!digitall INTEROFFICE MEMORANDUM

TO: Dolphin Project List DATE: 16 Aug 7¢
FROM: Alan Kotok
DEPT: LCEG
DTN #: 231-6381
LOC: MR1-2/E47
FILE: SPDI

SUBJ: Shared Pages Data Integrity (SPDI) Box Specification

Dolphin SPDI Box Functional Specification Revision 1

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Egquipment Corporation assumes no
responsibility for any errors that may appear in this document.

The following are trademarks of Digital Equipment
Corporation:

DIGITAL DECsystem-10 - MASSBUS

DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-19

DECCOM DECsystem-20 TYPESET—ll

Shared Pages Data Integrity (SPDI) Box Specification Page 2

1.0 INTRODUCTION

The Shared Pages Data Integrity (SPDI) Box is an optional
unit which plugs into the Dolphin Bus. 1Its function is to insure
data integrity between the caches of a multi-processor system, for
which it is required. It works in conjunction with the Mboxes of
the various processors to prevent stale data from accumulating in
caches. The overall scheme is described in a memo from Kotok
entitled "Shared Pages in Multiprocessor Dolphin Systems". The
latest revision of that memo at this writing was 2, dated 7 Aug
78.

2.0 TECHNOLOGY

The SPDI Box is built with Macro Cell Arrays. It should
require no RAMs, and wuses 1little more than the standard bus
interface chipset. It should fit on a fraction of a board.

3.0 FUNCTIONAL DESCRIPTION

The SPDI Box sits on the Dolphin Bus and recognizes bus
requests for memory having address bit 9 a one. It will also
recognize requests in I/0 address space for its internal reglsters
and status. Its most commonly used function is with "write"
requests to memory. The processors will detect "shared writable®
pages, and tag them with a one in bit 9 of their addresses. These
pages actually 1live in physical memory in the corresponding
physical page with bit 9 a zero. '

A "write" request to an address with bit 9 a one is
acknowleged by the SPDI box if it is not busy. The SPDI box will
then re-issue a write request, deleting bit 9, and sending along
the data word(s) received. (At this time no use is known.for
other than single word requests.) It then issues "cache zapper"
bus requests to all other active processors in the system. These
are bus cycles which request the processor to kill any copies of
the word(s) it may have in its cache. The SPDI box will retry -
these "zappers" until accepted, or a timeout occurs. The positive wgﬁﬂwiﬂb&P
Qgﬁggﬂlgggment by a processor of a zapper bus request is Aﬁ ke <A
sufficient for the SPDI box, and_impli€s that the processor..will ﬁfaﬁigbmé
2ap 1ts cache before issuing any further bus memory requests. The gf: shok
remainS bUSYy until all Zappers Have been acknowleged.

An internal control register in I/0 space identifies the
active processors, and the requesting processor identifies itself
in the ID field of each request.

The only "read" request handled 1is an "interlock read".
Processors will suppress bit 9 from the address on other reads.
Upon receipt of an "interlock read", the SPDI box re-issues it
with bit 9 suppressed, in the name of the requesting processor.

% (

wa°

4‘
» m
e

Shared Pages Data Integrity (SPDI) Box Specification Page 3

This arranges that the data will return directly to the regquesting
processor. The SPDI box will acknowlege the requesting processor
immediately, unless it is busy, and will keep ¢trying the memory
request until accepted or a timeout occurs. The SPDI box will
then enter a "selective busy" state, in which it appears busy to
all memory requests except those from the processor which issued
the "interlock read". The SPDI Box will remain in this state

§ until the receipt of a "write release" reguest, which will be

{_handled in the same fashion as described for "write" reguests.

4.0 APPLICABILITY

Only one SPDI box may be active in the system at one time.
This is necessary to insure that data written under one "critical
sequence" interlock will be seen by a subsequent processor seizing
that interlock. For reliability reasons, it seems desirable to
have a "hot standby" unit. For this reason, it may be desirable
to combine the functionality defined herein into the Dolphin Bus
Repeater, since the most common multlprocessor conflguratlon (2
processors) has exactly 2 bus repeaters.

5.8 COST
It is currently estimated (by John Allen) that the SPDI box

will take 17 or 18 MCAs, and 1/2 board. 1If it is combined with
the bus repeater, this drops to 6 or 7 MCAs.

6.6 OPEN ISSUES

Should the SPDI box contain some sort of interprocessor
communication facility?

f'digital!! INTEROFFICE MEMORANDUM

TO: Dolphin Project List DATE: 87 Aug 78
Jim Fleming FROM: Alan Kotok
Peter Hurley DEPT: LCEG
Ron McLean DTN $#: 231-6381
LOC: MR1-2/E47
*¥***REVISION 2**** FILE: SHARED3

SUBJ: Shared Pages in Multiprocessor Dolphin Systems

This revision (2) corrects some problems discovered 1in
revision 1 in the area of avoinding a deadly embrace, and assuring
data modified under an interlock will be propagated before another
processor can seize the same interlock.

This memo is to clarify and refine the scheme for handling
shared writable pages in multiprocessor Dolphin systems which was
the subject of the John Allen memo of 16 Jun 78 (file: MBOX4).
It also represents a revision and improvement on the scheme
described in my memo of 18 Jul 78 (file: SHARED) . This new
scheme includes suggestions made by Mike Newman and a
brainstorming session in my office with Bosack, Guglielmi, Allen,
Lewine, McLean and Murphy.

The problem to be solved is that of shared writable pages.
These are defined as pages which have at least one processor which
has written the page, and at least one other processor making any
references to the page. This state is to be carefully
distinguished from the state where many processors have the
privilege of writing, but none has yet done so, or the case where
only one processor has yet exercised the option of referencing the
page, even though several have the privilege.

It is a goal of the system to insure that words written by
one processor will be seen by the other processors after a “"short"
delay, even though for speed reasons, these pages wish to be
cached by all processors. Unless an interlock instruction (such
as AOSE) is used, no guarantee can be made that simultaneous
updating of a word will work, or that one processor will

"instantaneously" see the results of another's writing. It is,

however, a goal that shared data updated by one processor which is
in control of an interlock will be seen only in updated form by a
second processor when that processor gains possession of the
interlock.

To arrange that data integrity is maintained by the hardware
(and microcode), it is first necessary to detect that a page has
become shared writable. This is done with the help of several
bits in the Core Status Table (CST) for the page. The bits in the
CST are one for each processor in the system, currently a maximum
of 4; along with the existing "modified" bit. Each "processor"

Shared Pages in Multiprocessor Dolphin Systems Page 2

bit is a one if that pProcessor has'made any reference to the page.
A bit of the physical addressing space is used in conjunction with
an optional "Shared Pages Data Integrity" box, which goes on the
Dolphin Bus. The function of this bit (bit 9) will be explained
below.

Each time a change or update is made to a processor's page
table cache, or a bPage table cache entry is encountered with its
CST update bit on, a reference is made to the CST. This reference
is an interlocked read-write sequence. & Physical page which is
already shared-writable is one in which more than one processor
reference bit is set, and the "modified" bit is set. 1In this
case, the microcode would

1. Or-in bit 9 into the physjcal address stored in the page
table cache for this entry,.

2. Or-in a one bit into its processor use bit of the CST
word, and write it back.

There are two cases in which @ page needs to be changed to.
shared writable status. The first is that the CST worgd as read
had the "modified" bit set, and exactly one use bit set, but not
the bit for the processor doing the update. This is the case of a
pPage which has been written by another processor, and not yet
shared. 1In this case, the following actions are taken:

1. During the CsT update, no modification is made to the CST
word.

2. A page fault is taken to the software.

3. The monitor goes thru a CST update .interlock and looks to
see if the CST "age" field is set to a combination called
"transition state", (which is detectable by microcode to
block references to the page) .

If so, someone else got here first, and no further
action is necessary. Release the CST interlock and skip
to step 5.

If not, set the transition state, write back the CST
word, and release the interlock.

4. A request is issued to the processor whose reference bit
was on in the CST. This request causes that processor to
do the following items:

l. 1Issue a cache sweep to validate core on the subject
physical page.

o afz. Issue a new instruction which scans the page table
S ‘ cache, setting the CST update bit on all entries
pointing to the object physical page.

1 Shared Pages in Multiprocessor Dolphin Systems Page 3

3. Upon completion of both these items, doing a CsT
update, changing the "age" field to the current time,
and oring-in the processor use bit of the processor
which initiated this reguest.

| 5. Go off and do something else until a check of the CST
; word for the object page returns to legal state.

When the processor detecting the above transition is able to
resume the process causing the fault, correct data for the object
page will all be in main memory, and a mechanism described below
will insure continued integrity. Since no successful reference
was made to the object page before the above seguence was
executed, the first retry of the failed reference will cause a CST
update reference to be made, where it will be determined that the
Page is now shared writable.

A third processor tripping over the same problem as above
would either have its microcode CST update find the page in
"transition state", and just wait for it to become unblocked, or
might just catch the pPage after the second processor detected the
transition and before it set the ‘“transition state". In that
case, the third processor will hit the CST update interlock
mentioned above, and will either take over the transition action,
or yield to the second processor, and wait.

If a processor attempts a CST update and finds that it is the
first to attempt to write a page that at least one other processor
X is reading, the transition to shared writable is much simpler.

;&x The microcode simply ors-in the processor reference bit and the
w{‘” modified bit, and writes back the CST word. It then sets bit 9 in
LN its page table cache entry, just as if it had discovered that the

pPage was shared writable before it came along.

cache must be correct, since no one had modified them before, and

A any subsequent modifications will be handled by the "shared pages

y data integrity" box. Processors not having write privileges on

A 4, | this page, or not yet having written the page do not set bit 9 of
Wﬁfﬁﬁﬁp { their address, and do not set “"written" in their page table cache.
4

%iﬁgf‘ This works because any copies of words from this page in any
e i’;“;f\

. This distinction allows pages to have writable access from some
\ Processes and not from others.

The effect of setting bit 9 of a physical address is to put
the page in "writethrough" cache status. This means that each
time a word in such a page is written, it will be both written
into the cache, and sent to memory. Although during ordinary read
operations, bit 9 is suppressed from the address sent to the
memories, it is included during write operations and the read
portions of interlock reads. This is where the "shared pages data
integrity" (SPDI) box comes in.

e —— — — —— — — — o—

Shared Pages in Multiprocessor Dolphin Systems Page 4

Ordinary memory is limited to 2 to the 26th words (67 Million
words) . A reference above this limit, (address bit 9 on), refers
to the SPDI box. 1In the case of a "write" operation, the SPDI box
if not busy will accept it and re-issue it to the same address,
less bit 9. It will then issue a “cache zapper" request to each
other active processor in the system for the word (or words) in
question. The acceptance by the processor of the cache zapper bus
transaction indicates that the receiving processor will delete
these words from its cache. Thus, any write in a shared page will
S00n assure that no old copy resides in any cache. .

In the case of an interlock read operation, the SPDI box, if
not busy, will accept it, and re-issue it to the same address,
less bit 9. It will be issued in the name of the originating
processor, so the result will go directly to that processor. The
SPDI box will remain busy to all but write release operations.
(It is not clear whether this is a "interlock busy" or ordinary
"busy" response.) These will be treated the same as write
operations explained above.

Explicit interlock instructions (like AOCSE) are handled as
follows. If an interlock instruction is encountered by the EBOX,
it will first issue an interlock-read to the MBOX. This operation
implies a write test by the MBOX, since writing privileges are
necessary to do this type of instruction. The MBOX will only
execute an honest memory interlock function if the page is marked
"writethrough" in the page table cache by virtue of bit § being
one in the physical address, or if the Page is marked uncached.
Otherwise, if the page is marked "written" already, the read will
be done normally from the cache (or memory if necessary). If the
Page is either marked "writable but not written", or is not in the
page table cache, the normal Paging algorithm will be clanked,
which will cause, in the normal course of events, an interlocked
update of the CST. Thus, the first processor attempting to do an
interlock on a given word either finds the page already shared, in
which case the memory interlock is done, or finds that the page is
not shared, or will execute the algorithms above if it determines
that this is the transition to shared writable status.

If the page was not shared, then the interlock function is
irrelevant. The next processor to attempt to use this interlock
will trip over the transition to sharing. A processor which
detects the transition to sharing puts the page into shared status
before it can read the word, and will find a good copy in memory.

Since the interlock read goes through the SPDI box, the
following deadly embrace is avoided: Processor 1 has the
interlock and is attempting to release it with a SETOM. Processor
2 is testing the interlock. 1If processor 2 could do the interlock
read around the SPDI box, it could lock-up the memory interlock
when the SPDI box was attempting to do the SETOM write. The SPDI
box would wait patiently for the interlock to free-up, which it
would never do, since the interlock write is camping at the gate
for the SPDI box, which is busy.

Shared Pages in Multiprocessor Dolphin Systems Page 5

In order to assure that data modified under the control of an
interlock will be seen in correct form by a subsequent owner of
the interlock, only one SPDI box can be active in a system.
Otherwise, the 1last data write may still be rattling around the
buses after the interlock is released and reseized.

Bus repeaters must be prepared to save write requests which
have been rejected for interlock reasons, and let other requests
go by, retrying the interlocks occasionally. The space in the bus
repeater buffer wused by an interlock request must be saved until
the write release comes by, or else a deadly embrace similar to
the one described above regarding the SPDI box may occur. Thus
the bus repeater may be able to accept only write release
operations at certain times.

I currently believe that this scheme hangs together. The
loose ends are:

l. How the messages to flush page table caches and sweeﬁ\
data caches are handled -

2. how KI paging makes use of all this, since a CST is
needed. -~

3. What kind of busy responses to send from the SPDI box?

~

I solicit your comments.

1digital! INTEROFFICE MEMORANDUM

TO: Dolphin Project List DATE: 20 Jul 78

Jim Fleming FROM: Alan Kotok
Peter Hurley DEPT: LCEG
Ron McLean DTN #: 231-6381
LOC: MR1-2/E47
****REVISION 1*%%% FILE: SHARED2

SUBJ: Shared Pages in Multiprocessor Dolphin Systems

This memo is to clarify and refine the scheme for handling
shared writable pages in multiprocessor Dolphin systems which was
the subject of the John Allen memo of 16 Jun 78 (file: MBOX4).
It also represents a revision and improvement on the scheme
described in my memo of 18 Jul 78 (file: SHARED) . This new
scheme includes suggestions made by Mike Newman and a
brainstorming session in my office with Bosack, Guglielmi, Allen,
Lewine, McLean and Murphy.

The problem to be solved is that of shared writable pages.
These are defined as pages which have at least one processor which
has written the page, and at least one other processor making any
references to the page. This state is to be carefully
distinguished from the state where many processors have the
privilege of writing, but none has yet done so, or the case where
only one processor has yet exercised the option of referencing the
page, even though several have the privilege.

It is a goal of the system to insure that words written by
one processor will be seen by the other processors after a "short"
delay, even though for speed reasons, these pages wish to be
cached by all processors. Unless an interlock instruction (such
as AOSE) is used, no guarantee can be made that simultaneous
updating of a word will work, or that one processor will
"instantaneously" see the results of another's writing.

To arrange that data integrity is maintained by the hardware
(and microcode), it is first necessary to detect that a page has
become shared writable. This is done with the help of several
bits in the Core Status Table (CST) for the page. The bits in the
CST are one for each processor in the system, currently a maximum
of 4; along with the existing "modified" bit. Each "processor"
bit is a one if that processor has made any reference to the page.
A bit of the physical addressing space is used in conjunction with
an optional "Shared Pages Data Integrity" box, which goes on the
Dolphin Bus. The function of this bit (bit 9) will be explained
below.

Each time a change or update is made to a processor'; page
table cache, or a page table cache entry is encountered with its
CST update bit on, a reference is made to the CST. This reference

Shared Pages in Multiprocessor Dolphin Systems Page 2

is an interlocked read-write sequence. A physical page which is
already shared-writable is one in which more than one processor
reference bit is set, and the "modified" bit is set. In this
case, the microcode would

1. Or-in bit 9 into the physical address stored in the page
table cache for this entry.

2. Or-in a one bit into its processor use bit of the CST
word, and write it back.

There are two cases in which a page needs to be changed to
shared writable status. The first is that the CST word as read
had the "modified" bit set, and exactly one use bit set, but not
the bit for the processor doing the update. This is the case of a
pPage which has been written by another processor, and not yet
shared. 1In this case, the following actions are taken:

1. During the CST update, no modification is made to the CST
word.

2. A page fault is taken to the software.

3. The monitor goes thru a CST update interlock and looks to
see if the CST "age" field is set to a combination called
"transition state", (which is detectable by microcode to
block references to the page).

If so, someone else got here first, and no further
action is necessary. Release the CST interlock and skip
to step 5.

If not, set the transition state, write back the CST
word, and release the interlock.

4. A request is issued to the processor whose reference bit
was on in the CST. This request causes that processor to
do the following items:

1. 1Issue a cache sweep to validate core on the subject
physical page.

2. Issue a new instruction which scans the page table
cache, setting the CST update bit on all entries
pointing to the object physical page.

3. Upon completion of both these items, doing a CST
update, changing the "age" field to the current time,
and oring-in the processor use bit of the processor
which initiated this request.

Shared Pages in Multiprocessor Dolphin Systems Page 3

5. Go off and do something else unéil a check of +the CST
word for the object page returns to legal state.

When the processor detecting the above transition is able to
resume the process causing the fault, correct data for the object
page will all be in main memory, and a mechanism described below
will insure continued integrity. Since no successful reference
was made to the object page before the above sequence was
executed, the first retry of the failed reference will cause a CST
update reference to be made, where it will be determined that the
page is now shared writable.

A third processor tripping over the same problem as above
would either have its microcode CST update find the page in
"transition state", and just wait for it to become unblocked, or
might just catch the page after the second processor detected the
transition and before it set the "transition state". In that
case, the third processor will hit the CST update interlock
mentioned above, and will either take over the transition action,
or yield to the second processor, and wait.

If a processor attempts a CST update and finds that it is the
first to attempt to write a page that at least one other processor
is reading, the transition to shared writable is much simpler.
The microcode simply ors-in the processor reference bit and the
modified bit, and writes back the CST word. It then sets bit 9 in
its page table cache entry, just as if it had discovered that the
page was shared writable before it came along.

This works because any copies of words from this page in any
cache must be correct, since no one had modified them before, and
any subsequent modifications will be handled by the "shared pages
data integrity" box. Processors not having write privileges on
this page, or not yet having written the page do not set bit 9 of
their address, and do not set "written" in their page table cache.
This distinction allows pages to have writable access from some
processes and not from others.

The effect of setting bit 9 of a physical address is to put
the page in “"writethrough" cache status. This means that each
time a word in such a page is written, it will be both written
into the cache, and sent to memory. Although during read
operations, bit 9 is suppressed from the address sent to the
memories, it is included during write operations. This is where
the "shared pages data integrity" (SPDI) box comes in.

Ordinary memory is limited to 2 to the 26th words (67 Million
words) . A write reference above this limit, (address bit 9 on),
refers to the SPDI box. It will accept the write operation, if
not busy, and re-issue it to the same address, less bit 9. It
will then issue a "cache zapper" request to each other active
processor in the system for the word (or words) in question. The
acknowlegement by the processor of the cache zapper bus
transaction indicates that the receiving processor will delete

Shared Pages in Multiprocessor Dolphin Systems Page 4

these words from its cache. Thus, any write in a shared page will
soon assure that no old copy resides in any cache.

Explicit interlock instructions (like AOSE) are handled as
follows. If an interlock instruction is encountered by the EBOX,
it will first issue an interlock-read to the MBOX. This operation
implies a write test by the MBOX, since writing privileges are
necessary to do this type of instruction. The MBOX will only
execute an honest memory interlock function if the page is marked
"writethrough" in the page table cache by virtue of bit 9 being
one in the physical address, or if the page is marked uncached.
Otherwise, if the page is marked "written" already, the read will
be done normally from the cache (or memory if necessary). If the
page is either marked "writable but not written", or is not in the
page table cache, the normal pPaging algorithm will be clanked,
which will cause, in the normal course of events, an interlocked
update of the CST. Thus, the first processor attempting to do an
interlock on a given word either finds the page already shared, in
- which case the memory interlock is done, or finds that the page is
not shared, or will execute the algorithms above if it determines
that this is the transition to shared writable status.

If the page was not shared, then the interlock function is
irrelevant. The next processor to attempt to use this interlock
will trip over the transition to sharing. A processor which
detects the transition to sharing puts the page into shared status
before it can read the word, and will find a good copy in memory.

I currently believe that this scheme hangs together. The
loose ends are: -

1. How the messages to flush page table caches and sweep
data caches are handleg)

2. The location and number of SPDI boxes
3. How KI paging makes use of all this, since a CST is

needed.

I solicit your comments.

e

e ——————— + ..
digital] INTEROFFICE MEM ORANDUDM

<

TO: Dolphin Project List DATE: . 18 Jul 78

Jim Fleming FROM: " "Alan Kotok
- Peter Hurley DEPT: LCEG

DTN #: 231-6381
LOC: MR1-2/E47
FILE: SHARED

SUBJ: 'Shared Pages in Multiprocessor Dolphin Systems

This memo is to clarify and refine the scheme for handling
shared writable pages in multiprocessor Dolphin systems which was
the subject of the John Allen memo of 16 Jun 78 (file: MBOX4).

has written the page, and at least one other processor making any
references to the page. This state is to be carefully
distinguished from the state where many processors have the
privilege of writing, but none has yet done so, or the case where
only one processor has yet exercised the option of referencing the
pPage, even though several have the privilege.

It is a goal of the System to insure that words written by
one processor will be seen by the other processors after a "short"
delay, even though for speed reasons, these pages wish to be
cached by all processors. Unless an interlock instruction (such
as AOSE) is used, no guarantee can be made that simultaneous
updating of a word will work, or that one processor will
'instantaneously" see the results of another's writing.

To arrange that data integrity is maintained by the hardware
(and microcode), it is first necessary to detect that a page has
become shared writable. This is done with the help of a bit in
the physical address of the page, and several bits in the Core
Status Table (CST) for the Page. A one in bit 9 of the pPhysical
Page number defines a page which is shared writable. The MBOX of
the Dolphin will make use of this bit, as will an optional "Shared
Pages Data Integrity"” box, which goes on the Dolphin bus. The
bits in the CST are one for each processor in the system,
Currently a maximum of 4; along with the existing "written" bit.
Each "processor” bit is a one if that processor has made any
reference to the page. ‘ ‘

When a processor brings the page pointer into its page table
cache, an interlocked reference is always made to the CST. If bit
9 of the physical bage number is a zero, and either the *written
bit is on or this Processor is attempting to set the written bit,
and any other processor reference bits are on, then the page -is
transitioning to the shared writable state. If bit 9 of the

physical address was a one, the page is already shared writable.

Shared Pages in Hultiprocessor‘nplphin Systems o - Page 2

In all other cases, the processor or's in its reference bit, and
written bit, if appropriate, and writes back the CST word. Bit 9
of the bus Physical address is forced to zero by the “MBOX on all
read reférences. Seoe

-+~ When the microcode of a processor detects the transition to a
" s8hared writable Page, it causes a Page fault interrupt to the
monitor. If the cause of the transition is that this processor is
attempting to reference a page which has been written by another
processor, the following actions must be taken:

l. During the csT update, the reference bit for this
processor is ored in.

2. A one in bit 9 of the physical Page address must be ored
into the SPT entry pointing to this page.

3. In general, only one other processor reference bit will
have been found to be on in the CST when this processor's
bit was ored in. It is, however, possible for a third

second processor's reference bit on. In the case where
more than one other reference bit is Ffound on, the
following step need not be taken, since it will be done
by the first pProcessor to detect the transition. The
step is to send a message (by yet undefined means) to the
other processor, which has written the page, to flush its
page table cache, and do a cache sweep on the pPage,
validating core. It is necessary to sweep the entire
Page table, since arbitrary virtual pages can point to
the same physical page. ' ’

4. The processor receiving the "flush" message must confirm
the completion of the Sweep to the asking processor, but
need not stop its own pProcessing during this time.

5. 'The asking processor must always flush its Page table
cache, and wait for the confirmation of the Sweep, if
asked for. ‘

The procedure to follow when a processor discovers that it is
the first to write an already shared—for-reading Page is as
follows:

" 1. During the CST update, ones are ored into 'both the
: processor reference bit and the written bit.

" "2. " The o1d copy of the CST entry would be saved by the
microcode to allow the pPage fault software to diq&inguish
this case from the Previous one. :

3. A one is ored into bit 9 of the physical page address in
the sPT.

Bhared Pages in Multiprocessor Dolphin Systéms Page 3

4. Messages are sent to all pProcessors having "one" in their
refgrence bits telling them to flush their page table
caches.

- . ~

5. fhis Processor must flush its page table cache.

i~ -~6.- No cache 8weeps are necessary since all data 4n both core
and caches are correct.

Y Processing in this processor can proceed when all the
Page table flushes are confirmed.

8. Another processor detecting this state more-or-less
simultaneously cannot in fact do so, since the oring-in
of the "written™ bit is done by an interlock operation.
It would detect the situation illustrated above, where it
is the third (or fourth) processor to attempt reading of
an already written page.

The effect of setting bit 9 of a Physical address is to put
the page in "writethrough® cache sStatus. This means that each
time a word in such a Page is written, it will be both written
into the cache, and sent to memory. Although during read
operations, bit 9 is Suppressed from the address sent to the
memories, it 1is included during write operations. This is where
the "shared pages data integrity™ (SPDI) box comes in.

Ordinary memory is limited to 2 to the 26th words (67 Million
words) . A write reference above this limit, (address bit 9 on),
refers to the SPDI box. It will accept the write operation, if
not busy, and re-issue it to the same address, less bit 9. 1It
will then issue a "cache zapper™ request to each other active
processor in the system for the word (or words) in question. The
acknowlegement by the processor of the cache zapper bus
transaction indicates that the receiving processor will delete
these words from its cache. Thus, any write in a shared page will
Soon assure that no old copy resides in any cache.

Explicit interlock instructions (like AOSE) are handled as
" follows. If an interlock instruction is encountered by the EBOX,
it will first issue an interlock-read to the MBOX. This operation
implies a write test by the MBOX, since writing privileges are
necessary to do this type of instruction. The MBOX will only
execute .an honest memory interlock function if the Page is marked
®"writethrough" in the page table cache by virtue of bit 9 being
one - in the physical address, or if the Page is marked uncached.
Otherwise, if the page is marked "written" already, the read will
be -done normally from the cache (or memory if necessary). If the
Page is either marked "writable but not written", or is not in the
Page table cache, the normal Paging algorithm will be ®lanked,
which will cause, in the normal course of events, an interlocked
update of the CST. Thus, the first processor attempting to do an
interlock on a given word either finds the page already shared, in
which case the memory interlock is done, or finds that the page is

~ Shared Pages in Multiprocessor Dolphin Systems Page 4

not shared, or will execute the algorithms above if it determines
that this is the transition to shared writable status.

-If the page was not shared, then the interlock :function is
"dirrelevant. The next processor to attempt to use this interlock
will trip over the transition to sharing. A processor .which
detects the transition to sharing puts the page into shared status
before it can read the word, and will find a good copy in memory.

I currently believe that this scheme hangs together, with the
loose ends being how the messages to flush page table caches and
sweep data caches are handled, and the location and number of SPDI
boxes. I solicit your comments.

