‘decsystemic
users
handbook

Additional copies of this handbook may be ordered from:
Program Library, DEC, Maynard, Mass. 01754. Order code: DEC-10-NGZB-D.

~ handbook series

First Printing November 1971
Second Printing (Rev.) July 1972

The material in this handbook is for information purposes and is subject to *
change without notice.

Copyright © 1969, 1970, 1971, 1972 by
Digital Equipment Corporation

The following are trademarks. of Digital Equipment Corporation,
Maynard, Massachusetts '

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

b h@|ex

- Introduction

software -

timesharing [l
» beginner's batch -

teco (intro) i}

reference

- commands -

index 1l

NOTICE

<

For the reader’s convenience:

1)

2)

3)

4)

5)

Consecutive page numbers have been added to the top center of each page in the handbook:
these numbers have the form —nn..—- (for example 25—) and are supplied in addition to
the standard document numbers printed at the bottom center of each page.

The appropriate document name has been added to the top outside corner of each page of
the handbook.

A global index comprised of the merged and alphabetized entries of all of the indexes which
were previously part of the documents contained by the handbook is supplied at the end of
the handbook. The global index replace's the individual document indexes.

The entries of the global index and the Table of Contents for each document reference the
consecutive page numbers located at the top center of each page.

Black locator tabs are printed on the outside edge of the first ten pages of each document
in the handbook. A tab locator page on which each set of tabs is identified by the name of
the document which they represent is supplied at the front of the handbook.

FOREWORD

This handbook is an introduction to the DECsystem-10. It is intended to be a guide to using the system and, as
such, should be read before advancing to more detailed documentation. The collection of documents in this
handbook is taken from the DECsystem-10 SOFTWARE NOTEBOOKS (DEC-10-SYZB-D) and in all cases, the
documents are reprinted without change.

The documents in this handbook reflect the following versions of the software:

Monitor 5.056 _ /
TECO version 23 . . '

LINED version 13A

PIP version 32

Support program version numbers are specified on page 431 of this handbook.

The DECsystem-10 User’s Handbaok is one in the set of DECsystem-10 handbooks. The other handbooks com-
prising this series are: - :

{1} The COBOL Lan'guage Handbook and its supplement,
(2) The Mathematical Languages Handboaok, which includes FORTRAN, BASIC, and ALGOL,

(3) The Assembly Language Handbook, which includes the System Reference Manual, MACRO,
DECsystem-10 Monitor Calls, LOADER, DDT, CREF, FILCOM, FUDGE2, and GLOB.

These handbooks may also be 6rdered‘ from the Program Library, Digital Equipment Corporation.

Covid

0@

- DEC-10-MZDA-D

decsystem
INTRODUCTION TO
DECsystem-10 SOFTWARE

1st Printing November 1971

Copyright © 1971 by Digital Equipment Corporation

The material in this manual is for informa-
tional purposes and is subject to change
without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

©-3-

CONTENTS

CHAPTER 1 THE DECsystem-10

1.1
1.2
1.3
1.4
L5
1.5.1
1.5.1.1
1.5.1.2
15.1.3
1.5.1.4
1.5.1.5
1.5.1.6
1.5.2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4
1.5.2.5
1.5.2.6
1.5.3
1.5.3.1
15322
15.3.3
1534
1.5.4

bECsystem-lO Hardware
DECsystem-10 Operating System
DECsystem-10 Non-Resident Software
DECsystem-10 Multiprocessing
Multimode Computing

Timesharing '

Command Control Language
Peripheral Devices

Spooling

Mass Storage File System

Core Utilization
General-Purpose Timesharing
Multiprogram Batch
Multiprogram Batch Components
Batch Use of System Features
Flexibility of the Batch System
Job Dependency

Error Recovery

Operator Intervention
Real-Time

Locking Jobs -
Real-Time Devices
High-Priority Run Queues

Job Communication

Remote Communications

CHAPTER 2 NON-RESIDENT SYSTEM SOFTWARE

2.1
2.2
2.2.1
222
2.2.3
224
2.3
2.4
24.1
242
2.4.3
2.4.4
2.5
2.5.1

DECsystem-10 Assembler
DECsystem-10 Compilers -
ALGOL

BASIC

COBOL

FORTRAN
DECsystem-10 Interpreter
DECsystem-10 Editors
LINED

TECO

soup

RUNOFF

DECsystem-10 Utilities
CREF

iii .

INTRO TO SOFTWARE

Page

10
10
10
10
10
10
11
11
11
11
12
12
13
13
13
13
14
14
14
14
15
15
15

17
18
18
18
19
19
20
20
20
20
21
21
21
21

INTRO TO SOFTWARE

25.2
253
254
255
256
2.6

2.6.1
2.6.2
263
2.6.4

CHAPTER 3 THE RESIDENT OPERATING SYSTEM

3.1
32
33
3.4
3.5
3.6
3.7

-4 -

CONTENTS (Cont)

DDT

File Backup
FILEX
LOADER
PIP

DECsystem-10 Monitor Support Programs

MONGEN
OPSER

LOGIN
KJOB-LOGOUT

The Command Decoder
The Scheduler

The Swapper

The UUO Handler

The Input/Output Routines
File Handler

Summary

CHAPTER 4 GLOSSARY

APPENDIX A DECsystem-10 HARDWARE

Al

A2

A3

A4

A

A.6

A7

A8

A9
A.10
Al
A.12
A.12.1
A12.2
A12.3
A12.4
A.12.4.1
A.12.4.2
A.12.5

DECsystem-1040

DECsystem-1050

DECsystem-1055

DECsystem-1070

DECsystem-1077

Processor-KA10

Processor—KI10

Core Memories

Drum System

Disk Systems

Magnetic Tape Systems
Input/Output Devices

Card Readers

Card Punch

Line Printers

Plotters

XY 10A CalComp Plotter Model 565
XY 10B CalComp Plotter Model 563
BA 10 Hard Copy Control

v

Page

21
22
22
22
22
23
23
23
23
23

25
26
27
27
28
29
30

31

45
45
45
45
46
46
46
47
47
48
48
48
48’

. 49

49
49
49

49

-5 INTRO TO SOFTWARE

CONTENTS (Cont)

Page
A.13 Teletypes and Terminals 49
A.13.1 ’ Local DC10 Use 49
A.13.2 Local DC68A Use ‘ 49
A.13.3 CRT Displays v 49
A.14 Data Communications Systems 50
Al4.1 DC10 Data Line Scanner) : 50
A 14.2 DC68A Communication System 50
A.14.3 DS10 Synchronous Line Unit . ‘ 50
A.14.4 DC75 Synchronous Communications System 50
A.14.5 DC71 Remote Batch Station . 51

ILLUSTRATIONS

Figure No. . Title k Art No. Page
1-1 DECsystem-10 Components ' 10-0820 9
1-2 Programs in the Batch System i 10-0819 12

3-1 The Resident Operating System : 10-0821 26

INTRO TO SOFTWARE

FOREWORD

This manual is a general overview of the DECsystem-10.
It is written for a person, not necessarily a ftill-time
programmer, who is familiar with computers and com-
puting systems and who desires to know the relationship
between the various components of the computing
system. Chapter 1 introduces the parts of DECsystem-10
along with the concept of multimode computing. Chap-

ter 2 discusses the languages and utilities, those-

programs that enable the user to fully utilize the
resources of the computing system. The more detailed
Chapter 3 teaches the user the essential aspects of the
resident operating system. Chapter 4 is an extensive
glossary of terms used in describing both general and
detailed ideas associated with the DECsystem-10.
Appendix A is a survey of the DECsystem-10 hardware.

Introduction to DECsystem-10 Software is not intended

to be a programmer’s reference manual. For complete

details on the operating system, the reader is referred to

TOPS-10 Operating System Commands (DEC-10-MRDA-

D) and TOPS-10 Monitor Calls(DEC-10-MRRA-D). How-

ever, it is recommended that this manual be read at
. least once before reading the foregoing manuals.

INTRO TO SOFTWARE

INTRO TO SOFTWARE

The DECsystem-10 is more than a processor and its as-
sociated peripheral devices. Because it is a system,
there are many parts, or components, working together
to achieve a goal in a manner that is both convenient for
the user of the system and advantageous for the oper-
ation of the system. It is a machine designed to be utili-
zed concurrently by many users who wish to perform
various operations. There are three major components
of the computing system, as shown in Figure 1-1: the
actual machine, or hardware; the operating system, or
monitor; and the languages and utilities, or non-resident
software.

_
[N |

SHAREABLE
RESQURCE

ALLOCATOR

1

ACTUAL MACHINE
({HARDWARE)

SERVICE
REQUEST
HANDLER

| 1/0
SERVICE
ROUTINES

OPERATING SYSTEM

|—' (SOFTWARE)

| USER PROGRAMS
COMPILERS

ASSEMBLERS
EDITORS

.| _MEDIA
INCLUDING
TTY INPUT

METHODS OF
INPUT

NON-RESIDENT.
SOFTWARE

UTILITIES
DEBUGGING AIDS
SUPPORT PROGRAMS

L

10-0820

Figure 1-1 DECsystem-10 Components

1.1 DECsystem-10 HARDWARE

The DECsystem-10 hardware consists of one or two cen-
tral processors and various memories and input/output
devices connected to these processors. There are five
different systems included in the DECsystem-10 family,

1-1

INTRO TO SOFTWARE

CHAPTER 1
THE DECsystem-10

each sysaam being distinguished by the hardware associ-
ated with the central processor. By adding hardware to
an individual system, additional performance is
achieved. However when adding hardware to expand -
from a small system. to a larger system, no software
changes are required. A single operating system and
command control language can be used for all con-
figurations of the DECsystem-10.

1.2 DEC$ystem-10 OPERATING SYSTEM

The DECsystem-10 hardware has numerous
capabilities: it is powerful, fast, and highly sophis-
ticated. Because of its complexity, this machine is not
usually directly manipulated by its users. The users
communicate with an intermediary, the operating
system, in order to direct their problems to the actual
machine and to receive solutions back. With many users
on the system, this second component of the
DECsystem-10 must also keep track of what each user
does and the devices and system resources that each
user accesses. Though the operating system cannot be
seen like the actual machine, the action of the operating
system is the most important and noticeable part of the
system to each user. It is true that the operating system
can do nothing for the user if the actual machine does not
exist, but the user normally does not think of this. If the
operating system accomplishes for him what he wants
the actual machine to do,he is satisfied. Therefore, it is
important to the user that he can depend on the same op-
erating system regardless of the hardware that com-
poses the actual machine.

The operating system is always resident in the core
memory of the actual machine and is composed of three
parts (refer to Figure 1-1). Because there are so many
services that can be obtained from the operating
system, including the allocation of core memory,
processor time, and devices of the actual machine, one
part, the service request handler, is responsible for
accepting requests for these services. The service

INTRO TO SOFTWARE

request handler passes the requests to another part, the
sharable resource allocator, which is responsible for
allocating the services requested. If the requested ser-
vice is for use of a device, the 1/0 service routines are
then notified to carry out the user’s request.

1.3 DECsystem-10 NON-RESIDENT SOFTWARE. -

The third component of the DECsystem-10 is the non-
resident software, those programs necessary for the
varied operation of the computing system. This software
includes the compilers, assemblers, editors, debugging
programs, and operating system support programs.
These software programs reside on a high-speed mass
storage device of the actual machine and are brought
into memory when needed by a user. By utilizing the non-
resident software, the user of the computing system can
create programs, transfer them from one device to an-
other, compile, edit, execute, and debug them, and then
receive the results of execution on any specified device.

1.4 DECsystem-10 MULTIPROCESSING

The DECsystem-10 can be a single-processor system or
a dual-processor system, composed of a primary
processoranda secondary processor. Each processor in
the dual-processor system runs user programs, sched-
ules itself, and fields instruction traps. In addition to
these tasks, the primary processor also has control of all
the input/output devices and processes all requests to
the operating system. The primary processor completes
any job that the secondary processor could not finish
because of a request to the operating system. The two
processors are connected to the same memory and exe-
cute the same copy of the operating system, thereby
saving core memory over a multiprocessing system in
which each processor has its own copy. The primary
objective in the DECsystem-10 dual- -processor
environment is to provide more processing power than
that found in the single-processor DECsystem-10. This
means that with the addition of the second processor,
more users can run at the same time. Or, if more users
are not allowed on the system, the addition of the second
processor reduces the elapsed time required to com-
plete the processing of most programs.

1.5 MULTIMODE COMPUTING

The DECsystem-10.is designed for the concurrent oper-
ations of timesharing, multiprogram batch, real- time,
and remote communications in either single or dual-
proeessor systems. In providing these multifunction
capabilities, the DECsystem-10 services interactive
users, operates local and remote batch stations, and per-
forms data acquisition and control functions for on-line

-10 -

laboratories and other real-time projects. By
dynamically adjusting system operation, the
DECsystem-10 provides many features for each class of
user and is therefore able to meet a large variety of com-
putational requirements.

1.5.1 Timesharing

Timesharing takes maximum advantage of the
capabilities of the computing system by allowing many
independent users to share the facilities of the
DECsystem-10 simultaneously. Because of the inter- -
active, conversational, rapid-response nature of time-
sharing, a wide range of tasks — from solving simple
mathematical problems to implementing complete and
complex information gathering and processing
networks — can be performed by the user. The number
of users on the system at any one time depends on the
system configuration and the total computing load on the
system. DECsystem-10 timesharing is designed to allow
for up to 512 active terminals. These terminals include
CRTs and other terminals which operate at speeds of 110
to 2400 baud. Terminal users can be located at the com-
puter center or at remote locations connected to the
computer center by communication lines.

1.5.1.1 Command Control Language — By allowing
resources to be shared among users, the timesharing
environment utilizes processor time and system
resources that are wasted in single-user systems. Users
are not restricted to a small set of system resources, but
instead are provided with the full variety of facilities. By
means of his terminal, the user has on-line access to
most of the system’s features. This on-line access is
available through the operating system command con-
trol language, which is the means by which the time-
sharing user communicates with the computing system.

Through the command language, the user controls the
running of his task, or job, to achieve the results he
desires. He can create, edit, and delete his files; start,
suspend, and terminate his job; compile, execute, and
debug his program. In addition, since
multiprogramming batch software accepts the same
command language as the timesharing software, any
user can enter his program into the batch run queue.

Thus, any timesharing terminal can act as g remote job
entry terminal.

1.5.1.2 Peripheral Devices — With the command lan-
guage, the user can also request assignment of any per-
ipheral device, e.g., magnetic tape, DECtape, and
private disk pack, for his own exclusive use. When the
request for assignment is received, the operating
system verifies that the device is available to this user,

IR

-11 -

and the user is granted its private use until he
relinquishes it. In this way, the user can also have com-
plete control of devices such as card readers and
punches, paper-tape readers and punches, and line print-
ers.

1.5.1.3 Spooling — When private assignment of a slow-
speed device (e.g., card punch, line printer, paper-tape
punch, and plotter) is not required, the tser can employ
the spooling programs of the operating system. Spooling
is a method by which output to a slow-speed device is
placed on a high-speed disk or drum. This technique pre-
vents the user from using unnecessary time and space in

core while waiting for either a device to become avail- -

able or output to be completed. In addition, the device is
managed to a better degree because the users cannot tie
it up indefinitely, and the demand fluctuations ex-
perienced by these devices are equalized.

1.5.1.4 Mass Storage File System — Mass storage
devices, such as disks and drums, cannot be requested
for a user’s exclusive use, but must be shared among all
‘users. Because many users share these devices, the op-
erating system must ensure independence among the
users; one user’s actions must not affect the activities of
another unless the users desire to work together. To
guarantee such independence, the operating system
provides a file system for disks, disk packs, and drums.
Each user’s data is organized into groups of 128-word
blocks called files. The user gives a name to each of his
files, and the list of these names is kept by the operating
system for each user. The operating system is then re-
sponsible for protecting each user’s file storage from in-
trusion by unauthorized users.

In addition to allowing independent file storage for
users, the operating system permits sharing of files
among individual users. For example, programmers

working on the same project can share the same data in)

order to complete a project without duplication of effort.

-The operating system lets the user specify protection
rights, or codes, for his files. These codes designate if
other users may read the file, and after access, if the
files can be modified in any way.

The user of the DECsystem-10 is not required to pre-
allocate file storage; the operating system allocates and
deallocates the file storage space dynamically on

~ demand. Not only is this convenient for the user because
he does not have to worry about allocation when he is
creating files, but this feature also conserves storage by
preventing large portions of storage from being unnec-
essarily tied up.

INTRO TO SOFTWARE

1.5.1.5 Core Utilization — The DECsystem-10 is a
multiprogramming system; i.e., it allows multiple inde-
pendent user programs to reside simultaneously in core
and to run concurrently. This technique of sharing core
and processor time enhances the efficient operation of
the system by switching the processor from a program
that is temporarily stopped because of I/0 transmission
to a program that is executable. When core and the
processor are shared in this manner, each user’s
program has a memory area distinct from the area of
other users. Any attempt to read or change information
outside of the area a user can access immediately stops
the program and notifies the operating system.

Because available core can contain only a finite number
of programs at any one time, the computing system
employs a secondary memory, usually disk or drum, to
increase the number of users serviced. User programs
exist on the secondary memory and move into core for
execution. Programs in core exchange places with the
programs being transferred from secondary memory
for maximum use of available core. Because the trans-
ferring, or swapping, takes place directly between core
and the secondary memory, the central processor can be
operating on a user program in one part of core while
swapping is taking place in another. This independent
overlapped operation greatly improves system utili-
zation by increasing the number of users that can be
accommodated at the same time.

~

To further increase the utilization of core, the operating
system allows the users to share the same copy of a
program or data segment. This prevents the excessive
core usage that results when a program is duplicated for
several users. A program that can be shared is called a
reentrant program and is divided into two parts or
segments. One segment contains the code that is not
modified during execution (e.g., compilers and assem-
blers) and can be used by any number of users. The other
segment contains the_user’s code and data that are de-
veloped during the compiling process. The operating
system invokes protection for shared segments to guar-
antee that they are not accidentally modified.

1.5.1.6 General-Purpose Timesharing — Timesharing on
the DECsystem-10 is general purpose; i.e., the system is
designed in such a way that the command language,
input /output processing, file structures, and job sched-
uling are independent of the programming language
being used. In addition, standard software interfaces
make it easy for the user to develop his own special lan-
guages or systems. This general purpose approach is
demonstrated by the many programming languages
implemented by DECsystem-10 customers.

INTRO TO SOFTWARE

1.5.2 Multiprogram Batch

Multiprogram batch software enables the DECsystem-
10 to execute up to 14 batch jobs concurrently with
timesharing jobs. Just as the timesharing user com-
municates with the system by way of his terminal, the
batch user normally communicates by way of the card
reader. (However, he can enter his job from an inter-
active terminal.) Unlike the timesharing user, the
batch user can punch his job on cards, insert a few
appropriate control cards, and leave his job for an op-
erator to run. In addition, the user can debug his

USER
PROGRAM

QUEUE
MANAGER

-12 -

program in the timesharing environment-and then run it
in batch mode without any additional coding.

1.5.2.1 Multiprogram Batch Components — The
multiprogram batch software consists of a series of
programs: the Stacker, CDRSTK; the batch controller,
BATCON: the queue manager, QMANGR; and the
output spoolers, LPTSPL, CDPSPL, PTPSPL, and
PLTSPL (see Figure 1-2). The stacker is responsible for
reading the input from the input device and for entering
the job into the batch controller’s input queue. Although

LOCAL

REMOTE
CARD
INPUT
CARD
STACKER

CARD
STACKER

(UP TO 14 JOBS)

) St WL

ATCH

B
CONTROLLER

e -
USER JOB

QUTPUT
SPOOLERS
PTPSPL LPTSPL

CDPSPL,PLTSPL,

USER JOB I

PLOTTER ‘ ’

10-0819

Figure 1-2 Programs in the Batch System

14

-13 -

the Stacker is oriented toward card reader input, it
allows jobs to be entéred from any input device that
supports ASCII code. The input information is then sepa-
rated according to the control commands and placed
into disk files, either user data files or the batch con-
troller’s control file, for subsequent processing. In addi-
tion, the Stacker creates the job’s log file and enters a
report of its processing of the job, along with a recond of
any operator intervention during its processing. The log
file is part of the standard output that the user receives
when his job terminates.

After the Stacker reads the end-of-file and closes the

disk files, it makes an entry in the batch controller’s .

input queue. The batch controller processes batch jobs
by reading the entries in its queue. The control file
created by the Stacker is read by the batch controller,
and data and non-resident software commands are
passed directly to the user’s job. Operating system com-
mands are detected by the batch controller and passed
to the operating system for action. Most operating-
system and non-resisdent-software commands available
to the timesharing user are also available to the batch
user. Therefore, only one control language need be
learned for both timesharing and batch. During the
processing of the job and the control file, the batch con-
troller adds information to the log file for later analysis
by the user. - .

The queue manager is responsible for scheduling jobs
and maintaining both the batch controller’s input queue
and the output spooling queues. A job is scheduled to run
under the batch controller according to external prior-
ities, processing time limits, and core requirements
which are dynamically computed by the queue manager,
and according to parameters specified by the user for
his job, such as start and deadline time limits for
program execution. The queue manager makes an entry
for the job in the batch input queue based upon the
various priorities. After the job is completed, the queue
manager again schedules it for output by placing an
entry in an output queue. When the output is finished, the
job’s entry in the output queue is deleted by the queue
manager.

The output spooling programs improve system through-
put by allowing the output from a job to be written
temporarily on the disk for later transfer instead of
being written immediately on a particular output device.
The log file and all job output are placed by the queue
manager into one or more output queues to await
spooling. When the specified device is available, the
output is then processed by the appropriate spooling
program. These spooling programs may be utilized by
all users of the computing system. .

INTRO TO SOFTWARE

1.5.2.2 Batch Use of System Features — The
multiprogram batch software employs many of the com-
puting system’s features in order to operate with max-
imum efficiency. Because core memory is not
partitioned between batch and timesharing jobs, batch
jobs can occupy any available area. of core. Fast

B throughput for high priority batch jobs is accomplished

with the same swapping technique used for rapid re-
sponse to interactive users. When available core is not
large enough for a high priority batch job, the operating
system transfers programs of lower priority to secon-
dary memory in order to provide space for the job. This
I/0 transfer is done at the same time that the processor
is operating on another job. Thus, processing can be
overlapped with I/0 to utilize time that would otherwise
be wasted. Batch jobs can also share programs with
timesharing and other batch jobs. Only one copy of a
sharable program need be in core to service any number
of batch and timesharing jobs at the same time.

1.5.2.3 Flexibility of the Batch System — Multiprogram
batch allows the user a wide range of flexibility. The
Stacker normally reads from the card reader, but can
read from magnetic tape, DECtape, or disk packs in
order to create a control file on disk and to enter the job
into the batch controller’s input queue. However, a job
can be entered from an interactive terminal, in which
case the user bypasses the Stacker and creates a control
file on disk for the batch controller. The control file con-
tains the operating system commands and non-resident
software commands necessary to run the job. The user
then enters the job into the batch controller’s input
queue by way of an operating system command string.
In this command string, the user can include switches to
define the operation and set the priorities and limits on
core memory and processor time.

1.5.2.4 Job Dependency — Although jobs are entered
sequentially into the batch system, they are not neces-
sarily run in the order that they are read because of pri-
orities, either set by the user in a stacker control com-
mand or computed by the queue manager when
determining the scheduling of jobs. Occasionally, the
user may wish to submit jobs that must be executed in a
particular order; in other words, the execution of one job
is dependent on another. To ensure that jobs are exe-
cuted in the proper order, the user must specify an initial
dependency count in a control command of the depend-
ent job. This dependency count is then part of the input
queue entry. A control command in the job on which the
dependent job depends decrements the count. When the
count becomes zero, the dependent job is executed.

1.5.2.5 Error Recovery — The user can control system
response to error conditions by including in his job com-
mands to the batch controller to aid in error recovery.

INTRC TO SOFTWARE

These commands are copied into the control file by the
Stacker. With error recovery commands, the user speci-
fies the action to be taken when his program contains a
fatal error, as for example, to skip to the next program
or to transfer to a special user-written error handling
routine. If an error occurs and the user did not include
error recovery conditions in his job, the batch controller
initiates a standard dump of the user’s core area and
terminates the job. This core dump provides the user
with the means to.debug his program.

Although the batch system allows a large number of
parameters to be specified, it is capable of operating
with very few user-specified values. If a parameter is
missing, the batch system supplies a reasonable default
value. These defaults ean be modified by the individual
installations.

1.5.2.6 Operator Intervention — Normal operating func-
tions performed by the programs in the batch system
require little or no operator intervention; however, the
operator can exercise a great deal of control if neces-
sary. He can specify the number of system resources to
be dedicated to batch processing by limiting the number
of programs and both the core and processor time for in-

— 14 -

dividual programs. He can stop a job at any point,

requeue it, and then change its priorities. By examining
the system queues, he can determine the status of all
batch jobs. In addition, the programs in the batch
system can communicate information to the operator
and record a disk log of all messages printed at the oper-
ator’s console. All operator intervention during the
running of the stacker and the batch controller causes
messages to be written in the user’s log file, as well as in
the operator’s log file, for later analysis.

1.5.3 Real-Time

- For a system to be satisfactory for real-time appli-
cations, two important requirements must be met. The
more important requirement is fast response time.
Because real-time devices cannot store their informa-
tion until the computing system is ready to accept it, the
system would be useless for real-time if the response
requirements of a real-time project could not be satis-
fied. The operating system must allocate system
resources dynamically in order to satisfy the response
and computational requirements of real-time jobs
without affecting the simultaneous operations of time-
sharing and batch jobs. As part of its normal operation,
the DECsystem-10 operating system satisfies this re-
sponse requirement by overlapping 1/O operations with
processing time and by reacting to a constantly chang-
ing system load quickly and efficiently.

The second requirement is protection. Each user of the '
computing system must be protected from other users,
just as the system itself is protected from all user
program errors. In addition, since real-time systems
have special real-time devices associated with jobs, the
computing system must be protected from hardware
faults that could cause system breakdown. And, because
protection is part of the function of the operating
system, the real-time software employs this feature to
protect users as well as itself against hardware and soft-
ware [ailures. Therefore, inherent in the operating
system is the capability of real-time, and it is by way of
calls to the operating system that the user obtains real-
time services. The services obtained by calls within the
user’s program include 1) locking a job in core, 2) con-
necting a real-time device to the priority interrupt
system, 3) placing a job in a high-priority run queue, 4)
initiating the execution of FORTRAN or machine lan-
guage code on receipt of an interrupt, and 5) dis-
connecting a real-time device from the priority inter-
rupt system.

1.5.3.1 Locking Jobs — Memory space is occupied by the
resident operating system and by a mix of real-time and
non-real-time jobs. The only fixed partition is between
the resident operating system and the remainder of
memory. Since a real-time job needs to be'in memory so
as not to lose information when its associated real-time
device interrupts, the job can request that it be locked
into core. This means that the job is not to be swapped to
secondary memory and guarantees that the job is read-
ily available when needed. The operating system
optimizes the placement of the job by positioning it in
core so as to obtain thie maximum amount of contiguous
core space in the remaining memory. Because memory
is not divided into fixed partitions, it can be utilized to a
better degree by dynamically allocating more space to
real-time jobs when real-time demands are high. As
real-time demands lessen, rore memory can be made
-available to timesharing and batch usage.

1.5.3.2 Real-Time Devices — The real-time user can con-
nect real-time devices to the priority interrupt system,
respond to these devices at interrupt level, remove the
devices from the interrupt system, and/or change the
priority interrupt level on which these devices are as-
signed. There is no requirement that these devices be
connected at system generation time. The user specifies
both the names of the devices generating the interrupts
and the priority levels on which the devices function. The
operating system then links the devices to the interrupt
system.

-15-

The user can control the real-time device in one of ‘two
ways: single mode or block mode. In single mode,. the
user’s interrupt program-is run every time the real-time
device interrupts. In block mode, the user’s interrupt
program is run after an entire block of data has been
read from the real-time device. When the interrupt
occurs from the device in single mode or at the end of a
block of data in block mode, the operating system saves
the current state of the machine and jumps to the user’s
interrupt routine. The user services his device and then
returns control to the operating system to restore the
previous state of the machine and to dismiss the inter-
rupt. Any number of real-time devices may be placed on
any available priority interrupt channel.

1.5.3.3 High-priority Run Queues — The real-time user
can receive faster response by placing jobs in high-prior-
ty run queues. These queues are examined before all oth-
er run queues in the computing system, and any run-
nable job in a high-priority queue is executed before jobs
in other queues. In addition, jobs in high-priority queues
are not swapped to secondary memory until all other
queues have been scanned. When jobs in a high-priority
queue are to be swapped, the lowest priority job is
swapped first and the highest priority job last. The high-
est priority job swapped to secondary memory is the
first job to be brought into core for immediate execution.
Therefore, in addition to being scanned before all other
queues for job execution, the high-priority queues are
examined after all other queues for swapping to secon-
dary memory and before all other queues for swapping
from secondary memory.

1.5.3.4 Job Communication — The DECsystem-10 oper-
ating system enables a real-time user to communicate
with other jobs through the use of sharable data areas.
This also enables a data analysis program, for example;
toread or write an area in the real-time job’s core space.
Since the real-time job associated with the data
acquisition would be locked in core, the data analysis™
program residing on secondary memory would become
core resident only when the real-time job had filled a
core buffer with data. Operating system calls can be
used to allow the data analysis program to remain
dormant on secondary memory until a specified event
occurs in the real-time job, e.g., a buffer has been filled
with data for the data analysis program to read. When
the specified event occurs, the dormant program is then
activated to process the data. The core space for the
real-time job’s buffer area or the space for the dormant
job does not need to be reserved at system generation
time. The hardware working in conjunction with the op-
erating system’s core management facilities provides
optimum core usage.

1-7

INTRO TO SOFTWARE
1.5.4 Remote Communications

Until the capability of remote communications was
implemented, each remote user of the PDP-10 had been
individually linked to the computer center by separate
long distance telephone lines. Also, the only device that
the remote user had available at his location was the
terminal; he was able to utilize available devices at the
central station, but he could not obtain output other than
his terminal output at his remote site. Either he had to
travel to the central station to obtain a listing or he had
to have the listings delivered to him. However, with
remote communications hardware and software, listing
files and data can be sent via a single synchronous full-
duplex line to a small remote computer, which in turn
services many remote peripherals, including terminals,
card readers, and line printers. This eliminates the need
for the user to travel to the central site to obtain his
output. The remote computer and its associated per-
ipherals constitute a remote station.

Remote station use of the central computer is
essentially the same as local use. All sharable programs
and peripherals available to local users at the central
computer station are also available to remote users. The
remote user specifies the resources he wants to use and,
if available, they are then allocated in the same manner
as to a local user. In addition to utilizing the peripherals
at the central station, the remote user can access
devices located at his station or at another remote
station. Local users at the central station can also make
use of the peripherals at remote stations. Therefore, by
specifying a station number in appropriate commands to
the operating system, each user of the DECsystem-10 is
given considerable flexibility in allocating system facil-
ities and in directing input and output to the station of his
choice.

The DECsystem-10 allows for simultaneous operation of
multiple remote stations. Software provisions are in-
corporated in the operating system to differentiate one
remote station from another. By utilizing peripheral
devices at various stations, the user is provided with in-
creased capabilities. For example, data can be collected
from various remote stations, compiled and processed
at the central station, and then the results of the
processing can be sent to all contributors of the data.

Operating system commands not only allow a user to
access peripherals at other remote stations, but also
allow him to pretend that his job is at a remote station

-

INTRO TO SOFTWARE

different from the physical station at which he is
actually located. In this case, the user has a logical
station and can run entire jobs from this station. With
this capability, a local user at the central station could
become a remote user as far as the system was con-
cerned by changing the location of his job to a remote
station in contact with the central station.

-16 -

In summary, any computer, regardless of how powerful,
is only as good as the operating system that maximizes
its capabilities. The DECsystem-10 enhances the speed,
power, and flexibility of the PDP-10 by dynamically re-
sponding to the changing user load and, in doing so,
provides the user with a truly flexible and easily-used
computing system.

-17 -

INTRO TO SOFTWARE

CHAPTER 2

NON-RESIDENT SYSTEM SOFTWARE

For the computer to execute any of the basic operations
which it is capable of executing, it must be told which op-
eration it is to perform and where to find the information
on which to perform the operation. This requires that a
language be established by which the user can indicate
to the computer what it needs to know. This language is
the machine language of the computer and is unique for
each machine. This machine language is the means by
which the computer’s circuits are instructed to perform
the desired operation and because of this, it is the fastest
and most direct method of programming. However, ma-
chine language programming is not the easiest method
of programming for most users to employ. Although it is
not impossible to memorize all of the operation codes
recognized by the computer, it can be very difficult for
the programmer to remember where each piece of infor-
mation is inside memory in order to direct the computer
to it. Therefore, symbolic language programming was
developed to aid the programmer in manipulating the
computer.

With symbolic language programming, programs are
written using symbols which, when translated, equal the
machine language of the computer. Symbol operation
codes (mnemonics that specify which operation the user
wants the computer to perform) are translated to the
actual, or absolute, operation codes that the computer
understands. Addresses of core are designated with
symbolic labels and are converted into absolute core ad-
dresses so that the computer can locate the information
on which to perform the desired operation.

There are three kinds of translators used in symbolic
language programming: assemblers, compilers, and in-
terpreters. An assembler is a program that is able to
take another program written in symbolic language and
translateit, item by item, into machine language. There-
fore, to assemble a program means to substitute one
absolute value for one symbolic notation until the entire
program has been translated. A compiler also translates

a symbolic language program into a machine language
program, but the' substitution is not one-to-one. A
program written in a compiler language is freer in
format than an assembly language program, and the lan-
guage elements usually resemble English words. The
compiler is larger and more complex than most assem-
blers, because it translates a program that is farther
away from the machine language. Generaily, one state-
ment written in a compiler language is translated into
several machine language instructions. Although a com-
piler occupies more space in memory and is generally
slower than an assembler, a program written in a com-
piler language is more compatible with other computer

" models, and the language itself is easier to learn and

write because of its general statements and freer
format. An interpreter differs from an assembler or a
compiler in that a binary version of the program is not
produced for storage. In other words, the source text is
translated to machine language everytime it is used, al-
lowing for extensive checking of errors during execu-
tion.

2.1 DECsystem-10 ASSEMBLER

MACRO is the symbolic assembly program on the
DECsystem-10. It makes machine language
programming easier and faster for the user by (1) trans-
lating symbolic operation codes in the source program
into the bihary codes needed in machine language in-
structions, (2) relating symbols specified by the user to
numeric values, (3) assigning absolute core addresses to
the symbolic addresses of program instructions and
data, and (4) preparing an output listing of the program
which includes any errors detected dm'mg the assembly
process.

MACRO programs consist of a series of statements that
are usually prepared on the user’s terminal with a
system editirnig program. The elements in each state-
ment do not have to be placed in certain columns nor
must they be separated in a rigid fashion. The assembler

INTRO TO SOFTWARE

interprets and processes these statements, generates
binary instructions or data words, and performs the as-
sembly.

MACROis a two-pass assembler. This means that the as-
sembler reads the source program twice. Basically, on
the first pass, all symbols are defined and placed in the
symbol table with their numeric values, and on the
second pass, the binary (machine) code is generated.
Although not as fast as a one-pass assembler, MACRO is
more efficient in that less core is used in generating the
machine language code and the output to the user is not
as long.

MACRO is a device-independent program; it allows the
user to select at runtime standard peripheral devices for
input and output files. For example, input of the source
program can come from the user’s terminal and output
of the assembled binary program can go to a magnetic
tape, and output of the program listing can go to the line
printer.

The MACRO assembler contains powerful macro
capabilities that allow the user to create new language

elements. This capability is useful when a sequence of .

code is used several times with only the arguments
changed. The code sequence is defined with dummy
arguments as a macro instruction. Thus, a single state-
ment in the source program referring to the macro by
name, along with a list of the real arguments, generates
the correct and entire sequence. This capability allows
for the expansion and adaptation of the assembler in
order to perform specialized functions for each
programming job. .

2.2 DECsystem-10 COMPILERS
2.2.1 ALGOL

The ALGOrithmic Language, ALGOL, is a scientific lan-
guage designed for describing computational processes,
or algorithms. It is a problem-solving language in which
the problem is expressed as complete and precise state-
ments of a procedure.

The DECsystem-10 ALGOL system is based on ALGOL-
60. It is composed of the ALGOL processor, or compiler,
and the ALGOL object time system. The compiler is re-
sponsible for reading programs written in the ALGOL
language and converting these programs into machine
language. Also any errors the user made in writing his
program are detected by the compiler and passed on to
the user.

2-2

-18 -

The ALGOL object time system provides special ser-
vices, including the input/output service, for the com-
piled ALGOL program. Part of the object time system
is the ALGOL library -a set of routines that the user’s
program can call in order to perform calculations.
These include the mathematical functions and the
string and data transmission routines. These routines
are loaded with the user’s program when required;
the user need only make a call to them. The
remainder of the object time system is responsible for
the running of the program and providing services for
system resources, such as core allocation and man-
agement and assignment of peripheral devices.

2.2.2 BASIC

The Beginner’s All-purpose Symbolic Instruction Code,
BASIC, is a problem-solving language that is easy to
learn because of its conversational nature. It is
particularly suited to a timesharing environment
because of the ease of interaction between the user
and the computer. This language can be used to solve
problems with varying degrees of complexity, and
thus, has wide application in the educational, business,
and scientific markets.

BASIC is one of the simplest of the programming com-
piler languages available because of the small number
of clearly understandable and readily learned com-
mands that are required for solving almost any problem.
The BASIC language is divided into two sections: one
section of elementary commands that the user must
know in order to write simple programs and the second
section of advanced techniques for efficient and well-or-
ganized programs. . ’

The BASIC user types in computational procedures as a
series of numbered statements that are composed of
common English terms and standard mathematical
notation. When the statements are entered, a run-type
command initiates the execution of the program and
returns the results almost instantaneously.

The BASIC system has several special features built into
its design. For one, BASIC contains its own editing facil-
ities. Existing programs and data files can be modified
directly with BASIC instead of with a system editor by
adding or deleting lines, by renaming the file, or by
resequencing the line numbers. The user can comhine
two files into one and request a listing of all or part of the
file on either the line printer or the terminal. Secondly,
BASIC allows various peripheral devices to be used for
storage or retrieval of programs and data files. The user
can input programs or data files from the paper-tape
reader on the terminal or output them to the terminal’s

-19 -

paper-tape punch. Also, the data file capability allows a
program to read information from or write information
to the disk. Thirdly, output to the terminal can be
formatted by including tabs, spaces, and columnar head-
ings. Finally, BASIC has an expanded command set that
includes commands designed exclusively for matrix
computations. Elementary mathematical functions are
contained in the command set along with methods by
which the user can define his own functions.

2.2,3COBOL

The COmmon Business Oriented Language, COBOL, is
an industry-wide data processing language that is de-
signed for business applications, such as payroll, in-
ventory control, and accounts-receivable.

Because COBOL programs are written in terms that are
familiar to the business user, he can easily describe the
formats of his data and the actions to be performed on
this data in simple English-like statements. Therefore,
programming training is minimal, COBOL programs
are self-documenting, and programming of desired ap-
plications is accomplished quickly and easily.

The COBOL system is composed of a number of soft-
ware components. The first is the COBOL compiler
which is responsible for initializing the program,
scanning the command strings for correct syntax, gen-
erating the code, listing, and final assembly. The sec-
ond component is the object time system, LIBOL,
which consists of subroutines used by the code gener-
ated by the compiler. These subroutines inciude the
1/0, conversion, comparison, and mathematical rou-
tines available to the COBOL user. Another component
is the source library maintenance program, which
builds and maintains a library of source language
entries that can be included in the user’s source
program at compile time. A fourth component is the
stand-alone report generator, COBRG, which produces
COBOL source programs, which when compiled. and
loaded, generate reports. The stand-alone program,
SORT, accepts commands from the user’s terminal in
order to perform simple sorting of files. The RERUN
program is used to restart a COBOL program that was
interrupted during execution because of a system fail-

ure, device error, or disk quota error. COBDDT is a,

utility that debugs COBOL programs. Finally, ISAM
builds and maintains indexed sequential files for the
user.

DECsystem-10 COBOL accepts two source program
formats: conventional format and standard format. The.
conventional format is employed when the user desires
his source programs to be compatible with other COBOL

INTRO TO SOFTWARE

compilers. This is the format normally used when input
is from the card reader. The standard formatis provided
for users who are familiar with the format used in
DECsystem-10 operations. It differs from conventional
format in that sequence numbers and identification are
not used because most DECsystem-10 programs require
neither. The compiler assumes that the source program
is written in standard format unless the appropriate
switch is included in the command string to the compiler
or the special sequence numbers created by the sym-
bolic editor LINED are detected by the compiler.

DECsystem-10 COBOL is the highest level of ANSI CO-
BOL available and because it operates within the oper-
ating system, it offers the user the many features of the
DECsystem-10 in addition to the business processing ca-
pability of the language. These features enable the CO-
BOL user to run programs in either, or both, timesharing
or batch processing environments, to perform on-line
editing and debugging of his programs with the system
programs available, to choose various peripheral de-
vices for input and output, and to write programs that
can be shared with other users.

2.2.4FORTRAN

The FORmula TRANSlator language, FORTRAN, is the
most widely used procedure-oriented programming lan-
guage. It is designed for solving scientific-type problems
and thus is composed of mathematical-like statements
constructed in accordance with precisely formulated
rules. Therefore, programs written in the FORTRAN
language consist of meaningful sequences of these state-
ments that are intended to direct the computer to per-
form the specified computations.

FORTRAN has a varied use in every segment of the
computer market. Universities find that FORTRAN is a
good language with which to teach students how to solve
problems via the computer. Scientific markets rely on
FORTRAN because of the ease in which scientific
problems can be expressed. In addition, FORTRAN is
used as the primary data processing language by time-
sharing utilities. :

Because of this wide' market, DECsystem-10 FORTRAN
is designed to meet the needs of all users. The
FORTRAN system is easy to use in either the time-
sharing or batch processing environments. Under time-
sharing, the user operates in an interactive editing and
debugging environment. Under batch processing, the
user submits his program through the

[INTRO TO SOFTWARE

multiprogram batch software in order to have the com-
piling, loading, and executing phases performed without
his intervention.

FORTRAN programs can be entered into the FORTRAN

system from a number of devices: disk, magnetic tape,

DECtape, user terminal, paper-tape reader, and card
reader. In addition to data files created by FORTRAN,
the user can submit data files or FORTRAN source files
created by the system programs LINED, PIP, or TECO.
The data files contain the data needed by the user’s
object program during execution. The source files con-
tain the FORTRAN sotirce text to be compiled by the
FORTRAN compiler. Commands are entered directly to
the FORTRAN compiler with a run-type command or in-
directly through a system utility program that accepts
and interprets the user’s command string and passes it
to the compiler. Output can then be received on the
user’s terminal, disk, DECtape, magnetic tape, card
punch, or paper-tape punch.

2.3 DECsystem-10 INTERPRETER

The Algebraic Interpretive Dialogue, AID, is the
DECsystem-10 adaptation of the language elements of
JOSS, a program develdped by the RAND Corporation.
To write a program in the ATD language requires no pre-
vious programming experience. Commands to AID are
typed in via the user’s terminal as imperative English
sentences. Each command occupies one line and can be
executed immediately or stored as part of a routine for
later execution. The beginning of each command is a
verb taken from the set of AID verbs. These verbs allow
the user to read, store, and delete items in storage; halt
the current processing and either resume or cancel exe-
cution; type information on his terminal; and define
arithmetic formulas and functions for repetitive use that
are not provided for in the language. However, many
common algebraic and geometric functions are pro-
vided for the user’s convenience.)

The AID program is device-independent. The user can
create external files for storage of subroutines and data
for subsequent recall and use. These files may be stored
on any retrievable storage media, but for accessibility
and speed, most files are stored on disk.

2.4 DECsystem-10 EDITORS
2.4.1 LINED
The line editor for disk files, LINED, is used to create

and edit source files written in ASCII code with line
numbers appended. These line numbers allow LINED to

-20 -

reference aline in the file at any time without having the
user close and then reopen the file. The user has the
option of either specifying the beginning line number and
the increment to the next line number when inserting
lines or allowing LINED to assume a beginning line
number and increment if the user specification is
omitted.

Commands to LINED allow the user to create a new file
or edit an existing file by inserting, replacing, or deleting
lines within the file. Single or multiple lines of the file
can be printed on the user’s terminal for an aid in
editing. When the user has the file as he desires, he
closes the file and can either open a new file or return to
monitor level to assemble or compile his file.

2.4.2TECO

The Text Editor and COrrector program, TECO, is a
powerful editor used to edit any ASCII text file with a
minimum of effort. TECO commands can be separated
into two groups: one group of elementary commands
that can be applied to most editing tasks, and the larger
set of sophisticated commands for character string
searching, text block movement, conditional com-

. mands, programmed editing, and command repetition.

2-4

TECO is a character-oriented editor. This means that
one or more characters in a line can be changed without
retyping the remainder of the line. TECO has the
capability to edit any source document: programs writ-
ten in MACRO, FORTRAN, COBOL, ALGOL, or any

- other source language; specification; memoranda; and

other types of arbitrarily-formatted text. The TECO
program does not require that line numbers or other spe-
cial formatting be associated with the text.

Editing is performed by TECO via an editing buffer,
which is a section within TECO’s core area. Editing is
accomplished by reading text from any device (except a
user’s terminal) into the editing buffer (inputting), by
modifying the text in the buffer with data received from
either the user’s terminal or a command file (inserting),
and by writing the modified text in the buffer to an
output file (outputting).

A position indicator, or buffer pointer, is used to locate
characters within the buffer and its position determines
the effect of many of TECO’s commands. It is always
positioned before the first character, between two char-
acters, or after the last character in the buffer. Various
commands, such as insertion commands, always take
place at the current position of the buffer pointer.

21 -

Commands to TECO manipulate data within the editing
buffer. Input and output commands read data from the
input file into the buffer and output data from the buffer
to the output file. One or more characters can be._in-
serted into the editing buffer, deleted from the buffer,
searched for, and or typed out with commands from the
user at his terminal. In addition, the user can employ
iteration commands to execute a sequence of commands
repeatedly and conditional execution commands to
create conditional branches and skips.

2.4.3 SOUP

The SOftware Updating Package, SOUP, is a set of
programs that facilitates the updating of system or user
source files. Because software is constantly being up-
dated to reflect changes and improvements made by
DEC, a method to make the updating process easier and
faster for all concerned was developed. SOUP enables
-DEC to distribute a file containing only the differences
to the software routine instead of redistributing the
entire routine. In addition, since customers frequently
maintain system files that are modified to reflect their

individual needs, SOUP can be used to update these mod- -

ified files as well. Although SOUP was implemented to
update system files, it can be employed to update any
source file with more than one version.

The SOftware Updating Package consists of three
programs. The first program, CAM, is responsible for 1)
comparing the new version of DEC’s system file to the
previous version to produce a correction file, and 2)
merging two correction files derived from the same
system file to produce a single correction file. The
correction file contains a series of editing changes that
reflect the differences between the old and new versions
of the system files. The two functions of CAM can be per-
formed simultaneously or one at a time depending on the
user’s command string to CAM.

The second program ,.COMPl(), is used when the custom-
er has modified DEC’s file to such an extent that CAM
cannot compare the modified file to the original file due
to buffer overflow. COMP10 has extremely large buffers
and can, therefore, be used to generate the correction
file. .

The third program, FED, reads the correction file and
edits the copy of the system file by making the changes
indicated in the correction file. When FED has com-
pleted its processing, the user has an updated file. As a
software manufacturer, DEC sends the user a
correction file, and he, in turn, need only run the FED
program in order to update his system files.

INTRO TO SOFTWARE

2.4.4RUNOFF

RUNOFTF facilitates preparing typed or printed manu-
scripts by performing line justification, page
numbering, titling, indexing, formatting, and case
shifting as directed by the user. The user creates a file
with TECO or LINED and inputs his material through
his terminal. In addition to inputting the text, the user in-

_cludes information for formatting and case shifting.

RUNOFF processes the file and produces the final
formatted file to be output to the terminal, the line print-
er, or to another file. ’

© With RUNOFF, large amounts of material can be in-

serted into or deleted from the file without retyping the
unchanged text. After the group of modifications have
been added to the file, RUNOFF produces a new copy of
the file which is properly paged and formatted.

2.5 DECsystem-10 UTILITIES

2.5.1 CREF

The cross-reference listing program, CREF, is an aid in

‘program debugging and modification. It produces a

sequence-numbered assembly listing followed by tables
showing cross-references of all operand-type symbols,
all user-defined operators, and all machine op codes and
pseudo-op codes.

The input to CREF is a modified assembly listing
created during assembly or compilation. The command
string entered by the user specifies the device on which
this assembly listing is located along with the output
device on which to list the cross-reference tables and as-
sembly listing. Switches can also be included in the com-
mand string in order to control magnetic tape
positioning and to select specific sections of the listing
output.

2.5.2DDT

The Dynamic Debugging Technique, DDT, is used for
on-line program composition of object programs and for
on-line checkout and testing of these programs. For ex-
ample, the user can perform rapid checkout of a new
program by making a change resulting from an error
detected by DDT and then immediately executing that
section of the program for testing.

After the source program has been compiled or assem-
bled, the binary object program with its table of defined
symbols is loaded with DDT. In command strings to

INTRO TO SOFTWARE

DDT, the user can specify locations in his program, or
breakpoints, where DDT is to suspend execution in order
to accept further commands. In this way, the user can
ckeck out his program section-by-section and if an error
occurs, insert the corrected code immediately. Either
before DDT begins execution or at breakpoints, the user
can examine and modify the contents of any location. In-
sertions and deletions can be in source language code or
in various numeric and text modes. DDT also performs
searches, gives conditional dumps, and calls user-coded
debugging subroutines at breakpoint locations.

2.5.3 File Backup

The file backup system enables the user to recover from
a system failure or other unintentional destruction of
data on the disk by 1) preserving disk files on a storage
medium and 2) later retrieving these files and placing
them back onto the disk. Two system programs are in-
volved in this storage and retrieval system: the
BACKUP program used to save the disk files on the spec-
ified storage device, and the RESTORE program used to
return these files to the disk. Using the BACKUP
program, the user can save individual disk files or the
entire disk on magnetic tape, DECtape, or disk. When
restoring these saved files to the disk with the RE-
STORE program, the user can return the entire contents
of the storage device to the disk or return only selected
portions.

2,54 FILEX

The file transfer program, FILEX, converts between
various core image formats and reads or writes various
DECtape directory formats and standard disk files.
Files are transferred as 36-bit binary data with no
processing performed on the data except that necessary
to convert the core image representation. The core
image formats that can be used in conversions are: 1)
saved-file format, 2) expanded core image file format,
3) dump format, 4) simple block format (Project MAC’s
equivalent of DEC’s .SAV format), and 5) binary file
format. The desired core image format is determined by
the specific extension associated with the file but this ex-
tension may be overridden by the use of switches in com-
mand strings to FILEX.

DECtapes can be read or written in binary, PDP-6
DECtape format, MIT Project MAC PDP-6/10 DECtape
format, PDP-11, or PDP-15 format. In the latter two
cases, ASCII files will be converted. The DEClape can
be processed quickly via a disk scraich file, which is a
much faster method for a tape with many files. This

26

-92 -

scratch file can be preserved and reused in later com-
mand strings. In addition, the DECtape directory can be
listed on the user’s terminal or zeroed in the appropriate
format on the tape. These DECtape format and
processing specifiers are indicated by command string
switches.

2.5.5 LOADER

The LOADER provides automatic loading and
relocation of binary programs generated by the stan-
dard DEC compilers and assemblers, produces an
optional storage map, and performs loading and library
searching regardless of the input medium. In addition,
this program loads and links relocatable binary
programs generated by the compilers and assemblers
prior to execution and generates a symbol table in core
for execution with DDT. ’

The user specifies in the LOADER command string the
device from which the relocatable binary programs are
to be loaded and the device on which any storage maps or
undefined globals are written. Switches can be included
in the command string 1) to specify the types of symbols
to be loaded or listed, 2) to indicate that the run time li-
braries are to be searched for symbol definitions, 3) to
load the DDT program, and 4) to clear and restart the
LOADER. In addition, special switches allow the user to
create CHAIN files—a feature used to segement
FORTRAN programs that are too large to be loaded into
core as one unit. These CHAIN files consist of complete
programs and subroutines that can be read into core and
executed as needed.

When the loading process is completed, the loaded
program can be written onto an output device with a
monitor SAVE command so that it can be executed at a
later time without rerunning the LOADER.

2.5.6 PIP

The Peripheral Interchange Program, PIP, is used to
transfer data files from one I/O device to another. Com-
mands to PIP are formatted to accept any number of
input (source) devices and one output (destination)
device. Files can be transferred from one or more
source devices to the destination device as either one
combined file or individual files. Switches contained in
the command string to PIP provide the user with the fol-
lowing capabilities: 1) naming the files to be trans-
ferred, 2) editing data in any of the input files, 3) defining
the mode of transfer, 4) manipulating the directory of a
device if it has a directory, 5) controlling magnetic tape
and card punch functions, and 6) recovering from errors
during processing. .

-23 -

2.6 DECsystem-10 MONITOR SUPPORT PROGRAMS

2.6.1 MONGEN

The monitor generator, MONGEN, is a dialogue’

program that enables the system programmer to define

the hardware configuration of his individual installation'

and the set of software options that he wishes to select
for his system. This program is a prerequisite for
creating a new monitor.

The system programmer defines his configuration in
one of four dialogues by answering MONGEN’s ques-
tions in conversational mode. MONGEN transmits one
question at a time to the user’s terminal, and the user
answers appropriately depending on the content of each
question. After all questions have been answered,
MONGEN produces MACRO source files containing the
user’s answers. These source files are then assembled
and loaded with the symbol definition file and the
monitor data base to yield a monitor tailored tothe indi-
vidual installation.

2.6.2 OPSER

The operator service program, OPSER, facilitates
multiple job control from a single terminal by allowing
the operator or the user to initiate several jobs, called
subjobs, from his terminal. The OPSER program acts as
the supervisor of the various subjobs by allowing
monitor-level and user-level commands to be passed to
all of the subjobs or to individually selected subjobs.
Output from the various subjobs can then be retrieved by
OPSER.

INTRO TO SOFTWARE

The subjobs of OPSER run-on pseudo-TTYs, a simulated
terminal not defined by hardware. All initializations of
the pseudo-TTYs are performed by OPSER; the oper-
ator need only supply a subjob name. By running system
programs, which ordinarily require a dedicated
terminal, as subjobs of OPSER, output from the various
programs can be concentrated on one hardware

- terminal instead of many. In addition, OPSER is able to

maintain an 1/0 link between the running jobs and the
operator—a feature that is not available when programs
run on their own dedicated terminals.

2.6.3LOGIN -

LOGIN is the system program used to gain access to the
DECsystem-10. This program determines by

-appropriate dialogue with the user who he is, whether or

not he is currently authorized to use the system, and if
s0, establishes the user’s initial profile, informs him of
any messages -of the day, and reports any errors
detected in his disk files.

2,6.4KJOB-LOGOUT

The system programs KJOB and LOGOUT are used
when leaving the DECsystem-10. Their many functions
include saving the user’s disk files in the state in which
he desires them, enforcing logged-out quotas on all disk
file structures, terminating the user’s job, and returning
the resources allocated to the user back to the system.
These resources include the user’s job number, his
allocated I/0 devices, and his allocated core.

INTRO TO SOFTWARE - =24 -

-25

INTRO TO SOFTWARE

CHAPTER 3

THE RESIDENT O‘PERAT'ING SYSTEM

The resident operating system is made up of a number of
separate and somewhat independent parts, or routines
(see Figure 3-1). Some of these routines are cyclic in
nature and are repeated at every system clock interrupt
(tick) to ensure that every user of the computing system
is receiving his requested services. These cyclic rou-
tines are: ‘

1) the command processor, or decoder
2) the scheduler, and
3) the swapper.

The command decoder is responsible for interpreting
commands typed by the user on his terminal and passing
them to the appropriate system program or routine. The
scheduler decides which user is to run in the interval be-
tween the clock interrupts, allocates sharable system
resources, and saves and restores conditions needed to
start a program interrupted by the clock. The swapper
rotates user jobs between secondary memory (usually
disk or drum) and core memory after deciding which
jobs should be in core but are not. These routines con-
stitute the part of the operating system that allows many
jobs to be operating simultaneously.

The non-cyclic routines of the operating system are in-
voked only by user programs and are responsible for
providing these programs with the services available
through the operating system. These routines are: ,

1) the UUO handler,
2) the input output routines, and
3) the file handler.

The UUO handler is the means by which the user
program communicates with the operating system in
order to have a service performed. Communication is by
way of programmed operators (also known as UUOs)
contained in the user program which, when executed, go

3-1

to the operating system for processing. The input / out-
put routines are the routines responsible for directing
data transfers between peripheral devices and user
brograms in core memory. These routines are invoked
through the UUO handler, thus saving the user the
detailed programming needed to control peripheral
devices. The file handler adds permanent user storage to
the computing system by allowing users to store named
programs and data as files.

3.1 THE COMMAND DECODER

The command decoder is the communications link be-
tween the user at his terminal and the operating system.
Because all requests for system resources are initiated
via the command decoder, it is the most visible part of
the system to each user. When the user types commands
and/ or requests on his terminal, the characters are
stored in an input buffer in the operating system. The
command decoder examines these characters in the
buffer, checks them for correct syntax, and invokes the
System program or user program as specified by the
command. ,

On each clockinterrupt, control is given to the command
decoder to interpret and process one command in the
input buffer. The command appearing in the input buffer
is matched with the table of valid commands accepted
by the operating system. A match occurs if the com-
mand typedin exactly matches a command stored in the
system, or if the characters typed in match the begin-
ning characters of only ene command. When the match

_is successful, the legality information (or flags) associ-

ated with the command is checked to see if the command
can be performed immediately. For instance, a com-
mand can be delayed if the job is swapped out to the disk
and the command requires that the Jjob be resident in
core; the command is executed on a later clock interrupt
when the job is back in core. If all conditions as specified
by the legality flags are met, control is passed to the
appropriate program.

INTRO TQ SOFTWARE

. l OTHER]
TTY's DEVICES

r—.— —
SCANNER OTHER
SERVICE SERVICE
I ROUTINE ROUTINES
L | S— — ——— C— —— —
uuo
HANDLER

26 -

ROTATING
MEMORY

—— _-_l

Rﬁ%agwf INPUT-OUTPUT
TR

ek -—'—‘ OUTINES

—_—]

FILE

| C T T

COMMAND
l DECODER

l
I ——

USER
PROGRAM

HANDLER

I SWAPPER }——— |

SCHEDULER
AND
RESOURCE
ALLOCATOR

CYCLIC
ROUTINES

]

10-0821

Figure3-1 The Resident Operating System

3.2 THE SCHEDULER

The DECsystem-10 is a multiprogramming system; i.e.,
it allows several user jobs to reside in core simulta-
neously and to operate sequentially. It is then the job of
the scheduler to decide which jobs should run at any
given time: In addition to the multiprogramming fea-
ture, the DECsystem-10 employs a swapping technique
whereby jobs can exist on an external storage device
(e.g., disk or drum) as well as in core. Therefore, the
scheduler decides not only what job is to be run next but
also when a job is to be swapped out onto disk or drum
and later brought back into core. .

All jobs in the system are retained in ordered groupings
called queues . These queues have various priorities that
reflect the status of each job at any given moment. The
queue in which a job is placed depends on the system
resource for which it is waiting and, because a job can
wait for only one resource at a time, it can be in only one

queue at a time. Several of the possible queues in the sys-
tem are:

1) run queues for jobs waiting for, or jobsin ex-
ecution.

2) 1/0 wait queues for jobs waiting for data
transfers to be completed. "

3) I/O wait satisfied queues for jobs waiting t
run after data transfers have been com-
pleted.

4) resource wait queues for jobs waiting for
some system resource, and

5) null queue for all job numbers that are not
currently being used.

The job’s position within certain queues determines the
priority of the job with respect to other jobs in the same
gueue. For example, if a job is first in the queue for a

" sharable device, it has the highest priority for the device
_ when it becomes available. However, if a jobisin an I/Q

-927 -

wait queue, it remains in the queue until the I/0 is com-

pleted. Therefore, in an 1/0 wait queue, the job’s
position has no significance. The status of a job is
changed each time it is placed into a different queue.

INTRO TO SOFTWARE

In buffered modes, each buffer contains information to

" prevent the user and the device from using the same

The scheduling of jobs into different queues is governed -

by the system clock. This clock divides the time for the
central processor into one-sixtieths of a second. Each
job, when it is assigned to run, is given a time slice of a
1/2 second or two seconds, depending on the run queue.
When the time slice expires for the job, the clock notifies
the central processor and scheduling is performed. The
job whose time slice just expired is moved into another
run queue, and the scheduler selects the first job in the
run queue to run in the next time slice. :

Scheduling may be forced before the time slice has ex-
pired if the currently running job reaches a point at
which it cannot immediately continue. Whenever an op-
erating system routine discovers that it cannot complete
a function requested by the job (e.g., it is waiting for I/0
to complete or the job needs a device which it currently
does not have), it calls the scheduler so that another job
can be selected to run. The job that was stopped is then
requeued and is scheduled to be run when the function it
requested can be completed. For example: when the
currently running job begins input from a DECtape, it is
placed into the I/0 wait queue, and the input is begun. A
second job is scheduled to run while the input of the first
job proceeds. If the second job then decides to access a
DECtape, it is stopped because the DECtape control is
busy, and it is placed in the queue for jobs waiting to
access the DECtape control. A third job is set to run. The

input operation of the first job finishes, freeing the .

DECtape control for the second job. The 1/0 operation of
the second job is initiated, and the job is transferred
from the device wait queue to the 1/0 wait queue. The
first job is transferred from the I/0 wait queue to the
highest priority run queue. This permits the first job to
preempt the running of the third job. When the time slice
of the first job becomes zero, it is moved into the second
run queue, and the third job runs again until the second
Jjob completes its I/0 operations.

In addition, data transfers use the scheduler to permit
the user to overlap computation with data transmission.
In unbuffered data modes, the user supplies an address
of a command list containing pointers to locations in his
area to and from which data is to be transferred. When
the transfer is initiated, the job is scheduled into an 1/0
wait queue where it remains until the device signals the
scheduler that the entire transfer has been completed.

buffer at the same time. If the user requires the buffer
currently being used by the device as his next buffer, the
user’s job is scheduled into an 1/0 wait queue. When the
device finishes using the buffer, the device calls the
scheduler-to reactivate the job.

3.3 THE SWAPPER

.The swapper is responsible for. keeping in core the jobs

most likely to be runnable. It determines if a job should
be in core by scanning the various queues in which a job
may be. If the swapper decides that a job should be
brought into core, it may have to take another job
already in core and transfer it to secondary memory.
Therefore, the swapper is not only responsible for
bringing a job into core but is also responsible for
selecting the job to be swapped out.

A job is swapped to secondary memory for one of two
reasons: 1) a job that is more eligible to run needs to be
swapped in and there is not enough room in core for both
jobs, and 2) the job needs to expand its core size and
there is not enough core space to do so. If the later case is
true, the job must be swapped out and then swapped in
later with the new allocation of core. '

The swapper checks periodically to see if a job should be
swapped in. If there is no such job, then it checks to see if
a job is requesting more core. If there is no job wishing
to expand its size, then the swapper does nothing further
and waits until the next clock tick.

.

3.4 THE UUO HANDLER

The UUO handler is responsible for accepting requests
for services available through the operating system.
These requests are made by the user program via soft-
ware-implemented instructions known as programmed
operators, or UUOs. The various services obtainable by
the user program include:
1) communicating with the I/0 devices on the
computing system, including connecting
and responding to any special devices that
may be desired on the system for real-time
programming,
2)receiving or changing information con-
cerning either the computing system as a
whole or the individual program,

INTRO TO SOFTWARE

3) altering the operation of the computing
system as it concerns the user job, such as
controlling execution by trapping or.
suspending, or controlling core memory by
locking,

4) communicating and transferring control be-
tween user programs.

The UUO handler is the only means by which a user
program can give control to the operating system in
order to have a service performed. Contained in the user
program are operation codes which, when executed,
cause the hardware to transfer control to the UUO han-
dler for processing. This routine obtains its arguments
from the user program. The core location at which the
UUO operation was executed is then remembered. After
the UUO request has been processed, control is returned
to the user program at the first or second instruction fol-
lowing the UUO. In this way, the software supplements
the hardware by providing services that are invoked
through the execution of a single core location just as the
hardware services are invoked.

3.5 THE INPUT/OUTPUT ROUTINES

I/0 programming in the DECsystem-10 is highly con-
venient for the user because all of the burdensome
details of programming are performed by the operating
system. The user informs the operating system of his
requirements for I/0 by means of UUOs contained in his
program. The actual input/output routines needed are
then called by the UUO handler.

Since the operating system channels communication be-
tween the user program and the clevice, the user does not
need to know all the peculiarities of each device on the
system. In fact, the user program can be written in a
similar manner for all devices. The operating system
will ignore, without returning an error message, oper-
ations that are not pertinent to the device being used.
Thus, a terminal file and a disk file can be processed
identically by the user program. In addition, user
programs can be written to be independent of any
particular device. The operating system allows the user
program to specify a logical device name, which can be
associated with any physical device at the time when the
program is to be executed. Because of this feature, a
program that is coded to use a specific device does not
need to be rewritten if the device is unavailable. The
device can be designated as a logical device name and
assigned to an available physical device with one com-
mand to the operating system.

-28 -

Data is ‘transmitted between the device and the user:
program in one of two methods: unbuffered mode or
buffered mode . With unbuffered data modes, the user in
his program supplies the device with an address, which
is the beginning of a command list. Essentially, this
command list contains pointers specifying areas in the
user’s allocated core to or from which data is to be trans-
ferred. The user program then waits until the operating
system signals that the entire command list has been
processed. Therefore, during this data transfer, the user
program is idly waiting for the transfer to be completed.

Data transfers in buffered mode utilize a ring of buffers
set up in the user’s core area. Buffered transfers allow
the user program and the operating system’s I/O rou-
tines to operate asynchronously. As the user program
uses one buffer, the operating system processes another
one by filling or emptying it as interrupts occur from the

" device. To prevent the user program and the operating

system from using the same buffer at the same time,
each buffer has a use bit that designates who is using the
buffer. Buffered data transfers are faster than
unbuffered transfers because the user program and the
operating system can be working together in processing
the data.

Several steps must be followed by the user program in
order for the operating system to have the information it
needs to control the data transfers. Each step is in-
dicated to the operating system with one programmed
operator. In the first step, the specific device to be used
in the data transfer must be selected and linked to the
user program with one of the software 1/0 channels
available to the user’s job (OPEN or INIT programmed
operators). This device remains associated with the
software I/0 channel until it is disassociated from it (via
a programmed operator) or a second device is associ-
ated with the same channel. In addition to specifying the
1/0 channel and the device name, the user program can
supply an initial file status, which includes the type of
data transfer to be used with the device (e.g., ASCII,
binary), and the location of the headers to be used in
buffered data transfers. The operating system stores in-
formation in these headers when the user program exe-
cutes programmed operators, and the user program
obtains from these headers all the information needed to
fill or empty buffers.

Another set of programmed operators (INBUF and
OUTBUF) establishes the actual buffers to be used for
input and output. This procedure is not necessary if the
user is satisfied to accept the two buffers automatically
set up for him by the operating system.

-29 -

The next step is to select the file that the user program
will be using when reading or writing data. This group of
operators (LOOKUP and ENTER) is not required for
devices that are not file-structured (e.g., card reader,
magnetic tape, paper-tape punch); however, if used,
they will be ignored thus allowing file-structured devices
to be substituted for non-file-structured devices without.
. the user rewriting the program.

The third step is to perform the data transmission be-
tween the user program and the file (IN, INPUT, OUT,
and OUTPUT). When the data has been transmitted to
either the user program on input or the file on output, the
file must be closed (CLOSE, fourth step) and the device
released from the channel (RELEASE, fifth step). This
same sequence of programmed operators is performed

for all devices; therefore, the 1/0 system is truly device -

independent because the user program does not have to
be changed every time a different device is used.

In addition to reading or writing data to the standard I/0
" devices, provisions are included in the operating system
for using the terminal for I/0 during the execution of the
user program. This capability is also obtained through
programmed operators. As the user program is running,
it can pause to accept input from or to type output to the
terminal. The operating system does all buffering for
the user, thus saving him programming time. This
method of terminal 1/0 provides the user with a con-
venient way of interacting with his running program.

3.6 FILE HANDLER

The disk file handler manages user and system data:
thus, this data can be stored, retrieved, protected, andjor
shared amoung other users of the computing system. All
information in the system is stored as named files in a
uniform and consistent fashion thus allowing the infor-
mation to be accessed by name instead of by physical
disk addresses. Therefore, to reference a file, the user
does not need to know where the file is physically
located. A named file is uniquely identified in the system
by a filename and extension, an ordered list of directory
names (UFDs and SFDs) which identify the owner of the
file, and a file structure name which identifies the group
of disk units containing the file.

Usually a complete disk system is composed of many
disk units of the same and or different types of disks.
Therefore, the disk system consists of one or more file
structures-a logical arrangement of files on one or more

disk units of the same type. This method of file storage .

allows the user to designate which disk unit of the file
structure he wishes to use when storing his files. Each

INTRO TO SOFTWARE

file structure is logically complete and is the smallest
section of file memory that can be removed from the
system without disturbing other units in other file struc-
tures. All pointers toareas:n a file structure are by way
of logical block numbers rather than physical disk ad-
dresses; there are no pointers to areas in other file
structures, thereby allowing the file structure to be
removed.

A file structure consists of two types of files: the data
files that physically contain the stored data or
programs, and the directory files that contain pointers
to the data files. Included in these directory files are -
master file directories, user file directories, and sub-file
directories. Each file structure has one master file
directory (MFD). This directory file is the master list of
all the users of the file structure. The entries contained
inthe MFD are all the names of the user file directories
on the file structure. Each user with access to the file
structure has a user file directory (UFD) that contains
the names of all his files on that file structure; therefore,
there are many UFDs on each file structure. As an entry
in the user file directory, the user can include another
type of directory file, a sub-file"directory (SFD). The
sub-file directory is similar to the other types of
directory files in that it contains as entries all the names
of files within the directory. This third level of directory
allows groups of files belonging to the same user to be
separate from each other. This is useful when organizing
a large number of files according to function. In addi-
tion, sub-file directories allow non-conflicting simulta-
neous batch runs of the same program using the same
filenames.

As long as the files are in different sub-file directories,
they are unique. Sub-file directories exist as files pointed
to by the user file directory, and can be nested to the
depth specified by the installation via a MONGEN ques-
tion '

All disk files are composed of two parts: data and infor-
mation used to retrieve the data. The retrieval part of
the file contains the pointers to the entire file, and is
stored in two distinct locations on the device and
accessed separately from the data. System reliability is
increased with this method because the probability of
destroying the retrieval information is reduced; system
performance is improved because the number of
positionings needed for random-access methods is
reduced. The storing of retrieval information is the
same for both sequential and random access files. Thus
a file can be created sequentially and later read
randomly, or vice versa, without any data conversion.

INTRO TO SOFTWARE

One section of the retrieval information is used to speci-
fy the protection associated with the file. This protection
is necessary because disk storage is shared among all
users, each of whom may desire to share files with, or
prevent files from being written, read or deleted by,
other users. These protection codes are assigned by the
user when the file is created and designate the users who
have privileges to access the file. Users are divided into
three categories: the user who created the file (the
owner of the file), the user on the same project as the
owner of the file, and the remaining users of the system.
The owner of the file controls the protection of the file;
thus, he can indicate who may read, write, or modify his
file. It is always possible for the owner to change the
protection of his file and when it is changed, the new
protection remains until he modifies it again. If a file is
created without a protection code, the operating system
substitutes an installation-defined standard protection
code.

Disk quotas are associated with each user (each project-
programmer number) on each file structure in order to
limit the amount of information that can be stored in the
UFD of a particular file structure. When the user gains
access to the computing system, he automatically
begins using his logged-in quota. This quota is not a guar-
anteed amount of space, and the user must compete with
other users for it. When the user leaves the computing
system, he must be within his logged-out quota. This
quota is the amount of disk storage space that the user is
allowed to maintain when he is not using the system and
is enforced by the system program that is used in leaving
the system, Quotas are determined by the individual in-
stallations and are, therefore, used to ration disk
resources in a predetermined manner. .

To a user, a file structure is like a device; i.e., a file
structure name or a set of file structure names can be
used as the device name in command strings or UUO
calls to the operating system. Although file structures or
the units composing the file structures can-be specified
by their actual names, most users specify a general, or
generic, name (DSK) which will cause the operating
system to select the appropriate file structure. The
appropriate file structure is determined by a job search
list. Each job has its own job search list with the file
structure names in the order in which they are to be

~30 -

accessed when the generic name is specified as the
device. This search list is established by LOGIN and thus
each user has a UFD for his project-programmer
number in each file structure in which LOGIN allows
him to have files.

File writing on the disk can be defined by one of three

methods: creating, superseding, and updating. The user
is creating a file if no other file of the same name exists
in the user’s directory on the indicated file structure. If
another file with the same name already exists in the
directory, the user is superseding, or replacing, the old
tile with the new file. Other users sharing the old file at
the time it is being superseded continue using the old file
and are not affected until they finish using the file and
then try to reaccess it later. At that time, they read the
new file. When a user updates a file, he modifies selected
parts of the file without creating an entirely new version.
This method eliminates the need to recopy a file when
making only a small number of changes. If other users
try to access a file while it is being updated, they receive
an error.

File storage is dynamically allocated by the file handler
during program operations, so the user does not need to
give initial estimates of file length or the number of files.
Files can be any length, and each user may have as
many files as he wishes, as long as disk space is avail-
able and the user has not exceeded his logged-in quota.
This feature is extremely useful during program devel-
opment or debugging when the final size of the file is still
unknown. However, for efficient random access, a user
can reserve a contiguous area on the disk if he desires.
When he has completed processing, he can keep his pre-
allocated file space for future use or return it so that
other users can have access to it.

3.7SUMMARY

In summary, the resident operating system supervises
user jobs and provides various services to these jobs. It
acts as an operator by performing specific functions in
response to specific events which occur within the
system. Many functions are performed in accordance
with a periodic event, the system clock interrupt. Other
functions are responded to in accordance with the action
of the user program.

- 31 -

Absolute address
The address that is permanently a551gned toa storage lo-
cation by the machine designer.

Access date

The date on which a file on disk was last read. If a file has
not been read since it was created, the creation date and
the access date are the same. The access date is kept in
the retrieval information block for the file.

Access list

The table in monitor core that reflects the status of all’

files open for reading or writing in addition to the status
of those files recently closed.

Access privileges .

Attributes of a file which specify the class of users
allowed to access the file and the type of access which
they are allowed.

Access time
The interval between the instant at which data is re-
quested from a storage device or data is requested for a
storage device and the instant at which delivery or stor-
ageis begun.

ACCT. SYS

The file that contains all projéct-programmer numbers,
passwords, initial profiles, and time of day users are
allowed on the system. It does not contain file structure
quotas.

Accumulator

The register and associated equipment in the arithmetic
unit of the computer in which arithmetical and logical
operations are performed.

Actlive search list

An ordered list of file structures for each job which spec-
ifies the order in which the directory is searched. These
file structures are the ones listed before the FENCE by

{

INTRO TO SOFTWARE

CHAPTER 4
GLOSSARY

the SETSRC program. Device DSK is defined by this Iist
for each job.

Actual transfer

The hardware operation whereby the channel actually
passes data between the memory system and the con-
trol. The third step of the transfer operatlon (veri-
fication, search, actual transfer).

Address

(1) - An identification represented by a name,
label, or number for a register, a location in
storage, or any other data source or destina-
tion.

(2) The part of an instruction that specifies the

location of an operand of the instruction.

ALCFIL

A program used for allocating space for a new file or
reallocating space for an existing file in one contiguous
region on the disk.

. ALGOTS

The ALGOL object time system

All CPU job

A job which the monitor can run on elther processor in a
dual-processor system depending on the I/0 activity and
the system load.

Arithmetic unit :
The portion of the hardware in which arithmetic and lo-
gical operations are performed.

Assemble

To prepare a machine-language program from a sym-
bolic-language program by substituting absolute oper-
ation codes for symbolic operation codes and absolute or
relocatable addresses for symbolic addresses.

INTRO TO SOFTWARE

Assembler
A program which accepts symbolic code and translates
it into machine instruction, item by item.

Assigning a device
To allocate an I/0 device to the user’s job either for the
duration of the job or until the user relinquishes it.

Asychronous

(1) Pertaining to the procedure by which the
hardware does not wait for one operation to
be completed before starting a second oper-
ation.

(2) Pertaining to the method of data trans-

mission in which each character is sent with

its own synchronizing information.

AUXACC.SYS

The file that contains the standard list of public file
structures for each user and information (such as
quotas) for those file structures.

Bad Allocation Table (BAT) block

A block written by the MAP program or the monitor on
every disk unit. This block enumerates the bad regions
of consecutive bad blocks on that unit so that they are not
reused. The BAT blocks appear inthe HOME.SYS file.

BADBLK.SYS
The file that contains all bad blocks. It may be read but
not deleted and is useful for testing error recovery.

Base address
A given address from which an absolute address is de-
rived by combination with a relative address.

Batch processing
The technique of executing a set of computer programs
in an unattended mode.

BATCON

The Batch controller. This program reads a job’s control
file, starts the job, and controls the job by passing com-
mands and data toit.

Block

A 128, -word unit of disk storage determined by hard-
ware and software; 128 words are always written,
adding zeros as necessary, although less than 128 words
canberead.

-32 -

BOOTS

A bootstrap program whose main functions are to load a
program into core from a disk SAVE file and to dump
core as a SAVE file for later analysis.

Bootstrap

A technique or device designed to bring itself into a de-
sired state by means of its own action, e.g., a machine
routine whose first instructions are sufficient to bring
the rest of itself into the computer from an input device.

Breakpoint
A location at which program operation is suspended in
order to examine partial results.

Buffer

A device or area used temporarily to hold information
being transmitted between external and internal storage
devices or 1/0 devices and internal high-speed storage.
A buffer is often a special register or a designated area
of internal storage.

. Buffer pointer

4-2

A movable position indicator that is positioned between
two characters in an editing buffer, before the first char-
acter in the buffer, or after the last character in the
buffer.

Byte
Any contiguous set of bits within a word.

Calling sequence

A specified arrangement of instructions and data neces-
sary to pass parameters and control to and from a given
subroutine.

CDRSTK

The Batch input stacker. CDRSTK reads any sequential
input stream, sets up the job’s control file and data files,
and enters the job into the Batch input queue.

Central processing unit (CPU) .

The portion of the computer that contains the arithmet-
ic, logical, control circuits, and I/O interface of the basic
system.

Central site

The location of the central computer. Used in con-
junction with remote communications to mean the loca-
tion of the DECsystem-10 central processor.

-33 -

CHAIN

A program that allows the user to segment FORTRAN

programs that are too large to load or fit into available
. core. It reads successive segments of coding into core
and links them to the program already in core.

Channel

(1) A path along which signals can be sent;
€.g., data channel, output channel.
A partially autonomous portion of the
PDP-10 which can overlap 1/0 trans-
mission while computations proceed si-
multaneously.

(2)

CHECKPOINT

A program used to maintain the accounting information
on the disk. '
Clear '

To erase the contents of a location by replacing the con-
tents with blanks or zeros. '

Cluster .
A single-or multi-block unit of disk storage assignment.
It is a parameter of each disk file structure.

CODE :

A code conversion program that translates files written
in binary-coded decimal to ASCII and vice versa.
COMPIL . !

A utility program that allows the user to type a short,
concise command string in order to cause a series of op-
erations to be performed. COMPIL deciphers the com-
mand and construets new command strings for the
system program that actually processes the command.

Compressed file pointer
An 18-bit pointer to the unit within the file structure and
to the first super-cluster of the file.

Concatenation .

The joining of two strings of characters to produce a
longer string, often used to create symbols in macro de-
fining.

Conditional jump
- A jump that occurs if specified criteria are met.

Context switching

The saving of sufficient hardware and software informa-

tion of a process so that it may be continued at a later
time, and the restoring of another process.

4-3

INTRO TO SOFTWARE

Continued directory ‘
The collection of all directories with a particular name

“and path on all file structures in the job’s search list.

Continued MFD
The MFDs onall file structures in the job’s search list.

Continued SFD
The SFDs on all file structures in the job’s search list
which have the same name and path.

Continued UFD
The UFDs for the same project-programmer number on
all file structures in the job’s search list.

Control

The device which controls the operation of connected
units. It can initiate simultaneous positioning commands
to some of its units and then perform a data transfer for
one of its units. ’

Control character

A character with an ASCII representation of 0-37. It is
typed by holding down the CTRL key on the terminal
while striking a character key. It can be punched on a
card via the multi-punch key.

Copy '
To transfer a file from one device to another (e.g., with
PIP or the FILEX programy).

CORMAX
The largest contiguous size that an unlocked job can be.
This value can range from CORMIN to total user core.

CORMIN

The quaranteed amount of contiguous core which a
single unlocked job can have. This value can range from
0 to total user core.

Counter
A device such as a register or storage location used to
represent the number of occurrences of a certain event.

CPU
See central processing unit.

CPUO

In a dual-processor system, the processor that performs
the same activities as the processor in a single processor
system, including all I/O operations, command and UUO
processing, swapping, and interrupt handling. Also
known as the primary processor.

INTRO TO SOFTWARE

CPU1

In a dual-processor system, the processor that operates
only in user mode except when it is required to find an-
other job to run or to send APR traps to the user. Also
known as the secondary processor.

CRASH.SAV

A file written on disk by BOOTS as part'of the crash res- .

tart procedure. This file is used by FILDDT for system
debugging.

Create

To open, write, and close a file for the first time. Only
one user at a time can create a file with a given name
and extension in the same directory or sub-directory of a
file structure.

CREF

A program which produces a sequence-numbered as-
sembly listing followed by tables showing cross refer-
ences for all operand-type symbols, all user-defined op-
erators, and/or all op codes and pseudo-op codes.

Customer

A Digital customer purchasing a DECsystem-10 as dis-
tinguished from a user at a console who may be purchas-
ing time from a customer.

Cylinder

The hardware-defined region of consecutive logical disk
blocks which can be read or written without reposition-
ing.

- DAEMON
A program for writing all or parts of a job’s core area
and associated monitor tables onto disk.

Data Channel
The device which passes data between the memory
system and the control.

DATDMP .
A program for dumping the core data base.

DECtape
A convenient, pocket-sized reel of random access mag-
netic tape developed by Digital Equipment Corporation.

DDT

The Dynamic Debugging Technique program used for
on-line checkout, testing, and program composition of
object programs.

4-4

-34 -

Device routines

Routines that perform I/0 for specific storage devices
and translate logical block numbers to physical disk ad-
dresses. These routines also handle error recovery and
ensure ease of programming through device indepen-
dence. :

DIRECT .
A program for producing directory listings of disks and
DECtapes.-

Directory

A file which contains the names and the pointers to other
files on the device. On disk, a directory is continued
across all the file structures in a job’s search list. Contin-
ued MFDs, UFDs, and SFDs are all directories. The
DIRECT monitor command lists a directory:

Directory device

A storage retrieval device such as disk or DECtape
which contains a file describing the layout of stored data
(programs and other files).

Directory path

The ordered list of directory names, starting with a UFD
name, which uniquely specifies a directory without
regard to a file structure. Also known as a path. A file
structure name, a path, and a filename and extension
are needed to uniquely identify a file in the system.

Dismounting a file structure

The process of deleting a file structure from a user’s
active search list by using the DISMOUNT command. It
does not necessarily imply physical removal of the file
structure from the system.

Doorbell)
The device by which processors in a multiprocessing
system interrupt each other. This is an optional device.

Dormant file structure
A file structure that is physically mounted but has no
current users, i.e., the mount count iszero.

Dormant segment
A sharable high segment kept on a swapping space, and
possible core, which is in nc user’s addressing space.

DSK

The generic device name for disk-like devices. Actual
file structure names are defined for each job by the file
structure search list.

-35-

DSKLST
A program which gives statuses and statistics of all user
disk files at a given point in time.

DSKRAT
A damage assessment pogram that scans a file structure
and reports any inconsistencies detected.

Dump
A listing of all variables and their values, or a listing of
the values of all locations in core.

DUMP
A program that outputs selected portions of a file in one
of the various formats that can be specified by the user.

£DDT
A version of DDT used for debugging programs, such as
the monitor, in executive mode.

Effective address
The actual address used, that is, the specified address as
modified by any indexing or indirect addressing rules.

Entry point
A point in a subroutine to which control is transferred
when the subroutine is called.

Executive mode

A central processor mode characterized by the lack of
memory protection and relocation and by the normal ex-
ecution of all defined operation codes.

Extended file
A file which contains one or more extended RIBs to con-
tain the retrieval pointers.

Extended RIB i
Additional retrieval information blocks (RIBs) re-
quired when the retrieval pointers in a file overflow the
prime RIB, :

FAILSAFE

A utility program used to save the contents of the disk on
magnetic tape and later restore the saved contents back
onto disk. : .

FILDDT

A version of DDT used for examining and changing a file
on disk instead of in core memory. This program is used
to examine a monitor for debugging purposes.

INTRO TO SOFTWARE

File .

An ordered collection of 36-bit words comprising com-
puter instructions and/or data. A file can be of any
length, limited only by the available space on the device
and the user’s maximum space allotment on that device.
A file is uniquely identified in the system by a file“struc-

“ture name or directory name, a directory path, and a

filename and extension.

~ Filename

Aname of one to six alphanumeric characters chosen by
the user to identify a file.

Filename extension
One to three alphanumeric characters usually chosen by
the program to describe the class of information in a file.

File specification

A list of quantities which uniquely identify a named file.
A complete file specification consists of : the name of the
physical device or file structure on which the file is
stored, the name of the file including its extension, the
name of the directory in which the file is contained, and
the protection code associated with the file. File specifi-
cations are ignored for non-file-oriented devices.

File structure :

The logical arrangement of 128-word blocks on one or
more units of the same type to form a collection of
named files.

File-structured device

A device on which data is given names and arranged into
files; the device also contains directories of these
names,

File structure owner

The user whose project-programmer number is associ-
ated with the file structure in the administrative file
STRLST.SYS. The REACT program is used to enter or
delete this project-programmer number or any of the
other information that is contained in an STRLST.SYS.
entry.

File structure search list

For each job, a list that specifies the order in which the
file structures that user can access are to be searched
when device DSK: is specified. Also called a job search
list.

FILEX
A general file transfer program used to convert between
various core image formats and to read and write

- various DECtape directory formats andstandard disk

files.

INTRO.TO SOFTWARE

Flag
An indicator that signals the occurrence of some condi-
tion, such as the end of a word.

Fragmentation

The technique used when swapped segments cannot be
allocated in one contiguous set of blocks on the swapping
space. .

FUDGE2

A file update generator used to update files containing
one or more relocatable binary programs and to manipu-
late programs within program files.

Full path name

The ordered list which uniquely identifies a specific disk
file. This list consists of the directory path plus the file-
name and extension.

Generic name
An abbreviation fora physical name. This abbreviation
is usually three characters.

Get
To transfer a save file from a device into core using a
bootstrap program or the monitor.

GLOB

A program which reads multiple binary program files
and generates an alphabetic cross-referenced list of all
the global symbols encountered.

Global request
A request to the LOADER to link a global symbol to a
program.

Global symbol
Any symbol accessible to other programs.

GRIPE
A program that reads text from the user and records it in
a disk file for later analysis by the operations staff.

Group

A contiguous set of disk clusters allocated as a single
unit of storage and described by a single retrieval point-
er.

High segment

The segment of the user’s core which generally contains
pure code and which can be shared by other jobs; it is
usually write-protected.

4-6

- 36 -

Home block

The block written twice on every unit which identifies
the file structure the unit belongs to and its position on
the file structure. This block specifies all the para-
meters of the file structure along with the location of the
MFD. The home block appears in the HOME. SYS file.

HOME.SYS

The file that contains a number of special blocks for
system use. These blocks are the home blocks, the BAT
blocks, the ISW blocks, and block zero.

Idle segment

A sharable high segment which users in core are not
using; however, at least one swapped-out user is using it
else it would be a dormant segment.

Idle time

The percent of uptime in which no job wanted torun, i.e.,
all jobs were HALTed or waiting for some external
actionsuch as 1/0.

Immediate mode addressing
The process through which the right half of the ‘word
gives the operand and not the address.

Impure eode
The code which is modified during the course of a run,
e.g., data tables.

Indirect address .

An address in a computer instruction which indicates a
location where the address of the referenced operand is
to be found.

INITIA

A program for performing standard system in-
itialization for a particular terminal. It is used to initiate
specific programs, such as the spooling programs, on
the designated terminal.

Initialize

To set counters, switches, or addresses to zero or other
starting values either at the beginning of or at per-
seribed points in a computer routine. '

Interjob dependency .

The technique by which a Batch job is kept from running
until after the running of another job. The first job is de-
pendent on the second job.

Interleaving -

To increase effective memory speed by configuring the
memory addressing so that adjacent addresses refer-
ence alternate asynchronous memories.

I

Internal symbol
A symbol which generates a global definition which is
used to satisfy all global requests for that symbol.

Interrupt .

A signal which when activated causes a transfer of con-
trol to a specific location in memory thereby breaking
the normal operation of the routine being executed. An
interrupt is caused by an external event such as a done
condition in a peripheral. It is distinguished from a trap
which is caused by the execution of a processor instruc-
tion.

ISW block

A block written by the refresher which contains the bit
map for the initial storage allocation table for swapping.
Any bad regions are marked as already in use. The ISW
block appears in the HOME .SYS file.

Job

The entire sequence of steps, from beginning to end, that
the user initiates from his interactive terminal or card
deck or that the operator initiates from his operator’s
console.

Job Data Area .

The first 140 octal locations of a user’s core area. This
area provides storage for items used by both the monitor
and the user program.

Job search list
See File Structure Search List.

Job site .
The location at which jobs are run. Also called program
site.

Job step
A serial or parallel sequence of processes invoked by a
user to perform an operation,

Jump
A departure from the normal sequence of executing in-
structions.

Label
A symbolic name usec§i to identify a statement of a pro-
gram.

Latency
(1) The time from initiation of a transfer op-
eration to the beginning of actual trans-
fer; i.e., verification plus search time.

37 -

INTRO TO SOFTWARE

(2) The delay while waiting for a rotating
memory to reach a given location as desired
by the user. The average latency is one half
the revolution time.

LIBOL

The COBOL object time system.

Library search mode i

The mode in which a program is loaded only if one or
more of its declared entry symbols satisfies an unde-
fined global request. LIB40 is scanned in this mode so as
toload only programs that the user needs.

" LIB40

The standard DEC-supplied library of the FORTRAN
object time system and math routines. This library
resides on device SYS.

Line

A string of characters terminated with a vertical tab,
form feed, or line feed. The terminator belongs to the
line that it terminates.

Load
To produce a core image file from a relocatable binary
file (REL) using the LOADER program. This operation

_is not to be confused with the GET operation: with the

GET operation a core image file has already been pro-
duced.

LOADER

A program that provides automatic loading and reloca-
tion of MACRO, FORTRAN, and COBOL generated
binary programs, produces an optional storage map, and
performs loading and library searching. Also, the pro-
gram loads and links relocatable binary programs gen-
erated by MACRO, COBOL, and FORTRAN and gener-
ates a symbol table in core for execution under DDT.

Local peripherals)

The I/0 devices and other data processing equipment,
excluding the central processor, located at the central
site.

Local symbol

A symbol used only within the program in which it is de-
fined (all non-global symbols). It is not accessible to
other programs even though the programs are loaded to-

gether.

4-7

Locked job
A job in core that is never a candidate for
shuffling,.

swapping or

INTRO TO SOFTWARE

Logical device name

An alphanumeric name chosen by the user to represent a
physical device. This name can be used synonymously
with the physical device name in all references to the
device. Logical device names allow device indepen-
dence in that the most convenient physical device can
then be associated with the logical name at runtime.

LOGIN i
The program by which the users gain access to the com-
puting system.

LOOKFL

A program for typing the characteristics of a single disk
file, such as creation date and number of words written,
on the terminal.

Lost time

The percent of uptime that the null job was running, but
at least on other job wanted to run (was not waiting for a
device) but could not because one of the following was
true:

. the job was being swapped out.

. the job was being swapped in.

. the job was on disk waiting to be swapped in.

. the job was momentarily stopped so devices
could become inactive in order to shuffle job
incore.

& o o a

Low segment

The segment of core containing the job data areaand1/0
buffers. This area is unique and accessible to the user
and is often used to contain the user’s program. If the
user is working with a shared program, this area con-
tains data tables, etc.

MAINT.SYS
The area of the disk reserved for maintenance use only.

Macro
An instruction in a source language which is equivalent
to a specified sequence of machine instructions.

Mask

(1) A combination of bits that is used to con-
trol the retention or elimination of
portions of any word, character, or byte
in memory.
On half-duplex circuits, the characters
typed on the terminal to make the
password unreadable.

(2)

-38 -

4-8

Master file directory

The file created at refresh time which contains the name
of all user file directories including itself. Referred to as
the MFD.

Master slave system

A specific multiprocessing system involving two proces-
sors where one processor has a more important role
than the other.

Memory protection
A scheme for preventing access to certain areas of stor-
age for purposes of reading or writing.

Mnemonic symbol)
A symbolic representation for a computer instruction.

MONEY

A program for reading the system’s time accounting file
and assigning a monetary charge for each user accord-
ing to the time and resources that he has used on the
system.

MONGEN time

The time at which the monitor software configuration is
being defined or changed. The monitor must then be re-
loaded with LOADER.

Monitor

The collection of programs which schedules and controls
the operation of user and system programs, performs
overlapped 1/0, provides context switching, and allo-
cates resources so that the computer’s time is efficiently
used.

Mount Count
The count of the number of jobs which have a file struc-
ture in their active or passive search lists.

Mounting a device
To request assignment of an 1/0 device via the operator.

Mounting a file structure

The process of adding a file structure to one’s search
list. If the file structure is not already defined and
mounted, this is requested of the operator.

Multiprocessing
Simultaneous execution of two or more computer pro-

" grams by a computer.

Multiprocessing system

A system with two or more central processors sharing
some or all of the hardware resources, such as, disks
memories, and or monitors.

-39 ~

Multiprogramming

A technique that allows scheduling in such a way that
more than one job is in an executable state at any one
time.

Named file
Anamed ordered collection of 36-bit words (instructions
and or data) whose length is not restricted by size or
core.)

Nesting)
To include a routine or block of data within a larger rou-
tine or block of data.

Non-directory device

A device such as a magnetic tape or paper tape which
does not contain a file describing the layout of stored
data. *

No-op

An instruction that specifically instructs the computer
to do nothing. The next instruction in sequence is then
executed.

Non-sharable segment .

A segment for which each user has his own copy. This
segment can be created by a CORE or REMAP UUO or
initialized from a file.

Object time system .

The routines for a particular language which support the
compiled code. Usually includes I/0 and trap-handling
routines.

Offset .
The number of locations toward zero a program must be
moved before it can be executed. :

OMOUNT
A program for operator interfacing for handling
requests concerning removable media.

ONCE ONLY time

The time at which the operator can change a number of
monitor parameters when the monitor is started up.

One’s complement

A complement formed by setting each bit in a binary -

number to the opposite state,

Operand

The symbolic addresses of the data to be accessed when
an instruction is executed, or the input data or argu-
ments of a pseudo-op or macro instruction.

INTRO TO SOFTWARE

Overlay :

The technique of repeatedly using the same blocks of in-
ternal storage during different stages of a program.
When one routine is nd longer needed in storage, another
routine can replace all or part of it. ’

Pack ID
A 6-character SIXBIT name or number used to uniquely
identify a disk pack.

Page ‘ ,

(1) Any number of lines terminated with a
form feed character.

(2) Thesmallest allocatable unit of core stor-
age.

Parity bit .
A binary digit appended to an array of bits to make the
sum of all the bits always odd or always even.,

Parity check
A check that tests whether the number of ones or zeros in
an array of binary digits is odd or even.

Passive search list)

An unordered list of the file structures which have been
in the job’s active search list and have never been dis-
mounted. Device DSK is not defined by this list.

Path
See directory path.

Peripheral equipment

Any unit of equipment, distinct from the central process-
ing unit, which can provide the system with outside com-
munication.

Physical unit name)
The SIXBIT name consisting of 3 to 6 characters that is
associated with-each unit. Examples: FHA0, FHALI,
DPA0, DPA7,LPT, DTA3.

PIP

The Peripheral Interchange Program which transfers
data files from one standard I/0 device to another and
performs simple editing and magnetic tape control func-
tions. ‘

PLEASE

A program that provides the user with two-way commu-
nication with the operator.

Pointer
The location containing an address rather than data
which is used in indirect addressing.

INTRO TO SOFTWARE

Pool

One or more logically complete file structures that pro-
vide file storage for the users and that require no special
action on the part of the user.

Position operation

The operation of moving the read-write heads of a disk to
the proper cylinder prior to a data transfer. This oper-
ation requires the control for several microseconds to in-
itiate activity, but does not require the channel or
memory system.

Prime RIB
The first retrieval information block (RIB) of a file. This
block contains all of the user arguments.

Privileged program

(1) Any program running under project
number 1, programmer number 2.
A monitor support program executed by a
monitor command and, therefore, has the
JACCT (job status bit) set, for example,
LOGOUT.

(2)

Priority interrupt

The interrupt that usurps control of the computer pro-
gram-or system and jumps to an interrupt service rou-
tine if its priority is higher than the interrupt currently
being serviced, if any.

Process

A collection of segments that perform a particular task.
A hardware state is associated with a process: a virtual
memory, a processor, a stack, etc.

Program break
The length of a program; the first location not used by a
program (before relocation).

Program counter (PC)

Aregister that, at the beginning of each instruction, nor-
mally contains an address one greater than the location
of the current instruction.

Programmed operators :
Instructions which, instead of doing computation, cause
a jump into the monitor system or the user area at a pre-
determined point. The monitor interprets these entries
as commands from the user program to perform speci-
fied operations.

Program origin
The location assigned by the LOADER to relocatable
zeroof a program.

- 40 -

4-10

Project-programmer number

Two octal quantities, separated by commas, which,
when considered as a unit, identify the user and his file
storage area on a file structure.

Protected location

A storage location reserved for special purposes in
which data cannot be stored without undergoing a
sereening procedure to establish suitability for storage
therein.

Protection address
The maximum relative address that the user can refer-
ence.

Pseudo-op

An operation that is not part of the computer’s operation
repertoire as realized by hardware; hence, an extension
of the set of machine operations. In MACRO, pseudo-ops
are directions for assembly operations.

Public disk pack .

A disk pack belonging to the storage pool and whose stor-
age is available to all users.

Pure code

Code which is never modified in the process of execu-
tion. Therefore, it is possible to let many users share the
same copy of a program.

Pushdown list

Alist that is constructed and maintained so that the item
to be retrieved is the most recently stored item in the
list, i.e., last in, first out.

QMANGR

The Batch queue manager. QMANGR is called by
BATCON to schedule jobs by computing and dynami-
cally revising job priorities.

Quantum time
The run time given to each job whenit is assignedtorun.

QUE
The system-wide name defining the location of the spool-
ing and operator work-request queues.

Queue
(1) A list of jobs to be scheduled or run
according to system, operator, or user-
assigned priorities. Examples: Batch
input queue, spooling queues, monitor
scheduling queues.

- 4] -

(2) The system program that allows users to -
add, delete, list, or modify queue entries
in the various system queues.

QUOLST ‘

A program that prints the user’s quotas for each file
structure in his search list and the number of free blocks
available in each file structure.

QUOTA.SYS S
The file that contains a list of users and their quotas for
the private file structure on which the file resides.

Random access
A process in which the access time is effectlvely 1nde-
pendent of the location of the data.

REACT

A program for maintaining administrative control files."

It can be used to create, modify, delete or list entries in a
file.

Read
To open a file for input.

Record
A collection of related items of data treated as a unit.

Reentrant program
A two-segment program composed of a sharable and
non-sharable segment.

Reformat
To write new headers on a disk pack using the D50B diag-
nostic program.

Refresh
To remove all files from a file structure and to build the
initial set of files based on information in the HOM block.

Relative address
The address before hardware or software relocation is
added.

~

Relocate .
To move aroutine from one portion of storage to another
and to adjust the necessary address references so that
the routine can be executed in its new location.

Relocation address
The absolute core address of the first locatlon in the
program segment.

INTRO TO SOFTWARE

Relocation constant

The number added by the LOADER to every relocatable
reference within a program. The relocation constant is
the relocated break of the previous program.

Remote Batch

A feature of the computing system that allows data
I/0 and job control of Batch processing from a distant
terminal over a synchronous communication link.

Remote peripherals
The 1/0 devices and other data processing equipment,
except the central processor, located at the site of the
remote Batch terminal.

Removing afile structure
The process of physically removing a file structure from

. the system. This is requested with the REMOVE switch

in the DISMOUNT command string and requlres the op-
erator’s approval.

Response time _
The time between the generation of an inquiry and the
receipt of an response.

Return
(1) The set of instructions at the end of a
subroutine that permits control to return
to the proper point in the main program.
(2) - The point in the main program to which
control is returned.

Run
To transfer a save file from a device into core and to
begin execution.

RUNOFF

A program that facilitates the preparation of typed or
printed manuscripts by performing formatting, case
shifting, line justification, page numbering, titling, and
indexing.

SAT.SYS

The Storage Allocation Table file which contains a bit for
each cluster in the file structure. Clusters which are free
are indicated by zero and clusters which are bad, allo-
cated and non-existent are indicated by one.

Save

To produce a save file from a core image using a bootst-
rap program or the monitor. This operation is the
opposite of the GET operation.

INTRO TO SOFTWARE

SCRIPT

A program that sends predetermined sequences of char-
acters over multiple pseudo-TTYs in order to simulate a
load on the system for analysis.

Search
The Controller reads sector headers to find the correct
sector. The second step in the transfer operation.

Sector
A physical portion of a mass storage device.

Segment

Alogical collection of data, either program data or code,
that is the building block of a program. The monitor
keeps a segment in core and/or on the swapping device.

Segment Resident Block
A'block that contains all the information that the moni-
tor requires for a particular segment.

SETSRC

A program that allows the user to list or change the
search list that is automatically set up for him at job in-
itialization time.

SFD
A directory pointed to by a UFD or a higher-level SFD.
These directories exist as files under the UFD.

Sharable segment
A segment which can be used by several users at a time.

Shared code
Pure code residing in the high segment of user’s core.

Single access

The status of a file structure that allows only one par-
ticular job to access the file structure. This job is the one
whose project number matches the project number of
the owner of the file structure.

Skip
An instruction that causes control to bypass one instruc-
tion and proceed to the next instruction.

Spooling

The technique by which output to slow-speed devices is
placed into queues to await transmission; this allows
more efficient use of the particular device, core
memory, and the central processor unit.

Static dump

A dump that is performed at a particular point in time
with respect to a machine run, frequently at the end of a
run.

- 42 -

STRLST.SYS

The administrative file that describes each file struc-
ture in the system. This file is used by the MOUNT com-
mand only.

Sub-directory
A continued SFD.

Supersede

To open a file for writing, write the file and close the file
when an older copy of the same name already exists.
Only one user at a time may supersede a given file at any
one time. The older copy of the file is deleted when all
users are finished reading it.

Super-cluster

A contiguous set of one or more clusters introduced to
compress the file pointer for large units into 18 bits. See
compressed file pointer.

Swapping
The movement by the monitor of user programs be-
tween core and secondary storage.

Swapping class
The classes of swapping units divided according to
speed. Class 0 contains the fastest swapping units.

Swapping device
Secondary storage that is suitable for swapping, usually
a high-speed disk or drum.

SWAP.SYS
The file containing the swapping area on a file strucutre.

Symbolic address
An address used to specify a storage location in the con-

> text of a particular program. Symbolic addresses must

4-12

then be translated into absolute addresses by the assem-
bler.

Symbol table
A table which contains all defined symbols and the
binary value assigned to each symbol.

SYS

A system-wide logical name for the system library. This
is the area where the standard programs of the system
are maintained.

SYSDPY
A variation of the SYSTAT program which runs on a
keyboard display at up to 2400 baud.

- 43 -

SYSsearch list

The file structure search list defined at ONCE-ONLY
time for device SYS.

SYSTAT o

A program that displays on the user’s terminal the
status of the system at any time.

TECO

A sophisticated text editor and corrector program that
allows simple editing requests, character string
searches, complex program editing, command repeti-
tion, and text block movement. TECO editing is per-
formed on files recorded in ASCII characters.

TENDMP
A utility program used to save and restore core images
on DECtape or magnetic tape. It operates only in execu-
tive mode.

Total user core
"The amount of phys:cal core which can be used for
locked and unlocked jobs.

Track

The portion of a moving storage medium, such as disk,
drum, or tape, that is accessible to a given reading head
position.

Transfer operation

The hardware operation of connecting a channel to a
controller and a controller to a unit for passing data be-
tween the memory and the unit. The transfer operation
involves verification, search, and actual transfer.

Trap

An unprogrammed conditional Jump to a known loca-
tion, automatically activated by a side effect of execu-
ting a processor instruction. The location from which the
jump occurred is then recorded. It is distinguished from
aninterrupt which is caused by an external event.

Two’s complement

A number used to represent the negative of a given
value. This number is obtained by alternating the bit
configuration of each bit in the binary number and
adding one to the result.

UFD

A file whose entries are the names of files existing in a

given project-programmer number area within a file -

structure.

UMOUNT
A program for user interfacing for the handling of
requests concerning removable media.

4-13

INTRO TO SOFTWARE

Uncenditional transfer
An instruction which transfers control to a specified lo-
cation.

Unit

The smallest portion of a device that can be positioned
independently from all other units. Several examples of
units are: a disk, a disk pack, and a drum.

Update
To open a file for reading and writing simultaneously on
the same software channel, rewrite one or more blocks
in place, and close the file. Only one user at a time may
update a given file.

\
User
A person who utilizes the facilities of the DECsystem-10.

User file directory
See UFD.

User I/0 mode

The central processor mode that allows privileged user
programs to be run with automatic protection and relo-
cation in effect, as well as the normal execution of all de-
fined operation codes.

User library
Any user file containing one or more programs of which
some or all can be loaded in library search mode.

User mode

A hardware-defined state during which instructions are
executed normally except for all I/0 and HALT instruc-
tions which cause immediate jumps to the monitor. This
makes it possible to prevent the user from interferring
with other users or with the operation of the monitor.
Memory protection and location are in effect so that the
user can modify only his area of core.

User program
All of the code running under control of the monitor in an
addressing space of its own.

Verification

The controller reads sector headers to see if the mechan-
ical parts of the system have correctly positioned the
arm. The first step in the transfer operation.

Vestigial job data area

The first 10 locations of the high segment used to contain
data for initializing certain locations in the job data
area.

INTRO TO SOFTWARE

Virtual core
The size of the job, both low and high segments.

Wildcard construction

A technique used to designate a group of files without
enumerating each file separately. The filename, exten-
sion, or project-programmer number in a file specifica-
tion can be replaced totally with an asterisk or partially
with a question mark to represent the group of files de-
sired.

- 44 -

4-14

Word

An ordered set of bits which occupies one storage loca-
tion and is treated by the computer circuits as a unit. The
word length of the DECsystem-10 is 36 bits.

Zero compression
The technique of compressing a core image by eliminat-
ing consecutive blocks of zeros.

- 45 -

DECsystem-10is the name for the family of DEC’s large

computing systems. Each .of the five systems in the
DECsystem-10 range is centered around one or two

PDP-10 central processors. The systems are dis-

tinguished from each other by their range of perform-
ance, which is achieved by adding more hardware. The
additional hardware that increases performance in the
expansion from a small to a larger system includes:
swapping devices, central processors, core memories,
and . peripheral equipment, including data commu-
hications systems. The systems have no fixed hardware
boundary because an individual system can be expanded
to-any size. No software changes are required in ex-
panding an individual system; all configurations of the
DECsystem-10 use the same operating system for all ap-
plications. ‘

- A.1DECsystem-1040.
The 1040 is the smallest of the five systems. The typical

configuration of this system has a KA10 central
processor, 32 to 64K high-speed ME10 core memories,

the RP02G disk system with up to two disk packs, the -

TM10G magnetic tape system with up to two drives, and
low-speed peripheral equipment-including a CR10F card

reader, an LP10A line printer, and local DC10 lines. This

is an excellent system for the scientific research lab
where multiple real-time tasks and general computing
arerequired, and also for small colleges where there is a
need for handling administrative, student, and faculty
workloads simultaneously: The system is easily ex-
pandable with most equipment on the DECsystem-10
Equipment List.

A2 DECsystem-1050

The 1050 is a full capability, medium power system. The
addition of a high-speed RM10G swapping drum system
substantially increases the number of simultaneous
users on the system. Other components of this system in-
clude: the KA10 central processor, 64 to 96K high-speed

.

INTRO TO SOFTWARE

| APPENDIX A
DECsystem-10 HARDWARE

ME10 core memories, the RP02G disk system with up to
four disk packs, the TM10G magnetic tape system, the
CR10D card reader, the LP10C line printer, and 32 local
lines in either the DC10 or DC68A communications
system. The 1050 is well-suited for the educational and
scientific environments because it has the capability of
running ALGOL, BASIC, COBOL, and FORTRAN com-
pilers concurrently on a configuration that is economic-
ally priced and easy to learn and use. Business data
processing areas find that with the 1050, COBOL
program preparation is enhanced by interactive editing
and debugging via local or remote terminals.

A.3 DECsystem-1055

The 1055 is the dual processor equivalent of DECsystem-
1050 with fast execution of compute-bound jobs because
of the addition of the second processor. This system has
two parallel KA10 processors connected with one oper-
ating system in order to double the computing power of
the 1050 and at the same time to maintain the same inter-
face between the user and the computing system. This
approach of co-equal processors gives the user in-
creased computing capacity when processing power is in
heavy demand under multi-task loads. In addition to the
two KA10 processors, the typical 1055 has 80K of ME10
core memories, with one MX10 memory port
multiplexer, one RM10G drum system, one RP03G disk
system with up to eight disk packs, one TU40G, 120KC
magnetic tape system, one CR10 card reader, the LP10C
line printer, and 32 local lines, either a DC10 system or a
DC68A system. ’

A.4 DECsystem-1070

. The 1070 is a large-scale computing system with more

A-1

than twice the central processor speed of the
DECsystem-1050 because of the KI10 central processor.
This processor has hardware memory paging, double-
precision - floating-point arithmetic, instruction look-
ahead, and virtual memory capability. In addition to the

INTRO TO SOFTWARE

KI10 processor, the typical 1070 comprises at least 96K
(480K bytes) of ME10 core memory, 690K words (4.1 mil-
lion characters) of RM10G high-speed drum storage, an
RP03G disk system of four disk drives with a total of 41.6
million words (249.6 million characters) of storage,
TU40G magnetic tape system with three 120KC drives, a
1200 character-per-minute CR10E card reader, a 1000
line-per-minute LP10C line printer and a communication
system capable of 128 lines (either DC10 or DCe68A).
With the increased memory size, the high performance
peripheral systems, and the large file system, the 1070 is
configured for maximum support of remote batch
capabilities through the synchronous communication
equipment. Multiple remote stations have simultaneous
access to the DECsystem-1070, with each capable of con-
centrating up to 16 terminals to its computer.

A.5 DECsystem-1077

The 1077 is the dual-processor 1070 with fast execution of
computing loads because of the second KI10 central
processor. In addition, this system typically has 128K
(640K bytes) of core memory, 690K words (4.1 million
characters) of RM10G drum storage, a RP03G disk
system with four disk drives for a total of 41.6 million
words (249.6 million characters) of storage, a TU40G
magnetic tape system with four 120KC drives, a 1000
line-per-minute LP10C line printer, a 1200 character-per-
minute CR10E card reader, and a DC10 or DC68A com-
munication system capable of 128 lines. In expanding to
the 1077 from a smaller system, the user notices in-
creased computing power, but he does not need to
change his programs or learn a new command language
or operating system.

A.6 PROCESSOR —KA10

The KA10 arithmetic processor is the processing unit for
the three smallest DECsystem-10 machines. Its stan-
dard I/O devices are: a. a 300 character-per-second
photoelectric paper-tape reader, b. a 50 character-per-
second paper-tape punch, c. an operator’s console that
provides the operator with information and intervention
capabilities when desired, and d. a standard Model
35KSR console teleprinter operating at 10 characters-
per-second (considered as part of the operator’s con-
sole). The 36-bit instruction word format of the KA10
provides 512 operation codes, of which 366 are hard-
wired. The remainder are programmed operators or are
reserved for future use.

The fast registers, KM10, are sixteen 36-bit integrated
circuit registers used as multiple accumulators, index
registers, or memory locations. These registers have an

- 46 -

access time of 200 ns and when used as memory
locations can double the execution speed of a program.
The dual memory protection and relocation registers,
KT10A, allow the software to define two areas for each
user and to protect the remaining of core from these
users.

~ The priority interrupt system of the central processor

has seven levels of interrupts for the devices attached to
the I/O bus. The entire priority interrupt system is
programmable. With software, any number of devices
can be attached to any level, individual levels or the
entire priority interrupt system can be deactivated and
later reactivated, and interrupts can be requested on
any level. With the executive control logic, the KA10 op-
erates in one of three modes: a. executive mode, which
allows all instructions to be executed and suppresses
relocation. b. user mode, in which some instructions are
not allowed (i.e., I/O instructions) and relocation and
protection are in effect, and c¢. user 1/0 mode, where all
instructions are valid but relocation and protection are,
still in effect. :

A.7PROCESSOR —KI10

The K110 central processor used with the larger
DECsystem-10 machines is nearly twice as fast as the
KA10 processor. This increase in speed results from the
use of different architecture, faster circuits, a more
complex adder, improved algorithms, and lookahead in-
struction logic, which obtains the next instruction during
the execution of the current instruction.

Core memory is managed by the paging system of the
KI10. This system allows the user program to access an
effective address space of up to 256K words. This space
is segmented into 512;¢ pages of 51219 contiguous words
each. These pages do not have to be contiguous in the
physical core memory.

The KI10 processor provides memory address mapping
from a program’s effective address space to the
physical address space by substitution of the most
significant bits of the effective address. This mapping
provides access to the entire physical memory space,
which is 16 times larger than the effective address
space. (The program’s effective address space is 256K
(18 bits) ; the physical address space is 4096K (22 bits)).
Memory mapping takes place using a page table as
follows: the most significant nine bits of the effective
address, the page number, is used as an index into the
appropriate page table. The effective page number is
then replaced by the information located in the page
table entry. This information is a physical page number

. - 47 -

of 13 bits. These 13 bits are concatenated with the least
significant 9 bits of the effective address, the word
address within the page, in order to form the 22-bit
physical address. More core is then able to be addressed
‘when providing a physical address space much larger
than the effective address space. This gives programs
the ability to access 4 million words.

Eight instructions for double-precision floating-point
arithmetic and three instructions for converting be-
tween fixed-point and floating-point formats are in the

KI10 instruction repertoire. The double-precision word .

format gives precision of 1 partin4.6 x 10 '8 and an ex-
ponent to the power of 256.

-

The KI10 processor provides measures for handling
arithmetic overflow and underflow conditions,
pushdown list overflow conditions, and page failure con-
ditions directly by the execution of programmed trap in-
structions instead of resorting to a program interrupt
system. The trap instruction is executed in the same
address space as the instruction that caused the trap.
Therefore, user programs can handle their own traps by
directing the monitor to place a jump to a user routine in
the trap location.

The maximum uninterruptable interval on the priority
interrupt system is 10us. The 1/0 bus cycle time of the
KI10 processor is 2.7 ys . Interrupt response is enhanced
by the four blocks of general-purpose registers. Each
block contains 16 registers that facilitate both rapid con-
text switching between programs and interrupt han-
dling.

The KI10 operates in one of two modes, user mode and

exec mode. Each of these modes have two submodes: a.

public mode and concealed mode in user mode, and b. su--
pervisor mode and kernel mode in exec mode.

User programs operate in user mode. Ini this mode, the
program can access up to 256K words. All instructions
are legal except those that interfere with other users or
the integrity of the system. A program in public mode
can transfer to a program in concealed mode only by
transferring to locations that have ENTRY instructions.
A program in concealed mode can read, write (if
allowed), execute, and transfer to any location desig-
nated as public. Concealed mode allows the loading of
proprietary software with a user program and data, but
prevents the user program from changing or copying the
software. This provides direct interaction between the
user and the proprietary software with virtually no over-
head.

A-3

INTRO TO SOFTWARE

The operating system operates in exec mode. The small-
er part of the operating system operates in kernel mode
and performs both I/0 for the system and any functions
that effect all users of the system. The larger part of the
operating system operates in supervisor mode and per-
forms general management of the system and the func-
tions that effect only one user at a time.

A.8 CORE MEMORIES

The ME10 core memory contains 16,384 words with a
read access time of 600 nanoseconds and a full cycle time
of one microsecond. Up to 16 memory modules can be
connected to provide 256K of core storage. Each module
can contain up to four ports. This memory features both
two-and four-way interleaving with switches on each
memory. module. It is specifically built for the KI10
processor in that it can recognize the 22-bit address
space. It also takes advantage of the overlap memory
control of the KI10, which results in a 20% increase in
speed.

The MD10G mass memory system consists of 64K MD10
core memory and a MD10E including cables. The basic
unit of the MD10 memory has 65,536 words of storage at
36 bits per word. The unit has an access time of 830 ns, a
cycle time of 1.8us, and two-or four-way interleaving
between cabnets. This memory is equipped with four
access ports for connection to the processor and data
channels. The MD10E core memory expansion module
expands the MD10E up to 128K in increments of 32,768
words.

The MD10H mass memory system consists of 128K
MD10 core memories and three MD10Es including
cables.

A.9 DRUM SYSTEM

The RM10G drum system consists of a DF10 data chan-
nel, a RC10 fixed-head drum control, and a RM10B fixed-
head drum. The DF10 controls the transfer of data be-
tween a device controller and one port in memory. Up to
eight controllers or special devices can be connected to
the DF10, providing one data path to core memory. In
other words, one device can be transferring data, and
other devices on the DF10 must wait until the device has
completed the data transfer. The rate of transfer is
determined by the speed of the device using the DF10.
The RC10 ¢ontrols up to four RM10B drums. It connects
to the processor via the I/0 bus for control and status in-
formation. Under program control, it establishes a data
path between the drum and a core memory port via the

INTRO TO SOFTWARE

DF10. The RM10B provides 345,000 36-bit words for fast-
access storage available for swapping, data storage, and
program libraries. It has an average latency time of 8.5
ms and an average transfer time of 4.5 us per 36-bit
word (or about 10.2ms and 5.4 us respectively when op-
erating with 50 Hz power). Due to its speed, the drum
should be connected to the highest priority memory port
via the DF'10.

A.10 DISK SYSTEMS

The RP02G disk system consists of the DF10 data chan-
nel, a RP10 disk control, and two RP02 disk pack drives.
The RP10 disk control can provide control of up to eight
RP02 disk pack drives. It connects to a DF10 data chan-
nel and the I/0 bus. The RP02 disk drive provides stor-
age for up to 5,120,000 36-bit words on interchangeable
disk packs. The average access time is 47.5 ms, which in-
cludes 12.5 ms average rotational latency, and the trans-
fer rate is 15 us per word.

The RP03G disk system includes a DF10 data channel, a
RP10C disk control, and four RP03 disk pack drives. The
RP10C can control up to eight RP02 or RP03 (or a com-
bination of the two) disk pack drives. The RP03 has a
total of 400 cylinders that give twice the storage capacity
of the RP02.The average access time is 41.5 ms including
the 12.5 ms average rotational latency, and the transfer
rate is identical to the RP02.

The maximum disk system storage capacity is: up to
four controllers, each with eight drives, giving a total of
327,680,000 words, or in excess of 1.966 x 109 characters
of on-line storage.

A.11 MAGNETIC TAPE SYSTEMS

The TD10G DECtape system consists of a TD10
DECtape controller and a TU56 DECtape transport. The
TD10 controls either four TU56 dual DECtape transports
or eight TU55 DECtape transports. Data is transferred
between the TD10 and the central processor over the I/0
bus at the average rate of one 36-bit word every 400 us.
The TUS56 transport reads and writes magnetic tape at
15K characters per second. The tapes are 3-3/4 in. in
diameter, 260 ft. long, and 3/4 in. wide. Each tape has a
directory providing random access to user files. The
tape units are bidirectional and redundantly recorded,
resulting in greater maintainability and reliability.

The TM10G 36KC magnetic tape system has a TM10A
magnetic tape control and either two TU10 or two TU20
magnetic tape units. The TM10A controls the operation
of up to eight tape transports and provides a data path
from the tape transport to the central processor via the

- 48 - .

1/0 bus. The data transfer rate is determined by the
speed and density of the drive being controlled. The
TU10 magnetic tape unit reads and writes 9-channel
(TU10E) or 7-channel (TU10F) industry standard tape at
45in. per second and a density of 200, 556, and 800 bits per
inch (TU10E) or bits per second (TU10F). The TU20A
magnetic tape unit reads and writes 9-channel USASI
standard magnetic tape at a rate of 45 in. per second and
with a density of 800 bits per inch. The TM10 controller
assembles four 8-bit characters per 36-bit word transfer.
The TU20B magnetic tape unit reads and writes 7-chan-
nel industry standard magnetic tape at the rate of 45 in.
per second and with densities of 200, 556, and 800 bits per
inch. The TM10 controller assembles six 6-bit characters
per 36-bit word for transfer.

The TU40G 120KC magnetic tape system includes a
DF'10 data channel, a TM10B magnetic tape control, and
two TU40 magnetic tape units. The DF10 controls the
transfer of data between eight device controllers and
one port of core memory. The TM10B controls up to
eight tape transports. This control uses the 1/0 bus to re-
ceive information from and to provide status to the
processor. It establishes a data path from the tape trans-
port to core memory via the DF10. The transfer rate of
the control is determined by the speed and density of the
tape transport performing the transfer. The TU40 reads
and writes 9-channel USASI standard magnetic tape at
150 in. per second and a density of 200, 556, and 800 bits
per inch. The TU41 reads and writes 7-channel industry
standard tape at 150 in. per second and a density of 200,
556, and 800 bits per inch. ’

A.12 INPUT/OUTPUT DEVICES
A.12.1 Card Readers

The card readers offered with the DECsystem-10 have
insignificant card wear, high tolerance to damaged
cards and are virtually jamproof. The life of an individ-
ual card has been proven.to be in excess of 1000 passes.
These readers are designed to permit the operator to
load and unload cards while the reader is operating.

The CR10D card reader is a table-top model that reads
80-column EIA standard cards at 1000 cards per minute.
The capacityof the card hopper is 1000 cards. The card
reader controller connects to the BA10 hard copy con-
troller.

The CR10E console model card reader inputs 80-column
EIA standard cards at 1200 cards per minute. The max-
imum number of cards held by.the input and output
hoppers is 2250 cards. The controller is mounted in the
BA10hard copy controller cabinet.

- 49 -

The CRI0F card reader is a table-top model and reads
80-column EIA standard cards at the rate of 300 cards
per minute. The hopper of the CR10F holds 600 cards.
The controller connects to the BA10 hard copy con-
troller.

A.12.2 Card Punch

The CP10A card punch punches cards at the rate of
either 200 cards per minute when punching all 80
columns or 365 cards per minute when punching only the
first 16 columns. The card hopper and stacker capacities
are 1000 cards. The card punch controller is mounted in
the BA10 hard copy controller cabinet.

A.12.3 Line Printers

The 64-character LP10A line.printer prints 300 lines per
minute and 132 columns per line. The printable charac-
ter set is composed up upper-case characters, numbers,
and special characters. The line printer is connected to
the I/0 bus via a controller mounted in the BA10 hard
copy controller.,

The 64-character LP10C line printer prints 1000 lines per
minute and 132 columns per line. The printable charac-
ter set is the same as the LP10A character set. The line
printer is connected to the I/0 bus with the BA10 hard
copy controller.

A.12.4 Plotters

The XY plotfer control is the interface for CalComp 500
and 600 series digital incremental plotters. It is normally
mounted in the BA10 hard copy controller, but can be
mounted in the TD10 DECtape controller cabinet.

A.12.4.1 XY10A CalComp Plotter Model 565—The XY10A
plotter is interfaced to the 1/0 bus via a controller
mounted in the BA10. This plotter has the following spec-
ifications:

Step Size Steps Minute Width of paper
0.011in, 18,000 12in.
0.005in. 18,000 12in.
0.1mm 18,000 12in.

A.12.4.2XY10B CalComp Plotter Model 563— The XY10B
plotter is interfaced to the I/O bus via a controller

INTRO TO SOFTWARE

mounted in the BA10. The plotter has the following speci-
fications: :

Step Size -

Steps Minute Width of paper
0.011in. 12,000 3lin.
0.005 in. 18,000 31lin.

18,000 3lin.

0.1mm

A.12.5 BA10 Hard Copy Control

The BA10 control cabinet contains the controllers for the
card readers, card punch, line printers, and plotters. It
has the power supplies and fans necessary to support the
controllers.

A.13 TELETYPES AND TERMINALS

The Teletypes and Terminals used on the DC10 and the
DC68A are similar except for different cables and inter-
face connectors.

A.13.1 Local DC10 Use

The LT33A teleprinter is the 33TS machine (33KSR,
friction feed).

The LT33B teleprinter is the 33TY machine (33ASR,
sprocket feed, automatic reader control XON/XOFF
feature). '

The LT35A teleprinter is the VSL312HF machine
(35KSR, sprocket feed).

A.13.2 Local DC68A Use

The LT33C teleprinter is the 33TS machine (33KSR,
friction feed).

The LT33H teleprinter is the 33TY machine (33ASR,
sprocket feed, automatic reader control XON/XOFF
feature).

The LT35C teleprinter is the VSL312HF machine
(35KSR, sprocket feed).

A.13.3 CRT displays

The VT06 alphanumeric terminal is a CRT display

A-5

" terminal capable of transmitting data locally or over

standard phone lines using data sets conforming to the
RS-232-C standard. The VT06 can functionally be inter-
changed with a teleprinter. In addition, the VT06 can be

INTRO TO SOFTWARE

used for display-oriented operations by utilizing the
cursor-control features. It has 25 lines of 72 characters

each and operates asychronously full-or half-duplex at a

variety of baud rates up to 2400 baud, selectable by a
switch on the rear panel.

The VT05 alphanumeric terminal is a CRT display
terminal capable of full-and half-duplex data trans-
mission at rates up to 300 baud. Alphanumerics can be
superimposed over a video image derived from closed
circuit TV or video tape.

A.14 DATA COMMUNICATIONS SYSTEMS

The data communication equipment inciudes two
systems for asychronous communications (hardwired
and programmable), two systems for synchronous com-
munications (low capacity and high capacity) and a
remote batch terminal.

A.14.1 DC10 Data Line Scanner

The DC10 hardwired data line scanner interfaces
asychronous communications lines to the processor via
the I/0 bus. The DC10A control unit is the basic unit and
contains the 1/0 interface and control logic. This unit
provides on-line servicing of up to 64 local commu-
nication lines. It accomodates any device that uses
eight-or five-level serial teletype code. Standard system
software supports interactive ASCII terminals at speeds
up to 2400 baud. For some special communication appli-
cations, the DC10 can operate at higher speeds. Full-
duplex with local copy and half-duplex data modes are
available on each line serviced.

The DC10B is an eight-line group unit connected to the
DC10A and provides an interface for up to eight local
lines. It can be used in full-duplex or full-duplex with
local copy operation. To provide carrier detection or
data set status control, the DC10E is required.

The DC10C eight-line telegraph relay assembly provides
aninterface to long distance telegraph lines using full-or
half-duplex facilities.

The DC10D telegraph power supply is the standard line
voltage supply used with DC10C (120 Vdc at 2 A).

The DC10E data set control provides expanaed
processor control of eight data sets inthe DC10 system.

A-6

-50 -

A.14.2 DC68A Communication System

The DC68A programmable communications system is
built around the 680/1 communications version of the
PDP-8/1. Characters are assembled via program con-
trol, which results in a very low incremental cost per
line. The DC68A is optimized for a large number of 110
baud lines, but will operate at speeds up to 300 baud. The
PDP-8/1is under monitor control and transfer across the
interface occurs on the character-by-character basis.
The DC68A provides on-line servicing of up to 63 commu-
nication lines. Terminals can be local or remote through
data sets. The standard configuration includes one DAI0
interface, one PDP-8/1-D computer (4K of memory with
MP8/1 parity option, and a Model 33ASR teleprinter),
one DL8/I serial line adapter, one DCO8A serial line
multiplexor, and three clocks for line frequency oper-
ations at 110, 150, or 300 baud rates. Additional options
mentioned in this section are required for implementing
a specific number of local or data sets.

The M750 dual serial line adapter implements two full-
duplex channels in the basic communication system.
One unit is required for every two local or data set lines.
The DCO08B local line panel accommodates up to 48 local
terminals suitable for direct 680/1 connection. The
DCO08F modem interface and control multiplexor accom-
modates up to 32 dual modem control units to handle up
to 64 asynchronous lines. The DC08G dual modem con-
trol unit implements two modem control units in the
DCO8F. It includes 25 ft. cables with modem connector
DB-25D.

A.14.3 DS10 Synchronous Line Unit

The DS10 synchronous line unit is an interface between
the DECsystem-10 I/O bus and one full-or half-duplex
voice grade synchronous modem to a remote batch
terminal, high-speed display, remote job entry station,
or another computer. The synchronous modem meets
EIA RS-232B or C standards, such as the Bell System
201B. System software supports full-duplex operation of
an DS10 at up to 9600 baud, or two DS10s at up to 4800
baud each.

A.14.4 DC75 Synchronous Communications System

The DC75 synchronous communication system is a PDP-
11-based front-end system designed to efficiently handle
multiple synchronous lines. The basic DC75 system in-
cludes a DL10 interface, one PDP-11/20, and a DS11 syn-
chronous modem interface implemented for eight lines.

- 57 -

The DL10 is a direct memory interface between the

DECsystem-10 memory and the PDP-11 commu-
nications processor. Each DL10 can connect up to four
PDP-11s. ’

A basic DC75 system can handle eight full-duplexlines at
speeds up.to 4800 baud each, or four lines at 9600 baud. It
can be expanded to handle 16 lines at 2400 baud by
implementing additional DS11 line capability.

For applications requiring additional line capability at
4800 baud or 9600 baud, up to three additional PDP-
11/DS11 combinations can be added to the DL10 inter-
face unit. Each additional PDP-11/DS11 combination
provides a line throughput capability equal to the initial
system. .

For special applications, the DC75 can be programmed
to handle a mix of line speeds, character sizes, and
message formats. The DS11 modem interface hardware

- A7

INTRO TO SOFTWARE

has provision for 6-, 8-, or~12-bit character sizes, and
these characters can be efficiently packed into
DECsystem-10 memory by the DL10.

A.14.5 DC71 Remote Batch Station

The DC71 remote batch station consists of a PDP-8/1
processor, an operator Teletype, a card reader, a line
printer, and a synchronous interface. The DC71 connects
to the DS10 or the DC75 via a full-duplex synchronous
communications link. The remote batch terminal can be
either a DC71A or DC71B terminal. The DC71A is con-
figured with a 132-column line printer with a 64-charac-
ter set. The DC71B is configured with a 96-character set
line printer. The DC71D Teletype Concentrator package
includes eight lines for connecting to the DC71A or
DC71B. Another eight lines can be added by connecting
the DC71E to the DC71D. Terminals can be Teletypes,
VTO06 or VT05 display terminals, or other teletype-com-
patible terminal interfaces, at speeds up to 2400 baud. -

INTRO TO SOFTWARE

- 52 -

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08

