INTRODUCTION TO
DEC SYSTEM-10:
TIME-SHARING and BATCH

THIRD EDITION

T. W. SZE

PROFESSOR OF ELECTRICAL ENGINEERING

UNIVERSITY OF PITTSBURGH

Copyright (C) 1974, 1977, 1980 by T. W. Sze

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of T. W. Sze, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, U.S.A.

Printed in the United States of America

Library of Congress Cataloging in Publication Data:

Sze, T. W.
Introduction to DEC System -10

Pittsburgh, Pa. : Univ. of Pittsburgh

Library of Congress Catalog Card Number: 80-54311

ii

Contents

CONTENIS

Preface to the Third Edition

Chapter 1

Chapter 2

INTRODUCTION

1.1 Batch Processing versus Time-Sharing
1.2 Time-Sharing System at Pitt

1.3 Computer. Service

Remote Terminals

.4 Communication with the Computer

.5 Description of a Remote Terminal,
the DECwriter

6 The Keyboard

7 Other Types of Remote Terminals

8 Sign-On at the Remote Terminal

9 Password

1 Disk Storage Quota

1 Sign-Off Procedure

1.12 Basic Concept of Files
Exercises on a Time-Sharing Terminal

References

TEXT EDITOR

2.1 Introduction
2,2 Selected Terminology
A Primer of UPDATE Editor

.3 Movement of Pointer, $TO, SAT and S$TRAVEL
4 Change of Text Material,
$CHANGE, $ALTER and $SUBSTITUTE
5 Deletion of Lines, $DELETE
.6 Output of Lines, STYPE
7 Line Insertion
8 Completion of an Editing Session,
SDONE, $END and $FINLSH

Other UPDATE Commands and Procedures

2.9 Line Insertion Mode
2,10 Compounded Editing Commands

iii

iii

11
15
13
21
23
23
25
27
27
30

32

33

37
37
3y
4u
41
41
42
43

44
47

Chapter 3

211
2.12
2.13
2.14
2.15

Move Command, S$SMOVE

COPY Command

Editing—Control-Function Switch Commands
Editing Function Value-Setting Commands
Miscellaneous Editing Commands

Selected Advanced Topics in UPDATE

2.16
2.17
2.18

Preparation and Use of Auxiliary Files
Conditional Editing Commands
Editing Programs

A sumary of File Management by UPDATE

2.19
2.20

File management Tasks
Examples of File Editing

Exercises

References

FORTRAN-10

Running a FORTRAN Program on DEC System—10

PR

PR

W W wwww
.

=

O JO U W

To Enter and Store a FORTRAN Program
To Edit a Stored FORTRAN Program
To Compile, Load and Execute

a Stored FORTRAN Program
Optional Switches
An Example of FORTRAN Processing

ummmary of FORTRAN-10

A Summary of Constants, Variables and Expressions

FORTRAN-10 Statements

A Summary of FORTRAN-10 Compilation
Control Statements

A Summary of Specification Statements

A Summary of Assignment Statements

A Summary of Control Statements

Terminology Used in FORTRAN-10
INPUT/OUTPUT (I/0) Statements

A Summary of FORTRAN-10 READ Statements

A Summary of FORTRAN-10 WRITE Statements

A Summary of FORTRAN-10 I/0 Statements

FORTRAN-10 File Control Statements

Format Statements

FORTRAN-10 Device Control Statements

FORTRAN~10 Subprogram Statements

Subprogram Libraries in FORTRAN

3.20
3.21

3.22
3.23

Selected FORTRAN-10 Subprograms Developed by DEC
Selected Subprograms Developed at
the Pitt Computer Center
The SUBSET Subprogram Package
Comprehensive FORTRAN Subroutine Libraries

iv

49
52
54
58
60
63

63
65
70

72

72
74

77

80

81
82

82
84

85
88
91

93

93
95

97
98
99
100

101
104
105
106
107
110
112
114

117
117
118

123
129

Chapter 4

Chapter 5

24 Array Processor
25 FORTRAN 77
FORTRAN PROGRAM DEBUGGING

4.1 Introduction
4,2 Types of Errors

Pre-Computer-Run Debugging

4.3 Walkthrough by Flow Charts
4.4 The FORFLO Program

Off-Line Debugging by Code Inspection

4.5 A Checklist for Data Errors

4.6 A Checklist for Computation Errors
4.7 A Checklist for Logic Errors

4.8 A Checklist for Input/Output Errors
4.9 A Checklist for Program Readability
On-Line Program Debugging by Diagnostic Reports
4.10 Compiler Diagnostics

4,11 Run-Time Diagnostics

4.12 Dimension Out-of Bound Errors
On-Line Debugging by Conditional Compiling
4.13 The D-Statement

On-Line Debugging by Tracing Aids

4,14 The TRACE Program
4,15 The MSFLVL Subroutine

On-Line Debugging by an Interactive debugger
4.16 The FORDDT Processor

4.17 Basic FORDDT Commands

4.18 A FORDDT Example

Exercise

References

MODELING AND SIMULATION BY CSMP

Introduction

5.1 Dynamic Modeling of Systems

5.2 Differential Equations

5.3 Preparation for Digital Computer Solution
5.4 CSMP as a High-Order Language (HOL)

134
135
137

137
138

139

139
142

146
l4e
149
150
152
152
154
154
155
168
170
170
173

173
173

175
175
176
179
183

184

185
185

185
187
187
189

Chapter

6

A CSMP Primer

5.5 Symbols, Constants, Operators,
Functions and Labels

5.6 Format of CSMP

5.7 Structure of a CSMP Program

5.8 SORT and NOSORT Sections

5.9 Structure Statements

5.10 - Data Statements

5.1 Control Statements

Running CSMP at Pitt

7.12 CSMP Job Preparation

5.13 CSMP Job Execution

5.14 Other Modeling and Simulation Languages
CSMP Examples

5.15 CSMP Examples

Exercises

References

A PRIMER OF COMPUTER GRAPHICS WITH DEC-10

6.1 Computer Graphics and Computer Graphics Devices

Graphing and Plotting

6.2 Plotting on a Terminal or Printer
6.3 Plotting on a Plotter
6.4 Preview of Plotter Output

General Graphics

6.5 Basic Principle of a Digital Plotter
6.6 A Primer on CalComp Plotter Subroutines
6.7 Examples of CalComp Programming

A Primer on Graphics Software for Graphic Terminals

Basic principle of a Graphics Terminal
Terminology
0 Screen Graphics and Virtual Graphics
1 A Basic Set of TCS Subroutines
2
3

Interactive Graphics
A Summary of Other TCS Subprograms

oo O
N
S

Three Dimensional Displays
6.14 Three Dimenional Displays
Exercises

References

vi

194

194
194
195
195
196
201
202
207
207
209
209
211
211
221

224

225
225
227
227
236
241
245
245
247
249
259
259
260
261
264
271
275
280
280
282

283

Chapter 7

Chapter 8

SELECTED SERVICE PROGRAMS AND PROCEDURES

7.1 Introduction

7.2 The Standard PIP Command Structure

7.3 Transfer of Multiple Files, the X-Switch
7.4 Transfer of Files with BEditing

7.5 File Directory Management

7.6 Multiple PIP Switches

7.7 A Summary of PIP Switches

7.8 The SORT Program

RUNOFF

7.9 RUNOFF Operating Procedure
7.10 How RUNOFF Works

7.11 Basic RUNOFF Commands

7.12 Special Text Characters

7.13 Selegted RUNOFF Switches
7.14 A Summary of RUNOFF Commands
OPRSTK

7.15 Introduction

7.16 To Create a Control File
7.17 To Submit a BATCH Job at a Terminal
Virtual Memory

7.18 The Virtual Memory Procedure

References

OPERATING SYSTEM COMMANDS

8.1 Introduction

Job Initialization and Termination

8.2 Job Initiation at a Remote Terminal
8.3 Password

8.4 Job Termination at a Terminal

Communication and Status Reporting

8.5 Communication in the Time-Sharing System
8.6 Status Report Commands

Source File Preparation

8.7 Source File Preparation Commands

vii

285
285
285
289
291
291
294
294
296
297
297
299
300
301
302
307
308
310
314
314
314
316
317
320

319

320
320
326
326
328
328
330

330
333

335
335

Chapter 9

Chapter 10

Allocation of Facilities

8 Facility Allocation by Monitor

.9 Allocation of Unrestricted Devices
.10 Allocation of Restricted Devices
L1 Remote Terminal Control Commands

[oslieslioc R es)

Program Execution and Control
8.12 Execution and Related Commands
File Management and Control

8.13 File Management Commands

8.14 File Output Commands

8.15 The QUEUE Command

8.16 Operating System Command Locally Enhanced

References

MULTIPROGRAM BATCH
Introduction

9.1 Introduction
9.2 BATCH Software System
9.3 Procedure of Running a Batch Job

Control File

4 Batch Control Commands
5 Sign-On Batch Control Commands
6 Sign-Off Card, SEOJ
7 The End-of-Deck Card, $EOD
8 Batch Control Commands for Disk Storage
9 Batch Control Commands for Compiling
and Execution
9.10 A summary of Batch Deck Modules
9.11 Batch Control Commands for Error Recovery
9.12 Miscellaneous Topics in Batch Control Commands

Submitting a Batch Job

9.13 Submitting Batch Jobs in Cards
9.14 Submitting Batch Jobs from a Terminal

References

TAPE HANDLING

10.1 Magnetic Tape

10.2 DECtape

10.3 Preliminary Procedures

10.4 Allocation of Tape Drives and Mounting of Tapes
10.5 Sequential Processing of Magtapes

10.6 FORTRAN-10 Execution-Time Tape Control

viii

336

336
336
339
344

347
347
350

350
354
355
364

366

367
367

367
368
370

371

371
371
374
375
375

376
379
384
385

389

389
389

391

393

393
395
396
398
399
399

Appendix A

Appendix B

Index A

Index B

Tape Service Programs

10.7 The UARC Program

10.8 The ACCESS Program

10.9 The ARCHIVE Program

10.10 The CHANGE Program

10.11 Tape Transfer and Comparison Programs -
MTCOPY, DICOPY and FILCOM

References

A SUMMARY OF PIL LANGUAGE

A.l

HE I]

.

e s e S 3 e

e 0 0 O U W N

S wWwhhHEo

Rules on PIL Variables, Constants
and Expressions

Statement Labels

Some Basic PIL Statements

Loop Statements

Input/Output Statements

Input/Output Format

Subprogram Statements

File Management Statements

File Input/Output

File Control Statements

Execution-time Function and Program Step Input

PIL-FORTRAN Linkage

PIL-OPRSTK Linkage

Other PIL Commands

References

INTERACTIVE ENGINEERING PROGRAM LIBRARY

GENERAL INDEX

COMMANDS, PROGRAMS, AND PROCESSORS

ix

401

401
403
405
406

408

411

412

412
413
413
416
416
416
417
418
419
419
420
420
421
421

422

423

438

443

PREFACE OF THE THIRD EDITION

Completion of the Third Edition marked the tenth year since the book
project first started. Materials of the First Edition were the results of
organizing the class notes of a freshman course I developed and taught. The
organization of the text was aimed in such a way that (1) materials were
presented in several levels of depth so that a beginner can quickly acquire a
basic skill, and (2) a subjective judgement was exercised in the relevancy of
materials to the intended readers, who will use the computer as a tool in their
fields but have no desire to become professional programmers.

The experience of using these materials, class notes and earlier editions
of the book, seems to bear out this rationale. So the Second Edition simply
updated the progress in the DEC-10 hardware and softwares. However, during the
past few years, there have been very significant changes in the computer
maturity of our student body in Engineering. High school instructions,
microcomputer projects, hobby electronics all have contributed to this. As a
result, the changes in the Third Edition involve a great deal more than just
updating the changes and progress in DEC-10. Specifically:

(1) Three chapters in PIL and BASIC languages are deleted, and they are
replaced by chapters in Program Debugging, Modeling and Simulation, and Computer
Graphics, Only a summary of PIL is retained as an appendix in the Third
Edition.

(2) The book is now sharply directed to the goal of using the computer as
a system. Therefore, although FORTRAN is the fundamental programming language,
the book is not intended to be a programming manual. At the School of
Engineering, this book was used in a second course, after the students have

their initial instructions in the FORTRAN language.

(3) In using the computer as a system, the book aims to remedy the most
neglected and yet the most important phase of computer processing, namely, the
debugging of a program. Many people still consider that as an art, and cannot
be taught. The Third Edition makes a serious attempt on the study of program
debugging. An entire chapter is devoted to that subject.

(4) The chapter sequence is re-arranged so that the front part of the
text would be appropriate as a text, and the latter part as a reference. In
addition, exercise problems have been added to help readers sharpen their
skills.

As in the last two editions, I am most indebted to my family. In spite
of their own busy professional and college schedules, my daughter Deborah and my
son Daniel found time to read the manuscript and made both technical and
grammatical suggestions. My wife Frances, beside being understanding and
encouraging, took charge of style review and proof reading, and made suggestions
that increased the readability immeasurably. Students and colleagues, too
numerous to list, have been most helpful; their questions, suggestions and
ideas were indispensable. Finally, I wish to acknowledge the Computer Center at
the University of Pittsburgh for providing the facilities and ervironment that
made this book possible.

November 23, 1980
Pittsburgh, Pennsylvania T. W. Sze

CHAPTER 1

INTRODUCTION

1.1 Batch Processing versus Time-Sharing

Once upon a time, when a computer user wanted to run a program, he would
have to go through the following steps:

(1) The user submitted his program and data deck to the Computer Center.

(2) The decks of cards submitted by different users were stacked
together to form a batch, each deck with its proper identification.
All jobs in one batch were then executed in one "run", hence the
name "batch processing". The information on the punched cards in a
batch were first copied into a reel of magnetic tape by means of a
small and relatively inexpensive computer. The reason for this was
that the card-input to the main computer was a slow and therefore
expensive process.

(3) The magnetic tape so prepared became the input medium to the main
computer., At the scheduled time, the jobs in the batch were run and
the outputs (printouts, cards, tapes, etc.) were obtained.
Sometimes the outputs were recorded on another reel of magnetic
tape; then output printing may be done off-line so as not to slow
down the computer operation.

(4

The outputs were returned to a designated place of the Computer
Center for the users to pick up.

During the execution of a job in one batch, such as to compile and
execute a FORTRAN program, each job had the undivided service of the entire
computer, with all of its memory, input and output devices, supporting services
and library routines. When the next job entered the computer, that job in turn
received the total service of the computer for the duration of the job
execution, however brief.

Economics and efficiency considerations have led to the techniques of
multi-programming in batch processing, so that several programs may be executed
interleavingly when devices required for execution are not in demand at the same
time, or if a priority of queuing can be clearly established.

From the point of view of economy and machine efficiency, batch
processing indeed represents the best computer utilization because it can serve
a maximum of users within a given span of time. The prime consideration is then

1

2 CHAPTER 1 INTRODUCTION

the efficient usage of computing resources, even if it is done at the expense of
efficient usage of user resources. Therefore, from the users' point of view,
batch processing has many limitations.

The time interval between submitting a card deck to the Computer Center
and retrieving the results, called the turn-around-time, may vary from several
minutes to several days. Such long intervals are most frustrating to a user
during the program preparation and debugging stages. A minor error of an
incorrect punctuation mark in a program can cause a delay of hours or days.
Once the grammatical errors are removed, it still requires many successive runs
to remove logical errors, These consecutive runs cannot be hastened because the
second run depends on the first, the third depends on the second, and so on.
That made the debugging stage the most tedious and frustrating part of the
program development,

Thus the early work in time-sharing research was motivated by correcting
the tedious and frustrating process of debugging in the batch mode of operation.
The reasoning that led to time-sharing was that the human responses and the
output device responses are very slow in comparison to the logic and computing
speeds of the computer; hence, it may be possible to switch the computer from
one user to another and still seem to maintain a continuity at each user's
station.

In the time-sharing mode of operation, a computer will service the jobs
entered at remote terminals by sequentially giving a short period of time,
called a time slice, to each job. Once that time slice is exhausted, that
particular job is returned to the end of the queue to wait for another turn. In
the meantime, a monitor program will perform the necessary bookkeeping and
housekeeping tasks so that when that job receives a time slice again from the
computer, the execution will pick up where it was left off.

From early 1960's when the time-sharing system concept was first
developed, this mode of operation for a computer became widely accepted as an
augmental mode of operation. However, before very long, it became quickly
apparent that the major benefit is not the reduction of programmer frustration,
but an entirely new dimension of problem-solving not possible before, utilizing
a high degree of interaction between man and machine as a team. The language
processors and programs may then be so designed that during the execution of a
program, not only can error messages be sent to the user to aid his debugging,
but also the user is able to modify his problem solving tactics and procedure as
he sees the partial results along the way. It is possible then to design
programs subject to modification by the user during execution time to adapt
themselves to the condition of the problem.

Figure 1.1 shows a typical time-sharing computing system hardware
organization. The configuration consists of a computer located at the Computer
Center and the communication control, transmission and receiving equipment to
connect the computer with the ~ users at the remote terminals. The
data line multiplexer and controller is used to control and direct the schedule
of time-sharing activities. At the user's terminals, each terminal is connected
to a data set or modem (modulator-demodulator) that converts the output . signals
from the terminal into a form suitable for transmission by the communication
channel. The communication channels are usually commercial telephone networks,
although in many cases telegraph lines and microwave channels are also used.
The data set or modem at the receiving end re-converts the transmitted signals
back to a form suitable for processing by the computer circuits.

It is also of interest to note that the remoteness of remote terminals is
only limited by the quality and the economy of the communication equipment. At
the present level of communication technology, it is commercially practical for

tape tape
units contfrol

pri n*rer}———t ’
_— i
1

CENTRAL

| DATA LINE

MULT IPLEXER

: card]
reader |

. PROCESSOR

.
.

communication

AND channels

Tape Tape
units control

CONTROLLER

-

|+ [disk disk |
f units| control;

| swap |_! swap
| control| |device

I l
ll . 1/0 1/0

processor processor;

¥ l l
“ Memory]‘.___.__4
H____L_Sf_*e_“‘s_,___'_ __

modems

1/0 Bus

Facilities at a Computer Center

Figure 1.1 A Typical Time-Sharing System Hardware Configuration

0

modems terminals

waysks ButaeyS-SUITL

4 CHAPTER 1 INTRODUCTION

a large, centralized computer to serve on demand users scattered over a wide
area over the world. Thus through the time-sharing use of computer, an entirely
new "utility” has emerged, just like electricity, gas, or water, to provide the
users with the computer services when independent ownership of these services
may be out of reach economically to these users,

1.2 Time-Sharing System at Pitt

University of Pittsburgh is one of early pioneers in the development of
time-sharing computer system. Through a federal grant in 1965, the time-sharing
facilities for the University community were established, using an IBM 360/50
system., Much of the software supporting facilities was developed in the
subsequent years, resulting in a system then known collectively as the Pitt
Time~Sharing System, or the PTSS.

In 1971, the time~sharing computer at the Pitt Computer Center was
changed to a multiple PDP-10 system of Digital Equipment Corporation. This
system has been upgraded and expanded several times, and the present
configuration is a dual DEC-1099 system. Figure 1.2 shows the configuration of
the system.

As in many similar environments, the current software system is a
combination of vendor-supplied software and self-developed facilities. The
readers are referred to the list of references at the end of this chapter for
details of language processors and other software subsystems.

The software system of the time-sharing system contains, in addition to
the language processors, a group of service routines. The most important one
for the time-sharing operation is the executive system, also called a supervisor
or amonitor. It is a master program which exercises an overall control on the
time-sharing activities. It performs the scheduling of users from the queue,
provides users with proper language processor and peripheral facilities as
requested by the users, keeps an account of charges, and provides a variety of
service functions.

Because of the control it exercises, the monitor is the highest-ranking
program in the software system. The monitor controlls and dispatches a group of
processors, collectively called the CUSP (Commonly Used System Programs), among
which are the language processors such as BASIC and FORTRAN. In turn, under the
control of each CUSP is a subgroup of routines for the execution and/or
interpreting of the instruction set of the CUSP. Thus the software system has a
distinct hierarchy structure, and this is shown in Figure 1.3.

There are several points regarding the software system structure worthy
of note:

(1) There are three levels of hierarchy: the monitor 1level, the CUSP
level, and the sub-CUSP level. The monitor level is the highest.

(2) It is a common practice in a time-sharing system for the computer to
supply a prompting symbol through the user's terminal to indicate that the
computer is ready to accept a command or input data. In the time-sharing system
of DEC-10 system, different hierarchies use different types of prompt symbols:

PITT'S DECsystem 10’s
SYSTEMS A & B SYSTEM C

ALL ACADEMIC AND RESEARCH COMPUTING ALL ADMINISTRATIVE COMPUTING

PRIMARY SECONDARY SECONDARY PRIMARY CEnTRAL
CENTRAL CENTRAL ENTRAL ENTRAL PROCESOING UNIT
PROCESSING UNIT PROCESSING UNIT PROCESSING UNIT PROCESSING UNIT
8 NINE-TRACK MAGNETIC TAPE DRIVES N 4 NINE-TRACK
4 DEC TA®E DAIVES 1 SEVEN-TRACK MAGNETIC TAPE DRIVE 4 DEC TAPE DRIVES s oM MAGNETIC
(ACCESSIBLE FROM BOTH SYSTEMS) AR TAPE DRIVES
1 MILLION WORDS B oM s Bl e 1 MILLION WORDS 512K WORDS
OF CORE MEMORY R OCE SSILE PHOM GO SYETEMS) OF CORE MEMORY OF CORE MEMORY

CONFIGURATION AS OF JANUARY 1984

Figure 1.2 Configuration of a DEC-1099 System at Pitt
(Bach central processing unit is a PDP-10 CPU)

Reprinted by permission, Reference 6
Computer Center, University of Pittsburgh, Pittsburgh, Pa.

1314 e Butaeys-ouwrl,

CHAPTER 1 INTRODUCTION

> Sub-CUSP level

—sto___]
* CUSP lavel .
| $CHANGE

UPDATE {3TYPE
—{ sDELETE
etc
FORTRAN
'''''' ~
MONITOR J BASIC
I
MONITOR level PIP
SORT
stc

CUSP = Commonly Used System Programs

Figure 1.3 A Typical Time-Sharing Software System Organization

Prompt

Symbols Explanations Hierarchy Ievel
. A period Monitor level
* An asterisk CUSP level
>> Double ">" signs
> Greater-than sign Sub—-CUSP level
? Question mark

(3) When such a prompt symbol appears on the user's terminal, the
computer is ready for a command or information, and the user must type in a
command or data and terminate the typing with a carriage return. However, when

Computer Service 7

a program contains a number of such command/input breakpoints, it becomes
difficult for the user to keep track exactly what command/input is expected at
each breakpoint. It is therefore necessary for the program to be designed so
that a statement of instruction or prompting message is printed on the terminal
at each breakpoint 1in order to guide the user. The following shows a typical
example: (user's typing in Ztalics)

Explanation
A prompting statement

ENTER OPTION NUMBER BELOW:
586 2

NO SUCH OPTION, TRY AGAIN!
ENTER OPTION NUMBER BELOW:

Convention used in this book:
Text in italics = user's typing

>33 2 N
. = carriage return
E{lm;:R NUMBER OF VARIABLES: Other text = computer printout

Thus, the combination of the prompting statement, the prompting symbol and - the
user's response constitutes a man-machine interaction, and is referred to as a
man-machine dialogue. Programs using extensive dialogues to guide the users are
called conversational programs.

(4) It is not possible to transfer directly from one CUSP-level language
processor to another without first returning to the monitor. This transfer can
be made conveniently by providing a special control key on the remote terminal
keyboard. See Section 1.6 for the function of various keys on the keyboard.

1.3 Computer Service

The computing facilities in an academic institution are generally
provided to serve a combination of instruction, research and administration
functions. When the facilties are shared by different users for different
functions, it is necessary to establish rules and regulations so that the
resources may be most efficiently and equitably utilized, While it 1is outside
the scope of this book to enumerate these rules and regulations, it is important
for every user to be familiar with them. These include such matters as
application procedures, allocation of computing time and resources, restrictions
placed on the computing services, fiscal arrangements, ethical and legal
stipulations regarding security, propriety and relevance of work using the
computing resources, and policy on computer abuses.

Application procedures are generally defined by the Computer Center to
determine the eligibility and extent of computer usage of an applicant. The
application requires certain pertinent facts and the wusual authorizing
signatures. Readers are referred to their respective Computer Centers for
current procedural details.

When an application is accepted, the applicant is assigned a pair of
identifying numbers:

[m,n]
where m = a 6-digit (octal) project number, and
n = a 6-digit (octal) programmer (user) number.

The combination of these two numbers, referred to as the project-programmer
numbers, is often abbreviated either as PPN or as P,PN. Note that a PPN is
usually enclosed in a pair of square brackets.

8 CHAPTER 1 INTRODUCTION

REMOTE TERMINALS

1.4 Communication with the Computer

A remote terminal is used as an input or output device at the control of
the user. Generally, it is a typewriter-like device with a keyboard, a typing
or displaying element, and the interface between the user and the system. The
performance of the remote terminals depends to a large extent upon the
communication linkage between the terminals and the computer. Hence, some of
the basic concepts and terminology will be described here to aid the
understanding of a time-sharing terminal.

(1) Transmission line

Depending on the modes of information transmission, the transmission
lines, also called channels, are classified as simplex, half-duplex, and
full-duplex. A simplex channel can transmit information in one direction only.
A half-duplex channel can transmit information in either direction, but only in
one direction at a time. A full-duplex channel can transmit information in both
directions at the same time.

Depending on the physical connections, transmission lines may be
classified as dedicated, shared, hard-wired or dial-up lines. A dedicated line
or channel is one assigned for the exclusive use of the terminal. A shared line
is one assigned to the use of several terminals. A hard-wired line connects
physically from the terminal to the system. A dial-up line is a shared line
using the commercial dial telephone network for connection.

(2) Information code

Information to be transferred externally between a terminal and a
computer on the transmission line is represented by character sets consisting of
alphabetic characters, both upper and lower cases, numeric characters,
punctuation marks and special characters. In addition, signals representing
control action of transmission and processing are coded into "control
characters". These information characters and control characters may be coded
into a series of binary digits (called bits) so that information may be
transmitted and processed by the computer and the terminals. Several systems of
codes are in use. The code format used in most U.S.-made non-IBM machines,
including the systems at Pitt, is the ASCII* code, which encodes 128 characters
into 7 binary digits. Table 1.1 shows the ASCII code assigmnment of characters,
where the code assigmments are given in octal numbers. For example, the upper
case letter "A" is coded as octal 101, or actually as 7-bit binary
representation of 1000001.

Note that the character set shown in Table 1.1 is the ASCII
information-character set, which is a subset of the complete ASCII code of 128
characters. The 32 characters not shown in Table 1.1 are all control
characters. With ASCII code, the words PITT and Pitt are then transmitted
respectively as:

10100000 1001001 1010100 1010100 (PITT)
10100000 1101001 1110100 1110100 (Pitt)

*Acronym for American Standard Code for Information Interchange, usually
pronunced as "AS-KEY".

Remote Terminals

ASC 1 ASCI ASCI I

Character 7-Bit Character 7-Bit Character 7-8it

Space 040 e 100 ' 140
! 041 A 101 a 141
" 042 B 102 b 142
043 c 103 c 143
$ 044 D 104 d 144
% 045 E 105) 145
& 046 F 106 f 146
’ 047 G 107 g 147
(050 H 110 h 150
) 051 I 11 i 151
* 052 J 12 J 152
+ 053 K 13 k 153
, 054 L 114 I 154
- 055 M 15 m 155
. 056 N 116 n 156
/ 057 0 17 o 157
0 060 P 120 p 160
1 061 Q 121 q 161
2 062 R 122 r 162
3 063 S 123 s 163
4 064 T 124 t 164
5 065] 125 u 165
6 066 v 126 v 166
7 067 W 127 " 167
8 070 X 130 x 170
9 on Y 131 y 171
: 072 z 132 z 172
; 073 L 133 { 173
§ 074 N 134 I 174
= 075 | 135 } 175
t 076 4 136 " 176
? 077 « 137 Delate 177

The code asslignments of octal numbers from 000 to 037
are for control characters, and are normally of no concern
to an average user. However, certaln control characters
pertain to printer control, and It wifl be useful to know
thelr code assignments. These are:

Line Feed 012 Form Feed 014
Vertical Tab 013 Carrlage Return 015
Hor izontal Tab 021

Table 1.1 ASCI| Character Set
All numbers in octal codes.

10 CHAPTER 1 INTRODUCTION

In an actual transmission, each ASCII-coded character is packed together
with additional bits that perform functions of synchronization (START and STOP
of each character), error-checking (parity bit), and filler or Jdummy bit (to
allow slower mechanical components to catch up with electrical and electronic
components) . The result is either an 1l-bit group (for low-speed transmission)
or a 10-bit group (for higher speed transmission) for each character
transmitted.

Not all computers made in U.S. use the ASCII code. The IBM computers,
such as System/360 and System/370 machines use a code system called EBCDIC
(Extended Binary Coded Decimal Interchange Code) to adapt to its byte-structure
(I byte=8 bits). Hence, output media, such as magnetic tapes, are not
compatible between ASCII-code machines and EBCDIC-coded machines without first
going through a code conversion process. Because of wide-spread use of both
code systems, such a code conversion routine is a part of standard service
routines available at the Computer Center. For the same reason, a remote
terminal wired to accept the EBCDIC code cannot be used in the DEC-10 system
unless it is re-wired or it has a switchable option of code selection.

While the ASCII code has been adopted as the 2American standard for
peripheral communication, it has shortcomings in certain particular
applications. For example, the internal representation of a FORTRAN variable
would be very awkward in a machine such as the DEC-10 with a 36-bit memory word
format. Since the standard FORTRAN defines a variable name to contain one to
six characters, an ASCII-coded six—character FORTRAN variable name will require
42 bits or 2 memory words for its storage, a rather inefficient usage. BAs seen
in the Table 1.1, if we forego the difference between the upper and the lower
cases of alphabetic characters, we can omit the right-hand column in that teble.
This would reduce the character set to only 64 characters. Since each of the
64-character set may be uniquely defined by a coding scheme of six binary
digits, this results in a Sixbit Code. With each character code only six bits
long, a six-character FORTRAN variable name can now fit snugly into a single
36-bit word. In this coding system, any lower case alphabetic character, when
encountered, will be automatically coded as its upper case equivalent. The code
assignment of each character in the Sixbit Code will not be tabulated here, but
will be given later in Chapter 3 (FORTRAN-10) where its reference will be more
relevant. The derivation of the Sixbit Code of a character from the 7-bit ASCII
code may be obtained simply by dropping the second bit (counting from the left).
For example, the letter "A" is coded as 1000001 in ASCII code, and is 100001 in
Sixbit. Alternately, the Sixbit Code can be "computed" from the ASCII code by
either of the following algorithm:

(SIXBIT)
(SIXBIT)

= (ASCI1I) - 040 in octal arithmetic
= (ASCII) + 040 in octal arithmetic

and then retain the two least significant octal digits.

Thus, the letter "A" is coded as octal 101 in ASCII, and as octal 41 in
Sixbit.

DECwriter 11

(3) Speed of transmission

The speed of transmission of the signal is measured by the rate of
transmission in signals per second, expressed in baudg*. In binary
transmission, each signal contains one bit of information, and consequently the
speed of signal transmission is numerically the same as the speed of information
transmission. Thus a 300-baud line will transmit information at a rate of 300
bits/second. However, in polyphase modulation, each of the four predetermined
phase-shifts represents two bits of information, and a 300-baud line will
transmit information at a rate of 600 bits/second. Capability of commercial
transmission services, such as telephone or telegraph lines, ranges from 100 to
several hundred thousand bauds. The maximum capability of a "voice grade”
dial-up telephone line is about 2000 bauds.

In a time-sharing system, information transfer may be initiated or
terminated at the terminal. The. ASCII coded 7-bit signals arriving at or
departing from a terminal are packed with additional bits to perform functions
of synchronization and parity error checking. The result is an 1l-bit group for
each ASCII character for 110-baud transmission, or a 10-bit group for 150 or 300
baud rate transmission. These transmission speeds are used to match the
terminal output speed of 10, 15 or 30 characters/second respectively.

Since the remote terminals generate and receive information at relatively
low speed, the capability of the transmission line is hardly taxed.
Consequently, various line-sharing techniques are available, one of which
involves the use of a concentrator. A concentrator is usually a minicomputer
which collects information from several terminals in the area at a low speed,
and then packs them and re-transmits. In the reversed direction, a concentrator
receives information and distributes them to different terminals.

1.5 Description of a Remote Terminal, the DEC LA36 DECwriter

For several decades, the most commonly used communication terminals have
been the Automatic Send-Receive Teletypewriter Set (ASR), model 33, 35 or 38,
These are called ASR33, ASR35, and ASR38, and in most cases, simply Teletype ®.
In fact, the standard abbreviation for terminal-like device in a computing
system has been uniformly taken as TTY.

Rapid recent advances in technology have produced new generations of
remote terminals. Relay circuits were replaced by transistorized circuits,
which in turn are being replaced by microprocessors or microprogrammed
controllers with semiconductor memory. Mechanical components are improved so
that they are lighter and move faster. Clumsy typing heads with embossed
characters are replaced with matrix wire impact printing, thermal or
electrostatic non-impact printing., While the technological advances have made
new generations of terminals lighter, faster, less expensive and more reliable,
the basic operating principles procedures remain essentially unchanged, thanks
to the tremendous steadying effect of Teletypes as the industry workhorse over
the last three to four decades. It 1is therefore possible in the. present
discussion of remote terminals to deal specifically with one particular terminal
and still retain generality of our discussion. It also means that although this
presentation pertains to only one model of terminal, extension of the discussion

*Named after the French inventor of the telegraph code, Jean-Maurice-Emile
Baudot, 1845-1903

® Registered trade mark, TELETYPE Corporation, Skokie, Illinois.

12 CHAPTFR 1 INTRODUCTION

to another make or model would be no problem, This is why we will now
concentrate on one particular terminal, the DEC LA36 DECwriter, for the
subsequent discussion.

A remote terminal contains generally four major parts. They are the
keyboard unit, the printer unit, the print control unit, and the call control
unit, A simplified block diagram, with the important components within each
part, is shown in Figure 1.4. The arrows in the diagram show the direction of
signal flow and/or control when the terminal is connected to a computer. Its
operation can be described briefly in this manner:

When the user strikes a key on the keyboard, say the upper case "A", the
keyboard electronics encodes it into the ASCII code of signal 1000001, These
electric signals are sent to the transmitter unit, in which additional
start-bit, stop-bit, parity-bit and filler-bit (if needed) are added. The
communication electronics in the transmitter transform these signals into
modulated audio tones, which are transmitted serially through the interface to
the computer over a transmission line. At the computer end, a buffer (or
temporary) memory accepts the character after checking over any transmission
error, repacks the character with start-, stop-, parity- and filler-bits, and
re-transmits back to the terminal. When it reaches the terminal, the receiver
demodulates the signals by removing the audio carrier, checks for any
transmission error, and deposits the 7-bit ASCII code of "A" in the buffer
memory.

When the printer unit is ready to accept a

J H [character, controlled by the printer control unit,

|.| the ASCII code inputs are sent to the character

! I_h generator ROM (Read Only Memory, a semiconductor
o | | memory chip) which produces seven one-or-zero

signals simultaneously 7 consecutive times. Each
7-signal group, after amplification, selectively
actuates by solenoids vertically arranged wires to
strike an inked ribbon, leaving a vertical column of
selectively placed dots in that column.

C
.
o

L)

This is repeated seven times, each time with the print head moving
slightly to the right, and each time producing a different vertical pattern.
The result is shown here. This is called a 7x7 dot matrix print.

It is interesting to note that the signals generated at the keyboard take
a circuitous route before finally printed on the terminal printer. In fact,
what is printed is actually what the computer thought the user has typed. This
is a clever way of involving the user as a part of error-checking system, and is
a standard feature in time-sharing system called echo print.

The individual parts of the DECwriter will now be described next:

(1) Print unit

The print unit is the receiving component of the terminal. It consists
of seven vertically arranged print wires actuated by seven solenoids, which in

turn are controlled by the character generator ROM as explained before, Other
useful information about the print unit are as follows:

DECwriter

from
Computer

call
Control
Unit

To
Computer

Communication Interface

Receiver

l Transmitter

Print
Unit

Figure 1.4 Block Diagram of a Typical Remote Terminal

Print
Control
Unit

Character
Generator

Printer

Keyboard

Encoder
Keyboard
Unit

[Keyboard

13

Figure 1.5

Standard ANSI Keyboard Layout

14 CHAPTER 1 INTRODUCTION

Paper size: 3" minimum, 14" maximum width
Print field: 132 characters maximum
Print spacing: 10 character/inch horizontal,

6 lines/inch vertical spacings
Print characters: 96 upper/lower case ASCII

7%x7 dot matrix (0.07x0.10 inch)
Print speeds: switch selectable at 10, 15 or 30

characters/second with 60 char/sec
catch-up mode*

(2) Print control unit

The print control unit contains a buffer memory that accepts ASCII
character codes received and a control logic unit which is a microprogrammed
controller. Under the control of the microprogram, characters in the buffer are
presented to the character generator on a first-in/first-out basis. The
microprogram activates the carriage servo system and the print head system to
control the mechanical movements. It also detects signals and actuates
mechanisms such as line feed to advance the paper, ringing the bell for an
error, etc.

(3) Call control unit

The call control unit consists of an asynchronous receiver-transmitter
and a communication interface. It initiates, accepts, controls and completes
the incoming and outgoing transmission of information.

(4) Keyboard

The keyboard is the information-sending component of the terminal. The
mechanical 1linkages and electrical contacts translate the key action into a
group of electrical signals. The arrangement of keys on the keyboard resembles
that of a conventional typewriter with additional special features. These are
discussed in a later section in this chapter.

Those terminals called ASR's (Automatic Send-Receive Sets) contain, in
addition to the four units mentioned above, one of the following auxiliary
input/output units: paper tape reader/punch, or tape cassette player/recorder,
or floppy disk with read/write electronics. These serve as storage media for
the terminal.

There are several switches placed adjacent to the keyboard which allow a
user to power-up, Select the transmission rate, and choose on-line or local
operation. In local operation, a terminal will function as a typewriter,
allowing a user to add information to the printout. It also permits maintenance
work and testing of a terminal without disturbing the computer. For ASR-type
terminal with either paper tape, digital cassette or floppy disk, the LOCAL
position permits the ASR to be used as an off-line input/output device for such
task as preparing, editing, reproducing and printing paper tapes, cassette
tapes, or floppy disks.

*While the time-consuming action of carriage return, tab or line feed is taking
place, characters received are stored in the buffer. When mechanical action is
finished, characters in the buffer will empty into the printer unit at 60
char/sec catch-up speed.

Keyboard 15

1.6 The Keyboard

The keyboard arrangement of the DECwriter follows the ANSI (American
National Standard Institute) standard. It has a format very similar to the
conventional typewriter. Figure 1.5 shows a keyboard of the DECwriter.

(1) Alphabetic characters

Key positions of alphabetic characters are identical to those on a
conventional typewriter. Both upper and lower cases are available. However,
transmission of alphabetic characters are generally done in upper cases, unless
specifically commanded to transmit as lower cases. Thus, pressing an alphabetic
key without the shift key will transmit and print an upper case letter.

(2) Numeric and special characters

The character set on the DECwriter keyboard consists of the following:

Alphabetic: ABCDEFGHIJKLM
NOPQRSTUVWIXYZ

Numer ic: 0123456789

Special: t-*/()=" $% '@\

a2 1>t
(The underscore symbol __is replaced with the left
arrow symbol <« on certain keyboards.)

(3) Control keys

Certain special keys perform control functions:

a. LINE FEED This key will cause the terminal paper to
advance one line. When the terminal is operated on LOCAL, the
carriage return does not automatically advance the paper, and the
LINE FEED key must be pressed to do it.

b. RETURN This key will return the print head and
carriage. When the terminal is on line, returning the carriage
return signifies the end of a unit of information, for example, an
instruction to the computer. The computer will automatically
respond with a line-feed control signal to advance the paper.

c. DELETE This key permits the correction of typing
errors on a line if the carriage has not yet been returned. This
key is marked as RUBOUT on some older keyboards. When the DELETE
key 1is pressed successively for n number of times, the last n
characters typed (including spaces) will be deleted. As a signal to
the user which characters are being deleted, the terminal will print
out the deleted character each time the DELETE key is pressed.
Also, before the first deleted character and after the last deleted
character, a back slash "\" is printed. Thus the pair of back
slashes serves as delimiters bracketing the string of deleted
characters.

16

CHAPTER 1 INTRODUCTION

For example, if the following has been typed on the terminal:

FOUR SCORE AND SEVIN YE

Carriage position when mis-spelling
in SEVIN is discoverd.

In order to delete the five character "IN YE", five successive
DELETEs are required. Notice that a space or blank is also
considered a character. To correct the typing, the user will DELETE
five times and then retype the corrections. On the printout at the
terminal, it will appear like this:

FOUR SCORE AND SEVIN YE\EY NI\EN YEARS AGO, OUR FATHERS ...

First DELETE ——T printout when resume typing

Second DELETE
Third DELETE
Fourth DELETE
Fifth DELETE

JUL

As shown in the example, a pair of back slashes brackets the deleted
characters printed in the order of deletion (from right to left).

REPEAT This key, when operated together with another
character key, will cause a repetition of that character to be
printed (for LOCAL operation), or a repetion of that character to be
transmitted and echo-printed (for on-line operation). For example,
when the REPEAT and K keys are pressed down together, a string of
K's will be sent and printed as long as both keys are held down.

SHIFT, SHIFT LOCK These keys have identical functions as those on
a conventional typewriter, and will cause the upper case character
marked on the key to be printed or transmitted.

ESC This key, appearing on older keyboards as an
AIMODE key, directs the computer to treat the next received
character as a command. The precise meaning of the ESC-character
combination is defined by the software system enploying this
function.

BACK SPACE Depending on the software processor used at the
time, the back space key either makes the last character sent to the
computer available for deletion or correction, or makes it possible
to overprint with a different character such as underscoring a
certain text string.

TAB This key will direct the computer to advance
the print head to the next tab stop.

BREAK Used for half-duplex transmission mode to
interrupt reception of data from the computer. Ignored in ordinary
full-duplex mode.

Control Characters 17

(4) Control characters

The key CTRL, when used together with an alphabetic character key,
generates a code combination for control purposes. Such a combination of CTRL
and alphabetic keys does not have any printing function, and therefore the
computer will return an echo signal printed out on the user's terminal to inform
him of the nature of the control function. The echo print has a format of """
(a circumflex) or "T" (an up arrow) followed by the character used, such as "C
or TC. These control characters will appear in this book frequently, and they
will be referred to in several ways. For example, the control character C will
be referred to as:

CONTROL~C
CTRL-C
or, C (or, +4C)

Although there are 26 control characters, a beginning user need only be familiar
with a few of them, and they are "C, "0, "U, "I, "L, and "R. Several other
control characters, such as "S and "Q, will be explained at appropriate places
where they are used.

a. CIRL-C ("C) The “C key interrupts the program and returns
the control to the system monitor. If a program execution is in
progress, apply “C twice or more to interrupt it. The first °C
stops the execution of the program, and the second one (and the
succeeding ones) returns control to the system monitor. When the
system monitor obtains the control, a prompt symbol (a period) is
printed on the terminal, and the system awaits for a monitor
command .

b. CTRL-O ("0) The "0 key suppresses the terminal output
without interrupting the execution of a program. For example, when
debugging a program, if you only want to see whether a program
execution reaches the end, you can suppress all or specific parts of
the put in order to avoid time-consuming printing of the results.
Thus any time when output begins to appear, applying CIRL-O will
suppress the remaining portion of that output.

c. CIRL-U ("U) The "U key, applied at the end of one 1line of
typing, will instruct the computer to ignore the entire line and
therefore to perform the function of deleting that line. The system
will respond with a carriage return and a linefeed, but no prompt

symbol.
d. CTRL-I (°I) Terminal will tab to a pre-set column,
e. CIRL-R (“R) Terminal will re-type the current line.
f. CIRL-L ("L) This control character tells the computer to

advance the paper to a new page. On a DECwriter terminal, it will
advance the paper only 8 lines.

The keys for these functions are summarized in Table 1.2,

18 CHAPTER 1 INTRODUCTTON

Echo Print
Special Key If any Function
LINE FEED Move paper up one line.
RETURN Return the carriage.
DELETE (or RUBOUT) /X Delete character Immediately before.
REPEAT Repeat a character or a function.
CTRL-C “c Return to monitor mode.
CTRL-0 "0 Suppress current terminal output.
CTRL-U “u Ignore the current line Input.
CTRL=-1 Tab to a preset column.
CTRL-R . Retype the current Jine.
CTRL-L Advance paper on terminal 8 |lnes.

Table 1.2 Function of Selected Special Keys

1.7 Other Types of Remote Terminals

The DECwriter terminal as described in the previous section is a
keyboard printer terminal. The majority of remote terminals used in a
time-sharing system are of this type. A variation of this type is the portable
terminal, which incorporates in a single carrying case an acoustic coupler (for
connecting the terminal to the computer by a telephone set), a keyboard, a
printer and associated electronics. One ingenious product includes an acoustic
coupler, a keyboard, and associated electronics, but no printer. It makes use
of a conventional television set, and when combined, it becomes a time-sharing
terminal.

As a result of rapid advances in MOS/LSI (metal oxide semiconductor and
large-scale integrated circuits) technology, the size, weight and cost of
electronic components and systems have been greatly reduced. These advances
have caused rapid developement of other types of terminals, and they are briefly
discussued next:

(1) Cathode ray tube (CRT) terminal

The convenience of a keyboard operating terminal is greatly enhanced if
we use a cathode ray tube (CRT) terminal for the purpose of communication with
the computer, preparation of programs and debugging. This is particularly
useful if the user has an alternate means of producing hard copy as records.

Other Types of Terminals 19

A typical CRT terminal, also called a scope terminal, displays a subset
of ASCII characters (such as upper
cases of alphabet plus symbols).
The display unit is similar to
that used in an oscilloscope or
television set. Other than the

_ display unit and its control
memory, it has the same

organization as a keyboard printer

cg:::oi [Cormunication Interface J terminal . Figure 1.6 shows a
Unit I I block diagram of a typical CRT

I Transmmaj terminal. If we compare this with

Figure 1.4, we can see the obvious
resemblance.

From To
Computer Computer

[Keceiver

bisplay froah _The CRT produces an image

control :e reshl { o atrol by directing an electron beam

Logic emorY | tnit against a phosphor—-coated screen

| — which emits light when struck by

¥ electrons, The control on the

beam intensity can turn the beam

completely off, thus allowing no

Keyboard €lectrons to strike the screen, a

Unit process called blanking.

Positioning the beam in a CRT

terminal is usually done by the

raster scan method. The beam is

first positioned at the upper left

corner of the screen; it then

moves across the tube face,

Figure 1.6 Block diagram of A producing a straight 1line. The

) CRT Terminal beam is blanked while returning to

the left at a level one line

lower. The blanking is turned

off, and a second line is traced. This is the same method used in a commercial

television set that scans 525 lines/frame and at a rate of 1/30 second per

frame., Forming characters on screen is very similar to the dot matrix print of

a keyboard printer terminal. The scan scheme will position the rectangular area

within which the character is displayed. The character, through. a character

ger'lerator ROM (read-only-memory), formulates a 5x7 dot matrix, with dots

emitting light when the electron beam strikes the tube phosphor. Typically, the

light-emitting period is very brief, ranging from microsecond to millisecond

range. Therefore, a CRT using the scan method requires a refresh memory that

stores the display and re-display at a refresh rate large enough to provide a
constant intensity image and to eliminate flicker in the image.

Character
Generator

CRT
Unit

Keybaard

Most CRT terminals are also teletype~compatible, and they are often
interchangeable with keyboard printer type terminals. With no carriage, a CRT
terminal is provided with a cursor, which may blink on and off to indicate the
current position of the beam. The associated cursor control enables the user to
move the cursor up, down, left or right, or to erase the screen. Unlike the
teletype, data rolling off the top of a CRT screen are lost to the user. The
operations of a CRT terminal and a keyboard printer terminal are very similar.
A person familiar with the operation of a keyboard printer terminal should have
no problem with CRT terminal operation.

(2) Graphics terminal

This is a terminal which maintains the capability of displaying not only
characters, but also arbitrary figures. All of the man~machine interaction

20 CHAPTER 1 INTRODUCTION

previously described are retained, and the interaction is expanded to include
the clarity of graphics.

When a graphics terminal displays characters, it emulates a CRT terminal,
and outwardly it operates just like a CRT terminal. When a graphics terminal
operates in the graphics mode, it provides both control of beam position and
blanking. In the position control, the beam 1is deflected from a current
position to another. If the blanking is on, only two end points are shown on
the screen. If the blanking is off and if the terminal is equipped with a
"linear interpolation vector generator," the electron beam will trace a straight
line. Repeated programmed positionings of the beam, with blanking on or off as
required, will produce a line drawing.

Graphics terminals normally utilize a cathode ray tube display, but some
low cost units use a storage tube to retain the data which does not require a
refresh memory. The disadvantage of the storage graphics display is that
dynamic display and removing graphic information are not possible: any
subtractive change of displayed data requires first an erasure of the entire
image, and then a reconstruction of a new image, an event that will take at
least half a second, Thus a storage tube may display at a maximum rate of about
2 frames per second, not a satisfactory speed to depict motion. On the other
hand, graphics terminal using refresh memory imposes a heavy burden of memory
and software support for its image generation and constant refresh. The heavy
requirements of memory and software usually call for a minicomputer to provide
the support.

(3) Intelligent terminal

For years, manufacturers have been offering terminal systems with fixed
functional capability. For example, a terminal designed to be compatible with
the IBM systems, which use a different character coding system (EBCDIC Code), is
not compatible to a system using the ASCII code unless extensive re-wiring is
done.

The rapid recent advances in MOS/LSI technology have now made it possible
to incorporate microprocessors and memories, which greatly expand the
flexibility and capability of a terminal. Instead of a simple function of
transmitting and receiving data or programs, a terminal may now have additional
processing power. Acquiring such additional processing power within the
terminal is referred to as "making the terminal more intelligent", and therefore
the name "intelligent terminal." Quite predictably, a terminal without
additional built-in intelligence is called a "dumb terminal."

Intelligence in a terminal may take on many forms. It ranges from the
simple ability of changing operating characteristics of the terminal to the
power of a full-scale microcomputer. Intelligent terminals therefore are able
to emulate many different communication line procedures and codes, so that a
terminal may be coded to adjust to an existing line protocol and procedure. For
many other various functions, the terminal may be tailored to suit the need of
the particular user or industry segment by providing specific software for the
intelligent terminal. For example, an editing program may be installed in the
intelligent terminal so that the terminal becomes a word-processing machine.
Word-processing tasks may then be carried out without loading down the central
computer. Another example is an intelligent graphics terminal where the
graphics are processed by a built-in graphic processor in the terminal. Again,
in this way, the central computer will not be loaded down with detailed chores.

The main disadvantage of an intelligent terminal, at the time when the
third edition of this book is being prepared, is its cost, although the gap is
rapidly narrowing. In applications where only simple functions are required,

To Sign On 21

dumb terminals are more cost effective. In time, the difference in cost will
become insignificant, and the intelligence of the intelligent terminal will be
greatly expanded. The experiences of the hand calculator industry can very well
be repeated in the remote terminal industry within the next decade. At the
present time, the applications have been limited to such areas as point-of-sale
credit authorization, bank teller systems, sStock brokerages, airline reservation
systems, hospital admissions, etc., where distributed data processing is highly
desirable. .

1.8 Sign-On at the Remote Terminal

Once a user has a valid pair of ID numbers (the PPN) and has a valid
password, he may now sign on at any remote terminal by following the procedure
outlined below:

Hard-Wired Units Dial-Up Units

(1) Turn on switches and dial the
computer number.* If the line

(1) Turn on switches, Press C if
there is no prompt symbol ".".

After the prompt "." appears,
type "I" (for INITIATE) and
the following lines will be

is busy, there is a usual busy
signal, When the call gets
through, a high-pitch tone can

typed out on the terminal: be heard. Place the phone set
on the seat of the acoustic
coupler. Wait until the READY
or CARRIER light comes on,
type C, and the following two
lines will be typed out on the
terminal:

PITT DEC-1099/A 63A.41B 15:36:41 TTY43 system 1237/1240
PLEASE LOGIN OR ATTACH

where "1099/A" indicates System A, "63A.,41B" the monitor version, "15:36:41" the
time of the day in 24~hour clock, "TTY43" the line number assigned. If "1099/B"
appears instead of "1099/A", it means the user is in touch with System B. If
the user finds himself in a wrong system, he requests a change by typing:

TTY SYSTEM B or i TTY SYSTEM A

after the prompt symbol.
(2) Type the monitor command after the prompt symbol:

LOGIN m,n)

or IOGIN m/n)

where m = project number, n = programmer humber,

= carriage return.

The difference between "m,n" and "m/n" in the two monitor commands is that the
latter form will suppress the message of the day from the Computer Center when
the sign-on procedure is completed. It is possible that you have seen the
message several times already, and may not care to read it another time.

*For University of Pittsburgh users, dial (412) 621-5954.

22 CHAPTER 1 INTRODUCTION

The carriage return is a standard control signal to indicate to the
computer the termination of a line, a command or a message. To avoid cluttering
the text and to relieve the typing problem, the carriage return symbol " " will
be used only in Chapter 1. For the remainder of the book, the readers should
assume that there is always a carriage return at the end of every line.

(3) Enter the password when requested. The password will be entered in a
non-print mode, and the typed password will not appear on the terminal. This is
to maintain the security of the password.

If the entered password is an incorrect or invalid one, the system will
respond with an error message and a request for the PPN. After supplying the
PPN again, another password request will be made by the computer. The user has
five chances to sign on correctly. After that number of unsuccessful trials,
the job is killed, and the user must restart the entire procedure to sign on.

If the password is found to be wvalid, the system will respond with
information on the status of the project, the last sign-on time and date, the
time of day, and the "message of the day" from the Computer Center. The last
item may be suppressed if the user uses the LOGIN command with the m/n
specification.

After all preliminary reports are finished, a prompt symbol "." is
printed on a new line, and the computer pauses and waits for input. The user is
now connected to the computer at the monitor level, and the sign-on procedure is
completed.

The following two cases are examples of sign-on. Explanatory remarks are
also given along with the remote terminal printout. As used throughout this
book, those lines entered by the users will be in Ztalics:

Printout on Terminal Remarks
JINITTATE) INITIATE command
PITT DEC-1099/A 63A.41B 16:19:17 TTY43 system 1237/1240 Computer's response
.TTY SYSTEM B) . Request System B
PITT DEC-1099/B 63A.41B 16:19:50 TTY43 system 1237/1240
.LOGIN 115103,320571 Sign-0n command
JOB 35 PITT DEC-1099/B 63A.431B TTY43 Wed 7-May-80 1619
Password: (Your password)) Supply password
Last login: 7-May—-80 1617
Usage ratio: 22.13 Units used: 33.5 Password valid

SYS B DOWN 0000-0800 MON MAY 12 FOR REGULAR HARDWARE MAINTENANCE
SYS B DOWN 0000-0300 TUE MAY 13 FOR REGULAR SOFTWARE MAINTENANCE

DUE TO HARDWARE PROBLEMS THE ARRAY PROCESSOR WILL BE |essage of the day
TEMPORARILY OFF LINE UNTIL FURTHER NOTICE

. System ready!
LLOGIN 115103/320571) Sign-On command
JOB 23 PITT DEC-1099/B 63A.41B TTY43 Wed 7-May-80 1815 ¢ ..\ 1:4
Passvord: (Your pasauord)) oL v

Last login: 7-May-80 1619
Usage ratio: 22.13 Units used: 33.5

. System ready!

Password 23

1.9 Password

To sign on the DEC-10 system, the required identifications are a valid
PPN and the associated password. Security of PPNs is impossible because they
are publicly displayed in many places - in IOGIN printout, in the file
directory, in printout identification, etc. Thus the only real safeguard and
security of a computer account is the password.

The need for protection against unauthorized use of your account by
another person goes beyond accounting reasons. There have been numerous
incidents of computer vandalism in the past. The most frequent vandalism was
change or erasure of programs or data without the owner's knowledge.

The only protection against such unauthorized use is to install a
password, to keep its security, and to change it frequently. As a matter of
prudence and necessity, the user should change his password regularly as a
standard practice and whenever he suspects the password is no longer secure.

Changing a password at a terminal can only be done at the IOGIN time by
using either of the following LOGIN format:

LOGIN m,n/PASSWORD

or, IOGIN m/n/PASSWORD

where "m" and "n" are the PPN. The following shows a sign-on session with a
password change. Since the process is interactive, the explanation should be
self-evident:

LOGIN 115103/320571/password J

JOB 16 PITT DEC-1099/B 63A.41B TTY43 Wed 9-May-80 2003
Password: (Enter old password)
New Password: (Enter new password) 2

Retype for verification
New Password: (Enter new password again))
Last password update: 24-Apr-80 1255

Last login: 22-Apr-80 1642
Usage ratio: 0.84 Units used: 33,1

1.10 Disk Storage Quota

One of the special features of a time-sharing computing system, as
compared with a computer for batch processing applications only, is its very
large capacity for on-line mass storage, such as the disk storage. It is a
common practice to assign and allocate a part of that mass storage for users to
store their programs, data or other files. These storage spaces are measured in
"disk blocks", or simply "blocks". In DEC-10 system, each block contains 128
data words in DEC-10 format. Therefore, each block can hold a maximum of 640
characters, an equivalent of 8 fully punched cards.

24 CHAPTER 1 INTRODUCTION

Each authorized user is assigned a quota of disk space in lblocks called
logout quota, in which he may store his files permanently. These files will not
be removed from the storgge unless any one of the following situation occurs:
(1) when a file is deleted by the user himself, (2) when a file is inactive and
not accessed for more than a prescribed period (for example, a month), or (3)
when the project has been cancelled or terminated.

When a user is IOGINed and on-line, the actual disk space assigned to him
is five times the logout quota. The extra storage is assigned for storing
temporary data, non-permanent program or data files needed for the execution of
the user's work while he is on line. This on-line quota of disk space is called
the login quota. The actual number of blocks assigned as the login quota
depends on the logout quota and the available system capacity at the time.

After a user has IOGINed, he may enjoy the larger login quota for his
on-line work. When he is ready to sign-off, he must make sure that his disk
usage is under the logout quota, otherwise all efforts of signing off would
fail, or else the computer will delete the stored files according to a
predetermined order of priority until the logout quota requirement is met. 1In
the latter case, the computer may very well delete some important files.

The monitor commands for managing the files are discussed in Chapter 8.
However, several commands that are necessary in managing the quota will be
briefly discussed here. For more details of these commands, the readers are
referred to Chapter 8.

The monitor command R QUOLST is used to inquire about the current status
of the disk quota (login, 1logout, and system status). An example follows.
Again, lines in <{talics are typed by the user:

R QUOLST 2 Explanation
User: 115103,320571 ————————— User's PPN
Str used left:(in) (out) (sys)
USRB: 180 120 -120 182616 Disk Status:

sj L— System status
Tipesharing [ore Clags: 0 ——— Logout quota status
Batch Core Class: 0 L— Togin quota status

Disk block used

LJser's core classes
Storage device specification

In this example, the user has a logout quota of 60 blocks and a login
quota of 300 blocks. At the time of this inquiry, he has used up 180 blocks.
Therefore, the above printout indicates that he is still 120 blocks under the
login quota, but he is 120 blocks above the logout quota. Should he wish to
sign off at this time, he must first delete his files for at least a total of
120 blocks. So, at this point it is important to him to know how to find out
what he has in the storage and how he can selectively delete them. Two other
monitor commands useful for quota management are:

DIRECT 2

and DIRECT name.ext .

When the command DIRECT (for "directory") is given, the terminal will
print out a 1list of user's files in the disk storage, along with their names,

To Sign Off 25

extensions, file sizes in blocks and other pertinent information. The total
amount of storage occupied is printed out at the end of the list. A sample
result of this command is shown below:

DIRECT

TEST DAT 60 <057> 18-MAY-79 USRB: [115103,320571]
SAMPLE FOR 48 <157> 19-MAY-79
SAMPLE REL 36 <057> 22-MAY-T79
TEST BAK 36 <057> 24-MAY-79
TOTAL OF 180 BLOCKS IN 4 FILES ON USRB: [115103,320571)

The command DIRECT thus gives the user an inventory of files in the disk
storage at that time. If he is then ready to sign off from the computer, and if
he is over the logout quota, this inventory information will enable him to
decide which file he should erase in order to get below the logout quota limit.
The monitor command of DELETE is used to erase a file in the storage. If in the
above example, the files TEST,.DAT, SAMPLE.REL and TEST.BAK are to be erased,
then the command issued is :

.DELETE TEST.DAT, SAMPLE,REL, TEST,BAK

After erasure is completed, the terminal will report the names of the
erased files and the size of total restored storage. The details of file names,
extensions and other information about file name structure are given in Section
1.12.

1.11 Sign—-Off Procedure

To leave the system, the user must terminate his job by supplying a
monitor command KJOB ("to kill the job"). The system will respond by requesting
a code letter for confirmation and file disposition., Thus, the command format
for signing-off is:

KJOB D
CONFIRM: (code letter)p

A shortened form of this command is:

[K/(code letter) I

The most commonly used code letters in the KJOB command are:

m
1

fast signoff; save all files

o
1

fast signoff; delete all files. Computer will respond with A
confirming question: "DELETE ALL FILES?" Answer YES and return the
carriage.

P = preserve all files except temporary files.

H = HELP! Computer will respond will detailed instructions.

26 CHAPTER 1 INTRODUCTION

I = list file names, one at a time, and apply code letter decision
individually. The code letters for individual decision are:

P = preserve the file

S = save the file

K = delete the file

Q = learn if over logout quota dn this file
E

= skip to next file and save this file if below logout quota for
this file. If not below logout quota, a message is typed and
the same file name is repeated.

H = HELP. Computer will respond -with the above information on code
letters. '

While files are disposed per user's code letter instruction, the computer
will make a check on logout quota, gather all usage and accounting information,
terminate the user's job and print out a summary of the job. For example:

K/F

JOB 16 [115103,320571] off TTY43 at 2032 9-May-80 Connect=29 Min
Disk R+W=83+76 Tape I0=0 Saved all files (450 blocks)

CPU 0:04 Core HWM=11P Units=0.1263 ($9.48)

The printout indicates that this user, with PPN of 115103,320571, was
assigned line 43 and job 16, signed off at 2032 on May 9, 1980. His terminal
was connected to the system for 29 minutes, used CPU or computer time for 4
seconds. He used disk, but not magnetic tapes. He has 450 blocks of saved
files. For this job, the highest core area used (HWM=High-Water-Mark) was 11
pages or 5.5K words, and the charge is 0.1263 unit or $9.48,

The "unit" is an accounting device which combines all charges of the
service, including CPU time, disk usage, the length of connect time, the size of
core used, and time of the day, and a base charge, each with an appropriate
weighting factor to form an accounting formula.

Basic Concepts of Files 27

FILES

1.12 Basic Concept of Files

One of the important and convenient features of a time-sharing system is
that it is supported by mass storage devices. The need for mass storage during
the early days of time-sharing is derived from the fact that only the most
important service programs and the program being executed at the moment may be
stored in the high-cost, high-speed magnetic core storage. The mass storage
serves as a temporary storage for programs and data not being processed at the
time., When the user's turn comes, his program and data will enter the core
storage. When his allotted time is finished, the program and data in the core
return to the mass storage. Such transfer of program and data is an important
and unigue operation in all time-sharing systems, and is called swapping. The
portion of the mass storage, magnetic disk and/or magnetic drum, assigned for
swapping is called a swapping device.

The space required for swapping is a relatively small portion of the
storage available in the mass storage devices. Thus a time-sharing system
generally is characterized by a very high reserve capacity of auxiliary storage.
The most frequent use of this capacity is to accommodate users' programs and/or
data. These stored programs and/or data are called files.

Each language processor in the time-sharing system contains facilities
for file management and file manipulation, and this information will be
discussed in various.chapters in this book. It will be useful at this point,
however, to introduce some basic information and concepts.

The basic unit of information in a file is called a record. 1If a file is
visualized as consisting of a deck of punched cards, then each card becomes one
record. The information content of one record varies from case to case. A
blank card contains no information, and it is called a null record. A FORTRAN
source program record is limited to a maximum of 72 characters/record. For a
PIL program, there is no practical limit to the length of a record.

For the purpose of identification, each file is given a name, Once the
names are established, the computer will maintain a directory so that users need
not be concerned with the exact locations or addresses on the disk to locate
their files. For the DEC System-10, the format of a complete name of a file is:

DEV: NAME.EXT [m,n] <xyz>
where:
DEV: = name of device on which the file is stored., If this part 1is
omitted in the complete name, it is understood that the device is

user's assigned disk area.

NAME = file name consisting of one to six letters and/or digits, with no
embedded blank.

.EXT = file extension consisting of zero to 3 letters and/or digits with
no embedded blank. See more explanations below.

[m,n] = the PPN of the person who created or owned the file. Note the
use of square brackets.

28 CHAPTER 1 INTRODUCTION

<xyz> = a three-digit (octal) protection code. See more explanation
below. Note the use of angular brackets.

The file extension is the part of file identification used to indicate
the language or format of the file. The following are the most frequently used
file extensions.

.PIL A PIL (language) program file

.FOR A FORTRAN source program file

.REL A relocatable binary file, or the "object deck"

.BAS A BASIC (language) source program file

.BAK A backup file

.DAT A data file

.TMP A temporary file

A null extension (no extension)

Examples:
NEWTON.PIL A PIL program file named NEWTON.
NEWTON . FOR A FORTRAN program file named NEWTON.
NEWTON. REL An object program compiled from NEWTION.FOR
NEWTON. BAS A BASIC program file named NEWTON.
FORO1.DAT A data file named FOROl.

Symbols "*" and "?" are used as "wild cards" to represent a class of file
names or extensions. The following examples will demonstrate their use:

Examples:

NEWTON, * All files named NEWTON of any extension.

* ,FOR All FORTRAN files.

* gk All files.

F?2??7?.DAT All data files whose names are 5 characters
or less and begin with F.

D12??,D?? A files whose names begin with "DI12" and
contain 5 characters or less, and whose
extensions begin with the letter D and con-
tain 3 or less characters.

D12??.* All files whose names begin with "D12" and

contain 5 characters or less.

The protection code is a 3-digit octal number xyz, each digit ranging
from 0 to 7. Each digit defines a protection level of the file against a
. certain class of users:

X = protection level against the file owner himself.
y = protection level against users sharing the same project number.
z = protection level against the general public.

Protection Codes 29

The levels of protection range from 0 to 7, and level 7 is the highest.
The exact definition of each protection level is given below:

Code Digit Access Protection*

No access privileges

Execute only

Level 6 + read privilege

Level 5 + append privilege

Level 4 + update privilege

Level 3 + write privilege

Level 2 + rename privilege

Level 1 + change protection privilege

CHEMODWR IO

The access protection can be changed by executing the RENAME or PROTECT
monitor command (see Chapter 8) or by using the service program PIP (see
Chapter 7). Since there are 8 levels of protection in each of three classes of
users, there are 512 different shades of protection-level combinations possible.
Normally, one need only be concerned with a few commonly used codes:

Protection Codes Applications
077,177 Strictly private and non-sharable, such as
grade files maintained by an instructor.
057,177 Sharable within a project, for example, a
program to be shared by all students in a
course.
055,155 Sharable with the computer community, but

the file may not be modified by anyone
except the file owner.

The System assigns a default protection level of 057, set automatically
by the computer if the person does not specify any protection code when he
creates the file. In some coursework, instructors may arrange to have the
default protection level automatically set at 077. 1In such a case, the
protection code of a student's file is 077 to his classmates, but is 057 to his
instructor. '

*Subject to minor local variations. For example, at the University of
Pittsburgh, access protection designated by the =x-digit has been modified
slightly.

30 CHAPTER 1 INTRODUCTION

EXERCISE ON A TIME-SHARING TERMINAL

For a person with no prior experience with using a computer, it is quite
natural for him to feel intimidated when he gets on the computer for the first
time. Beginners should feel assured by the fact that very little they do can
hurt the computer, except if he gets physically violent and abuses the computer
equipment. A session on a terminal to become familiar with its function and
operation is highly recommended. The following is a recommended exercise.

(1) with a valid PPN and a password, practise sign-on and change~-password
procedures. Warning: Do not mix up or forget your new password, or else you
will not get back on the computer again.

(2) Once signed on, type any gibberish, return the carriage, and watch
the error message from the computer. Always wait for the prompt symbol "." to
appear, then type in your line. Don't leave a blank or space after the ".", and
don't forget to return the carriage at the end of each line.

(3) Copy a file into your own disk for the terminal exercise. For
example, to copy a new bulletin of the System, use the following command:

.COPY NEWS.DAT=SYS:NEWS

Note the period in the first column is already furnished by the computer;
you Jjust type in the rest of the line and return the carriage. After this, use
the DIRECT command the and R QUOLST command to find out the status and quota of
your disk storage.

(4) After the file is copied into your storage, do the following
exercises:

a. Print out the file by the command:
.TYPE NEWS.DAT

After a few lines are typed out, kill the typing job by either a
CTRL-O or multiple CTRL-C (twice or more). The news file is quite
long and a complete typeout will take a 1long time. If you are
curious about what the rest of the news bulletin is, apply the
following command:

.PRINT NEWS.DAT

and a printer copy will be produced at the printer. The printout
will have your programmer number printed in big block letters on the
first page for identification.

b. There is a group of monitor commands that controls the functions of
a terminal, They are discussed in Chapter 8 on Operating System
commands. However, several commands may be useful enough to the
beginner that they will be given here for exercise:

.TTY WIDTH n

This command will set the right margin of the terminal at the nth
colunn, The value "n" may range from 17 to 200. When you sign on

Exercises 31

to the System, the right margin is automatically set at 72.
.TTY PAGE

After this command is given, a CTRL-S will suspend the output (but
not kill it), and CTRL-Q will resume it. The purpose is to stop the
output in order to examine the output that has already been
produced.

After setting the right margin at a new value and giving the
TTY PAGE command, repeat the exercise of typing out NEWS.DAT. Use
both CTRL~S and CTRL-Q to control the printing.

(5) While still signed on, try to change to another system. Can you do
it?

(6) Check your logout quota status. If you are still under your quota,
keep "stuffing" your storage by repeating step 3 above (each time using a new
file name), until you have gone over the quota. Confirm that by using the
R QUOLST and DIRECT commands. Try to sign off in this condition.

(7) Clean up your disk storage and sign off.

(8) Repeat steps 1 through 7 by first signing on purposely on the wrong
system. What are the consequences? What is the warning message from the
computer? What are the things you cannot do in the wrong system? What are the
things you can do in either system?

When you complete this exercise with reasonable facility, you may
consider yourself granted a beginner's driver license. Congratulations!

32

CHAPTER 1 INTRODUCTION

REFERENCES

A PRIMER FOR PITT TIME-SHARING SYSTEM (PTSS), T. W. Sze, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1970.

INTRODUCTION TO A TIME-SHARING SYSTEM, T. W. Sze, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1972.

ALL ABOUT TELEPRINTER TERMINALS, Datapro Research Coporation, Delran, New
Jersey; 1976.

IA36 DECwriter II USERS MANUAL, Digital Equipment Corporation, Maynard,
Massachusetts; 1974.

INTRODUCTION TO COMPUTING AT PITT, DEC-10 Documentation-1l, Computer
Center, University of Pittsburgh, Pittsburgh, Pennsylvania; 2pril,
1980,

UNIVERSITY COMPUTER CENTER, ACADEMIC SERVICES, Computer Center, University
of Pittsburgh, Pittsburgh, Pennsylvania; 1978.

INDEX OF COMPUTER CENTER DOCUMENTATION AND SERVICES, Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; September, 1978.

INTRODUCTION TO DECSYSTEM-10: TIME-SHARING AND BATCH, T. W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; First Edition,
1974; Second edition, 1977.

CHAPTER 2
TEXT EDITOR

Everything must have a beginning, From a
user's point of view, his starting point is to enter
his program and/or data into the computer, The DEC
System—10 is mainly disk-based machine. That means,
the computer will look in the user's disk area for the
program a user wants to execute. Therefore, in order
to do any computer processing, a user must first place
his program and/or data in the disk. The text editor
is a system program that will enable the user to
perform this task.

2.1 Introduction

The UPDATE (University of Pittsburgh DAta and Text Editor)* is a service
program with which a user can correct, modlfy, duplicate, or delete parts of a
stored program or data file.

In order to edit a program or data file, it must be one already stored on
disk, magnetic tape, or DECtape. However, if the source material is on tape,
using UPDATE will result in an edited copy of material stored on disk, and the
original material on tape is unchanged. Ultimate changes on tape still require
the use of another service program, such as PIP (see Chapter 7), to delete the
old file on tape and to transfer the new file from disk to tape. Otherwise, the
new file is re-copied onto the tape so that the old and the new copies co-exist
together on the tape. Therefore, for all practical purposes, UPDATE is used as
a disk-to-disk editor, taking source material from the disk and storing the
edited copy back on the disk. Discussions in this chapter are based on such
disk-to-disk editing.

After the user signs on in the usual way, he can get the service of
UPDATE by typing the following monitor command:

.R UPDATE or .UPDATE

*Developed by Gerald W. Bradley, University of Pittsburgh (Reference 7).
33

34 CHAPTER 2 TEXT EDITOR

When the UPDATE editor is assigned, the computer will first ask for the
name of the input file to be edited in this manner:

Jt UPDATE
INPUT=>

The user will then type in after the greater-than sign the file name,
extension, file owner's PPN if the user is not the owner., For example:

R UPDATE R UPDATE
INPUT=)>SAMPLE, FOR INPUT=>SAMPLE. FOR[115103, 320571]
> >

When the greater-than sign is again printed by the computer, UPDATE is ready to
accept editing commands, and editing on the specified file can begin. As the
editing proceeds, whenever UPDATE is ready to accept a command or an insertion,
a sign ">" is printed out as a prompt symbol. The first space after the sign
should be considered as column No. 1.

The above process may be shortened by using the following formats:

.UPDATE SAMPLE.FOR .UPDATE SAMPLE,FOR([115103,320571]
> >

2.2 Selected Terminology

The following terms will be used quite frequently in the discussion of
the UPDATE commands:

(1) Record, or Line

A record or a line is a basic unit of information in a file. If a file
consists of a deck of punched cards, each card becomes one record. For a file
stored on disk, one record actually is a tiny length of track on the disk. The
information content for one record varies from case to case. In a FORTRAN
program, each record is limited to a maximum of 72 characters including blanks,
although each statement may extend for several records if needed. Sometimes,
there is no information at all on a record, such as a blank card, and this is
called a null record.

(2) Pointer

Once the input file is specified ard loaded, the UPDATE at that time is
positioned at the first record, or line, of the file. At that point, editing
commands will refer to text material with that 1line as a reference point.
Later, if one wishes to make editing steps at another line, the UPDATE should be
re~-positioned by appropriate commands. For convenience, we shall assume an
imaginery "pointer" which indicates the position of the record being aligned.
Thus, such a statement as "moving the pointer forward 5 records" should now make
sense.

(3) Line Numbers, Bbsolute and Relative

A file begins with record No. 1, then No. 2, etc. Such 1line numbers
represent the true positions of the records in the file, and are called the
absolute line numbers. On the other hand, it is often convenient to use as a

Terminology 35

reference the line currently pointed to and say, for example, "move forward 5
lines" or "back up 3 lines". These are then relative line numbers, Absolute
line numbers are always expressed by unsigned positive integers, and relative
line numbers by signed integers. Use "+" sign for forward reference and "-" for
backward reference in specifying relative line numbers. Note that a file always
begins at line number 1, and its line numbers are always contiguous. Therefore,
if lines 4 and 5 are deleted during editing, then line 6 becomes line 4, 7
becomes 5, etc.

(4) Delimiter While the pointer indicates the position of a line in a
text, the position of text within a line is indicated by the use of delimiters.
These delimiters may be thought of as quotation marks in the English language,
except that any special character may be used as a delimiter in UPDATE. Thus,
if one wishes to set off the last three words of this particular paragraph, he
may specify:

"he may specify:" or /he may specify:/
or ?he may specify:? or $he may specify:$ etc.

Because of its similarity with the quotation, the string set off by a pair of
delimiters will be referred to as a. "quoted string" or simply a "quotation".
There are several important rules of delimiter usage in the UPDATE editor:

A. Use consistent characters as delimiters for a quotation. While any
special character may be used as a delimiter, the choice of the
beginning-of-quotation (BOQ) delimiter automatically decides the use
of the same character as the end-of-quotation (EOQ) delimiter. The
following examples should be self-explanatory:

Valid Use of Delimiters Invalid Use
"quoted text" (quoted text)
(quoted text(<quoted text>

B. If a quoted string contains a special character, that particular
character should not be used as a delimiter for this quotation. For
example, if we wish to quote a string "less than $5.00" and use "$" as
a delimiter, the result will be misinterpreted by UPDATE.

C. 1If several quotations are placed in one UPDATE command, the following
rules apply:

a. The first BOQ delimiter determines the character to use.

b. Multiple quotations must all refer to materials on the same
record.

c. When multiple quotations are placed together, two adjacent
delimiters should always be merged into a single one to avoid
ambiguity. In other words, a delimiter should not only serve as
the BOQ delimiter for the following quotation, but also as the EOQ
delimiter for the preceding quotation. Thus a general appearance
of a multiple quotation will be something like this:

/QUOTE 1/QUOTE 2/QUOTE 3/

36 CHAPTER 2 TEXT EDITOR

If this multiple quote is written as:
/QUOTE 1//QUOTE 2//QUOTE 3/

it will actually be interpreted by UPDATE as 5 quotations, the
second and the fourth being null strings.

D. The contents of a quotation must be exact and unique. When UPDATE
receives a quoted string, it will try to search in the pointed line
for a group of characters exactly matching the quotation. In such a
matching process, the capital letters, the lower cases, the blanks,
special characters, and control characters are all legitimate and
different characters., For this reason, a quoted string must be given
in the exact way as in the pointed line.

Example: Suppose we wish to quote the underscored portion below:

50 Yl=Y0+Y1l

Correct Quotation Incorrect Quotation

/Yl Ny

E. When UPDATE searches a line text to match a quotation, it begins with
the character in column one. As the search moves to the right, and a
match is found, the search is completed. If a quoted string appears
several times in a text line, UPDATE will always pick the string
nearest to the first column. Therefore, if we wish to sepcify
non-unique strings further to the right, the string must be expanded
in front and/or in the back until the string is unique, or else it is
the first such quotation when the search starts from the left end.

Example: Suppose we wish.to quote the underscored portion below:

501 IF(Y.LT.0.0001) GO TO 510

Correct Quotation Incorrect Quotation
/0.0001/ 70/
/.000/ /01/
/0Ly / etc. /00/

F. A single quotation followed immediately by an integer means this
quotation begins from column indicated. For example, the quotation
/01/19 means the character string "01" that begins at column No., 19.

G. All quotations must be bracketed within a pair of delimiters.
Unclosed quotation is an error.

$T0, $AT & STRAVEL 37

A PRIMER OF UPDATE EDITOR

The text editor UPDATE contains several dozens of editing commands. For
a beginner, it would be a mistake to attempt to learn them all at one time.
Experience has shown that most editings are done with a limited set of editing
commands. Complex command functions can usually be accomplished by applying
several simpler commands in sequence. For the sake of learning efficiency, it
would be much more cost effective for a beginner to concentrate on a few basic
editing functions and commands. They are:

(1) To move a pointer to a designated line.

(2) To make changes on a pointed line.

(3) To delete the pointed line or lines.

(4) To type out the content of the pointed line or lines.

(5) To insert a line at a designated place.

(6) To conclude the editing.

The commands given in the following sections pertain to these basic
functions. all UPDATE commands must have a "$" in the first column. The
spelling of each command may be shortened to just the first two letters.

Misspelling after the first two letters will be ignored and will not be
considered an error.

2.3 Movement of Pointer, $TO, $AT and $TRAVEL

When the UPDATE first opens an input file, the pointer is always
positioned at 1line No. 1. There are three commands one may use to move the
pointer elsewhere, and they are $TO, $AT and $TRAVEL.

STO will move the pointer to a specified place, and once there the new
line is typed out for verification.

$SAT performs the same function as $TO, but the typing of a new line is
suppressed.

STRAVEL performs the same function as $TO, and the command is
"remembered”. The same $TRAVEL command can be executed again later by issuing a
$GO command.

All three commands have the same command formats and variations, and
those for $TO are listed below. Variations of formats would be the same for the
other two commands, simply by replacing $TO in the following listing by either
SAT or S$TR.

38 CHAPTER. 2 TEXT EDITOR

A. STON Move the pointer to line N.

B. S$TO N Move the pointer N lines forward.

C. $T0 -N Move the pointer N lines backward.

D. $TO /TEXT Move the pointer forward from the present 1line

until it encounters a line with the exact string
/TEXT/ in it.

E. S$TO S$TEXTS Similar to case D above, with an exception that
the match will not consider the difference
between upper and lower case letters, nor will
it take into account any blank between

characters,

F. S$TO /TEXT/K Search for the string TEXT that begins at column
No. K.

G. S$TO § Move the pointer to the last line.

Notice the mode of search in cases D, E and F. The search starts from
the line below the pointed line. If there is a string TEXT in the pointed line,
it will not be found. If one wishes to move to the first appearance of /TEXT/
or STEXTS while he 1is in the middle section of the file, he should issue the
command $TO 1 first before giving a $TO/TEXT/, or $TO/TEXT/K, or $TO $TEXTSS
command. This is so that he will not miss any earlier existences of the string
TEXT in the lines before the pointer. But even so, such a search would miss
line 1, unless the user examines the line typed out after the command $TO 1.
This problem may be solved by inserting a blank line as Jline 1 and later
removing it before finishing the editing job.

To move forward one line, two ways are possible: Either use $TO +1
command, or simply return the carriage.

To move backward one line, either use the command $TO -1, or press
backspace key and then return the carriage.

While moving the pointer back and forth during the editing job, it will
become difficult to keep track of the line number of the pointer. The command
SWHERE will cause a number typed out enclosed in brackets to indicate the
current pointer line number.

Example: Suppose you wish to examine every FORMAT statement in your
FORTRAN program. You will first call the file using the UPDATE. Then apply the
following command:

>$TRAVEL /FORMAT/
The first time you apply it this way, it will move the pointer to the first
FORMAT statement, and print it out. Any revision of the statement may be done
there and then. The movement to the subsequent FORMAT statements may be
accomplished by giving the command:

>$GO

Naturally, if a FORMAT statement in the program is misspelled, the S$TRAVEL
command will not find that statement.

SCHANGE S$ALTER & $SUBSTITUTE 39

2.4 Change of Text Material, $CHANGE, SALTER and $SUBSTITUTE

When the appropriate line is positioned by the TO, SAT or $TRAVEL
command, editing changes may be performed using the $CHANGE, or $ALTER command.
The standard format is:

$CHANGE /OLD TEXT/NEW TEXT/
For multiple changes on the same line, the command format is:
$CHANGE /OID 1/NEW 1/0LD 2/NEW 2/0LD 3/NEW 3/...

The rules of delimiters in multiple quotations have been discussed before and
are applicable here. BAgain, the delimiters for multiple quotations must be
consistent for all quotations.

As a convenience feature, after the S$CHANGE command 1is executed, the
entire new line is typed out for verification. The pointer position remains
unchanged.

Example: Suppose the indicated changes are required as shown below:
5‘,4[,‘ LT Go TO
35IF @IM{ 90?
A

The following two lines show first the ‘editing command of SCHANGE and then the
edited text automatically typed out after execution. (Remember our convention
in this book -—- User's input line shown in Ztalics):

>SCHANGE/5/5 /9/(/>/ . LT./G/GCO /.//
35 IF (IPRINT.LT.0) GO TO 90

There are, of course, many other ways to write ~the above $CHANGE command to
achieve the same result.

SAITER is used in the same way as the $CHANGE command, except that SALTER
does not allow multiple changes. Its main usefulness is in the compounded
editing commands, as will be illustrated in a later section.

$SUBSTITULE differs from SCHANGE or $ALTER in this manner: The command
SCHANGE or S$ALTER is used to change a string in one single line positioned by
the pointer. The command $SUBSTITUTE is used to alter a string in the entire
file beginning from the pointed line. Again, the string of characters to be
changed must be specified ed exactly and uniquely. Otherwise, inadvertent changes
will result at unintended places. For example, if one wishes to change the
variable X into Y in a certain program, specifying $SUBSTITUTE/X/Y/ would change
every X-character into Y-character. Thus, inadvertently, another variable with
the name "INDEX" would become "INDEY", and the exponential function name EXP
would be changed to EYP.

There are two variations for the command $SUBSTITUTE:

40 CHAPTER 2 TEXT EDITOR

A, SSUBSTITUTE _/OLDTEXT/NEWIEXT/

Starting from the pointed line, this command will search for a
string /OLDTEXT/ and each time upon finding it, change it into
/NEWTEXT/ until the end of the file is reached.

B. $SUBSTITUTE /OLDTEXT/NEWTEXT/K

Starting from the pointed line, this command will search for a
string /OLDIEXT/ that begins at the Kth column, and each time upon
finding it change it to /NEW

WIEXLT/ until the end of the file is
reached. After the $SUBSTITUIE command is executed successfully,
the pointer will be relocated at the last line of the file.

2.5 Deletion of Lines, $DELETE

When a line or a group of consecutive lines are to be deleted, first
position the pointer to that line or the first line of that group, using either
the $TO or $AT command. Then depending on what is to be deleted, use the
command $DELETE in the following ways:

(1) S$DELETE N Delete N lines beginning with the one presently
pointed to. After the deletion, the pointer moves forward to the line
immediately after the deleted group. If the deleted group happens to be the
final N lines of the file, the pointer drops back one line and positions at the
new last line. If N is larger than the number of lines left on the input file,
a command SDELETE N will delete every line remaining and then type out a "?" to
indicate error. This feature is actually quite useful when one wishes to delete
the rest of the text but does not know how many lines there are. Then, he can
simply issue a command of $DELETE 10000, or any number larger than the number of
remaining lines.

(2) S$DELETE This is automatically interpreted as $DELETE 1.

(3) S$DELETE § Beginning with the currently pointed 1line, this

command will erase the rest of the file.

$DELETE -N is NOT a valid command.

Example: See below for the "Before" and "After" with a $DELETE command:

Text AFTER A
Line Number Text BEFORE Command $DE3
1 11 11
2 ————— 22-t0 be — 55
3 old 33, deleted New 66
4 pointer 44] pointer 77
5 55 88
6 66 99
7 77
8 88
9 99

$TYPE 41

Note that although the pointer is positioned at a new line of text, the line
number of the pointed line remains the same. The line numbers and the text are
then automatically readjusted.

2.6 Output of Lines, STYPE

Frequently, it is desirable to display the text of a line on the terminal
for examination. The UPDATE command for this function is $TYPE. The following
shows the variations:

A. S$TYPE N This command will type out N lines beginning with the
present line, The position of the pointer remains
unchanged.

B. $TYPE Same as STYPE 1.

C. S$TYPE $ This command will type out the currently pointed line

and the last line of the file. Pointer position
remains unchanged.

2.7 Line Insertion

UPDATE will regard any user input as UPDATE command if column 1 is a "s$"
character. Conversely, UPDATE will regard any user input as line insertion if
the line does not begin with a "$" in column 1. When a line 1is inserted, it
will always be inserted after the currently pointed line. If you wish to insert
a line before the pointed line, you must precede your insertion by a . "$BEFORE"
command. When a new line has been inserted, the pointer will move forward one
line, making the new insertion the currently pointed line.

Beside adding lines to an old file, this process is particularly useful
in creating new files. The process of creating a new file is outlined as
follows:

(1) Call for UPDATE and give a file name that does not yet exist. For
example:

.UPDATE NEW.FOR

where NEW.FOR is a file name given to the new file to be created.

(2) The pointer of the blank file called by the UPDATE will be positioned
at 1line zero. Type in the new file, one line at a time. Each line is
terminated by a carriage return in the conventional way of typing.

(3) While the new file is being created, the editing commands can be
applied to move the pointer, to type out the lines, to delete or to change the
contents of a line.

(4) When all lines are entered, exit from UPDATE by a command $END.

42 CHAPTER 2 TEXT EDITOR

2.8 Completion of an Editing Session, $DONE, $END and $SFINISH

All three commands signify the end of current editing of the file. They
differ in how the file should be stored and named.

When the $DONE command is issued, UPDATE will ask the user to supply a
file name for the edited file, for example:

>$DONE
CATALOG NAME=>SAMPLE.FOR
6 BLOCKS WRITTEN ON SAMPLE.FOR[115103,320571}

EXIT

If the file name and the extension given here are exactly the same as
those of the old file, the old file is replaced by the new file., As a safety
measure, the old file is retained in the storage with the extension changed to
BAK (for "backup"), in case the user changes his mind about his revisions. If
either the name or the extension or both are different from those of the old
file, a new file is created and stored on disk along with the o0ld file, and the
old file is not disturbed. If the name and the extension given during the
cataloging are exactly the same with those of some other file in the disk
storage, naming two different files with the same name causes an error, and the
UPDATE will reject the duplicate name and ask for a new name. This is
illustrated below:

>$DONE

CATALOG NAME=>NEW,FOR

FILE DSK:E20016.,TMP[115103, 320571]to NEW,FOR([115103,320571]
RENAME error (4) — Already existing file

CATALOG NAME=>SAMPLE,FOR

6 BLOCKS WRITTEN ON SAMPLE.FOR[115103,320571]

EXIT

The catalog name can also contain a protection code specification, for
example, SAMPLE.FOR<155>. When the protection code is omitted, the UPDATE will
automatically assign a protection code of 057.

When the $END command is issued, a fast exit 1is accomplished and the
edited file will have the same file name, extension and protection code as those
of the old file. The old file becomes a BAK file. After the storage process is
completed, UPDATE returns the user to the monitor.

When the $FINISH command is issued, it will perform the same function as
SEND. However, instead of returning the control to the monitor, the user will
retain the service of the UPDATE editor and can then start a new editing job.
Therefore, this command is equivalent to issuing two successive commands: an
UPDATE command of $END followed by a monitor command of .R UPDATE.

1/0 Files in Editing 43

OTHER UPDATE COMMANDS AND PROCEDURES

when UPDATE is called, several events happen:

(1) The UPDATE program is loaded into the computer memory assigned to the
user .

(2) Two disk areas are assigned as working files. One is used as the
input file labeled as El and the other is used as the output file labeled as E2.
The actual file names assigned are E100xx.TMP and E200yy.TMP respectively, where
"xx" and "yy" are numbers arbitrarily assigned.

(3) After the input file name is given by the user, as requested by the
UPDATE, a copy of that file is loaded into El. If no such file name exists, El
remains a blank file. In either case, E2 is a blank file at this point.

(4) UPDATE will read up to 100 lines (which may be specified and modified
by a $FACTOR command) from El file into the memory.

The logic flow of the text information during an editing session is shown
in Figure 2.1.

Now, as the editing session

progresses and the pointer advances

El File through the file, more lines are read
into the memory. When the number of

lines in the memory is more than 100, or

1 whatever value specified by a previous

$FACTOR command, the lines behind the

Assigned pointer are written into the E2 file.

Computer Thus, if the pointer keeps advancing

/’ Memory forward, more lines are transferred into

l E2. When the editing is finally

completed, all lines in the core, and

E2 File all the r;emaining lines in the El1 file

are copied onto the E2 file. The E2

file is then renamed by a name

designated by the user, and the El file

is erased. It is significant to note

Figure 2.1 from Figure 2.1 that the movements of

s . lines from El to the computer memory,

Editing Input/Output Files then onto the E2 file, is always in one
direction only.

Thus, if the pointer is moved backward, there will be complications. If
the pointer, after moved backward, is pointing to a line still in the core
memory, events are still normal. If the pointer is positioned at a 1line no
longer 1in the core memory, that line has already been copied onto the E2 file
and cannot be retrieved because the transfer between the memory and E2 is
one-way only, as shown in Figure 2.1, This will set forth a sequence of events
described as follows:

First, the lines in the memory and all the remaining lines in the El1 file
will be copied onto the E2 file. The E2 file is then closed. The El file is
erased. The E2 file is renamed as the El file, The new El file is read into
the computer memory containing the 1line positioned by the pointer. The
backing-up of the pointer is now finally accomplished. These events resemble a

44 CHAPTER 2 TEXT EDITOR

situation when a driver misses an exit on a one-way urban beltway. In order to
exit at the missed exit point, he must drive the whole way around the one-way
highway and gets off at the desired exit. However, such events at the editing
session are "transparent" to the user, because at the terminal he will be
unaware of these. But this situation does suggest that backing up in
positioning a line should be done sparingly.

When E2 is closed, it is renamed by a name designated by the user if the
closing command is $DONE, and the input file is not disturbed. If the $END or
$FINISH command is used, the E2 file is renamed by the same input name, and the
input file is renamed as a BAK file.

If the editing involves an auxiliary file as an input or output for the

editing, another disk file labeled E3 is assigned. This happens with the
command $ONTO or $FROM (See Section 2.16).

2.9 Line Insertion Mode

UPDATE will treat all input lines that start with a $-sign in the column
1l as an UPDATE command. Conversely, UPDATE will treat any input information
without a $-sign in column one as a non-command and as information to be
inserted in the text.

There are two modes of line insertion:

(1) Insertion after the pointer

A. Insertion of lines typed at the terminal

Any input information to the UPDATE without a dollar sign in column
one will automatically be inserted immediately after the current line. When the
insertion of one line is completed, the pointer moves forward one number, so
that it is now positioned .at the newly inserted line. The next typed line will
be inserted immediately after the previously inserted line, and again the
pointer moves to the newly created line. This feature makes it very convenient
to use the terminal keyboard to create a file.

The insertion mode is suspended whenever an UPDATE command (with a
$-sign in the first column) is issued.

Example: Observe the "Before" and the "After" of an insertion procedure:
Example

Line 0Old Text and New Text and
Number Pointer Position User types in: Pointer Position
1 11 A4 11

2 — 22 BB 22

3 33 cc AA

4 44 BB

5 —» CC

6 33

7 44

Line Insertions 45

So the UPDATE interprets every input line beginning with a $-sign as
an UPDATE command. This may develop into a dilemma if the user attempts to
insert a line that begins with a $~sign., For example, consider the statement:
"$5.00 IS TOO MUCH TO PAY". When this statement is inserted, UPDATE will puzzle
over the meaning of "$5." as an UPDATE command, and the execution results in an
error report,

There are several ways to solve this problem: One is to insert a
line: "X5,00 IS TOO MUCH TO PAY", and then use $CHANGE command to change the
first "X" into "$". Another way is to insert the line: " $5.00 IS TOO MUCH TO
PAY", leaving a blank in column 1, and then remove it using the $CHANGE command.
If there are many such statements to insert (for example, in preparing a control
file for batch processing), the process may be simplified by an UPDATE command:

$IS #

where "#" can be any special character except ";". The effect of this command
is to replace the format of all subsequent editing commands from $XX to #XX,
therefore allowing insertion of 1lines beginning with "$", but disallowing
insertion of lines beginning with "$". A command #IS $§ later will restore the
UPDATE to the normal command format.

To insert a blank line, one should not simply press the carriage
return, because that action would merely move the pointer forward one line, and
no insertion of any kind is accomplished. A blank line may be inserted by
typing (at least) one blank then returning the carriage.

B. Insertion of a stored file

If the lines to be inserted are already stored on disk as a file
whose name is given, for example, as NAME.EXT, by its owner with PPN of [m,n],
the insertion can be made simply in this manner:

a. Position the pointer at the line immediately before the
insertion.

b. Issue the following UPDATE command:

$INPUT = NAME.EXT [m,n]

As usual, if [m,n] are the user's own numbers, they may be omitted in the
command., After the insertion, the pointer moves forward to the last inserted
line. This command is frequently used for merging parts of program or data
files.

Although the inserted lines come from a stored file on the disk, the
UPDATE editor treats them the same way as if they come from the terminal. And
hence, the lines in a stored file insertion are subject to the same UPDATE
editing rules, particularly about the interpretation of the first column
character. If a file will be used as a straight forward insertion of lines, it
should be inspected first to see if there is no "$" sign in the first columns.
If there is any "$" in the first column, appropriate action, such as "$IS #"
command, should be taken prior to the insertion. On the other hand, another
avenue of issuing editing commands in addition to the terminal is now opened up.
One now may use either the terminal or a stored file to issue editing commands.

46 CHAPTER 2 TEXT EDITOR

UPDATE is greatly enhanced when a sequence of fixed UPDATE commands, which will
be executed frequently, 1is stored as a file. Exgecution of this sequence of
commands can be carried out automatically simply by the $INPUT command. These
stored files now become editing programs and can be used over and over.

Example: The following is a file ATTEND.DAT that needs updating each
week. The contents with the column numbers are shown below:

(Column) 111111111122222222223

(Numbers) 123456789012345678901234567890
PERSON A 10110 1
PERSON B 10011 2
PERSON C 01101 3
PERSON D 10111 4
PERSON 2 00110 126

Suppose the requirement of updating the file is ‘as follows. Remove
column~-16; shift columns 17-20 to the left by one column; and replace
column-20 by zeros.

An "editing program" may be designed and stored as EDIT.PRG that contains
the folowing statements:

$SAT1

$SUBSTITUTE /1/0/16

$AT1

$SUBSTITUTE /0//16

$AT1

$SUBSTITUTE / /0 /20 (=blank)

This sequence may be executed as shown below:
. UPATE ATTEND.DAT
> $INPUT=EDIT.PRM

> $END
1 BLOCK WRITTEN ON ATTEND.DAT[115103,320571]

EXIT

When this editing program is executed, columns 17-20 will be shifted to
the left by one column.

(2) Insertion before the pointer

To insert material before the pointer, first apply the command $BEFORE.
Then all 1lines with no ($) sign at the column-1 will be inserted before the
pointer. In the meantime, the pointer will move to the last inserted line. The
Insertion mode is terminated by any UPDATE command. See the example below:

Compounded Editing Commands 47

Example: Observe the "Before" and "After":

Line 0ld Text and New Text and
Number Pointer Position User types in: Pointer Position

1 —11 $BEFORE AA

2 22 AA —— BB

3 33 BB 11

4 44 22

5 ‘ 33

6 44

2.10 Compounded Editing Commands

The UPDATE commands discussed so far have the format of one command per
command line., When several commands are issued on a single command line, they
become a compounded command. The general format of a compounded command is:

$SCOMMAND 1; COMMAND 2; COMMAND 3; ...

The semicolons ";" are used to separate the successive commands, and therefore
no semicolon should appear after the last command in the compounded structure.
Also, if any of the commands contains a quotation of string, the string must not
contain any semicolon-character, because it will be misunderstood as a command
delimiter. Note that the dollar sign "$" is needed only for the first command.
There are several straight-forward rules for constructing a compounded UPDATE
comnand :

(1) All commands of a compounded command must fit in a single command
line.

(2) The individual commands in the compounded command are executed in
their natural order from left to right.

(3) Certain commands may cause ambiguity and error if they are followed
by other commands in a compounded structure. Consider the following compounded
command :

$TO 5; CHANGE /OLD1/NEWl/; TO/TEXT/; TYPE 4

l%l ’ﬂ*-‘“" 2 “—’f** 3 --’<‘4 A*l Interpretation 1:

4 single commands’

}‘_1 .’. e 2 —I— 3 — ~| Interpretation 2:
3 single commands
with multiple string

changes in $CHANGE

It can be seen that the interpretation is ambiguous and it will be unpredictable
how this command would be actually executed. To avoid this problem, commands of
this kind are always regarded as the last command in the structure, even if
there are more commands after them, If more commands are given after them in a
compounded command, the added commands are simply ignored, and no error return

48 CHAPTER 2 TEXT EDITOR

signal 1is returned. Thus, when the above example 1is executed, the part
"T0 /TEXT/; TYPE 4" will not be executed. In order to accomplish the function
of the above compounded command, the above example should be modified to:

$TO 5; ALTER /OLD1/NEWl/; TO /TEXT/; TYPE 4

The ambiguity is now removed because the $ALTER command can allow only one
change of string.

There are certain UPDATE commands that must be physically the last
command in a compounded structure. These commands are listed below:

Group UPDATE Commands
Multiple string change CHANGE
Change of command format Is
Auxiliary file operations INPUT, ONTO, FROM
End of editing session END, DONE, FINISH

Commands appended to any of the above commands in a compounded structure will
simply be ignored.

Compounded command structure format provides a convenience for input
commands. It also is a basis on which a simple and powerful editing program can
be built, especially when it couples the usage of STRAVEL and $GO commands in
the compounded structure:

Example: $AT 1; TRAVEL /FORMAT/7; WHERE; GO

Function: Beginning at line 2, search for the string of characters
"FORMAT" that begins at column-7. When it is found, type out
the line itself and the 1line number. Repeat the function
until the end of the file is reached. In other words, this
compounded command will print out all FORMAT statements and
where they are in a FORTRAN program. Notice this compounded
command will miss line 1; why?

Example: S$AT1;TR/ /;AL/ / /3;AT-1;GO
Function: Beginning from line 2, all multiple blanks will be reduced to
single blank.

Example: $TR/C/1;DE;AT-1;GO
Function: Remove all Comment Lines in a FORTRAN program.

$MOVE

2.11 Move Command, SMOVE

49

This command will move a block of lines to somewhere else in the file.

There are two general formats:

multiple-command format.

(1) Single command format

One is a single-command format, the other a

The merging of $MOVE N and $TO commands forms a single-command that will

move an N-line block to a place designated by the $TO command.

Before the move,

the pointer should always be positoned at the first line of the N-line block.

Immediately after
N-line block at its new place.

A. SMOVE N TO M

B. $MOVE N TO +M

C. $MOVE N TO -M

D. $MOVE N §

E. $MOVE N TO /TEXT/

F. S$MOVE N TO /TEXT/K

the move, the pointer will always be at the last line of the
Because of the $TO command,
variations of the $MOVE N TO commands.

there are many
They are listed below:

Move N-line block to a new position so that
the first line of the block is now line No.
M.

Move an N-line block to a new position
starting immediately after the line which
has a relative line number of +M from the
last line of the block before the move.

Move an N-line block to a new position
immediately before the line which has a
relative line number of -M, relative to the
first line of the block.

Move an N-line block to the end of the
file.

Move an N-line block and ©place it
immediately after the 1line beyond the
pointer that has the first appearance of
the string /TEXT/.

Move an N-line block and place it
immediately after the Lline beyond the
pointer that has the first appearance of
the string /TEXT/ that starts at the Kth
column.

Example: SMOVE N TO M
Line 0ld Text and New Text and
Number Pointer Position $SMOVE Command Pointer Position
1 11 SMOVE 2 TO 3 11
2 —> 22 44
3 33 ‘: zzJ
4 44 | —=33
5 557 55
6 66 66
7 77 77

50

CHAPTER 2 TEXT EDITOR
Example: SMOVE N TO +M
Line Old Text and New Text and
Number Pointer Position $MOVE Command Pointer Position
1 11 M0 2 TO +3 11
2 — =227 44
3 33[1 55
4 44 66
5 55 22
6 66 - 33
|
7 77 77
Example: SMOVE N TO -M
Line 0Old Text and New Text and
Number Pointer Position =~ $MOVE Command ~ Pointer Position
1 1 $MO 2 TO -3 11
2 2271 557
3 33 > 66
4 44 22
5 -~ =551 33
6 66 44
7 77 77
Example: SMOVE N TO $
Line Old Text and New Text and
_Number ~ Pointer Position = $MOVE Command =~ Pointer Position
1 11 $Mo 2 TO § 11
2 =22 ’, R 44
3 335 55
4 44 66
5 55 | 77
6 66 ! 227
7 77, | — »33]
Example : To interchange a pointed line with the next line.
Line Old Text and New Text and
Number Pointer Position — $MOVE Command Pointer Position
1 11 0 1 TO +1 11
2 — =22~ 33
3 33_ —= 22
4 44 44
5 55 55
6 66 66
7 77 77

$MOVE

Example:
Line Old Text and
Number Pointer Position $MOVE Command
1 11 $MO 1 TO -1
2 22
3 oem 33
4 44
5 55
6 66
7 77
Example: $MOVE N TO /TEXT/
Line Old Text and
Number Pointer Position $MOVE Command
1 11 Mo 2 TO '55!
2 22
3 33771
4 44
5 55, .1
6 66
7 77
Example : $MOVE N TO /TEXT/K
Line 0ld Text and
Number ~ Pointer Position _$MOVE Command
1 1b $Mo0 2 TO /3b/1
2 = Pl
3 2b
4 b2
5 3b_
6 b3
7 4b

51

To interchange a pointed line with its preceding line.

New Text and
_Pointer Position

11

—>33

22
44
55
66
77

New Text and
_Pointer Position

11
44
55
22"
334
66
77

New Text and
_Pointer Position

1b
b2
3b

bl
~o= 2D

b3
4b

The search for /TEXT/ starts from the next line from the current 1line.
Thus the search will omit the current line and all lines prior to that. The
following example shows an error of search:

52 CHAPTER 2 TEXT EDITOR

Example: SMOVE N TO /TEXT/

Line Old Text and New Text and
Number Pointer Position SMOVE Command Pointer Vl?p_g}j;‘ig_r}d

1 11 $Mo 2 TO /33/1 11

2 22 22

3 33 33

4 44 44

5 - 55 —= 77

6 66] | :

7 77 ¥ (Search unsuccessful when

reaching the end of file,
and moved lines are lost.)

(2) Multiple command format

Moving an N-line block of text can also be achieved with first a $MOVE N
command, and then when the destination is accurately positioned, with another
S$HERE command. What actually happened is that the N-line block is temporarily
stored in an auxiliary file E3, and when the $HERE command is given, the lines
will re-enter the computer memory. The advantage of moving lines in this manner
is that the procedure becomes less error prone because of accurate positioning
of the destination. In the nine examples shown above for the single-command
format, movements of lines can also be accomplished by a three-step procedure:
$MOVE N, accurate positioning by $TO, and then S$HERE commands. Observe the
difference in the 1line numbers used between the single-command and the
multiple-command formats.

2.12 COPY Command

This command will duplicate a block of lines elsewhere in the file. The
format of the command is very similar to that of $MOVE, and so are the
variations. Instead of using TO for positioning in the $MOVE command, S$COPY
uses AT for positioning the pointer. The variations of $COPY are listed below
with similar definitions as applied to the $MOVE variations:

(1) Single command format

A. $COPY N AT M
B. $COPY N AT +M
C. $COPY N AT -M

D. $COPY N AT /TEXT/
E. $COPY N AT /TEXT/K

F. $COPY N AT $

$COPY

(2) Multiple command format
$COPY N
Accurate positioning command
SHERE
These variations are again illustrated by examples:
Example A: $SCOPY N AT M
Line 0Old Text and New Text and
Number Pointer Position $COPY Command Pointer Position
1 11 $CO 2 AT 3 11
2 —22)._ 22
3 33|« 22
4 44 ——= 33;
5 55 33
6. 66 44
7 77 55
8 66
9 77
Example B: $SCOPY N AT +M
Line Old Text and New Text and
Number Pointer Position $COPY Command Pointer Position
1 11 $co 2 AT +3 11
2 —-= 22 22
3 337 33
4 4 44
5 55 55
6 66 _ | 66 _
7 77 221
8 —> 33}
9 77
Examgle C: $COPY N AT -M
Line Old Text and New Text and
Number Pointer Position $COPY Command Pointer Position
1 11 $Co 2 AT -2 11
2 22 22
3 33 33
4 4 44
5 — 557" Watch out for 55 71=1 , .
6 66 tricky minus —~ 66 | |2 lines
7 77 count here. A 55 -
8 poor feature. 66
9 77

53

54 CHAPTER 2 TEXT EDITOR

Example D: $COPY N AT /TEXT/K

Line 0ld Text and : New Text and
Number Pointer Position $COPY Command Pointer Position
1 1b _ $CO 2 AT /3b/1 1b
2 —— bl bl
3 2] 2b
4 b2 : b2
5 3b 3b
6 b3 =" bl
7 4b —=2b}
8 b3
9 (b=blank) 4b

The four examples above show how $COPY command may be used in a
single-command format. If $COPY is wused in a multiple-command format, the
commands to produce the same results as the above four examples will be:

Example A Example B Example C Example D
$CO 2 $SCO 2 $CO 2 $CO 2
SAT 2 SAT+H2 S$AT -3 $AT/3b/1
SHE SHE SHE $HE

Since the pointer will be positioned at a line beyond the line of the copied
group after each $COPY N command, the counting of 1lines is different.
Therefore, observe particularly the number of lines of movement for the pointer
in the first three cases.

2.13 Editing-Control~Function Switch Commands

There is a group of editing control functions that UPDATE can turn them
ON or OFF by commands. When a function is switched ON, that function will be in
force. Such software switches have many similar properties as a hardware
switch., For example, a function will be OFF unless explicitly turned OFF, or
vice versa. Turning ON a switch several times in succession is equivalent to
turn it on just once.

(1) Functions permanently switched ON or OFF by UPDATE

The following is a group of editing commands that provides a variety of
control functions during an editing session. It has a general format of

$KEYWORD
SKEYWORD

YES
NO

[}

where KEYWORD represents an option, and YES or NO to indicate whether such
option 1is to be switched ON or OFF. When a function is switched ON, the effect
is permanent for the remainder of the editing session or until the function is
explicitly turned OFF. When UPDATE is first called, all these switches are in
the OFF condition.

Editing Control Function Commands

A. SARROWSYES; $ARROW=NO

control characters in the cur
command as either "-character ol

55

When this option is turned on, all
ent line can be displaced by the TYPE
a “~character, such as "L or "L, "I or

Example: Often, in entering a text line, the shift key of the terminal
is used to enter special symbols, such as "*" or "]". If by mistake, the

control key is used instead of the shift
detected because a control character
following segment of an editing session:

UPDATE Commands

>8TYPE
DIMENSION X(10)
>$ARROW=YES

key, the mistake cannot be easily
will not be echo-printed. Observe the

Comments

Printout seems OK

>$TYPE .
DIMENS [ION Hidden non-print character
>$CHANGE /~1// Remove it.
DIMENSION X(10) It's gone.
>
B. SEDIT=YES; S$EDIT=NO When a $EDIT=YES command is given, the

UPDATE automatically inputs and prints out a "$" sign in column one.
The user can thus enter the command keyword directly without the "$"
sign., Unless there is a very heavy volume of UPDATE commands given
in a session, $EDIT=YES is a command of convenience, sometimes of
questionable merit. When this option is switched on, UPDATE will
interpret every line as a command, because the computer already
receives a "$" sign automatically as the first character. It causes
a dilemma if you actually wants to insert a line. A command

$CREATE /TEXT/

will cause a line represented by TEXT to be inserted after the

current line, and may be used
on.

for insertion when the $EDIT switch is

Example: A segment of editing involving $EDIT switch.

UPDATE Commands

>$TYPE 2
C Illustrative Example

C Main Program

>$EDIT=YES

>$C WRITTEN BY T. W. SZE
?§$CR/C WRITTEN BY T. W. SZE/
>

Comments

EDIT switch is OFF.

Two lines typed out

EDIT switch is now ON.
Attempt to insert a line;
note error return

"$" automatically given

56

C.

CHAPTER 2 TEXT EDITCOR

SECHO=YES; SECHO=NO When this switch is turned on, an
inserted 1line will be echo-printed on the terminal right after the
insertion. This switch is very useful when used in conjunction with
the case-shifting switch or the tab-setting switch.

Example: In the following example, a table is being constructed with
data in columns 11-12, 21~22 and 31-32, Tabs are set at 11, 21 and 31. The
$ECHO=YES switch will echo back entered data at the correct column positions.

UPDATE Commands

>$TAB=11, 21, 31 Set TAB.
>$ECHO=YES Set BECHO switch.
>(Tab)23(tab)55(tab) 92 Enter data.
23 55 92 Data echoed.
>(Tab)43(tab)12(tab) 28
43 12 28
>
D. S$ERROR=YES; $ERROR=NO When this switch is turred on, an error

message will be reported on the terminal when an errcr is committed.
If the switch is turned off, only a "?" symbol is reported to
indicate an error.

Example: Suppose UPDATE is editing a file that contains 5 lines. The
contents of these 5 lines are 11, 22, 33, 44, and 55 respectively for each line
starting at column-1. The pointer is now at line No.3. Observe the errors made
in the editing session and error message received:

UPDATE Commands Comments
>$TYPE ... Display line 3.
33
>$CH/11/66/ ... To make a change.
?>$ERROR=YES ven "?" symbol returned. Turn on
>$CH/11/66/ error message and try again,
?Sequence not in current line ... Meaning can't find a match
>$CH/33/66/) ... Try again.
66 ... Change verified
>$T0/88/ ... Move pointer.
?Reached last line of text ... Can't find /88/.
>$WHERE .«» Check line number.
[5]
>$DUNE ..~ Close the editing.
?Illegal command or structure ... Incorrect spelling
>$DONE ... Try again.
Catalog name=>DATA.DAT ».. Name DATA.DAT given
File Already existing file ... Duplicate name error
Catalog name=>DATAX.DAT ... Give another name.

1 blocks written on DATAX.DAT[115103,320571]

Editing Control Function Commands 57

E. S$GAG=YES; $GAG=NO After the commands TO, TRAVEL, CHANGE,
SUBSTITUTE are executed, the terminal automatically prints out the
new current line, While it serves as a convenience, it may become a
nuisance if there is too much output. To suppress the printing, use
$SGAG=YES command, and the current line can only be printed out by an
explicit $TYPE command. This function can be cancelled by a $GAG=NO

command .
Example: To suppress unwanted verification printout:
> $SUBSTI. TUTE/ITEM1/ITEMS/ > 8GAG=YES
volume > $SUBSTITUTE /ITEMI/ITEM2/
of >
verification
printout
>
F. SLINE=YES; SLINE=NO When a SLINE=YES command is given, the

Iine number will be displayed along with the line text in all
terminal displays. .

Example: Observe the difference before and after the LINE switch is
turned on:

UPDATE Commands Comments

>$8AT1; TYPE 3 Type out first 3 lines,
11 no line numbers.,

22

33

> 8LINE=YES

>8AT1; TYPE 3 Type out first 3 lines
1] 11 with their respective
[2] 22 line numbers,

[31 33

>

G. S$SUPPER=YES, $UPPER=NO; $LOWER=YES, S$SLOW=NO
Many older or inexpensive terminals are built without capability of
entering or outputing lower-case letters. Hence, it is often
desirable to enter upper—case letters but store them as lower-cases.
Since both $UPPER and $LOWER swtiches affect the cases, the aggregate
effect depends on the combination of the two switches:

UPPER LOWER Aggregate Effect
NO NO Store as entered
YES NO Store as upper cases
NO YES Store as lower cases

YES YES store as entered

58 CHAPTER 2 TEXT EDITOR

The readers are reminded that all switches ar originally at OFF or NO
states. However, if there are large volume of text data containing
both upper and lower cases, such as a report or a thesis, it is not
practical to use this switch if one has a upper-case-only terminal.
For such needs, the users are referred to the utility program RUNOFF
(See Chapter 7) which contains many word-processing procedure
including case-control.

(2) FPormat of functions switched ON temporarily by UPDATE

Frequently, it 1is desirable to switch certain functions ON only
momentarily for the duration of one command. While the switch can always be
turned on or off by commands, it will be convenient to construct a
"spring-return" switch which will automatically be turned back to OFF after the
command is executed. UPDATE provides this convenience by a command format in
parenthesis:

$COMMAND (SWITCH FUNCTION) Argument

SCOMMAND (FUNCTION-1) (FUNCTION-2) Argument
SCOMMAND (FUNCTION-1, FUNCTION-2) Argument

Examples: The following examples show equivalent commands:

Equivalent Equivalent
SLINE=YES $TYPE (LINE) 3 SERROR=YES $TO (ERROR) /XYZ/
STYPE 3 STO/XYZ/
SLINE=NO SERROR=NO
Equivalent

$SGA=YES $SU(GA, ER) /XX/YY/

$ER=YES

$5U/XX/YY/

$GAG=NO

SERROR=NO

2.14 Editing Function Value-Setting Commands

In this group of commands, the common format is:

SCOMMAND = n

where "n" is an integer. The meaning of "n" is defined for each function, and
they are presented as follows:

A. SFACTOR=N This command will modify the size of the memory
"window". Normally, there is no need to adjust the window. Only
when editing a very large file, there may be justification to adjust
the window to a 1larger size in order to reduce the overhead
file~copying when the pointer is backed outside the current window.

Editing Function Value-Setting Commands 59

B.

This was explained in a previous section in reference to Figure 2.1.
When $FACTOR is given without an argument, it is an inquiry for the
size of memory assigned behind the current line. A number typed out
on the terminal indicates the size in number of lines.

SLENGTH=N, and $SIZE=N Either of the commands will set the
length of each line to N characters long. If the text in a line is
less than N-character long, spaces after the last character are
padded with blanks. If the text in a line is more than N-character
long, the extra characters are simply truncated and removed.

Complications arise when there are tabs characters in a line.
Although each tab character counts.only as one character in the line
text, its effect is equal to multiple and variable blanks when it is
translated. Therefore, if the SLENGTH or $SIZE command is used to
prepare a fixed-length record file, it is desirable to let UPDATE
translate tabs into blanks by $TAB command, so that a correct number
of characters will be counted. The main usefulness of this command
is to construct a data file in which the record size is uniform for
every record., If SLENGTH command is applied without any argument, it
becomes an inquiry about the 1length of the current line. The
computer will respond with a number which is equal to the number of
characters (including blanks) in the current line.

$SAVE=N This is a safety feature that can be very useful

in long editing sessions. If the editing session in progress and the

System must be re~initialized due to crash, broken communication
linkage or any other emergency situation, all fruits of labor during
that editing session are lost. Or, when the connect-time of the
terminal expires, there will be no allowance for the user to finish
or to close the editing, and he is forced to sign off immediately.
The result of the current editing is also lost. If such contigency
may be likely, it is prudent for a user to apply a command S$SAVE=N,
The following will then be accomplished:

When a command such as $SAVE=15 is issued, the output file E2
will be periodically closed, stored, and reopened to continue, for
every 15 lines output into the E2. Thus, in case of a system
failure, the user will in his disk a T™P file named E200xx.TMP that
contains the status of last save. This would cut the loss of
information to a emall amount. The exact name of the TMP file is
reported on the user's terminal. Should the editing goes to the
completion successfully, that TMP file is deleted automatically. The
disadvantage of such safety measure is that it significantly slows
down the editing operation because of the extra file operations the
computer is required to do every N lines.

STAB=N1,n2,... When the UPDATE is first called, the tab
settings are at the system default positions, namely at columns 9,
17, 25, etc (every 8 columns). To reset the values of tab setting to
a different set, use the command $TAB=nl,n2,... where "nl", "n2",
etc., are the new tab settings. When a tab key 1is subsequently
entered, it will be translated into multiple blanks, the number of
which depends on where the tab key is entered on the line, Since tab
key often causes problem in the count of characters in a line,
especially in the case of a fixed record-length file, it is useful to

60

CHADTER 2 TEXT EDITOR

use this command eve;x though the tab settings may be the same as the
system default.

The chief usefulness of this command is to prepare tables with
fixed columns, or to prepare a fixed column data file.

Example: Construct a roster of names with last names starting
on column-5 and initials starting on column—25:

> 8TAB=5,25

> (T)Doe(T)JD (7) =Tab key
>(T)Jones (T)MS

S(T)Li (T)JIG

> (T)Kong (T)KK

> (T)Modzelewski (T)SW

>(T)Smith (T)YT

>3AT1; TYPE 6

Doe Jp
Jones , MS
L JG
Kong KK
Modzelewski SwW
Smith YT
>
Example: Prepare a data file that has a FORTRAN format of 2(7X,I3).
>$TAB=8,18
>(T)238(T) 23 (T)=TAB KEY
>(T) 12(T)856
>(T) 44(T)433
>8AT1; TYPE 3
234 23
12 856
44 433

2.15 Miscellaneous Editing Commands

(1) Commands regarding to current line position

A,

B.

SWHERE and SLINE Either of these two commands will cause the
absolute line number reported on the terminal.

SLENGTH This command will cause the length of the
current 1line in number Of characters reported on the terminal. Also
refer to the command $LENGIH=n command. Note that S$LENGTH is to
inquire about the length, while SLENGTH=n is to set the length.

Miscellaneous Commands : 61

C.

(2)

SPOSITION /TEXT1/TEXT2/.s. This command will type out the
positions (column numbers) of the first character of each of the
string TEXT1,TEXT2,... in the current line.

Insertion Commands While UPDATE will accept any input line

without the "S" sign 1in column 1 to be an inserted line, there are occasions
insertions may be made easier by the following commands:

A. OVERLAY /TEXT/K, or $K /TEXT/ This command will place a string
of characters "TEXT" in the current line beginning at the Kth column
and replacing whatever was there before.

Example: Observe the effect of a command $4/ABCD/:

Before : After
1234567890 123ABCD890
B. S$PLACE/TEXT/K This command will insert the string "TEXT"

in the current line starting at the Kth column. Unlike the $OVERLAY
command, the displaced characters do not disappear; they are merely
pushed back to the right to make room for the inserted string.

Example: Observe the effect of acommand $PLACE/ABCD/4 and compare it
with that of the previous example:

Before After
1234567890 123ABCD4567890
C. SREPLACE N When this command is given, the specified number
of line in the file beggining with the current line is deleted, and
the same number of lines subsequently typed on the terminal will take
their palces. This command is equivalent to a compounded command of
SDELETE (GAG) ; AT-1. The command S$REPLACE 1is equivalent to
SREPLACE 1.
Example: Observe the difference between REPLACE and DELETE commands:

SDELETE command SREPLACE command

>8AT1; TYPE 5 >8AT1; TYPE 5

11 11

22 22

33 33

44 44

55 55

>$AT3; DE(GAG) >$473; RE

XX XX

>$AT1; TYPE 5 >$AT1; TYPE 5

11 11

22 22

44 XX

XX 44

55 55

62 CHAPTER 2 TEXT EDITOR

x

(3) Length-manipulating commands

The end of a line is indicated by a carriage-return character. The
number of characters between two carriage return characters, not counting the
carriage return characters themselves, is the length of a line, Therefore, by
adding a carriage return some place in a line, it may be broken into two lines.
Conversely, if the carriage return at the end of a line is removed, that line is
joined with the next. In manipulating the length in this manner, caution should
be exercised regarding the blanks at the end of a line. Normally, when there
are trailing blanks in a line, UPDATE simply ignores them in order to conserve
storage spaces. Thus, the number of blanks at the Jjoint should be carefully
observed, otherwise the space at the "seam" will be in error. The associated
commands are now discussed next.

A, JOIN command This command will remove the carriage return
character at the end of the current line, thereby join it with the
next line. Because all trailing blanks are deleted, any blanks
required at the seam must be provided by the leading blanks of the
second line in the joining process.

B. $BREAK command This command will insert a carriage return
character into the current line, thereby braking it into two lines.
It has two formats:

$BREAK N

SBREAK /TEXT/

Both "N" and "TEXT" indicate the end of the first line after the break. Thus,
the second line after the break will begin with the old (N+1)th column as its
first column, or the column immediately after the string "“TEXT" as its first
column.

Examples: Observe the effect of $JOIN and $BREAK. Pay attention
specially to the "seam", before and after the operation.

>8TYPE 3 >STYPE 2 >STYPE 2

11 12345 67890 12345 67890
22 >$BREAK/5/ SSBREAK/5 /
33 12345 12345
>$JOIN 67890 67890

11 22 > >

>$JOIN

11 2233

>

Auxiliary File Preparation 63

SELECTED ADVANCED TOPICS IN UPDATE

The materials presented in the PRIMER (pp.37-42) are for the beginning
users. The materials presented in the COMMAMDS and PROCEDURES (pp.43-62) are
for the average users. The combined materials should be more than adequate for
most editing jobs. Occasionally, there may be special and frequent needs for
very sophisticated editing and therefore a more complicated set of commands may
be useful. However, unless you have special needs that require the commands in
the following sections, your time may be better invested by thoroughly
familiarizing yourself with the basic material and then going directly to the
SUMMARY sections (page 72). It should be noted that the objectives
accomplishable by the complex commands can also be accomplished by simpler
commands in more steps. Or, it may require getting on and off from UPDATE
several times.

Three topics will be presented: auxiliary files, conditional commands,
and editing programs.

2.16 Preparation and Use of Auxiliary Files

Sometimes, it is desirable to construct an auxiliary file which contains
a selected excerpts from a main file. Or, in creating a new file, certain of
its lines may be contributed by an already established file. Using only
commands presented so far, one can take the established file, delete all
unwanted lines, and the result would be an excerpt. In this section, some
special UPDATE commands are presented that will facilitate such a task.

(1) Auxiliary output file preparation

A main file is already in existence and has been called by UPDATE. It is
required now to make one or more auxiliary files which contain excerpts from the
main file. Three commands are provided for this purpose:

A. $ONTO command This command will open an auxiliary file in
the disk into which excerpts of the main file will be transferred.
The opened file will be given a filename in the ONTO command format:

SONTO = standard file specification

where the standard file specification will contain a name and an
extension.

B. $PUT N command This command will transfer N lines, beginning
with the current 1line, from the main file to the auxiliary file
opened by a previous $ONTO command. If N is omitted in the command,
it is equivalent to $PUT 1. Caution: After the 1lines are
transferred to the auxiliary file, those lines are no longer in the
main file. If the editing session is allowed to end with a normal
SEND or S$FINISH command, the new main file will be the old file minus
those exerpts taken out. If you do not wish to disturb the old main
file, you must not let the editing session come to a normal end. As
soon as the auxiliary file preparation is completed and closed, apply
CIRL-C to abort the editing job.

64

c.

CHAPTER 2 TEXT EDITOR

SCLOSE command The command SONTO opens an auxiliary file E3

as a working file; S$CLOSE command closes it and stores it away in

the disk.

Examples: Two auxiliary files X.DAT and Y.DAT are prepared composed of
excerpts from a main file SAMPLE.DAT. Observe the sequence of editing commands
and the "Before" and the "After" conditions of the files:

(BEFORE) ' (AFTER)
SAMPLE ., DAT Editing Commands SAMPLE. DAT X.DAT Y.DAT
11 .UPDATE SAMPLE,DAT 44 22 11
22 11 77 33
33 >8AT2; ONTO=X,DAT 55
44 >8PU2; AT+1; PU2; CLOSE 66
55 >8AT1; ONTO=Y,DAT
66 »>8PU1; CLOSE; END
77 K
(BEFORE) (AFTER)
SAMPLE . DAT Editing Commands SAMPLE. DAT X.DAT Y.DAT
11 LUPDATE SAMPLE., DAT 11 22 11
22 11 22 33
33 >8AT2; ONTO=X.DAT 33 55
44 >8PU2; AT+1; PU2; CLOSE 44 66
55 >84T1; ONTO=Y.DAT 55
66 >8PU1; CLOSE 66
77 >0 77
(2) Auxiliary input file operation

Often, the input insertion to a file is preferred to be lines from an
existing file if it is already available. Presumably, that file has been
checked out already and it is not only convenient to copy those lines but also
reduces the chances of error.

A.

$FROM command While . the S$SONTO command specifies a
destination auxiliary file, the S$FROM command specifies a source
file. Its command format is similar to that of the S$SONTO command:

SFROM = standard file specification

If this file resides in another user's disk area, his PPN should be a
part of the file specification, such as NAME.EXT[m,n].

SADVANCE command When the SFROM command is first applied, its
pointer is positioned at line 1. The $ADVANCE n command is used to
position the pointer in the auxiliary file specified by the SFROM
command. Although n is an unsigned integer, it is interpreted as a
relative line number.

Auxiliary File Preparation 65

C. $GET command Once the pointer of the auxiliary file is
positioned correctly in the auxiliary file, a command of $GET n will
transfer n lines, starting with the current line, from the auxiliary
file to the main file, After the transfer, the 1lines in the
auxiliary file are not erased.

Sometimes, excerpts are taken from several auxiliary files. In changing
from one auxiliary file to another, it is necessary to disengage the old one
before engaging the new, For this reason, the command $FROM 1is designed to
disengage automatically the old auxiliary file and engage the new file. Each
time a file is engaged, the pointed will be positioned at line 1.

Examples: A file SAMPLE.DAT and two auxiliary files X.DAT and Y.DAT
are all available in the disk storage. Their contents are as follows:

__._File Contents —--"BEFORE"

SAMPLE . DAT X.DAT Y.DAT
11 AA XX
22 BB YY
33 cC 22
44 DD uu
55 EE w
66
77

Another file Z,.DAT is now prepared by inserting certain lines from X.DAT
and Y.DAT into SAMPLE.DAT. This is shown below:

—ee...File Contents ——— "AFTER" . . _ ..

Editing Commands SAMPLE, , DAT X.DAT Y.DAT %,DAT
JUPDATE SAMPLE,DAT 11 AA XX 11
11 22 BB Yy 22
>8AT2; FROM=X.DAT 33 cC ZZ BB
>SADVANCE 1; GET 2 44 DD uu cc
>8AT/55/3 FROM=Y.DAT 55 EE w 33
>84D2; GET 2: DONE 66 44
77 55
CATALOG NAME=>Z, DAT 2z
1 BLOCK WRITTEN ON Z.DAT uu
66

77 .

EXIT

2.17 Conditional Editing Commands

The UPDATE is enhanced in capabiltiy by being able to make "decision" on
which one of two alternate groups of editing commands are to be executed.

The basic structure of decision-making is as follows: First, a question
is asked to which a true-false answer is stored. This is accomplished by
issuing a $IF command. If the answer is affirmative, issuing a $THEN command
will execute a group of "execute-if-true" eiditng commands. (If the answer is

66 CHAPTER 2 TEXT EDITOR

negative, issuing a $THEN command will receive no response from them.) If the
answer is negative, issuing a S$ELSE command will execute a group of
"execute-if-false" editing commands. (Similarly, if the answer is affirmative,
issuing a SELSE command will receive no response from them.) Such a structure is
simialr to the conditional structure in many language processors, and is
graphically illustrated in a flow chart as shown in Figure 2.2.

$IF command

One or
more
$THEN
One or more Command 1 commands
$ELSE commands I :

Y
| Ofher Editing Commands !

Lo e e S |

Figure 2.2 Flow Chart of Conditional Editing Commands

(1) Single conditional commands

A. S$IF command As illustrated in Figure 2.2, the S$IF command
asks a true-false question, and its answer is stored away, setting
the stage for subsequent actions of $THEN and $ELSE commands. Since
the UPDATE has immediate information only on the current line, the
question asked must pertain either to the current line number or to
its content. Therefore, the formats of the $IF command are limited
to the following:

SIF format Question Asked
$IF /TEXT/ Is there a string "TEXT" in the current line?
SIF /TEXT/K Is there a string "TEXT" in the current line

that begins at the Kth column?

SIF S$TEXTS Ignoring blanks, tabs, and difference between
upper and lower cases, is there a string
"TEXT" in the current line?

SIF n Is the current line number equal to n?

conditional Commands : 67

Notice that the formats of the first three are very similar to those of
$TO commands.

B. $THEN and $ELSE commands The $THEN and the $EISE commands will
specify and execute the alternate sets of commands depending on the
answers to a previously issued $IF command. The command format is as
follows:

STHEN /command 1; command 2; .../

SELSE /command 1; command 2; .../

The commands between the delimiters "/" follow the rules of
compounded command structure, as discussed in section 2,10.

Exalee: SIF/FORMAT/7; THEN/WHERE; TYPE 2/;ELSE/DELETE 2/

Function: Examine the current line, Does it have a string of characters

"FORMAT" beginning at the 7th column? If yes, print out the
line number and type two lines. If no, delete 2 lines.

(2) Nested conditional commands

Each of $THEN and $ELSE command contains a set of embedded commands in
the compounded form. If the embedded commands contain another IF command, we
now have a nested structure. The following flow chart shows a typical example
of nested command structure:

First level 2nd level ?
IF 2nd level THEN'! First level
T | THEN

]

IF—_

—~.

The function of this flow chart is as follows: First examine the current line
to see if there is a character "A". If no, do nothing. If yes, then examine if
there is also a character "B" in the current line. If yes, type one line; if
no, type 2 lines. These functions may be accomplished by the following nested
command :

68 CHAPTER 2 TEXT EDITOR

$IF/3/; THEN/IF*B*; THEN*TYPE*; ELSE *TYPE 2Z
(IR e i—

First level IF —— First level actions

Second level IF — — L Second level actions

In using a nested conditional structure, one should be cautioned about
the following:

A. The main advantage of the nested conditional structure is to
compress many editing commands into a single compounded one, so that its
execution will be more efficient. The UPDATE allows a maximum of ten nesting
levels. The main drawback is that constructing a nested structure is a very
error-prone process. Furthermore, more levels it goes into, less man-machine
interaction is available to the user. Therefore, even though the UPDATE is
machine-effective for high-level nesting, it is a poor practice for a user to go
much beyond the second level. Otherwise, an editing session will be very likely
degenerated into a debugging session for editing commands. An exception to this
advice 1is when one has some nested commands that will be used repeatedly by the
user or others. In such a case, it may be justifiable to spend a lot of time to
debug it and store it for later repeated use.

B. In addition to the logic involved, the most likely source of error
in a nest construction 1is the choice of delimiters, Normally, any special
symbol pair may be used as delimiters (or as "quotation marks"). Since a nested
structure is basically a compounded structure, the semicolons ";" must be
reserved to separate the commands. Moreover, there should be no ambiguity
between the command delimiters of 1IF, THEN, ELSE at different levels.
Therefore, it is advisable to assign an unique delimiter symbol for each level.
See the following illustrative examples:

Example: Consider the following nested commands with their respecitve
interpretation of functions by means of flow chart:

{ $IF/A/; THEN/IF*B*/; THEN*TYPE*; ELSE *TYPE 2%/

|

Conditional Commands 69

$ IF/a/; THEN/IF*B*; THEN*TYPE*/; ELSE *TYPE 2*

IF/d/; THEN/IF/B/; THEN/TYPE//; ELSE /TYPE 2/
Incorrect use of delimiters!

C. Several nested commands may be compounded together to form a
compounded nested command. In doing so, one must be careful about the correct
placement of the THEN, ELSE commands. Each time when a first-level IF command
is executed, its true-false answer replaces that obtained in a previous IF
command. The same goes for the subsequent level IF commands. Thus in the above
example, the actions of both statements may be combined by this statement:

$IF/A/; THEN/IF*B*; TH*TY*;EL*TY2*/;TH/IF*B*; TH*TY*/; EL*TY2*

(3) Conditional with logic connectives

Consider the following fully-developed two-level nested structure:

Accomplished by Placing
Loglic Connective the same actlions in Box

Between Q1 & Q2 00 o1 10 IR
AND X
o OR X X X
Q2>>T-+{ 80 NAND X X X
yE ” NOR X
[BOX 00] LEGEND: T=TRUE XOR X X

- F=FALSE

By placing identical editing actions in the appropriate boxes as shown in
the accompanying table, a logical connective between the answers to Ql and Q2
may be accomplished. For example, if one wants to type the 1line if either
character "A" or character "B" (or both) is present, he should place the TYPE
command in boxes 01, 10 and 11. The result is the following command:

$SIF/A/; THEN/IF*B*; THEN *TYPE*; ELSE *TYPE*/; ELSE/IF*B*; THEN *TYPE*/
Actually, one can see that there is an INCLUSIVE OR, or logical union relation

existed in this case. The UPDATE processor has simplified the matter by
providing five commands specifying logic connectives: AND, OR, NAND, NOR and

70 CHAPTER 2 TEXT EDITOR

XOR. They are respectively for logic intersection, logic union, negation of
AND, negation of OR, and EXCLUSIVE OR. Thus, the above example can now be
written as:

$IF/A/; OR/B/; THEN /TYPE/

There is one important caution in using the logic connective commands.
Unlike the two-level nested commands, the second-level question does not
establish an independent answer (True-False) but modifies the first one.
Therefore, if the first-level question alone is to initiate some THEN or ELSE
action, it better be done before the answer is changed by the logical connective
commands. Observe the difference between the following two editing commands:

$IF/A/; ELSE /TYPE/; OR /B/; THEN /DELETE/

$IF/A/; OR /B/; ELSE/TYPE/; THEN /DELETE/

The difference would be the execution of ELSE/TYPE/ segment.

2.18 Editing Programs

In the UPDATE processor, the compounded command structure enables a
series of command executions in one pass. The TRAVEL, GO, and STOP commands
result in the looping capability. The conditional command group IF, THEN, ELSE,
and logic connectives yield the decision-making capability. Combining all of
these, one has the makings of a complete stored editing program. However, it is
not always desirable to construct editing programs for one-shot usage as they
are very wasteful of user resources. Moreover, accuracy of editing requires a
high degree of user-machine interaction which a complete editing program will
deprive. Therefore, construction of editing programs should ke limited to
applications of wide and frequent usages.

Two such program are given as illustrative examples:

Example: Given a FORTRAN program, design an editing program that will
print out all FORMAT statements., Assume all FORMAT statements have the keyword
"FORMAT" beginning at column 7, but some of the FORMAT statement may have
continuation cards.

The logic of the program may be described by means of a flow chart shown
on the next page.

In the compounded structure form, the resulting program (one line) is as
follows:

$GAG=YES ;AT/FORMAT/7; TYPE;TR+1; IF/C/1;O0R/*/1; THEN/GO/; IF/ /6;
THEN/AT-1; AT'FORMAT'7/; TYPE; GO

After this command is completed, all FORMAT statements will have been typed out
on the user's terminal. An error report sign "?" will also be typed out,
because when the search reaches the end of file, the $STR+1 command will still
attempt to advance 1 1line. If the above program has PUT commands instead of
TYPE commands (with ONTO command issued previously), this program would have
prepared an auxiliary file that contains all FORMAT statements in the FORTRAN

program.

Editing Programs 71

Search for /FORMAT/7.
When found, type It.

Lf?vance 1 llne | ° -

GO

Non=
Conituation
Card?

llype out the Hnﬂ(—w _J

es _|Backup 1 llne;
search for /FORMAT/7

Example: The equivalence between the 026 and the 029 key punch code is
shown below:

026 Punch 029 Punch
=

<)
Other characters have the same punch codes.
$TR+1;1F/ /3;TH/AL. .;AT-1/;0R/&/;TH/AL.&.+.;AT-1/0R/@/;TH/AL.Q." .;
AT-1.;0R/%/;TH/AL.%. (.;AT-1/;0R/</; TH/AL.<.) . ;AT-1/;GO
Since a single-line compounded command is limited to a maximum of 150

characters, two-letter abbreviations are wused for all UPDATE keywords in the
above command.

72 CHAPTER 2 TEXT EDITOR

A SUMMARY OF FILE MANAGEMENT BY UPDATE

2.19 File management Tasks

(1) To create a new file from a terminal

When UPDATE receives the input file name, the disk storage directory is
searched. when the file is found, the file is loaded into the input working
file, :

However, if the file name supplied by the user is null (represented by a
carriage return and nothing else), or if the file does not exist for the name
given, the input working file is entirely blank. Thus, the only information
that may go to the output working file would be from the terminal or from other
stored files by insertion mode. 1In this way, an entirely new £file may be
created from the user's terminal and stored in the disk.

(2) To create a new file by batch

The effectiveness of UPDATE to do editing 3job 1is mainly because its
man—-machine interaction. Therefore, UPDATE normally is not suitable for BATCH
jobs. However, if the source materials are in punched card form, a file may be
created from these cards by UPDATE submitted in BATCH.

Suppose we wish to store a deck of data cards in disk and will name the
file as DATA.DAT. First, a batch deck of cards is prepared that contains the
following. Either will do:

$JOB [m,n] | $J0B (mm} |
| SPASSWORD (password) | _$PASSWORD (password)|
_-UPDATE DATA,DAT |, UPDATE.

|_(a blank card)

data data
deck deck
| $sEND] [$spoNE
SEOJ _DATA.DAT .
SEOJ

In the above deck setup, the single-$ cards are BATCH commands, and those
double-$ cards are UPDATE commands read by BATCH. For more details on
Multiprogram Batch, see Chapter 9.

After the cards are prepared, read the cards in at a RJE card reader.
The job will be executed by the computer, and the file DATA.DAT is thus created
from the cards. For card input used in this way, the same precaution should be
exercised that there should be no "$" character in the first column in the data
card deck.

File Management by UPDATE

(3) To _copy a file

A file may be duplicated.and stored in the user's disk area by using the

UPDATE in the folowing way:
UPDATE NAME.EXT[115103,320571]

(UPDATE prints out the first line of NAME,EXT)
>3$DONE

CATALOG NAME=> NEW.EXT
This is equivalnet to a monitor command of:

.COPY NEW.EXT = NAME.EXT[115103,320571}

(4) To merge several files into one

For example, if three files D1.FOR, D2.FOR and D3.FOR are to be merged

into one DX.FOR, it can be accomplished in the follwoing way:

UPDATE D1.FOR
(UPDATE prints out the first line of D1.FOR)
>SAT §

>$INPUT= D2.FOR

>$INPUT= D3.FOR

>$DONE

CATALOG NAME=>DX, FOR

This is equivalent to applying the monitor command:

.COPY DX.FOR = D1.FOR,D2.FOR,D3.FOR

(5) To prepare an auxiliary file from a source file

The following is an example where an auxiliary file FORMAT.FOR is
prepared by extracting all FORMAT statements (some of which may be multiple-line
statements) from the FORTRAN file SAMPLE.FOR. Assume that all keyword FORMAT of
the FORMAT statements starts at the 7th column.,

UDPATE SAMPLE,FOR
(UPDATE prints out the first line of SAMPLE.FOR)

>$BEFORE

>4 (A=blank)

>8ONTO=FORMAT. FOR

)$GAG=YES;AT/FORMAT/7_;PU;TR+1;IF/C‘/1; OR/*/1;TH/GO/; TF/ /6 one
TH/AT-1;at 'FORMAT'7/;PU; GO Tine

2>8CLOSE

S ?=error indication when reaching the end

of file and still wanting to '"GO"

The logic of the long command line in this example was discussed in Section

2.18.

74 CHAPTER 2 TEXT EDITOR

2.20 Examples of File Editing

Two examples of editing a complete file will be given using the UPDATE
editor. The first one consists of entirely text eidting, while the second one
is a stored program in FORTRAN. The following points will be helpful:

(1) A careful proof-reading of the old text is essential. It is also
desirable to do the proof-reading "off-line" to conserve valuable terminal time.

(2) To increase the speed and efficiency of editing (and therefore to
reduce time and cost), all corrections should be marked on the listing, together
with their line numbers if appropriate.

(3) Moving from one record to another, the normal operation of the UPDATE
editior is to go forward. In fact, backing up the pointer to some previous line
may sometimes be costly because it will involve file re-writing and re-reading.
Therefore, backing up is generally an inefficient process and should be used
sparingly in view of processor efficiency. On the other hand, since deletions
and insertions of lines during editing will change the line numbers of all lines
of text beyond the pointer, it will be progressively difficult to locate the
desired line by absolute line numbers., For this reason, in editing the text by
its absolute line numbers, it is sometimes desirable that the editing be done in
the reverse direction, starting from the end of the file and working backwards
toward the front. In this manner, the deletion and insertion of lines will not
affect the line numbers of the portions of the file not yet edited. Here we are
trading off machine and processor efficiency for user convenience, This process
is desirable only if the user has made preparations as outlined in (1) and (2).
To improve processor efficiency, he can also readjust and enlarge the window by
the $FACTOR command.

(4) Only the first two letters of any UPDATE command word need be given.
Incorrect spelling of command is tolerated as long as the first two letters are
spelled correctly.

Example 1: To edit the text taken from the School of Engineering
Bulletin, University of Pittsburgh. The draft of text on disk file TEXT.EDT
along with the revisions on the draft appears as follows:

THE MICHAREL L. BENEDUM HALL OF ENGINEERING

STDUENTS ENROLED IN THE SCHOOOL OF ENGINEERING, UNIVER TY OF
PITTSBURGH, RECEIVE THEIR EDUCATION IN ONE OF THE COUNTRY'S MOST
MODERNAND BEST EQUIPPED ENGINEERING BUILDINGS, THE MICHARL L. BENNEDUM
HALL OF ENGINEERING., THE BUILDING COMPLEXX IS NAMED IN HONOR OF
MICHAEL L. ENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
MICHAEL L. ENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
THE BENEDUM TREE OIL COMPNAY. A GRANT FROM THE CLAUDE WORTHINGI'ON
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE ON WHICH THE ENGINEERS
COMPLEX IS BUILT.

The following is a printout of the editing session:

Examples

.UPDATE TEXT.EDIT
THE MICHAREL L. BENEDUM HALL OF ENGINEERING
>sc/r/ T/R// :
THE MICHAEL L, BENEDUM HALL OF ENGINEERING

>8AT+2; CH/L/LL/000/00/R TY/RSITY/

STUDENTS ENROLLED IN THE SCHOOL OF ENGINEERING, UNIVERSITY OF
>$AT+2; CH/AND/ AND/ARL/AEL/NN/N/
MODERN AND BEST EQUIPPED ENGINEERING BUILDINGS, THE MICHAEL L. BENEDUM
>8AT+1;CH/X//
HALL OF ENGINEERING. THE BUILDING COMPLEX IS NAMED IN HONOR OF
>8AT+1; CH/EN/BEN/
MICHAEL L. BENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
>8AT+1; DELETE
THE BENEDUM TREES OIL COMPANY. A GRANT FROM THE CLAUDE WORTHINGTON
SSAT+1; CH/CHASE/CHASE THE LAND/ENGINEERS//
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE THE LAND ON WHICH THE
>8AT+1; PLACE/ENGINEERING /1
ENGINEERING COMPLEX IS BUILT.
SSEND
>
1 Blocks written on TEXT.EDT[33,33]

EXIT

The edited file is shown below:
THE MICHAEL L. BENEDUM HALL OF ENGINEERING

STUDENTS ENROLLED IN THE SCHOOL OF ENGINEERING, UNIVERSITY OF
PITTSBURGH, RECEIVE THEIR EDUCATION IN ONE OF THE COUNTRY'S MOST
MODERN AND BEST EQUIPPED ENGINEERING BUILDING, THE MICHAEL L. BENEDUM
HALL OF ENGINEERING. THE BULDING COMPLEX IS NAMED IN HONOR OF
MICHAEL L. BENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
THE BENEDUM TREES OIL COMPANY, A GRANT FROM THE CLAUDE WORTHINGION
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE THE LAND ON WHICH THE
ENGINEERING COMPLEX IS BUILT.

Example: To edit a stored FORTRAN program. It is suggested that
readers follow the running comments marked on the printout.

- UPDATE SAMPLE.FOR
[CREATE NEW FILE]
>c SAMPLE PROBLEM FOR THE TIME-SHARING NOTES
READ(5,10)A,B,C,D, X1
10 FORMAT(F20.7)
1 X2=XI1-(A*X1**3+B*X1**2+C*X1+D)/ (3, *A*X1**2+2. *X1+D)
WRITE(6,10)X2
IF(ABS((X1-X2)/X2-.001)3,3,2
2 X1=X2
Go TO 10
3 WRITE(6,11)X2
11 FORMAT(/' THE REAL ROOT = ',F20.7)
STop
END

VVVVVVVVYVYVYV

SSwh
12

75

76 CHAPTER 2

S $AT1; TYPE 12
C SAMPLE PROBLEM FOR THE TIME-SHARING NOTES
READ(5,10)A,B,C,D, X1
10 FORMAT(F20.7)
1 X2=X1~(A*X1**3+B*X1**2+C*X1+4D) (3 ,¥A*X1**2+2,%X14D)
WRITE (6,10) X2
IF (ABS ((X1-x2) /X2-.001) 3, 3,2
2 X1=5X .
GO TO 10
3 WRITE (6,11)X2
11 FORMAT(/' THE REAL ROOT = ',F20.7)
STOP

END
> 8704
1 X2=X1- (A*X1**3+BXX]**2+C*X1+D) (3 ,*A*X1**2+2,*X14D)
> SCHANGE D) (3,8D)/3.82.82.*BSDSC$
1 X2=X1- (A*X1**3+B*X1**2+C*X14D) / (3. *A*KX1**2+2 ,*B*X1+C)
> 8AT+1; CH/W/ W/
WRITE (6,10)X2
> 84AT+1; CH/X2-/X2)-/
IF (ABS ((X1-X2) /X2-.001)3,3,2
> $AT+1; CH/SX/X2/
2 X1=X2
> $AT+1; CH/0//
G T0 1
> $END
1 Blocks written on SAMPLE.FOR[33,33]

EXIT

. TYPE SAMPLE.FOR
C SAMPLE PROBLEM FOR THE TIME-SHARING NOTES
READ(5,10)A,B,C,D,X1
10 FORMAT(F20.7)
1 X2=X1- (A*X1*¥3+B*X1**2+C*X14D) /(3. ¥A*X1**2+2 , *B¥X1+C)
WRITE (6,10) X2
IF (ABS ((X1-X2)/X2-.001)3,3,2
2 X1=X2
GO TO 1
3 WRITE(6,11)X2
11 FORMAT(/' THE REAL ROOT = ',F20.7)
STOP
END

TEXT EDITOR

Exercises . 77

EXERCISES

1. (a) Enter the following FORTRAN program in your disk by using UPDATE and
name the file as PROB1.FOR:

C PROBLEM NO. 1

DIMENSION K(10)

DO 5 1=1,10
3 K (I)=T**2

WRITE (6,10) ((I,K(I)),I=1,10)
10 FORMAT(217)

STOP

END

Purposely make some errors in your typing. For example, omit some commas
and misspell a few words.
(b) When you are back at the monitor level, execute the incorrect program by
a command :
.EXECUTE PROB1.FOR

and observe the proceedings.

(c) Make appropriate corrections, and execute again. Repeat until you get
the program letter perfect.

2. What would each of the following UPDATE fragments do?

(a) SAT 1 (b) $AT 1 (c) $AT 1
$SUB/XX/YY/ $TR/XX/ $TR/XX/
SCH/XX/YY/ $CH/XX/YY/
$AT -1 $GO
$GO

(d) $SUB/READ(5,/READ(1,/
(e) $TR+1;IF/READ/7;THEN/TYPE (LI)/;GO
(£) $ONTO= READ.FOR

$TR+1; IF/READ/7; THEN/PUL/; QO
$CLOSE

3. Three different compounded MOVE commands are given:
$MOVE; HERE
$MOVE; AT-1; HERE
$MOVE; ATS; HERE

For each of these three commands, answer the following questions:

78 CHAPTER 2 TEXT EDITOR

(a) Where is the line moved to?

(b) Where will be the pointer after the move?

Verify your answers to problem 3 by actually setting up a file, observing
the BEFORE and AFTER of each of the above three commands.

>
.

5. Enter Lincoln's Gettisburg Address as a file and name it as ABE.DOC.
Correct any error in the file.

=)
.

For each line of ABE.DOC prepared in problem 5, edit the text so that the
following results are obtained:

a. Set the left margin at column 1; the right margin at column 45.

b. The first line of a new paragraph is indented 5 spaces.

c. Right justify by adding spaces between words.

d. Space all punctuations so that there is one space after each comma or

semicolon, and 3 spaces after each period.

7. After copying the file SYS:NEWS (see Exercise(3), Chapter 1) into your own
disk area, use UPDATE and with one compounded instruction, search and type
out all first lines of news items that were dated in 1980.

8. The instructor will furnish for this exercise a long FORTRAN program that
contains many FORMAT, READ, WRITE and CALL statements. Prepare four
auxiliary files that will contain the following information:

(a) File FORMAT.FOR: a record of all FORMAT statements

(b) File READ.FOR: a record of all READ statements

(c) File WRITE.FOR: a record of all WRITE statements

(d) File SUBR.FOR: a record of all subroutine CALL statements

For a simple case, make the following assumptions:

(1) All characters are upper cases.
(2) all statement keywords oegin on column 7.
(3) No continuation statement.

9. For a more challeging case of problem 8, make the following assumptions and
then prepare the required auxiliary files:

(1) Mixed upper and lower cases in the FORTRAN program file.

(2) A statement may begin anywhere between column-7 and column-72.

(3) Some of the READ, WRITE or CALL statements may be imbedded in an
IF statement, e.g., IF(I.EQ.1)READ(5,56)X

(4) There may be continuation statements.

You may modify this problem and generate a problem a varying degree of
difficulty by selecting one or more of these assumptions.

UIPDATE Exercises 79

10.

11.

The source program in FORTRAN-10 on DEC System—10 allows a special use of
the tab key (or the CTRL-I character) to skip all or part of the label
field. The purpose is to use a tab—character (1 character) to replace
multiple spaces (multiple characters) “to save storage space. Rules of
interpreting a FORTRAN-10 statement using a tab in the initial field are as
follows:

(1) If the tab is immediately followed by one of the digits 1 through 9,
that line is a continuation line of the previous one. The non-zero
numer ic character following the tab is considered in column-6.

(2) Otherwise, the line is an initial line of a FORTRAN statement, and the
character following a tab is considered to be in column-7.
For example, both of the following versions of a source program are
acceptable by DEC System-10:

Version 1 Version 2
C SAMPLE PROBLEM C SAMPLE PROBLEM
bbbbbbDO 10 I=1,20 (T)DO 10 I=1,20
bbbbbbK=1**3 (T)K=I**3
bbbl0 TYPE 20, I, 10(T)TYPE 20, I,
bbbbblK (T) 1K
bbb20 FORMAT(2112) 20 (T) FORMAT (2112)
bbbbbbEND . (T) END
b=blank space (T)=tab

For a FORTRAN-10 program entered by using the tab-key storage-saving
technique, repeat problems 8 and 9.

For each of the following functions, write a single-line compounded UPDATE

command to accomplish it:

(1) To type out only those lines in a FORTRAN program that have lengths
longer than 72 columns. The printout should contain absolute line

numbers, line lengths, and the line itself. Do not print out all lines.

(2) To insert the word EXERCISE in columns 73-80 of every line in a FORTRAN
program.

(3) to print out all subroutine call statements in a FORTRAN program.
(4) To print out all FORMAT statements.

(5) To print out all COMMENT statements.

80

CHAPTER 2 TEXT EDITOR

REFERENCES

'

PTSS TEXT EDITOR, Class Notes of a Freshman Course "Engineering Analysis
2", T. W. Sze, University of Pittsburgh, Pittsburgh, Pennsylvania;
1969.

A PRIMER FOR PITT TIME-SHARING SYSTEM (PTSS), Chapter 5, Text Editor,
T. W. Sze, University of Pittsburgh, Pittshurgh, Pennsylvania; 1970.

INTRODUCTION TO A TIME-SHARING SYSTEM, Chapter 6, Text Editor, T. W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1972,

UPDATE Reference Card, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; June, 1979.

UPDATE/X - UNIVERSITY OF PITTSBURGH DATA‘ AND TEXT EDITOR, Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1976.

INTRODUCTION TO DEC SYSTEM-10: TIME-SHARING AND BATCH, T. W. Sze, Chapter
6, Text Editor, University of Pittsburgh, Pittsburgh, Pennsylvania;
First Edition, 1974; Second Edition, 1977.

UPDATE, Gerald W. Bradley, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1979.

CHAPTER 3

FORTRAN-10

FORTRAN is the most widely studied and used
programming language in the United States. Therefore,
this chapter is prepared with the assumption that the
readers already have some background knowledge of the
language. For those who are not familiar with the
language, please consult any one of many FORTRAN
manuals available, Two typical ones are:

PROGRAMMING WITH FORTRAN, Byron S. Gottfried, Quantum
Publishers, New York, 1972

PROBLEM SOLVING AND STRUCTURED PROGRAMMING IN FORTRAN,
F. L. Friedman & E. B. Koffman, Addison-Wesley
Publishing, Reading, Massachusetts; 1977

INTRODUCTION

There are not just a few versions of FORTRAN; there are dozens. Even on
the DEC System-10 alone, there are several versions available. In attempting to
unify all versions of FORTRAN developed in the computer industry, the American
National Standards Institute (ANSI) in 1966 set up a standard for FORTRAN, now
known as the "1966 ANSI Standard."* However, what has happened since is that the
computer industry has used the Standard only as a minimum standard, and every
company has extended far beyond that minimum for their own versions of the
FORTRAN language. Unfortunately, while the ANSI standard part is uniform, the
enhanced parts among different versions are not. Programs written in one
enhanced version may require some modifications if run on a machine using a
different compiler. The version of FORTRAN covered in this chapter, called
FORTRAN-10 by the Digital Equipment Corporation, is a powerful superset of the
ANSI standard version. A summary of FORTRAN-10 will be included in this
chapter. However, readers are encouraged to seek more details from References 3
and 4.

*JSA Standard FORTRAN (x3.9-1966), American National Standards Institute, 1966
’ 81

82 CHAPTER 3 FORTRAN-10

RUNNING A FORTRAN PROGRAM ON DEC SYSTEM-10

After a FORTRAN program is written and thoroughly checked for its 1logic,
running the program will require two major steps:

(1) To enter and store the FORTRAN program as a disk file.
(2) To compile, load, and execute the stored program.

The following discussion will be devoted to these two steps.

3.1 To Enter and Store a FORTRAN Program

In the DEC System-10 , the source program in FORTRAN, AL(OL, COBOL or
MACRO should first be stored as a disk file because the most common way of
execution is for the System to search in the disk for a specified program.

There are a number of utility programs available by which a user can
enter and store his FORTRAN program. By far the best way is to use the UPDATE
editor, which enables a user full editing facilities while entering a program.
The details of UPDATE are given in Chapter 2. In this chapter, only the
procedure relating to the entering of a FORTRAN program will be demonstrated.

As an illustration, let us consider two programs: one containing just
the main program, and the other a main program plus a subroutine. The program
listings are as follows:

Program 1 Program 2
C SAMPLE PROGRAM 1 C SAMPLE PROGRAM 2, WITH SUBROUTINE
Do 10 1=1,10 ACCEPT 10, M,N
K=I**3 10 FORMAT (13)
10 TYPE 20, I,K CALL CUBE(M,N)
20 FORMAT (2110) END

C SUBROUTINE FOR SAMPLE PROGRAM 2

SUBROUTINE CUBE (M,N)
DO 10 I=M,N
K=I**3

10 TYPE 20, I,K

20 FORMAT (2110)
RETURN
END

(1) To enter program by the UPDATE editor

The UPDATE editor was originally developed for the Pitt Time-Sharing
system (PTSS) using an IBM/360 Model 50 computer, and has since been adapted for
use on the DEC System-10. It enables a user not only to enter and store a
program, but also to correct errors and to edit. The following shows a typical
session with the UPDATE editor. The user's typings are shown in italics.

To Enter and Store a FORTRAN Program ’ 7 83

At a User's Terminal Comments
.R UPDATE Call for the editor
INPUT=>)) = RETURN key of terminal
>C SAMPLE PROGRAM 1
> po 10 1=1, 20
> K=T*#*3 > = prompt from the computer
> 10 TYPE 20, I,K
> 20 FORMAT(2T12) Enter FORTRAN program
> END
>$DONE

CATALOG NAME=>PRG1.FOR
6 BLOCKS WRITTEN ON PRGL.FOR[115103,320571]

In a similar way, Program 2 may be entered and stored. Let us assume
that the main program of Program 2 is stored and named as PRG2.FOR and its
subroutine as CUBE.FOR.

If a program requires several subroutines, each subroutine may be entered
and stored separately as a single file bearing a different name, or they may be
combined into one file with one filename. At this point of the illustration,
three files have been stored and they are PRG1.FOR, PRG2.FOR and CUBE.FOR. A
listing of the programs can be made by using a monitor command:

.TYPE PRG1.FOR, PRG2.FOR, CUBE.FOR
The listings produced may be used as records or for proof-reading.

If the listing shows that the programs have been correctly entered, the
programs are ready for compiling, loading and execution.

(2) To enter program via punch cards

The waj‘(to enter and store a program deck is to submit it by a batch job.
Details of batch jobs are given in Chapter 9. Repeating the example above, the
control file deck is first assembled as follows:

$JOB [115103,320571] $JOB [115103,320571]
$PASSWORD DEBBIE SPASSWORD STEVE
$DECK PRGL.FOR .UPDATE PRG1.FOR
Program 1 deck Program 1 deck
$DECK PRG2.FOR SSEND
Main program deck .UPDATE PRG2.FOR
Program 2 Main program deck
$DECK CUBE.FOR Program 2
Subroutine deck $SSEND
SEOD .UPDATE CUBE.FOR
SEOJ Subroutine deck
$SEND
SEOJ

There is often a need to enter and store a FORTRAN program via a punch
card deck. For example, a card deck may have already been prepared. Perhaps
the terminals are not available. Although there are more terminals than key
punches, the latter are often less in demand and hence more available. After

84 CHAPTER 3 FORTRAN-10

the deck is assembled as shown in either makeup, the assembled deck is read by a
system card reader, and the batch job is submitted. »After the job is executed,
there should be files PRGL.FOR, PRG2.FOR and CUBE.FOR in this user's disk area.

3.2 To Edit a Stored FORTRAN Program

If any typographical error, missing lines, or duplications are found in
the listings of stored programs, the UPDATE editor may be used to make
corrections, Suppose the PRG2.FOR listing is produced as follows and errors
were found and marked as shown below:

C SAMRQJJ PROGRAM 2, WITH SUBROUTINE
CCEPT 10, M,N

M":"Ae"‘;;,& " 1(FORMAT (13)
TALL CUBE(M,N
E'\]D B M.‘sni.\‘j

To make corrections, the UPDATE editor may be used either on a terminal
or in a batch job:

(1) Using UPDATE at a terminal

The following represents a terminal session of error correction:

JUPDATE PRG2.FOR

C SAMPEL PROGRAM 2, WITH SUBROUTINE
>SCHANGE/PEL/PLE/

C SAMPLE PROGRAM 2, WITH SUBROUTINE
>8AT+2; CHANGE/FOR/ FOR/

10 FORMAT(I3
S8AT+1; CHANGE/M N/M 1)/

CALL CUBE (M,N)
> END
>SEND

After the editing session, the listing should again be typed out for a
final verification.

(2) Using UPDATE in a batch job

Assemble a batch job deck as follows. Notice that the order of the cards
and their contents are identical to those input lines in the terminal session,
with the exception that an UPDATE $-command should be punched as a $$—card.

$JOB [115103,320571]

SPASSWORD DEBBIE

.UPDATE PRG2.FOR -

$$SCHANGE/PEL/PLE/

$$SAT+2; CHANGE/FOR/ FOR/

S$AT+1; CHANGE/M,N/M,N)/
END

$SSEND

$EOJ

To Compile, Load and Execute a FORTRAN P 85

There is, of course, a third way: Noting the errors on PRG2.FOR, repunch
the incorrect cards., Insert any missing card. Resubmit the corrected deck as a
new batch job. 1In the batch deck, include a command first to delete the o0ld
PRG2.FOR before storing the new PRG2.

3.3 To Compile, Load and Execute a Stored FORTRAN Program

The sequence of executing a FORTRAN-10 program is as follows:

(1) To compile the specified source programs and store the binary object
or relocatable files (with extensions of REL) in the disk.

(2) To load the REL files of the main program and all subprograms or
subfunction programs called by the program into the core memory.

(3) To begin the execution of the loaded object program from an address
determined by the compiler and the loader.

All these steps can be accomplished in sequence by a single monitor
command :

EXECUTE list

where "list" is a list of all FORTRAN programs (or their REL files if available)
including any other subprogram files needed for execution in one problem. If a
program belongs to another user but is accessible, the PPN of the owner should
be specified along with the filename. If the file is on tape which is already
mounted, then the device name should also be specified. Thus, to execute
Programs 1 and 2 respectively, issue the following commands:

EXECUTE PRG1.FOR
EXECUTE PRG2.FOR, CUBE.FOR

When an EXECUTE command 1is issued, the computer will go through a
sequence of compiling, loading and execution. The sequence of operations to
carry out the command EXECUTE PRG2.FOR, CUBE.FOR is represented by the £flow
chart shown in Figure 3.1. Note particularly the processing logic by which any
unnecessary compiling is avoided.

When a source FORTRAN program is compiled for the first time, a REL file
is created and stored. In the user's file directory, pertinent information are
also stored, such as the creation time accurate to the minute. When the program
is executed again and if the program has not been modified in any way, the REL
file is still valid, and compiling again would be superfluous. On the other
hand, if the program has been modified since the last compiling, then the
existing REL file is not valid, and compiling again during the next execution is
necessary. The processing logic does it by comparing the creation time between
the source porgram and its REL file. If the creation time of the source is
earlier, then the REL file is still valid. If the creation time of the source
is later, then the REL is not valid, and compiling should be done again. After
a new REL file is created by the re~compiling, its creation time is updated
also. This logic is handled by the System and the user is spared the decision.
Execution of Program 1 and Program 2 are given below as illustration:

86 CHAPTER 3 FORTRAN-10

Diagnostic
message &
ERROR STOP

Search in disk for
the files
PRG2.FOR
CUBE.FOR
Are all files |isted Are the Are creation time of
present and avallable| yes | following fliles |yes files PRG2.REL,CUBE.REL| yes
(in case belogning avallable: newer than PRG2.FOR &
to another PPN)? PRG2.REL CUBE.FOR creation time
CUBE.REL respectively?
- no| no é
Diagnostic Complle progrgag and store the
message -~ |REL files as new or updated
ERROR STOP PRG2.REL or CUBE.REL. | .

Any complling error?
lno

Load PRG2.REL & CUBE.REL and

any subprograms called by them e
o

from the System Into user®s core.

Are all subprograms |no Error
available? - message &
— ERROR STOP

yes
Start execution of PRG2.REL
and CUBE.REL
/“‘\

T Diagnostic
Any execution error?}—¥35ww—> message &
no

ERROR STOP

Success=-
ful comple-
tion of
execution

Figure 3.1 Sequence of Operations for "EXECUTE PRG2.FOR,CUBE.FOR"

To Compile, Load and Execute a FORTRAN Program 87

FORTRAN 5A(621): PRGL.FOR FORTRAN 5A(621): PRG2.FOR
MAIN. OCTAL PROG SIZE=43) MAIN. OCTAL PROG SIZE=35
LINK: Loading FORTRAN 5A(621): CUBE.FOR
[INKXCT PRGl execution] CUBE OCTAL PROG SIZE=52
LINK: Loading
1 1 [INKXCT execution]
2 8 >
3 27 >
4 64 1 1
5 125 2 8
6 216 3 27
7 343 4 64
8 512 5 125
9 729 6 216
10 1000 7 343
End of execution FOROTS 5B(1001) End of execution FOROTS 58 (1001)
CPU time: 0.08 Elapsed time: 1.05 CPU time: 0.05 Elapsed time: 7.50
EXIT EXIT

The three stages of compiling, ‘loading and execution of a FORTRAN-10
program are carried out by a single EXECUTE command. These steps can also be
carried out one at a time,

The monitor command COMPILE list will compile the FORTRAN files in the
list and store the generated REL files, giving them the same filename but with
an extension of REL.

The monitor command LOAD list will compile the programs, store the
generated REL files, and also load them into the core.

The execution of the stored FORTRAN programs can also be accomplished by
submitting the EXECUTE commands in cards. The following are two card assemblies
for the batch jobs of executing Program 1 and Program 2:

$JOB [115103,320571] $JOB([115103,320571]
SPASSWORD DEBBIE $PASSWORD DEBBIE
.EXECUTE PRG1.FOR .EXECUTE PRG2.FOR,CUBE.FOR
$EOJ 1
7
$EOJ

Once the compiling is done on a FORTRAN program, its object program is
stored on the disk, and subsequent execution of the same program will bypass the
compiling stage. In this manner, unnecessary compiling may be avoided.
However, if the FORTRAN program belongs to another PPN, a user should not only
ascertain if the FORTRAN program is protected against his access, but he should
also determine whether he can gain access to a compiled REL file. If a REl file
is already available and accessible, the command EXECUTE will directly access
the REL files. In many cases, the source programs are proprietary, but the REL
files are available for public access.

If a program will be used many times, a more efficient way of loading can
be done in this way. After the program in the "list" of the "LOAD" command are
loaded, the core content of the user's area in the core memory may be saved as a
file with an EXE extension. The monitor commands to save a core image are LOAD

88 CHAPTER 3 FORTRAN-10

and SAVE as shown below:

.IOAD list
.SAVE NAME

and the saved file will have a name of NAME.EXE. Once that is done, subsequent
execution of the program may be done by a command of:

.RUN NAME
where "NAME" is the the name of the specified EXE file.

This procedure is particularly advantageous if (1) a program will be used
repeatedly, or (2) the 1list of programs in the EXECUTE command contains many
files and many file specifications. Some of the files may reside on slow and
busy peripherals such as the DECtape.

3.4 Optional Switches

The monitor command EXECUTE requires the use of three service programs:
the monitor, the FORTRAN compiler, and the 1loader. In each of the three
processors, options are implemented to allow a user to select some variation of
services. These options are called switches. Switches are available on all
three service processors, and they are separately discussed next.

(1) Monitor switches The details of the switches for the command
COMPILE, IOAD and EXECUTE will be given in Chapter 8, so only the most
frequently used switches are listed below. The monitor switch has a form of a
slash followed immediately by a word which can be abbreviated. These switches
and their functions are listed in Table 3.1. .

1

(2) Compiler switches While the monitor program is somewhat uniform
among the DEC System-10 users, the compilers-—particularly the FORTRAN
compiler-- may have many versions, and some with local modifications. Selected
switches which appear on the same command line as those of the compiler switches
are words enclosed in parentheses. These switches are listed in Table 3.2.

(3) Loader switch The format of a loader switch is a percent
sign (%) followed by one or two characters. Three such switches are listed in
Table 3.3.

Example: « EXECUTE SAMPLE.FOR/LIST

Function: Compile SAMPLE.FOR, store SAMPLE.REL on disk, load it into
the core, -and execute. Also, generate a source listing
file SAMPLE.LST.

Example: EXECUTE SAMPLE.FOR/CREF (I) %0M

Function: Compile (including all D-statements), load and execute.
Generate a cross reference file for later CFEF program, and
produce a loader map at the terminal.

FORTRAN Switches 89
Mon Itor fﬁllgﬁ"<“ Function L
/COMPILE To force a complling even If there already exists a REL

file. The purpose of this switch is fo force the use of
compller because certain compliler switches are also
chosen In the EXECUTE command. Otherwise, the compller
Is bypassed If there already exlsts a valid REL file
bearing the same filename.

/CREF

To produce a cross-reference !lsting flle on the disk
for each flle compiled for later processing by the CREF
program. The cross-references include such Information
as varlable names, statement labels, and thelr cross
references. Before the user signs off, he may get a
printout copy of the cross-reference by another monitor
command: CREF. If the CRF file generated during a
previous session at the terminal still is stored on
disk, a Ilst may be obtalned by running the CREF program
In the following ways:

.R CREF .R CREF
*_PT:=NAME.CRF *TTY:=NAME.CTF

This will produce a copy of listing on the line printer
(the left version) or on the terminal (the version on
the right).

/LIST

To generate a disk |isting flle for each file complled
with the same fllename, but with an extension of LST.
These flles can be Iisted with the PRINT or QUEUE
command (see Chapter 8). |If a REK file already exists,
this switch will be Ignored unless a forced complling is
ordered by the /COMPILE switch.

/L IBRARY

/DEBUF :BOUNDS

To select the loading of only those subroutines and
functions referenced 1In the programs. Otherwlise, the
entire library file will be loaded.

To report 1f subscripts get out of bounds as defined by
the DIMENSION statement for that array. This Is one of
the most common errors.

Example:
Function:

Table 3.1 Selected Monitor Switches

EXECUTE SAMPLE.FOR, PRG:IMSL/LIBRARY

Compile the source program SAMPLE.FOR and thus generate
SAMPLE.REL. Then load it along with those subroutines in
PRG: IMSL that are called by the program SAMPLE.FOR. The
LIBRARY switch here 1is absolutely necessary because the
package PRG:IMSL contains about 400 subroutines. Execute
when loading is completed.

90

CHAPTER 3 FORTRAN-10

Compiler Switch

Function

(INCLUDE) or
)

(NOERROR) or
(NOE)

N S ——

(NOWARNINGS) or
(NOW)

To compile the program by regarding all statements with
D" in column 1 as FORTRAN statements. If this switch

Is not specified, those statements will be regarded as
comments and bypassed. The frequent uses of this switch
Is to insert the debugging statement as the

"D-statements," which are usually output statements +o
type out Intermediate results or to type out tracing
progress, such as a message "Reaching check point 5."
Once a program Iis completely debugged, It can be
compiled agaln, but *this time without the
|NCLUDE-szTch, and all D-sfafemenfs w1ll be Ignored.
To suppress error message on user’s ferminal. The error
message will only appear on the listing file If I+ Is
reques+ed by +he /LIST or the /CREF switch.

To suppress warning messages on the terminal.

(OPTIMIZE) or

0)

To perform-global optimization of compiling.

Table 3.2 Selected FORTRAN Compiler Switches

Loader Switch

Function

%S

To toad local symbols used primarily for debugging
purpose along with the program.

1M To type out a loader map at +the wuser’s +terminal and
include local symbols. In a batch job, the loader map
with +h|s sw!fch will be iIncluded in the log file.

$0M To type out a loader map at fthe user®s terminal. In a
batch job, +*his switch will Include the loader map In
the log file.

Table 3.3 Selected Loader Switches

An Example : ‘ 91

3.5 An Example of FORTRAN Processing

As an illustration of FORTRAN-10 programming and processing on a
time-sharing system, an example will be carried through in all steps. The
. problem deals with the solution of an equation A2x + BXx + Cx + D =0 with
significance to 3 digits. The FORTRAN program for the problem is listed below:

C SAMPLE PROBLEM FOR FORTRAN-10
READ(5,10)A,B,C,D,X1
10 FORMAT (F20.7)
1 X2=X1-(A*X1**3+B*X1#**24C*X14D) /(3. ¥*A*X1**242, *B*X14C)

WRITE (6,10) X2
IF (ABS ((X1-X2)/X2)-0.001)3,3,2
2 X1=X2
GO TO 1
3 WRITE(6,11)X2
11 FORMAT(/' THE REAL ROOT = ', F20.7)
STOP
END

The rest of this section shows a case history of running this problem,
from entering the program, through debugging and editing and finally executing
it. Written running comments were added to aid understanding. All text in
italics represent the user's own typing; all others are the computer's
printout.

UPDATE NEWTON.FOR . 3\

[CREATING NEW FILE]

X SAMPLE PROGRAM FOR FORTRAN-10
READ(5,10)A,B,C,D,X1

10 FORMAT(5F)

1 X2=X1-(A*XI**3+BAX1*32+C*X1+D) /(3. *A*X1 ** 22, *BAX1+C)
WRITE(6,19)X2
IF(ABS((X1-X2)/X2 .001)3,3,2 - F “ (a0 S

2 X1=x2 29> gnm head —f
60 70 1 f—a vPpATE

3 WRITE(6,11)X2

11 FORMAT(/' THE REAL ROOT = ', F20.7)
STOP
END 4

VVVVVVVVVVYV

>$END
1 blocks written on NEWTON.FOR[115103,320571]

EXECUTE NEWTON,FOR Mi;s;qj minus 5‘:3!\

FORTRAN 5A(621): NEWION.FOR P n ,
00006 IF (8BS ((K1-x2) /%2 Y001, 3,3,2 Use error w;ros's
?FTNUMP LINE:00006 UNMATCHED PARENTHESES messa.ae +o elp
00010 11 FORMAT(/' THE REAL ROOT = ', F20.7) . .
00011 sTOP with debuqging.
?FINFWE LINE:00010 FOUND "T" WHEN EXPECTING A END OF STATEMENT

UNDEFINED LABELS

19 11
?FINFTL MAIN. 4 FATAL ERRORS AND NO WARNINGS
LINK: LOADING

[LNKNSA No start address]
EXIT

92 CHAPTER 3

,UPDATE NEWTON.FOR
o SAMPLE PROGRAM FOR FORTRAN-10
>8T0 6

IF(ABS (ABS ((X1-X2)/X2.001)3,3,2
>$CHANGE/ .001/)-.001/

IF (ABS ((X1-X2)/X2)-.001)3,3,2
>8T0/5T0P/

STOP
S$CHANGE/STOP/ STOP/
STOP
>8END

FORTRAN-10

Make c‘\ow\ses Ly UPDATE

1 blocks written on NEWION.fOR[115103,320571]

EXIT
EXECUTE NEVTON.FOR

FORTRAN 5A(621): NEWION.FOR
UNDEF INED LABELS
19 11

?FINFTL MAIN.
LINK: Loading
[LNKNSA No start address]

EXIT

.UPDATE NEWTON.FOR
C SAMPLE PROGRAM FOR FORTRAN-10
S$TRAVEL/19/ < —= — - = = - = -

WRITE (6,19)X2
>$CHANGE/19/10/

WRITE (6,10) X2
>$G0 - - - -
258END

W "
1 blocks written on NEWION.FOR[115103,320571) 4 Says

EXIT

LSXECUTE NEWTON, FOR “
FORTRAN 5A(621): NEWTON.FOR
MAIN. OCTAL PROG SIZE=145
LINK: Loading

[LNKXCT NEWTON execution]

1.0 -16.0 65.0 -50.0 16,0 = -

12.9158000

11.1082200

10.2498400

10.1173400

10.0000900

10.0000000
THE REAL ROOT = 10.0000000
STOP

End of execution FOROTS 5B(1001)
CPU time: 0.09 Elapsed time: 23.98
EXIT

Crcor <hil exists .

4 FATAL ERRORS AND NO WARNINGS

- Se.afCL\ ‘QO(* 3*@T¢men”t 1.‘:{

Seqrch -fr,r more 19"

" cant Find any more. '

— Erecite ajaiq

} Compile and Joad SHCC€S§7[M///

Ih/)m'f‘ cpﬁ“f'a fox/
e 1exF + 65X - So =0
With [nitial Trial velue XL=16

/}nswcr : xX= (0

Constants, Variables and Expressions 93

A SUMMARY OF FORTRAN-10

This part of the chapter is devoted to a summary of the FORTRAN-10
language, which is an enhancement of the ANSI standard FORTRAN., The enhancement
may be a new FORTRAN statement, such as the IMPLICIT-statement; or it may be
some additional features in a standard FORTRAN statement, such as those in the
DIMENSION-statement., These enhancements will be identified in the summary by a

heavy vertical line on the left side of the page, for example:
(5) A debug line A debug line has a character "D" or "d" etc etc etc

The identification of the enhancement will be useful in the conversion of
a FORTRAN-10 program to other versions of FORTRAN, or vice versa.

3.6 A Summary of Constants, Variables and Expressions

(1) Constants There are nine types of constants in FORTRAN-10:
integer constants, real constants, double precision constants, complex
constants, logical constants, literal constants, octal constants, double octal

constants, and statement label constants, as sumarized in Table 3.4:

Constant General Form Remarks and Examples

Integer constant

no declmal p0|n+ ranglng from -23%41 1o 2351

Real constant always with a declmal 7 to 9-d|g|+ precislon

In man+lssa

Double precision | exponent symbol Is D 3.00D2=300.0000000000000

preceded by "§" or "&"

cons+an+ (16 d|g|+ precislon)
Octal constant signed or unslgned octal "567, "-567
preceded by a'"m
Double octal same as 9|ngle preclslon "1234567000123456700
constant octal
Complex cons+an+ (x,Yy) (3.1, —4 7) for 3. 1-j4 7
Logical consfanf .TRUE. .FALSE.
"o 1 "0
b - S e]
Llferal consfanf ‘QUOTE' NHXXXXX 'TIME! 4HTIME
b - R et]
S+a+emen+ label 1 +0 5 declmal digits $1234 &999

Table 3.4

A Summary of FORTRAN-10 Constants

94 CHAPTER 3 FORTRAN-10

(2) Variables Variables are specified by names and types. The
name of a variable consists of one to six alphanumeric characters, the first of
which must be alphabetic. The type of a variable may be specified explicitly by
a type declaration statement or implicitly by the IMPLICIT statement. If the
variable is not specified in this manner, then a first letter of I, J, K, L, M
or N indicates an integer variable; any other first letter indicates a real
variable. ‘

Variable arrays carry subscripts that are integer constants, variables or
expressions. In addition, the following are permitted in FORTRAN-10:

A. A subscript may contain a non-integer arithmetic expression.
However, when such a subscript is evaluated, it is truncated and
converted to an integer after its evaluation.

B. A subscript may contain a function reference such as A(L0*SIN(X)).

C. Subscripted variables may be used as subscripts or nested subscripts
of subscripted variables.

(3) Expressions Compounded numeric expressions must be
constructed according to the following rule. With respect to the numeric
operators of +, -, *, /, any type of quantity (integer, real, double precision,
complex, logical, literal, octal or statement label) may be operated with any
other, with one exception: A complex quantity may not be operated with a double
precision quantity. The result of these mixed mode operations are tabulated in
Table 3.5. (Mixed mode operations are not allowed in ANSI FORTRAN.)

Operation Type of Argument 2
Double
+, -, ¥,/ integer Real Precislion Comp | ex Others
Integer Integer Real Double comp | ex Integer
Precislon
[S S S P! FEU) [—
+~ Real Real Real Double Comp l ex Real
& Precision
g Double Double Double Double Not Double
- Precision || Precision | Precision | Precision Al lowed Precision
5 — R [S S UUSP Y T
Q Comp lex Comp lex Comp lex Not Comp | ex Comp lex
> Al lowed
All integer Real Double Comp lex Octal
Others Precision

Table 3.5 Results of Mixed Mode Operations

For example, if X is real in an expression (3.1,-4.1)*X, the expression will be
complex after evaluation.

FORTRAN-10 Statements 95

The logical operators and relational operators are listed in Table 3.6
and Table 3.7 respectively.

Loglcal Operators {Meaning |Example Relatlional Operators |Meaning
.NOT. Negation{ .NOT.P .GT. >
.AND. n P.AND.Q " .GE. >
.OR. u P.OR. Q LT <
JXOR. @ P.XOR.Q .LE. <
EQV. ® P.EQV.Q .EQ. =
.NE, 5

Table 3.6 Logical Operators Table 3.7 Relational Operators

A summary of FORTRAN-10 library functions is shown on Table 3.8.

3.7 FORTRAN-10 Statements

The field format of a FORTRAN-10 statement follows the general rules of
FORTRAN-IV statement., There are certain differences associated with a
FORTRAN-10 line. In FORTRAN-10, there are following different types of
statement lines:

(1) An initial line 1f a FORTRAN-10 statement has
continuation lines, the first line of the group is called an initial line.

(2) A continuation line A continuation line is identified by any
character (except for a blank or zero) placed in column 6. A maximum of 20
lines are permitted in a FORTRAN-10 statement including the initial line.
Continuation lines may not be interrupted by comment lines.

(3) A multi-statement line A multi~statement line combines several
successive statements in a single statement, each component separated from the
other by a semicolon (;). If the multi~-statement carries a statement number, it
is always associated with the first component. For example, two separate
statements:

A
X

B*C
Y+Z

o

can be combined into a single line as: A = B*C; X = Y+Z

(4) A Comment line A comment line has one of the characters
(C,$,/,*,1) placed in column 1. Comments may also be added to any statement in
the field of columns 7-72, provided that a character (!) precedes the text. For
example:

A =B*C ; X = Y+Z ISTEP NO. 1

(5) A debug line A debug line has a character "D" or "d"
in column 1. When the program is compiled, it is ignored unless there is an
" (INCLUDE) " switch in the command. This is used for debugging purposes, such as
an output line for tracing.

"CHAPTER 3 FORTRAN-10
Type of

Functton Form Definition Argument Result
Absolute vaiues:

Real ABS Real Real

Integer 1ABS Iarg I integer Integer

Double DABS Double Double

Complex to real CABS c =Jx"+ ¥ Comp lex Real
Conversion:

Integer/real FLOAT Float(Arg) ; integer Real

Real/Integer IFIX Infeger(arg% Real Integer

Real (cmpIx) REAL REAL part(cmplx arg) Comp lex Real

Imag(cmp Ix) AIMAG IMAG part(cmpix arg) Comp lex Real

Real /Cmp Ix CMPLX c=Argl +] Arg2 2 Reals Comp ex

Cmpx conjugate CONJG c=con jugate(cmplx arg) Comp lex Comp lex
Truncation:

Real/real AINT Real truncation Real Real

Real/Integer INT Integer fruncation Real Integer
Remalndering:

Real AMOD Remalnder{arg!/arg2) 2 Reals Real

Integer MOD Remainder (argl/arg2) 2 Integers integer
Square root:

Real SQRT Real Real

Double DSQRT Jarg Double Double

Comp lex CSQRT Comp lex Comp lex
Logarithm:

Real ALOG Ln (arg) Real Real

ALOG10 Log (arg) Real Real
Doublie DLOG Ln (arg) Double Double
DLOG10O Log (arg) Double Double

Comp lex CLOG tn (arg) Comp lex Comp 1 ex
Sines i T

Real (radlans) SIN Real Real

Real (degrees) SIND Real Reat

Double (radians) OSIN sin (arg} Double Double

Comp lex CSIN Comp lex Comp lex
Cosine:

Real (radlans) Cos Real Real

Real (degrees) COsD Real Real

Double (radians) DCOS cos (arg) Double Double

Comp lex Cccos Comp lex Comp lex
Arc sine ASIN sin~!(arg) Real Real
Arc cosline ACOS cos=1 (arg) Real Real
Arc tangent:

Real ATAN tan-1 (arg) Real Real

Doubte DATAN tan=! (arg) Double Doubte

Two real arg ATAN2 tan~1 (arg1/arg2) Real Real
Exponent lal:

Real . EXP Real Real

Double DEXP olarg) Double Double

Comp lex CEXP Comp lex Comp lex
Hyperbolic:

Sine SINH sinh (arg) Real Real

Cosine COSH cosh (arg) Real Rea!

Tangent TANH tanh (arg) Real Rea!
Maximum value:

Real AMAX1 Max(al,a2,...) Reals Real

Integer MAX0 Max(kl,k2,...) Integers Integer

—

Minimum value: \

Real AM N1 Min(al,a2,...) Reals Real

integer MINO Min(ki,k2,...) integers integer
Random number RAN random number dummy Real

between 0 and 1
Table 3.8 FORTRAN-10 Library Functions

FORTRAN Compilation Control Statements 97

(6) A blank line This is ignored in compiling, but useful
in making the listing easier to read.

Various types of FORTRAN-10 statements will now be discussed. As in all
versions of the FORTRAN language, the order of the FORTRAN-10 statements is
important in a program. The proper order of the statements is summarized in
Table 3.9.

PROGRAM. FUNCTION, SUBPROGRAM
or BLOCK DATA statements

IMPLICIT statements

PARAMENTER statemets

DIMENSION, COMMON,
EQUIVALENCE, EXTERNAL
NAMEL I ST, or TYPE

COMMENT FORMAT statements Speclification
statements
Statement
function
DATA Deflnitions
statements
Executable
statements

END statement

Table 3.9 A Summary of FORTRAN-10 Statement Sequence

The list of statements in each box indicates the order in which these statements
must appear. The table also indicates that certain statements may be placed
anywhere in the range shown in the Table. For example, a FORMAT statement may
be placed anywhere after the PROGRAM statement and before the END statement.

3.8 A Summary of FORTRAN-10 Compilation Control Statements

Statement Function -
PROGRAM name This statement Instructs the compller to assign "uame" instead
of MAIN as the name of a program. "ame" must be 6 characters
or less. This statement, if written, must be the first

statement of a program.
— S | S e

INCLUDE 'file’ || file= standard file specification. Thls statement allows an
Inclusion of a code segment In a program unit.

END Physically the last statement of a program or a subprogram.

Table 3.10 A Summary of FORTRAN-10 Compilation Control Statements

98

3.9 A Summary of Spec

CHAPTER 3 FORTRAN-10

ification Statements

The specification statements specify the type characteristics, storage
allocations, and data arrangements. They are summarized in Table 3,11:
Statement Functlion
DIMENSION 51,52,...5n |where S Is an array declarator of either of two form:

VARIABLE (max1,max2, ... ,maxn)
VARIABLE (minl:maxl, min:maxly ..., minn:maxn)

and "mini:max" value represents the lower and upper
bounds of an array dimension. The symbol colon (:) may
be replaced by a slash (/) as a delimiter.

When used in a subprogram, the array dimenslion may be an
Integer constant or an integer variable, thus making the
dimension adjustable in a subprogram.

TYPE list

where TYPE may be one of the following: INTEGER, REAL,
DOUBLE PRECISION, COMPLEX or LOGICAL. Size modiflers are
acceptable in FORTRAN-10 but are interpreted differently:

type*1 = acceptable but Interpreted as a full word
type*2 = full word type*4 = full word
type*8 = double preclsion
IMPLICIT TYPE(al,A2..))|where Al1,A2,...,B1,B2,... are letters. This statement
TYPE(b1,B2y..)y... |declares the data type of varlables and functions
according to the first letters. A range of letters may

be specifled by a dash between the first and the last

COMMON /block indentifier/identifier,identifier,...identifier

letters, for example: [IMPLICIT INTEGER (A-N)

The COMMON statement causes specified varlables or arrays
to be stored in an area avallable to other programs. By
means of COMMON statements, the data of a maln program
and/or its subprograms may share a common storage area.

EQU I VALENCE (VJ,VZ,...

s (Vo sVipgseaalds oo
The IVALENCE statement causes more than one variable
within a glven program to share the same stcrage area.

EXTERNAL namel, nameZ2,

Distinguish the names as names of subprograms fo be used
as arguments to other subprograms.

PARAMETER PI=C1, P2=C2, ...

DATA List/dy,dg, .../,

where Pi = a standard user-defined identifler,
Ci = any type of constant
This statement defines constants symbolically during
compllation.
1i8t2/dk, djpgs e ve/5> oo
The data to be compiled info the object program Is

specified in this statement.
array or an partial array in an

The "list" may be a full
implied DO format.

Table 3.

11 A Sumary of Specification Statements

FORTRAN Assigrment Statements 99

3.10 A Summary of Assignment Statements

The assignment statements are sumarized in Table 3.12:

Statement

Function

VARIABLE = EXPRESSION

The EXPRESSION In an asslignment statement may be an
arlthmetic or a loglcal expression. Thelr formats are the
same. In an arithmetic expression, mixed mode 1Is permitted
In FORTRAN-10. The rules of mixed mode expression results
depend on the type of VARIABLE In the statement. Note +that
we are dealing with FORTRAN statements here, while a previous
Table 3.5 lists the results of mixed mode operations in a
sub-expression. The rules are now summarlzed below:

Mixed Mode Statement

Expression| Varliable Type
Type Rea! Integer | Complex | Double | Logical
Real D c R, | H,L D
Infeger C D R,C, | H,C,L D
Comp lex R C,R i D - R
Double va C,H,L - D H
Loé]cal 7>”B AB_<MMFNA§:I H,L D,H
Literal [D,H % C,H % D & D & D%
Legend: D = dlrect replacement
C = converslon with truncation
R = real part only

Imaginary part set to 0
high order only
low order part set to O

use of the first part of the l|iteral
use the first two words of the I|iteral

H
L
Note: %
&

ASSIGN 7 TO I

This 1s used to assign a statement label constant fo a
variable name, which will become a stafement label varlable.

Table 3.12 A Summary of Assignment Statements

100 CHAPTER 3 FORTRAN-10
3,11 A Summary of Control Statements (Table 3.13)
Statement Function
GO TO »n An unconditional transfer statement
GO TO (1,n2,...,7k) or GO TO (nl,n2,...,nk)
| Assigned GO TO statement
GO TO k OR GO TO k, (L1,02,...In)
Assign GO TO statement
\F () L1,L2,L3 Conventional arithmetic IF statement where g = an arithmetic

expresssion

IF &) S8

IF () nl,n2

where S Is an executable statement. This 1is a conventional
logical IF statement, where E is a logical expression.

where nl and n2 are two statement labels. This is a two-exit
logical |IF statement and E = a logical expression. This
statement will Transfer the execution to statement label n71 if
E equals .TRUE., and to statement n2 I1f g JFALSE. In other
words, this Is an "IF-THEN, OTHERWISE" statement.

PAUSE, or PAUSE

DOn I =mi, m2, md
where »n = terminal statement l|abel

I = index variable

ml = initial parameter

m2 = terminal parameter

m3 = increment parameter

Note: (1) Nested DO°s follow conventional rules.

(2) index variable should not be altered within the loop
range. Even an inclusion as a subprogram argument
may produce a warning message during compiling.

(3) The Index varliable may be an Integer or a real
variable. The parameters may be integer or real
expressions, which will be calculated at the
beginning of the DO loops.

(4) Real, Integer, positive, negative, zero constants
are all permitted for mI,m2,m3. Thus the FORTRAN-10
DO-statements allow decrements, negative indices,
non-integer numeric indices.

STOP , or STOP 'literal string' , or STOP n
Terminal will print the literal string as a message or n as a
message.

literal string , or PAUSE n
The PAUSE statemnt will cause the
printed at the terminal:

followlng message to be

TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

Table 3.13 A Summary of Control Statements

I/0 Statement Terminology 101

3.12 Terminology Used in FORTRAN-10 INPUT/OUTPUT (I/0) Statements
T

One powerful feature of FORTRAN-10 is that it possesses a set of
extremely powerful input/output statements, far more powerful than the standard
set in the 1966 ANSI standard. 1In order to present the I/O statements, we will
first get acquainted with some terminology:

(1) Transfer mode Data transfer between storage and I/0 devices or
between storage locations is done in. several different modes:

a. Sequenctial mode This is the most common mode, in which the
records are accessed or transferred in a sequential order
immediately following the last accessed or transferrecd record.

b. Random access mode This permits the access and transfer of
records from a file in any desired order. The OPEN (see Section
3.16) statement is required to establish an I/0 mode of this kind.

c. Append mode This is a variation of the sequential
mode, It permits writing a record immediately after the last
record of the accessed file, The OPEN statement is required to
establish an I/0 mode of this kind.

d. Dump mode

(2) Keywords of I/0 statements (Table 3.14)

Keyword Transfer of Data

READ from a peripheral device to the processor storage

REREAD repeat the last READ

ACCEPT from a terminal to storage

FIND to locate the next recoprd to be read during a
random access READ operation

DECODE from a specified storage area info the

WRITE from storage to a peripheral device

PRINT from storage to a printer

PUNCH from storage to a card punch

TYPE from storage to a terminal

ENCODE +o transfer from the variables of a specifled
1/0 list into a speclfied storage area

Table 3.14 A Summary of Keywords of FORTRAN-10 I/O Statements

102 CHAPTER 3 FORTRAN-10

(3) Basic formats and components of READ and WRITE statements

Basic
Statement Form Function

KEYWORD (u,f) list Formatted |/o transfer

KEYWORD (u#R,f) list Random access formaffed I/O fransfer

KEYWORD (u,*) stt Llsfed dlrec+ed I/O Transfer

KEYWORD (u,name) NAMELIST-confroIIed I/O +ransfer

KEYWORD (u) Zzst Binary I/O Transfer

KEYWORD (u#R) Zzst Random access blnary l/O fransfer

where:
KEYWORD = READ or WRITE
u = loglcal unit number
f = format statement number
list = 1/0 list
#R = the delimiter # followed by the number of a record
in an established (by an OPEN statement) random
access file
* = symbol speclfying a list=directed 1/0 transfer
name = the name of an 1/0 list defined by a NAMELIST

statement
In additon, when a unit u 1Is specified, the optional argument

ERR=c and END=d

may be added to any of the READ or WRITE statement.

Table 3,15 A Summary of READ/WRITE Basic Formats

(4) Logical unit number (Table 3.16)

Unit Default | ... Use ..
Number xx Fllenames Time=-shar ing| Batch
| 1.-4 | FORxx.DAT
- I
I - B
I _—
8-30

Table 3.16 Logical Unit Number Assigrments

These are decimal numbers to identify the physical devices used for most
FORTRAN 1I/0 operations. The devices should be explicitly specified in the' OPEN

I/0 Statement Terminology 103

statement. The definitions of these unit numbers as well as how many are
allowed are determined by the local installation. The typical DEC definition
specifies units ranging from 1 to 63 assigned to the devices DSK, DECtapes,
magtapes, CDR, LPT, PIR, PIP, etc. However, since a different system of
peripheral device allocation is used at the University of Pittsburgh, the
logical unit numbering system is revised and shown in Table 3.16. Installation
at other institutions may have still diffeent definitions depending on the local
configurations.

(5) Formatted and unformatted files Files transferred under the
control of a format specification are called formatted files. Unformatted files
are binary files transferred without a reference to a format specification and
are transferred on an one-to-one correspondence between the source and the
destination.

(6) Random access records The random access records are specified by
an integer preceded by an apostrophe or a pound sign, for example, '123 or #123.

(7) List directed I/0 The asterisk (*) is an I/O statement in
place of a FORMAT statement number tells the compiler that the specified
transfer operation is "list-directed." In a list-directed transfer, the data and
their type are specified by the READ/WRITE I/O list. If a READ statement has an
asterisk (*) where the FORMAT number usually is, the list-direct I/0 will follow
the rules listed below:

a. Octal constants in the list-directed I/0O are not permitted.

b. Literal constants must be enclosed in single quotes, such as
'"TIME'.

c. Blanks and commas are delimiters to separate different items in
the I/0 list.

d. Complex constants must be enclosed in parentheses.
e. If an item is inputted as a null (blanks, tabs, carriage returns,
or linefeeds, but no data), the item will retain a previously

inputted value.

f. A slash at any time will terminate the input operatioh even if the
I/0 list is not yet satisfied. .

the repeat of a constant may be written as n*K, which means the
constant K repeated n times.

[Te}

(8) NAMELIST I/0 lists The I/0 lists are defined by a NAMELIST
statement (see Section 3.17) in which each I/0 list is named by a one- to
six-character name that may be referenced by a READ/WRITE statement. 1/0
statements with a NAMELIST-defined I/O list cannot contain a FORMAT statement -
reference or a conventional I/0 list. The only type of formatting permitted in
the NAMELIST-controlled statements is an input record of SNAME varl=valuel,
var2=value2,...$.

104

CHAPTER 3 FORTRAN-10

3.13 A Summary of FORTRAN-10 READ Statements

Table 3.17 shows a summary of different types of FORTRAN-10 READ

Statements:

Statement

Function

Sequential Formatted READ:

READ (u,f) list

READ (u, f)

READ f

READ f, list

This is the most frequently used form. |t transfer data from

logical unlt u to storage.

Input data from unit u into either a H-fleld descriptor or a
Iiteral field descripfor given within the referenced format.
Same as READ(u,f) where =default unit for a card reader.

Read data from a card reader Into storage.

Sequential Unformatted Binary READ:

READ (u) list

The record must be
unformatted WRITE

Read one record from unit u into storage.
previously prepared by a FORTRAN-10
statement.

Sequential List-Directed READ:

READ (u,*) list

READ *, list

Read data from device unit u into storage as values of Items
in the Ilst. If necessary, each Item Is converted to the
type assigned in the list.

Read data from a card reader a |ist-directed !l1st.

Sequential NAMEL IST-Controlled READ:

READ (u,name)

Read data from unit u Into storage as the values of the Items

Identified by the NAMELIST Input specified by the name .
Random Access Formatted READ: N
READ(u#R, f) list Input data from record R of unit # according to the

referenced FORMAT f. The Input flles must be previously set
up elither by an OPEN or a DEFINE FILE command.

Random Access Unformatted READ:

READ (u#R) list

Input data from record R of unlt #. Place data Into storage
as values of items in the [Z8t, The Input file must be a
binary file prepared by a previously applied FORTRAN-10
unformatted random access WRITE statements.

Table 3.17

A Summary of FORTRAN-10 READ Statements

FORTRAN WRITE Statements 105

3.14 A Summary of FORTRAN-10 WRITE Statements

The WRITE statements resemble the READ statements in formats. Diffeent
types of FORTRAN~10 WRITE statements are now summarized in Table 3,18:

Statement

Function

Sequential Formatted WRITE:

WRITE (u,f) list
WRITE (u,f)

WRITE f

WRITE f, list

This 1s the most common!ly used WRITE fofm. It transfers data
from storage and outputs I+ on logical unit u.

Output the contents of any H-field or Iiteral descriptor
contalned by to the logical unit 4.

Same as WRITE(u,f) where u=default unlt for a line printer.

Same as WRITE(u,f)list where u=default unlt for a line
printer.

Sequentlal Unformatted Binary WRITE:

WRITE (u) list

Output the values of items In the 1ist Into the file
assoclated with logclal unit u.

Sequential List-Directed WRITE:

WRITE (u,*) list

Output data from storage into logical unit u,

Sequential NAMELIST-Controlled WRITE:

WRITE (u,name)

Output data from storage into logical unit % with the values
of items as identifled by the NAMELIST-defined Ilst speciflied
by the name name.

Random Access Formatted WRITE:

WRITE (ufiR, f) list

Output Into unit u the values from the storage identified by
the contents of list to record R. Only the disk flles that
have been set up by elther an OPEN statement or a call to the
subroutine DEFINE FILE may be accessed by a WRITE statement
of this form.

Random Access Unformatted WRITE:

WRITE (u#R) list

Output into unit u the values from the storage identified by
the contents of iist to record R. Only the disk files that
have been set up by elther an OPEN statement or a call to the
subroutine DEFINE FILE may be accessed by a WRITE statement
of this form.

Table 3.18 A Summary of FORTRAN-10 WRITE Statements

106 CHAPTER 3 FORTRAN-10

3.15 A Summary of FORTRAN-10 I/0 Statements

All FORTRAN-10 I/0 statements, including the READ/WRITE statements
already discussed are now summarized together in Table 3.19:

1/0 Statement| Formatted Transfer Format Control List-Directed
Unformatted Namel ist
READ
Sequential READ(u, f)list READ(u)list READ (u, name) READ(u, *)list
READ f,list READ *,list
READ f
Random READ(u#R,f)1list | READ(u#R)1list
WRITE
Sequential WRITE(u, f)1list | WRITE(u)list WRITE (u, name) WRITE (u, *)1list
or, Append WRITE f,list
WRITE f
Random WRITE (u#R,) List
REREAD
Sequential REREAD f,1list
F IND
Random only | FIND(u#R)
ACCEPT
Sequential ACCEPT f,list ACCESPT *,1ist
only
PRINT
Sequential PRINT f,list PRINT *,list
only
PUNCH
Sequntial PUNCH f,1list PUNCH *,1list
only PUNCH f
TYPE
Sequent lal TYPE f,list TYPE *,list
only TYPE f
ENCODE
Sequtntial ENCODE(c, fss)list
only
DECODE
Sequential DECODE (¢, ', s) Zislt
Legend: u = logical unit number * = gpecify list-directed 1/0
3 f= format number #R = loclal record position
list = 1/0 |lst ¢ = number of characters per
name = name of specific Internal record
NAMEL IST 1/0 list 8 = address of first storage

Table 3.19 A Summary of FORTRAN-10 I/0 Statements

OPEN/CLOSE Statements 107

3.16 FORTRAN-10 File Control Statements

The FORTRAN-10 file control contains only two statements: OPEN and
CIOSE. They are, however, among the most powerful and versatile statements in
specifying the input/output files. The general forms are:

OPEN(argl,arg2,...)
CLOSE (argl,arg2,...)

The arguments have a genral form of ITEM = value, The power and versatility of
the OPEN and the CLOSE statements are derived from the many options available as
the arguments. These arguments are summarized and tabulated in Table 3,20 (A&B).

Although there are many available options, many are special purpose type
and not frequently used. The simplified version is just to take the most often
used arguments: "unit", "file", "dispose" and "directory" in the OPEN
statement, and Jjust the "unit" in the CLOSE statement. Thus, the most often
used forms are:

OPEN (UNIT=u, FILE="NAME.EXT ', DISPOSE 'value ', DIRECTORY="m,n")

CLOSE (UNIT=u)

Example: OPEN(UNIT=5, FILE='INPUT,DAT')

Function: The disk file INPUT.DAT is opened on unit 5. If the
FORTRAN program is written with unit 5 as the input unit,
such as in the READ(5,f)list statement, the OPEN statement
will change the program execution from TTY input to a file
input. This is a convenient way of adapting an existing
program from the TTY input to a disk file input.

Example: OPEN(UNIT=1, FILE='INPUT,DAT', DIRECTORY='115103,320571")
Function: The disk file IMPUT.DAT[115103,320571] is opened on unit 1.

Example: OPEN(UNIT=3,ACCESS="SEQOUT ', FILE='DATA, TMP"')
WRITE-statements on unit 3
CLOSE (UNIT=3)
OPEN(UNIT=1,ACCESS="SEQIN ', FILE="DATA.TMP',DISPOSE="DELETE")
READ-statements on unit 1
CLOSE(UNIT=1)

Function: An output file is opened on unit 3, to be named as
DATA, TMP. The file is closed after output statge is
completed; the file is reopened on unit 1 as an input
file., The file 1is deleted from the disk when the CLOSE ,
statement is executed.

Example: OPEN(UNIT=1,FILE="INPUT,DAT',ACCESS="RANDOM' ,MODE="ASCIT"',
1 RECORD SIZE=80,PROTECTION="177)

Function: Open on unit 1 a disk file INPUT.DAT for random access I/0
operation in ASCII mdoe. The records in the file are 80
characters long. When the CIOSE statement is executed, the
file will be given a protection code of 177.

108 CHAPTER 3 FORTRAN-10
Possible
Argument Value Function Open*{Close*|Defauit Value
Tv,lc To define the logfcai unit number. Req | Req
Tv,lc To specify the physical name or the loglca! name of an Op Op logical name up1
Six To sepcify the type of laput qnd/or output statements Op g TSEQINOUT!
posslible and tha flle access mode to be used In a specified 1/0
values operatlions. The six possible values are:
YSEQIN' = to be read in sequentlal access mode
*SEQOUT! = to be written In sequential access mode
'SEQINOUT' = data flle may be fjrst read, then written
record-by-record In a sequentlal access
mode. At this access, a WRITE/READ sequence
Is 1llegal.,
TRANDOM' = to speclfy random access mode In slther
READ or WRITE operation. The RECORD SIZE
optlon Is requlired when this access mode Is
speclfled.
'RANDIN? = to specify a read-only random access mode
with a named flie.
'APPEND? = to speclfy the APPEND mode. The record
speclfled by an assoclated WRITE statement
Is to be added to the end of a named flle.
You must close it and then reopen the modi=
fled flle to permit it to be read.

HODE = tour To define the character set of a flle or record. Op tg {'ASCII' for
possibie Four possible values are: formatted file
values

TASCI1? = to specify an ASCii flle TBINARY! for
'BINARY! = to speclfy a FORTRAN formatted blinary file unformatted
VIMAGE' = to specify an unformated binary flle lle
*DUMP! = to specify the file to be handled in

DUMP mode

DISPOSE = slix (__}o speclfy the action to be taken regarding a tile at Op Op |*SAVE?
possible the close time. Six values are possibie:
values

'SAVE' = to leave the file on the device
TDELETE' = to delete the flle If It (s on disk or on
a DECtape. Otherwise, take no action.
'PRINT' = to queus the flle for printing 1f It is a
disk file. Otherwise, take no acflon.
LISTY = to queue the flle for printing and delete
It If It [s a disk file. Otherwise, take
no actlon,
'PUNCH! = to output on paper tape punch.
'RENAME' = to change fllename
FILE = Iv,ic To speclfy the name of the frlle Involved In the OPEN Op o YFORxx,DAT!
or CLOSE statement. The flle name format 1s FLNAME.EXT.
Default conditlons: FLNAME = FLNAME.DAT
FLNAME . = FLANME.
[GUTRD] = FORxx.DAT
where xx = two-digit unit number
1f the fllenames of the sams file In the OPEN and the
CLOSE statements are different, the file Is renamed.
PROTECTION = oc, v To speclty a protection code. For example: Op Op ["057
PROTECTION = "155
Table 3.20A FORTRAN-10 OPEN and CLOSE Statements

OPEN/CLOSE STATEMENTS

109

Possible
Value*

Argumenf

DIRECTORY

Function

Cpen*

Close*

Default Value

To speclfy the directory of the file. Most frequent use
Is to speclfy the PPN of the flle. To specity a PPN
of [123456,654321]), use any of the three ways:

(1) Single-precision array
OPEN (unit=1, DJRPC'I‘UI\‘Y—-PAIH,..)
where PATH and Ifs elements are:
DIMENSION PATH(2)
PATH(1)="123456
PATH(2)="654321

IproJect number
tprogrammer number

{2) Oouble precision arra
OPEN(unit=1, DIRECTORY=PATH,...)
where PATH and Ifs olements are:
DOUBLE PRECISION PATH(2)
PATH(1)="000000123456000000654321
PATH(2)="0

(3) Literal constants:
OPE!(unit=1, DIRECTORY="123456,654321",...)

Op

Op

User's own
PPN

BUFFER COUNT =

To speclfy the number of 1/0 buffers to be assigned to
a particular device.

Op

Ig

valus

Mon(tor default

FILE SIZ2E =

To specnfy disk flle slzs In words

Monitor default

VERSIUN =

BLOCK SI7E' =

T rslon number of the named flle

clfy th

—

0

To speclfy block slze for all storage medla except
disk and DECtape.

Monitor default

RECORD SIZE =

To specity record sfze In words. Required argument when

specifylng random access mode.

ASSCTATE
VARIABLE

In random access mode, 1t provides storage for the number
of the record to be accessed next if the program being
executed were to contlnue to sequentlal access records
starting from the current READ. For example, If record
number 3 was read, the ASSOCIATE VARIABLE Is 4.

Monltor default

value

two
possibie
values

PART! T}’

DENSTF: X

five
values
none
iv,array

[DTALOG =

ERR =

To set the parlfy check system for magtape cperutlon
Two possible values are 'ODDY and 'EVEN'

Op

System default
vatue

To set the packing denslty of magtape. Flive values are

1200', '556', '800'. '1600', and '6250'

Op

System defauit

The use of this option In an OPEN statement enables you
to supersede or defer, at execution time, the values
previously assfgned to the arguments of the statement.
The System will return a message at the user's terminal:

UNIT=nz:/ACCESS=SEQINPUT/MODE=ASC |
ENTER NEW FILE SPECS. END WITH AN ESC.

Only fhe changed file specs neaded be entered,

op

To go to statement No. s when there Is an error durlng

the executlon of the OPEN or the CLOSE statement.

Op

Error stop

*Legends

Iv = Integer vartabie;
Iv = tlteral varlabies

Integer constant;
fiteral constant;
octal! constant,

optlional; Ig = Ignored.

TABLE 3.20B

FORTRAN~10 OPEN and CLOSE Statements

110 CHAPTER 3 FORTRAN-10

Example: OPEN(UNIT=1, FILE='INPUT,DAT')

Other FORTRAN statements follow.
CLOSE(UNIT=1,FILE="0OLD.DAT')

Function: Here we have the same unit number for the OPEN and the
CIOSE statements, but they are different file name
arguments., This is equivalent to renaming a file at the
CIOSE time. The INPUT.DAT is renamed as OLD.DAT.

3.17 Format Statements

The FORMAT statements in FORTRAN-10 are in general compliance with the’
standard FORTRAN, Therefore, only-a brief summary will be given here.

The FORMAT statement has a general form of
n FORMAT (S , S, ...)

where n is the statement number and each S is a data field specifier. The
various data field specifiers are now summarized as follows:

(1) Numeric fields In the following list, "w" is an integer
specifying the field width; "d" is an integer specifying the number of decimal
places to the right of the decimal point or, for the G-format, the number of
significant digits. For the D, E, F, and G inputs, the position of the decimal
point in the external field takes precedence over the value of d in the format.
This means that the decimal point of the input data need not be exactly at the
specified column of the format. However, the data must be entered within the
field specified in the format.

®

Floating-point type format Fw.d
Exponent-type format Ew.d
Doubie precision Dw.d

General format:

Real & double precision Gw.d
Integer & logical Gw
Comp lex 26w .d
Integer format lw
Octal format Ow
(2) Numeric fields with scale factor Scale factors may be specified

for D, E, F and G formats. A scale factor is written as nP where P is the
identifying character and n is a signed or unsigned integer that specifies the
scale factor.

For the F-type conversions (or G-type, if the external field is decimal
fixed point), the scale factor specifies a power of ten so that:

External number = (internal number) * 10P

FORMAT Statements 111

For the D, E, and G (external field not decimal fixed point)formats, the
scale factor multiplies the number by a power of ten, but the exponent is
changed accordingly leaving the number unchanged except. in form, For example,
if the statement: FORMAT(F8.3,E16.5) is used to print out two values A and B:

the same numbers under a format of FORMAT (~1PF8.3,2PE16.5) would produce a
printout of:)

In input operations, the F-type data are the only type affected by the scale
factor.

(3) Logical field The logical data field specifier is:

Lw
where "w" is an integer specifying the field width. If the format is used in an
input operation, the first nonblank character in the data field is T or F, the
value of the logical variable will be stored as TRUE or FALSE respectively. If
the entire data .field is blank or empty, a value of FALSE is stored. If the
format is used in an output operation, (w-1l) blanks followed by T or F will be
output if the value of the logical variable is TRUE or FLASE respectively.

(4) Variable field width The numeric fields may appear in a
FORMAT statement without the specification of the field width "w" or the number
of places after the decimal point "d", When this format is used in an input
operation, the input data can be entered in a "free form" style so long as a
delimiter is used to separate two neighboring data. Any illegal character in a
numeric field can be used as a delimiter. However, a good practice is to use
either a comma (,) or a blank () as a delimiter. For example, input according
to the format:

10 FORMAT (2F,E,2I,D)
might appear as:
-2.34, 2.345, 0.5623E-01, 56, 783, 3.4567234569D+01

If such a format is used in an output operation, FORTRAN automatically assume
the following field specifiers:

Format Becomes
D D25.16
E E15.7
F F15.7
G G15.7 or G25.16
I I15
0] 015

(5) Alphanumeric fields The format of an aphanumeric field‘ is:
Aw or Rw

The maximum value of "w' is 5 for single precision, 10 for double precision,
The A-field deals with variables containing left-justified, blank-filled
characters; the R-field deals with variable containing right-justified,
zero~-filled characters.

112 CHAPTER 3 FORTRAN-10

(6) Alphanumeric data within a format statement Use nH format or
enclose the alphanumeric data in single quotes. See examples below:

10 FORMAT (17H PROGRAM COMPLETE)
10 FORMAT(' PROGRAM COMPLETE')

(7) Complex field Complex quantitites are transmitted as two
independent real quantities. The format specifier consists of two successive
real specifiers or one real repeated specifier. For example, the following

format can accommodate four complex quantitites:

10 FORMAT (4F10.4, 2E14.5, F10.5, F10.3)

(8) $§ format descriptor A "$" format descriptor at the end of an
output FORMAT is used to suppress the carriage return (and the associated line
feed) at the end of the current record, except when the FORMAT is automatically
repeated when the WRITE statement list contains more items than those in the
FORMAT. One typical application is shown in the example below:

Example: The following is a segment of a FORTRAN-10 program:

10 FORMAT(' ANSWER YES OR NO 'S)
11 FORMAT (A3)

WRITE (6,10)

READ(5,11) ANSWER

Function: When this segment of the program is executed, the following
will appear on the user's terminal:

ANSWER YES OR NO > (User answers YES or IO here)

(9) Print control descriptor. When FORTRAN output file is printed on a
printer or a terminal, the first character of each line (or record) is reserved
for the carriage control character which controls the spacing operations of the
printer or the terminal. The FORMAT should have a beginning field of 1Ha where
"a" is a desired control <character. Table 3.21 1lists the FORTRAN-10 print
control characters.

3.18 FORTRAN-10 Device Control Statements

The FORTRAN-10 device control statements are normally used for magtape
operation control, although they also work well with DECtapes and can be used to
simulate disk devices. These tape control statements provide a set of run-time
tape control instructions.

In order to execute these stantements, magtapes must £first be MOUNTed,
and a logical name of be given, where "u" is the logical unit for that tape
unit in the FORTRAN program. Therefoe, if the device control statements are
used in a FORTRAN-10 program, preliminaries such as the following must be
carried out before the execution of the FORTRAN program*:

*Unless a run-time subroutine, such as RMOUNT, is available to mount a tape.
See Section 3.21.

Device Control Statements 113

Print ASCI |
Control Character |Octal Value Function

space 012 Skip to next Iline; skip to next page
(form feed) after 60 lines.

0 zero 012 Sklp a Ilne

1 one 014 Form feed - go to +op of nexf page

+ pIus Suppress sklpplng - overpr!n+ +he IIne

* asferlsk 023 @Sklp to next Ilne wl+h no formfeed.

- mnﬁ]s o oz @Sklp +wo Iines.

2 two 020 @Space 1/2 of a page.

3 three 013 Space 1/3 of a page.

/ slash 024 @Space 1/6 of a page

. period 022 @Trlple space with a formfeed after
every 20 Ilnes printed.

, comma 021 @Double space wlth a formfeed after
every 30 lines printed.

Table 3.21 FORTRAN-10 Print Control Characters
@=No effect on a terminal.

DRIVE MT9
MOUNT MT9:u/WE/VID:B313

Here, the VID used is for illustration. If there are more than one tape for the
job, the above preliminaries must be done for every tape unit needed in the

program.

114 CHAPTER 3 FORTRAN-10

The device control statements are now summarized in Table 3,22:

Sfafemenf Function
REWIND u Move and re- posnflon the file back to The flrs+ record.
UNEOAD u Rewlnd fhe source reel so that fhe tape is complely off
The take-up reel. The Tape wlll be ready for unloadlng.

BACKSPACE u Backspace one record excep+ If lf is already at record
No.1. This statement cannot be used for files set up
for random access,|ist=-directed,or NAMEL|ST-controlled
1/0 operafuons

S S - — e et e e e SRS S —

ENDFILE u Write an endflle record ln fhe file located on device u.

S Jo— - S -

SKIP RECORD u Sklp one record on devlce u.

SKIP FILE u - Sklp one file whlch fol lows |mmed|aTely fhe currenf one.

BACKFILE u Backspace to the flrst record of the file preceding the
current one.

Table 3,22 FORTRAN-10 Device Control Statements

3.19 FORTRAN-10 Subprogram Statements

Subprograms are procedures that are used repeatedly in a program or among
the users, and therefore it is more convenient to define such common procedures
so that they may be referenced. The arguments for such a common procedure are
made general enough so that the subprograms can be utilized widely. These
arguments are called dummy arguments. Dummy arguments in a FORTRAN-10 program
may be one of the following: (1) variables, (2) array name, (3) subroutine
identifiers, (4) function identifiers, or (5) statement label identifiers that
are denoted by the symbol "*", "$", or "&",

Subprogram Statements 115

These subprogram statements are now summarized in Table 3.23:

Statement Function

NAME (argl,arg8,...,argn) = expression
This defines an internal subprogram, where NAME is the name
assigned, (argl,arg2,...) Is a |list of dummy arguments.

TYPE FUNCTION NAME(argl,arg2,...,argn)
where TYPE = optional type specification such as INTEGER,

REAL, et.
(argl ,arg2,...) = a |ist of dummy arguments.

SUBROUTINE NAME (argl,arg2,...,argn)

CALL NAME(argl,argl,...,argn)
! Definition of a subroutine and calling a subroutine

ENTRY NAME(argl,arg?2,...,argn)

Multiple entry specification where:

NAME = name to be assigned to the desired entry point.
Rules of multiple entry in a FORTRAN-10 subroutien are given

later.
RETURN Return the control form the subroutine to the calling
program. Next statement executed Is one immediately

following the calling statement In the calling program

RETURN k This Is a multiple-return statement, where k¥ is an Integer
constant, varlable or expression. Rules of multiple return

are given alter,

Table 3.23 A Summary of FORTRAN-10 Subprogram Statements

Often, many subprograms share a common computational procedure. Although
these common procedures can again be made into subprograms to be called by
subprograms, an alternative is to construct one subprogram with many entrance
points. In Figure 3.2, a flow chart is shown for three entrance points and one
exit., The entrance points are labeled as SUB (the front entrance), PTA and PIB
(two side entrances). The program Segments are represented as Segments 1, 2 and
3.

116 CHAPTER 3 FORTRAN-10

SUBROUT INE SUB(A,B,C,D,X,Y)

SENEPIS S

Segment 1 i Program

Data needed: Segment 1

A,B,C,D J

!
I ENTRY PTA(A,B,C,D,X,Y)

r Segment 2 1 | Program
| Data needed: | 1 Segment 2
' A,B,C

Result: X :
R

e e S |

- ENTRY PTB(A,D,Y)

]
—- A 4 —

| Segment 3 —] : Program
i Data needed: ! ! Segment 3
AD ‘,
| Reswirs ¥ |
| i
QTYURN | RETURN
\

—

Figure 3.2 An Example of Multiple Entry Subprogram

The following rules on ENTRY should be noted:
(1) An ENTRY statemnet may not be placed in the main program.
(2) An ENTRY statement may not be placed in a DO loop.

(3) There is no need for the arguments of various ENTRY statements to
agree with each other.

(4) Value of function must be returned by the use of current ENTRY name.

The statement RETURN k enables the selection of any labeled statement of
the calling program as a return point. When the multiple returns form of this
statement is executed, the assigned or calculated value of k¥ specifies that the
return is to be made to the kth statement label in the argument list of the
calling statement. The value of k should be a positive integer that is equal to
or less than the number of statement labels given in the argument list of the
calling statement. 1If k is less than 1 or is larger than the number of
available statement labels, a standard return operation is performed.

FORTRAN Subprogr

3.20 Selected H

ams - DEC 117

SUBPROGRAM LIBRARIES IN FORTRAN

ORTRAN-10 Subprograms Developed by DEC (Table 3.24)

Subprogram
Name Effect
DATE (ARRAY) "ARRAY" is a dimensioned variable in the calling prSogram with 2

elements., The suroutine will return the values:
ARRAY (1) 'DD-Mm', ARRAY(2) "m-YY'
When ARRAY is printed with a 2A5 field format,

the result s

DD-Mmm~-YY, for example, 19~Aug-80, the date when the subprogram
was executed. To force the "month" part Into all upper case
letter, the following two statements should be inserted between
the CALL DATE and WRITE statements:

ARRAY(1) = ARRAY(1) .AND. “777777777677

ARRAY(2) = ARRAY(2) .AND. "577777777777

Then fhe above dafe example would be printed as 19-AUG-E0.

ERRSET(N)

TIME(X) or TIME(X Y)

These subroutines will return a string constant X as "HH:MM' as
the current time in a 24~hour clock notatlion, and ' SS.S' for Y,

where HH hour, MM= minufes, SS. S seconds .,

To control the typeout of execution-time arithmetic error

code table defined by DEC.

messages. Message is suppressed after N occurences.

To determine the exact nature of an error on READ, WRITE, OPEN
and CLOSE that was trapped wlth the "ERR=s" option In the
statement. The subroutine will return two Integers |,J. The

(1, describes the nature of error according to a

(See Appendix H of Reference 4.)

combination

k;£&£:<Aﬁi) To +ermlha+e +he subprogram.
| rpasu) To release the logical unit u.
SAV&;;;};NWW“‘};mse;;‘];g argument ot the last random numbg;M (interpreted as
Integer) that has been generated by the function RAN.
P;%&ﬁ%N(I} A The sfar?lng value of {B;M¥]}Q+1on RAN is set fo 1. [|f 1=0, RAN

uses its normal starting value.

SORT('OUTPUT=INPUT/switches')

The argument is a string representing a
The details on the SORT program are glven in Chapter 7.
with local installation whether this subprogram is instalted
the system.

SORT prgram command.
Check
In

Table 3.24

A Selection of FORTRAN-10 Subprograms Developed by DEC

118 CHAPTER 3 FORTRAN-10

3.21 Selected Subprograms Developed at the Pitt Computer Center

A group of subprograms have been developed and implemented in the
FORTRAN-10 at the installation of the University of Pittsburgh. These
subprograms are included for the convenience of Pitt users. DEC System—10
installation elsewhere would have similar types of subprograms but geared
particularly to the local needs. These programs are often made available to
other installations by exchange, lease or purchase. Since these suprograms have
beeen implemented already in the Pitt FORTRAN-10, no additional monitor commands
are needed to call them. For users elsewhere, they must confirm first with
their installation personnel whether such or similar subprograms are available
in their facilities.

The subprograms will be outlined according to their general functions:

(1) Supplementary library functions This group of subprograms are
all functions and is used to supplement the DEC-supplied 1l)brary functions (such
as square root and sine function) which are given in Section 3.6 as Table 3.8.
These supplementary functions are listed in Table 3.25:

Type)
Function Form Definition Argument | Function

Tangent

Real (radians) TAN tan(x) real real

Real (degrees) TAND tan(x) real real
Cotangent

Real (radlans) COTAN cot (x) real real

Real (degrees) COTAND cot (x) real real
Gamma function GAMMA (x) real real
Error functlon ERF erf(x) real real
Comp lementary
erro function ERFC 1 - erf(x) real real
CPU time XEQTIM CPU time In dummy real

millliseconds

Table 3.25 Supplementary FORTRAN-10 Library Functions
Developed at the University of Pittsburgh

(2) Bit manipulation in a memory word

A DEC-10 memory word contains 36 bits. The hardware store a 37th bit for
parity check, but that is of no concern to the user. The bits are numbered from
0 to 35 (from the most significant bit side to the 1least) as shown in
Figure 3.3(a).

The group of bit-manipulation subprograms can be used for a wide range of
applications, such as data re-formatting in data transfer between a magtape and
disk storage. One particular application is in the area of character-storage
manipulation. Since ASCII-coded characters are coded into 7-bit bytes, where a
"byte" is a unit consisting any number of bits, each memory word can accommodate

FORTRAN Subprograms — Pitt 119

01234567 ... v v v oo 3435

(a) Bit Positions

ot [owz [ens [ons Dons [of

0= =673 /14 - 201214—+27 [28+--34 35 - BIt

: Positions
(b) ASCI|-Coded Character Storage

Figure 3.3 DEC-10 ASCII Storage Format

5 characters with one bit left over. The standard ASCII coded storage format is
shown in Figure 3.3(b). As a result, bit-35 is always filled with a =zero-bit
when the word is an ASCII-coded word.

These subprograms are now outlined below:

Function: LDB(K1, Length, Z)

|
I L— Source word to be processed
L Byte length in bits (integer, 1 to 36)
~-- - -—-——— Gtarting bit position (integer,
0 to 35)

Function: LDBN (N, Length, 7)

‘ ! ‘—- Source word to be processed
L Bytesize in bits/byte (1 to 36)
-o--w——-—— Byte number (from left to right)

f- Length —~|

Effect: Source word Z: [e XXX X X e e . _11
0 m»\l_oad 35
wt e T
N ~
\\ ~_

Returned function Eoo. - . .oooxxxx?‘
value: R R H ,,_.A,A,_,s...s_l

120 CHAPTER 3 FORTRAN-10
Subroutine: CALL DPB (K1, Length, 72, 71)
| 1
Starting bit position—————-————~~J j '
Byte length —-- : -
Destination word - - —
Source word —— - . s ed
Subroutine: CALL DPBN (N, Length, 72, 71)
! ' '
Starting byte number — -- - - ~~—~-—‘
Bits/byte - o e ,
Destination word — - s e] :
Source word - - J
K1 and Length are integer constants or variables,
Effect "Before":
72: [er [T y]u uuUu d;z g . . ,Zz}
) leLength-—=
21: [ww. .. o i vplrrrea]
.»// e -
"After": /_,/’/ Depos i}w/.
a2 //byte -
. 7 -
z2: lvyy. . yizezaxlza. . .z,
z1: » lww..o. . o vverrxa]
Z1 is unchanged. 322 is unchanged except the deposited
bute field.
Example: CALL DPB(0,7,22,LDB(7,7,21))
Exexution of this call will replace the first character in
in the word Z2 by the second character in Z1 as shown below:
R e e hiee i e
Q.
LDB e
72 c
Function: LSH (word, shift)
LA# number of places to be shifted:
+integer=shift left
—integer=shift right
————— Word to be processed
Effect: word: .yzxzx xfﬁﬂ
ISH(word,+k) [y u 'y zzxxx 00 0]
Example: M = LSH('ABCDE',-14)

The string word 'ABCDE' is shifted right 14 places.

shifted-out bits are replaced by 0's. Thus, the returned
function value is M = ' BABC', because the ASCII-coded

character for code 0000000 is null.

The

FORTRAN Subprograms - Pitt 121

Subroutine: CALL ZERO(ARRAY(I), ARRAY(J))
First element ——- !
Last element
Effect: Set all elements within the specified range to zero.

Array may be of any type.

Example: CALL ZFRO(A(1), A(100))
Set A(l), A(2), ...A(100) to 0.

Subroutine: CALL ASCEND(Z, KFIRST, KLAST)
Array name ‘
First subscript ————— -
Last subscript — = e
Effect: Sort the Z-array from Z(KFIRST) to Z(KLAST) in an
ascending order and then store them in the same array
locations.
Example: CALL ASCEND(X,1,100)

Sort the X-array from X(1) to X(100) and store them in
ascending order as the new X-array from X(1) to X(100).

Subroutine: CALL SPRAY (Z(I), Z(J), VALUE)

SR

Effect: Set the Z-array of the specified subscript range to equal
to the VALUE .

First element -
Last element ——
Common value —--——-

Example: CALL SPRAY(21),7(100),1.5)
Set Z(1), Z(2) ..., %2(100) to equal 1.5.

Subroutine: CALL MOVE (A2(I), A2(J) , AI(K))

First element of
Destination array —————--t

Last element of
Destination array —-—— v

|
]
First element of i

SOUrCe array —— e e e
Effect: Copy an array A2 from Al in this manner:

A2(I) = Al(K)

A2(J) = AL(K+J-1)

Al and A2 arrays should be of the same type, and avoid
double precision or complex array because the second word
of each two-word element won't copy.

122 CHAPTER 3 FORTRAN-10

(4) Device and file specifications

Subroutine: CALL RMOUNT (w , VID , WE , Label , Serial)

|
Integer, logical | |
unit unmber i |

i i

| :

String constant or i
variable, VID: |

|

i

|

|

!

|

Used only if Label='NL' "~ "~ - . ,,J

'WE' (or 0) or 'WL' —w- ,_,,,_,,4_,J

'SL' (or 0) or 'NL'
Effect: A run-time MOUNT instruction for a magtape or DECtape.
Example: CALL RMOUNT(1,'B313',0,0)

This is equivalent to issuing two monitor commands before
the execution of the FORTRAN program:

.DRIVES MT9

.MOUNT MT9:1/WE/VID:B313

Subroutine: CALL IFILE (unit, filename, extension, PPN)
CALL, OFILE (unit, filename, extension, PPl)

where unit = integer constant, logical unit number
filename = 5-character or less string
extension =3-character or leess string
PPN = 12-digfit octal constant

Default extension is 'DAT'.
Default PPN is user's own PEN.

Effect: These are respectively equivalent to:

OPEN (unit=u, file="f4%ilename, extension',directory="p,pn’,
access="seqin')

CLOSE (unit=u, file="filename, extension',directory="p,pn’,
access="seqout')

Example: CALL IFILE(1,'INPUT')
Specify user's INPUT.DAT as an input file on unit 1.
CALL IFILE(2,'SAMPLE','TMP',"115103320571)
Note that although 6-character filename is given, IFILE and
OFILE will only treat it as a maximum of S5-character string
(because it is coded as ASCII instead of SIXBIT). Hence
the search will be for a file SAMPL.TMPin the PPN of
[115103,320571], instead of the specified file SAMPLE.TMP.
If there is actually a file named SAMPL.TMP, this wrong
file will be called. If there is no SAMPL.TMP, execution
comes to an error stop.

The SUBSET Package

123

3.22 The SUBSET Subprogram Package

Many subprograms have been developed by the faculty, staff and students

at the University of Pittsburgh

Many of these are polished, optimized, and

well documented. One such work is the SubSET (SUBprograms to Simplify Encoding

Tasks) ,

written by
T121403,250321].

Ronal K.
By permission of Mr.
with their subset properties will be outlined.
chosen as to represent the salient points

Nicholas* and stored under the PPN of
Nicholas, a selection of SUBSET programs
These subset properties are so
in these subprograms. For more

details, the readers are referred to Reference 7, the SUBSET manual.

(1) Subprograms to report job information

Subprogram | Furction or
Name Subroutine Effect
CORE(IP) subroutine Return an integer IP which is equal to the number of
pages of core memeory for the current program with
the fractions of page rounded to the next higher
value.
IDENT(ID) Function or | As a subroutine, it returns the argument 7D as 15
subroutine ASCII characters in a 3-word array. The form of the
ASCII string is '[m,n]' in three words., As a
function, it also returns with "m" in the left half,
and "n" in the right half of the returned word, both
as G—dlglt oc:tal constants.
LOCATE(L) Function or | As a subroutine, it sets the user's jOb to station L,
subroutine If used as a function, it returns a functional value
of .TRUE. if successful. Otherwise, it returns a
value of .FALSE.
MYJOB(JOB) Function or Return a functlonal value or argunent JOB the Jjob
subroutlne number .
MYLINE(LINE) Functlon or It returns the argunent LINE as the user's 'I'L'Y llne
subroutine number. If it is a Batch]ob, the value is negative.
MYNAME'(NAME) subroutme It returns a 3-word array contammg 1> ASCII
characters left-justified, which is the user's name
as stored in the system.
WKDAY (TODAY) | subroutine It returns a 3=character string which is the day of

'Tue’, eftc.

the day of the week, such as 'Mon',

(2) Subprograms to manipulate arrays

These subprograms deal with initializing an array, copying one array onto
another, and finding minimum and maximum elements in an array.

*Ronal K.

Nicholas,

Research Associate,

Division of Research in Medical

Education, School of Medicine, University of Pittsburgh

124 CHAPTER 3 FORTRAN-10
Subroutine: CALL copy (Z.‘l INcz1, z2, INCZ2, NTOTAL)
First source array element
Zl-increment
First destination array element———--——
Z2-increment——- -
Total number of elements———-
to be copied
Effect: Copy the Zl-array by the Z2-array with indicated starting array
elements and subscript increments. 2Z1 and Z2 are the first array
elements in the specified copying process. If the first element
has a subscript of one, the subscript may be omitted, and Z1 or
722 may appear as array name.
Example: CALL COPY(X,1,Y,1,10)
This is equivalent to: DO 5 1=1,10
5 Y(I)=X(I)
CALL COPY(X(2),2,Y(9),3,10)
This is equivalent to: DO 5 1=1,10
5 Y(3*I+6)=X(2*I)
Subroutine: CALL INIT(Z, NTOTAL, ZVALUE)
Array element or array name———-
Total number of Z-element ——---memms
to be initialized
Common value — -
If 72 is an array name, initialization begins from %(l). If 2 is
an array element, initialization begins from the given element.
Z must be a single precision, real or integer type.
Effect: Initialize the array by the common value given
Example: CALL INIT(X,50, 0.0)

Set X(1),X(2),...X(50) to zero.

CALL INIT(XK(10), 50, KODE)
Set K(10) ,K{(11),...K(59) to a pre—-defined value KODE.

CALL INIT(POINT, 132, ' ')
Set POINT (1) ,POINT(2),...POINT(132) as blanks.

The SUBSET Package 125

Function or MINX (ITEM(I) , ITEM(J) , INDEX)
Subroutine: MAXX (ITEM(I) , ITEM(J) , INDEX)
- AMTNX (ITEM(T) , ITEM(J) , INDEX)
AMAXX (REAL(I) , REAL(J) , INDEX)
First element in the specified ’
array, integer or real a ‘
indicated. - e |
Last element in the specified
array, integer or real as
indicated, ——— -
Order of Min or Max element in
the specified list. - R —
Effect: As a subroutine, it returns as INDEX the order of the minmax

number in the given array. The actual subscript of the minmax
element and the value of that minmax will require additional
computation:

subscript of the minmax element = I + INDEX ~1
MINMAX = ITEM(I+INDEX-1) or REAL(I+INDEX-1)

As a function, it only returns the value of the mimmax element.
The subprogram is not applicable to double precision or complex
list,

Example: CALL AMAXX(X(3),X(300),INDEX)
If the subroutine returns a value of INDEX as 59, then the
maximum of the X-list is X(6l).

(3) Subprogram to control TTY characteristics

This subprogram will accomplish at execution-time a control of terminal
characteristics properties in the same manner of what the monitor command
"SET TTY" can accomplish at the monitor level. In a monitor command "SET TTY"
(or "TTY" in its short form), the general form is: TTY keyword , where keyword
is either one of a complementary pair of arguments, such as PAGE or NO PAGE. 1In
the subprogram shown here named as SETTTY, the "PAGE" part of the example is
called a Code Parameter, and yes-or-no part is called a Logic Parameter. Thus
the entire group of TTY commands can be coded into a single subroutine. This is
shown next.

128 CHAPTER 3 FORTRAN-10
Function or !
Subroutine: SIXBIT (7, I, J)
L
| number of character to be converted to
| the SIXBIT code
Destination of character after conversion
-Source of ASCII character to be converted
Effect: When used as a subroutine, it returns an array I which is the
SIXBIT code of 2. If it is used as a function, the first 6
characters (padded with blanks if necessary) is returned as the
value of the function.
Note: Both Z and I are dimensioned variables for the same ASCII
characters. However, SIXBIT codes contain six characters
| per word, while the ASCII codes contain five characters per
; word. So, the dimensions of Z and 1 could be different.
| Example: CALL SIXBIT('SYS', IDUM, 3)
‘L Convert the ASCII string 'SYS' into SIXBIT code as IDUM.
i
| Subroutine: CALL RUN(DEVICE,SAVEFILE, levzv)
! ! —— PPN (octal) where file is
i | stored. PPN=0 if in own disk.
d | Lo - Octal number , SIXBIT code of
I filename of the EXE file to
| ; be run.
g Lo e~ STXBIT code of the device
(no colon)
k e.g. DSK = "446353000000
(or = "0)
DTAQ = "446441200000
I SYS = "637163000000
Effect: This is equivalent to STOP for the current program; then apply a
monitor command of ".RUN DEV:NAME[m,n]".
If DEVICE='SYS', 'NEW' or 'OLD' in SIXBIT codes, then PPN=0, If
DEVICE='MT7', 'MT8', or 'MT9' in SIXBIT code, the tape must be
already properly mounted and positioned.
The RUN subroutine will drop all files in the old program. If
files in the old program are dropped without first a CALL RELEAS
call, the files will be lost if they are output files, and will
not be available as intermediate data for running the chained
programs.
Example: CALL RUN(0,SIXBIT('DEPT',IDUM,4), "115103320571)
This is equivalent to STOP the current program and then issue a
monitor command of "RUN DEPT[115103,3205711"
For the convenience of users and by the permission of Mr. Nicholas, a
copy of the SUBSET package is stored also in ENG: , which is the depository of
the Engineering Program Library.

SSP and IMSL Libraries 129

Since SUBSET is not in the FORTRAN-10 Library but in the user-library the
EXECUTE command of a FORTRAN program should specifically includes
"ENG:SUBSET.REL/LIB" in its list, if the program calls any subprogram in the
SUBSET package. In a batch job, a $INCLUDE card is necessary. For example, the
following is an execution command for a program that calls the SUBSET
subprograms:

LEXECUTE MAIN.FOR, SUB1.FOR, ENG:SUBSET.REL/LIB

3.23 Comprehensive FORTRAN Subroutine Libraries

In an academic user community of the size of the University of
Pittsburgh, it has been estimated that more than 500 "new" Gaussian Elimination
programs for simultaneous equations were written, debugged, and run each vyear.
Many of these came out of courses in programming, numerical methods, engineering
analysis, economics, statistics, etc. Most of them are justifiable as they
provide the students opportunities to sharpen their skill on a familiar problem
with proven methods of solution. But some were unnecessary exercises to
"re-invent the wheels" since the elements of student learning are absent in
those exercises. Such activities are pure waste of human resources and computer
resources.

It may be said that computer applications in radically different
disciplines share a common ground that an application must be first
mathematically formulated. Once so done, the differences between disciplines
disappear. For example, the Gaussian Elimination method would be applicable
whether the problem was orginated from a power system load flow study or a
regression study from an economics model, so long as the problem is formulated
as a system of linear simultaneous algebraic equations. Thus a software package
containing standard solutions to various mathematical problems is a very useful
tool to computer users in all disciplines.

In order for such a software package to serve a large group of users in
many diversified fields, there are several important requirements that must be
satisfied:

(1) These programs should be callable in the forms of subprograms
(subroutines or functions), so that the user's program remains in control.

(2) These subprograms should be self-contained so that they will not
require further attention from the users other than passing the values of the
subprogram parameters into the subprograms. In particular, there should not be
any input/output statements in the subprogram. Thus the input/output operations
become the responsibility of the user's main program. There are exceptions, of
course, A subprogram may be designed explicitly for input or output operations,
for example, to list and tabulate a matrix.

(3) In order to adapt to the need of different users, each subprogram
should have capability of adjustable dimension size as well as user—controllable
error level. At least an estimate of error level should be available as a
return value of the subprogram, so that the user, who has no knowledge of how
this subprogram was constructed, will know the level of performance of the
program.

(4) There should be clear and uniform documentations available to guide
the users in defining the subprograms, including the dummy parameters, their
types, array sizes, order in the parameter list, and their meaning.

130 CHAPTER 3 FORTRAN-10

At the University of Pittsburgh, two such packages are available. One is
the International Mathematical & Statistical Library (IMSL) which in on-line as
PRG:IMSL.REL. The other is the IBM Scientific Subroutine Package (SSP)*, which
is not on-line but may be placed on-line by running a UARC program, as it to a
great extent duplicates the IMSL coverage, Both packages are comprehensive in
their coverage, and their documentations are excellent but voluminous. However,
when a user is faced with a big programming job whose purpose may be mode than a
programming exercise, it will be cost-effective to use these library facilities,
even to the extent of modifying the program in order to fit.

Both IMSL and SPP contain -several hundred subprograms in the package, and
therefore are too voluminous to include in this bbok even in a summarized form.
Only the areas of coverage will be given here to give the readers some idea
about the comprehensiveness of the package:

IBM SSP Package:

Statistics:

Probit analysis

Variance analysis
Correlation analysis
Multiple linear regression
Polynomial regression
Canonical correlation
Factor anaysis
Discriminant analysis
Time series analysis

Data screening and analysis
Nonparametric tests
Random number generation
Distribution functions

Mathematics:

Inversion

Eigenvalues and eigenvectors

Simulataneous linear algebraic equations

Transpositions

Matrix arithmetics

Matrix partitioning

Matrix tabulation and sorting of rows or columns
Elementary operations on rows or columns of matrices
Matrix factorization

Integration and differentiation of given or tabulated functions
Solution of systems of first-order differential equations
Fourier analysis of given or tabulated functions

Bessel and modified Bessel function evaluation

Gamma function evaluation

Jacobina elliptic functions

Elliptic, exponential, sine cosine, Fresnel integrals
Real roots of a given equation

Real and complex roots of a real polynomial equation.
Polynomial arithmetic

Polynomial evaluation, integration, differentiation

*For Pitt users, the SSP source programs are stored and available on a UARC tape
B4473. See Section 10.7 for the UARC procedure.

SSP and IMSL Libraries 131

Chebyshev, Hermite, Laguerre, Legendre polynomials
Minimum of a function .
Approximation, interpolation, and table construction

IMSL Package:

Chapter headings:

Analysis of Variance

Basic Statistics

Catagorized Data Analysis

Differential Equations; Quadrature; Differentiation
Eigensystem Analysis

Forecasting; Econometrics; Time Series; Transforms
Generation and Testing of Random Numbers
Interpolation; Approximation; Smoothing

Linear Algebraic Equations

Mathematical and Statistical Special Functions
Non-Parametric Statistics

Observation Structure; Multivariate Statistics
Regression Analysis

Sampl ing

Utility Functions
Vector, Matrix Arithmetic
Zeros and Extrema, Linear Programming

Example:

Program:

Suppose we are to solve a system of 50 simultaneous
equations. In matrix form, the equation is Ax=B. Suppose
the matrices have been stored as DATA.DAT file with a
format of (10E12.4). In the file, the first 250 records
are the A-matrix by rows, and the last 5 records are the
B-matrix. Obtain the solution by using the IMSL package.

The first step of this problem is naturally to search
through the IMSL documentation to see if there is one that
fits the problem. Such a problem would of course be under
the category of "Linear Algebraic Equations." When such a
program is found, the user's task is to prepare a main
program which calls this IMSL routine. To do so, the main
program will include the following parts:

(1) To provide storage (the DIMENSION statement) for all
variables required for the problem. This not only
includes the problem variables but also the working
variables. The IMSL documentation gives detailed and
exact requirements of DIMENSION.

(2) To input the data needed by the Library subprogram.
This includes opening of files, reading of data from
file or terminal, calculations needed for the
subprogram parameters, etc.

(3) To call the IMSL subprogram.
(4) To output the results.

IMSL Reference Manual (Reference 10) is a seven—inch
thick reference book. The content 1is divided into 17

chapters, and Chapter L is on Linear Algebraic Equations.
In going through the routines in that chapter, the routine

132

CHAPTER 3 FORTRAN-10

LEQT1F lists the following headings:

IMSL ROUTINE NAME - LEQTI1F
PURPOSE - LINEAR EQUATION SOLUTION - FULL STORAGE

MODE - SPACE ECONOMIZER SOLUTION

This seems to satisfy our need. The other information
listed by the Manual are included below:

USAGE - CALL LEQT1F(A,M,N,IA,B,IDGT,WKAREA, IER)

A

- Input matrix of dimension N by N containing the
coefficient matrix of the eguation Ax=B. On
output, "A" is replaced by the LU decomposition
of a rowwise permutation of "A".

M - Number of right—hand matrix columns (input)

N ~ Order of "A" and number of rows in "B".

IA - Row dimension of A and B exactly as specified in
the DIMENSION statement of the calling program.

B - Input matrix of dimension NxM containing
right-hand side of the equation Ax=B. On output,
the NxM solution X replaces B.

IDGT - Input option: If IDGI>0, the elements of A and B

are assumed to be correct to IDGT decimal digits
and the routine performs an accuracy test. If
IDGT equals zero, the accuracy test is bypassed.

WKAREA - Work area of dimension >= N,

IER

- Error parameter (output).

Terminal error: IER=129 indicates that matrix A
is algorithmically singular.

Warning error: IER=34 indicates that the
accuracy test failed. The computed solution may
be in error by more than can be accounted for by
the uncertainty of the data. This warning can be
produced only if IDGT is greater than O.

In checking over these specifications, the following

should be noted:

(1)

(2)

(3)

The matrices A and B will be destroyed after the
execution of the subprogram. If they are needed later,
protect them by copying them into another set of
variables, or else later re-read the input data A and
B.

The DIMENSION for the storage declaration should be
A(IA,IR), B(IA,M). In addition, it is also the
responsibility of the calling program to dimension
WKAREA(IA). Note that B 1is dimensioned as a matrix
with two subscripts. If B is a vector, as in most
linear systems, B should be dimensioned as B(IA,l1).

N and IA need not be the same, but N should never
exceed IA. If N is an input quantity and made to be
less than IA, such a calling program would be able to
solve a system of linear algebraic equations of an
order specified by the user up to IAth order. Such a
program would increase its flexibility immensely.

SSP and IMSL Libraries 133

The program for this problem is listed below:

DIMENSION A(100,100) ,B(100,1) ,WKAREA(100)
*%%%% DEFINE THE SIZE OF PROBLEM "N"

WRITE (6,100) ; READ(5,101)N
100 FORMAT(/' ENTER NUMBER OF VARIABLES = '§)
101 FORMAT(I) .
*%%%% GET INPUT DATA FOR THE SUBPROGRAM

OPEN (UNIT=1,FILE="'DATA.DAT' ,ACCESS="'SEQIN"')
102 FORMAT (10E)

DO 10 I=1,N
10 READ(1,102) (A(I,Jd),J=1,N)

READ(1,102) (B(I,1),I=1,N)
**%%% CALL IMSL SUBPROGRAM LEQTIF

=1; IA=100; IDGT=0 !SUBROUTINE PARAMETERS

CALL LEQT1F(A,M,N,IA,B, IDGT,WKAREA,IER)
**%*% QUTPUT THE RESULTS

103 FORMAT(/' X(',I2,') ="', El2.4)
WRITE(6,103) ((I,B(I,1)), I=1,N)
STOP
END

Suppose we name the stored program EQUAT.FOR. This
program may be executed by a monitor command of:

.EXECUTE EQUAT.FOR, PRG:IMSL/LIB

With the dimension set up in EQUAT.FOR, it is capable to
solve a system of up to 100 equations. However, when
solving a large system, the accuracy requirement may be
difficult to satisfy because of the accumulation of
round-off and truncation errors during computations. Then
the accuracy test would fail in the subroutine execution,
giving the output IER a non-zero report.

The following is the computer printout of the execution:
CEXECUTE EQUAT.FOR, PRG:IMSL/LIB
FORTRAN 5A(621): EQUAT.FOR
MAIN. OCTAL PROG SIZE=24167
LINK: Loading
[INKXCT EQUAT execution]
ENTER NUMBER OF VARIABLES = >100

X{ 1) = 0.9996E+00

X(2) = 0.1996E+01
X(3) = 0.3000E+00
X(4) = 0.4000E+00

etCaesne

134 CHAPTER 3 FORTRAN-10

3.24 Array Processor

In many engineering and scientific applications, the computations often
involve a relatively simple algorithm done repeatedly on log sequences of data.
The data may beone-dimensional sequence of numbers (called vectors), or two or
more dimensional sequences, (called arrays), for example, a matrix. In such
computations, heavy overhead must be absorbed on such "book-keeping" chores of
array indexing, loop counting, and data fetching. In conventional computer
organization, such overhead must be absorbed by incorporating them sequentially
into the program, thus competing for machine time with the actual computations.

The concept of parallel processing is to provide hardware so that independent
computations can be performed at the same time and result in a much faster
program execution.

At the DEC-10 installation at the University of Pittsburgh, one such parallel
processor, the Floating Point 190L Array Processor, is attached to the System B.
The AP190L is a pipe-line machine that allows the calculations of owverhead for
elements up stream to be performed simultaneously with the element computations
down stream (therefore, the name pipe-line).

To the FORTRAN users, the usage of the AP190L means to incorporate certain
AP190L subroutines calls in the main program. Thus, writing a FORTRAN program
that uses the array processor to process data follows the general rules of
FORTRAN subroutine calls., There are a few exceptions:

(1) The array processor must be initialized before using other AP190L
subroutines.

(2) Data must be transferred from DEC-10 to AP190L main data memory
before the array processor can operate on it.

(3) 1In order to synchronize the AP190L with the DEC-10, wait calls (in
FORTRAN subroutine) must be inserted in the program whenver the
DEC-10 and AP190L interact.

(4) At the end of array processor execution, data must be transferred
back to DEC-10.

All of these steps are done by calling certain appropriate AP190L
subroutines. These subroutines are listed and explained in details in
Reference 11. The AP190L Math Library contains subroutines distributed in the
following areas:

(1) Data transfer and control operations

(2) basic vector arithmetic

(3) Vector-to-scalar operations

(4) Vector comparison operations

(5) Complex vector arithmetic

(6) Data formatting operations

(7) Matrix operations

Array Processor 135

(8) Fast Fourier Transform operations
(9) Auxiliary operations

(10) Utility operations

(11) signal processing operations

(12) Table memory operations

Users should consult Reference 12 concerning the usage of the AP190L.
Specifically, note the following:

(1) AP190L is attached to DEC-10 System B as a periperal device.
Therefore, just as a tape unit, it requires the "DRIVE" monitor
command to reserve it. See Section 8.10.

(2) It requires large core memory, larger than most time-sharing
allocations. Therefore, array processor runs should be submitted as
batch jobs. See Chapter 9 on how to submit batch jobs.

3.25 FORTRAN 77

The FORTRAN programming language is one language that is universally
available, on computers, large or small, in the United States, Europe or the
rest of the world. Thus, its greatest contribution is that a program written in
FORTRAN can be run on any machine, after some minor modifications are made if
required.

The ANSI FORTRAN IV, standardized by ANSI in 1966, has exercised a
powerful influence on the portability characteristics of the language. In the
past fifteen years, there have been many enhancements of the ANSI standard, and
FORTRAN-10 is one such enhancement. Varieties of these enhanced versions
generate a new need for standardization. Thus, an updated standard language was
announced in 1977, unofficially known as FORTRAN 77, and was formally
standardized in 1978 by ANSI (ANSI Standard X3.9-1978). While compliance with
the ANSI standard is voluntary, it is expected that all FORTRAN languages will
be in time evolved into this new version. By necessity, programming languages
must have universal portability, and the ANSI standard has powerful influences.
FORTRAN-10 already possesses most of the new attributes of FORTRAN 77, but many
keywords and syntax are different. It is expected that in a few years,
FORTRAN-10 will be replaced by some version of FORTRAN 77. Details of
FORTRAN 77 are outside the scope of this book. Interested readers are referred
to References 13 and 14 for more details.

136

10.

11.

12.

13.

14.

CHAPTER 3 FORTRAN-10

REFERENCES

PROGRAMMING WITH FORTRAN, Byron S, Gottfried, Quantum Publishers, New
York; 1972.

PROBLEM SOLVING AND STRUCTURED PROGRAMMING IN FORTRAN, F. L. Friedman
and E, B. Koffman, Addison-Wesley Publishing, Reading, Massachusetts;
1977.

DEC SYSTEM-10 FORTRAN-10. LANGUAGE MANUAL, Second Edition,
DEC-10-1FORA-B-D, Digital Equipemnt Corporation, Maynard, Massachusetts;
1974.

DEC SYSTEN-10 FORTRAN PROGRAMMER'S REFERENCE MANUAL, AA-0944E-TB, Digital
Equipemnt corporation, Maynard, Massachusetts; 1977.

FORTRAN-10 USERS GUIDE, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1977.

PITT Programmer Notes, Special FORTRAN-10 Issue, Vol. 6, No. 5, August
1, 1977, Computer Center, University of Pittsburgh, Pittsburgh,
Pennsylvania; 1977.

SUBSET MANUAL, Ronal K. Nicholas, University of Pittsburgh, Pittsburgh,
Pennsylvania; 1977. ’

SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE (360A-CM~(03X) PROGRAMMER MANUAL,
IBM Corporation, White Plains, New York.

Help File PRG:IMSL.HLP, the Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1980,

IMSL LIBRARY REFERENCE MANUAL, Edition 7, International Mathematical and
Statistical Library, Houston, Texas; 1979.

AP MATH LIBRARY MANUAL, Volumes 1,2,3, Floating Point System, Inc.; 1979.

Help File PRG:APU.HLP, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1980.

FORTRAN 77, FEATURING STRUCTURED PROGRAMMING, L. P. Meissner and E. I.
Organick, Addison-Wesley Publishing Company, Reading, Massachusetts;
1980.

PROGRAMMING IN STANDARD FORTRAN 77, A. Balfour and D. H. Marwick,
North-Holland Inc., New York, New York; 1979.

CHAPTER 4

FORTRAN PROGRAM DEBUGGING

4,1 Introduction

One of the most important but unpleasant stage in the computer usage is
the necessity to debug a program. The development of programs and the
subsequent computer execution involve a long chain of events that requires
error-prone human actions. These errors can be committed by beginners as well
as by experienced users. The detection and the correction of such errors affect
seriously the productivity of computer processing applications. These errors
are colloquially referred to as "bugs", and the process of detecting and
correcting them as "debugging."

The following are some typical statistics regarding the productivity of
professionals in the software industry:

The average productivity of a professional programmer in U,S. is
seven (7) FORTRAN statements per working day.

For the software development done at a commercial software firm, 65% of
the software cost is attributed to debugging.

Breakdown of computer processing failures: (From Reference 1)
Hardware failure 1%
System software failure 2%
Operator mistakes 5%
System failure 2%
Programming errors 90%

It becomes increasingly obvious in the commercial software industry that
debugging is by far the major component of the software cost. Conversely, when
a software is developed on a fixed budget, the extent of testing and debugging
becomes the deciding factor for the software product reliability. In the recent
decade, considerable efforts have been spent on the optimal allocation of
resources, design of software structure for easy testability and
maintainability, test and validation procedures for softwares, and various
diagnostic aids, resulting collectively in a new discipline known as "software
engineering."

137

138 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

Unfortunately, in spite of advances in the software engineering
practices, the degugging of a computer program still depends heavily on the
user's knowledge and experiences in the problem, the language, and the computer,
and hence it still remains largely as an art. However, over the years,
accumulation of expertise and experience has resulted in the formulation of
reliable guide lines, good programming styles and practices, checklists for DO's
and DON'T's, error reporting and diagnostic facilities in the language
processors, and on-line debugging tools. It is, therefore, the purpose of this
chapter to present a summary of these practices, with particular emphasis on
FORTRAN program debugging.

4.2 Types of Errors

When a FORTRAN program fails, a very natural inclination of the user is
to suspect that "the computer is acting up again." Mercifully, the computer
system hardware and system software failures are quite rare nowadays, and
program errors can usually be blamed as the culprits.

Program errors are the most numerous and also the most complicated. They
may be divided into the following categories:

(1) Errors in problem definition They are errors resulted from failures
to translate the problem requirement faithfully into the program
requirements.

(2) Coding errors They appear in several different forms:

a. Transcription errors, such as incorrect punctuations and misspellings.
Such errors will usually be caught at compiling, but some errors may
go undetected as perfectly legal program statements and a compiler may
not always be able to spot them.,

b. Syntax errors, or improper use of FORTRAN statements. Such errors can
usually be detected by the compiler.

c. Structural errors or failures to provide correct interaction between
two parts of a program, for example, failure to pass the values of
parameters from the main program to a subprogram correctly.

(3) Logic errors. These are failures to sequence the problem
properly at a detailed level.
For the remainder of the chapter, we will be mainly concerned in two
areas of the debugging process:
(1) How can we reduce the incidence of all types of bugs?

(2) If a bug exists, how do we detect and correct it?

Flow Chart Walkthrough 139

PRE-COMPUTER-RUN DEBUGGING

The most effective way of minimizing program errors is not making them in
the first place. Since debugging constitutes 60-90% of a user's effort in
computer processing, it is cost effective to spend extra effort and time in
keeping good practice of preparing programs so that the debugging time will be
reduced.

At this stage, we will assume that the user understands his problem
thoroughly and translates it faithfully into the program requirements and
objectives. If a user fails to do that, no amount of debugging effort can
rectify the situation. Thus, we will focus our attention to the bugs that are
either the coding errors or the logic errors or both.

4.3 Walkthrough by Flow Charts

One of the most neglected good practice is the preparation of a flow
chart, before any coding is done, to lay out the flow logic of the problem.
After the problem is coded, the program will be burdened with a Jjumble of
statement details, and the problem logic is then obscured. A flow chart is a
graphical representation of the logic flow, and is a valuable tool as a problem
record as well as a tool to identify potential errors.

Basic mechanics of flow charting is a part of introductory training of
computer programming and will not be repeated here. For more details, the
readers are referred to any standard FORTRAN manual or References 4 and 5.

"Walkthrough" check of a problem is to check the flow logic by playing
the computer in tracing out the steps of computer processing. Playing computer
in tracing step-by-step in the program is a tedious chore, but the Jjob may be
made easier by tracing the steps on a flow chart.

Let us consider the case of designing a
Set X0 subprogram for the Newton—Raphson's method of
solving for a real root of a polynomial
equation with no multiple roots.
Compute f(X0), f'(X0) Algorithm: Given a polynomial
Compute X1=X0=f(X0)/f'(X0) equation of order n:
_ n n~-1 _
f(ac)—Anx +An_1x Foaee +A1x+A0_0

egligiblg The iterative formula is:

Xl = X0 - £(X0)/E* (X0)

To start the iteration, set X0 = certain
trial value. At the end of Xl calculation,
Xl and X0 are compared, If they differ
negligibly, return the result and exit. If
they differ substantially, use X1 as the new
Figure 4.1 X0, and the X1 is recalculated. And the
whole process is repeated.

140 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

This wordy description may be greatly clarified by a flow chart, as shown in
Figure 4.1.

Now we are ready to do a flow-chart walkthrough.

First, we check if all the flow arrows go to the right places. Playing
the computer, we assume a set of data, then follow and trace the flow of
computations.

If there is any discrepancy, ‘corrections can be made right there before
coding the program, If everything seems all right, the next step is the most
important one. We ask: Under what circumstances can the flow chart go wrong?

There are many such circumstances. For example:

(1) Even—-order equation may not have any real root. Under that
circumstance, this method shows that the computer will keep on iterating without
end, causing an endless loop trying to find a non-existent real root. Has there
been any provision in the flow chart for such contingency? Answer: No!

(2) If X0 is set arbitrarily, what if it has a value that will make
£'(X0)=0? That will create a division-by-zero situation. Has the flow chart
indicated how that can be detected and handled? Answer: No!

(3) Even when the iteration does converge, the flow chart does not show
any control over its efficiency. For example, if it takes more than 1000
iterations to converge to a solution, do we want this method, or should we try
another method?

We have identified only a few weak spots. There are more when we analyze
further. For example, this subprogram requires pre~setting a trial value for
X0. Why not generate it automatically inside the subprogram? But how? One way
is to compute -A(n-1)/A(n) and call the result first-trial X0. Then what
happens when A(n)=0, or can it happen? Thus, walking-through the flow chart
playing a devil's advocate, we can identify and strengthen the weak spots of the
logic and substantially improve the reliability of the program generated from
it.

Figure 4.2 shows the revised flow chart after the walk-through process.
It 1is not perfect yet, but its reliability is much more improved than the first
one. Block by block, the flow chart blocks are coded into a FORTRAN program,
and this 1is shown along side with the flow chart. To keep it simple at this
stage, we use a 4th order polynomial equation as an example.

There are many other benefits of using flow charts:

(1) A flow chart can identify more easily the inter-relations between
parts of a program, and can therefore be used effectively in partitioning the
program into modules. Later, the testing and the debugging can be made more
effective by modularizing the complete program.

(2) A flow chart can serve as a language-independent record of the
program logic. Should there be any modification or adaptation of the program
using a different language, the flow chart can serve as a generic specification
of a computer program.

(3) A flow chart can be re-generated from a finished or existing
program. Thus, if we compare the flow chart specification of the problem with
the flow chart derived from the resulted program, discrepancy and 1logic error
can be quickly discovered and corrected without costly computer runs.

l ——— , * To find a real root "ROOT" fo an accuracy of "NPLACE"
Initialize: ; * decimal places within "ITER" iterations, using the
| | g
LOX(1) = -B/A i * Newton-Raphson's method for the equation:
I E bound = 10%*(~NPLACE) *
: fl:E;r('1)§un ~ * Ax® + Bx3 + Cx2 + Dx + E = 0
] If f'=0, set X(1)=2X(1) N
ST 4 ~N SUBROUT INE NEWTON(A,B,C,D,E, ITER,NPLACE ,RO0T)
N DIMENSION X(2)
_ /oo - N
r"" 1=1, ITER - ~ X(1)==B/A
- - ~ ERROR=10. *¥*(-NPLACE)
\L.,_. — -~ F1=FUNCP(A,B,C,D,X(1))
LX(2)=X(1)-F[X(i)]/F'[X(I)] | s IF{F1.EQ.0.)X(1)=2.%X(1)
; I DO 10 1=1,ITER

1 x(2)=x(1) | . Error,

R ETS X(1)=X(2)
[L 10 CONT INUE
f .
= ! i = !
X(1)_X(2) REOT=X(2)

-

WRITE(6,100) ITER

B
4L _ ~—* 100 FORMAT(/'%%* NO CONVERGENCE WITHIN',
L— (o) continve ¢ L reTrRn
o _
& — \.l" 20 ROOT=X(2)
LOquu'l' error message - RETURN
i H END
L
@ " FUNCTION FUNC(A,B,C,D,E,X)
P! FUNC=A*X**44B¥X*¥ 3+CHX**24D¥X+E
Pie RETURN
s L END
Define f(x) and f'(x) as FUNC and FUNCP: -
' r FUNCTION FUNCP(A,B,C,D,X)
<
. s y P FUNCP=4, ¥AXXXK3+3 ¥BXXXX2+42 XCKX+D
FUNC = AX_ + B +Cx* +Dx +E ¥ - RETURN
- ! END
3 2 - -
FUNCP= 4AX" + 3Bx" +20x + D ¥

Figure 4.2 Correspordence Between a Flow Chart and a Program

15,¢

X(2)=X(1)-FUNC(A,B,C,D,E,X(1))/FUNCP(A,B,C,B,X(1))

zc
< Bound T **— ! IF(ABS((X(2)=X(1))/X(1)).LE.ERROR)GOTO 20
—1 N

ITERATIONS. ')

ybnoIyayTeM 3IeUD MOTd

™t

142 CHAPTER 4 FORTRAN PROGFAM DEBUGGING

(4) Even if the original flow chart is not available, as is the case
with most beginners, generating a flow chart from the finished program will aid
in inspecting the flow of program logic. Even though a program may be well
documented and commented, it may be too long and complicated to discover the
errors easily by just reading the program.

Generating a flow chart from an existing program manually is also a
tedious task. Fortunately, most computing facilities have a software facility
to generate a flow chart by computer. Such a software is available on the
DEC-10 at Pitt. The program description for FORFIO is given in the next
section.

4.4 The FORFILO Program

The FORFLO program is a program stored in the device "PRG:" (the System
Program Library), and it is used to process a finished FORTRAN source file. It
has the following capabilities:

(1) To relabel the statements in a FORTRAN source file. Statements are
given new numbers as their labels in ascending sequence, and the
format statements are moved and assembled at the end of the program.

(2) To create a flow chart of the source program on a listing file,
(3) To re-format the source program into 80-column records.

(4) to resequence columns 73-80 of each card.
Since the FORFLO is a System Program Library program, the monitor command need
to run it is "RUN". Note that programs such as PIP, UPDATE etc are the System
programs, and use the monitor command "R" to run them., Thus, the command to
call the FORFLO program is:

.RUN PRG:FORFLO
The System will respond with a message "FORFLO V.05 /H FOR HELP.," and a
prompting symbol of "*", At this point, the user may either type "/H" to get
the HELP-file (5-page long, about 15 minutes typing time), or apply a FORFIO
command .
The standard format of a FORFLO command is:
REVISED-FILE, LISTING-FILE = SOURCE-FILE/Optional Switches
where REVISED-FILE = output file where the revised source program will be
stored. It may be omitted if not needed.

, = a comma, required to separate the revised and the
listing files.

LISTING-FILE = name of the listing file.

SOURCE-FILE = name of the FORTRAN source file to be processed.

FORFIO Program 143

Each file has the standard specification of DEV:NAME.EXT. The PPN
designation ([m,n] is allowed in the file specification of the SOURCE-FILE.
Standard default conditions also apply. Default extension of the REVISED-FILE
is FOR, and that of LISTING-FILE is LST.

Either or both of the REVISED-FILE and the LISTING-FILE may be omitted in
the command. The meaning of omission is as follows:

(1) If the REVISED-FILE part of the command is omitted, the command
beconmes:

LISTING-FILE = SOURCE-FILE/Switches

and the revised file will not be made. Note the required leading
comma.

(2) If the LISTING-FILE part of the command is omitted, the command
becomes:

REVISED-FILE, = SOURCE-FILE/Switches

and the listing file will not be created. Note the required comma.
Since the cross reference table and the flow chart are available only
on a listing file, this command will only revise and store the source
program, but it will not produce a flow chart or a cross reference
table.

(3) If both the REVISED-FILE and the LISTING-FILE are omitted, the FORFLO
will check the source file for those errors that FORFIO is able to
detect, and report the errors on the user's terminal. All other
functions are omitted.

Options and variation from the standard format can be specified by including
optional switches. The 1list of switches and their functions are given in
Table 4.1.

Example: The example used in Section 4.3 will be used here for
illustration. The program is stored on disk as NEWION.FOR. The following shows
the sequence of calling and executing the FORFLO program:

LRUN PRG:FORFLO
FORFLO V.05 /H FOR HELP.
*NEW.FOR, NEW.LST = NEWTON.FOR/Y/100F

FORFLO: NEWTON
*°C

The listing file is produced at the printer and then is deleted from the
user's storage quota by a command:

.QUEUE NEWTON.LST/DISPOSE:RENAME

If the user wishes to reproduce the list file on his terminal he can do
so by a command:

.TYPE NEWTON.LST/EMULATE:LABELS.CCT

144 CHAPTER 4 FORTRAN PROGRAM DEBUGGI..G

Option Default
Switch Function Condition

/nnnF | Format reshuffle with user=-specified format | FORFLO assigns format

number starting from nnn. number .,
/nnnL Sequenclng of statement labels will be | nnn=10; /I. and /0L are
consecutive multiples of nnn. . both treated as /10L.

/nnn$S Put sequence numbers on the REVISED-FILE 1in |nnn=0; no number s
increments of nnn. These numbers will be in | placed in col. 73-80.
columns 73-80.

/A To make a flow chart (implying /C);

LISTING-FILE must be spec[fied.
/B To delete blank lines in +he SOURCE FILE. Keep the blank 1ines.
/C To make a cross reference Table between the

source program and the revised program

/H To fype ouf +he HELP f1|e
U W i e e —
/K To change 026 punches o 029 punches
/9 To suppress all ||s+lng excep+ the flow
chart.

/T No tab conversion fto blanks. Tab in the source file
changed to appropriate
number of spaces.

/W To suppress warning message when line

truncation in the revised program is
encountered.

/X Flow chart only; equlvalent +o *he

compounded switches of /L/A/S/T/Q. No
revnsed program, Jusf the flow chart.
/Y Do everyfhing. move formaTs fo +he end of
the program, resequence the statement
numbers, and make a flow chart.

Table 4.1 FORFLO Switches

where "LABELS.CCT" should be a file with a content of "/DC3:1-66:1" in it. This
will allow your terminal to emulate a printer and interpret certain
printer—carriage control characters. Since terminal typing is slow and the list
file is usually long, this practice should be used sparingly, for example, only
when a printer is not available to you. The flow chart for NEWION.DAT in the
example is reproduced in Figure 4.3. This should be compared with the flow
chart in Figure 4.2 to see if there is any discrepancy.

FORFLO Program

<Entry: NEWION>

v
v
v
v
1 1
1 SUBROUTINE NEWION(A,B,C,D,E, ITER,NPLACE, ROOT) I
1 DIMENSION X(2) 1
1 X(1)=-B/A - 1
I ERROR=10. ** (-NPLACE) 1
1 F1=FINCP(A,B,C,D,X(1)) 1
1 IF (F1.EQ.0.)X (1) =2.¥X (1) 1
I 1
v
v
v
v
1 1
(3593590330 202222 231 DO 10 I=1,ITER 1
- I 1
- v
- v
- v
- v
- I 1
- I X(2)=X (1)~FUNC(A,B,C,D,E,X (1)) /FNCP{A,B,C,D,X(1)) 1
- 1 IF (ABS ((X(2)-%(1)) /X (1)) .LE,ERROR) GOTO 20 IDX000555255555550
- 1 1 v
- v M
- v M
- v v
- v v
N v
- 1 I v
N 1 X{1)=x(2) 1 v
1 1 v
. v v
- v v
. v v
- v v
- v
- 1 1 v
DCLLLLLLLLLLLLLLLLLKT 10 CONTINUE 1 v
1 1 v
v v
v v
v v
v v
v
1 1 v
1 WRITE (6, 100) ITER 1 v
I v
v v
v v
v v
v v
v
I 1 v
1 RETURN 1 v
1 1 v
v
v
0<<LLLCO
v
v
1 1
1 20 ROOT=X(2) I
I I
v
v
v
v
1 1
1 RETURN I
1 I
I 100 FORMAT(/'*** NO CONVERGENCE WITHIN',I5,' ITERATIONS.') 1
I 1
1 1
1 D 1
1 I

145

146 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

OFF-LINE DEBUGGING BY CODE INSPECTION

On-line debugging is an expeﬁsive process as it uses substantial amount
of computer resources. As a result, it should be reserved as the last resort in
the sequence of debugging process.

One effective off-line debugging process adopted at many software houses
is debugging by team inspection of the code. A typical team consists of four
people, with one person, not the author of the code, acting as the moderator.
At the inspection time, the programmer is to narrate the code, statement by
statement, the logic of the program. The other team members not necessarily are
familiar with the problem, but they have opportunities and time to study the
code. At the inspection period, gquestions are raised and potential error
sources are pursued. The organization would normally have an error checklist
for common programming errors, and that list is thoroughly gone over.

At the conclusion of such a team inspection period, a list of errors and
suggestions of how to correct them is drawn up. The programmer is then to carry
out the correcrions. The value of team inspection is to inspect the program
with a fresh point of view to avoid the "forest-tree syndrome." ("When you are
in the forest, you don't see the trees.") In an academic environment, a group of
3-4 students can form an inspection team. This is not only an effective
procedure, but also a valuable learning experience from each other.

For the team inspection practice, a valuable aid is a checklist for
historically common programming errors of the particular programming language.
For the remainder of this section, we will go over such lists that pertain to
FORTRAN-10.

The common programming errors can be categorized into the following
types:

(1) Data errors.

(2) Computation errors.

(3) Logic errors.

(4) Input/Output errors.

The checklists for these types of errors will be outlined next. In these
checklists, we will not deal with any transcription errors, such as incorrect
punctuations, wrong spelling, illegal characters, or anything that violates the
rules of FORTRAN-10 language. We assume that proof-reading of the codes has

been done thoroughly by the programmer at this stage, and all "typos" have been
corrected.

4,5 A Checklist for Data Errors

This type of errors pertains to data incorrectly referenced, declared,
typed, initialized, or set. Itemized below are a number of commonly committed
errors presented in the form of a checklist.

Checklist for Data Errors 147

(1)

(2)

Does any of the array- subscript exceed the bounds specified in the
DIMENSION statement?

Among common programming errors, out-of-bound subscript is probably
one of two most frequently committed errors, by both beginners and
experienced users. If this type of error is not caught at the code
inspection time, it may be very difficult and costly to detect it
later. A principal reason is that an out-of-bound error will cause
an unpredictable error symptoms at execution time. These symptoms
are actually secondary effects of the error. What makes it difficult
to diagnose during the on-line debugging is that a secondary symptom
may not give any hint of an out-of-bound error. Observe the
following example:

Example: One segment of a FORTRAN-10 program is as follows:
DIMENSION K(100)

DO 10 I=1,110 1*%*gubscript out of bound error here
10 K(I)=1
TYPE 50, K(5)

50 FORMAT (/' K(5)= ', I3)

"ne

The error message from the program execution reported that there is
an illegal character ""@" in the FORMAT statement. This is actually
caused by the invasion of K-values into the FORMAT area in the
execution program. Thus, in a more complicated program, one can
waste a great deal of time and resources trying to track down the
"FORMAT" error, if the error message is taken at its face value
blindly.

Is a variable referenced in a statement previously initialized, set,
and with its type implicitly or explicitly declared?

This is the other one of two most frequently committed programming
errors. FORTRAN-10 automatically set a variable storage area to
zero, unless there are DATA statements to set them to other values.
Thus, many such errors go undetected and cause no damage. However,
if that segment of program is used more than once, there will be
initialization errors from the second round on, because the value of
the variable, if not initialized, will be its result value of its
last calculation. Thus the variable is inadvertently initialized to
a wrong value. For FORTRAN-10, an incorrectly initialized variable
can cause chaos if that happens to be, for example, computed GO TO
index or a variable used in an IF statement. The following shows an
example of calculating the sum of five integers.

DIMENSION K(5)

READ(5,5) (K(I),I=1,5)

FORMAT (51)

DO 10 1=1,5

10 ISUM=ISUM+K (I) !***ISIM is uninitialized.
TYPE 5, ISUM
TO 1
END

Ul -

Upon executing the program, it can be seen that the first-round
result is correct; but all subsequent results will be wrong. Such
errors in a complicated program will be very difficult to detect just
by looking at the run history and the result. The program will seem

148

(4)

(5)

(6)

(7)

(9)

(10)

CHAPTER 4 FORTRAN PROGRAM DEBUGGING

to run normally, and the results may seem to be off, but not by much.

Is there any negative, zero, or non-integer subscript? If there is,
make sure it is used correctly.

FORTRAN-10 allows negative, zero, or non-integer subscripts. It is
sometimes useful, for example, in the interpolation by integer
increments. It is a dangerous practice. The negative or zero
subscripts would make the array variable out of bound, unless they
are specifically declared in the DIMENSION statement. The
non-integer subscripts are always truncated (not rounded) into
integers in assigning values.

Is there any "off-by-one" error in the DO-loops, iterations, counters
and indexes?

If more than two variable alias share a common storage, such as by
using an EQUIVALENCE statement, are these variables of the same type?
If they are of different types, does the program contain any steps
that store a value as one variable alias and later use it as a
different alias?

In coding a subprogram, have all parameter variables been explicitly
declared with their types and dimensions?

In coding a subprogram, are the dimension specifications of array
variables consistent between the main program and the subprogram. If
the subprogram contains an adjustable dimension, make sure that the
original size of the array does not exceed the size of the array
assigned within the subprogram, since the size of an array is not
dynamically expandable.

In using a subprogram, have all parameter-values been established at
the subprogram CALL statement? In the CALL statement, does the
subprogram contain a correct number of parameters in their correct
sequence? Are the parameters identical in types to those defined in
the subprogram?

If a subprogram is called more than once in a program, the referenced
variables in the subprogram should not be initialized by a DATA
statement.

If a subprogram variable is initialized by a DATA statement, it will
be correctly initialized when the subprogram is called for the first
time. At the first conclusion of the subprogram exscution, that
variable value 1is altered by the subprogram computations. Now, in
the same run, if the subprogram is called for the subsequent times,
the initialized value of that variable will be the result left there
in the previous call. Therefore in a program, if a subprogram is to
be called more than once, the DATA statements in the subprogram
should be used only to set constants, which are not altered in the
subprogram execution, For initializing variables, use explicit
assignment statements.

In passing the values of parameters from the calling program to a
subprogram or function, is the unit system consistent?

For example, the angle computation in the main program may be in
degrees, but the angle parameter in the subprogram may require a
value in radians.

Checklist for Computation Errors 149

(11)

(12)

(13)

(14)

Some subprograms are written that the input variables are altered and
returned as the output. Have the input variables been saved
elsewhere (for example, by duplicating them with another variable
name) if later computations require the same input variables?

In many subprogram construction, the output returned from the
subprogram occupies the same storage area as the input to the
subprogram to save storage. For example, the subprogram SUBROUTINE
INVERS (N,A) may be written as a matrix inversion subprogram for a
square matrix A of NxN size. To save storage, the A-array will
accommodate the input A-matrix and return the A-inverse as the
output. Thus, if the A-array is used later for other computations,
the BA-inverse will actually be used, unless the A-matrix is saved
before calling the INVERS subprogram.

Are the COMMON statements in all subprogram modules defined
consistently?

Are there any variables with very similar names, such as ROOT, ROOTS,
ROOT1, ROOTX, etc?

The similar names are potential source of errors during transcription
and entering the program. They tend to confuse the program and make
the code inspection harder. While it is not necessarily an error, it
is definitely a poor practice, because it sets up an error-prone
situation.

If a data file is referenced by more than one subprogram, do the
different subprograms refer to the data structure consistently?

If a data file is an ASCII file, does it happen that it is referenced
as an ASCII file at one time, but a binary file at another. Although
both may contains numerical data, but the bit pattern interpretations
will be different.

4.6 A Checklist for Computation Errors

(1)

(2)

(3)

Beware of mixed-mode computations.

FORTRAN-10 allows mixed-mode computations. (See Section 3.6)
However, one should be thoroughly familiar with the conversion rules
as given in Table 3.5. For example, when you add a real constant to
an integer constant, the result is a real constant. Thus, a
statement as K=1-0.1 would yield K=0, but X=1-0.1 would yield X=0.9.

Is it possible for divide-by-zero to occur?

For example, if you are writing a subprogram to solve for the roots
of a quadratic equation: A*x**24B*x+C=0. Have you included the
possibility that "A" may be zero in the subprogram application?

Does an overflow or underflow situation exist in the program?

Such situation may exist even though the execution seems to finish to
a valid conclusion. If such situation exists, scaling or other
manipulation may be necessary. For example, consider the statement:

X=(Y1*Y2*Y3*Y4) / (Z1*22*23*724)

150

(4)

(5)

(6)

CHAPTER 4 FORTRAN PROGRAM DEBUGGING

If each of the values has a magnitude in the range of E+10, the
multiplications in the numerator and the denominator would cause an
overflow, even though the result may be within the range of the
computer numbers. To avoid an intermediate overflcw, rewrite the
statement as:

X=Y1/Z1*Y2/72%Y3/%3*Y4/24

Have the computations considered the truncation and round-off errors
in the decimal/binary number conversion?

For example, does the computation expect 100%0.1 to be 10? If a loop
is initiated with a counter set at 0 and increment of 0.1, will the
loop be terminated when 100 increments later the counter reaches 10?
The following trivial program, seeming harmless, will actually create
an endless loop:

X=0.
10 IF(X.EQ.10.0)sTOP
X=X+0.1
GOTO 10
END

Through the normal computation errors (roundoffs and truncations),
can the value of a variable go beyond a meaningful range?

For exmaple, probability is never negative nor larger than 1; the
argument for of an arc-sine function is never larger than 1; the
argument for a logarithm function can never be non-positive; and the
values of a rectified voltage cannot be negative. In such cases,
upper and lower bound bias statements will be required in order that
the computations subsequently will be meaningful.

Always check the validity of integer divisions.

Integer arithmetics, except in division, always produces exact
integer results, provided they are within range. Therefore, they are
preferred in such operations as counting the loops and iterations,
computation of subscripts and indexes, etc. When an integer division
is encountered, the result is truncated rather than rounded. If
rounded integer result of division is desired, then the expression of
division should be "pre-rounded", as shown below:

IQ= INUM/IDENOM replaced by: IQ= (2*INUM+IDENOM)/(2*IDENOM)

Order of operations in the integer arithmetics is important too. The
following two statements may produce different results:

IQ = (K1*K2)/(K3*K4) versus IQ = K1/K3*K2/K4

4.7 A Checklist for Logic Errors

Logic decisions in a FORTRAN~10 program are mainly made by decision (IF)
statements with a subsequent object-action statement such as a transfer.
Therefore, many common logic errors derive out of errors of incorrctly using the
decision and object statements.

Checklist for Logic Errors) 151

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

In terminating a loop, is there any "off-by-one" error? This would
result in an iterations with one loop too many or too few.

Is the comparison done between two variables/constants of the same
type? Is there any mixed mode comparison?

For example, is a real variable comparing with an integer variable or
constant?

Are logic comnectives such as AND, OR, XOR correctly used?

Many people get confused on the difference between AND and OR in the
precise logic meaning. In common English, we would say "the roots of
the equation are 3 and 4"; while we actually mean logically "“the
roots of the equation are 3 or 4." Also, we often investigate
conditions of "either, or", but fail to investigate the condition of

"poth", thus confusing the case of "OR" with the case of "EXCLUSIVE

OR" or "XOR".

Are the logic operators, such as .GI., .GE., .LT., and .LE., used
correctly?)

An error—prone situation is when the programmer decides to change the
logic from, for example, .GE. to its inverse .LT. Have the actions
based on the comparison decisions been changed correctly?

How exhaustive is a comparison?

For example, suppose an integer variable is to have only two values,
1 or 2. In the comparison, can this value ever become other than 1
or 2, for example, by reading an input? If the value is not 1, is it
automatically assumed to be 2? If so, you are really trying to
distinguish 1's from non-1's. If the value is neither 1 nor 2, can
the program handle the situation?

In a multi-destination branching statement, such as the COMPUTED or
ASSIGNED GO TO statement:

GO TO (N1,N2,...NK) K

GO TO K, (L1,L2, ...IK)
Can the variable K reach a value that exceeds the number of branching
alternatives?

Make certain that every loop, every subprogram, and every program
eventually will terminate.

Having a STOP or RETURN statement at the end of a program is not an
conclusive evidence that a program will terminate. The program may
never reach the STOP statement. Design some informal proof or
program walkthrough, that a program will terminate under all
conceivable condtions.

Is there any portion of the program that will never be executed?

For example, consider the statement:

IF(IQ.LT.0)CALL IQTEST(A,B,C,D)
If IQ never goes negative, the subprogram IQTEST would never be
called. Is it an oversight? It calls for a detailed re-examination
for that statement.

152 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

4.8 A Checklist for Input/Output Errors

(1) In the OPEN statement for a file, are all parameters given correctly?
For parameters not stated in the OPEN statement, are the default
values satisfactory for the file application? Can the file be shared
with other users during the program execution?

(2) Have all files been properly opened before accessing them?

(3) If the opening of a file is likely to have problem, for example, to
open a shared file, is there a "ERR=" parameter in the OPEN statement
to handle the error situation?

(4) For every READ/WRITE statement, are the listed data perfectly
consistent with the format specifications referred to by them?

(5) Even if the format specifications are consistent, is there any data
truncation caused by the formats?

For example, if a 5-character alphanumberic variable in a program is
outputed by a format of "A3", the variable is truncated to the
leading three characters. Is this an oversight, or is it done with a
purpose?

(6) In the format specifications for the WRITE statements, has the first
column been reserved for the FORTRAN carriage-control characters?
Therefore, in a typical output format, is the first column blank?

For example, a format of "5I1" for outputing (K(I),I=1,5) would cause
unpredictable carriage movements and K(1) deleted in the output. The
correct format should be "1X,5I1".

(7) 1If file reading is involved in a 1loop operation, the number of
records to be read by the loops should not be more than the file
contains. The READ statement should have a parameter "END=n"
included to handle end-of-file situation.

Many loops are designed on terminating upon end-of-file condition.

Wnen the file is revised with more or less records, the loops will
still be terminated correctly.

4.9 A Checklist for Program Readability

In order to do the code inspection, it is necessary that people must be
able to read and understand the code in order to correct, modify, and debug it.
Unfortunately, it is often easier to re-write someone else's program than to
modify it.

Conventional languages use punctuation, indentations, paragraphing,
ordering and spacing to improve readability. We should alsouse these practices
to reduce the chance of misunderstanding. Analogy of good programming style can
be drawn on a good writing style of conventional English langauage. Good style,
of course, is a matter of individual opinion. What is a good style to one
person may be too restrictive to another. Here we will include a checklist for
good style, but one should realize that "good style" is subject to individual
interpretation. The following shows a list of commonly accepted good
programming styles:

Checklist for Program Style 153

(1)

(2)

3)

(4)

(5)

(6)

(N

Write the comments as you code.

Details are fresh at coding time. Later, it will be difficult to
remember what to be commented. A program with explanatory comments
is much easier to read and debug.

As blank lines are used in English to separate paragraphs, use blank
lines to separate groups of statements. Also, use a blank line after
an unconditional transfer (GO TO) statement to indicate a break in
the program flow.

Select names to increase readability.

Poor: Z=X*Y

Better: VOLT = AMPERE * OHM

Poor : SUBROUTINE X001 (X1,X2)
Better: SUBROUTINE PRICE (COST,PROFIT)

Use a standard rule to define abbreviations (such as for the variable
names)

a. Initial letter must be present.

b. Consonants are more important than vowels.

c. Beginning of a word is more important than the end.

d. Add "I" or "X" prefix to the abbreviation to correct the data

type.

Arrange the name list in alphabetic order and in neat columns,
especially if the list is long. Use tab keys.

Poor : INTEGER ARRAY(128) ,PIXEL(128) ,QUOTE(5) ,TAU(128) ,WEIGHT,
1SIGNAL, REQST,RESIST,LAB,GAMMA, BETA
Better: INTEGER ARRAY(123), PIXEL(128), QUOTE(S) ,
1 TAU(128) , BETA, ’
2 LAB, REQST, SIGNAL,
3 WEIGHT

Sequence the statement labels so that the statements may be quickly
located in a large program.

Paragraphing a PO-Joop and an IF-statement group. Use indentations.

Poor : DO 20 I=1,1 Better: DO 20 1=1,10
X(I1)=0.0 X(1)=0.0
DO 10 J=1,5 DO 10 J=1,5
¥(1,3)=0.0 Y(1,J)=0.0
10 CONTINUE 10 CONTINUE
20 CONTINUE 20 CONTINUE
Poor: IF (KODE.GT.3) GO TO 5 Better: IF (KDOE.GT.3)GO TO 5
CALL STEP1(A,B,C) CALL STEP1(A,B,C)
CALL STEP2(A,B,C) CALL STEP2(A,B,C)
5 CALL STEP3(A,B,C) 5 CALL STEP3(A,B,C)

154 CHAPTER 4 FORTRAN PROCRAM DEBUGGING

ON-LINE PROGRAM DEBUGGING BY DIAGNOSTIC REFORTS

After an exhaustive off-line debugging process, correct all detected
errors, and we are now ready for the on-line processing.

For the on-line processing of FORTRAN program, the sequence of computer
processing is first to compile the source program, then to load the object
programs, and finally to execute. Errors may be detected at each stage by the
system processors, and these errors are reported on the user's terminal as the
error diagnostic messages. They are very helpful in identifying the errors
discovered at each stage, and they will be discussed next in some details.

4.10 Compiler Diagnostics

The FORTRAN-10 compiler has an extensive error checking and diagnostic
capability to diagnose and report the errors in the source program. The report
includes such pertinent information as the line number of the malfunctioning
statement in the source, reprinting of the statement, and a brief message
describing and diagnosing the error.

There are two levels of error messages. A "warning message" indicates
either an inconsistency or a tolerable minor error. The compilation will
continue. The "fatal error message" indicates that the error will result in an
incorrectly compiled object program if allowed to continue, and hence, the
compiling is aborted. Thus, a warning message does not necessarily indicate an
error, but often a tolerable bad or unsual practice. Consider the following two
segments of program:

Do 10 1I=1,25 VOLTAGE=CURRENT/RESISTANCE
10 CALL SUB(A,B,I) TYPE 100, VOLTAGE

When the programs containing these segments are compiled, both will produce
warning messages. The segment on the left will be objected by the compiler that
the DO-loop index "I" is being passed to a subprogram, and therefore may be
possibly altered upon its return. The segment on the right is objected by the
compiler because the variable names contain more than six characters. In both
cases compilation continue unless aborted by fatal errors down stream. For the
segment shown on the right half side, the variable names are actually truncated
into six-character names. Some programmers have a habit of using full variable
names rather than their abbreviations so that the program is easier to read.
This is a good practice so long as the risks are understood. For example, the
variable names VOLTAGEl, VOLTAGEZ, VOLTAGE3 will not be different variable names
after being truncated to six characters, and all 3 variables will be treated by
FORTRAN-10 as the variable VOLTAG. Therefore, only when the warnings are well
understood, then we can ignore them if we are certain no error in the program is
committed.

The diagnostics are derived by examining the error symptoms and
concluding with a most probable diagnosis. Often, the symptoms are secondary or
even tertiary effect from the original error. For example, if an array X(I) is
missing in the DIMENSION statement, or if there is an error in that DIMENSION
statement, the compiler would not recognize later that X(I) is an array
variable. It would take it for granted that it is a function named X with an
argument I. and this error will not be reported at the compiling stage.
Therefore, while the compiler diagnostic reports are extremely helpful in

Compiler Diagnostics) 155

identifying the trouble, but one should not be lulled into a false security if
the compiler reports no error.

The error message format is:

?FTNXXX LINE:n text or $FINXXX LINE:n text
where: -
?FIN = FORTRAN compiler message, fatal error
$FTN = FORTRAN compiler message, warning
XXX = 3~letter mnemonic code, meaning of which shown below
LINE:n = line number where error occurs in the source program
text = explanation of error

Mnemonic Codes for Fatal Errors and Warnings

The fatal error messages on the user's terminal are preceded by "?FIN",
and nonfatal error warnings by "$FIN". Tables 4.2 and 4.3 show a selected and
summar ized subset of diagnostic messages, along with explanations and examples.

There are many program errors of the +type which the compiler cannot
detect. Some of the common errors of this type are as follows:

(1) A part of the program is missing.

(2) Branching the wrong way from an IF statement.,

(3) Wrong FORMAT associated with I/0 data.

(4) Incorrect dimension or unspecified dimension of array.

(5) Incorrect parameter types in a subprogram.

(6) Array subscript out-of-bound of DIMENSIONed size.

4.11 Run-Time Diagnostics

(1) The FOROTS diagnostics

In the FORTRAN-10 program execution, the tasks of interfacing between the
user's object programs and the DEC-10 monitor during I/O operations are carried
out by a processor called FOROTS (FORTRAN Object Time System). In addition to
the main tasks, other capabilities include job initialization, core management,
error-handling and reporting, file management, data formatting, mathematic
library, user library, specialized applications package, overlay facilites and
FORTRAN IV compatibility. It is specifically the “error-handling and reporting"
aspects of the FOROTS that we will be dealing here.

Code

Message Text (All Upper Cases) and Explanations

ATL

ARRAY [name] TOO LARGE

The core required fo accommodate this array Is larger than the
user's maximum allocatlon.

Statements with Errors: Corrected Statements:

DIMENSION X(100,100,100) DIMENSION X(100,100,10)

AWN | ARRAY REFERENCE [name] HAS WRONG NUMBER OF SUBSCRIPTS.
The array is deflned to have more or fewer dimensions than the
glven reference.
Statements with Errors: Corrected Statements:
DIMENSION X(5,5,5) DIMENSION X(5,5,5)
X(1,1)=1.0 X01,1,1)=1.0
CQL | NO CLOSING QUOTE 1IN LITERAL
Literal constants should be enclosed In closed quotes.
Statements with Errors: Corrected Stafements:
KAR=1NAME KAR="NAME'
10 FORMAT(' X1=,F8.2) 10 FORMAT(' Xx1=',F8.2)
DIA | DO INDEX VARIABLE (name]] 1S ALREADY ACTIVE.
in any nest of DO loops, a given index varlabie may not be used
for more than one loop.
Statements with Ecrors: Corrected Statements:
DIMENSION X(10,10) DIMENSION X(10,10)
00 5 i=1,10 DO 5 1=1,10
Do 5 »10 DO 3 »10
5 X(1,11=0.0 5 X(1,4=0.0
DID | CANNOT INITIALIZE A DUMMY PARAMETER IN DATA.
Statements with Errors: Corrected Statements:
SUBROUT INE SUB(A,B) SUBROUTINE SUB(A,B)
DATA A/1.0/ A=1.0
DSF | ARGUMENT [name] 1S SAME AS FUNCTION NAME.

Statemenfs with Errors: Corrected Statements:

FUNCTION FUNC(FUNC1,FUNC) FUNCTION FUNC(FUNC1,FUNC2)

DTH THE DIMENSION OF [arrayname] MUST BE OF THE TYPE INTEGER.
Statements with Errors: Corrected Statements:
SUBROUT INE SUB(X,Y) SUBROUT INE SUB(X,K)
DIMENSION X(Y) DIMENSION X(K}
DVE | CANNOT USE DUMMY VARIABLE IN EQUIVALENCE.
Statements with Errors: Corrected Statements:
SUBROUT INE SUB(X1,X2,X3) SUBROUT INE SUB(X1,X2,X3)
EQUIVALENCE (X1,X2)
EID | ENTRY STATEMENT ILLEGAL INSIDE A DO LOOP.
EIM | ENTRY STATEMENT ILLEGAL iN MAIN PROGRAM.
ENF | LABEL [number] MUST REFER TO AN EXECUTABLE STATEMENT, NOT A
FORMAT,
Statements with Errors: Corrected Statements:
GO TO 10 GO TO 11
10 FORMAT(F8.2) 10 FORMAT(F8.2)
X=1.0 t1 X=1.0
FEE | FOUND [symbol] WHEN EXPECTING EITHER [symbol] OR A [symboll.
This Is a general syntax error message. The compltier detects
something wrong, but not quite sure about what's wrong.
¢NE | LABEL [number] MUST REFER TO A FORMAT, NOT AN EXECUTABLE
STATEMENT.
Statements with Errors: Corrected Statements:
9 X=1.0 9 Xx=1.0
WRITE(6,9)X WRITE(6,10)X
10 FORMAT(F8.2)
FWE | FOUND [symbot] WHEN EXPECTING [symboi].
This Is another general purpose syntax error message.
Statements with Errors: Corrected Statements:
X=RA*(F1+F2 X=RA*(F14F2)
1AC

ILLEGAL ASC|| CHARACTER [character] IN SOURCE.

Sometimes, a non-print ASCI] character may be inadvertently

entered In the source. Since It Is not printed out, It may not
be easily detectable in the proof reading process.

95T

b YEIAVHD

ONTOONGHA WYDOdd NVIIRNOA

JAL | INCORRECT ARGUMENT TYPE FOR LIBRARY FUNCTION [name].
Statements with Errors: Corrected Statements:
X=SIN{1) X1=1
X=SIN(XI)
IDN | DO LOOP AT LINE: [number] 1S ILLEGALLY NESTED.
The program attempts to terminate a DO loop before terminafing
one or more loops deflined after the givben one.
Statements with Errors: Corrected Statements:
DO 10 1=1,10 00 10 1=1,10
X{1)=0.0
DO 20 J=1,5
Y(3,4)=0.0
10 CONTINUE 20 CONTINUE
20 CONTINUE 10 CONTINUE
ILF ILLEGAL STATEMENT AFTER LOGICAL IF.
Two types of statements may not be the objective statement to a
loglcat IF. One is a DO-statement, and the other Is another
logical IF statement.
Statements with Errors: Corrected Statements:
IF(K.EQ.1)DO 10 1=1,10 IF(K.EQ-1)G0 T0 5
50010 1=1,10
1FCLEQ. 1) IF(J.EQ.2) IFCCILEQ. 1) .AND. (J.EQ.2))
1 G0OT05 1 G0T05
I1SD | ILLEGAL SUBSCRIPT EXPRESSION IN DATA STATEMENT.
Subscript expressions may be formed only with implicit DO indices
and constants combined with +, -, *, or /.
Statemenfs with Errors: Corrected Statements:
DATA (X(1%%2),1=1,5)/5%0.0/ DATA (X(1*1),1=1,5)/5%0.0/
ISN

[symboiname] IS NOT [symboltype].

The symbol cannof be used in the attempted manner. For example,

@ variable and a function cannot share the same name.

XM | ILLEGAL MIXED MODE ARITHMETIC.
Complex and double precislon operands cannot appear in the same
expression.
LAD | LABEL [number] ALREADY DEFINED AT LINE: [number]
LNl | LIST DIRECTED /0 WITH NO 1/0 LiST.
NiO | NAMELIST DIRECTED |/0 WITH 1/0 LIST.
Nty N’UN-’liNrTiEGEﬂ ;Jt;iT IN 1/0 STATEP?ENT.
NLF | WRONG NUMBER OF ARGUMENTS FOR L IBRARY FUNCTION [name].
NNF | NO STATEMENT NUMBER ON FORMAT.
NRC | STATEMENT NOT RECOGNIZED.
OPW | OPEN PARAMETER [name] IS OF WRONG TYPE.
Statements with Errors: Corrected Statements:
REAL K INTEGER K
OPEN(UNIT=K,F ILE=*X.DAT') OPEN(UNIT=K,F ILE=*X.DAT")
PIC | THE DO PARAMETERS OF [index name] MUST BE INTEGER CONSTANTS.
PTL | PROGRAM TOO LARGE.
RIC | COMPLEX CONSTANT CANNOT BE USED TO REPRESENT THE REAL OR
IMAGINARY PART OF A COMPLEX CONSTANT.
SOR | SUBSCRIPT OQUT OF RANGE.
UMP | UNMATCHED PARENTHESES.
US| | {symbol type] [symbol name] USED INCORRECTLY
VSO | YARIABLE DIMENSION ALLOWED IN SUBPROGRAMS ONLY.
Note: In the error message text, the names, numbers, characters
enciosed in square brackets correspond to the actual parameters
used In the source program.
Table 4.2 Mnemonic Codas for Fatzl Compiling Errors

soT3soubetd 19TTdWO)

LST

158 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

Code Message Text (All Upper Cases) and Explanations

CUO [CONSTANT UNDERFLOW OR OVERFLOW

DIM | POSSIBLE DO INDEX MODIFED [INSIDE LOOP.

1f a DO loop index Is involved in an arithmetic expression, +the program may be
complled incorrectly. The compiler will transliate the DO foop index such that the
number of iterations Is calculated at the beginning of the loop and Is never
affected by modification of the Index within the ioop.

Statements with Errors: Corrected Statements:
DO 10 1=1,10 DO 10 1=1,10
10 CALL READRA(1,|;#0L) IX=1
10 CALL READRA(1, X,KOL)
DO 10 1=1,10 not allowed to alter the index
{F(1.GE.3) (=141
etc

DXB | DATA STAEMENT EXCEEDS BOUNDS OF ARRAY .

FMR IMULTIPLE RETURNS DEFINED IN A FUNCTION, N

iCC {LLEGAL CHARACTER, CONTINUATION FIELD OF INITIAL LINE.

Continuation lines cannot follow comment iines.

tCD INACCESSIBLE CODE. STATEMENT DELETED.

Such code may be an oversight, or may be a logic error. Check the flow chart on
flow fogic.

1Cs ILLEGAL CHARACTER IN LINE SEQ#.

IDN | OPT - [LLEGAL DO NESTING - OPTIMIZATION DISCONTINUED.

The compiler contains a code optimizer. When a question arises in the source
program, the optimizer is bypassed and compller does straight transiation.

IFL [OPT - INFINITE DOOP = OPTIMIZATION D1SCONT INUED.

The compiler contains a code optimizer. When a question arises in the source
program, the optimizer Is bypassed and compiler does straight transiation.

LID IDENTIF IER [name] MORE THAN SIX CHARACTER

Statements with Errors: Corrected Statements:

VOLTAGE=CURRENT/RES| STANCE Actual statement complled:
VOLTAG=CURREN/RESIST

MVC [NUMBER OF VARIABLE DOES NOT EQUAL THE NUMBERS OF CONSTANTS IN DATA STATEMENT,

NED |NO END STATEMENT IN THE PROGRAM.

NOF |NO OUTPUT FILE GIVEN.

SOD |[name] STATEMENT OUT OF ORDER

VNI OPT - VARIABLE [name] 1S NOT INITIALIZED.

Tab e 4.3 Mnemonic Codes for Compiler Warning Messages

FOROTS Diagnostics 159

The errors detected at run-time by FOROTS are reported using a format of:

$FRSXXX text

where %FRS = FOROTS error diagnostic report prefix
XXX = 3-letter code as defined in Table 4.4
text = error message
CODE Expalantions

APR | Arithmetic fault errors, generated In calculations.

DAT | Data errors, generated in data conversion during an 1/0 operation.

DEV | Device error, generated by 1/0 hardware errors.

LIB | Library function errors.

OPN | File OPEN/CLOSE errors.

SYS | System errors, generated internally by FOROTS.

Table 4.4 Mnemonic Codes for FOROTS Run-time Errors

(2) Error traceback report

In addition to the FOROTS diagnostics, an error traceback report will
also be printed on the user's terminal to aid him to locate the trouble., To
fully utilize the FOROTS traceback, use the error report in conjunction with the
compiler listing of the source. For that reason, let us follow a debugging case
history to identify an error.

160 CHAPTER 4 FORTRAN PROGFAM DEBUGGING

Example: We will take the Newton-Raphson method example, but insert an
out-of-bound error in it so that it cannot be detected during compiling time.
Then write a simple main program to call that subroutine. These source programs
are stored as one file TEST.FOR. The program listing is shown below along with
the line sequence numbers:

00001 CALL NEWTON(1.,-11.,9.,8.,20.,50,3,R00T)
00002 TYPE 10, ROOT

00003 10 FORMAT(' ROOT = ', F8.2)

00004 END

00001 *

00002 SUBROUT INE NEWTON(A,B,C,D,E, ITER,NPLACE,RO0T)
00003 DIMENSION X(2)

00004 X(1)=-B/A

00005 ERROR=10, ** (~-NPLACE)

00006 F1=FUNCP(A,B,C,D,E,X(1))

00007 IF(F1.EQ.0.)X(1)=2.,%X(1)

00008 DO 10 I=1,ITER

00009 X(2)=X(1)-FUNC(A,B,C,D,E,X(10))/FUNCP(A,B,C,D,X(1))
00010 IF(ABS((X(2)=X(1))/X(1)).LE.ERROR)GOTO 20
00011 X(1)=X(2)

00012 10 CONT INUE

00013 WRITE(6,100) ITER

00014 100 FORMAT (/' %*%¥ NO CONVERGENCE WITHIN',I5," ITERATIONS."}
00015 RETURN

00016 20 ROOT=X(2)

00017 RETURN

00018 END

00001 ¥

00002 FUNCTION FUNC(A,B,C,D,E,X)

00003 FUNC=AXXX¥44B¥ XXX 3+CHX¥* 2+D*X+E

00004 RETURN

00005 END

00001 *

00002 FUNCTION FUNCP(A,B,C,D,X)

00003 FUNCP=4 , XA¥X*¥3+3 XB¥X¥¥2+2, ¥C¥X+D

00004 RETURN

00005 END '

Note that the line No.00008 of the subroutine NEWTON has an out-of-bound
error. X(1) is incorrectly entered as X(10).

Upon a compiling command, the following printout was obtained:

COMPILE TEST.FOR

FORTRAN 5A(621): TEST.FOR
MAIN. OCTAL PROG SIZE=53
FORTRAN 5A(621): NEWTON.FOR
NEWTON OCTAL PROG SIZE=211
FUNC OCTAL PROG SIZE=52
FUNCP OCTAL PROG=55

Therefore, it appears that compiling for the main program and three
subprograms were successful, because there is no error message. Next the
program is executed:

FOROTS Diagnostics 161

EXECUTE TEST.FOR

LINK: loading
[LNKXCT TEST execution]

%FRSAPR Floating overflow at FUNG+16[457]
FUNC[441] called from NEWTON+47[322] with 6 args of fype F,F
NEWTON[2537 called from MAIN.+4[161] with 8 args of type F,F

. e
mm
.- .
m ™
—
mm
- .

(The same report is repeated several times)

BFRSDAT Output field width overflow

Unit=-1 TTY:/ACCESS=SEQINO/MODE=ASCI !

Input record = 0; Output record = 1;

(* ROOT =°,F8.2)

10LST.[404320] calied from MAIN.+10[165] with no args

ROOT = *%¥X¥XK¥

End of Execution FOROTS 5B8(1001)
CPU time: 0.06 Elapsed time: 0.07

No. of Error

Errors Type

i Output field width overflow
76 Floating overflow

EXIT

It is at this point that many people are overwhelmed. Actually, to a
FORTRAN user, there are much useless information he can simply ignore. For
example, all numbers in square brackets are actual core addresses, and they are
useless to a FORTRAN user. Therefore, focus your attention on the expressions
having the form PROGRAMNAME+NUMBER, such as NEWION+47, which are memory
locations in relative addresses. PROGRAMNAME is the base address of the program
unit, and NUMBER is the offset indicating the relative address. So, let us
interpret the trace report without the core addresses:

"4FRSAPR Floating overflow at FUNC+16"

Meaning: Arithmetic error (APR) of floating point overflow occured in
the program unit FUNC, and at a location of relative address 16. If we
have a location map of relative address of FUNC statements, the offending
statement may be quickly identified. This relative address map is on the
compiler listing.

"FUNC called from NEWTON+47 with 6 args of type F,F,F,F,F,F"

Meaning: The offending subprogram is called by the statement in the
subprogram NEWION with a relative address of 47. Again a compiler
listing will quickly identify the calling statement.

"NEWTON called from MAIN.+4 with 8 args of the type F,F,F,F,F,1,I,F"
Meaning: The subprogram NEWION was called by a statement in the MAIN
unit that has a relative address of 4.

The other error report passage indicates the error in I/0 processing,
purported to be out of range of the assigned format. The format is printed to
aid the identification.

162 GHAPTER 4 FORTRAN PROGFAM DEBUGGING

(3) Use compiler listing to locate the error

A. How to get a compiler listing

To get a compiler listing, use a switch /LIST when applying the
command for COMPILE, LOAD or EXECUTE. However, if the source program
has been previously compiled and a valid REL file already exists,
delete that REL file first. ~Otherwise, no new compiling will be
done. To compile (or load, or execute) and produce a compiler
listing, use the command:

.COMPILE FINAME.FOR/LIST

In addition to producing a FINAME.REL file, this command will also
create a compiler listing file stored as FINAME.LST. Carrying on the
example started in the previous part, a compiler listing is produced
by a command of "COMPILE TEST.FOR/LIST", and the result is shown on
the next three pages.

Reproduction of Compiler Listings

MAIN. TEST.FOR FORTRAN V.5A(621) /KI/L 10-0CT-80 9:51 PAGE 1
00001 CALL NEWTON(1.,-11.,9.,8.,20.,50,3,R00T) X%

00002 TYPE 10, ROOT VWi n o
00003 10 FORMAT(' ROOT = ', F8.2) \N)-‘Qwog'

00004 END

SUBPROGRAMS CALLED e
Co\ s {osr@"'"
e S R

NEWTON
SCALARS AND ARRAYS [\"*¥'" NO EXPLICIT DECLARATION = "$" NOT REFERENCED - " " SUBS
CRIPTED 1 Ned

*ROOT 1R L 5?;0@.

TEMPORAR I ES & o ’femgowﬁ vorode

TINE NNBERMESTAL LOCATION wap>>— Lime #2 stored in Loodtions 5~t0 (octal)

I 5

00000 : 3 5 - 11

MAIN. OCTAL PROG SI1ZE=53 [SCALARS/ARRAYS=1 + FORMATS=4 + TEMPS/CONS=7 +
CODE=

13 + ARGS=24]

[NO ERRORS DETECTED]

FOROTS Diagnostics

163

00001 *
00002 SUBROUT INE NEWTON(A,B,C,D,E, I TER,NPLACE ,ROOT)
00003 DIMENSION X(2)]
00004 X(1)=-B/A
00005 ERROR=10., **(=NPLACE)
00006 F1=FUNCP(A,B,C,D,E,X(1)) of
00007 IF(F1.£Q.0.)X(1)=2.%X(1) 49
00008 DO 10 I=1, ITER DA R
00009 X(2)=X(1)=FUNC(A,B,C,D,E,X(10)) /FUNCP(A,B,C,D,X(1)) P wpes®
00010 IF (ABS((X(2)=X(1))/X(1)) .LE,ERROR)GOTO 20 \ et
00011 X(1)=X(2)
00012 10 CONT INUE
00013 WRITE(6,100) ITER
00014 100 FORMAT (/*¥%% NO CONVERGENCE WITHIN®,15,® ITERATIONS.|V)
00015 RETURN
00016 20 ROOT=X(2)
00017 RETURN J
00018 END
akd
SUBPROGRAMS CALLED 3 Sebe®Y
}' CAMta
ABS. FUNCP FUNC
SCALARS AND ARRAYS ["*" NO EXPLICIT DECLARATION - "%" NOT REFERENCYD - " " SUBS
CRIPTED] ¥ . Mes
o
*E 1R *B 2R *ITER 31 Lared
*D 4R *A 5 R ass'§
*ROOT 6 R *ERROR 7R *NPLACE 10 |
X 1R *| 13 1
*F1 4 R *C 15 R Yed
“ler ne™
TEMPORARIES Com'* 3:,‘)
ore
.50000 .A0016 31 R .Q0000 32 1 U’f]"
LINE NUMBER/OCTAL LOCATION, MAP
Ny _———-——yﬁ—-/
f G0 I 3 4 5 6 7 8 9
Voo
00000 : - 0 - 21 24 31 34 40
43

00010

.

54

=114 + ARGS=40]
{ NO ERRORS DETECTED]

75

: 62 64 - 72 73 -
NEWTON OCTAL PROG SIZE=211 [SCALARS/ARRAYS=15 + FORMATS=12 + TEMPS/CONS=6 + CODE

00001
00002
00003
00004
00005

SUBPROGRAMS CALLED

*

\ For exomple | Line ¥13 code

FUNCTION FUNC(A,B,C,D,E,X)

FUNC=ARX XK 4+BXXHK S+CHXHK2ADAXAE of-" WRITE (6 ,100) ITER. " is
RETURN
END stored ot |ocations

66 -7t

164 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

SCALARS AND ARRAYS ["¥" NO EXPLICIT DECLARATION - "%" NOT REFERENCED - " " SUBS
CRIPTED]

*E 1R *B 2R *D 3R

*A 4 R *X 5R

*C 6 R *¥FUNC 7R

TEMPORARIES
.A0002 10 R .A0003 1M R
LINE NUMBER/OCTAL LOCATION MAP

: 0 1 2 3 4 5 6 7 8 9

00000 : - 0 16 - 35

FUNC OCTAL PROG S1ZE=52 [SCALARS/ARRAYS=7 + TEMPS/CONS=2 + CODE=41 + ARGS=0]
[NO ERRORS DETECTED J

00001 *

00002 FUNCTION FUNCP(A,B,C,D,X)

00003 FUNCP=4, ¥A¥X¥X3+3 ¥BXX¥¥2+2 ¥C*X+D
00004 RETURN

00005 END

SUBPROGRAMS CALLED

SCALARS AND ARRAYS { "*" NO EXPLICIT DECLARATION - "&" NOT REFERENCED - " " SUBS
CRIPTED J

*B 1R *D 2R *A 3R

*X 4 R *FUNCP 5 R

*C 6 R

TEMPORAR IES

.A0002 7R .AD003 10 R .AO004 11 R .A00CS5
12 R

LINE NUMBER/OCTAL LOCATION MAP

: 0 1 2 3 4 5 6 7 8 9

00000 : - 0 16 - 35

FUNCP OCTAL PROG SI1ZE=55 [SCALARS/ARRAYS=6 + TEMPS/CONS=4 + CODE=43 + ARGS=0]
[NO ERRORS DETECTED]

FOROTS Diagnostics ’ 165

Each program (the main program, each subroutine, each function)
has a complete compiler listing that contains the following parts:

a. The program listing. The program unit is listed with
line sequence numbers assigned in the exact way the source program is
prepared. All comment lines, continuation lines and blank lines will
all be assigned with unique line sequence numbers. They are decimal
numbers.

b. List of subprogram names called by this unit. Library
functions are identified by names followed by a period; user
functions with names only. If there is an unfamiliar function or
subroutine name in the 1list, it identifies a possible error. The
subprogram name may have been misspelled, or an array variable did
not get DIMENSIONed.

c. "Scalars and Arrays". These are all variable names used in
the program unit. Each variable name listing has a format of:

XNAME n # Type
where: x = type declaration code:
Code Meaning
* variable not declared explicitly
% type declared but variable not used
blank dimensioned as conventional type

NAME = variable name

relative address in octal number

n=
= indicating this is an array
datatype = data type codes:
Code Meaning
I integer
R real
C complex
D double precision
L logical

By going through the list and cross-checking the program, mis~-typing
of data can be quickly identified,

d. "Temporaries". These are temporary variables generated by
the compiler. Ignore this part; they are useless to FORTRAN users.

e. Location map. The map is printed in a matrix form. The
row and column headings together form the line number, and the matrix
element value is the first address (relative) of instruction codes
translated from that 1line. Let us reproduce the map of the NEWION
subroutine of the last part:

166

CHAPTER 4 FORTRAN PROGRAM DEBUGGING

LINE NUMBER/OCTAL LOCATION MAP

H]

1 2 3 4 5 6 7 8 9

-»00000 :

00010 : 54

(4)

31 34 40 43

62 64 66 - 73 - 75

From this map, we can/ easily determine the core address
assignment (in relative addresses) for every line of the program
unit. For example, in the prqgram unit NEWTON, the core assignment
in relative addresses is as fdllows:

21-23 octal
24-30
31-33

4 Core addrsgses:
5
6
7 34-37
8
t

Line #:

40-42

etc etc

f. Program size. The program size 1s broken into its
components, and their sum is the total program unit size in octal
number. Program size=53 means, octal 53 DEC-10 words, or decimal 43
DEC-10 words.

How to use the compiler listing to locate errors

Once the relative address is known, the 1line number and the
statement can be quickly identified.

Returning to the last example, FUNC+16 identifies Line #3 of
FUNC; NEWTON+47 identifies Line #9 of NEWICN; and MAIN.+4
identifies Line #1 of the main program. The conclusion of the
tracing report is:

The error is generated by Line No. 3 of the FUNC program, which is

called by Line No. 9 of the NEWION program, which in turn is called
by Line No.l of the main program.

The ERRSNS subroutine

In addition to the above run—time FOROTS error-reporting
facilities, there is a FORTRAN library subroutine ERRSNS that may be
called by the "ERR=" parameter of READ, WRITE, OPEN and CLOSE
statements in the form:

OPEN (UNIT=1,FILE="INPUT.DAT"',ERR=9999)

9999 CALL ERRSNS(I,J)
TYPE 9998, I,J

9998 FORMAT (' READ/WRITE OR OPEN/CLOSE ERROR CODES:', 2I4)
STOP lor other error handling steps

ERRSNS Subroutine

Table 4.5

167

The meanings of two integers "I" and "J" returned by the
error-report subroutine ERRSNS are tabulated in Table 4.5:

| J Explanation
0 0 | no error
101 completion with no error
23 | 312 | Backspace illegal for device
24 | 308 | Reaching end of file during READ
25 | opt invalid record number
26 | opt | Sequential file used as a random access
28 | opt | CLOSE error
254 | Rename file already exists
262 No room, quota exceeded
268 | Cannot delete or rename a file
29 | opt | no such file
250 | File not found
30 | opt | OPEN failure
240 | Record length spec missing for random access
242 | Too many devices opened (Max: 15)
245 | Device not available
248 Il1legal access for device
249 |l1egal MODE or MODE switch
251 No such PPN
253 | File belng modified, not available now
31 opt | Mixed access modes
315 Random access file used as sequential
32 | 239 | Invalid logical unit number ﬁJ
39 | opt READ error
45 | opt | OPEN statement keyword error
47 | 263 | Attempt to WRITE on READ-only file
62 | opt | FORMAT syntax error
301 I1legal character in FORMAT
314 | Missing width for A- or R-FORMAT on Input

Selected Numeric Codes of Error Report Subroutine ERRSNS

168 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

4,12 Dimension Qut-of Bound Errors

Debugging frustration usually is derived from two causes: (1) the user
is not familiar with the meaning of the error message, and (2) the user relies
on the error diagnostics blindly. The first cause may be easily remedied. The
material presented so far should be helpful in resolving the first cause
somewhat. The second cause will be difficult to remedy, unfortunately. The
error diagnostics are based on a failure symptom that may be a secondary or
indirect effect of the original offender, By far the most frequent culprit in
raising the programmer frustration is the dimension out-of-bound type of errors.

When a DIMENSION statement is specified in the source program, the
compiler records the number of reserved storage locations, translate the source
into the object codes, and reserve necessary argument storage and I/0 buffers.
These storages form a contiguous entity and later the LOADER will try to find a
contiguous space in the core to fit it. There is no policing at the execution
time to see that an array will not go beyond its assigned space.

As a result of compiling, each array is identified by a base address
where the first element of the array will be stored. If the X-array has a base
address at "ADDX", then X(1) is stored at ADDX, X(2) at (ADDX+l), X(3) at
(ADDX+2), and so on, and X(k) at (ADDX+k-1). The quantity (k-1) is called the
OFFSET, and therefore, the address of an element of array can be identified by
computing (BASE+OFFSET). Access to an element in the array is performed in this
manner. The OFFSET of a multi-dimensioal array is computed on a linear array
basis. Naturally, for correct computations of a K-element array, the OFFSET
should not be larger than (K-1) and should never be negative. Unfortunately, at
the run-time, the OFFSET is not checked with the array size K. Hence, a
dimension out-of-bound error cannot be detected per se at run-time but will be
detected by the damage, if any, caused by it.

In a typical core storage for a program execution, in contiguous order
are the storage areas for: data area, formats, temporarily generated codes,
instruction codes, subprogram argument codes, 1/0 buffer areas, etc. If an
array located in the data area is too large for its assigned locations, the
surplus elements will go to other data storages, or into the instruction codes,
or into the I/0 areas, all dependent on the OFFSET calculation. Naturally, in
this process, the information of the invaded area are altered and the result
becomes unpredictable. Thus when the invaded area information is used for a
subsequent execution, anything can happen.

Suppose the following is a segment of a FORTRAN program:

DIMENSION X(100),Y(10)

Let us now analyze the consequences.

(1) The extra X-array elements may only alter other data storages, and
this alternation will makes the result of computation invalid. On the other
hand, the remaining computations may not need the affected values, and the
results may be correct. Therefore, such a program may sometimes produce correct
results, sometimes not. But the program will successfully run to a completion.
This is often a case where a programmer blames on the "temper" of the machine.

Dimension Out-of-Bound Errors 169

(2) The extra values may invade the instruction code area and alter the
contents. The result will be unpredictable. Coincidentally, the alteration may
change a code to another perfectly legitimate code, and the program execution
will take on a new and strange direction. Most likely, the alteration will
result in a non-executable instruction, and an error message to that effect
comes back to the puzzled user.

(3) The extra elements may alter some subscript- or index-calculation
code 1in such way that a very large subscript value is obtained. Its OFFSET may
be so large that it exceeds the boundary of the user's core allocation. Imagine
how the user feels when he sees an error message of "NEED MORE CORE" for his
short program.

(4) 1If the extra values invade the I/0 buffer area where input/output
data are formulated according to a FORMAT, an error message of "AN ILLEGAL
CHARACTER IN THE FORMAT" will send the user on a unproductive wild goose chase.

Thus, while the out-of-bound error is one of the most frequently
committed errors, its detection is far from obvious.

Because of the high incidence of such errors, an effectvie strategy may
be as follows:

(1) After an error diagnostic message is received, the source program is
checked as reported by the diagnosis. Often, these circumstantial evidences
fail to unearth the real trouble. Then, always suspect first there is an
out-of-bound error.*

(2) Delete the compiled REL file, and re-execute the source file now
with a /DEBUG:BOUNDS switch., Note that the out-of-bounds error cannot be
detected just by re-compiling even with the DEBUG:BOUNDS switch. That switch
will perform the debugging only when the program is executed.

(3) Insert several core-occupying but meaningless statements in the
suspected source program, for example:

DIMENSION YYYY(100)
DO 9999 I=1,100
9999 YYYY(I)=1.2345

The purpose is simply to shift the core address assigmments. This revised
program is executed again, and another error report is obtained. If a different
set of errors is reported this time, it is highly probable that an out—of-bound
dimension error exists.

(4) When an out-of-bound error is suspected or confirmed, catch that
error first and ignore other reported errors for the time being. Very probably,
many secondary errors will be automatically corrected once the primary error is
caught and corrected.

*The second most probable error source is «n uninitialized or unset variable in
computations.

170 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

ON-LINE DEBUGGING BY CONDITIONAL COMPILING

4.13 The D-Statement

In the on-line debugging of a FORTRAN-10 program, we are mainly trying to
test the program to see (1) if the flow logic goes according to the plan, and
(2) how the computation of data is going. The first means a tracing process,
and the second means to inspect the values of variables at different stages of
their computations. Both of these may be realized by output statements inserted
at strategic places with formats that indicate a tracing and/or data inspection.
For example, use output formats as illustrated below:

FORMAT (' I REACH POINT A; ALL IS FINE.')
FORMAT (' I REACH POINT B; ALL IS WELL.')
FORMAT (' AT POINT P; X-ARRAY DATA ARE: ',data—format ...)

But there are several problems. Once these statements are inserted, it
will be difficult to distinguish them from the rest. When debugging is
completed, we want to remove these extra statements, and that will be a tedious
and error-prone process. Very likely, new bugs would be created by such
procedure.

FORTRAN-10 allows a D-type statement that has a letter "D" in the first
column., Iet the program file name be FINAME,FOR. If the following command is
given:

EXECUTE FLANEM.FOR(I)

where " (I)" is a compiler switch to include D-statements, the program with all
its regular and D-statements will be compiled and executed. The same program,
if compiled and executed without the (I) switch, will treat the D-statements as
comments and therefore ignore them.

After debugging is completed, delete the REL file, and recompile without
the (I) switch.

Example: We will again use the same TEST.FOR but add some
D-statements as shown below:

CALL NEWTON(1.,-11.,9.,8.,20.,50,3,R00T)
TYPE 10, ROOT

10 FORMAT(' ROOT = ', F8.2)
END

SUBROUT INE NEWTON(A,B,C,D,E, ITER,NPLACE,ROQT)
DIMENSION X(2)
X(1)=-B/A
ERROR=10., ** (~NPLACE)
F1=FUNCP(A,B,C,D,E,X(1))
IF(F1.EQ.0.)X(1)=2.%X(1)
DO 10 1=1,ITER
D WRITE(6,9999) 1,X(1)
D9999 FORMAT(/" ITERATION=",13," X(1)=",E12.4)
X(2)=X(1)-FUNC(A,B,C,D,E,X(10))/FUNCP(A,B,C,D,X(1))
D WRITE(6,9998) 1,X(2)
D9998 FORMAT(" AFTER ITERATION

,13, ' X(2)=",E12.4)

D-Satetments

IF(ABS((X(2)=X(1))/X(1)).LE.ERROR)GOTO 20
X(1)=X(2)
10 CONT INUE
WRITE(6,100) ITER
100 FORMAT(/'*%% NO CONVERGENCE WITHIN',|5,' ITERATIONS.')

RETURN
20 ROOT=X(2)
RETURN
END
*
FUNCTION FUNC(A,B,C,D,E,X)
D WRITE(6,9999) A,B,C,D,E,X
D9999 FORMAT(' PARAMETERS PASSED INTO THE FUNC PROGRAM:!/
D 1 ' EQUATION COEFFICIENTS ARE:' /12X,5E12.4/
D 2 ' X(1) = ',E12.4)
FUNC=AXX¥*4+BX¥X¥ % 3+CHX#¥ 2 +D¥X+E
D WRITE(6,9998 }FUNC
D9998 FORMAT (' RETURNED FROM FUNC, FUNC=',E12.4)
RETURN
END

*

FUNCTION FUNCP(A,B,C,D,X)

D WRITE(6,9999) A,B,C,D,E,X

D9999 FORMAT (' PARAMETERS PASSED INTO THE FUNCP PROGRAM:'/
D 1 ' EQUATION COEFFICIENTS ARE:' ,5E12.4/

D 2 v X() = ',E12.4)

FUNCP=4 , ¥AXX¥%3+3 XBXXX*¥2+2 *C*X+D

D WRITE(6,9998)FUNCP

D9998 FORMAT(' RETURNED FROM FUNCP, FUNCP=',E12.4)
RETURN
END

171

Next, an EXECUTE command with the switch (I) is applied. Now a curious
thing happens. The example program was aborted during the regular run but it
runs to a completion with the D-statements., As the D-statements are merely
output and format statements, suspiction should be raised here that the trouble

is illegal data located out of bound. The terminal printout is included
along with some analysis:

PARAMETERS PASSED INTO THE FUNCP PROGRAM:

EQUATION COEFFICIENTS ARE: 0.1000E+01 -0.1100E+02 0.9000E+01 0.8000E+01
X(1) = 0.2000E+02
RETURNED FROM FUNCP, FUNCP= 0.1917E+05

ITERATION= 1 X(1)=0.1100E+02
PARAMETERS PASSED INTO THE FUNCP PROGRAM:
EQUATION COEFFICIENTS ARE: 0.1000E+01 -0.1100E+02 0.9000E+01 0.8000E+01
X(1) = 0,1100E+02
RETURNED FROM FUNCP, FUNCP= 0.1537E+04
PARAMETERS PASSED INTO THE FUNC PROGRAM:
EQUATION COEFFICIENTS ARE:
0.1000E+01 -0.1100E+02 0.9000E+01 0.8000E+01 0.2000E+02
X{1) = 0.,1596E-01
RETURNED FROM FUNC, FUNC= 0.2013E+02
AFTER ITERATION 1 X(2)= 0.1099E+02

ITERATION= 2 X(1)= 0.1099E+02

PARAMETERS PASSED INTO THE FUNCP PROGRAM:

EQUATION COEFFICIENTS ARE: 0.1000E+01 -0.1100E+02 0.9000E+01 0.8000E+01
X(1) = 0.1099E+02

here

172 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

RETURNED FROM FUNCP, FUNCP= 0.1527E+04
PARAMETERS PASSED INTO THE FUNC PROGRAM:
EQUATION COEFFICIENTS ARE:
0.1000E+01 ~0.1100E+02 0.9000E+01 0.8000E+01 0.2000E+02
X(1) = 0.1596E-01
RETURNED FROM FUNC, FUNC= 0.2013E+02
AFTER ITERATION 2 X(2)= 0.1097E+02

(SEVERAL MORE PAGES OF THIS)

ROOT = 0.00

End of execution FOROTS 5B(1001)
CPU time: 0.12 Elapsed time: 1.58
EXIT

From the analysis shown, the trouble is attributed to the fact that X(1)
is passed into two subprograms FUNC and FUNCP as two different values! Armed
with this information, the parameter lists of FUNC and FUNCP are examined, and
the trouble can be identified quickly.

Note that the debug run actually produced an incorrect result of
ROOT=0.00! The kind of errors causing computer jobs abortion is actually the
safe kind. The really dangerous kind is an error causing not obviously
incorrect results. As the popular saying goes, "Garbage in; garbage out,” or
"GIGO," but beware of camouflaged garbage.

Tracing Subprograms 173

ON-LINE DEBUGGING BY TRACING AIDS

Two subprograms are available in the FORTRAN-10 library for the tracing
operations. One is to traceback at a specifed point; the other is to trace the
flow in general. They are now presented next.

4.14 The TRACE Subprogram

The TRACE subprogram may be used as a subroutine without a dummy argument
or a function with a dummy argument. when this subprogram is called at one
point in the program execution, a printout of traceback will be produced at the
user's terminal. The TRACE program is also automatically invoked in response to
a PAUSE 'T' statement.

Example: Placing a TRACE call between Line #8 and #9 of the NEWION
subroutine as shown on the compiler listing of Section 4.11, the following
printout was received on the terminal:

TRACE. [415615] called from NEWTON+45(322] with no args
NEWTON[255] called from MAIN.+4([161] with 8 args of type F,F,F,F,F,I1,I,F

(many other lines)

Refer to Section 4.11 on how to read these tracings.

4.15 The MSFLVL Subroutine

The MSGLVL subroutine is another FORTRAN-10 library program which does a
dynamic tracing of subprogram calls and returns, and labeled statements. It can
be used to trace an entire program or a portion of it.

The format of the subroutine is:

CALL MSGLVL(N)
where N is defined as:
1 no tracing, used to turn off tracing.

2 print out only subprogram calls and returns
3 N=2 case plus all labeled statement tracings

zZ222Z
mouo

Thus, at a point in the program where we want to start the tracing, we
insert a statement "CALL MSGLVL(2)" or "CALL MSGLVL(3)". Then at the point
where we want to turn it off, we insert a statement "CALL MSGLVL(1)".

Users of this routine should be warned that if this routine is called by
a user's subroutine, the tracing is not automatically turned off upon the return
from the subroutine. Thus the tracing may inadvertently extend beyond an
intended range.

After a program is prepared with MSGLVL subroutine calls in it, it should
be executed with a "/TRACE" switch, i.e., a command of:

174 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

.EXECUTE FLNAME.FOR/TRACE

Later, after debugging is completed and program is corrected. The MSGLVL call
statements can be left in by recompiling without the TRACE switch. (Do not
forget to delete the old REL file first.)

Example: The NEWION subroutine is revised to become the following:
SUBROUT INE NEWTON(A,B,C,D,E, ITER,NPLACE,RCOT)
DIMENSION X(2)

CALL MSGLVL(3) 1*¥*Tyrn on Tracer

] X(1)==-B/A

2 ERROR=10.%* (-NPLACE)

3 F1=FUNCP(A,B,C,D,E,X(1))

4 IF(F1.EQ.0.)X(1)=2.%X(1)
CALL MSGLVL(1) 1¥**Tyrn off fracer
DO 10 =1, ITER
X(2)=X(1)-FUNC(A,B,C,D,E,X(10))/FUNCP(A,B,C,D,X(1))
IF(ABS((X(2)=X(1))/X(1)).LE.ERROR)GOTO 20
X(1)=X(2)

10 CONT INUE

WRITE(6,100) ITER
100 FORMAT(/" ¥¥* NO CONVERGENCE WITHIN',15," ITERATIONS.")
RETURN
20 ROOT=X(2)
- RETURN
END

Other program units, such as the main program, the function FUNC and
FUNCP remain the same as those in Section 4.11. Upon execution by the command
of "EXECUTE TEST/TRACE", the following printout was obtained:

<IX<2><3>
Call to routine FUNCP from routine NEWTON
Return to routine NEWION from line 5 of routine FUNCP
<4>
etc.

The statement labels are enclosed between angle brackets: <2> means
Statement labeled "2" (not Line 2), and <2>*6 means Statement labeled "2" 6
times. The advantage of using this routine over TRACE is that the compiler
listing is not needed to determine the line numbers in a program.

FORDDi‘ debugger 175

ON-LINE DEBUGGING BY AN INTERACTIVE PROCESSOR

4.16 The FORDDT Processor

FORDDT is an interactive processor used to debug a FORIRAN program by
controlling its execution. Using the symbols created by the compiler, FORDDT
has the following capabilities:

(1) To examine and modify the data;

(2) To examine, specify or modify a FORMAT;

(3) To set breakpoints;

(4) To trace the source program statement by statement.

Before calling the FORDDT debugger, you must prepare REL files that are
compiled with the compiler debugging facilities, such as tracing, accommodations
for breakpoints, dimension checks, etc. This must be done even if there are
already compiled REL files for the programs (but without debugging features).
This is done by a monitor command:

.COMPILE /COMPILE/DEBUG:ALL list
where "/COMPILE" and "/DEBUG" are global switches placed in front of the
programs "list". This will force a new compiling with debugging facilities
loaded. However, do not force a compiling to those programs that don't belong

to you, such as the system library, IMSL, etc. Afterward, FORDDT may be called
by:

.DEBUG ’ist, SYS:FORDDT
where listis a complete list of files that are needed for execution. FORDDT

will respond with:

STARTING FORTRAN DDT
>>

where ">>" is a prompting signal that FORDDT is ready to accept FORDDT commands.
The details for the FORDDT may be found in Appendix E of Reference 9. A basic
set of the FORDDT commands is included here with explanation and examples.

Certain prelimianry FORDDT rulés are first explained:

(1) A FORDDT command consists of a keyword and optional parameter (s).

(2) Program data may be accessed by refering to their FORTRAN variable
names.

(3) General array specifications is MNAME(S1,S2,...,Sk). Variation of
this specification are:

NAME the entire NAME array
NAME (7) the 7th element in the NAME array
NAME (K) A subscripted element

NAME (3) ~NAME (10) Elements in a specified range

176

(4

-

CHAPTER 4 FORTRAN PROGRAM DEBUGGING

Standard numeric convention applies.

(5) Statement number is represented by.an unsigned integer, e.g., 100.
The line number must be preceded by a pound sign(#), e.g., #100.

(6) FORDDT can specify numerical mode for data input/output by giving the
"mode identifier." The mode identifier codes are defined as follows:

Code

WOHmMO AP

Meaning Example
ASCII(left-justified) /LEFT/
Complex (1.234,-6.543)
Double Precision 123.4567890
Real 1.2345
Integer 1234
Octal 7777
RASCII(right-justified) \RIGHT\

4,17 Basic FORDDT Commands

Keyword Parameter

OPEN

START

MODE

Of the eighteen commands available in the FORDDI, a subset of eleven
frequently used commands will be presented below:

name

list

Explanation

To open the named unit (subprogram) and allow all variables
within that unit to be accessible to FORDDT. If name is
omitted, it means to re-open the main program. When FORDDT
is called, the main program is automatically opened.
Later, when one open command is applied after a preceding
one, the unit previously opened is automatically closed.
Therefore, at any given time, not more than one program
unit may be opened.

Example Function

.DEBUG TEST.FOR, SYS:FORDDT

>> (command) Main program opened for debugging

PN

>>0OPEN SUB1 Open subprogram SUBl; close main program.
>>OPEN Open main program again; close SUB1

To start your program at the main program entry point.

To define the "mode identifiers", or the display formats,
for succeeding TYPE commands of FORDDT, and Iist contains
one or more of the mode identifier codes separated by
commas. The mode identifier codes are those defined in
Section 4.16. The default mode 1is the floating point
format, and output will return to the default mode with a
"MODE" command with no argument.

FORDDT Commands

TYPE

ACCEPT

list

name/mode

177
Example Function
>>MODE F,F,I Set MODE for the next TYPE command.
>>TYPE A,B,K Type A,B,K per MODE defined before.
>>MODE Return to all floating point format.

To type out values of variables 1listed in the format
defined by the last MODE command. "Print modifier" may be
used to alter the format temporarily just for the current
TYPE command., A print-modifier has a format of "/code"
where the "code" is a mode identifier, If a print-modifier
is placed after a variable name, only that variable output
format is altered temporarily. If a print-modifier is
placed before a variable name, all variables in that TYPE
command after the modifier are temporarily set except those
with individual modifiers. See examples below:

Example Function
>>MODE Reset MODE to default floating point.
>>TYPE A,B,C Type A,B,C in floating point.
>>TYPE A,B,C/1 A,B as real, C in integer format
>>TYPE A,/I B, A as real, B and C as integer format

C
>>TYPE /I A,B,C All in integer format
>>TYPE /1 A,B,C/F,D/O,E/A,K(1)-K(10)

A & B in integer, C as floating point,

D in octal, and E in ASCII format, K(1)

through K(10) inclusive in integer format

value
To modify the values of listed variable names, where:
name = the name of the variable, array, array element, or
array element range to be modified. If an array
name is given without a subscript, the entire array
will be modified.

mode = format of modifying data. Use mode identifier code
for MODE.

value = new data for the variable

Example : >>ACCEPT A 1.23
Function: Set A=1.23 (default MODE=floating point)

Example: >>ACCEPT B/C (1.2,0.3)
Function: Set B=(1.2,0.3) -— B set in complex mode

Example: >>ACCEPT X(2)-X(9) 0.0
Function: Set X(2) through X(9) to 0.

Example: >>ACCEPT X 0.0
Function: Set the X-array to 0.

ExamBle: >>ACCEPT FLNAME/A/LONG 'SAMPLE.DAT'
Function: Set FINAME='SAMPLE.DAT' (2 words)

178

GROUP n list

PAUSE p

CONTINUE n

REMOVE p

WHAT

CHAPTER 4 FORTRAN PROGRAM DEBUGGING

Example: >>ACCEPT 10 (1X,8F8.2)

Function: Set the FORMAT labelled as Statement 10 to the
given new form. Work only for changing an old
FORMAT to another with equal or shorter field.

To set up a string of text for input to a TYPE command,
where:
n = group number, 1 through 8.

list = a string of TYPE statemnts to be called.
Example: >>GROUP 1 A,B,C,/I 1,J,K

Function: Store "A,B,C,/I 1,J,K" as Group 1 data. Future
output FORDDT commands for this group of data
may be simplified into "TYPE /1"

Example: >>GROUP 1
Function: List Group 1 data names.

Example: >>GROUP
Function: List all stored GROUP lists.

To set a breakpoint at point "p", where "p" is any label,
line number, or sunroutine entry in your opened program
unit. A maximum of ten breakpoints may be set at one time.
Each PAU command can set only one breakpoint. When a pause
is encountered, execution is suspended at that point and
control is transferred to FORDDT. At that point,
examination or modification of data can be made.

Example Function
>>PAU 50 Set breakpoint at statement No. 50.
>>PAU #50 Set breakpoint at Line No. 50.

>>PAU #50 TYPING /2
Set breakpoint at Line#50. When paused
there, type out data group 2. At least
one blank is required between "TYPING"
and "/2".

To ask the program to resume execution after a FORDDT
pause, and the program will run until the nth occurrence of
the given pause or until a different pause is ' encountered.
The default n is 1.

To remove the pause at "p" from the program set up by a
previous pause command. If “"p" is omitted, it will remove
all pauses set up.

To display on the terminal the name of the currently open
program unit and any currently active pause settings.

To terminate the program execution, close all files, and
return to the monitor.

FORDDT Example 179

4,18 A FORDDT Example

The example started in Section 4.11 will again be used to illustrate the
FORDDT usage. The program listing by the program unit names is given below.
Those statements that will be used as breakpoints are marked with check marks
" n
v -

Program Unit MAIN.

00001 CALL NEWTON(1.,-11.,9.,8.,20.,50,3,R00T)

00002 TYPE 10, ROOT

00003 10 FORMAT(® ROOT = !, F8.2)

00004 END o

Program Unit NEWTON: ‘p\&*@/‘»(:‘(z
eJ- a(‘

00001 * o Mg

00002 v/ SUBROUT INE NEWTON(A,B,C,D, E, ITER,NPLACE,RO0T) ¢ A,

00003 DIMENSION X(2) s e

00004 X(1)=-B/A @

00005 ERROR=10., ** (-NPLACE) s hetk Lo a0”

00006 v F1=FUNCP(A,B,C,D,E,X(1)) 0 . PP

00007 IF(F1.EQ.0.)X(1)=2.%X(1) pone?

00008 DO 10 I=1,ITER +o

00009 X(2)=X(1)-FUNC(A,B,C,D,E,X(10))/FUNCP(A,B,C,D,X(1))

00010 1F (ABS((X(2)=X(1))/X(1)).LE.ERROR)GOTO 20

00011 X(1)=X(2) .

00012 10 ¥/ CONTINUE 1o 0‘}"“?:,‘ ot %o F

00013 WRITE(6,100) ITER cordit'ona of

00014 100 FORMAT (/%% NO CONVERGENCE WITHIN®, 15, ITERATIONS.?)

00015 RETURN

00016 20 ROOT=X(2)

00017 RETURN

00018 END

Program Unit FUNC:

00001 * ssed

00002 v FUNCTION FUNC(A,B,C,D,E,X) To 0“°°kr£

00003 FUNCSA*XXX4+BXX*RTHOKXKX2HDRXHE pAram®

00004 RETURN

00005 END

Program Uni+ FUNCP: sed

00001 ¥ . chek P::, valw?’

00002 v’ FUNCTION FUNCP(A,B,C,D,X) 10 am®

00003 FUNCP=4, XAXX¥¥343 XBrX*%2+2,¥C¥X4D [

00004 RETURN

00005 END

The placement of breakpoints is important. If a statement or a line is
designated as a breakpoint by the PAUSE command, the program execution will
pause before the execution of that line or statement. The breakpoints should
be placed strategically at the following places:

180 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

(1) Subprogram entry points to check if parameters are being successfully
passed;

(2) Just before returning to the calling programto see what kind of
values are being passed back;

(3) After an input step to see if input operation is successful;

(4) Just before outputing a value if error report indicating a format
overflow;

(5) A sampling point in the DO-loop to see how iterations are going;

(6) Place after a division to check if there is any divide-by-zero

erorr;

(7) Places you feel to be critical or suspect where errors are being
generated.

If a breakpoint is placed inside a DO-loop, be wary of large amount of FORDDT
outputs. This can be circumvented by applying a FORDDT' command "CONTINUE n"
when ready to continue onto that breakpoint. This will allow the execution to
repeat "ignore that breakpoint" for n times.

The remainder of this section is a reproduction of the terminal printout
with annotations. The user's typings are in italics, and suitable comments are
in handwritings.

DEBUG TEST.FOR/DEBUG:ALL, SYS:FORDDT ¥~ Coll fov FORBPT A debug 7BsTFoR
FORTRAN 5A(621): TEST FOR

MAIN OCTAL PROG SIZE=56 Make suire fou have a/(m:z el ret
NEWTON OCTAL PROG SiZE=420 the old REL file of TEST,

FUNC ~ OCTAL PROG SIZE=52

FUNCP OCTAL PROG SIZE=56

L INK: Loading

[CLNKDEB DDT execution]

STARTING FORTRAN DDT

>>OPEN NEWTON Gpen the unit- Newren. Set breakpoints
>>PAUSE #2 '/ e %2 Line & i

>SPAUSE #6 TYPING /1 i~ at Line ®#2 , Line %6, a

S>GROUP 1 A,B,C,D,E,X Statenent #10.

>>PAUSE 10 TYPING /2 . shle ars A @ 2 as Shown.
SSGROUP 2 X Define vociable growps owin
>>OPEN FUNC }/—‘ Open the unit Fone

>>PAU #2

>>OPEN FUNCP 1 i

>>PAU #2 J‘/ DOpen the uat FoNcP

>>START R @es:q exaculiom Aand o\ebﬂ

PAUSE AT ROUTINE NEWTON
ARGUMENTS ARE:

= 1.000000 Y Firet pause af entrance point of Newrton |
- -;1688888 ((f : Fararmeter values arve printed out acdamo:“icq_“y
= 8.000000 (s in the order of dmuments .

20.00000 (g -~ No weiable name 3weu —fwﬁese Aata

FORDDT Example 181

50 (TTer)

; 3 (NPLACE)
= 0.0000000E+00 (RooT)
CIMPLICIT OPEN NEWTON] ————edm (Lachine will pause here To allow
inspection of datn ,
>>CONTINUE - Continue execefron unb) nex? .brzaéfo:'nf'
PAUSE AT L#6 IN NEWTON .)
A = 1.000000 Next pause at Ine ¥6 . Auforatc o«tput
B = -11.00000 R
c = 9.000000 / Q‘- Group 1. data o/efmed,
D = 8.000000 (/
E = 20.00000 These are data before calli- veP
X(1) = 11.00000 ata befor 9 Fe
X(2) = 0.0000000E+00

>>CONTINUE

PAUSEW AT ROUTINE FUNCP 3
ARGUMENTS ARE:
1.000000
-11.00000
9.000000
8.000000
20.00000
11.00000

/,Nezi‘/zause a{' en?ty fo;n/’of FONCP .
L// dese are Aecta /Dassea/ inte FUMP

WX YO w>

CIMPLICIT OPEN FUNCP]

7

>>CONTINUE

: ion ot -of - bound
4FRSSRE Subscript range error on line 9 of NEWTON J,:D'"‘"“S"a“ o\ of “
Subscript 1 of array X = 10 7/ €Ercor 'fo'”‘"

NEWTON[7037] called from MAIN.+5[6732] with 8 args ¢f type F,F,F,F,F,I,I,F

PAUSE AT ROUTINE FUNC 3
ARGUMENTS ARE:

= 1.000000 A Next pause at enty point of Func.

= -11.00000 3 _

= 9.000000) Note the mognihde of X()

= 8.000000 »

= 20.00000 e

= -0.7939503E+32 xo

[CIMPLICIT OPEN FUNCJ]

~M
>>CONTINUE i oot messeqee f”

s
4FRSAPR Floating overflow at FUNC+17[7440] Foro
FUNC[74217] called from NEWTON+12[7151] ith 6 args ¢f type F,F,F,F,F,F
NEWTON[7037] called from MAIN.+5[6732] with 8 args |of type F,F,F,F,F,1,I,F
(more of simllar message)

PAUSE AT 10 IN NEWTON
CIMPLICIT OPEN NEWTON] Next pause of Sttement Label do , o

X(1) = -0.1106965€+36 ot the end of firet loop.

182 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

X(2) = =-0.1106965E+36 J
>>STOP e o Sppeeless o g0 an7 fu.-/‘er

End of execution FOROTS 5B(1001)
CPU time: 0.65 Elapsed Time: 1:41.67

No. of Error

Errors Type

9 Floating overflow
EXIT

After inspecting the debugging printouts, two errors in the subprogram
NEWTON were found:

(1) The argument "E" in line #6 should not be there;

(2) In line #9, X(10) should be X(1).

After errors are identified, UPDATE editor is used to correct the error,
and the program is run again. The terminal printout is shown below:

UPDATE TEST.FOR
CALL NEWTON(1.,-1%.,9.,8.,20.,50.,3,R00T)
>$AT/FUNCP(A, B, C,D,E/; CHANGE/,E//
F1=FUNCP(A,B,C,D,X(1))
>8AT/X(10)/; CHANGE/X(10)/X(1)/
X(2)=X(1)=-FUNC(A,B,C,D,E,X(1))/FUNCP(A,B,C,D,X(1))
>8END
2 blocks written on TEST.FOR[115103,320571]

EXECUTE TEST.FOR

FORTRAN 5A(621): TEST.FOR
MAIN. OCTAL PROG S!ZE=53
NEWTON CTAL PROG SIZE=210
FUNC OCTAL PROG SIZE=52
FUNCP OCTAL PROG DUZE=55
LINK: Loading

CLNKXCT TEST execution]

ROOT = 10.0
End of execution FOROTS 5B(1001)

CPU time: 0.02 Elapsed time: 0.02
EXIT

Thus, the laborious effort of debugging finally pays off.

MAY YOU CATCH ALL YOUR BUGS.

Exercise 183

EXERCISE

The instructor should select a programming exercise of moderate
difficulty for a problem for which the algorithm is well-understood by the
class. Follow the procedure outlined below to the completion of a successful
programming session:

(1) Set up a flow chart specification of the problem. Check if it is
correct.

(2) Code the program according to the flow chart.

(3) Generate a flow chart based on the code and using the program FORFLO.
Compare the generated flow chart with the problem specification. If
there is any discrepancy, correct the code.

(4) Compile the program. From the ‘compiler error 1list, correct all
syntax errors and transcription errors not caught before.

(5) Organize a code-inspection and walkthrough session for a critique,
and correct the errors identified.

(6) Run the program, using a test data set. If the run is not
successful, debug on-line by any or combination of the on-line
debugging techniques and aids covered in this chapter.

184

CHAPTER 4 FORTRAN PROGRAM DEBUGGING

REFERENCES

PROGRAM DEBUGGING, A. R. Brown and W. A. Sampson, McDonald & Company,
Ltd., London, Great Britain; 1973.

SOFTWARE DEBUGGING FOR MICROCOMPUTERS, Robert C. Bruce, Reston Publishing
Company, Reston, Virginia; 1980.

THE ART OF SOFTWARE TESTING, Glenford J. Myers, John Wiley & Sons, Inc.,
New York; 1979.

FUNDAMENTALS OF FLOWCHARTING, T. J. Schriber, John Wiley & Sons, Inc.,
New York; 1969.

FLOWCHARTING, M. . Farina, Prentice Hall, Inc., Englewood Cliffs, N. J.;
1970.

PROGRAM STYLE, DESIGN, EFFICIENCY, DEBUGGING AND TESTING, by Daniel Van
Tassel, Prentice-Hall, Inc., Englewood Cliffs, NJ; 1974.

FORTRAN PROVERBS FOR FORTRAN PROGRAMlVlEfRS, by Henry F. [ILedgard, Hayden
Book Compnay, Inc., Rochelle Park, NJ; 1975.

FORTRAN-10 USERS GUIDE, DEC-10 Documentation-2, Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1977.

FORTRAN PROGRAMMER'S REFERENCE MANUAL, No.AA-0944E-TB, Appendix B,
Appendix E and BAppendix F, Digital Equipment Corporation, Maynard,
Massachusettes; 1977.

CHAPTER 5

MODELING AND SIMULATION BY CSMP

Modeling and simulation are important tasks in
science and engineering., Instead of the event-type or
discrete-type modeling and simulation, this chapter
will deal with modeling and simulation of a continuous
system. A high-order language simulation program will
be presented: Continuous System Modeling Program
(CSMP). This program was originally developed for the
IBM/360, and has since found wide acceptance in its
application and adapted to many other computers
including the DEC System-10.*

INTRODUCTION

5.1 Dynamic Modeling of Systems

One of the most important tasks in the disciplines of applied sciences
and technology, including engineering, is the study of an existing system by
analyzing its characteristics or the study of a proposed system by its synthesis
under a set of prescribed objectives. Under most circumstances, it is not
possible or practical to isolate that system, to dismantle it, and to perform
the study. Therefore, it is necessary to construct a model, and examine the
model performance by subjecting it to varying internal and/or external
conditions.

In all areas of applied sciences, whether they are the physical, life or
social sciences, the tasks of modeling and simulation are important elements of
their analytical studies. Although the fields of disciplines may vary widely,
the task of modeling and simulation may be summarized by the block diagram shown
in Figure 5.1.

Beginning with the laws of nature (physics, chemistry, biology, etc.) and
the laws of society (sociology, economics, law, etc.), the behavior of a model
under various conditions may be described with mathematical language. Such a
description, under most cases, takes on the form of a set of mathematical
equations. The eqguations may be Boolean 1logic, algebraic, transcendental,

*Adaptation for the Pitt installation by Michael A. Matzek, Computer Center,
University of Pittsburgh.
185

186 CHAPTER 5 CsMp

Natural Social f7
Sciences Mathematics Sciences o
o
L] £
Parameter 3
Ad Justments =
Model
Read justments -
- wn
Anatytical Empirical Numerical 0
Solution Solution (Computer) =
Solution - 2
<] <
— c
+= o
e @ =
Comb ination Experimenféﬂ > @
of These Solution E =
w [
<]
0w
0
@
=
I
IS
=
w

Interpretation
of
Solution

|
i N N S [

Does the solution
satisfy a given

sef of restrictions
or conditions?

no

Figure 5.1 Modeling and Simulation in System Studies

Dynamic Modeling 187

differential, integral, difference, or combinations of these. The result is
called a mathematical model.

A solution of the model can be obtained by many different ways. Applied
mathematicians and analytically inclined scientists and engineers have devoted
to find analytical solutions, where the solutions are preferably expressed in
closed forms. Many engineering practitioners have found it convenient to
develop, in addition to the analytical solutions, empirical ways of
solution —~- ways that have no rigorous analytical ground but they work. Other
people find that to them the most effective way is by experiments such as in the
areas of physics, chemistry, metallurgy, etc. With the advent of digital
computers, another way becomes practical, that is, by digital computation. CSMP
modeling and simulation falls into the last category.

Once the solution is obtained, its interpretation and conclusions are
then drawn. Concluded at this point is a process of study called

System Analysis.

When the system is analyzed with reference to a set of prescribed
conditions or objectivess, one must further examine whether the result of the
analysis satisfies these objectives. If not, adjustments of the model, either
in 1its structure or in its parameter values or both, must be made. The process
of solution is then repeated until the objectives are met. Concluded at this
point is a process of system study called System Synthesis or System Design.

The mathematical description of many system processes encountered in
engineering, scientific and societal problems is often made with respect to time
as an independent variable. In such a description, the parameters, their
changes and their rates of changes, etc., can be interpreted by applying the
basic laws of natural sciences and social sciences. Resultant models will
describe the time behaviors of the systems, and hence they are called

dynamic models.

In most cases, the time behavior of a system may be described by an
equation containing differential quantities, i.e., a differential equation.
Consequently, facility in formulating differential equations and knowledge of
how to obtain their solutions become the most important skills required in the
system studies.

5.2 Differential Equations

When a differential equation is formulated from a real system, more often
than not, it cannot be solved unless simplifying assumptions are made. After
these assumptions are made, the result may be obtained by rigorous mathematical
methods. An alternative 1s to approximate the differential equation as a
difference equation, which may then be solved by performing a numerical
integration. This is where a computer comes in. Although the result is only an
approximation to the true solution of that equation, the error can be controlled
and kept within a prescribed bound. Shown below are two examples of how the
differetial equation model for a system may be formulated.

188 CHAPTER 5 CsMp

Example: Consider the following RIC circuit.

The voltage across each element is:

. L v, =R (Ohm's Law) (1)
_ o di

v, =L 5% (Lenz's Law) (2)
1 .

v, =7 [idt (Faraday's Law) (3)

Then, by Kirchoff's Law, we write:

DL+vR+uc=e (4)
L%+Ri+—lc-'fidt=e (5)

Differentiating both sides, and letting de/dt=£(t):

d?i di 1.
LW+RE¥+E7“=f(t) (6)

The differential equation becomes a circuit model, the solution of which will
give the time-behavior of the circuit.

The same circuit may be formulated into a model using the state variable

approach. Suppose we choose "i" and "v " as the state variables. Then the
equations (3) and (5) may be rewritten as:

dv

4 _ e _ E;_ Y (8)
dt L L L

These two simultaneous differential equations may be organized into a matrix
form:

w, 0o % v, 0
dt
= . +
, 9)
di 1 R . e
£ -7 -1 Lt £

Such a matrix differential equation is then referred to as a state-variable
model of the circuit.

Differential Equations 189

Example: The following diagram represents a simplified version of a
Pogo stick, or a landing gear of an aircraft.

l?efeqmge,?o;‘v{-l o

+%

ins‘fan‘(‘g_r\sogs_L_ -
position of M

Consider the mass as a free body, and analyze
the forces that act on it:

Gravitational: f =M (10)
DOAM ng S(;f:n% g
Cons’ Constant
P Lr %
Spring force: fs = Kz (11)
. dx
Damping force: fa=0F (12)
Free Body
Diagram Net force in the downward direction = fg -fo - %y
Thus, by Newton's Second Law:
d2x dee
j'-d «f—s Mgt—z‘—Mg—Kx-Dd—t (13)
s Pe .
X
or, Ma—t~2—+D% +Kx=Mg (14)

This is a mathematical model for the given mechanical system, Note the
mathematical similarity between the models in the two examples given here.

5.3 Preparation for Digital Computer Solution

First, consider a first—order differential equation:
de _ (15)
a7 * fl(oc,t) t = f2(x,t)

where x 1s the dependent variable and t is the independent variable.
Equation (15) may be reduced to a general form of:

dx .
G5 = Tolwmt) -t fi(n,t) = fla,t) (16)
Hence, x = [flx,t) dt)

If the initial condition is known (at t=0, x=x0), then equation (17) may be
rewritten as:

190 CHAPTER 5 CsMpP

t
@ =a,+ [, flx,e) d (18)

Therefore, the solution of a first-order differential equation involves
basically a numerical evaluation of an integral. Thus, depending on the method
of numerical integration used, different methods of solution of differential
equation may be derived. The users of CSMP will have options of choosing any
one of the following methods of numerical integration:

Fixed-step methods: Rectangular integration
Trapezoidal integration
Simpson's rule integration
Adams (second order) integration
4th order Runge—Kutta method, fixed interval

Variable-step methods: 4th order Runge-Kutta method, variable step
5th order Milne method

The details of these methods are available in any standard numerical methods
text., It is sufficient here to say that the numerical solution of a first-order
differential equation is a highly developed and important field in numerical
analysis.

For the high-order equations, the general approach of their numerical

solutions is to reduce each high-order equation to a set of simultaneous
first-order equations. This can be illustrated by an example:

Example: Let us again consider that example of a mechanical system:

2
dx dx _
MZ% +D5 + Ka=MNg)
g ., _Dde_ K
oy T I wa T u® (19)
First, define a new set of dependent variables:
x, =X and T, = dx (or = -dﬁL
1 2 a T
Thus the equation (19) is now changed to two equations (20-21):
dax
1. 20
7 x, (20)
dx
2 D K 21
a 97 w2 T w% @y

The original second-order equation is now changed to a set of two first-order
equations. Therefore, the first-order equation method of solution can now be
applied.

Computer Solutions) _ 191

This process of reducing a high-order differential equation to a set of
first-order equations may be expanded to a general nth order equation.

Let the nth order equation be expressed as:

(n) x(n-])

x = fle,tyx’,ex' ..,) (22)

Note that the superscripts are orders of derivatives, not the powers. In the
process of reducing a set of (n) first-order equations, the first (n-1)
equations are simply new definitions of the derivatives.

Define: x =,
e .
1
F£ T % (or, @, = x') 1
de
T = %3 (or, .rgzx")
> (23)
dz
dgn—l) =z, (or, z = x(n—]))
and Equation (22) becomes:
dz,,
; f(xj, t, Ty Lgsnnes &,)

7

Students of Circuit Theory, System Theory, Automatic Control System, etc., will
recognize that this is exactly the same as the process of formulating the
state-variable equations. Equations (23) now consist of a set of first-order
equations and the first-order equation methods can now be applied.

Integration of the set of equations (23) yields:

- _ t 3
@, = [dt = @t [0 @ dt
t L o(24)
€, ;= [dt= xn-lo + j’o @ dt
t
@, = [fleptogw, ...«)dt = 2, + [, fat

192 CHAPTER 5 CsMpP

where %; are the initial coditions of z, at t=0. Thus for each equation,
one step’ of numerical integration is taken to get a new point of xi. When all
of equations (24) have taken that single step, the sequence is repeated for the
next increment.,

If the process of numerical integration can be written as a subprogram,
it would require two parameters: the initial condition and the integrand
function. Suppose such a subprogram is available and defined as:

Y = INTGRL(IC,X)

where IC = initial condition of Y, and X = integrand expression. Then the set
of equations (24) may be written as:

X1 = INTGRL(X10, X2)
X2 = INTGRL(X20, X3)

(25)
XN = INTGRL(XNML, F)

The INTGRL is a CSMP library function. The high-order differential equations
may be represented simply as a series of INTGRL function in CSMP language.

5.4 CSMP as a High-Order Language (HOL)

while the digital computer is a tremendously powerful tool in the studies
of systems, the tasks of programming can be prohibitively tedious and expensive.
In the design of programming languages, a set of hierarchical structure is
established. 1In the increasing order of hierarchical structure, they are:

1. Machine language

2. Assembly language, such as MACRO-10

3. Compiler language, such as FORTRAN and COBOL

4, High-order language, such as CSMP, ECAP, CORNAP, etc.

In this hierarchy, the programming efforts in each higher level will be
considerably reduced, but the rigidity of programming is also considerably
increased. Thus we are trading off machine utilization in favor of human
resource utilization. In the computer system software development, the machine
utilization has overriding importance, so we would favor languagess of a lower
hierarchy level, such as the assembly language. Thus, the basic system
softwares, such as the operating system, various language compilers, and utility
routines, are written in assembly language.

However, for applications where human resource utilization may be more
important than an efficient machine utilization, engineers and scientists will
use a compiler language or a high-order language to solve their problems.

But FORTRAN programming can be very complicated too. In the numerical
solution of differential equations, one could use FORTRAN to program the
solution. But the effort would be monumental if we included many options,
control of accuracy, selection of output formats, etc.

CSMP as a HOL Language 193

High-order languages are therefore designed to ease such problems in the
area of special applications. CSMP (Continuous System Modeling Program) is one
such language.

CSMP was originally developed for the IBM System/360, but has since found
wide acceptance. Modifications of the IBM versions became available for
adaptation to other machines, including ™ the DEC System-10. It is an
application-oriented language that allows a problem to be prepared directly from
either a block-diagram representation of the system or a set of ordinary
differential equations. The language includes a basic set of functional blocks
with which the components of a continuous system may be represented, and accepts
application-oriented statements. for defining the connections between these
functional blocks. CSMP also accepts most FORTRAN statements, allowing the user
to readily handle nonlinear and time-variant problems of considerable
complexity. Both tabular and graphic output formats are available.

A typical CSMP program contains both CSMP statements and FORTRAN
statements; it will also contain both CSMP functions and the conventional
FORTRAN functions. After the CSMP program is prepared, it is first translated
entirely to a FORTRAN program. This in turn is compiled, loaded, and executed
with all the called CSMP functions and FORTRAN functions from the library.
However, all these steps of translation, compiling, loading and execution are
"transparent" to the user. To him, a single step of submitting a CSMP program
to the CSMP processor 1is all that is required. That is the major power of a
high-order language.

194 CHAPTER 5 CsMP

A CSMP PRIMER

5.5 Symbols, Constants, Operators, Functions and Labels

(1) Symbols CSMP symbols follow the same FORTRAN rules with the
following exceptions:

A, All variables are real variables (even those beginning with
I,J,K,etc.). Integer variables require a special declaration using
the "FIXED" statement of CSMP.

B. Subscripted variables may not begin with the letter I, J, K, L, M, or
N.

C. There is a group of CSMP-reserved names that should not be used by the
user in a CSMP program. See page 66 of Reference 1.

(2) Constants All numeric constants are considered to be real,
regardless of whether a decimal point is used. Only integer variables have
integer constants. Other than this point, the standard rules of FORTRAN numeric
constants apply. Double precision constants are allowed in CSMP III, but not in
CSMP II.

(3) Operators The same standard rules of FORTRAN operators apply to
CSMP, such as those for the operators + ,- , *, /, **, =, and the use of
parentheses.

(4) Functions 1In addition to the standard FORTRAN library functions,
such as SIN(X) and ALOG(X), there is a group of 34 CSMP functions. This is one
of the most powerful features of the CSMP program. Selected functions will be
discussed in a later section.

(5) Labels The first word of a CSMP data or control statement is a
label word that identifies the purpose of the statement. These labels will be
explained later.

5.6 Format of CSMP

The following are those format rules of CSMP statements that are
different from those of standard FORTRAN:

(1) A CSMP statement may start anywhere within column 1 through 72,
Statement materials outside column 72 will not be processed. A few specific
label words must begin at column 1. These exceptions will be singled out as
they occur.

(2) Continuation of a line is done by 3 consecutive periods (...) at the
end of a line. A character in column 6 does not mean continuation in CSMP as in
FORTRAN, A maximum of 8 continuation lines (9, including the first statement)
are allowed.

Example: XDDOT1=COEFF1*XDOT2+QUOt1*X2-COEFF*XDOT1~ ...
QUOT2*X2

Do not split a number or a variable name between a line and its continuation.

CSMP Primer 195

(3) A "*" character in column 1 means a comment line.

(4) Blank lines are allowed but ignored in the translation. It is
usually used to make a program easier to read.

5.7 Structure of a CSMP Program

Basically, a CSMP program can be divided into 3 segments: the INITIAL
segment, the DYNAMIC segment, and the TERMINAL segment.

(1) INITIAL segment This segment appears first in a CSMP program,
and is used to define parameters, initial conditions, or calculations that need
to be done only once. It is optional, and may not even be needed in a simple
program. If it is used, there must be an INITIAL label line at the beginning of
the segment.

Example: INITIAL
PARAMETER R=50.0, L=1.25, C=0.25E-4
INCON 10=0.0
CONSTANT PI=3.14159

(2) DYNAMIC segment This is the heart of a CSMP program, and is a
required segment. It contains the system model equations.,- - If an INITIAL
segment is not specified, the DYNAMIC segment is automatically incorporated, and
no 1label is required. . If an INITIAL segment is specified, the DYNAMIC segment
must be headed with a line with a "DYNAMIC" label.

(3) TERMINAL segment This is the last segment of a CSMP program for
computations performed after the simulation is finished. Or, it may be used to
adjust parameters and reset conditions after one run in order to get ready for
another run of the same problem.

5.8 SORT and NOSORT Sections

One of the most important features of the CSMP program is its sorting
capability, Here, "sorting" does not mean the usual way of sorting by numbers
or letters. Frequently, modeling of a system results in a system of
simultaneous differential egquations that must be processed in a particular
order. In FORTRAN programming, the order is sequenced by the way in which the
FORTRAN statements are arranged. In CSMP, we can delegate the responsibility of
sequencing to CSMP by asking it to SORT. As a result, those calculations that
will produce results needed in the later part of the iteration cycle will be
done first. This then allows us to write the modeling equations without concern
for their sequence. Therefore, the SORT capability of CSMP makes the solution
of simultaneous differential equation by CSMP a virtual parallel operation.

On the other hand, there are computation that must be executed in the
exact order specified, such as a FORTRAN conditional logic (IF) statement or a
branching (GO TO) statement. They should be specified as NOSORT so that the
given fixed order will not be disturbed.

196 CHAPTER 5 CsMP

The following types of statements should be placed in a NOSORT section:
(1) Conditional logic (the IF statement)

(2) Branching (any type of GOTO) statement

(3) Implicit arithmetic s'tatement, such as X = X+1.0

(4) WRITE and FORMAT statements

The following SORT rules apply to the default conditions:

(1) INITIAL and DYNAMIC segments: If not labeled by NOSORT, the section
is automatically regarded as SORT.

(2) TERMINAL segment: If not 1labeled by SORT, the section is
automatically regarded as NOSORT.

CSMP_STATEMENTS

There are three types of CSMP statements: Structure, Data, and Control
Statements. A structure statement describes a functional relationship between
the variables of the program. A collection of structure statements defines the
system being simulated. A data statement assigns values to a variable. A
control statement controls the operations and the quantities associated with the
program, such as the step size, the print increment, the selection of methods,
etc. These statement are explained below.

5.9 Structure Statements

A structure statement in CSMP is written in the form of:

VARIABLE = EXPRESSION

where the "EXPRESSION" follows the general rules of FORTRAN assigrment
statements. An expression may be simply a constant, another variable, a
function, or a combination of these linked by arithmetic operators.

One special feature is the CSMP functions - they are the CSMP library
functions available in addition to the standard FORTRAN functions. A complete
list of CSMP functions are listed on pp. 9-16 of Reference 1. Tables 5.1A and
5.1B contain those more commonly used:

CSMP Primer

Name CSMP Function Form =~ Function
t
Integrator Y = INTGRL(IC,X) Y=IC+ [Xdt
[
IC = Initial condition; a constant or varlable, bu‘r not
an expresssion.
X = integrand; a constant, a variable or an expression.
Laplace form: 1
s
Derlvative Y = DERIV(IC,X) = dX/dt
IC = Inltlal condition of derivative, or >'<(O)
Laplace form: s
Delay = DELAY(N,P, X} Yy
X(e) ¥ (t)=X(t-P),tzP
N=number of sample points ‘/\/
. : Y(t)=0 t<P
'
-Pg 1
Laplace form: e o F £
Real Pole = REALPL(IC,P,X) Solution of: P d—t +Y¥Y=X
IC = Inltial conditlion
L | -f . .__1.—
aplace form: £
Lead-Lag = LEDLAG(P1,P2,X) Sotution of: ngng = Pl 5- dt +X
Laplace form: [(PL)s + 1
(P2)g + 1
Comp lex Poles = CMPXPI (IC1,1C2,P1,P2,X) Solutlon of:
%% + 2(P1)(P2)£i— #(P2)’ y

| Laplace form:

"1/(s% + a(P1)*(P2)*s + P2?)

Table 5.1A Selected CSMP Library Functions I

198

CHAPTER 5

CSMP

Name

CSMP Function Form

Function

STEP

<
n

STEP(P)

= unit step at P

RAMP

RAMP(P)

= unlt ramp at P

IMPUL SE

IMPULS(P1,P2)

PUL SE

PULSE(P,X)

= unit height pulse
triggered at time P

SINE

Y = SINE(P1,P2,P3)

Pl=delay, secopnds

- =

P2=angular frequency,
radian/second
P3=phase shift,radlans

Q

Arbltrary
Function
Generation

Y = AFGEN(FUNC,X)
(Linear Interpoliation
between points)

Y = NLFGEN(FUNC, X)

(Quadratic interpola-
tion between points)

X = Independent variable
FUNC=function name

Much of the CSMP versatility is attributed to two major factors.
the specially designed CSMP library functions and statements.
SORT and NOSORT capabilities.

Table 5.1B8

specific CSMP functions:

Selected CSMP Library Functions II

One is
The other is the

The following are examples of how to write

CSMP Functions 3 199

(1) INTGRL function

The INTGRL function, among all CSMP functions, is certainly one of the
most frequently used functions. The format:

Y = INTGRL(IC,X)
represents a differential eqguation model of % =X, sothat Y =1IC+ [E Xdt
[¢]
Example: Model the equation &=V with initial condition x(0)=XO0.

CSMP Statement: X = INTGRL(XO0,V)

Example: Model the simultaneous differential equations:

vl _ v8 - vl

dt Initial conditions: v1(0)=1.0

dv2 v2(0)=-2.0
=4 vl -t

dt

The CSMP statements are:

vl

INTGRL(1.0,V2-V1)
V2 = INTGRL(-2.0,4.0*V1-TIME)

.

Example: Although the INTGRL function follows the format of any
standard FORTRAN library function, it has one restriction: The function must be
placed at the right-most end of a statement.

Incorrect: Vi INTGRL(1.0,V2-V1) + 4.0%*V2

Correct: V1l = 4.0*%V2 + INTGRL(1.0,V2-V1)

As a result, one CSMP statement may not contain more than one INTGRL function.
They must be broken into several statements.
Incorrect: FUNC = INTGRL(2.3,V1) + INTGRL(~0.9,V1-V2)

Correct: FUNC1
FUNC

INTGRL(2.3,V1)
FUNC1 + INTGRL(-0.9,V1-V2)

200 CHAPTER 5 CSMP

(2) STEP function

This represents a frequently used signal in finding the transient
response of a system. The unit step function has an amplitude of 1. The
amplitude of a desired step function may be set by a multiplier. The multiplier
may be a constant, and in that case, the resulting function is a step function
of amplitude specified. The multipler may be a time-varying function or
expression, and 1in that case, the unit step function serves as a "switch" to
turn on a time-varying function,

Examples:
Y
0.4+ —
Y = 10.0 * STEP(1.5)
e v
Y Single-shot multivibrator:
10.0
Y = 10.0* (STEP(1.5)~STEP(4.5))
LS 4.5 t
Single~shot sinusoidal:
Y
Y = 5,0*PULSE(2.0,0.0) *SINE(0.0, ...
S 2.0,0.0)
34459
N v t or,
Y = 5.0(STEP(0.0)-STEP(3.14159)) ...
*SINE(0.0,2.0,0.0)

(3) IMPULS and PULSE functions

These two functions are often used together to produce a pulse train.
See example below:

Example: Generation of a pulse train, 2 pulses per second, pulse width
0.1 second. Wave form is shown below:
Y
5.0
’. I |
o o4 o5 0% 70 11 75 46 t

Y = PULSE (0.1, IMPULS(0.0, 0.5))
{

pulse ——-— L I——— spacing between pulses

width
---—- instant when the first
pulse is triggered

CSMP Functions 201

Example: A square wave generator

Y = 2.0*PULSE (0.5;IMPULS(0.0,1.0))-1.0

° o5 1| 5 2.0 t
~/.0
¥ A triangular wave generator:
"”L_'. A Let the pulse output of the last .
/: H example be P. Then,
N o i z,o

P = 2,0*PULSE(0.5,IMPULS(0.0,1.0))-1.0

1
s <
Q
“n
~
“
—

Y = 4,0%(-1,0+INTGRL(0.0,Y))
(Question: Why 4.0?)

5.10 Data Statements

Data statements are those that assign numeric constants to variables in
preparation to begin a CSMP run. Therefore, they are likely to appear in the
INITIAL segment.

The format of a data statement beging with a 1label, followed by the
assignments of numeric constants to certain variables.

INCON To define variables that are used as initial conditions.
Example: INCON X0=2.5, V0O=-4.56

PARAMETER To define values of parameters that may be changed for different
runs of simulation.
Example: PARAMETER VT=160.0, JK=1.5

Multiple parameter definitions may be written for multiple runs:
Example: PARAMETER VT=(160.,161.,162.,163.), JK=1.5
or, PARAMETER VT=(160.,3*1.), JK=1.5
These last two statements are equivalent. Note the repeat
constant "3" must be written without a decimal point.
Specified number of runs will be made for everything up to
the statement of END, Maximum allowed: 50 runs, and one
multiple-PARAMETER statement per sequence.

CONSTANT To define values of variables that do not change values.
Example: CONSTANT PI=3.14159,HERTZ=60.0

FUNCTION To define data points (in pairs of coordinates) of an arbitrary
function. This is used in conjunction with either the
function AFGEN or NLFGEN.

Example: FUNCTION FOT=(0.,0.),(.10,2.5),(2.0,-3.1),...
(3.0,5.6), (4.0,3.2)

Y = AFGEN(FOT ,TIME)

202 CHAPTER 5 CsMp

CSMP treats the labels INCON, PARAMETER, CONSTANT the same way, and therefore
they are interchangeable. However, separating them for their proper purposes
would add to our clarity of program, and less likely to be misunderstood later.

5.11 Control Statements

These statements specify the translation, execution or output of the
simulation. For example, one may use these statements to specify how large
should be each increment in the iteration, in the print-plot diagrem, or which
method of solution should be used. 1In general, these statements may be mixed
with the structure and data statements, and may appear in any order. Except for
ENDJOB, COMMON and ENDDATA statements that must begin at column 1, the
statements may start at any column. There are three kinds of control
Statements:

(1) Translational control statements

INITIAL A line with only the label INITIAL in it. This statement marks
the beginning of the INITIAL segment.

DYNAMIC This label marks the beginning of the DYNAMIC segment. This
segment is terminated by a TERMINAL label.

TERMINAL This label marks the end of the DYNAMIC segment and the beginning
of the TERMINAL segment. The TERMINAL segment is terminated by
the first END or CONTINUE statement.

END The END statement marks the end of a simulation run. It will
then allow more control statements to start a new run. If the
END statement is followed by a STOP statement, then simulation
runs are terminated. When a new simulation run is started by
statements after the END statement, the independent variable TIME
is reset to zero, and all initial conditions are reset.

CONT'INUE If a new run of simulation is to continue on the TIME-scale
rather than reset it to zero, then a CONTINUE statement should be
used instead of an END statement. Be careful to distinguish
between a CONTINUE statement in CSMP and a CONTINUE statement in
FORTRAN. Since a CONTINUE in FORTRAN is often used to terminate
a DO-loop, it 1is always better to label a FORTRAN CONTINUE
statement with a number.

STOP An END followed by a STOP statement marks the termination of
simulation and rio new run is to be initiated.

ENDJOB This is the physical end of a CSMP package. It must begin at
column 1.

RENAME The standard name for the CSMP independent variable is TIME, and

many reserved CSMP names are time-related names, such as DELT,
DEIMIN, FINTIM, PRDEL, and OUTDEL. Often, the independent
variable for a simulation problem is not time. For example, in a
beam deflection problem, the independent variable may be the
linear displacement X. The names for the independent variable
may be changed from TIME to X by "RENAME TIME = X". Then all
reference to the independent variable TIME will be renamed to
those with reference to X.

CSMP Control Statements 203

FIXED

COMMON

PROCEDURE

MACRO

This label defines the listed variables on that line as integer
variables. Without this statement, all CSMP variables are
considered as real variables, including those beginning with a
letter I, J, K, L, M oOr N.

Example: FIXED N,JOB

The statement contains just the label, beginning from column 1.
This statement will make the values assigned for TIME, DELT,
DEIMIN, FINTIM, PRDEL and OUTDEL, and the values of those
variables listed on PARAMETER, INCON, and CONSTANT lines
available as a COMMON block available for any user—-supplied
FORTRAN subroutines.

This statement leads off an entity of programs in the DYNAMIC
segment that serves as a user-defined subprogram. Its format is
given in the following example:

 PROCEDURE pUI‘l ,OUT2'=E‘UNC (ENl ,IN2,IN3, IN4‘)

T
Label —— : E l—~ Input varaibles
Output ! Arbitrary function name,
variables ——— — Y~ required but ignored

Listing the output variables is for the purpose of making them
available later for PRINT or PRTPLOT statements. Variables not
defined as output variables in a PROCEDURE statement may be used
for later processing, but they will be unavailable for print or
print-plot purposes.

The PROCEDURE statement is then followed by FORTRAN or CSMP
statements, or their combinations.

The termination of a PROCEDURE is marked by a line with the label
of ENDPRO.

The PROCEDURE section may be placed anywhere in the DYNAMIC
segment, and SORT command will place the subprogram at the place
in the order. But the internal sequence of the PROCEDURE
subrpogram will not be sorted, and they will be executed in the
exact order as they are given. As a result, full extent of
FORTRAN and CSMP statements, including FORTRAN logic and
branching statements, may be used.

Note: When FORTRAN and CSMP statements appear together in a
PROCEDURE, the CSMP continuation rule (3 periods ...) applies for
continuing a statement.

Line with the label MACRO will preceed a MACRO function, which
has the following format:

MACRO X,Y = RECT (RNO,THETA)

.

- Input dummy variable
- MACRO function name
'''''''' --— Output dummy variables

The body of the MACRO for this example, and its termination Lline
are:
X = RHO * COS (THETA)

= RNO * SIN(THETA)

ENDMAC

204

SORT and
NOSORT

(2)

TIMER

CHAPTER 5 CSMP

A MACRO must be placed at the beginning of the CSMP program ahead
of any structure statement in the INITIAL or DYNAMIC segment.
Once a MACRO function is so defined, it may be referenced an
unlimited number of times in the program. The MACRO may contain
FORTRAN or CSMP statements, but it should not contain any FORTRAN
logical, branching, or I/0 statements, nor should it contain any
CSMP data and control statements.

In the processing of a CSMP program, calculations of many depen-

dent variables are done with respect to the same independent
variable, such as at the same instant of TIME. Such calculations
are referred to as "parallel calculations”. In any assignment
statements, however, the righthand side cannot be processed until
all the current values of the variables of the righthand side are
known. This implies that these structural statements must be
sequenced in a particular order. This ordering can ‘be done
automatically by the CSMP translator, if a label of SORT precedes
the statements.

On the other hand, certain statements, such as the FORTRAN
branching, logical decision and I/O statements must be executed
in the exact order written, A NOSORT label preceding the
statements will suppress the SORT algorithm for this group.

Execution control statements

The TIMER label is followed on the same line by various increment
assignments. These increments have reserved names and default
values:

Name Meaning Default Value
DELT Increment for the DELT = —,:?-MIN (PRDEL, QUTDEL)
independent variable.
It is a good practice to
always specify DELT.

DEIMIN Two methods, MILNE and RKS, use adjustable steps.
Simulation will halt when:

Adjusted DELT < DELMIN

FINTIM Max value of inde- FINTIM=0 if it is not spe-
pendent variable cified, and simulation will
for the simulation not even get started.
run. Therefore, FINTIM should

not be omitted.

PRDEL Print output PRDEL~OUTDEL if OUTDEL
increment is given.

PRDEL=FINTIM/100 if OUTDEL
is not also given.

CSMP Control Statements

FINISH

RELERR
ABSERR

METHOD

OUTDEL

Example:
Function:

205

Print-plot output OUTDEL~PRDEL, if PRDEL is
increment : given.
OUTDEL~FINTIM/100 if PRDEL
is not given also.

TIMER DELT=0.1, PRDEL~0.5, FINTIM=10.0

Specify in the simulation iteration that each
increment of TIME should be 0.1 second. In the
printout table, increment of output is).5.
Simulation to be terminated when 10.0 seconds on the
TIME scale is reached.

This is a label containing terminating logic conditions to
supplement the FINTIM specification in the TIMER statement.

Example:

Function:

TIMER FINTIM = 10.0

FINISH VEL = 1000.0, HEIGHT = YMAX

During the simualtion run, the sign of (VEL-1000.0)
and the sign of (HEIGHT-YMAX) is monitored at the end
of each iteration. Simulation will be terminated
when either of the three conditions is reached:
reversal of signs of (FINTIM-10.), (VEL-1000.0), or
(HEIGHT-YMAX) .

These two labels respectively specify the relative and the
absolute error bounds in the RKS and the MILNE methods.

Example:
Function:

RELERR VEL = 1.,0E-5

This statement sets the relative error bound at
.00001. when the relative error of VEL is lower than
the bound, the step is adjusted, and the iteration
takes steps of bigger size. These labels are only
applicable to RKS and MILNE mehtods where iteration
steps are adjustable.

This label followed by any one of the following seven words
specifies the method of numerical integration. The default
method is RKS.

ADAMS
CENTRAL

MILNE

RECT
RKS

SIMP
TRAPZ

Example:

Second-order Adams method

A dummy routine that may be substituted by a
user-supplied subroutine for integration.
Variable-step, fifth-order, predictor—corrector
MILNE method

Rectangular method of integration

Four th-order Runge-Kutta method with fixed
integration interval.

Integration by Simpson's rule

Integration by trapezoidal rule

METHOD ADAMS

206

CHAPTER 5 CSMP

(3) Output Control Statements

In the following statements, the arguments for the labels are given in
italics. The meaning of the arguments are:

list =

string

label =

TITLE string

LABEL string

RANGE list

PRINT list

PRTPLOT list
PRTPLT

PREPARE list

RESET Label

a list of variables
a string of alphanumeric characters

a CSMP label

To print out the string as the title of each page of the
print output. No continuation of line is allowed beyond
one line.

To print out the string as the title of each page of the
printplot output. No continuation of line allowed.

To print out the values of listed variables at minimum
and maximum values of the independent variables.

To print (tabulated) listed variables versus the
independent variable.

To produce plots by printer for the listed variables
versus the independent variable.

The PRTPLOT statement is certainly the most frequently
used output statement. There are a number of variations
on how the listed variables may be given to vary the
style of the plot. They are illustrated by examples
below:

Example: PRTPLOT X,Y,%2

Function: To produce 3 printer-plots: X versus TIME,
Y versus TIME, and Z versus TIME. (3
separate plots)

Example: PRTPLOT X(Y,7Z)

Function: To produce 1 plot of X versus TIME, with
values of Y and Z printed to the right of
the plot as a table.

Example: PRTPLOT X(-1.0,1.0,Y,2)

Function: Same as X(Y,Z) except with X-plot clipped at
lower bound and upper bound of -1.0 and +1.0
respectively.

Example: PRTPLOT X(-1.0,,Y,2)
Function: Same as X(Y,Z) except with the X-plot
clipped at a lower bound of -1.0.

Example: PRTPLOT X(,1.0,Y,7)

Function: Same as X(Y,Z) except with the X-plot
clipped at an upper bound of +1.0.

To prepare data for a X-Y plotter.

To reset listed labels that control the increments of
outputs, or increments of iterations.

CSMP Output Statements 207

RUNNING CSMP AT PITT

5.12 CSMP Job Preparation

CSMP is one of the high-order languages, in which the language primitives
are at a high level of sophistication. In the execution of such a program, the
general approach is to translate it successively down into a lower order
language by translators, compilers, assemblers, and finally down to the machine
language level for machine execution. Since FORTRAN compiler and assembler
already exist, it is naturally expedient to design a high-level language that
its associated translator would have the responsibility of only translating the
high-level program to the level of FORTRAN. From that point on, the existing
compiling-assembling mechanism can take over.

When a CSMP program is accepted by the CSMP processor, the processor
first builds a FORTRAN subroutine named UPDATE.TMP and a data file in your disk.
In generating the UPDATE.TMP* file, the processor accomplishes three major
tasks:

(1) The statements in the SORT section are placed in the proper order.

(2) The proper transfer of control for the various segments and sections
is established. . ;

(3) COMMON statements are established to make the proper variables
available between UPDATE and the CSMP modules.

After that, the FORTRAN compiler-loader takes over to build an execution
file in the standard way, and control is then passed over to the main program or
the calling program.

At the University of Pittsburgh, only CSMP II has been implemented on the
DEC-10, and certain CSMP utilities are yet to be completed. To run a CSMP
program on the Pitt DEC System-10, a minimum of 26K core is required, and more
for larger programs. Therefore, CSMP programs can only be run as a batch job
unless the user has a sufficently large time-sharing core allocation.

However, this does not mean that a CSMP job cannot be run on a terminal.
As will be explained next, a CSMP batch job may be either submitted in cards at
a card reader, or submitted throught a stored file from a terminal.

Thus, there are three common ways of running a CSMP program and they are:

(1) Card input with a CSMP deck,

(2) Card input a stored CSMP file,

(3) Terminal input with a stored CSMP file. Their preparations are
outlined below:

*It is named with a ™P (for "temporary") extension so that it may be easily
deleted later without affecting your other FORTRAN files in the disk.

208 CHAPTER 5 CsSMP

(1) Card input, with a deck of CSMP program cards

$JOB card Prepare a card deck with a sequence order
$PASSWORD card shown here. Prepare the CSMP program also
SCSMP in cards. Submit these cards in the usual
manner through a card reader.
(CSMP deck)
$EOD
SEOJ

(2) Card input, with stored CSMP program

$JOB card Store a prepared CSMP program on disk, and
$PASSWORD card name it, for example, as XYZ.CSM.

.R CSMP Prepare a card deck as shown, and submit
*XYZ7.CSM the job at a card reader.

SEOJ

(3) To run _a CSMP batch job at a terminal

Prepare two files and store them on disk. One is the CSMP program file
and name it as, for example, X¥Z.CSM. The other is a control file, and name it
as, for example, ABC.CTL. The control file contains the following lines:

$JOB line (See discussion below)
.R CSMP

*XYZ.CSM

$ECT

If it is desirable to capture the output data for such purpose as
editing, multiple copy printing, or preparing for plotter output, use the
following control file:

$JOB line
.ASSIGN DSK 6
.R CSMP
*XYZ7.CSM

SEOJ

After the execution of the program, the CSMP output will be captured as
FOR06.DAT, and no printer output is produced, unless later the user applies the
QUEUE command, such as:

.QUEUE FOR06.DAT/COPIES:3/FILE:FORT

The last switch /FILE is needed in order to handle the FORTRAN printer—-control
characters on the file.

Whether to submit a CSMP job from a card reader or from a terminal, the
$JOB card should be specified in this manner:

(1) Make a request for core allocation for at least 26K. Larger program
will require more.

CSMP Job Preparation 209
(2) Make a request for CPU time allowance- of 2 minutes. The standard
allowance is 30 seconds.
(3) Specify the RJE station where the output is to be produced.
(4) Specify page limit large enough for the output.

Example:
$JOB EXER4[115027,320571] /CORE: 26K/TIME: 2: 00,/L0C: 10/PAGES: 50

5.13 CSMP Job Execution

For CSMP batch jobs in cards, just read in cards prepared as described in
Section 5.12, Execution will take place when the batch job is executed, and
output is produced in the usual way.

If the CSMP jobs are submitted at the terminal, use OPRSTK command to
submit the job. (See also Chapter 7) Thus, at the terminal, issue a
monitor command:
.OPRSTK name
as log as a control file has previously been set up and named as NAME.CTL.

If a user has a time-sharing core allocation of 26K or more, he can run
the CSMP job on the time~sharing system by issuing a command at the terminal:

R CSMP
When a prompt symbol "*" appears, give the name of the stored CSMP file, 1In
this case, the output will be produced on the user's terminal, unless a monitor

command of ".ASSIGN DSK 6" has been previously given. In the latter case, the
output will be stored as FOR06.DAT.

5.14 Other Modeling and Simulation Languages

CSMP is a simulation language mainly for continuous system simulation by
solving dynamic model formulated in termsof a set of ordinary or partial
differential equations. There are other high-order languages that accomplish a
similar purpose, and some of these languages are available for the DEC-10
machine. Presentations of these languages are outside the scope of this book.
Therefore, they will only be listed as references:

(1) Analog-Computer Emulators These are languages emulating the
simulations formulated for analog computers. They were once very popular in the
1960's when analog computers were still heavily depended on for continuous
system simulation. The emulator MIDAS is one typical example. They are not in
general use now.

(2) simulation Language mainly for the solution of ordinary differential
equations.

ASCL Initial-value problem solver, run on UNIVAC 1100 machine.

CSSL Continuous System Simulation Language, developed by the control

210

DAREP

EASY

DYNAMO

MIMIC

PROSE

CHAPTER 5 CSMP

Data Corportion for CDC 6600 machine.

Differential Analyzer Replacement - Portable, University of
Arizona. Coded in FORTRAN except a few machine dependent
routines. Available for PDP-9, DEC-10, IBM/360, and CDC6600
machines.

A dynamic analysis language that provides both mcdular modeling
and modular simulation. Written in FORTRAN and run on CDC
machines. Versions for DEC and IBM are being developed.

A language developed by the Industrial Dynamics Group at MIT.
In spite of very crude method of differential equation solution
(Euler's method) , this language has been very popular among
social scientists because of its simplicity. This language is
available at Pitt.

CDC-developed language using 4th order Runge-Kutta method with
variable step-size. Rigid coding requirement but inexpensive
to run,

A simulation language available on the Control Data Cybernet.
It can handle discrete, continuous, or mixed simulation
problems.

(3) Simulation Language mainly for the solution of partial differential

equations.

PDEL

LEANS

DSs

PDLAN

Linear or nonlinear elliptic and parabolic partial differential
equations in one to three-space dimensions, and hyperbolic
equations in one-dimensional space.

Solution for elliptic, parabolic, or hyperbolic PDE in one— to
three~dimensional spaces and in orthogonal, cylirdrical, or
spherical coordinate systems.

similar to LEANS except for hyperbolic equations. Some of the
solutions use different methods.

System of parabolic PDE and mainly used in meteorology.

There is also a group of HOL simulation language for discrete system
simulation. Among them are SIMSCRIPT, GASP, CSL, SIMULA, and ASPOL. Some of
them are supported at Pitt. However, they are outside the scope of this book.

CSMP Examples 211
CSMP EXAMPLES

5.15 CSMP Examples

Several examples will be given here to illustrate the applications and
procedures of CSMP simulation.

Example 1

A typical DC power supply is based on a full-wave rectified sine wave
connected to a RC-network as a filter. One such circuit is shown below:

\Z‘
——t

Let vy, vy and v3 be the voltages across the capacitors Cy, Cp, and C3
respectively. Let iy, 1y, and i3 be the respective capacitor current.

For a particular case study, we assume the following parameters:

R1=10.5 ohms, R2=3.5 ohms, R3=100.4 ohms
Cl=45 mfds, C2=33 mfds, C3=202 mfds
Initital conditions: V10=0, v20=0, V30=0

Input: full-wave rectified sine wave, 1000 Hz with 5-volt peak

The problem analysis and modeling formulation is shown on the next page.

Capacitor currents: Change to integral form: Their CSMP statements:

. dv. iy
i) =¢ v= [at V1 = INTGRL(V10,I1/C1)
1
dv i
i,=¢ ac vy = J é at V2 = INTGRL(V20,12/C2)
. dvs . i3
i,=C & v g V3 = INIGRL(V30,13/C3)

By Kirchoff's Law of Voltage:

vo = Rziz + w3 iz = (v = »3) /Ry I3 = (V2-V3)/R3
Vo= Ryliy +i3) + v i, = (v - v, = Ryi) /R, 12 = (V1-V2-R2%I3)/R2
e = Ryl +1i,+ 1i3) +vy i, = (e—vl—Rliz—Rli3)/R1 I1 = (BE-V1-R1*I2-R1*13)/Rl

These are six equations for the circuit model, and six dependent variables are three capacitor
currents and three capacitor voltages. Note that the model may be reduced to three equations only,
containing as dependent variables of either three capacitor voltages or three capacitor currents. The
reduction is uncessary in the CSMP simulation, so we will just leave them in the unreduced form.

The full-wave rectified sine wave may be

e(t) et ez () synthesized by a multiplication of two time
E _ fuinctions:

- \ * e(t) = el(t) * 92(t)
v T 3 ¢ T/ T
-t iﬁ_'-é\/ % * 4 = and e

where e, = sine wave, , = square with
t cE- Frequency and phase relations as shown.

[4v4

G YAIAVHD

dWSD

CSMP Examples 213
The CSMP program for Example 1 is listed below:

INITIAL
TITLE EXAMPLE 1: FULL-WAVE RECTIFIER FILTER STUDY
PARAMETER R1=10.5, R2=3.5, R3=100.4, ...
C1=.000045,C2=.000033,C3=, 000202
INCON V10=0.0, V20=0.0, V30=0.0

DYNAMiC
* FULL-WAVE RECTIFIED SINE WAVE, 1000 HZ, 5 VOLT PEAK
E=(10.0%PULSE(.0005, IMPULS(0.0,.001))-5.0)* ...
SINE(0.0,6.283185E+3,.001)
* CIRCUIT MODEL EQUATIONS
V3=INTGRL(V30, | 3/C3)
V2=INTGRL (V20, 12/C2)
V1=INTGRL(V10Q,11/C1)
13=(V2-V3)/R3
12=(V1-V2-R2%|3)/R2
11=(E-V1-R1¥|2-R1¥|3)/R1

TERMINAL
¥ T=0 TO T=.002 IN FINE INCREMENTS
TIMER DELT=.00001,0UTDEL=.,00005,F INT IM=,002
METHOD RKSFX
PRTPLOT E,V3
* T=,002 TO T=0.4 IN COARSE [NCREMENTS
CONT INUE
TIMER OUTDEL=.01,FINTIM=.4
END
STOP

ENDJOB

The output is produced in two periods: in fine increments of 0.00005
second for t=0 to t=0.002 second, and then in coarse increments of 0.01 from
t=0.002 to t=0.4 second. The purpose of the coarse increments in this study is
to find the level of a steady state DC output, which is obtained from the
printplots as 3.184 volts. The output printout of the CSMP run contains many
parts: (1) a listing of the CSMP program, (2) a liting of the TIMER variables,
(3) problem durations, (4) range of dependent variables (maxmimum and minimum
values with respective time values), and (5) printplots as specified. The
output was rather voluminous, Only the filter output V3 printplots are
reproduced here for illustration, as shown in Figure 5.2. The output data are
also captured on a disk file (see Section 5.12), which are then plotted on a
Calcomp plotter. These plots are shown in Figures 5.4(a) on page 220.

214 CHAPTER 5 CsMp

FILTER OUTPUT PRINTPLOT FROM T=0 TO T=0.002 SECONDS:

Minimum v3 versus TIME Max.imum

0.0000E+0u 1.6391-01
TIME V3 H
0.0000E+00 0.0000E+)0
5.0000E-05 6.3121E-06
1.0000E-04 8.5250E~05
1.5000E-04 3.6753E-04
2.0000E-04 9.9247E-04
2.5000E-U4 2.0717g-u3
3.0000g-04 3.6685E-03
3.5000E~04 5.7878E-03
4.0000E-04 8.3743g-03
4 5000E-04 1.131BE-02
5.0000E-04 1.4463E-02
5.5000E-04 1.7641E-02
6.0000E-04 2.0790E-02
6.5000E-04 2.398BE-02
7.0000E-04 2.7357E-02
7.5000E-04 3.1008E-02
8.0000E-04 3.5010E-02
8.5000E-04 3.9377e-02
9.0000E-04 4.4060E-02
9.5000E-04 4.8960E-02
1.0000E-03 5.3930E-02
1.0500E-03 5.8808E-02
1.1000E-03 6.3542E-02
1.1500E-03 6.8216E-02
1.2000E-03 7.2959E-02
1.2500E-03 7.7889E-02
1.3000E-03 8.3081E-02
1.3500E-G3 8.8553E-02
1.4000E-03 9.4263E-02
1.4500E-03 1.0012e-01
S000E-03 1.0597E~01
5500E-03 1.1167E-01
6000E-03 1.1716E~01
6500E~03 1.2254E-01
7000E-03 1.2793g-01
7500E-03 1.3346E-01
BOOCE-G3 1.3921E-01
B8500E-03 1.45198-01
9000E-03 1.5137E-01
9500E-03 1.5766E~01
2.0000E~03 1.6391E-01

.
+
.
¥
.
+
—
-+
—

Bt bt bt b b b et b e

FILTER OUTPUT PRINTPLOT FROM T=0.002 TO 0.4 SECOND:

Minimum v3 versus TIME Maximum
1.6391E-01 3.1837E+00
TIME V3 H T
2.0000E-03 1.6391E-01 +
1.2000E-02 1.2151E400 —==mmmmmmmeme e -+

2.2000E-02 1.9041E+00
3.2000E-02 2.3520E+00
4.2000E-02 2.6430EH00
5.2000E-02 2.8322E+00
6.2000E-02 2.9552EH00
7.2000E-02 3.0352E+00
8.2000E-02 3,0871E+00
9.2000E-02 3.1209e+00
1.0200E-01 3.1428E+00
1.1200E-01 3.1571E+00
1.2200E-01 3.1664E+00
1.3200E-01 3.1724E+00
1.4200E~01 3.1763E+00
1.5200E-01 3.1789E+00
1.6200E-01 3.1805E+00
1.7200E-01 3.1816E+00
1.8200E~01 3.1823E+00
1.9200E-01 3.1828E+00
2.0200E-01 3.1830E+00
2.1200E-01 3.1832E+00 +
2,2200E-01 3.1834E+00
2.3200E-01 3.1834E+00
2.4200E-01 3.1835g+00
2.5200E-01 3.1835g+00
2.6200E~-01 3.1836E+00
2.7200E-01 3.1836E+00
2.8200E-01 3.1836E+00 +
2.9200E-01 3.1836E+00
3.0200E-01 3.1836E+00
3.1200E-01 3.1836E+00
3.2200E-01 3.1836E+00
3.3200E-01 3.1836E+00
3.4200E-01 3.1836E+00
3.5200e-01 3.1836E+0G
3.6200E-01 3.1836E+00
3.7200E-01 3.1836E+00
3.8200E-01 3.1836E+00
3.9200E-01 3.1836E+00

Figure 5.2 Printplots Output for V3 versus TIME

CSMP Examples

Example 2

A small rocket has an initial weight of 3000 pounds,
is fired vertically upward.

pounds of fuel. It

215

including 2400
The rocket burns fuel at a

constant rate of 40 pounds/second, which produces a constant thrust of 7000

poinds.

The drag force acts in the opposite direction of the motion,
obtained by two simplifying assumptions:

of velocity (D=Kv).

D=0.008 ()2

(2) The coefficient of aerodynamic
average value of 0.008 lb-sec /ft .

and it is
(1) It is proportional to the square
resistance K has an
Thus,

Fr for y>0

Therefore, the thrust T may be specified in the following way:

T

Jo0o

4 60 t

T = 7000 for 0g<tg60

T =0 for t> 690
In CSMP statement, it may be written as:

T = 7000.0% (STEP(0.0)-STEP(60.0))

The weight of the rocket, W, is also a time-varying function:

w
3oco
boo |- - _,_\,:—
o 60 t
D D
T T v\ﬁ T=0
Going Coming
up down

By Newton's Law,

or,

W

3000 -40 t for 0gtg60

X = 600 for t>60

In terms of CSMP, W may be written as:

W = 3000.0-40.0*RAMP (0.0) +40.0*RAMP (60.0)

Consider the rocket as a free body. The two
diagrams indicate the forces acting on the free
body. One diagram is for the rocket on its way
UP, and the other is for it on its way DOWN. The

difference is in the direction of the drag force,

which is always opposite to the motion. Let the
"y" be positive in the upward direction.

The net force UPWARD = Tg - Wg * D

where "+" sign is for downward leg, and "-" sign

is for the upward leg of the journey.

dzy +

@=Tg—Wg— 2

W 0.008 g (g_yE)

dy 2
Tg _ gt .008 g ()
w W

dgy
a2

|

Now reduce the second-order equation to a system of two simultaneous

first—order equations:

216 CHAPTER 5 CSMP

Let vel = ‘;lt The CSMP statements are:
Then, Mo ¢ T = INTGRL(0.0,VEL)
where F=Tg,/W~g0.008g (vel)” /W VEL = INTGRL(0.0,EXER)
and the initial conditions are: EXPR = THRUST*G/WEIGHT - G -~ ...

SIGN(1.,VEL)* (.008*G*VEL*VEL) /WEIGHT
y(0)=0 and vel(0)=0
where SIGN is a FORTRAN function.

The complete CSMP program for Example 2 is listed below:

INITIAL
TITLE EXAMPLE 2: ROCKET PROBLEM -
CONSTANT G=32.2, K=0.008

DYNAMIC
THRUST=7000.0*(STEP(0.0)-STEP(60.0))
WEIGHT=3000.0-40.0*RAMP(0.0)+40.0*RAMP (60.0)
EXPR=THRUST*G/WEIGHT = G - SIGN(1.0,VEL)*(KXG*¥VEL*VEL)}/WE|GHT
Y=INTGRL (0.0, VEL)
VEL=INTGRL(0.0,EXPR)

TERMINAL
TIMER DELT=.03125,0UTDEL=10.0,F INTIM=60.0
METHOD RKSFX
PRTPLT Y, VEL

CONT INUE
TIMER OUTDEL=1.0,FINTIM=70.0

CONT INUE
TIMER QUTDEL=0.1,FINTIM=120.0

FINISH VEL=-10.0

END
STOP

ENDJOB

The composite diagrams on the next page are the printer-output of the
simulation. From the VEL-TIME and the Y-TIME plots, the rocket reaches a
maximum velocity of 890.39 ft/sec at about 60.0 seconds, and reaches a maximum
height of 43,347 ft at 70.8 seconds.

CSMP Examples 217

Printplots of Velocity versus TIME:

TIME VEL H H
0.0000E+00 0.0000E+00 +

1.0000E+01 4.2446E+02

2.0000E+01 6.8238E+02

3.0000E+01 7.8040E+02 +

4.0000E+01 8.2477E+02 + lecs
5.0000E+01 B.5872E+02 Max veleci: 4
6.0000E+01 _8,9039E+02 D)

6.,0000E+01 8.9039E+02 +
6.1000E+01 6.1995E+02
6.2000E+01 4.6363E+02
6.3000E+01 3.5941E+02 ————mm—mmee— i
6.4000E+01 2.8316E+02
6.5000E+01 2.2351E+02
6.6000E+01 1.7436E+02
6.7000E+01 1.3207E402
6.8000E+01 9.4350E+01
6.9000E+01 5.9576E+01
7.0000E+01 2,6545E+01

7.0000E+01 2.6545E+01 +
7.0100E+01 2.3298E+01 +

7.0200E+01 2.0058E+01 +
7.0300E+01 1,6823E+01 +
7.0400E+01 1.3593E+01

7.0500E+01 1.0367e+01 +

7.0600E+01 7.1439E+00

7.0700E+01 3.9226E+00
7.0800E+01 7.0229E-01
7.0900E+01 -2.5176E+00
7.1000E+01 =5.7369E+00
7.1100E+01 -8.9545E+00
7.1150E401 -1.0562E+01

Printplots of Height versus TIME:

TIME Y
0.0000E+00 0.0000E+00
1.0000E+01 2.1767E+03
2.0000E+01 7.8895E+03
3.0000E+01 1.5284E+04
4.0000E+01 2,3328E+04
5.0000E+01 3.1749E+04 +
6.0000E+01 4.0495E+04

e

6.0000E+01 4.0495E+04
6.1000E+01 4,1236E+04
6.2000E+01 4.1772E+04

6.3000E+01 4.2181E+04 +

6.4000E+0L 4.2500E+04 +
6.5000E+01 4,2752E+04 +
6.6000E+01 4.2951E+04

6.7000E+01 4.3103E+04 +

6.8000E+01 4.3216E+04 +
6.9000E+01 4.3293e+04
7.0000E+01 4.3336E+04 +

7.0000E+01 4.3336E+04 +

7.0100E+01 4.3338E+04 —
7.0200E+01 4.3341E+04 e o e e e e e e +

7.0300E+01 4.33426404 +

7.0400E+01 4.3344E404 ;

7.0500E401 43345404

7.0600E+01 4.3346E+04

7.0700E+01 4. 3347E+04 '

7.0800E+01 4,3347E+04 @) Max
7.0900E+01 1.3347E+04 h s {
7.1000E401 4. 3346E+04 + eigh
7.1100E401 4.3346E+04 .

7.1150E+01 4.3345E+04

Figure 5.3 Composite Printplots of Example 2

218 CHAPTER 5 CSMP

Example 3

We now conclude with an example which would not be normally considered as
an engineering study.

Let us consider a dynamic model of influenza epidemic. We first make
three assumptions: (1) The disease spreads when a susceptible person comes in
contact with a infected person. (2) A person who recovers from the influenza is
normally immune for a certain period of time. (3) Immunity is ultimately lost,
and the person becomes susceptible again to the disease.

In addition, for the sake of model simplicity, we assume no birth and no
death occur to the group of population under study.

So the population under consideration is composed of three groups:

Group CSMP Variable
Susceptible population SUSP in no. of persons
Infected population INFP in no. of persons
Immuned population IMMP in no. of persons

Define the rates in the following manner:

IR = Infection rate, no. of persons becoming infected each day
RR = recovery rate, no. of persons recovered each day
[R = loss-of-immunity rate, no. of persons/day who loses immunity
Thus, A(SUSP) = (LR — IR) At
= increase of susceptible persons per day
d(SusP) _ . _
T T MRoIR
.. d(INFP) _
similarly, 4 " IR - RR
d(IMMP) _ _
It RR - LR

There are three other equations, each defining the relations of the rates
IR, RR, LR. IR is proportional to SUSP and to INFP, and therefore proportional
to their product. Thus,
IR = K * (SUSP) * (INFP)
If the disease requires (PD) days to run its course, then
RR = (INFP)/PD
If the period of immunity lasts for PIMM days, then
IR = (IMPP)/PIMM
These six equations constitute the dynamic model of the influenza epidemic.
Now let us study one particular case of dynamic simulaticn. Suppose we

have a population of 1000 persons. On day 0, one person is sick, 999 persons
healthy, and nobody immunized. This gives us three initial conditions:

CSMP Examples 219

SUSP(0) = 999, INFP(0) = 1, IMMP(0) = 0
For the last three equations, we assume the following parameters:

K = 0.001, PD = 8 days, and PIMM = 1000 days.
The CSMP program for this example is listed below:

INITIAL
INCON SUS0=999.0, INFO=1.0, IMM0=0.0
PARAMETER K=0.001,PD=8.0,PIMM=1000.0

DYNAMIC
IR=K*SUSP* INFP
RR=INFP/PD
LR=1MMP/P I MM
SUSP=INTGRL (SUSO, LR-1R)
INFP={NTGRL (INFO-IR~-RR)
IMMP=[NTGRL (IMM0O,RR~LR)

TERMINAL
TIMER OUTDEL=1.0,F INTIM=45.0
PRTPLT SUSP, INFP, IMMP
END
STOP

ENDJOB

The plots are made on the CalComp plotter with the "captured" data from
the CSMP run, and they are shown in Figure 5.4(b) on the next page. From these
plots and those printouts from the CSMP run, the epidemic simulation concludes
that the crisis of the epidemic occurs on the 10th day when 613 out of 1000
persons are sick. After that, crisis passes and the infected population is
reduced to 13 persons on the 45th day.

oy

i
yanor

e

.

Y Ta

e e e
1 In sedonos wid

FILTER INPUT VOLTRAGE

¥3 I voLTS,
ot ? RS

o

T TE v

DT
Tine“tw seldho 1ad

FILTER OUTPUT TRANSIENT

'
GRS e s

F T T - I T
i TINE N KSECEND

FILTER OUTPUT TRANSIENT

(a) CalComp Plotter Output of Example 1

e Y AR L RS e e

n

N

3
NN e T hm e Eam am R
Tine in‘Bars

SUSCEPTIBLE POPULATION IN AN EPIDEMIC MODEL

(b) CalComp Plotter Output of Example 3

Figure 5.4 CalComp Plotter Output of CSMP Examples

S YALAYHO

H H
E H
H :
g &
I~ =2
s =
o2 E]
H :
2 Ll
3
Vo . 1) £ an N) 1 e - -

LT W
Tine N Dars

IMNUNIZED POPULATION IN AN EPIDEHIC MODEL

e fm W
Ting INDars

INFECTED POPULATION IN AN EPIOEMIC MODEL

dWs)

CSMP Exercises 221

EXERCISES

1. Write CSMP functions for the the following time-functions, and verify by
CSMP printouts:

(b) Y| Half-wave rectified sine
10
" Time in / -t
ol .5 1.0 1.5 msec. 0 .5 1.0 1.§ 2.0 Mmsec.
(c) Trapezoidal pulse train (d) An arbitrary function
Y Y
i \
] !)
H 1 1 t 1
b Do ;
! ! Timein vl 0.5, . 1 in
Dlot 04 05 1.0 L5 20 msec oot 03 VW ¢t 13 msec.

2. The following differential equations have known analytical solutions. Use
CSMP to obtain their computer solutions and verify them with the given
analytical solutions. Specify different methods and compare the
accuracy of the results.

') -2t Bt E 1 -2t
(a) y'+3y=x+e Solution: ¥ = - 3 3" g5 te
y(0) =0
2 2 . 2
(b) y'=1+t+y +ty Solution: y = tan(t+t /2)
y(0) =0
2 -t
(¢ (I-vy" + ty' —y = 2(t-1) e for 0<t<l £ 1 -t
y(0)==0.5, y'(0)=0 Solution: v = -e +2t- 3¢ (2t-1)
(@ y'"-y' =t Solution: € -t x2
y(0)=6.0, y'(0)=0, y"(0)=1.0 y=1+2 + 3 - °—
3. A square wave of 10 volts amplitude is applied to a RIC circuit as shown.
By CSMP, find the current as a function of time,
v (a) R = 1000 ohms
(b) R = 400 ohms
lo — (c) R= 100 ohms
tin 0.1 henr
0 05 10 s 2.9 msec ‘ © y
-0

222

CHAPTER 5 CsMP

4, The circuit shown is a sixth-order circuit, and its behavior is given by a

matrix equation:*

2 Sttt .
L'l __’ % Y% 1Ll P
> >
Yot B o 63 LE Gx 6,8 vy
o] Fé 2o 2wl [ET
v, g 0 0 -z 0 -z [y &
G ! /
J - - -—
v, , 0 0 Z, o, v, 0
v 0o 0 0 0o 0 g v, 0
= . -+
i L 0 0 o0 0 0 i, 0
Ll
' A :
i, 0 Z 0 0 0 0 i, 0
R
N Lo 2 -3 i
A oot B 2 D

Find the current i , 1 , and i as functions of time by CSMP simulation.

Use: G, = .00l mho, G, = .002 mho, and G 3= .01 mho;
L, =.1h, La= .5h, and Lz = 1.0 henry;
C, = 10 mfds, C, = 25 mfds, and C; = 100 mfds.
i, = 10 milliamperes.

ball is rolling off the edge of a flat roof 30 feet from the ground.
When it leaves the edge, it was travelling at a speed of 5 feet per
second. When the ball hits the ground, certain fixed percentage of
kinetic energy was absorbed. That percentage depends on the type of
ball: superball 5%, rubber ball 15%, basket ball 55%, iron ball 90%.
Assume the angle of incidence is equal to the angle of reflection when
the ball bounces up. Find the x- and the y-component of the velocity of
the bouncing ball after it leaves the roof. Do this for each of four
kinds of balls,

6. A sinusoidal force (F=12 sin(4t)) applied to the following mechanical

system. Find the displacements X,, x, and X3 at TIME=2.0. (Answer:
-0.2075, -0,2707, 0.4517)

(L. + + [- [T
m, xy (k1 k2)xl exy k2x2 cxy 0

L I - L. =
m,x, + (k2+k3)x2 + cx; k2xl cxy k3x3 0

Il+ - = i .
moX3 k3x3 k3x2 12 sin(4t)

where: m, = 2.3, m2=3.4, m3=0.9

k1=19'0’ k2=45.0,k =12.0, c=0.8

3

CIRCUIT THEORY, by L. P. Huelsman, Prentice-Hall, Inc., 1972; pp.362-366.

*BASIC

CSMP Exercises ’ 223

7. A control system has a transfer function 1/(s*+s+l) .
(a) Find the transient response to a unit step function.

(b) Find the frequency response over the range of 0.1 to 10
radians/second.

8. Suppose a cantilever beam of length 30 inches and weighing 10 1b/in is
subjected to a horizontal tensile force of 100 1b applied at the free
end. Taking the origin at the free end and the y-axis positive upwards,
the equation of the beam is:

Y

Ely" =Py - w x1/2 !
g— 30"
where E = Young's modulus, 30E+06 psi
I = Moment of inertia = 0.01042 in
w = linear weight per length
= 10 1b/in

P =100 1b L e

y'= deflection of beam

The beam is so placed that at x=0, y(0)=0, and y'(30'=0. Find the
maximum deflection at the end of the beam.

9. When a bomb is dropped from an airplane, it encounters an air resistance
proportional to the square of the velocity, and acquires a velcity of
125 ft/sec in falling a distance of of 343 feet, find the time elapsed
and the limiting velocity.

Note to the Instructor:

The purpose of this group of exercise problems is to familiarize with the
CSMP programming and execution. The derivation of models, however important, is
not the main goal of these exercises. 1In this context and depending on the
background of the class, additional problems may be found from many standard
texts in physics, circuits, mechanics, control systems, etc., where dynamic
behaviors are discussed.

224

CHAPTER 5 CsMp

REFERENCES

IBM GH20-0367-4: SYSTEM/360 CONTINUOUS SYSTEM MODELING PROGRAM USER'S
MANUAL, Program No, 360A-CX-16X; Fifth Edition, 1972.

A GUIDE TO USING CSMP - THE CONTiNUOUS SYSTEM MODELING PROGRAM, Frank
Speckhar and Walter Green, Prentice-Hall, Inc.; 1976.

APPLIED NUMERICAL METHOD FOR DIGITAL COMPUTATION WITH FORTRAN AND C(SMP,
Second Edition, M. L. James, G. M. Smith and J. C. Wolford,
chapter 6, pp. 569-636, Harper and Row Company; 1977.

DEC-10 System Help File: SYS:CSMP.HLP, Computer Center, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1978.

MCDELING AND SIMULATION BY CSMP, Class Notes for EE45 (Computer
Application I), T. W. Sze, University of Pittsburgh, Pittsburgh,
Pennsylvania; 1980.

A CSMP PRIMER, Class Notes for EE45 (Computer Applications I), T. W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1980.

ENGINEERING SIMULATION USING SMALL SCIENTIFIC COMPUTERS, Manesh J. Shah,
Prentice-Hall, Inc., Englewood Cliffs, NJ; 1976.

MATHEMATICAL MODELING WITH COMPUTERS, Samuel L. S, Jacoby and Janusz S.
Kowalik, Prentice-Hall, Inc., Englewoord Cliffs, New Jersey; 1980.

CHAPTER 6

A PRIMER OF COMPUTER GRAPHICS WITH DEC-10

Computer graphics is defined as "the art and the science of producing
graphical images with the aid of a computer." (Reference 1)

For many years, the computer field has tried to break out the bottleneck
of computer-human communications by using pictures rather than printouts. The
idea is an old one. After all, "a picture is worth ten thousand words." Hence,
earliest use of computer graphics was simply to present data in graphical form.
But earlier computer graphics was very expensive. Hardware was costly, but far
worse was the software cost. They were machine-dependent and programming was on
the assembler language level. Much of the acceptance of the present-day
computer graphics is attributed to these developments:

(1) Development of user—accessible software of computer graphics in the forms
of FORTRAN callable subroutines. This puts the application of computer
graphics at the user's hand, rather than at the hand of a professional
programmer .

(2) The time-sharing mode of computer operations is further enhanced by the
computer graphics with its clarity of man-machine interaction.

(3) LSI and microprocessor development has rapidly brought down the cost of
computer graphics hardware.

Computer graphics, of course, can do much more than plotting nowadays.
In fact, it becomes a branch of computer processing that has most caught the
imagination of the non-computer world. We find its applications in
computer-aided design and manufacturing, simulation of training environment, and
science fiction motion pictures and many other widely different fields.

6.1 Computer Graphics and Computer Graphics Devices

Using the definitions of Ivan E. Sutherland, a pioneer in computer
graphics, there are two types of computer graphics systems now in common use:
rasterized systems and calligraphic systems.

The rasterized systems make picture the same way a television set does.
It is drawn in a fixed sequence, usually from the left to the right and from top
to bottom. It has the advantage of simpler and less expensive implementation,

225

226 CHAPTER 6 COMPUTER GRAPHICS

as it is compatible with the conventional mass-produced display devices such as
terminals, printers or video display sets. Implementation of computer graphics
of this type, however, requires much computer effort in sorting the display
information in the sequential display, a process called rasterization. If the
display data are altered, the graphic data would require another rasterization.

The calligraphical systems, on the other hand, will construct a picture
in any sequence of plotting given by the computer. The picture-drawing element
is a mechanically moved pen of a plotter or an electronically controlled
electron beam in a cathode-ray-tube (CRT) display. The pen or the electron beam
is moved from one point to another at the command of the computer. When the pen
is held down on paper, or when the beam is turned on, it traces a line on the
paper or the screen during its movement. When the pen is up, or when the beam
is blanked, it moves the picture-drawing element to another point without
leaving a trace. This is exactly the same process of preparing a line drawing
manually. The advantage of using a calligraphic device is that the information
on sequence of tracing can be stored in the computer in any order. Any
alteration of the display data can be simply made by revising the stored data.

The decade of 1970's has been a period of time that brought in the
large-scale integrated circuit (LSI) into digital electronics. As a result, the
computer graphics enjoyed a phenominal growth both in hardware development and
in applications. Unfortunately, there has been very little coordination in the
growth. As a result, different types of graphic hardwares use different
software packages, most of which are not compatible to each other. Although
energetic efforts have been made in the United States and abroad to standardize
the graphics field (References 3 and 4), progress has been slow.

In this chapter, the introduction to the computer graphics will be by
necessity restricted to the available hardware/software packages for the DEC-10
at a local installation. For this reason, readers should check with their own
installation regarding the available graphic hardware and software. The
hardware graphic devices are listed as follows:

1. Rasterized devices

Terminals

Line printers

Image display devices
2. Calligraphic devices

Plotters
Graphics terminals

For the graphics usage on DEC-10, the materials will be presented in
three parts. In each of these parts, certain devices in the above list will be
employed. The parts are:

1. Graphing and plotting

2. General graphics

3. 3-Dimensional graphics

Printer Plots 227

GRAPHING AND PLOTTING

Let us consider the steps we take in plotting a graph after the x-y array
data have been determined:

(1) Assign dependent and independent variables respectively to the x and
y axis. i

(2) Determine the range of the ordinates and abscigsas.

(3) Since the plotting field is usually fixed, we map the range of
abscissa and ordinates onto the fixed paper ranges. This is called virtual
graphics, a term we will use very often later. Its explanations will also be
left for latter treatment.

(4) After the range is determined, choose a scale factor.

(5) As the independent variable is incremented, we determine a dependent
variable value for that point, and then determine by scale factor the position
of that point on the plot. When this step is repeated as x-variable
incremented, points are Jjoined by either straight lines, or a smooth (French)
curve, or a best-fit curve.

We will now consider the plotting and graphings on both the rasterized
and the calligraphic devices.

6.2 Plotting on a Terminal or Printer

Both the terminals and the printers are rasterized devices. There is
only one direction the paper may be advanced. We are excluding certain more
costly terminals that has paper movement control (forward and backward) built
into the device.

Plotting and graphing on a terminal or a printer is basically the
sequential outputing of a character-print line. Iet us consider a typical case.

Consider a FORTRAN format of (101Al) for use by a character array LI(I)
with I runs from 1 to 101. Thus there are 101 print positions from 0 to 100.
Now, the data point values are generated and the maximum and the minimum values
of the ordinates can be determined. The range for the ordinates (Ymax-Ymin) can
then be calculated. With the bounds of the ordinates establighed, any value
within the bound can be mapped into a proportional value within the print
position bounds of 0 to 100. This will then establish a print position for that
particular ordinate. Thus, if the LI-array is initialized as blank (Octal word
code "200000000000) , the LI-element at the print position, say at position KK,
is set to an ASCII character of a plot symbol, such as a "*", Thus, LI(KK)='*",
while LI-element is blank everywhere else, When this array is now printed with
a (101Aal) format, a symbol of "*" is printed as a scaled ordinate. The LI-array
is then re-initialized to all blanks, and the process is repeated for the next
ordinate value.

228 CHAPTER 6 COMPUTER GRAPHICS

There are many amenities that can be built into such a plotting routine.
For example:

a. Scale factor printed along with the graph;

b. Choice of scale factor 1limited to 1,2, or 5 or their integer
(positive or negative) powers of ten;

c. Graph with or without grid lines;

d. Multiple curves on one plot;

e. Cartesian plots, semilog plots, log plots, or polar plots;

£. Curves occupy 60-90% of graphing space for neat looking plot.

Terminal or printer plots have the advantages of being inexpensive and
fast turn-around. Unlike a plotter plot, they can be immediately produced on
the user's terminal or an accessible printer, and the turn-around time is very
short. However, there is at most about 101 print positions, so the resolution
of a plot is not good. The worst case would be a curve that is almost
horizontal or almost vertical. An almost horizontal curve will have an
appearance of a staircase such as shown below:

dkkkdkkkrk

\ KedekKk Kok kdk
TT— Fkkkkhkkkk

Jekdookkk ok ok Kk

A Straight Line Line as appeared on a Printer Plot

Thus, the chief usefulness of a terminal or printer plot is to provide a
quick and inexpensive way of graphical output, when high resolution and polished
drafting quality are not as important requirements.

Consequently, it would not be cost effective for any user to design and
implement his own plotting routine, except as a format—exercise, because there
are so many already available, and because its plot quality is poor.

For the remaining portion of the discussion of plotting and graphing,
materials will be devoted to the presentation of several typical available
plotting softwares that are either FORTRAN-callable subroutines, or stand-alone
interactive programs. In both cases, the users are spared from the drudgery of
laborious construction of axes, determination of scale factors, marks on the
axes, design of mapping formula, and so on.

For the terminal or printer plot routines, several FORTRAN subroutines in
the Engineering Program Library will be presented below. These graphical
routines are available for wuser's call under the collective name of
ENG:GRAPH.REL. Thus the standard way of calling a library routine in conjuction
of your main program (assuming named as PRGM.FOR) is to issue a monitor command
of:

.EXECUTE PRGM, ENG:GRAPH/LIB

PLOT8 Subroutine

(1) The PLOT8 Subroutine

The subroutine call is: CALL PLOT8(Y,NF,NP,X1,XINC)

where the parameters are defined as follows:

229

Y a 2-dimensional real array Y(I,J) for the ith function and jth
value. Maximum size 1is 8 functions. The calling program must
have the Y-array dimensioned at Y(NF,NP). The Y-array will be
altered upon the return of this subroutine.

NF number of functions to be plotted; max NF= 8,

NP number of points to be plotted for each function. Max=151.

X1 value of the first abscissa

XINC value of X-increment. This subroutine is for a plot that the
x-increment is constant.

A terminal or printer-constructed plot is produced. The
positive direction of the independent variable is taken as
downward on the printed page. The symbols for up to 8 curves are
assigned as:

Function: 1 2 3 4 5 6 7 8
Symbol : * + # X o B - =

If points of different functions occupy the same print
position, the joint symbol at that print position is a "$". For
convenience, the numercial values of the first function are
printed along the left edge.*

Example: Graph three functions, whose data are stored respectively

in DA.DAT, DB.DAT, and DC.DAT. Each data file contains a

Y-array of the same number of elements (NP=46).

Also,

X1=0, and XINC=1.0. The program (named as SAMPLE.FOR) that

calls the subroutine is listed below:

REAL Y(3,46)
CALL IFILE(l,'DA')
CALL IFILE(2,'DB")
CALL IFILE(3,'DC")
50 FORMAT (F)
DO 10 1=1,3
READ(I,50) (¥ (I,J)
CALL PLOT8(Y, 3,46,
10 CONTINUE
END

The execution command is: " .EXECUTE SAMPLE,ENG:GRAPH/LIB" The output of

this program is shown on Figure 6.1 on the next page.

*If this output is produced on a terminal, a right margin setting should be

preset by a monitor command of "TTY WIDTH 132".

Values of
Function 1

The Scale Factor of Ordinate:
The Scale Factor of Abscissa:
First Abscissa Value:

NOTE: In interprefing the plot, X-axis starts with X(1) value.

t Division= 0.20000E+02
1 Division= 0.10C00E+0t
X{1)= 0.00000E+00

Other X's can be computed from X(1) and abscissa scale factor.

(Multlply by Scale Facior 0.,20000E+02}
20 3 60 170

9990E +03
9974E+03
9936E+03
9846E+03
9637E+03
91738403
82326403
6642E+03
4617E+03
2781E+03
1538E+03
8353E+02
0.4658E+02
0.2730E+02
0.1701E+02
0.1134E+02
0.8111E+01
0.6236E+01
0.5141€+01
0.4519€+01
0.4195E+01
0.4070E+01
0.4083E+01
0.4197E+01
0.4387E+01
0.4639E+01
0.4942E+01
0.5288E+01
0.5673E+01
0.6092E+01
0.6543E+01
0.7024€E+01
0.7532E+01

covoocooo00000

1458E+02
1533E+02
1609€+02

coocooovo0

X¢

X

X(

x(

X(

x¢

X(

*

*

-
-
>

-

R AN K K K KK R R K K K K K K K K K K
o+

LRSS

ok ok

+
+

A m s x

o

10 70

20 30 40 50 60
(Myltiply by Scale Factor 0.20000E+02)

Figure 6.1 Output from the Subroutine PLOT8

80

0€T

9 YAIAYHD

SOTHAVYD YALNAWOD

ENG:GRAPH Package 231

HELP file for ENG:GRAPH Package:
hkkkkkkhkkkkkkxkkkkkkikk

* SUBROUTINE PLOT8 *
L T T T

SUBROUTINE PLOTS8 (Y,NF,NP,X1,XINC)

Subroutine to plot up to "NF" curves on the same plot
with automatic scaling and choice of best scale factor

Y 2-dimensional real array Y(i,j) for the ith function,
and jth value. Max i=8, max j=151.
NF number of functions to be plotted, max =8
NP number of points for each function, max=151
Each function must have the same NP.
X1 first abscissa value

XINC increment of X's

Ordinates of the first function will be tabulated on the left
side of the plot. When points from different curves coincide,
they will be plotted as a single point marked with "$" symbol.

By T. W. Sze, December 10, 1972; single curve plot
Revised TWS, October 8, 1977; multiple-curve plot

* % % % %k % % k H % % ¥ ¥ F % % % ¥ ¥ F F F *

dekdkdokkh ok kdk ko kokkdokk ok ko k
* SUBROUTINE XYPLOT *

kkkkkkkkhkkkhkkkkhkkkkhkk

SUBROUTINE XYPLOT (X,Y,ND)

Subroutine to plot a x-y plot with automatic scaling and choice
of the best scale factor. The increments of abscissa may be
unequal, the x-array need not be in ascending order, nor need
they be unique from each other. Therefore, this routine may
be used to plot a multi-valued function, such as a complete
circle.

This is also the backbone routine for polar plots, semilog - log
plots. In polar plots, polar coordinates are first transformed
into Cartesian coordinates. In log plots, logarithmic trans—
formation is done on the values first. After transformation
of data, calling XYPLOT routine would produce a polar or log

plot.
X,Y one-dimensional array X(i), Y(i), with max i= ND
ND number of points for the function
NSX maximum abscissa scale value used in the plot
NSY maximum ordinate scale value used in the plot
NNP total range of values of the acscissa scale desired for
the plot.

By T. W. Sze, October 20, 1980

F O % ok k% % % % % ok F % Ok % X H % % ¥ ¥ ¥ ¥ X ¥ * * ¥

s
-

10

-

s
-

20

SUBROUTINE PLOTS{Y NF,NP,XL,XINC)

REAL Y (NF,NP) ,YM(2)

INTEGER L(11),L1(101) ,SYMBOL(8) . L
JB=blank is used in IF statement, requiring precise definition.
Lower case "x" code is *740000000000, left justified.

Lower case "o" code is "674000000000, left justified.

DATA JN,JP,JI,Jz/*-*,'+',"1","$"/,J8/"200000000000/

DATA SY!BO[/' e, i "740000000000,'5'[4000000000,

1

m(l)-—l UE+36~ YM(2)= 1.0E+36
To establish range of Y's

0 10 I=1,8

0O 10 J=1,NP
YM(1)=AMAXL (YM(1) ,X(I,J)); YM(2)=AMINL(YM(2),Y(1,J))

CONTINUE
RANGE=YM(1)~YM(2)
To establish the best scale factor for ¥'s
CALL SCALE (RANGE, YM(2) ,SF,NS)
WRITE (6,1000) SF; WRITE(6,1010)XINC; WRITE(6,1020)X1
WRITE (6,1030) ; WRITE(6,1040)

Start plotting

NeG
Print ordinate scale

0o 20 1=1,11

L{1)=10*1-1104NS

WRITE (6, 1050) SF; HRITE(S 1060) (L(1) ,1=1,11)}
Construct ordinate graph 1

ND=0
D0 30 1=1,10
ND=ND+1; LI(ND}=JP
DO 30 J=1,9
ND=ND+1; LI(ND)=JN

CONTINUE
L1(101)=JP
WRITE(6,1070) L1
XNS=NS

@ TO %0
Change numerical data to symbols at right print positions

DO 50 1=1,NF
KK=Y(I,N)/SF + 101.4999 - XNS
1P (KK. GE. 101) Kk=101
IF (KK.LE. 1) KK=1
IF(L1 (KK) .NE.JB) LI (KK) =32
IF (L (KK) .EQ.JB) LI (KK) =SYMBOL (I)
CONTINUE

To calculate the length of a print line
DO 60 1=1,101
1x=102-1
IF (LI (IX) .NE.JB)GOTO 70
ONTINUE
LENGTH=1X
IF (MOD(N,5) .EQ.0)Q0 TO 80
H‘RITE(S 1080)¥ (1,N) , (LI (1) ,1=1, LENGTH)
WRITE(G,lOQO)Y[l.N) JN,JP, (LI(1),I=1, LENGTH)
Reset the line to all blanks, and begin next plot line

0O 100 1=1,101
LI(1)=JB

110

120

1000
1010
1020
1030

1040
1050
1060
1070
1080
1090
1100
110

N=N+1
IF (N.LE.NP)GOTO 40

End of graphing, construct bottom Y-axis
=0

DO 110 1=1,10
ND=ND+1; LI{ND)=JP
DO 110 J=1,9

1

ND=ND+
LI (ND)=JN
CONTINUE
LI(101)=Tp
WRITE(6,1070) L1
DO 120 121,11
L{1)=10*I-1104

CONTINUE
WRITE (6,1110) (L(I),I=1,11); WRITE(6,1100)SF; WRITE(6,1040)
RETURN

FORMAT (/45X ,42H The Scale Factor of Ordinate: 1 Division=, E12.5)
FORMAT (45X, ' The Scale Factor of Abscissa: 1 Division=",E12.5)
FORMAT(53X, " First Abscissa Value: X(1)=",E12.5)

FORMAT (/40X , 'NCTE: 1n interpreting the plot, X-axis starts with'
1,' X(1) valuve.',/45%,' Other X',1H',"s can be computed ',

2 'from X(1) and abscissa scale factor.')

FORMAT (/)

FORMAT('* Values of',40X, ' (Multiply by Scale Factor *,El2.5,')')
FORMAT('* Function 1',6X,11(I5,5X))

FORMAT (1H*,3X, ' ~—— —~",9%,101A1)

FORMAT('* ' ,E12.4,2%," 1',101A1)

FORMAT('* ',E12.4,' X({',13,")',Al,101A1)
FORMAT(***,52X, ' (Multiply by Scale Factor ',E12.5,%)') -
FORMAT("**,19X,11(15,5X})

B

SUBROUTINE XYPLOT(X,¥,ND)

REAL X (ND) ,Y (ND)

INTEGER L(11),LI(101),SYMBOL

DATA SYMBOL,JN,JP,JI,J2/'*,'-","+','1','$"/,JB/"200000000000/
NDM=ND-1

** Arrange data in ascending order of X
e

0

4o

0O 10 I=1,NDM
IA=T+1
DO 10 J=1A,ND
IF(X{1) .LE.X{J))6G0T0 10
TEMP=X(I): X(I)=X(3); X{J)=TEMP
TEMP=Y (1}; Y(I)=Y(J); Y(J)=TEMP
CONTINUE

** To establish the range of ¥'s
*

YMAX=-1.0E+36; YMIN=1.0E+36
1)

lF(Y(I) GI'.YMAX) YMAX=Y(I)
IF(Y(I) .LT.YMIN) YMIN=Y(I)
CONTINUE

RANGEX=X (ND)~X (1) ; RANGEY=YMAX-YMIN

CALL SCALE (RANGEX . XMIN, SCLX,NSX)

CALL SCALE (RANGEY , YMIN, SCLY NSY)

WRITE (6, 1000) SCLX, X (1) , X (ND)

WRITE (6,1010) SCLY , YMIN, YMAX

WRITE(6, 1060)

WRITE (6, 1020)sCr.x

DO 40 1=1

'(:; r(:)/scgr X(L)= (I~ XMIND/SELR
CONTINE

Listing for ENG:GRAPH.FOR

(44

9 YAIAVHO

SOTHAVID YAINAWOD

NNP=100; NSX=100; LENGIH=101
NP=100; XNP=100.U; XNS=1UU.U; YNS=NSY

** print ordinate scale figures
DO 60 1=1,11

60 L{1)=10*1-1104NSY
WRITE (6,1030) L

#* plank out all print characters

DO 70 1=1,101
70 LI(1)=IB

*+ Start Plotting
N=0;K=1

** prepare print line for the y-axis
*

80 No=0
00 % 121,10
NO=NQ+1; L1(NQ)=IP
DO % J=1,9
LI(NQ)=IN
%
L1(101)=JP

IF (N.NE. 0)GOTO 110
** Scale abscissa data
100 NX=X (K) *0 . 6-XNS+XNP+0 . 499999; NX=1ABS(NX)
*» Check to see if data is sorted for current abscissa value

1F(NX.EQ.0)GOT0 110
IF{NX.GF.NP)NX=NP

110 1F ((N¥.NE.N)} . AND, (N.EQ.0))GOTO 130
IF ((NX.NE.N) .AND. (N.NE.0) }GOTO 120

** Scale ordinate data
*

KK=Y (K) +101 .499999-YNS
IF (KK. LT. 1) LI (1)=J2
IP{KK.Gr. 101) L1 (101)=J2
IF ((KK.GE.1) .AND, (KK.LE.101)) L1 (KK) =SYMBOL
K=R+1
IF (K. IE.ND)GOTO 100
120 DO 112 I=1,101
IX=102-1
IF (LI (1X) .NE.JB)GOTO 114
112 CONTINGE
114 LENGMH=IX
IF (N/6.GT. (N-1)/6)GOTO 130
>
** Print line and data without abscissa label
-

WRITE (6,1040) (LY (1) , I=1,LENGTH)
Q10 140
130 NN= (N*10) /6HNSK-NNP
Py
** Print line and data with abscissa label
e

WRITE (6,1050) NN, (LI (1) ,I=1,LENGTH)
140 1F(K.GE.ND)GOTO 160

150
s

*x Set

170

1000
1010

1020
1030
1040
1050
1060

8

Listing for ENG:GRAPH.FOR

0o 15u 1=1,101
L1(1)=JB

up abscissa graph lines

ONA

LI(1)=JI
1F (N/6.GT. (N~1) /6) L1 {1) =JP
GOTO 110

NQ=0
O 170 1=1,10
NORNQHL; LI(NQ)=JP
DO 170 J=1,9
NO=NQ+1

LI (NQ)=JN
INUE

LI(101)=JP

WRITE (6,1040) L1
DO 180 I=1,11
L(I}=10*I-110+NSY
WRITE (6,1030)L
WRITE (6,1020) SCLY
WRITE (6,1060)
WRITE (6,1060)

obeyoed HAVID

RETURN
PORMAT(/18*,24X, ' The Scale Factor of Abscissa: 1 Division=',
1 El2.5/1H*,32,' First point at ', E12.5/
1H%*,32X,"' Last point at ', E12.5)
PORMAT (1H*/1H* ,24X,' The Scale Factor of Ordinate: 1 Division=*,
1 E12.5/1H*,32X,' Range of Ordinates: Y¥Ymin=',EI2.5,
2 /18*,55X,'Ymax=",E12.5)
FORMAT (1H*,29%, 'Y-Axis (Multiply by Scale Factor',E12.5,')')
FORMAT(** ',11(14,6X))
FORMAT (** *,101a1)
FORMAT (1H*,14,101A1)
FORMAT(///)

SUBROUTINE SCALE {ZRANGE,ZMIN, ZSF,NSZ)
YPD=ZRANGE/90.; NYPD=YPD

YPD=10.*YPD; NYPD=YPD
IF (N¥PD.QT.0)GOTO 20
CONTINUE
RSF=10.**(-1+1); YPD=.5*YPD; NYPD=YPD
IF (NYPD.GT.0)GOTO 40
ISF=.2*RSF
@ T0 0
YPD=. 4*YPD; NYPD=YPD
IF (NYPD.GF.0)GOTO 50
2SF=.5*RSF

DO 70 1=2,25

YPD=YPD/10.; NYPD=YPD

1F (NYPD. LE. 0)GOTO 80
CONTINUE
RSP=10.%*(I-1); YPD=5.*YPD; NYPD=YPD
1IF (NYPD.GT.0) 40, 30
NSZ=100+10* (LFIX (ZMIN/ZSF) /20-1)
RETURN

END

£€€T

234 CHAPTER 6 COMPUTER GRAPHICS

The subroutine PLOT8 has the following limitations:

a. Each function must be single-valued. Therefore, this routine will
not be suitable to plot a multi-valued function, such as a circle. Thus it
could not be used for such applications as root locus, Nyquist plots, etc.

b. X-increments must be constant. Thus, the routine is unsuitable for
data point array that does not have equally spaced x—increments.

(2) The XYPLOT Subroutine

The routine XYPLOT is designed to plot either a single-valued or a
multi-valued function, with equal or unequal x-increments. It also has
built-in optimal selection of scale factors. In addition, this routine
is a building block in implementing a polar plot routine or a logarithmic
plot routine.

The call and the parameter definitions are shown below:
CALL XYPLOT (X,Y,ND)

where the parameters are explained below:

X,Y each a one-dimensional array X(I), ¥(I) with Max I = 200. Both
' arrays will be altered upon return from the subroutine.
ND number of data points to be plotted.
Example: The following program shows the generation of plotting data

for a parabola:
Y**2 = 4*X + 5

The program (again named as SAMPLE.FOR) listing is as
follows:

REAL X(150) ,¥(150)

DO 10 1=1,150,2
XI=I-1;J=I+1
X(I)=XI
X (J)=XI
Y(I)=SQRT (4.*XI+5.)
Y (J)=-Y(I)

10 CONTINUE
CALL XYPLOT (X,Y,150)
END

Use the command ".EXECUTE SAMPLE,ENG:GRAPH/LIB" to execute.

The output for this example is shown in Figure 6.2. The help file
and the program listings for these two programs are also included for
user's reference.

There are other plotting routines in the ENG:GRAPH package. They
will be only mentioned here, and further details may be found in the
help-file ENG:GRAPH.HLP. The contents of ENG:GRAPH are as follows:

ENG:GRAPH Package 235

* The Scale Factor of Abscissa: 1 Division= 0.20000E+01
* First point at 0.00000E+00

* Last point at 0.14800E+03

*

kd The Scale Factor of Ordinate: 1 Division= 0.,10000E+01
* Range of Ordinates: Ymin=-0.24434E+02

* Ymax= 0.24434E+02

*

*

*

* Y-Axis (Multiply by Scale Factor 0.10000E+01)
* =30 -20 -10 0 10 20 30 40
* + + + L } + + t
* I *k *%k

* 1 *k *k

* I * *

* I *k Kk

* I Kk Kk

* 10+ * *

* 1 * *

* I *% *%

* I * *

* I * *

* I *k *%

* 20+ * *

* I * *

* T * *

* 1 * *

* I * *

* I * *

* 30+ * *

* I * *

* I Kk %

* I * *

* T * *

* 1 * *

* 40+ * *

* I * *

* I * *

* I * *

* I *% *k

* I * *

* 50+ * *

* I *k *k

* 1 * *

* I * *

* T * *

* I * *

* 60+ * *

* I * *

* I * *

* I * *

* I * *

* I *k *k

* 70+ * *

* 1 * *

* T * *

* + t t + + } } t
* =30 -20 -10 0 10 20 30 40

Figure 6.2 Output from the Subroutine XYPLOT

236 CHAPTER 6 COMPUTER GRAPHICS

PLOT8 (Y.NF,NP, X1, XINC) Plot up to 8 functions.
PRINTS (Y,NF,NP,X1,XINC) Tabulate up to 8 functions.
XYPLOT (X,Y,ND) Plot x-y data.

XYPRNT (X, Y,ND) Tabulation of x-y array data with x-array sorted
internally in an ascending order.

SEMLOG (X, Y,ND,KODE) Plotting with one axis on log scale.
KODE=1 x-axis on log scale
KODE=2 y=-axis on log scale
LOGLOG (X,Y,ND) Plotting of x-y array on log-log scales
POLAR (RHO, THETA , ND) Polar plot for rho-theta array; theta in degrees

The users will also find that other plotting routines are available in
almost every canned software package.*

6.3 Plotting on a Plotter

A plotter has a mounted pen that can be controlled for its movement as
small as 1/500 inch. Therefore, it is capable to produce superb cuality graphs
and plots. Basically, a plotter makes a figure by moving the pen from one
position on the paper to another either with the pen UP or with the pen DOWN.
These movements are controlled by incorporating in the main program a series of
FORTRAN subroutines, which translate the user's requirements inta detailed pen
movement instructions. A set of basic FORTRAN-callable subroutins will be taken
up later when we get to the CalComp section of the chapter. At this point, we
will look at two types of software routines that are used in producing plots
quickly on the Calcomp plotter. One is a group of "quick" plot subroutines that
can be incorporated into user's FORTRAN program; the other is a group of
stand-alone interactive programs.*

It should be noted that the plotter is a very slow device. Therefore,
plots must be queued. After the execution of the program, the software only
produces a plotter-file; it does not produce a plot per se. After the plotter
file is produced, it will take another monitor command "PLOT file" to actually
queue a plotting job, such as:

.PLOT *.PLT

*At University of Pittsburgh, in addition to the routines presented here, also
available are a group of printer plot subroutines in PRG.GRAPH.REL and a
stand-alone CalComp routine named PRG:GRAFIC.EXE. See References 5 and 6.

iuick Plot Subroutines 237

(1) The Quick Plot Subroutines

Two "quick" plot subroutines, QIKPLT AND QIKLOG, will be presented
here. They are both developed at the Pitt Computer Center. The
subroutine QIKPLT will plot the x~y array data on a linearly scaled plot;
the subroutine QIKLOG will plot the x-y array data either on a semi-log
or a log-log plot. Both subroutines were developed at the Pitt Computer
Center. They produce plots that will fit into standard 8.5-by-11 inch
letter—size paper. The input parameters of the subroutines, beside the
required x-y array data and number of data points, will include the
following:

(1) Title of the x-axis
(2) Title of the y-axis
(3) Title of the plot

(4) Option of which symbol (or no symbol) to represent every nth
data point.

(5) Option of whether to join the points by lines.
(6) Option of placing grid lines (or omit them) on the plot.
The calling sequence is as follows:

CALL QIKPLT(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11)
CALL QIKLOG(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12)

The parameters are explained as follows:

Pl X-array, real, dimensioned at least 2 more than the value of P3.
P2 Y-array, real, dimensioned at least 2 more than the value of P3.

P3 Number of data points to be plotted, integer constant/variable. If
you want grid lines on the plot, specify a negative number of
points. positive P3 will omit grid lines.

P4 X-axis title. If expressed in ASCII string, it will have the form
of characters enclosed within single quotes, such as 'Time in
Seconds'., 1f expressed dimensioned variable, they have literal

constant values, such as 'Fime ', 'in Se', ‘'conds' for
(KARAC(I) ,I=1,3). They must be in (AS5) format. Maximum length of
string is 45 characters or (9A5) format. .

P5 Y-axis title. Same definition as in P4. Maximum is 57 characters.
P6 Title of the plot; same definition as P4. No maximum.
P7 Number of characters in x-axis title, including embedded blanks.

Integer constant/variable; maximum value is 45. X-axis title is
omitted if P7=0.

238 CHAPTER 6 COMPUTER GRAPHICS

P8 Number of characters in y-axis title, including embedded blanks.
Integer constant/variable; maximum value is 57. P8=0 means no
y-axis title.

P9 Number of characters in the plot title, including embedded blanks.,
Integer. P9=0 means no title for the plot.

P10 Signed integer code for options of how to join points by lines:

P10 = positive integer, say n. Lines will join every nth data
point by a symbol specified by the Pll parameter.

P10 = 0: The points are joined by lines with no symbols. P11
value, if given, is ignored.

P10 = negative integer, say -n. The points are marked by a symbol,

specified by the parameter Pll, every nth data point. No
line is drawn to join them.

P11l Integer code for the symbol choice to mark a data point:

Pll Code Symbol P11l Cod Symbol

0 [ua] 8 z
1 o 9 Y
2 & 10 x
3 4 11 *
4 % 12 b3
5 ¢ 13 !
6 t 14 %
7 R

P12 Option code for log plot routine:

P1l2=-1 to request a semi-log plot, with x on log scale
Pi2= 0 to request a log-log plot
P12=+1 to request a semi~log plot, with y on log scale.

The process of using these quick subroutines is quite straight forward:
In the main program, be sure to dimension X and Y arrays at a dimension two more
than actually needed by the array. Also, dimension those ASCII variables that
are needed for the titles. Then:

(1) Read, or generate, or calculate the x-y arrays.
(2) Call the quick plot routine

Example:

CALL QIKPLT (X,Y,-50,'Time in Seconds','Voltage in Volts',
1 'FILTER RESPONSE',15,16,15,~1,4)

This subprogram call will produce a plot of 50 data points not
joined by lines, but each point is marked by a X symbol. The titles are
supplied as indicated in the parameter list.

Interactive Plot Programs 239

Example:

Here we will recount how the plots in Figure 5.4 were made (see Page
220). The data from the CSMP run were saved as three files DATAL.DAT,
DATA2.DAT and DATA3.DAT and in a a format of (2E).

The following program was prepared:

REAL X (100) ,Y(100)
DOUBLE PRECISION FLNAME(3)
DATA FLNAME/'SUSP.DAT','IMMP.DAT','INFP,DAT'/
DO 500 K=1,3
OPEN (UNIT=1,FILE=FINAME (K))
DO 10 I=1,1000
READ(1,50,END=20)X(I) ,¥(I)

10 CONTINUE
STOP
20 NPT=I-1

IF(K.EQ.1)CALL QIKPLT (X,Y,NPT,
1 'Time in Seconds','Voltage in Volts',
2 ‘FILTER INPUT VOLTAGE',15,16,20,0,0)
IF(K.GE.2CALL QIKPLT(X,Y,NPT,
1 'Time in Seconds','Voltage in Volts',
2 'FILTER OUTPUT TRANSIENT',15,16,22,0,0)
CLOSE (UNIT=1)

500 CONTINUE

50 FORMAT (1X,2F15.4)
STOP
END

The output from this program has been previously shown in the last
chapter as Figure 5.4(a) .

(2) The Interactive Plot Programs

Although the quick plot routines are very convenient to use, they
both have 1long 1lists of parameters, and they tend to be error-prone.
Therefore, convenience can be enhanced by incorporating the graphic
routines into an interactive program, in which the plot routine
parameters will be entered and guided by an interactive dialogue.

Two programs using this approach will be presented here:

The CALPLT Program in ENG:

One of the program unit in ENG: is CALPLT, an interactive program
for CalComp plotting. By interactive dialogue, the user enters inputs,
such as the data filename, and all titles. The counting of characters is
done automatically within the program. The listing of the program is
shown. To invoke and execute the program, use the standard Engineering
Library call:"PIL ENG:CALPLT". For other Library programs, see
Appendix B.

240

CHAPTER 6

*

ENG:CALPLT.FOR *

*

Interactive program to do a Calcomp plotter job
Require data set file with one point per line (2 real constants
in either (2E) or (2F) format.
Will produce as an output a plotter file XXXXXX.PLT ready to queue.
Option of linear, semi-log, or log-log plot
Maximum 200 data points
REAL X(202),Y(202)
DOUBLE PRECISION FINAME
INTEGER XTITLE (12) ,YTITLE(12) ,GLITLE(12)
DATA XTITLE/12%' '/ YTITLE/12*" '/,GTITLE/12*" v
DATA KARE,KARF/'E','F'/
WRITE (6,80); READ(5,90)KOP
WRITE (6,100) ; READ(5,110) FLNAME
OPEN (UNIT=1,FILE=FINAME)
WRITE(6,120) ; READ(5,130)KKK
DO 10 I=1,1000
IF (KKK . EQ. KARE) READ (1,140, END=20)X (1) ,¥(I)
IF (KKK.EQ.KARF) READ(1,150,END=20)X (1) ,¥(I)
10 CONTINUE
STOP
20 NPT=I-1
30 WRITE (6,160) ; READ(5,130) (XTITLE(I) ,I=1,12)
CALI, KARAC(XTITLE,LX);IF (LX.GT.45)WRITE(6,170); IF (LX.GT.45)GOTO 30
40 WRITE(6,180) ; READ(5,130) (YTITLE(1),I=1,12)
CALL KARAC(YTITLE,LY);IF(LY.GT.57)WRITE(6,170) ; IF(LY.GT.57)GOTO 40
WRITE(6,190) ; READ(5,130) (GTITLE(I),I=1,12)
CALL KARAC (GTITLE,LG)
IF (KOP.EQ.1)CALL QIKPLT(X,Y,NPT,XTITLE,YTITLE,GTITLE,
1 IX,L¥,1G,0,0)
IF (KOP. EQ. 2) LOGT=-1
IF (KOP.EQ. 3) LOGT=1
IF(KOP.EQ. 4) LOGT=0
IF(KOP.GT.1)CALL QIKLOG(X,Y,NPT,XTITLE,YTITLE,GIITLE,
1 1X,l¥,1G,0,0,L0GT) .
80 FORMAT (/' PLOT OPTIONS: OPTION = 1 FOR LINEAR PLOT',
1 /17X,'OPTION = 2 FOR SEMI-LOG PLOT, X-AXIS LOG SCALE',
2 /17X,'OPTION = 3 FOR SEMI-LOG PLOT, Y-AXIS LOG SCALE',
3 /17X,'OPTION = 4 FOR LOG-LOG PLOT.'//
4 ' ENTER OPTION = 'S)
90 FORMAT (1)
100 FORMAT(/' INPUT FILENAME='$)
110 FORMAT(Al0) -
120 FORMAT(/' DATA FORMAT IN EITHER 2E OR 2F FORMAT YOLR ',
1 'FILE, E OR F?'$)
130 FORMAT(12A5)
140 FORMAT(2E) »
150 FORMAT(2F)
160 FORMAT(/' X-AXIS TITLE='S$)
170 FORMAT (/' TITLE TOO LONG, TRY AGAIN.')
180 FORMAT(/' Y-AXIS TITLE='S)
190 FORMAT(/' PLOT TITLE='S$)
END
* SUBROUTINE KARAC *
* To count number of character in an ASCII variable array
SUBROUTINE KARAC (ASCII,LENGTH)
INTEGER ASCII(12)
DATA JB/32/
DO 10 1=1,12
IX=13-T
DO 10 J=1,5
JX=6-J; JBIT=(JX-1)*7; JKAR=LDB(JBIT,7,ASCII(IX))
IF (JKAR.NE.JB) GOTO 20
10 CONTINUE
LENGTH=(; RETURN
20 LEMGTH=5* (I1X~1)+JX; RETURN
END

P R E R R

Listing for ENG:CALPLT.FOR

COMPUTER GRAPHICS

USL: PLOTIT Program 241

The PLOTIT Program in USL:

An excellent and convenient interactive program with many plot
options 1is available in the User Library USL: It was developed at the
University of Pittsburgh by Professor Frederick Gottlieb of the
Biological Sciences Department. It has options of entering the data by
stored files, or by typing in the data at the terminal. It allows the
user to choose, among others, number of curves on one plot (6 maximum) ,
x- or y-axis as the "long" axis or else a square plot, labels and titles,
tic marks, data point symbols, smooth (French curve f£it) or
connecting-line curves. Perhaps, the best way to show how this
interactive program works is to reproduce the interactive dialogue of an
actual run.

Therefore, the data files DA.DAT, DB.DAT, and DC.DAT that produce
Figure 6.1 are wused again for illustration. As in the consistent
practice in this book, the user's response in a dialogue is re-typed with
italics and underscored.

6.4 Preview of Plotter Output

The plotter is a very slow device, and therefore when a plotter job is
queued, there is generally a long turn-around time. If a mistake is made, or if
subsequent processing is dependent on the graphic output result, the delay here
represents a serious bottleneck. Typing or printing out a plot file will be
useless, because it contains codes that can be understood only by the plotter.

At the University of Pittsburgh, both the CalComp Plotter and the
Tektronix 4010-series graphics terminals are available and supported. A program
TEKPLT has been implemented by the Computer Center staff to display a plotter
file on the Tektronix graphic terminal, thus providing an opportunity to preview
the plotter output. TEKPLT may be called and executed by a monitor command of:

.R TEKPLT
The system will respond with a request for the plotter file name:
Enter file name >
If you don't know the name of the plot file, use a DIRECTORY command to
find out, for example:
.DIRECT *.PLT
The filenames of all plot files will be printed out.
After the filename of the plotter file is supplied, TEKPLT will draw the
plot on the Tektronix screen, and will automatically adjust the size to fit the
screen. If the long and narrow dimension of the plot fits the wrong way, give a

TEKPLT command of "I" (without carriage return) to rotate the plot 90 degrees.
Other TEKPLT commands are detailed in References 7 and 8,

«RUN USL:PLOTIT

Welcome to PLOTIT (Rev. 9 Jan 80.)

This program will call existing data sets and plot them with up to

6 curves per plot (i.e., axis set), and upper/lower case notation.

It is suggested that you use JOTTER to write the data sets for plotting.

Do you want the FORMAT details for data sets which are compatible
with PLOTIT? (Answer yes or no.)> ES

The data set lines must be in the format (1x,3f15._ }, where the first two value,
s are X and Y coordinate values

and the third value is an error bar value - usually the standard error of the me
an of Y- and will have the value of

zero if no error bars are to be drawn.

Data sets should not exceed 200 X, Y and Error values.

Do you want to write a data set?(answer yes or no)»/0

Do you want to plot now? (Answer 'yes or no)> YFS

Please give me a name for this plot file.
(6 character maximum)> SAMPLE

How many curves on this plot? (answer with an integer between 1 and 6)>3
What is the name and extension of the first data file? (name.ext)> DA.DAT

What is the name and extension of the second data file? (name.ext) > DR.DAT

What is the name and extension of the third data file? (name.ext) > 0C, DAT
Which is the long axis? (Type x or y or s [for a square box plot])>Y
Want plot with numbers and labels?>\’ﬂ

Is either axis a log axis? (answer yes or no) iU

What is the value at the x-origin?>0

What is the highest axis value of x2>50

How many scale units between labeled tics on x2>10

Want tics between labeled x tics?(answer yes or no)>YES

How many tics between labeled tics?(integer between' 1 and 9)>¢

What is the value at the y-origin?>0

What is the highest axis value of y?»1000

How many scale units between labeled tics on y?>100
Want tics between labeled y tics? (answer yes or no)» VEs
How many tics between labeled tics?(integer between' 1 and 9)>9

Type the x-axis label (30 character maximum)

Label will be in upper and lower case, the symbol "~* will plot as "+*,
enter the label with a "@" after the last character

1 {—=m==-=30 characters-—--—- >:(ie, between the two ":")

2YUMBER_OF DAYSE.

Type the y-axis label (30 character maximum)

Label will be in upper and lower case, the symbol "
enter the label with a "@" after the last character
-—>: (ie,between the two ":%)

" will' plot as y

How many decimal places in the x tags? (0,1,2,etc. or 9=integer) !

How many decimal places in the y tags? (0,1,2,etc. or 9=integer)>9

Do you want to alter the size of the output plot? Answer yes or no.,y,
You may shrink the plot to as small at 0.25 x; or you may expand up to 2.0UxJ
The 8 1/2 x 11 inch page- 'box will be omitted.

Please choose a magnification factor between 0.25 and 2.00>0.6

Do you want a ticked upper and right axis also? Answer yes or no,>YES

First Curve
How many data points to be ploted? (enter an integer between 1 and 20y)>45
Want symbols at data points?(answer yes or no)> YES

Please choose your symbol for this plot. . .
type the appropriate two letter code from this list:
1

Code Letters

oc = open circle

fc = filled circle
od = open diamond

fd = filled diamond
os = open sguare

fs = filled square
ot = open triangle
fr = filled triangle

cr cross (x)
Which symbol do you want2> FC_

Do you want a smoothed french curve fit?(answer yes or no)>Fi

BAnswer yes or no!>YES

(444

9 YdIdvHD

SOTHAVID ¥AINAWOD

Second Curve

How many data points to be ploted? (enter an integer between 1 and 200)>46
Want symbols at data points?(answer yes or no)>YES

Which symbol do you want?>FD

Do you want a smoothed french curve fit?(answer yes or no)>YES

Third Curve

How many data points to be ploted? (enter an integer between 1 and 200)>46
Want symbols at data points?(answer yes or no)>YES

Which symbol do you want?> FT

Do you want a smoothed french curve fit?(answer yes or no)>YES

The plot file SAMPLE.plt is now in your directory.

Want to draw another graph now? answer yes or no>N0

Then we'll stop now, Have a good day.
STOP

End of execution FOROTS 5B (1001)
CPU time: 4.70 Elapsed time: 7:25.28
EXIT

<DIRECT *, PLT

SAMPLE PLT 48 <057> 29-0ct-80 USRB: [115036,320571)

PLE.PIT

n
Total of 2 minutes in 1 file in PLT request / Sequence number 10045

NUMBER OF PERSONS

1000
900
800
700
600
500
400
300
200

100

Figure

1sn

weiboid LIIOHE

')
0 10 20 30 40 50
NUMBER OF DAYS
6.3 Plot Produced by PLOTIT

(344

244 CHAPTER 6 COMPUTER GRAPHICS

Figure 6.4 includes a group of reproductions of hardcopies of the
TEKTRONIX-4010 displays for the PLOTIT runs that prepared Figure 6.3, During
the run, some mistakes were inadvertently made in the input phase of PLOTIT.
With the preview capability of the TEKPLT program, these mistakes were evident
in the preview displays. Valuable time and plotter resources were saved. After
a preview session, only the satisfactory plot file was submitted for the actual
plotter job.

Some DEC-10 installations have developed simulator programs that will
print out a CalComp plot on a printer for preview purpose. Users should check
with their local installation about their availability.

1000 T - r o
900
w
100 < 800
s00 b 700
$00 o 600
- 300 |
o 400 o
& . 400
. 2 300}
B
L 200 g 200]
: =
R 100
T R et .. .
o 10 20 30 40 SO 0 10 20 30 0 5o
Nusker of Duye
Number of Doays
Y-axis scale error Y
Y-axis too short
1000 e
i 900
. 800
g & 700
: 4
M ui 600
.L:. = 300
. o« 400
% v}
£ £ 300
2 = 200
100
o | - TP
-10 ©0 t0 20 30 40 S0 0 10 20 30 40 S0
Numnber of Days NUMBER OF DAYS
Labeling all messed up Chosen for Figure 6.3

Figure 6.4 Plots Previewed Using TEKPLT Program

Preview of CalComp Plots 245

GENERAL GRAPHICS

In the general graphics applications using a plotter or a graphic
terminal, software becomes very much hardware-dependent. The result is that if
two DEC-10 facilities have different graphic hardwares, their software may not
necessarily be compatible. Two types of graphics hardware will be considered
here: one is to produce hardcopy and is essentially a plotter; and the other
is to produce soft copy and is essentially a CRT terminal. Selected for
inclusion in this part of the chapter are the discussions on two software
packages: the CalComp subprograms, and the Tektronix PLOT-10 System. Both are
in the forms of FORTRAN-callable subroutines.

A PRIMER FOR THE CALCOMP PLOTTER

6.5 Basic Principle of a Digital Plotter

There are many different manufacturers of digital plotters. Probably the
most commonly used type is the CalComp plotter, manufactured by California
Computer Products, Inc., Anaheim, California. Actually, the basic principle for
all digital plotters is very similar.

In a digital plotter, the pen is attached to a ribbon or wire and can
move along a linear gquide. This is the y-direction movement. To the right
angle of the pen guide, the x-axis movement is provided by either of two ways as
shown in Figure 6.5.

s L;nearjn:ale (Y)
Qwarju;le /3]

Y

~a

Lx‘neqrﬂuide

\thzz_
—

Poper

Flatbed Type Plotter Drum Type Plotter
Figure 6.5 Two Basic Types of Digital Plotters'

In a flat-bed type plotter, the movement of another linear guide
perpendicular to the y-movement provides the x-movement. In a drum-type
plotter, the pen can only travel in the y-direction, but the drum may turn. Its
rotation, or the relative motion with respectt to the pen, provides the
X-movement. :

246 CHAPTER 6 COMPUTER GRAPHICS

Movements in each direction are’ controlled by precision servo
step-motors, and each "step" movement is translated by a reduction gear train to
a precise pen movement in the x- or y-direction. This incremental pen movement
defines the basic resolution of - a plotter. Commercial incremental digital
plotter ranges from 1/40 inch to 1/500 inch or better.

Since the x- and y-movements are incremental, each step of pen movement
is a combination of the x-y increments. As a result, there are only eight
possible ways that a pen can move in one increment.

J‘{«;" ysf k—~ 1 plotter increment, 1/40 to 1/500"
S RN (ERERNRRERRN
;”»%ﬂ\ 4 S B A IR R AR I
o S k i I
Lo A - ;)

o

e de

s ! S o T e S R b
al AL L
(a) Basic Incremental b) Drawing a "Straight" Line
Pen Movements (Enlarged approximately 75 times)

-

Figure 6.6 Incremental Pen Movements

As shown in Figure 6.6(a) , the eight possible ways of incremental pen
movement, borrowing the term from the points of a compass, are E, NE, N, NW, W,
SW, S, and SE. Thus, to move linearly from point A to point B, the actual path
of the pen, and therefore the trace it draws, 1s actually a zigzag step line as
shown in Figure 6.6.(b). Fortunately, the resolution of the plotter is €£ine
enough that the zigzags will not be visually noticeable.

In addition to the x- and y-movements, the pen can be lifted or lowered
on paper. When the pen is lowered and moved, it traces a line. When the pen is
lifted and moved, there is no line. This simple pen ability is necessary in
order to skip from one point to another.

Therefore, a basic plotter instruction is rather primitive. It tells the
plotter to lift or lower the pen, or keeps the pen position as is. It tells the
plotter one of the eight directions of incremental pen motion. Such raw
instructions are too cumbersome for application. Therefore, a plotter
manufacture usually provides a basic plotter language that includes a set of
plotter instructions. Thus, CalComp has CalComp language; Gould has Gould
language; Hewlett-Packard has its language. The list goes on. To compound the
proliferation, each local installation then develops its own high-level
(FORTRAN-callable) subroutines based on the plotter language. Hence, the
subroutines used at one installation may not be run at another. When a user
faces this situation, there are two options. One way is to obtain a software
package from the installation, where the language was developed, by purchase,
lease, or exchange. The other way is to develop a simulator which translates
the foreign subroutine calls into the local subroutine calls.

Next, let us plan a drawing as shown in Figure 6.7. To obtain a
perspective, the figure 1is superimposed on a coordiante grid lines, with the
lower left corner being the origin (0,0).

Primer on CalComp Subroutines 247

Pen positions and movements can be
planned to draw the figure:

-
l Pen Position Pen Movement
~ (UP or DOWN) Destination
. up (1,5)

: down (2,8)
o down (6,8)
down (7,5)

- down (7,3)
: down (5,2)
- down (5,5)
- down (1,5)
- down (1,2)
;“.] down (5,2)
T i up (5,5)
B S ; [- down ° (6,8)

lfn L ‘ P l] i up (3,5)

7(”0 0) e de - b down (3’3)

’ e femy down (2,3)
down (2,5)
Figure 6.7 Drawing a Figure STOP

In the presentation that follows, the materials will be based on the set
of plotter routines that were either furnished by CalComp or developed at the
University of Pittsburgh.

6.6 A Primer on CalComp Plotter Subroutines

At the University of Pittsburgh, a CalComp 936 metric digital pen plotter
is installed with the DEC System-10. A number of the plotter routines are
supplied by California Computer Products, Inc., the manufacturer of the plotter,
and many were developed by the Computer Center staff. Collectively, these
FORTRAN-callable subroutines are stored as PRG:PLTLIB.REL, which is also
incorportated into the FORTRAN system library. Thus when a program PRGM.FOR
containing plotter routines is to be executed, the monitor command issued should
be:

.EXECUTE PRGM.FOR
or, .EXECUTE PRGM.FOR, PRG:PLTLIB/LIB

When the execution is completed, there is a plot-file (with an extension PLT)
generated in the user's disk. A PLOT monitor command for that plot file will
queue the plot-job, and a plotter output will be made.

Among the CalComp subroutines, many parameters pertain to the lengths and
coordinates. It may be set to either the English system (in inches) or the
Metric system (in centimeters) by calling the subroutine METRIC:

CALL METRIC (LOGIC)

where: LOGIC=,TRUE. for linear measurements in centimeters.
IOGIC=.FAISE. for linear measurements in inches.

248 CHAPTER 6 COMPUTER GRAPHICS

This subroutine may be placed anywhere in a program, and the system of
measurement selection takes effect after that subroutine call. If no such
subroutine is called, the default system is Metric.

Thus, one can not only select the system but also switch the system from
one to another at will., In the presentation of the Plotter Primer of
Subroutines that follows, all linear measurements will be in centimeters for
reason of consistency. If a user wishes to use these subroutines in English
system (in inches), a "CALL METRIC(.FALSE.)" FORTRAN statement should be given
first.

The selected CalComp subroutines are divided into six groups:

(1) Initializing and terminating a plot
(2) Re-defining the new origin and scales
(3) Basic pen movements

(4) Annotation of symbols and numbers

(5) Axis and scales

(6) Lines and Curves

They are now presented next.

(1) Initializing and terminating a plot

When a plot job is initialized, three major events will be performed:
Plot area bounds will be established; a plot file is opened in your disk; and
all options are assigned with default values.

When a plot job is finished, that plot-file must be closed. Even within
the same program, one should always terminate (close) one plot-file before
enbarking on another plot job. Failing to that would get a drawing with several
drawings superimposed on each other.

The subroutines of this group are shown in Table 6.1.

(2) Redefining the origin and the scales

When a plot job is initialized, the origin is set at the lower left
corner of the plot area, and scale is set to the actual centimeters or inches.
This may be very inconvenient. Allowing redefining the new origin and new
scales are a group of subroutines as shown in Table 6.2.

(3) Basic pen movements

This is perhaps the most fundamental plotter routine. It moves the pen
from the current position to another specified position, leaving on the paper
with or without a tracing. All plotting routines in the CalComp software are
built upon this routine. This is shown in Table 6.3.

(4) Annotation of symbols and numbers

Annotations in text are represented in ASCII string constant or in string
array variable with A5 formats. Symbols are defined according to a coding
table, where each symbol is represented by the decimal equivalent of its ASCII
code. The codes for symbols are shown in Table 6.4. The subroutines for
annotation are shown in Table 6.5.

CalComp Programming Examples 249

(5) Axis and scales

Among the most useful routines are those which automatically scales and
draws the axis, either linear type or logarithmic type. The axis can be labeled
with symbols and numbers and tic marks. The group of routines that draw axis
and scale them are shown in Table 6.6.

(6) Lines and curves

In this group are routines that plot lines in cartesian or polar
coordinates, in linear or logarithmic scales. Option of smoothing is available.
Higher order routines of drawing common geometric patterns, such as circles,
ellipses and polygons are provided. These routines are grouped in Table 6.7 and
Table 6.8.

6.7 Examples of CalComp Programming

Example 1: Write a program to draw the figure as
shown in Figure 6.7.

FORTRAN program:

After the execution of the program, find out what is the
computer—assigned name of the plot-file by a command ".DIRECTORY *.PLT",
Suppose the directory shows a "QRUS3.PLT" file created. Then submit a plotter
queue job by another command ".PLOT QRUS3.PLT".

The series of monitor command given to go through the sequence was:

.EXECUTE PRGM, PRG:PLTLIB/LIB
.PLOT *,PLT

250 CHAPTER 6 COMPUTER GRAPHICS

Subroutine: CALL GRAPH(WIDTH, PEIGHT)

Function: To initialize a plot by: setting the plot area limit, opening an output
plot-file in the user's disk, and moving the pen (UP) to the lower left corner
.of the plot area (coordinate 0,0). This call must precede all other plotter

subroutines.
Parameters:
WIDTH Width of plot area permitted, ranging from 1 to 130 centimeters.
HEIGHT Height of plotting area permitted, ranging from 1 to 80 centimeters.
Subroutine: CALL ENDPAG
Function: To terminate the plot and to close the plot-file. This call must, be given at
the end of a plot; otherwise, no plot-file will be stored.
Parameters: None

Subroutine: CALL GRAPHZ

Function: To re-initialize another plot in the same program. The plot size remains the
same as defined by a previous GRAPH subroutine call. If there is no previous
GRAPH call, the size is set to a default size of 30,5cm(width) by 23cam(height).

Parameters: None

Tables 6.1 CalComp Subroutines — Initializing and Terminating a Plot

Subroutine: CALL ORIGIN(XNEW, YNEW)

Function: To translate the origin to a new point with the coordinates (XNEW,YNEW) with
respect to the 1lower left corner of the plot area defined by the subroutine
GRAPH call. When the plot is first initialized, the origin is set to that

point.
Parameters:
XNEW, YNEW The coordinates of the new origin with respect to the lower left corner of the
plot as defined by GRAPH.
Subroutine: CALL PSCALE(XCALE, YSCALE)
Function: To change the size of the plot.
Parameters:

XSCALE,YSCALE The x- and y;scale factors respectively applied to the abscissa and ordinate
values.

Subroutine: CALL LORGIN(XLORGN, YLORGI)

Function: To specify a logical origin if the size of a plot is changed by the subroutine
PSCALE call.

Parameters:

XLORGN, YLORGN The logical origin with coordinates with reference to the previously defined
JRIGIN.

Table 6.2 CalComp Subroutines - Redefining Origin and Scales

CalComp Subroutines

251

Subroutine: CALL PLOT(XEND, YEND, KODE)
Function: To move the pen from the present position to (XEND,YEND) with the pen UP/DOWN
position defined by KODE.
Parameters:
XEND, YEND The coordinates of the destination point.
KODE Pen code: - 3 for pen UP.
2 for pen DOWN
0,1 for no change
This is the basic subroutine upon which all other plotting routines are based
on.
Subroutine: CALL PENDN
Subroutine: CALL PENUP
Function: To lower or to lift the pen, no x-y movement.
Parameters: None
Subroutine: CALL SMOOT(XEND, YEND, KODE)
Function: To plot a smooth curve using a spline-fit technique.
Parameters:
XEND, YEND As defined in PLOT or as below.
KODE Initial call of SMOOT must have KODE=0 or ~1 to place it in the “smoothing
mode."
KODE Meaning
[1] Define (XEND,YEND) as an initial point. The last point
and the intial point will not be joined later. This is
! to draw an open curve.
-1 Define (XEND,YEND) as an initial point on the curve.
The last and the first point will be joined later.
This is to draw a closed curve.
After the initialization of smoothing mode, other values of KODE may be
applied and interpreted as:
KODE Meaning
-2 Plot smoothed line, pen DOWN.
-3 Move the pen along the smoothed line, pen UP.
+2,+3 Interpreted the same way as in PLOT subroutine.
Subroutine: CALL DASHP(XEND, YEND, DASH)
Function: To draw a dash line from the current position to (XEND,YEND).
Parameters:
XEND, YEND The coordinates of the destination point
DASH The length of each dash.

Table 6.3 CalComp Subroutines - Basic Pen Movement

252 ’ ' CHAPTER 6 COMPUTER GRAPHICS

o ol2o =48 (|68 < |82 P l188 D l123 X
I o |21 Al41) (Bl = |8l G181 E 121 Y
2 & 122 v |42 x |62 > 182 R |182 F 122 Z
3 . |23 4|43 + 63 2 |B3 S 183 G 123 I
4 x |24 a |44 , |64 @ |B4 T [184 H 124 \
S e (25 2|45 - |65 A |85 U|185 I 125 13
6 + |26 46 . |66 B |86 V [186 J 125 t
7 x |27 47 / 167 C |87 W 187 K127 «
8 z |28 48 © |68 D |88 X [188 L
g v |29 49 1 63 E |89 Y |1@g M’
16 = |30 |58 2|78 F |92 Z[118 N |
11 % 31 st 3171 G |91 [|111 O
12 x |32 52 4 |72 H |92 \|112 P
13 |33 1|53 5173 1 |93 1113 Q|
14 = |34 “ |54 6|74 J |94 t|114 R
15 - |35 #1055 7|75 K |95 «|115 S |
16 t+ |36 $|56 8|76 L |96 @ 116 Ti
17 £ 37 %|s7 9|77 M |97 A|117 U]
18 > |38 &|s58 :/78 N [98 B|118 V
19 < |39 ' |59 ;|79 0 |99 Cli19 W,

Table 6.4 CalComp Symbol Table

Omitting those code numbers from 0 to 31, this code table is also known
as the ADE (ASCII DECIMAL EQUIVALENT) code.

CalComp Subroutines 253

Subroutine: CALL SYMBOL(XBEGIN, YBEGIN, HEIGHT, KARAC, ANGLE, KODE)
Function: To draw the title text or a symbol.
Parameters:
XBEGIN, YBEGIN The coordinates of the lower left corner of the first character to be drawn.
HEIGHT The height of each character or symbol.
ANGLE Angle in degrees at which the characters are drawn. For example:
2 (90%)
w
&
sanooms NI anza o T I SECONDS
(180°) I
3z
5
=}
o (270%)
8
KODE , HEIGHT Defined as follows:
KODE Meaning
+n KODE = number of characters in the KARAC parameter
KARAC = Character string to be drawn; in ASCII constant
(enclosed in single quotes) or as ASCII array
variable. Array variable must be dimensioned in the
calling program and in A5 format.
0,-n KODE = -2: Center the symbol, Pen DOWN.
KODE = -1: Center the symbol, Pen UP.
KODE = 0: Symbol not centered, Pen UP.
KARAC = an integer code of plotter symbol as defined in
Table 6.4.
Subroutine: CALL NUMBER(XBEGIN, YBEGIN, HEIGHT, FLOAT, ANGLE, KODE)
Function: To draw a number in FORTRAN F-format (floating point) format.
Parameters:
XBEGIN, YBEGIN, HEIGHT,ANGLE As defined in the subroutine SYMBOL.
FLOAT Real constant/variable for the floating point number to be drawn.
KODE As defined below:
KODE Meaning
+n Number of digits to the right of decimal point.
0 Rounded integer, drawn with a decimal point.
-1 Rounded integer, drawn without a decimal point.
-n P-Format scaling by the formula: FLOAT* (10**(KODE+1)). The
constant is then rounded and drawn without a decimal point.
Subroutine: CALL PLITSYM(XBEGIN, YBEGIN, HEIGHT, KARAC, ANGLE, NCHAR, NAME)
Function: To plot symbols and characters whose positions are controlled by a user-supplied
subprogram.
Parameters:
XBEGIN, YBEGIN, HEIGHT ,KARAC,ANGLE As defined in the subroutine SYMBOL.
NCHAR Number of characters.
NAME Name of the user-supplied subprogram.
Table 6.5

CalComp Subroutines - Annotations with Symbols and Numbers

254 CHAPTER 6 COMPUTER GRAPHICS

Subroutine: CALL SCALE(ARRAY, AXLEN, NPT, INC)
Subroutine: CALL SCALG(ARRAY, AXLEN, NPT, INC)
Function: To determine the scale factor, number of data units per unit length (cm or inch)

along the specified. axis.

Use this subroutme to scale separately the x-array and the y-array.

Parameters:
ARRAY The first array element of the data point array. The arrray must be dimensioned
in the calling program at least (NPT+2). On return from this subroutine (when
INC=1):
ARRAY(NPT+l) = First value = FIRSTV used in subroutine AXIS or LGAXS
ARRAY (NPT+2) = scale factor = DELTAV used in subroutine AXIS or LGAXS
AXLEN Length of the axis
NPT Number of data values contained in the array ARRAY.
ING Increment with which data values are selected. INC=2 means every other point.

Subroutine: CALL AXIS(XBEGIN,YBEGIN,KARAC,NCHAR,AXLEN,ANGLE, FTRSTV,DELTAV)
Subroutine: CALL LGAXS(XBEGIN,YBEGIN,XARAC,NCHAR,AXLEN,ANGLE, FIRSTV, DELTAV)

Function: To plot a linear axis (AXIS), or log axis (LGAXS) and annotate it with labels,
title and tic marks.

Parameters:

XBEGIN, YBEGIN, KARAC As defined in SYMBOL subroutine.

NCHAR Signed number of characters in KARAC. If there is no title, KARAC=' ', AND
NCHAR=1.
If NCHAR=positive, the annotation is placed on the counter-clockwise side of the
axis. (for Y-axis title) If NCHAR-negative, the annotation is placed on the
clockwise side of the axis. (for X-axis title)

AXLEN As defined in subroutine SCALE.

ANGLE As defined in subroutine SYMBOL.

FIRSTV First value drawn at the first tic mark, obtained from SCALE. subroutien.
DELTAV Number of data units per unit length, obtained from SCALE subroutine.

Subroutine: CALL GRID(XBEGIN, YBEGIN, DX, DY, NBLKX, NBLKY)
Function: To draw a linear and rectangular grid.
Parameters:

XBEGIN,YBEGIN The lower left corner coordinates of the grid.

DX Displacement between grid lines along the x-axis.
DY Displacement between drig lines along the y-axis.
NBLKX Number of blocks in the completed grid in the x-direction.
NBLKY Number of blocks in the completed grid in the y-direction.

Table 6.6 CalComp Subroutines - Axis, Scales and Labels

CalComp Subroutines

255

NPT
INC
LINCOD

SYMBOL
KODE

DR

RARRAT,

Subroutine: CALL LINE(XARRAY,YARRAY,NPT,TNC,LINCOD,SYMBOL)
Subroutine: CALL DASHI,(XARRAY,YARRAY,NPT,TNC)

Subroutine: CALL LGLIN(XARRAY,YARRAY,NPT,INC,LINCOD,SYMBOL,KODE)
Subroutine: CALL POLAR(RARRAY,TARRAY,NPT,INC,EINCOD,SYMBOL,RMAX,DR)
Function To draw a curve through the data points.

LINE: —————~" To plot a linear plot with solid line.
—-To plot a linear plot with dash line.

IGLIN:~~~--To plot a semi-log or log-log plot.
POLAR:-----To plot a polar plot.
Parameters:
XARRAY,YARRAY Data point arrays in Cartesian coordinates.

TARRAY Data point arrays in Polar coordinates.
Number of data points to be plotted.
Increment between data points.

Line code as defined below:

LINCOD Meaning

0 Line plotted but no symbol.

1 Line and symbols at every data point.
2 Line and symbols at every other point.
n Line and symbols at every nth point.
-n Symbols at every nth point, no line.

An integer value specifying the symbol as defined in Table 6.4.
Code for log plot type:

KODE Meaning
-1 Semi-log plot, X in log scale.
0 Log-log plot
1 Semi-log plot, Y in log scale.

Maximum radius in actual centimeters or inches needed for the plot. 1f RMAX is

zero or negative, the parameter DR is used as a scale factor.

Scale factor for the plot. If RMAX is positive, DR is computed by the subroutine

POLAR. If RMAX is zero or negative, the user must supply a computed DR.

Example 2:

Table 6.7 CalComp Subroutines - Lines and Curves Plotting

shown below:

CALL GRAPH(12.0,12.0)

CALL GRAPH(12.0,12.0)

Either of two following programs will produce a grid as

CALL ORIGIN(1.0,1.0) CALL GRID(0.1,0.1,1.0,1.0,100,100)
¥=-0.1 CALL GRID(1.03,1.03,1.0,1.0,10,10)
Do 10 1=1,101 : CALL ENDPAG
Y=Y+0.1; 110=MOD(I-1,10) END T T T T
CALL PLOT(10.0,Y,2) S IR R R | { -
IF(I10.NE.0)GOTO 10 S 10

10 CONTINUE
X==0.1
DO 20 I=1,101

20 CONTINUE

CALL PLOT(10.03,Y+.03,3)
CALL PLOT(0.03,Y+.03,2)

I em

X=X+0.1; I10=MOD(I-1,10) S
CALL PLOT(X,0.0,3))

CALL PLOT (X,10.0,2)

IF(I10.NE.10)GOTO 20

CALL PLOT (X+.03,10.0,3)

CALL PLOT(X+.03,0.0,2)

N SE S SIS

CALL ENDPAG)) i
END Figure 6.9 Plotting a Grid

256

CHAPTER 6 COMPUTER GRAPHICS

Subroutine: CALL, CIRCL(XBEGIN, YBEGIN, TH0, THF, RO, RF, DI)
Function: To plot a circular arc.
Parameters:
XBEGIN,YBEGIN The coordinates of the starting point of the circular arc.
THO Radial angel at the start of the arc, in degrees
THF Radial amgle at the end of the arc, in degrees
RO Starting radius of the arc
RF Ending radius of the arc.
DI DI=0.0 for solid line; DI=0.5 for dashed line.
Subroutine: CALL ELIPS(XBEGIN, YBEGIN, RMAJ » RMIN, ANGLE, THO, THF, KODE)
Function: To plot an elliptical arc.
Parameters:
XBEGIN,YBEGIN The coordinates of the starting point of the elliptical arc.
RMAJ , RMIN Lengths of the semi-major and the semi-minor axis respectively.
ANGLE aAngle in degrees between the major axis and the x-axis.
THO, THF Relative to the ANGLE, radial angles of starting amd ending points of the arc.
KODE Pen control code:
KODE Meaning
3 Pen UP from the current position to (XBEGIN,YBEGIN).
2 Pen DOWN from the current position to (XBEGIN,YBEGIN) .
Subroutine: CALL RECT(XBEGIN, YBEGIN, EPTH, WIDTH, ANGLE, KODE)
Function: To plot a rectangle.
Parameters:
XBEGIN, YBEGIN Coordinates of the lower left corner of the rectangle before rotation.
DEPTH,WIDTH The y-x measurements of recitangle size, before rotation.
ANGLE Angle of rotation in degrees about the point (XBEGIN,YBEGIN).
KODE Pen control code:
KODE Meaning
3 Pen UP before moving to the starting point.
2 Pen DOWN before moving to the starting point.
Subroutine: CALL POLY(XBEGIN, YBEGIN, SIDE, NSIDE, ANGLE)
Function: To draw an equilateral NSIDE-side .polygon.
Parameters:
XBEGIN,YBEGIN Coordinate of the starting vertex the polygon.
SIDE Length of each side of the equilateral polygon.
NSIDE Number of sides.
ANGLE Argle in degrees of the first side with respect to the x-axis.

Table 6.8 CalComp Subroutines - Simple Geometric Patterns

CalComp Examples

run.

data points.

257

Example 3: Example of AXIS calls and their outputs are shown in
Figure 6.9:

s
fo) i
o0 2 AXTS5(0.0,0.0, '!QE’TAQE/IM vorrs!,16,10.0, \QO_/;Q: FY,DY)
~%]
o k ;
> |
Qi Jocm
= " -
»—.9," B ‘/))
e ST
Sa | 7 AAI5(0.0,0.0, TIME_IN SECONDS, ~15,10. 0,0, 0, FE, DY)
a~, -
=3 7
N .
- -
g / ,//
© .,_/,,_// S P S SR
@1
~ T T T T 1
0.00 18.80 20.00 30.00 40.00 58.09_1
TIME IN SECONDS < ‘-0
Figure 6.9 Result of the AXIS Subroutine
Example 4: A set of x-y data has been saved as DA.DAT from a CSMP

The data format is (2E), one x-y coordinates per record. There are 46

Plot a curve and label the x-axis with "TIME IN MILLISECONDS", and

y-axis with "VOLTAGE IN VOLTS".

Program:

100
*

REAL X(48),Y(48)

DIMENSION 2 more than array size

OPEN (UNIT=1,FILE="'DA.DAT')
READ(1,100) ((X(I),¥(I)),I=1,46) ! Read in data

FORMAT (2E)

CALL GRAPH(15.0,15.0)
CALL ORIGIN(2.0,2.0)
CALL SCALE(X,10.0,46,1)

FIRSTX=X (47) ; DELTAX=X (48)
FIRSTY=Y(47); DELTAY=Y (48)

Initialize plotter
Move origin
Scale x-axis

Scale factor for x-axis
Scale factor for y-axis

CALL AX1S(0.0,0.0,"TIME IN MILLISECONDS', ! Plot x-axis, label

!
1
1
CALL SCALE(Y,10.0,46,1) ! Scale y-axis
!
!
1
1

1 -20,10.0,0.,FIRSTX,DELTAX) below x-axis

CALL AXI1S(0.0,0.0,'VOLTAGE IN VOLTS', ! Plot y-axis, label to
1 16,10.0,90.0,FIRSTY,DELTAY) ! the left of y-axis
CALL LINE(X,Y,46,1,0,0) ! Plot the curve

CALL SYMBOL(4.0,10.0,0.5, ! Plot the title

1 'FILTER OUTPUT',O0.,13)

CALL ENDPAG ! Job done; terminate
END

After applying the execution command and the plot command afterwards, the
output was obtained from the plotter as shown in Figure 6.10.

258 CHAPTER 6 COMPUTER GRAPHICS

1
'
'
'
|
|
f
'
v
'
'

l NG 9*1‘“‘0&)
. g8~ e :
: §1 FILTER OUTRPUT
] .
f o
. - @
X Ol
' «—
Lk
: o
L0
L 5e
S
1 >o
I o
' Zo
1 *—‘(“'
L
=
1
O
g

N
=
5

— e R e — -
&

’O ‘1(?‘&"‘;@‘

. = e

> . T == T 1 1 .
N .00 10.00 20.00 30.00 40.00 50.00
e TIME IN MILLISECONDS ¢

Nﬂ ~ st ‘

S - - e e e e e e ,7 R ¢
0
R

Figure 6.10 CalComp Plotter Output of Example 4, Page 257

Subroutine Names Show Their Respective Results.

Graphic Terminal 259

A PRIMER OF GRAPHICS SOFTWARE FOR GRAPHICS TERMINALS

Since there has not yet beéen any standardization of graphics software,
selection of a software for the PRIMER must depend on how widely its compatible
graphics hardwares are available., While there .are many manufacturers in the
graphics area, perhaps the most widely used products are the Tektronix graphic
terminals such as Models 4006, 4010, 4012/4013 or 4014/15. Serving these
terminals is a collection of Tektronix-supplied software called the PLOT-10
system. It includes a basic set of graphics terminal subroutines called the
Terminal Control System (TCS), an Advanced Graphing II System (AG II), the
Interactive Graphing Package, The "Easy Graphing" Package, the Interactive
Graphic Library (IGL), and utility routines. The TCS contains a group of
FORTRAN-callable subroutines that is the basic building blocks for graphic
operations and 1is supported at the University of Pittsburgh. The PRIMER part
will only cover the TCS system. When a FORTRAN program, assuming named as
PRGM.FOR, containing the TCS calls is executed, the execution command is:

.EXECUTE PRGM, PRG:TEKLIB/LIB
where PRG:TEKLIB is the PLOT10 library (incuding AG II package) stored. This

command must be given on a Tektronix graphics terminal (such as model 4010), or
on a PLOT-10 compatible terminal.

f

6.8 Basic principle of a Graphics Terminal

A typical graphics terminal is the Tektronix model 4010-1 (with various
suffix designations). Standard interface makes the terminal compatible to the
computer like a conventional terminal. Thus the communication between the
computer and 4010 is in the ASCII codes. The graphics terminal can also be
operated as a graphics display device when a special control signal is given.
Thus a 4010 can operate in (1) "alpha mode" or (2) graphics mode.

In the alpha mode, the 4010 operates as a conventional CRT terminal.

In the graphic mode, the 4010 directs an electronic beam to any of the
1024 addressable points in each axis.

Thus the screen area has a

Jogre23y 1 (rea3,003%) coordinate system of 1024x1024 as shown
\ - e I in Figure 6.10. In the Y-axis, only a
' Aldressable and . , only
' Nonfiisi‘bli ?\rea ‘ range of ordinate of 0-780 is within

viewing area. An ordinate of 781-1023
range 1is addressable, but it cannot be
displayed, Thus each of the abscissa
and ordinate information will require 10
. binary digits. Since the codes for
Addresszble and Visible communication between the computer and
the terminals are ASCII codes, these
binary coordinates information needed
for display must be "camouflaged" as
(00) (1023,0) ASCII coded characters. As each ASCII
character is coded in 7 bits, 4010 uses
two ASCII characters (14 bits, with 4

Figure 6.10 bits to spare) to code the x-abscissa,
Screen Size and Coordinates and another two for the ordinate.

(o, 790) (1023, 780)

260 CHAPTER 6 COMPUTER GRAPHICS

Thus, for every coordinate information, 4 ASCII characters are
transmitted from the computer to the graphics terminal.

When the terminal is in the graphics mode, the hardware will take a
four—character group, strip away the most significant 2 bits from each
character, and combine the remaining bits into the ordinate and the abscissa
data. Figure 6.11 shows how a four-character group "SPACE", "[", "=", and
"DELETE" is decoded into a coordinate of (959,27).

ASCII 5-bit
Character Code Byte Decoded Coordinates

SPACE 0100000 00000

[1011011 11011 Y = 0000011011 = Decimal 27
= 0111101 11101
DELETE 1111111 11111 X = 1110111111 = Decimal 959

Figure 6.11 Decoding of ASCII codes into Screen Coordinates

The x-y information is then fed to the deflecting circuits of the CRT to
move the beam. It is apparent that the coding and decoding of graphic
information is very tedious. Fortunately, the coding of graphic information for
transmission to the terminal is done by the PLOT10 software, and the decoding
for display is done by the graphics terminal hardware. Also, unfortunately,
these software and hardware in the graphics industry are not yet standardized.

Example: Set the graphics terminal on LOCAL.
(1) Press PAGE key to erase the screen.
(2) Enter into graphic mode by pressing CTRL-SHIFT-M key.
(3 keys pressed down together)
(3) Enter the following 4-character groups:
(each key pressed in sequence)

SPACE DELETE SPACE @ (¥Y=31 and X=0)
7 DELETE SPACE @ (Y=767 and X=0)
7 DELETE ? _ (Y=767 and X=1023)
SPACE DELETE ? _ (Y=31 and X=1023)
SPACE DELETE SPACE @ (Y=31 and X=0)

These steps should trace a diagonal cross on the screen.
To switch from the alpha-mode to graphics mode, the computer will send an ASCII

character CONTROL-SHIFT-M; to switch back to the alpha-mode, an ASCII code of
ESC-FORMFEED.

6.9 Terminology

In the presentation of the PRIMER that follows, some terminology will be
explained here first.

(1) a/N This is an abbreviation for "alphanumeric."

(2) A/N cursor A blinking marker to show the next character print
position, This is the same as in any CRT terminal.

Screen and Virtual Graphics 261

(3) Graphic cursor The graphic cursor on 4010 is a cross-hair cursor
that may be controlled by two thumb wheels. This is used as positional input
during graphic mode.

(4) Home position The upper-left corner screen location at which the
first character of a page is normally printed. Same as a conventional CRT
terminal.

(5) Origin The coordinate represented by (0,0). The screen origin is
located at the lower-left corner. Virtual space has its origin at its center.

_(6) Raster unit The distance between two adjacent points on the
screen. This is the basic resolution element of the terminal.

(7) Screen coordinates . The set of points which constitutes the
screen. Range of the screen coordiantes is from 0 to 1023 for both x and y.
The visible range for y is from 0 to 780.

(8) Storage tube A CRT which will maintain a display, once written,
for an indefinite priod unitl it is erased. The Tektronix 4010 is of such type.
The stored display may be appended by additional display on the same picture.
It cannot accommodate a subtraction of displayed information. Therefore, to
even make a very minor non-appending modification of a display, the current
display must be erased and redrawn.

(9) Vector When the beam is moved from one point to another, the
changes in the coordinates are translated into the voltage changes that applied
to the deflection plates of the CRT. The changes are made into a linear
function of time, and therefore the movement of the beam on the screen will be a
straight line. This is called a hardware vector generator. The vector is then
a line segment. A vector may be generated with the beam either ON or OFF, which
is analogous to a plotter pen position DOWN or UP.

(10) Absolute coordinates and relative coordiates The absolute
coordinates use either the screen origin or the virtual space origin as
reference. The relative coordinates are incremental values in x and y (positive
or negative), using the current point as a reference.

(11) ADE (ASCII Decimal Equivalent) Code These are same as the
conventional ASCII codes, except that they are represented in decimal integers.
For example, upper case "A" is coded as decimal 65. See Table 6.4 (Chapter 6)

6.10 Screen Graphics and Virtual Graphics

First, let us establish an analogous situation. When we use a graph
paper to plot a curve, the graph paper size is fixed. Yet it will be capable to
plot values of any range merely by defining two things: (1) the ranges of x and
y, and (2) the scale factor for x and y. This is equivalent to "zoom" the
real-world scale onto the graph paper size. Thus the measurement of data
directly on the graph paper would be referred to as "direct graphics", and the
zooming process is the virtual graphics. In the graphics terminal, we use the
uterm "screen graphics" for the term direct graphics. The process of the
virtual graphics involves a normalization and scaling of all data points and
translating them into actual screen coordinates for the actual hardware display.
This process is not difficult, but it is exceedingly laborious because it must
be applied to all axis, all labels, all data points location, and all drawings.
These laborious chores are spared by the virtual graphics software. Throught
the use of the wvirtual graphics, it is possible to increase or decrease the

262 CHAPTER 6 COMPUTER GRAPHICS

apparent picture size without having to change the data values. This
effectively provides an elementary "zooming" capability mentioned above. Now we
are ready to define a few more terms:

(1) Screen space and screen coordinates These are as defined in
section 6.9.

(2) Screen window A rectangular section of the screen space. It is
usually the section into which the virtual window is scaled and translated.

(3) Virtual space this is a user-defined, data-structured rectangular
display area which is independent of the terminal.

(4) Virtual window The translation of the screen window translated
into the virtual space.

(5) Virtual coordinates This is a set of point coordinates that
constitues virtual Space. Figure 6.12 shows the basic viewporting principle of
zooming from the screen to virtual graphics.

Note that in the virtual graphics, the sizes of the screen space, virtual
space, screen window, and virutal window may be individually specified.
Furthermore, in each rectangular specification, the width and the height can
also be individually specified. This capability leads a wide flexibility of
graphics display, some of which are shown in Figure 6.13. Note that an increase
in the window specification decreases the apparent picture size (zoom-out), and
vice versa. Also note that when the window width and height are set not in
proportion ‘between the screen window and the virtual window, there will be a
distortion of display. This distortion may not be objectional because it simply
implies a scale change respectively in the x- and y-d irections. If we are
drawing scaled models, then this will result in a objectionable distortion.

 Screen Asea

i

- 2
(0, 790 > (1023, 785)

<

Virtual Space

|

- e - [- S
Real World i
i

Z Woo) Ly (ren)]
\
— Userd, pecifrad 0/Ser-5}>ec/']4‘ed y
Virtual Windew Sereen Window =

Figure 6.12 The Basic Viewporting Principle

Virtual Graphics 263

VI \ .
Nk

N IS
| 1 -2

ES

K Window width and height varied proportionally

1 2

Window width and

heidght not varied proportionallv

(a) Fixed Virtual Snace (Size not shown). Variable Virtual Window

(a) Fixed Virtual Window (Window 1), Variable Virtual Space

Figure 6.13 Projections by Virtual Graphics

264 CHAPTER 6 COMPUTER GRAPHICS

6.11 A Basic Set of TCS Subroutines

The PLOT10 software has a hierarchial structure. At the most primitive
and lowest level is a set of basic TCS soubroutines. These subroutines define
the fundamental operations of the graphics, Building upon these primitive
subroutines are other more advanced TCS routines. Then the advanced graphing
package and other graphics software are higher-level subroutines that use the
TCS routines as building blocks.

The basic TCS routines are presented in the following categories and they
are respectively tabulated in five tables: (1) function control (Table 6.9),
(2) screen (direct) graphics (Table 6.10), (3) virtual graphics (Table 6.11),
(4) utility routines (Table 6.12), and (5) cursor operations (Table 6.13).

Subroutine: CALL INITT(IBAUD)

Function: To initialize the Tektronix terminal for a graphics session.
It will turn the terminal to the graphics mode, clear the
screen, set all graphic parameters to default values, set the
transmission filler characters based on the baud rates, and
move the beam to the screen origin.

Parameters:
IBAUD the transmission rate in characters/second. 1BAUD=10,15,30,
120 for 110, 150, 300 and 1200 bauds respecitvely.
Subroutine: CALL FINITT(IX,IY)
Function: To terminate the graphics session and reset it to
alphanumeric mode. Move the beam to a screen coordinate of
(IX,I¥). Typically (IX,I1Y) is the coordinate of the A/N home
position (0,767).
Paramcters:
IX,IY final screen coordinate of the beam position to be set
Subroutine: CALL ERASE
Subroutine: CALL BELL
Subroutine: CALIL, HDCOPY
Function: ERASE ——- To erase the screen
BELL --- To sound an audible alarm to alert the user.
Usually used as a non-displaying prompt signal.
HDCOPY ——- To produce a hardcopy of the screen display
Parameters: None

Table 6.9 PLOT10 TCS Subprograms — Function Control

PLOT10 Subroutineses

Subroutine: CALL DRWABS(IX, IY)
Subroutine: CALL MOVABS(IX, IY)
Subroutine: CALL PNTABS(IX, IY)
Subroutine: CALL DSHABS(IX, IY, L)
Function: Screen graphics with absolute screen coordinates:
DRWABS ——- To draw a vector from the current position to (IX,IY)
MOVABS -—- To move the beam from the present position to (IX,IY)
PNTABS ~-- to plot a point at the position (IX,IY)
DSHABS --- To draw a dash line from the present position to (IX,IY)
Parameters:
IX, 1Y the screen coordinates of the destination point
L dash line codes:
1 5 raster units, visible
2 5 raster units, invisible
3 10 raster units, visible
4 10 raster units, invisible
5 25 raster units, visible
6 25 raster units, invisible
7 50 raster units, visible
8 50 raster units, invisible
L is a dash line code that is a concatenation of the above code numbers. For
example, when L~3454, the dash line will be drawn in the pattern of
345434543454... where each code number is defined as above.
Wnen L is given as a single digit, it is interpreted as follows:
-1 causes a move
0 causes a draw
1 alternate visible and invisible segments between data points.
subroutine: CALL DRWREL(IX, IY)
subroutine: CALL MOVREL(IX, IY)
subroutine: CALL PNTREL(IX, IY)
Subroutine: CALL DSHREL(IX_, IY_, L)
Function: Screen graphics with relative screen coordinates:
DRWREL —~- To draw a line from current position to another point with a known
displacement from the current position.
MOVREL —~- To move the beam from current position to another point with known
displacements
INTREL. ——- To plot a point at a screen displacement of (IX,1Y) from the current
point
DSHREL —- to draw a dash line from the current position to another point with a
known x- and y-displacements
Parameters:
IX,IY the x- and the y-displacements (in raster units) from the current position
L the dash line code as defined above

Table 6.10 PLOT10 TCS Suburograms - Screen Graphics

266 CHAPTER 6 COMPUTER GRAPHICS

Example: Screen graphics is simple to implement. It consists of the
following steps:

(1) Initialize.)

(2) Move the beam ("Pen UP" fashion) to the first point.

(3) Start drawing. FORTRAN statements for calculating the data points
may be intermixed with the graphics statements in their natural
order . :

(4) Terminate the graphics session.,

The following program, when

. o L executed, will produce a drawing as
shown in Figure 6.14.

* Example for screen graphics
DIMENSION IX(13),IY(13)
i DATA IX/500,900,7006,300,100,800,

I I 1 800,200,200,600,500,500,500/

DATA IY/4{v,400,600,600,400,400,
1 100,100,400,400,200,200,400/
CALL INITT(30)
CALL MOVABS (IX(1),IY (1))
po 10 I=2,13

10 CALL DRWABS (1X(I) ,I¥(I))

Figure 6.14 Hardcopy of the Output CALL FINITT(0,767)

END

Be careful not to let screen coordinates overflow. If either of the
coordinates 1is specified with an integer larger than 1023, the true coordinate
plotted on some graphic terminals will be the residue number of modulo 1024.
Thus it produces a wrap-around effect, On some graphic terminals, the segment
beyond the screen area will not be displayed. Furthermore, when the beam
returns to the display area, it will return at the place where it goes out of
bound, thus traces an incorrect line. If the line goes out of bound but still
within the addressable area (i.e. Y>780 and ¥<1024), the picture will be clipped
for those parts outside the visible display area. These common errors are
illustrated in Figure 6.15.

Display produced by: (Picture clipped)

| Tovsible bt A (6oo,l000) e CALL MOVABS (200,600)
| Addressable 7 7 CALL DRWABS (600 ,1000)
| Area ST CALL DRWABS (900,200)
i

S e S
//" L
""" Display prcduced by:

(200,600 (800,600) | ..o CALL MOVABS (800, 500)
) o CALL DRW2BS(1500,300)
Visible Sereen frea \ g *-... . CALL DRWABS (100,200)

(Incorrect display)

(/800,300)
(100,200) (900,200

— N

Figure 6.15 Screen Coordinate Overflow Errors

Virtual Graphics

267

Subroutine: CALL VWINDO(XMIN, XRANGE, YMIN, YRANGE)
Subroutine: CALL DWINDO(XMIN, XMAX, YMIN, YMAX)
Subroutine: CALL SWINDO(MINX, LENX, MINY, LENY)
Subroutine: CALL TWINDO(MINX, MAXX, MINY y MAXY)
Function: To define the windows: ‘
VWINDO and DWINDO --- To define a virtual window
SWINDO and TWINDO —- To define a screen window
Parameters:
XMIN, XMAX the minimum and the maximum virtual x-coordinates
YMIN, YMAX the minimum and the maximum virtual y-coordinates
XRAGNE,YRANGE the horizontal and the vertical extents of -the window
MINX,MAXX,MINY,MAXY , LENX, LENY
similar definitions, except they are integers and they define ascreen window.
L - S
Subroutine: CALL DRAWA(X, ¥)'
Subroutine: CALL MOVEA(X, Y)
Subroutine: CALL POINTA(X, Y)
Subroutine: CALL DASHA(X,Y,L)
Functions: Virtual graphics in absolute virtual coordinate:
DRAWA ——- To draw a line from current position to virtual coordinate (X,Y)
MOVEA —- To move the beam from current position to virtual coordinate (X,Y)
POINTA —- To plot a point at the virtual coordinate (X,Y¥)
DASHA -—— To draw a dash line from the current position to virtual coordinate
X,Y). The dash line code is given in Table 6.10.
Parameters:
X, Y the absolute virtual coordinates of the destination point
L the dash line code as defined in Table 6.10
Subroutine: CALL DRAWR(X, Y)
Subroutine: CALL MOVER(X, Y)
Subroutine: CALL POINTR(X,Y)
Subroutine: CALL DASHR(X,Y,L)
Functions: Virtual graphics in relative virtual coordinate:
DRAWR ——- To draw a line from current position with a virtual displacement
MOVER -—— To move the beam from current position with a virtual displacement
POINTR —- To plot a point at a virtual displacement from the current point
DASHR - To draw a line form current position with a virtual displacement
Parameters:
). 924 the horizontal and vertical displacement respectively of the destination point
from the current point.
L the dash line code as defined in Table 6.10

Table 6.11 PLOT10 TCS Subprograms - Virtual Graphics

268

way:

Exaniple :

(1)
(2)

(3)
(4)

CHAPTER 6 COMPUTER GRAPHICS

Graphics in the virtual space may be implemented in a similar

Initialize the graphics,
specify the screen window (omitted is the
window) and the virtual window.
Move the beam to the first point using virtual coordinate.
Start drawing. Statements for calculating the data points may be
intermixed with the graphics statements in their natural order.

Screen graphics and virtual graphics can also be intermixed.

if the entire screen

The following program will project the drawing of Figure 6.14 and
reproduce it within several virtual windows as shown in Figure 6.16.

* Example for virtual graphics

DIMENSION IX{(13),IY(13),X(13),Y(13)
DATA IX/500,900,800,300,100,800,800,200,200,600,600,500,500/

DATA 1Y/400,400,600,600,400,400,100,100,400,400,2006,200,400/

CALL INITT(30)

CALL DWINDO(50.,950.,50.,650.)

DO 10 I=1,13

X (I)=FLOAT(IX(I)); Y¥Y(I)=FLOAT(IY(I))
10 CONTINUE

DO 50 K=1,3
IF (K.EQ.1)CALL TWINDO(600,800,300,500)

IF (K.EQ.2)CALL TWINDO(100,200,100,600)
IF (K.EQ. 3)CALL TWINDO(100,860,100,200)

R —

, Virtual Window

CALL MOVER(X (1) ,¥(1)) S
DO 20 1=2,13
20 CALL DRAWA(X(I),Y(I)) ! B
50 CONTINUE /
CALL FINITT(0,767) /
END / B T "
/ ‘ ‘ ’
I .
- H ‘
i ! oL L /'
£ U -
I 4
e ’
b O Sy Mhida s,
|" - _ . L S ey s
H / \ H

Figure 6.16

Virtual Graphics Example

PLOT10 Subroutines 269

Subroutine: CALL, ANMODE
Function: To set the terminal to A/N output rather than having to use
FORTRAN READ and WRITE statements, thus remaining in the
graphics mode. -~
Parameters: None
Subroutine: CALL ANCHO(ICHAR)
Subroutine: CALL ANSTR(NCHAR,NADE)
Function: To produce an ASCII output on the screen. The beam position
is updated after the writing.
ANCHO --- To output one single character.
ANSTR --- To output a string of characters
Parameters:
ICHAR an integer representing a 7-bit ASCII character; not a
control-character.
NCHAR number of characters in the string
NADE an array containing the ASCII decimal integer equivalent for
the characters in the string
Subroutine: CALL NEWLIN
Subroutine: CALL CARTN
Subroutine: CALL LINEF
Subroutine: CALL BAKSP
Subroutine: CALL HOME
Subroutine: CALL NEWPAG
Function: To provide utility functions of the terminal
NEWLIN --- To generate a line feed and carriage return
LINEF -~-- To generate a line feed alone, no carriage return
CARIN --- To generate a carriage return, no line feed
HOME -—-- To move the A/N cursor to the home position
BAKSP --- To generate a backspace
NEWPAG --- To erase the screen and return the A/N cursor to
the home position
Parameters: None

Table 6.12 PLOT10 TCS Subprograms — Utility Routines

270

CHAPTER 6 COMPUTER GRAPHICS

Subroutine: CALL SCURSR(ICHAR,IX,IY)

Subroutine: CALL DCURSR(ICHAR,IX,IY)

Function: To retrieve the screen coordinates of the graphic cursor.
Calling the SCURSR or DCURSR will activate the graphic
cursor, a cross-hair line. Two thumb wheels may be used to
move the 1line in order to position a point on the screen.
The cursor position is transmitted to the computer when a
keyboard character is struck. The subroutine returns with
IX,IY indicating the screen coordinates of the cursor.
SCURSR and DCURSR are identical routines.

Parameters:

ICHAR a keyboard character; an decimal integer equivalent of its
ASCII code

IX, 1Y the screen coordinates of the graphic cursor returned by the
subroutine

Subroutine: CALL VCURSR(ICHAR,X,Y)

Function: To retrieve the virtual coordinates of the graphic cursor

Parameters:

ICHAR a keyboard character, represented by its ASCII code in the
decimal equivalent
X, Y the virtual coordinates of the graphic cursor
Table 6.13 PLOT10 TCS Subprograms - Cursor Operations

Overflow errors in virtual graphics

will appear as clipped picture at the

Screen edges of the virtual window. A more
serious and difficult to detect error is

committed when the beam is moved outside
the virtual window by virtual
coordinates and then moved back inside
the window by screen coordinates. The
re-entry point will be where the beam
left the virtual window. Because there
will not be a clipped figure, the error
is difficult to detect but the re-entry

Inconrect line

line will be incorrectly drawn. This is
illustrated in Figure 6.17 on the left.

Figure 6.17 Overflow Errors
in Virutal Graphics

Interactive Graphics 271

6.12 Interactive Graphics

Time—-sharing mode of computer operation puts a user in direct contact
with the computer. Now graphics opens a new world with its clarity of
information., Interactive graphics is then a natural result of combining the
best of these two operational modes.

There are some problems in constructing the computer-user dialogues in
the graphic mode, however. In a conventional terminal, the dialogues are
constructed by READ/WRITE statements and the decision (IF) statements following
the dialogue to determine the next step. All these dialogues are displayed on
the user's terminal.

In a graphics terminal, such dialogues are still applicable when the
terminal is in an alphanumerical mode. Once it gets into the graphics mode, the
drawing will be in progress, and dialogues should not appear on the screen
‘because they will spoil the picture. One possible remedy is to move the beam
outside the visible region; return to the A/N mode; tell the computer your
part of the conversation (by a FORTRAN READ statement); then return to the
graphics mode. Another is to use the ASCII input subroutines, such as TINSTR or
TINPUT, which will be explained in a later section. The most effective way is
by using the "menu" graphics for the interaction.

Let us use the 4010 screen for illustration. Suppose we arbitrarily
assign the vertical area at the right edge of the screen as the "menu" area.
Within the menu area, subsections are assigned to pre-designed options and/or
decisions, By calling the cursor and moving it to within the desired
subsection, the user's intention is transmitted to the computer without spoiling
the picture. In addition, the bell can be used as an audible prompt signal to
alert the user. "Menu graphics" basically makes the use of these ingredients.
Now we will illustrate by means of an example on the Tektronix 4010:

Example: Design an interactive graphics program that will make a logic
circuit diagram consisting of all NAND gates. In other words, the screen will
be used as a drawing board, the ¢ursor as a pen.

First, set aside the area on the
right edge of the screen as the menu

(0, 780> (900,780 area. The menu area is a rectangle with
T the wupper left corner at the screen
| — coordinate (900,780) and the lower right
- corner at (1023,0). Then the menu area
I Do is equally divided horizontally into
| 7.|8 five subsections. This is shown in

. | %2 Figure 6.18. Five options are designed
Drawing Area P 2 into the program:

{Pj" 2 (1) Option 1 Draw a solid line.

r__P_ (2) Option 2 Draw a NAND symbol.
Re- (3) Option 3 Draw a small dot, as

CYCLE interconnecting point of two lines.
L (4) Option 4 Move the beam to a new
(0,02 (f013,0) position.

(5) Option 5 Make a hardcopy of the
screen display and recycle the

rogram,
Figure 6.18 Menu Design prog

272 CHAPTER 6 COMPUTER GRAPHICS

To simplify the drawing, we will set up a default option. If the graphic
cursor is positioned outside the menu area, the option is the same as the one
chosen previously, and the cursor position specifies the end beam position.
Thus only when the option is to be different from the last choice for the cursor
to return to the menu area.

The design specification of the interactive program ¢an then be
summar ized into the following steps of operations:

(1) The program is initialized by blanking the screen, and draw the menu.
The cursor appears on the screen, and the beam is in PEN-UP mode (or,
OPTION=4) . Move the cursor, using two thumb wheels on the keyboard,
to a point in the drawing area and mark this position by pressing the
carriage return (CR) key. The beam is now positioned at the starting
point of the diagram.

(2) The bell beeps to alert the user to make a choice of next option.

a. Cursor will reappear.

b. Move and position the cursor ,to the menu area, and press CR key
to select an option.

c. Move the cursor to the drawing area, and press the CR key to
execute the option.

If the option chosen is the same as the last one, the steps "a"
and "b" may be omitted. Repeat step 2 until the drawing is finished.

(3) When the drawing is finished, make a hardcopy by pressing the HDCOPY
switch on the terminal. Choose option 5 (RECYCLE) to make the next
drawing, or press CTRL-C to exit.

The program listing is shown below:

kkkkkkhhkhkhkhkhkhkkhhkkkkhhkkhkkhhkkkkk
*

FILENAME: DRAW.FOR *

*
hkhkkkkkhkkkkkkhkkkkhhkkkkkkkhkkkkkk

An interactive menu graphics program to draw an
Al1-NAND logic circuit diagram

*

*

*

*

*

*

*

*

*

* TImplemented for Tektronix 4010 series terminals

*

CALL INITT(30)

10 CALL START
JOBO=4

20 CALL OPTION(JOBIL,IX,IY)

IF (JOB1.EQ.0)GOTO 50
IF (JOB1.EQ.5)GOTO 10
CALL BELL

CALL SCURSR(13,IX,IY)

50 IF(JOB1.Gr.1)CALL MOVABS(IX,IY)
IF(JOB1.EQ.1)CALL DRWABS (IX,IY)
IF(JOB1.EQ.2)CALL NAND(IX,IY)
IF(JOBl.EQ.3)CALL DOT(IX,I1Y)

JOB1=JOBO
GOTO 20
END

Interactive Graphics

khkkkkkkkkhkhkkhkkkhkkkks
* SUBROUTINE START *
kkhkkkkkkkkhkkkkkkkkkkkkk
*

* TO INITIATE THE MENU GRAPHICS .
*

SUBROUTINE START
DIMENSION K1 (6),K2(7)
DATA Kl/IPI ,'E','N',' "'UI"IP'/
DATA Kz/lRl,lElllcl ’Iyl 'ICI’ILI ’IEI/
CALL NEWPAG
CALL MOVABS (900,780)
CALL DRWABS (1023,780)
CALL DRWABS (1023,0)
CALL DRWABS (900,0)
CALL DRWABS(900,780)
1Y1=780
DO 10 1=1,4
IY1=IY1-156
CALL MOVABS (900 ,1Y1)
CALL DSHABS (1023,IY1,12)
10 CONTINUE
" CALL MOVABS(925,702)
CALL DRWABS (1000,702)
CALL NAND(950,546)
CALL DOT(96U,390)
CALL MOVABS (910,220)
CALL AlOUT(6,K1)
CALL MOVABS(910,65)
CALL AlOUT(7,K2)
RETURN
END
kkkkkkkkkkkkkkkhkkkkkkhkx

* SUBROUTINE OPTION *
Fdekdokokhk ok Kok dok Rk Rk ok kkkkk

Menu selection of options
Returned values:

JOBL1 = 0 Same job as before
JOB1 = 1 Draw line

JOB1 = 2 Draw an NAND symbol
JOBl1 = 3 Draw a dot

JOBl = 4 Move beam, no drawing

¥ ¥ ¥ %k % * % % % F *

IX,IY information needed for JOB1=0

SUBROUTINE OPTION(JOBL,IX,IY)
CALL BELL

CALL DCURSR(13,IX,1Y)
IF(IX.LT.900)JOB1=0
IF(IX.LT.900)RETURN
IF(IY.GT.624)J0B1=1

IF((IY.LE.614) .AND. (IY.GT.468)) JOB1=2
IF((IY.LE.468) .AND. (IY.GT.312))JOB1=3
IF((IY.LE.312).AND. (IY.GT.156))JOB1=4

IF(IY.LE.156)J0B1=5
RETURN
END

273

kkkkhkkkhkkkhkkkhkhhhkhkkkx
* SUBROUTINE NAND *
kkkkhkkhkkkhhhhkkhhkxkkkkk
*

* To draw an NAND symbol at (IX,IY)
*

SUBROUTINE NAND(IX,IY)
INTEGER INX(16),INY(16)
DATA INX/O,l3,9¢3,lp3l3rlI_lr
1 -3,-3,-1,-3,-9,-13,0/
DATA INY/—25,3,9113’3111_11_31
1 -3,-1,1,3,13,9,3,-25/
CALL MOVABS (IX, 1Y)
DO 10 I=1,16

10 CALL DRWREL (INX(I) ,INY(I))
CALL MOVABS (IX,IY)
RETURN

hxkkkkkkhkkkhkkkkhkhhkkkkk
* SUBROUTINE poT *
hkkkhkkhkhkkhkkhhkhkhkkkk
*
* To draw a intersecting dot
*
SUBROUTINE DOT(IX,IY)
INTEGER INX(8) ,INY(8)
DATA INX/-1,-2,-2,-1,1,2,2,1/
DATA INY/2,1,-1,-2,-2,-1,1,2/
CALL MOVABS (1X,1Y)
CALL PNTABS (IX,IY)
DO 10 K=1,3
IK=K
CALL MOVABS (IK+IX,1Y)
CALL DRWREL(-IK, 1K)
CALL DRWREL(-IK,-IK)
CALL DRWREL(IK,-IK)
CALL DRWREL (IK,IK)
10 CONTINUE
Do 20 1=1,8
20 CALL DRWREL(INX(I),INY(I))
CALL MOVABS(IX,IY)
RETURN
END

274 CHAPTER 6 COMPUTER GRAPHICS

YT T

vasscamaman

FEM 1LF

(S

Figure 6.19 Output from the Interactive Program

Figure 6.19 shows a sample of the result from this interactive program.

This example shows a very simple case of menu graphics. In a more
advanced application, both the software and the hardware support will become
more sophiscated. The thumb-wheel controlled cursor will be replaced by a light
pen, a joystick or a trackball. The menu will not occupy the same screen as the
display. Some terminal has several display xy-plane (in the =z-axis), and it
becomes possible to put the display on one plane, and the menu and the cursor on
another. The display planes are superimposed on the screen surface. Some
graphic system has separate digital grphic tablet that has the same coordinate
ranges as those of the screen, and the tablet may be used as a dgraphic
positional input device. The menu in such a case may be designed as an overlay
that has a drawing of the menu on it and is placed on top of the tablet, A

light pen or a mechanical cursor device may be used to make a selection of
options.

More PLOT10 Subroutines 275

6.13 A Summary of Other TCS Subprograms

In addition to the basic set of TCS subprograms presented in the last
section, there are other subprograms tht are useful. They are again divided
into several categories for summarizing tabulations: (1) rescaling graphic
output (Table 6.14), (2) virtual graphics and beam status (Table 6.15),
(3) output utilities (Table 6.16), (4) coordinate transformation (Table 6.17),
and (5) ASCII input/output (Table 6,18).

These tables now follow.

Subroutine: CALL RSCALE(FACTOR)
Function: To rescale a virtual display by a virtual factor
Parameters:
FACTOR the rescaling factor relative to the original size of the
display ,
Subroutine: CALIL RROTAT(DEGREE)
Function: To rotate a virtual display by an angle relative to its

original display position.

Parameters:
DEGREE angle in degrees for the rotation
| Subroutine: CALL RESET
Subroutine: CALL RECOVR
Function: RESET --— same as INITT, but no erasure of screen
RECOVR ——— To update the terminal hardware to match the
terminal status values
Parameters: None

Table 6.14 PLOT10 TCS Subporgrams - Rescaling the Graphic Output

276

CHAPTER 6 COMPUTER GRAPHICS

Subroutine: CALL SEETW(MINX, MAXX, MINY,,MAXY)
Subroutine: CALL SEEDW(XMIN, XMAX, YMIN, YMAX)
Function: SEETW -—— To find the current values of the screen window
SEEDW ——— To find the current values of the virtual window
Parameters: These are returned parameters:
MINX,MAXX,MINY ,MAXY
the screen coordinates that define a screen window
XMIN, XMAX, YMIN,, YMAX
the virtual coordinates that define a virtual window
Subroutine: CALL SEEREL(RCOS, RSIN, SCALE)
Function: To return the.values of the common variables used by the
relative virtual routine to scale and rotate vectors.
Parameters:
RCOS the cosine of the rotating argle
RSIN the sine of the rotating angle
SCALE the multiplier used for scaling
Subroutine: CALL SEETRN(XFAC, YFAC, KEY)
Function: To return the values of the common variables set by the
window and transformation routines
Parameters:
XFAC, YFAC the x and y scale factors respectively
KEY the transformation code: 1=linear; 2=log; 3=polar
Subroutine: CALL SEELOC(IX, IY)
Function: To locate on the screen the last positin of the graphic beam
Parameters:
IX,1Y the screen coordinates of the beam
Table 6.15 PLOT10 TCS Subprograms - Virtual Graphics and Beam Status

More PLOT10 Subroutines

Subprogram:
Subprogram:

Input Prameters:

NCHAR
NLINE

LINWDT
LINHGT

Subprogram:
Subprogram:

RIN,RCM

KIN
KCM

Subroutine:
Function:
Parameters:

MIEFT,MRIGHT

variable = LINWDT(ICHAR)

variable = LINHGT(NLINE)

number of characters
nunber of lines

Output Parameters:

width measurement in raster units
height measurement in raster units

variable

KIN(RIN)

variable = KCM(RCM)

Input Parameters:

input parameters in inches or centimeters respectively

Output Parameters:

number of raster units equivalent to the input RIN
number of raster units equivalent to the input RCM

CALL SETMRG(MLEFT,MRIGHT)

To set the left and right margins

screen coordinates for the left and right
respectively

margins

Table 6.16 PLOT10 TCS Subprograms - Output Utilities

278 CHAPTER 6 COMPUTER GRAPHICS

Subroutine: CALL, LINTRN
Function: To reset to linear scaling (from log or polar scaling)
Parameters: None
Subroutine: CALL LOGTRN(KZ.E’Y)
Function: To define a semi-log or a log-log scale
Parameters:
KEY code for the log scaling:

KEY=1 semi-log, x—-axis on log scale
KEY=2 semi-log, y-axis on log scale
KEY=3 log-log scale

Subroutine: CALL POLTRN(ANGMIN, ANGMAX, RSPRS)
Function: To set up polar virtual window
Parameters:

ANGMIN,ANGMAX the minimum and the maximum angles relative to the horizontal
for the display

RSUPRS . the radius suppression factor
Subroutine: CALL DRAWSA(X, Y)
Subroutine: CALL DRAWSR(RX, RY)
Subroutine: CALL DASHSA(X, Y)
Subroutine: CALL DASHSR(RX, RY, L)
Function: To drawline segment while the polar coordinate transformation

is in effect:

DRAWSA —-- To draw a segment of 1line, given a wvirtual

coordinates of the end point
DRAWSR —-- To draw a line segment given the virtual relative
coordinates to the current beam position.
DASHSA --— Same as DRAWSA except in dash line
DASHSR —~- Same as DRAWSR except in dash line
Parameters:
X, Y virtual coordinates of the end point of the line
RX,RY virtual coordinates relative to the present beam position
L the dash line code (See Table 6.10)

Table 6.17 PLOT10 TCS Subprograms - Coordinate Transformations

More PLOT1U Subroutines 279

Output of ASCII Characters - Beam not updated for 'CTRI~Character Output

Subroutine: CALL ANCHO(ADE)
Subroutine: CALL ANSTR(NCHAR, ADES)
Function: The ASCII characters are given in ADE codes.
Parameters: -
ADE an integer constant, representing the ADE code of the character. The character
must not be a control-character.
ADES an integer array, with each an ADE code for a character. The array contains no
control-cahracters.
NCHAR number of characters
Subroutine: CALL AIOQUT(NCHAR, ASC1S)
Subroutine: CALL AOUTST(ICHAR, ASCSS)
Function: ASCII characters are given in FORTRAN "A" format. Not for CIRL-characters.
Parameters:
NCHAR number of characters. For Al format, NCHAR = number of characters. For AS
format, NCHAR = 5* (number of elements in the array).
ASCls an ASCII array, with each element in Al format
ASC5S an ASCII array, with each element in A5 format, left-justified
Subroutine: CALL TOUTPT(ADE)
Subroutine: CALL TOUTST(NCHAR, ADES)
Function: Characters are given in ADE codes. For CTRL-characters only, because the beam
does not move after the output.
Parameters:
NCHAR number of characters
ADE an integer constant, representing the control-character in ADE code
ADES an integer array, each element a control-character in ADE code

To Store Input ASCII Characters from Keyboard

Subroutine: CALL A1IN(NCHAR, ASCI1S)

Subroutine: CALL AINST(NCHAR, ASC5S)
Function: To accept ASCII inputs from the keyboard and store them as variable or array

values in FORTRAN "A" format.
Parameters:

NCHAR,ASC1S ,ASC5S defined the same way as in AlOUT and AQUIST subroutines above.

Subroutine: CALL TINPUT(ADE)
Subroutine: CALL TINSTR(INCHAR, ADES)

Function: To accept ASCII inputs from the keyboard, and store them as variable or array
values as integer ADE codes.

Parameters:

NCHAR, ADE , ADES defined in the same way as in TOUTPT and TOUTST above.

Table 6.18 PLOT10 TCS Subprograms - Input/Output of ASCII Characters

280 CHAPTER 6 COMPUTER GRAPHICS

THREE DIMENSIONAL DISPLAYS

Three-dimensional graphics is one of the most challenging topics in the
computer graphics research and applications. It involves a study.of surfaces
and solids, their geometrical formulations, their interrelationship expresssion
by means of some language description, perspective, projection and hidden
surface identifications.

The discussion here will only concern with a very simple end small aspect
of the field., We will simply be concerned with how to display a two-dimensional
function in the general form of z=f(x,y) for a range of x's and a range of y's.
For example, a relief map would be a display model showing the height as a
function of longitudes and latitudes.

6.14 Three Dimenional Displays

In the materials covered in this chapter, the display was mainly in two
dimensions. In other words, the mathematical formulation of the function is
y=f(x), x=£f(y), or f(x,y)=constant,

For the type of function z=f(x,y), a 3-dimensional display is required,
~and the z-axis is need to display "z".

There are several ways to display such functions. One is displaying it
as a contour or relief map, with X,y to be spatial coordinates. Figure 6.20
shows two outputs available on DEC-10.

(a) 2-Dimensional Fourier Spectrum (b) 1970 U.S. Census
Sample Output from VERPLT (Ref.18) Sample Output from ASPEX (Ref.16)

Figure 6.20 3-D Displays by Contour Plotting

3-D Graphic Displays 281

The other way is to interprete z's as light intensities and plot the
z-function as an image. Figure 6.21 shows some samples of image output on
DEC-10. The gray scales (the gradation of shades) in the output are
accomplished either by an over—-print techniques (on a conventional printer) or
by a dot-matrix technique (on a dot matrix printer, such as the VERSATEC
printer) .

(a) Over-print Technique (b) Dot-matrix Technique

Lt o

i

.‘.iaﬁé;ems.m%u X

z-function values in the circle:

158 188 182 177 176 170 163 158 z-Value Overprint Dot—matrix
161 164 158 141 108 166 174 138

151 142 129 121 111 151 156 105 105 X - [:]

142 132 119 125 100 115 131 97

114 93 106 104 81 90 132 62 25 M W X
95 55 83 58 61 64 104 70

66 51 71 54 54 49 81 53

45 52 57 47 48 45 56 25

Figure 6.21 3-D Displays by Imege Plots

i
'KﬂMJ' [!
LA R N

282

CHAPTER 6 . CCMPUTER GRAPHICS

EXERCISES

Reproduce your signature on a CalComp plotter. Write a subprogram so that
you may sign your plots. There should be control on where the signature
should start (specify starting point coordinates), how high it should be
and how wide it should be,

Repeat problem 1 on the Tektronix 4010.

Write and implement a subroutine CIRC(X,Y,R) for (a) printer graphics, (b)
CalComp graphics, and (c) Tektronix 4010. The parameter X,Y are virtual
coordinates for the center, and R is the radius,

Set up a data file for about 50 data points. Use the data file to produce
plots on the printer, on the CalComp plotter, and on the Tektronix 4010.
The data file may be generated by taking a function and calculating its
values for a range of the independent variable.

Design an interactive graphic program so that you may use the cursor of
Tektrnoix to draw a transistor circuit diagram. Design a menu so that you
have selections of symbols of transistors, diodes, resistors, inductors,
and capacitors.

Reproduce the University logo on the printer, on the plotter and on the
Tektronix 4010. Write it up as a subroutine with parameters of
size—-control.

Practice on various type of axis constructions: linear axis and
logarithmic axis, using some arbirtrary data set.

Produce a graphic creative design on a graphic device.

Note: CalComp plotter is a slow device, and a typical plotting job takes

minutes. Therefore, most installations have restrictive regulations for
student usage and require special arrangement or regquest from the
instructor. Consult your local rules and regulations for instructional
usages.

References 283

10.

11.

12.

13.

REFERENCES

TUTORAIL: COMPUTER GRAPHICS, Kellogg S. Booth, Editor, IEEE Catalog
EHO-147-9, The Institute of Electrical and Electronics Engineers, Inc.,
New York, New York; 1979.

"Computer Displays," by Ivan E. Sutherland, Scientific American, Vol.
222, No.6 (June, 1970), pp. 36-41.

"A PROPOSED GRAPHICS STANDARD CORE SYSTEM", by SIGGRAPH Committee, ACM,
Computing Surveys, Volume 10, No.4, December, 1978.

METHODOLOGY IN COMPUTER GRAPHICS, R. A. Guedj and H. A. Tucker, Editors,
North~Holland Publishing Company, New York, New York; 1979.

Help File PRG:GRAPH.HLP, the Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1980.

Help File PRG:GRAFIC.HLP, the Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 19xx.

WORKSHOP NOTES ON COMPUTER GRAPHICS, T. W. Sze and A. R. Modarressi,
School of Engineering, University of Pittsburgh, Pittsburgh,
Pennsylvania; April, 1975.

INTRODUCTION TO THE CALCOMP PLOTTER, DEC-10 Pitt Software-2, the Computer
Center, University of Pittsburgh, Pittsburgh, Pennsylvania; October,
1976.

INTRUCTION MANUAL FOR DIGITAL INCREMENTAL PLOTTER, Model 936, California
Computer Products, Inc., Anaheim, California; 1979.

CAMCOMP PLOTTER SUBROUTINES, the Computer Center, University of
Pittsburgh, Pittsburgh, Pennsylvania; October, 1973.

CALCOMP PROGRAMMING FOR DIGITAL PLOTTER, by R. T. Delorm and L. Kersten,
University of Nebraska Press, Lincoln, Nebraska,

4010 AND 4010-1 USERS MANUAL, Tektronix, Inc., Beaverton, Oregon; 1972.

PLOT-10 TERMINAL CONTROL SYSTEM, USER'S MANUAL, Tektronix, Inc.,
Beaverton, Oregon; April, 1980,

284

14.

15.

16.

17.

18.

19.

CHAPTER 6 COMPUTER GRAPHICS

PLOT-10 ADVANCED GRAPHING II, USER'S MANUAL, Tektronix, Inc., Beaverton,
Oregon.

INTERACTIVE COMPUTER GRAHICS, Wolfgang K. Giloi, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey; 1978.

ASPEX USER'S REFERENCE MANUAL, Mark Hanson, Laboratory for Computer
Graphics and Spatial Analysis, = Harvard University, Cambridge,
Massachusetts; 1978.

Technical Report TM-7801, IMAGE PROCESSING PROGRAMS, Mike M. Iee and
John Todhunter, Pattern Recognition Laboratory, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1978.

VERSATEC 3-D PLOTTING ROUTINE, Herbert Y. H. Yang, Pattern Recognition
Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania; 1979,

IMPROC HELP FILE, An Image Processing System for DEC-10, T, W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1980.

CHAPTER 7

SELECTED SERVICE PROGRAMS AND PROCEDURES

Several service programs and procedures will be
presented in this chapter. They are: PIP (Peripheral
Interchange Program) , SORT, RUNOFF, OPRSTK (Operation
Stacker) , and the Virtual Memory. These programs and
procedures perform a variety of service functions.

7.1 Introduction

The PIP (Peripheral Interchange Program) program transfers data and
program files from one standard input/ouput device to another. Unless
explicitly specified to be deleted, a file at the source remains unchanged and
undisturbed. During these operations, simple file editing and magnetic tape
control may be performed. It is undoubtedly one of the most useful service
programs. Since it deals with devices and files, several related terms should
be reviewed first:

(1) Physical device name Each input or output peripheral device
associated with the System has a standard physical device name so that it can be
referred to consistently. The format of a physical device name is:

DEVnnn:

where: DEV = three-character abbreviation assigned to a class of devices,
for example, LPT for all line printers in the system.

nnn = zero to three-digit number indicating the numerical designation
for a particular unit in a class of devices, such as "DTAQLG:"
for DECtape drive Number 010.

: a colon, an integral and terminating part of the device name.

If there is only one device in a particular class, the part "nnn" may be
omitted. For example, "PLT:" is used to represent the system plotter, "PRG:"
the Program Library, and "SYS:" the System Library. It may also be omitted in a
multi-unit device name 1if only one such unit is assigned and available for
general usage, such as "DSK:". A list of physical names of selected system
devices is shown in Table 7.1.

286 CHAPTER 7 SERVICE PROGRAMS

Nevice . Physical Names
Array processor unit APU:
Card Punch CDP:
Card Reader CDR:
DECtape Drive DTA:
DTAC10:, DrAOll:, etc.
Disk DSK:
Line Printer LPT:

LPT03:, LPT06:, LPT10:, etc.

Magtape Drives MI7: (7-track drive)

MT8: (9-track drive, 800/1600 BPI)
MT9: (9-track drive, 1600/6250 BPI)
MTAC10:, MTAQll:, etc.

Operator's Terminal CPR: or TTYO:
Plotter PLT:, PLT010:
System Library SYS:
Program Library PRG:
Engineering Library ENG:
Terminals TTY:

TTY0:, TTY16:, TTY63:, etc.

Table 7.1 System Devices and Their Physical Names

(2) Logical device name The user may also define the device with
a name of his choice by the monitor command ASSIGN or MOUNT (see Chapter 8).
Such a user-chosen name is called the logical device name. Once a logical name
is assigned, a device may be referred to by either its physical or logical name.
In case there is a conflict between a logical name and a physical name, the
conflict may be resolved by the System which gives the logical name precedence.
The format of a logical device name is:

LOGDEV:

where IOGDEV is an one to six-character alphanumeric string, and the colon is an
integral and terminating part of the name.

(3) PIP switch In using the PIP program, all tasks are
interpreted 1in terms of file transfer with a single command format. Variations
of the tasks may be designated in the command structure by adding switches.
There are two acceptable forms of PIP switches: a code letter preceded by a
slash or a code letter enclosed in parentheses -- for example, /X or (X).
Multiple switches may also be given in either form -- for example, /B/X or
(BX). A PIP switch may be placed anywhere in a PIP command.

Device Names and Files 287

(4) File specification For the purpose of identifying a file, each
file is given a name. Once the names are established, the system will maintain
a directory so that users need not be concerned with the exact location on the
disk for their files. For the DEC System-10, the format of a complete file
specification is:

DEV: NAME.EXT [m,n] <xyz>

where: DEV: = name of device on which the file is stored. If this part is
omitted in the complete specification, DSK: (the disk assigned
to users) is assumed.

NAME = filename consisting of one to six alphanumeric characters with
no embedded blanks.

L.EXT = file extension consisting of zero (0) to three alphanumeric
characters with no embedded blanks. If it contains zero
character, it is called a null extension. The period is an
integral part of the extension,

[m,n]

the PPN of the person who created and owns the file. the
default PPN is the current job's PPN. Note the use of square
brackets.

<xyz> = a three-digit protection code. Note the use of angular
brackets.

The file extension is a part of file identification, used to indicate the
type or language of the file, Although any zero to three-character combination
can be used as a file extension for any file, the following are some of the most
frequently used file extensions, and their meanings are recognized by the
System,

Examples:

NEWTON. PIL A PIL program file named NEWTON.

NEWTON. FOR A FORTRAN program file named NEWION.
NEWTON. REL An object program compiled from NEWTON.FOR
NEWTON .BAS A BASIC program file named NEWTON.
FORO1,DAT A data file named FOROL.

Symbols "*" and "?" are used as "wild cards" to represent a class of file
names or extensions, as illustrated by the following examples:

Examples:

NEWTON. * All files named NEWION of any extension.
*.FOR All FORTRAN files.

Lk All files.

F????.DAT All data files whose names are 5 characters

or less and begin with F.

D12?2?.D?? All files whose names begin with "D12" and

288 CHAPTER 7 SERVICE PROGRAMS

contain 5 or less characters, and whose
extensions begin with the letter D and con-
tain 3 or less characters.

D122?.* All files whose names begin with "D12" and
contain 5 characters or less.

The protection code is a 3-digit octal-number xyz, each digit ranging
from 0 to 7. Each digit defines a protection level of the file against a
certain class of users:

X = protection level against the file owner himself.
y = protection level against users sharing the same project number.
z = protection level against the general public.

The level of protection ranges from level 0 to 7, and level-7 is the
highest. The exact definition of each protection level is given below:

Code Digit Access Protection*

No access privileges

Execute only

Level 6 + Read privilege

Level 5 + append privilege

Level 4 + update privilege

Level 3 + write privilege

Level 2 + rename privilege

Level 1 + change protection privilege

OHFHMNDWd VO

Access protection can be changed by executing RENAME or PROTECT monitor
comnand (see Chapter 6) or the PIP program (see Chapter 7). Since there are 8
levels of protection in each of three classes of users, there are 512 different
shades of protection-level combinations possible. Normally, one need only be
concerned with a few commonly used codes:

Protection Codes Applications
077,177 Strictly private and non-sharable, such as
grade files maintained by an instructor.
057;177 Sharable within a project, for example, a
program to be shared by all students in a
course.
055,155 Sharable with the computer community, but

the file may not be modified by anyone
except the file owner.

The System assigns a default protection level of 057, set automatically
by the computer if the person does not specify any protecticn code when he
creates the file. In some coursework, instructors may arrange to have the
default protection 1level automatically set at 077. In such a case, the

*Subject to minor local variations. For example, at the University of
Pittsburgh, access protection designated by the =x-digit has been modified
slightly.

The PIP Program 289

protection code of a student's file is 077 to his ¢lassmates, but is 057 to his
instructor.

(5) Directory and non-directory devices

While the PIP program deals mainly with transfer of files, many transfers
are really input/output operations, For example, transferring a file from the
disk to a line printer is actually an output operation of printing out a disk
file. Therefore, if we ignore these input/output operations, we need only
consider three major devices for the "true" transfer. They are the disk, the
DECtapes, and the magnetic tapes.

For the purpose of file references, the disk and the DECtapes are called
directory devices and the magnetic tapes are non-directory devices. In a
directory device, the files are identified by their file specifications, and
there is no need to know the actual physical locations of these files on the
devices. However, on a non-directory device, a file can only be identified and
located by its physical location or sequence, for example, file No. 3.

7.2 The Standard PIP Command Structure

The PIP program may be called at the monitor level by the command:

[Came]

After PIP is loaded, a prompt character "*" is printed at the terminal, and PIP
is ready to accept PIP commands.

The PIP command has a standard and simple structure:

Destination = Source(s) J

where: Destination = device and/or file which is to receive the transferred
data. This portion contains only one file specification.
(Note: One file specification may imply multiple files if
a wild card is used.)

"=" = an equal sign separating the source and the destination.
It may be substituted by a left arrow available on some
terminals.

!

[}

Source(s) one or more file specifications of the origin(s) of

transfer.
Both the destination and the source specification are of the standard
form DEV: NAME.EXT[m,nl<xyz>. Rules of default conditions and wild card
construction apply as given in Section 6.1.

Exit from the PIP program to the monitor may be accomplished by pressing
either the CTRL-C or CTRL-~Z key,

Various uses of the PIP commands are shown in the following examples:

290 CHAPTER 7 SERVICE PROGRAMS
Example Function
R PIP Call for PIP
*TTY:=CURVE. FOR Transfer a disk file to TTY. In other words,

list the file on TTY,

(Program listing
follows here.)

*

*Tz

Transfer completed; PIP is ready for another
command ,

Exit from PIP.

The whole sequnece is equivalent to issuing a monitor command TYPE CURVE.FOR.
In fact, the monitor TYPE command actually activates and runs the PIP program.

Other examples and explanations are given below:

Example:
Function:

Example:

Function:

Example :
Function:

Example:

Function:

Example:

Function:

Example:

Function:

*LPT: = CURVE,FOR
List the file CURVE.FOR on the line printer,

*rpr: = *,FOR
List on the line printer (of the station where the terminal
of the user belongs) all FORTRAN-10 files stored on disk.

*DOUBLE.FOR = CURVE.FOR
Copy the disk file CURVE.FOR and name the copy as
DOUBLE. FOR.

.DRIVE DTA

JMOUNT DTA:T1/WE/VID:A1004

R PIP

*7'1:DOUBLE,FOR = CURVE.FOR[115103,320571)

*+7

DISMOUNT T1

JUNDRIVE

Copy a file CURVE.FOR that belongs to another PPN onto a
DECtape registered under the number Al004. the name of
copied file on the DECtape 1is DOUBLE.FOR. Message
printouts are not shown.

LPT: = Mt9:

Print everything on the magnetic tape currently mounted on
the tape drive.

R PIP
*DSK: SAMPLT.FOR = TTY:
A=1.2345

WRITE(6,10):A
10 FORMAT(F10.5)

END This CIRL-Z is an end-of-file mark,
47 therefore terminates TTY input. The
*1Z second CTRL~Z is to exit from PIP.

Use PIP to enter a source program. A possible but not a
recommended way, because no editing is possible.

PIP Switches 291

7.3 Transfer of Multiple Files, the' X-Switch

When there is more than one file in the source specification, transfer
may be done in two ways: to transfer collectively as one combined file, or to
transfer files singly and retain individual identifications. 1In the former
case, it 1is a natural application for merging several files together. In the
latter case, an X-switch in the command will make the transfer of multiple files
singly and each transferred file will be given a unique name, as specified in
the command string.

File transfer between one directory device to another is a simple matter
since both the destination and the sources are identified by file
specifications. File transfer between non-directory and directory devices are
more complicated since the filenames must sometimes be arbitrarily generated.

The examples below demonstrate many salient points of multiple-file
transfer, with and without the X-switch:

Example: *DTA1: /X = DSK: *,* or DTAL:/X=

Function: These two commands perform the same way. They transfer all
disk files to DIA01l0 and retain individual filenames and
extensions. When the right side of the equal sign is
blanked, the default conditions simply mean “everything
from my disk".

Example: *DTAl: MESS.MT9 = MT9:*

Function: Transfer all files combined on the magtape MI9 to a
DECtape. Name the result MESS.MT9, Since no X-switch is
used, all files are merged into a single file after the
transfer.

Example: *DTALl: MESS.MT9/X = MT9:+*

Function: Transfer all files from MI9 to DIAOLQ, retaining the
individual filename and extension of each file. However,
since only one filename and one extension are specified on
the destination side, individual filenames and extensions
must be generated by PIP. The rule of filename generation
is as follows: The format of the generated filename is
XYZnnn where:

XY% = the first three characters in the specified
destination filename, If none is specified, the
three-character chosen is XXX.

nnn = a three-digit number, from 001 to 999.

The extension is retained and shared by all generated file
specifications. Thus, for this example, if MT9 contains 15
files, the transferred files on DIFAQL0 will have names of
MES001.MT9, ..., MES015.MT9.

7.4 Transfer of Files with Editing

Certain editing functions can be incorporated into the transfer of files.,
A list of selected switches for this purpose is shown in Table 7.2 on the next
page. The carriage control characters created by the /P switch will instruct a
line printer to perform certain actions as listed in Table 7.3:

292

CHAPTER 7 SERVICE PROGRAMS

[
Switch

Function

To generate or delefe sequence numbers..

S

/S To insert sequence numbers. At the start of each line of a file, a
sequence number [s computed and inserted. These sequence numbers
assigned by PIP are five-digit numbers starting from 00010 and ranging
through 99990 in increments of 10.

Example: Source file: Destlnation file after /S switch:
A=1.2345 00010 A=1.2345
WRITE(6,10) 00020 WRITE(6,10)

10 FORMAT(F10.5) 00030 10 FORMAT(F10.5)
END 00040 END

/0 Same as /S except that the increment is 1.

I - - . T A

/N To delefe seguence numbers from The file

/E To replace characters in columns 73~80 in each Iine by spaces, and to
Ignore the sequence number on each line. The E-switch may be used for
any lnpu+ devlce buf is mos+ commonly used In a card reader

R LI am R R S S e R
To delefe +ra||lng spaces on each llne fo save sforage space

/C To delete tralling spaces in each input Ilne and to convert mul+lp|e
spaces into tabs. Its maln purpose is to conserve storage space by
making the flle more compacf

/T To delete +ral|lng spaces on each llne No conversion of multiple

To perform "Ilne blocklng" of |npuf dafa flles
/A To "line-block" the file so that each buffer contains an integral
number of lines, and no Iines are split between physical output

spaces to tabs.

buffers. Such splitting may cause unpredictable read-errors. This Is
a necessary step If the Input data files, prepared by an editor such
as the UPDATE, are for a FORTRAN F40 program. For FORTRAN-10 (F10),
|lne-blocklng of Inpuf dafa f||es Is no Ionger necessary.

/P

To prepare a FORTRAN ou'rpu'r fl Ie for pr|n+er ou’rpuf

To convert a FORTRAN oufpuf file confalnlng prlnfer con+ro| characTers
into one that will activate the carriage control of the Iine printer.
Without such conversion, the printer will simply print out the control
characters as characters without taking any action. The FORTRAN
carriage contfrol character Interpretation Is shown on Table 7.3.

Table 7.2 PIP Switches for Transfer of Files with Editing

PIP Switches

293

Carrlage Control
Character Line Printer Actlon
blank Normal single space printing. FORM FEED (advance
to a new page) every 60 lines.
* Normal single space printing. No FORM FEED, even
when the bottom of a page Is reached. This Is used
when contlnuous printing Is desired, such as In a
chart, a graph, or a long tabulation.
+ To overprint the previous line, such as fo
underscore part of the text.
, (comma) To skip fo the next 1/30 of page.
. (period) To sklip to the next 1/20 of page.
/ To skip to the next 1/6 of page.
= To skip two lines (triple space)
0 To skip one Iine (double space)
1 To skip to the top of the next page (FORM FEED)
2 To skip to the next 1/2 page
3 To skip to the next 1/3 page
Table 7.3 FORTRAN Carriage Control Characters

For example, a file containing the following:

(Column 1)
1
2

REPORT TITLE

1

will print out the "REPORT TITLE" at the middle of the page, and the subsequent
materials will begin at the next page.

294 CHAPTER 7 SERVICE PROGRAMS

7.5 File Directory Management

PIP switches in this group will handle directory management, such as
reporting on the directory content, changing the file specifications, file
deletions, etc. Althought the PIP command still conforms with the general
format of source and destination, no actual transfer takes place. Switches in
this group are listed in Table 7.4 on the next page.

7.6 Multiple PIP Switches

More than one switch may be given in a single PIP command to get a
cumulative effect. This is illustrated by the examples below:

Example: *DTAl: (ZDX) = *,LST, *.LPT
Function: This command is the same as the three successive PIP

commands:

*DTAL:/7 =

DTA1:/X = DSK:. *
*DTA1:/D = *, ST, *,LPT

The net result is: Clear the DECtape now mounted on DTAQ0L0
and copy everything from the disk onto DTA010 except *.LST
and *,LPT.

Example: *DSK: NEWTON . REL/B/P = DTA1:NEWTON.REL

Function: This command will copy a FORIRAN binary file from a DECtape
onto a disk in order to insert a control word into each
physical buffer. If buffer sizes are the same, the
P-switch is not needed. Also, FORTRAN-10 binary files need
no P-switch.

PIP Switc

hes 295

Switch Function
To Ilst fthe directory:

/L To Ilst the directory of the source devices and files. The directory
will Include filenames, extensions, protection codes, number of
blocks, creatlon dates and total blocks.

: Explanations:
*TTY: = DSK:/L List the disk flle directory on TTY.
*TTY: = DTA010:/L List DTAO10 directory on TTY.
*TTY: = *,FOR/L List all disk FORTRAN files on TTY.
*LPT:; = * PIL, *.FOR/L List directory on Iine printer.
¥LIST,DIR=DSK:.*/L Store directory as a file named.
/F

Fast Ilsting of directory giving flienames and extensions only.

To change the file specifications:

To rename the source file(s) 1in the manner Indicated in the

/R
destination flle specification. Only one or one class of files (wlld
card construction) may be renamed In one PIP command.

Examples: Explanations:

*NVEW.FOR 155 = OLD,BAK Straight copying of a file; OLD.BAK
retained after copying.

*NEW,FOR<155>/R = OLD.BAK Rename; OLD.BAK no longer exists
after renaming.

*NEW, */R = OLD. * Change all filenames of OLD to NEW,
and retain all extensions.

** %<177>/R = Change the protection codes of disk
files to 177.

To delete flles:

/D To delete the specifled source file from the destination device. Only
one source device is permitted, and 1+ Is Inltially assumed to be the
same as the destination device.

Examples: Explanations:
*DSK:/D = OLD.FOR, *.REL Delete from the disk all REL files
and the file OLD.FOR.
#71:/D = T1: FILE1.DAT Delete a file named FILE1.DAT from a
DECtape which has been mounted and
given a logical name of T1.
/Z To zero out (erase) the directory of the output device. |If the output

device Is the disk, an attempt 1s made to delete all the files whose
names are found In the directory specified. |f It Is not possible to
delete some of the filles, the request will be terminated affer as many
fliles as possible have been deleted.

Example: Explanation:
WTA011:/7 = Clear the DECtape mounted on the
drive DTAQ11.,

Table 7.4 PIP Switches for Directory Management

296 CHAPTER 7 SERVICE PROGRAMS

7.7 A Summarv of PIP Switches

A sumary of the selected PIP switches is given in Table 7.5 below:

Switch Function

A Line blocking.

B Binary processing.

C Suppress trallling blanks, convert multiple spaces to tabs.
D Delete file.

E Treat (card) columns 73-80 as spaces.

F Fast listing of directory.

N Delete sequence numbers.

0 Same as /S switch, except increment = 1.

P FORTRAN output assumed. Convert format control characters

for LPT listing. Use /B/P for copying binary files.

R Rename file.

S Sequence the flle with sequence numbers, increment = 10.
T Suppress tralling blanks.

W Convert tabs to multiple spaces.

X Copy specified files.

z Zero out the directory.

Table 7.5 A Sumary of Selected PIP Switches

The SORT Program 297

7.8 The SORT Program

SORT is a "stand-alone" program from the COBOL processor. It is used to
sort a file according to the contents in a specified field of each record. The
sorting may be done either numerically or alphabetically, in ascending or
descending order. Since the program was developed as a part of the COBOL
processor, many of its features are COBOL-related. Here, only a simplified
version will be presented so that the application is confined to ASCII-coded and
non-COBOL files. We shall see that even with such a restriction, there is a
wide range of applications. The SORT program may be called at the monitor level
by a command:

R SORT

when the terminal types out a prompt symbol "*", sorting commands may be issued.
There is only one command format: »

OUTPUT FILE SPEC = INPUT FILE SPEC/switch R/switch K

where OUTPUT FILE SPEC = file specification of the sorted result.
INPUT FILE SPEC = file specification of the original file.

Switch R, Switch K = two of many SORT switches available in the COBOL
processor. They are defined in the following way:

(1) The R-Switch

The RECORD or R-Switch defines the length of each record and has a format
of:

/RECORD:n or /Ren

where n=record length in number of columns. If "n" specified is smaller than
the actual record length, the columns beyond the nth column will be deleted in
the result, This switch must be given, and its omission is an error.

(2) The K-Switch

The KEY or K-switch defines the field in each record about which the file
is to be sorted. It has a general format of:

/KEY:begin:size:order or /K:b:s:o
where: begin = an integer, representing the beginning column of the sorted
field,

size = an integer, representing the size (number of columns) for the
sorted field.

298 CHAPTER 7 SERVICE PROGRAMS

order = a character, "A" (for ascending order) or "D" (for descending
order)., If the order is ascending, the "order" parameter may be
omitted in the key.

Any number of /KEY switches may be given. If there is more than one
K-switch, then the first one is the primary sort key, followed by the secondary
sort key, the tertiary sort key, etc. For example, suppose we sort a student
roster in Engineering first by departments, then in each department by last
names, and then by initials if last names are the same. Here we use three
K-switches: the primary sort Ffor the department, the secondary sort for the
last names, and the tertiary sort for the initials, In the SORT command string,
the leftmost K-switch is the primary key, and the key-hierarchy descends as you
move toward the right.

Example: A grade file GRADE.DAT is stored on disk, and its content is:

2
123456789012345678901234567890 (Column Numbers)
ABBOT, W. E. 67
DOE, J. Q. 75
QUINCY, T. C. 83
RIM, E. D. 47
TIMMONS, E. E. 66
YANG, R. Y. 88
+R SORT Comments
*G1.DAT = GRADE.DAT/D:22:2/R:23 Sort GRADE.DAT according to

descending order of grades.
(Computer run message)

Example: Suppose ROSTER.DAT is a student roster file. Each record is
of 80-column wide. Information contents are stored in the following columns:

Columns 1- 3 Initials

Columns 6-20 Last names

Columns 21-25 Department names abbreviated
Columns 26~30 School names abbreviated

The following SORT command will sort the file: first according to the
school, then within the same school according to the departments, then within
the same department according to the alphabetic order of last names, and if the
last names are the same, according to the alphabetic order of their initials:

*ROSTER,DAT = ROSTER.DAT/K:26:5/K:21:5/K:6:15/K:1:3/R:80

The RUNOFF Program

RUNOFF

INTRODUCTION

299

RUNOFF is a wutility program which facilitates the word-processing
applications on the DEC-10, such as for preparing manuals, reports, theses and

dissertations, etc. The general procedure is as follows:

(1) A file is prepared by the user that contains text materials.

(2) Interspersed in the text file are appropriate RUNOFF commands that
specify the case and formatting instructions, The file containing
both text and RUNOFF commands is called a RUNOFF source file., For
experienced RUNOFF users who are also their own typists, these first

two steps are often merged into one.

(3) when such a source file is run, RUNOFF will take the file and
reproduce it on the line printer, on a terminal, or into another
file. In so doing, it also performs the formatting and case
shifting as directed. If specified, it will also perform margin
changes, line justification, page numbering, titling of each page,

compiling index terms, etc.

The following example shows some typical results of RUNOFF.
. CHAPTER 1

INTRODUCT LON

i 1.1 Batch Processing versus Time-Sharing

Once ugon a time, when a computer user wanted to run a program, he went
through the following steps:

(1) The user submitted his program and data deck to the Computer Center.

(2) The decks of cards submitted by different users were stacked
together to form a batch, each deck with its proper 1dentification.
All jobs in one batch were tnen executed in one "run", hence the
name "batch processing”. The information on the punched cards in a
batch were first copied into a reel of magnetic tape by means of a
small and relatively inexpensive computer. ‘The reason for this was
that the card-input to the main computer was a slow and tnerefore
expensive process.

(3) The magnetic tape so prepared became the input mediun to the main
computer. At the scheduled tume, the jobs in the batch were run and
the outputs (printouts, cards, tapes, etc.) were obtained.
Sometimes the outputs were recorded on another reel of magnetic
tape; then output printing may be done off-line so as not to slow

v down the computer operation.

{

The chief benefit of RUNOFF is that the source file may be easily edited

and modified by a text editor. Materials may be deleted or added.

Formatting

rules may be changed regarding margins and spacing. These changes normally
result in a catastrophe dreaded by every typist and student because the material
must be re-typed and re-paged. Now, the RUNOFF program is simply rerun with the
revised source file, and a new copy is obtained properly revised and paginated.
Thus, documentations, theses and dissertations may be updated and revised as

necessary without requiring extensive re-typing.

300 CHAPTER 7 SERVICE PROGRAMS

7.9 RUNOFF Operating Procedure

RUNOFF can be called by a monitor command:

*]

when the terminal types out a prompting "*" symbol, RUNOFF is ready to accept a
command. The general format of a RUNOFF command is:

.R RUNOF'

[Output specification = Input specification/switches ‘J

where the output specification may be a standard DEC-10 name for one of the
following:

Line printer such as LPT10:
Terminal such as TTY:
Another file such as THESIS.DOC

Example: The source file that contains a textual manuscript and RUNOFF
commands has been prepared and stored as MAN,RNO in the user's disk. "RNO" is
the default extension of a RUNOFF source file.

Commands Comments
.r runoff Call for RUNOFF.
*LPT10:=MAN To produce a copy of finished manuscript

on the line printer No. 10

*TTY: =MAN/PAUSE To produce a copy of manuscript on the
user's terminal. Pause at the beginning
of each page to allow aligmment of

paper.

*MAN . DOC=MAN . RNO To produce a file MAN.DOC that is a copy
of the finished manuscript.

*MAN To produce a file MAN,MEM from a RUNOFF
source file MAN.RNO. Here file names
are the same and extensions are default
extensions.

RUNOFF Pr imer 301

Several operating hints may be useful:

(1) If the manuscript is reproduced on a terminal, make sure the
terminal settings are adequate. The terminal is normally set at a
set of default values, such as tabs at 9,17,25..., right margin at
72, characters at upper cases, etc. If the manuscript requires
non-standard settings, appropriate commands must be given to pre-set
the terminal. The following are some typical and useful TTY
commands applied before a RUNOFF session:

.TTY WIDTH 132 Set right margin at 132, Right margin can
be set at anywhere between 17 and 200.

.TTY PAGE This will enable the control functions of
CTRL-S and CTRL-Q keys. CTRL-S will suspend
the output (but not kill it), and CTRL-Q will
resume it. Suspension of output gives you a
chance to inspect the output. This is very
important if you are using a CRT terminal.

LITY IC Normally your terminal is set for upper case,
even if it has lower case capability. To
prepare a source file in both upper and lower
cases, the lower case must be activated.

(2) If the manuscript contains upper and lower cases, find out which
printer in the System has a lower case capability. Otherwise, all
lower cases will be forced into upper cases, a situation that may be
objectionable on occasion.

A RUNOFE PRIMER
7.10 How RUNOFF Works

The complete RUNOFF utility on the DEC-10 contains between 80-90 commands
altogether. However, only a handful is in frequent use and is therefore
essential., Hence, it is possible and advisable for a beginning user in RUNOFF
to master this small set so as to quickly utilize the RUNOFF capability.

When the RUNOFF is called, certain modes and formatting instructions are
already set up, and these are the standard default RUNOFF status:

(1) Print page numbers on every page except the first.

(2) single space with left margin set at 0, right margin at 60, This
means that all text reproduced by RUNOFF will be left-justified at
column-1 and right-justified at column-60.

(3) Paper size is assumed to be 60-character wide and 58-lines long.

(4) Tab stops are set at DEC-10 default values, namely, at 9, 17, 25,
33, 41, 49, 57, 65, etc.

302 CHAPTER 7 SERVICE PROGRAMS

As the RUNOFF proceeds to reproduce the source file, it constructs a line
by copying words and leaving one blank between words, two blanks after a period,
until adding another word would overshoot the right margin. This process is
called filling. After a line is filled, blanks are added as necessary between
words on that line until the last character on that line is aligned with the
right margin, This process is called justifying.

Therefore, if there is no RUNOFF command at all in a textual file, RUNOFF
will reproduce it into a document, using only default formats and modes. The
document produced will have an appearance as shown below:

60 Spaces Wide

XX XXXX XXX ... XX, XXXXX
XX, XXX, XX ... XXX. XXX
XXXX XX. ee o XXXXXX 58 lines
X v 0 o o o s 2« 20 X per page
XX. XXX, XX ... XXX. XXX
XX, XXXXX ... XX, XXXXX.

The RUNOFF detects the entity of a word by marking off word-delimiters.
A word is delimited in RUNOFF by one of the following: space(s), tab(s),
linefeed or carriage return. Multiple and consecutive delimiters, such as
multiple spaces, count as a single delimiter. Thus the source file can be
prepared without worrying about the width of each line and the number of spaces
between words, because RUNOFF will now treat a carriage return between two words
and spaces between two words the same way. One exception 1s when a carriage
return is followed by a space:—-that is, when a line begins with a space at
column 1, When the "automatic paragraph" mode is on, a space at column 1 is
regarded as the beginning of a new paragraph, and RUNOFF initiates a specified
format for a new paragraph, such as line spacings and indentation., On the other
hand, punctuation marks such as ",", "?", etc are not recognized as word
delimiters. Thus, the text "delimiters,and" is treated as one word, while
"delimiters, and" is treated as two words. If you have a typing habit of not
leaving a space after a punctuation mark, beware.

The use of the terms "space", "vertical space", and "line space" is
likely to be ambiguous and confusing, and needs to be clarified for the
subsequent presentation in this chapter.

The term space, when used alone, will denote the horizontal space on a
line. Most terminals and printers are set at a horizontal scale of
10 character/inch, and a space will measure 1/10 inch. For terminals with
"Elite" type, each space measures 1/12 inch. The term "vertical space"
typically measures 1/6 inch in the vertical direction of typing. Terms such as
"single-space" and "double-space" refer to the vertical spacings. The term
"line space" corresponds to the spaces between lines. Thus, if the default page
size is 60 horizontal-spacings by 58 vertical-spacings, there is room for 58
line spacings for single-spacing output, but only 29 1line spacings for
double-spacing output, With these definitions, there could be a difference in
saying "skip 2 lines" versus saying "skip 2 vertical spaces".

7.11 Basic RUNOFF Commands

Interspersed in the text file are the RUNOFF commands which are
identified by a period "." in column 1. Thus, to avoid misinterpretation by
RUNOFF, the text itself should not permit a period in column 1.

RUNOFF Primer 303

There are four types of RUNOFF commands according to their functions. A
complete summary of the RUNOFF commands in these four classifications will be
deferred to Section 7.14. Here, a limited set of basic commands will be
presented. Each command is presented in its complete form and its abbreviation,
and the lower case part of each command denotes an argument or a parameter.

Before getting to the basic set of RUNOFF commands, one important
implicit command will be explained first, This command is rarely used as an
explicit command in the source file, yet it is often built into other commands.
Thus its action is often implied and included.

.BREAK This command will cause a BREAK, i.e. the

.BR current line will be output with no justification,
and the next word of the source text will be
placed at the beginning of the next line.

(1) To set margins, spacings, and page size

These are commands to set the left and right margins, vertical spacings,
and the page size to values other than the current ones.

.LEFT MARGIN n Set the left margin to n. "n" must be less than
.IMn the right margin but not less than 0., Default=0.
.RIGHT MARGIN n Set the right margin to n. "n" must be greater
.RM n than the left margin. The default setting is 60.
.PAPER SIZE n,m Set the size of page n lines by m columns. The
.PAGE SIZE n,m default setting is 58,60.

.PS n,m

.SPACING n Set a ratio between vertical spacing and line

.SP n spacing. The n can be from 1 to 5. The default

setting is 1. ".8P 1" is for single-spacing;
".SP 2" is for double-spacing.

Examples: The following shows the commands in the source file and
their effect on the output. The RUNOFF commands are highlighted in italics:

Source File Output
.IMO ,RM20 X XX XXX XXXX XXXXX
X XX XXX XXXX XXXXX XXXXXX XXXXXX XYXKXX XAXXXX XXXXX
XXXKX XXXXX XXXX XXXX XXX XXX XX. XXXXX XXXX XXXX XXX
.LM8 XXX XX.
YYYYY YYVYY YYYY YYYY YYY YYY, YYYYY YYYYY
YY YY Y. YYYY YYYY
.IM5 ,RM15 YYY YYY, YY
227 27 27277 227 7% YY Y,
727 ZZ%Z. 227 27

222727 17722

2% 27 277.

304

CHAPTER 7 SERVICE PROGRAMS

(2) To set text format

The following commands set the text paragraphing formats:

» AUTOPARAGRAPH
.AP

.NOAUTOPARAGRAPH
.NAP

.PARAGRAPH n,v,t
.Pn,v,t

.BLANK n
.Bn

.CENTER n;text
.C njtext

This command causes a blank line or any line
starting with a space to be considered as the
start of a new paragraph. Format of a new
paragraph is specified by a specified or a default
" .PARAGRAPH" command.

This command cancels the AUTOPARAGRAPH mode.

This command causes a BREAK action and takes the
next line as a new line and the beginning of a
paragraph, In the meantime, the formats of the
subsequent paragraphs are set by the parameters n,
v, t:

n = number of indented spaces. The default value
is 5, and n can also be negative. Negative
indentation means a paragraph beginning to the
left of the left margin of paragraph, such as
this paragraph here.

v = number of line spaces between paragraphs. It
can range from 0 to 5.

t = argument in the .TEST PARAGRAPH t command,
which is automatically executed when
paragraphing.

This command will cause a BREAK action and insert
n blank line spaces after the last line. The
parameter n can be negative to move the line to n
lines from the end of the page, Note that the
actual number of blank vertical spaces is equal to
(n*spacing per line).

This command will cause a BREAK and center the
"text" in the source file. The centering is over
column n/2, independent of the setting of the left
and right margins. If n is not given, it is
assumed to be the page width.

RUNOFF Primer 305

Example: The following shows the paragraphing control:

Source File Output

.IMO .RM20 EXAMPLE

AP

.P3,1,1 X XX XXX XXXX

.C20; EXAMPLE XXX XXXXKX XXXXXX

X XX XXX XXXX XXXXX XXXXXX XXXXXX XXXXX XXXXX XXXX

XXX XXXXX XXXX XXXX XXX XXX XX. XXXX XXX XXX XX.

YYYYY YYYYY YYYY YYVY YYY YYY,

YY YY Y. YYYYY YYYYY YYYY

.IM5 ,P-3,1,1) YYYY YYY YYY, YY YY

227 27 22277 72727 77 Y.

22 7277 227 77277

222722% 22%. 227 22 722222 1Z72%
22 27 7222 27Z
22727 222222
222,

Note that if in the above example, paragraphing were to go back to
".IM0.P3,1,1", the RUNOFF command should be ".P3,1,1 .IMO" rather than
".IMO0 ,P3,1,1". At the end of the above example, the paragraphing is set at
negative indentation of 3 spaces. Thus if ".IM0" is applied while negative
indentation is still in effect, you will be telling RUNOFF that the paragraph
should begin to the left of column 1!

(3) To control upper and lower cases

.UPPER CASE This command sets the output mode to upper case.

.UC All alphabets in the source file, upper or lower
cases, will be forced into wupper case in the
output.

.LOWER CASE This command sets the output mode to lower case.

IC All alphabets in the source file, whether upper or

lower cases, will be forced into lower cases in
the output.

If .UC and .IC commands are both applied, the text cases will be
reproduced as they are in the source file.

To exert control of upper or lower case on individual characters, RUNOFF
uses special symbols. This is discussed in Section 7.12.

(4) To control filling and justifying

RUNOFF assumes that the source file is to be filled and justified, and
hence considers them default actions. However, on occasion, you may wish to
reproduce the text exactly as given -- for example, a tabulation by columns.
Therefore, it 1is necessary that you should be able to enable and disable the
filling and justification process by commands. They are listed below:

306

CHAPTER 7 SERVICE PROGRAMS

LFILL This command sets RUNOFF to a filling mode to add

.F successive words from the source text until adding
one more word will exceed the right margin. It
also sets the justification mode specified by the
last appearance of a JUSTIFY or NOJUSTIFY command.

.NO FILL This command will disengage the FILL and the

NF JUSTIFY modes.

.JUSTIFY This command sets the JUSTIFY mode that will

.J increase spaces between words until the last word
exactly meets the right margin.

.NOJUSTIFY This command turns off the JUSTIFY mode, but the

NJ FILL mode is unchanged. An output line is filled

but not justified, giving a ragged right margin.

The FILL and the JUSTIFY modes and their disabling commands have

interacting influences. Turning off FILL would also turn off JUSTIFY,
but turning off JUSTIFY does not affect the FILL. Because of this,
note the following:

ae

The NOFILL-NOJUSTIFY mode need be used only where there are
several lines of material to be copied exactly. If there is only
one line, it is not necessary to use this mode if there is a BREAK
before and after the line.

Normally, FILL and NOFILL are used to turn both filling and
justification on and off. It is usually desirable to do both. A
subsequent appearance of a justification command will override the
£ill command.

A combination of FILL and NOJUSTIFY commands will produce a ragged
right margin.

A combination of NOFILL~JUSTIFY will expand each line to justify,
but this mode has doubtful utility. If this is applied, a JUSTIFY
command should be given after every NOFILL command.

RUNOFF Primer

Example: The following example shows the difference between
justified and a ragged-right margin:
RUNOFF Qutput
Original Text FILL and JUSTIFY FILL only
This command sets This command This command
RUNOFF to a FILL sets RUNOFF to - a sets RUNOFF to a

mode to add
successive words

from the source

text until

the adding of one
more word will

exceed the right
margin. It also

sets the justification

mode to be that specified

by the last appearance
of JUSTIFY
or NOJUSTIFY command.

FILL mode to add
successive words
from the source text
until the adding of
one more word will

exceed the right
margin., It also
sets the
justification mode
to be that specified
by the last
appearance of

JUSTIFY or NOJUSTIFY
command .

FILL mode to add
successive words
from the source text
until the adding of
one more word will
exceed the right
margin., It also
sets the
justification mode
to be that specified
by the last
appearance of
JUSTIFY or NOJUSTIFY
command.

307

a

7.12 Special Text Characters

A number of text characters, when placed in conjuction with the text

material, exercise a change of the case and the mode operations. They are
listed below, with examples following:
(1) Ampersand (&) This character is used to specify

underscoring of text. The character placed immediately after a "&" (no space in
between) will be reproduced in the output as underscored. The underscoring can
be turned on and locked by a double character ""&", and turned off and locked by
ll\&ll.

(2) Circumflex (") and Back-slash (\) These two characters act
as the up-shift and the down-shift keys of a typewriter. Thus, when a """ is
placed before a letter of the alphabet, that letter is reproduced in upper case.
Similarly, a "\" in front of a letter of the alphabet causes the letter to be

reproduced as a lower case. Also, """ will lock the shift key at upper case,
and "\\" will lock the shift key at lower case.
(3) Number sign (#) Occasionally, it is necessary to include a

fixed number of spaces in the text which should not be treated as word
separaters., The character (#) is used by RUNOFF as a "quoted space" or a
mandatory space that can neither be reduced nor expanded. Thus, if a fixed
number of spaces is required in the output, those spaces may be reserved by a
specified number of #'s. For example, "Section 2.13" may be reproduced as
"Section 2,13", "Section 2,13", "Section 2.13", etc, depending on filling
and Jjustification of that line. These two words may even be split between two
lines. However, "Section#2.13" can only be reproduced as "Section 2.13" on the
same line.

(4) Less—than sign (X) If a RUNOFF command of "FLAG CAPITALIZE" has
been given at the beginning of the source file, then a less~than sign (<) placed
immediately before a word will capitalize that whole word.

308 CHAPTER 7 SERVICE PROGRAMS

(5) Greater-than sign (>) If a RUNOFF command of "FLAG INDEX" has been
given at the beginning of the source file, then a greater-than sign (>) placed
immediately before a word will place that word in the index buffer memory. At
the end of the source file, a command of "DO INDEX" will produce an index
section, where all indexed terms are sorted in alphabetical order and each with
page reference.

(6) Exclamation mark (!) This character marks the beginning of
comments or the end of footnote lines.

(7) Semicolon (;) This syn:lbol indicates multiple commands.

(8) Underscore) The above listed special characters are

recognized by RUNOFF for having certain special control functions. Hence, these
special characters will not be reproduced in the output., If a special character
is to be reproduced as it is, its control function may be temporarily disengaged
by placing an underscore (_) in front of that character. For example,
"A&P Stores" and "A &P Stores" will be reproduced respectively as "AP Stores"
and "A&P Stores". The underscore sign can also be used to specify its own
reproduction. For example, a (_) and a () text will be reproduced as (_)
and (_) respectively in the output.

Examples: The following shows the functions of special characters and
their effect on the output:

Special
Character] RUNOFF Source RUNOFF Output
& &Nth derivative Nth derivative
CT=&Computerized &Tomography CT=Computerized Tomography
“&,\& | &RUNOFF\& RUNCFF
" .IC
~ “UNITED "STATES United States
“"UNITED STATES\\ UNITED STATES
\ .uc
\\ IAMERICA AMERICA
IA\\MERICA America
T, W. Sze T. W. Sze
T.#W. #Sze T. W. Sze
_ | #Footnote: #Footnote:
#Footnote: Footnote:
< .FLAG CAPITALIZE
If numberl<number2, If numberlNUMBERZ2,
If numberl <number2, If numberl<number2,
If <numberl <<umber2, If NUMBER1<KNUMBER2,

7.13 Selected RUNOFF Switches

The switch is an optional part of the RUNOFF execution command string:

Output Spec = Input Spec/Switches

RUNOFF Switches

The switches are indicatorg, each consisting of a slash and a keyword,
optional argument.

effect as including a RUNOFF command at the beginning of the source file.

if the function of a switch
conditions or by specific commands in the source file,

superfluous.

for those functions not specified or

Therefore, the

mode or condition.
entire output depends on whether

commands downstream in the source file.,

A selected group of RUNOFF switches are tabulated next:

plus an
These switches are used to set or select program options.
Many switches perform similar functions as the RUNOFF commands for
selecting modes and formats.

setting or
In these cases, a switch would have the same
Thus,
is already specified by either the default
that switch would be
Therefore, the usefulness of a switch is to augment a source file
different :from the default conditions.
function of a switch should be regarded as setting an initial
Whether that initial mode or condition will hold for
that mode or condition will be revised by

Sw1tches Functions

/AUI’OPARAGRAPH A leading space in column 1 initiates format for
a new paragraph

/NOAUIDPARAGRAPH Turn off auto—paragraph mode.

/CASE : IOWER Execution starts in lower case mode.

/CASE : UPPER Execution starts in upper case mode.
UPPER is the default condition.

/DOWN:n Move down text of each page by n lines.
Default n=0.

/LINES:n Initial page size in n lines. Default n=58.

= I

/PAUSE Pause between pages (to allow paper changes).

/RIGHT:n Move to the right text of each page n spaces.
Default n-o.

/SEQUENCE List record number of source flle at the left of
the RUNOE‘E‘ output.

/SIMULATE Advance to the next page by form feeds.

/SPACING:n Start with vertlcal spacing settmg n.

Default n=1,

310 *CHAPTER 7 SERVICE PROGRAMS

A SUMMARY OF RUNOFF COMMANDS

7.14 A Summary of RUNOFF Commands

RUNOFF commands fall in four categories: (1) Text formatting, (2) Page
formatting, (3) Mode setting, and (4) Parameter setting. They are listed below:

(1) Text formatting commands:

Command &
Abbrevla*lon Argument Function
BLANK n To skip n lines
.B
.BREAK To start a new line of output.
.BR
— e e e e e
.CENTER n To center the next line around column n/2
.CENTRE
.C
.COMMENT text Commen+ Ignored by RUNOFF execuf!on.
.FIGURE n To reserve a space for an n-line figure.
.FG
.FIGURE DEFERRED n To defer an n-line flgure to the next page If
fhere ls no room In #he currenf page |
.FOOTNOTE n To start an n- Ilne foo+nofe.
.FN (|npuf footnote lines until "I" in col.l1.)
LLIST n To s+arf a IlsT of i?ems WITh spacing n.
.LS
.LIST ELEMENT To start Iisting items.
.LE
JEND LIST To end a list.
ELS
« INDENT n To indent the next |ine n spaces.
ol
.NOTE text To start an Indented note with the headlng
NT "Tex+" cen?ered
.PARAGRAPH n,v,t To start a new paragraph
.P Equlvalen+ +o .I'n .S v TP f
.SKIP n To skip n*spaclng vertical spacings.
.S

Table 7.6 RUNOFF Text Formatting Commands

RUNOFF Summary

311

(2) Page formatting commands:
Command &
Abbreviation Argumen+ Funcflon
.APPENDIX (AX) STarT nex+ appendlx wlfh res+ of Iine as name.
I R . e e e

CHAPTER (CH) Start a new chapfer with rest of line as name.
.DO INDEX (DX) Output index with rest of line as title.

.END SUBPAGE Stop subpage numbering
.ES

FIRST TITLE Include fitle on the first page.

FT

HEADER LEVEL n Start sectlon at level n(=1 to 5); the rest is

JHL +he name.

.HEADER (.HD) case Issue “page" in case(UPPER LOWER,MIXED,or NONE)
LINDEX Insert rest of this Iine In Index.

.NO HEADER (.NHD) Suppress page header.

«NO NUMBER (.NNM) Suppress page numbering.

.NO PAGING (.NPA) Stop spliting into pages.

.NO SUBTITLE (.NST) Suppress subtitles.

.NUMBER APPENDIX n Set appendix to Appendix n.

.NUMBER CHAPTER n Set chapter number to n,
L e S——

.NUMBER INDEX Set chapter heading to "INDEX".

NUMBER PAGE n Resume page numbering at page n.
.NUMBER (NM)
.NUMBER SUBPAGE ch Se+ subpage number *o ch (A z)

PAGE (PG) Sfar* a new page.) o 4:
.PAGING (PA) - VRegyme breaklng Into pages.]
.PRINT [INDEX Start printing the Index.

Px - OV M NP ——
.SUBPAGE Co SPG)) Start sub-page numbering.

LSUBTITLE (.ST) Use the rest of the line as the subtifle.

.TEST PAGE n Skip to a new page If fewer than n lines are
TP left. e
LTITLE .7 Use the rest of the line as the title.

Table 7.7 RUNOFF Page Formatting Commands

312 CHAPTER 7 SERVICE PROGRAMS
(3) Mode setting Commands:
oCommand &
Abbreviation Argument Function
FILL Resume filling and jusflfylng each line.
F
.NO FILL Stop filling and justifying.
NF
+JUSTIFY Resume Jusflfylng the text.
o
NO JUSTIFYING S+op Jusflfylng
NJ —‘
.LITERAL Treat the following lines exactly as they
LT appear, lncludlng special characfers.
.END LITERAL Terminate LITERAL treatment of text.
JEL
.LOWER CASE Lock in the lower case mode (“0)
.LC
.UPPER CASE Lock in the upper case mode (°°)
.Uc
.PERIQOD Leave two blanks after these punctuation
PR marks (l?)
.NO PERIOD Sfop the PERIOD mode.
.NPR
- U B S e - S - . S —
.FLAG ch Turn flag ON accordlng to the flag argumen+
JFL ch: (CAPITAL IZE,CONTROL ,ENDFOOTNOTE, INDEX,
LOWERCASE QUOTE,SPACE,SUBINDEX,UNDERLINE,
UPPERCASE)
.NO FLAG ch Turn off spectfled flag.
.NFL
.FLAG ALL Turn on all flags.
.NO FLAG ALL Turn off alI flags excepf (. l)
NFL
Table 7.8 RUNOFF Mode Setting Commands

RUNOFF Summary

313

(4) Parameter Setting Commands:
Command &
Abbrevlation Argument Function
+AUTOPARAGRAPH Accept Iine with lead1ng spaces as the
AP beginning of a new paragraph.
+NOAUTOPARAGRAPH Deact ivate AUTOPARAGRAPH.
.NAP
.AUTOTABLE Accept line without leading space as the
AT beglnnlng of a new table.
.LEFT MARGIN n Set left margln af nth column. Text begins
LM on +he n+1th column
RIGHT MARGIN n Set rlghT margln at nth column Text stops
.RM a+ fhe n+h column.
PAGE SlZE n,m SeT the page size to n llnes by m columns.
.PS
. SPAC ING n Set vertical spaclng between Ilines as n.
.SP
. STANDARD n Set standard setup with width of n columns.
.SD

Table 7.9 RUNOFF Parameter Setting Commands

314 CHAPTER 7 SERVICE PROGRAMS

OPRSTK

7.15 Introduction

The DEC System-10 is so designed that a batch job may be submitted either
in cards at a card reader or by a disk-stored control file at a remote terminal.
In both cases, the output printouts are returned only at the operating station,
usually at a 1line printer, and results of terminal-submitted batch processing
jobs are not printed at the terminals unless they are done as described in
Section 7.17. Terminal-submitted batch jobs have serious drawbacks. On one
hand, the prime advantage of man-machine interaction is lost; on the other, the
turn-around-time is not improved. In the meantime, it retains the high overhead
of using the time-sharing system, and is therefore more expensive. However, on
occasions, submitting batch jobs at a terminal may be the only way to get your
job done. A user may be located at a remote place when batch jobs are to be
submitted, and a terminal may be the only input device accessible to him. Or,
since in general a time-sharing user has a smaller core allocation than a batch
user, submitting his job as a batch job may be the only way he can run a large
program,

DEC System—-10 has monitor commands of SUBMIT and QUEUE INP: for
submitting batch jobs at a terminal. However, at the University of Pittsburgh,
these two commands are disabled to allow a unification of all queue processes,
including the batch queue. A service program called OPRSTK (Operation Stacker)
is implemented which replaces the DEC's CDRSTK (Card Reader Stacker) program.

To submit a batch job at a terminal, the following steps should be taken
after the user has signed on at the terminal:

(1) Create a control file using an editor such as the UPDATE (see
Chapter 2). Save the file on disk and give it a name with an extension of CTL,
such as NAME.CTL.

(2) Run the OPRSTK program by either of the two monitor cormands:

R OPRSTK

ENTER FILE SPECIFICATION > NAME.CTL

or simply, .OPRSTK NAME

After the job is queued, the system will respond with a verification message.
Output results are printed at the system facilities, but no result will be
available at the user's terminal.

The details of selected batch commands will be given in Chapter 9. We
will only deal with the creation of a control file and its submission here.

7.16 To Create a Control File

Creation of a control file on disk by the UPDATE editor is no different
from creating any other file. Only one point should be remembered. Such a
control file will contain a number of BATCH commands which begin with a "$" in

The OPRSTK Program 315

colunn-1. When such a line is created by UPDATE, it will be misinterpreted by
the editor as an UPDATE command. The problem may be solved either by starting
the "$" at column-2 and once entered, removing the blank in column-1 by a
SCHANGE command, or by using an UPDATE command of $IS # at the beginning of the
editing session. In the latter case, only those lines beginning with "$" in
column-1 will be taken as UPDATE commands.

Two examples will be given here, to be carried out from the creation of
control files through their submission and execution as batch jobs. Both are
examples used in this book---solution of a cubic equation by the Newton-Raphson
method, one example by FORTRAN programming, and the other by PIL programming.
We assume that these two programs have already been stored in the disk and named
as NEWION.FOR and NEWION.PIL respectively, and their contents are:

NEWTON., FOR

READ(5,10)A,B,C,D,X1

10 FORMAT(F21.7)

1 X2=X1- (A*X1**3+B*X1**24C*X14D) / (3. ¥A*X1**2+2, *B*X14C)
WRITE (6,10) X2
IF (ABS((X1-X2)/X2-0.001)3,3,2

2 X1=X2
GO T01

3 WRITE(6,11)X2

11 FORMAT(/' THE REAL ROOT =', F20.7)
STOP
END

NEWTON. PIL

DEMAND A,B,C,D,X1
SET X2=X1- (A*X1**3+B*X1**2+C*X1+D) / (3*A*X1+2*B*X1+C)
TYPE X2
IF ABS OF ((X1-X2)/X2) SLE 0.001, TO STEP 1.6
SET X1=X2
1 TO STEP 1.2
TYPE IN FORM 1, X2
STOP
1.
THE REAL ROOT = ——=—,-———1111

=

OO W N

3
2

The example was run with a given equation of:

Thus the input data are 1, -16, 65, -50 and 16 respectively for a,B,C,D,Xl. The
control files needed are:

FORTRAN Control File FORT.CTL PIL Control File PIL.CTL
$JOB[115103,320571] $JOB[115103,320571]
SDATA .PIL NEWTON

1. DO PART 1

-16. 1

65. -16

-50. 65

16. -50

$EOD 16

.EXECUTE NEWTON.FOR : $EOJ

SEOJ

316 CHAPTER 7 SERVICE PROGRAMS

7.17 To Submit a BATCH Job at a Terminal

Once the control file is prepared, submission of a batch job is simply to
supply the control file name in running the service program OPRSTK. The
proceedings are given next as illustrations:

Example: Control files have been prepared as FORT.CTL and PIL.CTL.
(LOGIN proceedings here)

.OPRSTK PIL
$JOB[115103,320571]

;33 END OF JOB AFTER 10 CARDS /SEQUENCE NUMBER IS 7264 ;;;
EXIT

.OP FORT
$JOB[115103,320571]
;37 END OF JOB AFTER 10 CARDS / SEQUENCE NUMBER IS 7266 ;;;

The job logs of both jobs are included in Chapter 9, where the details of
batch jobs will be given.

If a user wishes to capture the output data to type it out on his

terminal, to print multiple copies, or to use it as an input in the subsequent
processing, he may do the following:

.ASSIGN DSK: 6
.OPRSTK FORT.CTL

(Wait until the batch job is done. Use QUEUE command
to inquire about the job status. See Chapter 8)

.TYPE FOR06.DAT

The OPRSTK Program 317

VIRTUAL MEMORY

7.18 The Virtual Memory Procedure

In a multi-programming and multi-processing system, it is often not
possible to accommodate all the programs and data in the main memory at the same
time, Those programs and data not being executed at the time are moved out of
the memory and stored temporarily in the fast mass storage. Then as the user is
assigned his time slice, his programs and data are moved back into the main
memory. This is a standard and unique operation, called swapping, in a
time~sharing system where the main memory is shared by many users and many
programs. The mass storage in this case is called a swapping device.

The principal mechanism of the swapping process is the techique of
memory mep, which translates the addresses produced by the processor into
addresses in the physical memory. With the memory map handling the address
translation, the user is free from the task of keeping track of memory locations
before and after swapping.

The main memory is allocated to the user in units of "Ks" or "Ps", where
1K memory is equal to 1024 words, and 1P (P for page) is 512 words. Each user
is allocated a physical memory, whose size is limited by the user's memory limit
or memory request, whichever is smaller. When the program and/or data are too
large for the allocated size, the program will attempt to access memory outside
the allocated area, causing a fatal memory access error called a "memory fault."
The job is then aborted. 1In such a case, the user must scale down his problem
or apply certain special techniques such as overlays and chaining of programs.

The techniques of swapping can now be extended to the user's program
execution. A part of the user's program and/or data will be in his memory in
the usual way; the rest is in the mass storage. When a "memory fault" occurs,
the fault manager (a software unit) will take note of the fault. It will then
bring into the main memory a page from the mass storage, and take out a page
from the memory (back into the mass storage) to make room. Thus, a memory
access fault may cause some time delay due to the swapping (called the
overhead) , but it will not cause the job to abort. Here from the view point of
the user, the mass storage is in effect, although not in fact, a part of his
memory allocation. Therefore, such a memory is then called the virtual memory.
In contrast, the actual memory allocated to the user is the physical memory.

Assuming that the virtual memory will be used only in a batch job, the
procedure of using the virtual memory technigque is outlined as follows:

(1) The $JOB card should include a CORE switch specifying the core
request. Without this switch, the system default allocation applies for the
job.

(2) Set the physical core limit by a monitor command:
.SET PHYSICAL LIMIT mK

where Mk is the core size in K-words. If this is omitted, the physical limit is
assumed to be that requested in the $JOB card.

(3) Prepare a core image (a.SAV or EXE file) of the programs and save it
as a SAV or EXE file. This may be done by using the LINK-10 loader by either of

318 CHAPTER 7 SERVICE PROGRAMS

the two following ways*:

.LOAD/LINK list
.SAVE flname

or, IOAD/LINK flname/SAVE, list

where 7ist contains a list of programs to be loaded, and flname ig the name of
the EXE file to be saved. Note that the /LINK switch must be placed in front of
the list of program names.

(4) Request virtual memory facility by setting its limit:
.SET VIRTUAL LIMIT nK

The virtual memory limit must not be more than twice the physical 1limit, or
ns 2m , Also, after the current job is finished, the virtual limit should be
reset back to zero.

(5) Run the program, using the EXE file just saved:

.RUN FLNAME

Although the virtual memory facilities are available, users should
exercise considerable restraint in using them, because they expand the memory at
a great expense to efficiency. Some installations make a policy of wusing the
virtual memory as a last resort. When a user does use the technique, he should
examine his program very carefully and modify it if necessary. The general
principle is that the execution should have access to contiguously stored data
or programmed steps. For example, the order of subscripts as indexes becomes
critically important in a multiple-dimension array processing. Also, the
program should try to avoid branching statements, such as GO TO. In any event,
this facility is available only by special permission or arragement.

*If the LINK loader is the default loader of the system, the "/LINK" switch
shown below will not be needed.

Virtual Memory Procedure 319

REFERENCES

DEC SYSTEM-10 UTILITY MANUAL, DEC-10-UTILA-A-D, Digital Equipment
Corporation, Maynard, Massachusetts; 1975

SORT AND CSORT, DEC-10 Notes, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; June, 1979.

DEC System-10 SORT/MERGE USER'S GUIDE, DEC-AA-0997D-TB, Digital Equipment
Corporation, Maynard, Massachusetts; 1977.

OPRSTK, DEC-10 Notes, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; May, 1980.

PDP11/IAS RUNOFF', DECUS, Maynard, Massachusetts; August, 1977.

INTRODUCTION TO THE VIRTUAL MEMORY, Computer Center, University of
Pittsburgh, Pittsburgh, Pennsylvania; March, 1977.

The HELP Files: SYS;PIP.HLP, SYS:SORT.HLP, SYS :OPRSTK.HLP,
SYS : RUNOFF . HLP, SYS:RUNOFF.INS, Computer Center, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1980.

INTRODUCTION TO DEC SYSTEM-10: TIME-SHARING AND BATCH, T. W. Sze,
University -of Pittsburgh, Pittsburgh, Pennsylvania; First Edition,
September, 1974, Second Edition, September, 1977.

CHAPTER 8

OPERATING SYSTEM CCMMANDS

8.1 Introduction

The software system of the DEC System-10 contains language processors and
a variety of service programs. The most important one is the operating system,
also called the executive system, the supervisor or the monitor. It is a master
program which exercises an overall control on the entire System. It performs
the scheduling of users from the queue, supplies them with proper language
processors and other system resources when requested, keeps account of charges,
and performs many other service functions. BAn operating system command may be
issued only when the user is in the monitor mode, which is indicated by the
appearance of a prompt symbol "." (a period) on the terminal output. If the
user 1is not yet in the monitor mode, he can get there simply by pressing the
CTRL-C ("C) key on the terminal.

Before going into some details of the operating system commands, it 1is
necessary to get acquainted with some terminology.

(1) Job The entire sequence of steps, beginning from the
signing-on step and ending with the signing-off step, is called a job. Each
job, while active, is assigned by the System with a Jjob number, such as
"Job 16". Within each job, the user can perform many functions, such as calling
on system resources like tapes and disks, preparing and running programs, and
communication with the System or other users.

(2) System device name Each system peripheral device has two names,
its physical device name and its logical device name. They are explained below:

A. Physical device name Each input or output peripheral
device associated with the System has a standard physical device name so that it
can be referred to consistently. The format of a physical device name is:

DEVNnn:

where: DEV = three-character abbreviation assigned for a class of devices,
for example, LPT for all line printers in the system.

1

zero to three-digit number indicating the numerical designation
for a particular unit in a class of devices, such as "DTA010:"
for DECtape drive Number 010.

nnn

: a colon, an integral and terminating part of the device name.

320

Physical and Logical Device Names 321

If there is only one device in a particular class, the part "nnn" may be
omitted. For example, "PLT:" is used to represent the system plotter, "PRG:"
the Program Library, and "SYS:" the System Library. It may also be omitted in a
multi-unit device name if only one such unit is assigned and available for
general usage, such as "DSK:". A list of physical names of selected system
devices is shown in Table 8.1.

Device Physical Names
Array processor unit APU:
Card Punch CDP:
Card Reader CDR:
DE&‘.‘;:\;A Drive DTA:
DTA010:, DTAOll:, etc.
Disk DSK:
| Line Printer LPT:

LPTS3:, LPTS6:, LPTS10:, etc.
Magtape Drives MT7: (7-track drive)

MT8: (9-track drive, 80U/16U0 BPI)
MT9: (9-track drive, 1600/6250 BPI)
MTA010:, MTAOll:, etc.

Operator's Terminal CPR: or TTYO:

Plotter PLT:, PLTO10:
System Library SYS:
R — R i = s i et ot i b s o e s s -]
Program Library PRG:
Engineering Library ENG:
Terminals TTY:

TTY0:, TTY16:, TTY63:, etc.:

Table 8.1 System Devices and Their Physical Names

B. Logical device name The user may also define the device with a
name of his choice, which may or may not be the same as the device's standard
physical name. Such a user-chosen name is called the logical device name. A
logical device name may be assigned by either the ASSIGN command or the MOUNT
command, as described in this chapter. Once a 1logical name 1is assigned, a
device may be referred to by either its physical or logical name. Since the
logical name may be chosen arbitrarily, the name chosen may already exist as a
physical name of a different device. The conflict is resolved by the System
that gives the logical name assignments precedence. Sometimes, it is beneficial
to purposely cause such a conflict. For example, suppose a programming project
has been completed after a great deal of effort on its preparation, debugging,
compiling and documentation writeup. Suppose the program is designed to produce

322 CHAPTER 8 OPERATING SYSTEM

its output on a line printer. Suppose now you wish to run this program, but you
want a disk file output rather than a printer output. Instead of making
extensive changes on the program and re-compiling it, you can simply call the
disk a "printer" by giving the disk a logical name of the printer. Then, when
you run the program, the System would take the disk as the "printer" and produce
the output there.

The format of a logical device name is:
LOGDEV:

where LOGDEV is an one to six-character alphanumeric string, and the colon is an
integral and terminating part of the name.

(3) Switch In most operating system commands, options or
variations within each command are available., For example, to print a file on a
line printer, a user can have a choice of printing it in single-space,
double-space or triple-space, or specifying the number of copies he wants.
These options are built into the operating system commands as option switches or
simply switches. There are two general formats of switches:

/KEYWORD
/KEYWORD: argument

In the first format, the option does not require any other information, such as
/FAST, /FORTRAN, etc. In the second format, the option will require a parameter
specification, such as /SPACING:DOUBLE or /SINCE:22-JUL-1980 or /PROTECTION:155.
Generally, these switches may be placed anywhere at the command keyword, and the
order of the multiple switches is optional. However, when there is a list given
in an Input/Output command, the placement of a switch in the command structure
will make it either a "global switch" or a "local switch". The effect of a
local switch only applies to the file it specifies. The effect of a global
switch will extend to the rest of the command structure, unless its effect is
overriden temporarily by a local switch or permanently by another global switch.
When the following command is applied:

.PRINT PRG1.FOR,/COPIES:2 PRG2.FOR, PRG3.FOR, PRG4.FOR/COPIES:1, PRG5.FOR

1 copy each of PRGL.FOR and PRG4.FOR and 2 copies each of PRG2.FOR, PRG3.FOR and
PRG5.FOR will be printed.

(4) DEFAULT CONDITION when an operating system command is executed,
it runs a particular system program. Early in that program, if options are
allowed, a set of initial conditions is established for these options. These
initial conditions will remain unless they are replaced by the specified
switches in the user-issued command. Thus, if user's option is the same as the
initial conditions, there 1is no need for him to include such a switch in the
command. Or, if the user is not familiar with the available options of a
particular command, the command will be executed according to the established
initial condition set. These conditions established by the System are called
the default conditions of the switches. They are judiciously chosen to
represent what an average user would want in a typical case. For example, in
listing a file on the printer, single-spacing will be assumed if spacing option
is not specified. Many default conditions are 1locally defined by a process
called operating system generation, at which time the conditions are fixed
according to such considerations as the installed system capacity, institutional
operating policy, all aspects of the user population, and many local
circumstances. Therefore, these default conditions may vary from one
installation to another. Even at the same installation, they may vary from one
time to another.

File Specifications 323

(5) File specification For the purpose of identifying a file, each
file 1is given a name. Once the names are established, the system will maintain
a directory so that users need not be concerned with the exact location on the
disk for their files. For the DEC System-10, the format of a complete file
specification is:

DEV: NAME.EXT [m,n] <xyz>

where: DEV: = name of device on which the file is stored. If this part is
omitted in the complete specification, DSK: (the disk assigned
to users) is assumed.

NAME = filename consisting of one to six alphanumeric characters with
no embedded blanks.

L.EXT = file extension consisting of zero (0) to three alphanumeric
characters with no embedded blanks. If it contains zero
characters, it is called a null extension., The period is an
integral part of the extension.

[m,n] = the PPN of the person who created and owns the file. The
default PPN is the current job's PPN. Note the use of square
brackets.

<xyz> = a three-digfit protection code. Note the use of angular
brackets.

The file extension is a part of file identification, used to indicate the
type or language of the file. Although any zero to three-character combination
can be used as a file extension for any file, the following are some most
frequently used file extensions, and their meanings are recognized by the
System.

Examples:

NEWTON. P1L A PIL program file named NEWTON.

NEWTON. FOR A FORTRAN program file named NEWTON.
NEWTON. REL An object program compiled from NEWION.FOR
FORO1.DAT A data file named FORO1.

Symbols "*" and "?" are used as "wild cards" to represent a class of file
names or extensions, as illustrated by the following examples:

Examples:

NEWTON. * All files named NEWTON of any extension.
*.FOR All FORTRAN files.

* Lk All files.

F?27?.DAT All data files whose names are 5 characters

or less and begin with F.

324 CHAPTER 8 OPERATING SYSTEM

D12??.D?7? All files whose names begin with "D12" and
contain 5 characters or less, and whose
extensions begin with the letter D and con-
tain 3 or less characters,

D12?7?2.%* All files whose names begin with "D12" and
contain 5 characters or less.

The protection code is a 3-digit octal number xyz, each digit ranging
from O to 7. Each digit defines a protection level of the file against a
certain class of users:

]

x = protection level against the file owner himself.

1

y = protection level against users sharing the same project number.

Z

protection level against the general public.

The level of protection ranges from level 0 to 7, and 1level-7 1is the
highest. The exact definition of each protection level is given below:

Code Digit Access Protection*
7 No access privileges
6 Execute only
5 Level 6 + Read privilege
4 Level 5 + append privilege
3 Level 4 + update privilege
2 Level 3 + write privilege
1 Level 2 + rename privilege
0 Level 1 + change protection privilege

Access protection can be changed by executing RENAME or PROTECT monitor
command (see Chapter 6) or the PIP program (see Chapter 7). Since there are 8
levels of protection in each of three classes of users, there are 512 different
shades of protection-level combinations possible. Normally, one need only be
concerned with a few commonly used codes:

Protection Codes Applications
077,177 Strictly private and non-sharable, such as
grade files maintained by an instructor.
057,177 Sharable within a project, for example, a
program to be shared by all students in a
course.
055,155 Sharable with the computer community, but

the file may not be modified by anyone
except the file owner.

The System assigns a default protection level of 057, set automatically
by the computer if the person does not specify any protection code when he

*Subject to minor local variations. For example, at the University of
Pittsburgh, access protection designated by the x-digit has been modified
slightly.

File Specifications 325

creates the file. In some course work, instructdrs may arrange to have default
protection level automatically set at 077. 1In such a case, the protection code
of a student's file is 077 to his classmates, but is 057 to his instructor.

The Operating System of a computer is the most important and extensive
software system. For DEC System-10, its Operating System contains more than a
hundred commands, and some of its commands contain more than two dozen switches
in each command. Studying and mastering the full set of commands can be an
overwhelming task.

In the sections that follow in this chapter, a Jjudiciously selected
subset of these commands and a selected subset of their respective switches will
be included. Since not every operating system command will be useful or
meaningful to an average user, nor need he know every switch or available
option, these subsets are chosen on the basis of what the author believes to be
the most important and frequently used ones. The readers are referred to
Reference 1 for a complete description of the operating system commands and
their respective switches.

The discussions of the operating system commands will be functionally
divided into six groups:

(1) Job initiation and termination commands

(2) Communication and status reporting commands
(3) Sourée file preparation commands

(4) Allocation of facilities commands

(5) Program execution and control commands

(6) File management commands

They are presented in the following sections.

326 CHAPTER 8 OPERATING SYSTEM

JOB INITIATION AND TERMINATION

8.2 Job Initiation at a Remote Terminal

The sign-on procedure to initiate a Jjob has been discussed in
Section 1.8, For the purpose of completeness, they are again included here.

Once a user has a valid pair of ID numbers (the PPN) and has a valid
password, he may now sign on at any remote terminal by following the procedure
outlined below:

Hard-Wired Units Dial-Up Units
(1) Turn on switches. Press C if (1) Turn on switches and dial the
there is no prompt symbol ".". computer number.* If the line
After the prompt "." appears, is busy, there is a usual busy
type "I" (for INITIATE) and signal. When the call gets
the following lines will be through, a high-pitch tone can
typed out on the terminal: be heard. Place the phone set

on the seat of the acoustic
coupler, Wait until the READY
or CARRIER light comes on,
typetC, and the following two
lines will be typed out on the
terminal:

PITT DEC-1099/A 63A.41B 15:36:41 TTY43 system 1237/1240
PLEASE LOGIN OR ATTACH

where "1099/A" indicates System A, "63A.41B" the monitor version, "15:36:41" the
time of the day in 24-hour clock, "TTY43" the line number assigned. If "1099/B"
appears instead of "1099/A", it means the user is in touch with System B. If
the user finds himself in a wrong system, he requests a change by typing:

TTY SYSTEM B or l TTY SYSTEM A

after the prompt symbol.

(2) Type the monitor command after the prompt symbol:

LOGIN m,n
or IOGIN m/n
where m = project number, n = programmer number.

The difference between "m,n" and "m/n" in the two monitor commands is that the
latter form will suppress the message of the day from the Computer Center when
the sign-on procedure is completed. It is possible that you have seen the
message several times already, and may not care to read it another time.

(3) Enter the password when requested. The password will be entered in a

non-print mode, and the typed password will not appear on the terminal. This is
to maintain the security of the password.

*For University of Pittsburgh users, dial (412) 621-5954.

LOGIN and PASSWORD 327

If the entered password is an incorrect or invalid one, the system will
respond with an error message and a request for the PPN, After supplying the
PPN again, another password request will be made by the computer. The user has
five chances to sign on correctly. After that number of unsuccessful trials,
the job is killed, and the user must restart the entire procedure to sign on.

If the password is found to be wvalid, the system will respond with
information on the status of the project, the last sign-on time and date, the
time of day, and the "message of the day" from the Computer Center. The last
item may be suppressed if the user uses the LOGIN command with the m/n
specification.

After all preliminary reports are finished, a prompt symbol "." is
printed on a new line, and the computer pauses and waits for input. The user is
now connected to the computer at the monitor level, and the sign-on procedure is
completed.

The following two cases are examples of sign-on. Explanatory remarks are
also given along with the remote terminal printout. As used throughout this
book, those lines entered by the users will be in Ztalies:

Printout on Terminal Remar ks

A
To initiate

PITT DEC-1099/A 63A.41B 16:19:17 TTY43 system 1237/1240 Computer response

.TTY SYSTEM B Ask for System B
PITT DEC-1099/B 63A.41B 16:19:50 TTY43 system 1237/1240 System B response
LOGIN 115103,320571 Sign~on command
JOB 35 PITT DEC-1099/B 63A.431B TTY43 Wed 7-May-80 1619

Password: (password) Enter password

Last login: 7-May-80 1617

Usage ratio: 22.13 Units used: 33.5
SYS B DOWN 0000-0800 MON MAY 12 FOR REGULAR HARDWARE MAINTENANCE
SYS B DOWN 0000-0300 TUE MAY 13 FOR REGULAR SOFTWARE MAINTENANCE

Password valid

DUE TO HARDWARE PROBLEMS THE ARRAY PROCESSOR WILL BE Message of the day
TEMPORARILY OFF LINE UNTIL FURTHER NOTICE

\LOGIN 115103/320571 Sign-on command
JOB 23 PITT DEC-1099/B 63A.41B TTY43 Wed 7-May-80 1815
Password: (your password) Supply a password

Last login: 7-May~-80 1619
Usage ratio: 2.13 Units used: 33.5 On line

328 CHAPTER 8 OPERATING SYSTEM

8.3 Password

To sign on the DEC~10 system, the required identifications are a valid
PPN and the associated password. Security of PPNs is impossible because they
are publicly displayed in many places - in ILOGIN printout, in the file
directory, in printout identification, etc. Thus the only real safeguard and
security of a computer account is the password.

The need for protection against unauthorized use of your account by
another person goes beyond accounting reasons. There have been numerous
incidents of computer vandalism in the past. The most frequent vandalism was
change or erasure of programs or data without the owner's knowledge.

The only protection against such unauthorized use is to install a
password, to keep its security, and to change it frequently. As a matter of
prudence and necessity, the user should change his password regularly as a
standard practice and whenever he suspects the password is no longer secure.

Changing a password at a terminal can only be done at the IOGIN time by
using either of the following LOGIN format:

LOGIN m,n/PASSWORD

or, LOGIN m/n/PASSWORD

where "m" and "n" are the PPN. The following shows a sign-on session with a
password change. Since the process is interactive, the explanation should be
self-evident:

LOGIN 115103/320571/PASSHORD

JOB 16 PITT DEC-1099/B 63A.41B TTY43 Wed 9-May-80 2003
Password: Your old password
New Password: Your new password

Retype for verification

New Password: Your new password again
Last password update: 24-Apr-80 1255
Last login: 22-Apr-80 1642

Usage ratio: 0.84 Units used: 33.1

8.4 Job Termination at a Terminal

To leave the system, the user must terminate his job by supplying a
monitor command KJOB ("to kill the job"). The system will respond by requesting
a code letter for confirmation and file disposition. Thus, the command format
for signing-off is:

.KJOB
CONFIRM: Code Letter

KILL-JOB Command 329

A shortened form of this command is:
K/ Code letter

The most commonly used code letters in the KJOB command are:

F = fast signoff; save all files

D = fast signoff; delete all files. Computer will respond with A
confirming question: "DELETE ALL FILES?" Answer YES and return the
carriage.

P = preserve all files except temporary files.
H = HELP! Computer will respond with detailed instructions.

I = list file names, one at a time, and apply code letter decision
individually. The code letters for individual decision are:

P = preserve the file

S = save the file

K = delete the file

Q = learn if over logout quota on this file

E = skip to next file and save this file if below logout quota for
this file. If not below logout quota, a message is typed and
the same file name is repeated.

H = HELP. Computer will respond with the above information on code
letters.

While files are disposed per user's code letter instruction, the computer
will make a check on logout quota, gather all usage and accounting information,
terminate the user's job and print out a summary of the job., For example:

K/F

JOB 16 [115103,320571] off TTY43 at 2032 9-May-80 Connect=29 Min
Disk RtW=83+76 Tape IO=0 Saved all files (450 blocks)

CPU 0:04 Core HWM=11P Units=0.1263 ($9.48)

The printout indicates that this user, with PPN of 115103,320571, was
assigned line 43 and job 16, signed off at 2032 on May 9, 1980. His terminal
was connected to the system for 29 minutes, used CPU or computer time for 4
seconds. He used disk, but not magnetic tapes. He has 450 blocks of saved
files. For this job, the highest core area used (HWM=High-Water-Mark) was 11
pages or 5.5K words, and the charge is 0.1263 unit or $9.48.

The "unit" is an accounting device which combines all charges of the
service, including CPU time, disk usage, the length of connect time, the size of
core used, and time of the day, and a base charge, each with an appropriate
weighting factor to form an accounting formula.

330 CHAPTER 8 OPERATING SYSTEM

COMMUNICATION AND STATUS REPORTING

8.5 Communication in the Time-Sharing System

Communication with the Computer Center staff and other wusers in the
System is provided by several commands:

(1) SEND Command The SEND command enables a user to send a message
from his terminal to another, including the system operator's terminal. The
command format is as follows:

SEND dev: message
or, SEND job n message

where dev: = TTYM:, the physical name of the destination terminal and M is
its line number, e.g., TTY43:, TTY66:, etc.

or, = OPR: (for operator, same as TTY0:)

and

=]
1}

job number at the destination

Example: Suppose at a remote station TTY20:, a message is sent to
station TTY40:

LSEND TTY40: MEET YOU FOR LUNCH IN TEN MINUTES?

At the destination TTY40, the message will interrupt the job and is printed out:
3 TTY20:~ MEET YOU FOR LUNCH IN TEN MINUTES?

The user can determine his own terminal line number by examining the LOGIN
printout message or by issuing a command "PJOB." The command SYSTEM/J will print
out the system active job status at the moment, including job numbers and line
numbers.

(2) R MEMO Command This is a command for the user to communicate with
the Computer Center staff for questions, suggestions, and complaints. When he
completes his message, he terminates it by pressing the CTRL-Z (the CTRL and Z
keys together) keys, and the user's terminal is returned to the monitor mode.
If the message is long and pre-stored as a disk file, a user can load his stored
message file by using an indirect file specification when message is requested
in the program. An indirect file specification has a prefix of "@" before the
standard file specification.

MAIL/POST Commands 331

Example:

R MEMO

Your [p,pn], TTY number, and the current date and time are automatically
recorded with your message. A written response will be mailed to you
within one week. Please provide a campus address, if possible.

Your Neme: T. W. S7F
Phone: 5418
Mdress: 339 BEH

Please type your message or indirect file spec. End it with a control Z.
Message goes in here....

EXIT

(3) To Send or Receive "Mail" The SEND command transmits message from
one active terminal to another. Message can be sent to another user, whether or
not he is currently on-line, by a "post office" system developed at the
University of Pittsburgh.

In order to join this "post" system, a user must make some initial
preparations. When he first joins the system, he should issue a monitor command
of "R MAIL" which will respond, naturally, with a message of "NO MAIL POSTED."
It will then go into the mail-sending' sequence, which can be shorted out by a
CTRL-Z or CTRL-C key. However, in doing so, a file is automatically prepared in
the user's disk area with a file name of MAIL.BAG<144>. This is the user's mail
box, without which he can send but cannot receive mail.

In this post system, the address of the receiver is his PPN. If the mail
is directed to the Computer Center staff, the address may be one of the
following, depending on the nature of the communication:

ACCOUNTING CsMP MACRO REPAIR SPSS

ALGOL CTLYST MAIL RUNOFF SSCRL

BASIC FORTRAN OPERATOR SIMULA SYSTEM

BATCH F10 PIL SITGO TAPE

CopY HELPER PPN SNOBOL TAPELIBRARIAN
CREF LINK PROG SOLO TECHNICIAN
COBOL LISpP PROGLIBRARIAN SORT TECO

COMPIL LOADER PROG L S0s UPDATE

To send a message through the post system, use the monitor command:

R POST

The procedure of sending mail is illustrated by the example below: The text in
italics is typed by the user:

R POST

TO: 114713,3205671
SUBJ: HOMEWORK DUE DATE

TYPE IN MESSAGE. END WITH "%
WHEN IT ASSIGNMENT NO, 5 DUE? 4%

TO: 2

332 CHAPTER 8 OPERATING SYSTEM

The CTRL-Z closes the "letter" which is then stored in the receiver's
file MAIL.BAG along with the information of sender's PPN, name, time of the day
and the date. When one letter is completed by the CTRL~Z signal, the system
responds with another "TO:" for the next letter, and the above process may be
repeated for another letter. If there is no further letter to post, the user
returns to the monitor mode by again pressing the CTRL~Z key.

To read these letters, issue a monitor command:
R MAIL

All new messages since the previous reading of mail will then be printed on the
user's terminal. At the completion of the printout, the messages just read are
emptied into another file MAIL.OLD and a new blank file MAIL.BAG is created to
accept future mail. In the meantime, the system switches to the beginning of
the POST sequence by typing out "TO:". The user at this point may send message
out should he wish to answer his mail at that time.

The following is an illustration of how the person in the previous
example might read and answer his mail:

R MATL

[122345,765432] *DOE 14:28. JuLy 27, 1980
5UBJ: HOMEWORK DUE DATE

WHEN IS ASSIGNMENT NO. 5 DUE?

TO: 128345,765432
SUBJ: HOMEWORK DUE DATE

TYPE IN MESSAGE. END WITH "2
MY DEAR BOY, IT WAS DUE TWO WEEKS AGO. = 4%

TO: +Z7

If a user just wants to know if there is any new mail waiting since he
checked it last time, he can issue this command:

R MAILX

The system will respond with a message of "MAIL WAITING ...", or just another
prompt period, to signify whether or not there is mail waiting.

(4) The Computer Center also "posts" bulletins of general interest.
These are stored in the physical device "SYS:" as news files. The files are
updated frequently to announce the changes, bugs, new developments in some
particular processor. As a result, new items may be added, and some old and
non-newswor thy items may disappear. The user may check the directory of the
news file by a monitor command of "DIRECTORY SYS:* .NWS" and the system will
respond by listing a complete list of news files available in the device S¥S:.
A copy of the bulletin may be obtained on the user's terminal by issuing a
monitor command "TYPE SYS:xxxxxx.NWS", or on the printer by issuing a command
"PRINT SYS:xxXxxX.NWS", where "xxxxxx" is the name of the file chosen.

The System also maintains a set of files which contains helpful
information on various programs and commands. They are called HELP-files and
are generally quite voluminous. One can find out what HELP-files (with

Status Report Commands 333

extension of HLP) are available by a command .of "DIRECTORY SYS:*,HLP", and a
complete directory of HELP-files will be typed on the user's terminal. The user
can then use "TYPE" or "PRINT" command to get a copy of the selected file.

8.6 Status Report Commands

The DEC System-10 keeps a wealth of data and records on its own operation
and those of the users. some of these information may be useful to a user and
can be made available by certain commands. These are listed below:

Short
Command Form Explanation and Examples

PJOB PJ To print out user's job number.

Example: PJ
16

NJOB N To print out total number of active JObS on the system

Example: 0
24

DAYTIME | DA To type out the date and time in the format of:
day-month~year hour :minute:second
Example: .DA
16ﬂJUL-80 16 56 59
N S S— R, .
TIME TI To type out the follow1ng items:
1. Total running time since the last TIME command.
2. Total running time and connect time of the job.
3. Total core usage in kilo-core-second
Example: IT
0.38
0.38
kilo-core-second=3, Minutes connected=3

CURRENT | C To type user's current usage status
Example: .C
Usage ratio = 0.45
CPU allowance in this connect hour = :02:00
Current hour ends in 24 min
CPU time remalnlng :01:55
USESTAT | 1T To type out six 1tems of user usage information:
1. incremental day time in seconds
2, incremental run time in seconds
3. incremental read and write disk in blocks
4. name of program running
5. core size used
6. program counter address

Example:

DAY::13:43RUN:6.,30RD:66WR:7 HELP 2P+1P"C SW PC:400672
Note: "incremental"” means the differential since the last
USESTAT command.

334 CHAPTER 8 OPERATING SYSTEM

HELP HE There are three HELP formats:
1. HELP Outputs the instruction for the
receiving information.
2. HELP dev:* Output both names of features that

have available on-line documentation

(HELP-files) and names of monitor

commands. If dev: is DSK:, it can

be omitted from the command format.
3. HELP NAME Same as TYPE SYS:NAME.HLP

SYSTAT SYS The command format is: SYSTAT/switch

If the switch is not given, the entire system status will
be typed out on the terminal. If switch is given
and included in the command, a subset of system status
report will be typed according to the following codes:

/Switch Subset Information to Be Printed
/B Busy device status
/3 Job status
/R Remote station status
/S short job—status report
/X Read the explanation of recent crash
/- User's job status
/n Status of job n
/#n Status of TTYn
/Im,n] Status of jobs submitted
/[m,*] by specified PPNs.
/1*,n] "' g wild card.
R QUOLST To print out the status of user's disk usage and quota.

See Section 1.10 of Chapter 1 for details.

RESOURCES| RES | To print out the names of all available devices, except
TTY's and PTY's, unless they are down,busy,non-existent.

WHERE W The complete format is: WHERE dev:
It outputs the station number at which the specified
device is located. :

Source File Preparation 335

SOURCE FILE PREPARATION

8.7 Source File Preparation Commands

Although there are many editing processors available on DEC System-10,
only one editor is presented in this book. It is called the UPDATE (University
of Pittsburgh DAta and Text Editor). The monitor command calling for this
processor is:

[UPDATE NAME.EXT

If NAME.EXT is a non-existent file, the command opens a new blank file on disk
for creation, later to be named as NAME.EXT. If the file NAME.EXT already
exists, this command opens that file for editing with the UPDATE editor.
Commands and procedures of using the editor UPDATE are presented in Chapter 2.

There are other editors available on the System, such as the TECO. The
monitor command to call for the TECO editor is "R TECO".

336 CHAPTER 8 OPERATING SYSTEM

ALIOCATION OF FACILITIES

8.8 Facility Allocation by Monitor

The monitor allocates peripheral devices, file structure storage, and
core memory to users on request and protects these allocated facilities from
interference by other users. It maintains a pool of peripheral devices divided
into two groups: unrestricted devices and restricted devices. Among the
unrestricted devices are line printers, paper tape reader and punch, and disk.
They are allocated on request at a when-available basis, and request for their
allocation is really a reservation for their use. Actual usage of these devices
is shared with other users on a queuing basis. On the other hand, restricted
devices, such as magtape drives, will allow exclusive usage of the device when
allocated. The exclusive usage continues until the device is returned to the
pool. Therefore, a user must possess certain qualifications in order to be
allocated with restricted devices. For example, he must have possession of a
registered tape in order to use the tape drive.

Many of these peripheral devices are non-sharable at the seme time. When
a non-sharable device 1is assigned to a job, it is taken out of the monitor's
pool and it will not be available to other users. Since non-sharable devices
are scarce resources, the user should return them to the pool as soon as he
completes his tasks with these devices. At any time, a user may find out what
is available in the pool by a monitor command of:

RESOURCES

and the System will respond with the list of devices available by their physical
device names. See example below:

-RESOURCES
D200, USRA, USRB, PLT0L0,MTA010,011,015,DTA010,011,012,013

Therefore, for all users in the general community, two types of commands
are used for allocation of facilities: one for the unrestricted devices, and
another for the restricted devices. In the latter, operator intervention is
built into the command process to check on certain user qualifications. They
are now discussed in some detail.

8.9 Allocation of Unrestricted Devices

An unrestricted device may be allocated upon a user's monitor command of:

ASSIGN DEV: LOGDEV:

where DEV: = physical device name, and
IOGDEV: = logical device name, optional in the format.

The Ehysical and the logical names of devices have been defined and discussed in
Section 8.1, Iogical names of different devices must be different from each
other, but a logical name may duplicate a physical name (not necessarily

Unrestricted Device Assigrnment 337

representing the same device). In the latter case, the logical name will take
precedence over a physical name. For example, when the following command 1is
issued:

ASSIGN CDP: LPT:

the name "LPT:" now serves as both the logical name of the card punch and the
physical name of the line printer. Since logical name takes precedence, system
output will now be re—channeled into the card punch file preparation, even
though the program executed after the ASSIGN command was originally designed for
line printer output. Such an assignment command then becomes a convenient way
of re-designating input/output devices of a program without having to modify the
program itself. An alternate way is to intercept the output file before it is
sent to the output device, rename it with an appropriate extension (e.g., CDP
extension for card punch output) , and then apply appropriate monitor command to
produce the output. See more details on output command in Section 8.14.

Since the System already has assigned certain unrestricted devices as the
standard input/output devices in the time-sharing mode, it is not necessary for
a user to request their allocation., Therefore, the ASSIGN command is generally
used for two purposes only: (1) to reguest a non-standard input/output device,
or (2) to rename a device by a logical name which is referred to in an existing
program.

A very useful variation to FORTRAN users is the ASSIGN command of the
following format:
‘ ASSIGN DEV: nn J

where nn = device unit number in the READ/WRITE statements of a FORTRAN program.
If a stored disk file is assigned this way, then DEV: is DSK:, and the filename
must be FORnn.DAT, where "nn" ranges from 00 to a number depending on system
installation. In FORTRAN-10, the upper range is 63,

Example: Suppose a FORTRAN program has been prepared in which the
READ/WRITE statements are of the form: READ(5,f)list and WRITE(6,f)list. This
program is now stored on the disk as SAMPLE.FOR. The following different cases
show how a user can run the program and pre-select certain devices as input or
output media:

Remarks

EXECUTE SAMPLE.FOR Input/output devices will be standard devices,
namely, the remote terminal of the user.

.ASSIGN LPT: 6 Obtain the output from the printer. Input is still
JEXECUTE SAMPLE.FOR via the user's terminal.
PRINT *,LPT
ASSIGN DSK: 8 During execution, input data will be from a stored
JASSIGN DSK: 5 file FOR0O5.DAT, and after the execution, output
EXECUTE SAMPLE.FOR will be stored in a new file named FORU6.DAT.

In the batch mode, the selection of non-standard devices is much more
limited. Aside from the standard devices, selection of unrestricted devices is
essentially limited to the "DSK:", and the procedure outlined in Table 8.2 for

338 CHAPTER 8 OPERATING SYSTEM

"DSK:" will also apply for the batch mode.

Time-Shar ing System Assignments
Device
Name Unit 5 Unit 6
TTY: |Standard assignment Standard assignment
CDR: |Procedure: Not applicable
1. Prestore cards as a file,
named as XXX.CDR, where
XXX=1 to 3-character name.
2. Issue monitor commands:
ASSIGN CDR: 5
SET CDR XXX
3. Execute FORTRAN program.
LPT: |Not applicable Procedure:
1. Issue a monitor command:
ASSIGN LPT: 6

2. Execute FORTRAN program.

3. Qutput will be stored as a
disk file Q????.LPT, where
"??7?" are four characters
arbitrarily assigned by the
System.

4. Use either of the following
monitor commands to get the
printer output:

PRINT *.LPT
QUEUE *.LPT
DSK: Procedures: Procedures:
1. Prepare ahead a data 1. Issue a monitor command:
input file, which must ASSIGN DSK: 6
be named as FORO05.DAT
2. Issue a command: 2. Execute FORTRAN program.
ASSIGN DSK: 5 The output will be stored on
disk as FOR06.DAT. 1If there
3. Execute Fortran program. was a previous FOR06.DAT on
disk, the new file will re—
place it without warning.
BEWARE!

Table 8.2 Assignment of Unrestricted Devices for FORTRAN
Program Execution in the Time-Sharing Mode

Restricted Device Allocation 339

A device, once ASSIGNed, will remain assigned, until the user 1issues a
command of DEASSIGN to release it. The format of the DEASSIGN is:

DEASSIGN DEV:
or, DEASSIGN

where DEV: =either the logical or physical device name of the specified device.
If it is not specified, all devices assigned to the user's job, except the
remote terminal, will be released.

8.10 Allocation of Restricted Devices

A restricted system device is one where an operator intervention during
its usage 1is necessary in order to determine whether the requesting user is
eligible for the device. There are two types of restricted devices that may be
of interest to the readers of this book: the DECtape drives and the magtape
drives. The latter includes both 7-track and 9-track drives.

In general, when a user uses tapes in his processing, he goes through the
following steps:

Tape Processing Steps Monitor Commands*
(1) Reserve the necessary number of tape drives. DRIVES
(2) Ask the operator to mount physically a MOUNT
designated reel of tape on a reserved tape
drive.
(3) After the completion of tape processing of the DISMOUNT

reel, ask the operator to remove the reel
from the tape drive. User will still retain
the usage of the tape drive at this point.

(4) If the user has further tape processing to do, MOUNT & DISMOUNT
he will repeat step 2 and step 3. cycles

(5) When the tape tasks are finished, the user will
release the reservation of tape drives and
return them to the system pool.

For more details of tape processing and handling, the readers are
referred to Chapter 10. We will now discuss the monitor commands required to
perform these steps.

*These commands are enhancement of monitor of the standard DEC-10 software, and
were developed by the staff of the Pitt Computer Center. DRIVES and the
UNDRIVES commands are new, and MOUNT command contains additional access
restriction enforcement not available in the original DEC version.

340 CHAPTER 8 OPERATING SYSTEM

(1) DRIVES and UNDRIVES Commands

To request reservation of tape drives, a PITT-developed monitor command
should be issued which has a format of:

DRIVES DEV(n), DEV(n),...

where DEV = physical name (without colon) of a restricted device, which 1is
any of the following:

DTA = DECtape drive
MI7 = 7-track magtape drive
MT8 = 9-track magtape drive, 800 or 1600 bpi only
MI'9 = 9-track magtape drive, 1600 or 6250 bpi only
and (n) = number of drives requested. If n=1, "(n)" may be omitted £rom

the command.

To return the devices to the system pool, the command UNDRIVES has a
similar format:

UNDRIVES DEV(n), DEV(n), ...

To avoid accidental release of tape drives, the command UNDRIVES DEV(n)
will be ignored if the said drives still have tapes mounted on them, and if no
DISMOUNT commands have been issued yet.

The commands DRIVES and UNDRIVES can be issued without any argument, and
they will have somewhat different meanings:

DRIVES and UNDRIVES Commands
With No Argument Function

DRIVES To report the status of the user's current
allocation of tape drives.

UNDRIVES To release all tape drives regardless of whether
there are tapes still mounted on them or not.
Such a command will force a DISMOUNT action on
all tapes, and return all drives to the system
pool. This is also a standard procedure in
the KJOB to allow a quick exit from the
System.

The following points will also be helpful in using the DRIVES and
UNDRIVES commands:

A. The DRIVES command is not accumulative. If two or more DRIVES DEV
commands are given 1in succession, only the last one will be in force, because
any DRIVES DEV command always cancels out the previous one. Therefore, the
drives needed for one tape task should always be requested in one single DRIVES
command, and not piecemeal in several commands. Note the difference between the
two following cases:

MOUNT and DISMOUNT Commands 341

Case 1: «DRIVES DTA(2),MT9
MTAQ13,DrA010,DIA0Ll ALLOCATED

Case 2: .DRIVES DTA(2)
DTAQ10,DTA011 ALLOCATED
«DRIVES MT9
MTAQL13 ALLOCATED
. DRIVES
MTAQ13 ALLOCATED

In case 2, the second DRIVES command cancels out the first one. At the
end, only the second request by itself is honored.

B. The System will not make a partial allocation to a DRIVES request.
If there 1is not a sufficient number of requested devices currently free in the
pool, the System will respond with a message as shown below:

.DRIVES DTA, MT9(2)
DRIVES NOT AVAIIABLE NOW, WAITING....("C"C TO EXIT)

At this point, the user has two options: One 1is to wait. Then he is not able
to do anything at the terminal. The other is to cancel the request by pressing
the CTRL~C key twice or more, and the user can submit another request sometime
later. Naturally, such options are not available to BATCH users because they
will not have the opportunity of such interactions.

C. Unlike the DRIVES DEV command, the UNDRIVES DEV is accumulative.
For example, suppose a user has acquired 4 DECtape drives by a previous DRIVES
command. If he issues a command UNDRIVES DTA, he will be left with 3 drives if
the release request is successful, If he then issues another command UNDRIVES
DTA(2), he will be left with just one drive.

D. Whether a release command UNDRIVE DEV will be successfully executed
depends on whether there are still tapes mounted on the referred drives. Let us
denote those devices being "idle" if there are no tapes mounted on them at the
time. The result of the command UNDRIVES DEV(n) depends on the number of idle
devices at the time, because with that command only the idle devices are
released.

a. If n = number of idle specified device, all such devices are
released.

b. if n<number of idle specified device, the UNDRIVES command will
arbitrarily release n idle devices, but the user will not know which ones have

been released unless he issues a new DRIVES command with no argument to inquire
about the new allocation status.

c. 1f n>number of idle specified device, the UNDRIVES command will

release all idle devices. Again no message is returned, and the user must use
the DRIVES command to find out about the new allocation status.

(2) MOUNT and DISMOUNT Commands

By a MOUNT command, a user requests the operator to mount a tape at a
designated tape drive. It has a form of:

MOUNT DEV:LOGDEV/switches

342 CHAPTER 8 OPERATING SYSTEM

where DEV:
LOGDEV

the physical name of the tape drive, and
the logical name assigned by the user

The following are several more frequently used switches:

Switches Explanations

/VID:Xnnnnnn Visual identification. At the University of Pittsburgh, tape
registry numbers are used as visual ID. They are decimal
numbers (six digits maximum) with A-prefix for DECtapes and
B-prefix for magtapes, for examples: Al234 and B313. This
is the only way a user can specify which tape he wants.

/WENABLE For "Write—enable". The tape will be available for both read
and write operations. Its short form is "/WE".

/WLOCK For "Write-lock". The tape will be for read-purpose only. Its
short form is "WL".

Mounting of tape is a manual procedure, and the operator has only the
visual ID to tell whether he has the right tape. Since human errors do occur,
there is always a chance of an operator mounting a wrong tape, and the
subsequent read-write operation will cause irreversible damages to the
information storage. Each computer installation generally designs additional
security measures to reduce the chance. At the University of Pittsburgh,
additional security of tape access is implemented through a standardized tape
registry, tape labeling and a modification of the MOUNT command.

The visual ID of each tape is standardized as a tape registry number, in
the form of Xnnnnnn, where "X" 1is either "A" (for DECtapes) or "B" (for
magtapes) , and "nnnnnn" is a decimal number of maximum six-digits. During a
"labeling" process, the numerical part of registry is recorded on the first file
of a DECtape or a 9-track magtape. In executing the MOUNT command (PITT
modified version), not only the operator will search for the right tape by the
VID identification, but also the first file will be read by the System. Thus
the number read from the first file may be compared with a VID given by the
user. If the two numbers do not agree, the tape job is aborted. Details of how
a tape may be "labeled" are given in Chapter 10.

With these modifications, the MOUNT command used at the PITT facility has
the following additional switches:

/8L Standard label. This switch will instruct the System to check the
label against the VID given. Actually this is a standard operation,
even if no switch is specified. 1In other words, this is the default

switch.

/NL No label. This switch informs the System that the tape 1s not
labeled, for example, as the tape 1is brought from another
institution.

Tape users should be aware that this security system is not applicable to
7-track magtape because of difference in recording techniques. When a switch
relating to label is given in using a 7-track tape drive, the label switch will
simply be ignored.

MOUNT and DISMOUNT Commands 343

To dismount a tape from the drive, a user may issue a command of:

DISMOUNT dev:

where dev: = previously MOUNTed device name, either physical or logical.
After a DISMOUNT command is issued, the tape mounted will be removed by the
operator and returned to its storage. The user, however, retains the use of the
tape drive, and he may mount another tape for further processing.

Example: The following shows a typical case of tape processing:

Comments

« RESOURCES To check on availability of devices
D200,PLT010,MTAQL0,013,015,0TAC10,011,012,013
.DRIVES DTA(2) To request2 DTAs. DIA(010 and DTAQ1l are
DTA010,DTAQ011 ALLOCATED available and assigned.
MOUNT DTA:T1/WE/VID:A1004 To mount tape Al004 on one tape drive, and
Request gqueued name it as Tl.
Waiting... "C°C to exit Either wait or issue 2 “C to get back

to the monitor
+MOUNT DTA:t2/WE/VID:A1005 To mount another tépe, and name it as T2.
Request queued
Waiting... "C°C to exit
+
+C
[MNT - DTA010 (T1) mounted] Mounting Tl message

[MNT — DTAOLl (T2) mounted] Mounting T2 message

(Tape Processing

done here)
. DISMOUNT T1 Dismount T1. Colon is optional.
T1 Dismounted Returned message.
. DISMOUNT T2 Dismount T2.

T2 Dismounted
(More MOUNT and DISMOUNT sequence)

. UNDRIVES To return the DIAs to the System.

344 CHAPTER 8 OPERATING SYSTEM

8.11 Remote Terminal Control Commands

A remote terminal is the most important peripheral device to a
time-sharing user. Its principal characteristics were described in Chapter 1.
When a terminal is connected to the System, a number of its operating conditions
are initialized automatically, such as the right margin, the tab positions, etc.
These conditions, however, may not always work well with certain terminals,
because there are a wide varieties of terminals the System can support. Even on
the same terminal, one user’'s requirements may not be the same as those of
another.

The SET TTY (short form TTY) command allows a user to declare properties
of his terminal, and it has the form of:

TTY keyword or SET TTY keyword

where keyword = either of the complementary pair of keywords for TTY properties.
Table 8.3 shows a list of keywords in the TTY command.

Example: .TTY WIDTH 132

Function: Set the right margin of the remote terminal at column 132.
Example: <TTY FILL 2

Function: Some terminals suffer from timing problems at 300 bauds

speed. The symptons are missing characters or overprints
at the beginning of each line. The remedy is to delay the
transmission of information after each long carriage or
paper movement, such as carriage return or form feed, by
inserting dummy or "filler" non-print characters. The
fillers do nothing except to take up time. The idea is to
allow the print head enough time to get into position when
the transmission of information is resumed. The number of
filler characters falls into four classes: Class 0, 1, 2,
and 3 with the higher classes having more filler
characters. Reference 1 gives a detailed table on the
exact number of fillers in each class for every carriage or
paper movement action. Since inserting fillers will slow
down the print throughput, the filler class should be
chosen just high enough to overcome the timing problem, if
one exists. This can be easily determined by experimenting
with each class.

TTY Commands 345
TTY System
Keyword |Default Explanations

ALTMODE X Converts ALTMODE codes of octal 175 & 176 to ASCII
code of 033.

NO ALTMODE No conversion

BLANKS X Allows blank line printout.

NO BLANKS Suppress blank lines. Useful in CRT terminal to
increase output that fits on the screen.

CRLF X When a line reaches the right margin, the carriage
will automatically return and advance one line.

NO CRLF Suppress carriage return even when the right margin
has been reached.

ECHO X Terminal will echo print the input characters.

NO ECHO Suppress the echo print.

FILL n n=0 Insert filler characters after each carriage-return
or tabbing operation to correct timing problems.
Filler insertion is of class n. See more explanation
in the example below.

NO FILL X Same as n=0

GAG Message transmitted by SEND command cannot be
received at this terminal.

NO GAG X Opposite of GAG.

e Opposite of ¢

NO LC X Transmits all lower cases as upper cases.

PAGE After this command is issued, the user will have the
ability to temporarily suspend system typeout without
losing it. The key CTRL-S suspends the typeout, and
CTRL~Q restores it.

NO PAGE X Disables the CTRL-S and CTRL-Q keys.

TAB X System sets up standard tab settings. Actual settings
vary with each installation.

NO TAB The monitor simulates TAB output from program by
sending the necessary number of SPACES.

uw X Same as NO LC

NO UC Same as IC '

WIDTH n 72 The carriage width (the point at which a free carriage
return is inserted) is set to n. "n" ranges from
17 to 200.

SYSTEM A Applied before LOGIN command to select one of the

SYSTEM B two systems.

Table 8.3 TTY Command Keywords

346

Example:
Function:

Example:

Function:

Example:

Function:

Example:

Function:

CHAPTER 8 OPERATING SYSTEM

ITY GAG

After this command is given, the wuser's terminal cannot
print out messages sent by other users' SEND commands.
This is useful when the user has an important output to
prepare and he does not want any printed messages to spoil
his output,

.TTY PAGE
This is particularly useful in a CRT terminal application
to allow temporary suspension of output so that the user
can read it before it rolls off and disappears from the
screen. It 1is also wuseful in conventional terminal to
create a pause during the typeout to allow the user to make
some manual adjustment of the terminal, for example, to
advance the paper to the next page.

.TTY PAGE

ITY GAG

.TTY WIDTH 132

Unless one keyword cancels out the effect of another
previously given keyword, the TTY commands have an
accumulative effect.

JITY LC

For terminals having lower-case capabilities, this command
will set the terminal at the lower-case mode, and the
terminal acts like a conventional typewriter. The upper
case character may be generated only if the shift key is
depressed at the same time.

COMPILE ,LOAD, EXECUTE Commands 347

PROGRAM EXECUI'ION AND CONTROL

8.12 Execution and Related Commands

To execute a source program stored on disk, such as a program written in
FORTRAN, the program is first compiled and an object program is generated and
stored on disk. This object program, called a relocatable binary file, or a REL
file, is then loaded into the user's core along with any subprograms of the
System called by the program. Execution will then begin at an address of the
core determined by the compiler and the loader. Therefore, the execution
process goes through three stages: the compiling, the loading, and then the
execution. Similarly, the loading goes through two stages: the compiling and
the loading. Of course, the user may also request Jjust the compiling to be
done. The monitor commands to perform these functions are listed next. The
"list" in the command format may be either a single file specification or a list
of files separated by commas.

Command Format Explanations

COMPILE list To compile the source program(s) and store the REL
file(s) on disk. No execution.

IOAD list To compile if necessary, and then to load the REL files
and the needed System subprograms and user—supplied
subprograms in user's core. No execution.

EXECUTE list To compile the source program(s) if necessary; store
the REL file(s); load them along with all needed
subprograms into the core; then execute.

START To begin execution after a REL file has been LOADed. A
LOAD command followed by a START command is equivalent
to an EXECUTE command.

When a file is created for storage on disk, the directory carries the
information of its creation date and time. When a command COMPILE, LOAD or
EXECUTE is issued, the System will first search in the user's disk area to see
if there is a REL file bearing the same name. If there is such a REL file on
disk and if its creation date and time is newer than that of the source program,
the compiling is simply bypassed because the REL file is still valid. The
purpose is to avoid unnecessary compiling which can be quite costly.

A number of command switches are available, and a selected subset is
listed below. As seen in Table 8.4, these switches are common for the commands
listed except the LIBRARY switch.

348 CHAPTER 8 OPERATING SYSTEM

Command
Switch COMP |LOAD |EXEC Function

/COMPILE X X X To force a compiling of the file even if a REL
file already exists with a newer date and time
than that of the source file.

/CREF X X X To produce a cross-reference listing file on the
disk for each compiled file for later processing
by the CREF program.

/F10 | X X X To use the FORTRAN-10 compiler. This is a default
switch at Pitt.

/F40 X X X To use the F40 compiler.

/LIBRARY X X To load the files in 1library search mode. See
more explanations in the examples.

/DEBUG:BOUNDS X X X To report if subscripts of array are out of bounds
as defined for the array in the DIMENSION
statement.

Table 8.4 Selected Switches for the EXECUTE Command

Example: Suppose a REL file has been prepared that contains fifty
subprograms needed in a course. However, at any single application, only a few
are really needed. Suppose this package is now named as COMMON.REL. At each
application, a wuser will prepare a main program, in which he calls certain
subprograms from the package. In executing his program the user should issue
either of these two commands:

+EXECUTE MAIN,FOR, COMMON.REL
or, EXECUTE MAIN.FOR, COMMON.REL/LIBRARY

With the former command, the entire COMMON.REL is loaded into the wuser's
core--all fifty routines--even though only one or two may be needed by the main
program. In the latter form, only those routines needed by the main program are
loaded. When a library package is large, the use of the LIBRARY switch will
spell the difference of whether there is enough core to run the user's Jjob.

When a program has been thoroughly debugged, and if the program will be
run many times or shared by many people, the following is a more efficient way
of executing it.

The program and its subprograms will be compiled and loaded in the usual
way by a LOAD command. After the LOAD operation, the "core image"” may be saved
as a file bearing an extension of EXE by issuing the command:

L,SAVE NAME

and the save file will have a name of NAME.EXE. BAny subsequent execution of the
program may be done by issuing the command:

RON and R Commands 349

RUN NAME [m,n]

where [m,n] is the PPN of the file owner, and may be omitted if the user has the
file in his own disk area.

The main advantage of executing a program this way is to eliminate all
preliminaries of compiling and loading. Besides, only one file name after the
RUN command need be specified.

Example: Observe the following séquence with comments given:

Comments
.LOAD MAIN.FOR, SUB1.FOR, SUB2.FOR, SUB3.FOR, SUB4,FOR, COMMON.REL/LIBRARY

(Compiling of each FORTRAN program takes place here.)
(Loading of all REL files takes place next.)

JSAVE MESS Save the core image as MESS.EXE
Job Saved
JSTART Execute the program

(Execution follows)
Subsequent execution of the same program:
.RUN MESS

The same idea is extended to running the System program by using the R
command of the form:

R MESS

where VAME is an EXE file of the System. Thus, the commands "R UPDATE", "R
PIL", etc. are among the applications of the R-command.

Programs submitted for batch job execution may be submitted through the
time-sharing terminal by a command developed at Pitt:

OPRSTK NAME.EXT

where NAME.EXT is the name of the control file. See Chapter 9 for details.

350 CHAPTER 8 OPERATING SYSTEM

FILE MANAGEMENT AND CONTROL

8.13 File Management Commands

In the general specification of a file:

DEV: NAME.EXT [m,n] <xyz>

all components in the form except "NAME" part may be omitted. When a certain
part is omitted, it has the following default interpretation:

Omitting Means:

dev: The device is DSK:

. EXT The file has a null extension.

[m,n] The file belongs to the user.

<xyz> A file is uniquely specified without

a protection code designation.
However, if a file 1is created
without specifying a protection
code, a default code of 057 is given
to it.

In addition, the character "*" and "?" serve as the "wild cards" in the format
of file specifications, as was discussed in Section 8.1.

Various file management commands will be discussed next.
(1) DIRECT (DIR) Command This command will output a listing in £file

specifications, sizes in blocks, protection codes, structure names, creation
dates, etc. The complete form of the command is:

DIRECT OUTPUT = input list/switches

where "OUTPUT=" (including the equal sign) is the output device and file name,
and "input 1list" is a single file or a string of files. If the TTY is the
output device, the part "OUTPUT=" may be omitted, If an output file name is
given, the default device 1is DSK: 1If an output file is not given and one is
needed, the default file name is HHMMSS.DIR where HHMMSS is the time of the day
when the DIRECTORY command is given. Scveral examples are shown below:

DIRECT Print out a directory of all stored files.
DIRECT NAME,* Directory of all files with the name NAME.
DIR A EXT Directory of all files with the extension EXT.

.DIR FL1.EX1,FL2.EX2,... Directory of individual files.

DIRECTORY Command

351

A typical printout of the directory is shown below:

. Name

ST T

SAMPLE FOR
SAMPLE REL
TEST BAK
TOTAL OF 180 BLOCKS IN 4 FILES ON USRB: [115103,320571]

Extension
File length in blocks -
Protection code
Creation date
Storage structure name
Owner's PPN —

J\O <057> 18-MAY-80
48 <057> 20-MAY-80
36 <057> 21-MAY-80
36 <057> 18-MAY-80

SRB: [115103,320571]

The last line is a summary line of the files in the DIRECTORY command. Switches
provide a user a wide selection of file categories and printout formats. Some
of the switches are included below:

Switch |Argument Directory Printed
/BEFORE: ;date:time
/SINCE: |date:time Files created during the specified time.
/DETAIL To print out all details of a file lookup.vwmww
/FAST To print a short form of dlrectory.
/NORMAL To print a normal form.
/SLOW To print out a full listing.
/HELP To print out all available switches.
/LIST To list the directory on the line prlnter.
/SUMMARY| To print out just the summary 11ne.
/WIDTH N To output several entries on a single llne to make output
N-column wide. Default N is 64,
/WORDS To print out the size of flles in words instead of in
blocks.
Example: DIRECT LIST.DIR = *,DIR
Function: Store the directory of all FORTRAN files as LIST.DIR.
ExamEle: .DIRECT *.FOR/FAST/WIDTH
Function: Print out the directory of all FORTRAN files on user's
terminal with a format of names and extensions only, four
entries per line.
Example: Suppose a DECtape has been mounted by a MOUNT command, and

it has been named with a logical name of Tl. The following

command will list all FORTRAN files stored on that tape:
DIRECT T1:*.FOR

352 CHAPTER 8 OPERATING SYSTEM

(2) DELETE (DEL) Command This command will delete one or more files
from the disk or the DECtape, and remove their entries from the directory. It
has a similar format as that of the DIRECT command, namely:

L DELETE list

where "list" = a single file or a group of files. As in the case of DIRECT
command, the following are some of the most frequently used forms:

DELETE FL1.EX1, FL2.EX2,...
DELETE NAME,*

DELETE * . EXT

DELETE * %

After the deletion of files is completed, computer will respond with a report of
the file names, extensions, and total disk storage blocks recovered.

Example: .DEL *.TMP, *.BAK

Function: Delete all temporary and backup files created after a
successful editing session using UPDATE editor, or after
these files have served their usefulness.

(3) RENAME (REN) Command This command will change one or more items
of the file specifications on the disk or DECtape. The items that may be
changed by this command are filename, extension, protection <code, or
combinations thereof. The form of the command is:

When this command is executed, the file specificaiton of "oldl" is changed to
"newl", "o0ld2" to "new2", etc.

RENAME newl=o0ldl,

new2=old2

The old and the new file specifications must bear or imply a one-to-one
correspondence, especially when there is a "wild card" representation. For
example, the command ".RENAME NEW.FOR=* .FOR" would be an incorrect command.

Example: «RENAME ISSAC.FOR = NEHTON.FOR
Function: To rename a file from the name NEWTON.FOR to ISSAC.FOR, and
keep the same protection code.

Example: RENAME *,FOR<157> = *,FOR

Function: to give all FORTRAN files a protection code of 157. If a
file already has a protection code of 157, the command is
still executed despite being superfluous.

Example: REN T1:*,FOR = T1:* F4
Function: To rename all extensions of F4 to FOR for files stored on
DECtape, previously MOUNTed and given a logical name of T1.

DELETE, RENAME , PROTECT , PRESERVE 353

(4) PROTECT (PROT) Command This command will alter the protection codes
of specified files, 1Its format is:

PROTECT filel<xyz>, filel<xyz>, ...

where "xyz" is the new protection code assigned. This command is equivalent to
"RENAME filel<xyz>=filel,fiel2<xyz>=file2,..." In fact they are executed by the
same program,

(5) PRESERVE (PRE) Command This command will rename the file to change
its protection code from <xyz> to either <157> or to <lyz> depending on the
local installation practice. The purpose of "preserving” a file is to raise its
protection level relative to others in the disk. 1In a batch run, if the disk
storage is over the logout quota (See Section 1.10) at the end of a batch Jjob,
the System will kill off excess files ruthlessly according to an established
order of priority as given in Section 8.4. However, preserving a file merely
makes it less vulnerable--it does not make it untouchable. 1If all files are
PRESERVEd in the disk, the idea of relative protection level is lost, and one
file 1is Jjust as vulnerable as another. 1In general, all source language files
should be preserved, and all files that can be re-generated (by re-compiling or
by re-running the source program) need not be preserved unless it will be costly
to re-generate them. The command format of the PRESERVE command is:

[; PRESERVE list

where "list" is a list of file specifications to be preserved.

(6) COPY (COP) Command This command will duplicate as a single file
from one or more source components. The format of the command is as follows:

COPY output file spec = inputl, input2, ...

where the file specifications on both sides of the equal sign have the standard
form. The equal sign is required in the format, as it separates the destination
side from the source side. The files at the source may have wild card
construction, and they must be accessible to the user if they are stored under
other PPNs. The order of input files is important, because they will be merged
into an output file in the precise order listed in the command.

The six file management monitor commands are among the most frequently
used commands. Actually, all of these commands except DIRECT run a system
service program PIP and utilize some of its salient features. The PIP program
can do a great deal more than that presented here, and it is one of the most
versatile and important service progrems. Details of PIP were given in
Chapter 7.

There are a number of points that may be of interest:

A. When a file of another PPN 1is included in the file management
command, that PPN must be specified. If several files have the same PPN
specification, command structure can be simplified by moving the [m,n] part in
front of these files. Thus the following two commands are equivalent:

354 CHAPTER 8 OPERATING SYSTEM

B. In a multi-user time-sharing and batch system, the security of
stored files has increasingly become such a serious problem that legislations
are being considered at the federal level. To copy a copyrighted file without
permission can lead to civil court action. To discourage "snooping" and abuses,
file management commands are often modified and curtailed when another user’'s
PPN is specified in the command. For example, when a user has logined under his
own PPN of [ml,nl], the following commands will be rejected by the System and
considered as "snooping" abuses:

.DIRECT [m2,n2]

.DIRECT *,FOR[m2,n2]

.DIRECT X???,REL[m2,n2]
LCOPY *,% - #, *[m2,n2]
.copy *,BAS = #.BAS[m2,n2]
etc.

C. While the examples of these commands have mainly concentrated on
the management of disk files, they are equally applicable to DECtape file
management. However, before these commands may be applied to DECteépe files, the
tapes must be mounted by the DRIVE and the MOUNT commands. The following shows
a typical session of DECtepe file management. Computer message printout is
omitted to save space:

.DRIVES DTA

MOUNT DTA:T1/WE/VID:A1004

RENAME T1:NAME1.FOR = T1:NAME2.FOR

.COPY SAMPLE.DAT = DATA1.DAT, T1:DATA2.DAT
DELETE T1:DATA2.DAT

.DISMOUNT T1

.UNDRIVE

8.14 File OQutput Commands

A file on disk or DECtape can be reproduced as an output via one of many
output devices. These output monitor commands are now tabulated below:

File Output
Monitor Command Function

TYPE list To produce a typed copy of files listed in the l26f on the
user's terminal.

PRINT list To produce a printed copy of files listed in the 7IZst on
the line printer.

CPUNCH Zist To produce a punched card deck of files listed in the Iist
on the system card punch.

TPUNCH 771st To produce a roll of punched paper tape of the files listed
in the list at the system paper tape punch unit.

PLOT list To produce a plot of files listed in the 77gt on the system
Calcomp plotter.

where "list" is a single file specification or a series of file specifications.
Except for the TYPE command which produces the output at the user's terminal,

QUEUE Command 355

all other commands listed above use the system output facilities. As the
facilities are shared by all users, by necessity a traffic control scheme must
be established for orderly execution. Priority rules must be set up so that the
facilities will not be monopolized by large-output jobs. These considerations
led to the idea of setting up a queuing line of output jobs, and the design of a
strategy of assigning priorities to jobs in the queuing line. Furthermore, the
need for establishing priority and queuing also exits for batch jobs.
Therefore, one single monitor command may be used to request output, and the
command will substitute for the above listed commands (all except TYPE). The
command QUEUE will be presented next.

8.15 The QUEUE Command

The QUEUE command allows the user to make entries in several system
queues - the input queue for the batch system* and the output spooling queues
for the line printer, the card punch, the paper tape punch, and the plotter.
The QUEUE command with appropriate switches also reports or modifies the status
of the queue entries.

The general form of a QUEUE command is as follows:

QUEUE QLINE:JOBNAME = NAME.EXT/Switches

The QLINE parameter selects the queuing line. At the University of Pittsburgh,
there are five gqueuing lines incorporated into the QUEUE command: the batch
queue, the line printer queue, the card punch queue, the paper tape punch queue
and the plotter queue. They are discussed in detail next.

*At the University of Pittsburgh, the capability of the QUEUE command to submit
an input batch job is disabled. The entry of input queue in the batch system is
now done by the OPRSTK command (see Chapters 7 and 9). However, the QUEUE
command may still be used to inquire about or modify the status of batch jobs in
the input queues.

356 CHAPTER 8- OPERATING SYSTEM

First, the QLINE: parameters are outlined below:

QLINE: Short Form Explanations
INP: I: Batch input queue.
LPT: L: Line printer output queue. For printer jobs, station

number can be specified to designate a particular
printer in the form of LPTSn: This QLINE is optional
for all print jobs, except when the file extension is
any of: CDP, PIP, or PLT.

CDP: C: Card punch output queue. This QLINE is optional if the
file extension is CDP.

PTP: PT: Paper tape punch output gueue. This QLINE is optional
if the file extension is PTP.

PLT: PL: Plotter output queue. This QLINE is optional if the
file extension is PLT.

Other parameters in the command string are:

JOBNAME = name of the job being entered into the queue. This part is
optional, If omitted, the jobname given by the System is the
name of the first file in the request.

NAME.EXT = file specifications which may include [m,n] for other PPN.
Wild card construction is also allowed.

/Switches = switches that control the action of the command.

The main advantage of using a QUEUE command is that it unifies and
replaces many input/output monitor commands. If the rule on the file extension
is observed (namely, "The extensions CDP, PIP, and PLT are exclusively reserved
for output files of card punch, paper tape punch, and plotter, respectively"),
the following substitution of commands may be made:

Monitor Command May be Substituted By:
SUBMIT list* QUEUE 1ist
PRINT Iist QUEUE Ilist
CPUNCH 17t QUEUE Iist
TPUNCH IiZst QUEUE Ilist
PLOT list QUEUE 1list

Thus, if a file is named with an appropriate extension, the QUEUE command
will automatically enter it in the proper output queue and the QLINE in the
command structure may be omitted.

*"SUBMIT list" command for submitting batch jobs is disabled at Pitt.

QUEUE Command 357

There are three types of QUEUE switches:

(1) Queue operation swithces These switches define the queue
operations. Only one of this type may be placed in a QUEUE command. It may
appear anywhere in the command string.

(2) General queue switches These switches generally affect the
scheduling of the queue entries. Each switch of this type may appear only once
in a command string but it affects the entire request. It may appear anywhere
in the command string.

(3) File-control switches These switches affect the individual
files in a request and must be adjacent to the file specification in the command
string. Different placements of these switches in the command string have
different meanings. Normally, such a switch is placed immediately after a file
specification, and that switch only controls that particular file. If such a
switch 1is placed immediately before a group of file specifications, that switch
will control all files that follow until restored or changed by another switch.
See the following examples:

Examples Remarks
FI.EXT,FZ.EXT/COPIES:2,F3.EXT Requesting 2 copies of F2, 1 copy of
F1 and F3
/COPIES:2 F1.EXT,F2.EXT,F3.EXT Requesting 2 copies of F1,F2,F3

/COPIES:2 F1.EXT, F2.EXT, F3.EXT/COPIES:1
Requesting 2 copies of F1 and F2, 1
copy of F3

Actually, this is also true for a device name, a PPN, or a file extension.

The number of switches with their respective arguments is quite large.
However, not every one will be useful or meaningful to an average user.
Consistent with the purpose of this book, only a judiciously chosen subset of
these switches will be presented, along with appropriate remarks, examples, and
explanations. For complete information, the readers are referred to References
1, 2, and 6.

Note that if an argument of a switch is omitted, a default value is
assumed only if the colon is also omitted. Otherwise, the value of the argument
will be assumed by the System as zero, not the default value. For this reason,
it may be more prudent to consider the colon to be a part of the argument,
rather than a part of the switch. The selected switches are now given in three
tables, categorized in the types mentioned above as Table 8.5, 8.6 and 8.7. The
keyword for each switch may be shortened. The underscored part of the switch is
the minimum that should be designated. For example, /LIST may also be given as
/L, /LI, /LIS or /LIST.

358 CHAPTER 8 OPERATING SYSTEM

Examples of Listing the Queues:

Example: .Q [115103,320571)/L15T
Function: List all jqbs entries submitted by [115103,320571]. A
Bath job typical printout is shown below:
entnes Tob nume
e num igned to the ok
INPUT QUEUE AT 14:10:33 311-}%/ Seqpence number assigred Fo fhe jo
DEV PPN [g0B 7 8] ,vﬁAME TIME CORE PRI
INP 115103,320571 [TEST1| (3287|*S7E 00:02:00 8K O
- 7 ; lao
LINE PRINTER QUEUE AT 14:1(433 3)-JUL-80 Fage rumiaer
/_DEV PEN Sys|"JOB | [SEQ] NAME anm?/ AFTER
/ LPTS104115103,320571 B [TEST | [10116] *SZE

O.,\Tpuf')o}', Flag sign: none = job still waiting

Entres | @ = job being transferred to the front end
. # = job having been transferred to the front end
Station mumbe o * = job being processed
Example: .0 [115103,320571)/FAST
Function: For the same queue inquiry, this switch will yield the
following:
INP 115103,320571 TEST1 3287 *SZE 00:02:00 8K 0
LPTS1G 115103,320571 B TEST 10116 *SZE 3
Example: .Q [115103,3205711/SUMIARY

Function: This command will yield a printout format giving the batch
input queue inforamtion as well as the printer queue. A
typical printout is as follows:

QUEUE SUMMARY AT 13:22:17 31-JUL-80 PITT DEC-1099/B 63A.44A

EXECUTION QUEUES PRINT QUEUES (STD FORMS)
LIMIT AV. AGE OLDEST JOBS TIME * OLDEST JOB
* WHERE <16 PGS ALL JOBS PGS

30SEC 00:00:00 00:00:00 0 00:00:00 *

2MIN 00:00:00 00:00:00 0 00:00:00 *
10MIN 00:00:00 00:00:00 0 00:00:0G *
20MIN 00:00:00 00:00:00 0 00:00:00 *
30MIN 00:00:00 00:00:00 O 00:00:00 *

1 HR 00:00:00 00:00:00 O 00:00:00 *

LPQ 00:00:00 00:00:00 0 00:00:00 *
OTHER 00:01:31 00:01:31 1 00:02:00 *

Example: ,Q IWP:[115103,3205711/LIST
.SUBMIT [115103,320571)/L15T

Function: Both commands will print out the status of batch jobs
submitted by [115103,320571].

QUEUE Switches) , 359

Example : .0 IPT: [115103,320571)/SUMMARY
PRINT [115103,320571]/SUMMARY

Function: Either one will print out the PPN's printer job status.

Example: .Q INP:/LIST
. SUBMIT/LIST
Function: Print out all batch jobs entries in the System.

Example: .Q LPTS10:/LIST
Function: Print out all printer jobs at station No. 10.

1f the queued jobs have been completed when an inquiry is made, the
System will return a message of: "The queues are empty."

Examples of changing the queues

Two switches may be used to change the queues: /MODIFY and /KILL. In a
selective modification or deletion, the jobs must be identified by either the
/SEQ:n switch or by the JOBNAME assigned. 1f /KILL is applied without a
selective identification, every job fitting the specification will be deleted.

Example: .Q LPT:=/KILL or PRINT/KILL
Function: Delete all printer jobs.

Example: .Q LPTS10:=/KILL
Function: Delete all printer jobs submitted to Station No. 10
printer.

ExamEle : .Q INP:TEST=/KILL or +SUBMIT TEST=/KILL
Function: Delete a batch job whose jobname is TEST.

Example: .Q LPT:=/SEQ:10116/KILL or .PRINT/SEQ:10116/KILL
Function: Delete a print job which has been assigned a sequence
number of 10116.

Example: .Q LPT:=/SEQ:10116/MOD/BREAK:111111/L0OC:6
.PRINT /SEQ:10116/MOD/BREAK:111111/L0C:6

Function: Modify a print job, whose * sequence number is 10116, by
re-routing it to Station No.6 and programmer number 111111
as the receiver of the output.

Note: At the University of Pittsburgh, the command " .QUEUE INP:=" and ".SUBMIT"
may be used for queue modification, but not for submitting batch jobs. The
batch jobs are submitted by a Pitt-developed command of ".OPRSTK".

360

Example:

Function:

The following

Example:
Function:

Example:
Function:

Example:

Function:

*Note to Pitt users:
punch Jjob files are

CHAPTER 8 OPERATING SYSTEM

.Q INP:=/SEQ:3287/MOD/CORE:16

. SUBMIT /SEQ:3287/MOD/CORE:16

Change a batch job, whose sequence number is 3287, to a new
core request (from whatever was before) of 16K.

examples show certain applications of the switches:

.Q NEWTON.FOR/LOC:10/COPIES:3/SPACING: DOUBLE

This command will submit a request to print 3 copies of
NEWION.FOR 1in the user's own disk area, double spaced, at
the printer in Station No.1l0, Note that if the file is
already double-spaced (with a blank line as every alternate
line), the result with this command would be gquadruple
space.

.QUEUE FOR01.DAT/FILE:ASCIT

A file with an extension of DAT is printed with an
assumption it has the FORTRAN carriage control character
format, because the /FILE:FORTRAN is the default switch for
all files with the extension of DAT. Therefore, the
FORTRAN data files are always prepared by reserving the
first column of every line blnak except for carriage
control characters. If a data file is not prepared this
way, or if it has an unknown origin, it would be prudent to
include the /FILE:ASCII swithc in the print request.
Otherwise, for example, every time the printer encounters a
line beginning with a "1" in column 1, the printer will
take as an instruction to a new page.

.QUEUE PROBI1,CDP/COPIES:2/DIS:REN
Punch two copies of PROB1.CDP in cards*, and remove the
file from the owner's disk area immediately.

Pitt does card punch jobs outside the University. The
collected on tape once a week from the disk. A user should

either keep his CDP file at least another week after he submits the punch
request or use the /DISPOSE:RENAME switch.

QUEUE Switches

361

Switch | Argument

Explanation

Default
Argument

/CHECK

Same as /FAST, except that no PPN is

requ1red Command format is 51mply "Q/CH"

List all]ObS in the spec1fled Qqueue in a
short format. Same as /LIST except no
headlngs are printed.

/TDCATE :n

List the entries in the specified queue
with a format as shown in the example shown
in this Section.

More detailed listing

Most detailed 1lst1ng

Route the output to the spec1f1ed printer

at station No. n. Each station printer
has a page limit, and long Jjobs can be
printed only at certain printers. Also,
only certain prlnters have lower case
capablllty.

/KILL

Delete an entry from a speclfled queue. If
used with /SEQ:n switch or by the JOBNAME
in the command, only the specified jobs are
killed. Otherwise, all Jjobs in the
specified queue are deleted.

/MODIFY

Used in combination with another switch to

change the value of that switch for a job
already in the queue. The Job to be
modified must be identified either by a
/SEQ:n switch or by the JOBNAME in the
command. The specification of a previously
submitted job may be modified by using the
/MODIFY switch in conjunction with another
QUEUE switch. To change the specification
of a previously submitted batch job,use the
following switches with the MODIFY switch:

/CORE:n To change core limt to nK
/OUTPUT:n To change the batch job OUTPUT
parameter to n.
/PAGES:n To change the page limit
/PRIORITY:n To change job priority
/TIME:hh:mm:ss
To change CPU time limit

/SUMMARY]

To prlnt out a summary of jobs in the
queue.

n—statlon
number
of RIE

Table 8.5 Selected Queue Operation Switches of the QUEUE Command

Note: Underscored characters correspond to the short forms of the switches

and the arguments.

362

CHAPTER 8 OPERATING SYSTEM

Default

Switch |Argument Explanation Argument

/AFTER

: +HHMM "HH" hours and "MM" minutes from now or

Job will not be processed until after the
specified time:

< HEMM After HHMM (using a 24-hour clock, HEMM=0000

HH=hour, and MM=minutes)

later

/BRERK

Route the output to user whose programmer | N=own
is N. PPN

/FORM IC Route a print job to a printer that can

STD Print job on standard form, a default

print lower case characters.

condition.

/LIMIT

Limit the output to the specified number
of pages, cards, or feet of paper tape.

/8EQ i

The sequence number identifies a
particular job in a queue. This switch
is normally used in combination with the
/MODIFY or the /KILL switch to change or
delete a seleted entry in the queue.

Table 8.6

Selected General Queue Switches of the QUEUE Command

Note: Underscored characters correspond to the short forms of the switches

and the arguments.

Example:
Function:

Example:
Function:

Example:
Function:

. SUBMIT/SEQ: 10116/MODIFY/CORE: 32K
To change a previously submitted batch job (identified by
its sequence number) core request to 32K.

. PRINT/MODIFY/LOC: 6/FO: LC
To re-route all printer jobs already submitted to
location-~6 and ask for lower—-case printing.

LPRINT /M/A:0000/L0C:3
To re-route all printer jobs to printer-3 and do it after
midnight.

Enhanced TYPE

Command

363

Switch

Argument

Explanations

Default
Argument

/COPIES

To generate n copies of the output, but
not larger than given in this table:

Device © Maximum "n"

LPT 63
CDP 3
PTP 63
PLT 3

/DISPOSE

:DELETE

: PRESERVE

Files to remain in the owner's disk area,
but to be deleted after processed.

Files to remian in the owner's disk area,
except those defaulting to
/DISPOSE: RENAME.

Files to be immediately removed from the
owner's disk area and placed in a system
disk area, where it is neither accessible
by the owner nor counted agains this disk
quota. The file is deleted after
spooling. This is the default for files
with extensions of IST and TMP and if
protection code 1is <Oyz>, and extension
one of these: CDP, LPT, PLT or PTP.

: PRESERVE

/FILE

/SPACING

:ASCIT

: FORTRAN

To specify that the file contains ASCII
text., . This is the default for all files
except those with the extension of DAT.

To specify that the file contains in
colunn-1 of each line a FORTRAN carriage
control character. This is the default
for all files with the extension of DAT.
Applied only to printer jobs.

:SINGLE
:DOUBLE

:TRIPLE

To print the file in single space.
To print the file in double space.

To print the file in triple space.

:SINGLE

Table

8.7 Selected File-Control Switches of the QUEUE Command

Notz: Underscored characters correspond to the short forms of the switches and

the arguments.

364 CHAPTER 8 OPERATING SYSTEM

8.16 Operating System Command Locally Enhanced

While the Operating system is a part of the system software supplied by
the computer vendor, 1local installations often modify certain commands to
enhance their operations. At the University of Pittsburgh, there are a number
of system commands enhanced to fit the local needs. Many take on different
forms and keywords, such as DRIVE, .QUEUE, and OPRSTK. These various
enhancements have been presented also in this chapter. Users at other
installations should consult with their own Computer Center staff and
documentations with respect to the local system enhancement. 1n some cases, it
is an upward-compatible enhancement so that & user not familiar with the
enhancement may still use the command with the standard format and functions.
One such command is the TYPE command. In the normal way, the TYPE command would
run the PIP program and construct a command from the list supplied in the TYPE
command. Thus no switches are allowed other than the standard default values of
the PIP program.

At the University of Pittsburgh, a "TYPE" program is implemented and
activated as a monitor command. The complete format for the command is:

.TYPE /global-switches Output-spec = input list/localmswitcheéwJ

where: global-switch = switches applied to all files in the list
local-switch = switches applied to a specific file

The simplest form of the command would be with no switch, or:

[V.TYPE input—list—]

Thus in its simplest form-the TYPE command is the same as the DEC-10
monitor command TYPE.

The switches and their functions are tabulated in Table 8.8.

Example: .TYPE SYS:TYPE.HLP/PAGES:2-2/IND:4
Function: Type out Page 2 of the file SYS:TYPE.HLP with left margin
at column 5.

Example: .TYPE NEWTON,FOR/COLUMNS : 1-72/HEADER/PAUSE

Function: Type out columns 1-72 of the file NEWION.FOR on user's
terminal with a header. At the beginning of each page
(including the first), the terminal beeps and pauses.
This would allow a change of paper or allignment of typing
position.

Example: .TYPE FCHART.LST/EMULATE:LABELS.CCT

Function: Many programs are designed for printer output only. One
such program 1is the FORFIO program discussed in Chapter 4
(section 4.4). When a printer is not accessible, for
example for a dial-up user, the output may be produced on
the user's terminal by emulating his terminal as a printer.
"LABEL.CCT" 1is the stored "printer carriage control tape."
For this example, the FORFIO program uses CTRL-S to

TYPE Switches 365
Default T
Switch jArgument Explanatlon Argument
/ALIGN Pause to allow allgnment of paper before the
first page. A carriage return resumes the
typing.
/PAUSE Terminal w1ll pause for paper allgnment between
; every page. (‘arrlage return resumes typmg.
l — —— S
/BIOCKS | : Process only the nth through mth blocks. all
Process first m blocks of the file. This switch |blocks
is appllcable only to dlsk flles.
/(‘OLUMNSI tn—-m Proces only the nth through mth columns . all
i Process the first m columns of each line. columns
/EMULATEf :filespec ThlS spe01f1es that the output dev1ce is to | standard
4 emulate a line printer., The file specification | settings
i is of the standard form, which contains
i information of a non-standard carriage control
. tape, or CCT. The detail content of the CCT file
; is glven below.
/FILE i :ASCII Treat the input flle as ASCII text. $ASCIL
FORTRAN | Treat the input file having the first column a
FORTRAN carrlage control character.
n=0: Omit the file processmg information block. | :0 if no
: n=l: Type out the information block at the ! switch;
| beginning of the file. n=1 if
: n=2: Type out only the information block at the |argument
beginning of the file. missing
/INDENT in Spec:Lfy the left margin of output. Max n = 6&3. |n=0
If column-1 has tab character in it, the
1ndentat10n may be incorrect.
S| - e e e e
/LINES n-m Process only the nth through mth lines. all
im Process the first'm lines of the file. lines
/PAGES n-m Process only the nth through mth pages. ’>all
im Process the first m pages of the file. pages
/PRINT : ARROW Type out control characters as up—arrow ASCII
characters.
1ASCTI Treat the file as straight ASCII file.
:OCTAL Each word is converted to l2—digit octal number.
:SUPPRESS Suppress all multlple-lme spacing.
/TALLY Type out the total number of pages of the f11e

Table 8.8

Switches for the Enhanced TYPE Command

CHAPTER 8 OPERATING SYSTEM

suppress formfeed, and the user should have a file

LABELS.CCT containing just one record "/DC3:1-66:1". The
flow chart shown on page 145 was produced on a terminal in
that way.

Example: .TYPE SAMPLE.DAT

Function: Output the file SAMPLE.DAT on user's terminal.

REFERENCES

DEC SYSTEM-10 OPERATING SYSTEM COMMAND MANUAL, DEC #DEC-10-OSCMA-A~D,
Digital Equipment Corporation, Maynard, Massachusetts; 1974.

Update Notes to DEC SYSTEM-10 OPERATING SYSTEM COMMAND MANUAL, DEC
#DEC-10-OSCMA-ADNI, Digital Equipment Corporation, Maynard,
Massachusetts; 1976.

OPERATING SYSTEM COMMANDS, Reference Card, Computer Center, University of
Pittsburgh, Pittsburgh, Pennsylvania; - 1978.

GETTING STARTED WITH TOP-10 COMMANDS, Digital Equipment Corporation,
Maynard, Massachusetts; 1976.

Various System HELP-files, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1980.)

The QUEUE COMMAND, DEC-10 Notes, Computer Center, University of
Pittsburgh, Pittsburgh, Pennsylvania; October, 1980.

CHAPTER 9

MULTIPROGRAM BATCH

INTRODUCTION

9.1 Introduction

The conventional batch operation of a computer will dedicate all system
resources to a current job. When this job is completed, the system resources
are then reassigned to the next job.

The DEC System-10 is a multiprogramming system. It allows multiple
independent Jjobs to reside in the core simultaneously and to run concurrently,
by sharing the core and by switching the central processor from one job to
another when the processor becomes available. Using this approach, the DEC
batch enables the execution of up to 14 Jjobs concurrently with time-sharing
jobs*. Thus the multiprogram batch (MPB) is a hybrid mode of operation between
the conventional batch and the conventional time-sharing modes.

As a hybrid operation, the MPB operations often retain the advantages and
the disadvantages of both modes. 1Its chief advantages are:

(1) Computer resources are used more efficiently to increase throughput,
namely, more users served in a given length of time.

(2) Programs and data can be prepared on key punches, which are less in
demand than the terminals. = The prepared card deck serves as a permanent storage
in user's possession unrestricted by disk allocation quota and unthreatened by
the prospect of a system crash.

(3) Jobs may be run by an operator, or by user using a self-service card
reader at a remote job entry station. Output may be retrieved later at the
user's convenience.

(4) Batch jobs have larger core allocations. Some large and long jobs
can only be run in the batch mode.

*Five jobs only from the user's standpoint.

K7

368 CHAPTER 9 BATCH

On the other hand, the major disadvantage of the MPB mode is the loss of
interaction between the user and the computer.

Since a job can normally be run on DEC-10 either as a batch job or as a
time-sharing 3job, a judicious choice should be made by the user to maximize the
advantages and to minimize the disadvantages. For example, a program debugged
in the time-sharing mode and run in the batch mode would combine the best of two
worlds.

In general, the following types of jobs are best suited for the batch
mode: ! ‘ N

(1) Production runs of a program already debugged.
(2) Large and long jobs.

(3) Jobs requiring large amount of input data and/or producing large
amount of output data.

(4) Jobs requiring no interaction between the user and the computer at
the execution time.

(5) Jobs of users who have difficulties to gain access to time-sharing
facilities.

9.2 BATCH Software System

For the purpose of illustrating the MPB system, a very brief description
of the BATCH software system will be given here.

There are four major components in the MPB software system, They are the
Stacker, the Queue Manager, the Batch Controller, and the Output Spooler. Each
is a service program, and their interaction and control functions are shown in
Figure 9.1.

The Stacker program performs the service of reading the input from the
input devices and entering the job into a batch qgueue. Since each installation
of DEC-10 system has variation of input device configuration, the Stacker is
primarily oriented toward the card reader input, but it allows jobs to be
entered from any input device that is code-compatible., In some installations,
this would include the terminal and/or the disk*, Once the information is
entered, appropriate data files are set up, monitor commands are generated that
will later execute the job, and a job log file is set up to record the case
history of the job. The log file is a part of the standard output a user
receives after his batch job is completed, whether successful or not.

The Queue Manager program schedules the job, both for the jobs in the
batch controller's input queue and the output job queue. When a job request
reaches the Queue Manager, its priority is computed by a formula based on such
job parameters as the CPU time requested, core size requested, etc. The
priority is further upgraded from time to time as the job ages in the queue.
When the batch input job is completed, the Manager sends forward a request of

*At the University of Pittsburgh installation, a modified Stacker called the
Operation Stacker (OPRSTK) is implemented to replace the DEC Stacker in order to
unify all input/output device queues under a single queuing control.

BATCH Software System 369
Input l'rerminalsl User's Program Card Card Other Input
Devices on Disk Reader Reader Devices
Request j

[Stackeri lStackerl l Stacker

Controller
for Batch QUEUE MANAGER
job queuing
and output
queueing

Batchn
Input
Queue
Batch
BATCH |] Job #1
CONTROLLER '
: Batch
M1 " Job #n

System
Output Paper Tape Linwe Printer Card Punch Plotter
Queues Queue Queue Queue Queue
Temporary OUTPUT SPOOLERS, for Paper Tape Punch,

Disk Line Printer, Card Punch, and Plotter.
storage

Paper Line Card
Tape Printer Punch Plotter
Punch

Figure 9.1 BATCH Software System

370 CHAPTER 9 BATCH

scheduling to the Output Queue. After the output is completed, the Queue
Manager scratches the job entry from the queue.

The Batch Controller program processes the batch jobs by passing the
monitor commands, generated by the Stacker, onto the executive system for
action. Here one should observe that the batch Jjobs processed by the Batch
Controller are not distinguishable regarding the sources of these jobs. Jobs
originated from the remote terminals, from the card readers or from any
code~compatible input device will appear the same to the Batch Controller,
Therefore, the time-sharing and the batch jobs 'can share the same operating
system and the non-resident software commands, and it is unnecessary for a user
to learn two different sets of command languages, one for time-sharing and one
for batch. Also, so long as the input codes are compatible, any input device
may submit a batch job. However, since a user can sign on the System only with
the card reader or with the terminal, our discussion of batch jobs will be
limited to these two sources only.

The Qutput Spooler program allows the output to be stored temporarily on
a system disk at a queue priority assigned by the Queue Manager. When the
specified output device becomes available, the appropriate spooling program
processes the output job., Note in Figure 9,1, the batch system output devices
do mot include the remote terminals, and hence the terminal users, while it is
possible for them to submit batch jobs at the terminals, will not receive the
job output at their terminals. They must obtain the batch output at the System
output devices.

9.3 Procedure of Running a Batch Job

At this point, we shall assume that the program has been written and
prepared either as a card deck or as a stored file, the data assembled and
prepared, and the user is ready. The procedure of running a batch job includes
the following steps:

(1) First, a control file should be made up, which contains the program,
the data, the monitor commands and/or the BATCH commands in a proper composition
and sequence. The control file made up can be either a complete deck of cards
or a stored disk file.

(2) Secondly, submit the batch job for the run. This can be done either
through a card reader (for control file punched on cards) or through a terminal
(for control file stored on disk).

(3) Thirdly, retrieve the output results and interpret the results. If
there are errors, detect .and correct them, and resubmit.

These procedures will now be discussed in details next.

$JOB Card 371

CONTROL FILE

9.4 Batch Control Commands

The batch control commands are commands whose functions are recognized by
the Stacker in the Batch software system so that appropriate commands can be
generated. These control commands_are all characterized by a dollar sign (§) in
the first column and the command keyword starting at the second column. A
selected set of batch control commands is presented next.

The general format of a batch control command is:

where ns = the command symbol; must be in the first column;
KEYWORD = the batch command keyword; must start from the second
column;
/swk = a switch or option specifying certain parameters (for

example, core size, CPU time limit, paper page limit, etc.)

If a particular switch is not used in the command, the system automatically
assigns a prescribed and safe option for the command. For example, a user may
use the page limit (of the printer output) option to specify the limit up to 999
pages. If that option is not specified in the command, the system automatically
assigns 15 as the page limit. Such automatically assigned option is called the
default condition of the switch.

The control commands presented here will often be referred to as “command
cards,” even if they need not be always in card forms physically. Since they
always have a dollar sign ($) in the first columns, they are also called the
$—cards.

9.5 Sign-On Batch Control Commands

These command will generate the monitor command LOGIN with specifications
of job requirements. ILocal installations often have variations and options of
these commands. Users should confirm with the personnel at their local
installation.

(1) $SEQUENCE Card This command will specify a unique sequence number
for the job. It may or may not be required at a local installation*., If it is
required, it must always be the first card in the control file.

(2) $JOB Card This command will generate the IOGIN command and
make specification and limits of job requirements. Its form is:

$JOB JBNAME [m,n] /swl /sw2 ... /swn J

*At the University of Pittsburgh, the $SEQUENCE card is not needed.

372 CHAPTER 9 BATCH

where JBNAME = the optional job name given by the user. If this is omitted,
the System assigns an arbitrary name such as JOBAA. The
purpose of the JBNAME of a job is for its identification.

[m,n] = user's PPN; must not be omitted.
When the $JOB card is prepared by an IBM key punch, which
does not have the "[" and the "]" punches, the PPN may be

punched either as ¢m,n! or as (m,n) .
/swk = JOB switches., A list of selected JOB switches is shown in
Table 9.1.

If the default conditions are satisfactory in an application, the simplest form
of the $JOB card could be simply:

FJOB [m,n]j}
which will tell BATCH: (1) to login with a PPN of [m,n], (2) to require no
service of card punch, paper tape punch, or plotter, (3) to reguest the regular
amount of core size, regular level of priority, and regular CPU time limit, and
(4) to return the output at the station where the BATCH run is submitted. In
the meantime, a job name may be arbitrarily assigned by the System.

At the University of Pittsburgh, a short form of JOB card is permitted in
the form of:

$JOB JBNAME [m,n] (time,pages,core,cards,feet)

The parameters of switches are given inside the parentheses and must be given in
that specific order. If the default value is used, that parameter may simply be
left blank, but the comma must be retained, unless it is a trailing comma.
Additonal switches may be appended after the parentheses are closed.

Example: The two following JOB cards are equivalent:
$JOB NEWTON[115103,320571] /TIME;:1:00/CORE: 12K
$JOB NEWTON[115103,320571] (1:00,,12K)

The two following JOB cards are equivalent:
$JOB [115103,320571] /CORE: 12K/PRIORITY: 0
$JOB {115103,320571] (,,12K) /PRIORITY:0

When a batch job is submitted from a time-sharing terminal, the PPN of
the user 1is already known to the System. Therefore, such jobs are allowed to
have PPN containing a wild card construction such as [*,320571], [115103,*], or
[*,¥]. The advantage of such a construction is that one copy of such control
file need be stored and it can be shared by many projects for the same user, or
many users in the same project, or by anybody. When such a job is submitted,
the system will substitute the known PPN for the "*" part of the JOB card.

Many of the JOB card switch parameters pertain to the estimated maximum
usage of system resources, such as the CPU time, the core storage, and the
output volumns that are required for the job. The user should try to estimate
with a margin as close as possible above all of his requirements. If the
requirements are under—estimated, either the job may not run, or the output may
be cut off before it is completed. On the other hand, although overestimates
will not cause a waste in the System resources (because they are allocated only
when actually needed in execution), it will cause a drop of the job ranking in
the Batch queue, and the turn-around time will suffer, A useful guide for a
reasonable estimate 1is to look at the KJOB printouts of past simialr jobs, to

$JOB Card Switches 373
. Default
Switch Argument Explanation Argument
/AFTER Job will not be processed until after the
specified time:
+ HEMM After HHMM (using a 24-hour clock, | HHMM=0000
HH=Hour , and.MM=minutes)
+HIM "MM" minutes later
:DD~MM~YY HHMM Process the job after HHMM on the
specified day. For example, 8-AUG-80 1350
means 1:50PM, August 8, 1980.
/CORE Estimated maximum core Trequest required | Consult
for the job: your
:nK core in K-words local
tn core in K-words (1 K = 1024 words) rules.
r_ :nP core in P—pages (1 P = 512 words)
/LOCATE Route the printed output to a specified | Same Snn as
RJE station. RIE
:Snn
:nn nn = station number
tname name = station name
/OUI‘PUT tn Control the automatic queuing of the | n=4
output at the end of a job. Argument "n"
is listed below:
n File Queued
0 no queuing
1 only IOG file pritned
2 Log file plus spooled output
3 Log file, spooled output, *.LST
4 Same as 3
5 All except IDG flle
/PAGES :nn Estlmated max imum number of printed pages
/PRIORITY)| :n Set the prlorlty level of the job to "n": n=2
n=3 for high priority (HPQ)
n=2 for normal priority (NPQ)
n=1 for low priority (LPQ) at lower rate
n=0 for no priority (NPQ) at bargain rate
/SITGO Job is to be run under the SITGO batch.
/TIME :HH:MM:SS Estlmated max imumum (‘PU time required 3b sec
/UNIQUE 1 in n=0: Job may be run simultaneously with =1
other jobs of the same PPN.
n=1l: One job per PPN at a time.
Table 9.1 A List of Selected $JOB Card Switches

374 CHAPTER Y BATCH

see how much CPU time was used, and to see what was the maximum core area used
in that job (called the HWM core, or the "high-water-mark" core), and then add
10%.

(3) $PASSWORD card This card has a format of:

$PASSWORD password

where "password" is the user's password consisting of zero to six characters
that have been stored with his PPN. The $PASSWORD card must follow immediately
after the $JOB card, and these two together identify the batch user to the BATCH
processor and initiate the creation of necessary temporary files for the job.
If the password given is not valid, the job is terminated right there.

When a batch job is submitted from a terminal, the $PASSWORD card is not
needed. The mere fact that the user is operating the terminal at the time is
proof enough that he has a valid password. In this case, the system simply
retrieves the stored password of the user.

Thus the simplest version of job sign-on at the beginning of each batch
job is shown below:

$JOB [m,n] $SEQ
or $JOB [m,n]
$PASSWORD password $PASSWORD password

where the "$SEQ" card is optional depending on the local installation
conditions.

9.6 Sign-Off Card, $EOJ

The sign-off card is placed at the end of a Batch deck to tell BATCH that
it has reached the end of a job. The design of the sing-off card varies with
local installations. Two differenet cards are described below:

(1) The End-of-File Card This is the standard sign-off card
recognized by the DEC-10 BATCH system. It is a card with punches in columns 1
and 80 in rows 12,11,0,1 and rows 6,7,8,9 leaving rows 2,3,4,5 blank. While it
is possible to produce these punches on a key punch, it is quite difficult to
reproduce that card as a record on a disk file, and thus causing problem in
indicating the end-of-job when submitting the job through a terminal. This
sign—-off procedure is not used at the University of Pittsburgh.

(2) The $EOJ Card The $EOJ card is implemented to replace the
end-of-file card at the University of Pittsburgh installation. It will generate
the monitor command KJOB and sign off the wuser with appropriate printout of
usage data. It should be physically the last card in every BATCH deck. If this
card is omitted, the end-of-job may still be determined by the presence of $JOB
card of a following job, assuming that the user of the following job provides a
correctly prepared $JOB card. If there is no job following, or if the following
job card has error in it, difficulties may arise. Therefore, although it may
not be always needed, it is prudent to use two $EOJ cards at the end, just in
case there should be any read-error by the card reader.

$EOJ, EOD, DECK Cards 375

9.7 The End-of-Deck Card, $EOD

During the batch run, a number of batch control commands will tell BATCH
to copy all cards following the command card into a disk file. Such copying of
cards may be terminated only on two conditions: (1) when another $-card is
encountered, or (2) when an end-of-deck card $EOD is encountered. The format

for the latter is:
$EOD

As we shall see later, not every command card in the Batch deck is a $-card, it
will be prudent to end every program and every group of data with a $EOD card,
even though it may often be unnecessary. If each of the $card followed by the
program or data to be copied ends with a $EOD card, this becomes a stand-alone
module in the Batch deck. 1In this way, when the modules are moved or removed,
or when additonal commands are inserted into the Batch deck at a later time, one
can always be certain that these modules in the Batch deck have already been
properly terminated.

9.8 Batch Control Commands for Disk Storage

The Batch control command $DECK placed in front of a deck of program
and/or data cards will tell BATCH to copy it into a disk file, and do not delete
it at the conclusion of the batch run. Its form is:

$DECK NAME.EXT/switches

Switches for the $DECK card are the same as those for the $DATA card,
except for the IGNHOL switch, and they are listed in Table 9.2:

Default
Switch Argument Explanations Argument
/WIDTH :N To read the first n columns of each card as n=80

the data columns. (n<80)
/SUPPRESS tON To suppress the trailing blank of each card.
:OFF To read the trailing blanks of each data card Ho
as data columns.

/LINEBLOCK To "lineblock" a data file so that it may be

read by a FORTRAN F40 program. Lineblocking
L is not required in a FORTRAN-10 program.
/IGNHOL This is a switch for the $DECK card only. It

is used to ignore the Hollerith errors in a
deck of cards. Any column containing a
Hollerith error 1is replaced by a backslash
(\) before being stored on disk. The disk
file can then be edited to correct the
errors.

Table 9.2 Switches for the $DECK and the $DATA Cards

376 CHAPTER 9 BATCH

The disk storage module in a batch job deck has the following
composition:

$DECK NAME, EXT

program
or data

$EOD

9.9 Batch Control Commands for Compiling and Execution

When the BATCH processes a FORTRAN job, it will assign a FORTRAN compiler
and set aside disk area for temporary storage for these files: (1) the source
programs (programs in source language such as FORTRAN) and their compiled binary
files (with extensions of REL), (2) REL files that are already on disk, (3) data
cards. When all files are stored as temporary files, the programs are then
executed., The Batch control commands presented below will generate necessary
monitor commands that will perform these tasks.

(1) Compiling command for source language programs Batch commands in
this group will tell BATCH to generate a monitor command COMPILE to process the
source program deck that follows the command card. Since there are several
language processors that can be processed by the COMPILE command in DEC
System-10 (ALGOL, COBOL, FORTRAN, MACRO, BLISS and SIMULA), six Batch control
commands for compiling are provided. They are $ALGOL, $COBOL, SFORTRAN, $MACRO,
S$BLISS and $SIMULA. Although the discussion in this section are directed to the
command $FORTRAN, one may extrapolate the discussions to ALGOL, COBOL or MACRO
since they share the similar formats, similar functions and the same switches.

The format of the $FORTRAN card is:

I’ SFORTRAN NAME.EXT/switches

where NAME.EXT is the name of the temporary file to be created to store the
FORTRAN cards that follow. When the S$SFORTRAN card is follow=d by a FORTRAN
source program deck, three events will take place: (a)’ The FORTRAN deck is
copied onto the disk and named as "NAME,EXT" as designated in the $FORTRAN card;
(b) the source program is compiled; and (c) the compiled result 1is stored on
disk as NAME.REL. In the meantime, a temporary listing file is also prepared.
The name NAME.EXT can often be omitted, and BATCH will create an arbitrary name
for the program file, such as DECKAA.FOR, DECKAB.FOR, etc. All files stored are
temporary, and they will be deleted at the end of the Batch run. Threrefore,
$FORTRAN card should not be used if the user wishes to compile and store the
files.

The simplest version of the $FORTRAN card is simply:

| oo |

which tells the BATCH processor: (1) to copy the FORTRAN program into a
temporary file, (2) to assign it a name (DECKAA.FOR), (3) to read 72 columns of
each card following the $SFORTRAN card as a FORTRAN program, (5) no CREF
lisitng, (5) to produce a listing of the program when the job is done, and (6)
to use the FORTRAN-10 compiler. Although simple in form, it is the most useful
form of the $FORTRAN card.

$FORTRAN Card ' 377

The following is a list of selected switches for the $FORTRAN card:

Default
Switch Argument Explanations Argument
/WIDTH :n To read only the first n columns of each card. | n=72
| <T2)
/CREF To create a cross-reference listing of the | No CREF
FORTRAN program when compiled. listing
/NOLIST No listing of the program is to be prepared. Listing |
/P40 Use the FORTRAN F40 compiler. /F10
/F10 Use the FORTRAN-10 compiler, a = standard

compiler at Pitt.

Table 9.3 Switches for the $FORTRAN Card

Two limitations of the $FORTRAN card should be noted. One is that it
will 1list, compile but not execute the program. The other is that although
files will be created to store the source programs and the compiled binary REL
programs, they are all temporary and will be deleted at the end of the job. If
one wishes to keep the FORTRAN or its REL files as permanent files for later
use, $FORTRAN would be a wrong command to use. Instead, one should use the
$DECK card to store, and the monitor command COMPILE to compile and create the
REL files.

The general composition of a compiling module in a Batch deck is as
follows: .

$FORTRAN

FORTRAN source
program(s)

|]

When a FORTRAN program consists of a main program and one or more subprograms,
it can be compiled either together in a deck as one module, or compiled
separately in individual decks, each requiring one such module. As mentioned
before, the S$EOD card may be omitted if the first card of the next module is a
$card. However, if the deck is modified in ‘the future and a non-$card is
inserted at the end without a $EOD terminating the FORTRAN module, the inserted
command will be interpreted as a part of the FORTRAN program and causes an error
termination of 3job when the program is compiled. Therefore, it is prudent to
provide always a SEOD card at the end of the module as a standard practice,

(2) Inclusion command for other REL files Not all components in a
FORTRAN job are source programs. Many are binary relocatable REL files, which
are already compiled from certain source programs and stored on disk,
Sometimes, it is preferable to use the REL file because it will save time not to
re-compile. Other times, the source language programs may not even be available

378 CHAPTER 9 BATCH

except the REL files, Since $FORTRAN card can only handle programs in source
language, another command called $INCLUDE should be used to include the REL
files needed for later execution. The function of $INCLUDE card is to find the
specified REL files and copy them onto the disk as temporary files. It has a
form of:

$INCLUDE NAME.REL[m,n] /switches

where NAME,REL is a list of REL files to be included. The PPN follows the
conventional rule and is omitted if it is user's own PPN, The switches of the
SINCLUDE card are shown on Table 9.4.

Switch Explanations

/LIBRARY The REL file referenced usually contains many subprograms. Not all
of them are needed in the job. The LIBRARY-switch will specify a
search mode and include only those subprograms called by the main
program, Therefore, the SINCLUDE card with the LIBRARY switch
should be placed after the program callmg the subprogram.

/PROGLIB The REL f11e spec1f1ed by this sw1tch is stored in the Program
Library (PRG:). The two following commands are equivalent:

$SINCLUDE NAME.REL/PROGLIB
$INCLUDE PRG:NAME. REL

/SYSTEM The REL file specified by this switch is stored in the System
Library (SY¥S:).

Table 9.4 Switches for the $INCLUDE Card

(3) Execution command The Batch control command $DATA is placed in
front of the data cards to tell BATCH to copy the data into a disk file and to
insert a monitor command EXECUTE into the control file. When the job is run,
any FORTRAN program or programs that have been entered before the $DATA card,
and any REL files that were included by the S$SINCLUDE card will be executed.
Since the $DATA card generate an EXECUTE command, it is required for execution
even if the program run needs no "data". In such a case, a $DATA alone with no
data card following should be used for execution.

The general form of the $DATA card is as follows:

SDATA XXX.CDR/switches

where XXX.CDR is the optional 3-character file name specified by the user. If
this is omitted, BATCH creates a unique name for the data file, for example,
QAA,CDR., The switches for the $DATA card are the same as those of $DECK card as
shown in Table 9.2, with the exception of the IGNHOL switch.

The simplest version of the $DATA card is simply "$DATA", which tells
BATCH to copy the data into a file, to assign a unique name with an extension of
CDR such as QAA.CDR, to read all 80 columns of each card as data, to delete the
trailing blanks when copying them into a file, and then to execute.

SDATA Card 379

Each $DATA card generates only one EXECUTE command. Hence, if you wish
to execute a program several times with different sets of data, several $DATA
cards are required, each followed by the appropriate set of data cards. Thus,
the composition of an execution module in a Batch deck is shown below:

$SDATA

data cards

$EOD

A SDATA module followed by another $DATA module without intervening $FORTRAN
will load and execute the same program again. However, if a SFORTRAN card
follows a previous $DATA card, this terminates the previous program run and
starts a new program run. Any subsequent $DATA will execute the new program.
Therefore, the $DATA card should be placed in the Batch deck at such a place
where all required FORTRAN programs have been compiled and all required REL
files have been included.

9.10 A Summary of Batch Deck Modules

The Batch control commands presented are now summarized in the form of
deck modules:

$JOB JBNAME [m,n]/sw Sign-On module
$PASSWORD password

| seo | Sign-Off module

SDECK NAME.EXT/sw
program or data Disk-Storage module

$EOD

$FORTRAN NAME.EXT/sw

FORTRAN programs Compiling module
$SEOD
L$INCLUDE NAME.REL/swj Inclusion module

$DATA XXX.CDR/sw
data cards Execution module

$EOD

380 CHAPTER 9 BATCH

Construction of a control file then becomes a task of assembling these
modules in a proper order with appropriate contents. Examples are now presented
next.

In the following examples, we shall assume that the user has a PPN of
[115103,320571] and his password is DEBBIE. Previous remarks on $EOD cards also
apply here.

Example 1: Copy a card deck (program) into a disk file and name it as
SAMPLE ,FOR.

$JOB [115103,320571] The sign-on module.
SPASSWORD DEBBIE

$DECK SAMPLE.FOR

card deck to The storage module
be copied

SEOD

$SEOJ The sign-off module

A card deck, consisting of cards in the order as shown is assembled.
When this deck is put through a card reader, a Batch job of copying a program
deck onto the disk is submitted. At the conclusion of the job, there will be a
disk file named SAMPLE.FOR in the disk area of the user [115103,320571].

Example 2: List, compile and execute a FORTRAN program which need no

data:
$JOPB [115103,320571] The sign—on module
$PASSWORD DEBBIE
$FORTRAN
FORTRAN source The listing and
program deck compiling module
$EOD
$DATA The execution module
SEOJ The sign-off module

In this example, although several temporary files are created during the job, no
permanent file remains after the job.

BATCH Examples) 381

Example 3: List, compile. and execute a FORTRAN program with two sets of
data. Note large amount of core and printout pages requested in the $JOB card:

$JOB [115103,320571] /CORE: 24K/TIME: 2: 00/PAGES:100
SPASSWORD DEBBIE The sign-on module
SFORTRAN

FORTRAN The compiling and

program deck listing module
$SEOD
SDATA

Data deck #1 Execution module, first run.
$EOD
$DATA

Data deck #2 Execution module, second run.
$EOD
$EOJ The sign-off module

Example 4: Execute a FORTRAN program with several separate decks of
subprograms. The main program and the subprograms are MAIN,FOR, SUB1.FOR and
SUB2.FOR respectively. In addition, the program calls for subroutines that are
a part of a library package ENG:SUBSET.REL.

$JOB {115103,320571] /CORE: 12K/TIME: 2: 00/PRIORITY: 0 J

$PASSWORD DEBBIE The sign-on module

SFORTRAN MAIN,FOR Listing and compiling module
MAIN,.FOR deck

$EOD

$FORTRAN SUBL.FOR Listing and compiling module
SUB1.FOR deck

$EOD

$FORTRAN SUB2.FOR Listing and compiling module
SUB2.FOR deck

$EOD

SINCLUDE ENG:SUBSET.REL/LIB Inclusion module

$DATA Execution module
data deck

SEOJ Sign-off module

382 CHAPTER 9 BATCH

Example 5: The major functions of several batch control commands are to
store the decks temporarily and to issue the commands COMPILE or EXECUTE. If
the files are already stored on disk, these $cards may be replaced by suitable
monitor commands. In such cases, the command card should begin with a period
(.) in the first column. Moreover, any monitor command, with the exception of
those irrelevant for batch operation such as the SEND comamnd, may be included
in the control file. Examples 2, 3 and 4 are now repeated below using monitor
commands replacing some of the $cards:

$JOB[115103,320571] $JOB[115103,320571] /switches
$PASSWORD DEBBIE $PASSWORD DEBBIE
.UPDATE SAMPLE.FOR .UPDATE SAMPEL.FOR
FORTRAN source FORTRAN source
program deck program deck
SSEND $SSEND
.EXECUTE SAMPLE.FOR .EXECUTE SAMPLE.FOR
Data deck #1
SEOJ SEOJ
Alternate Batch Deck for Alternate Batch Deck for
Example 2 Example 3

$JOB[115103,320571] /CORE: 12K/TIME: 2: 00/PRIORITY: 0
$PASSWORD DEBBIE

SDECK PRGM.FOR
MAIN.FOR deck
SUBL.FOR deck
SUB2.FOR deck

$EOD

.EXECUTE PRGM.FOR, ENG:SUBSET.REL/LIB
Data deck

SEOJ

Alternate Batch Deck for Example 4

The main difference between these alternate Batch decks from the original
solutions given is that the FORTRAN files and their compiled REL files are now
all permanently stored in the user's disk area.

The Batch Controller controls all jobs that enter the BATCH system. It
reads each line in the control file and determines its destination by
interpreting the character in the first two columns. The interpretations by
BATCH for these characters are tabulated in Table 9.5.

Thus, by combining the monitor commands and the CUSP commands, a Batch
deck may be constructed without any special Batch control card except those to
sing-on and to sign-off. Examples below illustrate this flexibility:

Column 1) Column 2 Intespretation Example
$ | Alphabet Batch control command (or $card) $JOB - batch command $JOB
i
S | Numeric Data beginning from column 1 $123.95 - interpreted as a data
or special
character
$ S Column 1 is suppressed. The line is taken | $$SJOB IS A BATCH COMMAND - interpreted
: as data beginning from column 2. Used to | as "$JOB IS A BATCH COMMAND", a string
| represent data of the form $-alphabet. data consisting of characters.
. Alphabet Monitor command .R UPDATE - interpreted as a monitor

command

Non-numeric

Data including column 1

.1095 - interpreted as a data

* CUSP level command .R BASIC To run a BASIC
*OLD,NEWTON program named
*RUN NEWTON.BAS

H Comment ;CONTINUE

%

- Alphabet Control-character “C interpreted as Control-C

- - Multiple ~ in succession counted “"""C interpreted as Control-C

Table 9.5 A Summary of Line Interpretation by the Batch Controller

uotielaidislul sury oT1d TOIIUC)

€8¢

384 CHAPTER 9 BATCH

Example 6: Execute a FORTRAN NEWICN.FOR which is already stored on

$JOB[115103,320571]
| SPASSWORD DEBBIE .
.EXECUTE NEWTON.FOR
(Formatted data required by NEW'IOI\I_QEQR)ﬁ
SEOJ

Example 7: Enter a PIL program, run it and save it as NEWION.PIL

$JOB[115103,320571]
$SPASSWORD DEBBIE
+R PIL .
(PIL program deck)
(Program begins with Part 1)
DO PART 1
(Data deck)
| __SAVE AS "NEWION", ALL PARTS, ALIL FORMS |
SEOJ

9.11 Batch Control Commands for Error Recovery

Normally, when an error occurs in the job, BATCH will report the error on
the log file and terminate the job. Error recovery means to provide the user
with an alternative should the error occurs. The formats of the error recovery
control commands are:

SERROR statement

$NOERROR statement

The commands are interpreted this way by the BATCH processor: If the command
keyword (ERROR or NOERROR) is "true", execute the "statement" following the
command. Otherwise, execute the next line in the control file. The "statement"
in the command is another command to the monitor, to a system program or a
special BATCH command such as .GOTO or .BACKTO as an error branching command.

The Batch commands of .GOTO and .BACKTO have the form:

.@TO statement label
.BACKTO statement label

where the "statement label" is the label of a line in the control file., The
label can contain from 1 to 6 alphabetic characters and must be followed by a
double colon (::) when it is labeling a line.

The .GOTO command will transfer the control of BATCH forward to the
reference line which contains the label, The .BACKTO command does the similar
thing except it transfer the control of BATCH backward to a reference line
containing the label. If the search for the reference line with the specified

Pitt BATCH Cards 385
label is not successful, the BATCH terminates the job.

Example: The new version of an old program OLD.FOR has been prepared as
NEW.FOR. Both are stored on disk. The user now wishes to run the batcn in this
manner: If the new version works, use the new version. If the new version
still has bugs, then use the old version.

The problem logic may be represented as a flow chart as shown in
Figure 9.2. Each of the flow chart blocks is numbered, and these numbered
blocks correspond directly with the modules of the Batch deck assembled as shown
in Figure 9.3.

9.12 Miscellaneous Topics in Batch Control Commands

(1) Batch control commands developed at Pitt At each local
installation, often additional $cards are created to handle local needs, such as
a particularly heavy demand of certain "canned" programs, or some special
procedures instituted at a local installation. A group of $cards created at the
University of Pittsburgh are presented here:

$Card Explanations and Examples
$BMD (xxX)/switches The BMD (BioMeDical Computer Programs) is a canned
program package developed originally at UCLA. Readers

are referred to the References for more details. "xxx"
is the 1last three characters of the name of the desired
BMD program.

Example: $JOB [115103,320571]/CORE: 32K/TIME: 2:00
$PASSWORD DEBBIE

$BMD (07B)
BMD control cards and input data cards
$EOJ
$CSMP/switches The CSMP (Continuous System Modeling Program) is a canned
program originally developed by IBM, This $card is
placed immediately before the CSMP source deck.
Example: $JOB [115103,320571]/CORE: 28K/TIME: 2: 00
SPASSWORD DEBBIE
$CSMP
CSMP source deck
$SEOJ
EDRIVES DEV(n) ... To request allocation of tape drives. "DEV" is one of the
following tape drives: -
MT7 7-track magtape drive
M8 9-track magtape drive (800/1600 BPI)
M9 9-track magtape drive (1600/6250 BPI)
DIA DECtape drive
n number of drives required for the job. If n is 1,
it may be omitted along with the parentheses
This $card may be placed anywhere after the $PASSWORD
card. It is required for batch jobs that use tapes.
SEOJ It must be physically the last card in the Batch deck.

See Section 9.6 for details.

386 CHAPTER 9 BATCH

SINCLUDE It directs BATCH to include some existing REL files when

the program is executed. See more details in
Section 9.9.
R —— S e i & it e e i s 2 e e e e . v o

$RUN DEV:NAME,EXE[m,n]/switches

This card is placed directly in front of data cards when

running a program previously saved as an EXE file,

created by a SAVE command.

Example: The core image of a program has been
previously saved as SAMPLE.EXE

$JOB [115103,320571] /CORE: 15K/TIME: 2: 00
SPASSWORD DEBBIE

SRUN SAMPLE
Input data deck for the program
% $EOJ
$SPSS/switches This switch is used to run the SPSS (Statistical Package

for the Social Sciences) program, and is placed
immediately before the control cards and input data
cards.
Example: $JOB {115103,320571]/CORE: 28K/TIME: 2:00
- $PASSWORD DEBBIE
$SPSS
SPSS control cards and data cards
SEOJ

(2) A summary of switches for the $cards The $cards have many options
by using the form of switches. These have been described previously in this
chapter accompanying the associated $card. Options need not always be
exercised. When a switch available 1is not specified in a $card, the System
assigns a "default value" for the option. The default conditions of all
switches for the Batch Control Commands are tabulated on Table 9.6.

Compile
NEW.FOR

©)

Compile
OLD.FOR

Execute with
data file
FORO1.DAT

@

Sign Off
the BATCH

Figure 9.2 Flow Chart Logic

©E

@

sJoB [115103,320571}
SPASSWORD DEBBIE

$FORTRAN NEW.FOR

program deck
of NEW.FOR

$EOD

$ERROR .GOTO A

.GOTO B

A::; CONTINUE
$FORTRAN OLD.FOR

prgram deck
of OLD.FOR

SEOD

B::; CONTINUE
SDATA FOR(O1.DAT
data deck

SEOD

SEOJ

Figure 9.3 Batch Run Deck

putune1hoId HIIYG

L8E

S$Card SLANGUAGE SDATA $DECK $BMD SCSMP $SINCLUDE SRUN $SPSS
Switch
/026 X X : X X X X X
/D026 X X X X X X X
/ASCII D D | D D D D D
i
/LINEBLOCK X D X D D D D
/CREF X ; |
AFIDTE:n | motel | n=80 | n=60 n=80 n=80 n=80 | n=80
/SUPPRESS:XX | note 2 XX=OFF | XX-ON XX=OFF XX=OFF XX=OFF | XX=OFF
/LIST D 5
/NOLIST X |
/SYSTEM | X X
/PROGLIB X X
/LIBRARY X
Legend: D = The option chosen by the Scard if a switch is omitted.
X = The switch is valid on that card type.
Blank = the switch is invalid on that card type, and the job will be cancelled.
Note 1: n=80 for SALGOL and $MACRO; n=72 for $COBOL and S$FORTRAN
Note 2: XX=OFF for SFORTRAN; XX=ON for $ALGOL, $COBOL and $MACRO
Table 9.6 Default Conditions for the Selected Switches of Batch Control Commands

88¢

6 JAIdYHO

HOIvd

Submitting BATCH Job at a Terminal 389

SUBMITTING A BATCH JOB

9.13 Submitting Batch Jobs in Cards

Submitting Batch jobs in cards is the most common procedure of running
the batch Jjobs. After the Batch deck is prepared and assembled, the deck is
submitted for reading into the Batch queue by a card reader., In some
installations, the deck is submitted to the personnel of the Computer Center.
In other installations, the users operate self-service card readers to read in
their jobs at a remote job entry station.

9.14 Submitting Batch Jobs from a Terminal

To submit a Batch job from a terminal, the user must first prepare a
control file and store it on disk. The details of how to prepare a control file
for a job have been given in the earlier part of this chapter. From that point
on, there are several ways to run the Batch jobs from the terminal. These
various ways are not always all available at a local installation. It is
necessary for the user to confirm which way is used at his installation.

(1) By usilng monitor commands SUBMIT or QUEUE INP: The monitor
commands SUBMIT and QUEUE INP: are used to place entries into the input queue
for the Batch system. Their formats are as follows:*

SUBMIT JBNAME = NAME,CTL, log file
QUEUE INP: JBNAME = NAME.CTL, log file

where JBNAME = name of the job being entered into the queue.

NAME.CTL= name of the control file., This file contains all
monitor-level and Batch control commands for processing by
the Batch Controller.

log file= name of the log file. This file is used by the Batch
Controller to record the case history of the job
processing.

(2) By using specially implemented service program At each local
installation, there 1is a configuration of peripheral devices that are
specifically assembled for its needs. Since these peripheral devices share
common computer resources, it is extremely important to establish an orderly
traffic control. The result is the Queue Manager in the Batch Software System
as described in Section 9,2. DEC System-10 provides a service program called
CDRSTK to provide these functions. At the University of Pittsburgh, the CDRSTK
program has been modified and enriched, and the result is called the Operation
Stack (OPRSTK) program. Description of this program and its use has been
covered 1in Chapter 7. For the purpose of completeness, some pertinent portions
of its details will again be given here.

To submit a Batch job at a terminal, the following steps should be taken:

*Disabled at the University of Pittsburgh and replaced by the OPRSTK program

390 CHAPTER 9 BATCH

A. Sign on at a terminal.

B. Create a control file using an editor. Save the file and name it
with an extenison of CTL.

C. Run the OPRSTK program by either of the following two monitor
command forms:

R OPRSTK
ENTER FILE SPECIFICATION > NAME. CTL

or simply, .OP NAME

If the control file has an extension of CTL, the extension part may be omitted
in the command format. The System will respond with the job card identification
and assign a sequence number for identification.

Example: We will now repeat the program used several times in this book
as illustration, a problem to solve for a real root of a cubic equation by
Newton~Raphson method: i +bx* +Cx +D=0 with an initial trial
value x=X1, ©Program in FORTRAN is written and stored as NEWITON.FOR. The
program listing is shown below:

NEWTON.FOR

READ(5,10)A,B,C,D,X1
10 FORMAT(5F)
1 X2=X1~- ((A*X1**3+B*X1**2+C*X14D) /(3. *A*X1**2+42, *B*Xl-lC)
IF (ABS ((X1-X2)/X2)-0.001)3,3,2
2 X1=X2
GOTO1
3 WRITE(6,11) X2
11 FORMAT(/' THE REAL ROOT =', F20.7)
STOP
END

In the example shown below, we will attempt to solve the equation:
x3 - 16x% + 65% - 50 = 0 with X1=16

Thus, the input data are 1, -16, 65, -50 and 16 respectively for A,B,C,D,X1.
The control file made up is FORT.CTL::

FORT.CTL:

$JOB[115103,320571]

SDATA

1.0 -16.0 65.0 -50.0 16.0
$EOD

.EXECUTE NEWTON.FOR

SEOJ

Note that the $PASSWORD card is omitted in the control file because it is
unnecessary when the batch jobs are submitted from a terminal.

Submitting BATCH Job at a Terminal) 391

Once this preparatory work is done, submitting a Batch job is simply
issuing a monitor command of OPRSTK (abbreviated as "OP") at the user's
terminal:

$JOB[115103,320571}
33; END OF JOB AFTER 6 CARDS / SEQUENCE NUMBER IS 3678

The output is just a one-liner:"THE REAL ROOT = 10.0". The log file
showing the job time history is attached here with comments and annotations.

REFERENCES

1. BEGINNERS GUIDE TO MULTIPROGRAM BATCH (DEC number DEC—~10-OMPBA-C-D), third
edition, Digital Equipment Corporation, Maynard, Massachusetts;
December , 1974.

2. DEC SYSTEM-10 OPERATING SYSTEM COMMANDS (DEC number DEC-10-OSCMA-A-D),
Chapter 3: "Batch System Commands", pp. 3.1-3.54, Digital Equipment
Corporation, Maynard, Massachusetts; 1974.

3, OPRSTK, DEC-10 NOTES, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; May, 1980.

392

16:39:27
16:39:27

16:39:27
16:39:27
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28
16:39:28

16:39:28
16:39:29
16:39:29

16:39:29
16:39:30
16:39:30
16:39:30

16:39:30
16:39:30
16:39:30
16:39:30
16:39:30
16:39:30

16:39:30
16:39:30
16:39:31
16:39:31
16:39:31
16:39:31
16:39:31

16:39:31
16:39:32
16:39:32
16:39:33
16:39:33
16:39:33

BAJOB
BASUM

MONTR
MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR

MONTR
MONTR
MONTR

MONTR
USER
USER
USER

USER
USER
USER
MONTR
MONTR
MONTR

BLABL
MONTR
USER
USER
USER
MONTR
MONTR

MONTR
USER
USER
MONTR
MONTR
MONTR

CHAPTER 9 BATCH

BATCON version 13(1071)-2 running JOBAAA seq:6839 user:*SZE

Time:00:00:30 Core:12K Unique:YES Restart:YES Priority:2

L.LOGIN 115103,320571/LOCATE: 6

JOB 5 PITT DEC-1099/B 63A.45B TTY35f Mon 28-Jul-80 1639

[LGNJSP Other jobs same PPN]J Bateh logs in tke_dob.

Last login: 28-Jul-80 1629

Usage ratio: 0.00 Units used: 19.0

SYS B DOWN 0000-0800 MON AUG 04 FOR REGULAR HARDWARE MAINTENANCE
SYS B DOWN 0000-0300 TUE JUL 29 FOR REGULAR SOFTWARE MAINTENANCE

DUE TO HARDWARE PROBLEMS THERE 1S ONLY ONE DISK DRIVE AVAILABLE
FOR PRIVATE USER PACKS.

FEH KKK I I I KKK I NI I IR NN N

* PLEASE READ THE FOLLOWING INFORMATION: *
* FILE SUBJECT ¥
* SYS: NEWS No fee for 1022 usage *
* NEW: TEKLIB.HLP New Tektronix software *

KK NI I I KT KNI I I KKK NN NN

$J0B[115103,320571]/0UTPUT:5/L0C:6 “—— Fivst line in the conbl file
$DATA
.SET CDR QAA jcreated by OPRSTK Store input dota

— Mon*m/(twuma:éb
. eneraled ATH
$E0D d >3 _
.EXECUTE NEWTON.FOR «— Evecubion
LINK: Loading
[LNKXCT NEWTON execution]

16:39:30 USER STOP

End of execution FOROTS 5B(1001)
CPU time: 0.13 Elapsed time: 0.65

EXIT

$E0J € e Qn‘t,Jr\« off the batey 505.
9F IN:

.DEL SPL:QAA.COR < jcreated by OPRSTK

Files deleted: T R

QAA.CDR T Moni by Commands a}enem&_&

18 Blocks freed " by #Eoer

‘,//

533 END OF-4OB AFTER 6 CARDS ;;;

.KJOB “SPL : JOBAAA.LOG=/W/B/Z:5/VR:2/VS:6839/VL:15/VC:0/VT:0/VD:R/VJ:
Total of 1 block In 1 file in LPTS6 request / Sequence number 6839
Other jobs same PPN

Job 5 [115103,320571] off TTY357 at 1639 28-Jut-80 Connect=1 Min
Disk R+W=66+28 Tape 10=0 Saved all files (18 blocks)

CPU 0:00 Core HWM=13P Unlts=0.0079 ($0.59)

TOG File for the JOB FORT

CHAPTER 10

_TAPE HANDLING

10.1 Magnetic Tape

The simplest and the least expensive medium for mass storage is the
magnetic tape. It is a plastic tape coated with iron oxide which may be
maghetized to record information. A typical 10.5-inch reel of magnetic tape is
one-half inch wide and up to 2400 feet long. The width of the tape is divided
into either 7 or 9 tracks, one of which is reserved for parity bit track to
detect transmission error. Hence, a 7-track tape has six information tracks and
a 9-track tape has eight. Characters are written across the width of the tape.
Figure 10.1 shows the present industry standard of the magnetic tape format.

To read from or to write onto a magnetic tape, the tape reel is first
mounted on a tape transport, also called a tape drive. There is a take-up reel,
and a capstan pulling the tape past the read/write heads. Information is
written on the tape by sending current through the write-heads to magnetize the
tracks; information is read from the tape by sensing the induced voltage as the
read-heads pass over the recorded (and magnetized) tracks.

Access speed is essentially a function of the tape speed and the packing
density of information. Tape speeds of commercially available tape drives range
from 10 to 200 IPS (inches per second). The standard packing densities of a
7-track tape are 200, 556 and 800 BPI (bits per inch), and those of a 9-track
tape are 800, 1600 and 6250 BPI. High tape speed coupling with high packing
density result in a requirement for higher-speed synchronization, both
mechanically and electronically, and such tape drives would be more costly.
Typical recording and access rates are 30 to 320 kilo-characters per second.

Magnetic tapes are not inherently designed for a specific packing
density, but is usually certified by their manufacturers at a particular BPI.
The certification implies that the manufacturer has recorded test patterns at
that density and successfully read back the data at or below an allowable error
rate. Seven-track and nine-track recordings can be made on the same type of
half-inch wide tapes. However, tapes recorded on a 7-track tape drive cannot be
played back on a 9-track trape drive, and vice versa. On the other hand, once a
tape is erased, it may be used again on either type of drive.

Generally, there are two techniques for synchronization of writing
characters on a tape. One requires that the tape has a pre-recorded timing
track, which is a track containing all 1's to indicate each character position
in the tape. The other is to use an internal clock generator during the write

393

394 CHAPTER 10 TAPE HANDLING

data

| ___data
7-track data
tape data
[data
i:ﬁ,ikﬁakﬁ,, .

lateral parity track

OB NN —

data 4 !
ta 6 R . m__m_%

_data Q@ ...

_datal . y

_data 2 . e {

__lateral parlty track . ,,,_AA,.,,A,.“-__,.__{

data 3 S

data 5

9-track
tape

end of tape beginning of tape
refiecting strip reflective strip
/

\
==

record| irecord rec record |record

—+| t«—— record gap
.75" in 7-track tape
.6" In 9-track tape

Records have variable lengths. The Industry standard
format has 7-track tape records containing from 24 o
4008 characters, and 9-track tape records from 18 +o
2048 characters.

Figure 10.1 Magtape Format

operation., When a clock generator is used, it is nearly impossible to guarantee
that the tape moves at exactly the same speed between two successive operations,
and hence inserting a modified record between two existing records is normally
not possible. This necessitates strictly a sequential use of the tape, and
modifying a tape really means copying the material with changes onto another
part of the tape or onto another tape.

As shown in Figure 10.1, at the beginning of each reel of tape, there is
a sensing strip to denote the start of information; at the end there is another
strip signaling the end of tape, which prevents the drive mechanism from pulling
the tape off its reel. These are respectively the beginning and the end of tape
marks (BOT/EOT). Files written on a tape are separated by an end-of-file

Magtape and DECtape 395

mark (EOF) which may be written or sensed by program. In addition, a gap about
.75" (for 7-track tapes) or .60" (for 9- track tapés) is inserted between two
successive records, not only to delimit two records, but also to allow time for
the tape to accelerate or decelerate before the heads reach the beginning of a
record.

Many operating system requires that the files be delimited by identifying
records, called header labels and trailer labels. These labels are in addition
to the end-of-file marks., A typical header label would contain the name (or
number) of the file and certain physical characteristic of the file. Programs
can be designed to check and verify that the correct tape and correct file have
been mounted on the tape unit for use.

10.2 DECtape ®

During the early sixties, one nonstandard tape system was developed for
small computer systems by the Massachusetts Institute of Technology. Digital
Equipment Corporation adapted this system and call it DECtape. It is a highly
successful magnetic tape and is used extensively on all DEC computers as well as
in many minicomputers. It provides a low-cost and highly reliable auxiliary
memory. DECtape utilizes a 10-track read/write head. Reliability of storage is
accomplished by redundant recording of all data. As shown in Figure 10.2, the
track format shows two identical sets of tracks. Redundant recording of each
characters bit on non-adjacent tracks greatly reduces bit dropouts and minimizes
the effect of skew. The timing and mark tracks are pre-recorded, and they
control the timing of operations within the control unit and establish the
format of the data contained on the information tracks. Since the tape drive
operations and many control function lock-step with the timing-track signals,
wide variations of tape speed do not affect its performance.

The data tracks of a DECtape are located in the middle of the tape, where
the effect of skew is minimum. The data is one bit position of each track is
called a line or a character. Since twelve lines make a word, the tape can
record 36-bit data words. During normal data writing, the system disassembles a
36-bit word and distributes the bits so that they are recorded as twelve 3-bit
characters.

B 260-foot reel of DECtape is divided into three major areas: end zones,
extension zones, and the information 2zones. The two end 2ones, each
approximately 10 feet, mark the physical ends of the tape and are used for
winding the tape around the heads and onto the take-up reel. These zones never
‘contain data. The extension areas mark the end of the information region of the
tape. Their length is sufficient to ensure that once the end zone is entered
and tape motion is reversed, there is adequate distance for the drive to come up
to a proper tape speed before entering the information area. The information
area consists of blocks of data. The standard length is 578 blocks, each
containing 128 data words nominally. In the DEC System-10 applications, part of
the information area is used as file directory, and total usable information
area is 574 blocks. The file directory can accommodate a maximum of 22
filenames. Therefore, the capacity of a DECtape used in DEC System-10 is either
22 files or 574 blocks, whichever limit is reached first. Since each block
format is symmetric with the block number at both ends, search of blocks may be
done in either direction. the DECtape serves not only as a data storage medium,
but also as a random access device.

®Registered trademark, Digital Equipment Corporation, Maynard, Mass.

396 CHAPIER 10 TAPE HANDLING

3/4"

_.data track 2. . .

_.data track 3. . .

_mark track . .
timlng frack

«—emm-—e total tength = 260 feet — o)

—p—

end ex’renslon]block block| block block| block] extension] end
| zone area | area zone

| |
i*« information area - 240 feet —— i

N

DECtapes used for DEC System-10 have a capacity
of 574 information blocks, and its file directory
has a capaclty of 22 fllenames. A DECtape
reaches the |Imit of Its capacity when elther of
these two |imits Is reached.

Figure 10.2 DECtape Format

In comparison, DECtape has higher-performance, and is more reliable and
convenient to use than the magnetic tape., Being a directory device, it may be
used in the same way as the disk, but with more storage capacity for individual
users. On the other hand, it storage capacity is puny by comparison: A
2400'~-reel magtape at 6250 BPI can store about 125 millions characters, while a
DECtape reel can only store about 300,000 characters.

10.3 Preliminary Procedures

After a user acquires reels of magtape (coined word for magnetic tape) or
DECtape, there are certain preliminary procedures that should be performed. A
typical Computer Center installation stores at its premise hundreds or thousands
of reels of tapes. Among the magtapes, some are 7~track tapes, and some are
9-tracks., Even for the same type of magtapes, they may have different packing
density. Although the system installation can handle all various combinations,
it will be extremely important to reduce the chance of human error of mounting a
wrong tape, however rare the chance may be.

pPreliminary Procedure 397

Each computer installation will generally develop a security verfication
procedure for tape mounting. These procedures vary from one installation to
another, The procedure described below is implemented at the University of
Pittsburgh. Users at other installations should inquire at their Computer
Center.

Two preliminary steps are involved:

(1) Registration of tapes This is a clerical step of registration of
tapes with the personnel of the Computer Center., A Pitt VID (Visual
Identification) is issued upon registration. The VID is a serial number with
either an A-prefix or a B-prefix. They are respectively for DECtapes and
magtapes, For example, Al004 and B31l3 are the VIDs of a DECtape and a magtape
respectively. Once a VID number is assigned, it is displayed outside of the
tape reel. The VID is an essential part of identification that must be given in
a MOUNT command.

(2) Labeling of tapes For DECtapes and 9-track magtapes, an
additional means of safeguarding the identification of tapes is available. The
numerical part of the VID is recorded in the first file of the tape. When the
tape is mounted, not only the operator will seek the right reel with the
specified VID, the system will read the first file to get the recorded VID and
verify that against the VID given by the user in his MOUNT command. The
labeling process does not apply to 7-track tapes. The process of labeling tapes
is accomplished by calling a program named TAPLBL, after the tape has been
mounted. Call for the TAPLBL is done by a monitor command:

R TAPLBL
When a prompt symbol returns, apply a labeling command of the format:
DVNAME: /density switch

where DVNAME:

physical or logical name of the tape drive;
/density switch = a switch to specify packing density.

Acceptable density switches are:

/8 = 800 BPI for MTI8:
/1 = 1600 BPI for MT8: or MI9:
/6 = 6250 BPI for MT9: only

The density switch is not applicable to the DECtapes or 7-track magtapes.
One caution should be exercised in using the TAPLBL program: It will write the
label onto the first file on the tape. If the tape is a DECtape or a blank
magtape, it does not matter. If the tape contains some stored information
already, using the TAPLBL would destroy the first file. Therefore, in labeling
a magtape with stored information, a scratch tape should be used to copy the
files. After the labeling process, the contents of the scratch tape may be
copied back. These are now illustrated by three examples below:

398 CHAPTER 10 TAPE HANDLING

Example: To label a DECtape whose VID is Al004 which is already
mounted on the DECtape drive with a logical name of Tl:

.DRIVES DTA

. MOUNT DTA:T1/WE/VID:A1004/NL
.R TAPLBL

*T71s

» DISMOUNT

. UNDRIVE

Example: To label a 9-track blank magtape for 800 BPI. Assume the
VID to be B31I3 and the logical name of the tape drive to be Tl:

«DRIVES MT8

.MOUNT MT8:T1/WE/VID:B313/NL

«R TAPLBL

*71:/8

« UNDRIVE (UNDRIVE will force a DISMOUNT.)

Example Magtape Bl23 has prestored information, and magtape B124 is a
scratch tape. The following shows first to "park" the content of B123 in Bl24.
After the label is made, the information is copied back:

DRIVES MT9(2)
MOUNT MT9:T1/WE/VID:B123/NL
MOUNT MT9:T2/WE/VID:B124/NL

R MTCOPY

*T2:=T1: Park infor. of Tl in T2 temporarily
R TAPLBL

*T71: Make label on TI

B MTCOPY

*T1:=T2: Copy back info from T2 to T1.

 DISMOUNT T1:
.DISMOUNT T2:
UNDRIVES

With a tape thus registered and labeled, the user is now ready to process
his tape.

10.4 Allocation of Tape Drives and Mountiné of Tapes

The reservation for tape drives and the mounting of a user's tape
precedes the actual tape processing. Tape drives are restricted devices and are
made available to user only at a reservation request (by the command DRIVES).
Mounting of a tape requires a physical effort from the machine operator, since
these tapes are stored off-line at the Computer Center premise. A monitor
command MOUNT, along with its associated switches, will tell the operator. to
mount the user's tape. Details of the two important commands DRIVES and MOUNT,
and their companion commands UNDRIVES and DISMOUNT, have been covered in
Chapter 8 (Sections 8.8,8.9,8.10)

Sequential Processing 399

10.5 Sequential Processing of Magtapes

The DECtape is a directory device, in which files are represented by the
standard file specification of DEV:NAME,EXT. The users need not be concerned
with the physical location of the read/write heads with respect to the tape
track at any time. From the user usage point of view, a file on a DECtape is no
different from one on disk. There is a difference in access time, of course.
But as far as commands and instructions are concerned, what can be applied to a
disk file can also be applied to a DECtape file, that is, once the DECtape is
mounted.

The magtape unit, however, is quite different. There is no directory or
filenames. Records are separated from each other by the end-of-record mark, and
the files are separated from each other by the end-of-file mark. The only
identity a tape file has on a tape is that it occupies a certain sequential file
position, such as file No. 4. Therefore, the principal way of locating some
information on a magtape is to start at some reference point (such as at the
beginning of a tape) then to go forward (or sometimes go backward) certain
number of records or certain number of files. Hence, processing of tapes deals
a great deal with the sequential positioning of the tape. The following are
several PIP commands with magtape switches and their monitor command
equivalents:

Equivalent Monitor

PIP Command Function Command

*MT9: (MENA) = Advance the tape N files .SKIP MT9: N FILES

*MT9: (M§ND) = Advance the tape N records | .SKIP MT9: N RECORDS
*MT9: (MNT) = Advance to the end of tape | .SKIP MT9: EOT

*MT9: (MiNB) = Backspace N files .BACKSPACE MT9: N FILES
*MT9: (M§NP) = Backspace N records .BACKSPACE MT9: N RECORDS
*MT9: (ME;) = Mark end-of-file .EOF MT9:

*DEV: (MW) = Rewind the device, where ~REWIND DEV:

DEV = DTA,MT7,MT8,0r MT9

If the command indicates "MT9:", that command also applies to MI7: and
MI8: In a typical application, a magtape is used only as a means of mass
storage. Data on tape will normally be transferred to the disk first for
processing, and results will then be copied back to the tape.

10.6 FORTRAN-10 Execution-Time Tape Control

The foregoing discussions dealt with sequential tape processing using a
processor such as PIP to handle file management tasks. If the tapes are used as
the data files for input/output, there must be commands in the language
processor to perform these tape handling tasks at execution time., FORTRAN-10
has a subroutine RMOUNT (developed at Pitt) to mount the tape and a group of
tape handling FORTRAN statements, They are outlined below:

400

CHAPTER 10 TAPE HANDLING

Subroutine:

Effect:

Example:

CALL RMOUNT (w , VID , WE , Label , Serial)

Logical unit number ,J
(integer constant)

VID, string constant
or variable —

Write-able, 'WE' (or 0),
or write-lock, 'WL'

Standard label ‘SL' (or 0), or
no label, 'NL' - -

Used only if Label='NL'

This is a run-time instruction for MOUNTing a magtape or a
DECtape.

CALL RMOUNT(1, 'B313',0,0)

This is equivalent to issuing two monitor commands before the

start of the current FORTRAN program:
. DRIVES MT9
MOUNT MT9:1/WE/VID:B313

Once the

tapes are properly mounted, the FORTRAN~10 tape control
statements may be applied to control these devices.

The device control statements are now summarized below which has

presented before

in Chapter 3 as Table 3.22.

Statement Function
REWIND u Move and re-position the file back to the first record.
UNLOAD u Rewind the source reel so that the tape is complely off

the take-up reel. The tape will be ready for unloading.

BACKSPACE u

Backspace one record except if it is already at record
No.l. This statement cannot be used for files set up
for random access,list-directed,or NAMELIST-cont:rolled

I/0 operations.

ENDFILE u

Write an endfile record in the file located on device u.

SKIP RECORD u

Skip one record on device u.

SKIP FILE u

Skip one file which follows immediately the current one.

BACKFILE u

Backspace to the first record of the file preceding the
current one.

In all above statements, "u" = specified logical unit number.

been

The UARC Program 401

TAPE SERVICE PROGRAMS

Several tape service programs will be included here in summarized forms.
In the cases where a magtape or a DECtape is involved, it will be assumed that
the proper preliminaries of getting a tape drive, mounting the tape and
assigning a logical name have already been done. In the examples, we will use
the VID of Al003, Al004, ..., B313, B314, etc., as the tape registry numbers.
The logical names used will be Tl:, T2:, etc., except in the case of the UARC
program.

10.7 The UARC Program

The UARC (User ARChive) program is a service program for maintaining disk
files by copying them onto a user's UARC tape for safekeeping. When the user's
magtape is being MOUNTed, it is required that its logical name be given as UARC.
Thus the preliminaries of using this program should be two monitor commands as
given below:

.DRIVES MT9
MOUNT MT9:UARC/WE/VID:B313
The UARC program may be called by the monitor command:

LR UARC
(message)
*

After a brief message, the terminal types out a prompting "*" and UARC is ready
to accept commands. Use CTRL~Z to exit.

Example: *DIRECTORY *,FOR
Function: List on the terminal all FORTRAN files on the UARC tape.

Example: *DIRECTORY LPT: = *,FOR
Function: List on the line printer all stored FORTRAN files on the
UARC tape.

Example: ADIRECTORY UARC.DIR = *,*
Function: Prepare a disk file UARC.DIR that has a directory of the
UARC tape.

Example: A*FREEZE *,FOR
*THAW NEWTON.FOR

Function: Copy all FORTRAN disk files onto the tape. If the tape
already stored certain FORTRAN files with the same names,
copying will not be done if the disk files are older (in
creation dates). The THAW command recalls to the disk a
tape file named NEWION.FOR.

Example : The following sequence shows how to “"clean up" a UARC tape
by erasing all oldet versions of the same program. Two
tape drives and two tapes are required.

402 CHAPTER 10 TAPE HANDLING

Items Explanations and Examples

Program Name UARC

Calling Sequence | .7 UARC
*command/sw1tches

Functions (1) To store backup coples of disk flles on user's UARC tape.
(2) To recall UARC back coples of files back to the disk.
(3) To report the content of the UARC tape.]

Commands *¥CLEAR SERNO = Bxxxx

To clear the tape of all previous files and write a +tape
label of MUARC"™ 1In the first file. This Is required
preliminary of tape preparation for UARC application.

Bxxxx = tape serial number,

DIRECTORY output file spec = inmput file list

Similar to the monitor DIRECT. Wild card construction Is
permitted for the input flile Ilist.

¥ FREEZE list
To copy the dlisk files In the "list" onto the UARC tape
without deleting them. If there Is already a file of the
same name on the UARC tape, copying will be done only If
the creation date of the disk file Is more recent.

k3

* THAW 1ist
To restore files from the tape to the disk. If there Is
already a file on disk with the same name, restoration will
be done only If the creation date of the tape file Is more

recent.

* UPDATE
To store on the UARC tape all new and newer versions of
disk flles.

COPY SERNO = Bxxxx

When a second tape Is MOUNTed and Is named as UCOPY:, +this
command will make it a UARC tape and further commands copy
all current files onto It. This Is the only way a UARC
Yape may be cleaned up and old useless flles amy be erased.
See example below.

*

SAVE TAPE.DIR
% RESTORE TAPE.DIR

To save the current UARC directory on disk for thawing.

x*

*

DIRECTORY/ALL nclude all old verslons in the report.
#» FREEZE/CHECK ATHAW/CHECK *UPDATE/CHECK

Report the files that would be transferred.
« FREEZE/VERIFY *UPDATE/VERIFY *COPY/VERIFY

Report successful transfers

Switches

Table 10.1 Summary of the UARC Program

The ACCESS Program 403

.DRIVE MT39(2)

MOUNT MT9:UARC/WE/VID:B313
MOUNT MT9:UCOPY/WE/VID:B314
.R UARC .

*COPY SERNO = B314 -

*+Z

.R MICOPY

*UARC: = UCOPY:

7

DISMOUNT UARC:

DISMOUNT UCOPY:

“UNDRIVE

10.8 The ACCESS Program

The ACCESS program is a tape maintenance program developed at the
University of Pittsburgh. Tt allows the owner of tapes to specify and modify
the access protection, to add or delete PPNs for authorized access, to attach
comments to any tape, to request removal of tape from the library either
temporarily or permanently, and to report the status and directory of tapes.

Calling and execution of this program does not actually involve
physically with any tape. Therefore, no preliminaries of reserving a tape drive
or mounting a tape is required.

The calling sequence for the program is as follows:

.R ACCESS

(message)

*command/ switches
Use CTRL-Z to exit from the program.

The commands and the switches of the ACCESS program are summarized in
Table 10.2. Note the notations used for PPN:

PPN
AUXPPN

owner's PPN under which the tape is registered.
PPN authorized by the owner to have access to the tape.

nou

The tape directory has wide print format. If the directory will be
listed on the terminal, a monitor command of "TTY WIDTH 132" should first be
applied.

Example: *DIRECTORY
Function: List on the terminal all tape status registered to the PEN.

Example: *DIRECTORY/ON:LPT:
Function: Print the status report on a line printer.

Example: *TAPE/ADD/AUXPPN: [123456,654321) /PROTECT : PPPP/VID:A1003
Function: Add an auxiliary PPN [123456,654321] to have access to the
DECtape Al003 with an access authorization of PPPP.

406 CHAPTER 10 TAPE HANDLING
Items Explanations

Program Name ARCHIVE

Calling Sequence | .R ARCHIVE

*command/switch

Functions (1) To store a disk file on the ARCHIVE tape and remove the
disk file from the disk.
(2) To restore a frozen file on the ARCHIVE tape back to the
(3) ‘?;Stépor’r the directory of the frozen files.
Commands *DIRECTORY output = input list
To list the directory of frozen files. Similar format as
the monitor command DIRECT.
* FREEZE list
To move the disk files in the "list" to +the ARCHIVE
system.
*THAW 1list
To restore as dlisk files those in the "list".
*DELETE 1list
To delete the listed files from the ARCHIVE tape.
% PROTECT file<xyz>
To change protection code of a frozen file to< xyz>.
Switches /LIST Used with THAW , FREEZE , PROTECT and DELETE +to

list the pending request.

/KILL Used with THAW , FREEZE , PROTECT and DELETE +o
delete the pending requests.

Table 10.3 A Summary of ARCHIVE Commands and Switches

10.10 The CHANGE Program

The CHANGE program is a tape-translation program that converts the files
on a magtape of one format to an output (usually a disk) of another format., The
program is called by a monitor command:

RUN PRG:CHANGE

After the CHANGE program is called, command may be applied which has the format

of:

Output spec/output switches = Input spec/input switches

The CHANGE Program

407

/NOINDUSTRY

Turn off INDUSTRY switch.

Switch |Argument Explanation
/BUFFERS in n = number of buffers fto be set up
/ADVANCE H Advance or backspace n files before processing.
/BACKSPACYH :n
/BLOCK in n = blocking factor In number of records per block
/RECORD Hl n = number of characters per record
/DENSITY :BPI |BPI = tape density In BPi: 556,800,1600,0r 6250
/LABEL targ |The argument "arg“:ls one of the following: none, DIGITAL,
BURROUGHS, 1BM, or, GE635.
L .
/MODE targ |The argument "arg"‘ls one of the following:
ASCI1 7-b1t ASC!I1 code
HPASCI| 8-blt ASCII
IMAGE 36-bit DEC~10 word
EBCDIC EBCDIC code
/PARITY :arg |The argument "arg" is either ODD or EVEN.
/ INDUSTRY Initiallze for industry compatlible 9-track tape.

/SCAN Scan file for flle named

/NOSCAN Turn off SCAN switch.

/ERROR Report parity and checksum errors.

/NOERROR Turn off ERROR switch

/REWIND targ [The argument "arg" is one of the following:
BEFORE Rewind before processing.
AFTER Rewind after processing.
ALWAYS Rewind always
OMIT Rewind neither before nor after.

/LIST List the device directory.

/NOL1ST Turn off the LIST switch.

/FLIST List the device directory, flle names only.

/NOFLIST Turn off the FLIST switch.

/CRLF ASC!1 file has CR-LF after every record.

/NOCRLF Turn off the CRLF switch.

Table 10.4 A Summary of Selected CHANGE Switches

408 CHAPTER 10 TAPE HANDLING

The magtape is the most frequently used low-cost portable bulk storage
medium. Unfortunately, there are many different tape formats and tape produced
on one type of computer generally cannot be directly run on another type. There
are differences in coding method, block sizes, word sizes, tape density, parity
system, etc. When a tape containing data or program is obtained from another
installation that has a different type of computer, the tape must be first
translated to the local format before it may be used. Thus, when the CHANGE
program is used for the translation, the input would be the MOUNTed "foreign"
tape, and the output would frequently be a disk file. The same set of switches
is applicable for both the input and the output. Selected switches are
tabulated in Table 10.4. A complete description of the CHANGE program, with
commands and switches, is given in Reference 6.

Example: .DRIVE MT8
MOUNT MT8:7T1/WL/NL/VID:B313
.RUN PRG:CHANGE
CHANGE 08:44 11/18/80
READY,
> DISK.FOR/MODE:ASCII/RECORD:80/BLOCK:10-
MT8:/MODE:EBCDIC/RECORD: 80/BLOCK:10/INDUSTRY~
/LABEL:IBM

Function: This procedure will convert a foreign tape produced from an
IBM/360 or 370 to a ASCII disk file named DISK.FCR. A dash
at the end of a CHANGE command line indicates that the
command is to be continued on the next line. 1In response,
CHANGE returns a different "§" prompt symbol on the next
line.

10.11 Tape Transfer and Comparison Programs - MICOPY, DTCOPY and FILCOM

Three service programs associated with tape-to-tape transfer and
comparison tasks are included here:

MTCOPY: magtape-to-magtape transfer
DICOPY: DECtape-to-DECtape transfer
FILCOM: Verification of transfer by file comparison

They are summarized in Tables 10.5, 10.6 and 10.7.

Tape Transfer Programs

409

Items Exp lanatlons
Program Name MTCOPY
Calling Sequence | .R MICOPY

*outtape:/outswitches = intape:/inswitches/funcswitches

where outtape: physical/logical name of destinatlon tape.

Intape: = phylscal/logical name of source tape.
outswitch = switch for output tape characteristics
Inswitch = switch for Input tape characteristics

funcswitch = function switch

Function

To copy the contents of an Input tape onto an output tape.

Input switches
Output switches

Function Switches

Must be placed on the proper side of the command.

/6 6250 BPi (9-track tape only)
/1 1600 BPI (9-track tape only)
/2 200 BPI (7-track tape only)
/5 556 BPI (7-track tape only)
/8 800 BPI (7 or 9-track tape)
/A:N Advance N files before operation

Backspace N files before operation

/E even parity

/1 IBM compatible mode

Rewind before and after operation (default)

/U Unload after operation

Suppress monitor error recovery on READ errors

May be placed on elther side in the command.

/C:N Copy N files
/C Copy to double end-of-file marks
/G Proceed on errors

/M:NNNN Set maxImum blocksize permitted to NNNN
/N Suppress automatic rewind
/V:iN Verify to double end-of-flile marks

Default
conditions:

What will happen 1f no switch is placed on the command:

1

Density is 6250 BP| for 9-frack, 800 BPI for 7-frack
uniess there Is a SET DENSITY monitor command applied.
2, 0dd parity, DEC-compatible, maximum blocksize=1024.

3, Copy and verify tape. Rewind before copying and
verifylng. Stop on errors.
Examp les ¢ *TP1: = TP2:/8
Copy & fTape at 800 bpi. New tape is on TP1:
*NEW:/R/A:3 = OLD:/R/A:2/C:3/V
Copy files No.3,4,5 on OLD: onto the NEW: tape as flles
No.4,5,6.
Table 10.5 A Summary of MICOPY Program

410

CHAPTER 10 TAPE HANDLING

Items Explanations
Program Name DTCOPY
Calling Sequence | .R DTCOPY

*OQUTPUT: = INPUT:/switches

where OUTPUT: = physical/logical name of the destination DTA.
INPUT:, = physical/logical name of the source DTA

Function 1. To copy the entire content of one DECtape onto another.
2. To clear the output DECtape.
3. To compare word by word two DECtapes.
4. To load a boofstrap loader.

Switches /C Copy all blocks.
/N No directory !isting.
/N Comapre two DECtapes (verifying) word by word.
/7 Zero out the output DECtape.
Table 10.6 A Summary of DICOPY Program

ltems Explanations
Program Name FILCOM
Calling Sequence | .R FILCOM

*output = inputl, inputl/switches

where OUTPUT = output file specs; default is TTY:
inputt, input2 = two input file specifications

Function

To comapre two versions of a file and output the differences.

Switches

/Q Print out the message "?FILE ARE DIFFERENT," but do nof
list the differences.

/A Compare two files in ASCI! codes.

/B Do not disregard blank lines.

/S Ignore spaces and tabs in the comparisons.

Table 10.7 A Summary of FIICOM Program

Tape Transfer Programs . 411

REFERENCES

OPERATING SYSTEM COMMAND MANUAL, DEC-10-OSCMA-A-D, Digital Equipment
Corporation, Maynard, Massachusetts; 1974

TAPE UTILITY PROGRAMS, the Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; April, 1980.

TAPE PURCHASE, REGISTRATION AND REMOVAL, the Computer Center, University
of Pittsburgh, Pittsburgh, Pennsylvania; March, 1977.

PDP11 PERIPHERAL HANDBOOK, Digital Equipment Corporation, Maynard,
Massachusetts; 1975

UTILITY MANUAL, DEC~-10-UTILA-A-D, Digital Equipment Corporation, Maynard,
Massachusetts; 1975

System HELP files and Program Library HELP-files: SYS:ACCESS.HLP
(May 19,1980), SYS :MTCOPY., HLP (August 20,1979), SYS:FILCOM.HLP
(August 22,1978), PRG:CHANGE.HLP (October 24,1980), University of
Pittsburgh, Pittsburgh, Pennsylvania.

APPENDIX A

A SUMMARY OF PIL LANGUAGE

PIL ("Pittsburgh Interpretive Language) is a conversational language
which contains extensive man-machine interactive facilities to provide
assistance in error diagnosis and error recoveries., It is much more
error-tolerant than the conventional algebraic languages such as FORTRAN. PIL
was included in the First and the Second Editions of this book (two chapters).
With the rise in computational maturity of the user community, even for the new
users, PIL becomes less important than before. Therefore, only a summary will
be included in the Third Edition of the book. Users interested in more details
should consult either Reference 5 or Reference 6.

The PIL processor may be called by a monitor command:

R PIL

The computer will respond by typing out at the terminal:

READY:
*

The PIL processor is now ready to process the user's program or commands.

A.1 Rules on PIL Variables, Constants and Expressions

(1) PIL variables:
a. Variable name must begin with a letter, and must not be longer than
ten characters.

b. Upper and lower cases are different variables. (FORTRAN users,
beware)

c. All numerical variables are real variables.

(2) Constants
a. There are 3 types of PIL constants, numeric, string and Boolean.

b. Numeric constants are real constants, ranging from E-42 to E+34 with
8 decimal digit precision.

c. String constants are enclosed in quotes, such as "TIME-SHARING"

d. Two values for Boolean: THE TRUE and THE FALSE.

Basic PIL Statements 413

(3) Subscripted variables:

a. There is no practical limit of dimension of subscripts.

v

Subscripts may be positive, zero, or negative.

c. No declaration statement is needed for dimension.

(4) Expressions:

a. Arithmetic expressions: PIL arithmetic expressions follow the same
rules as those for the FORTRAN language. The PIL library functions
are tabulated in Table A.1l.

b. Boolean expression: Expressions that are really true-false
questions. Boolean operatiors are tabulated in Table A.2.

c. String expressions: String variables may have the following
operations:
Concatenation: For example, "ABC"+"xyz"="ABCxyz"
Masking: By use of SUBS function.
String multiplication: Same as multiple concatenation.

Table A.3 shows a list of PIL string functions.

A.2 Statement Labels

In a stored PIL program, each statement carries a numerical label for
identification. The 1label has a format of "mmmm.nnnn" where mmmm is a four
digit part number and "nnnn" is another four-digit step number. Thus the label
takes on a form of a decimal number, and as in conventional practice, the
leading and the trailing zeros are omitted. For example, the label of 1,25
means Part 1, step 2500.

A.3 Some Basic PIL Statements

Substitution: SET X=E
SET X1=E1,X2=E2,X3=E3,...

where X=variable, and E's=expressions.

Transfer: TO step m.n
TO part m

where m.n is the statement label.

Execution: DO step m.n
DO part m
Termination: DONE
STOP
EXIT

LOGOUT

Exomples
Subprogram Format Meaning
Format Value

ABS OF x, \X\ Absolute value of x ABS OF =-3.12, \-3.12\ 3.12

SORT OF x VX SQRT OF 2.1 1.4491376

SIN OF x sin X SIN OF 0.32 0.31456656

COS OF x CcOS X COS OF 0.32 0.95923542
_SINOF x/COSOF x | tan x SIN OF 0.32/COS OF 0.32 0.33138940

ATAN OF x tan~' x ATAN OF 1.5 0.98279374

LOG OF x 1od,q X 10G OF 2 0.30102998

IN OF x loge X IN OF 2 0.69314718

ANTILOG OF x 10* or antilod,. x ANTILOG OF 2 100.0

EXP OF x e* EXP OF (-2) 0.13533528

IP OF x Integer part of a number x IP OF 3.21 3.0

FP OF x Fraction part of a number x FP OF 3.21 0.21

XP OF x - - Exponent_of x XP OF 12,34 . . _._. 1.0

DP OF x Digit of x DP OF 12.34 1.234

MAX OF (a,b,c,...) Maximum value of a set of MAX OF (1,2,3) 3.0

numbers a,b,Cye.s
MIN OF {a,b,c,...) Minimum value of a set of MIN OF (1,2,3) 1.0

RN OF x

Assign a random number between
0 and 1 to the variable x

RN OF x

x=0.65302564

The argument of the subprogram RN OF must be a variable.

any other
expression.

The argument of

above subprogram may be a constant, a variable or an arithmetic

Table A.1l

PIL Arithmetic Library Functions

iy

Y XIANIddY

XIYWNNS 1Id

PIL Library Functions 415
PIL Operators
Meaning Examples
short Form Long Form
< SLT < A<B
=< or <= SLE | < ASIEB |
Z e SEQ = A=B
SNE #_ A SNE B
=> or >= SGE 2 A SGE B
> __saGr > R Y - v - B
& SAND n X>3 $AND X<10
SOR U X<3 SOR_X>10
SNOT - X . L_SNOT X>3]
$XOR @® A $XOR B
Table A.2 PIL Boolean Operators
String Functions
Meaning Examples
short Form Long Form
L OF X LENGTH OF X length of a string L OF "ABCDEF" = 6.0
UPPER OF X |UPPER CASE OF X | Force all letters in | UPPER OF "abcde" = "ABCDE"
X to upper cases.
LOWER OF X |LOWER CASE OF X | Force all letters in | LOWER OF "ABCDE" = "abcde"
X to lower cases.
n $FC X THE FIRST n masking 2 $FC "ABCD" = "AB"
CHARACTERS OF X
n $IC X THE LAST n masking 2 SLC "ABCD" = "CD"
CHARACTERS OF X
THE VALUE OF X | To convert a string |THE VALUE OF "3.1" = 3.1
of numer ical
characters to
numerical values.
THE BCD VALUE To converta string off THE BCD VALUE OF 3.1 = "3.1"
OF X numerical value to a
numer ical character
string.
SUBS OF SUBSTRING OF To mask a string S |SUBS OF ("TIMESHARING",3,4)
(s,A,L) (S,A,L) from its Ath char.
for @ length of L = "MESH"
characters.
Table A.3 PIL String Library Functions

416 APPENDIX A

Conditional: m.n IF b, OS
where m.n=statement label of this statement
b=Boolean expression
OS=an object statement
Variations:

m.n IF b, OS1; ELSE 0S2
m.n IF b, 0S1; 052

A.4 Loop Statements

(1) Specified indexes: FOR i=ml,m2,...,mn: OS
(2) Unity increment: FOR i=m to n: OS
(3) Specified increment: FOR i=m to n by p: OS

(4) specified decrement or special terminating condition:

FOR i = m by p UNTIL b: OS

FOR i = m by p WHILE b: 0S

A.5 Input/Output Statements

(1) General form:
Demand list
TYPE list
(2) Input with free format:
DEMAND IN FREE FORM, list
where "1list" contains the variables in the input list.

(3) Input/output with format

DEMAND IN FORM i, list

TYPE IN FORM i, list

A.6 Input/Output Format

Format specification:

FORM 1i.
(Specify format field on the second line.)

PIL SUMMARY

PIL Statement Summary 417

F-type and I-type: _._

E-type: e....

Combined format: e

String field: ###f##4#

Field

separation and termination: "\" symbol, for example:

SRS W

Variable field length:

S 5.

A.7 Subprogram Statements

Subprogram defining statement:

PROCEDURE XXXXXX[X1,X2,...,Xn] = PART m

where: PROCEDURE

XXXXXX

= a PIL keyword to specify a subprogram

name of the subprogram, and also the name of the variable
whose value is computed by the subprogram, and after
execution of subprogram, returned to the main program.
All intermediate results are deleted after the execution
of subprogram.

If the subprogram is to return multiple value answer, for
example,roots of an equation, XXXXXX will then be an array
and represented by a subscripted variable.

[X1,X2,...,Xn] = a set of dummy parameters passed to the subprogram.

PART m

Use square brackets.

= the part specified as the subprogram. Part m must be so
written that X1,X2,...Xn are the input parameters and
XXXXXX is the computed result.

Subprogram execution statement:

DO PROCEDURE XXXXXX[Al,A2,...,An]

where Al,A2,...,An are the input parameters to be passed to the subprogram.

418

APPENDIX A

A.8 File Management Statements

where:

To save a program:
SAVE as "FINAME", list

To delete a file:

DELETE FILE "FLNAME"

To edit a program:
CHANGE "OLD" TO "NEW" IN STEP m.n

CHANGE "OLD" TO "NEW" IN FORM i

To change a step or a part number:

REDEFINE STEP m.n TO p.q
REDEFINE PART m TO n

REDEFINE FORM M T0 n

To delete items in the program:

DELETE list

To load a program:
LOAD "FLNAME.EXT [m,n]"

FLNAME = file name
EXT = extenison of file. Default extension is PIL.
[m,n] = PPN of file owner. Default is user's own PPN.

To attach a file:
ASSIGN "FINAME.EXT[m,n]" AS "FN"
ASSIGN "SCRATCH FILE" AS "FN"

ASSIGN DEV-NAME AS "FN"

To delete an assignment:

DELETE ASSIGNMENT "FN"

DELETE ALL ASSIGNMENTS

PIL SUMMARY

PIL Statement Summary 419

A.9 File Input/Output

File Input:
READ FROM "FN", list
READ FROM "FN", IN FORM i, list

READ FROM "FN", IN FREE FORM, list

File Output:
WRITE ONTO "FN", list

WRITE ONTO "FN", IN FORM i, list

A.10 File Control Statements

To mark the end-of~-file on a file:

MARK FILE "FN"

To rewind a file:

REWIND "FN"

To forward or backspace a file:

FORWARD SPACE n RECORDS ON "FN"

BACK SPACE n RECORDS ON "FN"

To specify end-of-file action:

ON FILEMARK "FN", DO PART m

To cancel an end-of-file action already specified:

ON FILEMARK "FN"

To store an assignment:

CATALOG "FN" AS "FLNAME.EXT"

420 APPENDIX A PIL SUMMARY

A.11 Execution-time Function and Program Step Input

To furnish a program step at execution time, such as the step "m.n SET
X=A":

ENTER "m.n SET X=A"

or, DO STRING "SET X=A"

A.12 PIL-FORTRAN Linkage

PIL language provides the advantage of conversational mode and free form
input format. Error recoveries and error diagnostic provisions further enhance
its uses. Consequently, a PIL program is very suitable for the input phase of a
program, where the man-machine interaction is at its highest.

Once execution starts, PIL program exhibits an excruciatingly slow speed
of execution. It is primarily because PIL is an interpretive language. Every
time a PIL statement is to be executed, it must first be translated. Thus in a
PIL program, the program 1is interpreted and executed at the speed of one
statement at a time. Error detection for debugging becomes simple because the
program will stop at the step where error occurs.

On the other hand, the entire FORTRAN program is compiled at one time,
and execution takes place after the compiling. If a FORTRAN program is already
compiled, the compiling stage is omitted. Thus a FORTRAN program is denerally
much faster to run than a PIL program. FORTRAN, however, has its drawback.
Man-machine interaction can be implemented only at the expense of core storage
for many printout formats, and an interactive program tends to be larger. Also,
formats in FORTRAN are more restrictive.

All of these adds to the fact that PIL is superior in interaction but
inferior in speed, while FORTRAN is just the opposite. Thus, a compromise is to
use a PIL program for the data-input phase, store the data as disk files, and
then switch to a FORTRAN program for execution, which will read the stored data
file as inputs.

The PIL statements for the PIL-FORTRAN linkage are:

EXECUTE "FLNAME"

or, RUN "PRGM"

where FINAME = the name of the FORTRAN (with FOR or REL extension) program, and

PRGM = the name of the execution file with EXE extension.

One such application is the Interactive Engineering Program Library. The
Programs in the Library are so structured that the PIL phase handles the input
of data and problem definition, and the FORTRAN phase handles the execution.
The details of the Library are given in Appendix B.

422

APPENDIX A PIL SUMMARY

REFERNCES

PIL, Class Notes for Engineering Analysis II, T. W. Sze, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1968.

PIL/L PITT INTERPRETIVE LANGUAGE FOR THE IBM/360 MODEL 50, the Computer
Center, University of Pittsburgh, Pittsburgh, Pennsylvania; 1969.

A PRIMER FOR PITT TIME-SHARING SYSTEM(PTSS), Chapter 3, T. W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1970.

PIL REFERENCE CARD, the Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1977.

INTRODUCTION TO DEC SYSTEM-10: TIME-HARING AND BATCH, First and Second
Editions, Chapters 2 and 3, T. W. Sze, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1974 and 1977.

PIL, PITT INTERPRETIVE LANGUAGE, Brent J. Ermlick, the Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1979.

APPENDIX B

INTERACTIVE ENGINEERING PROGRAM LIBRARY

A time-sharing interactive program library has been set up and in
operation successfully to serve the faculty and the students in the School of
Engineering since 1967. It has been one of the major tools in the
computer—-aided analysis/design instructions and research in the School. These
programs were all designed to operate in the conversational mode, in modular
form, and they are application-independent. Thus a differential equation solver
program can serve those who are doing work in a wide variety of fields, such as
circuit analysis, control system, vibration, structural analysis, process
control, etc. In this regard, these programs should also be useful to those in
natural, medical and social sciences who require the same type of mathematical
techniques but in a different field.

For the Interactive Engineering Program Library, a user with little or no
prior computer experience can select and use a program in the Library to solve
his problem after a short practice session at a terminal., All instructions of
using a program, once its execution begins, will be supplied at the user's
terminal during execution. Thus there is no need for the user to study
voluminous manual materials in order to use the program.

The structure of each of the Library program utilizes the PIL-FORTRAN
linkage technique discussed in Appendix A. - Using one of the Library program
REALEQ (Simultaneous Linear Equations with Real Coefficients) as an
illustration, the linkage works this way:

(1) The user calls for the ENG:REALEQ.PIL program.

(2) Interacitvely the user inputs the data, defines the problem and
selects the options, if any.

(3) PIL program then stores these data and options in a disk file
QZXZQ.DAT. If there is a user-defined function in some programs (for
example, a numerical integration program), the PIL program writes a
FORTRAN subprogram and store it as QZXZQ.FOr.

(4) Using the PIL command EXECUTE or RUN, the PIL program automatically
passes the control to the monitor to execute a designated program
ENG:REALEQ.REL. If there is a QZXZQ.FOR prepared for a user-defined
function, it is compiled and included. The PIL program function is
now completed, and the execution file automatically takes over.

(5) The execution program ENG:REALEQ.REL reads the data and options
stored in QZXZQ.DAT.

(6) Based on the input data and option selected, ENG:REALEQ.REL executes
and outputs the results on the user's terminal.

(7) The Library program will generally allow the user to repeat the same
problem but using a different method. If the user declines to
repeat, the execution is concluded.

A memorandum by the author was distributed to the faculty and the students in
1969 concerning the Library. The memorandum has been revised and updated many
times, most recently in 1980. The text of the memorandum of the most recent
version is given in the following pages to complete the details of the Library.

423

424 APPENDIX B ENGINEERING LIBRARY

University of Pittsburgh

SCHOOL OF ENGINEERING
Department of Electrical Engineering

MEMO TO: Faculty and Students, School of Engineering
FROM: T. W. Sze
DATE : June 1, 1969;

First Revision, November 1, 1970;
Second Revision, January 18, 1972;
Third Revision, July 1, 1974;

Fourth Revision, January 31, 1977;
Fifth Revision, September 1, 1980.

SUBJECT: Interactive Engineering Program Library on Device ENG:

INTRODUCTION

The use of computers in the Engineering curriculum is now a standard
practice.

One serious problem, however, has always been the time-consuming work of
preparing computer programs, debugging and executing them. Although libraries
of subroutines of general interest are available, such as the IMSL package, the
process of incorporating them in a course is a major task. It usually involves
a search through a thick catalog for a program fitting the problem, learning the
algorithm, finding out the particular input and output requirements and types.
In some cases, special arrangements of large memory authorization, long
execution time, or special periperal equipment are necessary in order to use
these programs. Such laborious procedure has a discouraging effect to faculty
and students using the computer effectively and extensively.

Thus, when the computer usage is included in a course, a very undesirable
situation may sometimes emerge. Homework and projects can often be degenerated
into long programming exercises that force the students (and instructors) to
spend more time and efforts in getting their programs to run than to try to
understand the course materials.

348 BENEDUM ENGINEERING HALL. PITTSBURGH. PA. 15261 (412) 624-5387

Engineering Library on ENG: 425

The Interactive Engineering Program Library was set up to overcome these
limitations. In general, the Library will attempt to accomplish three
objectives:

1. The programs are designed efficiently so that the core assignment
and execution time stay within those authorized for the student
users, even for relatively large size problems. Therefore, no
special arrangement or authorization is necessary. With the easy
use of the Library, the computer will indeed become an important
day-to-day tool.

2. The user will not spend time in preparing programs. He will not be
required to study lengthy program documentations; and thus there
will be no distraction from the course materials.

3. When the time and effort on the "dog work" 1is drastically reduced
(see the Appendix section of this memo), it will then be possible to
upgrade the quality and the level of all engineering courses.

The Library is currently installed on-line in all three systems (A, B and
C) and 1is given a device name of ENG: It contains a group of programs of
general interest to engineering faculty and students. By man-machine
interaction, a problem is shaped as the user specifies the data and the option.
Suitable instructions and comments are printed out as prompting remarks along
the way to guide the user. All programs, regardless of their programming
languages, are written in "conversational mode" so that the user will be guided
in how to use the program. Hence, it is not essential for a user of the Library
to have any in-depth knowledge of the program, the language, or the algorithm
once he learns the simple procedure of calling and executing the Library
program.

Furthermore, these programs in the Library are mathematical-technique
oriented rather than problem- and application-oriented. For example, a
differential equation solution program can be used for circuit analysis, process
control, vibration and stress analysis, material and energy balance equations
for chemical dynamics, system stability studies, etc.

Although helpful, an in-depth knowledge of any programming or programming
language is not a prerequisite to be a user of the Library.* A user will have an
option to choose which algorithm and program for his problem. If he does not
have any opinion, the program will pick up one that has proven general utility.

When a Library program begins its execution, the user's function will be
to enter numerical data and to answer YES/NO to the computer's inquiries. When
any input data are called for, prompting information of what sort of data and in
what format will be printed out at the user's terminal to guide him. The user
will then supply data as asked, or answer questions posed.

* As a matter of information, a Library program consists of an interactive
problem-defining and input stage in PIL language, but will switch
automatically to a REL or an EXE file for execution. The REL file or the EXE
file is prepared from a FORTRAN program.

426 APPENDIX B ENGINEERING LIBRARY

LIBRARY USAGE PROCEDURE

Currently, all Library programs are stored in the device "ENG:" in
Systems A, B and C. Procedure for Library usage includes three simple steps:

Step 1: To get on the computer, either System A, B or C.
Step 2: To call and execute a chosen Library program.
Step 3: To get off the System.

If there is more than one problem or more than one run, Step 2 is
repeated. thus, only the step-2 will be explained in some details.

To Call and Execute a Library Program

Suppose the name of the Library program chosen is WXYZ. Call and execute
the program by entering a command*: (must be entered right after the prompting
symbol) .

.PIL ENG:WXYZ

The computer will respond with a printout of "READY:", and will then load the
chosen program and start the execution. The memory requriement is
self-adjusting (another built-in feature of the Library programs) and the user
need not be concerned with it, unless he attempts to enter a problem too large
for the program. Once the execution of a program begins, the user follows the
printed instructions to enter numerical data and to answer YES-NO questions to
complete the input phase, after which computer switches to a machine program
execution to a completion.

* The old way of ".PIL WXYZ[33,33]" will still be valid for some period of time
in order to allow orderly transition and revisions of departmental
instructional materials.

Library Catalog ‘ 427

A CONDENSED CATAIOG OF THE LIBRARY

Basic mathematic techniques of the following areas are included in the
Library:
Polynomial equation solution, real and complex roots.
Transcerdental equation solution, real roots only.
Linear simultaneous equations, real or complex coefficients.
Basic real/complex matrix operations: +,-,* or inversion.
Generalized inverse of a matrix.

Other matrix operations, including determinants, Eigen values,state
transition matrix, and characteristic equation.

Numerical integration, with user—specified accuracy.
Least square fits: ’ linear, quadratic, cubic, and exponential fits,

Ordinary differential equations, first order and second order,
linear or nonlinear.

Ordinary differential equations, nth order, max n=8.

Optimization of a nonlinear function, constrained or unconstrained
Linear programming

Fourier analysis

Fast Fourier Transform

Computer-aided logic design

Simulators and cross assemblers of microprocessors.

Graphic plots. '

Course grade management (an information management system)

General utilities

In each of these, options of methods are available for the user's choice.
At the. conclusion of a solution, the programs are usually recycled so that the
user may repeat the problem with a different method without repeating the input

phase.

428 APPENDIX B ENGINEERING LIBRARY

PROGRAM NAME PROGRAM FUNCTIONS

BASMAT Matrix operations to calculate any of the following:
determinant, inverse, Eigen values, state transition matrix,
characteristic equation, and state resolvent matrix.

BODE To calculate and plot the frequency response (Bode diagram)
from a transfer function given as a ratio of two polynomials.
Output in tabular plus plot form.

CMIS To prepare class roster, enter test grades, calculate test
statistics, grade opti-scan exams, determine final term grades
according to an instructor-specified formula.

COMEQ Solution for 1linear simultaneous equations with complex
coefficients, 10 complex unknowns maximum, double-precision
computation. Crout's elimination method.

COGGIN Coggin's method for maximum/minimum search of a single variable
function, unconstrained.

CSMP To prepare a control file and submit automatically as a batch
job.

DF1 Solution of first order ordinary differential equation.
Algorithm options:

(1) Modified Euler's method
(2) Runge-Kutta method, 4th order
(3) Milne's method
(4) Adam-Moulton method
(5) Hamming's method
Output print options:
(1) Output in tabular form only
(2) Output in tabular form and plots

DF2 Solution of a second order ordinary differential equation.
Same algorithm and output options as the program DF1.

DFN Solution of an nth order (max n=8) ordinary diff equation.
Algorithm options:

(1) Modified Euler's method
(2) Runge-Kutta method, 4th order
(3) Adam—Moulton method
Output print options:
(1) Output in tabular form only
(2) Output in tabular form and plots
DIRECT To type out the most recent directory of the Library.
EZLP To solve student-oriented linear programming problems. Help

file available as ENG:EZLP.HLP

Library Catalog 429
FFT Fast Fourier Transform for a set of samples, using the
Cooley-Tukey algorithm.
FIBON Minimization of a single variable, nonlinear function by
Fibonacci search algorithm.
FIT Least square fit for n data points. Options available are:
(1) Linear fit: y=a*x +b
(2) Quadratic fit: y = a*x**2 + b*x +c
(3) Cubic fit: y = akx**3 4+ brx**2 4+ c*x +d
(4). Exponential fit: y = a + b*exp(c*x)
FOUR Fourier analysis on a periodic waveform.
HELP To print out a copy of the file ENG:ENG.HLP
HOOKE Hooke-Jeeves method of pattern search optimization
IMAGE Utility package of image processing to a standard 128x128x8
image file. Options include image print, image pixel value
listing, transpose, linear combination, noise mixing. More
options are in preparation. !
M8080 A simulator for a multi-processor system employing INTEL|
8080's. Help file available as ENG:M8080.HLP
MATOP Basic operations for real or complex matrices: addition,
subtraction, multiplication and inversion.
MINILP Linear programming, interactive input phase.
MUX A computer—aided logic design program of using multiplexer IC
chip in a combinational circuit design.
NI Numerical integration, Simpson's Rule, with user specified and
controlled accuracy.
PLOT To plot a curve on rectangular coordinates.
Input options for y=f£(x):
(1) £(x) to be specified by the user as a FORTRAN expression.
(2) f£(x) data points already stored as a disk file.
(3) £(x) data points to be entered via the terminal.
Output options:
(1) Output on the terminal or the line printer.
(2) Output from the Calcomp plotter.
POLY Real and complex roots of a polynomial equation.

Algorithm options
(1) Mairstow's method

(2) Modified Newton—-Raphson's method
(3) Lin's method
Normally, option 1 is recommended.

430

APPENDIX B ENGINEERING LIBRARY

QUINE Quine-McCluskey's method of Boolean function minimization, 12
var iables maximum. Output options of either
summation-of-products, or product-of-sums, or both.

REALEQ Linear simultaneous equations with real coefficients, 30
var iables maximum. Double-precision calculations in all cases.
Algorithm options:

(1) Gauss elimination
(2) Gauss-Seidel iteration
(3) Matrix inversion
(4) Crout's elimination
(5) Cramer's rule
Input data may be entered via a disk file or the terminal.

RECO Generalized inverse of a matrix with real elements, Maximum
number of rows is 9.

58080 A single INTEL 8080 simulator program, including a built-in
editor. Help file available as ENG:S8080.HLP.

SCAMP A simulator and cross assembler for the National Semiconductor
SC/MP microprocessor trainers. Help files available as
ENG:SCAMP1.HLP and ENG:SCAMP2.HLP.

SEARCH An optimization package of search methods to find the optimal
values of a constrained or unconstrained, single or
multiple-variable, nonlinear function.

]

STATUS Same as the program DIRECT

——— ol

TRANEQ Newton-Raphson method of transcendental equation solution, real
root only. Use Stirling formula for numerical differentiation.

TRUTH To generate a truth table, or a Karnaugh map, from a given
Boolean function in the form of summation-of-products or
product-of-sums,

CALPLT To plot a curve on the CalComp plotter.

FORTRAN-CALIABLE SUBROUTINE LIBRARY

A group of FORTRAN-callable subroutine packages are also available in the
device ENG:

EE45

IMPROC

Their names and their current status are outliend below:

Subroutines from the EE45 text: COMPUTER METHODS FOR
MATHEMATICAL COMPUTATIONS, by G. E. Forsythe, M. A. Malcolm,
and C. B. Moler, Prentice-Hall Inc., 1977.

An image processing package, including image filtering,
transformation, transpose, etc. Applied to 128x128x8 image
file size. Developed by T. W. Sze. Help file available as
ENG: IMPROC .HLP.

Library Catalog 431

SUBSET A utility subroutine set developed by Ronal K. Nicholas,
included in the Engineering Library by permission. For
reference, see: SUBSET MANUAL, by Ronal K, Nicholas,
University of Pittsburgh, 1977 (available at the Book Center).

SIPROC A group of signal processing subroutines. For reference, see:
PROGRAMS FOR DIGITAL SIGNAL PROCESSING, Edited by the Digital
Signal Processing Committee, IEEE Acoustic, Speech, and Signal
Processing Society. Published by IEEE Press, Institute of
Electrical and Electronics Engineers, New York, 1979.

GRAPH A group of data plotting and tabulation subroutines. For
reference, see ENG:GRAPH.HLP.

ACKNOWLEDGEMENTS

The Engineering Program Library project was initiated in 1969 when I
developed and taught the course ES2 (Engineering Analysis II). Later, the
project was maintained and expanded with the help of the Engineering staff of
the Benedum RJE site. I wish to ackowledge the assistance rendered me by
Mr. Wayne Baughman, and many graduate assistants involved in this project,
particularly Drs. Richard Hsia, M.S. Nataraja, A.R. Modarressi, K.D. Oka, and
Messrs. T. Goss and H.R. Anada. Credits are also due to Mr. Frank Heyn, who
adapted the IEEE tape and modified it into the SIPROC package of the Library.
Last but not the least, assistance is acknowledged to Mr, Michael A. Matzek of
the Pitt Computer Center to shift the old call-PPN of [33,33] into the device of
"E:NG:“

The full content of this memo, minus the Appendix, is stored as a disk file, and
may be reproduced on a line printer by a command:

.Q ENG:MEMO.DOC

432 APPENDIX B ENGINEERING LIBRARY

APPENDIX ILLUSTRATIVE EXAMPLES

Several examples are included here to illustrate the procedure of using
the LIBRARY programs, On the reproduction of the printouts, those text that
were typed by the user were underlined, and those typed by the terminal were not.
In addition, comments are added as brief explanations.

Example 1 Given the following polynomial equation, find all roots, real
and complex:

x7 -80x® + 20x5 -2200x* +1350x3 + 1350x2 - 1200x + 800 = 0

The program chosen was POLY, and all three methods were run. The modified
Newton's method turned out to be divergent, but the other two methods worked

okay for this problem, It took 3 minutes on the terminal for this problem.
Example 2 Solve for the solution of a system of simultaneous equations with

complex number coefficients. The equations in matrix form are:

20+j30 -5-j3 -15+j16 0+j0 0-j43 X 100+j0
-5-j3 11-j3 0+j0 -6+j8 0+j0 %, 200+j100
-15+j16 0+j0 42-332 8+j16 =15+j10 |e X3 - 0+j0

0+j0 -6+j8 -12+j16 23-jh2 -5+j18 xy, 0+j0

0-j43 0+j0 -15+j10 -5+j18 20+j15 X5 0+j0

Observe particularly the error-recovery procedure built in the program COMEQ.
When certain input data were incorrectly entered, the program allows the user

to check the data and make corrections, This avoids repeating the input of
large amount of data, which would have to be done if the problem must be aborted.

Example 3 Plot a curve represented by

X

y = .359 e-o'] sin (0.1x) sin(0.5x)

for the range from x=0 to x=30 with an increment of unity. The program PLOT

was used for this example, and the plot was reproduced on the terminal. Total
time consumed on the terminal for this problem was 6 minutes. The same problem,
using an increment of 0., was also plotted on the Calcomp plotter, and the result
is also shown.

Example 1 .

LOGIN 1345103/132311
Furooi FLTODLG-1077
cenTdd

e ainlis TeRdining Last losin! 1112 4-Jan-77
1 7 fea

. [PiL_EnGi poLY }* Stp3 1 To cad end catcle o

Sl 7L progres.

Step1: To get on the sycem

o SIR. 728 TTY&S

CQUATION, INTERACTIVE PRGGRAM

FROOGEAR - -

ROMIAL EQUATION (N)3

< THC ORDER OF i

¢ IN TIC ORLUK OF CUSCENDING COPURG, COEFFECIENTS (F EACH TERM
L0 FOR HILOTHG TERM. USE TRUE TORNA
;o 20 ¢ 134 1350 1200 800

ALL COLECICIENTSS
AR 1.6G000
20.0600
20,0000 T eaber dobe and
=2200,0660
1350.0000
e b Underlined Texks are datn

= 800.0000 or answer Lyped by the
wser,

aniwee guestans.

L COEFFICIENTS OK?
< NO? “YES

1N BETHONS ARL AVATLARLLY
GUrLeR 1= RAalRS £ HETHOD
GETIGN 2 = HONIV ICD NCWTON S MCTHOD
GUTION 3 = LIN‘S HETHOR
POR PORMATL CTRCUNSTANCESs OPTION 1 IS RECOHMMENLED.
Rt 1
SiNG

AR CORE S"'?"".“J Homati fy o mashs ‘ Yy pragres

LAY CUITOoN

M LLI0ON BY BAIRSTOWYS METHODS

&

KOOT NO. RLAL F4RT 144G PART
3 0.9644E400
2 0.1011E+01 Resatts
3 0.2817E+00 0.5213E100
4 0.2C17E400 ~0.HI13E100
5 ~0.2493C400 0.53040401
4 ~0,3493C400 -0.5304E401

0.3007E102

WANT TO TRY ANOTHER METHOD FOR THE|SaAME FROBLEM?
IF YES» TYPE NEW OFTION NUMBCR. F NGy TYPE O

NEWTON’S METHOD IS DIVERGENT. TRYJANOTHER METHOD,

Option J0 reyeat #he proliam
WAHT TO TRY ANOTHER METHOD FOR THE| SAME FRODLEM?

JS YES» TYPE NEW UFTION NUMBER. F NO» TYPE O3

1

SOLUTION BY ILIN‘S METHGD?

RUOT NO. REAL PART IMAG PART
1 0.,2017E1+00 0,5313E+00
2 0,2817E+00 ~0.5313E+00
3 =0, Y6L3E100
4 0.1011E+01
S -0.3492E400 0,5306E101
é ~0,3492E400 ~0.5306E+01
? 0.3009£4102

WANT TO TRY ANOTHER METHOD FOR THE SAME PRODLEM?
IF YES, TYPE NEW OFTION NUMBER. IF NO, TYFE 0%
20

STOP

END OF EXECUTION
CruU TIME? 1,08 ELAFPSED TIMES 43,23
EXIT

Shas T geb off fe sycbm

Job 31 [115103,1323411 otf TIV63 at 1122 7-Jan-77 Connect=3 Har
Disk R+W=210+33 Tare [0=0 Saved all files (12 blocks)
CFU 0304 Core HWH=10F Units=0,0130 ($0.93)

Three metheds were fried for o qree-] pelyromial equctin.
Totd time ot the terminal ‘= 3 miaufes
Computer time used = 4 Seconds

soTdueXd

[2354

434 APPENDIX B

ENGINEERING LIBRARY

Exa~ole 2

tt\' 1: To get e e K,n!m

ST AT
Fajeunrnt

4 units resatring Last lasini 1644 27-tan-77

451 - 27-Jare?? Thur
Step 21 To cal and @ueeits
Kwanat TPL libwry Py

SIMR.TANEOUS EQUATIONS WITH COMFLEX COEFFICIENTS OF FORH AX«B
MAX SIZF IS5 17 UNKHOUNS. QPTION OF FRINTING OUT A INVERSE

LOALING THE FRUCKAR NOW, .o

HOU MANY UNMNOUHS, N=?

N

U0 CPTIANS OF LATA INFUY ARE AVATLARLE:
BEYIOR © % A AN B MATRICES SUPPLILD FRON| THIS TERMINALS
QPTION 2 « A At R AATRICES SUPPLIED FROMA STORED FILE

INFUT DATA OFFION = 33

1M FOEE FORMs FUTER THT VALLES OF COMPLFX ELEHENTS OF THE A-MATRIX
BY R 1+

1 THE STONCICE OF FEALLY TPAGL P RERL2 THAGD +KEANNy IMAGN.
S UF 8-RAWIX { 50 YALUES)
o

[5HTER

Trcormet tnpat
dath entend,

IN FREE FORMy ENTER THE VALUFS OF COMPLEX ELENENTS OF THE B-nATRIX.
ONE ELEMENT (2 VALUES) FER LINE ONLY.

ENTER 5 ELEMENTS OF R-MATKIX (10 VALUES):
cLee o

2080400

Sl

e

&a —

b0 YOU WISH TO CHECK AND CORRECT THE TNPUT UNTAT YES OR NO)
ANGSWIR=>(FE

|~ Enter input data

44% INFYT DATA CHECK

L— Chack gad comect
inp

¢ data.
A-HATRIXI
L REAL has RERAL nng
1t 2,00000£401 3.00000E£+01 =5,000DOE +20 =3.G0000E+00
=1,300036+08 1,50000£401 0.000hOE+Q0 0.0GOCOE +00

0.00U0DE+00 ~4,30000E401

23 +5,00000E400 =3,00000€400 1410000E£401 =3,00000E+00
0.00200£400 0,00000E +00 ~6.000DQEIQ0 B.00000F+00
0.,00000E400 J.000G0£+00

3t =1.50000E401 1.40000E+01 0,00GN0E+Q0 0.00000F +00
4,20000E+01 =3,20000E+01 8,00C[0E400 1.60000E+0L
=2, S000UE+01 V. 00000E+00 .

a 0,00000E430 0.00000E+00
“B.20000E401 1,60000E 401
25, 009008 130 1. ADI0IE 401

~6.000D0E+00 8.00000€+00
2.30CPOE+A1 =4.3000CE 0L

52 0.90000E+00 -4.30000€401 0.000H9€400 0,00003E +50
=1 MO I0DEIOL 1. 0000CH+0T =3.00000F400 1.80000€ +O1
2000000EF0L 1.50000C402

L ELEMENTY OF A-RATRIX CORRCST? ANEUEIJ YES 0R NGP

;b

foay

MUY AANY NIMIERS ARE URONGT
HIAPRCR 2 Y3

£ 1ZLuN IN FRCE FOKAe THE ROW AND COLUAN NURBERS OF EACM INCORRECT 4|

MENT
i) AND GOLUMN NURSER FAIR PER LINE
.

44
1

FHICR CORRTCTED A-ELERENTS BELOWE
AL 10) w10,
Ataen) = >oad
Alael) = 228

AT InE CORRESTE
YET GR KGT
At ubTa ey

A-8ATRIX KETYPER GUT FOR [CHECKING Now?

B-MATRIX CHECRS

KOW KEAL 116
i3 1,00050C+02 0,00000L+00
23 2.00060F 102 1,00000E 402
L @.00006E400 0,00000E $00
ar 0.00000K +00 0,00000E+00
3t 0.00000E+00 0.00000£400

AKE ALL P-LLEWCHTS CORKECT? ANSWER YES [OR NOZ
ANSUER=YYFS

10 YOU WANT THE INVERSE OF A-HATRIX PRIJTED OUT? YES OF NOT
ANSWER=> 1)

HOW SWITCHING TO FORTRAN EXECUTION.+s |

LOADING Adtimatic Linrge
frow PIL Te Bl
COMED 3K CORE §
EXECUTION Crecution
A-HATRIXS
ROM 13 ©0.27000E402 0,3000€402 =0,%000E+01 -0.3000T 10t
“0.1500E402 0.1600F+02 0.0000E400 0.000CE+00
0.000GE+00 -0.4300E+02
ROW 28 -0.5000€+01 ~0.3000¢ 01 0.1100E 102 ~0.3000€ $91

0.0000L400 0.00GOF+00
0.0000£4G0 0,0000E+00
ROw 3% ~0.1500C+02 0.1800C402
0,4200E402 =0, 3200F +02
~Q.1500£402 0,1000E402

ROW 4t 0.0000£480 0,0000L+00
~0,1200F +02 0.1400C+02
=0.5000E+01 0,18GOE+02

=0,6000010) 0.80u0E+OL

©0.,0000€490 0.,COCOF +00
0.8000E401 ©0.160CGE4102

~0.4000E401 0.8000E+01
0.2300E402 -0.42006+402

ROU St 0.0000E400 ~0,4300E+02
~0,1500E+02 0Q,1000€+02
0.2000E402 0.1500E402

0.0000E+00 0.0000F 400
~0,5000E401 0.18Q0£402

|~ Printout of

B-MATRIX? Probles cenditiens
ROW 1% 0.1000E403 0.0000£+400
row 2t 0.2000£403 0.10008+403
ROU 33 0.0000£+00 0.0000£+00
ROw 42 0.0000E400 0.0000€400
KOW S8 0,0000E400 0.0000E+00

SOLUTION OF THE COMPLEX SIMULTANEOUS EOYATIONS?
REAL PART INAGINARY PAR MAGNEITUDE PHASE ANGLE(DEG)

X 1) - 11.579755 ~3.20194 12.03%86 -15.82

PR TR 27.542839 30943 20.79221 16.94

XC3) - 7.869136 -7.04257 10.56035 1.83

XC 4 = 12.317659 ~1,68885 12.43290 -7.01

PO T 9.040064 -2,40017 9.40079 -16-09
— Resuits

s10P -

TNL OF EXECUTION
TIMED 0i60 FLAFSED TINED 53.85

Step3: To geb off the systvm.

el 36 [1IG1099 182141 of ¢ [1763 at 1624 27-Jar=77 Cornectss Min
[isk ReW=LAPSL Tare (020 faved all files (10 blacks)
CFU 0307 Core HuHe Unitue0,0170 ($1.29)

Total time ot the tarminal =2 § minutes
Q-uyuh.- time wsed = 7 Seconds

Example 3

LOSIN 115103/1 4

Step £: To get omthe system
77/B 61B.724 TTY63

4 wiats renaining Last login! 14531 27-Jan-77

1538 27-dan-77 Thur

PIC ENETPLOT }— Step 2: To call and exaautn
Redobugd ta Ire pregrom
INTERACTIVE FLOTTING FROGRAM o

MAXTHUM CAFACITY? PLOTTING A CURVE OF 151 DATA POINTS.
fGATLEG THE FROGRAN NOWr.oo

FHRIE HETIONS ARE AVAILABLE!
OFTIUN 1 = TG FLOT A CURVE FOR Y=F(X) WHICH WILL BE SUPFLIED BY YOU
OFTION 2 = TO PLOT A CURVE WITH COORNINATES ALREADY STORED ON FILE»
OFTION 3 = TO FLOT A CURVE WITH DATA TO BE ENTERED AT THIS TERMINAL.

OFTION =

TUO TYFES OF PLOTS ARE AVAILARLE?
TiiE 1 FLOT PROPHCED ON TERMINAL OR LINE PRINTER
TYFE 2 FLOT FRODUCEDR ON CALCOMP FLO1TER

fel) UAM OBTAIN THE PRINTER OR TTY FLOT RIGHT AFTER EACH RUN» BUT YOU
el WAFT UNTIL THE NEXT DAY TO GET THE CALCONP PLOT. ON THE OTHER
HA, CALNCMP FLOT IS OF MUCH SUFERIOR QUALITY.

CHOUBE [HE TYFE OF FLOT YOU WANT:
Tk =1

foll HANY FOINTS TG BE FLOTTED (NPT=7)7
G NOT CONFUSE NURDER OF INCREMENTS WITH NUMBER DF POINTS, IF YOu
HaVil 100 INCKEMENTSy YOU SHOULD SFECIFY 101 POINTS» AS AN EXAMPLE.

[N I |

“inT IS THE VALUE OF THE FIRST X (X1=?) 7
Xt = 0

GHAT IS THE VALUE OF THE LAST X (X2=7) ?
x2 O

TYFE THE "ORTRAN EXFRESSION OF F(X)s SUCH AS?
3. 12KEXF (~3.5%X) ¥SINC3I77 . %X)

REPEATS FORTRAN EXPRESSIONs NOT FIL EXPRESSION.

il F(Xy
X 3SPREXF (- PRXIASTNCO, 1XXIRSTNCO . 5XX)

poUREZRA S S L AR UL AR LESL o2 5SS Lo

NOW READY TO SWITCH TO FORTRAN EXECUTION...
FORTRAN? 0ZXZQ

FCN

LOAUING

PLOT 6K CORE
EXECUTION

TYPE THIS COMMAND TO RECEIVE YDUR OUTPUT ON LINE PRINTER:-
Q PLOT.LPT/FILEIFORTRAN
TYPE THIS THIS COMMAND TO RECEIVE OUTPUT ON YOUR TERMINALS-
TTY WIOTH 132
TYPE PLOT.LPT
YOU MUST GET YOUR OUTPUT BEFORE NEXT PLOT RUN.
OTHERWISEs THIS QUTPUT WILL BE ERASED AND REPLACED BY NEW PLOT OUTPUTS.
STOP
END OF EXECUTION

CFU TIKE! 0.73 ELAPSED TINE! 4.53
EXIT

soTduwexd

137

436 APPENDIX B ENGINEERING LIBRARY

RS ST L } Commands to reproduse the plot ou the terminal

SIOUE ELOT LT

THE SCALE FACTOR OF ORDINATES & LIVISION= 0,.50000E-02
THE SCALE FACTOR OF ARSCISSA! 1 DIVISION= 0.10000E+01

FIRST ARSCISSA VALUE X(1)= 0.,00000E+00

NOTIZS TN INTERFRETENG THE PLOF, X-AXIS STARTS WITH X{(1) VALUEL.
SUBSEQUENY X CAN RE COMFUTED FROM X(1) ANU ARSGLISSA SCALE FACTOR.

(MULTIFLY BY SCALE FACTOR 0.50000E-02)

3 -30 ~-20 ~10 [10 20 30 40 G0 40 70

X + + 4 + + + + + + 1 +

* 1 *

* 1 *

* 1 x

* 1 «

AXC S)+ X

& I x

X 1 x

A 1 *

X 1 x

AXC 10D+ *

* 1 x

* 1 x

« I *

* 1 ¥

*X(15)4 *

* I . x

* I *

¥ I X

X I ¥

AXC 200+ *

* I X

« I ¥

* I *

« I *

*XC 280+ x

* I X

& I x

* 1 *

* 1 X

*X(302+ *

¥ I ¥

* + + + + + t + + + 1 +

* -30 -20 -10 [+ 10 20 30 40 50 60 70
(HULTIFLY BY SCALE FACTOR 0450000E-02) ‘

Step 3« To get the Sqsfbn, .
~ ep ge€ off 7 Totas Terminal time @ 6 minutes
Jdnb 28 C119103,1323413 off TTY43 at 1541 27-Jan-77 Connect=46 Min .
isk K+W=234+57 Tare 10=0 Saved all files (18 blocks) Total computee time = 8 seconds
CFU 0108 Core HUM=14P Units=0.0395 ($1,44)

Examples 437

B.16

B.12

calcomp plotter output of Example 3

-2.20 B.84 8.88

2.04

.00 5.00 10.00 15.00 20.00 25.00 30.00

EXAMPLE 3

INDEX A GENERAL INDEX

CalComp subroutines, 247-270
annotations with symbols
and numbers, 253

I\ axis, scales and labels, 254
basic pen movements, 251
initializing and terminating, 250
lines and curves plotting, 255
redefining origin and scale, 250
simple geometric patterns, 256

ACCESS program, 403
ANSI standard, 81
ARCHIVE program, 405
ASCII code, 8

ASPEX Program, 280
Array processor, 134

B

BATCH, 367-392
compiling and execution
commands, 376-379
disk storage control
commands, 37-376
end-of-deck command, 375

error recovery commands, 384,387

examples, 380-388
inclusion command, 377
line interpretation, 383
sign-off command, 374
Batch, switches, 388
sign-on commands, 371
Batch jobs, to submit
via OPRSTK, 83,208,349,389
via cards, 72,84,389
via terminal, 83,208,349,389
Batch processing, 1
Batch modules, 374-379
compiling module, 377,379
disk storage module, 376,379
execution module, 378,379
inclusion module, 378,379
sign-off module, 374,479
sign-on module, 374,379
Batch software system, 368-370
Batch controller, 370
Queue manager, 368
Output spooler, 370
Staker, 368
Bauds, 11

C

Cusp, 4

438

symbol table, 252
Calcomp Plotter Primer, 247-270
CHANGE program, 406
Checklist:

computation errors, 149

data errors, 146

data errors, 146

input/output errors, 152

logic errors, 150

program readability, 152
Codes:

ADE, 252, 261

ASCII, 8

CalComp Symbol, 252

EBCDIC, 10

Sixbit, 10

protection, 28
Compiler diagnostics, 154

mnemonic code for warnings, 158

mnemonic codes, 156
Computer graphics, 225-284
Control characters, 17-18

CIRL-C, 17

CTRL-I, 17

CTRL-O, 17

CTRL-R, 17

CTRL-U, 17
Control file, 370,371

to create, 314

to submit, 316
Conversational program, 7
Coordinate:

direct, 262

screen, 262

user's, 262

virtual, 262
CSMP, 185-224

a primer, 185-206

DYNAMIC segment, 195

INITIAL segment, 195

SORT and NOSORT sections, 195

TERMINAL segment, 195

data statements, 201

examples, 211

General Index

execution control statements, 204
format, 194, 176

job execution, 209

job preparation, 207

library functions, 197

output control statements, 206
structure statements, 196

symbols, constants, operators, 194
translation control statements,202

D

D-statement, 170
Data line multiplexer, 2
DECtape, 395
DECwriter, 11-18
Delimiter, 35
Device:
logical name, 286,321,338
physical name, 285,320,338
system, 320,338
Diagnositics:
compiler, 154
run—time, 155-167
Dial-up line, 8
Differential equations, 187-189
numer ical solution, 189
Direct Graphics, 261
DICOPY program, 408

E

EBCDIC code, 10
Editing programs (UPDATE), 70
Editor, text, 33-80
ENG: device, 228-236,239,423-437
Engineering program library, 423-437
Errors:
checklists, 146,149,150
coding, 138
dimension out-of-bound, 168
logic, 138)
problem definition, 138
Executive system, 4

F

FILCOM program, 408

Files, 27
basic concept, 27
control, 370,371
specifications, 27

Flow chart, walkthrough, 139

439

FORDDT program, 175-182
commands
example, 179
FORFLO program, 142
switches, 144
FOROTS diagnostics, 155,159
FORTRAN 77, 135
FORTRAN debugging, 137
FORTRAN format, 110-112
alphanumeric field, 111
complex, 112
logical field, 111
numer ic field, 110
scale factor, 110
variable field width, 111
FORTRAN program,
FORTRAN program, to enter, 82
FORTRAN program, to load, 85-90
FORTRAN program, to execute, 85-90
FORTRAN-10, 81-184
alphanumeric format field, 111
assignment statements, 99
blank line, 97
comment line, 95
compilation control commands, 97
compiler listing, 162
constants, 93
continuation line, 95
control statemetns, 100
debug line, 95
DEC subroutines, 117
device control statements, 112
expressions, %4
file control statements, 107
FORMAT statements, 110
input-ouput statement summary, 106
input-output keywords, 101
library functions, 96
list directed input-output, 103
loader switches, 90
logical field format, 111
logical units, 102
multi-statement line, 95
multiple-entry subprogram, 115
namelist, 103
numer ic field format, 110
OPEN/CIOSE statements, 108
Pitt subroutines, 118
print carriage control
characters, 113
random access records, 103
READ statements, 104
specification statements, 98
statement sequence, 97
statements, 95
subprogram statements, 114
transfer modes, 101
variable field width, 111
variables, 94
WRITE statements, 105
Full-duplex, 8

440 INDEX A

G

Graphic devices:
calligraphic, 226
rasterized, 226

Graphics terminal, 19, 259

Graphics:
direct, 261
interactive, 271
menu, 271
screen, 261
virtual, 261

H

Hal £-duplex, 8
High-order language, 192
How to:
change mind on output, 359
change protection code, 352
change your password, 23,328
check computation errors, 149
check data errors, 146
check input/output errors, 152
check logic errors, 150
choose a system, 326
communicate with others, 330-333
compile a stored FORTRAN
program, 85,376
copy a file, 73,353
copy a tape, 408-410
create a file by batch, 72,375
create a file from a terminal, 72
debug a FORTRAN program, 137-184
delete a file, 352
do management of files, 294,350-354
do word-processing jobs, 299-313
draw a picture on DEC-10, 245-279
edit a FORTRAN program, 84
enter a FORTRAN program, 82
enter a program/data file, 33-80
execute a stored FORTRAN
porgram, 85,378
get system status reports, 333
label a tape, 397
link between a PIL job and
a FORTRAN job, 420
link between a PIL job and
a batch job, 421
load a stored FORTRAN program, 85
manage your file by UPDATE, 72-74
merge several file into one, 73,353
operate a terminal, 8-26
plot a curve on DEC-10, 227-244
prepare a flow chart, 142

GENERAL INDEX

register a tape, 397

safekeep a program/data
file, 401,405

set characteristics of
a terminal, 344-345

set right margin of terminal, 344

sign-off, 25,328

sign-on, 21, 326

sort alphabetically/numerically,
297-298

submit a batch job, 72,83-84,208,
349,389

submit for output, 355-365

trace program execution, 173-174

transfer files, 291-293

understand diagnostic messages,
154-167

use Engineering Program Library,
424-437

use a tape, 393-410

use disk as virtual memory, 317

use tape drives, 336-343

IMSL Package, 131

K

Keys:
backspace, 16
control characters, 17-18
control, 15
delete, 15
ESC, 16
linefeed, 15
repeat, 16
retrun, 15
shift, 16
special characters, 15-16
tab, 16

L

Labels, header, 395
Labels, trailer, 395
Language, simulation and modeling,209
Line number, UPDATE, 34
absolute, 34
relative, 34
Line, transmission, 8
dedicated, 8
dialup, 8
hardwired, 8
shared, 8

General Index

MPB, multi~program batch, 367
MTICOPY program, 408
Modeling, dynamic, 185
Modeling, mathematical, 187
Modem, 2
Monitor, 4
Monitor commands, 320-366
communication, 330
facility allocation, 336-343
file management, 350-354
file output, 354
job initiation, 326
job termination, 328
program compiling, loading
and execution, 347-349
QUEUEing for output, 355-363
source file preparation, 335
status report, 333
TTY control, 344-346
Multi-programming, 1
Multiprogramming system, 1,367
Multprogram Batch, 367-392

o)

Operating Systems, 320-366
OPRSTK program, 314-316,

P

Password, 23,328,374
to change, 328
PIL, 412-422
constants, 412
expressions, 413
library functions, 414-415
subscripted variables, 413
variables, 412
PIL statements, 413-421
conditional, 416
execution, 413
file control, 419
file management, 418
input and output, 416
input/output format, 416
labels, 413
loop, 416
subprogram, 417
substitution, 413
termination, 413
transfer, 413
PIL-FORTRAN linkage, 420,423
PIL-OPRSTK linkage, 421

PIP program, 285-296
PIP switches, 286, 291-29%6
. X-switch, 291
compunded, 294

file directory management, 294-

transfer with editing, 291-293
PLOT10 Package, 264
Ploter output preview, 241
Plotter, digital, 245
Plotting,
on a graphic terminal, 264
on a plotter, 236
on a printer, 227
on a terminal, 227
Pointer (UPDATE), 34
PPN, 7
Protection code, 28

Q

QUEUE switches, 361-363'
Quota, disk storage, 23-25
login, 24
logout, 24

R

Rasterization, 226
Record, 27,34
RUNCFF progream, 299-313
RUNOFF commands:
RUNCFF commands, 302,312
Jbasic, 302-306
mode setting, 312
page formatting, 311
parameter setting, 313
text formatting, 310
RUNOFF swithces, 308-309
Run-time diagnostics, 155-167

S

Screen Graphics, 261
Sign-Off, 25
Sign-On, 21

Simplex, 8

Sixbit code, 10
SORT' program, 297-298
SSP Package, 130
SUBSET package, 123
Supervisor, 4
Swapping device, 27
Symbol, prompt, 6

441

295

442 INDEX A

T

Tape, 393-411
labeling, 397
DECtape, 395
drive, 393
labeling of, 397
magnetic, 393
mounting and dismounting
of, 337-343,398
registration of, 397
sequential processing commands,399
tracks, 393
transport, 393
TAPLBL program, 397
Tape service programs, 401-410
ACCESS program, 403
ARCHIVE program, 405
CHANGE program, 406
DICOPY program, 409
MTCOPY, 409
UARC, 401-2
Teletype, 11
TEKPLT program, 241
Terminal Control System (PLOT10), 264
Terminal, 8-26,259
CRT, 18
dumb, 20
graphics, 19,259
intelligent, 20
keyboard, 15
Time slice, 2
Time—-sharing, 1
Turn-around-time, 2
TYPE command, 364

U

UARC program, 401

UPDATE, 33-80
auxiliary file, 63
completion commands, 42
compounded commands, 47
conditional editing commands, 65
copy command, 52
editing control commands, 54
file management by, 72
length—control commands, 62
line deletion command, 40
line insertion mode, 44
line insertion, 41
line—output command, 41
move command, 49
parameter—setting commands, 58
pointer-movement commands, 37
text-changing commands, 39

\'J

VERPLT program, 280
Virtual Graphics, 261
Virtual memory, 317-318

W

Wild card, 28

Windows, 362
screen, 262
virtual, 262

$

$-cards, 371

GENERAL INDEX

INDEX B

This INDEX

QUICK REFERENCE OF COMMANDS AND PROGRAMS

includes a list of commands or subprograms for rapid

reference. The legend of entries is:

Command or Subprogram Name (Processor Name) , Page number

For example, the en(:_ry "SCALE (CALCOMP), 252" means a subprogram named SCALE for
the CalComp Plotter processor, and its description may be found on page 252.
The following processors are included in the Quick Reference:

BATCH
CALCOMP

Commands in the Batch processor
Subprograms in the CalComp Plotter Subprogram Package
PRG: PLTLIB.REL

Engineering Library Library programs in the device ENG:

FORTRAN Subroutines in the System FORTRAN Library

MONITOR Commands in the System Monitor

PIL Commands in the PIL Processor

PLOT10 Subroutines in the Tektronix Graphic Package PLOT10

SUBSET Subprograms of the SUBSET package, developed by

Ronal K. Nicholas.

UPDATE Commands in the UPDATE text editor

USL User Program Library
A B
AlIN (PLOT10), 279 BACK SPACE (PIL), 419
AIOUT (PLOT10), 279 To-4
ACCESS program, 403-405 BACKFILE (MONITOR), 400
ACQUIRE (PIL), 421 BACKSPACE (MONITOR), 399,400
ADVANCE (UPDATE) , 64 BACKTO (BATCH), 384
AINST (PLOT10), 279 BAKSP (PLOT10), 269
ALTER (UPDATE), 39 BASMAT (Library ENG:), 428
AMAXX (SUBSET), 124 BELL (PLOT10), 264
AMINX (SUBSET), 124 BMD (BATCH), 385
ANCHO (PLOT10), 269 BODE (Library ENG:), 428
ANCHO (PLOT10), 279 BREAK (UPDATE), 62
ANMODE (PLOT10), 269
ANSTR (PLOT10), 269
ANSTR (PLOT10), Y
AOUIST (PLOT10), 279 C
ARCHIVE program, 405-406
ARROW (UPDATE) , 56 CALPLT (Library ENG:), 430
ARROW(UPDATE) , 55 CARTN (PLOT10), 269
ASCEND (FORTRAN) , 121 CATALOG (PIL), 419
ASPEX program, 280 CHANGE (PIL), 418
ASSIGN (MONITOR), 336 CHANGE (UPDATE), 39
ASSIGN (PIL), 418 CHANGE program, 406-407

AT (UPDATE), 37
AXIS (CALCOMP),

. CIRCL (CALCOMP), 256
252 CMIS (Library ENG:), 428

443

444

COGGIN (Library ENG:), 428
COMEQ (Library ENG:), 428
COMPILE (MONITOR), 347
COPY (MONITOR), 352

COPY (SUBSET), 124

COPY (UPDATE), 52

CORE (SUBSET) , 123
CPUNCH (MONITOR), 356
CSMP (BATCH) , 385

CSMP (Library ENG:), 428
CURRENT (MONITOR), 333

D

DASHA (PLOT10), 267
DASHL (CAICOMP) , 255
DASHP (CALCOMP), 251
DASHR (PLOT10), 267
DASHSR (PLOT10), 278
DATE (FORTRAN), 117
DAYTIME (MONITOR), 333
DCURSR (PLOT10), 270
DEASSIGN (MONITOR), 339
DECK (BATCH), 375
DELETE (MONITOR), 352
DELETE (PIL), 418
DELETE (UPDATE), 40
DEMAND (PIL), 416

DF1 (Library ENG:), 428
DF2 (Library ENG:), 428
DFN (Library ENG:), 428
DIRECT (Library ENG:), 428
DIRECT (MONITOR), 350
DISMOUNT (MONITOR), 343
DO (PIL), 413

DONE (PIL), 413

DONE (UPDATE) , 42

DPB (FORTRAN), 120
DPBN (FORTRAN) , 120
DRAWA (PLOT10), 267
DRAWR (PLOT10), 267
DRAWSA (PLOT10), 278
DRAWSA (PLOT10), 278
DRAWSR (PLOT10), 278
DRIVES (MONITOR), 340
DRWABS (PLOT10), 265
DRWREL (PLOT10), 265
DSHABS (PLOT10), 265
DSHREL (PLOT10), 265
DICOPY program, 408-410
DWINDO (PLOT10), 267

E

ECHO (UPDATE), 56
EDIT (UPDATE), 55

TNDEX B

QUICK REFERENCES

EE45 (Library ENG:), 430
ELIPS (CAICOMP), 256
ELSE (UPDATE), 67

END (UPDATE), 42

ENDPAG (CAICOMP), 250
EOD (BATCH), 375

EOF (MONITOR), 399,400
EQJ (BATCH), 374

ERASE (PLOT10), 204
ERROR (BATCH) , 384
ERRSET (FORTRAN) , 117
ERRSNS (FORTRAN) , 117
ERRSNS (FORTRAN) , 166
EXECUTE (MONITOR), 347
EXECUTE (PIL), 420

EXIT (FORTRAN), 117
EXIT (PIL), 413

EZLP (Library ENG:), 428

F

FACTOR (UPDATE), 58

FFT (Library ENG:), 429
FIBON (Library ENG:), 429
FILCOM program, 408-410
FINISH (UPDATE), 42
FINITT (PLOT10), 264
FIT (Library ENG:), 429
FOR (PIL), 4l6

FORDDT program, 175-182
FORFIO program, 142
FORM (PIL), 416

FOROTS program, 155
FORTRAN (BATCH), 376
FORWARD SPACE (PIL), 419
FOUR (Library ENG:), 429
FROM (UPDATE), 64

G

GAG (UPDATE), 57

GET (UPDATE) 65

GOTO (BATCH), 384

GRAPH (CALCOMP), 250
GRAPH (Library ENG:), 231
GRAPH (Library ENG:), 431
GRAPH2 (CALCOMP), 250
GRID (CALCOMP), 252
HDCOPY (PLOT10), 264

H

HELP (Library ENG:), 429
HELP (MONITOR), 334

Quick References

HOME (PLOT10), 269
HOOKE (Library ENG:), 429

IDENT (SUBSET), 123

IF (PIL), 416

IF (UPDATE), 65

IFIIE (FORTRAN), 122
IMAGE (Library ENG:), 429
IMPROC (Library ENG:), 430
INCLUDE (BATCH), 378
INIT (SUBSET), 124
INITIATE (MONITCR), 327
INITT (PLOT10), 264
INPUT (UPDATE), 45

IS (UPDATE), 45

J

JOB (BATCH), 371
JOIN (UPDATE), 62

K

KCM (PLOT10) , 277
KIN (PLOT10), 277
KJOB (MONITOR), 328

L

IDB (FORTRAN), 119
IDBN (FORTRAN), 119
LENGIH (UPDATE), 59
LGAXS (CALCOMP), 252
IGLIN (CALCOMP), 255
LINE (CALCOMP), 255
LINE (PIL), 421
LINE (UPDATE), 57
LINEF (PLOT10), 269
LINHGT (PLOT10), 277
LINTRN (PLOT10), 278
LINWDT (PLOT10), 277
LOAD (MONITOR), 347
LOAD (PIL), 418
LOCATE (SUBSET), 123
LOGIN (MONITOR), 326
LOGLOG (ENG:GRAPH) , 236
LOGOUT (PIL), 413
LOGIRN (PLOT10), 278
IORGIN (CALCOMP), 250
IOWER (UPDATE), 57

LSH (FORTRAN) , 120

M8080 (Library ENG:), 429
MARK FILE (PIL), 419
MATOP (Library ENG:), 429
MAXX (SUBSET), 124

METRIC (CALCOMP), 247
MINILP (Library ENG:), 420
MINX (SUBSET), 125

. MOUNT (MONITOR), 341

MOVABS (PLOT10), 265
MOVE (FORTRAN), 121
MOVE (UPDATE), 49
MOVEA (PLOT10), 267
MOVER (PLOT10), 207
MOVREL (PLOT10), 265
MSFLVL (FORTRAN), 173
MTICOPY program, 4U8-409
MUX (Library ENG:), 429
MYJOB (SUBSET), 123
MYLINE (SUBSET), 123
MYNAME (SUBSET), 123

N

NEWLIN (PLOT10), 69
NEWPAG (PLOT10), 269
NI (Library ENG:), 429
NJOB (MONITOR), 333
NOERROR (BATCH) , 384
NUMBER (CAICOMP), 251

O

OFILE (FORTRAN), 122
ON FILEMARK (PIL), 419
ON SIZE (PIL), 421
ONTO (UPDATE), 63
OPRSTK (MONITOR), 349
OPRSTK (PIL), 421
OPRSTK program, 314-316
ORIGIN (CALCOMP), 250
OVERIAY (UPDATE), 61

P

PAGES (PIL), 421

PASSWORD (BATCH) , 374
PENDN (CALCOMP) , 251
PENUP (CALCOMP), 251

446

PIP program, 285-296
PJOB (MONITOR), 333
PLACE (UPDATE), 61
PLOT (CALCOMP), 251
PLOT (Library ENG:), 429
PLOT (MONITOR), 236,356
PLOT8 (ENG:GRAPH) , 229,231
PLOTIT (USL:), 241
PLOTIT program, 241-243
PLTLIB (CALCOMP) processor,
247-258
PLTSYM (CALCOMP), 251
PNTABS (PLOT10), 265
PNTREL (PLOT10), 265
POINTA (PLOT10), 267
POINTR (PLOT10), 267
POLAR (CALCOMP), 255
POLAR (ENG:GRAPH), 236
POLTRN (PLOT10), 278
POLY (CAICOMP), 256
POLY (Library ENG:), 429
POSITION (UPDATE), 61
POST (MONITOR), 331
PRESERVE (MONITOR), 352
PRINT (MONITOR), 356
PRINT8 (ENG:GRAPH), 236
PROCEDURE (PIL), 417
PROTECT (MONITOR), 352
PSCALE (CALCOMP), 250
PUT (UPDATE), 63

Q

QIKIOG (FORTRAN), 237
QIKPLT (FORTRAN), 237
QUEUE (MONITOR), 352
QUINE (Library ENG:), 430

R

R (MONITOR), 349

READ FROM (PIL), 419
REAIEQ (Library ENG:), 430
RECO (Library ENG:), 430
RECOVR (PLOT10), 275
RECT (CALCOMP), 256
REDEFINE (PIL), 418
RELEAS (FORTRAN), 117
RENAME (MONITOR), 352
RESET (PLOT10), 275
RESOURCE (MONITOR), 334
REWIND (MONITOR), 399,400
REWIND (PIL), 419

RMOUNT (FORTRAN) , 122,400
RROTAT (PLOT10), 275
RSCALE (PLOT10), 275

INDEX B

QUICK REFERENCES

RUN (BATCH), 386

RUN (MONITOR), 349

RUN (PIL), 420

RUN (SUBSET), 123
RUNOFF program, 299-313

S

58080 (Library ENG:), 430
SAVE (MONITOR), 348

SAVE (PIL), 418

SAVE (UPDATE), 59

SAVRAN (FORTRAN), 117
SCALE (CALCOMP), 252
SCALG (CALCOMP), 252
SCAMP (Library ENG:), 430
SCURSR (PLOT10), 270
SEARCH (Library ENG:), 430
SEEDW (PLOT10), 276
SEELOC (PLOT10), 276
SEEREL (PLOT10), 276
SEETRN (PLOT10), 276
SEETW (PLOT10), 276
SEMLOG (ENG:GRAPH) , 236
SEND (MONITOR), 330
SEQUENCE (BATCH), 371

SET (PIL), 413

SETMRG (PLOT10), 277
SETRAN (FORTRAN), 117
SETTTY (SUBSET), 126
SIPROC (Library ENG:), 431
SIXBIT (SUBSET), 128

SKIP (MONITOR), 399,400
SMOOT (CALCOMP), 251

SORT (FORTRAN) , 117

SORT program, 297-298
SPRAY (FORTRAN), 121

SPSS (BATCH), 386

START (MONITOR), 347
STATUS (Library ENG:), 430
STOP (PIL), 413

SUBMIT (MONITOR), 356
SUBSET (Library ENG:), 434
SUBSTITUTE (UPDATE), 39
SWINDO (PLOT10), 267
SYMBOL (CALCOMP) , 251
SYSTAT (MONITOR), 334

T

TAB (UPDATE), 59

TEKPLT (PLOT10) processor,
259-279

TEKPLT program, 241-244

THEN (UPDATE), 65

TIME (FORTRAN), 117

Quick References 447

TIME (MONITOR), 333
TINPUT (PLOT10), 279
TINSTR (PLOT10), 279

TO (PIL), 413

TO (UPDATE), 37

TOUTPT (PLOT10), 279
TOUTST (PLOT10), 279
TPUNCH (MONITOR), 356
TRACE (FORTRAN) , 173
TRANEQ (Library ENG:), 430
TRAVEL (UPDATE), 37
TRUTH (Library ENG:), 430
TTY (MONITOR), 344
TWINDO (PLOT10), 267
TYPE (MONITOR), 364

TYPE (PIL), 416

TYPE (UPDATE), 41

TYPE program, 364-366

U

UARC program, 401-403
UNDRIVES (MONITOR), 340
UPDATE (MONITOR), 335
UPPER (UPDATE), 57
USESTAT (MONITOR), 333

Vv

VCURSR (PLOT10), 270
VERPLT program, 280
VWINDO (PLOT10), 267

w

WHERE (MONITOR), 334
WHERE (UPDATE) , 60
WKDAY (SUBSET), 123
WRITE ONTO (PIL), 419

X

XYPLOT (ENG:GRAPH), 231,234
XYPRNT (ENG:GRAPH), 236

y4

ZERO (FORTRAN), 121

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447

