| | | | | | | | interoffice

ldlilgli]Jt]al]l]
| | | | | | memorandum
e e e +
To: Peter Hurley Date: 05 Jan 83
Jan Jaferian From: Mike Uhler

Dept: L.S.E.G.

DTN: (8-)231-64L48
Loc/Mail stop: MRO1-2/E85
Net mail: UHLER at 10

Subject: A Systems Concepts PDP-10

1.0 Executive summary

The possibility that Systems Concepts will design a PDP-10 is
interesting but has some problems associated with it. Among these
problems are:

o Defining what is to be implemented in the absence of a
complete architectural description of a PDP-10.

6o Providing them with enough documentation so that they can be
successful in implementing the architecture.

o Defining a set of tests that can be used to measure correct
implementation before the monitor and user-mode software run
on the machine.

The next three sections of this memo discuss these problems. CPU
requirements are suggested based on several sources of available
documentation. Tests are identified (primarily based on work done
for the Jupiter project) that could be used to measure correct
implementation.

Subsequent sections discuss areas that are not well-defined and
may benefit from further analysis. These areas include
performance implications, the 1/0 structure of the machine, RAMP,
resolution of architectural and implementation problems, etc.

Page 2

2.0 Defining the CPU requirements

When trying to define the instruction set requirements for a new
processor, one typically uses an existing processor as the model
to say "this is how it should work'". Given the numerous problems
with the KL10 implementation of the PDP-10 architecture, | believe
that we should use the Jupiter as the basis for stating the
architectural requirements for the Systems Concepts design. Such
a decision benefits from the following:

o The learning process involved in the implementation of another
PDP-10.

© Bug fixes made in Jupiter that were not made on the KL10 for
some reason.

o Resolution of the correct definition of the extended
addressing architecture.

© Implementation of the full 30 bits of virtual address space.

© Additional microcode information provided on MUUO and page
fail traps to the monitor.

o Improved methods for handling LUUOs, MUUOs, traps, page fails,
interrupts, etc.

© New instructions implemented in Jupiter but not in the KL10.

If we indeed use the Jupiter design as the basis for defining
requirements for the Systems Concepts design, there are two simple
statements that can be made:

.0 A non-privileged user-mode program should be able to detect no
differences when run on a Jupiter and on the Systems Concepts
design. '

o ldeally, an exec-mode program should be able to detect no
differences when run on a Jupiter and on the Systems Concepts
design. In the past, we have made changes to the exec mode
environment with every processor implementation. This process
resulted from a close coupling between the hardware designers
and monitor programmers. Since the coupling is much looser in
this case, it is more important to make the exec-mode
environments identical.

3.0 Available documentation

The primary source of documentation on both the instruction set
and the PDP-10 architecture 1is the Processor Reference Manual.
There are, however, some serious deficiencies in certain areas.

Page 3

Therefore, | suggest defining the instruction set and
architectural requirements based on the Processor Reference
Manual, as amended by the following:

o The annotations in my copy of the Processor Reference Manual.
My copy contains corrections for some of the more serious
problems. These pages can be copied and inserted in another
copy of the manual.

o My memo on Extended Addressing. This memo has been reviewed
by the Architecture Committee and it represents a ''definition"
of the extended addressing architecture.

o KCIO.MEM. This document is the Jupiter exec-mode spec. It
defines all exec-mode instructions, and other processor
dependent information.

k.0 Verifying the correctness of the implementation

To fully verify that the implementation complies with the
architecture, we obviously need to run the monitor and existing
user programs. However, other tests can be run before the monitor
to give us a first-order indication that the machine correctly
implements the instruction set. This set of tests consists of
Jupiter CPU diagnostics and other programs that test significant
pieces of the architecture.

The following list consists of basic instruction tests that have
run successfully on Jupiter hardware and are known to work:

DCKAA MOVE, SKIP, AND, XOR,EQV,Boole

DCKAB MOVE,Compare,Test,HWtest,Boole, ADD

DCKAC Logical,HWtest

DCKAD Reg addr,JFCL,AR flags,A0S,S0S,JRST,AOBJ,JSP,
XCT,indirect and indexed addressing

DCKAE FWtest, ADD,SUB,PC change,Compare

DCKAF . Boole,HWtest,Test -

DCKAG PUSH,POP,XCT,Shift,Rotate

DCKAH Pl system, Interrupts,LUUOs,Processor 1/0

DCKAI Shift,Rotate

DCKAJ Shift,Rotate,Arithmetic shift

DCKAK Basic multiply (part 1)

DCKAL Basic multiply (part 2)

DCKAM General muitiply

DCKAN Multiply,Divide

DCKAO Byte,BLT,JFFO,misc.

DCKBA Basic instruction exerciser

DCKCA FSC,Floating add,Floating subtract,normalize,round

DCKCB Floating multiply,Floating divide

bCKcC FIX,FIXR,FLTR,DMOVE,DMOVN, DAOVEM, DMOVNM

DCKCD Double floating register set integrity

DCKCE DFAD,DFSB,DFMP,DFDV

Page 4

DCKGA DADD,DSUB, DMUL,DD IV

The following list consists of extended functionality diagnostics
that are either not complete or not debugged as of this date.
They should be run if they are available:

DCKDA TOPS-20 paging

DCKDB Extended addressing

DCKEB PXCT

DCKFA Timer instructions

DCKGB Extended exponent

DCKGC Extended instruction set
DCKGD 1/0 instructions

DCKGE New (non 1/0) instructions

The following list consists of programs that were written or
adapted to assist in debugging Jupiter microcode and hardware.
They are known to work and should all be run:

EAT Extended addressing test

TPAGER Paging tests

TUUO UUO tests

TLUUO LUUO tests

TTRAPS Trap 1,2,3 tests

TPXCT PXCT tests

PITST Pl system tests

KCBP Byte and string instruction tests

In addition to the tests listed above, all examples in my Extended
Addressing memo should be run on the machine and yield the results
indicated. We should probably write a simple test containing all
the examples.

5.0 Areas requiring additional thought

When considering the possibility of obtaining a PDP-10 design from
a source outside the company, topics other than simply defining
the instruction set to be implemented come to mind. This section
contains some thoughts in these areas. It is not intended to be a
thorough review of the topics mentioned. Rather, it is intended
to provoke some thought. Most of these items are not specific to
the Systems Concepts design but are things that should be
considered in any future PDP-10 design.

5.1 Measuring the performance of the machine

We are currently in the process of analyzing the performance of
the Jupiter CPU. This project has demonstrated that theré is no
simple way to calculate the performance of a machine. Some of the
methodologies that are developed during the Jupiter performance
analysis project may be of use in measuring the performance of the

Page 5

Systems Concepts machine. Unfortunately, these methodologies may
not be available for several months. One way of. making a gross
estimate of machine performance may be applicable, and it is
described below.

Some amount of opcode histogram data (also known as workload data)
is available from sites that represent Fortran, Cobol, and general
timesharing loads. This data gives the frequency of occurrence of
each opcode measured during normal machine operation. To obtain
an estimate of machine performance, one must know the time to
execute each instruction in the instruction set on both the new
machine and on the machine being used as a baseline (presumably
the KL10 in this case). The time to execute the sample workload
is then calculated by the summation of the products of instruction
frequency and instruction time for each instruction. The ratio of
times to execute the workload on the new machine and the baseline
machine is then an estimate of machine performance.

Workload data for various job mixes and timing information for the
KL10 is available today. In addition, a measurement program
exists that may be wuseful in measuring the speed of each
instruction on the new machine.

5.2 Effects of extended addressing

The use of extended addressing will increase significantly over
the next few years. We know already that extended addressing
causes an increased use of indexing and indirect addressing modes
and this should be emphasized. We have no existing tests that
measure the effect of increased use of extended addressing, so any
evaluation of the performance of a new machine running extended
addressing will be somewhat ad hoc.

5.3 Translation buffer organization and size

There have been some major performance problems concerning the
size and organization of the KL10 translation buffer. While these
probiems have occurred in pathological cases up to now, the
increased use of extended addressing could make the pathological
case more common in the future. On Jupiter, we significantly
increased the size of the translation buffer, but the organization
remains l1-way associative. There is some belief that a multi-way
associative translation buffer might have a major impact on the
performance of the system, and no future PDP-10 processor should
be built without understanding the pros and cons of this decision.

Page 6

5.4 Cache organization and size

The KL10 contains a 2K, L4-way associative data cache which
typically gives hit rates around 92%. The Jupiter contains an 8K,
L-way associative data cache which is expected to give a hit rate
around 98%. If any cache analysis is done during the Jupiter
performance project, this data should be considered for future
designs. ’

5.5 Performance instrumentation

When our machines don't perform well, we tend to look for software
solutions first. This makes sense since software is easier to
change than hardware (and in some ways, microcode). However, when
the problem really is a hardware bottleneck, we have no good tools
with which to find the bottlenecks because our hardware has
insufficient instrumentation points. It should be stated as a
goal that all future machines have hardware and microcode
instrumentation points so that hardware bottlenecks can be
detected.

5.6 1/0 structure of the machine

How does the machine do 1/07 It is apparent that all future
PDP-10 designs must have a Cl and NI interface in order to make
use of the new 1/0 architectures that are being developed.

What is the -10 interface to the console and what are the
capabilities of the console? it should be a goal to make the
protocol between the -10 and the console similar, if not
identical, to that used by the Jupiter console.

5.7 RAMP

What are the RAMP characteristics of the new machine? Is error
detection and recovery better than that of the KL10? |s there an
increased requirement that the monitor handle hardware exception
conditions?

5.8 Microcode space requirements

On all previous microcoded processors, we have quickly consumed
all of the available microcode space. This situation has caused
numerous problems including the inability to fix bugs. It should
be a stated goal that there be at least 10% unused space remaining
in the microcode when all instructions are implemented.

Page 7

5.9 Problem resolution

How are we to resolve implementation and architectural problems
with the new design? It has been difficult to do this in the past
even when we all worked for the same company. Who has final
approval that the design correctly implements the PDP-10
architecture? |If the implementation doesn't comply with the
architecture, how do we get it changed? How does Systems Concepts
request approval for a change to the architecture or clarification
on a point of architecture?

6.0 Conclusions

Specifying the requirements for a PDP-10 hardware design is not a
simple task, as we've seen in the past. This task is made more
difficult by the lack of a formal and complete definition of the
PDP-10 architecture. If we are to attempt to specify such
requirements, we should start with the architectural design for
Jupiter rather than that for the KL10.

Some documentation is available to define the requirements for the
design, but it 1is not complete. Programs are available against
which the design could be measured for correct implementation.
However, we all know that the only true measure is a running
monitor and user-mode software.

There are additional areas of concern that should be considered in
more detail. These area include performance characteristics of
the machine, |/0 structure, RAMP, problem resolution, etc. These
are important aspects to overall system design and should not be
ignored.

| | .| | | | interoffice

|
ldji|gl]i]t]al]l]
| | | | I | | memorandum
i e L PR e +
To: Jan Jaferian Date: 17 Jan 83
: From: Mike Uhler
CC: Peter Hurley Dept: L.S.E.G.

DTN: (8-)231-6448
Loc/Mail stop: MRO1-2/E85
Net mail: UHLER at 10

Subject: Documentation for Systems Concepts

Attached are copies of the Systems Concepts documentation as
mentioned in my memo of 05 Jan 83. The state of this
documentation is as follows:

1. KCIO. This is the Jupiter exec mode spec. It contains
information on exec mode instructions, new |/0 operations, the
Jupiter paging data structures, trap, UUO, and interrupt
handiing, etc. This spec contains information about an

unannounced product, so it is technically company
confidential. However, since it contains only
hardware/software interface descriptions, | believe that it

contains minimal (if any) proprietary information.

2. The memo entitled "Extended addressing'. This memo 1is the
result of some work that we did during the Jupiter microcode
implementation. All sections except for section 12 (PXCT)
have been reviewed and approved by the Architecture Committee.
Section 12 has had a minimal review and has been updated based
on comments from that review. Full review of section 12
should be complete within two weeks.

3. Pages from my annotated copy of the Processor Reference Manual
(AA-H391A-TK with June 1982 wupdate AD-H391A-T1 installed).
These pages correct some errors in the existing manual. They
have not been reviewed by anyone else, but | believe that they
are accurate based on past Architecture Committee meetings.

I £ you~have additional questions, |'d be happy to answer them.

| | | | | | | | interoffice

fd | iJg]i|t]a]l]

| | | | | | | | memorandum

e P T L E e +

To: Jan Jaferian Date: 17 Jan 83
From: Mike Uhler

CC: Peter Hurley Dept: L.S.E.G.

-DTN: (8-) 231-6L448
Loc/Mail stop: MRO1-2/E85
Net mail: UHLER at 10

Subject: Verification programs for Systems Concepts

The attached tape contains 30 verification programs as mentioned
in section L.0 of my memo of 05 Jan 83. The programs are as
follows:

DCKAA-DCKAO
DCKBA
DCKCA-DCKCE
DCKGA

EAT

TPAGER

TUUO

TLUUO
TTRAPS
TPXCT
PITST

KCBP

Note that these programs use Jupiter instructions and data
structures that are incompatible with a KL10 and will not run
correctly on a KL10. In addition, most of the DCKxx programs use
the Jupiter console protocol to type messages on the console. |If
the Systems Concepts machine implements the Jupiter instructions,
data structure and console protocol, these programs should run
unmodified. If not, modifications to the programs will be
required and any modifications should be approved by us.

PERFORMANCE VERIFICATION

The following programs must run in stand alone mode on a
System Concepts system with an execution time less than or
equal to that of KL1@E system. The two systems would be
running e€ither TOPS-16 (7.02) or TOPS-20 (5.1) and would
have the same amount of memory and disk space,

COBOL PROGRAMS

COMPUT ' Decimal Arithmetic
- : Packed Decimal Arithmetic
Integer Arithmetic
Floating Point Arithmetic

~ MOVIT String manipulation

NPRF1 General Cobol
USTEEL General Cobol
TIMTST General Cobol

FORTRAN PROGRAMS

SPEED Floating point
Single precision
WHETS | Single precision
‘WHETD ' Double predision, floating
point
FFT45 , Fast Fourrier Transform
HANOI Integer Arithmetic
The RARICH Tests (A-W) General Fortran
MODCUT Extended Addressing Fortran
SP1111 , Géneral Fortran
MISCELLANEOUS PROGRAMS <
SP1111l Compilation (Fortran) Logic Mix
MR1CD1 Compilétion (Cobol) Logic Mix
Buildinq;TOPS-Zﬂ 5.1 (Macro/Link)b Logic Mix

SANDIA Tests Fortran and Pascal
% Extended Addressing

Rutgers LISP Test Extended Addressing

PERFORMANCE VERIFICATION

As a basic verification of the S.C. CPU performance, the
S.C. CPU instruction timing results from "SPEEDY" will be
compared to the KL1PE (with MF28 memory and cache)
instruction times. The general mix of instructions and
their appropriate weighting (as has already been given to
S.C.) must yield an aggregate performance value equal to or
better than that of the KL1#E. Also, no S.C. instruction
timings should be longer than 1.2 times the KL1@E timings
and the floating point instructions and the byte and string
manipulation instructions timings must all be as good as or
better than those of the KL1gE.

.

1.

EXHIBIT

cp

Acceptance Criteria:

1.1

1.2

A non-privileged user-mode program running under TOPS-18 or TOPS-2:
should not be able to detect that it is running on a SYSTEMS CONCEPTS
Unit instead of a KL System through the execution of any PDP 12

S

instructions.

Some differences may be allowed if they are deemed by DIGITAL to Gbe
desirable improvements to the PDP-18 architecture. Such waivers must
be made by DIGITAL in writing. |

The definition of the PDP-18 Architecture is contained in an attached
copy of the Processor Reference Manual which has been annotated with
the latest DIGITAL approved updates to the PDP-18 Architecture and in
an attached copy of a memo from Mike Uhler describing the' PDP-13
Extended Addressing Architecture. A third document, KCl@.MEM, also
attached, represents the current directions in which the PDP-10
Architecture is headed for EXEC Mode instructions. Adherence to this
specification is mandatory.

As a partial demonstration of the conformance of the SYSTEMS CONCEPTS
Unit, DIGITAL is supplying a set of programs and examples which must
be run without unauthorized modification and which must complet°

w1thout errors and produce the correct results. The llst of programs
is as follows:

DCKAA MOVE, SKIP, AND, XOR, EQV, Boole

DCKAB - MOVE, Compare, Test, HW test, Boole, ADD
DCKAC Logical, HWtest =«
DCKAD Reg addr, JFCL, AR flags, AQS, S0S, JRst, AOBJ, JSP,
XCT, indirect and indexed addressing
DCKAE : FWtest, ADD, SuUB, PC change, Compare
DCKAF Booke, HWtest, Test
DCKAG PUSH, POP, XCT, Shift, Rotate
DCKAH .. PI system, Interrupts LUUCs, Processor I/0
DCKAI Shift, Rotate
EXHIBIT C

-1 of 2~

2.

DCKAJ Shift, Rotate, Arithmetic shift

DCKAK Basic multiply, (part 1)

DCKAL Basic multiply (part 2)

DCKAM General multiply

DCKAN Multiply, Divide

DCKAO Byte, BLT, JFFO, misc.

DCKBA Basic instruction exerciser

DCKCA FSC, Floating add, Floating subtract, normalize, rounc
DCKCB Floating mltiply, Floating divide ’
DCKCC . FIX, FIXR, FLTR, DMOVE, DMOVN, DMOVEM, DMOVNM

DCKCD Double floatlng register set 1ntegr1ty

DCKCE DFAD, DFSB, DFMP, DFDV

DCKGA DADD, DSUB, DMUL, DDIV

EAT Extended addre551ng test

TPAGER Paging tests

TUUO UUO tests

TLUUO LUUO tests

TTRAPS Trap 1,2,3 tests

TPXCT PXCT tests

PITST. PI system tests

KCBP Byte and string instruction tests

In addition to the tests listed above, all examples in the Extended
Addressing memo should be run on the Unit and yield the results
indicated.

Acceptance shall be considered complete when the programs listed in
1.3 have been demonstrated to run properly; the aiagnostics supplied
by SYSTEMS CONCEPTS are verified; user mode compatibility has been
satisfactorily wverified by DIGITAL; design modification responsi-
bility has been assigned and accepeted by either DIGITAL or SYSTEMS
CONCEPTS as appropriate, and DIGITAL has written an evaluation re-
port, which has been presented to both DIGITAL and SYSTEMS CONCEPTS.

This Acceptance shall take place within 51x (6) months of the Unit
having been delivered to DIGITAL and having demonstrated to run the'

designated conformance tests.

Successful Demonstration of Remote Serviceability capability as

outlined in attached Documents, and referred appendicies.

Performance Criterias

1/25/83:2.8:IMG:sa

ANKCTATED DABES oF TITE PRocEsSot- JEEFERscE
/V%WML GNEY 7D ﬁS/&Mﬁ Crespi™s

The following instruction makes the result of an effective address cal-
culation available for use as a global address, ~even for accessing a fast
‘memory location from any sectxon

XMOVEI Extended Move Immediate

B TS] 4 [/]‘:x] % ' |

v i ' 89 121314 1718 . . 35

If the program is running in 2 nonzero section, do one or the other of the

following.
If E is not a local AC address, clear AC bits 0-5 and place the global ‘
effective address E in AC bits 6-35. o) a3 WA N En

; el
If E is a local AC address/ put 1 in AC left and E in AC right. w

If the program is running in section 0, this instruction is called SETMI, &-&.

a Boolean instruction. that performs an analogous function for section 0

(§2.4). [loo/YMNET AL, & (owen, 208
Notes. The form given a local AC address is that of a global AC address, Op200 / ol

which therefore still refers to fast memory no matter what section the

address may be moved to or used in. Giving XMOVEI with an address 20 or STORES Oy /@ A

greater without indexing or indirection places the current PC section num- MO) 2

ber in AC left, and it can thus be used to determine what section the

program is in.

Double Move Instructions!

These four instructions are principally for manipulating the double length
operands used in double precision arithmetic, fixed or floating. But they
may be used to move or negate any doubleword, i.e. the contents of a pair of
adjacent accumulators or memory locations. Two of the instructions are
simple extensions of MOVE and MOVEM to doublewords, and for them the
configuration of the operands is irrelevant. The other two are extensions of
MOVN and MOVNM, with the operand interpreted as a double precision
floating point number. They can just as well be used for fixed point num-
bers, but with a slight variation in the format. Namely a negative result
has a 0 in bit 0 of the low order word instead of a copy of the sign. For
arithmetic operations per se this difference is inconsequential, as all arith-
metic instructions ignore bit 0 of all low order words. However it could
cause a comparison of two equal double precision numbers to fail.

All of these instructions address a pair of adjacent accumulators and a
pair of adjacent memory locations. The accumulators have addresses A and
A+1 (mod 20,), the memory locations have addresses E and E+1.

! In the KA10 these instructions are trapped as unassigned codes (§2.16).

2-6 User Operations

XBLT Extended Block Transfer '

] E1 is not used.?

123 |4 1] x | Y]
0 89 121314 1718 : 35
eo [o020 Joo 1] x | Y
3s

0 89 121314 1718

~ Move a block of words from one area of memvlory to another. The block size
and the locations of the source and destination areas are defined by the

contents of a block of three accumulators.

AC NUMBER OF WORDS IN BLOCK
AC+1 00 LOCATION OF SOURCE BLOCK
AC+2 00 LOCATION OF DESTINATION BLOCK

0 S 6

35

oo . o ute i MILILO. Of] . S, .

perform a forward or backward block transfer as follows.

If AC contains a positive number N, move a block of N words from a
source area beginning at the location specified by AC+1, to a destina-
tion area beginning at the location specified by AC+2, and extending
through increasing addresses. At the end AC is clear, and AC+1 and
AC+2 respectively contain addresses one greater than those of the final
source and destination locations referenced.

If AC contains a negative number —N, move a block of N words from a
source area beginning at a location one less than that specified by
AC+1, to a destination area beginning at a location one less than that
specified by AC+2, and extending through decreasing addresses. At the
end AC is clear, and AC+1 and AC+2 respectively contain the addresses
of the final source and destination locations referenced.

CAUTION

This instruction uses three accumulators, and under no cir-
cumstances should any of these three be part of either the
source or destination block. Because of the possibility of an
interrupt or page failure, the contents of these accumulators
even as a source cannot be guaranteed. And in any event, use
of XBLT for moving an AC block is quite unnecessary, as a
simple BLT can move fast memory to any section.

87 , X and Y are reserved and should be zero.

2-10 User Operations

which the disruption in the normal sequence occurred. Saving the program
position is referred to as “saving PC,” although the quantity actually saved
may be the value currently contained in PC or an address one greater than
that, depending on the circumstances. For example, the same instruction
may be used to call a subroutine in a program or to call a service routine in
an interrupt. When a return is later made using the saved address in the
subroutine case, the instruction that saved PC should not be repeated —
the return should be made instead to the instruction following it in normal
sequence, i.e. the instruction at the address one greater than that originally
in PC. In the interrupt case; on the other hand, a subsequent return has
nothing to do with the instruction that saved PC — the return should be
made to the interrupted instruction, the one PC pointed at when the inter-
rupt occurred. Both cases are covered in the instruction descriptions by the
phrase “save PC,” and it is to be assumed that the address saved is the one
appropriate to the situation in which the instruction is given. :

Sometimes regarded as program control, in a somewhat trivial sense,
are those instructions that do nothing. The most commonly used no-op is
JFCL, which is described here. Other no-ops are among the testing and
Boolean instructions discussed previously: SETA, SETAI, SETMM, CAI,
CAM, JUMP, TRN, TLN, TDN, TSN.!” Of these, SETA, SETAI, CAI,
JUMP, TRN and TLN are preferred because they do not use the calculated
effective address to reference memory.

The Execute Instruction

This instruction allows the programmer to execute the contents of any
memory location as an instruction without altering the normal program
counting sequence to do it.

XCT Execute

256 A Il X Y

o 89 121314 1718 35

OF ¥(Tar WSTRLTIc)
If A is zero or the processor is in user mode or is a KA10, execute the 1S BELATIVE TO THE
contents of location E as an instruction.'® Any instruction may be executed, SELTIcws Fitem wHCs
including another XCT. If an XCT executes a skip instruction, the skip is [T WAS FETCHED AL
relative to the location of the XCT (the first XCT if there are several in a NOT Nacf_s.smaua(,
chain). If an XCT executes a jump, program flow is altered as specified by > THE S& 7o _
the jump (no matter how many XCTs precede a jump instruction, when PC O THINIOG T XC/
is saved it contains an address one greater than the location of the first

XCT in the chain). :

17 KA10 instruction codes 247 and 257 are reserved for instructions installed specially for a
particular system. They execute as no-ops when run on a KA10 that contains no special -
hardware for them, but for program compatibility it is advised that they not be used
regularly as no-ops.

18 Caution: In a private program (concealed or kernel mode) on the KI10, never give an XCT
that executes an instruction in a public page. It does not work.

User Operations 2-63

Single-
Extended section _
KL10 KLI10 KS10 KII0 KAIO

JRST 0, JRST Yes Yes - - Yes Yes Yes

JRST 1, PORTAL Yes Yes. Yes Yes Yes
" JRST2, JRSTF Z Yes Yes Yes Yes
JRST 3, ; No No .. No Yes Yes
- .JRST 4, HALT K-H K-H K-H K-H 10-H
~ JRST 5, XJRSTF Yes No Yes K-H I0-H
JRST 6, XJEN I0 No K K-H = 10-H
JRST7, XPCW 10 No K K-H 10-H
JRST 10, 10 10 1(6) K IO
JRST 11, - No No No K 10
JRST 12, JEN Z AIO* 10 I0 K 10
JRST 13, No .. No No K IO
JRST 14, SFM Nz No K K-H I0-H
JRST 15, xie<T N . No No K-H 10-H
JRST 16, : No No No K-H I0-H
JRST 17, No No No K-H I0-H

* JEN is legal only where IO is legal in section 0; SFM is legal anywhere in a nonzero
section and also where IO is legal in section 0.

JRST Jump and Restore (KI10-KA10)

254 [F [x] Y |

(V] 89 121314 1718 3s

Perform the functions specified by F if they are legal; then if the function
was performed and the processor is not halted, take the next instruction
from location E and continue sequential operation from there. Bits 9-12 are
programmed as follows.

Bit , Function Produced by a 1 if Legal

9 Restore the level on which the highest priority interrupt is currently
being held (dismiss the interrupt (§8§5.2, 5.5)).

10 Halt the processor. When it stops, the AR lights on the KI10 and the
MA lights on the KA10 display an address one greater than that of
the location containing the instruction that caused the halt, and PC
displays the jump address (the location from which the next instruc-

tion will be taken if the operator causes the processor to resume’

operation without changing PC).
AR or MA actually displays the address of the location that
would have been executed next had the JRST been replaced by a no-

KCio
ye~

NS

ZAT

NO
yaL
/ -
yes
MO
NO

User Operations

2-73

- PRINT: HRLI T,440700 :Initialize left half of pointer for
~ ; ;size 7, position 36
ILDB CH,T ;Increment pointer and load byte
JUMPE CH,I(T) ;Upon reaching zero character
o ' - ;return to one beyond last data word
- ;Print routine o

JRST PRINT+1 Get next character

The next two instructions have no capacity for handling extended ad-
dresses. Hence their usefulness is limited to making intrasection subrou-
tine calls. However most programmers regard them as obsolete anyway, as
they have been supplanted entirely by the stack instructions. For. ISR,

IF THE EA-CALL RESMLTS W A GLOBAL. ADDRESS 1w ANOTHGR
SCCTIoN, THE RESULTS ARE UNDEFINED.

JSA Jump and Save AC
6 [4 [x] v]
0 89 121314 1718 3$

Save AC in location E, the in-section part of E in AC left, and the in-section
part of PC in AC right. Then jump to location E + 1. The original contents of
E are lost.

While the KA10 is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, the processor leaves user mode.

JRA Jump and Restore AC
267 | A4 1] x] Y il
(V] 89 121314 1718 3s

Place the contents of the location addressed by AC left into AC, and jump to
location E.

A JSA combines advantages of the JSR and JSP. JSA does modify
memory, but it saves PC in an accumulator without losing its previous
contents (at a cost of not saving the flags). It is thus convenient for multi-
ple-entry subroutines. In a subroutine called by a JSR, the returning JRST
must refer to the (single) entry point. Since a JRA can retrieve the original
PC by addressing AC as an index register, it is independent of any entry
point without tying up an accumulator to the extent a JSP would. The
accumulator contents saved by a JSA are restored by a JRA paired with it
despite intervening JSA-JRA pairs. Hence these instructions are especially
useful for nesting subroutines.

User Operations

2-77

format. The one-word global pointer is available only with TOPS-20 micro-
- - code version 271 or greater, cannot use indirection, and provides for only
the most common byte sizes via this format: '

P&S : 30-BIT ADDRESS
0 ' 5 6 s, .35

where the address can point to any section, and the left six bits specify both
byte position and size by a number > ‘36 as follows.

P&S P S . P&S. P S
37 36 6 49 36 7
38 30 6 50 29 7
39 24 6 51 22 7
40 28 6 52 15 7 ’
41 12 6 53 8 7
42 6 6 54 1 7
43 0 6

55 36 9
44 36 8 56 27 9
45 28 8 57 18 9
46 20 8 58 9 9
47 12 8 59 0 9
48 4 8

60 36 18

61 18 18

62 0 18

For unrestricted use in a nonzero section, the pointer can be a doubleword
in location E.E + 1 with this format:

P S 1| RESERVED AVAILABLE TO USER 2N e Vg
o7 x Yy Arse BE W Ty,
01 2 56 11 1213 17 18 35 /WM&)

which allows unlimited pointing, as P and S are independent, and the
second word can be local or global, direct or indirect (see the discussion of
indirect words in §1.6). The processor determines the number of words in a
pointer with independent P and S by the state of bit 12 in the first word (in
section 0 bit 12 is ignored and should be 0). Any type of pointer aims at a
word whose format is

L v W// gﬁ:{% | P BITS 7

Y 35-P-S+1 35-P 35-P+] 35

where the shaded area is the byte.

Bytes are always contiguous within a word, and the forward order is
left to right in words and from low to high addresses. The position of the
byte area in a word is called the “byte alignment.” Let P be the position of a
specified byte; 36 — P is then the number of bits in the left part of the word .
including the given byte and all byte positions at the left of it. Dividing

2-86 User Operations - June 1982

If the program is running in a nonzero section, take one of these two
courses of action.

IN &X&CMODC 'PD ™e SﬁMc ﬁ$

us&a M{)ﬂﬁ QJT’ L{S g

In user mode perform the following operations using a block of four
locations beginning at that specified by bits 6-35 of location 420 in the
user process table. In the first two locations save the program flags and
PC in a flag-PC doubleword; in the rest of the flag word clear bits 13-17
and 31-35, and store the instruction code and A in bits 18-26 and : ,
27-30. In the third locatwn store E in bits 6-35 (clear bits 0—5) — > |F E 15 A L
REFEMCE TO THe ACS

0 , FLAGS 00 CODE A 00
1 00 PC
00 E
3 00 NEW PC
0 5 6 1213 1718 2627 3031 35

Then load bits 6-35 of the fourth location into PC, and continue performing
instructions in normal sequence beginning at the location then addressed
by PC. If E is a local AC address, store it in global form (i.e. with a section
number of 1).

MUUOs

The actions of MUUOs depend to a considerable degree on the processor,
and also on which Monitor is in use. These are the MUUO codes.

' TOPS-20 104;040-051, 055077 in section O
TOPS-10 except KA10 - 040-051, 055-077
KA10 040-051, 055-100

MUUOs have considerable flexibility in the way they can alter the opera-
ting characteristics of the machine (mode, section). But the information
that governs the alterations is contained in the user process table, and is
therefore assumed to be under sole control of the kernel program.

The unassigned codes, which are listed in Appendix E, are not
MUUOs, but the processor reacts to them in the same way in order to turn
control over to the Monitor. (In the KA10 there are minor differences as
explained below.) The processor also takes the same action if the program
gives a JRST with an undefined function, an instruction that is illegal
because of the context in which it is given, an extended instruction with
incorrectly formatted accumulators, or code 000. The last is so that control
returns to the Monitor should a user program wipe itself out or madver-
tently attempt to execute a location that has been cleared.

2-124 User Operations

I A PUR- ZG% SEeilow),
CHONGTT (T To 7HE

Gotr he FofZm

(lnn) B&fens STORIKG
(T.

The rest of this section is devoted to the different ways in which
MUUOs are performed. Except in ,the KA10, all types use locations in the
user process table to store similar ‘information. ‘Figure 2-3 shows what
information is stored in which locations for each processor type.

Extended KL10 MUUOs. In locations 424-426 of the user process
table, store the same information (as specified above) that is stored in the
first three locations of an LUUO block by an LUUO given in a nonzero
section, except that when the MUUO is given in executive mode, also save
the previous context section in bits 31-35 of location 424. Store the “process
context word” in location 427; this word saves information that partially
defines the context in which the MUUO is given, and is exactly the infor-
mation read by a DATAI PAG, (§3.5). Complete the specification of the
MUUO context by setting up the previous context flags, and clear the rest
of the flags to place the processor in kernel mode. Then load PC from bits
6-35 of the appropriate location in a PC list, and continue performing in-
structions in normal sequence beginning at the location then addressed by
PC. (Note that the MUUO can change PC from any section to any other.)
The new PC can be taken from among the eight locations in the user pro-
cess table listed here depending upon the mode at the time the MUUO is
given, and whether or not it is executed as the result of an overflow trap.

Mode Execution Location
Kernel ' No trap 430
Kernel Trap 431
Supervisor No trap 432
Supervisor Trap 433
Concealed No trap 434
Concealed Trap 435
Public No trap 436
Public Trap 437

Single-section KL10 MUUOs. With either the TOPS-20 or
TOPS-10 Monitor, MUUOs store the same information and take the same
action, but they use a different set of three locations in the user process
table. In the first location store the instruction code, A and the effective
address E in bits 0-8, 9-12 and 18-35 respectively, and clear bits 13-17
(this is the same information as that stored by an LUUO given in section
0); save the flags and PC in a PC word in the second location; and save the
process context word in the third location. Then set up the flags and PC
according to the contents of the appropriate location in a PC word list, and
continue performing instructions in normal sequence beginning at the loca-
~ tion then addressed by PC. The PC word list occupies the same area as the
PC list for an extended KL10, and it is organized and used (with respect to
mode and trap) in the same way.

There are no restrictions on the manner in which the new PC word of

an MUUO can set up the flags. It can switch the processor from any mode
to any other.

THE Cowsnsloy o=

A Lo A EC-?'BM
DESUEEC s M |
LA 1S DoNE nfL,
Ay Mauo Lo

User Operations 2-125 .

.o If your public program has the use of concealed programs, do not refer-
~ence a location in a concealed page for any purpose except to fetch an
instruction from a valid entry point, i.e. a location containing a PORTAL
(JRST 1,). ' ;

> or JEN
in a.nonzero section. Also be aware of the differences between running in
section 0 and in other sections. Differences appear both in the execution of
- instructions, such as JSR and JSP, and in the format and handling of such
quantities as index registers, indirect address words, and stack and byte
pointers. : : A

e Make sure to format the accumulators correctly in string instructions
(§2.12). :

The user can give a JRSTF or XJRSTF but a 0 in bit 5 of the PC word
or flag word does not clear User (a program cannot leave user mode this
way); and a'1 in bit 6 does not set User In-out, so the user cannot void any
of the instruction restrictions himself. Note that a 0 in bit 6 will clear User
In-out, so a user can discard his own special privileges. Similiarly a 1 in bit
7 sets Public, but a 0 does not clear it, so a public program cannot enter
concealed mode this way.

Many hardware characteristics however are actually transparent to
the user, in particular the whole paging setup is invisible. Although the
hardware allows for user virtual address spaces that are scattered or very
large (even larger than available physical memory), the actual constraints
will be dictated by the particular Monitor and the system manager. Most
TOPS-10 Monitors enforce a two-segment virtual address space that mim-
ics the one imposed by the KA10 hardware. In any case the user must write
a sensible program, which can be handled easily and cheaply by the system,;
if he uses addresses a few to a page all over memory, his program can be
run but will require a much larger amount of space than necessary or cause
excessive page swapping.

The basic idea is to localize everything as much as possible. Do not
spread parts of the program out through the address space leaving gaps.
Put together whatever will be used together: divide a large program into
smaller segments, and with each group of instructions put whatever
pointers, data locations and the like that will be used with it. Group to-
gether subroutines that are called by the same programs. If a package is to
be used at all frequently, take advantage of the various features, e.g. a core
map, provided by the Digital software to determine just how the package
was assembled, and if necessary revise it to reduce the working set of
pages.

The rules given above apply generally to all systems, but there are
minor differences from one to another, and a user who wishes to write
programs to run on more than one type of processor must be aware of
whatever incompatibilities exist. For example, the interrupt handling
JRST functions are legal in user I0 mode except on the KI10, where they
are restricted to kernel mode. Because of the more restricting JRST decod-
ing in the earlier processors, the K1.10 and KS10 have more functions, and
they produce quite different effects when given in a KI10 or KA10 program.
The matter of unassigned codes works both ways with respect to different

User Operations

2-137

Figure 3.4: Extended TOPS-20 Process Table Configuration

USER PROCESS TABLE

°of -
|]
l NOTE: l
' ASTERISKS INDICATE |
| . LOCATIONS WHOSE) |
| RESERVED USE DIFFERS FROM 1
: THOSE IN THE
- SINGLE-SECTION |
PROCESS TABLE |
| . LISTED ON THE '
I) NEXT PAGE.
417
420 ADDRESS OF LUUO BLOCK
421 USER ARITHMETIC OVERFLOW TRAP INSTRUCTION
422 USER STACK OVERFLOW TRAP INSTRUCTION
423 USER TRAP 3 TRAP INSTRUCTION
424 [MUUO FLAGS | Muuo op copk, A
425 | muuO OLD PC
426 | E OF MUUO
427 | MUUO PROCESS CONTEXT WORD
430 | KERNEL NO TRAP MUUO NEW PC
431 KERNEL TRAP MUUO NEW PC
432 | SUPERVISOR NO TRAP MUUO NEWPC
433 | SUPBRVISOR TRAP MUUO NEW PC
434 | CONCEALED NO TRAP MUUO NEW PC
435 | CONCEALED TRAP MUUO NEW PC
436 | PUBLIC NO TRAP MUUO NEW PC
437 | PUBLIC TRAP MUUO NEW PC
440 '
! RESERVED |
477
500 | PAGE FAIL WORD
501 | PAGE FAIL FLAGS
502 | PAGE FAIL OLD PC
503 | PAGE FAIL NEW PC
504
USER PROCESS EXECUTION TIME
505
506 | USER MEMORY REFERENCE COUNT
507
510
'
| RESERVED
] 1
537
540 | USER SECTION O :
| A
577 | USER SECTION 37
600
| RESERVED
777 |

3-30 KL10 System Operations

*

* B ¥ B X F X

* X % »

EXECUTIVE PROCESS TABLE

° | e1GHT cHANNEL LoGOUT AREAS]
| EAcH: 0 INITIAL CHANNEL COMMAND A
: 1 GETS CHANNEL STATUS WORD :
| 2 GETS LAST UPDATED COMMAND ;
37 3 ‘RESERVED
40 1 ReserveD
a1
42
| STANDARD PRIORITY INTERRUPT INSTRUCTIONS |
57 | . . :
60 |
| FOUR CHANNEL BLOCK FILL WORDS 1
63 : 1
64]
| RESERVED |
137 |
140 i
| FOUR DTE20 CONTROL BLOCKS |
177 ' i
200 '}
1 |
| RESERVED |
| |
420 | RUDRESS OF LUUD BMOCK.
421 | EXECUTIVE ARITHMETIC OVERF LOW TRAP INSTRUCTION
422 [EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION
423 | EXECUTIVE TRAP 3 TRAP INSTRUCTION '
424
|
RESERVED i
|
507
510
TIME BASE
511
512
PERFORMANCE ANALYSIS COUNT
513
514 | INTERVAL COUNTER INTERRUPT INSTRUCTION
515
| RESERVED
537
540 | EXECUTIVE SECTION 0
]
577 | EXECUTIVE SECTION 37
600
RESERVED
777

NI Wy W

12 Byte data; Me in BLT; destination in

EXTEND:; effective address ’calculation of EXTEND destination
pointer if bit 9 is 1 :

'Previous context referencing is useful and reasonable in some instruc-
tions but inapplicable to others. There is no trap of any kind, and the effect
of using the feature with an instruction to which it does not applyis simply
undefined. ‘

Applicable ' : Inapplicable
Move, XMOVEI ' LUUO, MUUO
EXCH, BLT, XBLT AOBJN, AOBJP
Half word, XHLLI JUMP, AQJ, SOJ
Arithmetic : JSR, JSP, JSA, JRA, JRST
Boolean PUSHJ, POPJ
Double move XCT, PXCT
CAI, CAM Shift-rotate
SKIP, AOS, SOS String (except MOVSLJ)
Logical test 10
PUSH, POP, ABJSP=—" AR
Byte
MOVSLJ (extended KL10 only)
MAP ’

Note that no jumps can use previous context referencing. Even among
the instructions to which such referencing is applicable, only a limited
number of the sixteen possible bit combinations is useful or meaningful.
Doing an effective address calculation in the previous context (selected by
bit 9 or 11) makes sense only if the corresponding data access is also in the
previous context (as selected by bit 10 or 12 except 11 or 12 in EXTEND).
Only these combinations are permitted.

Instructions 9 10 11 12 References in Previous Context

—

Data
E, Data

General

—

Immediate E (no data access)

BLT

!

Source
Destination
Source, destination
E, destination
E, source, destination

XBLT Source
Destination

Source, destination

COQC MM OOO M O
MO OO © oo
HHO OO © OO0

O OO b ek it O

3-50 KL10 System Operations | June 1982

