-1-

SYSTEM SOFTWARE
System software is one of the three major categories of software.
Refer to Figure 1.

SOFTWARE
SYSTEM APPLICATION MAINTENANCE
SOFTWARE SOFTWARE SOFTWARE

MRA-25859

Figure 1 Three Major Categories of Software

System software consists of an operating system or monitor and a
library of Commonly Used System Programs (CUSPs). Refer to Figure

SYSTEM
SOFTWARE
OPERATING
SYSTEM
GENERAL cusp cusp cusp
PURPOSE |—-——] SPECIAL PURPOSE |— SPECIAL PURPOSE |— /—{ SPECIAL PURPOSE
CMD SET CMD SET CMD SET CMD SET

MR-2558

Figure 2 Component Parts of System Software

The operating system directs and monitors the overall performance
of the system and supports a general purpose command set. T
CUSPs, in effect, extend the general purpose command set by
supporting individual special purpose command sets.

SYSTEM MONITORING - Directing and monitoring the overall
performance of the system is the most complex aspect of an
operating system. It involves tasks such as scheduling jobs for
execution, directing I/O operaticon, handling interrupts, and
managing system resources. Although field maintenance personnel
should have an overall understanding of this aspect of operating
systems, an in-depth knowledge is not generally reguired.

COMMONLY USED SYSTEM PROGRAMS (CUSPs) =~ The number and type of
CUSPs associateed with a given system program library depends
largely on the intended use of the system. Regardless of the
intended use of the system, however, the relationship between the
operating system and the CUSPs in the corresponding system program
library will remain the same. That is, the operating system will
support a set of general purpose commands and each CUSP will
support a unigue set of special purpose commands. Refer tc Figure
3.

COMPANY CONFIDENTIAL

SYSTEM
SOFTWARE
(TOPS-10}
MONITOR
FUNCTION
GENERAL (TECO} (DDT) {PIP)
PURPOSE EDITING ——] DEBUGGING —‘s S—- FILE TRANSFER
CMD SET CMD SET CMD SET CMD SET
OPERATING cusp cusp cusp
SYSTEM

MR.2549

Figure 3 Typical Operating System and CUSP Relationship

Figure 3 uses the TOPS-10 operating system and three CUSPs from
the TOPS-10 system program library to illustrate the relationship
between operating systems and CUSPs.

The general purpose command set supported by the operating system
enables system programmers, operators and users to perform the
following functions: gain access to the system, run existing
system and application software, communicate with system operators
or other users on the system, reguest system resources and
operator services as needed, and gather information concerning job
and system performance.

Three of the CUSPs which extend or supplement the TOPS-10 general
purpose command set are described below. Note that the CUSP
command set is selected for use via one of the general purpose
commands, usuallyy GET or RUN (e.g., RUN TECO<CR>).

The Text Editor and COrrector (TECO) supports commands which
enable the user to build and edit an ASCII text file. Later, this
file may be transformed into a usable program via an assembler or
compiler-type CUSP.

The Dynamic Debugging Technique (DDT) supports a command set which
allows the user to test and debug his program on-line before
putting it into operation.

The Peripheral Interchange Program (PIP) supports commands which
enable a user to copy or transfer files between standarad
peripheral devices.

For field maintenance personnel, command sets are the simplest and
most important aspect of system software. Some skill and
proficiency in using system software is essential to field
maintenance personnel because system software must be used to
maintain on-line file storage areas, run on-line {user wmode)
utility and diagnostic programs, and compile and print system
error logs.

System Software Command Format

Operating systems and system library programs use a command format
similar to the one illustrated in Figure 4.

SWITCHES
\

i | i
BASE CMD | ARGUMENTS ! \ 1 TERM
i t |

PRINT LPT0:[60,60] ERROR.LST/COPY:2<CR>

MR-2553

Figure 4 Typical System Software Command Format

COMPANY CONFIDENTIAL

BASE CMD - Tre base commané is usually a verb which describes the
task that the command w111 accomplish (e.g., GET, RUN,
PRINT,etc.).

ARGUMENTS =~ The arguments specify the base command parameters.
For example, the arguments supplied to the PRINT command
illustrated in Figure 4 specify LPTO: as the output device,
[60,60] as the project programmer numbers, and ERROR.LST as the
file to be printed.

SWITCHES ~ Switches cause a minor modification to the basic action
of the command. For example, the COPY:2 switch illustrated in
Figure 4 will cause two copies of the file ERROR.LST to be printed
instead of one, which 1is the default. For example, DIRECT
(60,601 /FAST<CR>, The FAST switch associated with the DIRECTORY
command will cause an abbreviated form of the directory area to be
printed.

TERM - The command terminator, usually a carriage return <CR>,
line feed <LF> or altmode <$>, directs the operating system or
CUSP to execute the command. As a result of executing the command
illustrated by Figure 4, line printer 0 will print two copies of
the file ERROR.LST, which is stored in the [60,60] project
programmer area cf the default input ,device (in this case the
system disk).

Although some syctem scftware commands do not require all of the
command elements described above, and some will prompt for missing
arguments, the basic format (BASE CMD ARGUMENTS SWITCHES TERM)
will generally remain the same for all system software. Thus,
learning to use system software is a relatively easy task.

Tips on Learning to Use System Software
The following are some tips you may find helpful when learning to
use new system software.

1. Study the file structure and organization used by the
operating system. This is important because many system
software commands are related to file generation,
modification and manipulation.

2. Think of system software in terms of command sets. Do
not become overly concerned with the monitoring function.

3. Think of each command individually in terms of what task
it will accomplish. Do not become overly concerned with
how the command achieves the task.

4, Review the general purpose command set supported by the
operating system. Become familiar with the type of
commands that are available.

5. Review the abstract and command set associated with each
CUSP in the system program library. Determine which
CUSPs you are most likely to use on a regular basis.

6. Design some exercises which will help you develop skill
and proficiency in using the system software. Remember
perfect practice makes perfect.

7. Finally, and most important - DON'T be intimidated by
system software. It is designed to be easy to use and
there are a lot of people using it that know far less
about computers than you do.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 20F

Summary
SYSLIB-20F
RSX-20F

#PARSER

COMPANY CONFIDENTIAL

TC

RSX-20F

GENERAL INFORMATION

The RSX-20F operating system is a real-time system executive for
DECsystem-10 and DECSYSTEM-20 console front-end subsystems.
RSX-20F supports the operator's console terminal (CTY), the KL10
console operations (start, stop, examine, deposit, etc.) and, in
the case of DECSYSTEM-20s, the low-speed I/O devices (i.e., line
printers, card readers, etc.).

Due to the limited core size of console front-end subsystems
(28K), the general command set supported by RSX-20F resides in a
nonresident task file referred to as PARSER. RSX-20F supports
only one resident command (T\). The T\ command will cause the
PARSER task file to be loaded and the general command set to be
made available to the user.

Table 1 RSX-20F Command Summary

Command Description

™ N

The control backslash command causes BSY-20F to 12ad znd
start the PARSER task file. PARSER supports the general
command set normally associated with an operating
system. Refer to the PARSER module.

ERROR MESSAGES
RSX~20F stop codes are listed and described in Table 2.

Table 2 RSX-20F Stop Codes

Stop Code Module Meaning
BF1 QPRDTE Buffer Failure 1
Free space allocation failed for DTE20

protocol header.

BO2 QPRDTE Bufffer Overflow 2
Free space allocation failed for data
transfer request in a TOll request.

BO3 SCOMM Buffer Overflow 3
Free space allocation failed on a TO10
queue request.

CBR PF Crobar Error
DTE20 power has not returned after a
power~-fail restart.

DTB QPRDTE TOll DTE20 Transfer Failure
The TOll address after a TOll transfer is
not what was expected.

DTD LC DTE20 Is Dead
The 11 got a Unibus timeout on the DTE20
with no power fail.

DTF QPRDTE TOl0 DTE20 Transfer Failure
The TO10 address in the DTE20 after a TO1l0
transfer was not what was expected.

EPE QPRDTE EBus Parity Error
A DTE20 command has resulted in an KL10
EBus parity error.

ETE QPRDTE TO1ll Transfer Error .
After a TOll transfer, TOL1ER (TOll Error)
is on in the DTE20 status register.

FTA LC Files Task Aborted
A task occupying F1l1TPD has aborted, TKTN
cannot be requested.

Ias SCH Unknown Significant Event
An unused bit in .SERFG has been set.

ILF QPRDTE Illegal Function - Protocol

A protocol function within the legal range
but currently unimplemented has been
received.

COMPANY CONFIDENTIAL

RSX-20F

-2-
Table 2 RSX-20F Stop Codes (Cont)

Stop Code Module Meaning

1LQ QPRDTE Illegal Queue Count
The protocol queue was not expected (i.e.,
was not incremented by 1).

LRF SCH Load Request FAILED
An attempt to load a nonresident monitor
routine into the F11TPD partition failed.

MPE LC Memory Parity ERROR
an 11 parity error has occurred.

NPF DMDTE Nonprivileged Front End
A front end connected to a DTE20 tried to
enter boot protocol.

PT1 QPROTE Protocol Broken
an illegal protocal device number was
specified in a TN1l request.

PT2 QPRDTE Protocol Error 2
An illegal protocol function was specified
in a TOll request.

PT3 QPRDTE Protocol Error 3
The indirect in progress bit was set in
the protocol; however, no TOll request was
in progress.

PT4 QPRDTE Protocol Error 4
Queue size has exceeded 100(10).

RES LC Reserved Instruction Trap
This is the PDP-11 trap to location 10.
An attempt was made to execute an illegal
or reserved instruction.

TO4 LC Trap at Location 4
0dd address, timeout, stack violation,
RPO4/06 error.

TBT LC T-Bit Trap
A BPT instruction was, executed or the
T-Bit was set by an RTI/RTT.

TET QPRDTE TO10 Transfer Error
Either TOLOER or MPEll is up in the DTE20
status register.

UIE QPRDTE Unimplemented Protocol Function
Either bit 0 or bit 2 was set in the
protocol status word.

UNT LC Unrecognized Trap Error
A trap occurred to an unused vector.

COMPANY CONFIDENTIAL

SYSLIB-20F

RSX-20F SYSTEM PROGRAM LIBRLRY
The RSX-20F System Program
files.

consists of four kinds of
Microcode files. These files 2 Is: the KL10 and are listed and
described in Table 1.

Boot files. These files are used by the front-end subsystem to
boot the KL10. They are listed and described in Table 2.

Automatic task files. These files are used by RSX-20F for various
houysekeeping tasks and are not normally lcaded by the user. They
are listed and described (for reference purposes) in Table 3,

User task files. These files are listed and described in Table 4.

Table 1 RSX-20F System Program Library Microcode Files

Tagk Description

KLA,MCB Microcode file for KL10 model PAs.

KLX.MCB | Microcode file for KL10 model PVs.

Table 2 RSX-20F System Program Library Boot Files

Task Description

BOOT.EXB Boot

Boots KL10 monitor system image into KL's core from
RIGID disk; is written in executable binary KL code.

MTBOOT.EXB Hagtape Boot
Allows transfer of a program's core image from

magtape into KL10's core; is written in executable
binary KL code.

Table 3 RSX-20F System Program Library Auto Tasks

Task Description

F11ACP.TSK Files-11 Ancillary Control Processor

File handler for front-end disk files (performs file
access, management, and control functions).

KLE.TSK KL Error -
Error processing of KL10 errors.
Uses diagnostic DTE functions.

Produces "snapshot" of KL10 error conditions for
troubleshooting.

Calls KLINIT when done.
KLI.TSK KL Initialization

Initializes the KL10 processor (produces installation
dialogue, loads microcode, runs bootstrap, etc.).

Called whenever system comes up.
KLR.TSK RLINIK Request
Checks RLINIK time window and KLINIK password when

RLINIK line rings, If they are correct, it then
enables KLINIK.

COMPANY CONFIDENTIAL

SYSLIB-20F

-2-
Table 3 RSX-20F System Program Library Auto Tasks (Cont)

Task Description

KLX.TSK KL Transfer
Transfers KLEER.SNP to SYSERR file in KL10.
(Not to be confused with KLX.MCB, which 1is the
filename of the KL10-PV microcode.)

MIDNIT.TSK Midnight
Roll over time of day at midnight.

SETSPD.TSK Set Speed
Sets line speed table for -10 after restart and sets
the time in the -10.

NOTE

Do not confuse this with the TOPS-20
program SETSPD.EXE. SETSPD.TSK is a
front-end task and it does not access
CNFG.CMD.

TKTN.TSK Task Termination Program
Outputs task termination notification and provides
orderly termination for front-end tasks.
Interfaces between KLINIT and KLERR (lets KLE call
KLI) .

T20APC.TSK TOPS-20 Ancillary Control Processor
File handler for files to be transferred to and from
the KL10's disk area.
Interacts with TOPS-20 area in terms compatible with
FILES-11 operations.

UFD.TSK User File Directory

Sets up directories in FILES-11 area.

Directories are "named" by a UIC (user identification
code) and enclosed in brackets: [X, ¥YI.

COMPANY CONFIDENTIAL

SYSLIB-20F

~3-

Table 4 RSX-20F System Program Library User Tasks

Task Description
COP.TSK Copy
Floppy disk copy utility.
Also allows verification of physical state of the
disk, as well as verification of successful copying.
DMO.TSK Dismount
Removes a device from the front-end system's
knowledge, making its contents inaccessible to the
user.
FEDDT.TSK Front-End DDT
Symbolic debuger for RSX-20F.
Permits user to read and print selected portions of
front-end crashes.
INT.TSK Initialize
Initializes FILES-11 devices to be recognizable
FILES-11 "VOLUMES".
Sets up master directory space, index and home
blocks, etc.
MOU.TSK Hount
Makes a device known to the system so that it can be
accessed by a given user.
PARSER.TSK Command Parser
Primary means of access to front-end programs.
Provides access to KL10's memory for diagnostic
functions, as well as debugging tools.
Will interface with KLINIK in future versions.
PIP.TSK Peripheral Interchange Program
Performs general file transfer and some maintenance
functions among FILES-11 devices and other
peripherals (e.g., floppy-to-disk file transfers,
file deletions, typing directories at console, etc.).
RED.TSK Redirect
Changes front-end system's "home" from one FILES-11
device to another, and tells system where it resides
presently,
SAV.TSK Save
Saves core image of front-end on RIGID disk in
FILES-11 area.
ZAP.TSK Zap

Permits direct examination and modification of files
on a FILES-11 volume.

Patch task images and data files in an interactive
environment.

COMPANY CONFIDENTIAL

EK-0KL10-03

NOV 1979 PARSER

GENERAL INFORMATION

The command PARSER runs as a task under the RSX~-20F executive.
Its primary function is to receive ASCII command strings, usually

from the console terminal, and perform console functions on
KL10 or PDP-11 computer.

the

Control Backslash - Command to RSX-20F to load

and run PARSER

PAR> Prompt - Indicates PARSER is ready to accept
commands, and the KL10 clock and run flip-flop
are on

PAR% Prompt -~ Indicates PARSER is ready to accept
commands, the KL10 run £lip-flop is off, and the
KL10 clock is on

PAR# Prompt - Indicates PARSER is ready to accept
commands, and the KL10 clock is off. This may
indicate an error condition

QUIT or "7 or Eyxit PARSER - Return to RSX-20F command mode.

SET CON/USER The CTY is connected to the program running in
the KL10

Note 1. Commands and arguments may be abbreviated to

the simplest form that uniquely identifies
them; e.g., the EXAMINE command may be typed

as E since no other commands begin with E.

2. The maximum number of characters in a command

line is 280.

3. Numeric arguments default to decimal unless

they are address or data arguments.
they default to octal.

COMMAND CONVENTIONS

The command conventions and special characters used by PARSER
described -in Table 1.

COMMAND SUMMARY

The command PARSER has four modes of operation. The mode is
by the SET CONSOLE command.

Maintenance Mode - Enables the commands described in Table 2.
Operator Mode - Enables the commands listed in Table 3.
Programmer Mode - Enables the commands listed in Table 4.

User Mode - Connects the console to the program running in
KL10. No PARSER commands are in effect.

Then

are

the

For a description of the commands listed in Table 3 and Table 4,

refer to Table 2.

Table 1 Command PARSER Special Characters

Character Meaning

? PAR>?<CR> or PAR>SET?<CR>

help message to be displayed.
: PAR>E PC;E 20;SH<CR>

command line.

A question mark typed at PARSER command,
subcommand, or argument level will cause a brief

Used to separate individual commands within a

! PAR>REP 5;E PC! SEE IF CPU IS IN HALT LOOP<CR>

Indicates a comment line.

<CR> PAR>SH<LCR>

Command line terminator - causes the command
to be executed.

-<CR> PAR>ST MO0-<CR>

dash.

line

Nullifies the <CR> terminator - allows the
command line to be continued on the next line.
The continuation 1line will prompt with another

COMPANY CONFIDENTIAL

PARSER

EK-0KL10-03

NOV 1979
—2-
Table 1 Command PARSER Special Characters (Cont

Character Meaning

“c PARCDE T 100:"C5<CR>
Digits preceded by an up arrow and a C are
interpreted as 1's complement.

“D PAR>DE E 200: "D5<CR>
Digits preceded by an up arrow and a D are
interpreted as decimal.

“B PAR>DE T 200: “B1010<CR>
pigits preceded by an up arrow and a B are
interpreted as binary.

) PAR>DE T 200:"05252<CR>
Digits preceded by an up arrow and an O are
interpreted as octal (default).

“0 A control O can also be used to suppress
printouts.

"z A control Z causes PARSER to exit. The console
is connected to the program running in the KL10.

' PAR>E E 34'<CR>
A single quote adds the current value of the
relocation switch to the number. See SET OFFSET.

" PAR>E E 34"CR>
A double quote subtracts the current value of the
relocation switch £rom the number. See SET
OFFSET.

- PAR>DE T 30:-1<CR>
A string of digits preceded by a hyphen (minus
sign) is interpreted as the 2's complement of the
value of the string.

+=*/ Two numeric expressions separated by plus, minus,
asterisk, or slash are evaluated by applying the
operations of addition, subtraction,
multiplication or division, respectively.

_ Two numeric expressions separated by underscore
are evaluated by shifting the first left by the
second. Example: 1_3 is 10 octal.

(2*8)/4 Parentheses may be used to enclose expressions.
Thus parentheses can be used to change the
implicit order of arithmetic operations.

Table 2 PARSER Maintenance Mode Command Summary
Cross

Command Description Ref.

ABORT PAR>A<CR> 1
Force the KL10 into the HALT loop.

See HALT.

CLEAR PAR>CL arg<CR>

The CLEAR command accepts the following
arguments. See SET commands.

CLOCK e.g., PAR>CL CL CON<KCR>
The CLEAR CLOCK command accepts the
following arguments.

CONTROL e.g., PAR>CL CL CONKCR>
Disable the control logic clock.

CRAM e.g., PAR>CL CL CR<CR>
Disable the CRAM clock.

DATA-PATH e.g., PAR>CL CL D<CR>
Disable the data path clock.

EXTERNAL e.g., PAR>CL CL E<CR>
Select the internal KL10 clock
source. Same as SET CLOCK
INTERNAL.

COMPANY CONFIDENTIAL

EK-0KL16-03
NOV 1979 PARSER

3=

Table 2 PARSER Maintenance Mode Command Summary (Cont)

Cross
Command Description - Ref.

FULL e.g., PAR>CL CL F<CR>
Set the KL10 clock rate to full
speed. Same as SET CLOCK FULL.

HALF e.g.,, PAR>CL CL H<CR>
Set the KL10 clock rate to full
speed. Same as SET CLOCK FULL.

INTERNAL e.g., PAR>CL CL I<KCR>
Select the internal KL10 clock
source. Same as SET CLOCK
INTERNAL,

MARGIN e.g., PAR>CL CL M<ICR>
Select the internal KL10 clock
source. Same as SET CLOCK
INTERNAL.

NORMAL e.g., PARMCL CIL N<CR>
Set the KL10 clock parameters
to internal source and full
rate with the CRaM, DATA-PATH
and CONTROL clocks enabled.

QUARTER €.9., PARMCL CL Q<CR>
Set the KL10 clock rate to full
speed. Same as SET CLOCK FULL.

SLOW e.g., PAR>CL CL S<CR>
Set the KL10 clock rate to full
speed. Same as SET CLOCK FULL.

CONSOLE e.g., PARMCL C<CR>
Put the console front end into operator
mode. Equivalent to SET CONSOLE OPERATOR.

DATE e.g., PAR>CL D<CR>

Clear the date validity bit and prompt
for a new date and time. This command
is invalid if RSX-20F is in primary
protocol; i.e., if the public structure
(PS) is mounted. See SET DATE.

FS-STOP e.g., PAR>CL FS<CR>

Disable the field service clock error
stop feature. Same as CLEAR PARITY-STOP
FS-STOP.

INCREMENT e.g., PAR>CL I<KCR>
Set the KL10 increment factor to 0.
See SET INCREMENT.

KLINIK e.g., PAR>CL K<CR> 16
Clear KLINIK parameters (only) .

MEMORY e.g., PAR>CL M<ICR>

Make KL10 memory the default for deposits
and examines. Not to be confused with
zeroing memory. See SET MEMORY and ZERO.

NOT e.g., PAR>CL NO REL<CR>
Used with CLEAR to negate the clear
function. 1t is equivalent to SET.

OFFSET e.g., PAR>CL O<CR>
Set the value of the PDP-11 relocation
counter to 0. See SET OFFSET.

COMPANY CONFIDENTIAL

EK-0KL10-03

PARSER NOV 1979
-4~
Table 2 PARSER Maint e Mode C d y (Cont)
Cross
Command Description Ref.

PARITY-STOP e.g., PAR>CL P ALLLCR>
The CLEAR PARITY-STOP command accepts
the following arguments.

ALL e.g., PARXCL P ALL<CR>
Disable all parity stop features.

AR e.g9., PAR>CL P ARKCR>
Disable the AR and ARX parity stop
features.

CRAM e.g., PAR>CL P C<CR>
Disable the CRAM parity stop feature.

DRAM e.g., PAR>CL P D<CR>
Disable the DRAM parity stop feature.

ENABLE e.g., PARXCL P ECCR>
Clear all parity stop enables. Same
as CLEAR PARITY-STOP ALLKCR>

FM e.g., PARXCL P FM<CR>
Disable the fast memory (FM) parity
stop feature.

FS-STOP e.g., PARMCL P FS<CR>
Disable the field service clock
error feature. Same as CLEAR FS-STOP

RELOAD e.g., PAR>CL REL<CR>
pisable the automatic reloading of the
KL10 following a fatal error condition.

REPEAT e.g., PARXCL REP<KCR>

Set the repeat counter to 0.

All subsequent command lines will be
repeated once. See SET REPEAT.

RETRY e.g., PAR>CL RET<CR>

Clear the PARSER RETRY flag. Every
KEEP-ALIVE-CEASED error will cause a
KLERR snapshot before reloading the KL1O.

TRACKS e.g., PAR>CL T<CR> 10
Clear the KL10 tracking function.
See SET TRACKS.

CONTINUE PAR>CO<CR> 2
Continue the KL10 running if it is
continuable (i.e., the KL10 has not been
reset) . See START.

DEPOSIT PAR>DE T N:500<CR>

The DEPOSIT command accepts the following
arguments. pefault: see SET MEMORY.

The previous contents of the location or
argument specified will be displayed.

AR e.g., PARCDE A:777777777777<CR>
Load data (777777777777) into the AR.

ELEVEN e.g., PAR>DE E 2000:500<CR>
Deposit data (500) into PDP-11 location
specified (2000).

DEPOSIT ELEVEN accepts the following
arguments. pefault: THIS.

' DECREMENT e.g., PAR>DE E D:500<CR>
peposit data (500} into the last

* PDP-11 location referenced minus

Y two (-2).

INCREMENT e.g., PARODE E 1:500<KCR>
Deposit data (500) into the

last PDP-11 location referenced
plus two (+2).

COMPANY CONFIDENTIAL

EK-0KL10-03

NOV 1979

Table 2

PARSER

-5-

PARSER Maintenance Mode Command Summary {Cont)

Command

Description

Cross
Ref.

DISCONNECT

EXAMINE

NEXT e.g., PAR>DE E N:500<CR>
Same as DE E I:500<CR> (INCREMENT)

PREVIOUS e.g., PAR>DE E P:500<KCR>
Same as DE E D:500<CR> (DECREMENT)

THIS e.g., PARMDE E T:500<CR>
Deposit data (500) into the
last PDP-11 location referenced.
THIS is the default.

TEN e.g., PAR>DE T 30000:500<CR>

Deposit data (500) into PDP-10 location
specified (30000). All references are to
a physical address. Paged (user) deposits
are not supported by PARSER. DEPOSIT TEN
accepts the following arguments. Default:
THIS

DECREMENT e.g., PAR>DE T D:500<CR>
Deposit data (500) into the last
PDP-10 location referenced minus
the increment value. See SET
INCREMENT.

INCREMENT e.g., PAR>DE T I:500<CR>
Deposit data (500) into the last
PDP-10 location referenced plus the
increment value. See SET INCREMENT.

NEXT e.g., PAR>DE T N:500<CR>
Deposit data (500) into the last
PDP-10 location referenced plus
one (+1).

PREVIOUS e.g., PARYDE T P:500<CR>
Deposit data (500) into the last
PDP-10 location referenced minus
one (-1)

THIS e.g., PAR>DE T T:500<CR>
Deposit data (500} into the last
PDP-10 location referenced.

THIS is the default.

PAR>DIKCR>

Disconnect the KLINIK link by running
KLDISC.TSK. The existing KLINIK para-
meters are not affected. See CLEAR
KLINIK.

PAR>EX T 3000<CR.
The EXAMINE command accepts the following
arguments. Default: see SET MEMORY.

ELEVEN e.g., PAR>EX EL 3000<CR>

Display the contents of the PDP-11
location specified (3000). EXAMINE
ELEVEN accepts the following arguments.
Default: THIS.

DECREMENT e.g., PARYEX EL D<CR>
Display the contents of the last
PDP-11 location referenced minus
two (-2).

INCREMENT e.g., PAR>EX EL I<KCR>

Display the contents of the last
PDP-11 location referenced plus

two (+2).

NEXT e.g., PAR>EX EL N<CR>
Same as EX EL I<KCR> (INCREMENT)

PREVIOUS e.g., PAR>EX EL P<CR>
Same as EX E D<KCR> (DECREMENT)

COMPANY CONFIDENTIAL

EK-0KL10-03

PARSER NOV 1979
6
Table 2 PARSER Maintenance Mode Command Summary (Cont)
Cross
Command Description Ref.

THIS e.g., PAR>EX EL T<CR>
Display the contents of the last
PDP-11 location referenced. THIS
is the default.

TEN e.g., PARPEX T 30000<KCR>

Display the contents of the PDP-10

location specified (30000). All references
are to a physical address. Paged (user)
examines are not supported by PARSER.
EXAMINE TEN accepts the following arguments.|
Default: THIS.

DECREMENT e.g., PARY>EX T DLCR>
Display the contents of the last
PDP-10 location referenced minus
the increment value. See SET
INCREMENT .

INCREMENT e.g., PARYEX T IKCR>
Display the contents of the last
PDP-10 location referenced plus
the increment value. See SET
INCREMENT.

NEXT e.g., PAR>EX T N<CR>
Display the contents of the last
PDP-10 location referenced plus
one (+1).

PREVIOUS e.g., PARDEX T P<CR>
Display the contents of the last
PDP-10 location referenced minus
one (-1).

THIS e.g., PAR>EX T T<CR>

Display the contents of the last
PDP-10 location referenced. THIS
is the default.

AB e.g., PAR>EX AB<KCR>
Display the contents of the Address Break
register.

AD e.g., PAR>EX AD<CR>
Display the state of the ADder.

ADX e.g., PARDEX ADX<CR>
Display the state of the ADder Extended

AR e.g., PAR>EX ARKCR>
Display the contents of the Arithmetic
Register.

ARX e.g., PARDEX ARX<CR>
Display the contents of the Arithmetic
Register eXtended.

BR e.g., PAR>EX BR{CR>
Display the contents of the Buffer
Register.

BRX e.g., PARDEX BRX<KCR>
Display the contents of the Buffer
Register eXtended.

CRADDR e.g., PAR>EX CRADDR(CR>
Display the contents of the Cram
ADDRess register.

CRLOC e.qg., PAR>EX CRLOC<KCR>
Display the contents of the CRAM LOCation
register.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 PARSER

Table 2 PARSER Maintenance Mode Command Summary (Cont)

Cross
Command Description Ref.

DRADDR e.g., PAR>EX DRADDR<KCR>
Display the contents of the DRAM ADDRess
register.

DTE-20 e.g., PAR>EX DTECCR>

Display the contents of the three DIAG
registers and the status register in the
DTE20.

EBUS e.g., PAR>EX EBUS<KCR>
Display the contents of the EBus.

FE e.g., PAR>EX FE<CCR>
Display the contents of the Floating
Exponent register.

FLAGS e.g., PAR>EX FLAGS<CR>
Display the state of the flag bits
(00-12) in the left half of the PC:

OVF, CY¥0, CYl, FOV, BIS, USR, UIO, LIP,
AFI, AT1, ATO, FUF and NOV.

FM e.g., PARDEX FM<CR>
Display the contents of the Fast Memory
register.

KL e.g., PAR>EX KL<CR>
Perform, in order, an EX PC, EX VMA, EX PI
and EX FLAGS.

MQ e.g., PAR>EX MQ<CR>
Display the contents of the Multiplier
Quotient register.

PC e.g., PAR>EX PC<KCR>
Display the contents of Program Counter.

PI e.g., PARDEX PIKCR>
Display the state of the Priority
Interrupt system.

REGISTERS e.g., PARDEX REGKCR>
Display the contents of the following
registers:

AD, ADX, AR, ARX, BR, BRX, EBUS, FM,
MQ, and PC.

SBR e.g., PAR>EX SBR<KCR>
Display the contents of the Subroutine
Return register.

SC e.g., PAR>EX SC<CR>

Display the contents of the Shift Count
register.

VMA e.g., PAR>EX VMAKCR>
Display the contents of the Virtual Memory
Address register.

VMAH e.g., PAR>EX VMAH<CR>
Display the contents of the Virtual Memory
Address Held register.

FREAD PAR>FR 110<CR>

Display the result of a diagnostic
function read using the function code
specified (110). The function code must
be in the range of 100 to 177.

FWRITE PAR>FW 77:252525777777<CR>

Perform a diagnostic function write
using the function code (77) and data
(252525777777) specified. The function
code must be in the range of 40 to 77.

COMPANY CONFIDENTIAL

EK-0KL10-03

PARSER NOV 1979
-8-
Table 2 PARSER Maintenance Mode Command Summary (Cont)
Cross
Command Description Ref.
FXCT PAR>FX 0<CR> 4
Perform a diagnostic function execute
using the function code specified (0).
The function code must be in the range
of 00 to 37.
HALT PAR>H<CR> 5
Halt the KL10. See ABORT and SHUTDOWN,
INITIALIZE PAR>ILKCR> 6
Check the state of the KL10 clock, run
flip-flop and opcode enable.
JUMP PAR>J 30000<CR>
Start the KL10 at the address specified
(30000) and exit. The address is in the
executive space and the processor mode is
not affected. See START TEN.
MCR PAR>M BOQT<CR>
Load and start the specified task file
(BOOT.TSK). Same as RUN.
QUIT PAR>Q<CR>
Exit from PARSER. Same as SET CONSOLE
USER<CR> or "Z.
REPEAT n PAR>REP 2;EX T N<CR> 7
Cause the command(s) in the remainder
of the line to be repeated n(2) times.
RESET PAR>RES ALL<CR>
The RESET command accepts the following
arguments. Default: <CR>.
<CR> e.g., PAR>RES<CR>
Cause a master reset of the KL10. The
state of the clock enables and parity
stops are not affected. This is
the default.
ALL e.g., PAR>RES AL<CR>
Perform a RES APR, RES DTE-20, RES PAG
and RES PI command. The KL10 must be
halted.
APR e.g., PAR>RES AP<KCR>
Execute a CONO APR,267760. The KL10
must be halted.
DTE-20 e.g., PAR>RES D<KCR> 8

Reset the DTE20.

ERROR e.g., PAR>RES E<CR>

Execute a CONO APR,27760 clearing
the error flags in the Arithmetic
Process Register (APR).

INITIALIZE e.g., PAR>RES IN<KCR>
Perform a KL10 master reset and return
clock enables and parity stops to their
default. The KL10 must be halted.

I0 e.g., PAR>RES IO<CR>
Execute a CONO APR, 200000 which causes;
an I/0 reset.

PAGE e.g., PAR>RES PAG<CR>

Execute a CONO PAG,0 followed by a
DATAO PAG,X (where the contents of
X = 100). This will reset the KL1O
paging box.

PI e.g., PAR>RES PIKCR>
Execute a CONO PI,10000 which resets

the Priority Interrupt system.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 PARSER

-9-

Table 2 PARSER Maintenance Mode Command Summary (Cont)

. Cross
Command Description Ref.

RUN PAR>RU PIP<CR>
Load and run the specified task file
(PIP.TSK). Same as MCR.

SET PAR>SET MEM TEN<CR>
The SET command accepts the following
arguments.

CLOCK e.g., PAR>SET CL N<CR>
The SET CLOCK command accepts the
following arguments.

CONTROL e.g., PAR>SET CL CON<CR>
Enable the control logic clock.

CRAM e.g., PAR>SET CL CR<CR>

DATA~PATH e.g., PAR>SET CL D<CR>
Enable the data path clock.

EXTERNAL e.g., PAR>SET CL E<CR> 9
Set (select) the KL10 external
clock source. PARSER will request
confirmation.

HALF e.g., PAR>SET CL H<CR>
Set the KL10 clock rate to one half
of the standard (divide by 2).

INTERNAL e.g., PAR>SET CL I<CR>
Set (select) the KL10 internal
clock source.

MARGIN e.g., PAR>SET CL M<CR>
Set (select) KL10 clock margins.

NORMAL e.g., PAR>SET CL N<CR>
Set the KL10 clock rate to the
standard (internal source, full
rate with CRAM, data-path and
control logic clocks enabled).

QUARTER e.g., PARDSET CL Q<CR>

Set the KL10 clock rate to one

quarter of the standard (divide
by 4).

SLOW e.g., PAR>SET CL S<CR>
Set the KL10 clock rate to one
eighth of the standard (divide
by 8).

CONSOLE e.g., PAR>SET CON M<CR>
The SET CONSOLE command accepts the
following arguments.

MAINTENANCE e.g., PAR>SET CON M<CR>
Set the console to maintenance mode.
The command set is unrestricted.
Refer to Table 2.

OPERATOR e.g., PAR>SET CON O<CR>

Set the console to operator mode.

The command set is restrictedto those
listed in Table 3.

PROGRAMMER e.g., PAR>SET CON P<CR>
Set the console to programmer mode.
The command set is restricted to those
listed in Table 4.

USER e.g., PAR>SET CON U<CR>
Exit PARSER. Leave the CTY
connected to the program running
in the RL1O.

COMPANY CONFIDENTIAL

PARSER

Table 2

EK-0KL10-03
NOV 1979

-10-

PARSER Maintenance Mode Command Summary (Cont)

Command

Cross
Description Ref.

DATE e.g., PAR>SET D<CR>

Set the date and time to be used by the
front-end executive, RSX-20F. This command
is illegal if RSX-20F already has a valid
date from a previous SET DATE command or
a reload of the KL1O.

FS-STOP e.g., PAR>SET F<CR>

Enable the Field Service Clock Error
stop feature in the KL10. This requires
backplane jumper wires to be meaningful.
same as SET PARITY-STOP FS-STOP.

INCREMENT e.g., PAR>SET I 10<CR>

Set the increment and decrement value for
KL10 deposit and examine commands to the
value specified (10).

KLINIK e.g., PAR>SET K<CR> 15
Set the KLINIK link for remote console
operation.

MEMORY e.g., PAR>SET M T<CR>
The SET MEMORY command accepts the
following arguments.

ELEVEN e.g., PAR>SET M E<CR>
Set the PDP-11 as the default memory
for deposits and examines.

TEN e.g., PAR>SET M T<CR>
Set the KL10 as the default memory
for deposits and examines.

NOT e.g., PAR>SET NO RELOAD<CR>
Used with SET to negate the SET function.
It is equivalent to CLEAR.

OFFSET e.9., PAR>SET O 101204<CR>

Set the PDP-11 relocation counter to
the value specified (101204). The
relocation counter is initially set to
the address of the PARSER root overlay.

PARITY-STOP e.g., PAR>SET P ALL<CR>
The SET PARITY-STOP command accepts the
following arguments.

ALL e.g., PAR>SET P ALL<CCR>

Set the parity stop enable to on
and enable the following parity
stop features. AR, CRAM, DRAM, FM
and FS-STOP.

AR e.g., PAR>SET P AR<CR>
aAdd stop on AR and ARX parity error
to the parity stop features.

CRAM e.g., PAR>SET P C<CR>
Add step on CRAM parity error to the
parity stop conditions.

DRAM e.g., PAR>SET P D<CR>
add stop on DRAM parity error to the
parity stop conditions.

ENABLE e.g., PAR>SET P E<CR>
Enable (turn on) the selected
PARITY-STOP features.

FM e.g., PAR>SET P FMKCR>
Add stop on a fast memory (FM) parity
error to the parity stop conditions.

FS-STOP e.g., PARDSET P FS<CR>

Enable the Field Service Clock Error
stop feature in the KL10. This
requires backplane jumper wires. Samel

as SET FS-STOP.

COMPANY CONFIDENTIAL

ER-0KL10-03

NOV 1979

Table 2

PARSER

-1i1-

PARSER Maintenance Mode Command Summary (Cont)

Command

Description

Cross
Ref.

SHUTDOWN

START

WHAT

RELOAD e.g., PAR>SET REL<CR>

Enable the automatic reload of the
KL10 by the PDP-11 front end. This is
the default. See CLEAR RELOAD.

REPEAT e.g., PAR>SET REP 5<CR>

Set the repeat counter to the decimal
value specified. All subsequent command
lines will be repeated that number

of times. The value will also be

used as a multiplier by the REPEAT
command.

RETRY e.g., PAR>SET RET<CR>
Set the PARSER RETRY flag. See CLEAR
RETRY.

TRACKS e.g., PAR>SET T<CR>
Display all FR, FW, FX, Examine, Deposit,
and DTE-20 operations.

PAR>SH<CR>

Gracefully shut down the TOPS-10 or
TOPS-20 operating system. This is done
by depositing a minus 1 in location 30.
Timesharing ceases.

PAR>ST M O<CR> or PAR>ST T 2000<CR>

The START command accepts the following
arguments. START with no arguments or
an argument of 0 is illegal. If
neither TEN nor MICROCODE is specified,
TEN is assumed.

MICROCODE e.g., PAR>ST M 0<CR>
Start the microcode at the address
specified (0).

TEN e.g., PAR>ST T 3000<CR>

Start the KL10 at the address
specified (3000). See CONTINUE and
JUMP.

PAR>W CL<CR>

The WHAT command accepts the following
arguments.

CLOCK e.g., PAR>W CL<CR>
Display the current clock state.
See SET CLOCK.

CONSOLE e.g., PAR>W CON<CR>
Display the current console mode.
See SET CONSOLE.

DATE e.g., PAR>W D<CR>

Display the state of the validity flag
and the current date and time held by
RSX-20F.

INCREMENT e.g., PAR>W I<CR>
Display the current increment/decrement
value. See SET INCREMENT.

KLINIK e.g., PAR>W K<CR>
Display the current status of the
_KLINIK link. See SET KLINIK.

MEMORY e.g., PAR>W M<CR>
Display the current default memory.
See SET MEMORY.

OFFSET e.g., PAR>W O<CR>

Display the current value of the
PDP-11 relocation counter. See SET
OFFSET.

17

10

11

12

13

15

COMPANY CONFIDENTIAL

EK-0KL10-03

PARSER NOV 1979
12~
Table 2 PARSER Maintenance Mode Command Summary (Cont)
Cross
Command Description Ref.
PARITY-STOP e.g., PAR>W P<CR>
Display the current state of the parity
stop feature., See SET PARITY-STOP.
RELOAD e.g., PAR>W REL
Display the current state of the KL10
automatic reload feature (ON or OFF).
See SET RELOAD.
REPEAT e.g., PAR>W REPKCR>
Display the current value of the
repeat counter. See SET REPEAT.
RETRY e.g., PAR>A RET<CR> 17
Display the state of the PARSER RETRY
flag. See SET RETRY.
TRACKS e.g., PAR>W T<CR> 10
Display the current state of the trace
enable feature (ON or OFF). See SET
TRACKS.
VERSION e.g., PAR>W V<CR>
Display the current version of PARSER
and RSX-20F.
XCT PAR>X 254200000000<CR> 14
Execute the argument (245200000000)
as a PDP-10 instruction. The KL10 must
be in executive mode.
ZERO PAR>Z 2008277<CR>
Zero PDP-10 physical memory from first
argument (200) through second argument
(277). Note: depending on the amount
of memory this may take a while.
Table 3 PARSER Operator Mode Command Summary
Command Description
ABORT PAR>ALCR>
CLEAR PAR>CL C<CR> or PAR>CL R<CR> etc.
The CLEAR command accepts the following arguments.
CONSOLE KLINIK NOT
INCREMENT MEMORY REPEAT
DISCONNECT PAR>DI<KCR>
EXAMINE KL e.g., PARXEX KL<CR>

PC e.g., PAR> EX PC<KCR>

ELEVEN e.g., PAR>EX EL adr<CR>
DECREMENT e.g., PAR>EX EL D<CR>
INCREMENT e.g., PAR>EX EL I<KCR>
NEXT e.g., PAR> EX EL N<CR>
PREVIOUS e.g., PAR> EX EL P<CR>
THIS e.g., PAR> EX EL T<CR>

TEN e.g., PHRXEX T adr<CR>
DECREMENT e.g., PAR>EX T D<CR>
INCREMENT e.g., PARYEX T IKCR>
NEXT e.g., PAR>EX T N<CR>
PREVIOUS e.g., PAR>EX T P<CR>

THIS e.g., PAR>EX T T<CR>

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 PARSER

-13-

Table 3 PARSER Operator Mode Command Summary (Cont)

Command Description

JUMP PAR>J 30000<CR>

MCR PAR>MCR BOOT<CR>

QUIT PAR>Q<CR>

REPEAT PAR>REP 2:EX T N<KCR>

RUN RU PIP<KCR>

SET CONSOLE e.g., PAR>SET CON M<CR>

The SET console command accepts the following four
arguments: USER, OPERATOR, PROGRAMMER and
MAINTENANCE.

INCREMENT e.g., PAR>SET I 10<CR>

KLINIK e.g., PAR>SET K<CR>

MEMORY e.g., PAR>SET M E<KCR> or PAR>SET M T<CR>

Table 4 PARSER Programmer Mode Command Summary

Command Description
ABORT PAR>ALCR>
CLEAR PAR>CL C<CR> or PAR>CL T<CR> etc.

The CLEAR command accepts the following arguments.

CONSOLE MEMORY REPEEAT
DATE NOT RETRY
INCREMENT OFFSET TRACKS
KLINIK RELOAD

CONTINUE PAR>CO<CR>

DEPOSIT AR e.g., PAR>DE A:data<CR>

ELEVEN e.g., PARDDE E adr: data<CR>
DECREMENT e.g., PARMDE E D:data<CR>
INCREMENT e.g., PAR>DE E I:data<CR>
NEXT e.g., PAR>DE E N:data<CR>
PREVIOUS e.g., PAR>DE E P:data<CR>
THIS e.g., PARMDE E T:data<CR>

TEN e.g., PAR>DET adr:data<CR>
DECREMENT e.g., PAR>DE T D:data<CR>
INCREMENT e.g., PAR>DE T I:data<CR>
NEXT e.g., PAR>DE T N:data<CR>
PREVIOUS e.g., PAR>DE T P:data<CR>
THIS e.g., PAR>DE T T:data<CR>

DISCONNECT PAR>DIKCR>

COMPANY CONFIDENTIAL

EK—-0KL10-03
PARSER NOV 1979

-14-

Table 4 PARSER Programmer Mode Command Summary (Cont)

Command Description
EXAMINE PAR>EX AB<KCR> or PARMEX PCKCR> etc.
The EXAMINE command accepts any of the following
arguments.
AB CRLOC MQ
AD DRADDR PC
ADX DTE-20 PI
AR EBUS REGISTERS
ARX FE SBR
BR FLAGS sC
BRX FM VMA
CRADDR KL VMAH

ELEVEN e.g., PAR>EX EL adr<CR>
DECREMENT e.g., PAR>EX EL D<CR>
INCREMENT e.g., PAR>EX EL IKCR>
NEXT e.g., PAR>EX EL N<CR>
PREVIOUS e.g., PAR>EX EL P<CR>
THIS e.g., PAR>EX EL T<CR>

TEN e.g., PAR>EX T adr<CR>
DECREMENT e.g., PAR>EX T D<CR>
INCREMENT e.g., PAR>EX T I<KCR>
NEXT e.g., PAR>EX T N<KCR>
PREVIOUS e.g., PAR>EX T P<CR>

THIS e.g., PAR>EX T T<CR>

HALT PAR>HLCR>

INITIALIZE PAR>ICCR>

JUMP PAR>J 30000<CR>

MCR PAR>MCR BOOT<CR>

QUIT PAR>Q<CR>

REPEAT PAR>REP 2;EX T N<CR>

RESET PAR>RES ALLCCR> or PAR>PAG(CR> etc

The RESET command accepts the following arguments.

ALL ERROR PAG
APR INITIALIZE PI
DTE-20 1/0

RUN PAR>RU PIP<CR>

SET CONSOLE e.g., PAR>SET CON M<CR>

The SET CONSOLE command accepts four arguments;
USER, OPERATOR, PROGRAMMER and MAINTENANCE.

DATE e.g., PAR>SET D<CR>

INCREMENT e.g., PAR>SET I 10<CR>

KLINIK e.g., PAR>SET K<CR>

MEMORY e.g., PAR>SET M ECCR> or PAR>SET M T<CR>

The SET MEMORY command accepts two arguments:
ELEVEN and TEN.

NOT e.g., PAR>SET NO arg<CR>

OFFSET e.g., PAR>SET O 101204<CR>

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 PARSER

-15-

Table 4 PARSER Programmer Mode Command Summary (Cont)

Command Description

RELOAD e.g., PAR>SET REL<KCR>
REPEAT e.g., PAR>SET REP 5<CR>
RETRY e.g., PAR>SET RET<CR>

TRACKS e.g., PAR>SET T<CR>

SHUTDOWN PAR>SH<CR>

START PAR>ST M<CR> or PAR>ST T 3000<CR>
The START command accepts two arguments: MICROCODE
and TEN, !

WHAT PAR>W CL<KCR> or PAR>W VKCR> etc.

The WHAT command accepts the following arguments,

CLOCK MEMORY RETRY
CONSOLE OFFSET TRACKS
DATE PARITY-STOP VERSION
INCREMENT RELOAD
KLINIK REPEAT

XCT PAR>X 254200000000<CR>

2ERO PARZ 200>277<CR>

COMMAND DESCRIPTION
This section describes in detail the commands listed in Table 2.

1 A<CR> - The ABORT command stops the KL10 by trying to force
it into the HALT loop. If this fails after a reasonable
number of EBox clock ticks, the command tries +to START
MICROCODE at CRAM address 0, which implies a master reset of
the KL10 processor.

NOTE
This is the best way to get the KL10
into a known state when the previous
state left it hung.

2 CO<CR> ~ The CONTINUE command takes the KL10 out of the HALT
loop, causing it to execute the instruction pointed to by the
PC. If single instruction mode was not set, the KL10 should
continue running. If single instruction mode was set via the
FXCT 12 function, the instruction is executed, and the KL10
is returned to the HALT loop.

3 FLAGS<CR> - The PC flag mnemonics displayed are defined as
follows.

AFI - Address Failure Inhibit (bit 08)

ATO - Trap 1 (bit 10)

AT1 - Trap 2 (bit 09)

BIS - First Part Done (bit 04)

CY0 - Carry 0 (bit 01)

CY1l - Carry 1 (bit 02)

FOV - Floating Overflow (bit 03)

FUF - Floating Underflow (bit 11)

LIP - Public (bit 07)

NDV - No Divide (bit 12)

OVF - Overflow/Previous Context Public (bit 00)
UIO - User In-Out/Previous Context User (bit 00)
USR - User (bit 05)

4 FX<CR> - The FXCT command accepts a number as a function
write code, performs the function write, and displays the
result. Useful values are 0 (stops the KL10 clock), and 1
(starts the KL10 clock). Random use of FXCT can cause false
CRAM parity errors. (Use the HALT or ABORT commands first.)

5 B<CR> -~ The HALT command tries to put the KL10 into the HALT
loop by clearing RUN, and waiting. If the KL10 is unable to
go into the HALT loop, the HALT command tries to force it in
by using BURST mode. If this does not work, an error message

is displayed.
COMPANY CONFIDENTIAL

EK-0KL10-03
PARSER NOV 1979

-16-

6 I<KCR> - The INITIALIZE command (re)initializes PARSER, and
checks the state of the KL10, sets up the KL10 state flag
word with default values and restarts the KL10 based on those
values. The following KL10 conditions are checked: clock
running, run flip-flop set, and opcode enabled. INITIALIZE
alsgochecks to see if this PDP-11 is running on a privileged
DTE20.

7 REP 2:EX T P<KCR> - The REPEAT n command causes the command(s
in the remainder of the line to be repeated n (2) times if
the SET REPEAT value is set to 1. See SET REPEAT. If the
SET REPEAT value is greater than 1 then it is multiplied by
the REPEAT n value and the commands are repeated that many
times.

8 RES D<CR> - The RESET DTE-20 command resets the DTE20 by
depositing a 1 in bit 6 of DIAG WORD 2 in the DTE20. Then
bit 0 in DIAG WORD 1 of the DTE20 is set to 1 indicating word
mode transfers.

9 SET CL E<CR> - The SET CLOCK EXTERNAL command selects the
external clock source for the KL10. If no external clock
source is connected, the KL10 is stuck and can only be reset
by powering the system down and then up again.

10 SET T<CR> - The SET TRACKS command causes changes in the
internal state of the KL10 to be displayed after each clock
tick. This is done via diagnostic reads and is primarily
used for debugging hardware or front-end software. This will
result in a lot of wasted paper if you are not careful.

11 SH<CR> - The SHUTDOWN command deposits a -1 (minus one) into
KL10 executive virtual location 30 (octal). It is used to
gracefully bring down the KL10 timesharing systems. It will
cause PARSER to exit if the deposit was successful, which
will cause the console terminal to be connected to either
EDDT (if loaded), or to the dead KLI10. If EDDT is not
loaded, the KL10 will execute a HALT instruction (TOPS-20
only) as soon as the clock interrupt is serviced.

12 ST M O0<CR> - The START MICROCODE command performs a KL10
master reset and starts the microcode at the microcode
address specified. Starting the MICROCODE at addresses other
than 0 is probably not helpful for most users.

13 ST T 30000<CR> - The START TEN command starts the KL10 at the
address requested using an algorithm determined by the
version of the microcode. It puts the KL10 into the HALT
loop, loads the address onto the AR, and does a function
CONTINUE, causing the KL10 to start at the address requested
in EXEC KERNAL mode. To start the KL10 without losing the
0ld processor mode, use the JUMP command, which will accept
an address, EXECUTE a JRST (opcode 254) to that address (in
EXEC Virtual Space), and continue in whatever mode the
processor was in.

14 X 254200000000<CR> - The XCT command takes a 36-bit octal
argument and executes it as a KL10 instruction.

NOTE
Executing an instruction with an opcode
of zero may cause random results because
the microcode uses op-code zero coming
out of the HALT loop for START and
CONTINUE.

15 SET KLINIR<CR> - The RSX-20F KLINIK 1link is enabled by
issuing a SET KLINIK command to PARSER from the local console
(CTY). PARSER will then request and validate the following
parameters.

PARSER will request the KLINIK mode desired with the
following prompt.

KLINIK MODE:

The acceptable response to this prompt is either USER or
REMOTE.

USER indicates that the KLINIK link is to be used as a
timesharing terminal line (only). See SET CONSOLE USER.

COMPANY CONFIDENTIAL

ER-0KL10-03
NOV 1979 PARSER

~17-

REMOTE indicates that the KLINIK link is to be used as a
remote console line in either Maintenance, Operator or
Programmer mode. See SET CONSOLE.

There is no default response to this prompt. If any
other response is supplied, the command will abort and
the local operator will receive one of the following
error messages:

PAR [SET] NSK NO SUCH KEYWORD "XXX"
PAR [SET] ILC ILLEGAL CHARACTER "C"

where "XXX" and "C" are the offending keyword and
character, respectively.

Next PARSER will request the KLINIK ACCESS WINDOW parameters
by printing the following prompts and accepting responses in
sequence.

ACCESS WINDOW OPEN DATE:
ACCESS WINDOW OPEN TIME:
ACCESS WINDOW CLOSE DATE:
ACCESS WINDOW CLOSE TIME:

The possible date formats are as follows.

DD-MMM-YY
DD-MMM~YYYY
DD MMM YY
DD MMM YYYY

DD is the decimal day, MMM is the alphabetic
representation of the month, and YY or YYYY is the
decimal year in which the KLINIK WINDOW is to open or
close. The default response to a date prompt is a
<carriage return>. This will set the Window Open Date
to TODAY, and the Window Close Date to TODAY + 1. TODAY

is the current date obtained from RSX-20F. See WHAT
DATE.

The day specified must be within the range of 1-31.
Date for months having less than 31 days will be
validated. This includes a special check for February
in a leap year. The month MMM is composed of the first
three letters of the month to be entered. The year may
be specified as either a Gregorian year, 19XX, or as a
year relative to 1900, (00 through 99) where the first
two digits are assumed to be the first two digits of the
current century. Failure to adhere to this syntax will
cause the command to abort, and one of the following
error messages to be printed.

PAR [SET] DOR DAY OUT OF RANGE -~ If the day specified
does not exist in the month specified.

PAR [SET] NSK NO SUCH KEYWORD "XXX" - If the keyword
specified for the month cannot be matched.

PAR [SET] AMB AMBIGUOUS KEYWORD "XXX"™ - If that keyword
is ambiguous. "XXX" is the offending keyword.

PAR [SET] YOR YEAR OUT OF RANGE - If the year has been
improperly specified.

PAR [SET] DBT DATE BEFORE TODAY - If the entire window
open or close date is prior to TODAY.

The Window Open Time and Window Close Time may be specified
in either of the following formats,

HHMM
HH:MM

HHMM is a representation of the hour and minute. In
both formats, HH is the hour and must be within the
range of 00 to 23, and MM is the minute and must be
within the range of 00 to 60. The default response is a
<carriage return>. This will set the Window Open Time

COMPANY CONFIDENTIAL

EK-0KL10-03
PARSER NOV 1979

-18~

and the Window Close Time to NOW. NOW is the current
time of day obtained from RSX-20F. See WHAT DATE.

Specifying a time which does not conform to this syntax
will cause the command to abort and the following error
message to be printed.

PAR [SET] TOR TIME OUT OF RANGE

Finally, when the complete specifications for both the
Window Open and Window Close times and dates have been
specified, the Window Open time and date will be checked
to ensure that it does precede the Window Close time and
date. If this is not the case, the command will abort
and the following error message will be printed.

PAR [SET) KWE KLINIK WINDOW ERROR

If the KLINIK mode specified was USER, the dialogue will
terminate at this point, as all necessary parameters have
been input. I1f the specified KLINIK mode was REMOTE, two
more parameters will be solicited from the operator. PARSER
will first request a password with the following prompt.

PASSWORD:

The local operator must communicate this password to the
remote KLINIK user in order that he be allowed access to
the KLINIK link.

The password must be at least one and not more than six
numeric or uppercase alphabetic characters, with no
imbedded or trailing blanks. There are no default
responses. The operator's response to this prompt will
be echoed on the local console (CTY).

Failure to provide a password in this form will cause
the command to abort and one of the following messages
to be printed.

PAR [SET] NPI NULL PASSWORD ILLEGAL - If no password was
specified.

PAR [SET] PTL PASSWORD TOO LONG - If more than six
characters were typed.

PAR [SET] IPC ILLEGAL PASSWORD CHARACTER "C" - If a
nonalphanumeric character was typed as a password
character. "C" is the offending character.

PARSER will next request that the operator specify the
highest PARSER console mode to be allowed while the KLINIK
link is active with the following prompt.

HIGHEST CONSOLE MODE:

The acceptable responses to this prompt areas follows
(See SET CONSOLE).

MAINTENANCE
OPERATOR
PROGRAMMER

While the KLINIK link is active, PARSER will not allow
the remote or the local console to raise the command
PARSER console mode, to a level higher than that
specified in response to this prompt. There is no
default response to this prompt.

Failure to provide the proper response to this prompt
will cause the command to abort and the following error
message to be printed:
PAR [SET] NSK NO SUCH KEYWORD "XXX"
where "XXX" is the offending keyword.
If all parameters have been properly input and validated,

PARSER will return to command level after displaying the
KLINIK enable parameters in the following format.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 PARSER

16

17

-19-

KLINIK [<ACTIVE> <INACTIVE> <DISABLED>]
ACCESS WINDOW OPEN: DD-MMM-YY HH:MM
ACCESS WINDOW CLOSED: DD-MM-YYY HH:MM
KLINIK MODE: [<REMOTE> <USER>]

ACTIVE indicates that the KLINIK user is connected to
the RSX-20F KLINIK link.

INACTIVE indicates that the KLINIK parameters have been
set, but access has not yet been allowed (i.e., the
WINDOW is not open yet).

DISABLED indicates that no KLINIK parameters have been
set.

If the KLINIK mode is REMOTE, one additional line will be
displayed describing the highest PARSER console mode to be
allowed.

CONSOLE MODE LIMIT: [<MAINTENANCE> <OPERATOR> <PROGRAMMER>]

Upon receipt of these parameters RSX-20F will log the SET
RLINI command and the parameters that were accepted.
Further, RSX-20F will pass these parameters to the KL10
operating system (TOPS-20 or TOPS-20), to facilitate KLINIK
recovery from a PDP-11 reboot.

CLEAR KLINIK<KCR> - The RSX-20F KLINIK link is disabled via
the CLEAR KLINIK command. This command does not accept
arguments, it simply clears the KLINIK WINDOW. If the KLINIK
link is active, the CLEAR KLINIK command will cause the
following message to be printed on both the local and the
remote consoles.

KLD KLINIK ACCESS TERMINATED BY OPERATOR

The current KLINIK enable parameters will be reset and passed
to the KL10 operating system (TOPS-10 or TOPS-20). The
KLINIK ACCESS WINDOW will close and RSX-20F will log the
KLINIK mode termination on the CTY. The modem will not be
hung up; however, all input from and output to the remote
console will be ignored and all subsequent calls made to the
KLINIK LINK will be acknowledged and rejected until such time
as a new KLINIK WINDOW is set by the local operator. The
rejection message will be in the following format.

KLR--KLINIK RING KLINIK-WINDOW CLOSED

This rejection message will appear on both the local and
remote consoles.

CL RET<CR> - When the RETRY flag is set, the occurrence of a
KEEP-ALIVE-CEASED error will result in the execution of the
instruction in location 71. The instruction typically
branches to a routine that will cause the KL10 operating
system (TOPS-10 or TOPS-20) to dump memory and request a
reload. 1f this can not be accomplished before the end of
the keep-alive period (5 seconds), then RSX-20F assumes that
the KL10 is incapacitated. In this case KLERR is called to
take a KL10 hardware snapshot and then reload the KL10.

If the RETRY flag is clear (CLEAR RETRY command) every
occurrence of a KEEP-ALIVE-CEASED error will result in a
KLERR snapshot and reload of the KL10.

PARSER Error Message Summary

APE

BAE

CAE

CBO

CDI

KL APR ERROR - The PARSER encountered a CPU error
(nonexistent memory, parity error, etc.

BURST ARGUMENT ERROR - This is an internal programming
failure. It may require a software specialist.

KLCRAM ADDRESS ERROR - This is an internal programming
failure. It may reqguire a software specialist.

COMMAND BUFFER OVERFLOW - You typed a command line that
was more than 280 characters in length. Reenter as two
or more command lines.

CLEAR DATE ILLEGAL - You tried to clear the internal
date while the KL10 was in primary protocol.

COMPANY CONFIDENTIAL

EK-0KL10-03

PARSER NOV 1979

CES

CFH

CLE

CNR

DAV

DBT

DMF

DNP

DSF

DTC

ECT

EOC

ESD

ESE

FRF

FXF

-20-

CLOCK ERROR STOP - code ERROR STOP ~ The variable, code,
is either CRAM, DRAM, FM, or FS-STOP. This message is
displayed when the CPU encounters a fatal internal
hardware error.

CAN'T FIND KL HALT LOOP - The PARSER tried to halt the
KL10 but failed.

CONSOLE LIMIT EXCEEDED - You tried to set a console mode
that was higher than the console mode specified in the
SET KLINIK command dialogue. This is not allowed while
the KLINIK link is active in remote mode.

COMMAND IS NOT REPEATABLE - You tried to repeat a
command that cannot be repeated. However, the command
has been executed once.

DATE ALREADY VALID - You tried to set a new internal
date and the date validity flag was on.

DATE BEFORE TODAY - While in the SET KLINIK command
dialogue, you tried to specify an open or close date
that was prior to the current date.

DIVIDE CHECK - This is an internal programming error.
It may require a software specialist.

DEPOSIT KL MEMORY FAILED =- This is an internal
programming failure. RSX-20F did not accept a deposit
directive. It may require a software specialist.

DTE-20 IS NOT PRIVILEGED - This is a fatal error. The
DTE20 mode switch is in the wrong position.

DAY OUT OF RANGE - You specified a day that does not
exist in the month you entered.

DTE-20 STATUS FAILURE - A read or write to one of the
DTE20 status registers failed.

DTE-20 CONFUSED - RUN AND HALT LOOP - This is a fatal
error. The run and halt loop flags were set
simultaneously, an impossible situation.

EBOX CLOCK TIMEOUT - While the PARSER was doing an
execute function, the KL10 failed to reenter the halt
loop within the allotted time.

EXAMINE KL MEMORY FAILED - This is an internal
programming failure. RSX-20F did not accept an examine
directive. It may require a software specialist,

END OF COMMAND REQUIRED - The command was ended with a ?
and no additional arguments are required. Retype the
command and press the RETURN key.

EBUS PARITY ERROR - This is a fatal error. The PARSER
encountered an EBus parity error.

EBOS STOPPED - DEPOSIT - The PARSER executed a deposit
directive and found that the KL10 clock was stopped.

EBOX STOPPED - EXAMINE - The PARSER executed an examine
directive and found that the KL10 clock was stopped.

FUNCTION READ nnn FAILED - A diagnostic function read
with function code nnn has failed. This is a fatal
error.

FUNCTION WRITE nnn FAILED - A diagnostic function write
with function code nn has failed. This is a fatal
error.

FUNCTION XCT nn FAILED - A diagnostic function execute

with function code nn has failed. This is a fatal
error.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 PARSER

IDF

IFC

ILC

ILs

I0C

irC

IRC

ITF

ITN

KCN

KLA

KLR

KNC

MRA

NDI

-21~

ILLEGAL DATE FORMAT - You entered a date in the wrong
format. The correct format is:

dd-mmm-yy

where the hyphens may be replaced by spaces and the year
may be entered as four digits. The day and year must be
numeric and the month must be alphabetic. The month may
be truncated to the point where it retains its
uniqueness.,

ILLEGAL FUNCTION CODE - This is either an internal
programming error or the result of entering a diagnostic
command with an invalid function code. The valid

function codes are as follows.

FREAD command takes codes 100-177
FWRITE command takes codes 40-77
FXCT command takes codes 0-37

If the message was not a resy en

esult of £
command, contact a software specialist.

ILLEGAL CHARACTER "c™ - The PARSER found an illegal
character in the command line and ¢ is the character's
printing equivalent. Nonprinting characters are
preceded by an up-arrow (") and converted to their
printing equivalent for output.

ILLEGAL SEPARATOR CHARACTER "s" - The PARSER found an
illegal separator character in the command line and & is
the illegal character. Nonprinting characters are
preceded by an up-arrow and converted to their printing
equivalent for output. Note that a tab is converted to
one space.

ILLEGAL KL OPCODE - Either you or the PARSER tried to
execute a KL instruction with an illegal op-code. If
this was not the result of an XCT command, you may need
a software specialist.

ILLEGAL PASSWORD CHARACTER "c" - During the SET KLINIK
dialogue, you typed a password containing "c," an
illegal character. You must use only numeric or
uppercase alphabetic characters in the password.

ILLEGAL REPEAT COUNT - You typed a 0 or negative
argument to either the REPEAT or SET REPEAT command.

ILLEGAL TIME FORMAT - You entered a time of day that was
not in the proper format. The PARSER expects a numeric
value of the form hh:mm or hhmm.

ILLEGAL TASK NAME - The RUN or MCR command was entered
with no task name,

KL CLOCK IS OFF - The KL10 clock is off and you tried to
execute a command that requires the clock to be on.

KL ADDRESS ERROR - You specified a KL10 address that was
out of range (over 22 bits), negative, or not in octal
radix.

ILLEGAL WHILE XL RUNNING - You tried to execute a
command that is illegal while the KL10 is running.

KL IS NOT CONTINUABLE - You tried to resume processing
with the CONTINUE command but the KL10 was not in a
continuable state. For example, you cannot CONTINUE
after a RESET command.

KLINIK WINDOW ERROR ~ During the SET KLINIK dialogue,
you specified a window close date and time that is prior
to the window open date and time.

MISSING REQUIRED ARGUMENT - You did not specify all of
the necessary arguments for the command.

NULL DATE ILLEGAL - During the SET DATE dialogue, you

answered the DATE: prompt with a carriage return. You
must supply a date.

COMPANY CONFIDENTIAL

EK-0KL10-03

PARSER NOV 1979

NER

NSK

NST

NTI

OAI

OFC

RPM

SCF

SKI

SPF

SzI

TAA

TOR

ONL

VFY

WRM

XTO

YOR

-22-

NUMERIC EXPRESSION REQUIRED ~ You entered a command that
expects a numeric expression as an argument and
something else was entered.

INPUT NUMBER OUT OF RANGE - You specified a number that
was out of range or in the wrong radix.

NULL PASSWORD ILLEGAL - During the SET KLINIK dialogue,
you answered the PASSWORD: prompt with a carriage
return. You must supply a password if one is requested.

NO SUCH KEYWORD "xxx" - You entered a command containing
the invalid keyword Xxx.

NO SUCH TASK - You specified a nonexistent task in an
MCR or RUN command.

NULL TIME ILLEGAL - During the SET DATE dialogue, you
answered the TIME: prompt with a carriage return. You
must specify a time,

ODD ADDRESS ILLEGAL - You tried to examine an
odd-numbered PDP-11 address.

ODD FUNCTION CODE - This is an internal programming
error. It may require a software specialist.

PASSWORD TOO LONG - During the SET KLINIK dialogue you
specified a password that was more than six characters
in length.

RIGHT PARENTHESIS MISSING - You omitted a right
parenthesis in a numeric expression.

SET CLOCK FAILED - The PARSER cannot validate the clock
enable parameters it has just set. This is a hardware
error.

SET KLINIK ILLEGAL WHILE KLINIK ACTIVE - You tried to
set new KLINIK parameters while the KLINIK link was
active. If you want to change the parameters, you must
first disconnect the KLINIK link by typing DISCONNECT or
CLEAR KLINIK.

SET PARITY FAILED - The PARSER cannot validate the
parity stop parameters it has just set. This is a
hardware error.

START AT ZERO ILLEGAL - You tried to start the KL10 at
location 0; this is illegal.

TASK ALREADY ACTIVE - You issued a RUN or MCR command
for a task that was already active.

TIME OUT OF RANGE -~ You specified a time in which the
hours were greater than 23 or the minutes were greater
than 59.

KL MICROCODE NOT LOADED - The system tried to start the
KL10 microcode and found that it was not loaded or was
not functioning. Use disk, DECtape, floppy, or the
switch register to reload the microcode and the system.

VERIFY FAILED - The PARSER cannot verify the correct
execution of a DEPOSIT command. This may require a
software specialist.

COMMAND NOT AVAILABLE IN THIS CONSOLE MODE - You entered
a command that is not available in the current console
mode. Use the SET CONSOLE command to change mode.

KL EXECUTE TIMED OUT - The KL10 failed to reenter the
halt loop within the allotted time while performing a
fast internal execute function.

YEAR OUT OF RANGE - You specified the year incorrectly.

COMPANY CONFIDENTIAL

EK-0KL10-01
JULY 1979 TOPS-10 TC

Table of Contents

Summary
SYSLIB~10
TOPS-10
DDT

PIP

8 SYSERR

COMPANY CONFIDENTIAL

SYSLIB-10

-1-

TOPS-10 SYSTEM PROGRAM LIBRARY
The programs in the TOPS-10 System Program Library are listed and
described in Table 1.

Table 1 TOPS-10 System Program Library

Program Description

AID Algebraic Interpretive Dialogue. Each command occupies
one line and can be executed immediately or stored as
part of a routine for later execution. This interpreter
requires no previous programming experience.

ALCFIL A program used for allocating space for a new file or
reallocating space for an existing file in one
contiguous region on the disk.

ALGOL ALGOrithmic Language. A scientifically oriented
language that contains a complete syntax for describin
computational algorithms.

BACKTP A program used to save disk files on magnetic tape, and
later to restore any or all of these files to disk.
Magnetic tape is the medium used for backup storage of
disk files and for transporting files between sites.

BASIC Beginner's All~purpose Symbolic Instruction Code. A
time-sharing computer programming language that is used
for direct communication between terminal units and
computer centers. The language was developed at
Dartmouth College.

BATCON The Batch controller. This program reads a job's
control file, starts the job, and controls the job by
passing commands and data to it. .

BLISS A programming language that enables users to write
programs consisting only of declarations, which
establish structure, and expressions, which compute
values. It is specifically designed for implementing
system software.

BOOTS A bootstrap program whose main functions are to load a
program into core from a SAVE file on a disk unit and/or
to dump core as a SAVE file for later analysis.

CHKPNT A program used to gather the information on the
utilization of the DECsystem-10 for accounting and
billing purposes.

COBDDT The COBOL Dynamic Debugging Technique. With COBDDT the
user can:

1. Change data-name contents,

2. Set breakpoints,

3. Continue the program,

4. Display the contents of a data-name, and
5. Trace paragraphs and sections.

COBOL COmmon Business Oriented Language. A programming
language used in programming data processing
applications.

COMPIL A utility program that allows the user to type a short,
concisg command string in order to cause a series of
operations to be performed. COMPIL deciphers the
command and constructs new command strings for the
system program that actually processes the command.
Several of the commands that invoke COMPIL are EDIT,
COMPILE, CREF, and EXECUTE.

CREF A program which produces a sequence-numbered assembly
listing followed by tables showing cross references for
all operand-type symbols, all user-defined operators,
and/or all operation codes and pseudo-op codes.

DAEMON A program for writing all or parts of a job's core area
and associated monitor tables onto disk.

DATDMP A program for dumping the core data base.

COMPANY CONFIDENTIAL

SYSLIB-10

~2-

Table 1 TOPS-10 System Program Library (Cont)

Program

Description

DDT

DIRECT

DSKLST

DSKRAT

DTBOOT

DUMP

EDDT

EDIT

FALLSAFE

FILDDT

FILEX

FORTRAN

FUDGE 2

GLOB

GRIPE

INITIA

LINK

The Dynamic Debugging Technique program used fo; on-line
checkout, testing, examination, modification, and
program composition of object programs.

A program for producing directory listings of disks and
DECtapes.

A program which gives status and statistics of all user
disk files at a given time.

A damage assessment program that scans a file structure
and reports any inconsistencies detected.

A bootstrap program used to save and restore core images
on DECtape or magnetic tape. It operates only in
executive mode.

A program that outputs selected portions of a file in
one of the various formats that can be specified by the
user.

Executive DDT (Dynamic Debugging Technique). A version
of DDT used for debugging programs, such as the monitor,
in executive mode.

A program used to build and edit ASCII text files.

A program used to save the contents of the disk on
magnetic tape and later restore the saved contents back
onto disk.

File DDT (Dynamic Debugging Technique). A version of
DDT used for examining and changing a file on disk
instead of in core memory. This program is used to
examine a monitor for debugging purposes.

A general file transfer program used to convert between
various core image formats and to read and write various
DECtape directory formats and standard disk files.

FORmula TRANslator. A procedure-oriented programming
language designed for solving scientific-type problems
by expressing the procedure for their solution as
arithmetic formulas. The language is widely used in
many areas of engineering, mathematics, physics,
chemistry, biology, psychology, industry, military, and
business.

A program used to update libraries containing one or
more relocatable binary modules and to manipulate
modules within these libraries.

A program used to read collections of relocatable binary
modules which have been loaded together (from both
library files and separate files) in order to generate
an alphabetical cross-referenced list of all the global
symbols encountered. When a program is composed of many
modules which communicate via global symbols, it is
useful to have an alphabetical list of all global
symbols with the names and modules in which they are
defined and referenced.

A program that accepts text from the user and records it
in a disk file for later examination by the operations
staff.

A program for performing standard system initialization
for a particular terminal. It is used to initiate
specific programs, such as the spooling programs, on the
designated terminal.

A program that provides automatic loading and relocation
of binary programs, producing an optional storage map.
and performs loading and 1library searching. Also, the
program loads and links relocatable binary programs and
generates a symbol table in core for execution under
DDT.

COMPANY CONFIDENTIAL

SYSLIB-10
-3-

Table 1 TOPS-10 System Program Library (Cont)

Program

Description

LINKER

LINKING
LOADER

LOGIN

LOOKFL

MONEY

MONGEN

OMOUNT

OPSER

PIP

PLEASE

QMANGER

QUEUE

QUOLST

REACT

RUNOFF

SCRIPT

SETSRC

soup

A program that combines many input modules into a single
module for loading purposes. Thus, it allows for
independent compilations of modules. Typically, it
satisfies global references and may combine control
sections.

A program that provides automatic loading, relocation,
and linking of compiler- and assembler-generated object
modules.

The system program by which the system users gain access
to the computing system.

A program for typing the characteristics of a single
disk file, such as creation date and number of words
written, on the terminal.

A program for reading the system's time accounting file
and assigning 2 monetary charge for esach user according
to the time and resources that he has used on the
system.

The monitor generator dialogue program that enables the
system programmer to define the hardware configuration
of his individual installation and the set of software
options that he wishes to select for his system.

A program that interfaces with the operator in order to
handle requests concerning removable media.

The OPerator SERvice program that facilitates multiple
job control from a single terminal by allowing the
operator or wuser to initiate several jobs from his
terminal.

The Peripheral Interchange Program which transfers data
files from one standard I/O device to another and
performs simple editing functions, such as sequencing,
trailing blank suppression, and compressing blanks into
tabs, and magnetic tape control functions.

A program that provides the user with two-way
communication with the operator via an operator's
terminal that is reserved for PLEASE commands and the
user's terminal.

The Batch queue manager. QMANGR is called by BATCON to
schedule jobs by computing and dynamically revising job
priorities.

The system program that allows users to add, delete,
list, or modify gqueue entries in the various system
queues.

A program that prints the user's quotas for each file
structure in his search list and the number of free
blocks available in each file structure.

A program for maintaining administrative control files.
It can be used to create, modify, delete or list entries
in a file.

A program that facilitates the preparation of typed or
printed manuscripts by performing formatting, case
shifting, line justification, page numbering, titling,
and indexing.

A program that sends predetermined sequences of
characters over multiple pseudoterminals in order to
simulate a load on the system for testing, measurement,
and analysis.

A program that allows the user to list or change his
search list.

The SOftware Updating Package that consists of a set of
programs for facilitating the updating of system or user
source files.

COMPANY CONFIDENTIAL

SYSLIB-10

—4-

Table 1 TOPS~10 System Program Library {(Cont)

Program

Description

SPRINT

SYSDPY

SYSERR

SYSTAT

TECO

UMOUNT

The Batch input stacker. SPRINT reads any sequential
input stream, sets up the job's control file and data
files, and enters the job into the Batch input queue.

A variation of the SYSTAT program which runs on a
keyboard display terminal (at up to 2400 baud). SYSDPY
maintains a dynamic display of system status by
periodically altering lines of the display to replace
old information with the latest information.

SYSERR is the report generating portion of the
DECsystem~10 and DECSYSTEM-20 error detection, recovery,
and reporting system. As an error is detected by the
monitor, various pieces of information describing
pertinent hardware and software status are gathered and
appended to a disk file, SYSERR is a user-mode program
which lists the contents of this file at the direction
of the command string.

A program that éutputs to the user's terminal status
information on the system as' a whole, on selected
aspects of the system, or on a selected job or set of
jobs.

A sophisticated Text Editor and Corrector program that
allows simple editing requests, character string
searches, complex program editing, command repetition,
and text block movement. TECO editing is performed on
files consisting of ASCII characters.

A program for user interfacing for the handling of
requests concerning removable media.

COMPANY CONFIDENTIAL

TOPS-10

TOPS-10 COMMAND LANGUAGE

The TOPS-10 Operating System supports aspproximately 96 commands.
The conventions used to 1llustrate these commands are described in
Table 1. The individual commands are arranged in alphabetical
order in Table 2.

Note that the complete command format has been shown for the
commands . Depending on the circumstances, only part of this
format may be required. Refer to the DECsystem-10 Operating
System Commands manual to determine the arguments required for a
particular task. 1Tn addition, the commands can be abbreviated as
long as the abbreviation does not conflict with any other command
abbreviation.

Many command strings allow wild-card characters to be used in
place of alphanumeric characters. These characters permit more
than one file or directory to be referenced by a single
specification. Two such wild-card characters are available:

1. * - The asterisk is a wild card for an entire field.
When positioned in the appropriate context, it means:

Examples
a. any filename or extension * . EXT FILNAM,*
b. any project number or programmer (*,1164) [27,*]
number (also, any subfile direc-
tory)
Note that *.* and [*,*] are also possible.
2. ? - The question mark is a wild card for a single

character. It can be used in any field mentioned above,
provided the * does not share the field. Tt means: any
character.

Examples:
.EX? FI???2.EX? 2ILNAM. [27,1162] [*,11?2

In addition, the directory name can be specified with the project
number, the programmer number, or both numbers missing.

ERROR MESSAGES
TOPS~10 operating systems use four types of stop codes.

DEBUG - If a priority interrupt is in progress, the
condition is not immediately harmful to the system or any
job. The monitor types out a message on the console
terminal and continues. If no priority interrupt 1is 1in
progress, a DEBUG stopcode acts the same as a JOB stopcode.

JOB - If no priority interrupt is in progress, the
condition jeopardizes the integrity of the current job. The
monitor sends a message to both the console terminal and
the user's terminal and aborts the job. If a priority
interrupt is in progress, then a JOB stopcode acts like a STOP
stopcode.

STOP - This condition jeopardizes the integrity of the entire
system. The monitor sends a message to the console terminal,
aborts all jobs, and reloads the system.

HALT - This condition is so serious that the monitor is not
going to do anything that might affect stored data. The
system executes a HALT instruction and waits for the
operator to initiate a reload.

Table 3 1lists and describes the STOP CODES associated with a
TOPS-10 operating system (6.03 release).

COMPANY CONFIDENTIAL

TOPS-10

-2~

Table 1 TOPS-10 Command Conventions

Convention

Description

adr

arg
control
file
core

dev:

devn:

devSnn:

[directory]

drives

file.ext

file
structure

input spec-
ifications

jobn

jobname

1h

logdev:

log file

n or m

<nnn>

prog
rh
/s

Ttape idfl

text

An octal address.

A letter or word specifying the desired function of
the command.

The name of the control file for the Batch System.

Decimal number of blocks (n or nK) or pages (nP) of
core.

Any physical (or logical, normally) device name
(e.g., MTA:). The colon must be included.

any phsical device name of three characters followed
by a unit number of one to three numerals (e.qg.,
DTA3:). The colon must be included.

any physical device name of three characters followed
by the letter S and a station number (e.g., LPTS2:).
The colon must be included.

A designation identifying a particular disk area.
This designation can be in the form [proj,prog] which
identifies a UFD or [proj,prog,sfd,sfd, ...1 which
identifies a sub-file directory path branching from a
UFD. The square brackets are required.

The physical drives on which a unit is to be mounted.
Any legal filename from one to six characters
followed by a dot and an extension of zero to three
characters.

The name of a particular disk. This name is usually
in the form DSKA, DSKB, etc.

File specifications for the disk files to be
processed.

A user's job number assigned by the system.

A name of up to six characters of the job being
entered into one of the system gqueues.

Left half of a 36-bit word.

Any logical device name from one to six alphanumeric
characters. The colon should be included.

The name to be given to the log file created by the
Batch system.

A number.

A letter.

A three-digit octal code indicating the protection of
a file. This code can appear only on the output side
of the command string and must be enclosed in angle
brackets.

A program name of six or fewer characters.

Right half of a 36-bit word.

One or more switches used to modify the command
string.

A one to six character identifying name recorded on a
DECtape.

A message to be sent to the designated user or
terminal.

COMPANY CONFIDENTIAL

TOPS-10

-3~

Table 1 TOPS-10 Command Conventions (Cont})

Convention Description

{user A numeric identification assigned to the user for
number] the purpose of gaining access to the system. It is
usually two numbers separated by a comma.

= An equal sign used in command strings to separate the
output specification (left of the egqual sign) from
the input specification (right of the ‘equal sign).

Table 2 TOPS-10 Command Summary

Command Description

ALCFIL R ALCFIL<CR>

Allocates space for a new file or reallocates space
for an existing file in one contiguous region on the
disk.

ASSIGN ASSIGN dev:logdev:<CR>

ASSIGN devSnn:logdev:<CR>

ASSIGN devn:logdev:<CR>

Allocates an 1I/0 device to the user's job without
operator intervention.

ATTACH ATTACH jobn [user number] <CR>

Detaches the current job and connects the terminal to
the specified detached job.

BACKSPACE BACKSPACE MTAn:m FILES<CR>
BACKSPACE MTAn:m RECORDS<CR>

Spaces a magnetic tape backward the specified number
of files or records.

CCONTINUE CCONTINUE<CR>

Continues the program from the point at which it was
interrupted, but leaves the terminal in monitor mode.

CLOSE CLOSE dev:<CR>

Terminates I/0 currently in progress on the specified
device, performs the CLOSE Uu0, but does not release
the device.

COMPILE COMPILE dev:file.ext [directoryl/s,...<CR>

Produces relocatable binary files (.REL files) for
the specified source files.

CONTINUE CONTINUEKCR>

Continues the program from the point at which it was
interrupted.

COPY COPY dev: Ttape id7 file.ext [directory] <nnn> =
dev:file.ext [directory]l, file.ext [directory],
«+.<CR>

Transfers files from one I/0 device to another.
CORE CORE core<CR>

Types or modifies the amount of core assigned to the
user's job.

CPUNCH CPUNCH jobname = dev:file.ext [directoryl/s, ...<CR>

Places entries into the card punch output spooling
queue,

COMPANY CONFIDENTIAL

TOPS-10

-4

Table 2 TOPS-10 Command Summary (Cont)

Command Description

CREATE CREATE file.ext<CR>
Opens a new file on disk for creation with LINED.

CREF CREF<CR>
Lists on LPT: any cross-referenced listing files
generated by a previous COMPILE, LOAD, EXECUTE, or
DEBUG command.

CSTART CSTART adr<CR>
Begins execution of a program that was either loaded
with a GET command oY interrupted, but leaves the
terminal in monitor mode.

D(eposit) D 1h rh adr<CR>
Deposits information in the user's core area.

DAYTIME DAYTIME<KCR>
Types the current date followed by the time of day.

DCORE DCORE dev:file.ext {directory] <CR>
Writes a core image file of the user's core area.

DDT DDT<CR>
Copies the saved program counter and starts the
program at the beginning address of ppT if DDT was
loaded with the program (automatic in 6.01).

DEASSIGN DEASSIGN dev:<CR>
Returns devices assigned to the user's job to the
monitor's pool of available devices and clears
logical names.

DEBUG DEBUG dev:file.ext [directoryl/s, ...<CR>
produces relocatable binary files (.REL files) for
the specified source files, loads the .REL files
along with an appropriate system debugging program,
and prepares for debugging.

DELETE DELETE dev:file.ext [directory]l, ...<CR>
Deletes files from DECtape or disk.

DETACH DETACH<CR>
Disconnects the terminal Erom the current job without
affecting the status of the job.

DIRECT DIRECT dev:file.ext [directory]l = dev:file.ext
[directoryl/s, ...<CR>
Lists the directory entries for the specified
arguments.

DISMOUNT DISMOUNT dev:/s, ...<CR>
Returns, via the operator, devices assigned to the
user's job to the monitor’'s pool of available
devices.

DSK DSK jobn<CR>
Types disk usage for the combined structures of the
specified job.

DTCOPY R DTCOPY<LCR>

Copies contents of one DECtape to another, clears the
blocks on a DECtape and clears the directory,
compares two DECtapes, and/or loads and writes a
bootstrap loader.

COMPANY CONFIDENTIAL

TOPS-10

~5-

Table 2 TOPS-10 Command Summary (Cont)

Command Description

ouMp DUMP/S ...<CR>
Writes a core image file, analyzes the file written,
and provides printed output.

DUMP R DUMP<CR>
Provides printable output of data files in specified
forms and modes.

E(xamine) E adr<CR>
Examines the specified core 1location in the user's
area.

EDIT EDIT file.ext<CR>
Opens the specified file already existing on disk for
editing with LINED.

EOF EOF MTAn:<CR>
Writes an end-of-file mark on the specified magnetic
tape.

EXECUTE EXECUTE dev:file.ext [directoryl/s, ...<CR>
Produces relocatable binary files (.REL files) for
the specified source files, loads the .REL files, and
begins execution.

FAILSAFE R FAILSAFE<CR>
Saves and restores disk files.

FILCOM R FILCOM
Compares two versions of a file and outputs any
differences.

FILE FILE arg, Ttape idl, file.ext, file.ext, ...<CR>
pProvides remote control, via the operator, of
DECtape-to-disk and disk-to-DECtape transfers.

FILEX R FILEX<CR>
Converts between various core image formats, and
reads and writes various directory formats.

FINISH FINISH dev:<CR>
Terminates I/0 in progress on the specified device
and performs the RELEASE UUO and DEASSIGN command.

FUDGE FUDGE<CR>
Creates a library REL file by reading a temporary
file generated by a previous COMPILE, LOAD, EXECUTE,
or DEBUG command containing the /FUDGE switch.

FUDGE2 R FUDGE2<CR>
Updates files containing relocatable binary programs,
and manipulates the programs within these files.

GET GET dev:file.ext [directory]l core<CR>
Loads a core image from the specified device, but
does not begin execution.

GLOB R GLOBKCR>

Reads multiple binary files to produce an
alphabetical crosgss-referenced listing of all global
symbols encountered.

COMPANY CONFIDENTIAL

TOPS-10

-6~

Table 2 TOPS-10 Command Summary (Cont)

Command

Description

GRIPE

HALT

HELP

INITIA

JCONT

KJOB

LABEL

LIST

LOCATE

LOGIN

MAKE

MOUNT

OPSER

pJOB

PLEASE

PLOT

R GRIPELCR>

Accepts text from a user and records it in a disk
file for the operations staff.

HALT<CR> or TC

Stops the job and stores the program counter in the
job data area. Control C can be used at user level
as well as at monitor level.

HELP dev:prog<CR> or HELP dev:*<CR>

Outputs useful documentation on various system
features.

INITIAKCR>

Performs standard system initialization for the
terminal issuing the command.

JCONT jobn<CR>

Continues the specified job if it was in a TC state
because of a call to the device error message routine
(HNGSTP) .

KJOB logfile = file structures/s<CR>

Gives up access to the system.

LABEL DEV: Ttape idT<CR>

Writes an identifier onto a DECtape.

LIST dev:file.ext [directoryl/s, ...<CR>

Lists the specified files on the line printer.

LOAD dev:file.ext {directoryl/s, ...<CR>

Produces relocatable binary files (.REL files) for
the specified files and loads the .REL files
generated.

LOCATE nn<CR>

Establishes, logically, the user's job at a specified
station.

LOGIN user number/s ...<CR>

Provides access to the system.

MBKE dev:file.ext [directory]<CR>

Opens a new file on disk for creation with TECO.

MOUNT dev:logdev:/s drives<CR>

allocates an I/0 device to the user's job via the
operator.

R OPSER<CR>
Provides multiple job control from a single terminal.
PJOBLCR>

Outputs the Jjob number to which the terminal is
currently attached.

PLEASE dev:prog! text<CR>

Provides two-way communication between the user and
the operator.

PLOT jobname = dev:file.ext [directoryl/s, ...<CR>

Places entries into the plotter output spooling
queue.

COMPANY CONFIDENTIAL

TOPS~-10

.

Table 2 TOPS-10 Command Summary (Cont)

Command

Description

PRESERVE

PRINT

PROTECT

PUNCH

QUEUE

QUOLST

REASSIGN

REATTA

REENTER

RENAME

RESOURCES

REWIND

RUN

SAVE

SCHED

PRESERVE file.ext, file.ext, ...<CR>

Renames the specified files with the standard
protection inclusively ORed with 100.

PRINT jobname = dev:file.ext [directory]/s, ...<CR>

Pleaces entries into the line printer output spooling
queue.

PROTECT file.ext<nnn>, file.ext<nnn>, ...<KCR>

Sets the specified £files to the requested
protections.

PUNCH jobname = dev:file.ext [directory]/s, ...<CR>

g

lac entries 1into the paper tape punch output

aces i
spooling queue
QUEUE queue name:jobname = input specifications<CR>
Enters items into the specified system queue.

R QUOLST<CR>

Types the used, loggin-in quota, and logged-out quota
for each file structure to which the user has access,
followed by the number of free blocks left on that
structure.

R file.ext core<CR>

Loads a core image from the system device (SYS:) and
starts it at the location specified within the file.

REASSIGN dev:jobn<CR>
Gives the specified device to the designated job.
R REATTA<KCR>

Transfers the job from the current terminal to the
specified terminal.

REENTER<CR>

Starts the program at an alternate entry point
specified by the program.

RENAME new = 0ld, new = old, ...<CR>

Changes the name and protection of one or more files
on DECtape or disk.

RESOURCES<CR>

Outputs the names of all available devices (except
for terminals and PTYs), all file structures, and all
physical units not in file structures.

REWIND dev:<CR>

Rewinds a magnetic tape or DECtape.

RUN dev:file.ext {[directory] core<CR>

Loads a core image from the specified device and
starts it at the location specified within the file.

SAVE dev:file.ext [directory] core<CR>

Writes a core image of the user's core area on the
specified device.

SCHEDXCR>

Outputs the schedule bits set by the last SET SCHED
command .

COMPANY CONFIDENTIAL

TOPS-10

—-8-

Table 2 TOPS-10 Command Summary (Cont)

Command Description

SEND SEND dev:text<CR>
SEND jobn text<CR>
Provides a one-way interconsole line of
communication.

SET

BLOCKSIZE SET BLOCKSIZE dev:nnnn<CR>
Sets the default blocksize for the specified magnetic
tape.

SET BREAK SET BREAK AT adr ON arg, ...<CR>
SET BREAK NO arg, ...<CR>
SET BREAK NONE<CR>
Sets address break in program according to specified
conditions used with KI1l0 processors only.

SET CDR SET CDR file<CR>
Sets the filename for the next card-reader spooling
intercept. .

SET CPU SET CPU CPxn<CR>

SET DENSITY

SET DSKFUL

SET DSKPRI

SET HPQ

SET PHYSICAL

SET SPOOL

SETSRC

SET TIME

SET CPU NO CPxn<CR>
SET CPU ALL<KCR>
SET CPU ONLY CPxn<CR>

Sets the CPU specification for the job. This command
is only available on multiprocessor systems (1055,
1077) and requires certain bits be set in the
privilege word.

SET DENSITY dev:nnn<CR>

Sets the default density for the specified magnetic
tape.

SET DSKFUL ERROR<CR>
SET DSKFUL PAUSE<KCR>

Controls the job when the user has exhausted his disk
space.

SET DSKPRI n<CR>

Sets the priority for the job's disk operations (data
transfers and head positionings). Requires certain
bits to be set in the privilege word.

SET HPQ n<CR>

Sets the high priority scheduler run queue for the
job. Requires certain bits to be set in the
privilege word.

SET PHYSICAL LIMIT core<CR>
SET PHYSICAL GUIDELINE COREKCR>

Specifies when the job will go virtual and specifies
a guideline for the page fault handler if GUIDELINE
is designated. Used with KI10 processors only.

SET SPOOL dev:, dev:, ...<CR>

SET SPOOL ALL<CR>

SET SPOOL NOWE<CR>

SET SPOOL NO dev:, dev:, ...<CR>

Adds devices to or deletes devices from the list of
spooled devices for this job.

R SETSRC<KCR>

Manipulates the job's search list or system's search
list.

SET TIME n<CR>

Sets the central processor time limit for the job.

COMPANY CONFIDENTIAL

TOPS-10

-9-

Table 2 TOPS-10 Command Summary {(Cont)

Command

Description

SET TTY

SET VIRTUAL
LTMIT

SET WATCH

SKIP

SSAVE

START

SUBMIT

SYSTAT

TECO

TIME

TPUNCH

TTY

TYPE

UNLOAD

USESTAT

SET TTY NO arg<CR>
SET TTY arg

Sets properties to be associated with the terminal.

SET VIRTUAL LIMIT core<CR>

Specifies the limit on the virtual memory for a job.
Used with KI10 processors only.

SET WATCH arg, arg, ...<CR>

SET WATCH ALL<CR>

SET WATCH NONE<CR>

SET WATCH NO arg, arg, ...<CR>

Sets the output of incremental job statistics.

SKIP MTAn:m FILES<CR>

SKIP MTAn:m RECORDS<CR>

SKIP MTAn:EOT<CR>

Moves the specified magnetic tape forward the
designated number of files or records or to the
logical end of tape.

SSAVE dev:file.ext [directory] core<CR>

Writes a core image of the user's core area on the
specified device. When it is loaded with a GET (or
RUN) command, the high segment will be sharable.
START adr<CR>

Begins execution of a program either previously
loaded with the GET command or interrupted while
running.

SUBMIT jobname = control file, log file/s<CR>

Places entries into the Batch input queue.
SYSTAT/S<CR>

Prints information about the current status of the
system.

TECO dev:file.ext [directory]<CR>

Opens the specified file for editing with TECO.

‘PIME jobn<CR>

Outputs the running time for the specified job.
TPUNCH jobname = dev:file.ext [directoryl/s, ...<CR>

Places entries into the paper tape punch output
spooling queue.

TTY NO arg<CR>
TTY arg<CR>

Sets properties to be associated with the terminal.
TYPE dev:file.ext [directoryl/s, ...<CR>

Types the specified files on the user's terminal.
UNLOAD dev:<CR>

Rewinds and unloads the specified magnetic tape or
DECtape.

USESTATCCR> or TT

Prints information on the terminal concerning the
user's job. Control T can be used at user level also.

COMPANY CONFIDENTIAL

TOPS-10

~10-

Table 2 TOPS-10 Command Summary (Cont)

Command Description

VERSION VERSION<KCR>
Qutputs the version number of a program on the
terminal.

WHERE WHERE dev:<CR>

Outputs the station number of the specified device.
ZERO ZERO dev: [directory] <CR>

Clears the directory of the specified device.

Table 3 TOPS-~10 STOP CODE Summary

Monitor STOPCD STOPCD

Module Name Type Comment

XTCSER 288 DEBUG DA28 is broken

FSXKON 41F DEBUG RS04 is not fancy

D85SINT SWE DEBUG DC75 wrong PDP-11 code
D6SINT 6DD DEBUG 11 gave too much direct data
D6SINT 6DI DEBUG Unexpected TOl0 DOWE interrupt
D6SINT 61D DEBUG 11 gave too much indirect data
D76INT 6MS DEBUG DC76 message is short

D76INT 6QF DEBUG DC76 queue full

D78INT 8BI JOB 222222222222

D78INT BIN JOB Input chararacter count is not 0
D78INT 8NC JOB Not enough monitor free core
D78INT 80N JOB Output chararacter count is not 0
D78INT 8PI JoB Positive IOWD

D60INT 8VI DEBUG DN60 wrong PDP-11 code
D78INT 8Vl DEBUG Version incorrect

FILFND AAD DEBUG A. T. already dormant

KISER ARO JOB Access allowed off

KLSER ARO Jos Access allowed off

COMMON AD# STOP CPU n address parity error
FILFND AES JOB Abnormal end of search list
PILIO AHB DEBUG Already have buffer

ONCMOD AHS HALT Already have structure
FILFND AOC DEBUG Already own CB

VMSER APF DEBUG Allocated page free

ONCMOD ARL DEBUG ASKDEC returned CPOPJ1
DTESER ARD STOP Runaway driver

KISER ARF STOP Attempt to return free page
KLSER ARF STOP Attempt to return free page
FILFND ARM DEBUG Access rings all messed up
DTESER BAA STOP Buffer already there

CORE1 BAC DEBUG Bit already clear

FILFND BAD JoB Block already dormant

FILIO BAO DEBUG Bit already one

FILIO BAZ DEBUG Bit already zero

DTESER BDN STOP Bad device number

TAPUUO BFO DEBUG Better find one

NETSER BFU DEBUG BUSY fouled up

FILIO BIN STOP I/0 to a negative block
FILUUO BMR Jos Block missing from RIB
COMMON BNF HALT BOOTS not found

FILUOUO BNR Jos Block not RIB

FILFND BNT DEBUG Block not there

CORE1 BNZ DEBUG Bit not zero

CP1lSER BPS HALT Both processors stopped
COMCON BRC DEBUG Bad return from CMPBIT

COMPANY CONFIDENTIAL

TOPS-10

~11-

Table 3 TOPS-10 STOP CODE Summary (Cont)
Monitor STOPCD STOPCD
Module Name Type Comment
SEGCON BSN STOP Bad segment number
XTCSER BSY DEBUG DA28 busy
FILIO BWA JoB Block went away
COMMON cp DEBUG CPU n power failed?
CP1SER CIN DEBUG CPU 1 NXM
FILUUO CAO DEBUG Cluster address odd
REFSTR Ccas HALT Could not allocate space
COMMON CD# STOP CPU n cache directory parity error
FILIO Cba DEBUG In core copy does not agree
MSGSER CDD JOB Cannot disconnect device
CLOCK1 CFP JOB Cannot find PDB
ONCMOD CGS HALT Cannot get STR data block
FHXKON CIF DEBUG RC10 is not FANCY
REFSTR CI0 DEBUG CFP is odd
SCNSER CLO STOP Chunk links to 0
FILFND CME DEBUG CFP modulo error
VMSER CMS DEBUG CORE1l must skip
SEGCON CMU STOP Core messed up
SCHED1 CNA STOP Core not available
FILUUO CNE DEBUG Cluster not even
FILOUO CNF DEBUG In core copy not found
KILOCK CRW STOP CA resource wrong
COMCON csa DEBUG Cannot set access allowed
FILIO CSE STOP Checksum error
SEGCON csp JoB Cannot store path
NETSER CWN DEBUG Core allocation went negative
FILIO DBZ DEBUG DEPLPC bit zero
FILUUO DCR DEBUG DELRIB CPOPJ return
FILOUO DDS DEBUG DELRIB did not skip
FILUUO DER DEBUG DELRIB error return
COMNET DFU DEBUG Device unrecognized
FILIO DHA DEBUG Do not have AU
FILIO DHB DEBUG Do not have buffer
FILIO DHD DEBUG Do not have DA
FILIO DND DEBUG Drive not dual-ported
DTESER DNE STOP Count not even
FILUUO DNF DEBUG DDB not found
DTESER DNH STOP Driver not hungry
DTESER DNI STOP DTE not ready
FILUUO DNR DEBUG DELRIB nonskip return
FILUUO DNS
COMCON DPL DEBUG Directory page lost
COMCON DPN DEBUG Directory page nonexistent
VMSER DSS DEBUG DLTSP skipped
DTESER EFI STOP Illegal function code
ERRCON EPO DEBUG Exec PDL overflow
REFSTR ERB DEBUG Error reading BAT block
ONCMOD ERD DEBUG Error refreshing disk
TAPSER ERF STOP ERP really fouled up
REFSTR ERH DEBUG Error reading HOME.SYS
ONCMOD ERM DEBUG Error reading MFD
REFSTR ERP HALT Too many retrieval pointers
ONCMCD ERS DEBUG Error reading SAT
FILFND ESS JOB Empty system search list
ERRCON EUE DEBUG Exec UUO error
REFSTR EWB DEBUG Error writing block
REFSTR EWH DEBUG Error writing HOME blocks
ONCMOD EWR DEBUG Error while refreshing
FILUUO FAD DEBUG File already dormant
VMSER FCZ DEBUG Funny core bit zero
FILIO FDP DEBUG Fixed head device positioned
NETSER FFU STOP F fouled up
VMSER FIp DEBUG Free page in use
SCNSER FLE STOP Free list empty
DTESER FNG STOP Illegal function code

COMPANY CONFIDENTIAL

TOPS-10

~12-
Table 3 TOPS-10 STOP CODE Summary (Cont)

Monitor STOPCD STOPCD

Module Name Type Comment

KILOCK FPF STOP Page on free list is not free

KISER FPI STOP Free page in use

KLSER FPI STOP Free page in use

KILOCK FPN STOP Free page not found

REFSTR HBE DEBUG Error reading HOME blocks

XTCSER HDS STOP 222222222

FILTO HIF DEBUG Hole in file

ONCE HNF HALT High segment not found

FILIO HWU JOB Hard wrong unit

CLOCK1 IBI JoB Intercept block illegal

FILIO IBZ JOB I/0 to block zero

SEGCON ICN DEBUG Incore count negative

ONCMOD inC HALT Impossible drum condition

KISER 1EZ DEBUG IOWD equals 0

KLSER 1EZ DEBUG IOWD equals 0

TAPSER IFI STOP Illegal function at interrupt

NETSER IFU DEBUG Interrupt flag unrecognized

FILIO IIP STOP I/0 in progress error

KISER IME JoB Illegal memory reference from exec

KLSER IME JoB Illegal memory reference from exec

DTESER Ipa STOP No post address

VMSER IPF DEBUG In use page free

VMSER IPM DEBUG Illegal pointer in MEMTAB

VMSER IPN DEBUG HIPC page not found

FILUUO IUN DEBUG Invalid unit number

UUOCON JAC DEBUG Job data area clobbered

ONCMOD JDJ DEBUG JFFO did not jump

SYSINI JIT HALT Job in transit

CORE1l JIW STOP Job's JDA is wrong

FILIO JNC DEBUG Job not in core

CLOCK1 JNE STOP JBTADR not equal to CORTAL

DPXKON KDS DEBUG KONEC2 did not skip

SYSINI KID HALT Controller is down

XTCSER KNF STOP Control not free

D8SINT KR3 STOP Message too large

TAPSER KSW DEBUG Controller status wrong

TAPUUO LDN DEBUG Tape label DDB not found

ERRCON LN1 STOP Line not there

QUESER LNP DEBUG Lock not found

FILIO LNP DEBUG Last pointer not a pointer

SCNSER LNS STOP Line not set up

ERRCON LNT STOP Line not there

FILUUO LPU JosB Last pointer unit change

CP1SER MAU DEBUG Master already unlocked

NETSER MBE DEBUG Monitor buffer exists

METCON MCH DEBUG MCDB is missing

FILFND MCN DEBUG Mount count negative

DTESER MDM STOP Master DTE missing

FILIO MHB DEBUG Must have buffer

ONCE MIW STOP Memory interleaving wrong

VMSER MIZ DEBUG MEMTAB is zero

ERRCON MMN HALT Monitor memory NXM ecrror

ERRCON MMP HALT Monitor memory parity error

KILOCK MMR STOP Moving monitor page not requested

FILIO MNA DEBUG Monitor buffer not available

SYSINI MNM STOP Monitor in nonexistent memory

KILOCK MPN STOP Monitor page not found

REFSTR MSR HALT No second RIB

NETSER MY1 STOP Incorrect just gave some back

NETSER MY2 DEBUG Already checked this in FEKINT

NETSER MY 4 DEBUG Garbage

NETSER MY5 DEBUG Garbage

FILUUO NAP JOB Not address pointer

CLOCK1 NCA STOP No core assigned

ONCMOD NDC STOP No DF10C code

COMPANY CONFIDENTIAL

TOPS-10

-13-
Table 3 TOPS-10 STOP CODE Summary (Cont

Monitor STOPCD STOPCD

Module Name Type Comment

SCNSER NDJ DEBUG No DDB for job

CLOCK1 NDP DEBUG Not DDB pointer

CLOCK1 NDS STOP Null job did SAVEGET

ONCE NED HALT No exec DDT

FILUUO NER DEBUG No extended RIB

UUOCON NEV STOP No exec virtual memory

FEDSER NFB STOP No front-end device block

DTESER NFC STOP No free core

RPXKON NFD DEBUG No front-end drive

VMSER NFS DEBUG No first slot

SYSINI NFU DEBUG No first unit

DTESER WIS STOP DTE in wrong state

TAPUUO NIV STOP Null interrupt vector

FILIO NMB DEBUG Need monitor buffer

ONCMOD NMC HALT No more core

NETSER NMF DEBUG No monitor buffer

REFSTR NMU DEBUG No more units

FILUUO NNF DEBUG NMB not found

FILUUO NNR JoB No next RIB

ONCMOD NNU DEBUG Not new unit

SCNSER NOT DEBUG No operator terminal

SCHED1 NPC STOP No PDB in core

FILIO NPD DEBUG No pointer in DDB

KILOCK NPF STOP Next page free

KLSER NPT HALT Not parity instruction

DATMAN NPJ DEBUG No PDB for job

KISER NPN STOP Nonexistent page not free

KLSER NPN STOP Nonexistent page not free

KISER NPP STOP No PI in progress

KLSER NPP STOP No PI in progress

ERRCON NPU STOP Null PDL underflow

VMSER NRF DEBUG SWPLST not really fragmented

FILUUO NRM JoB Next RIB missing

ONCMOD NRS DEBUG No RIB in SAT

VMSER NSE DEBUG No SWPLST entry

FILFND NSL JOB No such search list

REFSTR NSS DEBUG No space for SAT

FILIO NSU DEBUG No such unit

SCHED1 NTE STOP Not processor qgueue error

COMNET NTF STOP NT resource mixed up

FILFND NUB JoB No UFB block

FILUUO WUE DEBUG No UFB error

XTCSER NUT DEBUG Nonexistent unit interrupt

FILUUO NUN DEBUG NMB use count negative

FILUUO NUP DEBUG No unit change pointer

VMSER NUS DEBUG No unit for swapping

NETSER wve STOP Not a valid PCB

DTESER NWD STOP No doorbell

FILIO NXU DEBUG Wonexistent unit

VMSER OlF DEBUG Only one fragment

D8SINT OIP DEBUG Output on progress

FILUUO ONC DEBUG 0Odd-numbered cluster

VMSER P2L STOP Page too low

COMCON PRO STOP Page already out

DTESER PCI STOP Function code illegal

IPCSER PCN DEBUG Packet count negative

NETSER PCW STOP PCB count wrong

FILIO PDA DEBUG Pointers with different addresses

VMSER PEW DEBUG PAGTAB entry wrong

KISER PEZ STOP PAGPTR=0

KLSER PEZ STOP PAGPTR=0

KILOCK PFA STOP Page free already

VMSER PFC STOP Page on free core list

COMCON PGL STOP Pages got lost

ERRCON PIE STOP Priority interrupt error

COMPANY CONFIDENTIAL

TOPS-10

-14-

Table 3 TOPS-10 STOP CODE Summary (Cont)

Monitor STOPCD STOPCD

Module Name Type Comment

VMSER PIF DEBUG Page is free

VMSER PIN DEBUG Page in working set

KISER PIP STOP PI in progress

KLSER PIP STOP PI in progress

VMSER PIW DEBUG Page is not in working set
CLOCK1 PJO DEBUG Requeue JOB 0

FILIO PLP DEBUG Past last pointer

KISER PMU STOP PAGTAB is messed up

KLSER PMU STOP PAGTAB is messed up

FILIO PNE DEBUG Pointers not equal

FILFND PNM DEBUG Physical name mismatch
KILOCK PNP STOP Page not present

VMSER PNW DEBUG Page not in working set
CLOCK1 POP STOP PI on progress

SEGCON POR STOP Process out of range
FILIO PQE DEBUG Position gueue empty
KISER PSF STOP Page in segment free
KLSER PSF STOP Page in segment free
KLSER PTH HALT Parity trap halt

DTESER PTL STOP Packet too large

KLSER PTP HALT Page table parity

CORE1 PTT DEBUG Past top of table

SEGCON PUF JOoB Path UUO failed

FILUUO PUN DEBUG PPB use count negative
DTESER QEF STOP Queue entry full

SCNSER QWC DEBUG On wrong CPU

SCHED1 RBQ STOP Requeuing to beginning of queue
SCNSER RCC STOP Range checked chunk
FSXKON RDP DEBUG RS04 does not position
SEGCON RDS STOP Remap did not skip

ERRCON REH HALT Recursion in error handler
TAPSER RFU STOP Recovery fouled up

FPILIO RHN DEBUG Reread HOME block count negative
XTCSER RIE DEBUG Remote interrupt error
DPXKON RIF DEBUG RP10 is not fancy

D8SINT RIP DEBUG Read in progress

SCHED1 RJZ STOP Regueue JOB zero

ONCMOD ROU HALT Ran out of units

ONCMOD RPM DEBUG Retrieval pointer mismatch
VMSER RPZ STOP Returning page zero
ERRCON sac DEBUG Strange APR condition
CP1SER SAU DEBUG Slave already unlocked
COMMON SB# STOP CPU n SBus error

FILUUO SBT DEBUG Should not be truncating
VMSER SBW DEBUG SWPLST bits wrong

XTCSER scB DEBUG Spurious CONI bit

SEGCON SCR DEBUG Segment could not be read
FILUUO SER JoB SETDDO error return
FILUUO SFI JOoB STR free count inconsistent
FILIO SFU DEBUG Swapper fouled up

VMSER SIN DEBUG SWPCNT is negative

VMSER SLF DEBUG SWPLST full

FILUUO SLM DEBUG Search list missing

VMSER SLZ DEBUG SLECNT is zero

SCHED1 SMU DEBUG SWPCNT messed up

SCHED1 SMU DEBUG Try to recover from error
KILOCK SNF STOP Segment not found

SWPSER SNI DEBUG Swapping not in progress
SCHED1 S0D STOP Space on disk

ERRCON SOR STOP Segment out of range
FILUUO SPM JOB Second pointer missing
CP1SER SPS HALT Second processor stopped
ONCMOD SRE DEBUG SAT read error

SWPSER SRO STOP Space ran out

SWPSER SSD 3TOP Swap space disappeared

COMPANY CONFIDENTIAL

TOPS-10

~15-

Table 3 TOPS-10 STOP CODE Summary (Cont)
Monitor STOPCD STOPCD
Module Name Type Comment
KILOCK 8S0O STOP Segment swapped out
SWPSER SWN DEBUG SQREQ went negative
DTESER T1E STOP TOll error
XTCSER TCO DEBUG 222292222
XTCSER TC1 STOP
XTCSER TC2 DEBUG
XTCSER TC3 DEBUG
XTCSER TC4 DEBUG
XTCSER TC5 DEBUG
XTCSER TCé DEBUG
XTCSER TC7 STOP 2222222272
FILUUO TCI DEBUG Truncation check inconsistent
FILIO THP DEBUG Too many pointers
REFSTR TMR HALT Too many retrieval pointers
ONCMOD TMU HALT To0 many units
TSKSER TND DEBUG Tasks not defined
DTESER TNI STOP DTE not idle
DTESER TQP STOP Found queue point
DTESER TXE STOP TO10 error
FILIO UDE DEBUG Unit does not exist
FILOUO UDM JoB UFD data missing
FILUUO UFI STOP Unit free count inconsistent
D8SINT UID DEBUG Unexpected input done
ONCMOD UIF HALT Unit already in file STR
ERRCON UIL STOP UUO at interrupt level
XTCSER uIp DEBUG Not a unique interrupt
FILUUO UNF DEBUG UFB not found
COMMON UNJ DEBUG Illegal null job UUO
VMSER UNL DEBUG UPMP not last
D8SINT uon DEBUG Unexpected output done
FILUU UPC JOoB Unit change pointer clobbered
KLSER UPF HALT Unexpected page fail
FILIO UPI DEBUG Unit pointer illegal
TAPSER usw DEBUG Unit status wrong
VMSER WAD DEBUG WSBTBL and AABTBL discrepancy
DTESER WCN STOP Wrong CPU number
KLSER WPT HALT Wrong parity trap
SCHED1 XTH DEBUG XJOB too high
REFSTR 2BC DEBUG Zero blocks per cluster

COMPANY CONFIDENTIAL

DDT

GENERAL INFORMATION

DDT (Dynamic Debugging Technique) is a utility program for on-line
checkout, testing, and control of MACRO and FORTRAN programs. A
modified version of DDT is always loaded with the 1l0-based 10
diagnostic routines. Many of these diagnostics use DDT for
command interpretation and test dispatching (e.g., a diagnostic
which uses an $G following a test identification (FRTESTS$G) is
actually using a DDT feature to dispatch to the starting address
of the test). DDT supports many commands which are useful for
controlling diagnostics during maintenance.

DDT<CR> KLDCP and DIAMON command to start DDT

<CR><LF> PROMPT - DDT uses a carriage return followed by a
line feed to indicate it is ready to accept a
command .

$G Exit DDT - Begin execution of main (diagnostic)
program.

NOTES 1. This module summarizes the most commonly used

DDT commands. Refer to the Software Notebooks
for a complete list of commands.

2. Use symbolic location PATCH for building
special test routines or patching the main
program.

DATA AND COMMAND FORMATS
DDT has two primary data formats: symbolic and balfword.

SYMBOLIC: CAT+2/ MOVE 3,500
HALFWORD: CAT+2/ 200140,,500

Table 1 describes the data format field delimiters.
Table 2 summarizes the DDT commands.

Table 3 summarizes DDT error messages.

Table 1 DDT Field Delimiters

Delimiter Description

space A space delimits the op-code field.

’ A comma delimits the AC field.

{) Parentheses delimit the index field.

@ The @ symbol indicates indirect addressing.
' Double commas delimit halfwords.

COMPANY CONFIDENTIAL

DDT

-2-

Table 2 DDT Command Summary

Command

Description

Special Editing Commands

rubout

Tu
™

TR

The rubout key will cause the last character typed
to be deleted.

(Control U) Delete line.
(Control W) Delete last word, back to delimiter.

{Control R) Retype last line.

Arithmetic Operations

+

117+123<CR>
Addition

51-17<CR>
Subtraction

15*12<CR>
Multiplication

256 '16<CR>
Division

$8R

Set the base radix to n.

Address Modes

$a
SR

Set address mode to absolute numeric.

Set address mode to relative symbolic.

Printout Modes

$H Set printout mode to halfword.

$s Set printout mode to symbolic.

$T Set printout mode to ASCII text.

6ST Set printout mode to sixbit text.

Searching

acsw 2000<2050>MOVESW
Search for the key word "c." Begin the search at
address "a" and end the search at address "b."

Symbols

. a4 period represents the symbolic value of the
position pointer.

$Q Represents the last quantity typed

e Represents the indirect bit

names$: MAINS:
Opens local symbol table for use by DDT. Name
equals the name specified in the MACRO-10 title
statement. For most diagnostics the title is MAIN.

sym: CAT:
Insert a new symbol in the symbol table. Use the
current value of the pointer.

n<sym: 2017<CAT:
Insert a symbol in the symbol table. Use the value
specified by n.

sym$SK CATS$SK

Delete the specified symbol from the symbol table.

COMPANY CONFIDENTIAL

DDT
-3

Table 2 DDT Command Summary (Cont)

Command Description

Breakpoints

adr$B 4000SB
Set a breakpoint at the specified address.
Symbolic address may be used.

sSp Proceed from the breakpoint.

n$p 58P
Set the proceed counter to n and proceed from the
breakpoint.

$$P Proceed always

$B Remove all breakpoints.

0$nB

0$28

Remove the breakpoint specified by n

Instruction and Program Execution

inst$xX

$X

n$$X

$G

adr$G

MOVE 3,CAT+3$X
Execute the specified instruction once.

$X
Execute the instruction pointed to. Print the
operands and increment the pointer (PC).

48X
Repeat the $X command n times, printing the
operands and incrementing the pointer each time.

488X
Repeat the $X command n times. The operands are
printed for the last executive only.

Start the program at the normal starting address
{JOBSA) .

20508G<CR>
Start the program at the specified address.

Input Formats

inst

$, .8

"/a/

"as

$"/n/

$"as

MOVE AC4, CAT+3
Format for inputting a symbolic instruction.

777000,,000777
Format for inputting half words.

14
Format for inputting octal digits.

94.
Format for inputting decimal digits.

273.5
Format for inputting a floating point number.

"/THIS 1S A MESSAGE/
Format for inputting ASCII text,

"Y$
Format for inputting one ASCII character.

$"/THIS IS A MESSAGE/
Format for inputting sixbit ASCII text.

srys
Format for inputting one sixbit ASCII character.

COMPANY CONFIDENTIAL

DDT

-4

Table 2 DDT Command Summary (Cont)

Command

Description

Examine and Modify Locations

adr/

adr!

adr [

adr)

" (BACKSPACE)
TAB

$<

line feed

Carriage
return

CAT/<CR>
Print contents at address and leave open for
modification.

CAT! <CR>
Open address for modification but do not print
current contents.

MASK [<CR>
Print contents of address as a numerical value.
Leave open for modification.

Print symbolic contents of address. Leave open for
modification.

Examine address location minus one
Examine location specified by address

A patch is wmade by opening an address, typing
(ALTMODE) (ANGLE-BRACKET). This saves the current
contents of the address and opens the patch area
for new instructions. After the new instructions
are entered, the patching is closed by typing
{ALTMODE) (ANGLE-BRACKET) . The original contents
are then placed in the patch area followed by two
jump instructions which will return to the original
address +1 or +2, depending on whether the last
instruction in the patch skips or not.

Example:

ADDRESS/contents $<

PATCH/new instruction

PATCH +1/new instruction ¥>

PATCH +2/contents

PATCH +3/jump 1, ADR +1

PATCH +4/jump 2, ADR +2

Typing a line feed will close the current address
and cause the contents of the next seguential
address to be printed. The address will be left
open for modification.

Up arrow will cause the contents of the last
address specified minus one to be printed. The
address is left open for modification.

Typing a carriage return will clear the currently

open address. If modifications were made the new
contents are inserted.

Repeating Pr

intouts in Modes Other Than Prevailing or Temporary

Typing the = symbel following a symbolic printout
will cause the printout to be repeated in halfword
format.

Typing a dash (-) following a halfword printout
will cause the printout to be repeated in symbolic
format.

Typing the / symbol will print out the location
pointed to but will not change the pointer.

Typing the [symbol will print out the location
pointed to as a numeric value.

Typing the] symbol will print out the location

pointed to as a symbolic instruction.

COMPANY CONFIDENTIAL

DDT

Table 2 DDT Command Summary (Cont)

Command Description

Clear Memory

adr<adr$$z PATCHCPATCH+20$5$2
Clear memory from address to address.

Table 3 DDT Error Messages

Error Description

U Indicates the user typed an undefined symbol which
cannot be interpreted by DDT. Everything typed by
the user since the last DDT printout is ignored.

? Indicates an illegal DDT command has been typed or
a location outside of the user's assigned memory
area has been referenced.

COMPANY CONFIDENTIAL

PIP

GENERAL INFORMATION

PIP (Peripheral Interchange Program) is a utility program which is
used to transfer files between standard peripheral devices. PIP
can also perform editing and magtape control functions during file
transfers.

R PIP <CR> Monitor commmand to load and start PIP

* prompt - indicates PIP is ready to accept commands
TC Exit PIP - return to monitor command mode

Notes 1. This module is a summary of PIP intended for

use by field engineers. Refer to the Software
Notebooks for a complete description.

2. Wild characters, the asterisk (*) and question
mark (?) may be used in filename and extension
construction.

3. Octal constants may be used in filenames and
extensions. The octal constant must be
preceded by a pound sign (#) and delimited by a
nonoctal digit or a character.

4. Including the "/X" switch in a command string
will cause PIP to transfer each file separately
(file by file) to the destination device.

5. Excluding the "/X" switch from the command
string will cause PIP to combine (concatenate)
the specified source files into one large filie
on the destination device.

COMMAND CONVENTIONS AND SWITCHES
PIP command conventions and switches are described in the
following tables.

Table 1 PIP Command Conventions
Table 2 PIP Command String Delimiters
Table 3 PIP Acceptable Device Mnemonics
Table 4 File Protection Codes
Table 5 UFD and SFD Protection Codes
Table 6 PIP Control Switch Summary
Table 7 PIP Magtape Switch Summary

PIP Command String Format
A PIP command string consists of two fields separated by an egqual
sign (=) and terminated by a carriage return <CR>.

A PIP command string which is used to transfer files between I/0
devices has the following format:

DESTINATION = SOURCE <CR>
dev:file.ext/s/s[p,pn]<nnn>TidentT=dev:file.ext[p,pn]<CR>

A PIP command string which does not transfer files (i.e., move
magtape) has the following format:

DESTINATION = <CR>
MTA3: (MU)=<CR>

The eqgual sign delimiter and a terminator are still vrequired in
commands formatted in this manner despite the fact that only the
DESTINATION portion of the command is used.

The DESTINATION portion of a PIP command describes the device and
file(s) which is to receive the transferred data. This portion of
a command consists of one file specification.

The SOURCE side of the command describes the device from which the
transferred data is to be taken. This portion of a command may
contain one or more file specifications.

PIP command strings may be of any length; both upper and lower
case characters may be used. PIP commands are normally terminated
and the requested operation initiated by a carriage return.
However, an ALTMODE, ESC, line feed, vertical TAB, or form feed
can also be used as a command terminator.

COMPANY CONFIDENTIAL

PIP

-2-

Table 1 PIP Command Conventions

Convention

Description

dev:

[directory}

.ext

file

TidentT

<nnn>

Either a physical or a logical device name. Refer to
Table 3.

The identifier of a specific directory (i.e., UFD or
MFD) within the system. This identifier may consist
of a project, programmer number pair and Sub File
Directory (SFD) names.

A 1 to 3 character alphanumeric extension assigned to
the name of a file either by the user or by the
system.

A 1 to & character alphanumeric identification which
1s either to be assigned to a new file (when on the
destination side of the command) or which identifies
an existing file (when on the source side of the
command) .

A 1 to & character name which is to be given to the
contents of a DECtape reel mounted on a specified
DECtape unit.

A 3-digit protection code which is to be assigned to
either one or more destination files or to a
specified User File Directory. Refer to Table 4 and
Table 5 respectively.

Switches which affect the transfer. Aall switches in
a PIP command string must be preceded by a slash -
e.g., /sw/sw - or enclosed in parentheses - e.g.,
(sw/sw) . Refer to Table 6 for a summary of PIP
switches.

Table 2 PIP Command String Delimiters

Delimiter

Use and Description

<<

1l

The colon delimiter follows and identifies a device
name. For example, the device DTAl is specified as
DTAl: in PIP commands.

Square brackets are used to enclose the user
DIRECTORY numbers and SFD names {if SFDs are used).
For example [40,633] or [(40,633,SFD1,SFD2...SFDn]
represent the manner in which DIRECTORY numbers can
be written.

Angle brackets must be used to enclose a protection
code (e.g. <057>) which is to be assigned to either a
file or a user file directory (UFD).

Commas are used to separate user project and
programmer numbers, and file specification groups.
For example:

dev: {40,633]=dev:file.ext,file.ext<CR>

A name to be assigned as an identifier to a DECtape
is enclosed within a set of up-arrows f{e.g.
TMACFLST) .

A period delimiter must be the first character of a
filename extension. The form on an extension is
(.ext).

A number symbol is used as a flag to indicate the
presence of an octal constant in a filename or a
filename extension.

An exclamation symbol may be used to delimit a file
specification. When used, the ! symbol causes
control to be returned to the monitor from PIP and
the specified file (or program) to be loaded and run.
This function is provided as a user convenience to
eliminate the need for several control entries.

COMPANY CONFIDENTIAL

PIP

-3

Table 2 PIP Command String Delimiters (Cont

Delimiter Use and Description

= The equal sign must be used to separate the
destination and source portions of a PIP command -

O Parentheses are used to enclose magnetic tape
options, PIP control switches, and one or more PIP
function switches. The form of a command employing
parentheses to enclose a series of switches is:
dev:file.ext(swlsw2..swn)=...<CR>
Table 3 PIP Acceptable Device Mnemonics

Mnemonic Device

CDP Card Punch

CDR Card Reader

CTY Console TTY

DTA DECtape

DSK Disk

DPx Packs

FXx Fixed-Head

DIS Display

LPT Line Printer

MTA Magnetic Tape

OPR Operator Terminal

PTP Paper Tape Punch

PTR Paper Tape Reader

PLT Plotter

PTY Pseudo-TTY

SYS System Library

TTY Terminal

THP pPseudo-device TMPCO

Table 4 File Protection Codes

Code Permitted Operations

0 Change protection, rename, write, update, append,
read, execute.

1 Rename, write, update, append, read, execute.

2 Write, update, append, read, execute.

3 Update, append, read, execute.

4 nppend, read, execute.

5 Read, execute.

6 Execute only.

7 No access privileges. File may be looked up if the
UFD permits.

COMPANY CONFIDENTIAL

PIP

-4-

Table 5 UFD and SFD Protection Codes

Code Permitted Operations
0 Access not permitted.
1 The directory may be read as a file.
2 CREATEs are permitted.
3 The directory may be read as a file and CREATEs are
permitted.
4 LOOKUPs are permitted.
5 The directory may be read as a file and LOOKUPs are
permitted.
6 CREATEs and LOOKUPs are both permitted.
7 The directory may be read as a file and both CREATEs
and LOOKUPs are permitted.
Table 6 PIP Control Switch Summary
Switch Description
/DX Copy all but specified files
/F List disk or DTA directory (filenames and ext. only).
/G Ignore I/0 errors.
/8 Image binary processing (mode)
/I Image processing (mode)
/J Punch cards in ASCII (output device must be CDP) or
convert control characters on terminal output.
/b List directory.
MmN Delete sequence numbers.
/0 Same as /S switch, except increment is by 1.
/P FORTRAN output conversion assumed. Convert format
control character for line printer listing. /B/P
FORTRAN binary.
/Q Print (this) list of switches and meanings.
/R Rename file.
/s Resequence, or add sequence number to file; increment
is by 10.
/T Suppress trailing spaces only.
/0 Copy block 0 (DTA).
V'l Match and count angle brackets (<>).
Vsl Convert TABs to multiple spaces.
/X Copy specified files. (The DX switch tells PIP to
copy all but specified files.)
/Y DECtape to paper tape - If extension is:
RMT - A RIM1OB paper tape (with terminating
transfer word) is produced
RTB - A RIM1OB paper tape ({(with RIM loader and
terminating transfer word) is produced
SAV - A RIM1OB paper tape is produced (with
neither RIM loader nor terminating transfer word)
/2 Zero out directory

COMPANY CONFIDENTIAL

PIP
-5-

Table 7 PIP Magtape Switch Summary

Switch Description

(M2) Select 200 BPI density.

(M5) Select 556 BPI density.

(M8) Select 800 BPI density.

(MB) Advance MTA one file.

(M#nA) Advance MTA n files.

(MB) Backspace MTA one file.

(M#nB) Backspace MTA n files.

(MD) Advance MTA one record.

(M#nD) Advance MTA n records.

{ME) Select Even Parity.

{MF} Mark EOF.

(MP) Backspace MTA one record.

(M#nP) Backspace MTA n records.

{MT) Skip to logical EOT.

(MU} Rewind and unload MTA or DTA.

(MW) Rewind MTA or DTA.

Examples

The following are examples of commonly used PIP command strings:

EX1 - PIPing an ASCII file from the DISK to the line printer
LPT:=DSK:ERROR.SYS<CR>

EX2 - Combines two files on disk into one file on DECtape:
DTAl:FILCOM.MAC=DSK:FILA.MAC,FILB.MACKCR>

EX3 - Copies a paper tape
PTP:=PTR:<CR>

EX4 - Specifies that the DECtape on DTA3 be given the identifier

"MYFILE" and receive a copy of each file on DTAl.

DTA3: TMYFILET/X=DTAl:* . *<CR>

COMPANY CONFIDENTIAL

EK-0KL10-01
JULY 1979 TOPS-10 SYSERR

-1-

GENERAL INFORMATION

SYSERR is the report-generating part of the TOPS-10 error
detection, recovery, and reporting program. When the operating
system detects an error, both hardware and software error
information is recorded and stored in the system error file
(ERROR.SYS). SYSERR is the user mode program that reads, formats,
and prints the contents of the ERROR.SYS file.

LOADING AND STARTING PROCEDURE

+R SYSERRKCR> Typed at monitor command level
FOR HELP, TYPE "/HELP" Standard SYSERR message
* Prompt, indicates SYSERR is

ready to accept a command

SYSERR COMMAND FORMAT
SYSERR uses the following command format.

*dev:file.ext[p,pn] = dev:file.ext[p,pn)/s/s/.../s<CR>
(output, destination) = (input, source

The user may use all or any part of the following SYSERR default
command string.

DSK:ERROR.LST = SYS:ERROR.SYS/ALLSUM<CR>

For example:

*=<{CR> Uses the entire default command
string.
*PTY :=<CR> Changes the output device from the

disk to terminal.

*=/DEV:RP04/DETAIL:<CR> Produces a detailed report on all
RP04s.

*TTY:=/BEGIN:~1D<CR> Produces a summary report of the last
day entries.

NOTE

The name of the output file (default =
ERROR.LST) will change if a primary
switch is used. The name of the output
file will be the same as the name of the
first primary switch specified. For
example, if the /MASALL switch is used,
then the name of the output file will
become MASALL.LST.

SYSERR CONTROL SWITCHES

The content of the SYSERR report is controlled by the switches
appended to the SYSERR command string. There are two types of
control switches: primary switches and secondary switches.

Primary Switches - The primary switches determine the type of
report that SYSERR will generate. Refer to Table 1., Note that a
single command string may have any number of primary switches.

Secondary Switches ~ The secondary switches are used to limit the
report to a particular device, group of devices or date and time
period. Secondary switches also control the level of detail
reported. Refer to Table 2.

Table 1 SYSERR Primary Switches

Switch Description

/ALL *=/BLL<CR>
List all entries in the input file.
/allNXM *=/ALLNXM<CR>

List all entries that pertain to nonexistent memory
conditions (NXM).

/allPAR | *=/ALLPARKCR>

List all entries that pertain to parity errors.

COMPANY CONFIDENTIAL

EK-0KL10-01
SYSERR JULY 1979

-2-

Table 1 SYSERR Primary Switches (Cont)

Switch Description

/allPER *=/ALLPERSCR>
List all performance-related entries.
/allsuM *=/ALLSUM<CCR>

List a summary of each entry in the input file.
This is the default switch.

Central Processor Switches

/cpuALL *=CPUALL<CR>

List all CPU, main memory, and system-related entrigs.
The front-end subsystem for the KL10-based system will
also be listed.

/cpuCHK *=/CPUCHK<CR>

List all continued STOPCD (stop code) entries.

/CPuNXM *= /CPUNXM<CR>

List all entries that may have been caused by a
CPU~detected nonexistent memory (NXM).

/CcpuPAR *= /CPUPAR<CR>

List all entries that pertain to CPU-detected parity
errors.

/CPUPER | *=/CPUPER<CR>
List all CPU and system-related performance entries.
/<cpuRLD *=/CPURLD<CR>

List all system reload entries.

Channel Switches

/<hnALL *=/CHNALL<CR>

List all entries that pertain to the data channels (both
internal and external).

/chnNXM *= /CHNNXM<CR>

List all entries that were caused by a channel-detected
nonexistent memory (NXM).

/chnPAR *=/CHNPARCCR>

List all entries that pertain to data channel-detected
parity errors.

Communication Subsystem Switches

/comALL *=/COMALL<CR>

List all entries that pertain to DLlO-based
communications subsystem.

Disk Subsystem Switches

/dskALL *=/DSKALL<CR>

List all (non-Massbus) fixed and moving head disk
entries.

/dskBTH *=/DSKBTH/DEV:DPA<CR>
List both the device and data channel entries for the

device specified. The secondary switch /DEV: should be
used with this switch.

COMPANY CONFIDENTIAL

EK-0KL10-01
JULY 1979 SYSERR

-3-

Table 1 SYSERR Primary Switches (Cont)

Switch

Description

/dskPAR

/dskPER

*=/DSKPARKCR>

List all (non-Massbus) fixed and moving head disk
entries that pertain to parity errors.

*=/DSKPER<CR>
List all disk performance entries. These entries will

not be recorded in ERROR.SYS unless DAEMON is assembled
with the FTUSCN switch turned on.

Magtape

Subsystem Switches

/magALL

/magPAR

/magPER

*=/MAGALL<CR>
List all {non-Massbus) magtape entries.
*=/MAGPAR<CR>

List all (non-Massbus) magtape entries that pertain to
parity errors,

*=/MAGPER<CR>

List all magtape-related performance entries.

Massbus

Controller Switches

/masALL

/masBTH

/masNXM

/masPAR

*=/MASALL<CR>

List all entries that pertain to Massbus devices.
*=/MASBTH/DEV :MTB4<CR>

List both the Massbus and the data channel entries for
the Massbus device specified. The secondary switch
/DEV: should be used with this switch.

*=/MASNXM<CR>

List all Massbus entries that may have been caused by a
nonexistent memory.

*=/MASPAR<CR>

List all Massbus device entries that pertain to parity
errors.

Unit Record Equipment Switches

/UNDALL

*=/URDALL<CR>

List entries that pertain to unit record equipment on
the I/0 bus. Currently only the LP100 is reported.

Table 2 SYSERR Secondary Switches

Switch

Cross
Description Ref,

/BEGIN

/BRIEF

/DETAIL:

*=/BEGIN:MM-DD-YY:HH:MM:SS<CR> or 1
*=/BEGIN:-7D<CR>

List only those entries that were recorded
after the date and time specified.

*TTY:=/BEGIN:-7D/BRIEF: 72<CR>

Print the seguence number, date and time, error
type, and a brief summary of each entry. The
number specifies the terminal page width (from
72 to 132 columns). See the /SEQUENCE switch.

*=/DEV:DPA7/DETAIL:<CR>
List all information, including Massbus

controller and device register data, for each
entry.

COMPANY CONFIDENTIAL

EK-0KL10-01

SYSERR JULY 1979

—4-

Table 2 SYSERR Secondary Switches {(Cont

Cross
Switch Description Ref.
/DEV: *=/DEV:DPAKCR> or *=/DEV:MTA4<CR> or
*=/DEV:RP06<CR>
List only entries for the logical or physical
device specifed. Devices currently accepted are:
CD20 KLINIK RPO2 RPO6 11icpu
DH11 LP20 RPO3 RS04
KLCPU RD10 RPO4 TUl6
KLERR RM10 RPOS TU45
/END: *=BEGIN:MAY-6-79:00:01/END:MAY-12-79:24:00<CR>
Do not list any entries recorded after the end
date and time specified.
/1D *=/1D:SCRATC<CR>
List only entries that pertain to the disk pack
or magtape reel identification specified.
/NDEV: */NDEV:DPB3<CR> or *=/NDEV:RP04<CR>
Do not include entries in the report that
pertain to the logical or physical device
specified. This switch may be used with disk,
magtape, and Massbus device primary commands.
/RETRY : *=/DEV:MTB7/RETRY : 5<CR>
List only those entries that have a retry count
greater than the value specified. This switch
only applies to disk, magtape, and Massbus
entries.
/SEQ: *=/SEQ:17<CR> or SEQ:(10,216,-4,517
This switch is used after the /BRIEF: switch
to list the entries for the sequence number(s
specified.
/SRE: *=/SRE:10<CR>
For reporting purposes, change the soft read
error threshold to the value specifed. The
default is 4.
/STR: *=/STR:DSKBO<KCR>
List only entries for the structure specified.
/SWE: *=/SWE:3<CR>

For reporting purposes, change the soft write
error threshold to the value specified. The
default is 7.

SYSERR COMMAND DESCRIPTIONS (Cross Reference)

1

/BEGIN:APR-16-1979:12:30:00<CR> or BEGIN: -7D<CR> -
SYSERR also recognizes relative dates in the form
—nD:HH:MM:5S where -nD specifies the number of days in
the past. This is particularly useful for BATCH control
files. For example:

/BEGIN:-7D<CR> would list only those entries that
occurred during the last week.

BEGIN:-12<CR> would list only those entries that occurred
during the last twelve hours.

BEGIN:-0:30<CR> would list only those entries that
occurred during the last thirty minutes.

COMPANY CONFIDENTIAL

EK-0KL10-01
JULY 1979 TOPS-20 TC

Table of Contents

Summary
SYSLIB-20
TOPS-20

B SYSERR

COMPANY CONFIDENTIAL

SYSLIB-20

TOPS-20 SYSTEM PROGRAM LIBRARY
The programs in TOPS-20 System Program ULibrary are listed and
described in Table 1.

Table 1 TOPS-20 System Program Library

Program Description

ACCTPR ACCTPR translates the binary records in the old System
Accounting File FACT.BIN to ASCII records which may be

. processed by report-generating programs written in
higher level languages, e.g., COBOL.

ACCTPR is documented in the TOPS-20 Operator's Guide.

ACCT20 ACCT20 generates accounting reports from the data in the
System Accounting File, FACT.BIN. It serves as an
example of relevant techniques for customers wishing to
develop reporting programs tailored to their own
installation. ACCT20 will not process the new format
USAGE files produced by TOPS-20 Release 3. Refer to the
program CONV20 for information on converting USAGE files
to FACT file format.

ACTGEN ACTGEN is an account generator program used to create
and install an account validation data base for use by
TOPS-20 in validating accounts. It is intended

primarily for use by the system manager and operator.

Wheel or operator capabilities must be enabled to run
ACTGEN.

ACTGEN 1is documented 1in the DECSYSTEM-20 System
Manager's Guide.

BOOT BOOT is used to load the TOPS-20 monitor from disk into
KL10 memory. On normal system startup, BOOT is
automatically loaded and started by RSX20F, and will
load the TOPS-20 monitor without operator intervention.

BOOT is also responsible for dumping KL10 memory after
system malfunction, for later analysis.

BOOT is documented in the following documents:

DECSYSTEM-20 Software Installation Guide
DECSYSTEM-20 Operator's Guide

CHECKD CHECKD checks TOPS-20 disk file structure and bit table
for consistency. In the process of checking the
directory structure, CHECKD finds all disk space which
is in use; this allows CHECKD to compute the disk pages
lost. CHECKD can optionally release this lost space.
CHECKD can also be used to completely rebuild the disk
bit table or to scan the directory structure for a
specified disk address. CHECKD may also be used to
create new file structures.

CHECKD is documented in the DECSYSTEM-20 Operator's
Guide.

CHKPNT CHKPNT has three major functions:

1. Compile account statistics on disk space utilization

2. Set the monitor checkpoint interval

3. Copy system-generated accounting data to the
accounting file.

CHKPNT is documented in the TOPS-20 Operator's Guide.

CREF CREF takes the modified listing files produced by the
language processors and produces a final, printable
listing with cross reference tables appended.

CREF is documented in the DECSYSTEM-20 User's Guide.

DDT DDT is a symbolic assembly language debugger. DDT
allows up to 8 breakpoints as well as symbolic patching
and manipulation of various datatypes.

COMPANY CONFIDENTIAL

SYSLIB-20

-2-

Table 1 TOPS-20 System Program Library (Cont)

Program

Description

DLUSER

DUMPER

EDIT

FE

FILCOM

FORMAT

GALAXY

LINK

DLUSR is a program which obtains identifying information
about each directory on a system and places it in a
tile. The program can then use this file to create the
same directories later, in the event of a system
rebuild.

DLUSER is documented in the DECSYSTEM-20 Operator's
Guide and DECSYSTEM-20 System Manager's Guide.

DUMPER is a program for saving and restoring disk files
using magtape. It is used by operations personnel for
file system maintenance, and may be employed by users
who wish to keep certain files on magtape and/or
transfer them between systems.

EDIT is a line-oriented editor which is used to create
and edit text files. It resembles the TOPS-10 editor
SOS in function and command structure.

FE is a utility for file transfers between the TOPS-20
file system and the FILES-11 file system. It handles
protocol for the FE device such that FE: can bs
addressed as a FILES-11 device, usually through 11 PIP.

CAUTION
The FE device is intended for use only
in software development and updating
procedures by knowledgeable people. Use
without proper caution may produce
unpredictable results.

FE depends on the existence of the RSX-20F task T20ACP,
which should reside on the -11 file system as
T20ACP.TSK.

Use of FE and file conversion procedures are described
in the Guide To Using the FE Device, USEFE.MEM.

The FILCOM program compares two files and outputs the
di1fferences between them.

With FILCOM you may compare both ASCII files and binary
files. FILCOM compares ASCII files line by line and
binary files word by word.

FORMAT provides the mechanism for formatting and/or
verifying RP04, RPO5, RP0O6 disk packs that are
configured to RH20s. FORMAT produces a pack in the
identical format to one that was created using the
diagnostic, DDRPI. FORMAT runs during timesharing only,
while DDRPI can FORMAT in stand-alone mode only.

GALAXY is the Batch and Spooling Subsystem for the
DECsystem-10 and DECSYSTEM-20. GALAXY comprises all the
software (excluding operating systems software
necessary to do batch processing and input and output
spooling and all queue management and task scheduling
required for those Ffunctions.

GALAXY Release 3 consists of the following programs:

Program What It Does

QUASAR Central gueue manager, task scheduler, and
GALAXY system controller

BATCON Batch job processor

LPTSPL Lineprinter output spooler (unspooler

SPRINT Card reader input stacker/spooler

QUENCH Timesharing users' interface to the GALAXY
system

QMANGR Interface module for FOROTS, BASIC, etc.

LINK is the linking loader for the DECSYSTEM-20. OVRLAY
is the overlay handler for the DECSYSTEM-20.

COMPANY CONFIDENTIAL

SYSLIB-20
3

" Table 1 ' TOPS-20 System Program Library (Cont)

Program Description

LINK and OVRLAY are documented in the DECSYSTEM-20
User's Guide and in the DECSYSTEM-20 LINK User's Guide.

MAIL MAIL is a program which allows users to send messages to
other users. Messages sent by MAIL are stored in the
receiver's disk directory so that they may be referenced
when convenient.

MAIL depends on the programs INFO and MAILER to perform
its stated tasks. Also, the program RDMAIL is used by
message recipients to read messages.

MAIL is documented in the TOPS-20 User's Guide.

MAKLIB MAKLIB is used to update and index .REL files. MAKLIB
will insert, delete or replace modules. It is also used
to index FORLIB.REL and LIBOL.REL to speed up the
loading process.

MAKLIB is documented in the DECSYSTEM-20 User's Guide.

MAKRAM MAKRAM is a program to generate LP20 translation RAM
files. MAKRAM commands are described in MAKRAM.HLP.

MAKVFU MARVFU is a program to generate LP05 Direct Access
Vertical Format files. MAKRVFU commands are described in
MAKVFU.HLP.

OPLEAS OPLEAS is the program that enables the operator to talk
to users running PLEASE. Requests for contact with the
operators are queued; thus the user can type a request
for operator action and know that the. request will be
received even if the operator is currently busy. OPLEAS
also handles structure and tape mount requests submitted
via the EXEC TMOUNT and SMOUNT commands.

OPLEAS is documented in the TOPS-20 User's Guide.

PA1050 RA1050 is the TOPS-10 UUO simulator produced from the
file PAT.MAC. It gets mapped into the address space of
any program that executes a TOPS-10 UUO. Its function
is to intercept all TOPS-10 UUOs and simulate them with
the appropriate TOPS-20 JSYSs.

PLEASE PLEASE provides a facility for one user at a time to
talk to an operator. Requests for contact with the
operator are queued; thus the user can type a request
for operator action and know that the request will be
received even if the operator is currently busy.

PLEASE runs in conjunction with OPLEAS.
PLEASE is documented in the TOPS-20 User's Guide.

PTYCON PTYCON is a pseudoteletype (PTY) controller. It allows
a user multiple job control from a single terminal.
PTYCON provides the means to converse with a number of
subjobs and to control the manner and times when output
is received from the subjobs.

RDMAIL RDMAIL is a program which allows a user to read the
messages which have been sent to him. Tt always reads
the messages from the file MAIL.TXT.

RDMAIL is documented in the DECSYSTEM-20 User's Guide.

RSXFMT RSXFMT is a wutility program to convert files from
‘TOPS-20 and/or DOS-11 file formats to RSX-11 formats.

Use of RSXFMT and file transfer procedures are described
in the Guide To Using the FE Device, USEFE.MEM. RSXFMT
commands are described i1n RSXFMT.HLP.

COMPANY CONFIDENTIAL

SYSLIB-20

—4-

Table 1 TOPS-20 System Program Library (Cont)

Program

Description

RUNOFF

SETSPD

SYSERR

SYSJOB

ULIST

WATCH

RUNOFF is a text-processing program. RUNOFF will format
input text, generate tables, build lists, handle page
and section numbering. RUNOFF allows a user to make all
sorts of changes to the text of a document and still
produce a clean, well-formatted result,

RUNOFF is documented in Getting Started with Runoff.

SETSPD is a privileged system program which processes
the 3-CONFIG.CMD file and, in so doing, sets many
initial parameters about the system such as initial line
speeds, system logical names, and magtape logical to
physical correspondences.

SYSERR is a program used to list the contents of the
system ertvor file. Tt is the report generating portion
of the DECSYSTEM-20 Error Detection, Recovery, and
Reporting package.

Documentation on how to run SYSERR and descriptions of
report formats may be found in the DECSYSTEM-20 System
Error Detection, Recovery, and Reporting Reference
Manual.

SYSJOB is a program for controlling system background
programs. It is normally started only by job 0, and it
creates additional processes and jobs as necessary. An
operator or other privileged job may pass commands to
SYSJOB via an exec command (TE) SPEAK to affect the
status of the background programs.

SYSJOB is documented in the DECSYSTEM-20 Operator's
Guide under the (TE) SPEAK command.

ULIST provides a mechanism for listing user and
directory information. The listing may be directed to
the printer, the user's terminal, or to a file. ULIST
will provide information on user and directory groups,
directory numbers, gquotas, and protections, and will
list user passwords if desired.

WATCH 1is a system program which provides a list of
various system statistics and job run times upon
request. A user can thus periodically check system
performance with this utility.

COMPANY CONFIDENTIAL

TOPS-20

-1-

TOPS-20 COMMAND LANGUAGE
The TOPS-20 Operating System supports approximately 70 basic
commands. These commands are described in Table 2..

Special symbols and control characters used by TOPS-20 are
described in Table 1.

COMMAND FORMAT
TOPS-20 commands use the following format.

COMMANDS (guide word)ARGS (guide word)ARGS (...<CR>

The base command and each argument is delimited by an altmode
(ESCAPE KEY). The command string is terminated by a carriage
return <CR>.

ERROR MESSAGES

Table 3 lists and describes many of the most commonly used BUGCHKS
and BUGHLTS associated with a TOPS-20 operating system. The list
was taken from TOPS~20 BIG SYSTEM, TOPS-20 MONITOR 3A (2013). A
complete list for any given TOPS-20 operating system may be
printed by typing

PRINT PS:<SYSTEM>BUGSTRING.TXT<CR>

Table 1 TOPS-20 Symbols and Control Characters

Character Description

TcTe Two control C characters will return the terminal
to monitor command level.

e Prompt - A single @ sign indicates the monitor is
at command level and ready to accept commands.

.
+<CR> A command and carriage return typed following a
command name causes the monitor to enter subcommand
level for the command named.

ee Prompt - A double @@ sign indicates the monitor is
at a subcommand 1level and ready to accept
subcommands only.

<CR> A single carriage return terminates a command or
subcommand .

<CR><CR> A double carriage return terminates a subcommand
and returns the monitor to command level.

? A gquestion mark typed at the command level or
subcommand level will cause the monitor to print a
list of the available commands.

A question mark typed following a partially typed
command will cause the monitor to print a list of
al¥l commands or subcommands which begin with the
characters typed.

A question mark typed following a guide word will
cause the monitor to print a list of the possible
arguments.

A question mark printed by the monitor indicates
the user has made an error in typing a command.

$ (altmode) If there is no ambiguity in a partially typed
(ESCAPE) command, pressing the ESCAPE key will cause the
remaining characters and the first guide word of
the command to be printed.

If a partially typed command is ambiguous pressing
the ESCAPE key will cause the terminal bell to
ring.

The ESCAPE key 1is also used to terminate an
argument and causes the next guide word to be
printed.

COMPANY CONFIDENTIAL

TOPS-20

-2-
Table 1 TOPS-20 Symbols and Control Characters (Cont)

Character Description

RUBOUT The RUBOUT or DELETE key will cause the last DELETE

DELETE character typed to be deleted.

™ Typing a control W will cause the last field typed
to be deleted.

Tu Typing a control U ‘will cause the "entire command
line to be deleted.

TR Typing a control R will cause the current command
line to be reprinted.

To Typing a control O will stop the current printout.

! The exclamation mark is used to delimit text
following a command. This is useful for sending
messages during a KLINIK linkup.

Table 2 TOPS-20 Command Summary
Command Description

System Access Commands

ATTACH

DETACH

DISABLE

ENABLE

LOGIN

LOGOUT

UNATTACH

Connects your terminal to a designated job.
See also: DETACH, UNATTACH

Disconnects your terminal from the current job
without affecting the job.
See also: ATTACH, UNATTACH

Returns a privileged user to normal status.
See also: ENABLE

Permits privileged users to access and change
confidential system information.
See also: DISABLE

Gains access to the TOPS-20 system.
See also: LOGOUT

Relinquishes access to the TOPS-20 system.
See also: LOGIN

Disconnects a terminal from a job; it does not have
to be the terminal you are using.
See also: ATTACH, DETACH

Information Commands

DAYTIME

INFORMATION

SYSTAT

Prints the current date and time of day.

pProvides information about your job, files, memory,
errors, system status, and many other parameters.

Outputs a summary of system users and available
computing resources.

Terminal Commands

ADVISE

BREAK

RECEIVE

REFUSE

SET

Sends whatever you type on your terminal as input
to a job connected to another terminal.
See also: BREAK, RECEIVE, REFUSE, TALK

Clears terminal links and advising links.
See also: ADVISE, RECEIVE, REFUSE, TALK

Allows your terminal to receive links and advice
from other users.
See also: ADVISE, BREAK, REFUSE, TALK

Denies links and advice to your terminal.
See also: ADVISE, BREAK, RECEIVE, TALK

Declares certain action to be taken when errors are
detected in TOPS-20 commands.

COMPANY CONFIDENTIAL

TOPS-20
~3-

Table 2 TOPS-20 Command Summary (Cont)

Command Description

TAKE Accepts commands from a file, just as if you had
typed its contents on your terminal.

TALK Links two terminals so that each user can observe
what the other user is doing, yet does not affect
the other user's job.

See also: ADVISE, BREAK, RECEIVE, REFUSE

TERMINAL Declares the hardware type of terminal you have,
and lets you inform TOPS-20 of any special
characteristics of the terminal.

Device Handling Commands

ASSIGN Reserves a device for use by your job.
See also: DEASSIGN, DEFINE

BACKSPACE Moves a magnetic tape drive back any number of
records or files.
See also: REWIND, SKIP, UNLOAD

DEASSIGN Releases a previously assigned device.
See also: ASSIGN
EOF Writes an end-of-file mark on a magnetic tape.
REWIND Positions a magnetic tape backward to its load
point.
See also: BACKSPACE, SKIP, UNLOAD
SKIP Advances a magnetic tape one or more records or
files.

See also: BACKSPACE, REWIND, UNLOAD

UNLOAD Rewinds a magnetic tape until the tape is wound
completely on the source reel.
See also: BACKSPACE, SKIP, REWIND

File Systems Commands

ACCESS Grants ownership and group rights to a specified
directory.
See also: CONNECT, END-ACCESS

APPEND adds information from one or more source files to
an existing disk file.
See also: EDIT

CLOSE Closes a file or files left open by a program.

CONNECT Removes you from your current directory and
connects you to a specified directory.

COPY Duplicates a source file in a destination file.

CREATE Starts EDIT for making a new file.

See also: EDIT

DELETE Marks the specified file(s) for eventual deletion
(disk files only) or deletes the specified files
(all other devices).

See also: EXPUNGE, UNDELETE

DEF INE Associates a logical name with one or more file
names.
See also: ASSIGN

DIRECTORY Lists the names of files residing in the specified
directory and information relating to those files.
See also: FDIRECTORY, TDIRECTORY, VDIRECTORY

EDIT Starts EDIT for changing an existing file.
See also: APPEND, CREATE

EXPUNGE Permanently removes any deleted files from the
disk.

See also: DELETE, UNDELETE

COMPANY CONFIDENTIAL

TOPS-20
-4

Table 2 TOPS-20 Command Summary (Cont)

Command Description
"
END-ACCESS Relinquishes ownership rights to a specifiJ
directory.

See also: ACCESS

FDIRECTORY Lists all the information about a file or files.
See also: DIRECTORY, TDIRECTORY, VDIRECTORY

LIST Prints one or more files on the line printer with
or without formatting.
See also: PRINT, TYPE

PRINT Lists one or more files on the line printer.
See also: LIST, TYPE

QUEUE Places an entry into or examines a specified queue,
for example, the line printer output gqueue.

RENAME Changes one or more descriptors of an existing file
specification.
SDISMOUNT Notifies the system that the given structure is no

longer needed.
See also: SMOUNT, SREMOVE

TDIRECTORY Lists the names of all files in the order of the
date and time they were last written.
See also: DIRECTORY, FDIRECTORY, VDIRECTORY

SMOUNT Requests that a structure be made available to the
user .
See also: SDISMOUNT, SREMOVE

TYPE Types the specified files on your terminal.
See also: PRINT, LIST

SREMOVE Makes a structure unavailable and requests its
removal.

See also: SDISMOUNT, SMOUNT

UNDELETE Restores one or more disk files marked for
deletion.
See also: DELETE, EXPUNGE

TMOUNT Requests that a magnetic tape be made available to
the user.

VDIRECTORY Lists the names of all files, as well as their
protection, size, and date and time they were last
written.

See also: DIRECTORY, FDIRECTORY, TDIRECTORY

Program Control Commands

COMPILE Translates a source program using the appropriate
compiler.
See also: DEBUG, EXECUTE, LOAD, MERGE

CONTINUE Resumes execution of a program interrupted by a
control C.
See also: REENTER, START

CREF Runs the CREF program which produces a
cross-reference listing and automatically sends it
to the line printer.

CSAVE Saves the program currently in memory so that 1
may be used by giving a RUN command. The progral

is saved in a compressed format.

See also: SAVE

oDT Merges the debugging program, DDT, with the current
program and then starts DDT.
See also: DEBUG, MERGE

DEBUG Takes a source program, compiles it, loads it with
DDT and starts DDT.
See also: COMPILE, DDT, MERGE

COMPANY CONFIDENTIAL

TOPS-20

—-5-

Table 2 TOPS-20 Command Summary (Cont)

Command Description

EXECUTE Translates, loads, and begins execution of a
program.
See also: COMPILE, LOAD

FORK Makes the TOPS-20 language work for a particular
address space.

GET Loads an executable program from the specified
file.
See also: LOAD

LOAD Translates a program and loads it into memory.
See also: EXECUTE

MERGE Loads an executable program into memory and merges
it with the current contents of memory.
See alsc: DEBUGC

POP Stops a copy of the TOPS-20 Command Language and
returns control to the previous copy of the Command
Language.
See also: PUSH

PUSH Starts a new copy of the TOPS-20 Command Language.
See also: POP

R Runs a system program.
See also: EXECUTE, GET, LOAD, RUN, START

REENTER Starts the program currently in memory at an
alternate entry point specified by the program.
See also: CONTINUE, START

RESET Clears the job to which your terminal is currently
attached.

RUN Loads an executable program from a file and starts
it at the location specified in the program.
See also: EXECUTE, GET, LOAD, START

SAVE Copies the contents of memory into a file in
executable format. If memory contains a program,
you may now execute the program by giving the RUN
command with the proper file specification.
See also: CSAVE

START Begins execution of a program at the location

specified in the entry vector.
See also: CONTINUE, EXECUTE, GET, LOAD REENTER

Batch Comm.

ands

SUBMIT

Enters a file into the Batch waiting list. When it
is your job's turn, the commands contained in the
file are executed.

COMPANY CONFIDENTIAL

TOPS-20

-6-

Table 3 TOPS-20 BUGCHKS and BUGHLTS

Name Type | Description

ABKSKD | HLT Address break from scheduler context

ADDONF | HLT ADDOBJ - LLLKUP failed

APRNX1 [HLT NXM detected by APR

APRNX2 | HLT NXM detected by APR

ASAASG | CHK DSKASA - Assigning already assigned disk address

ASGBAD | CHK DSKASA - Assigning bad disk address

ASGBPG | CHK INIBTB - Failed to assign bad page(s)

ASGREP | CHK Illegal priority given to ASGRES

ASGREQ | CHK Illegal pool number given to ASGRES

ASGSW2 { HLT SWPOMG - Cannot assign reserved drum address

ASGSWB | CHK SWPINI ~ Cannot assign bad address

ASOFNF | HLT | DELFIL: ASOFN gave fail return for long file XB
ASTJFN | HLT GETFDB: Called for JFN with output stars

BADBAK | CHK FILIN2 - Backup copy of root directory is not good
BADBAT | CHK BAT blocks unreadable

BADBTB | HLT NIC - Illegal reference to bit table

BADDAC | HLT INSACT - Null account string seen

BADDIS | CHK TAPE: Inconsistent state code

BADIDX | CHK IDXINI: Partially unsuccessful index table rebuild
BADREC | HLT FILINI - Reconstruction of root directory failed

BADROT | HLT FILIN2: Root directory is invalid

BADTAB | CHK VERACT - Spurious hash table encountered
BADTTY | HLT Transfer to nonexistent terminal code
BADTYP | HLT Bad label field description

BADXTI | HLT Index table missing and cannot be created

BADXT2 | CHK Index table missing and was created

BADXTSB | HLT FILIN2: Could not initialize index table

BKUPDF | HLT BKUPD - Bad CST1l entry or inconsistent CST
BLKF1 CHK BYTINA: BLKF set before calling service routine
BLKF2 CHK BYTOUA: BLKF set before call to service routine

BLKF3 CHK CLZDO: BLKF set before call to service routine
BLKF4 CHK .GDSTS: BLKF set before call to device routine
BLKF5 CHK MTOPR: BLKF set before call to device routine
BLKF6 CHK .SDSTS: BLKF set before call to device routine
BOOTCR | HLT GETSWM - Not enough core for SWPMON

BOOTER | HLT GETSWM - Error loading SWPMON

BOOTLK | HLT GSMDSK - Failed to lock needed pages

BOOTMP | HLT GSMDSK - Cannot map bootstrap pages

BTBCR1 | HLT FILINI - No bit table file and unable to create one
BTBCRT | HLT FILINI - Could not initialize bit table for public
structure

CDILVT | HLT Illegal device type

CKDFRK | HLT JOB 0 CFORK failed

CKLBLK | CHK CKLERR: Close and abort blocked

CLZABF | CHK CLZFFW: Service routine blocked on an abort close
CLZDIN | INF NETCLZ - Could not send DI

CPYUF1l | CHK CACCT: Impossible failure of CPYFUl.

CRDBAK | CHK CRDIR3: Could not make backup copy of root directory
CRDBK1 | CHK CRDIR4: Could not make backup copy of root directory
CRDNOM | CHK CRDIR - Failed to make MAIL.TXT file

CRDOLD | CHK CRGDGB: 0ld format CRDIR is illegal

CRDSDF | CHK CRDIR1l: SETDIR failed on new directory

CRSPAG | CHK VERACT - Account data block crosses a page boundary
CST211 | HLT Page table core pointer and CST2 fail to correspond
CST212 | HLT MVPT - CST2 inconsistent

CST213| HLT Page table core pointer and CST2 fail to correspond

DEABAD | CHK DSKDEA - Deassigning bad disk address

DEAUNA | CHK DEDSK - Deassigning unassigned disk address
DELBDD | INF DELDIR: Bad directory deleted. Rebuild bit table
DELNDF | HLT DELNOD - LLLKUP failed

DEQMDF | CHK DEQUE: Internal monitor DEQ failed

DEVUCF| CHK DEVAV - Unexpected CHKDES failure

DGUTPG| HLT DIAG - Locked page list page locked at DIAG UNLOCK
DGZTPA| HLT DIAG -~ Locked page list page was zero

DIRACT| CHK ACTBAD: Illegal format for directory account block
in directory:

DIRB2L| CHK RLDFB2: Directory free block too large in directory:

COMPANY CONFIDENTIAL

TOPS-20

-7~

Table 3 TOPS~20 BUGCHKS and BUGHLTS (Cont

Name Type | Description

DIRB2S | CHK RLDFB1: Directory free block too small in directory:

DIRBAD | CHK | SETDI4: Smashed directory number:

DIRBAF | CHK RLDFB5: Block already on directory free 1list in
directory:

DIRBCB | CHK RLDFB3: Directory free block crosses page boundary
in directory:

DIRBLK | CHK BLKSCN: Illegal block type in directory:

DIRDNL | CHK ULEKDIR - Directory not locked, directory number:

DIREXT | CHK EXTBAD: Illegal format for directory extension block
in directory:

DIRFDB | CHK Illegal format for FDB in directory:

DIRFKP | CHK SETDIR - Directory page 0 belongs to fork in
directory:

DIRFRE | CHK FREBAD: Illegal format for directory free block in
directory:

DIRIFB | CHK RLDFB4: Illegal block type on directory free list in
directory:

DIRNAM | CHK NAMBAD: Illegal format for directory name block in
directory:

DIRPGO | CHK DROCHK: Illegal format for directory page 0 in
directory:

DIRPG1 | CHK DRHCHK: Directory header block is bad in directory:

DIRRHB | CHK RLDFB6: Attempting to return a header block in
directory:

DIRSY1 | CHK DELDL8: Directory symbol table fouled up for
directory:

DIRSY2 | CHK MDDNAM: Symbol table fouled up in directory:

DIRSY3 | CHK LOOKUP: Symbol search fouled up in directory:

DIRSY4 | CHK NAMCM4: Directory symbol table fouled up in
directory:

DIRSYS | CHK SYMBAD: Illegal format for directory symbol table in
directory:

DIRSY6 | CHK RBLDST: Prematurely ran out of room in symbol table
in directory:

DIRULK | CHK ULKMD2: Attempt to unlock illegally formatted
directory, directory number:

DIRUNS | CHK UNSBAD: Illegal format for directory user name block
in directory:

DLDEF INF Logical name define failed for front-end console
terminal .

DMPRLF | CHK DMPREL -~ Failed to release page

DN20ST | INF DTESRV - DN20 stopped

DRMFUL | HLT Drum completely full

DRMIBT | HLT DRMASN - Bit table inconsistent

DRMNFR | HLT DRMAM - Cannot find page when DRMFRE non-0

DSKBT1 | CHK DSK bit table fouled, cannot find free page on TRK
with non-0 count

DSRBT3 | CHK Disk bit table already locked at LCKBTB

DST2SM | HLT SWPINI - DST too small

DTECAR | HLT |DTESRV - Carrier function with no line number
present

DTECDM | INF DTESRV - TOl0 counts do not match

DTEDAT | CHK TAKTOD - Illegal format for time/date

DTEDEV | HLT LINEAL -~ Illegal device

DTEDIN | INF DTESRV - TD10 in progress on doorbell

DTEDME | INF DTESRV - Zero Q count

DTEERR | CHK DTESRV -~ DTE device error

DTEIDP | HLT DTESRV - Indirect pointer with garbage packet

DTEIFR | HLT DTESRV - Illegal function request from 11

DTELPI { INF DTECHK - DTE lost PI assignment

DTEMCC | HLT DOFRGM - MCB disagrees with count

DTEODD | CHK TAKLC - O0dd byte count for line characters

DTEP2S | CHK TOIODN - Packet too small

DTEPGF | CHK DTE transfer page fail

DTEPNR [INF DTESRV - Incorrect indirect setup

DTETIP | CHK DTETDN - TOl0 DONE received with no transfer in
progress

DTETTY | HLT | TAKLC - Non-TTY device on function code 4

DTEUIF| BLT | DTESRV - Unimplemented function from 11

COMPANY CONFIDENTIAL

TOPS-20

-g-

Table 3 TOPS-20 BUGCHKS and BUGHLTS (Cont)

Name Type | Description

DVCHRX | CHK DVCHR1 - Unexpected CHKDES failure within .DVCHR
DX2DIE | CHK PHYX2 - DX20 halted

DX2FGS | CHK PHYX2 - Fail to get sense bytes

DX2FUS | CHK PHYX2 ~ Fail to update sense bytes

DX2IDM | CHK PHYX2 - Tllegal data wode at DONE interrupt

DX2IDX | INF PHYX2 -~ Illegal retry byte pointer
DX2IEC | CHK PHYX2 - Illegal error class code
DX2IFS | CHK PHYX2 - Illegal function at start I/0
DX2IRF | INF PHYX2 - Illegal function during retry
DX2MCF | CHK PHYX2 - DX20 microcode check failure

DX2N2S | INF PHYX2 - More TU70s than table space, excess ignored
DX2NRT | CHK DX2ERR ~ IS.NRT set on successful retry

DX2NUD | CHK PHYX2 - Channel done interrupt but no unit active
DX2NUE | CHK PHYX2 - No active UDB and DX20 composite error set
DX2RFU | CBK PHYX2 - Error recovery confused

DX2UNA | INF PHYX2 - Attention interrupt and UDB not active
DX2UPE | CHK PHYX2 - Fail to update sense bytes during
initialization

EFACF1 | CHK EFACT: CLOSF failed to close FACT file

EFACF3 | CHK EFACT: Failed to write into FACT file

ENQMLF | CHK ENQUE: Internal ENQ of a monitor lock failed

EXPAFK | HLT EXPALL: JOB 0 CFORK failed

EXPRCD | CHK EXPALL: RCDIR failure

FATAPE | HLT Fatal address parity error

FATCDP | HLT Fatal cache directory parity error
FATMPE | HLT Fatal parity error

FEBAD CHK FEHSD - Wrong front end

FEBFOV | CHK FEHSD - Buffer overflow

FEOCPB | CHK FEFSYS - Failed to back up root directory

FEUSTS | CHK FESSTS - Unknown status

FILBAK | CHK FILCRD: Could not create backup of root directory

FILBOT | CHK Could not create BOOTSTRAP.BIN file
FILBTB | HLT Unable to write bit table file

FILCCD | CHK Could not create directory

FILFEF | CHK Could not create front-end file system
FILHOM | CHK Unable to rewrite HOME blocks in WRTBTB

FILIRD | HLT FILINW: Could not initialize the root directory
FILJBl | CHK FILCRD: No room to create standard system
directories

FILMAP ! HLT FILIN2: Could not map in root directory

FILRID | HLT FILINW: Index table already set up for root
directory

FIXBAD | CHK Could not rewrite HOME blocks to point to front-end
filesystem

FIXBDB| CHK Could not rewrite HOME blocks to point to
BOOTSTRAP.BIN

FRWSP1 | CHK LOADBS - Unreasonable FKWSP

FLKNS CHK FUNLK - Lock not set

FLKTIM| CHK FLOCK - Timeout

FRKBAL| CBK AGESET - Fork not in BALSET

FRKNDL | CHK Fork not properly deleted

FRKNPT| HLT FKHPTN - Fork has no page table
FRKPTE| HLT BADCPG - Fatal error in fork PT page
FREKSLF| HLT SUSFK ~ Given self as argument
GLFNF HLT GLREM - Fork not found

GTFDB1| CHK DSKINS: GETFDB failure

GTFDB2| HLT NEWLFP: GETFDB failure for open file
GTFDB3| HLT DSKREN - GETFDB failure for open file
GTFDB6 | HLT CRDIOA: Cannot do GETFDB on root directory
HARDCE| CHK Hard cache errors - cache deselected

HSHERR| CHK VERACT - Hash value out of range

HSYFRK| HLT HSYS - JOB 0 CFORK failed

IBCPYW| HLT COPY - Write pointer in index block

IBOFNF| HLT FILINI: ASOFN failure for root directory IB
IDFOD1| CHK AT MENTR - INTDF overly decremented

COMPANY CONFIDENTIAL

TOPS-20

-9-

Table 3 TOPS-20 BUGCHKS and BUGHLTS (Cont)

Name Type | Description

IDFOD2 | CHK AT MRETN - INTDF overly decremented

IDXNOS | HLT FILINI - Could not assign free space for IDXTAB
ILAGE HLT Bad age field in CSTO

ILBOOT | HLT GETSWM - Illegal value of BOOTFL

ILCHS1 | HLT PHYSIO - Illegal channel status at SIO

ILCHS2 | HLT PHYSIO - Illegal channel state at STKIO

ILCNSP | HLT PHYSIO - Illegal call to CONSPW

ILCNST | HLT PHYSIO - Illegal call to CONSTW

ILCST1 | 9LT Illegal address in CST1 entry, cannot restart
ILDEST | HLT Illegal destination identifier to SETMPG or SETPT

ILDRALl | CHK DASDRM - Illegal or unassigned drum address
TLDRA2 | HLT DRMIAD - Tllegal drum address

ILFPTE | HLT ILLFPT: Illegal section number referenced
ILGDAL | HLT GDSTX - Bad address

ILGDA2 | HLT GDSTX - Bad address

ILIBPT | CHK Bad pointer type in index block

ILIRBL [HLT PHYSIO - IORB link not null at ONFPWQ

ILJRFN | CHK JFKRFH - Bad JRFN, ignored

ILLDMS | CHK BADDMS: Illegal DMS JSYS from monitor context
ILLIND | HLT Illegal indirect

ILLSTR | INF NSPTSK - Illegal initialization message
ILLTAB | CHK TABLK2: Table not in proper format
ILLUUO | CHK KIBADU: Illegal UUO from monitor context
TLMADR | HLT Illegal address reference in monitor
ILOFN1 | HLT MSCANP - Illegal identification

ILOKSK | HLT OKSKED when not NOSKED

ILPAG] | HLT SWPOT0 - Invalid page

ILPAGN | HLT MRKMPG - Invalid page number

ILPDAR | HLT PHYSIO - Illegal disk address in PAGEM request
ILPID1 | CHK CREPID: Attempt to create illegal PID

ILPIDZ | CHK DELPID: Validated PID turned illegal
ILPLK1 | HLT MLKPG - TIllegal arguments

ILPPT1 | HLT UPDOFN - Bad pointer in page table
ILPPT2 | HLT UPDPGS - Bad pointer in page table
ILPPT3 | HLT Bad pointer in page table

ILPSEC | CHK Illegal section number

ILPTN]1 | HLT MRPACS - Illegal PTN

ILRBLT | HLT PHYSIO — IORB link not null at ONF/STWQ
ILRFPD | HLT PDL - OV in illegal page reference
ILSPTH | HLT SETPT - SPTH inconsistent with XB

ILSPTI | HLT Illegal SPT index given to SETMXB

ILSRC HLT Illegal source identifier given to SETPT
ILSTP3 | HLT VERLUK: Impossible skip return from EXTLUU
ILSWPA | BLT SWPIN -~ Illegal swap address

ILTWQ HLT PHYINT - TWQ or PWQ incorrect

TLTWQP LT PHYSIO -~ PWQ or TWQ tail pointer incorrect
ILULK1 | HLT MULKPG ~ Tried to unlock page not locked
ILULK2 ! HLT Tried to unlock page not iccked

ILULK3 | KLT MULKMP - Illegal meonitor address

ILULK4 ;| HLT MULKCR - Illegal core page number

ILUST1 | HLT PHYSIO - Unit status inconsistent at SIQ

ILUST2 | CHK PHYSIO - Unit status inconsistent at Spg

ILUST3 | HLT PHYSIO - SCHSEK - Impossible unit stztus

ILUST4 | HLT PHYSIO - Controller active &% SFS3

ILUST5 | HLT PHYSIO - Illegal unit or channel state at STKIO

ILWRT2 | BLT Attempted write reference to protected monitor
ILXBP HLT SETPT - Bad pointer in XB

IMPUUO | HLT Impossible MUUO

INDCNT | INF DTESRV - Bad indirect count

INVDTE | HLT DTEQ - Invalid DTE specified

IOPGF | HLT |I1/0 page fail

IPCFKH | CHK CHKPDD: Could not find local fork handle
IPCFRK | CHK PIDINB: Cannot create forks for IPCF
IPCIBO | CHK PIDINI: Not in context of JOB 0

IPCMCN | CHK MESREC: Message count went negative

COMPANY CONFIDENTIAL

TOPS-20

-10-

Table 3 TOPS~20 BUGCHKS and BUGHLTS (Cont

Name Type | Description

IPCOVL | HLT PIDINI: PIDS and free pool overlap, IPCF will not
work!

IPCSOD | CHK GETMES: Sender's count overly decremented

JONRUN | HLT JOB 0 not run for too long, probable swapping hangup
JSBNIC | HLT SETPPG - JSB not in core

JTENQE | HLT JTENQ with bad NSKED

KLIOVF | CHK DTESRV ~ KLINIK data base too large

KPALVH | HLT Keep alive ceased

LCKDIR | HLT Attempt to lock directory twice for same fork
LNGDIR | CHK Long directory file in directory:

LNMILTI | CHK LNMLUK: Illegal value of logical name table index

LUUMNO | HLT LUUO in monitor context

LUUMON | HLT .LBCHK: Illegal LUUO from monitor context
MAP41F | HLT MAPF41 failed to skip

MAPBT1 | HLT OFN for bit table is zero

MDDJFN { HLT GETFDB: Called for non-MDD device

MNTLNG | HLT MNTBTB - Bit table is a long file
MONPDL | HLT Overflow or PDL overflow trap in monitor
MPEUTP | HLT PFCDPE - Unknown trap on test reference
MPIDXO | CHK MAPIDX - No OFN for index table file
MTANOA | CHK IRBDN2: IRBDON called for an active IORB

MTANOI | CHK GETUBF: No queued IORBs for input

MTANOQ | CHK IRBDN1: IRBDON called for non-gueued up IORB
MTAORN | CHK MTDIRO: Magtape IORB overrun

MTARIN | HLT MTAINT: Interrupt received for nonactive IORB
MTFCNX | HLT MTLFCN: Function code too large

NEWBAK | HLT FILRFS - NEWIB failure for backup root directory
NEWROT | HLT FILRFS - NEWIB failure for root directory

NOACB HLT MENTR - No more AC blocks

NOADXB | HLT RELOFN - No disk address for XB

NOALCM | CHK ALCMES: Cannot send message to allocator

NOBAT1 | CHK Failed to write primary BAT block

NOBAT2 | CHK Failed to write secondary BAT block

NOBTB CHK FILINI - Unable to open bit table file

NOBTBN | HLT FILINI - Unable to get size of BOOTSTRAP.BIN file
NOCTY HLT Unable to allocate data for console terminal

NODIR1l [CHK SPLMES: DIRST failed on existing directory name
NOFEFS | HLT FILINI - Unable to get size of front-end file system
NOFNDU | HLT FNDUNT - Cannot find device for JFN

NOFRSP| CHK TTSPST - Could not get a free block

NOINTR| CHK ITRAP and previous context was NOINT

NOIORB | HLT SETIRB - Missing IORB

NOLEN HLT UPDLEN: No length information for OFN
NOMHDR | CHK Illegal message with no header

NOPGTO | HLT | OPNLNG:' No page table 0 in long file
NOPID CHK PIDKPL: PID disappeared

NORSXF | HLT Failed to get space for master DTE
NOSEB2| HLT PGMPE - No SYSERR buffer available
NOSERF| CHK Cannot GTJFN error report file

NOSKTR| CHK ITRAP from NOSKED context

NOSLNM| CHK SLNINI: Cannot create system logical name

NOSPLM| CHK RELJFN: Could not send spool message to QUASAR
NOTOFN!| HLT UPDOF0 ~ Argument not OFN

NOUTF1| CHK | SPLOPN: NOUT of directory number failed

NOUTF2| CHK SPLMES: NOUT of generation number failed
NPWQPD| CHK PHYSIO - Null PWQ at position done

NRFTCL| CHK PHYSIO - No requests found for cylinder seeked
NSKDIS| HLT pismiss while NOSKED or with non-resident test
address

NSKDT2| CHK PGRTRP - Bad INTDF

NSPFRK| HLT NSPINI - CFORK failed

NSPRTH| CHK NSPTSK - Invalid routing header

NULQTA| HLT QCHK - No quota information setup
NWJTBE| CHK No free JTB blocks

OFFSPE| HLT OFFSPQ - Page not on SPMQ

OPOPAC| HLT MRETN - Tried to over-pop AC stack
OVFLOW| HLT aSOFN - Allocation table overflow

COMPANY CONFIDENTIAL

TOPS-20

-11~

Table 3 TOPS-20 BUGCHKS and BUGHLTS (Cont)

Name Type | Description

OVRDTA | INF PHYSIO -~ Overdue transfer aborted

P2RAELl | CHK PHYH2 - RH20 register access error reading register
P2RAE2 | CHK PHYH2 - Register access error writing register
P2RAE3 | CHK PHYH2 - Register access error on DONE or ATN
interrupt

PAGLCK | HLT DESPT - Page locked

PAGNIC | HLT | GETCPP - Page not in core

PGNDEL | HLT REMFPB - Page not completely deleted

PH2DNA | INF PHYH2 - Done interrupt and channel not active
PH2IHM | CHK PHYH2 - Illegal HDW mode - word mode assumed
PH2PIM | CHK PHYH2 - RH20 lost PI assignment

PH2WUI | HLT | Wrong unit interrupted

PHYCH1 | HLT PHYSIO - Home block check IORB already on TWQ

PEYCH2 | INF PHYSIO - Home block check IORB timed out

PHYCH3 | INF PHYSIO - Home block check IORB timed out but was not
on TWQ

PHYICA | HLT PHYINI - Illegal argument to core allocation

PHYICE | INF PHYINI - Failed to assign resident STG

PHYLTF | HLT PHYSIO - SCHLTM - Unexpected LATOPT failure
PHYNIR | CHK PHYSIO - Null interrupt routine at operation done
PHYPOE | HLT PHYALZ - Page 0 storage exhausted

PI1ERR | CHK Unexpected unvectored interrupt on channel 1

PI2ERR | CHK Unexpected unvectored intérrupt on channel 2
PI4ERR} CHK Unexpected unvectored interrupt on channel 4
PISERR | CHK Unexpected unvectored interrupt on channel 5
PIGERR | CHK Unexpected unvectored interrupt on channel 6
PIDFLF | CHK /CREPID: Free PID list fouled up

PIDOD1 | CHK | MUTCHO: PID count overly decremented

PIDOD2 | CHK DELPID: Overly decremented PID count

PIITRP| HLT Instruction trap while PI in progress or in
scheduler

PISKED | HLT Entered scheduler with PI in progress

PITRAP | HLT Pager trap while PI in progress

. PM2STO | CHK PHYM2 - Illegal function at start 1/0
PRONX2 | HLT | NXM detected by processor

PSBNIC | HLT SETPPG - PSB not in core

PSINSK | CHK PSI from NOSKED context

PSISTK | HLT PSI storage stack overflow

PTAIC HLT SWPIN ~ PT page already in core
PTDEL HLT DESPT - PT not deleted

PTMPE HLT Page table parity error

PTNIC1| HLT SWPIN - Page table not in core
PTNONO | HLT SETPT0 - Previous contents non-0

PTOVRN | HLT UPDPGS - Count too large
PVTRP HLT Proprietary violation trap
PWRFL HLT Fatal power failure

PWRRES | CHK Power restart

PYILUN| HLT PHYSIO - Illegal unit number

RELBAD| CHK RELFRE - Bad block being released

RELRNG | CHK RELFRE: Block out of range

RESBAD| CHK RELRES: Illegal address passed to RELRES

RESBAZ | CHK RELRES: Free block returned more than once

RESBND| CHK RELRES: Releasing space beyond end of resident free
pool

RFILPF| CHK Refill error page fail

RH2ICF| HLT PHYRH2 - Invalid channel function
RP4FEX| HLT PHYP4 - Illegal function

RP4IF2{ HLT PHYP4 - Illegal function at STKIO
RP4IFC| HLT PHYP4 - Illegal function at CNV

RP4ILF| HLT PHYP4 - Illegal function on interrupt
RP4LTF| HLT PHYP4 - Failed to find TWQ entry at RP4ALTM
RP4PNF,; HLT PHYP4 - Disk physical parameters not found
RP4SSC| CHK PHYP4 - Stuck sector counter

RP4UNF| HLT | PHYP4 - Unit type not found:

COMPANY CONFIDENTIAL

TOPS-20

-12-

Table 3 TOPS-20 BUGCHRS and BUGHLTS (Cont)

Name Type | Description

RPGERR | HLT BADCPG - Fatal error in resident page

RSMFAI | HLT RESSMM - Failed to assign swap MON page
SBSERF | INF SBSERR - Could not get error block

SEBISS | CHK SEBCPY - Insufficient string storage in block
SEBUDT | CHK SEBCPY - Unknown data type

SECEX1 | HLT SETMPG - Attempt to map nonexistent section
SECG37 | HLT ILSCN - Section number greater than 37
SECGT1 | HLT PGRT3 - Section number greater than MAXSEC
SECNX HLT Creating page table for non-0 section
SERFOF | CHK Cannot OPENF error report file

SERFRK | HLT SERINI - Cannot create SYSERR fork
SERGOF | CHK SETOFI - Cannot GTJFN/open SYSERR file
SHRNOO | HLT DESPT - Share count non-0

SHROFD | HLT DWNSHR - OFN share count underflow
SHROFN | HLT UPSHR ~ OFN share count overflow

SKDCL1 | HLT call to scheduler when already in scheduler
SKDCL2 | HLT Call to scheduler when already in scheduler
SKDMPE | HLT MPE in scheduler or PI context

SKDPF1 | HLT page fail in scheduler context

SKDTRP | HLT Instruction trap while in scheduler

SNPIC CHK SNPFN3: Instruction being replaced has changed
SNPLKF | CHK SNPFNO: Cannot lock down page into monitor

SNPODB | CHK SNPF4C: Count of inserted breakpoints overly
decremented

SNPUNL | CHK SNPF5A: Cannot unlock SWNOOP page

SPTFL1 | HLT SPT completely full

SPTFL2 | HLT SPT completely full

SPTPIC | HLT SWPIN - SPT page already in core

SPTSHR | HLT UPSHR - SPT share count overflow

SPWRFL | CHK Spurious power fail indication

SRQOVF | CHK SCDRQ - Scheduler request gueue overflow

STKOVF | HLT Monitor stack overflow

STRBAD | HLT ASOFN - Illegal structure number
STZERO | HLT FILINI: STRTAB entry for PS is 0
SUMNRL | CHK AJBALS - SUMNR incorrect

SUMNR2 | CHK SUMNR incorrect

SWPASF | CHK CHKBAT - Failed to assign bad swapping address
SWPFPE | CHK Swap error in sensitive file page

SWPIBE | CHK Swap error in index block

SWPJSB | CHK Swap error in JSB page

SWPMNE | HLT Swap error in swappable monitor

SWPPSB | HLT Swap error in PSB page

SWPPT HLT Swap error in unknown PT

SWPPTP | HLT Swap error in unknown PT page

SWPUPT | HLT Swap error in UPT, or PSB

SYSERF | CHK LOGSST - No SYSERR storage for restart entry

TM2CCI | CHK PHYM2 - TM02 SSC or SLA will not clear
TM2HER | CHK TM2ERR - IS.HER set on successful retry
TM2IDM | CHK PHYM2 - Illegal data mode at done interrupt
TM2IDX | INF PHYM2 - Illegal retry byte pointer

TM2IF2 | CHK PHYM2 - Illegal function on command done

TMZ2IRF | INF PHYM2 - Illegal function during retry

TM2N2S | INF PHYM2 - More drives than table space, excess ignored
TM2NUD | CHK PHYM2 - Channel done interrupt but no unit active
TM2RFU | CHK PHYM2 - Error recovery confused

TM2UNA | INF PHYM2 ~ Done interrupt and UDB not active

TRPSIE |CHK No monitor for trapped fork

TTBAD1 |HLT Bad device designator for terminal at ATACH2
TTDAS1 |HLT HLTJB: Unable to deassign controlling terminal
TPTICNO |HLT TCI - No buffer pointer but count non-0

TTILEC |CHK TTSND - Unrecognized escape code

TTNACL | CHK Line not active at PTYOPN
TTNAC3 | HLT CTY not active at FSIPBO
TTNAC4 | HLT CTY not active at FSIPBI
TTNACS | HLT CTY not active at FSIINI
TTNAC7 | CHK Deallocating inactive line

COMPANY CONFIDENTIAL

TOPS-20
13-

pable 3 TOPS-20 BUGCHKS and BUGHLTS {Cont)

Name Type Description

TTNACS | HLT Cannot assign terminal at DEVINI
orOCNO | ALT | TTSTO - No buffer but count non-0
TTONOB | HLT TPy OUTPUT - No buffer but count non-0
TTYBBO | CHK TTYSRV - Big buffer overflow

TTYNTB | CHK Ran out of TTY buffers

TWONUL | HLT PHYSIO - PWQ or TWQ was null at a seek or transfer
completion

UBANXM j HLT 1I/0 NXM from Unibus device

UIONIR | HLT UDSKIO - No IORB for NOSKED fork

ULKBAD | CHK Unlocking TTY when count is 0

ULKSTZ | CHK Overly decremented structure lock

UNBFNF | CHK UNBLK1l - Fork not found

UNPGF1 | HLT MEMPAR - Parity error during memory scan
UNPGF2 | HLT Unknown page failure type

UNPIRX | CHK UNPIR - No PSI in progress

UNTRAP | HLT Unknown trap instruction

UNXMPE | HLT PFCDPE - unexpected parity errer trap
USGHOL | INF Lost page(s) in usage file

UXXCKP | HLT Could not create checkpoint file
UXXCL1 | CHK Unable to create new usage file
UXXCL2 | CHK Unable to open new usage file

UXXCL3 | CHK Unable to close usage file

UXXCRE | BLT Cannot create usage file

UXXFAI | CHK Usage JSYs failure

UXXFIT | INF Checkpoint file not in correct format for this
system, rebuilding.

UXXILL | BLT USGMES: Illegal function code

UXXMAP { HLT USGMAP: Call to JFNOFN failed

UXXOPN | HLT Unable to open usage file

UXXWER | CHK Write error in usage file

WRTBT4 | CHK ASOFN on bit table file failed

WRTCPB | CHK WRTBTB - Failed to back up root directory

WRTLNG | HLT WRTBTB - Bit table is a long file
WSPNEG | CHK SOSWSP - WSP negative

YBWERR | CHK | UPDOFN - Disk write error on X3

XSCORE | HLT CST too small for physical core present

COMPANY CONFIDENTIAL

EK-UKL1lu-ul

SYSERR JULY 1979

SYSERR COMMAND DESCRIPTIONS

THis section describes in detail the commands and switches
summarized in Table 2.

1

/BEGIN:APR-16-1979:12:30:00<CR> or BEGIN: =~7DKCR> -
SYSERR also recognizes relative dates in the form
-nD:HH:MM:SS where -nD specifies \the number of days in
the past. This is particularly useful for BATCH control
files. For example:

/BEGIN:-7D<CR> would 1list only those entries that
occurred during the last week.

/BEGIN:-12<CR> would 1list only those entries that
occurred during the last twelve hours.

/BEGIN:-0:30<CR> would list only those entries that
occurred during the last thirty minutes.

COMPANY CONFIDENTIAL

EK-0KL10-01
JULY 1979 TOPS-20 SYSERR

-1-

GENERAL INFORMATICN -

SYSERR is the report-generating part of the TOPS-20 error
detection, recovery., and reporting program. When the operating
system detects an error, both hardware and software error
information ,is recorded and stored in the system error file
(ERROR.SYS) . SYSERR is the user mode program that reads, formats,
and prints the contents of the ERROR.SYS file.

LOADING AND STARTING PROCEDURE

.@ SYSERRKCR> Typed at monitor command level
FOR HELP, TYPE "/HELP" standard SYSERR message
* prompt, indicates SYSERR is

ready to accept a command

SYSERR COMMAND FORMAT
SYSERR uses the following command format.

*dev:<DIRECTORY>file.ext = dev:<DIRECTORY>file.ext/s/s/.../s<CR>
(output, destination) = (input, source)

The user may use all or any part of the following SYSERR default
command string.

DSK:ERROR.LST = PS:<SYSTEM>ERROR.SYS/ALLSUM(CR>
For example:
*=<CR> Uses the entire default command string.

*PTY: =<CR> Changes the output device from the disk
to terminal.

*=/DEV:RP04/DETAIL:<CR> produces a detailed report on all RPO4s.

*TPY:=/BEGIN:-1D<CR> produces .a summary report of the last
day entries.

NOTE o

The name of the output file (default =
ERROR.LST) will change if a primary
switch is used. The name of the output
file will be the same as the name of the
first primary switch specified. For
example, if the /MASALL switch is used,
then the name of the ‘output file will
become MASALL.LST.

SYSERR CONTROL SWITCHES

The content of the SYSERR report is controlled by the switches
appended to the SYSERR command string. There are two types of
control switches: primary switches and secondary switches.

Primary Switches - The primary switches determine the type of
report that SYSERR will generate. Refer to Table 1. Note that a
single command string may have any number of primary switches.

Secondary Switches - The secondary switches are used to limit the
report to a particular device, group of devices or date and time
period. Secondary switches also control the level of detail
reported. Refer to Table 2.

Table 1 SYSERR Primary Switches

Switch pescription

/ALL *=/ALLCCR>
List all entries in the input file.
/allNXM | *=/ALLNXM<CR>

List all entries that pertain to nonexistent memory
conditions (NXM).

/allPAR *=/ALLPAR<CR>

List all entries that pertain to parity errors.

COMPANY CONFIDENTIAL

EK-0KL10-01
SYSERR JULY 1979

-2-

Table 1 SYSERR Primary Switches (Cont

Switch Description

/allPER *=/ALLPER<CR>

List all performance-related entries,
/allsuM *=/ALLSUM<CCR>

List a summary of each entry in the input file.
This is the default switch.

Central Processor Switches

/CpuALL *=CPUALL<CR>

List all CPU, main memory, and system-related entries.
The front-end subsystem for the KL10-based system will
also be listed.

/cpuCHK *=/CPUCHR<CR>
List all BUGCHK, BUGINF, and BUGHLT entries.
/CpuPAR *=/CPUPARCCR>

List all entries that pertain to CPU-detected parity
errors.

/CPuUPER *=/CPUPER<CR>

List all CPU and system-related performance entries.
/CpuRLD *=/CPURLD<CR>

List all system or front-end reload entries.

Massbus Controller Switches

/masALL *=/MASALL<CR>
List all entries that pertain to Massbus devices.
/masNXM | *=/MASNXM<CR>

List all Massbus entries that may have been caused by a
nonexistent memory.

/masPAR *=/MASPAR<KCR>

List all Massbus device entries that pertain to parity
errors.

Network and Front-End Switches

netALL *=/NETALL<CR>

List all entries pertaining to networks.
netHDW *=/NETHDW<CR>

List all network hardware entries.
netOPR *=/NETOPR<CR>

List all network operator and network PDP-11 report
entries

netPER *=/NETPER<CR>

List all DN64 statistics and line counter entries

System Switches

sysLOG *=/SYSLOG<CR>

List system configuration status changes and system log
messages.

COMPANY CONFIDENTIAL

EX-0KL10-01

JULY 1979 SYSERR
-3-
Table 2 SYSERR Secondary Switches
Cross
Switch pescription Ref.
/BEGIN *=/BEGIN:MM~DD-YY:HH:MM:SS<CR> or 1

/BRIEF

/DETAIL:

/DEV:

/END:

/NDEV:

/RETRY:

/SEQ:

*=/BEGIN:~7D<CR>

List only those entries that were recorded
after the date and time specified.

*TTY:=/BEGIN:~-7D/BRIEF:72<CR>

Print the sequence number, date and time, error
type, and a brief summary of each entry. The
number specifies the terminal page width (from
72 to 132 columns). See the /SEQUENCE switch.
*=/DEV:DPA7/DETAIL:<CR>

List all Massbus controller and device register
information, for each entry.

*=/DEV:DPA<KCR> or *=/DEV:MTA4<CR> or
*=/DEV:RP06<CR>

List only entries for the logical or physical
device specifed. Devices currently accepted are:

CD20 FE DEV RPO4 TU70

CLOCK KLCPU RPO5 TU71

cry RLERR RPO6 TU72

DH11 KLINIK TU16 T077

DLSCAN LP20 TU45 11CpPU
DL11C RMO3

To indicate a specific disk drive (DP) or
magtape drive (MT) by /DEV:name use the form
DPabc or MTabc, where

a = the logical controller address

b = the logical MASSBUS address

c = the logical slave address for MT and 0
for DP.

‘|The first summary listing will provide the

logical addresses.
*=BEGIN:MAY-6-79:00:01/END: MAY-12-79:24:00<CR>

Do not list any entries recorded after the end
date and time specified.

* /NDEV:DPB3<CR> or *=/NDEV:RP04<CR>

This switch performs the opposite function of
/DEV. Using /NDEV: device name will generate
a listing of all entries except those which
involve the named device.
*=/DEV:MTB7/RETRY: 5<CR>

List only those entries that have a retry count
greater than the value specified.

*=/SEQ:17<CR> or SEQ:(10,216,-4,517
This switch is used after the /BRIEF: switch

to list the entries for the sequence number (s
specified.

COMPANY CONFIDENTIAL

-1-

MAINTENANCE SOFTWARE
Maintenance software is one of three major categories of software.
Refer to Figure 1.

SOFTWARE

— :

SYSTEM APPLICATION MAINTENANCE
SOFTWARE SOFTWARE SOFTWARE
(LIBRARIES)
MRA-2654

Figure 1 Three Major Categories of Sofiware

Maintenance software has two primary uses: during preventive
maintenance it is used to verify the operational status of the
hardware, and during corrective maintenance it is used to detect
and isolate (diagnose) hardware malfunctions.

Maintenance Libraries

Maintenance software is organized into maintenance libraries. The
libraries are identified by the base processor that executes the
program and the type of system the programs are designed to
maintain. This guide, for example, describes four maintenance
libraries. Refer to Figure 2.

MAINTENANCE
SOFTWARE

I | l

8BASED B 11-BASED 11 11-BASED 10 10-BASED 10

MAINTENANCE MAINTENANCE MAINTENANCE MAINTENANCE

LIBRARY LIBRARY LIBRARY LIBRARY
MR-2550

Figure 2 Four Maintenance Libraries

8-Based 8 Maintenance Library - Written in PDP-8 machine language
and used to diagnose faults in PDP-8 based subsystems

11-Based 11 Maintenance Library - Written in PDP-~11 machine
language and used to diagnose faults in PDP-11 based subsystems

11-Based 10 Maintenance Library ~ Written in PDP-11 machine
language, executed by the KL10 console front-end subsystem and
used to diagnose faults in the KL10 processer, memory, and
channels

10-Based 10 Maintenance Library - Written in PDP-10 machine

language and used to diagnose faults in the PDP-10 processor,
memory, and I/0 subsystems

COMPANY CONFIDENTIAL

-2-

Maintenance libraries consist of utility programs, control files,
and diagnostic programs. Refer to Figure 3.

Figure 3

MAINTENANCE

SOFTWARE
UTILITY CONTROL DIAGNOSTIC
PROGRAMS FILES PROGRAMS

MR-2560

Component Parts of Maintenance Software

The utility programs and control files are used primarily to
simplify loading, running, and maintaining the diagnostic programs
and diagnostic storage media. The diagnostic programs have
several uses which are listed below.

1.

During the prototype stages of hardware design,
diagnostics are used to determine if the system,
subsystem, or unit under development functions properly
and as expected. During this time both the hardware and
the diagnostic(s) may undergo any number of changes or
revisions.

During manufacturing and final system integration,
diagnostics are used to assure that the product functions
properly before shipment.

During installation, diagnostics are used to double-check
manufacturing and to correct any malfunctions which may
have occurred during shipment.

During customer acceptance, diagnostics are used by the
installation team to demonstrate to the customer that the
hardware is operating properly.

During preventive maintenance, diagnostics are used to.
assure that the system is fully (100%) operational.
Diagnostics are also used at this time to identify
potential problems and problems which can be deferred to
a later, more convenient, date for correction.

During corrective maintenance, diagnostics are used to
detect and isolate the cause of a hardware malfunction.

Following corrective maintenance, diagnostic programs are
used to verify that all problems have been identified and
resolved and that the system is fully (100%) operational.

Utility Programs
Basically, there are six types of utility programs.

1.

Bootstrap Loaders - A bootstrap loader is a two-part
program. The first part either resides permanently in a
read-only memory (ROM) or must be manually deposited into
memory. The second part resides in the boot block (block
0) of an input device. The first part consists of a few
instructions which, when executed, will read in the
remainder of the program from a predetermined input
device. Once in memory, the bootstrap loader can be used
to load and start a larger, more complex program such as
a diagnostic or diagnostic monitor.

Downline Loaders - A downline loader is a program that
enables the user to transfer a utility or diagnostic
program from the host system to another system for
execution.

COMPANY CONFIDENTIAL

-3-

3. Diagnostic Monitors - A diagnostic monitor is a special
purpose loader that enables the user to:

a. Manually (via commands) load and run a single utility
or diagnostic program

b. Automatically (via a control file) load and run a
sequence or hierarchy of diagnostic programs.

4, Program Maintenance Utilities - This type of utility
program is used to generate and patch or update control
files and diagnostic programs.

5. File Maintenance Utilities - This type of utility program
is used to generate and update diagnostic (disk and tape)
storage media.

6. Hardware Utilities - A hardware utility is a utility-type
program that supports maintenance or diagnostic
functions. For example, the 1ll1-Based 10 Maintenance
Library uses utilities of this type to configure the main

ory sub tem and to read and change the internal

status of the CPU.

Utility programs are relatively easy to use because they support
individual command sets which can be summarized in tables similar
to the one following.

Table 1 TRACON Control Function Summary

Cross

Command Description Ref.
A A<CR>

Auto insert - automatically builds an internal 1

command file as commands are typed.
E E<CR>

Edit or create a command buffer. Refer to 2

Table 2.

The table lists the base commands in alphamumeric order. provides
an example which illustrates the proper command format, and

briefly describes the task the command performs. The cross
reference is used only when a more detailed description is
necessary. For example, the following command description

corresponds to the table illustrated above.

TRACON COMMAND DESCRIPTION
This section describes in detail each of the commands summarized
in Table 1, Table 2, and Table 3.

1. A<CR> - The A command opens the command buffer for input.
All commands typed following an A command are entered
into the buffer until a KA command is typed. The
commands in the buffer are executed via the X, L or M
command. The buffer may be saved for future reference
with the DC command.

Control Files

A control file or script is an ASCII text file which is generated
using a standard editor program and which contains a 1list of
commands to be executed by a program, usually a utility. When
directed to do so, the program will read the control file into
a memory buffer and begin executing the commands it contains as
though they were entered directly from the user's terminal.

The following is a typical example of a control file. The file in
the example is part of the B command file executed by KLDCP.

Example: ;B.CMD, KL10 PROCESSOR DIAGNOSTIC BOOT, 9-JUN-78
; PROCESSOR HARDWARE

;DTE20 INTERFACE
P DGDTE.All
SED 2

;EBOX PART 1
P DGKAA.All
SED 1

;EBOX PART 2
P DGKAB.All
SED 1

$MBOX BASIC
etc.

COMPANY CONFIDENTIAL

—4-

In this example, the utility program (KLDCP) is directed to run
two passes of DGDTE, one pass of DGKAA, one pass of DGKAB, etc.
Note that command lines preceded by a semicolon are considered
text and are ignored by the program processing the control file.

During preventive and corrective maintenance, control files are
used to automatically direct the diagnostic monitor to sequence
through a series (hierarchy) of diagnostic programs. Control
files used in this manner assure that the proper programs are run
in the correct order and for the prescribed period of time.

Diagnostic Programs

piagnostic programs are divided into two major categories;
exercisers, which include system exercisers and subsystem
exercisers, and operability tests, which include functional tests
and hardware (FRU) tests. Refer to Figure 4.

DIAGNOSTIC
PROGRAMS
1
I WER)\BILITV
EXERCISERS TESTS
SYSTEM SUBSYSTEM FUNCTIONAL HARDWARE
EXERCISERS EXERCISERS TESTS (FRU) TESTS

MR.2555

Figure 4 Major Categories and Types of Diagnostic Programs

Exercisers are designed to generate maximum system interaction by
operating the CPU, storage and/or I/0 subsystems at or near full
capacity. 1In this respect exercisers are used to:

1. Localize a system malfunction to the failing subsystem or
unit within that subsystem

2. Troubleshoot (intermittent) reliability, priority
arbitration, and/or subsystem interaction faults which
only occur when the system is operating at or near full
capacity.

Operability tests are designed to systematically test each
individual instruction, operation or function the hardware is
capable of executing. Primarily, operability tests are used to
detect solid hardware faults and isolate the cause to the failing
function or field replaceable unit (FRU).

Loading and Starting Procedures - Each maintenance library has a
standard procedure for loading and starting utility and diagnostic
programs. Typically, the procedure involves a bootstrap or ROM
loader, a primary loader (e.g., a diagnostic monitor), a set of
standard program starting and restarting addresses, and a set of
standard program control switches. The procedure generally
describes how to:

1. Boot the system and load the primary loader

2. Direct the primary loader to load the desired utility
diagnostic, or control file

3. Sets the desired program control switches

4. Direct the primary loader to start the program or execute
the control file.

COMPANY CONFIDENTIAL

-5—

Operational Control - There are two principal methods of
controlling the operation of a diagnostic program. The first is
control switches and the second is operator dialogue. Many

diagnostics use a combination of both.

Switch control is usually implemented through the console data
switches. Each switch is assigned a fixed program control
function (e.g., inhibit printouts, loop on test, halt on error,
etc.). The switches are read at the start of the program and may
be read periodically by the program while it is running. The
program uses the state of the control switches to determine
operating parameters as well as how to react to various error
conditions.

Operator dialogue takes place between the diagnostic and the
user's terminal. It enables the diagnostic to query the user and
enables the user to specify program parameters such as the
subsystems and/or units to be tested, the type of test to be run
and the data patterns to be used during testing. The flexible
control offered by operator dialogue complements the more rigid
control supplied by switches.

Thus many diagnostics, pacrticularly those in the exercise
category, use the switches to specify standard control functions
and the operator dialogue to specify variable test parameters.

Internal Structure - Although there is no rule stating that all
diagnostic programs must use a standard internal structure, most
do. The structure consists of four parts: a program
initialization and control routine, a main diagnostic segment, a
set of service routines, and a storage area for fixed and variable
data. Refer to Figure 5.

INITIALIZATION AND
CONTROL ROUTINE

L MAIN L
= DIAGNOSTIC ~

- SEGMENT ~—

SERVICE ROUTINES

FIXED AND VARIABLE
DATA STORAGE AREA

MR-2561

Figure 5 Internal Structure of Diagnostic Programs

Program Initialization and Control Routine - This routine
initializes the system, reads and stores the state of the program
control switches, performs operator dialogue and dispatches to the
main diagnostic segment of the program.

Main Diagnostic Segment - The main diagnostic segment consists of
a set or series of exerciser or test routines. The routines that
make up exercisers are inextricably intertwined (complex to say
the least). This is particularly true at the machine language
level. On the other hand, the series of test routines that
constitute operability tests are relatively easy to understand.
This is true both at the conceptual level and at the machine
language level. The organization and structure of operability
tests will be discussed later.

COMPANY CONFIDENTIAL

e

Service Routines - Service routines are used by both the program
initialization and control routine and the routines that make up
the main diagnostic segment of the program. They are used to
handle keyboard input and printer output, generate data patterns,
load and unload memory buffers, and format error messages.
Separating service routines from the main program in this manner
and making them available to both the initialization and test
routines simplifies programming, eliminates redundancies, helps
standardize the diagnostics and makes it significantly easier to
read the program listing should that become necessary.

Fixed and Variable Data Storage Area - The fixed storage area is
used to store program constants such as fixed ASCII messages and
test operands. The variable data storage area provides temporary
buffer areas for storage of terminal input and output, program
stack operations, various test data patterns, etc.

Exercisers - As mentioned earlier, system exercisers and subsystem
exercisers are similar both in design and in intended use. System
exercisers are designed to generate maximum system interaction by
operating the CPU, storage, and I/O subsystems at or near full
capacity. Subsystem exercisers are designed to generate max imum
subsystem interaction by operating the control unit, data channel
(if present) and one or more storage or I/0 devices at or near
full capacity.

System exercisers are intended to:

1. Localize a system malfunction to the subsystem or device
causing the failure

2. Troubleshoot (intermittent) reliability, priority
arbitration and subsystem interaction faults.

Subsystem exercisers are intended to:

1. Localize a subsystem failure to the control unit, channel
or device causing the failure

2. Troubleshoot {intermittent) reliability, internal
priority arbitration,and device and device bus
interaction faults.

There are three important points to keep in mind when using
exercisers.

1. Exercisers are designed to troubleshoot the so-called
intermittent class of failure. They should never be used
to troubleshoot solid faults or faults that can be
detected and isolated using an operability test.

2. Exercisers operate on the assumption that certain
hardware error checking logic is functional (e.g., parity
checking networks, time-out logic, etc.). 1In many cases
they use this logic to indicate that an error has
occurred. Therefore, before using an exerciser for
troubleshooting purposes, use the appropriate operability
test to verify that no solid hardware malfunctions exist
in the error checking logic.

3. Exercisers typically provide extensive operator dialogues
and comprehensive error message reports. This is done
because the internal structure and control of exercisers
tends to be complex. When an exerciser must be used for
troubleshooting, use the flexibility of the operator
dialogue, all the information provided by each error
message and deductive reasoning to determine the cause of
the problem. Avoid using troubleshooting techniques that
;equire analyzing the exerciser at the machine language

evel.

Operability Tests - Functional tests and hardware (FRU) tests are
also similar in design and intended use. The major difference
between the two is their degree of isolation or fault resolution.
Functional tests isolate faults to the failing function. From
that point the technician must analyze the failing test or subtest
and determine which component or field replaceable unit is causing
the failure.

COMPANY CONFIDENTIAL

—7-

Hardware (FRU) tests, on the other hand, attempt through a logical
analysis of the symptoms, to isolate the specific field
replaceable unit (FRU) causing the failure. Thus, in most cases,
the need to analyze hardware (FRU) tests at the machine language
level is eliminated. The exception, of course, is when the test
detects a fault but is unable to identify the failing FRU. in
this case an analysis of the test would be required.

The main diagnostic segment of an operability-type diagnostic (as
mentioned earlier) consists of a series of individual test
routines. Each test routine is designed to check one specific
hardware function. When a function can be checked in more than
one way (e.g., a multiplexer with several data and gating inputs)
then the test for that function will be divided into subtests.
Each subtest will in turn test one aspect of the function until
the function is completely tested. Refer to Figure 6.

PROGRAM INITIALIZATION
AND CONTROL ROUTINE

TEST1
TEST 2 TEST 6
INIT
EXECUTE
TEST3 CHECK
TEST4
TEST 7
SUBTEST 1
TESTS INIT
T EXECUTE
[} CHECK
[}
]
o L.
' .
T B SUBTEST 2
! T INIT
[EXECUTE
| CHECK
1 - .
) -~ ~
] SUBTEST n
L INIT
TEST n EXECUTE
CHECK
TESTS
'
SERVICE ROUTINE !
AREA f
1
1
i
1

FIXED AND VARIABLE
DATA STORAGE AREA

MR-2652

Figure 6 Internal Structure of Operability Tests

COMPANY CONFIDENTIAL

-8-

Both test and subtest routines have three major sections of
machine language code.

1. INIT - The INIT or initialization code preconditions the
hardware for testing. This may involve tasks such as
resetting the hardware, checking to assure that no error
conditions already exist, setting and clearing status
bits generating test operands, and building channel
command lists and data buffers. Service routines are
frequently used to accomplish many of the tasks involved
in test initialization.

2. EXECUTE - The execute code usually consists of one
machine language instruction which will cause the
function or operation wunder test to activate.
Occasionally two or more instructions are required for
this purpose.

3. CHECK - The checking code determines if the hardware
responded properly. Most often this involves reading
hardware status registers and checking buffers for
correct data. Typically, an error checking service
routine is used for this purpose. The expected results
of the test are passed to the error checking routine by
the test initialization code. The actual test results
are passed to the routine by the checking code. The
error checking routine compares the expected results with
the actual results and determines 4if an error has been
detected.

If no error is detected, program control will generally proceed to
the next test or subtest in the sequence. The program will
continue in this manner until each hardware function or FRU has
been completely tested for solid failures. If, on the other hand,
the test does detect an error, the program may respond in a number
of ways. For example, it may print an error message, ring the
bell on the user's terminal, halt, go on to the next test or loop
on the failing test. How a program responds to an error depends
largely upon the initial operator dialogue and the state of the
program control switches.

SUMMARY

The following diagram and 13 points summarize the organization and
structure of maintenance software.

soFTWARE

OPERABILITY
EXENCISENS. fot v

svaTem SwesvSTEM FUNCTIONAL HARDWARE
EXERCIBENS Exencisens esTs IFRU) TESTS
[

an s

1. Maintenance software is one of three major categories of
software.

2. Maintenance software is divided into specific maintenance
libraries.

3. Maintenance libraries include utility programs, control
files, and diagnostic programs.

4. Utility programs (excluding hardware utilities) simplify
using and maintaining the diagnostic programs and
maintenance library storage media, They are not
diagnostics and should never be used as such.

COMPANY CONFIDENTIAL

10.

11.

12.

13.

~-9-

Hardware utilities support functions that can be used for
diagnostic purposes.

Control files are ASCII text files which contain a list
of commands to be executed by a utility program. They
too simplify using and maintaining the maintenance
library.

There are two major categories of diagnostics; exercisers
and operability tests.

buring preventive maintenance both types are used to
verify the operational status of the hardware.

During corrective maintenance

a. Exercisers are used to localize malfunctions and
troubleshoot intermittent (reliability) problems.

b. Operability tests are used to detect solid faults and
isolate the cause to the failing function or field
replaceable unit.

Most diagnostics use a common structure consisting of

a. a program initialization and control routine
b. a main diagnostic segment

c. a set of service routines

4. a storage area for fixed and variable data.

The internal organization of exercisers is complex.
Troubleshooting techniques that require analysis of them
at the machine language level should be avoided.

The internal organization of operability tests is
basically straightforward. They consist of individual
tests and subtests.

Tests and subtests have three major parts.

a. INITialization
b. EXECUTE

‘c. CHECK

COMPANY CONFIDENTIAL

Summary
8/8 STD
DJEXA
DJIKAR
DJIMSA

DXMPA

-1-

Table of Contents

Microfiche
Classification

Na

PDP-8A
PDP~-8A
PDP-8A

DX10

8/8

Version
0.0

0.1

0.2

0.1

14

COMPANY CONFIDENTIAL

STD

8/8 STD

8-BASED 8 MAINTENANCE LIBRARY

The 8/8 Maintenance Library is included in this volume of the KL10
Maintenance Guide because a PDP-8A minicomputer is used as a
microcontroller for the TU70 Series magtape subsystems. The
following tables and procedures are used to describe the library
and its utilization,

Table 1 8/8 Utility Programs

Table 2 8/8 (PDP-8A) Processor and Memory Diagnostic Hierarchy
Table 3 8/8 High-Speed and Low-Speed RIM Loaders

Procedure 1 8/8 Loading RIM Formatted Papetr Tapes

Procedure 2 8/8 Loading Binary Formatted Paper Tapes

Table 1 8/8 Utility Programs

Utility Description

BINARY A diagnostic loader for paper tapes having a PB suffix
(e.g., DIJKAA-C-PBl)

RIM 2 manually deposited readin mode loader for paper tapes
having PM suffix (e.g., DJKAA-C-PM1). There are two
versions of the RIM loader. Refer to Table 3. The
high-speed version is used with a high-speed paper tape
reader. The low-speed version is used for low-speed

paper tape readers (e.g., ASR-33s).

Table 2 8/8 (PDP-8A) Processor and Memory Diagnostic Hierarchy

Diagnostic Description

DJKAA.A8 PDP-8A CPU Test
DIMSA.A8 1K to 4K MS8-A MOS Memory Test
DJEXA.A8 1K to 32K Random Memory Reference Instruction

Exerciser.

Table 3 8/8 Low-Speed and High-Speed RIM Loaders

Memory Low High

Location Speed Speed Comments
0156 6032 6014 RIM loader starting address
0157 6031 6011

0160 5357 5357

0161 6036 6016

0162 7106 7106

0163 7006 7006

0164 7510 7510

0165 5357 5374

0166 7006 7006

0167 6031 6011

0170 5367 5367

0171 6034 6016

0172 7420 7420

0173 3776 3776

0174 3376 3376

0175 5356 5337

COMPANY CONFIDENTIAL

8/8 STD

-3~

Procedure 1 8/8 Loading RIM Formatted Paper Tapes

Step Procedure

1 Manually deposit the appropriate RIM loader into memory.
Refer to Table 3.

2 Place paper tape to be loaded in the paper tape reader and
turn the reader ON.

3 Load address 0156, press key CLEAR, then START. The tape
will automatically read in.

4 Press key STOP after the last data on tape has read in but
before the blank tape trailer has passed through the
reader.

5 Refer to the specific program summary for further operating
information.

Procedure 2 8/8 Loading Binary Formatted Paper Tapes

Step Procedure

1 Read in the binary loader program. Refer to Procedure 1.

2 Place the paper tape to be loaded in the paper tape reader.
Turn the reader ON.

3 Load addresses 7777. Press key CLEAR.

4 Reset console data switch 0 (i.e., 3777) if a high-speed
paper tape reader is being used. If a low-speed reader is
used, leave the switches set at 7777.

5 Press key START. The tape will read in automatically and
the processor should halt with the AC display equal to all
0s. If the processor halts before the tape has read in or
if the AC is non-0, a checksum error has occurred. Correct
the problem and reload the tape.

6 Refer to the specific program summary for further operating

information.

COMPANY CONFIDENTIAL

DJEXA

-1-

GENERAL INFORMATION

Code

Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs

Restrictions

Notes

DJEXA.A8

1K to 32K Random Memory Reference Instruction
Exerciser

The 1X to 32K random memory reference instruction
exerciser program is a test to check the
execution of the memory reference instruction
(AND, TaAD, ISz, DCA, JMP and JMS) of the
processor for all addressing modes in a 1K to 32K
PDP-8E/8A series computer. The program rolls up
and rolls back a page at a time in a 2K, 3K or 4K
memory and also swaps up and down between memory
fields if more than 4K is available.

The program initially occupies locations 0 to
1776. addresses 0 to 177 are used for program
loading and initialization. They will be
destroyed once the program has been started. If
the program is allowed to relocate, it will roll
up and back through a memory field and relocate
between memory fields if more than 4K. All
locations outside of the area taken up by the
program, in any field, are used as a test area
and they are filled with halts after every 4096
instructions have been tested.

Normally all testing is done randomly, but for
troubleshooting ,purposes, the program can be
constrained to absolute addresses, instructions,
and constant data.

PDP-8A, PDP-8E, PDP-8F or PDP-8M processor/lK to
32K of core memory/load device/programmer's
console (optional)

Refer to diagnostic hierarchy (8/8 STD module).

1. Each time the programmer's console is
installed or removed the program must be
reloaded and bit 0 of location 21
reinitialized.

2. Before each program start, location 21 (bits
7-11) in the program field “"must be"
initialized for the amount of memory to be
tested. Location 21 initially 1s preset to 0
{no front panel switch register and 1X of
memory) . Refer to Table 2.

3. Once the program has rolled into another area
of memory, the memnory size cannot be
decreased below the 1K segment that the
program is located in.

1. If a programmer's console is installed the
program should be stopped by setting the
switch register to 0400. This will assure
that the program is not in the process of

relocating. For those systems without a
front panel, it is best to reload the
program.

2. DJEXA 1is run automatically under DDDXA, a
PDP-10 TU70 diagnostic.

3. DDDXA supports code which simulates the
programmer's console.

4, 1f running in a 1X system, the test

instructions are executed in page 0 of field
0 only and the program will not roll.

COMPANY CONFIDENTIAL

DJEXA

-2-

5. Constraining - The programmer's console must
be installed to constrain the program. The
pProgram 1is normally set up to select
instructions, addresses, addressing modes and
test fields (if any) randomly. For
troubleshooting purposes, the operator has
the capability of constraining the program to
the following specific areas.

a. Memory and AC data
b. Memory field(s)

c. 1Instructions (AND, DAC, T1S%Z, JUMP, JMS,
or TAD)

d. Addressing modes (direct, indirect, and
auto index)

Refer to the listing on microfiche for a

description of the constraining
procedure.
Loading and
Starting
Procedure Via TU70 Diagnostic
DJEXA is run automatically under DDDXA.Al0.
Refer to the 1l0-Based 10 Maintenance Library.
Via Paper Tape
DJEXA is available in standard RIM format. Refer
to the 8/8 STD module for loading procedures.
Console
Switches Refer to Table 1. Tf the program was initialized

to run without the programmer's console, location
20 in the program field "must be" set for the
desired switch register setting (normally Os)
before each program start. Location 20 initially
is preset to 0.

OPERATIONAL CONTROL

With the program loaded and the CPU stopped, initialize locations
20 and 21 using either the programmer's console or the console
program built into DDDXA. Refer to Table 1 and Table 2
respectively.

LOAD ADDRESS to address 0200, set the switch register, and press
CLEAR, then CONTINUE. The program will now run until an error is
encountered or until switch register 3 is set to a 1.

To restart the program if it was stopped by setting switch
register 3, proceed as follows.

1. Examine location 1 of the 4K field in which the program
is located.

2. Reset the switch register.

3. Set the extended memory address field equal to bits 6, 7
and 8 of location 1.

4. Set switch register bits 0 through 5 equal to bits 0
through 5 of location 1.

5. Press LOAD ADDRESS, set the switch register (refer to
Table 1), press CLEAR, then CONTINUE.

PROGRAM DESCRIPTION
This program is quite powerful to the extent that it checks the
memory reference instructions for the following.

1. Correct execution of instructions in random addresses.

2. Correct execution of instructions in random fields.

COMPANY CONFIDENTIAL

DJEXA
-3

3. Correct execution of instructions for the following
addressing modes:

a. Direct and indirect addressing
b. Same page and page 0 addressing
c. Auto index addressing

4. Correct random memory data after execution of
instruction.

5. Correct random AC data after execution of instruction.

All the above operations are selected randomly but they can be
constrained. The program can test 1K to 32K of memory in 1K
increments. Testing in a 1K memory is limited to testing
instructions only on page 0.

The program has the capability of relocating through memory for
the purpose of testing random instructions in the addresses where
the program was previously located. If the program is limited to
1K, there will be no relocation. The program rolls up through
memory after every 4096 instructions have been tested. The
program rolls up by relocating the program by one memory page
after each roll memory is filled with halts. When the program has
rolled up to the upper limit of this field and after 4096
instructions have been executed, the program is then rolled back
by one memory page. After every 4096 instructions, the program is
rolled back until the program resides in addresses 0200 to 1777.
At this time the program will swap up to another field if selected
or start rolling up if limited to a 2K to 4K memory. If program
was relocated by swapping up to another field, all of memory
outside of program area is filled with halts. The program will
now roll up and roll back in this field. This rolling up and
rolling back and swapping up is done until the upper test field is
reached. When this field is reached, the program will roll up and
roll back in this field and then swap down by 1 memory field.
This rolling up and down and swapping down is done until field 0
is reached and then the sequence is repeated over. After every
roll and swapping of the program, memory is filled with halts,
All relocating of the program is checked for errors.

Location 1 of the program field contains the starting address and
the field that the program is in. The contents of location 1 is
in the following format: SAF0. By adding 00 onto SA, the number
obtained (SA00) will be the new starting address for the program.
F should equal the field that the program is in.

ERROR SUMMARY

DJEXA halts upon detecting an error. Also at start time and after
each program roll and field swap, the program fills all memory not
occupied by the program with halts.

To determine why a particular halt occurred proceed as follows.

1. Examine location 1 of the 4K field that the program is
located in. Record this value unless location 1 contains
7402 (HLT). If location 1 contains 7402 the halt
occurred outside the program area. This usually
indicates an addressing problem. In such a case continue
to examine location 1 at page boundary (i.e., 200, 400,
600 etc.) until a value other than 7402 is obtained.
Record this value.

2. Set the extended memory address field equal to bits 6, 7,
and 8 of the word stored in location 1.

3. Add 11 to bits 0-5 of the word stored in location 1 and
set switch register bits 0-5 equal to the result.

4. Set switch register bits 6-11 equal to 31.
5. Press LOAD ADDRESS, reset the switch register, press
CLEAR, then CONTINUE. The CPU will halt at location XX50

where XX egquals the even page boundry of the program
location.

COMPANY CONFIDENTIAL

DJEXA
4

6. Location XX50 is a common halt used to display the
information described in Table 3. Record the value of
the AC for each halt (1 through 12). Use key CONTINUE to
proceed through the halts. Press key CONTINUE after the
last error halt (12) to loop on the error. This assumes
that the switch register is set up for error looping.

Example:
To determine the type of error, the operator must understand the
test instruction setups. The JMS indirect addressing mode setup
is included here as part of the example. Setups for the remaining
instructions are described in the listing on microfiche.
JMS Indirect Addressing Setup

1. 1Instruction setup is put in some random field.

2. Location 0 of this field contains the return pointer to
the program.

3. The contents of the AC contain some random number.

4. The program JUMPS to the instruction address.

5. Instruction address = the test JMS indirect instruction.
6. Reference address = indirect address.

7. 1Indirect address should contain instruction address +1
after execution of instruction.

8. 1Indirect address +1 = CIF to program field.
9. Indirect address +2 = JMS I 0 return to program.
10. Indirect address +3 = JMS I 0 return to program.
Following is a list of error information which was recorded as a

result of a JMS-type error. For a complete description of the
error catagories refer to Table 3.

Halt AC Halt AC

1 EXP FIELD 0050 7 REF ADD 5343
2 RET FIELD 0040 ' 8 INDIRECT ADD 7004
3 EXP PC 7007 9 INIT MEM DATA 7415
4 RET PC 7007 10 FINAL MEM DATA 5214
5 INST ADD 5213 11 INIT AC DATA 5117

The setup for the above example is as follows.
1. The test instructions were supposed to go into field 5.
2. The AC before execution of the test instruction was 5117.

3. The program JUMPS to location 5213 in field 5 and
executes the following code.

Location Contents

5213 4743 instruction address and instruction

5343 7004 reference address and indirect address
7004 XXXX indirect address and some unknown number
7005 6202 change I.F to program field

7006 4400 return to program

7707 4400 return to program

NOTE
Initial memory data is N/A.

It can be seen from the table that the JMS worked but instead of
putting the instructions in field 5, they were put into field 4.
Therefore, it may be concluded that bit 8 was not loaded into the
instruction field register.

COMPANY CONFIDENTIAL

DJEXA

-5~
Table 1 DJEXA Location 20 or Console Switch Summary
Switch | State | Description
0 0 Normal operation
1 Inhibit error halt
1 0 Normal operation
1 Loop on test conditions
2 0 Normal operation
1 Inhibit program relocation
3 0 Normal operation
1 If switch 1 = 0 halt after execution of 4096 test
instructions
Table 2 Location 21 Program Test Field Codes
Memory LOC21 Memory LoC21 Memory LOC21 Memory LOC21
1K 0000 9K 0010 17K 0020 25K 0030
2k 0001 10k 0011 18k 0021 26k 0031
3k 0002 11k 0012 19k 0022 27k 0032
4K 0003 12K 0013 20K 0023 28K 0033
SK 0004 13K 0014 21K 0024 29K 0034
6K 0005 14K 0015 22K 0025 30K 0035
K 0006 15K 0016 23K 0026 31K 003
8K 0007 16K 0017 24K 0027 32K 0037
NOTE

Bit 0 of Location 21 = 0 indicates the
programmer's console is not installed.

Bit 0 = 1 indicates the programmer's
console is installed.

COMPANY CONFIDENTIAL

DJEXA

-6~

Table 3 Error Halt Information

Halt No. | AC Contains

1 The field that program put instruction in.

2 The field the program returned from. N/A if program
halted outside of program area.

3 The expected PC return from test instruction.

4 The actual PC return from test instruction. N/A if
program halted outside of program area.

5 The address of the test instruction. The program goes
to this address minus one to do a CIF for AND, TAD, ISZ,
DCA before executing the test instruction.

6 The test instruction that was executed.

7 The address which the test instruction will reference
or, if instruction is indirect, this address will
contain the indirect address.

8 The indirect address which the test instruction will
reference. N/A if test instruction is a direct address.

9 The memory data which is put into reference address or
indirect address if instruction is direct or indirect.
N/A for a JUMP or JMS instruction.

10 The contents of reference address ‘or indirect address
after execution of instruction. N/A if program halted
outside of program area.

NOTE
For a JMP instruction this number should
be equal to a CIF X and for a JHMS
instruction this number should equal the
instruction address plus 1 location.

11 The contents of the AC before the execution of the
instruction.

12 The contents of the AC after execution of the test

instruction. N/A if program halted outside of program
area.

COMPANY CONFIDENTIAL

DJKAA

-1~

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs

Restrictions

Notes

DJKAA.AS
PDP-8A CPU TEST

The PDP-8A instruction test is designed to test
all logic on the 8A CPU board that is testable by
the use of programmed instructions. This
includes the power fail option if it is installed
in the CPU.

The 8A instruction test uses locations 0000
through 3777. The 4K version of this test will
run in any 4K memory field, as long as locations
00000 through 00177, and location 017777 exist
and are read/write memory.

Special RIM-format tapes are available to allow
running the test in 1K of memory, by executing
the test in two consecutive 1K segments. In this
case addresses 0000 through 1777 are used.

PDP-8A, PDP-8E, PDP-8F or PDP-8M mainframe/lK to
32K of memory/PDP-8A I/O simulator (optional)

Refer to diagnostic hierarchy (8/8 STD module).

1. This cannot be run on PDP-8, PDP-8I, PDP-8L,
PDP-8S and PDP-12 mainframes.

2. 1Interrupts - No interrupts except power fail
and those from the DATA BREAK/INTERRUPT
simulator are permitted.

3. MB73 - If the CPU has a timeshare option
(M873 only), the option must be disabled as
it may cause unexpected interrupts.

4. Device Code 77 - In order to completely test
ROM H, it 1is necessary to execute an IOQT
instruction with bit 3 of the IOT (e.g. 64XX,
65XX, 66XX, 67XX). The IOT instruction used
by the test is 6770. If this IOT conflicts
with a device on the system under test,
disconnect the device from the machine while
running part 2 of this test.

5. Programmer's Console - To run part 2 of this
test (using the I/O simulator), in a machine
with a programmer's console installed, the
display must be set for the MD, STATE, or
STATUS or an error halt will occur.

6. 1K to 3K machines - Special RIM-format paper
tapes are required to run this test in
machines with less than 4K of memory. The
instruction test is segmented into two 1K
segments that are punched on two RIM format
paper tapes labeled 08-DJKKA-PMl. The second
1K segment is only for use with an 8Aa 1I/0
simulator. 1If no simulator is available, the
second 1K segment should not be run.

1. Untested Logic - Due to certain hardware
restrictions, some logic on the PDP-8A CPU
board is not tested by this program. Below
is a 1list of logic that is known to be
untested.

ROM A:
addresses 00 - 03 (extended load address 7)
addresses 04 - 07 (extended load address)
addresses 14 - 17 (load address)
addresses 20 - 23 (examine)
addresses 24 - 27 (deposit

COMPANY CONFIDENTIAL

DJKAA

Loading a
Starting
Procedure

Control
Switches

OPERAT ION,

1.

3.
4.

-2-

Auto restart logic (restart after power fail)
Next time state stall logic

Load address line (DR2) and associated logic

2. Versions - There are several versions of
DJKAA.
Field Service/XCR 4K
Version MAINDEC-08-DJKRA-C-PB1
Field Service 1K
Segment Part 1 MAINDEC-08-DJKKA-C-PM1
Field Service 1K
Segment Part 2 MAINDEC-08-DJKKA-C~PM2
(I/0 simulator
required)
APT-8A 4K Version MAINDEC-08-DJKKA-C-PB2
APT-8A 1K Segment
Part 1 MAINDEC-08-DJKKA-C-PB3
APT-8A 1K Segment
Part 2 MAINDEC-08-DJKKA-C-PB5
ACT-8E Version MAINDEC-08-DJKKA~C-PB5

The XOR variation of the field service
version, the APT-08A and ACT-8E versions are
documented in the listing on microfiche.

3. Errors - It is recommended that the program
be reloaded after anm error has been detected.

nd

Via TU70 Diagnostic
DJKAA is run automatically under DDDXA.AlO.
Refer to the 10-Based 10 Maintenance Library.

Via Paper Tape

DJKAR is available on binary-formatted paper
tape. Refer to 8/8 STD module for loading
procedures.

The field service 1K versions of DJRKAA are on

RIM-formatted paper tape. Refer to 8/8 STD
module for loading procedure.

Refer to Table 1. 1f a programmer's console is
not available, deposit the desired state of the
console switch register into memory location 20.
AL CONTROL
If a programmer's console is installed, initialize memory
location 21. Refer to Table 2. If no initialization is
performed, the program will assume that no programmer's
console or 1/0 simulator is available.
If running the 4K version, or the first 1K segment,
initialize 1location 0221 to a 7000, to prevent the
initial halt {step 6).
Load address 200.
Set the control switches. Refer to Table 1.
Press INIT, then CONTINUE.

The CPU should halt with MA = 0222, AC = 7777 and LINK =
1. 1If they are incorrect refer to the ERROR SUMMARY.

Set front panel indicator switch to MD, STATE, or STATUS
position.

Press CONTINUE. Do not press INIT.

The program will run continuously unless an error is
detected or unless control switch 3 is set.

COMPANY CONFIDENTIAL

DJKAA

TEST SUMMARY
During the first portion of the test, all basic Group 1 and Group

2 operate instructions are tested. No combined operate
instructions are tested except CLA CLL. Then all MRI instructions
are tested, using both direct and indirect addressing. During

this section the adder is tested by the use of TAD instructions
and IAC. Finally basic Group 3 operate instructions are tested.

ROMS D and F on the CPU module are tested by executing all Group
1, 2, and 3 operate instructions of the form: 7XX0, 7XX1. For
each instruction thus tested, 8 different data combinations of AC,
MQ, and LINK are used. The sequence of ROM testing is as follows:

1. The AC, LINK, and MQ are set to specified values.
2. The instruction to be tested is executed.

3. The AC, LINK, and MQ are saved, and whether the
instruction skipped is noted.

4. The AC, LINK, and MQ are set to the same values as in
step A.

5. The instruction is simulated using only those
instructions that were tested during the first part of
the test (basic operate and MRI instructions).

6. The results of the simulation are compared to the results
of the actual instruction. Any differences result in an
error halt.

The logic on the CPU board concerned with data breaks and
interrupts is tested by the use of a special simulator. I/0
SKIPS, AC transfers, interrupts, indicate logic, and data breaks
are tested if the simulator is available. all Omnibus lines are
tested either directly or indirectly with the exception of WNEXT
TIME STATE STALL (BR2) and the unused Omnibus line (BS2).

Table 1 DJKAA Location 20 or Control Switch Summary

Switch | State | Description

0-2 Not used
3 0 Loop on complete test
1 Halt at end of test (1 pass)

4-11 Not used

Table 2 DJRAA Location 21 Bit Summary

Bit State | Description

0 1 Indicates a programmer's console is installed.

3 1 Indicates a CPU I/C simulator is installed.

5 1 Run the XOR version of DJKAA.

6 1 Indicates the mainframe is a PDP-8E, PDP-8F or
PDP-8M.

COMPANY CONFIDENTIAL

DJKAA

4=

ERROR SUMMARY

All program errors are indicated by means of error halts. The
program listing contains a brief explanation of the error to the
right of each halt in the listing. Use the PC contents after the
error halt to find the error information in the listing.

NOTE
If running the second 1K segment in a 1K
CPU, add 2000 to the address of any
error halt before consulting the
listing.

The following errors have been included here because they require
further explanation:

PC
0036

0221

1631

1650

all
Others

Explanation

This indicates that an unexpected interrupt was received
by the CPU. Location 0000 will contain the address +1 of
where the program was interrupted. For example, if
location 0000 contains 2635, then the computer was
interrupted after the instruction at location 2634.

This is not an error halt unless the AC is not equal to
7777 or the LINK is not equal to 1. If the AC or the LINK
is incorrect, load address 0200, press the HALT key, and
press CLEAR momentarily. The program may now be executed
one instruction at a time by pressing the CONTINUE Key.
The operator should check the contents of the AC and LINK
against the expected contents given in the program listing
after executing each instruction. When an instruction is
executed and the computer registers no longer agree, the
failing instruction has been found.

A skip error occurred during the test of ROMS D and F.
The instruction in the AC was executed, and resulted in a
skip when none was expected, or did not skip when it was
expected to skip. Make a note of the instruction, then
press CONTINUE to get the contents of the AC, MQ and LINK
at the time of the failure. To execute the failing
instruction again, press CONTINUE. To execute the next
instruction (or next data pattern with same instruction),
make a note of the AC, LINK, and MQ contents for
reference, then load address 1673, press CLEAR, then
CONTINUE. If further error halts occur, the error
information should be recorded for use in determining a
pattern for the failure (e.g., CLL CML combination skips,
SPA SNA does not skip if LINK is set, etc.).

A data error occurred during the test of ROMS D and F.
The instruction in the AC was executed, and resulted in
incorrect contents of the AC, MQ, or LINK. Make a note of
the instruction, then press CONTINUE to get the expected
contents of the AC, LINK, and MQ. Make a note of the
expected contents, then press CONTINUE to get the contents
of the AC, MQ, and LINK as they were found after the
instruction was executed. To execute the same instruction
again, press CONTINUE. To execute the next instruction,
or the next data pattern for same instruction, load
address 1673, CLEAR and CONTINUE. If further errors
occur, the error information should be recorded for use in
finding a possible pattern in the error; e.g., CLL CMA CML
combination does not work correctly,

Refer to program listing under proper PC.

Loop on Error

To loop on a failing instruction, (other than ROM D and F test),
it is necessary to deposit a JUMP instruction in place of the
error halt that is occurring. The JUMP instruction should cause
the program to jump back to the point where the failing
instruction is executed.

NOTE

If special conditions are required (e.g.
AC and LINK must be clear, AC must be
equal to 7777, etc.). The operator will
have to deposit the proper setup
instructions to cause these conditions
previous to the failing instruction, and
make the JMP after the failing
instruction jump accordingly.

COMPANY CONFIDENTIAL

DJKAA

_5-

Example:

Address Contents Mnemonic

0361 1024 TAD K1 AC to 0001 link =1

0362 1054 TAD K7777 AC to 0000 link to 0

0363 7450 SNA Should not skip if AC = 0000
0364 7430 SZL Should skip if link = 0

0365 7402 HLT Carry failed to propagate

through adder

If the program is halting at address 0365 with the AC non-0, one
or both of the TAD instructions are failing. 1In order to loop on
the failing instructions, a JUMP to the first TAD instruction
(location 0361) could be placed at location 0365, but the AC would
not be clear, and the LINK would not be set when the first TAD is
executed. In order to loop correctly, the following patch is
required to set the AC and LINK to the proper values. An asterisk
indicates instructions that were deposited for lcooping purposes.

Address Contents Mnemonic

0360* 7320 CLA CLL CML (Clear AC, set link)
0371 1024 TAD K1

0362 1054 TAD K7777

0363 7450 SNA

0364 7430 SZL

0365* 5360 JMP .-5 (Failed, do again)
0366* 7402 HLT (Did not fail)

The loop should be executed the first time doing one instruction
at a time with HALT/SS selected, to ensure that the instruction is
still failing, and that any instructions inserted (in the above
example the JMP .-5, and the CLA CLL CML) are not also failing.

In order to run the program again after repairs have been made, a
reload of the program is required.

COMPANY CONFIDENTIAL

DJIJMSA

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs

Restrictions

Notes

Loading and
Starting
Procedure

DJIMSA.A8
1-4K MS8-A MOS Memory Test

The 1-4K MS8-A MOS memory test is a program that
will test MOS memories from 1K up to 4K. It
consists of an address selection test, a floating
1s and 0s test and a worst-case data test. This
program provides CPU-XOR, ACT-8A, ACT-8E and
stand-alone capabilities.

This diagnostic fits in four pages of a 1K
segment. It will test the upper four pages plus
up to 3K of RAM memory above. The program then
relocates back to repeat the cycle continuously.
The modified RIM loader described in Table 2
loads the diagnostic into the desired 1K segment.
This becomes the lowest 1K segment to be tested.
Before running the program the last address to be
tested is deposited in location 23. The program
writes over the RIM loader in operation, so it
must be toggled in again if desired after the
program runs the three tests on the RAM memory.

PDP~8A mainframe/MS8-A MOS RAM memory (minimum 1K
maximum 4K)

Refer to diagnostic hierarchy (8/8 STD module).

1. The assumption is made that RAM will never go
before ROM memory.

2. The 1K RAM in which the diagnostic is loaded
will be considered the lowest 1K segment when
test begins.

3. The program will have to be reloaded whenever
the user wishes to change to another test
environment (stand-alone, CPU-XOR, ACT-8A,
ACT~8E) .

1. ACT-8A Capability (manufacturing and depot
only)

ACT-8A hooks have been provided in the
program to replace all error halts with exit
returns to host when running program on the
ACT~-8A system.

2. CPU-XOR Capability (manufacturing and depot
only)

XOR hooks have been provided in the program
to loop on XOR errors when running on the
CPU-XOR tester.

3. ACT-8E Capability (manufacturing and depot
only)

ACT-8E hooks have been provided in the
program to allow it to be run on the ACT-8E
system.

Via TU70 Diagnostics
DIMSA is automatically loaded under DDDXA.AlO.
Refer to the 10/10 Maintenance Library.

Via Paper Tape:
1. The diagnostic is in RIM format. Toggle 1in

the modified RIM loader as described in Table
2.

COMPANY CONFIDENTIAL

DJMSA
-2-

2. Read in the 1-4K MS8-A MOS memory test from
the tape. Deposit the last address of the
highest address range to be tested into
location 23 of the range the diagnostic was
loaded into. The default is 1777 which
signifies a 1K memory starting at location 0.

3, Set switch register to location 200 of the
range the diagnostic was loaded into. Press
LOAD ADDRESS.

4. Set switch register according to Table 1.
5. Press CLEAR and then CONTINUE.

Control

Switches If you do not have a front panel, deposit the
desired switch register contents in location 21
of the range the program is using. If you do
have a front panel, deposit 4000 in location 21
of that same 1K segment. Refer to Table 1.

OPERATIONAL CONTROL

In order to load the diagnostic into a 1K range other than 0-1777
the modified RIM loader is used. Otherwise the standard RIM
loader is satisfactory.

The user will modify X777 to the address range desired: 0000,
2000, 4000, 6000.

TEST SUMMARY
The individual tests performed by this diagnostic are described in
Table 3.

ERROR SUMMARY

all errors are reported by error halts. All tests use the same
error report routine. Error halts will occur at either location
737 or location 1737, depending on which portion of MOS RAM the
program has entered.

Error halts should be handled as follows.

1. AC will display PC of test in error.

2. Press CONTINUE.

3. AC will display location being tested.

4. Press CONTINUE.

5. AC will display contents of location.

6. Press CONTINUE.

7. AC will display expected contents.

8. Set switch register for recovery as desired according to
Table 1.

Program swap or program relocation errors will halt at either
location 264 or location 1264. This type of error is fatal and
indicates that the MOS RAM is faulty and that the program should
not be continued.

Table 1 DJIMSA Control Switch Summary

Switch | State | Description
0 o Halt on error
1 Do not halt on error
1 0 Normal operation
1 Loop on error
2 0 Do all three tests
1 Loop on test
3 0 Run continuously
1 Halt on pass completion

COMPANY CONFIDENTIAL

DJIMSA

-3-

Table 2 Modified RIM Loaders

Low RIM Loader (Modified) High RIM Loader (Modified)
Address Code Mnemonic Address Code | Mnemonic
X753 6032 KCC X753 6014 | RCF

X754 0375 AND X775 X754 0375 | AND X775
X755 1377 | TAD X777 X755 1377 | TaD X777
X756 3376 | DCA X776 X756 3376 | DCA X776
X757 6031 KSF X757 6011 | RSF

X760 5357 JMp .-1 X760 5357 | JMP .-1
X761 6036 KRB X761 6016 | RCC

X762 7106 CLL RTL X762 7106 | CLL RTL
X763 7006 RTL X763 7006 | RTL

X764 6031 SPA X764 7510 | SPA

X765 5367 JMP X757 X765 5354 | JMP X754
X766 6034 RTL X766 7006 | RTL

X767 7420 KSF X767 6011 | RSF

X770 5367 JMP .-1 X770 5367 | JMP .-1
X771 6034 | KRS X771 6016 | RCC

X772 7420 SNL X772 7420 | SNL

X773 3776 DCA I X776 X773 3776 |DCA I X 776
X774 5353 JMP X753 X774 5354 | JMP X754
X775 1777 MASK X775 1777 | MASK

X776 0 X776 0

X777 0 ADDRESS RANGE X777 0 ADDRESS RANGE

Table 3 DJMSA Test Summary

Test

Description

ADDRESS SELECTION TEST

Each location being tested has its address written into
itself. They are then all tested scanning backward. Then,
scanning backward, each location has the complement of its
address written into itself. The memory 1s then tested
scanning forward.

FLOATING 1S AND 0S TEST

Through each location being tested a word is written, then
tested. The word consists of the twelve ways a 1 can be
floated (from 1, 2, 4 through 4096) and the twelve ways a 0
can be floated or the complement of the last 12 words. This
test checks for interaddress bit shorts.

WORST-CASE DATA PATTERN TEST

a. Write worst-case data pattern through RAM and test each
location. Repeat with complement of pattern.

b. Vary pattern and continue at step a.

c. After a maximum of 12 patterns the test ends. The
pattern will be varied from X,X',X,X' ... to X, X, X',X'
... to X,X,X,X, X',X',X',X' to etc. The last pattern in
this progression will have the first half of the RAM
contain X and the rest contain X'. The default for this
test is X = 2525 and X' = 5252.

COMPANY CONFIDENTIAL

DXMPA

-1-

GENERAL INFORMATION

Code DXMPA.AS8

Title DX10 I/O Processor Microcode

Abstract The DX10 microcode is a PDP-8 program which

manipulates the DX10 hardware to allow that
hardware to function as an independent I/O
processor. This processor, the DX10, has the
ability to interface to the PDP-10 via both the
I/0 and the memory bus. It also interfaces to an
STC magtape controller, the TX01l, via an IBM-type
channel bus.

The logic within the DX10 is manipulated by a
series of special IDTs. Basically, they allow
the setting and clearing of flip-flops, the
selection of registers, and the loading and
reading of these registers. The microcode will
perform these sequences in a prescribed manner
which will allow it to fetch commands from PDP-10
memory and process these commands. The commands
will typically direct the microcode to read and
write magtape.

Hardware

Required KAl10, RI10 or KL10 mainframe/32K of core
minimum/TU70 magtape subsystem

Preliminary

and Associated

Programs This microprogram is used 1in conjunction with
DDTUAR and DDTUB

Restrictions None

Notes None

Loading and

Starting

Procedure DXMPA is automatically loaded by DDTUA and DDTUB.
Control

Switches None

OPERATIONAL CONTROL
Normally DXMPA is controlled by the program that loaded it. The
PDP-8A may also be started at one of the following addresses.

Address Function

200 Normal cold start address

201 Normal restart address

202 Start without diagnostics enabled

203 Reserved

204 Reserved

205 Start diagnostics only (implicit loop on error
206 Reserved

207 Diagnostic error halt location

When the microcode is started at 205, only the diagnostics will
run. If an error occurs, the error code is loaded into register
number 17 and the diagnostic will loop on the failure.

The normal logout status is stored into ICPC+l, +2, and +3. The
format is:

ICPC+1/ DSR<0:7>,CSR<8:19>,SEQCOD<22:27>,DAR<28:35>
ICPC+2/ BYTE COUNTER <0:13>, CPC<14:35>
ICPC+3/RECORD LENGTH<12:35>

DXMPA TEST SUMMARY

The microcode is loaded by a PDP-10 program using the DX10
hardware feature which allows loading and reading the memory of
the PDP-8A with DATAO/DATAI commands. It is then started at PDP-8
memory location 200. The PDP-8 will first initialize the DX10,
then perform a System reset on the magtape controller. A set of
diagnostics will be run to ensure the hardware is functional.
Then the PDP-8 enters an idle loop were it waits for further
direction from the PDP-10. This direction comes from the channel
command register. The PDP-10 can put the following four basic
commands into this register.

COMPANY CONFIDENTIAL

DJIJMSA
-2

1. If the PDP-10 sets both CLEAR and CONTINUE in the command
register, this tells the PDP-8 to start the channel
program at the address specified in the ICPC register.

2. If the PDP-10 sets only CONTINUE, this tells the PDP-8 to
continue the channel program at the address specified in
the ICPC register.

3. If the PDP-10 sets only CLEAR, this tells the PDP-8 to
perform a systems reset.

4. 1f the PDP~10 sets the status request bit, this tells the
PDP-8 to perform a store status operation. The address
of the status buffer comes from the address specified in
the ICPC register.

Once a channel program is started it continues running until
either the tape system encounters an error or a channel command is
fetched with the GO bit off.

If an error is stopping the channel program, the microcode will
clear the CONTINUE bit, perform a store status operation, generate
a PDP-10 interrupt, and finally return to the idle 1loop for
further instruction from the PDP-10.

Microdiagnostics

The microcode will test portions of the DX10 hardware upon initial
startup and periodically while it is in the idle loop. To ensure
good response to PDP-10 commands, the PDP-8 checks the CONTINUE
flip~flop prior to each test. The tests are described in Table 1.

If the microcode detects a diagnostic error it will halt at 207
after first loading IBus number 17 with the error code. This same
code is available in PDP-8 memory location 5.

Hardware Readin

The hardware readin microcode is buffered in a 128-word ROM. This
ROM is block-transferred into the last page of PDP-8 memory when
the hardware readin key is struck on the processor. This page of
code will read the first record on the first ready drive into
PDP-10 memory and then start the PDP-10 at location 100.

The code flows as follows:

1. 1Initialize DX10
2. Set up rewind command in CMD
3. Clear device address = 0
4. Perform rewind
5. If error-increment device address and go to step 4
6. Here when ready unit found
7. <Change command to read data
8. Set up byte counter and data address registers
9. Start read command
10. Load channel bus control register
11. Wait for block done
12. Start PDP-10 at location 100.

COMPANY CONFIDENTIAL

DXMPA

-3~

rable 1 Microdiagnostic Test Summary

Test Description
1-10 Test the special IOT's ability to clear the AC
11 Test the 8R load and read commands
12 Test the 8R selection logic
13 Test the silo logic.in dump mode
14 Test the silo logic in dump mode with slow clock
15 Test the silo logic in byte mode
16 Test the silo logic in byte mode with slow clock
17 Test the silo logic in ASCIZ mode
20 Test the silo logic in ASCIZ mode with slow clock
21 Test the silo logic in SIXBIT mode
22 Test the silo logic in SIXBIT mode with slow clock
23 Test the block dome logic (including interrupt)
24 Test the CPC register
25 Test the DAC register
26 Test the channel bus interface by performing a sense
command to device address 0.
NOTE
Test 26 is not run when the diagnostics
are called from the idle loop.

ERROR SUMMARY

Microcode
1f the microcode detects one of the following errors it will set
the correct bit in the CSR and store the error status.

Selection Error - This error will occur if the channel program
sends the address of a device that is not
present.

Sequence Error - The microcode will encode the type of seguence
error into the code field of ICPC+l, halt the
channel program, perform a systems reset, and
return to the idle loop.

Code Description

00 Channel program is structured
incorrectly

02 Bus in parity error

26 A read or write command was not followed

by transfers

36 Not all of the desired sense bytes were
transferred in extended store of status

43 Initial selection error reading sense
bytes

Device Parity - This error indicates a channel bus parity error
occurred while reading or writing data.

Length Error - This error means that the record just read was
either shorter or longer than expected.

OPI Error - Operation incomplete error sets if a transfer
fails to complete within 10 seconds. (Bach
transfer command word is timed.)

If the DX10 encounters a nonexistent memory error or a memory
parity error, the PDP-8 is halted and the PDP-10 is interrupted.

COMPANY CONFIDENTIAL

DXMPA

-4

If the microcode detects an error while processing a command and
the error is not a Sequence or selection error, it will attempt to
store extended status.

If ICPC+3 contains a status pointer it will do the extended store.

If ICPC+3 does not contain the pointer, no extended status is
stored.

Tf ICPC+3 contained - D24B13+300 (777200000300) then the following
information would be stored starting at location 300.

ICPC+1/DSR<0:7),CSR(B:18),SEQCOD(ZZ:27>,DAR<28:35>
PCPC+2/BYTE COUNTER<0:13,>CPC<14:35>
ICPC+3/777200,,300

300/record length<12:35>

301/tag lines,,bus lines
302/dac<14:35>
303/ver510n<0:5>,edit<6:l7>,FR<18:35>
304/sense bytes 0, 1, 2, 3

305/sense bytes 4, 5, 6, 7

306/sense bytes 8, 9, 10, 11
307/sense bytes 12, 13, 14, 15
310/sense bytes 16, 17, 18, 19
311/sense bytes 20, 21, 22, 23

NOTES

1. The number of bytes stored is
controlled by the byte count field
of the word in ICPC+3. The format
is byte count <0:13>; address
<14:35>.

2. If a sequence error is detected
while reading, then ICPC+l and
ICPC+2 is overwritten with the error
information,

3. Porcing an extended store on rewind
initiation could cause the loss of
the completion interrupt.

Error Recovery

This microcode will automatically attempt recovery from tape
errors if bit 3 of the device command instruction is set. Errors
that can be recovered are: data check, DX10 silo data parity
errors, and intermittent bus timeout checks.

Write errors are retried by backspacing over the record just
written, reading in reverse until a record with no error is found
or load point is found, then spacing over the good record, erasing
4.2 inches of tape and writing the record again. If the error
persists, the sequence is repeated up to 75 times, each time
erasing an additional 3.6 inches of tape.

Read errors are retried by attempting to reread the record in the
same direction 30 times, moving the tape past the tape cleaner
blade after every fourth read. If these rereads fail, the record
is read in the opposite direction up to a maximum of 30 times.
The read in opposite direction is not attempted if the record is
longer than the length requested or if the record cannot be read
into the same position in memory because of hardware restrictions.
The read opposite is accomplished by building a channel transfer
list in PDP-8A memory. Three pages are reserved for this list, so
a list of up to 42 transfer words can be read.

Microdiagnostic Error Codes

Code Description

100 LBO did not clear AC.
101 STM did not clear AC.
102 INT did not clear AC.
103 L8S did not clear AC.
104 LCB did not clear AC.
105 L8C did not clear AC.

COMPANY CONFIDENTIAL

106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126

127

135
136
137
140
141
142
143
144
145
146

147

150
151

152

153
154

155

156

DXMPA

18B did not clear AC.

LBA did not clear AC.

S8R byte A was read bad (L8A and G8A).

8R byte B was read bad (L8B and G8B) .

8R byte C was read bad (L8C and G8C).

8R2 selection bad.

8R1 selection bad.

8RO selection bad.

Wraparound selection of 8R3 bad.

Wraparound selection of 8RO bad.

INT did not select 8RO.

Dump mode silo test failed.

Dump mode silo test (slow clock) failed.
Byte mode silo test failed.

Byte mode silo test (slow clock) failed.
ASCIZ mode silo test failed.

ASCIZ mode silo test (slow clock) failed.
SIXBIT mode silo test failed.

SIXBIT mode silo test (slow clock) failed.
TBD did not skip on overflow.

No interrupt on overflow.

Resetting overflow did not clear interrupt.
CPC data test failed.

DAC data test failed.

Control unit did not respond to selection sequence.
Control unit did not respond to device address 0.
ADDRESS IN did not set in selection sequence.

Bad parity on bus in with address in presented.

Not 0 address received when attempting to select unit 0.

ADDRESS IN did not drop during selection sequence.
STATUS IN did not set during selection sequence.
Bad parity on BUS IN with status byte presented.

Initial status byte was non-0 in sense command.

STATUS IN &id not drop when service out was set during

presentation of status byte.
SERVICE IN did not set presenting a sense byte.

Parity error on BUS IN while presenting a sense byte.

SERVICE IN did not drop in response to SERVICE OUT during

presentation of sense byte.
STATUS IN did not set after presenting 24 sense bytes.
Parity error in status byte after sense command .

STATUS IN did not drop after presenting ending STATUS
sense command.

OPERATIONAL IN did not drop after sense command.

COMPANY CONFIDENTIAL

DXMPA

157
160

161

162

163

164

165

166

167

170

-6-

REQUEST IN never set after short burst sequence.
ADDRESS IN did not set in CU-initiated sequence.

Parity error on BUS IN while reading address in
CU-initiated selection sequence.

Non-0 address presented in CU-:initiated selection
sequence.

ADDRESS IN did not drop in CU-initiated selection
sequence.

STATUS IN did not set in CU-initiated selection sequence.

STATUS IN did not drop in CU-initiated selection
seguence.

OPR IN did not drop after CU-initiated selection
sequence.

SERVICE OUT did not set while transferring data in tests
13-23.

SERVICE OUT did not clear while transferring data in
tests 13-23.

COMPANY CONFIDENTIAL

ER-0KL10-03
NOV 1979 11/11 STD

-1-

Table of Contents

Microfiche

Summary Classification Version
11/11 STD NA 0.0
COPY XXDP 0.4
XTECO XXDP 0.4
XXDP XXDP 0.4
EDXLPB LP20 0.5

COMPANY CONFIDENTIAL

EK~0KL10-03
11/11 STD NOV 1979

-2-

11-BASED 11 STANDARD INFORMATION

This module summarizes standard information and procedures which
are common to many of the programs in the 11-Based 11 Maintenance
Library.

PROGRAM IDENTIFICATION CODE

D7ZRXA.BIC

| .)
.BIN extension used to store program in ABS format.
.SAV extension used to store program in core image format.
.BIC extension indicates ABS format chainable program.

Unique program identifier

ajor program class
Cp card reader

DH = DHII1
RX = RX11
etc.

L——»Processor type

11/05, 15, 20

11/40

11/45

all processor types
nonstandard program

XNO@P
LI I T T

b———Diagnostic

STANDARD CONSOLE CONTROL SWITCHES

Table 1 lists and describes the standard functions of the console
data switches used to control the operations of most ll-based 11
diagnostics.

Table 1 Standard Console Control Switch Summary

Switch | State | Punction

15 Normal operation

Halt on error

-]

14 Normal operation
Loop on test. Loop on the test currently being

executed.

o

13 Normal operation
Inhibit error printouts. Error messages will not

be printed on console terminal.

o

12 0 Normal operation. Set T bit on alternate passes of
program.

1 Inhibit trace traps. The T is not set.

11 Normal operation

Inhibit iterations. Each test will be executed
only once.

o

10 Normal operation

Ring bell on error.

-}

09 Normal operation

Loop on error. The program will loop on the test
that detected the error. If the error goes away
during the looping, the program will proceed to the
next test.

o

08 Normal operation
Loop on test in SWR<07:00>. The program will loop
on the test number specified by switches 07 through

co.

o

07-00 0 Normal operation
Test no. Loop on test specified by bits 07 through
00 if switch 8 is set.

COMPANY CONFIDENTIAL

11/11 STD

-3-

STANDARD PROGRAM STARTING ADDRESSES
Table 2 lists the standard starting addresses used by ll~based 11
maintenance programs.

Table 2 Standard Program Starting Addresses

2Address

Function

000200

Diagnostic program starting address

UTILITY PROGRAMS
Table 3 lists the utility programs associated with the ll-Based 11
Maintenance Library.

Table 3 11-Based 11 Utility Programs

Utility Description

XXDP.BIN A universal PDP-11 diagnostic monitor used to load and ‘
sequence diagnostic and utility programs.

COPY.BIN A program used to transfer l1ll-based 11 maintenance
programs from one storage medium to another.

UPD1.BIN A 4K program used to add, delete, rename, or patch
ll-based 11 maintenance programs.

UPD2.BIN An BK enhanced version of UPDI.

XTECO.BIN| An editor program used to generate and edit ASCII text

files.

DGQDD.All
DGQDE.All
DGQDF.All
DGQDG.All

DGQEA.BIN

DN87S Loader

|

|

|
Special-Purpose Loaders and Monitors

|

DLDP/DL11-E Monitor |
DN2x Front-End Loader
DN2x Secondary Front-End Monitor

DN2x Bootstrap Loader

DIAGNOSTIC PROGRAM HIERARCHIES
The following tables describe the 11-Based 11 Maintenance Library
diagnostic hierarchies.

Table 4

Table 5

Table 6
Table 7
_Table 8
Table 9
Table 10
Table 11
Table 12

Table 13

System Exercisers

PDP-11/34 Processor and Memory Management Diagnostic
Hierarchy

PDP-11/40 Processor Diagnostics

KMC1l Microprocessor Diagnostic Hierarchy
PDP-11 Memory and Internal Option Diagnostics
Disk Subsystem Diagnostic Hierarchy

DECtape Subsystem Diagnostics

Hard Copy Equipment Diagnostics
Interprocessor Buffer Diagnostics

Data Communications Subsystem Diagnostic Hierarchies

COMPANY CONFIDENTIAL

11/11 STD

—4-

Table 4 System Exercisers

Diagnostic Title

DFQAA.BIN 1080 Front-End Subsystem Exerciser

SY2040.BIN 2040 Front-End Subsystem Exerciser

DEC/X11 Universal System Exerciser (user configured)
Table 5 PDP-11/34 Processor and Memory

Management Diagnostic Hierarchy

Diagnostic Title

DFKAA.BIC PDP-11/34 CPU Test

DFKAB.BIC PDP-11/34 Trap Test

DFKAC.BIC PDP-11/34 EIS Instruction Test

DFKTH.BIN PDP-11/34 Memory Management Diagnostic
Table 6 PDP~11/40 Processor Diagnostics

Diagnostic Title

DBQEA.BIC PDP-11/40 CPU Test

Table 7 KMC11 Microprocessor Diagnostic Hierarchy

Diagnostic | Title
DZKCA.BIN KMCll CPU Microdiagnostic
DZKCC.BIN Basic W/R and Microprocessor Test
DZKCD.BIN Main Memory, JUMP CRAM Test of Microprocessor
DZKCE.BIN DDCMP - Mode Line Unit Test
DZKCF.BIN BITSTUFF - Mode Line Unit Test
Table 8 PDP-11 Memory and Internal Options Diagnostics
Diagnostic Title
DZQMC.BIC Memory and Parity Test
DZBMD.BIN BM873 ROM Test
DZRAQ.BIN Power Fail Test
DZKWA.BIC KW1l-L Line Clock Test

c2@MCF- BN

CC MTAF

COMPANY CONFIDENTIAL

11/11

-5-

Table 9 pisk Subsystem Diagnostic Hierarchies

STD

Diagnostic

Title

RHE11-RP04/05/06 Disk Subsystem

DZRJG.BIC Diskless Controller Test (Part 1)
DZRJH.BIC Diskless Controller Test (Part 2)
DZRJI.BIC Functional Controller Test (Part 1)
DZRJJ.BIC Functional Controller Test (Part 2)
DZRJA.BIC Mechanical and Read/Write Test
DZRJD.BIC Performance Exercises
DZRJB.BIN Formatter Program
DQRJC.BIN Head Alignmené and Verification Program
RX11-RX01 Floppy Disk Subsystem
DQRXB.BIC RX11 Floppy Test
DQRXA.BIC RX11 Floppy Reliability Test
Table 10 DECtape Subsystem Diagnostics

Diagnostic | Title
DZTCB.BIC TC1ll DECtape Test
YPTC.BIN PDP-11 DECtape Formatter s 67 (54@" Pt

Table 11 Bard Copy Equipment Diagnostics
Diagnostic ' Title
DXLPB.BIN LP20 Line Printer Diagnostic
DZCDB.BIN CD11/CD20 Card Reader Diagnostic

Table 12 Interprocessor Buffer Diagnostics
Diagnostic Title
DGDTE.BIN DTE20 biagnostic
DZITA.BIN Interprocessor Test Program

COMPANY CONFIDENTIAL

11/11

Table 13

STD

-6-

Data Communications Subsystem Diagnostic Hierarchy

Diagnostic

Title

DH1l Commun

ication Multiplexer

DZDHM.BIC Basic Test

DZDHB.BIN Memory Test

DZDHD.BIN Speed Selection Logic Test
DZDHK.BIC Modem Control Multiplexer Diagnostic
DZDHL.BIN Overlay for Interprocessor test
DQDHN.BIN Reliability Test

DL1l Data Line Interface

DZDLC.BIC DLI1-E Test

DZDLD.BIC DL11-W Test

DQ1l Data Line Interface

DZDQA.BIN Basic Logic Test (Part 1)

DZDQC.BIN Interrupt Logic Test

DZDQD.BIN Receiver and Transmitter Test

DZDQE.BIN Miscellaneous RX/TX/BBC Test

DZDQG.BIN DQ1l Trail Program (Parameter Input)

DUP1l Data Line Interface

DZDPB.BIC Basic DPULl and Off Line SDLC Transmitter Test

DZDPC.BIC DUP1]l Offline SDLC Receiver, Modem Control and
Interrupt Test

DZDPD.BIC DUP1l SDLC Data, Functions and DEC Mode Test

DZDPE.BIC DUP11 Confidence Test

DZDPF.BIC ITEP Overlay for DUP11

Dz11 Commun

ciation Multiplexer

DZDZA.BIC
DZDZB.BIN

DZ11 8-Line Async Multiplexer Test
DZ11 Overlay for ITEP

COMPANY CONFIDENTIAL

11/11 STD

-7-

STANDARD LOADING AND STARTING PROCEDURES
The following tables and procedures describe the various methods
of loading and starting ll-Based 11 Maintenance Library programs.

Procedure 1 Standard ROM Bootstrap Procedure

Table 14 Standard Bootstrap ROM Starting Addresses

Procedure 2 M9301 Bootstrap Procedure

Table 15 M9301 Bootstrap Module Command Summary

Procedure 3 PCl1/DL11 Paper Tape and Absolute Loader Bootstrap
Procedure

Procedure 4 RP11-RP03 Disk Pack Manual Bootstrap Procedure

Procedure 5 RH11-RP04 Disk Pack Manual Bootstrap Procedure

Procedure 6 RX11/RXV11-RX01l Floppy Manual Bootstrap Procedure

Procedure 7 TCl1-TU56 DECtape Manual Bootstrap Procedure

Procedure 1 Standard ROM Bootstrap Procedure

Step Procedure

1 Halt the CPU.

2 Determine the type of ROM used by the CPU.

3 Mount the program storage medium on unit 0 of the device to
be used for bootstrapping. Make the wunit ready and
on-line.

4 Load the appropriate ROM starting address. Refer to Table
14.

5 Set the switch register as specified if BM792 ROM is being
used; otherwise, clear the switch register.

6 Set ENABLE. Press START.

The monitor will automatically load and start. Refer to
the XXDP Summary.

EXCEPTION: The paper tape absolute loader 1is not
self-starting. Refer to Procedure 3, Step 6.

Table 14 Standard Bootstrap ROM Starting Addresses

Device BM873-YB BM873-YA | MR11-DB | BM792

RK11 773030 773010 773110 773100 (SWR=777406)

TCll 773070 773030 773120 773100 (SWR=777344)

TM11 773110 773050 773136

TUl6 773150

TALl 773524 773230 773300

RP11 (RPO03) 773350 773100 773154

RH11 (RP04) 773320

RH11 (RS03) 773000

RF11 773136 773000 773100

RC11 773212 773144 773220

PCl1 773620 773312

KL11/DL11 773510

COMPANY CONFIDENTIAL

11/11 STD

8-

Procedure 2 M9301 Bootstrap Procedure

Step | Procedure

1 Remove the Unibus terminator and insert the M9301 bootstrap
module.

2 Load address: 173000 for system without memory management

773000 for systems with memory management.

3 Mount the program storage medium on the unit to be used for
bootstrapping (usually unit 0).

4 Set ENABLE. Press START.
The M9301 will respond by printing a dollar sign ($).

5 Type the appropriate M9301 command. Refer to Table 15. If

a unit other than 0 is to be used for loading, append the
command with the unit number (e.g., if DECtape unit 4 is to
be used the command would be DT4<CR>). The monitor will
automatically load and start. Refer to the XXDP Summary.
EXCEPTION: The paper tape absolute loader 1is not
self-starting. Refer to Procedure 3, Step 6.

Table 15 M9301 Bootstrap Module Command Summary

Command | Bootstrap DEVICE

CT TAll magtape cassette
DB RJP04 disk pack
DK RK1l disk cartridge
DM RK06 disk
DP RP11 RP02/RP0O3 disk pack
DS RJS03/04 fixed head disk
DT TC1ll DECtape
DX RX11 diskette
MM TJUL6 magtape
MT TM11l 800 BPI magtape
PR PCll paper tape
TT DL11 ASR-33 terminal (paper tape)
Procedure 3 PCl1/DL1l1 Paper Tape and Absolute
Loader Bootstrap Procedure
Step | Procedure
1 Halt the CPU.
2 Select an address prefix which corresponds to the available
memory from the chart below.
Memory size Prefix
4K 017
8K 037
12K 057
16K 077
20K 117
24K 137
28K 157
3 Deposit: Address Data (xxx = the prefix)
xxx 744 0l6 701
xxx 746 000 026
xxx 750 012 702
xxXx 752 000 352
xxx 754 005 211
xxx 756 105 711
xxx 760 100 376
XXx 762 116 162
xxx 764 000 002
xxx 766 xxx 400
xxx 770 005 267
xxx 772 177 756
Xxx 774 000 765
xxx 776 177 560 if load device 1is terminal

reader.
177 550 if load device is PCll.

COMPANY CONFIDENTIAL

11/11 STD

-9-

Procedure 3 PC11/DL11 Paper Tape and Absolute
Loader Bootstrap Procedure (Cont

Step | Procedure

10

Place the absolute loader paper tape in the reader.

Load address xxx 744 (xxx = prefix). Set ENABLE. Press
START. The paper tape will automatically read in.

Initialize absolute loader to use either the hardware or. the
software switch register.

Deposit: Address Data (xxx = prefix)

xxx 516 777570 if HW SWR is used
000176 if SW SWR is used

Place diagnostic paper tape in paper tape reader.

Load address xxx 500 (xxx = prefix). Set ENABLE. Press
START. The paper tape will automatically read in.

Set the HW or SW switch register to control the diagnostic
execution.

Load address 000200. Set ENABLE. Press START.

The diagnostic will begin execution. Refer to the
diagnostic summary or listing on microfiche.

NOTE
To load subsequent diagnostics repeat
steps 7 through 10. This assumes the
current diagnostic has not overwritten
the absolute loader.

P.

rocedure 4 RP11-RP03 Disk Pack Manual Bootstrap Procedure

Step

Procedure

Halt the CPU.

Mount the disk pack on drive 0. Make the drive ready and
on-line.

Deposit: Address Data

001 000 012 705
001 002 176 716
001 004 012 715
001 006 177 400
001 010 012 745

001 012 000 005
001 014 105 715
001 016 100 376
001 020 005 007

Load address 001000. Set ENABLE. Press START.

The monitor will automatically load and start. Refer to the
XXDP Summary.

COMPANY CONFIDENTIAL

11/11 STD

-10-

Procedure 5 RH11-RP04 Disk Pack Manual Bootstrap Procedure

Step | Procedure

1 Halt the CPU.
2 Mount the disk pack on drive 0. Make the drive ready and
on-line.

3 Deposit: Address Data
010 000 012 700
010 002 176 700
010 004 012 710
010 006 000 023
010 010 005 060
010 812 000 034
010 014 005 060
010 016 000 006
010 020 012 760
010 022 177 400
010 024 000 002
010 026 012 710
010 030 000 071
010 032 105 710
010 034 100 316
010 036 005 007

4 Load address 010000. Set ENABLE. Press START.

The monitor will automatically load and start. Refer to the
XXDP Summary.

Procedure 6
RX11/RXV11-RX0l Ploppy Disk Manual Bootstrap Procedure

Step | Procedure

1 Halt the CPU.
2 Mount the floppy disk on unit 0. Make the unit ready and
on-line.

3 Deposit: Address Data
001 000 005 000
001 002 012 701
001 004 177 170
001 006 105 711
001 010 001 776
001 012 012 711
001 014 000 003
001 016 005 711
001 020 001 776
001 022 100 405
001 024 105 711
001 026 100 004
001 030 116 120
001 032 000 002
001 034 000 770
001 036 000 000
001. 040 005 000
001 042 000 110
001 044 000 000
001 046 000 000
001 050 000 000

4 Load address 001000. $Set ENABLE. Press START.

The monitor will automatically load and start. Refer to the
XXDP Summary.

COMPANY CONFIDENTIAL

11/11 STD

-11-

Procedure 7 TC11-TU56 DECtape Manual Bootstrap Procedure

Step | Procedure

1 Halt the CPU.
2 Mount the DECtape on transport 0. Make the transport ready
and on-line.
3 Deposit: Address Data
177342 004003

The transport should rewind and the REMOTE indicator should
remain lit.

4 Examine the current location.
5 Deposit 000001 in the current locations. The REMOTE
indicator should go out.
6 Deposii: Address Data
000216 012737
000220 000005
000222 177342
000224 000777
7 Load address 000216. Set ENABLE. Press START.

The monitor will automatically load and start. Refer to the
XXDP Summary.

STANDARD ERROR FORMAT
Most errors occur as either halts or messages printed on the
console terminal. Error halts should be looked up in the listing.
The standard format for an error message is:

MESSAGE

TEST PC H/W (optional)
Where:

MESSAGE is a description of the type of error.

pC is the address in the diagnostic where the failure was
detected.

H/W is the status of the hardware under test when the failure was
detected. This is optional.

If an output console is unavailable, the error information will be
stored in a location in core. This address may be examined after
the processor is halted. The listings and program summary should
be consulted for the address of the error information.

COMPANY CONFIDENTIAL

COPY

GENERAL INFORMATION

Code
Title

Abstract

HRardware
Required

Preliminary and
Associated
Programs

Restrictions

Notes

Loading and
Starting
Procedure

Control
Switches

COPY.All
XXDP Copy Utility Program

The COPY utility enables the user

XXDP storage media.

to duplicate

The COPY program allows only copying on the same
media. The program will not copy anything other
than XXDP material. It is not a general-purpose
copy program.

PDP-11 mainframe/8K of memory (minimum}/input and
output devices.

COPY assumes the basic instructions and the input
and output devices are operational.

The input and output devices must be of the same
type.

COPY will overwrite the KLDCP area of core.

Via XXDP monitor type: R COPY<CR>

Via KLDCP type: P COPY$

None

OPERATIONAL CONTROL
Once started COPY will print

DZQUQ-A~-COPY-XXDP COPY PROGRAM 21-JUL-78

DATE:

Type the date according to the following format, followed by <CR>.
Dashes must be included.

DD-MMM-YY (e.g., 07-AUG-78)

The program echoes back the date and then types:

RESTART: NNNNNN

Command Summary

PROGRAMS RESTART ADDRESS.

COPY commands are summarized in Table 1.

COMPANY CONFIDENTIAL

COPY

—2-

Table 1 COPY Command Summary

Command

L Cross
Description Ref.

CopPY

VERIFY

BOOT

DIR

DIRLP

FILL

COPY DX0:=DX1:<CR> or COPY DXO0:=DX1:/NEW<CR> 1
(out) (in) (out) (in)

Copy the entire input medium over to the output
medium. The /NEW switch will cause the copy to
take place on a file-by-file basis. Verification
is automatic.

VERIFY DX0:DX1<CR> 2
(out) (in)

Verify that the output medium is identical to
the input medium.

BOOT DTO:<CR> N/A
This command causes block 0 of the device
specified to be read into core and started (i.e.,
return to the XXDP monitor).

DIR DX1:*.A11<CR> N/A
Print the directory of the specified device on
the console terminal. Universal "field and
character™ substitutes (*,?) are permitted.

DIRLP DT1:*.BI?<CR> N/A
Print the directory of the specified device
on the line printer. Universal *"field and

character™ substitutes (*,?) are permitted.

FILLLCR> N/A
Set the console fill count.

Command Descriptions
The following is a detailed description of the commands listed in

Table 1.

1.

COPY DX0:=DX1:<CR> or COPY DX0:-DX1:/NEW<CR>
Copy is the basic command to copy XXDP software. The
source and destination must be on the same medium.

*MAKE OUTPUT READY, TYPE<CR> WHEN READY.

This is to inform the user that the output device must be
powered up, ready and write-enabled. When all these
requirements are met, type <CR> to start the copy
process.

When the copy is completed a verification pass is made.
This pass is started when the program types:

*STARTING VERIFICATION.

When the verify pass is complete the program types:
VERIFY COMPLETE, COPY COMPLETE.

When the optional /NEW switch is used, the COPY program
will copy disks or DECtapes on a file-by-file basis
rather than on a block- by-block basis. This feature is
useful when it is known that a master disk contains one
or more bad blocks which are not being used in the files
contained in the disk, and the user wishes to copy all
files to another disk.

VERIFY DTO:DT1<CR>

The verify command will only do a verification of an XXDP
medium. The program then types:

*STARTING VERIFICATION.

The verification has now begun.

When the verification is complete the program types:

*VERIFICATION COMPLETE.

COMPANY CONFIDENTIAL

CopY

-3-

ERROR SUMMARY
The following is a list of COPY error messages and their meanings.

NEXFIL

DEVERR

DEVFUL

INVCMD

INVNAM

INVDEV

INVADR

CKSMER

EOM

DELOLD

DELERR

INVCOR

INVSW

POFLOW

File not found.

Device error, check for READY, ON LINE etc.
Device full, no more room for files.
Invalid command, check last command string.
Invalid name, for file or command.

Invalid device, check device table.

Invalid address, address should be even.
Load (CHECKSUM) error.

End of medium error, reached end of medium before end
of file.

Delete old file first.
Delete error.

Core error.

Invalid switch.

Program overflow error, not enough core.

COMPANY CONFIDENTIAL

XTECO

-1-

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs

Restrictions
Notes

Loading and
Starting
Procedure

Control
Switches

XTECO.All
Text Editor

The XTECO text editor program enables the user to
create and edit ASCII text files. All editing
can be done by using a few simple commands.

XTECO is a character-oriented editor. One or
more characters in a line can be modified without
retyping the rest of the line. XTECO does not
require that 1line numbers or other extraneous
information be associated with the ASCII text.

XTECO operates on ASCII data files. A file is an
ordered set of data on some peripheral device.
In the case of XTECO, a data file is some type of

document. An input file may be a named file on
any directory device (disk, magtape, DECtape,
cassette). An output file can be written onto

any of the same devices.

The input file for a given editing operation is
the file to which the user wishes to make
changes. If the user is using XTECO to create a
new file, there is no input file. The output
file is either the newly created file, or the
edited version of the input file.

In general, the editing process proceeds as
follows. The user specifies the file he wishes
to edit, and then a block of text is read into
core. The user modifies the text by using the
various editing commands. He then appends
additional blocks of text and edits them until
the entire file has been edited, at which point
he outputs the edited file and closes it.

PDP-11 mainframe/8K of core (minimum)/file input
and storage device (DECtape, RX1l, etc.)

The editor assumes that the basic instructions
and the selected input and output devices are
operational

None

None

Via XXDP monitor type: R XTECO<KCR>
Via KLDCP type: P XTECOS$
NOTE

XTECO overwrites KLDCP, therefore KLDCP
must be reloaded after running XTECO.

None

OPERATIONAL CONTROL
After XTECO is started it will print the following message:

DZQUG-E XTECO ~ XXDP TEXT EDITOR

DATE:

Type the date according to the following format, followed by <CR>.
Dashes must be included.

DD-MMM-YR e.g., 28-JUL-78

The program echoes back the date and then types:

RESTART: 005730

COMPANY CONFIDENTIAL

XTECO

~2-

Command Summary
XTECO supports two types of commands.

Table 2 Lists and describes nonedit-type commands.
Table 3 Lists and describes edit commands.

Since XTECO is a character-oriented editor, it is very important
that the user understand the concept of the buffer pointer. The
position of the buffer pointer determines the effect of many of
the editing commands. For example, insertion and deletion always
takes place at the current position of the buffer pointer.

The buffer is the current text contents in core, from the first
character, up to and including the last character.

The buffer pointer is simply a movable position indicator. It is
always positioned between two characters in the buffer, or before
the first character in the buffer, or after the last character in
the buffer. The pointer may be moved forward or backward over any
number of characters.

XTECO commands may be given one at a time. However, it is usually
more convenient to type in a single command string, several
commands that form a logical group. An example of a command
string is shown below.

*IHEADINGSNTAG: $2LT$$

This command string inserts the word "heading", searches for
string "tag:"™, moves pointer forward 2 lines and types line
pointed to.

A command string is typed after XTECO indicates its readiness by
printing an asterisk. Command strings are formed by merely typing
one command after another, and are terminated by typing two
consecutive altmodes.

Execution of the command string begins only after the double
altmode has been typed. At that point, each command in the string
is executed in turn, starting at the left. When all commands have
been executed, XTECO prints another asterisk, indicating readiness
to accept another command.

If some command in the string cannot be executed because of a
command error, execution of the command string stops at that
point, and an error message is printed. Commands preceding the
bad command are executed. The bad command and those following it
are not executed.

Table 1 XTECO Special Characters

Cross
Character Description Ref.

* The asterisk is the prompt for edit mode. N/a

<CR> B carriage return is used to terminate all N/A
nonedit commands.

<ALT> A single altmode echoes as a $ and is used N/A
to terminate a edit command.

<ALT><ALT> | A double altmode echoes as $$ and causes N/A
execution of the edit command or command
string.

1c Control C is used to exit out of any command N/A
mode. It will cause an open output file to

be closed. The user must be careful not to

type 1C unless he wishes to abort his

operation. This is especially .important when
editing a file, as all work would be lost.

To Control O is used to stop printing on the N/A
console terminal, as when typing multiple
lines of text when editing a file.

COMPANY CONFIDENTIAL

XTECO
-3-

Table 1 XTECO Special Characters (Cont)

Character

Cross
Description Ref.

fu

RUBOUT
or
DELETE

Control U is used to empty out contents of N/A
keyboard buffer, as when the user wishes to
start typing his command sequence all over
again.

The RUBOUT or DELETE key is used to remove N/A
one or more characters typed from command or
text string. One depression of the RUBOUT
key removes one character.

Table 2 XTECO Nonedit Command Summary

Command

) Cross
Description Ref.

EDIT

TECO

TEXT

BOOT

DELETE

DIR

FILL

PRINT

RENAME

TYPE

EDIT DKO:

fon
{ou

ile.ext-DK1l:file.ext<CR> N/A
ut)

£
Pu {input)

EDIT is a general-purpose command for editing
an existing text file. It permits the user
to edit an input file in one type of device
and to output the edited file to a different
type device. All editing commands are
available when under the EDIT command.

TECO DX0:file.ext<CR> N/A
The TECO command is a specialized version of

the EDIT command. Under the TECO command

the input and output device/drive must be

the same, and must be random access type

devices (disk, DECtape). The edited output

file takes its name from the name and

extension of the input file, and the input

file is renamed to a .BAK extension (for

backup). All editing commands are available.

TEXT DX0:file.ext<CR> N/A
The TEXT command is used when the user wishes

to create a new text file. The TEXT command

does not require an input file, only an output

file. All editing commands are available with

the exception of the A (APPEND) command

which becomes a no-op command when no input

file exists.

BOOT DTO:<CR> N/A
This command causes block 0 of the device

specified to be read into core and started

(i.e., restart the XXDP monitor).

DELETE DKO:file.ext<CR> N/A
This command causes the file specified to
be deleted from the directory.

DIR DTO0:<CR> N/A
Print a directory of the specified device

on the console terminal. Universal "field

and character™ substitutes (*,?) are permitted.

FILL<CR> N/A
Set the console fill count

PRINT RX0:file.ext<CR> N/A
Print the file specified on the line printer.
Universal "field and character" substitutes

(*,?) are permitted.

RENAME dev:file.ext-dev:file.ext<CR> N/A
(new) (old)

Rename the old file. The devices must be
the same. This command is not allowed on
magtape or cassette.

TYPE dev:file.ext<CR> N/A
Type the file specified on the console

terminal. Universal "field-and character"
substitutes (*,?) are permitted.

COMPANY CONFIDENTIAL

XTECO

-4

Table 3 XTECO Edit Command Summary

Cross
Command Description Ref.

C C$ or 9C$ or -10C$ 1
Move the pointer forward or back one or more
characters.

L L$ or OL$ or 6L$ or -9L$
Move the pointer forward or back one or more
lines.

[X)

J J$ N/A
Move the pointer to the beginning of the

buffer, immediately before the first character

in the buffer.

zJ 2J%
Move the pointer to the end of the buffer,
just after the last character.

A AS or 3ASS 3
Append one or more text blocks to the end of
the buffer.

D D$ or S5D§ 4
Delete one or more characters.

I I ASCII TEXT$ 5
Insert ASCII TEXT into buffer.

K K$ or BK$ 6
Delete (KILL) one or more text lines.

T T$ or 16T$
Type one or more text lines beginning at 7
the pointer.

S S ASCII TEXT STRINGS 8
Search the buffer for the specified character
string.

N N ASCII TEXT STRINGS 9
Search the buffer and the remainder of the
input file for the specified character string.

EX EX$$ 10
Output edited file to output device and close
output.

Command Descriptions
The following is a detailed description of the commands listed in
Table 3.

1. C$ or SC$ or -10C$ - The C command moves the pointer one
character in the buffer. The C command may be preceded by a
(decimal) numeric argument. The command nC moves the pointer
forward over n characters. The command -nC moves the pointer
backward over n characters. (The pointer cannot be advanced
beyond the ends of the buffer.)

2. L$ or OLS$ or 6L$ or -9L$S - The L command is used to advance
the buffer pointer or move it backward, on a line-by-line basis.
The L command takes a numeric argument, which may be positive,
negative, or 0, and is understood to be 1 if omitted.

Suppose the buffer pointer is positioned at the beginning of line
B or at some position within line B.

The command L or 1L advances the pointer to the beginning of line
B+1l.

The gommand nL, where n>0, advances the pointer to the beginning
of line B+n.

®he command -0L moves the pointer to the beginning of line B. If
the pointer is already at the beginning, nothing happens.

COMPANY CONFIDENTIAL

XTECO

-5-

?he command -L or -1L moves the pointer back to the beginning of
ine B-1,

The command -nL moves the pointer back to the beginning of line
B-n.

3. A$ or 3A$$ - The A command reads in the next block of text
from the input device and adds it to the contents of the text
buffer in core.

The A command accepts numeric arguments. Example: 3A$$. However,
it does not execute any other commands following it in the command
string. It is meant to be used singly in a command string. When
not enough core is available to satisfy an A command, XTECO
outputs part of the text buffer onto the output device until the
requirements of the A command are satisfied.

NOTE
Execution of the A (append) command does
not change the position of the buffer
pointer.

4. D$ or 5D$ - Individual characters are deleted by using the D
command. The command D deletes the character immediately
following the buffer pointer. The command nD, where n>0 deletes
the n characters immediately following the pointer.

5. IASCII TEXT$ - The only insertion command is the I command.
The ASCII text that is to be inserted into the buffer is typed
immediately after the letter I. The text to be inserted is
terminated by an altmode. .

Any ASCII character except NULL, ALTMODE, RUBOUT, fC, 1O, and fU
may be included in the text to be inserted.

If a carriage return is typed in an insertion, it is automatically
followed by a line feed. The text to be inserted is placed in the
buffer at the position of the buffer pointer; i.e., between the
characters. At the conclusion of the insertion command the buffer
pointer is positioned at the end of the insertion.

Any number of lines may be inserted with a single I command.
However, it is recommended that no more than 10 to 20 lines should
be inserted with each I command.

6. K$ or 8K$ - Lines are deleted by using the K command. The K
command may be preceded by a numeric argument, which is understood
to be a 1 if omitted. The command nK (n>0) deletes everything
from the current position of the buffer pointer through the nth
line feed character following the pointer.

7. T$ or 16T$ - Various parts of the text in the buffer can be
typed out for examination by use of the T command. Just what is
typed out depends on the position of the buffer pointer and the
argument given. The T command never moves the buffer pointer.

The T command types out everything from the buffer pointer through
the next line feed. Thus, if the pointer is at the beginning of a
line, the T command causes that line to be typed out. If the
pointer is in the middle of a line, T causes the portion of the
line following the pointer to be typed.

The command nT (n>0) is used to type out n lines; i.e., everything
from the buffer pointer through the nth line feed following it.

The user, especially one new to XTECO, should use the T command
often, to make sure the buffer pointer is where he thinks it is.

During execution of any T command, the user may stop the terminal
output by typing the TO (control O) character. The typeout stops
and execution of the remainder of the command string is aborted.
Therefore, lengthy typeouts should be restricted to single
command, command strings.

8. SASCII TEST STRING$ - The S command is used to search for a
character string within the buffer. The string to be searched for
is specified as an alphanumeric argument following the S command.
This argument must be terminated by an altmode.

Execution of the S command begins at the position of the buffer
pointer and continues to the end of the buffer. If the specified
string is not found, an error message is printed and the buffer
pointer is set to the location where the search began.

COMPANY CONFIDENTIAL

XTECO
_6..

9. NASCII TEST STRING$ - The N command is similar to the §
command. The difference is that an S command ends at the end.of
the buffer, whereas the N command does not. An N search begins
like an S search, but if the character string is not found in the
current buffer, an automatic A (append) command is executed and
the search continued until the search is successful or the input
file exhausted.

If the N command finds the specified string, the pointer is
positioned at the end of the string found. If the string is not
found, an error message is printed and the pointer is set at the
beginning of the buffer. Since a good part of the file may
already have been output to the output device, the user may have
no other choice than to exit via the EX: command, and to reopen
the file and try the N search again with a character string that
can be found.

NOTE

When attempting to search it is very
easy to overlook an occurrence of the
search string preceding the one the user
desires. For example, he may want to
move the pointer after the word ™"and”
but erroneously position the pointer
after a preceding occurrence of a word
like "thousand." For this reason, the
user is strongly urged to execute a T
command to ascertain the position of the
pointer after each search command.

10. EX$$ - The only output command available with XTECO is the EX
{EXIT) command. The EX command is used to conclude an editing job
with a minimum of effort. XTECO will rapidly move all of the rest
of the input file to the output file, close the file, and return
to command mode so that the user may give other nonedit-mode
commands .

COMPANY CONFIDENTIAL

XTECO

ERROR SUMMARY
The following is a list of possible XTECO error messages.

CKSMER

DELERR

DELOLD

DEVERR

DEVFUL

DIRERR

DUMP ERROR

EOM

INVADR

INVCMD

INVCOR

INVDEV

INVNAM

INVSW

NEXFIL

NOTRDY

POFLOW

Checksum error during LOAD command.

Bit map error during delete operation on DECtape or
disk. Not usual unless medium has been wiped out.
Transfer files to other medium.

Delete old file before giving command that would
create file with same name.

Device error on either input or output device. Check
that output device is write-enable.

Device full. Applies to DECtape and disk. No more
file storage available. Delete unnecessary files and
try again, or use another medium.
Invalid name in device directory.

ACT mode only. Occurs during DUMP command when data
dumped on output device does not match data in core.

End of medium. Occurs during input operations when
the program attempts to input and the file is at an
end. Serious problem. File in storage is probably
wiped out.

Invalid address. Must be even, within existing LOCORE
and HICORE limits, and must not be within UPDATE
program.

Invalid command. Check command just given.

High core limit lower than lower core limit. Correct
core limits. Occurs during DUMP command.

Invalid device specified for command given.

Invalid file name. No special characters allowed. A
through 2z, and 0 through 9 are the only valid
characters. Also occurs if * or wild character
construction filenames are specified to a command that
does not allow them.

Invalid switch specified in command string.

Nonexistent file. File does not exist in device
directory.

Paper tape device is not ready. Make it ready.

Program too large to load within existing core space.

COMPANY CONFIDENTIAL

XXDP

-1~
GENERAL INFORMATION
Code XXDP.BIN
Title 11-Based 11 Diagnostic Monitor
Abstract The XXDP monitor is the preferred method of

loading and running ll-based 11 utility and
diagnostic programs. The XXDP monitor can be
directed to execute a command file containing a
list of programs to be run, or it can be directed
to execute single programs directly from the
user's terminal.

Hardware

Reguired PDP-11 mainframe/4K of core (minimum)

Preliminary and

Associated

Programs The monitor assumes the basic instructions and
load device are operational.

Restriction None

Notes 1. When running dignostics that test the XXDP

medium, care must be taken to ensure the
medium is not accidentally destroyed. The
best method for doing this is to either
write-protect or remove the medium.

2. When running individual programs directly
from the terminal, the monitor must be
manually restarted between each of the
programs.

3. XXDP is the monitor designation where:

RBDP is the RH11-RP04 monitor
RKDP is the RK11 monitor
RMDP is the RK06 monitor
RPDP is the RP11 monitor
RSDP is the RH11-RS04 monitor
RXDP is the RX1l monitor
TADP is the TAll monitor
TCDP is the TCll monitor
TMDP is the TM11-TM02 monitor

Loading and

Starting

Procedure Standard (Refer to the 11/11 STD module.)
Control

Switches None

OPERATIONAL CONTROL
After the diagnostic monitor is started, it will print the
following typical message:

DZQUC-E 21 JULY-78 TCDP-TC1l MONITOR nnK
RESTART ADDR: XXXXXX
BOOTED VIA UNIT#:0

This message is followed by a short help file. A period (.)
indicates the monitor is ready to accept commands.

COMPANY CONFIDENTIAL

XXDP

~2-~

COMMAND SUMMARY
All XXDP monitors use the same command set. These commands are
summarized in Table 1.

Table 1 XXDP Diagnostic Monitor Command Summary

Cross
Command Description Ref.
C C file<CR> 1
Execute command file specified by file.ext
Switches:
C file/QV<KCR> Execute the command file in
quick-verify mode.
D | b<er> 2
Print directory of load medium on console
terminal
Switches:
D/F<CR> Print abbreviated directory
D/L<CR> Print directory on line printer
EQ EO<CR> 3
Enable drive 0 (TADP monitor only)
El E1<CR> 3
Enable drive 1 (TADP monitor only)
F F<CR> 4
Set console fill count
L L file.ext<CR> 5
Load program specified by file.ext
R R file.ext 6
Load and start program specified by file.ext
Switches:
R file.ext/#<CR> Run the program the number
of passes specified by #.
S S<CR> 7
Start program loaded via the L command
S addr<CR> 8
Restart the processor at the address specified
by addr.

Command Description
This section describes in detail each of the commands summarized
in Table 1.

1. C CPUSCR> - The C command reads into core and executes the
specified command file (CPU.CCC). The use of a command file
permits a series of programs to be run without operator
intervention.

Use of the /QV switch will cause each program in the command file
to be executed once regardless of the pass count specified in the
file.

NOTE

1. The command file must have a .CCC
file extension; however, the
extension should not be included in
the command format.

2. To prematurely terminate the execu-
tion of a command file, repeatedly
type TC (control C) characters.

3. Information about constructing a
command file follows this section.

2. D<CR> - The D command reads and prints the file directory of

the load medium. The following switches may be used to modify the
D command.

COMPANY CONFIDENTIAL

-3-
/F will cause the directory to be printed in an abbreviated
form.
/L will cause the directory to be printed on the line printer.
A line printer must be on the system. No check is made for
it.

/L/F - These switches can be used in combination to print an
abbreviated directory on the line printer.

The directory is printed in the following format:

12-JAN-76

ENTRY: FILNAM.EXT DATE LENGTH START
000001 1 2-AUG-78 14 000105
000002 2 2-AUG-78 12C 000172
000003 3 2-AUG-78 12Cc 000206
000004 5 2-AUG-78 12C 000222

FREE FILES: 444

DATE: the date the file .was created

LENGTH: the number of blocks occupied by the file
C: indicates the files are stored contiguously

START: the octal address of the first block in the file. Note
that this is not the starting address of the program.

NOTE

1. The D command accepts universal
filename, extension and character
substitutes.

2. If there is no line printer on the
system the /L switch will cause a
trap condition.

3. EO<KCR> and EI<KCR> - These commands only pertain to the TADP
version of the XXDP monitor. They are used to select for input
drive 0 and drive 1 respectively.

4. F<CR> - The fill command allows the number of £fill characters
following a carriage return to be changed. Fill characters
prevent overprinting due to the mechanical delay of the carriage
return mechanism. The default value (14) is set up for LA30s.
For other terminals this value may be both time-consuming and
annoying. To change the fill count, type F<KCR>. The program will
respond by printing the current filler count value. Type the
desired value followed by a carriage return.

Example:
F<CR>
000014 1

The 000014 is typed by the program and indicates the current
filler count. The 1 indicates the user typed a filler count
of 1.

5. L DZLPB.BICKCR> - The L command loads but does not start the
specified program (DZLPB.BIC). This load-only command allows the
user to set switches or insert code changes before starting the
program.

6. R DZLPBCKCR> - The R command loads and starts the specified
program (DZLPB). A file extension is not necessary for BIC and
BIN formatted programs. The program specified must be of the
self-starting type.

If the R command was terminated with an altmode (§) the program
will be automatically started at location 200 (octal).

7. S8 <KCR> - The S command starts the program loaded at that
program's starting address (usually 200 octal).

8. S addr<CR> - This form of the S command starts the processor

at the specified octal address (addr). It can be used for special
program starts or to restart the XXDP monitor.

COMPANY CONFIDENTIAL

XXDP

-4

Command File Construction

A command file is an ASCII file created with an editor program
(XTECO) and used to control the XXDP monitor. A command file
should be used for running programs during preventive maintenance.
This will allow the field engineer to make other routine checks
and thus shorten the preventive maintenance period.

During corrective maintenance a command file can be used to run a
set of functional and reliability diagnostics while the field
engineer performs a visual/mechanical inspection of the system.

The following are rules for constructing a command file.

1. A command file may contain any commands or switches
supported by the XXDP monitor. The C command, however,
will cause a new command file to be read in on top of
existing command file. For this reason the C command
should be limited to the last command in the command
file.

2. Comments may be incorporated into a command file but they
must be preceded by a semicolon (;).

3. All programs to be executed by a chain file must have a
.BIC extension. The BIC extension, however, should not
be included in the command string. The directory command
is an exception to this rule.

4. The command file itself must have a CCC extension.

5. All programs and the command file itself must be located
on the same physical medium.

Following is an example of a typical command file.

;CPU.CC

;THIS COMMAND FILE EXERCISES THE XYZ PROCESSOR WITH T1-T13..
i

R DOAR/1000 ;RUN T1 1000 TIMES<CR>

R DOBA/1000 sRUN T2 1000 TIMES<CR>

R DOCA/1000 ;RUN T3 1000 TIMES<CR>

R DODA/1000 ;RUN T4 1000 TIMES<CR>

R DOEA/1000 ;RUN T5 1000 TIMES<CR>

R DOFA/1000 ;RUN T6 1000 TIMESKCR>

R DOGA/1000 ;RUN T7 1000 TIMES<CR>

R DOHA/1000 3RUN T8 1000 TIMES<CR>

R DOJA/1000 ;RUN T9 1000 TIMES<CR>

R DOKA/1000 ;RUN T10 1000 TIMES<CR>

R DOLA/1000 RUN T11l 1000 TIMES<CR>

R DOMA/1000 ;RUN T12 1000 TIMES<CR>

L DONA ; LOAD T13<CR>

S/1000<CR> ;START IT, RUN 1000 TIMES<CR>
C CPU ;RESUBMIT COMMAND FILE AGAIN.

COMPANY CONFIDENTIAL

XXDP
—5_
XXDP Monitor Error Summary

Monitor errors are summarized in Table 2.

Table 2 XXDP Monitor Error Summary

Error

Messages Description

CKSMER Checksum error during LOAD command.

DEVERR pevice error on input device.

EOM End of medium. Occurs during input operations
when the program attempts to input and the file
is at an end. Serious problen. File in storage
is probably wiped out.

INVADR Invalid address. Must be even within existing

LOCORE and BICORE limits, and must not be within
update program.

INVCMD/SW | Invalid command and/or switch. Check command.
INVNAM fnvalid character typed for file name.

NEXFIL Nonexistent file. 1f using a command file the
extension program to be run does not have .BIC

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DXLPB

-1~
GENERAL INFORMATION
Code DXLPB.BIN
Title LP20 Line Printer Diagnostic
Abstract This diagnostic is designed to test the LP20(s

and line printer(s) connected to the PDP-11/40
console front-end subsystem.

Hardware

Required PDP-11/4U mainframe/16K of memory (minimum)/up to
2 LP20s/and any of the following line printers:
LPO5, LP07, LP10, and LP14.

Preliminary and

Associated
' Programs Refer to the diagnostic hierarchy (11/11 sTp
module) .

Restrictions LPO5 and LP07 line printers should be set to 6

lines per inci.

Notes 1. set control switch 0 (1) to test the line
printer; otherwise only the LP20 will be
tested.

2. set control switech 1 (1) to shorten DAVFU
testing and save paper.
3. Execution time is approximately 10 seconds

without a line printer and 1.5 minutes with a
line printer.

4. Hammer Alignment Test - Refer to Table 3, Test

144.

Loading and

Starting

Procedure This program is designed to run under the XXDP
diagnostic monitor (Refer to the XXDP Summary
module) .
Starting Addresses
200 - standard
204 - Restart diagnostic without reconfiguring
210 - Perform manual intervention tests

Control

Switches Refer to Table 1

OPERATIONAL CONTROL
In addition to the control switches, DXLPB supports the following
operator-selectable service routines.

Starting Routine

Address Name Description

214 ORAMST Set Up Core RAM Buffer
220 ODISLR Discrete Load RAM

224 ODMALR DMA Load RAM

230 ODMPRM Dump RAM to Core

234 OCHRLD Load Core Print Buffer from TTY
240 OTSTPT Print in Test Mode

244 OLPTPT Print on LPT

250 OVFULD Load VFU

254 OPGTST Test Page Counter

Refer to the listing on microfiche for a detailed description of
these routines. .

DXLPB TEST SUMMARY

DXLPB consists of two sets of tests. The first set tests the
LP20(s) only. (Refer to Table 2.) The second set tests the line
printer(s) and is only run when control switch 0 is set (1).
Refer to Table 3.

ERROR MESSAGE SUMMARY
All error typeouts are in a format similar to the following.

ERROR CSRA CSRB REG GOOD ACTUAL
PC STATUS STATUS ADDRESS DATA DATA
12340 000000 000000 175400 0000200 000000

COMPANY CONFIDENTIAL

EK-0KL10-03
DXLPB NOV 1979

—2-

Checksum Errors

On all DMA transfers, the checksum will be computed and written at
location OGDSUM. The checksum as read from the LP20 is written at
location OLPSUM.

Premature DONE Errors
If DONE occurs abnormally during a DMA transfer and the program is
not looping, one of the following messages will be printed.

E followed by three digits indicates an error, The
digits correspond to the low-order byte of the CSRB
register.

P indicates the paper counter egquals O.

U indicates an undefined character was typed.

After any of these messages, type one of the following keys.
$ (Altmode) Exits
<CR> (Carriage return) Prints the contents of the registers

SPACE Resets the error, sets GO and continues to wait for

DONE
Table 1 DXLPB Control Switch Summary
Switch State Description
15 1 Halt on error.
14 1 Loop on test.
13 1 Inhibit error printouts.
12 1 Inhibit END OF PASS message.
11 1 Inhibit iterations.
10 1 Ring bell on error.
09 1 Loop on error.
08 1 Loop on test specified in switches <00:07>.
<07:00> specifies the test to loop on. See switch 8.
0l 1 ?g?rten DAVFU testing. Switch 08 must be reset
00 1 Test line printer after testing LP20. Switch 08
must be reset (0).

Table 2 LP20 {Only) Test Summary

Test | Description

1 | REGISTER ACCESS TEST

2 | (LPCSRA) REGISTER R/W TEST
3 | (LPCSRA) HI-BYTE TEST

4 (LPCSRA) LO-BYTE TEST

5 | (LPCSRA) CLEAR TEST (LOINIT)
6 (LPCSRA)} CLEAR TEST (RESET)
7 (LPCSRB) REGISTER R/W TEST
10 (LPCSRB) HI-BYTE TEST

11 (LPCSRB) LO-BYTE TEST

12 (LPCSRB) CLEAR TEST (LOINIT)

13 (LPCSRB) CLEAR TEST (RESET)

14 (LPBSAD) REGISTER R/W TEST

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DXLPB

-3-

Table 2 LP20 (Only)} Test Summary (Cont

Test | Description

15 {LPB5AD) CLEAR TEST (LOINIT)

16 (LPBSAD) CLEAR TEST (RESET)

17 (LPCTR) REGISTER R/W TEST

20 (LPCTR) CLEAR TEST (LOINIT)

21 {(LPCTR) CLEAR TEST (RESET)

22 {LPPCTR) REGISTER R/W TEST

23 (LPPCTR) CLEAR TEST (LOINIT)

24 (LPPCTR) CLEAR TEST (RESET)

25 (LPRAMD) REGISTER R/W TEST

26 (LPCCTR) REGISTER R/W TEST

27 (LPCCTR) CLEAR TEST (LOINIT)

30 (LPCCTR) CLEAR TEST (RESET)

31 {LPCCTR) LO-BYTE ADDRESSING TEST

32 (LPCCTR) HI-BYTE ADDRESSING TEST

33 (LPTDAT) HI-BYTE ADDRESSING TEST

34 (LPTDAT)} LO-BYTE TEST

35 (LPCSRA) DISTURB TEST

36 (LPCSRB) DISTURB TEST

37 {LPBSAD) DISTURB TEST

40 {(LPCTR) DISTURB TEST

41 (LPPCTR) DISTURB TEST

42 (LPRAMD) DISTURB TEST

43 (LPCCTR) DISTURB TEST

44 (LPTDAT) DISTURB TEST

45 (RAM) BASIC ADDRESS TEST

46 (RAM) BASIC PARITY NETWORK TEST PR=1
47 (RAM) BASIC PARITY NETWORK TEST PR=0
50 (RAM) BASIC COMPLEMENT ADDRESS TEST
51 {(RAM) FLOATING 1S and 0S ADDRESS TEST
52 (RAM) ADVANCED ADDRESS TEST

53 (RAM) FLOATING 1S and 0S ADDRESS TEST
54 (RAM) BASIC DATA TEST

55 (RAM) ADVANCED DATA TEST

56 {RAM) PARITY GENERATOR NETWORK

57 {RAM) PARITY GENERATOR NETWORK (RAMTST) MODE
60 {RAM) DISABLE LOAD TEST

61 (RAM) DISABLE READ TEST

62 (LPPCTR) DECREMENT TEST

63 {LPPCTR) DECREMENT CARRY TEST

64 (LPPCTR) DECREMENT TEST (GOERR)

COMPANY CONFIDENTIAL

EK-0KL10-03
DXLPB NOV 1979

-4-

Table 2 LP20 (Only) Test Summary (Cont)

Test | Description

65 (LPPCTR) DECREMENT TEST (PAGTST)

66 (RAM) LOAD VIA DMA (DONE TEST)

67 (RAM) LOAD VIA DMA DATA TEST

70 SYNTST MASTER SYNC (SYNTIM)

71 SYNTST MASTER SYNC (ERROR)

72 DEMTST TEST (DEMTIM)

73 DEMTST TEST CLEAR (LOINIT)

74 DEMTST TEST (ERROR)

75 MEMTST TEST (MEMPAR)

76 MEMTST TEST CLEAR (LOINIT)

77 MEMTST TEST (ERROR)
10¢ GO ERROR TEST SET (GO ERR)
101 GO ERR OR CLEAR FAILED (GO ERR)

102 INTERRUPT TEST

103 LPCY9 SEL BYT CTR (CLEAR DORNE)

104 LPR2 BYTE CNTR ZERO (SET DONE)

105 LPD4 PAGE CNTR EMPTY L (SET PAGE ZERO)

106 LP8C CLEAR 1 L (CLEAR PAGE ZERO)

107 LPC9 SEL PAG CTR L (CLEAR PAGE ZERO)

110 LP20CK CHECKSUM LOGIC TEST

111 LP20CK CHECKSUM LOGIC TEST

112 LP20CK CHECKSUM LOGIC TEST

113 DELIMITER HOLD TEST

114 RAM STATIC TRANSLATE DATA TEST

115 RAM INT AND TRANS COMBINATION STATIC TEST

This test ensures that if the RAM INT and TRANS bits are up,
the character will be sent straight to the printer without
translation.
116 RAM INT AND TRANS COMBINATION INTERRUPT TEST
This test ensures that if the INT and TRANS bits are on for
a character, an illegal character interrupt will only occur
if the DELIM HOLD flip-flop is set. The BYTCNT indicates

the error type.

BYTCNT ERROR

~4 Transfer never started (GO error, etc.).

-3 Illegal character INT occurred with DELIM HOLD not
set.

-2 INT occurred on the delimiter (should not happen).

-1 Correct termination.

0 Illegal character INT did not occur at all.

117 CCLUMN COUNTER INIT TEST
This test loads 177400 into the LPCCTR register and does a
LOCAL INIT. The high byte (column counter) should be clear.

120 COLUMN COUNTER INCREMENT AND LINE FEED TEST

This test does a LOCAL INIT and increments the column
counter from 0 through 204 character-by-character by doing
transfers in test mode, each time checking the column
counter. Then a line feed is done and the column counter
should clear.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DXLPB

~5-

Table 2 LP20 (Only) Test Summary (Cont)

Test | Description
121 COLUMN COUNTER INCREMENT AND FORM FEED TEST
This test increments the column counter to 177, then does a
form feed in test mode. The column counter should be clear
after the form feed.
122 LINE OVERFLOW TEST
This test transfers 133 decimal characters in test mode and
expects to see the column counter byte be 001 (8 bits). The
test then transfers the character 002 with the RAM PI and
TRANS bits on. The column counter should reset.
123 TAB AND LINE OVERFLOW TEST
This test first transfers one "printing" character followed
by 15 tabs. The column counter is checked after each tab.
This test completes the LP20 controller-only testing. Set
switch 0 to 1 to test the line printer.
Table 3 Line Printer (Only) Test Summary
Test | Description
124 VFU LOAD TEST
This test will only be run on printers with loadable VFUs.
125 BASIC FORM FEED AND PAGE COUNTER TEST
126 PAGE COUNTER OVERFLOW TEST
127 BASIC LINE FEED TEST
This test exercises the "SLEW n LINES" commands of the VFU.
The SLEW command is done once per printed page, surrounded
by text describing the command done. All 16 commands are
exercised unless switch 1 is set in which case just one
command is done to save time and paper.
130 DAVFU CHANNEL SLEW TEST
This test exercises the DAVFU channel slew commands. Each
command is done enough times to take up one page. The
command is done just before each text printing "“THAT WAS
CHANNEL n". This test exercises only one channel if switch
1 is set.
131 DAVFU SPECIAL LOAD OF 143. Partitions
This test will be skipped if the printer has an optical VFU.
132 DATA TRANSFER PATHS TEST
This test checks the data transfer paths (with alternating
1s and 0s), from the LP20, through the line printer input
register, and into the printer's buffer. An alternating
string of "*" and "“U" characters ("NOT EQUAL" and "DOWN
ARROW" for the APL charaband) are transmitted to the
printer.
133 ALTERNATE LINES ALL CHARACTERS AND ALL ILLEGAL 7-BIT
CHARACTERS
This test is designed primarily to test the line printer
character generator and comparator logic, and its ability to
detect and act upon both printable and illegal (nonprinting)
characters.
NO LOWER CASE LOWER CASE APL CHARABAND
0- 37 ILLEGAL 0-37 ILLEGAL 0- 37 ILLEGAL
40-137 LEGAL 40-177 LEGAL
140-177 ILLEGAL 240-267 LEGAL
134 OVERPRINT TEST
135 MULTIPLE LINE ADVANCE TEST

This test checks the multiple line advance of the line
printer. A line of numbers is printed, then the paper is
advanced that number of lines by a line feed. Thus the
number printed will indicate the number of blank lines
following that line. The number varies between 2 and 7.

COMPANY CONFIDENTIAL

EK-0KL10-03

DXLPB NOV 1979

—6-

Table 3 Line Printer (Only) Test Summary (Cont

Test |Description

136 DRUM PATTERN CHARACTER TEST

137 SLIDING PATTERNS ~ LEFT

140 SLIDING PATTERNS - RIGHT

141 SINGLE CHARACTER, ALL COLUMNS TEST
This test is designed as an endurance test of the line
printer as well as a character check of the drum. 132
columns of each of the legal characters are transmitted to
the line printer and printed in rotation. A sample of the
printout follows.

142 SPURIOUS HAMMER FIRING TEST - RIGHT TRIANGLES
This test is designed to detect spurious hammer firings and
defective hammer drivers during operation of the line
printer. The patterns which ~re produced are right- and
left-side wedges, each composed of 132 lines of print.
Any print outside of the wedge will be caused by a hammer
misfire or hammer bounce.

143 SPURIOUS HAMMER FIRING TEST - LEFT TRIANGLES
Same as Test 142 however with left triangles.

144 HAMMER ALIGNMENT TEST
This routine is designed to be used as a driver for manual
hammer alignment and intensity adjustments. The test prints
a full 132-column line of E characters for 63 lines.

145 NON-LP0O7 SHUTTLE POSITIONING TEST
This test checks the hammer shuttle for correct operation.
Full lines of Es are printed by printing a pair of Es at a
time, then overprinting those Es to the line until the line
is completed. A total of 16 lines are printed during this
test. This test is not done on LP07s because LP07s do not
allow more than 6 overprints per line.

146 CHARACTER CODE TABLE
This test prints a list of all characters (except 000, 001,
012, 014, 015, 212, 214, 215) in a handy table form.

147 LINE OVERFLOW TEST

150 TAB TEST (With Overflow)

Control Tests and Operator Interactive Tests

151

MANUAL LPT ERROR GENERATION TEST

The printer-ready line continuously monitors the following
conditions within the printer. Its true state at the
control electronics interface is conditional upon none of
these conditions existing:

A. Paper Qut or Torn

B. Drum Gate Open

C. Ribbon Stall Condition

D. Power Supply Fault

E. Hammer Bank Fault

F. DAVFU Error (if available)
G. Switched Off Line.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DXLPB

-7-

Table 3 Line Printer (Only) Test Summary (Cont

Test

Description

152

The manual-interactive test sequence which follows is
designed to test the proper operation of the ready line as
it appears at the interface electronics with respect to the
above items that are testable (i.e., A, B, F and* G).
Initial manual test sequence is as follows.

1. After "POWER ON - TURN ON-LINE" has been displayed,
power-up the line printer and turn on line, making
sure that the paper is in place in the tractors and
that the drum gate is closed.

Press CONT. "READY SET OK - TRY TORN PAPER SWITCH"
will be displayed if printer is on-line and no errors
exist.

N

3. Tear the paper off below the printer drum gate and
use the manual TOP OF FORM switch to drive all the
paper out of the printer. Observe that the printer
READY light goes out and the paper ERROR light goes
on at the printer control panel. Attempt to place
the printer on-line. The ON-LINE and READY lights on
the printer control panel should remain off.

4. Press CONT. An error message f{error count 2) will
occur if the printer-ready line remains high at the
interface electronics.

5. After successful completion of steps 3 and 4, the
message "ERROR SET OK - TURN ON LINE" will be
displayed. Restore paper to the tractors, close the
drum gate and place the printer in the ready on-line
state. Observe that both the ON-LINE and READY label
lights illuminate on the printer control panel.

6. Press CONT. An error message (error count 4) will
occur if the printer-ready line does not go high at
the interface electronics.

7. Drum Gate - After successful completion of steps 5
and 6, the message "READY SET OK - TRY, DRUM GATE
SWITCH" will be displayed. Open the printer drum
gate and observe that the ON-LINE and READY lights go
out and the drum gate error light goes on on the
printer control panel.

8. Press CONT. An error message (error count 5) will
occur if the printer ready line appears to remain
high at the interface electronics.

9. Ready - After successful completion of steps 7 and 8,
the message "ERROR SET OK - TURN ON LINE" will be
typed.

10. Press CONT. and continue with the next test.

PRINT SPEED TIMING TEST

This test is designed to time the printer for one full
minute. During this time the printer will print the
diagonal of the drum pattern so that only two hammers
maximum fire at any given instant and maximum print time
is used for each line.

If a KWll-L or KWll-P is available, it will be used to
time the printer. If both are available, the KWll-L will
be used. If neither are available, manual timing will be
used. When manual timing is used, type instructions on
the terminal. To start the timing, place switch 0 in the
up position. At the end of one full minute, place switch
0 in the down position to stop the timing. If using an
internal clock for timing, place switch 0 in the up
position before starting the test. Whichever method of
timing is wused, at the end of one full minute the
approximate print speed will be typed on both the

teleprinter and line printer.

COMPANY CONFIDENTIAL

EK-0KL10-03
DXLPB NOvV 1979

-8-

Table 3 Line Printer (Only) Test Summary (Cont

Test | Description

153 |DAVFU INCOMPLETE DATA TEST

This test attempts to load the direct access vertical
format unit (DAVFU) with incomplete data (an odd number
of data words) between the start load and stop load
commands . This should cause a format error to occur in
the line printer. Failure to cause an error in the line
printer will cause an error typeout to occur. Then the
message "VFU DAT INC TEST DONE - CLEAR AND TURN ON LINE"
will be typed. Clear the format error in the printer and
place the printer in the read-on-line state. The VFU
will then be loaded normally.

This test will not be executed on printers with optical
VFUs.

154 | DAVFU NO ls IN CHANNEL 1 TEST

This test attempts to load the VFU with 1ls in all
channels except channel 1. Failure to cause an error in
the line printer will cause an error typeout to occur.
Then the message "VFU 0S IN CHAN 1 TEST DONE - CLR, TURN
ON LINE, HIT CONT" will be typed. Clear the format error
in the printer and put on-line. The VFU will then be
loaded normally.

This test is not done on printers with optical VFUs.

155 | DAVFU LOAD 144, Partitions

This test attempts to load 144 VFU partitions. Failure
to cause an error in the line printer will cause an error
typeout to occur, Then the message "VFU 144 LOAD TEST
DONE - CLR, TURN ON LINE, HIT CONT" will be typed. Clear
the format error in the printer and put on-line. The VFU
will then be loaded normally.

This test is not done on printers with optical VFUs.

156 | LPO7 LPI SET TEST

This test ensures that the lines-per~inch is
program-selectable. The program will select both 6 and 8
lines per inch and ask you to check the LPI-indicating
LEDs in the printer. One full page is printed at 8 LPI.

This test is done only on LP07s.

157 | LPO7 PARITY TEST

This test ensures that the LP07 parity detection logic
works correctly. Sending even parity to the LP07 causes
an error condition, and lighting of the PARITY indicator.
Bit 05 should set in the LPCSRB register.

160 | LPO7 PARITY INTERRUPT TEST

This test checks that a parity error in the LP07 will
cause an interrupt. Bit 15 should set in the LPCSRA
register.

COMPANY CONFIDENTIAL

EK-0KL10~03
NOV 1979 11/10 sTD

-1~

Table of Contents

Microfiche
Summary Classification Version
11/10 sTD NA 0.0
DIACON NA NA
KLDCP KL10 (DGQDA) 0.17
KLDCPU KL10 (DGQDA) 0.17
MEMCON KL10 (DGQFB) 1.6*
TRACON KL10 (DGQFA) (DHQFA) 0.11/0.3
DGDTE KL10 0.11%*
DGKAA KL10 0.11
DGKAB ¥L10 v.12%
DGKBA KL10 0.11
DGKBB KL10 0.11x*
DGKBC KL10 0.10
DGKBD KL10 0.13
DGKBE KL10 1.10
DGKCA KL10 0.10
DGMCA KL10 1.10
DGMCB KL10 1.10
DGMMA KL10 0.3
DGQODA KL10 (KLDCP) 0.17
DGQDD DN87s 0.1
DGQDE DL11-E 0.1
DGQDF DN2X 0.2
DGQDG DN2X
DGQEA DN2X 0.1
DGQFA KL10 (TRACON) 0.11
DGQFB KL10 {MEMCON) l.6%
DHKAA KL10 0.2
DHKAB R KL10 0.3*
DHKBA KL10 0.3
DHKBB KL10 0.2*
DHKBC KL10O 0.1
DHKBD KL10 u.5
DHKBF MF20 0.3
IDHKBG MF20 0.3
DHKCA KL10 0.1
DHMCA : KL10 1.2%
DHMCB KL10 0.2*
DHQFA KL10 (TRACON) 0.3

*Program revised, code change only.

COMPANY CONFIDENTIAL

EK-0KL10-03
11/10 STD Nov 1979

—2-

PROGRAM IDENTIFICATION CODE

The coding scheme used to identify 11-Based 10 Maintenance Library
programs is the same as that used for the 10-Based 10 Maintenance
Library. Refer to the 10/10 STD module.

STANDARD PROGRAM STARTING ADDRESSES

Table 1 lists the standard program starting addresses for the
11-Based 10 Maintenance Library programs.

rable 1 Standard Program Starting Addresses

Address

3000 Standard starting address for all 1l-based 10
diagnostics

100000 KLDCP starting address

173000 Boots RSX-20F if KLAD pack is mounted

UTILITY PROGRAMS
Table 2 lists and briefly describes the utility programs
associated with the 1ll-Based 10 Maintenance Library.

Table 2 11-Based 10 Utility Programs

Utility Description

KLDCP.BIN A program which runs in the PDP-11/40 console
front-end subsystem; supports console operations, and
both 10710 and 11/10 diagnostics. It also interfaces
the CTY to either the TOPS-10 or TOPS-20 operating
system during timesharing.

STANDARD CONTROL FILES

B.CMD Runs 11710 and 10/10 mainframe diagnostics
on KL10 model PA processors

BB.CMD Runs 11/10 and 10/10 mainframe diagnostics
on KL10 model PV processors

BT.CMD Initializes KL10(PA) mainframes to rum
106/10 maintenance programs

BBT.CMD Initializes KL10(PV) mainframes to run
10/10 maintenance programs

DIAGA.RAM Microcode file for KL10-PA; used by most
DG-series diagnostics

DIAGB.RAM Microcode file for KL10-PV; used by most
pH-series diagnostics

EBOXA . RAM Microcode file for KL10-PA; used by
DG-series EBox diagnostics

EBOXB.RAM Microcode file for KL10-PV; used by
DH-series EBox diagnostics

U.RAM Microcode file for KL10-PA; used by 10/10
processor functional diagnostics

UB.RAM Microcode file for KL10-PV; used by 10/10
processor functional diagnostics

KLLD.CCL Loads the SUBRTN package and KLDDT

COMPANY CONFIDENTIAL

11/10 STD
-3-

Table 2 11 Based 10 Utility Programs (Cont)

Utility Description

CONFG.CCL Memory configuration file

X1.CCL External memory l-way interleave
X2.CCL External memory 2-way interleave
X4.CCL External memory 4-way interleave

CONFG1.CCL Internal memory l-way interleave
CONFGR.CCL Internal memory relocation file

HIMARC.CCL Internal memory set high current margins
LOMARC.CCL Internal memory set low current margins

HIMARS.CCL Internal memory set high strobe margins
LOMARS.CCL Internal memory set low strobe margins

HIMART.CCL Internal memory set high threshold margins
LOMART.CCL. Internal memory set low threshold margins

MGNOFF.CCL Internal memory clear margins
MC.CCL Clear memory
WRMEM.CCL AC memory test

KLDCPU.All | A program for copying files and maintaining the KL10
maintenance library.

MEMCON.All | A program for configuring internal and external
memory.

TRACON.All | A program for tracing and reporting the internal
status of the EBox, MBox and channels.

Bootstrap Loaders

KLADBT.BIN | A bootstrap loader for loading KLDCP from a KLAD-10
pack.

KLDTBT.BIN | A bootstrap loader for loading KLDCP from a DECtape.

RLRXBT.BIN | A bootstrap loader for loading KLDCP from a floppy
disk.

COMPANY CONFIDENTIAL

11/10 STD

—4-

STANDARD PROGRAM CONTROL SWITCHES

The switches used to control the operation of 1ll-based 10
diagnostics are determined by XORing the physical PDP-11/40
console data switches with the switch data entered via the KLDCP
ES command.

Table 5 describes the standard effect each switch has on operation

of the program. Exceptions to the standard switches are noted in
the individual program summaries.

Table 5 Program Control Switches

ES
Digit | Switch | Mnemonic | State Description
1st 15 ABORT 0 Normal operation
1 Abort at end of pass
2nd 14 RSTART 0 No function
1 Print totals and restart
13 TOTALS 0 No function
1 Print totals and continue
12 NOPNT V] Normal printout
1 Inhibit all but forced printouts
3rd 11 Not used
10 DING 0 No function
1 Ring TTY bell on error (forced
output)
9 LOOPER 0 Proceed to next test
Enter scope loop on that error
4th 8 ERSTOP 0 No Function
1 Balt on test error. In user mode
exit test.
7 PALERS [} Print only first error in loop
1 Print all errors
6 RELIAB 0 Quick verify mode
1 Reliability mode
5th 5 TXTINH 0 Print full error message
1 Inhibit comment portion of error
message
4 INHPAG 0 KIl0 and KL10 - allow full
256K/4096K addressing
1 KI10 and KL10 - inhibit paging,
treat memory as 112K minus 1 max.
3 MODDVC o No function
1 Enter dialogue to change device
codes
6th 2 INHCSH 0 KL10 - allow cache use
1 KL10 - inhibit cache use
1 OPRSEL 0 Use default operations (DIACON)
1 Operator tes% selections (DIACON)
0 CHAIN Reserved - used by DIAMON and
other programs to control chain
operations

COMPANY CONFIDENTIAL

_ 11/10 STD
_ = Ruw By 13 57"_‘5_’:‘{‘

DYIAGNOSTIC HIERARCHIES
Table 3 1lists the diagnostic hierarchy for KL10 model PA
Processors.

Table 4 lists the diagnostic hierarchy for KL10 model PV
processors.

Table 3 KLlO(E;;z>Processor and Memory Diagnostic Hierarchy

Diagnostic | Title

’, DGDTE.ALll DTE20 Interface Test

DGKAA.All EBox Test ({(Part 1)
DDKAB.All EBox Test (Part 2)

DGKBA.All MBox Basic Test
DGKBB.All MBox Control and Memory Test

NOTE o Memories must be configured from this point on. Use
CONFG.CCL control file.

,, DGKBC.All Paging Logic Test

Cache {Optional)

DGMCA.ALl MBox Cache Option Test (Part 1)
DGMCB.All MBox Cache Option Test (Part 2}

Channels (Optional)

DGKBD.All MBox Channel Loopback Test (Part 1)
DGKBE.All MBox Channel Loopback Test (Part 2)

7 DGKCA.All Meter Board Test

DGMMA .A11 Memory Reliability and Margining Test

Table 4 KL10 6;2) Processor and Memory Diagnostic Heirarchy

Diagnesti-c--»--’}'i»tle et e it e+ ettt 4+ et e et e nm e e

DGDTE.All DTE20 Interface Test

DHKAA.All EBox Test (Part 1)
DHKAB.All EBox Test (Part 2)

DHKBA.All MBox Basic Test
DHKBB.All MBox Control and Memory Test

MOS Memory (Optional)

DHKBF.All MF20 Test (Part 1)
DHKBG.All MF20 Test (Part 2)

NOTE Memories must be configured from this point on. Use
CONFG.CCL control file

DHKBC.All Paging Logic Test

Cache (Optional)

DHMCA.All MBox Cache Option Test (Part 1)
DHMCB.All MBox Cache Option Test (Part 2)

Channels (Optional)

DHKBD.All MBox Channel Loopback Test (Part 1)
DGKBE.All MBox Channel Loopback Test (Part 2)

DHKCA.All Meter Board Test

DGMMA .A11 Memory Reliability and Margining Test

COMPANY CONFIDENTIAL

11/10 STD

-6-
STANDARD LOADING AND STARTING PROCEDURES
Procedure 1 describes how to bootstrap load the console front-end
subsystem from a KLAD-10 or KLAD-20 disk pack.

Procedure 2 describes how to load KLDCP from a KLAD pack using
RSX-20F.

Procedure 3 describes how to load and start programs using KLDCP.

Procedure 1 Bootstrap Loading the Console Front-End Subsystem

Step | Procedure

1 Mount the program storage medium. Make the unit ready and
on line.
2 Set the PDP-11 console switches if they are to be used to

direct the bootstrap operation. Refer to Table 6.
EXAMPLES:

l. SW = 203 1Input device = RP04/5/6.
Load RSX-20F, (KL10 down).

2. SW = 207 Input device = RP04/5/6.
Run through dialogue to load KLDCP.

3. SW = 003 Boot from floppy. Load RSX-20F, (KL10 down).
3 Press and hold the ENABLE switch.

4 Momentarily press the boot device switch (DECTAPE, FLOPPY,
DISK or SWITCHES).

5 Release the ENABLE switch. Either RSX-20F or KLDCP will
automatically load and start. Refer to Procedure 2,
Procedure 3 or the appropriate program summary for further
program loading instructions.

7 Reset the console switches if they were used for the
bootstrap operations.

Table 6 PDP-11 Bootstrap Switch Summary

Switch | State | Description

15 1 Infinite retry - The ROM will continue retrying a
bootstrap operation on error until aborted by
manual intervention.

0 The ROM will retry on error a finite number of
times.
14-11 Selects the line number within the DH1l1 or DL11

group to be used as the console terminal.

10-8 If bits 6-3 are in the range of 0-2, then bits 10-8
represent the unit number of the bootstrap device
selected by bit 7.

If bits 6-3 are in the range of 3-17, the unit
number defaults to 0 and bits 10-8 represent the
DH1l unit number of the console terminal.

7 1 Use the RP04/5/6 unit selected as the boot device.
0 Use as available, one of the RX1ll floppies, TCll

DECtapes or DL1l1 async lines as the boot device.
See switches 10-8.

COMPANY CONFIDENTIAL

11/10 STD

~7-

'Table 6 PDP-11 Bootstrap Switch Summary {Cont) -

Switch

Description

6-3 These bits select the speed and £ill class for the
console terminal.
Bits
6-3 Function
0 Ignore bits 14-11. Use bootstrap device
built into the software.
1 or 2 Fill class. for DL1l line selected by bits
14-11.
3-17 ROM defaults to unit O. Bits 6-3 egqual
speed and fill class for DH11 line
selected by bits 14-11.
2-1 Load Select
Bits
2-1 Function
00 Complete reload of TOPS-10 or TOPS-20
monitor.
01 Load RSX-20F. KL10 is assumed to be
down.
10 Load RSX-20F. KL10 is assumed to be up.
11 Run through dialogue guestions to control
loading.
0 1 Interpret switches as specified above.
0 Interpret switches 15-1 as an address, transfer
control to that address after saving RO-R7 in
memory locations 50-56.
Procedure 2 Loading KLDCP from RSX-20F
Step Procedure .
1 This procedure assumes RSX-20F is running in the console
front-end subsystem. Refer to Procedure 1.
2 If at KLI command level (KLI>), type:
EXIT<CR>
3 Mount the KLAD pack and make unit ready and on-line.
4 To RSX~20F type:
(SN
This will put the CTY in PARSER command mode.
5 To PARSER type:
MCR BOO<CR>
This directs PARSER to load and start the BOO TSK file.
6 To BOO type:
DBOOT<CR>
This directs BOO to load and start KLDCP.

COMPANY CONFIDENTIAL

11/10 sTD

-8-

Procedure 3 Loading and Starting Programs via KLDCP
The following diagram illustrates the steps involved in loading

and starting programs via KLDCP. Each step is described in detail
following the diagram.

KLDCP
| Runing

T
MOUNT AND SEL
LOAD MEDIUM

ATSCA> DXn<CR>
OL<CR> RPa<CR>
DIn<CA> AXn<CR>

SELLPT AUN ONE AUNKLIO
IDEC200NLY) PROGRAM CPU DIAG
e
3 .
SET I CONFG MEM
SWITCHES CONFG MEM AND BOOT 10
I 1 CONFG.
£S dara <CR> oo BT<cA>
B 6al sl
L0AD AND LoaD
START PROG PROG

P FILE
7 78

START PROG

SEDSCR>

SEDR<CA>
SE ade <CR>

wn a0y

Procedure 3 Loading and Starting Programs via KLDCP

Step Procedure

1 KLDCP must be running in the console front-end processor.
Refer to Procedure 1 or 2.

2 Mount the storage medium containing the programs to be run
and select the load device by typing the appropriate KLDCP
command.

AT<CR> selects the APT10

DL<CR> selects the DL1l

DTn<CR> selects DECtape transport n
DXn<CR> selects floppy unit n
RPn<CR> selects disk drive unit n
RXn<CR> selects floppy unit n

3 If the line printer is to be used for output (DECSYSTEM-20s
only),

To KLDCP type:
LP<CR>

4 If the operational status of the KL10 mainframe is
questionable,

To KLDCP type:
B<CR>

This command causes KLDCP to run the ll-based 10 and the
10-based 10 KL10 processor functional diagnostics. The
command requires approximately twenty minutes for execution
and should only be used when the operational status of the
KL10 mainframe is in question.

COMPANY CONFIDENTIAL

11/10 STD

-9-

Procedure 3 Loading and Starting Programs via'KLDCP (Cont)

Step

Procedure

5

o

6A

6B

7A

7B

If a single diagnostic is to be run, the console control
switches may need to be set. Table 1 describes the
standard control switches. ' Exceptions to the standard are
described in the individual diagnostic summaries.

To KLDCP type:
ES data<CR>

where "data" is six octal digits and represents the desired
switch setting. Note that KLDCP exclusive ORs the physical
11/40 console switches with the "data” specified in the ES
command. Therefore, to use only the "data" specified in
the ES command, the console switches must be reset.
Conversely, to use the physical console switches the ES
command must specify a switch setting of 0s (e.g.,
ESO<KCR>) .

if a single dlagnostic is to run, it may reguire that the
KL10 memories be configured. Refer to the diagnostic
hierarchy listed in Table 4 or 5. If configuration is
necessary,

To KLDCP type either:

I CONFG.CCL<CR> This command directs KLDCP to
configure the KL10 memories.

or:

BT<CR> This command causes KLDCP to
configure memory, load the microcode,
load the 10/10 SUBRTN package and
KLDDT.

If a single program is to be run,
To KLDCP type one of the following.

P file.ext$ This will cause the file specified to
load and start.

P file.ext<CR> This will cause the file specified to
be loaded but not started. This
opportunity may be used to insert
changes or otherwise modify the
program.

There are three commands which may be used to start an
11-based 10 program once it is loaded.

To KLDCP type one of the following.

SE adr<CR> This will start the program at the
address specified.

SED<CR> This will start the program at its
normal starting address (3000).

SEDn<CR> This will start the program and run
it for the specified number of
passes(n).

COMPANY CONFIDENTIAL

11/10 sTD

~10-

STANDARD ERROR MESSAGE FORMATS

1l-based 10 diagnostics generally use one of three methods for
reporting errors. Some diagnostics, however, use a combination of
the methods. The objective in all cases is the same: to provide
the user with as much information about the problem as possible.

First Method

The first and most common method of reporting errors is "“actual
data" vs "expected data.”™ The following example illustrates this
method.

Test Number 27 Subtest 5 PC = 10244
Source
Actual Data 101 010 010 010 000 011 111 001 101 000 100 111

Expected Data 100 XXX XXX XXX 0X0 1XX XXX XXX XXX XXX XXX 111
Difference 1 1

Test Number and Subtest - The test and subtest numbers provide an
index to the test and subtest description in the diagnostic
summary.

PC - The PC provides an index into the test code which detected
the failure. Refer to the diagnostic listing on microfiche.

Source - The information provided in this section of the error
message indicates the source of the "actual data.™ The source
printed may be a register name, memory location, diagnostic
function, etc.

Actual Data - The actual data is the machine state which occurred
as a result of the test.

Expected Data - The expected data is the mask used by the test to
determine if the actual data is correct. Bits marked by an "X"
are not checked by the test {i.e., they have no significance to
the test and may be in a set (1) or reset (0) state].

Difference - The difference indicates the bits in "actual data"
word which are in error; i.e., these bits are the symptoms which
indicate there is a malfunction in the hardware.

Second Method

The second method used by 11 based 10 diagnostics to report errors
is to print the failing test number and PC and then list the names
of the signals which are in error.

Third Method

The third method of error reporting is to print a text file which
describes the nature of the failure and most probable causes.
this method is most often used when it is difficult or impossible
to determine the exact cause.

COMPANY CONFIDENTIAL

DIACON
-l

GENERAL INFORMATION

Abstract DIACON is the executive controller which is
assembled with each ll-based 10 diagnostic.

Notes Console commands may be executed directly from
DIACON command mode. If a naming conflict
occurs, a period preceding the command will
ensure that the console will act on it.

The sync point for scope loops is generated by
DIACON at A36El on the CPU backplane.

Loading and

Starting

Procedure DIACON is automatically loaded as part of each
1l-based 10 diagnostic.

OPERATIONAL CONTROL

DIACON has two modes of operation. Normal operation (control
switch 1 reset) is transparent to the user. 1In this mode DIACON
runs the diagnostic, performs fault convergence or cataloguing,
reports fault symptoms, loads and runs TIC files and/or isolation
routinee; and prints the most probable cause (board callout). all

without operator intervention.

The second mode of operation (control switch 1 set) enables a set
of commands which permit user intervention. These commands are
described in Table 1. The commands described in Table 2 are only
supported if they are listed by the /H command.

Table 1 DIACON Command Summary

Command Description

. Commands beginning with a period are passed to KLDCP for
execution.

H H<CR>

Print a list of the DIACON commands currently in effect.
HE HE<CR>

Print a list of all commands supported by DIACON.

/H /HLCR>

Prints a list of special switches defined by the
diagnostic programmer. User switches are supported only
if the programmer specified this option. Refer to Table
2.

1C Control C interrupts the execution of the diagnostic.
Control is returned to KLDCP.

HC HC<CR>
The HC command continues from an error halt.
$ SES 0<CR>

Altmode interrupts the execution of the diagnostic for
one KLDCP command line.

TS TS 16<CR>

The TS (Test Start) command starts the diagnostic
beginning at the test number specified.

COMPANY CONFIDENTIAL

DIACON

-2-

Table 1 DIACON Command Summary (Cont})

Command Description

TL TL 14,37<CR>
The TL (Test Loop) command loops between the first test
number and the second test number. A carriage return
instead of a second test number will cause the first
test specified to be looped on. The abort switch (15
will return control to the console.
The TL command can be used to report the first error in
every test. This can be done by setting the print all
errors switch (07) and the abort switch (15) and
specifying a test range of the entire diagnostic,.

PS PS<CR>
The PS (Print Symptoms) command causes DIACON to report
unreported errors or to repeat its last error report.
Calling of isolation routines is also permitted. No
symptom will be printed if the test has been restarted
or no fault has occurred.

Table 2 DIACON User Implemented Command Summary

Command Description

FB FBLCR>
The FB (set Function Breakpoint) command solicits a
diagnostic function, bit, and polarity which, if
detected, will cause a break to occur. Only one
function breakpoint is permitted at a time.

FC FC<CR>
The FC (Function breakpoint Continue) command restores
the PDP-11 registers and continues from the last
function breakpoint.

RB RB(CR>
The RB (Remove Breakpoint) command removes the function
breakpoint.

RG RG<CR>

The RG (print PDP-11 registers) command prints the
contents of RO through R7 saved at the last function
breakpoint. This command is primarily for use in
debugging programs.

COMPANY CONFIDENTIAL

KLDCP

-1~

GENERAL INFORMATION

Code DGQDA BIN

Title DECSYSTEM Diagnostic Console Program

Abstract KLDCP resides in the console front-end processor

and supports KL10 based systems at the following
three levels.

1. At the console level, KLDCP supports KL10 and
PDP-11/40 console functions.

2. At diagnostic run time, KLDCP loads, starts,
and provides subroutine services for ll-based
10 and 10-based 10 diagnostic and utility
routines.

3. At the timesharing level, KLDCP provides an
interface between the CTY or KLINIK terminal
and the TOPS-10 or TOPS-20 monitor.

Note The DTE20 must be in privileged mode.
Loading and

Starting

Procedure Refer to the 11/10 STD module.

OPERATIONAL CONTROL

RLDCP is controlled via commands entered at the CTY or KLINIK
terminal. The commands consist of two or three characters
followed by one or more arguments. The conventions used to
illustrate the KLDCP commands are described in Table 1. The
commands supported by KLDCP are described in Table 2.

Table 1 RKLDCP Command Conventions

Convention Description

adr An octal address

data an octal data field

file.ext Any legal file name from one te six characters
followed by a dot and an extension of zero to three
characters

<CR> Standard command string terminator

$ When used to terminate a P command, the $§ (altmode)
will cause the file specified to be lcaded and
started.

An octal argument

: Separates the address and data fields in examine

and deposit commands

? Precedes error message printouts

C Control C aborts program, returns control to KLDCP
from 10 memory.

T Control T must be used as a terminator for commands
that are to be interpreted by programs running in
the KL10.

X Control X interrupts the program running in 10

memory for one KLDCP command.

; Wwhen a semicolon precedes local comment, the text
following it is only printed on the terminal.
Messages are sent between the CTY and KLINIK
terminel using the semicolons.

COMPANY CONFIDENTIAL

KLDCP
~2-

Table 2 KLDCP Command Summary

Command Description

General Commands

R R MR, EX inst, PL15<CR>
Repeat commands following. Inhibit machine-state
printouts.
RP RP MR, EX inst, PL15<CR>
Repeat commands following. Do not inhibit data
printout.
TD # R MR, EX inst, PL10, TDS, PL5<CR>
Perform specified (#) time delay.
TF # TF O0<KCR>
Set terminal fill count.
0 - 110 baud 3 - 600 baud
1 - 150 baud 4 - 1200 baud
2 - 300 baud 5 - 2400 baud
™ # TW 132<CR>
Set terminal page width (10 min. - 132 max.).
TP # TP 60<CR>

Set terminal page length.

LP LP<CR>
Select line printer for output.

KLINIK Enable/disable KLINIK line

PDP-11 Console Commands

ES ES<CR>
Print present 11 switch register.

ES data ES 103452<CR>
Set 11 switch register to data specified.

E36 adr E36 S5000<CR>
Examine specified 11 address for a 36-bit word.

EE adr EE 3000<CR>
Examine specified 11 word address.

EB adr EB 2001<CR>
Examine specified 11 byte address.

D36 adr:data D36 5000:252525 252525<CR>

Deposit 36-bit data specified into 11 address
specified.

DE adr:data DE 3000:103452<CR>
Deposit 16-bit data into 1l address
specified.

DB adr:data DB 2001:377<CR>
Deposit 8-bit byte into 11 byte address.

ZE adr ,adr ZE 100, 200<CR>
Clear the 11 memory from address to address.

SE adr SE 3000<CR>
Start 11 at address specified.

SED SED<CR>
Start 11 diagnostic.

SED # SED 100<CR>
Start 11 diagnostic and run number (%) of passes.

BP adr BP 3150<CR>
Set a breakpoint at 11 address specified.

COMPANY CONFIDENTIAL

KLDCP

3=

Table 2 KLDCP Command Summary (Cont)

Command

Description

BC

RB

RG

BC<CR>
Continue from breakpoint.

RB<CR>
Remove breakpoint.

RG<CR>
Print registers saved at breakpoint (R0-R7).

PA, Clock,

and, Cache Commands

Pa

cs

Cs %

CR

CE

Cr

CF

PALCR>

Establish a fixed core address for the KL10
communication region. A second PA will make the
communications region relative to the EBR.

CS<CR>
Print clock source code.

CS 1<CR>
Select specified (#) clock source.

0 normal clock
1 speed margin clock

2 external clock %€ Jp ~ /< L0 ‘Q
CR<CR> leavv 2
Print clock rate code.

CR 1<CR>
Select specified (#) clock rate.

normal

divide by 2
divide by 4
divide by 8

W O

CE<CR>
Print current cache enable code.

CE 10<CR>
Select cache enables according to number code
specified (#).

1 (0001) enable cache 3
2 {(0010) enable cache 2
4 (0100) enable cache 1
10 (1000) enable cache 0
(default is 17 - all four caches)

CI<CR>
Executes cache invalidate instruction.

CF<CR>
Executes cache flush instruction.

Microcode CRAM/DRAM Commands

MM adr

MMA adr

MU

MUA adr

SM

MM 150<CR>
Set sync mark (bit 34) at microcode address
specified.

MMA 150<CR> .
Set sync marks from address 0 up to and including
address specified.

MU 150<CR>
Clear sync mark at microcode address specified.

MUA 100<CR>
Clears sync marks from address 0 up to and
including address specified.

SM<CR>
Start 10 microcode running.

COMPANY CONFIDENTIAL

KLDCP

-4~

Table 2 KLDCP Command Summary (Cont)
Command Description
EC adr EC 112<CR>

DC adr:data

RC adr

ED add

DD adr:data

Examine CRAM at address specified.

DC 112:123456 123456 123456 123456 123456 12<CR>
Deposit data specified at CRAM address specified.

RC 123<CR>

Examine CRAM
functions.

address specified using diagnostic

ED 776<CR>
Examine DRAM at address specified.

DD 776:7 6 1 1234<CR>
Deposit data specified at DRAM address specified.

NOTE
The DD command will prompt for odd address data.

Diagnostic Functions

FX FUNCT

FW funct:data

FR funct

FR functl,
functX

FS

FX 11<CR>
Execute diagnostic function specified (00-37).

FW 77:252525 252525<CR>
Write data specified to diagnostic function address
specified (40-77).

FR 100<CR>

Read and print the contents of the
diagnostic function address specified
(100-177) .

FR 100,150<CR>

Read and print the contents of each
diagnostic function beginning at functl
and ending with functX.

FS<CR>
Generate a sync pulse at 4A36El

R/W Major Regi

sters

DA data

XX

DA 123456 654321<CR>
Deposit data specified into AR register.

AR<CR>
Read and print the contents of the
register specified by XX.
XX = ALL - Print all CRAM and registers
AD - adders
ADX - extended adders
ADB - address break
AR - arithmetic reg
ARX - extended AR
BR - buffer reg
BRX - extended BR
ERG - EBus reg
FM - fast memory reg
MQ - multiply/quotient reg
PC - program counter
PI - priority interrupt
VMA - virtual memory address
VMH - VMA held

COMPANY CONFIDENTIAL

KLDCP

-5~

Table 2 KLDCP Command Summary (Cont)}

Command

[Description

KL10 Console Commands

RI

MR

HC

SW

SW data

EM adr

EN

DM adr:data

g
DN data

MZ adr.#

EX inst

EXP inst

EXT inst

SP

RN

SI

SI #

SIP

PL

BU

BU #

RIKCR>
Reinitialize console program.

MR<CR>
Master reset.

HC<CR>
Continue from program halt or error.

SWLCR>
Print present 10 switch register.

SW 123456 654321<CR>
Set the 10 switch register to the data specified.

EM 2000<CR>
Examine 10 core at address specified.

EN<CR>
Examine next sequential 10 address.

DM 2000:123456 654321<CR>
Deposit data specified into 10 address specified.

DN 123456 654321<CR>
Deposit data specified into next sequential 10
address.

MZ 100,50<CR>
Clear the number of address specified by #
beginning at the 10 address specified.

EX 201000 777777<CR>
Execute 36-bit instruction specified.

EXP 201000 777777<CR>
Executes instruction specified and prints machine
state changes at each clock tick.

EXT 201000 777777<CR>
Sets up the instruction specified to be executed by
the TRACON or TRACE program.

SP<CR>
Stop 10, clear run flip-flop.

RN<CR>
Start 10, set run flip-flop.

SIKCR>
Single instruct, push continue button.

ST 5<CR>
Single instruct the specified number (#) of times.

SIP<CR>
Single instruct and print machine state changes.

PL<CR>
Pulse clock one tick.

PL 21<CR>
Pulse clock specified number (#) of ticks.

BU<CR>
Burst clock once.

BU 3<CR>
Burst clock the number (#) of times specified.

COMPANY CONFIDENTIAL

KLDCP

—-6-

Table 2 KLDCP Command Summary (Cont)

Command Description

KL10 CPU Setup Commands

AC BLK AC BLK<CR>
Print current AC block number.

AC BLK # AC BLK 7<CR>
Select AC block specified (#).

PE PE<CR>
Print KL10 parity enable codes.

PE # PE 1<CR>
Enable KL10 parity options according to code
specified (#).

1 (00001) field service probe
2 (00010) DRAM parity

4 (00100)" CRAM parity

10 (01000) FM parity

20 (10000) AR/ARX page fail
(default is 16)

PD PD<CR>
Disable all KL10 parity options.

File and Device Selection Commands

FV FV<CR>
Select files-11 media type.

FE FE<CR>
Select secondary front-end load mode.

DL DL<CR>
Switch to DL-DN87S load mode.

AT AT<CR>
Switch to APT10 load mode.

XX # DT 1<CR>
Select specified device type (XX) and unit number
(#) for input.

XX = DT DECtape
DX diskette

RP RPO4
RX floppy
KL10 Start Commands
ST adr ST 4000<CR>

Start 10 at address specified.

ST ST<CR>
Start 10 at previously supplied address.

STD STD<CR>
Start 10 diagnostic (EPT adr = 440).

STD # STD 100<CR>
Start 10 diagnostic and run the number of passes
specified (¥).

EP ¢ EP 10<CR>
Set EOP (end-of-pass) interval count.

STL STL<CR>
Start 10 loader - DIAMON, MAGMON or D20MON (EPT adr
= 442).

DDT DDT<CR>

Start DDT (EPT adr = 441).

COMPANY CONFIDENTIAL

KLDCP

-7~

Table 2 KLDCP Command Summary (Cont)

Command Description
STM STM<CR>
Start 10 monitor - TOPS-10 or TOPS-20 (EPT adr =
443) .
MC MC<CR>
Continue 10 monitor.
RSX RSX<CR>
Boot RSX-20F from KLAD pack.
BT BT<CR>
Boot system to run diagnostics with KLDCP.
B B<LCR>
Boot system and run all KL10 diagnostics.
LI LI<CR>
Log in.
Lo LO<KCR>
Log out.

File Load and Execute Commands

I file.ext

J file.ext

JR

Jc

P file.ext

LE file.ext

LB file.ext

LR file.ext

LT file.ext

GO

I X2.CCL<KCR>
Execute specified indirect file.

J DHDIAG.CMD<KCR>
Execute specified double indirect file.

JRLCR>
Repeat last J command.

JCLCR>
Continue interrupted double indirect command file.

P DHKAA.A11<CR>
Load specified file.

LE TRACON.A1I<CR>
Load PDP-11 .All file.

LB XTECO.BIN<CR>
Load PDP-11 .BIN file.

LR EBOX.RAM<CR>
Load microcode .RAM file.

LT DFDTE.A10<CR>
Load KL10 .Al0 file.

GO<CR>
Go start program just loaded.

File Verify,

Write, and Rename Commands

V file.ext

CD

CDA

V DHKAA.A11l<CR>
Verify - compare specified file against file in
core.

CD CHAN.TST 700000,100000<CR>

Write the contents of 11 core beginning at the
first address specified and ending at the last
address specified. The core contents will be
written into the file specified on the selected
output device. The file specified must already
exist on the output device. (See KLDCPU ALLOC
command.)

CDA CRASH.A11<CR>

Write entire contents of 11 core to output device
using file name specified. The file must already
exist on the output device. (See KLDCPU ALLGC
command.)

COMPANY CONFIDENTIAL

KLDCP
-8-

Table 2 KLDCP Command Summary (Cont)

Command Description

WF file.ext WF DHKBB.A1l<CR>
Write - copy file specified from DECtape or floppy
to RP04.

RENM RENM file.ext filel.ext<CR>
Rename RP04 file from file.ext to filel.ext.

Miscellaneous Commands

H H<CR>
Print KLDCP help file.

B file.ext H TRACON.ALl1<CR>
Print help file for file specified.

T T<CR>
Print time

C msg C mount the KLAD pack <CR>

Send message specified from console
terminal to KLINIK terminal and vice
versa.

KLDCP ERROR MESSAGE SUMMARY
The following are standard KLDCP error messages listed in
alphanumerical order. The notes are referenced in the text.

NOTES
1. This error message could have
occurred because of a faulty deposit
or examine command. Try a TRACON
deposit or examining command.
TRACON does not use the PI system.

2. These error messages include the
value of the PC at the time of
error. The PC allows the field
engineer to look up the failing code
in the EKLDCP 1listing and determine
what combination of instructions
caused the fault to occur.

3. These error messages are associated
with the APT10 and should never
occur in a system installed in the
field. The APT10 is an automatic

processor tester used by
manufacturing to check out the KL10
CPU.

4. These error messages apply to the
internal format of the program being
loaded. Most likely, these errors
will occur as a result of a bad copy
of the program or a faulty I/0
device.

? ADR - An improper address parameter was used with the command.
It may be that the address is nonexistent or inappropriate for the
device being addressed. For example, an odd starting address
supplied with an SE command would cause an ? ADR error. Check the
address parameter of the command.

? APT10 - An APT10 command was issued but no APT10 was selected.
See Note 3.

? APT10 ENQ - RLDCP made a service request to the APT10 but the
APT10 was unable to perform that service. See Note 3.

COMPANY CONFIDENTIAL

KLDCP

-9-

? BLK # FLOPPY ERR -.A nonexistent block number (#) was used in
addressing the floppy disk.

? BP ERR - KLDCP supports the insertion of up to eight
breakpoints. Should this number be exceeded, the message 2?BP ERR
will be printed.

? BUS TIMEOUT - This error occurs as a result of a Unibus timeout
condition. That is, a slave sync pulse has not occurred within 15
microseconds after a master sync pulse is issued. The cause of
this error depends on the I/O device being serviced at that time.
In most cases, however, the cause will turn ocut to be either the
eleven memory or the DTE20. Note that the 15 microseconds timeout
delay may vary depending on the characteristics of the I/0 devices
connected to the Unibus. Some require the delay to be extended.

? CRSUM ERR: ECT - Load line checksum error occurred. See Note 4.

? CLK ERR AT # - The clock logic in the KL10 will not respond to
single pulsing. See Note 2.

? COMM ERR # CODE - This is a general APT10 error message. More
specific information can be found by looking up the error (%)
code. See Note 3.

? CAN'T LOAD ~ Indicates that the error retry count has been
exceeded and the requested file cannot be loaded.

? CAN'T CONT - This message is associated with breakpoints. The
breakpoint function uses the stack (R7) to store the return
address. If the contents of the stack are changed after a
breakpoint has occurred and the operator attempts to continue from
the breakpoint by typing BC, the message ? CAN'T CONT will be
printed. If it is important to restart the program try an SE
command using the address of the breakpoint plus 1.

? CKSUM ERROR - The binary file just read had a data checksum
error. The problem could be due to a bad copy of the binary file
or a faulty I/0 device. See Note 4.

? DF ERR - A diagnostic function parameter error has been
detected. For example, a FX120 would cause this message because
120 is not within the acceptable range for a diagnostic function
execute. Check the parameters of the diagnostic function.

? DF TIMEOUT AT # -~ A diagnostic function was executed but there
was no response from either the KL10 or DTE20 within a reasonable
period of time (a few microseconds). Check power to the DTE20 and
the clock in the KL10 - the DTE20 d&iagnostic should catch this
problem. See Note 2.

? DIAMON XFER - DIAMON was unable to transfer a file or part of
file to the KL1O.

? DM ERR AT # - KLDCP is unable to deposit in the KL10. Try the
TRACON deposit command because it does not use the PI system. See
Note 2.

? EB PAR - An EBus parity error has occurred. Check the source
and direction of the EBus transfer.

? EM ERR AT $ - This message occurs as a result of an incomplete
examine operation (i.e., the KL10 or DTE20 did not respond
properly to the command). Try the TRACON examine command. TRACON
does not use the PI system. See Note 2.

? EOF - An unexpected End of File was detected. See Note 4.

? P11 FIND - The specified file cannot be found in the files-11
directory. The directory may have been destroyed. Always
write-protect the KLAD Pack.

? F11 LOG BLK - The logical block number given to address files-11
formatted media is nonexistent.

COMPANY CONFIDENTIAL

KLDCP
-10-

2 FATAL - This error message does not pertain to KLDCP. It is a
condition reported to KLDCP by a program (usually a diagnostic),
running in conjunction with KLDCP. This message occurs when such
a program encounters an error condition it was not designed to
handle. For example, if, while running an MBox Diagnostic, the
EBox fails and the MBox diagnostic cannot recover on its own, it
will request KLDCP to print the message "? FATAL." There are
several ways to approach this problem.

1. Check for outstanding MCOs.
2. Try a different copy of the program.
3. Load it from a different I/0 device.

4. Review the diagnostic hierarchies to determine if
preliminary programs should be run.

7 FATAL INTR - Fatal Vector Interrupt. KLDCP uses FLAG MODE to
keep track of I/0 devices. KLDCP does not use the PDP-11 priority
interrupt system. Therefore, any vector interrupt is unexpected
and considered fatal. should this error occur, run the PDP-11
priority interrupt diagnostics.

? FORMAT ERR: ECT - The format of the load line is incorrect. See
Note 4.

? HARD DTA ERROR - A hard (nonrecoverable) error has occurred in
the DECtape subsystem. This is generally a controller— or
transport-type problem.

? HARD FLOPPY ERROR - A hard (nonrecoverable) error has occurred
in the floppy subsystem. A problem of this type usually indicates
a controller or device error.

J CMN - The "common area” of the DRAM data does not match. Check
the common area and retype the command .

? J SIZE - The size of the DRAM J field is too large. Check the
size and retype the command.

? KL10 CLOCK ERROR STOP - This message occurs as a result of an
error stop condition - FM parity, CRAM parity, DRAM parity, or FS
probe. The reason for the error stop is reported along with the
error message.

2 KL10 HALTED - The KL10 executed a halt instruction. Check the
KL10 PC and refer to the program listing.

? KL10 RUNNING ECT - Certain console commands cannot be executed
while the KL10 is running. They are as follows.

Diagnostic functions

Internal EBox resistor reads
Pulsing the clock

Clock rate source changes
Microcode mark and unmark functions
CRAM and DRAM deposits and examines
Cache invalidate and flush
Clearing KL memory

AC block selection

Before executing any of these commands, stop the KL10 by typing
the SP command.

KLDCP CKSUM - The KLDCP code has been changed since the last
checksum operation was performed. If the code was not
deliberately modified to patch around a problem or execute a
slightly different operation, this could mean any of the
following.

1. The last command executed somehow, inadvertently, changed
the code.

2. The console front-end system has developed a problem.

3. The DTE may have a fault that caused data to be written
into the wrong area of 11 core.

COMPANY CONFIDENTIAL

KLDCP

-11-

? LINE TOO LONG - The internal file data line is too long (in
excess of 132 characters). See Note 4.

? LOAD CHR ERR: ECT - The load line identification character is
invalid. See Note 4.

? LP ERR - KLDCP has detected an error status coming from the line
printer.

LPT OFF - The line printer appears to be off-line.

? MZ ERR AT # - This message occurs as a result of an incomplete
MZ deposit operation. Try the TRACON deposit command. It does
not use the PI system. See Note 2.

? NAME EXT - An invalid file name or file extension was used.
? NO LPT - There is no detectable line printer.

? NO MASTER DTE - KLDCP will not run with the DTE20 in restricted
mode. This is because a restricted DTE20 will not allow the
execution of the diagnostic functions. If this error message is
printed, check lhe switch on the DTE20. Cther possibilities are
that the DTE will not respond to the Unibus address, or the DTE
has lost power.

NON-EX FILE - KLDCP could not find the file as specified. Try a
directory command DI.

? PARAM - As soon as a command is entered, KLDCP checks to assure
that the typed-in parameters of the command fall within acceptable
boundaries. If the parameters are outside the boundaries for that
command, the error message "? PARAM" is printed. For example, a
nine (9) entered in an octal field would cause a ? PARAM error
message to be printed. Check the parameters of the line and
retype the command.

? RES INST - There are certain PDP-11 operation codes that are not
implemented by the hardware. These are referred to as reserved
instructions and should never be executed. Execution of a
reserved instruction will cause a trap to address 10 and RLDCP
will print "“? RES INST." This type of error usually indicates
that some portion of the core was destroyed. Try reloading. If
that does not correct the problem, run the PDP-11 processor and
memory diagnostics, including the diagnostic that checks the
reserved instructions.

? RESPONSE - The APT10 has failed to respond within a reasonable
amount of time. See Note 3.

? REV DTA ERROR - KLDCP allows for three reversals in tape motion
during a search. If that number is exceeded, the error message ?
REV DTA ERROR is printed.

? RPO4 ERROR # CODE - This error message occurs as a result of an
RP04 error. The number code corresponds to one of the following:

1. Unit number incorrect

2. Drive not available

3. Drive unit error 1

4. Drive unit error 2

5. Drive unit error 3

6. Home block read error

7. Not home block

10. Incorrect file system name
11. No index file

13. Reading past EOF

14. Blk size position error

15. Read error

16. Attempt to change allocation
17. Buffer size

20. Current position

21. Insufficient allocation for write
22. Directory rewrite error

23. Data block write failure

24. End of file

25. Rad50 conversion error

COMPANY CONFIDENTIAL

KLDCP

-12-

? SEL ERR - KLDCP <annot select the requested AC block. KLDCP
uses the AR data path and diagnostic functions to select the AC
block. A select error usually indicates a faulty data path or
diagnostic function.

? SOFT DTA ERROR - This message indicates that a soft (recover-
able) data error occurred on the DECtape. This is usually a media
problem.

? ST UNFLO - Stack underflow. This error occurs any time the
software attempts to POP more entries off the stack than were
originally pushed onto it. This error indicates that the KLDCP
code was destroyed. Reload KLDCP. If that doesn't correct the
problem, run the PDP-11 Processor and Memory Diagnostics.

? UCODE HUNG - The microcode is not in the halt loop. This may
indicate that the KL10 is not set up properly to execute the
command (i.e., the ucode is not loaded) or that the ucode did not
return to the halt loop. It may be hung up waiting for a memory
response.

? - KLDCP does not recognize the command as typed. Check for
proper format and retype the command.

? 10 CLK OP - The KL10 uses the clock in the PDP-11 to keep track
of time. This error message indicates that the PDP-1l1 cannot
notify the KL10 that a clock tick has occurred.

? 10 CMD ERR - The program running in the KL10 has issued an
illegal command to KLDCP.

? 10 SW - KLDCP is unable to notify the KL10 of a change in the
data switches. See Note 1.

? 10 TTI - KLDCP is unable to send a teletype character to the
KL10. See Note 1.

? 11 PARITY - An 1l parity error has been detected. Run 11 memory
NPR device and DTE20 diagnostics.

COMPANY CONFIDENTIAL

KLDCPU

-1-
GENERAL INFORMATION

Code DGQDB.All

Title DECSYSTEM Diagnostic Console Utility Program
Abstract KLDCPU is a console utility program which resides

in the lower half of 11/40 core and extends the
KLDCP command set to include file maintenance
service. The utility is capable of performing
operations on DECtape, floppy and KXLAD packs.
The wutility has single file manipulations
capability and also facilities for handling
groups of files.

Notes 1. KLDCP will perform a validity check of the
utility portion and will request that the
operator load KLDCPU.All if it is not
resident when any wutility command 1is
performed.

2. Any command which is not one of the utility
commands is automatically passed to KLDCP for
processing. This allows all the KLDCP
commands to be performed from the wutility
command process.

3. The SAVRSX and KLADBT commands are used to
change the hardware boot on the disk so that
KLDCP is booted when the disk button is
pushed.

RSX-20F must have been installed on the
KLAD-10 disk so that the proper exchange
takes place.

RSX-20F is then booted when required by the
KLDCP RSX command. This command reads the
RSX-20F boot block from the RSXBT.ZRO file,
installs it in memory starting at zero and
starts it as though a switch register disk
boot were done.

4. Wild characters - the asterisk (*) and
question mark (?) - may be used in file name
construction.

Loading and

Starting

Procedure Standard (Refer to the 11/10 STD module.)
Control

Switches None

OPERATIONAL CONTROL
KLDCPU commmands may be entered either directly via the CTY or
KLINIK link or indirectly via a control file.

The conventions used to illustrate KLDCPU commands are described
in Table 1. KLDCPU switches which may be used to modify the
commands are described in Table 2. The commands supported by
KLDCPU are summarized in Table 3.

COMPANY CONFIDENTIAL

KLDCPU

-2-

Table 1 KLDCPU Command Conventions

Convention

Description

TC

Tz

RXn:
DXn:

RPn:

Contro} C returns to command mode, aborting the
operation in progress.

Control Z exits TEXT mode.

Delimits device specification.

Delimits input and output file specifications.
DECtape unit n.

Floppy unit n.

Floppy unit n.

RP04/06 unit n. The RP0O4/RP06 disk is a read-only
device, as the file structure is maintained via the
TOPS-10 or TOPS-20 systems. The disk may be either
the KLAD-10 or the KLAD-20 format; selection of the

disk will automatically select the proper
processing operations.

Table 2 KLDCPU Software Switch Summary

Switch

Description

/R

/N

/H

DIR DTO:/F<CR>
Print the directory in abbreviated format.

FILE DTO:DT1:FILE.EXT/N<CR>
Do not list each file name as it is transferred.

/HLCR>
Print the help message.

Table 3 KLDCPU Command Summary

Command

Cross
Description Ref.

REMOTE

RI

BOOT

SVBOOT

KLADBT

SAVRSX

DIR

REMOTE<CR>
Select remote terminal. 1

RI<KCR>
Reinitialize console (KLDCP). 2

BOOT RX0:<CR>
Load and start the bootstrap loader 3
from the device specified.

SVBOOT DTO:=RP0:KLDTBT.BIN<KCR>
Create the specified boot file and 4
write it to the boot block of the
specified output device.

KLADBT<KCR>
Write KLADBT.ZRO to the boot block 5
of the KLAD-10 pack.

SAVRSX<KCR>
Transfer the boot block of a KLAD-10 6
disk to the file RSXBT.ZRO.

DIR DTO:<CR>
Print the directory for the specified 7
device.

COMPANY CONFIDENTIAL

-3-

mable 3 KLDCPU Command Summary (Cont)

KLDCPU

Command

Description

Cross
Ref.

FID

RENAME

DEL

ZERO

ASG

DATE

ALLOC

PIP

FILE

PILET

DTCOPY

RXCOPY

TAPT

TEXT

FID RP0:DGMMA.*<CR>
Print the specified files, file
identification line.

RENAME RXO:DGKAA.A11=RXO:DGKAA.OLD(CR)
Rename the specified file to a new
name.

DEL RP0:DHKAA.A11<CR>
Delete the specified file from the
device specified.

ZERO DT1:<CR>
Clear the directory of the device
specified.

ASG RPO:=MASTER:<CR>

Assign the specified logical name to
the physical device specified.
Acceptable logical names are: iN, OUT,
MASTER and NEW.

DATE: 31-0CT-77<CR>
Change the date used by KLDCPU
format = DD-MMM-YY.

ALLOC DTO:CRASH.DMP/100<CR>
Allocate an empty file {having 100
blocks) for future use on DECtape
or floppy disk.

PIP RX0:file.IN=DTO:£file,OUT<CR>
Transfer the file specified from the
input device to the output device.

FILE DTO0:=DT1:*.A11<CR>
Perform bulk file transfers between
the input and output devices.

FILET DTO:*.*<CR>
Test files specified for error.

DTCOPY<CR>
Copy all the files from one DECtape
to a second DECtape.

RXCOPY<CR>
Copy all the files from one floppy
disk to a second floppy disk.

TAPT DHKCA.A11<CR>
Transfer the file specified from the
APT10 to the KLAD-10 disk pack.

TEXT RP0:CPU.CCL<CR>

Build an ASCII command file and write
it to the device specified using the
filename and extension specified.

DO CPU.CCL<CR>
Execute the specified command file.

10

11

12

13

14

15

16

17

18

19

20

21

22

COMPANY CONFIDENTIAL

KLDCPU
—4-

COMMAND DESCRIPTIONS
This section describes the commands summarized in Table 3.

1. REMOTE<CR> - The REMOTE command selects remote terminal

operation over the APT10 communication link.

2. RIKCR> - The RI command is passed to KLDCP where it
reinitializes the diagnostic console and returns control

to KLDCP.

3. BOOT RX0:<CR> ~ The BOOT command causes block 0 of the
device to be read into memory starting at location 0.

Block 0 is assumed to contain a bootstrap loader.

utility then transfers control to the boot just read in

at location 0.

4. SVBOOT DT0:=RPO:KLDTBT.BINKCR> - The SVBOOT command reads
the specified binary file (KLDTBT.BIN) and writes it out
to the specified output device (DTO0) in the boot block
and to the core image boot blocks. (The file specified

must have a bootstrap format.)

5. KLADBT<KCR> - The KLADBT command copies the KLDCP
bootstrap loader file (KLADBT.BRO) to block 0, cylinder 0

of the KLAD-10 pack.

6. SAVRSX<CR> - The SAVRSX command copies block 0 cylinder 0

of the KLAD-10 to the file RSXBT.ZRO.

7. DIR DTO:<CR> - The DIR command gives a directory of the
requested device (DTO0). This command will give the
entire directory or a partial directory of requested
files via use of the wild character or asterisk

constructions.
DIR RPO:<CR> Prints a full directory.
DIR RPO:*,BIN<CR> Prints a directory of all files

with a BIN extension.

DIR RPO:A7222?,%<CR> Prints a directory of all files.
Those first 2 characters are A7,

8. FID RPO:DGMMA.*<CR> - The FID command prints a file
identification 1line directory of the requested device
(RPO). The file identification line is the first line of

an ASCIIzed file which provides internal

identification (i.e., file name, file version and
creation date}. The FID command provides the same wild
character and asterisk constructions as does the DIR

command.

9. RENAME RX0:file.new=RX0:file.old<CR> - The RENAME command
renames an old file (file.0old) to a new file name

(file.new) .

10. DEL DTO:DHEAA.A11<CR> - The DEL command causes the file
specified (DHKAA.All) to be deleted from the directory of

the device specified (DTO) .

11. 2ERO DT1:<CR> - The ZERO command clears the directory of

the device specified (DT1) .

12. ASG RP0:=MASTER:<CR> - The ASG command allows the use of
logical names in command files. Allowed logical names
are: IN, OUT, MASTER, and NEW. A command file may use a
logical name such as "MASTER" instead of specifying a
physical device. Then, before executing the command file
the user can assign the desired physical device to the
logical name. This permits the use of any available

unit.

COMPANY CONFIDENTIAL

i3.

14,

15.

16.

17.

18.
19.
20.

21.

22.

KLDCPU

-5-

DATE: 31-OCT-77<CR> - The DATE command allows changing
the date used by the utility operations. Type the date
according to the following format.

DATE: DD-MMM-YY

DD is the day of the month.

MMM is the month: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC.

YY is the year.

When transferring files to a new medium the original
file's date is used unless the input device is the disk,
in which case the typed-in date is used.

ALLOC DTO:CRASH.DMP/100<CR> - The ALLOC command allows an
empty file (CRASH.DMP) to be allocated on either the
DECtape or floppy for subsequent use by the CORE DUMP
RLDCP file generation command.

The size is the number of blocks required. If the
"/SIZE™ is not given in the command, the size will be
specifically asked for.

PIP RXO:file.IN=DTO:file.out<CR> - The PIP command is
used to transfer a file (file.out) from one device (DT0)
to another device (RX0). The device types may be

different and the file name may be changed; however,
asterisk and wild character constructions may not be
used. The output file name must not exist on the output
device.

FILE DTQ:=DT1:*,Al11<CR> - The FILE command is used to do
bulk transfers (i.e., all files on DTl with an .All
extension) from one device to another device. The FILE
command is similar to the PIP command except that it can
utilize the asterisk and wild character constructions.
If a file of the same name already exists on the output
device, the file command will delete the old file.

FILET DTO:*.*<CR> - The FILET command tests all files
named by reading them into a buffer to make certain that
no device errors occur. Any device errors are listed as
they occur.

DTCOPY - To be supplied.
RXCOPY - To be supplied.
TAPT - To be supplied.

TEXT RPO:CPU.CCLKCR> - The utility includes the facility
to execute a sequence of commands contained in ASCII text
file. This text file may be created via the TEXT
command .

When the TEXT command is issued the named output file is
opened for output and the operator is prompted with a
guotation mark (") to indicate readiness to accept text.
Any normal ASCII command character may be placed into the
file.

RUBOUT can be used to delete characters on the current
line (but not on preceding lines).

CONTROL C (TC) will abort the text operation.

CONTROL 2z (T2) is the standard terminator for input. It
will close out the text file and return to command mode.

DO CPU.CCLKCR> - The DO command is used to cause
execution of a control file. The file is executed line
by line and may contain either utility commands or KLDCP
commands. Executable files are created via the TEXT
command or via any of the text editors.

COMPANY CONFIDENTIAL

KLDCPU

KLDCPU ERROR MESSAGE SUMMARY
The following is an alphabetical listing of KLDCPU error messages.

DELERR - A bit map error occurred during a delete operation.

DELOLD —~ Delete the old file before issuing a command which would
create a file with the same name.

DEVERR - A device error occurred on either the input or output
device. Check that the output device is write-enabled.

DEVFUL - The output device is full. There is no more file storage
room available.

DIRERR - An invalid file name exists in the device directory.

INVCMD - The command issued is invalid. Examine the command for
proper format and retype.

INVDEV - The device specified in a command is invalid. Check the
command for proper device mnemonic and retype. If the error
occurred as a result of a command file, check for logical device
assignments.

INVNAM - Invalid name. No special characters are allowed (A
through 2 and 0 through 9 only}. This error will also occur if
asterisks or wild character constructions are used with a command
which does not support them (i.e., PIP). Check the command file
name field.

INVSW - An invalid switch was used in the command string. Refer
to Table 2.

NEXFIL - The file specified in the command string does not exist.
Check the directory of the device.

COMPANY CONFIDENTIAL

MEMCON

-1-

GENERAL INFORMATION

Code
Title

Abstract

DGQFB.All
KL10 Diagnostic Memory Boot Utility

This program provides all of the functions
necessary to configure the KL10 memory system
when running in the front-end resident, KL10
diagnostic environment. This program runs in the
PDP~11 under KLDCP. KL10 memory types handled
include external core memory (DMA20), internal
core memory (MA20/MB20), and MOS memory (MF20).
All reasonable mixtures of these devices can be
handled together.

The memory boot procedure goes in three basic
steps.

1. Determining physical resources - RESDET -
Determining physical resources, or "RESDET"
for short, is the longest and most involved
part of the memory boot procedure. Different
procedures occur for different memory types,
but basically the program determines what
physical memory it has to work with. Listed
below are the things the program must do for
each memory class.

Internal Core Memory - MA20 and MB20
Controllers

Find out which controllers, if any, exist.
Find out which storage modules exist on each
controller. Determine the set of legal
starting addresses and the interleave mode
for a controller or controller pair.

External Core Memory -~ DMA20 Controller

Find out if the DMA20 exists. Determine its
address response(s) and the size of the
response(s). Determine the legal interleave
modes available. The address response{s) of
external memory are fixed and the program
must work around whatever it is.

MOS Memory - MF20 Controllers

This is very different from the Core
memories. In addition to finding out what
exists the program must also find out the
state of the controllers. Because MOS RAMs
fail on a regular basis there is a lot of
hardware in the controllers to compensate for
these failures. The software closely
controls the hardware and it is therefore
important that the program knows what has
already been done.

I1f the controller is already configured (it
is at software state 2 or 3), then the
program treats it as if the address response
could not be changed. In this sense it is
treated like external core. However, if the
program finds some bad hardware, that
hardware is eliminated.

If the controller is not configured but is
otherwise initialized (it is at software
state 1), the program merely records what
storage it has to work with.

If the controller has not been initialized at
all (is at software state 0), then the
program has a considerable amount of
initialization to do. The double bit error
(DBE) scan is by far the most time consuming
part of the memory boot process, taking about
22 seconds per 256K of MOS RAM. Fortunately,
once this is done the controller is at
software state 1 and the DBE scan does not
have to be done again until the next power
fail. MOS storage blocks found to be
irreparably bad are eliminated.

COMPANY CONFIDENTIAL

MEMCON
-2-

2, Determination of Logical Configuration -
FITMEM - In this phase the program determines
which configurable resources {MA20, MB20, and
software state 1 MF20) will go where in the
holes in the address space. Hole locations
and sizes are determined by the response of
the external core memory, preconfigured
(software state 2) MF20 memory, and the
absolute bounds of the memory space. This
process does not involve the hardware at all;
it is purely computational.

The philosophy behind this algorithm is to
maximize storage even at the cost of some
interleave factor., No memory is ever thrown
away except for certain impossible-
to-configure conditions which might arise
with MA20s or MB20s.

3. Configuration of the Memory - CONFIG - Here
the program takes the logical configuration
tables and sets up the hardware to match.
After this phase is completed, the KL10
memory system is ready for use.

Notes Memory controllers are assumed to have passed
their respective diagnostics (DGKBB/DHKBB, DHKBF,
and/or DHKBG).

It is assumed that the KL10 processor is working
and that some valid microcode is already loaded.

There must be master oscillator if MOS memory
exists.

When MEMCON is started it will do a start
microcode in order to make sure that microcode is
loaded and running. Because of this, any special
state which may have existed in the CPU will be

lost.
Loading and
Starting
Procedure Standard (Refer to the 11/10 STD module.)
Control
Switches None

OPERATIONAL CONTROL

Once started, MEMCON will prompt with a > (TAB). The user may
then enter commands. There are two classes of commands: those
involved with configuring the memory system (Table 1) and those
which perform functions ancillary to using the memory system
{Table 2). KLDCP commands may be entered directly if no naming
conflict occurs. Preceding a command with a period ensures that
KLDCP will process it. Example: ".RP0O" selects RP04/RP06 drive 0
for KLDCP, whereas "RPO"™ says to report the physical resources.

ERROR MESSAGE SUMMARY
There are no error messages uniqgue to MEMCON.

Table 1 MEMCON Memory Configuration Command Summary

Command Description

cM CM<CR> or CMF<CR> etc.

Determine, report, and set the configuration. Then
clear the memory boot. Memory is now configured
and ready for use. Aall physical resource data has
been cleared out. This command will automatically
do the physical resource determination if it has
not already been done, and is therefore the only
essential command for configuring memory. See
switches.

DL DL<CR>

Determine logical configuration, report it, but do
not set it. This command is useful for seeing what
the configuration would be if it were set. See
switches.

COMPANY CONFIDENTIAL

MEMCON

~3-
Table 1 MEMCON Memory Configuration Command Summary (Cont)

Command Description

DP DP<LCR>
Determine the physical resources and report them.
This forces the memory boot to start from scratch.
Time already spent on MF20 DBE scan is not lost
providing the previous scan ran to completion. See
switches.

Switches The switches are the same for DP, DL, and CM
commands. Typing no switch will use the switches
typed for the previous DP, DL, or CM command. If
there was no previous DP, DL, or CM command, then
the defaults are as shown below. The switches may
be in any order.

0,1,2, or 4 Force MA20/MB20 interleave unless memory loss would
result. Force DMA20 bus mode if legal.
(default) gives optimal results.

F Force MF20 address reconfigure. In this mode

preconfigured MF20s are always deconfigured before
the memory resource fit is done. This is not the
default.
While the "F" parameter to the CM command is not
the default, most of the time while in the
diagnostic environment the user will want to use
it. The recommended minimum command is therefore
"CMF".

K Keep bad MF20 blocks. Normally MF20 blocks which
are irreparably bad to the memory boot can still be
used partially by monitor if it marks certain pages
as unusable. After a brief power fail, monitor
should still have this bad page data intact;
therefore it is safe to tell the memory boot to
keep bad MF20 blocks. This is not the default.
Ignored if "F" switch given,

R Reverse configuration where possible. This is
useful for shuffling memory around for diagnostic
reasons. It is not normally used otherwise. The
“F" switch should be used if this switch is given.

Sn Substitute MF20 spare bits for bit n (decimal) in
all MF20s. This is useful for fixing MOS array
boards. The number n must be followed by a space
or <CR>., No parameter says to force no swaps. The
value of n is 0-35 for data bits, and is 36-42 for
ECC 32, 16, 8, 4, 2, 1, and parity.

Table 2 MEMCON Ancillary Command Summary

Command Description

Tc Exit back to KLDCP.

Tz Exit back to KLDCP.

co CO<KCR>
Clear all function 0 error flags. Use before first
DP, DL, or CM command and after diagnostics which
intentionally cause memory errors,

ba DA<CR>
Dump PC, VMA, previous and current AC block
numbers, and the contents of AC blocks 0-6. Very
useful data to accompany a diagnostic bug report.
The code to do this command resides in the overlay
DBGOVL.All.

COMPANY CONFIDENTIAL

MEMCON

-4-

Table 2 MEMCON Ancillary Command Summary (Cont)

Command

Description

DR

Ic

Kp

MO

PD

RI

RP

SD

SR

TC

DRx n<CR>

Dump the content of the MF20 logic control RAM "x"
to the console terminal. The meaning of x is "A"
for address response RAM, "B" for bit substitution
RAM, "E" for fixed value logic RAM, or "T" for the
timing RAM. Note that if refresh is running it may
interfere slightly with a timing RAM dump. The
value of n is the MF20 controller number in the
range 10-17.

IC n<CR>

Porce an initialization of the specified MF20 n.
This performs the minimum initialization required
to talk to the MF20. The address response RAM is
set up so that address bits 18-21 determine which
block is being used.

KP cl, c2 sl, s2<CR>

Kill physical resources sl through s2 in memory
controllers cl through c2. This command is used
after the DP command. Its purpose is to get rid of
storage resources that are not to be used: ({i.e.,
they do not work). sl and s2 are storage module
numbers for MA20s and MB20s, and octal block
numbers (0-13) for MF20s.

MO n<CR>

Select master oscillator freqguency source, where n:
=3 for normal (30 MHz); n = 2 for slow (25 MHz,
which is for extending a board); n = 1 for fast (31
MHz, for margining the system); n = 0 is external
oscillator. Do not use 0 unless a running VFO has
been physically attached to the external oscillator
input. Meaningless if there is no master
oscillator.

PD<CR>

Enter a program patching dialogue where the address
and content of that address are typed, and then the
value the user types in goes to that address.
Typing <CR> causes the data to remain the same.
Typing <ESC> causes the patcher to ask for a new
address. Typing <ESC> to the address enquiry
causes exit. The first address used by the patcher
is the first free location. The first free pointer
is automatically updated as required. The code to
do this command resides in the overlay DBGOVL.All.

RI<KCR>

Reinitialize the memory boot. The various switches
and control flags are put back the way they were
when the program was first loaded.

RP<CR>
Report physical resources. This command does not
do anything other than report the content of the
physical resource tables. It is useful after using
the KP command to find out if an error has been
made.

SD w<CR>

Take the 36-bit word "w" and use it as the "to MEM”"
word of an SBUS DIAG cycle and type the word sent
back "from MEM". If the SBDIAG instruction fails
then nothing is typed.

SR<CR>
Do an SBUS reset.

TC<CR>

Test configuration. This must only be done after
the CM command. The test consists of reading words
20-23 on every 16K boundary. The response of all
NXMs or no NXMs is then compared to what the
program thinks it should have at a given address.

COMPANY CONFIDENTIAL

TRACON

-1-

GENERAL INFORMATION

Code DGQFA.A1l (KL10-PA) and DHQFA.All(KLiO-PV)

Title TRACON-KL10 Diagnostic Console Signal Tracer
Abstract TRACON resides in the lower half of the 11/40

core. It extends the console command set of KLDCP
and aids in troubleshooting KL10 central
processor, channel and memory faults. TRACON
commands primarily control the CPU clock, and
detect and display changes in registers and
control signals.

Notes 1. TRACON commands prompt for missing arguments.
Responding to a prompt with an altmode (§)
will abort the command.

2. KLDCP commands may be executed from TRACON by
preceding the command with a period (.).

3. System standard or diagnostic microcode must
be loaded in the KL10.

Loading and

Starting

Procedure Standard (Refer to the 11/10 STD module.)
Control

Switches None

OPERATIONAL CONTROL
TRACON commands may be entered directly from the CTY or KLINIK
1ink or indirectly from a control file.

TRACON commands are divided into two groups: control functions
which are described in Tables 1 and 2, and extension commands
which are described in Table 3.

Control functions affect TRACON's mode of operation and should not
be used in control files. Extension commands are intended for
general use and may be included in control files.

ERROR MESSAGE SUMMARY
There are no error messages unique to TRACON.

COMPANY CONFIDENTIAL

TRACON

-2~

Table 1 TRACON Control Function Summary

Cross

Command Description Ref.
A ALCR>

Auto insert - automatically builds an internal 1

command file as commands are typed.
E E<CR>

Edit or create a command buffer. Refer to 2

Table 2.
ML ML<CR>

Mark loop "starting point" 3
FB PB 162,31,1<CR>

Set function breakpoint at the diagnostic 4

function, bit, and polarity specified.
FC FC<CR>

Function break continue 4
CB CB<CR>

Clear function breakpoint 4
RG RG<CR>

Print function breakpoint registers 4

(RO through R7)
KA KA<CR>

Kill (terminate) auto insert; also resets 5

loop marker to line 1
T T<CR>

Type contents of command buffer 6
X X<CR>

Execute command buffer 7
L L<CR>

Loop on command file 8
M M<CR>

Multi-burst, step, and trace the command 9

buffer
DC DC CHAN.TST<CR>

Write command buffer to an existing file 10
LC LC CHAN.TST<CR>

Load specified control file 11
K K<CR>

Kill command buffer (confirm with a K) 12
H H<CR>

Print command summary 13
/ /<CR>

Enter switch dialogue 14

COMPANY CONFIDENTIAL

TRACON

~3-

Table 2 TRACON Edit Command Summary

Cross

Command Description Ref.
E E<CR>

Enter lines into buffer. 15
D # D 5<CR>

Delete specified line ($) from command 16

buffer.
I # text I 7 SET CHAN 3<CR>

Insert text before specified line number (#). 17
R § text R 14 SC 2, STARTKCR>

Replace text at specified line number. 18
K K<CR>

Kill the command buffer (confirm with a K). 19
T T<CR>

Type the contents of the buffer. 20
Tc 1C

CTRL C - Exit from edit mode; return to 21

TRACON command mode.

COMPANY CONFIDENTIAL

TRACON
-4

Table 3 TRACON Extension Command Summary

Command Description

Cross
Ref.

SET mode SET EBR 3,CHAN 1<CR>
Set: CACHE EN, PMA, EBR # and/or CHAN §.

CLR mode CLR CACHE,ERB<CR>
Clear: CACHE EN, PMA, and/or CHAN #.

RM RM<CR>
Reset MBox (force halt loop and set cache
look and load if cache is enabled).

CE chan,ccw | CE 2,100<CR>
Configure EPT for channel specified.

SC chan,cmd | SC 1,STA,RES<CR>
Simulate CBus command for channel and
command or for EBus data specified.

Commands are: START, RESET, CTOM, DONE,
STORE and SLOW.

QC chan,cmd | QC 1,STA,RES<CR>
Queue CBus command for memory trace.

Tl T1<CR>
Trace and print one memory reference
{used with the QC command) .

™ TM<CR>
Trace and print all memory references
(used with the QC command) .

CH CH<CR>
Print default channel number.

NC NC<CR>
Next channel (increment the default channel
number by 1).

cu CU<CR>
Cache refill load (standard).

(ol 3 C 3<CR>
Cache refill load (use only Cache
specified: 0, 1, 2, or 3).

Ic IC<KCR>
Invalidate Cache (use after refill load).

vC VC<CR>
Validate core from cache.

I I<CR>
Initialize the tick counter to 0.

B # B 29<CR>
Burst specified number (#) of clock ticks
and report change. .

C C<CR>
Continue advancing clock.

F # F 14<CR>
Find the clock tick # specified.

G G<CR>
Go -~ reset tick counter, stop the clock
and print machine state changes.

s S<CR>
Single-pulse the clock and report machine
state changes.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

COMPANY CONFIDENTIAL

TRACON
-5-

Table 3 TRACON Extension Command Summary {Cont)

Cross
Command Description Ref.
P P<CR>
Print EBus activity summary since last 42
P or D command.
R R<CR>
Read and print machine state changes 43
since they were last reported.
D D<CR>
Print the current state of the machine. 44
W filename W CRASH<KCR>
Write a crash dump - must specify an 45
existing file.
D filename D CRASHKCR>
Print the machine state saved by the 46

EM addr

EN or
EM

D addr:data| D 2000:254000,020000<CR>

DN:data

EX inst.

W command.

EM 2000<CR>
Examine KL10 address (does not use PI 47
system and the KL10 must be halted).

EN<CR>
EM:<CR>
Examine next sequential KL10 address. 47

Deposit data into RL10 address {(does not 47
use PI system and the KL10 must be halted).

DN:254000,001472<CR>
Deposit data into next sequential KL10 47
address.

EX 201000,777777<CR>
Execute KL10 instruction. 48

TRACON COMMAND DESCRIPTION
This section describes in detail each of the commands summarized
in Table 1, Table 2, and Table 3.

1.

A<CR> - The A command opens the command buffer for input.
aAll commands typed following an A command are entered
into the buffer until a KA command is typed. The
commands in the buffer are executed via the X, L or M
command ., The buffer may be saved for future reference
with the DC command.

NOTES
1. KLDCP commands may be used in the
command buffer.

2. Commands are automatically parsed
before they are entered in the
command buffer. For this reason it
may be necessary to reconstruct a
command for inspection.

E<CR> - The E command enters edit mode. The editor may
be used to create or edit the command buffer. Edit
commands are summarized in Table 2.

ML<KCR> - The Mark Loop command requests a line number for
use with the L command.

COMPANY CONFIDENTIAL

TRACON

-6~

Function Breakpoint Command - A function breakpoint is a
mechanism which permits detection of an event (signal) in
the KL10. The clock will be stopped when the leading
edge of the event is detected. The event is specified by
entering a diagnostic function code, a bit number and a 1
or 0 to select the polarity desired. Once set, the KL10
clock will be stopped and the user notified each time the
signal specified transitions to the state selected. Only
one function breakpoint may be set at a time. Since this
mechanism depends on single-pulsing the clock through the
function being performed, only extension commands are
affected.

FB 166,30,1<CR> - Set a breakpoint for diagnostic
function 166 bit 30 on a 1 (MEMRQ 1 H). The clock will
be stopped on the leading edge of MEMRQ 1 H. Other
commands can now be used to read the state of the
machine.

FC<CR> ~- Continue the command execution until either the
next detection of the break condition, the end of the
current extension command, or the end of the command
buffer.

CBCCR> - Clear the function break condition set by the FB
command .

RG<CR> —- Print the contents of the function break
registers RO through R7.

RA<KCR> - The KA command performs two functions: it
terminates auto insert (A), and it resets the loop marker
(LM) to line 1.

TCR> - The T command prints the contents of the command
buffer.

NOTE
The commands in the buffer are
automatically parsed. Therefore the
commands may be printed in a slightly
different format.

X<CR> = The X command executes the contents of the
command buffer once.

L<CR> ~ The L command repeatedly executes (loops on) the
commands in the buffer. After the first execution of the
buffer, execution begins at the line specified by the
loop marker (ML). If no ML command has been executed the
loop marker defaults to line 1.

M<CR> ~ The M command:

a. clears the tick counter

b. burst-executes the command buffer

c. prints the state of the machine, and
d. increments the tick counter by 1.

Steps b through d are repeated until the user interrupts
by typing an altmode ($), or until the EBox enters the
halt 1loop, or until no change in machine state is
detected for a prespecified number of ticks (refer to
TRACON Switches Number 14). The M command, in effect,
allows the command buffer to be executed at full speed
while printing the machine state at each tick.

NOTES
1. The first commands in the buffer must
initialize the CPU to an exact known

state. Otherwise, the reported
changes will be garbaged beyond
usefulness.

2. The C command may be used to continue
the trace if it was stopped with an
altmode ($).

COMPANY CONFIDENTIAL

10.

11.

12,

13.

14.

15.

TRACON

-7-

DC CHAN.TST<CR> - The DC command writes the contents of
the command buffer to the specified file (CHAN.TST). The
file must already exist on the output device.

NOTE
A temporary file can be generated using
the KLDCPU ALLOC command.

LC CHAN.TST<CR> -~ The LC command loads the specified
control file (CHAN.TST) into the command area of core.

K<KCR> - The K command clears the command buffer. TRACON
requires the K command be confirmed by typing a second K.

H<CR> - The H command prints a summary of TRACON
commands .

/<CR> - The / command allows the user to specify groups
of registers and signals to be traced. Each group is
divided into subgroups which may be turned on or off.
The groups are as follows.

Signals

EBOX - PI, MCL, CLK, DIA, CTL, CON, MTR, SCD, VMA, CRA
MBOX - CSH, CHX, MBC, MBX, MBZ

CHAN - CCL, CH, CCW, CRC

CYCLIC - Any signals which change frequently. The
current list is as follows.

EBUS CLK

SBUS CLK

EBOX SOURCE

SYNC

EBOX CLK

A CHANGE COMING A
B CHANGE COMING
PHASE CHANGE COMING

Registers

MICRO DRAM ABJP, CRA LOC, CR ADR, .SBR RET, CRAM NN,
DISP, IR, AC, TRAP MIX

DATA/ADDR PIH, PIO, PI GEN, VMAH OR PC, CLK BURST, FM
BLOCK & ADR, AR, ARX, BR, BRX, AD, ADX, FM,
MQ, SC, FE, VMA, VMAH, ADR BRK, PC, EBUS REG

METER CACHE COUNT, EBOX COUNT, INTERVAL, PERF COUNT,
PERIOD, TIME

CHAN ADDR CCW CHA, CH BUF ADR

The NO CHANGE LIMIT may also be altered with the /
command. The limit is used to stop a trace after a
specified number of clock ticks with no observed changes
in machine state. The current limit is output and the
user may enter a new number or a carriage return if the
limit is satisfactory.

1E<XCR> - Enters lines into buffer. The user types E<CR>
and the editor outputs a line number at the left margin.
After an initial load or an editor K command, the first
number output will be 1. If the buffer contains
information, the next free line's number 1is output.
After each number, the user enters any extension or
console command. Prompting is enabled. No validity
checking occurs for console commands. To terminate
entry, type an altmode following the line number output.

COMPANY CONFIDENTIAL

TRACON

16.

17.

i8.

19.

20.
21.

22,

23.

24.

-8~

Example:

* E<CR>

1E<CR>

1 RM<CR> ;jReset MBox

2 SET EBR 3<CR> ;Set executive base
;register to 3

3 CE 0,200000 100<CR> ;Condition channel 0 EPT

4 .DM 100:0<KCR> ;Put a CHLT in command list

5 QC 0.START/RESET<CR> ;Start channel 0

6 TM<CR> ;Watch it fetch a halt

7 $ <ALTMODE > ;Exit-enter command mode

!D # - Deletes the line # .and renumbers all the lines

which follow it. (Linre numbers are not "sticky;" if
needed, use the T command to type all line numbers and
their current contents.)

!T § <TEXT> - Insert text before line number (). All
lines starting from 4 are moved down and the text
inserted in the resulting hole. As in the D command,
lines are renumbered.

IR # <TEXT> - Replace text at line # with new text.

K - Kill the buffer. Resets the line count to 0 and
recovers the buffer storage space. Confirm with K.

IT - Type out the buffer. Types line numbers and text.
ITC - Exit from editor mode to TRACON command mode.

SET - The set command alters the operating mode of
TRACON, and modifies the performance of the RM command so
that the function(s) set is repeated each time the RM
command is executed.

SET CHAN #<CR> - Sets the default channel number to (})
for the CE, SC, and QC commands. Once a channel number
has been set, prompting for channel numbers will not
occur.

SET CACBE EN<KCR> -~ Sets cache look and load.

SET PMAKCR> - Forces the PMA (physical memory address) to
the error address register.

SET EBR #<CR> - Loads the executive base register with
the number (#) specified.

NOTE
Channel diagnostics always set the EBR

to 3.
CLR - The CLR command is the complement of the SET
command .
CLR CHAN #<CR> - Eliminates the default channel and

reinstates channel number prompting.
CLR CACHE EN<CR> - Disables cache look and load.

CLR PMACCR> - Discontinues the forcing of the PMA to the
error address register.

CLR EBR -~ Not implemented.

RM<CR> -~ The RM command performs a master reset, clears
the diagnostic CRAM address register, and performs 35
MBox clocks. The RM command is similar to the KLDCP SM
command except the clock is not left running.

NOTE
Punctions set by the SET command are
also performed each time the RM command
is executed.

COMPANY CONFIDENTIAL

25,

26.

27.

28,

29.

30.

31.

32.

TRACON
-9-

CE 2,100<CR> - The CE command deposits the "initial
command word" specified (100) in the executive page table
(EPT) for the channel specified (2). The location will
be the executive base register (EBR) location specified
by a SET command plus four times the channel number. The
next location, STATUS 1 will be cleared.

sC 1,START<CR> - The SC command uses the diagnostic
function write 70 (FW 70 DATA) to simulate a command from
the RH20. The data to be used for the write function may
be specified as a 36-bit word (DIAG FUNCT 70) or as the
signal mnemonic.

EBus Bit Mnemonic
06 RESET

07 START

09 DONE

10 CTOM

11 STORE

12 SLOW REQ

Channel timing is synchronized to the proper scan point
as a function of the SC command.

NOTE
The SC command should not be used in
conjunction with the TM command.

oC 1,STA,RESKCR> ~ The QC command sets up a list of CBus
commands for later ~execution. The purpose of the QC
command is to defer CBus activity until a Tl or TM
command is executed. (The memory reference trace feature
provided by this command may miss printing some memory
references unless the timing of the channel scan is
coordinated with the memory trace.)

NOTE
The QC command accepts the same
arguments as the SC command.

T1<CR> ~ The T1 command traces and prints memory
references one at a time so that timing synchronization
of CBus requests may be provided.

NOTES
1. The Tl command causes the timing to
revert to single-pulse mode.

2. The T1 command is normally used in
conjunction with the QC command.

TM(CR> - The TM command traces and prints the condition
of memory requests and the physical memory address at
each SBus address hold time.

NOTE
Notes 1 and 2 under the T1 command apply
to the TM command as well.

CH<CR> - The CH command prints the default channel number
selected by the SET command. Prints NO DEFAULT if
prompting for the channel is in effect.

NC<CR> - The NC command updates the default channel
selected. If no channel default has been set, the
default will be channel 0; otherwise, the channel will be
incremented. An error indication will be typed if an
attempt is made to default to a channel greater than 7.

CUKCR> - The CU command uses the standard cache look and
load algorithm (least recently referenced data is
overwritten). All four caches are loaded.

NOTE

The CU command should be immediately
followed by an IC command.

COMPANY CONFIDENTIAL

TRACON

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

=10~

C #<CR> --The CU command uses the standard cache look and
load algorithm (least recently referenced data is
overwritten). However, only the specified cache (#) is
loaded.

NOTE
The C# command should be immediately
followed by an IC command.

IC<CR> - The IC command invalidates the contents of cache
{clears cache valid bit).

VCKCR> - The VC (validate core) command writes the
contents of cache to core.

I<CR> - The I command sets the clock step (tick) counter
to 0.

B 29<CR> - The B command bursts the clock the specified
number of times (29) and prints the difference between
the initial and final state of the machine.

C<CR> - The C command continues the clock and prints the
machine state changes at each tick. This is accomplished
by single-stepping (if the trace was initiated by a G
command) or by incremental bursting (if the trace was
initiated by an M command). In both cases, the initial
state of the machine is assumed to be that stored from
the last interrupted G or M command.

NOTE
Typing an altmode ($) during a trace
printout will stop the printout at the
end of the current line. Typing a C
command will continue the printout.

P 14<CR> - The P command single-clocks the CPU the
specified number of ticks (14) and prints the difference
between the initial state of the machine and the state of
the machine after the final (14th) tick.

G<CR> - The G command:

a. resets the tick counter to 0

b. reads the initial state of the machine
c. steps the clock once

d. reads the new state, and

e. compares the previous state against the new state and
prints the difference.

Steps 3 through 5 are continuously repeated until the
user interrupts by typing an altmode ($), or until the
EBox transitions to a halted state, or until no changes
are detected within a specified number of ticks. (Refer
to TRACON Switches Wumber 14.)

S<CR> - The S command single-pulses the clock and prints
the machine state changes.

P<CR> - The P command prints an EBus bit activity summary
and resets the EBus bit activity accumulator registers.
Two accumulators are kept for each group of eight
diagnostic read functions {i.e., 100-107, 110-117,
120-127, etc.). One accumulator maintains a logical AND
for that group; the other, a logical OR. The P command
prints out all these accumulators by diagnostic "read
function group” plus a total accumulation for all 64
diagnostic functions. In the AND word, if a bit is a 1,
then it was always high; in the OR word a 0 bit was
always low. (This should be the case with any bits not
assigned to a diagnostic function read group.)

COMPANY CONFIDENTIAL

43.

44.

45.

46.

47.

48.

TRACON

RCCR> - The R command reads the current state of the
machine, compares it against the previously stored state,
and prints the difference. The R command allows the user
to execute KLDCP commands and then monitor the machine
state change (i.e.., execute a KLDCP command followed by
an R command) .

D<CR> - The D command reads and prints the current state
of the machine. It also prints the EBus bit statistics
and resets the accumulators as in the P command.

W CRASHCCR> - The W command writes a crash file for later
use. The file specified (CRASB) must already exist on
the output device.

D CRASHCCR> - The D command reads in and prints the file
(CRASH) saved by the W command .

Examine and Deposit Commands - Unlike the KLDCP examine
deposit commands, the TRACON examine/deposit commands do
not use the PI system and do require that the KL10 be
halted. They are implemented by executing instructions
from the AR which load the ACs and move data to and from
Memory.

NOTE
Because prompting is in force, a second
carriage return is required to reexamine
the last address used.

EX instruction<CR> - The EX command causes the
instruction specified to be placed in the AR and executed
by the RL10. This command is similar to the EX command
supported by KLDCP; however, breakpoint function may be
used with the TRACON version.

COMPANY CONFIDENTIAL

DGDTE

GENERAL INFORMATION

Code

Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs

Restrictions

Notes

Loading and
Starting
Procedure

Control
Switches

DGDTE.All

DTE20 KL1O0 to
Diagnostic

PDP-11 Front End Interface

DGDTE is the basic DTE20 KL10 to PDP-11 front end
interface test. The program can test any one of
four DTE20s (device codes 174400-174436,
174440~174476, 174500-174536, or 174540-174576)
connected to a single PDP-11.

The test is incremental in nature. It requires
no stimulus from the KL10, and executes
approximately three passes per second.

KL10-PA or -PV mainframe

Refer to diagnostic hierarchy (1i/10 STD module).
None

During the first pass, the program interrogates
the operator for a few test parameters. It also
provides periodic progress reports during the
first pass as it attacks critical logic areas.
On subseguent passes the operator interrogation
and progress reports are inhibited.

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGDTE TEST SUMMARY
The individual tests peformed by this program are summarized in

Table 1.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format.

Refer to

the 11/10 STD module.

COMPANY CONFIDENTIAL

DGDTE

-2-

Table 1 DGDTE Test Summary

Test

Description

Address Testing

1

ADDR3 takes the address to be tested (as determined by
SELAD2) and individually complements the high-order nine
bits. Using this modified address, the program expects
an instruction timeout. Failures in this test are caused
by malfunctions of the selection logic on the DPS1 print
at B-2 B-5 (DSPl UB ADR SEL H).

Reset

Testing

REST1 performs a reset instruction, reads the 10/11
status register 1into actual, and checks that the
following status flip-flops are clear.

DPS5 11 TOl0 NORM TERM {DPS5 C-4) bit 15
DPS5 11 TO 10 ERR TERM (DPS5 C-7) bit 13
DPS5 PAR ERR {DPS5 D-6) bit 9
DPS5 REQ 10 INT (DPS5 B-5) bit 8
DPS5 11 TOll NORM TERM (DPS5 C-5) bit 7
DPS5 NULL STOP (DPS5 D-4) bit 5
DPS5 EBUS PARITY ERROR {DPS5 B-2) bit 4
DPS5 11 TOll ERR TERM (DPS5 C-6) bit 1

Massive failures in this test probably indicate a failure
of the master clear signal; individual failures may be
stuck flip-flops.

Diagnostic Register Testing (Basic)

3

DIAl is similar to the previous test except this time
diagnostic word 1 is checked for O0s after the reset
instruction. The tested logic is contained mostly on the
CNT3 print. This test primarily checks the CNT3 Unibus
transceivers.

ADDR4 - Knowing that it is possible to address the DTE20
status register without an instruction timeout, ADDR4
next tries to address diagnostic word 1.

ADDRS is similar to ADDR4 except that it attempts to
address diagnostic word 2.

ADDR6 is similar to ADDR4 and ADDRS except it tries to
address diagnostic word 3.

Status Register Checking (Basic)

7

10

STAT]1 tries to set the following status flip-flops.

DPS5 11 TOl0 NORM TERM {DPS5 C-4) bit 15
DPS5 11 TO10 ERR TERM (DPS5 C-7) bit 13
DPS5 10 REQ INT (DPS5 D-7) bit 11
DPS5 REQ 10 INT (DPS5 B-5) bit 8
DPS5 11 TOll NORM TERM (DPS5 C-5) bit 7
DPS5 EBUS PARITY ERROR {DPSS5 B-2) bit 4
DPS5 11 TOll ERR TERM (DPS5 C-6) bit 1
DPS5 11 INTERRUPT EN (DPS5 B-4) bit 0

Individual failures may be caused by the flip-flops stuck
at 0 or Unibus transceiver faults. Massive failures are
probably caused by faulty selection or Unibus control
signals.

Knowing that the seven status flip-flops can set, STAT2
tries to clear them with a reset instruction.

STAT3 compares the effect of the diagnostic reset
function to that of the PDP-11 reset instruction. Since
the reset instruction clears all seven flip-flops, only
one of them needs to be tested (DPSS 11 TOl0 ERR TERM).

STAT4 tries to clear TOl0 DONE, TOl0 ERROR, 10 REQ INT,
11 to 10 NORM TERM, 11 TO10 ERR TERM, 10 REQ INT, 11 TOll
NORM TERM, and 11 INTERRUPT ENABLE via the individual
reset gates with bits 14, 12, 10, 06, 03, and 00.

COMPANY CONFIDENTIAL

DGDTE
-3~

Table 1 DGDTE Test Summary (Cont)

Test

Description

Restricted/Privileged Mode Testing

11, 12
13, 14

RM1-4 checks the restricted mode bit found in the status
register. RM1 reports the condition of the bit in the
first pass. If the tested DTE20 is privileged, the
program does a limited amount of diagnostic bus testing
leading up to the issuance of a master reset in test RM4.
If the tested DTE20 is restricted, the four tests are
dummies.

Interrupt Testing

15
16, 17

16, 19,
20

21

INT1 verifies that the DTE20 can interrupt the PDP-11.

Once INTI1 has shown that it is possible to get a
vectored interrupt from the 10/11 interface,
INT2A-INT2E test to make sure that each of the functions
which can cause an interrupt is operating properly.

1 TO10 DONE
2 10 REQ INT
3 TOll DONE
4 TOl0 ER

5 TOll ER

DIAG2 tries to set and clear 10/11 diagnostic mode.

Clock Testing

22

23

24

25

26

This is the beginning of the clock testing. CLK1 simply
reads diagnostic word 1 200(8) times and expects to see
each of the major state flip-flops set at least once.

CLK2 sets 10/11 diagnostic mode, which should set CNT4
INH CLK. CNT4 INE CLK should inhibit gated clock pulses,
which will prevent the major state flip-flops from
cycling.

CLK3 sets 10/11 diagnostic mode, detects which major
state is on, and single-pulses the clock to see if the
major states advance correctly. Since it is already
known that the major states all set, one single pulse is
adequate to check the single-pulse logic.

CLK4 checks the clock state hold flip-flop. The program
sets 10/11 diagnostic mode and DS05. It next
single-pulses the clock and checks to see that the major
state flip-flops do not advance.

CLK9 makes sure that each major state is present by
itself, and that the major state counter advances
correctly from DEX to TOll transfer, to TOl0 transfer,
and back to DEX.

RAM Testing

27

28

29

30

31

RAM testing begins here. Up to this point, the program
has not addressed any of the twelve active RAM locations.
A fair amount of untested logic (principally the CNT1
functions leading to CNT1 RAM CYC) is used for the first
time. RAM1 tries to address all twelve RAM locations and
uses an instruction timeout as an error indicator.

RAM11 simply tries to write all 0s into the delay counter
and read them back. Note that this is the first time we
try to read anything from the RAM.

RAM2 writes 0s in all active RAM locations and reads them
back. Two errors are possible: RM2ERL if non-0s are
returned, and RM2ER2 if 0s are returned but the function
RFM=0 (available in status register) is returned false.

RAM22 is similar to RAM1l except this time all 1s are
written into the delay counter.

RAM3 is similar to RAM2 except this time all 1s are
written into the twelve RAM locations.

COMPANY CONFIDENTIAL

DGDTE

-4~

Table 1 DGDTE Test Summary {Cont)

Test

Description

32

34

35

RAM4 makes sure that CNT1 SWAP H is not stuck true. It
loads the delay count with 0000377 and verifies that it
does not read as 177400.

RAM5 is the first serious RAM data test. It fills RaX
with all 1s. It then reads ls from each location and
writes 0s back. Addressing problems will cause 0s to
appear where ls are expected.

RAM6 is a typical memory address test. The first RAM
location (the delay count) is loaded with four 4-bit
bytes of 0s, the second location (DEX word 1) gets four
4-bit bytes of 2, the third 4, etc. By using four 4-bit
bytes, a measure of isolation to the four individual 7489
RAM chips is provided.

RAM7 is a simple test of the RAM 0 detection logic
(RAM=0) ., RAM2 has already checked to see that RAM=0 will
set when all 0s are read from the RAM. RAM7 will make
sure that it does not set with a floating 1 coming out of
the RAM.

State Count Testing

36

37

38

39

40

41

42

43

44

SC1 locks the 10/11 interface in DEX mode and loads the
state count with a binary count of 0-4. It reads the RAM
address associated with each of the DEX minor states.

8C20 locks the interface in DEX state, loads a state
count of 17(8), and single-pulses the clock. It then
checks the RAM address bits to ensure that the
single-pulse logic works, and that the state counter can
produce the correct DEX minor state. Failures in the
test usually indicate failures in the 74193 up-counter
chip.

sC21 locks the interface in DEX mode, forces a minor
state count of 00, pulses the clock, and checks (via
reading the RFM AD bits from DIAG3) to see if the count
has advanced to 0l.

If this works, the program again pulses the clock and
reads the RFM address bits to make sure the count does
not advance to 02 (the advance should be inhibited since
INT1 BUS COMP(0) should hold CNT4 INH CLK SET) .

SC21A - Having shown that the 74193 state counter can
advance to minor state DEX ADR2, the program will next
attempt to single-pulse to minor state DEX WDl. The
incrementation of the minor state counter should be
inhibited since the INT1 BUS COMP flip-flop being reset
should hold the CNT4 INH CLK flip-flop set.

SC22 locks the interface in DEX mode and forces minor
state DEX ADR2 true with the EB DONE SET bit true. The
test then pulses the clock to see if the minor state will
advance to DEX WDl.

1f this works, the routine continues pulsing the clock,
checking for decodes DEX WD2 and DEX WD3.

SC3 is similar to SCl except this time, the program locks
the interface in the TOlU major state and checks the RAM
addressing.

SC4 is similar to SC2 except that this time the program
single-steps through a TOl0 transfer. The routine
bypasses a count of 6 (which causes an untested NPR
request) and increments to 10(8).

sc5, like SC1 and SC3, locks the interface in a major
state (this time TOll transfer) and applies various input
to the minor state counter, observing the RAM address
bits via diagnostic word 3.

SC6 checks the incrementation of the minor state counter
from 10(8) TOl1(8) during a TOll transfer.

COMPANY CONFIDENTIAL

DGDTE
-5~

Table 1 DGDTE Test Summary {(Cont)

Test] Description

Operation Initiation Testing

45

46

The next two tests (OPRl and OPR2) try to initiate DEX
and TOll transfer operations (the initiation of a TOl0
transfer is checked late in test EBH1).

OPR1 locks the interface in 10/11 diagnostic mode,
single-pulses into the DEX major state, loads DEX address
2 (to set CNTS5 DEX start), pulses the clock, and checks
to see that the major state has not advanced.

OPR2 is similar to OPRl except that this time the program
tries to initiate a TOll transfer. The routine puts the
interface in the TOll transfer major state, loads the
TOll address and byte count (which should set CNT5 TOll
RDY), pulses the clock and checks to see if the interface
remains locked in the TOll major state.

ABC Register Testing

47

48

49

50

51

52

ABCl checks to see if the ABC register can hold 0s. The
routine proceeds as follows.

a. Load 1ls into the TOll 11 address.

b. Load 0s into the delay count.

c. Lock the interface in the TOll transfer major state.

d. Set minor state TOll DLY RD.

e. Pulse the clock (transfer delay count to ABC
register).

f. Set minor state TO1ll ADR INC.

g. Pulse the clock (transfer ABC to TOll byte count).

h. Compare TOll 11 address for all Os.

ABC2 is similar to ABC1l except that it checks to see if
the ABC register can hold 1s.

ABC3 checks ABC register incrementation. Using a data
pattern of 00, 01, 03, 07, 17, etc., the program loads
the BABC register. After incrementation, the program
reads the incremented count and checks for outputs of 01,
02, 04, 10, 20, etc.

The previous test (ABC3) used the TOll input to CNT1
DLYINC to increment the ABC register. ABC4 checks the
TO1l0 input to CNT1 DLY INC.

ABCS5 checks the CNT4 TOll ADR ADD input to CNT1l ABC INC.
The program loads the TOll 11 address location in the RaM
with 1 (to set TOll word), increments, and checks to see
if the 1 is still there.

ABC6 is similar to ABC5 but checks the CNT4 TOl0 EBUF
FILL H input to CNT1 ABC INCL.

NPR Testing

53
54

55

NPR1 tests the basic NPR interrupts circuit.

NPR2 loads the TOll byte count with minus 1 (which sets
CNTS5 TOll BC LD). It performs a master clear, loads the
TO11l 11 address, pauses for a while, and checks to see
that the TOll address is not modified. 1If it has been
incremented, it means that the NPR occurred. This
implies that CNT5 TOll BCLD was not cleared by master
clear.

NPR3 does another NPR transfer (again with a byte count
of minus 1) and checks the TOll addresss to determine if
it is incremented during minor state T0ll FILE READ.
Since bit 0 of the TOll 11 address is 1, the extra
increment of the ABC register at minor state TOll ADR ADD
should not occur.

COMPANY CONFIDENTIAL

DGDTE

—f=-

Table 1 DGDTE Test Summary (Cont)

Test

Description

56

57

58

59

60

61

62

63

64

65

66

NPR3A does another single-byte TOll transfer. The
program clears the NPR target address, loads the TOll
data word with sixteen ls (-1), and steps through a TOll
transfer. At the completion of this operation, the data
in the NPR target address is compared to a word of 377(8)
(eight 0s and eight 1ls).

NPR3B is similar to NPR3A. This time the routine does a
full-word transfer and checks that two 8-bit bytes are
delivered to PDP-11.

NPR3C tries transferring 0s during a TOll byte transfer.
The routine is the same as NPR3A except that a byte of
eight 0s is dumped on top of a background of 1ls (rather
than ls dumped bon top of 0s).

NPR3D is the first test of the byte swap logic during the
TOll byte transfer. It clears the NPR target address,
loads the TOll data word with all ls, sets byte mode, and
initiates the transfer to an o0dd address. When all of
this is done it expects to find a 177400 in the NPR
.location.

NPR3E is the last of the TOll byte mode tests, It is the
effective complement of test NPR3D. It tries to deliver
eight 0s to the left side of an NPR location by
initiating a byte transfer with an odd address.

.

NPR4 loads a byte count of 00, performs a l-byte TOll
transfer, and checks the TOll done flag.

NPR5 checks the TOll null stop logic. The routine is as
follows.

a. Load a TOll byte count with the null stop bit true.
b. Load a word of all 0s into the TOll data word.

c. Start an NPR transfer at minor state TOll FILE READ.
d. Wait for TOll done.

e. Check for DPS5 null stop.

NPR6 is the first test of the TOl0 NPR. New logic
checked is primarily in the area of setting the CNT4 REQ
flip-flop via minor state CNT4 TOl0 FL WR.

NPR7 checks ABC register incrementation during minor
state TOl0 E-BUF FILL and during TOl0 FILE WR.

NPR8 tests the bus timeout logic. The routine starts an
NPR to a nonexistent 11 address and expects the nominal
50 microsecond bus timeout delay to complete the Unibus
cycle and set TOll error.

NPRY is similar to NPR8 except it does a TOl0 NPR from a
nonexistent 11 address and expects the TOl0 error status
flip-flop to set.

Miscellaneous Testing of TQl0 Transfer

67

68

69

T10B checks the byte swap logic. It loads the TOl10
address with an odd address (bit 00=1) and forces a TO1l0
E B REQ CYC. It then checks the TOl0 data word for a
swap.

Having shown that it is possible to swap eight ls, TO1l0Bl
tries to perform the complement of that operation (i.e.,
swap eight 0s).

TOl0C is similar to TOl0B except a word of 17777(8)
should be swapped into the TOl0 data word as 000377(8).

Miscellaneous Testing of TOll Transfer

70

TOllA is complex. The routine checks the swap of the E
buffer into the RAM. It proceeds as follows.

a. Load RAM location DEX address 1 with a word of 0s.

b. Perform a diagnostic reset to allow the clock to
free-run.

COMPANY CONFIDENTIAL

DGDTE

Table 1 DGDTE Test Summary {Cont)

Test

Description

c. As major state DEX comes up, the 0s from 10 address
word 1 are read into the E buffer.

d. Lock the DTE20 in TOll major state.

e. Load the TOll data word with all 1s for a background.
f. Load the TOll address with an odd number.

g. Set TOll byte mode and a byte count of 1.

h. Force minor state TOll shift.

i. Pulse the clock once, which brings up CNT1 SWAP H and
advances to minor state TOll EBUF STOR.

j. Pulse the clock again, which transfers the swapped E
buffer into RAM location TOll data word.

k. Compare the TOll data word for Os.
If all of this fails, good luck!

NOTE
This test will produce an erroneous
error printout if the ECO which corrects
the missing etch on the E buffer swap
logic is not installed.

E Buffer

Testing

71

72

73
74

75

This begins testing of the E buffer. EBUF1l loads 10 ADR
WORD1 with 0s and transfers it to the E buffer bits
20-35. It then shifts the 0s into E buffer bits 4-19 and
transfers these bits back into DEX WORD2.

EBUF2 is similar to EBUFl except that it shifts ls.
EBUF3 tests the ability of B buffer bits 0-4 to hold 0s.

EBUF4 is identical to EBUF3 except that this time the
test tries to put 1s in EBUF 00-03.

EBH] tries to initiate a TO10 transfer by using a special
decode of the TOll minor state count decoder. The
program does the following.

a. Loa? the TOl0 address to set CNT5 TOll ADR LD (CNT5
c-3).

b. Lock the interface in TOll transfer major state.

c. Send a count of 16(8) to the state counter, which
should bring up decode CNT4 EBH SET L (which sets CNTS
TO1l0 BC LD).

d. Send bit 0 only to diagnostic word 1, which leaves the
interface in 10/11 diagnostic mode but resets CNT4
STATE HOLD (CNT4 C-2).

e. Pulse the clock so that TO10 is true.

f. single-pulse the clock until TOl0 transfer comes true.

g. Move to the TOl0 major state again (TOl0 ready is not
set until EBH CYC goes false).

=

Pulses the clock once more to make sure that the
interface is locked in the TO10 transfer major state.

NOTE
There are similarities between this test
and previously executed tests OPRl and
OPR2.

COMPANY CONFIDENTIAL

DGDTE

-8~

Table 1 DGDTE Test Summary {(Cont)

Test

Description

76

EBH2 checks the ability of the EBus hold (EBH) register
to hold Os. The program first generates master clear
(which should clear the register). It next loads the
TO10 byte count with all ls. The EB HOLD is next
transferred to the TOl0 byte count location in RAM, where
a test for 0s is performed.

Since the only way to load the EBus hold register is via
a DATAO instruction from a working KL10 processor, this
test is all that can be done.

DS Register Tests

71

78

79
80

DIO reads the diagnostic bus enable switch (via bit 3 of
the status register) and determines whether or not to
disturb the diagnostic and EBuses.

DI2 sets KL10 diagnostic mode (this will disturb the
KL10) and sends all 0s to the seven KL10 diagnostic
functions (DS00 DS06). It then reads diagnostic word 1
and looks for a 1 in bit 1 (KL10 diagnostic mode) and 0s
in bits 09-15 (the DS flip-flops).

DIA3

DIA4

EBus Testing

81

82
83

84

EB1 is the first test of the EBus. It clears the E
buffer, sets EBus loop and reads the E buffer back into
RAM where bits 00-19 are checked for 0s.

EB2 checks whether bits 20-35 of the EBus will hold 0s.

EB3 is similar to test EBl except that it checks whether
EBus bits 00-19 can hold ls.

EB4 is similar to EB2 except that it checks EBus bits
20-35 for 1s rather than 0s.

EBus Cycle Testing

85

86

87

88

89

CLK5 forces minor state TOll I/O FUNCTION and reads the
RAM address (which should be 07 - TOll BYTE CNT). The
routine next single-pulses the clock (which should have
no effect since CLKS INH CLK is set waiting for UBIC BUS
COMP) and reads the RAM address to make sure that it does
not advance to 11(8), indicating minor state TOll shift.

Following this, the program forces EBus cycle complete
(via bit 14 of diagnostic word 2) and reads the RAM
address to see if it has advanced to 11(8) (minor state
TOll SHIFT).

CLK6 is similar to but simpler than CLKS. The routine
ensures that minor states TOl0 E-B REQ and DEX ADR2 can
also stop the clock. (In addition, since this 1is the
first time these minor states have been produced, the
associated RAM addresses are checked).

DEXFlA - This test and the two following will test the
EBus using a floating 1/0 pattern; i.e.,, a single 1l-bit
will be floated through the EBus and the result checked.
DEXF2A - refer to test B87.

DEXF3A - refer to test 87.

COMPANY CONFIDENTIAL

DGDTE

-9-

Table 1 DGDTE Test Summary (Cont)

Test

pescription

EBus Parity Checking

90

91

92

This begins checking of the EBus parity logic. EPAR1
starts a single-byte p011 transfer at minor state TO1ll
FILE READ. Since no data has been loaded into the E
buffer, all Os should produce a parity error. The
routine checks for the absence of TOll DONE (an abnormal
termination) and the presence of both TOllER (status
register bit 1) and BPARER (status register bit 4).

EPAR2 marks the beginning of serious testing of the DPS4
parity checking logic. The routine simply reads the DPS4
parity flip-flop after performing a CON state clear to
make sure the flip-flop can hold a 0.

EPAR3 forces the DPS4 parity checking network to read
seven specially—selected test patterns. The first two
patterns {00 and 153721(8)1 have an even number of 1
bits; thnerefore, the DPS4 parity flip~flop should remain
cleared. The remaining five patterns (175747(8)
62132(8), 42002(8), 70066(8) , and 102332(8)) all contain
an odd number of 1 bits and should set the parity
flip-flop.

COMPANY CONFIDENTIAL

DGKAA

-1-
GENERAL INFORMATION
Code DGKAA.All
Title KL10-PA CPU EBox Diagnostic Part 1
Abstract This diagnostic is designed to detect and isolate
faults in the EBox logic.
Hardware
Required KL10-PA mainframe
preliminary and
Associated
Programs RrRefer to diagnostic hierarchy (11/10 STD module) .
Restrictions None
Notes None

Loading and

Starting
Procedure Standacd {Refer tc the 11710 STD module.)
Control
Switches standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART) , 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC) , and 2 (INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGKAA TEST SUMMARY

The individual tests performed by this diagnostic are summar ized
in Table 1.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. (Refer to
the 11/10 STD module.)

Table 1 DGRAA Test Summary

Test Description

1 (EBUS0) : Basic EBus and Diagnostic Function Bus

This test attempts to clear the machine and read all 0s,
then all ls across the EBus.

2 (ECLKO) : Clock Board Initialization

This tests that the diagnostically readable signals on
the clock board are properly initialized by a master
reset. This test (and those concerned with clock board
signals which follow) uses subroutine DCOMP. A table of
jnitially expected data for the clock board appears in
the initialization file, EINIT1.Pl1.

3 (ECRAMO) : Command Register Initialization

This tests that the microcode data register (command
register) is cleared after a reset.

4 (ECTLO) : Control Boards Initialization

This tests whether the APR, CON, CTL and MCL board logic
assumes its expected state following a clear. This test
(and the control logic tests which follow) uses a master
compatrison subroutine, CTLCHMP, which in turn uses
subroutine DCOMP. A table showing initial expected data
and masking may be found in the initialization file,
EINIT1.Pl1.

5 (BFLAGO) : Flag Logic Initialization

This tests that the flag logic on the SCD board assumes
its expected state following a clear. This test {and the
flag logic tests which follow) uses a master comparison
subroutine, FLGCMP, which in turn uses subroutine DCOMP.
A table showing initial expected data and masking may be
found in the initialization file, EINIT1.P11l.

COMPANY CONFIDENTIAL

DGKAA

-

Table 1 DGKAA Test Summary (Cont)

Test

Description

10

11

12

(ESCDO) : 10-Bit Arithmetic Initialization

This tests that the 10-bit arithmetic on the SCD starts
off in its expected state following a clear. Tables of
these values may be found in the initialization file,
EINIT1.P11. 0

(PIZZA0): PI Board Reset Test

This test simply performs a master reset of the KL10 and
then issues enough clock which would normally cycle the
PI board. Since no requests should be pending, the PI
board should not cycle. If the PI board does appear to
cycle it could be the PIRO flip-flop stuck, or the EBus
PIO0 line from the DTE20 stuck, or the PI4, P12, PIl
lines stuck. Either way, the problem is isolated to the
PI board, DTE20, or translator board.

(ECLK1) : Basic Clock Control Registers

This tests the ability of the clock control registers on
CLK5 to load and hold data via the E and diagnostic
buses. The test floats a 1 through the various control
registers at each possible source/rate selection. Thus
the fact that clocks are produced at each source/rate
combination (as well as the appearance of the correct
register bits) is checked.

(ECLK2): Single-Step Clock Modes

This tests the ability of the clock poard to generate
single EBox and MBox clocks and conditions EBox clocks at
each source/rate combination. Also tested are the EBus
and SBus clocks.

(ECLK3) : Burst Counter

This verifies that the burst counter down-counts to 0 at
each source/rate. It does not verify that a
corresponding number of clocks are produced, as this
would require much of the untested EBox logic be working.
This test uses a table and subroutine from ECLK1

(ECRAM1) : Diagnostic CRAM Address Register

This checks the path from the EBus to the diagnostic CRaM
address register and back. It uses a set of eight test
patterns generated by subroutine PaTTY. These test
patterns are sufficient to prove that each bit can
independently be 1 and Q.

(ECRAM2) : CRAM Data Paths

This test checks that each of five CRAM locations 0, 1,

' » 1024) can be loaded and read back correctly.
Fourteen 1ll-byte test patterns from the pattern
generation subroutine are used with each CRAM address to
verify that each RaM chip can store a 1 and a 0 and that
no two chips interact. This test also checks that the
EBus was correctly received and transmitted on each CRAM
(and the CRA) board, the diagnostic read and write CRAM
functions work, and the data holding register (command
register) works.

COMPANY CONFIDENTIAL

DGKAA
-3-

Table I DGRAA Test Summary {Cont)

Test

Description

13

14

15

17

18

(ECRAM3) : CRAM Addressing

This test checks the addressing of all CRAM chips and the
ability of each individual cell to hold a 0 or 1. To
begin with, the entire CRAM has been set to all 0 data by
the initialization routine, ICRAM1.

Subtest 1 reads location 0 to see that it is indeed all
0s, and then writes all 1ls back into location 0. It then
steps to location 1, reads 0s and writes ls and so on
until all locations in the CRAM have been tested. This
demonstrates that each cell in the RAM can hold a 0 and
that there are no address line faults of the sort where
writing a location with 1s causes some higher location to
be modified.

Subtest 2 goes the other way around, reading 1s from the
top of the CRAM and writing Os down to the bottom,
checking that each cell holds a 1 and that no address
faults propagate 0 data downwards. Subtest 3 begins at
the top, reading 0s and writing ls, and subtest 4 starts
low and reads 1ls and writes 0s (leaving the entire CRAM
once again cleared).

Problems can usually be localized to the chip by noting
the bit position of the failing data. Since the test
uses KLDCP RAM reads and writes, EC and DC commands from
the console can be used to verify/track down detected
addressing problems.

(ECRAM4) : CRAM Parity Network

This test checks the operation of the CRaM parity network
by loading four test microwords. The operation of the
logic on the clock board to stop the clock on a CRAM
parity error is also checked.

(ECLK5) : Clock Delay (Microcode T Field).

This tests the 31, 62, 93 and 520 nanosecond delay logic
on the clock board. The T field microcode bits and the
CON DELAY REQ signal are also checked. The test issues
single MBox clocks and counts the number between EBox
clocks. Both too early and too late EBox clocks cause an
error.

(EDRAM1) : IR Register/DRAM Address (I/0, JRST OFF)

This test checks that the 13 bits of the instruction
register can each store 1s and 0s and that no two bits
interact. This register is read by reading the DRAM
address with 7xXX addressing turned off (bits 0-8) and
reading the AC field with AC decoding turned on (bits
9-12). Consequently these features are also checked by
this test. Eight patterns, generated by subroutine
PATTY, are used.

(EDRAM2) : DRAM Address - I/0 and JRST Logic

This test checks the logic which looks for JRST (OP CODE
254) , JRST 0, and 7XX instructions and alters the DRAM
address accordingly. The effect of JRST instructions on
the DRAM J field and the AC field is also tested.

(EDRAM3) : DRAM Data Paths

This test checks that each DRAM data cell in a pair of
adjacent locations (locations 0 and 1 chosen for
convenience) can independently store a 1 and a 0 and that
no two cells interact. The test uses 12 5-byte patterns
generated by subroutine PATTY.

COMPANY CONFIDENTIAL

DGKAA

-4-

Table 1 DGKAA Test Summary (Cont)

Test

Description

19

20

21

22

23

24

25

26

27

28

{(EDRAM4) : DRAM Addressing

This test checks the address lines to all the DRAM chips
by filling the entire RAM with 0s, stepping through the
addresses one at a time reading 0s and changing to 1ls and
then stepping through the addresses in the reverse order,
reading ls and restoring 0s. This leaves the RAM cleared
and completes the verification that each cell is uniquely
addressable and capable of storing both a 1 and a 0.
Bddress 254 reads IR bits 9-12 in place of J07-J10
{hardware does too.)

(EDRAMS) : DRAM Parity Network

This test checks the DRAM parity network with three test
patterns. The logic on the clock board to stop the EBox
clock on a DRAM parity error is also checked.

(ECTL1): DISP Field Decoding and AR, ARX and MQ Control
Logic

This tests the decoding of the DISP field on CTLl and all
of the logic on CTL2 for controlling the AR, ARX and MQ
multiplexers.

(ECTLA2) : ADXCRY Logic

This test checks the ADXCRY gates on CTLl and PC+l INH on
CON4.

(ECON1): COND Field Decoders

This tests the decoders on CONl and various gates using
the decoded signals on the control logic boards. The
following decoder signals are not verified, as they will
be checked with the logic they control: COND/AD FLAGS,
COND/PCFP-4#, COND/FE SHRT, COND/EBOX STATE, COND/EBUS CTL,
CON SKIP EN 60-67, and CON SKIP EN 70-77. The four
signals COND/024-COND/027 are not tested because they are
not used.

(ECON2) /EAPR1: CONO APR, PI, PAG and DATAO Logic

This test exercises the flip-flops which are controlled
by the CON number FUNC 01X decoding of CON COND/DIAG
FUNC and the magic # field. This includes the decoders
on CON3, the registers controlled by CONO PI and CONO PAG
on CON3, the DATAO APR register on APR3 and the APR error
interrupt logic on APR1 and APR2. Note that only the
internal control of the error flip-flops is tested here;
the response to actual error conditions comes much later.

{BECON3) : UCODE and Processor State Registers

This tests the microcode and processor state registers on
the CON board.

(EAPR2): EBus CTL, MBox CTL and REG FUNC with # Field
Decoding

This tests the EBus control register on APR3, the MBox
control logic on APR5, and the register function decoding
on APR6. All three involve the decoding of a microcode
function with the magic # field.

(EAPR3) : Previous Context and AC Block Registers

This test checks the CON LOAD PREV CONTEXT and CON LOAD
AC BLOCKS logic on CON3, the previous section register on
APR3, and the AC block registers on BRPR5. The FM block
mixer logic is covered in the next test, EAPR4.

(EAPR4): Fast Memory BAddress Mixer and AC+l, 2 and 3
Logic.

This test checks the logic which adds 1, 2 or 3 to the
AC number and the fast memory address mixer on APR4. The
mixer inputs from ARX 14-17 and VMA 32-35 are tested
later after the data paths and VMA have been checked.

COMPANY CONFIDENTIAL

DGKAA
-5~

Table 1 DGKAA Test Summary (Cont}

Test

Description

29

30

31

32

33

34

35

(EMCL1) /EFLAGl: AD Function Logic and VMA Held Flip-Flops

This test uses MEM/AD FUNC and AD bits 0-12 to
independently set each of the principal flip-flops on the
MCL board. These flip-flops are used, in turn, to test
VMA held register and the VMA held/PC flags multiplexer.
Also, the PC flags are set and checked using SCD LOAD
FLAGS and AR bits 0-12 to provide interference patterns
for testing the VMA held/PC flags multiplexer.

(EMCL2) : Memory Request Address Mode Control Logic

This test checks the decoding of the microcode MEM FIELD
(MCL1) ,, the memory request generation logic (MCL1 and
MCL5, CON5), the request-type memory (flip-flops clocked
by REQ EN on MCL2 and 6), the SXCT/PXCT/VMAX extension
logic on MCL4, the DRAM A field decoding on MCL5 and the
PREV SEC TO ARMM gates also on MCL5. It uses 24 patterns
and depends on many previously tested machine features
{for example: CWSX, AC# and AC reference).

(EMCL3}: VMA Context Storage Logic

This tests the flip-flops set with LOAD VMA CONTEXT on
MCL2, 3 and 6 and the USER EN and PUBLIC EN logic on
MCL2.

(EAPR5) : FM Block Selection

This test checks the FM block, VMA block and XR block
mixers and the VMA block register on APR5. It uses some
of the PXCT and previous enable logic on the MCL board.

(EFLAG2) : Processor Flags

This checks all of the processor flag logic on SCD4 and §
not already tested in EMCLL, except for some gating
involving MBox, signals for the private instruction flag
and the arithmetic overflow flags (checked in EFLAG2).
The trap mixers.

{ECRAO1) : DISP RAM to Control REG, DISP Enables, DISP
Parity

This test is designed to check the DISP field of the
CRAM to the DISPATCH/SPEC field of the control register.
It tests all bits of this section of control register and
also tests the DISP FIELD enable gates.

The test begins by loading a 5-bit pattern into the DISP
field of the CRaAM. This pattern (pattern list is in
Table DCRAO1:) is then clocked to the control register.
The control register and DISP enable gates are then read
back and verified to be correct.

(ECRAQ1) : Dispatch Codes 1, 2, 3 and 6 and Also AREAD
Logic

This test checks DISP field dispatch codes 1, 2, 3, and
6. It assures that when these codes are selected, the
appropriate data is multiplexed into the CRAM address.
For dispatch code 1, we get DRAM J. For code 2, we get
AREAD. For code 3 we get SBR RET, and for code 6 we get
CTL NICOND. When checking code 2 and AREAD, the test
also runs a selection of patterns through the AREAD
network to assure that it is in good condition.

The basic test procedure is to load the DISP field with
the dispatch code under test. Next the DRAM J field is
loaded with a test pattern (if checking code 1) or the
complement of the expected data. The diagnostic address
register is also 1loaded with the complement of the
expected data. Finally, the CRAM address is read to be
sure the dispatch code is selecting what is expected.

COMPANY CONFIDENTIAL

DGKAA

-6~

Table 1 DGKAA Test Summary (Cont)

Test

Description

36

37

38

(ECRA03) : Dispatch Codes 30, 32, 33 and 35. Also NORM
Logic

This test is designed to check the control RAM address
board dispatch codes 30 (MQ), 32 (AR,BR,AD SIGNS), 33
(DRAM B), and 35 (NORM LOGIC). It also tests the NORM
logic priority encoder found on the IR/DRAM bvard.

The basic test procedure is to load the dispatch code
into the CRAM. If checking dispatch code 33 which
requires DRAM data, the test will clock the microcode
word, just loaded into the CRAM, into the control
register, then load the appropriate DRAM data and test
the CRAM address to verify that it is correct. If the
subtest does not require DRAM data, then it loads the AR
with test data and at the same time loads the CRAM
dispatch data to the control register. Then it tests the
CRAM address for correctness.

{ECRAO4): J-Field and CRA LOC Register Test. Executed at
Burst Speed.

This test is designed to check the control RAM address
board J-field to CR ADR lines and to test both the CR ADR
to CRA LOC register lines and the CRA LOC register
itself. all tests take place at burst speed (full speed
at the currently selected clock rate using the burst
counter) .

The basic test procedure is to load the J-field test
pattern into the J-field of CRAM location 0, and leave
all other bits at location 0 at 0 (except for a dispatch
code = 10). The CRAM location which would be addressed
by the current test pattern is then loaded with all ls.
Next the current CRAM address is set to 0. Finally the
test gives a burst of clock ticks to cause two EBoOX
clocks to occur. This should force the J-field test
pattern into the control register (on the first EBox
clock) .

On the second EBox clock the all 1ls RAM word should be
addressed and loaded into the control register. Also,
the CRA LOC register should be loaded with the J-field
test pattern. Now if the control register is not all ls,
there has been a J-field hardware error. If the CRA LOC
register is wrong, it has a hardware failure.

(ECRAOS) : Subroutine Return Register

This test checks the subroutine return (SBR RET) register
on the CRA board. It assures that data 4 levels can be
pushed deep onto the stack and that the data can be
retrieved with four pops from the stack. It also assures
that none of the 11 SBR RET register data lines interfere
with one another. This test runs in burst mode; that is,
runs in bursts at full clock speed at the currently
selected clock source and rate.

The basic test procedure is to set up a 3-microword
instruction sequence which issues a subroutine call.
Next this sequence is burst with varying data patterns
that check for interference between the SBR RET register
data lines. Then a sequence which issues subroutine
RETURNS is set up and executed four times to pop the data
from the bottom of the stack. This data is verified to
be correct. Finally, a data pattern which finishes the
check for stuck-at-l and stuck-at-0 is pushed to the
stack bottom and popped to the top and verified.

COMPANY CONFIDENTIAL

DGKAB

-1-

GENERAL INFORMATION

Code DGKAB.All

Title RL10-PA CPU EBox Diagnostic Part 2

Abét{act. This diagnostic program is designed to detect and
. isolate faults in the EBox logic.

Hardyafé : . T

Required KL10-PA mainframe

preliminary and " !

Associated

Programs Refer to diagnostic hierarchy (11/10 STD module) .

Restrictions None

Notes None

Loading and

Starting
Procedure Standard (Refer to the 11/10 STD module.)
Control
Switches standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGKAB TEST SUMMARY
The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. (Refer to
the 11710 STD module.)

Table 1 DGKAB Test Summary

Test No. Description

1 EEDPO1 Data Paths Basic MUX Select Test

This test verifies that all mixers on the data path
board can independently select any of their individual
inputs, that no MUX select lines are stuck either high
or low, and that none of the mixer output lines are
stuck low. This test also verifies that each register
can hold all 1s and all Os.

The test begins by resetting the EBox and then uses the
MQ as a source of 1ls (MQ reset state = 1s) and passes
these 1ls from one register to another. Registers are
cleared of their 1s to ensure that if a select line
fails, the correct register will contain the wrong data.
The test begins at microinstruction 1, bursts one EBox
clock, and tests the registers. Subtest 2 begins at
microinstruction 1, bursts two EBox clocks, and checks.
Subtest 3 begins at 1, bursts 3, and so on, until the
complete set of transfers has been executed at burst
mode.

COMPANY CONFIDENTIAL

DGKAB

-2-

Table 1 DGKAB Test Summary (Cont)

Test

Description

EEDP02 Data Paths Basic Interference Test

This test verifies that the output of all mixers and
registers on the data board have independent lines;
i.e., that the AR has 36 independent lines, that the ADA
has 36 independent lines, and so on for all registers
and mixers. The test runs in burst mode and first loads
the AR with interference data. Next, a burst of EBox
clocks is given and the interference pattern is sent on
the following journey.

from the AR to BR

BR through ADB through AD to ARX
ARX to BRX

BRX through ADXB through ADX to AR
AR through ADA through AD to MQ

MQ to ARX

ARX through ADXA through ADX to AR
done

ESCD1 SC Register (SC from AR and SC Recirculation)

This test verifies that each bit of the shift count (SC)
register can store a 1 and a 0 and that all bits except
SC00 and SCO01 are independent. It also verifies the
path from AR bits 18 and 28 to 35 to the SC via the SCM
and the recirculation path of SC to SC through the SCM.
It uses the standard test patterns of subroutine PATTY
and bursted microcode. It precedes the rest of the SC
tests because the SC register must work in order for the
remaining data path tests to run.

Refer to the EBox diagnostic microcode listing at RAM
location:

START = SCMOO
for details of each microword.
EEDP03 shifter Board Test - Burst Speed

This test runs 85 patterns through the shifter board and
verifies that the board has no errors. It runs at burst
speed.

At single-step speed the BR and BRX, respectively, are
loaded with test patterns destined for the AR and ARX.
Next, an SC count is loaded into the AR. The burst is
started and the microcode does the following.

AR (SC COUNT) to SC
BR to AR, and BRX to ARX
SH (shift board) to the AR, ARX and MQ

The MQ, AR and ARX are verified to have the correct
data.

Expect all failures in this test to be on either shifter
board (M8510) or backplane from AR or ARX to shifter
board.

EEDP04 Data Path Adder ALU and Carry Skip Network Test

This test checks and verifies the correct operation of
the KL10 72-bit adder, including the associated carry
skip logic (found on the IR/DRAM boaxrd). The tests ace
divided into three groups:

a. Tests where only the ARX and BRX require test
patterns and only the ADX is tested

b. Tests where only the AR and BR require test patterns
and only the AD is tested

c. Tests where the AR, BR, ARX, and BRX all require
test patterns and both AD and ADX are tested,
including carrys from ADX to AD.

COMPANY CONFIDENTIAL

DGKAB

-3-

Table 1 DGKAB Test Summary (Cont)

Test

Description

There is a separate microcode routine for each of these
three groups. After the correct test patterns have been
joaded to the AR, BR, ARX, and/or BRX at single-step
speed, a burst mode clock is given to actually do the
add test at full machine speed.

EDP4A -AD=0 Test Using Floating ls Down the AD

This test checks the -AD=0 logic on each of the EDP
boards. The test simply floats a 1 down the AD and does
a burst of clocks and a skip on -AD=0, in order to
ensure that each AD bit individually is capable of
causing the condition -AD=0. Failures during this test
should be traced to the EDP board which contains the bit
under test.

EEDPO05 Fast-Memory Basic Interference Test - Burst
Speed

This test detects any interference between the 36 data
bits coming from the fast-memory RAMs located on the
data path board.

The test first loads the AR with the current
interference pattern, then loads that pattern into the
currently addressed fast-memory location. The output of
the fast memory is then checked to see that there is no
interference between any of its bits.

EEDP06 Fast-Memory RAM Test

This test detects any fast-memory RAM addressing
problems, or fast-memory cells stuck high or low.

The test algorithm consists of the following three
segments.

a. Fill all RAM locations with Os.

b. Begin at block 1, address 0, read all Os there, then
write all 1ls there, and increment to the next
address. It should still be 0s. Now read 0s there,
then write 1s, and again increment to the next
address. Continue to the last address and block.

c. This segment is similar to segment b. Begin at
address block 7, address 17. Read ls there, then
write 0s. Decrement to the next address. It should
still be 1s. Now read the 1s, write Os and
decrement again. Continue to block 0, address 00.

The test begins by loading three 36-bit words into
several data path registers at single-step speed. Once
the four registers are initialized (BRX-41,,0)
(BR=777757,,0) (AR=770009,,0) (MG=770000,,0) the rest of
the test is run in the microcode at full machine speed
(current console selected clock rate) .

Next, the program waits a finite amount of time until
the microcoded test should have completed, then stops
the clock and examines what halt loop the test is in
(i.e., the normal termination halt loop or the error
halt halt loop).

Error Processing
This microloop could have halted at any of the following
three locations. -

a. Halt at location HALTO0 if the RAM did not properly
£i11 with 0s (a stuck-at-1 condition).

b. Halt at location HALT20 if an address multiply
selects more than one RAM location.

c. Halt at location HALT40 if an address multiply
selects more than one RAM location in ascending
direction, or perhaps a stuck-at-0 condition.

COMPANY CONFIDENTIAL

DGKAB

-4

Table 1 DGKAB Test Summary (Cont)

Test

Description

10

11

12

13

EVMAOL VMA and Address Break Registers Data and
Interference Test

This test verifies that the VMA and address break
registers can both hold all 1s and all 0s, and that no
register lines interfere with one another.

The AR is first loaded with the current test data.
Next, the starting address of the microcode for this
test is loaded and finally a burst of EBox clocks is
given. The microcode that is executed by this burst
should load the test pattern from the AR, through the
AD, and into the VMA and address break registers.
Single discrepancies imply bad register bits;
multi-discrepancies imply failure of the registers to
load properly. Dropped bits could indicate no
terminator.

EVMAO2 VMA and Address Break Match Logic, Bits 18-35

This test verifies the correct operation of the
VMA/address break match logic on print (VMA3), and the
VMA 18-31=0 logic. Both registers are loaded with all
1s and all 0s and verified to match, which checks the
lines for stuck highs and lows. Next, the address break
register is kept loaded with O0s and a single 1 is
floated down the VMA register to verify that the XOR
gates operate correctly (also checking 18-31=0).

EVMAO7 PC and VMA Held Register Tests - Static

This test checks the diagnostic multiplexers that read
out the contents of the PC and VMA held registers.

The test loads interference patterns into the PC, then
reads the PC, transfers the pattern to the VMA held, and
then repeats this for all the interference patterns.

EVMAO3 PC and VMA Held Register Tests - Burst Speed

This test verifies that neither the PC nor VMA held
register has any bits stuck at 1 or stuck at 0. It also
tests that each register's bits do not interfere with
any other bits in that register. The backplane lines
are tested between the PC or VMA held 2 mixer and the
ADA mixer on the data path board.

The microcode for this test begins with the test data in
the AR. At burst mode, it loads the VMA, then
immediately loads the VMA held register. The microcode
steers the PC through the ADA into the ARX. Next it
steers the VMA held register through the ADA into the
AR. Finally, it loads the PC from the VMA, then tests
the results. Because of the loading sequence, the AR
should contain the current test pattern as transferred
from the VMA held register. The ARX should contain not
the current, but the previous test pattern, which was
just transferred from the PC. Thus the PC and VMA held
registers always contain different patterns, which also
enables verification of the PC or VMA held mixer.

EVMAO4 VMA Register Binary Counter and VMA Adder Tests

This test has two phases. The first checks the VMA
register binary counter and its ability to increment by
1 and decrement by 1. It ensures that each bit of the
VMA register can "carry"” into the next bit (VMA INC) and
also can "borrow"™ from the next higher order bit (VMA
DEC) . It also ensures that the carry from each 4-bit
chip is connected and operating correctly. It extends
an all 1s pattern across the VMA to be sure that a carry
into a next higher bit only carries 1 bits worth (i.e.,
that the carry lines internal to the chip are not
shorted) .

The second phase of the test uses patterns out of the PC
and the CRAM number field to ensure that the VMA ADDER
ALUs have no fault either internal or external to the
chip.

COMPANY CONFIDENTIAL

DGKAB
-5~

Table 1 DGEAB Test Summary (Cont)

Test

Description

14

15

16

17

This section of the test checks the VMA ADDER ALUS on
VMA board. First, a test pattern is placed in the PC
register; secondly, a ‘test pattern is placed in the CRAM
number field. The output of the VMA ADDER is then
clocked into the VMA itself and verified to be correct.
This test is run at burst speed.

The final phase of VMA ADDER test checks the MCL VMA INC
line into bit 35 of the VMA ADDER ALU.

EVMAOS VMA AC REF and VMA SECTION 0

This test verifies correct operation of the VMA AC REF
logic and VMA SECTION 0 gate. It does this by setting
up 10 patterns which drive the VMA AC REF logic. The
pattern set up is completely microcoded and 1is merely
driven by the PDP-11 which selects the correct
microstarting address and data pattern for the VMA

section.

EXPECT
VMA PAGE VMA VMA VMA VMA VMA AC
18-31=0 UEBR REF READ WRITE EXTENDED 13-17 REF

e O
ococoocooroo
OCOO0O0OHHOOOO
OO
1t b et © et b

N W

o~
coocoe~ooOK

w

]
WO U SWN

=]

EVMAO6 Previous Section REG, ARMM MUX, and VMA IN MUX

This test checks the interference through and the
selectability of the ARMM multiplexer. It also
completely tests the previous section (PREV SEC)
register and the selectability of the VMA 1IN
multiplexer. The basic test sequence is as follows.

a. Load test pattern to PREV SEC register.
b. PREV SEC register through ARMM to AR.

c. PREV SEC register through VMA IN to the VMA. Stop
and verify AR and VMA.

d. ©PC through VMA IN to the VMA. This should clear the
-VMA. Again stop and verify the VMA contents.

The test continues this loop to float a 1 down the PREV
SEC register. Finally, it loads the PREV SEC register
with .all 1s, then reads the PC of all 0s through the
ARMM into the AR, to verify the ARMM selectability.

EMCL4 Page Illegal Entry Logic

This test verifies the PAGE ADDRESS COND/PAGE ILL ENTRY
logic on MCL3. It uses the VMA and ADR BRK registers on
the VMA board, the COMP register on APR3, and the logic
used to load ‘them.

EFLAG3 Arithmetic Overflow Flags

This test checks the carry and overflow flags on SCD4
with the associated gates on the data path boards. Note
that it depends on the following functions working:
AD/A, AD/A+B, ADB/AR*4, ADB/BR, SC/A, SC/A+B&SCADA&B/#.

COMPANY CONFIDENTIAL

DGKAB

-6-

Table 1 DGKAB Test Summary (Cont)

Test

Description

18

19

20

21

22

ETSAT]1 Test-Satisfied Logic

This test checks the test-satisfied logic on IR3 and the
skip-satisfied logic on MCL 4 and 5. It depends on the
IR/DRAM working and the AD and AD carry logic working.

Set up AD=0 and AD CRY-02. The four possible states for
these variables are realized as follows:

AD NOT 0 & NO CARRY : AD/A+B, A=-1, B=0 {CODE 010)
aAD NOT 0 & AD CRY-02: AD/A-B-1, A=-1, B=0 (CODE 000)
AD IS 0 & NO CARRY : AD/A+B, A=0, B=0 (CODE 110)
AD IS 0 & AD 'CRY-02 : AD/A+l, A=-1 (CODE 001)

ECON4 GO/START/RUN, I/0 LEGAL, and COND ADR 10 Logic

This test checks most of the logic on CON2. It requires
some flags to be working: MCL VMA FETCH and VMA AC REP.
Note that the diagnostic functions SET RUN, CLR RUN and
CONTINUE (decoded on CON2) are also tested here. The
DTE status bits for EBOX HALTED and RUN are also
checked.

The last part of this test checks the timing of the
start and run synchronizing logic. That is, it checks
that START and RUN take three clock$ to set from the
issuing of the (asynchronous) diagnostic function; that
START remains up for only three clock ticks, and that
RUN stays set for three clock ticks after the clear
function has been issued. The test begins with a
diagnostic continue and watches START (COND=71) .

ECLK6 Clock Board Page Fail Logic

This test forces a page fail using APR SET PAGE FAIL and
then checks the sequencing of the logic on CLK4 and CLK3
(and the addressing on the CRA board). It runs at burst
speed. Each subtest begins with the logic reset and
issues a burst of MBox clocks which is one greater than
the previous subtest's burst. Thus the page fail
sequence is checked clock tick by clock tick, but is
always stepped at machine speed rather than single-step.

ECLK7 Simulated MBox Response

This test checks the MB wait and MB XFER logic on the
CON and CLK boards. The test makes two simulated MBox
cycles: one an AC reference and one not.

ESCD2 Basic 10-Bit Data Paths

This test uses the AR to SC input path tested in ESCD}
to send patterns over the following 10-bit arithmetic
data paths: SC from SC via the SCAD (checks first
position on SCADB multiplexer; SCAD passes B data on
A+B and third position on SCM multiplexer), FE from
SCAD, FE recirculation and shift right, SC from 'FE
(second position on SCM multiplexer) and AR (upper bits)
from SCAD via ARMM (ARMM positions 3 and 4). It uses
standard test patterns and bursted microcode.

Refer to the EBox diagnostic microcode listing at CRAM
location:

START = SCMOO

for details of each microword.

COMPANY CONFIDENTIAL

DGKAB
-7-

Table 1 DGKAB Test Summary (Cont)

Test

Description

23

24

25

26

27

ESCD3 SCAD and ARMM Multiplexers

This test checks the SCADA, SCADB and ARMM mixers. The
test uses two burst microwords to steer AR and number
field patterns through the mixers into the AR, SC and FE
registers. The first microword is loaded separately by
each subtest based on the stimulus table. The second
microword, which is the same for all subtests, simply
recirculates the register data and is there to switch
the mixers to catch any slow-propagating signals. The
test assumes that the SCADDER can pass A data (SCAD/A)
or B data (SCAD/A+B, SCADA disabled). The adder is
checked in test ESCD5.

ESCD4 SC .GE. 36 Logic

This test checks the SC .GE. 36 gates on SCD2. It uses
1 microword which loads the magic § field through the
SCADB, SCAD and SCM into the SC. Nine magic § patterns
are used.

ESCD5 SCADDER

This test checks the 10-bit adder on the SCD board. It
loads the SC and FE registers from the magic # field.
performs an arithmetic adder function using SC and FE as
inputs, and stores the result back in the SC and FE. An
extra microword is provided which switches the adder
multiplexers to cut off any slow-propagating . signals.
The first three microwords, found in the EBox diagnostic
listing at CRAM location STARTS5 = SCM10, are modified
according to the stimulus tables data. The test rums at
burst speed.

PIzZZAl PI ON LEVEL Set and Clear, GEN LEVEL Set and
Clear, ON, OFF, SYS -

This test checks the ability of the PI ON LEVEL
flip-flops and the PI GEN LEVEL flip-flops to load,
hold, and clear. It also checks the PI ACTIVE flip-flop
and the ability of PI SYS CLR to clear the PI system.
The basic test sequence is as follows.

a. Set all PI ON LEVEL flip-flops.

b. Individually clear each PI ON LEVEL flip-flops.
¢. Set all PI GEN LEVEL.

4. Individually clear each PI GEN LEVEL.

e. Set the PI SYSTEM ACTIVE, clear ACTIVE, set all ON
and GEN level flip-flops and clear all with a PI SYS
CLR.

1f subtest 15 fails because HONOR INTERNAL is low, look
at print P15 and check the logic producing PI5 GEN INT.
When GEN LEVEL 4 is the highest priority, as in this
test, GEN INT should be true and should cause HONOR
INTERNAL

pIzZA2 CS Lines, Load/Test Ring Counter, PI EBUS REG
and EBUS PI

This test is divided into two sections. The first
section tests the CS lines both for stuck condition and
for interference between the CS iines. It does this by
loading the IR with interference patterns, dumping the
IR onto the CS lines, and then reading the CS lines.

The second section of the test checks the EBus request
logic and the EBUS PI GRANT flip-flop, and partially
checks the PI load/test ring counter. It does this by
jssuing PI GEN requests to the PI board, then bursting
the PI clock part way into the request cycle. The PI
board is then verified to be in the correct state. See
the expected data table for the test patterns used in
this test.

COMPANY CONFIDENTIAL

DGKAB

-

Table 1 DGKAB Test Summary (Cont)

Test

Description

28

29

If subtest 6 fails because TIMER DONE fails to function,
then either the problem is in the logic that initializes
the TIMER DONE circuitry to an initial count of -15, or
else the counter is not counting at all.

PIZZA3 PIR Flip-Flops, PIR EN, PI REQ SET, PIH
Flip-Flops, PI CLRS, PIR/PIH PRI

This test exercises and checks the following PI board
logic: the PIRLI-PIR7 flip-flops, the PIR/PIH priority
encoder pair, PI REQ SET decoder, PI CLR decoder, the
PIH1-PIH7 flip-flops and the PIR EN gates. The basic
test procedure is as follows.

a. Set PI cycle to hold the load/test ring counter.
b. Do a CONO PI to set one or several GENs.

€. Drop PI cycle to enable the load/test ring counter
to advance. This should load the PIR flip-flops.

d. Stop and read the state of the PI board to see if
the PIRs set.

e. Set PI cycle, then do a SPEC/SAVE FLAGS which loads
the PIH flip-flops via the PIR EN gates.

f. Again read the state of the PI board to check that
the PIH flip-flops did load.

9. Do a PI DISMISS, then verify that the highest level
PIH was set.

PIZZA4 PI TIMI-TIM7-PI COMP Ring Counter and Timer Done
Counter

The following two PI board tests are confusing and
difficult tests to understand. The connection between
the error symptom printed on the terminal and the actual
hardware fault causing the symptom is very difficult to
explain even with an excellent understanding of how this
part of the PI board is intended to work.

This test checks two counters on the PI board. The PI
time state counter is a pair of shift registers on print
PI2 whose eight outputs are labeled: TIMI, TIM2, TIM3,
TIM4, TIMS5, TIM6, TIM7, COMP. The timer done counter
consists of two binary counters connected serially whose
only output is labeled TIMER DONE.

These two counters operate independently, but must work
together. When a cycle is started the time state
counter goes to time state TIMI. It remains static, in
TIM1 while the timer done counter begins counting.
After timer done counter has counted a specific number
of MBox ticks, it sets the flip-flop timer done. This
act turns the time state counter on and it advances from
TIMl to TIM2. Again it waits for timer done to count
before it can advance.

This test operates as follows: it issues one too few
ticks to set TIMl and verifies that TIMl does not come
up. It resets the PI board and issues exactly enough
ticks to set TIMl, then verifies that TIMl does occur.
Next, it resets the PI board, issues one too few ticks
to set TIM2; verifies that TIM2 does not come up,
resets, issues exactly enough ticks to set TIM2,
verifies that TIM2 comes up and resets. The same
procedure is used for TIM3, TIM4, TIMS, TIM6, and TIM7.

Faults in these two counters can be isolated to the PI
board, but the logic failure on the board itself is
difficult or impossible to call out with software. Only
by putting the board on extender can the problem be
found.

COMPANY CONFIDENTIAL

31

32

33

DGKAB
-9~

Table 1 DGKAB Test Summary {Cont)

Description

PIZZA5 STATE HOLD Logic, EBUS DEMAND Logic, OK ON HALT
Decoder

This test checks the combinational logic that produces
STATE HOLD, and the combinational logic that produces
EBUS DEMAND. It also produces the EBus data lines and
other PI board signals that are used with the decoder to
cause PI14 OK ON HALT.

The basic test procedure is to set up a microcode which
would normally take the PI board through all seven time
states. The microcode includes the special conditions
under test and sets the appropriate flip-flops needed
for the specific subtests (examples include: APR EBUS
RETURN, APR EBUS DEMAND, CON EBOX HALT, CON EBUS REL,
and APR EBUS REQ). Finally, the ppDP-11 controls the
number of clocks given to the PI board and stops the PIL
board in the time state desired, then reads the PI board
and verifies that the combinational logic under test is
working.

The next section of this test checks the PI OK ON HALT
logic. The microcode for this subtest is similar to the
preceding subtests, except that during PI TIM6, data is
being put onto the EBus in order to cause the PI OK ON
HALT decoder to decode the desired function from the
EBus.

PIZZA6 Physical Number. Flip-Flops, from EBus 00-15 and
PHYSICAL NUMBER PRIORITY EN

This test checks the 16 physical number flip-flops on
print P12 and also checks the dual-priority encoders
which take the physical numbers and produce the signals
SEL PHY8, SEL PHY4, SEL PHY2, and SEL PHYl. The test
also checks the SEL PHY4X to EBus bits 7, 8, 9, 10 mixer
on print PI5.

The test uses microcode which runs through all seven
timing states of the PI board. The PDP-11 stops the
clock during PI TIM3 'and examines the state of the PI
board to ensure that the correct physical numbers have
come up. Next, the test is continued through TIM6, with
the AR function AR/EBUS. After TIM6, the PDP-11 again
stops the clock and examines the PI board and the AR to
be sure the correct signals are being put onto the EBus
by the PI to EBus mixer.

PIZZA7 APR PIA 04,02,01, APR PHY NO. and PIR EN

This test checks the APR pIA 04,02,01 flip-flops, which
are set by the CONO APR, to check the APR PIA decoders,
and to check the output of the APR PIA decoder to the PI
REQUEST flip-flops. The test does this by setting all
PI levels ON and PI ACTIVE, then setting the 3-bit APR
pIA register with 0 (1-7 on successive subtests),
cycling the PI board to TIM3, and checking the state of
the PI board for correct results. This test also checks
the PI2 APR REQUESTING flip-flop.

PIZZA8 MTR PIA 04,02,01, MTR PHY NO. and PIRO

This test checks the MTR PIA 04, 02, 01 flip-flops that
are set by the CONO MTR generated on the MTR board. The
purpose is to check the MTR PIA decoders and the output
of the MTR PIA decoders to the PI request flip-flops.
The test also checks the DK20 REQUESTING flip-flop on
the PI board. The test sets all PI levels ON and PI
ACTIVE. It then sets the MTR PIA register with (1-7) .,
then cycles the PI board to TIM3, which should set the
DK20 REQUESTING flip-flop. The cycling to TIM3 should
also set a PI request. The second phase of the test
checks the pTE20's PI REQ 0 line to the PI board. It
tests that the DTE20 can cause a PI request on level 0.

COMPANY CONFIDENTIAL

DGKAB

-10-

Table 1 DGRAB Test Summary (Cont)

Test

Description

34

35

EPARl Parity Test - APR FM 36 RAM Chip Address and Data
Test

This test is designed to verify the APR FM 36 1238 X1
RAM chip, both data and addressing operation. First it
attempts to fill every RAM location with a 0. This pass
of the test will fing any stuck-at-l bits, Next, it
begins an addressing test. Tt reads the 0 in location 0
to ensure it has not changed; writes a 1, then goes to
the next address. The Sequence is repeated to the last
RAM address. The RAM should now be full of 1s.

Now the test starts at the last Ram address, verifies
that the 1 is there and then writes a 0. 1t decrements
the location, verifies the 1, writes a 0, and continues
this process until the whole RAM has been refilled with
Os. This last test phase may fail because of ejther
addressing problems, or bits stuck at 0.

EPAR2 AR and ARX Parity Chain, con AR and ARX Parity
Bit Generator and CLK

This test checks the AR/ARX parity chain located on the
shifter board, the CON AR 36 logic on the con board
used to generate the odd pParity bit, and the parity
checking logic on the CLK board that stops the clock or
causes a page fail on FM, AR, or ARX incorrect parity.

The test begins by selecting one fast-memory (FM)
location and using it throughout the entire test. It
attempts to set the FM-36 bit to a 1 or a 0 as the test
requires, and, on each subtest, checks that the FPM-36
bit has indeed gone to a 1 or 0. If it has not, the
failure could be in that RAM chip.

Subtests 1-10 load test patterns to test the con AR 36
logic and the CON ARX 36 logic. 1In conjunction with the
FM-36 bit, the test is also setting and clearing CON
MBOX DATA?, ~CON FM DATA, CON FM BIT 36, CON AR LOADED,
CON AR FROM MEM, and CON ARX LOADED, all of which are
necessary in the CON ARE 36 and CON ARX 36 test
patterns. It is possible that CSH PAR BIT A and CSH PAR
BIT B could cause these subtests to fail because the
EBox has no control over these bits, They should be in
their reset state (low).

While subtests 1-10 are occurring, the AR and ARX
registers are loaded with data that, when combined with
CON AR 36 and CON ARX 36, tests the AR and ARX parity
chain logic found on the shifter board.

Finally, the test uses CON AR LOADED and CON ARX LOADED
with SH AR PAR ODD and SH ARX PAR ODD to test the CLK
PAGE FAIL logic.

Test patterns used are as follows,

AR +WR -MBox FM
From Even Data H Bit
MEM PAR 4.1 36
{True) Data H Data I, H
ST1 0 1] 1 1
ST2 1 1 1 1
ST3 1 0 1 1
ST4 0 0 [+] 1
STS5 0 0 1 0
ST6 0 0 1 1
ST7 0 1 1 1
ST8 1 0 4] 1
8T9 1 0 1 0
ST10 '] 1 1 1

COMPANY CONFIDENTIAL

DGKAB
-11-

Table 1 DGKAB Test Summary {(Cont)

Test

Description

36

37

38

EPAR3 AR(ARX) Parity Page Fail, FM Parity Chain, FM
Parity Error

This test checks that incorrect AR or ARX parity causes
CLK PAGE FAILS and that the right page fail address goes
to the control RAM address board. It checks the fast
memory (FM) parity chain works and ensures that bad fast
memory parity causes a CLK ERROR STOP.

ECRAO06 Microcode Skip Conditions (COND 40-57) and
Dispatches

This test checks the control RAM address board SKIP
conditions ard COND FUNCTIONS 40-57. It also picks up
several microcode dispatches ~ the individual inputs to
the multiplexers which do the actual microcode
dispatching. Each subtest has its own microcode which
sets up the desired skip condition or dispatch condition
and ends with the skip or dispatch being multiplexed
onto the CRAM address line. The actual skip or dispatch
is taken, and the CRAM bits which set up the skip or
dispatch are left behind in the control RAM while the
PDP-11 examines the CRAM location register to verify
that the correct dispatch or skip was taken.

PIDTE PI Board to DTE20 Interface Test

This test checks the basic lines that connect the DTE20
to the EBus and to the EBox PI system. It checks that
PI interrupt levels can be asgigned to the DTE20 and
that the DTE20 can issue an interrupt to the PI board at
that assigned level. It checks that a CONI DTE reads
what it should, that a CONO DTE sets what it should and
that the bits a CONO DTE sets show up in the DTE20's
status register. It checks that KL10 HALT LOOP, KL10
RUN FLOP, and EBOX CLK ERR STOP are all readable in the
DTE20 register DIAGL.

The test also checks that when the DTE20 issues an
interrupt, the correct API function type is sent to the
EBox (i.e. correct IOP function type is sent on EBus
bits 3-5; correct address space specification is sent on
EBus bits 0-2; correct qualifier is sent on bit 6, and
the correct physical number is decoded and put onto EBus
bits 7-10). It tests the DTE20 decoding of the CS lines
CS00-CS06 and ensures that the privileged DTE responds
only to its own device code.

COMPANY CONFIDENTIAL

DGKBA

-1~

GENERAIL INFORMATION

Code DGKBA.All

Title KL10-PA - Basic MBox Diagnostic

Abstract This diagnostic is designed to test and isolate
faults in the KL10-PA MBox logic.

Hardware

Required KL10-PA mainframe/MCA20 (optional

Preliminary and

Associated

Programs Refer to diagnostic hierarchy (11/10 STD module).

Restrictions None

Notes None

Loading and

Starting
Procedure Standard (Refer to the 11/10 STD module.)
Control
Switches Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART) , 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGKBA TEST SUMMARY

The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGES

This diagnostic uses the standard error message format. (Refer to
the 11/10 STD module.)

Table 1 DGKBA Test Summary

Test Description

1 Checks MBox clock logic by single-pulsing the clock. The
subtest no, is the number of clocks after a master reset.
Expected clock states are as follows.

Tick i 2 3 45 6 7 8 9
PHASE CHANGE COMING T F T F T F T F T
A CHANGE COMING X F F F T F F F T
B CHANGE COMING X F T F F F T F F

Subtest 10 checks clock reliability by free-running the
clock and testing for proper synchronization of A CHANGE
COMING and the SBus clock.

2 Checks the channel logic timing. Subtests 1-5 check CH
MR RESET and CH TO-T3. Subtests 6 and 7 check CH timing
block and MB REQ INH. Subtests 8-37 check CBus select
logic. Even subtests check the CH board CBus selects,
and odd subtests check the CRC CBUS SEL D signals for the
proper CBus selects at D-TIME.

3 Checks the state of the channel logic after a MR RESET +
1 tick.
4 Tests for the MBox master reset state. Refer to

subroutine RSTCHK for additional information.

5 Checks the channel reset function. See subroutine CHRCHK
for additional information. It also checks that no RH20
is interfering with the CBus during a channel scan.

6 Checks that the MBox properly aborts an AC reference and
that the microcode can properly reach the halt loop.

7 Checks EBR, UBR, and EBus register for 7s.

COMPANY CONFIDENTIAL

DGKBA

10
11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

-2~

Table 1 DGKBA Test Summary (Cont)

Description

Checks EBR and UBR for 0.

8lides a 0 through the EBR and UBR; then it slides a 1.
Test is for shorts,

Checks VMA to PMA and special microcode time states.
Checks AR to MEM to C mixer to AR for 0s and all ls.

Checks AR to MB to MEM to C mixer to AR and ARX for all
1s. (See test 10 for microcode used.)

Checks AR to MB to MEM to C mixer to AR and ARX for all
Os.

Checks AR to MB to MEM to C mixer to AR and ARX for a
sliding 0 and a sliding 1. (See test 10 for microcode
used.)

Checks the SBus for all 0s, all 1ls, a sliding 0 and a
sliding 1. (See test 10 for microcode used.)

Checks request logic for 1-word writes via MBox
snapshots.

Checks the ERA for a write to addresses 777 and
17 777000.

Checks SBus DIAG CYC timing and ensures that no
controller responds to an SBus diagnostic function 1 with
SBus reset true.

Checks NXM of a l-word read and MB data codes for MEM to
MBS.

Checks for proper NXM of a l-word write.

Check for proper NXM of a read-pause-write.

Checks the ability to 1invalidate the page table by
testing that a page refill is initiated for each exec
page.

Checks control logic for a 4-word read and page refill by
performing an NXM of a MAP instruction.

Checks generation of memory address parity. Subtests are
pattern numbers.

Checks MB parity. Subtests 1-15 apply patterng required
to test the MB parity tree and bits for normal write
parity. Subtests 16-20 check for proper parity error
detection.

Checks the page table for NXM data.

Checks MBox cycle abort.

COMPANY CONFIDENTIAL

DGKBB

-1-

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

preliminary and
Associated
Programs
Restrictions
Notes

Loading and
Starting
Procedure

Control
Switches

DGKBB.ALL
KL10-PA Memory Systems Diagnostic Test

This diagnostic program is designed to detect and
jsolate all faults related to the operation of
the KL10 memory system. It checks all internal
and external memory controllers which respond to
an SBus diagnostic function. If run in a normal
fashion, all will be tested. All internal memory
is tested for addressing all ls and 0s. All of
external memory is tested. It is assumed that
DGKBA has been run. Memories are left configured
for all memory tested.

KL10-PA mainframe/MA20s/MB20s/DMA20s

Refer to diagnostic hierarchy (11/10 STD module) .
None

None

standard (Refer to the 11/10 STD module.)

standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS) , 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC) , and 2 {INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGKBB TEST SUMMARY
The individual tests performed by this diagnostic are summar ized

in Table 1.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. Refer to
the 11/10 STD module. .

Table 1 DGKBB Test Summary
Test pescription
1 Performs a memory system configuration validity check.
MA20/MB20 Controller Tests
2 Checks the selected MA20/MB20 controller reset function.

The

3 Checks setting of
on SBus diagnostic function.

setup determines
controller tests.
test, only one controller will be
address will then be solicited.
normal fashion,
tests precede external wmemory.
tested in numerical order.

test dispatching for memory
If the test is started at a controller
tested. The controller
If the test is run in a
will be tested. Internal memory
Internal memories are

all

MA20/MB20 flip-flops which may be set

4 Checks clearing of MA20/MB20 flip-flops which may be set

5 Checks MA20
conditions.

10:

on SBus diagnostic function.

enables and address boundaries for response
Subtests 1-4 check the requests.

Setup loads an instruction in AC10 to support the test.
It is as follows:

MOVE ac17,0(7)

COMPANY CONFIDENTIAL

DGKBB

Table 1 DGKBB Test Summary {Cont)

Test

Description

10

11

12

13

14

Checks MA20/MB20 address boundaries for no-response
conditions. Subtests 1-8 check single-bit-set addreas
boundaries against an address in page 0. SBus diagnostic
functions are verified as the boundaries are set.
Subtests 9-16 check a 0 boundary condition against each
corresponding address bit, Subtest 17 checks the address
boundaries for a response.

Checks each RQ with no RQ EN to verify a no-response
condition.

Checks MA20/MB20 address parity for l-word combinations.
Subtests 1-17 check reads from an address pattern list.
Subtests 18-22 check proper generation of a parity error
for a write and a read.

NOTES
1. Tests 9 through 15 check memory
modules, If started at a module

test, any module may be tested. The
module number will then be solicited.
If the test is run in a normal
fashion, all modules wili be tested.

»

Internal memory loopback tests. Note
that both test 10 and test 11 leave a
fast scope loop running after
detection of an error.

Setup configures the test controller to respond to its
maximum address range, l1-way interleaved, and loads the
AC program for loopback cycle checkout.

This is the 1s and 0s loopback test to internal memory.
Upon detecting an error, it goes into a fast scope loop.

Initialization just locads the AC program for doing a
sliding patten loopback. The first pattern is
757020,,020757, which is thereafter rotated to the left.

Address-tests an MA20/MB20 memory module, The test is
performed by executing the following sequence.

a. Write 0s to a memory location.
b. Read the location just written.

€. Read the same location again (to eliminate data paths
from consideration).

d. Write all 1s to a different location.
e. Test that the original location did not change.

Solid faults in this test should be generated only by
addressing problems. Patterns used correspond to the
input combinations for module X, Y drive. A loop is left
running in the ACs if a fault is detected. The addresses
are left in ACl5 and ACl16.

Internal memory ls and 0s test. This test ensures that
each word ip a given storage module can hold all 1s and
all o0s. Initialization consists of loading the AC
progranm.

Internal memory ls and 0s test.

A loop is left running in the RKL10's ACs if an error is
detected. The test sends first 1s, then 0s, to a given
memory location; then it goes on to the next location.

Internal memory parity bit check. This test ensures that
each word in a given internal memory has a working parity
bit. The initialization just loads the AC program.

Interral memory test 15 leaves loop running in ACs upan
detectirg errer,

COMPANY CONFIDENTIAL

DGKBB
-3~

Table 1 DGEBB Test Summary (Cont)

Test

Description

16

17

18

19

20

21, 22

Initialization is a dispatch modifier for internal memory
module tests.

This is the internal memory module select test. It
ensures that the MA20/MB20 controller is properly
selecting storage modules in l-way interleave mode, and
that these storage modules are responding correctly. It
also provides a more rigorous test of the modules than
the 1s/0s test, all of this is accomplished via the
address/tag test. The initialization is used only to set
up the table required by the test.

The only solid errors which should show up here are
address inteference errors between storage modules. See
the ADRTAG subroutine for more information regarding
failure modes.

This is the internal memory read-pause-write test. It is
performed once for each controller using the address left
over from the last previous module test.

Initialization consists of loading the AC program.

The internal memory test does two things. First, it
verifies that the DATA VALID X OUT H signals are set
during a read-pause-write cycle. Then, it checks to see
if a read-pause-write does, in fact, work. If the test
fails here, a scope loop is left running in the ACs.

This is the internal memory incomplete-cycle test. It
attempts to force an incomplete cycle by stopping a
read-pause-write in the middle and then doing a read. It
then checks to see if the flag bit is set, and to ensure
that the flag can be cleared.

This is the internal memory 4-word read/l-way interleave
test. Initialization consists of setting up constants
and loading the AC program. See subroutine FWDRDT for
comments on this test.

The initialization for tests 21 and 22 consists of two
basic parts: first, checking for compatibility between
the test controller (TSTCON) and 1its alternate
(ALTCON=TSTCON, XOR.l), and setting up the SBus
diagnostic functions necessary; and second, loading the
data for the canned 4-word read test. This is done by
FWDRDI.

The internal memory (MA20 and MB20) 4~word
read/interleave 2 and 4 tests work in the following
manner: the SBus diagnostic functions necessary and the
AC program are set up by the initialization. The test
then resets memory, and configures just TSTCON and
ALTCON. The even request enables are first assigned to
ALTCON, then later to TSTCON. The actual test is the
canned 4-word read test FWDRDT. Note that a hard loop is
left running upon the detection of an error.

DMA20 Diagnostic Tests (Do Not Go to MEM)

23

24

25

There is no test number 23.

NOTE
Tests 24 through 26 check the
“setability"” of the DMA20 SBus
diagnostic function bits.

Checks the master reset function with respect to the
DMA20 diagnostic function bits.

Checks to see that the diagnostic functions can set the
bits they are supposed to.

COMPANY CONFIDENTIAL

DGKBB

-4

Table 1 DGKBB Test Summary {Cont)

Test Description
26 Checks to see if all the setable bits can be reset.
NOTE

The initialization for tests 27 and 28
loads the AC program common to both of
the tests.
The AC program for tests 27 and 28 sets
up an address in ACl7 and then reads
from that address. Data is ignored:
instead, an SBus diagnostic function 0
is done to read the address in the DMA20
address register. Bit 13 of the address
is on to force NO-AC-REF.

27 This is the address path test to and from the DMA20. It
sends a pattern of all 1s, all 0s, sliding 1ls, and
sliding 0s through the DMA20. 1If there is a stuck bit or
short in this path it will show up here. 1If there is a
fault it is probably on the M8560 board.

28 Checks DMA20 address parity for l-word requests. The
test first runs through patterns while checking for
address parity errors, then ensures that incorrect
address parity can be detected on a read.

To make sure an error can be reset via SBus diagnostic
function 0, the test forces an error for write and
ensures that the error actually occurs.

29 Checks each data path through the KBus buffers, runs all
patterns through each buffer, then goes on to the next
buffer. The patterns are ls, 0s, and sliding ls and Os.

External Memory Tests

30 Checks data parity on all the KBuses via loopback.

31 Checks to see if each KBus can detect and report bad data
parity.

NOTE

Tests 32 and 33 are the external memory
data path tests. These tests are
designed to show up an error in the data
path to and from memory. Sufficient
addresses are tested to make sure that
all data paths are checked, regardless
of memory type, configuration, and
interleaving. Both teste leave a fast
scope loop running upon detection of an
error.

32 This is the 1s and 0s data path check. The
initialization loads an AC program which performs the
test.

33 This is a sliding pattern test. The initial pattern is
757020, ,020757. This pattern is rotated 36 times, each
time being sent to memory and checked. The
initialization loads the AC program.

34 This is the external memory address/tag test. The basic
function of this test is to ensure that all the address
selection logic is working properly. There are many
possible failure modes, and they may be difficult to
distinguish. .
There is no initialization for this test.

35 The external memory read-pause-write test checks to

ensure that the DMA20 <correctly completes the
read-pause-write cycle without modifing the address.

Test initialization loads the AC program.

COMPANY CONFIDENTIAL

DGKBB

-5

Table 1 DGKBB Test Summary (Cont)

Test Description

36 This is the external memory {DMA20) single-step test. It
starts the AC program in a single-step mode and runs

through it to ensure that events occur in the correct
order.

The initialization for test 36 loads the AC program.

37 DMA20 (external memory) 4-word read test. See subroutine
FWDRDT for explanations.

The initialization for the DMA20 4-word read test
consists of setting up the ACs and some constants for the
test.

ADRTAG

ADRTAG is a subroutine designed to do an address-is-data test,
otherwise known as an address-tag test, The basic procedure ig
this: write the address of each word into the word and read all
the words back. If there was any address interference on the
writes it will show up on the readback. The addresses are also
written in a reverse order to catch address interference problems
from high to low memory. Finally, both of the above procedures
are repeated with complementary data to make sure that each bit of
the memory can hold a 1 and a 0, and also to catch data-related
address interference problems.

This address-tag test features patterns in both halves of the data
word. This is necessary because the memories are built as two
18-bit modules in parallel. The problem is that the maximum
address is 22 bits and two 22-bit numbers do not fit into 36 bits.
In this test, the 22-bit address is kept in the right half of the
word and a special "1 bit insensitive® pattern is kept in the
high-order 14 bits of the word. The nature of this pattern is
such that any 1-bit address error will go to a word whose
high-order pattern is different. Thus, it can be determined
whether the address interference occurred in the left, right, or
both halves of the word.

To preserve PDP-11 memory space, AC programs are not given for all
nine subtests. Instead, the AC programs are constructed by the
PDP-11 in the ACs at run time. Much of the PDP-11 code is used to
this end and is not actually part of the test. Note the
capability to change the order of the subtests.

Subtests 1, 4, 6, and 8 should not find any errors except perhaps
for erroneous NXMS which indicate faulty address-acknowledge
logic.

Subtests 2, 5, 7, and 9 will catch most of the errors in this
test. These include dropouts, picked and stuck bits, and address
interference. If either the pattern in bits 00-13 or the address
in 14-35 is correct, then the error was probably a dropout, picked
or stuck bit. If both halves have strange but incorrect data,
then the problem is probably address interference.

An error in subtest 3 indicates read-restore problems if the data

coming back has massive dropouts; otherwise, the problem is
probably an intermittent read (sense) error.

' COMPANY CONFIDENTIAL

DGKBB
-6

Contents of Accumulators for Subtests 1 to 4.

Subtest 1 Subtest 2* Subtest 4
Write Forward

Address Pattern

Read Forward
Address Comparison
Pattern

Write FPorward
Address Comparison
Pattern

TRNW,17,,37777
HRRI,2,,-320,2
HRLOI,16,,-1
XOR,16,,17

TRNN,17,,37777
HRRI,2,,-320,2
HRLOT,16,,-01
XOR,16,,17

TRNN,17,,37777
HRRI,2,,320,2
HRLZI,16,,0
XOR,16,,17

BRRI,2,,-460,2 HRRI,2,,-460,2 HRRI,2,460,2
SXCT,,,13 SXCT,,,13 SXCT,,,13
JRST,,,10 CAME,15,,16 JRST,, .10
HALT,,,l
CAME,17,,14 CAME,17,,14 CaME,17,,14
AOJA,17,,0 A0JA,17,,0 20Ja,17,,0
HALT,,,0 HALT,,,0 HALT,,,0
MOVENM,16,,0,17 MOVE,15,,0,17 MOVEM,16,,0,17
LAST ADR LAST ADR LAST ADR
ECHO ECHO ECHO
PATTERN PATTERN PATTERN
ADDRESS ADDRESS ADDRESS

*Subtest 3 is the same as subtest 2. This is specifically to
check for the possibility of a faulty read-restore operation in
the memory.

Contents of Accumulators for Subtests 5 to 7.

Subtest 5 Subtest 6 Subtest 7

Read Forward Write Backward Read Backward
Address Address Address
Comparison Compar ison Comparison
Pattern AC Pattern Pattern
TRNN,17,,37777 1 00 TRNN,17,,37777 TERNN,17,,37777
HRRI,2,,320,2 ! 01 HRRI,2,,-320,2 HRRI,2,,-320,2
HRLZI,16,,0 ! 02 <START> HRLOTI,16,,-1 HRLOI,16,,-1
XOR,16,,17 103 XOR,16,,17 XOR,16,,17
HRRI,2,,460,2 1 04 HRRI,2,,~460,2 HRRI,2,,=460,2
SXCT,,,13 1 05 SXCT,,.13 SXCT,,,13
CAME,15,,16 1 06 JRST,, .10 CAME,16,,16
HALT,,,1 107 HALT,,,1
CAME,17,,14 110 CAME,17,,14 CAME,17,,14
aoJa,17,,0 111 S0J&,17,,0 S0JA,17,00
HALT,,,0 112 HALT,,,0 HALT,,,0
MOVE,15,,0,17 113 MOVEM,16,,0,17 MOVE,15,,0,17
LAST ADR 114 LAST ADR LAST ADR

ECHO 115 ECHO ECHO

PATTERN 116 PATTERN PATTERN
ADDRESS 117 ADDRESS ADDRESS

Contents of Accumulators for Subtests 8 and 9.

Subtest 8 Subtest 9

Write Backward
Address Pattern

TRNN,17,,37777
HRRI,2,,320,2
HRLZI,16,,0
XOR,16,,17
HRRI,2,,460,2
SXCT,,,13
JRST,,,10

CAME,17,,14
SOJA,17,,0
HALT,,,0
MOVEM,16,,0,17
LAST ADR

ECHO

PATTERN
ADDRESS

COMPANY CONFIDENTIAL

Read Backward
Address Pattern

TRNN,17,,37777
HRRI,2,,320,2
HRLZI,16,,0
XOR,16,,17
HRRI,2,,460,2
sXcT,,,13
CBME,15,,16
HALT,,,1
CAME,17,,14
SOJR,17,,0
HALT,,,0
MOVE,15,,0,17
LAST ADR
ECHO

PATTERN
ADDRESS

AC

<START>

DGKBB
-7

The 4-word read test checks the ability of memory controllers to
properly do a 4-word read. Phe test - uses. the .only. piece of
hardware guaranteed to be on a KL10 system and capable of doing a
4-word read: the pager. The pager is stimulated by using a MAP
instruction. After the pager is cleared by a CONO PAG, eight MAP
instructions are done, the first of which causes a page refill: a
4-word read, word 0 first.

The pattern in the executive page table (EPT+600) consists of
three 0 words and a -1 word. Since the information returned by
the MAP instruction reflects the contents of a halfword, 8 MAPS
are necessary to check 4 words. Also, since it is known only that
the pager can hold 0s (at this point in the test sequence) , the
occurrence of a 1 bit is taken to mean that the corresponding
halfword was all 1s. 1In this manner a haifword response pattern
is built up, which is then checked against the expected response
pattern.

After this is done, the page table is checked to ensure that it is
unchanged. A failure here jindicates that the read-restores of the
4-word read were unsuccessful. 1f the page table is correct, the
procedure is repeated with the next 4-word pattern.

If an error is detected, the ppP-11 starts a fast loop running in

the KL1O. It is a 3-instruction loop which does A-word reads.
Sync on MEM START L which is CPU pin DV2, slot 22.

Memory test fault data dumping subroutines depend on the
following.

ACl5 pata pattern back from memory

AC16 pata pattern sent to memory
AC17 Address under test

COMPANY CONFIDENTIAL

DGKBC

1
GENERAL INFORMATION
Code DGKBC.All
Title RL10 Paging Logic Diagnostic
Abstract This diagnostic program is designed to detect and

isolate all faults in the MBox and EBox 1logic
associated uniquely with paging operations. This
logic is on the PAG, PMA, and CSH boards in the
MBox, and the SCD and MCL boards in the EBox.

Hardware

Required KL10-PA mainframe/at least 16K of KL10 main
memory.

Preliminary and

Associated

Programs Refer to diagnostic hierarchy (11/10 STD module).

Restrictions The 16K of KL10 memory must be configured.

Notes None

Loading and

Starting

Procedure Standard (Refer to the 11/10 STD module.)

Control

Switches Standard (Refer to the 11/1C STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGKBC TEST SUMMARY

The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

Table 1 DGKBC Test Summary

Test Description

1 Cache to IR Data Line Test

This test checks the cache data line to IR register data
path. It executes two diagnostic functions, of which
the first disables the cache and the second selects the
AR register to be read through the memory to cache
multiplexer on the MB board. Next, a test pattern is
loaded into the AR. An MBox cycle is started by the
microcode and at the end of the MBox cycle (MBox
response is true), the data from the AR, through the
memory to cache multiplexer, through the cache data
buffers, to the IR register, is actually loaded into the
IR. The PDP-~11 then reads the IR to verify that the
data transfer has occurred correctly.

2 Page Table RAM Test - Addresses 0-511, Data Bits and
Addressing

This is the test for the page table RAM (MB520-PAGl,
PAG2, PAGS) and serves as both an address test and a
data test. The test is intended to detect any data bits
stuck either high or low, and to detect any addressing
problems. This includes the address path from the VMA,
to the address bit buffers (PAG5), to the page table
RAMs themselves.

COMPANY CONFIDENTIAL

DGKBC

-2-

Table 1 DGKBC Test Summary (Cont)

Test

Description

The testing algorithm is commonly referred to as
galloping write-recovery and the algorithm is described
as follows.

Write O0s to location 0 (cell A)

Loop

Write 1s to location 1 {cell B)

Verify 0s in location 0 (cell A)

Increment B, go to loop

Continue repeating above process until B equals last
page table address.

When B is equal to the last page table address,
increment A, set B=A and start the whole process over
again. When A is equal to the last page table address,
start the whole process over again, writing ls instead
of 0s, and 0s instead of 1s.

The test will be run in two major passes. The first
pass with 0Os disturbs a cell under test (C.U.T)
containing ls. This will run in the ACs, for each cell
with no interference from the PDP-11. When it
completes, the ACs will be reloaded to run the same
test, only using ls to disturb a C.U.T holding Os.

Page Table Directory RAM Test - Addresses 0-128, Data
Bits and Addressing

This is the test for the page table directory RAM
(M8520-PAG3) and serves as both an address test and a
data test. The test is intended to detect any data bits
stuck either high or low, and to detect any addressing
problems. This includes the address path from the FMA,
to the address bit buffers (PAGS5), to . .the page table
RAMs themselves.

The testing alogrithm is commonly referred to as
galloping write-recovery and the algorithm is described
as follows.

Write Os to location 0 (cell A)

Loop

Write ls to location 1 (cell B)

Verify 0s in location 0 (cell a)

Increment B, go to loop

Continue rtrepeating above process until B equals last
page table address.

Wwhen B is egqgual to the last page table address,
increment A, set B=A and start the whole process over
again. When A is egqual to the last page table address,
start the whole process over again, writing ls instead
of 0s, and 0s instead of 1ls.

The test will be run in two major passes. The first
pass with 0s disturbs a cell under test (C.U.T)
containing ls, This will run in the ACs, for each cell
:with no interference from the PDP-11. When it
completes, the ACs will be reloaded to run the same
test, only using ls to disturb a C.U.T holding 0s.

Page Table Public Bits to SCD Flags

This test checks two gates on the SCD board, as they
affect the two SCAD flags, SCD PUBLIZ and SCD PRIVATE
INSTR. The gates that are checked are gates which
include SCD PRIVATE INSTR or SCD PUBLIC PAGE as inputs.
See microcode listing for more precise test explanation.

Paged Read (Page 0.K.) Sequence

This test checks the sequencing of a paged read from
memory by stepping through a MOVE 17,410123. The exec
page table entry has the access, public writable,
software, and cache bits all "on.” A CONO PAG at the
beginning of the test sets the EPT to 5 and clears the
paging RAM valid bits so that a refill is needed.

COMPANY CONFIDENTIAL

DGKBC
-3-

Table 1 DGKBC Test Summary (Cont)

Test

Description

Subgest 1 checks the MBox states at refill T4, the
beginning of the page refill cycle.

Subtest 2 checks the MBox states at the EBox following
the refill cycle, when the MOVE should begin to be
executed.

Subtest 3 checks the MBox states at the start of the
core read cycle of the MOVE.

Refill and Paged ADDR Test

This test checks the generation of refill addresses and
the resulting paged address by using a MOVE 17XXX123
instruction. XXX is the page number and is picked up
from an index register. References are done in either
kernel (exec) or concealed (user) mode depending on the
subtest. The addresses are checked by enabling the EBus
register to be loaded from the PMA lines on every clock,
and reading that register with a Giagnostic function
when desired. The exec and user process tables have the
access, public, writable, and software bits on, and the
exec table also has the cache bit on, for no particular
reason. 1f an error occurs, the test setup is fully
described in the error report.

There are 18 patterns used in this test.

Subtests 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34,
37, 40, 43, 46, 49, 52 check the address to be sent to
memory for the refill cycle. The address is checked at
CSH T2 time and is generated by the PMA board.

Subtests 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35,
38, 41, 44, 47, 50, 53 check for refill error or page
fail at CSH EBox T3 after the refill cycle is complete.
The page fail code is reported if an error occurs. The
PAG board is the suspect.

Subtests 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,
39, 42, 45, 48, 51, 54 check at CSH EBox T3 for the
correct paged address generated by the PAG and PMA
boards together.

Page O.K. Logic Test

This test tries 11 paged operations which should not
cause a page fail. It tests the page o.k. - page fail
logic on the PAG board and the EBox signals which feed
to it. Each test is preceded by a CONO PAG so a refill
cycle will occur. In the event of an error the test
conditions are described in the typeout.

All the pages used are referenced for reads in test 6.

Subtests 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 check at
refill T4 to make sure a refill was started.

Subtests 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 check at
CSH EBox T3 after the refill to make sure no page fail
has occurred.

COMPANY CONFIDENTIAL

DGKBD

1
GENERAL INFORMATION
Code DGKBD.All
Title KL10-PA Internal Channel Control Test
Abstract This diagnostic routine is designed to detect and

isolate faults in the operation of KL10-PA
internal channel control. It is not a complete
test of the internal channel logic. To complete
testing, run DGKBE (Internal Channel Loopback

Test) .
Hardware
Required KL10-PA mainframe/internal channels
Preliminary and
Associated
Programs Refer to diagnostic hierarchy (11/10 STD module).
Restriction None
Notes ¥one
Loading and
Starting
Procedure Standard (Refer to the 11/10 STD module.)
Control
Switches Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGKBD TEST SUMMARY
The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. (Refer to
the 11/10 STD module.)}

Table 1 DHKBD Test Summary

Test Description

1 Checks the channel logic timing. Subtests 1-5 check CH
MR reset and CH T0-T3. Subtests § and 7 check CH timing
block and MB REQ INH. Subtests 8-37 check CBus select
logic. Even subtests check the CH board CBus selects,
and odd subtests check the CRC CBus SEL D signals for the
proper CBus selects at D-TIME.

2 Checks the state of the channel logic after a master
reset + 1 tick.

3 Checks the channel reset function. See subroutine CHRCHK
for additional information. It also checks that no RH20
is interfering with the CBus during a channel scan.

4 Checks the ability to generate channel EPT references for
fetching initial command words for each channel. The
base page used is determined at assembly time.

5 Checks the ability to fetch a halt with an address field
of 17777777.

6 Checks the CCW ADDRESS, CCW MEM ADR = 0 and CCW ODD ADR
PAR for a CCW of 0.

7 Slides a 1 and a 0 through the initial CCW fetch address.
The sliding 1 is used to test CCW MEM ADR = 0 and CCW ODD
ADR PAR generation as well as the CCW address.

8 Checks CCL WC = 0, 1, 2, 3, GE4 and ODD WC PAR by
counting up a halt with word counts of 0-4 and then a
sliding 1 for word counts greater than 4.

COMPANY CONFIDENTIAL

DGKBD

-2-

Table 1 DHKBD Test Summary (Cont)

Test

Description

10

11

12

13

14

15

i6

17

18

19

20

21

22

23

24

25

26

27

28

Checks sequencing and addressing for store status.
Proper status for an MB PAR ERR with a CLP - 17777777 is
also tested for all channels.

Checks storing of status word 2 with data of 400000
000000. All channels are tested.

Checks storing of status word 2 with data of all binary
1s. All channels are tested.

Checks status word 1 for address parity error. All
channels are tested.

Checks status word 1 for nonexistent memory error and a
CLP = 0 for all channels. The CBus start is also tested.

Checks the jump.

Checks that no action flag request occurs for CTOM
transfers with a word count of 0 for all channels.
Incremental CCW fetches are also tested.

Checks channel priority, and it address-tests the CCW
buffer. It does this by causing one channel to hold a
command list pointer of 17 777676 and a channel command
word of 400000 000101. This channel is started first.
All other channels are then started. These channels
generate a complement CLP and CCW. After all channels
have logged out with parity errors, the first started
channel status is tested to ensure that no other channel
has disturbed its data. The test continues until each
channel has been first.

Checks proper time states for a l-word CTOM 0-fill with a
word count of 1 and the done interrupt for all channels.
Decrementing the word count from 1 to 0 tests the CCL ALU
for the all-carry case.

Checks the action counter for initial word counts of 1-4
and address = 0 (CTOM 0-fills all channels)

Checks the CCL ALU and REQ CTR. It performs this by
down~counting word counts of 1-7. 1In order to test that
the CCL ALU carry propagation stops at the correct point,
the maximum word count is then down-counted.

Checks data fetch addressing of one word for all
channels.

Checks data fetch addressing of two words for all
channels.

Checks data fetch addressing of three words for all
channels. Long WC error status is also tested.

Checks data fetch addressing of four words for all
channels. The ability to unload the buffer and normal
status are also tested.

Checks reverse read addressing of one word for all
channels.

Checks reverse read addressing of two words for all
channels.

Checks reverse read addressing of three words for all
channels.

Checks reverse read addressing of four words for all
channels.

Checks the CCW ALU for all carry cases not checked in
preceding tests. This is done by performing a l-word
CTOM data transfer from a memory address chosen to carry
to the next high-order address bit., A store status is
used to load the CCW CHA register with the incremented
address portion of the data transfer word. The test
terminates when a full 22 bits have been tested or a
nonexistent memory has been detected.

COMPANY CONFIDENTIAL

DGKBD

-3

Table 1 DHEKBD Test Summary {Cont)

Test Description

29 Checks 0 fill data fetch addressing of four words.

30 Checks RH20 error status for all channels.

31 Checks overrun error status for channels 0-3.

32 Checks overrun status for channels 4-7. It also tests
RAM addressing for the overrun bit by checking for
inter ference between the RAM address and its complement.

33 Checks status for a last-transfer error followed by a no
error transfer for each channel.

34 Checks status for a last-transfer error followed by

another last transfer error to test CMD toggled and CMD
stored.

COMPANY CONFIDENTIAL

DGKBE

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Procedure
Restrictions

Notes

Loading and
Starting
Procedures

Control
Switches

Exceptions

DGKBE.All
KL10-PA and PV Internal Channel Loopback Test

This diagnostic routine is designed to detect and
isolate faults in the operation of both the
KL10-PA and KL10-PV internal channel data paths.
It is not a complete check of the internal
channel logic.

KL10-PA or -PV mainframe/internal channels

Refer to diagnostic hierarchy (11/10 STD module).
None

The following notes apply to the operation of
DGKBE.

1. I1If the APR ID does not have the internal
channel option bit set, the test will
ordinarily be aborted. This is to permit
proper chain-mode operation of KLDIAG when no
internal logic is installed in the KL10 being
tested. To force running of DGKBE, do a
DIACON TS command and start at test 1.

2. The DIACON test start has been extended to
permit the testing of some channels to be
bypassed. When performing a DIACON TS
command, a starting channel will be
solicited. The channel number entered will
be used as the CTOM channel of a channel
loopback pair. Channel pairs are selected as

follows.
CTOM Channel CTOM Channel
0 1
1 2
2 3
3 4
4 5
5 0
6 7
7 0

Fast mode loopback tests are constrained by
bardware to operate only on channels 2 and 3.

To test all channels when performing a test
start, type 0.

3. The DIACON test loop has been changed to
freeze test loops to a specific channel pair
if possible. When performing a DIACON TL
command, a channel will be solicited. The
channel entered defines a channel pair for
the range of tests specified.

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART) , 13 (TOTALS), 11 (NOT USED), 4 (INHPAG),
and 3 (MODDVC).

Switch 6 INHIBIT PROGRESS REPORTING inhibits
normal pass typeouts for progress reporting
except for end of pass.

Switch 2 INHIBIT CACHE inhibits the use of cache
when performing fast-mode loopback tests.

COMPANY CONFIDENTIAL

DGKBE

-2-

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON. (Also see notes.)

DGKBE TEST SUMMARY
rhe individual tests performed by this diagnostic are summarized
in Table 1.

ERROR SUMMARY
This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

Table 1 DGKBE Test Summary

Test

Description

Checks data paths and the channel buffer for
777777 000000.

Checks data paths and the channel buffer for
0000600 7777777

Checks channel buffer addressing for channel pairs by
looping back 16 words with one word of 1ls in a field of
0s. The word of 1s is tried in each channel buffer
location.

Checks channel parity addressing for channel pairs by
looping back 16 words with even upper/lower parity in a
field of 0s. The word of differing parity is tried in
each channel buffer location.

Address~tests the channel buffer by performing a channel
buffer load in such a way as to ensure that a specific
channel buffer location is loaded with all 7s. all
preceding locations for that channel are cleared. Enough
CBus requests are then performed to ensure that the
location in question will unload at the next CBus request
for that channel. All other channels' buffer locations
are then cleared, CBus requests are then performed on
the loopback channel to ensure that it terminates
normally. This channel is then started with a l-word
CTOM command list. Loopback of one word from the
original channel is used to ensure that no channel buffer
load has disturbed the original location's data. The
test continues until each buffer location on the test
channel has been the first to hold 7s and all channels
have been first.

Address—tests the channel buffer parity bit by performing
a channel buffer load in such a way as to ensure that a
specific channel buffer parity location is loaded with 0
upper/lower parity. Preceding locations for that channel
are cleared. Enough CBus requests are then performed to
ensure that the location in question will unload at the
next CBus request for that channel. All other channels'
buffer locations are then cleared. CBus requests are
then performed on the loopback channel to ensure that it
terminates normally. This channel is then started with a
l-word CTOM command list. Loopback of one word from the
original channel is used to ensure that no channel buffer
load has disturbed the original location's parity. The
test continues until each buffer location on the test
channel has been the first to have zeroed parity bits and
all channels have been first.

Checks upper/lower half swap for read reverse. Slow data
path switching may also be caught.

Checks fast-mode data transfers to memory. Data is taken
from cache if cache exists and cache has not been
disabled by setting console switch 2. The loopback data
is a sliding bit pattern. First it is determined whether
or not fast-mode loopback can be run within the memory
bandwidth restrictions. I1f the memory is one-way
interleaved and no cache is installed or selected, the
test may not be run due to overruns.

Checks fast-mode reverse loopback of a sliding bit
pattern.

COMPANY CONFIDENTIAL

DGKCA

-1-
GENERAL INFORMATION
Code DGKCA.All
Title KL10-PA Meter Board (M8538) Diagnostic
Abstract This diagnostic is designed to detect and isolate

all faults related to the operation of the
KL10-PV meter board.

Hardware

Required KL10-PA mainframe/Meter Board/ MCA20 (optional
Preliminary and

Associated

Programs Refer to diagnostic hierarchy (11/10 STD module).
Restrictions None

Notes None

Loading and

Starting

Procedure Standard (Refer to the 11/10 STD module.)
Control

Switches standard (Refer to the 11/10 STD module.)}

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), and 3 (MODDVC).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGKCA TEST SUMMARY

The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGE SUMMARY

This program uses the standard error message format. Refer to the
11/10 STD module. '

Table 1 DGKCA Test Summary

Test Description

Quick MR Test for Meter Board

1 A quick master reset test used to verify that everything
on the board is clear so that the rest of the tests may
run.

Period Register Data Path Test

2 Checks the data path: EBus, EBus latches, period
register, and 1/8 multiplexer to EBus.

Meter Board Time Base Clock Tests

3 Checks the on/off function of time base.

NOTE
Meter board Tests 4 and 5 check clearing
functions for the time base counter.

4 Checks master reset.
5 Checks the clear-time-base function.
6 Checks the function of the time base cntr.

COMPANY CONFIDENTIAL

DGKCA

-2-

Table 1 DGKCA Test Summary (Cont)

Test

[Description

Meter Board Interval Timer Tests

7 Checks the on/off function of the interval timer. It
also checks that the timer does not run when off.

8 Checks the master reset with respect to the interval
timer.

9 Checks the function of the clear—interval-timer bit of
the CONO TIM instruction,

10 Checks the data path for the interval timer priority
interrupt assignment.

11 Checks the interval timer with respect to the done and
overflow flip-flops, and the ability to clear them. It
also checks the ability of the timer to cause a vector
interrupt. Initialization consists of setting up the
EPT, and loading a program which will allow the vector
interrupt to occur.

12 The count read test for the interval timer.
Initialization just clears the PI system from the last
test.

Meter Board Accounting Logic Tests

13 Checks the data path through the accounting flip-flops.

14 Tests the accounting flip-flop logic. Initialization
loads the PI in progress AC program (not on loops), and
does a SM. The test itself is table-driven (see below).
The table bytes direct the AC program to set up the
desired machine state to test the desired combination of
the accounting control bits.

Driver byte format is XABCUPPP

Where: ¥=1 means counters should be changing
A,B,C are PIACTE, EXACTE, and ACCTON,
respectively
U=1 (bit 3) means user mode test
PPP is the PI level desired (000 means NO-PI).
(See listing for driver byte contents.)

Meter Board EBox use Counter Tests

15 Tests the master reset function of the EBox counter, and
that it is not counting MBox waits.

16 The count read test for the EBox accounting counter. AC
program-loaded by I.1l5.

Meter Board MBox (Cache) Counter Tests

17 Checks the master reset function of the MBox (cache)
accounting meter of the M8538 board.

18 Checks the ability of the MBox (cache) counter to
function properly. Also checks the multiplexer inputs.

Meter Board Performance Analysis Counter Tests

19 Checks out the event duration bit of the PERF counter
enables, and makes sure that other ignores can all be set
and are functional.

NOTE
Meter board tests 20 and 21 check the
clearing function of the performance
analysis counter.
20 Checks the master reset function of the PA counter.
21 Checks the function of the CLR-PA-CNTR bit of the BLKO

TIM instruction.

COMPANY CONFIDENTIAL

DGKCA
-3-

Table 1 DGKCA Test Summary (Cont)

Test Description

22 Count read test for the performance analysis counter.

23 Checks the PI-level inputs and enables for the
performance analysis counter. The outer loop cycles
through PI levels 7-1, 0 (via an examine), and NO-PI.
During each of these levels all PI-level enables are set,
one at a time, to check out the select circuitry.
Initialization is the same as for I.14.

24 Performance analysis counter user/exec mode test.

25 Checks the performance analysis counter input and enables
for the probe.

26 Performance analysis counter cache inputs test.

Meter Board Miscellaneous Tests

27

Subtest

1
2
3
4

Meter board test 27 1is the functional test of the
instructions which are used to access the four 16-bit
counters; i.e., the combinations of {DATAT,
BLKI) * {TIM,MTR). The order 6f the test is as follows.

Instruction Counter DFRD No.
DATAI TIM Time base counter 110
BLKI TIM Performance analysis 111
DATAI MTR EBox accounting counter 112
BLKI MTR MBox accounting counter 113

COMPANY CONFIDENTIAL

DGMCA

-1-
GENERAL INFORMATION
Code DGMCA.Aall
Title KL10-PA MCA20 Cache Option Diagnostic
Abstract This diagnostic routine is designed to detect and

isolate faults relating to the operation of the
MCA20 cache option.

Hardware

Required KL10-PA mainframe/MCA20

Preliminary and

Associated

Programs Refer to diagnostic hierarchy (11/10 STD module).
Restrictions None

Notes None

Loading and

Starting
Procedure Standard (Refer to the 11/10 STD module.)
Control
Switches Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 11
(NOT USED), 4 (INHPAG), 3 (MODDVC), and 2
(INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGMCA TEST SUMMARY
The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGE SUMMARY

This diagnostic used the Standard error message format. Refer to
the 11/10 STD module. Also refer to the individual test
descriptions in this module.

Table 1 DGMCA Test Summary

Test Description

1 Refill Ram Test

This test checks addressing and data paths of the cache
refill algorithm RAM on the CHX (M8515) board. The
refill RAM consists of the three 10147 RAMS on CHX3 whose
outputs are called CSH USE IN 2, CSH USE IN 3, and CSH
USE IN 4 H. When writing into this RAM, the data and
address come from the VMA (M8523). A PDP-10 instruction
WRFIL 700100,,Y writes one address of this 3-bit RAM.
The diagnostic can read the RAM address inputs and data
outputs by doing diagnostic reads from the PDP-11.

First, a refill RAM writing program is run in the KL10
ACs to try to clear the RAM to all 0s. Then a program to
write ls is loaded into the ACs but not run. Instead it
is single-pulsed by the PDP-11 through 128 writes of the
RAM.

The program checks the data and the address at the RAM
twice during each of the 128 writes - once just before
the write pulse to check for 0s, and again just after the
write pulse to check for ls just written.

In the error message, 16 bits are typed out. The left
half is the address lines, the right is the data:

0 AAA AAA AOO 000 DDD
where A is address bit, D is data bit.

Subtest 1 checks for correct address count and for 0
data. If the address is 0 and the data is not, then the
original write of all 0s may not have worked because of
failing write pulse generation. If the address is not 0,
but the data is, then there is an address path failure
somewhere. A failure because of non-0 data is probably a
failure of the 10147 RAM.

COMPANY CONFIDENTIAL

DGMCA

-2~

Table 1 DGMCA Test Summary (Cont)

Test

Description

Subtest 2 rechecks addressing and checks the data for 1s.
An error in an address bit is probably due to a data bit
being tied to the address bit. Zeros in the data can be
an open path in the data input or a failed 10147.

An error report with no subtest number and no data
typeout means that the write refill RAM instruction
control logic is not working and the MBox never got to
CSH EBox Tl or CSH EBox T3.

Loop for sequencing problems, microcode hangs, execute
the following console commands:

R SM,EX 700100 0 repeat start microcode, execute a
write refill RAM instruction.

Loop for data/address problems (console commands) :

SM reset and start microcode.
DM 0/700100 000AAA write 0 to RAM address ARA.
DN 700100 700AAA write 1s to RAM address AAA.
DN 254000 0 loop

STO start at ACO

Refill and Use RAM Test

This test checks the refill RAM and the use bit RAM
together by using a cache sweep. The use bit RAM is the
five 10147s on CBX3 whose inputs are called CSH USE IN 0
(1,2,3,4) H. puring an all-pages sweep, this RAM is
written into four times for each address. Its outputs
are used as part of the address for reading the refill
RAM. The refill RAM's outputs are part of the data
written into the use bit RAM.

The test writes all Os to the refill RAM and does a sweep
at full clock speed. This should cause all 0s to be
written into the use bit RAM by the sweep. Next, a
special repeating test pattern is written into the refill
RAM. The test then burst-pulses a sweep of all pages,
invalidating cache, and checks at each CCA INVAL T4 that:

1. The CCA address counter has counted down correctly
{it goes from 777 to 000)

2. The use RAM outputs indicate that the RAM is being
written correctly.

Subtest 1 checks all the MBox diagnostic functions to see
if the sweep correctly got to CCA INVAL T4 for the first
time.

Subtest 2 errors will only occur during program
development.

Subtest 3 checks the CCA address by clocking the PMA
address lines into the EBus register which is read by
diagnostic function.

Subtest 4 reads the data and address signals from the
M8515 board and checks the use RAM and refill RAM. The
error printout shows 16 bits as in test 1. Errors in the
left 8 bits may be caused by bad 10147s, an unterminated
addréss line, faulty use bit write pulses, or failure of
CSH USE HOLD (M8513) to hold the refill address during a
sweep. 1f there is a failure only in the right-hand
three bits of the typeout, there are probably two refill
RAM outputs tied together.

Loop for sequencing problems:

EX 701440 0,TD 20 ,or
R SM,EX701440 0,TD 20

The TD time delay may be either adjusted or omitted as
preferred.

COMPANY CONFIDENTIAL

DGMCA
-3-

Table 1 DGMCA Test Summary (Cont)

Test

Description

AC loop which waits for sweep done and loads the EBus
register with the sweeper address as in subtest 3:

SM CONSO APR, clear sweep done
DM 0/700200 20020 start invalidating sweep

DN 701440 0 CONSO APR, sweep done?

DN 700340 20 wait for done

DN 254000 2 loop

DN 264000 0 set PMA to EBus reg enable
STO run it

Sync: CSH CCA CYC, CSH USE HOLD

Cache 0 - Write to Cache Test

This test checks the control logic sequencing of a write
that should go to cache. For the sake of symmetry this
test is performed on each cache separately although
almost all of the control logic involved is the same for
each cache. The one difference is the directory for the
cache being tested, and the gate that detects any written
bits. The cache under test should have had all written
bits cleared out of its directory by the cache sweep. If
the control logic detects any written bits, it will try
to do a writeback to core before allowing the write to
cache.

Subtest 1 checks the state of MBox signals at clear WR
T0. This check is performed at a fixed number of clocks
after the start of the write instruction, so any failure
in the sequence of time states - including a branch into
the writeback 1logic ~ will cause an error in this
subtest. Also failure of CON CACHE LOOK and CON CACHE
LOAD EN will cause a reference to core instad of cache.

Subtest 2 checks whether the CSH logic sequences to CSH
DATA CLR T2. It checks the state of all MBox signals at
this time.

Subtest 3 advances to CSH EBox WR T4 and checks the MBox
diagnostic signals at this state.

Subtest 4 checks the address of the write instruction by
clocking the PMA lines into the EBus register and

checking the EBus register contents using a diagnostic
read.

Subtest 5 runs the clock and checks that the MBox gives
MB response and that the EBox microcode then sequences
back to the halt loop.
Loop for sequencing problems:

'
R SM,EX 701200 600000,EX 202000 1777

For looping in the ACs:

SM

DM 0/701200 600000 set CON CACHE LOOK,LOAD
DN 202400 1777 move to cache

DN254000 1 loop

DM 10/ “data"
STO start it going

Cache 0 - Sweep, Valid, Written Test

This test uses and checks an invalidating cache sweep of
one page. At the same time that the sweep is being
checked, the test also checks that a write like the one
used in the previous test actually succeeded in writing a
valid and a written bit in cache loction 1777. Since the
l1-page sweep and the all-pages sweep (tested earlier) are
very similar, only the differences are tested. The main
difference is that the CCA counter on the PMA board
counts down by 4 instead of by 1, and that the low two
address bits are determined by which cache's directory
(if any) matches the physical page in VMA 14-26.

COMPANY CONFIDENTIAL

DGMCA

—-4-

Table 1 DGMCA Test Summary (Cont)

Test Description
Subtest 1 single-pulses the sweep to the first CSH T3
(ccA T3) and checks the state of all MBox diagnostic
signals.
Subtest 2 checks the CCA and page address by clocking the
PMA ocutputs to the EBus register and reading the register
with a diagnostic function.
Subtest 3 checks the CSHn ANY VALID and CSHn ANY WRITTEN
signals, where n is the cache number currently being
tested. Although the previous test (3,8,13,18) checked
the control logic used for writing the valid « bits, it
is not known that M8514(CHA) or M8515(CHX) did store
those bits. A failure in this subtest means either that
a move to cache is failing or that the sweep is unable to
read out these bits.
Subtest 4 burst-pulses the sweep to the second CCA T3 and
again checks the sweep address to be sure it was
decremented by 4 and not 1. (Actually CCA 34 and CCA 35
keep on decrementing by 1 but the carry or borrow between
bit 34 and bit 33 is disabled.)
Subtest 5 runs the clock to finish the sweep and starts a
new sweep by burst-stepping it to CCA T3.
Subtest 6 checks the valid and written bits to see if
they were cleared by the previous sweep as they should
have been.
Loop - To loop on a write followed by a 1l-page
invalidating sweep:
SM
DM 0/701200 600000 set CON CACHE LOOK,LOAD
DN 700200 20020 clean sweep done
DN 202400 1777 MOVEM 10,1777
DN 701640 1 sweep invalidating page 1
DN 700340 20 check sweep done
DN 254000 4 wait for it
DN 254000 1 loop

5 Cache 0 - Directory RAM Test

This is a test of the cache directory address, valid, and
written bits. The cache is tested one (out of every
four) word at a time; that is, all 128 "word 3s" are
tested. Then word 2s, and so on until all 512 words of
the cache are tested.

Each time that 128 words are written, a sweep is pulsed
by the PDP-11 program and stopped at each of the 128 CCA
INVAL T4s that occur. At this time state, the program
checks CSHn ANY VALID and CSHn ANY WRITTEN, as well as
the cache directory parity bit for errors.

After the entire cache has been checked and swept, a
second sweep of the same type is single-stepped through
completely to make sure that no valid and written bits
remain stuck true.

Subtests 0 - 511 are the decimal address of the failing
cache line. Some directory bits {e.g., "valid") are
stored by word number, which is the low two bits of the
address.

If the low address

digit is: The word number is:
0,4,8 0
1,5,9 1
2,6 2
3,7 3

If it is not convenient to convert addresses from decimal
to octal, the console ERG command can be used to type the
EBus register after the test has halted. The right three
octal digits are address bits 27-35.

COMPANY CONFIDENTIAL

DGMCA
—5-

Table 1 DGMCA Test Summary (Cont)

Test

Description

10

11

If a cache DIR PAR odd error occurs, the bit can be
located by the following procedure:

set the halt on error switch and run the test up to this
error. Locate the backplane pins on the M8514 drawing
for the CSH DIR bits 14 through 26. Make very sure you
have the bits for the failing cache. There are four sets
of DIR bits. Then use a scope on the backplane to check
these bits. Only bit 26 should be high at this time; all
others (14-25) should be low. Replace the bad 10144.

Subtest 512 checks the sweep control bits too ensure that
they are still the same as in the beginning.

Subtest 513 checks the cache after the first sweep and
reports the first address it found that had either a
valid or a written bit still true. The failing address
is typed out in binary.

Loop - See looping instructions for test 4.
Cache 0 - Directory Disturb Test A

This is a test of cache directory addressing. Together
with the next test in sequefice, it determines whether the
internal address decoders of the cache directory and
extension RAMs are working properly. For initial
conditions, it depends on the fact that the intialization
has written page 1 with correct directory parity in all
locations, and that the valid and written bits have all
been swept off, Passing the previous test makes this
assumption valid. The test then writes four words to
each of seven quadwords in cache. The quadword addresses
are determined by floating a 1 through address bits 27 to
33. The page written is the complement of page 1; that
is; bits 14-26 = 17776. The theory is that if a chip's
address decoding is wrong, writing the 28 disturber words
will cause a detectablg error in one cof the locations
containing page 1, or a cleared valid or written bit.
The test steps through a sweep checking cache directory
parity and looking for valid or written bits that were
set.

Subtests 0-511 -~ The subtest number is the decimal
address of the cache line having the failure and the
error report indicates whether a valid, written, or
parity failure occurred. 1In the case of a parity error,
the diagnostic cannot indicate which directory bit was
picked. With an oscilloscope, however, you can check on
the backplane the signals called CSH DIR 14 n through CSH
DIR 26 n H. (n is the cache number printed in the error
message). Only bit 26 should be high. Aany other high
bit is an error. The MBox is at CCA T3 (CSH T3) of a
sweep.

Cache 0 - Directory Disturb Test B

This test is a companion of the previous test and
completes the disturb testing of the cache directory by
using a different pair of pages (5252 and 12521) than
before. The test procedure is the same as for test 6.

Subtests 0-511 - As in test 6, the subtest number is the
decimal address of the failing cache line. 1In the case
of a directory parity error, the expected data on CSH DIR
14 n through CSH DIR 26 n is 5252. That is, bits 15, 17,
19, 21, 23, and 25 should be high and all others low.

Cache 1 - Write to Cache Test
(Refer to test 3)

Cache 1 - Sweep, Valid, Written Test
(Refer to test 4)

Cache 1 - Directory RAM Test
(Refer to test 5)

Cache 1 - Directory Disturb Test A
(Refer to test 6)

COMPANY CONFIDENTIAL

DGMCA

—-6-

Table 1 DGMCA Test Summary (Cont)

Test Description

12 Cache 1 ~ Directory Disturb Test B
(Refer to test 7)

13 Cache 2 -~ Write to Cache Test
{Refer to test 3)

14 Cache 2 - Sweep, Valid Written Test
(Refer to test 4)

15 Cache 2 - Directory RBM Test
(Refer to test 5)

16 Cache 2 - Directory Disturb Test A
(Refer to test 6)

17 Cache 2 - Directory Disturb Test B
(Refer to test 7)

18 Cache 3 - Write to Cache Test
(Refer to test 3)

19 Cache 3 ~ Sweep, Valid, Written Test
{Refer to test 4)

20 Cache 3 - Directory RAM Test
(Refer to test 5)

21 Cache 3 - Directory Disturb Test A
(Refer to test 6)

22 Cache 3 - Directory Distprb Test B
(Refer to test 7)

23 Cache 0 -~ Cache Read and Data Disturb

This test checks the first read to cache and then
performs a ls and 0s data test on the cache. All of page
1 is first written with 0s. A SKIPE 1770 1is
burst-stepped and the state of the MBox diagnostic
signals checked at two places in the execution. Then a
subroutine running in the KL10 ACs is used to perform a
full-speed data test of the whole page. &s the addresses
are counted from 1000 to 1777, the cache data is checked
for 0s and replaced with ls. The process is repeated,
checking for 1s and replacing with 0s. The first error
detected is reported.

Subtest 1 burst-steps the SKIPE 1770 to CSH EBox T2 and
checks all the MBox diagnostic signals.

Subtest 2 burst-steps the instruction to the first EBox
clock after MB RESP and checks all MBox signals.

Subtest 3 only fails if the AC program hangs up and fails
to reach a halt instruction.

Subtest 4 reports the address and failing test pattern of
a data error. If the expected data is all 0s, possible
problems are as follows.

a. If the actual data has one or two bits at 1, the
problem is probably a bad RAM chip. It could also be
the write pulse CSH WRITE A, B, C, etc., on M8521,

b. If the actual data has 1s in only one of the four
9-bit groups, the problem may be the address lines on
the M8521 containing those nine bits. Also, the
write pulse cache WR 00,09, etc., may not be reaching
the M8521.

c. If the actual data has ls in wmore than one 9-bit
group, the problem may be the cache address lines
coming from M8531.

COMPANY CONFIDENTIAL

DGMCA

-7~

Table 1 DGMCA Test Summary {(Cont)

Test Description
If the expected data is all 1s and the actual data
contains one or two 0s, the failure may be a RAM chip or
open data path etch on the M8521. If the program got
this far, the all 0s case passed the test and the problem
is not likely to be addressing or write pulses.
Subtest 5 should only fail in program development.
Loop for sequencing problems:
R SM,EX701200 600000, EX332000 1770 repeat start ucode.
set look and load, and SKIPE 1770
To loop in ACs, using a MOVE instead of SKIPE:
SM
DM 0/701200 600000 set look and load
DN 202400 1770 write data from 10
DN 200440 1770 read data to 11
DN 154000 11 loop
24 Cache 0 - Tied Data Bit Test
This test completes the cache data test by checking for
cache data inputs or outputs tied together. It uses six
patterns having 1ls and 0s grouped 1in various
combinations.
Location 1000 of the cache is written with the pattern
and then read and checked.
Subtests 1-6 are the pattern numbers. The expected and
actual data are shown in the error typeout.
Loop - To loop in ACs, do the following.
NOTE
ACs 0 to 5 contain the six patterns.
Subtract 1 from the failing subtest
number to get the AC number.
SM
DM10/701200 600000 set cache look, load
DN 200740 1000 read from 1000 into 17
DN 254000 10 loop on it
To loop on the write, change ACll to MOVEM with an AC
field 0 to 5 to select the desired pattern; e.g.,
DM11/202140 1000 to write AC3 pattern.
25 Cache 0 -~ Directory Parity Test

This test checks the cache directory parity network and
error detection logic by using eight test patterns. Each
test pattern is a physical page number and either even or
odd parity bit. Bit 20 is 1 for writing even (bad)
directory parity and bit 20 equals 0 for writing odd
(correct) parity.

A routine runs in the KL10 ACs which writes, reads, and
checks one pattern each time it is started from the
PDP-11. The routine does a CONI APR, and the PDP-11
program checks the cache directory parity error bit (28)
for the proper result.

Subtests 1-4 are writing patterns with odd parity and
expect no directory parity errors.

Subtests 5-8 are writing patterns with even parity and
expect a directory parity error.

Loop - If the program stops on an error, the test code is
in the KL10 ACs and may be looped by changing the
contents of location 10 to 254000 0 (it was a 254200 0).

COMPANY CONFIDENTIAL

DGMCA

-8~

Table 1 DGMCA Test Summary {Cont)

Test

Description

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Cache 0 - Writeback 1-Word Test

This is the first test of the writeback logic. It uses a
sweep and update core instruction to request one word of
a quadword to be written back to core and to invalidate
the word in cache. The test is repeated for each word of
a quadword to ensure that the correct word request to
memory is brought up in each case. All core memories are
disabled, so a nonexistent memory timeout will occur for
each memory reference.

Subtest 1 writes word 0 of a quadword in cache, then
burst-steps a sweep, l-page update and invalidate
instruction to write back Tl time state. The state of
all MBox signals is verified.

Subtest 2 burst-steps the sweep to a point where the
memory request is active and checks the state of the
MBoX.

Subtest 3 checks after the NXM timeout has completed the
memory request. It ensures that the sweep correctly
reaches CCA INVAL T4 to invalidate the word which has
been written back.

Subtests 4, 5, 6 are the same as 1, 2, 3, but for word 1.

Subtests 7, 8, 9 are the same as 1, 2, 3, but for word 2.

Subtests 10, 11, 12 are the same as 1, 2, 3, but for word
3.

Cache 1 - Cache Read and Data Disturb
(Refer to test 23)

Cache 1 - Tied Data Bit Test
(Refer to test 24)

Cache 1 - Directory Parity Test
(Refer to test 25)

Cache 1 - Writeback 1-Word Test
(Refer to test 26)

cache 2 - Cache Read and Data Disturb
(Refer to test 23)

Cache 2 - Tied Data Bit Test
(Refer to test 24)

Cache 2 - Directory Parity Test
(Refer to test 25)

Cache 2 - Writeback 1-Word Test
(Refer to test 26)

Cache 3 - Cache Read and Data Disturb
(Refer to test 23)

Cache 3 - Tied Data Bit Test
(Refer to test 24)

Cache 3 - Directory Parity Test
(Refer to test 25)

Cache 3 - Writeback 1-Word Test
(Refer to test 26)

Two-word Writeback Test

This test tries three 2-word writebacks and counts ACKN
pulses. It is primarily concerned with checking the
request counting logic on the MBC board. In each test
case, RQO is paired with one of the other three requests
- RQl, RQ2, or RQ3. The test writes a pair of words to
cache and then steps a sweep-and-update-core in order to
cause a writeback request. The pairs of locations used
are:

COMPANY CONFIDENTIAL

DGMCA
-9~

Table 1 DGMCA Test Summary (Cont

Test Description
Subtest Address Requests
1 and 2 1774,1775 RQO,RQ1
3 and 4 1774,1776 RQO,RQ2
5 and 6 1774,1777 RQO,RQ3
40 Writeback Address Path Test
This test checks the address paths from the cache
directory through the CAM 14-26 mixers on the CHX board,
through the PMA address mixers to the EBus register. The
EBus register is forced to load from the PMA so that it
can be checked for the proper address at memory start
time. Sixteen entries are written in the cache directory
and forced out one at a time by single-stepping a sweep.
The page numbers of the 16 entries are chosen to detect
any multiple selection problems in the CAM mixers.
Subtests 1-8 identify the pattern being used. The cache
being selected by each subtest is as follows,
Subtests Cache
1,5,9,13 3
2,6,10,14 2
3,7,11,15 1
4,8,12,16 0
41 Write Forcing Writeback
This test causes a writeback by writing to a quadword of
cache that is occupied by a word written to a different
page. It checks the MBox state when the writeback should
happen and when the new word should be getting written
into the cache. Cache 1 is used for this test.
Subtest 1 writes a word to location 357 in cache, then
starts execution of a write to location 1357,
burst-stepping to where writeback T1 should be true. The
state of the MBox is checked at this point.
Subtest 2 burst-steps the instruction to memory start and
checks the state of the MBox memory requests.
Subtest 3 bursts to what should be CSH EBox WR T4 and
checks the MBox state as it should be writing into cache.
Subtest 4 checks states at the end of the write to cache.
42 Read Forces Writeback, 4-Word, Read

This test uses a read to cause a writeback. Cache 2 is
configured and one word written to cache. A read of the
same quadword of a different page is used to cause a
writeback and also to check writing into cache of the
four words fetched from core. Memory is not configured
for this test, so the NXM timeout logic is relied on to
simulate memory responses.

Subtest 1 burst-steps the read to CSH EBox T3 and checks
MBox states.

Subtest 2 checks the MBox states just after the writeback
to memory has been started.

Subtest 3 checks MBox states after the NXM 1logic has
finished the writeback.

Subtest 4 checks the MBox state at the time when core
read in progress goes true for the 4-word read.

Subtest 5 checks states when MBox response should be true
to deliver the read word (word 3) to the EBox.

Subtest 6 checks the MBox as it should be writing word 3
to cache.

Subtest 7 checks the MBox as it should be writing word 0
to cache.

COMPANY CONFIDENTIAL

DGMCA

~10-

Table 1 DGMCA Test Summary (Cont)

Test

Description

43

44

45

46

Subtest 8 checks the MBox as it should be writing word 1
to cache.

Subtest 9 checks the MBox as it should be writing word 2
to cache.

Read With Look Only

This test checks cache operation with CACHE LOOK EN true
but CACHE LOAD EN false, A cache word is written and
then a read is performed and checked to see that it does
not cause a writeback of the word in cache (a different
page, of course) and that the word read from core does
not get written into cache. Cache 2 is used.

Subtest 1 starts executing the read and checks MBox
states at CACHE EBOX T2.

Subtest 2 checks the start of the memory reference at CSH
DATA CLR DONE.

Subtest 3 checks MBox states at the end of the read
sequence.

Subtest 4 steps a read of the original word in cache and
checks states at CSH EBOX T3 to be sure the cache
directory is still intact.

Read-Pause-Write Data in Cache

This test does a read-pause-write with cache turned on
and checks to see that it gets turned into a read
reference followed by a write reference when the data is
already in cache. Location 357 is written in cache and
an A0S 357 is used as the read-pause-write reference
instruction. The cache is configured to operate in all
four caches. This test should use cache 3.

Subtest 1 starts the AOS instruction, burst-steps to
where MB RESP should be true, and checks MBox states.

Subtest 2 burst-steps to the MB RESP of the write
reference and checks MBox states.

Read-Pause-Write Data Not in Cache

This test checks a read-pause-write operation with the
cache containing the right quadword but not the desired
word. The read reference should cause a 3-word fill read
to be performed and the write reference should write to
cache.

Subtest 1 checks at CSH EBOX T3 of the read request.

Subtest 2 checks after the NXM timeout when MB RESP for
the read should be true.

Subtest 3 checks MBox states during the writing of word 1
from memory to cache.

Subtest 4 checks MBox states during the writing of word 2
from memory to cache.

Subtest 5 checks MBox states during the writing of word 3
from memory to cache.

Subtest 6 checks MBox states when cache idle should be
true at the end of the write reference of the
read-pause-vrite,

Error Address Register Check

This test forces errors during cache operations and
checks that the error address register gets the right
information. Cache 3 is used for the test.

Subtest 1 writes a word of bad data parity into cache and
then uses a sweep to write it back to memory. The
writeback operation should detect the parity error.

COMPANY CONFIDENTIAL

DGMCA

~il-

Table 1 DEMCA Test Summary (Cont)

Test

Description

47

48

49

50

Subtest 2 writes a word in cache with bad data parity. A
write to the same line of a different page is used to
cause a writeback during which the data parity error
should be caught.

Subtest 3 writes a word in memory with bad parity and
does a read-pause-write reference to it with the cache
turned on.

CSH DIR PAR ERR Inhibits Cache

This test causes a cache directory parity error and
Checks that cache bit is held false and force-no-match is
held true from then until the APR CSH DIR PAR ERR flag is
cleared. It checks that clearing the APR flag restores
the cache to operation.

Subtest 1 writes a word with incorrect directory parity
to cache location 777. It then steps a read which will
cause a writeback (MOVE 17,1777) . The CSH DIR PAR ERR
will be detected during the writeback. A full scan of
MBox states is taken at the time when APR CSH DIR PAR ERR
is true.

Subtest 2 bursts the clock to finish the MOVE and then
checks that CSH DIR PA ERR is holding the cache off.

Subtest 3 clears the CSH DIR PAR ERR flag and checks that
cache bit goes true and force no match goes false,

Cache to Memory Data Exercise

This test runs a read/write program in the ACs and
monitors the results. The AC program compares the data
read with that written and also checks APR flags for SBus
error, NXM, MB PAR ERR, and CSH DIR PAR ERR. If the 11
program finds that the AC program made an error halt, the
information pertaining to the type of error is collected
and printed (CONI APR data, error address register, data
address, expected and actual data) .

The AC program writes eight pages (4096 words) of data
through the cache into memory and then reads and checks
eight pages. Addresses are down-counted from X17777 to
X10000, (X is normally 0, but it depends on where the
lowest 16K memory module was configured in the address
space.) The data word is down-counted in each of three
12-bit groups, changing from 777777 777777 to 777677
767776, for example. This pattern gives every bit a
chance to change while causing parity to change on every
word.

Cache/Paged References

This test checks the control and data paths used to fetch
page refill entries from the cache. It also checks that
the cache bit signal is controlled by PT cache when
paging is enabled.

DMA20 3-Word OPS

This test performs three word reads and writes to the
DMA20 to check its multiword request and acknowledge
counting logic. This test is in DGMCA because using the
cache is the only way to cause multiword writes to the
DMA20 on a KL10 without internal channels,

Subtest 1 performs 512 3-word writes. One cache (cache
1) is configured so that writebacks will occur on the
first of three writes to a new pPage. A program running
in the ACs writes to the cache in this sequence:

{Addresses)
XXX703,XXX702,XXX701 XX1700,XX1703,XX1702
XXX701,XXXX700,XXX703 XX1702,XX1701,XX1700

and then it repeats.

COMPANY CONFIDENTIAL

DGMCA

-12-

Table 1 DGMCA Test Summary (Cont)

Test

pescription

The XXs depend on the address of the lowest memory
configured on the DMR20.

The write to cache Causes DMA 3-word
address: requests:

XX1700 3,2,1

XXX701 0,3,2

XX1702 1,0,3

XXX703 2,1,0

Subtest 2 causes 3-word reads f{and a 1-word write) by
using a modification of the same AC program as above, It
writes one word of a page, then reads a different word,
causing the cache to read the remaining (unwritten) words
from the DMA20. The write will cause a l-word writeback
of the word written to the previous page.

Program Sequence cache and Memory Actions
WRITEXXX703 Writeback 1702

READXXX702 3-word read 703,700,71
READXXX701 Read cache 701
WRITEXX1700 writeback 703

READXX1703 3-word read 1703,1701,1702
READXX1702 Read cache 1702
WRITEXXX701 wWriteback 1700

READXXX700 3-word read 700,702,703
READXXX703 Read cache 703
WRITEXX1702 Writeback 701

READXX1701 3-Word read 1701,1703,1700
READXX1700 Read cache 1700

COMPANY CONFIDENTIAL

DGMCB

-1-

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs
Restrictions

Notes

Loading and
Starting
Procedure

Control
Switches

DGMCB.All
KL10-PA Cache RAM Banger Diagnostic

DGMCB is a diagnostic aimed specifically at the
ECL 'RAMs associated with the KL10 cache
subsystem. It has tests for the cache directory,
written bits, valid bits, data words, and the use
bits. All these items are stored in ECL RAMs.
The tests in this diagnostic force the KL10 to
run worst-case patterns through these RAMs, and
then, if an error is detected, isolate the board
and the RAM chip associated with the error.

The diagnostic 1is meant specifically to find
intermittent faults in the cache RAM ICs. If it
finds one it will call out the board and the
chip. The callout for cache logic errors is
wrong but the RAM chips called out may lead to
the failing control logic. Scope loops to look
for intermittent RAM errors are almost useless;
however, the diagnostic does de long strings of
operations with the cache which could be valuable
in tracking down other ,problems while using a
scope.

KL10~-PA mainframe/MCA20

Refer to diagnostic hierarchy (11/10 STD module).
None

This diagnostic should be run after DGMCA (the
cache diagnostic) since it assumes that the cache
control logic is working. 1If a given error is a
result of control logic failure, then the board
and DIP numbers are meaningless. There are no
isolation routines associated with this
diagnostic because the test error routines
contain the isolation algorithms.

Due to the highly interdependent nature of the
cache logic, it is impossible to guarantee that
an error in a given test is due to the part being
tested. Do not assume that because a chip is
called out it must be at fault. There are some
wire ORs in existence, and, furthermore, the
inputs and outputs of the chips go through other
gates which could fail. In other words, think
before replacing anything.

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART) , 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), and 3 (MODDVC).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DGMCB TEST SUMMARY
The individual tests performed by this diagnostic are summarized

in Table 1.

ERROR MESSAGE SUMMARY
This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

COMPANY CONFIDENTIAL

DGMCB

-2~

Table 1 DGMCB Test Summary

Test

Description

2, 3,
4, 5

10, 11
12, 13

Cache Refill RAM Test

This test is designed to find bit interference within the
refill RAMs (E15, E20, and E25 on the CHX board}. Hard
failure of these RAMs should be detected by DGMCA.

Cache Directory RAM Verify

Each line (4 words) of the cache is associated with a
page number. This number is held in the cache directory
RAM on the CHA (M8514) board and the RAMs which hold it
are the subject of this test. Note that there is only
one page number per four words; therefore, only the first
word of each line need be referenced to exercise the
directory word. There are three parts to these tests:
initialization, fault detection, and fault isolation.

The initializations merely select which cache bank is to
be used by the test. 1In addition, test 2 initialization
loads the AC program to be used by all four of the tests,
does XOR initialization, and shuts off memory.

The test itself is done almost entirely from the KL10 AC
blocks. The PDP~1l1 part of the test only loads
parameters into the ACs for the AC program to use. Note
that the AC program fills multiple AC blocks. There is a
great deal of setup involved with this. In particular,
pointers must be maintained separately in each block, and
control mwust be passed from one block to the next.
nC15-17 perform this latter function and are not part of
the test.

The errors that this test looks for are cache directory
parity and nonexistent memory (NXM). If a directory bit
is altered by the writing of another bit in the directory
RAM, then a CSH DIR PAR error will occur. If it was the
high page address which was modified, an NXM will also
occur, and this will lock up the error address register.
The NXM occurs because the words in cache were written.
Changing the address will cause no match, which causes a
writeback to the address specified in the directory. The
same can occur with the low page words and a CSH DIR PAR
error will result also. Once the fault isclation routine
has the error address, it is a simple matter to translate
this to the chip number.

Cache Valid Bit RAM Test

Each word of the cache has a bit associated with it which
indicates whether the word <contains valid or
indeterminate data. The RAMs which hold these bits are
the subject of this test. The RAMs are located on the
CHX board. As in the other tests in this diagnostic,
most of the testing is done by the multiblock AC program,
with the PDP-11 just providing support. The test works
as follows. All the valid bits are cleared by an
invalidating sweep. A test bit is chosen. All other
valid bits in the RAM are set by writing to the other
cache locations. The test location is then read. 1If a
core read was done, everything functions properly. The
test location valid bit is now set. All other locations
are now invalidated and another read is done to the test
location. If the test valid bit is still set, no memory
read is done and all is well. The next test location is
now selected and the process repeated until all bits of
the selected cache have been tested.

Cache Written Bit RAM Test

One of these bits is associated with each word in the
cache. If the written bit is set, it means that the word
in the cache was created in the CPU and sooner or later
has to go to memory. This test is designed to ensure
that the written bit RAMs work. The test occurs in the
following three parts.

COMPANY CONFIDENTIAL

DGMCB
-3~

Table 1 DGMCB Test Summary (Cont)

Test

Description

14

15, 16
17, 18

19, 20

a. The initializations select which cache bank is being
tested. In addition, the first unit of thig series
of tests loads the AC program. Note that it is a
multiple AC block (1-6) program.

b. The test itself runs entirely from the RL10 ACs. The
PDP-11 does nothing more than start the KL1O. See
comments with each AC block for description of
operation.

¢. Once a fault has been found the error isolator looks
at the ERA to get the error word number. This plus
the cache bank number leads directly to the chip
number .

Test 14 initialization is used only to clean up the
incorrect parity words left by the written bit tests.
The test itself is a no-op.

Cache Data Word RAM Test

Tests 15-18 are the cache data word tests. Test 15
checks cache bank 0, etc. All testing is done by a
multiple AC block program. BAll the PDP-11 code is used
to either load, run, or analyze the results of this AC
program.

The cache data resides in the M8521 (CHD) boards. Each
word in the cache is split across all four of the CHD
boards as follows.

Bits Slot
00-08 25
09-17 24
18-26 19
27-35 17

These tests are designed primarily to exercise the cache
data RAMs (type 10144). 1If an error is found, they call
out the RAM(s) which correspond to the error data. If
the error was caused by non-RAM chips, then the E numbers
called out will be erroneous, though they may help lead
to the failing chip. In other words, think before you
grab the soldering iron.

Note that the 10144s are 256X1 RAMs. Because of this,
the nth bits of the four words of a cache "line" reside
in two (not four) RAM chips; the even bits go to one, the
odd bits to the other. Hence, the test and associated
code refer to even/odd pairs rather than lines. See the
individual AC program blocks for description of
operation.

NOTE
Since the RAM outputs are wire-ORed and
the inputs are driven as a group, a
stuck-at-1 condition may result in the
wrong chip being called out. The even
word chip will be called out even if an
odd word bit is stuck.

There is a lot of setup involved in switching between the
AC blocks and maintaining separate parameters in each AC
block. Don't let this (necessary) setup confuse you.

Initializations for the cache Gata RAM tests select which
cache bank will be tested: test 15 checks bank 0, etc.
In addition, test 15 initialization loads the AC program
for all 4 tests.

In the cache data RAM tests, all testing is done by the
AC program. If the program finds no error, the PDP-11
just moves on to the next test. Most of the code here is
used for generating error typeouts.

Cache Data Parity RAM Test

COMPANY CONFIDENTIAL

DGMCB

-4

Table 1 DGMCB Test Summary (Cont)

Test

Description

21, 22

These tests are similar to the cache data tests (QV),
with the following differences.

a.

The arrangement of the parity bits with respect to
slots is as follows.

Cache bank 0 parity - slot 25
Cache bank 1 parity - slot 24
Cache bank 2 parity - slot 19
Cache bank 3 parity - slot 17

Because there are only two parity RAMs per board
(even and odd words), calling out which RAM is very
easy.

Since complementary patterns in a data path with an
even number of bits generate the same parity bit
value, different patterns are used: 0 for the nontest
pairs, 1 (not -1) for the test pair. This is the
reason for having separate data and parity bit tests.

Since the parity bit is being tested, the test never
looks at the data patterns, but only does sweeps
followed by a check of the APR flags. If a parity
bit was incorrect, the MB parity error flag will be
set, with the ERA indicating which word was in error.

Initializations for the cache data parity tests
select which cache bank will be tested: test 19
checks bank 0, etc. In addition, test 19
jnitialization loads the AC program for all four
tests.

In the cache data parity RAM tests, all testing is
done by the AC program. If the program finds no
error, the PDP-11 just moves on to the next test.
Most of the code here is used for generating error
typeouts.

COMPANY CONFIDENTIAL

DGMMA

GENERAL INFORMATION

Code DGMMA.ALL
Title KL10 Core Memory Reliability and Margining Test
Abstract This diagnostic program is designed to detect and

isolate faults in the operation of the KL10 core
memory. It is not a complete test of the memory
system. DGKBB is assumed to have been run
successfully. Internal memory controllers are
tested one at a time in sequence for each test.
This memory is configured at address 200000 while
being tested in order to avoid shadow core.
External memory is of course tested wherever it
appears in the address space. 1In this case, the
program will test shadow core directly.

Hardware
Required KL10-PA or -PV mainframe/internal memory/ME10s/
MF10s/MG10s/MH10s/ MA20s/MB20s.

Preliminary and

Associated

Prograns Refer to diagnostic hierarchy (11/10 STD moduiej.

Restrictions This diagnostic may not be run with KLDCP
versions before version 12.

Notes 1. Certain external memory bus configurations

will not function correctly unless the CPU is
operating at clock rate 0. single-pulsing
through external memory references is
permitted only in l-bus mode.

2. External memory tests rely on correct setting
of the memory switches in order to determine
how the memory is interleaved. It is assumed
that the memory is noninterleaved, and it is
recommended that reliability runs be
performed in 1-bus mode.

3. DGMMA supplies its own microcode.

4. Quick verification of all core memory which
responds to SBus diagnostics may be per formed
by setting the console switches to 0 and
executing a SED 1 command to KLDCP following
the load. A reliability run may be initiated
by setting console switch 6 and executing an
SED. All memory which has not failed the
test will be properly configured only if the
program has completed its last pass. Console
switch 15 will cause the program to abort at
end of pass.

Loading and

Starting
Procedure standard (Refer to the 11/10 STD module.)
control
Switches Standard (Refer to the 11/10 STD module.)

The following switches are not applicable: 11
(NOT USED), 4 (INHPAG), 3 (MODDVC), and 2
(INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON. In addition, software
switches may be appended to the loading and starting procedure.

Format:
SED#/S/5/S

Refer to Table 1 for a description of the
available software switches.

DGMMA TEST SUMMARY
The individual tests performed by this diagnostic are summarized
in Table 2.

ERROR SUMMARY

This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

COMPANY CONFIDENTIAL

DGMMA

-2-

Table 1 DGMMA Software Switches

Switch

Description

/H

Print help message.

/FREEZE:Cx,My Test only the controller specified by x. If My

is specified, test only the module specified by

y.
/FREEZE :NONE This resets to the default of testing all memory.
/MARGINS:x Invokes margin testing of internal memory where x

is one of the following:
NONE (default)
ALL

CURRENT H,L (or H or L)
STROBE H,L {or H or L)
THRESHOLD H,L (or H or L)

Margins are run in sequence with the memory being
cleared at normal margins before using the next
margin,

/PATTERN:x X is a 36-bit value to be used for pattern tests.

/BUS:x

/TYPE:x

Typing NONE for X will restére the default
patterns.

Forces testing with a specific DMA20 bus mode,
where x is NORMAL (default), 0 (off), 1, 2, or 4.
Note that setting a bus mode greater than that
selected on any memory will lose, and that
setting a lower bus mode is guaranteed only for
l-bus mode at clock rates other than clock-rate
0.

Identifies the external memory type. No entry is
required to verify proper operation unless it is
desired to test an ME-10., The use of this switch
may, however, improve fault resolution of some
addressing faults.

/SEGMENT:sa,n Tests only a contiguous block of external memory,

where sa is the starting address and n is the
number of 16K segments. All the memory which is
interleaved must be included if it is desired to
perform the correct worst-case test for the
entire segment.

/SEGMENT : NONE Restores the default to testing all of memory.

Table 2 DGMMA Test Summary

Test Description

1 Memory system configuration validity check.

2 Checks loopback to each memory module for 1s and 0s.

3 Checks loopback to each memory module for a rotating
pattern unless a specific pattern has been selected, in
which case only that pattern is used.

4

Address-tests MA20/MB20 memory modules. The test is
performed by executing the following sequence.

a. Write 0s to a memory location.
b. Read the location just written.

¢. Read the same location again (to eliminate data paths
from consideration).

d. Write all ls to a different location.

e. Test that the original location did not change.

COMPANY CONFIDENTIAL

DGMMA

-3-

.Table 2 DGMMA Test Summary. (Cont)

Test

Description

10

11,12

Solid faults in this test should be generated only by
addressing problems. Patterns used correspond to the
input combinations for module X-Y drive. A loop is left
running in the ACs if a fault is detected. The addresses
are left in AC15 and ACl6.

Address-tests external memory modules. The test is not
necessary to verify memory operation, but it serves to
improve fault isolation over the address tag test for
certain malfunctions. On the KL10-Pa, only addresses less
than 777777 are tested, so memory switches must be set
accordingly. The test is performed only if the module
type has been specified. Since this test is performed in
l1-bus mode, it is run only at clock rate 0. It executes
the following sequence.

a. Write 0s to a memory location.
b. Read the location just written.

€. Read the same location again (to eliminate data paths
from consideration)

d. Write all 1ls to a different location.
e. Test that the original location did not change.

Solid faults in this test should be generated only by
addressing problenms. Patterns used correspond to the
input combinations for module X -Y drive. A loop is left
running in the ACs if a fault is detected. The addresses
are left in ACl5 and ACl6.

Checks each memory core for its ability to hold a 1. Read
restore of 1ls is also tested.

Checks each memory core for its ability to hold a 0.
Inhibiting of 1s on read restore is also tested.

Checks the parity bit for its ability to hold a 0.
Pattern-tests the memory.

This is the controller level address tag test for internal
memories. The only faults detected here should be stack
select errors. Setting the reliability switch causes this
test to be run three times. The pattern order and address
direction are reversed for the second and third passes
respectively. For external memory, almost any addressing
error could be detected by this test. See subroutine
ADRTAG at the end of this table.

Exercise the memory with the worst-case pattern loaded.
Test 11 checks all bit planes except the parity bit. Test
12 checks all bit planes except bit 35. Exercising of the
memory is performed using a program in AC Block 0 which
read-restores or double complements the memory while
changing an address bit at a fast rate. If the
reliability switch is set, the worst-case pattern is
verified for each fast-rate bit; otherwise, the memory is
exercised for all bits and then checked. The reliability
switch also enables 1s/0s checkerboard pattern testing for
all data bits.

COMPANY CONFIDENTIAL

DGMMA

ADRTAG

ADRTAG is a subroutine designe

~4-

otherwise known as an address-tag test.
follows.

them all back.
writes it will show up on
written in a reverse order to catc
from high to low memory.
with complement
can hold a 1 and a 0,

Write the addresses o
If there was any address in
the readback.

interference problems.

Finally,
ary data to ma

d to do an address-is-data test,
procedure is as
f each word into the word and read
terference on the
The addresses are also
h address interference problems
both of the above are repeated
ke sure that each bit of the memory
and also to catch data-

related address

This address-tag test features patterns in both halves of the data
word. This is necessary because the memories are built as two
18-bit modules in parallel. The problem is that the max imum
address is 22 bits and two 22-bit numbers will not fit into 36
bits. 1In this test, the 22-bit address is kept in the right half
of the word and a special "1 bit insensitive" pattern is kept in
the high-order 14 bits of the word. The nature of this pattern is
such that any 1l-bit address error will go to a word whose
high-order pattern is different. Thus it can be determined
whether the address interference occurred in the left, right, or
both halves of the word, which gives some indication of where the
error is occurring.

To preserve PDP-11 memory space, the AC programs are not given for
all nine subtests. Instead, the AC programs are constructed by
the PDP-11 in the ACs at run time. A lot of the 11 code is used
to this end and is not actually part of the test. Note the
capability to change the order of the subtests.

Subtests 1, 4, 6, and 8 should not get any errors except perhaps
for erroneous NXMS which indicate faulty address-acknowledge
logic.

Subtests 2, 5, 7, and 9 will catch most of the erros in this test.
These include dropouts, picked and stuck bits, and address
interference. If either the pattern in bits 00-13 or the address
in 14-35 is correct, then the error was probably a dropout, picked
or stuck bit. If both halves have strange but incorrect data then
the chances are that the problem is address interference.

An error in subtest 3 indicates read-restore problems if the data
coming back has massive dropouts; otherwise, the problem is
probably an intermittent read (sense) error.

Contents of Accumulators for Subtests 1 to 4.

Subtest 4
Write Forward
Address Pattern

Subtest 1
wWrite Forward
AC Address Comparison

Subtest 2 (see note
Read Porward
Address Comparison

Pattern Pattern

00 TRNN,17,,37777 TRNN,17,,37777 TRNN,17,,37777

01 HRRI,2,,-320,2 HRRI,2,,-320,2 HRRI,2,,320,2
Start 02 HRLOI,16,,-1 H8RLOI,16,,-1 HRLZI,16,,0

03 XOR,16,,17 XOR,16,,17 XOR,16,,17

04 HRRI,2,,-460,2 HRRI,2,,-460,2 HRRI,2,,460,2

05 SXCT,,,13 SXCT,,,13 SXCT,,,13

06 JRST,,.l0 CAME,15,,16 JRST,,,10

07 HALT,,,1

10 CAME,17,,14 CAME,17,.,14 CAME,17,,14

11 A0JA,17,,0 ADJA,17,.0 ADJA,17,,0

12 HALT,,,0 HALT,,,0 HALT,, .0

13 MOVEM,16,,0,17 MOVE,15,,0,17 MOVEM,16,,0,17

14 LAST ADR LAST ADR LAST ADR

15 ECHO ECHO ECHO

16 PATTERN PATTERN PATTERN

17 ADDRESS ADDRESS ADDRESS

NOTE
Subtest 3 is the same as Subtest 2.

This is specifically to check for the
possibility of a faulty read-restore
operation in the memory.

COMPANY CONFIDENTIAL

Start

Start

-5~

DGMMA

Contents of Accumulators for Subtests 5 to 7

Subtest 5
Read Forward
Address Pattern

TRNN,17,,37777
HRRI,2,,320,2
HRLZI,16,,0
X0R,16,,17
HRRI,2,,460,2
SXCT,,,13
CAME,15,,16
HALT,,,1
CaME,17,,14
ADJA,17,00
HALT,,,0
MOVE,15,,0,17
LAST ADR

ECHO

PATTERN
ADDRESS

Subtest 6

Write Backward
Address Comparison
Pattern

‘TRNN,17,,37777
HRRI,2,,-320,2
HRLOI, 16, ,-1
XOR,16,,17
HRRI,2,,-460,2
SXCT,,,13
JRST,,,10

CAME,17,,14
S0JA,17,,0
HALT,,,0
MOVEM,16,,0,17
LAST ADR

ECHO

PATTERN
ADDRESS

Subtest 7

Read Backward
Address Comparison
Pattern

TRNN,17,,37777
HRRI,2,,-320,2
HRLOI,16,,~1
XOR,16,,17
HRRI,2,,-460,2
SXCT,,,13
CAME,15,,16
HALT,,,1
CAME,17,,14
S0JA,17,,0
HALT,, .0
MOVE,15,,0,17
LAST ADR

ECHO

PATTERN
ADDRESS

Contents of Accumulators for Subtests 8 and 9

Subtest 8
Write Backward
Address Pattern

TRNN,17,,37777
HRRI,2,,320,2
HRLZI,16,,0
XOR,16,,17
HRRI,2,,460,2
SXCT,,,13
JRST,,,10

CAME,17,,14
S0Ja,17,,0
HALT,,,0
MOVEM,16,,0,17
LAST ADR

ECHO

PATTERN
ADDRESS

Subtest 9
Read Backward
ADDRESS Pattern

TRNN,17,,37777
HRRI,2,,320,2
HRLZI,16,,0
XOR,16,,17
HRRI,2,,460,2
SXCT,,,13
CAME,15,,16
HALT,,,1
CAME,17,,14
soJa,17,,0
HALT,, ,0
MOVE,15,,0,17
LAST ADR
ECHO

PATTERN
ADDRESS

COMPANY CONFIDENTIAL

DGQDA

~1-

GENERAL INFORMATION

Code
Title

Note

DGQDA.BIN
DECSYSTEM Diagnostic Console Program
DGQDA is the diagnostic code name for KLDCP.

Refer to the KLDCP module for further
information.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DGQDD

GENERAL INFORMATION

Code DGQDD.All
Title DN87S Loader Utility Program
Abstract DGODD works in conjunction with DGQDE, the DLI1E

monitor program to down-line load the DN87s
communications front-end subsystem from the
console front-end. These programs and their
relationships are described in the summary for
DGQDE.

Note Refer to the DGQDE summary for further
information.

COMPANY CONFIDENTIAL

"EK-0KL10~
NOV 1979

DGQDE

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary
and Associated
Programs

Restrictions

Notes

DGQDE.All
DLDP-DL11E Monitor

Normally, DFSXA (a l0~based 10 maintenance
program) is used to down-line load programs from
the KL10 through the DTE20 and intoc a DN87S
communications front-end for execution. Should
this method fail, DGODD and DGQDE provide an
alternate method for loading programs into the

DN87S for execution. DGODD is a primary
down-line loader that runs under KLDCP in the
console front-end. DGQDE is a secondary

down-line loader that runs in the DN87S. ' Before
this alternate path. can be used, however, the
KLINIK DL11-E in the console front-end must be
connected to the diagnostic DL11-E in the DN87S.
Also a terminal must be connected to the DL1li-C
in the DN87s. Once this path has been
established, it may be used to down-line load and
execute ll-based 11 maintenance programs in the
DN87S. You may also run 11-based 10 maintenance
programs in the DN87S by first down-line loading
KLDCP.

KL10 console front-end subsystem/DN87S
communications front-end subsystem with an H312
null modem and a terminal.

KLDCP, DGQDD, appropriate 11/11 and 11/10
diagnostic programs. This program assumes that
the console front-end and both DL11-Es are fully
operational,

1. The KLINIK DL11-E in the console front-end
must be connected to the diagnostic DL11-E in
the DN87S via the K312 null modem.

2. Both the KLINIK DL11-E and the diagnostic
DL11-E must be set to 9600 baud rate.

3. A terminal must be connected to the DL11-C in
the DN87s.

4. All programs to be run, including DGQDD and
DGQDE must be stored on the selected KLDCP
load medium.

5. If KLDCP is used to run the 11/10 diagnostic
in the DN87S, the DTE20 for the DN87S should
be set to privileged mode.

6. The copy of KLDCP running in the console
front-end must be version 11 or later.

1. The DL11-E for the KLINIK 1link is normally
set at 300 baud rate.

2. Remember to return the system to its exact
original configuration. Then verify that it
is fully operational, including the KLINIK
link.

3. Functionally, the commands supported by’ DGQDE
are the same as those Supported by the 11/11
XXDP diagnostic monitor. If you need more
information than is supplied by this command
summary and description, refer to the XXDP
summary in the 11/11 Maintenance Library
section.

COMPANY CONFIDENTIAL

EK-0KL10-03
DGQDE NOV 1979

-2
Loading,
Starting
and Stopping
Procedures Procedure 1 describes how to configure the system

so that KLDCP, DGQDD and DGQDE can be used to
down-line load and execute programs in the DN87S.

Procedure 2 describes how to return the system to
its original configuration upon completion.

procedure 3 describes how to load and run 11/10
programs in the DN87S.

OPERATIONAL CONTROL
DGQDE is controlled via commands entered on the terminal connected
to the DNB87S.

Table 1 summarizes DGOQDE command conventions and control
characters.

Table 2 summarizes the DGQDE command set.

Procedure 1 Preparing the System to Run DGQODD and DGQDE

Step Procedure

1 Power down both the console and communications front-end
subsystems.

2 set the DL11-E for the KLINIK link in the console
front-end to 9600 baud.

3 Check to assure that the DL11-E for the diagnostic link in
the DNB7S is at 9600 baud.

4 Remove the cable from the KLINIK link modem and plug it
into the H312 null modem attached to the DN87S.

5 Connect a terminal to the DL11-C in the DNB87S.

6 power up both front-end subsystems.

7 Load KLDCP into the console front-end.

8 Mount and select (via KLDCP) the storage medium containing

DGQDD, DGQDE and the programs to be run on the DN87S.
9 Load and start DGQDD via KLDCP. (e.d.. >. P DGQDDS$)

10 At the DN87S console, press the UNLOCK and LOAD SELECT 1
switches simultaneously. DGQDE will automatically load
into the DN87S and enter command mode. Refer to the DGQDE
Command Summary, Table 2.

Procedure 2 Restoring the System After Running DGQDD and DGQDE

Step Procedure

1 power down the console and communications front-end
subsystems.

2 Disconnect the terminal from the DN87S.

3 Disconnect the KLINIK cable from the H312 null modem and
reconnect it to the KLINIK modem.

4 Return the DL11-E for the KLINIK link to 300 baud.

5 Power up both front-end subsystems.

6 Verify that the system (including the KLINIK link) is

fully operational.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DGQDE

~3-

Procedure 3 Running 11/10 Diagnostics in the DN87S

Step Description

1 Perform Procedure 1

2 R KLDCP<CR>
FE#>.
At the DN87S terminal, direct DGQDE to load and start
KLDCP. KLDCP responds with its prompt (FE§>.).

3 FE#>.DL<CR>

Direct KLDCP to select the DL11-E in the DN87S as the load
medium. Now, when the copy of KLDCP that is running in
the DN87S front-end is directed to load and run an 11/10
program, it will pass the load request (via the DL11-E) to
DGQDD running in the console front-end. DGQDD will then
direct the console copy of KLDCP to read the program from
its selected load medium and transfer it (via the DL11-E)
to the DN87S. The copy of KLDCP running in the DN87S will
automatically start the program. From this point on the
DN87S front-end subsystem will act as if it were the
console front-end (i.e., the DN87S console switches will
be used for program control etc.)

Table 1 DGQDE Command Conventions and Control Characters

Convention Description

<CR> Carriage return in the standard DGQDE command line
terminator.

e Control C - Unless DGQDE is executing an R or §
command, a control C typed on the DN87S terminal
will abort the current operation and return the
terminal to DGQDE command mode (monitor state)., If
an R or S command is in effect (i.e., an 11/11
program is running in the DN87S), then the DN87S
must be manually halted and restarted at the DGQDE
restart address.

“c Control C typed on the console terminal wilil
disconnect the console from DGQDE and return the
terminal to KLDCP command mode. Control C out of
DGQDE first; otherwise, the results may be
unpredictable.

Table 2 DGQDE Command Summary
Cross

Command Description Ref.

C C CPU34<CR> 1
Execute the chain or command file
specified (CPU34).

c/Qv C CPU34/QV<CR> 1
Execute the chain or command file
specified (CPU34) in quick-verify mode.

F F<CR> 2
Display the DN87S terminal fill count and
leave it open for modification,

L L DFKAA<LCR>
Load but do not start the program
specified (DFKAA).

R R DFKAACCR> 3
Load and run the program specified
(DFKAA) ,

S S 204<CR> 3
Start the DN87S at the PDP-11 address
specified (204).

S<CR> 3
Restart the DN87S at the last address
specified. If a program has been loaded

(via the L or R command) since the last
address was specified, then start that
program at its normal starting address.

See the L command.

COMPANY CONFIDENTIAL

ER-0KL10-03
DGQDE NOV 1979

-4-

COMMAND DESCRIPTIONS
This section describes in more detail those commands with a cross
reference number in Table 2.

1. C CPU34<CR> or C CPU34/QVKCR> - The C command causes the
command (chain) file specified to be read into core and
executed. The /QV switch will cause each program listed
in the command file to be executed only once, regardless
of the pass count specified in the command file. See
Note 3 under GENERAL INFORMATION.

2. F<CR> - The F (fill) command allows the number of fill
characters following a carriage return to be changed.
DGQDE will respond to the F command by displaying the
current fill value. To leave the value unchanged, type a
carriage return. To change the value, type the new value
followed by a carriage return. See Note 3 under GENERAL
INFORMATION.

3. R DFKAAKCR> or S addr<CR> or S<CR> - These command will
cause a program other than DGQDE to run. In all cases,
manual intervention at the DN87S is required to stop the
program. The DN875 should then be restarted at the
restart address specified by the DGQDE header message.

ERROR SUMMARY

The following is a list of standard error messages and their
meanings.

INVADR Invalid address on S command

INVCMD/SW Unrecognizable command or switch

INVNAM Invalid format on R, L, or C command

NON-EX FILE File specifiea on R, L or C command could not be

found on the console front-end load device

The following errors indicate that there is a transmission problem
between the console front-end and the DN87S. Try reloading the
system. If that does not correct the problem, check the version
of KLDCP; it must be 0.11 or later.

2UNK Unknown response from console front end

CAN'T LOAD 4 successive ASCII line error commands

CKSUM ASCII line checksum error

EOR? No end of file or premature end of file

FORMAT ASCII line format error

LONG LINE 3rd consecutive transmission error was a message

with too many characters

MSG CKSUM 3rd consecutive transmission error was a bad
message checksum

MSG NBR 3rd consecutive transmission error. was a bad
message number

NAK 3 consecutive NAKS were received

NO CR 3rd consecutive transmission error had no <CR> in a
message

POFLO Program being loaded overflows into monitor

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DGQDF

-1~
GENERAL INFORMATION
Code DGQDF.All
Title DN2X Front-End Loader Utility
Abstract DGQDF works in conjunction with DGQEA, the DN2X

bootstrap loader program and DGODG, the DN2X
secondary front-end monitor to down-line load the
DN2X from the console front-end subsystem. These
programs and their relationships are described in
the DGODG summary.

Note Refer to the DGQDG summary for further
information.

COMPANY CONFIDENTIAL

ER-0KL10-03
NOV 1979 DGQDG

-l -
GENERAL INFORMATION
Code DGQDG.All
Title DN2X Secondary Front-End Monitor
Abstract Normally, DFSXA (a 10-based 10 maintenance

program) is used to down-line load programs from
thee KL10 to a DN2X communications front-end for
executions. Should this method fail, three
programs (DGQDF, DGQEA and DGQDG) provide an
alternate method of down-line loading DN2X
front ends.

Basically, this is what happens. You direct the
copy of KLDCP that is running in the console
front end to load and start DGQDF. DGQDF will
ask if you want to boot the DN2X front end. If
you answer yes, it will ask which front end you
want to boot (1, 2 or 3). It will then tell you
to start that front end at a specific address.
Note that DGQDF wil remain co-resident with
RLDCP in the conscle front end.

When you start the DN2X at the address specified
by DGQDF, DGQDF will automatically load the DN2X
Bootstrap Loader program (DGQEA) into the DN2X.
DGQEA will in turn cause the DN2X Secondary
Front-End Monitor (DGQDG) to automatically load
into the DN2X and start. When DGQDG starts, the
console terminal normally connected to KLDCP will
be connected to DGQDG.

Now, via the CTY, you may direct DGQDG to load
and run ll-based 11 maintenance programs. If you
want to run ll-based 10 programs in the DN2X.
First switch the DTE20 for that front end to
privileged mode, then direct DGQDG to load and
start KLDCP. Note that once you have a copy of
KLDCP in the DN2X, you must unload the DN2X to
get back to DGQDG.

Hardware

Required KL10 console front end subsystem/DN2X
communications front end subsystem/B312 null
modem.

Preliminary

and Associated

Programs RLDCP, DGQEA, DGQDF and appropriate 11/11 and

11/10 maintenance programs. This program assumes

that the console front end and the DL11-E and

DL11-W are fully operational.

Restrictions 1. A terminal should not be directly connected
to the DN2X subsystem.

2. The DL11-E in the console front end must be
connected the DL11-1N in the DN2X via a H312
null modem.

3. All programs to be run, including DGQDF,
DGQEA, DGQDG (this program) must be stored on
the selected KLDCP load device.

4. The copy of KLDCP running in the console
front end must be version 13 or later.

5. If KLDCP is used to run 11/10 diagnostics in
the DN2X, the DTE20 for that DN2X should be
set to privileged mode.

Notes Functionally, the commands supported by DGQDG are

the same as those supported by the 11/11 XXDP
diagnostic monitor. If you need more information
than this document supplies, refer to the XXDP
summary in the 11/11 Maintenance Library section.

COMPANY CONFIDENTIAL

EK-0KL10-03
DGQDG NOV 1979

~2-
Loading and
Starting
Procedures 1. Assume that the front ends are properly

connected.

2. Set the DTE20 for the DN2X to privileged mode
if 11/10 programs are going to be run in the
DN2X.

3. Direct KLDCP (console copy) to load and start
DGQDF.

4. Make proper responses to DGQDF operator
dialogue.

5. DGQDG prompt is a period (.).

6. To run 11/10 programs in the DN2X, direct
DGQDG to load and start KLDCP in the DN2X.
Type R KLDCP. A copy of KLDCP will load into
the DN2X and display the prompt, FE#>.

7. Direct KLDCP to use the front end load device
(FE#>.FE<CR>) .

OPERATIONAL CONTROL
DGQDG is controlled by commands entered on the terminal connected
to the console front end.

Table 1 summarizes DGQDG command conventions and control
characters. .

Table 2 summarizes the DGQDG command set.

Table 1 DGQODG Command Conventions and Control Characters

Conventions | Description

<CR> A carriage return is the standard DGQDG command line
terminator.

o} Control C - If DGQDG was used to load a copy of KLDCP
into the DN2X, then a control C will return control
to that copy of KLDCP.

C Control C - If DGQDG is running in the DN2X, then a
control C will return control to it unless an R or S
command is being processed. If an R or S command is
in process, then the DN2X must be manually halted and
restarted at the DGQDG restart address.

N\ Control backslash - Regardless of what the DN2X is
doing, a control backslash will return control to the
copy of KLDCP running in the console front end.
Control C the program running in the DN2X first;
otherwise the results may be unpredictable.

COMPANY CONFIDENTIAL

ER-0KL10-03
NOV 1979 DGQDG

-3~

Table 2 'DGYDG Command Summary

Cross

Command Description Ref.

o} C CPU34<CR> 1
Execute the chain or command file
specified (CPU34).

c/Qv C CPU34/QV<CR> 1
Execute the chain or command file
specified (CPU34) in quick-verify mode.

F F<CR> 2
Display the DN87S terminal fill count and
leave it open for modification.

L L DFKAA<KCR>
Load but do not start the program
specified (DFKAA).

R R DFKAA<CR> 3
Load and run the program specified
(DFKAA) .

S S 204<CR> 3
Start the DN2X at the Ppp-11 address
specified (204).
S<CR> 3
Restart the DN2X at the last address
specified. Or, if a program has been
loaded (via the L or R command) since the
last address was specified, then start
that program at its normal starting
address. See the L command.

COMMAND DESCRIPTIONS

This section describes in more detail those commands with a cross
reference number in Table 2.

1.

C CPU34<CR> or C CPU34/QVKCR> - The C command causes the
command (chain) file specified to be read into core and
executed. The /QV switch will cause each program listed
in the command file to be executed only once, regardless
of the pass count specified in the command file. See
Note 6 under GENERAL INFORMATION

F<KCR> - The F (fill) command allows the number of fill
characters following a carriage return to be changed.
DGODG will respond to the F command by displaying the
current £ill value. To leave the value unchanged, type a
carriage return. To change the value, type the new value
followed by a carriage return. See Note 6 under GENERAL
INFORMATION,

R DFKAACCR> or S addr<CR> or S<CR> - These commands will
cause a program other than DGQDG to run, In all cases,
manual intervention at the DN2X is required to stop the
program. The DN2X should then be restarted at the
restart address specified by the DGQDG header message.

ERROR SUMMARY
The following is a list of standard error messages and their

meanings.

INVADR Invalid address on S command

INVCMD/SW Unrecognizable command or switch

INVNAM Invalid format on R, L, or C command

NON-EX FILE File specified on R, L or C command could not be

found on the device

COMPANY CONFIDENTIAL

EK-0KL10-03
DGQDG NOV 1979

-4~

The following errors indicate that there is a transmission problem
between the console front end and the DN2X. Try reloading the
system. If that does not correct the problem, check the version
of KLDCP; it must be 0.13 or later.

2UNK unknown response from console front end

CAN'T LOAD 4 successive ASCII line error commands

CKSUM ASCII line checksum error

EOR? No end of file or premature end of file

FORMAT ASCII line format error

LONG LINE 3rd consecutive transmission error was a message

with too many characters

MSG CKSUM 3rd consecutive transmission error Wwas a bad
message checksum

MSG NBR 3rd consecutive transmission error was a bad
message number

NAK 3 consecutive NAKS were received

NO CR 3rd consecutive transmission error had no <CR> in a
message

POFLO Program being loaded overflows into monitor

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979

DGQEA

-1~

GENERAL INFORMATION

Code
Title

Abstract

Note

DGQEA. BIN
DN2X Bootstrap Loader Program

DGQEA works in conjunction with DGQDF, the DN2X
front-end loader utility and DGQODG, the DN2X sec-
ondary front-end monitor to down-line load the
DN2X from the console front-end subsystem. These
programs and their relationships are described in
the DGQDG summary.

Refer to the DGQDG summary for further information.

COMPANY CONFIDENTIAL

DGQFB

-1-

GENERAL INFORMATION

Code DGQFB.ALL

Title KL10 Memory Configuration

Note DGQFB is the diagnostic code name for MEMCON.
Refer to the MEMCON module for further
information.

COMPANY CONFIDENTIAL

DHKAA

-1-

GENERAL INFORMATION

Code DHKAA.All

Title KL10-PV CPU EBox Diagnostic Part 1

Abstract This diagnostic is designed to detect and isolate
faults in the EBox logic

Hardware

Required KL10-PV mainframe

Preliminary and

Associated

Programs Refer to diagnostic hierarchy (11/10 module) .,

Restrictions None

Notes None

Loading and

Starting
Procedure

Control
Switches

Standard (Refer to the 11/i0 STD moduie.}

Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART) , 13 (TOTALS) , 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC) , and 2 (INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlied via DIACON.

DHRAA TEST SUMMARY

The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGE SUMMARY
This diagnostic uses the standard error message format. Refer to

the 11/10

STD module.

Table 1 DHRAA Test Summary

Test

Description

(EBUSO) : Basic EBus and Diagnostic Function Bus

This test attempts to clear the machine and read all 0s,
then all 1s across the EBus.

(ECLKO) : Clock Board Initialization

This tests that the diagnostically readable signals on
the clock board are properly initialized by a master
reset. This test (and those concerned with clock board
signals which follow) uses subroutine DCOMP. A table of
initially expected data for the clock board appears in
the initialization file, EINIT1.P11.

(ECRAMO) : Command Register Initialization

This tests that the microcode data register (command
register) is cleared after a reset.

(ECTLO0) : Control Boards Initialization

This tests whether the APR, CON, CTL and MCL board logic
assumes its expected state following a clear. This test
(and the control logic tests which follow) uses a master
comparison subroutine, CTLCMP, which in turn uses
subroutine DCOMP. A table showing initial expected data
and masking may be found in the initialization file,
EINIT1.P11.

(EFLAGO) : Flag Logic Initialization

This tests that the flag logic on the SCD board assumes
its expected state following a clear. This test (and the
flag logic tests which follow) uses a master comparison
subroutine, FLGCMP, which in turn uses subroutine DCOMP.
A table showing initial expected data and masking may be
found in the initialization file, EINIT1.P11.

COMPANY CONFIDENTIAL

DHKAA

-2-

Table 1 DHRAA Test Summary (Cont)

Test

Description

10

11

12

(ESCDO) : 10-Bit Arithmetic Initialization

This tests that the 10-bit arithmetic on the SCD starts
off in its expected state following a clear. Tables of
these values may be found in the initialization file,
EINIT1.P11.

(PI2ZA0): PI Board Reset Test

This test simply performs a master reset of the KL10 and
then issues enough clock which would normally cycle the
PI board. Since no requests should be pending, the PI
board should not cycle. If the PI board does appear to
cycle it could be the PIRO flip-flop stuck, or the EBUS
PI00 line from the DTE20 stuck, or the PI4, PI2, PIl
lines stuck. Either way the problem is isolated to the
PI board, DTE20, or translator board.

(ECLK1) : Basic Clock Control Registers

This tests the ability of the clock control registers on
CLK5 to load and hold data via the E and diagnostic
buses. The test floats a 1 through the various control
registers at each possible source/rate selection. Thus
the production of clocks at each source/rate combination
(as well as the appearance of the correct register bits
is checked.

(ECLK2): Single-Step Clock Modes

This tests the ability of the clock board to generate
single EBox and MBox clocks and conditions EBox clocks at
each source/rate combination. also tested are the EBus
and SBus clocks.

(BECLK3): Burst Counter

This test verifies that the burst counter down-counts to
0 at each source/rate. It does not verify that a
corresponding number of clocks are produced, as this
would require much of the untested EBox logic be working.
This test uses a table and subroutine from ECLK1.

(ECRAM1) : Diagnostic CRAM Address Register

This checks the path from the EBus to the diagnostic CRAM
address register and back. It uses a set of eight test
patterns, generated by subroutine PATTY, which are
sufficient to prove that each bit can independently be 1
and 0.

(ECRAM2) : CRAM Data Paths

This test checks that each of five CRAM locations (0, 1,
2, 3, 1024) can pe loaded and read back correctly.
Fourteen 1ll-byte test patterns from the pattern
generation subroutine are used with each CRAM address to
verify that each RAM chip -can store a 1 and a 0 and that
no two chips interact. This test also checks that the
EBus was correctly received and transmitted on each CRAM
(and the CRA) board, the diagnostic read and write CRAM
functions work, and the data holding register (command
register) works.

(ECRAM3) : CRAM Addressing

This test checks the addressing of all CRAM chips and the
ability of each individual cell to hold a 0 or 1. To
begin with, the entire CRAM has been set to all 0 data by
the initialization routine, ICRAML.

Subtest 1 reads location 0 to see that it is indeed all
0s, and then writes all 1s back into location 0. It thenm
steps to location 1, reads 0s and writes 1ls and so on
until all locations in the CRAM have been tested. This
demonstrates that each cell in the RAM can hold a 0 and
that there are no address line faults of the sort where
writing a location with ls causes some higher location to
be modified.

COMPANY CONFIDENTIAL

DHKAA
-3~

Table 1 DHRAA Test Summary (Cont)

Test

Description

14

15

16

17

18

19

20

21

Subtest 2 reads ls from the top of the CRAM and writes 0s
down to the bottom, checking that each cell holds a 1 and
that no address faults propagate 0 data downwards.
Subtest 3 begins at the top, reading 0s and writing 1s;
and subtest 4 starts low and reads 1ls and writes O0s
(leaving the entire CRAM once again cleared) .

Problems can usually be localized to the chip by noting
the bit position of the failing data. Since the test
uses KLDCP RAM reads and writes, EC and DC commands from
the console can be used to verify/track down detected
addressing problems.

(ECRAM4) : CRAM Parity Network

This test checks the operation of the CRAM parity network
by loading four test microwords. The operation of the
legic on the clock board to stop the clock on a CRaM
parity error is also checked.

(ECLK5) : Clock Delay (Microcode T Field).

This tests the 31, 62, 93 and 520 nanosecond delay logic
on the clock board. The T field microcode bits and the
CON DELAY REQ signal are also checked. The test issues
single MBox clocks and counts the number between EBox
clocks. Both too early and too late EBox clocks cause an
error.

(EDRAM1) : IR Register/DRAM Address (I/0, JRST OFF)

This test checks that the 13 bits of the instruction
register can each store 1ls and 0s and that no two bits
interact. This register is read by reading the DRAM
address with 7XX addressing turned off (bits 0-8) and the
AC field with AC decoding turned on (bits 9-12).
Consequently these features are alsc checked by this
test. Eight patterns generated by subroutine PATTY are
used.

(EDRAM2) : DRAM Address - I/0 and JRST Logic

This test checks the logic which looks for JRST (OP CODE
254), JRST 0, and 7XX instructions and alters the DRAM
address accordingly. The effect of JRST instructions on
the DRAM J field and the AC field is also tested.

(EDRAM3) : DRAM Data Paths

This test checks that each DRAM data cell in a pair of
adjacent locations (locations 0 and 1 chosen for
convenience) can independently store a 1 and a 0, and
that no two cells interact. The test uses 12 5-byte
patterns generated by subroutine PATTY.

(EDRAM4) : DRAM Addressing

This test checks the address lines to all the DRAM chips
by filling the entire RAM with 0s, stepping through the
addresses one at a time reading 0s and changing to 1s;
and then stepping through the addresses in the reverse
order, reading ls and restoring 0s. This leaves the RAM
cleared and completes the verification that each cell is
uniquely addressable and capable of storing both a 1 and
a 0. Address 254 reads IR bits 9-12 in place of J07-J10
(hardware does also).

(EDRAM5) : DRAM Parity Network

This test checks the DRAM parity network with three test
patterns. The logic on the clock board to stop the EBox
clock on a DRAM parity error is also checked.

(ECTL1) : DISP Field Decoding and AR, ARX and MQ Control
Logic

This tests the decoding of the DISP field on CTL1 and all
of the logic on CTL2 for controlling the AR, ARX and MQ
multiplexers,

COMPANY CONFIDENTIAL

DHKAA

-4-

Table 1 DHKAA Test Summary (Cont)

Test

Description

22

23

24

25

26

27

28

29

30

(ECTLA2) : ADXCRY Logic

This test checks the ADXCRY gates on CTLl and PC + 1 INH
on CON4.

(ECON1) : COND Field Decoders

This tests the decoders on CONl and various gates using
the decoded signals on the control logic boards. The
following decoder signals are not verified, as they will
be checked with the logic they control: COND/AD FLAGS,
COND/PCF-#., COND/FE SHRT, COND/EBOX STATE, COND/EBUS
CTL, CON SKIP EN 60-67, and CON SKIP EN 70-77. The four
signals COND/024-COND/027 are not tested because they are
not used.

(ECON2) /EAPR1: CONO APR, PI, PAG and DATAO Logic

This test exercises the flip-flops which are controlled
by the CON number FUNC 01¥ decoding of CON COND/DIAG
FUNC and the magic # field. This includes the decoders
on CON3, the registers controlled by CONO PI and CONO PAG
on CON3, the DATAO APR register on APR3 and the APR error
interrupt logic on APRl and APR2.. Note that only the
internal control of the error flip-flops is tested here;
the response to actual error conditions comes much later.

(ECON3) : Ucode and Processor State Registers

This tests the microcode and processor state registers on
the CON board.

(EAPR2) : EBus CTL, MBox CTL and REG FUNC with # Field
Decoding

This tests the EBus control register on APR3, the MBox
control logic on APR5, and the register function decoding
on APR6. All three involve the decoding of a microcode
function with the magic # field.

(EAPR3): Previous Context and AC Block Registers

This test checks the CON LOAD PREV CONTEXT and CON LOAD
AC BLOCKS logic on CON3, the previous section register on
APR3, and the AC block registers on APR5. The FM block
mixer logic is covered in the next test, EAPR4.

(EAPR4): Fast Memory Address Mixer and AC + 1, 2 and 3
Logic.

This test checks the logic which adds 1, 2 or 3 to the
AC number and the fast memory address mixer on APR4. The
mixer inputs from ARX 14-17 and VMA 32-35 are tested
later after the data paths and VMA have been checked.

(EMCL1) /EFLAGl: AD Function Logic and VMA Held Flip-Flops

This test uses MEM/AD FUNC and adds bits 0-12 to
independently set each of the principal flip-flops on the
MCL board. These flip-flops are used, in turn, to test
VMA held register and the VMA held/PC flags multiplexer.
Also, the PC flags are set and checked using SCD LOAD
FLAGS and AR bits 0-12 to provide interference patterns
for testing the VMA held/PC flags multiplexer.

(EMCL2) : Memory Request Address Mode Control Logic

This test checks the decoding of the microcode MEM field
(MCL1) and the memory request generation logic (MCL1 and
MCLS, CON5). The request-type memory (flip-flops clocked
by REQ EN on MCL2 and 6), the SXCT/PXCT/VMAX extension
logic on MCL4, the DRAM A field decoding on MCL5 and the
PREV SEC TO ARMM gate also on MCL5. It uses 24 patterns
and depends on many previously tested machine features
(for example: CWSX, AC# and AC reference) .

COMPANY CONFIDENTIAL

DHKAA

-5~

Table 1 DHKAA Test Summary (Cont)

Test

Description

31

32

33

34

35

36

(EMCL3): VMA Context Storage Logic

This tests the flip-flops set with LOAD VMA CONTEXT on
MCL2, 3 and 6 and the USER EN and PUBLIC EN logic on
MCL2.

(EAPR5) : FM Block Selection

This test checks the FM block, VMA block and XR block
mixers and the VMA block register on APR5. It uses some
of the PXCT and previous enable logic on the MCL board.

It also checks the AC + § logic on APR4 and SH AR
extended.

(EFLAG2) : Processor Flags

This checks all of the processor flag logic on SCD4 and S
not already tested in EMCL1 except some gating involving
MBox, signals for the private instruction flag and the
arithmetic overflow flags (Checked in EFLAG2). The trap
mixers.

(ECRAO1) : DISP RAM to Control REG, DISP Enables, DISP
Parity

This test is désigned to check the DISP field of the CRaM
to the DISPATCH/SPEC field of the control register. It
tests all bits of this section of control register and
also tests the DISP FIELD ENABLE gates.

The test begins by loading a 5-bit pattern into the DISP’
field of the CRAM. This pattern (pattern list is in

Table DCRAOl:) is then clocked to the control register.

The control register and DISP enable gates are then read

back and verified to be correct.

{ECRAO1) : Dispatch Codes 1, 2, 3 and 6 and also AREAD
Logic

This test checks DISP field dispatch codes 1, 2, 3, and
6. It assures that when these codes are selected, the
appropriate data is multiplexed into the CRAM address.
For dispatch code 1, we get DRAM J. For code 2, we get
AREAD. For code 3 we get SBR RET, and for code 6 we get
CTL NICOND. When checking code 2 and AREAD, the test
also runs a selection of patterns through the AREAD
network to assure that it is in good condition.

The basic test procedure is to load the DISP field with
the dispatch code under test. Next the DRAM J field is
loaded with a test pattern (if checking code 1) or the
complement of the expected data. The diagnostic address
register is also loaded with the complement of the
expected data. Finally the CRAM address is loaded to be
sure the dispatch code is selecting what is expected.

(ECRAO3) : Dispatch Codes 30, 32, 33 and 35. Also NORM
Logic

This test is designed to check the control RAM address
board dispatch codes 30 (MQ), 32 (AR, BR, AD signs), 33
(DRAM B), and 35 (NORM logic). It also tests the NORM
logic priority encoder found on the IR/DRAM board.

The basic test procedure is to load the dispatch code
into the CRAM. 1If the test is checking dispatch code 33
which requires DRAM data, it will clock the microcode
word, Jjust loaded into the CRAM, into the control
register, then load the appropriate DRAM data and test
the CRAM address to verify that it is correct. If the
subtest does not require DRAM data, then it loads the AR
with test data and at the same time loads the CRAM
dispatch data to the control register. The CRAM address
is then tested for correctness.

COMPANY CONFIDENTIAL

DHKAA

-6-

Table 1 DHKAA Test Summary (Cont)

Test

Description

37

38

39

40

41

(ECRAQG4) : J-Field and CRA LOC Register Test. Executed at
Burst Speed.

This test is designed to check the control RAM address
board J-FIELD to CR ADR lines, the CR ADR to CRA LOC
register lines, and the CRA LOC register itself. All
tests take place at burst speed (full speed at the
currently selected clock rate using the burst counter).

The basic test procedure is to load the J-field test
pattern into the J-field of CRAM location 0, and leave
all other bits at location 0 at 0 (except for a dispatch
code = 10). The CRAM location which would be addressed
by the current test pattern is then loaded with all ls.
Next the current CRAM address is set to 0. Finally a
burst of clock ticks is given to cause two EBox clocks.
This should force the J-field test pattern into the
control register (on the first EBox clock), and on the
second EBox clock the all 1s RAM word should be addressed
and loaded into the control register. Also, the CRA LOC
register should be loaded with the J-field test pattern.
Now, if the control register is not all 1ls, a J-field
hardware error has occurred. If the CRA LOC register is
wrong, it has a hardware failure.

(ECALL1) : Microcode Subroutine Stack Forward Sequencing
Test

This test verifies that the dual shift register with its
associated input gating can be reset to a known state,
and then sequenced through its 15 decimal preset states,
by performing a series of calls (see print CRA4). For
each call, the EBox clock is pulsed high and the result
checked; then it is pulsed low and the result checked.
This assures that the 4 X 2 mixer (on print CRA40) does
not mis-select an address.

(ECALL2) : Microcode Subroutine Stack Return Segquencing
Test

This test verifies that the same logic can be sequenced
back from its last preset address to its state after the
first call was performed in test (ECALLl); e.g., from
BCDE=1110,DEFG=1000, to BCDE=1110,DEFG=1100 (see print
CRA4) .

The test performs a series of subroutine returns to
verify that following a master reset, the previously
set-up stack (ECALLL) can be popped one location at a
time. The CRA stack address generator is sequenced
backwards from the reset state. It is then verified that
bringing the EBox clock high will not switch the select
input to the 4 X 2 mixer feeding the RAM illustrated on
print CRA4. Similarly, it is verified that bringing the
EBox clock low will switch the select input to the 4 X 2
mixer.

(ECALL3) : Microcode Subroutine Stack Output Interference
Test

In this test a sequence of eight test patterns generated
by PATTY are pushed one at a time onto the stack, and
each is verified. These patterns are sufficient to
verify that each output of the SBR RET buffer (CRA SBR
RET 00-10) can be independently a logic 1 and a logic 0,
and that no outputs are tied together or otherwise
interfering.

(ECALL4) : Microcode Stack Addressing Test

This test is an addressing test performed at burst speed.
The test is performed in two consecutive parts. In the
first part, each of the 15 valid stack addresses 1is
written into in the corresponding numerical address, one
word at a time, but excluding address 0. All other
locations are filled with the address complemented.
Next, all locations are checked together with their
corresponding CRA stack addresses.

COMPANY CONFIDENTIAL

DHKAA

-7~

Table 1 DHKAA Test Summary (Cont)

Test Description

In the second part, each of the valid stack addresses is
written with its address complement, while all other
addresses are written with the uncomplemented address.
Then all locations are checked together with their Cra
stack address.

42 (ECALL5) : Microcode Subroutine Stack Reliability Test

This is a data reliability test which writes and reads
200 octal (random) sets of selected patterns in the stack
at burst speed. The CRA stack address for each entry
written into the stack is checked also.

43 (EAPRG) : Fast-Memory Extended Testing
This test checks that the 1 X 128 fast-memory extended

RAM can be written with all 1s. It uses SH AR extended
and COND FM write, pPreviously tested.

COMPANY CONFIDENTIAL

DHKAB

-1-
GENERAL INFORMATION
Code DHKAB.All
Title KL10-PV CPU EBox Diagnostic Part 2
Abstract This diagnostic program is designed to detect and
isolate faults in the EBox logic.
Hardware
Required KL10-PV mainframe)
Preliminary and
Associated
Programs Refer to diagnostic hierarchy (11/10 STD module) .
Restrictions None
Notes None

Loading and

Starting

Procedure Standard (Refer to the 11/10 STD module.)
Control

Switches Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED),, 6 (RELIB),
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DHRAB TEST SUMMARY
The individual tests performed by this diagnostic are summarized
in Table 1.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

Table 1 DHRAB Test Summary

Test No. | Description

1 EEDPO1 Data Paths Basic Multiplexer Select Test

This test verifies that all mixers on the data path
board can independently select any of their individual
inputs, that no multiplexer select lines are stuck
either high or low, and that none of the mixer output
lines are stuck low. This test also verifies that each
register can hold all 1s and all Os.

The test begins by resetting the EBox and then uses the
MO as a source of ls (MQ reset state = ls) and passes
these 1ls from one register to another. Registers are
cleared of their 1s to ensure that if a select line
fails, the correct register will contain the wrong
thing. The test begins at microinstruction 1, bursts
one EBox clock, and tests the registers. Subtest 2
begins at microinstruction 1, bursts two EBox clocks,
checks. Subtest 3 begins at 1, bursts 3, and so on,
until the complete set of transfers has been executed at
burst mode.

2 EEDP02 Data Paths Basic Interference Test

This test verifies that the outputs of all mixers and
registers on the data board have independent 1lines;
i.e., that the AR has 36 independent lines, that the ADA
has 36 independent lines, and so on for all registers
and mixers. The test runs in burst mode and first loads
the AR with interference data. Next, a burst of EBox
clocks is given and the interference pattern is sent on
the following journey.

COMPANY CONFIDENTIAL

DHKAB

-2-

Table 1 DHKAB Test Summary (Cont)

Test

Description

from the AR to BR

BR through ADB through AD to ARX
ARX to BRX

BRX through ADXB through ADX to AR
AR through ADA through AD to MQ

MQ to ARX

ARX through ADXA through ADX to AR
done

ESCD1 SC Register (SC from AR and SC Recirculation)

This test verifies that each bit of the SC register can
store a 1 and a 0 and that all bits except SC00 and SCOl
are independent. It also verifies the path from AR bits
18 and 28 to 35 to the SC via the SCM and the
recirculation path of SC to SC through the SCM. It uses
the standard test patterns of subroutine PATTY and
bursted microcode. It precedes the rest of the SC tests
because the SC register must work for the remaining data
path tests to work.

EEDP03 Shifter Board Test - Burst Speed

This test runs 85 patterns through the shifter board and
verifies that the board has no errors. It runs at burst
speed.

At single-step speed the BR and BRX, respectively, are
loaded with test patterns destined for the AR and ARX.
Next, an SC count is loaded into the AR. The burst is
started and the microcode does the following.

AR (SC COUNT} to SC
BR to AR, and BRX to ARX
SH (shift board) to the AR, ARX and MQ

The MQ, AR and ARX are verified to have the correct
data.

Expect all failures in this test to be on either shifter
poard (M8510) or backplane from AR or ARX to shifter
board.

EEDPO4 Data Path Adder ALU and Carry Skip Network Test

This test checks and verifies the correct operation of
the KL10 72-bit adder, including the associated carry
skip logic (found on the IR/DRAM board). The tests are
divided into 3 groups.

a. Tests where only the ARX and BRX require test
patterns and only the ADX is tested

b. Tests where only the AR and BR require test patterns
and only the AD is tested

c. Tests where the AR, BR, ARX, and BRX all require
test patterns and both AD and ADX are tested,
including carries from ADX to AD

There is a separate microcode routine for each of these
three groups. After the correct test patterns have been
loaded to the AR, BR, ARX, and/or BRX at single-step
speed, a burst mode clock is given to actually do the
add test at full machine speed.

EDP4A -AD=0 Test Using Floating ls Down the AD

This test checks the -AD=0 logic on each of the EDP
boards. The test simply floats a 1 down the AD, and
does a burst of clocks and a skip on -AD=0, in order to
ensure that each AD bit individually is capable of
causing the condition -aD=0. Failures during this test
should be easily traced to the EDP board which contains
the bit under test.

COMPANY CONFIDENTIAL

DHKAB

Table 1 DHKAB Test Summary {Cont)

Test

Description

10

EEDPOS Fast Memory Basic Interference Test - Burst
Speed

This test detects any interference between the 36 data
bits coming from the fast memory RAMs located on the
data path board.

The test first 1loads the AR with the current
interference pattern, then loads that pattern into the
currently addressed fast memory location. The output of
the fast memory is then checked to see that there is no
interference between any of its bits.

EEDP06 Fast Memory RAM Test

This test detects any fast memory RAM addressing
problems, fast memory cells stuck high or low.

The test algorithm consists of the following three

segments.
a. Fill all RAM locations with 0s.

b. Begin at block 0, address 0, read all Os there, then
write all 1s there, ¥ncrement to the next address.
It should still be O0s. Now read 0s there, then
write 1ls, and again increment to the next address.
Continue to the last address and block.

c. This segment is similar to segment b. Begin at
address block 7, address 17. Read 1s there, then
write 0s. Decrement to the next address. It should
still be 1s. Now read the 1s, write 0s and
decrement again. Continue to block 0, address 00.

The test begins by loading three 36-bit words into
several data path registers at single-step speed. Once
the four registers are initialized (BRX-41,,0)
(BR=777757,,0) (AR=770000,,0) {(MG=770000,,0), the rest
of the test is run in the microcode at full machine
speed (current console selected clock rate).

Next, the program waits a finite amount of time until
the microcoded test should have completed, then stops
the clock and examines what halt loop the test is in
(i.e., the NORMAL TERMINATION halt loop or the ERROR
HALT halt loop).

EVMAOLl vMA and Address Break Registers Data and
Interference Test

This test verifies that the VMA and address break
registers can both hold all 1ls and all 0s, and that no
register lines interfere with one another.

The AR is first loaded with the current test data.
Next, the starting address of the microcode for this
test is loaded, and finally a burst of EBox clocks is
given. The microcode that is executed by this burst
should load the test pattern from the AR, through the
aD, and into the VMA and ADR BRK registers. Single
discrepancies imply bad register bits;
multi-discrepancies imply failure of the registers to
load properly. propped bits could indicate no
terminator.

EVMAO2 VMA and Address Break Match Logic, Bits 18-35

This test verifies correct operation of the VMA/address
break match logic on print VMA3, and of the VMA 18-31=0
logic. Both registers are loaded with all 1s and all Os
and verified to match. This checks the lines for stuck
highs and lows. Next, the address break register is
kept loaded with 0s and a single 1 is floated down the
VMA register to verify that the XOR gates operate
correctly (also checking 18-31=0).

COMPANY CONFIDENTIAL

DHKAB

-4-

Table 1 DHRKAB Test Summary (Cont)

Test

Description

11

12

13

14

EVMAO7 PC and VMA HELD Register Tests - Static

This test checks the diagnostic multiplexers that read
out the contents of the PC and VMA held registers.

The test simply loads interference patterns into the PC,
then reads the PC, transfers the pattern to the VMA held
and then repeats this for all the interference patterns.

EVMAO03 PC and VMA Held Register Tests - Burst Speed

This test verifies that neither the PC nor VMA held
register has any bits stuck at 1 or stuck at 0. It also
tests that each register's bits do not interfere with
any other bits in that register. The backplane lines
are tested between the PC or VMA held 2 mixer and the
ADA mixer on the data path board.

The microcode for this test begins with the test data in
the AR. At burst mode the VMA is loaded then
immediately the VMA held register is loaded. The
microcode then steers the PC through the ADA into the
ARX. Next the VMA held register is steered through the
ADA into the AR. Finally the PC is loaded from the VMA.
Then the results are tested. Because of the loading
sequence, the AR should contain the current test pattern
as transferred from the VMA held register. The ARX
should contain not the current, but the previous test
pattern, which was just transferred from the PC. This
way the PC and VMA held registers always contain
different patterns, which also enables verification of
the PC or VMA held mixer.

EVMAO4 VMA Register Binary Counter and VMA Adder Tests

This test has two phases. The first checks the VMA
register binary counter and its ability to increment by
1 and decrement by 1. It ensures that each bit of the
VMA register can carry into the next bit (VMA INC) and
also can borrow from the next higher order bit (VMA
DEC}. It also ensures that the carry from each 4-bit
chip is connected and operating correctly. It extends
an all ls pattern across the VMA to check that a carry
into a next higher bit only carries 1 bit's worth (i.e.,
that the carry lines internal to the chip are not
shorted) .

The second phase of the test uses patterns out of the PC
and the CRAM number field to ensure that the VMA adder
ALUs have no fault either internal or external to the
chip.

EVMAO5 VMA AC REF and VMA SECTION 0

This test verifies correct operation of the VMA AC REF
logic and VMA SECTION 0 gate. It does this by setting
up 10 patterns which drive the VMA AC REF logic. The
pattern set up is completely microcoded and is merely
driven by the PDP-11 which selects the correct
microstarting address and Qdata pattern for the VMA
section.

EXPECT
VMA PAGE VMA VMA VMA VMA VMA AC
18-~31=0 UEBR REF FETCH RD-WRT EXTENDED 13-17 REF
1 0 0 1 1 0 T ST 1
1] 0 0 1 1 0 F ST 2
1 1 0 1 1 0 F ST 3
1 0 0 0 1 0 F ST 4
1 0 [1 0 37 T ST 5
1 0 1 1 1 37 T ST 6
1 0 0 1 1 20 F ST 7
1 0 0 1 1 10 P ST 8
1 0 0 1 1 4 F ST 9
1 0 0 1 1 2 F ST 10
1 0 0 1 1 1 T ST 11

COMPANY CONFIDENTIAL

DHKAB
s

Table 1 DHRAB Test Summary (Cont)

Test

Description

15

16

17

18

19

20

21

EVMAO6 Previous Section REG, ARMM MUX, and VMA in MUX
This test checks the interference through and the
selectability of the ARMM multiplexer. It also
completely tests the previous section register and the
selectability of the VMA IN multiplexer. The basic test
sequence is as follows.

a. Load test pattern to previous section register.
b. Previous section register through ARMM to AR.

c. Previous section through VMA IN to the VMA. Stop
and verify AR and VMA.

d. PC through VMA IN to the VMA. This should clear the
VMA. Again stop and verify the VMA contents.

Continue this loop to float a 1 down the previous
section register. Finally, load the previous section
with all 1s, then read the PC of all 0s through the ARMM
into the AR, to verify the ARMM selectability.

EVMA08 Random Signals From VMA LOCAL, LOCAL AC ADDR,
and AC REF

Five subtests designed to pick up signals and gates left
untested by previous tests. Basic test algorithm is as
follows.

Load the AR with a 36-bit stimulus pattern.

Load that 36-bit data to the VMA.

Increment the VMA (for the purpose of setting vMA 12
where necessary).

Set VMA READ.

Set MCL VMA EXTENDED as desired.

Read the State of the VMA board.

Each 36-bit stimulus datum is followed by a short
description of which gate in particular is being tested,
and which signal is in a state previously untested.

EMCL4 Page Tllegal Entry Logic

This tests the PAGE ADDRESS COND/PAGE ILL ENTRY logic on
MCL3. It uses the VMA and ADR BRK registers on the VMA
board, the COMP register on APR3, and the logic used to
load them.

EFLAG3 Arithmetic Overflow Flags

This test checks the carry and overflow flags on SCD4
with the associated gates on the data path boards. Note
that it depends on the following functions working:
AD/A, AD/A+B, ADB/AR*4, ADB/BR, SC/A, SC/A+B&SCADA&B/#.

ETSAT1 Test Satisfied Logic

This test checks the test satisfied logic on IR3 and the
skip satisfied logic on MCL 4 and 5. It depends on the
IR/DRAM working and the AD and AD carry logic working.

ECON4 GO/START/RUN, I/O LEGAL, and COND ADR 10 Logic

This test checks most of the logic on CON2. It requires
some flags to be working, MCL VMA FETCH and VMA AC REF.
Note that the diagnostic functions: SET RUN, CLR RUN and
CONTINUE (decoded on CON2) are also tested here. The
DTE20 status bits for EBOX HALTED and RUN are also
checked.

ECLK6 Clock Board Page Fail Logic

This test forces a page fail using APR SET PAGE FAIL and
then checks the sequencing of the logic on CLK4 and CLK3
(and the addressing on the CRA board). It runs at burst
speed. Each subtest begins with the logic reset and
issues a burst of MBox clocks which is one greater than
the previous subtest's burst. Thus the page fail
sequence is checked clock tick by clock tick, but is
always stepped at machine speed rather than single-step.

COMPANY CONFIDENTIAL

DHKAB

-6-

Table 1 DHKAB Test Summary (Cont)

Test

Description

22

23

24

25

26

27

ECLK7 Simulated MBox Response

This test checks the MB wait and MB XFER logic on the
CON and CLK boards. The test makes two simulated MBox
cycles: one an AC reference and one not.

ESCD2 Basic 10-Bit Data Paths

This test uses the AR to SC input path tested in ESCDl
to send patterns over the following 10-bit arithmetic
data paths: SC from SC via the SCAD (checks first
position on SCADB multiplexer. SCAD passes B data on
2+B and third position on SCM multiplexer), FE from
SCAD, FE recirculation and shift right, SC from FE
(second position on SCM multiplexer) and AR (upper bits)
from SCAD via ARMM (ARMM positions 3 and 4). It uses
standard test patterns and bursted microcode.

ESCD3 SCAD and ARMM Multiplexers

This test checks the SCADA, SCADB and ARMM mixers. The
test uses two bursted microwords to steer AR and # field
patterns through the mixers into the AR, SC and FE
registers. The first microword is loaded separately by
each subtest based on the stimulus table. The second.
which is the same for all subtests simply recirculates
the register data and is there to switch the mixers to
catch any slow-propagating signals. The test assumes
that the SCADDER can pass A data (SCAD/A) or B data
(SCAD/A+B, SCADA disabled). The adder is checked in
test ESCDS.

BSCD4 SC .GE. 36 Logic

This test checks the SC .GE. 36 gates on SCD2. It uses
1 microword which loads the magic # field through the
SCADB, SCAD and SCM into the SC. Nine magic # patterns
are used.

ESCDS SCADDER

This test checks the 10-bit adder on the SCD board. It
loads the SC and FE registers from the magic # field,
performs an arithmetic adder function using SC and FE as
inputs and stores the result back in the SC and FE. An
extra microword is provided which switches the adder
multiplexers to cut off any slow-propagating signals.
The first three microwords, found in the EBox diagnostic
listing at CRAM location STARTS = SCM10 are modified
according to the stimulus table data. The test runs at
burst speed.

PIZZA1 PI ON LEVEL Set and Clear, GEN LEVEL Set and
Clear, ON, OFF, S5YS

This test checks the ability of the PI ON LEVEL
flip-flops and the PI GEN LEVEL flip-flops to load,
hold, and clear. Also the PI ACTIVE flip-flop and the
ability of PI SYS CLR to clear the PI system. The basic
test sequence is as follows.

a. Set all PI ON LEVEL.

b. 1Individually clear each PI ON LEVEL.

c. Set all PI GEN LEVEL.

4. Individually clear each PI GEN LEVEL.

e. Set the PI SYSTEM ACTIVE, clear ACTIVE, set all ON

and GEN level flip-flops, and clear all with a PI
SYS CLR.

COMPANY CONFIDENTIAL

DHKAB

-7-

Table 1 DHKAB Test Summary (Cont)

Test

Description

28

29

30

PIZZA2 CS Lines, Load/Test Ring Counter, PI EBus REG
and EBUS PI

This test is divided into two sections. The first
section tests the CS lines both for stuck condition and
for interference between the CS lines. It does this by
loading the IR with interference patterns, dumping the
IR onto the CS lines, and then reading the CS lines.

The second section of the test checks the EBus reguest
logic, the EBUS PI GRANT flip-flop and partially checks
the PI load/test ring counter. It does this by issuing
PI GEN requests to the PI board, then bursting the PI
clock part way into the request cycle. The PI board is
then verified to be in the correct state. See the
expected data table for the test patterns used in this
test.

PIZZA3 PIR Flip-Flops, PIR EN, PI REQ SET, PIH
Flip-Flops, PI CLRS, PIR/PIH PRI

This test exercises and checks the following PI board
logic: the PIR1-PIR7 flip-flops, the PIR/PIH priority
encoder pair, PI REQ SET decoder, PI CLR decoder, the
PIH1-PIH7 flip-flops, and the PIR EN gates. The basic
test procedure is as follows.

a. Set PI cycle to hold the load/test ring counter.
b. Do a CONO PI to set one or several GENs.

¢. Drop PI cycle to enable the load/test ring counter
to advance. This should load the PIR flip-flops.

d. Stop and read the state of the PI board to see if
the PIRs set.

e. Set PI cycle then do a SPEC/SAVE FLAGS which loads
the PIH flip-flops via the PIR EN gates.

f. BAgain read the state of the PI board to check that
the PIH flip-flops did load.

g. Do a PI DISMISS, then verify that the highest level
PIH was set.

PIZZA4 PI TIMl-TIM7-PI COMP Ring Counter and Timer Done
Counter

The following two PI board tests are confusing and
difficult tests to understand. The connection between
the error symptom printed on the terminal and the actual
hardware fault causing the symptom is very difficult to
explain even with an excellent understanding of how this
part of the PI board is intended to work.

This test is intended to check two counters on the PI
board. The PI time state counter is a pair of shift
registers on print PI2 whose eight outputs are labeled:
TIM1, TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, COMP. The
timer done counter consists of two binary counters
connected serially whose only output is labeled TIMER
DONE.

These two counters operate independently, but must work
together. When a cycle is started the time state
counter goes to time state TIMl. It remains static, in
TIMl while the timer done counter begins counting.
After timer done counter has counted a specific number
of MBox ticks, it sets the flip-flop timer done. This
act turns the time state counter on and it advances from
TIM1 to TIM2. Again it waits for timer done to count
before it can advance.

COMPANY CONFIDENTIAL

DHKAB

3

Table 1 DHRAB Test Summary (Cont)

Test

Description

31

32

33

This test will operate as follows: It will .issue one
too few ticks to set TIMIL. It will verify that TIM1
does not come up. It will reset the PI board and issue
exactly enough ticks to set TIM1, then verify that TIM1
does occur. Next, it resets the PI board and issues one
too few ticks, to set TIM2. It verifies that TIM2 does
not come up, resets, issues exactly enough ticks to set
TIM2, verifies that TIM2 comes up, and resets. The same
procedure is followed for TIM3, TIM4, TIM5, TIM6, and
TIM?7.

Faults in these two counters can be isolated to the PI
board, but the logic failure on the board itself is
difficult or impossible to call out with software. Only
by putting the board on extender can the problem be
found.

PIZZAS STATE HOLD Logic, EBUS DEMAND Logic, OK ON HALT
Decoder

This test checks the combinational logic that produces
STATE HOLD, the combinational logic that produces EBUS
DEMAND, and the EBus data lines and other PI board
signals that are used with the decoder that causes PIl4
OK ON HALT. The basic test procedure is to set up
microcode which would normally take the PI board through
all seven time states. The microcode also includes the
special conditions under test and sets the appropriate
flip-flops needed for the specific subtests (examples
include: APR EBUS RETURN, APR EBUS DEMAND, CON EBOX
HALT, CON EBUS REL, and APR EBUS REQ). Finally, the
PDP-11 controls the number of clocks given to the PI
board and stops the PI board in the time state desired,
then reads the PI board and verifies that the
combinational logic under test is working.

PIZZA6 Physical Number Flip-Flops, from EBus 00-15 and
Physical Number Priority Encoders

This test checks the 16 physical number flip-flops on
print P12 and the dual priority encoders which take the
physical numbers and produce the signals SEL PHY8, SEL
PHY4, SEL PHY2, and SEL PHYl. The test also checks the
SEL PHY4X to EBus bit 7, 8, 9, 10 mixer on print PIS.

The test uses microcode which runs through all seven
timing states of the PI board. The PDP-11 stops the
clock during PI TIM3 and examines the state of the PI
board to ensure that the correct physical numbers have
come up. Next, the test is continued through TIM6, with
the AR function AR/EBUS. After TIM6, the PDP-11 again
stops the clock and examines the PI board and the AR to
verify that the correct signals are being put onto the
EBus by the PI to EBus mixer.

PIZZA7 APR PIA 04,02,01, APR PHY NO. and PIR EN

This test checks the APR PIA 04,02,01 flip-flops which
are set by the CONO APR, checks the APR PIA decoders,
and checks the output of the APR PIA decoder to the PI
request flip-flops. The test does this by setting all
PI levels ON and PI ACTIVE, then setting the 3-bit APR
PIA register with 0 (1-7 on successive subtests),
cycling the PI board to TIM3, and checking the state of
the PI board for correct results. This test also checks
the PI2 APR requesting flip-flop.

COMPANY CONFIDENTIAL

DHKAB

-9~

Table 1 DHRAB Test Summary (Cont)

Test

Description

34

35

36

PIZZA8 MTR PIA 04,02,01, MTR PHY NO. and PIRO

This test checks the MTR PIA 04,02,01 flip-flops which
are set by the CONO MTR generated on the MTR board. The
purpose is to check the MTR PIA decoders and the output
of the MTR PIA decoders to the PI request flip-flops.
The test also checks the DR20 requesting flip-flop on
the PI board. The test sets all PI levels ON and PI
ACTIVE. Then it sets the MTR PIA register with (1-7y,
and cycles the PI board to TIM3, which should then set
the DKR20 requesting flip-flop. The cycling to TIM3
should also set a PT reguest, The second phase of the
test checks the DTE20's pI REQ 0 line to the PI board.
It tests that the DTE20 can cause a PI request on level
0.

EPAR] Parity Test - APR FM-36 RAM Chip Address and Data
Test

This test is designed to test the APR FM-36 128 X 1 RAM
chip, both data and addressing operation. First the
test attempts to fill every RAM location with a 0. This
pass of the test will find any stuck-at-1 bits. Next,
an addressing test is begun. The test reads the 0 in
location 0 to ensure it has not changed, writes a 1,
then goes to the next address. It repeats the sequence
to the last RAM address. The RaM should now be full of
1s. Now the test starts at the last RaM address,
verifies that the 1 is there and then writes a 0. It
decrements the location, verifies the 1, writes a 0; and
does this until the whole RAM has been refilled with 0s.
This last test phase may fail because of either
addressing problems, or bits stuck at 0.

EPAR2 AR and ARX Parity Chain, CON AR and ARX Parity
Bit Generator and CLK

This test checks the AR/ARX parity chain located on the
shifter board, the CON AR 36 logic on the CON board used
to generate the odd parity bit, and the parity checking
Yogic on the CLK board which stops the clock or causes a
page fail on FM, AR, or ARX bad parity.

attempts to set the FM-36 bit to a 1l or a 0 as the test
requires and on each subtest checks that the FM-36 bit
has indeed gone to a 1 or 0. If it has not, the failure
could be in that RAM chip.

Subtests 1-10 load test patterns to check the CON AR 36
logic and the CON ARX 36 logic. In conjunction with the
FM-36 bit the subtests also set and clear CON MBOX
DATA?, ~CON FM DATA, CON FM BIT 36, CON AR LOADED, CON
AR FROM MEM, and CON ARX LOADED, all necessary in the
CON ARE 36 and CON ARX 36 test patterns. It is possible
that CSH PAR BIT A and CSH PAR BIT B could cause these
subtests to fail because the EBox has no control over
these bits. They are expected to be in their reset
state (low).

While subtests 1-10 are occurring, the AR and ARX
registers are loaded with data that, when combined with
CON AR 36 and CON ARX 36, tests the AR and ARX parity
chain logic found on the shifter board.

Finally, CON AR LOADED and CON ARX LOADED are used with
SH AR PAR ODD and SH ARX PAR ODD to test the CLK PAGE
FAIL logic.

COMPANY CONFIDENTIAL

DHKAB

-10-

Table 1 DHKAB Test Summary {Cont)

Test

pescription

37

38

39

EPAR3 AR (ARX) Parity Page Fail, FM Parity Chain, FM
Parity Error Stop

This test checks that incorrect AR or ARX parity causes
CLK PAGE FAILS and that the right page fail address goes
to the control RAM address board. It also verifies
that the fast-memory (FM) parity chain works and that
bad fast-memory parity causes a CLK ERROR STOP.

ECRA06 Microcode Skip Conditions (COND 40-57) and
Dispatches

This test checks the control RAM address board SKIP
conditions and COND PUNCTIONS 40-57. It also picks up
several microcode dispatches - the individual inputs to
the multiplexers that do the actual microcode
dispatching. Each subtest has its own microcode which
sets up the desired skip condition or dispatch condition
and ends with the skip or dispatch being mul tiplexed
onto the CRAM address line. The actual skip or dispatch
is taken, and the CRAM bits which set up the skip or
dispatch are left behind in the control RAM while the
PDP-11 examines the CRAM location register to verify
that the correct dispatch or skip was taken.

PIDTE PI Board to DTE20 Interface Test

This test checks the basic lines that connect the DTE20
to the EBus and to the EBox PI system. It verifies that
PpI interrupt levels can be assigned to the DTE20 and
that the DTE20 can issue an interrupt to the PI board at
that assigned level. It ensures that a CONI DTE reads
what it should, that a CONO DTE sets what it should and
that the bits a CONO DTE sets show up in the DTE20's
status register. It checks that KL10 HALT Loop, KL1lO
RUN FLOP, and EBOX CLK ERR STOp are all readable in the
DTE20 register DIAGL.

It also checks that when the DTE20 issues an interrupt,
the correct API function type is sent to the EBox (i.e.,
correct IOP function type is sent on EBus bits 3-5,
correct address space specification is sent on EBus bits
0-2, correct qualifier is sent on bit 6 and the correct
physical number is decoded and put onto EBus bits 7-10}.
It also checks the DTE20 decoding of the CS lines
CS00-CS06 and ensures that the privileged DTE20 responds
only to its own device code.

COMPANY CONFIDENTIAL

Preliminary and
Associated
Programs

Restrictions
Notes
Loading and
Starting

Procedure

Control
Switches

DHKBA

-1-
~GENERAL INFORMATION -
Code DHKBA.All
Title KL10-PV Basic MBox Diagnostic
Abstract This diagnostic is designed to detect and isolc
faults in the RL10-PV MBox logic.
Hardware
Required KL10-PV mainframe/internal channels (optional)/

MCA20 (optionalj

Refer to diagnostic hierarchy (11/10 sTD module) ,
None

The individual test descriptions for this
diagnostic are the same as those for DGKBA.

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.}

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 {RELIB) ,
4 (INHPAG), 3 (MODDVC) , and 2 (INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DHKBA TEST SUMMARY
(Refer to DGKBA Test Summary.)

ERROR MESSAGE SUMMARY
This diagnostic uses the standard error message format. Refer
the 11/10 STD module.

COMPANY CONFIDENTIAL

DHKBB

-1-

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs
Restrictions

Notes
Loading and
Starting

Procedure

Control
Switches

DHKBB.A1ll
KL10-PV Memory Systems Diagnostic Test

This diagnostic program is designed to detect a.._
isolate faults related to the operation of the
KL10-PV memory subsystem. It checks all internal
and external memory controllers which respond to
an SBus diagnostic. If run in a normal fashion,
all will be tested. All internal memory is
tested for addressing, all 1s and Os. All
external memory is tested.

KL10-PV mainframe/MA20s/MB20s/DMA20s

Refer to diagnostic hierarchy (11/10 STD module) .
None

The individual test descriptions for this
diagnostic are the same as those for DGKBB.

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART) , 13 (TOTALS), 11 (NOT USED), 6 (RELIB) ,
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DHKBB TEST SUMMARY
(Refer to DGKBB Test Summary.)

ERROR MESSAGE FORMAT
This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

COMPANY CONFIDENTIAL

DHKBC

-1-

GENERAL. INFORMATION

Code
Title

Abstract

Bardware
Reguired

Preliminary and
Associated
Programs

Restrictions
Note

Loading and
Starting

Procedure

Control
Switches

DHKBC.All
KL10 Paging Logic Diagnostic

This diagnostic is designed to detect and isolav.
all faults in the MBox and EBox logic associated
uniquely with paging operations. This logic is
on the PAG, PMA, and CSH boards in the MBox, and
the SCD and MCL boards in the EBox.

KL10-PV mainframe/at least
memory.

168 of KL10 main

Refer to diagnostic hierarchy (11/10 sTp module) .
The 16K of KL10 memory must be configured.

The individual test
diagnostic are the same

descriptions for
as those for DGKBC.

this

Standard (Refer to the 11/10 sTD module.)

Standard (Refer to the 11/10 STD module.)
The following switches are not implemented: 14

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON,

DHKBC TEST SUMMARY
(Refer to DGKBC Test Summary.)

ERROR MESSAGE SUMMARY

This diagnostic uses

(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB) ,
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH) .
the standard error message format. Refer to

the 11/10 STD module.

COMPANY CONFIDENTIAL

DHKBD

-1~

GENERAL . INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs
Restrictions
Notes

Loading and
Starting
Procedure

Control
Switches

‘DHKBD.A11l

KL10-PV Internal Channel Control Test

This diagnostic program is designed to-detect ana
isolate faults in the operation of the KL10-PV
internal channel control. It is not a complete
test of the internal channel logic. To complete
testing, run DGRBE (Internal Channel Loopback
Test) .

KL10~PV mainframe/internal channels

Refer to diagnostic hierarchy (11/10 STD module).
None

The individual test descriptions for this

diagnostic are the same as those for DGKBD.

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), 3 (MODDVC), and 2 (INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DHKBD TEST SUMMARY
(Refer to DGKBD Test Summary.)

ERROR MESSAGE SUMMARY
This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DHKBF

-1-
GENERAL--INFORMAPION—
Code DHKBF.All
Title MF20 Diagnostic Part 1 of 2
Abstract This diagnostic, together with Part 2 (DHKBG) ,

performs a basic functional check of the MF20
control logic and MOS RAM array boards. This
diagnostic concentrates on the control logic; no
array boards are tested. DHKBG tests the
remainder of the control logic and the array
boards. Together, these diagnostics are used to
get MF20s running to the point where the 10/10
memory diagnostics can be used for further fault
diagnoses and reliability testing.

Hardware
Required KL10-PV mainframe/MF20 memories.

Preliminary and

Associated

Programs Refer to diagnostic hierarchy (11/10 STD module).

Restrictions The master oscillator option bit must be wired
into the APRID.

Notes 1. Wwhen an array board is returned for repair,

make sure that the error printout showing the
serial number is included.

2. KLDCP commands may be executed from this
diagnostic by preceding the command with a
period(.).

3. No response, undefined signals, or unexpected
SBus diagnostic function errors indicate a
fault in the diagnostic logic.

Loading and

Starting

Procedure Standard (Refer to the 11/10 STD module.)

Control

Switches The following standard switches are implemented:

15 ABORT, 12 NOPNT, 10 DING, 9 LOOPER, 8 ERSTOP,
7 PALERS, 5 TXTINH, 2 INHCSH, 1 OPRSEL.

NOTE
Tests which use the cache will not be run if
switch 2 is set (1).

OPERATIONAL CONTROL

In addition to the test selection control provided by DIACON
(switch 1 set), DHKBF also supports its own set of operating
commands. Refer to Table 1.

DHKBF TEST SUMMARY

The individual tests performed by this program are summarized in
Table 2.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. Refer to
the 11/10 STD module,

COMPANY CONFIDENTIAL .

EK-0KL10-03
DHKBF NOV 1979

-2-

Table 1 DHKBF Command Summary

Command | Description

Altmode | $
Interrupt program execution for one KLDCP command.

/DA /DALCR>

Print the PC, VMA, previous and current AC block numbers,
and the contents of AC blocks 0 through 6. Very useful
data to accompany a diagnostic error report.

/DR x #| /DR B 14<CR> or /DR B<CR>

Print the contents of the RAM specified by x. ¥
specifies the MF20 controller number in the range of 10
through 17. If no controller number is specified, then
the currently selected controller is selected. (See the
/TC command.)

A for address response RAM.
B for bit substitution RAM.
F for fixed value logic RAM.
T for timing RAM.

B

If a refresh is in progress it may interfere with a
timing RAM dump.

/ER /ERLCR>
Erase the recorded single-step diagnostic function data.
{See the /TR switch.)

/I1C % /ICLCR> or IC 13<CR>

Perform the minimum initialization of memory necessary to
communicate with the MF20 specified by # (10-17). The
address response RAM is set up. Bits 18-21 determine
which block is used. /ICKCR> reinitializes the currently
selected controller (see the /TC switch).

/MO x /MO 3<CR>
Select master oscillator frequencies source.

3 for normal operation 30 MHz.

2 for slow 25 MHz.

1 for fast 31 MHz.

0 for external oscillator. An external oscillator
ust be connected.

X
X
X
X
m

0

/PD /PD<CR>

Enter diagnostic patch dialogue. The command prints the
address and content of the first free patch location.
Type a <CR> to leave the content unchanged. Type new
data<CR> to change the content. Type <ESC> (escape) to
cause the patches to reguest a new address. Type <ESC>
to the address inguiry to exit.

The address pointer is automatically updated each time a
<CR> is typed.

/v /QVLCR>

Toggle the QV switch. The QV switch executes a set of
tests that reguire manual intervention. These tests are
required by manufacturing and are not normally done in
the field. (See Test 7.)

/RA /RASCR>
Perform a START MICROCODE and restore AC block 0 to the
contents saved by the last /SA command.

/RI /RI<CR>
Reinitialize diagnostic. Set all software switches and
control flags to their initial state.

/SA /SALCR>
Save the contents of the current AC block. (See the /RA
command.)

/SD x /SD 150000 000000

SBus Diagnostic. Perform a BLKO PI using the 36-bit word
specified. The memory's response will be printed.
Sspecify controller number 00 (bits <00:04> to select the
default controller. (See the /TC switch.) No printout
indicates that the memory failed to respond. Fix it.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DHKBF

-3-

Table 1 DHKBF Command Summary (Cont)

Command | Description

/SM /SM<CR>
Automatically voltage margin (SHMO) the memory system.
standby, this requires 81 passes of the diagnostic.
pepending on the size of the memory system it may require
several hours for complete testing; i.e., both DHKBF part
1 and DHKBG part 2.

/SR /SRLCR>
perform as SBus reset.

/TC ¢ /TC<CR> or TC 0<KCR> or TC 13<CR>
Test only the controller specified by # (range 10 to 17) .
TC 0<CR> specifies all controllers. /TCKCR> will cause
the number of the currently selected controller to be
printed. The controller specified will become the
default for the /DR, IC, and SD switches.

/71 /TIZCR>
Allow the user to input a test loop in PDP-11 machine
language. The command will indicate how many times the
test loop can be executed in a 5 second period.

/TN /TNLCR>
Toggle the test-number type-out switch. When on, this
switch causes the test numbers to be printed before the
tests are executed.

/TR /TRLCR>
Allow the user to define and execute a single-step trace
of an MF20 memory cycle. The /TR dialogue will ask all
the right questions as it goes along. This command is
the best way to isolate a fault in the MF20 random
control logic. 1f the message, OUT OF MEM, is printed
erase the single-step record (see the /ER switch) and try
again. Reload the diagnostics after repairing the fault.

/VM x /VMLCR> or /VM 0<CR> or /VM 11<CR>
Set voltage margins equal to x.
x = 12 sets the 12 volt supply to 12.6 V.
x = 11 sets the 12 volt supply to 11.40 V.
x = 5 sets the 5 volt supply to 5.25 V.
x = 4 sets the 5 volt supply to 4.75 V.
x = -2 sets the -2 volt supply to -2.10 V.
x = -1 sets the -2 volt supply to -1.90 V.
% = -5 sets the -5 volt supply to -5.46 V.
x = -4 sets the -5 volt supply to -4,94 V.
x = 0 clears all voltage margins.
/VM<CR>
Print the state of all voltage margins.

Table 2 DHKBF Test Summary

Test Description

0 ONE-TIME INIT COMMON TO DHKBF AND DHKBG
A one-time pretest initialization routine.

1 MASTER OSC TEST FIRST, COMMON TO DHKBF AND DHKBG
Check the master oscillator bit in the APRID. If the bit
is clear (0) the program halts. If the bit is set (1) a
START MICROCODE is performed to determine if the master
oscillator is ruaning. If the oscillator is not running
then the memory subsystem must be powered down and up
again to reselect the internal clock.

2 CONTROLLER CONFIGURATION TEST, COMMON TO DHKBF AND DFKBG

Determine the controller types and numbers. The results
are printed once. Error codes indicate the following.

No controllers responded.

Unrecognized controller type.

a controller is responding to the wrong number.

A mismatch between the master oscillator and the
MF20/MX20.

N
[T}

COMPANY CONFIDENTIAL

EK-0KL10-03
DHKBF NOV 1979

-4-

Table 2 DHKBF Test Summary {Cont)

Test Description

3 PORT LOOPBACK TEST

Set the PORT LPBK bit (diagnostic function 4, bit 05) for
each controller and check for proper response. Next the
PORT LPBK bit is cleared via a memory reset to determine
if the memory reset function works properly.

4 SBDIAG EXPECTED 0 BITS FORMAT TEST
Check all unused SBus diagnostic function bits. Zeros
are output and zeros are expected to return.

5 CORDIS, ECC/SYN REG, BIT FIXER, AND READ PATH 1S TEST
Check the remainder of the internal read path logic.

98.6% of failures detected by this test will be on
the SyN moal?.ﬁ.e. v

6 SBUS DIAG DATA PATH AND INTERFACE TEST
Check the majority of the SBus diagnostic data paths that
normally do not intecfere with each other.

7 VOLTAGE MARGIN CONTROL TEST

Check the ability of the controller to send the margining
signals to the power supplv and the ability of the power
supply to margin voltages properly. The backplane LEDs
and dc bad bit are also checked.

NOTE
The /QV switch must be used to envoke this test. It
requires manual intervention.

8 CONTROL RAM GALPAT TEST
Check for inteference between the bit substitution RAMs,

the timing RAMs, the address response RAMs, and the fixed
value RAMs.

9 REFRESH INTERVAL AND ADDRESS COUNTERS TEST
Check the refresh interval and address counter,

10 MF20 SINGLE STEP TEST
Perform a single-step trace of MF20 memory cycles. This
routine supports the /TR command.

11 There is no Test 11.

12 ADDRESS SEND/RECEIVE, ADR PAR, AND FCN 0 LOCK TEST
This is the first test that performs reads and writes at
full speed. It checks that:

1. The CPU can send an address.

2. The SBus can carry it.

3. The MF20 can receive it.

4. The MF20 can check for correct address parity.
5. The MF20 can indicate an address parity error.
6. The CPU can detect the address parity error.

7. Function 0 locks on error and not on no error.
. Function 0 flags can be cleared after an error.

Refer to the Document section of the listing on
microfiche for troubleshooting scope loops.

13 ADDRESS RESPONSE/NO RESPONSE (NXM) TEST

This is a two-part test. First all blocks in a
controller are deselected, then one block at a time is
selected and a read operation is performed. Part 2 tests
for nonexistent memory. Here all blocks are selected,
then one block at a time is deselected and a read
operation is performed. A NXM should result.

14 WRP BOARD ECC GENERATOR TEST

Verify the design and construction of the ECC network on
the M8574 board. This is not a reliability test. That
is, it does not test all possible failure modes of the
network.

15 FCC COMPLEMENT REGISTER FUNCTION TEST

Test the ability to read and write the ECC complement
register and test the ability to latch and read the data
bits 36-43 mixer.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DHKBF

-5~

Table 2 DHKBF Test Summary (Cont)

Test Description

16 WRITE BAD PARITY DETECT AND CLEAR (-5

Verify that the MF20s can detect bad data parity on a
write, that function 0 error flag can be cleared and that
the APR SBus error flag is set after the controller
detects the error.

17 CONTROL RAM PARITY ERROR DETECT AND FLAG TEST

Verify that each MF20 can detect, report and clear
control RAM parity errors. The RAMs tested are the bit
substitution RAM (FCN 7), the timing RAM (FCN 1l1) and the
address response RAM (FCN 12).

18 WRITE PATH SPARE-BIT-OUT TEST

Check the ability to select and set the spare bit from
any position (00-42) on write. All positions for each
spare-bit address bit are checked.

COMPANY CONFIDENTIAL

EK-0KL10-03

NOV 1979

DHKBG

-1-

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated

Srams

Program

Restrictions

Notes

Loading and
Starting
Procedure

Control
Switches

DHKBG.All
MF20 Diagnostic Part 2 of 2

This diagnostic, together with Part 1 (DHKBF),
performs a basic functional check of the MF20
control logic and MOS RAM array boards. DHKBF
concentrates on the control logic; no array
boards are tested. This diagnostic tests the
remainder of the control logic and the array
boards. Together, these diagnostics are used to
get MF20s running to the point where the 10/10
memory diagnostics can be used for further fault
diagnoses and reliability testing.

KL10-PV mainframe/MF20 memories.

The master oscillator option bit must be wired
into the APRID.

1. Wwhen an array board is returned for repair,
make sure the error printout showing the
serial number is included.

2. KLDCP commands may be executed from this
diagnostic by preceding the command with a
period(.).

3. No response, undefined signals, or unexpected

SBus diagnostic function errors indicate a
fault in the diagnostic logic.

Standard (Refer to the 11/10 STD module.)

The following standard switches are implemented:

15 ABORT, 12 NOPNT, 10 DING, 9 LOOPER, 8 ERSTOP,
7 PALERS, 5 TXTINH, 2 INHCSH, 1 OPRSEL.
NOTE

Tests which use the cache will not be run if

switch 2 is set (1).

OPERATIONAL CONTROL

In addition to the test selection
(switch 1 set),
Refer to Table 1.

commands.

control provided by DIACON

DHKBG also supports its own set of operating

DHEBG TEST SUMMARY
The individual tests performed by this program are summarized in

Table 2.

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format.

Refer to

the 11/10 STD module.

COMPANY CONFIDENTIAL

EK-0KL10-03
DHKBG NOV 1979

-2-

Table 1 DHKBG Command Summary

Command | Description

Altmode | S
Interrupt program execution for one KLDCP command.

/Ccu /CULCR>

Toggle the cache-use switch. Normally the tests that use
the cache are skipped because, at the point in the KLDCP
"B* string (command £file) where this diagnostic is run
the operational status of the cache is unknown. If the
system has cache and you know it works use this command
to turn it onm. (See /QV.)

/DA /DA<CR>

Print the PC, VMA, previous and current AC block numbers,
and the contents of AC blocks 0 through 6. Very useful
data to accompany a diagnostic error report.

/DR x % | /DR B 14<CR> or /DR B<LCR>

Print the contents of the RAM specified by x. ¥
specifies the MF20 controller number in the range of 10
through 17. 1If no controller number is specified, then
the currently selected controller ic selected. (See the
/TC command.)

A for address response RAM.
B for bit substitution RAM.
F for fixed value logic RaM.
T for timing RAM.

LI

oW ouon

If a refresh is in progress it may interfere with a
timing RAM dump.

/1C # /IC<CR> or IC 13<CR>

Perform the minimum initialization of memory necessary to
communicate with the MF20 specified by ¥ (10-17). The
address response RAM is set up. Bits 18-21 determine
which block is used. /IC<CR> reinitializes the currently
selected controller (see the /TC switch).

/MO x /MO 3<CR>
Select master oscillator frequencies source.

3 for normal operation 30 MHz.

2 for slow 25 MHz.

1 for fast 31 MHz.

0 for external oscillator. An external oscillator
st be connected.

X =
X =
X =
x =
mu
/PD /PD<CR>

Enter diagnostic patch dialogue. The command prints the
address and content of the first free patch location.
Type a <CR> to leave the content unchanged. Type new
data<CR> to change the content. Type <ESC> (escape) to

cause the patches to request a new address. Type <ESC>
to the address inquiry to exit.

The address pointer is automatically updated each time a
<CR> is typed.

/v /QULCR>

Toggle the QV switch. The QV switch executes a set of
tests that use the cache and require manual intervention.
These tests are required by manufacturing and are not
normally done in the field. (See Test 7.) (See the /CU
command.)

/RA /RBCCR>
Perform a START MICROCODE and restore AC block 0 to the
contents saved by the last /SA command.

/RL /RILCR>
Reinitialize diagnostic. Set all software switches and
control flags to their initial state.

/SA /SALCR>
Save the contents of the current AC block. (See the /RA
command.)

COMPANY CONFIDENTIAL

ER-0KL10-03
NOV 1979 DHKBG

-3~

Table 1 DHKBG Command Summary {Cont)

Command

Description

/SD x

/SM

/SR

/TC %

/T

/TN

/UM x

/8D 150000 000000

SBus Diagnostic. Perform a BLKO PI using the 36~bit word
specified. The memory's response will be printed.
Specify controller number 00 (bits <00:04> to select the
default controller. (See the /TC switch.) No printout
indicates that the memory failed to respond. Fix it.

/SM<CR>

Automatically voltage margin (SHMO) the memory system.
Standby, this requires 81 passes of the diagnostic.
Depending on the size of the memory system it may require
several hours for complete testing; i.e., both DHKBF part
1 and DHKBG part 2.

/SRLCR>
Perform as SBus reset.

/TCKCR> or TC 0<CR> or TC 13<CR>

Test only the controller specified by # {range 10 to 17).
TC O0<CR> specifies all controllers. /TC<KCR> will cause
the number of the currently selected controller to be
printed. The controller specified will become the
default for the /DR, IC, and SD switches.

/TI<CR>

Allow the user to input a test loop in PDP-11 machine
language. The command will indicate how many times the
test loop can be executed in a 5 second period.

/TNLCR>

Toggle the test-number type-out switch. When on, this
switch causes the test numbers to be printed before the
tests are executed.

/VM<CR> or /VM 0<CR> or /VM 11<CR>
Set voltage margins equal to x.

12 sets the 12 volt supply to 12.6 V.,
11 sets the 12 volt supply to 11.40 V.
5 sets the 5 volt supply to 5.25 V.
4 sets the 5 volt supply to 4.75 V.

[

BRI

-2 sets the -2 volt supply to -2.10 V.
-1 sets the -2 volt supply to -1.90 V.
-5 sets the -5 volt supply to -5.46 V.
-4 sets the -5 volt supply to -4.94 V.

waowon

B

X = 0 clears all volt margins.

/VMICR>
Print the state of all voltage margins.

Table 2 DHKBG Test Summary

Test

Description

ONE-TIME INIT COMMON TO DHKBF AND DHKBG
A one-time pretest initialization routine.

MASTER OSC TEST FIRST, COMMON TO DHKBF AND DHKBG

Check the master oscillator bit in the APRID. If the bit
is clear (0) the program halts. 1If the bit is set (1) a
START MICROCODE is performed to determine if the master
oscillator is running. If the oscillator is not running,
then the memory subsystem must be powered down and up
again to reselect the internal clock.

CONTROLLER CONFIGURATION TEST, COMMON TO DHKBF AND DFKBG
Determine the controller types and numbers. The results
are printed once. Error codes indicate the following.

1 = No controllers responded.

2 = Unrecognized controller type.

3 = A controller is responding to the wrong number.

4 = A mismatch between the master oscillator and the
MF20/MX20.

COMPANY CONFIDENTIAL

EK-0KL10-03

DHKBG NOV 1979

~4-

Table 2 DHKBG Test Summary (Cont)

Test Description

3 STORAGE ARRAY BOARD PROM DATA TEST
Verify the PROM data. Four levels of testing are
performed: storage module (field), group, controller and
system.

Field - The year ranges between 0 and 9, the week
number is less than 55, PROM bits 0-2 have
even parity and byte 3 has odd parity.

Group - All four fields either do exist or do not
exist, and the PP, NN, and SS bits are the
same within the group.

Controller - Group 0 must exist. There are 1 or 2 RAM
sizes, and there is only 1 timing number per
RAM size.

System - All serial numbers must be unigque.

4 GROUP LOOPBACK GROUP SELECT TEST
Test the ability to select and deselect each group in
each MF20.

5 GROUP LOOPBACK DATA PATH TEST
Check the 44-bit data path to the M8579 storage array
boards. This is primarily a control board test.
However, it may also detect multiplexer faults.

6 READ ERROR CORRRECTION AND FLAG TEST USING GROUP LOOPBACK
Test the ability of the syndrome network to detect,
correct and indicate read errors. Four cycles are
checked: 1) no error 2) correctable error 3) correctable
error ignored and 4) double-bit error.

7 FULL SPEED REFRESH VERIFICATION TEST
The refresh was verified in SINGLE-STEP MODE (DHKBF -
Test 10). Here it is tested at full speed. This test
must be run at clock rate 0 (see the /MO switch).

8 NON-ADDRESS CONTROL SIGNALS GENERATION TEST
verify that the control signals on the control board are
reaching the backplane.

9 NON-ADDRESS CONTROL SIGNALS PROPAGATION TEST
Verify that the control signals are propagated to the
array boards.

10 GROUP, BLOCK, SUBBLOCK UNIQUENESS TEST
Verify that each group, block and subblock (SB) is unique
unto itself (i.e., that they do not interfere with each
other) .

11 MOS ADDRESS GENERATION TEST
Test the MOS address generation capability of the ADT
{M8577) board. It verifies that the row and column
address bits do not interfere with each other and that
they are not stuck either high or low.

12 MOS ADDRESS PROPAGATION TEST
Verify that the MOS address bits propagated to the array
boards.

13 DATA PATH TO RAM TEST
A 2-part test of the 44-bit data path to the memories.
Part 1 checks the 36 real data bits and Part 2 checks the
8-bit ECC (and spare).

14 SYN BOARD SPARE-BIT-IN TEST USING RAM
Check the ability of the syndrome board to substitite the
spare bit (coming from memory) for another bit as
determined by the spare bit number (SBN) in the bit
substitution RAM.

15 READ ERROR CORRECTION AND FLAG TEST USING MEMORY

Test the ability of the syndrome network to detect,
correct and indicate read errors. This test is similar
to Test 6; however, the MOS RAMs provide the data path
instead of loopback.

COMPANY CONFIDENTIAL

EK-0KL10-03
NOV 1979 DHKBG

-5-

Table 2 DHKBG Test Summary (Cont

Test Description

16 FULL SPEED READ-PAUSE-WRITE TEST
Verify that each controller can perforn a
read-pause-write with refresh off. Then refresh is
turned on and the test is repeated. This verifies that
there is no interference between the read-pause-write and
the refresh cycles.

17 There is no Test 17

18 PAGE REFILL CYCLE AND DATA TEST
This test performs a full speed 4-word read operation
without using cache.

19 DOUBLE-BIT ERROR SCAN AND FIX TEST

Scan memory for double-bit errors, fix them where
possible and then test again. If a block can be used, it
is left patched. Otherwise. the appropriate bit is set
in the bad block map located in the bit substitution RAM.
This test will only fail if it finds less than 128K
(total) usable MOS memory.

COMPANY CONFIDENTIAL

DHKCA

GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs
Restrictions
Notes

Loading and
Starting
Procedure

Control
Switches

DHKCA.All
KL10-PV Meter Board (M8538) Diagnostic
This diagnostic is designed to detect and isolat.

all faults related to the operation of the
KL10-PV meter board.

KL10-PV mainframe/meter board/MCA20 (optional).

Refer to diagnostic hierarchy (11/10 STD module).
None

The individual test descriptions for
diagnostic are the same as those for DGKCA.

this

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.)
The following switches are not implemented: 14

(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), and 3 (MODDVC).

OPERATIONAL CONTROL

This diagnostic is controlled via DIACON.

DHRCA TEST SUMMARY

(Refer to DGKCA Test Summary.)

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. Refer to

the 11/10 STD module.

COMPANY CONFIDENTIAL

DHMCA

-1
GENERAL INFORMATION™
Code DHMCA.AlLl
Title KL10-PV MCA20 Cache Option Diagnostic
Abstract This diagnostic routine is designed to detect a...

isolate faults relating to the operation of the
MCA20 cache option.

Bardware

Required KL10-PV mainframe/MCA20

Preliminary and

Associated

Programs Refer to diagnostic hierarchy (11/10 STD module).
Restrictions None

Notes The individual test descriptions for this

diagnostic are the same as those for DGMCA.

Loading and

Starting
Procedure Standard (Refer to the 11/10 STD module.)
Control
Switches Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 11
(NOT USED), 4 (INHPAG), 3 (MODDVC), and 2
(INHCSH) .

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DHMCA TEST SUMMARY
(Refer to DGMCA Test Summary.)

ERROR MESSAGE SUMMARY

This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

COMPANY CONFIDENTIAL

DHMCB

-1-

‘GENERAL INFORMATION

Code
Title

Abstract

Hardware
Required

Preliminary and
Associated
Programs
Restrictions

Notes

Loading and
Starting
Procedure

Control
Switches

DHMCB.All
KL10~pPV Cache RAM Banger Diagnostic

DHMCB is a diagnostic aimed specifically at th.
ECL RAMs associated with the KL10 cache
subsystem. It has tests for the cache directory,
written bits, valid bits, data words, and the use
bits. All of these items are stored in ECL RAMs.
The tests in this diagnostic force the KL10 to
run worst-case patterns through these RAMs, and
then, if an error is detected, isolate the board
and the RAM chip associated with the error.

The diagnostic is meant specifically to find
intermittent faults in the cache RAM ICs. If it
finds one it will call out the board and the
chip. The callout for cache "logic errors" is
wrong but the RAM chips called out may lead to
the failing control logic. Scope loops to look
for intermittent RAM errors are almost useless;
however, the diagnostic does do long strings of
operations with the cache which could be valuable
in tracking down other problems while using a
scope.

KL10-PV mainframe/MCA20

Refer to diagnostic hierarchy (11/10 STD module).
None

1. The individual test descriptions for th
diagnostic are the same as those for DGMCB.

2. This diagnostic should be run after DHMCA
(the cache diagnostic) as it assumes that the
cache control logic is working. If a given
error is a result of control logic failure,
then the board and DIP numbers are
meaningless. There are no isolation routines
associated with this diagnostic because the
test error routines contain the isolation
algorithms.

3. Dbue to the highly interdependent nature of
the cache 1logic, it is impossible to
guarantee that an error in a given test is
due to the part being tested. Do not assume
that because a chip is called out that it
must be at fault. There are some wire ORs in
existence, and the inputs and outputs of the
chips also go through other gates which could
fail. In other words, think before you
replace anything.

Standard (Refer to the 11/10 STD module.)

Standard (Refer to the 11/10 STD module.)

The following switches are not implemented: 14
(RSTART), 13 (TOTALS), 11 (NOT USED), 6 (RELIB),
4 (INHPAG), and 3 (MODDVC).

OPERATIONAL CONTROL
This diagnostic is controlled via DIACON.

DHMCB TEST SUMMARY
{Refer to DGMCB Test Summary.)

ERROR MESSAGE FORMAT
This diagnostic uses the standard error message format. Refer to
the 11/10 STD module.

COMPANY CONFIDENTIAL

DHQFA

-1~

GENERAL INFORMATION

Code
Title

Notes

DHQFA.All
TRACON-KL10 Diagnostic Console Signal Tracer

DHQFA is the diagnostic code name for TRACOMN
Refer to the TRACON module for further
information.

COMPANY CONFIDENTIAL

	01-01_systemSoftware
	01-02
	01-03
	02-001_RSX20F
	02-01
	02-02
	03-01_syslib20F
	03-02
	03-03
	04-01_parser
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-001_tops10
	05-01_syslib10
	05-02
	05-03
	05-04
	06-01_tops10
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	07-01_ddt
	07-02
	07-03
	07-04
	07-05
	08-01_pip
	08-02
	08-03
	08-04
	08-05
	09-01_tops10syserr
	09-02
	09-03
	09-04
	10-01_TOPS20
	11-01_syslib20
	11-02
	11-03
	11-04
	12-01_tops20
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-0
	13-01_tops20syserr
	13-02
	13-03
	14-01_maintSoftware
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	15-01_8based8
	15-02
	15-03
	16-01_DJEXA
	16-02
	16-03
	16-04
	16-05
	16-06
	17-01_DJKAA
	17-02
	17-03
	17-04
	17-05
	18-01_DJMSA
	18-02
	18-03
	19-01_DXMPA
	19-02
	19-03
	19-04
	19-05
	19-06
	20-01_11based11
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	21-01_copy
	21-02
	21-03
	22-01_xteco
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	23-01_xxdp
	23-02
	23-03
	23-04
	23-05
	24-01_DXLPB
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	25-01_11based10
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	26-01_DIACON
	26-02
	27-01_KLDCP
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	27-08
	27-09
	27-10
	27-11
	27-12
	28-01_KLDCPU
	28-02
	28-03
	28-04
	28-05
	28-06
	29-01_MEMCON
	29-02
	29-03
	29-04
	30-01_TRACON
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	30-09
	30-10
	30-11
	31-01_DGDTE
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	31-09
	32-01_DGKAA
	32-02
	32-03
	32-04
	32-05
	32-06
	33-01_DGKAB
	33-02
	33-03
	33-04
	33-05
	33-06
	33-07
	33-08
	33-09
	33-10
	33-11
	34-01_DGKBA
	34-02
	35-01_DGKBB
	35-02
	35-03
	35-04
	35-05
	35-06
	35-07
	36-01_DGKBC
	36-02
	36-03
	37-01_DGKBD
	37-02
	37-03
	38-01_DGKBE
	38-02
	39-01_DGKCA
	39-02
	39-03
	40-01_DGMCA
	40-02
	40-03
	40-04
	40-05
	40-06
	40-07
	40-08
	40-09
	40-10
	40-11
	40-12
	41-01_DGMCB
	41-02
	41-03
	41-04
	42-01_DGMMA
	42-02
	42-03
	42-04
	42-05
	43-01_DGDQA
	44-01_DGQDD
	45-01_DGQDE
	45-02
	45-03
	45-04
	46-01_DGQDF
	47-01_DGQDG
	47-02
	47-03
	47-04
	48-01_DGQEA
	49-01_DGQFB
	50-01_DHKAA
	50-02
	50-03
	50-04
	50-05
	50-06
	50-07
	51-01_DHKAB
	51-02
	51-03
	51-04
	51-05
	51-06
	51-07
	51-08
	51-09
	51-10
	52-01_DHKBA
	53-01_DHKBB
	54-01_DHKBC
	55-01_DHKBD
	56-01_DHKBF
	56-02
	56-03
	56-04
	56-05
	57-01_DHKBG
	57-02
	57-03
	57-04
	57-05
	58-01_DHKCA
	59-01_DHMCA
	60-01_DHMCB
	61-01_DHQFA

