AL AT LY Y Y]

ld1igitall INTEROQOFFICE MEMORANDUWN

MMM ERE TS ne

TO1 Dolbhin CPU List

ccy Peter Hurley
Arnold Miller .

DATES 28 Mar 78
FROMg Dan Murphy
QEF?; 'LQG‘&‘&,
EXTs 6356
LoCs MRim2/E37
FILEy CLKMEM

SUBJY CLODCKS FOR DOLPHIN

The following is a discussion of Some of the asbects of cloek
handling in TOPS20 presented In the hope of stimuylating some ldeas
about how to design hardware to do {t more efflciently,

BASIC CLOCK UNITS

The monitor keeps clocks, including elapsed times, runtimes, times
of day, ete,, in two baslc unitses 1 millisecond and 10
microseconds, The 1| ms, clock is used for a wide wvariety of
functions, including all accumulated Job runtimes, The 10
microsecond clock 1s used where greater precision is necessary,
particularly for measuring incremental job runtimes,

In principle, the high resolution clock would be sufficient, 1In
practice, there are several reasons to retain the 1 ms clogk?

1, A 3é=bit word can hold a maximum of about 94 hours in 10
useC¢ unitsy hence a doublewprecision inrteger must bhe used
for accumylated times, wWith 1 ms units, over 1 vYear can
be rebresented In a single word,

2, Tt is less convenlent to read the high preecision clock
accurately since an IO instruction is necessary to read 1t
followed by a full divide to convert to the desired units,

3, Most trimes avallable to user programs via monitor calls are
specified in 1 ms units, and again, gonversion to higher
precision units is not generally worthwhile,

READING CLOCKS

The c¢urrent value of the high pPrecision clock 18 always obtalned
from the hardware, The RDTIME instruction gives microsSecond units
in a double word with a binary point following bit 23 of the
lowworder vword, A divide 1is then uUsed to convert this te the

Page 2

desired quantity, the divisor being "D10B23 for 10 usec units, and
"n1000B23 for 1 ms, units,

(The K510 uses a different format doubleword for the RDTINME
instruction, In this format, the low order bit of the doubleword
is counted at exactly the rate of the clock ¢rystal, Driginally,
this crystal was specified as 4,096 MHZ so that the overflow of a
12sbit counter could be used to genexate 1 ms interrupts, This
created a problem for TOPS20 however, since there is no divisor
which w#i1)] convert that to 10 useec units, At TOPS820 request, it
Wwas agreed that the ¢rystal would be <changed to 4,1 MHZ £Qr
production machines, There has heen some difficulty qet:&ng this
declsion jmplemented however, and at pregent the Joadtest
machine*s clock appears to lcsa ‘about 3,5 seconds per hour,)

The millisecond ¢lock is generally ‘raad directly f£rom a core
lecation, originally (on the KA10 -and KI10), this cell was
maintained by being AQZ*d on each 1 mi)llisecond interrupt, The 1
ms eclock must be perfectly synchronized with the high precision
clock however, so that approach does not work on the KLiO, Until
recently, the 1 ms clock was maintained on the KL10 by dividing
down the master clock and stering it on each 1 ms interrupt,
This, howeyer, costs noticahle overhead, particularly on the Ksiﬁ.
Therefore, as of release 3, the 1 ms clock 1§ not updated
periodically but rather only on explieit request, The most
{important routines which read this cloek were modified to Trequest
an update, and others were left to just get the last updated
value, 8ince the ‘clock 1s updated on every progess context
switch, we assumne the value Is sutficiently accurate, Even this
approach is not entirely satisfactory, It may well be that
several clock update requests oceur within one millisecond thus
causing more overhead in the short run than formerly, Alsc, Sone
clock values ayre not truly updated and this may be a source of
bugs that we haven’t discovered, ﬁutting in more update Treguests
would further increase tne overhead,

Thisg sudgests that the most useful thing would be to have the
desired units avallable directly from the hardware and readable
efficiently, As described, two time base clocks would Dbe
sufficlent for TOPS20, one reporting 1 millisecond units, and the
other reporting 10 usec units, There might well also be a third
clock reporting the highest precisien units avallable, A clogk
frequency would be chosen of which 10 usec and 1 ms are integral
multiples, and a -count=down register would be provided for each
glock to cuase the clock to count at the specified rate, Unce
inirialized, the clogks would be synehronlzed so that
OLOCK/100=MCLOCK always,

RUNTIME MEASUREMENTS

Another facet of clock handling that could possibly be inproved 1s
incremental runtime measurement, At pregent, it takes probaply 20
yse¢ to compute the incremental runtime of the current process,
i.,e, about twice the obasic ¢lock rate, The following is the

Page 3

actual code useds

GETHRT3 HNOSKED sPREVENT SCHEDULING DURING THIS
J8R T4 ,MTIME s+ READ CLOCK FROM HARDWARE
SUB T1,FKTo 1COMPUTE DIFFERENCE
CALGE T1,0 tHANDLE pOSSIBLE OVERFLDW
ADRD T{,BASQVY '
ADD T4 ,RUNT2 tADD FRACTIONAL M8 BASE
MOVE T2,FKRT $GET UNITS M8 BASE
IMULY T2,”D10D :CONVERT TU HP UNITS
ADD 'T1,T2 s SUM OF ACCUMULATED AND INCREMENTAL RT
OKSKED s ALLOW BCHEDULING
RETURN

The above 15 the sSequence necessary to determine the current
runtime of a oprocess in high precision units, The equivalent
routine for 1 ms units Is similar since the basic cloeck 1s kept in
high precision units, NOSKEDR and OKSKED are subrgutine calls
which prevent rescheduling out of the sequence, since inconsistent
results would occur 1f the scheduler updated the base values
during the Seguence, The computation being performed 1isg
(ACCRT + (STTIM = CURTIM)),

where ACCRT is the process accumulated runtime when last started,
STTIM 1s the time of day when the process was started, and CURTIM
is the current time of day, These variables all require more than
36 bits of precision, s¢ the computations are done with
millisecond and fractional millisecond units,

This entire sequence could be eliminated {f there were a cloc¢k
maintained by the hardware which could be loaded with the process
runtime at the start of process execution and which would gount at
the desired rate (10 usec) while the process ran, It should also
be possible to turn this clock off and on without ehanglng 1ts
accumulated value, This allows implemengatiﬁn of a policy of not
charging for certain monitor functions (e,g9, DPage fault handling)
it so desired by a system administrator, This cloeck could also be
conditioned off depending on certain processor states, e,4, Pl in
progress, €tc, In fact, this is very much like the accounting
meters on the KL10, but it counts only real (execution) time, An
important fact to keep In mind is that, whether or not a systenm
administrator chooses to use EBOX/MBOX accounting, the moniter
must still malntain process runtinmes accurately and efficlentlyy
and most sites do not in fact use other than stralght tinme
accounting, We need to be able to maintaln ordinary runtine
accounting as efficiently as we can maintain EBOX/MBOX accounting,

SUMMARY

In summary, time base handling would pe significantly improved by
the following hardware supporti

1, Multiple time base ¢locks running at different freguencles
as selected by the monitor, Specifically, two cloeks
running at 1 KHz and 100 KHgz respectively,

Page 4

2. M process runtime clock, preferably running at 100 KHz,
which would be loaded automatically on context switch and
which could be conditioned to exclude overhead functions,

The pre&enr interval timer functions are alsoc used and appear to
be sufficient,

EBOX/MBOX ACCOUNTING

The KL10 imPlemented EBOX/MBOX accounting .as an attempt to preduce
more reproducible charging data, A number of problems have
appeared in connection with this however,

1, The measure s not in fact cama;eta:y reproducible,
Instructions restarted because of Pl Servicing will cause
both meters to read higher than 1f no {Interrupts had
ocourred,

2, Thege measures cannet be used as a substitute for actual
runtime or as a pseudosruntime, TDPS10 attempted to do
this and fell Inte many problems, If these measures are
to be used for charging, it must be made clear that they
are usage units not related to time,

3, The measure is not reproducible on a different model of
machine (particularly if, as on the K510, the machine does
not implement the feature), Nor is EBOX accounting
necessarily constant over microcode releases,

I believe that the first priority should be to provide ordinary
runtime accounting which is as repeatable as possible, This can
be done by providing -a process runtime ¢lock as daaeribaa above
yhich can be condlitioned to not count during overhead functions,
This, of course, will not be constant over different machines, but
the systen administratar can adjust the charging rate as desired
to reflect different processor speed,

A truly constant ¢harging scheme would ass&qn a basic -charge to
each machine instruction and each canonical aﬁaration. gsuch as an
indi:ect cvycle, The microcode store would have to hold the number
of charge units for each chargable entity, and accumulate the
total as used, Varlableelength operations such -as divide would
have to be examined to ‘determine whether to assess a constant
¢harge or & varlable charge based on the actual work required,
The more such variable charges are included, the more difficult it
becomes to Maintain constant charging over various machine models
and speeds,

L po NOT ?&YQR ATTEMRTING wﬁ no TH:&. ‘The aqmﬁlaxity necessary to
fully achieve the result s probably not worthwhile, Further,
there are an infinite number of combinations of charging rules,
and any one combination is unlikely to satisfy more than the one
customer who proposed it, Ultimately, the ‘cost of owning or
operating a computer 4s a function of timesmlease payments or

Page B

amortization schedule, operator wages, even electric power cost is
a function of how long the machine is turned on, not how much work
it does, Hence, any charaglng scheme not a function ©of time is
arbitrary and unlikely to be generally acceptable, Many service
bureaus charge on the basis of clearly ldentifyable service
delivered, such as number of empleyees In the payroll or number of
1ines in the output report, This is the proper way to limplement
constant -c¢harging, and can even be made to work on machines from
different vendors,

Hence, I conclude thats

1, We should attempt to provide efficient and repreducible
runtime accountingg

The EBOX/MBOX meters are of limited utllity and are not A
substitute for runtime accounting, The MBOX meter has
some value in helping a user to understand and optimize
his program, If the cost 1s small, these meters should be
retained on Dolphin,

W
»

3, Fully general constant accounting is guite difficult and of
questionable valuve, Nething beyond the EBOX/MBDX meters
appears warranted,

