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FOREWORD

The DECsystem-10 is a general purpose, stored program computing system consisting of processors, memories,
and input-output devices, each of which has independant internal timing. Every system must have at least

one PDP-10 central processor but may contain several such processors, each of which is the control unit for a
large-scale subsystem with its own memories and peripheral equipment. A system may also include direct-
access processors, which provide for direct communication between memory and peripheral equipment.
Individual processors in a system may share memories and in-out equipment, and different processors and

memories may have different speeds and operating characteristics.

Extensive information on the overall system is given in Chapter 1 of the DECsystem-10 System Reference
Manual; the reference manual also describes the operation and machine-level programming for the entire
system. Maintenance documentation for the system is provided by a series of manuals. This manual discusses
the logic and maintenance of the KI10 central processor and its basic in-out devices (reader, punch and tele-
typewriter). Other maintenance manuals cover the other types of processors, the several types of memories
that may be used in a DECsystem-10, the various interfaces and control units for peripheral equipment, and
the numerous in-out devices themselves. Drawings for any unit are available as the Customer Print Set. Infor-
mation on connecting peripheral equipment of the customers own design is provided in the DECsystem-10
Interface Manual, which includes the necessary information on the circuits used in interfacing. Information

on all other circuits is contained in the two-volume set of DECsystem-10 Replacement Schematics.






PREFACE

This manual is published to aid service personnel in the operation and maintenance of the K110 central pro-
cessor and the basic in-out devices associated with it. Maintenance information for the in-out equipment is
confined primarily to those portions integrated into the processor logic; separate manuals for the devices

themselves are furnished with the system.

The first three chapters present a general description of the system and its operation. Chapter 1 discusses
physical and electrical characteristics. Chapter 2 treats the logical organization of the system in terms of
registers and data flow; the treatment is at the intermediate block diagram level to serve as a bridge between the
basic system information given in Chapter 1 of the reference manual and the detailed treatment of the hard-
ware in later chapters of this manual. There is no information here on programming, the number system, or
instruction formats (which are found in the reference manual), but the entire Appendix A of the reference
manual, with its tables of instructions and device mnemonics and its complete list of instruction operations

in symbolic form, is included in Appendix A of this manual. The appendix also contains diagrams of the
DECsystem-10 ASCII code and the formats of the words used as instructions, numbers and pointers. Chapter
3 explains the operation of the processor and the basic 10 devices, including all the information given on

this subject in the reference manual. Although the chapter does contain some information of a maintenance
nature, it is limited to a discussion of the controls and indicators that are visible to the operator. Photo-

graphs of the various panels are printed on foldouts in Appendix B.

The next six chapters present a complete, detailed description of the system logic. Chapter 4 describes the
elements used in implementing the processor logic and discusses the basic engineering documentation, in-
cluding the symbols and terminology used in the logic drawings and flow charts. The next three chapters
describe the hardware for main control, including control registers, fast memory, processor cycles and the

console, for interfacing with memory, and for logical and arithmetic processing. Chapter 8 explains the
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sequences of events, with reference to the flow charts, through which the processor performs all of the basic
instructions. Chapter 9 covers input-output, including IO instructions, the IO bus, priority interrupt, and
the interfaces for the basic IO equipment. This chapter also describes the readin function, which makes
significant use of elements in all parts of the processor, especially in-out logic and console. The reader is
strongly advised not to embark upon any logic chapter in this or any other DECsystem-10 maintenance

manual without first gaining a thorough understanding of the material presented in Chapter 4.

Chapter 9 contains information useful in maintaining the system, including maintenance operation, mainten-
ance programming, diagnostics, and preventive and corrective maintenance procedures. Engineering drawings
other than those used in the manual are discussed in Appendix C. Appendix D lists recommended spare

parts.

All engineering drawings referred to in the text may be found in the K110 Customer Print Set. Documents

of particular use to the reader are the following.

DECsystem-10 System Reference Manual DEC-10-HGAD-D

DECsystem-10 Site Preparation Guide DEC-10-SITE-D

DECsystem-10 Layout Kit DEC-10-KITB-D

DECsystem-10 Interface Manual DEC-10-HIFC-D

KI10 Customer Print Set B-DD-KI10-0

DECsystem-10 Replacement Schematics B-MN-PDP10-0-MOD1
B-MN-PDP10-0-MOD2
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CHAPTER 1
INTRODUCTION

Before reading this manual, service personnel should be familiar with the organization and function of the
K110 central processor and the DECsystem-10 as a whole to the extent covered in the System Reference
Manual. It is unnecessary at first to be familiar with the details of every instruction, but begin by reading
thoroughly the following parts of the reference manual: all of Chapter 1, the text portions (consisting

mostly of introductory remarks to the instruction groups) in sections 2.1 t0 2.10 and 2.14, and all of sections
2.12, 2.13 and 2.15 treating input-output, priority interrupt, and the machine modes including paging.
Effective maintenance however requires adeptness at programming, so in the long run one should be
thoroughly familiar with the entire contents of the first three chapters in the reference manual (the last two

pages of section 2.14 and all of sections 2.16 and 2.17 can be skipped, as they apply only to the KA10).

1.1 PHYSICAL CHARACTERISTICS

Most DECsystem-10 equipment is housed in steel cabinets or bays, each of which has an indicator panel at
the top. The K110 has three such bays numbered from left to right (Figure 1-1). Complete physical dimen-
sions, clearance requirements, and the like are listed in the Site Preparation Guide. At the center of bay 3
(the console bay) are the console operator panel and a small maintenance panel. Behind the door below the
console shelf is a vertical panel for connections to the console teletypewriter. A DK10 real time clock is
ordinarily mounted in this space as well. Above the maintenance panel are the paper tape reader and punch.
The space between these and the indicator panel at the top is often used for a DECtape transport. The

vacant panel at the left of the reader is sometimes used for a telephone.

Behind the doors on the front of bays 1 and 2 is the module wiring, which is on mounting panels into

which modules are inserted from the rear. Each bay has sixteen horizontal rows lettered A to T from the
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top (skipping G, I, O and Q), and each row has forty-four module connectors or slots numbered left to right.
An individual row is identified by the bay number followed by the row letter, but for checking margins,

rows lA—IT are addressed as 00—17 octal and rows 2A—2T are addressed as 20—37. Both designations are
printed at the outer ends of the rows (the left end in bay I, the right end in bay 2). An individual slot is
identiﬁed by the row designation followed by the slot number. Each slot has two columns of eighteen wire-
wrap pins protruding through the panel from the module connector pins on the rear. The pins are lettered

A to V in pairs from the top (skipping G, I, O and Q) and an individual pin is identified by the pin letter

and column number (1 left, 2 right) appended to the row designation. At the outside end of each pair of rows
is a small panel containing circuit breakers and margin check switches. At the bottom of bay 2 are the sockets

for the memory and IO buses and two half rows of logic modules designated 3A and 3B.

Inside the doors at the rear of the bays are inner mounting doors, which are used for mounting the power
equipment. At the bottom of the bay 3 mounting door are the 857 and 858 power controls (Figure 1-2),
but the main 845 power control is mounted at the bottom on the side of the bay (behind the console end
panel). The three power supplies at the top of the bay door are for margin checking only; dc voltages for
the logic are supplied by the remaining power supplies in the middle of the bay 3 door and on the mounting

doors on bays 1 and 2.

Looking into bay 1 or bay 2 from the rear (Figure 1-3) one can see yet another door, the cooling assembly
door, which completely encloses the modules mounted at the front of the bay. Each cooling assembly contains
six thermistors, and at the top and bottom are small fans that cool the logic modules by drawing air down

through them.

The processor is connected to the other units in its subsystem (memories, direct-access processors, and per-
ipheral equipment) by five buses, the IO bus, memory bus, DEC standard power control bus, margin check
bus, and +5 margin bus. Each bus actually has two cables, right and left, where the right cable is for equip-
ment at the right of the processor, and the left cable is for equipment at the left of the processor. As
mentioned above, the memory and 10 buses originate at the bottom of bay 2. (The basic IO devices and the
parts of the processor that are treated like IO are connected directly into the processor logic without using
the IO bus cables at all.) Both cables in the power control bus and the +5 margin bus originate at the con-
sole maintenance panel, as does the right margin check bus. But for margin checking (other than +5 Vdo),
the first unit at the left is the processor itself, and the left margin check cable originates at a distribution

point at the left end of the processor frame (at the bay 1 end panel).
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1.2 ELECTRICAL CHARACTERISTICS

Complete information on line voltage, ac power, and types of external wiring and receptacles is given in the
Site Preparation Guide. The ac input to the processor is at the 845 power control at the bottom of the con-
sole bay. This control has the main circuit breakers and supplies switched ac through power cables to the
several bays; it also has convenience outlets and other switched and unswitched outputs for various uses,
including connections to the other power controls and a 6.3 Vac signal to the logic for the line frequency
clock. Of the two power controls at the bottom of the bay 3 mounting door, the 857 (the lower one) pro-
vides timing for power on and off, controls the failure lights on the maintenance panel, has sensors for six
of the thermistors, and has an override switch; the 858 has the restart logic, the overvoltage detector, and

sensors for the remaining thermistors.

The H725 power supply provides a floating 15 volts; those at the bottom of the mounting doors on bays 1
and 2 are connected to -15 volts, the remaining ones at the tops of those doors and in the middle of the bay

3 door are connected for +15 volts. The H723 units in bays 1 and 2 supply +8 volts. The dc voltages required
by the logic are +5 and -15 volts. The +5 volts for each pair of logic rows is provided by a pair of regulators
(series pass elements) in the small panel at the outside end of the rows; these regulators use +15, +8 and -15

volts.

The K110 logic is special TTL circuitry with high noise immunity. The low and high logic levels are 0 and

+3 Vdec with tolerances of 0 to +.4 volt and +2.6 to +5 volts. Voltage levels may go outside these limits dur-
ing transient conditions, but must be within the limits in the steady state. Any gate is guaranteed to hold
the appropriate output when a low gate input goes as high as 1.0 volt or a high input goes as low as 2.0 volts.
Pulses from pulse amplifiers in the logic are 70 ns nominal width but are adjustable; specifications are the
same as for levels, ie a pulse is simply a very short level. Rising edges are used for all edge-triggered circuits,
such as the clock inputs of the D-type flipflops that are used extensively throughout the logic. Levels used
on the IO and memory buses and in a very small portion of the punch logic are nominally -3 and O volts;
memory bus pulses are 70 to 100 ns width. The logic symbology used in the drawings is essentially that of
Military Standard 806B.

The reader and punch are wired into the tap on the primary of the upper H725 power supply in bay 3 so
that they operate on 115 volts regardless of the line voltage at the site. Power and signal connections to the
console teletypewriter are through the panel under the console shelf (this panel has one switched and two
unswitched convenience outlets for terminals, scopes, etc). All external units must have their own line

power sources, but all can be controlled from the processor console. Memories are placed in operation by a
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-15 volt remote turnon signal on the margin check bus. For controlling peripheral equipment, the power
control bus has a ground turnon signal and an emergency shutdown signal that turns off all peripheral
equipment regardless of the state of the turnon signal and even if the power control in an external unit is in
local mode. Peripheral equipment may also be controlled by the turnon signal on the margin check bus.
Moreover switched ac voltage from the 845 power control can be used to control turnon relays in the

peripheral equipment, although it cannot be used as a power source.



CHAPTER 2
LOGICAL ORGANIZATION

Logically the processor can be viewed as comprising four areas: basic control logic, memory logic, arithmetic
logic, and input-output, although there is some crossover among them. The detailed hardware description

of these areas is presented respectively in Chapters 5, 6, 7 and 9 (there is also some special maintenance logic
discussed in Chapter 10). In some cases the material presented in the reference manual serves as an adequate
introduction to the detailed treatment of the hardware, especially for an IO interface, where an understand-
ing of the machine-level programming usually requires a greater understanding of the hardware that implements
it. The block diagram on page 1-3 of the reference manual does show the registers that are of significance to
the programmer, but a very large amount of detail is hidden not only in the box labeled “‘arithmetic logic,”
but in the boxes representing the registers as well. A much more detailed diagram of the processor is available
in the Customer Print Set as drawing FD-KI10-0-REG. Here we see all of the processor registers, the data
paths connecting them, and much of their associated gating. A circle containing a plus sign indicates a mixer
through which information can pass from one of a number of different sources; numbers in parentheses by the
data paths indicate the number of bits. The left section of the drawing shows the control and memory areas
combined, the small section at the lower right shows the fast memory selection, and the rest of the drawing is
devoted to the arithmetic logic. The in-out logic appears only to the extent of connections to the IO bus.

The fast memory (FM) appears with the arithmetic logic, reflecting its function as a set of accumulators.
However it is also a part of memory, and as a set of index registers it is part of basic control, although in the
latter case its output goes to the adder — the control logic performs the effective address calculation through

the arithmetic logic (the discussion of fast memory control and addressing is in Chapter 5).

2.1 CONTROL
The most fundamental control circuit is a clock that times processor operations. The clock regulates a

sequence of time states, which vary in length depending upon the operations that must be set up in them.
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Each clock pulse triggers the events that result from enabling levels set up during the previous time state and
also triggers the events that set up the next time state. These states are grouped into cycles that carry out

the different actions necessary for performing instructions and other special operations. The four basic cycles
are instruction, fetch, execute and store. In the first of these the processor handles the instruction word and
calculates the effective address, where each indirect requires a repetition of the cycle. In the remaining cycles
the processor fetches the operands, executes the instruction, and stores the result. Execution of the simpler
instructions requires only the basic execute cycle, but other instructions require special execution sequences

of varying complexity between the execute cycle and the store cycle.

To begin each instruction the control logic supplies an address to the memory interface and requests that an
instruction be fetched. Initially these events are triggered from the console, but as the program progresses
each instruction triggers the fetching of the next. The instruction address is supplied to the address bus AB
as shown at CS in the block diagram. Initially an address comes from the console address switches, and for a
jump a new address comes from the adder AD, but for the normal sequence PC supplies an address through a
+1 gate to reference the next location in sequence. The address from the bus goes to the memory address
register MA with appropriate modification by the paging hardware. The address also goes to PC, which may
therefore receive a new address, but usually receives its previous contents incremented by one (a location is

skipped by sending a PC address around the loop without referencing memory).

The instruction word from memory is received by the memory buffer MB (at the lower left), from which the
instruction code and accumulator fields are latched into IR this latter register can also be set up from the
console for initial read in. A large network associated with IR decodes the instruction code to determine
what operations to perform. If indexing is called for, the address part of the instruction word from MB is
added in AD to the contents of an index register from FM; and if the address is indirect, the result is sent

to AB to retrieve an address word. This also comes to MB but without affecting IR,

The instruction cycle is repeated until the effective address E is in AD, whereupon the fetch cycle sends it
to AB for fetching the memory operand, which comes into AR from the memory bus. At the same time
the AC address is used to select a fast memory register to supply the AC operand. After the various actions
necessary for the execution of an instruction are done, the result is stored in memory, an accumulator, or
both, as required. The FM selection (shown at the right) includes two bits supplied by a DATAQO PAG, to
select the fast memory block (user only) and four bits for the address of the location in the selected block.
The 4-bit address is from MB for addressing an index register, from MA when FM is addressed for a memory

operand (when fast memory is treated as part of memory), from IR for addressing an accumulator, and from



IR through a +1 gate for addressing a second accumulator.

Also covered as part of basic control in Chapter 5 are trapping, machine modes, the response to a page
failure, and console operations. The mode logic includes control over switching from one mode to another,
determination of the type of paging, detection of an illegal entry into a concealed area, and the base registers
that point to the user and executive process tables. When the paging circuits in the memory logic detect a
page failure, the processor enters a special page fail cycle in which it executes appropriate recovery pro-
cedures, constructs a page fail word by means of the so-called magic numbers, and generally enters a page

fail trap.

The memory indicators MI on the console can display information from memory via MB, but the program
can also load them with an IO instruction. The operator can load the data and address switches from MI;

with 10 instructions, the program can load the address switches and read the data switches.

2.2 MEMORY INTERFACE

Most of the interface between the processor and the memory bus comprises control circuits for the memory
subroutine; this includes page checking, timing the sequence of events for calling and responding to memory,
overlapping memory subroutines, and overlapping calls on the memory bus. However the interface does in-
clude the MB and MA registers and the associative memory, which supplies the information for constructing
physical addresses from the virtual addresses supplied by the program. For a direct, unpaged reference MA
receives the 18-bit address from the address bus, and this is expanded to 22 bits for an absolute address
from the console. Otherwise the left nine bits of the virtual address are compared with the entries in the
virtual part of the page table for the type of paging in effect; and if there is a match, the physical part of the
table supplies the three bits for checking the type of reference and the most significant thirteen bits of the
physical address. If there is no match, memory control performs a refill cycle in which a half word from the
page map via MB supplies new mapping data to the associative memory at the location specified by the
associative memory address counter. This reload counter can be loaded and read by IO instructions, and it

increments automatically whenever the location to which it points is used for a mapping.

Associated with MB is a net that checks the parity of each word received from memory and generates the
parity bit for each word being sent to the memory. Another interface element is the MA special logic, which
supplies low order address bits to MA for special references to the process tables (trap, page failure, MUUO,

interrupt, auto restart).
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2.3 ARITHMETIC LOGIC

The arithmetic logic is in two major parts, the smaller of which contains the shift counter SC. Computations
on exponents and computations for size and position in byte manipulation are done in SC and its adder
SCAD. SC is also used as a counter to control operations that require a sequence of steps, such as shifting,
multiplying and dividing. Special numbers needed for particular manipulations and for counting steps are
supplied through the SCAD data net as listed at the right. While SC is controlling a floating point operation,

the exponent is saved in the floating exponent register FE.

The major part of the arithmetic logic is based on the full-word adder AD and three full-word registers, the
arithmetic register AR, the selected location in fast memory used as a passive register, and a buffer register
BR. Almost all of the simpler instructions are performed using only these elements and often only some of
them. AD is the receiving point for input from the IO bus and special words are constructed in it from the
magic numbers. It can be enabled to produce the equivalence function or the arithmetic sum of its inputs,
but otherwise its output is the AND function of the inputs. AR can directly receive information from PC,

IR, MA and the flags for the construction of PC words, UUO words and MAP words.

Operations at an intermediate level of complexity require the multiplier-quotient register MQ. This register
holds the mask in byte manipulation (received via AD from the mask generator), but in all other operations
acts as a right extension of AR even though it holds the multiplier in multiplication and the quotient is
built up in it in division. The AR-MQ combination is used in a straightforward manner in double length
shift and rotate instructions and in floating point add and subtract. In multiplication the multiplier is
shifted out of it at the right as bits of the double length product are shifted in at the left (partial products
are added into AR). In division it supplies bits of the low order part of the double length dividend to AR as
bits of the quotient are brought in at the right.

Double precision floating point operations require the full capacity of the arithmetic logic with 28-bit left
extensions of AD and AR. ADX and AD act together as a double precision adder, ARX and AR hold one
double operand with MQ acting as a right extension for triple length manipulation, and FM and BR together
hold the other double operand. Such operations even make arithmetic use of MB for temporary storage of
the high part of the multiplier while the low part is being used in MQ and the high part of the quotient
while the low part is being built up in MQ.
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2.4 INPUT-OUTPUT

The basic elements of the processor in-out are in-out transfer control (I0T) and the interface to the 10 bus
(IOB). Together they control the movement of device codes, control signals and data over the IO bus. The
timing of in-out operations is derived from the main clock but uses a special IOT timer to control a sequence

of stretched time states, as operations over the bus are much slower than operations in the processor.

The requesting of interrupts by peripheral devices is handled and synchronized by a special PI request that
uses both the main clock and a special PIR asynchronous clock. Some events in the sequence are timed by
the main clock, but it makes no difference which time states the processor happens to be in. In responding
to requests over the bus, the PIR sequence determines the channel and then sends out a request grant signal
so the nearest device that is requesting an interrupt on that channel can send back an interrupt function
word. Upon receiving the word, the PIR logic synchronizes the request to the processor clock in order to
wait for the processor to interrupt the program and begin a Pl cycle, which is simply a set of basic processor
cycles devoted to executing an interrupt function. If an interrupt instruction produces overflow, the pro-
cessor executes a second PI cycle. Upon completing one or two PI cycles, the processor may return to the
interrupted program or may hold an interrupt by beginning an interrupt service routine. The hardware con-
tains four sets of seven flags, two sets of which are used for synchronizing requests and holding interrupts on
the seven channels. The other sets are used by the program for turning individual channels on and off and

for forcing interrupts on individual channels.

The IO hardware in the processor includes interfaces for the basic IO equipment—reader, punch and tele-
typewriter. The information provided in section 2.12 and Chapter 3 of the reference manual is quite

sufficient as an introduction to the detailed descriptions of the hardware for these interfaces.



CHAPTER 3
OPERATION

This chapter describes the processor controls and indicators that are readily accessible to the operator and
discusses the normal operation of the processor, reader, punch, and console teletypewriter. Some mainten-
ance information is included, but descriptions of any controls and indicators mounted behind the doors of

the processor bays and the detailed discussion of operation for maintenance purposes are in section 10.1.

3.1 CONTROL PANELS

Photographs of the various processor control panels are printed on foldouts in Appendix B. Most of the con-
trols and indicators used for normal operation of the processor and for program debugging are located on
the console operator panel and the small maintenance panel just above it; these are shown together in Figure

B-1. The panels at the tops of the bays contain only indicators, most of which are for maintenance (Figures
B-2 to B4).

In the upper half of the operator panel are four rows of indicators, and below them are three rows of two-
position keys and switches. Physically both are pushbuttons, but the keys are momentary contact whereas
the switches are alternate action. Relative to the internal logic, the switches are actually flipflops that are
controlled by the buttons but which in many cases can also be “operated” by the program. A switch is on
or represents a 1 when it is illuminated. Buttons that actually trigger operating sequences in the processor
are the operating keys, which are located in the right half of the bottom row. Operating switches are those
that supply control levels for governing various processor operations; these include the buttons in the left
half of the bottom row (except SINGLE PULSER), the paging switches at the left end of the third row, and
the buttons at the left in the top two rows at the left end of the maintenance panel. The remaining buttons

are sense switches, groups that constitute switch registers, and various other special keys and switches that
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supply information to the program or to specific hardware functions, or perform special functions of

various sorts separate from the normal processor operating sequence.

The thirty-six numbered switches in the second row from the bottom on the operator panel and the twenty-
two numbered switches in the row above them are the data and address switches through which the operator
can supply words and addresses for the program and for use in conjunction with the operating keys and

switches. At the right end of each of these switch registers is a pair of keys that clear or load all the switches
in the registér together. The load button sets up the switches according to the contents of the corresponding
bits of the memory indicators (MI) in the fourth row. At the left end of the maintenance panel are switches

to select the device for readin mode and a set of sense switches, which can be interrogated by the program.

The center section of the maintenance panel contains a voltmeter and controls for margin checking, and the
right section contains speed controls for slowing down the program. Between these is a counter that regis-
ters the total time processor power has been on (the counter reads hours if the line frequency is 50 Hz, but
at 60 Hz it counts six for every five hours). Below the counter are four special buttons, two of which are
locks that are used to prevent inadvertent manipulation of the keys and switches while the processor is
running: the console data lock disables the data and sense switches; the console lock disables all other but-
tons except those that are mechanical, which group comprises the four under the counter and the readin

device switches.

Power is supplied to the system by means of the switch at the right end in the group under the counter.
This switch is lit while power is on, but the power light in the upper right corner of the operator panel is lit
only when the system is actually in operation or is ready for operation; after power turnon the light does
not come on until power is stabilized in the correct range. At the left of the margin check controls are three
red lights that indicate an overtemperature condition somewhere in the processor logic, a tripped circuit
breaker, or a bay door open. Whenever any of these lights goes on the Power Failure flag sets and power

automatically shuts down.

3.1.1 Indicators

When any indicator is lit the associated flipflop is 1 or the associated function is true. Some indicators dis-
play useful information while the processor is running, but many change too frequently and can be discussed
only in terms of the information they display when the processor is stopped. The program can stop the pro-

cessor only at the completion of the HALT instruction; the operator can stop it at the end of every instruc-



tion, in certain memory references, or following every clock pulse (the last allows extremely slow speed

operation with the clock running slowly or each clock pulse triggered individually by the operator).

Of the large groups of lights on the operator panel, the right half of the second row displays the contents of
PC, the third row displays the instruction being executed or just completed, and the fourth row is the memory
indicators. The left third of the third row displays IR; in an IO instruction the left three instruction lights

are on, the remaining instruction lights and the left accumulator light are the device code, and the remain-

ing accumulator lights complete the instruction code. The right half of the row displays the virtual address

on the address bus, and the I and index lights reflect the states of the corresponding bits of the memory
buffer. Hence the right two thirds of the row changes with every memory reference, and the I and index
lights actually display the indirect bit and the index register address only following an instruction fetch or

an indirect reference in an effective address calculation.

Above the memory indicators appear two pairs of words, PROGRAM DATA and MEMORY DATA. If the
triangular light beside the former pair is on, the indicators display a word supplied by a DATAO PI1; if any
other data is displayed the light beside MEMORY DATA is on instead. While the processor is running, the
addresses used for memory reference are compared with the contents of the address switches in a manner
determined by the paging switches and the User Address Compare Enable flag. Whenever the two addresses
are equal and the comparison is enabled, the contents of the addressed location are displayed in the memory
indicators. However, once the program loads the indicators, they can be changed only by the program until
the operator turns on the MI program disable switch, executes a key function that references memory, or

presses the reset key (see below).

The four sets of seven lights at the left display the state of the priority interrupt channels. The PI ACTIVE
lights indicate which channels are on. The IOB PI REQUEST lights indicate which channels are receiving
request signals over the in-out bus; the PI REQUEST lights indicate channels on which the processor has
accepted requests. Except in the case of a program-initiated interrupt, a REQUEST light can go on only if
the corresponding ACTIVE light is on. The PI IN PROGRESS lights indicate channels on which interrupts
are currently being held; the channel that is actually being serviced is the lowest-numbered one whose light
ison. When an IN PROGRESS light goes on, the corresponding REQUEST goes off and cannot go on again
until IN PROGRESS goes off when the interrupt is dismissed. PI ON indicates the priority interrupt system
is active, so interrupts can be started (this corresponds to CONI PI, bit 28). PI OK 8 indicates that there is
no interrupt being held and no channel waiting for an interrupt; this signal is used by the real time clock to

discount interrupt time while timing user programs.



Note: If a REQUEST light stays on indefinitely with the associated IN PROGRESS light off and PC is
static, check the PI CYC light on the indicator panel at the top of the console. If it is on, a faulty program
has hung up the processor . Press RESET.

The four lights at the center of the top row indicate the processor mode. One and only one of these lights
can be on and they represent the combined states of the User and Public flags. The rest of the top row con-

tains the power light and these control indicators.

RUN

The processor is in normal operation with one instruction following another (although the light remains on at

a stop in a memory reference). When the light goes off, the processor stops.

STOP MAN

The operator has stopped the processor by pressing STOP or RESET.

STOP PROG

The processor has been stopped by a HALT instruction. At the completion of the instruction the address
lights display the jump address (the location from which the next instruction will be taken if the operator
presses the continue key), and the AR lights at the top of bay 2 display an address one greater than that of

the location containing the instruction that caused the halt.

STOP MEM

The processor has stopped at a memory reference. This can be due to satisfaction of an address condition

selected at the console, reference to a nonexistent memory location, or detection of a parity error.

KEY MAINT

One of the following switches is on (this light is equivalent to CONI APR, bit 8): FM MANUAL,
MEM OVERLAP DIS, SINGLE PULSE, MARGIN ENABLE, SINGLE INST, STOP PAR. Any one of these
switches being on implies that the processor is being operated for maintenance purposes, and is not running

at maximum speed.
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KEY PG FAIL

A key function has caused a page failure. No page fail trap is executed in response to a key-induced failure;

if the processor is running, it continues the program.

The remaining processor lights are on the indicator panels at the tops of the bays. No attempt is made here
to explain the meanings of these lights, as that is effectively the objective of the next five chapters — the
lights reflect the logic of the machine. The large groups of lights on the panel at the top of bay 2 (Figure
B-3) display the contents of the adder, the AR, BR and MQ registers, and the selected location in fast mem-
ory. At the right of the registers are a number of miscellaneous control signals, primarily enables for the
shift counter, but also the enables for the IR latches and signals associated with the fetching and completion
of an instruction. At the right end the upper four rows display the SC adder, its data inputs, and the shift
counter and floating exponent register. The bottom row displays the AR flags, where FXU is Floating
(exponent) Underflow and DCK is No Divide (divide check). FXU HOLD is a nonprogram flag that plays a
role in determining underflow conditions. At the end are the flipflops that inhibit the clock and prolong its

period.

The right halves of the top two rows of the bay 1 panel (Figure B-2) display the contents of the AD and AR
extensions. Below these are three general flags used by the hardware and the enables for AD and ADX. The
rest of the lights in the top four rows display all of the time state flipflops, flags and special control levels
for the processor cycles, traps, and special sequences except those for in-out, priority interrupt, page fail

and key functions. BYF6 in the top row is the First Part Done flag; the TN lights at the right end of the
fourth row are the trap flags (TN 0 is Trap 2). The right half of the bottom row displays the physical add-
ress for each memory reference and the type of memory request. At the left are the lights for the associa-
tive memory. The AB 14-17 lights at the center are always either off or reflect the states of address switches
14-17.

The lights in the top row of the panel on the console bay (bay 3, Figure B-4) display either the contents of
the in-out bus, the paper tape reader buffer, MB, or the mixer for the user and executive base registers, as
selected by the 4-position switch in the right section of the maintenance panel. The rest of the panel displays
the user and executive base registers, and a multitude of signals for memory control, fast memory control,
the key logic, paging, priority interrupt, in-out, the basic in-out devices (reader, punch, teletypewriter) and
the processor flags. Note that the TRAP ENABLE light at the center of the second row is the Page Enable
flag, which also enables overflow traps (DATAI PAG, bit 22). PAGE LAST MUUO PUB at the very center
of the panel is the Disable Bypass flag. The User IOT flag is in the middle of the third row, and COMP ADR
BRK INH near the left end of the bottom row is Address Failure Inhibit.
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3.1.2 Operating Keys

The operating keys can be used whether RUN is on or off. If the processor is running when a key is pressed,
it simply pauses at an appropriate point in the program to perform a key cycle to execute the function.
These key functions are effectively of three types. The first three keys on the left are for the initiating func-
tions, read in, start, and continue: these functions place the processor in operation under conditions deter-
mined primarily by the function itself. The next two keys are for the terminating functions, stop and reset:
if the processor is running, these functions stop it. The last five keys are for the independent functions,
execute, examine, examine next, deposit, and deposit next. These functions have no inherent effect on pro-
cessor operation: if the processor is not running it simply performs a key cycle and stops; if it is running, it
pauses to perform a key cycle and continues the program. (However the data deposited or the instruction
executed may have an effect.) Moreover the independent functions are affected by the setting of the paging

switches, which determine the address space in which the function is performed.

The logic responds to the keys in two stages. When a key is pressed or several are pressed simultaneously,

the logic latches them. From among the bottons latched, the processor then accepts the request for the
function that has priority; the priority order is the same as the order of the keys from left to right on the
panel except that reset has first priority. Assoon as a function request is accepted, the corresponding but-
ton lights up and remains lit until the function is completed. If the processor is not already in operation, it
performs the accepted function immediately; otherwise it saves the function until it can be performed. While
any button is lit, however, no function request can be accepted; in other words, although the processor will
interrupt the program to perform a key function, it will not interrupt one key function for another. It will
however do one key latch while a key is lit and accept the highest priority latched function once the current
function is done. Provision is also made in the logic so that the RESET key can be used to stop the processor

no matter what.

READ IN

Clear all IO devices and all processor flags. Turn on RUN and EXEC MODE KERNEL (trapping and paging
will both be disabled as TRAP ENABLE at the top of the console bay will be off). Execute DATAI D, 0
where D is the device code specified by the readin device switches at the left end of the maintenance panel
(the rightmost device switch is for bit 9 of the instruction and thus selects the least significant octal digit
(which is always 0 or 4) in the device code). Then execute a series of BLKI D, 0 instructions until the left

half of location O reaches zero. After storing the last word in the block, fetch that word as an instruction



from the location in which it was stored as specified by PC. Since RUN has been set the processor begins
normal operation at the location containing the last word. (For information on the data format refer to the

System Reference Manual.)

Note that the key function lasts throughout the processing of the entire block. This means that read in can-
not be interrupted for another key function. Hence if it must be stopped (eg because of a crumpled tape),
press RESET.

START

Turn on RUN and EXEC MODE KERNEL, and begin normal operation by fetching the instruction at the
location specified by address switches 18-35. The memory subroutine for the instruction fetch loads the

address into PC for the program to continue. This function does not disturb the flags or the IO equipment.

CONT

If STOP MEM is on begin normal operation at the point at which the processor is stopped in a memory sub-
routine. Otherwise turn on RUN and begin normal operation by fetching an instruction from the location

specified by PC.

STOP

Turn off RUN so the processor stops with STOP MAN on before fetching the next instruction. At the stop
PC points to the location of the instruction that will be fetched if CONT is pressed (this is the instruction
that would have been fetched had the processor not stopped).

RESET

Clear all IO devices, disable auto restart, high speed operation and margin programming, clear the processor
flags (lighting EXEC MODE KERNEL), turn on the triangular light beside MEMORY DATA (turn off the
light beside PROGRAM DATA), turn off RUN and stop the processor.

If this function is not performed within 10 ms (eg because READ IN is lit), the key triggers a panic reset that
produces all of the standard reset actions and also clears all but the mechanical console keys and switches.

(If STOP ever fails to stop the processor, pressing this key will).



XCT

Execute the contents of the data switches as an instruction without incrementing PC. If PAGING USER is
on and PAGING EXEC is off, execute the instruction in user virtual address space; otherwise use executive

address space.

Note that an instruction executed from the console can alter the processor state like any instruction in the
program: it can halt the processor, can change PC by jumping or skipping, alter the flags, or even cause a non-

existent memory stop (but not a page fail trap, even if it turns on the KEY PG FAIL light).

NOTE

The remaining key functions all reference memory. They can
therefore light KEY PG FAIL and set such flags as Nonexistent
Memory and Parity Error, and they all turn on the triangular
light beside MEMORY DATA, turning off the light beside
PROGRAM DATA.

These functions use an address supplied by the address switches,
and the way that address is interpreted is determined by the
paging switches. If both paging switches are off, the function
uses a 22-bit absolute physical address supplied by address
switches 14-35, and fast memory references are made to the
block selected by the FM block switches at the left end of the
maintenance panel. If either paging switch is set, the function
uses a virtual address supplied by address switches 18-35 and
the FM block switches have no effect (in other words the func-
tion has access to one of the virtual address spaces defined for

a normal program). If PAGING EXEC is on, the function has
access to executive address space; if PAGING EXEC is off and
PAGING USER is on, the function has access to user address space.

EXAMINE THIS

Display the contents of the location specified by the paging and address switches in the memory indicators.

EXAMINE NEXT

Add 1 to the address displayed in the address switches, and display the contents of the location then speci-
fied by the paging and address switches in the memory indicators.

DEPOSIT

Deposit the contents of the data switches in the location specified by the paging and address switches, and

display the word deposited in the memory indicators.



DEPOSIT NEXT

Add 1 to the address displayed in the address switches, deposit the contents of the data switches in the loca-
tion then specified by the paging and address switches, and display the word deposited in the memory indi-

cators.

3.1.3 Operating Switches

Besides defining the address space for the independent key functions, the paging switches also perform this
service for address comparison and for the group of five switches just at the left of the operating keys. When-
ever the processor references memory or an accumulator, it may compare the virtual address used with that
specified by address switches 18-35 and may take some action if the two are identical. There are a number
of conditions that affect the comparison. First, comparison can be made only for memory references and
accumulator write references — there is never a comparison for an index register reference or an accumulator
read reference. Given the proper type of reference, the comparison must be enabled. If PAGING EXEC is
on and PAGING USER is off, the comparison is enabled for executive address space; if PAGING EXEC is

off and PAGING USER is on, the comparison is enabled for user address space provided the program has
turned on USER ADR COMP (User Address Compare Enable flag) in the upper left corner of the console
indicator panel; if both paging switches are on, the comparison is enabled for executive address space, pro-
vided USER ADR COMP is on (in other words with both switches on, PAGING USER applies the flag con-
dition to PAGING EXEC). In a reference of the correct type with the comparison enabled, if the virtual
address on the address bus is identical to the address in switches 18-35, the processor displays the contents of
the addressed location or accumulator in the memory indicators (unless the light beside PROGRAM DATA

is on).

Except in an AC reference, the same situation that causes the word display can also be made to stop the pro-
cessor or produce an address failure, depending upon the purpose for which the reference is made as selected
by the three address condition switches. FETCH INST selects the condition that access is for retrieval of an
instruction (including an instruction executed by an XCT or contained in an interrupt location or a trap for
an unimplemented operation) or an address word in an effective address caiculation. FETCH DATA selects
access for retrieval of an operand only (other than in an XCT). WRITE selects access for writing, including
read-modify-write. Whenever a memory reference satisfies both the comparison conditions and any selected
address condition, the processor performs the action selected by the other two switches. ADDRESS STOP
halts the processor with STOP MEM on and PC pointing to the instruction that was being performed (running



with ADDRESS STOP on slows down the processor). ADDRESS BREAK causes an address failure except
in an instruction performed while COMP ADR BRK INH is on.

Conditions associated with the comparison are displayed by the COMP lights in the middle of the console
indicator panel. From left to right these indicate an accumulator write reference, a memory read reference,
equal addresses in a synchronous reference (an operand reference, but limited to the first in a double operand)

and equal addresses in an asynchronous reference (an instruction fetch or the second in a double operand).

The description of each switch relates the action it produces while it is on.

SINGLE INST

Whenever the processor is placed in operation, clear RUN so that it stops at the end of the first instruction.
Hence the operator can step through alprogram one instruction at a time, pressing START for the first one
and CONT for subsequent ones. Each time the processor stops, the lights display the same information as
when STOP is pressed. If READ IN is pressed, the processor stops at the end of the first instruction follow-

ing the completion of the key function.

APR CLK FLAG (Clock flag) on the console indicator panel is held off to prevent clock interrupts while

SINGLE INST is on. Otherwise interrupts would occur at a faster rate than the instructions.

SINGLE INST will not stop the processor if a hangup prevents it from getting to the end of an instruction.
Use STOP, RESET, or SINGLE PULSE.

SINGLE PULSE

Inhibit the clock so that a single clock pulse is generated each time SINGLE PULSER is pressed. If the pro-
cessor is not already in operation, an operating key must be pressed before SINGLE PULSER can be used.
If the processor is running, it converts to single pulse operation at the beginning of the instruction cycle;
hence the clock will not stop if the processor does not reach the instruction cycle, say because it is hung up
in a multiply or divide sequence. To force the processor into single pulse operation regardless of its position

in the operating sequence, turn on SINGLE INST with SINGLE PULSE on.
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STOP PAR

Stop with STOP MEM on at the end of any memory reference in which even parity is detected in a word
read. A parity stop is indicated by the following: PAR ERR FLAG (Parity Error flag) is on in the bottom
row on the console indicator panel; and among the PAR lights in the third row from the bottom, ERR is on,

IGN (ignore parity) is off, and BIT displays the parity bit for the word read.

If IGN is on (it displays a signal from the memory), parity errors are not detected and no stop can occur.

Running with STOP PAR on slows down the processor.

STOP NXM

Stop with STOP MEM on if a memory reference is attempted but the memory does not respond within
100 us. This type of stop is indicated by FLAGS NXM (Nonexistent Memory flag) being on in the bottom

row on the console indicator panel.

REPEAT

If SINGLE PULSE is on and the processor is placed in operation, slow down the clock so that the processor
runs at a clock rate determined by the speed controls at the right end of the maintenance panel . If the
processor is not already running, it can be placed in single-pulse repeat operation by pressing an operating
key and then pressing SINGLE PULSER. If the processor is running, it stops at the beginning of the instruc-
tion cycle when SINGLE PULSE is turned on; to restart it, press SINGLE PULSER twice. In any event
repetition ceases (and the light in the SINGLE PULSER button goes off) whenever the processor gets to a
point where the clock would have stopped anyway had SINGLE PULSE not been on. To restart, simply
press SINGLE PULSER. The lamp in the SINGLE PULSER button goes off at each clock pulse and turns
back on each time the clock is retriggered; hence the button glows with an intensity that is relative to the
clock duty cycle (eg for a given speed, the light will be dimmer for a program with many memory references).

When either REPEAT or SINGLE PULSE is turned off, operation terminates after one more clock.

If SINGLE PULSE is off and any key (except STOP) is pressed, then every time the repeat delay can be
retriggered, wait a period of time determined by the setting of the speed control and repeat the given key
function. The point at which the processor can restart the repeat delay depends upon the type of key func-

tion being repeated as follows.
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For an initiating function the delay starts when the processor stops with RUN off. This is either

when the program gives a HALT instruction (STOP PROGY) or following the first instruction if
SINGLE INST is on.

For an independent function the delay starts every time the function is done whether RUN is on

or off.

Pressing RESET stops the processor and the delay starts every time the function is repeated. Note

that stop cannot be repeated, and reset is generally used only to provide a chain of clear pulses on
the IO bus.

In any case continue to repeat the function until REPEAT is turned off. (The function is actually repeated

once more, but this is noticeable only with very long repeat delays.)

The speed control includes a six-position switch that selects the delay range and a potentiometer for fine

adjustment within the range. Delay ranges are as follows.

Position Range

200 ns to 2 us

2 us to 20 us

20 us to 500 us

500 us to 6 ms

6 ms to 160 ms

160 ms to 4 seconds

AN BRWN =

MI PROG DIS

Turn on the triangular light beside MEMORY DATA (turn off the light beside PROGRAM DATA) and in-
hibit the program from loading any switches or displaying any information in the memory indicators. The

indicators will thus continually display the contents of locations selected from the console.

MEM OVERLAP DIS

Prevent memory control from overlapping cycles on the memory bus (this has no effect on pipelining within

memory control, such as overlapping the page checking of consecutive memory subroutines).

MARGIN ENABLE

Enable maintenance operation, including writing with even parity in memory and checking speed or voltage
margins. Maintenance actions attempted by the program are indicated by the last four lights on the left end

of the second row from the bottom on the console indicator panel. With maintenance operation enabled,
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writing with even parity and checking speed margins are otherwise entirely under program control. Voltage
margins may be checked by the program or the operator (for information on the margin select and manual

margin address switches, refer to section 10.1).

FM MANUAL

All fast memory references for any purpose (index register, accumulator, memory) and under any conditions
are made to the fast memory block selected by the FM block switches. When FM MANUAL is off, the block
switches control fast memory references only in examine and deposit type key functions with both paging
switches off (ie with the function using physical addressing). Turning on FM MANUAL overrides all other

conditions so that all fast memory references are controlled by the block switches.

3.1.4 Panel Maintenance

A panel indicator is worthless if the bulb is burned out. Before attempting to use the information presented
by the panels, press the LAMP TEST button below the counter on the maintenance panel; this turns on all
of the lamps so any that are burned out can easily be detected. To replace a lamp in a button, pull out the
button cap. The bulb will come with the cap, so remove it, put a new one in the cap, and push the cap back

into the panel.

Replacing a bulb for an indicator requires removal of the panel. To remove the operator panel place your
hands at the bottom corners and press in on the flush catches that are underneath the ends of the panel. The
panel will snap free and can be pulled away. Pull out the bad bulb and insert a fresh one, but exercise some
care in doing this'— the bulb has a pair of pins that must be inserted in the socket, and shorting the terminals

will burn out a transistor. After replacing the bad bulbs, snap the panel back in place.

The indicator panels are hinged at the bottom. Take ahold of the panel at the top and pull down. Itis
unnecessary to return to the console to find the bad bulb, as each bay has its own lamp test button, located

at the left of the lights behind the panel.

On the maintenance panel the only lamps not in buttons are those for the failure indicators. To remove the
panel, first remove the four switch knobs, each of which is held to its shaft by a pair of Allen set screws. The
panel is held in place by Velcro strips at the ends and can be removed simply by pulling it out. Since handl-

ing the maintenance panel is somewhat of a chore, it is probably best to replace all three bulbs whenever
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one burns out. Press the panel back in place, then put on the knobs oriented so that the set SCrews are
against the flats of the shafts. Tighten the screws lightly, rock each switch to make sure it is oriented prop-

erly, and then tighten the screws thoroughly.

3.2 CONSOLE IN-OUT EQUIPMENT

The console teletypewriter is generally on a stand by the console. The reader and punch are located in a
drawer above the maintenance panel, but the face of the reader is available on the front of the drawer, and
at its right are a slot for removing tape from the punch and a pair of rocker switches for feeding tape through

reader or punch. Indicators for all three devices are on the panel at the top of the console.

The ASCII code used with all console teletypewriters and generally used for alphanumeric data on paper tape
is shown on page A21. The main part of the diagram shows the configuration of bits 1-5 or channels 1-5 for
the various characters in four sets, where a dot represents a 1 or a hole (the orientation of the tape is indica-
ted by the little circles, which represent feed holes). At the left end is the configuration for channels 6 and

7 for the four sets of characters. Channel 8 (which is not shown) is ordinarily used for parity. For the
standard even parity of the teletypewriter, the eighth bit is 1 for the characters printed on the dark back-
ground. ‘

3.2.1 Reader

The contents of the reader buffer can be displayed in the top row of lights on the indicator panel by setting
the IND SELECT switch on the maintenance panel to PTR. The remaining indicators for the reader are the
PTR lights at the middle of the bottom row and near the left end of the second row.

Tapes for the reader must be unoiled and opaque. To load the reader, place the fanfold tape stack vertically
in the bin at the right, oriented so that the front end of the tape is nearer the read head and the feed holes
are away from you. Lift the gate, take three or four folds of tape from the bin, and slip the tape into the
reader from the front. Carefully line up the feed holes with the sprocket teeth to avoid damaging the tape,
and close the gate. Make sure that the part of the tape in the left bin is placed to correspond to the folds,
otherwise it will not stack properly. If the program requires that the Tape flag be set and it is not, briefly
press the feed switch at the right. After the program has finished reading the tape, run out the remaining

trailer by pressing the feed switch.

3-14



3.2.3 Teletypewriter

Connections for the console teletypewriter are at the vertical panel behind the door below the console

table (Figure 3-1). In the upper half of this panel are two rotary switches that select the input and output
speed, a toggle switch that selects the signal type, and a pair of sockets for the signal cable. The console
teletypewriter is usually an LT35A Teletype (KSR), for which both rotary switches are set to 110, the
toggle is set to CURRENT, and the signal cable is plugged into the upper socket. (For a Model 37 the
speed would be 150, the toggle would be set to EIA, and the cable would be plugged into the lower socket.)
In the lower half of the panel are switched and unswitched convenience outlets for the teletypewriter,

scopes, and other equipment used at the console.

Figure 3-1 Console Teletypewriter Panel
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3.2.2 Punch

The punch is behind the reader in the console drawer. Fanfold tape is fed from a box at the rear of the
drawer. After it is punched, the tape moves into a storage bin from which the operator may remove it through
the slot on the front. Pushing the feed switch beside the slot clears the punch buffer and punches blank

tape as long as it is held in. Busy being set prevents the switch from clearing the buffer, so pressing it cannot

interfere with program punching.

To load tape, first empty the chad box behind the punch. Then tear off the top of a box of fanfold tape
(the top has a single flap; the bottom of the box has a small flap in the center as well as the flap that extends
the full length of the box). Set the box in the frame at the back and thread the tape through the punch
mechanism. The arrows on the tape should be underneath and should point in the direction of tape motion.
If they are on top, turn the box around. If they point in the opposite direction, the box was opened at the

wrong end; remove the box, seal up the bottom, open the top, and thread the tape correctly.

To facilitate loading, tear or cut the end of the tape diagonally. Thread the tape under the out-of-tape plate,
over the rear guide plate, and through the punch die block; open the front guide plate (over the sprocket
wheel), push the tape beyond the sprocket wheel, and close the front guide plate. Press the feed switch
long enough to punch about a foot and a half of leader. Make sure the tape is feeding and folding properly

in the storage bin.

To remove a length of perforated tape from the bin, first press the feed switch long enough to provide an
adequate trailer at the end of the tape (and also leader at the beginning of the next length of tape). Remove
the tape from the bin and tear it off at a fold within the area in which only feed holes are punched. Make
sure that the tape left in the bin is stacked to correspond to the folds; otherwise, it will not stack properly as
it is being punched. After removal, turn the tape stack over so the beginning of the tape is on top, and

label it with name, date, and other appropriate information.

Indicators for the punch are the PTP lights near the middle of the bottom two rows. The numbered lights
display the last line punched.
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The teletypewriter is actually two independent devices, keyboard and printer, which can be operated simul-
taneously. Power must be turned on by the operator. The switch is beside the keyboard, and has an unmarked
third position (opposite ON), which turns on power but with the machine off line so it can be used like a
typewriter. The keyboard resembles that of a standard typewriter. Codes for printable characters on the
upper parts of the keytops are transmitted by using the shift key; most control codes require use of the

control key. The line feed spaces the paper vertically at six lines to the inch, and must be combined with a
return to start a new line. In line with the space bar are four red buttons, the left one of which is not con-
nected. The local line feed and return keys affect the printer directly and do not transmit codes. Pressing
REPT and striking any character key (with or without the shift key on) causes repeated transmission of the

corresponding code so long as the repeat button is held down.

Indicators for the teletypewriter are the TTI, TTO and TTY lights in the right half of the bottom two rows.
The numbered TTI lights display the last character typed in from the keyboard.

Procedures for loading paper and changing the ribbon are given below. For further information refer to
Typing Unit section 574-220-100 in Teletype Bulletin 281B, Vol. 1 (Technical Manual: Model 35 Keyboard
Send-Receive (KSR) and Receive-Only (RO) Teletypewriter Sets), which is supplied with the machine.

Paper. The unit has a sprocket feed and uses 8% x 11 fanfold form paper. Printed forms can be torn off
against the edge of the glass window in front of the platen. To replace the paper, first remove the upper
cover by pressing the cover release buttons on the sides. To free the remaining old paper for removal,

lift the paper guides by pushing the lever marked PUSH at the right of the platen. To load new paper,
insert it through the slot in the cover and over the plate behind the platen, lining up the holes at the edges
of the paper with the sprockets, and press the local line feed to draw the paper in under the platen.

Ribbon. Replace the ribbon whenever it becomes worn or frayed or when the printing becomes too light.
Disengage the old ribbon from the ribbon guides on either side of the type biock, and remove the reels by
lifting the spring clips on the reel spindles and pulling the reels off (the ribbon feed mechanism is called out
in Figure 4 in the reference mentioned above). Remove the old tape from one of the reels and replace the
empty reel on one side of the machine; install a new reel on the other side. Push down both reel spindle
spring clips to secure the reels. Unwind the fresh ribbon from the inside of the supply reel, over the guide
roller, through the two guides on either side of the type block, out around the other guide roller, and back
onto the inside of the takeup reel. Engage the hook on the end of the ribbon over the point of the arrow
in the hub. Wind a few turns of the ribbon and make sure that the reversing eyelet has been wound onto

the spool. Make sure the ribbon is seated properly and feeds correctly in operation.
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CHAPTER 4
CONVENTIONS AND NOTATION

Accompanying every DEC system is a set of drawings that defines the system physically, electrically and
functionally. Just below the title in the lower right corner of each drawing is the drawing identification
written in four boxes. In the left box is a letter indicating the size of the original drawing; in the next is a
two-letter code indicating the type of drawing. The third box contains the drawing number in three parts:
the left part is the identification number of the equipment, the second is the drawing variation number, and
the third is a number that identifies the individual drawing or a mnemonic code that identifies both the indi-
vidual drawing and the material presented on it. If a drawing is revised after being signed by the project en-
gineer, the revision letter is written in the right box. Fora drawing with several sheets, both the sheet num-

ber and the number of sheets are written below and to the left of the size letter.

Almost all drawings are D size but for convenience are reduced to B size. Some typical codes for drawing
type are block schematic BS, flow diagram FD, circuit schematic CS, module utilization MU. Most of the
drawings with this manual are for the KI10 processor and that designation is therefore used in the first part
of most drawing numbers. All drawings are variation 0, corresponding to the standard production machine.
If a particular machine has some special feature, the drawings that show the implementation of that feature
have a different variation number; and if after a time, a different model of the K110 becomes the standard
production model, the drawings that reflect the differences from the earlier version will also have a different
variation number. The description of the equipment is in terms of the drawings that represent the standard
production machine at the time the manual was printed; the print set however reflects any later revisions

and any special features unique to a given installation.
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The drawings associated with the text are entirely block schematics and flow diagrams, which are often re-
ferred to respectively as logic drawings and flow charts. These are identified simply by the third part of the
drawing number. Eg the logic for the page fail cycle is on BS drawing KI10-0-PF and the flow chart for it is
FD drawing KI10-0-PF. In the text the former is referred to simply as “drawing PF” or “print PF”, and the
latter is referred to as “flow chart PF” or simply “chart PF”. This chapter is devoted to discussing these
drawings and how to use them to understand the machine. Other types of drawings and their use are dis-

cussed in Appendix C.

4.1 DESIGN CONVENTIONS

Before investigating the details of the processor logic or even the symbol conventions used in representing it,
there are a number of characteristics of the implementation of that logic with which the reader should be
familiar. With a thorough understanding of these basic logical characteristics, the task of learning the mate-

rial presented in the next five chapters will be lessened considerably.

Time States and Clock. The processor performs each instruction by stepping through a sequence of time
states that are timed by a clock. Each clock terminates a time state and performs some operations or
events necessary for the execution of the instruction. The clock also sets a D-type flipflop (one with

clock and data inputs) to place the processor in the next time state. The clock logic then waits for some

period depending upon those actions taken; the period may be as little as 110 ns or as much as 230 ns.
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During the waiting period, the time state flipflop causes the generation of the various levels needed to gate

the actions that will be taken at the next clock, ie at the end of the time state. The waiting period selected

is that required for level transitions through the various logic networks. If one of the actions taken by a
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clock is a call to memory control for a memory subroutine, the clock stops. The processor in the meantime

holds the new time state until the clock is restarted by a signal returned from memory control.

There is no difference between the clock that ends one time state and that which ends another. All clocks
look alike. To perform the particular actions needed for the time state, the clock drive lines that spread like
tentacles throughout the machine are gated by the 1 state of the time state flipflop in conjunction with IR
decoder outputs, switches associated with the instruction, and sometimes functions of the data. In effect,
the 1 state of the flipflop and the time state are logically equivalent. The events that occur at any clock are
those that have been set up during the time state; and as a time state ends, the single time state flipflop that

is set by the clock gives rise to the next.

Flipflops and Flags. Among the gating levels generated during a time state are enabling levels for the data
inputs to various control flipflops, including the flipflop for the next time state. At the end of the time
state, the clock sets any flipflops whose data inputs are enabled. If during the next time state the enabling
level goes away (as it always does for a time state flipflop), then the next clock clears the flipflop. A flagis.
simply a flipflop that has some mechanism for staying on over a number of time states. The flag may be a
regular clocked flipflop that is enabled by several consecutive tiﬁle states; or it may be a regular flipflop that
is clocked by a unique signal (not the time state clock). A flag may also be a flipflop constructed of gates; it
thus has unique set and clear functions, which are independent of the clock except insofar as the time states
play a role in generating those functions. But the most common flag is a regular clocked flipflop whose 1
state, anded with the negation of some time state or the negation of some clear signal, produces the enable
level for its own data input. Henée once set, the flag stays on until a clock occurs in the specified time state
or when the clear signal is true. Note however that the negation of one enabling level does not clear a flag if
some other signal enables the data input at the same time; ie any enable signal applied to the data input over-

rides any signal that is not enabled.

Registers. Most registers are composed of regular clocked flipflops, which the clock loads from the inputs
enabled during the time state. Registers AB, MA and IR are composed of latches, which freely follow the
inputs enabled by an enabling flag; when such a register is latched, it then holds the information that is
available at its inputs at the time the latching occurs. Lastly the adder can be regarded as a register since its
outputs are available for loading information into other registers. The adder however is loaded only in the
sense that information can be enabled into its inputs by flipflops that select the source — in other words the

adder freely follows the source and cannot be latched, but the flipflop keeps the same source available.
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Hence once the level transitions through the adder are finished, the output remains stable so long as the in-

put remains stable (ie for the rest of the time state).

The differences in the way these elements operate makes a considerable difference in the way the signals
written on the prints and in the flow charts must be interpreted. Suppose that a given time state produces
the two gating levels BR AR EN and AD BR+ EN. The first of these means that the output of AR is en-
abled at the BR input gates (the signal name is read as “IBR from AR enable”). But the meaning of the sec-
ond is very different and is unique to the adders (AD, ADX, SCAD): it means that the data input of the AD
BR+ flipflop is enabled. Hence the clock that terminates the time state will actually load the contents of AR
into BR, but will simply set AD BR+, whose 1 state will in turn enable the BR outputs into the adder (the
term BR+ is used because the complement of BR, ie BR-, can also be enabled). Now the data received by
BR is the data that was in AR during the time state, but the data enabled into the adder is not that which
was contained in BR during the time state. Suppose AR contains X and BR contains Y. Then at the clock,
X is loaded into BR; and during the next time state (ie during the waiting period between this clock and the
next) the quantity X (now in BR) is also enabled into AD. In other words BR receives what AR contained,
but the adder receives what BR receives. In terms of these two enabling levels, the quantity Y is simply lost.
Failure to keep this point forcefully in mind while following through the instruction flow charts will result
in total and utter confusion. The basic idea is that at a given clock a register receives the information con-
tained in a source, whereas during the next time state the adder builds up an output from information re-
ceived by a source. A register changes instantaneously at a clock, but the adder changes gradually between

clocks.

Latches combine features of the two procedures. Information is held on the address bus AB by a set of
latches. Setting AB AD enables the output of the adder onto the address bus, which changes as AD changes.
When AB AB is subsequently set, latching the bus, the information latched is that held by the adder at the

time the latching occurs.

Register Clocks. The main clock drives are triggered at every clock pulse. But since a flipflop is automati-
cally cleared unless enabled, each flipflop register has its own clock, which must be enabled in order for the
main clock to produce a clock for the register. This way the registers remain stable over a number of time
states. The generation of an enabling level for the register input gating must also enable the register clock if
the register is to be affected. Enabling the clock without enabling any of the input gating clears the register.

To clear a register the time state may simply enable the clock directly or generate a clear level that in turn
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enables the clock and may cause other actions elsewhere. The only circumstance in which an input enabling
level for a register does not enable its clock is when there is a choice between clearing and loading. Suppose
at a given time state a register must be loaded if X is true, otherwise cleared. To do this the time state en-

ables the clock directly but enables the input gating conditioned on X.

The clocks for all of the flipflop registers have true enabling levels. The clock for the adder logic is enabled
by the negation of an inhibit — the adder logic is cleared at every clock unless the AD clock is specifically

inhibited.

Overlapping, Pipelining, Prefetching. Memory control can overlap two read cycles in different memories. It
can supply an address to one memory, and then send an address for a second access to another while waiting
for the data from the first. This type of overlapping increases the number of memory cycles that can be
handled over the bus; eg with memories interleaved, the fetch of a two-word operand is speeded up consid-
erably. Although bus overlapping decreases waiting time in processor operations, it is a function of the
interface between memory control and the bus, and hence does not enter into the overall flow of processor

events.

Besides bus overlapping, there is also overlapping of the memory subroutines called by the processor time
states. This is made possible by a pipelining technique, wherein memory control is divided into a sequence
of functional entities that are operationally independent. Eg page checking is done with the address on the
address bus, and this can be performed even though MA contains an address that is waiting to be sent out
on the memory bus. The processor takes advantage of this pipelining by requesting simultaneous synchro-
nous and asynchronous memory subroutines or requesting an instruction fetch before memory control is
free. In the first instance the processor requests two subroutines in such a way that as each section of the
pipeline becomes free in the first subroutine, memory control automatically makes use of it for the second.
The first of these subroutines must be for an operand fetch or store, which is regarded as synchronous be-
cause the processor makes the request only when memory control is already free. There are two cases of
this type, a double operand fetch, and an operand fetch or store combined with an automatic instruction

fetch.

As soon as the page check is complete for the first of two operand fetches, the address is moved from the
address bus to MA, and memory control recycles to perform the page check for the second fetch. Thus the

second subroutine follows the first right down the pipeline. The double operand fetch is always of this

4-5



type, because the address for the second operand is known in advance. In the other case, the processor can
request an automatic instruction fetch at the same time as a synchronous subroutine request if PC already
points to the next instruction (ie it cannot still be changed) and the current instruction will not make
another request for a memory operand subroutine later on. The degree to which the pipelining is effective
depends upon many conditions along the way. There are various synchronizers to prevent the second sub-
routine from overtaking the first. If the first subroutine is for writing in memory, then there is no over-
lapping on the bus and the second subroutine must wait for the write access to end. If the paging requires
access to the page map, then it cannot be completed until the page refill cycle is done, and that cycle must

itself live within the pipelining restrictions.

To prefetch an instruction is simply to request a memory subroutine to fetch the next instruction before
the present instruction is done. Hence an automatic instruction fetch is a prefetch although there do exist
circumstances in which the asynchronous subroutine may not get beyond the page check until the end of
the store cycle. The processor can also prefetch by requesting an instruction fetch when the address bus is
free, the address of the next instruction is available, and there are no further memory operand requests to
be handled. The fact that a prefetch is requested independently does not mean that it occurs later or takes
more time than an automatic request would. A prefetch may be as early as the beginning of the fetch cycle,
as in a jump instruction that uses no operands and has the effective (jump) address available from AD imme-
diately (an automatic fetch requires an address from PC). Unless memory control is completely free, how
far the prefetch can go depends still on what is going on in the pipeline, but in many cases (eg an arithmetic
instruction that stores the result only in an accumulator), the next instruction may already be waiting in MB

by the time the current instruction is finished.

4.2 LOGIC DRAWINGS

The logic drawings (block schematics) are block diagrams that show the function and location of every logic
element used in the processor. The logic modules and the symbols used to represent them are shown in a
series of nine block schematics, PDP10-0-LE1 to LE9. Drawing LE1 shows the most basic logic elements:
the D-shaped symbol represents an AND gate, and the arrowhead-like symbol represents an OR gate. An in-
put or output shown as a plain line represents a high level, a line with a circle on it represents a low level
(invariably +3 Vdc and ground in the processor). For those familiar with traditional DEC logic symbology,
the circle is equivalent to a solid diamond or arrowhead, the plain line is equivalent to an open diamond or

arrowhead. If the input (such as to a pulser) requires a transition, the appropriate waveform is written
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inside the symbol at the input. On the logic drawings every element is identified by the module type num-
ber given in the LE drawings and the location of every element is listed just below the type number. For
each module the LE drawings list the power, ground and unused pins as well as the signal pins; only the last
are shown on the logic drawings. Occasionally the symbol for a logic element contains a number in a
square or circle; this indicates the adjustment procedure that must be performed if the module is replaced
(complete information is given in Chapter 10).

Inspection of LE1 might give the impression that all simple gates are AND gates, but every AND gate is also
an OR gate. Consider the AND gates shown at the top left of LE1. Since in each of these gates both inputs
high produces a low output, it is evident that if either input is low the output is high. Hence an AND gate
for high inputs is an OR gate for low inputs. In purely circuit terms one should consider both the function
and signal polarity; thus if the input and output levels of an AND or OR gate are of opposite polarity, the
gate is regarded as NAND or NOR. But since voltage levels per se are not important to functional under-
standing, in discussing the logic we shall regard the gates simply as AND or OR.

The simple gates are combined in a variety of ways to provide the OR of a number of AND functions or to
provide extensive mixing with common enabling levels for register input gating as shown in LE1 and LE2.
The symbol for an exclusive OR gate (XOR) is the OR symbol with an extra line at the back of the arrow-
head as shown at the lower right in LE7. Most of the remaining logic elements are represented by boxes that
are labeled for the logic function, such as a +1 gate, a decoder, or a parity net. It is recommended that the

reader go through the LE drawings and familiarize himself with all of these logic element symbols.

Flipflops are all D-type and are represented by the symbols shown on LE6. A single module may have a
number of independent flipflops, or a group that has a common clock input or common clock, clear and set
inputs. In the rectangle representing the flipflop, the clock input and the clocked data input are always at
the bottom left and right respectively (beneath the ““0”” and “1”). The unclocked clear and set inputs are
always on the 0 and 1 sides. Outputs are always at the top. Note that the output terminals are drawn twice,
showing the polarities associated with either state of the flipflop. The polarities of the output terminals for
the O state are as shown at the left side of the rectangle (over the “0”"); for the 1 state the terminals have the

“1”

polarities shown over the . This agrees with the convention that neither voltage level categorically repre-
sents 1 or 0, true or false. A given logic function may have different assertion levels in different places de-
pending upon gate input requirements. A signal is always regarded as true when it has the polarity shown
for the input or output associated with it. In other words if the signal X appears at an input with a circle,
then X is true when low. The very same physical signal line may appear elsewhere without the circle but
with the signal designation ~X; this is exactly equivalent, for now a high level on the line indicates that ~X
is true, ie X is false.
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The advantage in showing the two states of a flipflop at both polarities and in using logic levels at either
polarity simply by negating the signal name is that there is never any need to invert the name of a signal as
it appears at a logic net; all logical conditions appear in the drawing with correct truth values. When a flip-
flop output is used in a logic net, the signal name indicates the enabling state of the flipflop. To determine
the physical source of the signal (the output terminal to which the signal line is connected), one must know
both the name and the polarity. Eg the signal FF(1) at high assertion originates at the output terminal that
is high when flipflop FF is in the 1 state; at low assertion this signal actually originates at the other output
terminal. In any event it is always possible to determine whether any two logic points are connected to-
gether electrically, and gates are always represented in the simplest fashion consistent with this requirement
“Simplest fashion’ means in such a way that the Boolean equations can be read directly from the network
without requiring mental gymnastics. A situation that occurs frequently in the block schematics is a signal
generated by an AND gate, each of whose inputs is an OR gate (this is done to minimize the delay or the
number of gates). Theoretically a four-input AND with two-input ORs would mean an equation with six-
teen terms. However redundance and contradiction in the inputs invariably reduces this to only a few sen-
sible cases. As an example consider the gate at the lower right in drawing CMP1. Although at first glance

one may be terrified of this net, its equation actually has only three terms:

COMP EN = KEY EXEC PAGING(1) A KEY USER PAGING(0) A ~USER PAGING V

KEY EXEC PAGING(0) A KEY USER PAGING(1) A USER PAGING A PAGE ADR
COMP(1) V

KEY EXEC PAGING(1) A KEY USER PAGING(1) A ~USER PAGING A PAGE ADR
COMP(1)

Most of the elements shown in the LE drawings are general in nature, although a few are special circuits for
a particular KI10 purpose. Almost all are easily understandable simply by inspecting the block diagrams
that represent them, and those that are not are treated in greater detail at appropriate places in the text. In
particular the adder at the right on LE3 is very complex and is discussed at length in section 7.1. All ele-
ments are represented in the logic drawings as they are shown in the LE drawings with the exception of the
latched register driver at the left on LE7. This circuit is used for the many clocks throughout the processor
and appears in the logic drawings as the RD symbol shown at the right of the circuit. The flipflops associ-
ated with the switches are shown as they appear at the lower right on LE6, but the sketch at the left in the
module drawing helps to explain how it works. In use, one of the outputs is connected back to the data in-

put so that the flipflop changes state each time the momentary-contact i)utton is pressed. The output may
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be fed back directly so that it always acts as a toggle, or it may be fed back through a mixer so that it acts

as a switch-controlled toggle but can also be loaded by the processor logic.

4.2.1 Signal Notation

All signal names are mnemonics that indicate both the function of the signal and its source. In almost all
cases, signal names are phrases, sometimes lengthy, whose meanings are unmistakable. Typical mnemonic
terms used are LT left, RT right, EN enable, INST instruction, CLK clock, SH shift, F fetch, S store, SC
shift count, CRY carry, etc. The names of signals associated with the various registers use the mnemonic
register designations given in Chapter 2, and signals associated with the execution of individual instructions
use the instruction mnemonics defined in the reference manual. Often the letter X is used to indicate a vari-
able letter in a mnemonic, eg IR HLLXX represents the IR decoder output for all left-to-left half word trans-
fers with any effect on the other half of the destination and any mode. Complete signal names are made up
of as many pieces as are necessary for clarity. Eg right shifting in AR is produced by two logic signals, AR
SH RT A and AR SH RT B. Each of these generates a pair of shift signals for each half of AR: the right
shift enabling signals for the left half of AR are AR LT SH RT EN A and the same thing with B substituted
for A at the end; the equivalent signals for the right half of AR are the same except that RT is substituted
for LT.

Numerals representing register bits are merely appended to the register name: bit 8 in AR is AR08 and bits
14—17 in MB are MB14—17. The state of a flipflop is represented by a numeral in parentheses following the
name: the 1 state of bit 8 in AR is AR08(1). A level that enables a transfer between two registers has the
name of the receiving register as its first term, followed by the name of the source, followed by EN. Hence
the level that enables the next clock to load the flags into AR is AR FLAGS EN. Where a number of nets
produce signals that all perform the same function, they all have the standard names but are differentiated
by appending A, B, C, etc. A gating level that is true throughout an instruction and is gated by a time state
to produce a specific function at that time state has the appropriate name with the name of the time state

included. AR AD BR (ETO) transfers AD into AR and AR into BR, both at ETO.

In general the enabling level at the data input to a flipflop is indicated by the final term IN or EN. The for-
mer is used for flipflops in registers (eg MQ34 IN); the latter is used for control flipflops such as the time
states. There are exceptions to this, particularly in that a level labeled EN, perhaps generated by a number

of conditions, may itself be applied to yet another gate whose output is connected to the data input. Where
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a continuous line connects an output to all points where it is used as input, it usually has only a wiring des-
ignation; in other words a signal is named only when it is used on other drawings, is used at disconnected

points on the same drawing, goes through a cable, or must be named to make sense in the flow charts.

The flipflops that control the time states have names of the form XTN where X is the name of the cycle or
sequence and N is a number. Flags frequently are indicated by the letter F. Eg the double floating divide
sequence has time states DFDT1, DFDT2, etc, and certain operations needed for several time states in the

sequence are controlled by. a flag DFDF1.

The source of any signal can be determined from its first term or its first letters. Each register with associ-
ated logic and each control system, whether it occupies several drawings, one drawing, or only part of a
drawing, has a mnemonic designation that appears in the drawing number and at the beginning of the name
of any signal originating in that part of the logic. This source code may appear naturally as part of the sig-
nal name; if not, it is merely prefixed to the name. Thus all signals derived from AR bits and all gating levels
for AR have names that begin with AR. There is some further differentiation in that the special AR inputs
have prefix ARI, and the signals associated with the AR flags have prefix ARF (although the flags them-
selves have names with prefix AR, as it is obvious that they are on the AR flag print). Usually names with
identical prefixes are easily distinguishable; eg the AR bits themselves originate on the prints showing the
AR register, as against AR gating levels, which are on the associated logic prints. In some cases there may
be several drawings of similar functions with identical prefixes, and the reader must simply become used
enough to the organization of the prints to know where to look for a given signal (in any event the ambigu-
ity is never greater than two or three drawings). Any signal line without a name is labeled with a 3-digit

number and is uniquely designated by that number appended to the drawing mnemonic.

In the memory control logic some signals have a three-letter prefix indicating the drawing; where the prefix
is simply MC, the first letter of the next term identifies the drawing. Often designations that are seemingly
ambiguous turn out to be unique upon closer investigation. There are many signals with prefix AD, but the
AD AR+ logic is on print ADAP, and the AD AR- and AD MB nets are together on print ADAM. In cases
where two or three different logical entities are on a single print, the reader must learn the combinations; eg
the BLT logic happens to be with the double moves on print DMBL, and the FIX logic is with the divide sub-
routine on drawing DS. There is also some graphic ambiguity which disappears as soon as the reader be-
comes familiar with functional meanings. An obvious case is SC for shift count, wherein there are many sig-
nals beginning with SC, SCA and SCAD; at first glance SCE may appear to belong with these, but it is easily

recognized as a store signal as soon as the reader realizes that it means “store contents of E”.
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Lastly the reader must beware of assuming that the prefix necessarily has functional significance, for such
an assumption can lead to considerable confusion. The most obvious example is PI CYCLE DIVERTED,
which definitely does not mean that the signal has anything to do with diverting a PI cycle. Rather it means
that the cycle is diverted and the signal is generated on one of the PI prints (more often than not the diver-

sion is to a PI cycle).

4.3 FLOW CHARTS

The flow charts show every event the processor performs and show the flow of operations in a manner con-
sistent with the actual gating and timing in the hardware. The memory control flow charts are based on a
sequence of level changes and timing pulses, whereas the rest of the flow charts for the processor are based
on sequences of time states. In general flow is downward. Upward flow occurs only upon returning to an
earlier part of a sequence (as in a loop) or when going from one flow line to the next when several are on the
same drawing; in any case no conditions or events are ever shown along a rising line. Unique time pulses are
indicated by ellipses, but the main clock is shown in a five-sided, flag-shaped symbol labeled according to
the time state it terminates. Events are shown in boxes that are at one side of a line, unless an event actually
is responsible for further movement along the line. If an event occurs only on some condition, that condi-
tion is written at the left of a colon and the resulting event is written at the right. Brackets enclosing a con-
dition mean that it is bound to be true by virtue of the flow line in which it appears; brackets enclosing an
event indicate that although it does happen, it is irrelevant to the particular sequence. Parentheses, brackets

and braces are used for grouping in logic functions; a semicolon means that commentary follows.

Essentially there is no passage of time along a continuous line. A break in a line indicates that movement
along the line cannot continue beyond that point unless the condition written in the break is satisfied. This
does not indicate any passage of time and the condition must be satisfied then; movement cannot restart
should the condition later become true. Actual passage of time is indicated by horizontal lines breaking the
flow line. A pair of single horizontal lines indicates a fixed delay, with the delay time written between the
lines. Double lines indicate a call for a memory subroutine; between the line pairs there are always two
terms, where the upper identifies the particular operation (operand fetch, page check), and the lower names
the signal that is returned by the subroutine to restart the clock and thus continue the flow along the line.
Two or more flow lines entering the top of a box (usually divided) that has double lines at top and bottom
and a single flow line leaving the bottom indicates a synchronizer. This means a point at which parallel

paths join, and movement continues out of the box only when all conditions written in it are satisfied.
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To see how these symbols are used, refer to the flow chart of the instruction cycle, FD drawing IC. In the
upper left corner is the entry into the sequence from a memory subroutine that fetches the instruction (this
is the lower half of a subroutine symbol whose upper half appears somewhere else). From this subroutine,
MCRST1 sets INST RDY provided the lengthy condition written in the break between the two is true. Now
the box containing the event of setting INST RDY appears directly in the vertical flow line because events
beyond that point are not produced by MCRST1 — they are produced by the transition of INST RDY to
the 1 state. This transition clears MR RESTART B (which does not enter into the flow path), and follow-
ing a fixed delay the level INST RDY DLYD is generated provided the flipflop is still set. The double box
below that indicates that flow continues only when INST RDY DLYD and INST DONE DLYD both be-
come true, ie that this point has been reached along the flow line we have been considering and also along
the flow line from the right. The satisfaction of these two conditions starts the clock (indicated by the fact
that the line continues to a clock symbol), and if IT1 and IT2 are both 0 it also generates ITO(1). Note that
a condition that allows passage along a line is not repeated as a condition in an event box, for until there is
a time delay of some kind, it is implied that that condition is necessary for every event shown. The large
box at the right of the ITO clock shows all events that occur at that time, some conditioned and some not,
except those that involve redirection of flow. The choice of which branch to follow below the box is de-
termined by the conditions written in the breaks in the branches. And although the events listed in the next
box along the lines occur only when the corresponding path is followed, nonetheless they occur at the same
time as the events in the large box above; in other words from a given clock all events directly along a flow
line are produced by that clock until some delay appears in the line. Note that along each of these branch
lines there is an event box at the side, and a second box connected by a vertical line to the first. The events
in each of these second boxes are not produced directly by the ITO clock, but are instead produced by the
bottom event listed in the box above. In other words when IT1 IN is true, the ITO clock sets IT1, and its

transition in turn clears INST RDY and disables ITO (1).

The flow continues in the same manner and the events shown among the many branches at the bottom cen-
ter of the chart are produced by either the IT1 clock or the IT2 clock depending upon which flow line
served as entry. Note that near the bottom of the flow line at the left, the condition F CYC START is en-
closed in a dashed clock symbol. Although it is a condition that allows the IT1 clock to continue flow

along the line, it also has many of the properties of a time state and is essentially a substate of IT1.
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Finally there are two significant points that must be discussed concerning most of the items written in the
boxes. First, they are not themselves the actions taken, and second, they do not actually happen at the
time represented by the box. In reality they are the gating levels for the actions taken, and they are gener-
ated in the time state that is terminating, ie during the waiting period of the clock. However, the action
taken is implied directly by the name of the gate. Eg a typical term is AD BR- EN, which indicates that the
clock sets a flipflop AD BR~, which in turn gates the complement of BR into the adder. In the usual nota-

tion this function may more correctly be written as
AD BR- EN: AD BR-

where some convention (such as brackets) should be used to indicate that the term on the left is not simply
a possible condition, but rather is bound to be true because of the current time state. Since each such gate
name includes the name of the flipflop being set, it seems reasonable to reduce the tremendous redundance
that would otherwise result and simply write the gate name. The situation exactly as stated here holds for
the adders and the registers made up of latches (IR, AB, MA). For the other registers, the gate is attached
directly to the register input gating; hence the action implied by a term such as BR AR EN is that it causes
the transfer BR from AR, ie AR is loaded into BR.

In many cases gating levels are generated through several gating stages (indicated by right arrows for impli-
cation), rather than being derived immediately from the time state. In the illustration below the left part
shows the way the flow chart is drawn for loading the flags and PC into AR, AR into BR, and BR into AD
at ET2 in a JSP. Note that AR FLAGS EN is an intermediate level in the generation of AR PC EN as well
as being the gate for a final result. The right part of the figure shows the actual meaning of the flow chart
in terms of level generation during the time state and specific events at the end. The important element for
the reader to realize is that the actual events are implied by the gate names, and the gates or strings of gating
levels in the box are a recap of the level transitions during the time state, rather than being generated by the

clock.

4.3.1 Terminology

The terminology used in the flow charts is as consistent as possible with the signal notation as it appears on

the logic drawings. When a flipflop X is set or cleared by a gate output applied to the direct set or clear ter-
minal, the event is indicated by X SET or X CLEAR, even though there are no such signals on the prints. If
the signal X SET is used in the logic drawings and is not exactly equivalent to the event implied by that
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= AR PC EN AR PC
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name, then the name of the flipflop is given alone and shall be taken to mean that the flipflop is set. Ina
few cases there are signals whose names include the word SET where it does not strictly apply; eg the signal
PFF1 SET is not applied to the PFF1 set input, but rather enables the data input. On the flow chart PFF1
SET is shown as generating (among other things) PFF1 EN and its true nature is therefore evident. If a flag
F is held on by the negation of a clear signal with a name of the form F CLR, the appearance of that signal
name means the flag is cleared. But if the data input to a flag is disabled by the occurrence of some time
state, and there is no clear signal, then the event is represented by the expression “Clear F”. All real signal
names and unambiguous pseudo signal names (such as X SET) are written on the charts in capital letters.
Lower case is used for commentary and descriptive material, and also to represent events for which there

are neither valid signal names nor unambiguous imitations.

The final gate for an event X is generally regarded as X EN even though that term may not appear on the
prints (because it is not used elsewhere), and even though it may feed into a group of logic elements to
handle different parts of a register (¢g AD AR+ EN actually enables six AD AR+ flipflops for the adder, and

AR AD EN actually drives four lines to the AR gates, two for each half). Very common events are written
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without the EN (in other words the name of the event itself is used) provided no intervening levels need be
indicated. This is true of CLK INH, CLK LONG CYCLE, AD CRY 36, often AD ADD, and the enabling of
all time state flipflops (FT6, ET2, ST3).

Where a number of logically different signals with very similar names converge to produce the same event,
the exact names are given in the charts so that the reader can follow back through the net to the particular
inputs he is interested in. On the other hand where a number of logically identical signals have various let-
ters appended to differentiate them electrically, only the basic signal name is listed, as the reader can easily
determine which is the source by checking the inputs at the gate under consideration. The only liberty
taken with input signals that are not identical is when a complicated logic function has a very obvious reduc-

tion that can easily be matched with the net that produces it. Hence if a logic net generates the function
A A [(B(O) A C(0)) V (B(1) A C(1))]

it is represented in the flow charts simply as A A (B=0).

The final gating level is not even included if it is generated by a prior level that has exactly the same name
except for the addition of a letter on the end; hence AR AD EN G shall be taken as equivalent to AR AD
EN G - AR AD EN. If one intermediate level generates another whose name differs only in a letter follow-
ing the EN, then only the final letter is repeated; the expression AD AR+ EN J - A is written in place of
AD AR+ ENJ - AD AR+ EN A.

The switches are basic gates, such asEE and FCE, that are available for use throughout an instruction,
whereas the terms used to represent actions in the boxes are generally true only in particular time states.
Between these are some levels that are true throughout an instruction but for use only at é particular time
state. An example is AR AD BR (ET2) B, which is true throughout the jumps and other instructions, and
continuously gene;ates AR AD ET2 EN, which at ET2 generates AR AD EN A. These levels are written in
the boxes as though generated at the particular time state, but they can be recognized because the time state
always appears in the name, usually but not always in parentheses (FETCH or something similar is generally

used in signals for the F CYC ACT EN time state).
The main clock is applied through ungated drives to all of the flipflops for the overall control of the system

but is gated to supply separate clocks for the various registers (AR, MQ, etc) so that these will change state

only when transfers are made. The AD clock is generated at every main clock except when inhibited, and
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the flows show only the generation of the inhibit (in other words the nonoccurrence of the event is indi-
cated rather than the event). The other clocks are triggered only to clear a register or when gating levels are
generated for the registers; eg BR AR EN not only produces the gating levels for the left and right halves of
BR but also gates the driver to produce the BR clock. Since a register clock must always be produced for
any register action to take place, it is listed in the flows only when it is produced by some gate different
from the gating level for the register or is produced separately to clear the register (with or without a condi-
tional gating level that would, if generated, override the clear). The enable for the PC clock is always indi-
cated as it is also the sole input enabling level for the register. The adder produces an equivalence function
if the EQV input is asserted alone, and produces a sum if both the EQV and ADD inputs are asserted. For
an equivalence the flows show the setting of AD EQV, but for add only AD ADD is shown and it is assumed
that AD EQV is always generated with it.

In general all events produced by a signal are listed in detail every time the signal occurs. In a few cases a sig-
nal of considerable importance occurs frequently at different places in the charts, often producing a large
number of events, and for which nothing is shown. The processor can call for the prefetch of the next in-
struction either by generating MC INST FETCH EN or by setting MC INST FETCH NEXT; for the events
surrounding these actions the reader must refer to the flow chart of the memory subroutine call. Each in-
struction indicates that it is finished by generating CLK EN INST DONE, which produces the actions
necessary to terminate the instruction and set up the conditions for the next; the complete ramifications of

this are shown at the entry to the instruction cycle flow.
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CHAPTER 5
CONTROL

This chapter describes those parts of the processor logic that exercise fundamental control over the machine
mode, the sequencing of the program, the decoding, timing and execution of instructions, and the initiation
and termination of processor operations from the console. The basic operating cycle (the “main sequence”)
of the processor is the sequence of time states that controls the execution of a single instruction, from re-
ceipt of the instruction from memory to the processor indication that the instruction is done. In some
cases a part of the sequence may be repeated by a single instruction or may be used by a noninstruction
type operation. When this sequence performs a trap instruction, the processor is regarded as being in a trap
cycle; similarly an interrupt instruction is executed in a PI cycle. Operations associated with the console
keys are carried out in a key cycle, which may be just a few key time states or may include an entire main

sequence.

The timing of any string of time states is determined by a clock that has four different periods, in order to
vary the lengths of the states depending upon the operations that must be performed within them. At vari-
ous points within a string (depending upon instruction requirements), the processor can call for a memory
subroutine; at such times the clock stops and holds the present time state until it is restarted from memory
control. The memory call may be to fetch or store an operand, but it may be simply for a page check to de-
termine — before memory, PC, etc. are changed — whether a specified location is alright for subsequent stor-
age of a result. At the completion of each instruction the processor also stops the clock to wait until the

next instruction is received from memory.

The time states that make up the main sequence are divided into groups called “cycles”, which are not to be

confused with the trap, PI and key cycles defined above. Basically the main sequence for performing any
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instruction comprises four cycles: instruction, fetch, execute and store. In the instruction cycle the proces-
sor decodes the instruction and calculates the effective address, repeating the cycle as needed for each level
of indirect addressing. The fetch cycle fetches the necessary operands. The processor then proceeds with
the execution of the specific arithmetic, logical, transfer or control operations called for by the instruction.
For many of the simpler instructions the execute cycle suffices, but in many cases the processor goes from
the execute cycle into a special sequence of time states for the given instruction. At the completion of the
execute operations, whether in the execute cycle or in a special sequence, the processor goes on to the store

cycle if there is a result to be stored.

If a page failure occurs in a memory subroutine there is no return to the time state being held. Instead the
present time state is cleared, and the processor performs a page fail cycle, through which it starts a new main
sequence to respond to the failure. The term *“‘processor cycles” refers collectively to the page fail cycle and

the four cycles that make up the main sequence.

5.1 BASIC CONTROL ELEMENTS

Before investigating the processor cycles it is advisable that the reader understand the fast memory (de-
scribed in the next section) and the circuits that control certain basic functions, namely processor timing,

instruction decoding, program sequencing, and the movement of addresses via the address bus.

5.1.1 Clock

The clock and its flow are shown in BS and FD drawings CLK. Initially the clock must be started from the
console by KEY CLK START. This triggers the main clock, which in turn triggers a number of clock
drives. The ungated drivers are shown on the clock drawing; these supply the clocks for the time state
flipflops and most other control flipflops and flags. The gated drivers produce clocks for the registers and
the adder logic; although included in the clock flow chart, these drivers are shown on the prints for the
logic with which they are associated. Note that all of the register drivers produce clocks only when their

enabling levels are asserted, whereas the clock for the adder logic is always triggered unless inhibited.
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CLK A1 produces a minimum delayed clock through a delay that is adjusted for a 110 ns loop for processor
operation at normal speed; for checking speed margins the program can switch to a high speed delay that is
adjusted for a 100 ns loop. At this point in the loop, events triggered by the clock drives have settled so
that the loop period can be determined. The clock loop may be inhibited altogether because the clock is
stopping for a memory operation. If the clock is not inhibited and the time state does not call for an add
function or a long cycle, then the minimum loop pulse returns to the beginning of the clock loop. Other-
wise, even though the clock is not inhibited, other gates enter into the flow paths to extend the loop to the
length necessary for the operations being performed. A time state that requires an extended add function
but for which no long cycle has been requested requires a loop of 191 ns. A long cycle or an add function
that is not extended requires a loop of 170 ns, but if there is any add function and a long cycle has been re-

quested as well, then the loop is lengthened to 230 ns.

In other flow charts the clock loop is never shown in the detail discussed here. Between clocks the flow
charts show only the required period or the possible periods depending upon conditions specific to the given
time state, even though the conditions necessary to determine the period are not available until some point

within the time state (the period-determining conditions are checked following the minimum clock delay).

The clock loop output retriggers the loop at the beginning unless the processor is in single pulse operation,
in which case there is only one clock at a time, each triggered independently from the console. The clock
also provides synchronization for the key logic by setting and clearing a synchronizing flipflop in every
loop. Either return path to the beginning of the loop sets KEY CLK RDY SYNC, and halfway through the
minimum loop CLK DRIVE D1 clears it (this logic is shown in the lower left corner of drawing KEY?2).

In normal operation the clock loop produces a string of clock drives with variable spacing depending upon
the requirements of each time state. This continues until the CLK INH flipflop is set, at which time the
clock stops, and it does not start again until the loop is retriggered by one of the conditions shown at the
top of the flow chart. The left three entries are for single synchronous operations, ie for fetching or storing
a one-word operand. When an operand is being fetched, the processor waits until it is available, at which
time MCRST1 retriggers the clock on the condition that the operation is a synchronous read and is not a
page refill (of course a page failure may prevent the return of MCRST1 at all). If the instruction requires
storage of a result without fetching an operand, the processor waits for a page check before taking any irre-
versible actions; at the end of the delay for page checking, memory control generates a pulse that restarts

the clock if the page is alright, the memory request is synchronous (it is not for fetching an instruction) and
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the same request is not also for reading. If the clock is restarted by a paging return, then sometime later in
the instruction it will again be stopped for writing, following which it is restarted by MCRSTO. The next
entry from the left is for the double precision floating point instructions (including double moves) that re-
quire the fetching of two words from memory. After the high order word is fetched, the processor restarts
from the regular operand return to go ahead with various operations, such as adjusting for the signs of the
operands and manipulating the exponents (which are determined of course solely by the high order words).
Upon reaching the point at which the double length operand is needed, the processor again stops and waits

until the low order word is available, at which time the FCE2 synchronization restarts the clock.

The next synchronization entry is for restart following the completion of an instruction when the next in-
struction has been fetched and is ready for execution. The remaining two entries are for circumstances that
take the processor out of the normal flow sequence. These are diversion to a PI cycle when an interrupt

is ready following completion of an instruction, and restarting the processor in a page fail cycle. The clock
is always at rest when a page failure occuré as this condition is determined within the memory subroutine;
diversion to a PI cycle can occur under conditions other than that mentioned above, but at such times the

clock is going.

The right and left halves of print CLKC show the logic for stopping the clock and requesting a long cycle
(the actual period being determined both by the state of CLK LONG CYCLE and the add functions speci-
fied by the arithmetic logic). The conditions that enable setting the long cycle flipflop are all quite straight-
forward and are listed at the appropriate places in the flow charts. Among the conditions that set CLK INH,
note that CLK MISC INH is anded with a condition that contradicts one of the conditions that produces it;
in other words DFDTS8 requires the other events produced by CLK MISC INH without stopping the clock.
The bottom enabling gate for CLK INH involves the two clock levels generated by the nets in the lower part
of the drawing. CLK EN INST DONE usually represents the completion of an instruction; it stops the clock
unless PI OV is set, indicating that the processor is to enter the second of a pair of PI cycles, or CLK PSEUDO
INST DONE is asserted. This last signal is generated in two time states in which some but not all of the
events associated with the completion of an instruction must occur. CLK EN INST DONE arises at ST?2

only as the result of a page failure and the processor must continue; at PIT3 the pseudo signal prevents some
of the events that would otherwise be produced by CLK EN INST DONE, but the clock is stopped anyway
by CLK MISC INH.
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5.1.2 Instruction Decoding

Drawing IR shows the latches that make up the instruction register; this register receives the left twelve bits
of each instruction word from MB. IR holds the instruction code and AC address or the IO instruction

code and device code throughout the entire execution of a given instruction. The register does not change
during an instruction except in the transition from a block IO instruction to a data 10 instruction. After
storing the incremented pointer, a BLKX returns to the fetch cycle, and thus FT3 or FTS5 in an IOT sets

IR 12 to convert to the instruction code of the corresponding data IOT. The only other manipulation of the
latches is in read in, where the register is set up with 1s held continuously in the left three bits. During the
first cycle IR 12 is also held set so that read in begins with a DATAI to bring in the pointer, then continues
with a string of BLKISs.

The logic that controls IR is shown at the top of print IRMB. In program operation the completion of each
instruction (or the simulation of this event by an initiating key function) enables IR MB, and at ITO IR is
latched. (The inhibition of IR MB EN by BYF5-6 SET holds IR over into the second part of a byte instruc-
tion.) Following ITO the processor may go to either IT1 or IT2 — the latter being for a trap cycle. Thus as
soon as the processor enters IT1, the IR MB CLR disables IR MB EN, whose negation in turn keeps IR
latched. However should a trap intervene so that the processor instead enters IT2, IR IR is cleared and the

latches run free again until the processor restarts at ITO for the trap cycle.

For each word processed in read in, IR changes from BLKI to DATAI. Hence at the beginning of each
readin cycle the signal IRMB KT1 EN (B5) clears MB and IR MB; then at the next key time state IR is
latched to start another BLKI. This goes on until the final cycle, when the failure of the BLKI to skip pre-

vents the relatching.

The remaining IR drawings show the decoding of the IR contents into instruction control levels. The decod-
ing begins at the upper left of IR1, where the left three bits are decoded into eight primary levels provided
the processor is not in a deposit cycle or a page fail cycle and is not performing one of the special PI opera-
tions (the instruction executed in a normal or dispatch interrupt is decoded like any other). Where one of
these first levels represents a single class of instructions, further decoding is in various arrangements of logic
gates, but levels that represent a variety of instructions enable additional decoders for bits 3—5, and some of
the outputs at this level enable decoders for bits 6—8. Four gates at the lower right in IR1 decode bits 7

and 8 for the modes, although the levels generated are used for other purposes as well. In the upper left of



IR2 is a pair of decoders for bits 3—6, where the octal digits in the output signals correspond to the numbers
of the Boolean functions (ie the left digit is O or 1 for bit 3, the right digit is bits 4—6). The numbers in
brackets show the corresponding instruction codes. Although some other use is made of these levels, they
appear primarily in the center of IR2 for specifying groups of Boolean instructions that have common attri-
butes. 10T decoding is mostly at the lower right in IR2. IR3 shows most of the shift and data transmission
decoding in its left half, the double precision instructions in the upper center and right, and the decoding

for LUUO, MUUO and various illegal and unused codes in the lower right.

These three prints do not of course show all of the control levels generated from IR to control individual in-
struction situations. The test instructions for example are represented only by the level IR TEST decoded
from bits 0—2, and the rest of the decoding is shown on the TEST drawing. The beginning of each instruc-
tion flow chart lists all of the decoding and control levels for the instruction, including those on the IR

prints and elsewhere.

In order to make it easier to see the IR decoding in terms of logical relationships, flow diagram IRD shows
all of the logic of the IR prints in a decoding tree; here individual bits generally appear in order from left to
right, and the values of bits or groups of bits are in order from top to bottom. In other words the decoding
of bits 0—2 is represented by the eight terms in the left column, and the decoding spreads out to the right
from each of these through standard decoders and logic nets in a variety of configurations. In most cases
groups of bits are decoded to produce a number of signals, but in some cases sets of signals are anded to pro-

duce common functions, as shown respectively by lines diverging and converging toward the right.

Most of the decoding is quite straightforward and in any event is further clarified on the flow charts. Some-
thing should be said however about the decoding shown in the lower right of IR3. Codes above 110 that are
not used generate the signal IR UNUSED (these appear on the decoding tree between IR 1XX and IR 2XX).
The illegal instructions are a JEN or HALT in user or supervisor mode, or an IOT given when the processor
is not in a PI cycle and USER IOTS ILLEGAL is set (which indicates the processor is in supervisor mode or
is in user mode with USER IOT clear). The actual decoder output IR JRST is generated when IR contains
254 and it is not illegal; similarly IR IOT is produced by anding IR 7XX (representing any IOT code) with
~IR ILLEGAL INST. The signal IR MUUO EN is derived from the standard MUUO codes, and IR MUUO

is the combination of this, IR 10X and the illegal and unused codes.
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5.1.3 Program Counting

The mechanism for specifying consecutive addresses for the retrieval of instructions in the program is shown
in drawing PC. Note that in spite of the name, PC is not a counter — it is simply a register whose outputs
are applied to +1 gates, which in turn generate a set of PC+1 outputs. The gate outputs represent a number
one greater than PC or simply represent PC depending upon whether or not the +1 enable input is asserted.
(The enabling input is applied to the low order end of the gate for the low order half of the register; the gate
for the high order half also has an enabling input but it is just the carry out of the low order gate.) The sig-
nal that enables the gates is the O state of an inhibit flipflop, so that the PC+1 outputs supply the incre-
mented address unless the inhibit flipflop is set. Thus the address of either the present instruction or the

next is readily available simply by manipulating PC+1 INH.

When the processor is ready to fetch an instruction in sequence, the incremented address is supplied from

the PC+1 gates to the address bus, which in turn supplies it back to the PC register. Thus program counting
is effected by the loop of PC, the PC+1 gates, the address bus and back to PC. When a skip condition is sat-
isfied, this loop is used to advance PC during the instruction. Then when the processor goes for the next in-
struction PC already points to the next location, and PC+1 therefore points to the location two beyond the

current one.

The PC+1 outputs are available both to the address bus and to AR for saving a return address in a jump or
MUUO. Generally an address saved should be for a return to the next instruction, ie the instruction that
would have been performed had the jump not occurred. On the other hand suppose an instruction is termi-
nated because of a page failure or there is an interrupt between the two parts of a byte instruction. Then
the current address must be saved for a later return to the beginning of the interrupted instruction. New ad-

dresses are always supplied to PC via the address bus regardless of the point of origin.

Drawing PCC shows the PC clock and the inhibit flipflop at the right, and the net for determining the jump
condition in a JFCL at the left. The second net from the top in the center of the drawing generates PC
CHANGE, which prevents automatic fetching of the next instruction during any instruction in which PC
might be altered. The remaining logic is for the enabling of the PC clock. All of this is straightforward ex-
cept for the complicated network in the very center of the drawing. The two enable outputs of this network
are anded below to enable the clock. The output of the large OR gate in the left half of the network asserts
PC CLK (ET2) EN C (provided the appropriate input conditions are satisfied) and at ET?2 also asserts the



B output level. For the remaining inputs to the AND gates at the right, the B level is automatically asserted
at ET2 in the skips or CAXX, but the C level is asserted only if the appropriate ADZ condition is satisfied.
The condition is P or R in the skips, P or Q in CAXX.

The PC clock is also controlled directly from the memory subroutine through the gating just at the left of
the register driver. The clock reloads PC from the address bus at the completion of the page check for any
instruction fetch except an instruction being executed by an XCT. After the address is latched into MA,
MCTO clears PC+1 INH just in case the address had been taken from PC without incrementing. Note that
the address being loaded into PC may be from the counting loop whether incremented or not, or it may be
a completely new address originating from AD, as in a jump, or from AS at the initiation of operations from

the console.

5.1.4 Address Bus

Addresses are supplied to the address bus through the eighteen latches shown in print AB. This register can
receive addresses from the PC+1 gates, the AS+1 gates associated with the address switches, and the right
half of the adder.

In the upper left of drawing ABC are nets that decode for Os in bits 1921 and bits 18—31 to check respec-
tively for a proper small user address and a fast memory reference (for information on the AS input to the
latter net, refer to the discussion of the address switches in section 5.6). The rest of the drawing shows

the circuits that control the bus, including four flags; the right three of these enable the various address in-
puts, and the left one latches the bus. When one input flag is set, the others are cleared through the net at
the lower left so that only one source at a time can supply an address. Memory signals that set AB AD and
AB PC directly occur at times when it is known that the other flags are clear. All of the enabling levels for
input from PC cause AB PC to be set except that AB PC (FETCH) EN does not enable the flag if it is being
generated by an IOT during Read In. AB AD EN sets AB AD except when it is being generated by AB AS
EN; this latter signal enables AB AS but also generates AB AD EN to produce the clear for the other flags.

A selected input flag remains set until some other is selected or the logic at the left sets AB AB to latch the
bus. The 1 state of this flag clears the input flags through a delay (D5) that allows enough time for the bus



to be properly latched. Because of the nature of the register clocks, AS and PC remain stable during latch-
ing. The adder however changes at every clock unless either the adder enabling levels remain constant or the
AD clock is inhibited. To hold the adder steady during latching, any condition that generates AB AB EN
also generates AB AD CLK INH when the adder is supplying the address (AB AD(1)). Note that there is
one condition, IR 3XX at ETOQ, that generates the inhibit but has no connection with the AB logic. This
holds the adder steady through two time states in the test instructions to allow enough time to set up the

test conditions.

5.2 FAST MEMORY

Although fast memory can be called from memory control, ie the program can address fast memory for a
memory operand, it is easier to view the fast memory as part of the processor control logic rather than part
of the memory logic. Drawing FMR shows the four groups of fast memory registers, each group comprising
three packages that together provide storage for sixteen 36-bit words. Each group has a selection level and a
write level, and all receive the four address lines. These lines select one register in the selected group, and if
the write level is off, the contents of the selected register are available at the outputs and are supplied to the
processor register gating through the buffers shown in FMB. When the write level is asserted, data supplied
through the mixer in drawing FMIN is written into the selected register. The word written may be supplied

by AR or BR depending upon the state of the SAC BR flag in the store logic.

Fast memory addressing is determined by the logic shown in drawing FMA. Selection of the group is deter-
mined by the nets and flipflops in the top and bottom parts of the left half of the drawing. Essentially

there are three ways the group can be selected. If FM ADR EN is asserted, the group is selected according to
the FM ADR bits, which are loaded by the same instruction that supplies the base addresses for the process
tables. If FM BLOCK EN is asserted, group selection is determined by the settings of the FM block switches
on the console. If neither enabling level is true, then group O is selected, as is usually the case in executive
mode. (Note that what the programmer refers to as an “AC block” is referred to in the hardware as an “FM

group”, for the term “block” is applied to the flipflops associated with the switches.)

The block switch enabling level is true whenever the FM manual switch is on and also when both paging
switches are off during a key function that calls for a memory operation. Selection according to the
program-selected group is controlled by the net at bottom center. If the switches are not enabled, then FM

ADR EN is true while user paging is in effect except during an executive XCT. However a memory access



with user paging sets FMA USER HOLD, so that if FM ADR MA is subsequently set, FM ADR EN is as-
serted anyway. The latter flipflop is set only for a true fast memory reference for a memory operand, ie it

is not set when an executive XCT is calling an accumulator or is accessing the shadow area or the AC stack.

The string of gates across the center of the drawing generates the fast memory address bits from various
sources depending upon the type of access. The address is supplied from MA when the fast memory is
called for a memory operand reference. An index register or AC reference uses an address supplied by MB
bits 14—17 or IR bits 9—12 respectively. A reference for a second accumulator uses an address one greater

than the IR AC address as supplied through the +1 gate at the lower right.

Fast Memory Control. The net at B7 in drawing FMC generates the address selection levels for index regis-
ter and accumulator access according to the states of the FMC SEL flags provided FM ADR MA is clear.

The respective states of the selection bits for addressing fast memory as XR, AC and AC2 are 00, 10 and 11.
At the beginning of an instruction both bits are 0 and a fast memory location can be referenced only as an
index register. After completion of the effective address calculation, FMC SEL 0 is set at the earliest pos-
sible time without waiting until AC access is needed; this is in the instruction cycle itself if there is no index-
ing in the last step of the address calculation, at some time in the fetch cycle, or even within the memory
operand fetch. The reason for this is that it takes time to set up the address, select the fast memory register,
and get its contents onto the output lines; it is best therefore to get the AC selection set up as early as pos-

sible even if it turns out no AC reference is necessary.

Some of the signals in the left half of the print indicate an AC reference and others indicate an AC2 refer-
ence. All AC2 signals generate FMC AC2 EN, but all signals of either type generate FMC AC V AC2 EN.
The latter signal sets FMC SEL 0, which must be 1 for either type of reference, whereas the former sets

FMC SEL 1. AC is always fetched before AC2. If later in the instruction the combined signal should be true
without the AC2 signal, then bit 1 is cleared; and if FMC AC2 EN comes back on, the right bit is set again.
The whole point of the procedure is this: during an effective address calculation, fast memory can be refer-
enced only for an index register, and the next fast memory reference in the instruction (not counting pos-
sible memory operand references) must be AC. The selection bits are left in the 10 configuration unless
AC2 must be used. If two aécumulators are fetched and two are also to be stored, then bit 1 is cleared and
later set again. In any event the completion of the instruction clears both bits so they are ready for indexing

in the next instruction.



The remaining logic in FMC controls writing and memory operand access. Any condition that requires
writing in a fast memory location enables FM WR, which generates a write level for the selected group. The
write level must turn off before there is any change in the input, so FM WR(1) clears itself through a delay
adjusted for the timing listed on the drawing. The other signal applied to the direct clear input of FM WR
indicates that an illegal entry has been made to concealed mode; it thus prevents any change in the accumu-

lators before the next memory access, at which time there will be a page failure.

A memory reference to fast memory is handled by means of FM ADR MA, which is set and cleared from
memory control for an instruction or operand fetch (these are treated in the memory description). On the
other hand memory operand storage in fast memory is handled directly by the store cycle. The reason for
this is that the paging determines the storage conditions before the instruction is executed; hence in the

store cycle the processor already knows that the coming reference is to fast memory and it saves consider-
able time by handling the storage directly instead of restarting the memory subroutine. If MC STORE

IN AC is set, the store cycle first sets MA ADR MA to select the fast memory register from MA, then sets

FM WR and FMC STORE IN AC. With the latter flipflop set, the next clock clears both it and FM ADR MA.

5.3 PROCESSOR CYCLES

Each instruction is performed by the sequence of cycles: instruction, fetch, execute, and if necessary, store.
The instruction, fetch and store cycles are presented here in considerable detail, but the description of exe-
cute is limited to an overview, as the detailed discussion of instruction execution, including the many special
sequences inserted between execute and store, is left to the discussion of the instruction flow charts in
Chapter 8. Also discussed here is the page fail cycle through which the processor returns to the main se-

quence following a page failure in a memory subroutine.

5.3.1 Instruction Cycle

Drawing INST shows the logic that controls the instruction cycle and flow chart IC shows the entries into
and the events that make up this cycle. Entry into the cycle requires two independent events that must be
synchronized. These are that the next instruction fetched from memory must be ready and that the current
instruction must be completed. In normal operation, instruction fetching is overlapped so that which event
occurs first and how long a synchronization wait is required depends entirely upon the present instruction
and the circumstances surrounding its execution. Initially both events must be produced by action at the

console.
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Memory control indicates that it has fetched an instruction by returning MCRST1 to set INST RDY on the
condition that an instruction fetch had been requested, and the memory subroutine just performed was not
for a synchronous read or a page refill (either of which may be going on when an overlapped instruction
fetch is called). The byte entry simulates instruction ready to begin the second part of a byte instruction by
performing an effective address calculation on the pointer. The final ready entry is for key functions — not
to be confused with a true memory instruction fetch initiated from the console; in read in the key logic sets
up one BLKI after another, whereas in execute the main sequence is taken to execute an instruction sup-
plied by the data switches. Setting INST RDY clears MR RESTART B just in case the processor is restarting

automatically following a power failure or a maintenance timeout.

The completion of an instruction is indicated by the generation of CLK EN INST DONE without the simul-
taneous generation of CLK PSEUDO INST DONE. These two signals are generated together following the
storage of a page fail word, at which time the processor goes to IT2 to start the page fail trap cycle. CLK
EN INST DONE clears various flags that may have controlled the preceding instruction and clears the FMC
select bits to prepare for possible use of an index register. (The other clocks in the instruction cycle also
clear various flags in preparation for performing a new instruction, but none of these is mentioned in the
text unless it is of exceptional significance.) If the processor has just completed the first part of a two-part
byte instruction, BYF5 and BYF6 are set; otherwise IR is unlatched and allowed to follow MB. If PI OVis
set the processor is just completing an interrupt instruction that overflowed, so it proceeds directly to the
PICTO time state to enter a second PI cycle. But if PI OV is clear, PI CYC is cleared and the clock stops.
INST DONE sets if the processor is not entering a PI cycle or there is a pseudo instruction fetch. (The latter
condition at PIT3 indicates a normal or dispatch interrupt, which is treated like the beginning of an instruc-

tion; other PI operations go directly to the fetch cycle. In any event PIT3 stops the clock.)

INST RDY(1) and INST DONE(1) both enter delays that are adjusted for a minimum wait before the next
instruction begins. The turnon of INST DONE DELAYED also triggers a pulse that diverts the processor to
a Pl or key cycle if PI CYC RDY is set (PI CYC RDY being 1 at this time implies that no instruction has
been prefetched). If no diversion is ready, the coincidence of the two delayed signals produces the ITO time
state and restarts the clock. (Note that in spite of the way the time state signal is represented, there is no
ITO flipflop; ITO(1) is a gate-generated level, and its negation is represented by IT0(0).) In following
through the [TO and IT1 flow the reader will notice that a few events appear to make no sense in terms of

handling an instruction word. The reason for this is that indirect addressing causes the cycle to be repeated
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to handle additional address words in an effective address calculation. The questionable events involve the
left half of the word, and they are meaningful only on the final iteration of the loop when the left half may

contain information for restoring the flags.

The clock that terminates ITO latches the instruction code into IR and enables the address part of the in-
struction into the adder, and through it onto the address bus. If the address calculation is already complete,
FMC SEL 0 is set for possible subsequent accumulator reference. 1f there is no indexing MB left is also en-
abled into the adder for possible flag restoration. On the other hand, if instruction bits 14—17 do specify an
index register, the right half of the selected fast memory location is added to the address part of the word,
and the left half of the index register is added into the adder left half in case it contains wanted information
(the apparent incrementing of the left half actually produces a simple load because of the way the adder gat-
ing works, as explained in section 7.1). XCTP ACTIVE being set indicates that the previous instruction

was executed by an executive (paged) XCT, so on this condition the processor clears the flags that con-
trolled that execution. Finally if the single pulse switch has been turned on while the processor was running,

single pulse operation begins with ITO.

Regardless of the path the processor follows from ITO, the entry into the next time state clears INST RDY
and disables the ITO state. If the processor is to start a trap cycle it goes to IT2 for operations described in
section 5.4. But the processor continues to IT1 if it is already in a trap cycle or a PI cycle, or if no trap

flag is set. At this point the current instruction has been decoded, so instruction conditions appear in some
of the gating. The effective address is transferred to AR right from the adder, and in a JRST the left half of
the adder is loaded into AR left. IR MB is cleared so that MB can be changed without affecting IR. If the
instruction generates SAC BR, the flag that selects the source for AC storage is set for use in the store cycle.
A HALT sets KEY PROG STOP. If the instruction is a JRST 1 taken from a concealed location, the last in-
struction public flag is cleared, but if the instruction (whatever it is) is not taken from a concealed location,

that flag is set. MQ is cleared unless it may already contain information that will be needed later. Hence
the clear is inhibited by BYFS being 1, indicating that the processor is starting the second part of a byte
instruction with the mask in MQ; and it is also inhibited for a skip or an IOT, in case the instruction is being

executed by a dispatch interrupt, where MQ contains an interrupt address that may be needed for a second
PI cycle.

If MB 13 is 1, and the indirect is not to be diverted, the processor stops the clock and generates a pseudo in-
struction fetch to get an address word from memory. Thus for effective address calculation the return to the
beginning of the loop is made through the memory subroutine. When INST RDY DLYD comes on for the
address word, synchronization is immediate as INST DONE remains set. If an indirect loop is to be diverted,
the processor goes to the PI cycle or the key cycle depending on the state of P RDY SYNC.
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If the effective address calculation is complete, as indicated by MB13 being 0, IT1(1) generates F CYC
START so that the processor starts the fetch cycle. Note that this does not mean that the processor pro-
ceeds to the fetch cycle with the fetch start events occurring at the next clock. Rather it means that if the
present address is direct, the IT1 and F CYC START time states occur simultaneously and the same clock

produces the events for both.

5.3.2 Fetch Cycle

The initial switch FCE is generated by all of those instructions that require fetching a single operand from
location E, as shown in the upper left of drawing F1. A subset among these conditions also generates FCE
PSE to call for a read-modify-write memory subroutine, ie one in which memory control fetches an operand
and then holds the memory for later storage of a result in the same location. Instructions that read and
write in E but are too long to allow the processor to hang onto memory generate separate FCE and SCE
switches (for the latter refer to the store cycle below). The signal F MEM REF (at the lower left) represents
any instruction that requires a memory reference during the fetch cycle; this includes all instructions that
generate FCE or SCE, and also those that require a two-word memory operand or the fetching of a word

from a location specified by the left or right half of AC.

Drawing F2 shows the flipflops that specify the fetch time states, but there is not a one-to-one correspon-
dence between these flipflops and the states. The first fetch time state is F CYC START, which is simulta-
neous with IT1 when the effective address calculation is complete. The large net in the center of F1 gener-
ates the final fetch time state F CYC ACT EN, in which the processor actually begins to perform the various
actions required for the execution of the instruction. This time state is produced by FT6(1) but is also pro-
duced by IT1(1) if there is neither a fetch memory reference nor indexing in the final step of the address
calculation. In other words it is possible for all three time states, IT1, F CYC START and F CYC ACT EN,

to occur simultaneously.

The remaining logic on F1 is actually for the synchronization of the execute cycle with the fetch of the low
order word in double precision operations. At ET2 these instructions set FCE2 WAIT, and the return from
memory control of the second operand sets FCE2 SYNC. The synchronization of the delayed outputs of

these two flipflops restarts the clock.
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Besides SCE there is another initial store switch that affects the fetch cycle. This is STORE, which indicates
that the instruction will store a word in a location other than E. This switch delays the automatic overlap-
ping of the next instruction fetch, because later in the current instruction there wiii have to be a page check

after the storage address is determined.

The procedure for fetching the operands necessary for an instruction is shown in flow chart F. As the cycle
starts, AB is receiving the effective address from AD, and AD left contains either zero or restore bits for the
flags. The first clock in the cycle moves E to AR right and for a JRST moves the restore bits to AR left
(these are IT1 actions). For F CYC START the clock clears INST DONE. It also sets XCTP ACTIVE to
control memory operand references if this instruction is being executed by an executive XCT that called for
crossing over between the user and executive virtual address spaces (for a byte instruction this action is held
off till the second part, as all pointer operations are in executive space). The flow paths in the left half of
the chart are relatively unique sequences required for specific instructions; they are included in the flow
chart so that it is a complete representation of the fetch cycle, but the detailed description is left for the
treatment of the individual instruction flows in Chapter 8. The IR DPOP line triggers a double operand
fetch but goes directly to FT7 to increment E so it will be ready for fetching the low order word. The re-
turn from the high order fetch restarts the sequence, which continues to ET2 and then stops to wait for the

second word.

The flow path at the left is for instructions that must fetch a word from a memory location specified by AC
before beginning operations (if any) with the effective address. There are also entries into various parts of
this path for returning to the fetch cycle to repeat part of the main sequence. The processor returns from
ST2 to FT3 to do the DATAO for a BLKO or the third part of an MUUO. A similar return for a BLKI is to
FT5. To begin the second part of an MUUO or a DMOVXM the processor returns to FT6. The bottom

of the chart also shows two entries to FT6 from a memory subroutine, in one case from a page check, in the
other following an operand fetch. These two conditions are set up by the entry into the PI cycle for PI

functions other than a normal or dispatch interrupt.

The flow paths in the right half of the chart are for the great majority of instructions, which fetch neither a
double operand nor an operand specified by AC. Of the two main paths, the left is for instructions that
either fetch the contents of E or will subsequently store a result in E and thus require a page check. For
these the processor latches the address bus, inhibits the AD clock so the bus input cannot change, and stops

the main clock. A MAP, CONI or DATAI prohibits the memory subroutine from actually calling memory:
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in the first case this is done because there will actually be no memory access, and in the other cases the
memory subroutine will be restarted later just in case the processor has to wait for the IO bus before getting
the word to be stored. If the instruction generates both FCE and SCE because it takes too long for a read-
modify-write cycle, MC SPLIT CYC SYNC is set so that the memory subroutine will disconnect from mem-
ory following the fetch and wait to be restarted later by the instruction. Normally an FCE PSE subroutine
holds the memory, but it is also split in single pulse operation, if there is a possibility of a parity or address
stop, or if the drum split signal is asserted in any but a skip instruction. If PC cannot change in the current
instruction and there will be no storage in a location other than E, F CYC START sets MC INST FETCH

START so that the memory subroutine will go directly to the next instruction fetch as soon as it is able.

The time state that follows depends upon the time available for latching the address bus (remember that if
the last step of the effective address calculation requires indexing, that indexing is going on through the
adder during F CYC START). If an operand is to be fetched or there is no indexing, the processor pro-
ceeds to FT6 and calls for a memory read or write or both depending upon the fetch and store requirements.
The memory subroutine switches the fast memory from an index register to AC, and the return from the
subroutine (with the operand or simply to indicate completion of a page check if there is no fetch) restarts
the clock. With indexing but no fetch, the processor calls for a memory write and enters FT8; upon receipt
of the return from the page check, the processor first switches the fast memory to AC before proceeding to
FT6. Of course the reader should realize that there may be no return at all to the fetch cycle from a mem-
ory subroutine, as there is always the possibility of a page failure, in which case the processor clears the time
state and goes into the page fail cycle discussed below. In the MAP instruction, however, no real memory
access is attempted; if a page failure occurs, PF CLK START causes the processor to continue where it was

holding in the fetch cycle instead of going into the page fail cycle.

The final path at the right is for instructions that make no memory reference at all, eg instructions that use
only immediate operands or perform entirely control functions. If the instruction is an XCT, a JFCL that
will jump, or a JRST that neither halts nor restores the flags, then the processor calls for the next instruc-
tion fetch. For any other instruction the fast memory address is switched to AC (note that in the three in-
structions mentioned, IR09-12 is not used as an address). If the instruction will neither change PC nor
store a result in a location other than E, the clock places PC on the bus and sets MC INST FETCH NEXT,
causing memory control to set MC INST FETCH START on the next clock. If there is no indexing the pro-

cessor simultaneously performs the initial execute actions. Otherwise the processor goes to FT6 to allow
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time for the fast memory address to switch over. The clock also enables AR into the adder so that E will be

available from it, as in the FCE and SCE flow paths where the AD clock is inhibited.

5.3.3 Execute Cycle

The logic and flow for the execute cycle are shown in BS and FD drawings E. After the effective address is
computed and the necessary operands are fetched, the processor begins the actual execution of the instruc-
tion in the F CYC ACT EN time state. From this point the sequence of states in execute is determined by
the ET enabling levels generated by the large nets at the left in the logic drawing. Which time states are used
depends entirely upon the instruction requirements: from F CYC ACT EN the cycle may go to any time
state. From ETO the cycle may go to either ET1 or ET2, but the chain can be broken heres the condition
for ET1 is that ET1 be enabled and that there be no shift count subroutine. In multiplication and byte
manipulation, the processor goes to one of the SC time states and returns to ET1 following completion of
the subroutine. Note however that for the path to go directly from ETO to the next ET clock requires that
there be neither an SC subroutine nor a non-E store. For such storage ETO enters the next time state, but

the clock stops for a page check and restarts upon the return from memory control.

Regardless of which time states are used, the execute cycle always ends at ET2 except in an 1O instruction.
If the 10 bus is not available at ET 1 of an in-out transfer, the processor goes into a loop; when the bus does
become available, the processor goes into a special IOT sequence that returns to ET2 from IOTT9. However,
during the loop the sequence may be broken entirely by diversion to a PI cycle or key cycle in the same
manner as at the end of the instruction cycle. If the fetch cycle set MC MEM GO INH to prevent memory
control from actually calling memory, ET2 clears the flag and restarts the write subroutine. From ET?2 the
processor either enters a special execution sequence for the instruction, goes directly to the store cycle to
store the results, or if neither of these is necessary, generates CLK EN INST DONE to indicate that the in-
struction has been completed and to return to the instruction cycle. Of course most of what happens in the
execute cycle is for specific instructions and is not included here as it fills many sheets of instruction flow
charts. The remaining operations shown in the execute flow are for a trap cycle, which is discussed in

section 5.4,

5.3.4 Store Cycle

Drawing ST2 shows the generation of the initial switches that control the storage of the results of an instruc-

tion. SCE represents all those situations that require storage in location E, whereas STORE indicates
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memory operand storage in some location other than E. Any instruction automatically stores a result in
AC unless it generates SAC INH. AC storage is from AR unless the instruction generates SAC BR, which
causes IT1 to set the flag shown in the lower part of print ST1; the outputs of this flag control the source of
input to fast memory. The flag is also set independently in two floating point situations where it cannot be
left on throughout the instruction. If an instruction produces a two-word result, it generates SAC2 for stor-

age of the low order word in a second accumulator.

The remaining nets in ST2 generate signals to control events surrounding the entry into the store cycle. ST1
COND arises in ET2 if some storage function is necessary and entry is not inhibited by ST INH. In general
this latter signal (generated in the upper right) indicates that the instruction must go through a special se-
quence before getting to the store cycle, but sometimes it just inhibits the standard entry when entry by
other means is desirable because of special conditions. Eg the special sequence for a JFFO may not be
needed, and entry is therefore from ET?2 in some cases but from the special sequence in others. ST INH dis-
ables the standard inhibit for some instructions that call for the next instruction fetch at ST1, and the entry
for these instructions is supplied by ST INST FET ST1 EN regardless of what is needed in the way of oper-
and storage. The remaining conditions that generate ST1 COND represent the completion of various special

sequences, some of which do double duty by performing other functions, such as clearing AR or MQ.

The store time states are controlled by the remaining logic in drawing ST1 and the storage procedure is
shown in flow chart S. Entry in all ST1 COND cases except page failure is from the final execution time
state, whose clock handles storage in AC at the same time that it sets ST1. The only regular execution entry
not included in the standard condition is from the completion of the normalize sequence for single precision
floating point instructions other than in long mode. Entry from PFT3 of the page fail cycle is through a
memory subroutine that does a page check for storage of the page fail word. The left block transfer entry
is for the BLT loop, ie for completing a transfer with subsequent return to the beginning of the loop from
ST2. The other BLT entry is for termination of the transfer either because it is complete or it has been
stopped by an interrupt or a page failure (the last case prepares for storing the page fail word). Entry from

KT3 is for using the store cycle to deposit a word from the console.

By ST1 there can be no further need for the address bus or changing PC, so any instruction that has not al-
ready called for the next instruction fetch does so now unless it is going to return to an earlier point in the
sequence or continue execution. Also at this time a BLT enables the PC clock to increment the destination

address, in an MUUO flags are adjusted to go on to the next part, and SAC BR FF is cleared so any
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subsequent fast memory storage is from AR. If there is no further storage the instruction terminates with
CLK EN INST DONE. For storage in AC2 the FM address is switched to AC2, and if there is no memory

storage, the processor goes on to ST4.

The existence of ST2 COND indicates that memory storage is required so the clock sets ST2, enables the
parity bit, clears MC MEM GO INH (in case it has been set since ET2) and loads AR into MB so the result is
available to the memory bus. Since the page check has been done, it is already known whether storage is to
be in core or fast memory, and memory control makes this knowledge available by means of the state of
MC STORE IN AC. If this flag is clear the clock stops, and a signal delayed from the turnon of ST2 waits
for memory control to indicate that the write cycle is in progress. This synchronization supplies the write
restart, and the clock restarts upon the return from memory control. If the cycle has been split (and not
already restarted) or the system is in single pulse operation, the delayed ST?2 signal itself restarts the write

part of the memory subroutine and then waits for synchronization from memory control.

If operand storage is in fast memory, the store cycle saves time by handling the storage directly instead of
going through memory control. (Since memory control does not function at all in this situation, ST1 must
inhibit the clock if a memory stop is called for.) The ST1 clock switches the fast memory address to MA.
The next clock does not affect FM ADR MA because FMC STORE IN AC is 0, but it does set that flag and
FM WR. With FMC STORE IN AC now set, the next clock (regardless of time state) clears FM ADR MA
and FMC STORE IN AC, and the transition to 0 of the latter clears MC MA MA.

At ST2 the only store function left is SAC2. If there is a low order word to be put in AC2, the processor
must get to ST4; but if the memory operand storage was in fast memory, it goes by way of ST3 to allow
time for completion of that storage and for switching over the FM address circuits from MA to AC2. ST4
moves the low order word from MQ to AR, sets FM WR so fast memory control will write the contents of
AR into AC2, and continues the cycle to STS. There are also five nonstore time states that enter ST5, and
three of these are for floating point operations that also write a low order word in AC2. The fourth is the
immediate exit from a page fail cycle for a page failure in a PI cycle; there is no page fail trap for this fatal

error. The last is to restart following a page failure in a deposit function.

The other paths from ST2 are for special returns to earlier parts of the main sequence and a direct path to

STS if there is no special exit nor AC2 storage. Since ST5 is the end of the main sequence, it always
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generates CLK EN INST DONE, clears BYF6 in a DMOVXM, and generates KEY DONE if the store cycle

was used for a deposit from the console.

For all the special exits from ST2 (ie ST5 inhibit and no AC?2 storage), the adder is enabled onto the address
bus. For the next iteration in a block transfer the word count and source address in the two halves of BR
are incremented and the processor returns to BLTT1. The remaining instruction returns are all to the fetch
cycle for the second part in a DMOVXM or a block 10T, or the second or third part of an MUUO. Note that
for a BLKI, MC MEM GO INH is set just as it is at the beginning of the fetch cycle in an ordinary DATAIL
The final exit is for a page failure, which simulates the end of an instruction; however ST2 generates CLK

PSEUDO INST DONE, so the clock does not stop and the return is made directly to IT2 for a page fail trap.

5.3.5 Page Fail Cycle

The flags at the top of drawing PF hold the information for generating the page fail word in the format de-
scribed in detail in section 2.15 of the System Reference Manual. The signals that load these flags and

that synchronize the page fail cycle come from memory control. If a page check fails, the signal MC PF
QUICK sets PF SYNC (lower left) and the completion of the page delay loads the hold flags. If a page refill
cycle is required, the cycle completion loads the hold flags, and if the information taken from the page map
indicates that the page is inaccessible, it also sets PF SYNC. In this case the hold flags are loaded even
though there may be no failure, for if there is a failure, memory control dispenses with the second page de-
lay. If the page is accessible there is another page delay, and the flags are reloaded at its completion if there

is a failure.

The first flag on the left is for bit 8 and it is set if user paging is in effect. The other flags are for bits 31—35,
and these are set up by the gating below them. If there is a hard failure bit 31 is set and PF CODE 2X pre-
vents the loading of the A, W and S data into bits 32—34. An address failure generates the illegal entry sig-
nal but with neither PAGE LAST INST PUBLIC nor PAGE PRIVATE INST set; the combination of these
conditions thus sets bits 34 and 35 to produce the number 23 as the type of failure. An illegal entry with a

1 in either of those page flags sets only bit 35 for the number 21. Any other type of proprietary violation
also sets only bit 35. Similarly a page refill error sets bit 34, and a small user violation sets no bit other
than the most significant (22 and 20). If there is no numbered failure, the negation of PF CODE 2X allows

bits 32—34 to be loaded from the page map information, and the absence of a small user violation or page

refill error allows bit 35 to be set if the memory subroutine would write in the page. Note that the signal
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that controls bit 32 is not derived from the page information directly, but is instead PAGE REFILL
CYCLE(0). If a failure occurs as the refill cycle is completed, it must be because the page is inaccessible;
therefore bit 32 receives 0 and bits 33 and 34 receive the data being made available to the associative mem-
ory from the map half word for the page. If the page failure occurs in the page delay, the page must be ac-
cessible; hence bit 32 receives 1 and bits 33 and 34 are loaded from the data supplied by the associative

memory.

The remaining logic in the drawing is for control of the cycle, and the cycle flow is shown in chart PF. Once
PF SYNC is set there is a wait for receipt of a sync point from memory control (eg it would be undesirable
to wipe out the present time state because of a page failure that occurs in an overlapped instruction fetch
before the current instruction is even finished). The synchronization triggers PFTO, which clears the present
time state by setting MR STATE CLR FF and substitutes the appropriate page fail time state provided there
is no MAP condition. This condition, shown at the bottom of the print, is generated both by the MAP in-
struction and by a memory operation called from the console. In MAP there is a return to the original time
state just as though there were no page failure, and a page failure produced by the operator cannot be
allowed to interfere with normal processor operation. Hence for either of these situations there is no state
clear. If the failure is associated with an examine or deposit, PF KEY sets (turning on the console key page
fail light) and if MC ASYNC START is clear, PFTO triggers MCT RECYCLE to fetch the next instruction if

the processor is running.

The clearing function clears the flipflops that define the time state and the type of cycle, but does not de-
stroy flags or other information that must be saved (such as the time state set up by PFT0). Following the
clear, the clock restarts. If there was no state clear the processor is either in KT3, in which case the key
function continues, or in FT6 or FT8, in which case the MAP resumes just as it would following a memory
subroutine with no page failure. If the failure occurred in a BLT, the return is made to a special part of the
BLT sequence at BLTTS; this special sequence duplicates the operations performed by the regular page fail
cycle, but it also performs special functions necessary for premature termination in the same fashion as
though the instruction had been terminated by an interrupt. A page failure in a PI cycle is regarded as a
fatal error, so for this the processor goes to PFT4 to set the In-out Page Failure flag, stop any writing that
may have been called for in the memory subroutine, put PC on the address bus and set MC INST FETCH
NEXT, and then goes to ST5 to terminate the sequence.
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If none of the above conditions holds, the processor enters a standard page fail cycle at PFT1. This clears
various memory control flags to prevent a new instruction fetch or the fetching of a second operand for the
terminated instruction. PFF1 SET not only sets the indicated flag but also sets TRAP PAGE FAULT; and
if PAGE LAST INST PUBLIC is 1, it sets PAGE CLR PRIVATE, whose transition clears PAGE PRIVATE
INST to prevent a further page failure in case the present one was caused by an illegal entry. The clock
turns on the AD gate that enables the magic numbers and PFF 1(1) makes the information for the page fail
word available to the AD gating via these inputs. As shown in drawing MAMS, PF HOLD USER conditions
bit 8, AB18-26 supply the virtual page number to bits 917, and the remaining hold flags supply the failure
type to bits 31-35.

PFT?2 loads a page fail word into AR and enables AD onto the address bus (although this will not actually
be used). At the next clock the STORE switch generated by PFF1(1) (which disables the IR decoding so
there are no other instruction switches except SAC INH) sets up a synchronous memory write subroutine
including AB AB EN to start the necessary sequence, but it sets both MA SPECIAL and MA SPECIAL UBR
so that memory control accesses the user process table at the location specified by the MA special levels. As
shown on drawing MAS, PFF1(1) generates the appropriate address levels to select location 426 for storing

an executive page failure word, otherwise 427.

At PFT3 the processor also enters ST1 (where the special BLT page fail sequence rejoins the standard flow
path), and following the page check it enters ST2 for the standard store cycle write restart, which in this
case writes the page fail word in the user process table. The ST2 clock produces the standard instruction
termination events as conditioned by CLK EN INST DONE, but CLK PSEUDO INST DONE prevents the

clock from stopping and the processor goes directly to IT2 for a trap cycle.

5.4 TRAP LOGIC

A trap is produced by setting any of the right three flags at the top of drawing TRAP. When a page failure
occurs, TRAP PAGE FAULT is set at the same time as PFF1. The TN flags 0 and 1 are what the program-
mer knows as the Trap 2 and Trap 1 flags. The conditions that set TN 1 are equivalent to the arithmetic
overflow conditions that set AR OV (section 7.2). TN 0 is set by the various pushdown overflow condi-
tions: the left half of the pointer is counted down to -1 (no carry out of bit 0) in a POPX, or is counted up
to zero in a PUSHX (the condition for this is the presence of a carry out of bit 0, but the condition is saved

by setting FLAG 2). The entry into a trap cycle is shown in the instruction cycle flow chart IC. To begin
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a page fault trap the page fail cycle returns directly from ST2 to IT2. To bring about an overflow trap the
signal TN=0 must be negated, ie one of the trap flags must be set and EBR TRAP EN must be set to enable
overflow traps. If TN=0 is false and the processor is not already in a trap cycle or a PI cycle when it starts
an instruction at ITO, then rather than going to IT1 to continue the instruction it goes instead to IT2. In
this time state the clock sets TRAP CYC and TRAP BEGIN, inhibits PC+1 since the interrupted instruction
must be restarted after the trap, and unlatches IR so that it can receive a new instruction code from MB. To
supply the address for retrieving the trap instruction, USER MODE(1) causes the clock to set MA SPECIAL
UBR to supply the base address of the user process table; otherwise the executive process table is selected.
It also sets MA SPECIAL to gate the special address levels into MA to select the location in the table.
Following IT2 the processor may be diverted to a PI or key cycle just as in IT1, but if it is not diverted

it stops the clock and calls for a pseudo instruction fetch. During the memory subroutine TRAP BEGIN
supplies the special address bits by generating TRAP ANY for any trap and TRAP REAL for an overflow
trap (refer to print MAS). For any trap, 1s are supplied to address bits 27 and 31, and for an overflow trap
1s are supplied to bits 34 and 35 as determined by the TN flags. Thus for a page fail trap the instruction

is taken from location 420 in the process table, and for an overflow trap it is taken from one of the locations

in the range 421—-423 corresponding to the number contained in TNO-1.

When the instruction is ready, synchronization is immediate since INST DONE is still set. For this instruc-
tion the processor must go from ITO to IT1 as it is now in a trap cycle (although the cycle can be diverted
if the trap instruction uses indirect addressing). Note that most of the MA special levels are held only while
TRAP BEGIN is set, ie only for the trap instruction fetch. But MA SPECIAL 35 is held all the time that
MUUOF1 is set in the trap cycle. There are two locations for MUUO PC words for each machine mode, and
MA SPECIAL 35 selects the odd one as is required when the MUUO is being executed as a trap instruction.

Once fetched, the trap instruction is performed like any other in the address space in which the trap
occurred. If an instruction that overflows also causes a page failure, the trap for the latter has precedence by
virtue of the fact that TRAP PAGE FAULT being set disables TRAP REAL. Moreover this flag also gener-
ates TN CLR INH so that the only reasonable way to generate TRAP SATISFIED is by the condition AR
FLAGS EN. In other words a page fail trap instruction should be a jump that saves the flags, thereby satis-
fying the page failure trap and also saving and clearing the TN flags so that a proper return can later be made

to the overflow trap.
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For overflow traps, the processor generally produces TRAP SATISFIED in every main sequence because
such a trap usually occurs right after the instruction that causes it. However the trap cannot be satisfied
until the trap instruction is guaranteed of completion. If TRAP SATISFIED were generated and then the
instruction were interrupted, the trap would be lost — with the TN flags clear, there would be no way to re-
turn. Ordinarily the trap is satisfied at the beginning of the execute cycle unless there is non-E storage, in
which case satisfaction is delayed until ET1, ie following the required page check. But the standard genera-
tion of TRAP SATISFIED is inhibited by assertion of TN CLR INH. This gate implies an instruction that
cannot satisfy a trap at all (as in a page fault trap or a PI cycle) or an instruction that can be interrupted
after the execute cycle (or the first execute cycle). In a DFDV or BLT, TRAP SATISFIED must be put off
until some time state beyond the last point at which the instruction can be interrupted. In the other cases
it is put off until the execute cycle of the final part (eg in the non-XCT instruction that is finally executed
by a string of XCTs).

5.5 MODE CONTROL

The monitor selects the process tables by loading the user and executive base address registers shown in

print UEBR. The base address used in accessing a process table is supplied by UBR or EBR (through the

mixer at the top of the print) as selected by gating levels from special memory address control (print MAS).

To supply the base addresses and other information, the program gives a DATAO PAG, which generates

UBR LOAD if bit 0 of the data word is 1 and generates EBR LOAD if bit 18 isa 1. The latter loads information
from the right half of the word into EBR and the Page Enable flag shown at the bottom of UEBR. The UBR
LOAD signal loads information from the left half of the word into UBR, into FM ADRO-1 to select the fast
memory group for the user, and into the Small User and User Address Compare Enable flags shown at the

left in drawing PAG2.

The logic that controls the machine mode and the type of paging is shown in print USER and in the upper
half of print PAG2. Ordinary manipulation of the flags by the program is accomplished by means of the
ARF LOAD signal, which is generated by either a JRST 2 or an MUUO. However for some of the flags, fur-
ther gating produces restrictions, so that in some cases manipulation can be achieved only by an MUUO, and
in others only from a particular mode or accompanying a particular mode change. As an example consider
USER MODE, which is the User flag. This flag is controlled by bit 5 of the PC word in an MUUO. A JRSTF
can set User (ie from executive mode) but cannot clear it, as once set it remains set until PAGE LEAVE

USER is negated. This signal, which is produced by the net in the center of drawing PAG2, is generated by
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ARF LOAD only in part three of an MUUO, at which time it also allows the instruction to manipulate the
Public flag (shown at D7) according to bit 7 of the PC word.

The flipflops in the lower right of USER supply certain mode information and also save it for one time state
beyond which it is specified by the inputs (the mode flags change at ET2 but the instructions that change
them end at ST1). The left one indicates that the processor is in user or supervisor mode because either
User or Public is set. The right one indicates that user IOTs are illegal (except for device codes 740 and
above) because either the processor is in user mode with User IOT clear or is in supervisor mode. In the up-
per left is User IOT, which controls the availability of in-out instructions to a user program, and also has a
use in executive mode wherein it selects the type of memory for which memory operand references can
cross over from executive to user space in an executive XCT. A JRSTF can clear this flag at any time but

can set it only in executive mode; an MUUO can set or clear it in either mode.

The logic associated with the five flipflops at the top of drawing PAG2 controls switching among the modes
(in conjunction with USER MODE) and detects an illegal entry into the concealed area of the address space.
For the latter the signal PAGE CHK PRIVATE is generated (lower left corner) while the memory subroutine
is actually fetching an instruction under normal circumstances (e the fetch is not from fast memory or a
process table and memory control is not performing a page refill in preparation for the actual instruction
fetch). The assertion of this signal causes memory control (via timing signal MCTO) to set PAGE PRIVATE
INST if the instruction is being taken from a nonpublic paged area or the unpaged executive area. While the
processor is in concealed mode the flag is simply held on by every memory subroutine until an instruction

is fetched from a public area, indicating a return to public mode (wherein the clearing of PAGE PRIVATE
INST causes the next IT1 to set PAGE LAST INST PUBLIC). But when PAGE PRIVATE INST is set ini-
tially by retrieval of a private instruction from public mode, the determination of whether the entry is legal
must wait until the instruction is decoded in the instruction cycle. This is handled by means of the upper
gate that generates PAGE LIP CLR A (at C4) to clear Public at IT1 if the instruction is a JRST 1. Any other
instruction allows Public to remain set, and both flags set is one of the conditions that produces PAGE ILL
ENTRY at the lower left. This signal has no immediate effect (except to prevent writing in AC), but it
causes a page failure during the next page check. (The other conditions for PAGE ILL ENTRY are for an

address failure, which is treated in sectica 6.4.)

The flag at D4, PAGE LAST MUUO PUBLIC, is the Disable Bypass flag, which when set prevents the super-

visor from using an executive XCT to access the concealed user area. It can be manipulated by either a
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JRSTF or an MUUO, but it has an effect only in executive mode and is therefore manipulated in a meaning-
ful way only by instructions that are under the control of the executive (ie instructions that enter or are in

executive mode).

As described above, an MUUO can control both Public and User by generating PAGE LEAVE USER. The
other conditions that generate this signal cause both Public and User to be cleared so that the processor en-
ters kernel mode whenever it is placed in normal operation from the console or the flags are saved in an in-
terrupt instruction (an instruction that calls an interrupt routine). A JRSTF can clear Public only by gener-
ating PAGE LIP CLR A, which requires a 1 in PC word bit 5 when user paging is not in effect; in other
words the program can enter concealed mode simply by clearing Public (7e without making a valid entry)
only when it is in executive mode and is simultaneously eni:ering user mode (this method is not available for

a public program to enter concealed mode or a supervisor program to enter kernel mode).

Manipulation of PAGE PRIVATE INST outside of a memory subroutine is effected through the direct set
and clear inputs, but this control is clocked because the inputs are derived from the clocked flipflops at the
upper right. A JRSTF or an MUUO with a 1 in bit 7 produces PAGE ENTER PUBLIC to set PAGE CLR
PRIVATE. When ARF LOAD is true but bit 7 is 0, PAGE ENTER PUBLIC is negated, allowing PAGE SET
PRIVATE to be set provided either the instruction is an MUUO or is an executive instruction that is enter-
ing user mode (the same condition that allows a JRSTF to clear Public). Note that PAGE ENTER PUBLIC
is also generated when Public is on at the beginning of a page fail cycle to disable PAGE ILL ENTRY in case

that was the reason for the failure.

5.5.1 User Paging

The remaining logic on USER determines the type of paging and access to the user AC stack. In the large
net at the lower left, the third AND gate specifies that user paging is in effect whenever the processor is in
user mode unless such paging is inhibited by the gate at the right; this inhibit applies during a key cycle or
a PI cycle until memory control begins to fetch the next instruction, which must come from user space.
The gate above the user mode gate selects user paging during a key cycle if the user paging switch is on and
the exec paging switch is off, where again the specification is disabled when memory control goes for the
next instruction, which must be taken from the space associated with the mode. The remainder of the net

is for the selection of “user paging” in an instruction executed by an executive XCT.
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The flags that control the selection of the type of paging in an executive XCT are on the right in drawing
XCT. AtET2in an XCT in executive mode, 1sin bits 12 and 11 set XCTP RD and XCTP WR. Then at the
beginning of the executed instruction (the second part in a byte instruction) a 1 in either of these flags sets
XCTP ACTIVE. That an instruction is being executed by an executive XCT is indicated by XCTP ACTIVE
being on. This condition produces XCT PROT BYPASS to allow the supervisor to access the user concealed
space if PAGE LAST MUUO PUBLIC is clear; and if user fast memory block 0 is selected, it generates XCT
SHADOW REF for each USER PAGING access, so any fast memory operand reference is to the shadow
area when USER PAGING is true.

The net that selects which memory operand references shall use “user paging” is at B8 in print USER.

XCTP RD(1) enables the net for a double operand fetch and a synchronous read or read-modify-write;
XCTP WR(1) enables it for a memory access that is limited to writing. With the output of this net true and
XCTP ACTIVE set, USER PAGING is true if USER IOT is set; but if that flag is clear, “‘user paging” applies
only to fast memory references and the user AC stack is therefore enabled if the reference is within loca-
tions 0—17. The program selects the stack pointer by giving a CONO PAG, to load the flipflops in the upper
right. For a reference to the AC stack, USER AC STACK EN supplies this pointer to MA27-31 to select a

group of sixteen locations in the user process table.
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CHAPTER 6
MEMORY LOGIC

In a DECsystem-10 each PDP-10 arithmetic processor contains its own 16-word fast semiconductor memory,
but the core memories are separate units connected to the processor by a memory bus. The internal opera-
tion of these memories, their control functions, their timing, and the way they respond to processor re-
quests are described in separate manuals. This chapter describes only the hardware at the processor end of
the memory bus: the logic that requests access to memory, determines the physical address, supplies that

address to memory, and controls the transmission and receipt of data.

A clock in a processor cycle or an execution sequence may request access to memory by triggering appropri-
ate events in the memory control section of the processor. Depending upon the type of access, the clock
may stop and wait for some response from memory control, or the clock may continue so that ordinary

processor operations and the memory subroutine go on in parallel.

To access memory, memory control must supply an address to the memory bus from MA and must place
various request signals on the bus. Memory control then waits for a response from the memory addressed
by the high-order address bits. Once the memory is free and available to the processor, the time required to
transmit or receive data depends upon the characteristics of the particular memory, although this time is al-
ways shorter than the memory cycle. For reading, memory control must wait until the data is available and
the memory rewrites the word automatically (unless the same location is to be modified after a pause); for
writing, memory control need wait only until the memory acknowledges the request, at which time the

memory takes the data into its own buffer and continues with the clear and write cycle.
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6.1 MEMORY DATA

The two MB drawings show the 36-bit memory buffer through which all data is transmitted between pro-
cessor and memory. The data inputs to the MB flipflops allow for clocked transfers from AR and FM: from
the former principally for sending data to memory, and from the latter when the memory subroutine is
fetching data from fast memory. For receipt of information over the memory bus, MB is first cleared and
data pulses from the bus are fed directly into the set inputs of the flipflops. The connections to the bus are
shown in drawing MBD. At the bottom are the gates through which data pulses are placed on the bus by

the write restart signal for the transmission of data to memory according to the contents of MB. Above the
cable are the gates for the receipt of data pulses from the bus. These input signals are always fed to the set
inputs of the MB flipflops, but they are also fed to the set inputs of the flipflops in AR if the word being re-
ceived is an operand, as indicated by the gating level from synchronous memory control (in a two-word op-

erand only the first is sent directly to AR).

The control signals for MB are shown in the lower part of drawing IRMB. Of the conditions that enable the
MB clock (for the main clock), the readin condition and BLTT4(1) are for clearing MB. The remaining en-
ables are for loading MB as determined by the nets at the right. Loading MB for storage of a result is always
at ST1 going to ST2. The conditions that generate MB AR EN B are effectively for simulating the result of
an instruction fetch: the word being put in MB is either an instruction being executed from the console or
a pointer for the address calculation in the second part of a byte. The various double floating point condi-
tions that generate MB AR EN A simply use MB as an arithmetic buffer register like BR. Note that the MB
enabling level for these DF time states is inhibited during the transfer of a word into MB from fast memory.
This inhibit is applicable only to DFDT1 and DFMT]1, the time states in which the processor waits for re-
ceipt of the second operand. If the operand reference is to fast memory, the inhibit allows the proper oper-

and loading of MB before the time state takes over and generates the gate for its own transfer.

Among the conditions that trigger the MB clock directly, MCT3 loads MB from FM during a memory refer-
ence to fast memory. The conditions at the set of four AND gates just at the left all trigger the clock simply
to clear MB. The second gate clears MB following the transmission of data out over the bus to be written.
The first and third gates generate the asynchronous MB clock at the end of the page check (to make MB
ready to receive data) in a synchronous fetch or store or in an asynchronous (ie instruction) fetch, except in
the case where the asynchronous fetch (instruction or second operand) is automatically following a synchro-

nous fetch — in other words in the case where MC ASYNC START is set and one or the other of the hold
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flipflops is also set. The reason for this is that at the end of the asynchronous page check, MB is in use for
the synchronous fetch. To prepare it for the asynchronous fetch, the bottom gate clears MB after the parity
check of a word fetched when an asynchronous fetch is following automatically (as indicated by MCR MB
POST CLR being set). In several specific instances however the clear function is inhibited. In the first part
of a byte instruction, the incremented pointer written back into memory is also saved for use in the second
part; MB is cleared by BLTT4, so there is no clear following the page check of the destination in a BLT; and
if the processor is stopping because of bad parity, the post clear for a subsequent asynchronous fetch is in-

hibited in order to save the word containing the error.

Parity. The parity logic (drawing PAR) receives two signals from the memory bus: MAI PARITY which
sets PAR BIT, and MAI IGN PAR which sets PAR IGNORE. The former signal accompanies data received
from memory and is present if the parity bit of the word read is 1; the latter signal accompanies the acknow-
ledgement from memory and is present if the ignore parity switch at the memory is on. The parity nets at
the top of the drawing generate an even parity signal from the data held in MB; this signal is inverted and

supplied as an odd parity bit with data being sent out on the bus to be written.

When a word is read from memory, PAR BIT reflects the state of the parity signal received, and the nets de-
termine the parity of the 37-bit word. Unless parity is being ignored (a condition that holds PAR ERR
clear) the parity check signal from memory control sets PAR ERR if the output of the nets is even; and the
setting of this flag in turn sets the Parity Error flag, which is one of the processor conditions (and can be

cleared by a CONO PI, with a 1 in bit 19).

All writing in memory is done at ST2 and at this time the same clock that loads MB also sets PAR BIT so
that the nets will generate the correct parity signal to accompany the data to memory. (Note that if the
program has specified writing even parity for maintenance purposes, the level PAR WRITE EVEN inverts the
output of the nets.)

6.2 MEMORY ADDRESSING

The address to be used in accessing memory is supplied to the bus through the memory address interface as
shown in drawing MAIL. This interface also handles all of the bus control signals, such as the request, parity
and write restart signals to memory and the acknowledgement, data warning, read restart and ignore parity

signals from memory. (Drawings MAI and MBD together show the complete bus.)
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The address signals are supplied to the interface from the memory address latches shown in drawing MA1
and the right half of MA2. Although MA always supplies a 22-bit physical address to the bus, addresses sup-
plied to MA are constructed out of physical and virtual pieces. Hence MA is effectively divided into three
parts: bits 14—17 select the 256K portion of memory, bits 18—26 select the page, and bits 2735 select
the location in the page. The source of the information for bits 14—17 and 18—26 is the associative mem-
ory scratch pad for normal paged access, the address bus for unpaged access, and one of the base registers
for access to a process table. Note however that the AB bits for MA14—17 do not actually come from the
address bus logic — instead they are derived from the address switches. In a programmed unpaged reference
(to fast memory or the executive unpaged area) these bits are Os; the only time they are not necessarily Os
is in an access called from the console, in which case all of physical memory is available and the bits are sup-

plied by the address switches (as are all the other bits in the address via AB).

For all ordinary memory access MA27—35 receives address information from AB, and the other two en-
abling levels, refill and special, are exclusively for accessing the process tables: the former for retrieving page
map data for the associative memory, and the latter for all other hardware-defined access. Note that the
user AC stack pointer bits are ored directly into MA27-31 without benefit of an enabling level applied to
MA ; these inputs are enabled directly by user paging control (section 5.5) and provide an address in the

user process table in combination with AB. There is no actual overlap of the user AC pointer with AB, as a
stack reference is ipso facto a reference within locations 0—17 and hence AB bits 27—31 are all 0. The indi-
vidual address bits for hardware-defined access to a process table other than for page mapping are the MA
special levels shown in drawing MAS. These levels are used to construct the addresses of the table locations
used for page failure, MUUO, executive LUUO, trap, interrupt, and auto restart. The flow charts for each of
these operations list the necessary special levels, but in any event the levels produced by any particular con-

dition are simply those needed to generate the address bits for the table location appropriate to the operation.

The final group of inputs for MA27-35 are those that specify the address of a page map word for a page re-
fill cycle. For all user access and ordinary executive paged access the virtual page number from AB18-26 is
shifted right one place and used as the table address — in other words AB18—25 is supplied to MA28—35;
this is equivalent to dividing the page number by two and is done because each word in the page map con-
tains the map data for two pages. To get a mapping for a page in the per-process area, access must be made
to user process table locations 400—417 for pages 340—377; this requires that MA27 receive 1 and MA29—
31 receive Os while the remaining flipflops receive the same AB bits as for accessing a location in the first

half of the table. To generate these two configurations MA28 receives AB18 and MA32-35 receive
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AB22-25, but MA29-31 receive auxiliary signals and MA27 receives the signal MA PAGE PER USER.
These signals are generated by the logic at the center in drawing MAC. When access is not to the per-process
area, MA PAGE PER USER is false, placing a 0 in MA27 and gating AB19—21 into MA29-31. But if the
executive addresses a page in the range 340—377 (ie address bit 18 is 0 and bits 19—21 are all 1s) MA PAGE
PER USER supplies a 1 to MA27 and disables the auxiliary signals so that MA29—31 receives Os. (Note that
MA AB18 and MA AB19—-21=7 include another condition besides that the AB bits be 1s, but the extra con-

dition is not relevant to this particular situation.)

The nets at the right determine whether access is direct, ie whether the address supplied is to be taken as a
physical address to reference a location without paging. The signal MA DIRECT is true for a fast memory
reference or when MA EXEC UNPAGED is asserted. A true fast memory reference is determined by the net
at B7 in print MA2: MA AC REF is true when the address is in the range 0—17 and it is not used for an AC
stack or shadow reference nor is there a special reference instead. (If an illegal entry has occurred, MA AC
REF is inhibited in the memory subroutine that recognizes that page failure.) The signai MA EXEC
UNPAGED (on MAC) is true when user paging is not in effect and the address specified is in the executive
unpaged area (pages 0—337). However the signals for the AB bits reflect more than the states of those bits.
MA AB18 is false if AB18 is 0 and MA AB19—21=7 is false if any among AB bits 19—21 is 0, but both are
false when MA KEY DIRECT is true. The net at the top asserts MA KEY DIRECT for references in a key

cycle in which the exec paging switch is off, for all references while EBR TRAP EN is clear, and for any
special reference. In a key cycle, user paging is in effect if the exec paging switch is off and the user paging
switch is on; hence both paging switches off makes MA EXEC UNPAGED true regardless of the address
used, making all key memory references direct. EBR TRAP EN is what the programmer knows as the Page
Enable flag. In all ordinary computer operation this flag is set. When left clear, it not only disables traps,
but also causes the entire executive virtual address space to be unpaged. Hence the executive runs only in
kernal mode and directly addresses the first 256K locations in memory. MA SPECIAL (1) gives MA KEY
DIRECT simply to prevent the arbitrary contents of AB from forcing selection of the user process table by
inadvertently generating MA PAGE PER USER.

The actual selection of the source of an address for any reference is made by the net at the left, and the
table lists the sources for the various types of reference. All enabling levels require that MC MA MA be 0,
as setting this flipflop latches the register and holds off any enabling levels until the address is taken by the
memory. If a reference is neither special nor a refill, the source for MA27—35 is AB. Hence for a direct
reference AB supplies the entire address, where bits 14—17 are Os or are supplied by the address switches.
For an ordinary paged reference the physical page is supplied to MA14—26 from the scratch pad while AB
supplies bits 27—35. For a reference to the user AC stack MA 14—26 receives the user base address and
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MA?27-35 receives AB with the pointer ored into MA27—-31. For a refill cycle or a special reference
MA14-26 receive the appropriate base address and MA27-35 receive respectively the refill bits or the

special bits.

The logic that determines which base address shall be used in a stack, refill or special reference is shown at
the upper left in drawing MAS. Any operation that requires reference to a process table other than a page
refill or an AC stack reference sets MA SPECIAL, and if the reference is to the user process table it also sets
MA SPECIAL UBR. The first of these flipflops selects a base address (ie the output of the base address
mixer) as the source for MA14—26; the same selection is also made for a page refill or reference to the AC
stack. The nets at the center of print MAS select the base register that is gated into the mixer regardless of
whether the base address is actually used. The user base register is selected for all user paging, for references
to the per-process area or the user AC stack, and in any operation in which MA SPECIAL UBR is set. Other-

wise the executive base register is selected.

6.3 ASSOCIATIVE MEMORY

Although the associative memory includes the entire page table and associated logic, the term ‘‘associative
memory”’ used alone in the prints refers only to that part of the page table that contains the list of virtual
pages. The eight associative memory modules shown in drawings AM1 and AM?2 each contain four complete
virtual entries. Every module constantly compares its data inputs against the entries it contains, and when-
ever the input data is equivalent to an entry the module asserts a match output for the corresponding loca-
tion. The data inputs are the virtual page number on the address bus (AB18—26), the USER PAGING signal
to select the address space, and the Word Empty flag, which is always 0 when the processor is actually check-
ing for a match. (The table entry that matches the inputs is available at the data outputs, but these signals
are not used.) When the AMAC WR pulse is generated, the input data is written into the location selected

by the address decoders below the table modules. In this case Word Empty may have either state — 0 when

data is actually being entered, 1 when a location is being invalidated.

The inputs to the decoders are produced by the nets at the top of drawing AMA. These signals reflect the
state of the page table reload counter AM ADR when an entry is being made in the table or a single location
is being invalidated because of a page failure. But a DATAO PAG, invalidates the entire table through the
control logic at the lower right in print AMAC. When the paging hardware is selected, the DATAO clear and
set signals generate equivalent signals for AMAC. AMAC DATAO CLR sets AMAC CLR ALL, triggers the
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AMAC write signal, and sets PF WORD EMPTY (which is in the upper right corner of drawing PF). The 1
state of AMAC CLR ALL asserts all of the address inputs to the decoders so the write signal invalidates all
locations. The subsequent set signal clears both flipflops.

The part of the page table that lists the physical map data is the associative memory scratch pad. The two
sets of four modules at the top and bottom of drawing AMSP each supply sixteen words of physical map
data (four bits per word per module) for the sixteen virtual-page AM entries as selected by the match signals.
When a refill writes in AM, the data being written produces a match, which in turn selects the corresponding
AMSP location so that a second write pulse loads the physical map data into AMSP. The outputs for page
checking and supplying physical address bits to MA are at the tops of the AMSP modules. The inputs at the
bottoms of the modules come from the mixer at the top of drawing AMB. Following a refill cycle this
mixer receives a half word of page map data from the left or right half of MB according to the state of AB26,
which is the least significant bit of the virtual page number. The scratch pad entries are only sixteen bits, as
one bit of the page map data is not used, and the access bit is not kept in the scratch pad for no entry is

made at all if the page is inaccessible.

The circuits at the bottom of AMB supply buffered match signals to the gates in the lower half of AMA.
These gates determine if there is any match and also encode the number of the match location in binary to
place it in the reload counter if there is a page failure. The large net at the left in drawing AMAC deter-

mines when a matched entry is in the location specified by the reload counter.

The remaining circuits in AMAC control the operation of the associative memory and in most cases the de-
tails of this operation are treated in the discussion of the memory flow. The chain of write pulses at the
bottom controls the entry of new data into the table following a page refill cycle and also clears the match
location when there is a failure other than a small user violation. Loading and counting of the reload
counter is controlled by AMAC CLK, which is generated by the net at B5S. Following a page failure, the
clock loads the location of the matched entry (or clears AM ADR if there is no match). Should the counter
point to the matched location in a paged reference that is alright, AMAC EQUAL REF is set allowing
MCTO to set AMAC AM+1. With this last flipflop set, the next time the address bus is latched (for a new
memory access) the AMAC clock increments the reload counter by loading the address supplied through
the +1 gate at the left in AMA. And finally a CONO PAG, sets AMAC IOB so that the CONO set pulse gen-

erates the clock to load the counter from bits 31—35 of the output conditions.
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6.4 PAGE CHECKING

The circuits that determine whether a reference is paged and, if so, whether or not there is a failure are
shown in drawing PAG1 and the lower half of PAG2. Almost all of this hardWare effectively forms a large
gating network through which level transitions perform the page checking during the page delay in memory
control. At the completion of the delay, the signal MC PAGE DLY OVER determines what memory con-
trol shall do next depending upon whether the result is alright to make a reference, there is a failure, or a

page refill cycle is necessary. The page checking procedure is shown in flow chart PAG.

The large net in the center of PAG1 generates the PAGE FAIL signal. Note that the top input to this net is
PAGE ILL ENTRY. The negation of this signal appears in many other gates for determining whether a
reference is paged, whether there should be a refill, and whether the result of the page check is alright. The
reason for this is that an illegal entry is determined in the instruction cycle on the basis of the instruction
fetched, and it produces a page failure in the next memory subroutine even if that subroutine taken by it-
self is perfectly alright (eg even if it references fast memory). In particular the bottom gate for PAGE OK
indicates that with no illegal entry waiting, any special reference is alright, and a reference to locations

0—17 is alright if it is to fast memory or if there is a match when it is a shadow reference.

The net in the upper right in PAG1 determines various characteristics of an executive reference. A refer-
ence is executive if USER PAGING is false, the location referenced is not in fast memory, and it is not a
special reference to the process table. An executive reference is paged or unpaged as determined by mem-
ory address control through the signal MA EXEC UNPAGED. If the reference is paged and there is a match,
then the page is regarded as found. A similar net for user paging is at the lower right in PAG2. Here there is
no unpaged area (except fast memory) and the reference is regarded as paged provided there is no small user

violation.

The net at the lower right in PAG1 determines that a reference (regardless of mode) is paged if it is either a
user paged reference, an executive paged reference, or a reference to the shadow area. If the reference is
paged and there is no match, a page refill is called for. This signal allows the termination of the page delay
to set up the flipflops in the lower part of PAG2 to indicate that the memory cycle is for a page refill, to
supply a refill address to MA, and to indicate that it is a refill for synchronous access if MC ASYNC START
is 0. The signal PAGE REFILL RESTART allows the completion of the cycle to trigger the operations that

adjust the contents of the associative memory and begin a new page check. If upon completion of the write
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sequence in associative memory there is still no match, PAGE REFILL ERROR sets (PAG1 C2) causing a

page failure and preventing a second page refill in the same memory subroutine.

Address Failure. At the left in PAG2 the net that detects an illegal entry also generates PAGE ILL ENTRY
if there is an address failure. The signal COMP ADR BRK (section 5.6) indicates that the console address
break switch is on and the address bus currently holds the break address. With this signal true, a memory

subroutine of the type specified by the address condition switches causes a failure.

Small User Violation. The net at PAG1 C7 generates PAGE SMALL VIOL if a small user program supplies

an address in which bits 19—21 are not all 0. This generates a page failure if it is a user reference.

Private Test. The signal PAGE TEST PRIVATE (center PAG?2) indicates the circumstances in which a refer-
ence to a concealed area can be detbermined to be a violation: a concealed reference is alright if the processor
is in concealed or kernal mode or is executing an interrupt instruction or key function, and the test is not
made in an instruction fetch, as an illegal entry cannot be determined until after the instruction is decoded.
An executive unpaged reference generates PAGE OK if PAGE TEST PRIVATE is false, but produces a page
failure if that signal is true. If PAGE TEST PRIVATE is true for an executive paged reference with a match
to a nonpublic page, the reference is alright if the program is not attempting to write (the supervisor can read
concealed executive information), but otherwise the reference fails. A user nonpublic page found with PAGE
TEST PRIVATE true causes a failure if the Disable Bypass flag is set, as indicated by XCT PROT BYPASS

being false.

Write Test. The net at the lower left in PAG1 specifies the various conditions in which a write test must be
made. To test writing at all, there must of course be a match. In a public page there is a test for either a
user or executive paged reference. The write test is also made in a user or executive paged reference if there
is no private test or in a user paged reference where the protect bypass is in effect. The bottom gate of the
PAGE FAIL net determines what references are for writing: any synchronous subroutine in which writing
is called or the cycle is split. PAGE TEST WRITE produces PAGE FAIL if the reference is for writing and
the page is not writeable, but otherwise it generates PAGE OK.
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6.5 MEMORY CONTROL

To access a memory the processor must place an address and a request on the memory bus. A given memory
responds only when it is addressed, but beyond that it responds only to the correct type of request. The
memories in a system are of three types for which there are three types of request; these are categorized as
slow, fast, and immediate. In general these categories correspond to memory speed, but this need not be
true in the case of an immediate memory. In strict hardware terms the type classification of a memory is
determined by the type of request to which it is set up to respond, and its timing characteristics must be

adjusted to fill the requirements for that type.

Memory type is relevant only to the overlapping of memory read cycles on the bus. The overlapping of the
other two segments in the memory control pipeline (page checking, MA loading) depends neither upon mem-
ory type nor upon the type of access, and there is no bus overlapping for write cycles. (There is no provision
in the logic for overlapping a read cycle on a preceding write cycle, and since it makes no sense for an instruc-
tion to try to store a result before the operands have been received, the situation of overlapping a write cycle
on a preceding read never occurs.) The relevance of memory type to overlapping read cycles hinges on the
fact that cycles cannot be nested — data from two different memories must be received in the same order in
which the requests were made (the limit of overlapping is two cycles). The basic criterion is that once a re-
quest is acknowledged by a memory that takes a given amount of time to send back data, a second request can
be made immediately to another memory that takes the same amount of time, but a request to a faster mem-
ory must be delayed until it is certain that the data from the second memory will not arrive until after the

data from the first.

Consider first the slow and fast memories, which are respectively memories with cycle times of about 1.8—
2.5 usand 1 us. A slow or fast memory responds to the appropriate type of request (a request on the bus
line to which the memory is connected) by returning a timed address acknowledgement and subsequently a
data warning before sending the read restart. The timing for these signals is not fixed universally but it is
fixed within a given system (ie for the memories connected to a single processor). The time from address
acknowledge (timed) to read restart must be the same for all slow memories, the time from data warning to
read restart must be the same for all timed memories fast and slow, and no fast memory can have a time from
address acknowledge to read restart that is longer than that for the slow memories. (Memory timing specif-
ications for a processor are posted on the outside of the bay 3 mounting door.) The meaning of the address
acknowledgement is that the addressed memory has recognized that it is wanted and has taken the address

from the bus; hence memory control can load a new address into MA and can request a second overlapped
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read cycle from a slow memory. The data warning means that the data will arrive soon enough so that a
request can be made for an overlapped cycle to a fast memory. The read restart indicates that the data has
been sent to the processor and the access is finished. The read restart does not mean that the memory cycle

is finished, as the memory must write the word back into the addressed location. (In a read-modify-write cycle
the memory waits instead of writing the same word, but this type of cycle is not under consideration, as

writing is not overlapped and memory control also waits.)

An immediate memory may be one that sends data as soon as the request is made (within 200 ns). But as

far as the hardware is concerned the definition of an immediate memory is simply one whose cycle cannot be
overlapped with any other. The relationship between this and immediate data response is obvious: if the data
will be returned immediately, no request can be made until the previous access is complete, and nothing is
gained by trying to overlap a subsequent cycle. But this definition of immediate allows the mixing of non-
overlapped memories on the bus with fast and slow memories. Eg a memory designed to operate on the KA10
memory bus can be mixed with KI10 memories simply by connecting it to the immediate request line. An
immediate memory does not send any data warning, and the time from its address acknowledge (not timed)

to read restart is indeterminate.

When the processor makes a request, it has no way of knowing what type of memory is being addressed. So
to make a request when there is no cycle currently in progress, the processor sends the request signal out

on the fast, slow and immediate request lines simultaneously. If an address acknowledge (not timed) is re-
ceived back, then the memory that has responded is either a real immediate memory or something masquer-
ading in that guise, and the processor completes the access without overlapping. If address acknowledge
(timed) is received back either a fast or slow memory has responded, and the processor can therefore attempt
to overlap the next cycle. For this next cycle, memory control first sends out a slow request. If no memory
has responded by the time the data warning is received, memory control also places a request on the fast line.
If no memory has responded by the time read restart is received, then there is no overlapping and a request
is placed on the line for immediate memories. If no memory responds within 100 us, it is assumed that the

addressed memory does not exist.

Besides specifying the request type in terms of memory type, memory control must also specify the request
in terms of the type of access: read, write, or both. Yet another request signal, which is not used with any
present memory, is for sequential access. This request signal is true when it is quite likely that the next re-
request to the same memory will be made to the next consecutive address. A memory that would use this
line might have a core stack four words wide. For a random access the memory would retrieve a set of four

words which it would save in a buffer while sending one to the processor. Thus for the first access in a set,
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the memory would be fast or slow, but would be immediate for access to locations whose contents are

already held in the buffer.

Do not confuse fast memory, ie “the” fast memory, with “a” fast memory, which is an external memory
that responds to a fast request. “The” fast memory has the accumulators and index registers and can be
referenced as ordinary memory for an instruction or an operand, but in terms of request type it is effectively
an immediate memory. However since it is in the processor, memory control handles it directly without
using the bus and it returns no address acknowledge. Note that throughout the reference manual and else-
where in this manual the term “AC reference” refers to reference to fast memory for an accumulator as
specified by bits 9—12 of an instruction word. But in the memory drawings, and hence in the discussion

here, “AC reference” refers to referencing “the” fast memory from memory control, ie as ordinary memory.

6.5.1 Memory Subroutine Logic

The control and timing circuits for the memory subroutine are shown in seven MC logic drawings. Before
discussing the flow of events that make up the subroutine (which requires six flow charts), let us go through

the block schematics to see where everything is and how the more complex circuits function individually.

The output of the net that takes up the entire lower half of drawing MCIA starts a memory subroutine to
fetch a word that is handled by the instruction cycle, ie a program instruction, an address word, or an
interrupt or trap instruction. Note that the net includes a flipflop that asserts the output during the time
state following that in which the flipflop is set. MC INST FETCH EN starts the memory subroutine by
setting both MC INST FETCH START and MC ASYNC START. For an automatic fetch MC INST FETCH
START is set alone through the net just above the center of the drawing, and the (overlapped) subroutine
starts automatically when the signal MCT AB AB SET from the previous subroutine sets MC ASYNC START.

This same signal starts the asynchronous fetch of a second operand in a double operand fetch. Note that
even if the clock is running, both start flipflops remain set until the first clock after the processor reaches
a sync point (which stops the clock). In an instruction fetch, synchronization occurs when the preceding

instruction is done; in a double operand fetch, synchronization for the second operand is at ET2.

The flipflop in the upper right is set for the fetch of a word that is to be handled by the instruction cycle but
is not a regular program instruction. The conditions that set this flipflop also generate MC INST FETCH EN
to start the subroutine, but the 1 state of MCI PSEUDO INST FET prevents the two start flipflops from
generating MC INST FETCH at the right. This last signal indicates that the fetch is for a true program in-

struction.
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The two flipflops at the upper right in drawing MCS indicate when a memory subroutine is for fetching

or storing an operand. For a double operand fetch, the flipflop at top center causes the subroutine for the
first operand to start a second subroutine automatically. The hold flipflops at bottom center indicate when

a synchronous cycle is actually to be held over the bus — in other words the cycle will not be voided because
of a page failure or skipped because it is an AC reference. Whenever a synchronous read cycle is held, the
gates at C7 produce a signal that loads the word fetched into AR as well as MB. MC STORE IN AC at the
lower left is for use by the store cycle in determining whether to restart the memory subroutine or handle AC
storage itself. The remaining logic in the upper left is for calling a split cycle, ie separate read and write cycles
to the same location in a single instruction (with only one page check). A long instruction that calls for both
FCE and SCE always produces a split cycle, but a read-modify-write cycle is also split if there is any possi-

bility of the processor stopping between the read and write parts.

The logic at the top and center of drawing MCP handles the timing for parity checking and controls the
parity stop on error. The rest of the logic controls the delay for page checking (just above the center is the
synchronizer for advancing from the page check to loading MA). The logic in the left two thirds of print
MCM handles the loading of MA and the setting of MC MEM GO to make the memory subroutine actually
call for a memory cycle. The inhibit flipflop at the bottom is set in various instruction situations to prevent
the memory call for writing if there is likely to be a considerable wait before the store cycle gives the write
restart (supplying the data to be written). Most of these situations involve input instructions that may have
to wait for the IO bus (MAP acts like a write instruction but no memory call is made at all). When the call
is delayed by inhibiting MEM GO, the write part of the subroutine must later be started by setting the
flipflop at bottom center in print MCRW. This is done prior to the write restart so that the memory is al-
ready waiting when the processor has the data ready. Note that single pulse operation enters into the delay
of the memory call as well as into the split cycle already discussed. The reason for this is that the processor
has no way of knowing the time between clocks (nor indeed if the next clock will even occur) in single pulse
operation, and therefore cannot afford to hang onto a memory while waiting for the write restart. Hence
for writing, single pulse operation usually inhibits MEM GO (the situation for read-modify-write or both
FCE and SCE is handled by split cycle) and also delays starting the write subroutine until the same clock

that generates the write restart.

The rest of the left two thirds of print MCRW has the various restarts: to restart the processor after data
has been fetched, to indicate the completion of a refill cycle, to restart the write cycle when data is available
for writing, to restart the processor after writing or a memory stop, and to simulate the processor restart when

a write cycle is killed as in MAP or a division that cannot be performed. At the right are the cycle requests
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for the various types of memories; MC REQ CYC(1) always produces a slow request and produces a fast or
immediate request when appropriate conditions occur. The requests for access type are placed on the bus
at the same time MA is loaded as shown at the left in drawing MA2. Here are the latches for read and write
requests, a sequential request, and an AC reference. Note that in a split cycle the gate at the bottom con-
trols a signal that inhibits the write request during the separate read cycle and then switches over the latches

from read to write.

The memory stop logic is at the upper right in drawing MCM. The upper flipflop synchronizes the parity
stop and address stop switches to the memory subroutine; the lower flipflop actually stops the processor

in the memory subroutine when a situation specified from the console actually occurs.

Timing. Drawing MCTF shows the separate timing chain for an AC read reference and the flipflops that
control the destination of the data read. At right center in drawing MCTN is the logic for determining that
the addressed memory does not exist, at bottom right is the timing chain through which the memory sub-
routine triggers an automatic second subroutine that overlaps the first, and at C5 is a flipflop that indicates

an untimed (nonoverlapped) cycle.

The state of memory control is its position in the memory subroutine as shown in the flow charts, and with
overlapping memory control can be in two positions simultaneously. The state vis-a-vis memory cycles over
the bus is determined by the four flipflops at the lower left in MCTN. The left pair keeps track of the num-
ber of timed address acknowledgements that have been received without receipt of the associated restart

(in other words the flipflops count the number of cycles in which the position of memory control is between
address acknowledgement and restart). The right pair performs the same function for data warnings. If
both left flipflops are clear, there is no fast or slow memory cycle currently in progress, although a request
may have been made. The receipt of address acknowledge (timed) sets MCT ADR ACK 1. If a restart ar-
rives before a second acknowledgement, the flipflop clears and no overlapping occurs. But if a second
acknowledgement arrives first, the second flipflop is set. The next restart then clears the second flipflop
leaving the first alone, and finally the second restart clears the first flipflop to again indicate that no cycle

is in progress. Asshown at the top of the drawing, an immediate request can be made when MCT ADR ACK 1
is clear, and an overlapped fast request can be made after MCT DATA WARN 1 is set. Delay lines provide
for establishing a minimum time between the condition that allows the request and the address acknowledge

from memory.
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6.6 MEMORY SUBROUTINE

The events in the memory subroutine are shown in a set of six MC flow charts. The first three show the
main part of the subroutine, from the call to the response by memory, which is applicable to all types of
requests. MC4 shows the read return for subroutines that fetch a word (including a refill for the page table),
MC5 shows the write restart in the store cycle, and MC6 shows the special sequence for an AC read reference

(AC writing is handled directly by the store cycle and is shown in that flow chart).

6.6.1 Subroutine Call and Page Delay

Entries to the memory subroutine from various instruction and other special situations are in the upper half
of chart MC1. The top row is for operand entries including key and PI functions. The second row is for
instruction type entries and is divided into four groups. From left to right these are an instruction fetch
that will start automatically following the page check in a subroutine already in progress or just beginning,
an instruction fetch that will begin in the next time state, the standard instruction fetch or prefetch, and a
pseudo instruction fetch for an address word or a trap or interrupt instruction. The actual initiation of the
subroutine for the first of these four is the recycle entry (at the very center of the drawing), which comes
from a later point in the subroutine. The other three entry groups trigger the subroutine by generating MC
INST FETCH EN, which sets a pair of start flipflops. The actual beginning of the subroutine is AB AB EN,
which is produced both by MC INST FETCH EN and by all of the operand entries in the top row. At this
time the parity and address stop switches are synchronized to the subroutine. Setting AB AB generates a
pulse that clears the AB flags after the bus is latched and triggers a delay for paging. The delay is also trig-
gered by the completion of a page refill cycle to reenter the subroutine for the actual memory reference.
Following the page delay the entire subroutine can be aborted if it is for an instruction fetch and an interrupt
or key function has been synchronized; in other words memory control does not bother to fetch the next
instruction if it is already known that it will not be performed anyway. If the subroutine is to continue,
MC PAGING RDY is set, but this is done after additional paging time if MC PAGE SLOW EN has been set
indicating an operation (a key or PI cycle or an instruction executed by an executive XCT) is which there
may be a switch from one address space to another. At this point flow may continue to the AC reference

section, which is described separately below.

MC PAGING RDY indicates that paging is complete, and it is one element in a synchronizer which may
wait to continue to the loading of MA. The middle condition in the synchronizer is generally not relevant

as it applies only to single pulse operation, where the sequence does not continue with a synchronous
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subroutine until the clock stops or with an overlapped asynchronous subroutine until the preceding read is
finished. The left term is simply that MA has been unlatched, indicating that the address it held is no longer
needed. This is usually the case once the address acknowledge is received, but if there is a possibility of a
memory stop, the address is held longer for display to the operator should the stop actually occur. Hence
MA is unlatched through the top pair of entries if the cycle is simply for a page refill, or if there can be no
stop and either there is only one access to memory, or if the cycle is split then the current access is for write.
The next two entries are for unlatching at the appropriate restart after the stop has occurred or would have
occurred; the bottom two are for a fast memory access where no cycle actually takes place over the bus; and
the final entry is for an access that is voided after it has been set up. Once the synchronizer is satisfied, there
is a delay to make sure MA is unlatched, and the pulse MC PAGE DLY OVER continues the subroutine to

the page check section.

6.6.2 Page Check, Memory Go, and Recycle

At the top of chart MC2, the termination of the page delay switches the fast memory to accumulator access
if the processor is in FT6, holds the condition that the subroutine is neither for an MAP nor a key memory
reference, allows for a possible parity stop if the switch has been synchronized and the subroutine cannot
hold memory, and if the addresses compare, sets up flags in the comparison logic for the type of reference.
From MC PAGE DLY OVER, flow continues along one and only one of the three main branches for page
refill, page OK and page failure, and continues on one or more of the minor branches as well. Consider the
minor branches first. Events along the leftmost branch simply reload PC for any instruction except one
being executed by an XCT; this generally increments PC so it points to the current instruction, but in special
circumstances PC+1 INH(1) may keep it constant. The branch at the middle of the drawing clears MB in
preparation for receiving data except in a BLT or in an instruction or second operand fetch where a previous
synchronous access is not yet complete. The next branch clears AR for an operand fetch, sets up the syn-
chronous hold flags if a synchronous memory cycle will actually be called, and indicates whether there may
be storage of a memory result in fast memory. In a memory subroutine for a key function, the address
(perhaps incremented) is loaded into the address switches. The final branch at the right is for an AC refer-

ence (see below).

The major branches all depend on the result of the page check, and the paging equations written at the upper
left, center, and bottom of the chart reflect the page checking procedure described in section 6.4. For a
page failure, the memory subroutine produces a clock that loads the address of the failing associative memory

word into the reload counter and a clock that loads the statistics on the failure into the page fail register
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(the equations at the lower right are described in section 5.3.5). At the same time MC PF QUICK sets

PF SYNC to start the page fail cycle, and if the failure is neither a small user violation nor for an MAP con-
dition, the AMAC write sequence is used to invalidate the page table location containing the word respon-
sible for the failure.

The two remaining major branches, for page refill and page OK, begin with different actions but then join
to continue with the memory access that is necessary in either case. If there has been no match, the sub-
routine enters a page refill cycle, sets up the page table to receive a new entry, and waits while a page map
address is substituted for the given virtual address. If the page is alright, the subroutine restarts the clock if
the page check was made only for subsequent writing, sets a flag in the AMAC logic to increment the reload
counter later if it now points to the matched location, and sets MC MEM STOP if an address stop condition
has been satisfied. For either branch the address is loaded into MA. Then MCTO clears PC+1 INH on a true
instruction fetch, increments the reload counter on an equal reference, and adjusts PAGE PRIVATE INST
depending upon whether the cycle to be requesfed is to a concealed area provided it is for fetching an

instruction (the flag is left alone for any other type of reference).

Flow continues along this line only for a synchronous operand access when the subroutine is to restart auto-
matically; there is also an entry at this point to restart the program following a page failure in a key memory
function. Recycling is only for an automatic instruction fetch or the second of a double operand fetch,

in which case MCT RECYCLE gates an address from the appropriate source into AB; subsequent pulses in
the line set MC ASYNC START and latch the address bus to begin an overlapped subroutine as shown at

the center of chart MC1. The extra time following MCT RECYCLE for a second operand fetch is to make

sure that the subroutine does not restart before the incremented address is available.

The remaining branch for page refill and page OK is to begin actual memory access. For a page refill, setting
MC MEM GO is unconditioned; but for the real memory reference, the sequence continues only if MC MEM
GO INH is clear. If the subroutine is stopped at this point, the write part is restarted later by:one of the
conditions that sets MC WR SUBR START FF shown entering from the right of the flow line. With the
setting of MC MEM GO, the subroutine enters the synchronizer for requesting a memory cycle unless flow

continues instead to the AC reference section (see below).

6.6.3 Request Cycle and Read Restart

Initial synchronization for requesting a memory cycle is at the upper left in chart MC3. For an actual mem-

ory cycle, MC REQ CYC is set immediately if there is no cycle already in progress or a cycle in progress is
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for reading with a timed memory. If the flag cannot be set immediately, it is set as soon as the current cycle
is completed. Setting MC REQ CYC produces all three types of request if there is no overlap; otherwise it
makes a slow request now, makes a fast request if no memory has responded by the time the data warning

is received, and makes an immediate request if there has been no response by the time the previous cycle is
finished. The response by the memory is the address acknowledge, either timed or not timed. Either of
these clears MA to ready the synchronizer at the bottom of chart MC1 if access is for a page refill or there

is no possibility of a memory stop and either there is no writing or the cycle is not split. A common acknowl-
edge signal sets MCT UNTIMED CYCLE if the acknowledgement was not timed or overlapping has been dis-
abled from the console, and for a write request it sets a flag indicating the write cycle is in progress in prep-
aration for the write restart in the store cycle. If the ignore parity switch at the memory is set, a pulse in-
diéating that fact arrives with address acknowledge for a timed memory but may arrive at any time up to
the restart for an untimed memory. For a timed memory the data warning follows the address acknowledge

to allow a fast overlapped request.

For a read reference with either type of memory the data is accompanied by the read restart, which triggers
the parity check, performs certain functions having to do with an address comparison (the details of this are
discussed in section 5.6), adjusts the acknowledge and warning ﬂags, and sets a flag to indicate that MB must
be cleared after the parity check if access is for an operand read only that will be followed automatically by
an instruction or a second operand fetch. If the parity of a word read is even and parity is not being ignored,
-the parity check pulse sets the Parity Error flag, and it also sets MC MEM STOP if in addition a parity stop
has been specified from the console. The parity check pulse also loads the word into the memory indicators
if the address compare condition has been satisfied, and it clears MB if the read restart had set MCR MB
POST CLR provided the instruction is not a BLT and there is no parity stop (for the latter case the bad
word is saved). The subroutine ends at the bottom of chart MC3 if there is a memory stop, but if MC MEM
STOP is clear, MCRST1 continues the subroutine to the read return section. MCRST]1 is triggered directly
by the read restart if there can be no parity stop, but it is otherwise triggered by MC PAR CHK (provided

of course that either the parity is correct or errors are being ignored).

Nonexistent Memory. The left center of chart MC3 shows the events for determining that no memory has
responded to a request. If the request stays on the bus for 100 us, an integrating one-shot times out, clearing
the request flipflop. If there is still no response within an additional 2 us, the first NXM pulse sets the Non-
existent Memory flag and MC MEM STOP if stopping is requested from the console. For a write request,
MCT ADR ACK ALL sets a flag to indicate the write cycle is in progress; for a read request, a second NXM
pulse triggers MCRST1 unless the memory is stopping.
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6.6.4 Read Return and Refill Reentry

Among the entries that trigger MCRST1 at the top of chart MC4 are three from the read restart section just
discussed. However MCRST 1 can also be triggered by completion of an AC reference, again provided there
is no memory stop, or from the console following a memory stop in a read subroutine. MCRST1 switches
the request from read to write for a split cycle, clears MCT UNTIMED CYCLE to allow further requests,
and clears MA to allow the next page check if a stop was possible and there is no split cycle. If access was
for reading a single or first operand, MCRST 1 restarts the clock; but if access was for fetching an instruction
or a second operand, it sets the appropriate flag to synchronize the instruction cycle or the continuation of

the double floating point instruction.

The remaining logic is to reenter the subroutine if the access just completed was for getting a new entry for
the page table. For this MCRST1 triggers MC REFILL DONE, which goes directly to the page fail cycle if
the map data read indicates the page is not accessible. Note that the pulse always triggers the clock that
loads possible failure statistics into the page fail register just in case there is an access failure (if there is not,
the statistics will be changed if a failure of another sort does occur). For an accessible page, operations con-
tinue with the AMAC write sequence to put the new data in the page table (this sequence is also used for a
page failure to invalidate the entry that caused the failure). The first write pulse not only writes in the
associative memory but also sets PAGE MATCH LATCH if there is no match — a refill cycle is executed only
if there is no match, whereas when the sequence is executed for a page failure there must have been a match
that caused the failure. The second write pulse writes the map data in the scratch pad, and in the meantime
the new information written in the associative memory should have given rise to a match that clears PAGE
MATCH LATCH. It is instructive at this point to look at the latch, which is below the page refill error flip-
flop at the right on drawing PAG1. The first write pulse sets the latch if there is no match, but the subse-
quent occurrence of a match clears it. Thus the latch being set at AMAC WRITE DONE indicates that there
was no match at the first write pulse and there is still no match, and this condition causes the final pulse to
set PAGE REFILL ERROR. If the sequence is completing a page refill (rather than being used for a page

failure), the done pulse reenters the subroutine for the actual memory access at BS in chart MCl1.

6.6.5 Write Restart

As shown in chart MCS, the write restart is triggered only from the store cycle, and it may have to wait until
the write cycle is actually in progress. Usually the write part of the subroutine is started prior to ST2 DLYD,

but in some cases, particularly for single pulse operation, it is not started until the clock stops. The write
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restart sends the data out on the bus and loads the memory indicators if the appropriate address condition
is satisfied. The clock is restarted by MCRSTO, which results directly from the write restart if there is no
memory stop, but otherwise must be triggered from the console. Completion of the write is indicated by
MC WR RS DLYD, and this completion is simulated by conditions that kill a write previously requested;
these are the MAP instruction, a divide instruction that would store the result but cannot be performed, and
a PI cycle just in case the interruption occurred at a time when a write had already been requested. Any of

these conditions or a page failure produces MC WRITE KILL to clear MA for the next subroutine.

The completion of the write cycle produces the combination read-write restart to adjust the acknowledge
and warning flags. MC WR RS DLYD also clears MB to get rid of the word written unless it is a pointer to
be used in the second part of a byte instruction, clears MC WR CYC IN PROG to allow a new request, clears

MA if a stop was possible and the subroutine was not a synchronous AC reference, and clears miscellaneous

flipflops.

6.6.6 AC Reference

The separate sequence for a read reference to fast memory is shown in chart MC6. Entry is directly from

MC PAGE DLY OVER (upper left) to read a single operand. For the first access with a double operand the
sequence begins when both MC MEM GO ONCE and MC PAGING RDY are 1. The first of these is set by
MC MEM GO for an AC reference, but at that time the second one is clear and does not get set again to start
the sequence until the page check is complete for the second operand (this delay is necessary to prevent the
fetch of the first operand from wiping out the address for the second before it is latched into AB). Entry

for a second operand or an instruction fetch occurs after MC MEM GO is set, but not until ET2 in the double
precision instruction or until the previous instruction is done so as not to interfere with the use of the arith-

metic registers.

For all entries the sequence sets flipflops that cause the fast memory address to be taken from MA and cause
the fast memory output to be loaded into MB. A single or first operand read also triggers MCF FM+ SET

to clear the adder logic but set AD FM+ and MCF AR AD FF to gate the FM output into AD and thence
into AR. MCTS3 then clocks the data into MB and, if indicated, also into AR. MCT4 clears FM ADR MA

to reestablish the previous FM address, and clears MA if there can be no memory stop and there is neither

a write request nor a split cycle. At MCT4 DLYD there is either a memory stop or MCRST]1 is triggered

for the standard read return to the top of chart MC4. The remaining MCT3 and MCT4 DLYD events dupli-

cate the address comparison actions of a standard memory access (see section 5.6).
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CHAPTER 7
ARITHMETIC LOGIC

This chapter describes the several adders and the various registers that are used in computations. The basic
arithmetic components that handle words in logical operations, data transfers and fixed point arithmetic
(including effective address calculation) are the adder AD and full-word registers AR, BR and MQ. In these
operations however the fast memory itself is used as a passive register: its outputs (being the contents of the
addressed index register or accumulator) can be available directly to AD throughout an operation rather
than being transferred first to an arithmetic register. In association with the full word registers, the shift
counter SC controls shifting in shift instructions, byte manipulation, and where required in arithmetic in-
structions; SC, with its adder SCAD and the floating exponent register FE, are used for handling floating
point exponents. Double precision floating point requires the use of ARX and ADX, which are left exten-
sions of AR and AD (MB is also used as a temporary holding register for one part of a double precision num-

ber while the other part is being used or being constructed one bit at a time).

Although this chapter describes the registers, their mixers and the gating associated with them, the details of
individual events and the particular configurations of individual shifts and data movements are included in
Chapter 8 as part of the discussion of the individual instruction flows. However the final section of this
chapter does describe the SC subroutines that can be called from various instructions. Eg the same multipli-
cation subroutine is used for fixed point multiplication and both single and double precision floating point

multiplication, the only difference being in the number of steps.

7.1 ADDER AD

The main adder for 36-bit words is the set of ten M142 adder modules shown in drawings AD1 and AD2.
Each module is a 4-bit parallel binary adder, and the ten operate together in parallel through the use of
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extensive carry look-ahead circuitry. Each module produces carry generate and carry propagate functions
that are dependent only upon the data inputs without making use of individual carries. The carry into the
least significant bit (LSB) of any module, although equivalent to the carry out of the preceding module (for
the next four less significant bits at the right), is not that carry physically; rather it is a function of the carry
propagate and carry generate levels from all preceding modules. Hence the carry into any module is depen-

dent only upon information available immediately without waiting for the generation of any other carries.

Within an M142 each of the four individual bit adders has two data inputs, A and B (supplied by mixers so
that the data can come from any two of a number of sources), and a sum output. There is also a carry into
each bit. The carry into the LSB is supplied externally, but the carry into any other bit N is a function of
the LSB carry in and the data inputs to the bits at the right of N in the module. Each module also has two
enable inputs, ADD and EQV, and the above mentioned carry generate and carry propagate outputs CG*
and CP*, which are used to develop the carries into the LSBs of succeeding modules in place of individual
carries out of the MSBs. When neither of the control inputs is enabled (both high) the sum output of each
stage is the AND function of the data inputs (the sum is 1 if both inputs are 1, otherwise 0). If only the
EQYV input is enabled (low) the sum is the equivalence function of the data inputs (1 if the inputs are iden-
tical, otherwise 0). With both the ADD and EQV inputs enabled, the adder produces a standard sum output
from the data and carry inputs. The sum is 1 if just one or all three of the inputs are 1. The carry in for a
bit, although generated independently, is equivalent to the carry out of the preceding bit; the carry out of a
bit is 1 if any two or all three of the inputs to that bit are 1.

Before discussing the internal logic of the M142 and the details of the carry functions, let us consider the
overall structure of the adder. The least significant end is at the lower left in drawing AD2. Note that this
module contains only three adder bits, AD33—35. The carry into the module LSB is always 1, and the data
inputs to this bit are identical, both being the 1 state of the AD CRY 36 flipflop. Hence setting AD CRY 36
produces a carry into AD35; this carry is used to satisfy the requirements of twos complement arithmetic,
or simply to increment a number supplied to the data inputs of the adder bits corresponding to the actual

words processed.

Continuing from bit 35, the adder configuration is standard until we reach bit 18 at the Ibwer right in print
AD1. An extra stage, AD17.5, is inserted between AD18 and AD17. This is done to allow independent op-
erations on the left and right halves of a word. The data inputs to AD17.5 are the 1 state of AD+1 LT and
the 0 state of AD-1 LT. Ordinarily both of these flipflops are clear so the A and B inputs to bit 17.5 to-
gether provide a single 1; hence a carry out of bit 18 produces a carry out of bit 17.5 to carry into bit 17

7-2



(for normal full word operations the adder acts as though bit 17.5 were not even there). To handle the two
halves of the adder independently, the processor adjusts the data inputs to bit 17.5. Setting AD-1 LT pre-
vents a carry out of bit 18 from affecting bit 17, but at the same time that carry is indicated by a sum of 1
for bit 17.5. On the other hand setting AD+1 with AD-1 LT left clear means that both data inputs are 1;
hence there is automatically a carry out of bit 17.5 while a carry out of bit 18 is still indicated by AD17.5
being 1. The AD17.5 carry out may be used to increment a half word in the adder left half, or it may be
used in conjunction with one set of AD00—17 inputs being all 1s to produce a simple transfer of the other

set while an addition is taking place in the adder right half.

The remaining stages at the left are connected in the normal fashion including the sign bit as required for
twos complement arithmetic. However at the left of the sign are two additional adder stages, AD-1 and
AD-2. These extra stages are configured to supply the correct bits for right shifting in certain operations (as
determined by the input gating to AR bits 0 and 1). The A inputs to the extra bits are identical to the A in-
put to ADOO. The B inputs are generated only when the extra bits are relevant to the operation going on in
the rest of the adder, in which case they are identical to the ADOO input except in the operation that
doubles BR, in which case they are both equivalent to BROO (in other words they receive the sign in what is
effectively a left shift of BR). Of course the AD-1 and AD-2 outputs depend not only on these extra in-
puts but also on the carry out of bit 0.

Although the carry functions of the adder bits are available at the module pins, the only ones that are used
elsewhere in the logic are those that represent the carries out of bits 0 and 1. Note however that the carry
outputs from the M142 in the upper left of print AD1 are not the signals actually used to represent the car-
ries in the processor logic nets. The adder outputs are ored with FDT2(1) by the nets at AD2 B3 to generate
the carry signals that are used. In other words AD CRY 0 and AD CRY 1 do represent the carries out of the
adder, but these carries are also simulated by a floating divide time state for the initial subtraction in the

divide sequence.

Adder Functions. The detailed organization and internal structure of the adder module are shown in the two
sheets of drawing D-CS-M142-0-1. At the top of sheet 1 is the module configuration for use with low inputs
and low sum outputs. Any low signal into the OR gate at the right indicates a carry into the module LSB,
and the outputs at the left are the carry propagate and carry generate functions. In the upper right corner
are the equations for the various carry functions. The carry into the LSB is simply the externally supplied
carry input. For any other bit the carry in is 1 if both data inputs to the preceding bit are 1s, or at least one
of those data inputs is 1 and the data inputs to the bit preceding that are both 1s, and so on through the
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module. The propagate function is true if there is at least one 1 among the data inputs to every stage in the
module; in other words if there is a carry into the module, it is propagated through so that there is a carry
out of the module. The generate function represents a carry out of the module that stems from a carry pro-
duced within the module; this means that either the data inputs to the MSB produce a carry (are both 1s),
or the data inputs to some other bit produce a carry and that carry is propagated to the left through the
module. Note that the table at the left of the equations indicates that the sum outputs provide an inclusive

or exclusive OR function when the add is not enabled.

Sheet 1 also shows an adder configuration for high inputs, where the other functions for the sum outputs
are AND and equivalence. The carry equations for the high input case are listed at the right, but now the
propagate and generate functions, although correct and productive of the desired results, no longer have any
intuitive meaning. Sheet 2 shows the internal gates of the M142 configured for the low input case. It is
relatively easy to see that the non-add functions change from OR to AND and exclusive OR to equivalence
when the inputs are changed from low to high. But for the add function the equations are cumbersome and

working with them is exceedingly tedious.

Now the adder modules as shown in the block schematic are used with high inputs and high sum outputs,
but it should be noticed immediately that there is a subtle difference: the module carry functions are
shown in the polarities for the low input case, where CP* and CG* are the carry propagate and carry gener-
ate functions given in the upper right of the M142 drawing. For non-add functions the reader should re-
gard the modules as being used in the high input configuration so that the functions produced are AND and
equivalence. But for addition the reader should regard the modules as being used in the low input configura-
tion with the polarities of the inputs and sum outputs reversed. This point of view makes it quite easy to
see how the carry look-ahead logic works. Since a carry out of a module must either be generated within
the module or be propagated through it, the carry out (which is the carry in for the next module) is repre-

sented by this equation,

CRY OUT =CG* V (CP* A CRY IN)

where CRY IN is the carry in for this module. But the carry in is simply the carry out from the preceding
module, so that term can be replaced by an equivalent function for the preceding module, and the same
term in that function can also be replaced, and so on to the right through the length of the adder. Hence
for any of the ten M142s, the carry in is a function only of the data inputs at the right, and through the use

of ever larger logic nets, all of these functions can be determined with minimum gate delay.
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Consider the right end adder module at the lower left in print AD2. Since the data inputs to bit 36 are both
the same signal, the permanently wired carry into bit 36 does not appear in the equations, and the artificial
carry into bit 35 for incrementing appears in the carry generate function. Hence a carry into the second
module from the right is simply the CG* function from the first module. There is a carry into the third
module if either a carry is generated in the second module or the first module generates a carry that is prop-
agated through the second module. And the carry functions are extended similarly right through the entire
adder. The logic nets at the right in print AD2 and scattered all over AD1 produce the necessary functions
entirely in parallel so that there is at most two gate delays even fo_r the carry in at the left end of the adder.

Now that we have seen how the adder works there remains the question: assuming the adder always pro-
duces a correct sum in its standard configuration, does it still do so when the inputs are of the “wrong”
polarity? Consider the entire adder as a single 40-bit unit. Without a carry into the LSB, if we supply two
summands, 4 and B, at low assertion levels, then the adder produces an output S, also at low assertion
levels, which we claim is the sum A + B. Since we are using high assertion levels, the real inputs and outputs
are actually the complements of the expected inputs and outputs, so we can represent the action of the

adder by the equation
~§'=~A+~B+C

where C is the carry into the LSB and S’ is the adder output at the correct assertion levels. The question of
course is: what is the relation of S’ to §? In twos complement arithmetic the negative of a number is the

complement plus 1, so
~X=-X-1
and we can rewrite the original equation this way:
~§'-1=-4-1-B-1+C
Since a carry into the LSB is equivalent to adding 1, we get
-§'=-A- B
or by changing signs,
S'’=A4 +B

Hence S’ = S, and the adder gives the desired result. Note that with this adder configuration, the addends
and sum are complements only in terms of the internal adder circuitry; in terms of the overall logic in which

the adder is imbedded, they are just binary words using appropriate assertion levels.
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Addition Algorithms. So far we have shown that the adder adds single bits correctly, that the carry look-
ahead logic works, and that if the entire adder produces a correct sum in the normal configuration for the
circuit, it also does so in the configuration we are using. Now let us consider the result of adding any pair of
signed numbers. Calculations are performed as though the words represented 36-bit unsigned numbers, ie
the signs are treated just like magnitude bits. In the absence of a carry into the sign stage, adding two num-
bers with the same sign produces a plus sign in the result. The presence of a carry gives a positive answer
when the summands have different signs. The result has a minus sign when there is a carry into the sign bit

and the summands have the same sign, or the summands have different signs and there is no carry.

Thus the program can interpret the numbers processed in fixed point arithmetic as signed numbers with 35
magnitude bits or as unsigned 36-bit numbers. A computation on signed numbers produces a result which is
correct as an unsigned 36-bit number even if overflow occurs, but the hardware interprets the result as a
signed number to detect overflow. Adding two positive numbers whose sum is greater than or equal to 23%
gives a negative result, indicating overflow; but that result, which has a 1 in the sign bit, is the correct answer
interpreted as a 36-bit unsigned number in positive form. Similarly adding two negatives gives a result which

is always correct as an unsigned number in negative form.

For convenience let us take the computer representation of the positive number x as +[x] where the brackets
enclose the number in bits 1 —35. Similarly the representation of -x is -[23% - x] or-[1 - x] depending on
whether we are regarding numbers as integers or as proper fractions. The most negative number, -235, has

the form ~[0], which is equivalent to the unsigned integer 23
There are four cases of addition of two positive 35-bit numbers, x and y.

I. x+y

L (x)+(y)

III. x+(¢y), x=2y
IV. x+(¢y), x<y

When the signs of the operands differ, one must diminish the other; hence in III and IV the magnitude of
the result must be less than the larger operand magnitude. This means that overflow can occur only in I and
II. Asis shown in the proof below, overflow occurs when the carries out of bits 0 and 1 differ, and it is this
condition the processor uses to detect the overflow. For convenience in the exposition we shall regard the
numbers as proper fractions; to view them as integers, simply substitute “235** for each occurrence of “1”’.
Since the twos complement format allows a representation for -1 but not +1, either x or y may be 1 in II,

and y may be 1 in IV. But note that even though the y operand is negative in III, y cannot be 1 as its
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magnitude must be less than or equal to that of x. Subtraction is equivalent to addition, as the processor
simply supplies the complement of the subtrahend to the adder with AD CRY 36 set. Let x be the absolute
value of the minuend and y the absolute value of the subtrahend. There are again four cases, which corre-
spond respectively to the four cases of addition given above.

L x-(»)

L. =x)-y

. x-y, x=2y; (x)-(y), x<y
IV. x-y, x<y; (x)-(»), x>y

Again any negative operand may be -1 provided it does not violate the given magnitude restrictions.

I. If x + y <1 the adder output is+[x + y]. If x + y > 1 the carry out of stage 1 changes the sign. Conse-
quently if the addition of two positive numbers gives a negative result, it is apparent that the sum exceeds
the capacity of the adder. The processor detects the overflow by checking the sign carries: there is a carry

into the sign stage but none out of it. AD then contains

-[x+y-1]

II. Ignoring the carry into the sign bit in the addition of two negatives would give

-1 - x]
-[1-y]
Hl1+1-x-y]

If x + y <1 the carry changes the sign and the result is
-[1-x-y]

which is the representation of —(x + y). If x +y > 1 there is no carry into the sign, and its absence in the

presence of a carry out indicates overflow. AD contains

+H1- (x+y- DI

III. Ignoring the carry into the sign in an addition where the signs are different would give

+[x]
-[1-y]
-[1+x - y]
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Since x 2y, it follows that 1 + x - ¥ 2 1. Hence the carry changes the sign and the result is
+Hx - yl

When the operand signs are different, the magnitude of the result cannot exceed the larger operand magni-
tude and there can be no overflow. Since in this case the positive number is at least as large in magnitude as
the negative, there is always a carry into the sign, and this added to the operand minus sign produces a carry

out.

IV. The addition of numbers of dif fering signs where the negative has the larger magnitude gives

+[x]
-[1-y]
“[1+x-y]

Since x <y, then 1 + x - y < 1. Hence there are no carries associated with the sign and no overflow. The

above result is the twos complement representation of x - y, ie-(y - x).

7.1.1 Adder Mixers

The A and B input mixers for the adder are shown in drawings ADA1, 2 and ADBI, 2. Each bit of either
mixer is an OR gate with AND gates for inputs. A pair of high inputs at any AND gate produces a low out-
put from the OR gate. Since this low output represents a 0, a high output representing a 1 is produced when
no input AND gate to the bit is satisfied. Hence when no enabling level is asserted for a mixer, the mixer
output is all 1s; and when a single enabling level and all of the bit inputs associated with it are true, the
mixer produces all Os. The reader should keep these two facts in mind when investigating adder operations
in the flow charts. The adder AND function is equivalent to a simple transfer for the output from one mixer
if the other mixer supplies all 1s. Similarly an addition is equivalent to a simple transfer when one mixer
supplies all Os. This structure of the mixers also requires that individual bit inputs have the state opposite
that called for by the enable. In other words to enable a register through the mixer requires that the bit in-
puts be of the state opposite that being enabled. For a direct transfer from a register, the set of AND gates
(one per mixer bit) for the enabling level receives the O-state signals from the register bits, so that when an
individual bit signal is true the adder output is low representing 0. Conversely a false O-state signal at an en-
abled AND gate produces a 1 output (high). The enable for the complement of a register is combined with

the 1-state signals from the register.



Unlike a mixer for input to a register, an enabling level for adder input is a flipflop; the level is therefore
true during the time state following the state in which the enable condition appears in the flow charts. Hence
setting an adder enabling flipflop at a particular time pulse gates the mixer output into the adder during the

next time state, so the appropriate adder output is available at the time pulse that terminates that state.

Consider the adder A input mixer shown in drawings ADA1 and ADA2. Here the 0 states of MB and AR bits
are combined with the enables for MB and AR+, and the 1 states of AR are combined with the level for AR-.
The last set of inputs combines the ~MSK GEN bits with AD MSK GEN(1) to generate a mask when one is

wanted, otherwise to supply a zero word. At the top of ADA1 are duplicates of mixer bits 0 and 1.

Drawings ADBI1 and 2 show the larger B mixer, which supplies inputs to the adder from fast memory (FM)
and its complement, BR and its complement, and the in-out bus. The input generated by AD BR+2 is actu-
ally twice the contents of BR, ie BR shifted left one place with a O supplied to AD35. The last enable is for
the magic numbers. This level gates in the signals identified by the label MAGIC, but at DFDT9 supplies a
word made up of a 1 in bit O followed by all Os, and in an LUUO supplies a 1 in bit 30 for address 40 or 41.
Like the A mixer, the B mixer also has two extra bits shown at the left in drawing ADAM. These are inputs
for the -1 and -2 adder stages, which are used only in operations involving BR (although the two are held at
0 for the magic numbers). When BR+ or BR- is enabled, the extra bits duplicate mixer bit O; for the
doubling of BR the extra bits are equal to BROO (at this time mixer bit O receives BRO1).

7.1.2 Adder Gating

Although various instruction conditions combined with time states do generate enabling levels in the adder
logic, these are the enabling inputs for control flipflops whose outputs enable the mixers in the next time
state. Since the adder is used so frequently (it is changed in practically every time state) the clock for the
adder control logic is triggered from the main clock (center, drawing ADC1) unless it is specifically inhibited

to hold the adder stable through a second time state.

Besides the enables for the data inputs to the flipflops, there is also a signal from memory that is applied to
the direct set or clear inputs of all these flipflops. This is the signal MCF AD FM+ SET, which is generated
for a memory operand read that is made to fast memory (limited to the first reference in a double operand
fetch). Since the clock is stopped during a synchronous memory reference, this signal directly sets the AD
FM+ flipflops at the upper right in drawing ADFP and clears all other AD control flipflops. Then at the

first clock after the memory subroutine the operand is loaded into AR via the adder.



The rest of the logic on drawing ADC1 is for the flipflops that enable the add input to the adder. Note that
the two flipflops that actually enable the left and right adder halves are controlled by the AD clock like the
rest of the AD logic; but AD ADD, whose function is limited to extending the clock period and driving the
light on the indicator panel, is controlled directly by the main clock. Thus when the AD clock is inhibited
to hold the adder state, AD ADD itself clears so as not to delay the next clock — the extended clock period

is necessary only for setting up the adder and is not needed for an already stable adder.

At the far right in drawing ADCR is the AD EQV flipflop which is always enabled whenever AD ADD is
enabled, but is also enabled alone when the adder is used to generate an equivalence function. The remain-
ing logic in drawing ADCR is AD CRY 36 for producing a carry into bit 35 of the adder, and AD+1 LT and
AD-1 LT for controlling the connection between the adder right and left halves. Note that AD+1 LT is set
when an index register is added in the effective address calculation; this is done to nullify the 1s produced
by the adder input mixer that is not enabled, so that the left half of the index register can be loaded using

the add function.
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AD can receive either AR or its complement. The enabling conditions for AD AR+ are on drawing ADAP.
All but two of the AR+ nets are for a full word. The nets at C2 and D6 respectively are for the right and
left adder halves separately, but the conditions in these nets are identical except for half word transfers. The
conditions that enable the complement of AR into the adder are at the top of drawing ADAM. Asshown in
the lowe; right of the same drawing, MB is also available to the adder but only for double precision opera-
tions and certain operations in the instruction cycle. For the former the entire word is gated in; at ITO the
right half is always gated in for the effective address calculation, but the left half (possibly containing re-
store bits for the flags in a JRST) is gated in only if there is no indexing (otherwise the restore bits are taken

from the index register).

The enabling of either the register or its complement also occurs in the case of FM and BR. The complement
of FM is always a full word (top, print ADFM), and as shown in drawing ADFP, the AD FM+ flipflops
handle a full word except in a half-word transfer to AC when the other half of the destination is to be saved.
The arrangement for BR or its complement is similar as shown in print ADBR. The AD BR-~ flipflops are
always enabled together, but there are separate enabling gates for the left and right triplets of AD BR+ flip-
flops. Close inspection shows that the inputs to these gates are identical except for the second set from the

bottom, which is again a half-word transfer where half of the destination is to be saved.

The remaining register transfers into the adder are from the 10 bus (top, ADCR) and from BR shifted left
(top, ADC1) which is used only in multiplication. Just below AD BR+2 are the flipflops that gate a mask
into the mixer; the enables for AD MSK GEN are produced by the nets at the left of the flipflops and by the
net that generates AD MSK EN B at the lower right corner. The signals that these flipflops gate into the
mixer are the outputs of the mask generator at the top of drawing MAMS. This generator decodes the sec-
tion of a byte pointer that specifies the size S of the byte to place a 1 in the (S+1)st bit from the right to
generate a mask for taking the byte out of a word or inserting a byte into a word. Hence among the condi-
tions that set AD MSK GEN only BYTE FIRST PART and BYTE PTR ~INC at B3 in drawing ADC1 actu-

ally generate a mask; in all other cases the enable to the mixer is for supplying a zero word.
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The last set of adder flipflops enable the magic numbers into mixer B. The flipflops and their enabling nets
are in the lower half of print ADFM, and the nets that generate the magic numbers are in the lower half of

drawing MAMS. The flipflops MAGIC #+1 supplies a 1 to MAGIC #35 in an LUUO (to change the address
from 40 to 41) and in integer division. The remaining magic nets on MAMS are for generating the page fail
word and supplying a 1 to ADO8 at DNT1. The many other situations that set the AD MAGIC flipflops do
so to gate into mixer B some quantity produced directly by nonmagic inputs to the individual mixer bits or

more frequently to supply a zero word through mixer B.

7.1.3 Adder Zero Logic

The nets at the top and left of drawing ADZ decode the whole adder and various sections of it for zero or
nonzero output. The rest of the logic supplies the conditions used for the arithmetic test instructions. In a
comparison of one number against zero, as in the skips and jumps, only the adder output need be considered;
but a comparison of one number against another, as in CAM and CAl, involves a subtraction, so the determi-
nation of the relative values must in some cases take into account the signs of the operands as well. The two
types are the same in terms of testing for the equal or not-equal condition, for with two operands all that
matters is whether or not they differ and not how they differ. Hence condition P, which indicates an abso-
lute skip or a skip on an equal or not-equal condition, is used in both types of comparison. For the remain-
ing situations, condition R tests only the adder outputs for the comparison of one word with zero, whereas

condition Q takes the signs into account for the same tests in the comparison of one word against another.

7.2 ARITHMETIC REGISTER AR

AR always receives the memory operand and it is used in all arithmetic operations. In double precision
floating point it holds the low order word of an operand with the high order part in the AR extension. In
some cases, which operand AR holds depends upon their relative values (in floating point addition and sub-
traction it holds the operand that must be shifted to the right), and it also depends upon the mode, ie
whether the non-AC operand is the contents of location E or is E itself. In multiplication there is no oper-
and in AR at the beginning as the partial products are added up in AR. In division AR initially holds the
dividend, which is diminished and shifted left while the quotient is being built up in MQ (although fixed
point division is single precision, it uses a double length dividend wherein AR holds the high order half).

The arithmetic register and its input mixer are shown in drawings AR1-3. The mixer receives high inputs to

generate high outputs for 1s, so the individual bit inputs matched with the enabling levels represent 1s for
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direct input. Most of the enables are applied to the entire mixer, but in some cases the gates are divided into
groups; eg bits 18 can be handled separately from the rest of the register for a floating point exponent. The
input bits for a particular enable are generally consecutive from one end to the other, but there are variations
at the extremities because of shift requirements. The mixer stages all look alike for bits 3—35 but those for
the first three bits on the left appear quite different because there are so many extra conditions for special
circumstances; eg bit 0 is included in a logical shift but not in an arithmetic one, and the data placed in a bit

in a particular type of shift often depends on the operation in which the shift occurs.

The enabling levels allow an interchange of the left and right halves of AR and transfers from AD and MQ
into AR, but of these only the AD transfer is seen consistently throughout. All shifting is done through the
adder so that an arithmetic function and a shift can be combined in a single event; in other words the con-
tents of AR can be combined arithmetically with a word from another register through the adder, and the re-
sult shifted left or right for the next step in an arithmetic procedure, all in a single time state. Shifts are one

place left, one place right, and two places right.

The top two mixer enabling lines differ from one part of the register to another. In the right half these two
lines are used for loading auxiliary inputs and loading PC for a PC word. The individual auxiliary inputs
come from the small mixer shown in drawing ARMD); this mixer provides for reloading the right half of AR
into itself when only the left half changes and for loading the mapping data in the MAP instruction. (Note
that in the lower right of this drawing are duplicates of some of the AR bits for extra drive capability.) The
second line in the left third of the mixer (bits 0—11) carries the signal AR EXP SCAD EN, which enables
the loading of an exponent into AR01—-08 from the SC adder and simultaneously reloads bits 0 and 9—11
into themselves. Whenever an exponent is loaded into AR the rest of AR must be saved; this is done by
means of the auxiliary inputs in the right half of the register, and the enabling level AR12—17 SELF B for
the bits at the top of AR2.

The top enabling line for the mixer left half is always held high so that the gates to which it is connected can
be enabled by individual signals generated in any special configuration that is needed. Associated with this
high line at bits 0—12 are a set of ARI data inputs, one for each bit (at the first gate in each mixer stage ex-
cept at the fourth gate for bit 2). At bits 1 and 2 the high line also enables the second gate for an ARI aux-
iliary data input. At bits 13—17 the high line is connected to gates that are permanently disabled, so that
whenever the register is clocked with no enable generated for this section, bits 13—17 are cleared. This is

done to supply Os in these bits in the assembly of a UUO or PC word.
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The inputs associated with the permanent high line for bits 0—12 as well as other special inputs for AROO
and AROI are produced by the logic shown on drawing ARI. In the upper part of this drawing is a secondary
input mixer that supplies the ARI data inputs for bits 1—12 (note that mixer stage 12 is in the position where
one would ordinarily expect stage 0). This secondary mixer supplies IR to AR left for a UUO, supplies the
flags for a PC word, handles the smearing of the sign through the exponent part of AR (while the rest of the
register is reloaded into itself), and handles the transfer of position information from the SC adder in byte
instructions. Inputs for AROO equivalent to those of the secondary mixer are supplied by parts of the two
mixer nets in the lower left, ARI AROO DATA and ARI AROO SELF. The former acts through the same
mechanism as the secondary mixer, ie it goes to an ARQO mixer gate whose other input is held high (note that
the top gate in the data net supplies the flag, which is Overflow in user mode, but Public in executive mode).
The self net acts as an enabling level whose data is supplied by the ARI AROO SELF DATA net at B3; as the
name implies, the data is ARQO itself except in a DFN where the bit is complemented. AROQO receives itself

in a sign smear, the loading of an exponent, and in any arithmetic shift, left or right, one place or two.

At the lower right in print ARI are the auxiliary data nets for bits 1 and 2 of the AR mixer (these supply the
missing inputs from MQ and AR right) and a second ARO1 auxiliary data net that displaces the IR input to
bit 1 of the ARI data mixer in order to supply both the missing IR bit and additional information for a ro-
tate or arithmetic shift. The remaining ARI logic supplies the rest of the special inputs to bits 0 and 1 of the
ARI mixer and various inputs for the ARI mixer nets. Although the way in which a particular function is
effected at the left end of the register is sometimes circuitous, the signals that identify the particular logical
path used are listed at the appropriate places in the flow charts. As an example consider a two-place right
shift. At ARO2 the enable is connected to mixer gates 5 and 6; at each of these gates an extra condition pro-
vides for input from ADX35 in double precision operations, otherwise from AD00. At ARO1 the enable is
also connected to two gates, 4 and 6, and consistent with bit 2, the input is ADX34 for double precision.
But here input is from AD-1 only when ARI SR2 COND is true, and investigation of the net at ARI B5 in-
forms us that this particular data connection is made for a two-place right shift only in fixed point multipli-
cation and single precision floating point. The remaining needed inputs are supplied through the ARI data
net from the second auxiliary data net at ARI B1. This latter net supplies AR0QO in any arithmetic shift and
in a rotation supplies data from the gate at A6, which as expected shows that input is from the opposite end
of the rotating word, being AR35 in a single rotation, MQ35 in a combined rotation. We have already men-
tioned that AROO receives itself in any arithmetic shift, and the enable is again connected to two gates, 4 and
8. The input is AD-2 when ARI SR2 COND is true; otherwise input is supplied by ARI SR2 DATA, which
as seen at ARI B7, is equivalent to the rotate data gate with the substitution of bit 34 of AR or MQ. A
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similar analysis would clarify the situation for any other AR operation. The only variation at the right end
of the register is the left shift input to AR35, which is supplied by the auxiliary mixer net at the lower right
in drawing ARMC.

AR Gating. The generation of the enables for the AR mixer is shown in three drawings. At the right in
ARMC are the AR clock and the nets that generate the clear and double right shift enables. At the left are
the enables for single right shifting, transfers from SCAD to AR (for exponents and otherwise) and for
smearing the sign. The gate at top center generates a self-transfer for AR12—35 on a sign smear or a transfer
from SCAD.

Drawing ARMA is devoted exclusively to the enabling of AD into AR, in some cases combined with enabling
AR to BR. The net at the lower right enables the right half of the mixer independently, and the nets in
D3-S5 provide a separate enable for the left half. Asusual, these are mostly for half word transfers. Print
ARMB shows the enables for left shifting, loading MQ, PC or the flags into AR, and moving one half of the

register into the other.

7.2.1 AR Flags

From left to right at the top of drawing ARF are the two carry flags, Floating Overflow, Floating Underflow,
and No Divide. Below are Overflow and a nonprogram flag that determines the applicability of certain float-
ing point tests to underflow. AR FLU HOLD is cleared at the beginning of the fetch cycle, and so long as it
remains clear certain of the conditions that set AR FOV also set AR FXU; should the hold flag be set how-

ever, those same conditions indicate only high overflow.

At some point in every possible condition that can set any AR flag, the term PI CYC(0) appears; hence the
flags are never affected by an interrupt instruction. As is indicated in the reference manual, the conditions
for some flags are subsets of the conditions for others. AR FOV is set by any condition that sets AR FXU
and by any floating point condition that sets AR DCK;; similarly AR OV is set by all overflow conditions.
The carry flags reflect simply the carries out of AD bits 0 and 1 but only at the ARF strobe, which is limited

to the basic fixed point addition and subtraction operations (C4).

The enabling net for each flag has a gate for loading the flag from a PC word via AR, and another gate for
holding the flag set unless it is to be cleared or the gate is simply disabled to allow the load gate to function.
For the four flags that can be tested by a JFCL, the clear signals are supplied by the gates at the lower right,
each of which reflects the individual JFCL clear and the general load (C6) for a JRSTF or MUUO. For the
other two flags the hold gate is disabled only by the load level.
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7.3 ADDER AND AR EXTENSIONS

AD and AR each have a 28-bit left extension, including bits 0 and 9—35, for handling the high order parts of
double precision floating point numbers. No exponent part is needed as the exponents are handled entirely

by SC and FE.

Drawings ADX1 and 2 show the adder extension ADX. The least significant end is at the lower left in ADX2,
where an extra stage ADXO01" duplicates bit 1 of the main adder to provide the proper carry into ADX35.
This arrangement bypasses ADOO so as not to include the sign bit of the low order part in arithmetic opera-
tions. The module carry in is identical to that into the leftmost AD module. One data input is the duplicate
A mixer bit for ADO1 and the other is a corresponding B mixer bit whose generation is shown at the top of
drawing ADX2. The adder extension operates in exactly the same way as the main adder with the carry
functions simply extending from right to left to produce a double length adder. This larger network requires
only slightly more time than the main adder, the ratio of the time states for setting up the double as op-

posed to the single adder being only 191 vs 170 ns.

Of the two sets of inputs for the adder, one is just the contents of ARX. The other input comes from the
mixer in drawings AXB1 and 2. This mixer operates in exactly the same way as the AD mixer and its en-
abling levels are supplied by control flipflops. Inputs are the complement of BR, FM or its complement, and
twice the contents of FM. In print AXB2 is an extra adder bit, ADX-1 IN B, which in conjunction with
ARXOO0 (through the signal ADX-1 IN A at ADX1 DS5) supplies the inputs to ADX bits -1 and -2 for right
shifting. The only ADX carry output is from bit 0; but like the AD carries, the signal used in the logic is not
the direct adder output. The logic uses ADX CRY 0, which as shown at ADX2 A4, is the true carry except

when it is forced by a double floating divide time state for the initial subtraction in the divide sequence.

The enables for the mixer and the add and equivalence inputs for the adder are in drawing ADXC. ADX
EQV is always set with ADX ADD, but is sometimes used alone. The enables are generated only for full
words, but note that the nets at the upper left generate signals that enable both FM+ and FM-. This combi-
nation produces a mixer output that is all Os, so that the adder output is derived solely from ARX. State
changes in the ADX control logic are timed by the AD clock, because ADX is used only in conjunction with

AD.

The ARX register and its input mixer are in drawings ARX1 and 2. Except at bit 35, all of the bit inputs to
the mixer are from ADX for loading, left shifting, and right shifting one place or two. Note that for the
single right shift, ARX0O0 receives ADX-1 except in DFDV, where it is always cleared. The ARX35 mixer
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has the same inputs as the other ARX bits for right shifting or a transfer from AD, but in a left shift the in-
put comes from ADOQ1 except in DFDV, where it is the output of ADX bit 36 (ADX01").

The ARX clock and the enabling levels for the ARX input mixer are in drawing ARXC. At the upper right
are nets that decode ARX for zero or nonzero contents and test the equivalence of ARX00 with ARX09 and

ARX10 for use in normalization.

7.4 BUFFER REGISTER BR

BR is used primarily as a temporary holding register and also to supply one of the operands to AD in various
arithmetic operations. It holds the multiplicand while the product is being constructed in AR and holds the
divisor for subtraction out of the dividend in AR. In all double precision operations it holds the low half of
an operand for AD while the high half is supplied to ADX from FM (the other operand being supplied to
ADX and AD by ARX and AR).

BR receives full words from ARX or AR. For the former, BRO1—08 (the exponent part) all receive the ARX
sign, and the BR sign can be smeared through these bits. When BR is loaded from AR, BROO receives AROO
except at DNT2, when it receives ARO1.

Drawing BRC shows the BR clock, a duplicate flipflop for BROO, and the enables for the two BR transfers.
The sign smear is accomplished by setting the flipflop in the upper right, which in turn sets or clears the ap-

propriate BR flipflops depending upon the state of BROO.

7.5 MULTIPLIER-QUOTIENT REGISTER MQ

This register holds the multiplier, supplying each bit from MQ35 as the product is being shifted in at the left
from AR. In double precision multiplication it first supplies the low part of the multiplier while the high
part is saved in MB; at the completion of the first part of the multiplication sequence, the lowest order part
of the product then in MQ is thrown away, and MQ receives the high multiplier for the second part of the
sequence. In division the quotient is built up one bit at a time from the right end of MQ (in fixed point divi-
sion MQ supplies the low part of the dividend to AR as the quotient is being shifted in). Following the first
part of a double precision division sequence, the high quotient is moved from MQ to MB and the second part

of the sequence builds up the low quotient in MQ.

The MQ register and its input mixer are in drawings MQ1—3. For most bits the input mixer has four gates

for a transfer from AD and MQ inputs for a left shift and a shift right one place or two. There are however
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special considerations at both ends of the register for shifting and at bits 7, 8 and 9 for single precision
floating point operations (to bypass the exponent part in the low order half of a software double precision
floating point number). Note that the individual bit inputs for MQ31 and MQ34 on a left shift are either

the bits that supply the shift information or the function MQ GETS 22. This signal loads 22 octal into MQ
through the use of the left shift enable when MQ is clear.

The nets in drawing MQZ decode MQ for zero or nonzero contents. Most of this decoding is done from the
outputs of the MQ mixer (the inputs to the MQ flipflops), so that at the same time MQ is loaded, the flip-
flops at the upper right are adjusted for the state MQ receives. Note that the signals MQ34 IN and MQ35 IN
on drawing MQZ are of the opposite polarity of the equivalently-named signals produced by the MQ input
mixer; furthermore these signals are not logically equivalent, but include only the conditions needed for the

zero detection logic.

Drawing MQC shows the MQ clock, the enables for the MQ mixer, and the special functions that control the

shift actions at the register extremities and at bits 7—9.
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CHAPTER 9
INPUT-OUTPUT

The input-output system for a KI10 processor includes the in-out bus, the peripheral equipment with its
interfaces to the bus, and several sections of the processor logic. The processor elements are in-out transfer
control (including timing, the bus control, and basic 1O logic), the priority interrupt, and an interface for
the processor that allows IO instructions to control the processor itself as a device. Also discussed here is
the key function read in, which makes use of elements of both the key logic (section 5.6) and in-out
control. In addition to the above processor equipment, this chapter describes the interfaces for the basic
in-out equipment, namely reader, punch and teletypewriter. Note that the basic 10 logic in the processor
hardware is not the same thing as the basic in-out equipment described in Chapter 3 of the reference manual:
the basic 10 logic comprises the device selection and IO instructions for priority interrupt, processor device

logic, and paging hardware as well as for the basic IO devices.

9.1 IN-OUT CONTROL

The control and timing for transfers over the 1O bus are shown in the IOB and IOT drawings. Access to the
bus, which is used by 10 instructions and by PI requests, is governed by the three flip-flops at the top of
print IOBC. The events associated with a PI request take place in parallel with and generally independent of
the execution of instructions by the processor. A conflict occurs however when a PI request is made at the
same time the processor performs an IO instruction. Each time a bus transfer is completed, the bus must be
discharged, and during the discharge period IOB RESETTING SYNC remains set to prevent any further ac-
cess to the bus. Once the bus is discharged, it is available to either a PI request or an IOT, and access for

these is gained respectively by setting IOB PI or IOB IOT.
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When an 10 instruction gets the bus, IOB IOT(1) allows ET1 to trigger the special execution sequence of
10T time states defined by the flipflops at the top of print IOT1. Unlike other time states, these are not
equivalent to the periods between clock pulses, but each instead comprises a number of clock periods as de-
termined by the IOT timer, which is a standard counter utilizing a +1 gate. At the beginning of each IOT
time state, the counter is loaded with the number of clock periods the state is to be held, and the transition
to the next state occurs when the counter overflows. The number loaded depends on the time state, the
transfer direction, and whether the bus is set up for fast or slow operation. The bus can operate at the fast
speed if all the devices connected to it are designed for operation with the K110; but connecting devices de-
signed for the KA 10 necessitates operating the bus at the slow speed. Timing diagrams for the two speeds

for both directions are in the left half of FD drawing IOBT.

Other control circuits for 10 instructions are on drawing IOT2. Within the special IOT sequence the flipflops
at top center define the periods during which the device code from IR is placed on the device select lines and
the data (from processor or device) is placed on the data lines. Of the flipflops at the right, the lower con-
trols skipping in a noninterrupt BLKX, and the two together control the same function in read in. At the
left is [OT INST, which controls the common events for all IOT sequences; this is asserted not only for the
actual 10 instructions but also for the DATAI and DATAO interrupt functions. Similarly, the general con-
trol functions for data in and data out are produced by both the corresponding IR decoder outputs and the

interrupt functions.

The net in the lower part of the drawing produces the levels that gate output data onto the bus; these are
generated during data time but only for a function that calls for outgoing data. A similar net in the same
position on drawing IOBC generates the levels that gate information in from the bus at the processor end,
but these read levels are enabled throughout the data time regardless of direction; hence outgoing informa-
tion can also be read at the processor end for use in the basic IO logic, which bypasses the bus cable. The
gates are also enabled during PIT2 for reading the interrupt function word. The rest of drawing IOBC shows
the remaining logic for the timing of bus signals. The one-shots in the upper right define the bus discharge
period and the width of the IOB reset pulse that can be generated from the console or by the program
(CONO APR, bit 19). Below these are the gates for broadcasting the number of the channel for which a PI
request has been granted, and gates that define the bus clear and set pulses at time states 5 and 7 (the pulse
limiter limits the width of the signal produced in single pulse operation). At the lower right are the jumper
connections for selecting between fast and slow bus operation (selection between 50 and 60 Hz line power
is also shown here). In the left side of the drawing are the gates that generate the 10 instruction pulses and

levels for the bus from the basic clear and set pulses and the data time.
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Drawings IOBL and IOBR show the processor IO control connections to the bus data lines. The enable for
outgoing data places the complement of AR on the lines although physically the connections are made from
the input mixer to fast memory. When the read enable is true, data on the bus is made available to AD and
other processor logic through the gates shown above the bus cable. The input signals may reflect either the
data from the bus or information from either of the basic IO mixers discussed below. Dashed lines stemming
from each discharge input gate indicate the bus lines the gate controls. At the left in drawing IOB1 are the
gates that supply the device code to the IOB select signals, which are used by the basic 10 logic and also pro-
vide input to the drivers for the bus IOS lines; the device code is taken from the readin device switches dur-
ing read in, but at all other times from IR. In the right half of the drawing are the bus connections for the
various control signals and the inputs from the PI request lines. At the right in drawing BIO, the signals from
the bus request lines are mixed with the PI request signals from the basic 10 logic to produce the request sig-

nals used in the PI logic.

9.1.1 IO Instruction Flow

Flow chart IOT shows the events for the IO instructions and equivalent interrupt functions. These sequences
share many common events, which are controlled by IOT INST rather than by the IR decoder outputs for
the instructions. No IO instruction stores an accumulator, and in many PC can change, so PC CHANGE is
generated to prevent an automatic instruction fetch. The flow path is controlled primarily by IOT INST,
but the effect of this level on BLKX is limited by the fact that the main branch point in the execute cycle
occurs in a time state that is not used by BLKX, which to avoid confusion is shown separately at the left.
BLKX uses read-modify-write to handle the pointer, and the fetch cycle actions increment the pointer if the
instruction is in an interrupt cycle, or if BYF6 (First Part Done) is clear indicating the instruction has not
previously been started and interrupted in the middle. IOT INST puts PC on the address bus for possible
skipping and takes the IO bus if it is available. At ET2 the incremented pointer is returned to AR for later
storage and the processor determines whether the block is complete. In a PI cycle, PI OV is set if the left
half of the pointer has been counted down to zero. Otherwise IOT BLKX SKIP is set if the count is not
zero, but this action is inhibited if a PI request is using the bus, as in that case the instruction will not go to
completion. In the store cycle the incremented pointer is written back in memory. ST?2 sets BYF6 to in-
dicate that the first part of the instruction has been done, enables the pointer into AD for use as the address
of the data word, and returns the processor to the fetch cycle to switch from the BLKX to the appropriate
data instruction (the code in IR is converted by setting IR12). For a BLKO, the return is to FT3 to read
the output word; for a BLKI, MC MEM GO INH is set to hold up the memory cycle in case the processor
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must wait for the bus, and the return is to FT5 for a page check of the storage location. In either case the

processor continues with the events for a data IO instruction.

The center section of the chart shows the actual sequences that use the bus. Most events for these are
typical: input instructions do a page check of a storage location and inhibit the memory cycle; a data out-
put instruction fetches the data word. At the right end are the special entries for data operations from a
block IO or from the PI cycle for an interrupt function; the various paths all join for the fetch cycle actions,
which are called by IOT INST and are the same as those mentioned above for a BLKX. At ET1, if the in-
struction does not already have the bus, it may go into-a loop to wait until it is available. If a PI request al-
ready has the bus or is waiting when the bus is discharged, the processor goes to a PI cycle, although it may
wait in the loop until the PI cycle is ready. If there is no PI diversion, the instruction eventually gets the bus,
at which time it performs its ET1 actions and enters the special IOT sequence of time states. ET1 enables
the complement of AR into AD (the bus gates complement the outgoing data), increments PC for a BLKX
that requires a skip, duplicates the output conditions in AR left (the sign smear simply prevents AR right
from being lost), and moves the mask for a CONSX to BR.

At IOTTO the device code is placed on the select lines provided the sequence is for an actual programmed
instruction decoded from IR, and for output the complement of the operand is placed in AR. The timer is
loaded so that IOTT1 lasts for three clocks, and the completion of each subsequent time state loads the
timer with the appropriate number for the next time state. IOTT1 begins the data time, and IOTT2 enables
the bus data into AD. An input operation bypasses the next three time states, but they are used for output
to generate the clear and set pulses for a CONO or DATAO. At IOTTS, the data time ends, the input data
(if any) is moved from AD to AR, and if PI OV is clear in any instruction other than a CONSX, the processor
begins the prefetch of the next instruction. IOTT9 disables the device code and starts the bus discharge.
Clocks 8 and 9 both enable BR and AR into AD so that if the instruction is a CONSX, the expected condi-
tions from BR are anded with the real conditions brought in from the bus to AR. The sequence returns to
ET2 to begin the storage operations for the input instructions and to check the result in a condition skip:

if the named condition is satisfied, PC is incremented, but in a PI cycle PI OV is set if the named condition

is not satisfied.

9.1.2 Basic IO Logic

10 transfers for the basic in-out equipment and the processor elements controlled by IO instructions are

handled by internal logic instead of using signals over the IO bus cable. The left two thirds of drawing BIO



shows the device code selection for the processor device logic, priority interrupt, paging, reader, punch and
teletypewriter. At the lower left is the jumper card for selecting the processor serial number. Input from
the above named devices is handled through ordinary logic mixers, whose outputs are ored with the outputs
of the bus receivers to produce the real IOB inputs. Drawings BIX1 and 2 show the A mixer that handles
data input from the reader and paging hardware, and both data and condition input from the processor de-
vice logic. The B mixer on BIX3 handles conditions for priority interrupt and paging, and has larger mixer
gates for bits 30—35 to handle conditions from the reader and punch, and both data and conditions from

the teletypewriter.

9.2 PRIORITY INTERRUPT

The priority interrupt system is shown in those block schematics and flow charts whose codes begin with the
letters PI. Print PIC1 shows the logic that controls the diversion to a PI cycle, the special time states for the
cycle, and the various events in the cycle. On PIC2 are the gates through which IO instructions control the
interrupt system, the logic that receives and decodes the interrupt function supplied by a device, and a flip-
flop that causes the MA special logic to generate the address of the interrupt location for a standard interrupt
(which is done in a “normal” cycle). At the lower left is the flag through which the program turns the entire

system on and off.

Drawings PIHR and PIOG show the flags that control the individual channels. By means of the upper set on
PIOG, the program turns individual channels on and off; through the lower set the program can generate in-
terrupt requests on individual channels (note that regardless of the way the PI system responds, a program-
generated request remains until the program drops it). PIHR shows the flags that synchronize requests to
the channels and hold interrupts on them. The PIR flags remain stable while a request is being processed, as
indicated by the level PI RQ being true. When this level is false, the PIR flag for a channel is set if the pro-
gram generates a request for the channel or a request comes in over the bus PI request line for the channel
and the channel is on. Although the program and external devices can make requests on a number of chan-
nels simultaneously, and hence set a number of PIR flags together, the system processes a request for only
one channel at a time. The selected request from among the PIR flags set is indicated by the single PI REQ
level that is asserted from the priority net at the left in print PIN. It is through this net that the processor
selects a channel for starting an interrupt. No selection can be made unless the interrupt system is active, as
indicated by PI ACT being set. With the system active, the request level for channel 1 is asserted if the re-

quest flag for that channel has been set and no interrupt is currently being held on that channel; in other
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words PIR 1 is set and PIH 1 is clear. If PI REQ 1 is not asserted, then the second request level is asserted

if the request flag for that channel is set and no interrupt is currently being held on it. The same conditions
extend through the priority net: if any PIR flags are set and the system is active, the net generates a PI REQ
level for the lowest numbered channel whose PIR flag is set provided the processor is not already holding an
interrupt on the same channel or a channel with higher priority. Through the nets in the upper right the
generation of any PI REQ level produces PI RQ and the number of the channel encoded in binary. When no
request is being made and no interrupt is being held, the net at the lower right generates the bus signal PIOK 8,

which is used by the real time clock to discount interrupt time while timing a user program.

The level PI RQ prevents the processor from accepting any further requests. It also takes the IO bus for the
PI request sequence through which the processor determines which device to service and the type of inter-
rupt to perform. This sequence and the PI cycle that results from it are discussed in detail below. In many
cases the PI cycle may complete the interrupt and the processor returns to the interrupted program. However
if the interrupt instruction is one that saves the flags (JSR, JSP, PUSHJ , MUUO), the net at B7 in print PIC2
generates PI RQ SETS PIH. This signal holds an interrupt by setting the PIH flag for the channel whose PI
REQ level is asserted. Below the PIH flags are two sets of gates. Through the lower set, flags once on are
held on until the interrupt is dismissed. The upper set receives iriput from the lower set and also receives the
signals for setting a flag to hold an interrupt. Hence several PIH flags may be on simultaneously and the in-
terrupt actually being held is that one corresponding to the lowest numbered flag that is on. Of course an
interrupt routine can prevent further interruptions on higher priority channels by turning off the interrupt
system; clearing PI SYS ON at the lower left in PIC2 deactivates the request logic by clearing PI ACT at the
lower right in PIC1. When a routine is finished it must dismiss the interrupt so as to return to a routine on

a lower priority channel or to the main program. Since the interrupt being held corresponds to the lowest
numbered PIH flag that is on, dismissal is accomplished by clearing that flag through the lower gate. Besides
feedback from the flag, this gate receives two inputs, the negation of PI DISMISS and the negation of a clear
signal for the flag. To dismiss, the program must give a JRST with a 1 in bit 9, which generates PI DISMISS
through the net at B4 in PIC2, and the priority logic must generate the clear signals from the left up to and
including the first PIH flag that is set. PI ACT(1) is the clear signal for PIH 1 and is also the input to the
priority logic in the center of drawing PIN. Hence if an interrupt routine deactivates the interrupt system, it
must reactivate before it can dismiss the interrupt, and the dismissing instruction automatically clears PIH 1.
If PIH 1 is clear, the priority logic on PIN generates PI 2 CLR, and if PIH 2 is clear it generates the clear for
PIH 3, and so on up to and including the leftmost PIH flag that is set.
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9.2.1 PI Request Sequence

The setting of a PIR flag for a channel that has priority results in the generation of PI RQ. This signal gains
access to the 10 bus by setting IOB PI at the upper left in drawing IOBC once the bus is free. As explained
in the preceding section the request logic must wait for the bus if it is already in use by an 10T or is dis-
charging from some previous use. If both the interrupt and the 10 logic request the bus simultaneously, the
interrupt has priority. Setting IOB PI triggers the bus PIR sequence through which the processor determines
which device requested the interrupt and what type of interrupt to perform. This sequence is shown in flow
chart PIR, the logic for it is in block schematic PIR, and the timing of the signals over the bus is shown at
the right in FD drawing IOBT. The enable input that holds IOB PI set is also applied to the gate at the center
of print PIR to generate a signal that broadcasts the number of the channel on which the request has been
accepted; this signal sends the number out to the devices over bus lines 0—2 through the gates at C3 in print
IOBC.

OB PI triggers the sequence by allowing the timeout of the one-shot at the right in print PIR. Each timeout
of this one-shot retriggers the circuit to produce an independent clock that times the bus events through the
row of flipflops at the top of the drawing. The logic keeps track of the number of pulses on the ring counter
made up of the three count flipflops at the right. The first clock sets the leftmost flipflop in the row to pro-
vide the request sync pulse over the bus; any devices that are requesting an interrupt on the channel whose
number is being broadcast synchronize on this pulse. The next clock sets the second flipflop to send out the
request grant signal, which goes from one device to the next along the bus and is stopped by the nearest de-
vice that has synchronized for the interrupt. Note that in terms of priority, all devices connected to the left
bus cable are nearer to the processor than those connected to the right cable; as shown in print IOB1 the
grant signal is sent out on the left cable, and the return from the left cable provides the signal sent out on
the right cable. The device that has gotten the grant sends back a function word on the data lines, and the
arrival of the function as indicated by a 1 on any of lines 3—5 synchronizes the return by causing the next
clock to set the third flipflop (the clock also loads the function register at top left in print PIC2). If no
function word comes in, PIR RETURN SYNC is set anyway when the grant return comes back from the
right end of the bus or by the eighth clock if there is no return. In any event setting PIR RETURN SYNC
clears PI REQ GRANT and sets P READY. This last flipflop turns off the PIR clock and sets up PI control
for a PI cycle by setting PI RDY SYNC at the upper right in drawing PIC1.

There is no further action in the PIR logic until the processor sets PI CYC, which causes the processor clock

to set PIR CYC STARTED. This in turn enables PIR DONE but not until a minimum time has elapsed since



PI READY was set as determined by the one-shot below the flipflop. PI REQ GRANT clears when PI

READY sets, and the minimum time guarantees that the request grant signal on the bus dies out before an-
other request cycle is started. PIR DONE clears all of the flipflops at the top, holds off the PIR clock, and
as indicated on print IOBC, releases the bus by clearing IOB PI and starts the bus discharge. Note that dur-
ing the PI cycle, IOB PI cannot again be set even though PI RQ may still be true after the bus is discharged.

A very fast interrupt executed under optimum conditions can go to completion and allow the processor to
recognize a new request before the present request cycle is terminated. When this occurs the second time
state at the upper left in chart PIR sets IOB PI but fails to trigger the PIR clock because either PI READY

or PIR DONE is 1. In this event the condition that inhibits the clock also satisfies the loop, so that repetitions
of the second time state coincide with the third state; in other words the condition that enables IOB PI ini-
tially continues to be satisfied along with the condition that holds that flag on once it is set. PIR CYC
STARTED being O prevents the third time state from setting PI RDY SYNC, and the termination of the

cycle finally cancels out the loop at the third time state and clears [OB PI. With the bus discharging, the

loop at the second time state continues until IOB PI can again be set.

9.2.2 PICycle

The two PIC drawings show the logic for the PI cycle and the sequence of events appears in chart PI. The
sequence begins with the setting of PI RDY SYNC at the first main clock following the setting of PI READY.
There are two methods of diversion of the normal processor sequence to a PI cycle. Following synchroniza-
tion, PI DIVERT INDIRECT sets and this produces PI CYCLE DIVERTED if the processor must get another
address word at IT1 in an effective address calculation, enters a trap cycle at IT2, or must wait for the bus

in an IO instruction. In any of these cases, the processor simply drops the current instruction and goes
directly to PIT1. However if an instruction fetch is called (automatic or otherwise) while PI RDY SYNC is 1,
PI CYC RDY sets to prevent memory control from actually fetching the instruction. (The flag in the lower
left corner simply holds the ready condition an extra time state for effecting the inhibit in memory control.)
Then the completion of the current instruction generates PI CYCLE DIVERTED, and the clock that sets
PIT1 clears the flipflops in memory control and advances PC to point to the next instruction, unless the in-
struction that would have been fetched was being executed by an XCT. Note that all of this diversion logic

is used also for entering a key cycle as explained in section 5.6.

PIT1 enables the function word into AD and the address part of it onto the address bus, kills any memory

write subroutine that may be waiting from the interrupted instruction, clears PI RDY SYNC, and sets PI CYC



which enables slow paging because the paging hardware may have to switch address spaces. PI CYC also
enables the interrupt function decoder at the left in PIC2. The gate at right center generates a pseudo in-
struction fetch signal for a dispatch interrupt or any standard interrupt; the standard interrupts include the
usual function 1, but also the unused functions 6 and 7 and function 0, which is the failure of any device to

supply a function word (as would happen were the interrupt requested by a KA 10 type device).

PIT2 sets PIR CYC STARTED, saves the function word in MQ, latches the address bus, and sets up memory
control for the type of access needed. A standard interrupt sets PI NORM CYC to generate the address in the
process table through the MA special logic. All other functions use the address supplied by the function word.
Even though PIT?2 calls the memory subroutine, an extra cloék is produced to set PIR DONE, although this

is not done if the ungrant timer has not timed out (see chart PIR). PIT3 therefore stops the clock and also

reestablishes all of the necessary information for memory control.

For the special interrupt functions, the memory subroutine does an operand fetch or page check and the re-
turn is to FT6. DATAI and DATAO functions are almost identical to the equivalent IO instructions and are
included in flow chart IOT. The increment function, shown at the right in chart PI, starts by moving the
memory word to BR and the function word to AR. If the increment is positive, SCAD DATA is set to make
the SC adder outputs all Os (otherwise all are 1s). ET1 then uses the byte position logic to extend the sign
to the left from AR 06 through the ARI special inputs. ET2 moves the half word increment from AR left
to AR right, extends the sign through AR left by clearing unless the increment is negative in which case AR
left is loaded from AD (whose outputs are all 1s when neither AD nor its input mixers are enabled), and en-
ables AD to add the increment to the memory word. From ET?2 the sequence goes to DMOVNT3 to put

the result in AR and then continues to the store cycle.

For a standard or dispatch interrupt the memory subroutine does an instruction fetch with return to ITO and
the PI cycle executes the instruction. PI CYC being set prevents overflow trapping (by preventing the setting
of any overflow flags) and also prevents the instruction from satisfying a trap. Instructions that can produce
an interrupt skip generate the signal PI MAY OVF. If the instruction is one of these and does not skip, ET2
sets P OV, which at the completion of the instruction causes the processor to go to PICTO to start another
PI cycle, instead of clearing PI CYC and returning control to PC. For a standard interrupt PIOV (1) simply
increases the MA special address by 1, but for a dispatch interrupt PICTO brings the function word from

MQ to AR, increments the address through AD and enables it onto AB. PIT2 performs the same functions
as in the first time around except that it does not set PIR CYC STARTED, and the only memory setup it

can do is for a standard or dispatch interrupt. No extra clock is needed but PIT3 occurs anyway and stops



the clock. The memory subroutine does an instruction fetch from the second interrupt location and the PI

cycle executes that instruction.

At some point in a PI cycle, after it has been determined whethe: or not an interrupt will be held, PI ACT
must be cleared temporarily to turn off PI RQ, and thus clear the PIR flag for the channel (unless of course
there is already another request for the same channel). The temporary inactivation is handled by the active
inhibit nets at the lower right and bottom center in PIC1. All inhibit conditions include PI OV (0) because
the inhibit is in the first PI cycle unless there is overflow, in which case it must be put off until the second.

In an IOT the inhibit is at the data time except in a CONSX, which tests for overflow following the transfer.
In an instruction that can overflow but has not, the inhibit always occurs at ST1. In an instruction that
cannot overflow, the inhibit is at ET2; but again PI OV (0) is a condition, because a DATAX can be produced
by an overflowing BLKX, and can therefore produce a second cycle even though the DATAX itself cannot

overflow.
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APPENDIX A
INSTRUCTION AND DEVICE MNEMONICS

The illustration on the next page shows the derivation of the instruction mnemonics. The two tables
following it list all instruction mnemonics and their octal codes both numerically and alphabetically. When
two mnemonics are given for the same octal code, the first is the preferred form, but the assembler does
recognize the second. For completeness, the table includes the MUUOs (indicated by an asterisk) that are
recognized by MACRO for communication with the DECsystem—10 Time Sharing Monitor. A double dagger

:) indicates a K110 instruction code that is unassigned in the KA10.

In-out dévice codes are included only in the alphabetic listing and are indicated by a dagger (t). Following
the tables is a chart that lists the devices with their mnemonic and octal codes and DEC option numbers for
both PDP-10 and PDP-6. A device mnemonic ending in the numeral 2 is the recommended form for the

second of a given device, but such codes are not recognized by MACRO —they must be defined by the user.

Beginning on page A11 is a list of all instructions showing their actions in symbolic form. Concluding the
appendix are charts showing the ASCII code and the formats of the various types of words used in the pro-

CEessor.



E ADD
Negative SUBtract
MOV Z Magn'ltude MULtiply
S gn q to AC . Integer MULtiply ~
¢ Swappe Immediate to ac DIVide Immediate
no effect to I;'lemory Integer DIVide to Memory
i i t If
Half word E%ht} to ﬁ%ht} gnes 0ne and Round  to Both
t t eros Floating AdD [ ~
Extend sign Floating SuBtract Long
BLock Transfer Floating MultiPly to Memory
EXCHange ac and memory Floating DiVide to Both
Floating SCale
use present pointer} LoaD Byte into ac Double Floating Negate
Increment pointer DePosit Byte in memory Unnormalized Floating Add
Increment Byte Pointer FIX
FIX and Round
PUSH down} { ~ FLoaTand Round
POP up and Jump Double Floating AdD
Double Floating SuBtract
Zeros Double Floating MultiPly
Ones Double Floating DiVide
Ac
SET to \% E ~
Memory Double MO { e Negative } { to Memory
Complement of Ac
Compl tof M .
ompiement of ¥emory AC ' (to SubRoutine
~ 0] AC Immediate and Save Pc
AND with Complement of Ac B Memory and Save Ac
inclusive OR | | with Complement of Memory Both and Restore Ac
Complements of Both if Find First One
Inclusive OR on Flag and CLear it
eXclusive OR Jumpd O OVerflow (JFCL 10,)
EQuiValence PYon CaRrY 0 (JFCL 4)
on CaRrY 1 (JFCL 2,)
 never on CaRrY (JFCL 6,)
SKIP if memory} Less on Floating OVerflow (JFCL 1,)
JUMP if ac Equal and ReSTore
Add One to { memory and Skip] . f Less or Equal ang ER;S"t[)'Iore F:fgs (IJR(igS?F’) 12
Subtract One from | | Ac and Jump Always an able P1 channe )
C Ac Immediate d skip if Ac Greater HALT (JRST 4
ompare ACy .o Memory | 2M¢ SKIP 1T AC I(:;reater olr Equal PORTAL (JRST 1,
p Yot equa eXeCuTe
. . ositive
Add One to Both halves of ac and Jump if {Negative DATA
BLocK In
. . . Out
Anthmeue .SHlft CONditions .
Logical SHift Combined in and Skip if all masked bits Zero
ROTate P11 some masked bit One
with Direct mask No modification never

with Swapped mask
Right with £
Left with £

Test ac

set masked bits to Zeros
set masked bits to Ones
Complement masked bits

and skip

if all masked bits Equal 0
if Not all masked bits equal 0
Always
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000
001

037
040
041
042
043
044
045
046
047
050
051
052
053
054
0S5
056
057
060
061
062
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101

102
103

104
105

ILLEGAL

LUUO’S

*CALL
*INIT

RESERVED
FOR
SPECIAL
MONITORS

*CALLI
*OPEN
*TTCALL

RESERVED
FOR DEC

*RENAME
*IN

*OUT
*SETSTS
*STATO
*STATUS
*GETSTS
*STATZ
*INBUF
*OUTBUF
*INPUT
*OUTPUT
*CLOSE
*RELEAS
*MTAPE
*UGETF
*USETI
*USETO
*LOOKUP
*ENTER
*UJEN

INSTRUCTION MNEMONICS

NUMERIC LISTING

106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161

tDFAD
tDFSB
tDFMP
tDFDV

$DMOVE
iDMOVN
+FIX

$DMOVEM
tDMOVNM
tFIXR
tFLTR
UFA
DFN
FSC
IBP
ILDB
LDB
IDPB
DPB
FAD
FADL
FADM
FADB
FADR
FADRI
FADRM
FADRB
FSB
FSBL
FSBM
FSBB
FSBR
FSBRI
FSBRM
FSBRB
FMP
FMPL

A-3

162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
2217
230
231
232
233
234
235

FMPM
FMPB
FMPR
FMPRI
FMPRM
FMPRB
FDV
FDVL
FDVM
FDVB
FDVR
FDVRI
FDVRM
FDVRB
MOVE
MOVEI
MOVEM
MOVES
MOVS
MOVSI
MOVSM
MOVSS
MOVN
MOVNI
MOVNM
MOVNS
MOVM
MOVMI
MOVMM
MOVMS
IMUL
IMULI
IMULM
IMULB
MUL
MULI
MULM
MULB
IDIV
IDIVI
IDIVM
IDIVB
DIV
DIVI



236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
25404
25410
25420
25450
255
25504
25510
25520
25530
25540
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305

DIVM
DIVB
ASH
ROT
LSH
JFFO
ASHC
ROTC
LSHC

EXCH
BLT
AOBJP
AOBIJN
JRST
PORTAL
JRSTF
HALT
JEN
JFCL
JFOV
JCRY1
JCRYO
JCRY
JOV
XCT
tMAP
PUSHJ
PUSH
POP
POPJ
JSR
JSP
JSA
JRA
ADD
ADDI
ADDM
ADDB
SUB
SUBI
SUBM
SUBB
CAI
CAIL
CAIE
CAILE
CAIA
CAIGE

306
307
310
311

312
313

314
315

316
317
320
321

322
323
324
325
326
327
330
331

332
333
334
335
336
337
340
341

342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366

CAIN
CAIG
CAM
CAML
CAME
CAMLE
CAMA
CAMGE
CAMN
CAMG
JUMP
JUMPL
JUMPE
JUMPLE
JUMPA
JUMPGE
JUMPN
JUMPG
SKIP
SKIPL
SKIPE
SKIPLE
SKIPA
SKIPGE
SKIPN
SKIPG
AOJ
AOJL
AOJE
AOJLE
AOJA
AOJGE
AOJN
AOJG
AOS
AOSL
AOSE
AOSLE
AOSA
AOSGE
AOSN
AOSG
SOJ
SOJL
SOJE
SOJLE
SOJA
SOJGE
SOJN

A4

367
370
371
372
373
374
375
376
377
400
400
401
401
402
402
403
403
404
405
406

407
410

411
412
413
414
415
416
417
420
421
422
423
424
425
426
427
430
431
432
433
434
434
435
435
436
436
437
437

SOJG
SOS
SOSL
SOSE
SOSLE
SOSA
SOSGE
SOSN
SOSG
SETZ
CLEAR
SETZI
CLEARI
SETZM
CLEARM
SETZB
CLEARB
AND
ANDI
ANDM
ANDB
ANDCA
ANDCAI
ANDCAM
ANDCAB
SETM
SETMI
SETMM
SETMB
ANDCM
ANDCMI
ANDCMM
ANDCMB
SETA
SETAI
SETAM
SETAB
XOR
XORI
XORM
XORB
IOR

OR
IORI

ORI
IORM
ORM
IORB
ORB



440
441

442
443
444
445
446
447
450
451

452
453
454
455
456
457
460
461
462
463
464
465
466
467
470
471
472
473
474
475
476
477
500
501
502
503
504
505
506
507
510
511

512

513
514
515
516
517
520

ANDCB
ANDCBI
ANDCBM
ANDCBB
EQV
EQVI
EQVM
EQVB
SETCA
SETCAI
SETCAM
SETCAB
ORCA
ORCAI
ORCAM
ORCAB
SETCM
SETCMI
SETCMM
SETCMB
ORCM
ORCMI
ORCMM
ORCMB
ORCB
ORCBI
ORCBM
ORCBB
SETO
SETOI
SETOM
SETOB
HLL
HLLI
HLLM
HLLS
HRL
HRLI
HRLM
HRLS
HLLZ
HLLZI
HLLZM
HLLZS
HRLZ
HRLZI
HRLZM
HRLZS
HLLO

521
522
523
524
525
526
527
530
531
532
533
534
535
536
537
540
541
542
543
544
545
546
547
550
551
552
553
554
555
556
557
560
561
562
563
564
565
566
567
570
571
572
573
574
575
576
577
600
601

HLLOI
HLLOM
HLLOS
HRLO
HRLOI
HRLOM
HRLOS
HLLE
HLLEI
HLLEM
HLLES
HRLE
HRLEI
HRLEM
HRLES
HRR
HRRI
HRRM
HRRS
HLR
HLRI
HLRM
HLRS
HRRZ
HRRZI
HRRZM
HRRZS
HLRZ
HLRZI
HLRZM
HLRZS
HRRO
HRROI
HRROM
HRROS
HLRO
HLROI
HLROM
HLROS
HRRE
HRREI
HRREM
HRRES
HLRE
HLREI
HLREM
HLRES
TRN
TLN

602
603
604
605
606
607
610
611
612
613
614
615
616
617
620
621
622
623
624
625
626
627
630
631
632
633
634
635
636
637
640
641
642
643
644
645
646
647
650
651
652
653
654
655
656
657
660
661
662

TRNE
TLNE
TRNA
TLNA
TRNN
TLNN
TDN
TSN
TDNE
TSNE
TDNA
TSNA
TDNN
TSNN
TRZ
TLZ
TRZE
TLZE
TRZA
TLZA
TRZN
TLZN
TDZ
TSZ
TDZE
TSZE
TDZA
TSZA
TDZN
TSZN
TRC
TLC
TRCE
TLCE
TRCA
TLCA
TRCN
TLCN
TDC
TSC
TDCE
TSCE
TDCA
TSCA
TDCN
TSCN
TRO
TLO
TROE



663
664
665
666
667
670
671
672

+ADC
ADD
ADDB
ADDI
ADDM
AND
ANDB
ANDCA
ANDCAB
ANDCAI
ANDCAM
ANDCB
ANDCBB
ANDCBI
ANDCBM
ANDCM
ANDCMB
ANDCMI
ANDCMM
ANDI
ANDM
AOBIJIN
AOBIJP
AOJ
AOJA
AOJE
AOIG
AOJGE
AOJL
AOJLE
AOIJN
AOS

TLOE
TROA
TLOA
TRON
TLON
TDO

TSO

TDOE

024
270
273
271
272
404
407
410
413
411
412
440
443
441
442
420
423
421
422
405
406
253
252
340
344
342
347
345
341
343
346
350

673
674
675
676
677
70000
70004
70004

INSTRUCTION MNEMONICS
ALPHABETIC LISTING

AOSA
AOSE
AOSG
AOSGE
AOSL
AOSLE
AOSN
tAPR
ASH
ASHC
BLKI
BLKO
BLT
CAl
CAIA
CAIE
CAIG
CAIGE
CAIL
CAILE
CAIN
*CALL
*CALLI
CAM
CAMA
CAME
CAMG
CAMGE
CAML
CAMLE
CAMN
TCCI

TSOE
TDOA
TSOA
TDON
TSON
BLKI
DATAI
RSW

354
352
357
355
351
353
356
000
240
244
70000
70010
251
300
304
302
307
305
301
303
306
040
047
310
314
312
317
315
311
313
316
014

A-6

70010
70014
70020
70024
70030
70034

+CDP
$CDR
CLEAR
CLEARB
CLEARI
CLEARM
+CLK
*CLOSE
CONI
CONO
CONSO
CONSZ
$CPA
$CR
DATAI
DATAO
tDC
+DCSA
+DCSB
$DFAD
$DFDV
$DFMP
DFN
IDFSB
+DIS
DIV
DIVB
DIVI
DIVM
¥DLB
+DLC
+DLS

BLKO
DATAO
CONO
CONI
CONSZ
CONSO

110
114
400
403
401
402
070
070
70024
70020
70034
70030
000
150
70004
70014
200
300
304
110
113
112
131
111
130
234
237
235
236
060
064
240



tDMOVE
+tDMOVEM
$DMOVN
tDMOVNM
DPB
tDPC
TDSI
+DSK
TDSS
+DTC
DTS
*ENTER
EQV
EQVB
EQVI
EQVM
EXCH
FAD
FADB
FADL
FADM
FADR
FADRB
FADRI
FADRM
FDV
FDVB
FDVL
FDVM
FDVR
FDVRB
FDVRI
FDVRM
TFIX
tFIXR
tFLTR
FMP
FMPB
FMPL
FMPM
FMPR
FMPKB
FMPRI
FMPRM
FSB
FSBB
FSBL
FSBM
FSBR

120
124
121
125
137
250
464
170
460
320
324
077
444
447
445
446
250
140
143
141
142
144
147
145
146
170
173
171
172
174
177
175
176
122
126
127
160
163
161
162
164
167
165
166
150
153
151
152
154

FSBRB
FSBRI
FSBRM
FSC
*GETSTS
HALT
HLL
HLLE
HLLEI
HLLEM
HLLES
HLLI
HLLM
HLLO
HLLOI
HLLOM
HLLOS
HLLS
HLLZ
HLLZI
HLLZM
HLLZS
HLR
HLRE
HLREI
HLREM
HLRES
HLRI
HLRM
HLRO
HLROI
HLROM
HLROS
HLRS
HLRZ
HLRZI
HLRZM
HLRZS
HRL
HRLE
HRLEI
HRLEM
HRLES
HRLI
HRLM
HRLO
HRLOI
HRLOM
HRLOS

157
155
156
132
062
25420
500
530
531
532
533
501
502
520
521
522
523
503
510
511
512
513
544
574
575
576
577
545
546
564
565
566
567
547
554
555
556
557
504
534
535
536
537
505
506
524
525
526
527

HRLS
HRLZ
HRLZI
HRLZM
HRLZS
HRR
HRRE
HRREI
HRREM
HRRES
HRRI
HRRM
HRRO
HRROI
HRROM
HRROS
HRRS
HRRZ
HRRZI
HRRZM
HRRZS
IBP
IDIV
IDIVB
IDIVI
IDIVM
IDPB
ILDB
IMUL
IMULB
IMULI
IMULM
*IN
*INBUF
*INIT
*INPUT
IOR
IORB
IORI
IORM
JCRY
JCRYO
JCRY1
JEN
JFCL
JFFO
JFOV
Jov
JRA

507
514
515
516
517
540
570
571
572
573
541
542
560
561
562
563
543
550
551
552
553
133
230
233
231
232
136
134
220
223
221
222
056
064
041
066
434
437
435
436
25530
25520
25510
25460
255
243
25504
25540
267



JRST
JRSTF
JSA
JSP
JSR
JUMP
JUMPA
JUMPE
JUMPG
JUMPGE
JUMPL
JUMPLE
JUMPN
LDB
*LOOKUP
tLPT
LSH
LSHC
IMAP
+MDF
MOVE
MOVEI
MOVEM
MOVES
MOVM
MOVMI
MOVMM
MOVMS
MOVN
MOVNI
MOVNM
MOVNS
MOVS
MOVSI
MOVSM
MOVSS
*MTAPE
TMTC
TMTM
TMTS
MUL
MULB
MULI
MULM
*OPEN
OR
ORB
ORCA
ORCAB

254
25410
266
265
264
320
324
322
327
325
321
323
326
135
076
124
242
246
257
260
200
201
202
203
214
215
216
217
210
211
212
213
204
205
206
207
072
220
230
224
224
227
225
226
050
434
437
454
457

ORCAI
ORCAM
ORCB
ORCBB
ORCBI
ORCBM
ORCM
ORCMB
ORCMI
ORCMM
ORI
ORM
*OUT
*OUTBUF
*OUTPUT
tPAG
TPI
TPLT
POP
POPJ
PORTAL
TPTP
TPTR
PUSH
PUSHJ
*RELEAS
*RENAME
ROT
ROTC
RSW
SETA
SETAB
SETAI
SETAM
SETCA
SETCAB
SETCAI
SETCAM
SETCM
SETCMB
SETCMI
SETCMM
SETM
SETMB
SETMI
SETMM
SETO
SETOB
SETOI

455
456
470
473
471
472
464
467
465
466
435
436
057
065
067
010
004
140
262
263
25404
100
104
261
260
071
055
241
245
70004
424
427
425
426
450
453
451
452
460
463
461
462
414
417
415
416
474
477
475

SETOM
*SETSTS
SETZ
SETZB
SETZI
SETZM
SKIP
SKIPA
SKIPE
SKIPG
SKIPGE
SKIPL
SKIPLE
SKIPN
SOJ
SOJA
SCIJE
SOJG
SOJGE
SOJL
SOJLE
SOJN
SOS
SOSA
SOSE
SOSG
SOSGE
SOSL
SOSLE
SOSN
*STATO
*STATUS
*STATZ
SUB
SUBB
SUBI
SUBM
TDC
TDCA
TDCE
TDCN
TDN
TDNA
TDNE
TDNN
TDO
TDOA
TDOE
TDON

476
060
400
403
401
402
330
334
332
337
335
331
333
336
360
364
362
367
365
361
363
366
370
374
372
377
375
371
373
376
061
062
063
274
277
275
276
650
654
652
656
610
614
612
616
670
674
672
676



TDZ
TDZA
TDZE
TDZN
TLC
TLCA
TLCE
TLCN
TLN
TLNA
TLNE
TLNN
TLO
TLOA
TLOE
TLON
TLZ
TLZA
TLZE
TLZN
TTMC
TTMS
TRC

630
634
632
636
641
645
643
647
601
605
603
607
661
665
663
667
621
625
623
627
340
344
640

TRCA
TRCE
TRCN
TRN
TRNA
TRNE
TRNN
TRO
TROA
TROE
TRON
TRZ
TRZA
TRZE
TRZN
TSC
TSCA
TSCE
TSCN
TSN
TSNA
TSNE
TSNN

644
642
646
600
604
602
606
660
664
662
666
620
624
622
626
651
655
653
657
611
615
613
617

TSO
TSOA
TSOE
TSON
TSZ
TSZA
TSZE
TSZN
*TTCALL
UFA
*UGETF
*UJEN
*USETI
*USETO
+UTC
TUTS
XCT
XOR
XORB
XORI
XORM

671
675
673
677
631
635
633
637
051
130
073
100
074
075
210
214
256
430
433
431
432



or-v

SECOND AND

THIRD OCTAL
DIGITS
00 04 10 14 20 24 30 34 40 44 50 54 60 64 70 74
g'c’}i'l_ 6,10 6,10 10 10 DAY0[10 DAtO[10 ADIO]10 ADIO 10 ] DLI0T10 DK10 |10 DK10
oisr|{ APR *
01 cpa | PI | PAG*| cCI | ccI2 | ADC | ADC2 DLB  DLC | CLK | CLK2
CENTRAL PRIORITY X110 POP-8,9 POP-8,9  |ANALOG-DIGITAL|ANALOG-DIGITAL REAL REAL
PROCESSOR | INTERRUPT PAGING INTERFACE | INTERFACE | CONVERTER | CONVERTER PDP - 11 DATA LINK TIME CLOCK | TIME CLOCK
G 761] 6 760[10 cP10]6 461(6 626[6 646[6,10 340(6,10 340[10 xv10[10 X110 CR10[10 CR10[10 [ DL10[10 RC10[10 RC10
10 10 10 10 LPI0{ 10 ¥P10]10 VP10
1| PTP PTR CDP CDR 7Y LPT DIS DIS2 PLT PLT2 CR CR2 | DLB2'! DLC2 DSK | DSK2
PAPER PAPER NSOLE
TAPE PUNCH | TAPE READER| CARD PUNCH | CARD READER| YoLETYPE LINE PRINTER |  DISPLAY DISPLAY PLOTTER PLOTTER | CARD READER | CARD READER PDP- 11 DATA LINK SMALL DISK | SMALL DISK
B 1366 1366 551(6 s516(6 646 (10 pc10[10 Dc10f10 rP10[10 RP10[10 RP10]10 RP10] 6 270
10 LP10
2 DC DC2 uTC UTS MTC MTS MTM LPT2 DLS DLS2 DPC DPC2 | DPC3 | DPC4 DF
DATA DATA DATA LINE | DATALINE | OISKPACK | DISKPACK | DISK PACK | DISK PACK
CONTROL CONTROL DECTAPE - MAGNETIC TAPE LINE PRINTER|  SCANNER SCANNER SYSTEM SYSTEM SYSTEM SYSTEM DISK FILE
6 630 10 [ 10110 10|10 ™0 (10 ™O
3 | DCSA DCSB DTC DTS DTC2 DTS2 T™MC TMS | TMC2 TMS2
DATA_ COMMUNICATION DECTAPE DECTAPE MAGNETIC TAPE MAGNETIC TAPE
10 0510[10 0510
4 DSS DSI DSS2  DSI2

SINGLE SYNCHRONOUS SINGLE SYNCHRONOUS
LINE UNIT LINE UNIT

CODES IN THIS SECTION RESERVED FOR USER SPECIAL DEVICES KI10 UNRESTRICTED CODES KI10 UNRESTRICTED CODES
RESERVED FOR USERS RESERVED FOR DEC
*DRUM PROCESSOR IN PDP—6
tPDP-7,8 INTERFACE IN PDP—6
' 24 |
[}
_ —
DEVchE CODE Used with POP—6 16 646 -—— Option number for PDP-6
IN-OUT ! — Used with POP—10——10 LP10———option number for POP-10
- FIRST SECOND INSTRUCTION l (No number indicates device is
INSTRUCTION| 1 1 1 OCTAL DIGIT OCTAL DIGIT Ok iaL COOE 1 LPT port of centrol processor)
WORD | 1 L | MSB ONLY) | | Device whosecodeist2d~_L Wb oo reo Mnemonic for device code 124
0 1 2 3 4 s 6 7 8 | 9 10 LT -——- -=

DEVICE MNEMONICS




ALGEBRAIC REPRESENTATION

Pages A13—A20 of this Appendix list, in symbolic form, the actual operations performed by the instructions.

They are grouped in this way.

Boolean Al3 In-out Al7
Byte manipulation Al4 Program control  A17
Fixed point arithmetic Al4 Pushdown list Al7
Floating point arithmetic Al4 Shift and rotate Al7
Full word data transmission AlS Test, arithmetic Al8
Half word data transmission Al6 Test, logical Al9

The terminology and notation used vary somewhat from that in the System Reference Manual, as follows.

AC

AC+1

E+1
PC
X
0,
Oy
(X

A,B

X.Y)
(X))

The accumulator addressin bits 9—12 of the instruction word (represented by A
in the instruction descriptions).

The address one greater than AC, except that AC+1 is 0if ACis 17.

The result of the effective address calculation. E is eighteen bits when used as an
address, half word operand, mask or output conditions, but is a signed 9-bit quan-
tity when used as a scale factor or a shift number.

The address one greater than E, except that E+1 is 0 if E is 777777.
The 18-bit program counter.

The word contained in register X.

The left half of (X).

The right half of (X).

The word contained in X with its left and right halves swapped.
The value of bit n of the quantity A4.

A 36-bit word with the 18-bit quantity A in its left half and the 18-bit quantity B
in its right half (either A or B may be 0).

The contents of registers X and Y concatenated into a double word operand.

The word contained in the register addressed by (X), ie addressed by the word in
register X.

The quantity A replaces the quantity B (4 and B may be half words, full words or
double words). Eg

(AC) + (E) »> (AO)
means the word in accumulator AC plus the word in memory location E replaces
the word in AC.

A-11



(AC) (E) The word in AC and the word in E.

AV ¥~  The Boolean operators AND, inclusive OR, exclusive OR, and complement (logical
negation).

+-X =l The arithmetic operators for addition, negation or subtraction, multiplication, division,
and absolute value (magnitude).

Square brackets are used occasionally for grouping. With respect to the values of their terms, the questions

for a given instruction are in chronological order; eg in the pair of equations

(AC)+1->(AC)
If (AC)=0: E~ (PC)

the quantity tested in the second equation is the word in AC after it has been incremented by one.

Page references in brackets are for the detailed explanations in Chapter 2 of the System Reference Manual.

A-12



SETZ
SETZI
SETZM
SETZB

SETA
SETAI
SETAM
SETAB

SETM
SETMI
SETMM
SETMB

AND
ANDI
ANDM
ANDB

ANDCM
ANDCMI
ANDCMM
ANDCMB

IOR
IORI
IORM
IORB

ORCM
ORCMI
ORCMM
ORCMB

XOR
XORI
XORM
XORB

400
401
402
403

424
425
426
427

414
415
416
417

404
405
406
407

420
421
422
423

434
435
436
437

464
465
466
467

430
431
432
433

0 - (AC)
0—>(AO)

0 (E)
0-(AC) (B)

(AC) = (AC) [no-op]
(AC) = (AC) [no-op]
(AC) = (E)
(AC) = (E)

(E) > (AC)

0.E = (AC)

(E) > (E) [no-op]
(E) > (AC) (E)

(AC) A (E) > (AC)
(AC) A O,E — (ACQ)
(AO)A (B)—~>(B)
(AC) A (E) > (AC) (B)

(AC) A ~ (E) > (AC)
(AC) A ~ [0,E] = (AC)
(AC) A ~(BE)~> (E)
(AC) A ~ (E) > (AC) (E)

(AC) v (E) = (AC)
(AC) v 0,E » (AC)
(AC) v (E) > (E)
(AC) v (E) ~> (AC) (E)

(AC) v ~ (E) ~ (AC)
(AC) v ~ [0,E] > (AC)
(AC) v ~ (E) > (E)
(AC) v ~ (E) ~ (AC) (E)

(AC) ¥ (E) > (AC)
(AC) ¥ 0,E = (AC)
(AC) ¥ (B) > (E)
(AC) ¥ (E) > (AC) (E)

Boolean

A-13

SETO
SETOI
SETOM
SETOB

SETCA
SETCAI
SETCAM
SETCAB

SETCM
SETCMI
SETCMM
SETCMB

ANDCA
ANDCAI
ANDCAM
ANDCAB

ANDCB
ANDCBI
ANDCBM
ANDCBB

ORCA
ORCAI
ORCAM
ORCAB

ORCB
ORCBI
ORCBM
ORCBB

EQV
EQVI

EQVM
EQVB

474
475
476
477

450
451
452
453

460
461
462
463

410
411
412
413

440
441
442
443

454
455
456
457

470
471
472
473

444
445
446
447

777777777777 = (AC)
777777777777 = (AC)
777777777777 = (E)
777777777777 = (AC) (E)

~ (AC) > (AC)

~ (AC) ~> (AQ)
~(AC)~> (B)

~ (AC) > (AC) (E)

~(E)~> (AC)

~ [0,E] » (AC)
~(E)~> (B)

~ (BE) > (AC) (B)

~ (AC) A (E) > (AC)

~ (AC) A O,E = (AC)

~ (AC) A (E) > (B)
~(AC) A (E) > (AC) (B)

~(AC) A ~ (E) > (AC)

~ (AC) A ~ [0,E] > (AC)
~ (AC) A ~(E) > (E)

~ (AC) A ~ (E) = (AC) (B)

~(AQ) v (E) > (AC)
~(AC)v 0,E = (AC)
~(AQ)V (E)~>(E)

~ (AC) Vv (E) > (AC) (E)

~ (AC) Vv ~ (E) > (AC)
~(AC) v ~ [0,E] =~ (AC)
~(AC)V ~ (E)~> (E)

~ (AC) v ~ (E) ~> (AC) (E)

~ [(AC) ¥ (B)] = (AC)

~ [(AC) ¥ 0,E] = (AC)

~ [(AC) ¥ (B)] — (E)

~ [(AC) ¥ (E)] ~ (AC) (E)



ADD
ADDI
ADDM
ADDB

IMUL
IMULI
IMULM
IMULB

IDIV

IDIVI

IDIVM
IDIVB

270
271
272
273

220
221
222
223

230

231

232
233

Byte Manipulation

*The high order word of the product is discarded.
1The low order word of the product is discarded.

FAD

FADL
FADM
FADB

FSB

FSBL
FSBM
FSBB

140
141
142
143

150
151
152
153

IBP 133 Operations on (E) [see page 2-16]
IfP-S>0: P-S~>P
IFP-S<0: Y+1-Y 36-S—~»P
LDB 135 BYtEIN ((E)) = (AC) [see page 2-16]
DPB 137 BYTEIN (AC) = BYTEIN ((E)) [see page 2-16)
ILDB 134  IBPand LDB
IDPB 136 IBPand DPB
Fixed Point Arithmetic
(AC) + (E) = (AO) SUB 274 (AC) — (E)~> (AQO)
(AC) + 0,E > (AC) SUBI 275 (AC) - 0,E— (AO)
(AC) + (E) = (E) SUBM 276 (AC) —(E)—> (B)
(AC) + (E) > (AC) (E) SUBB 277  (AC) — (E) = (AC) (B)
(AC) X (E) > (AC)* MUL 224 (AC) X (E) » (AC,AC+1)
(AC) X 0,E = (AO)* MULI 225  (AC) X 0,E = (AC,AC+1)
(AC) X (E) = (E)* MULM 226  (AC) X (E) = (B)t
(AC) X (E) > (AC) (E)* MULB 227  (AC) X (E) = (AC,AC+1) (E)
(AC) ~ (E) > (AO) DIV 234 (AC,AC+1) ~ (E) = (AQ)
REMAINDER = (AC+1) REMAINDER —> (AC+1)
(AC) + 0,E~> (AO) DIVI 235 (AC,AC+1) + 0,E~ (AO)
REMAINDER —> (AC+1) REMAINDER > (AC+1)
(AC) + (E)—(E) DIVM 236 (AC,AC+1) + (BE)~ (E)
(AC) + (E)~> (AO) (E) DIVB 237  (AC,AC+1) + (E) = (AC) (E)
REMAINDER —> (AC+1) REMAINDER ~> (AC+1)
Floating Point Arithmetic
(AC) + (E) = (AC) FADR 144 (AC) + (E) > (AC)
(AC) + (E) > (AC,AC+1]) FADRI 145 (AC)+E, 0~ (AC)
(AC) + (E)—> (B) FADRM 146 (AC) + (E)— (E)
(AC) + (E) > (AC) (BE) FADRB 147  (AC) + (E) = (AC) (E)
(AC) — (E)~> (AO) FSBR 154 (AC) — (E) - (AQ)
(AC) — (E) > (AC,AC+1) FSBRI 155 (AC) - E,0~ (AC)
(AC) - (E)—> (BE) FSBRM 156 (AC) - (E)— (E)
(AC) - (B)» (AO)(B) FSBRB 157  (AC) - (E) = (AC) (E)
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FMP

FMPL
FMPM
FMPB

FDV
FDVL

FDVM
FDVB

FIX

DMOVE
DMOVN

EXCH
BLT

MOVE
MOVEI
MOVEM
MOVES

MOVN
MOVNI
MOVNM
MOVNS

160
161
162
163

170
171

172
173

122

120
121

250
251

200
201
202
203

210
211
212
213

(AC) X (E) ~> (AO) FMPR 164 (AC) X (E)— (AC)

(AC) X (E) > (AC,AC+1) FMPRI 165 (AC) X E, 0~ (AC)
(AC) X (E) = (E) FMPRM 166 (AC) X (E)— (E)
(AC) X (E) - (AC) (E) FMPRB 167  (AC) X (E) = (AC) (E)
(AC) *+ (E) > (AC) FDVR 174 (AC) + (E) = (AC)
(AC) + (E)~> (AC) FDVRI 175 (AC) * E, 0~ (AC)
REMAINDER = (AC+1)

(AC) + (E) = (E) FDVRM 176 (AC) + (E)—~ (E)
(AC) + (E) = (AC) (E) FDVRB 177 (AC) + (E)~> (AC) (E)

UFA 130  (AC) + (E) ~» (AC+1) without normalization

DFN 131 - (AC,E)~> (AC,E)

FSC 132 (AC) X 2k~ (AC)

FLTR 127 (E) floated, rounded - (AC)

(E) fixed — (AC) FIXR 126  (E) fixed, rounded —~ (AC)
DFAD 110 (ACAC+1)+ (E,E+1)—~> (AC,AC+1)

DFSB 111 (AC,AC+1) — (E,E+1) = (AC,AC+1)

DFMP 112 (AC,AC+1) X (E,E+1)~> (AC,AC+1)

DFDV 113 (AC,AC+1) = (E,E+1) = (AC,AC+1)

(E,E+1) ~ (AC,AC+1) DMOVEM 124 (AC,AC+1)— (EE+1)
—(E,E+1) - (AC,AC+1) DMOVNM 125 —(AC,AC+1)— (E,E+1)

Full Word Data Transmission

(AC) < (E)
Move E — (AC)g + 1 words starting with ((AC).) = ((AC)g) [see page 2-10]
(E)—(AC) MOVS 204 (E)s— (AQ)
0,E = (AC) MOVSI 205 E,0-(AO)
(AC) ~> (E) MOVSM 206 (AC)s— (E)
If AC+#0: (E)— (AC) MOVSS 207 (E)s—>(E)
IfAC+#0: (E)— (AC)
- (E) > (AC) MOVM 214 |(E)| = (AOC)
- [0,E] = (AC) MOVMI 215  O0,E->(AC)
- (AC)~ (E) MOVMM 216 |(AC)|—> (E)
- (E)—>(E) MOVMS 217 |(BE)I~(E)
If AC#0: (E)—~> (AC) If AC#0: (E)— (AC)
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HLL
HLLI
HLLM
HLLS

HLLO
HLLOI
HLLOM
HLLOS

HLR
HLRI
HLRM
HLRS

HLRO
HLROI
HLROM
HLROS

HRR
HRRI
HRRM
HRRS

HRRO
HRROI
HRROM
HRROS

HRL
HRLI
HRLM
HRLS

500
501
502
503

520
521
522
523

544
545
546
547

564
565
566
567

540
541
542
543

560
561
562
563

504
505
506
507

Half Word Data Transmission

(E).~> (AC)y,

0> (AC),

(AC), > (Ex

If AC+#0: (E)~ (AC)

(E), 777777 - (AC)
0,777777 = (AC)
(AC),, 777777 - (E)

777777 - (E)
If AC#0: (E)— (AC)

(Ex~ (AC)r

0> (ACk

(AC) > (E)r

(Ex~> (E)

If AC#0: (E) - (AC)
777777 (E), ~ (AC)
777771,0 > (AC)
777777 (AC), ~ (E)

777777 (E), = (E)
If AC+#0: (E)~> (AC)

(EXr = (AC)g

E~ (AC)

(AC)g = (E)g

IfAC # 0: (E) > (AC)

777777 (E)g = (AC)
7777717,E > (AC)
777777 (AC)g - (E)

777777 > (Ex,
If AC+#0: (E)~ (AC)

(E)r > (AC),
E- (AC)y
(AC)r > (E),

(BE)g > (E)
If AC+#0: (E)~ (AC)

HLLZ
HLLZI
HLLZM
HLLZS

HLLE
HLLEI
HLLEM
HLLES

HLRZ
HLRZI
HLRZM
HLRZS

HLRE
HLREI
HLREM
HLRES

HRRZ
HRRZI
HRRZM
HRRZS

HRRE
HRREI
HRREM
HRRES

HRLZ
HRLZI
HRLZM
HRLZS
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510
511
512
513

530
531
532
533

554
555
556
557

574
575
576
577

550
551
552
553

570
571
572
573

514
515
516
517

(E),0~> (AC)
0 (AC)
(AC),0~ (E)

0 (B
If AC+#0: (E)-(AC)

(BE),[(E) X 777777] = (AC)
0 (AC)
(AC)y,[(AC)y X 777777] = (E)

(E)o X 777777 = (E)g
If AC+#0: (E)~> (AQ)

0,(E). ~> (AC)
0-(AC)
0,(AC), ~> (E)

0,(E)y, > (E)
If AC+#0: (E)~ (AC)

[(E) X 7777771 (E). = (AC)
0—>(AC)
[(AC), X 777777] (AC), > (E)

[(E) X 7777771,(E), = (E)
If AC#0: (E)—~> (AC)

0,(E)x = (AC)
0.E ~> (AC)
0,(AC)g ~ (E)

0 (E),
IfAC#0: (E) > (AC)

[(E)s X 777777] (E)g = (AC)
[Eys X 7777771 ,E - (AC)
[(AC);s X 7777771 (AC)g = (E)

(E)is X 777777 > (E),
If AC#0: (E)~ (AC)

(E)r,0~> (AC)
E,0~ (AC)
(AC),0~> (E)

(E)r,0 > (E)
If AC#0: (E)~> (AC)



HRLO
HRLOI
HRLOM
HRLOS

CONO
CONI
DATAO

BLKO
BLKI

JSR
JSP
JRST
JSA
JRA

JFCL
XCT
JFFO

MAP

PUSH
POP
PUSHIJ
POPJ

ASH
ROT
LSH

524
525
526
527

70020
70024
70014

70010
70000

264
265
254
266
267

255
256
243

257

261
262
260
263

240
241
242

(B)s,777777 = (AC) HRLE 534  (B)g,[(E)xs X 7777771 = (AC)
E,777777 = (AC) HRLEI 535 E,[E;3 X 7777771 = (AC)
(AC)R,777777 = (E) HRLEM 536 (AQ),[(AC)g X 777777 = (E)
(E)g,777777 = (E) HRLES 537  (B)g,[(E)g X 7777771 = (E)
If AC#0: (E)— (AC) If AC#0: (E)— (AC)
In-out

E — comMaND CONSZ 70030  If statusg A E = 0: skip

status — (E) CONSO 70034  If statusg A E# 0: skip

(E) > pATA DATAI 70004 para—~>(E)

(E) + 1000001 = (E)*  ((E)R) = DATA [see page 2-77]
(E) + 1000001 = (E)* pata—> ((E)R) [see page 2-77]

Program Control
FLAGS,(PC) = (E) E+ 1~ (PC)
FLAGS,(PC) = (AC) E - (PC)
E - (PC) [If AC # 0, see page 2-63]
(AC)—~ (E) E,(PC) ~> (AC) E+1-(PC)
E - (PC) ((AC)y) ~> (AC)

If AC A rLags # O: E - (PC) ~ AC A FLAGS = FLAGS
Execute (E)

If(AC)=0: 0> (AC+1)

If(AC) # 0: E— (PC) [see page 2-61]

PHYSICAL MAP DATA = (AC)

Pushdown List
(AC) + 1000001 = (AC)* (BE) > ((AC)r)
((AC)) ~ (E) (AC) — 1000001 — (AC)*
(AC) + 1000001 - (AC)* FLAGS,(PC) = ((AC)R) E - (PC)
((AC)R)r = (PC) (AC) — 1000001 - (AC)*

Shift and Rotate
(AC) X 22— (AC) ASHC 245 (AC,AC+1) X 22> (AC,AC+1))
Rotate (AC) E places ROTC 246  Rotate (AC,AC+1) E places
Shift (AC) E places LSHC 247  Shift (AC,AC+1) E places

*In the K110, 1 is added to or subtracted from each half separately.
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Arithmetic Testing

AOBJP 252 (AC) + 1000001 - (AC)* If (AC)=0: E- (PC)
AOBJN 253 (AC) + 1000001 - (AC)* If (AC)<0: E- (PC)
CAIl 300 No-op CAM 310 No-op
CAIL 301  If(AC)<E: skip CAML 311 If(AC) <(E): skip
CAIE 302  If(AC) =E: skip CAME 312 If(AC) = (E): skip
CAILE 303  If(AC)<E: skip CAMLE 313 If(AC) < (E): skip
CAIA 304  Skip CAMA 314  Skip
CAIGE 305 If(AC)>E: skip CAMGE 315 If(AC) = (E): skip
CAIN 306 If(AC)+#E: skip CAMN 316  If (AC) #(E): skip
CAIG 307  If(AC)>E: skip CAMG 317 If(AC) > (E): skip
JUMP 320 No-op SKIP 330 IfAC#0: (E)-(AC)
JUMPL 321  If(AC)<0: E- (PC) SKIPL 331 IfAC#0: (E)— (AC)
If (E)<O0: skip
JUMPE 322 If(AC)=0: E~(PC) SKIPE 332 IfAC#0: (E)= (AQ)
If (E) = 0: skip
JUMPLE 323 If(AC)<0: E- (PC) SKIPLE 333  IfAC#0: (E) - (AQ)
If(E)< 0: skip
JUMPA 324 E-(PC) SKIPA 334  IfAC#0: (E)- (AC)
Skip
JUMPGE 325 If(AC)=0: E - (PC) SKIPGE 335 IfAC#0: (E)—~ (AO)
If (E) > 0: skip
JUMPN 326 If(AC)#0: E— (PC) SKIPN 336  IfAC#0: (E)-> (AC)
If (E) #0: skip
JUMPG 327 If(AC)>0: E— (PC) SKIPG 337 IfAC#0: (E)~ (AQ)
If (E) > 0: skip
AQJ 340 (AO)+1-(AO) SOJ 360 (AC) - 1-(ACQ)
AOJL 341  (AC)+ 1-(AQ) SOJL 361 (AC) - 1-(ACQ)
If (AC)<0: E~(PC) If (AC)<0: E~(PC)
AOJE 342 (AC)+1-(AQ) SOJE 362 (AC) - 1-(AO)
If (AC) = 0: E-~ (PC) If (AC) = 0: E~- (PC)
AOJLE 343 (AO)+1-(AQ) SOJLE 363  (AC)-1-(AO)
If (AC)<0: E~ (PC) If (AC)<0: E~ (PC)
AOJA 344  (AC) +1-(AQ) SOJA 364 (AC) - 1-(AQ)
E— (PC) E- (PO)
AOJGE 345  (AC)+1-(AQ) SOJGE 365 (AC)—1-(AC)

*In the K110, 1 is added to or subtracted from each half separately.

If (AC)=>0: E~ (PC)

If (AC) = 0: E~ (PC)



AOJN

AOJG

AOS

AOSL

AOSE

AOSLE

AOSA

AOSGE

AOSN

AOSG

TLN

TLNE
TLNA
TLNN

TLZ
TLZE

TLZA
TLZN

346

347

350

351

352

353

354

355

356

357

601
603
605
607

621
623

625
627

(AC) + 1 (AC)
If (AC) # 0: E~ (PC)

(AC) + 1 > (AQ)
If (AC)>0: E-(PC)

(E)+1->(E)

If (AC) # 0: (E) > (AC)
(E) + 1> (E)

If AC #0: (E)— (AC)
If (E)<O0: skip

(E)+ 1->(E)

If AC # 0: (E)~> (AC)
If (E) = 0: skip
(E)+1->(BE)

If AC# 0: (E)~ (AC)
If (E)<0: skip

(E)+ 1~ (E)

If AC#0: (E)—> (AC)
Skip

E)+ 1->(E)
IfAC#0: (E)~> (AC)
If (E) 2 0: skip

(E)+ 1~ (E)
IFAC#0: (E)~ (AC)
If (B) # 0: skip

(E)+ 1~ (E)

If AC #0: (E)~ (AC)
If (E)>0: skip

SOJN

SOJG

SOS

SOSL

SOSE

SOSLE

SOSA

SOSGE

SOSN

SOSG

366

367

370

371

372

373

374

375

376

377

Logical Testing and Modification

No-op

If (AC)_AE = 0: skip
Skip

If (AC), AE #0: skip

(AC)LA~E~->(AC),

If (AC), AE =0: skip
(AC), A~ E~ (AC),

(AC)LA~E~—->(AC), skip

If (AC), AE #0: skip
(AC). A~ E~ (AC)y
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TRN

TRNE
TRNA
TRNN

TRZ
TRZE

TRZA
TRZN

600
602
604
606

620

622

624
626

(AC) - 1> (AC)
If (AC) #0: E -~ (PC)

(AC) — 1 - (AC)
If (AC)>0: E~> (PC)

(E) - 1->(E)

If AC#0: (E)— (AC)
(E) - 1> (E)

If AC#0: (E)— (AC)
If (B)<0: skip

(E)-1~>(B)

If AC#0: (E)~>(AC)
If (E) = 0: skip

(E)— 1> (E)
IfAC#0: (E)—> (AC)
If (B) < 0: skip

(E) - 1~>(E)

If AC#0: (E)~> (AC)
Skip

(E) - 1~ (E)

If AC# 0: (E)—> (AC)
If (E) = 0: skip

(E)— 1> (E)
IfAC#0: (E) > (AC)
If (E) # 0: skip
E)-1->(B)

If AC#0: (E) > (AC)
If (E) > 0: skip

No-op

If (AC)r AE =0: skip
Skip

If (AC)x AE #0: skip

(AC)g A~ E = (ACR

If (AC)r AE = 0: skip
(AC)g A~ E > (ACx

(AC)r A~ E— (ACr

If (AC)g AE #0: skip
(AC)g A~ E - (ACR

skip



TLC
TLCE

TLCA
TLCN

TLO
TLOE

TLOA
TLON

TDN

TDNE
TDNA
TDNN

TDZ
TDZE

TDZA
TDZN

TDC
TDCE

TDCA
TDCN

TDO
TDOE

TDOA
TDON

641
643

645
647

661
663

665
667

610
612
614
616

630
632

634
636

650
652

654
656

670
672

674
676

(AC), ¥ E~ (AC),

If (AC)L AE = 0: skip
(ACy ¥ E »> (AQ),

(ACy, ¥ E— (AQ),

If (ACy, NE #0: skip
(ACy, ¥ E—= (AQ),

skip

(ACy, VE~ (AC),

If (ACy, NE = 0: skip
(AC), VE~> (AC),

(ACx, VE— (AC),

If (ACy AE #0: skip
(AC) V E - (AC),

skip

No-op

If (AC)A (E) = 0: skip
Skip

If (AC)A(E) #0: skip

(AC)A~ (E) > (AO)

If (AC)A(E) = 0: skip
(AC)A ~(E) > (AC)

(AC)A~ (E) = (AC)

If (AC) A (E) # 0: skip
(ACO)A~(BE) > (AO)

skip

(AC) ¥ (E) > (AO)

If (AC)A (E) = 0: skip
(AC) ¥ (E) > (AC)

(ACO) v (E) > (AO) skip

If (AC)A (E) #0: skip
(AC) ¥ (E) > (AC)

(AC) v (E) » (AC)

If (AC)A (E) = 0: skip
(AC)V (E) = (AC)

(AQ)V (E) > (AC) skip

If (AC)A(E) #0: skip
(AC)v (E) » (AC)
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TRC
TRCE

TRCA
TRCN

TRO
TROE

TROA
TRON

TSN

TSNE
TSNA
TSNN

TSZ
TSZE

TSZA
TSZN

TSC
TSCE

TSCA
TSCN

TSO
TSOE

TSOA
TSON

640
642

644
646

660
662

664
666

611
613
615
617

631
633

635
637

651
653

655
657

671
673

675
677

(AC)g ¥ E > (AC)g

If (AC)R AE = 0: skip
(AC)r ¥ E ~ (AC)

(AC)g ¥ E > (AC)g

If (AC)r AE #0: skip
(AC)R vE- (AC)R

skip

(ACr V E~> (AC)g

If (AC)r AE = 0: skip
(ACR V E > (AC)g

(AC)Rr VE - (AC)

If (AC)x AE#0: skip
(AC)r V E = (AC)

skip

No-op

If (AC)A (E)s = 0: skip
Skip

If (AC)A (E)s# 0: skip

(AC) A~ (E)s~> (AC)

If (AC)A (E)g= 0: skip
(AC)A ~ (E)s > (AC)

(AC) A~ (BE)s—> (AC)

If (AC)A (E)s #0: skip
(AC)A ~ (E)s~> (AC)

skip

(AC) ¥ (E)s~ (AC)

If (AC)A (E)s = 0: skip
(AC) ¥ (B)s = (AC)

(AC)¥ (E)s > (AC)  skip

If (AC) A (B)s# 0: skip
(AC) ¥ (E)g~> (AC)

(AC)V (E)s ~ (AC)

If (AC)A (E)s = 0: skip
(AC)V (E)s = (AC)

(AC)V (E)s~> (AC)  skip

If (AC) A (E)s #0: skip
(AO)V (E)s = (AC)



ﬁ CHANNEL

1 e ® ® [ ] ® ® ] ® ® ® ® ® ® ® ® ®
2 LN L BN L BN J L BN J L AN J L AN J [ BN J L BN J
3 L AK B AR J L K BE AR J [ 2K BN BR J L 2K BN BR J

ojfofofo o|lof|o|o ojolo]o ojlo|ojo o|lolo}|o ojlo|o}o o|lofo]o o|lofo|o
4 L EE BN BR J [ BN BE BE L AN AR BN J ( BN AN BN J
5 { BE BN BR J ®o|® 0 O ( 2N BN BR J ( BN BN BN J

N 0 N 00 N 0 N0,

[ele]le] |{ [e]] [ |

NOTE: For characters and functions which are shown on the dark background, a 1 must be
punched in channel 8 when Zﬁ: parity is used.

10-0931
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PDP-10 WORD FORMATS

BASIC INSTRUCTIONS

INSTRUCTION CODE
{INCLUDING MODE) AR o r
0 89 12 13 14 17 18 35
IN-OUT INSTRUCTIONS
i DEVICE CODE INSTRUCTION | 1 ¥ y
0 23 9 10 1213 14 17 18 35
PC WORD
FLAGS 00000 PC
? 12, 13 17 18 35
T T T T e e e e e e
S -
* CARRY | CARRY | FLOATING| FIRST USER ADDRESS FLOATING | Ng *DISABLE BYPASS IN
OVERFLOW) ™o 1 |overriow| PART | USER | nour | PUBLIC | TRILURE | TRAP 2| TRAP 1| UNDER- | pyipe KL10 EXECUTIVE MODE
0 1 2 3 4 5 6 7 8 9 10 1" 12

BLT POINTER {XWD]}

SOURCE ADDRESS DESTINATION ADDRESS
0 17 18 35
BLKI/BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD {IOWDI
= WORD COUNT ADDRESS-1
0 17 18 35
BYTE POINTER
POSITION P SIZE S 7 X 4
0 56 1112 13 14 17 18 35
BYTE STORAGE
5 aits 4~ £ BITs -]
BYTE NEXT BYTE |
0 35-P-5-1 35-P 35-P+1 ‘ 35
PAGE MAP WORD
DATA FOR EVEN NUMBERED VIRTUAL PAGE DATA FOR 0DD NUMBERED VIRTUAL PAGE
PHYSICAL PAGE PHYSICAL PAGE
AVPIW|S|X ADDRESS BITS 14-26 AlP|S WX ADDRESS BITS 14-26
0 1 2 3 4 5 17 18 19 20 21 22 23 35
PAGE FAIL WORD
VIRTUAL PAGE
v ADDRESS BITS 18-26 FAILURE TYPE
0 8 9 17 3 35
20 SMALL USER VIOLATION 22 PAGE REFILL FAILURE
21 PROPRIETARY VIOLATION 23 ADDRESS FAILURE IF BIT 31150, BITS 31-35 HAVE THIS FORMAT 0 A W 5\ r
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FIXED POINT OPERANDS

71;‘“"‘1 BINARY NUMBER (TWOS COMPLEMENT)

[O ] 35
LOW ORDER WORD IN DOUBLE LENGTH FIXED POINT OPERANDS

0 LOW ORDER HALF OF BINARY NUMBER (TWOS COMPLEMENT)

FLOATING POINT OPERANDS

35

SioN EXCESS 128 EXPONENT
1- {ONES COMPLEMENT)

FRACTION (TWOS COMPLEMENT)

01

8'9

LOW ORDER WORD IN SOFTWARE DOUBLE LENGTH FLOATING POINT OPERANDS

35

0| EXCESS 28 EXPONENI-27 LOW ORDER HALF OF FRACTION {TWOS COMPLEMENT)

0t 89 35
LOW ORDER WORD IN HARDWARE DOUBLE LENGTH FLOATING POINT OPERANDS

0 LOW ORDER EXTENSION OF FRACTION (TWOS COMPLEMENT)

A-23

35



APPENDIX B
PROCESSOR CONTROL PANELS
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READER’S COMMENTS
KI10 MAINTENANCE MANUAL

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of
our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc.? Isit easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? ‘ Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name Organization

Street Department

City State Zip or Country
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