DEC-10-MZZA-D

PDP-10 MONITOR COURSE MATERIALS

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

October

Copyrightc:)1970 by Digital Equipment Corporation

The material in this document
is for information purposes
and is subject to change with-
out notice.

The following are trademarks of Digital
Equipment Corporation, Maynard, Massachu-

setts:
DEC : PDP
FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

1970

1. Introduction to the Monitor
Readings

PDP1J Timesharing Handbook
Introduction to Timesharing
12 pages
Good introduction if you are not familiar with timésharing.
Program Logic Manual
Memo #1, Executive Mode Use of the Priority Interrupt System
8 pages

Basic principles of priority interrupt programming.

Handout - "Introduction to Monitor"

Summary of classroom presentation

Flowcharts and Diagrams
Handout 46 - Functional Diagram of the Monitor

Handout 31 - The Monitor Cycle

PROGRAM LOGIC MANUAL

for

PDP 1@ TIME-SHARING MANUAL

MEMO #1

PDP-10 TIME-SHARING MONITORS

EXECUTIVE MODE USE
OF THE
PRIORITY INTERRUPT SYSTEM

The PDP-10 incorporates a flexible seven channel priority interrupt system that
is particularly useful in programming efficient multiple input/output operations.
The purpose of this section is to acquaint the user with some of the programming
techniques involved with using this system. Topics to be discussed include

1. The manner in which input/output (I/O) devices are connected
to the interrupt channels;

2. Programmed control of the PI system;

3. The action taken by the system upon acknowledgment of an
interrupt request from a device;

4. The action most appropriately taken by the programmer in
anticipation of such an interrupt. .

1. THE SIGNIFICANCE OF PRIORITY LEVELS .

The seven priority interrupt channels are numbered according to their priority
level, with channel 1 having the highest priority. When an interrupt request on
a given channel is being serviced, no further interrupts can occur on that
channel or on any channel of a lower priority; however, a channel of a higher
priority can interrupt the routine servicing the original interrupt. The system
is designed so that the original routine is resumed following the servicing of
the higher priority interrupt. Further, requests occurring on lower priority
channels are never lost, but are simply held until such time as they can be
acknowledged and serviced. In general, an interrupt request from a device con-
sists of a level present on one of the seven PI request channels (lines) which

are part of the I/0 bus. This level remains present until the device is serviced.

2. PRIORITY CHANNEL ASSIGNMENTS

Up to 126 input/output devices can be connected to the central processor via the
I/0 bus. Under control of the Monitor, one or more devices can be connected to
any one of the seven priority interrupt channels. A particular device is con-
nected to a channel with a Conditions Out (CONO) instruction directed to that
device. The CONO instruction contains the channel number in its effective
address portion, usually in bits 33 through 35.

Example CONO PTR, 000005 ;ASSIGNS THE PAPER TAPE READERATO CHANNEL
75, SO THAT WHENEVER THE READER'S "DONE
:FLAG IS SET, AN INTERRUPT WILL BE RE~-
;QUESTED ON CHANNEL 5

Note that in this example, as in all others to follow, the coding is presented
in a format acceptable to the Macro-10 Assembler and that all numbers are in
octal. After this instruction has been executed, the paper tape reader will re-
quest an interrupt each time its "done flag" is set; whether or not the request
is acknowledged depends on the state of the PI system, a condition entirely
within control of Monitor (this is discussed below).

3. CONTROL OF THE PI SYSTEM

The PI system itself is considered to be an I/O device and is controlled by a
Conditions Out (CONO) instruction with a device code of 004. As in the case of
other I/0 devices, the PI system may be thought to contain a control register
whose bits are set according to the bits in the effective address of the CONO
instruction. The significance of these control bits is summarized below. Note
that in this summary the term "selected channels" refers to those channels
corresponding to 1's in bits 29 through 35 of the control register (the
effective address of the CONO instruction), where bit 29 corresponds to channe.
1, bit 30 to channel 2, etc.

BIT OCTAL FUNCTION
23 10000 Clear the entire PI system.
24 4000 Activate an interrupt on the selected channels.
25 2000 Turn on the selected channels.
26 1000 Turn off the selected channels.
27 400 Turn on the PI system.
28 200 Turn off the PI system.

Bit 23, if a 1, cancels all previous requests, turns off all channels, and turns
off the PI system. Bit 24 is used to request an interrupt on a different prior-
ity channel than the one which is active. Bits 25 and 26 allow‘the user to turn
on or off (but not both in any single instruction) any desired channel or
channels. A request level present on the I/O bus line connected to a channel
which has been turned off will not be acknowledged, but the level remains present
awaiting reactivation of the channel. Thus, the user can delay an interrupt or
prevent it from occurring at an inopportune time by turning off the appropriate
channel.

The entire PI system can be turned off with bit 28. From the viewpoint of

1-5

external devices, the system appears as if it were permanently servicing a re-
quest on a channel with a higher priority than channel l. Any interrupt re-
quests which occur will be acknowledged if their respective channels are on, biN

they will not be serviced until the system is turned back on with bit 27.
Some examples may serve to illustrate these concepts.

CONO PI, 10000 ;CLEAR THE PI SYSTEM. THIS INSTRUCTION
;MAY BE USED TO ADVANTAGE IN THE
; INITIALIZATION SECTION OF A PROGRAM
;USING THE PI SYSTEM.

CONO PI, 1007 ; TURNS OFF PI CHANNELS 5 THROUGH 7

CONO FI, 12577 ;CLEAR THE PI SYSTEM, TURN ON THE PI
;SYSTEM, AND TURN ON ALL SEVEN CHANNELS

Note that conflicting requests (e.g., both bits 27 and 28 set to 1) will vield
unpredictable results; the "clear PT system™ operation (bit 23), however, does
not conflict with any other operation and occurs first when the CONO instruction
is executed. Also, the following two instructions are equivalent in effect, if

channel 1 is the only channel being used.

CONO PI, 200 ;BIT 28 -~ TURN OFF THE PI SYSTEM
CONO PT, 1100 ;BITS 26 AND 29 - TURN OFF CHANNEL 1

4. MACHINE ACTION UPON INTERRUPT

When an interrupt level appears and the selected channel is free and no higher
priority channel is in use, an interrupt is granted at the end of the instruction

in progress. The mechanism is as follows.

Control is transferred to core memory location 40 + 2n, where n is

the channel number. The program counter is not affected in any way

by the interrupt unless the instruction in location 40 + 2n changes

the program counter during execution (if, for example, this location
contains a jump-type instruction, it is the programmer's responsibility
to preserve the contents of the program ccunter if he has any inten-
tion of returning to the interrupted program sequence). The system

is designed so that the instruction in location 40 + 2n should be

one of the following:

JSR
BLKI
BLKO

Each of these will be considered in detail later. While other
instructions are not illegal, their use is never necessary and

should, in general, be avoided.

One further point should be understood: when an interrupt is
serviced (when the program sequence beginning in location 40 + 2n

is being executed), the PI system is disabled to the extent that
further interrupts may not occur on the channel currently in use

or on any lower priority channel. This condition prevails until

the program dismisses the channel in use. This action of dismissing
the channel must be taken by the program before control is returned
to the interrupted sequence if any further use of the affected
channels is expected. There are only two ways in which a channel
can be dismissed: the first is through the execution of a JRST
instruction with bit 9 equal to 1; the other is through the execution
of a BLKI or BLKO instruction, both of which will automatically
dismiss the current channel if the transfer of a data block is still
incomplete. These concepts will be illustrated and clarified in

the programming examples which follow.

5. INPUT/OUTPUT PROGRAMMING

NOTE

It is assumed that the reader is familiar with the operation
of the JSR and JRST instructions as well as the eight I/0O
instructions given in the PDP-10 System Reference Manual.

Consider first the use of a JSR instruction in location 40 + 2n. As a specific

example, consider the instruction

JSR 1000

in location 44, to which control is transferred when an interrupt request is
serviced on channel 2. The state of the flags and the program counter (which
is pointing to the instruction which was about to be executed when the
interrupt occurred) is stored in location 1000; control is then transferred to
location 1001 , with channels 2 through 7 disabled. Beginning at location
1001 should be a routine to service the device connected to channel 2. If
several devices are connected to channel 2, the routine must contain appropriate
CONSI or CONSO instructions to determine which "done flag" has been set. The
last instruction in the routine should be a JRST 12, @1000. The specification
of AC 12 causes bits 9 and 11 to be 1's; bit 11 specifies that the flags
stored in location 1000 are to be restored to their former states and bit 9

1-7

causes the PI channel currently in use (channel 2) to be dismissed, thus freeing
channels 2 through 7. Control is then transferred to the location specified in
the address portion of location 1000 (the interrupted sequence). The execution

of the routine beginning in location 1001 might have been interrupted by a re-
quest from a device assigned to channel 1. If, in location 42, there was a JSR

to a similar service routine which ended with its own JRST 12, @nnnn, then control
would automatically transfer back to the channel 2 routine and from there to the

original interrupted sequence.

The above techniques may be extended to cover all seven channels and are
sufficient for full utilization of the PI system. A partial schematic representa-

tion of the program structure appears on the next page.

When blocks of data must be transmitted into or out of core memory, especially
when it is desired that the transfer take place at the maximum rate the I/0
device allows, the BLKI and BLKO instructions may be used to advantage with the
PI system. The technique is somewhat different from that of the JSR example
above. As a specific example, consider the case of reading three words from
paper tape into memory locations 6000 through 6002 while performing some computa-

tion elsewhere. The instruction
CONO PTR , 63

assigns the paper tape reader to channel 3 and causes one word (six frames) of
tape to be read into the interface buffer. The instruction

CONO PI, 12420
clears the PI system, turns it on, and turns on channel 3. When the reader
"done flag" becomes a 1, an interrupt is requested on channel 3 and is serviced
at the completion of the instruction in progress. Control is transferred to
location 46, which should contain the instruction

BLKI PTR, BPWD

where the block transfer pointer word is defined elsewhere using the IOWD

pseudo-instruction
BPWD: IOWD 3, 6000

The execution of the BLKI instruction proceeds in the usual (non-PI) manner,
except that when the single word transfer is complete and the pointer word

42/ JSR, SERV1 SERV1: g
entry >
44/ JSR, SERV2 point

Routine to test and/or

46/ JSR, SERV3 service I/0 devices
known to be assigned to
. channel 1

JRST 12, @SERV1

. SERV2: 2
entry - .
point

Routine to test and/or
service I/0 devices
nown to be assigned to
hannel 2

JRST 12, @SERV2

Service routines for other channels
\ -

Partial Schematic Representation of JSR Example

has been tested for an end-of-block condition, one of two actions is taken by the

hardware.

a. If the last data word of the block has not been read in, the
interrupt channel currently in use is automatically dismissed
and control is returned to the interrupted sequence (pointed
to by the program counter).

b. If the last data word has been read in, the channel is not
dismissed and control goes to the instruction following the
BLKI in struction (in this case, location 47). The program
counter is still pointing to the interrupted seguence, but
it can be lost at this point through careless programming.
The safest instructions to have in location 40 + 2n + 1 are
JSR instructions to dismissal routines. 1In this example, the
instruction

JSR DISM

in location 47 might be used to complete the input operation
by jumping to the brief routine

DISM: @ ; BLANK REGISTER FOR PC
;AND FLAGS

JRST 12, @DISM

which would dismiss the channel and return to the interrupted
sequence. Alternately, the routine beginning at DISM might

turn off the PI system or take any other desired action before
returning. There are slight differences between input operations
and output operations. The reader should refer to the System
Reference Manual for these distinctions.

Here is another example, this one of the output variety. The user desires to
punch out a block of 1008 locations, beginning at LIST, in binary format on
paper tape while an independent program is running. Assume that the main program

has executed the following three instructions to initiate the process.

MOVE 17,[IOWD 77, LIST +1] ; IOWD XWD - 77, LIST
CONO PTP, 41

DTAOC PTP, LIST

The first of these three instructions sets up a pointer and counter word in
ACl7. The next instruction sets the punch to binary mode and assigns it to

PI channel 1. The last of these three instructions activates the punch and
punches the first word. When the punch has finished punching the contents of
LIST, its "done flag" is set and an interrupt occurs on channel 1. Consider

the following two program sequences to service the interrupt. Assume that it is
desired to turn off channel 1 to prevent further interrupts until after the last
data word has been punched. The two sequences accomplish the same task. Note

the manner in which each extracts the second data word correctly from LIST+1.

SEQUENCE 1 SEQUENCE 2
42/ JSR OUTPUT 42/ BLKO PTP, 17
43/ JSR FINISH
OUTPUT: @ FINISH: #
DATAO PTP,1(17) CONO PI, 1100
AOBJIN 17, .42 JRST 12, Q@FINISH

CONO PI, 1100
JRST 12, @OUTPUT

One final point: the use of the arithmetic processor as an 1/0 device. The
processor can be assigned to any PI channel by a CONO instruction having a device
code of @ (mnemonic = APR). With the arithmetic processor so assigned, an

interrupt is requested on the assigned channel whenever any one of the six flags
listed below is set.

Memory Protection flagl

Nonexistent Memory flagl

Clock Count flag (if enabled)l

Floating Overflow flag (if enabled)
"Overflow flag (if enabled)

Pushdown List Overflow flag (if enabled)l

A program designed to service an interrupt requested by the arithmetic
processor would have to contain a series of Condition Skip instructions to

determine which of the above flags caused the interrupt.

The diagram on the following page illustrates the priority
interrupt levels, their functional relationships, and their
relative processing intervals.

The Time-Sharing Monitors always enable these flags for all users. The others,
too, can be enabled privately by request of a user program.

&—PROCESSING INTERVAL

N
CHANNEL 1
CHANNEL 2
FASTER DEVICES, CHANNEL 3
SHORTER PROCESSING
INTERVAL,
HIGHER PRIORITY
SLOWER DEVICES, CHANNEL 4
LONGER PROCESSING
INTERVAL,
LOWER PRIORITY
CHANNEL 5
CHANNEL 6
/ CHANNEL 7
(Clock-
level '1\
\ 4 scheduling) INTERLOCKED
1915(6) %
LEVEL EXEC MODE
(programmed
L operators)
USER MODE

Diagram of Monitor Priority Interrupt Levels

1-12

INTRODUCTION TO THE MONITOR

In the PDP1f timesharing system, all user jobs operate under the control of an
executive program known as the monitor. One of the major functions of the
monitor is to allocate the resources of the system among the various users.
Computer time is divided into slices of one sixtieth of a second by a hardware
clock interrupt. Each time slice is allocated to a user job, which is

allowed to run until the next clock interrupt. In addition to CPU time, all
other resources of the system - I/O devices, controllers, etc., are allocated
among the users by the monitor. Some resources, known as sharable resources,
can be allocated to a job for a short time and then can be reclaimed and given
to another job. Other resources are assigned to a job until that job chooses

to release them.

In addition to controlling user jobs, the monitor provides a number of services
to user jobs, and to the users themselves. In either case, the monitor will
perform a specific operation in response to a user request. Thus, while user
jobs are controlled by the monitor, some parts of the monitor are controlled by
the users.

The monitor, in fact, consists of a number of separate and somewhat autonomous
routines. The Command Processor interprets commands typed by users on their
Teletypes, and the UUO Processor interprets UUO's executed by user programs

and other monitor routines. The UUO processor provides access to the File
Handler and the device service routines. The File Handler allows users to refer
to files in terms of file names and logical block numbers, without being con-
cerned about physical locations. Device service routines handle all device
dependent functions required by the UUO Processor. Also, there is a Scheduler,
which selects the user job to run during each time slice, and a Swapper, which

rotates jobs between core memory and disk or drum memory.

Some monitor routines make up a cycle, which is repeated on a fairly regular
basis. Other routines are noncyclic - operate only when called for by a device
interrupt or a UUO. The cycle comprises the Command Processor, the Scheduler,
the Swapper, and the Context Switching Routine. Context switching consists of
saving all conditions necessary to restart the program interrupted by the last
clock interrupt, and restoring those conditions for the job selected to run
next. When this series of functions has been finished, control is given to

the restored user job, which can then run until the next clock interrupt, or

tick. Upon the next clock tick, the cycle is repeated.

Noncyclic routines include the UUO processor and all the I/0 device interrupt
routines. UUOs are the sole means by which a user program can give control to
the monitor in order to have some function accomplished. Each time a UUO is
executed, control passes back to the monitor. When the UUO has been completed,
control is returned to the user program. I/O devices are initially started by
the execution of UUOs. Once started, an I/0 device can cause an interrupt at
any time -- during a user job, during execution of a UUO, or during any of the
cyclic routines. When any I/O interrupt occurs, control passes to the routine
to process interrupts from that specific device. The interrupt routine
performs its function -- usually an I/0 transfer -- and then returns control to
the interrupted routine. The interrupt routine is responsible for restoring

all conditions so that the interrupted routine is unaffected by the interrupt.

Overall, the monitor can be envisioned as an operator which performs specific
functions in response to specific events which occur within the system. A
regular, periodic event -- the clock interrupt -- drives the cyclic routines.
The UUO Processor responds to UUOs being executed by a program, and the Command
Processor responds to a user's typing a command on his Teletype. Each I/0
device interrupt is an event which results in the operation of a correspondin
interrupt routine. There is a well-defined function which the monitor perforjl
in response to each system event, but a given event will not necessarily result
in the same action every time it occurs. Rather, the specific action taken may
depend on the state of the system. The system state is a many valued variable
depending on the past history of the system. In general, it can be considered
to be represented by the information stored in the many tables and data items
in the monitor, and in the registers of the peripheral devices. Given the
state of the system, the monitor will perform a specific predictable function

in response to any specific event.

In summary, the monitor both controls user jobs and provides various services

to them. Many control functions are performed on a regular basis in response

to a clock interrupt. A user job is given control for one cycle, and then
stopped in such a way that it can be restarted later. Since every interrupt
routine eventually restores control to the interrupted program, user programs
need never be concerned about interrupts -- either from the clock or from I/0
devices. The only monitor action detectable to a user program is the processing
of UUOs. These are processed upon request and have the appearance of single

instructions to the user program.

ST-T

FDP1L TIMF“YARING MONITOR

OTHER
TTY DEVICES
SCANNER OTHER
SERVICE SERVICE
ROUTINE ROUTINES
COMMAND 15180}
PROCESSOR PROCESSOR
l \‘\
«
‘\
-«
“
. USER
s PROGRAM
L 3
\0
[]
]
O‘. T.
LR .
Q. .
L —
% CONTROL
ROUTINE

Monitor Handout 46 -- July 70

DISK

DISK
SERVICE
ROUTINE

SWAPPER

SCHEDULER

9T-1

"MONITOR CYCLE

RUN
NULL JOB

L_RUN 5| PROCESS 3| SCHEDULE

USER JOB Clock COMMANDS
In#

TJL Console _ —Control —

PROCESS Service
uuo

- Job _

Jervice

Monitor Handout 31 -- July 70

2. Building a Monitor

Readings
Memo "MONITR.OPR"
Sections 1 and 2
24 pages
Flowcharts and Diagrams

Handout 21 - Generation of a Monitor

Project 1 - Building a Monitor

MONITOR GENERATION

o MONGEN

N

COﬂFIG.IAC'

S.MAC

MACRO
~~——]

COMMON ,MAC
\/——\

COMMON .REL —
y| COMMON.LST
\P

'\/\

LOADER £ 4572 ,REL
N——

‘ MONITR.MAL
SAVE

COMMAND

MONITR.SAV

Monitor Handout 21 -- July 70

3

i

2-2

PROJECT - BUILD A MONITOR

Given a binary file, consisting of an appropriate monitor and a copy of

TENDMP on either paper tape or DECtape, load and start the monitor.

References:
1. MONITR.OPR, Section 1.1.
2. PDP-10 Reference Handbook, TENDMP, p 621.
Procedures:
1. Follow procedures on p 6.1 of MONITR.OPR to read in and start
your monitor.
2. Try several commands to assure yourself that it works properly.

Given a library file, 4S72.REL, and source files COMMON.MAC and S.MAC,

build a new monitor for a specific configuration. The configuration is as

follows:
1. 10/50 Swapping System
2. RD10 Disk only, for both swapping and storage
3. 20 jobs attached
4, Job size can be all of core
5. PDP-10 Processor
6. 2 Relocation register software
7. No more high segments than jobs
8. Load EXEC DDT, local symbols, user DDT
9. Name of system, PROJECT 1 MONITOR
10. Serial number of CPU: 16
11. System device: DSK
12. COMMON.MAC not edited for the TTY configuration
13. DCl0 Data line scanner only - no 6801
14. Full Duplex Software
15. 3 DC1¢B 8-line groups
16. No DClPE dataset control groups
17. No-data set lines
18. No lines with hardware tabs
19. Remote lines: 16-21
20. No half duplex ‘lines

21. 1 PT reader

22, 1 PT punch

23. No plotter

24, 1 line printer

25. No card reader

26, No card punch

27. No display

28. 5 DECtapes, TD1lg Control
29. No mag tape :
30. No pseudo-TTY

31. No CCL commands in core
32. No special symbols or devices

References:

1. MONITR.OPR 2.0 - 2.5

2. PDP-10 Reference Handbook
TENDMP, p 621
MACRO, p 273
LOADER, p 526

Procedures:

1. Load TENDMP (32K).
2. Use TENDMP to read in SPMON 32K.
3. Under control of SPMON, run program MONGEN.
4. Build CONFIG.MAC on a scratch DECtape.
5. Still under control of SPMON, run MACRO to assemble COMMON from
the following source files:
a. S.MAC
b. CONFIG.MAC
c. COMMON.MAC
6. Run LOADER, to load the COMMON.REL which you have just produced,
with a library search on file 4S72.REL.
7. Save the monitor which you have just loaded on a scratch DECtape
as P1MON.SAV.
8. Following the procedures of Part 1 of this project, load and
start this monitor. (Do not refresh the disk!)
9. Try several commands.

3. Monitor Data Base

Readings

Handout - The Monitor Data Bage
Handout - Queue Transférs

Table Descriptions

JBTQ - Job Quéues Table

JBTADR - Job Address Tablé
JBTSTS - Job Status Table
JBTSWP - Job Swap Table
JOBDAT - Job Data Area

Other References

Handout 13 - Job Queues

Written Assignment

Question Set 1 - Introduction to the Monitor
Question Set 2 - Job Queugs

3=1

THE MONITOR DATA BASE

In order to control and operate user programs, the monitor must have available

a considerable amount of information about the current user jobs. This informa-
tion makes up a data base which is used throughout the monitor. The data base
consists primarily of tables having an entry for each job number in the system,
and in order of job number. Some tables also have entries for each high segment
number. (High segment numbers start after the highest Jjob number.) Several of
the most significant tables are4described below. ‘

The monitor keeps all jobs in groupings called gqueues. A queue is simply an
ordered grouping such as the waiting line at the coffee machine. There are a
number of queues corresponding to the various things for which a job might be
waiting. Jobs waiting for CPU time are in processor queues; Jjobs waiting for
sharable resources are in various sharable resource wait queues; those waiting
for completion of I/0 are in I/O wait queues; etc. Every job number is in one
and only one queue; there is a Null Queue for job numbers not currently
assigned. In some cases a job's position in its queue is significant; in other
cases it is not. For example, in a sharable resource wait queue, the first job
has highest priority for the resource when it becomes available. But in the
I/0 Wait Queue a job is waiting for some device to £il1ll or empty a buffer and
must remain there until the I/O operation is completed. The position of a job

in the I/0 Wait Queue is of no significance.

All the job queues are maintained in a single table, JBTQ. JBTQ has one entry
for each job number plus one entry for each queue. Queues are given negative
numbers and have entries starting just before the base address, JBTQ, and extend-
ing in the negative direction. The table entry corresponding to each job number
is at the position relative to JBTQ corresponding to that job number. A queue

is represented by a chain of entries through the table. The chain begins at

the entry corresponding to the queue number, called the queuve header. From
there it proceeds in order to the entries corresponding to each job in the queue.
From the last job's entry the chain goes back to the queue header, completing a
ring of entries. Each entry, queue header or job number entry, consists of
pointers to the following and preceding entries. The LH contains the position
of the preceding entry; the RH contains the position of the following entry.

This position value is also the job number or queue number corresponding to the
entry to which it points.

Example: Suppose queue 2 contains jobs 1, 4, and 2, in that

order. Queue 2 would be répresented in JBTQ as follows:

Queue Header for Queue 2

JBTQ

Entry for Job 1

Entry for Job 2

Entry for Job 4

The core location and length of each job and high segment in core are contained
in the table JBTADR. These values are used to set up the hardware relocation
and protection register when a job is set up to run. If a job is swapped out,
its JBTADR entry is zero. The entry is updated whenever a job is swapped in

or moved to a new location in core.

The Job Status Table, JBTSTS, contains status information about each job and
high segment. The entry format differs between job number entries and high
segment entries. For job numbers, the right half contains the quantum run time.
This value is initialized when a job is put into a run queue, and is decremented
each time the job is given a time slice. If the gquantum run time expires, the
job will be requeued to another run queue and the quantum run time reset.
Positive quantum run time does not assure a job that it will get any particular
time slice or that it will not be swapped out. TIts only purpose is in circulating

jobs around in the run queues.

The LH of a job number entry contains a number of bits with specific meanings.
The RUN bit is set whenever the user wants a program to run, and no error has
occurred. The RUN bit is cleared when an error is detected or the user indicates
that he wants to stop the program. The Command Wait bit, CMWB, is set when the
user has typed a command which cannot be executed until the job is in core, and
the job is swapped out. This bit will cause the job to be put into the Command
Wait Queue, where it will have very high priority for being swapped in. The
Swap bit, SWP, is set when the job is swapped out. The JRQ bit indicates that

3-3

the job needs to be requeued, or moved to a new queue. When the JRQ bit is s
the Wait State Code, bits 1#-14, indicates the queue which the job should be ;'
into. Normally, if JRQ is not set, the Wait State Code indicates which queue
the job is in. However, there are three Run Queues, and all have the Wait State
Code of zero. Also, jobs are put into the Stop Queue and Command Wait Queue
according to the values of the RUN and CMWB bits. These jobs retain their
previous Wait State Code, so that they may be returned to their previous queéue.

The JBTSWP table contains information necessary for swapping jobs into and out of
core. For a job which is in core, the LH contains its In-Core Protect Time.

The In-Core Protect Time is set when a job is swapped in, and decremented on

each clock tick until it reaches zero. As long as the job has positive In-Core
Protect Time, it will not be swapped out. For swapped-out jobs, the LH of the
JBTSWP entry tells where to find the job. If the job was written on the swapping
device in a single group of contiguous blocks, this will be the disk address
where it is written and bit @ will be #. If the job had to be fragmented, or
written in several separate disk areas, bit @ is 1 and the bits 1-17 contain

the address of a table in core. This table, called a Fragment Table, tells the
location and length of each disk area. The Out-Core Image Size, in bits 19-26,
is the size of the job as written on disk. The In-Core Image Size is the size

of the core area which this job should be read into. Normally, these two size
are equal. They will differ if the job is expanding in core size.

The first 1408 locations of each user area contain the Job Data Area. This area
is primarily a storage area for information about this job while it is inactive.
There is an area where the hardware AC's are saved for the job while a UUO is
being executed. There is another area where the AC's are saved while the job

is not running. There is a considerable amount of additional information

stored here which will be of value to various sections of the monitor.

The tables described above, and a number of others as well, represent the
state of the system to the monitor. Their contents frequently affect the
action taken by the monitor as a result of a particular event, and frequently

the action taken includes making changes to the tables.

QUEUE TRANSFERS

Queue transfers are accomplished by routine QXFER in SCHED. A transfer table
specifies the type of transfer to be made. AC J (alias ITEM) must contain the
job number to be requeued. If the destination queue depends on the source
queue, the source queue number will be in AC T2 (alias TAC) .

The simplest queue transfer is the fixed destination transfer. The same code
is also used as the final part of the other transfers. ‘

The transfer table is as follows:

g4 for xfer to beg of Q Adr of QFIX
- for xfer to end of Q
Quantum Run time Destination
if positive Queue #
(QXFER) AC Q is loaded from the second word of the Transfer Table.

Then there is a jump to the routine whose address is in the
RH of the first word

(QFIX) First the job is deleted from its present queue. This is
done by giving its "following job"“ entry to the preceding
job and its "preceding job" to the following job.

Example: Deletion of Job 4 from its queue
-4
-3
-2 7 2
-1
JBTQ
1
2 -2 4F§
3)
4 o2 7/
5
6
7 4 =2

Next the job will be inserted into the chain of entries which make up the
destination queue. The job will be inserted following either the first link
(i.e., the queue header) or the last link - depending on the wvalue of the
"PLACE" entry in the Transfer Table.

AC J points to the entry which is to be inserted. AC Q must point to the
entry which this entry will follow.

AC Q initially points to the queue header, which is correct if the insertion
is to be made at the beginning of the queue; if the insertion is to be at the
end of the queue, AC Q is backed up one entry, to point at the last entry.
This is done with the instruction:

(QFIX+5) HLR Q, JBTQ (Q)
(QFIX+6) AC T2 is loaded with the index of the entry in front of which the
insertion will be made. This is the value in the RH of the entry Q

now points to.

Now the new linkages are set up with four easy instructions:

(QFIX+7) HRRM J, JBTQ (Q) New "preceding" entry gets (J) as
following entry
HRLM J, JBTQ (T2) New "Following" entry gets (J) as
preceding entry
HRRM T2, JBTQ (J) This job's entry gets (T2) as
following entry
HRLM Q, JBTA (J) This job's entry gets (Q) as

preceding entry

Example: 1Insert Job 1 at end of queue 1:

Q

-3 /

-2 L}

-1 (5) 3
JBTQ N

1

2

3 -1 5

4

6 ~— T2

Q initially contains -1, the index of the queue into which the insertion is to
be made.

Since the insertion is to be at the end of the queue, AC Q is backed up one
entry, by loading it from the LH of the entry it points to.

J points to the entry to be inserted

Q points to the entry after which it will be inserted

T2 points to the entry before which it will be inserted
(J) is placed into the RH of JBTQ (Q) and LH of JBTQ (T2)
(T2) is placed into the RH of JBTQ (J)

(Q) is placed into the LH of JBTQ (J)

Final result

AC values

-3
-2
T2 ———> -1 3 1 3
J ~———> 1 5 -1
3 -1 5
Q —>» 5 3 =X 1
(QFIX+11) if QUANT = @, there is a jump to the routine exit.
(QFIX+12) Otherwise, QUANT is inserted into the RH of the JBTSTS entry
for Job (J) - i.e., Job J's quantum run time is reset.

Also the Wait State Code in that word is set to #

(QX3) Routine returns to célling routine with a POPJ.

There are two additional types of queue transfers:

l. Destination queue’depends on job size.

2. Destination queue depends on source queue.

3-7

Both types of transfers depend on tables to supply the destination queue. Tt
"Queue Progression Table" gives destination queues corresponding to various
source queues. The " Job Size Queue Table" gives destination queues corres-
ponding to various job sizes.

Either type of table may have associated with it a "Quantum Time Table" with

an entry giving a quantum time value corresponding to each destination file.

For both these types of transfers, the Transfer Table is as follows:

for xfer to beg of Q Adr of QLINK

- for xfer to end of Q or QJSIzZ
Adr of Quantum Time Table Adr of Table
if positive giving Dest. Q

These routines scan through the appropriate table for the correct destination
queue. Then the destination queue number and the quantum run time (if
specified) are copied from their tables into AC Q. Now the QFIX routine is
used to do the transfers.

JOB QUEUES

(Queue Number

{(Wait State Code) Label Meaning

0 RNQ Run

1 WsQ I/0 Wait satisfied
2 TSQ TTY wait satisfied
3 STQ System Tape Wait

4 AUQ Alter UFD

5 MQQ Monitor Disk Buffer
6 DAQ Disk Storage Allocation
7 DTQ. DECtape Controller
10 DCQ Data Controller-Magtape or DECtape
11 MTQ Magtape Controller
12 IOWQ I/0 Wait

13 TIOWQ TTY Wait

14 SLPQ Sleep
15 NULQ Null

16 STOPQ Stop
17 PQ1 Processor 1

20 PQ2 Processor 2

21 PQ3 Processor 3
22 CcCMQ Delayed Command

Notes: |

1. RNQ, WSQ, and TSQ never actuall& hold jobs. The gqueues
are defined only to define the‘corresponding Wait State
Codes.

2. The values of PQl, BQ2, PQ3, CMQ, and STOPQ are never
used as wait state codes. Jobs in any of the PQ's have
wait state codes of @g@P. When jobs are put into CMQ
or STOPQ they retain their previous codes, so that they
can be returned to their previous queues,:

Monitor Handout 13 -- June 1970

3-9

QUESTIONS ON INTRODUCTION TO MONITOR

1. List five kinds of events to which the monitor responds.

2. What is meant by a queue?

3. List four kinds of queues into which the monitor might put a job.

4. List four events which could result in a job being requeued.

5. What are some of the functions of the monitor which are not under control

of the user?

6. What are some functions which the monitor performs in response to a user

Or user program request?

7. In which source file is all configuration dependent code?

3-10

8. Which monitor "program" (Rel File) is the only one which varies with
configuration for the same version of the monitor?

9. What is the purpose of a parameter file such as S.MAC?

10. What prevents unneeded routines from being included in the monitor when it
is built?

11. Where can the address and length of each job be found?

12. What would this instruction accomplish:

JRST CPOPJ

13. With what type of system would each of the following monitors be used?

a. 4s72
b. 4D72
c. 4N72

14. What is the primary function of TENDMP?

15. What is the function of SPMON?

3-11

QUESTIONS ON THE JOB QUEUES

Questions 1 - 4 refer to a Job Queues Table as shown on the following page.
Indicate your answers to 2, 3 by making appropriate changes to the given
tables. No question uses the answers of a previous question.

1. List the job numbers found in each queue, in order first‘to last.

2. Show the changes which would be made to the table if QXFER were called
with the following transfer table specified.

2 QFIX
-1 -3
AC J/ 1
AC T2/ 1

3. Show the changes that would be made to the table if QXFER were called
with this transfer table:

43p000 QLINK
-1 QPROG QPROG: =1 -3
-3 -2
AC J/ 5
AC T2/ 3 -2 -1

4. List, in orxder, all.the job numbers which will be returned by successive
scans of the above Job Queues (before changes) by QSCAN, according to the

following scan table.

-3 - QFOR
-1 - QBAK1
-2 - QBAK
-1 ~ QFOR1

3-12

5. List the code that would be generated by the standard QUEUES macro in the
following context:

DEFINE X (a,B)
< A'C: XWD A'Q,8 >
QUEUES

6. Why is the ring of jobs in a queue linked in both directions?

Answer #2 Answer #3.
-3 3 5 -3 3 5
-2 -2 -2 -2 -2 -2
-1 2 4 -1 2 4
JBTQ [’ JBTQ g g
1 4 6 1 4 6
2 6 -1 2 6 -1
3 5 -3 3 5 -3
4 -1 1 4 -1 1
5 -3 5 -3
6 1 2 6 1

4. 1I/0 Processing

Readings
Handout "I/O Processing”
This is a brief introduction, consideriﬁg only buffered I/0 on I/0

bus devices. Dump mode I/0 and data channél devices are not considered.

Program Logic Manual, Memo 8§, p 1-5

This memo is included in Section 8, Device Service Routines.
Table Descriptions

Buffer Ring

Buffer Ring Header

Device Data Block

JDA - Job Device Assignment Table

Diagrams

Handout 44 Buffer Pointers
Handout 7 I/0 Linkages

Written Assignment

Questions on Input-Output

I/0 PROCESSING

All Input and Output for user programs is done by the monitor, at the request
of the user programs. The user programs execute UUO's to inform the monitor
of their requirements, and the monitor then handles all actual communication
with the device. Normally, buffers are used to allow the user program and
the monitor I/O routines to operate asynchronously. While the user program
uses one buffer, the monitor fills or empties another buffer as interrupts

occur from the device.

Buffers are set up, by the monitor, in the user's area. The buffers to be

used for one device or file are linked together to form a ring structure. Each
buffer begins with an area containing descriptive information about that

buffer. This includes a pointer to the next buffer and a bit, which indicates
whether or not the buffer is filled with data. Associated with each buffer ring
there is a ring header containing the information which permits the user program
to access its current buffer. There is a byte pointer and a counter which are
initialized for a new buffer each time the program executes a UUO. The user
program must keep these up to date as it works through the buffer, and execute
another UUO when it has finished that buffer.

For each different device in the system there is a Device Data Block in the
monitor. The Device Data Block, or DDB, contains a great deal of information
relating to that device. Included in the DDB are the address of the buffer
currently available to the interrupt routine, and a byte pointer for the
interrupt routine to access the next byte in its buffer. There are also
pointers to the ring header and to the device service routine for this device.

When the user program executes a UUO, it makes the buffer which it was using
available to the monitor and requests another for its own use. If the monitor
has finished filling'or emptying the next buffer of the ring, the only action
taken by the UUO routine is to advance the user's pointers to the next buffer.
If the next buffer is still in use by the monitor, the program must be stopped
and put into I/O Wait. When the interrupt routine finishes that buffer it

will cause the program to be taken out of I/O Wait, and the interrupted UUO
will be completed. The user program can assume that each UUO makes the next
buffer available to it, because control never returns to the instruction follow-
ing the UUO until that buffer is available.

Fach time a device interrupt occurs, control passes to the routine to service
that device. Another byte is read or written, upon each interrupt, until the
interrupt routine finishes its current buffer. When the buffer is finished,
the interrupt routine makes it available for the user program and advances its
own pointer to the next buffer. If the user program has released that buffer,
by requesting another, the interrupt routine proceeds to fill or empty it. 1If
that buffer is still in use by the user program, the device must be stopped

so that no more interrupts will occur until there is a buffer available. out-
put devices are restarted by the UUO routine as soon as the user executes the
next UUO, making a bufferfull of data available to be written. Input devices
are restarted by the UUO routine when the last full buffer is made available
to the user program, assuring the maximum number of free buffers before

restarting the device.

BUFFER POINTERS

RING HDR
BYTe PTR |\,
ByTE CNT | % BUF 1
\
USER “.‘ TR ->
GUF 3 0
o[s | -
; BUF2
f
' s -
Do |
> | .
Brie PIR |
ByTECN .
INTERRUPT
ROUTINE

Monitor Handout 44 == July 70

JO ~DEVICE LINKAGES

JOB DATA AREAS
y

DEVICE
DATA
BLOCKS

/| 4

=/

BUFFER

/

Monitor Handout 7 -- Apr 70

/

/

RING

— HEADERS
V_ BUFFER

P.E RING
1%

DEVICE

DISPATCH
TABLES

10.

QUESTIONS ON INPUT-OUTPUT

How does the monitor know which device a program refers to when it does a
UUO such as the following:
IN 2,

Explain the process by which the monitor could scan thru all the Device Data
Blocks.

Where are the Device Data Blocks located?

What is the purpose of the Device Data Blocks?

How can the monitor tell if a device has been assigned by a console? -
inited by a program?

How can the monitor tell if an Input Close has been done on a given

software channel?

What location gives the next address in an input buffer to be used by
the monitor? - by the user?

How is the "software channel" specified in an assembled (i.e., machine
language) I/O UUO?

Why would the monitor want the DDB's linked together?

How does the DDB address get into a Job Device Assignment Table entry?

5. The Monitor Cy

Readings

Handout "The Monitor Cycle"

Table Descriptions

cle

JOBDAT - Job Data Area

Flow Charts

Handout 10 -
Handout 6 -
Fandout 23 -

Timing Diagrams
Handout 36 -
Handout 37 -
Handout 35 -
Handout 38 -

Monitor Listings

CLOCK1

Written Assignment

Questions on the Monitor Cycle

the APR Interrupt Routine

The Clock Cycle

Wait Routines

Clock Tick
Scheduling

UUO Interrupted

Clock Tick During Interrupt

Routine
Routine
Routine
Routine

Routine

APRINT
RSCHED
CLKINT
USCHED
WSCHED

lines
lines
lines
lines

lines

54

315
281
264
247

86
479
314
280
263

THE MONITOR CYCLE

The outermost loop of the Monitor is the control routine beginning at RSCHED in
CLOCK1. All cyclic functions are performed either in this routine or in a sub-
routine called by it. The cycle is repeated according to events which occur in
the system, normally at least sixty times per second. On each cycle the

following functions may be performed:

Time accounting

.

. Processing of timing requests
Processing of a console command
Scheduling and swapping

. Context switching

S U W N

Operation of a user program.

The first three functions are performed only when the cycle is started as a

result of a "clock tick."

These functions should not be thought of as equals, either in time consumed or
in importance. Hopefully, most of the time of each cycle is spent in user
program operation. This is the system's reason for existence; the other
functions can be thought of as system overhead. Of the first five functions,
console command processing, and scheduling and swapping will use most of the
time. The amount of time spent in each will, of course, depend on the system
load and the nature of the jobs. Context switching, time accounting, and

timing request processing are logically autonomous functions, performed each
clock tick, but the amount of time they use in each cycle is normally insignifi-
cant.

Time accounting is the first function in the cycle. Several different time

totals are updated, as appropriate:

1. Lost time - time spent running the null job while there were
jobs in the processor queues.

2. Current job's incremental run time (time since the job last
cleared the total).
Current job's total run time.

4. Current job's total (time) X (core size).

There are also checks for end of the day and end of the month. The monitor's

date and time are corrected, if necessary.

Timing requests are processed next. A monitor routine can request that a
specified subroutine be run after some amount of time has passed. To do so

it adds an entry to the Timing Request Queue, CIPWT. (See table description
for details.) At this time the delay time for each entry is decremented. If
the delay time for any entry goes negative, the specified subroutine is run and

the entry is removed from the queue.

The monitor performs some functions only once per second. A counter is
decremented to indicate when another second has elapsed. If the count reaches
zero, the once-per-second tasks are performed. One such function is checking
for hung devices.

‘
Next, if there are any console commands awalting execution, there is a dis-
patch to the command processing routine, COMCON. This is a major section of
tha monitor, and is treated in detail in its own section. COMCON will interpret

and execute one console command, and then return control.

The scheduler is called next. This also is a major section of the monitor. The
ccheduler requeues'any jobs which have changed status during the last cycle

and determines which user job will be allowed to run next. It also calls the

swapping routine. Eventually, it returns control. Note that although the
scheduler determines which job iz to run next, it does not give control to that
job.

Finally, arrangements are made to run the user job selected by the gcheduler.
This process is called context switching. If the job to run next is the same one
which ran last, all that is necessary is to restore its accumulators, processor
flags, and program counter -- the "hardware state."” If a new job is to run,
certain software information must be saved for the old job and restored for the
new job. This information includes the jcb's I/O device assignments and the
address at which control is to be returned to it. Then the hardware AC's of

the new job are restored and control is given to it with a JEN instruction. The
JEN restores the new job's PC and processor flags and dismisses the interrupt.

The user job then has control and can run for the rest of this cycle.

A new cycle will be started as the result of one of three possible events:

1. A clock interrupt occurs while the CPU is in user mode.

2. The UUO processor finishes a function, and the clock interrupt
occurred while the UUO was being processed.

3. The user job reaches a point at which it cannot immediately

continue.

The clock interrupt is one of several interrupts;caused by the arithmetic
processor, device APR. The APR is always assigned to a high priority channel,
so that error conditions which cause APR interrupts may be recognized
immediately. However, there is no urgency for restarting the control cycle.
Therefore the hardware APR interrupt is used to drive a lower priority
"software" clock interrupt. The software clock interrupt is always assigned
to Channel 7, so that all I/O device interrupts can take priority over it. '
The software clock interrupt is also requested by certain other monitor routines
in order to start a new cycle before the hardware clock interrupt has occurred.
The flag CLKFLG is set by any routine which requests the Channel 7 interrupt;
the flag TIMEF is set only by the APR interrupt routine and indicates that an
actual clock tick has occurred.

When the software clock interrupt occurs, control passes to the CLKINT routine
in CLOCKl. If the interrupted program was in exec mode, the interrupt is
immediately dismissed and the new cycle is delayed until the current monitor
function is finished. Otherwise, the user's AC's and PC are saved and control
passes to RSCHED, the beginning of the control cycle.

The UUO Processor checks if a clock tick occurred while it was running, before
returning control to the user program. If it finds TIMEF set, it passes control
to the USCHED routine, which performs essentially the same function as CLKINT.
USCHED sets the user program return address to the next address in the UUO
Processor. It then saves the necessary AC's and passes control on to RSCHED.
Whenever the interrupted program is selected to run again, it will be restarted
in the UUO Processor at the point where control is restored to the user program.

In some cases a user §rogram may reach a point where it can not immediately
continue. For example, it may execute an INPUT UUO at a time when the next
buffer has not yet been filled. 1In such cases, the monitor routine can request

a new cycle be started, so that another job may be selected to run. To do so,
the monitor routine passes control to WSCHED. WSCHED, like USCHED, will set

up the return address, save the AC's, and pass control to RSCHED. When the
Program is restarted it will be at the point where the monitor routine requested
a new cycle.

APR INTERRUPT ROUTINE

0 Check other devices
on this channel.
EC Process error.

ILCREMERT
TIVE OF DAY

|

SET TLAGS:
TIVEY
CLKFLG

N
REGUEST
CE 7
IKTERRUFT

y

CLEAR CLOCK
FLAG IN AFR

iionitor Handout 10 - Apr 70

THE MONITOR CYCLE

RSCHED

TINE
ACCOUNTING

cIp2 \

FROCESS
TLIAIEG
REQUESTS

|

PROCESS
CONSOLE
COMNAND

COMCON

RESCHEDULE
NXTJOB

y

RUN USER
PROGRAM
(OR NULL JORBR)

CLOCK INTHRRUPT

Monitor Handout 6 - Apr 70

WAIT ROUTINES

MARK ;OB SAVE AC'S

FOR 1/0 ,

WATT AND pc'
RUNOTHER
USER JOBS

. WHEN BUFFER
FINISHED AT
INTERRUPT LEVEL
RESTORE

AC'S AND
z
RETURN

Monitor Handout 23 -~- July 70

CLOCK TICK

CH3

CH 7

SCHED

USER ™ JOB A

JOB A

APR INT

Monitor Handout 36 == July 70

SCHEDULING

CH3

CH?7

USER JOBA

Monitor Handout 37 == July 70

JOB B

JOB B

JOB ‘A

0T

UUO INTERRUPTED

CLOCK INT

.
||

CH7

ouo I T o

USER JOBA

TJOBB

Monitor Handout 35 == July 70

1T-§

CLOCK TICK DURING INTERRUPT

CH3

CHS

CH?

scr&eﬁi
USER _JOBA | JoB A

1/0 INT CH7 REQUEST
APR INT

Monitor Handout 38 == July 70

QUESTIONS ON THE MONITOR CYCLE

Specify routines and line numbers for all questions that ask "where".

1.

10.

Where is control passed to RSCHED?
Where does the monitor give control to a user program ?

At what location (label) is the user program's PC stored when a channel

7 clock interrupt occurs?

When is a clock tick counted as "lost?"

Where is context switching performed?

In what place are a job's PC and processor flags saved while it is inactiv
How is the restart address set up for a program stopped at the end of UUO
processing?

How do USCHED and WSCHED differ? How do you account for these differences?

What determines whether the CPU is in exec mode or user mode when control is
restored to a user job?

When would a user job be restarted in exec mode?

5-12

6. The Command Processor

Readings

Handout "The Command Processor"
Table Descriptions

TTYTAB - TTY Table

COMTAB - Command Names Table

DISP - Command Dispatch Table
Flow Chart

Handout 19 COMCON
Monitor Listings

COMCON Lines 1 - 523

Written Assignment

Questions on Command Procesging

THE COMMAND PROCESSOR

As each user types on his Teletype keyboard, the characters are stored in an
input buffer in the monitor until requested as input. If a TTY is not being
used for I/0 by a user program, it is in "monitor command mode", and any line
typed on it will be taken as a command to the monitor. A line is terminated by
a break character, such as altmode or carriage return. When a break character
is typed on a TTY in monitor command mode, the scanner service routine takes it
as the indication that user has completed typing a command and updates the

monitor data base accordingly.

There is a table, TTYTAB, with an entry for each TTY and a bit in the entry to
indicate that a command is awaiting processing. The scanner service sets this
bit and increments a counter, COMCNT, each time a command is completed. On the
monitor cycle following each clock tick, if COMCNT is greater than zero,

control is passed to the command processor to interpret and execute one command.
The entries in TTYTAB are then scanned cyclically to determine which TTY has a §
command waiting. When a command completed bit is found, the first line in the
corresponding input buffer will be interpreted as a command.

The first word is converted to sixbit format and looked up in a table of command
names, COMTAB. The lookup is successful if any command exactly matches the
command that was typed, or if one and only one command matches for as many
characters as were typed. If the lookup is successful, another table, DISP,
specifies a dispatch address and a number of legality bits for the command.

Conditions are checked according to the legality bits to determine if the command
can be performed immediately. Accordingly, an error message may be typed or

the command may be delayed. The command must be delayed if it is a legal

command which merely cannot be performed at the present time. If a command

is delayed, the monitor will try again to perform it, on a later cycle. If the
command requires a job number and there is none for the user who typed the ;
command, a job number is assigned at this time. If all conditions are metf
control will be passed to the routine to handle this specific command.

The command routine must run to completion quickly and return control to the
dispatch routine, because user programs are being delayed while the command is
processed. Many commands will, therefore, simply set up a routine to run
during the user's time. This will result in control being passed to a monitor
routine when this job is made the current user job. The monitor routine may

call in a CUSP to run as the user program, or may call in a user program

6-2

specified by the command.

When the command routine has finished its immediate function, it returns control
to the dispatch routine. Here a number of functions may be performed, according
to bits in the dispatch table entry. If this command resulted in initializa-
tion of the job, then the job numbér, system identification, and date are typed
on the user's TTY. An error message is typed if needed, and a carriage return-
line feed and period are typed if specified by the dispatch table. The TTY is
left in user mode or monitor command mode, also according to bits in the
dispatch table. If the job has been in the command wait gueue and now needs to
be requeued, it is marked as needing to be requeued. The actual requeuing will
be done later, by the scheduler. Finally, control is returned to the monitor's
outer loop, in CLOCKI1.

COMMAND PROCESSOR FLOW

‘ COoMCON >

COMRT1
COMMAND NC
|
'SCAN TTYTAB;
FOR COMMAND,
BIT I YES
SET JNA,
PRINT JOB#,
ETC.
GET COMMAND
FROM TTY
BUFFER p
)
PCRLF
COMLP PRINT MESG
FIND | IF NEEDED
COMMAND
IN
COMTAB

COMFND DELAY

COMMAND

CAN

COMMAND REQUEUE

OR
BE DONE? TYPE
ERROR
MESSAGE
REQIIELE
COMDIS MARK JOB
TO BE
EXECUTE REQUEUED
COMMAND
ROUTINE
(RETURN TO)
COMRET. CLOCK1
CLEAR
COMMAND
BIT, ETC.

Monitor Handout 19 -- July 70

10.

QUESTIONS ON COMMAND PROCESSING

When is the "Command Completed" bit set in TTYTAB?

Where (routine and line) is the "Command Completed" bit cleared?

For what reasons must a commana be delayed?

For what reasons will a job be put into the Command Wait QUEUE?

When is a user assigned a job number by the monitor?

When is the job number, system identification, and date typed upon
completion of a command?

What correlation do you see between the answers to questions 5 and 62

Which commands result in some function being performed during the job's time?

What action does the monitor take in response to an invalid command (i.e.,

a command which is not in the table)?

After which commands does the monitor not type a period? Why?

7. UUO Processing
Readings

Program Logic Manual, Memo #5, 9 pages
Program Logic Manual, Memo #8, p 5-11
Memo #8 is included in Section 8.
Table Descriptions

UUOTAB

UCLTAB

UCLJMP

Buffer Ring

Buffer Ring Header

JDA - Job Device Assignment Table
Device Data Block

Flow Charts

Handout 45 - UUO Flow

Handout 17 - Input UUO

Handout 18 - Output UUO

Program Logic Manual, Memo #8, p 12-23

Handouts 17 and 18 are less detailed than the flowcharts
in Memo #8.

Diagrams

Handout 43 I0 UUO - Device Running
Handout 39 UUO Actions - INIT and INBUF
Handout 42 UUO Actions - INPUT

Handout 41 UUO Actions - OUTPUT

Handout 40 UUO Actions - CLOSE

Timing Relationships
Handout 32 IO Wait

Handout 33 IO UUO - Device Running
Handout 34 IO UUO - Device Not Running

Monitor Listings
ONCE lines 94-95; 140-163
How the UUO Trap locations are set up.
COMMON Routine UUOZ lines 2540-2578
UUOCON lines 1-433

Written Assignment

Questions on UUO Processing

PROGRAM LOGIC MANUAL

for

PDP-10 Time~Sharing Monitor

Memo #5

PDP~10 TIME-SHARING MONITORS

PROGRAMMED OPERATOR SERVICE (UUOCON)

I. DESCRIPTION

The function of UUOCON is to service in some manner those op codes which are
trapped to absolute locations 40 and 41 by the processor hardware. These are
op codes 000, 040, through 077, and (in user mode) 7xx (input/output,

HALT (JRST 4,), and JEN (JRST 10,). 1In addition, the PDP-6 traps codes 001
through 037 as well.

The operations of UUOCON might, for the purpose of discussion, be divided into
three sections.

1. Operator-independent Preprocessing and dispatch;

2. Operator service (operator-dependent algorithms); and
3. Exit routines

Preprocessing includes saving of user accumulators if the machine was in user
mode when the trap occurred (the Monitor may itself contain programmed operators),
filtering out error codes, entering the user's UUO (User-Utilized Operations)
handler if the machine is a PDP-6 and codes 001 through 037 are encountered,
loading of accumulators with information to be used by the operator service
routines, and dispatching to the proper service routine.

Operator service routines perform the algorithm designed for the particular
UUO code, allowing the user to receive information about the system, to alter
the operation of the system concerning his'job, and to communicate with the
input/output devices. A few specific examples are included in this chapter to
demonstrate the information flow between the three sections of UUOCON and the
user's job. Input/output UUO's are dealt with in the chapter on Input/Output
Service.

The exit routines (normal or error) perform the setup necessary to return to

the calling program or, in the case of errors, produce error messages and
appropriately alter the status of the job. One important function of the

normal exit routine is to check the status of the Scheduler before returning to
the calling program. A software interlock between the Scheduler and UUOCON
allows a UUO (which is, after all, one "instruction") to run to completion before
the current job is stopped. The normal exit routine calls the Scheduler if the

7-5

interlock flag was set sometime during the UUO processing.

OPERATQR. PREPROCESSING AND DISPATCH

SPECIAL REGISTERS

A rather important function of this section is to place information about this

user's job (i.e., the job that issued the UUO) into certain accumulators and

index registers before dispatching. Therefore, these registers and their

contents are described briefly before going into the operations of this section.

PDP

PROG

JDAT

uuo

UCHN

DEVDATl

I0S

DSER

A pushdown pointer to a 20-location list in the user's job data area.
The first item placed in this list (JOBPD1) is the user's return,
i.e., a copy of the PC word formed by the JSR in location 41.

Contains a copy of the contents of JOBADR: XWD highest relative
address, relocation for this job. Used as an index register by the
system to relocate references to the user's program area.

Currently the same physical register as PROG but, strictly Speaking,
contains the protection and relocation for references to the user's
job data (JOBDAT) area.

A copy of the programmed operator as trapped into location 40. The
address PROG is set into the X field so that operator service can
refer to (E) indirectly through UUO.

A copy of the AC address field of the UUO. UCHN stands for User
Channel, which it is in the case of input/output operators.

A copy of USRJDA (protected JOBJDA) for this software channel.

This register contains @ if this channel is unassigned. If the
channel is in use, the left half of this word has status bits indicat-
ing what UUO's have been performed for the device so far; the right
half contains the base address of the device data block (DDB).

A copy of the DEVIOS status word for the device on this channel.

A copy of the DEVSER word for the device on this channel. The left
half of this word contains the address of the next DDB in a chain

of all such blocks; the right half contains the base address of the
dispatch table for this device's service routine.

1These registers are pertinent only to input/output programmed operators, but
will be loaded, in any case, when an AC address (UCHN) happens to correspond to
an assigned I/0 channel.

FUNCTIONAL DESCRIPTION

The following is a narrative of the operator-independent preprocessing and
dispatch section of UUOCON.

Uuol

UuosYs

UuosY1l

ILEGAL

DISPY,
DISP2

The user mode flag bit of the trapped PC word is used to detect
whether the call is from the Monitor (as in a GET command) or from
the user. If from the Monitor, certain AC's have been set up and é
portion of the UUOCON coding can be skipped; control goes to UUOSY1.
If the call is from the user and in the range 001 through 037 (PDP-6
only), then a software trap to the user's UUO handler is created,
provided that the user has a nonzero address in his JOB41. If that
location contains either § or an illegal address, an appropriate error
message is typed on the user's Teletype and the job is stopped. 1If
the call is from the user and is not in the 001 through 037 range,
control goes to UUOSYS.

The user's AC's are saved in the JOBAC part of his job data area and
the contents of PROG, JDAT, and PDP are established.

This routine PUSH's the PC word (return address) as the first entry
on the list and then tests the UUO for legality, now trying to
exclude a 000 op code.

If the routine is entered at this location, UUOERR is called, which

types a message "ILLEGAL UUO . . ." and stops the job.

If the routine is entered with a skip, it sets the contents of UUO
for indexing by PROG and then checks the op code for a value greater
than 100 (illegal at this point). If the value is not illegal,
accumulator UCHN is set up. If there is a device on this channel,
DEVDAT, IOS, and DSER are set up. If no device has been assigned to
this channel coincident with this UUO's AC address, the routine
NOCHAN is entered. Otherwise, if this UUO is indeed an I/O opepator
of op code 72 or greater, then routine DISPl is entered. ROUTINE
DISPP is entered directly for non-I/O UUO's or I/O UUO's between
codes 55 and 71 if the channel is found to be assigned.

This coding obtains an address from a 2-address-per-word dispatch
table, using the op code as an index. If this UUO was from user mode,
the service routine is dispatched to by a PUSHJ which puts the address
of the user exit routine on the list as it jumps. If it was from the
Monitor, then the desired address is already on the list and is left

undisturbed when dispatching to the service routine.

NOCHAN This routine calls DISP@ if the UUO was from the Monitor, or if it was
from the user and is not an I/O operator. If the UUO is a CLOSE or
RELEASE operator, the successful return exit is called. Otherwise, th
routine IOIERR is entered to type the message "I/0 TO UNASSIGNED
CHANNEL. . ." and stop the job.

DISP1 This routine "fakes" a successful return to the user if the UUO was
a "long dispatch" one and the device service routine does not have
a long dispatch table (this is an important concept in making user
programs "device independent™; e.g., it enables a LOOKUP to a physical
paper tape reader to be "successful"). If the device service routine
is capable of performing long UUO's, the dispatch routine DISPJ is
called.

OPERATOR SERVICE

Before discussing a particular operator, let us first see how communication
between the user's program and the ceperator service routine is made possible

by setting up the AC's before dispatching. A most important point to note is
that any Exec level software that refers to addresses in the user area must
provide address checking equivalent to that performed by the hardware in user
mode. A reference, especially one that stores information, must address a
location equal to or greater than (PROG)RH and equal to or less than (USRREL)RH.
There are also some locations in the job data area which should be protected.
Three address checking routines exist in Monitor and can be called frem a

UUO service routine.

UADCK1 This routine is called with a: PUSHJ after loading ACl with the address
to be checked. It returns if this relative address is in the user's
accumulator area or between JOBPFI (the top of the protected area of

JOBDAT) and (USRREL)RH.

UADRCK This routine is called: in the same manner as UADCKl, but considers
accumulator area references illegal. Both UADCK1l and this routine
stop the job and print the message "ADDRESS CHECK . . ." message

if a failure occurs.

IADRCK This routine, more forgiving than either of the above, is called
(PUSHJ) with the address to be checked previcusly placed in TAC
and PROG already set up. This routine considers an address
acceptable if it lies between JOBPFI and the relative address in the
left half of PROG. Failure is indicated by a no-skip return to the

calling program, success by a skip return.

7-8

After careful address checking, access to user locations may be made in any of

the following ways.

1l. Fetch the contents of the effective address of the UUO.
MOVE TAC, @QUUO, where TAC is an accumulator available for use.

NOTE
Two things make "@QUUO" work: (1) the hardware has
computed the relative effective address at the time
of the UUO trap, and (2) the UUO preprocessor
routine has placed PROG in the index address field
of AC UUO.

2. Store a result in the effective address location.
MOVEM TAC, QUUO

3. Get an argument from the AC addressed by the UUO (recall
that UCHN contains this AC address and that AC's are in
the JOBAC area.

HRLI UCHN, JDAT ; relocate AC reference
MOVE TAC, QUCHN ; get contents

4. A routine STOTAC exists which stores the contents of
accumulator TAC indirectly intoc the location addressed
by UUO after checking the address (UADCKl routine) and
exits with a POPJ. To end a service routine by returning
a result to the effective address of the UUO and
immediately return to the user, the following instructions
are executed.

MOVE TAC, result
JRST STOTAC

If the call to STOTAC is mede from the same level (with
reference to the pushdown list) to which the preprocessor
routine dispatched (via a PUSHJ), STOTAC's POPJ exit will
return to the exit routine that followed the dispatch
coding.

In returning to the user, one may wish to skip one or more arguments that
followed the UUO, or to give a skip or no-skip return to signify success or
failure of the operation. The UUOCON exit routine is designed to pass on to
the user either a skip or no-skip return. If, when at the level equal to
that following the dispatch, a POPJ PDP is used to exit, the user will re-
ceive a no-skip return. If the sequence

A0S (PDP)

POPJ PDP,
is used, a skip return occurs. This could be used to bypass one argument
following the UUO (a system routine, CPOPJ1l performs this action if called by
a JRST CPOPJ1). If it is necessary to bump up the user's return by more than
one, the routine must take care of adding the correct guantity to the correct
entry on the pushdown list (recall that, if the original UUO was issued by
the Monitor, the preprocessor dispatch was not a PUSHJ). If, for example, two

arguments are to be skipped in return to a user mode call, this sequence

7-9

could be used.

A0S -1(PDP)
JRST CPOPJL

To give the same return to a call from the Monitor,

A0S (PDP)
JRST CPOPJ1

Example

Presently, all operators that do not deal with some phase of>input/output
appear as subfunctions of the CALL programmed operator. To keep this example
reasonably simple, we will choose one of these:

CALL AC, [SIXBIT/RUNTIM/]

The referenced AC is loaded with a job number before the CALIL, and the CALL
returns the total running time (in "jiffies") of that job in the same AC.

The preprocessor routine of UUOCON sets up the standard accumulators and, using
the UUO op code (CALL = 040), dispatches to UCALL. UCALL picks up the contents
of the UUO effective address, the literal value RUNTIM. This argument is used
to effect another dispatch to the routine JOBTIM, which gets the appropriate
run time and stores it in the user accumulator. Before this second dispatch,
the UCALL routine places the contents of the user's accumulator into TAC and
changes the right half of UUO to contain the address of this accumulator. The
accumulator ITEM is loaded with the job number of the currently running job.

When entered, the JOBTIM routine checks the contents of TAC for a valid job
number and then uses it as an index to fetch from the TTIME table (where
running times for all jobs are kept) the desired time and place it into TAC.
A JRST STOTAC causes this result to be stored in the user's accumulator, now
addressed by UUO, and return to the UUOCON exit routine.

EXIT ROUTINES

ERROR EXITS

Error exits, which do not allow a return to the user, occur when a UUO op code

is illegal or an address supplied by the user is illegal. A nonimplemented

UUO in the range 40 through 77, or a UUO of @ will stop the job with the error
bit on (cannot continue) and print "ILLEGAL UUO at USER loc". An illegal op code

7-10

(e.g., a DATAI in user mode) causes the job to be stopped with the error bit set
and the message "ILL. INST. AT" to be printed. The HALT instruction stops
the job, types "HALT AT USER loc.", but does not set the error bit. Thus, the
CONT (INUE) command does function after a HALT.

When an illegal address is detected by a non-I/0 UUO, the UUOERR routine is
called to print the message noted above ("ILLEGAL UUO AT USER loc") and puts
the job into an error stop. When a UUO is associated with a particular device,
ADRERR may be called. ADRERR prints "ADDRESS CHECK FOR DEVICE dev: EXEC CALLED

FROM loc", and results in an error stop condition.

NORMAL EXITS

If the original UUO was issued by the Monitor, the preprocessor dispatch was by
a JRST rather than by a PUSHJ. The service routine's last POPJ would bypass
the user exit routine and go directly back to the Monitor coding following the
call.

If the UUO was from the user, the service routine's terminating POPJ returns to
location USRXT1-1 (no-skip return) or a JRST CPOPJl returns to USRXT1l, which
passes a skip return to the user by adding 1 to the address on the pushdown
list.

USRXIT This routine checks to see if the user has typed a CTRLC (4C), or
if the clock has ticked (software interlock), or if the system
wants to stop this job (to swap it, for instance). If none of these
conditions exists, the user's accumulators are restored and control
is returned to his program. Otherwise, the Scheduler is called
(SCHED) to take appropriate action. If the user's job continues
in the future, control will come back here to restore the user's
accumulators and continue the job.

II. ADDING A PROGRAMMED OPERATOR

There are two ways to add a new UUO function to the Monitor. One is to use a
previously unused op code (42 through 46 are open at the time of this writing -
May, 1968). The other is to add a subfunction to the CALL operator. Before
adding anything to any section of the Monitor, it is, of course, desirable to
understand what is already there. Assuming that one already has this under-
starding and has written a tightly coded new routine that obeys the rules of

address protection and uses as much existing coding as possible, we can

7-11

investigate the process of getting this routine included in a running Monitor.

ADDING A NEW OPERATOR

1. Edit the new coding into the source file for UUOCON. If it is desired to
make this routine a conditional feature, it may be enclosed in conditional
assembly brackets preceded by a symbol like the feature test switches

presently in use.

2. Edit into the UUO dispatch table, UUOTAB, the address of this routine in
the proper half of the XWD found there. For instance, if you are adding a
routine, UDUMP, as op code 43, you would replace XWD UUO42, UU043, with
XWD UUO42, UDUMP. Conditional assembly could be used to set up the dis-
patch table entry if conditional assembly was used with the routine itself
For example,

Routine Coding Dispatch Table Entry

IFN FTDMPU, <UDUMP: IFN FTDMPU,<

XWD UUO42, UDUMP

(coding) 5
IFE FTDMPU, <
XWD UU042, UU043
> >

In this example, the routine will be assembled and the address of UDUMP is
added to the dispatch table if the feature switch FTDMPU is nonzero.

3. In preparation for assembling the new UUOCON, edit the correct feature test

switch settings into the S (system parameter) source file, including any new

ones you have established.
4. Assemble, naming as input first the S file, then the new UUOCON file.
5. Use FUDGE2 to Replace the o0ld version of UUOCON with the new one in the
library file to be used in building your system.

6. Build a new monitor, using this new library file, according to the procedures

in MONITR.OPR.

ADDING A NEW CALL SUBFUNCTION

This method is an attractive alternative to adding an entire new operator when
some job-number-dependent function is to be performed or when arguments to be
passed are few. Recall that, before the CALL dispatches to a subfunction, it
places the job number in accumulator ITEM, the contents of the UUO AC into TAC,
and the address of the UUO AC into UUO, which has previously been set for reloca-
tion. Thus, arguments or argument addresses can easily be passed via this accumu-
lator. The CALL operator dispatches to a subfunction by searching a table of SIXBIT
names (UCLTAB) for a match with the contents of the UUO effective address and

then selecting a corresponding jump address from a half word in a second table
(UCLJMP) . Alternately, the user may use the CALLI (CALL Immediate) operator

and directly supply the index to the jump table. Because of the latter, any
additions to the CALL dispatch tables must be appended to those entries already

in existence.

Example

The PDP~10 hardware will display a word in the console data lights when the

instruction

DATAO PI, [display information]

is executed. Let us add a new CALL to allow any user program logged in under
project number 2 to display information by loading the data into AC and issuing
the command

CALL AC, [SIXBIT/CONLIT/]

Let us further specify that, if the user is not logged in with the proper
project number (2), the call is to be treated as a no-operation. Finally,
let us write the code in such a way that, in a Monitor with no login feature

(feature switch FTLOGIN =), this operator always works.

LIGHTS:

IFN FTLOGIN,<
HLRZ TACl, PRJPRG (ITEM) ;get project number
CAIN TAC1, 2 jequal to 27
>
DATAO PI, TAC ;jdisplay contents of AC
POPJ PDP,

After editing this coding into an appropriate area of UUOCON, the dispatch
tables must be updated. This is done by adding one entry to the list following
the NAMES macro which is called to build the two tables. An entry has the
general form

X function-name, routine address; comment

To add our new display function, insert after the last name and before the
LIST statement

X CONLIT, LIGHTS; DISPLAY (AC) IN DATA LIGHTS

To create a working Monitor, follow steps 3 through 6 as outlined under
"Adding a New Operator."

UUO FLOW

UUO TRAP

SAVE AC'S
AND PC

N

REPORT
IT
MARK JOB
TO BE
REQUEUED l
RESCHED FORCE
- RESCHED
WSCHED
PERFORM
REQUESTED
OPERATION REQUEST
SOFTWARE
CLOCK INT
’
RESCHED
\ USCEED
RESTORE
AC'S AND
BC

Monitor Handout 45 -- July 70

INPUT UUO

SET UP &
USED

NT
BUFFER

FULL?

ADVANCE

BUFFERS

START
DEVICE

GET
BUFFERS
USE BIT

INPTZA
BUF NO

"CALIN

FULL ?

INPT2
AIT FOR
iT

INPUT2 Y
UPDATE

RING HDR

POPJ

WS¥NC

Monitor Handout 17a

Apr 70

INPUT UUO CALIN

—

SET UP 2
0 BUFFERS
ES
FUT ADR
INTO DDB
Monitor. Handout 17b =~ Apr 70

OUTFUT UUO

POFJ

Monitor Handout 18 - Apr 70

ITEM CNT
TO BUFFYR
IF NEEDED
ADVANCE
BUFFERS
NO
—
=S
< CLEAR
RING USE
BT
WAIT
FOR IT
WSXNC .
BUFER
< v ADR TO
ouTs DDB
CLEAR
BUFFER
FOR
USER
UPCATE
RI%
HEADER

RING HEADER CHANGES

INIT
-JERFVQI)IQ ! ‘5
JBFPTR S —
JBFCTR 2
OUTBUF
JBFCTR [2z
OUTPUT
JBFADR [g TADR

JBFPTR ["Ts[[PTR
JBFCTR [BY7E cvT |

Monitor Handout 43 == July 70

7-19

0¢

UUO ACTIONS

ADR

D

INIT

RING l o
DR S

H]

INBUF

] ADR

S

@

DEVIAD ADR

IN
D08

Monitor Handout 39 == July 70

INPUT

UUO ACTIONS

ADR

_\‘3’(ADR

|S ADR

ol

_|ADR

CNT

—>

INPUT

Data /ar

Program

AOR

G

Y1

S ADR

o ADR

| ADR

CNT

e Bt D s Ttz PO

Data for ‘
Program

OUTPUT

UUO ACTIONS

ADR

S

ADR

CNT

\

OUTPUT
ADR
S| [ADR

CNT

N

ADR

€

CLOSE

| ADR

Monitor Handout 40 aw July 70

UUO ACTIONS

g ADR [~

9l IAon

ve-L

1/0 WAIT

CHS
CH7? REQUEVE| scH
vuo SCH
USER JoB A %ULL Jos JOB A
DEVICE
INT

Monitor Handout 32 =~ July 70

QC-L

uuo

JSER _ JoB A JOB A

Monitor Handout 33 == July 70

9¢

CHS

vuo

USER

Monitor

170 UUO - DEVICE NOT RUNNING

Handout 34 == July 70

DEVICE
INTERRUPT

10.

Questions on UUO Processing

When a UUO is executed, what will be the contents of location 487

What is the range of op codes which are legal monitor UUO's?

How is the address of the routine for a specific UUO determined?

Where are the user's AC's saved while a UUO is being processed?

Suppose a UUO can not run to completion (IO problems, etc.). When context
switching occurs, USRPC will contain the address for restarting the job -
somehwere in UUOCON. How does UUOCON then know the return address in

the user's program, considering that UUOCON may have been called by any
number of other jobs in the meantime?

What action does UUOCON take if a UUO requiring a long dispatch table is
executed, and the specified device service routine has a short dispatch table?

How does UUOCON respond to a UUO without a currently defined function -
i.e., 99@?

How does UUOCON respond to a CALL UUO with an undefined function -
i.e., CALLI, 4g@?

Which AC's are loaded with what values by UUOCON, before it dispatches to
the routine for a specific function?

Write the routine and specify all necessary monitor modifications to
implement the following new CALL.

CALL AC, [SIXBIT/CHAN/]

The CHAN routine will put into the user's specified AC the number of
the first unused software channel for his job.

8. Device Service Routines
Readings

Handout "Device Service Routines"
Program Logic Manual, Memo #8, p 32-33

Table Descriptions
INTTAB
Flow Charts

Handout 9 Device Interrupt Routine

Program Logic Manual, Memo #8, p 34-36
Other References

Handout 8 - Interrupt Routine Chain
Handout 28 - Channel Save Routine

Monitor Listings

ONCE lines 94-163
PTPSER lines 1-266

Written Assignment

Questions on Device Service Routines

DEVICE SERVICE ROUTINES

All device dependent code required for I/O operations on a specific device is
contained in the device service routine for that device. Each device service
routine interfaces with the rest of the monitor in such a way that other
routines are independent of the particular device being used for an I/0 opera-
tion. Each routine may be optionally included in a monitor, or left out,
according to whether or not the device which it services is included in the

system.

Each service routine consists of two sections -- UUO level routines, and an
interrupt routine. Control passes to UUO level routines directly from the UUO
processor. Therefore they effectively act as subroutines callable by the user
program. Control passes to the interrupt routine as a result of a hardware
interrupt by the device which it services. Aall actual data transfers are per-
formed by the interrupt routine. But before a device will cause any interrupts
it must be conditioned, or "started" by a UUO level routine.

The linkage between the device independent UUO processor and the UUO level
routines of a device service routine is the Device Dispatch Table. This is a
table of JRST instructions to all the UUO level routines. The format of the
dispatch table is identical for all service routines. Therefore, the UUO
processor needs only the base address of the dispatch table to pass control to
the routine for any UUO level function, regardless of the device. The UUO level
routine may quite possibly call device independent subroutines back in the UUO
processor during the course of performing its function. When finished, the

UUO level routine returns control to the UUO processor, and from there control
is returned to the user program.

Interrupt routines are written in such a way that they are independent of the
specific priority interrupt channel on which they will operate. This allows

PI Channel assignments to be changed without reassembling the service routines.
All references to the PI Channel are made symbolically, and resolved when the
monitor is loaded. The table INTTAB tells which channel each routine is

assigned to. During system initialization, all routines on the same channel

are linked together, according to the information in INTTAB. When an interrupt
occurs, the PC is saved with a JSR, and then control is passed from one interrupt
routine to the next, along the chain of routines assigned to that channel. Each
routine checks if its device has an interrupt pending. If not, it passes control
to the next routine; if so, it proceeds to process the interrupt. If control
reaches the end of the chain, because no device is found to have an interrupt

pending, the interrupt is simply dismissed with a JEN which restores control to
the interrupted program.

Most interrupt routines need a routine to save a number of accumulators and

set up a pushdown list. Since this is a frequently needed function, one such
routine for each channel needing it is set up in COMMON. One routine per channel
is sufficient, because no interrupt routine will get control until any previous
interrupts on its channel have been dismissed. Control is passed to the channel
save routine with a JSR. (Note that JSP and PUSHJ cannot be used because we know
nothing about the accumulators when the interrupt occurs.) A minimum of ten AC's
is saved in an area within the routine, AC PDP is set up to point to another area
in the routine reserved for a pushdown list, and control is returned to the
interrupt routine. The first address on the pushdown list is preset to point to
a routine which restores the AC's just saved. - If the interrupt routine exits
with a POPJ, control will return to the Restore Routine. The Restore Routine
returns the original values to the AC's and dismisses the interrupt, returning

control to the interrupted program.

PROGRAM LOGIC MANUAL

FOR

PDP-1¢ TIME-SHARING MONITOR

MEMO #8

PDP-10 TIME-SHARING MONITORS

INPUT/OUTPUT PROGRAMMED OPERATORS AND DEVICE SERVICE ROUTINES

I. SOFTWARE LINKS BETWEEN USER AND DEVICE

User input/output is made possible by the programmed operators and several
tables existing in Monitor and the user's job data area. When desired, software
linkage is made between a user program and a device (file) via these tables.

For each physical device (or each active file on disk) there is a device data
block in the Monitor describing the characteristics of the device: name, legal
data modes, standard buffer size, and location of the service routine dispatch
table. For a complete description of these tables, see Section IITI. When a
device is assigned to the user and is being used by him, certain locations in
the device data block (DDB) will contain certain information concerning the
current activity: the job number using the device, status, data mode in which
the file is to be read or written, and location of the user's buffers. The user,
Or some part of the Monitor, may look in the DDB to find out something about
this device. The device service routine may obtain information about the user
of this device by taking the job number from the DDB and referring to one of
these Monitor tables indexed by job number (job status JBTSTS, job project-
programmer PRJPRG, core assignment JBTADR, etc.).

The user's link to the DDB, and thus to the device, is one word in a 16~word
table, JOBJDA, in his job data area. A location in this table is accessed by

an index called the "software channel", supplied by the user. Figure 1 depicts
one such location containing the address of the DDB and bits indicating the

UUO operations done so far for this device. The user never directly accesses

a JOBJDA location, but the Monitor does at UUO level using the software channel
number specified in the AC field of the I/O operator. For protection, these
locations are copied into the Monitor (starting at Monitor location USRJDA) when
a job is running and Monitor works with these copies, restoring them to JOBJDA
when the job is not running. A seventeenth location, JOBHCU (USRHCU) , contains
the channel number of the highest channel in use. These 17 locations, and
others, are in an area of JOBDAT protected from input data transfers. The
symbol JOBPFI ("protect-from-input") is a relative location in the job data area
below which data must not be transferred, and user buffer addresses are checked
against this value by those I/0 UUO's concerned.

The last table to consider is the jump table or dispatch table in the device

service routine. This table (see Figure 11) links the device dependent coding
in the routine with the device independent portion of UUOCON. The address of
this table is in the right half of the DEVSER word in the DDB. UUOCON dispatches
to this address plus or minus an appropriate index so that the service routine
may perform whatever is necessary to service this UUO (start or stop the device,
initialize hardware or software registers, etc.). Much of the work of UUO
service is done by the device independent UUOCON routines and, even after dis-
patch to the device dependent routine, portions of the Monitor (IOCSS, in
particular) are called as subroutines. The ultimate effect is that the user's
program deals with all devices (or files) in a similar manner and the device
service routine has only to interface some specific hardware device with the
general coding of UUOCON. This latter topic, along with interrupt level

operations, is dealt with in Section III, "Device Service Routines".

T™e next section describes the operations within UUOCON as it handles the

communication between user and device.

QA
8 26955,4 &@‘ﬁp@
'S'é&éb OQQVOOQ)Q xy‘ég (¢) ’& () 17 35

o ADDRESS OF DDB

o{1]{2|3|4l5]6|7]|8]9|10/11 FOR THIS DEVICE

UUO PROGRESS BITS

INITB INIT or OPEN has been performed

IBUF An input ring header was specified (by INIT)

OBUFB An output ring header was specified (by INIT)

LOOKB A LOOKUP has been performed

ENTRB An ENTER has been performed

INPB At least one INPUT has been performed

OUTPB At least one OUTPUT has been performed

ICLOSB A CLOSE input has been performed

OCLOSB A CLOSE output has been performed

INBFB An input buffer ring has been set up

OUTBFB An output buffer ring has been set up

SYSDEV This is the system tape device

NOTE: This word is completely cleared by RESET or RELEASE UUO's

Figure 1. JOBJDA or USRJDA Word Contents

IT. I/O OPERATORS

REVIEW OF USER I/O

This section assumes previous familiarity with user I/0 programming as described

in the PDP-10 Reference Handbook.

Two methods are used to effect data transfers: unbuffered and buffered. 1In
unbuffered modes, the user supplies to the device the address of a command list
in his program area. This list consists essentially of block pointers to
relative locations in the user area to or from which data is to be transferred.
Upon initiating such a transfer, the user's job is scheduled into an I/0 Wait
where it remains until the device signals (to the Scheduler) the completion of
the entire transfer. The device, at interrupt level, follows the command list
in making the transfer until a termination word (null) is found and then

notifies the Scheduler.

Buffered data transfers are made using a ring of buffers set up in the user area.
A ring may contain one buffer or as many as will fit in the job area. A 3-word
ring header in the user's program contains a byte pointer and item counter to
be used by that program in accessing the "current" buffer (the one the user's
program is working on). The device data block of the device involved in this
data transfer contains like information concerning that buffer which is current
to the interrupt level data transfers (see Figure 2). Monitor routines called
by UUO's (INPUT or OUTPUT) work to supply a new buffer to the user, setting up
the ring header appropriately. Monitor routines called at interrupt level
likewise supply a new buffer for the device to work on, updating the pointer
and item count in the DDB. To prevent the user and the device from using the
same buffer at the same time, each buffer contains a use bit in the second word
of the buffer header that is checked and altered by the Monitor's buffer
handling routines. At UUO or interrupt level, a 1 means that the buffer is
full and a 0 means that the buffer is not full. If the user "overtakes" the
device and requires as his next buffer the one currently being used by that
device, the user's job is scheduled into an I/O Wait. Upon completion of its
use of that buffer, the device calls the Scheduler to reactivate the job. If
the device "overtakes" the user, the device is stopped (always at the end of a
buffer) and is restarted when the user finished with the buffer. (Input devices
are not actually restarted until all but one of the buffers in the ring have
been emptied by the user.)

Ring Header in User's Program

XADR: BUF1+1
XPTR: Byte Pointer)
XCTR: Item Count E BUF1
! Status "Full" buffer being
! - emptied by user
! {] Size—> BUF2+1 (unavailable to device)
] Word Count
i
]
t
!)
Li-3
Data
BUF3 _ "Empty" buffer Filled buffer BUF2
\ being filled ready to be
Statug by device passed to user J
ol size BUF1+1 (unavailable on next INPUT 1 Size BUF3+1
A to user) f

Word Count

Figure 2. Buffered Data Transfer Betwee

Via a 3-Buffer Ring

XYZDDB: XY7Z

--------------------- Byte Pointer

o

J/ Word Coun
"Size"

Data

Device data block (DDB)
Service Routine

[ProG | BUF3+1

Item Count

n an Input Device and User

in

+DEVADR
+DEVPTR

+DEVCTR

INIT AND OPEN OPERATORS

These operators assign a device to a user's program, establishing the link
between the software channel and the device data block. The initial status,
including data mode, is placed in the DEVIOS word, and the DEVBUF word is

given the relative addresses of the output ring header and input ring header, if
specified. A byte pointer size field according to mode is placed in the second
word of each ring header. An error return to the user occurs if the device is
not found or is unavailable at this time. No dispatch to the device service

routine is necessary for INIT or OPEN. See Figure 3.

INBUF AND OUTBUF OPERATORS

These operators create a buffer ring in free locations in the user area. The
number of buffers is specified by the user as the effective address of the
operator (one buffer is established if that value is equal to or less than 1).
The size of each buffer data area is obtained from the righthand 12 bits of
DEVCHR for the device assigned to the software channel. Two words are added

to this amount for buffer head use.

As each buffer is appended to the ring, the last word of the buffer is address
checked. A use bit of 0, the buffer size, and the link to the next buffer in
the ring is inserted into the 2nd word of the new buffer. The 2nd word of the
last buffer created is made to point to the first buffer, thereby closing the
ring. JOBFF is then updated to point to the first location beyond the last
buffer of the ring. Depending upon the operator, either DEVIAD or DEVOAD re-
ceives the relative address of the 2nd word of the first buffer. The first word
of the user's ring header is then set with a "virgin" ring use bit and the
address of the first buffer. No dispatch to the device service routine is

necessary.

See Figure 4.

INPUT OPERATOR

Dump (Unbuffered) Mode

The device independent part of this operation is quite simple. The Monitor
waits, if necessary, until the device is inactive, then dispatches to the

device service dump mode input routine (device's dispatch table entry indexed

8-10

by "DDI"). The device service routine takes care of command list checking,
initializing its interrupt level program, and starting the device. Upon return
to UUOCON, the routine WAIT1 is called to place the job in an I/0O Wait until

the device becomes inactive. Dump mode input, therefore, goes on at interrupt
level for this job while other user's jobs are running. When the device service
routine recognized the end of input activity, it calls a routine (SETIOD - "set
I/0 done") that notifies ‘the Scheduler to take this job out of I/O Wait. The
job (at the appropriate time) then commences running, in this case at the UUOCON

normal exit.

Buffered Modes

To somewhat simplify this description, let us take the first INPUT and subse-
quent INPUT's as two separate cases. Reference should be made to the flow
chart (Figure 5).

Case 1 - First Issuance of INPUT operator

IN If the device is doing output (IO=1), force output to stop
at the end of next buffer and wait until it has done so.
Zero the input close bit in the left half of DEVDAT (a copy
of USRJIJDA for this channel).

IN1 If a buffer ring has not been established (by INBUF, for
instance) or if this is the first INPUT ("virgin" ring),
go to do first input, INPUTF.

INPUTF Clear the header ring use bit. If a ring has not been set
up, go to INPUT3. Otherwise, take the address of the first
buffer from the first word of the ring header and place it
in DEVIAD of the DDB. PUSHJ to CALIN to start the device.
Device service then returns here and control falls into

INPTOA.
INPTOA Is the buffer's use bit a 1 yet? (Probably not, because we
have just started the device.) If not a 1, call INPT2.
INPT2 Calls WSYNC to place the job in an I/O Wait state until the

device calls SETIOD at the end of the buffer. If the
buffer use bit is now a 1, go to INPUT2.

INPUT2 Gets the word count from the buffer and calls IOSETC which
sets up the correct byte pointer and item counter in the
user's ring header, and then exits to the user.

CALIN If the device has previously sensed end of file (IOEND=1},
return immediately; otherwise, address check the buffer

8-11

IN1

INPTOC.

INPTOA

INPT1

INPT2

INEOF

Case 2 -

limits and dispatch to the device's input routine. The
device routine initializes itself for interrupt-level
data transfers, starts the device, and returns. CALIN
then returns to the calling routine.

Subsequent Issuances of INPUT Operator

If a buffer ring exists and has been used, test the use bit
of the buffer now being returned by the user. If the use
bit is 0 (as when a user's program is doing OUTPUT from
this same ring), bypass header updating and go to INPT1.
If the use bit is a 1 (probably more typical), clear it
and advance the header first word to point to the next
buffer in the ring. If the device is active, (IOACT=1),
go to INPTOC; else, determine if it is time to make the
device active. For all devices except the Teletype, this
determination is made by looking at the use bit of the
buffer beyond the one to be returned to the user. TIf it
is 0, CALIN is called to start the device. 1In the case -
of Teletype, the new buffer's use bit is examined because
a Teletype has a Monitor buffer in addition to the user's
ring. Whether or not a call to CALIN is made, control
now goes to INPTOC.

The new buffer's use bit is fetched for examination, and
control passes to INPTOA.

If the buffer's use bit is a 1, go to INPUT2, as described
under Case 1; otherwise, go to INPT2.

If the device is active, go to INPT2; else, call CALIN
to start the device and then return to INPT2.

Calls WSYNC to put the job in an I/0 Wait if the device
is active. Control returns if the device is not active
or when the device calls SETIOD. If the buffer use bit
is a1l upon return, control goes to INPUT2; if not,
control goes to INEOF.

Did control get to here because of an error or end of file?
If not, go to INEOFE. If so and the cause was end of file
(IOEND=1), then set the user end file bit, IODEND. The

use of these two end-file bits simplifies user programming
by guaranteeing that when he detects end of file (with a
STATX operation), there is no residue of information in

a buffer. For instance, if a user's INPUT causes a buffer
to partially fill and then an EOF to be detected by the
device, the device returns the "full" buffer to the user
while remembering the end condition (IOEND+1). TIOEND is
not detectable by the user, so he empties the buffer until
the reduced header item count forces a call to INPUT. The
IOEND bit prevents CALIN from starting the device which
ultimately causes (at INPT2) an immediate return from WSYNC
with a 0 buffer use bit. INEOF now finds IOEND=1 and turns
on IOEND, then returns to the user.

INEOFE

Control should never get here. If it does get here and any
of the job status STOPIO bits are on, control goes back to
UUOCON dispatch and the input UUO is repeated to make the
device do something (fill one buffer, or return with EOF or
error bits). If no STOPIO bits are set, the error message
routine UERROR is called to print

? ERROR IN MONITOR AT EXEC nnn

and stop the job.

OUTPUT OPERATOR

Dump (Unbuffered) Mode

uouT

ouT

OUTDMP

Buffered Modes

ouT

ouT2

ouTs

OUTF

Set output UUO bit and clear output close bit in left half
of DEVDAT.

If device is busy doing input, wait until the next buffer-
ful. When stopped, if dump mode, go to OUTDMP.

Call WSYNC to make sure device is inactive, then dispatch
to the device's dump mode output routine (dispatch table
"DDO" index). The device routine checks the command list,
starts the device, and returns. WAIT1 is called to place
the job in an I/O Wait state until the entire output is
done. Control then returns to the calling routine.

If not dump mode, call OUTA to get new buffer address if
user specified one. If a buffer ring has not been set up

or if this is the first OUTPUT, go to OUTF. Otherwise, if
the user is not computing his own word count, take the
header item count, convert it to word count, and store it in
the third word of the buffer. Don't compute if the user

so indicates. Go to OUT2.

Turn on the buffer's use bit, then advance the header to

the next buffer. If the device is not now active, dispatch
to the service routine to start it going. If the new

buffer is not empty, call WSYNC to put the job in I/O

Wait until the buffer is empty (the device calls SETIOD

at interrupt level to take the job out of Wait). Go to OUTS.

Calls BUFCLR to clear the buffer, then calls IOSETC to set
the ring header byte pointer and item counter for this
device. Return to calling routine.

If a buffer ring has not been established, call UOUTBF

8-13

OUTF1

OUTA

See Figure 6 for a

CLOSE1

UCLSBI

UCLSO

UCLS1

UCLS2

(OUTBUF operator routine) to set up a 2-buffer ring. Go to
OUTF1 in any case.

Clear the ring use bit. Supply the address of the first
buffer to DEVOAD of the DDB. Go to OUTS.

If a new buffer address is not specified, return immediately.
(NOTE: The mask used in making this test ignores bits 34

and 35. This is because OUT is called by the CLOSE

routine in which case one of these bits may be a 1 to inhibit
closing "half" the channel. We don't, in that case, want to
believe that location 1 or 2 is being specified as the

start of a new buffer!) 1If an address is specified, wait
until the device is inactive, then put the new address

into the user's ring header and DEVOAD. Mark the ring as
being referenced (clear the use bit) and return.

N.B. Observe that if the first OUTPUT does specify a
buffer address, the assumption is that the

buffer contains data already, i.e., this will
not be treated as a "dummy" output.

flow chart of the OUTPUT operator.

CLOSE OPERATOR

Calls WAIT1 to be sure that the device is inactive before
proceeding. If an input close is requested and the file
has previously been closed, go to UCLS2. Otherwise, if

the file was read in DECtape save mode (2), return.

If not save mode and not dump mode, go to UCLSBI to close
buffered input. If dump mode, dispatch to the device
service routine input close function (dispatch index "DCLI")
and return to UCLS2.

If an input buffer ring was never established, go to
UCLS2; else, if this is a long dispatch table device,
dispatch to the device service routine (dispatch index
"DCLI"). Then get the address of the first buffer from
the ring header. If 0, go to UCLSl; otherwise, go to
UCLSO.

Address each buffer in the ring, clearing its use bit. Go
to UCLS1.

Set the ring use bit to 1 ("never referenced") and clear
the item count word to 0. Clear both end-file bits in
DEVIOS. Go to UCLS2.

If an output close is not desired, or if already closed,
go to UCLS3. If DECtape save mode (2) was used to write
the file, go to UCLS3. If not dump mode, go to UCLSBO to

8-14

to close buffered output; otherwise, dispatch to the
device service routine output close function (dispatch
index "DCL"), then return to UCLS3.

UCLSBO If an output buffer was not set up or never referenced,
go to UCLS3; otherwise, fall into UCLS2A.

UCLS2A If DEVOAD addresses an empty buffer, go to UCLS2B; otherwise,
clear the device error bits and call OUT (the OUTPUT UUO
routine) to output this buffer. WAITl is called to stall
until the buffer is emptied and the device has advanced
the buffers. .If no device error occurred, return to
UCLS2A (this loop will continue until all full buffers

have been output). If a device error is detected, go to
UCLS2B.

UCLS2B Dispatch to the device service output close routine
(dispatch index "DCL"). Then clear the ring use bit and

item count in the ring header. WAIT]1 is called to be sure
the device is inactive, then UCLS3 is entered.

UCLS3 Stores DEVDAT (in which the UUO bits have been modified)
back into USRJDA for this channel, then returns to the
calling routine.

See Figure 7 for a flow chart of the CLOSE operator.

RELEASE OPERATOR

ggigig The routine CLOSEl is called to close both the input and
output sides of the channel. WAIT1l is then called to be

RELEA2 sure activity h d Go to RELEAS

RELEA3 v has ceased. o to .

RELEAS Dispatches to the device service release routine (dispatch
index "DRL"). Then clears the active bit in DEVIOS and
the USRJIDA entry for this channel. Fetches the number
of the highest channel in use from USRHCU.

RELEA4 These sections of code perform two important functions

RELE4A while scanning USRJDA from the old highest channel down

to 0. First, USRHCU is changed, if necessary, to point to
the highest nonzero entry in the JDA table. Second, if it
is discovered during the scan that the device just released
in RELEA5 is also assigned on another channel, then no
further release housekeeping is performed, and an immediate
return occurs. (It is possible to INIT the input and
output sides of a bidirectional device on two separate
channels.) Otherwise, the DEVIAD and DEVOAD words in the
DDB are cleared, and control goes to RELEA9.

RELEA9 If the device is a disk or is not the system tape, go to
RELEA7. If it is the system tape but has already been
returned to the system, go to RELEA7; otherwise, clear out
the system tape user word, decrement the request count,
and set the available flag if someone is waiting. Go to
RELEA7.

RELEA7 Supplies the ASSPRG bit to RELEA6 (RELEA6 may also be
called by the DEASSIGN command, in which case an ASSCON
bit would be supplied).

RELEAG6 Clears the assignment bit supplied by the calling routine.
If the device is still assigned by another means, an
immediate return is made. If the device is now wholly
deassigned (ASSCON and ASSPRG = 0), then the job number
field of DEVCHR is cleared. If the device is DSK, the
routine CLRDDB is called to return to free storage the
space occupied by the DDB. Return to the calling routine.

See Figure 8 for a flow chart of the RELEASE operator.

LOOKUP AND ENTER OPERATORS

These operators are extremely device dependent, most of the work being performed
by the device service routine. Before dispatching to the device service routine,
however, LOOKUP performs an input close, and ENTER performs an output close,

with appropriate alteration of the device status bits.

See Figure 9 for a flow chart of the LOOKUP and ENTER operators.

8-16

RELEAO

Release the device
(For details, see the
RELEASE operator, Figure 8)

already assig-
ed to this chan-

UINITA

\

Get device

name from
user

\ Search logical
DEVSRC

and physical names

Error
s return to
user

No

ASSASG \Try to

ssign
by
program
Not .| Error
Available available| return to
user
A\
Set DEVIOS
according
to user Set up ring headers
UINITC | and put addresses
L > in DEVBUF; give
successful return to user

Figure 3. Flow Chart of INIT

(0]
1

17

(o (o)

BUFCLC

(See Set INBFB
below) bit

Put adr of BUFCLC (See
first below)
buffer intog
DEVOAD
& Put adr of
\ first
buffer into

Supply a "1" use DEVIAD
bit and address
of first buffer to
user's ring header

o, AX

Address check 2nd
Get address of firsd word of buffer.
free location; Insert "0" use bit,
slcompute buffer size size, and link to
next buffer
Point to

No 2nd word of
next buffer

Yes

Address check end
of last buffer and
link first to last

Figure 4. Flow Chart of INBUF, OUTBUF

Y

///I i

device "\\\ / B M\\
ing Veg /O OWATT .
doing Yes / WaITl Returns when device

ocutpuc? S ’

,»\\\
IN }‘_l
S/ L
s \\

ice is

A / inactive Bid
\\ /f current buffe
e R a "1w

\\\ ? /
M
o u\ ') ~—— /
/ . Device's L Yes
b T k\ 3 B I \ :
,DDjA() aump mede Clear use
(DSER) /f }npf? bit: set
_4..,-‘..,- / rouclne header to
point to
next buffer

alled with

7

. & JRS8T; wailts
WATTL for completion
~E T : Yes
/ of I/C. then Device ~
rrrrr / returns to active? INPTOC

UU0 exit
routine

N\

<\\NO
62;; t Yes

CALIN

;;i;, ;Vigbivégﬁcm <<£?sta;t s (see below R
when e n-1 empty \deYige

buffers in the n buffer ring. f

Since the TTY has a Monitor buffer, No

it is not restarted until all n
are empty,

Figure 5. Flow Chart of INPUT Operator

8-19

/

Get next
buffer's
use bit

(—;t word
count from
buffer

..rm.___,__-

AN header and
returns
IOSETC < to UUO
exit -
routine
N\

Figure 5 (Cont.)

Device Yes
\INPT1 active?
No
CALIN (See
below)

Returns when
buffer is filled
or device is not
active

(Sets item
count and
byte pointer |
into ring

Schedule
stop I/0 ? No

'Set user "I

| EOF bit in
L DEVIOS {
|

Prints
Monitor
Back up error
return address| message and
by 1 and stops job
return
L

Flow Chart of INPUT Operator

8-20

Clear rlng?
use bit ’
|

’Rlng .
< been set INPUT3 }-—-
. ~ up/

| Yes

Called to
set up two
buffers

Vi
rSupply adr
L of 1st buf
L%er to dev

(DEVIAD)

T
—N

/ CALIN
-\ ee below))— -~ ~— ZINPTOA

-

-

</ EOF Yes
previoug~
“ly?

No
" Address
check buffe
limits

DIN Device's buffered
(DSER) input routine

-/

Figure 5 (Cont.) Flow Chart of INPUT Operator

Set output
bit; clear
output

close bit

(o) L

/ N . ~.
\\~~’ ~device ~_ Yes
doing in- o T
ut?

No

Returns when
device inactive

Change buffer ring
if requested (see
below for details)

;;\\\\¥N0

mode?

Return when
device not
active

Has a
ring been set
up and referred
to?

Device's dump

DDO mode output Compute wor%
(DSER) routine jcount of i
items in |
Puffer i

Wait until Useg\ = S

dump complete, - _Yes _| Store word

then return want word , "77 o !

count com- ° count

N T
L ;

to user.

|
!
!
j

Figure 6. Flow Chart of OUTPUT Operator

8-22

o

Set buffer use bit
and advance user's
header to next
buffer

Has a
ring been
set up?

No

Yes UOUTBF Called to
set up a
2-buffer ring

Device
active?

1 £
’ N

DOU %Clear ring use !
(DSER) 'bit in header; !
“Fsupply address |
'of buffer to
Device idevice (DEVOAD) |
service buffered '
output routine

Next
buffer
enpty?

Yes Wait until
buffer is
: WSYNC empty and return

N

Clears buffer
to be returned
BUFCLR to user
Is a new
buffer address

specified?
) Sets byte pointer
and item counter
into ring

IOSETC header, then
returns

Returns when
device is inactive

Put new address
into ring header;
clear ring use bit

Figure 6 (Cont.) Flow Chart of OUTPUT Operator

Wait until
device is
inactive, then
return

buffer ring ever
set up?

Is
this a long
dispatch table
device?

Yes

Close
input?

Device

routine

Get first
word of
ring
header

0 Yes
address?

No

Device service Address
input close buffer and
routine clear use
' bit

No

UCLS1

Figure 7. Flow Chart of CLOSE Operator

8-24

¥

Set ring use bit to!
1; clear item i
count in header; i
¢lear end file bits!
in DEVIOS

Device
service
close

routine

Wait for
device
inactive

.,

buffer

P

'Yes

waiting

Clear

error bits

Clear ring

use bit and

header item|
count

.,

WAIT1

DCL
(DSER)

Called to
do output

Return when
buffer
emptied

Device
service
close

routine

Store UUO
bits and

return

Figure 7 (Cont.) Flow Chart of CLOSE Operator

e,

e ~
RELEAO,
RELEAL,
RELEAZ2,
RELEA3
AN i

CLOSE1

{ wair1
RELEAS I

RIA

DRL
(DSER)

Called to close
both input and
output -

Make sure device
is inactive

Device service
release routine

Clear active bit in
DEVIOS; clear device
assignment in USRJDA

/
Get number of
highest channel
use

in

RELEA4

Is
a device

assigned to this

channel?

-

| Yes
|

- ,k>j
|

Same

7~/aévice as the

T one being

ENo

- Lo

Reduce
highest *1
channel by —

[Reduce
highest
channel by

1

No

_ Finished

Figure 8. Flow Chart

with all
\ghannels

of RELEASE Operator

8-26

Ye

Clear DEVIAD
and DEVOAD
lof this
device

_QKRELéii/
\‘,

RELEA9

‘no.; decrement
request count, and
‘set flag is someone
was waiting

iClear system user 1
|

-

/

Set up
ASSPRG bit

\

Clear
assignment
bit

Reclaim space
used by DDB

Is device \\\\
assigned by other

means
nd

Figure 8 (Cont.) Flow Chart of RELEASE Operator

LOOKUP ENTER

UDEN
Input
. No
file open
?
See
below
Clear end-file bits| Set beginning-of-
error bits, file, clear error,
beginning- and end- user end file,
of-tape bits in beginning- and end-
DEVIOS of-tape bits in
DEVIOS
Clear input| . Clear inpuf
close bit; close bit;
set lookup set enter
bit bit
Device service lookup Device service
DLK routine; returns to DEN enter routine;
(DSER) UUOCON exit routine (DSER) /returns to UUOCON
\x~ exit routine
Set up UUO

to close
correct half

Called to close
input or output

Make sure device
is inactive, then
return

Figure 9. Flow Charts of LOOKUP and ENTER Operators

III. DEVICE SERVICE ROUTINES

DEVICE DATA BLOCKS

(See Figure 10)

The device data block (DDB) structure is the key to I/0 handling on the UUO
level in the PDP-10 Monitors. Each physical device is represented by a block of
words beginning at dev DDB, where dev is the 3-letter device mnemonic. The
contents of the device data block completely describe a particular device at

any given time; this description includes the physical characteristics of the
device, the I/0 status of the device, and the information required to link
sections of the Monitor that communicate with one another while referring to

the device described by the data block. While any routine is referring to a
DDB, its address (devDDB) is kept in the accumulator DEVDAT, which is then

used as an index register.

Each location in a DDB is known by a logical 6-letter mnemonic, which is defined
in the System Parameter Tape to be a constant equal to the address of the loca-
tion relative to devDDB (the address of the specific device data block). Thus,
DEVxxx (DEVDAT) is the address of a specific word in a particular DDB, where
DEVxxx represents the relative DDB location. Following is a description of the
function of each location within the DDB, starting with the first word,

DEVNAM (DEVNAM=0; others in ascending order.

DEVNAM Contains the physical device name, left justified, in 6-bit
ASCII (in the case of multiple devices, this causes the
device number to fall left justified in the right half).

DEVCHR Contains information giving the device assignment, hung
device count, buffer size, binary device number (the bits
set in each word are defined in the System Parameter Tape).

DEVIOS Contains bits describing the current I/0 status of the
device. The left half is used only by the Monitor, while
the right half becomes a user's device status register,
which can be referred to by GETSTS, SETSTS, STATO, and
STATZ UUO's (see Table 1 for DDB bit definitions).

DEVSER Contains system linking information. The left half contains
the address of the next DDB in a "chain" of all DDB's; the
address of the first DDB in the chain is in the left half
of DEVLST (a location in COMMON), while the last DDB in the
chain has zeroes in the left half of DEVSER. The right half

8-29

DEVMOD

DEVLOG

DEVBUF

DEVIAD (or
DEVADR)

DEVOAD (or
DEVPTR)

DEVCTR (or
DEVFIL)

contains the address of the Device Service Dispatch Table,
which is referred to by UUOCON.

The left half contains bits which, for the most part, describe
the physical characteristics of the device; most of these

are assembled as part of the DDB. These bits can be called

by the user with a GETCHR or DEVCHR UUO (this is not to be
confused with the DEVCHR DDB word - see above). The right
half has bits indicating whether assignment of the device

was by console command and/or by the INIT UUO, as well as

bits reflecting which data modes are legal for the device

‘- (see Table 1).

Contains the logical device name (left justified, in 6-bit
ASCII) assigned by the user from the console Teletype.

When executing the INIT UUO, which links the word in location
USRJDA (UCHN) with a DDB, the Monitor scans the contents of
DEVLOG through the DDB chain before trying to match the
user's specified device with the contents of DEVNAM.

Contains addresses of buffer headers associated with the
device by INIT UUO; the left half contains the output header
address, while the right half contains the input header
address.

Contains the address of the user's input buffer which is
currently being filled (DEVIAD=DEVADR=7).

Contains the address of the user's output buffer currently
being emptied.

Note: 1In the time-sharing Monitor, the accumulator used
for relocation (PROG) is designated in the index
register field of both DEVIAD and DEVOAD.

Contains item count for the buffer (same as the third word
of user's buffer header). For directory devices which have
long dispatch tables, this location is called DEVFIL and
contains the 6-bit ASCII name of the file being referred to,
while the next location (DEVEXT) contains the extension,

if any, of the file.

There are devices that reserve more locations for the DDB's than those mentioned

above, but these additional locations are required by the special characteristics

of the particular device rather than by the system itself.

When a device service routine services a class of multiple devices (e.g.,
DTASER services DTA0, DTAl,etc.), only the DDB of the first device, DEVO
is assembled into the routine. The rest of the blocks are loaded outside the

routine by ONCE,
chain via DEVSER.

being modeled after the DTAO0 DDB and being linked in the

ONCE determines the number of DDB's to create for a device

service routine from responses received during the console dialogue.

8-30

System

Index
DEVNAM 6-bit, 3-letter 6-bit device number
physical name left justified, zero filled
byte pointer yte pointer
-~ PJOBN HUNGCT HUNGST V!PUNIT 24 35
job | hung hung unit # buffer size
DEVCHR number l count |constant | (binary) (words)
SIS S U5
Y ST YL R S S R S
PSS ST
DEVIOS dev1c§;2§pendent { ma I/
L 20| 21| 22| 23|24 |25]2¢{ tP 25,30[5/
'link to next DDB, or 0 if |device dispatch table T
DEVSER 4
end of chain address
éév/
&
<
(X
E SR -~
DEVMOD legal" data mode T
bits J
[6-bit logical name [
DEVLOG | (1eft-justified, 0 filled) '
output ring header relative input ring headey ¥elative
DEVBUF address address J
DEVIAD, __14 18 . R
DEVADR* PROG |current input buffer address
“Often used as item pointer for unidirectional output devices
14 18
DEVOAD, T T T
DEVPTR” PROG jcurrent output buffer addresiJ
‘Often used as item pointer for unidirectional input devices
DEVCTR,c d.6_bit fiéengme up to silx characters, left jusfified
DEVFIL (directory eYiFes) ‘_ i
Also used as item counter for unidirectional devices
DEVEXT G—Blt . extgnsion ’ -
left justified o
|
T ~ additional words may be defined and
used by device service routines

Figure 10. Device Data Block (DDB)

8-31

DEVIOS

DEVMOD

IOEND

I0

IOFST

IOBEG

IOW

IOIMPM

IODERR

IODTER

IOBKTL

IODEND

IOACT

IOBOT

IOTEND

IOPAR

IONRCK

IOCON

IowC

DVDIRIN

DVDSK

DVCDR

DVLPT

TTYATC

TTYUSE

TTYBIU

DVDIS

DVLNG

DVPTP

Table 1. Device Data Block (DDB) Bit Definitions

I/0 Status
Set at interrupt level by input device when end of file recognized
Direction of transfer: Out =1, In =0

Set by service routine to indicate that next interrupt is first
item of a buffer.

Set by INIT or ENTER operator to indicate a "new file"
Set when a job is-placed in an I/0 Wait State
Improper mode detected by input service routine
General device error bit

Device data error bit

"Data block too large" error

End of file (to user)

Device active, expecting interrupts

Beginning of magnetic tape

End of magnetic tape

Write even parity (mag tape command)

Read with no reread

Discontinuous I/0 if set to 1. Device stops after filling or
emptying each buffer

Inhibit system computation of word count for output device

Device characteristics and legal data modes
Directory is in core

Device is a disk

Device is a card reader or card punch

Device is a line printer

This Teletype is attached to a job

This Teletype is in user mode

Teletype DDB in use

Device is a display

Device service routine has a long dispatch table

Device is a paper tape punch

8-32

Table 1 (Cont.) Device Data Block (DDB) Bit Definitions

DVPTR

DVDTA

DVAVAL

DVMTA

DVTTY

DVDIR

DVIN

DvouT

ASSCON

ASSPRG

Device
Device
Device
Device
Device
Device
Device
Device
Device

Device

3it (35 - n) is

is a paper tape reader

is a DECtape

is available (set by DEVCHR UUO)

is a magnetic tape

is a Teletype

has a file directory

is capable of doing input

is capable of doing output

has been assigned by a console command
has been assigned by a program (INIT or OPEN)
a l if mode n is legal for this device

NOTE

DVCDR is set for both CDR and CDP. DVIN and DVOUT
distinguish which device it actually is.

Mode n (decimal)
ASCII 0
ASCII 1line 1
DECtape SAV 2
Image 8
Image Binary 11
Binary R 12
Image Dump 13
Dump Records 14
Dump 15

UUO-LEVEL OPERATIONS

Dispatch Table

The Monitor dispatches to device dependent coding via a dispatch table located
in that coding. The base address of this table exists in accumulator DSER
during the processing of an I/O operator. The dispatch is usually performed by
a PUSHJ PDP, INDEX (DSER), where INDEX is a constant used to select the
appropriate entry of the table. See Figure 4 for an illustration of such
indices. A "basic" dispatch table has six entries and is sufficient for
service routines of "simple" physical devices such as card readers, tape punches,
and line printers. Devices which require directory maneuvers or complex
activities in file positioning use a so-called "long dispatch table" containing
17 entries (including the "basic" ones). Examples of these are DECtape,
magnetic tape, and disk. Before attempting to dispatch on a "long-type" UUO,
Monitor checks the DVLNG bit in the DEVMOD word (see routine DISP1l in UUOCON,
for example).

Table 2. Device Service Dispatch Table Entries

System Index Purpose
-2 DINI Device and service routine initialization
-1 DHNG "Hung device" action
"BASIC" 0 DRL DEVDSP: Release (table base address)
1 DCL, DCLO Close, close output
2 DOU OUTPUT Operator
\ 3 DIN INPUT Operator
4 DEN ENTER Operator
5 DLK LOOKUP Operator
6 DDO Dump Mode output
7 DDI Dump Mode input
10 DSO USETO Operator
"LONG" 4 11 DSI USETI Operator
12 DGF UGETF Operator
13 DRN RENAME Operator
14 DCLI Close input (dump mode)
15 DCLR CALL X, [SIXBIT/UTPCLR/]
\. 16 DMT MTAPE Operator

Basic Operations

This section attempts to describe, in summary fashion, the actions performed

by the device service routine upon receiving one of the six "basid' dispatches.

1. 1Initialization (Index DINI)

Entered from SYSINI Monitor initialization when Monitor is first loaded or upon
certain restarts. The service routine should set the hardware control unit to
some known free state (usually a CONO DEV, 0). The routine may also have to
preset its own software "flag" registers (the mask bits for interrupt level
"CONSOing" are usually kept in a register, DEVCON, which should now be cleared).
Return to the calling routine is via a POPJ PDP,

2. Hung Timeout (Index DHNG)

Entered from routine DEVCHK at clock interrupt level (refer to CIP5 in CLOCK).
When a device is started by an INPUT or OUTPUT operator and each time an
interrupt is serviced for this device, the HUNGCT field of DEVCHR is set to the
value HUNGST. Every second, the HUNGCT field of all active devices is examined
and, if nonzero, decremented. If decrementation causes HUNGCT to become zero,
this dispatch is made (preloading of HUNGST with zero will prevent this from

ever occurring). Upon return (via a POPJ), the Monitor types out an informative

message on the user's console and places the job in an error stop state.

3. RELEASE Operator (Index DRL)

Entered from RELEA5 in UUOCON. If the service routine controls a single unit
device (paper tape reader, card punch, etc.), the hardware is released by an
action similar to that described in (1) above. If it is capable of controlling
multiple units (e.g., magtape), the control unit should not be disturbed as it

is likely servicing another job's I/0. The service routine for a directory
device (DECtape, disk) should use this entry to write out a fresh copy of the
directory if it has changed since it was first read into core. Thus, the releas-
ing action may range from an immediate return (POPJ) to an actual output data
transfer with consequent placing of the job in I/O Wait, then returning.

4, CLOSE Operator (Index DCL, DCLO
Entered from UCLS2 or UCLS2B in UUOCON for closing either dump or buffered

output. "Basic" devices are never entered when an input close is performed;
this occurs only for "long dispatch table" devices at index DCLI.

8-35

For buffered output modes, an attempt should be made to output a possible
partially filled buffer with a PUSHJ PDP,OUT (this does no harm if there is

no more output to be done. Also there is no possibility at this point of there
being more than one buffer to flush because the device independent part of
CLOSE has taken care of all full buffers). WSYNC may now be called to allow
completion of activity if the service routine wants to perform some additional
operations in closing the file. If not, a POPJ will return to the CLOSE coding
in UUOCON, which does a wait before returning to the user.

Additional operations include end-of-file marking and formatting. Examples:
Magnetic tape service writes two end-file marks and backspaces over one of
them. Line printer service sends out a carriage return, form feed combination.
Paper tape punch service punches about 13 in. of blank tape.

5. OUTPUT Operator (Index DOU)

Entered from OUT2 in UUOCON to start device doing buffered output. The activities
of file positioning, formatting, and data transfer all take place at interrupt
level. The job of the OUTPUT routine is to condition the interrupt level .coding
(by setting softwarevswitches, counters, etc.) to perform the desired activity

and then to prime the hardware control unit so that an interrupt will occur. Tha
OUTPUT routine must also set some indicators so that other sections of the
Monitor will know that this device has been made active for OUTPUT.

If desired, the first dispatch (beginning of file) to the output routine may be
detected by testing the bit IOBEG in accumulator IOS. This bit is set by an
INIT operator and should be cleared by the service routine. For example, detec-
tion of this bit causes paper tape punch service to output a fanfold of blank
tape before the data of a file. The first output call is also used to get the
address of the first buffer from word 1 of the user's ring header and store it
in DEVOAD of the device data block. In I0S, the IO bit should be set to 1
(output) and the IOFST bit set to 1 (first item of a buffer).

As part of initialization, the byte pointer used to get data from a user buffer
is set up. IOS contains the data mode supplied as part of initial status. When
called by PUSHJ PDP, SETBYT, this routine will return in TAC a partial byte
pointer containing a size field according to the data mode and "PROG" in the
index field. The left half of TAC may now be stored in the pointer location of
the device data block. The right half is usually filled in at interrupt level
each time a new buffer is begun (detection of IOFST = 1).

When all IOS bits have been set up, the routine SETACT may be called with a

8-36

PUSHJ. This coding sets the active bit, IOACT, stores IOS into the device data
block and initializes the hung count (HUNGST+HUNGCT) before returning.

The next operation is to start the physical device with a CONO. Simple output
devices are started by supplying an interrupt channel address and setting the
"DONE" (ready for data transfer) flag. It may also be necessary to supply other
conditions to the hardware, but the former are essentials. The CONSO instruction
issued at interrupt level to test for expected flags may pick up a mask
indirectly to allow the same instruction to test different conditions at
different times. If desired (and this is typical), the mask bits should be
placed in this location at the time the device is started. A macro STARTDV
defined in the file "S" may be used as follows.

Place the desired CONO bits in the right half of TAC and
the CONSO mask bits in the left half. Then write
STARTDV XYZ, where XYZ is the device mnemonic (first
three letters of service routine title, XYZSER). This
macro expands as follows.

STARTDV XYZ4 EXTERNAL PIOFF, PION
CONO PI, PIOFF

CONO XYZ, (TAC)

HRLM TAC, XYZCON

CONO PI, PION

Location XYZCON must, of course, be defined within the service
routine.

Having started the device, return to UUOCON with a POPJ PDP,.

6. INPUT Operator (Index DIN)

Entered from CALIN in UUOCON to start the device doing buffered input. While.
the actual data transfers will take place at interrupt level, the job of the
INPUT coding is to condition the interrupt coding to perform the desired actions
and then to start the device so that an interrupt will occur. The first input
call for a file (IOBEG = 1) is used to get the address of the first buffer in
the ring from word 1 of the user's ring header and store it in DEVIAD. The
desired bits of DEVIOS are manipulated in IOS, then stored with a PUSHJ PDP,
SETACT which also turns on the IOACT bit and resets the hung timeout count. The
device may then be started using the STARTDV macro as described under (5). When
starting an input device, the CONO bits assign a PI channel number and turn on
the BUSY flag. The latter sets the physical device in motion to gather the
first word or character from the input medium, at completion of which the DONE
flag sets, causing the interrupt.

INTERRUPT-LEVEL OPERATIONS

Interrupt Channel Routines CHAN and NULL

The Monitor contains one of these routines for each of the seven priority
interrupt levels. A CHAN routine exists for a given level if there is at least
one service routine assigned to that level. A NULL routine exists for each
unused level. At initialization time, the routine LINKSR in Once Only code
places the instruction JSR CHn in each location 40+2n (42, 44, ... 56). The
NULL routine defines CHn as a location to contain the PC word and the next
instruction attempts to dismiss this spurious interrupt with a JEN @CHn.

A CHAN routine contains a like entry point, but the next location contains a
JRST to the interrupt entry of the first service routine built on this PI level.
A CHAN routine also contains a subroutine, SAVn (called by a JSR) to save
accumulators 0 through 10 and set up a pushdown pointer, and a subroutine RETn
to restore accumulators and dismiss the interrupt. The pushdown list and
accumulator storage locations are in the body of the CHAN routine.

When a service routine is coded, it is not known what PI level will be assigned
at Build time; therefore, there is a standard symbology used to refer to the
CHAN entries. If XYZ is the device mnemonic, the following symbols (declared
EXTERNAL in the device service routine) will be equated, by Build.

XYZCHN = PI channel number, 1 through 7
XYZCHL = CHn, interrupt PC word

XYZSAV = SAVn, AC storage subroutine
XYZRET = RETn, AC restore and dismissal

There are three ways to exit from an interrupt routine. If the routine has
saved and restored all accumulators within its own coding, the dismissal may
simply be JEN @XYZCHL. If the initial part of the routine called XYZSAV to
save accumulators and set up a pushdown pointer, a JRST XYZRET will cause
restoration and dismissal. Alternately, an "extra" POPJ PDP, can be used
because the pushdown list is assembled with the address RETn as its 0 entry.

Interrupt Service

The interrupt level coding of a device service routine handles data transfers
and error conditions. The routine is responsible for transmission of one byte
between a user's buffer and the file, and for advancing buffers when necessary.
The routine must stop the hardware device when no buffer is available (device

8-38

has caught up with the user or, conversely, take the job out of a Wait if the
latter condition is detected upon completion of a buffer (user caught up with
device). The flow charts in this section (Figures 11 and 12) describe the
general logic used for interrupt level processing. In practice, some altera-
tions in flow and wide variations in coding technique will occur because of
differences in device speeds and hardware buffering. We suggest that the reader
study the paper tape reader service (PTRSER) and paper tape punch service

(PTPSER) routines, which reveal the coding techniques that support the functions
outlined in these flow charts.

Interrupt
from this device

in chain

No }{To next device

Handle error
Interrupt conditions
»
Yes
Save AC's and set
up those used to
process data
Set up new byte
1st pointer and item

4 ~
\\1tem °f\>, Yes counter
\Quffer?/'

N

No -

Output and
count item

¢

Is
buffer
empty?

No

Figure ll. General Flow for Output Interrupt Routine

8-40

Mark buffer as
empty; set first
item indicator; get
address of next
buffer

Signal dev
to stop;)
clear IOACT
indicator

]

Cause job to be
requeued to
"Wait Satisfied"
state

.e i
i
t

|

N2
Restore ACs
and dismiss
interrupt

Figure 11 (Cont.) General Flow for Output Intérrupt Routine

~ To next
Interrupt\\\\ No |device in Mark buffer as full
from this device:>h—~9chain Get address of next
N ? e buffer; set first
NG - item indicator
Yes
Handle EOF
- Data ™~._ No or error
<§3ferrupt t conditions
2
Rl
Yes Stop device
: d clear |
Read Yes |an !
device's IOACT :
hardware indicator J
buffer '
N
Save AC's and set
up those to be used ///)
to process data " Is
job in S
<I /O W
~

Set up new No |[Cause ;ob to
byte point- be requeued to
ler and item "Wait Satis-
buffer? counter fied" state

o

Store and Q |
count this

data item

Restore
AC's and
dismiss
interrupt

Figure 12. General Flow for Input Interrupt Routine

8-42

Table 3

MONITOR UUO'S

Octal Mnemonic Description

040 CALL Extended operation code (see Table 4)

041 INIT (:) Allocate device with parameter in following
words; error return at 3, normal at 4

042

043

044 Reserved for installation use

045

046

047 CALLI Immediate mode extended operation code (see
Table 4)

050 OPEN (:) Allocate device; parameter block at E; skip if
no error

051

052 Reserved for future DEC use

053

054

055 RENAME (:) Change file parameters to block at E; skip if
no error

056 IN (:) Input buffer; use buffer or command list at E
(#0); skip if no error

057 ouT (:) Output buffer; use buffer or command list at E
(#0); skip if no error

060 SETSTS (:) Wait for device inactive; load device status
word with E

061 STATO (:) Skip if any device status word bit masked by
alinE is al

062 GETSTS (:) Store device status word in E

063 STATZ (:) Skip if all device status word bits masked by
a lin E are 0

064 INBUF (:) Set up a ring of E standard size input buffers

065 OUTBUF <:> Set up a ring of E standard size output buffers

066 Input buffer; use buffer or command list at

INPUT <:>

E if # 0

8-43

Table 3 (Cont.)

Octal Mnemonic Description

067 OUTPUT <i> Output buffer; use buffer or command string at
Eif # 0

070 CLOSE (:) Finpish I/0 and close file; E = 0 - input and
output, 1 - input, 2 - output, 3 - neither

071 RELEAS <:> CLOSE input and output files and deallocate
device

072 MTAPE (:) Magnetic tape positioning (see below)

073 UGETF (:) Store number of free DTA blocks in E

074 USETI (:) Set DTA or DSK to input block E next

075 USETO (:) Set DTA or DSK to output block E next

076 LOOKUP (:) Select input file, parameter block at E; skip
if no error

077 ENTER @ Select output file, parameter block at E; skip
if no error

i
NOTES:

1. I/0 is performed by associating a device, a file, and a buffer ring
or command list with one of a user's I/0 channels (D).

2. MTAPE Commands:

O NN

Rewind

Write end of record
Skip record
Backspace record
Skip to logical end

11 Rewind and unlocad 1
13 Write 3 in. of blank tape
16 Skip file
17 Backspace file
of tape

lDocumented but not implemented (hardware incompatible)

3. (:) - Channel number used (in AC field)

8-44

Table 4

CALL [SIXBIT/name/] and CALLI n

Name n Description
RESET 0 Terminate user's I/0, user I/0 mode; deallocated
unASSIGNed dev
DDTIN Ggg 1 Wait for character, load buffer (address in AC)
with characters typed since last DDTIN
2 Not presently used
DDTOUT 3 Wait until output complete; type characters in
buffer (address in AC)
DEVCHR 4 Load AC with device characteristics of device
whose SIXBIT name is in AC
5
6 Not presently used
7
WAIT <:) 10 Delay running until device inactive
COREl <:> 11 Change core assigned to number of blocks in AC
(0 = no change); skip if granted. AC contains
highest address
EXIT 12 RELEASe all I/0 devices, type “EXIT, AC"on
console; console enters Monitor mode
UTPCLR <:> 13 Clear (DTA) directory
DATE @ 14 Load 12-bit date in AC (right justified)
LOGIN2 @ 15 Read n words from system file, pointer in AC
(-n, TABLE)
APRENBl 16 Enable processor traps to user; AC contains
enable bits in CONO APR, format
LocouT! 17 RELEASe all I/O devices, return job number, dore,
and devices to Monitor pool; do bookkeeping
SWITCH 20 Load AC with processor switch register
REASSIgn 21 Assign device (SIXBIT name in AC+l) to job
number in AC; skip if successful
TIMERT 22 Load AC with time of day in jiffies (clock ticks)
MSTIME]‘ 23 Load AC with time of day in milliseconds

8-45

Table 4 (Cont.)

Name n Description

GETPPN:L 24 Load ACL with proj number, AcR with prog number
' of job whose number is in AC

TRPSETl 25 i Enter user I/0 mode; if ACy, = 40 to 57, put

C(C(AC)R) properly relocated into C(AC) g;
skip if no error

1

TRPJEN 26 Dismiss exec mode interrupt and restore PC
from address in .+1

RUNTIMel 27 Load AC with accumulated run time (ms) of job
whose number is in AC (0 = current job)

PJOBl 30 Load AC with job number of current job

SLEEPT 31 Delay running of job for C(AC) seconds.

232 Not used
NOTES:
- AC used . @- User's I/O channel number used (in AC field)
1

Not available in 10/20 or 10/30 single-user Monitors
210/50 Monitor only; available only during LOGIN procedure, not for user

3Feature under development; may vary

DATE STORAGE

12-bit field 31 {12 (year-—l964)+(month—l)} +(day-1)

1 Jan 1964 to 4 Jan 1975

FILE PROTECTION BITS

9-bit field ROT|READ [WRITE [PROT|READ |WRITE] PROT] READ |WRITE
CHG | PROT |PROT |[CHG |PROT|{PROT |CHG |PROT]|PROT
PROT PROT PROT
OWNER PROJECT OTHERS

COMMAND LISTS
-n,location-1 Transfer n words starting at location

0,address Take next command from address
-n,0 Skip n words of data (hardware channel only)
0,0 Stop

Table 5

Cross Reference Listing of I/O Programmed Operatoxr Symbolsl
xxXxCHL D33 DIN D29(t2),D30 TODEND D27 (tl)
xxCHN D33 DINI D29 (t2) IODERR D27 (t1)
XXXSAV D33 DLK F23,D29(t2) IODTER D27 (tl)
XxXxXIT D33 DMT D29 (t2) TOEND D27 (t1)

DOU F18,D29(t2),D30 IOFST D27 (tl)
ASSASG Fl2 DRL F21,D29(t2),D30 IOIMPM D27 (t1)
ASSCON D28 (t1) DRN D29 (t2) TIONRCK D27 (tl)
ASSPRG D28 (tl) DSI D29 (t2) JOPAR D27 (tl)
DSO D29 (t2) IOSETC F15,F18
BUFC1l F13 DVAVAL D28 (tl) IOTEND D27 (tl)
BUFCLC F13 DVCDR D27 (tl) IOW . D27 (tl)
BUFCLR F18 DVDIR D28 (tl) IowC D27 (tl)
DVDIRIN D27 (tl)
CALIN D6,F14,F15,F16 DVDIS D28 (tl) JBTADR Dl
CHAN D32 DVDSK D27 (tl) JBTSTS D1
CHn D32 DVDTA D28 (tl) JOBFF D5
TLOSEL D9,F19,F21,F23 DVIN D28 (tl) JOBJDA D1,D2(£f1)
“TL.RDDB F22 DVLNG D28 (tl) JOBHCU Dl
DVLPT D27 (tl) JOBPFI D1
DCL ¥20,D29(t2), DVMTA D28 (tl)
D30 DVOUT D28 (tl) LOOKB D2 (£1)
DCLI F19,D29(t2) DVPTP D28 (tl)
DCLLO D29(t2) ,D30 DVPTR D28 (tl) NULL D30
DCLR D29 (t2) DVTTY D28 (tl)
DDI D5,F14,D29(t2) OBUFB D2(£f1)
DDO F17,D29(t2) ENTRB D2(£f1) OCLOSB D2(£f1)
DEN F23,D29 (t2) ouT D8,F17,F20
LEVADR D4 (£2) ,D25, IBUFB D2(f1) ouT2 D8,F18
D26 (£10) ICLOSB D2(f1) ouUTA D9,F17,F18
DEVBUF D5,D25,D26(£f10) IN D6,F14 OUTBFB D2(f1)
DEVCHR D5,D24,D26(f10) IN1 D6,D7,F14 OUTDMP D8,F17
DEVCTR D4(£2),D25,D26 INBFB D2(£f1) OUTF D9,F18
(£10) INDMP Fl4 OUTF1 D9,F18
DEVDAT D6,D24 INEOF D7,F15 OUTPB D2(£f1)
DEVEXT D25,D26 (£10) INEOFE D8,F15 ouTs D9,F18
DEVFIL D25,D26 (£10) INITB D2(f1)
DEVIAD D5,D6,D25, INPB D2(£f1) PRJPRG D1l
D26 (£10) INPTOA b6,D7,F15
DEVIOS D5,D24,D26 (£10) , INPTOC p7,F15 RELEAO D10,F12,F2
D27 (t1) INPT1 D7,F15 RELEAl Dplo,F21 .
DEVLOG D25,D26 (£10) INPT2 D6,D7,F15 RELEAZ2 D10,F21
DEVMOD D25,D26 (£10) INPUT2 D6,F15 RELEA3 D10,F21
DEVNAM D24,D26 (£10) INPUT3 Flé6 RELEA4 D11,F21
DEVOAD D5,D25,D26 (£10) INPUTF D6,F16 RELE4A D1l1,F21
DEVPTR D4 (f2),D25,D26 10 D27 (tl) RELEAS D11,F21
(£10) IOACT D27 (t1) RELEA6 D11,F22
DEVSER D1,D24,D26(£10) IOBEG D27 (t1) RELEA7 D11,F22
DEVSRC F1l2 TIOBKTL D27 (tl) RELEAY D11,F22
DGF D29 (t2) TIOBOT D27 (tl)
DHNG D29 (t2),D30 TIOCON D27 (tl) SYSDEV D2 (f1)

1 . C o . s . .

A D preceding a page number indicates that a description of the item is
found on that page; an F indicates that the item appears in a flow chart
on that page. (tn) = Table (fn) = Figure

TTYATC
TTYBIU
TTYUSE

UCLSO0
UCLS1
UCLS2
UCLS2a
UCLS2B
UCLS3

D27 (tl)
D27 (t1)
D27 (t1)

D10,F19
D10,F20
D10,F20
D10,F20
D1l0,F20
D10,F20

UCLSBI
UCLSBO
UDEN
UDLK
UDLKC
UERROR
UINBF
UINIT
UINITA
UINITB

Table 5 (Cont.)

D9,F19
D10,F20
F23

F23

F23

F1l5
F13,Flé6
Fl2

Fl2

Fl2

8-48

UINITC
UOBFI
vour
UOUTBF
USRJDA

WAIT1

WSYNC

Fl2

F13
D8,F17
F13,F18
D1,D2(f1)

Fl4,F17,F18,
F19,F20,F21,
F23
F14,F17,F18

DEVICE INTERRUFT ROUTINE

DEV'INT

THIS NO
INTERRUPT DEVICE?
ROUTINE
YES
SAV'N
SAVE ACS
COMNOT INIT PDL
INTERRUPT PROCESS
ROUTIIE INTERRUPT
RET'N
r RESTORE
ACS
COMMON 1

N
DISMISS
L NTERRUPT

Monitor Handout 9-Apr 70

INTERRUPT ROUTINE CHAIN

40 + 2N:

CH'N:

DEV1'INT:

DEV2'INT:

DEV3'INT:

Monitor Handout 8 -- April 1970

JSR CH'N
JSp DAT, ERROR

g
JRST DEVL'INT

CONSO DEV1, Conditions
JRST DEV2'INT

Process DEV1 Interrupt

CONSO DEV2,Conditions
JRST DEV3'INT
Process DEV2 Interrupt

CONSO DEV3,Conditions
JEN @CH'N
Process DEV3 Interrupt

CHANNEL SAVE ROUTINE

The symbol "x" represents any channel number, 1 - 7.

CH'x:) ;PC STORED HERE BY JSR AT 4g+2x
JEN @CH'x ;END OF INTERRUPT CHAIN
:THIS INST WILL BE REPLACED BY A JRST TO THE FIRST
; INTERRUPT ROUTINE ASSIGNED TO THIS CHANNEL
SAV'x: 2 s ROUTINE TO.SAVE AC'S FOR INTERRUPT ROUTINE
MOVEM HIGHAC,SAVAC'x+HIGHAC ; "HIGHAC" IS DEFINED AS THE HIGHEST
;AC TO SAVE FOR THIS CHANNEL
MOVEI HIGHAC,SAVAC'x
BLT HIGHAC,SAVAC'x+HIGHAC -1 ;SAVE AC'S IN AREA RESERVED BELOW
MOVE PDP,SAVAC'x+HIGHAC + 1 ;INITIALTZE PUSHDOWN POINTER FOR
; PDL. BELOW
JRST @SAV'x ; RETURN TO CALLING ROUTINE
; CONTROL IS PASSED TO RET'x IF THE INTERRUPT EXITS
;WITH A POPJ ‘
RET'"x: MOVSI HIGHAC,SAVAC'x ; ROUTINE TO RESTORE AC'S SAVED BY
; THE ABOVE ROUTINE
BLT HIGHAC,HIGHAC
JEN @CH'x) ;DISMISS THIS INTERRUPT AND RETURN TO INTERRUPTED
; ROUTINE
SAVAC'x: BLOCK HIGHAC 1 ;SPACE TO SAVE AC'S § - HIGHAC
CH'x'PDP:. XWD -PDL+1, .+1 s INITIAL PUSHDOWN POINTER
CH'x'PDPl: EXP RET'x ;FIRST ENTRY ON PDI, —- RETURN ADR FOR
; LAST POPJ IN INTERRUPT ROUTINE
BLOCK PDL-1 ;SPACE FOR REMAINDER OF PDL
Monitor Handout 28 -- June 1970

10.

QUESTIONS ON DEVICE SERVICE ROUTINES

What is the basic function of the OUTPUT routine in a device service routine?

In general, where is an output device turned off if it has emptied the 1last
buffer supplied by the user? Where is the specific instruction for the paper
tape punch?

What is the INTTAB entry for the paper tape reader? -- the software clock
interrupt?

Which instruction sets up the interrupt locations, 4@ +2N?

If an interrupt occurs, but no device assigned to the channel admits causing
it, how is the interrupt dismissed?

Which interrupt assignment macros generate (directly) INTTAB entries? --
device save routine definitions?

Which instruction results in CHKCHL being defined? How is it defined?

What would be the result of defining UNIQ3 = 1?

How could you ensure that a special device is assigned as the only device
on a specific channel, without making any changes to COMMON.MAC?

List the actions taken by PTPINT if a buffer has been finished and the next
buffer is not available to it.

9. Allocation of Core
Readings

Handout "Allocation of Core"
Table Descriptions

CORTAB
JBTADR

Flow Chart
Handout 24 Core Allocation Flow
Monitor Listings
CORE1l Routine COREl 1lines 334-587
CORE1l Routine CORE@Z 1lines 248-333
CORE1l Routine CHKSHF lines 129-186

Written Assignment

Questions on Allocation of Core

ALLOCATION OF CORE

In a swapping system, user jobs are allocated memory space of two types,
virtual core -- or swapping space =-- and physical core. Both virtual core and
physical core are allocated in 1K blocks. Every job with a program to run
must have virtual core, but physical core is assigned and deassigned as jobs
are swapped in and swapped out. Core allocations are made initially by the
RUN and GET Commands. A job's core allocation may be changed by the CORE
Command and the CORE UUO. It is finally relinquished by the KJOB Command.
Physical core assignments, but not virtual core allocations, are changed by
the Swapper and Shuffler Routines.

Normally, core assignments are changed only for jobs that are in core. Ob-
viously a job must be in core to execute a CORE UUO. And the Core Command will
be delayed until the job is in core. Therefore, any change in core allocation
will require both a change of virtual core allocation and a change of physical
core assignment. However, the KJOB, RUN and GET commands may be executed with
the job swapped out. These commands will initially request a change of core
allocation to the minimum allocation, and therefore will never require an in-
crease in size for a swapped out job. 1In these cases, there is no physical core
assignment to be changed. The total of available virtual core is imcremented
by the decrease in the job's size and the job's In-Core Image Size is reduced
to the new value. The job's physical core assignment is made according to its

In-Core Image Size when it is swapped in.

When a job requests a change in core size, two conditions must be met. The
change must not cause the total virtual core assigned to all jobs in the system
to exceed the amount of swapping space, and the size of this job must not. exceed
the maximum job size specified when the system was generated. If both these
conditions are met, the job will be allocated the requested amount of virtual
core. Virtual core is allocated to a job by subtracting the amount of increase
from the total of available virtual core, and giving a normal return to the
routine which made the request.

When a job is allocated virtual core, it may or may not be assigned physical
core. Physical core is assigned to a job by setting bits in a core map table,
subtracting that amount from the total of free physical core, and updating the
address of the job at all places where it is known. If a job is to be given a
new physical core assignment, any old assignment is first deassigned. 1In order

to make a new assignment of physical core, the monitor must find a group of

9-2

contiguous unassigned blocks, or hole, large enough to hold it. Physical core
is assigned starting at the beginning of the first hole large enough to hold the
job. The job is moved to the new area, and all additional core assigned to the

- job is cleared.

If there is no hole large enough to hold the job, it will have to be swapped out.
A bit is set to inform the Swapper that this job must be swapped out, and its
In-Core Image Size is set to its new size. It is assigned physical core of the
same amount it originally had, to hold it until it can be swapped out. Once
swapped out, it will be considered for being swapped in according to the normal
swapping algorithm. When its turn comes to be swapped in, physical core will be

assigned to it according to its In-Core Image Size.

The Swapper calls the core allocation routine to assign physical core for a
job which is about to be swapped in. The Swapper assures that there is a big
encugh hole for the job before requesting the assignment. It skips over the
allocation of virtual core, because a swapped out job already has virtual core
allocated.

The Swapper also calls, under some conditions, a routine known as the Shuffler.
The function of the Shuffler is to move the job following the first hole up
into the hole. Successive calls to the Shuffler tend to pack the jobs toward
the beginning of core, and to combine holes as they are moved toward the end of
core. The Bhuffler must assure that the job to be shuffled does not have
active I/0. Then it simply requests a physical core assignment of the same
size that the job already has. The core which was previously assigned to the
job is deassigned, increasing the size of the first hole to be more than large
enough for the request. Since the new core assignment is made at the beginning

of the first sufficiently large hole, it will always be at the desired location.

The job is moved into its new area by the core allocation routine just as it
would be for any change of physical core assignment. The Shuffler, like the
Swapper, skips over the allocation of virtual core because the job's virtual
core allocation is not changed.

CORE ALLOCATION ROUTINE

UPDATE
VIRTAL
semmeme-vemma-e-n--=-.3 CORElA
HERE FROM
SHUFFLER DEALLOCATE
OLD CORE
ASSIGNMENT
......... RN A
HERE FROM BAKOLD 3
SWAPPER MARK JOB
T0 BE
SWAPPED,
REQUEST OLD

MOVE JOB TO

NEW AREA

CLRCOR ¢ N
CLEAR ANY
ADDED AREA

DIDLE: ,

HOUSEKEEPING

CPOPJA 3
<SKIP RET >

Monitor Handout 24 -- July 70

CORE ASGNMEN

QUESTIONS ON ALLOCATION OF CORE
When a new area of core is allocated to a job, how do the CORTAB bits
corresponding to that area get set?

For what reasons will CORE1l take the error (nonskip) return?

Why would the JXPN bit be set for a job? What instruction actually sets it
and how does control get to that point?

When a job's area is increased, which instruction clears the additional
area given to it? Why is this necessary?

When is it necessary to reset the hardware relocation and protection
registers upon changing a segment's core allocation?

Where is JBTADR updated after a segment has been moved?

How is it determined whether the segment just moved was stopped in User
Mode or Exec Mode? What difference does it make?

What determines the number of words moved when a segment is moved to a
new core area?

’

10. The Scheduler

Readings

Handout "The Scheduler"

Table Descriptions

JBTSTS Job Status Table

JBTQ Job Queues Table

JBTSWP Job Swap Table

AVALTB Available Resources Table
QBITS Requeuing Table

AVLQTB Regueuing Table

Scan Table
Transfer Table
Queue Progression Table

Flow Chart

Handout 3 Scheduler Macro Flow

This flow chart does not include the case of the current job being
unrunnable.

Other References

Handout 1 Items Referenced by the Scheduler

Monitor Listings

SCHED Routine NXTJOB lines 49-208

Written Assignment

Questions on Scheduling

THE SCHEDULER

The basic function of the Scheduler is to select the job to run during the next
time slice. It also keeps the job queues up to date and does some additional
housekeeping. Control passes to the Scheduler from the Clock Cycle Routine,
CLOCK1l. When the Scheduler has finished its functions, it returns control to the
Clock Cycle. Context switching is then performed. The job which the Scheduler
selected to run is set up, and control is given to it for the remainder of this

time slice.

Rescheduling is required for one of two reasons. Either the clock interrupt has
occurred -- ending the time slice -- or the current job has reached a point at
which it can not immediately continue. Whenever a monitor routine finds that it
can not immediately complete a function requested by the current user job, it
will return control to the Clock Cycle so that another job may be selected to
run. The job which was stopped will be rescheduled at some later time when the
function which it requested can be completed.

The functions performed by the Scheduler are as follows:

l. If the clock has ticked, decrement all positive In-Core Protect Times.

2. Check if the current job is still runnable. If not, requeue it accord-
ing to its Job Status Table entry, and immediately select another job
to run.

3. If the current job is still runnable, and if the clock has ticked,
decrement the current job's quantum run time. If it has reached
zZero, requeue the current job into another Processor Queue.

4. Check if other jobs need requeuing. If so, requeue each one accord-
ing to its Job Status Table entry.

'5. Check if any sharable resources have become available. If so,
requeue a job from the corresponding sharable resource wait queue.

6. Call the Swapper. The Swapper will return control to the next
instruction.)

7. Scan the Processor Queues for a job to run. If a runnable job is
found, return control to the Clock Cycle with the job number in AC ITEM.
If no runnable job is found, return control with zero in AC ITEM, for
the Null Job.

All queue transfers are done by the Scheduler. When other routines determine
that a job should be requeued, they set the appropriate bits in that job's entry

in the Job Status Table.

The JRQ bit is set to indicate that the job should be requeued, and the Wait

10-2

State Code is set to indicate the queue to which the job should be moved. The
JRQ bit is never set, however, for the current job. In that case, the non-zero
wait state will show that the job is unrunnable, and must be requeued.

All jobs which are not in a wait state are kept in the processor queues -- PQ1,
PQ2, and PQ3. The fact that a job is in a processor queuve does not, however
ensure that it is runnable. The job still might be swapped out, might need to
be swapped out for expansion, or might be selected to be shuffled. A job which
stays in a processor queue until its quantum run time expires is requeued to the
end of another processor gqueue, éccording to the following plan:

PQl——> PQ2
PQ2 —> PQ3
PQ3 —> PQ2

A job can be removed from a bProcessor queue for a number of reasons. If it
executes a UUO requesting a buffer which is not yet available to it, it will
be put into the IO Wait Queue. When the interrupt routine makes the buffer
available to the job, it will mark the job to be requeued. The job will then
be requeued to the front of PQl, according to the present entry in the QBITS
table.

When a job executes a UUO which requires use of a sharable resource, and that
resource is not available, the job must be requeued into the correspondlng
sharable resource wait queue. A job is taken out of a sharable resource wait
queue according to the corresponding entry in AVLQTB. These entries all call
for the job to be requeued to the beginning of PQl.

<

SCHEDULER -- MACRO FLOW

NXTJOB

NO

DECREMENT
QUANT RUN,
INCOKE PRT
TIMES .

NXTJB1

REQUE CRNT
JoB, IF
NEEDED

CKJB1

REQUE OTHR
JOBS THAT

CKJBS

REQUE JOBS
\J FOR SEAR!

NEED IT

Monitor Handout 3 - Apr 70

10-4

RESOURCES

DO ANY
NEEDED
SWAFPING
SWAP

SCHED

CHCOSE JOB
TO RUN
NEXT

POPJ

ITEMS REFERENCED BY THE SCHEDULER

Label Defined in Contents

JOB COMMON Current job number

JOBQUE SCHED Queue number of current jeb "

QJOB SCHED Number of jobs needing regueuing

TIMEF COMMON Nonzero if clock has ticked

HIGHJB COMMON Highest job number currently assigned

RUNMSK COMMON) Defines bits which do not affect '
runability of the job

RUNABLE COMMON Defines bit values required for job
to be runnable

POTLST COMMON Flag that Null Job is to be run even
though there are jobs in the processor
queues

TABLES

AVALTB SCHED Sharable resources available

JBTPRV COMMON Job privilege table

JBTQ COMMON Job queues table

JBTSTS COMMON Job Status table

JBTSWP COMMON Job swap table

QBITS SCHED Table of Transfer Tébles for wait states

QQSTAB SCHED Quantum run times

QSTAB SCHED New queue for job size

QSTOP SCHED Transfer Table - to stop queue

QTIME SCHED Transfer Table - time expired

QTTAB SCHED New queue for old queue

QXXs SCHED Transfer Table - out of sharable

resource wait
XX specifies which resource

QOXXW : SCHED Transfer Table - new queue depends on
wait state code
SSCAN SCHED Scan table - job to run next

Monitor Handout 1 -- April 70 10-5

QUESTIONS ON SCHEDULING

Why might a job be unrunnable even though in one of the processor queues?
List line numbers to support your answer.

Where does the monitor give control to the user program?

What is the function of the quantum run time?

What determines the order in which the scheduler considers jobs for
the possibility of running next?

What is the meaning of a non zero entry in AVALTB?

When is a clock tick considered "lost" rather than simply idle?

If there are several jobs waiting for a sharable device which has become
available, which job gets it?

Where is the Null Job terminated before a clock tick?

10-6

9.

10.

How does the Scheduler determine the transfer table to use to requeue a
job whose JRQ bit is set?

Which transfer table would be used to requeue the job in each of the

following situations?

Current RUN JRQ CMWE Wait State Transfer
Job Bit Bit Bit Code Table
yes 1 0 2 I0WQ-12
yes 0 0 0 RNQ-0.
no 1 1 0 WSQ-1
no 0 1 1 STOPQ-16
no 0 1 0 RNQ-#

10-7

11. The Swapper
Readings

Handout "The Swapper"
Table Descriptions

CORTAB

Scan Table

JBTADR

JBTSGN

JBTSTS

JBTSWP

Flow Charts

Handout 4 Swapper Logical Flow

This flow chart shows the flow of the Swapper as a continuous
process, rather than according to the code.

Handout 5 Swapper-Simplified Macro Flow

This flow chart follows the code, but is "simplified" by not
considering high segments. Several sections will be repeated
if there is a high segment to swap

Other References

Handout 2 Items Referenced by the Swapper
Monitor Listings

SCHED Routine SWAP 1lines 824-1192
Written Assignment

Questions on the Swapper

‘11-1.

THE SWAPPER

The wnasic job of the swapper is to keep in core the jobs which are most likely
to be runnable. A job is swapped out only when necessary - because a more
eligible job needs to be swapped in, or because it wants to expand its core
size and there is not enough room.

The swapper checks periodically if there is a job which should be swapped in.
If there is no job to be swapped in, it checks for expanding jobs. If no job
is expanding, it has nothing more to do.

When a job requests more core and there is no hole large enough for its new
size, it must be swapped out, then back in with the new core allocation. The
swapper handles this just as it does its normal swap-out described below.

The swapper determines whether or not it needs to swap in a job by scanning the
job queues in a prescribed manner. It uses the QSCAN routine for this and the
scan table specified-is ISCAN. The order in which it considers jobs for swapping
in is as follows:

Command Wait Queue

. Processor Queye 1
Processor Queue 2
- Monitor Disk Queue - first entry only

. Processor Queue 3

A K1 W N

- Other sharable resource queues - first entry in each

If a swapped out job is found, the swapper then attempts to fit the job into
core. First it computes the total amount of core necessary to swap the job in.
There are three possible cases:

l. Size of this job's low segment plus size of this job's high segment.

2. Size of low segment only, because either there is no high segment
or it is already in core.

3. sSize of high segment only, because low segment already swapped in.

If there is enough core available, the swapper will shuffle jobs toward the
beginning of core until there is enough space in one place to bring in the
segment which it needs to read in. If shuffling does not generate enough space
in a single hole, unused high segments in core will be deleted, and shuffling

will continue. This process must create a sufficiently large hole, or it

11-2

would have originally found that there was not enough core available.

If there are two segments, the low segment is swapped in first. The swapper
eén: res that there is enough space available for both Segments before doing
anything else. Then it shuffles core to create a hole for one segment at a
time to be read in. When a large enough space is available for the segment
which is to be swapped in next, the I/O request is set up and given to the disk
service routine. If the swapper finds that there is not enough space available
to swap in the job it has chosen, it will attempt to swap a job out. Tt scans
the job queues for a job to swap out according to the scan table OSCAN. The
order specified is:

1. Stop Queue - forward

2. Sleep Queue - forward

3. Sharable Resource Queues - backward except first entry
4, TTY I/0 Wait - forward

5. Processor Queue 3 - backward

6. Sharable Resource Queues - first entries

7. Processor Queue 2 - backward

8. Processor Queue 1 - backward

9. Command Wait Queue - backward

The swapper continues the Scan, accumulating the core space that could be
gained by swapping out each swappable job until:

1. Enough core is found that job could be swapped in if those jobs were
Swapped out, or

2. The job number of the job to be swapped in is returned by the scan.
This means the job can not be swapped in without swapping out jobs
with higher priority for being in.

During this scan, a job is considered unswappable if any of the following
conditions are met:

1. RUN or CMWB set, and job still has in core protect time
2. NSWP set - job cannot be swapped out

3. SWP set, job is already swapped out.

If enough core can be made available by swapping jobs out, the swapper picks
the largest job found in the scan and proceeds to swap it out.

If the job has a high segment to be swapped out, this will be done first,
So that I/O may continue in the low segment while the high segment is being

11-3

swapped. This will occur only if all the following conditions are met:

1. The job has a high segment.
2. High segment is in core.

3. This job is the only job using that high segment - i.e., in core
count = 1

4., This high segment is not already on disk. .
5. This high segment is not used by the job being fitted into core.

When swap out has been completed, the swapper starts from the beginning of

the process of fitting the new job into core. The entire process is repeated
until there is finally enough core available for the job to be swapped in.
Then the swapper proceeds to swap in the job that it originally selected
according to ISCAN. Note that the output scan is repeated each time another
iob must be swapped out. The priorities could very well change while the
previous job is being swapped out. However, the input scan is not repeated.
Assuming enough core can be made available for it, the job originally selected
to be swapped in will be the next job swapped in.

Although the actions above are described as one continuous process, and can
logically be thought of as such, they may actually be spread out over several
calls to the swapper on several different clock ticks. Any time the swapper
reaches a point at which it cannot immediately .continue, it exits for that
clock tick. On the next clock tick it will try to continue the process that
it left off on the last clock tick. It uses a number of memory flags to
indicate what needs to be done next. These flags are tested at the beginning
of the routine, and control is returned to the place to continue the action it

was doing most recently.

11-4

SWAPPER

SWAP

JOB
TO SWAP

LOGICAL FLOW

IN?

lYES

COMPUTE
CORE
NEEDED

THIS SEG
CORGET

INPUT
THIS
SEGMENT

STILL YES

SWAP OUT
A
JOB

SHUFFLE
CORE

CHKSHF

EXIT

DELETE A
DORMANT
SEG

FIT1

HG
NO

HOUSE=
KEEPING

(EXIT)

Monitor Handout 4a - Apr 70

HIGH SEG

11-5

SWAP OUT

JOB YES
XPANDING
(o}
PICK JOB PICK
TO EXPANDING
SWAP OUT JOB TO
SWAP OUT
<
N
HIGH YES
SEG. TO
ﬁ%////
0
REMEMBER
JOB # SET
HIGH SEG #
TO SWAP
SWAPO r
SWAP OUT
CHOOSEN
SEG
FINOT
TILL SET JOB #
NEED TO BE
LOW SWAPPED
OUuT

Monitor Handout 4b

- Apr 70

11-6

SWAPPER
« SIMPLIFIED MACKO FLOW =

SWAP

HOUSE
KEEPING

ORCE §

Y

PICKJOB EADY

TO SWAP = TO GO
ouT ,\\\\\

- 4
, START
SHUFFLE OUTPUT
EXIT EXIT

Ménitor Handout 5 = Apr 70

11-7

Lab-1
BIGHOL
CORLST
CORTAL
FINISH

FIT
FORCE
HIGHJB
HOLEF
IMGIN
IMGOUT
JOBMAX
SEGPTR

SHFWAT
SQREQ

SWPIN
VIRTAL
XJOB

CORTAB
ISCAN

JBTADR
JBTSGN
JBTSTS
JBTSWP
OSCAN

ITEMS REFERENCED BY THE SWAPPER

Defined In Contents

COMMON Size of largest hole in core

COMMON Pointer to last "existent" bit in CORTAB

COMMON Total available core

COMMON Number of job with swapping transfer in
progrsss

COMMON Number of job selected to be swapped in

COMMON Number of job selected to be swapped out

COMMON Highest job number currently assigned

COMMON Location of job following first hole in core

COMMON Pointer to In-Core Image size in JBTSWP Table

COMMON Pointer to Out-Core Image size in JBTSWP Table

COMMON Highest job number times 29

COMMAN XWD - (number high seg's), first high
Segment number

COMMON Number of job selected to be shuffled

SCHED IO Word for swapping xfer; # if none in
progress

COMMON Low seg just swapped in (saved by SEGCON)

COMMON Amount of free swapping space

SCHED Number of jobs trying to expand

TABLES

COMMON In-use core table

SCHED Scan table for job to swap in

COMMON Job address Eable

COMMON Job high segment table

COMMON Job status table

COMMON Job swap table

SCHED Scan table for job to output

Monitor Handout 2 -- April 70 11-8

1.

Questions on the Swapper

1der what conditions will a job be swapped out?

In what order does the swapper consider jobs for possibly swapping in?
What determines this order?

Under what conditions will the shuffler be called?

What conditions must be met before a high segment will be swapped out?

Why can the swapper be sure of a successful return from CORGET when it
tries to assign core for a job to bring in?

If both segments of a two segment job are to be swapped out, which segment
goes first? Why?

If two segments must be swapped in, which segment is swapped in first?

11-9

10.

11.

12.

13.

What determines the order in which jobs are considered for swapping out?
What is the order in which they are considered?

What happens if the swapper can't find enough room to swap in the job it

has chosen?

Why could CORTAL be greater than @, but no hole be indicated on CORTABR?

Suppose the swapper has selected a job to swap in, and has been making room
for it by swapping out jobs over a number of clock ticks. If, when there
is enough room a higher priority job has now become eligible to swap in,
which job will actually be swapped in? What justification do you see for
this?

When a job is shuffled, which instruction (Program and line) actually moves

it to the new area?

Why would a job be rejected by the swapper when it is looking for jobs to
swap out?

11-10

14. ©Under what conditions will a high segment be swapped out? in?

15. List as many ways as you can that the swapping algorithm can be changeqd,
or "tuned", without changing any significant number of instructions.

11-11

12. Scanner Service

Readings

Handout "The Scanner Service"

Table Descriptions

TTY Device Data Block

TTYTAB
LINTAB
SPCTAB

Diagrams

Handout 14 - DC1lf¢ Data Line Scanner

Handout 20 - Scanner Instructions

Flow Charts

Handout 47, a - 4 Scanner Service Flow Charts

Monitor Listings

DLSINT Routine
SCNSRF Routine
Routine
Routine
Routine
Routine
Routine

Routine

Written Assignment

SCNINT
XMTINT
RECINT
TTEDIT
ADJHP

SPCHEK
TTYIN

TTYOUT

lines
lines
lines
lines
lines
lines
lines
lines

Questions on Scanner Service

94 - 108
1703 - 1777
1568 - 1641
1800 - 1830
640 - 650
389 - 446
831 - 903
904 - 973

THE SCANNER SERVICE

All "=2vice dependent functions for Teletype I/0 are performed by the scanner
service. The scanner service actually consists of two routines, a small
routine which depends on the particular scanner being used, and a large scanner
independent routine called, for full duplex service, SCNSRF.

The scanner dependent routine gives the immediate response to TTY interrupts,

a DATAI to the scanner. This instruction allows the routine to determine the
specific TTY which caused the interrupt, and whether it was an input interrupt or
an output interrupt. On input interrupts it also supplies the character.

Control is then passed to the routine in SCNSRF which handles that type of
interrupt, XMTINT for output interrupts, or RECINT for input interrupts.

Input and output to a Teletype may be done at any time, because each active TTY
has an input buffer and an output buffer in the monitor. The input interrupt
routine places the character read in from the scanner into the input buffer,
corresponding to the line which caused the interrupt. The output routine takes
the next character from the line's output buffer and sends it to that TTY. Be-
cause the buffers are in the monitor, these operations can be performed even whi!:
the corresponding job is swapped out.

On input, or receiver interrupts, control goes to RECINT. The typed character
and the TTY line number are already in core as a result of the DATATI performed
by the dependent routine.

If the TTY causing the interrupt was previously inactive, a DDB must be set up for
it. If all the DDB's are taken, input cannot be accepted, and an "X" is echoed
to inform the user.

If the TTY has a DDB, the edit routine, TTEDIT, is called to perform most of
the manipulations for the received character. The edit routine calls ADJHP,
which adjusts the horizontal position counter, and passes control on to SPCHEK.
SPCHEK picks up the SPCTAB entry for the received character or else a g, and
returns to TTEDIT. Here some housekeeping is done, and the special action
routine for this character is called if SPCTAB specifies one. The character is
put into the input buffer and, unless echo suppressed, into the output buffer.
TTEDIT then returns control to RECINT.

There is next a check for the output buffer being almost full. If so, the XOFF
bits are set to tell the transmit interrupt routine to send an XOFF character on

12-2

the next interrupt. If input is coming from a paper tape reader on the TTY,
rather than the keyboard, this will stop the reader. If the character received
is not a break character, processing is now finished. The Type Out In Progress
bit, TOIP, is checked and, if it is not set, the transmit interrupt routine is
called to start typeout for the echo character.

If it is a break character, some additional housekeeping must be done. TIf this
~is the first break character awaiting processing, COMSET is called. If the

TTY is in monitor command mode, the command completed bit is set and COMCNT is
incremented by COMSET.

If the job using this TTY is in TTY Input Wait, it will be requeued as a result
of the break character being received. STTIOD is called to mark the job as
needing to be requeued for TTY Wait Satisfied. Finally the same exit procedures
are followed as were for a non-break character.

On each output - or transmit - interrupt, control passes to XMTINT. If the out-
put buffer is empty, the TTY printer is "turned off" simply by not sending
another character to it. The Type Out In Progress bit is cleared, indicating
that this TTY is ready to accept a character at any time and will not cause an
interrupt. Routines which Place characters into the output buffer must check
this bit, and when it is clear, send the first character out to the TTY without
an interrupt.

If there are characters in the output buffer, the next one is picked up by the
GETCHR routine. If the job using this TTY is in output wait, there is a check
for the monitor output buffer being almost empty. If it is down to the last
eight characters, the STTIOD routine is called to mark this job as needing to
be requeued for TTY Wait Satisfied. Control is returned to the scanner
dependent routine to set up and execute the DATAQ which sends the character to
the Teletype.

The UUO level routines for TTY transfer characters between the user area and
the monitor buffers. The TTCALL routines move characters to or from a location
specified by the instruction. The INPUT and OUTPUT UUO's refer to a buffer
ring in the user area, just as they do for all other devices. Unlike other
device routines, however, the TTY UUO level routines actually empty or fill the
user's buffers.

When an INPUT UUO for TTY is executed by a user program, UUOCON advances the

user's pointers to the next buffer. If the next buffer is full, control is

returned to the user. The Input routine in SCNSRF is called only when all the

12-3

user's buffers are empty. The Input routine then copies as much data as it can
from the monitor buffer to the user's ring of buffers. It advances to the next
ﬁser buffer when either a break character is reached, or the user buffer is
filled. The Input routine exits when all the user buffers have been filled, or
the last full line has been copied from the monitor buffer.

If the Input routine is called and there is not a full line in the monitor
buffer, the job must be put into TTY IO Wait. Control is passed to TWSYNC and
on to WSYNC. WSYNC marks the job to be requeued to TTY IO Wait and calls WSCHED

to start a new monitor cycle.

The TTY Output routine is called by UUOCON each time the user program executes
an OUTPUT UUO for TTY. The TTY Output routine copies the user's buffer into

the monitor output buffer and exits. If there is not enough room in the monitor
output buffer, the job is put into TTY IO Wait while the buffer is emptied at
interrupt leve. When the buffer is almost empty, the job will be requeued to
run and will continue where it was interrupted. When the user's buffer has been
copied into the monitor buffer, control is returned to UUOCON, and from there to

the user program.

12-4

DC1¢# DATA LINE SCANNER

i - I/0 BUS
- INTERFACE

DC1g A
CONTROLLER

FLAG DATA
SCANNER MULTIPLXR

DC 14 B UP TO 8 DC1g B'S
(OR DC1g E) e i Y

TTY
OR DATA SET

' TTY '
OR DATA SET e >
UP TO 8 PER DC1f B

Monitor Handout 14« Apr 70

12-5

SCANNER INSTRUCTIONS

CONI
DTR TRANS RCVR
DISABL | INT - INT P I CHANNEL
3¢ 31 32 33 34 35
CONO
SET RESET
CLEAR P I CHANN I
‘] DTR |SCANNER [CEANNEL
2g 31 32 33 34 35
DATAO
[14 11 12 17 18 26 27 28 35
L— DIRECTED LINE NUMBER L TRANSMITTER
_ DISABLE
g 11 12 17 18 26 27 28 35

I— RECEIVED DATA

Monitor Handout 20 - Apr 70

SCANNER INTERRUPT ROUTINE

SCNINT

SCANNER D
NT?

To next routine
on channel

SCNSAV YES
SAVE AC'S
SET UP PDL
REQUEUE
JOB TO RU
Y STTIOD
INPUT WORD
FROM SCN
YES
NO OUTPUT WORD
TO SCN
DUMMY :
OUTPUT
y4
)
RETSCN
RESTORE
AC'S

OuUT BUF
EMPTY?
NO

DISMISS
INTERRUPT

Monitor Handout . 47a - July 7§ .

12-7

SCANNER INTERRUPT ROUTINE

DDB? NO GET
ONE
YES
y
ADJUST
HORIZONTAL
POS CTR
GET SPCTAB
SET SYNC
BIT

SPECIAL
ACTION
ROUTINE

N
CHAR TO
INPUT BUF

CHAR TO
OUTPUT BUF

Monitor Handout 47p - July 79

SET
XOFF
BITS

TYPING
AHEAD?

NQ

COMSET

NO

MONITOR
“MODE

SET
COMMAND

N

COMPLETED

MARK TO
REQUEUE
JOB
STTIOD

NO
YES START
» TYPEOUT
< TYPEOUT
XMTIN1
RETSCN
. RESTORE
AC's
DISMISS
INT

12-8

TTY INPUT UUO

AIT TIL
LINE DONE

MO

WSYNC

USR

COPY MONITOR
BUF TO USER
BUF

ADVBEF JL

ADV MONITOR

'PTR TO NEXT

USER BUF

FULL? “H.YES

Monitor Handout 47c - July 70

12-9

COPY USE
BUF TO MON

ADV PTR
TO NXT BUE

ADVBFE

EXIT

Monitor Handout 474 - July 70

TTY OUTPUT UUO

o

GET NXT

CHAR FROM
USER BUF

PLACE IN
MON BUF

OUTCHR

On

is

1.

10.

QUESTIONS ON SCANNER SERVICE

all questions which ask "where", specify program and line where the action is
taken, and describe the circumstances under which that line will be executed.

When will the device independent (UUOCON) routine call the SCNSRF routine

for (a) Input? (b) Output?

Where is the decision made to put a program into TTY IO Wait for the INCHWL
TTYCALL?

Where is a program put into IO Wait for TTY buffered input?

Where is a program put into IO Wait for TTY buffered output?

Where is the COMSET routine called to set the "Command Completed" bit?

Where is TOIP set? cleared?

Where is a TTY DDB set up for a particular physical line?

Where is the routine to respond to 4+0. How does control get to that point?

Where is the next character actually sent out to the scanner for a transmit
interrupt? What determines the TTY on which it will be printed?

What does SCNSRF do if someone tries to type on a TTY, and all DDB's are
in use? Where is this decision made? How could such a condition arise?

12-11

	001
	002
	01-01
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	08-01
	08-02
	08-03
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11

