MAINTENANCE
MEMOS

PDP-10
TIME-SHARING
MONITOR

Memos #1-8

January, 1969*.

NOTE

————

This is a collection of the eight Time-Sharing Internal
Memoranda previously issued as separate documents.
The chief purpose of publishing them in this form is to
make their storage and distribution more convenient.
Thus, it should be noted that this collection contains
no new or revised information and is not intended to be
a complete coverage of the Monitor.

As new and updated information becomes available,
it will be published first in the form of new or revised
memos to be incorporated in this collection and,
eventually, in a formal DEC software manual.

Memo #1

Memo #2

Memo #3

Memo #4

TABLE OF CONTENTS

EXECUTIVE MODE USE OF THE PRIORITY INTERRUPT SYSTEM
The Significance of Priority Levels
Priority Channel Assignments
Control of the PI System
Machine Action upon Interrupt
Input/Output Programming

Figure 1 Partial Schematic Representation of JSR Exple
Figure 2 Diagram of Monitor Priority Interrupt Levels

JOB SCHEDULING
Job Scheduling in the 10/40 Nonswapping System
CLKCSS
Job Scheduling in the 10/50 Swapping System
10/50 Scheduling Routines
Job Queues and Queue Transfers
Swapping
Notes on Queue Scanning for Input/Output
Swapping

Table 1 Some Queue Tables in CSSDAT

Figure 1 Schematic of Job Queue Table

Figure 2 Job Scheduling, 10/40 Nonswapping System
Figure 3 Job Scheduling, 10/50 Swapping System

COMMAND DECODER
An Overview
Adding a Command
Examples
Initial Setup and Verification
Command Routines
START and CSTART Commands
R Command
RUN Command
Cleanup and Return

Table 1 COMTAB Bits
Table 2 Cross-Reference Listing of Symbols in
Command Decoder

Figure 1 Command Decoder Flow Chart - Initial Setup

and Verification

Figure 2 Command Decoder Flow Chart - Command Routines

for START, CSTART Commands

Figure 3 Command Decoder Flow Chart - Command Routines

for R, RUN Commands
Figure 4 Command Decoder Flow Chart
Return

Cleanup and

APR AND CLOCK INTERRUPT ROUTINES

APR Interrupt Routine

CLK Interrupt Routine
Table 1 Cross Reference Listing of Symbols in APR

and CLK Interrupt Routines

Figure 1 Relationship between APR and CLK Channels
Figure 2 Flow Chart of APR Interrupt Routine
Figure 3 Flow Chart of CLK Interrupt Routine

B> w N -

[oe ¥]

WO U W P

[\S)

20
10
14
15

18

w

O Wk Ww

Memo #5 PROGRAMMED OPERATOR SERVICE (UUOCON)

Description 1
Operator Preprocessing and Dispatch 2
Special Registers 2
Functional Description 3
Operator Service 4
Exit Routines 6
Error Exits 6
Normal Exits 7
Adding a Programmed Operator 7
Adding a New Operator 7
Adding a New CALL Subfunction 8
Memo #6 SYSTEM INITIALIZATION AND RESTARTS
FIRST 1
SYSINI 3
ONCE 6
Table 1 System Dispatch Table 1
Table 2 System Parameter Values Stored in FIRST 2
Table 3 Priority Interrupt System Trap Locations 6
Table 4 Cross Reference Listing of System
Initialization Symbols 13
Figure 1 Map of Upper Section of Monitor 9
Figure 2 System Initialization Flow Chart (SYSINI) 12
Memo #7 CONTEXT SWITCHING
Context Switching 1
Table 1 Cross Reference Listing of Context Switching
Symbols 3
Figure 1 Flow Chart of Context Switching 3
Memo #8 I/0 OPERATORS AND DEVICE SERVICE ROUTINES
Software Link between User and Device 1
I/0 Operators 3
Review of User I/0 3
INIT and OPEN Operators 5
INBUF and OUTBUF Operators 5
INPUT Operator 5
Dump (Unbuffered) Mode 5
Buffered Modes 6
OUTPUT Operator 8
Dump (Unbuffered) Mode 8
Buffered Modes 8
CLOSE Operator 9
RELEASE Operator 10
LOOKUP and ENTER Operators 11
Device Service Routines 24
Device Data Blocks 24
UUO-Level Operations 29
Dispatch Table 29
Basic Operations 29
Interrupt-Level Operations 32
Interrupt Channel Routines CHAN and NULL 32
Interrupt Service 33

ii

Memo #8 (Cont.)

Table
Table
Table
Table
Table

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

U ds W

Device Data Block (DDB) Bit Definitions
Device Service Dispatch Table Entries
Monitor UUO's

CALL SIXBIT/name/ and CALLI n

Cross Reference Table of I/0 Programmed
Operator Symbols

JOBJDA or USRJDA Word Contents

Buffered Data Transfer between an Input
Device and User via a 3-Buffer Ring

Flow Chart of INIT Operator

Flow Chart of INBUF, OUTBUF Operators
Flow Chart of INPUT Operator

Flow Chart of OUTPUT Operator

Flow Chart of CLOSE Operator

Flow Chart of RELEASE Operator

Flow Chart of LOOKUP and ENTER Operators
Device Data Block (DDB)

General Flow for Output Interrupt Routine
General Flow for Input Interrupt Routine

iii

27
29
37
39

PDP-10 TIME-SHARING MONITORS

EXECUTIVE MODE USE
OF THE
PRIORITY INTERRUPT SYSTEM

The PDP-10 incorporates a flexible, seven channel, priority
interrupt system that is particularly useful in programming efficient
multiple input/output operations. The purpose of this section is
to acquaint the user with some of the programming techniques involved
with using this system. Topics to be discussed include

1. The manner in which input/output (I/0) devices are
connected to the interrupt channels;

2. Programmed control of the PI system;

3. The action taken by the system upon acknowledgement of
an interrupt request from a device;

4. The action most appropriately taken by the programmer
in anticipation of such an interrupt.

1. THE SIGNIFICANCE OF PRIORITY LEVELS

The seven priority interrupt channels are numbered according to
their priority level, with channel 1 having the highest priority.
When an interrupt request on a given channel is being serviced, no
further interrupts can occur on that channel or on any channel of a
lower priority; however, a channel of a higher priority can interrupt
the routine servicing the original interrupt. The system is designed
so that the original routine is resumed following the servicing of
the higher priority interrupt. Further, requests occurring on lower
priority channels are never lost, but are simply held until such time
as they can be acknowledged and serviced. 1In general, an interrupt
request from a device consists of a level present on one of the
seven PI request channels (lines) which are part of the I/O bus. This
level remains present until the device is serviced.

2. PRIORITY CHANNEL ASSIGNMENTS

Up to 126 input/output devices can be connected to the central
processor via the I/O bus. Under control of the Monitor, one or more
devices can be connected to any one of the seven priority interrupt
channels. A particular device is connected to a channel with
a Conditions Out (CONO) instruction directed to that device. The
CONO instruction contains the channel number in its effective address
portion, usually in bits 33 through 35.

Example CONO PTR, 000005 ;ASSIGNS THE PAPER TAPE READER TO
; CHANNEL 5, SO THAT WHENEVER THE
; READER'S "DONE FLAG" IS SET, AN
; INTERRUPT WILL BE REQUESTED ON
; CHANNEL 5

Note that in this example, as in all others to follow, the coding is
presented in a format acceptable to the Macro-10 Assembler and that

all numbers are in octal. After this instruction has been executed, the
paper tape reader will request an interrupt each time its "done flag"

is set; whether or not the request is acknowledged depends on the state
of the PI system, a condition entirely within control of Monitor (this
is discussed below).

3. CONTROL OF THE PI SYSTEM

The PI system itself is considered to be an I/0 device and is
controlled by a Conditions Out (CONO) instruction with a device code of
004. As in the case of other I/O devices, the PI system may be thought
to contain a control register whose bits are set according to the bits
in the effective address of the CONO instruction. The significance of
these control bits is summarized below. Note that in this summary the
term "selected channels" refers to those channels corresponding to 1's
in bits 29 through 35 of the control register (the effective address of
the CONO instruction), where bit 29 corresponds to channel 1, bit 30 to
channel 2, etc.

BIT OCTAL FUNCTION

23 10000 Clear the entire PI system.

21 4000 Activate an interrupt on the selected channels.
25 2000 Turn on the selected channels.

26 1000 Turn off the selected channels.

27 400 Turn on the PI system.

28 200 Turn off the PI system.

Bit 23, if a 1, cancels all previous requests, turns off all channels,
and turns off the PI system. Bit 24 is used to request an interrupt on a

different priority channel than the one which is active. Bits 25
and 26 allow the user to turn on or off (but not both in any single
instruction) any desired channel or channels. A request level present

on the I/O bus line connected to a channel which has been turned off
will not be acknowledged, but the level remains present awaiting the
reactivation of the channel. Thus, the user can delay an interrupt or
prevent it from occuring at an inopportune time by turning off the
appropriate channel.

The entire PI system can be turned off with bit 28. From the view-
p01nt of external devices, the system appears as if it were permanently
servicing a request on a channel with a higher priority than channel 1.
Any interrupt requests which occur will be acknowledged if their
respective channels are on, but they will not be serviced until the
system is turned back on with bit 27.

Some examples may serve to illustrate these concepts.

CONO PI, 10000 ;CLEAR THE PI SYSTEM. THIS
s INSTRUCTION MAY BE USED TO ADVANTAGE
; IN THE INITIALIZATION SECTION OF A
; PROGRAM USING THE PI SYSTEM.

CONO PI, 1007 ; TURNS OFF PI CHANNELS 5 THROUGH 7.
CONO PI, 12577 ; CLEAR THE PI SYSTEM, TURN ON THE PI
; SYSTEM, AND TURN ON ALL SEVEN
; CHANNELS.

Note that conflicting requests (e.g., both bits 27 and 28 set to 1) will
yield unpredictable results; the "clear PI system" operation (bit 23),
however, does not conflict with any other operation and occurs first
when the CONO instruction is executed. Also, the following two
instructions are equivalent in effect, if channel 1 is the only channel
being used.

CONO PI, 200 ;BIT 28 - TURN OFF THE PI SYSTEM

CONO PI, 1100 ;BITS 26 AND 29 - TURN OFF CHANNEL 1

4., MACHINE ACTION UPON INTERRUPT

When an interrupt level appears and the selected channel is free
and no higher priority channel is in use, an interrupt is granted at the
end of the instruction in progress. The mechanism is as follows.

Control is transferred to core memory location 40 + 2n, where n
is the channel number. The program counter is not affected in
any way by the interrupt unless the instruction in location
40 + 2n changes the program counter during execution (if, for
example, this location contains a jump-type instruction, it is
the programmer's responsibility to preserve the contents of the
program counter if he has any intention of returning to the
interrupted program sequence). The system is designed so that
the instruction in location 40 + 2n should be one of the
following:

JSR

BLKI

BLKO
Each of these will be considered in detail later. While other
instructions are not illegal, their use is never necessary and
should, in general, be avoided.

One further point should be understood: when an interrupt is
serviced (when the program sequence beginning in location 40 +

2n is being executed), the PI system is disabled to the extent
that further interrupts may not occur on the channel currently

in use or on any lower priority channel. This condition

prevails until the program dismisses the channel in use. This
action of dismissing the channel must be taken by the program
before control is returned to the interrupted sequence if any
further use of the affected channels is expected. There are only
two ways in which a channel can be dismissed: the first is

through the execution of a JRST instruction with bit 9 equal
to 1; thc other is through the execution of a BLKI or BLKO
instruction, both of which will automatically dismiss the
current channel if the transfer of a data block is still
incomplete. These concepts will be illustrated and clarified
in the programming examples which follow.

5. INPUT/OUTPUT PROGRAMMING

NOTE

It is assumed that the reader is familiar with the operation
of the JSR and JRST instructions as well as the eight I/0
instructions given in the PDP-10 System Reference Manual.

Consider first the use of a JSR instruction in location 40 + 2n.
As a specific example, consider the instruction

JSR 1000

in location 44, to which control is transferred when an interrupt
request is serviced on channel 2. The state of the flags and the
program counter (which is pointing to the instruction which was about
to be executed when the interrupt occurred) is stored in location 1000;
control is then transferred to location 1001, with channels 2 through

7 disabled. Beginning at location 1001 should be a routine to service
the device connected to channel 2. 1If several devices are ~onnected to
channel 2, the routine must contain appropriate CONSI or CONSO
instructions to determine which "done flag" has been set. The last
instruction in the routine should be a JRST 12, @1000. The specifi-
cation of AC 12 causes bits 9 and 11 to be 1's; bit 11 specifies that
the flags stored in location 1000 are to be restored to their former
states and bit 9 causes the PI channel currently in use (channel 2)

to be dismissed, thus freeing channels 2 through 7. Control is then
transferred to the location specified in the address portion of location

1000 (the interrupted sequence). The execution of the routine beginning
in location 1001 might have been interrupted by a request from a device
assigned to channel 1. If, in location 42, there was a JSR to a

similar service routine which ended with its own JRST 12, @nnnn, then
control would automatically transfer back to the channel 2 routine and
from there to the original interrupted sequence.

The above techniques may be extended to cover all seven channels
and are sufficient for full utilization of the PI system. A partial
schematic representation of the program structure appears on the next

page.

When blocks of data must be transmitted into or out of core memory,
especially when it is desired that the transfer take place at the
maximum rate the I/0 device allows, the BLKI and BLKO instructions may
be used to advantage with the PI system. The technique is somewhat
different from that of the JSR example above. As a specific example,
consider the case of reading three words from paper tape into memory
locations 6000 through 6002 while performing some computation elsewhere.
The instruction

CONO FTR, 63
assigns the paper tape reader to channel 3 and causes one word (six

42/ JSR, SERV1 SERV1: g

entry —> -

44/ JSR, SERV2 point .
. Routine to test and/or
| service I/0 devices

. known to be assigned to

46/ JSR, SERV3
. ichannel 1

~ JRST 12, @SERV1

. SERV2: ')
entry .
point

—>

Routine to test and/or
service I/0 devices
known to be assigned to
channel 2

~ JRST 12, @SERV2

Service routines for other channels

Partial Schematic Representation of JSR Example

frames) of tape. The instruction

CONO PI, 12420
clears the PI system, turns it on, and turns on channel 3. When the
reader "done flag" becomes a 1, an interrupt is requested on channel 3
and is serviced at the completion of the instruction in progress.

Control is transferred to location 46, which should contain the
instruction

BLKI PTR, BPWD
where the block transfer pointer word is defined elsewhere using the
IOWD pseudo-instruction

BPWD: IOWD 3, 6000
The execution of the BLKI instruction proceeds in the usual (non-PI)
manner, except that when the single word transfer is complete and the
pointer word has been tested for an end-of-block condition, one of two
actions is taken by the hardware.

a. If the last data word of the block has not been read in, the
interrupt channel currently in use is automatically dismissed
and control is returned to the interrupted sequence (pointed
to by the program counter).

b. If the last data word has been read in, the channel is not

dismissed, and control goes to the instruction following the
BLKI instruction (in this case, location 47). The program
counter is still pointing to the interrupted sequence, but
it can be lost at this point through careless programming.
The safest instructions to have in location 40 + 2n + 1
are JSR instructions to dismissal routines. 1In this
example, the instruction

JSR DISM
in location 47 might be used to complete the input operation
by Jjumping to the brief routine

DISM: @ ; BLANK REGISTER FOR PC
;AND FLAGS

JRST 12, @DISM

which would dismiss the channel and return to the interrupted
sequence. Alternately, the routine beginning at DISM might
turn off the PI system or take any other desired action
before returning. There are slight differences between

input operations and output operations. The reader should
refer to the System Reference Manual for these distinctions.

Here is another example, this one of the output variety.
The user desires to punch out a block of 100, locations, beginning at
LIST, in binary format on paper tape while an independent program is

running. Assume that the main program has executed the following
three instructions to initiate the process.

MOVE 17, IOWD 77, LIST + 1 ; IOWD XWD - 77, LIST

CONO PTP, 41
DATAO PTP, LIST

The first of these three instructions sets up a pointer and counter

word in AC 17. The next instruction sets the punch to binary mode
and assigns it to PI channel 1. The last of these three instructions
activates the punch and punches the first word. When the punch has

finished punching the contents of LIST, its "done flag" is set and

an interrupt occurs on channel 1. Consider the following two program
sequences to service the interrupt. Assume that it is desired to turn
off channel 1 to prevent further interrupts until after the last data
word has been punched. The two sequences accomplish the same task.
Note the manner in which each extracts the second data word correctly
from LIST+1.

SEQUENCE 1 SEQUENCE 2

42/ JSR OUTPUT 42/ BLKO PTP, 17
43/ JSR FINISH

OUTPUT: @ FINISH: @
DATAO PTP,1(17) CONO PI, 1100
AOBJN 17, .+2 JRST 12, @FINISH

CONO PI, 1100
JRST 12, @OUTPUT

One final point: the use of the arithmetic processor as an I/0
device. The processor can be assigned to any PI channel by a CONO
instruction having a device code of g (mnemonic = APR). With the
arithmetic processor so assigned, an interrupt is requested on

the assigned channel whenever any one of the six flags listed below is
set.

Memory Protection flagl
Nonexistent Memory flagl
Clock Count flag (if enabled)1
Floating Overflow flag (if enabled)
Overflow flag (if enabled)
Pushdown List Overflow flag (if enabled)l
A program designed to service an interrupt requested by the arithmetic

processor would have to contain a series of Condition Skip instructions
to determine which of the above flags caused the interrupt.

The diagram on the following page illustrates the priority
interrupt levels, their functional relationships, and their
relative processing intervals.

1 The Time-Sharing Monitors always enable these flags for all users. The

others, too, can be enabled privately by reguest of a user program.

<~ PROCESSING INTERVAL

CHANNEL 1
CHANNEL 2
| CHANNEL 3
FASTER DEVICES,
SHORTER PROCESSING
INTERVAL,
HIGHER PRIORITY
SLOWER DEVICES, CHANNEL 4
LONGER PROCESSING
INTERVAL,
LOWER PRIORITY
CHANNEL 5
CHANNEL 6
\ CHANNEL 7 1
(Clock~- :
level ¢
scheduling) INTERLOCKED
uuo
LEVEL £
EXEC MODE
(programmed S
operators) .
\
USER MODE i

Diagram of Mon}ﬁor Priority Interrupt Levels

PDP-10 TIME-SHARING MONITORS

JOB SCHEDULING

The following two sections describe the scheduling and queueing of
jobs in both the PDP-10/40 and PDP-10/50 Monitor systems.

In the 10/40 system, all jobs reside in core and the scheduler
decides which of these jobs should run. In the 10/50 system, jobs can
exist on an external storage device (usually disk) as well as in core;
the scheduler not only must decide which job to run but also when a
job is to be swapped out to the disk or brought back into core.

Jobs are retained in queues of varying priorities which reflect
the condition of the job at any given moment. For example,

Run queues - For runnable jobs waiting to execute.
I/0 Wait queues - For jobs waiting while doing I/O.

I/0 Wait Satisfied queues - For jobs waiting to continue running
after finishing I/O.

Sharable Device Wait gqueues - For jobs waiting to use a sharable
device.

Teletype Wait Satisfied queues - For jobs having completed a
Teletype operation and awaiting action.

Each of these queues is addressed through tables such that the
position of a queue's address in a table represents the priority of that
queue with respect to the others. Within each queue, the position of a
job determines its priority with respect to the other jobs in the same
queue. The queues in the 10/50 swapping system are, of course, more
complex than in the 10/40 system.

Scheduling occurs at each clock tick and may also be "forced", that
is, it may be called at Exec (Monitor) level between clock ticks if the
current job becomes unrunnable.

The sequence of scheduling routines is as follows.

10/40 Nonswapping System

APRSER - Receives interrupt.

NXTJOB/CLKCSS - Performs simplified requeueing, calls shuffler (i1f
required), and schedules which job to run.

APRSER - Dismisses the interrupt.

10/50 Swapping System

APRSER - Receives interrupt.

NXTJOB/SCHEDU - Determines which jobs require requeueing and which
procedures are to be used.

QOXFER - Performs transfers of jobs among gqueues.

SWAP - Makes swapping decisions, calls shuffler when required, and
initiates and completes swapping I/0.

SCHED - Selects highest priority job to run.

APRSER - Dismisses interrupt.

The routine APRSER is the same in both systems; the others are not
the same. The routines to be included in a particular Monitor are
determined during the Build process.

I. JOB SCHEDULING IN THE 10/40 NONSWAPPING SYSTEM

The routine CLKCSS selects and assigns a job to be run for the
duration of the next clock tick. The job is selected by scanning the
wait and run queues.

CLKCSS 1is called
a. At each clock interrupt, and
b. When the current job becomes unrunnable.

A general flow diagram of CLKCSS can be found at the end of this section.

CLKCSS

The following is a narrative description of
the CLKCSS routine.

NXTJOB Core shuffling is performed, if required by the routine

XCKCSS CHKSHF. If this call to CLKCSS was from a clock interrupt, the
quantum run time of the current job is decremented (unless the
current job 1is the null job).

NXT@ If the quantum run time has become zero, it is restored to the
time allotted for a running job. An internal flag (RNAVAL) is
set, which will cause the run queue to be searched before this
job is run again. This flag is also set if the null job is
running. The run queue contains all runnable jobs that are
not waiting for I1/0.

NXT2,

NXT5

NXT8

NXT7

The I/0 Wait queue is searched by assigned priority
(fastest device to slowest device). A nonzero position
indicates that some job is waiting at that particular queue
level. The Run queue, which has the lowest priority, is
searched only if RNAVAL is set and no job is waiting at a
higher priority level. If all queue positions are zero,
control is transferred to NXT7 (this is the only entry to
NXT7) .

At this point, a nonzero queue has been found, indicating that
a job is waiting at that particular queue level; this nonzero
value is also the index register value. All job numbers
except # (the null job) are now searched for three conditions

1) Runnable (bit @, job status word);

2) Job number is assigned and job is initialized (bit 3,
job status word); and

3) Job is waiting at this I/O queue level (wait code in
job status word, bits 10 through 15, matches index
value of I/0 Wait queue).

Since it is possible for more than one job to be waiting for
the same device, a search is made giving the lowest priority
to the last job to use the device in a round-robin fashion.
(Note that a specific device may not be implied since the
qgueue table includes jobs in an I/O Wait Satisfied condition
and jobs in the Run queue.) It is also possible for a job

to have become unrunnable after having been placed in the I/O
Wait queue, and if no waiting job is found at the indicated
level, the search is continued at the next lower level by
returning to NXT3.

A waiting job has been found for the indicated gqueue and the
gueue is cleared. (Two positions in the queue, I/O Wait
Satisfied and TTY Wait Satisfied, are enabled for multiple
jobs. 1In these cases only, the queue contains a count instead
of a flag. This count is decremented.) The number of the job
to be run is saved in a table, JOBP, and the job's status word
is set for the proper run time and wait code. NXT8 exits with
the job number in the accumulator, ITEM.

By saving the number of the job to be run in the table, JOBP,
this routine gives itself the ability to assign the lowest
priority for any device to the last user of that device.

This portion of the routine is reached only when tie I/0 Wait
gueue is empty. If the flag, RNAVAL, is set, the Run queue has
also been searched and no runnable job was found. RNAVAL 1is

then cleared, ITEM (containing the number of the job to be run)
is set to g, and this routine exits to the null job.

If the

searched.

flag, RNAVAL, is not set, the Run queue has not been

The flag is now set and a branch is made to NXT5

with the job number in ITEM set to the currently running job.
This effects the Run queue search by giving the highest
priority to the job which had been running.

Table 1
Some Queuve Tables in CSSDAT
Index Value|Position Use

0 RNAVAL If set to nonzero, search all jobs for one
in runnable state. Start search with
current user if his quantum time is greater
than #.

1 WSAVAL Contains a count of jobs in I/0 Wait Satisfied
condition. Count is decremented whenever a
job is run from this queue level.

2 TSAVAL Contains a count of jobs in TTY Wait Satisfied
condition. Count is decremented as in WSAVAL.

3 XxAVAL Queue positions of I/O devices in increasing
order of priority. If g, no jobs are

4 " waiting for device; if nonzero, some job is

. waiting. Set to # when a job is run from

(maximum) " that position.

0 JOBP Each position saves job number of last job

1 that was run from the corresponding position
in the above queue. Enables CLKCSS to share

. job priority from each queue level.

(maximum)

II. JOB SCHEDULING IN THE 10/50 SWAPPING SYSTEM

The following section describes the activities involved in
scheduling, rescheduling, an requeueing jobs in the PDP-10/50 system.

Each job number possible in the system resides, at any moment,
in one particular queue (job numbers not assigned reside in the Null

queue) . There are three Run queues of different levels of priority

from which jobs are run, and each job when run is assigned a quantum
time. When this quantum time expires, the job will cease to run and
will be moved to a lower priority Run queue. If for any reason all the
jobs in the first two Run queues cannot be run, one is selected from

the third Run queue; when its quantum time has expired (been decremented
to @), it is moved to the second Run gueue - thus, users in gueues two
and three are run in a round-robin manner.

The activities of a job currently running may cause it to enter into
one of several special states

Waiting to do I/0
Waiting to access a sharable device
I/0 complete (satisfied)

All special states need not be dependent on I/O conditions, as in the
case of the program operator SLEEP.

Each special state has a queue of jobs which are in that particular
state.

Example A currently running job begins input from a DECtape, the job
1s placed into a wait queue, the input is begun, and a second job 1is

set to run while the first job waits and its input proceeds. The second
job then decides to also access the DECtape control for an I/0 operation.
Since the DECtape control is busy, the second job is stopped, put into

a queue for jobs waiting to access the DECtape control, and a third

job is set to run.

The input operation of the first job then finishes, making the DECtape
control available. The second job is found to be waiting for the
control. The second job's I/O operation is initiated and the second job
is then transferred from the Device Wait queue to the I/0O Wait queue.
The first job is transferred from the I/O Wait queue to the highest
position of the three Run queues. This permits the first job to now
pre-empt the third job and run. When its quantum time becomes g, it
will be moved back to the second Run gueue and the third job runs again
until the second job completes its 1/0.

10/50 SCHEDULING ROUTINES

These routines are executed every clock tick to see if a job with a
higher priority than the one currently running is waiting.

If the currently running job changes its state sc that it bLecomes
unrunnable, these routincs are executed immediately frcm Monitor level
withcut waiting for a clock interrupt.

CLKCSW

NXTJOB If the call was a result of a clock tick, the "in core
protect" time of each job in core is decremented, as is the
quantum time of the running job.
If the call was a result of the current job becoming unrunnable,
the current job is requeued by a branch to CKJB3; otherwisec,

control proceeds to CKJB1 (however, if the current job's
quantum time has decremented to @, the subroutine QXFER is
executed to requeue the job before going to CKJBl; the options
specified to QXFER are to reset the job's gquantum time and to
place the job in a new queue as a function of its present
queue) .

CKJB1 Location QJOB has a bit set for each job in need of requeueing.
The bit position determines the job number. If no requeueing
is requested, control goes to CKJB5; otherwise, the job number
of the first job in need of requeueing is obtained.

CKJB3 The wait code is retrieved from the job status word of the
job. Before the queue transfer routine, QXFER, is called, the
method of transfer must first be determined. This 1is
accomplished by specifying the entry to the queueing transfer
table used by QXFER and controls the destination queue of the
transfer and the quantum time reset conditions. At this point,
three different conditions are recognized and handled as
follows.

1) The job is in command wait condition and is on the
disk. Set transfer taple conditions to select the
Command Wait queue as the destination queue.

2) The job is not runnable. Set the transfer table
conditions to select the Stop queue.

3) The job is runnable. Set the transfer table
conditions to select the destination queue and
the quantum time reset conditions according to the
job's wait code. Since the job is being requeued,
its wait code must have changed recently.

OXFER is then executed and requeueing is accomplished. If this
regueueing is the result of the current job becoming unrunn-
able (a forced clock call), a nonreturning call is made to
SCHED to select the next job to run. If this is an actual
clock interrupt call and more jobs need to be requeued, a jump
is made back to CKJBl. When all requeueing requests have been
serviced, control proceeds to CKJBS5.

CKJB5, CKJB6 The list of all sharable devices is scanned to determine if
any are available; this list also contains the count of the
jobs in TTY Wait Satisfied and in I/O Wait Satisfied. The
flags in this list are set in APRSER. If no sharable devices
are available, control proceeds to CKJB7; otherwise, control
goes to CKJBG6A.

CKJIB6A

CKJBS8

CKJIB7

SWAP

SCHED

If a device has become available, its gueue is searched for

a job which is waiting for the device and is in core. If such
a job is found, it is requeued. The address of the queueing
transfer table entry for QXFER is determined by a corres-
pondence table (a table specifying transfer table entries for
OXFER for each position of the sharable device available table) .
The sharable device table flag is cleared (the count is
decremented for TTY Wait Satisfied and I/O Wait Satisfied), and,
except for the last two cases where requeueing is not necessary,
the job is requeued by calling QXFER.

If all positions in the sharable device available table have
not been scanned, the routine loops back to CKJB6 to assure
a complete scan.

At this point, all requeueing has been performed and the SWAP
routine is called.

SWAP handles all input/output of jobs between core memory and
the disk. When called, it completes any I/O started earlier,
searches for a job to bring in, and (if necessary) finds a job
of lower priority to output in order to bring in the new job.
When finished, SWAP calls SCHED.

SCHED scans the queues of runnable jobs forward (highest
priority first). When a job is found, it must be determined
that the job is currently in core. The queue location of the
job is retained for later requeueing, the wait code in the

job status word is cleared, and a return is made to APRSER with
the job number in ITEM, causing the job to run. If no job is
found by the queue scan, the null job is run.

NOTE

A flow chart of these scheduling routines can be found at the cnd
of this section.

~J

QUEUE

NUMBER

JBTQ:

JOB

NUMBER

JOB QUEUES AND QUEUE TRANSFERS

LAST

IN THIS QUEUE | FIRST JOB

M

IN THIS QUEUE

-3 "

1 # OF JOB AHEAD OF
JOB IN ITS QUEUE

IN ITS QUEUE

OF JOB BEHIND

2 won n " " " T " " " "
3 w o " " " " " o " " " "
4 — " u " " T " " " "
5¢"" " " " " *to" " " " "

~—— —_ —
Figure 1. Schematic of Job Queue Table

There is an entry (queue word) for each queue and an entry (job word)
Each queue word specifies the first and last job the gqueue

for each job.
contains.
and which job follows it in the queue.

queue,

Each job word specifies which job precedes the particular job
If a job is the first one in its

the left half of its job word contains the number of the queue
(negated); if a job is the last one in its queue, the right half of its
job word contains the number of the queue (negated).

To determine which jobs are in gqueue n:

1) Retrieve the numbers of the first and last jobs in the queue from
the queue's queue word.

2)

3)

Retrieve the job numbers from the job word of the first job in

the queue.
qgueue number (negated).
is not the last job in the queue,

Check that the left
number of the above
is not the last job
Repeat this process

retrieve its job

half of this job word contains
job. If the job number in the
in the gqueue, retrieve its job
until the last job is found.

The left half of the job word should contain the
If the job number in the right half

word.

the job
right half
word.

Thus, the numbers of the jobs and their positions in the queue are
defined. This procedure may be reversed so that a scan can be performed
backwards (from last job to first job) as well as forwards through any
queue, and a scan may not only go completely through a queue but may stop
on the first or last job in the queue while scanning in either

direction. All of these methods are employed in the queue searches
performed.

Also, since both the beginning and the ending of a gueue are
marked, a job can be inserted at either end by merely modifying the
linkages. An example is given below by illustrating the method used
in inserting JOBl at the beginning of QUEUE 2.

QUEUES | QUEUES

(INITIAL STATE) (FINAL STATE)
=] N -14
: 2 — | M rz | '-1|
| -1 I l' | -1 1 |
. l | i |

JBTQ: | 0 | | 0

i ! L—H15
o - | e o= i | W
: 2 ' | Lf I |
‘-:__—__——:;2 r_Lo_s | '__3_:_'_'_;1 } rI:‘.‘S J
i
4 s+ —2‘-_—:i | 4 5_4_-_:'l i—z:_':_!
% 5 34t | Lyt | | sed | Lpa—

l 1 L
L — —— r— | —

backward forward backward forward

The above process can be logically described as follows.
2
TEMPR <« 0 R
2 <« 1
Q R
JOBl €— -2, TEMPR

JOB(TEMP)E;‘ 1

QUEUE TRANSFERS

When a job is transferred from one queue to another, the destination
queue to which it is transferred may be determined by one of three
methods.

1) By the job's size

2) By the queue from this the job is being transferred (the
source gqueue)

3) By a change in the job state (fixed destination)

A job in the Run Wait queue being transferred to one of the three
Run queues is assigned on the basis of its size, the larger jobs
going to the lower priority queue.

A job being transferred from one Run queue to another when its
quantum time is exhausted is assigned on the basis of the source queue.

A job waiting to access a sharable device is assigned to the Wait
queue for that specific device.

When a job is inserted into a queue, it may be placed either at the
beginning or the end of the queue. A job attempting to access a
sharable device is placed at the end of the device's Wait queue. When
the device becomes available to a job which has been waiting, the job
is placed at the beginning of the first Run queue where it pre-empts
other jobs and runs immediately, resulting in maximum utilization of
the device.

When the queue transfer routine, QXFER, is called, an accumulator
contains an address in a transfer table. From this address, the
routine accesses two words which specify the following conditions.

How the destination queue is to be determined;

At which end of the queue the job is to be inserted; and

If the quantum time is to be reset.

The transfer table is accessed by using the wait code of the job
status word as an index value through a table of pointers. The
transfer table entries for each of the three types of queue transfers

(fixed destination, destination queue determined by source queue, and
destination queue determined by job size) are given below.

l. Fixed Destination

¥ = BEG. OF QUEUE i

1 = END OF QUEUE FIX |
QUANTUM TIME RESET? NUMBER OF !

| -1= NO; NOT -] = YES DESTINATION QUEUE

2. Destination Queue Determined by Source Queue

BEG. OF QUEUE LINK

g
1 = END OF QUEUE

10

2. Destination Queue Determined by Source Queue (Cont.)

QUANTUM TIME RESET? AUX. TABLE ADDRESS (TABLE
-1 = NO; NOT -1 = ADDRESS DEFINES QUEUE CORRESPONDENCES)

) | T ——————
QUANTUM TIME TABLE CORRESPONDENCE TABLE ‘

|
0l time ‘J source gqueue destin. gueue I

Q2 time

N '

_\J

3. Destination Queue Determined by Job Size

0 = BEG. OF QUEUE JS1z
1l = END OF QUEUE
QUANTUM TIME RESET? @UX. TABLE ADDRESS (TABLE DEF.
(SAME AS #2 ABOVE) ICORRESP. BETW. SIZE AND QUEUES)
SWAPPING

The swapping routine, SWAP, is entered at each clock tick and has
the inherent task of bringing a job from disk into core. This function
is dependent upon the core shuffling routine, which consolidates
"holes" (unused areas) in core so as to make sufficient room for the
incoming job, and upon the swapper, which (if required) creates
additional room in core by transferring jobs from core to the disk.

Since a considerable amount of I/0 may be involved in both
shuffling and swapping, either operation may continue over more than one
clock tick. The first duty of the swapper is, therefore, to test
for conditions which could exist from a previous action performed by
the swapper itself directly or indirectly. These conditions are

1. Busy doing I/0 from last swap;

2. Waiting for the shuffler (which may be waiting for a job to
become shuffable);

3. I/0 transfer completed since last clock tick, but error checking
and bookkeeping duties remain; and

4. Still trying to fit a job in or force a job out.

When the shuffler is entered, if ecither the shuffler is waiting cr
a previous swapping I/0 operation is still in process, the rcutine
cannot continue at this time and exits.

11

If swapping I/0 has been completed since the last clock tick, I/O
errors are checked. If an output error occurred, the output operation
is retried; if the output was completed without error, the job's core
is reclaimed and the routine continues at SWPl. 1If an input error
occurred, a message is printed on the console Teletype and an exit is
made to APRSER to force rescheduling; if input was completed without
error, the disk area is reclaimed, relocation and protection registers
are stored along with the "in core protect" time, and the job's swap
flag is cleared (the job's swap flag is cleared only while the job is
in core; it remains set while the job is on disk or in transit).

SwP1l Since the I/0 bookkeeplng is complete, the flag (FINISH) which
indicates this is cleared. The flags FORCE and FIT are then
tested to determine if, on a previous clock tick, the routine
was attempting to fit a job into core (if so, go to FIT1) or
force a job out of core to the disk (if so, go to FORCEl).

If neither condition exists, the job queues are scanned
forward (highest priority first) for a job to bring into
core. If none is found, a check for jobs trying to expand
their core allocation is made; if none are found, the
swapper has nothing more to do and exits.

If the gqueue scan does locate a job on the disk to input (or
if the FIT flag was set - see above), control proceeds to FITIL.

FIT1 The job size is checked against the largest unused area in core
and inp®t is begun if the job will fit. TIf the job will fit
only by shuffling jobs, the FIT flag is set and shuffler is
called. TIf it is necessary to output a job, the first jobs
checked for are those trying to expand; then the queues are
scanned backwards for a job of lower priority than the job
being brought in and whose "in core protect" time has been
exceeded. It may be necessary to scan for more than one
such job to obtain enough core for the incoming job. 1If
sufficient core cannot be obtained, the routine exits.

The largest of the jobs found during this search is chosen
for swapping out and the FORCE flag is set. Processing
continues at FORCEl.

FORCE1l (This routine may also be reached from the FORCE flag test at
the beginning of swapper.)
If the job selected for swapping out has active I/0 devices,
or is the current job (whose protected area may not yet be
restored to the job data area), the output is delayed and the
routine exits.

NOTES ON QUEUE SCANNING FOR INPUT/OUTPUT SWAPPING

When the job queues are scanned for a job to input (scan is forward) or
a job to output (scan is backward), a slight deviation is made for the

12

queues of sharable devices. When scanning for input, only the first job
found in each queue is selected for input; when scanning for output, all
jobs except the first are selected for output. This process helps to

ensure that each device will have a job waiting when the device becomes
available.

13

FROM
PRSE \ SCAN ALL JOBS FOR ONE AT
B E: /); THIS QUEUE LEVEL. START
—3 SCAN AT JOB NUMBER ONE
GREATER THAN LAST JOB

SERVICED AT THIS QUEUE
LEVEL

A

CALL CHKSHF;

SHUFFLE CORE IF
NEEDED

RESET I/O
WAIT QUEUE

|
MOVE JOB NUMBER TO
ITEM
SET JOB STATUS WORD

DECREMENT QUANTUM
TIME OF CURRENT

JOB
EXIT TO RUN
> JOB WHOSE
NUMBER IS 1IN
ITEM
NO QUANT.
ME = § ?
4\\\\/// NXT7 HAS RUN QUEUE
\ BEEN
> vEs SEARCHED?
" |RESET JOB'S YES
QUANTUM SET RNAVAL TO
TIME SEARCH RUN QUEUE.
START SEARCH WITH
CURRENT USER RESET RNAVAL

SET RNAVAL
TO SEARCH
RUN QUEUE

SET ITEM TO §

EXIT
TO
RUN
NULL
JOB

SEARCH I/0O WAIT QUEUE
FOR JOB WAITING FLAG.
INCLUDE RUN QUEUE IF —>
RNAVAL IS SET

YES
JOB
WAITING?

Figure 2. Job Scheduling, 10/40 Nonswapping System

14

FROM
APRSER

I
DECREMENT CURRENT
JOB'S QUANTUM

TIME

YES

DECREMENT "IN CORE
PROTECT" TIME OF
ALL JOBS IN CORE

SET TRANSFER TABLE
FLAGS FOR LINK

QUEUE TRANSFER AND
QUANTUM TIME RESET

CHECK
| RESCHED.
N
EEDS PERFORM
QXFER QUEUE
TRANSFER
REQUEUE
CURRENT
0B CHECK
RESCHED.
NEEDS

Figure 3. Job Scheduling, 10/50 Swapping System

15

GET JOB'S WAIT
CODE FROM JOB
STATUS WORD

RUNNABLE

——
(NO RETURN)

SET TRANSFER TABLE
ADDRESS TO SELECT
COMMAND WAIT QUEUE

)

NO

SET TRANSFER TABLE
ADDRESS TO SELECT
STOP QUEUE

SET TRANSFER TABLE
ADDRESS ACCORDING
TO JOB'S WAIT CODE
TO SPECIFY THE
QUEUEING

PROCEDURE

A

Figure 3 (Cont.)

DONE BECAUSE
URR. JOB WAS

Job Scheduling, 10/50 Swapping System

16

REQUEUE
THE JOB

SCAN TABLE SET FLAG ﬁOR QSCAN
OF SHARABLE TO SCAN RUN QUEUES
DEVICES FORWARD

SCAN QUEUES FOR
A JOB

SET ITEM
TO NULL
JOB

SCAN DEVICH
WAIT QUEUE
FOR WAITING

JOB

YES JOB OUT OF
CORE OR IN CORE

DOING I/O

JOB

IN CORE
?

SELECT TRANSFER RETAIN JOB'S
TABLE ADDRESS FOR QUEUE LOCATION;
QXFER FROM DEVICE CLEAR WAIT CODEL;
CORRESPOND. TABLE SET ACC. ITEM TO
” RUN JOB

REQUEUE
THE OXFER

JOB ’\ /

Figure 3 (Cont.) Job Scheduling, 10/50 Swapping System

17

RETRIEVE
TYPE OF
TRANSFER
REQUEST

l{/

INSERT JOB IN
DESTINATION
QUEUE AND
CONNECT LINKS

DESTINATION
DETERMINED

SCAN TABLE OF
QUEUES:SIZE
DETERMINE DEST.
QUEUE BY JOB SIZE

DETERMINED

RETRIEVE DEST.
QUEUE FROM CORRESP.
TABLE: INDEX BY
SOURCE QUEUE

DESTINATION

. SOURCE QUEUE

MATCH

BY

YES

INSERT NEW QUANTUM
TIME IN JOB STATUS
WORD

SPECIFIED, BY

RETRIEVE QUANTUM
TIME FROM TABLE

| DESTINATION QUEUE

Z

DELETE JOB FROM
CURRENT QUEUE AND
CONNECT BOTH FORW.
AND BACKW. LINKS

EXCHANGE
INDICES FOR|
LINKAGES

Figure 3 (Cont.)

RETURN
\
N

Job Scheduling, 10/50 Swapping System

18

WAITING FOR A
JOB TO FINIS

SWAPPER
SERV. RTE. STILL
BUSY WITH LST

FINISHED?

OR OUTP.
?

ANY

ERRORS
?

OuTPUT

RETURN SPACE ON
DISK

ADJUST RELOC.
CONSTANTS
SELECT "IN CORE
PROTECT" TIME
CLEAR SWAP FLAG

ANY
ERRORS

?

RETURN
CORE

YES

TRY OUTPUT
AGAIN

RETURN CORE]
RESET FLAGS]
PRINT ERROR|

MESSAGE

(PCSTOP)
FORCE
RESCHEDULING

CLEAR
FINISH

Figure 3 (Cont.)

FLAG

Job Scheduling, 10/50 Swapping System

19

Table 2

Cross Reference Listing of Job Scheduling Symbolsl

APRSER D1, D2 QFIX F18
XXXAVAL D4 QLINK F18

QSCAN Fl7,
CHKSHF Fl4 Qs1z F18, F20
CKJB1 D6, Flé QX2 F18
CKJB3 D6, Flé6 QOXFER D2, D7, Fl5, Fle,
CKJB4 Fl6 F18
CKJB5 D6, Fl7
CKJB6 D6, F17 RNAVAL D3, D4, F1l4
CKJB6A D7, F1l7
CKJB7 D7, F17 SCHED D2, D7, F17
CKJBS8 D7, F1l7 SCHEDU D2
CKJB9 Fl6 SCNOUT F20
CLKCSS Dl, D2 SWAP D2, D7, D11, F17,
CLKCSW D5 SWP1 D12, F19
CSSDAT D4 SWP2 F20
FIT D12 TSAVAL D4
FIT1 D12, F20
FORCE D12 WSAVAL D4
FORCE1 D12, F20

XCKCSS D2, Fl4
ITEM D3, D4, D7
JOBP D3, D4
NXTO D2, Fl4
NXT2 D3, Fl4
NXT3 D3, Fl4
NXT5 D3, Fl4
NXT7 D3, Fl4
NXT8 D3, Fl4
NXTJOB pl, p2, D5, Fl4, F15
NXTJB1 F15

1A D preceding a page number indicates that a description of the
item is found on that page; an F indicates that the item appears
in a flow chart on that page.

21

Fl1l7,

F19

PDP-10 TIME-SHARING MONITORS

COMMAND DECODER
(COMCON)

AN OVERVIEW

The Command Decoder is called from the clock routine (channel 7
interrupt) whenever the counter COMCNT, which is set by the Teletype
service routine (SCNSER) and indicates the number of commands waiting
to be serviced, is greater than #. Since the Command Decoder (COMCON)
is called from the clock routine, it is imperative that a command
function must run to completion quickly. If the function cannot do this,
the Command Decoder must set the job to a runnable status and either
return immediately or delay the command for later execution.

Basically, the Decoder is divided into three parts.
1. Initial Setup and Verification
2. Command Routine

3. Cleanup and Return

The initial setup and verification portion accesses the command
string typed in, verifies its legality, and performs certain
procedural checks (if login is required by the command, has login
been executed, or if a job number is required, is there one, etc.).

It also establishes the proper linkages for the job data area, error
routines, and command delay, etc.

The command routine performs the function associated with the

command. In the following discussion of the Decoder, the START, R, and
RUN commands are elaborated upon.

The cleanup and return portion is entered from the command routine.
It restores certain information, sets the Teletype to either User or
Monitor mode, and sets it to run. For new jobs, it types out the
job number line. Also, it starts the typing of any messages to be output.

ADDING A COMMAND

In addition to supplying the command routine itself, the user may
only have to complete the NAMES table to add a command of his own to
the Command Decoder.

The NAMES table defines the name of the command, the name of the
command routine, and bit settings corresponding to thosi to be checked
either before or after the command routine is executed.+ It is defined
by a Macro "C" setup in the following order.

name of
command

name of

bit setting additions
command routine

per Table 1

’

14

lgee Table 1.

Examples

1. C START, START, NOPER+TTYRNU+INCORE+NOACT+NORUN

2. C RUN,

RUNCOM, NOCORE+NOPER+TTYRNQ+NOCRLF+INCORE+NOACT+NORUN

One decision the user must make is whether or not to include the
addition under a conditional assembly.

Table 1
COMTAB BITS

a. Bits checked

NOCORE
NOJOBN
NOLOGIN
NOACT

INCORE

NORUN

b. Bits checked

CMWRQ
NODATE
NOINCK
NOCRLF
HNOPER

TTYRNU

TTYRNC

NOMESS

before dispatching to command routine

;NO CORE NEEDED FOR COMMAND

; NO JOB NUMBER NEEDED FOR COMMAND

; JOB DOES NOT NEED TO HAVE BEEN LOGGED IN

; COMMAND MUST BE DELAYED IF JOB IIAS ACTIVE DEVICES

; COMMAND MUST BE DELAYED IF JOB HAS CORE ASSIGNED BUT
;JOB IS NOT IN CORE

;AN IMPLIED AC MUST BE EXECUTED BEFORE COMMAND IS
; EXECUTED IF JOB IS RUNNING

after command routine has been executed

; REQUEUE JOB AFTER COMMAND WAIT

;DON'T PRINT DATE DURING JOB INTERROGATION
;NO CHECK FOR JOB INITIALIZATION

; NO OUTPUT OF CARRIAGE RETURN, LINE FEED
;NO PRINTING OF PIRICD

;SET TTY TO USER MODE AND START JOB AFTER COMMAND
; RESPONSE FINISHES TYPING

;KEEP TTY IN MONITOR MODE AND START JOB AI'TLR
; COMMAND RESPONSE FINISHED TYPING

;DO NOT START TTY OUTPUT

The following is a functional description of the
Command Decoder (COMCON).

INITIAL SETUP AND VERIFICATION

COMMAND

COMFND

NEWJOB

CHKRUN

This routine performs for the initial setup and verification
of the command string that was typed. A PUSHJ TTYCOM command
sets up the job number, the byte pointer to the command
string, the byte pointer to the last output character, and the
address of the service data block typing command. The TTY
device data block address is put on the pushdown list. A
PUSHJ CTEXT scans and returns the command name. The number

of characters (whether all or just part of the command) typed
in are then compared to the COMTAB table of legitimate
commands. If one, and only one, command matches, its index

" is obtained and control proceeds to COMFND. If more than one

command matches, the index remains at the first reference
and control proceeds to COMFND.

This routine sets up the entry in the dispatch table DISP on
the pushdown list. This table is organized and accessed in
the same manner as COMTAB and contains bit settings to be
checked either before command execution (e.g., NOJOBN, INCORE)
or after return from command execution (e.g., CMWRQ, NOINCK).
If a login procedure is required by the command, the job
status word is checked to see if the job is logged in; if
the required login has not been performed, control is
transferred to COMER to type "LOGIN PLEASE." If a job
number has been assigned, control proceeds to CHKRUN. If
the command does not require a job number, control goes to
COMGO. Otherwise, the job status table JBTSTS is searched
for the first free job number; this number is obtained and
control goes to NEWJOB. If the maximum number of jobs as
set at Build time has been exceeded, a transfer to COMER
prints the message "JOB CAPACITY EXCEEDED."

This routine sets PROG and JDAT! to @ since a new job has no
core. A PUSHJ JOBINI initializes the "assign by console for
TTY" bit, sets the logical name to @ (DEVLOG in DEVDAT), and,
if time accounting is part of the system, clears the
incremental and total job running times and returns to
CHKRUN when PROG is #. If the job has core, processing
continues at JOBINI.

This routine transfers to CHKACT if the job is runnable (if
bit 1 of the job status word for this job is set). If an
implied 4C must be performed before this command can be
executed, then a transfer to COMER to print "PLEASE TYPE 4C
FIRST" takes place.

1 L .
PROG and JDAT are address indicators that are used throughout the Monitor
PROG is the protection-relocation register. JDAT is the address of the
job data area. 3

CHKACT If this is not a new job, the address of the job data area
is moved to JDAT. Protection and relocation information is
then moved to PROG. If this is a swapping system:

1. If the job is not on disk or on its way out to disk,
control is transferred to CHKCOZ2.

2. If the job is on disk or on its way out to disk
and the job must be in core for this command, the
command execution is delayed (by setting DLYCM as
the command routine); control then goes to COMDIS.

If this is a nonswapping system, control goes to CHKCOZ.

CHKCOZ2 If this command cannot be performed with active I/O devices,
this routine does a PUSHJ to RUNCHK. RUNCHK delays the
command and returns only if the job has stopped and there
are no active devices. If it can be performed with active

CHKCO1l devices, control goes to CHKCOl. At CHKCO1l, if this command
does not need core, the command can be dispatched and control
is transferred to COMGO; if the command does need core and
core is not assigned, control is transferred to COMER to
type "NO CORE ASSIGNED" (if core has been assigned, control
goes to COMGO) .

COMGO If the job was in command wait (CMWB = 1; this means that
a command requiring core has been typed for this job,
which is currently on disk - This bit is cleared when the
job is brought into core), the command wait bit in the job
status word is cleared. If the job was not in command wait,
the "requeue job after command wait" (CMWRQ) bit in the
dispatch flag entry on the pushdown list is cleared, and the
CMWB bit in the job status word is also cleared. Control
proceeds to COMDIS.

COMDIS This routine dispatches to the command setup routine. First,
accumulator IOS is cleared for setting dispatch addresses.
Then, a PUSHJ is executed to dispatch to the selected command
setup routine. In case of an error, control is transferred
to CERR. If there is no error, control proceeds to the
command execution routine as determined by the address part
of the dispatch table. 1In any case, return is always made
to COMRET.

COMMAND ROUTINES

To illustrate command decoding, the handling of the START, R, and
RUN commands is discussed below.

START and CSTART Commands

The START command begins execution of a user's program.

START adr

The optional argument, adr, is an octal value. If it is specified,
execution is begun at this address. 1If 1t is not specified, the
program is begun at the starting address found in location JOBSA
(right half) of the job data area.

The command routine can be called by
START
START adr
CSTART
CSTART adr

START and START adr leave the user console in user mode. CSTART and
CSTART adr leave the console in Monitor mode. The setting of the
mode is performed in COMRET.

OCTIN A transfer is made to this routine to convert any optional
octal address argument. OCTIN performs a PUSHJ SKPS1 to
skip leading spaces, tabs, and nulls. It does not return if
the previous character or the next nonspacing character is a

carriage return. If there was no starting address specified,
the starting address is obtained from JOBSA of the job data
area and then a JRST to USTART is performed. If there was
an error, a transfer to COMERA with no return is performed.
The normal return is to USTART.

USTART This routine is part of the RUNCSS section of APRSER in the
Monitor. It sets the Jjob state to be scheduled to run with
the specified starting address, including the PC flags. If
the ©ld program counter (PC) indicates that it was not in
user mode, the user's accumulators are moved to the dump
accumulators, the PC and APR flags are preserved in JOBOPC
in the job data area. If it was in user mode, the new PC
is set to user mode. The new PC is stored in JOBPC of the
job data area.l The error and wait status bits are set and
a transfer (JRST) to TTYSET occurs.

This routine is called only when the job is in core and after
the job has been safely stopped in one of three states:

l. PC is in user mode;

2. Job is in a wait for a sharable device or 1/0 wait;

3. Job is just about to return to the user mode from
a Uuo call.

1The old PC and APR flags are preserved in JOBOPC of the job data area.

5

TTYSET TTYSET, which is part of the SCNSER section of the Monitor,
sets the user's Teletype to initial conditions by clearing

1. DDTM (DDT mode bit)

2. NIO (stop all I/0)

3. IOSUPR (suppress all I/O until next input or
initialization)

4. USRB (set TTY to user mode when I/O finishes)

5. TTYIOW (TTY input wait bit)

6. IOW (input wait bit)

This routine also sets the data mode to ASCII line mode in case
the user types a line before the program does an initialization
and transfer to MIS1l; at that point, the DEVIOS entry is
modified and a POPJ is performed, then control is transferred
to COMRET.

R Command
The R command is in the form

R cuspname core

It performs a
RUN SYS: cuspname

by setting the device name to SYS and transferring to the second
instruction of the RUNCOM routine (the command following the
PUSHJ CTEXT1 as described under "RUN Command" below).

RUN Command
The RUN command is in the form
RUN log-dev filename.ext proj,prog core

where

log-dev is the logical or physical name of the device
filename is the name of the program
.ext is the extension name (optional)
proj, prog is the project-programmer number if the
file is located in other than the user's area of
disk (optional)
core is the amount of core to be assigned (optional)

The RUN command loads a core image with the name filename(.ext) from
a retrievable storage device (log-dev) and starts it at a location
specified within the file. The minimum amount of core required to
load the file is allocated. After the file is loaded, core is
reallocated if the optional argument, core, is specified or if the
file was saved with a core argument. If both were specified, the
core argument of the RUN command takes precedence.

RUNCOM

COREf@

RUNCO1

SGSET

MSTART

DLYCM

The first function performed by this routine is to PUSHJ
CTEXT1 to obtain the device name from the command string.
The address RUNJOB is saved in accumulator IOS for a

return and is also put on the pushdown list. If the job
does not have core, the input byte pointer to the command
string is saved on the pushdown list, the device

name is saved on the pushdown list, and the TTY "assigned by
program" bit (ASSPRG) in DEVMOD of the device data block is
cleared; Jjust enough core for the job data area is requested
and a PUSHJ CORE@ is performed. If the job does have core,
control is transferred to RUNCO1. o

COREf@, in the COREl section of APRSER in the Monitor is called
bK the CORE command, the core shuffler, and the RUN command.
The job is moved, if necessary to satisfy the request. The
accumulators PROG and JDAT are set to the new core ’
assignment on either an error (@ is assigned when either

the job has active I/0 or there is not enough core) or an

OK return. The error return, in this case, is a NOP (an

JFCL with no flags, which is the fastest NOP). The device
name, input byte pointer, and the address of the Monitor job
are restored.

If this is not a swapping system, a test is made to see if
PROG had been set. If PROG was #, the message "CORE IS
FULL" is typed. If PROG was set, a transfer is made to
SGSET.

If this is a swapping system and core was not assigned, a
JRST to DLYCM delays the command; if core was assigned, a
transfer is made to SGSET.

SGSET is in the SAVGET section of APRSER in the Monitor. It
scans the command string arguments of SAVE, GET, RUN, and

R commands, and stores them in the job data area, which must
be in core. It also stores any extension names (such as
.SAV and .DMP), the project-programmer number (optional), and
the optional core argument. Upon return from the core
conversion, if there are no errors or there was no core
argument, it saves the device name, schedules the Monitor
job (RUNJOB, GETJOB, or SAVJOB), and does a JRST to

MSTART to start the job with the PC in Monitor mode; if
there was an error, a transfer is made to COMERA.

MSTART is the last portion of the USTART routine. It stores
the new PC, clears the error and wait status bits, and
performs a JRST to TTYSET (discussed under the START command).

DLYCM delays the execution of a command until the job is in
core memory. There are three entry points to this routine:
DLYCM, DLYCM1, and DLYCM2. DLYCM is a PUSHJ to DLYCOM,
following which it proceeds to DLYCM1. DLYCM2 is assembled

DLYCOM

DLYCM1

TTYCM

SETRUN

if this is a swapping system and provides a POP of the
pushdown list and a jump to DLYCMl. DLYCM1 proceeds to
the remaining portion of this routine.

This routine is in the RUNCSS portion of APRSER. It sets
the command wait bit in the job status word. It requeues
a job which has had a command typed which needs core and
which is either on the disk or is in core and has active
devices; it does this with a PUSHJ to REQUE. (REQUE is the
last portion of the routine SETRUN, in RUNCSS, and is
conditionally assembled for a swapping system. It sets
the requeueing flag and places it in the job number

bit assignment of register QJOB to be used by the
scheduler and then returns to DLYCOM, which in turn

goes to DLYCM1).

DLYCM1 adjusts the pushdown pointer by POPing three times,
putting the address of a POPJ pdp instruction on the
pushdown list, putting the line number into accumulator
TACl, and performing a JRST to TTYCM.

This is the second entry point to TTYCOM, in the SCNSER
section of the Monitor. It sets DEVDAT to the address of
the Teletype on which the command was typed and returns to
COMRET.

This routine, in the RUNCSS section of APRSER, sets the

job status run bit and is called by the Scanner S rvice
routine when the TTY Monitor command response finishes.
This action is enabled by calling TTYUSR or TTYURC in
SCNSER. 1If this is a swapping system, processing continues
with the REQUE portion, discussed under DLYCOM. If this is
not a swapping system, control transfers to NULTST to see
if the null job is running.

CLEANUP AND RETURN (COMRET)

This is the return from the command setup routine. It
completes the function of the Command Decoder by adjusting
certain bit indicators, setting the Teletype to either
user or Monitor mode, and requeueing the job.

1. The command flags and the TTY data block address are
restored from the pushdown list (TTY DDB goes to DEVDAT).

2. The sign bit of Table TTYTAB (the Teletype translator
table in the SCNSER section of the Monitor) is turned
off to indicate that the command has been processed.

3. Al is subtracted from COMCNT to reduce the number of
commands waiting to be processed.

4. If there is no job number and one is required, bits
NOINCK (no check for job initialization) and ERRFLG
(command error) are set.

5. If the job initialization bit (JNA) of the job status
word is already set, or if the suppress job initialization
check bit is on (NOINCK), control goes to step 1ll;
otherwise, the JNA bit of the job status word is set.

6. A PUSHJ TTYATI (in SCNSER section of the Monitor) is
executed to attach the Teletype to the job.

7. A PUSHJ INLMES (in COMCSS section of APRSER in Monitor)
prints the job number.

8. The job number is converted by the routine RADX10 (in
ERRCON section of APRSER in Monitor) to print number
in decimal.

9. A PUSHJ PRSPC prints four spaces.

10. The system configuration name, four spaces, and today's
date are printed.

11. PCRLF: If an error message occurred, a PUSHJ PRQM
appends and prints a question mark.

12. If a carriage return, line feed, are to be printed,
a PUSHJ CRLF 1is performed.

13. If a period is to be printed, a PUSHJ PRPER is performed.

14. If there is an error or a job number has not been
assigned, the next few instructions, which set the job
to run in either the Monitor or user mode, are bypassed
and control goes to step 17 (PCRLF1).

15.- If job is to run in user mode (TTYRNO = 1), a PUSHJ to
TTYUSR is performed.

16. If job is to run and remain in Monitor mode (TTYRNC = 1),
a PUSHJ to TTYORC is performed.

17.

18.

PCRLFl: If there is a message to type (NOMESS = #),
a PUSHJ to TTYSTR is performed.

If this is a swapping system and a job has to be requeued

after being in command wait, a JRST to REQUE is performed.
Otherwise, a POPJ is performed to exit.

9a

SETS UP DEVDAT, DAT, TAC,
AND ITEM FOR ANY TTY
THAT HAS TYPED A

COMMAND

AVE
WE

FINISHED
TABLE

SAVE THE TTY
DEVICE DATA BLOCK
ADDRESS ON THE
PUSHDOWN LIST

GET ITS
INDEX

SCANS COMMAND NAME

CTEXT

SEARCH COMMAND TABLE

"COMTAB" FOR
COMMAND NAME MATCH

————— Dashes represent
conditionally
assembled code.

RETAIN JJ//F\\Q

| CURRENT (‘
COMNE

INDEX P/\\\\#//

SET 2ND
OCCUR FLAG

Figure 1. Command Decoder Flow Chart - Initial Setup and
Verification

10

BTAT
COMMAND
NAME AND
SPEC. BIT

SETTINGS

RUNNABLE
?

/7
AOGIN _YES'
<REQUIRED

JOB
LOGGED I

YES

TYPE "LOGIN

PLEASE"
TYPE
"PLEASE TYPE
JOB 4 C FIRST"
ASSIGNED
SET PROG, NEW JOB HAS
/ JDAT TO #; NO CORE-

A g PUSHJ INITIALIZE
SCAN FOR JOBINT JOB; JOBINI
FREE JOB # WILL, WHEN

PROG = #,
RETURN TO
CHKCO1l.
JOB #
ASSIGNED

PRINT

"JOB CAPACITY

EXCEEDED"

GET

NEXT JOB #

Figure 1 (Cont.) Command Decoder Flow Chart - Initial Setup

and Verification

11

IF NOT A NEW JOB,

MOVE ADDRESS OF

JOB DATA AREA TO |
JDAT |

MOVE (HIGHEST
RELOC AREA, LOWEST
USER AREA) TO PROG

\\\ TN
4; YES Cg S?SK \59," CHKCO2\r
\QYSTEM'» OR ON d
N\, /
\\—/
NO 'YES
USTN\ | pELAY]

JOB BE
PERFORMED
WITH ACTIVE
DEVICES

UNTIL JOB

N

PRINT "NO CORE
ASSIGNED"

Figure 1 (Cont.)

_.MOB BE IMYE§

COMMAND DELAYED

LY~
)

HAS NO ACTIVE DEVICES

PLACE "NO CHECK

INDICATOR IN TAC1l

FOR JOB INITIALIZ.

¥

PUT IT ON PUSH-
DOWN LIST AND
PUT "CERR" IN
ADDRESS FIELD

Command Decoder Flow Chart
and Verification

12

- Initial Setup

PUT COMMAND WAIT
REQUEUE BIT IN
ACCUMULATOR IOS

\

CLEAR CMWRQ BIT
IN DISP. FLAG
ENTRY ON PUSHDOWN
LIST

CMWB BIT IN JOB STATUS
WORD INDICATES THAT
COMMAND REQUIRING CORE
WAS TYPED FOR THIS JOB,
WHICH IS CURRENTLY ON
DISK. CMWB IS CLEARED
WHEN JOB IS IN CORE.

PUT JOB
STATUS
WORD BACK

Figure 1 (Cont.)

and Verification

13

CLEAR ACC IOS FOR
SETTING DISPATCH
ADDRESSES
CLEAR CMWB
BIT IN JOB
\ STATUS WORD
PUSHJ TO
SELECTED

COMMAND SETUP
ROUTINE. IF
ERROR, GO TO
CERR.

RETURN IS
ALWAYS MADE
TO COMRET.

Command Decoder Flow Chart - Initial Setup

START, START adr,

CSTART,

PUSHJ TO OCTIN
TO CONVERT POSS.
OPTIONAL ADDRESS
ARGUMENT: SKIP
LEADING SPACES,
TABS, AND NULLS

CSTART adr

USTRT1

OBTAINS
START. ADDR.

SETS JOB STATE TO

BE SCHEDULED TO

RUN, INCLUDING PC
FLAGS

MOVE USER'S
aC'S TO
DUMP AC'S
(JOBDAC)

FROM JOBSA

SUBTRACT 1
FFROM LAST
PC AND

PRESERVE
ITS _FLAGS

NEVER
RETURNS

SETS USER"S TTY TO

INITIAL CONDITIONS

BY CLEARING DDTM,

NIO, IOSUPR, USRB,

TTYIOW, AND IOW
BITS

|

SETS DATA
MODE TO
ASCII LINE
MODE; JRST
TO MIS1 TO
MODIFY DEV
I/0 STATUS
WORD

Figure 2.

TO RETURN
TO COMRET

14

STORE OLD PC FOR USER
TO LOOK AT IN. JOBOPC

N2

PRESERVE USER APR FLAGS;

SET NEW PC TO USER MODE;

CLEAR INDIRECT BITS OR
INDEX FIELD

STORE NEW PC IN JOBPC

OF JOB DATA AREA; CLEAR
ERROR AND WAIT STATUS
BITS

Command Decoder Flow Chart - Command Routines
for START, CSTART Commands

RUN dev filename p,p

core

RESTORE ADR
OF MONITOR

RUNCOM R cuspname core, JOB
/
GET DEV PUSHJ // RN
NAME FROM CTEXT ___X§§< SWAPPINGY,
COMMAND ~SYSTEM?,-
STRING SET DEV ~_ 7~
NAME TO
"SYs:" NO
| ZANY N
SET "RUNJOB" INTO
I0S AND

PUSHDOWN STACK

JOB
HAVE COR
. 2
NO

SET INPUT BYTE POINTER

"ASSIGNED BY
BIT

CLEAR TTY
PROGRAM"

FOR JOB DATA AREA: PUT
JOBDA INTO TAC

COMMAND STRING ON PD LIST

SAVE DEV NAME ON PD LIST

REQUEST JUST ENOUGH CORE

TO

OK

IF ANY

AN
CORE "\
<ASSIGNED
?

~ yd
N

PROG AND JDAT ARE SET TO

NEW CORE ASSIGNMENT ON EITHER
RETURN.
CORE CANNOT BE ASSIGNED.

DEVICE IS ACTIVE,

RESTORE DEV
NAME, INPUT

NOP

Figure 3.

N

BYTE POINT-
ER

R, RUN Commands

15

| TYPE
"CORE IS
FULL"

YES

DELAY THE
COMMAND

Command Decoder Flow Chart - Command Routines for

’ \
S DLYCM IF prycm2 \

SWAPPIN /l
SYSTEM
SCANS COMMAND | POP oF !
STRING ARGUMENTS FOR Digggﬁ . R igggDOWN |
SAVE, GET, RUN, AND |
R COMMANDS AND —————
STORES THEM IN JOB
DATA AREA, WHICH
MUST BE IN CORE; -
ALSO STORES EXT. oD ADJUSTS
NAMES, P-P NUMBER, oD PUSHDOWN
AND CORE ARGUMENTS ' POINTER
‘ﬁﬁﬁfL?bP,
' " o
CONVERTS Egggoo;;
CORE ARGUMENT, i
IF ANY
SAVE LINE
NUMBER

SAVE ,
DEVICE NAME

v

SCHEDULE MONITOR
JOB (RUNJOB, GET-
JOB, SAVJOB)

START JOB WITH
PC IN MONITOR MODE

(SEE PAGE 14)

Figure 3 (Cont.) Command Decoder Flow Chart - Command Routines
for R, RUN Commands

16

SET RUN BIT AND
SET CMWB QUANTUM RUN TIME.
BIT IN JOB
STATUS
WORD
SWAP /j(N /J(
SYS. - CMWB YES N
ONLY <\\SET? <(é§ApPING
< 7 SYSTEM?
Nfo i
SEE IF NULL
4 YES JOB IS RUNNING
RETURNS TO
POPJ DLYCM1 ;
- ———t—
| SET REQULUEING |
| I'LAG (CJCB) (
| I
-
ADD TO
REQUEST
WAIT CODE HAVE A COUNT
NO
MAKE AVAILABLE
FLAG AS JUST
AVAILABLE BECAUSE
NO JOB WAS USING
THIS DEVICL.
SCHEDULER WILL
SCAN QUEUE
d
SETRL }
)
Figure 3 (Cont.) Command Decoder Flow Chart - Command

Routines for R, RUN Commands

17

RESTORE COMMAND
FLAGS AND TTY DDB
ADDRESS FROM
PUSHDOWN LIST

NOP

ER
‘ TTYATI
OK

)

TURN OFF
SIGN BIT OF
TTYTAB

SUBTRACT 1
FROM
COMCNT

TESTED BY TTYCOM

TO SEE WHICH TTY

HAS A COMMAND WAITING
TO BE PROCESSED

RADX10

PRINT ERROR
MESSAGE;
(NOINCK +
ERRFLG)

2

UPPRES
OB INITIALIZ:
CHECK (NOINCK
SET)?

NO

JOB
INITIALIZAT.

IT ALREADY SET
?

NO

SET IT

Figure 4

YES

ES

PRSPC >

MOVE CONFIQ
TO TAC

CONMES
PRSPC
PAYTM1

ATTACH TTY
TO JOB

TYPE
" JOB n

TYPE JOB #

PRINT
SPACES

PRINT SYST.
CONFIGURAT.

. Command Decoder Flow Chart - Cleanup and Return

18

APPEND "2"
TO ERROR

MESSAGE IS THERE
A MESSAGE? TTYSTR

RETURN, LINE
FEED

COMMAND-WAIT
(MWRQ) BIT SET
PRINT
PERIOD ?

 JOB DOES NOT
| RUN IF ERROR
’ OR NO JOB # ASSIGNED

TY TO

SER MOD CALL SCANNER

ROUTINE

CALL SCANNER
ROUTINE

IN MONITOR MODE TTYURC

?
TTYRNC=
12

Figure 4 (Cont.) Command Decoder Flow Chart - Cleanup
and Return

19

CROSS REFERENCE LISTING OF SYMBOLS IN COMMAND DECODER?

Table 2

CHKACT D4, F12 PRPER D9

CHKCO1 D4, F12 PRQM D9

CHKCO2 D4, F12 PRSPC D9, F18

CHKNO F1ll

CHKRUN D3, Fil RADX10 D9, F18

CMWRQ D2 REQUE D9a, F1l7

COMFND D3, Fll1 RUNCOM D7, F15

COMDIS D4, F13 RUNCO1 D7, F15

COMER F12

COMGO D4, F13 SETRUN D8, F17

COMLP F10 SETR1 F17

COMMAND D3, F1l0 SGSET D7, F16

COMNEO F10

COMRET D9, F18 TTYATI D9, F18

COMRT1 F18 TTYCM D8, F10

CONMES F18 TTYCOM D8, F10

COREQ D7, F15 TTYORC D9

CRLF D9 TTYRNC D2

CTEXT F10, F15 TTYRNU D2
TTYSET D6, Fl4

DLYCM D7, Fleé TTYSTR D9a, Fl9

DLYCM1 D8, F1l6 TTYUSR D3

DLYCM2 Fl6

DLYCOM D8, F1l7 USTART D5, Fl4
USTRT1 Fl4

INCORE D2

INLMES D9, F18

MSTART D7, Fl4

NEWJOB D3, F11

NOACT D2

NOCORE D2

NOCRLF D2

NODATE D2

NOINCK D2

NOJOB D2

NOLOGIN D2

NOMESS D2

NOPER D2

NORUN D2

NUMLP F1l1

OCTIN D5, F16

PAYTM1 F18

PCRLF D9, F19

PCRLF1 D9a, F19

1

A D preceding a page number indicates that a description of the item
is found on that page; an F indicates that the item appears in the
flow chart on that page.

20

PDP-10 TIME-SHARING MONITORS

APR AND CLOCK INTERRUPT ROUTINES

The Arithmetic Processor (APR) is assigned to the highest priority
channel not in use; a BLKI or BLKO is placed in the channel's interrupt
location (40 + 2j). Occasionally, one or two high-speed devices, such
as a card reader, are also assigned to this same channel; however, it
is required that the number of such devices be kept to a minimum. The
reader may wonder why the APR is assigned to such a high priority if
scheduling (or, more precisely, changing users) must occur when no
interrupts are in progress to ensure that the hardware ACs are the
user's rather than the Monitor's. The reason for this high priority
assignment is that, in addition to the 60-cycle clock, the APR also
traps on error conditions which can occur in the Monitor interrupt
routines as well as at Monitor UUO level and user level. Thus, error
interrupts must be handled at the highest possible priority level lest
the user be blamed for an error in the Monitor. Also, the APR
interrupt routine requests a secondary interrupt on the lowest priority
channel (called the CLK channel) to perform job scheduling and job
switching on a periodic basis. The device CLK does not actually exist
as hardware, but is a creation of the software. Figure 1 illustrates
the relationship between the APR channel and the CLK channel.

1

INCREMENT| |REQUEST;
3 TIME OF | JINTERR |
(APR) DAY ON CLK |
CHANNEL,|

4 T '

LEVEL

——— —— — e e)

SWITCH| | DISMISS| _
USERS [l| INTERR.

(CLK) USERS

|
|
|
7 — | SCHED.
| |
uuo | E | |
| |
UsERL®)—)‘ L.} M

TIME »

——INCREASING PRIORITY INTERR.

Figure 1. Relationship Between APR and CLK Channels

APR INTERRUPT ROUTINE

APRINT APRINT is an interrupt level routine which is entered from
an interrupt on channel 3 (standard assignment). Location
46 (40 + 2j) contains a JSR CH3.

CH3: @ ; APRCHL=CH3
JRST APRINT

The interrupts on this channel are caused by any APR
allowable interrupts (which are, at the least, the clock,
illegal memory - ILM, nonexistent memory - NXM, and

pushdown list overflow - PDOVF. If other devices have been
assigned to channel 3, System Builder provides a transfer to
test for them.

If this is a clock time interrupt, the time of day and uptime
counters are incremented, and the following flags are set.

1. The APR clock tick flag (TIMEF).
2. The clock-forced interrupt flag (CLKFLG).
3. Request an interrupt on CLK channel (REQCLK) .

If the user is enabled for any flags (including clock), a
transfer is made to APRER; otherwise, the clock flag is
cleared and the interrupt is dismissed indirectly to APRCHL.

APRER This routine checks for interrupts other than the clock
interrupt. If the Program Counter (PC) is not in
user mode, or it is in user mode but the user is not
enabled for this interrupt, a transfer is made to APRER2
to print an error message and stop the job. Otherwise,
the address of the current job data area is obtained,
the PC and the APR conditions are stored in the job data
area, and the user's trap-answering routine address 1is
obtained to dismiss to APRERS3.

APRER3 This routine clears the PC Change and AROVF flags, clears
all error flags which can cause interrupts (except for the
clock flag), and dismisses indirectly to APRCHL.

APRER?Z This routine transfers to APRER3 if the error condition
is a PDOVF condition. Otherwise, the error PC is placed
in APRPC, the error flags are stcred, and the clock
interrupt flag (CLKFLG), rescheduling-needed flag (SCHEDF) ,
and the request-an-interrupt-on-clock-channel flag (REQCLK)
are set. If this is a nonexistent memory condition,
a determination is made as to whether it is the PC that is
at fault (this causes a dismissal to the CLKINT routine) or
a data reference error (this causes a dismissal to the
interrupted address); if this is not a nonexistent memery
condition, the interrupt is dismissed properly by transferring
to APRER3.

INTERRUPT CAUSED BY CLOCK,

ILLEGAL MEMORY REFERENCE, NONEXISTENT

MEMORY REFERENCE, PUSHDOWN LIST OVERFLOW, ETC.

SET CONDITION REG.

(CONDITION REGISTER
IS INITIALLY SET
TO 23100)

INCREMENT
TIME
COUNTER

INCREMENT
UPTIME
COUNTER

SET TIMEF, CLKFLG,
AND REQCLK FLAGS

fFHECK OTHER
DEVICES ON
| THIS CHAN.

CLEAR CLOCK
FLAG

NO
~

ASER™
“NARLED -

Figure 2.

“\FOR AN
RLAGS

~. YES

CHECK ERROR FLAGS

DISMISS TO

PROCESS TRAP

Flow Chart of APR Interrupt Routine

) (OTHER INTERRUPTS
BESIDES CLOCK)

IGE

EXCH
TAC AND IN- MONITOR DOES
TERRUPTED APRER3} I;IOT ;SAIA{E IF
T I
C (APRCHL) /11 1
CONDITION
[aprer2) prRINT |MOVE FC
(INT) TO
/ ERROR e
" MESSAGE
AND STOP JOB 7
STORE
ERROR
FLAGS

v

SET CLKFLG,| SET FLAGS FOR CLOCK

SXCHANGE |JDAT) : HIGHEST REL. ggiggF égggggggglﬁgo
JDAT, LH 10C IN USER
JOBDAT AREA
JDAT) . : ADR OF USER J
N JOB DATA REQUEST AN
AREA
STORE PC KJOBDAT): SYMB. DEF. gngiiUggAN (CONO PI, REQCLK)
IN JOB OF JOB
DATA AREA DATA AREA
N k
\ RESTORE
STORE APR Y AC'S AND
IN JOB DISMISS
DATA AREA
W (JOBAPR) CONTAINS
OBTAIN RH SET TAC 1F
USER TRAp-| ADDRESS OF USER 'To crkInT |MEMORY
TO LOC. TRAP-ANSWERING SIZE, GO
ROUTINE. USER TO
PROGRAM SETS IT UP. CLKINT
REEXCHANGE (APRPC) _=> ‘3"———‘"‘J
LH
JDAT, RE-ESTABLISH
JOBDAT (TAC) FLAGS
LH
DISMISS TO
§5A§L8X$F EXCHANGE CLEAR Q
; . TAC, || ERROR FLGS ,
OVRF FLAGS APRCHL (EXC. CLK) APRCHL

Figure 2 (Cont). Flow Chart of APR Interrupt Reoutine

CLK INTERRUPT ROUTINE

The clock interrupt service routine performs the following
actions on a regular basis.

1. Processes clock queue requests.

2. Calls console Monitor Command Decoder.

3. Calls the Core Shuffler.

4. Calls the Scheduler.

If the current job is in Monitor mode, the above steps are
delayed until the current job enters a stoppable state such as

1. Job goes into a wait for a busy sharable device.

2. Job goes into a wait for I/O to complete.

3. Control is about to return to user mode.

The clock service routine is entered at the UUO level.

A functional description of the clock interrupt service routine
follows.

CLKINT

SAVPC

RSCHED

CIP2

This is the interrupt level clock channel response. Ii the
CLKFLG has not been set, other devices on this channel are
checked. If CLKFLG has been set and the current job is

in user mode or this is a rescheduling

situation (SCHEDF), a transfer 1s made to SAVPC; if the
current job is not in user mode and this is not a
rescheduling situation, the interrupt is dismissed by
transferring indirectly to CLKCHL.

This routine saves the PC in USRPC (in the protected part
of system data storage for current job) and saves the

17 accumulators in the dump accumulator area. It also
sets up the pushdown list (JOBPDL or JOBPD1l, which is the
location before the pushdown list) which is used by the
Monitor for UUO's and which is found within the job data
area. If this is an error interrupt, control proceeds to
APRILM (via a PUSHJ) - this indicates an illegal memory
reference; otherwise, control goes to RSCHED.

This routine determinc.s i1f a clock tick (TIMEF) has occurred
since the last call. 1f not, control proceeds to CIP6

to just reschedule. If a clock tick has occurred, control
proceeds to a conditionally assembled piece of code (assembled
if time accounting is part of the system) which increments

the total run time. Control next goes to a midnight check.
Midnight check is that part of time accounting which resets

or updates the time, day, or month, as appropriate. Control
then proceeds to CIP2.

This routine is responsible for processing timing requests,
such as those for sleep, rewind mag tape, etc. If the

list of such requests is completed, control goes to CIP5;
otherwise, decrement timing request. If time has not
expired, continue the scan, returning to check if the

list of requests has been completed; if the time has expired,
the pricrity interrupt flag (PIF) is turned off, the last
entry is moved into the expired jobs pcsition, the list

is decreased by 1, and the PIF is turned back on. CIPWTM
(CIPWTM1 is actually used in the routine but the leading
six characters only are used) is the table tag for this
request list, which has the structure

DISPATCH CONDITIONS NUMBER COUNT
ADDRESS OF JIFFIES

CLOCK is a 36-bit byte pointer referring to CIPWIMl. A
PUSHJ to the dispatch address is made (to a timing
request routine). If there are more requests, return to

CIP5

CIP6

CIP7

CIp8

process them; otherwise, control goes to CIPS5.

This routine decrements the hung I/0 device time and transfers
to DEVCHK (via a PUSHJ) to check for hung I/O devices.

COMCNT is a counter used to indicate the number of commands
typed in but not decoded; it is set by the routine SCNSER

and decremented by the Command Decoder (COMCON). COMCNT is
now checked to see if there are any commands to process. If
so, the Command Decoder (COMCON) is called by a PUSHJ.

A check of COMCNT is performed every clock tick. Control
passes to CIP6.

The scheduler is called with a PUSHJ NXTJOB, which may
result in scheduling, swapping, and queue reviewing; it
returns an item number representing the new job to be run.
Flags TIMEF, APRERR, CLKFLG, and SCHEDF are reset. If the
next job to be run is the same as the previous job, a
transfer is made to CIP8 to restore the accumulators and
dismiss. If the jobs are different and the old job was the
null job, a transfer is made to CIP7 so that the software
state is not saved; otherwise, the protected part of the
job data area is moved to the user's area and control goes
to CIP7 (or NULJOB).

This routine restores the software state of the new job and
is also entered from SYSINI as NULJOB (with item number = §).
JBADR is a table, with an entry for each job containing the
relative maximum address in the left half and the absolute
starting address in the right half; this table is used for
relocation and protection. If the starting address of the
user's job data area is equal to the starting address of the
user area, JOBDAT is set to the location of the job data area
of the current job. Certain conditions (per APRNUL) are
turned off and the user APR interrupts are disabled. If the
new job is not the null job, protection is set for it.
Protection is also set in the job data area so that the user
can look at it. The relocation and protection register is
set. The protected part of the job data area is moved to
the Monitor area. All APR bits (except PDOVF, ILM, NXM,
CLOCK, PC CHNG - for PDP-6 use only -, and AROVF) are

masked out and stored in the user-enabled CPU flags register
APRIN1. The system is then assured that PDOVF, ILM, NXM,
and CLOCK are enabled and all of the above are stored in
APRCON, the system APR CONSO interrupt location. The
arithmetic overflow condition is then restored. Control
goes to CIPS.

This routine restores the hardware state of the current job.
If no job data area is set, a null job data area is set. The
dump AC's are restored and the channel is dismissed.

NULJB NULJB runs when no other job runs. If a Monitor shecksum

is a requircment cof the system, it is checked. Then the
PC is set to 1 and an accumulative count in kept in §#

(for display purposes). A dismiss to 1 occurs if an
_interrupt is in progress.

ENTERED FROM SYSINI

SET UP CLOCK QUEUE PROVIDES

SAVE PC &
CLOCK REST OF MONITOR WITH AC'S IN
QUEUE ByTg | ABILITY TO BE TRAPPED TO |pyMmp AC OF
poINTER | AFTER A NUMBER OF CLOCK |30B DATA A.
TICKS HAVE OCCURRED. 1

SET UP PUSHDOWN
LIST IN JOB DATA

AREA

ERROR
INTERR.
2

NO

CHECK

SAVE ACl7 IN CLKS17

MOVE (CLKCHL) TO
AC17

| RESCHEDULE
/ NOW

— s —— —

r}NCREM JOB]

ITIME & TOT |
RUN TIME |
—"‘*j""‘J
NO 1
MIDNIGHT
RESTORE CHECK
ACl7 UPDATE DAY,
MONTH, ETC.

DISMISS

Figure 3. Flow Chart of Clock Interrupt Routine

PROCESS TIMING REQUESTS
STORED IN QUEUE (SLEEP,
REWIND, ETC.)

QUEUE LIST

CHECK FOR
HUNG I/0 DEVICES
DECREMENT
TIMING
REQUEST ANY COMCON
TELETYPE (COMMAND
COMMANDS DECODER)

PROC.

YES

TURN OFF PRIORITY
INTERRUPT; MOVE
LAST ENTRY INTO
EXPIRED JOB POS; IF MONITOR CHECKSUM
DECREASE LIST BY 1; PUSHJ CHECK

TURN ON PRIORITY IF ERROR, HALT
INTERRUPT IF OK, CONTINUE

K2

PC Is SET TO 1 AND
AN ACCUMULATIVE
COUNT IS KEPT IN f#

SET UP DISPATCH
ADDRESS; SAVE

E 'S;
VALUABLE AC'S; DISMISS TO 1

PUSHJ TO
TIMING REQUEST \ ig ?E INTERRUPT
ROUTINE)

/ PROGRESS

RESTORE VALUABLE
AC'S

l

Figure 3 (Cont.) Flow Chart of Clock Interrupt Routine

10

ULJOB RESTORE SOFTWARE STATE OF

CIP7 NEW JOB
STORE CURR
JOB NUMBER
NXTJOB CALL
SCHEDULER
SET UP
RELOC FOR
CLEAR APR CLK INTER ggagéaggg
FLAG (TIMEF), ERROR
FLAG (APRERR),CLOCK
INTERRUPT FLAG P ABSOL.\\ rﬁo—V-E—LaE a——l
(CLKFLG) , AND “START ADR OF N
FORCED SCHEDULING /"/ JOB DATA AREA
FLAG (SCHEDF) SER AREA = ADR OE>-3 OF CURR JOB |
F > SER'S JOB INTO JOBDAT
TAvﬁ/, . __.__J
JOB SAME AS
HE LAST ONE? TURN OFF
CONDITIONS
RESTORE AC'S PER APRNUL
AND DISMISS *
DISABLE
OLD JOB USER APR
INTERRUPTS
UL? JOB OR CORP> (APRINL)
DO NOT SAVE
NO SOFTWARE STATE
MOVE PROTECTED
PART OF JOB DATA
AREA TO USER AREA
SET PROTECT
FOR CURR.
JOB
SET PROTECT
IN JOB DATA
AREA FOR
USER
Figure 3 (Cont.) Flow Chart of Clock Interrupt Routine

11

SET RELOC
AND PROTECT
REGISTER

v

NULDAT - JA
. (MUST BE

’ B
MOVE PROTECTED PART NULL JOB)

OF JOB DATA AREA TO
MONITOR
AREA

RESTORE

DUMP AC'S

MASK OUT ALL APR
BITS EXC. PDOVF,
ILM, NXM, CLOCK,
PC CHNG (PDP 6 ONLY)
AND AROVF CONSO
FLAGS

v DISMISS

STORE IN USER-
ENABLED CPU FLAG
REGISTER (APRINI1)

y

CHECK THAT SYSTFEM
FNARI "5 T'CR PDCVI ,
ILM, NXM, CLOCK;
STORE IN APRCON, THH
APR CONSO INTERR.
LOCATION

v

MASK OUT ALL BUT

AROVF AND RESTORE

IT TO ITS

ENABLE/DISABLE
STATE

Figure 3 (Cont.) Flow Chart of Clock Interrupt Routine

12

Table 1

CROSS REFERENCE LISTING OF SYMBOLS IN APR AND CLK INTERRUPT ROUTINESl

APRER D2, F4
ARRER2 D2, F4
APRERS3 D2, F4
APRINT D2, F3
CIP2 D6, F10
cIp4 F10
CIP5 D7, F10
CIP6 D7, F1l
cip7 D7, Fl1
cIp8 D7, F12
CLKINI F9
CLKINT D6, F11
DEVCHK F10
NULJB D8, F10
NULJOB F11
NXTJOB F11
RSCHED D6, F9
SAVPC D6, F9

A D preceding a page number indicates that a description of the item
is found on that page; an F indicates that the item appears in a
flow chart on that page.

13

PDP-10 TIME-SHARING MONITORS

PROGRAMMED OPERATOR SERVICE (UUOCON)

I. DESCRIPTION

The function of UUOCON is to service in some manner those op codes
which are trapped to absolute locations 40 and 41 by the processor
hardware. These are op codes 000, 040 through 077, and (in user mode)
7xx (input/output), HALT (JRST 4,), and JEN (JRST 10,). 1In addition,
the PDP-6 traps codes 001 through 037 as well.

The operations of UUOCON might, for the purpose of discussion, be
divided into three sections.

1. Operator-independent preprocessing and dispatch;

2. Operator service (operator-dependent algorithms); and

3. Exit routines

Preprocessing includes saving of user accumulators if the machine
was in user mode when the trap occurred (the Monitor may itself contain
programmed operators), filtering out error codes, entering the user's
UUO (User-Utilized Operations) handler if the machine is a PDP-6 and
codes 001 through 037 are encountered, loading of accumulators with
information to be used by the operator service routines, and dispatching
to the proper service routine.

Operator service routines perform the algorithm designed for the
particular UUO code, allowing the user to receive information about the
system, to alter the operation of the system concerning his job, and to
communicate with the input/output devices. A few specific examples
are included in this chapter to demonstrate the information flow between
the three sections of UUOCON and the user's job. Input/output UUO's are
dealt with in the chapter on Input/Output Service.

The exit routines (normal or error) perform the setup necessary to
return to the calling program or, in the case of errors, produce error
messages and appropriately alter the status of the job. One important
function of the normal exit routine is to check the status of th:
Scheduler before returning to the calling program. A software interlock
between the Scheduler and UUOCON allows a UUO (which is, after all, one
"instruction") to run to campletion before the current job is stopped.
The normal exit routine calls the Scheduler if the interlock flag was
set sometime during the UUO processing.

OPERATOR PREPROCESSING AND DISPATCH

SPECIAL REGISTERS

A rather important function of this section is to place
information about this user's job (i.e., the job that issued the UUO)
into certain accumulators and index registers before dispatching.
Therefore, these registers and their contents are described briefly
before going into the operations of this section.

PDP A pushdown pointer to a 20-location list in the user's job data
area. The first item placed in this list (JOBPDl) is the user's
return, i.e., a copy of the PC word formed by the JSR in location
41.

PROG Contains a copy of the contents of JOBADR: XWD highest relative
address, relocation for this job. Used as an index register
by the system to relocate references to the user's program area.

JDAT Currently the same physical register as PROG, but, strictly
speaking, contains the protection and relccation for references
to the user's job data (JOBDAT) area.

uuo A copy of the programmed operator as trapped into location 40.
The address PROG is set into the X field so that operator service
can refer to (E) indirectly through UUO.

UCHN A copy of the AC address field of the UUO. UCHN stands for User
Channel, which it is in the case of input/output operators.

DEVDATl A copy of USRJIDA (protected JOBJDA) for this software channel.

This register contains @ if this channel is unassigned. If the
channel is in use, the left half of this word has status bits
indicating what UUO's have been performed for the device so far;
the right half contains the base address of the device data block
(DDB) .

1
I0S A copy of the DEVIOS status word for the device on this channel.

DSER1 A copy of the DEVSER word for the device on this channel. The
left half of this word contains the address of the next DDB in
a chain of all such blocks; the right half contains the base
address of the dispatch table for this device's service routine.

These registers are pertinent only to input/ :utput programmed operators,
but will ke loaded, in any case, when an AC zddress (UCHN) happens to
correspond to an assigned I/0 channel.

FUNCTIONAL DESCRIPTION

The following is a narrative of the operator-independent

preprocessing and dispatch section of UUOCON.

uuol

UuUoOSYS

UuuoSsYl

ILEGAL

DISP@,
DISP2

The user mode flag bit of the trapped PC word is used to
detect whether the call is from the Monitor (as in a GET
command) or from the user. If from the Monitor, certain
AC's have been set up and a portion of the UUOCON coding
can be skipped; control goes to UUOSYl. If the call is
from the user and in the range 001 through 037 (PDP-6
only), then a software trap to the user's UUO handler

is created, provided that the user has a nonzero address
in his JOB41l. 1If that location contains either g or

an illegal address, an appropriate error message is typed
on the user's Teletype and the job is stopped. If the call
is from the user and is not in the 001 through 037 range,
control goes to UUOSYS.

The user's AC's are saved in the JOBAC part of his job data
area and the contents of PROG, JDAT, and PDP are established.

This routine PUSH's the PC word (return address) as the first
entry on the list and then tests the UUO for legality, now
trying to exclude a 000 op code.

If the routine is entered at this location, UUOERR is called,
which types a message "ILLEGAL UUO . . ." and stops the job.

If the routine is entered with a skip, it sets the contents
of UUO for indexing by PROG and then checks the op code for
a value greater than 100 (illegal at this point). If the
value is not illegal, accumulator UCHN is set up. If there
is a device on this channel, DEVDAT, IOS, and DSER are set
up. If no device has been assigned to this channel coincident
with this UUO's AC address, the routine NOCHAN is entered.
Otherwise, if this UUO is indeed an I/0O operator of op code
72 or greater, then routine DISPl is entered. Routine DISP@
is entered directly for non-I/0 UUO's or I/0 UUO's between
codes 55 and 71 if the channel is found to be assigned.

This coding obtains an address from a 2-address-per-word
dispatch table, using the op code as an index. If this UUO
was from user mode, the service routine is dispatched to by

a PUSHJ which puts the address of the user exit routine on

the list as it jumps. If it was from the Monitor, then the
desired address is already on the list and is left undisturbed
when dispatching to the service routine.

NOCHAN This routine calls DISPZ if the UUO was from the Monitor,
or if it was from the user and is not an I/0 operator.
If the UUO is a CLOSE or RELEASE operator, the successful
return exit is called. Otherwise, the routine IOIERR is
entered to type the message "I/O TO UNASSIGNED CHANNEL. . ."
and stop the job.

DISP1 This routine "fakes" a successful return to the user if the
UUO was a "long dispatch" one and the device service routine
does not have a long dispatch table (this is an important
concept in making user programs "device independent"; e.g.,
it enables a LOOKUP to a physical paper tape reader to
be "successful"). If the device service routine is capable
of performing long UUO's, the dispatch routine DISP@ is called.

OPERATOR SERVICE

Before discussing a particular operator, let us first see how
communication between the user's program and the operator service routine
is made possible by setting up the AC's before dispatching. A most
important point to note is that any Exec level software that refers to
addresses in the user area must provide address checking equivalent to

that performed by the hardware in user mode. A reference, especially
one that stores information, must address a location equal to or
greater than (PROG)RH and equal to or less than (USRREL)RH. There are

also some locations in the job data area which should be protected.
Three address checking routines exist in Monitor and can be called from
a UUO service routine.

UADCK1 This routine is called with a PUSHJ after loading ACl with the
address to be checked. It returns if this relative address
is in the user's accumulator area or between JOBPFI (the top
of the protected area of JOBDAT) and (USRREL)Rﬁ

UADRCK This routine is called in the same manner as UADRCK1l, but
considers accumulator area references illegal. Both UADRCK1
and this routine stop the job and print the message "ADDRESS
CHECK . . ." message if a failure occurs.

IADRCK This routine, more forgiving than either of the above, is
called (PUSHJ) with the address to be checked previously
placed in TAC and PROG already set up. This routine considers
an address acceptable if it lies between JOBPFI and the
relative address in the left half of PROG. Failure is
indicated by a no-skip return to the calling program, success
by a skip return.

After careful address checking, access to user locations may be
made in any of the following ways.

1. Fetch the contents of the effective address of the UUO.
MOVE TAC, @UUO, where TAC is an accumulator available for use.

NOTE
Two things make "@QUUO" work: (1) the hardware has
computed the relative effective address at the time
of the UUO trap, and (2) the UUO preprocessor routine
has placed PROG in the index address field of AC UUO.

2. Store a result in the effective address location.
MOVEM TAC, @QUUO

3. Get an argument from the AC addressed by the UUO (recall that
UCHN contains this AC address and that AC's are in the JOBAC

area.
HRLI UCHN, JDAT ;relocate AC reference
MOVE TAC, @UCHN ;get contents

4. A routine STOTAC exists which stores the contents of accumulator
TAC indirectly intoc the locaticn addressed by UUO after checking
the address (UADCK]1 routine;, and exits with a POPJ. To end
a service routine by returning a result to the effective
address of the UUO and immediately return to the user, the
following instructions are executed.

MOVE TAC, result
JRST STOTAC

If the call to STOTAC is made from the same level (with
reference to the pushdown list) to which the preprocessor
routine dispatched (via a PUSHJ), STOTAC's POPJ exit will
return to the exit routine that followed the dispatch coding.

In returning to the user, one may wish to skip one or more
arguments that followed the UUO, or to give a skip or no-skip return
to signify success or failure of the operation. The UUOCON exit routine
is designed to pass on to the user either a skip or no-skip return.
If, when at the level equal to that following the dispatch, a POPJ PDP is

used to exit, the user will receive a no-skip return. If the sequence
AOS (PDP)
POPJ PDP,

is used, a skip return occurs. This could be used to bypass one argument

following the UUO (a system routine, CPOPJ1l performs this action if
called by a JRST CPOPJ1). If it is necessary to bump up the user's
return by more than cne, the routine must take care of adlding the
correct quantity to the ccrrect entry on the pushdown list (recall that,
if the original UUO was issued by the Monitor, the preprocessor dispatch
was not a PUSHJ). If, for example, two arguments are to be skipped

in return to a user mode call, this sequence could be used.

AOS -1(PDP)
JRST CPOPJ1

To give the same return to a call from the Monitor,

AOS (PDP)
JRST CPOPJ1

Example

Presently, all operators that do not deal with some phase of
input/output appear as subfunctions of the CALL programmed operator.
To keep this example reasonably simple, we will choose one of these:

CALL AC, ([SIXBIT/RUNTIM/]

The referenced AC is loaded with a job number before the CALL, and the
CALL returns the total running time (in "jiffies") of that job in the
same AC.

The preprocessor routine of UUOCON sets up the standard accumulators
and, using the UUO op code (CALL = 040), dispatches to UCALL. UCALL
picks up the contents of the UUO effective address, the literal value
RUNTIM. This argument is used to effect another dispatch to the routine
JOBTIM, which gets the appropriate run time and stores it in the user
accumulator. Before this second dispatch, the UCALL routine places the
contents of the user's accumulator into TAC and changes the right half
of UUO to contain the address of this accumulator. The accumulator ITEM
is loaded with the job number of the currently running job.

When entered, the JOBTIM routine checks the contents of TAC for a
valid job number and then uses it as an index to fetch from the TTIME
table (where running times for all jobs are kept) the desired time and
place it into TAC. A JRST STOTAC causes this result to be stored in
the user's accumulator, now addressed by UUO, and return to the UUOCON
exit routine.

EXIT ROUTINES

ERROR EXITS

Error exits, which do not allow a return to the user, occur when a
UUO op code is illegal or an address supplied by the user is illegal.
A nonimplemented UUO in the range 40 through 77, or a UUO of @, will stop

the job with the error bit on (cannot continue) and print "ILLEGAL UUO

at USER loc". An illegal op code (e.g., a DATAI in user mode) causes the
job to be stopped with the error bit set and the message "ILL. INST.
AT" to be printed. The HALT instruction stops the job, types "HALT

AT USER loc.", but does not set the error bit. Thus, the CONT(INUE)
command does function after a HALT.

When an illegal address is detected by a non-I/0 UUO, the UUOERR
routine is called to print the message noted above ("ILLEGAL UUO AT
USER loc") and puts the job into an error stop. When a UUO is
associated with a particular device, ADRERR may be called. ADRERR
prints "ADDRESS CHECK FOR DEVICE dev: EXEC CALLED FROM loc", and results
in an error stop condition.

NORMAL EXITS

If the original UUO was issued by the Monitor, the preprocessor
dispatch was by a JRST rather than a by a PUSHJ. The service routine's
last POPJ would bypass the user exit routine and go directly back to
the Monitor coding following the call.

If the UUO was from the user, the service routine's terminating
POPJ returns to location USRXT1 -1 (no-skip return) or a JRST CPOPJ1
returns to USRXT1l, which passes a skip return to the user by adding 1 to
the address on the pushdown list.

USRXIT This routine checks to see if the user has typed a CTRL C (4C),
or if the clock has ticked (software interlock), or if the
system wants to stop this job (to swap it, for instance). 1If

none of these conditions exists, the user's accumulators are

restored and control is returned to his program. Otherwise,

the Scheduler is called (USCHED) to take appropriate action.

If the user's job continues in the future, control will come

back here to restore the user's accumulators and continue the
job.

II. ADDING A PROGRAMMED OPERATOR

There are two ways to add a new UUO function to the Monitor. One

is to use a previously unused op code (42 through 46 are open at the time
of this writing - May, 1968). The other is to add a subfunction to the
CALL operator. Before adding anything to any section of the Monitor, it
is, of course, desirable to understand what is already there. Assuming
that one already has this understanding and has written a tightly coded
new routine that obeys the rules of address protection and uses as nwuch
existing coding as possible, we can investigate the process of getting
this routine included in a running Monitor.

ADDING A NEW OPERATOR

1. Edit the new coding into the source file for APRSER. If it is desired
to make this routine a conditional feature, it may be enclosed in

conditional assembly brackets preceded by a symbol like the feature
test switches presently in use.

2. Edit into the UUO dispatch table, UUOTAB, the address of this routine
in the proper half of the XWD found there. For instance, if you are
adding a routine, UDUMP, as op code 43, you would replace XWD UUO42,
UUO43 with XWD UUO42, UDUMP. Conditional assembly could be used

to set up the dispatch table entry if conditional assembly was used
with the routine itself. For example,

Routine Coding ~ Dispatch Table Entry
IFN FTDMPU, <UDUMP: . . . IFN FTDMPU,<
(coding) §WD Uuo42, UDUMP
IFE FTDMPU,<
> XWD UUO42, UUO43
>

In this example, the routine will be assembled and the address of UDUMP
is added to the dispatch table if the feature switch FTDMPU is nonzero.

3. In preparation for assembling the new APRSER, edit the correct feature
test switch settings into the S (system parameter) source file,
including any new ones you have established.

4. Assemble, naming as input first the S file, then the new APRSER file.

5. Use FUDGE2 to Replace the old version of APRSER with the new one in
the file (SYS40 or SYS50) to be used in building your system.

6. Run System Builder, using the new file to build your Monitor. Follow
the Build operating procedures.

ADDING A NEW CALL SUBFUNCTION

This method is an attractive alternative to adding an entire
new operator when some job-number-dependent function is to be performed
or when arguments to be passed are few. Recall that, before the CALL
dispatches to a subfunction, it places the job number in accumulator
ITEM, the contents of the UUO AC into TAC, and the address of the
UUO AC into UUO, which has previously set for relocation. Thus,
arguments or argument addresses can easily be passed via this
accumulator. The CALL operator dispatches to a subfunction by
searching a table of 6-bit names (UCLTAB) for a match with the contents
of the UUO effective address and then selecting a corresponding jump
address from a half word in a second table (UCLJMP) . Alternately, the
user may use the CALLI (CALL Immediate) operator and directly supply the
index to the jump table. Because of the latter, any additions to the
CALL dispatch tables must be appended to those entries already in
existence.

Example

The PDP-10 hardware will display a word in the console data lights
when the instruction

DATAO PI, [display information]

is executed. Let us add a new CALL to allow any user program logged in

lSystem Builder operating instructions can be obtained by listing the
source file MONITR.OPR, located on the first of the three Monitor source
tapes.

8

under project number 2 to display information by loading the data into
AC and issuing the command

CALL AC, [[SIXBIT/CONLIT/]
Let us further specify that, if the user is not logged in with the
proper project number (2), the call is to be treated as a no-operation.
Finally, let us write the code in such a way that, in a Monitor with

no login feature (feature switch FTLOGIN = @), this operator always
works.

LIGHTS:

IFN FTLOGIN, <

HLRZ TACl, PRJPRG (ITEM) ;get project number
CAIN TACl, 2 ;equal to 27

>

DATAO PI, TAC ;display contents of AC

POPJ PDP,

After editing this coding into an appropriate area of UUOCON, the
dispatch tables must be updated. This is done by adding one entry to
the list following the NAMES macro which is called to build the two
tables. An entry has the general form

X function-name, routine-address; comment

To add our new display function, insert after the last name and before the
LIST statement

X CONLIT, LIGHTS; DISPLAY (AC) IN DATA LIGHTS

To create a working Monitor, follow steps 3 through 6 as outlined under
"Adding a New Operator."

PDP-10 TIME-SHARING MONITORS

SYSTEM INITIALIZATION AND RESTARTS

Once the Monitor has been loaded, the system is begun at

Starting Address 140 absolute. The system immediately calls
various sections of the subprograms FIRST, SYSINI, ONCE, and other
Monitor subprograms. These subprograms elicit time and date information

from the operator, establish PI channel trap locations, reset I/0
devices, and initiate the null job (NULJOB) to make the system ready

for use. The operator may treat any system malfunctions after this
point in a variety of ways, depending on their severity. A System
Dispatch Table, in the lowest section of the Monitor, provides the
selection of a number of restart procedures, ranging from Executive
Debugging (EDDT) in the case of mild system trouble-shooting, to complete
Monitor reloading in event of catastrophic failure.

FIRST

FIRST is the lowest Monitor subprogram in core and occupies
146 locations, beginning at location 140 absolute. The first part

of this subprogram contains the System Dispatch Table, which is listed
below.

Table 1
System Dispatch Table
r SYSDSP: 140 (abs.) JRST SYSINI Monitor startup. Replaced

by JRST IOGO on first pass
of SYSINI.

141 JRST DDTX Run Executive DDT, if loaded.

142 JRST SYSMAK Make Job #1 the new
Monitor.

143 JRST SYSINI Restart call to SYSINI.

144 JEN NULJBL Run the null jol (NULJOB).

145 JSR ONCE Operator dialogue at ONCE.

146 JRST JSR2 Call SYSINI, but bypass

operator dialogue of ONCE.

147 JRST SYSTOP Write cut Storage Allocation
Table onto disk and halt.

In using this table, the operator starts up the Monitor from
absolute location 140 and returns to other entries in the table in
case of failure. In addition to system restarts, the operator can
choose to run EDDT from this table for debugging any area of code in
core (including the Monitor itself), or he can call SYSMAK, a subprogram
which block transfers Job #1 to overlay the present Monitor. In the
case of severe error conditions, the operator may choose to write out
sections of the disk Storage Allocation Table currently in core onto
the disk; absolute location 147 in the System Dispatch Table is used for
this purpose, dispatching to SYSTOP (within FIRST), which immediately
transfers to DSKSER (the disk service routine) to perform the writeout.
In this case, the machine is finally halted at absolute location 20,
which is the starting address to read in the routine DECDMP from the
paper tape reader to be used in reloading the Monitor. Provided
the subprogram ONCE remains undisturbed in core, as in the case where
only debugging and patching have been performed on the Monitor
subsequent to loading, the operator can restart the system from
absolute location 145 adn enter the ONCE dialogue again to update system
name, date, and time.

Apart from these procedures, FIRST simply contains locations that
are set up and used to hold miscellaneous data required by the Monitor in
its operation. Sections of the job data area (JDA) for the current job
being run are copied into locations within FIRST for easy reference by
the Monitor. This data may be updated by the Monitor and, whenever a new
job is selected to replace the currently running job, updated information
is read back into corresponding locations of the current job's job data
area and the job is preserved until it is ready to run once more. By
this process of copying the contents of the job data area, sections of
the user's job data area are protected, even when the original copy
within the user's area is inadvertently destroyed.

Monitor data areas within FIRST are set to # by SYSINI during
initialization and most restarts.

Also, various system parameters are stored and defined within
FIRST, although their values may be altered by the user at System Build

time. These parameters have the following default values in absence
of a request to the contrary.

Table 2

System Parameter Values Stored in FIRST

Parameter Default Meaning
Value
STDENS 556 bpi with Indicates density and
odd parity parity of magnetic tape
DTTRY 60 Indicates number of

DECtape rereads to be
performed on read errors
before issuing error
message

Table 2 (Cont.)

System Parameter Values

Stored in FIRST

Data Blocks available |
to attached and detached

| | !
Parameter | Default Meaning
Value i
Il
|
JIFSEC 60 | Number of clock
10 | :
t ticks per second
(power line frequency)
§
MTSIZ 12879 words Size of magnetic tape
buffer
LPTSIZ 24 words Size of line printer
10 buffer
BLKQNT 50 Furthest distance (in
10 consecutive blocks) down
a DECtape that a job can
j refer to without being
| rescheduled
!_A,__ S
| NSPMEM 2000 Number of nanoseconds per |
| i 10 memory cycle i
l | (psec. mem. speed) x 1000
. :] !
i DETDDB - 0 | Number of extra Device
|
|

jobs

Subprogram FIRST also contains 2- and 3-instruction special-

purpose restore, restore and skip, skip

and double skip return routines,

used frequently throughout the Monitor to return from subroutine calls.
These routines are labelled TPOPJ, TPOPJ1l, CPOPJ1l, and CPOPJ2,

respectively.

SYSINI

Subprogram SYSINI is called at Monitor startup time to perform

the following tasks.
1. Initialize Monitor data areas

2. Determine current core memory
users.

3. Clear I/O devices, PI system,
settings.

4. Clear software flags and make
transfers.

5. Run the null job (NULJOB).

by setting them to #.

size and the area available to

and APR of previous status

other preparations for 1,70

Later, at system restarts, the user can dispatch to three
locations within SYSINI (SYSINI, JSR2, and IOGO) from the System
Dispatch Table (in FIRST).

The first opération of SYSINI is to clear all I/0 devices as
accomplished by a CONO APR, bit 19. Control then jumps to subprogram
ONCE for dialogue with the user to obtain

1. Today's date and time;

2. Whether or not Executive DDT and SYSMAK are required for use;

3. Name ‘of ‘operator's Console Teletype; and

4. Whether or not the disk is to be refreshed.

SYSINI also calls LINKSR (in ONCE) to move the Executive DDT symkol
table (if loaded “at Build time) to upper core, leaving 700 locations

for dump routineés TENDMP or DECDMP at the extreme top. 8 This table
is not protected, however, and may be lost later if user demands for
core total up - to all that remains after Monitor. Before return to

SYSINI, system UUO (User-Utilized Operation) and PI channel trap
locations 40 through 61, (absolute) are set up. By overlaying location
LINKSR +1 by itself witg a return jump to JSR2 +1, LINKSR coding
effectively disappears after first execution.

JSR2: SYSINI then proceeds to clear data and table areas of the Monitor,
specifically the miscellaneous data locations of subprogram FIRST, and
the Job Status, Protection-Relocation, Project-Programmer, Runtime,

Clock Request, Teletype, and Pseudo-Teletype tables. Following this
operation, each Device Data Block is cleared, in turn, of its logical
name assignment and the DEVMOD flags:

Directory in Core
Teletype Attached
Teletype in Use
Assigned by Console
Assigned by Program

To determine the current size of core memory and the amount of
core area available to users, SYSINI constructs a 10-word table (CORTAB)
in which consecutive 1-bit bytes correspond to consecutive 1K blocks of
core memory. The first location of each 1K block is refered to by the
processor and the associated bit in CORTAB is set to 1 if either (a) the
block is occupied by Monitor (locations€ SYSSIZ), or (b) the block is
nonexistent (NXM flag set). Thus, at the end of this operation, 0 bits
in CORTAB correspond to 1K blocks available to the user. At this point,
for disk systems only, routine ACCINI (in DSKSER) is called to reserve
the first virgin 1K block above Monitor (ignoring subprogram ONCE) .

This block, together with a remainder from the block in which Monitor
itself terminates (again ignoring ONCE), serves as space to construct
copies of a dummy disk block for each disk file opened, a well as to
accomodate 4-word file-access tables read in at such times, and I/0
buffering in case the users' areas are full. Accordingly, CORTAB

is modified to indicate the removal of this additional 1K block from the
user's pool. ’

IOGO: Although at Monitor startup time the first entry of the System
Dispatch Table contains JRST SYSINI, this is overlayed by a JRST IOGO

on the first pass through the subprogram SYSINI. Thus, at restarts from
location 140, the ONCE subprogram dialogue, the CORTAB construction, and
the disk preparations are bypassed. Also, device logical name
assignments and DEVMOD flags are retained and control goes directly to
I0GO, omitting the initial section of SYSINI.

IOGO turns off the PI system. Then, examining Device Data Blocks
in turn, it clears all device-to-job-number assignments, except if
assigned by user console command. Hung counts, I/0 buffering, and
device I/O status bits are destroyed. After this, a PUSHJ to NXTINI
(in CLKCSS) cancels all shareable device wait queues and returns the
devices to a common pool. REQTAB device request flags are -1 when
no job is waiting or using a device, and AVALTB flags are @ when devices
are free with no jobs waiting.

At this point, SYSINI dispatches to device initialization routines
(DINI) via the -1 entry of each device service dispatch table. Multiple
devices, in fact, share the same dispatch table, and their controller
requires initialization only once, not separately for each unit.

Jobs that have issued timing requests are cleared from the
so-called clock request queue. During normal running, jobs in this
qgueue have their preassigned task times decremented every clock tick.
Here, however, CLKINI (in APRSER) is called and their times are
1mmediately zeroed.

Before entering a loop to modify job status words, SYSINI takes
time to clear location JOB, whose contents are the job number of the
current job being run (providing it is running at UUO level). A mask
is then set up, and (with the exception of Job #1) SYSINI enters a loop
to clear each job status word (JBTSTS) of all bits except those
corresponding to Job-Successfully-Logged-In (JLOG), Job-Number-
Assigned (JNA), and Job-Swapped-Out-of-Core (SWP). Furthermore, for
those jobs still in core, SYSINI does a PUSHJ to CLRJOB(in APRSER) to
clear sections of their job data areas protected from I/0O transfers
(locations JOBPRT through JOBPFI). JOBDDT, however, which contains
the starting address of the user's copy of DDT, is saved and restored
during this operation. Other words to be cleared are JOBENB
(APR-enable flags) and location JOBPD1 (PC word at user UUO's).

Before returning to SYSINI, CLRJOB jumps to ESTOP (in APRSER) and
flags the user to error stop (JERR bit of JBTSTS is set) so that he
cannot continue.

If this is a swapping system, SYSINI calls QINI (in QCSS) to
place all jobs on the null queue and, at the same time, to empty all other
scheduling queues. In any case, SYSINI performs its remaining function
of switching back on the priority interrupt system and starting the
null job, which runs until the first user arrives at a console.

ONCE

Subprogram ONCE is loaded as the highest Monitor routine in core.
ONCE consists of the following four discrete sections.

1. LINKSR SYSINI jumps to this location to execute a block
transfer of the Exec DDT's symbol table (if loaded)
to the top of core.

2. ONCE Both location 145 in the System Dispatch Table and
the subprogram SYSINI transfer here to enter
dialogue with the user.

3. REFRESH Called from the dialogue section (2) if the user
requests that the disk be refreshed.

4. DFWUNS Called from DSKINI, which in turn is called from
SYSINI. Storage Allocation Table search entries

are initialized in this section.

LINKSR On entering this routine, the processor refers to successive
1K blocks of core until the NXM (Nonexistent Memory) flag
becomes set, indicating that the top of core has been
reached. Leaving 7008 locations at the extreme top of core
for a dump routine (TENDMP or DECDMP), LINKSR proceeds
to block transfer Exec DDT's symbol table (if the symbols
were loaded at Build time) into the next-to-highest locations.
DDTSYM (absolute location 36) is set up to contain the
block pointer to this new position of the symbol table.
Before returning to the calling program (SYSINI), LINKSR
performs another block transfer to set up priority interrupt
trap locations 40 through 61 absolute. These are
established as follows.

Table 3

Priority Interrupt Trap Locations

4g (abs.) g2

UUOTRP: 41 JSR UUOQ
42 JSR CH1
43 JSP DAT, ERROR
44 JSR CH2
45 JSP DAT, ERROR
46 JSR CH3
47 JSP DAT, ERROR
50 JSR CH4
51 JSR DAT, ERROR
52 JSR CH5
53 JSP DAT, ERROR
54 JSR CH6

Table 3 (Cont.)

Priority Interrupt Trap Locations

55 JSP DAT, ERROR
56 JSR CH7

57 JSP DAT, ERROR
60 /]

61 JSP DAT, ERROR

Locations 60 and 61
are not yet fully
implemented.

ONCE This routine is dispatched to from location 145 of the
System Dispatch Table and is also called by SYSINI
(although bypassed on restarts from locations 143 and
146). ONCE enters a long dialogue with the operator;
the dialogue sequence is as follows, beginning with
a Monitor printout of

the name of the system

date of previous Monitor loading
and the message

MONITOR JUST LOADED
The Monitor then types

TYPE TODAY'S DATE AS ABOVE
and retrieves the operator's reply. If this reply is
in the correct format (three 2-digit numbers, separated
by hyphens and terminated by a carriage return; the
digits in the form mm-dd-yy must also satisfy the
requirements: @F<mm<12; 0<dd<€31l; and 64< yy< 99), the
date is converted by the formula

(yy=64) %*12+mm-1) #*31+dd-1
to represent the number of days since January 1, 1964,
and stored in locations THSDAY and SYSDAT (in FIRST).
If the reply is incorrect, the Monitor repeats the
request.
On successful entry of the date, the Monitor types

TYPE A 4-DIGIT TIME

Again, the form of the reply is checked and, if acceptable,
it is converted by the formula

(hl*10+h2)*60+m1m2)*60*60

an stored in location TIME (in FIRST) as the number of
jiffies (clock ticks) past midnight. The first two

digits, h h2 are the hour, and the last two digits, mym,,
are minut%s, and must fulfill the requirements:

0£hy;<2

0£ h, <9

05nqm2f§59
At this point, the operator may choose to bypass the
remaining dialogue and return immediately to SYSINI.
To do this, he simply types a carriage return
immediately after the 4-digit time. Otherwise,if ALTMODE is
typed, Monitor continues byeprinting a listing
of how many units of each I/O“Jevice are present. To
compile this list, the coding cycles through chained
Device Data Blocks and compares physical names. The
list appears as follows.

IO CONFIGURATION

ny; DTA'S
n2 MTA'S
1
nj CDR'S
n TTY'S .
m

Following this, another request is typed to the operator.
TYPE OPERATOR'S CONSOLE DEVICE NAME (CR IF NONE)

The name entered is stored in DEVOPR (within FIRST), provided
it is acceptable, and will be used synonymously with the
device name OPR.

To aid in the discussion of the remaining dialogue, a map
of the upper section of Monitor as it appears in core
is given below.

SYSSIZ upped to 1K
break to reserve disk

1K break------- .
ONCE work area
1K break —------
é—(:>SYSSIZ = DDTEND if
EDDT or NOTDDT EDDT wanted.
SYSSIZ = MAKEND if
SYSMAK SYSMAK wanted.
PATCH é—(:)SYSSIz = PATCH1 for

patching, but no
SYSMAK or EDDT

SYSSIZ = PATCH if
no patching and
neither SYSMAK or
EDDT is wanted.

ww

]

Figure 1. Map of Upper Section of Monitor

The user has already chosen at System Build time whether or
not Executive DDT is to be loaded. Now he must choose
whether or not to make use of EDDT or of SYSMAK (a routine
used for overlaying the lower section of core with a

new Monitor built or loaded into Job #1's core area.

Location SYSSIZ contains a value that is taken to be the
highest address of the Monitor (ignoring subprogram ONCE)
and above which all core is available to users. Its value
is changed several times during the process of preparing
Monitor for startup. At this point in the ONCE routine,
SYSSIZ is set to the lowest location of PATCH (#1 in Figure
1).

Although 500g locations are reserved for Monitor modifications
by the PATCH subprogram, it is assumed that when a Monitor

is first received from Digital by a customer, there are no
patches present. Thus, the pointer SYSSIZ is positioned to
point to the lowest location of PATCH so that, if the user
should choose not to load or run EDDT or SYSMAK, the area
occupied by PATCH would be available to users. However,

in the event that a user wishes to make his own modifications
to the Monitor, PATCH would be used to hold the new sections
added and SYSSIZ would not contain the lowest address of
PATCH, but the first address above the inserted patches.

REFRESH

In this way, the patches are subsequently protected from

the users, as are all other parts of the Monitor (except
ONCE) . The user must make this adjustment to SYSSIZ himself
at the time of patching. He does this by replacing the
contents of location ONCE + 1 (in subprogram ONCE) with the
code

MOVEI TAC, PATCH1

where PATCH1l (see #2 in Figure 1) is assumed to be a label
assigned to the highest location occupied by the inserted
patches.

Continuing with the dialogue, Monitor asks
DO YOU WANT SYSMAK? (TYPE Y IF YES, CR IF NO)

If the user's reply is affirmative, location SYSSIZ is set
to the highest location of SYSMAK (see #3, Figure 1), this
being treated as the new upper limit of Monitor (ignoring
ONCE) after having taken into account the extra core
required to include SYSMAK. Otherwise, if the reply is
negative, SYSS1Z remains set to its present value.

Next, the Monitor asks
EXEC DDT?

If EDDT is to be used and this program has been loaded at
System Build time, the user types Y and the contents of
SYSSIZ are once more incremented, this time to point to the
last location of EDDT.

As mentioned under SYSINI, the disk service routine DSKSER
reserves an additional 1K or more core locations immediately
above the final setting of SYSSIZ (as determined above), and
these locations lie within the subprogram ONCE. Thus, after
users have bequn to use the system, subprogram ONCE cannot
be expected to remain in usable shape. 1In fact, the area
occupied by ONCE will be claimed as user area, and over-—
written as disk buffer and file access table copying space.
Indeed, restarts from absolute location 145 are ineffective
after any users have been on the system, since dispatch is
made to ONCE, a subprogram which may no longer exist in core.
Absolute location 145 is primarily reserved for restarting
the Monitor after patching, or perhaps debugging, have been
the only operations performed following Monitor loading.

Finally, if this is a disk system, the ONCE code jumps into
a dialogue to discern whether or not the disk is to be
refreshed. Return from this diversion is immediately to the
calling program (either SYSINI or absolute location 145 of
the System Dispatch Table).

10

DFWUNS Initializes Storage Allocation Table search entries. This
routine is called from DSKINI, which in turn is called from
SYSINIT.

11

CLEAR ALL
1/0
DEVICES

LINKSR

CLEAR
SECTIONS OF
BUILD AND
FIRST

v

DEASSIGN
DEVICE LOG.
NAMES

DETERMINE
CORE SIZE &

AREA AVAIL.
TO USER

ACCINI
(DSKSER)

OVERWRITE
ABS. LOC.
140 WITH
JRST IOGO

Figure 2.

FOR
DIALOGUE
WITH
USER

TO RELOCATE
SYMBOL TABLE
AND PI
CHANNEL
SETUP

RESERVE DISK
REA ABOVE

MONITOR IN

CASE OF DISK
SYSTEM

I0GO

/

CLEAR AND
TURN OFF
PI

SYSTEM

y

CLEAR DEV
DATA BLOCKS
OF I/0
PREPARATION

MAKE ALL SHARABLE
DEVICES AVAILABLE

\ NXTINI
“CLKCSS)//

=

DISPATCH TO
INITIALIZE
ALL

DEVICES

CLKINI
(APRSER)

///

/ AND CLEAR WAIT QUEUES

CLEAR SLEEP AND DELAYED
TASK TIMES

CLEAR PROTECTED PORTION
OF JOB DATA AREAS OF JOBS

I

7

i
4

START NULL
JOB AND
WAIT FOR
FIRST USER

CLEAR 'JOB
STATUS WDS
EXCEPT FOR
JOB #1
CLRJOB \\
{ (APRSER)) IN CORE
/ oiNnr . |CLEAR AND
((CLKCSS))y JURN ON AL
N , CHANNELS
IF SWAPPING
SYSTEM, PLACE

ALL JOBS IN NULL QUEUE

12

System Initialization Flow Chart

(SYSINI)

|
l
}
J

Table 4

Cross-Reference Listing of System Initialization

Symbolsl
ACCINI D4, F12 PATCH D9
BLKQNT D3 QINT D5, F1l2
CLKINI D5, F1l2 REFRESH D6, D10
CLRJOB D5, F1l2
CORTAB D4 STDENS D2
CPOPJ1 D3 SYSDAT D7
CPOPJ2 D3 SYSDSP D1
SYSINI D3, F1l2
DEVOPR D8 SYSMAK D2, D9
DFWUNS D6, D11 SYSSIZ D9
DSKSER D2 SYSTOP D2
DTTRY D2
THSDAY D7
EDDT D2, D9 TIME D8
ESTOP D5 TPOPJ D3
TPOPJ1 D3
FIRST D1
UUOTRP D6
I0GO D5, F12
JIFSEC D3
JSR2 D4, F12
LINKSR D4, D6, Fl2
LPTSIZ D3
MTSIZ D3
NSPMEM D3
NXTINI D5, F12
ONCE D6, D7, F1l2

A D preceding a page number indicates that a description of the item
is found on that page; an F indicates that the item appears in a
flow chart cn that page.

13

PDP-10 TIME-SHARING MONITORS

CONTEXT SWITCHING

Context switching (that is, setting up to run the next job)
is handled by the subroutine CLOCK, which is in APRSER. The hardware
state of the machine is saved before the Scheduler is called at location
CIP6. If the Scheduler determines that a new job is to be run, the
software state of the old job is saved (CIP6+7) and the software and
hardware states (CIP7 and CIP8, respectively) of the new job are
restored. The hardware state of the machine is stored in what are
called the dump AC's (locations 20 through 37) in the job data area
(locations 0 through 137) for the particular job. The software
state of the machine is stored in the job data area locations JOBENB (43),
JOBCHU (72), JOBPC (73), JOBDDT (74), and JOBJDA (75 through 114).

CIP6+7 The software state of the old job is saved at CIP6+7.
This occurs after it has been determined that the next (new)
job is different from the one which was running. If the
next job is the same as the last, the hardware state of
the machine is restored and the interrupt is dismissed
(at CIP8). If the o0ld job was the null job or core 0, control is
transferred to CIP7 (alias NULJOB), and the software state
of the old job is not saved.

‘The actual saving operation sets up a block transfer to
move four words from the Monitor location USRPRT to the
job data area JOBPRT. The ending of the block transfer
may then be modified to save all software channels
assigned. These software channel words start at the
fourth word (channel @) of the block transfer and may
add up to 17 words (for 17 channels) to the transfer.

CIP7 This location is the beginning of the routine which restores
the software state of the new job. This is also an entry
point for SYSINI to start the null job. The protection
and relocation of the new job are placed in JOBADR. All
APR flags are cleared and the user APR interrupts are
disabled. If the new job is the null job, it is set up to
keep count in ACf.

If the new job is not the null job, the software protection
registers (USRREL and JOBREL) are set and the hardware
protection and relocation register is set. The locations
starting at JOBPRT are block transferred to USRPRT. As in
the saving of these registers, this block transfer is
modified to include all software channels assigned; any
unassigned software channels between @ and the highest
assigned software channel will be included in this block
transfer.

The word JOBENB (location 43) in the job data area stores

CIPS

bits for user traps to the APR in the right half and PC
change and overflow enable/disable bits in the left half.
The bits in the left half are masked and stored in APRINI and
APRCON (the user trap CONSO instruction and the APR CONSO
interrupt location, respectively). The APRINI is masked to
contain only flags for pushdown overflow, illegal memory,
nonexistent memory, clock enable/disable, PC change, and
arithmetic overflow bits. APRCON is masked to contain the
above flags with the additional stipulation that the
pushdown overflow, illegal memory reference, nonexistent
memory, and clock flags must be set. The arithmetic
overflow enable/disable bits are then masked out and set
with a CONO to the APR.

The is the starting location for the routine which restores
the hardware state. If the job is not the null job, the
AC's are restored from that job's dump AC's (locations 20
through 37). The clock interrupt is then dismissed and
control is transferred to the address stored by the software
restore in USRPC.

NOTE

A discussion of these routines, viewed in a slightly different
perspective, can also be found in Internal Memorandum #4 of this
series, entitled APR and Clock Interrupt Routines, Programming
Department Memo # 100 150 004 0O0.

CONTEXT
SWITCHING

CIP6+7

EXT
JOB NEW
JOB

2

OLD
JOB NULL
OR COR

J NQ

SAVE SOFTWARE
STATE AT JOBPRT;
SAVE FROM USRPRT
THRU HIGHEST
SOFTWARE CHANNEL

CIp7 >
NULJOB

DISABLE USER APR
INTERRUPTS; SET
APR FLAGS TO

INITIAL CONDITION

RESTORE
SOFTWARE &
HARDWARE
PROTECTION

.

RESTORE SOFTWARE STATE
AT USRPRT:

RESTORE FROM JOBPRT
THRU HIGHEST SOFTWARE
CHANNEL

v

RESTORE
HARDWARE &
SOFTWARE
FLAGS

CIPS8 >

RESTORE AC'S FROM
DUMP AC'S OR
ABSOLUTE LOC.
IF NULL JOB

42

-
DISMISS INTERRUPT

{1 AND RETURN CONTROL
TO ADDRESS IN

USRPC
FROM
SYSINT
Né% INITIALIZE
/ﬁB NULDNYES NULL JOB &
. JOB? DISMISS
‘\\\///// INTERRUPT
NO
A Figure 1. Flow Chart of Context Switching
Table 1
Cross Reference Listing of Context Switching Symbols
APRCON D2 JOBADR D1 USRPC D2, F3
APRINI D2 JOBENB D1 USRPRT Dl, F3
JOBPRT D1 USRREL D1
CIP6+7 D1, F3 JOBREL D1
CIP7 D1, F3
CIPS8 D2, F3 NULJOB D1, F3

PDP-10 TIME-SHARING MONITORS

INPUT/OUTPUT PROGRAMMED OPERATORS AND DEVICE SERVICE ROUTINES

I. SOFTWARE LINKS BETWEEN USER AND DEVICE

User input/output is made possible by the programmed operators and
several tables existing in Monitor and the user's job data area. When
desired, software linkage is made between a user program and a device
(file) via these tables. For each physical device (or each active file,
on disk) there is a device data block in Monitor describing the
characteristics of the device: name, legal data modes, standard buffer
size, and location of the service routine dispatch table. For a
complete description of these tables, see Section III. When a device
is assigned to the user and is being used by him, certain locations in
the device data block (DDB) will contain certain information concerning
the current activity: the job number using the device, status, data
mode in which the file is to be read or written, and location of the
user's buffers. The user, or some part of the Monitor, may look in the
DDB to find out something about this device. The device service routine
may obtain information about the user of this device by taking the job
number from the DDB and referring to one of these Monitor tables indexed
by job number (job status JBTSTS, job project-programmer PRJPRG, core
assignment JBTADR, etc.).

The user's link to the DDB, and thus to the device, is one word in a
l16-word table, JOBJDA, in his job data area. A location in this table
is accessed by an index called the "software channel", supplied by the
user. Figure 1 depicts one such location containing the address of the
DDB and bits indicating the UUO operations done so far for this device.
The user never directly accesses a JOBJDA location, but the Monitor does
at UUO level using the software channel number specified in the AC
field of the I/O operator. For protection, these locations are copied
into the Monitor (starting at Monitor location USRJDA) when a job is
running and Monitor works with these copies, restoring them to JOBJDA
when the job is not running. A seventeenth location, JOBHCU (USRHCU),
contains the channel number of the highest channel in use. These

17 locations, and others, are in an area of JOBDAT protected from input
data transfers. The symbol JOBPFI ("protect-from-input") is a relative
location in the job data area below which data must not be transferred,

and user buffer addresses are checked against this value by those I/O
UUO's concerned.

The last table to consider is the jump table or dispatch table in the
device service routine. This table (see Figure 11) links the device
dependent coding in the routine with the device independent portion of
UUOCON. The address of this table is in the right half of the DEVSER
word in the DDB. UUOCON dispatches to this address plus or minus an
appropriate index so that the service routine may perform whatever is
necessary to service this UUO (start or stop the device, initialize
hardware or software registers, etc.). Much of the work of UUO service is

done by the device independent UUOCON routines and, even after dispatch
to the device dependent routine, portions of the Monitor (IOCSS, in

particular) are called as subroutines.

The ultimate effect is that the

user's program deals with all devices (or files) in a similar manner
and the device service routine has only to interface some specific

hardware device with the general coding of UUOCON.

This latter topic,

along with interrupt level operations, is dealt with in Section III,
"Device Service Routines".

The next section describes the operations within UUOCON as it handles the
communication between user and device.

17

35

ADDRESS OF DDB
FOR THIS DEVICE

3 3

UUO PROGRESS BITS

INITB
IBUFB
OBUFB

LOOKB
ENTRB
INPB
OUTPB
ICLOSB
OCLOSB
INBFB
OUTBFB
SYSDEV

INIT or OPEN has been performed

T ¢

An input ring header was specified (by INIT)
An output ring header was specified (by INIT)

A LOOKUP has been performed

An ENTER has been performed

At least one INPUT has been performed
At least one OUTPUT has been performed
A CLOSE input has been performed

A CLOSE output has been performed

An input buffer ring has been set up
An output buffer ring has been set up
This is the system tape device

NOTE: This word is completely cleared by RESET or RELEASE UUO's

Figure 1. JOBJDA or USRJDA Word Contents

II. I/0 OPERATORS

REVIEW OF USER I1I/0

This section assumes previous familiarity with user I/0 programming as
described in Chapters 4 and 5 of the PDP-10/40, PDP-10/50 Time-Sharing
Monitors manual (DEC-10-MTCO0-D).

Two methods are used to effect data transfers: unbuffered and buffered.

In unbuffered modes, the user supplies to the device the address of a
command list in his program area. This list consists essentially of block
pointers to relative locations in the user area to or from which data is
to be transferred. Upon initiating such a transfer, the user's job is
scheduled into an I/0O Wait where it remains until the device signals

(to the Scheduler) the completion of the entire transfer. The device,

at interrupt level, follows the command list in making the transfer until
a termination word (null) is found and then notifies the Scheduler.

Buffered data transfers are made using a ring of buffers set up in the
user area. A ring may contain one buffer or as many as will fit in the
job area. A 3-word ring header in the user's program contains a byte
pointer and item counter to be used by that program in accessing the
"current" buffer (the one the user's program is working on). The device
data block of the device involved in this data transfer contains like
information concerning that buffer which is current to the interrupt
level data transfers (see Figure 2). Monitor routines called by UUO's
(INPUT or OUTPUT) work to supply a new buffer to the user, setting up

the ring header appropriately. Monitor routines called at interrupt
level likewise supply a new buffer for the device to work on, updating
the pointer and item count in the DDB. To prevent the user and the device
from using the same buffer at the same time, each buffer contains a use
bit in the second word of the buffer header that is checked and altered
by the Monitor's buffer handling routines. At UUO or interrupt level, a

1 means that the buffer is full and a 0 means that the buffer is not full.
If the user "overtakes" the device and requires as his next buffer the

one currently being used by that device, the user's job is scheduled

into an I/0 Wait. Upon completion of its use of that buffer, the device
calls the Scheduler to reactivate the job. If the device "overtakes" the
user, the device is stopped (always at the end of a buffer) and is
restarted when the user finished with the buffer. (Input devices are not
actually restarted until all but one of the buffers in the ring have been
emptied by the user.)

Ring Header in User's Program

BUF1

Status

1} Size——1>» BUF2+1

Word Count

e ————— U |

Data

"Empty" buffer

being filled °~ ready to be

by device passed to u
(unavailable on next INP
to user)

"Siz

XADR: BUF1+1
XPTR: Byte Pointer
XCTR: Item Count
BUF3
Statéﬁ
0] Size BUF1+1
Word Count
Data
e —— — e —— — — _‘__f _______

"Full" buffer being
emptied by user
(unavailable to device)

Filled buffer

BUF2
ser J
UT 11| size BUF3+1
~ Word Couny
e n

Data

Device data block (
Service Routine

DDB) in

XYZDDB: XY

Z

lproG | BUF3+1

+DEVADR

Byte Pointer

+DEVPTR

Item Count

+DEVCTR

Figure 2. Buffered Data Transfer Between an Input Device and User

Via a 3-Buffe

r Ring

INIT AND OPEN OPERATORS

These operators assign a device to a user's program, establishing the link
between the software channel and the device data block. The initial
status, including data mode, is placed in the DEVIOS word, and the DEVBUF
word is given the relative addresses of the output ring header and input
ring header, if specified. A byte pointer size field according to mode

is placed in the second word of each ring header. An error return to

the user occurs if the device is not found or is unavailable at this time.
No dispatch to the device service routine is necessary for INIT or OPEN.
See Figure 3.

INBUF AND OUTBUF OPERATORS

These operators create a buffer ring in free locations in the user area.
The number of buffers is specified by the user as the effective address
of the operator (one buffer is established if that value is equal to or
less than 1). The size of each buffer data area is obtained from the
righthand 12 bits of DEVCHR for the device assigned to the software
channel. Two words are added to this amount for buffer head use.

As each buffer is appended to the ring, the last word of the buffer is
address checked. A use bit of 0, the buffer size, and the link to the
next buffer in the ring is inserted into the 2nd word of the new buffer.
The 2nd word of the last buffer created is made to point to the first
buffer, thereby closing the ring. JOBFF is then updated to point to
the first location beyond the last buffer of the ring. Depending upon
the operator, either DEVIAD or DEVOAD receives the relative address

of the 2nd word of the first buffer. The first word of the user's
ring header is then set with a "virgin" ring use bit and the address
of the first buffer. No dispatch to the device service routine is
necessary.

See Figure 4.

INPUT OPERATOR

Dump (Unbuffered) Mode

The device independent part of this operation is quite simple. The
Monitor waits, if necessary, until the device is inactive, then dispatches
to the device service dump mode input routine (device's dispatch table
entry indexed by "DDI"). The device service routine takes care of

command list checking, initializing its interrupt level program, and
starting the device. Upon return to UUOCON, the routine WAITl is called
to place the job in an I/O Wait until the device becomes inactive.

Dump mode input, therefore, goes on at interrupt level for this job

while other user's jobs are running. When the device service routine
recognizes the end of input activity, it calls a routine (SETIOD -

"set I/0 done") that notifies the Scheduler to take this job out of I/0
Wait. The job (at the appropriate time) then commences running, in this
case at the UUOCON normal exit.

Buffered Modes

To somewhat simplify this description, let us take the first INPUT and
subsequent INPUT's as two separate cases. Reference should be made to
the flow chart (Figure 5).

Case 1 - First Issuance of INPUT operator

IN If the device is doing output (IO=1), force output to stop
at end of next buffer and wait until it has done so. Zero
the input close bit in the left half of DEVDAT (a copy of
USRJDA for this channel).

IN1 If a buffer ring has not been established (by INBUF, for
instance) or if this is the first INPUT ("virgin" ring),
go to do first input, INPUTF.

INPUTF Clear the header ring use bit. If a ring has not been set
up, go to INPUT3. Otherwise, take the address of the first
buffer from the first word of the ring header and place
it in DEVIAD of the DDB. PUSHJ to CALIN to start the
device. Device service then returns here and control falls
into INPTOA.

INPTOA Is the buffer's use bit a 1 yet? (Probably not, because we
have just started the device.) If not a 1, call INPT2.

INPT2 Calls WSYNC to place the job in an I/0O Wait state until the
device calls SETIOD at the end of the buffer. If the
buffer use bit is now a 1, go to INPUT2.

INPUT2 Gets the word count from the buffer and calls IOSETC which
sets up the correct byte pointer and item counter in the
user's ring header, and then exits to the user.

CALIN If the device has previously sensed end of file (IOEND=1),
return immediately; otherwise, address check the buffer
limits and dispatch to the device's input routine. The
device routine initializes itself for interrupt-level
data transfers, starts the device, and returns. CALIN
then returns to the calling routine.

Case 2 - Subsequent Issuances of INPUT Operator

IN1

INPTOC

INPTOA

INPT1

INPT2

INEOF

If a buffer ring exists and has been used, test the use bit
of the buffer now being returned by the user. If the

use bit is 0 (as when a user's program is doing OUTPUT
from this same ring), bypass header updating and go to
INPT1l. If the use bit is a 1 (probably more typical),
clear it and advance the header first word to point to

the next buffer in the ring. If the device is active,
(IOACT=1), go to INPTOC; else, determine if it is time

to make the device active. For all devices except the
Teletype, this determination is made by looking at the use
bit of the buffer beyond the one to be returned to the
user. If it is 0, CALIN is called to start the device.

In the case of Teletype, the new buffer's use bit is
examined becuase a Teletype has a Monitor buffer in
addition to the user's ring. Whether or not a call to
CALIN is made, control now goes to INPTOC.

The new buffer's use bit is fetched for examination, and
control passes to INPTOA.

If the buffer's use bit is a 1, go to INPUT2, as described
under Case l; otherwise, go to INPT2.

If the device is active, go to INPT2; else, call CALIN
to start the device and then return to INPT2.

Calls WSYNC to put the job in an I/O Wait if the device
is active. Control returns if the device is not active
or when the device calls SETIOD. If the buffer use bit
is a 1 upon return, control goes to INPUT2; if not,
control goes to INEOF.

Did control get to here because of an error or end of file?
If not, go to INEOFE. If so and the cause was end of file
(IOEND=1), then set the user end file bit, IODEND. The
use of these two end-file bits simplifies user programming
by guaranteeing that when he detects end of file (with

a STATX operation), there is no residue of information in
a buffer. For instance, if a user's INPUT causes a

buffer to partially £fill and then an EOF to be detected

by the device, the device returns the "full" buffer to

the user while remembering the end condition (IOEND=1).
IOEND is not detectable by the user, so he empties the
buffer until the reduced header item count forces a call
to INPUT. The IOEND bit prevents CALIN from starting the
device which ultimately causes (at INPT2) an immediate
return from WSYNC with a 0 buffer use bit. INEOF now
finds IOEND=1 and turns on IODEND, then returns to the
user.

INEOFE

Control should never get here. If it does get here and
any of the job status STOPIO bits are on, control goes
back to UUOCON dispatch and the input UUO is repeated to
make the device do something (fill one buffer, or return
with EOF or error bits). If no STOPIO bits are set, the
error message routine UERROR is called to print

? ERROR IN MONITOR AT EXEC nnn

and stop the job.

OUTPUT OPERATOR

Dump (Unbuffered) Mode

UouT

ourT

OUTDMP

Buffered Modes

Set output UUO bit and clear output close bit in left half
of DEVDAT.

If device is busy doing input, wait until the next
bufferful. When stopped, if dump mode, go to OUTDMP.

Call WSYNC to make sure device is inactive, then dispatch
to the device's dump mode output routine (dispatch table
"DDO" index). The device routine checks the command list,
starts the device, and returns. WAIT1l is called to

place the job in an I/O Wait state until the entire output
is done. Control then returns to the calling routine.

our

OUTZ2

If not dump mode, call OUTA to get new buffer address if
user specified one. If a buffer ring has not been set up or
if this is the first OUTPUT, go to OUTF. Otherwise, if the
user is not computing his own word count, take the header
item count, convert it to word count, and store it in

the third word of the buffer. Don't compute if the user

so indicates. Go to OUT2.

Turn on the buffer's use bit, then advance the header to
the next buffer. If the device is not now active, dispatch
to the service routine to start it going. If the new
buffer is not empty, call WSYNC to put the job in I/0

Wait until the buffer is empty (the device calls SETIOD

at interrupt level to take the job out of Wait). Go to
OUuTS.

ouTS

OUTF

OUTF1

ouTA

Calls BUFCLR to clear the buffer, then calls IOSETC to
set the ring header byte pointer and item counter for
this device. Return to calling routine.

If a buffer ring has not been established, call UOUTBF
(OUTBUF operator routine) to set up a 2-buffer ring. Go
to OUTF1l in any case.

Clear the ring use bit. Supply the address of the
first buffer to DEVOAD of the DDB. Go to OUTS.

If a new buffer address is not specified, return immediately.
(NOTE: The mask used in making this test ignores bits

34 and 35. This is because OUT is called by the CLOSE
routine in which case one of these bits may be a 1

to inhibit closing "half" the channel. We don't, in that
case, want to believe that location 1 or 2 is being
specified as the start of a new buffer!) If an

address is specified, wait until the device is inactive,
then put the new address into the user's ring header

and DEVOAD. Mark the ring as being referenced (clear

the use bit) and return.

N.B. Observe that if the first OUTPUT does specify
a buffer address, the assumption is that the
buffer contains data already, i.e., this will
not be treated as a "dummy" output.

See Figure 6 for a flow chart of the OUTPUT operator.

CLOSEl

UCLSBI

CLOSE OPERATOR

Calls WaITl to be sure that the device is inactive before
proceeding. If an input close is requested and the file
has previously been closed, go to UCLS2. Otherwise, if
the file was read in DECtape save mode (2), return.

If not save mode and not dump mode, go to UCLSBI to
close buffered input. If dump mode, dispatch to the
device service routine input close function (dispatch
index "DCLI") and return to UCLS2.

If an input buffer ring was never established, go to
UCLS2; else, if this is a long dispatch table device,
dispatch to the device service routine (dispatch index
"DCLI"). Then get the address of the first buffer

from the ring header. If 0, go to UCLS1l; otherwise, go
to UCLSO.

UCLSO Address each buffer in the ring, clearing its use bit.
Go to UCLS1.)

UCLS1 Set the ring use bit to 1 ("never referenced")and clear
the item count word to 0. Clear both end-file bits
in DEVIOS. Go to UCLS2.

UCLS?2 If an output close is not desired, or if already closed,
go to UCLS3. If DECtape save mode (2) was used to write
the file, go to UCLS3. If not dump mode, go to UCLSBO
to close buffered output; otherwise, dispatch to the
device service routine output close function (dispatch
index "DCL"), then return to UCLS3.

UCLSBO If an output buffer was not set up or never referenced,
go to UCLS3; otherwise, fall into UCLS2A.

UCLS2A If DEVOAD addresses an empty buffer, go to UCLS2B; otherwise,
clear the device error bits and call OUT (the OUTPUT UUO
routine) to output this buffer. WAITl is called to stall
until the buffer is emptied and the device has advanced
the buffers. If no device error occurred, return to
UCLS2A (this loop will continue until all full buffers
have been output). If a device error is detected,
go to UCLS2B.

UCLS2B Dispatch to the device service output close routine
(dispatch index "DCL"). Then clear the ring use bit
and item count in the ring header. WAIT1l is called
to be sure that the device is inactive, then UCLS3
is entered.

UCLS3 Stores DEVDAT (in which the UUO bits have been modified)
back into USRJDA for this channel, then returns to the
calling routine.

See Figure 7 for a flow chart of the CLOSE operator.

RELEASE OPERATOR

RELEAO The routine CLOSEl is called to close both the input and
RELEAl output sides of the channel. WAITl is then called to
RELEA2 be sure activity has ceased. Go to RELEAS.

RELEA3

10

RELEA5

RELEA4
RELE4A

RELEAS

RELEA7

RELEAG6

Dispatches to the device service release routine (dispatch
index "DRL"). Then clears the active bit in DEVIOS and

the USRJIDA entry for this channel. Fetches the number

of the highest channel in use from USRHCU.

These sections of code perform two important functions
while scanning USRJDA from the old highest channel down
to 0. First, USRHCU is changed, if necessary, to point
to the highest nonzero entry in the JDA table.

Second, if it is discovered during the scan that the
device just released in RELEA5 is also assigned on
another channel, then no further release housekeeping is
performed, and an immediate return occurs. (It is
possible to INIT the input and output sides of a
bidirectional device on two separate channels.) Otherwise,
the DEVIAD and DEVOAD words in the DDB are cleared, and
control goes to RELEAY.

If the device is a disk or is not the system tape, go to
RELEA7. If it is the system tape but has already been
returned to the system, go to RELEA7; otherwise,

clear out the system tape user word, decrement the
request count, and set the available flag if someone

is waiting. Go to RELEA7.

Supplies the ASSPRG bit to RELEA6 (RELEA6 may also be
called by the DEASSIGN command, in which case an ASSCON
bit would be supplied).

Clears the assignment bit supplied by the calling routine.
If the device is still assigned by another means, an
immediate return is made. If the device is now

wholly deassigned (ASSCON and ASSPRG = 0), then the

job number field of DEVCHR is cleared. If the device

is DSK, the routine CLRDDB is called to return to

free storage the space occupied by the DDB. Return to

the calling routine.

See Figure 8 for a flow chart of the RELEASE operator.

LOOKUP AND ENTER OPERATORS

These operators are extremely device dependent, most of the work being
performed by the device service routine. Before dispatching to the
device service routine, however, LOOKUP performs an input close, and
ENTER performs an output close, with appropriate alteration of the
device status bits.

See Figure 9 for a flow chart of the LOOKUP and ENTER operators.

11

already assig-
ed to this chan-

RELEAQ

UINITA

name from
user

Get device

DEVSRC

Search logical

Release the device
(For details, see the
RELEASE operator, Figure 8)

and physical names

Found |Error

s return to

user

No
ASSASG Try to
assign
by
program
Not Error
Available | jyzilablel return to
user
Set DEVIOS
according
to user
UINITC

|

7

Figure 3. Flow Chart of INIT

Set up ring headers

and put addresses

in DEVBUF; give
successful return to user

BUFCLC

Put adr of

first

buffer intd
DEVOAD

N

Set INBFB -
bit]

BUFCLC (See

..below). .

Put adr of }
first ’

buffer into

Supply a "1" use
bit and address

of first buffer to |.
user's ring header

Y

DEVIAD.

)

Get address of fifét :

free location;

compute buffer size [

1 Address check 2nd
word of buffer..
Insert "0" use bit,
" size, and link to
'l hext buffer '

Figure 4.

\

P01h£ to
2nd word of
next buffer

‘Address éhégk:ehd N
‘of last buffer and

' link first to last fVRéFp:g‘j

quwﬁchq:t of INBUF, QUTBUF .

13

device
doing
output?

Returns when device
becomes inactive

No

y

Set input

bit; clear

input clos¢q
bit

No

Make sure
device is
inactive
current buffe
a "1"

Device's J Yes
DDI dump mode Clear use
(DSER) input |pbit; set
routine header to
point to
next buffer

Called with

a JRST; waits
WAIT1 for completion
of 1/0, then
returns to
UUO exit
routine

Device
active?

ime to
restart
device

For all input devices (exc.
TTY) , the answer is "yes"
when there are n-1 empty
buffers in the n buffer ring.
Since the TTY has a Monitor buffer,
it is not restarted until all n
are empty. ‘

(see below

Figure 5. Flow Chart of INPUT Operator

14

Yes

Device
active?

Get next :
buffer's (See L
use bit ‘%pelow)

"~uaﬁéturns wheﬁ\vfj
buffer is:«filled
or device is hot

Get word
count from Sets item
buffer count and - -Yes
byte pointer |
into ring
header and
returns
JIOSETC to UUO
exit
routine

Set user. ..
| EOF bit in
DEVIOS

| Back up .. - !
return address

yby 1 and

! return

L""" ’ ..T‘;___j

Figure 5 (Cont.) Flow Chart of INPUT Operator f>

FIRU

15

Prints
Monitor
error

~message and

stops job

Clear ring
use bit

Called to
set up two
buffers

Supply adr

of 1lst buf

fer to dev
(DEVIAD)

Address
check buffer
’ limits
DIN Device's buffered
(DSER) input routine

Figure 5 (Cont.) Flow Chart of INPUT Operator

le

Set output
bit; clear
output

close bit

Yes

Returns when
device inactive

Change buffer ring
if requested (see
below for details)

Return when
device not
active

Has a
ring been set
up and referred
to?

No _.f ourr

Yes

Device's dump

. -~

DDO mode output Compute wor
(DSER) routine ount of i
items in |
Puffer ;
i

Wait until . e e ey

WAITL dump complete, gser a ves | Store word |

then return ¢/ want wor > count |

to user. -count com- * i

N puted? l !

AN . l 1

N 1

_No :

Figure 6. Flow Chart of OUTPUT Operator

17

Set buffer use bit
and advance user's
header to next
buffer

Has a
ring been
set up?

Called to
set up a
2-buffer ring

DOU !Clear ring use [
(DSER) ibit in header; !

~» supply address
'of buffer to

I Device L§evice (DEVOAD)

service buffered

output routine

Next
buffer
empty?

Yes : Wait until
buffer is
WSYNC empty and return

OouTs

Clears buffer
to be returned
BUFCLR to user

Is a new
buffer address

specified?
R Sets byte pointer
and item counter
into ring

IOSETC header, then
returns

Returns when
device is inactive

Put new address
into ring header;
clear ring use bit

Figure 6 (Cont.) Flow Chart of OUTPUT Operator

18

UCLSBI

Wait until
\device is
inactive, then
return

;
{ WAIT1

.;\

this a long Yes

dispatch table
device?
Device

routine

Already \Yes]
closed?

Get first
word of
ring
header

0 Yes
Address?

No

UCLSO }-y

Device service Address
input close buffer and
routine clear use
bit

No

Figure 7. Flow Chart of CLOSE Operator S

19

!
I
i

A\ .

Set ring use bit to'
l; clear item ’
count in header;

clear end file bits:
in DEVIOS i

Close
output?

Device
service
close

routine

Wait for
device
inactive

?

referred

buffer
waiting

Yes

Clear
error

bits

Called to
do output

Return when
buffer
emptied

Yes

Device
service
close
N routine
Clear ring
use bit and
header item
count
UCLS3
Store UUO
WAIT1 J bits and
return l

Figure 7 (Cont.) Flow Chart of CLOSE Operator

20

UCLS2B

iR
RELEAO,
RELEA1,
RELEA2,
RELEA3

NS

CLOSE1l Called to close
both input and

output

Make sure device
is inactive

Device service
DRL release routine

(DSER)

\ .

Clear active bit in%

DEVIOS; clear devic
assignment in USRJD

Get number of

highest channel in
use

_—

4

RELEA4
Is
a device ‘No
ssigned to this
channel?

Same
device as the Ye
one being

elease

No

Reduce
highest
channel by
1
| Reduce
highest
channel by
, 1
Return ;
No

Clear DEVIAD

e
,Finished |14 DEVOAD

wwith all

of this

v channels .
device
Figure 8. Flow Chart of RELEASE Operator :

21

e

?| RELEA9

Clear system user
yno.; decrement
request count, and
‘set flag is someone
‘'was waiting

|

Set up
ASSPRG bit

Clear
assignment
bit

means
?

Figure 8 (Cont.) Flow Chart of RELEASE Operator

Clear job
number
field

22

CLRDDB

Reclaim space
used by DDB

Return

LOOKUP

Input
file open
?

No

See
below

Clear end-file bits,
error bits,
beginning- and end-
of-tape bits in
DEVIOS

Set beginning-of-
file, clear error,
user end file,
beginning- and end-
of-tape bits in

DEVIOS

lear input
close bit; close bit;

set lookup set enter
bit bit

Clear 1inpu

Device service
enter routine;

eturns to UUOCON
exit routine

Device service lookup
DLK routine; returns to
(DSER) UUOCON exit routine

Set up UUO
to close
correct half

Called to close
input or output

Make sure device
is inactive, then
return

Figure 9. Flow Charts of LOOKUP and ENTER Operators

23

III. DEVICE SERVICE ROUTINES

DEVICE DATA BLOCKS

(See Figure 10)

The device data block (DDB) structure is the key to I/0 handling on the
UUO level in the PDP-10 Monitors. Each physical device is represented
by a block of words beginning at devDDB, where dev is the 3-letter device
mnemonic. The contents of the device data block completely describe

a particular device at any given time; this description includes the
physical characteristics of the device, the 1/0 status of the device,
and the information required to link sections of the Monitor that
communicate with one another while referring to the device described by
the data block. While any routine is referring to a DDB, its address
(devDDB) is kept in the accumulator DEVDAT, which is then used as an
index register.

Each location in a DDB is known by a logical 6-letter mnemonic, which is
defined in the System Parameter Tape to be a constant equal to the
address of the location relative to devDDB (the address of the specific
device data block). Thus, DEVxxx (DEVDAT) is the address of a specific
word in a particular DDB, where DEVxxx represents the relative DDB
location. Following is a description of the function of each location
within the DDB, starting with the first word, DEVNAM (DEVNAM=0; others
in ascending order.

DEVNAM Contains the physical device name, left justified, in
6-bit ASCII (in the case of multiple devices, this
causes the device number to fall left justified in the
right half).

DEVCHR Contains information giving the device assignment, hung
device count, buffer size, binary device number (the bits
set in each word are defined in the System Parameter Tape).

DEVIOS Contains bits describing the current I/0 status of the
device. The left half is used only by the Monitor,
while the right half becomes a user's device status register,
which can be referred to by GETSTS, SETSTS, STATO, and
STATZ UUO's (see Table 1 for DDB bit definitions).

DEVSER Contains system linking information. The left half contains
the address of the next DDB in a "chain" of all DDB's;
the address of the first DDB in the chain is in the left
half of DEVLST (a location in UUOCON), while the last DDB
in the chain has zeroes in the left half of DEVSER. The
right half contains the address of the Device Service
Dispatch Table, which is referred to by UUOCON.

24

DEVMOD The left half contains bits which, for the most part,
describe the physical characteristics of the device;
most of these are assembled as part of the DDB. These
bits can be called by the user with a GETCHR or
DEVCHR UUO (this is not to be confused with the
DEVCHR DDB word - see above). The right half has bits
indicating whether assignment of the device was by
console command and/or by the INIT UUO, as well as bits
reflecting which data modes are legal for the device
(see Table 1).

DEVLOG Contains the logical device name (left justified, in
6-bit ASCII) assigned by the user from the console
Teletype. When executing the INIT UUO, which links
the word in location USRJDA (UCHN) with a DDB, the Monitor
scans the contents of DEVLOG through the DDB chain
before trying to match the user's specified device with
the contents of DEVNAM.

DEVBUF Contains addresses of buffer headers associated with the

' device by INIT UUO; the left half contains the output
header address, while the right half contains the input
header address.

DEVIAD (or Contains the address of the user's input buffer which is
DEVADR) currently being filled (DEVIAD=DEVADR=7).

DEVOAD (or Contains the address of the user's output buffer currently
DEVPTR) being emptied.

NOTE: In the time-sharing Monitor, the accumulator used
for relocation (PROG) is designated in the index
register field of both DEVIAD and DEVOAD.

DEVCTR (or Contains item count for the buffer (same as the third word
DEVFIL) of user's buffer header). For directory devices which have
long dispatch tables, this location is called DEVFIL and
contains the 6-bit ASCII name of the file being referred to,
while the next location (DEVEXT) contains the extension,
if any, of the file.

There are devices that reserve more locations for the DDB's than those
mentioned above, but these additional locations are required by the
special characteristics of the particular device rather than by the
system itself.

When a device service routine services a class of multiple devices (e.qg.,
DTASER services DTAO, DTAl,etc.), only the DDB of the first device,
DEVO, is assembled into the routine. The rest of the blocks are

loaded outside the routine by Build, being modeled after the DTAO DDB
and being linked in the chain via DEVSER. Build determines the number
of DDB's to create for a device service routine from responses received
during the console dialogue.

25

System

Index
DEVNAM 6—bi£7 3-letter 6-bit device number
- physical name left justified, zero filled |
byte pointer yte pointer
JS PJOBN HUNGCT HUNGST V\PUNIT 24 35
job " hung hung | unit ¥ buffer size
DEVCHR number count constant (blnary) (words)
‘b”"’ @S/ ‘3 (, 90,0
- f’%%/ AL 9 <,° »" S5
DEVIOS devicEEiependent mag
S |12 43) 44}s5]10] 7118l e9l20}2/] 22 2¢{tP9 291 50]3/
link to next DDB, or 0 if device dispatch table
DEVSER
end of chaln address
Y4
2/
@W?é?%3 éyé%%&%@{/
SLON)
SRS 27/ 9 Q Q 9) yf 35~
DEVMOD J '“IegaI; iata mode
£1,2] 3| 41 5] 7 v AV V/ /{Aﬁﬁd /8 its

6-bit logical name
DEVLOG | (1eft-justified, 0 filled)

output ring header relative input ring header relative

DEVBUF address address
DEVIAD, . 14 18 _
DEVADR* PROG |current input buffer address
*Often used as item pointer for unidirectional output devices
14 18
DEVOAD,
DEVPTR™ PROG |current output buffer address
: ~ S -
Often used as item pointer for unidirectional input devices
DEVCTR (d.G-btt fléeneme y up to silx characters, left justified
DEVFIL irectory devices] o
‘Also used as item counter for unldlrectlonal devices
DEVEXT 6-b££ extension,m) T

left justified

: —]:
P ——— - - I - - U - JE— .
additional words May be defined and
used by dev1ce serv1ce routines

Figure 10. Device Data Block (DDB)

26

Table 1. Device Data Block (DDB) Bit Definitions

DEVIOS I/0 Status
IOEND Set at interrupt level by input device when end of file
recognized
10 Direction of transfer: Out =1, In = 0

IOFST Set by service routine to indicate that next interrupt
is first item of a buffer.

IOBEG Set by INIT or ENTER operator to indicate a "new file"
Iow Set when a job is placed in an I/O Wait State
IOIMPM Improper mode detected by input service routine
IODERR General device error bit

IODTER Device data error bit

IOBKTL "Data block too large" error

IODEND End of file (to user)

IOACT Device active, expecting interrupts

IOBOT Beginning of magnetic tape

IOTEND End of magnetic tape

IOPAR Write evén parity (mag tape command)

IONRCK Read with no reread

IOCON Discontinuous I/0 if set to 1. Device stops after
filling or emptying each buffer

IOWC Inhibit system computation of word count for output device

DEVMOD Device characteristics and legal data modes
DVDIRIN Directory is in core
DVDSK Device is a disk
DVCDR Device is a card reader
DVLPT Device is a line printer
TTYATC This Teletype is attached to a job
TTYUSE This Teletype is in user mode

TTYBIU Teletype DDB in use

27

Table 1 (Cont.) Device Data Block (DDB) Bit Definitions
DVDIS Device is a display
DVLNG Device service routine has a long dispatch table
DVPTP Deviee is a paper tape punch
DVPTR Device is a paper tape reader
DVDTA Device is a DECtape |
DVAVAL Device is available (set by DEVCHR UUO)
DVMTA Device is a magnetic tape
DVTTY Device is a Teletype
DVDIR Device has a file directory
DVIN Device is capable of doing input- -
DVOUT Device is capable of doing output
ASSCON Device has been assigned by a console command
ASSPRG Device has been assigned by a program (INIT or OPEN)

Bit (35 - n) is a 1 if mode n is legal for this device

Mode n (decimal)
ASCII 0
ASCII 1line 1
DECtape SAV 2
Image 8
Image Binary 11
Binary 12
Image Dump 13
Dump Records 14
Dump 15

28

UUO-LEVEL OPERATIONS

Dispatch Table

The Monitor dispatches to device-dependent coding via a dispatch table
located in that coding. The base address of this table exists in
accumulator DSER during the processing of an I/O operator. The dispatch
is usually performed by a PUSHJ PDP, INDEX (DSER), where INDEX is a
constant used to select the appropriate entry of the table. See Figure
4 for an illustration of such indices. A "basic" dispatch table

has six entries and is sufficient for service routines of "simple"
physical devices such as card readers, tape punches, and line printers.
Devices which require directory manuevers or complex activities in file
positioning use a so-called "long dispatch table" containing 17

entries (including the "basic" ones). Examples of these are DECtape,
magnetic tape, and disk. Before attempting to dispatch on a "long-type"
UUO, Monitor checks the DVLNG bit in the DEVMOD word (see routine

DISPl in UUOCON, for example).

Table 2. Device Service Dispatch Table

Entries

System Index Purpose
4
-2 DINI Device and service routine initialization
-1 DHNG "Hung device" action

“BASIC“{ 0 DRL DEVDSP: Release (table base address)
- DCL, DCLO } Close, close output

2 DOU OUTPUT Operator

3 DIN INPUT Operator
~
[4 DEN ENTER Operator

5 DLK LOOKUP Operator

6 DDO Dump Mode output

7 DDI Dump Mode input
10 DSO USETO Operator

"LONG"411 DSI USETI Operator

12 DGF UGETF Operator
13 DRN RENAME Operator
14 DCLI Close input (dump mode)
15 DCLR CALL X, [SIXBIT/UTPCLR/)
16 DMT MTAPE Operator

Basic Operations

This section attempts to describe, in summary fashion, the actions
performed by the device service routine upon receiving one of the six
"basic" dispatches.

1. Initialization (Index DINI)
Entered from SYSINI Monitor initialization when Monitor is first loaded

or upon certain restarts. The service routine should set the hardware
control unit to some known free state (usually a CONO DEV, 0). The

29

routine may also have to preset its own software "flag" registers (the
mask bits for interrupt level "CONSOing" are usually kept in a register,
DEVCON, which should now be cleared). Return to the calling routine

is via a POPJ PDP,

2. Hung Timeout (Index DHNG)

Entered from routine DEVCHK at clock interrupt level (refer to CIP5S

in CLOCK). When a device is started by an INPUT or OUTPUT operator and
each time an interrupt is serviced for this device, the HUNGCT field

of DEVCHR is set to the value HUNGST. Every second, the HUNGCT field
of all active devices is examined and, if nonzero, decremented. If
decrementation causes HUNGCT to become zero, this dispatch is made
(preloading of HUNGST with zero will prevent this from ever occurring).

Some device routines use this entry to perform a release or initialization,
but there seems to be no clear-cut rule as to whether something should be
done. Upon return (via a POPJ), the Monitor types out an informative
message on the user's console and places the job in an error stop state.

3. RELEASE Operator (Index DRL)

Entered from RELEAS5 in UUOCON. If the service routine controls a single
unit device (paper tape reader, card punch, etc.), the hardware is
released by an action similar to that described in (1) above. If it

is capable of controlling multiple units (e.g., magtape), the control
unit should not be disturbed as it is likely servicing another job's
I/0. The service routine for a directory device (DECtape, disk) should
use this entry to write out a fresh copy of the directory if it has
changed since it was first read into core. Thus, the releasing action
may range from an immediate return (POPJ) to an actual output data
transfer with consequent placing of the job in I/O Wait, then returning.

4. CLOSE Operator (Index DCL, DCLO)

Entered from UCLS2 or UCLS2B in UUOCON for closing either dump or
buffered output. "Basic" devices are never entered when an input close
is performed; this occurs only for "long dispatch table" devices at
index DCLI.

For buffered output modes, an attempt should be made to output a
possible partially filled buffer with a PUSHJ PDP,OUT (this does no

harm if there is no more output to be done. Also there is no possibility
at this point of there being more than one buffer to flush because

the device independent part of CLOSE has taken care of all full buffers).
WSYNC may now be called to allow completion of activity if the service
routine wants to perform some additional operations in closing the

file. 1If not, a POPJ will return to the CLOSE coding in UUOCON, which
does a wait before returning to the user.

Additional operations include end-of-file marking and formatting.
Examples: Magnetic tape service writes two end-file marks and backspaces
over one of them. Line printer service sends out a carriage return, form
feed combination. Paper tape punch service punches about 13 in. of

blank tape.

30

5. OUTPUT Operator (Index DOU)

Entered from OUT2 in UUOCON to start device doing buffered output. The
activities of file positioning, formatting, and data transfer all take
place at interrupt level. The job of the OUTPUT routine is to
condition the interrupt level coding (by setting software swithhes,
counters, etc.) to perform the desired activity and then to prime the
hardware control unit so that an interrupt will occur. The OUTPUT
routine must also set some indicators so that other sections of the
Monitor will know that this device has been made active for OUTPUT.

If desired, the first dispatch (beginning of file) to the output routine
may be detected by testing the bit IOBEG in accumulator IOS. This bit
is set by an INIT operator and should be cleared by the serviee routine.
For example, detection of this bit causes paper tape punch service to
output a fanfold of blank tape before the data of a file. The first
output call is also used to get the address of the first buffer from
word 1 of the user's ring header and store it in DEVOAD of the device .
data block. In IOS, the IO bit should be set to 1 (output) and the
IOFST bit set to 1 (first item of a buffer).

As part of initialization, the byte pointer used to get data from a user
buffer is set up. 1IOS contains the data mode supplied as part of initial
status. When called by PUSHJ PDP, SETBYT, this routine will return in
TAC a partial byte pointer containing a size field according to the data
mode and "PROG" in the index field. The left half of TAC may now be
stored in the pointer location of the device data block. The right half
is usually filled in at interrupt level each time a new buffer is

b egun (detection of IOFST = 1).

When all IOS bits have been set up, the routine SETACT may be called with
a PUSHJ. This coding sets the active bit, IOACT, stores IOS into the

device data block and initializes the hung count (HUNGST < HUNGCT) before
returning.

The next operation is to start the physical device with a CONO. Simple
output devices are started by supplying an interrupt channel address and
setting the "DONE" (ready for data transfer) flag. It may also be
necessary to supply other conditions to the hardware, but the former
are essentials. The CONSO instruction issued at interrupt level to
test for expected flags may pick up a mask indirectly to allow the
same instruction to test different conditions at different times. If
desired (and this is typical), the mask bits should be placed in this
location at the time the device is started. A macro STARTDV defined in
the file "S" may be used as follows.
Place the desired CONO bits in the right half of TAC and the
CONSO mask bits in the left half. Then write STARTDV XYZ,
where XYZ is the device mnemonic (first three letters of service
routine title, XYZSER). This macro expands as follows.

STARTDV XYZ4 EXTERNAL PIOFF, PION
CONO PI, PIOFF

CONO XYZ, (TAC)

HRLM TAC, XYZCON

CONO PI, PION

Location XYZCON must, of course, be defined within the service

routine.
Having started the device, return to UUOCON with a POPJ PDP, .

31

6. INPUT Operator (Index DIN)

Entered from CALIN in UUOCON to start the device doing buffered input.
While the actual data transfers will take place at interrupt level, the
job of the INPUT coding is to condition the interrupt coding to perform
the desired actions and then to start the device so that an interrupt
will occur. The first input call for a file (IOBEG = 1) is used to
get the address of the first buffer in the ring from word 1 of the user's
ring header and store it in DEVIAD. The desired bits of DEVIOS are
manipulated in IOS, then stored with a PUSHJ PDP, SETACT which also
" turns on the IOACT bit and resets the hung timeout count. The device
may then be started using the STARTDV macro as described under (5).
When starting an input device, the CONO bits assign a PI channel number
and turn on the BUSY flag. The latter sets the physical device in motion
to gather the first word or character from the input medium, at
completion of which the DONE flag sets, causing the interrupt.

INTERRUPT-LEVEL OPERATIONS

Interrupt Channel Routines CHAN and NULL

The Monitor contains one of these routines for each of the seven priority
interrupt levels. A CHAN routine exists for a given level if there is

at least one service routine assigned to that level (by Build). A NULL
routine exists for each unused level. At initialization time, the
routine LINKSR in ONCE ONLY CODE places the instruction JSR CHn in

each location 40+2n (42, 44, . . . 56). The NULL routine defines CHn

as a location to contain the PC word and the next instruction attempts

to dismiss this spurious interrupt with a JEN @CHn.

A CHAN routine contains a like entry point, but the next location contains
a JRST to the interrupt entry of the first service routine built on this
PI level. A CHAN routine also contains a subroutine, SAVCHn (called

by a JSR) to save accumulators 0 through 10 and set up a pushdown

pointer, and a subroutine XITCHn to restore accumulators and dismiss

the interrupt. The pushdown list and accumulator storage locations are

in the body of the CHAN routine.

When a service routine is coded, it is not known what PI level will be

32

assigned at Build time; therefore, there is a standard symbology used to
refer to the CHAN entries. If XYZ is the device mnemonic, the following
symbols (declared EXTERNAL in the device service routine) will be
equated by Build.

XYZCHN = PI channel number, 1 through 7
XYZCHL = CHn, interrupt PC word

XYZSAV = SAVCHn, AC storage subroutine
XYZXIT = XITCHn, AC restore and dismissal

. There are three ways to exit from an interrupt routine. If the routine
has saved and restored all accumulators within its own coding, the
dismissal may simply be JEN @XYZCHL. If the initial part of the routine
called XYZSAV to save accumulators and set up a pushdown pointer, a

JRST XYZXIT will cause restoration and dismissal. Alternately, an
"extra" POPJ PDP, can be used because the pushdown list is assembled
with the address XITCHn as its 0 entry.

Interrupt Service

The interrupt level coding of a device service routine handles data
transfers and error conditions. The routine is responsible for
transmission of one byte between a user's buffer and the file, and

for advancing buffers when necessary. The routine must stop the
hardware device when no buffer is available (device has caught up with
the user) or, conversely, take the job out of a Wait if the latter
condition is detected upon completion of a buffer (user caught up with
device). The flow charts in this section (Figures 11 and 12) describe
the general logic used for interrupt level processing. 1In practice,
some alterations in flow and wide variations in coding technique will
occur because of differences in device speeds and hardware buffering.
We suggest that the reader study the paper tape reader service (PTRSER)
and paper tape punch service (PTPSER) routines, which reveal the
coding techniques that support the functions outlined in these

flow charts.

33

Interrupt
from this device

in chain

No :4To next device

Handle error
conditions

Interrupt
?

Yes

Save AC's and set
up those used to
process data

Set up new byte
pointer and item

Yes
counter

Output and
count item

<

Figure 1ll. General Flow for Output Interrupt Routine

34

Mark buffer as
empty; set first
item indicator; get
address of next
buffer

Signal dev
to stop;

clear IOACT
indicator

Cause job to be
requeued to
"Wait Satisfied"
state

Restore ACs
and dismiss
interrupt

Figure 1l (Cont.) General Flow for Output Interrupt Routine

35

To next
No |device in
tchain

Interrupt
from this device

Handle EOF
or error
t conditions

Read
device's
hardware
buffer

N

Save AC's and set
up those to be used
to process data

Set up new
byte point-
er and item
buffer? counter

No

Store and
count this
data item

Mark buffer as full

Get address of next

buffer; set first
item indicator

ext
buffer
vail-

Yes

[Stop devic
and clear
IOACT
indicator

Cause job to

be requeued to

"Wait Satis-
fied" state

Restore
AC's and
dismiss
interrupt

Figure 12, General Flow for Input Interrupt Routine

36

Table 3

MONITOR UUG'S

Octal Mnemonic Description

040 CALL Extended operation code (see Table 4)

041 INIT <:) Allocate device with parameter in following
words; error return at 3, normal at 4

042

043

044 Reserved for installation use

045

046

047 CALLI Immediate mode extended operation code (see
Table 4)

050 OPEN (:) Allocate device; parameter block at E; skip if
no error

051

052 Reserved for future DEC use

053

054

055 RENAME (:) Change file parameters to block at E; skip if
no error

056 IN <:> Input buffer; use buffer or command list at E
(#0); skip if no error

057 outT (:) Output buffer; use buffer or command list at E
(#0); skip if no error

060 SETSTS (:) Wait for device inactive; load device status
word with E

061 STATO <:> Skip if any device status word bit masked by
alin©E is a 1

062 GETSTS <:) Store device status word in E

063 STATZ (:) Skip if all device status word bits masked by
a l in E are 0

064 INBUF (:) Set up a ring of E standard size input buffers

065 OUTBUF <:> Set up a ring of E standard size output buffers

066 INPUT (:) Input buffer; use buffer or command list at

E if # 0

37

Table 3 (Cont.)

Octal Mnemonic Description

067 OUTPUT <:> Output buffer; use buffer or command string at
E Lif # 0

070 CLOSE (:) Finish I/0 and close file; E = 0 - input and
output, 1 - input, 2 - output, 3 - neither

071 RELEAS <:> CLOSE input and output files and deallocate
device

072 MTAPE (:) Magnetic tape positioning (see below)

073 UGETF (:) Store number of free DTA blocks in E

074 USETI (:) Set DTA or DSK to input block E next

075 USETO (:) Set DTA or DSK to output block E next

076 LOOKUP (:) Select input file, parameter block at E; skip
if no error

077 ENTER (:) Select output file, parameter block at E; skip
if no error

NOTES::

1. I1/0 is performed by associating a device, a file, and a buffer ring
or command list with one of a user's I/0 channels (D).

Write end of record

Backspace record

11 Rewind and unload 1

13 Write 3 in. of blank tape
16 Skip file

17 Backspace file

Skip to logical end of tape

2. MTAPE Commands:
1 Rewind
2
6 Skip record
7
10
1

Documented but not implemented (hardware incompatible)

3. (:) - Channel number used (in AC field)

38

Table 4

CALL [SIXBIT/name/] and CALLI n

Name n Description
RESET 0 Terminate user's I/0, user I/O mode; deallocated
unASSIGNed dev
DDTIN 1 Wait for character, load buffer (address in AC)
with characters typed since last DDTIN
2 Not presently used
DDTOUT @ 3 Wait until output complete; type characters in
buffer (address in AC)
DEVCHR @ 4 Load AC with device characteristics of device
whose SIXBIT name is in AC
5
6 Not presently used
7
WAIT (:) 10 Delay running until device inactive
corel 11 Change core assigned to number of blocks in AC
(0 = no change); skip if granted. AC contains
highest address
EXIT 12 RELEASe all I/O devices, type “EXIT, tc"on
console; console enters Monitor mode
UTPCLR <:> 13 Clear (DTA) directory
DATE @ 14 Load 12-bit date in AC (right justified)
LOGIN2 @ 15 Read n words from system file, pointer in AC
(-n, TABLE)
APRENB1 @ 16 Enable processor traps to user; AC contains
enable bits in CONO APR, format
rLogouT! 17 RELEASe all I/0 devices, return job number, core,
and devices to Monitor pool; do bookkeeping
SWITCH 20 Load AC with processor switch register
REASSIgn 21 Assign device (SIXBIT name in AC+l) to job
number in AC; skip if successful
TIMERl 22 Load AC with time of day in jiffies (clock ticks)
MSTIMEl 23 Load AC with time of day in milliseconds

39

Table 4 (Cont.)

- AC used

1Not available in 10/20 or 10/30 single-user Monitors

Name n Description

GETPPNl 24 Load AC_ with proj number, ACp with prog number
of job whose number is in AC

TRPSET1 25 Enter user I/0 mode; if ACy = 40 to 57, put
C(C(AC)g) properly relocated into C(AC)y:
skip if no error

TRPJEN1 26 Dismiss exec mode interrupt and restore PC
from address in .+1

RUNTIMel 27 Load AC with accumulated run time (ms) of job
whose number is in AC (0 = current job)

PJOBl 30 Load AC with job number of current job

SL}E:EP:l 31 Delay running of job for C(AC) seconds.

232 Not used
NOTES:

(:>~ User's I/0 channel number used (in AC field)

L210/50 Monitor only; available only during LOGIN procedure, not for user

3Feature under development; may vary

DATE STORAGE

12-bit field

31.{12(year—1964)+(month-1)} +(day-1)

1 Jan 1964 to 4 Jan 1975

FILE PROTECTION BITS

9-bit field

COMMAND LISTS

-n,location-1

0,address
_n,o
0'0

ROT AD[WRITE | PROT |READ | WRITE| PROT| READ | WRITE
HG |PROT|PROT |CHG |PROT|PROT |CHG |PROT|PROT
PROT

ROT PROT

OWNER PROJECT OTHERS

Transfer n words starting at location

Take next command from address

Skip n words of data (hardware channel only)
Stop

40

Table 5.

Cross Reference Listing of I/0 Programmed Operator Symbolsl

XxXxCHL D33 DIN D29 (t2),D30 IODEND D27(tl)
XxXCHN D33 DINI D29 (t2) IODERR D27 (tl)
XXXSAV D33 DLK F23,D29(t2) IODTER D27 (tl)
XxXxXIT D33 DMT D29 (t2) IOEND D27(t1)
DOU F18,D29(t2) ,D30 IOFST D27 (tl)
ASSASG Fl2 DRL F21,D29(t2) ,D30 IOIMPM D27 (tl)
ASSCON D28 (tl) DRN D29 (t2) IONRCK D27 (tl)
. ASSPRG D28 (tl) DSI D29 (t2) IOPAR D27 (tl)
DSO D29 (t2) IOSETC F1l5,F18
BUFC1 F13 DVAVAL D28 (tl) IOTEND D27(tl)
BUFCLC F13 DVCDR D27 (tl) I0W D27 (t1)
BUFCLR F18 DVDIR D28 (tl) IOWC D27 (tl)
DVDIRIN D27 (tl)
CALIN bé6,F14,F15,F16 DVDIS D28 (tl) JBTADR D1
CHAN D32 DVDSK D27 (tl) JBTSTS D1
CHn D32 DVDTA D28 (tl) JOBFF D5
CLOSE1l D9,F19,F21,F23 DVIN D28 (tl) JOBJDA D1,D2(f1l)
CLRDDB F22 DVLNG D28 (tl) JOBHCU D1
DVLPT D27 (tl) JOBPFI D1
DCL F20,D29(t2), DVMTA D28 (tl)
D30 DVOUT D28 (tl) LOOKB D2(f1l)
DCLI F19,D29(t2) DVPTP D28 (tl)
DCLO D29 (t2) ,D30 DVPTR D28 (tl) NULL D30
DCLR D29 (t2) DVTTY D28 (t1)
DDI D5,F14,D29 (t2) OBUFB D2(f1)
DDO F17,D29(t2) ENTRB D2(fl) OCLOSB D2(fl)
DEN F23,D29 (t2) , ouT D8,F17,F20
DEVADR D4(£2) ,D25, IBUFB D2(£f1) ouT2 D8,F18
’ D26 (£10) ICLOSB D2(f1l) ouTa D9,Fl17,F18
DEVBUF D5,D25,D26 (£f10) IN D6,F14 OUTBFB D2(fl)
DEVCHR D5,D24,D26 (f10) IN1l D6,D7,F14 OUTDMP D8,F17
DEVCTR D4(£2),D25,D26 INBFB D2 (fl) OUTF D9,F18
(£10) INDMP Fl4 OUTF1 D9,F18
DEVDAT D6,D24 INEOF D7,F15 OUTPB D2 (f1)
DEVEXT D25,D26 (£10) INEOFE D8,F15 ouTs D9,F18
DEVFIL D25,D26 (£10) INITB D2(fl)
DEVIAD D5,D6,D25, INPB D2 (f1) PRJIPRG Dl
D26 (£10) INPTOA D6,D7,F15
DEVIOS D5,D24,D26 (£f10) , INPTOC D7,F15 RELEAO D10,F12,F21
D27 (tl) INPT1 D7,F15 RELEAl D10,F21
DEVLOG D25,D26 (£10) INPT2 D6,D7,F15 RELEA2 Dlo,F21
DEVMOD = D25,D26(f10) INPUT2 D6,F15 RELEA3 D10,F21
DEVNAM D24,D26 (£f10) INPUT3 Fl6 RELEA4 D11,F21
DEVOAD D5,D25,D26 (f10) INPUTF D6,F16 RELE4A D11,F21
DEVPTR D4 (f2),D25,D26 IO D27 (tl) RELEAS D1l1,F21
(£10) IOACT D27 (tl) RELEAG6 D11,F22
DEVSER D1,D24,D26(£f10) IOBEG D27 (tl) RELEA7 D1l1,F22
DEVSRC F1l2 IOBKTL D27 (tl) RELEA9 D1l1,F22
DGF D29 (t2) IOBOT D27 (tl)
DHNG D29 (t2),D30 IOCON D27 (t1) SYSDEV D2(£fl)

lA D preceding a page number indicates that a description of the item is
found on that page; an F indicates that the item appears in a flow chart
on that page. (tn) = Table (fn) = Figure

41

TTYATC
TTYBIU
TTYUSE

UCLSO
UCLS1
UCLS?2
UCLS2A
UCLS2B
UCLS 3

D27 (tl)
D27 (t1l)
D27(tl)

D10,F19
D10,F20
D10,F20
D1l0,F20
D10,F20
D10,F20

UCLSBI
UCLSBO
UDEN
UDLK
UDLKC
UERROR
UINBF
UINIT
UINITA
UINITB

Table 5 (Cont.)

D9,F19
D10,F20
F23

F23

F23

F15
F13,F16
Fl2

Fl2

Fl2

42

UINITC
UOBFI
uouT
UOUTBF
USRJDA

WAIT1

WSYNC

Fl2

F13
D8,F17
Fl3,F18
D1,D2(£fl)

Fl4,F17,F18,
F19,F20,F21,
F23
F1l4,F17,F18

dlilgliltiall

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Printed in U.S.A.

	0001
	0002
	001
	002
	003
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-09a
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	7-00
	7-01
	7-02
	7-03
	8-00
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	xBack

