A DOCUMENT ON THE KI1lO0

A DOCUMENT ON THE KI10
MOTIVATION FOR DOCUMENT

MOTIVATION FOR DOCUMENT

The purpose of this document is to present a medium level
discussion on the KI10 system covering as many aspects of
the hardware and software as possible. It is the result
of a seminar given by David Braithwaite to other Northeast
Region software specialists on April 1973. It gathers
together, organizes, and clarifies most KI10 documentation
available.

David is to be commended for his own initiative in writing
this document. Educational Services has edited and rewritten
certain portions of the text. However, the document for

the most part remains virtually intact. The references

used were:

System Reference Manual

KI10 Processor Manual

Technical Summary

Large Buffer 188 (Internal Document)
Monitor Listings

GENERAL DESCRIPTION OF A KI1O0.

The motivation for this section is to give simple yet
revealing answers to the question "what can you tell me
about the KI10?"

Introductory Description

The KI10 is the processor utilized in the 1060, 1070, and the
1077 configurations. It offers virtual memory capabilities,
double precision floating point hardware and a large address
space. The virtual memory hardware segments a program into

a series of fixed length (512 word) pages. These pages can
be scattered throughout core memory; their original order
being maintained by a "page map" which is utilized by the
hardware. The programmer need not be concerned by either

the segmentation nor the scattering.

The 6.01 TOPS10 monitor takes advantage of the KI1l0 hardware
to do demand paging. In this scheme of memory management,
it is not necessary for a complete program to be in core

in order to be executed. 1Instead a "working set” of active
pages are core resident with the remainder of the program
residing on the virtual memory device (disk or drum). When
a page is required which is not presently in the working
set, an interrupt is generated, and the monitor transfers
that page from the virtual memory device to core.

1

A DOCUMENT ON THE KI10
GENERAL DESCRIPTION OF A KI1lQ

KI10 Hardware Features

Up to 4,096,000 36-bit words of memory.
User virtual address space of 256K 36-bit words.
Double precision floating point.

Four processor modes which provide protection in a
multi-user environment.

Pipelining of data and instructions from memory .
(Overlapped memory fetches.)

Different sets of general registers for user and
executive programs.

SUPPORTING DATA OF A MORE TECHNICAL INTEREST

378 Instructions (366 on KAl0Q).

Multi-level indirect addressing.

Immediate mode addressing (data is in the instruction).
Fixed-floating conversions.

Trap handling independent of the interrupt systems.

A DOCUMENT ON THE KI1l0
THE KIl10 AS A PAGING MACHINE

General Concepts

Paging is not a new concept. It was first implemented
on the ICL-ATLAS in the late 50's. The basic idea is
simple. The user looks upon his program as a set of
sequential addresses (no change here). The hardware,
however, segments the program and places these segments
anywhere in memory. A special hardware system translates
between the linearity expected by the program and the
actual physical location of the segments. This hardware
is known by any of the following names:

associative memory
paging box
relocation hardware
page table.

I will use the term "associative memory" throughout the
remainder of this document.

The Geometries of KI10 Memory

Physical core is looked upon as a sequence of 512 word
pages (the segments referred to previously). Each page
is addressed by its relative page number.

Picture a 64k system, the page numbers are then:
Page addresses

® & 0 000 00 0000 0000 c0 e e e

0 :. ® & © & & 0 & 00 0 " 0 S e e e e 0 e 00 .! 0-0777
1 tesonccccesnnsans cececes.ts 1000-1777
2 '.... ® & & & 0 00 0 2 0 O e e e 0 0o ..: 2000—2777

177 tececcccccccccccnses eeee.s 177000-177777

Thus to access word 15 in page 2 the address (2015)
is viewed as:
Page increment

® ® 6 200 00 000 0000000000000 0

teeceeeeee2lii.....015!
L 1

® 2 0 00000000 0000000000000

A DOCUMENT ON THE KI1lO0
THE KI10 AS A PAGING MACHINE

When the hardware calculates the effective address it uses
13 bits for the page number giving a maximum of gj92 pages
(4096k) and 9 bits for the increment (0-511).

It is useful to think of addresses as being made up of
these two parts (page, increment) since the hardware
treats the parts separately.

User Address Space VS. Physical Address Space

The geometries explained above could have been for the
KAl0 if one merely changed a few numbers. However,

there is little or no value in thinking of KAl0 addresses
as two part variables.

The user address space, known as user virtual address
space, may be as large as 256k words (512 pages). This
upper limit is enforced by the 18-bit address field of
each instruction.

Again, it is useful to lock upon the instruction's
address field as two 9 bit fields:

1 9 10 18

ooooooo ® e 06 0 0 00 00 s 00 00 000 00

E page 5 offset s

The number of pages spanned by a program may be larger
than physical core (given a properly smart operating
system) .

There is no natural relationship between the user page
number and the physical page number. The relationship
must be computed via a table lookup. This process is
known as MAPPING.

A DOCUMENT ON THE KI1l0
THE KI10 AS A PAGING MACHINE

User Page Map

Associated with each user is a page known as the Process
Table or "user page map page" (UPMP). The purpose of
this page is to provide the information necessary to
map the virtual addresses to physical addresses. This
information is contained in a table of 512 entries, that
ig one entry for each possible page in user's virtual
address space.

Each entry contains the following information:

S ! X! PpPa :
]

- . ® 600 00000000000

A =0...unused entry (no page exists).
=l...valid (used) entry.
P =0...concealed page.
=l...public page.
W =0...write protected.
=l...writeable.
S «....undefined; for usage
by monitor.
X «e...unused, reserved for
hardware usage.
PPAphysical page address
(13 bits)

Each entry occupies one half-word of storage. This
means that over 200 locations in the UPMP are available
for software.

Although the UPMP is associated with a user program, it

is not part of that program's address space. The contents
of this page is controlled by the monitor. The monitor
also maintains another page map called the "exec page map
page®™ (EPMP) which is used for mapping certain areas of the
monitor address space.

A DOCUMENT ON THE KI1l0
THE KI10 AS A PAGING MACHINE

Virtual to Physical: Mapping the Address Space

When an address is supplied to the processor from the
user program it contains a user virtual page number.
This must be translated into the proper physical page
number. The operation of this is clear.

1. Access the proper entry in the user page table
using the virtual page number as the index.

2. If a page exists, append the 13 bit page number

found in this entry to the 9 bit increment.
(This 22-bit result is the physical address).

user address upmp physical address

22 1. 015 ! 0
1

.
*
.
.
.
.
[
.
L]
.
*
.

W pgw @™ s 0w

----- > ¢ 045 ! 015 !
’

[

045

N
=
L] W 4w ¢ g gm $W 0w I m oW
o g

¢ s ewgmsm

® o 0o o 00060000

With this scheme, each access to an addressed memory

location actually takes two fetches. The necessity for

two memory fetches is expensive and halves the effective

Speed of the pemory. The addition of an "associative memory"
eliminates many of these overhead memory fetches thus improving
the overall efficiency of the machine.

Associative Memory

The associative memory can be viewed as a table of 32
registers each of which contains the following information.

: VPN ! U/E! PPN ! P! WI'!s!vVv!
]

® o0 00 0o ® ® 5 000000000 00000 0000000600000

A DOCUMENT ON THE KI1Q
THE KI10 AS A PAGING MACHINE

VPN virtual page number
(supplied by program).
U/E =0...from executive page map page.
=l...from user page map page.
PPN physical page number

(gotten from previous lookup into
the page map page)
public or concealed.
writeable or non-writeable.
defined by the software
=0...this entry not in use.
=l...this entry contains
valid information.

<whzxw

When the CPU is provided with an 18-bit address, the first
9 bits are stripped off and used as a key to search the
associative memory. This search takes place in all 32
entries simultaneously. If the VPN and the U/E bit match
in any entry, then the PPN is automatically appended to
the low order 9 bits and the 22-bit address is thus formed.
The cycle time is in the range of 100 nanoseconds.

user address assaciative memory physical address

' ' :
: : :
! : !
L
_____________ S $ 022 1 045 ! ——===> ' 0045 ! 015 !
L L} L] .
' : '
: : :
H : :
! : :
] : 1]

oooooooooooo

A DOCUMENT ON THE KI1O0
THE KI10 AS A PAGING MACHINE

There are several complications which should be noted.

Since there are two page maps active at any given time

(user and exec), there is a possibility of two pages in

the associative memory with the same virtual page number.
There is, however, no ambiguity since the search includes

the matching of the User/Exec mode bit (U/E). An interest-
ing question is "what happens when we switch to another user?"
This is a valid question since all users have the same virtual
page numbers available, but each user's pages are in different
physical locations. The associative memory, however, does

not know about different users, only about virtual page
numbers. Thus, the monitor must clear all entries in the
associative memory whenever user page maps are changed.

If the user page number is not found in the associative
memory, then the hardware does a lookup using the UPMP

(or EPMP) for the physical page number. It then loads

an entry of the associative memory and supplies the 22-bit
address to the processor. This operation can cause a
"page fault" for any of the following reasons:

1. Protection violation.

2. Page fault (no physical page referenced in
the UPMP).

3. Other request failure types..(See later)

PROCESSOR MODES

On the KAl0 there are two modes, executive and user. In
executive mode, there is no relocation, and all of memory

is in the range of your instructions. In user mode, there

is two-segment relocation and protection. This is provided

by dual protection-relocation registers. The KI1l0 does not have
these registers; it performs the functions by another means.

The associative memory in the KI1l0 provides the vehicle

for both relocation and protection. ©On a page level, por-
tions of a job can be made "writeable" or "non-writeable",
"public" or "concealed". Attempts to violate these conditions
will result in a page fault which the monitor will handle.

A DOCUMENT ON THE KI1O0
PROCESSOR MODES

KERNEL MODE
HANDLE INTERUPTS

PERFORMS I/0

PERFORMS FUNCTIONS

EXECUTIVE MODE

AFFECTING ALL USERS, (I.E.,

CONSTRUCTING PAGE

CAN ADDRESS UP TO
DIRECTLY

MAPS)

112k

USER MODE

CONCEALED MODE

PROTECTION FQOR

PROPRIETARY PROGRAMS

CAN READ, WRITE, E

XECUTE,

TRANSFER TO ANY LOCATION

IN A PUBLIC PAGE

SUPERVISOR MODE

GENERAL MANAGEMENT
FUNCTIONS.

PERFORMS FUNCTIONS
AFFECTING A SINGLE
USER.

EXECUTES 1IN
EXECUTIVE VIRTUAL
ADDRESS SPACE USING
EXEC PAGE MAP

PUBLIC MODE

NORMAL USER PROGRAMS

256k WORD ADDRESS
SPACE

PERMIT ALL INSTRUCTIONS
UNLESS THEY COMPROMISE
SYSTEM INTEGRITY.

CAN ONLY TRANSFER TO
CONCEALED MODE AT
"PORTALS".

A DOCUMENT ON THE KI1O0
PROCESSOR MODES

Inter-Mode Protection and the mode of the processor

The processor is always operating in one of the 4
modes. Each mapped page is classified as a public
page or as a concealed page. Depending on this
classification and the mode of the processor the
hardware enforces certain access restrictions.

Page classified as Public or Concealed...

Write protection...A page which is write protected
cannot be written into from any mode (except
kernel mode direct addressing). However,
kernel mode programs can change the write
protection of any page.

Page classified as Public...

Processor in Kernel mode...may read or write data
as it pleases either thru the exec page map
or via direct addressing (discussed later).
If an instruction in such a page is executed,
the processor changes to supervisor mode;
returning to kernel only thru such defined
ways as 1) issuing an MUUO, 2) an interrupt,
3) Entering a concealed page at a PORTAL
instruction.

Processor in Supervisor mode...There are no
restrictions since this is essentially the
Public form of Exec mode.

Processor in Concealed mode...Like kernel mode,
the processor can read or write data from
public pages at will. When executing an
instruction from such a page, the processor
will change its mode to public,

Processor in public mode...No restrictions. This

is the mode in which user programs will usually
run.

10

A DOCUMENT ON THE KI1lO0
PROCESSOR MODES

Page classified as Concealed...

Processor in Kernel mode...There are no
restrictions as the processor and the page
have essentially the same classification.

Processor in Supervisor mode...Data may be read
from concealed pages, but may not be written
into concealed pages. Only PORTAL instructions
may be accessed for execution from such pages;
at which time the processor changes to kernel
mode. Supervisor mode programs usually cannot
access concealed pages referenced through the
user page map. However, by setting the Disable-
Bypass bit (bit 0 of the PC) this restriction
can be overcome.

Processor in Concealed mode...No restrictions
since the processor mode and the page mode are
the same.

Processor in Public mode...No access to pages in
this mode for data manipulation (either read
or write). Instruction access only thru PORTAL areas.
When such an instruction is accessed, the Processor
changes to concealed mode.

KI10 INSTRUCTION SET DIFFERENCES FROM THE KA1l0

This section covers information on the KI10 instruction
set which is difference from the KAl0.

Note that the KI1l0 cannot set flags or traps when

instructions are executed as interrupt instructions
(this is done very rarely if ever in normal practice) .

11

A DOCUMENT ON THE KI1lO0
KI10 INSTRUCTION SET DIFFERENCES FROM THE KAlO

Stack, Byte, and Shifting Instructions.

PUSH ...push down..When incrementing the pointer,
the two halves are handled independently.

POP ...pOp up..same restrictions as push.

byte instructions ..in the KAl10, if the "Y"
(address) field of the pointer overflows
it invalidates the index portion of the
pointer..This does not happen in the KI10.

shift instructions ..KI10 eliminates redundant

movement by shifting by MOD (E,72) rather
than a max of 255 as in the KAlO.

Conversion Instructions

FIX fix..float to fixed, round down.

FIXR fix and round..float to fixed and round up
if fractional part .5.

FLTR float and round..fixed to float

Double Precision Instructions

..note that these instructions give 62 bits of
precision, whereas only 54 bits were possible
in the KAl0.

..all instructions use adjacent pairs of accumulators
and adjacent memory locations. AC 17 wraps around
to AC 0. Memory locations wrap around from 777777 to

..high order bit of second word is ignored.
..results are always normalized in addition and

subtraction, not guaranteed in multiplication and
division if inputs were non-normalized.

12

A DOCUMENT ON THE KI1l0
KI10 INSTRUCTION SET DIFFERENCES FROM THE KAl0

DFAD double floating add.

DFSB double floating subtract.
DFMP double floating multiply.
DFDV double floating divide.

Double Move Instructions

DMOVE

DMOVEM

DMOVN

DMOVNM

double move to AC's

double move to memory...results not guaranteed
if moving AC,AC+l1 to AC+1l,AC+2

double move to AC negate..if operand in software
(KA10) double precision, use DFN instead.

double move to memory negate..same caution
as DMOVEM.

Arithmetic Testing

AOBJP

AOBJN

program

JSR

JSP

JRST l,

TRNA

PUSHJ

POPJ

The PC flags saved by
next page.

add one to both halves of AC and jump if
positive. ..unlike the KAl0, the two halves
are treated independently.

add one to both halves of AC and jump if
negative. ..same caution as AOBJP.

control ..several of the jump instructions
save the contents of the PC and flags.

jump to subroutine..executed as an interrupt
instruction, this forces the processor to
executive-kernel mode.

jump and save PC..same into as JSR.

PORTAL ..valid entry point from a public to
a concealed area.

fastest skip instruction in the KI1l0

push down and jump..trap 2 set on pushdown
overflow.

pPop up and jump..trap 2 set on overflow..
trap 2 cannot be set if used as an interrupt
instruction.

these instructions are illustrated on the

13

A DOCUMENT ON THE KI1lO0
KI10 INSTRUCTION SET DIFFERENCES FROM THE KAlO0

0 123 4 5 6 7 8 9 10 11 12
o|lcolcliro|FPD|U|UIO|P|AFI| T2|T1l| FU|NDjO}|O|O{O]|O
0 overflow (fixed arithmetic, ASH, ASHC,

FIX, FIXR, floating arithmetic, no divide)

..in KI10 executive mode bit zero represents
the disable bypass flag which is related to
the executive XCT covered later.

CO, Cl carry flags.

FO

FPD

UIo

T2

Tl

FU

ND

floating overflow ..can be set by KI1lO0
instructions (FLTR,DMOVN,DMOVNM,DFDV) .

first part done ..in KI10 has implications
that a page failure occurred while processing
a byte or second word of a DMOVEM, or in a
noninterrupt data IO instruction that results
from a block IO instruction, also has same
implicaticns as KA1lO.

user . .processor in user mode.

user in-out ..normal KAl0 implications if
user mode set, has executive XCT implications
(covered later) if executive mode.

public ..last instruction was fetched from
a public area, (user-public, or executive-
supervisor).

address failure inhibit ..an address failure
cannot occur during next instruction (see
later discussion).

trap 2 ..arithmetic overflow, if traps

are enabled (covered later) this will take
one.

trap 1 ..pushdown overflow, if traps

are enabled (covered later) this will take
one immediately.

floating underflow

no divide.

14

A DOCUMENT ON THE KI1l0
KI10 INSTRUCTION SET DIFFERENCES FROM THE KAl0

guo

Unimplemented user operation.

LUUO local uuo..if executed in executive mode
uses location 40-41 in the executive process
table; in user mode-location 40-41 in user's
virtual pg. d.

MUUO monitor uuo..behaves as follows..

store instruction code, AC, and effective address
in location 424 of user process table.

save flags and PC in location 425.

set up flags and PC from a third location and
start at specified point.

third location depends on mode of processor
at time of muuo, and whether or not it was
given as a result of a trap.

mode execution location
kernel no trap 430
kernel trap 431
supervisor no trap 432
supervisor trap 433
concealed no trap 434
concealed trap 435
public no trap 436
public trap 437

Note that the new PC can set up the flags any way
it pleases, thus it may cause the mode to change.

15

A DOCUMENT ON THE KI1l0
KI10 INSTRUCTION SET DIFFERENCES FROM THE KAlO

Input-Output Instructions

..the KI10 allows users to execute IO instructions to
any device whose device code is greater than 740.

DETAILED VIEW OF KI1l0

KI10 Operation
Page Maps
There are ALWAYS two page maps in use. One is the Executive
Page Map. The other is the User Page Map. The location of
these maps is under the control of the monitor. In the
instruction:

DATAO PAG,E

The effective address E is a word which contains:

1. User base address. This is the physical
address of the UPMP.

2. Exec base address. This is the physical
address of the EPMP. 1In 506 this is always
zZero.

3. AC block. Accumulator block used in user

mode (exec mode always uses block 0).

4. Small user bit. If a user is designated as
“small user", then he is restricted by hardware
checks to keeping his virtual address space
within pages 0-15 and 256-271. This gives a
total user space of 32K.

5. User address compare. Used in conjunction
with the console paging switches for address
break control.

6. Overflow trap enable.

16

A DOCUMENT ON THE KI1O0
DETAILED VIEW OF KI1O0

There are also two bits which allows one to change the
user information only, the executive information only,

or both. Whenever this instruction is used, the associa-
tive memory is "cleared".

Executive Mode Address Space

Executive address space is partitioned into 4 areas.
Each area is specified by the manner in which the
hardware makes access to it. Thus the areas are:

1. 0-17 the AC's use Block 0.

2. 20-337777 the first 112K. . . . is
"unmapped" and is thusly accessed directly
(a la the KAlOQ0).

3. 340000-377777 16K mapped location by the
UPMP.

4. 400000-777777 128K mapped by the EPMP,.

The executive page map only contains mapping information
on pages 400-777 (octal). Thus a reference such as ADD
2,270022 is performed directly without use of the paging
hardware. Should the address not exist in physical
memory, a normal KAlO0 type NXM (no access to memory)
interrupt will occur. Using the above information, the
following examples illustrate the method used for address

calculation.
ADD 2,17 From the accumulators.
ADD 2,20 Direct addressing (no paging).

ADD 2,337777 Direct addressing (no paging).
ADD 2,340000 Thru UPMP (location 400).

ADD 2,377777 Thru UPMP (location 401).

ADD 2,400000 Thru EPMP (location 200).

ADD 2,777777 Thru EPMP (location 377).

ADD 2,0 From AC 0.

Thus with the processor in exec mode, the hardware will
use the AC's, direct memory addressing, the user's page
map, or the exec page map depending on which of the 4
areas the address falls into.

17

A DOCUMENT ON THE KI1lO0
DETAILED VIEW OF KI1lO0

Accumulator blocks

There are 4 blocks of accumulators, numbered 0-3.

Block 0 is always used during exec mode processing.
Normally users will get block 1, however realtime jobs
will be allowed to use blocks 2 and 3 (in later monitors).
The purpose of multiple AC blocks is to eliminate the
storing and restoring of accumulators as programs oscilate
between user and exec mode processing (MUUO's). This does

not eliminate the need for saving the accumulators during
context switching.

Extended Functions Demanded By The KI10 Architecture

With the architecture providing for an executive address
space separate from the user address space, there are two
necessary functions which the KI10 instruction set given
so far doesn't handle.

1. The monitor, executing in the EXEC mode uses AC
block 0. However, it is often necessary to be
able to access the user's AC blocks (1-3) from
this state.

2. While processing a UUO, the monitor must often
access arguments in the user's core area thru
the user page map.

Also, there are two functions which, while not necessary, are
sufficient to provide for a great deal of transparency in
the handling of UUO arguments.

1. UUO arguments which are in registers may be in
the specified AC block or in the user's shadow
area. It would be helpful if this distinction
were transparent to the processing routine.

2. If the monitor itself were to use the UUO
mechanism by going thru the procedure of:
a) store the arguments in the AC's,
b) save the AC's,
c) 1issue the UUO,

then it would be helpful if the correct set of
saved AC's could be accessed transparently by the
processing routine.

All of these functions, both necessary and desired, are
provided for by the special modes of the XCT instruction.

18

A DOCUMENT ON THE KI1O
DETAILED VIEW OF KI1lO0

The Executive Mode XCT Instruction

The preceding section was merely to set the atmosphere
for this relatively difficult area. It presented
several items necessary and/or desireable; all of which
are accomplished via the XCT instruction.

To re-capitulate, the exec XCT will allow the monitor to
access data in user AC Blocks and user core. It will also
allow the monitor routines to be coded independent of the
need to know the exact location of the AC's (AC block or

shadow area) and independent of who issued the UUO (user
or monitor).

The XCT instruction is written thusly:

XCT ACl, ADDRESS (AC2)

In the KAIO, and during User-mode processing in the
KI10, the field "ACl" is ignored. During Exec-mode
processing in the KI1l0, the bits in this field are

used as flags to control the location of data during
read and write operations.

Control Flags:

Bit 11=9- ..+..Write in the monitor address
space.

=l.....Write in the caller's address space.

Bit 12=0Read from the monitor address
space.
=l.....Read from the caller's address space.

(note that this effects instructions
which are read-modify-write [1>s]).

USER 1I/0 Bit in PC
=0.....The monitor issued the UUO, the
caller space is thus the same as the
monitor address space except that the

routine which issued the call saved
the AC's.

=l.....The UUO was issued from User-mode.
The caller's core space will be accessed
via the User Page Map,

19

DOCUMENT ON THE KI10
DETAILED VIEW OF KI1lO0

CURRENT USER AC BLOCK
If the current user AC block (as defined by the argument
to the DATAO PAG,E instruction) is non-zero, then the
callers AC's are in this block, otherwise, they are
in the user's shadow area.

It is important to notice that the USER I/0 bit in the
PC and the Current User AC Block are set before the
processing routines are entered, and thus are "global"
control items which allow the correct core and AC areas
to be accessed automatically. The read/write bits are
"frozen" in the code of the processing routines and thus
are not controlled dynamically by the caller or the
hardware.

Consider the followihg examples:

1. The User Issues a UUO.....
The hardware automatically picks up a new PC
from location 434 or 436 of the UPMP. This
PC will have the USER I/O bit set to 1 and
will start execution of the UUO processing
routines.

.....no flags set.....
XCT 0, (MOVE ACl,OPERAND)
XCT 0, (MOVEM ACl,OPERAND)

Both instructions behave as a normal
XCT since the read and

write flags are both zero (indicating
read/write from monitor space).

.....Read flag set.....(effective only if
Eff. Adr is read or read-modified-written
from)
XCT 1, (MOVE AC1 ,0PERAND)

The address OPERAND will be in the user's
address space. If it accesses an AC, then
the data will be read from the shadow area
or the designated AC Block (see Current user
AC Block above.).

XcT 1, (MOVEM AC1,0PERAND)
The data in the monitor's AC, ACl, will be

stored in the address OPERAND which is in
the monitor address space.

20

A DOCUMENT ON THE KI1l0
DETAILED VIEW OF KI1lO0

Note: This operates no differently from
normal XCT since MOVEM does not

perform a read from the effective
adr calculated.

.....wr@te flag set....(effective only if instr.
writes into E)

XCT 2, (MOVE AC1l,O0PERAND)

Tpe data in the monitor location OPERAND
will be stored in the monitor's AC1.

XCT 2, (MOVEM AC1l,0OPERAND)

The data in monitor ACl will be stored

in the address in the user space referenced
by OPERAND. If that is an AC then it will
be appropriately the shadow or designated
block, or if core, it will be accessed thru
the UPMP.

.....both read and write flags set.....(has
meaning for BLT & PUSH instrs).

XCT 3, (MOVE AC1l,OPERAND)
XCT 3, (MOVEM ACl, OPERAND)

These instructions still operate as
illustrated above, since the read and
write bits only effect the effective
address.

XCT 3, (BLT AC1l,DEST+N)
where: AC = source, ,dest

After address resolutions the operands,
source & dest, will be both read and written
into user address space.

21

A DOCUMENT ON THE KI10
DETAILED VIEW OF KI1O0

2. The Monitor Issues a UUO

Prior to issuing a UUO, the monitor must
save the AC's., These can be saved in 16
contiguous locations in the UPMP. The
exact location in this page is maintained
by the "executive AC Stack Pointer", a
hardware register set by the CONO PAG,
instruction. The contents of this register
can be changed and thus UUO's can be issued
while processing other UUO's* with the
changed register pointing to new save areas.

When the UUO is issued, the new PC is
gotten from location 430 or 432 of the
UPMP and will have the USER I/0 bit set
to 0.

Thus:
XCT 1, (MOVE AC1l,ACl5)

Will read AC1l5 from the save AC area
which is marked by the "Executive AC
Stack Pointer" register and will
write the data into the monitor's
ACl.

If effective adr is 17, then XCT acts
as a normal XCT.

*NOTE: The current Monitor has no nested
UUO calls. It simply branches to the
necessary code.

22

A DOCUMENT ON THE KI1lO0
DETAILED VIEW OF KI1l0

3. The Automatic Hardware Functions
Given the instruction:
XCT2, (MOVEM AC1l,0PERAND AC2)

THE FOLLOWING OCCURS: ,

..The addresses are computed. Thus, the
value in AC2 (Block 0 AC's) is added to
the address operand to determine the
effective address.

..the XCT instruction is executed.

«+....User UUO...Current AC Block =1 (2 or 3),
and the effective address is greater
than 17. The value in ACl of Block 0 is
moved to the effective address using the
User Page Map.

«++..User UUO...Current AC Block =1 (2 or 3),

and the effective address is less than
20.

The value in ACl of Block 0 is moved to
the effective address which is an AC in
Block 1.

«es..User UUO...Current Block =0.

The value in ACl is gotten from the
monitor's Block 0. This value is stored
in the manner illustrated above. If the
effective address is less than 20, it is
stored into the Shadow AC's.

«....Monitor UUO...

The value of ACl is gotten from Monitor's
Block 0 and is stored into the effective
address. If that address is 0-17, then it
is stored into the "stacked" AC's area in
the UPMP.

One more flag (this makes 5 flags to understand), the
DISABLE-BYPASS which is bit 0 of the PC gives a
supervisor mode program extra privileges. When =0, the
supervisor mode routine is allowed access to concealed
user pages, when =1, such access is prohibited .

23

A DOCUMENT ON THE KI1O0
DETAILED VIEW OF KI1O0

It should be re-emphasized that the instruction executed
by the XCT is from the exec address space. Also the
address calculations are done in exec address space.
Thus in the monitor instruction:

XCT 1, (SKIPL @T2)

The affected address is calculated using the value
found in T2 from the monitor AC's. If this calculation
leads to another indirect address, that is also taken
from monitor space, and so on until an address is
finally resolved. '

NOTE: This hardware capability for saving Exec ACS
in the UPMP is not currently used in the DEC-10 Monitor.

24

A DOCUMENT ON THE KI10
DETAILED VIEW OF KI10

Page Failure

When a page failure occurs, the following information is

saved:

1.

User or Exec mode flag.
The number of the virtual page in question.

A set of flags indicating the reason for the
page failure.

Hard Failures:

address failure -- Page failure forced by the
satisfaction of an address condition set on
the console. It indicates that the ADDRESS
BREAK switch was on and the ADDRESS INHIBIT
BIT (in the PC) was clear.

page refill failure -- This is a hardware
failure.
small user violation -- Violates the small

user policy explained earlier.

proprietary violation -- A public mode program
has attempted to reference a concealed page or
has attempted to transfer control to a non-
portal instruction in such a page.

Soft Failures:

Soft failures merely indicated that the instruction
was a read or write and reveal the access, write
protection and software bits from the users page
table. The monitor must then determine the
significance of this information.

When the page failure occurs the above information is
placed in the UPMP and control branches in kernel mode
to the location specified by 420 in the faulters page
table (could be UPMP or EPMP). If the fault occured
during exec mode the failure information is stored in
427; in user mode 426.

25

A DOCUMENT ON THE KI10
DETAILED VIEW OF KI10

If the page had an entry in the associative memory when
the fault occurred, this entry is cleared (eg ., it could
be a write-protection fault).

A probable use of the Software bit in the paging information
is to control unnecessary swapping. Any time a page is
swapped in, it could be write protected. The first write
reference will cause a fault. The monitor will then set

the software bit. Only those pages with this bit set need
be swapped out. (Not implemented in 6.01).

Priority Interrupt System and Traps

The priority interrupt system in the KI10 can function
in the same manner as the KAl0, but can also take
advantage of "smart" devices. In the latter case the
following takes place.

1. An interrupt on channel N is received.

2. The KI10 sends an "interrupt-granted" signal
for this channel.

3. The first device on the bus transfers the
signal to the second, the second to the third,
and so on; until (at last) the device which
requested the interrupt receives it. The
devices terminates the signal path and sends an
interrupt function word back to the processor.

The function word contains a function
code, an interrupt address, and an
increment (perhaps a device number
relative to a certain controller).

The function code may specify that the
interrupt be handled like the KAl0. It

may specify that the processor dispatch

to the interrupt address or to the

address formed by adding the value found

at the interrupt address to the increment

(in effect, a dispatch table). Or it may
specify that a DATAI/DATAO be performed
using the interrupt address as the arguement.

26

A DOCUMENT ON THE KI1l0
DETAILED VIEW OF KI1l0

KAl0 devices work with no modification on the KI10
since no response to the interrupt-granted signal is
used as a flag for standard processing.

The first 2 instructions executed in response to an
interrupt are referred to as being "executed as
interrupt instructions". Some instructions, when so
executed, have different effects than when executed
normally. 1In general, these effects are: flags not
being set during arithmetic instructions, overflows in
PUSH and POP instructions being ignored, and page
faults merely being held until the interrupt is
dismissed.

The only reasonable interrupt instructions outside of
BLKI/BLKO are JSR, JSP, PUSHJ, MUUO; each of which hold
onto the interrupt and begin operation with the interrupt
PC. Some others, namely AOSX, SKIPX, SOSX, CONSX operate
similarly to the BLKX and thus have uses in special areas.
All other instructions, in general, cause the processor
to dismiss the interrupt.

Traps

Overflow conditions on the KI10 are handled by a trapping
mechanism somewhat similar in behavior to what happens

when a MUUO is issued. Only in this case, the next
instruction (not a new PC word) comes from Loc. 421 of

the UPMP/EPMP depending on the mode. (Loc. 422 is similarly
handled for Push Down Overflows.)

When control comes to Loc. 421, the instruction is executed
in the current hardware mode and control passes back to the
program causing the trap. (The mode is unchanged.) The
only mechanism for allowing the monitor to gain control
when this condition occurs is to place a MUUO in Loc. 421.

The trap vector MUUO is handled similarly to a normal MUUO.
That is, the new PC word is picked up from the UPMP. Only
in this case, depending on the current mode of the machine,
it will come from slots 431, 433, 435, or 437. (Not 430,
432, 434, or 436).

27

A DOCUMENT ON THE KI10
DETATILED VIEW OF KI1O0

KI1l0 Processor Conditions

The KI10 can have two priority interrupt channels
assigned to itself. One is for errors and the other

is for the clock. The most interesting condition
trapped here is the automatic restart after power
failure. This feature is restricted to those times
when the voltage on the power mains drops below specifi-
cation with the CPU running; and is restored with the
CPU still in the run state. Thus automatic restart can
never take place as a function of the on/off switch.

This feature needs the help of the monitor. The monitor
must enable the feature and be able to respond to it

in 4 millisecs. When power is restored, the CPU will
automatically branch to location 70 in kernel mode.

In a nutshell, if the monitor can save the state of the
processor within 4 msec after a power failure is detected,
then it can restart with honor (assuming of course that
users can live with scrambled up disk transfers).

Memory Control

Associative memory control

Digging deeper in the associative memory we find a few
more unmentioned tidbits.

Refill Counter--The refill counter points at one of the
32 associative memory entries.. As its name implies, it
controls the point at which the next entry into this

memory will be made. Its location can be determined by
a CONI PAG,E. 1Its location can be set by a CONO PAG,E.

When left alone, the counter is updated automatically
and it behaves in a most rational manner; after the
entry to which it points is filled, the counter is
advanced (MOD 32), and if a mapping is made using the
entry to which it now points, the counter is again
advanced. This characteristic tends to push it away
from active entries. Thus it should point at the most
inactive entry.

Besides the CONO/CONI, datao/datai, one may issue a
MAP instruction to the PAG device. With this, one can
determine if a given virtual page is in the associative
memory. If it is, then the corresponding physical page
and control flags are made available.

28

A DOCUMENT ON THE KI1l0
DETAILED VIEW OF KI1lO0

Overlap, pipelining, and prefetch in core memory

A portion of the KI1l0 is a memory control unit which
sits functionally between the memory and the processor.
The processor merely makes data requests, and the memory
control does all the necessary interfacing with the
associative memory and various core memories to supply
the data.

Overlapping

Overlapping refers to the ability to overlap two read
cycles in different memories. The memories must be
"timed" as are ME1l0, MF10, as oppossed to "untimed"
(asynchronous) as are MA,MB,MD. They may, however be
of different speeds. With interleved operation, the
fetch of a two-word operand is greatly speeded up by
overlapping. This feature also is made use of by the
instruction prefetch feature. Note that the proper
buffering or delaying is done in memory control so that
the processor is not concerned with whether overlap
took place or not.

Pipelining
Memory control consists of 6 memory subroutines:

Subroutine call”page delay (the control)
Page check, memory go, recycle

Request cycle “read restart

Read return and refill entry

Write restart

AC references

These subroutines are operationally independent and
thus the operations may be pipelined. E.g., page
checking is done with the address on the address bus
while the MA register contains a different address to
be sent on the memory bus. This pipelining is most
useful during double word fetches and prefetching.

It is not dependent on overlapping being possible.

Prefetch

The prefetch feature is simply a request from the
processor to fetch the next instruction before the
present one is completed. This can be done if the
present one leaves the results in the accumulators and
does not change the sequence of program execution (PC
is incremented by 1). Instruction processing can be
broken into 4 steps:

29

A DOCUMENT ON THE KI1lO0
DETAILED VIEW OF KI10

Instruction fetch and decoding
Operand fetch

Execution

Result storage

In a two instruction sequence like:

AA: ADD 4,FO0O
BB: SUB 4 ,00F

Instruction AA does not change the PC sequence and
leaves its results in AC 4. Thus, as soon as a request
is made for the value at FOO, the processor may request
the next instruction BB. The memory control will insure
that the operand gets to the processor first.

It is this feature which makes the ability to do pipe-
lining and memory overlap worthwhile since the percentage
of double word fetching instructions is quite low.

Different Memories

The KI10 divides memorics into 3 classes: fast, slow,
and immediate. Fast and slow memories are those which
have the necessary logic to overlap. Memory control
takes into account the speed differences when doing
overlap to a fast and a slow memory. Immediate memories
do not have this logic and thus are unable to do overlap.
Each box of memory is tied to one of 3 request busses
depending on its class and it is this that allows memory
control to descriminate among the 3 types of memories.

Some Efficiencies in Programming

Even if the effective address is in the AC's, a certain
amount of running around inthe memory control is done
for all such computed (operand portion of instruction)
addresses. Thus where it is possible, the instruction
MOVEI T1, (T2). should be used to transfer data from
register T2 to register Tl. This particular example is
more efficient than either MOVE T1,T2 or MOVEM T2,Tl.
Also it is often more efficient to BLT data into the
AC's and then execute a loop from core than to put the
loop in the AC's. This is contrary to the KAlO where the
latter would always win.

A DOCUMENT ON THE KI10
DETAILED VIEW OF KI10

MONITOR USAGE OF THE KI1O0

Memory Referencing Capabilities

The monitor can no longer reference all possible addresses
in physical core. Thus at any given point a key question
is "what is addressable now?" The primary answer is that
the first 112K is directly addressable, and that other
pages are available through the user's page map table,
UPMP, or through the exec page map table EPMP. When the
monitor has the necessity to reference specific pages in
the current users program (e.g., during MUUO's), it

does so through reserved slots in the UPMP. When the
monitor must reference pages in a non-current user's

area (during I/0O), slots must have been set up within

the EPMP.

The slots used for mapping a non-current user are called
the "exec virtual memory (EVM)". EVM consists of the
last 128 pages (128-255) of the executive address space.
Because of the finite number of slots available, EVM

is contended for as a shared resource by user programs.

Using EVM

The major tasks performed for the non-current user are
I-O0 and swapping. For I-0 on devices connected through
a DF10 there is no need for EVM. The monitor sets up
channel command lists in the monitor free area formed
by a string of 4-word blocks. If a user's buffer is
split across two or more non-contiguous pages, the
monitor builds one command list entry for each physical
segment. Devices which have monitor buffers like TTY's
and PTY's do not require EVM either.

For devices connected to the I-O0 bus enough slots in
EVM must be allocated to map the largest buffer. In
the case of buffered I-0, this size will not change and
subsequent requests will utilize the same slots with
up-dated information in them. In the case of dump mode
I-O0, enough slots are allocated to cover the largest
area specified by a single IOWD.

The monitor keeps track of which slots are allocated to
which devices through the DEVEVM field in the DDB.

There are certain constraints placed on a job with the
EVM resource. The job may not be swapped out since the
location of his physical pages will change when he is
swapped in. Thus EVM must be released before a job
sleeps (including during DECTAPE dead reckoning).

Since the monitor has certain overhead tasks when

working with users programs, certain slots in the EPMP
are reserved for special purposes.

EA

A DOCUMENT ON THE KI1l0
MONITOR USAGE OF THE KI1l0

Exec

Page 400...For creating or moving a UPMP.

Page 401...Swapping checksum--to insure that the
first page of a segment is addressable while
the segment is being swapped.

Pages 402-410...0ne page per PI level in case
there is a need to reference a page, e.g.,

memory parity routine needs a slot when
sweeping core,

Page 411... Contains the SKPCUP macro for dual CPU
systems. This offers code independence since
this can reflect a different physical address
in each of the CPU's page maps.

Pages 412-431...Contains the pages of where PAGETAB
resides in core.

Pages 432-451...Contains the pages of where MEMTAB
resides in core.

As the operating system acquires capabili@y, additional
slots for the EPMP will be reserved (cutting down on
the available EVM).

Slots in the UPMP

During MUUO's the monitor may have to reference the
user's core area. To simplify this task, tbe 32 pages
(340-377) in the Exec Address Space automatically get
their physical page locations frqm the UPMP. The
following information is stored into these pages when a
user is swapped.

Page 340...UPMP address.
Page 341...Physical page number of JOBDAT area.

Page 342...Physical page number of high segment
vestigal data area. :

Page 343...Temporary slot for random monitor
requests.

Pages 344-346...Physical pages in some other job

to satisfy the requirements of the JOBPEK
MUUO.

32

A DOCUMENT ON THE KI1l0
MONITOR USAGE OF THE KI1lO0

In the JOBPEK MUUO, when job-A needs information from
job-B, the monitor copies the necessary entries from
job-B's UPMP into slots 344-346 of job-A's UPMP, and
then does a BLT using exec address 344000 plus the
appropriate offset.

Managing the Physical Pages

A few new tables have been defined, and a few o0ld ones
redefined in order to keep track of the physical pages
and their users.

PAGTAB

A table with one entry per physical page. Each entry
is linked to one of several chains. One such chain is
the Free-Page list which is pointed at by PAGPTR.
Otherwise there is one chain per job.

JBTUPM

One entry per job. This table contains the pointer to
PAGTAB such that it references the UPMP.

JBTADR

These entries now contain the value 341000 for each job
which is swapped in.

During the processing of I-O requests and other things
which require the monitor to access pages of the
non-current job, the following is done. Read and save
the pointer to the present UPMP. Set the hardware
pointer to the UPMP to be that of the desired job. Do
whatever juggling has to be done since this jop is now
the current job. Restore the pointer in the hardware
to the former job. Clear the associative memory. This
last step is very important since the search key to
this memory is the virtual address which is ambiguous
where more than one user is concerned.

33

KI10 CONSOLE NOTES
by Dave Gross

LIGHTS AND SWITCHES

Real address of a parity error on a parity stop is found
in the MA lights (bay 1, lower right).

Address of a HALT is found in the AR lights (bay 2, second
row). ECO KI10-00020/PS521 fixes a bug in this feature.

Here is a quick handwave on the lights and switches. The
indicator panels at the top of the machine show internal
registers and time states of the machine. Registers and

time states are named the same as the corresponding components
of the KAl0. Of interest to programmers are the MA lights
(bay 1, lower right), the PI GEN lights (bay 3, lower left),
and the switch-selectable lights (bay 3, top left). A rotary
switch (maintenance panel, third from right) controls the
function of the selectable lights (MB=memory data, IOB=
transitory data on the I/O Bus, P-R=paper tape reader

buffer, UEBR=data to page box (associative memory)).

In general, push buttons light when pushed. Some toggle,
some toggle machanically. DATA LOCK (on the maintenance
panel) locks the data switches. CONSOLE LOCK locks every-
thing else except the mechanical switches.

CONSOLE FUNCTIONS

The console functions much like the KAl0 console. But there
are significant differences. Some are:

1. Addressing via the Address Switches

There are 2 switches to the left of the address
switches labelled EXEC PAGING and USER PAGING.

If both are off, the address switches refer to

the 22-bit physical address. Moreover, AC refer-
ences via EXAMINE or DEPOSIT refer to the AC block
number contained in the switches in the top

row of the maintenance panel. If EXEC/USER PAGING
PAGING=10 or 11, EXAMINE and DEPOSIT requests

(18 bits only) are mapped via the Exec Page Map.
If EXEC/USER PAGE=01, the User Page Map is used.

2. Address Following:

If EXEC/USER PAGING =
01 No address following
10 The MI follows exec memory references
11 The MI follows exec references if the
USER ADR COMP bit in the pager is on
01 The MI follows user references if the
USER ADR COMP bit pager is on

34

KI10 CONSOLE NOTES
by Dave Gross

3. Address Stop or Break
Same dependency on EXEC/USER PAGING and USER ADR
COMP as address following. Address break is
actually a form of page failure. There is a
DATAO to load the address switches, EXEC and USER
PAGING, ADDRESS BREAK, and the 3 associated
conditions.

4. Page Map violations caused by the console light
the KEY PF light (top center of the console) and
do NOT cause a page failure in the program.

5. There is no single-memory-cycle mode. Instead,
there is a single-clock-pulse mode. The mode is
entered by the SINGLE PULSE switch in the maintenance
panel (third row down). Clock pulses are triggered
by the SINGLE PULSER switch (lower left of the console).
The pulser switch lights when the clock is ready to
be triggered.

6. If any switch is on which should be off for normal
operation, the MAINT MODE indicator (top center of
the console) lights up.

7. All action switches are effective while the machine
is running. In particular, READIN, START (starts
in kernal mode), EXAMINE NEXT, and DEPOSIT NEXT
work in the KI10 while the machine is running
but not in the KAl0. If this worries you, use
console lock.

8. If an action switch is being repeated via the
REPEAT function, the switch remains 1lit until
REPEAT is turned off and the function occurs one
more time. Meanwhile, all other action switches
except RESET and the memory-continue function of
CONT are disabled. STOP, CONT, and READ IN can be
repeated. These functions retrigger whenever the
processory executes a halt instruction. But note
that the STOP switch will be disabled if the program
fails to ever execute a HALT (use RESET if necessary).

35

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

