,

AC rield Assiynmenpts

AC APRO APRA1 APR2
00 ARPRID SETCU RhOSPB
Ul uuy RDCTX RDCSB
02 Ui CLRPT ROPUR
03 Hun wpRCTX rNCSTH
04 WRAPR WREHBRK RDTMH
0b HDAPR HDEBH ROLINT
Qo SZAPR WRI0P KDTIME
07 SNAPR RDTIOP RDURTM
10 ung rDURBE WRSPH
11 uug SWPTA WHCSH
12 wug yog WRPUR
13 ung SWEUIA WHCSTM
14 WRET F1874] WRTMH
ib kDPL uug WHINT
16 aZil Uuag WHACT

17 SNES uyQ RDACT

CHAPTER 2

APRO, APK1, AND APR2 INSTRUCTIQNS

This chapter describes the APRO, APR1, and APK2 instructions (opcodes
700e702) which control the finternal processor devices, The AC field
of these instructions i{s decoded to produce l-ofeib instructions,

All fnstructions in this set are privileged LInstructions which are
typlcally executed in exec wode, Sowme instructions are legal In uger
mode {f the USER 1/0 pC tlag is alsg set,

ARRO, AVPR1, AMND APR2 INSTRUCTIONS Page 2892
APRID

2,1 AREID

{.----..-.*n--.‘.‘Qt..f.--------u-d.-onogﬁ

| 700 ! ou e Xr | Y :

XL IR R ISR R AL A RS R RS RS S XL A L A 0 X X 4

This instruction stores the microcode version numnper, CP!! serial
number, and processor options 1In the words addressed by b and k41,
The torwat of the tirst word (E) is:

et leserved tor microcode options,
0 biagnostlic microcode loaded,
1 Unhiased rounding microcode enabled, °
[XJRSTF debuyyging microcode present, This microcode 18 a

debugging aid that denerates a page fall to the wonitor 1t
bits 13«17 of the flags word are non=zero or if the CAR
and PAL field are both zero,

7 bebuydling instructions present (READTB, WKITIL, etc,),
See the chapter on Speclal Debudying Instructions for a
description of each instruction,

8 TKACKS (PC trace) microcode present, See the description
of the WRTRAX and RDTRAX instpuctions in the chapter on
Special Dbebugqing Instructions tor more information
concerning the cantrol of this feature,

Yul? tlardware options L{%s ?

, 4d/€'7
18#35 Processor serial number V)&XC

The tormat of the second word (kef) is: ‘
/&Zd(/’ !‘% -

Qe 35 Microcode version number ?(WQM@LX 0400 5 v
p:¢

KLZKS coupatibility

The Kl and XS returned microcode options, microcode version nunmber,

hardware obtions and processor serial number AIn one word, The KC
returns twg words and detines ditferent hardware and microcode option

Lits, . | |
C?a;a%/or\ & fg}fwdj : AOUD Ca n & Qkig (JgAﬁVﬁlAJ
o, !, 6,7, o ¢ Al 0ISS 16(’1 VCLZ(,(M (o CAC 7{/1/5(7}

, {
o Poss,) 604 /s ?

APRO, APRY, AND APH2 INSTRUCTIUNS Fage 2ed
WHAPR

2,2 WRAPR

Q-.--.----Q-.--Qp’-..t*.n.-----n-'q@opqu{

H 700 § 04 @} XR | Y !

*,-.-qnnqg'--;n*QQ——-.Q-Q-----.-.n----.99+

IThis jumedjate mode {nstructfon decodes 1its effective address to
contro]l the processor, The effective address bits are used as
tollowsy

18 load the Pl assignment for the CrU frow bits 33edb,
19 obbﬂ}‘ O reset when this bit is set, "reset" is asserted on
- Vfﬂ%fﬁ Ahe KC19 170 bus, This will reset all the vport
ﬁgé/ (7' ¥ micromachines (but atfects no internal devices, suech as

{ e 9 the pader and processor flags),

\rﬁp%ﬂﬁ'
20 7 knable the APR conditions selected by pits 24 thru 31 o
cause interrupts,

21 Disable the APK interrupts tor conditions selected by bits
24 thru 3y,

272 Clear the APR flays fndicated by bits 24 thruy 31,

23 Set the ApPR tlags indicated by blts 24 thru 3y,

24%34 Selected flays, These hits represent individual APR flags
that can be get, cleared, enavled, or disabled with the
approkriate combynation of bits 20w23,

24w28 Heserved)
‘ &
29 Unassigned APR f]ag dJ{QKL*JLAF
30 Console attention
3 Power tailure
32 Reserved
33=35 Pl assjgnment tor CpPU

CAUTIUN

The results ot executing é WRAER
instruction are undefined if the wWRAPR
argument has both bits 20 and 21 or hits
22 and 23 set, There {s no logyical
meaning in attempting to both enable and

APRO, APRY, AND APR2 INSTRUCTIUNS Fagye 2=4
WRAPR

disable the same conditions or in
atterpting to both set and clear the
same flays in one instruction,

$ ol a3 o’

KLZKS compatibility
The kI and K5 unconditionally set the CPU PIA, lhe Kc.au&{/ sets the

PIA \(4f bit 18 is on, The KC also defines different flags ipn bits

Lo hat was Jhal Acbade o/
/Om'z'!‘/u/f Q /’“@;{‘f

Tl Arsaat ”

APRO, APR1, AND APHYQ INSTRUCTIONS Page 2=%
KDAPR

2,3 RDAPR

Qp---.---.*---.Q.-fQ.nc’-.-a--.---.----.-q-’

H 700 } 05 jep XR | Y :

Qp.q--.-.-'-.anq-'QD.&*Q...Q-..O....,.QQ’*

Ihls tnstruction stores the APR status in the word addressed by E,
The status {s as follows:

De$ Reserved
bwi) Interrupts enabled, These bits Indicate which of the APR
tlays are enabled to cayse interrupts,
bell Keserved
i1 Unassidned ARK flag
12 Console attention enabled
13 Power fallure enablod
14=23 Reserved
243 Interrupts pending, These bits Indicate which of the APP
tlays are g;i;’ eyuesting an interrupt,
2428 kReserved O S)
29 unassigned Abp flag __ ohat clo D do VL%
30 Console attention AN e
31 Power talture
32 Interrupt requested (IUF of bits 24wil),
3335 F1 assiunment for the Cpu,

KL/KS compatibilfity

The(gg)detines difterent flays In bits 24=31,

[
e

ARRO, APRY, AND APR2 INSTRUCTIUNS Fage 2«6
SZAPR

2,4 SZAPR

IZ XTI P L RIS RS 2 RAY DY LYY P LA X L 2 X 3 X4

! 700 } 06 §8§ Xk | Y !

XTI PR IR RAL LR A AL LA 2 A 0 L X X J

This instruction tests bjits 18«35 ot the APR status (as indicated
u RLDAPR) against bits 1835 of £, 1f all status bits selected by

7 re 0s, the next ipstruction in sequence 1s skipped,

KL/ZKS compatibility

Functionally ldentical to CONSZ APR,k,

-2

/ j 4 ; / v

Now QrL bily K- 2 <o ot Vi

coft waxa Ao wf/ 01 corll XIERNT

- O ;I j(
£$ {’f /\,Qilﬁﬂi/r /g,5§7 (/()KJ/) \/ O KA

) : 7
?+’I'N\YW&Ck{(L4£— ,QQKLA\ '

APRO, APRY, AND APRZ INSTRUCTIONS Page 2+7
SNAPR

2,5 SNAPR

Q-.--.n-.-*---—*-Q—-puﬁog-----.---.-.c--g*

} 700 ! 07 te} XR | Y H

Qyoh-bpuin’cnq-*-Qg.-.*-.~---¢..n...-g.gq*

This instruction tests bits 18=3% of the APR status (as indicated

</,,uudﬁr“ R) agalinst bits 18e35 of E, If any status bits selected by
_ 18 in E 1s /e next Ipstruction in sequepce is skipped,

3)
s
.

KL/KS compatibility .

Functionally fdentical to CONSU APR,E,

APRO, APR1,
WKE L

2,6 WREl

AND APR2 INSTRUCTIUNG Fage 2«8

+F---'-.ﬂ'*-‘.-‘-Qﬂ-..’.-.---....ﬂ-----.ﬂ*

! 700 § 14 je| XR |} Y {

AL A AL AL R AL R R AL AL P L Y P Y Y Y Y

This immediate mode instruction decodes {ts effective address to
control the priority interrupt system, 'The eftective address bits are
used as followse

18=214

22

23

24

29%3%

Peserved

prodr are) reqguests on the Pl levels

selécted py is In bits

Clear PT system,

Infitiate program (sottware) interrupts on the I levels
selected by ts in bits 29=3%, Such interrupts vector
throudh the software Iinterrupt vector words in the (/0
paye, An interrupt is not ipitiated gpn a Jeve) upless the
Fl system and the reguested level are on,

Turn on the Pl levels selected by 18 in bits 2Ye35,
Turn ott the PI levels selected by 1s in bits 2935,
Turn otf Pl system

TUrn on Kl system

Selected Pl levels to bhe aftected by the control of bits
22, 24, 25, and 264 UJU/UL aﬁ} »’

qgc"'jL\LALfc 7

CAUTION

The results of executing a Whip]
instruction are undetined it the WKPI]
argyument has both bits 22 and 24 or bits
25 and 20 set, There is no loglical
meaning in attempting to bhoth clear and
initiate software reguests or in
attempting to both turn on and turn otf
Pl levels,

' AN R T 7
LL)aUJ /{0 ¢[}Q$L('\)jJ / £7¢}J*L ‘

), ine 7)",L}J j i f[“
u'}j - L) (’Ai [10 /ﬁ? ﬂ
70= st M3
&ld'@ J

o

APRO, APRY, ARD APR2 INSTRUCTIOHS Page 2w9
WRPI

KL/KS compatitility

The KL used bLits 18w20 to force parity errors, The KL initiated an
interrupt oh a level as the resuylt of a 1 in bit 24 eveh Lf the
specified level was o0ff, Although the K& is documented to act ip the
same manneyr, It did not initiate the interrupt unjess the level was

Ohy

APRO, APRY1, AMD APR2 THSTRPUCTIONS Page 2m10
RDP§

2,7 ROPI

(XA L I R L A RN R XA L E R PR Y RS P Y L 22

?ﬁ b 700 1 15 1ef XR |} Y !

LA LT AL P Y L L E R AL E R I R TR R R Y PR Y]

This 1nSt ion stores the PI status in the word addressed by K, The

status 1is ollowsy
Oel0 Reserved
11=19 Pl levels on which proygram (sottware) requests have been
made,
~ a(7
18220 keturned as zeroes M
2127 P1 levels on which interrupts(;;;-;:sﬁin progress,
N———
28 b1 system on,
29=3% i'l levels which have been turned on,

KL/KS compatibility

The KL returned the state of the forced parity error bits in bits
18»20, Otherwise, it is functionhally equivalent to CONI PI,E on the.
KL apd KDPI E on the KS,

APRO, APIY, AMD APR2 INSTRUCTIONS Page 2mlt
9kl

2,8 sIvl

Qp----.--‘Q----QQQq’-.*-q--u-.---.n..o..-’

}700) 1e jel XR | Y :

’Q.....Q..Q.O..ﬁ.*,D--Q.--.---.Q----—.O.Q*

This fnstruction tests bits 18«35 of the Pl status (as indlcated upder
KDPI) against bits 18e35 of E, It all status bits selected by 1s in &
are (s, the pext ipstruction in seyuepce is skipped,

KL./Z/KS compatibility

Functionally equivalent to CUNSZ P ,k,

APRO, APRY, AMD APR2 TNSTRUCTIUONS page 2«12
SNPI

2,9 SNpI

XX T Y YR Y L PR Y RN Y PR P TR Y T R R L L L L N
} 700 L 17 ef XR | Y |

I I T YT YT Y PR YL R RS AL R RN T AL R R A A L X L2 X

tests bits 18«35 Pl stat
16t b Bedb Of b (b1t
the pext instructlon in sequence is skipped,

nstruction 0ot the

(as indicated under
selected by 1s in E

K1.ZK8 compatibility

Functionally eguivalent to CONSC Fl,k,

APRO, APRY, AND APR2 INSTRUCTIUNG Page 2#13
SETCU

2,10 SETCU

QQ...----.*QQQ-QqﬁQ'.-Qu---o-----.----.-qf

! 704 } 00 1@} XR | Y !

a’g-..---.--’-q.u*q*.D--*o----.-.‘-------.-g{y

This instruction causes the "CS8T update needed" LIt to be set In each
entry 4n the hardware translation butfer so that the tirst virtual
reference to each pade will cause theto update the CS8T entry toy
the page

paass AL

This instruction blocks further CPU activity until all bits are set ip
the translation butter,

The actions performed by this instruction are as followsi

1, Set the "CST update needed"” bit in each entry in the hardware
translation bufter,

2, Flush and restart the IBOX,

The indirect, index reqgister, and Y tields of this instruction are not
used and are reserved,

KL.ZKS compatibility

No functional equivalent on the KL or Ki,

APRO, APRY, AND APR2 INSTRUCTIUMNS Page 2«14
KRCTX

2411 RDCTX

p--.c..-----.’n{-.Ct’.'.-aa---w--.--nqqf

! 701 b0y el XK | Y {

Qp-n-.qvq-’pag.‘g’9;;.*;.-p--.o-c--t---ggﬁ

This instruction stores the user process context in the five words
addressed by E through E+4 in exactly the same forwmat as used by
WRCTX, In order to dllow these words to be used di{rectly in a WRCTX
instruction, bigfs 0«2, 5, 8, and 9 are set to 1 and bits 3, 4, and 7

are set tog 0 in . k\
[CARRY
Jmi}ﬁb“V;iJL
W

Paging muyst be enabled (with WREBR it
4) to read the address break conditions,
1f padiny is not enabled, the values
returned in words kK42 throuyh E+4
(address break conditions, lower and
upper address bounds) are undetlined,

CAUTIUN

The tormat ot the tirst word (F) is:

] Returned as a 1 (load CAb/PAB in WRCTX),

i Returned as a 1 (load PCS in WRCTX),

2 Returned as a 1 (load UBR in WRCTX),

3 keturned as a 0 (unconditional pager clear in WRCTX),

4 Returned as a 9 (inhibit meter update in WRCTX),

5 S*oahi ‘:;ﬁeturned as a 1 (load VMemode {n WRCTX),

o b Virtual machine mode (VMemode) enabled for this user
context,

7 keturned as a ¢ (Inhibit address break in wrCTXx),

B T Returned as a ! (Load address break conditions In wrkCTX),

9 —>keturned gs a 1 (Lood address break epable in WRCTX),

10 Address break enabled,

APRO, APRY, AND APR2 INSTRUCTIUNMNS Page 2e1h

RDCTX

11=17

18#=35

keserved

Fhysical page number ot UPT,

The gormat ot the second word (E+1) is:

0e1?

18e20
2123
24=35

Reserved
Current AC block
FPrevious AC block

Previous Context Section

The tormat of the third word (E+2) 1iss

el

10

i1

12
13

14

16

17

18=35%

Keserved

Address break enabtlied tor a normal tetch of an instructtion
i the proyram under control ot PBC,

Address break enahled for any reference that reads except
the normal tetch of an instruction,

Address break enabled for any reference that writes.

Address break enabled for a reference made in user virtual
address space, (0 lwplies executive space),

Address break enabled for a reterence made by the CHFU to
memory,

Address bLhreak enabled tor a reterence made hy a port to
memory, ‘

Address break enabled for a physical memory reterence, n
implles virtua)] memory reterences),

Compare only bits 18 throuyh 35 of the reterepce address
with the address rande when doiny address compares,

Feserved

The format of the tourth word (F+3) ist

Oeb

heserved

APRO, APR1, AND APR2 INSTRUCTIONS Page 216
RDCTX

b=35 The lower bound bredk address,

The tormat of the ftitth word (k+4) is;
Oe5 kReserved

be 35 The upper bound break address,

KL/KS compatibility

The KL returned current and previous AC blocks, previous context
section, and the physical payde number of the UPT with a DATAL RFAG,t,
Address break conditions were returned with a UDATAIL APR,E, The KS§
returned current and previous AC blocks, and the physical paue numher
of the UPT witn a RDUBR E, The KC RDCTX instruction combines the
functions of these instructions,

APRO, APKY, AND APR2 INSTRUCTIONS Page 2=17
CLRET

2,12 CLRPT

Qp-o.m---.fu.u-’-f.a—of.---—--.-n-.----qgi

} 701 { 02 je} XR |} Y '

fg--p---q-’.pp-*;*g...’nn--........q--ugg*

This immediate mode finstruction clears the hardware translation buffer
entry tfor the virtuyal payge addressed by E so that the next virtual
reterence to a word In that paye will cause an EBOX page fai)l trap to
occur,

The translation butfer "keep me" bit {s fgnored by this instruction
and an unconditional clear is done,

The actfions performed by this instruction are as follows;
1, Clear the translation buffer entry tor the virtual paqge
addressed by E,

2, Clear the iInterpa} cache of pagipny Lnformation kept by the
EBOX (but do not clear the tirst exec ana user super section

pointery, b@

3, ¥lush and restart the TBnx,

KL/KS compatjibglity

Functionally egujvalent to CLKRT E on the KL,

APKO, APRY, AND APR2 INSTRUCTIUNS Page 2w14
WRCTX

2,13 wWRCTX

(AL SIS AT AL R RA LY RS L L AL X R AR L L0 X,

i 7014 ! 03 |8} XR | Y H

Qp-un.owy-*scqn*.Q-.o-’.'un-u-o..--.---qg§

This instruction loads User process context from either 2 or 5 words
addressed by ¥ through K+4 depending on the state of bit 8 in the
tirst word, The process context incjludes previous and courrent AC
blocks, previous context section, user base register, virtuyal machine
simujation mode enable, and address break enable and conditions,

The tormat of the first word (k) is:?

N
0 LLoad current and previous AC block numbhers (CA8, DPAB)Y from
bits 18e23 of word kel,

1 l.oad previous context gsection (PC8) from bhits 24«35 of
Word Eet,

2 Lgad the user base reqgister (UBR) from bits 20«35 ot A
word, The fuynction ot this bit 1s more complex that,

indicated here, See the complete description below,

3 Clear all pages from the hardware translation butfer
(include "kept¥ payes) it a payer clear is done as the
result ot bit 2 beinhy set,

4 Do not change the state of the user runtime meter (neither
update it into the old UFT nor load {t from the new UPT),

b Load VMemode enable from bit 6 of this word,

0 khable virtual machine simulation modeYfor this
user context,

7 Inhibit all address break conditions for the next

instruction exeguted, The etfect of setting this bit s

_~—$0 set the’inhibit address breakll C tlag for the next
j;gnstructlon,

8 LLoad address Dbreak conditions from the words at t+2
through F+4, If this bit {8 not on, the words at k42,
b+3, and F+4 are not referenced by the microcode,

9 Load address break enpable from bit 10 of this word,

APRO, APRY, AND APR2 IHSTRUCTIUNS

Page 2m19

WRCTX

10 Enable address break using the existing conditions
conditions may he also be changed with the
instruction),

11=17 Heserved

16=35 Physical payge pumber ot UubT,

The tormat of the second word (E+1) is:

Oel? Reserved

1820 Current AC block

i1e23 Frevious AC block

2435 Previous Context section |

The torrat of the third word (E+2) 1s:

(the
same

Doy keserved

10 knable address break for a normal tetch ot an {nstructjon
ln the program under control of PC,

11 knable address break for any referepnce that reads except
the normal tetch ot an instruction,

12 khable address break for any reterence that writes,

13 Enable address break for a reference made in user wvirtual
address space, (0 selects executive space),

14 Enable address hreak for a reference made by the CPU to
memory,

tb knavle address brear for a reterence pade by port to
memory,

16 knable address break for a physical memory reterence, o
sejects virtua] memory references),

17 Compbare only bits 18 throuah 35 of the referepnce address

with the address rahye when doing address compares,

18 LR reserved

The format of the tourth word (F+3) 1is:

APRQ, APRY, AMND APR2 INSTRUCTIONS Page 2=20
WHCTX

Qeb8 Reserved

beid5 The lower bound break address,

The tormat of the fifth word (k+4) isg
Oe5 Reserved

Lelds The ubper bound breask address,

In word kK, bits 0=2, 5, and 7e9 control the action of this
instruction; when a bit 1s 0, the corresponding action 1s ifgnored,
The actions are as followsy

Yy 1£ bit 0 is oh, load CAB and PAB from bits 18=20 and 21e23,
respectively, from word k+t, If bit 0 is ott, do nol change
CAb and PAHK,

2, If LIt | Is on, load PC5 trom bits 2435 of word E+41, 1f bit
! is oft, do not change PCs,

3, I1f vit 2 is on, perform the following functionsg

1y 1t LIt 3 4in ¥ is 0, cledr all pages except those marked
"kept" in the paye table, It pit 3 is 1, clear all
entries,

2, Load bits 18=35 of E into the liser base Heqister
offset ; v
3, If bit 4 in is 0, pertorm the following functlionsg

1, l!lpdate the user runtime meter into the previous !PT
by simulating a HKDURTM instruction and storing the
resulting doubleword in the previous UPT in locations
5040505,

2, load the user runtime meter kept in the EBOX interpal
reqglsters from locations Ho4«4%0% of the new Hev

It bit 4 1s a 1, do not update the uyser runtime meter
into the previous kT and do not reload 1t from the new
heT,

4, Clear the internal cache of paging information rept by
the EBUX, If paging s on, re=inftiajize it with tne
first super sectionh pointer from the EPT and the UPT

APRO,
WRCTX

B,y

APRY,

AND APR2 INSTRUCTIONG Page 2e21

(oftset 520),

It bit 5 is on, perform the following tunctionsy

tey If bit 6 is on, enable virtual machine simulation mode
(VYMemode) tor this user context, If bit o is .ott,
disable VMemode for this user context,

It bit 5 1is off, do hot change the state of VMemode,

£ bit 7 is on, inhibit all address break traps tor the next

instruction £ bit 7 1s off, do

not inhitit

executed after the WRCTX,
address break traps,

If bit ¥ is on, load the address break conditions frowm the
Words at E+2 through E+4, It bit 8 Is otf, the address breay
conditions remain unchanaqed,

CAHTION

Paaing myst be enabled (with WREHK bit 4) to load the

address break conditlions, [t paging 1s not epabled,
the result of loading the address break conditions is
undefined,

It bit 9 is on, perform the tollowing functionss

1, 1t bit 10 is on, turn on address break using the existing

break conditions (whigh may bLe sget in the same
instructjon by setting bit 8 to a one), It bit 10 1is
oft, turn ott address break but leave the break
conditions unchanyed,

If bit 9 1s oft, do not chapge the state of address breag

enpable,

Flush and restart the Ipiix,

see the chapter on paging tor a tunctional description ot address

break,

KL/ZKS compatibility

The KL set current and previous AC blocks, previous
the
break conditions and address were set with a DATAQ APR,E,
currenbt

and

context section,
rage nurber of the ubP7T with a DATAD PAG,F, Address
The K5 set
ahd the physical page number of the

physical

and previous AC blocks,

APRO, APKt, AND APR2 INSTRUCTIUNS bPage 2w22
WRCTX

UPT with a WRUBK E, The KC WPCTX instruction combines the fupctions
of these iInstructions,

APRO, APRY, AND APR2 INSTRUCTIONS Page 2«23
WHEBR

2,14 WREBR

49.n~.--.-§----¢-4-Q..Q-------.---o----—gﬁ

H 701 i 04 (e} XR } Y !

p‘.-----~§-ppg-*q9--§.--o-u-.-—--.--.-q*

This instruction loads the exec mode context trom the word addressed
by k, The exec mode context includes cache enable, monitor type,
pvager enable, trap epable, and the exec base register, The tormat of
the word s}

0 Load the cache enable bit from nhit 1, This b1t should
nhever bhe set by the monitor, The cache will only be
turned off as the result of a serious error apd should
remain oft unptil the problem {s tixed, The ability to
ehable and disable the use of cache is provided strictly
for diagnostics,

1 khatle use of the cache for all references, Enabling the
use of the cache with this bit does not epabje the use of
all tour cache guadrants if one has been turned ottt
because of an error, Lt simply cayses the cache to he
used for any guadrants that are on,

2 reserved

3 TOPS=20 mode (see helow)

4 Pager enable,

Seb Reserved

7 LLoad trap enatle from Lit 8

Y knable tull processing of traps, LUUUs, Muuus, and page
talls

Ye17 Reserved

l8w3s Physical page number of EPT,

The actions pertormed by this fnstruction are as followst
1, 1t bit 7 i{s a 1, perform the followiny functions:
1y 1f LIt B is a 1, enable full processing of traps, Liyls,

Mults, and page falls by the monitor as described inp the
approprlate sections below,

APRO, APRY, AND APR2 INSTRUCTIUWNS Pagye 2e24

WHEBR

2, 1t bit 8 Is a ¢, chanye the processiny ot certain
processor conditions as follows:

{, Travs, Treat trap 1, 2, and 3 conditions as if the
trap function word had specified "iynore trap",

¢, LUUUs, Process section 0 LULUS in the normal manner,
Halt the machine on LUNUS executed 4in pon=zero
sections,

3, MuuUs, Halt the machine,

4, VPage falls, Process page talls that can be resolved
by the EBOX nlcrocode alone 1y the pormal manner,
hHalt the machine on page fajls that must be processed
by the monitor,

Tf£ it 7 is a 0y do not chanye the state of trap enable
't bit 0 158 a 1, pertorm the following functionst

1, If pit § is a {, enable the use ot the cache as described
above, If bit 1 Is a 0, disoble the use ot the cache,

T£ bit 0 Is a 0, do not change the state of the cache enable,

Tt bit 4 is a 1, perform the followinyg functionsg

1y, Enable the use of the paging hardware for
virtualetosphysical trapslations for memory reterences
and select the type of padlng to be used,

2, 1f£ bit 3 is a 1, select TUP5=20 mode, If bit 3 is a v,
seject TUPSe10 mode, This bit allows the monpitor to
select the features appropriate for the operatiny system
telnd run, At present there are no differences hetween
TUPS»10 and TOPS=2¢ mode, 'The nit s here for future
expanslon,

I'f bit 4 is a 0, disable paging so that a)) memory reterences
are to pnysjcal jpcations unpaged, Note tnhat disabling the
bayer does not mean there can be no page failures, as these
can bhe caused by conditions that have nothing to do with
paging,

CAUTLION
Paging can be disatled only for kernel mode, A yser

rode process will not run correctly unless the pager
is turned on,

APRO, APRY, AND APR2 INSTRUCTIUNS Fage 2«25
WhEBR

4, Loead bits 18e35 into the Exec Base Reuyister,

5, Clear the internal cache of paging intormation kept by the
EBUX, 1f paging is on, reeinitialize it with the first super
section pointer from the EPT and UPT (oftset h20),

b, Invalidate all entries In the MHBUX translation bhuffer,
lgnoring the state of the “keepeme" bhits,

7. F¥lush the 1BOX and restart it,

KL/ZKS compatibility

The Kl set exec mode context with the IMMEDTATE MODE instruction COND
PAG,k o The kS set exec mode context with the IMMEDIATE MODE
instruction WREBR E,

APRO, APRY, AND APKRZ2 INSTRUCTIUNS Page 2«26
RDEHR

2415 RDEUBR

Q------.--Q----*-’q--n*.-.-.--.‘p.-p--.-qﬁ

} 701 } 05 (e} XR } Y H

Q-..---n.-’----+qf--g-’obon.--....n--..-gQ

Ihis instruction stores the exec mode context In the word addressed by
ke The tormat of the word is;

0 Returned as zero

1 The use ot cache is enabled for all references, This bit
beiny set does not imply that all tour cache quadrants are
in use, It simply weans that the cache will he used for
any qguadrants that are on,

2 Regerved

3 TOPS=20 mode (see WEEBR above)

4 Faging 1s enabled

H5eb Reserved

7 kteturned as ¢

8 Full processing of traps, LuUNUs, MIUUs, and page fails |is
enabled

Yel9 Reserved

18e35 bhysical paye npunber ot kpT,

KL/ZKS compatibility

The KL and K§ returned the exec mode context with CONI PAG,F and RDEBR
by respectlvely, The KC returrs the same fields as the KL CONI PAG,F
but the bit positions have chahged because of the increased size of
the KPT payge number,

APRO, AFRI1, AND APR2 INSTRUCTIUNSG ragye 2e27
wWrRilOp

2,16 WRIOP

(A X AL Ad T Al T 2l L R R AL LR LTI PR 203

} 701 | 0o }@) XK | Y |

Qq.----.q-’.--.*.Qg-y-*-a.q---.-.--.o.-ngQ

This instruction loads the 1/U0 page base register from the word
addressed by E, The format of the word is:

O=}1? reserved
18» 395 Physical page number of the 1/0 paqge

The [/0 paye base reqgister is set to physical page 1 by the console
duriny a cgldesstart or as the result of the INITIALIZF command,

see the chapter on Special Systen Paues far a descoriptinn of the
layout of this page,
hL/ZKS compatibility

Nuo functional equivalent on the KL or K§,

APRO, APRY, AND APR2 INSTRUCTIUNS ‘Paqe 2«24
RDLIOP

2,17 RDIOE

Qp.-n.ﬁ.n.fn.n.’.‘---.Q«----...---.--oongf

H 701 { 07 (@} Xk} Y !

Q---uo-..-#ntqu*qQpsqofcqnctubnnocpcnoong#
I'nis instruction returns the value of the l/U0 paye base register and
stores it in the word addressed by F, The format of the word isi
0«17 keserved

18=35% Physical page number of the 1/0 page

KL./ZKS compatibility

No functional eduivalent on the Kl ar RS,

APKRO, APRY, AND APR2 INSTRUCTIONSG Page 2m29
RDUBR

2,18 RDUBR

Qp.----.--!’----".q‘t----Q-.-.-&---.--o---qqq

}oT0t)10 e} XK} Y !

AL L AL L L L L L R R AL R L Y P P Y T LY

Ihis instruction stores the user process context in the two words
addressed by & and E+! ip exactly the game tormat as the first two
words used by WKCTX, In order to allow these words to be used
directly in a WKCTX instruction, blts 0=2, 5, and Y are set to 1! and
bits 3,4, 7, and ¢ are sc¢t to O in E, The format of the first word
() ist

0 Returned as a 1 (load CAB/PAB in WRCTIX),

1 Returnhed as a 1 (load PCS in WRCTX),

2 keturned as a 1 (load UBR in WRCTX),

3 Heturned as a 0 (unconditiona! pager clear in wiCTX),

4 Returned as a v (inhibit meter update in WRCIX),

5 Returned as a 1 (load VYMemode in WRCTX),

b - Virtual machine mode (VMsmode) enabled for this user
context

7 Returned as a 0 (Inhiblt address break in WRCTX),

8 Returned as a 0 (Load address break conditions in WKCTX),

9 Neturned as a4 1 (Load address break enable in WRCTX),

10 Address break enabled,

11=17 Reserved

lge3s Fhysical page number of UPT,

The format of the sccond word (F+1) is:
0=17 Reserved
14=2() Current AC block

2123 Previous AC block

APRO, APKR1, AND APR2 INSTRUCTIUNS
KDUBR
24-15% Previous Context Section

KL/KS compatibility

The K|, returned current
section, and

and previous AC

nutber of the UFT with a RDUBR ¥,

Page 2«30

blocks, previous context

the physical paye number ot the UPT with a DATAI PAG,E,
The k& returned current and previous AC blocks, and the physical

payge

AbRO, APRY, AND APR2 INSTRUCTIUNS Page 2«31
SWPIA

2,19 SWPIA

¢p...--.--0pq-.§-*.9-;{p--p——-.--tpp.—u.gQ
| 701 }o1r el Xk Y !
Q'.‘O-.’.-’.!'.f’ﬁ.,'?*-“.--Q.....--...Q*

Sweep Cache, Invalidate Al) Pages

Clear the valid and written state in all cache entries and do nhot
write any words that are written in the cache back into memory,

This instruction blocks further Cby activity until the cache sweep 1is
Complete,

The actions performed by this instructiopn are as followsy
1, Ftor each directory entry in the cache, clear rthe wvattd and
written bits, Do not write any written words bhack to main
memory,
2, IFlush and restart the I1BUX,
The gndirect, index register, and Y tields of this instruction are not
used and are reserved,
KL/KS compatibility
The k6 had no cache sweep instructions, The KL allowed other requests

to happen in parallel with the sweep, setting sweep busy and sweep
done in the APR status to indicate the sweepelnsprogress interval,

APRO, APRY, AND APKR2 INSTRUCTIUMS bPage 2=32
GWPUA

2420 SWPUA

Qp-.-.-uv.#-n--q-‘-.-.*-..------.-.-.uoog*
H 701 | 13 (@) XR | Y !

QQQOODOOQ-QQ-DnQQ’ppq-f.-----cnncpcouoodgﬁ

Sweep Cache, lnload All Payes

Write all written words in the cache back into memory, Invalidate all
entries (i,e, clear valld and written state),

This instruction blocks turther CPU activity unti) the cache sweep 1is
complete,

The actions pertormed by this instruction are as follows;

1, Wor each directory entry in the cache, clear the valld and
written bits, i1t the writter bhit was on, write any valid
words from the corresponding data cache entry bhack into main
memory,

2, Vlush apd restart the Iuux,

The fndirect, index reqgister, and Y filelds of this instruction are not
used and are reserved,

KRL/KS compatibility

The KS bhad no cache sweep instructions, The KL allowed other regquests
to happen {n parallel with the sweep, setting sweep busy and sweep
done §{n the APR status to {ndicate the sweepsineprogress intervaj,

APRO, APRY1, AND APKR2 ITHSTRUCTIUMS Page 2m33
RDSPH

2,21 RDSPHB

4.----.-0-*-.,-*.’...-’.--.---.-....'--—-*

! 702 I 00 le} Xk | Y :

{recsssnecsujsonanioivrorjoconvavenadorenawwd
Head SPT Hase Reyister
This instruction stores the SPT base register in the word addressed by
Ky The format of the word is;

el Reserved

11=3%5 Fhysical address of the SpT

KL/KS compatibility

Functionally identica) to the K8 KRDSPH K {nstruction, The Kl Kept the
address of the SPT In AC block 6,

APRO, APRY, AND APH2 INSTRUCTIONS
rDCSH

2,22 RDCSH

§g--n-¢--.+-.--*ch-—-Q-Q..--n-uo------nq’

| 702 | vt j@é} Xk | Y ‘

+p----o-..*-g--9q’-tpnf.n-----.--.o..o..q’

Head Core Status Table Base Register

Page 2«34

This instruction stores the CST base register in the word addressed by

ky, The format ot the word 1is:
=30 Keserved

11e35 Physical address of the CST

KL/ZKS compatibfility

Funetionally fdentical to the KS PDCSH E instruction,
address of the CS8T in AC bLlock 6,

The Kl

kept the

APRO, APRY, AND APR2 INSTRUCTIUNS Page 2«35
KDPUR

2,23 RDPUR

ﬁp--.—..--*-.--*.’.---*-------..-.--..-0-0

| 702 | 02 j@} XK | Y }

Qpﬁnu-.---*nﬂtoftQgqoofonqouuoqnoucq.--qgf
Read Process llse Reylster

This instruction stores the process use reyister intoe the word
addressed by F,

See the chapter oh bFaging for a description ot the process use
register,

KL/ZKS compatibility

runctionhally identical to the KS BRPPUR E instruction, The Kl kept the
process use register {n AC block 6,

APRO, APR1, AND APR2 INSTRUCTIUNS Fage 2«36
ROCETHM

2,24 RULCSTM

AL A L A A T PRI I P R LI AR R Y R Y L XN YNy

{ 702 § 03 18} XR |} Y H

Qp-..--.-.(..--*.’.y--4.-.---.-.-—---.-QQQ

head CST Mask Heylister

This instruction stores the (ST wask register into the word addressed
by ¥,

See the chapter on Paging for a description of the CST mask register,

KL/ZES compatibility

Functionally identical to the K5 RDCSTM E instruction, The Kl kept
the CST mask reuister {n AC block 6,

APRO, APR1, AND APR2 TNSTRUCTIONS Page 2#37
RDTMY

2,26 RDTMY

a-—---....‘.-..q’-Q.-.-Q-n--.---.-....---y
b 702 | 04 1@} XR | Y !

Q--.-tu--.*-na.*- ,O,‘.." .----.--'-.---..-9’
Kead Time Base knables

This instruction reads the status of the time base and the Iinterrupt
leve] assiygned to the Iinterval timer into the word addressed by k,
The status is as followst

w22 Reserved
23 Time base qn,
24=32 Reserved

33«35 <:::}Dfor interval timer,

KL/KS compatibility
The K1, COND MNKR, Instruction returned the time base enable -and

~intepval timer] PIA in a manner very analogous to this instruation,
The K5 had no direct equivalent,

¥p¢’ v3°(

APRO, APR1, AND APRZ INSTRUCTIOMNS Page 2#38
KDINT

2,26 RDINT

¢--~--.-..§-o--’-Q----*-nunnnnnncﬁuoopooqﬁ

702) 05 Je) Xk) Y :

’p----.---’-...*.’--pq*--;.-.--..-qoq-.‘g*

Head The Interval Register

kead the status of the interval timer into the word addressed by E,
The status 1s as £01lows:

Ded Reserved

Lei? Interval count (current contents of the counter),
1820 Reserved

21 Interval timer on,

22 Interval timer done (Causes interrupt),

23 Overtlow (implies bit 22),

24=35% Interval period,

Bits 22 and 23 are the counter tlags; note that Interval timer dope
cah be set alone, but a 1 in bit 24 implies a 1 in bit 22 as well,
Bits 24«35 are the period supplied by WRINT, and bits bei17 are the
current cogntents of the counter, ‘

KL/KS compatibility

This instruction is functionally equivalent to the KL CONI TIM,
instruction

ket aur Hh
LLA\:*’S‘?

APRO, APRY, AND APR2 INSTRUCTIUNS Page 2«39
KDTIME

2,27 RDTIME

¢-------¢.*go.-4-§---.*-.n--‘-gug.--p-quﬁ

} 702 I 06 j@} XR | Y {

+*-u.0---.§...qf.*.pp-on..-o.a-qq..-.-qq§

Read Time Hase Value

This instruction updates the time base double word kept {in interna)
EBUX storage ftrom the hardware counter and returns the ypdated double
word in the words addressed by F and E+1, The double word is a double
precision f{nteger in { microsecond units with the following formats

‘83”.QCE8'833233383388:28538888‘88'3’33:2:23833.33!".8!‘
! High order part ot count |

z.‘..-‘----'--Q-Q.....--._.“--.-.----.-...-.‘--“-‘-&-Q :
L1014 Low order part of count '
:z:=z:=:====:====:========s=========:s:xz:::sz:::z:zails1
U 38

KI./KS compatibility
The k1. KDTIME instruction also updated the time base douyble word kept

in EPT locations 510 and 511, The KS RDTIM i{nstruction returned the
double word in the same manner as this instruction,

APRO, APR1, AND APK2 INSTRUCTIUNS Fage 2240
RDURTH

2,28 RDURTM

Qq--.....;‘.t..g.*-.’.§~-.----9--.--.--99+

I 702} 07 le} Xk | Y |

p-ua-.-q.fn--.‘.{p-q—Q.o.-qn--n.-q-.-.yg

Read User Runtime Meter

This instruction updates the user runtime meter double word kept in
internal FBUX storage from the hardware counter and returns the
updated doyble word ip the words addressed by E and Eel, The double
word {s, double precision integer in 1 microsecond units with the
tollowing format:

==8$=============2:=============88=====3:3:3583:3383 1
liigh order part of count in microseconds i
'.-.---.....-'----.-.-.--.....-.-“"-...-.---.-----‘
l.ow order part of count ipn microseconds |
i "llilzts38!'3!382:3882:8:3!283!'3518832838822823238;
35

oS- Ve B- G
.= %
LI |

KL/KS cowpatibility

The KL and K8 had no comparable instructions,

APRO, APK1, AND APR2 INSTRUCTIUNS Page 2wdi
WRGP Y

2,29 WESPUH

p--.w,....--.*-’-q.-f.o-uw---n...---.-g’

¢ 702 | 10 (@) Xk | Y l
*p-.g-.-p.*p.n-‘nQ-—:-4-.---.-.-.---;-..9+
Write SPT Base Reyister

This instruction loads the SFT bhase reqgister trom the word addressed
by k£, The word format 1sj ‘

0w 0 Reserved

11«35 Physical address of the start of the sbT,

The SPT base register 1s loaded with a physical word address, The
address need not be on a page boundary and may be any location in

physical memory, Theyre is no range check on SPT offsets, The monitor
is assumed to always put correct data into the SFT base reglister,

KL/ZKS compatibility

Funetionally ldentical to the KS WRSPB E instruction, The KL kept the
SPT address in AC block 6,

APRO, AVRY, AND APRZ INSTRUCTIUNS Page 2-42
WRCSB

2,30 WRCSH

0..-----..’.-.--’.-’....’-.--n----.-.----ggi‘

H 702 P 1y (e} Xk | Y $

09.&§.-9q0§-.-q§.0.?..f.--....-QQOUpQQ-QQQ
Write Core Status Table Base Reqister
This instruction loads the CST base reyister trom the word addressed
by F, The word format is:

Oel 0 Heserved

11«35 Physical address of the start of the CST, If this address
is zero, the microcode will make po CST reterences,

The C5T base reaister is loaded with a physical word address The
address need not be on a page bouhdary and may be any place in
physical memory, There ls no range check on CST nffsets, The monitor
ls assured tu alwdys put correct data Into the C&1 base regyister,

KL/KS compatibility

Functionally identical to the K& WRCSH E instruction, The KL kept the
CST address in AC bloek 6,

APRO, APRI, AKD APR2 INSTRUCTIUNS Page 2«43
WHPUR

2,31 WHPUR

Qp-.-.-gn-*--n.-’.’q.u-Q-.--.-----.-g..a--p*

{ 702 } 12 ey XK | Y {

Prococsnen)esen ’--g.’-hanl--...-.....-.gQ

Write Process Use Hegister

This 4instruction loads the process use reaister from the word
addressed Ly V¥V,

The microcode updates a CST entry by ANDiIing the CST mask word (seco
below) with the entry and Uking the process use register into the
Qntry,

bee the chapter oh Faulng for the format of the process use reualster,

KiL./K8 conpatipility

Functionally ildentjical to the K5 WkbUk b ipnstruction, The KL kept the
process use register in AC block 6,

APRO, APR1, AND APR2 THSTRUCTIONS Fage 2«44
WRCSTH

2,32 WKCSTM

¢g-¢u-—..-’----¢-Q--.n*.-:-..tb-.-----.--#

boo702) 13 e} XK} Y !

XA IS L L R IR RS AL L R RN L R 2 X X
Write CST Mask Reyister

This instructionh loads the CST mask reyister from the word addressed
by ¥,

The wmicrocode uypdates a CST entry by ANDINng the CS1 wmask word with the
entry and Jking the process use reglster inte the entry,

qee the chapter onh Paglny for the format of the CST mask reqglster,

KL/KS compatibility

Functionally ldentical to the KS WRCSTM k£ instruction, The KI, kKept
the CST wash register In AC block &,

APRO, APRY, AND APR2 INSTRUCTIOMYG laye 2«45
WRTMBE

2,33 WRTMY

+,---‘----*-.n-’-Q.---.:’.n._.--.-----“w-.-y\,ﬁ

§702 | 14 jel XR | Y X

qu.p&--.-+.--.‘a’.’ !--.’.-pq-.-.--m-q---{-n*

Write Time base Controls

This immediateerode {nstruction decodes its ettective address to
control the time bage and the interval timer, The effective addyess
bits are used as tollowsg

1y Load Pl assiynmwent for interval timer trom bits 33mis5,
19 Load time base controls from bits 20 and 23,

20 Clear time base,

2122 Reserved

23 Turn on time base,

24e)? Reserved

33=35 tor interval timer,
% \M“SL

The actions of this instruction are as tollowst
1y T£ bit 18 is a 1, load the interval timer pI assignment trom
bits 33e35, If it 18 {s a 0, do not change the interval
timer PIA,
2, 1f LIt 1Y 15 a 1, perform the tollowiny operationss

'y If blt 23 is a 1, turn on the time base, It bit 23 is a
0, turn otf the time base,

2, bit 20 1s a {, clear the time base, If bit 20 1s a 0,

LdNﬁL is lunored,

It bit 19 1s a 0, do not chanye the state ot the time basc,

APRO, AVPRY, AND APR2 INSTRUCTIOMS Page 2e46
WRTHMY

KLZKS compatibility
The KI. CUNO MTR, instructjon controls the time base and the {npterval

timer PIA In a manner very analogous to this instruction, The K& had
no eyujvalent instruction,

APRO, APRY, AND APR2 INSTRUCTIONS Page 2247
WRINT

2,34 WRINT

a-n--uu--’-.---’----Q-‘---—-----q---¢-9§

702} o1b j@) XR | Y :

Q.Q.un.q_-p-n‘_*ng--*..-—-.-.--.---n-.q§

Write !nterval Timer

This immediatesnode instruction decodes its effective address to setup
the fnterval timer, The effective address bLits are used as follows:

18 Clear {nterval timer,
19020 Reserved

21 Turn interval timer on,
22 Clear interval flags,
23 keserved

24«35 Interval period,

At in bit 18 clears the counter and can be glven sinuyltancously with
a 1 or 0 in bit 2! to turn the coynter on or off, A 1 ip bit 22
clears both Interval pone and Interval Overflow 1f the counter s
one Interval Done will set when the count reaches the value specitied
by bits 2435,

KL/KS compatibility

This instruction is tunctionally equivalent to the KL CONO TIM,
instpuction,

APKO, APR
WHACT

L

2,35 WRAC

AND APR2 INSTRUCTTONG Page 2=48

Qp..---wcofnonu+-QQ"-*-.-u-----..---.---*

|

702) 16 @} XR } Y !

*p-.-—----+q---Qq{q‘,-‘--.-.-----oo‘nv.og+

Write accountiny Intormation

This fmmediate instruction decodes its effective address to control

the user
tollowsy

18
19
20
2]

22935

The actions

3,

runtime rmeter, The eftective address bits are used as

Load user runtime meter controls from bits 19e21,

[

nable user runtime meter count durlng exec PI time,

knable user runtime meter count during exec noneplt tlme,

Turnh on user runtime meter

Reserved

of this instruction are as tollowsg

bit 18 is a 1, perftorm the tollowing operatjonss

1t bit 19 is a 1, enable the user runtime meter to count
during exec Pl processing, It bit 19 is a 0, disanle the
user runtime meter from coupting during exec P1
processing,

It bit 20 1s a 1, enable the user runtime meter to count
during exec nonePl processing, It bit 20 s a 0, disable
the wuser runtime meter from counting durinyg nonebl
Processing,

1t bit 24 18 a 1, turn on the user runtime meter, If bit
21 is a 0y turn off the user runtime meter,

It bit 18 1s a 0, do nhot chanue the state of the user runtime
meter,

APRO, APRY, AND APR2 INSTRUCTIUNS bPage 2«49
WRACT

KL/KS compatibility

The KJ. CONO MTR, instruction controls the accounting meters 1in a
mannher very ahalogous to this instruction, The K3 had no eguivalent
instruction,

APRO, APRY1, AND APR2 INSTRUCTIUNS Fage 250
RDRACT

2,36 RDACT

Qp.-...-.-*--n-’.'qu.-{-.¢-n--.-o-.--a-.g§

bo702 17 e} XR |} Y :

*Q-----QQ.QQ--QQ-Q—,Q-Q-..u--.pnouanuoqqg§

Read accounting intormation
This instruction reads the status of the user runtime meter into the
wvord addressed by FE, The status is as followsi
Oe1H keserved

19 The user runtime meter has beepn enabled to count duripg
exec Pl time,

20 The user runtime meter has been enabled to count during
exec nonw=pPl tine,

21 User runtime meter on,

22735 Reserved

KL/ZKS compatibility

The KI CONI MTR, instructien returned the accounting meter controels in
a manner very analoyous to this instruction, The Ks had ho direct
equivalent,

CHAPTER 3

EXTERNAL 1/0 INSTRUCTIUNS

The external 1700 instructions on the KC10 allgw a proaram to
commynicate with the 1/0 ports and the console, 1Th particular, they
manripulate the 1,0 Command/Response Que d ~port Dhoorbell
mechanism, bee the *i/(Q Bus Spec,” in t 2080 FFS for a complete
descpiption of the yueue and Doorbell features, 7€ interface to the
hC10 ports is primarily data areas called "malluoxes" and a doorbell,
It {8 the doorbell mechanism that the following instructions
mahipulate, The Command/Respohse Queues will—e covered by the queue
instructi{ons in the next section, oA~

In general the BUSY and RING siudnals work as follows; The CvPU can
assert KRING on the l/0 Bus {f BUSY is clear, Upon gettinyg RING and a
port number, the CpPU must observe BUSY setting and then clearing
betore it can assume that the 1/) Port has seen its command, The
tollowing 2 instructions (RNGB and RNGBW) will skip 4f no bus timeouts
OC’QU!‘ 'y

The Console does not use this protocol and therefore RING and BuUSY
sidnals are lunored 1f apy cogysole tupctions are requested by KRNGH or
KNGEW, The Qort reset iunct.lo%also iynores the BUSY gianal,

oot T

EXTERMAL J/0 INSTRUCTIONS Paqge 3=2
RHGH

3,1 RBNGB

(AL L LA Tl P X I LR R L L R PSS Y R 2 X%

! 710 | AC @) XK | Y |

(A2 A T PRI R R L L L R X R L L Ty Y

kRinag Doorbell

This immediatesmode instruction makes reqguests ot the conscle and
ports btased on the bits in I, The bits in E are interpreted as
tollowsy

18 Cause console to reload (electronic boot finger)

19 Inftialize the port specified by bits 3335 to the
powereup state,

20 Interrupt KC10 Console

21w 32 leserved

33m=35 Port number (Tgnored {f a console fupction)

’s =,
It nonhe of hits 1H=20 are on,‘icrocode rings the doorhell of
the port indicated by bits 33«35, UNly one of bits 18420 may hbe on in
Ky If more than one bit is on, a page tail 18 yeperated,

It during, the process of ringing a port doorbell, a bus timeout
oceurs, ! migrocode stores an error code indicating which timeout
talled in AC m(the AC field ot the instruction 1is nonuzerg) and takes
the next {nstruction trom PCat, The possible error cCodes are as
tollowst

L3 ! . The microcode was uhable to ring the bell because busy
t\kuo do never cleared, The most 1likely explanation for this
at~ , timeout is that th? port previously activated with RNGH
. p \
"bus'f has failled to drop'busy .
13

1 The microcode was able to ring the bell but busy did not
set as the result of the doorbell, The wost)ikely
explanation tor thils timeouyt is that the port currently

being activated 1s not responding to bus commands,

It np bus timeout occurs, the next instruction 1is takepn ftrowm PC+2,
ls0,, the instruction skips, and AC remains unchanged,

This Instruction difters from RHGBW {n that it does not walt for busy
to c¢lear after the doorbell Is runyg, As such, 1t 1is usefuyl for
starting asynchronoug operations that cause an Interrupt when they
complete,

EXTERNAL 1,0 INSTRUCTIUNS Paye 3=}
RNGBW

3,2 RNCBW

+pu.---.-.’--na4-§q-..Qo.-.-.---.-¢-...-q§

! 7119 | AC j@} Xk | Y :

Y Y TIPS T P R ISP AN LRSI L AL L A2 2 A2 L &4
Ring Doorbell and Walt (for BUSY to clear),

This immediateesmode instruction makes requests of the console and
ports tbtased on the bits in ¥, The hits in E are interpreted as
tollowsl '

18 Cause console to reload (electronic voot tinqger)

19 Injtialize the port specliffed by bits 33=35 to the
powereyp state,

20 Interrupt KC19 Console

41+32 keserved

J3=1% bPort number (lgnored it a console function)

If nohe Qf bits 18=20 are on, the the microcode rinags the doorbell of
the port indicated by bits 33«35, 0nly one of bits 18=20 may be on in
., It mpre than one bit is on, @ page tal] 1s denerated,

1f duriny the process of ripging a port doorvell, a bus timcout
occurs, the microcode stores an error code indicating which timeout
tajjed in AC 4f the AC fleld of the fnstruction §{$ non=zerg, and taxes

the next Inscruction from PC+1, The possible error codes are as
followsy
» The microcode was uhable to ring the bell bhecause busy

never cleared,> The most 1likely explanation tor this
timeout is that the port previously activated with RNGB
has falled to drop busy,

0 The microcode was able to ringy the bell and detect that
busy set byt it did not clear again, The most likely
explanation tor this timeout is that the port currently
being activated talled to drop busy,

1 The microcode was able to ring the bell but busy daid not
set as the result of the doorbell, The wost likely
explanation for this timeout is that the port currently
being activated is nhot regponding to hus commands,

I+ no bus timeout occurs, the next instruction is taken trom PC+2,
f,¢e, the instructlion skips, and AC remalns unchanued,

EXTERNAL T/0 INSTRUCTIONS Page 3=4
HNBSY

3,3 SNBSY

femuesceomepntwene X K (LTI ER L R LR YL YR L 1 X)

} 712 | 00 el Xk | Y |

T3 I T PN AL P B DAL NS F AL R AR A AR X L0 84
Skip 1t BUSY not set

This instruction skips to PC+2 it the HUSY line of the KC10 1/0 bus {s
not set, Whep used f{n combination with the RNGH (nstruc*tion, one can
achieve the {dentical eftect of KNGUW as tollowsy

Assert RING io port HMpnn

RHEGE pn H

SHBSY ;1 Busy set?
JRST o1 } Yes, wait,
tee 1 No = proceed

CHAPTER 4

170 INSTRUCTIONMS THAT MUVE DATA

This chapter describes the 1/0 instructions in the range 7002737

that
Move data to and from virtuyal or physical wemory,

Like all) instruections whos the range 7004737, inclusive,
these instructions nmay e executed in user modeWit user 1/uU is
set, [t these instructions are executed ip user mode without user

i70, they execute as an MUlUQ, trapping throuah the user undefined 170
opcode dispatch in location 435 of the UPT,

170 THSTRUCTIONS THAT MOVE DATA Fagye 4=2
UMUVE,

4,1 UMOVE

fpn-.-----’.-.-f-+Q.nq*-...onn...----.-.-’

i 704 { AC (el XK } Y !

(AL LA LI R L L L R R AL R T P LR R 2 YL Y Y
iser Move trom Memory

Load the contents of the previous context memory location addressed by
k- {nto ARC, This is a (taster) replacement for PXCT 4,{MOVE AC,F!, As
such, the effective address calculation tor the instruction is done in
current context and the word is fetched trom that locatioen in previous

context,

170 INSTRUCTIONS THAT MOVE DATA Page 4w=3
HMUYEM

4,2 UMOVEM

IELLIA Y I LRI LR RESI I RS LSS R AL R XX 2 L 24
! 105 | AC le! XKk} Y !

LA LA R LI L LEX I AR R LI EST I I DAL L E L L AL R
User Move to Memory

store the contents of AC into the previous cantext memory Jlocation
addressed by F, T™his 1s a (taster) replacement toyr PXCT 4, {MOVEM
AC,El, MAs such, the effective address calculation for the instruction
is done 4in current context and the word is stored into that location

in previous context,

I/0 INSTRUCTIONS THAT MOVE DATA Page 4«4
PMUVE

4,3 PMOVE .

oo ressjacsctivicoce oo nnnavccsRenre®n)
} oo} AC 1@} XR } Y !

Qg-pu.--.9§-.-p4q{...-*---nng..g---.-.-.g*
Physical Move from Memory

Perform a physical EAwcalc using the word addressed by £k, then load
the physical memory location addressed by the result of the FAecalc
into the AC,

gee the chapter on Miscellany for a discusslon of the physical EAe=calce
algorithm, -

Because the data reference is to physical memory, an etfective address
in the range 0«17, {nclusive, wlll reterence physical memory locations
O=17, and not the ACs,

o €8T update will be performed to indicate that this {nstruction
referenced the physjical paye specifled by the effective address, It
is the responsibility of the monitor to perform such an ypdate {f this
is required,

170 INSTRUCTIONS THAT MOVE DATA Fage 4«5
PMUVEM

4,4 PHOVEM

’-------..’.--.*-fﬂ-..’---......“.“‘--.’(

b 707 } AC jEl XR | Y !

AL A L R LR RN YT LR B Y Y R Y Y Y N e T T Y

Physical Move to Memory

Perform a physical EAecale using the word addressed by E, then store
AC intov the physical memory location addressed by the result of the
EAecalce,

When the store 1s complete, flush and restart the LBUX,

see the chapter on Miscellany for a discussion of the physical EAmscalc
alyorithnm,

Because the data reterence is to physical memory, an effective address
in the range (0«17, {neclusive, will reterence pnysical memory locations
U=17, and not the ACs,

No CS8T update will be perforwed to {ndicate that this instruction
referenced the physical paye specitied by the eftective address, It
is the responsibility of the monitor to perform such an ypdate 1f this
is required,

170 INSTRUCTIONS THAT MOVE DATA Page Awb
LOPMOY

4,5 IupMny

IZ A X A R L R L L R R Y R P Y e R P Y P LY]

I 714) AC e} XR | Y]

LA A A LA Al R LA R A A A I L L RS L L X
170 payge relative MOVE

Head a word from the 1/0 paye offset specified by bits 27135 of £ and
toan the result {n AC, The 1/ page address 1s that specified by the
last WRIOUP instruction, or the Initia)l default if no WRIOP has bheen
dane, 1t bits o326 of the eftective address are nonemzero, 4Yenerate a
payge tall trap,

NO C8T update will be performed ¢to indicate that thds instruction
referenced the physical paue specified by the effective address, It
i1s the responsibility of the mohitor to perform such an update it this
is required,

1/0 INSTRUCTIONS THAT MOVE DATA Fage 4m»7
1UPMYH

4,6 1UPMVM

p-n.-,..-’.-.upr.-‘---------..-u--.n.-*

| 715 I AC 8! XK | Y |

(22 AL LT LI A R R XL PR P TR IIEENY Y E Y Y

170 page relative MUVEM

Store AC into the 1/0 page offset specitied by bits 27135 of &, The
170 page address s that speclified by the last WRIUP [nstruction, or
the initial defaylt if no WRIOP has been done, If bits 6326 of the
effective address are nonezZero, qeperate a page tai] trap,

when the store is complete, tlush and restart the IBOX,

NO €8T update will be performed to iIndicate that this instruetion
reterenced the physical pavye specitied by the eftective address, It
is the responsibility of the monitor to perform such an update 1f this
is required,

L/70 INSTRUCTIONS THAT MOVE DATA Fagye 44
LURAC

A,7 LOPAC

+..-----0-§n.-.{o’-...9---'--..—.¢-.---q-¢
| 7106 } AC jef XK | Y }

trmecasenmirrnsisjorerajvscsnsevssrenasnenyd
Load previous context ACs

Load the previous context ACS (traom the AC block specified bLy the
current P'AB value) from the block beginning at the locatlon addressed
by £, Continue to transfer words from the block untlil a word has been
transterred to the previous context AC specified by the AC field of
the instruction,

,t;;ZThc 16=#0rd Llock must not cross section boundaries, (A%
To load all previous context ACs from the 1leeword current’ context
block beginning at HSERAC, ohe would execute the following
instructiont

LUPAC 17,“&”‘ "AC

170 IHSTRUCTIONS THAT MOVE DATA Faye 4w»9
STPAC

4,8 STPAC

’.p-.'----fn;-uﬁnQn..-qn.-..-..-.----.uqq*

b 11T} AC 18 XR | Y !

A AL LAl A LIS I AL R P TR R R Y YRS Y LY Y
Store previous context ACs

tore the previous context ACs (as specitied by the current pAHB value)
into the Llock beginping at the locatlion addressed by E, Continue to
trangfer words from the previous context ACs to the block until a word
has been transferred from the previous context AC specified by the AC
tield of the instruction,

'-~S;whe 1owword block must not cross section boundaries,

To store all previous context ACs into the 1loeword cuyrrent context
bloek beginning at USFERAC, one would execute the following
inseruetiony

STPAC 17,USERAC

CHAPTER b

SPECIAL DEBUGGING INSTRUCTIUNS

This chapter describes several instructions that have been added to
the {instruction set to aid in debuyqging the hardware and microcode,
They will not appear 1n the final production microcode anhd are
documented here only for cowpleteness,

: coue—t n the rahye 7uu5w§24 inclusive,
thegse ingtryctions may be execuyted Iin user mode user l/0 is
set, 1f these instructiondare executed in wuser mode without user
L7y, they execute as an Mutlg, trapping through the user undefined T/0
opcode dispatch in location 435 of the UPT,

Like all instructions whose

SPECIAL DEBUGGING IMSTRUCTIONS Faye %=2
RDTRAX

5,1 RDTRAX

(AA A X L AL RE L L A R I L LRI TR Y T Y Y
| 732 | AC j@} XKk | Y |

A Al L Ll AL P I AL RS I P R LTI R Y Y X
Read tracks buffer intormation

This instruction returns the current tracks buffer address (not page
nutbery, This address 1s the next location inte which the microcode
will write a I’C, ‘

SPECIAL DEHBUGGING INSTRUCTIONS Page bHe3
WRTRAX

542 WRTRAX

Q-..-.—--;Q---qf—Qa-uc@-.-un-...o-a-----q,
! 733 | AC @] XR | Y)

’Q..'.q.--’-..’*-,--Q—*..-‘..---....'-.q**

Write tracks buffer address/enable

This instruction sets the tracks buffer address, length, and enables
or disables the microcode tracks processing, The word addressed by E
coptrols the operation of the instruction and has the following
tormaty

0 knabtle the microcode tracks processing, When this teature
Is enabled, the microcode sto;es the PC ot each
instruction executed in a circular buffer 1in physical
memory, It this bit {s off, the tracks processing isg
disabled,

1217 wmlenqth of the tracks butfer Ln words,

Note that 1f tracks processing 1is belny enabled, this
makes the entire Jett half of this word be the twp’s

complement length of the butfer, L{ i o, d.ia,&(u() (\7
IJL
1= 35 Physical pagye number of the start tt7the buffer ‘! '

'he
microcode will begin storing PCs starting at this physicaleﬁ
paye and continuiny tor the lenygth of the ©bufter, When
the buffer limit is reached, the microcode will reset its
pointers and start at the beginninyg ot the butter again,

CAUTION

Enabling tracks processing will
significantly dedgrade the speed ot the
machine, Hegides the overhead of one
memory write for each Instruction
executed, the implementation of this
teature alsop causes the 1BUX to be
tlushed at the end ot every instruction,
thereby completely deteat ing the
pipeline mechanism,

SPECIAL DEBUGGING INSTRUCTIUONS Fage 5S4
READTH

5,3 REALTH

’--p.-.‘..*-q-qfuf—-.,*---.---.p.-.----q.’
b 134 | AC le) XKk Y }

(XL LT LY RS L L R R A DR T AT Y ISR R 2 K
Read translation butfer entry

This 4instruction allows the monitor to directly read apn MBUX
translation butter entry, The word addressed by F contalns the indeXx
into the translation butfer and may be thought of as a virtual
address, In addition to the normal 30 bit VMA in bits 6=35 ot the
word, bit 5 is used to specify whether the refterence 1s for exec
(bitg0) or user (bit=1) translation, Hits 16e26 are the index into
the translation buffer, but bit 16 Is complemented 1f bit % is on, 7o
simply read a speelfied translation butfer location, bit 5 shoutld be
Zerp and bits toe2b uld gyjve i index fnto the translation
butfer, Bits 5«15 ﬂt'a‘s?;:$:3§:f:3\lf the read is also to do a
valid translation cheeck as indicated by bit 7 returned {n the AC (see
below), This 4dnstruction deoes not wodity the contents of the

) _buffe entry excer 48 the possible result t a {4

tranglation butfer refill that occurs as the result of the InstructiIoh

or datg tve € trafifsla 0 €r entry Is returneéd C
and has the tcl!owinq format;

Y llardware error, If this bit is on, the translation buffer
access caused a hardware error,

1 T8 KEEP, If this bit is on, the trapslation bufter entry
has the "“keep" bit set,

2 VMA 05, This bit I8 a copy of bit 5 of the address that
was specified tp the MBOX for the read,

3 ™8 VALLID, 1¢ this bit 18 on, the translation bufter entry
containg a valid translation,

4 TH CST UPDATE, 1t this bit is on, the translation hutter
"C8T update npeeded® bit is set,

o

TE WEUTABLE, If thls bit is on, the trapsilation bLutfer
"writable® hir is on,

6 TH ORIk IED, I+ this it is on, the translatjion bputter
"modified"® bit is on,

7 »VALID THANSL, If this bit is on, there was po valid
translation for the reguested address, This bit should
nortally be ldnored since the READTB Instructlon specifies

7

SPECIAL DFBUGGING INSTRUCTIONS Page 5He5

READTH

10=§9

20w35

an index i{into the translation bufter and not a full
address,

keturned as zero,

T USKR, Lf this bit is on, the mapping in the entry fis
tor a user page, [f this bit is ott, the mapping Is for
an exec page,

T DIRCGII5> This fleld contains the translation bufter
directory entry for the mapping, This 15 LItS be1b of the
YHMA gfor the mapping (bits lbe20 are implicitly specitied
by the otfset in the translation butffer),

TH PPNe11326> This fleld contains bits 11=20 of the
physical address tor the mapping,

SPECIAL DEBUNGGING INSTRUCTINONS Fage 5e6
WR1ITTU

5.4 WRITTH

---'-----Q-----Q----Q---...---;y.a.---h§

I 735) AC le} XR | Y)

T I YIS P LR R R RAL IR ISR AL L L L 2 L2 & 2 2

Write translation butter entry

This {nstruction allows the monitor to directly write an MBUX
translation Lbuyfter entry, The word addressed by F contains the index
into the translation buffer and may be thought of as a virtual
address, In addition to the normal 30 bit VMA in bits =35 of the
word, bit 5 is used Lo specity whether the reterence 1s for exec
(bits#0) or user (bit=1) translation, BHBits 16«26 are the index into
the translation butfer, but pit 16 is complemented 1£f bt S5 1s on,
The data to be written into the translation buffer entry is taken trom
the AC specitied by the instruction and s written into the
tranglation bufter entry specified by bits 5 and 16+26 ot the VMA,
The format of the data is as followsy

0e2 lgnored,

3 TH VALID, It this vit 1s on, the transiation butter wiil
contaln a valid transiation,

4 TH CST UPDATE, [f this bit is on, the translation butter
*CST update needed" blt will be set,

5 TH WRITABLE, If this LIt is on, the translation buffer
*writablen® bit will be set,

b TH MODIFIED, 1f thls bit is op, the translation huffer
"modified® bit will be set,

7 Iynored,

8 TH KEFP, 1f this bpit is on, the translation butter keep

bit will ve set,

9 TH USFR, 1t this bit is on, the mapping in the entry 1is
for a user paye, If this bit is off, the mapping is for
an exec pade,

10=19 TH DIRrE<bE1H> This tleld contains the translation buffer
directory entry for the mapping, This is bits belh of the
VMA for the mapping (bits 1oe=26 are implicitly specified
by the offset 1in the translation butter),

SPECIAL DEFBUGGING INSTRUCTIONS Page Sm?
WHITTH

2035 TH PPH<11326> This fileld contains bits 11#26 ot the
physical address for the mapping,

At the completion of the instruction, the LIBUX 1s tlushed and
restarted

SPECIAL LFBUGGING IMNSTRUCTYIONS Page Hei
pHMETE

5.5 DUMPTH

Q-.---q--u’.---Q.Q----*-----.o--.-.-p-.q-’-

! 736} AC 1@} XK } Y ;

*--.-0--.-4-.--§nQ----.fp---.--.u-‘.o--u-g-’
Dump translatlion putfer

This instruction allows the monitor to dump the entire MBUX
translatlon buffer into 2048 contlguous physlcal memory locations, AC
contains the physical memory address of the first translation bhuffer
entry to be stored, The address heed not be on a page boundary but
the locations must be contiguous in physical memory, Each entry
dumped has the format descrived for the READTB instruction described
above, The indirect, index and Y flelds of the |Instruction are not
used and are ladnored,

At the completion of the instruction, the I1BUX is flushed and
restarted,

CHAPTER 6

GUEUES AND QUFUE MANIPULATIUN INSTRUCTIONS

byl Introduection
The KCI1Q provides instructions to manipulate queues, These
instructions are avallable in EXEC mode only, and are intepded tp
allow sharing of queues amgony any combination of the tollowinyg

14 0Une or more processes running in the CPU,

2, Une or more ports,

bed Data strugtures
be2,1 The queyes

Uueues that are mapipulated by these instructions must

1, He doublyelinked,

2, Contain a forward pointer in ottset 0 of each entry,
Jy, Contain a backward pointer in oftset 1 of each entry,
4, be pointed to by a palir of header words,

5, He reterenced by physical addresses,

QHEUES AND QUEUE MANIPULATION INSTRUCTIUNS Fage (w2
Data structures

0e2,2 Forwats

A queue header consists of a palr of words, Oftset v points to the
tirst entry 4n the gueuey otfset § points to the Jast entry, It a
queue is empty, both header words point to otfset o,

The tormat ot the header words is as followss

01 10 11 35

i 11 Rsvd { FLINK !
Qpp..-..-.-—--...------..-..-p-ug--.g.--.---qn--.-q--wq-Q

Hegs Rsvd ! BLINK !

0 1o 11 35

The format of word Ui §s as tollowst

0 The secondary queue interlock bit
iei0 Reserved
11elds physical address of first entry in queue (FLINK)

ihe tormat ot word ligy §s as followsg
Omi0 Reserved

11wy Physical address of last entry in queue (HBLINK)

kach entry contains forward and backward pointers in the following
formaty

c 1 10 11 35

Q-n'--n-u-.----.o..-.......----c...u.cﬁu---.u.---.-.g-.g4

Uftset 9 | Rsvd ! FLINK :

ttget 1 | Rsvd ! BLINK !
Q.h----Q.-...O-----.-.‘.t.-0-0-.----.-.-----.---.-------4
0 10 11 kL)
The format of the tirst link word in a queue entry is as followsg
Owmio) reserved
11eid% khysical address of next entry in queue (FLINK)

fhe tormat ot the second link word in a queue entry 1is as follows:

Def Reserved

UUEUKS AND QUEUE MANIPULATION INSTRUCTIUNS Fage 6+3
Data structures :

1135 bhysical address ot previopus entry in queue (BLINK)

byd lperations

The instructions provide four functions:
1. Insertion of an entry at the head of a queue,
2, Insertion of an entry at the tail of a uueue,
3, Renmoval of an entry from the head of a queue,

4, Removal of ap entry from the tail of a yueue,

bad,t Insertion
An empty gueue is specitled by its header at address H:

g 35
Q.-Q--‘.'---..-Qﬂp----.-q.9-0--ﬁ--o--u‘..n;.----ano-..-.-’

Hy H H !

Qg-.-‘---..w—.upu,.-----ﬁ.-.-.--.-....---..---.-.-------9{

Me1yg | f |

1f an entry at address B is ilpserted into an empty queuye (at either
the head or tail), the yueue LS as shown belows

O 35
Qonﬂan.n------‘.—----vo-o----u--n--tun—--.-u-n.----n-‘—, ’
My ! B !

Qﬂ-.‘-----.'.-.------.------.-&..-.n..-’n-.-------Q"--lgf

Helyg It !

Q,u-.-----...-ﬁ-‘---.—--------wun--._-------.-.-.--..-—qf

0 3

Qu--n---,c----.n---.-v---.----GOQ-yQ¢--p.,----.uu.n..--qﬁ
Hi ! H !
QQ-.---.----.---..--..-.-ot--.-9...0..-Quuuo-un.o--aooo‘-,#
Bels | I !

"--.'.--.-.---‘.---.---.-.-----n-qocﬂnbn-.o...--u.nﬁ.--‘

QUEDES AND QUFUE MAMIPULATION IMNSTRUCTIONS Page (=4

Uperations

1t an
queye

Haty

Ay

Aol

iy

Bete

tinally,
appears

Hy

ety

M

A+ig

by

Belg

address A 1s Inserted at the head of the queue,

v 35

the

9-—---uucsqooguuounnuuoon—---.----—..-..--.u--.------~-9+.

: A v

X I AL L A T Y L L L Y P P Y Y R R Y P R R Y Y L XX

{ H {

]
*----..pq'-.'-"...tn.-—..--.--’--.....QQO...-.-.-.‘Qﬁqu

g 35
(X3 I I 22 L A Y AT R Y A L R R Y P Y Y Y P Y Y R TP Y Y YN)

! H {

+—n---nu--u--.------.--’n—-.------.--.-------n.-.-.---qg"

: I !

(AL AL L R IR Y R LA I I AR R Y IEE EE EE L Y

0 3%

! " !
1 A ;
*

it an entry at address C ls inserted at the tail, the
as fo)llowst '

o 35

‘ A {

QO-.-.-..’P—Qﬁ.-.-q..-------O.w----.u----..--..---.p.-ugQ

} C }

9 Y

(Z4 X A4 L L L AL A Y L L R L L L I P A LI LY R P I YL LY L LY Y

! v !

AL AS A AL A A A AL A Xl I AL A L P I T YR R LY L R

| 1 |

0 35

H ¢ H

A LA I T T LA I P I S R R A R Y L R R R R Y R P Y Y

{ A |

queue

QUEDES AND QUFUE MAMIPULATION INSTRUCTIONS rage otwbh
perations

0 35
*-q-..&.----.*n----.----..-.------.o.-..--.-.—.—.u..---gQ.

Ci ' " !

Celp |} 3 |

byd,2 Remgval

In the example above with the queue containing entries A, B, and C,
the entry at address A cap be removed givings:

Q 35

meo b !

Hatyg C !

0 35
by } ¢ i
Beltt |} H |

0 35
§p----u‘-'-....-Q-..--Q-.-Q------.pm._q.-n..q-...----ng§
Ci ! 1 X
0g.o-au-.----....-..c.q--o-------------w--..pq--&----ugg’
Cety | B H

Q.-.-------QQ------o-nuo----..n.-.---n.w---.----.-n.n-pg4

Le4 Interlocks

Cooperating users 0of a queye can ensure that no contlicts occur by
using enly the gueue jinstructions when adding or deletiny entries,

when executing a gueue Ainstruction, the (Pl uses two interlocks,
First 1t wuses the MBOUX "readwinterjock™ function to tead the queue
header, This tunction sets a hardware {interlock that delays any
subsequent readeinterlock request,

Hit 0 ot the queue header pruvides a secondary interlock, It the bit
is otf, the queue I8 avallable, anag the CPll yses the MBOX
"writearelease" tunction to set the bit in tnhe header word and releasge
the 4interlock, At this point, any pendinyg readeinterlock finds the
bit set in the header

GHEDES AND QUEUE MANIPULATION IHSTRUCTIUNS Fage o6=6
Interlocks

Haviny obtalned the secondary interlock, the CPU pertorms the queue
manipulation specified by the instruction, It then performs another
readeinterlock on the header, clears the secondary 1interlock, and
performs a writeerelease,

Alternatively, 1f the CpPi! finds the secondary Interlock set, |t
pertorms the writeerelease without changing the header and retries
<THS® times in an attempt to vet the secondary interjlock, It a)l
retries are unsuccesstul, control returns to the user, 7
ot +1 7

The 1/0 ports manipulate the queues 1in o similar way, This allows the
ports and CPU to cooperate in the use ot J1/0 gueues,

It the aueue ipstruction returns ap 1interloer fatlure, 1t may bhe
necessary for the CPU to free the 1{interlock, This action wouyld
probably consist ot reinitializing the port that has the interlock,
cleaninyg up the queye, and then cleariny the secondary interlock bit
in the queue header sp that the queue {s accessible again, 1t is
assumed that there is a direct assoclation hetween the queue that Iis
interlocked and a particular port,

Le3 The Lnstructions

The queue instructions have common characteristics, as followsy

1, For insertions, the AC contains the physical address of word
zero of an entry to be ipnserted, Bits vel0 must be o, For
removals, the physical address of word zero of the entry that
was removed is returped in the AC, If the AC contains a
value {n the range Qe17, it is interpreted as a physical
address, not an AC,

2, b addresses a physical EAecalc word that |is evaluated to
produce a 25 bit physical address of the queue header, see
the chapter onh Miscellany tor a discussion of the physical
EA=calc algorithm,

3, It the secondary Interlock is locked, the instructiot returns
+1, 0Otherwise, it returns +2,

4, It the instruction skips, Lt may provide further intormation,
For insertion instructions, it the queye is empty before the
inscrtion, the iInstruction sets Lit 0 of the AC vprovided,
For removal, it the qgueue 1s empt the instruction sets bhit
0 of the AC provided, Note that theél instructions never cledar
Lit 0y softwdare must clear {t in er to test for an empty
queve

G
5, Ho CS8T update I8 perforuned, % ‘ 7
M

QUEVES AND QUFUFE MANIPULATION IHSTRUCTIONS Fage (=7
kxrrors

beb Errors

To be supplied

GUEUES AND QUELE MANIPULATION INSTRUCTLONS Fage oveH
INSQHI

6?7 INSQII

Q—---u-.-.*.--y*-{'-¢-¢o.-------.-',n.--gQ

! 720 } AC j@} Xk | Y !

w-.----.'QQUyQQ-’----Q-&--..-.--Q.------

Insert kntry into GUueue at bead, interlocked

Pertorm a physical EAecalc using the word addressed by E, then {nsert
the entry specified by the physlcal address contained in AC into a
queue followling the header specified by the result of the physical
tAecalc,

It the secondary interlock was unavallable (i,e,, bit 0 of the yueue
header s (), the instruction returns to PC+1, otherwise it returns to
PC+2,

It the entry inserted was the first one in the queue (L,eqy £ = C(E)
before insertion), the instruction sets bit 0 in the AC (bits 1-35 are
uichanded}, 1t the entry {nserted was not the tirst one in the queue,
AC is unchanyed,

The correct way to insert an ftem at the head of a queue 1Is as
tollows?

INSQlL AC,E

CALL INTERp jinterlock error

wUMPL AC,EMPTYQ rentry into empty qgueue
<centry into noneempty queued

At the completion ot the {instruction, the IBUX 4s flushed and
restarted,

See the chapter on Miscejlany for 4 discussion ot the physical EAscajlc
algorithm,

QUEUES AND QUEUE MANIPHOLATION INSTRUCTIUONS rage 6=9
INSQTI

L8 INSQTI

(A LI AT I LRI RS REASII IR L AL R Y P X L Y 27

) 721 } AC je} XR } Y !

¢p----0-.-§----Q-Q—---f.-.---..-.u-.p-quf

Insert kEntry fInto Gueue at taitl, lnterlocked

rertorm a physical EAecalc using the word addressed by E, then insert
the entry speclticd by the physical address contained in AC into a
queue preceding the header specified by the result ot the physical
kL Aecalc,

It the secondary interlock was unavallable (i,e,, pit 0 of the queuye
header = 1), the instruction returns to PC+1, otherwise 1t returns to
PCe2,

It the entry inserted was the tirst one in the queve (i,e,, b = C(F)
betope insertion), the instruetion sets bit 0 in the AC (bits 1e35 are
unchanged), It the entry inserted was not the (1rst one in the, yueue,
AC is uhchanyed,

The correct way to insert an {tem at the tall of a queue s as
tollows:

INSQTT AC,E
CALL INTEHRR tinterlock error

JUMPL AC,EKMPYQ tentry into empty queue
<entry into noneempty queued

At the completion of the instruction, the 1BUX {s ¢flushed and
restarted, see the chapter oh Miscellany for a discussion of the
physical FAecalc aldorithm,

QUEUES AND QUFUE MANJPULATION INSTRUCTLUNS Page ¢wl0
REMQUH T

0,9 REMQI]

AL LA I R AL I Y RESL LR RS P Y L N

! 722) AC 18} XR | Y !

p.-u--.-,-q,q’-Q_---.Q--nun--.-.--p-.nuq+
Femove Entry from Gueue at lead, Interlocked

Perform a physical EAecalc using the word addressed by E, then rewove
the queye entry following the header specifled by the result of the
physical FAecalce,

It the secondary interlock was unavallable (i,e,, bit 0 of the queue
header 3 1) the instruction returns to PCsl, otherwise is returns to
bCe2,

It there was no entry In the queue (l,e,, £ 3 C(K) hetore removal),
the ({Instruction sets bit 0 §in the AC (bits 1435 are lost), 1t there
was an entry in the gueue, the 25enit pPhysical! address ot the entry
removed §s placed Ln AC,

The correct way to remove an {tem from the head of a qgueue s as
tollows?

REMQHI AC,E

CALL INTERR tinterlock error
JUMBL AC,HOENTH ino entry tound
<entry returned in AC>

At the completion of the ({nstruction, the 1BUX is flushed and
restarted,

see the chapter on Miscellany for a discussion of the physical EAecalc
altgorithm,

WUEUES AND QUEUE MANTPULATION INSTRUCTIONS Page o=-11
REEMQT]

0,10 REMUTI

(AL LI R RS AL R REALA R ARSI Y 2 0 X 2 2 2 X 2

I 723} AC @} XKk | Y !

[Z X I L AI I I I LR RE RS AR A AR R AT A X .0 X2

Remove kntry trom Gueue at Tail, Interlocked

perform a physical FAecalc usinu the word addressed by £, then remove
the queue entry preceding the header speclitied by the resuylt of the
physical EAecalc,

It the secondary interlock was unavallable (i,e,, bit 0 of the queye
header = 1) the instruction returns to PC+il, otherwise 1s returns to
PC+2,

It there was no entry in the queue (i,e,, £ = C(E) before removal),
the {instruction sets bit 0 in the AC (bits 1«35 are lost), If there
was ah entpy in the gueuve, the 25ebit physical address ot the entry
removed is placed In AC,

The correct way to remove an item fyom the tall of a queue s as
fullows)

REMOTI AC,E

CALL INTERR sinterlock error
JUMPL AC,NUENTR jho entry tound
<entry returnhed in AC>

At the completion of the (instruction, the 1IBOX is flushed and
restarted,

See the chaptepr on Miscellany for a discussion of the physical FAecalco
altgorithm,

CHAPTER 7

PUNCTIONAL CHANGES FROM PREVIOUS MACHINES

that distingulish the
In some instanhces, the
In other cases, the
another chapter

This chapter describes the functional changes
KC10 trom previous machines, notably the KL10O,
change is described in detatl in this chapter,
change s simply noted and the reader is referred to

whiepe the cliange Is discussed,

FHNCTIUNAL CHANGES FROM PREVIOQUS MACHINES Paqe Te?
MAp

T, MAP

(A AL LI AL ALl A R ALl A d Rl AL Al Al d tad L2 4

} 251 } AC 1@} XR | Y |

’Q.-Q‘.q.-*-ﬂg-‘.4’-..+..‘O’-.--’--.-.‘QQ’
Map an address

It the pager is on and the processor is in executive or user 1/0 mode,
this {instruction reads the tardware transtation buffer Jlocation
corresponding to the eftective address, 1t the tgranslation bufter
contains a valid mapping tor that page, the wapping 1s returbed in the
tormat descrlved below, 1{ the translation buffer does not contain a
valid mapping tfor the page, the KUBUX microcode does a paye refill
pointer chase t¢ compute the mapping and retyrns that {n the format
degcribed below, The result ot the mapping is returned in the AC,

This instructior does not chahge the hardware translation buffer
mapping for the paye specitied by the eftective address calculation,

This instruction cantiot be pertormed in o user program upless user [/0
is set, Instead of mapping the address, it executes as anh mulig,
dispatehing through the userlvndetined 1,0 opecode dispatch in location
43% of the UPT, (

1t the pader is off, the eftective address and the "valid wapping" bit
are returned {n AC, See bhelow,

The tormat retuyrned by the MAP {nstruction in the AC {s as followss

&‘ﬂ’.!:f!338!88382832833882382SE3388388!lSSIl:ISI:I!::ISIIBGII‘

WHERJUIVICIWIMIZLIKIULT] Physical |
SDLLIRILIUITIDI22 S0 Address |
S TEEEEIEIRCNTEII IR TYIECNCEICSESTSSEENSETITIETSENSISRTESLENE)
01234507891 1 3

01 -]

The tields are as follows}

0 This bit is a one 1f the instruction tailed to generate a
valld mapping hrecause of a hardware error, In this case,
bits 14 contain a fallure code instead of the bits

described bhejogw, These codes are the same as those
returned tor & paqe fai) with bit 0 set {n the page fall
word,

1 see the description of bit 8 below,

FUNCTIONAL CHANGES FROM PREVIOUS MACHINES Page T7el
MAP

2 If 6. a zero, this bit gives the state of t,he
'7 €quest b or the MBUX reterence that returhed a va
. mappingy bit 10 is a one, the state of ¢this bwit {is
undetined,
3 If this bit 4is a one, the rest of the intormation

=X=Ereturned, {ncluding the pnysf{cal addressyis vaiid, Lt
this bit {s a zero, there is no valid mapfing for the
virtual address) and bits 18«35 contain the reason the
microcode coulde®t find a valid mapping, This informatjon
has the same format as bits 14e35 of the pade tall word
that would be returned it the specified page was
referenced, ’

4 If this bit is a one, the next virtual reference to the
page being mapped will cause the FBUX microcode to perform
a CS81 update operation tor the page,

k) If this bLit is a one, the paye belny mapped 1s writable,
If this bit 1{is &a 2ero, the pauve bheina mapped is write
protected,

6 If this bit is a one, the page being mapped has hbeen
moditjed since beipy brouyht gnto memory, i,e,, the page
ls newer than any backup copy, [t this bit is a zero, the
paye has not been modified since beiny brought into

memory, H,.,o EIND ¢ Gbl’ 7

7 The state of this bjit Is undetined,

] If bit 1 or this bit is a one, the hardware
virtualetospnysical mappiny tor the page beinq mapped will
not ve invallidated on a conditional pager clear, [f both
Lit 1+ apd this bit are zeros, the mappiny will be
invalidated on all pager clears,

) If this bit is a one, the mappiny tor this pace is in user
space, It this bit is a zerg, the mappiny for tnis mage
is in executive space,

10 It this bit s & zero, the microcode found valid
intormation in tnhe hardware transjation buffer for this
mapping, 1f this bit is a one, the microcode pertormed a
bPointer trace to compute the mapping,

11=35 The physical address corresponding to the virtual address
of the eftective address calculation,

The intformation returned in the AC by the MAP instruction can be in
one of tour ditferent formats, as follows:

It the padger is off, bits 11=3% ot the effective address of the
instruction are returned in bits 11=3% of AC, H{it 3 (the valld pit)
s set, and all other bits are zeru, This looks as followsg

FURCTIOMAL CHANGES FROM PREVIOUS MACHINES Fage 7T=4
MAP

:"333:8'3:3::833:'888'3========'=‘=I=8==.====23!28:’:333:8:3 &
jolojoittojototolololod Bits 11«35 of eftective }
A A A N ~ Address |
*;'I.l“3.:':83.gl‘lt’l:l"aaz:xu883233'333’33:8‘338'3383‘.8838;
01 23450678911 3

01 5

Format ot AC it paging is oft

It the read of the translation buffer mapping information results in
an error, bit 0 {is set and bits 1e=4 contain a fallure code that
describes the error, This code is the same as that returned ftor a
page fall with bit 0 set, UHits 535 ot the AC are undefined, This
tormat Jlooks as followst

;538882333‘828'838"8!!’l88383'%ISSIIID#I’SBB'IBSSI'Illllﬁlﬂla3

I1iFallure} Undefined '
{ 1 Code | !
"lﬂs:::’=ﬂ=IS':"388$===I3=='ﬂG833!333=IB‘8‘=I=::888=3388'.I=‘
01 4 5 3

5

Forwmat ot AC it a hard error 1s detected

1t the pader ls on and there s a valld wapping for the specitied
virtyal address (ecither 1in the MBOX ¢translation bhyffer or as the
result of a pointer trace), the format of the information returned {n
AC {5 as follows!

353838:3138888::8==s=3:8:&8:838:338:23388238332:8=======8===8=}
ORIULLICIWIME2IKIULT] Physlcal {
§OSLIRY JUITIDI?I288IBY Address }
3::a::::z:t:::s:sz::z:::=s:=:s==:=:a::a:sz:ssxs::::x:za:uaza::;
0123450784911 3

01 5

Formwat of AC if a valid mappling was found
\S

1t the pager is o and thcre ne valid wmapping for the ettective
address found (elither in the MBOX translation buffer or by pertorming
a uolhter trace), the entire left half of AC is 2zero (including the

Vyalid"vit) and the right halt has the same tormat as the right half of
the page fall word that would be returned {f the specitied [aye was
reterenced, 7Thisg torwat looks as follows:

FUNCTIUNAL CHANGES FROM PREVIOUS MACHINES Fage Tab

MAP

;23‘33!'332!833!=8==88======= 883:3:!8838!3:338=I=l===88&
H 0 Lev} Page fail H
{ } code ¢
z‘33338888838328388283!’3883 = =====3=8'-'83388238882:8:383
0 1t 1 2 2 3

8 0 1 5

The correct way to test for a valid wmappiny returned by MAp
follovws

TLNN RC, (1B0) illard error?

TLNM AC,(1H3) tNos 18 valild bit on?

FALLURE shhere 1f hard error or valid bit off
SHCCESS tliere 1t AC contains a valid mapping

KL/KS compatibility

The Kl and KS returned different bits describing the mapping,

as

FUNCTIONAL CHANGES FROM PREVIOUS MACHINES Page 76
JRST

742 JRST

4-..--..-t’.---4-’-.-q*--.-----—--o..-qoq*

| 254 P F O le) XK | Y }

Q-g-g.-o-QQ-QOQQQ4---.Qp---.-.un.----..qq'
Jump and Restore

The KC10 implementation of JRST 1is very similar to the Ks10 and
extended K110 fmplementation with several exceptlons, The exceptions
are as followsy

a
K Mpemonic rFunction :ap ‘e

01 JRSTCI Flush the IBOX, then fumb to location F, This {nefruetion
(previously detined as PORTAL) should be ysed anyfime the
program modifies the instruction stream,

0L XJRSTE Restore the prograw flaygs (us appropriate tor the mode ot
the processor) and PC trom the tlage«PC double word §n
locations F and E41 and continye pertorming 4Anstructions
in normal sequence beyinning at the location then
addressed by PC, It the instruction {s executed in exec
mode, also restore CAB, PAB, and PCS from the tirst word
(_vqt the flayePC double word,

)=
06 XJEN the level on which the highest priority interrupt
is currently being held and then pertorm an XJRSTV,

07 XpCwW Save the proyram flags, CAB, PAH, PCS, and PC in a flag pC
double word in locatjions E and E+l, Then restore the
program flays, CAB, and PC from the flaagePC double word in
locations F+2 and E+J and continue performing instructions
in norwmal sequence beyginning at the location then
addressed by PC, Uo not restore PAB or HCS from Fa2,

10 Always execute as an MUUL through the\l/0 undefined opcode
new PC words in the UPT,

4

12 JEN Always execute as an Mull) througn the [/U undefined opcode
new FPC words 1in the UPT, Since the KC1O always stores
tlagdelC double words in XJEN ftormat, there is no need for
JEN,

14 SEM Save the proaram flags {n bits 0«12 of the word addressed
by E and clear bits 1317, It the Instruction is executed
in exec mode, store CAB, PAH, and PCS in bits 18«20,

21223, and 24«35, respectively, of the same word he
fnstruction is executed In user mode, (Clear bits 1B= 35,

Shoutd 17 ba tendedneg]

FUNCTIUNAL CHANGES FROM PREVIOUS MACHINES Page 7«7
JHRST

This Instruction is leyal in any section,

1H XJRST Restore the PC from bits p=3% of the word addressed by L
and continue pertorming Instructions inh pormal sequence
beginning at the locatlion then addressed by PC, Do not
change the proyram flags, CAB, PAH, or PCS,

For each ot the 16 possible JEST tungetions, the table gygjiven helow
indicates where each form of the instruction 1s legal, The weanings
of the symbols used to define the leqgal domains of the functions are
as follows:

Yes Legal everywhere

b4 Legal only in section zero |

K Legal anly in kernel (executive) mode

No Legal nowheére

»} Legal where indicated by first symbol but causes a halt

1£ the JKRST tunction {s illegal in the mode or context in which it {is
executed, the 4instruction traps as an MUUO throuygh the 1/0 undefined
opcode new PC words in the UPT, -

pPunetion Mnemonic Leyal dowmaln

JRET 0, JRST Yes
JRET 1, JRSTC Yes
JRST 2, JPSTH z

JRST 3, No
JRST 4, HALT KeH
JRET S, XJRSTE Yes
JRET 6, XJEN K

JRST 7, XPCW K

JRST 10, Ho
JHET 11, No
JRST 12, No
JRET 13, No
JR{T 14, SKM Yes
JRST 15, XJKRST Yes
JRST to, No

JRST 17, No

FUNCTIONAL CHANGES FROM PREVIOUS MACHINES Page 7a8
PUHGHM

7,3 PUSHM

g-y-.-----ﬁ---.’QQQt.n’...p-..t..n..-c.wg‘

! 740) AC W} XR ¢ Y ;

Qn..-.---.fp---Qn19...}.n---;.q.--..--punf
PUSH multiple ACs

This instruction pushes ACs onto the stack addressed by the stack
pointer in AC, The Instruction interprets the contents of E as
tollowss

Uel? ldnored
18=19 Function code, Sce below,
20#35 Bit mask of ACs to push, Bit 20 corresponds to AC 03 bit

35 corresponds to AC 17,

Bits 18 and 19 are interpreted as o function code, as {follows¢

Code Result

0 bPush ACs {ndicated by bits 20-35 on the stack,

1 kReserved, 1f this function code is used, the instruction
wlll generate a page fall trap to the monitor, ‘%:.7

[

Push ACs {ndicated by bits 20#35 on the stack, whep this
is complete, push the full 30ebit eftective address of the

instruction on the stack) pyy)
w 7 * [pmt rean, Yo dbecﬁ;::uu;;fnsﬁﬁ) ,
(R AY Push ACs Indicated by bits 20e35 on the stack’ ' wheh this

is complete, push the full 3pebit etftective address of the
instruction on the gtack,

The ACs corresponding to the bit mask in bits 20#3% are pushed onto
the stack beginning with AC 0 and continulnyg throuagh AC 17, 1f the
stack pointer is designated as one of the ACs to be pushed, the value
pushed onto the stack 1is the econtents of the stack pointer at the
start ot the instruction (before it is incremented),

when all desiunated ACs are pushed onto the stack, the eftective
address of tne instructjon (including section number) is also pushed
onto the stack it the function code is 2 or 3,

It the stack pointer overflows during the process of pushing ACs or §,
the word which caused the stack pointer to overflow {s pushed on the
stack (into the location one past the end of stack) and the
instruction abtgrts, setting tne trap 2 flagy,

FUNCTIONAL CHANGES FROM PREVIOUS MACHINES Fagye 7=9
PHEHM

1t the instruction faf{ls to complete syccessfully (stack overflow,
paye fail, interrupt, etc,), the stack pointer in AC is lett unchanued
(the value that it hed at the beginning of the (instruction), Note
that in this event, some locations on the stack followiny the stack
pofinter way have beepn modiftjed,

.,f‘ﬁ/v
o/

6""

(,r’

FUNCTTONAL CHANGES FROM PREVIOUS MACHINES Page T=10
PUPM

7,4 Pubm

LAl A X LA A L A AL A R AL I R L R R R L L Y

| 741 | AC (8] XK | Y {

AL I L AL R LI L RN EE DL LR TR R T T T 'Y

PUOP multiple ACS

This immediate instruction pops ACs from the stack addressed by the
stack pointer In AC, The fihstruction interprets ¥ as follows:

bel? Ianored
=19 Funetion code, see béxow.
20135 it mask of ACs to prop, HIit 20 corresponds to AC o Pt

36 corresponds to AC 17,

Bits 18 and 19 are interpreted as a function code, as follows:

Code Kesult
0 Pop ACs indicated by Hits 20e; he stack,
1 Reserved, If this function code is used, the instruction

will generate a paye fall trap to the monitor,

2 Pop ACs indlcated by bits 20e35 trom the stack, When this
is complete, pop another stack location and take the pext
instruction from the address specifled by the contents of
the additional stack location, The effect is to perform a
POPJ atter all ACs have been popped,

Pop ACs indicated by bits 20=35 from the stack, W®hen this

is complete, pop another stack location and take the next

instructfon from the address specifjed by the contentsel

of the additional stack location (i,e,, increment the
"“contents), The effect s tg pertorm the {ipstruction
seguencey

ADG O(PR)
ParJd ["p

atter all ACs have been popped,

The ACs corresponding to the bit mask {n bits 2035 are popped from
the stack beqginning with AC 17 and continulng through AC 0, 1f the
stack pointer is designated as one ot the ACs to be popred, the

resulits of the operatfon are undefined, / g -
4

FUNCTULUNAL CHAHGES F*fW,W PREVIOUS MACHINES Page T=11
pUPM

when al) desiunated ACs are popped trom the stack, a nonwskip or skip
return may be performed it the function code is 2 or 3,

It the stack poulnter undertlows durilny the process of popping ACs or
performing the optional return, the instruction is aborted and the
trap 2 tlayg is set, In the case where the unpderflow (s detected while
performing the return, PC 1s chanyed to the value trom the stack
location before the trap occurs,

It the instruction fails to complete successtully (stack undertlow,
pade fall, finterrupt, etc,), the stack pointer in AC is left unchanyed
(the value that it had at the beginning of the Instruction), Note
that in this event, some ACs may have heen modified,

g0 we cant Find e eopm 7

Q0o Incona s adend wiHh b.aw‘mb P U/\AW

FUNCTIONAL CHANGES FROM PREYIOUS MACIHINEY Page Te]?2
pHsHL :

7,5 PuUSHI

X I TR P P P Y P L R BRI DR P R R LR L R L L X)

! 742 | AC }el XK | Y 1

AL L AL R L LI RS R I L XS I T L LA A LR
PUSH {mmediate

It PC section is nonezerop, this instruction pushes the full -J0ebit
eftective address onto the stack, 1t the ecttective address
calculation results in a local reterence to an AC §in a nonegero
sectivn, the eftective address s tirst converted to the qglobal AC
address form befoure beiny pushed@thafstacx.

It PC section §{s zero, 7,,EA Is pushed onto the stack,

pHsHL P, 18 theretore functionally equivalent to the tollowing
seqguence?

XMUVE] AC,E
PUSIE b, AC

except that no AC {s destroyed,

Note that because of the conversion of local! AC references to global
AC gtorm, the following {instruction, when executed 1n a ponezZero
section, pushes 1,,10 on the stack instead of 0,,10}

PUSHI ¥,10

FUNCTIONAL CHANGES FRNOM PREVIOUS MACHINES Page T=13
Uther functionhal changes

7.6 tther functional changes

This section lists other funectional chanues that distinguish the KC10
trom previous machines,

7,6, Chandyes to privileged instructions

L

Many ot the instructions whose opcodes are in the range 700e737 have
changed to adakt to the KC10 execemopde enyironment, See the chapter
on ApkO, ApR1, and Appr2 Instructions tor more detall,

74642 FElimination ot public and supervisor wodes

The K10 public and supervisor processor modes have '*'h\Aeliminated
from the KCi10, The processor acts as if it were 1 @v mode while
in exec mode and as 1f it were 1In concealed mode whil®—{T user mode,

In addition to reroving the modes, the KC10 eliminates other things
that are related to the processor wmodes, Amohy these are the previous
¢ohtext public PC tlag, the *F" bLit 1n TUPS=20 paying polnters, the
"P* pic in the pade tall word, etc,

7,6,3 Overflow in exec mode

In exec mode on the K10, RC flag bit 0 was used to indicate previous
cohtext public, un the KC10, PC tlag bit 0 is used to indicate
overtlow both in user and exec modes, Therefore, an execsiode program
gan cause a trap 1 event that is processed In the same manner as a
userenode trap 1 event,

7,6,4 Cachable page status

the ability to make sinule paues cachable or not has been removed from
the kCie, Theretore, there 4is no longer a "C" bit in the TOPS=20
pading peinters, nor a "C* pit in the paye fall word, On the KC10,
all wmenory reterences are assumed to be cachable,

T,6,5 XBLY in section zero

The XBLT {nstruyction {s legyal when pC section 1s zero on the KC1u,
See the chapter on kExtended Addressing for more {nformation on this
subject, '

FUNCTIUNAL CHANGES FROM PREVIOUS MACHINES Page 7«14
Uther functional chanyes

T46,6 JRST changes

Some of the JHSTeclass instructions have changed and/or been redefined
on the KCi1g, The kKey chanyes are as followsg ,

0 PORTAL has been renamed to JRKRSTCI and is now used to flush
the lu0X Lf the program overwrites the instryction stream,

0 JKST 10, and JEN are illegal and are treated as MUUQUs,
0 SKM ls now legal 4in all sections,
0 XJRST has been added,

See the sectien on JRST abovg more mgre {htormation,

7,6,7 PXCT

HXCT has been changed to make it ohey the architecture, Alsao, in
places where the architecture detined confllicting requirements, it was
changed also, The PXCT section in the chapter on Extended Addressing
contains more intormation about this toplc, The Kkey tunctiona)
chahyes are as follows)

0 The allowable cases of PXCT {BLT) have beenh limited to remove
same contlicting requirements, LOPPAC and STPAC have been
added to make up for the loss,

0 bPrevious context stack reterences for bPUSH and POP are no
longer allowed,

0 The interpretation of the AC bits for PXCT [MOVsLJ] has
changed to reduce the complexity,

7,0,8 Paging

The KC10 fmplements the tull 40Y%6esection virtual address space as
defined in the architecture, To do this, an additional Jlevel ot
polnter data structure was defined to support the change, Also,
additional bits have heep detined in tne pointers and in the ST,

The K110 vadiny mode that was used op the Klio and early TUOPSe10
versions of the KL10 has been decommitted,

see the chapter on Paglinyg for more information,

FUNCTIUNAL CHANGES FROM PREVIOUS MACHINES Fage 7«15
Uther tunctiohal changes

7,649 FlaygsePC double word

The forrat of the tlagsePC double word has .changed to allow tor a
12ebit PCS fleld apnd tg Include the CAB apd PAB fields, &ee the
chapter on bProcess Context Varlables for more information,

76,10 Process context variables

The action of the processor with reyard to process context variables
on a context gwiteh has changed, See¢ the table at the end of the
chapter on Frocess Context variables for more intormation,

Tebotl Systew timers

The forwat of the timcbase has changed to righte=justity the
doubleeprecision inteder In the doubleeword, In addition, the KL.io
accountinyg meters have been replaced ny the user runtime meter, See
the chapter on System Timers for more intormation,

CHAPTER ©

PAGING

B,1 Introduction

The KL10 {mplemented bhoth TOFS*10 paging, which supported only one
section of virtua]l address space, and TUPSe20 paging, which supported
g maximum of 32 sections of virtual address space, The pagling data
structures used on the KL10 imposed these limitations,
N

The KC10 will(onlyMmplement'a TUPSe20 paging KL10 compatible subemode
that will suppOrt a waximum of 32 sections, and a new mode that
Supbports 4996 sections ¢f virtual address space with 10P5e20 paginy,
This will be done {in such a wanner as to allow ditterent processes
using TOPS=20 paging to be in different paginy modes without having top
implement a new "mode" bit in the process context variablesg,

7

8,2 Paulhy hardware and microcode /////
The KC10 translation hutfer épf’ﬁﬁge" ble as it was known on the
!

KLi0) 1s 2K words long, way sociative, and has a { word block
sige, In the KL10, translat ter retills tor only TOPSe20 paging
were done by the EBUX microcode, 1In the KC10, all translation butter
refills are done by the EBRUX microcode,

The KC10 translation pbutfer is indexed by virtual address bLits 1oe26
with the state ot bit 16 inverted in user space to separate user and
exece entrles for the game paye, Fach tranglarion pbutter slot contains
virtual address bits 6w15 for the current entry, state pits (described
below), and the corresponding physical address bits 11e26 for the
current entry, 7The translation butter state bits are as followsg

liser At in this bit indicates that this entry describes a user
paye, A 0 indicates that this entry descrihes an exec
pagye

Valid Al in this bit indicates that tnis entry contains a valid

mapping, A 0 in this bit Indlcates that no valid mappling
exists Iin this translation butfer entry and that an EBUX
translation butfer refill 1is required when a virtual
reterence 1s made,

PAGING Page Be2
Paginy hardware anhd microcode

Modified A1l in this bit indicates that the mapping descrihes a
paye that has been moditied since being brought into
memory, f,e,y that this page s newer than any backup
CopY, A 0 in this bit indicates that the nmappiny
describes a page that has not been modified since being
brought {nto memory, A write reference to a page whose
translation butter "moditied® bit is 0 will cause an EbBUX
page tail trap, The EBOX will update the CST entry tor
that page to set the M bit (bit 35), set this bit in the
trangslation buffer entry, and restart the reference,

Writable Al in this bit indicates that the mappling describes a
paye that is writable, A 0 in this bit indicates that the
mapping descrives a page that is writeceprotected, A write
reteyence to a payge whose translation byfter “"writanhle®
bit s © will cause an EBOX page fail trap and a
corresponding page tall trap to the monitor, ‘

Keep A1l ip this bit indicates that this mapping s not to be
invalidated {1t the translatiop buttfer is cleared with a
WRCTX instruction that does not specifty all pages (bit 3
in E of WRCTX), It has no eftect on translation buffer
clears caused by WREBR or CLRPT instruetions, A 0 in this
Lit indicates that there are no restrictions in clearing
this entry on a tranglation butfer clear,

CST update A 1 in this bit causes an EBOX page fall trap on the next
virtual reterence to the page degcribhed by this entry,
The EBUX performs a CST update gperation and clears this
it in the entry without cleariny the rest of the mwapping,
A SETCU ipstruction sets this bit in a)}) eptries ip the
trahslation bhutter and it is cleared by the EHOX for
individual entries when the (ST update has been pertormed,

8,3 Caching ot paging intorwation

Jn an attempt to make the virtualetoephysical translation performed by
the payer as tast as possible, the KCI10 keeps a cache of several
1evels of {ntormatjion about recepnt transiatjons, The most obvious
example of this caching is the MBDOX translation butfer which stores,
in hardware, up to 2K translations, In addition to this, the EBUX
wicrocode caches om ntormatjon anout the last few translation
vutter retills that it pertorrmedyin working storage inside the LBOX

The LB0X cacle 1s intended to make translation butfer refills as tas

as possible i the case where there is no valld translation in the
MBUX,

Une aspect ot this caching {s that the monitor must tell the microcode
and hardware whenh it changes a mapplnyg, In previous machibes, this
simply meant that the monjitor did a CLEPT 1instruction -to clear a
translation for a single virtual page or did a CuNy PAG, or UDATAU PAG,
to clear the entire translation butfer, The sare copncept holds tor

PAGING Page Be3
Caching of paging information

the KC10, although the invalidation alsg eftects the EBOX caching,

The CLRBT, WRCTX, and WREBR {nstructions still clear the MBUX
tranglation bufter entry or entrieg as appropriate but they also clear
all or part of the EBOX dinformation, This process should be
transparent to the monitor programmer; if the invalidation would work
’29 a KL10, it . will work on a KC10 since the same algorithms apply,

fThere 15 one case, hywever, where the KC10 s ditferent, In order to
optimize the processing of KL compatible paging vs, KC padlng, the
EBUX microcode caches the tirst super section kointers from KEPI ,apd
UPT locations 520, These two locations are read and cached apytime
the monitor does a WREBR instruction or a WRCTX that changes the UDR,
and the {npnformation {s NNT cleared o a CLRPT, The ONLY way to flush
this intormation is with anpther WREBR or WRCTX,

_

PAGING : Page =4
TOPS«20 paging

8,4 TUPSe20 paainyg
Be4,1 VPayger Dhata Strycture

The KIL10%s implementation of extended sections was to allow a maximum
of 32 section pointers to be placed in KEPT/UPT locations 540=%77, A
sihgle page full ot section polnters can only reterence 512 sections,
8 pages of section pointers wiil be required to address 4096 sections,
Hince we are 4yolny to greate some new data items and structure, let us
define some termsg

1, A paye containing section wvointers will bhe called a #HSection
Table" or ST, The pointer types found herein are identical
to those already found in FPT/UPT loCcs 540=577 onh a KL10O,

2, A page containing map pointers will be called a page map,

3, VMAChit> will be called the njuper Section Number® and will
be wused to determine which of the B Section Tables to look
in,

4, FKPT/UPT locations 520527 will be a "Super Section Table" or
58T, and will be indexed by VMA<biH>,

S5y The buper Section Table will contain new polinter types called
"Super Section Polnters® defined below,

H,4,2 Polinters

The microcede evaluates three Kinds of pointers: super section
pointers, section pointers, and map pointers, These are used in super
section tables, section tables, and page maps, respectively, There
are 5 types of polnters distipgulshed by a type code in bits 0e2 ot
the pointery ot thege, three are access pointers that allow access to
the dgiven super section, section, or page and are jdentica)l §n the
tormat of the left 9 bits, This format is as followss

izzszzazEzIRTzITR
{Typel Wl 4 1KY |
{zszszzszzznsg2zas
¢ 2 34506 748

Bits 3, 5, 6, and 8 are {anorecd by the microcode and may be used by
the svttware,

Every access pointer of this type must hgve "use" hits for the super
sectjon, section, or page [t represents, These hits, W and Kk,
indlicate whether the super section, section, or paye is writabje, or
kept, Throughout the evaluation procedure the microcode ettectively
* these bits ftrom one pointer to the next, so the final result
requires that the glven characteristics be speclfied at every step,

HAGING tage 8»5
TOES=20 paging

In other words, 4f W 18 | in the final bointer tor the wapping, the
pade is writable provided the super section and the section were also
specitled as writable by the original super section and section
pointers, and "writable" nhas beeh specitied by every other pointer
encountered ajony the way,

Note that the w bit is also ANDed with the W bit in the CS8T entry tor
the final data page to determine the state of the translation bufter W
state bit, This tinal operation is not done it the CST bhase address

is zero, -
,73" %&IM":F“WMC‘G l 7

dr et ‘”"‘N‘)'
¥,4,2,1 Super Section Pointers 0

Entries in the Super section Table in ERPT/UPT locations 520527 are ot
the tollowing tive types, All other types are reserved and will cause
a page fail if the microcode encounters them on a reftill,

No access
E 2 3 I F T T T i F T i s E i1 FTRIIRE TR FRET SRR F R E I T 8
i i Available to software)
22582333 R SIS 2SS I NS ITESSSSSSIRSIITIZIRIES)
C 2 3 35

The super section is inaccessibvle,

Immediate

=8=3=$=3:88888SS!S!IS::8:883!8832:28:88888::283:8!8‘}
Wi) JKiRSVd {Storage| ‘Paye number }
[{Medium | of section table !
88:88!388388888.8!’!'SIBI3:!38!388828!8328823888!z

z
e 78 1112 17 18 3h

[t bits 12«17 are zéro. the section tatle is in the page specified by
bits 1835, Otherwise, the paye is not in memory,

shared
|23 ES L33 TSR ESSsSAL B S S ERESNEETSSIINLTSRSSBSTSS |
b2) 4wy | K] Keserved | SPT {ndex |
I I f T E E E F r T Y Y i it st Tty
02 345 6060 74 17 18 3h

s Hf the section table Is In the SPT at the otfset
Yy bits 1Be35

-7

[4
!‘(ll\e *

PAGING Page 8mo
TOPSe20 paqiny

Indirect

SB!283ll:B:t!!lBS833838888'3833833388838:888388883825l
(Wl | K} |{Super Section [SPT index containiny adr ot}
4 4 41| Table Index Janother super section table}
EEZ 83.8'2.883'8838333338"3‘88'33388838333'88’8.3'83‘
6 78 9 17 1ty 35

oo

In the SPT offset specified by bits 16=35 is the page address ot a
secondary syver sectlion table, The next syrer section pointer to be
evaluated s in that table at the offset specified by bits 9=17,

KL corpatible

::a:::::::::z::z:=========z===azazs:atssa=x::==a=::':::=1
i 4 Avallable to software i
;:a:l:i:::az::s=a===============s:====:===z:======s=::x=g

0 23 35

This type of pointer may 1n ERT/UPT otfset 520 and
indicates that KL compatib paglng 1is to be ysed, 1f VMACLII2> {5

Beru, use VMACI3ti7>» as an index into the KI. compatible section tahle
starting at EPT/UPT otftset 540 and pertorm the pointer evaluation
exactly as a hLl0 would, 1t VYMA<6$12> is none=zero or it this type ot
wolnter appears 4in a syper section table epntry other thap that at
EPT/UPT offset 520, a page fail trap will occur, See the section on
page fall conditions for the page fall codes,

Ue4,2,2 Section Pointers

kntries in a section table are of the followingy four types, All other
types are reseprved and will cause a page fall if the microcode
encoynters them on a refill,

No access

lt:xn:::::szs::zs:z::z:s:::::::z::-l:::tass:lnl:l:lstsnu1

{ 0} Avajlable to sottware !

T T Y T T E Tt T T g g gy e g g gpr pognps }
‘ 3

¢ 23

"

e

The gection is inaccessible,

Imeediate

;asss:z:z::::z::t:::::====:==a====================:=====3:z;
{1 L W) | JKiIRsvd |Storage] Page number {
! L tMedium | ot page map !
l33383::33838&::38==I==3==I=$:==2=a====83=$=33258::3:::28:!‘
62 345 6 748 11 12 17 14 iH

PAGING Fage 8e7
TOPS«20 paging

1t bits 12«17 are Zzero, the paye map is ip tne page specified by bits
jem3s, Utherwise, the page {s not {n memory,

shared

|ZTRSSCSrS3TE S STSESE S SERE SIS SSESSEREISZT ST ISIESRERD)
{ 2 1 (WP 1 1K} Reserved { SPT jindex 4
23335 RCS22R eSS EEE RIS SR SERITISISRIISITT=ER
023456178 17 14 35

The pade address ot the page map is In the SPT at the oftset specitied
by bits 18«35

Indirect

=33 RERcES 2SSy R R RS NS SRS SS T EESTESATET SRR
o3) LWL L LKL) Section ! SPT index contalning addr |
{ ! L L Ll Y Table Index | ot another section table |
‘:S:lﬂt:ﬂll8828!88:8'.8=8:88"888:‘8338!8383813838882823288‘
0 23 4%6 789 17 18 35

In the SPT ottset specificd by bLiits 18e3h is tne paye address of a
secondaly Ssection tanle, The next section pointer to be evalyated is
in that table at the offset specified by bits Ye17,

8,4,2,3 Map pointers

Entries in & pade map are ot these four types,. Ail other types are
reserved and will cause a page fail it the microcode encounters them
on a refill,

No access
E I T T F It P Pt P P I P P IR PR T S T P R P P PR I R T T T 3
1 0} Avallable to software {
|z s s s e R RS SR S S S LS NSNS SIS TISSSSETITRE |
¢ 2 3 36

The page is lnaccessible,

Juwmediate

=

[T T |

a=
1

T"

i o= o=

CERCSEICECNICRCEIIRSSISSRREIZTIIE SRS S ST IR ==:=$
Fsvd (Storage Page numper

{Medium | for mapping }
‘=S=Isl=============8:l=8:88=3l83=3=8=:=828l

=
B 11 12 17 184 3y

v

~ - - -
H o= e @

TN
[T R]
H oew o=t

Hoom o R
O

zsz33 ssz=
023 b 7

1f bits 12«17 are zero, the physlcal page specified by bLits 18a=3h

PAGING Fage HwH
TUPS=20 paylng

corresponds to the referenced virtual page, UOtherwise, the page 1is
not {n memory,

shared

gﬂgzgz======8======SSS=========:=8=,3=33=3====333:3==‘

IWL | JK} Reserved | SPT fndex ,)
======::========3:8==8================3==8=38=&'=’=s
3 4560178 17 18 35

The pade address tor the mapping for the referenced virtual page 1s In
the SPT at the offget specified by bits 18e3h,

indirect

lzeseeer s ssrgs S E R r EEE S Z S E SSS E XS SIS S S EIIRERES SRR |
)) S Page { SPT index contalning addr |
! 1Ly Ll L Map Index ! of another pagk map !
ez iz sraES ST RRE S NSRS SIS RESSS2SSSSE2a3ZS2E S8R
¢t 23456 7THY 17 14 3%

In the ST ottset speclified by bits 18e3b is the page address ot o
secondaty pade mwap, The npext map pointer to be evalyated is in that
map at the offset specitied by bits Y9=17,

8,4,3 Page address words

The translation buffer refill process causes the microcode to tollow
peinters in memory to finally determine the physical page number ot
the data pade that should be mapped by the virtual page that caused
the pave fault, In order to do this, the microcode myust evaluate 3
difterent kinds ot pointer levelsQ super section, section, anpd page
pointers, At each level, the microcode must encounter a "page address
word# that dives the page number of the page for the next level, For
the payge pointer evaluation, the page address word actuyally dives the
pade number ot the final data page, This page address word bhas the
following formats Q

\
\
lzzszszsgssgsscezsfe=tsazzsogzssesssns

]
| Storage | Paye number l
{ medium |} of next paye]
‘2:2::::3:!:::::===================:==z
12 17 ¥ 35 ,//
.L//

If bits 12«17 are zerey, the storage medium is memorg, 1,e,, blts 1835
sukply the nymber of a payge that is in memory, 71t bits 12«17 are
nongero, the pade exists byt 1s stored on some other medluze and the
microcode traps to the moniftor to bring the page into mehory, The
page address word may be extracted from bits 1235 ‘ 3 imu te
pointer, orf frow bits 12=35 of the SPT for share orfCindirect pointers

PAGING Page gw»9
TOPSw20 paying

For {ndirect pointers, the microcode will actually encoynter more than
one page address word,

Be4,4 Conversion of virtual to Physical Addresses
An address is converted to a physical page numnher as follo¥sg

VMALK6 18> 1s used to index into the Super Section Table, OUne ot the 5
pednter types (super gsection Polpters) can occur herey No Access,
immediate, shared, indirect, or Kl compbatipje, lmmedliate, shared, or
indirect pointers vyield the physical page number of a Section Table
- pade, VMAC9117> 1s used to index into the Section Tahle to obtaln a
section Pointer, Address translation then proceeds as oh the KL1O
after the section pointer tetch, (see DECsysteml0/20 VProcessor
Reference Manual, AAel391A«TK for a complete description), The VMA
can be thouyght of as followsy

iohat about "KL compad bte * 7

0 5 689 17 35
;a:::::::::z::===::z:::======:=======:==========:====:;
} 0 58T 8T ! paye no, | word no, !
{.:::::::::::t:8:23::3:8:8:38'888:8858:llcsaalllﬂ:lls:!l

Hed,5 Fage refil]
Bo4,5,1 CST updates

The EBUX microcode performs an operation called a "CST updater at
several points during the processing of a paye fault detected by the
MBUX translation buffer, The operations performed by a C8T update are
as follows;

1, It the CST base address is gero, skip the rest of the steps,

2, Read the CST entry for the physical padge in question trom the
word addresgsed by the sum ot the CST base register and the
physical page number,

3o If the age {n the entry (bits 0Owe5) 1s zero, start an
agemstoomgall paqge fall trap to the monitor and skKip the rest
of the steps,

4, AND the entry with the contents of the CST mask register (set
by the WRCSTM instruction),

5, 0K the masked entry with the contents of the process use
regyister (set by the WKPUR Instruction),

PAGLING Page 8wl

TUPSe20 paying } ﬁ‘(\(/

6, Set the modifted (M) bit in the entry,(if necessarg)
Te Write the entry back into the CST in memory, it necessary,
The cases under which a CST update 1s pertormed are as follows:

1y A page tault caused bY a write reterence to a bage that 15
writable but not vet modified, This case sets the modified
bit 4n the entry and writes {t back into the CST,

2, A page tault caused by the CSTeupdateeneeded bit set Iin the
translation butter entry tor the referenced page, This case
writes the entry back into the CST,

3, A pointer trace evaluates the address of a new physical payge,
This case performs only steps i=3 as described above for Lhe
intermedlate pages in the pointer trace, For the tinal data
page that is evaluated by the pointer trace, the full update
is performed and the updated eptry 4s writtep back into the

CcsT,
)

’
Bed,5,2 CST ntry format

The CST is a able indexed by physical page numper and checked
whenever a'(ﬂib memory page 1s referenced by the mlcrocode, In
ddftion, it 1s updated tor the final data pave optained 1in a page
tagl pointer trace and tor writableebUtenoteyetemoditjied anpd
CiTeypdate=needed EBOX page fails, The CST format is as followsy

6r) 4385'8'88883833IIS888:8S==S=$Sll388=ll8===8====SSSISIIB4

N | State code |} Available to software IWiMy

Qy 3ISRS82338388Btg382!38:8:2338388832328!2888 SXT=z=zz= Sz

r& g9 Jd 3
4 5

The monitor keeps a state code in bits 0=8 of the entry; within the
code, bits Oe5 represent the prage age, which must be nonegero ¢tor the
pade to be usable, A zZero paye age results in ap ageetoo=small paqge
tal] trap to the monitor, The "W" bit is the master writeeenabje bit
tor the physical page and is ANDed with the "W® bits in the page
pointers when a data page address 1s written into the translation
bufter, The "M" bit indicates that the page has been modified since
tefng brougtit Into wmemory and Is set by the wicrocode on 4
writablesbytenoteyetsmodified EBOX paye fatl trap,

PAGING Page 8wlt
TOPS«20 paging

Be4,5,3 CST mask register format

The CST mask register is ANbed with the CST entry during the C8T
update process, It should contaln a one in every bit position that
must be preserved during the update procedure and a zero in every bit
position that must pe cleared during the ypdate, Therefore, the CS8T
mask reaister should always contain ones in bits 34 and 35 (the w and
M bits) and zeros in nits 0=% (the page age),

Be4e54 Process lse Reylster format

The Process Use Reqister is OFed with the maskKed CST entry durlng the
C8T update process, It should contain a zero in every bit position
that must be preserved duriny the update procedure and a one in every
bit position that should be set, Theretore, the Process lise Kegister
should always contain zeros in bits 34 and 35 (the W and M bits) and
the new page age in bits 0=5, '

B,4,5,5 Translation phutter state bits
A retil]l sets the translation butter state bits as a tunction ot the

logical and of all the pointer yse bits that it evaluated in the
pofinter chase, The relationship is as tollowsi

State bit Set {t the following condition {s met

--...‘ - e - - e - e LA 2 KX R X X X 2 2 LA X E X & I X § J - -.-

user 1 4t this wapping is for user space,

valid Always set to a I,

Moditied 1 it the physical page corresponding to this mappling has
already been modified according to the CST entry for that
pagye,

writable 1 1f the joyica)l and ot the W pointer use bits of all

pointers evaluated was a 1,

Keap 1 1t the loglcal and of the K pointer use bits of all
pointers evaluated was a {1,

CHT update Always ser to a O

PAGING Page Bw12
TUPS=20 paging

Hed,5,0 Write reterences

when a virtual write reterence ls made to the MBUX, the result s a
tunction ¢f the translation bufter eptry corresponding to the virtual
address specified by the EBOX, Write reterences are particularly
interesting because they can succeed or fail based on the state of the
writable and mnmnodified bits in the translation butter, The
relagionship bhetween write references and the four possible
combinations ot the writable and modified bits is as followss

Writable Modifled Effect

0 Y The page is not writable, A write fallure page
fail trap will be given to the wonitor,

0 1 The page is hot writable, A write failure payge
tfail trap will be given to the monitor,

1 0 The paade 1s writable but not vet modified, The
EBOX microcode will get a pade faill trap, update
the CST entry for the page to set the M Dbit, set
the modified bit in the translation buffer, anhd
retry the reference, HNote that the EBUX microcode
can 4yilve abh {llegyal aye paye tall trap to the
monjtor if the CST age tor the referenced paye |is
illegal, :

| | The write will succeed,

8,446 VFauye tall conditions and tormats

A page tallure occurs when the pager 1s unable to make a desired
muEmory reference, the EBOX detects an illegal condition while
executing an instructjon (e,y,, inCorrectly tormated {pndirect word,
illegyal oneeword=global byte pointer, etc,), or the MBUX detects a
hardware fallure while processing a mewmory reqguest, When such a
condition occurs, the EBUX microcode stores intormation about the paqe
tall in UP1 locations 451w455, stores the current tlagepC double word
in UPT locations 456=457 and loads the new fladgs, CAY, and PC from the
new flagebC double word in UPT locatlons 460401, The format of each
ot these words s desorlibed below,

PAGING Page 8wi1l

TORS=20 paging

UPT location 451 contains the paye tail word that describes

condjtion that caused the page taill, The tormat is as follows:

}88.‘:8382:8::83838:::!:===:8&::B:S:::B=!=====8=====3====E 3

4533 JUIKIUIVICIWIMIAIWIPITIRSVA |Lev) Pavye fall code {

LDIPISILISITIDIBIFINIM] { ! i

gnazxza:a:s::s::stz:z:cz::z::z:ss:s==aa=============szz=,}

601t 234561748911 11 2 2 3

0t 78 01 9

The definition of each field is as follows;

¢ This page fall was caused by a “hard® error, This

not necessarily mean that a hardware fallure occurred,

the

does

1f

this bit is set, bits led contain a code that describes
the taljlure, The EBUX microcode coples the code to bits

27«35 and the valid codes are described helow,

| This bit gives the state ot the translation buffer

"keep"

state bit tor a vaye tail that resulted trom a virtual

translation fatlure,

2 This bit is returned - as 4 1 it the reference was Lo

user

space It the reference was to exec space, this bLit is
* _ '

returned as a 0,

3 This bit gives the state ot the transilation bufter *valid®
state bit for a page tail that resulted from a virtual

translation failure,

4 This bit gives the state of the ¢trapnslation butfer

"CST

update needed® state bit for a rage faill that resulted

trom a virtual translation tailure,

5 This bit gives the state of the translation

butter

writable state bit for a page fai]l that resylted trom a

virtual translation tailure,

o This bit gives the state of the translation

buffter

"moditied" state LIt for a page fall that resulted trom a

virtual translation fallure,

7 If this bit is a 1, the memory reference caused ah
break match,

(< 1f this bit (s a 1, the page tail was caused

address

by a

reterence that writeefalled because of the state ot the

translation bufter wrjtabje and modified state hLits,
a retference may elther he a write or a write test,

bit is valid only for & page tajl that resulted
virtual reference,

sSuch
This
from a

PAG;NG Paye Bm14
TOPS«20 pagying

Y It this bit is a 1, the memory request was a physical
: reference, 1f the bit is a 0, the wemory request was a
virtual reference,

10 If this bit is a 1, t{here was no valid trapslation butter
mapping for the virtual address 4n the request,

11=17 Heserved

18220 This fjeld gives the leve)l at which tnhis pagye fai] was

detected, The level {5 primarjily used to tell the monitor
where a translation bufter refill pointer trace stopped
and is used in conjunction with the additional data words
described below, This (fleld can contain one of four
values as follows:

0 This page tault was not the result of a pointer
trace, or the page fai]l condition was detected
before the tirst pojinter was fetched,

| This page fault was detected while processing a
super sectionh pointer,
2 This page fault was detected while processing a
section pointer,
k| This page fault was detected while processing a page
pointer,
21»35 This tleld yives a code that describes the cause ot the

page taly, The monitor should never have to look at
anything other than bits 0 (hapd), 2 (user), 9 (physical
reterence), 18+20 (level), and this code to determine the
exact cause of the paue fall, The rest of the bits {n
this word are returned only as additional information to
be used to debuq problems, There are two types of codes
that aye returned in this tield, depending on the state ot
bit 0, 1f bit 0 is a zero, the pauge tall and code are the
result ot one of the following conditjionst

1, There was no valid translation for the reterence
address,

2, A vwrite reference falled because the page wasn*t
writaple,

3, An address break occurred,

4, The EHUX detected an 1llegal condition while executina
an instruction,

It bit 0 §s a one, the page fail and code are the result
of a "hard" error, Fkach case {8 described separately {n
the section on paye fall codes,

PAGING Fage 8m=15
TOPS=20 paging

UPT location 452 contains the reference address (it any) tor the
request that page failed, This address 1s the virtual memory address
tor virtual reguests and the physical memory address for physical
requests, It is only valid for those page tajl conditions that
resujted from a virtual reference, The table at the end ot this
section describes under which page tail conditions it is valid,

‘l;3!!’3‘3'8'3388gltlt’:tiﬂtltlzzﬁ!!lilSS;IIICSS::::::IS::]
A52; | 9000 | . keterence arddress }
l83:’3:8888:888SISIIGSSIII*IEIIS'BI‘BSI‘I88888.883833883;

0 5 6 : 35

UPT jocation 44%3 contains the physjical memory address (if any) for the
request that paye falled, It is only valid tor those page tail
conditions that have a valid PMA, The table at the end ot this
section describes under which page fail conditions it 1s valid,

z'SSI;ISISSS!33'IIIUIIIISS!SS!‘SIII..!IB‘ICCQIISICSSSI.S!
4533 | RSV ! Page ftail PMA !
‘!3::3338832332:2338888===8=========8=8=8=8========'=8==‘
0 10 ¢ 3%

UPT Jocations 454 and 455 contain additjonal data that {s ditferent
tor each type of paqge fai), The contents of these words are qiven for
each page fall at the end of this section, The format of these words
is as follows:

|=22222222332 3SR ESEE RSN CSEIESTSSSSIRSLSEES)

454 | , Additional data word | }
4553 | Additivnal data word ?2]

‘88:8&'3888"888!32333333388:338'3388838838338883288!2833

UPT locations 450+457 contain the tlags, CAH, PAH, PCS, and PC at the
tiwe of the page fall in the following format:

0 12 13 18 21 24 35
'83383:!8833888;82828B:SB:::88388388888::883!22!3::38383+
4567 | Flags ! 000 JCABIPAB PCS. !
{‘.Q-"‘.C-—.D..Q---.‘.'.‘---..-----Q.--.-.----.----’---Q*
4573 } 0000 | PC)

¢TSI E ST I SRS IS ST E RIS EESISS2SSESSERSSSSS4
0 B 6 3%

PAGING PFave 8Bw»16
TOPSw20 paying

UPT locations 460e461 are setup by the monitor and contain the tlags,
CAB, PAB, and npew PC to be loaded when a page tajl occurs, The words
are {n the following format:

0 12 18 21 24 3%
R RN I SIS IR S I E R TS TS IEE S ST IS EIIITSSRIISG

4603 | New tlays {} RKsvd |CAB}PABY Rsvd }
’..-.-.--..‘---*-----_.Q-‘—Q-’..”DDIOQQ’*-Q"ﬁ..".’-’.-g*

4611 | Rsvd | + Page tal) new PC. |
}85282!28:::::888:882:888:88t8=z=3==88!88=88888:82288883]

0 5 6 3%

B,4,6,1 Topse20 page fall codes ahd additional data

This section defines the page tail codes that may appear in bits 21e35
0f the paye fall word and the additlional data words returned tor each
code, For each code helow, "RAD", "pMA", "AD{", and "AD2" represept
the date returned {n words A82«485 nf the er,

CANITION

The payge fall codes described helow are
generated by the EBNX microcode and can
he easily chanyed, These page tall
codes are a tirstspass attempt at
dssigning values, They may very well
ghange as we add or delete codes, It |8
strongly suggested that you hot make
assumptions about the numeric value of
any particular code,

£ bit 0 is off in the pave fall word (indicating that this page fall
is not the result ot a *"hard" error), the godes that may appear in
bits 21«35 of the page fafl word are as followss

1 Write fallure « A write reference was attempted to a
write=protected page (w bit off in the transjation bhuffer),
RAD keterence address that caused the page tail,
PMA Physical address corregponding to the reterence address,
AbY iindetined,

AD2 lUindefined

PAGING Page w17
TORSE=20 pagling

2 Illegal age = An lllegal CST age was detected for a bPaye during
the processing of one of the following page tails:
1, C&T update needed,

2, write reterence to a writable hut not yet modified page,

RAD keference address that caused the page fail,

PMA Physical address corresponding to the reference address
A1 Uindefined,

A2 lUindetined,

3 Address break = An address break occurred,

RAD hFeference address that caused the page fall,

PMA ltindefined,

ADY lindefined,

Ab2 ltndetined,

4 111legal super section polrter 0 = A pointer with type 5, &, or 7
was tound {n super section tahle offset 0,

RAD keterence address that caused the page faly},
PMA (indefined,
ADY Zero

AD2 The illega) super section pointer,

5 Section yreater thanp 37 « In Kl compatible mode, a virtual
reference was made to a section yreater than 1317,
RAD Reterence address that caused the page tall,
PMA lUndefined,
ADY w»1,,0ttset in EPT/ZURT of super section pointer,
AL2 Super section pointer,
L 11leqgal pointer = A pointer with type 4, 5, 6, or 7 was tound in

the super section table, section table, ol paye table,

RAD Leference address that caused the page tall,

PAGING Page HB=18
TOPS«20 paging

PMA lindetined,

At Source of last word processed (see belaw),

Au2 The Lllegal pointer,

7 No access pointer = A nowaccéss pointer was discovered during a
bointer trace,

PAD Feterence address that caused the paye tail,
QMA lindetined,

RO1 Source of last word processed (see below),
AD2 The noeaccess pointer

10 Fage not in core = A pagesaddress word was discovered whose
storade medium tleld (bits 12«17) was nonezero,

RAD Heterence address that caused the page fall,
PMA lindetined,

ALY Source of last word processed (gee below),
ALD2 Last pointer processed,

11 1lleyal age = An Illegal CHT aye was detected for a page during
a pointer trace,

RAD Reterence address that caused the paye fail,
FMA Undefined,

ALY Source of last word processed (see below),
AD2 last pointer processed

12 MustebewzZero bits nonezero « The microcode discovered bits that
were declared “must be zero" to be nonegero,

RAD Address of word containing the MBE bits,
PMA lindefined,
Api tindeftined,
AD2 lindetined,

13 Illeqgal indirect = An extended effective address calculation has
encountered an {ndirect word with 11 (binary) in bits ¢ and 1,

VAGING Page B=19
TOPS«20 paging

RAD Address of word containiny the illegal indirect,

PMA lindefined,

ADY The illegal indirect word,

AL2 lindetined,

14 Illeyal PXCT « A PXCTed instruction that stores into the ACs was
executed with CAB = PAL,

HAD lindetined,
FMR t'ndefined,
ALt Undetined,
AD2 Undetined,

15 1llegal physical efttective address word « A physical etfective
address word wag discovered with a 1 in bit 0 or 1,

Al Address of {lleval physical effective address word,
FMA lindefined,

ALY The illegal physical eftective address word,

AL2 Undefined,

16 llleyal onemwordeglobal byte pointer » A oneswordeqglobal byte
pointer was discovered with a code ot 77 (octal)

RAD Address of the illegal opeewordeglobal byte pointer,
FMA lindetined,

ADY lndetined,

A)2 The lllegal oneewordealobal byte pointer,

17 illeqal interrupt vector = An 4llegal interrupt vector (all
zerous) was discovered (1/0 paue falil only),

RAD Address of the illegal interrupt vector,
PMA lindef{ned,
AL U'ndefined,

A2 Undefined,

PAGING Page w20
TOPS#20 paying

20 lllegal PUSHM function code, A tunction code of 2 was
discovered during the processing ot the PUSHM instruction,
RAD Stack address,
FMA lindetined,
AD1 1lleyal PUSHM argument
AD2 Undefined,

21 Illegal POPM tupction code, A function code of 2 was discovered
during the processing of the PUPM instruction,

RAD Stack address,
PMA lindefined,
ADY Undefined,
AUZ Undetined,

It bit 0 is on in the paye fail word (indicatina that this page tail
is the result ot o "hard" error), the codes that wmay appearl in bits
21=35 of the paye tall word are as tollows:

To be supplied

Bed,0,1,1 Additional data words for a pointer trace

when the EBOX microcode detects a pade fall conditlion during a pointer
trace, it stores the source ot the last word processed in additional
data word t (454) and the last pointer tetched in additiona)l data word
2 (455), Additional data word 2 is simply the last pointer processed
by the microcode and may be a super section, section, or page pointer,
Additionhal data word 1 specities the source of the last word processed
and may have one ot the following forms:

0,,0 1t the page fail c¢ode 1is »illegal super section O
pointer”, this word indicates that the pointer trace
tajled jmwmediately atter initialization, If the paqge
tall code is anything else, it is really the tollowing

case,
Deeoffset The last wWord exdamined was fetched from SPTeotfset
»1,,0ttset T™e last word examined was tetched from UPTsoftset or

FbTsoftset, The user reterence bit in the pade tail
word determines which,

PAGING Paye H=21
TORSe20 paying

nage,j0fftset The last word examined was tetched trom physical page
"page", otfset "oftsetw,

PAGIHG Page $e22
Address Hreak

8,5 Address Break

The address break teature of the hardware implements a superset ot the
KL10 address break capabllity, It may be used to determine whether a
program is reading, writing, or fetchiny instructions trom a range ot
locations in either user or executive address space and in either
virtyal or physical wemgry, The address byeak feature ®may also bhe
used to determine it a port is reading or writing a ranye 9f¢ locations
in physical memory,

The address break enable and break conditions may be set by the WRCTX
instruection and read by the RDCTX instruction, A description of the
address break related tields in the WRCTX instruction follows?

The tirst word ot the eftective address (E) of the WRCTX {nstruction
controls the action of the instruction, The bits in this word that
aftect address break arej

7 Inhibit all address break conditions tor the next
instructionh executed, The eftect ot setting this vit s
to set the Inhibit oaddress break PC tlag tor the next
ingtruction, The irtended use of this bit {s to allow the
instruction sequenceg

WRCTX ADR1 ;Turn on address pbreak
XJRSTF ADR2 1hismiss page tault

to be blaced at the end ot the monitor page tail routine,
It the address break conditions are such that the hardware
is breaking on all monitor instruction fetches, this bit
allows the monitor to execute the XJRSTF to dismiss the
address break page fault, It is assumed that the PC ¢lags
that are the argument to the XJRSTH will also contain the
inhibit address break bit to allow the monitor to execute
the instruction that caused the original address breab
page fauylt,

8 Load address break conditions frowm the words at p+2
throudh F+4, If tnis bit 48 on, the address breay
qualifiers are loaded from word k42, Jower bhound break
address {s loaded from KE+3 and the upper bound break
address 1s loaded from Es+4, If this bit is ott, the
address break conditions remain unchanged,

CAUT TN

Faging muyst be enabled (with WRFHEER bit 4) to load
the address break conditions, If paging 1s not
enabled, the resuit of loadiny the address break
conditions is unhdetined,

PAGING Page Hw23
Address Hbreak

9 Load address break enable trom bit 10, 1f this pit is on,
address preak is turned on or off based on the state ot
bit 10, If this hit is off, the state ot address break
enable remains unchanged,

10 knabvle/disable address break, 1If both bit 9 and this bit
are on, turn on address break, 1t bit 9 is on and this
bit is off, turn ¢ft address break, It L1t 9 18 otf, the
state of this bit is lanored,

The third word of the effective address (kE+2) ot the WRCTX instruction
defines the conditions that determine when an address break will
occur, The condition bits are as follows:

10 1t this vit is on, enable address break tor a pormal fetoh
ot an instruction in the proyram under control ot KC,

11 If this bit is on, enable address break for any reterence
that reads eXcept the normal fetch of an instruction,
This includes retrieval ot operands, address words {in an
effective address calculation, or an lnstruction to be
executed by an XCT,

12 1t this bit is on, enpable address break for any reterence
that writes to memory,

13 If this bit 1Is on, enable address break for a referepce
made in user virtual address space, It this bit 1s off,
enable address break for a reference made {in executive
stace (efther virtual or physical depending on the state
of bit te),

14 ' If this bit is on, enable address break for any reterence
made from the CPU, 1,e,, trom the IBOX or EBOX,

1b 1t this bit 1s on, enable address break for any Treference
made by a vport, l,e,, from the I0BOX, MNo address break
rade fall is generated tor an address break that ocours as
the result of a port reference, Instead, the MBOX
conpletes the reyuest normally (l,e,, the read or write
succeeds) and notifies the port that the reguest caused an
‘address break, The port sets bit 12 in the port status
reqister to indicate to the monitor that an address hreak
occurred as the result of the transfer,

CANTTON

bye to the fmplementation of this feature, the
monitor cannot be assured fthat tne transter
completed without errors 1f an address break
occurs, Therefore, the monitor must retry the
transfer with port address breah disabled,

PAGTING Page Hm=24
Address Hreak

16 It this bit is opn, enable address break for a physical
memory reference, It this bit s off, enable address
break ftor a virtua)l memory reference, HNote that the break
addresses must bhe physical 1f this bit is on and virtual
if this bit {s off,

17 If this bit is on, compare only the low order 18 bits of
the reference address wjith the address range when doing
address compares, This 4allows the program to cause an
address break on an address in any section,

There are certain combinations of the above bits that produce
unspeciftied results, These combinations are as follows:

£ bir 10 {5 on, then bit 15 nmust be oft because ports never
teteh instructions,

It it 10 is on, then bit 16 must be off because Instruction
fetches are always done frem virtual wemory,

It bie 13 is on, then nit 16 must be oft because user references
are alvays done throuagh vi{rtual space,

It Lit {5 §s on, thep LIt to must be on because ports always make
physlical reterences,

The tourth and fifth words ot the eftective address (F+3 and E44) of
the WRCTX {instruction skecify the lower and upPPer bouhd break
addresses, Wwhen doing address break compares, the MBOX compares the
reterence address with the upper and lower bounhd break addresses,
Normajly, the ful}] reference address is used in the compares (l,e,, 30
bits of virtyal address for virtual compares and 2% bits ot physical
address for physical compares), Howeyer, 1f bit 17 is on in the third
wvord ot the WRCTX argument block, only bits 18 through 3% ot tne
reterence address are used in the compares, If the reterence address
is qgreater tnhan or equal to the lower bound break address and less
than or equal to the upper bound break address, the address compare
gsucceeds,

The conditions under which an address break will occur in the MBOX may
be described as toJlowst

Let:

A is Condition Lit 10 on and an instruction fetch reference,

B 13 Condition bit 11 on and a read reterence,

C 1= Condition bit 12 on and a write reference,

D ¢z Condition bit 13 onh and a user reference, or condition bit 13 ott

and a executive reference,
i Condition bit 14 on and a reference made by the CPU,
iz Conditlon Lit 15 or and a reference made by a port,

-

PAGING Ptage 8e2%
Address bBreak

G = Condition bit 16 on and a physical reference, or condition bit 16
oft and a virtua) reference,

H g3 Condition bit 17 is off and the reterence address is within the
range descrived by the lower and upver break addresses or
condition bit 17 1s on and bits 18 throuuh 3% or the reference
address is within the ranye descrived by the lower and upper
hreak addresses,

Then a port address break will occur if the tfollowing expression |is
true

(A OR B Or C) AND (F) AND (M)

and a €' address break page fall will occur 1f the following
expression is trueg

(A UR B UR C) AND (k) AND (D) AND (G) AND (H)

The expressions are given separately for CPU and port reterences
because that s the way they are {mplenented in the MRUYX hardware,

It an address vpreak page fault does occur, tne microcode will turp otf
address Lreal betfore dispatchidng to the monitor bage faylt handler,
It 1s the monitor’s responsibility to turp address breay back on
before dismissing the page fault 1f the page fault was the result of
ah address break, The microcode WILL NOT turnh otf address break for
any page taunlt except an address break page fault, This allows the
monitor to trace executive instruction tetches hy setting the address
break conditions to cause a page faill tor each instruction fetched
from executive virtual space,

CAUTION

1¢ address break is enabled for a ranye
ot memory addresses, an instruction that
references pultiple words in this range
will only cause an address break
conhdition for the first word referenced
it the monitor restarts the instruction
with the "inhibit address break" PC flag
set, This 1is becauyse the "inhibit
address break* PC flag remains set for
the completion of execution of the
instruction and blocks further address
breaks,

CHAPTEER 9

PROCESS CONTEXT VARIABLES

9,1 Introduction
In order to take advantaye of the tull 4096 section virtual address
space implemented by the KC10 processor, the flagePC double word
tormat has been changed to allow for a laryer sectlion number, In
addition, the PAB and CAK fields have been added,
Yolel liew flay=rC double word
The format of the dounle word 18 as followsg
11 1122 22 3
0 23 7801 34 5
I SIS T I I s I E I T R E S P S I E S E RS SIS RIS SIS ESRREEREIIEN
! Flags } MBZ JCABIPAB |} PCS }
} Ksvd |} PC !
IR SIS ECIIES I ISR SIS S I RS S S S S S RIS SIS SR SSZIEITTETD
0 5 6 3
5
wherey
Flays PC flays, The action of these flags Is the same as ftor
the KL10, unhless stated otherwise, The flaus are ds
follows:
0 Uverflow, (n the KLIO in exec mode, this tlay was
used as previgus context pubiic, Un the ¥Cto, it 15
overtlow in both user and exec modes,
1 Carry o,
2 Carry 1,

PRUCKHSS CUOHTEXT VAKIABLES Page Ye?2
Introduction

MB 2
CAB
PAL
PCS

Be

3 Floating UOverflow,

4 First pPart bDone, This PC flag 18 wused by the
microcode as necessary to restart a multiepart
{rstruction, It does not necessarily act the same
4s any previoys machine and the use may change at
any time without notice, The monitor should save
and restere this tlay when changing contexts, The
user shoyld never touch {t,

5 User,
6 User Insout/Previous Context lser,
7 Unused by the KC10 hardware and wicrocode, un

previous machines, thls was the Pubjlc flag, The
KCly always stores 1t as 2zero, and 1ignores any
attempt to set {t,

] Address Fajflure Inhintt
9 Trap 2,

10 Trap 1,

11 Floating lindertlow,

12 Mo Nhivide,

Must be zero

Current AC Block Numher (0=7)

Frevious Context AC HBlock Number (Uw7)

Previous Context Section Humberp

PC of the program
In kKernel mode (XPCW/SFM), or when stored on a page fail or
MUUQO, all of the above fields will be stored as defined, In
kernel mode, XJRSTF and XJEN will restore all fields,
I'n user mode, PCS5, PAB, and CAB will always be stored as 0,

An XJRSTE in user mode will treat these flelds as it does the
user mode€ ahd user /0 {lag now (i,e, ignore themy,

PRUCKSS CONTEXT VARIABLES Fage 9wl
Introduction

Ye1,2 Context changing

Returning to a previous context may be done with an XJRSTF or XJEN
instpruction which restores the context variables stored 1in tne
previously saved PC double word,

kntering a new context will be done as tollows? All of the "previous"
context variables {in the old pPC €flag word will be set to thelir
corresponding values {n the “current" context, I1f the ‘"current®
context is not useremnode, then set the "previous® context from the new
PC flay word, The tollowing oberations are defined as enterinyg a nev
context!

1, Monltor call (Muvagy,

2, Paye taill trap,

3, Prilority interrupt initiation,

4, T/0 vade tail trap,
kach of these operations will store a PC doubleeword contalning the
"eurrent" context variables and then load a new PC douyblewword to ser
hew values for those varlables not set automatically, See the chapler
on Hpeclal bystem baygers for a description ot the chanhges to the KPPV
and upT,
The tollowing chart symmarizes what varlables are saved, and what new

values dJare set, It 4includes tor comparison what is currently
implemented on the KL1i0 processor,

Keys

store Save {n 4appropriate block (old)

Load set trom appropriate block (new)

set set "previous® tou old “Ycurrent®

* In process context word

L] Hoode sets PCSy XPCW stores flaus, PC, PCS, amwl 1oads

tlays and pC

PROCESS CORTEXT VARIABLES Fage Ymi
Introduction

i I Flays | pC | CAH | pAH I pCS/PCU |

09----‘-----------.---------.---.-----.--.-.--..o-.ou-.c--..-------gqQ

| ! I Store | Store | No J No I Store !
| I KL l---Qn--o-n-----ocuun.Q---Q..--—u---G.n------..qupuqqgf
| } I Load I Load | No ! No I No |
| XPCN l-..~¢..u-...-.-...-.q.--,.-‘-n.-..---u.-quuuuaoaonnoﬁt-?-9#
| ! I Store | Store ! dtore | Store ! gstore !
. ’ Kc ’Uﬁﬁlﬂﬂouwn--u—-p--.--.--.--..----uu..-.-'q----q-pn-qgg+
| ! I Load I Load ! Load | Mo I No '
Qpn-.----.h-o----------------n.-----.----c------.-----u----.-o----gpq¢

[I Store | Store | No | Ho I Store !

I KL '—-----------'o.--u.o-----.-..-.--------.a.--.--.'-..q9¢

t xs + lgad I Load T Mo ! My booSet (PCsy I

}nter- '-.--Q.-.--g.--.--—.p_‘.o.o.---p.---o.-.------uuu..a.-m,g-,q*
Tupt | I Steore | Store | store | Staore | btore !
{ I Lopad ! lLgad ! Load | Ho | No !

i I Stere | Store I # &tore | & Store | Store !

f I Clear I Lgad ! No | Mo | Set (PCs)y !

Muun ‘----4-----..---.-----ﬁ-o.---on.-..----u----------..-..-..Qq§
! I Store | Store ! Store | store | Store |

I K¢ ‘.-.-.--pconqoonoboo...-u---.o---r--.------p-----ppnpggQ

1 lLoad I Load | lioad ! Load | Set !

|

t

!

!

|

|

|

+

|

1

|

|

|

|

|
Q....-..-.-------..—,;.---n.--.QQCGOD-.0---.—.C-.0--..--.-.--.---..qgQ
! ! ! Store | Sstore ! No ! Mo ! Store !
| | KL Iw-.------.--o-.n------------n----a---q-p---.-.popp---gQ
| | i Clear | Load | No | No I Set(pPCs) |
’ Paqe '.Q'Qf.-..-.-....-..--"..'..-,..-.Q-.‘ﬂﬂ-O.-.-‘..-----’QQQQ*
I Fail | | Store | Store { Store | Store | Store !
| | KC .-.p-.-.---n.y--...--.-.q---o--n...-.cno...-...v--qQ-.g¢
|
+
!
|
|
|
|
i
|
|
|
!
|
!
|
|
!
+

| | Load I Load | l.oad | Load | Set, i

! I Store | Store] No | No | No !

| KL ‘-------—--—.----.------.--—-o--ono-...-w-.—---p;-;u---{

| I No | Load { Mo | NO ! No i

LU“U '-..-+--.-’-.‘---..-.--.-..--'-..........--..-..Q.-‘-.---.-’+

| | 8tore | Store | No t No | NO 1

i KC 'q--p....w----.-n----.---.----.----QQQQQ...».—----uunqq{

| I No I Load | Mo o No | No !

bl A bl A Al L L L AL P L L L L R R LR T L Ly L R e T L L T T
| I No I No | No ! No ! No)

| KL ‘--.QPO-QUQ-..-----.qonptgoo.--w-n---v--..--...---q--pq¢

! I Load I Load I No | O | Load '

XJRﬁTF ..QD-‘--.---‘------.-----------.----..-.----..---a.--.--n-.yQ
! | Mo | Yo | Ho | Ho | No |

XJQ‘W | "C |""-"...Owﬂ--.ui‘.-.-D---'-..--.-.o-.-----u-----------.Q

| I Load | Load | Load ! Load | Load {

CHAPTER 10

EXTENDED ADDRESSING

This chapter nrovides a descrintion ot extended addressing as defined
by the POLPw10 architecture, This material really belonuys in the
Processor Reference Manyal, and every attempt will be mwade to get {t
included {n the next release of the manual, Note that certain
dmplementations of the FOFe1Q architecture don’t always conform to the
descriptions given in the mewo, ‘'These are descriptions ot what SHUULD
be implemented, not necessarily what 1S5 jimplemented, However, all
tuture POP«10 processors should conform to these descriptions,

In order to make it easier tor the reader, 1*ve also added a lot of
background, definitions, and descriptions of extended addressing that
are found {n other references, This additional discussion should make
the overall structure of extended addressing more clear,

In order to aveld swamping the reader with too much detafl at any
point, ! soretimes intentionally 4ignore or unhderstate certain
important aspects of the examples that 1 use, These items are
genherally covered later in the memo, ! also occasionally forward
reference toplcs, Because ot this organization, it may be bhest to
make a «qulck first pass through the memo to plck out the hiuhliuyhts
and then 4o back and make a more detajled pass,

This memo assumes that the reader has at least & basic knowledyge ot
the PDPel 0 instruction set, the notation used to describe
instructions, and the format of an instruction word, Readers who do
not tbtave this knowledye are referred to sections 1,4 throudh 1,06 of
the Processor keference Manual and to the Macro Assembler Heterepce
Manual,

EXTENDED ADDRESSING Page 10e2
Reference materials

10,1 Reference materials

The primary source of information about the instruction set s the
Processor Reterence Manual, Intortunately, there are some
inaccuracles and sowe omissions in the sections related to extended
addressing, The "Extended Efttective Address Calculation® tlow chart
on paye 130 of the PrM is the best rndescription® of the ettective
address calculation algorithms and it is attached to this memo fop the
convenience of the reader,

The KL10 Engineering kFunctional sSpec contains several chapters related
to this topic and nhas some interesting insights, tspecially
interesting are chapters 2,2, niiser Interface to Extended Addressingw,
and 2,13, "Monitor Calling (MUVD, PXCT)", Alonyg with these chapters Is
a8 handedrawn tlow chart by Tom Hastings entitled "Flow for Extended
Addressing® that clears up Several questions about EAecalc alygorithms,
especially In the area of PXCY, A copy ot tnis tlow chart |is
attached,

U1d memos describing the desluyn of extended addressing apd the
implementation ot extended addressing in TUPSe20 are also somewhat
helpful,

tinally, the KL1O microcode contains a few helptul comments about
exception conditions in that jloplementation of extended addressing,
It is In no sense "1ight readinag", however,

EXTENDED ADDRESSING Page 103
Historical summary of extended addressing

10,2 titstorical summary ot extended addressinu

POP«10 processors prior to the made)l B KL10 implemented a virtual
address space o0f 250K words, As programs and the operatinuy systemg
grew, it became apparent that a virtual address space that was limited
to 256K was insutticient for future expansion, Sometime in late 1973,
an kxtended Addressing Design Group was tormed to evaluate proposals
for increasing the virtuyal address space 0f the PLPel0, Hy early
1975, this dgroup had agreed upon one proposal, and this proposal was
documented in chapter 2,2 ot the KL10 Engipeering kunctional Spec,

This proposal increased the sife of the virtual address space from
256K words to 1 billion words by expanding the size of a virtual
address from 18 bLits to 30 bits, The wvirtual address space |1g
loglcally divided into 4096 sections of 256K words each, The prodgram
may use these sections as separate joyical entities or treat them as
one large contiguous address space, Instructions, however, must
explicit]y transter control betweep sections they may not "faji"
into the next section,

The increase i{n the size of the virtual address space was accompanied
by an increase In the slze ot PC, from 18 to 30 blts, This increase
allowed a program to execute in any of the extended sections, The
contents ot bits be17 of PC were termed the "PC section",

In order to allow an instruction to specity a tull 30=bit virtual
address, the rules for indexiny and indirection were modified whep FC
section was non=zero, In addition, new instructions were defined to
allow a proyram to jump to other sections,

To 1lnsure compatibility with proyrams written for nonwextended
processors, section zero is treated exactly as it is on nonwextended
brocessors, This meapns that {t a proyram s executiny {n section
Zero, nhearly all instructions behave exactly as they would {f the
program were executed on a nonwextended machine, Proygrams running in
section zero cannot reference data in any other section (with one
eXCeption) and entry into another section {5 pPossible only with a few
instructions (e,u4,, XJHSTF, XJRST, etec,).

The first processor to implement extended addressing was the wodel R
K10, bue to hardware restrictions, this processor implemented only
32 of the 4096 sections ot virtual address space, References to
virtual sections above the implemented range cause a page fail trap to
the monftor, The KCi0 implements the ful) 30ebit virtual address
space,

EXTENDED

ADDRESSING Page {10=4

Definition of terwms

10,3 neginftion ot terms

Before we start looking at extended addressing, letfs define some

Lerms§

Q

A virtual address is a j0eblt address used ¢tp reterepnce a
word in an address space, Althouyh the address space can be
considered to be gne large, contiguous space, it is probably
easlier to consider it to bhe broken into sections of 256K
words each, Bits 6«17 of the virtual address then specify
the section number and bits 1835 specify the word within the
sectioh, A virtual address Jooks likej
6 17 18 ‘ 35
I Section number | Word within section |

!p-----.--.-q.-.--.--.-n.-q.-n-cp----.--.--ung‘

Virtual address format
PC has the same format as a virtual Address

An address word Is a word containing 1, X, and Y tlelds (see
the PKM tor definitions for these tields) 1In either IFIW or
Fi'lw (see below) ftormat, An eftective address calculation
takes such o word as input, ‘Thus, instructions, indirect
words, and byte pointers are all examples of address words,

R local address is an 'g=blt inesection address that, when
combined with a default section number, specities a fyl)
Jo=bit address, The sectjion number i{s supplied by somethipngy
other than the address word or index register,

A global address is a JOebit address that supplies its own
section numper, Therefore, no detault section need be
applied,

A local index is an 18~bit displacement or address ohtained
from an index reylister used In an ettective address
calculation {n section zero, or from an index reygister used
in a noneZero section that has hit 0s=1 or bits o=17 equal
Zero, [In a nonw=zero section, an index reygister containing a
loca) index has one of the followiny tormats:

0 1 t7 18 3%
fat Iunored I Local address (or offset)!

‘..-.‘.--..--‘-.-‘-..-.------.-.'..-....‘-.'-.-.Q.ﬁ-.--. '

Local index format (bit o = 1)

0 5 ¢ 17 18 3%

'.'..------"..----..‘------..-...---.-.‘.--ﬂ-."--....- '

LoV lunored! o000 | Local address (or oftset)!

"QQ-.Q-.------..------.---.n-'.-uﬁﬂb.-...-ou.-.-o-.n.n- '

Local index format (bits oe«17 = 0)

EXTERNDED ADDRESSING Page {05
Definttion of terms

0o A global {ndex is a 30ebit displacement or address obtalned
from an index reglster used in an ettective address
calculation in a nonezero section, that has bit 020 and bits
6=17 non=2€ro, An index register containing a global Index
looks like;

01 5 o 35
1ol lganoredl Global address with oe=17 nonekero |

‘ (A A A A A Al A A d A A A A I A ALl X AT A AL AR IS IR XA LS Y XX) '

Global index format

0 An instruction format indirect word (IFIW) 1is any {indirect
word in section zZero, or an indirect word in a nonezero
section that has bit 0s! and bit (=0 (instructions beina
executed are always {nterpreted in IFIW tormat), In this
format, bit 13 is the Indirect biet, bits 14«17 are the Index
register address, and bits 18e3% are the local memory
address, An 1FIW in a nonezero section looks likey

01 2 12 13 14 17 18 3b
B RER] Tynored BN X] Y |

4

IFIW format

0 An extended format indirect word (EFIW) is any indirect word
in @& nonezero section that has bit 020, In this format, bit
1t is the indirect bit, bits 2«5 are the index register
address, and bits 6235 are the ylobal wmemory address, An
EFIW looks likeg

01 2 5 6 35
ottt x| y :

FHEIW tormat

EXTENDED ADDREFSSIHG Page 10e6
Detinition of terms

0 An illegal indirect word is any indirect word in a nonmzero
section that has both bilts 0 and 1 set to a 1, This type of
indirect word is reserved for use by tuture hardware, 1f an
KAecalc encounters this type ot indirect word in a nonezero
section, it will ygenerate a paye taill, The monitor cannot
pertorm any user service as a result ot this trap, including
trapping to the user, since this would cause poussible
compatibility problems with future machines, An {lleqgal
indirect word looks like:

01 2 35
111 Reserved]

'q.---..-o-----n.---.-----n...---.-..'--.-.---‘---P-‘-Q!!-é'

T1legal {ndirect word format

0 A oneeword local byte pointer is any byte pointer in section
zero, or oJ byte pointer in a nonezero section whose p field
is 1€ss than or equal to 36 and that has bit 1220, Irn thiys
type ot byte pointer, bits 13«35 have the same format as an
TFIW, and bits O=11 specity the size apnd position of the
byte, A oneeword local! byte pointer looks like:

Q 5 6 11 12 14 17 18 35
.9-00--------..nu--.on---.-.------0.-.-o.--------;-.-ﬁ-q'
1 p | S talll X | Y |

neeword local byte polinter tormat

0 A oneeword global byte pointer is any byte pointer {n a
honezero section whose p field is uyreater than 36, In this
tybe of byte pointer, bits Oeb are an encoded representation
ot the size and position of the byte and bits 635 supply a
full 30=bit address ot the word containing the byte, A
oneeword global byte pointer looks likeg

0 5 6 35
' Q.Q--.-.-...---..-...-.Q--.-.---‘---------Q‘--Q-b.w.g.u '
Ie,5 enc | Ju=bit address |

nesword global byte pointer format

EXTENDED ADDRESSING Page 10w%
Definition of terms

0

A twoeword global byte pointer is any byte pointer in a
non=2ero section whose P fileld is less thap or equal] to 36
and which has bit 12=1, As its name {mplies, this type ot
byte polinter consists of two words where bits Owli of the
first word give the size and position of the byte and bit 1?2
must be a |, The second word is either an IFIW or an EFIW
and, when FAecalcred, supplies the address of the word
containing the bhyte, A twomword global byte pointer 'ooks
likes

0 5 6 11 12 t7 18 35
‘ .-------O.--Q--.‘.---.-OOQQQQDQQOQO-...ﬁ..---......-‘-q .
! b ! S Itikeserved! Avaijable to user !

[g-.---—----.q-.--o.-ﬂ--u--n---m-.-.--.----..-------o.--.g.
| THFIW or EF1wW |
"--..---..-----...------.---.---—--.--.‘u---.-.d---...q'

Twoeword dglobal bhyte pointer format

A local stack pointer is any stack pointer in section rerao,
or a stack polnter in a nonezero section that has hit 0={ or
bits be17 equal zero betore incrementing or decrementing
(exactly 1like a Jocal index), Incrementing or decrementina
such a stack pointer will operate on both halves ot the
pointer independently, suppressing carries out ot it 18,

A global stack pointer is a stack pointer in a nonezero
section that has bit 020 and bLits owel7 nonezero betore
incrementing (exactly like a yglobal index), Incrementing or
decrementing such a stack pointer will treat the entire word
as a 30=bit guantity,

EXTENDED AUDDRESSING Page 10«8
Lffective Address Calculations

10,4 Effective Address Calculations

No discussion of extended addressing is complete without talking about
kA=calc®s, An etfectlve address calculation is pertormed on every
instruction before it {s executed, In addition, some |instructions
perform additional EA=calc’s duoring the processing of the instruction
(e,9, byte instruction tAecalc of the byte polnter),

10,4,1 Description ot the EAmcalc algoritnm

The basic gPeration of an EAecalc {s to process a sowcalled address
word by adding the Y fleld ot the word to the contents of the optlonal
index reglster to compute a modified address, It the indirect bit {18
gset In the address word, ahbother word is fetched from the memory
location addressed by the computed address and the entire process
repeats until a woyrd Is tound with the indirect blt not set, Sound
simple? Well, let®s look at the operation in a bit wore detail,

The address word can be of two difterent formats, IFIW or FKkIW (an
fnstruction s treated as an IFIW when it s FEAescalc®ed), In
addition, an index can be ot two different formats, local or «aglobal,
Hote that in section geru, all address words are ltIws and all indices
are local by definition, The complexity involved in the FAmcalc
algopithm is the result of these muyltiple formats,

Since the {ndirect tit simply causes another address word to bhe
tetched and the FAwcale process to be repeated, we can fully
characterize an EA«calc by looking at the combinations of IFIW, FEFIW,
and indices {n local and ylobal format, Let®s Jlook at these
combinations one at a time,

10,4,1,1 HNo indexing

It no index register s specitied In the address word, the FAecalc s
strictly a tunction of the Y fleld in the address word, For an liiIw,
the resu)t is a local address, For exampie, bath

1,,100/ MOVE 1,200
and

1;310@/ MmVH,‘,@lﬁﬂ
t,,150/ 400000, ,200

compute o local eftective address ot 200, in the tirst case, the only
address word is the IiInstruction 1itselt, which 1s treated as an
Impliclt 11w, In the second case, there are two address words, the
instruction and the {indirect word, and the indirect word is {n the
IFlW ftormat,

EXTENDED ADDRESSIMG Pagye 10wm9
Lffective Address Calculations

For an Fi'1W, the result is a tull 30eblt gloval address, For example,
1:0100/ MOVE 1,?[10,2@0'

compuytes a glohal effective address of 1,,200 bpecause the indirect
word has a 4global tormat,

10,4,1,2 IFIW with local index

lt the address word is an IFIW and the index i% Jocal, the result is a
loca) address, The {Hebit acddress is computed by adding the Y fleld
to the riaght half of the contents of the Iindex register, For example:

1..‘00/ MOVE 1'(.‘.,103
1,,101/7 MOVE 2,80400001,,2001

The i{ndirect word has an IFIW tormat, so bits 14ei1?7 specify the 1ndex
register address, Since the contents of the {index reaister are
nedative, it 1s a local index and the kFAe=calc is pertorwed by addina
the Y fleld (200) ¢to the right half of the index register (10) to
prodyce a local etfective address of 210,

10,4,1,3 IFIW with global index

It the address word is an IFIW apd the index is global, the result is
a 30»bit global address, The address {s computed by adding hits bo=35
of the contents ot the index reaister to the value of the Y (fleld,
that has been glynwextended from bit 18 into bits 6el?, For examples

"'100/ MUVE 10[2"10]
1"101/ MUVYE 2(92(1)

The second instruction word has an lmplicit [KF1W format, 80 bits 14ely
specify the index register address, Since the lett half ot the index
register 1s positive nonszero, It is a global index and the EAmcalc is
compyted by adding the Y field, after signeextending it from nit 18
into bits e«17 (7777,,«2), to bits p=3b ot tne contents of the index
register (2,,10), Producing a global effective address of 2,,6,

Note that the siyn exrension allows Y to be usSed as a Ppositive or
negative constant oftset to the global address in an index reglister,
This ottset is 1inited to +/= 128K,

EXTENDED ADDRESSING Fage 1010
Lffective Address Calculations

10,4,1,4 EFIW with gjobal index

It the address word 1s an EFIW, the index is always assumed to have
the ylobal tormat and the result is a 30ebit global address, The
address Is comrputed by addiny bits 6=3% of the contents of the index
register to bits 6«35 of the Y tield, For exampleg

!0;100/ MOVE &f‘?;(lﬂl
1,,1017 MOVE 2,8(010002,,200]

The indirect word has an EFIW format, s0 bits 2e5 specify the index
reqgigter address, The 1index 1is always qlobal, so the kFAecalc s
computed by adding the Y field (2,,200) to bits 6+35 0of the contents
ot the index reqgister (2,,10) to produce a qglobal effective address ot
1,,210,

10,4,1,% Hreferences to section zero

Note that the only way to reterence section 2zero from a nonezZero
Section is via an FFIW format indirect word with bits 6=17 equal zero,
Indexina alone canpot be used to reference section zero, bLecause an
index wjith bLijts bel7 egual gero is treated as a loca] address to the
section trom which the last address word was tetched,

10,4,1,6 Summary of FAecalc rules

The preceding secti{ons can be summarized by the table that tollows,
This table yives the computation done for all compinations of address
words and index registers formats plus an indication as to whether the
result is local or global,

Address
Word Type
IFIW BEEIW
BRIB‘lﬂlltltlz3:88!:82!!88:2:323838"tl:!!s:lt!llllRISI&'I!
i Yi18g3s]) I Ylos3%) N
None H I 1
11 Local It Global
Satlmttlltllth'!lltt!lIII!:'S:88883888332828288282382388
Index P YT18839)+(XR)I18835] 11 Not Detiped
Pey Local 1 (Actually the case
Tyve It Loca) helow)

b YT B 7777, Y1831 YI633b)+ (XR)I[be3%)
Global 1| (XH)Y[6335])
Ft Global Global

A i it i R R R P E F R R I R R s R TRt L TS

Ll

£ 1

"

il b

i H

e i it P P P P Y T P P T LT
i Hi

H i

i h

EXTENDED ADDRESSING , Page 10=11
Lffective Address Calculations

10,4,2 HKesults of an EAecalc

when the microcode performs an EA=cale, it is simply following the
rules described above apd shown dgraphical}ly in the EAecalc t)ow chart
from the PRM, The result of this FAecalc is a 30e=pit address and a
lebit tlag that indicates the address is local or global, These two
pleces of intormation myst be considered together wheneveyr the results
0of the FAescalc are ysedy it is seldom, if ever, correct to consider
the address without also cansidering the Jocal/ulobal bit,

kvery EAecalc carries a default section along during the calculation
ot the effective address, The initial detault section for an kAwcalc
of an instruction is vC section, More generally, the default section
1s initlally that from which the filrst address word was fetched, Thils
default section is changed from the initial value {f the EAegalce
tollows a ylobal address into another section, In fact, the default
section is always the section from which the last address word was
tetoched,

1f a local address is calculated using the rules dqgiven above, the
default section is applied to complete the 30«bit address, [t a
global address {s calculated, the default section is not used,

The last jteration of the kLAscalc (the computation done on the Jast
dddress word that doesn’t have the {indirect bit set) determines
whether or not the result ot the EA=calc is local or alobal, 1t the
result of the last iteration is a local address, the result of the
FA=cale 1s local, Similarly, 1f the pesult of the last 1iteration s
global, so is the entire EArcalc, The transitions of the local/global
tlag are indicated on the PrM flow chart by notations such as “E
Globhal®,

The significant thing to remember is that a local EAegalc still
results in a 30«bit address, even thouyh 12 bits (the sectionh number)
were not explicitly supplied to the EA=calc routines as part of an
address word or an index register,

0 An effective address calculation always computes 31 hits of
informationt & 30ebit address, and a lebit local/global
tlag,

10,4,3 Siwmple EAmcalc examples
In the exampleg above, we Jjagnored the tact thar FEAescalcfs always
produce a 30ebit address when we sald that the result was a local
address n, In the following examples, we emphasize that a ftull 30=pbit
address is produced, Consider the following instructiang

0,,200/ MOVE 1,100

The EA=cale for this instructiot results in a local EA, Therefore,

EXTEMNDED ADDRESSING Page 10«12
Lffective Address Calculations

the FAecalc computes the 30ebit address as 0,,100 and the 1=bit
loca}/global flag as jecal, Since the KA 1s local, we know that the
section nymber was defaulted from something, in this case, the pC
section, We say that the eftective address is 0,,100 LOCAL (this
notation is used throuvhout the rest of this discussion to specify all
31 bits of information),

Letfs consjder a sligntly more complex exampleg

1,,200/7 MOVE {,8300

1,,300/400000,,100
As In the previous example, the effective address calculation computes
a local address of 100, Since the address word was fetched from
section 1, the result ot the EAecalc is 1,,100 LOCAL,
Let*s look at a 4globa)l EAecalc

1,,100/7 MOVE 1 ,@812,,200]

In this case, the cffective address calculation produces a global
address ot 2,,200 Gy (HAL and no detault sectlion need be applied,

EXTENDED ADDRESSIHG Page 10=13
llse of the local/ylobal tlay

10,5 Use of the local/global tlag

There are two uses for the local/dlobal flag, First, {t s used to
determine it the address is actually an AC, 1f the address is local,
and bits 14=35 are in the ranye 0 to 17, 1inclusive, the address
references an AC, independent of bits bel?7, This wmeans that a program
can reference the ACs while running in any section, a8 long as the
reference s local,

second, the local/yglobal flay determines how to increment or decrewment
the address, 1f the address 18 jocal, increwmenting or decrementing it
suppresses carries from bit 17 to bit 18 apd vice versa, That 1s, the
address always vwraps around in the current section if the right halt
1s incremented past 2T18=1 or decremented past 0, A global address 1is
handled as & full 30ebit quantity and overflow or underflow of the
right halt can aftect the lett half section number,

10,5,1 AC references

Let*®s look at several examples that make use of the local/global flag,
First, let's compare what happens ¢to AC references for local and
ylobal effective addresses,

2,,100/7 MOVE {,4{400000,,5]

The FRecalc for this instruction ylelds 2,,%5 LUCAL, where the section
humber was detaulted to 2, ls this memory location 2,,5 or AC 57
Becayse the kKAecalc 1s local, the rule says that it is an AC reference
and not a wmemory reference, (In the other hand, the kAecalc for

2,,100/ MOVE 1.6‘2"5]

results in an EA ot 2,,% GLOBAL, Since the EA is qlobal, this 1is a
memory reference and not an AC reference, -

0 FEAecalct?s which yleld local addresses, where bits 18e3)8 of EA
are {n the range 0e17, inclusive, always refer to the ACsy
independent of the section number,

inally, there is the concept of *qglobal AC address®, This co¢oncept
allows a program runbning in any non=zero section to make a global
reference to the ACs by computing a dlobal address in the tirst 1o
(decimgl) locations of section 1, Consider the following example:

EXTENDED ADDRESSING fage 10s14
lise of the local/global flag

2,,100/ MOVE 1,801,,5]

The KAwcalc ylelds 1,,5 GLOBAL and becauyse of the *"global AC address"
rule, the reference i{is to AC 5 instead ot memory location 1,,5,

0 An Ehegalc which ylelds a global address to Jlocations 0Oei7,
inclusive, of section 1, refers to the ACs and not to memory,
Such an address is called a globa)l AC address,

10,5,2 1Incrementing EA

Another use tor the localsglobal tlaq computed as the result of an
LAecalc is to determine how to Increment the ettective address, Let®s
look at two examples usinag DMOVE, one computing a local KA and one
computing a global FA

2,,100/ DMOYE 1,@00400000,,7777771]

T™he FAwcalc for this fnstruction results ip an effective address ot
2,,777777 LOCAL, The DMUOVE instruction tetches two contiguous words
trom b and Fel, but what is E4l in this case? Since the FAwcalc
resuited in a local address, Iincrementing k£ §s done sectionelocal,
resulting {n 2,,0 LOCAL for E+1, bHut this i{s a local reference to the
ACs, 80 the twp references for E and F41 90 to 2,,777777 (memory) and
2,00 (AC), Note that the state of the local/sglobal flag is maintained
duripng the incrementing of EA, ‘

0 Incrementing or decrementing a logal address is alvays done
relative to the oridinal segtion, i,¢,, the addresses "wrap
around® {n section,

0 Incrementiny a local address whose inesection part (s 777777
causes the address to wrap around i{nto the ACs,

Let*s Jook at the correspondlipny global caseg

In this case, the kAwcalc yields 2,,777777 GLUHBAL, Uecause this Is a
ylobal address, incrementing & to get the second word results in a
reterence to 3,,0 GLUOBAL, Since this isp?t a local address, the
refeprence Ls made to wemopy locatlon 3,,0 and not to AC ¢,

0o Incrementiny or decrementing a global address aftects the
entire address; 1,e,, section houndaries are {gnored,

o The process of iﬁcrementlnq or decrementing an address,
whether the address is local or globa), preservas the state
of the local/global tlag,

EXTENDED ADDRESSING Page 10wihH
Multiesection EAecalce’s

10,6 Multiesection EAwcalc’s

50 tar we have considered only FAecalc’s that remain {n one section,
It the prodrarm is runhning in a nonezero section, a yloval guantity
encoyntered during the EAmcalc (from elther an index register or
indirect word) can cayse the EAecalc to "chanye sections", An example
will make this more clear:

3,,100/ MOVE 1,4(200002,,100]
2,9100/ 3'9200

The kA=calec for this instruction computes a ylobal address of 2,,100
trom the indirect word in the literay, Since the indirect bit {s set
in this woprd (bit 1 1s the iIndirect hit in an EFIW), the FAecalc
routine fetches the word at 2,,100 and continues the FAecalc, The
tinal result of the EAwcalc yields 3,,200 GLOBAL, This isn’t a very
interesting example, because it doesn’t demonstrate the signiticance
of the section changye, 80 let?'s look at a sliightly different examples

3,,100/ MOVF ¢,@[290002,,1001
2,,100/ 400000,,200

In this exarple, the first part of the KEAe=calc remains the same and
the routine fetches the word at 2,,100, In this case, however, the
result of the kAecalc vields a local address instead ot a global one,
But what section {s the address local to? The rule says that a local
address is always local to the section trom which the address word was
fetched, Since the EAwcalc chanhyed from section 3 to section 2 when
the last address word was fetched, the EAecalc is relative to section
2 and the EKAecalc ylelds 2,,200 L0OCAYL,

0o The default gection for a local address is always that fprom
whieh the address word was fetohed,

Now that we’ve seen what happens to FKEAmscalcfs that cross section
boundaries, let’s see what happens it the FAecalc enters section zerot

3,,077/ MOVEL 3,1
3,,1007 MOVE 1,8(200000,,100]
0,,100/ 3,,200

As with the example above, the EAecalc tor this instruction fetches
the word at 0,,100 and contlinues, hut sinpce the EAwcalc entered
section zero, this word is treated as an [FIW instead of an EKlIw,
Therefore, the 3 in the left half of 0,,100 is interpreted as the
index reuister field instead of a dlohal section number, Since AC 3
contains a 1, the FEAwcalc vylelds 0,,201, In addition, the last
daddress word was tetched ftrom section zero, so the result is a local
address,

EXTENMDED ADDRESSING Page 10w=le
Multiesection kLA=scalcts

o Ap effective address calculation which "falls" into section
Zero always results in an effective address that i{s logal (to
section gero), Furthermore, the effective address
calculation can never “"get out"™ of section Zero once it
enters it because all addresses in segtion zZero are treated
as local, Further operations obey gegtion zero rules,

EXTENDED ADDRESSING ' Fage 10w17
special case instructions

10,7 Special case Instructions

Uther than modifications to the KAwcalc algorithms when the BC is in a
nonegero section, most instructions are unaffected by the addition of
extended addressiny, However, there are a few classes of instructions
that behave differently on an extended machine from the way they would
on a noneextended machine, This section describes the behavior ot
each class of instruction that has this characteristic,

kxamples in this section sometimes use the PUINT pseudoeop to describe
4 byte pointer, For those readers who do not Know what this pseudowop
Jeherates, a description can be found in the Macro manual,

10,7,4 Byte instructions

The effective address calculation tor a byte instruction addresses the
byte pointer word(s), The instruction then does another EAecalc an
the byte pointer atter deterwinina which one of the three possible
byte polnter formats was supplied,

10,7,1,1 bdyte pointer interpretation

The algorithn for determining the type of the byte pointer is as
tollows:

{rvsveneonnsvcacew 4
t====a | Section 07 |
Yes A4 LA T Y L XY L 2 2 X 2
INg
|
y

|

|

|

Y

| {ronsemsensvcaeny

! IP tield > 367 | ww=wwd Uneeword global
| frmeseuocnvevrcnnsy Y05

| INoO

| t

v v

| e orncencawnemy

| I Bit 12317 | eewa> Twowword global
} ovsvswvencsncccnsy YO§

| INg

1 I

v v

4

"erwasmreconenivenssnvasnwesn) (INenWOTd local
yte polnter decode alyorithn
The »Section 0% test In the flow chart is based on where the byte

pointer (more precisely, the tirst word ot the byte pointer 1f it is o
Lvgewgprd alebal) was tetched frow and not on PC section, This {s an

EXTERNDED ADDRESSING tage 10=18
special case instructions

important distinction if the byte instructjon and the byte polnter are
not tn the same section,

o For byte instructions, the test for the possibility of global
byte pointers s done baged on the section from which the
byte pointer was fetched, That is, it the section fprom which
the byte pointer was fetched is nonezero, the hyte vointer
may be global,

10,7.1.,2 Byte pointer EAecalc

The default section for the byte pointer EA=calc s {initially that
trom which ¢the bLyte pointer was tetched, OUnce again, this may be
different from FC section i{f tne Ipstruction and byte pointer are |in
different sections, 1If we realize that the byte pointer is really an
address word, this Is an extenslion of the rule that says local
addresses are local to the sectfon trowm which the address word was
tetched, For exampley

3'5100/ LD# ’,Q(Z"'GO!
2,100/ PULNT ©e200,0

In this example, the byte instruction is fetched from section 3, The
kA=calc for the {instruction follows an EFIW into section 2 and the
byte pointer 1s fetched, The byte pointer s Iin one=word 1oca)
tormat, so the pAecalc of the byte pointer results in a local address,
But is the address local to section 3 (section containing the bhyte
instruction) or 2 (section containiny the byte pointer)? The rule
says that byte polnter EAscalc?s start ott local to the section from
which the byte pointer was tetched, 8o the EA=cale is local to section
2, The result of the EAecalc 18 therefore 2,,200 LOCAL,

Note that, while the initial default section may be that containing
the byte pointer, the default section may change {f the kAecalc
encounters & global guantity, For exampleg

3,,100/ LbB 1,8102,,100)
2,,100/ PUINT 6,81200004,,1001,0

As in the previous example, the byte pointer is tetched from section
2, The byte pointer has the {ndirect bit set, so the byte pointer
FAecale follows the EFIW in the Jiteral (which also has the indlrect
bit set) into section 4, where the tinal address word is fetched tromw
location 4,,100, This tinal address word is an 1l¥l¥W, so the result ot
the FkAecalc is o local address, FEkven thouyuah the nyte pointer FAscalc
started in section 2, the result ot the tAecalc is local to section 4,
because that®s where the last address word was fetched trom, The byte
pointer FAecalc results in an eftective address of 4,,200 LOCAL,

EXTENDED ADDRESSING Page 10«19
special case Instructions

o For byte instructions, the initial detault section for the
byte pointer EAmcalec is the gection from which the byte
pointer wap tetched, which may not he the same gection as
that containiny the byte {nstruction, Further, if the
EAecale results in a local address, the address is local to
the section from which the last address word in the effective
address calculation wag fetched,

10,7,2 EXTEND instructions

Like the Lyte 1lpstructions, certaln FEXTENMD dnstructions pertorm
another FAecalc tor the byte polnter (MUVSxx, CHPSxx, CVTHDX, CVTLHX,
and KDIT), The AC tield ot the EXTEND instruction addresses a block
of ACs, that contain the byte pointers, In addition, some LXTEND
fnstructions pertorn an FAecalc on the extended opcode word, which s
interpreted in 1FIW format, The extended opcode word s addressed by
the effective address of the EXTEND instruction,

0eTe2e1 UbYte pointer interpretation

The algorithm for determining the byte pointer format (s the sawe as
that described for nbyte instructions with one exception, For EXTEND
instructions, the "Section 07* test in the flow chart is based on PC
section,

0o FkFor EXTEND instructions, the test for the possibllity of
global byte pointers is done based on PC section, That is,
it PC section {3 nonegero, the byte painters may be global,

10,7.,2,2 Byte polnter EAecalc

The default section for the byte pointer FEAwecale s initially PC
section even 1t other parts of the EXTEND ingtruction are in other
sections, tor examples

EXTENDED ADDRESSING Fage 10m20
Special case instructions

de,1007 MOVEL 1,5 1Source length

3,01017 MUVE 2,(POINT 77,2001 j3Source byte pointer
3,,102/7 MOVEL 4,5 thestination length
3,103/ HOVE 5, [POINT 7,3001 jDestination byte pointer
3,,1047 SETZB 3,6 1Clear 2nd word of BPs
3,,105/7 EXTEND 1,8(2,,100])

2,100/ MOVSLY jExtended opcode 15 MUVSLY
2,,101/7 0O 1111 character is 0

In this example, the KXTEND {nstruction (s in section 3 and the
kAecalc of the (instruction follows an EFIW into section 2, The
KAhecalc®s f0r the ornesword local byte polnters in ACs 2 and 5 yenerate
tocal addresses of 200 and 300 respectively, But are they local to
section 3 (PC section) or to section 2 (sectlon contalhing the
extended opcode)? Begause the byte pointers are fetched trom the ACs,
whieh are lmpjicitly in PC section, the FAecalc 15 relative to PC
section, ‘Unce aygaln, this is o conceptual extension to the rule that
loca} addresses are 1ncal tp the section ¢rom which the address ward
(in this case, the byte pointer) was fetched,

As with byte instructions, the detault section of the ¢tAecalc may
Chanye 1t the LAmcalc epcounters a dlobal yuantity, An example ot
this for the FX1enD instruction would be analogous to that tor bhyte
instructions qgiven above,

o For EXTEND instructions, the initial default section for the
byte pointer EAecalc 458 PC section,

{ine fnterestinyg aspect of this rule is demonstrated by the following
examples

3,,100/7 MOVEL {,5 tSource length

3,101/ MOYE 2,TRPDINT 7,200] jpSource byte pointer
3,,102/7 MUVEL 4,% thestination length
3,,103/7 MOVE s, [POINT 7,3001 jDestination byte polinter
3,,1047 SFTZB 3,6 1Clear 2nd word of [iPs
3,,105/ EXTEND 1,0(0,,100]

0,,100/7 MOYSLY tkxtended opcode 1s MOVSLY
0,101/ 0 ;111 character i{s 0

In tnis example, the EXTEND instructionh is in a nonezero section (3)
and the extended opcode is in section zero, Even though part of tne
processing of the Instruction fcll into section zero, the FEAmcale of
the bhyte pointers s still done relative to BC section, Hence, the
result is the same as {n the previous example,

EXTENDED ADDRESSING Faoge 10=21
special case instructions

10,7,2,3 Ekxtended opcode EAwcalc

sSome EXTEND instructions also perform an EAw=calc on the extended
obcyude wgrd, In this case, the detault sectiop tor the kKAecalc 1s
inftially the section from which the extended opcode word was fetched,

For examplej

3,,100/ MOVEL 1,4 jSource lenyth

340101/ MOVE 2, (POINT 7,200] jSource byte pointer
3,102/ MOVEL 4,5 shestination lengyth
3,,103/7 MOVE s, [POINT 7,300) jLestination byte pointer
Jre104/7 SETZH 3,6 jClear 2nd word of Bps
30010587 EXTEND 1,8(2,,100])

2,,1007 MOVST 200 stExtended obcode 1is MOVST
2,,101/7 0 111 character i{s 0

As in the last example, the EXTHEND instruction FAe=calc follows an EFIW
Into sectign 2 tg fetch the extended ppcode word trom location 299100,
In this example, the extended obcode turns out to he a MAVST whieh
addresses a translation table with the result ot the EA=calc of the
word, This KAecalc results in o local address which is local to the
section trom which the address word was fetched, Therefore, the table
is read frow locations stagtiny at 2,,200 LUQAL,

¢ The initial default section for the EAecalc of the extendad
epcode word under an EXTEND instruction is that trom whioh
the extended opcode vord wag fetched,

10,7,2,4 EDIT patterp and mark addresses

In addition to byte pointer type determipation, the EDIT instruction
underp EXTEND interprets the pattern strinu and mark addresses
ditferently based on PC section, It pC section s zero, both
addresses are limited to 18=nit addresses in section zero and the
resujt of setting bits 6e17 ponezero lis undefined, Copnversejy, it pC
section is honezero, both addresses are treated as full 30ebit global
addresses and no defaujt sections are appiied, An example ot this s
tuo complex to0 be given here and will bhe lett as ah exerclise to the
reader,

10,7,3 JSP and J8K

In a nonsextended machine, these two instructions store the tlaas ahd
an 18 bie PC betore Jumping to the eftective address, This is also
true if the fnstructlions are executed in sectionh zero of an extended
machine, Because this format Is insufticient to store a full 30=bhit
address, the operation ot the instructions is moditied when the pC I8
in a nunezero section, Tnstead of storing the flaags aind I'C, these

KXTENDED ADDRESSING Fage 10mw22
special case instructions

instructions store the full 30ebit C (actually PCel), omitting the
tlaus, For exampley

240100/ JSP 1,200
stores 2,,101 in AC 1| before jumping to location 2,,200, Siwmilarly,
2,,1007 JSK 200

stores 2,,10! in 2,,200 vetore jumping to tocation 2,,201, Note that
tor JSR, the FPC is stored In the word addressed by the effective
address even {f that address i{s in another section, e,q,,

2,,1007 J5R ®(3,,200])

In this case, the EA=calc tor the JSK results in an eftective address
ot 3,,200 GLULGAL, Therefore, 2,,101 (FC+1) is stored ip 3,,200 (EA)
before fumping to 3,,201 (EA+1),

An interesting aspect ot this 1s dewmonstrated by the following
examplet

2,,100/ JSP 1,800,,100]

Hecause the FC 1s in a nonezero section, the instyuction stores 2,,101
in AC { apnd then Jumps to location 0,,100, HBut an attempt to return
to the caller in sectjon 2 via the uysual JRST (1) instruction would
tat}, becavse the FAaecalc of the return instructlion, done {n section
zero, would taill to produce a 30=bit global address, As a result, {it
is ditticult to write a subroutine in section Zero that can be called
via J&P or JSk from an arbitrary section,

A final example fllustrates the ditference vetween a Local and g¢lobal
EA for JSKy ‘

2,,2007 JSR 777777

The HAecale for this case results in a value ot 2,,777717 LOCAL,
Therefore, 2,,201 (PCe+1) is stored in 2,,777777 (EA) and the
destination of the jump is 2,,0 (KA+l local), This 1s consistent with
the rule that loecal addresses always wrap around in section when
incremented,

The yglobal analogy is as follows!
2,,2007 JSK ¥12,,77771717)

In this case, the result ot the EAecalc 1is 2,,777777 GLOBAL so the
instruction stores 2,,201 (BCe+1) into locatlon 2,,777777 (FA) as in
the Jast example, The difterence is in the destination of the fump,
because the effective address is global, incrementing it produces 3,,0
GLUBAL (EA+1 global) as the destination of the jump, See the section
on fnstruction tetches below for additional intormation on these two
cases,

EXTENDED ADDRESSING Page 10=23
special case Instructions

o If PC is 4in a nonwgero section, the JSP and JBR 4nstructions
store a full 30ebit PC in the appropriate place inastead of
storing flags end PC, This is true evep if the degtination
0f the Jump is in section zero,

1047.,4 Stack instructions

in & nonesextended machine (and an extended machine in section zero),
the stack pointer typlcally contains a negative control count in the
left halt and an 18ebit address in the riaht half, Such a stack
pointer s called & local stack polnter, because this torwat is
insutticient to hold a full 30ebit stack address, an additlional format
tor stack pointers §s allowable when the PC 18 in a none2ero section,

In this forrat (called a global stack pointer), the stack pointer 1&
posfitive, bhits 6317 are nonezerpo, and bits 6«35 of the word are
interpreted as the ylobal address ot the stack,

It the stack pointer i{s in Jocal format, the stack address is local to
PC section, For exampley

2901007 HOVE 17,{®100,0,200])
2,,1017 BUSH 17,3090

Becayse the left halt of the stack pointer is negative, it is in local
tormat, Therefore, the stack address {s 2,,200 L,OCAL, because the
stack is local to PC section,

0 Local stack pointers are always logal to PC section,

© The test for the possibility of a global astagk pointer ip
dohe based on PC section, That is, if PC section is
nonegero, the stack painter may be 9lobal,

Note that a PUSHetype stack operation done on a 1local Sstack polinter
that has overflowed (i,e,, the lett halft of the pointer has yone to
Zero) changes the stack bointer to ylgbal tormat,

The type of stack pointer alspo determines how the stack address Is
incremented or decremented, For example, consider the followingt

20,1007 MOVE 17,1®100,,777777]
2,,101/7 PUSI 17,200

The gtack pointer {n this example is local, so the stack address |is
209777777 LOUCAL, When the PUSH 1nstruction lncrements the pointer, it
does g0 sectionelocal, resulting in an incremented stack address ot
2990 LOCAL (which actyally reterences AC 0), The stack pointer would
then look like «77,,0,

Let®s look at the same example with a global stack pointers

EXTENDED ADDRESSING Fage 10m24
special case instructions

2,,1007 MOVE 17,(2,,777777)
2,108/ PUSH 17,200

With o alobal stack pointer, the increment is done globally, resulting
in an incremented stack address ot 3,,0 CGLOBAL (which is memory
location ¢ in section 3), The Stack pointer would then Jook like

—‘f’Oi

0o Incrementing or decrementing a logal stack pointer wraps
around in section, Conversely, the same operation on a
alobal stack pointer may oross section boundaries,

In addition to the requirement for a ylobal stack polnter to speclty a
tull 30=t4t stack address, the operation of the FPUSHJ and ropPJd
instructions is modified when the $C 18 In a nonezero section, Like
JOP and JSR, PUSHI stores a full 30ebit PC (a4gain, actually BC+1) on
the stack, omitring the tlays, Similarly, pOpJ restores a full 30aebit
PC from the stact Instead of an 18=bit FC Jocal to PC section, hLet's
look at some exampless

2,,100/7 MOVE 17,1=100,,200]
2,,108/7 BUSHI 17,4n0

Hecause bC sectlion is nonezero, the PUSHI stores 2,,102 on the stack
at location 2,,201, which was addressed by a local stack pointer, and
then jumps to location 2,,400¢, An updated stack polnter of «77,,201
{s stored back into AC 17, similarly:

2,,400/ MOVE 17,(e77,,201]
2,,4017 PORJ 17,

restores the fyll 30ebit PC from stack location 2,,201 (addressed by
the local stack pointer) and then stores an updated stack polnter of
»100,,200 back into AC 17,

This behavior nas some interesting agpects, as the next example
demonstratess

2,,100/ MOVE 17,12,,200]
24,101/ PUSHY @l0,,300]

begayse PC is {n a nonezero section, the PUSHJ instruction stores a
tull 30ebit PC (2,,102) on the stack at location 2,,201 caddressed by
the global stack pointer), The Jjump is then made into section zero,
But an attenmpt to return to the caller with a pPUPJ instruction will
result in bedlam, 1In the first place, the global stack pointer wil)
be interpreted as a local one in section zero, In addition, ruURJ will
assume that the gtack word contains tlags and PC and restore an 1Hebit
BC, local to section zero,

As this exawple demonstrates, it isn*t very practical to call
subroutines in section zero, from a nonezero section, using the normwal
call/return conventions,

MXTENDEU ADDHRESSING Fage 10225
apecial case instructions

o If PC is in a nonegero section, the PUSHJ i{nstruction stopes
a full 30 bit PC on the stack, This is true even if the
destination of the jump is in gection Zero and regardless of
the format of the ptack painter,

0 It PC is in a nonezero segtion, the POPJ instruction always
restores a full 30ebit PC from the stagk,

10,7,5 JSA and JKA

These Instructions use a formwat that is incompatible with extended
addressing, Because they are also considered an obsolete wethod top
subroutine call/return, no attempt has been wade to find an alternate
tormat for these instructions when executed in & none=zero section,

tor compatiblility witn section zero programs, these two instructions
continue to work in nonezero sections, However, thelr nuse s

restricted to intrassection operation, and some of the nonmzero
section rules are f{uynored,

In the case of JSA, the eftective address is always treated as a local
address jn FC section, even {f the KAecCdalcC results {n a glohal address
in another section, in addition, only the inesection parts of ¢ and
PC are stored in the halves of AC, Ftor example,

2001007 JSA 1,803,,200]

stores the current contents of AC into location 2,,200 (PC sectiun
plus the inesection part of KA), stores 200 (inesection part of E) in
AC left, 101 (inmsection part ot PCe1) in AC right, and Jumps to
2402018,

Simijarly, the etfective address for JRA is always treated as a local
address in PC gection, In addition, the AC is restored from the local
address in PC section contained in AC left, For example,

2,,2017 MOVE 1,1200,,101]
2,,202/ JRA 1,(1)

restores AC from locdation 2,,200 (pPC section plus contents of AC lett)
and thep jurps to 2,,101 (EA in PC section),

This Lehavior 18 consistent with the gperatiop ot the ipnstruetions in
section zero,

EXTENDED ADDRESSING Page 10=26
specilal case instructions

0 JSA and JRA alwvays compute an etfective address local to PC
section even 4if the FEAecalc generates a 30ebit address
vutside of PC section,

10,7,6 LUuOs

In a noneextended machine, LUUOs trap via a palr of locations (40 apd
41) in exec or user virtual memory, Because this scheme (s
insugticient to support extended addressing, the operation ot Lilos is
modified {f the PC 1is in & nonezZero section, In this circumstance,
the MU 1s processed throuagh a foureword block which Ls addressed by
a word in the exec Or user process tables, See the PRM for wore
details,

o 1t PC is in a nonezero section, LUUUS trap through a
foureword block addressed by a location in the EPT (exec
LUUO)Y or UPT (user LUUD),

10,7,7 BLT

The tormat used for source and degtination addresses by UWLT 1is
insutficient to represent two 30ebit addresses, As a result, the XGLT
instruction was added to the instruction set to allow block transters
trom one arbitrary J3I0e-bit address to another, Despite this, HLT is
still useful for Intraesection block transters, and the operation of
the instruction has been changed slightly,

The fnitial source address s constructed by taking the 18ebit address
in the jett halt of the AC and appending it to the section pumber and
logcal/global flayg from the eftective address, ©Similarly, the inftial
destination address 1s constructed from the 1gebit address in the
right half ot the AC and the sectionh number and local/global flag from
the eftective address, This means that transfers are always to apd
trom the same gection as that specified py the effective address,
which need not necessarily be the same as PC sectjon, Source and
destination addresses are then incremented, section=local (even if EA
i1s global) until the destination address is equal to EA, For examples

2,,1007 MOVE 1,1200,,300]
2,,1017 BLT 1,813,,3021

In this example, the FAwcalc for the BLT results 1in 3,,302 GLOBAL,
iising the 7rules above, the initial source and destination addresses
Yould be 3,,200 GLOBAL apd 3,,300 GLOBAL, Therefore, the followina
trangter vwould take places

EXTENDED ADDRESSING Fage 10w27
special case instructions

39200 => 3,,300
300201 3> 3,,301
300202 8> 3,,30%2

Letfs look at an example that demonstrates tne signiticance ot
inCrementing the addresses sectionslocals

20,100/ MOVE 1,0777776,,300]
2,,1017 BLT 1,603,,302]

As in the previous example, EA 1is 3,,302 GLOBAL and the inttial
destination address is 3,,300 GLUBAL, In thig case, the inftia)
source address 1s 3,,777776 GLOBAL and the following transter takes
Place!

356777776 u> 3,300
3,,7771777 => 3,301
3000 s> 3,302

Note that the source address was {ncremented section=local even though
it was a gjloba) address,

It §{s important to note that the locals/ylobal tlag must be included in
constructing the initial source and destination addresses even though
Lthe addresses are always incremented sectionelocal, This s because
the check for an AC reterence is done by including this flay, Let’s
look at two examples, onhe whose EA {s local and one whose EA 1is
4yloball

2,,1007 MOVE 17,(1,,200])
2,,1017 BLT 17,201

In this case, the resylt ot the EAecalc tor the BLT is 2,,201 LUCAL,
Theretore, the initial source and destination addresses are 2,,1 LUCAL
and 2,,200 LOCAL, respectively, HBecause the source 1ls a local address
whose 1inesection part is in the range 017, it references AC 1, Now
let?s look at the global cases

2,,100/ MOVE 17,(1,,200)

In this case, the resylt of the EAwcalc tor the BLT is 2,,201 GLOBAL,
Theretore, the initial source and destination addresses are 2,,1
GLUBAL and 2,,200 GLUBAL, respectively, In this case, the source
address references memory location 2,,1 ingtead of the ACs becanse the
effective address is global, In both cases, however, the addresses
are incremented scctionslocal,

EXTENDED ADDRESSIMG rage 10=28
special case instructions

o The initial gource and destination addregses for LT are
constructed by appendinyg the appropriate half of the AC to
the section number and local/global flag from the effective
address, Incrementiny of source and destination addresses is
alvays done sectionelocal independent of the state of the
local/global flag, However, the determination of AC
reference is done via the normal rules by {ncluding the
local/global flag,

10,7,8 XBLT

The XBLT Linstructlion is the one exception to the rule that a section
zery program cannot reference data in nonezero sections, In this one
case, the contents of AC+1 (source pointer) and AC+2 (degtination
pointer) are always treated as 30ebit global addresses, even it the pC
is in section zero, This means that a program running in section zero
can allocate a nonezero section and XoBlLT code or data {nto 1t without
having to jump into a nonezero section to do 1t,

0 'The pource and destination addresses for XHLT are alwvays
interpreted as full 3J0ebit ylohal addresses, even if the PC
is in section zero,

This means that the final addresses left in AC+2 and AC4+3 at the end
of the XBLT may be ihaccessible by other instructions in section zero,
For examples

0,,100/7 MOYEL 1,777717 tWord count
D,0101/7 MOYEL 2,20 ISource address
0,,102/7 MOYE 3,[2,,100] jhestination address

0,,103/ EXTEND §, [XBLT)

In this example, the transter 18 from 0,,20 to 2,,100, and the number
of words transterred is 256Kef, The tinal source and destinatjion
addresses left in ACs 2 and 3 are 1,,17 and 3,,77 respectively,

0o For XHBLT, the final values stored in ACe2 and ACe3 for sourge
and destination addresses are compuyted by adding the initial
word count to the ipitial source and degtination addresses,
This ocomputation 4is the same {n all sections, including
section zero,

EXTENDED ADDRESSING Page 10«29
Speclal case instructions

10,7,9 JRSTKF

It the PC is in a nonezero section, JRSTK traps as an MUUD, This 1is
because JRSTE s usually used with an indirect word or index register
with PC flags in the left halt, It is quite likely that these ¢tlags
would bhe mistaken tor a dlobal section numbver,

o It PC is in a nonegero section, JRBTF traps as an MUUQ,
XJRBTF shauld be used in a nonegero section,

10,710 XMOVEID and XHLLI

inlike other immediate instructions that use only 18 bits ot the
effective address, these two instructions operate on all 30 hits ot
KRy XMOYET returns the full 30ebit effective address in AC, XHLL1T
stores the section number ot the eftective address in the lett half ot
AC, leaving the riaht half unchanaed,

One {rportant implication of these two {nstructions is that they
convert a Jlocal retference to an AC in any nonezero section into the
qlobal teorm, For examplet

The FARecalc of the XMNVE[results in 2,,6 LOCAL, which 1is a local
reference to AC 6, This resylt is then converted to the ylobal AC
address ot 1,,b6 before beiny loaded into AC 1,

This conversjion is not done if the AC reference is Jlocal to section
zero, For examplet

2;'100/ XMOVEl ‘,@(2000900!6]

In this example, the EAwcalc tollows an indirect EFIW into section
tero, The result of the FAscalc 1s therefore 0,,6 LUCAL, which is a
local reference to AC 6, Hecause the effective address is in section
zero, it is not converted to the gylohal torm and 0,,6 {8 stored in AC
1,y

o If the eftective address of an XMOVEI or XHLLI 4s & local
reference to an AC in a nonesero section, the AC address is
converted to a global AC address before being loaded into AC,

KXTENDED ADDRESSING Page 10w30
special case instructions

10,7.41 XCT

With the exception of the modification of the EAecalc rules In a
nonegero section, the XCT instruction operates In the same manner as
on a nonheextended wmachine, The operation of the instruction being
execyted, however, may be affected, This section describes these.
cases anhd glves examples to demonstrate them,

10,7,41,1 Default section for KAscalc

If an instruction is executed by an XCT, the initial defaylt section
tor the FAecalc of that {instruction is the section from which the
instruction vwas fetched, This may be ditterent from PC section if the
XCT and the executed instruction are in ditferent sections, tor
examplet

3,,100/ XCT €(2,,100]
2,,100/ MOVE 1,200

In this exawple, the XCT instruction is in seection 3 and the executed
instyuction is in section 2, The Fascalc tor the MUVE yields a local
address, which is local to the sectlion from which the MUVE was
tetched, Therefore, the result of the EAecalc 15 2,,200 LOCAL, Tnhis
rule allows one to XCT an instruction in another section and have
laoca] references generated hy the executed instruction he local to the
section containing the instruction,

o The initial default section for the EAegalc of an instpructieon

‘executed by XCT 4is that ¢from which the jnstruction wag
fetched,

10,7,11,2 PRelationship with skip and jump instructions
when a skip instruction is xCTed, the skip is always relative to PC
section, i,e,, the section conteining the XCT (first XCT it there is a
chaip ot XCTs), This is true even 1if the sKip instruction s 1in
another section, For exampleg

3,,100/ XCT ®[2,,300)

2,,300/ SKIPA 1,200

In tnis example, an XCT in section 3 executes a skip instruction in

section 2, Because this instruction always skips, the next
instruction is taken trom location 3,,102 ¢pCe+2), hot 2,,302
(instruction+2), However, the GLAecalc of the SKIPA Instruction

results in 2,,200 LOCAL, so the contents of location 200 in section 2
are stored in AC,

EXTENDED ADDRESSING Page 10w3t
dpecial case instructjions

0 If an XCT executes a skip instruction, the skip I8 always
relative to PC section, even {f the skip instruction s in
another section,

The tollowing example demonstrates the etfect of XCTing a Jump
instructiont

3,,100/ XCT ®©12,,100)
2,,100/ JRST 200

In this example, an XCT in section 3 executes a {fump {Instruction |In
section 2, The FRecalc for the JEST results in an address local to
section 2, so the next instruction is taken from 2,,200, not 3,,200,

0o It an XCT dxecutes a Jump instruction that Jjumps, the next
instruction s teteched from the etfective address of the
jump, This {8 true even i{f the XCT and the Jjump are in
different sections and the EAwcalc of the jump results in a
loca) address whose section is different from PC smection,

10,7,11,3 PC storiny instructions

whep ap XCT executes ap Instruction that stgores PC as part of the
operation ot the inpstruction (e,q,, FUSHJ, JSP, etc,), the value
stored is relative to PC section (i{,e,, the XCT) and not the section
ot the executed instruction, Ftor example:

3,,1007 XCT €12,,200]
2,200/ JSP 1,300

In this example, an XCT in section 3 executes a JSP {n section 2, The
next instruction 1s fetched trom location 2,,300 because the FA=calc
ot the JSF 1s local to section 2, However, the PC stored in AC t is
3,,101 (XCT41), not 2,,20% (JsP41),

o Tf an XCT executeg an instruction that stores PC as part of
its execution, the value stored is relative to the XCT and
net the executed instruction,

10,7,11,4 local stack reterences

When an XCT executes a stack instruction that uses a local stack
pointer, the stack pointer 1s local to PC section and not to that
containing the stack instruction, For exampley

EXTENDED ADDRESSING Fage 10w32
spacial case instructions

3,,077/ MOVE 17,(=100,,300]
3,,100/7 XCT @(2,,200]

2,,200/7 PUSH 17,400

In this example, an XCT in sectlon 3 executes a PUSH in section 2,
Since the EARacale for the PUSH results in a local address, the datym
to be pushed is in the same section as the PUSH 4instruction (at
location 2,,400), However, the stack pointer is local to pC section,
not the section containing the PUSH, Therefore, the datum 1s stored
on the stack at location 3,,301,

0o It an XCT executes a stack instruction whose stack pointer is
local, the stack is local to PC section, not the section
cgntaining the stack instruction,

1047.,11,5 Geperalizations for XCT

The examples above cover specitic relationships hetween XCT and the
execyted instruction, There dre really two deneralizatlons (one of
whiden was ylven above) that can be made about XCf, as follows;

i, The Initlal default section for the kPAecalc of an XCTed
instryction s that from which the instruction was tetched,
and not the section trom which the XCT was fetched,

2, Any test of PC section for determininy whether section zero
rules or nonwzero section rules apply is done based onh the
section from which the XCT Instruction was fetched (the first
one {f there {s a chain ot XCTs), That is, PC section
doesnet change because an XCT executes an instruction in
another section,

EXTENDED ADDRESSING Page 10w33
summary of default sectlions for EAecalc

10,8 &Summary of default sections for EAecalc

Atter covering all the special case instructions, it is worthwhile to
sufmarize the rules regardiny the initial detaylt section nhumber for
kAecalc?’s, The initial detault section tor any kAecalc is that from
which the address word was fetched, This is true tor the simple cases
as well as the nore complex cases, The tollowing tanle glves the
inftial detault section for the various kinds of EAecalc

bLhecalc class loitdal detault ssectlion

Instruction PC section

XCTed Instruction Section containing the executed {nstruction
Hyte instruction Section containing the byte pointer

byte pointer

EXTEND instruction FC section
byte pointer

EXTEND instruction section containing the opcode word
opcode word

Local stack PC sectionh
pointer ‘

EXTENDED ADDRESSING aye 10=34
Section zero vs, hon=zero section ruyles

10,9 Section Zero vs, nonszero section rules

As the brevious discussion ot Special case instructions {indicates,
some {nstructions do ditferent things based on a test for section
zero, However, this test disn’t always on PC section, We have
intentionally left oyt examples that demonstrate some of the boundayry
conditions that make extended addressinyg hard to document to avold
contusing the reader betore the simple cases are understood, Thig
section includes examples of thegse boundary conditions, and summariges
the rules tor testing to see if section zero rules apply,

The first example illustrates the test for the possibillity ot a globail
byte pointert

3,,100/ LLB 1,8100,,200!
Cr 2017 40000049400

In this example, the byte instruction is in section 3 and the byte
vointer is in sectifon O, Note that bit 12 {s set {n the byte pointer
whiech, 1t ylobal byte pointers are allowed, would indicate a twoeword
dlobal byte polnter, Is this bhyte pointer Interpreted as a one=word
local or two a word global byte pointer? The rule given in a previous
section says that the test is made based on the section from which the
byte pointer was fetched, Theretore, hit 12 1is ignored, the byte
pointer is interpreted in oneeword 1local tormat, and the hyte {s
tetched trom the word at location 0,,300,

Let?s look at a similar case involving both XCT and EXTENDg

3,,100/ MOVEL 1,5 jSource lenath

301017 MOVE 2,1440740,,500] jSource b,p, (i1st wd)
3901027 MOVE 3,(5,,100) tsource b,p, (2nd wd)
des103/7 MOVEL 4,5 thestination length

301047 MOVE 5,1440740,,300]) jDestination b,p, (1st wd)
3,0105/7 MOVE 6,15,,200]) jbestination b,p, (2nd wd)
3y0106/ XCT 810,,100) tkxecute EXTEND in section 0

0pe100/ EXTEND 1,200

049200/ MOVSLY jkxtended opcode {s MOVSLY
0,201/ 0 $1F111 character is 0

In this example, the XCT 4is in section 3 and the entire EXTEND
instruction is in section zero, Both the spource and destination byte
pofnters have bit 12 set, which means they may be interpreted as
tvoeword global pointers, bBut are they? The Pule ajven {n A pPrevious
section says that the test is made based on PC section, which |is
nohezero, Therefore, the byte pointers are twoeword global and the
string is moved ftrom %,,100 to 5,,200, 1f this seems like an anomaly,
remember that the test 1s based on pC section because the byte
pointers are tetched trom the ACs, HKeterences to ACs addressed by the
AC field of the Instruection are always made in PC section,

KXTENDED ADDRESSING Page 10=3%
section zero vs, honezero section rules

A tinal example combines an XCT with a JSk:
3,,100/7 XCT @10,,200]
0,,200/ JSK 300

in this example, the XCT is in section 3 and the JSKR 45 in section
zero, The FEAecalc of the J8R is local to section zero, so the
destination of the jump s 0,,301, But what is stored in 0,,300? The
rule given {n a previous section says that the test is based on pC
section, Theretore, we store a tull 30ebit PC (3,,101) into location
Oyp300,

0 The test for section Zero rules vs, noneZero asection rules
is done based gn PC section for all cases except byte
instructions, This is true even it the instruction is an XCT
which executes an instruction in angother section (including
section zero),

0 The test for section gero rules vs, nonezero section rules
for a byte instruction 4is done based on the section from
which the byte pointer was fetched,

It §s {mportant to reallze that PC section may be ditterent from that
containing the instruction beiny executed 1f an XCr (or chain of XCTs)
is f{nvolved, PC sectjon 4s always that ¢rom which the original
instruction (the XCT 4f that iInstruction is involved) was fetched,
This 1s a subtle distinction, but 4t §s {important 4in testing for
section zero rules,

EXTENDED ADDRESSING page 10«36
special consideration for ACs

10,10 Speclal consideration for ACs

n the PLP=10, the ACs are both yeneral purpose registers apd also
part of the virtual address space of every proudram, This dual use {s
convenient but also contusinyg when one is attempting to understand the
rules of extended addressing, T™his section descripes some of the
aspects of the relationshbip between extended addressing and the use of
the ACs,

10410,1 AC retferences
An AC can te reterenced in one of four ways as followss

i, As a yeneral purpose register through the AC field of an
instruction,

2, As an index reyister througygh the index reyister fleld of an
fnstruction or indirect word,

3, As a local memory reference to the ftirst 16 (decimal})
tocations ot any section,

4, Ms a ylobal memory reterence to the first 1o (decimal)
locations of section 1,

In this discussion, we are concerned with the last two uses,

The prules for extended addressing say that memory references in
section zero are always local, Theretore, a section zero memory
reference can reterence the ACs only {t it {is to the first 16
(decimal) locationsg in section zero, On the other hand, a memory
reference In a nonhezZero section can reference the ACs in two ditterent
ways, 1¢f the memory reterence is local, the ACs appear ir the virtual
address space of every section as the tirst 16 locations, For
example, both

2,,100/ MOVE 1,2
and
500100/ MOVE 1,2

reterence AC 2 even though the addresses are local to different
sections,

In addition, the ACs way be referenced {in a sectioneindependent way
Vid a reference to dyjoba) address 1,,n, where n {s in the range 0«17,
inclusive, 7This means that an AC address canh be passed between two
routines running 1in & nonegero section, even if the routines are in
different sections, For examples

EXTENDED ADDRESSLING Fage 10w37
special consideration for ACs

5,100/ MOVE 16,[01,,0] 1Get ylobal AC address for AC
%,,101/7 PUSHY 17,e[3,,200) 3 & and call routine
H

! :
3,,200/7 MOVE 1,(16) ttlse global XR to tetch data

In this example, the calling routine in section 5 places the global AC
address for AC 6 Into AC 16 and calls a routine in section 3, Hecause
1496 8 a ylobal AC address, the called routine interprets the ipdex
in ulobal format and the data is tetched from AC 6,

Note that an address of the forn 1,,n, where n is in the ranye 0ef7,
Willl always reference the ACs, whetheyr the address is locel or 4lohal,
1£f the address Is local, the reference is a local reference to the ACs
in section 1, It the address is global, it 1s a global AC reference
to the ACs,

¢ An address of the form 1,,n, where n is in the rande 0Owi7,
inelusive, refers to the ACs whether it is a local or glohal
addresgs, Therefore, such an address can be used to refer to
the ACp even if the gtate ot the local/global bit is not
known,

10,10,2 TInstruction fetches

All instruction fetches are made as logal references, even though the
PC is a full J30ebit address, Theretore, an instruction is fetched
trom the ACs whenever bits 18»35 ot PC are 1In the ranhge 0Oel?,
inclusive, {ndependent of the section number, Consider the following
examplet

1,,100/7 XJRST (3,,2)

This instruction sets the PC to 3,,2, lowever, the next Instruction
fetenh will come trom AC 2 because it is made as a local reference,

This behavior can have some implications for {instructions that also
store intormation before changing PC, Consider the tollowlng examplet

1901007 JSK ®(3,,2]

The JGR stures the current PC fnto wewmory location 30072 and then
cthanges the pPC to 3,,4, The next {nstruction is then fetched trom AC
3 because of the lora]l reference, but the old PC is in memory and wust
be fetched with a global reterence,

¢ Instruction fetches from C(PC) are always made as lopcal
reterences even {f PC was previously set to a global address,
This means that {instruction fetches ¢rom ¢the first 1o
(decimal) locations of any section cause the instruction to

EXTENDED ADDRESSING Page 10wl8
special conslderation for ACs

be fetched from the ACs,

10410,3 8Storing BC

I't an instruction that stores PC as part ot its execution s fetched
trom the ACs, the PC 1s stored as a tull 30ebit address it PC is in a
non=zero section, For examples

3,100/ MOVE 4, [Jd8P 2,200])
3,,101/7 JRST 4

fn this example, the MUVE {nstruction stores a JSP into AC 4, and the
JRST fnstruction computes a local ectfective address that reterences
the ACs, FPC 1s set to 3,,4, but the next instruction is fetched from
AC 4 nhecause {nrstruction tetches are always made as loca) reterences,
Theretore, the next {nstruction to be executed is the Jsk, because bC
section 1is nonezero (it is still 3y, the (JSK must store a full J0ehit
PC into AC 2, The important thina to realize is that ¢C is 3,,4 and
is not 0,,4 (a sectlon zerg AC address) or 1,,1 (a global AC address),
Theretore the JSP stores 3,,5 (remember, 1t stores PC+1) into AC 2 and
jumps to 3,,200,

o Tf an instruction that i{s fetched from AC stores PC as part
of its execution, the PC stored is a full J0ebit address
including PC section, 4f PC section is noneZerg,

10,10,4 Storing EA ftor LUUD, MUUD and paye falls

When an LUUO or MUUN {s executed or an instruction page falls, the
microcode stores some intormation about the exception in a block
addressed LY a word fetched from the UPT or EPT, The information
stored includes the effective address (or reference address in the
case ot paqe tail) for the instruction that caused the exception, If
the resulting etfective address 1is a local reterence to an AC inr a
hohegero section, the microcode converts this address to a globhal AC
reference before storinyg {t in the block, This is the same rule used
tor XMOVE! and XHLL!,

o It the effective address of an LUUD oF MUUO, or an
instruction that causes & page fall results in a local
reterence to the ACs in a nonegero sectinn, the micrecode
converts the local AC reference to a global AC address hefore
storing the result,

EXTENDED ADDRESSING Page 10=39
Gpecial counsideration for ACs

10,10,5 An example

Consider the following example that brings together all of these
ruless

3,,100/ MOVE 6,1001000,,10)
3,,101/7 JRST ¢

In this example, the MUVE stores an LUUQ (opcode 001) into AC 6 anpd
the JRST sets PC to 3,,06, The following 1ist {ndicates the
slupnificant actions that are performed to process the LUUQY

1, The FAwcalc for the LUUU is pertormed and the result is 3,,10
1.0CAlL,

2, Because PC section is nonezero, the LUUQ m®must be processed
through a fourwword block addressed by a location in the UPT,

3, PC+! must be stored as a full 30eblt address, 1ncluding
section number, 'The value stored is 3,,7,

. MHecause the FAecalc of the LUIUD resulted In a local reference
to AC 10, it must be converted to a dylobal AC address hefore
it is stored in the block, The value stored 1s theretore
LPI'E RO

EXTENDED ADDRESSING : Fade 1(w40
pPXCT

10411 EXCT

When the monitor is invoked by an MUy, page tall, etec,, the address
shiace o0f the process that caused the ipvocation s potentially
different from that of the monitor, In order to provide a
communications wechanism petween the monitor and the sowscalled
"previous context®, the BXCT (for Previous context XCT) instruction
was deftined, Although PXCT is normally consjdered as a separate toplic
from extended addressing, there are interactions between the twa that
make {t desirable to talk about them together,

Becayse PXCT 1s legal only in exec mode, there is no need to detine a
new opcode for the {instruction, Rather, the normal XCT opeoode s
used, and a nonezero AC fleld distinqgulshes o PXCT frowm a normal XCT,
The opcode nare PXCT is simply a notational convenience to emphasize
that the executed instruction i1s making previous context reterences,

10,11,1 Previous context

For the purposes ot this discussion, "previous context" 1s defined hy
three processor state variables: Previous Context Section (PC8),
Previous Context User (PCl), and VPrevious AC Block (PAB), FCH is a
12»bit state reygister (5 on the KL10) that gives the value ot bPC
section in the previous context at the time of the event that Iinvoked
the monitor, PCU is a lebit reyister that indicates that the previous
context was user mode (as opposed to exec mode), PAR 15 a 3ebjit
regyister that gylves the AC block number used by the previous context
(there are typlcally multiple AC blocks implemented by a machine, 8 {in
both KL10 and KC10, The suwcalled "current ac block" is addressed by
another Jjeplt state register called Current AC Block, or CAB),
Therefore, the previous context includes both the address space and
ACs that were in use at the time of the event that jinvoked the
monftor,

When a context change occurs as the result of an MU0, paye fail,
interrupt, etc,, the previogus context state varjables are set
according to a set of rules that are detined for each type ot context
change, The specific rules aren®t important for the purpose ot this
discussion and the reader 1is referred to other sources tor more
information, The fmportant point Is that the state varlable are set
as the resylt of the context change,

In addition to beinyg set on a context change, the monitor may also set
the state varlables explicitly when 1t desires to make an asyhchrohous
reference to previous context,

These previous context state registers then direct references to the
previous context as described below, Note that the previous context
need not ajways bhe user mode, Jt {s exec mode in cases where the
monitor makes a request of itself, such a8 the execution of an MUl by
the monitor,

EXTENDED ADDRESSING Page 10=41
pXCT

10,11,2 Use of the previpus cohtext state variables

The state r691sters PCs, PCU, and PAB hold information necessary to
make & previous context mewory or AC (as memory or index redaister)
reference, This section describes the use for each register,

PCH Is a t12ebit stute variable that gives the value of PC sectlion in
the previous context, It 1is used in the PXCT KAwcalc algorithm as
described below to provide a detault section number for a loca)
kA=calc, It 1is also used as the basls tor the test for section zero
in some instructions that behave differently in nonmZero sections as
descoribed below, (For most {instructions, the eftect is as if the
instruction were executed in previous context,)

PCU 18 a twbilt state variable that [ndicates that the previous context
was user mode, P'CU 1g used to gselect the address space for a previous
context memory reference, That {s, if the reterence is to previous
context and PCU 1s set, the reference is made to the user address
space as mapped through the UprT, Conversely, if the reference is to
previous context and BCU s not set, the reference is to the exec
address space as mapped through the kpT,

PAH {8 & Jebit state variable that gives the AC block number for the
previous AC block, It an Index reglster or AC is reterenced in
previous context, PAbL gives the number of the AC block containing the
data,

10,11,3 References to previous context

The pXCT mechanism allows the monitor to execute an instruction such
that certaln reterences of the executed instruction are made to the
previous context, Conceptually, these references are made as it the
PXCTed fnstruction were beinu executed in the previous context,

it 1s important to understand exactly which operations are modifled by
PXCT, The instruction fetch and FAescalc of the PXCT {nstruction and
the tetch ot the executed instructjon are always done in current
context, In addition, all AC references (as the result of hits Yei?
Of the executed instruction) are made to the current context ACs, The
only difference between an Instruction executed under PXCT and onhe
that 1s not is the way certailn memory and index reqister reterences
are wade, In particuylar, the FA=calc ot the executed instruction may
reference indirect words and {index reyisters in previous context,
Algso, memory and AC references made as the result ot the FAecalc may
be to previous context, Fkxactly which reterences are made {in previous
context is determiped by the type of instruction that is beipy
executed and by the bits set in the AC field ot the PXCT instruction,

EXTENDED ADDRESSING Fage 10«42
PXCT

10,31,4 Applicable instructions

Not all instructions may he executed via PXCT, The use of PXCT {s
liwited to Instructions that are useful to the monitor, and no attempt
is made to trap thgse cases that arenet appljcanble, The instructfiaons
that way he executed are as followsg

MOVE class instructions

Haltword class Instructions

pxXen

XMOVEI, XHLLI

BLT (with restrictions), XHifT
Arithmetic (integer and floating point) {nstructions
poolean instructions

DMOVE class instructions

CAl and CAM class instructions

5KIF, A0S, and SuUS class instructions
l.ogical test instructions

PUSH and POF (with restrictlions)

Hyte Cclass {nstructions

MOVSELJ (with restrictions)

MAP

All other Jnstructlions are inabblicable, and the results of executing
ali - jhapplicable jinstruction are undetined, Note that this list
explicitly excludes all instructions that 9Juwmp,

10,11,5 Interpretation of the AC tield bits

The tour bits of the AC tield ot the PXCT instruction determine which
mewmory references of the executed instruction are made to previous
context, For most FXCTed {nstructions, the AC tield bits are
loyically drouped into two pairs (Y9Y=10 and 11e12) to control how
kA=calc and data reterences are performed, Within each pair, the
tirst bit (the dgeneric "E control bit%) causes index register and
address wyrd references to Come from pPrevious context during an
KAecala, The second bit (the ueperic "p control hit") causes data
fetches as the result of instruction execution to come from previous
context, When considered as a whole, bits Y9=12 of the AC tleld are
Nathed ®EY*, *Diwn, ®E2n, and *D2* hut the ygeneric names (wE# and wDw)
may be used when it 1is clear which bits control the reference in
question,

Hot all executed Instructions use both pairs of bits, In tact, the
Jdreat majority ot avpyicable {nstructions use onily bits 9 and 103 biv
4 for the FAecalc of the PXCTed instruction and pit 10 for the data
reference made as tnhe result of that kKAecalc, A nhotable example of
the use ot bits 31 and 12 to conhtrol previous context references s
the byte instructions, In this case, bit 11 controls the kEAecalc ot
the byte pointer and bit 12 controls the data reference to the word
containing the bhyte, Some Instructions use other combinatjons of
bits, e,q9,, BLT, EXTEND (MUVSLJ and XBLT), and stack instructions,

EXTENDED ADDRESSING Fage 10=43
pXCT

The previgus context memory references controlled by each AC field bit
may be summarized by the followinag table;

Bit Feferences made in previous context 1f bit is 1

Y (k}) Etfective address calculation of instruction (index
reqisters, indirect words),

10 (bY) Memory operands specitied by KA, whether fetch or store (e,4,
PUSH source, POP opr BLT destination); obyte pointer,

11 (BE2) FEffective address calculation of byte pointer) source in
EXTEND (e,u,, XBLT or MOVSLJ source); effective address
calculation of source byte polinter fn EXTEND (MOVSLJ),

12 (b2) byte datay source in BLT; destipation in EXTEND (e,qg,, XBLT
or MOVSLJ destination)s effective address calculation ot
destination byte pointer {n EXTEND (MOVSLJ),

There are obviously a limfted number of valid combinations ot AC field
bits for those instructions that may be PXCTed, The tollowingy tatle
yives the legal combinatjons, The =AC* column gives the AC field
value for the equivalent tits, e,4,, the AC column woyld contain a 4
tor a 01 9 0 pit striny,

E1 D1 E2 D2
Irstyructions AC 9 10 11 12 References

General 4 ¢ 1 0 0 bata
14 {+ 1+ 0 0 k., data

puUSH, pOp 4 0 t ¢ 0 Data
14 + t o 0 £, data
Immediate 19 v = 0 0 . (no data reterence)
BLT 5 0 t o 1 Source data, destination data
15 1t 1+ 0 1 Fe source data, destination data
XBLT 2 0 ¢ v 0 Source data
1 ¢ O 0 1 bestination data
I 0 0o 1 Source data, desrination data
Byte 1t 0 2 o 1 Byte data
3 ¢ 9 1 i Pointer k, byte data
T 60 1t 1 Pointer, pointer ¥, byte data
17 1 1 1 | Ey pointer, pointer £, byte data

EXTENDED ADDRESSING bPade 10=44
PXCT

MOVSL.] 1 0o o o 1 hestination vointer E,
destination data
2 0 9 v 0 Source pointer E, source data
3 ¢ 0o 1t 1 source polnter E, destination
pointey [source data,

destination data

Note that BLT, PUSH, p0OPb, and MOVSL) have restrictions on what memory
references can hbe PXCTed, For BLT, all reterences, optionally
inclyding the EAecalc, must be done in previous context, The results
of PXCTing a BLT where source but not destination or destination but
not source is in previous context are undefined, The LDPAC and STPAC
instructions should be used to transfer the previous ACs to and from
current context, In all other cases, XBLT must e used to transfer
data between current and previous context,

For PUSH and POb, the stack must always be in current context, This
means that previous context reterences tor PUSH apnd POP are limited to
the KAecalc and data reference made to the location addressed by the
LAecalc, PUSI and POP therefore reduce to the "generaln case,

For MUVSLJ, 1f source or destination data {s in previous context, the
soupee or destination byte pointer FAwcalec must be done in previous
context also, If the monjitor wishes to force a currept context
kArcale for a previous context data reterence, it can compute the
effective address of the byte word and use a onee or twoeword global
byte pointer, The microcode will still do the EAecalc in previous
context, hut no previous context defaylts will be applled,

10,1140 Modiftications to the EAwcalc algorithm

The appropriate "E" and "D* control bits from the AC tield ot the PXCT
instruction are used to modify an EAecalc done on the executed
instruction or a subsequent EAmcalc done by the {instruction (e,q,,
byte pointer), This modification involves pre=s and posteprocessing
the normal etfective address calculation alaorithms to conditionally
include PCS at two points,

It the appropriate "kE* control bit is set, the initial detault section
tor the FAecalc is set to PCS, Since the ®En control bit also
controls previous context indirect word and index register references,
this means that the entire KAmcalc is done in previous context, It
the *¢* control bit is not set, the initial detault section for the
bA=calc §{s that from which the addiress wold was fetched, and the
KAscalc is done in current context,

when the normal FAecalce is completed, the resulting value is
posteprocessed, 1f the result ot the EAwcalc was a local address AND
the ®E® control bit was not set AND the "D" control bit was set, the
sectjon number of the FEAecalc s replaced by PCS, Note that the
local/glotal flau remains local [t this {s done,

EXTENDED ADDRESSING Page 10=45%
pxeT

The application of PCS at the end pf the FAecalc may seem to make no
senge at first d4lance, so let*s take a closer look at it, Hemember
that the purpose ot PXCT is to allow the monitpr to reference data in
the previous context as Lif the uyser had supplied it, It the user
supplies a local address in, for example, a JS8YS argument, the monjtor
should make the data reference local to the section {n which the user
was runningy, By applying PCS at the end ot the EAecalc as indicated
above, the microcode auytomatically makes the reference to the correct

section,

T™is aldorithm tay be described by the following fiow chartg

EXTENDED ADDRESSING Page 10=46
BPXCT

(A LTI I T Y LYY RS
I set fnitia) !
| detault section !
teveseoneavweonceanen ¢
|
¥
toenensovosenaseond
| "E" control INo
l blt set? leoeadas
{moencsvepenevananne |
lyes |
v v
{wecaccrvsonasvavccnny |
I Initial default ! I
I section t= PCS ! |
t{oeooennsenwceonvene ¢ |
| €onovvocenccnay
v
jocosvseveosvorsosceen
| Pertorm normal |
! FAecalc '
{eovocsavepevesnenen
|
¥
{esmvcosswsrenncesny
I "D" control !
! bit set? !
| AND !
! "E® control INo
| it not set? Imeswdas
| AND | I
lLA=calc resulted | |
| in a] |
| Local address? | v
teescosnenvonneennw +wemd inal EA
IYes |
Y A
¢esavessanseossvacs |
I FAl6117) 1= PCS | |
foavevvocsgmrvrscsaeonen |
| 1
v A
+

tovadesesessvesre

PxCT EAmcalc algarithm

EXTENDED ADDRESSIMNG Page t1U=47
PXCT

Assume that PCS is 1 and cgonhsider the tpllowing exampley
?"100/ pXCT 4,[MUV"; !.100’

MUVE Js one of the "general® class ot opcodes, so blts 9 and 10 ot the
PXCT AC fleld control the previous context references, Inh this
example, bit 9 (The "E1" bit) 18 otf and bit 10 (the "Di* bit) {is on,
Therefore, the FAecalc 1is done {n current centext with a result ot
29100 LUCAL, Because the "Di1" bit is on, the "EI1" bit Is off, and
the result of the EAecalc is local, the PXCY EAecalc alyorithm applies
PCS to bits 6=17 of the EAecalc, The final effective address |is
theretore 1,,100 LOCAL and the data reterence is made to that location
in previous context,

Let®s logk at angther example, Assume that PCS is 2 and that the.
tollovwiny locations exist ip previous context:

2992007 200003,,300
3,,300/ 400000, ,400

In current context, the following instruction is executed:
1501007 PXCT 14, (MOVE 1,€200]

In this example, both the wKi» and *Di» hits are on in the PXCT AC
tield, Theretore, the EAw=calc 15 done in previous context and the
initial default section for the EAlscalc is set to 2 (pCS), Locatian
200200 1in previous context contains an indirect EFIW that the EAmscalc
tollows into section 3, The tinal address word tetched from previous
context location 3,,300 {is in 1IFIW format, so the result of the
kAecalc 1s local to the section from which the address word was
tetched, The result of the KAwcalc is 3,,400 LOCAL, Hecause the "“Di"
bit {5 also set, the MOVE fetches data from previous context location
3,0400,

A tinal example demonstrates the result of an EAwcalc that references
an AC, Assume that PCH s 3,

2,,100/7 PXCT 4, [MOVE 1,2])

As with the first example, the FAwcalc is done in current context and
PCS is appllied to bits o=17 of the result to produce an ettective
address of 3,,2 LOCAL, Just as in the ponePXCT case, this is a |oca)
reference to AC 2, Uecause the "DiI" phit is set, the reterence is wade
to previous context AC 2 {n the AC Lloch specitled by FAL,

EXTENDED ADDRESSING Page 10=48
PXCT

o The EAwscalc o9f a PXCTed {§nstrugtion may be Prees or
pasteprocessed as directed by the AC field control bits of
the PXCT instruction, Except for this additional processing,
the EAwcalc algorithms and results are exagtly the same as
for the nonePXCT case, This ineludes the wuses for the
local/global flag,

10,11,7 Section zerg vs, nonezero section rules

)f the instructions that may be PXCTed, there are three types (stack,
byte, and MOVSL)) that operate difterently in nonezero sections and
section zero, When one of these instructions is PXCTed, the test ftor
zerosnon=Zero rules may not be the same as the test when there (s no
PXCT involved, The interaction ot PXCT with each of the 1instruction
types is covered separately below,

10,11,7,1 Stack instructions

When no PXCT is {nvolved, the test for the possibility of a global
stack poulnter s done wvased on PC sectlon, When a PFUSH or rop
instpuction is PXCTed, the previous context reterences are limited to
the EAecale ahd the datum addressed by the kAecalc, and the stack
reterence {s always made in current context, Hecause the stack is in
current context, the interpretation of the stack pointer type is made
based on the current context PC section and is not dependent on PCS,
For example, assume that PCS is 0,

2,,100/7 MOVE 1,03,,1000])
2,,1017 PXCT 4,(RPUSH 1,200]

In this example, PC section is nonezero and the stack pointer in AC 1
has a 9loubal tormat, The test to determine whether the stack pointer
is ajlowed to be ylobal 1s still made bhased on PC section (even thouah
there is a PBXCT {nvolved), and not on PCS, Therefore, the stack
pointer is indeed global and previous context location 0,,200 {is
prushed onto the stack in current context location 3,,1001,

o When a stack instruction (PU8H, POP) is PXCTed, the test for
the possibility of a global stack pointer is done based on RC
section,

o When a stack instruction is PXCTed, local stack pointers are
always local to PC section,

EXTENDED ADDRESSING Page 10w49
PXCT

10,18,7,2 Hyte instructions

Normally, the byte instruction test for the possibility of uloba) byte
pointers 1s done based on the section from which the byte pointer was
tetched, When a byte instruction is eXCTed, this rule continues to
apply, with extensions to 4include the possibility that the byte
pointer may be tetched from previous context, This is best explained
with several examples,

Assume that PCS is 0 and that the following locations exist {in
previQus contexts

0,,1007 400000,,200
G,,2007 12

In current context, the tollowing instruction is executed:
2,,300/ PXCT 3,(LDB 1,400)

2,,400/ 000640,,0
2,,401/7 400020,,100

Foy PXCT ot byte instructions, bits 9 (K1) and 10 (D1) direct the
kAscalc ¢t the byte inpstruction apnd the tetch of the hyte vointer,
Bits 11 (K2) and 12 (D2) direct the FAwcalc of the byte pointer and
the fetch of the word containing the byte, 1In this example, the nDin
bit is off, so the byte pointer 1s fetched from cuyrrent context
location 2,,400, Bit 12 18 on in the byte pointer, and a test must be
made to see 1f it may be global, The byte pointer is global because
it was tetched from current context section 2, and the fact that PCS
is zero {s not considered,

The "E2" Lit and the "D2" bit of the PXCT AC field are both on, so the
byte pointer EAecalc 1is dgne ip previous context, The secopnd word of
the twoeword global byte pointer has the indirect bit set, and the
next address word s fetched from previous context jocation 0,,100,
The tinal result ot the EAecalc is 0,,200 LOCAL in previous context
and bits 30e35 of that word are extracted and placed in current
context AC 1,

Let?s look at a similar example in which the byte pointer is also
tetched from previous context, 0Opnce again assume that PCS is 0 and
the previous context contains the tollowing locationss

24,400/ 000640,,100
C,,4017 4000600,,200

G100/ 10
Gy ,200/ 20

In current context, the following instruction is executed:

2403007 PXCT 7, LDB 1,400])

EXTENDED ADDRESSING Page 10«50
PXCT

In this case, the "Di* bit of the PXCT AC field is set, so the byte
pointer is fetched from previous context location 0,,400, As in the
last example, bit 12 {s set in the byte pointer, bLut becayse the byte
pointer was fetched from previous context section 0, bit 12 18 ianored
and the byte pointer is interpreted in oneeword local torwmat, The
LAscale 1is done in previous context and results in an effective
address of 0,,100 LOCAL, The byte {s then fetched from bits 310eidb of
previous context location 100,

© When a bLyte (instruction is PXCTed, the test for the
pessibility ot a global byte pointer is done based gn the
section from which the byte pointer was fetched, This {8
true independent of whether the byte pointer is fetched fraom
current or previous context,

This interpretation, while correct architecturally, causes some
problens for TOPS=20 as It Is implemented today because TOPS=20 coples
byte pointers frowm the previous context 1into current context,
ldeally, when a JSYS does a byte instruction on behalf ot the user,
the byte pointer would be i{interpreted exactly as {f the user had
execuyted the byte instruction, Thus, 1€ the byte pointer were fetched
trom section ¢, it woyld be interpreted as a local pointer; it it
were fetched from any other section, it would be interpreted as
possibly beinyg globa)l, This can be accomp)lished by usinyg PXCT 7, as
indicated {n the example above,

Hecause TOKPS*20 coples the hyte pointer from the previous context into
current context, one that Jlooks like a glohal hyte pointer will bhe
interpreted as a global byte pointer even 1f it is tetched fron
previous context section zero, This 1s because the monitor typically
runs in o nonezero section and the PXCTed byte instruction fetches the
hyte pointer from current context, llence the test for the possibility
ot a global byte pointer is made based on current context section
rather than previous context section,

10,11,7,3 FEXTENDed MNVELJI instruction

If no PXCT is involved, the MOVSLJ test for the possibility of a
9lobal byte pointer 1s made hased on PC section, LIf a PXCT ls
involved, the tegt is more complex because it is based on PpPC section
1f the PXCT control bit tor the byte pointer is off and on PCS it the
PXCT control bt Is on, lor exawple, assume that pCH Is zero and that
previoys context contalns the followling locationss

0,,200/ ASCT1IABCDE

C,, 3007 ASCILIFGHTJ!

EXTENDED ADDRESSING tage 10«51
PXCT

In current context, the following instruction sequence is executed;

3,,100/7 MOVEL 1,5 jSource lenyth

3,0.1017 DMOVE 2,[1440740,,200 1Soyrce BP (word 1)
400000,,300) $Source Hp (word 2)

3,102/ MOVEL 4,5 thestinpation length

3,41037 DMOVE 5,(440740,,400 jDestination Bk (word 1)
490000,,500) pDestination BP (word 2)

3,,1047 BXCT 2, [EXTEND 1,600] JPXCT the MUVSLJ

3,,600/ MOVSLJ jExtended opcode 18 MUVSLJ

3,,6017 0 tjkill character {8 0

In this example, the "E2" hLit is set in the PXCTt AC fleld, which
indicates that the spurce EAescalc and striny reference are to be made
to previous context, Conversely, the *D2% bit is off, which indicates
that the destination EAwcalc and string references are to be made Lo
current context,

Hecause the gsource=inaprevious control bit s set 1n the PXCT AC
tleld, the test for the possibility of a global source byte pointer 1s
made based on PCS, 1In this case, PCS is zero, so bit 12 is {gnored in
the byte pointer and it is interpreted in one~word local format, The
byte polinter FHAecalc results in 4,,200 LOCAL in previous context,

n the other hand, the destinationeinsprevious control bit is pot set,
s0 the test for the possibility ot a global destination byte pointer
is made Lased on ’'C sectlion, Since PC section 1s non=zero and bit 12
is set, the byte pointer is interpreted in twomword alobal tormat, and
the pyte pointer KAwcalc results in 3,,500 LOCAL in current context,

The result is to transfer the string "ABCUE® frow previous context
locationr ¢,,200 to current context location 3,,500,

0o When a MUVSLJ {nstruction {3 PXCTed, the test tor the
Possibility of a global byte painter is done based on PC
section 1t the appropriate PXCT control bit is off, 1¢ the
bit {s on, the test is done based on PCS,

CHAPTER 11

SYSTEM TIMERS

11,1 Summary

The KC10 processor implements several kinds of system tiwmers using a
combination ot hardware and microcode assistance, There are three
Kinds ot timers implemented in the baslc CpPU, as follows:

1, Time base clock
2, Interval timer
3, uUser runtime meter

In addition, the console contains a battery backedeyp timeesofeyear
clock that can be ysed tp maintain the correct time through a power
fallure,

Unlike the KL1Q, the «clocks on this machine will never update
locations In memory unless requested to do so by the appropriate
instruction in the monitor,

11,2 Time clocks

The time base and the user runtime meter are returned as a double
precision integer with units of 1 microsecond, Hoth have the
following formats

&IS&I:&II&I#I&Sﬂ!lllllﬁtl!l:ISlSIR.SISCIIIII:SS===83338=t
] High order part ot count in microsSeconds :
10} Low order part of count ipn microseconds i
z===t=8=3=888=8:=Il==8!3:228:33::3888=S:S!::S:S::::!::t:&
(O 35

SYSTEM TIMERS tade 11w2
Tiwme ¢locks

11,2, Time Base

The time base is implewented as a 72e«bit (two word) register in
internal EBOX storage, and a 16 bit hardware counpter which counts {n 1
wicrosecond units, The hardware counter reyuests a microcode
interrupt approximately every millisecond and the microcode reads and
zerog the counter and updates the 72«hit register with the accumylated
gount The 72«bit register is alsp updated from the hardware counter
when a RDTIME {nstruction is done,

The time bLase is controlled by the WRTMB apd KDTMB instructions and
may be read with the RLDTIME instruction,

The counter will overflow every 7,47 E7 ycars,

11,2,2 User Funtime Meter

The user runtime meter 15 Implemented in a manner similar to that
described for the time vase above, In tact, the same 16=bit hardware
counter 1s used for both the user runtime weter and for the time hase,
As with the ¢time pase, the User runtime meter 1s a 72=-bit register
kept In internal EbUX storaye,

If the user runtime meter is enabled, the count is maintained in the
EBUX reqgisters, When a context switch occurs as the result of a WRCTX
instruction that changes the NBP, the 72ebit register is undated from
the hardware counter, and the result is written into UPT locatlions 504
and 505 of the previous user context, The new valye of the user
runtime meter is then loaded trom up7T locations 504 and 50% of the new
user context, This update process can be inhibited via a bit in the
WHCTX argument ,

It it is tuyrned on, the user runtime meter counts during the time that
the processor 1is in user mode, It can also be enabled to count during
exec Pl time and exec nonepT time, That {s, it can be made to count
when the processor is in exec mode processing an interrupt, or when
the processor is in exec mode doing something other than processing an
interrupt (e.q9,, page tail or miun processing),

The user runtime meter 1is controlled by the WRACT and ROUACT
instructions and can be read with the RDUKTM instruction,

11,3 Interval Timer

The fnterval tjmer is used tg supply a source of interrupts with
programmable perfods, It is implemented as a 12 bit hardware counter
(ditterent from the time base) that counts {n 10 microsecond units,
It can therefore count and cause interrupts of any Interval from 10us
to 40,95ms,

SYSTEM TIMERS ate 113
Interval Timer

when it is enabled, the interval timer counts up until the requested
period 1s reached, sets interval done, and requests an interrupt on
the I chapne) assjuyped to it, The count is thepn automatically reset
to Zero, 1t no interval pericd has been set, the interval timer can
overflow, This event sets interval done, and reyuests an Interrupt,
As before, the count {s automatically reset to zero,

The interval timer is controlled by the WHTMB, RDTMH, WRINT, and RDINT
instructions,

CHAPTER 12

TRAP, UUO AND INTERRURT HANDLING

12,1 Introduction

This chapter discusses the kCI10 fmplementation ot trap, Muun, LU
interrupt, apd 1/0 page faj)lure handling,

Trap handliiny has bLeen chanaed considerably from the Kigo {p thae
traps on the KC10 are processed via a trap function word rather than
the execution of an instruction, The trap function word indicates how
the trap is to bhe processed and provides the address of a
tunctionespecitic block to be used as part of the processing,

MUty handling {s similar to the KL10, but the microcode provides much
mofe informatjon to the monitor as part of the MUUU processiny, The
major change s in the fact that there are separate newePC words for
ditterent categories of MiiUUS,

LU processing is done in the same manner as on the KLIU and s
included in this specification for completeness,

Interrupt processing {s done via interrupt vectors in the I0 page that
specity the address of XPCWeslike blocks throuagh which the interrupt is
to be processed,

170 page tailure processing is done through a block in the 1/0 page,
The KC10 provides sianificantly more information to the monitor thap
the kL10 did,

TRAR, UUQ AND INTERRUPT HANDLING Fage 12=2
Trap kunction word

12,2 Trap Funhction Word

EPT/ZURT locations 421423 contain a trap tunction word that determines

the action of the processor when lt detects an arithmetic overflow,

stack overflow, or trap 3 condition,

The tormat ot each word iAs as followsy
*-.-’-0-.--‘-u--~.--.ut.n-o-.p....-c&n..--.-u.-.-.-o-nqg’

FENIRSBVD) Function specific argument)

R I L P Y P P L R R N R SR AR L R R LR R R AL Y d L X

The ftormat of this word 1s as tollowsy

O») Function code, This tleld is interpreted as tollowss
00 Do nothing on trap condition (ignore)
01 Execute MU0 (take new PC from function

specific argument)

10 Transfer control to execsuser depending on the
mode in which the trap occurred, This
function uses a LlUUU=like block as described
in the function specific argument below,

1 heserved,
2e5 Available to software
w35 Functlion specific arqgument, This fleld {is used {n a
mapnner specitic tp the function performed as followss
0 lanored for this function,
1 New PC for the MuUO,

This function stores only the program flaags,
CAB, PAH, PCS and the PC in UPT locations
124=425, The opcode, AC, and effective
address of the instruction are NUT stored in
UPT locations 420-427, The new program flags,
CAB, and FAD are loaded from UpT location 430
as in a normal MyQ,

2 virtual address in the current context
(exec/user) of a 4 word LitU=like bloCk,

This funhction stores only the proaqram flads
and the PC in words 0=1 of the block, The
opcode, AC, and effective address ot ¢the
instruction are NOT stored In words U and 2 of
the block, The new PC is then taken from the

TRAYP, Ut AND INTERRUPT HANDRLING Page 12#3
Trap Function Word

tourth word ot the block,
3 Reserved,
The format of the LUO=)1ike block used in tunction 2 is as follows:

G 5 6 12 13 35
;v=a333333===SS::3!’S‘33:::'=============================:
0 } Flaas) 000 }
1 i 000} e 1
‘a----.u.‘.-.------------n--.----.--o----.--n---.----.-g;
2 H 000 H
3 ! Rsvd | New pC {
z====:==3===3===3=3'88'==‘8‘:88="=333383338333833338333;
0 5 o 35

Notes

1, 'The trap t* and ¢trap 2 ¢tlags are
never stored {n the MUY (functian
code 1) or LY'UO=liKke (tynction code
2) blocks when a trap {s processed,
1t 1is the responsibitity ot the
program to determine which trap
condition occurred by supplying
difterent new PCs for each possible
condition,

2, An instruction that causes a trap
anhd also Jumps (e,u,, AUJA) stores
the PC of the destination of the
Jump, not PC41 of the Jump
instruction,

TRAP, UUO AND INTERRUPT HANDLING Page 12«4
Virtyal Machine Simulation Mode

12,3 vyirtual Machine Simujation Mode

The virtual machine simulation mode (VM mode) implemented by the KC10
allows an operating system to run a4 proyram in user mode In such a way
that the prodram cannot distinguish its environment from a standealone
ex¢c mode machine, The primary use for this mode 18 to allovw a
monitor to be tested and/or debugged on a timesharing machine in user
mode by concealiny the tact that {t s indeed runniny in user mode,

This mopde 18 epabled for a user process with bit 9 of word E ot WRCTX,

In order to do this, the EBOX mlcrocode must generate an MUUQ trap tor
any instruction that differs between exec and uger mode, It is then
up to the (real) monitor to simylate the instruction properly to
conceal the fact that the program (s really running in user mode ,

It VM mode is enabled tor a user process, the EHOX microcode wi}}
gehepate an HIUD trap through the VM mode new PC word (lacation 431)
in the UPT, There are four classes of instructions that trap through
the ¥YM mode new PC woprd as tollows:

1y Any instruction that would normally trap as an MUUD through
vne of the other M0 new PC palrs, This includes all
unassiuned opcodes, all legal Miuns, all undetined EXTEND
opcodes, JSYS, I/0 Instructions, MAF, JHST 3, HAL1, XJEN,
XECW, JKST 19, JRST 11, JEN, JRST 13, JRST lb, and JRST 17..
This c¢lass of instructions 1s included because the new PC
word for MUUus is taken from difterent UPT locations based on
whether the MU0 was executed In user or exec mode,

2, XCT with nonezero AC, This class Is included because XCT
with a nonezero AC 4n exec mode specities a PXCT,

3, All LUUDs, This class is {ncluded because LUUUS use blocks
in either the EPT or UPT based on whether the LUUO was
executed in user or exec mode,

4, PUSHJ, JSR, and JSP in section 0, This class 15 included
because the specitied instructions store the flays (with the
useremode bit) it they are executed {n section 0,

TRAR, UNO AND INTERpPUpT HANDLING ' Fage 12«5
MU handling

12,4 MUUD handling

MULIO handling on the KC10 is significantly difterent from that of any
previous processor, Instead ot the previous format of UPT Joeations
4242427, the followling formwat is used to store the program flags, CAb,
HAbB, PCS, BC, Upcode, AC, and ettective address of the MUUU:

0 12 13 18 21 24 35
»’..‘.-..‘...ﬁ.‘."-...-..-..--.‘---..-.-...-..'-.-.--._-’*
424 ! Flays i Q00 JCAB}PAL |} pPCH !

0 5 06 3

4251 i 0000 | PC |

Q 17 18 26 27 31 35
-’ﬂ--.&.-.--.....‘....-'QQ--...-ﬂ-..--.-.....----.--0'--9’
4203 ! 0000] Obende 1AC 000 !

9 5 o 3%
4271 ¢ 0uvo |} k }

TRAP‘ Hug AND IMTERRUPT HANDLING pBQﬁ 12wb
MUUO handling

The new current and previouys AC blocks, and the new proyram tlags are
loaded from the word at UPT location 430, 'The new PC is taken trom
one of the words ot the dispatch vector beginning at UPT location 431,
based on the MUUD opcode and whether the MUUD was executed in user or
executive mode, The dispatch vector consists of palrs ot words, one
for user and one ¢for exec, (location 431 is the exception to this
rule) and contalins b separate MUUD dispatches plus words reseyved tor
tuture expansion, The dispatches are as follows;y

Uttset Use

431 Instructions trapped in user mode as the result of virtual
machine sirulation mode epabled, See the dlscussion
above,

432+433 Ukcode § and all upassliyned obcodes jess thap 700,

434-435 Dnassiuped obcodes In the rapye T00e777 plus any

ingtruction that {s executed in user mode without user T/0
enabled that requlres uyser 1/0, This 1inciudes anl
internal and external I/0 dnstructions, MAP, JRSTHF
executed in a nonezero section, JRST 3, HALT, XJEN, XpPOwW,
JEST 10, JRST 11, JEN executed in a nonezero section or in
user mode, JRST 13, JRST 1o, and JHST 17,,

436=437 Undefined EXTEND opcodes
4400441 JSYS (opcode 104) -
i f ,/
A42~443 All other MUUD gpecodes b~>haj 5
The tormat of these words 1s as followsy
0 12 18 21 24 38
Qq;-uugcuuupnpunwooﬁo-q..p..n.--a-.tu.q..n..qqn.----p-pgQ
4301 { New tlays ! Kavd JCABIPAB] Rsvd }

0 5 6 35
4311 i Rsvd | User VM mode instruction new pC ¢
0 5 6 <700 3%
’9-'...--ﬂ.-ﬁ.Q.‘-’Q.--.---.-.-.-.--'.-.-----------c--ngQ
4321 ! Rsvd |} Exec undetined obcode new pC !
z..--‘-‘Q._-..C---Q.-O--ﬁ'.nﬂ.----.-.--.'..---ﬂ.-..-.'.ﬁx
4331 | ksvd | liseyr undetined opcode new pC :

z

ﬂO%L" 7

TRAP, UU0O AND INTERRUPT HANDLING Page 127
MUY handling

0 56 35
fp-------n--..qu-*.—n..-.-.-----g---n-q,.-------.-----g!Q

434 ! Rsvd !} Exec undetined 1/0 ¢pcode new PC |

;-----.--u---.--aq--.--n..--..--...u.-p-..--.-.-.--.qoqg&

4351 | Rsvd | liser undefined 1/0 gpcode pew pC !

Q.-.---.up---..-q---.-.a--9--‘nuouoqno#p..--.--.--.-ppqg’

0 5 6 35

QQconuoocnmocnu—.-.----.u--.n-.-.-c.qqq.-..-.u..----qppgQ

436 ! Rsvd |} Exec undefined EXTEND gpcode new ¢C !

:.----:.--a-o---q-.-o---.Q.-—.------qup-u.---.oq--.--gg‘

4373 ! Hsvd |} tiger undefined EXTEND gbeode new PC }

QQuﬂ-wooonui--q.---.'-.-q----~--~~..-t.-o.u.--n----q.-qg*

0 5 6 35

440, ! Rsvd | Exec JSYS new PC ‘

441 ! Hevd liser J3YS new B(!

0..--'--..-..-.-O.Q..-ﬂ-.--ﬁ.-.....-..---.---.--Q..-.."’

2 5 ¢ 35

4421 i Ksvd |} bxec MULIU new PC !

443 ! Rsvd |} lser Muul) new pPC l

’----'q—-.--g.--pgo.---».-.-.--q-----p.--.--o-----p---qgf

TRAP, UUO AND INTERRUPT IIANDLING bage 124
LU0 hanpdling

12,5 Luy0 handling

lg the progranm is running in section 0, store the opcode, AC, and the
ettective address {n bits 0«8, Y9e12, and 1He35 respectjvely ot
location 403 clear bits 13«17, Then execute the instruction
contained in location 41, An LUNU executed in user mode uyses virtuyal
locations 40 and 41 in the user proyram, An LUUD executed in
executive mode uses locations 40 and 41 in executive virtual address
sbace, This actlion ls ldentical to the KL10 implementation,

If the program {8 runhning in a nonzero section, use bits 6=3% of UPT
location 420 it the proygram is running in user mode, or kptT location
420 {f the proyram is running in exec mode, as the address ot a bloCk
of tour words, In the first three Jlocatlons of the bLlock, store the
pProgram flaus, opcode, AC, effective address, apd PC of the LUUQ,
Then teke the next instruction from the location specified by bits
w35 of the fourth word ef the block, In user mode, this action {is
identical to the KLi0 implementation, In executive mode, this action
is different frow what 1s currently documented, but jdentical to what
the KL1C actually iwmplements,

The format ot the block is as follows:

Q 12 13 17 18 20 27 31 45
;===================:333=='=====3=====3:==t=3==:=8==:===;
0 ! Flaas ! 000 | fipcode {AC ! 000 !
1 i 000 H pPC '
&p.---.-..---;------.-.o-.puo-.nuuo.---—--.--u--p------Q‘
2 ! 000 {) |
‘g.p-n-Qu----n--n.nouuoqotnyuoucno--qt.uc-.ob.u.u.ugo..g‘
4 { HKsvdg | New PC }

| 2233532535228 I E S SRS 2RSS ETERSESSISERITIIRS2ISS)
0 56 35

TRAR, HUHO AND INTERRUPT HANDLING Page 12»9
Trap enhable

12,6 Trap enavle

WREBR Dits 7 and 86 affect how the processor handles traps, LUUOs,
MUlOg, and paye talls, 1f the monitor enables full processing ot
these conditions (by setting WREBR argument hnhits 7 and 8), the
migrocode will process these conditions as described above, It the
monitor disables tull processing of these conditions (the default
Rowersup state ot the wachine), the microcode will pProcess them
differently as described helows

i, Traps, The microcode will treat trap 1, 2, and 3 conditions
as iIf the trap tunction word had specified “"ignore trap",

2, LUNOs, LUUOs executed In section zero (or in the low 25uh
with payging oftf) will be treated exactly as they are now,
i,e,, they wi{ll store the 1LUUD in location 40 and execute the
instruction {in location 41, Note that LINK stores a HALT
instruction {n location 41 when it Joads programs,

Lilills executed in nonezZero sections will halt the machine,
3, Munos, MunDs will halt the wmachinpe,

1, Page talls, Paye falls that wust be processed by the monitor
will halt the npachipe, Pagye tfalls that cap be resplved
entirely by the EBOX wicrocode will continue to be processed
nermally,

This special handling will cause the machine to halt when a condition
tor which the program is unprepared occurs instead of doing something
uneypected, As a result, conditions tor which the monitor s
unprepared to handle will be detected early as the result of the
condition instead of as a byeprodyct gt the condition,

TRAV, UUO AND INTERRUPT HANDLING Page 12#10
Interrupt vectors

12,7 fnterrupt vectors

All fnterrupts happen through interrupt vectors located in the [I/0
pade, A vector is o J0ebit Exec Virtual Address pointing to a 4eword
block that is similiar to a XPCW control block, Return from an
interrupt should he made by an XJEN instruction that addresses the
same block, 7The saving and restoring ot the ‘"previous" context s
described {n a preceding sectioh, The new context will be set up from
the xPCw control block, The action of an interrupt cycle will be as
it abh actual XPCW was executed with its FA taken trom the appropriate
location in the 1/0 paye,

An interrupt vector has the following tormaty

Q 5 b 35
} Ksvd | virtual Address of XPCW block :
#,—.---.-------.-----.-------¢-¢-----o--'o-.----.-.-.-q-'4

Wheres

0e5 keserved

Le35 Vector address ot control block,

12,8 1700 page faflure

An 170 pade faill can occur if the EBUX microcode is upable tg tetch a
word necessary to process an interrupt reguest, This condition can
occur it a hardware error or address break page fault occurs while
trying to read & port interrupt vector werd (I/0 paye locations
210247y, @ vport interrupt Pl status word (1/0 page locations
220#227), or a software interrypt vector word (l1/0 page locations
231+237), It can also occur it a request to access one of the four
words pointed to by ap interrupt vector page tails, In this case, the
EBUX microcode geherates an (/0 paage taflure,

This page tail will be similar to a normal page fail trap, but the
pave tail intormation 1is contained in 1I/0 paye locatlions 240=250
instead of in the UPT, 'The EBOX stores a page fail word, reference
address, Pl status at the time of the failure, and the additional data
words (identical in tormat to those stored by a normal page fall) in
locations 240+244, The old PFC double word {s stored {n locatjons
24%e2406 and the new program flaas, CAp, PAB, and PPC will then be taken
trom /U0 pade locations 247«250 and the processor will resume
execution at the Pl level on which the talluyre occuyrred,

TRAP, UUO AND INTERRUPT HANDLING Page 12«11
170 page fallure

The tormat and contents of words 240241 and 243e244 are ldentical in
format to the words stored in UPT locations 450=4%1 and 453=4%4 tor a
normal page taill, The format of these words is described ip the
chapter on paginyg,

The P1 status stored {n word 242 is identical in tormat ¢to that
returned by a ROPL instruction,

The tormat of the 1/0 page fall locations in the 1/0 page 1is as
tollows

0 12 13 17 18 21 24 35
;::::=====::::===t:=::::::::zxns:zzez:::zza:u::::::szzs:2
240 ! 1/0 page fall word o
241 ! co00 ! kReterence address |
242 } RDP1 at T/0 paye fajl) !
"...’..-‘.Q---.ﬂ---..-.--‘.I-.--...--,..OQ.Q..-Q---...Q‘
243 ! Additional data word ¢ !

‘...-‘-....“-.---..--.-.---.------..-.--.-..-..ﬂ.---..g‘
244 ! Additignal data word 2 !
‘..-.....-.---.-.O.-—----.--.---.--.-.-‘DO----.--.----.-‘
245 } Flays {000 JCABIPAB FCS |

246 ! 0000 !¢ 1700 page fai) o}d PC !

247 { Mew tlags ! Ksvd ICABIPAB Rsvd !
2b0 | Rsvd | I/0 page fai)l new PC !
{z2sz2rE3ce32 2RSS C RS ERS SN2 SRS RESESSSRAEE)
0 5 6 12 13 17 18 2% 35

12,9 lIpterrupt request protocol

When a port wants service trom the CPU, it makes an interrupt request
on the P] level assluned to It by the =10 program, This request is
made using a protocol that §s described here,

When a port wants interrupt service trom the CPU, {1t does the
tollowings

1, Tt writes the current contents of the port Status Reglster
into word 4 of the port’s kKeuister Access Block {n the 1o
pauge

2, It pertorms a readeinteriock request on the Port Pl status
¥ord in the 10 pade (words 220=227) corresponding to the b1
level on whilch the interrupt request 1s beiny made, The Port
b1 Status Words are indexed by Pl level, s0 a port making an
interrupt request on PJ level 1 would reade«interlock word 221
ot the I page, a port making an interrupt reqguest on pI

TRAV, 0UD AND INTERRURPT HANDLING Page 12«12
Interrupt reguest protocol

When the
dqoes the
1,

2,

when the

level 2 would readeinterlock word 222, etc,

It sets the bit corresponding to the number ot the port
makinyg the reyuest apd then writcereleases the word back into
the 10U paye,

The Fort FI1 status wWord has the following formatg

‘=¢ISGS!S8':822!!82338=8====8==38==I==388=38=8=3=83888!23

IPIPIPIPIPIPIP LYY Must phe H
10111243141510617) gero !
3::l:::!:::::t:lS!:t:::l!Bt::':!lzllll‘ﬁ:!l::l!!llgitﬂﬂﬁl
012 3456178 35

vhere bit 0 corresponds to port 0, bit 1 corresponds to port
1, etc, lt 1s 1mportant that the port set no other bits,
including bits 8ed5 which must rewain zero,

The port then asserts the hardwdare Interrupt reqyuest line tor
the PI level on which the interrupt reguest is beinag made,
This line remains asserted until the program running {n the
=10 clears the condition causing the interrupt,

KC10 microcode decides to service the interrupt reguest, it
tollowings

It reads from the 10 page the Port ¢l Status Word
corresponding to the P! level which Is belny serviced,

Hy looking at the bits set ip the Fort Pl Status Word, the
microcode can determine which ports are requesting interrupt
service at this PI level, The microcode selects the port to
be serviced and starts the {interrupt seqguence using the
interrupt vector word corresponding to the port number from
10 page locations 210=217, The Port Interrupt Vector words
are indexed by port number, so an interrupt sequence tor port
0 would use word 210, an interrupt sequence tor port 1| would
use word 214, etc,

The interrupt service routine in the =10 processes the
interrupt request, when dope, the interrupt service routipe
requests that the port clear the interrupt conditlion by
issuing one or more redglster write commands through the
Keylster Access Block tor the port being serviced,

»10 requests that the port clear the Interrupt condition, the

notrt does the followingg

e

It pertorms a readeinteriock request on the Port PI Status
Word In the 10 page corresponding to the P1 level on which
the oriqginal interrupt reyuest was made,

THRAPR, U AND INTERRUPT HANDLING Page 12«13
Interrupt reguest protocol

2, It deasserts the hardware interrupt request line for the P1
level on which the griainal interrupt was made,

3, It clears the bit in the Port Pl Status Word corresponding to
the number of the port and then writeereleases the word back
into the 10 paye,

Note that the kort Pl Status Words are written only by the ports apd
never by the KC10 microcode, The microcode uses the words only to
determine which ports are requesting service at a particular bl level,
The microcode does not clear the bit ot the port when it grants the
interrupt reguest,

CHAPTER 13

MTSCELLANY

T™his chapter caontains miscellaneous information about the K{10 that
doesnft tit anywhere else,

13,1 Halt status codes

When the FROX microcode halts the FHBUOX for some reason, {t stores a
halt status code that describes the reason for the halt, This code
¢an be Jetrieved by the console and printed on tne CTY whenh a halt
occurs, hote that such a code is not stored on an EBUX halt that
wasntt caused by the EBOX microcode, The halt status codes are as
follovws:

) The processor executed a HALT (JRST 4,) instruction,

1 A non=zerg sectiogn LUUD was executed and trap enable was
oft in the WREBR argument word,

Y| An MUUQD was executed and trap enable was off in the WIABR
argqument word,

3 A paye fail that must bhe resolved by the monitor occurred
and trap enable was ott In the WREBR arqument word,

4 An {lleyal destination address was generated from EBUX
dispatch 67, Early decode bits 4eb are provably incorrect
for the instruction being execyted,

5 A MUVSXxX memory read that previously caused a page tault
did not do 8o when the reterence was retried,

6 A MOVSXX memory write page talled,

7 A paye fault generated as the result ot a physical memory

reference didn*’t result in a monitor paqge fail trap, All
pave falls that canh result trom a physical reterence
should requlre monitor intervention, so the page tault or
the pade fail word was {ljijedgail,

MIGCELLANY Page {3e?
Halt status codes

10 An interruypt was reyuested on P! level 0,

11 The EBUX microcode was trapped to an unimplemented (777x)
microtrap vector,

12 The determination of the reason for an IBOX trap tp EBUX
with EBUX dispatch 25 resulted in an illegal trap reason
(no reason blts were indlcated In the dispatchy,

13 The EBOX microcode page fail handler attempted to decode
the reason for the page fail frowm the page fail word
supplied to it and couldn?t find a reason for the tault,
The page fail word was probably i11eq9a}],

14 An Instruction that is currently unimplemented in the EBUX
microcode was executed,

13,2 Physical Fhaecale

Certain classes of instructions (PMUVE, PMOVE, apd the queue
instructions) pertorm a physical FAecalc on the word addressed by ¥ to
broduce o 25 LAt physicael address, 1his physical address is then used
to reterence data in physical memory,

The physical KAwecalc evaluates a bhysical EAscalc word, A physical
KA=calc vword s very similar to a virtual EFIW word and looks as
follovws?

1 D T L I T T T T T T PP P P e P
|

10308 XK ¥ !
;:isﬁ;:::sz=z:aa:=i===:=:ss=a==:====:a==332z5:3=:=z=-:=:;
012 5 6 3%

Hits 2«5 of the physical EAecalc word are the index register address
and bLits 6=35 are cthe physical memopry address Y, The physical
effective address 1s y alone it Xp 15 zero, It Xp 15 nonezero, the
contents of the Index redyister are added to Y to produce a 2% bit
physical effective address, A physical etfective address in the range
0w17, inclusive, addresses physical memory locations N=«17, not the
ACs,

Bits 0 and 1 ot the kAwcalc word must he zero and the execution of the
instruction will yenerate a paye tall 1f they are not,

CHAPTER 14

SPECLAL SYSTEM PAGES (ERT ¢ UFT / 10P)

The followiny EPT/UPT lavouts are proposed for the KC10, 1In addition,
there 18 a new pade called the /0 page (l1UP) that {s used by the KCio
ports and the console for communication with the CPU,

pon processor reset, the base address of the EPT and UPT will be
reset to page (anhd Lthe 1/0 page will be reset to page 1,

NQTE

A)l]l areas that differ from the KL10 are
mayrked with an asterisk (#),

SPECIAL SYSTEM PAGES (EPT / UPT / 10p)

TOPS=20 paginy executive process table contlguration
338283===:82.:lISS828:882338!3==8=8=I8838==8====8833288ll
{ !
} :
5 Reserved \
\ \
| i
{ |
x!-,ﬂ.‘.&.-u.---..n.b-.-....-...-.n---.ub------.--.p--_.gg‘
| Address of exec LUUU block !
' Executive arithmetic gverflow trap fupctlion word H
;g-.-.-.-.p.n-nnnnny-a.ob-qpy.---p.-.-.----.---.-o---.-g1
] kxecutive stack overtlow trap tunction word |
zQ-Q-.....-.--..--.--.--...-..-.----O--..---b'.--..--..Q:
! Executive trap 3 trap fupction word

771

These

Reserved

.-.-----.-ﬁ-.--.‘-..-....--.-.--.-‘..’.‘.--.-.-—..-.--q

Executive super section 0 polnter

Executive super section 7 pointer

Reserved

Executive section 0 polnter (KL compatible paging)

Fxecutive section 37 pointer (KL, compatible paging)

!
\
!
{
‘
\
|
!
:
|
{
!
]

Keserved

= = S W e e W Y P e e e Y e e - P = = P LR S T

\
x
\
\
|
|
\
\
|
z
:

==3=:888==3=======3==l3=====:======8=======8==3383:3383.

Page

14w

locatiotis are described ih wore detail on the followinu paqe,

SPECIAL SYSTEM PAGES (EPT / UPT / I0P) Page 14}

420

421»423

520w%27

540=577

Address of exec LUDO block, Exec LUIOs executed with PC
section nonezero are processed through the foureword LU
block whose 30ebit virtual address 1is contained in this
word, For more information on the forwat of the foureword
block, see the chapter on Trap, UL0, and Interrupt Handling,

kxec trap function words for trap 1, 2, and 3, These
tunction words are interpreted to process exec trap
(arithmetic overtlow), trap 2 (pushdown Jist overflow), and
trap 3 exceptions, For more information on the format of a
trap function word, see the chapter on Trap, UUD, and
Interrupt Handling,

txec super section pointeyrs, These words contaln the super
section pointers for exec super sections 0=7, For more
intormation on the format ot a super section pointer, see
the chapter on Faying,

kxec section pointers, These words contain the section
pointers tor exec sections O0O=37 when the processor is
runping with KL compatible paudiny epabled, bor more
information on the format of a sectlion pointer, see the
chapter on pauing,

SPECIAL SYSTEM PAGES (EPT 7 UPT 7 10p) Pagye 14w4

TOPSw20 paging user process table conftiguration

=B===3=======8333388===3===SSSSSSBB%SS£I=83‘838323‘38'3;

Reserved

W e T S

417

420 Address ¢t user LUUU block {

121 User arfthmetic overflow trap function word Lo

422 User stack gvertlow trap fupction word i

g-ﬂh---u---.h‘u-Q---.‘--.....---‘.-..‘-.-.-‘O‘..QC..--H‘

423 U'ser trap 3 trap function word | »

424 MUUO flaas, CAB, PAB, and PCS 1o

425 MUtQ ol1d pC | #

--.--ﬂﬂﬂﬂ'--."-.'...C.‘.'....-.-..'..‘-O.‘.‘--.--..-—-;

426 MUUY opkcode and AC | »

p-..u.--..’-..--t.----.--g----.--.---.-9—'.&Oﬂ.--—-ﬂgyg‘

427 MULID eftective address o

430 Mg new flags and CAB [

431 User VM mode instruction new PC] »

H
$
{
|
H
!
}
|
)
|
1
1
E
'
|
|
}
!
'
|

432 ! Fxec undefined opcode npew bC }o»
|
H
[
!
{
H
{
!
‘
!
|
|
!
}
4
{
}
|
!
\
'

User undefined gpcode pew PC [

433

Exec undefined 1/0 oPcode new FC]

QQOQ-.--.O-.---.’--u..----.-.-..-q--n-.-.--.--.----.-.Qz

434

llser undefined 1/0 gvcode new pC 1 =

Q-..'.Q--...-ODIDOQ----.Ounﬂvqn..------...’QQQ-.—.-.O-%l

435

kxec undefiped EXTEND opcode new PC T

436

User undefiped EXTEND opcode pew PC | &

paooccou--n-gg..-nuq..Qp.p.qon-pnyngnnypp-.-------..p-g;

437

kExec JSYS new ¥C | »

.p..-n—..no.-..q-..a.-.--p-ﬁ-n--ootn.uq’pp-.o.o.v-!-&QQ&

440

User JSYS new PC } ow

-.-.----.--.‘-.--‘..-.-.-.-....---.-.-.----.-----.‘--..g

141

Exec MUl) new PC]

.-----."ﬂ.-..---.D.'.--......-.’-.-....-...---"-‘.--.‘

442

443 tser MUUDO pew PC { =

444
Reserved

N S -

450

SPECIAL SYSTEM PAGES (EPT / UPT ¢ 10P) Page 14#=5

‘PPQ...----.-UCQUC.{---.n.---.-.QQDQOQOQ--Q..--na.-.t.bgqz

451 ! Page fail code {
452 H Page fai] VMA } o«

a6y | Page faf] PMA | »

454 ! Page fal) additiona) data woerd | | %
455 } Paye fal) additigna] data word 2 [

‘FQ--’-'..Q.-.‘.“".."’,.-‘......‘-.-Q-Q.QO-....-.ﬂi’.‘

456 Fage fal)] o)d ¢C | »
457 double word }
..-.h...--.-..—ﬁ.--.O..Q.-‘.-O----..--O.--.-Q-------D.!‘1
460 Page fall new PC }o#
401 double word !
-.-....--..C--.....-..---.-..----.----....-'.‘...--.--Q‘
462 |
Reserved \
503 }
Q‘..'...I"--......Q---.--.-.‘..'.-......-.‘.CIODﬁ.----Rl
504 "'ser runptime meter %
508 ({ microsecond timer) !
500
Reserved
517 ,
520 User super section 0 pointer M

LA A I A X I L Y L L LI I Y Y L LYy s
530
Reserved
537
LA A L XS S X Ll L XL L L X T Y L Y Y Y Y Y P T T Y T

540 User section 0 pointer (KL compatible paging)

K77 User section 37 pointer (KL compatible paaing)

P---..-.-.-ﬂ-.---.--.--.--...--.-‘.-..-...-.-ﬂ-Q--.---,ﬂ

h0oo

Kegserved

|
H
H
H
{
|
H
\
$
!
|
|
{
¢
\
|
}
|
\
527 } User super section 7 vointer

|
{
\
|
{
{
\
\
{
|
{
}
\
\
!
771 [}
{

B B B S L B e B e P P O G B P Bes e e rm B e -

P r S RTINS R SR I SIS T NS S R ES s SSEEIR S ET2 s

These loucatlons are described in more detai) on the following page,

SPECIAL SYSTEM PAGES (ERT ¢/ UPT / 10P) Paye 14wt

420

421%423

424-443

451 =461

%04a50%

520527

540+577

Address of user LUUD block, tliser LUUDS executed with PRC
section nonezero are processed through the tour word LUHD
block whose 30ebjt virtual address 1is contalned {n this
word, For more information on the format ot the four word
block, see the chapter on Trap, Ull), and Interrupt Handling,

iser trap fynction words for trap 1, 2, and 3, These
tynction words are interpreted to process user trap |
(arithmetic overtlow), trap 2 (pushdown list overtlow), and
trap 3 exceptions, For more iptormation on the format ot a
trap tunction word, see the chapter on Trap, UUU, and
Interrupt liandling,

Muun processing locatlons, These locations are used to
process user and exec Mitps, For the format of each word,
see the chapter on Trap, Uil0, and Interrupt Handling,

Fage fall processing locations, These locations are used to
process user and exec page fails, lor the format of cach
word, see the chapter on Pauinag,

lser runtime meter, These locations contafin the current
value ot the uyser runtime meter counter tor this process,
The user runtime wmeter L5 a one microsecond counter
walntained by th:e hardware and wicrocode, for wore
intormation on the format ot these words, see the chapter on

- System Timers,

liser super section pointers, These words contain the super
section pointers tfor user super sections Ow?7, For more
information on the format of a super section pointer, see
the chapter on Payiny,

lilser sectian pointers, These words contain the section
pointers for user sections 0e37 when the processor is
running with KL compatible paqging enabled, For more
intopmation on the format of a section pointer, see the
chapter on Paqging,

SPECIAL SYSTEM PAGES (EPT / UPT / LOP) Paye 14e7

1/t1 Page

833383333'53BSISSB:S%S:S:II:S882:1883333=3883'88833====;
0

Port reglster acoess blooks
(8 words per port)

77

100
Reserved

S P e B = e Y e -

200

20} APR {nterrupt vector !
!.‘...'...--.---....C.-._-.‘--.-Q-.....-.0.0-.-.‘-Q—‘-Qﬂz
202 Interval timer {nterrupt vector !

.‘---h-.'.-.----.Q-.-.-----..'----.-‘-.-.O...-Q0-0-..-’z
203
Reserved
207
-..----'---C.-.'.CQQO’...-.--‘...--b"-...-...Q--.-.-.Q
210
Port interrupt vectors
(Y word per port)

//O—”"/”k”””.—“,”.—‘-.a/,“."—

217

.’--'-’--.-"-Q--..‘--.--......'-.—.Q---..'.-.-.'....-’
Port interrupt P1 status words
P1 levels (w7

220

(Microcode use oanly)

LA d Al LA L L LR L T A L L L Y Y Y P Y Y Y T Y Yy

Port write rejease word (microcode use only)

kJ

Sottware interrupt vectors (Pl levels te?)

B e G e e B P e B e P S G e o o -

240 T/0 page tal) word |
241§ 1/0 pae fall reference address |
a2 4 TR At 170 page farn T
243§ 170 hace faii additional datae wora 1T
e T b ave fatl anattionar mara wora 2T
245 1170 pade fali era pe T
246 double word !
240 4T e tat1 mew pe T

W B B B BT B B B B B G e W G G B B P G G B o B P P e we B

double word }

SPECIAL SYSTEM PAGES (EPT / UPT / 10P) Page 14m=4

‘E’.Q-.-..-—.-----..ﬂ.-‘--..O..--.-q.-.Q-QOOOODUOU-IOQQQQl
251 H :
\ Reserved \
257 ' |
260 { H
\ Port seltetest words \
\ (Fort use only) \
207 ! !
270 ! i
\ Heserved \
1 :
400 H !
{ l
\ Cynsole communjicatians \
\ reajon \
H |
777 ! }
R TI IR IR R TSP PR TR TEY P 20T Ty s P Ty e e ey |

These locations are described in more detail on the folluwing page,

SPECIAL SYSTEM PAGES (EPRPT ¢ UPT ¢ L0OP) Page 14«9

0w77

201

202

210#217

220#227

kort register access blocks, These locations are logically
divided 1into 8 blocks of 8 word each, with one block for
each port, The blocks are indexed by port number with port
0 wusing block 0 (words 0Oe7), port 1 using block { (words
10«17), etc,

The register access block (or KRAB) 1s used as part ot the
communications protoCel hetween a program running in the =10
and the ports, When a proqram running in the =10 wants to
issue o command to a port, it first stores the command in
ohe ot the words of the RAD for the port and then dJdoes a
RNGB instruction, Dependingy on the command, the port may
return information in another word in the RAU,

The registey access block detinition may differ tor each
adapter (although there are common detinitions for existing
adapters), For the exact usade of each word in the RAB, see
the spec for the speclfic adapter in question,

AFR Interrupt vector, 7This location contains the interrupt
vector word tor Interrupts requested by the AFR as the
result ot an enabled APP flag bit setting, The flag bits
are ajven {n the description tor the WRAPR and RDAPP
instructions, VFor wore f{nformation on the tormat of a
interrupt vector word, see the chapter on Trap, '1UQ, and
Interrupt Handling,

Interval timer interrupt vector, This location contains the
interrupt vector word for interrupts requested by the
interval timer when the current count eqguals the Interval
period or when it overflows, For more intormation on the
format of a interrupt vector word, see the chapter on Trap,
uvuo, and Interrupt Handling,

Port interrupt vectors, These locations contain the
interrupt vector words for each port, The locations are
indexed by port number such that port 0 uses word 210, port
{1 uses word 211, etec, For more information on the tormat ot
a interrupt vector word, see the chapter on Trap, UU0, and
Interrupt Handling,

bort interrupt Pl status words, Thege locations are used as
part ot the interrupt reguest protocol hetween the ports and
the KC10 microcode, 'The locations are indexed by] Jevel
such that pl level 0 (not currently used) uses word 220, pI
level ! uses wourd 221, etc,

These locatjions are written only by the ports and redd by
the KCto miecrocode, They should never be written ny the
program running in the 10 or by the microcode, For a
description of the use of these words in the interrupt
request protocol, see the chapter on Traps, !0, and
Interrupt liandlinag,

SPECTAL SYSTEM PAGES (EPT / UPT / 10P) Page 14e10

230

231237

2402250

2060-267

400=777

bFort writeerelease word, This location is used by a port to
pertorm a9 wWriteerelease to free yp the MBOX primary
interlock, [t is used only when a port cannot do a normal
writesrelease to the queue header word after obtaining the
primary finterlock with a readeinteriock request, This
location may be used by any port and the data stored is
undegined,

Sottware {nterrupt vectors, These locations contain the
interrupt vector words for sottware interrupts requested as
the result of the prodram running in the «10 issuing a WRrP1
with hit 24 set, The Jlocations are indexed by PI level
humber, with a sottware request on Pl level { using woprd
231, o Software request on Pl level 2 usinyg word 232, etc,
For more information on the format of a interrupt vector
word, see the chapter on Trap, UUO, and Interrupt Handling,

t/0 page fail processing locations, These locatlons are
used to process I/00 pagye falls, Ftor the tormat ot each
word, see the chapter or Trap, N, and Interrupt Handiing,

bort selfastest lgcatlons, These lgcations are used duripy
port seltetesting to insure that the port can read and write
memory, The locations are indexed by port number such that
pert U uses location 200, port 1 uses location 201, etc,

Console communications reyion, These locations are reserved
for the console and are used by the copsole to luwplewent the
console protocols, For more intormation on the use of these
locations, refer tg the copsole spec,

AC references , , , . .
Jlobal 4 4 4 4 ¢ o o o
local , , ,

Address break
algyorithms

-
-
-
.
-

r 0 2 s

Contditions , o o 4 o o
discussion , , , o .
loading o 4 4 o 4 o
TEAUING 4 4 4 o 4 o o
Address word , , o , . .
APHID] * L] L] [] L] [] . []
ML]NK 2 & * 9 8 ¥ [I]
”LT * P 8 * 0 2 9 % e
AC reterences , , , .,
source anpd destinatjion

Hyte instructions .
Hyte pointer decode | |
Byte polnter bAecalce
byte instructions
EXTEND {nstructions |,
Byte pointer type
byte instructions

EXTEND {nStructions .
CAH

loading , , , ¢ .

Feading o, , , ' e

Cache enable
loading
readiny

Cache sweep
invalidate , , , |
unload

CLRPT , o o 0 . vt

CST base register
loading o, , , ,
reading s 9 ¢ 9

CST fopmar , , , ,

CST wask reygister
loading , . , ,
reading ® e 0 e ¢ @
HBE 5 4 9 o 0 0 9 o o

C8T ypdate
toprcing o, 4 , 4 4 4 W

CsT updates , , , , . ,

L N
- »
-»

s o

-
-
»
-

Doorve)) , ,
DUMETE 4 43 4 & o ¢ 9 o &

-
»
-
-
[]
-

- & e

. @ W™ W B W9

1]
L

" % & @ & e »

»> 9 @

* € ® ® ® e »

[4
*

® #B W W B B 9

® ® @ W ®» * »

s ¢ o o @
addresses

L]
.

L]
.

L]
[

INDEX

10«30
10=30
10234

B=24
2919‘
w22
2«18
2wid
10e4
202

Bw23

be?

10m206
1t0e27
10w26
10=17
10=1?

10mit
10=19

1017
10wy

2»18
2014, 2=29
2223
2»26

2= it
2032 ‘ "jL”
se1s Conig
2mA2

2»i4
dmiQ

2«44
2=130
CES B

2=13
BebY

=2 to 1=3
el

Page Indexmw!l

EAecale 4 4 4 4 o 0 o » p
algorithm , ,
KEFIW with ulohal 1udex
IFIR with global index
IFIW with local 1ndex
no indexing o, , ,
section 0 , , ,
summary
byte 1ustruction
byte pointers , ,
detault section ,
detault sections ,
EXTEND instructions
local or global resyl
local/ulobal tlag
myjtiesection , ,
fesults , , , , ,
section zero , , ,
kBR
loadivae ., , , ., , ,
reading 4 , . , , , " e e e
Fftfective address calculation
K":’woooncoooocgoo
LPT
Tupse20 ,
EXTEND 1nstructions .
byte pointer EAecalc
byte pointer type
extended opcode EAeca
EXTEND gpcode map , ,
Extended addressing
EAegalec , , ,
historical summary
reference materlals
terms , , .
address word ’ e
"*INQQOQ []
global address '
global index , ,
global stack pointe
0
illegal zndirect word
local address , , 4 .
local index , .
Jogal stack polnter * 0

»

» o ‘s ® & @
* ® & ® e ® @ ® ® 9 @
® ® S P W B S W®e R S WS
® & & 5 ® S " 8 B O & B S G B " e S
E L JEE IR BRI B IR I I S S,

» s o @

»
- W ® o

c

* e B @ W
» % & ® @ »
® % & ® O »

L]

. @

s » » » ®» ®» » @

[
.
.
»
.
t

» B e S e P S @ ® e

.« ® b ® ® S " 4 B W e e S
. W B ® 8 8 W P e B e D S

» B ® ® 5 » & W S S S S S % W e "W

. W B

- & W B B S @ B B B B WS W

ohewWourd djobal byte pointer
ohemsword loecal byte pointer
twoeword global byte pointer
virtual address , , , . o

kExtended format indirect word ’
Extended ovpcode kAecale , , o

Flaug/PC double words e s o 2 »
FLINK

L I I D I D T Y DR Y IR 2)

- B . .

“‘.O.....-Q"......

..O““"...“_‘Q"

10e8

10wl

10=10
10e9

10ey

10wl

10=10
10=10
10=17
10wly
10wty
1033
10wl9
{0m)}
1013
10eth
o=y
1OmiY

2713
2=26
{0e8
10=%

1492
10=19
10!y
10=19
10m219
124

108
10e3
{Dw2
10w4
10m4
{0=8
10e1
10=5
10w7
10eY
10wg
1004
10wq
10e7
1Hmby
10wt
10w}
1024
10=%
1021

Yel
YA

Paye lnhdexe?

Globa) AC address
Global eddress , ,
Gl‘)bal 1"dex e o 9
Global stack pointer
Global stack pointers

2 ® s

Halt status codes

{70 page
diagram
loading
reading

170 page , ,

t/71) page failure

170 page relative move

170 page relative moven

170 reset, , , , , , ,

IBUX tlush o . , , , ,

- ® »

- ® »

> B @&

. S ® & 9
. ® & -
e ® ‘s

.

'F]“ L 2N TR N] * e ;
11legal Lndirect word
Incrementing A,
INSOHL LI R I I
saryt o, , LI
tnstruction tetches
instruction format in
Interrupt vectors , ,
Interval tinmer
controlling , , ,
loading P1 assignment
reading BJ] assiynment
readiny status , ,
TOPMOY 4 4 4,
1OpMyM LN B 2 I A

.
d

-

® *twm o & & @ e

P

JRA .,
EAeralc
JRST .
JRSTK
JEA *
EAwcalce
‘pr * 9 2
storing p
JOK 4 4
storing pC

* o s s & *» = @
. * % % e w8 e @
* ® W W e s e e e e
® o ®» ® 5 ° ® B e @
. 5 W B P B e s e @
® o % 28 & 8 " e @

LDEAC , 4 ¢ o & o o
Local AC references
hocal address | |
L:OC&I 1'\‘(’ex ' 2 e e
Loca)l stack pointer
Local stack pointers
Local/aglobal tlay
Lo LI N I L I Y)

L » L] L L L]

. ® W @ ® »

® & W S B B @ B D B

- ® » ® ® & B

- ® @ »

- % B B B W S # e

e

® flms o » » » »

. B W W W A W e ® . ® e % W @

® & % ®» 5 8 W™ @

- & ® @ »

» @ ® ® ® B & & B

- 9 e ® ® e

P

-

. @& W e e & 9 W ® @ . % @ 4 8 e

. = 5 8 ® 9 ° e

* ® ® 9 W P 6 @ @ * B ® & &

=
* De 9 » » = »

. ® @ & @ & B ® B @ ® % 9 @& 9w

* @ E I * ® » -

.- % @ B W W W B 9 » ®» B W »

e |
38 & ®» ®« 9 e

- " W W e ® e W s B - % @ ®» & =

» &« B W & =® B w

- W ® B B W S O @ . & ® ® »

® W % ® 2 @ W »

. ®» ® 5 9 =»

- 5 W B W @ O ® P B

. ® @ W W ® W B

10e13
10w4
10m%
107
10m23

13=1

14e?

2027

2m28

4ty tO 4e7
12=10

4eb

4w

2wv)

2013, 217, 2«21,

4o, Heb, Hed,
AL 1

LY)

1o=14

bw8

w9

10m37

10mb

12=10

2947
2m4b
2#37
2w38
4eb
4w

1025
10w2h
Twb

10w29
1hom2Y
10e2%
1021
10m22
10=21
10m22

4=8

10=13

10m4

10=4

10m7

1()m23

10=11}
10220, 12«8

Page Indexel

2*23, 2=31, 45,
bell to ell, Two

MAP 4 4 ¢ o 0 o o § .

[N
Map pointers , e e e 0 0 »
Microcode version number , ,
Multiesection EAmcale .
MIIBD 4 0 0 0 0 o 0 9o o ¢ ¢ o

Nohwgzero section rules , ,

Uneesword global byte pointer
Unesword 1gcal byte pointer
UPClODLE assignment wap , , ,

pAH *® 0 9 & & 2 0
loaddng , , 4
reading o, . o

Page address words

Haye fall word , ,

Page refill , , ,

Pader cnable
loading , ., , .
reading ., , o

Paging information

Pagying ppinters

PC flays

¥C store

PC trace

Pe truace

rcs .,
loadiny
reading

pcu * ¢ ° ® 9

Physfcal eaecalc
detinition , ,

Physical memory

Pl system
control
status

PMOVE

RMUVEM |

Pointers

pup" L [] L] . []

previous context
applicable inst
references , , ,
state registers

- W ® @ @ e
. & & ¢ s o
. ® & ® e @
- ®» @ ® S e
- @ * 9 9 -

e =
[

e a
ES -

. @ e % e
- @ » 8 & W
. * B 4 ¢ 2 @

[
L]
*
L]
.

4

.- B ® B O P S O B & B &
% W © W W S O S B e O *
* & & ' 6 3 * & 8 0 &
» B ® ® B B D & & S S »
» % B B W © B B S S S S W e =

. @ @ B
e » 9 @
¢ o o ® e
¢ ® » o w @
se ® 8 ® ® e =
. % ® & P & ®

L
L]
[1
]
L]
L}
.
r

uct s

v .
¢ o
L I
¢ o
Y
[2]
[B]
ctio
e o &
| 2 D N
use » % & ¢ * 9 & ¢ o
Hrevious context execute ,
Process context variahles
Process use register
loading o, 4 4, o 4 4 o
reading 4 4 4 4 4 o
USe 4 4 o o o o s o o
Processor serlal number

pUsHYy ® o o & 8 s s e »

. ® & @ & B » S © 8 " © 9

» o s] L]
.- ® ® ® &

* % & & & & B 5 9 & S 6 ®» "

- & W B @

- @

» ® ® A @

- ® S B @ & ® & P B S B H B »

. @ 8 B® S 9 B 0 B B B B B

E J L] . @« 3

- % e e @

-

. B B ® B B W B B " P " B e W

» @ ® B W ® ® & ° B @ O W

. @ = S B

- 8 @ = @

» ® ® % » »

* B © P B B »H G S P B 12 B W . W 5 ® & 9

- 4 ® W B B W B S H S B 9

. B B S B

Twd
8wl
202
1o=1%
12=5

10=34

100
1=
1mi

10240 to 10«41
2=18

2“14' 2‘!29

Bel

Hwl2

HeY

2m213

2=26

Bm?2

LY]

Ymli

10w3y

Sm2

held

10=40 to 10«41
2=18

2mld, 2=29
10=40 to 10w4
4md to 4eb
13m2

4m4 to 4e5

in8

2010 to 212
4=4

L)

Bw4

Twl 0

tel to 1md, 4= Lo 4a9
10=42

1041}

10=40

10md 1

ded to 4w}
Gmi

2e43
2= 35
Bwl}
2m)
T2

Page

Index=4

PUBHM 4 s o s &

L I
PXCT . 0 0o ¢ 0 9 L B
AC field bits " PR I)
LAecale algorithm
flow chart , , . . o+ &
local/qglobal flag
byte {nstructions , ,
MOVSLY 4 3 & o o o o
stack instructions , ,
Wueue formats , ., ., . , ,
Uueue headers t s o 8 o
Wueve insertion , , , , ,
uewe interlocks , , , , ,
Queue remogval , , . L, 4 .
RDACT LI I R I Y T A)
“DAFR 0 % 9 s 85 0
RDCSB 4 s 4 ¢ s o o » ¢
HDCSTM L] * . . L] L] L] . L] .
"UCTK . » 8 ° ¢ 92 » e 9 ¢
RDEBR L L D 2 D R B)
HD]NT 2 9 2 & & 8 o o & []
ND"‘UP LI I B 2 I I T Y
kDRI ¢ 2 0 " &t 2 92 e 9 @
RDPUR LI B 2 I D B)
RDSPB LI B I A 2 B Y I I)
MOTIME W e s e e
L B B B B e I |
RDTHRAX L N N L I T) :
RDUBR LA A I I O B Y I B)
HDURTM o 0 4 o o & * v 0 e
READTH LI S L 2 I DY B B]
"EMQ”l ¢ 9 2 @ e 2
REMQTI [I I I 2 I I B T I)
HNGH L 2 B B B 2 Y R R T T)
RNGHW LI I I N DK I Y S ')

Jegondary qgueue interlock
dection puinters ,

* e &
Section zero rules | | | R
SETC” ¢ o ¢ ¢ 9 2 2 s 92 0
SNAPR e & & 2 P * ¢ » ¥ 2
SN“S' LI I B I DK R T D Y)
SNPI T ¢ ¢ ¢ 0o 8 @ B s 9
SPT Lasc register
loading , ,, .
reading 4 4 4 4 4 o 4 o
dtack 1nstructions , , , ,
storing vC , , * e s s
dtack pointers , , , , , ,
default section , , , ,
lnecrenenting , , , |, , ,
State bits o, o ., L,

® & ® & o

» .

£

T S W S e W P ® P S S B P 6 S S e e ™ . & ¢ ® @

® ¢ % = e ® a

» * ® » @ * - L]

. ®© ®» B e ®» @

» @ W 8 »

»

* » e = o

. % & % B W P B W O W OO S S T B eSS

. 8 ® @ ® & B -

* W B 8 B

L J

* W S B B W W WS T S S ® S e M A WS . ® ® & @

» % % B ® » e

. ® W e W * @ ®

. B B S B 8O S B O W P W S T ® B e 8 WS

. ® B B P

-»

. B B B »

» B W W B B

. W B B B 8 W e

Page Indexey

Twt

42 to “.3, 10w40
10m42

1m4d

104y

10=e49
10250
10mw48

LY
be?
bm3
Hm'y
bwh

2050
=Y

2w i
2«16
2«14
2«20
2«34
2=28
210
2935
2«33
22319
2«37
5a2

2e29
2040
Sed

bei
bel}
3e2

33

bm2
Hemby
10734
2213
2m7
=i
2012

2=41
2933
10=213
{0=24
{0e23
19=23
10=23
o

Storing kA

" *o o 92 @
gTPAC g 0 0 e s
super section pointer
5HPIA 2 * P2 % @
swPUA *® 2 ¢ B ¢ 8 o
'»szAPR * ¢ ¢ 0 P ¢
szPI * 0 2 & 9 0 9 o

Time base
controlling *
Feading status '
reading value .

TOFSe20 page tal)

v

. W @

TOVS8«20 page tall coude

TOPS«20 paging , , ,

Tracks , , .

Translation butter
clearing , , ,
Conditional cledr
dumping

hardware , , , , ,
mapping o . 4 4 ,
readine , , ., , .,
state uits , , , ,
Writing 4 4 4 4
Trap enable
deginition , , , ,
loading , , , 4
teading , , '
Trap tunction word R
Twoeword global byte
UBR
loading , , 4 4
l‘eadim) " 2 0 0 3
UMOYE L I N)
HMaveEM , . 4 « 9 o
HpT

TUpSe20 , , , ,
ligser runtime meter
controlling , ,
reading statys ,
reading vajue

» W v & »

Virtual address , ,
¥M mode
definition , , , ,
Invoking o , , , ,
reading , , , ,

WRACT f 4 4 4 o o s
WRAER 4 0 4 o
WRCSB 4 4, 4
WRCSTM 4 & o 4

.
.
S

L
L]
L]
.

¥

®

2 ® ° ® ® = W e

* o e @ o e & ®» ® T e = e
L e

-

* @ o »

.- =» B W e & @

. » W -

L4
.

- ® & P B s W W

- ®» S B = . ® W® B oy ®» B
-
-

-

- % N w»

® ® 0 B ® 9 B w 9 B @ W e 9 * ®» % W e » @

- @ & 9 @ .- & e = e * »

. ® 5 e

.- ® & ® @& ® ® * ® ¢ ® e ® »

2 ® & ® " & W @

. 9 @ »

» ®» ® ® @

- ® & =

. 9 B ® % @ » . @& ¢ ® 5 ® =

. 9 B @ . @ ® ° » ® ® & & 5 s e w

- ® ® ® =

* -

- 8 w =

- ® @ W

. % ® ° ® W W - e e W e W »

.- ® ® W & = B W

» * W w » . & % * e

® ©® ® ® @ » P B - ® B & B 9 B - 5 ® ® 2 =2 »

- » ® @ - w» S @ B

- . @

. W B w

Page Indexen

10w38
1mY
Hab
2ei1
232

2mt;
2=11 ‘7

21 YM

2w 37

2#3

w12

8wl

Uw4

52 to Hel3

2«17
2=l8
S5e8
Het
T=2
Swd
e,
het

Betll

129
2«23
2wm20
122
10e7

2a18
2"14’
a2
4m3

229

14w4
2sil
2=48
250
2=40

10=4

|12=4
2218
2214, 229
2=4H

2=3

2«42

=44

WRCTX
WREHH
WRINT
WRinp
WRITTH
WHPIL
WRPUR
AR
WHTMH
WRTRAX

" % % % e ® e
® ® » ® S B ©® 9 @ »
. B B8 B B B S W e P9
* ® W ® & ® % € ® @
. % S W e e 9 e B e
® B W B B O B S D W
o ® W ® e W P e e e
® ® ‘® 5 8 e ° & @
* H B ® W A B B W @
- & W B W 2 B S © &
- B @ ® ® B W O @ »

- »

xu"“ril!Q!!QQ’lQl
onezero section references

XcT B I N T N T R)
default section tor EAecalc
logal stack reterences , ,

PC storiny ipstructions
skip and Jump {nstructions
Stack instructions , , , ,
XHLLI 4 o 6 o o ¢ o o o o
AC references ? 8 s o o
XNUV"" * o 2 * e 2 a & ¢ o
AC reterences , |

. ® & ® 9 S " S e

L]

* @ ® ¢ B e ® »

. ® W B W W P S " N

.’*“ﬂ‘.'.“’

s ® " B @ W B » W s

® ® B e @ S W W e e e

2«18
2223
2«47
227
S5eb

2w8

2243
2=41
2=4%
5wl

10e28
10e28
10=30
10230
tOm3y
10m3]
{0e30
10m=314
1)w29
102y
10=29
10e29

Page

Indexe=?

7134303
7334303
7140328
7150852
7150452
7350352
7150852

LEDAT
LEDAT
LEMSG
LPMSG
LEEND
LPEND
LEEND

*« n & i, PTS

LPTSPL version

P L Run Loy » s«

104(3103) K1,2102, TOPS=20 Develobment

Job Kgll) sequence #2814 on Printer 0 at 28=Apre83 7334:0

Startinyg Fille
Finished Kile
Sumwarys 231
161

5,381

SNARKg<JUPLTER JFUNCTIONAL2SPECS>KCIU VEReH 1
SNARK5‘JUPITER.FUNCTIDNALQSPECS>KCIO.VEHQa,&
rages of Uutput

Disk Pages Read

seconds CPri Time !'sed

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08

