*”;“;’;‘;“;‘;’;'E INTEROPFPFICE MEMORAND UMN
TO: List

DATE: 23-June-~78

PROM: T. Eggers,T. Hess

DEPT: L.C.E.G

LOC: NR1-2/847

EXT: 6181/6448
DISTRIBUTED: 11-May-78 FILE: PBOX.SPC

SUBJ: IBOX/EBOX Functional spec.

First Printing, July 1976

ie information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment
‘eroration. Digital Equipment Corporation assumes no responsibility
or any errors that may appear in this document.
The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsbility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (C) 1978 by Digital Equipment Corporation -

The following‘ate trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIEUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-18

DECCOM DECsystem-20 TYPESET-11

 To: List

Page 2
~THTRODUCTION

.a INTRODUCTION

The purpose of this specification is to present the justification for
the IROX/EBOX multi-processor design and to describe their functional
relationship to each other and wemory. The Dolphin CPU will consist of
tvn microcoded machines that will exist in a tightly coupled
multi-processor environment. Each processor will have independent
microcode and execution. They will not however, be capable of executing
the complete PDP-18 instruction set without each other. The combination

of these two processors will provide the complete instruction execution
capability of the Dolphin CPU. :

l.1 Description
The IBOX/EBOX tasks will be separated as follows:

l. The IBOX will handle all instruction fetches and effective
address calculations. :

2. The EBOX will do all remaining computation and result storing.

3. The IBOX will write no results.

e IBOX data path will consist of a 36-bit limited function ALU and the
minimun number of registers needed to calculate effective addresses. In
addition to these capabilities, the IBOX will be capable of completing
any instruction that only affects the PC (skips, jumps, test, etc.).

1.2 Rationale

Justification for wusing two micro machines was made from variogs
benchmarks designed to study instruction frequencies and instuction pair
occurances. Data from these tests is available for study if desired.
The most significant data point showed that approximately one-third of
all instuctions executed stored no results, in either ACs or memory.
The only thing affected by these instructions was the PC, therefore, a
separate processor could handle this class of instruction.

The next major factor in deciding to use two processors was a program
written by Mike Newman designed to study the distribution of conflicts
between the results of an instruction and the effective address
computation of the next instruciton. This program showed that less than
15% of all PC, index register, and indirect word fetches conflicted with
(N;he previous instructions results.
siven the preceding information, we then constructed and ran under
*mulation an 1BOX/EBOX configuration. A test was performed on a
VE/ADD sequence with a built in conflict. The results showed 19 clock
ticks wvs. 27 clock ticks on the KS18 (similar data path). This very
limited test showed that indeed we could obtain substantial overlap.

! To: List

Page 3
~TWTRODUCTION

.e fact that the DOLPHIN cpu will be built from 1.5ns gates made it

h2cessary to use this two processor arrangment in order to meet the
desired goal of 1.5 times the KL1@ speed.

1.3 1IBOX bata Path

Most of the internal connections in the IBOX data path are necessary in
order to compute effective addresses. In addition to this, the ability
to do the functions AND and SUBTRACT in the ALU were necessary for Test
and Compare instructions. ’

The AC Adrs Bus is used for both addressing the Ram file and microcode
branching. Any of 4 items can be selected onto this bus. The indirect
word register (IW) has 2-five bit fields that are used for the index
register (XR) selection and the indirect bit in each the Instruction
Format and Extended Format Indirect Word. The low-order bits of the
Result register can be selected onto this bus for conflict compares and
for fetching the effective address from the ACs. The AC field of the

instruction register is also available on this bus for conflicts and AC
operand fetching.

non

@ 1m0x/£80x 1nter face

A set of registers called “last registers* are used to comunicate
results to the EBOX. They are as follows:

l. Last IR/Last AC - This register contains the opcode and AC of
the instruction that has been passed to the EBOX for further
processing.

2. Last E - This register contains the calculated Effective
Address (EA) of the instruction that has been passed to the
EBOX for further processing.

3. Last PC - This register contains the Program Counter (PC) of
the instruction that has been passed to the EBOX.

These registers have a four 6-bit comparators conntected to them in
order to provide the conflict logic for operand fetching. They compare
the contents of the AC addrs bus with Last AC, Last AC+l, E and E+l
simultaneously. The enables for the comparators come from the Dispatch
Ram and are based on what the instruction is expected to write as
results. The results written classes are: :

l. None - Instruction writes no results (no conflict).

2. Other - Instruction writes in unspecified locations (guaranteed
conflict).

To: Ligst

Page ¢
INTRODUCTION

. 3. AC - Instruction stores in AC.
4. AC and AC+l =~ [nstructions stores in Acbmnd AC+1.
5. E - Instructions stores in Effective Address.
6. E and E+l - Instruction stéres in EA and EA+1l
7. Both - Instruction stores in AC and EA.
8. Both and AC+l - Instruction stores in EA , AC and AC+).

Thesc registers are loaded on a ®"load last® signal from the IBOX
microcode. An interlock mechanism on the ®"last® registers will prevent
the IBOX from continuing until the EBOX clears this interlock, but only
when the IBOX attempts to load new data in these registers. At the end

of the load cycle, the EBOX will be able to dispatch on this condition
(instruction available).

The EBOX will have the 'capabi’ity to grab and start the IBOX at any
arbitrary micrcode 1location. In addition it can pass any single data
item (36-bits) in location 377(8) of the Ram File. The IBOX will have a
gpecial function to specifically read this datum.

st for the 1BOX to be able to pass data (36-bits at a time) to the
cBbOX via the Instruction Register (IR). The implementation of the
interlock will be similiar to the "last® register mechanism.

w;.%addtional'interlock mechanism between the IBOX and the EBOX. will

The IBOX will also have the capability of ignoring ®"conflict® in order
to speed up certain classes of instructions which the IBOX can fetch and
decode the operands that it knows will not be written by the EBOX.

1.5 EBOX Data Path

The EBOX data path consists of a 16 word, two port register file! an
adder, a shift matrix, a 256 word accumulator RAM, a byte pointer

manipulator, and various multiplexors connecting these parts. The
attached diagram shows the interconnections.

The data-path is 36 bits wide. With the exception of floating poiqt.
all the instructions in the PDP-18 instruction set can be eas*ly

implemented using a 36-bit wide data path. The KS18 uses a 36-bit wide
path and has trouble only with floating point arithmetic, particularly
double precision. The 72-bit paths in the KL18 were added to make the

floating point arithmetic fast. Since fast floating point is a goal
~nly of the Dolphin floating point accelerator and not of the §a§ic
- achine, the narrow data path will reduce costs without compromising

".tem goals.

There will be no "10-bit data path® for the manipulation of floating
point exponents. On the KL18, this logic was needed to make floating

’ ?0: List

Page 5
.. INTRODUCTION

’Qint go fast. The floating point accelerator makes this logic
nrnecessary in the basic machine. A simpler 9-bit data path for the

manipulation of byte pointers and control of the shift matrix replaces
the KL198's 1p-bit path.

The ®magic number field" in the microcode word will be 18 bits wide.
The KL18 9-bit field Proved inconvieniently narrow at times, and the
KS19 18-bit field proved much more useful for constants, masks, and
implementing_functions for infrequently used hardware.

The register file's 16 words replace the KL18's AR, ARX, BR, and BRX
registers with more general purpose registers more regularly connected.
The rejister file can be written by half-words and either half word can

be written with 2eros. This makes the common half word instructions
trivial.

The KL18's VMA and MQ registers are combined into one VMQ register.
With the register file, the only time the MQ needs to be used is with
the multiply and divide algorithm steps. At these times the VMA is not

active, so the functionality can be combined giving a cost savings with
no performance loss.

The adder functionality is that of the 2981: add, and, xor, and ijor,
~+~ith either data input complemented. All of the KL10 10181 ALU's USEFUL

"iithmetic functions are available. All of the boolean functions are
- ailable.

The KL18's shift matrix jis included in modified form: it has its first
“shift by @, 1, 2, or 3" stage built into the register file. This makes
the shifting paths necessary for 2-bit at a time multiply and the
times-ten path take no extra logic. The complete shift matrix will
select a 36-bit window out of the 72-bit concatenated double register
input. This duplicates the KL1# functionality. Slight additions will
pProbably be made to help manipulate 9-bit characters for Cobol.

A 2-bit-at-a-time multiply will probably keep the floating point in the
basic machine running at 3/4 KL10 speed.

The main data paths will have half word parity checking. Instruction
retry 1looks too complicated, at the moment, with no apparent gain in
MTBF. If we can determine that there is a large enough MTBF gain, we
will examine this further.

1.6 Interface To MBOX (see Don Lewine Memo Of 21-June-78)

;“ To: List ’ Page 6
_INTRODUCTION :

.J IBOX Data Path Diagram, Attached.

1.8 EBOX Data Path Diagram, Attached.
1.9 HOVE/ADD/JRST-Tiuing Diagram, Attached.

1.18 Portran Accelerator Data Connections Diagram, Attached.

Iask

ACY

‘XK

j:doxl

in;l.m:n . .
- B4
< e e
S .
—— .,I?.;,le..l..lll.«'“vot.. e+ e e«

<V
“~ o

Y

Do’rlob

iii..,fw % L _
el Y AT

e J g s o+ e e e e e
« v
'3 - §

<

o

a el — -

=9

"

ML Xon /
°

=

£0: 0

. N -t |
_ ey aaf i
- Ce7 R f
oa XMux ! !
CALRE g "
e —1>— | | | |
¥4 i
. =3 28
\ﬂ‘v

3 '

Y |
n Requater: File i , :

sht \ S | g vaa

Hodra i : ' —ﬁD—. sus

y = “\-j‘.“ ‘: ’

i ;

- i ’ ' "' 1‘1 i 1]
. dotn f y
; DY IL han '

..,,,....

AcC RAM

256 words
PAC Lheks
128 b-,l

un’&l

f] i i
. o ’ 4
5 f N
i i 8 ’ >
H fk‘ . . ! .
g o
t }‘.-..-.‘" i
' i +
' : 1
]
RS
b
| !
: -—
X
Loy
‘! i - ".
b= e
ERes Cyri2 > _ '
VR Q¢ 32339>
<M
INuRe &
Corota}
Prowoans
s8I
ALLESTEE]) T
i
EBox

jo ha;’ 1trd

Ece
i

T

fce du:rk»

AC Mok

Ram

256243

i

T

i
§

from EBOR!

't:no‘n

i

8, cay

AND /ADD, Conp

o
: |
fﬁx:r’;

T oor ﬂan){ao‘ A‘_) reds

(]

i

o

4 i
e

[4 cl“n

IR " ‘ 124 "ck

R
- Jp— »thi... - - . PR - . -
g T — i
N) ; o
R EE——— — A 1 e
——— -
—. N
——— i v i, rm . l..‘ -~ — —— - o s " S % ot s B
N ~4
———— e O
3
[[

talac: zo

AC APR Bug “"""-"J«M
. M g
M———

‘ ’ﬁﬂ(—d“

Lo

AR S LD AP

!
3

‘e mebpad

T

¥
.

f

| RL takes
ke

&his

i
!
i
i

3¢ ﬂch éfﬂr

x0hox

Neox.

