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1.8 1Introduction

Over the 1last few months, it has become apparent that the
performance of the Jupiter CPU is less than had been originally
estimated. Previous memos have discussed the limiting factors for
better CPU performance, and it 1is understood, to a first
approximation, what must be done to improve the performance of the
machine. This memo proposes a strategy for -improving performance;
estimates the results of implementing the strategy, and 1lists
costs and resources necessary to carry it out,
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2.8 wWhy performance modeiing?
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At present, the priorities for the Jupiter project indicate that
we must ship a machine with a minimum performance of 2.3 times a
KL1@. 1In addition, if the FRS machine does have a performance
near the minimum requirement, an enhanced machine must be shipped
shortly thereafter. Enhancements that are currently planned are
the APA and the so=called model B machine. , '
In order to be successful in any of these endeavors, several
things must be understood, as follows:

o What is the current performance of the machine?

o How accurate are the models that - are used to predict
performance? |
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o What constitutes a representative set of programs against
which performance can be measured?

o What limits the performance of the machine?
o What can be done to increase the performance of the machine?

o What 1is the result on system performance if changes are made
to the current design?

o What should be implemented in the APA and how much does this = -~
improve the performance?

o What should be implemented in the model B machlne and how much
does this improve the performance?

All of these questions must be answered in order to meet the goals
of the Jupiter project. To do this, a performance modeling
project must be undertaken that will address each of these items.,.
This kind of  modeling will not only answer the questlons above,
but will also reduce the risk to the Jupiter project by minimizing

the surprises later on. LLLQ KL/ f? DEC.

3.8 Performance predictions for various jo mixes

In the past, the performance of has typically been”
measured with three kinds of loads, which can be loosely described
as Fortran, Cobol, and general timesharing. The Fortran mix is
characteristic of scientific applications and includes floating
point and integer arithmetic operations. The Cobol mix represents
the business iénd—~qommercia1 applications and includes byte,
string, and atat conversion operations. The general
timesharing mix (also known as logic mix) is more nebulous but

includes ‘such applications as text editors, compilers, debuggers,
etc.,

Because our machines are used in all three types of applications,
it is important to be able to predict the performance of the
Jupiter system on all three kinds of job mixes. In order to do
this effectively, the modeling process used to predict the
performance of the machine must include all three types of job
mixes and not be 1limited to one. This slightly increases the
complexity of the task, but it is both necessary and worthwhlle.

‘The increasing use of extended addressing in both h1gh&leve1
languages and assembly language programs poses additional problems
in trying to predict the performance of the machine. Experlence”
on the KL1# has shown that pathological programs can show a severe
performance degradation when moved from unextended to extended
implementations, Therefore, performance predictions should not
ignore the effects of extended addressing. ‘
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4.0 Minimum machine performance

The ultimate reason for doing performance modeling foryJupiter is
to attain the system performance goal of 2.3 times a KL1g. This
goal deserves some discussion so that it is clear what it really
means.

As indicated in section 3.0 above, there are three types of Jjob
mixes that will be modeled. What, then, does the phrase "2.3
times a KL1¢" really mean? . The minimum performance number applies
to the general timesharing (or logic) mix as measured on a Jupiter
system, Fortran (without the APA) and Cobel job mixes will almost
certainly run slower than the general timesharing mix. That is
not to say that the Fortran and Cobol cases will be ignored in
favor of improving only the general timesharing case. Rather, our
goal is to improve all cases as much as we can within the other
constraints of the project, However, if tradecffs must be made,
the general timesharing mix will have highest priority.

Note that the performance of the machine is a direct function of
the machine cycle time. Changes in machine cycle time cause
linear changes in the performance of the machine. Therefore, the
determination of the cycle time is as important in predicting the
machine performance as performance modeling,

Because there 1is inherent error in any performance modeling
methodology (performance models are usually optimistic), the
minimum performance prediction goal must be higher than the goal
for the performance of the system. That is, the performance
predictions must actually be higher than 2.3 times a XKL14 to
insure that the real machine will run at that per formance,
Therefore, the performance goal used for modeling the machine will
be 2.5 times a KL14,

5.f Performance improvements through performance modeling

The specific tasks of this proposal can be broken down into two
categories. The first category makes the assumption that the
- performance data that exists is substantially correct. Using this
data, simple microcode and hardware changes can be made to improve
the performance of the machine. Section 5.1 below describes these
changes in detail (also see the bibliography). These changes
appear to have low risk to the current design and may produce a
significant performance increase. Whether these changes alone
will improve the performance enough to meet the goals is unknown.
More extensive changes at this point would be risky because the
accuracy of the data on which additional changes would be based is
unknown,

The second category seeks to provide the additional data and the
analysis tools necessary to understand what the performance of the
machine really is. The data and tools produced will be wused not
only to direct additional changes to the design, if necessary, but
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also to accurately predict the performance of the machine before
it is built. This kind of modeling, which was not done during the
design of the original machine, is critical if the performance
goals are to be met in a predictable manner.

The proposal includes three areas of study: analysis ' and
reduction of existing data, benchmark selection, and additional
data gathering and analysis. Analysis of the existing data may
help direct the task of making the simple microcode and hardware
changes. Benchmark selection and additional data gathering and
analysis are tightly coupled and are necessary both to accurately
understand the performance of the machine, and to direct.
additional changes if that becomes necessary.

6.0 Specific tasks for performance modeling

This section discusses the specific tasks that should be
undertaken for the Jupiter performance modeling project. For each
of the four tasks listed, there are discussions of the goals,
justification, benefit, cost and strategy for completing the task.
There is no implied priority in the order in which the tasks are
listed. in fact, several of these tasks should be undertaken in
parallel.

5.1 1Initial performance improvements

RBased on preliminary investigations, it is known that there are
certain classes of instructions that seem to limit the performance
of the CPU. There are also certain microcede and "sinmple"
hardware changes that can be made to increase the performance of
the CPU with small redesign cost.

f.1.1 Goals

Make microcode and "simple" hardware changes to -increase the
performance of the machine, measure, with simulation, the
resulting performance improvement for each change, and attempt to
predict the change tc the overall CPU performance.

'6.1,2 Justification

In looking at the possibilities for improving the performance of
the CPU, this type of change results in the smallest amount of
hardware redesign. 1In addition, more extensive changes would be
risky at this time because there isn't enough accurate data with
which we can make design decisions, -
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513 Benefit

The actual performance improvement that will result from these
changes is unknown. Howereliminary investigation indicates

that it might be as high Since the cost of this task is
low compared to a larger iware-oriented change, the return on
investment is high, N

+ B

§.1.4 Cost \\«0&\\ I/}\(W

The major cost of this task is the manpower necessary to do the
design, simulate the changes, implement the design changes in
microcede and hardware, and measure the results of these changes.
Secondarily, = machine resources to do simulations, microcode
compilations, etc., will be required.

lG.l.S Strategy

The strategy for completing this task may be broken down into five
categories, as follows:

1. Evaluation and design. Evaluate the instructions that seem to
be limiting factors to the performance of the machine.
Determine what can be done in microcode and by adding minimal
hardware to speed up these instructions. Based on preliminary
investigation, it appears that the evaluations should be done
in the following order:

¢ EA-calc speed-up in the EBOX. FEvaluate the possibility of
- adding hardware to the EROX to increase the speed of
EA-CALC done by the EBOX. Such a change will improve the
performance of byte, string, and XCT instructions, and
indirect addressing.

0 Byte pointer decode speed-up. Evaluate changes to the
hardware (probably the micro-machine next-address
dispatches) to make byte pointer decode faster. Such a
change will improve the performance of byte and string
instructions, /7

The followinggf%ems investi%éf@\iqprovements to the FEBOX and
IBOX microcode_ algorithms . te--fake the instructions faster.
Some minimal hardware changes may also be required.

o Other byte instruction speed-ups.
© BLT/XBLT speed-<up.

0 PUSHJ speed-up.
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o XCT speed=up.
o String speed=up.

Design changes resulting from the investigation of the above

list fall into the following areas: N k ;é;)
| | ¥

o EBOX EA-calc hardware additions. (% &94\b/) OUV
v
6 EBOX and IROX micro-machine dispatch changes. C}Q%bgbtp &Q
o ' M
o Other minimal EBOX and IROX hardware changes 4; 0(L

o EBOX microcode algorithm changes. ‘ﬁ

{

o 1IBOX microcode algorithm changes (mostly the addition of
new ICMDs) .

2. Microcode implementation. Implement the EBOX and IBOX
microcode changes that resulted from the design process.

3. LISP simulation. Implement the hardware changes that resulted
~ from the design process in the LISP simulator. Use the
modified simulator to 1insure that the CPU continues to
implement the PDP=1# architecture. Then use the simulator as

a tool to measure the performance of the machine.

4, Performance predictions. Wheh the new performance for each

“KM

instruction has been measured by the LISP simulator, combine

that data with the best~guess machine cycle time and the
simulated workload data that we have to predict the
performance improvement.

5. TIterate. If the predicted performance is not 2.5 times a

no ! A 4 4 o -
KL16, go back to step 1. ch a?&ﬁ/o (‘y'[u—o Yg&@ﬂ%«' n CMZ{@'@-C 7
$

6.2 Reduction of current OPHIST data
Instruction histogram data has bheen obtained from several sites

with the OPHIST program. Reduction of this data is required 1if
decisions are to be made on the basis of the data.

6.2.1 Goals

Reduce the large amount of raw data that exists such that we know

correlations within each site and across sites. Produce an

ordered list of "problem" instructions.
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5.2.2 Justification

211 OPHIST analysis to date has been done by manually correlating
the data. There 1is no real confirmation that the order of
investigation that was given in section 5.1.5 is correct. There
is also minimal data on what is most important for the APA.

6.2.3 Benefit

This task provides a confidence factor that the priorities are
indeed <correct, especially in determining the sensitivity of the
data that exists, It also produces an ordered 1list of the
instructions that are important for both the APA and non=APA
cases., .

F.2.4 Cost

The primary cost of this task is the programmer necessary to write
the data reduction programs, In addition, machine time is
required to write, debug, and run the programs,

he2.5 Strategy

The strategy for this task may be broken down into the following
components:

1. Decide what correlations we need. It seems obvious that we
need to know the sensitivity of data for each site, and across
multiple sites, ‘

2. Produce a list of the "most important" instructions for both
APA  and non-APA cases from the KC-weighted histograms. At
present, such a breakdown for individual samples exists, plus
a high-level summary for all samples. Additional breakdowns
with more detail are required to direct the design changes.

3. Change the data reduction programs so that it is easy to

change the machine cycle time and the performance of each
instruction,

4, Attempt to define a "measure of goodness"™ using the OPHIST
data so that we can predict the relative performance impact on
the system of a change to the cycle time or the performance of
a single instruction, Ideally, the result of this item will
be . to produce a single number that characterizes the
perfermance of the ~machine with any workload. Changes in
system performance as the result of changes to the cycle time
or instruction performance would then be directly proportional
to the change in the number.
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6.3 Benchmark selection

in order to accurately predict the performance of a - CPU,
benchmarks that are representative of actual workloads must be
available.  This includes Fortran, Cobol, and general timesharing
- benchmarks. '

f.3.1 Goals

Produce a list of representative benchmarks wh1ch can be used to
predlct the performance of Fortran, Cobol, and general timesharing

job mixes. ' |
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At present, there is no way to characterize the performance of the
three kinds of instruction mixes that we are worried about. Up to
now, performance predictions have been based on hand evaluation of
-OPHIST data.

5.3.3 Benefit

This task produces a representative set of benchmarks which can be
used to measure and predict the performance of the CPU. 1In
addition, these benchmarks allow us to evaluate changes to the
cycle time and instruction performance.

f.3.4 Cost

The primary cost in completing this task is the manpower necessary
to do the selections, There is also additional time involved in
getting others to agree  that the selections are indeed
representative, :

f.3.5 Strategy |

This task provides benchmarks in three areas, as follows:

o Opcode histograms. opcode histograms (via OPHIST or other
program) that are representative of Fortran, Cobol, and logic

mix programs are needed, We may be able to construct
composite opcode histograms out of the work done to reduce

ex1st1ng OPHIST data.. /Uoz” _{“6,7 For o COBOZL. UO I
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0 Programs as input to instruction simulators. These programs,
will be wused to measure the impact of conflicts, cache and.
translation buffer hits, etc. See section 5.,4.5 for more -
detail. '

0 Programs as input to the LISP simulator. These programs will
be used to measure performance, 1instruction sequence
interactions, etc. Because of the simulation rates and the

: limitations of the LISP simulator, such programs must run for

\éj less than 1 CPU second on & KL1#, and issue no monitor calls.

has already been done by a number of groups 1in this area.

2rg9 a collection of programs commonly referred to as the
"dirty dozen" that are allegedly representative of the general
timesharing mix. Single and double precision Whetstones exist
that provide some indication of the Fortran performance. The
monitor group has a collection of benchmarks that may be helpful.
Some work was done on Cobol performance for the NDolphin project
and a composite Cobol program was constructed that was supposed to.
be representative of what typical Cobol programs do. :

If priorities must be assigned, it is most important to select
representative benchmarks for the general timesharing mix. The
performance goals are based on that mix and these benchmarks will
be used to decide whether additional work is necessary to increase
the performance of the machine.

5.4 Additional data gathering and investigation’

Due to the scarcity of performance data, it is critical to the
success of the project to gather and evaluate additional data.
This process is important not only for the FRS machine, but also
for the APA design and the design of the model B machine.

5.4.1 Goals

Produce additional data and analysis tools that will increase the
accuracy of our performance predictions. Quantify the effects of
extended addressing, indirect addressing, IBOX conflict, 1IBOX
flush, IBOX prefetch efficiency, translation buffer conflicts, and

cache hit. {7
ﬁo.

6.4.2 Justification

At present, performance estimates are based on OPHIST results
only. There 1is general agreement that the OPHIST results
approximate the characteristics of real workloads, but only
minimal attempts have been made to confirm this speculation., 1In
addition, there is no actual data on the impact of things 1like
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IBOX efficiency, conflicts, the translation buffer, etc. This
part of the modeling process is the most critical in understanding
the real performance of the system,

6.4.3 Benefit

By producing additional data and analysis tools, performance
predictions will be more accurate. 1t will also quantify the
(currently unknown) effects of the IBOX.

f.4,4 Cost

0f all the components of the performance modeling proposal, the
costs associated with this section are the largest. Completion of
the items listed below will require one or more pecple and
significant machine resources. The simulations are not possible
with the load averages on existing machines. ‘

6.4.5 Strategy

The strategy for this task is broken down into multiple areas, as
follows:

1. Additional OPHIST data. OPHIST data must be gathered from
additional sites whose typical 1load 1is Fortran, Cobol, or
general timesharing., More sites will increase the confidence
I ‘ the accuracy of our performance predictions. This is
especially true if there is a good correlation between sites
with similar workload characteristics. An attempt shculd be
made to select at least two sites whose typical workloads are
general timesharing, Fortran, and |Cobocl., At least one week of
data is required from each site tg smooth out the day-to-day
variations in load. \%2QJJW f

2. TRACKS microcode on the KL1f. TRACKS microcode is required
for several reasons, as follows:

o Verification of OPHIST results. In one data gathering
mode, TRACKS microcode will keep an opcode histogram of
instruction execution. By running OPHIST on a machine
with TRACKS opcode counting enabled, we should get an
indication of the wvalidity of the OPHIST measurement
technique. This 1is particularly important since many
decisions are being based on the OPHIST data.

o Exec mode measurements. Parts of the monitor run with the
PI system off. Since OPHIST uses the interval timer as a
stimulus, it can't sample those areas of the monitor. The
exact impact of this is unknown, but there is a general



Page 11

feeling that certain important parts of the monitor (e.g.,
indirect references to the CST) are being masked.

6 PC traces. 1In another data gathering mode, TRACKS has the
ablllty to generate PC traces, These traces could be used
as 1input to a program for analysis of instruction
sequences,

3. Conflict analysis. At present, there 1is no data on the
effects of instruction conflicts. By using CONF2@, a program
written for the Dolphin project, with "typical" programs, data
can be gathered concerning conflicts. At present, CONF24 will
/ﬁ?f?\gggjln section zero, and it needs some work. It should
be modified to run in a non-zero section and analyze
multi-section programs.

4. Enhancements to the LISP simulator., 1In order to determine the
effects of 1IBOX flushes and the efficiency of the IBOX
prefetch algorithms, the LISP simulator must be modified to
keep more data about the programs that it is simulating.
Counters can be installed that will keep track of IBOX
flushes, conflicts, guess-wrong, and the average number of
instructions ahead that the 1IROX is fetching. Because of
simulation ratios, the selection of programs may be difficult.

5. Translation buffer and cache hit ana1y51s. By using a program
similar to SIM2¢, address traces can be obtained for
representative programs. These traces can then be analyzed by
an existing cache simulator to give us an indication of the
effectiveness of the translation buffer and the cache. 1f
SIM2@ is used to provide the address traces, it must be
modified to run in a non=zero section and measure
multi-section programs.

This item |is ~particularly important because we have no
up~-to-date data on the effects of extended addressing on the
translation buffer and cache organlzatlons. A thorough
analysis of this topic also requires data on context switch
time. First-order cache mcdels assume that the cache has
reached steady-state., If the context switch rate is too high,

the cache doesn't have a chance to reach steady-state and the
cache hit predictions will be too high,
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7.0 Orderlng the tasks

Under the ' assumption that the existing performance data is
correct, we <can start the design and implementation process for
the simple hardware and microcode .changes immediately. - In
parallel with this, it is important to do the data reduction on
the existing OPHIST data so that we can measure the relative
effect of the deiég changes. Although it may not be entirely
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accurate, the OPHIST data is all that we have with which to
measure performance. In addition, OPHIST data can be used as an
indication of relative performance changes when a design change 'is
made., '

Benchmark selection can be done somewhat asynchronously to the
design changes and the reduction of the OPHIST data. It would be
useful to have some representative benchmarks available when the
simulator and microcode changes are completed so that some
preliminary‘performancé can be made. Benchmarks must
be available in order to do any significant data gathering, beyond
what already exists.

Most of the additional data gathering and analysis is independent
of the simple design changes but 1is dependent on benchmark
selection, Completion of this task 1is required before any
accurate performance predictions can be made. 1In addition, no
significant hardware changes can be made, beyond those outlined in
the above sections, wuntil this task is complete. Besides the
required manpower, this task depends on machine resources that are
not currently available.

8. Conclusions

No serious performance modeling was done during the design of the
original machine. As a result, the performance is less than we
.expected and some redesign is being done. This memo proposes a
.performance modeling project that will aid us in making decisions
about the design changes, predict the performance of the machine,
~and minimize the risk to the project.

~The importance of this project should not be underestimated if we
are to meet our performance goals in a predictable way. In
addition, no significant hardware redesign should take place
without understanding the effect on system performance of that
change,

The data and tools that are produced by the performance modelin
proijec ill be used not only for rgﬂg§iga—ﬁf—thesﬁa§\%ishiggijbut
so as direction for the design of the APA and thé model B

machine,

The ultimate machine performance is directly related to the cycl
time. Determination (and minimization) of the <cycle time i
critical to an accurate performance prediction and hence, to
machine performance. That determination must be given equal
priority to performance modeling.

 hew 7
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is in chronological order,
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memorandum, February 29, 19°a, Simplistic predictions of the
2087 performance based on work done on the Dolphin project.

Hess, Ted, "Possible 2087 Floating-point Performance", Digital
interoffice memorandum, March 5, 1987, Simplistic predictions
of the 2087 floating point performance (with and without an
APA) .

Miller, Arnold, "2080 extended addressing performance", Digital
interoffice memorandum, May 24, 1982. Thoughts on the impact
of extended addressing on the performance of a Jupiter system.
Concentrates on the effects of the translation buffer
organization and the effects of indirect addressing. "

Manley, Dwight, "Jupiter  workload analysis", Report on
performance analysis, September, 1984, Analysis of Fortran and
Cobol programs to predict the efficiency of the IBOX.

Uhler, Mike, "Jupiter Performance", Digital interoffice
memorandum, September 6, 1982, Describes the preliminary
results of the performance analysis done for Jupiter including
a simple performance model.

Nixon, David, "pPerformance prediction report for Jupiter",
Digital interoffice memorandum, October 5, 1982. Summary and
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analysis of the OPHIST data.

Nixon, David, "pPerformance Prediction Method for.iJupiter"
Digital 1interoffice memorandum, November 4, 1982, Dlscu551on
of the methodology used to gather and analyze the OPHIST data.

Uhler, Mike, "Minutes of the 11/24/82 Performance Committee
Meeting", Digital interoffice memorandum, November 25, 1982.
Describes the proposed structure of the Jupiter performance
committee. Lists a hierarchy of proposed solutions and the
resources necessary to support the 1nvestlgat10ns.
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) Dept: LeSaEsGe
CC: Judy Hall DTN: (8-)231-6448
Don Hooper Loc/Mail stop: MRO1-2/EB5
David Nixon: Net mail:s UHLER at ID

Pat Sullivan

Subject: Jupiter performance-

1.8 Introduction

Over the past few weeks, Judy: Hall and David Nixon- have been’
gathering workload data from several utypical® systems in an
attempt to characterize the performance of the Jupiter. The data:
gathering techniques being used are fully described in a memo by
David Nixon. 1In looking at the initial results, I have developed
a simple model that: provides a first-order approximation of the
performance of the Jupiter. 1In addition, we have-identified what
we believe to be a significant performance bottleneck in the EBOX
speed of certain instructions. This memo describes the model,
jdentifies certain classes of instructions that appear to be
performance bottlenecks, and makes recommendations about possible
microcodeshardware solutions to these bottlenecks.

2.8 The performance model

In looking at the original workload data, I noticed that the set
of executed instructions seemed to fit into three broad categories
as follows: ,

N
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1. Instructions whose KC/KL ratio is less than 3.

2. Instructions whose KC/KL ratio is between 3 and 6.

3. Instructions whose KC/KL ratio is greater than 6.

After some simple calculations on the preliminary data, I

concluded: that the percentage- of executed instructions in each
class was approximately:

Class Percentage of instructions in class
1 (< 3 times KL) 253
2 (3 - 6 times KL) 25%
3 (> 6 times KL) 50%
190%

This means that half the executed instructions run at least b
times faster on a Jupiter than the same instructions on a KL18.
Intuition would lead one to believe that the performance of the
Jupiter would be outstanding. But let°s calculate the predicted
performance of the machine wusing this model and choosing one
"ayverage” number for each classe.

Class KCIKL ratio Percentage Weighted time
1 1.5 25% P.167
2 3.9 25% f.883
3 8.9 58% g.863
#.313

The "weighted time™ column was computed by multiplying the
percentage for each class by the inverse of the KC/KL ratio, €«.G.,

B8.25%(1/1.5) = 08.167

This number gives the time, in KL units, that the class of
instructions would take to execute on the Jupiter. The sum of the
column gives the total time, again in KL units, that all
instructions would take on a Jupiter. The inverse of this number
gives the predicted performance of the Jupiter. 1In this case, the
predicted performance ratio is 3.2.

If the model says that half the instructions run at B8 times a
KL18, why 1is the overall predicted performance only 3.2? Let°’s
look at the weighted time column for the ansuer. The class 3
instructions, which amount to 58% of the executed instructions
account for only 28% of the execution time (8.863/8.313). The
class 1 instructions, on the other hand, which amount to only 25%
of the executed instructions, account for over 58% of the
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execution time.. This: ndn*intultive behavior- leans that the
instructions that are relatively slow on the- Jupiter: aake up. a
large part of the total -execution: ‘time- even 1f they are a
relatively snall petcentaqe«of the: total insttuctions executed.

Let's see- uhat happens- 1f: ne adjust the KCIKL tatio for one class.
First, assume that the: ‘class 3 instructions: actually run-at 4
times a KL18 (as would:be the case if: the EBOX were: constantlyl
waiting for the IBOX to:finish setting up an instructiou).

‘Class KC/KL ratio Percentage- ieighted tiue
1 1.5 25% . 8.167
2 3.9 25% 8.683
3 4.9 5% 8.125
#.375

Predicted performance: 2.7

A 58% change in the performance of the class 3 instructions only
nakes a 163 change in the performance of the overall machine..

Let”s see what happens if we change the speed of the class 1
instructions instead by assuming that. they are only 1.2 times a
KL19d. '

‘Class KC/KL ratio: Percgntage Keighted time
1 1.2 25% g.288
2 3.7 25% g.883
3 8.8 ' . 58% #.063
#.354

Predicted performance: 2.8

A 20% change in the speed of the class 1 instructions made a 12%
change in the performance of the overall system and the machine is
now spending 59% of the EBOX compute time processing these
instructions. ‘

2.1 Significance and accuracy of the model

In the beginning, the development of the model was an attempt to
predict the performance of the Jupiter using a very simply, easy
to change model of the machine. From that beginning, it has
developed into a tool for understanding why the performance of the
machine isn”t what we thought it should be. As the calculations
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in the previous section demonstrate, one can change the predicted
performance- of the machine by similar amounts, either by making
‘1large changes in' the:performance of the fast instructions or by
making small changes in the-performance of the slow instructions.
By using a simple model, it is much easier to understand this
non-intuitive- behaviot., S

‘Since 1 developed the: original model; I have  seen more workload
data that makes me believe that the- -model is actually optimistic.
I believe that the typical KC/KL ratios for classes 2 and:- 3 are
reasonably  accurate- at 3 and 8 respectively. If this assuaption
is correct, the "average® KC/KL ratio for 'class 1 must be-
unrealistically 1large, even when it  is:- set at 1.2. Further
analysis is required to: determine the- correct numbers to be used
in the model.

As with all simple models, this one doesn'tk:exactly predict the
true performance of the machine. It is, however, a first-order
approximation of the: performance-characteristics of the Jupiter
and it does demonstrate that the slow EBOX instructions will be
the limiting factor in the speed of the overall machine.

3.8 Characterizing . the slow instructions

In looking at the workload data from-various-sites that has been
sorted by KC weight (i.e., the percentage of: EBOX compute time for
each instruction), one observes that the relative position of each
instruction changes for each site. However, the same instructions
always seem to appear someuwhere near the top of the 1list. These
instruction classes are listed: below. The table is given in
alphabetical order and does not reflect the actual order of
frequency.

1. BLT

2. Byte (LDB, IDPB, etc.)

3. Floating point (both single and double)

4. PUSHJ/POPJ |

5. String (MOVSLJ, CVIxxx, etc.)

6. XCT

The data that we have indicates that these six instruction classes
account for 30 to 80 percent of the total EBOX compute time.  As
such, changes in performance of these instructions could have a

significant 1impact on the overall performance of the machine. I
believe that we should be concentrating on optimizing the
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éﬁttgt-anca»qfvthesefinstruCtions.;

»4.3 ‘Possible -icrocOGélhatduérewOptinizations

-I have done-a cursory investigation of each of these - classes of
minstructions and: I believe that certain changes are possible ‘that
could significantly increase the-performance of certain classes.
" This  section: is broken down into subsections, one for each class
of instruction. Each subsection describes. the results of the
investigation and gives reconlendations for each: class.

4.1 BLT

BLT appears to spend a significant amount of time 1loading the
read/urite address into EA buffer.. Changing: -the EBOX and IBOX
microcodes to use ned functions which allow more overlap in the
readlntite of words appears to make a significant difference.
- There may also be some potential in using two-word reads to get
source data.

Estimated performance improvement: 2.8-3.9.

4.2 Byte (LDB, IDPB, etc.)

A quick count of microcycles seems to indicate that byte:
instructions spend their time doing the following:

1. Byte pointer typing, validation - 46%
2. Byte pointer eacalc - 38%
3. Byte manipulation - 30%

The first two items have the most potential for improvement.
Adding new dispatches wmay improve the ability to determine the
byte pointer type quickly. Improvement in the eacalc time (see
XCT below) could improve the byte pointer eacalc time. Additional
‘hardware to decode the byte - pointer and perform the byte
manipulation would be required: to make a drastic change in the
performance of these instructions.

Estinated performance improvement: 1.1-2.0.
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4.3- Floating point (both sinqla andfdouble)

Because of the- lack of:a 72 bit data. path in the- EBDx, there isn“t
much that can be done-in microcode to improve these instructions.
_The addition of the FPA should improve- the petfornance ‘of these:
instructions significantly.

EstlnatedépetfotnanCe improvement: (with FPA): 2.9-5.8

4.4 PUSHJ/POPJ

PUSHJ spends most . of: its time determining shat to store in the:
stack word and how to:update the stack pointer. Some improvement:
‘can be gained by adding new dispatches to allow the microcode to
check . more conditions in parallel. We may also  gain some
improvement from a change to the IBOX microcode..

Estimated performance improvement: 1l.1-1.8.

Thé POPJ instruction has no extraneous microcycles as it 1is
presently coded. I see no: real improvement possible for this
instruction without hardware changes..

4,5 String (MOVSLJ, CVIxxx, etc.)

I knouw the least about this class of instructions. From what I do
know about them, it appears- - that they have significant potential’
for improvement. Special casing certain common operations,
avoiding the eacalc on every byte (if possible), and careful hand
optimization could make a large difference. ¥We may also be able
to take advantage of any changes that improve the performance of
the byte- instructions.

Estimated performance improvement: Unknown

4.6 XCT

Most of the time spent in the XCT instruction is spent performing
the eacalc on the executed instruction and fetching its operands.
Improving the speed of the eacalc subroutine could significantly.
increase performance of this 1instruction. Unfortunately, only
additional hardware will make this possible.. Improving the eacalc
speed will also benefit byte and string instructions and IBOX
traps to EBOX for indirect instructions. An IBOX that processes 1
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;level indirect doesn't solveo“f :
‘instructions; the EBBX eacalc ‘TO tino

(ait’ n “duate)’i 1.5-2.0

"blen tor xcr -and byte
stsbe -made - faster. i) :

wEstiuated%perfotnancayinproveuo‘J»

4.7 Inpact on- systenwperfornance

pﬂe have not yet: used the estiaatoéwperforuance nunbors qiven above
to. analyze the impact of making each change on overall system
performance. This work should be completed in the next week or
. two: and’ that data will give us: an ordered list of optimizations to
‘makee )

5;0 Summary of findings

Given this data, one - can' make: certain statements about - the
performance of the machine; both in general and in specific teras.

The performance of a machine is a function of ALL the instructions
executed on that machine. Significantly increasing the
performance of one class of instructions while 1ignoring another
‘class tends to result in a machine whose performance is bound by.
the class that was ignored. Better overall system performance is
achieved' by increasing the pertornance ‘of all:instructions by
approximately the same amount.

The prilatyjperformance«bottlenetk%is'the‘EBDX compute time of the-
slow instructions. Typically, EBOX processing of this class,
which amounts to approximately 25% of the executed 1instructions,
takes 69 to 88 percent of the system.. ,

Microcode changes can be made to. significantly 1increase the
performance of the machine by optimizing certain of the critical
instructions. More analysis must be done to predict the overall
change to systenm perfornance..

Certain hardware changes can be- made to further increase the
performance of the machine. These changes should be made with
careful attention given to the benefit/risk tradeoff. Adding new
dispatch. bits so that the microcode may check several conditions
in parallel may. prove to. be the most beneficlial change.

Instructions whose KC/KL ratio is 3 or greater are not worth
optimizing at this point since the resulting change in performance
is negligibles

The efficiency of the IBOX seems to have only second-order effects
on the overall performance of the systeme This has been confirmed
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~with initial IBOX simulation-data. It is possible that.this could
change: if the performance of the slow instructions is
significantly improvéd, ‘although the available data. doesn"t seem
to:indicate- that this will happen.

6.6 RecOunendations

'The only realistic uay to solve these problems is with a top—doun
- approach. ‘We cannot{affOtd to implement solutions and: then design
them. We must. evaluate-all changes from a system vienpoint and
‘know in advance what impact those changes are-going to: have on the:
jperfotnance of - the systen.,

I suggest foraing a uorking group consisting of: knowledgeable
people in' the: areas of architecture, performance, microcode, and
harduareﬂdesign whose charter would:be to oversee any. changes that
are made.

There are indeed problems with the performance of the Jupiter CPU.
Fortunately, there are also solutions to quite a few of these
problems and the potential exists to significantly increase the
performance of: the machine. -
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1.0 Executive summary

Much has been sald about the performance concerns of Jupiter,
One of the most important elements of this concern is the
performance of "extended addressing" on the Jupiter, This is
so because all of our vproducts either now use extended
addressing, or plan to use it soon, Furthermore, our
customer”s expectations for an efficient and timely technology
for handling large data bases is quite high,

Extended addressing performance concerns derive from two
distinct problems: the caching of page pointers by the MBOX
and the cost of indirect addressing.

We’ve alreadv done a great deal of research into the page cache
problem. The design of the 2080 MBOX and page refill algoritnm
reflect what we have learned, No doubt more could be done, but
we don‘t understand the benefits and weaknesses of the neyw
design sufficiently well to undertake more desion work, The
KL=10 pager, however, could benefit by some of this knowledage,

Indirect addressing performace on the 2080 is guite another
storv. whereas 1indirect addressing on the KL=10 operates
acceptably, the projected performance of indirect addressing on
the 2080 raises significant concerns. The architecture of
extended addressing relies heavily on indirection and both the
monitor and user=-level programs reflect this architecture,

2.0 Page cache

The KL=10 has a well=publicized deficiency in the caching of
paging information. The KL=10 can cache up to 512 valid paging
translations, but entries are replaced four-at=a-time (block



Page ?2

size of four). Yherefore the effective caching is reduced
somewhat by freaguent conflicts, This 1limited cache size
affords many opportunities for prodrams to thrash by having two
of more of the addresses involved in executing an instruction
conflict, An T"address conflict" occurs when two addresses
occupy the same location in the paging cache (also known as the
translation buffer); or in other words caching one of the
addresses invalidates the entry for one or more of the other
addresses, Since caching is page=by=page, conflicts can easily
remain in ferce over many instructions or many data words.

In an effort to ameliorate this, the 2080 has a much larger
paging cache with a different organization (block size of one).
Also, other measures that minimize the need to clear the cache
have bheen provided, However, pathological conditions may still
arise, In «qgeneral, these pathological conditions  are
"eliminated by using a sufficiently nigh deqree of associativity
in the cache, However, the 2080 page cache, 1like _the KL=10
cache, 1is only one~way associative (A particularly interestinag
observation is that the data cache on both machines is four=way
associative  whereas the page cache is .only one=way
associative), In light of this, we have recommended that the
2080 EBOX microcode provide some additional caching of page
pointers or section pointers to smooth out these pathological
cases. The recent decision to extend the life of the KL=~10
ralses the question of whether we c¢an &0 +the same sort of
caching on the KL=10,

Before any additional measures are considered, it seems prudent
to commission a study of the problem to rproduce either
analytical or empirical support for new features (An article in
a recent issue of Computer Magazine reported on the performance
characteristics of the VAX11/780 paging cache, including
studies on various degrees of associativity. The conclusion
seems to be that increasing the cache size nas the same benefit
as increasing the associativity, but the architectural
differences between the VAX and the 2080 could be significant.
In the absence of any other data, we can only assume that the
data applles to the 2080 as well as to the VAX, The article
did not address "pathological conditions").

3.0 Indirect addressing

The second problem, and one that we have vyet to find an
adeqguate compromise for, is the nperformance of indirect
references,

The extended addressing architecture provides two techniques
for inter=section or global addressing: simple indexing and
indirection, Indexing -allows one to address a contiguous
region of 256K words of virtual memory, plus or minus 128K from
the base indicated by the index register. In other words,
Indexing computes a full 30=pit address by adding the value in
the index register to the sign=extended value found in the
address field of the instruction,



Page 3

Another interesting property of qglobal indexing {s that the
index register must contain the base address of the data, and
the instruction word must be used as the offset, This 1s
contrary to the addressing and programming practiced up until
now on PDP=10s, This new way of addressing is brought = about
because the 1instruction has only elghteen bits in whicn to
express an address, but a reaister has thirty bits., Therefore,
in order to address data that may be located anvwhere in the
extended address - space, one must swap the roles of the
instruction and the index register,

A problem created by this is that the familiar technigue for
writing loops becomes invalid., That is, the code seguence:

MOVE AC,BASFK(ACX)
AGRJIN ACX,LOOP
is no longer appropriate as ACX can no longer contain
=-COUNT, ,O0FFSET
Instead, loops require the use of twWwo or more registers 1if

indexing is the addressing choice, For example:

HRRZ ACX1,ACX
ADD ACX1,BASE
MOVE AC,0(CACX1)

AORJN ACX,LDOP

Other instruction sequences are possible, but this example 1is
representative of the nature of the difference,

Indirection allows one to address data stylistically similarly
to the traditional methods.  That 1s, indexino is always a
positive (or negative) offset from the unsigned base and a
single index may be used for offset addressing and loop
control. '
Therefore one can writes

MOVE AC,R[EFIW BASE(ACX)]

AOBJN ACX,LOOP

3.1 Discussion



Page 4

Despite the architectural bent in favor of 1ndirection, and the
additional clarity afforded by the technigue, the 2080 was
apparently not designed with this sort of addressing in nmind,
Indirection will effectively defeat much of the advantage of
the IBOX prefetch and result in a siqnificant increase in
execution time for any instruction emnloyina it. This is so
because the IBOX is not eguipped to decode indirect references,
and the EBOX 1is not sufficiently facile at effective~-address
calculations to offset this deficiency.

Up until now, all of the extant software projects had assumed
the wuse of indirect addressing. TOPS=20 has already been
modified to reference its paging data base with indirection,
and more and more Instances of indirection apbpear in the
monitor as time goes bhy. : :

The 1anQques had planned to use indirection to reference large
data bases, Again, this seemed the right choice because of the
architectural direction and the ease of substituting
indirection for the existing simple indexing methods.

3.2 Impacts

(All 2080 performance figures are based on "best guesses", The
variation between these values and the actual machine
performance may be significant= as much as 30%, S5ee sgection
3.3 for more information).

As best we can understand, the use of indirection will be five
times more expensive in execution time than the use of
indexing., Or looked at it in comparison with indirection on
the KL~10, simple instructions that use it will execute in
apout the same time as the same instruction, including
indirection, 'on the KL=10 (gee chart below)., Also, the
instructions required to implement indexing run no faster, and
in some cases slower, on the KL=10 than the indirect addressing
stvle on the KL,

This represents the directly measurable differences. However,
increased code sizes, within loops or not, will affect cache
hits, ip the data cache, the paging cache and the IBOX, These
effects are second order and hard to predict.

It may be possible to avoid using indirection in the languages,
but the cost of larger Jloops, greater comalﬁxity in the
compilers (more use of volatile registers) and the varlance 1in
characteristics between the KL=10 and the 2080 are siqnificant
unknowns, The current plans are to use indirection until and
unless clear reasons demand a chanae in plans, The cost to
switch teo indexing in FORTRAN has been estimated at two
man=-months,

The monitor code has already  been done and 1is working,
Replacing the uses of indirection with indexing, while not out
of the question, will take considerable time andg effort, T0O
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have to commit resources to a vroject that provides no direct
improvement in the product at the expense of potentially
marketable improvements, would be unfortunate. And, as with
the languages, the differences between the KL=~10 and the 2080
may well mean that the code is still less than optimal for one
of the processors,

The time to convert the ‘“"performance critical" uses of
indirection to indexing is comparable to that for FORTRANI two
months.

3.3 Instruction timing chart

This chart shows the time (indirection) to execute a single
MOVE instruction using "global indirection" for addressing. An
example of this is in section 3.0 above. It also shows the
time (indexing) to execute & sequence of instructions that
achieves the same result as indirect addressing, but with
"global indexing" as the addressing mode. Again, section 3,0
glves an exanmple of such a code seguence, '

2080 KL=10
indirection 1100 nsecs 900 nsecs
indexina 200 nsecs 1300 nsecs

The values for the 2080 were derived by “cougting cycles",
estimating the cost of IBOX conflicts and averaging the various
instruction seguences that could bhe used, Therefore this 1is
not the "best case" performance for the 2080, Furthermore, the
numbers represent only an "educated guess" and could vary as
much as 30% from the "true values", ‘

The KL=10 values were derived from instruction timinas on
KL2102 using "the bpest case" instruction seguence given in
section 3,0.

To put this in perspective, let’s assume the 2080 is 5X the
performance of a KL=10, Furthermore, 1let”s assume that an
instruction that uses indirect addressing will run at the same
speed as the same instruction on the KL=10, Furthermore, any
instruction that does not use indirection, will run at 58X the
same instruction on a KL=10 (this {is, admittedly, a
questionable assumption)., If 20% of the instructions in a
program use JIndirection, then the effective speed of this
program will be 2.8X a Kiu=-10, or a 45% loss in throughput, If
10% of the instructions use Indirection, then there will be a
27% loss. Presently, the uses of indirection are rare, but as
applications take advantage of extended addressing, use of
indirect addressing will grow, A first=order quess that 20% of
the instructions 1in a typical FORTRAN application using array
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data seems appropriate.

Cost of indirection
(ideal power factor is 5)

% indirect instructions power factor % loss to ideal
36 2.3 54
20 2.8 45
15 3,2 37
10 3.6 27
5 4.2 17

3.4 Other "indirection" problems

Certainly, the abovewstated problem with writing loops 1is the
most pronounced. However, all cases of addressing are affected
by the performance of indirection,

For example, consider a subroutine call., WNormally this would
look 1like (8ll timinags are subject to the same caveat as given
in section 3.3) .

CALL SUB | (528 nsecs)

However, if the routine being called may be in another section
from the cal) site, we would be inclined to write:

CALL ®[EFIW SUBIJ (1628 nsecs)

However, the cost of the indirect address calculation might
well dictate code 0f the form: ’

XMOVEYI SAC,SUR (968 nsecs)
CALL OC(8AC)

or

MOVE AC, [SUB] (682 nsecs)
'CALL 0(SAC) ~

The latter form incurs a penalty of approximately 154 nsecs
over the npon=indexed and non=~indirect form, the middle form a
penalty of 440 nsecs and the from using indirection of 1100
nsecs., Therefore, the penalty for indirection may be as high
as an order=-of-magnitude greater than that for indexing,

The KL=10 will execute the indirect form of the call slightly
faster than it will the two instruction, indexed form.
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One of the intended features of the new LINK is to detect and
remove unnecessary indirect references., That is, when one
writes a program, or when a program is compiled, the author or
compiler does not have the knowledge to predict which data
references will be to data in the PC section and which will be
to data in other sections, Therefore, the compilers will
generate code that uses global (viz. 1indirect) references.
During the loading of the .proaranm, LINK will be able to
determine whether a global reference is reguired and will be
able to convert the indirect references into local references.,

If the compilers are obligated to produce indexed references to
data, this operation will become much more difficult, and in
many cases impossible, to achieve,

4, Recommendation

4.1 Indirection

Ideally, the 2080 IBOX should be modified to detect and
interpret instruction addressing of the form:

UP AC,RLEFIN BASE(X)]
That is, addressing using a single level of global indirection,
possibly with indexing, should be handled completely and
efficiently by the IBOX.

Many of the benefits of this change have bean described
already: :

"ideal" confarmance to the architecture
. encourage the use of "apparent code"

« Smaller programs

« allow current software development plans to proceed

. provide common, efficient code for KL=10 and 2080
4,2 paqing cache
As stated earlier, more study 1s needed to know if we have a
problem at all, However, it seems quite clear that some sort
of microcode~supported cache in the EBOX 1is desirable, both for

the 2080 and the KL=10, and should be included in the FRS 2080
microcode and be available for the "FCC" KL=10,
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NEELD,
NSELD,
NSELD.
NBEL,
NSED,

NEEL .

NSED.
NGEC
MEED,
NSED.
NBEC.
MEED,
NEED,

MEEL,

NESED.
MEED .
NEED.
NEELD .,
HEED.
MBED,

NGEC,
NGEC.
NEEC. |
HEEC.
NBEC.
NGEC.
MEBEC,
MEEL,

NEELD,
NGEC,
NEEC,
NEED,
HEED,
MEEC,
NSEC.

NSEC,

NEEC.
NGEL.
NEED,
MEELD,
NEED,
NBELS
MNSELD.
NEEL .

NEELD,
NEELD.

NEED, |
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SETA
- GETAT
- BETAM
SETAR

X0OR
XORY

- XORM

LORE
Or
ORI
ORH
ORE

ANDOE
ANDCERT
ANDCEHM
ANDCEE
EQy
EGQVI
EQUM
EQUE

- BETCA
CBETCAIL

SETCANM

. BETCAR

- ORCA

OrRCAl
ORCAM
RCAR

- SETCH
SETCMI

-~ GETCMM
. SETCME

ORCH
ORCHMI

. DROMM

OROMER

ORCE
OQRCEI
ORCEHM
ORCEE
SETO
SETOX

- SETOM

SETOR

ML

- HLLT

HLLM

- HLLS

HRL

- HELI
HRELM

HELE

- HLLZ

HLLZI
HLLIH
HLLZS
CHRLZ

HRLZT
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3469
268
710
710

S A03

302
745
744
403
62
745
744

403
302
745
745
403
302
745
7448

302
302
407
607
403
302

745
745

1
2468

710
710

403
302
745

745

4073
302
745
745
268
268
573

G73

403
302
745
710

- 403

302
213
710

3469
268
710
714
X469
248
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NEELD .
NSEL .
NEED.
NEEC.

NGEL,
NEED,
NSEL
NSEL,
NSELD .
NSEL
NSED .
NSED.

MGEC.
NSED.
NSEC.
NEELD .
MNBELD,
MEBEC.
NEELD,
NGEC.

MNEED .

NBELD .
NSEC.,
NSED.
NEELD .
MEELC,
NSEL,

NSEC,

MOET,
NESED.
NEEC,

NSEC: .

NEEL.
MEED,
NBEL .

MWEESD,

NSECS
NEED.
NEEC.,
NEED,
NSEL .
NSED,
NBELD,

NEBED,

NSEL
NEELC,
NEET

NSEC.

MNEEC.
NSED.
MBED.
NSEC,

MEED,

NSEC,
NEED.
NGEL,
NSEL,
NSED,
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HRLZS

HLLO
HLLOI
HLLOH

HLLOS.

HELO

- HRLDI

HRELOM
HRLOS

HLLE

HLLET

HLLEM
HLLES
HRELE

HRELETL
HRLEM
HRLES

HER

HRRI
HRRM
HERS.
HLE
HLRI
HLEHM
HLEE

HRRZ

HERZI
HRERZM
HRRZIG
HLRZ

HLRZI
HLRZH
HLRZS

HRRO
HRRD T
HRROHN
HREOS

HLRG

HLEOX
HLEOM
HLEDS

HERE
HERET

HRREM

HRRES
HLRE

HLREX
HLREM
HLRES

TRH
TLHN

= TRNE

TI.NE
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TLHNA
TRHNN
TLNH
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369

268

- 710

716
369
248
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437
S35
779
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335
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79

403
202
744
710
403
302
8213
719

34%
268
140
710
249

2468
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710

F4HT
248
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369
2468
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s
779
AX7
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779
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268
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402
4469
368
248
403

471
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NSEC .

HEELD,
NBEC.
MSELD.
NEEL .
HEELD,
MBEL,
NEEL
MGED.

MEEC,
MEED .
HEED
MEEL.
NBELD,
MEED,
NEED .
MNEELD,

NSED,
NSEC,
NSED,
NEEE,
NSELD .

MEEC.,
NSED,
NSEL .

NSED.
NSED,
NSEC.
NSED,
NEEE,
NGED,
NBEL .
NBED,

NEGE,
MBED,
NGEC,
MEEL .
NEED
MEEL,
NSEL,

MEBEC,
NSED.
NEELD.
NBED,
NBEC.
NEELD.
NGED .

NGED,
NSED,

NSEC.
NGED,
NSEC,
NSEG,
NSEE,
NSEL .
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THN = 248 NSED.
TONE = 534 NSEC.
TENE s 403 NSED.

Y.TDNA & 02 NBED,

- TRZA

TSHA & 302 NBEC,
TIINM = a3 NBER.
TENN = 608 NSED.

TRY
TLz

TRZE
TLZE

369 NSEC,
369 MSEC,
NSED,
469 NSEC.
348 NSEC.
248 NSED.
3 NSEL,
471 NSEC,

HA I O
3 "-ﬁt
o)
3

TLEZA
TRZIN
TLIN

4 H
=
o]
£l

1oz = BOS NGED,

- T8 = 0T NBED.

- TRCA

TOZE = G936 MEBEL.
TGZE kS A£03% NSED.
ThEA = 02 NEBED.
- TBZA : S02 NSELD,

TOZN NEEC.
TEZHM 408 NSEL.

[T I TR
8

KT Lad
R3]

CTRE
TLD
TRECE
TLCE

369 NSEG,
| NSEE
402 NSED.
469 NBECD,
NSEL,
348 NSEC.
403 NSEC,
NSEL

B i
ind
fa
-

OB o#H O#
f2
[2x]

TLCA
TREN
TLEN

%1
-
Cd

oot

Too 2 GO0 NBEC.
T8C = S0T NSEC.
- THDE = G934 NBEC.
TsECE = 403 NBE@.
CThCA @ 502 NBED,
TECA = wlE MBEC,

- TIEH : BI9 NBED.

- TLO

. TLOE

- TDOE

330U
=~

THEON H08 NSED.

TR

i
ad
[
R ]

NBED.
36% NEBEC,
NESED.
4469 NEED.
348 NSED,
G688 NSEC,
B NESEC,

471 NSBEC.

JROE

BoOECH #
-
L]
3

- TROA
- TLOA
TRON
TLON

[ I
=3
el
s

TR
T80

G505 NSED.
G0% NSEC.
NSED.
403 NEBEC.

BopoH OB
]
i
g

THOE

oA o o= H02 NBEC.
T80 = 503 NBEG.
- THON = 37 NSED.
TSOM = &08 NESED.

EXTEMD

1
N
N
i
G

NBEC. (OUVERHEAD ~ MOVST - BLT (4 WDEY

i
=
£
g
Pl

CHFEL NSED, (1 BYTED
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CMFEL = L4F9E7 NSEC,

AV TR T

BYTES)

E
R

CHMFSE = 4200 NSEC. {1 BYTE)

< GMPSE = &604 NEEC. (2 BYTES)

A e T e T O Y N

CMPSE = 14519 NGEC. (0 BYTES)

CHMFPBLE = 4140 NSEC. (1 BYTEQ

CHFELE = &DE1 NBEC. (2 BYTES:

CHMPSELE = L4370 NSEC. (35 BYTES)

EDIT = 188291 NIEC. (RLANKD

EDIY = PATRI OMBEC,  {%.,01 DUE US)

EDIT = QOBR&]L NEED. ($99999.9% DUE U®)

EDTT = 90861 NSEL, ($99999,99 CREDIT)
. CMPSGE = 4140 NSEC. (1 BYTEY
. CMPSGE = 6551 NSEC. (2 BYTES)

CHFSGE = 14370 NSEC. (5 BYTES)

CHPEN = AFFF OMBEL. (1 BYTED

CHESN = 4811 MNSEC, (2 EYTES)
CMESN = 15169 NSEC. (5 BYTES)
-~ CMFBG = 4248 NSEC. (1 BYTE)
CHESE = 6739 NSEL. (3 EYTES)
CHESE = 14957 NSEC. (5 BYTES)
CUTHRQ = 4439 NSEC. (1 RYTE)

CUTDHIRED = &131 NBEC. (2 BYTES)
CYTDERO 11578 NBEC. (3 BYTES)

]

4947 NSED. (1 BYTE?
7211 NSEC. (2 BYTES)
14370 NSEC. (5 BYTE®)

curoet
CUTHERY
CVTDET

o

CUTRLG
CVTEDROD
CYTRIN

14672 NBED.
17280 NBEC,
261322 NBED,

BYTE)
BYTES)
BYTES)

AR I

R
e g e

i

- CYTROT 14%83 NSEC. (1 BYTE?
CUTROT = 1H098 MBEC. {2 BYTE)D

CYTEDT = 98187 NSEC. (% BYTES
MOUS0 = H&00 NSEC. (1 BYTE)
MOUSE = 289 NSEC. (2 BYTES)
MOVSD = 17280 NSEC., (5 BYTES)

5 - WOUST = 008 NSEC. (1 BYTE)

. MOVST = 9254 NSEC. {2 BYTES)
HOVST = 19686 NBEC. (5 BYTES)
MOVSLJ = 4579 NSED., (1 RYTE?
MOVSL . = &B17 NSEC, (7 BYTESY
MOVSL. = 14370 NSEC. (5 BYTES)
MOVSR = 5182 NSEC. (1 BYTE)

- HMOVSEJ = 7448 NSEC. (2 BYTES)

- HOVUSRJ = 14983 NSEC. (5 BYTES)
MAP . 1334 NSEL.

CONT FI = 4947 NSELD.

- COND FI cw L7B2 MBEL,
IAaTAl aFR 4355 NGEE.
- DATAD AFR H35T MSED.
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700 ~ CONO PAG =  PH04& NEEC,
700 - DATAD FAG = 23032 NSEC, (LOAD URRY
700 -~ DATAD FAG = 1507 NSEC. (LDAD AC BLE)
700 ~ CONI 774 = F170 NEED.

700 -~ COND 774 = 1787 HNSEC.
700 - DATAL 774 = 4594 NBEC.
700 - DATAD 774 =

5388 NSEC.
TEST COMPLETED |

DZOMON: TMD -
DROMON CMD - XXX

NZOMON CMI ~ XXX

D2OMON CHMD -

dfkfh
FROGRAM NOT FOUND - DEKFER,

BROMON CMD - p
DISKIDIRECTORY - pgi

DROMON OMD ~ dfkeh
OFEFB.ALO0  VER 0,1 QR-MAY 7%

FOF-10 KL10 INSTRUCTION TIMING TEST (DFRFR) .
VERSION 0.1y BV=0.1s CPUE=2123y MOV=278, MCO=40r HO=3646r &0MHZ

CSWITCHES = 000000 000000
CLK SOURCE = EXTERNs CLK RATE = FULLs AC BLK 0 » CACHE? 0 1.2 3

~ BASIC CLOCK CYCLE IS 33 NSEQ.

~ INDEXING TAKES 34 NSEC,

~ INDIRECT TAKES 234 NSEC. |
- INDEXING AND INDIRECT TAKES 247 NSEQ.
- MOVEI TAKES 266 NSEC,

- MOVE FROM AC TAKES 366 NSEC.

- MOVE FROM MEMORY TAKES 400 NSEC.

- HRR FROM MEMORY TAKES 433 NSEC.

§ - SETOM 0 TAKES 4466 NBEC,

10 ~ JRST TAKES 300 NSEC.

11~ JSR TAKES 567 NSEC.

12 ~ FUSHJ TAKES 701 NSEC,

13 - ADD FROM MEMORY TAKES 433 NSEC.

14 - MUL (9 ADN/SURE - 18 SHIFTS) TAKES 2.10 UGEr,

G0 O BN B D Ped e
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s -
1d -~
17 -
18 -
19 -
20 -
21 -
22 -
23 -
24 -
25 -
286 -
27 -
28 .
29 -
30 -
O
Kd -
33 -
A4 -
35 -
34 -
37 -
8 -
39 -
4 -
41 -
A3 -
43 -
g4 -
45 -
44 -
47 -
48 -
L
%0 -
S$1 -
B -
BE -
TEST

NIV TAKES 4.4% USECD,

FIX A FLOATING FOINT ONE TAKES 867 NSEL.

FLTR AN INTERGER ONE TAKES 1.53% USEC,

Fall (1 RIGHT SHIFT) TAKES 1.%7 USED,

Fal {8 SHIFT RIGHT - 3 LEFT) TAKES 1,80 USBECR.
FMFP (7 ADD/SUR -~ 14 SHIFTS) TARKES 2.33 USEC.
FOU TAKES 4,77 USEC,

IMOVE FROM MEMORY TAKES 733 NBEC,
DFAT {1 RIGHT BHIFT) TAKES 2,03 USED,
DFAD (8 SHIFT RIGHT - 1 LEFT) TaKES 2.03 USED.

DFMF (7 ADD/SUR -~ 32 SHIFTE)Y TARKES 4.20 USEC.
ODFIIV TAKES 8,40 USEL. ‘
COND FPI TAKES 1.40 USEC,

CONI PI TAKES 2.80 USEC,

DATAD AFR TAKES 1.30 USEC,
DATAT aPR TARES. 1.47 USEC,
MOVE TO MEMORY TARKES 3546 NBED.

LOGICAL SHIFT (35 FLACES LEFT) TAKES B33 NBEC.

LOGICAL SHIFT (33 PLACES RIGHT! TaAKES 433 NBEL.

LOGICAL SHIFT COMBINED (71 PLACES LEFT) TARES %33 NSECL.
LOGICAL SHIFT COMBINED (71 PLACES RIGHT: TAKES 947 MBELD,
INCREMENT BYTE FOINTER TAKES 834 NSEC.

IMCREMENT AND LOAD BYTE TAKES 1.20 UBELD.

INCREMENT AND DEPOBIT BYTE TAKES 1,50 USEC,

SJFCL TAKES 733 HBEC,

CAT TAKES 400 NSELD.

JUMP TAKES 400 MSED.

CaM TARES S00 NBEC.

EQV AC TO AC TAKES 400 NSED.

EOV MEMORY TO AD TARKES 433 NSEC.

BETOR TAREG 53646 NBECD.

408 TO MEMORY TAKES 700 NBEC,
EXCHANGE AN AC HITH AN Al TARKES 533 NSEC.
EXCHANGE AN Al WITH MEMORY TARKES 700 NBED.

EXECUTE TARES 533 NSED.

BLT MEMORY T0O MEMORY TAKES 1.60 USED,

BLT AC TO MEMORY TAKES 1.57 USED,

HatTal TAKES 10.00 USEL.
DATAD TARES 2.00 USEC,

COMFLETED

DZOMOM CMD -



