t!digi.tal?! INTEROFFICE MEMORANDUWM

TO: Jupiter CPU Project Members
DATE: 4-Jan-82

CC: List FROM: Scott G. Robinson
DEPT: LSG Hardware Engr
LOC: MR1-2/E85
DTN: 231-6988
POLE: MP18.6 (or so)

SUBJ: Jupiter FPA

The Jupiter FPA (aka APA) is an add-on to the base CPU which
accelerates a subset of KC1f# instructions. 7Tt is intended to make

the Jupiter fit customers requiring interactive scientific
computing.

l.¢ ACCELERATED INSTRUCTIONS

The following KC1¢ instructions will be accelerated by the
FPA: '

o Conversion and Scaling - FSC (132), FIX (122), FIXR
(126), FLTR (127))

o Rounded Single Precision Floating - FADR? (144—145),
FSBR? (154-157), FMPR? (164-167), FDVR? (174-177)

o Unrounded Single = Precision Floating - FAD?
(140,142,143), FSB? (15¢,152,153), FMP? (166,162,163),
FDV? (176,173,173)

o Double Precision Floating - DFAD (11¢), DFSB (111), DFMP
(112), DFDV (113)

o Extended Prevision Floating - EFAD (1¢2), EFSB (103),
EFMP (106), EFDV (107)

o Double Word Moves - DMOVE (128), DMOVEM (124), DMOVN
(121) , DMOVNM (125) : '

o Integer Mulitplication - MUL? (224-227), IMUL?
(220-223) '

Jupiter FPA Page 2
ACCELERATED INSTRUCTIONS

All accelerated instructions will be processed directly or
when XCT'd. Immediate mode instructions (FSC, FADRI, FSBRI,
FMPRI, FDVRI, MULI, IMULI) will require EBOX intervention to
obtain the instruction EA for the FPA because the FPA has no path
to IBOX EA buffers. Instructions with indirects are treated by

the EBOX as if they are XCT'd; thus, no special FPA processing is
required to execute them.

2.2 EBOX/IBOX/FPA INTERFACE
2.1 1Interface Diagram

The FPA Interfaces to the KC1# as shown in the following
diagram:

MTAG <@~-3> —---+

WRITE I |

WRITE 0OP2 }

WRITE OP3]

: ’ O ¥ L e n e ———————
|Instr/ |

MD -==—=- >|Operand |---ccmmmmmrc e >
<@-35> +->|Buffers |
[e +

+

|

Pipelined |
Instruction |
Execution]
|

te———— -—+ | temm————— + : |
LBUS —==->| L4 |-+-->]Current |----> |
|

!

|

<@-35> |Register]| | AC Set |
Fmm—————— + e ittt -

WR AC <P=3> ==cmccmmmm e >+ R s R +
EN AC WRITE |1
VMA <32-35> ||

|
HOLDOFF UW CLOCKS <=== = oo +
ENA FLA FLAGS

]

|

|

!

|Result | |

ABUS <-—==—- IBuffers |<——-eommmm e + |
<@-35> +-| | !
|

|

|

|

Flags <---+ |
SELT <M=3> == o> e oo S+
The FPA receives Operand and AC data on MD or LBUS. The data

is written into buffers maintained in the FPA. 1Instruction, OP2,
and the AC set are redundant with other buffers in the IBOX and

Jupiter FPA , Page 3
EBOX/IBOX/FPA INTERFACE

EBOX. Results from FPA operation are passed on ABUS to the EBOX
and writteén into memory or ACs when an accelerated instruction is
selected by SELI. The flags are updated similar to normal EBOX
ALU flags update.

2.2 Data And Flags Injection

Data and Flags Injection requires complex timing. The FPA
must present the data on the ABUS for the EBOX at the correct time
based upon 5 cases. The FPA must update processor flags and
ensure timing for TRAP1/TRAP2 traps. In all cases below the new
flags are assumed to be updated similar to an AD FLAGS or EXP TEST
given during the 'First Cycle' of the EBOX. The data to be stored
is passed from A-BUS to L-BUS through RF-MUX and L-MUX.

2.2.1 Single AC Store -
Single AC Stores always store at Y-AC address and can be done

completely within the EBOX 'First Cycle'. The equivalent
- microcode is:

-DCODE
For this instruction to work RF-MUX is forced to ABUS
because RF-MUX is not controlled by fast ram microwords.
C: Y, X1_[RF],MVE_X1,L MVE,FPA FLAGS,LAST

d we wo

Data is supplied by the FPA at Clock 3 so that RF can latch

it at next Clock ¢ and L-BUS latches RF at next Clock 1. Flags
are updated at next Clock 2,

2:2.2 Double AC Store -

Couble AC Stores always store at Y-AC and Y-AC +1. These
stores can be done with an EBOX 'First Cycle' and an early 'Last
Cycle' if X-AC is forced to Y~-AC +1 during 'First Cycle' or Y-AC
is incremented after 'First Cycle'.

+DCODE
; For this instruction to work RF-MUX is forced to ABUS!
IC: Y, Xl_[RF],MVE_Xl,L_MVE,FPA FLAGS
« ECODE
IC: E,X (or Y), - RF_[ABUS],X1_(RF],MVE_X1,L MVE,LAST

. Data is supplied by the FPA at both Clock 3s of the above
sequence., The flags are updated at ECODE Clock 2.

Jupiter FPA Page 4
EBOX/IBOX/FPA INTERFACE

2.2.3 Single Memory Store -
Single Memory Stores require 'First Cycle' and an early 'Last

Cycle' because of data path timing for conversion of a memory
store to an AC store. The data is always stored at (EA).

DCODE
; For this instruction to work RF-MUX is forced to ABUS!
IC: M, X1 [RF],MVE X1,L MVE,FPA FLAGS
« ECODE - - -
; This instruction holds Memory Data and selects on WR-MUX for 22ns.
IC: E, X1_(RF],MVE_X1,L_MVE,WR_VMA,LAST

Data and flags are presented just as for the Single AC store
case.

2.2.4 Double Memory Store -

Double Memory Stores require 'First Cycle' and several
additional EBOX cycles because of data path timing for conversion
of a memory store to an AC store. The data is always stored at
(EA) and (EA+l).

- DCODE
; For this instruction to work RF-MUX is forced to ABUS!
IC: M, X1_[RF],MVE_X1,L MVE,FPA FLAGS

« ECODE

This instruction holds Memory Data and selects on WR-MUX for 22ns
and updates EA with assistance of the IBOX.
c: = E, X1 [RF],MVE X1,L MVE,WR-VMA,
EA_EA+1 - -

f ue “o

This instruction stores the second memory word and holds
memory data and WR-MUX selects for 22 ns.
E,M, RF_[ABUS],X1_[RF],MVE_X1,L MVE

«o we

E, LAST

The FPA supplies data at first Clock 3, Flags at next Clock
2, additional data at fourth (4th) Clock 3.

2.2.5 Single AC And Single Memory Store -

Singlé AC and Memory Stores require 'First Cycle' and several
additional EBOX cycles because of data path timing for conversion
of a memory store to an AC store. The data is always stored at
(EA) and Y-AC. ' '

. DCODE

Jupiter FPA Page 5
EBOX/IBOX/FPA INTERFACE

; For this instruction to work RF-MUX is forced to ABUS!
IC: Y, X1_[RF],MVE_X1,L_MVE,FPA FLAGS

. ECODE S -
; This instruction stores the memory word. It also holds
; memory data and WR-MUX selects for 22 ns.

E,M, X1_[RF] ,MVE_X1,L MVE

E, LAST

The FPA supplies data at first Clock 3 and flags at next
Clock 2. :

2.3 Flags

The following table lists cases of flags update required for
accelerated instructions.

Case OV CRY? CRY1 FOV T1 FUN NODV
+ ettt R TS SRR RORF SRR W U S Y
| FP Overflow | 1 | | 1 |1 | | |
| FP Underflow! 1 | | 1 111) |
| INT Overflow| 1 | |] 111 | !
| DIV Check 11 | | 1 |11 [S |
| FP Check S N I 1 11 1 ! !
| Zero Check | I 1 1 1 | | | | |
N S . o S O S, fmm——— T S W D}

As can be seen there are six cases and five independent bits (o0v,
FOv, FUN, NODV, CRYl). CRYP is derived from (CRYl and -0OV); Tl

is set directly from OV. Thus the signals for flags from FPA to
SCA are: '

o ENA FPA FLAGS - Set to force Flags Update during current
clock 2 .

0o OV - Overflow Flag

o FOV - Floating Overflow Flag

o FUN - Floating Underflow Flag
0. NODV - No Divide Flag

o CRYl - Carry 1 Flag

@R’OM C‘PU>

AP

TINTERFALE

G

A BUS g5, 4P

AP FLAGS gBioS

APB TIN5

APy REEANC

APD TR &:>

APA ReADY

Ewors T oUTPOT
E-T WMGRANT 0
40
EBOX WR MEM AR | o
Vo | IDR VMA 27:35 W ¢ '
i
K She. e
we AC APA o l
- 4
MVL L Bus ¢4:35 4P
v e Dp40 :
SRCE. Pz TO APN DY
RAy OVSE L
v4 Cexmo o \ JUATER
AM MBox TAG @:5 H R
\/ C\M\mb (0 P:rPoP\
| Toamt Muﬁ&% 40 PO
A e dia aen INTERFACE
V| z= : > 4
TSN sYoC > |
INSK VALID To APH)
v0 cel WR_AC_ @13 i 4
¥ P2ed TO cHede or PrRiTH
NPT DOTPIT
Co uNT| COONT
e 53
TOTAL CovnT = 169
149 enisT

20 Negp TO et ADOeD

i ~
\\
éﬁb Cpu)
Susr
D WL, MVR |]
—P <ch
> SCA
- 2
Dovo Ll—ooPiP\
f23/ex

A 2

