-197-

DEC-10~AMZC-D

MACRO-10 ASSEMBLER _
PROGRAMMER’S REFERENCE MANUAL

DIGITAL EQUIPMENT CORPORATION e MAYNARD, MASSACHUSETTS

MACRO -198-

lst Edition April 1967

2nd Printing October 1967

3rd Edition (Rev) August 1968
4th Edition (Rev) June 1969
5th Edition (Rev) October 1969
6th Edition (Rev) August 1970
7th Edition (Rev) April 1972

Copyright @ 1967, 1968, 1969, 1970, 1971, 1972 by
Digital Equipment Corporation

The material in this manual is for information
purposes and is subject to change without notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

-199- MACRO

CONTENTS
CHAPTER 1 : " INTRODUCTION 205
1.1 MACRO—lO_LANGUAGE - STATEMENTS 206
1.2 INSTRUCTION WORD FORMATS 206
1.2.1 Primary Instruction Format 207
1.2.2 Input/Output Instruction Format 208
1.3 COMMUNICATION WITH MONITORS 209
1.4 OPERATING PROCEDURES 209
1.5 MACRO STATEMENTS 209
1.5.1 Symbols 209
1.5.2 Labels 210
1.5.3 Symbolic Addresses 210
1.5.4 Operators 211
1.5.5 Symbolic Operators 211
1.5.6 Operands 212
1.5.7 Symbolic Operands - 212
1.5.8 Comments : 213
1.6 STATEMENT PROCESSING 213
1.6.1 Order of Statement Evaluation 214
1.6.2 Order of Expression Evaluation , 214
1.7 USER-DEFINED SYMBOLS 215
1.7.1 Direct Assignment Statements 215
1.7.2 Local and Global Symbols 216
1.7.3 Deleted Symbols 217
1.8 NUMBERS 218
1.8.1 Arithmetic and Logical Operations 219
1.8.2 Evaluating Expressions 219
1.8.3 Numeric Terms 220
1.8.4 Binary Shifting 221
1.8.5 Left Arrow Shifting 222
1.8.6 Floating Point Decimal Numbers 222
1.8.7 Fixed Point Decimal Numbers ’ 222
1.9 ADDRESS ASSIGNMENTS 223
1.9.1 Setting and Referencing the Location 224
Counter
1.9.2 Indirect Addressing 224
1.9.3 Indexing _ 224
1.10 LITERALS 225
Version 47 ' ' June 1972

iii

MACRO

CHAPTER 2

2.1
2.1.1

2.2
2.2.1
2.3
2.3.1

2.3.2
2.4

2.4.1
2.4.2
2.4.3
2.4.4

2.4.5
2.4.6
2.4.7
2.5

2.5.1
2.5.2
2.5.3

2.5.4

2.5.5
2.5.5.1
2.5.6
2.5.6.1
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12
2.5.13
2.5.14
2.5.15

-200-

MACRO-10 ASSEMBLER
STATEMENTS - PSEUDO-OPS

ADDRESS MODE: RELOCATABLE OR ABSOLUTE

Relocation Before Execution - PHASE
and DEPHASE Statements

NAMING PROGRAMS
Program Subtitles
PROGRAM ORIGIN

HISEG Statements - The HISEG Pseudo-Op
Statement

TWOSEG Statements

ENTERING DATA

RADIX Statements

Entering Data Under the Prevailing Radix
DEC and OCT Statements

Changing the Local Radix for a Single
Numeric Term

RADIX 50 Statement

EXP Statement

Z Statement

INPUT DATA WORD FORMATTING

BYTE Statement

POINT Statement - Handling Bytes

IOWD Statement: Formatting I/O
Transfer Words :

XWD Statement: Entering Two Half-Words
of Data

Text Input

ASCII, ASCIZ, and SIXBIT Statement
Reserving Storage

Reserving a Single Location
VAR Statements

BLOCK Statements

END Statements

LIT Statements
Multi-Program Assembly
PASS2 Statements

PURGE Statements

XPUNGE Statements

Linking Subroutines

2.5.15.1 EXTERN Statements
2.5.15.2 INTERN Statements
2.5.15.3 ENTRY Statements

Version 47

June

iv

227
227
229

230
231
231
232

232
233
233
234
234
235

236
236
236
236
236
237
239

239

240
240
241
242
243
243
243
244
244
245
245
245
246
246
247
247

1972

201- - MACRO

2.6 SUPPRESSION OF SYMBOLS 248

2.6.1 SUPPRESS SYMBOL Statement 248

2.6.2 ASUPPRESS Statement 248

2.6.3 Listing Control Statements 249

2.7 CONDITIONAL ASSEMBLY : 252

2.8 ASSEMBLER CONTROL STATEMENTS 253

2.8.1 REPEAT Statements ’ 253

2.8.2 OPDEF Statements 254

2.8.3 SYN Statements ' 255

2.8.4 Extended Instruction Statements 256

2.9 MULTI~FILE ASSEMBLY 257

2.9.1 UNIVERSAL Name 257

2.9.2 SEARCH Name o 258

CHAPTER 3 MACROS 259
3. DEFINITION OF MACROS 259

3.2 MACRO CALLS 260

3.3 MACRO FORMAT 261

3.4 CREATED SYMBOLS 262

3.5 CONCATENATION 263

3.6 DEFAULT ARGUMENTS 264

. INDEFINITE REPEAT _ 265

3.8 NESTING AND REDEFINITION 266

3.8.1 ASCII Interpretation 268

CHAPTER 4 ERROR DETECTION 269
4.1 SINGLE-LETTER ERROR CODES 269

4.2 ERROR MESSAGES 275

4.2.1 LOOKUP- Errors 277

4.2,2 MACRO I/O Error Messages 278

CHAPTER 5 RELOCATION 279
CHAPTER 6 ASSEMBLY OUTPUT ‘ 283
6.1 ASSEMBLY LISTING 283

6.2 BINARY PROGRAM OUTPUT ‘ 284

6.2.1 Relocatable Binary Programs - LINK 284

Format
Version 47 June 1972

MACRO

CHAPTER

APPENDIX

APPENDIX

APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

Version

6.2:1.1
6.2.2

6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4

7

C

G.1

G.2

G.2.1
G.2.2
G.2.3
G.2.4
G.2.5
G.2.6
G.2.7
G.3

47

-202-
LINK Formats for the Block Types
Absolute Binary Programs
RIM10B Format
RIM10 Format
RIM Format
END Statements

PROGRAMMING EXAMPLES

OP CODES, PSEUDO-OPS,
AND MONITOR I/O COMMANDS

ASSEMBLER PSEUDO-OPS AND MONITOR CO
COMMANDS

MACHINE MNEMONICS AND OCTAL CODES

SUMMARY OF PSEUDO-OPS
PSEUDO-OPS
Conditional Assembly Statements

SUMMARY OF CHARACTER INTERPRETATIONS

STORAGE ALLOCATION

TEXT CODES

RADIX 50 REPRESENTATION

SUMMARY OF RULES FOR
DEFINING AND CALLING MACROS

ASSEMBLER INTERPRETATION
CHARACTER HANDLING
Blanks

Brackets

Parentheses

Commas

Semicolons

Carriage Return
Back-Slash

CONCATENATION

vi

June

285
288
288
289
290
290

293

307

307

309

311
311
313

315

319

323

325

327

327
327
327
327
328
328
328
328
328
328

1972

APPENDIX H
H.1
H.2
H.3
H.3.1
H.3.2
H.4

Version 47

-203-

OPERATING INSTRUCTIONS
REQUIREMENTS
INITIALIZATION
COMMANDS
General Command Format
Disk File Command Format
SWITCHES

vii

June

MACRO

331
331
331
332
332
332
334

1972

_205- | MACRO

Chapter 1
Introduction

MACRO-10 is the symbolic assembly program for the PDP-10, and oper-

ates in a minimum of 7K pure plus 1K impure core memory in all 4
PDP-10 systems. MACRO-10 is a two-pass assembler. It is completely
device independent, allowing the user to select standard peripheral
devices for input and output files. 'For_example, a terminal can be used
for input of the symbolic source program, DECtape for output of the
assembled binary. object program, and a line printer can be used to
output the program listing.

This assembler performs many useful functions, making machine
language programming easier, faster, and more efficient. Basically,
the assembler processes the PDP-10 programmer's source program
statements by translating mnemonic operation codes to the binary
codes needed in machine ihstructions, relating symbols to numeric
values, assigning relocatable or absolute core addresses for pro-
gram instructions and data, and preparing an output listing of the
program which includes notification of any errors detected during
the asSembly process.

"MACRO-10 also contains powerful macro capabilities which allow the
programmer to create new language elements, thus expanding and

VERSION 47 JUNE 1972
1-1

MACRO -206-

adapting the assembler to perform specialized functions for each
programming job.

1.1 MACRO-10 LANGUAGE - STATEMENTS

MACRO~10 programs are usually prepared on a terminal, with the aid
of a text editing program, as a sequence of statements. Each state-
ment is normally written on a single line and terminated by a car-
riage return-line feed sequence. MACRO-10 statements are virtually
format free; that is, elements of a statement are not placed in
numbered columns with rigidly controlled spacing between elements,

as in punched-card oriented assemblers.

There are four types of elements in a MACRO-10 statement which are
separated by specific characters. These elements are identified
by the order of appearance in the statement, and by the separating,
or delimiting, character which follows or precedes the elements.

Statements are written in the general form:
label: operator operand,operand; comments (carriage return-line

The assembler converts statements written in the foregoing form
and translates them into machine instruction words. The formats
used by the machine instructions are described in the following
paragraphs.

1.2 INSTRUCTION WORD FORMATS

There are two types of machine instruction word formats: primary
and input/output.

The PDP-10 machine instructions are fully described in the PDP-10
System Reference Manual and listed alphabetically in Appendix A of
this manual. Monitor I/0O commands, or programmed operators have
the same formats. (See monitor manuals.)

The primary instruction statements may have two operands: (1) an
accumulator address and (2) a memory address. A memory address
may be modified by indexing and indirect addressing.

feed)

VERSION 47 June 1972

~207- | MACRO

l.é.lr Primary Instruction. Format

Aftef processing primary instruction statements, the assembler
produces machine instructions in the geheral 36-bit word format
shown below:

0 - 8 9 C 123 14 1718 35
[o‘ov|1000‘1x\||||o<>|vlooooooo’ooo,0|_ooooooJ

y J
Y . A\
INSTRUCTION INDIRECT ADDRESS
PART BIT PART

ACCUMULATOR INDEX
. REGISTER - 10-0062

Ih general, the mnemoﬁic,Operation code, or operator, in the sym-
bolic statement is translated fo its binary equivalent and placed
inrbitslo-é of the machineiinStfugtidn; The address operand is
evaluated and placed'in the address pért (bits 18-35 of the machine
instruction. The assembler'aSSigns séquential binary addresses to
each statement as it is précessed by means of the location counter.
Labels are given the currént value of the location counter and are
stored in the dssembler's symbol tabie, where the corresponding
binary addresses can be found if another instruction uses the same

symbol as an address reference.

Any one of 16 possible accumulators may be specified in an instruc-
tion by identifying them symbolically dr numerically as operands

in the statement folloWed by a comma. The indirect address bit is
set to l.when the character @ bfefixés a @embry reference. Index-
ing isAspecified by wriﬁipg the,indéx register used in parentheses
immediately following the memoty reference. (All PDP-10 accumula-
tors, except accﬁmulator 0, may be uséd as inhdex registers.) Actu-
ally, expression§ encloéed in parentheses. (in the index register
position) are‘evaiuated as 36-bit guantities; their halves are ex-
changed, and then each half ig added inté'the corresponding half

of the binary word being assembled. For example, the statements

MOVSI AC,(1.#) ;MOVE 1.8 TO AC)
MOVSI AC, (SIXBIT /DSK/)

are equivalent to

MOVSI AC,201400 ;MOVE 1.4 TO AC)
MOVSI AC,LU46353

VERs10ON 47 June 1972

MACRO -208-

To illustrate this general view of assembler processing, here is a
typical symbolic instruction. Assume that AC1l7, TEMP and XR are
defined symbols, with values of 17, 100, and 3, respectively.

LABEL: ADD ACl17,@TEMP(XR) ; STATEMENT EXAMPLE)

This is processed by the assembler and stored as a binary machine
instruction like this:

0 8 9 12 13 14 17 18 35

[N D '

N _J
Y e
INSTRUCTION INDIRECT ADDRESS
PART BT PART

ACCUMULATOR INDEX 10~-0061
REGISTER

The mnemonic instruction code, ADD, has been translated to its octal
‘equivalent, 270, and stored in bits 0-8. The first operand specifies
accumulator 178. The effective memory address will be found at exe-
cution time by adding the contents of index register 3 to the value
of TEMP, then taking this value as the address of the word whose

address points to the word to be added to ACl7.

A comment following a semicolon does not affect the program in any
way, but it is printed in the output listing.

1.2.2 Input/Output Instruction Format

There are eight PDP-10 I/O statements; in each statement the first
operand is either a peripheral device number or a device mnemonic
(see PDP-10 System Reference Manual for complete list). The second
operand is a memory address. For example,

READ: DATATI PTR,@NUM(N))

requests that data be read in from a paper-tape reader, to be stored
at the indirect, indexed, address given.

The format for I/0 instruction words is shown below:

o 2 3 9 10 12 13 14 17 18 35

Ll 1] 1 |

M A
DEVICE INDIRECT ADDRESS
SELECTION arT PART

INSTRUCTION INDEX
PART REGISTER 10-0063

170
INSTRUCTION

VERsION 47 June 1972

-209- MACRO

1.3 COMMUNICATION WITH MONITORS

Programs assembled with MACRO-10 which operate under executive con-
trol of a monitor must use monitor facilities for device independent
I/0 services. This is done by means of programmed operators (opera-
tion codes 040 through 077) such as CALL. INIT, LOOKUP, IN, OUT,

and CLOSE.

Additional monitor commands are available to allow the user program
to exercise control over central processor trapping, to modify its

memory allocatlon, and other services, which are described in the

monitor programmer's manuals.
Monitor commands are listed 'in Appendix A.
1.4 OPERATING PROCEDURES

Commands for loading and executing MACRO-iO are contained in Appen-
dix H.

1.5 MACRO STATEMENTS

As previously stated (paragraph 1.1) macro statements consist of
a label, an operator, an operand and‘bptional comments.

The assembler interprets and processes these statements, generating
one or more binary instructions or data words, or performalng an
assembly process. A statement must contain at least one of these
elements and may contain all four types. Some statements are writ-
ten with only one operand; but others may have many. To continue a
statement on the following line, the control (CTRL) left arrow (<),
echoed as ++ is used before the carriage return-line feed sequence
(+ ¥+ or)) Examples of program statements are given in Chapter 7,
Figures 7-1 and 7-3.

Statement labels, operators and operands may be represented elther
numerlcally or symbolically. The assembler interprets all symbols
and replaces them with a numeric (binary) value.

1.5.1 Symbols

The programmer may create symbols to use as statement labels,
as operators and as operands. A symbol may consist of any

VERsION 47 ©1e5 June 1972

MACRO -210-

combination of from one to six characters of the following
set:

The 26 letters, A-Z

Ten digits, 0-9

Three special characters: $ (Dollar Sign)
% (Percent)
. (Period)

The foregoing character set is the Radix-50 character set.

Any statement character which is not in the Radix-50 set is treated

as a symbol delimiter when encountered by the assembler.

Tf the first characters of a symbol are numeric, the symbol is
treated as through the numeric characters were not present. If the
first character is a period, it must not be followed by a digit.
Spaces must not be embedded in symbols. A symbol may actually have
more than six characters, but only the first six are meaningful to
MACRO-10.

MACRO-10 accepts programs written using both upper and lower case
letters and symbols (e.g., programs written using thé Teletype
Model 37). Lower case letters are treated as upper case in symbols;
additional special characters, and lower case letters elsewhere,

are taken without change.

1.5.2 Labels

A label is the symbolic name created by the source programmer to
identify a statement. If present, the label is written as the first
item in a statement and is terminated by a colon (:). (Refer to

paragraph 1.5.1 for a description of how symbolic names are formed.)
1.5.3 Symbolic Addresses

A symbol used as a label to specify a symbolic address must appear
first in the statement and must be immediately followed by a colon
(:). When used in this way, a symbol is said to be defined. A
defined-symbol can reference an instruction or data word at any
point in the program.

' A label can be defined with only one value; if a programmer attempts
to redefine a label with a different value, the second value is

VERSION 47 June 1972

1-6

-211- MACRO

ignored and an error is indicated (see Chapter 4 for error mes-
Isages). The following are legal labels:

$SUM:
ABC: DEF: (Both labels are legal)
FOO

The following are illegal:

TABC: (First character must not be a digit.)
LAB : (Colon must immediately follow label.)

If too many characters are used in a label, only the first six
characters given are used. For éxample the label ABCDEFGH: is
recognized by the assembler & being ABCDEF:.

Labels are used for programmer reference as addresses for jump

instructions, for loops and for debugging.
1.5.4 Operators

An operator may be one of the mnemonic machine instruction codes

(see DECsystem-10 System Reference Manual), a command to Monitor,

or a pseudo-operation code which directs assembly proéessing.. These

assembly pseudo-op codes are desCribed in this manual, and listed
with all other assembler defined 0peratprs in Appendix A.

Programmers may extend the power of the assembler by creating their
own pseudo-operators (see OPDEF pseudo-op).

An operator may be a macro name, which calls a user-defined macro
instruction. Like pseudo-ops, macros direct assembly processing;
but, because of their uniqué power to handle repetitions and to
extend and adapt the assembly language, macros are considered
separately (see Chapter 3). Operatofs are terminated with a space
or tab.

1.5.5 Symbolic Operators

Symbols used as operators must be predefined by the assembler or

by the programmer. If a statement has no label, the operator may
appear first in the statement, and must be terminated by a space,

tab, or carriage return. The following are examples of legal operators:

"VERSION 47 June 1972
' 1-7 :

MACRO -212-

MOV (A mnemonic machine instruction operator.)
LOC (An assembler pseudo-op.)
Z1IP (Legal only if defined by the user.)

1.5.6 Operands

Operands are usually the symbolic addresses of the data to be ac-
cessed when an instruction is executed, or the input data or argu-
ments or a pseudo-op or macro instruction. In each case, the in-
terpretation of operands in a statement depends on the statement
operator. Operands are separated by commas, and terminated by a
semicolon (;) or by a carriage return-line feed.

In the mnemonic machine instruction and UUO call set, if an oper-
and is followed by a comma (spaces in the line are ignored) then

the operand is identified as an accumulator (see instruction format
description in paragraph 1.2.1). If an operand is not followed by

a comma, then it is viewed as an address (either indexed or indirect
if negative).

1.5.7 Symbolic Operands

symbols used as operands must have a value defined by the user.
These may be symbolic references to previously defined labels where
the argument to be used by this instruction are to be found, or

+he values of symbolic operands may be constants or character
strings. If the first operand references an accumulator, it must
be followed by a comma.

TOTAL: ADD AC1,TAG)

The first operand, Ac1, specifies an accumulator register, determined
by the value given to the symbol ACl by the user. The second oper-
and references a memory location, whose name or symbolic address is
TAG. If the user has equated ACl to 17, and the assembler has as-
signed TAG to the binary address, 000537, then the assembler inserts
17 in the accumulator fieid (bits 9-12) and 000537 in the address
field (bits 18-35) of this instruction.l If an accumulator is not
specified, but the operator requires one, accumulator 0 is assumed

by default. If an accumulator is specifies by the value >l78, the
four least significant bits are used.

VERSION H7 June 1972

1.5.8

-213- MACRO

Comments

The programmer may add notes to a statement following a semicolon.

Such comments do not affect assembly processing or program execu-

tion, but are useful in the program listing for later analysis

or debugging. The use of angle'brackets (<>) should be avoided in

comments because they may affect the_assembly.

purpose of the line and any special action it causes. A line may
also consist of only.a comment; this is usually done at the begin-
ning of each routine or major program section to explain the major

Each line of a program may contain a comment which explains the

flow of control, entry and exit points and any other pertinent
information. '

" 1.6 STATEMENT PROCESSING

The assembler has several symbol tables and corresponding search

routines.

The symbol tables arranged in the order in which they

are searched are:

1.

Macro Table - This symbol table contains macros,
user-defined operator definitions (op~defs) 'and
synonyms (refer to the description of the SYN
pseudo-op, paragraph 2.8.3). The macro table is
initially empty; it grows as the user defines
items. :

Op~-Code Table - This symbol table contains all of
the operator-codes (op-codes), the UUO calls and
the assembler pseudo-operators (pseudo-ops). Lists
of the foregoing items are given in Appendices A and
B. The op-code table is generated by the assembler
and is of fixed length; it cannot be changed except
by reassembling MACRO,

User Symbol Table - This symbol table contains all
user~defined symbols other than those which are
placed in the Macro Table. This table is initially
empty; it grows as the user defines items. -

Mnemonic Table - This table contains the mnemonics
for the CALLI, MTAPE and TTCALL UUO's. The mnemonic
table is searched only if all othetr measures fail.
Any symbol found in this table is put into the macro
table as an op-def as though the user had defined it.
Examples-of the mnemonics contains by this table are

a) RESET as defined by the CALLI g,g
b) EXIT as defined in CALLI #,12
c) OUTSRT_as'defined in TTCALL 3,8

“VERSION 47 o , June 1972

1-9

MACRO -214-

Internally, the macro table and the user symbol table occupy the same
space; however, the entries of each table are easily distinguishable

so no confusion takes place.
1.6.1 Order of Statement Evaluation

The following table shows the order in which the assembler searches

each statement field:

Label Field Operator Field Operand Field
1. Symbol suffixed by 1. Number 1. Number
colon. If colon is 2. Macro/OPDEF 2. Symbol
not found, no label 3. Machine operator 3. Macro/OPDEF
is present. 4, Assembler operator 4. Machine operator
5. Symbol 5. Assembler operator

6. CALL1l mnemonic

A single symbol could be used as a label, an operator, or an operand,

depending on where it is used.

The assembler first checks the operator field for a number, and if found,
assumes that no operator is present. Likewise, if a symbol is not a
macro, OPDEF, machine operator or assembler operator, the assembler will
search the symbol table. If a defined symbol is found, no operator is.

present.

If a defined operator appears in an operand field, it must generate at
least one word of data. Statements that do not denerate data may not
be used as part of operand expressions. If a statemebt'used in an
operand expressions generates more than one word Qf‘data,-only the

first word generated is meaningful.
1.6.2 Order of Expression Evaluation
Expressions are evaluated in the following order:

~ (Unary operator)
4p, to, *B, ‘R, L
B Shift, <« Shift
Logical operators
Multiply/Divide .
Add/Subtract

At each level, operations are performed left to right.

VErRsION 47 June 1972

-215- MACRO

1.7 USER-DEFINED SYMBOLS

User~defined symbols are of two types: labels and assignments. Labels
are generated by entering a symbol followed immediately by a colon
(e.g., TAG:). Symbols used as labels cannot be redefined with a dif-
ferent value once they have been defined. The value of a label is the
value of the location counter at the time that the label is defined.

Assignments are used to represent, symbolically, numbers or bit patterns.
Assignments ease the coding task in that ‘'only one line has to be changed

(that containing the assignment) in order to change a number or bit pat-
tern which is used throughout the progrgm;’ Assignment statements may be
changed at any time, the current value of an assignment is the last value
given to the symbol used. »

1.7.1 Direct Assignment Statements

The macro inserts new symbols with their assigned values directly into
the symbol table by using a direct assignment statement of the form,

symbol=value)

where the value may be a number or expression. Note that the equal sign
must immediately follow the symbol. For example,

ALPHA= 5)
BETA= 17)

A direct assignment statement may also be used to give a new symbol the

same value as a previously defined symbol:

BETA= 17)
GAMMA= BETA)

The new symbol, GAMMA, is entered into the symbol table with the value 17.
The value assigned to a symbol may be changed:
ALPHA= 7)

changes the value assigned in the first example from 5 to 7.

VERSION 47 June 1972

MACRO -216-
Direct assignment statements do not generate instructions or data in the

object program. These statements are used to assign values so that symbols
can be conveniently used in other statements.

1.7.2 Local and Global Symbols

User-defined symbols may be used as local and global symbols in addition
to beging used as label and assignment symbols.

Local symbols are symbols which are known only to the program in which
they are defined. Two separately assembled macro programs may contain
local symbols which have the same mnemonic but different definitions;
these programs, however, may be loaded and executed without conflict

since the symbols are defined as local to each program.

Global symbols are symbols which can be recognized by programs other
than the one in which it is defined. The manner in which a global
symbol is written or defined depends on where it is located: in the pro-
gram in which it is defined or the program in which it is a reference to
a symbol defined elsewhere.

Global symbols located in the program in which they are defined must be
declared as available to other programs by the use of the pseudo—-ops
INTERN or ENTRY (see paragraphs 2.5.14.1 and 2.5.14.3) or by the use of
the delimiter =: in their definition statement. For example, the symbol
FLAG may be declared a global symbols by:

a. INTERN FLAG (the symbol FLAG is declared internal),
b. ENTRY FLAG (identifies the entry point of a library subroutine),
c. FLAG=: 28§ (FLAG is given the value 200 and is declared internal).

NOTE

The statement in item ¢ of the foregoing examples
(i.e., FLAG=: 2@¢) is equivalent to the series

INTERN FLAG
FLAG= 2080

Global symbols located in a program in which they are references to symbols
defined in other programs must be declared as external symbols by the use
of the EXTERN pseudo-op (see paragraph 2.5.14.1) or a ## suffix. For
example, the statement

EXTERN FLAG
VERSION 47 ‘ JuNe 1972

-217- MACRO
declares the symbol FLAG as an external reference. The statement
MOVE @ ,FLAG##

also declares”the symbol‘FLAG as an external reference; this statement

is the equivalent of the series:

EXTERN FLAG
MOVE @ ,FLAG

1.7.3 Deleted Symbols
Sometimes a programmer may want to define a symbol in MACRO but not have
that symbol typed out by DDT (refer to the DDT Programmer's Reference
Manual). In such a case, the programmer should define that symbol with
a double equal éign:
FLAG== 2¢g)
FLAG will be assigned the value 200 and will be
a. Fully available in MACRO.,
b. Available for type-in with DDT ' (assuming that symbols
were loaded for the program containing FLAG).
C. Unavailable for type-out by DDT.
This is equivalent to -defining FLAG by:
FLAG= 2¢4)

and then typing

FLAG$K - (the. symbol $ represents ALT MODE)

to DDT.
A symbol may be defined with == and declared internal in the following
manner '
FLAG==:20%)
VERSION 47 June 1972

MACRO -218-

is equivalent to

INTERN FLAG)
FLAG==2¢7)

The programmer may also want to define a label in MACRO but have the out~-
put of the label suppressed in DDT. The following constructions may be
used:

LABEL:! LABEL is a suppressed local symbol.
LABEL: :! LABEL is a suppressed internal symbol.

1.8 NUMBERS

Numbers used in source program statements may be signed or unsigned, and
are interpreted by the assembler according to the radix specified by the
programmer, where

2<radix<10

The programmer may use an assembler pseudo-op, RADIX, to set the radix
for the numbers which follow. If the programmer does not use a RADIX
statement, the assembler assumes a radix of 8 (octal) except in the case
of the POINT pseudo-op (see paragraph 2.5.2).

The radix may be changed for a single numeric term, by using the quali-
fier followed by a letter, D (for decimal), O (for octal), B (for binary),
or F (for fixed-point decimal fractions). Note that these are not control
characters. Thus,

+D1¢g is stored as 1914
40189 is stored as 16928
+B1d is stored as 281g

The qualifier +L is used for bit position determination of a numeric
value. +Ln generates an octal value equal to the number of 0 bits to
the left of the leftmost 1, if the numeric value n were stored in a

computer word.

mxpression Resultant Value
448 zZero bits
tLg 44 0000000000. . . .000C000000
VErs1ON 47 June 1972

-219- MACRO

Expression Resultant Value
418 zZero bits
+L5 41 0000000000, . . .0000000101
4L-1 0 1111111111, . . ,1111111111

The suffixes K, M and G may be added to numbers as a shorthand method of
specifying the number of zeros which are to follow the given number. The
meaning of each suffix is: ‘

a) K, add three zeros (e.g., 5K = 5000),
b) M, add six zeros (e.g., SM = 5000000),
¢c) G, add nine zeros (e.g., 5G = 5000000000).

1.8.1 Arithmetic and Logical Operations

Numbers and defined symbols may be combined using arithmetic and logical
operators. The following arithmetic and logical operators may be used.

Operator ’ Meaning

Add

Subtract
Multiply
Integer Divide
AND

Inclusive OR

— N\ * |+

The assembler computes the 36-bit value of a series of numbers and
'definéd symbols connected by arithmetic and logical operators, trun-
cating from the left, if necessary. The following examples show how
these arithmetic and logical operators éreywritten in statements.

B= 65+X11-3)
MULI AC1+7,RHO/31)
MOVE A+3,BETA-5)

Combinations of numbers and defined symbols using arithmetic and logical
operators are called expressions.

1.8.2 Evaluating Expressions
When combining elements of an expression, the assembler first performs

unary operations (leading + or -), then binary shifts. The logical
operations are then done from left to right, followed by multiplications

VERSION 47 1-15 June 1972

MACRO -220-

and divisions, from left to right. Division always truncates the frac-
tional part. Finally, additions and subtractions are performed, left

to right. All arithmetic operations are performed modulo 235.

For example, in the statement:
TAG: TRO 3,1+A&C)

the first operand field is evaluated first; the comma terminating this
operand indicates that this is an accumulator. In the second operand
field, the logical AND is performed first, the result is added to one,
and the sum is placed in the memory address field of the machine instruc-

tion.

To change the normal order of operations, angle brackets may be used to
delimit expressions and indicate the order of computation. Angle brackets
must always be used in pairs.

Expressions may be nested to any level, with each expression enclosed in
a pair of angle brackets. The innermost expression is evaluated first,
the outermost is evaluated last. The following are legal expressions:

A+B/5
<<C=D+B-29>%<A-41>>+1
] A=<B=<C=10>>

1.8.3 Numeric Terms

A numeric term may be a digit, a string of digits, or an expression en-
closed in angle brackets. The assembler reduces numeric terms to a single
36~bit value. This is useful when specifying operations such as local

radix changes and binary shifts, which require single values.

For example, the 4D operator changes the local radix to decimal for the
numeric term that follows it. The number 2310 may be represented by

4D23
+D<5%2+413>
4+D<TEN¥2+THREE>
but 23lo may not be written,
AD12@-77
VErRSION 47 June 1972

~221- ‘ MACRO

because the 4D operator affects only the numeric term which follows it,
and in this example the second term (77) is taken under the prevailing

radix, which is normally octal.

The B shift operator is preceded by a numeric term (the number to be shifted)
andis followed by another term (the bit position of the assumed point).
The following are legal:

+F167BLT

+B1@Z11B8

566B5

<MARK + SIGN>B<PT-XXV>

A bracketed numeric term may be preceded by a + or a - sign.
1.8.4 Binary Shifting

A number may be logically shifted left or right by following it with the
letter B, followed by a numeric term, n, representing the bit position in
which the right-hand bit of the number should be placed. The numeric term,
n, may be any (decimal) bit position, starting with zero and numbering from
left to right. If n is not used, B35 is assumed; n is taken as modulo 256
decimal. Thus, the number +D10 is stored as 000000 000012; but +D1OB32 is
shifted left three binary positions and stored as 000000 000120; and D10B4
is shifted left 31 positions, so that its rightmost bit is in bit 4 and
stored as 240000 000000.

Binary shifting is a logical operation, rather than an arithmetic one.
" The following are legal binary shifts:

1BgZ 400000 000000
1B17 000001 000000
1B35 000000 000001
-1B35 777777 777777 (see explanation below)
-1B53 000000 777777
-1B7% 000000 000001

Note that the following expressions are equivalent:

10B32 +010B32 = 10B <42-10>= 10B< 4D <L42-10>>= 10B<+ DL2~ 4D10>

VERSION 47 June 1972

MACRO -222-

The unary operators preceding a value are interpreted first by the as-
sembler before the binary shift. A leading plus sign has no effect,
but a leading minus sign causes the assembler to shift and then to
store the 2's complement.

Binary shifting may operate on numeric terms, as defined in Section 1.3.2.
1.8.5 Left Arrow Shifting

If two expressions are combined with the operator "<", i.e., <m>*<n>, the 36-
bit value of expression m is shifted V bits (where V is the value of expres-
sion n) in the direction of the arrow (left) if V is positive or against

the arrow if V is negative. The effective magnitude of V is that of the
address of an LSH instruction.

1.8.6 Floating-Point Decimal Numbers

If a string of digits contains a decimal point, it is evaluated as a float-
ing point decimal number, and the digits are taken radix 10. For example,
the statement,

17.4 is stored as 205420 000000.

Floating-point decimal numbers may also be written, as in FORTRAN, with
the number followed by the letter E, followed by a signed exponent repre-
senting a power of 10. The following examples are valid:

NUM1: 17.2E-L)
NUM2: 3.85E2)
NUM3: -567.825E33)

1.8.7 Fixed-Point Decimal Numbers

As shown in Section 1.8, 4D followed by a numeric term, is used to enter
decimal integers.

Fixed-point decimal numbers (mixed numbers) are preceded by +F followed by
a number (not a numeric term, defined below) which normally contains a deci-
mal point. The assembler forms these fixed-point numbers in two 36-bit
registers, the integer part in the first and the fractional part in the
second. The value is then stored in one storage word in the object pro-
gram, the integer part to the left of the a ssumed binary point, the frac-
tional part to the right.

VERSION 47 1-18 June 1972

-223- MACRO

The binary shift (B) operator is used to position the assumed point. The
number +F123.45B8 is formed in two registers:

000000 000173 - (the integer part)
346314 631462 (the fraction part, left-justified)

The B operator sets the assumed point after bit 8,:so the integer part is
placed in bits 0-8, and the fraction part in bits 9-35 of the storage word.
In this case, the integer part is trun¢ated from the left to fit the 9-bit
integer field. The fraction part is moved into the 27-bit field following
the assumed point and is truncated on the right. The result is,

173346 314631

+
(assumed point)

If a B shift operator does not appear in a fixed-point number, the point is
assumed to follow bit 35, and the fractional part is lost.

Fixed-point numbers are assumed to be positive unless a minus sign precedes

the qualifier:

000000 000173 +F123.45
000173 346314 +F123.45B17 -
346314 631462 +F123.45B-1
777777 777604 -4F123.45
777604 431463 -4F123.45B17
431463 146316 -4F123.45B-1

Negative fixed-point numbers, such as the example above, are assembled as
if they were positive numbers, complemented, and then logically shifted.

1.9 ADDRESS ASSIGNMENTS

As source statements are processed, theassembler assigns consecutive
memory addresses to the instruction and data words of the object program.
This is done by incrementing the location counter each time a memory
location is assigned. A statement which generates a single object program
storage word increments the location counter by one. Another statement
may generate six storage words, incréménting the location counter by six.

The mnemonic instruction and monitor command! statements generate a single
storage word. However, direct assignment statements and some assembler
pseudo-ops do not generate storage words, and do not affect the location

!The terms monitor command (as used here) and programmed operator are
synonymous. 1-19

VErsION 47 . ~ June 1972

MACRO -224-

counter. Other pseudo-ops and macros may generate many words in the
object program.

1.9.1 Setting and Referencing the Location Counter
The MACRO-10 programmer may set the location counter by using the

pseudo-ops, LOC and RELOC, which are described in Chapter 2. He may
reference the location counter directly by using the symbol, point (

.)e

For example, he can transfer to the second previously assigned storage

word by writing:
JRST .-2)
1.9.2 1Indirect Addressing

The character @ prefixing an operand causes the assembler to set bit
in the instruction word, indicating an indirect address. For an ex-
planation of indirect addressing and effective address calculation,
see the PDP-10 System Reference Manual.

1.9.3 Indexing

If indexing is used to increment the address field, the address of
the index register used is entered in parentheses, as the last part
of the memory reference operand. This is normally a symbolic name
defined by a direct assignment statement, or an octal number in the
range 1-17, specifying 1 of the 15 index registers. However, the
address of the index register may be any legal expression or an ex-
pression element.

This is a symbolic, indirect, indexed, memory reference:
A: ADD 4,@NUM(17))

NOTE

The parentheses cause the value of the enclosed expres-
sion to be interpreted as a 36-bit word with its two
halves interchanged, e.g., (17) is effectively
000017000000.. The 36-bit value is added to the in-
struction ang may modify it. This is often used to
generate right half values from left half expressions;
for example, the statement

TLO AC, (1B#)

which sets the sign bit.

VErs1oN 47 1-20 JUNE

13

1972

~225- _ MACRO

1.10 LITERALS

In a MACRO statement, a symbolic data reference may be replaced by
a direct representation of the data enclosed in square brackets
([1). This direct representation is called a literal. The as-
sembler stores data found within brackets in a Literal table, as-
signs an address to the first word of the data and inserts that
address in the machine instruction.

A literal may consist of more than one statement and may generate
more than one word of data. A 1i;era1 must, however, generate at
least one word but no more than 18 wofds. Literals which consist
of only pseudo-ops (such as RADIX) which do not generate data or

direct assignments are illegal. '

Literals may be nested (i.e., bracketed data within other sets of
bracketed data) up to 18 levels.

The following is a simple example of the user of literals. Byte
instructions must reference by a byte pointer in this manner:

LDB 4,BP)
BP: POINT 1¢,A+3,14)

(POINT is a pseudo-op which sets up a byte pointter word.) A
literal can be used to insert the POINT statement directly. For

/

example
LDB 4,[POINT 1¢,A+3,14])
Literals are often used as constants as, for example:

a) PUSH 17, [#) (note that @ generates 6ne word of zero).
b) MOVE L. [3,14]

The following is an example of a multi-line literal:

GETCHR: SOSG IBUF+2 3ANY CHARS LEFT?
PUSHJ P,[IN N, 3sNO, READ SOME 1IN
FOPJ P, sNO UNUSUAL CONDITIONS
STATZ N,7u4ggpe ;CHECK FOR ERRORS

JRST [MOVEI E, [SIXBIT /INPUT ERROR/]
JRST ERRPNT] ;PUBLISH ERROR MESSAGE

JRST EWDFIL] ;END OF FILE HANDLER
ILDB AC,IBUF+1 sPICKUP NEXT CHAR
' , POPJ P, '
VERSION 47 June 1972

1-21

MACRO -226-

NOTE

The closing right square bracket does not terminate the
literal if placed after the semicolon.

The excessive use of literals, especially for small subroutines, is
not recommended since they use up assembler space at the rate of four
locations per data word generated. Literals also make debugging

more difficult and may cause page faults in the KI-10 processor
virtual memory allocation.

The PDP-6 version of macro (MACRO-6) only permitted literals to con-
tain one statement but it permitted the right bracket to be dropped.
Dropping the right bracket is not permitted by MACRO-10.

Two pseudo-ops MLON and MLOFF provide compatibility with old pro-
grams. Use of these pseudo-ops is required since

MOVE AC,[SIXBIT/TEXT/)

is legal in MACRO-6, even though the closing right bracket (]) of
the literal has been omitted. 1In normal mode, MACRO does not allow
such an unterminated literal. The pseudo=-op

MLON

is set at the start of each assembly to cause the assembler to
consider all code following a left bracket as part of a literal,
until such time as the assembler processes a matching right bracket.
Thus, carriage-return, line-feed does not end a literal, but

rather the programmer must insert a right bracket. The pseudo-op,

MLOFF

set by the switch /0, places MACRO into the compatibility mode in
which literals may occupy only a single line.

The symbol . (current location) is not changed by the use of

literals. It retains the value it had before the literal was
entered.

VERSION 47 June 1972

=227~ MACRO

Chaptér 2

MACRO-10 Assembler
Statements—Pseudo-Ops

Assembler statements or pseudo-ops direct the assembler to perform
certain assembler processing operations, such as converting data to
binary ﬁnder a selected radix, or listing selected parts of the assem-
bled object program. In this chapter, these assembler processing
operations are fully described.

NOTE

The pseudo-op name must follow the rules
for constructing a symbol (refer to Para-
graph 1.5.1) and must be terminated by a
character other than those listed in Para-
graph 1.5.1 as valid symbolic characters.
(Normally, a space or tab is used as a
terminator.)

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE

MACRO-10 normally assembles programs with relocatable binary addresses,
so that the program can be located anywhere in memory for execution as

a function of what has been previously loaded. When desired, the assem-
bler will also assign absolute location addreéses, either for the entire
program or for selected parts. Two pseudo-ops control the address mode:
RELOC and LOC,

VERSION 47 ' June 1972

MACRO -228-

RELOC N#

This statement sets the location counter to n, which may be a number
or an expression, and causes the assembler to assign relocatable ad-
dresses to the instructions and data which follow. Since most re-
locatable programs start with the location counter set to 0; the
implicit statement,

RELOC @2

begins all programs, and need not be written by the programmer who
wants his program assembled with relocatable addresses,

LOC NJ

This statement sets the location counter to n, a number or an expres-
sion, and causes the assembler to assign absolute addresses, begin ing
with n, to the instructions and data which follow. If the entire pro-
gram is to be assigned absolute locations, a LOC statement must precede
all instructions and data.

If n is not specified

(LOCW)
zero is assumed initially.
If only a part of the program is to be assembled in absolute locations,
the LOC statement is inserted at the point where the assembler begins
assigning absolute locations. For example, the statement,

LOC 2997

causes the assembler to begin assigning absolute addresses, and the
next machine instruction or data word is stored at location 2008.

VERSION 47 June 1972

-229- MACRO

To change -the address mode back to relocatable, an explicit RELOC
statement is required. If the programmer wants the assembler to con-
tinue assigning relocatable addresses sequentially, he writes,

RELOC »
To switch back to the next sequential absolute assignment, he writes,
LoC 2

Thus, the programmer is not required to ingert a location counter
value in either a LOC or RELOC statement, and unless he does, both
the relocatable coding and the absolute coding will be assigned se-
quential addresses. This is shown in the following skeleton coding.
The single quote mark is used here, and in MACRO-10 listings, to
identify relocatable addresses.

Location Counter Pfogram
goggag" ADD 1,X ;RELOC ¢ IS IMPLICIT.
aIBATU Loc 1909 ;CHANGES TO ABSOLUTE, STARTING
Jrguplng i _ SUB 5,TOT sWITH gg1294. g
ggig3l RELOC sSETS LOCATION COUNTER TO 74.
geeaTh! ADD 2,XAT
aaPFTS LOC ;SWITCHES LOCATION COUNTER
2g1@3L EXP A-X+7 ;BACK TO ABSOLUTE SEQUENCE.

When operating in the relocatable mode, the assémbler determines
whether each location in the object program is relocatable or absolute,

using an algorithm described in Chapter 5.
2.1.1 Relocation Before Execution - PHASE and DEPHASE Statements

Part of a program can be‘moved into other locations for execution.
This feature is often used to relocate a frequently used subroutine,
or iterative loop, into fast memory (accumulators 0-178) just prior
to execution.

‘

VERSION 47 | June 1972

MACRO ~230-

To use this feature, the subroutine is assembled at sequential re-
locatable or absolute addresses along with the rest of the program,
but the first statement before the subroutine contains the assembler
operator, PHASE, followed by the address of the first location of the
block into which the subroutine is to be moved prior to execution.
All address assignments in the subroutine are in relation to the
argument of the PHASE statement. The subroutine is terminated by a
DEPHASE statement, which requires no operands, and which restores the
location counter.

In the following example, which is the central loop in a matrix inver-
sion, a block transfer instruction moves the subroutine LOOP into
accumulators 11-16,

MOVE [XWD LOOPX,LOOP]
Relocatable BLT LOOP+4
Address JRST LOOP
LOOPX: PHASE 11
LOOP: MOVN A (X)
FMP MPYR
Absolute FADM A (Y)
Address SOJGE X, .-3
JRST MAIN
DEPHASE

The label LOOP represents accumulator 11, and the point in the SOJGE
instruction represents accumulator 14.

Note that the code inside the phase to dephase program segment is
loaded into the address following the previous relocatable. code; all
labels inside the segment, however, have the address corresponding
to the phase address. Thus the phased code cannot, in general, be
executed until it has been moved to the address for which it was

assembled.
2.2 NAMING PROGRAMS

Normally the first statement in a program gives the name of the pro-
gram using the TITLE pseudo-op. This pseudo-op has the form

TITLE NAME J)

in which the single operand (i.e., NAME) may contain up to 60 characters.

VERSION 47 June 1972
2-4

-231- , MACRO

'The name given will be printed at the top of each page of the program
listing; The first 6 characters of the given title will appear in the
assembled program as the program name. If no title is given, the
assembler inserts the name .MAIN. The program name given in the TITLE
statement is used when debugging with DDT in order to gain access to
the program's symbol table.

Only one TITLE pseudo-op is permitted in a program; it can appear any-
where in the program but is normally the first line on the first page.
Remember that a name may be longér than 6 characters, however, only
the first 6 symbol combinations (within the radix-50 set) will be used
for the program name.

2.2.1 Program Subtitles

After the first page of a program listing, the first data line en-
countered on a page may be a subtitle., Subtitles are génerated using
the pseudo-op SUBTTL. This pseudo-op has the form

SUBTTL SUBTITLE)

in which the single operand (SUBTITLE).may-contain up to 40 characters.,
A subtitle is printed as the first data line on a page and all suc-
ceeding pages until the end of the listing or until the subtitle is
changed. If the current subtitle is changed by another SUBTTL state-
ment which is the first data line on a page, the new subtitle appears
on the new page and all subsequent pages. If the SUBTTL statement is
not the first statement on a page, the new subtitle appears on the
next page and all subsequent pages.

subtitles can be changed as often as required; they do not generate
data and they do not affect the binary procedure only the listing.
They are used for informational purposes only.

2.3 PROGRAM ORIGIN

Initially all programs start with an implicit RELOC § which sets the

mode to be relocatable and the first address to be #. Unless other-

wise changed, the code generated will be a single-segment program.

VERSION 47 JUuNe 1972

MACRO -232-

The programmer can change the relocatable nature of the program by
using a LOC statement to generate absolute code (normally used for
diagnostics) or to generate high-segment code.

High-segment (or two-segment programs) have two logical address
spaces; one starting at @ and increasing, the other starting at
4000038 (128K) and increasing. Two pseudo—oﬁs, HISEG and TWOSEG con-
trol High or two-segment program operation.

2.3.1 HISEG Statements - The HISEG Pseudo-Op Statement

This pseudo-op does not affect the assembly operations in any way ex-
cept to generate information that directs the Loader to load the
current program into the high segment if the program has reentrant
(two-segment) capability. (Refer to Block Type 3 Load Into The High
Segment, paragraph 6.2.1.1, for additional information.) This pseudo-

op should appear at the beginning of the source program.

NOTE

Whenever possible the pseudo-op TWOSEG
should be used instead of HISEG. This
pseudo-op provides functions which are
superior to those of HISEG.

HISEG may be followed by an optional argument which represents the
program high-segment origin address. This argument, when used, nmust

be equal to or greater than 4¢@g@@F and must be a K-bound (even multiple
of 2000) value. The code produced by HISEG will execute at either
relocatable @ or relocatable 4g@@@@ depending on the loading instruc-

tions given.

HISEG must not be used if the programmer wishes to reference data in

the low segment since locations in the low segment are referenced by

absolute addresses only.
2.3.2 TWOSEG Statements

The TWOSEG pseudo-op generates code that directs MACRO and LOADER to
assemble and load a two-segment program in one file. This pseudo-op
outputs a block type 3 (refer to Paragraph 6.2.1.1) which signals the
LOADER to expect two segments. An optional argument may be present

VERSION 47 June 1972

~233- MACRO

which is the first address in the high segmeht. If no argument is
present, 400000 is assumed.

The high segment code must be preceded by
RELOC L@gggg

or gredter; the low segment code by
RELOC @

or an argument'indicating the low segment., Each RELOC pseudo-op
switches the relocation,

The listing produced by the TWOSEG pseudo-op shows high segment
addresses as greater than 400000 or the argument of the pseudo-op,

and low segment addresses as less than 400000 or the argument of the
pseudo-op. All relocatable addresses are flagged with a single quote.

2.4 ENTERING DATA
2.4,1 RADIX Statements

When the assembler encounters a numerical value in a statement, it con-
verts the number to a binary representation reflecting the radix
indicated by the programmer. The statement,

RADIX N.J)

where n is a decimal number, 2 < n < 10, sets the radix to n for all
numerical values that follow, unless another RADIX statement changes
the prevailing radix or a local radix change occurs (see below).

For example; if the programmer wants the assembler to interpret his
numbers as decimal quantities; then the prevailing radix must be set
to decimal before he uses decimal numbers,

RADIX 10J

The statement, RADIX 2, sets the prevailing radix to binary.

VERSION 47 | June 1972
2-7

MACRO -234-

The implicit statement, RADIX 8, begins every program; if the pfo—

grammer wants to enter octal numbers, this statement is ndt necessary.
2.4.2 Entering Data Under the Prevailing Radix

Data is entered under the prevailing radix by typing the data, followed
by a carriage return:

765432234567)
Data may be labeled and contain expressions:
LAB: U56+A+Bk C+D>))

Data may also be entered by first using a direct assignment statement
to place a symbol with an assigned value in the symbol table, and
then using the symbol to insert the assigned value in the object pro-
gram. For example, the direct assignment statements,

A=2 2
B=5J

cause two entries in the symbol table. The following statement enters
the sum of the assigned values in the object program at symbolic
address REX.

REX: A+B) REX contains 000000 000007
The radix can also be changed locally, that is, for a single statement
or a single value, after which the prevailing radix is automatically
restored, as described in Section 1.3,

2.4.3 DEC and OCT Statements

To change to a local radix for a single statement, the programmer

writes:
DEC N,N,N,...NJ

where all of the numbers and exXpressions are to be interpreted as

decimal numbers. The numbers or expressions following the operator

VERs1ON 47 June 1972

-235- MACRO

are separated by commas, and each will generate a word of storage.
OCT N,N,N,...N#

changes the local radix to octal for this statement only, and

generates a word of memory for each number or expression.
The statement,
DEC 18,4.5,3.1416,6.83E-26,3 J
generates five decimal words of data.
2.4.4 Changing the Local Radix for a Single Numeric Term

To change the radix for a single number or expression, the numeric
term is prefixed with 4D, 40, 4B, or 4F, as explained in Chapter 1.
If an expression is used, it must be enclosed in angle brackets,

+D<A+B—c/2gg> P

These prefixes may generate a word, or part of an instruction word.
The statement,

TOTAL2:MOVE 4D1¢,ABZ J

causes the contents of ABZ to be moved to accumulator 128.
When the assembler encounters a numeric term, it forms the binary
representation in a 36-bit register under the prevailing or local
radix. If the quantity is a part of an instruction, it is trun-
cated to fit in the required field.

For example, the accumulator field must have a final value in the
range 0—178. In the statement,

MOVE 4D6@,ABZ #

the assembler first interprets the accumulator address in a 36-bit
register, forming the integer 000000000074: but takes only the
rightmost four bits and places them in the accumulator field of
the instruction, which results in the selection of accumulator 148.

VERSsION 47 June 1972
2-9

MACRO -236-

2.4.5 RADIX 50 Statement

Another radix changing statement is available, but it is used primarily
in systems programming. This is RADIX50 n,sym) which is used by the
assembler, PDP~10 Loader, DDT, and other systems programs to pack
symbolic expressions into 32 bits and add a 4-bit code field n in

bits 0-3. This is explained in Appendix F of this manual. (The
mnemonic SQUOZE may be used in place of RADIX50.)

2.4.6 EXP Statement

Several numbers and expressions may be entered by using the EXP state-

ment:

EXP X,4, 4D65,HALF,B+362-A)
which generates one word for each expression; five words were
generated for the above example. '
2.4.7 Z Statement
A zero word can be entered by using the operator, Z.

LABEL: 7))

generates a full word of all zeros at LABEL. If operands follow'thé z,
the assembler forms a primary machine instruction, with the operator
field and other unknown fields zeroed. 1In the statement,

Z 3,

the assembler finds an accumulator field, but no address field, and
generates this machine instruction: 000140 000000.

2.5 INPUT DATA WORD FORMATTING

2.5.1 BYTE Statement

To conserve memory, it is useful to store data in less than full 36-bit
words. Bytes of any length, from 1 to 36 bits, may be entered by using
a BYTE statement.

BYTE (N) X,X,X J

The first operand (n) is the byte size in bits. It is a decimal number
in the range 1-36, and must be enclosed in parentheses. The operands
following are separated by commas, and are the data to be stored. If

an operand is an expression, it is evaluated ahd, if necessary, truncated
from the left to the specified byte size. Bytes are packed into words,

VERSION 47 - June 1972

2-10

=237~ . MACRO

starting at bit 0, and the words are assigned sequential storage loca-
tions. 1If, during the packing of a word, a byte is too large to fit
into the remaining bits, the unused bits are zeroed and the byte is
stored left-justified in the next sequential location.

In the following statement, three 12-bit bytes are entered:

LABEL: BYTE (12)5,177,N .
This assembles at LABEL as, 0005 0177 0316, where N=316.

The byte size may be altered by inserting a new byte size in parentheses
immediately following any operand. Notice that the parentheses serve

as delimiters, so commas must not be written when a new byte size is
inserted. The following are legal:

BYTE (6)5(14)NT(3)6,2,5)

where 6 is entered in a 6-bit byte, NT in the following 1l4-bit byte,

6 in the following 3-~bit byte, followed by 2 and 6 in 3-bit bytes. A
BYTE statement can be used to reserve null fields of any byte size. If
two'consecutive delimiters are found, a null field is generated.

BYTE (18),5 J

When the assembler finds two delimiters, it assembles a null byte. 1In
this case, 000000 000005. To enter ASCII characters in a byte, the
characters are enclosed in quotation marks.

BYTE (7)"A"™)
Text handling pseudo-ops are discussed in paragraph 2.5.5.
2.5.2 POINT Statement -‘Handling Bytes

Five machine instructions are available for byte manipulation.
These instructions reference a byte pointer word, which is
generated by the assembler from a POINT statement of the form,

LABEL:POINT s, address, b J (s and b are decimal)

where the first operand s is a decimal number indicating the byte
size, the second operand is the address of the memory location
which contains the byte, and the third operand, b, is the bit
position in the word of the right-hand bit of the byte (if b

is not specified, the bit position is the nonexistent bit to the

‘VErRs1ON 47 2-11 June 1972

MACRO -238-

left of bit 0). The address specified in the second operand may
be indirect and indexed. If the byte size is not specified,
MACRO-10 assumes 36 bits.

In the following example, an LDB (load-a byte from a memory loca-
tion into an accumulator) and an ILDB instructions are used, along
with three assembler statements. The ILDB instruction "increments"
AC to look like AB, then does a load byte; the effect of the two

instructions is the same.

2000RB* 052000 OOA00Q AA: BYTE (615
20001 360690 Q0Q000' AB: POINT 65AAsS5
NA0VB2 440620 QPOEORG' AC: POINT 6s5AA
P200V03* 1351480 QOQPOO1' START: LDB 3,AB
20004 134140 Q00002 ILDB 3,5AC

The first statement enters the quantity 5 in a 6-bit byte at
symbolic address AA which is 0. The second statement is for
reference by the load byte instruction. When the LDB is executed,
the machine goes to AB for the byte size, its address, and bit
position. 1In this case, it finds that the byte size is 6 bits,
the byte is located in the word AA, and the right-hand bit of

the byte is in bit 5. The byte is then loaded into accumulator 3,
where it looks like this: 000000 000005.

The other byte manipulation mnemonic instructions reference the
byte pointer word in similar ways. The deposit byte (DPB) in-
struction takes a byte from an accumulator and deposits it, in
the position specified by the pointer word, in a memory word.

The increment byte pointer (IBP) instruction increments the bit
position indicator (the third operand in the referenced POINT
wbrd) by the byte size. This is useful when loading or deposit-
ing a string of bytes, using the same byte pointer word.

The increment and load byte (ILDB) and increment and deposit byte

(IDPB) instructions increment the byte pointer word by the byte
size before loading or depositing.

VERSION 47 2-12 June 1972

-239- MACRO

2.5.3 IOWD Statement: Formatting I/0 Transfer Words

The assembler generates I/0 transfer words in a special format
for use in BLKI and BLKO and all four pushdown instructions.

The general statement is,
IOWD N,MJ)

where two operands, which may be numbers or expressions, follow
the IOWD operator. This statement generates one data word.

The left half of the assembled word contains the 2's complement
of the first operand n, and the right half-word contains the

value of the sécond operand m, minus one. For example,
IOWD 6,4D256 «

assembles as 777772 000377.

2.5.4 XWD Statement: Entering Two Half-Words of Data

The XWD statement enters two half-words in a single storage word.
It is written in the form,

XWD LHW,RHW <

where the first operand is a symbol or expression specifying the
left half-word, and the second operand specifies the right half-
word. Both are formed in 36-bit registers and the low order 18-
bits are placed in the half-words. The high-order 18 bits of each
operand are ignored. Three examples follow:

XWD A,B)

XWD SUM+2,DES+5)
XWD - START,END,)

XWD statements are used to set up pointer words for block. transfer
instructions. Block transfer pointer words contain two 18-bit
addresses: the left half is the starting location of the block

to be moved, and the right half is the first location of the
destination. A,,B may also be used to duplicate the results of
XWD A,B.

VERSION 47 | JUNE 1972

MACRO -2h0-

2.5.5 Text Input

The assembler translates text written in full 7-bit ASCII or 6-bit
compressed ASCII. It will also format 7-bit ASCII with a null
character at the end of text, if desired. These codes are listed

in Appendix E.

In all three text modes, the printing symbols in the code sel are

translated to their binary representation.

To translate and store a single word containing as many as five
7-bit ASCII characters, right-justified, the input characters are

enclosed in quotation marks.

"AXE") is stored as
0 0000000 0000000 1000001 1011000 1000101
0 null null A X E

Notice that characters are right-justified, and bit 0, which is

not used, is set to zero.

Up to six 6-bit ASCII characters may be translated and stored,
right-justified, in a single word by enclosing the input charac-

ters in single quotation marks.

'TABLES' is stored as

110100 100001 100010 101100 100101 110011
T A B L E]

NOTE

The quotation marks (single or double) may
only be used to assemble a single word. To
input strings of text characters, the fol-
lowing three pseudo-ops must be used. '

2.5.5.1 ASCII, ASCIZ, and SIXBIT Statement - To enter strings of
text characters, the operators ASCII, SIXBIT, and ASCIZ are used.

The delimiter for the string of text characters is the first non-
blank character following the character that terminates the operator
(refer to the note on page 2.1). The binary codes are left-justified.
Unused character positions are set to zero (null). Text is termi-
nated by repeating the initial delimiter. If the initial delimiter
is a symbol constituent, the pseudo-op must be followed by a space

or a tab.

VErRsiON 47 2-14 June 1972

-241- MACRO

The statement
ASCII "AXE" »
where the quotation marks are the delimiters, assembles as

1000001 1011000 1000101 0000000 0000000 O
A X E null null 0

The operator ASCIZ (ASCII Zero) guarantees a null character at
the end of text. If the number of characters is a multiple of
five, another all zero word is added. For example,

ASCIZ/"AXE"/)
assembles as,

0100010 1000001 1011000 1000101 0100010 O
L1 A X E n

followed by another word of zeros.

0000000 0000000 0000000 0000000 0000000 O
null

When thefull 7-bit ASCII code set is not required, the 64-character
6-bit subset may be entered, using the SIXBIT operator. Six charac-
ters are left-justified in sequential storagé words. Format of

the SIXBIT statement is the same as for ASCII statements. To derive
SIXBIT code:

a. Convert lower case ASCII characters to upper case
characters.
b. Add 408 to the value of the character.

¢. Truncate the result to the rightmost six bits.
2.5.6 Reserving Storage

The programmer can reserve single locations, or blocks of many
locations for use during execution of his program.

VERSION 47 ‘ JUNE 1972

MACRO -242-

2.5.6.1 Reserving a Single Location - The number sign (#), suf-
fixing a symbol in an operand field, is used to reserve a single
location. The symbol is defined, entered in the assembler's
symbol table,and can be referenced elsewhere in the program with-
out the number sign. For example,

LAB: ADD 3,TEMP#)

reserves a location called TEMP at the end of the program, which
may be used to store a value entered at some other point in the
program. This feature is useful for storing scalars, and other
quantities which may change during execution.

The pseudo-op INTEGER may be used to reserve storage locations
at the end of the program on a one-per-given name basis. For
example the statement

INTEGER TEMP,FOO,BAR)

will reserve 3 locations identified as TEMP, FOO and BAR. The
assignment of the locations to the names given is performed on

an alphabetical basis by the assembler rather than on the order

in which the names are given. For example, the order of the loca-
ions reserved by the foregoing INTEGER statement would be BAR,

FOO then TEMP.

Multiple word locations may be reserved by the ARRAY pseudo-op.
For example, the statement

ARRAY FOO[2%*3])

reserves a 2-word by 3-word array in memory which is identified by

the name FOO.

NOTE

If the pseudo-op TWOSEG is used, the variables
reserved by an array statement must be as-
signed to the low segment only; thus, a VAR
pseudo-op is required after a RELOC back to
the low segment.

VErSION 47 June 1972

-16

o

-243- | MACRO

2.5.7 VAR Statements
VAR)

This statement causes symbols which have been defined by suffixing
with the # sign (array andvinteger pseudo-ops) in previous state-~
ments to be assembled as block statements. This has no effect on
subsequent symbol definitions of the same type.

If the LIT and VAR statements do not appear in the program, all

literals and variables are stored at the end of the program.
2.5.8 BLOCK Statements

To reserve a block of locations, the BLOCK‘operator is used. It
is followed by a single operand, which may be a number or an ex-
pression in the current radix, indicating the number of words to
be reserved. The assembler increments the location counter by

the value of the operand. For example,
MATRIX: BLOCK N¥M)

reserves a block of N*M words starting at MATRIX for an array

whose dimensions are M and N.

BLOCK is used to reserve words in a specific order; remember that
data words should be stored in the low segment in two-segment pro-

grams.
2.5.9 END Statements

The END statement must be the last statement in every program. A
single operand may follow the END operator to specify the address
of the first instruction to be executed. Normally this operand is
given only in the main program; since subprograms are called from
the main program, they need not specify a starting address.

END START) start is the label at the starting address

When the assembler first encounters an END statement, it terminates
pass 1 and begins pass 2. The END also terminates pass 2, after which

vVERSIkON 47 . June 1972

MACRO -244-

the assembler automatically assembles all previously defined vari-

ables and literals starting at the current location.!

The following processing operations can be performed at any point

in the program.
2.5.10 LIT Statements
LIT J

This statement causes literals that have been previously defined to
be assembled, starting at the current location. If n literals have
been defined, the next free storage location will be at location
counter plus n. Literals defined after this statement are not af-
fected.

If a LIT statement does not appear before the END statement, the
literals are XLISTed (refer to paragraph 2.6.3). If the output

of literals is desired, the LIT pseudo-op should appear immediately
before the END statement.

NOTE

In a two-segment program LIT must be given
in the high segment. The END statement must
also be given in the high segment or the
literals will go to the low segment.

2.5.11 Multi-Program Assembly

The pseudo-op PRGEND is used to compress many small files into one
large file to save space and disk lookups. This pseudo-op has the
form PRGEND) . PRGEND allows multiprogram assemblies, and is used

for assembling library files (LIB40) in which all programs are very
short. PRGEND takes the place of all but the last END statement.

The output is a binary file which can be loaded in search mode. The
use of PRGEND costs assembler space since the symbol tables, literal
tables and titles of each of the small files (i.e., programs) involved
must be saved at the end of pass 1. Also, since PRGEND is function-
ally an END statement, macros cannot be used over it (i.e., macros

cannot generate PRGEND as part of their expansions).

lphe END statement is also used to specify a transfer word in some
output file formats. (See Section 6.2.2.4.)

VERSION 47 June 1972
2-18

-245- MACRO

If the LIT and VAR.statements do not appear in the bPrograms, all
literals and variables are stored at the end of the Program.,

2.5.12 PASS2 Statements
PASS2)

This statement switches the assembler to pass 2 processing for the
remaining coding{ Coding preceding this statement will have been
processed by pass 1 only. This is used primarily for debugging,
such as testing macros defined in the pass 1 portion.

2.5.13 PURGE Statements

The PURGE statement is used to delete defined symbols. Its general

form is:
PURGE symbol, symbol, symbol o,

where each operand is a user-created label, operator, or macro
call which is to be deleted from the assembler's tables. The PURGE
statement is normally used at the end of programs to conserve stor-
age and to delete symbols for DDT. Purged symbol table space is
reused by thé assembler,

If the programmer uses the same symbol for both a macro call and/or
OPDEF (refer to Section 2.8.2) and for a label, a PURGE statement
deletes the macro call or OPDEF, A repeat of the symbol in the
PURGE statement also purges the label. For example, the following
statement purges both:

PURGE SOLV,SOLV)

The first SOLV purges the macro call; the second SOLV purges the
label.

2.5.14 XPUNGE Statements

The XPUNGE pseudo-op deletes all local symbols during pass 2; it
has the form:’

XPUNGE J
VERSION 47 June 1972

MACRO -246- |

I1The use of this pseudo-op reduces the size of the REL file an
speeds up loading (especially of DDT). XPUNGE should be placed
just prior to the END statement.

2.5.15 Linking Subroutines

Programs usually consist of subroutines which contain references
to symbols in external programs. Since these subroutines may be
assembled separately, the loader must be able to identify "global"
symbols. For a given subroutine, a global symbol is either a
symbol defined internally and available for referehce by other
subroutines, or a symbol used internally but defined in another
subroutine. Symbols defined within a subroutine, but available to
others, are considered internal. Symbols which are externally
defined are considered external.

These linkages between internal and external symbols are set up by
declaring global symbols using the operators EXTERN, INTERN, or
ENTRY. The double colon (::) may also be used.

2.5.15.1 EXTERN Statements - The EXTERN statement identifies symbols
which are defined elsewhere. The statement,

EXTERN SQRT, CUBE,TYPE)

declares three symbols to be external. vExternal symbolsrmust not

be defined within the current subroutine. These external references
may be used only as an address or in an expression that is to be
usedAas an address. For example, the square root routine declared
above might be called by the statement, -

PUSHJ P,SQRT J

External symbols may be used in the same manner as any other re-
locatable symbol. Examples:

EXTERN A
oaA3nn ABNEN3x MOVE 6sA+3
WAGAA3* VANADE* XWD A+3,5A
777177 11177 b= A=

GPDEF WIXWD B+3,A=5)
777 TT4% T7TT7T73% U

VERSION 47 June 1972

-247- MACRO

The external symbols are flagged with asterisks. There are three

restrictions for the use of external symbols:

a. Externals may not be used in LOC and RELOC state~
ments. i

b. The use of more than one external in an expression
is not permitted. Thus, A+B (where A and B are both
external) is illegal.

c. Globals may only be additive; therefore, -the follow-
ing are illegal

-A EXP-A
2%A 2¥A-4A

An alternative method for generating external symbols is to use a
double pound sign (##) following the symbol name. This method
eliminates specifying the EXTERN statement. For example,

MOV @ ,JOBREL##
is equivalent to

EXTERN JOBREL
MOVE #,JOBREL

2.5.15.2 INTERN Statements - To make internal program symbols avail-
able to other programs as external symbols, the operators INTERN

or ENTRY are used. These statements have no effeét on the actual
assembly of the program, but will make a list of symbol equivalences
available to other programs at load time. The statement,

INTERN MATRIX

makes the subroutine MATRIX available to other programs. An internal
symbol must be defined within the program as a label, variable, or
by direct assignment.

2.5.15.3 ENTRY Statements - Some subroutines have common usage, and
it is convenient to place them in a library. 1In order to be called

by other programs, these library subroutines must contain the state-
ment, o

ENTRY NAME

VERSION 47 S . June 1972

MACRO -248-

where "name" is the symbolic name of the entry point of the lib-
rary subroutine.

ENTRY is equivalent to INTERN with the following additional feature.
All names in a list Collowing ENTRY are defined as internal symbols
and are placed in a list at the beginning of the library of subrou-
tines. If the loader is in library search mode, a subroutine will
be loaded if the program to be sxecuted contains an undefined global
symbol which matches a name on the library ENTRY list.

If the MATRIX subroutine mentioned before is a library subroutine,
it must contain the statement,

ENTRY MATRIX J)

Since library subroutines are external to programs using them, the
calling program must list them in EXTERN statements.

2.6 SUPPRESSION OF SYMBOLS

When a parameter file is used in assemblies, many symbols get
defined but are never used. Unused defined symbols take up space
in the binary file and complicate listings of the file. Unused
and unwanted symbols may be removed from symbol tables by the use
of a pseudo-op, either SUPPRESS or ASUPRESS. These pseudo-ops
control a suppress bit in each location of the symbol table; if

a suppress bit is on, the symbol in that location is not output.
The suppréss bit is used in the file S.MAC so that if a bit is on
and the symbol in that location is not used later, the symbol is
not output in the CREF table.

2.6.1 SUPPRESS SYMBOL Statement

The SUPPRESS statement turns on the suppress bit for the specified
symbols.

2.6.2 ASUPPRESS Statement

The ASUPPRESS statement turns on the suppress bit for all the symbols
in the symbol table.

VERSION 47 JuNE 1972

-249- MACRO

2.6.3 Listing Control Statements

Program listings are normally printed on a line printer or a terminal
depending on the listing file device specified. Listings are
printed as the source program statements are processed during pass 2.
A sdmple listing is shown in Chapter 7.

From left to right the standard columns of a.listing contain

a) the location counter,
b) the instruction or data in octal form, and

¢) the symbolic instruction or data followed by
comments. :

Relocatable object-code addresses are suffixed by a single quotation
mark (') which may occur in either the left or right half.

Data is displayed in one of several modes depending on the state-

ment format. The possible statement formats are:

1) Halfword - two 18-bit bytes

2) Instruction " - a 9-bit op-code, 4-bit
accumulator code, l-bit
indirect bit, 4-bit index,
and an 18-bit address seg-
ment)

3) Input/Output - 3-bit I/0 indicator, 7-bit

’ ‘ I/0 device specification,
3-bit operand, l-bit indirect
address bit, 4-bit index and
an 18-bit address segment

4) Byte pointer . - 6-bit:byte position, 6-bit
byte size, 1 unused bit,
1-bit indirect address bit,
4-bit index and an 18-bit
address segment

5) ASCII - - 5 Seven-bit bytes

‘6) SIXBIT S - 6 six-bit bytes.
- NOTE

Refer to the DECsystem-10 System Reference
Manual for a complete description of word
formats.

The Iisting function is suppressed within macro expansion, therefore

only the macro c¢all and any succeeding lines that generate code are

VERSION 47 June 1972

MACRO

-250-

listed. Line printer listings always begin at the top of a page

and up to 55 lines are printed on each page. Consecutive page

numbers are printed in the upper right-hand corner of each page.

Each page also contains a title and a subtitle.

The standard listing operations can be augmented and modified by

using the following listing control statements.

STATEMENT

PAGE »

XLIST J

LIST <

LALL J

XALL 2

SALL J)

NOSYM J

VERSION 47

DESCRIPTION

This statement causes the assembler to skip
to the top of the next page. (A form feed
character in the input text has the same
effect and is preferred.

This statement causes the assembler to stop
listing the assembled program. The listing
printout actually starts at the beginning of
pass 2 operations. Therefore, to suppress
all program listing, XLIST must be the first
statement in the program. If only a part of
the program listing is to be suppressed,
XLIST is inserted at any point to stop list-
ing from that point. Literals are XLISTed
if no LIT statement is seen before the END
statement.

Normally used following an XLIST statement

to resume listing at a particular point in
the program. The LIST function is implicitly
contained in the END statement.

This statement causes the assembler to list
everything that is processed including all
text, macro expansions and list control
codes suppressed in the standard listing.

Normally used following a LALL statement to
resume standard listing.

This causes suppression of all macro and re-
peat expansions and their text; only the in-
put file and the binary generated will be
listed. SALL can be nullified by either XALL
or LALL and the /M switch can be used instead
of SALL.

The assembler normally prints out the symbol
table at the end of the program, but the
NOSYM statement suppresses the symbol table
printout.

June 1972

STATEMENT

TAPE)

-251- MACRO

DESCRIPTION

This pseudo~op causes the assembler to begin
assembling the program contained in the next
source file in the MACRO command string. For
example,

.R MACRO
" ¥DSK:BINAME,LPT:<«TTY:,DSK:MORE
PARAM=6

TAPE .
;THIS COMMENT WILL BE IGNORED
+Z

would set the symbol PARAM equal to 6 and then
assemble the remainder of the program from the
source file DSK:MORE. Since MACRO is a 2-pass
assembler, the TTY: file would probably be re-
peated for pass 2.

END OF PASS 1
PARAM=6

TAPE

+Z

Note that all text after the TAPE pseudo-op
is ignored.

PRINTX MESSAGE‘)This statement, when encountered, causes the

single operand following the PRINTX operator
to be typed out on the TTY. This statement
is frequently used to print out conditional
information. PRINTX statements are also used
in very long assemblies to report the progress
of the assembler through pass 1.

REMARK COMMENTS)On pass 1 the message is printed on both the

COMMENT.Y)

VERSION 47

list device and TTY. On pass 2 it is printed
on the TTY, but only if it is not the list
device. :

The REMARK operator is used for statements
which contain only comments. Such statements
may also be started with a semi-colon.

This pseudo-op treats the text between the
first non-blank character (delimiter) and the
next occurrence of the same character as a
comment. If the first occurrence of the
delimiter is a right (left) angle bracket,

the next occurrence of the delimiter must also
be a right (left) angle bracket. The text
may include the carriage return, line feed
sequence. For example,

COMMENT/THIS IS A COMMENT
THAT IS MORE THAN ONE LINE LONG
/

Internally, the pseudo-op functions as ASCII,
but no binary is produced.

JuNE 1972

MACRO -252-

2.7 CONDITIONAL ASSEMBLY

Parts of a program may be assembled, or not assembled, on an optional
basis depending on conditions defined by an assembler IF statement.
The general form is,

IF Ny ieaeecocenans>

where the coding within angle brackets is assembled only if the

first operand, N, meets the statement requirement.

The IF statement operators and their conditions are listed below:

Operator Assemble angle-bracketed coding IF:
IFE N, <...> N=0, or blank
IFG N, <...> N>0
JFGE N, <...> N=0, or N>O0
IFL N, <...> N<O
IFLE N, <...> N=0, or N<O
IFN N, <...> N#0
IFl, <...> encountered during pass 1
IF2, <...> encountered during pass 2

In the following conditional statements, assembly depends on whether
or not a symbol has been defined. The coding enclosed in angle
brackets is assembled if,

IFDEF SYMBOL, <...> this symbol is defined
IFNDEF SYMBOL, <...> this symbol is not defined

NOTE

SYMBOL can be an op-code or pseudo-op as
well as a user symbol.

The following conditional statements operate on character strings.
Arguments are interpreted as 7-bit ASCII character strings, and
the assembler makes a logical comparison, character-by-character
to determine if the condition is met.

The coding within the third set of angle brackets is assembled if
the character strings enclosed by the first two sets of angle brackets:

IFIDN <A-Z> <A=-7>,<...> (1) are identical
IFDIF <A-Z> <A-7Z>,<...> (2) are different
VERSION 47 June 1972

-253- MACRO

These statements, IFIDN and IFDIF, are usually used in macro expan-
sions (see Chapter 3) where one or both arguments are dummy vari-
ables.

An alternate form is to use delimiters as in ASCII. For example:
IFDIF/A-Z/"A=2" y<==~>

This allows the use of > inside the character string. If the first
non-blank (space or tab) character is a < character, then the < >

method is used; otherwise, the character is used as a delimiter.

The last pair of conditional statements is followed by a single
_ bracketed character string, which is either blank or not blank,
and which is followed by conditional coding in brackets.

The coding enclosed in the second set of angle brackets is as-
sembled if,)

IFB <ive>3<00se> the first operand is blank
IFNB <.i4e>3<00as > the first operand is not blank

A blank field is either an empty field or a field containing only
the ASCII characters space (408) or tab (118).

Again, delimiters can be used as in
IFB / weve / 1 Sevees?

2,8 ASSEMBLER CONTROL STATEMENTS

2.8.1 REPEAT Statements
The statement
REPEAT N, <...>J

causes the assembler to repeat the coding enclosed in angle
brackets n times. If more than one instruction or data word is
to be repeated, each.is delimited by a carriage return. For
example, '

ADDX: REPEAT 3, <ADD 6,X(4)J
ADDI 4,1>
VERsION 47 ' JUNE 1972

2-27

MACRO -254-

assembles as,

ADDX: ADD 6,(4)
ADDI 4,1
ADD €,X(4)
ADDI k4,1
ADD 6,X(}4)
ADDI 4,1

Notice that the label of a REPEAT statement is placed on the first
line of the assembled coding. REPEAT statements may be nested to
any level. The following simplified example shows how a nested
REPEAT statement is interpreted.

REPEAT 3,<A)
REPEAT 2,<BJ
C>

D>J)

assembles as,

C NOTE

| D Brackets indicate repetition.

2.8.2 OPDEF Statements

The programmer can define his own operators using an OPDEF state-
ment, which is written in the form:

OPDEF SYM [STATEMENT]

where the first operand is defined as an operator, whose function
is defined by the second operand, which is enclosed in square
brackets. The second operand is evaluated as a statement, and the

VErRsioN 47 June 1972

~255- MACRO

result is stored in a 36-bit word. For example,
" OPDEF CALl [@3000¢ 20880084]

defines CALl as an operator, with the value 030000 000000. CALl
may now be used as a statement operator.

#3g14g g@1234 CAL1 3,1234
which is equivalent to,

g3g14g @gl23h 7 3,1234(3080049)
When MACRO-10 encounters a user-defined operator, it assembles a
single object-program storage word .in the format of a primary in-
struction word (see Chapter 1). The defined 36-bit value is modi-

fied by accumulator, indirect, memory address and index fields as

specified by the user-defined operator.
For example,

OPDEF- CAL [MOVE 1,@SYM(2)]J
CAL 1,BOL(2)))

The CAL statement is equivalent to:
MOVE 2,@SYM+BOL(4)

In this modiﬁication the accumulator fieids are added, the indirect
bits are logically ORed, the memory address fields are added,
and the index register addresses are added.

‘2.8.3 SYN Statements
The statement
SYN symbol, symbol
defines the second operand as synonymous with the first operand,
wﬁich must have been.previously defined. Either operand may be a

Symbol or a macro name. If the first operand is a symbol, the
. second is defined as a symbol with the same value. If the first is

VERSION 47 | , June 1972

MACRO -256-

a macro name, the second becomes a macro name which operates identi-
cally. 1If the first is a machine, assembler, or user-defined opera-
tor, the second will be interpreted in the same manner. If the
first operand in a SYN statement has been previously defined as

both a label and as an operator, the second operand is synonymous
with the label.

The following are legal SYN statements:

SYN K,X & ;IF K=5, X=5
SYN FAD, DD)
SYN END,XEND)

2.8.4 Extended Instruction Statements

For programming convenience, some extended operation codes are pro-
vided in the MACRO-10 Assembler. Primarily, these are used to re-
place those DECsystem-10 instructions where the combination of
instruction mnemonic and accumulator field is used to denote a
single instruction. For example:

JRST 4

is equivalent to a halt instruction. In addition, they are used
to replace certain commonly used I/O instruction-device number

combinations.
The extended instruction statements are exactly like the primary
instruction statements or I/O instruction statements, except that

they may not have an accumulator field or device field.

The operator field must have one of the following extended mnemonics:

Equivalent

Extended Machine
Instructions | Instructions Meaning

JEN JRST 12, Jump and enable the PI (priority interrupt)

system

HALT JRST 4, Halt

JRSTF JRST 2, Jump and restore flags

JOoV JFCL 14, Jump on overflow and clear

JCRY@ JFCL 4, Jump on CRYF and clear

JCRY1 JFCL 2. Jump on CRYl and clear

JCRY JFCL 5, Jump on CRYZ or CRY1l and clear

JFOV JFCL 1, Jump on floating overflow

RSW DATAI 2 Read the console switches

June 1972
2-30

-257- | MACRO

2.9 MULTI-FILE ASSEMBLY

2.9.1 UNIVERSAL Name

UNIVERSAL files may be used to generate data, however, they are
normally used to'generate symbols, macros and opdef's (user-
defined operators). The symbols generated.by UNIVERSAL files need
not be declared as INTERNAL symbols since all local symbols in
files of this type are made available to all programs permitted
access to the file.

UNIVERSAL files used to generate data can save time by being set
up for a one-pass operation since symbol definition needs to be

assembled on one pass only. This one-pass operation can be ac-

complished in either of two ways:

1) UNIVERSAL NAME
PASS 2

3

END

2) UNIVERSAL NAME
IF 2, <END>

END
The first generates a listing; the second does not.

If the UNIVERSAL pseudo-op is seen in a program, the NAME is stored
in a table and a flag is set. When the END statement is seen, the

‘symbol table is moved to just after the pushdown stacks and buffers;
therefore, the pushdown stacks and buffers cannot be increased during
assembly. The first assembly should use the maximum of I/0 devices
to be used later. The free core pointer is moved to after the top of
‘the moved symbol table, and pointers are stored to enable the taBle
to be scanned.

When assembling is done from indirect files, the universal files must
be recompiled by the /COMPIL switch. Otherwise if a REL file later
than the source exists, the universal file will not be compiled,

and the symbol table will not be available. 1In addition, if the
universal routine is modified, all routines which use it must be
recompiled by either using /COMPIL or deleting all REL files.

VERSION 47 JuNe 1972

MACRO -258-

2.9.2 SEARCH Name

The SEARCH statement opens the specified symbol table for MACRO

to scan if the required symbol is not
table. Multiple symbol tables may be
with commas; they are searched in the
of ten symbol tables may be specified
four words of core. This maximum may
.UNIV in MACRO.

found in the current symbol

specified by separating them
order specified. A maximum

since each name requires

be redefined with the symbol

When the SEARCH pseudo-op is seen, the specified names are com-
pared with the UNIVERSAL table. If the specified names cannot be

found, the message

CANNOT FIND UNIVERSAL name

is output. If the specified names are found, a table of searching

sequence is built. This sequence is to search the universal symbol

tables in the order specified whenever a symbol is not found in

the current symbol table. This search is to continue until the

symbol is found or all the tables have been searched. When a symbol

is found in an auxiliary symbol table,

it is moved into the current

symbol table. This procedure saves time on future references at

the expense of core.

Universal files may search other universal files as long as all

names in the search list have been assembled. The table of universal

names is cleared on each RUN or START,
responds with an asterisk.

VERSION 47

but is not cleared when MACRO

JuNE 1972

-259- MACRO

Chapter 3
Macros

When writing a program, certain coding sequences are often used
several times with only the arguments changed. If so, it is conveni-
ent if the entire sequence can be generated by a single statement.

To do this, the coding sequence is defined with dummy arguments as

a macro instruction. A single statement referring to the macro by
name, along with a list of real arguments, generates the correct
sequence. '

3.1 DEFINITION OF MACROS

The first statement of a macro definition must consist of the opera-
tor DEFINE followed by the symbolic name of the macro. The name must
be constructed by the rules for constructing symbols. The macro

name may be followed by a string of dummy arguments enclosed in par-
entheses. The dummy arguments are separated by commas and may be

any symbols that are convenient--single letters are sufficient. A
comment may follow the dummy argument list.

The character sequence, which constitutes the body of the macro, is
delimited by angle brackets. The body of the macro normally consists
of a group of complete statements.

VERSION 47 JuNe 1972

MACRO -260-

For example, this macro computes the length of a vector:

DEFINE VMAG {(A,B) ;ROUTINE FOR THE LENGTH OF A VECTOR
<MOVE @,A GET THE FIRST COMPONENT
FMP @ SQUARE IT
MOVE 1,A+1 ;GET THE SECOND COMPONENT
FMP 1,1 SQUARE IT
FAD 1 ;ADD THE SQUARE OF THE SECOND
MOVE 1,A+2 ;GET THE THIRD COMPONENT
FMP 1,1 SQUARE IT
FAD 1 ;ADD THE SQUARE OF THE THIRD
JSR FSQRT USE THE FLOATING SQUARE ROOT ROUTINE
MOVEM B STORE THE LENGTH>
NOTE

Storing comments in a macro takes up space.
If the comments start with a double semi=-
colon (;;) the comment will not be stored;
therefore, it lists in the original defini-
tion but does not list when the macro is
expanded.

3.2 MACRO CALLS

A macro may be called by any statement containing the macro name fol-
lowed by a list of arguments. The arguments are separated by commas
and may be enclosed with parentheses. If parentheses are used (in-
dicated by an open parenthesis following the macro name), the argu-
ment string is ended by a closed parenthesis. If there are n dummy
arguments in the macro definition, all arguments beyond the first n,
if any, are ignored. If parentheses are omitted, the argument

string ends when all the dummy arguments of the macro definitions
have been assigned, or when a carriage return or semicolon delimits

an argument.

The arguments must be written in the order in which they are to be
substituted for dummy arguements. That is, the first argument is
substituted for each appearance of the first dummy argument; the
second argument is substituted for each appearance of the second
dummy arguemnt, etc. For example the appearance of the statement:

VMAG VEC, LENGTH

in a program generates the instruction sequence defined above for
the macro VMAG. The character string VECT is substituted for each
occurrence in the coding of the dummy argument A, and the character
string LENGTH is substituted for the single occurrence of B in the
coding.

VERSION 4/ 3-2 June 1972

-261- MACRO

Statements with a macro call may have label fields. The value of the

label is

the location of the first instruction generated.

CAUTION

MACRO arguments are terminated only by COMMA,
CARRIAGE RETURN, SEMICOLON or CLOSE PAREN-
THESIS (when the entire argument string was
started with an open parenthesis) . These
characters may not be included in arguments
unless <> are used. Specifically, spaces or
tabs do not terminate arguments; they will
be treated as part of the argument itself.
The symbol does not terminate arguments, it
just permits commas and. other symbols to be
used as part.of an argument.

3.3 MACRO FORMAT

VERSION 47

Arguments must be separated by commas. However, arguments
may also contain commas. For example:

DEFINE JFQ(A,B,C)
<MOVE [A]

CAMN B

JRST C>

1f the data in location B is equal to A (a literal), the
program jumps to C. If A is to be the instruction ADD 2,X%,
the calling macro instruction would be written

JEQ<ADD 2,X>,B,INSTX \
The angle brackets surrounding the argument are removed,
and the proper coding is generated.

The general rule is: If an argument contains commas, semi-
colons, or any other argument delimiters, the argument must
be enclosed in angle brackets. For every level of nesting,
one set of angle brackets is removed; therefore, to pass
arguments containing commas to nested macros the argument
should be enclosed by one set of angle brackets for each
level of nesting. The > does not terminate the argument,

a comma must be used.

A macro need not have argﬁments. The instruction:
DATAOQ PIP,PUNBUF(4)

which causes the contents of PUNBUF, indexed by register 4,
to be punched on paper tape, may be generated by the macro:

DEFINE PUNCH :
<DATAO PIP,PUNBUF(4)>

The calling macro instruction could be written:

PUNCH

June 1972

MACRO -262-

PUNCH calls for the DATAO instruction contained in the body
of the macro.

¢. The macro name, followed by a list of arguments, may appear
anywhere in a statement. The string within the angle
brackets of the macro definition exactly replaces the macro
name and argument string. For example:

DEFINE L(A,B)<3¥<B-A+1>>

gives an expression for the number of items in a table where
three words are used to store each item. A is the address
of the first item, and B is the address of the last item.

To load an index register with the table length, the macro
can be called as follows:

MOVEI X,L(FIRST,LAST)
3.4 CREATED SYMBOLS

When a macro is called, it is often convenient to generate symbols
without explicitly stating them in the call, for example, symbols
for labels within the macro body. If it is not necessary to refer
to these labels from outside the macro, there is no reason to be
concerned as to what the labels are. Nevertheless, different sym-
bols must be used for the labels each time the macro is called.
Created symbols are used for this purpose.

Each time a macro that requires a created symbol is called, a symbol
is generated and inserted into the macro. These generated symbols
are of the form..hijk, that is, two decimal points followed by four
digits. The user is advised not to use symbols starting with two
points. The first created symbol is ..0001, the next is ..0002,

etc.

If a dummy symbol in a definition statement is preceded by a percant
sign (%), it is considered to be a created symbol. When a macro is
called, all missing arguments that are of the form %X are replaced
by created symbols. However, if there are sufficient arguments in
the calling list that some of the arguments are in a position to be
assigned to the dummy arguments of the form %X, the percent sign is
overruled and the stated argument is assigned in the normal manner.

Null arguments are not considered to be the same as missing argu-
ments. For example, suppose a macro has been defined with the

dummy string:

(A, %B,%C)
VERSION 47 June 1972

e

-263- MACRO

If the macro were called with the argument string:
(OPD,) or OPD,,

The second argument would be considered to have been declared as
null string. This would override the % prefixed to the second dummy
argument and would substitute the null string for each appearance of
the second dummy argument in the statement. Héwever, the third ar-
gument is missing. A label would be created for each occurrence of
%C. For example: A

DEFINE TYPE(A,%B)

<JSR TYPEOUT

JRST %B

SIXBIT/A/

%B:>
This macro types the text string substituted for A on the console
Teletype. TYPEOUT is an output routine. Labeling the location fol-
1owihg the text is appropriate since A may be text of indefinite
length. A created symbol is appropriate for this label since the
programmer would not normally reference this location. This macro
might be called by:

TYPE HELLO

which would result in typing HELLO when the assembled macro is ex-
ecuted. If the call had been:

TYPE HELLO,BX

the effect would be the same. However, BX would be substituted for
3B, overruling the effect of the percent sign.

3.5 CONCATENATION

The apostrophe character or single quote (') is defined as tﬁe con-
catenation operator. A macro argument need not be a complete symbol
Rather, it may be a string of characters which form a complete sym-
bol or expression when joined to characters already contained in the
macro definition. This joining, called concatenation, is performed
by the assembler when the programmer writes an apostrophe between
the strings to be so joined. As an example, the macro:

DEFINE J(A,B,C)

<JUMP'A B,C>
When called, the arqument A is suffixed to JUMP to form a single sym-
bol. If the call were:

VERSION 47 ' June 1972

MACRO -264-
J (LE,3,X+1)

the generated code would be:
JUMPLE 3,X+1

The concatenation (') may be used in nested macros. The assembler
removes one operator when it performs concatenation if it is next

to (before or after) a dummy argument.
3.6 DEFAULT ARGUMENTS

Missing arguments in macros are generally replaced by nulls. For
example, the macro

DEFINE FOO (A,B,C)>
EXP A,B,C>

when called by FOO(l) would generate three words of 1, 2, and #.

Default arguments may be supplied to override missing arguments.
When supplied, default arguments are written within angle brackets
(<>) after each argument. For example, the addition of default ar-
guments 222 and 333 to arguments B and C of the foregoing example
macro would be written as

DEFINE FOO (A,B<222>, <<333>)

EXP A,B,C>
If the foregoing macro is called by FOO(l) it would generate the
number 1,222,333.

The following example program illustrates the use of defined default

arguments.

VErSION 47 JuNe 1972

-265- MACRO

.MAIN MACRO 47(113) 1¢:14 28-MAR—72 PAGE 1

FOO MAC 28-MAR-72 1¢:13
' s ' DEFINE FOOl (A,B,C)<
EXP A,B,C>
DEFINE FOO2 (A<111>,B<222>,C<333
>)<
EXP A,B,C»>
FOO1 (1)+

pEPpeg’ 90008 @PPPPL EXP1,,4
00pgp1" PIPEIY 000900
pHegE2' BERET BIOURT ooy (1),

gaABE3" BOO0EE PEPRPL EXP 1,222,333¢
gogsah peagee 0pp222
2008085 PEEE0Y PAB333

END

NO ERRORS DETECTED
PROGRAM BREAK IS ggg@g6
2K CORE USED

3.7 INDEFINITE REPEAT

It is often convenient to be able to repeat a macro one or more times
for a single call, each repetition substituting successive arguments
in the call statement for specifiéd arguments in the macro. This may
be done by use of the indefinite fepeat operator, IRP. The operator
IRP is followed by a dummy argument, which may be enciosed‘in paren-
theses. This argument must also be contained in the DEFINE.state-
ment's list. This argument is broken into subarguments. When the
macro is called, the rangé of the IRP is assembled once for each
subargument, the successive subarguments being substituted for each
appearance of the dummy argument within the range of the IRP. For
example, the single argument:
<ALPHA,BETA, GAMMA>
consists of the subarguments ALPHA,BETA, and GAMMA. The macro de-
finition: 7
DEFINE DOEACH(A),
<IRP A
<A>>
and the call:
DOEACH<ALPHA,BETA, GAMMA>

produce the foilowing coding:

ALPHA
BETA
GAMMA

Vers1oN 47 . June 1972

MACRO ~266-

An opening angle bracket must follow the argument of the IRP state-
ment to delimit the range of the IRP since the argument is one ar-
gument to the macro. A closing angle bracket must terminate the
range of the IRP. IRPC is like IRP except it takes only one charac-
ter at a time; each character is a complete argument. An example of

a program that uses an IRPC is given in Chapter 7, Figure 7-4.

It is sometimes desirable to stop processing an indefinite repeat
depending on conditions given by the assembler. This is done by the
operator STOPl. When the STOPl is encountered, the macro processor
finishes expanding the range of the IRP for the present argument
and terminates the repeat action. An example:

DEFINE CONVERT (A)

<IRP A<IFE K-A,<STOPI
CONV1 A>>

Assume that the value of K is 3: then the call:

CONVERT #,1,2,3,4,5,6,7

<IRP

IFE K-@,<STOPI
CONV1 @>

IFE K-1,<STOF1
CONV1 1>

IFE K-2,<STOPI
CONV1 2>

IFE K-3,<STOPI
CONV1 3>

The assembly condition is not met for the first three arguments of
the macro. Therefore, the STOPI code is not encountered until the
fourth argument, which is the number 3. When the condition is met,
the STOPI code is processed which prevents further scanning of the
arguments. However, the action continues for the current argument
and generates CONV1 3, i.e., a call for the macro CONV1 (defined

elsewhere) with an argument of 3.
3.8 NESTING AND REDEFINITION

Macros may be nested; that is, macros may be defined within other
macros. For ease of discussion, levels may be assigned to these
nested macros. The outermost macros, i.e., those defined directly

to the macro processor, may be called first level macros. Macros

VERSTON 47 June 1972

-267- MACRO

defined within first level macros may be called second level macros;
macros defined within second level macros may be called third level
macros; etc.

At the beginning of processing, first level macros are known to the
macro processor and may be called in the normal manner. However,
second and higher level macros are not yet defined. When a first
level macro containing second and higher level macros is called,

all its second level macros become defined to the processor. There-
after, the level of definition is irrelevant, and macros may be
called in the normal manner. Of coufse, if these second level
macros contain third level macros, the third level macros are nhot
defined until the second level macros containing them have been
called.

When a macro of level n contains a macro of level n+l, calling the
macro results in generating the body of the macro into the user's
program in . the normal manner until the DEFINE statement is encoun-
tered. The level n+l macro is then defined to the macro processor;
it does not appear in the ueer's program. When the definition is
complete, the macro processor resumes generating the macro body in-
to the user's program until, or unless, the entire macro has been
generated.

If a macro name which has been previously defined appears within
another definition statement, the macro is redefined, and the ori-

ginal definition is eliminated.

The first example of a macro calculation of the length of a vector
may be rewritten to illustrate both nesting and redefinition.

DEFINE VMAG (A,B,%C)
<DEFINE VMAG (D,E)
<JSP SJ,VL

EXP C,E>

VMAG (A,B)

JRST %C

VL: HRRZ 2, (SJ)
MOVE (2)
FMP @
MOVE 1,1(2)
FMP 1,1
FAD 1
MOVE 1,2(2)
FMP 1,1
FAD 1
JSR FSQRT
MOVEM @1 (SJ)
JRST 2(SJ)

. 4c:>
VERSION 47 3-9 JuNE 1972

MACRO -268-

The procedure to find the length of a vector has been written as a
closed subroutine. It need only appear once in a user's program.
From then on it can be called as a subroutine by the JSP instruction.

The first time the macro VMAG is called, the subroutine calling se-
quence is generated followed immediétely by the subroutine itself.
Before generating the subroutine, the macro processor encounters a
DEFINE statement containing the name VMAG. This new macro is de-
fined and takes the place of the original macro VMAG. Henceforth,
when VMAG is called, only the calling sequence is generated. However,
the original definition of VMAG is not removed until after the ex-

pansion is complete.
Another example of a nested macro is given in Chapter 7, Figure 7-4.
3.8.1 ASCII Interpretation

Tf the reverse slash (\) is used as the first character of an argu-
ment in a macro call, the value of the following symbol is converted
to a 7-bit ASCII character in the current radix. If the call is

MAC \A

and if A=500 (in the current radix), this generates the three ASCII

character "500".

VERsION 47 JuNe 1972

-269- MACRO

Chapter 4
Error Detection

MACRO-10 makes many error checks as it processes source language
statements. If an apparent error is detected, the assembler prints
a singie letter code in the left-hand margin of the program listing
(and on the TTY, unless the listing is on the TTY), on the same line
as the statement in question.

The programmer should examine each error indication to determine
whether or not correction is required. At the end of the listing,
the assembler prints a total of errors found; this is printed even
if no listing is requested.

Each error code indicates a general class of errors. These errors,
however, are all caused by illegal usage of the MACRO-10 language,
as described in the preceding three chapters of this manual.

4.1 SINGLE-LETTER ERROR CODES

Table 4-1 lists the single-letter error codes output by the assem-
bler.

VERSI1ON 47 | | JUNE 1972

MACRO -270-

TABLE 4-1

Error Codes

Error Code Meaning Explanation
A Argument error in This is a broad class of errors
pseudo-op which may be caused by an impro-
per argument in a pseudo-op.
The following represent the
majority of the conditions which
would cause an A code error.

a. Symbol used is improperly
formed. For example AB?CD
would result in an A code
since the character ? is
not in the Radix 50 charac-
ter set.

b. IFIDN comparison string is
too large. :

c. OPDEF of macro is SYN,.

d. OPDEF, no code generated.

e. Invalid SIXBIT character
in SIXBIT/TEST Tab/

f. Byte size too big in byte
(>4D36) .

g. Radix 50 code not absolute,
that is Radix 50 FOO,BAR
where FOO is not @§-74 ab-
solute. :

h. End of line on IFx SYM
reached before an < char-
acter is seen.

i. Assignment made in an ad-
dress field (e.g., MOVE
A=10).

j. Assignment of a label
(e.g., TAG: TAG=1).

k. Missing symbol in SYN SYM1,.

1. Unknown symbol in SYN,.

m. Missing right parenthesis
()) in index (e.g., MOVE
1,(2...).

n. Missing left parenthesis
in BYTE statement (e.g.,
BYTE 3 1, 1, 1).

o. No comma after repeat count
(e.g., REPEAT 3 <).

p. IRP not in a macro.

VERsION 47 June 1972

Error Code

VERSION 7

-271- MACRO
TABLE 4-1 (Cont)
Meaning . Explanation
g. Argument for IRP is not a
dummy symbol; for example

DEFINE FOO (A) <
IRP(B), <>>

r. IRP argument is a created
symbol.

S. STOP1l not in IRP.

Multiply~defined This statement contains a tag

symbolic reference which refers to a multiply-

error : ‘ defined symbol. It is assem-—
bled with the first value de-
fined.

External symbol Improper usage of an external

error symbol. The following repre-
: sent the majority of the condi-
tions which will cause an E
code error.

a. Attempting to use the same
symbol as both an external
and an internal symbol.

For example, the statement
EXT: EXTERN TXT,BRT,EXT
attempts to use EXT as both
an external and an internal
symbol.

b. Using an external symbol
for an AC or index.

c. Using an external symbol
for IFx.

d. Using an external symbol
in a LOC, RELOC, PHASE,
HISEG or TWOSEG pseudo-op.

e. Using an external symbol
in the left half of IOWD.

f. Using an external symbol
in an ARRAY size statement.

g. Using an external symbol in
a REPEAT count.

Literal error A literal is improper. A lit-
eral must generate 1 to 18 words.

EXP [SIXBIT //];NO CODE GENERATED

Multiply-defined A symbol is defined more than

symbol cnce. The symbol retains its
first definition, and the error
message M is typed out during
pass 1.

If this type of error occurs
during pass 2, it is a phase
error (see below).

June 1972

MACRO

-2

72-

TABLE 4-1 (Cont)

Error Code Meaning
N Number error
0 Operation code un-
defined
P Phase error
VErsION 47

Explanation

If a symbol is first defined as
a #-sign suffixed tag, and later
as a label, it retains the label
definition.

Examples:

A: ADD -3,X;

A: MOVE ,G; M ERROR

A: ADD 3,X#;

X: MOVE-,C; X IS ASSIGNED THE

CURRENT VALUE OF THE LOCATION
COUNTER '

Multiple appearances of the TITLE
pseudo-op (which generates both

a title line and program name)
are flagged as "M" (Multiple
definition) errors.

A number is improperly entered.
The following represent the ma-
jority of the conditions which
would cause an N-type error.

a. The number exceeds the per-
mitted range (e.g.,
+F13.33E38).

b. A number does not follow a
B shift operator (e.g.,
4+D15B2Z) .

c. The number exceeds the cur-
rent radix (e.g., if radix
is 8 the single character
9 is acceptable but the
number 19 is not acceptable).

d. The binary shift given does
not represent an absolute
numeric. For example,
4B<sym> is illegal if sym
is relocatable.

e. The character given after
an up arrow (t) is not B, O,
F, L or D.

f. The expression given after
E was not a signed (%) num-
ber.

The operation field of this state-
ment is undefined. It is assem-
bled with a numeric code of .

A symbol is assigned a value as
a label during pass 2 different
from that which it received dur-
ing pass 1. In general, the as-
sembler should generate the same
number of program locations in
pass 1 and pass 2, and any dis-
crepancy causes a phase error.

June 1972

Error Code Meaning

Q Questionable

VERSION 47

-273-

MACRO

TABLE 4-1. (Cont)

4<5

Explanation

For example, if an assembly con-
ditional, IFl, generates three
instructions, a phase error re-
sults unless another conditional,
such as IF2, generates three pro-
gram locations during pass 2.

This. is a broad class of possible
errors in which the assembler
finds ambiguous language.
Q-errors may or may not generate
correct code; the assembler will
attempt to do what the program-
mer intended. The following re-
present the majority of the con-
ditions which would cause a
Q-type error.

a. More than 5 ASCII characters
are detected by the assem-
bler before a closing "
symbol is detected (e.g.,
"ABCDEFG" or "ABC). When
more than 5 characters are
detected, only the first 5
are stored.

b. More than 6 SIXBIT charac-
ters are detected by the
assembler before a closing
" symbol is detected. As
in item a, only the first
6 characters are stored
when more than 6 are de-—
tected.

c. A given number is too big;
in such cases, the high-
order bits of the number
are lost.

d. E in a number is followed
by something other than a
signed (+) numeric (e.qg.,
1.0EX) .

e. An illegal control character
is detected in a line.
ASCII characters @-40 are
not permitted except for HT,
LF, VT, EF, CR and ESC.

f. A comma is detected in a
statement after all of the
required fields have been
filled (e.g., MOVE 1,2,)

g. Relocatable code is gener-
ated by the assembler be-
fore either the pseudo-op
HISEG or TWOSEG is found by
the assembler.

June 1972

MACRO -274-
TABLE 4-1 (Cont)
Error Code Meaning Explanation

h. An instruction address
pointer is detected by the
assembler which does not
have either all @'s or all
1's in the left half of
its word location.

R Relocation error A LOC or RELOC pseudo-op is used
improperly. All of the following
conditions will cause an R-type
error.

a. An expression or assignment
is made in which relocation
is not # or 1 (e.g., A+B,
A*Z, 1/B, or X=3*B where
a and B are relocatable).

b. A BLOCK statement is writ-
ten with a relocatable size
(e.g., BLOCK: A where A is
relocatable).

c. A relocatable variable is
used to specify an accumu-
lator (e.g., MOVE A,l where
A is relocatable).

U Undefined symbol A symbol is undefined.
v Value previously A symbol used to control the as-
undefined sembler is undefined prior to

the point at which it is first
used. Causes error message in

pass 1.
For example, BLOCK:A where A is
undefined.
X Macro definition An error occurred in defining or
error calling a macro.

Error messages printed during pass 1 consist of two parts. The page
and sequence number, if used, plus the most recently used label is
printed on the first line. This material is then followed by +n,
where n is the (decimal) number of lines of coding between the la-
beled statement and the statement containing an error. The second
line of the error message is a copy of the erroneous line of coding,
with a letter code in the 1eft-h5nd margin to indicate the type of
error. If more than one type of error occurs on the same line, more
than one letter is printed; but if the same type of error occurs

more than once in the same line, a single letter code is printed.

VeErsioN 47 JuNE 1972

-275- MACRO

During pass 2, as the listing is printed out, lines containing er-
rors are marked by letter codes, and a total of errors found is
printed at the end of the listing.

4.2 ERROR MESSAGES

The following error messages may be typed out on the user's. terminal.
Any error message preceded by a question mark (?) is treated as a
fatal error when running under the BATCH processor (the run is ter-
minated by BATCH).

END OF PASS 1 This message indicates that manual
loading is required to start pass
2. This message is issued when
the input is paper tape, cards or
keyboard.

LOAD THE NEXT FILE This message indicates that manual
loading is required when the files
to be input are on paper tape,
cards or being input from the
terminal.

?COMMAND ERROR This message indicates that an
‘ error was found in the last com-
mand string input.

?INSUFFICIENT CORE Not enough core is available.

? .PDL OVERFLOW,TRY/P This message indicates that the
pushdown list is too small. The
use of a /P switch increases the
size of the pushdown list by 80
locations. As many /P switches
may be used as desired.

?DEV NOT AVAILABLE The specified device cannot be
initialized because another user
is using it.

?N ERRORS DETECTED These three statements indicate
?1 ERROR DETECTED the number of errors detected by
NO ERRORS DETECTED MACRO during assembly (errors

marked by letter codes on the
listing. Under BATCH if any error
occurs, the run is terminated.

?NO END STATEMENT ENCOUNTERED ON INPUT FILE
- This message is followed by one
of the following:

IN LITERAL

IN DEFINE

IN TEXT

IN CONDITIONAL OR REPEAT
IN CONDITIONAL

IN MACRO CALL

VERSION 47 June 1972

MACRO -276-

and
ON PAGE xxx AT yyy

where xxx = a page number and yyy
= a seguence number oOr TAG+offset.

NOTE

The foregoing type of message
usually indicates some error
other than a missing END state-
ment. For emxample:

ASCIZ/TEXT

END

where TEXT has not been closed
or

JRST [statements

END _
where the literal has not been
cloged.

?PRGEND ERROR This error message indicates that
the macro failed to restore the
symbol table for one of the pro-
grams.

?2T00 MANY UNIVERSALS This error message indicates that
too many universal programs have
been assembled. The number of
universal programs permitted is a
Macro parameter; to prevent this
error from reoccurring, the user
must reassemble macro with a new
parameter which will permit the
desired assembly.

2CANNOT FIND UNIVERSAL xxX This message indicates that a
search has been made for UNIVERSAL
program Xxx but it was not found
(i.e., it was not assembled). To
clear this error the program XXX
must be assembled.

xxx UNASSIGNED DEFINED AS IF EXTERNAL
This message indicates that an
undefined symbol was ‘found and
that it has been treated as if it
was an external symbol.

PROGRAM BREAK IS xxX Where xxx is the length of the lqw
segment.
HI-SEG BREAK IS xxX Where xxx is the length of the

relocated high segment.

VErRSION 47 June 1972

=277~ MACRO

ABSOLUTE BREAK IS xxx Where xxx is the highest absolute
i address seen over 148.

XK CORE USED Message indicates the size of the
low segment used to assemble the
source program.

?UNIVERSAL PROGRAM(S) MUST HAVE SAME OUTPUT SPECIFICATIONS AS OTHER

FILES
This error message indicates that a
universal program was found which
did not have either a binary or a
listing device specified but all of
the following files had such speci-
fications. For example the sequence

* «UNIV
#rel,List<«file

is illegal. The legal sequence
would be

#rel, LIST«UNIV
¥REL, LIST<«FILE

?ERROR WHILE EXPANDING xxx This error message indicates that
the assembler experienced an inter-
nal error while expanding the macro
identified as xxx. Errors of this
type are extremely rare; if it oc-
curs the user should rewrite the
macro involved.

4.2.1 LOOKUP Errors

The following error messages can occur during a monitor LOOKUP,
RENAME or ENTER request on disk. The form of the error messages is:

? filename.ext then one of the following

(¢) FILE WAS NOT FOUND or (@) ILLEGAL FILE NAME (used for
enter errors only)

(1) NO DIRECTORY FOR PROJECT-PROGRAMMER NUMBER
(2) PROTECTION FAILURE
(3) FILE WAS BEING MODIFIED
(4) RENAME FILE NAME ALREADY EXISTS
(5)» ILLEGAL SEQUENCE OF UUOS
(6) BAD UFD OR BAD RIB
(7) NOT A SAV FILE
(1f) NOT ENOUGH CORE
(11) DEVICE NOT AVAILABLE
(12) NO SUCH DEVICE
(13) NOT TWO RELOC REG. CAPABILITY
(14) NO ROOM OR QUOTA EXCEEDED
(15) WRITE LOCK ERROR

VERSION 47 g June 1972

MACRO

(16)
(17)
(29)
(21)
(22)
(23)
(24)
(25)
(26)

-278-

NOT ENOUGH MONITOR TABLE SPACE

PARTIAL ALLOCATION ONLY

BLOCK NOT FREE ON ALLOCATION

CAN'T SUPERSEDE (ENTER) AN EXISTING DIRECTORY
CAN'T DELETE (RENAME) A NON-EMPTY DIRECTORY
SFD NOT FOUND

SEARCH LIST EMPTY

SFD NESTED TOO DEEPLY ;
NO-CREATE ON FOR SPECIFIED SFD PATH

If the error code (V) is greater than 268’ the error message:

?(V) LOOKUP,ENTER, OR RENAME ERROR

is printed.

4.2.2

MACRO I/0 Error Messages

The following error messages are generated for error conditions

found during input or output operations with peripheral devices. The

messages are self-explanatory.

VERs1ON 47

?0UTPUT WRITE-LOCK ERROR DEVICE xxx

?0UTPUT DATA ERROR DEVICE xxx

?0UTPUT CHECKSUM OR PARITY ERROR DEVICE xxx
?0UTPUT QUOTA EXCEEDED ON DEVICE xxx

?0UTPUT BLOCK TOO LARGE DEVICE xxX

?MONITOR DETECTED SOFTWARE INPUT ERROR DEVICE xxx
?INPUT DATA ERROR DEVICE xxx

?INPUT CHECKSUM OR PARITY ERROR DEVICE xxx

?INPUT BLOCK TOO LARGE DEVICE xxx

JuNE 1972

- 2279- MACRO

Chapter 5
Relocation

The MACRO-10 assembler will create a relocatable object program.
This program may be loaded into any part of memory as a function
of what has been previously loaded. To accomplish this, the
address field of some instructions must have a relocation constant
added to it. This relocation cohstant, added at load time by the
PDP-10 Loader, equals the difference between the memory location
an instrucﬁion is actually loaded .into and the location it is
assembled into. If a program is loaded into cells beginning at
1ocation.l4008, the relocation constant k~would be 14004.

Not &ll instructions must be modified by the relocation constant.
Consider the two instructions:

MOVEI 2,.-3
MOVEI 2,1

The first is used in address manipulation and must be modified; the
second probably should not. To accomplish the relocation, the
actual expression forming an address is evaluated and marked for
modification by the Linking Loader. Integer elements are absolute
and not modified. Point elements (.) are relocatable and are always

VERSION 47 ' June 1972

MACRO -280-

modified.! Symbolic elements may be either absolute or relo-
catable. If a symbol is defined by a direct assignment statement,
it may be relocatable or absolute depending on the expression
following the equal sign (=). If a symbol is defined as a macro,
it is replaced by the string and the string itself is evaluated.
If it is defined as a label or a variable (#), it is relocatable.!l

Finally, references to literals are relocatable.!

To evaluate the relocatability of an expression, consider what
happens at load time. A constant, k, must be added to each re-
locatable element and the expression evaluated. Consider the

expression:
X - A+2¥B-3%¥C + D

where A,B,C, and D are relocatable. Assume k is the relocation
constant. Adding this to each relocatable term we get:

XR = (A+K)+2%¥(B+K)-3*%(C+K)+(D+K)

This expression may be rearranged to separate the k's, yielding:

XR = A+2¥B~3¥C+D+K
This expression is suitable for relocation since it involves the
addition of a single k. 1In general, if the expression can be re-
arranged to result in the addition of

JEK The expression is legal and fixed.
1¥K The expression is legal and relocatable.
N#¥K Where n is any positive or negative integer other

than 0 or 1, the expression is illegal.

Finally, if the expression involves k to any power other than 1,
the expression is illegal. This leads to the following conven-

tions:

a. Only two values of relocatability for a complete
expression are allowed (e.g., nK where n = @ or +1).

b. 2An element may not be divided by a relocatable element.
c. Two relocatable elements may not be multiplied together.

d. Relocatable elements may not be combined by the Boolean
operators.

!Except under the LOC code or PHASE code which specifies absolute
addressing.

VERsION 47 5-2 ‘ June 1972

-281- MACRO

If any of these rules is broken, the‘expression is illegal and the
assembled code is flagged.

If A, C, and B are relocatable symbols, then:

A+B-C is relocatable
A-C is fixed

A+2 is relocatable
2%A-B is relocatable

2&A-B is illegal

A storage word may be relocatable in the left half as well as in
~the right half. For example:

XWD A,B

VERSION 47 JUNE 1972

-283- MACRO

Chapter 6
Assembly Output

There are two MACRO-10 outputs, a binary -program and a program
listing. The listing is controlled by the listing control pseudo-
ops, which were described in Chapter 2.

6.1 ASSEMBLY LISTING
All MACRO-10 programs begin with an implicit LIST statement.
\

Each page begins with a TITLE line; this line contains the program's
name, the assembler version, the time of assembly, the date of
assembly and a page number. The page number is incremented by a
Form-Feed or PAGE pseudq-op.

If the code'listed requires more than one page, the basic page
number given on the title line does not change but a subpage number
is added and incremented for each additional page (e.g., 6-1, 6-2,
6-3, etc.). ‘ '

The second line printed on each page is the SUBTITLE line. This
line contains the program filename and extensions, creation time,
creation date and any given subtitle.

VERSION 47 JUuNE 1972
6-1

MACRO -284-

From left to right, the columns on a listing page contains:

a. The 6-digit address of each storage word in the
binary program. These are normally sequential
location counter assignments. In the case of a
block statement, only the address of the first
word allocated is listed., An apostrophe follow-
ing the address indicates that the address is
relocatable.

b. The assembled instructions and data words shown
in one of several forms for easier reading (see
paragraph 2.6.3).

c. The source program statement, as written by the
programmexr, followed by comments, if any.

If an error is detected during assembly of a statement, an error
code is printed on that statement's line, near the left edge of

the page. 1If multiple errors of the same type occur in a parti-
cular statement, the error code is printed only once; but if several
errors, each of a different type, occur in a statement, an error
code is printed for each error. The total number of errors is
printed at the end of the listing.

The program break is also printed at the end of the listing. This
is the highest relocatable location assembled, plus one. This is
the first location available for the next program or for patching.

6.2 BINARY PROGRAM OUTPUT

The assembler produces binary program output in four formats. The
choice depends on whether the program is relocatable or absolute,
and on the loading procedure to be used to load the program for
execution.

6.2.1 Relocatable Binary Programs - LINK Format

Most binary programs are output in LINK format. Like the RELOC
statement, the LINK format output is implicit and is automatically
produced for all relocatable MACRO-10 programs unless another format
(RIM, RIM10, RIM10B) is explicitly requested. The LINK format is
the only format that may be used with the Linking Loader.

The Linking Loader loads subprograms into memory, properly relocat-
ing each one and adjusting addresses to compensate for the relocation.

VErRSION 47 June 1972

~285- MACRO

It also links external and internal symbols to provide communica-
tion between independently assembled subprograms. Finally, the
Linking Loader loads required subroutines while in Library Search
Mode. ‘

Data for the Linking Loader is formatted in blocks. all blocks have
an identical format. The first word of a LINK block consists of

two halves. The left half is a code for the block type, and the
right half is a count of the number of data words in the block.

The data words are grouped in sub-blocks of 18 items. Each 18-

word sub-block is preceded by a relocation word. This relocation
word consists of 18 2-bit bytes. Each byte corresponds to one word
in the sub-bloék, and contains relocation information regarding that
word,

If the byte value is:

no relocation occurs

the right half is relocated
the left half is relocated
both halves are relocated

w N = O

These relocation words are not included in the count; they always
appear before each sub-block of 18 words or less to ensure proper
relocation.

All relocatable programs may be stored in LINK format, including
brograms on paper tape, DECtape, magnetic tape, punched cards,
and disks. This format is totally independent of logical divi-
sions in the input medium. It is also independent of the block

type.

6.2.1.1 LINK Formats for the Block Types - Block Type 1 Relocatable
or Absolute Programs and Data

WORD 1 The location of the first data word in the block
WORD 2 A contiguous block of pProgram or data words (18
. or less)
WORD N (N, from 1 to 18, must be less than 2000,000 octal)
VERs1ON 47 June 1972

MACRO -286-

Block Type 2 Symbols

Consists of word pairs

1ST WORD Bits 0-3 code bits

1ST WORD Bits 4-35 radix 50 representation of symbol
(see below)

2ND WORD Data (value or pointer)

CODE @4: Global (internal) definition

2ND WORD Bits 0-35 value of symbol

CODE 1@: Local definition

oND WORD Bits 0-35 value of symbol

CODE 6g: Chained global requests:

2ND WORD Bits 0-17=0

OND WORD Bits 18-35 pointer to first word of chain
requiring defintion (refer to the LOADER
manual)

CODE 6¢: Global symbol additive request: (refer to
the LOADER manual)

Block Type 3 Load Into High Segment
When block type 3 is present in a relocatable binary program, the
Loader loads the program into the high segment if the system has
re-entrant (two-segment) capability. When used, block type 3 ap-
pears immediately after the name block (type 6).
The first word is

WD 3,,2

The second word is the relocation word
209889, .0
The third word is
YWD HISEG BREAK,,TWOSEG ORIGIN
where twoseg origin is 400000 by default.

With the TWOSEG pseudo-op;, the left half of the third word is nega-
tive. On a two-segment machine,this is ignored except to set a
LOADER flag. On a one-segment machine, the difference is assumed to
be the maximum length of the high segment. A one-pass assembler
does not know this legth at the start of pass 1, therefore

VERSTON 47 June 1972

6-4

-287- MACRO
XWD Lggasd, Losese

is used to signal two segments to a two-segment machine.
On a one-segment machine, this instruction gives the error message
TWO SEGMENTS ILLEGAL

since the LOADER does not know how much space to reserve for the
high segment.

Block Type 4 Entry Block

This block contains a list of Radix 50 symbols, each of which may
contain a 0 or 1 in the high-order code bit. Each represents a
series of logical: AND conditions. If all the globals in any series
are requested, the following program is loaded. Otherwise, all
input is ignored until the next end block. This block must be the

first block in a program.
Block Type 5 End Block

This is the last block in a program. It contains two words, the
first of Which is the program break, that is, the location of the
first free register above the program. (Note: This word is relo-
catable.) ‘It is the relocation constant for the following program
loaded. The second Word is the highest absolute location seen (if

greater than 140). 1In a two-segment program, the two words are:

1) the high segment break followed by
2) the low segment break.

Block Type 6 Name Block

The first word of this block is the program name RADIX 50). It
must appear before any type 2 blocks. The second word, if it
appears, defines the length of common. The left half of the second
word is used to describe the compiler type that produced the binary
file, 0 in the case of MACRO.

Version 47 ‘ June 1972

MACRO -288-

Block Type 7 Starting Address

The first word of this block is the starting address of the program.
The starting address for a relocatable program may be relocated by
means of the relocation bits.

Block Type 10 Internal Request

Each data word is one request. The left half if the pointer to the
program. The right half is the value. Either quantity may be re-
locatable,

6.2.2 Absolute Binary Programs

Three output formats are available for absolute (non-relocatable)
binary programs. These are requested by the RIM, RIM10, and RIM10B
statements.

6.2.2.1 RIM10B Format - If a program is assembled into absolute
locations (not relocatable), a RIM10B statement following the LOC
statement at the beginning of the source program causes the as-
sembler to write out the object program in RIM10B format. This
format is designed for use with the PDP-~10 hardware read-in feature.

The program is punched out during pass 2, starting at the location
specified in the LOC statement. If the first two statements in the

program are:

LOC 1087)
RIM1gB)’

the assembler assembles the program with absolute addresses start-
ing at 1000, and punches out the program in RIM10B format, also
starting at location 1000. The programmer may reset the location
counter duringassembly of his program, but only one RIM10B state-
ment is needed to punch out the entire program.

In RIM10B format (see Figures 6-1 and 6-2), the assembler punches
out the RIM10B Loader (Figure 6-2), followed by the program in 17-
word (or less) data blocks, each block separated by blank tape.

The assembler inserts an I/0 transfer word (IOWD) preceding each
data block, and also inserts a 36-bit checksum following each data *

VERSION 47 June 1972

-289- MACRO

block as shown in Figure 6-1. The word count 'in the IOWD includes
only the data words in the block, and the checksum is the simple
36-bit added checksum of the IOWD and the data words.

Data blocks may contain leéss than 17 words. If the assembler as-
signs a non-consecutive location, the current data block is termi-
nated, and an IdWD containing the next location is inserted,
starting a new data block.

The transfer block consists of two words. The first word of the
transfer block is an'instruction‘obtained from the END statement
(see Section 6.2.2.4) and is executed when the transfer block is
read. The second is a dummy word to stop the reader.

6.2.2.2 RIM10 Format - Binary programs in RIM10 format are abso-
lute, unblocked, and not checksummed. When the RIM10 statement
follows a LOC statement in a program, the assembler punches out
each storage word in the object program, starting at the absolute
address specified in the LOC statement.

RIM10 writes an arbitrary "paper tape". If it is in the format
below, it can be read in by the PDP-10 Read-In-Mode hardware.

IOWD N,FIRST)

where n is the length of the program including the transfer instruc-
tion at the end, and FIRST is the first memory location to be occu-
pied. The last location must be a transfer instruction to begin

the program, such as:

JRST 4,G0)

For example, if a pProgram with RIM10 output has its first location
at START and its last 1ocation at FINISH, the programmer may write

\

IOwWD FINISH-START+1,START)

NOTE

In cases where the location counter is increased
but no binary output occurs (such as with BLOCK,
LOCn, and LIT pseudo-ops), MACRO inserts a zero

word into the binary output file for each loca-

tion skipped by the location counter.

VERSION 47 : ‘ June 1972
6-7

MACRO -290-

6.2.2.3 RIM Format - This format, which is primarily used in PDP-6
systems, consists of a series of paired words. The first word of
each pair is a paper-tape read instruction giving the core memory

address of the second word. The second word is the data word.

DATAI PTR,LOC
DATA WORD

The last pair of words is a transfer block. The first word is an
instruction obtained from the END statement (see Section 6.2.2.4)
and is executed when the transfer block is read. The second word
is a dummy word to stop the reader. '

The loader that reads this format is:

Loc 24

CONO PTR,60
A: CONSO PTR,1¢
JRST .-1
DATAI PTR,B
CONSO PTR, 14
JRST .-1
B: ¢
JRST A

This loader is normally toggled into memory and started at loca-
tion 20.

6.2.2.4 END Statements - When the programmer wants output in either
RIM or RIM10B format, he may insert an instruction or starting ad-
dress as the first word in the two-word transfer block by writing
the instruction or address as an argument to the END statement.

The second word of the transfer block is zero. 1In RIM10 assemblies,

this argument is ignored.

TIf bits 0 through 8 of the instruction are zero, MACRO will insert
the instruction JRST 4,0, causing a halt when executed. The END
statements

END SA) OR END JRST SA)

will start automatically at address SA.

VERSION 47 JuNe 1972

-291- ' MACRO

Some other examples:

1st Transfer Block Word

END@XCT 1234 XcTel234

END zlh,SA JRST 4,34
END JRST 4,8
RIM 198
LOADER .

: X1<17y0= NUMBER OF WORDS IN
IOWD X3, ADDRy st DATA BLOCK
ADDR;=ADDRESS OF

15t DATA BLOCK

18t BLOCK
oF
PROGRAM DATA

IOWD 1S INCLUDED

. CHECKSUM {N-CHECKSUM
//////// / BLANK TAPE (6 FRAMES)
W&-M‘\IM

|OWD X, ADDRy

nth BLOCK
OF
PROGRAM DATA

CHECKSUM
/////////// BLANK TAPE (6 FRAMES)
JRST START -
TRANSFER BLOCK
[

10-0060

Figure 6-1 General RIM10B Format

VERSION 47 ' | JunNe 1972

MACRO -292-

XWD -16,0
ST: CONO PTR,»60
STl ¢ HRRI AsRD+1
RD: CONSO PTR»>1@
JRST
DATAI PTRs @TBL1-RD+1(A)
XCT TBL1-RD+1(A)>
XCT TBL2-RD+1(A)
Az SO0JA A,
TBL1 : CAME CKSM»ADR

ADD CKSMs1 C(ADR)D
SKIPL CKSMs»ADR

TBLZ2 : JRST 4,ST

AOBJN ADRSsRD
ADR: JRST ST1
CKSM=ADR+1

Figure 6-2 RIM10B Loader

VERSION 47 JuNe 1972

-293- - MACRO

Chapter 7
Programming Examples.

This chapter contains four examples of macro programs. The first
example (Figure 7-1) presents a MACRO~10 routine for calculating

the logarithm of a complex argument. This routine begins with an
ENTRY statement identifying this library routine as CLOG (Complex
Logarithm Function) and uses three external routines, ALOG, ATAN2
and CABS.

The second example (Figure 7-2) is the universal parameter file
DEF40.MAC which is used to produce the KA-10 version of LIB40.

It contains conditional assembly switches to select either a PDP-6,
KAl0 or KI10 mode. It defines the accumulator conventions and
macros which simulate the KI10 hardware operations on the KAl0

pProcessor,

Example 3 (Figure 7-3) uses DEF40 (via the SEARCH pseudo-op) for
its accumulators and the macros for DMOVE, DMOVEM and FLADD. The
macro FLADD is expanded twice to show the effect of LALL on lines
which generate text but no binary. The effect of SALL is also

shown.

Example 4 (Figqure 7-4) shows nested macros which use IRPC. The
desired operation is to take an ASCITI text string and store the

VERSION 47 7-1 June 1972

- MACRO ~294-
characters four per word, left-justified, with the character count

stored in the first nine bits of the first word.

The TEXT macro counts the string characters and invokes the CODE

macro to store the characters four per word.

The CODE macro invokes a SHIFT macro which left-justifies the last
word if it is not already left-justified. The first part of the
example shows the normal listing, then SALL is set to show what

code the macros are generating.

VERSION 47 June 1972

“ MACRO

-295-

qdasn H¥00 ¥¢
LT@@@@ SI AvEdd WYdHoud

EZLOELHEC. SHOUHHE ON

andg

Bmeﬁ (&1 var 189P8% 9T # 9T L9g 912480
IYVd TVEY HHOLSHYS 2°Y HAOW J1g08e 98 ¥ 98 ggc S1PE8Y
I¥Vd KYYNIDVHI NI VIFHI Ind* vg HAOW gppogs 68 ¢ 18 g0z «41Be08
D J0 SSHMaaV* v dxd gggesy Be8e08 ETO008
X J0 SSEYQav a dx= 110998 @ePeer 2100880
(X/X)NYIY SV HTHNY me<q:oq<o ZNVLV D ¥se %@ geg 89 ¢ 9T 992 T14AEH
LMY TV HITM HIMSNY JVMS® oY HOXH g1e098 99 ¢ B8 g2 P1IPEP
FNILOOY DHOT HOA mmmmoo< v dxd oeBIEBe PPeees . Lodpes
((%) 484Y)90T HILVINOTVO: DOIvV'e ¥sL xPggees 2% ¢ 9T 99¢ 900802 ¢
INTHOHYY XHATAWOD 40 mmmmoo<) axd g0z ee PEPEET SORELE
% J0 FANLINDVI ma«qzoq<o sdvo‘T ¥se xPPPP8Y 88 @ TP 992 hwPALEY
INAHNDYY 40 I¥Vd TvdEd IHEDC ()0 - HAOKH Pogges 91 ¢ 9T ggc CPPgEs
INTWADEY J0 IHVd TVHEY amoﬂ (0)1a HAOW T0gg8s 91 8 1T g9ge 230899
INTHNDYY XTTIWOO 40 SSHYAQY LED* (®)9D IHAAGK gggggy o1 T @1 1@gc 100808
ANTLACH $OT XTTIWOD OL AMINES o} 1H0T0 PEPBPE BELPOS POPBEE

9T=0 91g93%

IT=a 119289

g1=0 BIOOI2

- =4 88089

g=v 2o8088

SgyO“gNVIYV ‘HOTV NIHIXH
poTO . AMINY

g YOIVINWNOOY NI QIENMALEY SI I¥vVd XUVNIDYWI HHL ONV

¥ HOIYINWADOY NI QINMALHEY SI YEMSNY HHI 0 I¥vVd TvVad HHL
DUy dxXg
DoI0‘d . ¥Sr

TUINNYH DNIMOTIOL HHL NI dHTIVD SI UNIINOY HHL

(X/X)NYIY ITONV XITIHOO HHI ST. VLIHL ONV
(Z¥X + 2¥X) IH0S = (28 4S9V HYHEHM
VIFHLxI + (%) 4Sdy¥g8 DOT = Z8HOT

WHIIHODTY HNIMOTTOL FHL HIIM AxT+X = 2
INFWAHYY XHETAWOO ¥V 40 WHLIHVHOT HHIL SHELVIADTVO MZHBDom SIHL
NOILONA OIWHIIMYDOT XHTIWOO® LNAWWOD

gL6T € TI¥dV ILLANS
DOIO HEILIL

"2L6T ‘€ 11¥dv €G:1ET 2L-HdV-t OV DoOId
T #0Vd 2A-¥dv-ff #G:iET (E€TT).Ly OHOVH DOID

JuNe 1972

MACRO Program CLOG

Figure 7-1

VERSION 47

-296-

MACRO

9TZBaY v]

118829 a

INE P20gPeg D010

IXE hOo02P sdvD

gl o)

10990088 d

IXT [\ T190088 SNVLY

IXHE 900090 Doy

g v

I7dYE TOSHAS EGIET 2L-Udv-§ VI talolate)
¢ dDVd 2L-Hdv-t 4#G:€T (ETT).lH OHOVH nOTIo

June 1972

VERsION 47

-297- 'MACRO

UNIVERSAL DEFA4@ PARAMETER FILE FOR FORTRAN IV LIBRARY
SUBTTL V32(343) 23-NOV-T71 /TWE

IFNDEF PDP6.<IFNDEF KA1lf,<IFNDEF KI1f,<KAlf==1>>>
IFNDEF PDP6,<PDP6==g> ;CONDITIONAL ASSEMBLY PARAMETERS
IFNDEF KA1#,<KAlg==g>
IFNDEF KI1@,<KI1@==g>
IFN <PDP6!KA1¢!KI1¢-PDP6-KA1@-KI1g>,
<PRINTX MACHINE PARAMETERS DEFINED WRONG>

; ACCUMULATOR ASSIGNMENTS
A=g
B=1
Cc=2
D=3
E=4
F=5
G=6
H=7
Q=16 ;FOR JSA AND ARG ADDRESS FOR PUSHJ
P=17 sPUSH DOWN POINTER
IFE KAl#,<
DEFINE DOUBLE (A,B)<
A
B>
>
IFN KAl4,<

DEFINE DOUBLE (A,B)<
251,==A& 777009, ,0>
IFL Z%1.,<%Bl.==-3%1.-<1000,,0>>
#%1 ,==23]1 ,-<@3300%, ,0>
IFE B,<%3%1l.==g>
BE2, ==2Z 1, +<<B+20@>+-B>&<@OBITTT, ,TTTTTT>
IFL 231.,<gz2.==g>
A
272
SUPPRESS 2#1, ,%%2.>
DEFINE DMOVE(AC,M)<
, IFL <& M>-<@>,<
MOVE AC,M
MOVE AC+1,1+M>

IFGE <3 M><@>,<

MOVEIL AC+1,M

MOVE AC, (AC+1)

MOVE AC+1,1(AC+1)>
>

DEFINE DMOVN(AC,M)<
DMOVE AC,M
DFN AC,AC+1>

DEFINE DMOVEM(AC,M)<

MOVEM AC,M
MOVEM AC+1,1+M

Figure 7-2 Universal Parameter File DEF40.MAC

VERSION 47 _ June 1972

MACRO ~298-

DEFINE FLMUL (AC,M,%0V)<
MOVEM AC,AC+2
FMPR AC+2,1+M
JFCL (2)

FMPR AC+1,M
JFCL (2)

UFA AC+1,AC+2
JFCL

FMPL AC,M

JOV %OV

UFA AC+1,AC+2
FADL AC,AC+2

%0V >

DEFINE FLDIV(AC,M,%O0V)<
FDVL AC,M
JOV %0V

MOVN AC+2,AC
FMPR AC+2,1+M
JFCL (2)
UFA AC+1,AC+2
FDVR AC+2,M
JFCL
FADL AC,AC+2
40V :>

DEFINE FLADD(AC,M,%0V)<
UFA AC+1,1+M
FADL AC,M

JOV %0V

UFA AC+1,AC+2
FADL AC,AC+2

%0V:>
> ;END OF KAlgZ CONDITIONAL
IFN KIlg,<

OPDEF FLADD [DFAD]
OFDEF FLMUL [DFMP]
OPDEF FLDIV [DFDV]

DEFINE DFN (A,B)< DMOVN A,A

IFN <<A+1>&17->,<PRINTX "DMOVN A,A" CAN'T REPLACE "DFN A,B">
>

> ;END OF KI1g CONDITIONAL

END

VERSION 47 JUNE 1972

MACRO

-299-

AINO XMUYNIL QNV TIVO:

DNIHIAHEAT ISTIT¢

AYOWHEW OL THOIS

QEXHANI ENO STIHLS

HAOW FTdN0A TIJWIST+

JYVIS
q2°Y FAOWQA
TIVS

¥

2HY Y Tavd
ZHYCT+HY vdN
zgeetc AOr
q2¢Y 1av4
q+T°T+V vdn
£°Y aavid
TIVI

Z+¥°y "1ava
S+Y T4V Vdn
T¢g8° ¢ AOL
q¢y Tavd
H+T°T+Y VAN
a4y aavid

A+T°T+Y WIAOW
Y WHAOH
qA°Y WHAOWC

(T+Y) T T+Y HAOHW

(T+Y) °V ZAOHW
(®) fT+Y IIAOW
(®) ‘v =9A0WA

(®)+TT+V FAOH

(®)°Y TAOW
(®) VY -AAOHA
@rddd HOYVIS

¢L-udv-S$ 1% 1TLL4ns
SOHOVW FWOS ISHL HTLIL

aNd

‘epeg -

ERRLARY

ZLl-¥dv-S T%
T d9Vd 2L-ddv-S gH:€T (S£TT).Lh OMOVH

1228829
hoge8e8 88 o

ceIBPE P9I
coBeee 28
JI2HP8E 48
ho2808 B9 .
SPIPEe B0

BASRGRCRSR S

coppEe 22
cogees Be
NTAgBE 98
hoP208 B9
$po8ed8 B2

ISESESESRS]

Spegse B9
hagese 2o

ISESY

TP2028 18 ¢
pegeeg 18 ¢
2000898 9T T

- 188889 9T 8

290888 9T #

go

29
1§
a1
ifi)
iy’

o8
18]
a1

¥

¢
22

1%/
3
i)

)
28

TESN HECO He

E2PPPP ST MVIHD WVHHOoUd

QHLOELAT SHOYHE ON

27e

THT
gET
gae
™t
gET

Ht
get
gse
nt
geT

cge
cge

gae
gae
Tge

gae
gge

Pn€T 2l-y¥av-g

11eapeg

1.1y
\P2PEBe
IWAN)J]]
1918288
\STPBPP
N TBB98

1ETPE0P
T80 P
1 IT8088
1 2TE888
LOB208

1 980828
Ry)y

N BBERe
1CP0g00
1 CHBEBY

22888
1\ BP2088

1\ PBRBR

OV LSHL
SOHOV HWOS ILSHL

Figure 7-3

Test Some Macros

June 1972

VERSION 47

-300-

MACRO

4y
h1B028
ZBe889
9TeA82
s faligigl
20208083

H1dVL TODNAS Pni€T 2L-¥av-s
¢ HDVd 2.-Mdv-§ gh:€T (ETT).lh OHOVKH

OV

g
808" "
LHVLS
0
q
v

LSHL

SOHUOVH HWOS LSHL

June 1972

VERSION 47

MACRO

-301-

OYOVIW HJ0D A0 aNd¢
2% NAI J0 QNHES:
IATT DNTAOW IHVLSES
ANTJEd A0 aNFS €
ASHAOHY S ¢

SILI9 6 IJET HAOWE ¢

QATATISAL TAHT LON 4I¢¢

IJET HAANIVWEY S ¢
0d¥TI 40 aNFEs <

$ HIIM NIVDY IUvVIg¢<
TINg auome s

NOILIANOD TYILINICC

OYOVW IXHL 40 aNHA¢

IXAL FY0IS OL OHOVHW TIvD¢ ¢

SYALOVYYHD INNOD¢ ¢
NOIIIANOD TYILINIC

T+N==
T+N==
T+N==
0duI
““Z
¢ (THPTHDATADEY) IXIL
TV
<EZINH
2% JXd
22 JIXH
2% J¥d

y (TICTHHAAADEY) IXAL

<

<%% JYd
LATHS
<
<IJATHS
6>ZF ==35%
<“gglll3%2 HAT
TATHS INIAHA> 2% NAT
< :O:+Q|YNN.H"NN

A&."" zz

2% JdXd

>€0gLLi8%7 NAT
>0 0dyI

==22
>(0°N) HQ0D EUNIAHA

<

(0°N) HAOD
<T+N==N>°D 0duI
F==N

>(0) IXHEL INILHQ

Zl-¥dv-S T TLL40S

HELOVUVHD A€ YHLOVYVHD IXHL HYOLS HILIL

¢L-¥dv-S 1%

T FHVd 2L-¥dv-S& Gh:4T (ETT).Ly OUYDVH

CopBee
zpeeee
1698089
Japueyupy)

geepee PeenIL
€TTSTT TIIPTIT

LPTIPT SBTHAT
€PTCPT TLTIHIL

mhinT 2L-Hdv-§

E0B008
1 CPBeP0
\TRB038
gy

OV

IXdL

HHLOVUVHD A9 HHALOVHVHO IXHIL HYOLS

Store Text Character by Character

Figure 7-4

June 1972

VERSION 47

7-9

-302-

MACRO

T+N==
T+N==N
T+N==N
T+N==N
T+N==N

T+N==N

110889
p1esae
LepBes
99p808¢
Sepeee
hogeee

JunE 1972

VErsION 47

7-10

MACRO

~303-

:m:.,Tm..vmm“"m.m
<@P==22
22 dXd -
>°galLL3%% NdA
—.Q:.Tmlv.m.mnu"mm
<P==2%7
2z dXd

>°9dL))3ER NAI

Wu+b6>r22==%%
<@F==Z%Z
2% dXd
>¢ed)L L3%% NAT

’ :m—:-TQWYmW"“.WN.
A&""mw
%% JXd
>‘oalLL3%% NAI

iV u+6>22==%2
<P==%2

‘2% dXd

>fgalL1l3%% NAT

od¥l
N==%%

4 (THLTIHDAEAOGY *N) HA0D

T+N==N
T+N==
T+N==

2l=-4av-g 1%

T-T @DVd 2L-Hav-G Gh:fT (€TT)Lh OUOVH

GETHOT

hoT1EPg
ofdgiy g
€gTegT TPInI

£PTedT THIH1L

ZOTTPT (19989

TITHTA

n1gese

W1agae
E1g000
210892
hiihT 2L-¥dV-§

hBegee

OV

IXHL

YAIOVHVHD A9 HELOVHVHO IXAL HHOLS

June 1972

VERSION 47

7-11

=304~

MACRO

:.U:&.@xvmm""mm
KP==22
7% JdXH
>‘Qd)L.%%2 NJI

:,m:+mlvmmﬂﬂmm
A&"Hmm
ZZ dXd
>0dLL.8%% NAT

LBT9dT

9pTSaT

SPTHAT

June 1972

VERSION 47

7-12

MACRO

-305-

<LATHS

ErRR==F

>0d)L.3%2 FAIV IATHS
" p>BE==2F 000808 gOsHTT

>9d)L.3%% FAIV I4THS
E>2R==FF 2P0888 wi11ges

>‘9g)L)L3%% FATY TJATHS

f+3FE==2% PABRTT

>€0da)).3%% HAI+Y LAIHS

<

<LATHS

6+ER==3%

>°9d)L.8%% HAI>

LATHS ENIAHEA ‘2% NaI

:Q:+@+WN""NN :HH.&&Q
<P==%% - Yoy
2% JX" ETTZTIT TITPTIT 994009
>‘gdalll3%% NAI :
Wy +6>22==2% €TIT2TT 'TITOIT
<P==%%
2% JXd
>“0d) L322 NAT
W Lu+6>Z%==%% 2ITITT Q11889
A&""NN
2% JXH
>°9dg)))3%% NAI
wIu+6rZR==2% TTTOTT
<P==22
ZZ JXH
>¢g9a) L1322 NAT
:m:+m+wmﬂﬂmm . &HH&&Q
<P==%% Jojuyigutigs]
2% JXd LPTOBT GOTHAT SPPPEg

>€9g) L1322 NAT

2L-4dv-G T% wit T 2A-HdV-G OV IXEL
2-T IDYd 2L-¥dV-G ShiqT (ETT)LE OHOVH YAIOVEYHD A9 YELOVEVHO IXAL THOLS

June 1972

7-13

VERs1ON 47

-306-

-RO

MA(

gL=4dvy-6 I3
£-T 3Hvd 2L-¥dv-G Sh:hT (EIT).Lf OHDVH

[a]

=
~
51

ny

K & € € [1] 4 6

aasn 9¥o0 ¥e
AT@gPE SI AVIME WVHHOMJ
JILOELIA SHOEYH ON

kT 2L-¥dv-& OVI IXHEL
HALOVYVHO X9 ¥ALOVMYHD IXHL FHOIS

LEBBRP BEBNTT . LEPEY

=

June 1972

VERSION 47

7-14

-307- MACRO

Appendix A
Op Codes, Pseudo-Ops,
and Monitor I/0 Commands

This appendix contains a complete list of assembler defined operators
including machine instruction mnemonic codes, assembler pseudo-ops,
monitor programmed operators, and FORTRAN programmed operators. A
pProgrammed operator, or unimplemented user operation code is called

a uuo.

A.l ASSEMBLER PSEUDO?OPS AND MONITOR COMMANDS

The notes specify which pseudo-ops generate data, and which do not.
Pseudo-ops that generate data may be used within literals, and in
address operand fields.

The initial values given by MACRO-10 to I/O instructions and FORTRAN
UUO's for which the octal op code is not shown, are given in the notes
and are useful in checking listings.

ARRAY, pseudo~op, generates data CALLI, 047, monitor UUO

ARG, 320, no-op (same as JUMP) CLOSE, 070, monitor UUO

ASCII, pseudo-op, generates data COMMENT, no data generated

ASCIZ, pseudo-op, generates data - DATA, 020, FORTRAN UUO

ASUPPRESS, pseudo-op, no data generated DEC, pseudo-op, generates data

BLOCK, pseudo-op, no data generated DEC., 033, FORTRAN UUO

BYTE, pseudo-op, generates data DEFINE, pseudo-op, no data generated

CALL, 040, monitor uUO DEPHASE, pseudo-op, no data generated
VERsION 47 - JuNe 1972

A-l

MACRO

ENC., 034, FORTRAN UUO

END, pseudo-op , no data generated
ENTER, 077, monitor UUO

ENTRY, pseudo-op, no data generated
EXP, pseudo-op, generates data
EXTERM, pseudo-op, no data generated
FIN., 021, FORTRAN UUO

GETSTS, 062, monitor UUO

HISEG, pseudo-op, no data generated
IFl, conditional pseudo-op

IF2, conditional pseudo-op

IFB, conditional pseudo-op

IFDEF, conditional pseudo-op

IFDIF, conditional pseudo-cp

IFE, conditional pseudo-op

IFG, conditional pseudo-op

IFGE, conditional pseudo-op

IFIDN, conditional pseudo-op

IFL, conditjonal pseudo-op

IFLE, conditional pseudo-op

IFN, conditional pseudo-op

IFNB, conditional pseudo-op

IFNDEF, conditional pseudo-op

IN, 056, monitor UUO

IN., 016, FORTRAN UUO

INBUF, 064, monitor UUO

IN., 026, FORTRAN UUO

INIT, 041, monitor UUO

INPUT, 066, monitor UUO

INTEGER, pseudo-op, generates data
INTERN, pseudo-op, no data generated
IOWD, pseudo-op, generates data
IRP, pseudo-op, no data generated
IRPC, pseudo-op, no data generated
LALL, pseudo-op, no data generated
LIST, pseudo-op, no data generated
LIT, pseudo-op, generates data

1.0C, pseudo-op, no data generated
LOOKUP, 076, monitor UUO

MLOFF, pseudo-op, no data generated
MLON, pseudo-op, no data generated
MTAPE, 072, monitor UUO

MTOP., 024, FORTRAN UUO

NLI., 031, FORTRAN UUO

NLO., 032, FORTRAN UUO

NOSYM, pseudo-op, no data generated
OCT, pseudo-op, generates data
OPDEF, pseudo-op, no data generated
OPEN, 050, monitor UUO

ouT, 057, monitor UUO

ouT., 017, FORTRAN UUO

OUTBUF, 065, monitor UUO

QUTF., 027, FORTRAN UUO

OUTPUT, 067, monitoxr UUO

PAGE, pseudo-op, no data generated
PASS2, pseudo-op, no data generated
PHASE, pseudo-op, no data generated
POINT, pseudo-op, generates data
PRINTX, pseudo-op, no data generated
PURGE, pseudo-op, no data generated
RADIX, pseudo-op, no data generated
RADIX50, pseudo-op, generates data
RELEAS, 071, monitor UUO

VErRsION 47

-308-

RELOC, pseudo-op, no data generated
REMARK, pseudo-op, no data generated
RENAME, 055, monitor UUO

REPEAT, pseudo-op, no data generated
RERED., 030, FORTRAN UUO

RESET., 015, FORTRAN UUO

RIM, pseudo-op, no data generated
RIM10, pseudo-op, no data generated
RIM1OB, pseudo-op, no data generated
RTB., 022, FORTRAN UUO

SEARCH, pseudorop, no data generated‘
SETSTS, 060, monitor UUO t
SIXBIT, pseudo-op, generates data
SLIST., 025, FORTRAN UUO

SQUOZE, same as RADIXS50

STATO, 061, monitor UUO

STATUS, 062, monitor UUO

STATZ, 063, monitor UUO

sTOPI, pseudo-op, no data generated
SUBTTL, pseudo-op, no data generated
SUPPRESS, pseudo-op, no data generated
SYN, pseudo-op, no data generated
TAPE, pseudo-op, no data generated
TITLE, pseudo-op, no data generated
TTCALL, 051, monitor UUO

TWOSEG, pseudo-op, no data generated
UGETF, 073, monitor UUO

UJEN, 100, monitor UUO

UNIVERSAL, pseudo-op, no data generated
USETI, 074, monitor UUO

USETO, 075, monitor UUO

VAR, pseudo-op, generates data

WTB., 023, FORTRAN UUO

XALL, pseudo-op, no data generated
XLIST, pseudo-op, no data generated
XWD, pseudo-op, generates data

7, pseudo-op, generates data

.CREF, pseudo-op, no data generated

.XCREF, pseudo-op, no data generated
.HWFRMT, pseudo-op, no data generated
.MFRMT, pseudo-op, no data generated

June 1972

MACHINE MNEMONICS AND OCTAL CODES

following are machine mnemonics and corresponding octal codes:

A.2

The
ADD 270 CAMGE
ADDB 273 CAML
ADD| 271 CAMLE
ADDM 272 CAMN
AND 404 CLEAR
ANDB 407 CLEARB
ANDCA 410 CLEARI
ANDCAB 413 CLEARM
ANDCA! 411 CON! .
ANDCAM 412 CONO
ANDCB 440 CONSO
ANDCBB 443 CONSZ
ANDCBI 441 DATAI
ANDCBM 442 DATAO
ANDCM 420 DFEN
ANDCMB 423 Div
ANDCM! 421 DIve
ANDCMM 422 DIvI
ANDI 405 DIvm
ANDM 206 DPB
AOBIN 253 EQV
AOBJP 252 EQvB
AQJ 340 EQvVI
AQJA 344 EQVM
AQJE 342 EXCH
AQJG 347 FAD
AOJGE 345 FADB
AQOJL 341 FADL
AOQOJLE 343 FADM
AOJIN 346 FADR
A0S 350 FADRB
AOSA 354 FADRI
AQSE 352 FADRM
AOSG 357 FDV
AOSGE 355 FDVB
AOSL 351 FDVL
AOSLE 353 FDVM
AOSN 356 FDVR
ASH 240, FDVRB
ASHC 244 FDVRI
BLKI 7-00 FDVRM
BLKO 7-10 FmpP
BLT © 251 FMPB
CAl 300 FMPL
CAIA 304 FMPM
CAIE 302 FMPR
CAIG 307 FMPRB
CAIGE 305 FMPRI
CAIL 301 FMPRM
CAILE 303 FSB
CAIN 306 FSBB
CAM 310 FSBL
CAMA 314 FSBM
CAME 312 FSBR
CAMG 317 FSBRB

VERSION 47

315
31
313
316
400

403
401
402
7-24
7-20

7-34
7-30
7-04
7-14
131

234
237
235
236
137

163

157

FSBRI
FSBRM
FSC -
HALT -
HLL

HLLE
HLLEI
HLLEM
HLLES
HLLI

HLLM
HLLO
HLLOI
HLLOM
HLLOS

HLLS
HLLZ
HLLZY
HLLZM
HLLZS

HLR
HLRE
HLRE!
HLREM
HLRES

HLRI
HLRM
HLRO
HLROt
HLROM

HLROS
HLRS
HLRZ
HLR2ZI
HLRZM

HLRZS
HRL
HRLE
HRLE!
HRLEM

HRLES
HRLI
HRLM
HRLO
HRLOI

HRLOM
HRLOS
HRLS
HRLZ
HRLZI

HRLZM
HRLZS
HRR
HRRE
HRREI

165
156
132
254-4,
6500

530
631
532
533
501

502
520
521
522
623

<603

510
511
b12
613

6544
574
676
576
677

545
646
564
6566
566

567
647
554
555
566

657
504
B34
636
536

637
505
506
524
525
526
527
507
514
515
516
617
540

670
571

-309-

HRREM
HRRES
HRRI
HRRM
HRRO

HRROI
HRROM
HRROS
HRRS
HRRZ

HRRZ!
HRRzm
HRRZS
iBP
DIV

IDIVB
1DIVI
IDIvm
0P8
ILDB

IMUL
IMULB
muLt
IMULM
I0R

IORB
10RI.
IORM
JCRY
JCRYO

JCRY1
JEN
JFCL
JFFO
JFOV

Jov
JRA
JRST
JRSTF
JSA

JSP
JSR
Jump
JUMPA
JUMPE

JUMPG
JUMPGE
JumpPL
JUMPLE
JUMPN

LDB
LSH
LSHC
MOVE
MOVEI

672
873
541
542
560

561
562
563
543
650

651
552

133
230

233
231
232

136

134

220
223
221
222
434
A37
435
436
255-6,
256-4,

255-2,
254-12,
265
243
255-1,

255-10,
267
254
254-2,
266

265
264
320
324
322

327
325
321
323
326

135
242
246
200
201

MOVEM
MOVES
mMovm
MOVMI
Movmm

MOVMS
MOVN
MOVN!
MOVNM
MOVNS

MOvs

. MOvs)

MOovsm
MOvss
MUL

MuLs
MuLl
MULM
OR
ORB

ORCA
ORCAB
ORCA!
ORCAM
ORCB

ORCBB
ORCBI
ORCBM
ORCM
ORCMB

ORCMI
ORCMM
ORI
QRM
POP

POPJ
PUSH.
PUSHJ
ROT
ROTC

RSW

- SETA

SETAB
SETAI
SETAM

SETCA
SETCAB
SETCA!
SETCAM
SETCM

SETCMB
SETCM!
SETCMM
SETM
SETMB

202

214
215
216

217
210
21
212
213

204
205
206
207
224

227
225
226
434
437

454
457
455
456
470

473
471
472
464
467

465
466
435
436
262

263
261
260
241
245

7-04
424
427
425
426
450
453
451
452
460

463
461
462
414
417

SETMI
SETMM
SETO
SETOB
SETO!

SETOM
SETZ
SETZB
SETZI
SETzM

SKIP
SKIPA
SKIPE
SKIPG
SKIPGE

SKIPL.
SKIPLE
SKIPN
S04
SOJA

SOJE
SOJG
SOJGE
SOJL
SOJLE

SOJN
S0s

SOSA
SOSE
S0SG

SOSGE
SOSL
SQSLE
SOSN
SsuB

suss
SuUBI
SUBM
TDC
TDCA

TDCE
TDCN
TDN

TDNA
TDNE

TONN
TDO

TDOA
TOOE
TDON

TDZ
TDZA
TDZE
TDZN
TLC

MACRO

415
416
474
477
475

476
400
403
401
402

330
334
332
337
335

331
333
336
360
364

362
367
365
361
363

366
370
374
372
377

375
an
373
376
274

277
275
276
650
654

652

.656

610
614
612

616
670
674
672
676

630
634
632
636
641

June 1972

TLCA
TLCE
TLCN
TLN
TLNA

TLNE
TLNN
TLO

TLOA
TLOE

TLON

TLZA
TLZE
TLZN

TRC
TRCA
TRCE
TRCN
TRN

TRNA
TRNE
TRNN
TRO

TROA

TROE
TRON
TRZ -
TRZA
TRZE

TRZN
TSC

TscAa
TSCE
TSCN

TSN
TSNA
TSNE
TSNN
TSO

TSOA
TSOE
TSON
T8z

TSZA

TSZE
TSZN
UFA
XCT
XOR

XORB
XOR!
XORM

645
643
647
601
605

603
607
661
665
663

667
621
625
623
627

640
644

646
600

602
606
660
664

662
666
620
624
622

626
651
665
653
657

611
615
613
617
671

675
673
677
631
635

633
637
130
256
430

433
431
432

-311- MACRO

Appendix B
Summary of Pseudo-Ops

B.1 PSEUDO-OPS

A list of pseudo-ops and their'functions follows:

ARRAY Reserve multiple words of étorage.

ASCII Seven-bit ASCIi test

ASCIZ Seven-bit ASCII test, with null character guaranteed
at end «

ASUPPRESS Turns on suppress bit for all symbols

BLOCK Reserves block of storage cells

BYTE Input bytes of length 1-36 bits

COMMENT No binary produced; same as seven-bit ASCII

DEC Input decimal numbers

DEFINE Defines macro

DEPHASE Terminates PHASE relocation mode

END Last statement of the program

ENTRY Entry point for subroutine library

EXP ' vInput expressions

EXTERN Identifies éxtérnal symbols

VERSION 47 - June 1972

B'fl

MACRO

HISEG
INTEGER
INTERN
IOWD
IRP
IRPC
LALL
LIST
LIT
LOC
MLOFF
MLON
NOSYM
ocT

OPDEF

PAGE

PASS?2

PHASE
POINT
PRGEND

PRINTX

PURGE
RADIX
RADIX5%
RELGC
REMARK
REPEAT
RIM
RIM1g

RIM1@2B

VERSION 47

~312-
Load into high segment
Reserve one word of storage per argument
Define internal symbols
Set up I/0 transfer word
Indefinite repeat of macro arguments
Indefinite repeat of one character
List all; expanded listing of macros
List in normal mode
Assemble literals
Assign absolute addresses
Turn off multiline literal feature
Turn on multiline literal feature
Suppress symbol table listing
Input octal numbers

Defines user-created operator; generates only one
word

Start a new listing page

Terminates pass 1, remaining statement are pro-
cessed pass 2 only

Following coding relocated at execution time
Sets up byte pointer word
Allows multiprogram assemblies, end one such program

Output on terminal or listing device the rest of the
line

Remove symbol from table

Sets prevailing radix to 2-10

Compresses 36-bit words, primarily for system us
Implied first statement; assigns relocatable addresses
Comments only statement

Repeat n times

Prepare output in RIM paper-tape format

Absolute, unblocked, output format; no checksums

Absolute, blocked, checksummed output format

June 1972

-313- MACRO

SALL Suppress listing of macros; lists only call and
binary generated '

SEARCH Opens symbol tables of universal program

SIXBIT Input text in conipressed 6-bit ASCII

SQUOZE Same as RADIX 50 above

STOPI Stop indefinite repeat of macro arguments

SUBTTL Subtitle on listing |

SUPPRESS Turns on suppress bit for specified symbols

S?N : Make synonyﬁous ‘

TAPE . 8top processing the current file

TITLE Title‘on listing and to DDT

TWOSEG - Assembles and loads two segment programs

UNIVERSAL Makes symbol table available to othei programs

VAR Assemble variables suffixed with # or ARRAY or
INTEGER

XALL ’ Stop expanded listing, resume normal list mode

XLIST Stop listing

XPURGE Purges local symbols on pass 2

XWD Input two 18-bit half words

Z Input zero word

.CREF Resume outout pf CREF information

. XCREF Stop output of CREF information

. HWFRMT List binary in half word format (old)

» MERMT List binary in multi-format (new)

B.1.1 Conditional Assembly Statements

These conditional assembly statements in the first column are as-
sembled if the conditions in the second column exist.

IF1 Encountered during pass 1
IF2 Encountered during pass 2
IFB Blank

IFDEF Defined.

iFDIF Different

IFE | Zero

VERs1ON 47 | June 1972

MACRO -314-

IFG Positive
IFGE Zero, or positive
IFIDN Identical
IFL Negative
IFLE zZero, or negative
IFN Non-zero
TFNB Not blank
IFNDEF Not. defined
VERsTON 47 June 1972

Appendix C

-315- MACRO

Summary of Character
Interpretations

The characters

listed below have special meaning in the contexts

indicated. These interpretations do not apply when these characters

appear in text strings, or in comments.

Character

..

~e

&

VERSION 47

Meaning Example-
Colon. Immediately follows all LABEL: Z
labels.
Semicolon. Precedes all comments. sTHIS IS A COMMENT
Point. Has current value of the JRST .+5 JUMP FORWARD
location counter or indicates float- FIVE LOCATIONS
ing point number. 1.0

Comma. General operand or argument DEC 14,5,6
delimiter. EXP A+B,C-D

Accumulator field delimiter. MOVEI 1,TAG

References accumulator 0. The MOVEI ,TAG
comma is optional.

Delimits macro arguments. MACRO (A,B,C)

Inclusive OR

Logical Operators
AND

JUNE 1972

MACRO
Chatacter

*

/
+

lst charac-
ter of text
string

B

()

L]

1]
]

VErsION 47

-316-

Meaning Example
Multiplication
Arith-
Division metic
Operators

Add (+A outputs the value of A)

Subtract

In ASCII, ASCIZ and SIXBIT comment ASCII/STRING/;

text strings, the first non-blank
character is the delimiter.

Follows number to be shifted and
precedes binary shift count.

Exponent. Precedes decimal ex-
ponent in floating-point numbers.

Parentheses. Enclose index fields.

Enclose the byte size in
BYTE statements.

Enclose the dummy argument
string in macro DEFINE
statements.

Angle brackets. 1In an expression,
enclose a numeric quantity.

In conditional assembly state-
ments, contain a single argu-
ment, and the conditional
coding.

In REPEAT statements, con-
tain coding to be repeated.

In macros, enclose the macro
definition.

Square brackets. Delimit literals.

In OPDEF statement, contain
new operator; in ARRAY the size.

Equal sign. Direct assignment.

Equal sign. Direct assignment but
no output to DDT.

Equal sign and colon. Direct as-
signment but automatically made
internal.

Colon and exclamation point. Direct
assignment of label, no output to

DDT, and automatically made internal.

B2
F22.1E5 EXPONENT
IS 5.

ADD ACL,X (7)
MOVEI A, (SIXBIT/ABC/)

BYTE (6) 8, 8, 7

DEFINE MAC(A,B,C)

<A-B+5008/C>

IF1, MOVE AC@, TAX

REPEAT 3, <SUB 17, TAG>
DEFINE PUNCH

DATAQO PTP, PUNBUF (4)
ADD 5,[MOVEI 3,TAX]

OPDEF CAL [MOVE]
ARRAY FOO[212]

SYM=6
SYM-A+B¥D

SYM==6

FLAG=:2080

LABEL:!

June 1972

Character

##

VERSION 47

-317-

Meaning

Equal sign and colon. Direct assign-
ment, no output to DDT, and automat-
ically made internal.

Double colon and exclamation point.
Direct assignment of label, no out-
put to DDT, and automatically made

internal.

Quotation marks enclose 7-bit ASCII
text, right justified, from one to
five characters.

Single quotation marks enclose 6-
bit ASCII text, right justified,
from one to six characters.

Number sign, Defines a symbol used
as a tag. Variable.

Alternate method of generating ex-
ternal symbols.

Apostrophe or single quote. Concate-
nation character, used within macro
definitions or SIXBIT data.

Reverse slash. If used as the
first character of an argument in

a macro call, the value of the fol-
lowing symbol is converted to an
ASCII symbol in the current radix.

Control left arrow. Line continu-
ation. :

Left arrow. N M shift N left (or
right) M bit positions,

Indicates indirect addressing.

Causes the indirect bit in an instruc-

tion to be set.

MACRO

Example

LOOP==:32

NAME: :!

"ABCDE"

'TABLES'

ADD 3,TAG#
MOVE @ ,JOBREL##

DEFINE MAC (A,B,C);
<JUMP'A B, C>
tSIXBIT'

MAC \ A IF A=5¢@, THIS
GENERATES THREE 7-BIT

ASCII CHARACTERS,
ASCII/5@8/

10@«3=1009%
108++3=10

MOV AC,@ADDR

June 1972

-319- MACRO

Appendix D
Storage Allocation

MACRO allocates storage in two directions:

1) the symbol table (user symbols and macro names)
grows downward from top of the low segment (.JBREL)

2) Macros, literals, etc., grow upward from free space
(.JBFF),

All entries in the symbol table are two words long. The first word
is the symbol name in SIXBIT. The second word is flags in left
half and either value or pointer in right half.

Most symbols have a value 1ess'than 18 bits and so can be repre-
sented by just the two words in the symbol table. Symbols with

a 36-bit value (e.g., -1) have the value stored in a 1 word in

free storage and a pointer to this value stored in the symbol table.

External symbols have two words in free storage, the first is the:
value (i.e., the last reference in a chain of references to the
symbol). The second is the sixbit name of the symbol. This is
so that additive global fixups can be output.

VERSION 47 JUNE 1972

MACRO . -320-

Opdefs tend to have 36-bit values and are stored like other 36-
bit value symbols.

Macro names are stored in the symbol table, the value is a pointer
to the stored text string.

The text string is stored in four (assembly parameter) word blocks
which have the general form

1) 1link to next block, [¢ if last] ,, 2 characters

2) 5 characters
3) 5 characters
4) 5 characters

However, the first such block is special

1) 1link to next block ,, link to last block

2) pointer to default arg; .. <number or args expected>+9+reference
3) 5 characters count

4) 5 characters

The number of args expected is the number of arguments in the define

statement.

The reference count is incremented when the macro is called and
decremented when exiting from the macro. When this count goes to

zero the macro is removed from free space.

The actual arguments to a macro are stored in the same linked block,
but are not in the symbol table. Repeats (2 or more times) are also
stored the same way. The text blocks are removed when the macro
exits or the repeat exits since the reference count has gone to

zero.

The addresses of the actual argument blocks are stored in a pushdown

stack in order of generation.

Default arguments are stored the same way except the list is in free
core. The pointer to this default arg list is stored in the left
half of the second word of the first block of the macro definition.

The text body is stored as is, except that dummy arguments are re-
placed by special symbols.

VErRSION 47 June 1972

-321- MACRO
The ASCII character RUBOUT (177) is used to signal a special char-

acter text.

These characters are

ag1l ;end of macro
g@2 ;end of dummy symbol
#g3 ;end of Repeat

po4 ;end of IRP or IRPC
If the character is 4<ch<77 it is illegal.
If the character is <100 then it is a dummy symbol, the value of
the character is ANDed with 37 to get the dummy symbol number and
the corresponding pointer retrieved from the stack of pointers.
If th- symbol was not specified (i.e., no pointer) then if the 40
bit is on this is to be a created symbol and one is created, other-
wise the argument is ignored.

Verbose macros can eat up a lot of storage space.

Literals are stored in four words/block per word generated (three

words if old format used).
Words are

-3: form word

-2: relocation bits
-1: code
I'B pointer to next

The pointer points to the § word of the next block. The code is
the generated code. Relocation is either the relocation bits @

or 1 per half word or external pointers if externs used.

Form word is the word used for listing, this word is not checked
when comparing literals so that different forms that produce the

same code are classed as edqual.

Long literals are both slow and take up extra storage, they should

be written as subroutines or inline.

Single quotes can also be used to indicate SIXBIT words, however,
one pair of single quotes is removed by the assembler if the pair

encloses a dummy argument. For example, in the macro

VERSION 47 June 1972

D-3

MACRO -322-

DEFINE SXBT (A)<
MOVSI 1,"A"
MOVST 2,"B"

B is not a dummy argument so it can be enclosed in single quotes.
A, however, is a dummy argument and must be enclosed in double
quotes since one pair of quotes (the inner pair) will be removed

by the assembler.

VERSTON 47 JUuNE 1972

-323-

MACRO

Appendix E

Text Codes

This appeﬁdix contains a summary of MACRO-10 fext codes .

ASCIt ASCII ASCII

SIXBIT Character 7-Bit* SIXBIT . Character 7-Bit* Character 7Bt
00 Space 040 40 @ 100 N 140
01 { 041 41 A 101 a 141
02 " 042 . 42 B 102 b 142
03 # 043 43 C 103 c 143
04 $ 044 44 D 104 d 144
05 % 045 45 E 105 e 145
06 & 046 46 F 106 f 146
07 ! 047 47 G 107 g 147
10 (050 50 H 110 h 150
11) 051 51 l m i 151
12 * 052 52 J 112 i 152
13 + 053 53 K 113 k 153
14 , 054 54 L 114 | 154
15 - 055 55 M 115 m 155
16 . 056 56 N 116 n 156
17 / 057 57 o] 117 o 157
20 0 060 60 P 120 p 160
21 1 061 61 Q 121 q 161
22 2 062 62 R 122 r 162
23 3 063 63 S 123 s 163
24 4 064 64 T 124 t 164
25 5 065 65 U 125 U 165
26 6 066 66 \Y 126 v 166
27 7 067 67 w 127 w 167
30 8 070 70 X 130 x 170
31 9 071 71 Y 131 y 171
32 : 072 72 yA 132 z 172
33 ; 073 73 [133 { 173
34 < 074 74 \ 134 | 174
35 = 075 75] 135 } 175
36 > 076 76 t 136 ~ 176
37 ? 077 77 - 137 Delete 177

*MACRO=-10 also accepts five of the 32 control codes in 7-bit ASCII:

Horizontal Tab 011 Vertical Tab 013 .
Line Feed 012 Form Feed 014 Carriage Return 015

VERSTON 47 June 1972

-325- MACRO

Appendix F
Radix 50 Representation

Radix 508 representation is used to condense 6-character symbols
into 32 bits. Each character of a symbol is subscripted in de-
scending order from left to right; i.e., the symbols are of the
form

LLLLLL
6 45321

If Cn denotes the octal code for Ln, the’radix 508 representation
is generated by the following

((C((Ca*s5m)+C5)*50+0)) ¥50%C 1) #5040,) #5040,

where all numbers are octal.

The code numbers corresponding to the characters are:

Code (Octal) Characters
00 Null character
01-12 0-9
13-44 A-Z
45 .

46 s

47 3
The top four bits are taken from the four leftmost bits of a 6-bit
octal number (i.e.,, @g4-74).

VERsION 47 -1 June 1972

-397- MACRO

Appendlx G .
Summary of Rules for -
Deflnmg and Calling Macros

G.1 ASSEMBLER INTERPRETATION

MACRO—lOlassembles macros by direct and immediate character substitu-
tions. When a macro call is encounteréd,‘ih any field, the character
substitution is made, the characters are proéeSsed, and the assembler
continues its scan with the character following the delimiter of the
last argument, except when it is delimited by a semicolon. Macros
can appear any number of times on a line.

G.2 CHARACTER HANDLING

G.2.1 Blanks

A macro symbol is delimited by one blank or oné‘tab; the character
following the delimiter is the start of the argument string even if
it is also a blank or tab. Other than the first delimiter, blanks
and tabs are treated as standard characters in the argument string.

G.2.2 Brackets

Angle brackets are only significant in the argument fields if the
first character of any field is a left angle bracket. In this case,

VErs1oN 47 JUuNE 1972

G-1

MACRO -328-

no terminator or parenthesis tests are made between the left angle
bracket and its matching right bracket. The matching brackets are
removed from the string but the scan continues until a standard
delimiter is found.

G.2.3 Parentheses

Parentheses serve only to terminate an argument scan. They are
significant only when the first character following the blank or
tab delimiter is a left parenthesis. 1In this case, the left paren-
thesis is removed and, if it matching right parenthesis is encoun-
tered prior to the normal termination of theargument scan, it is

removed and the scan discontinued.
G.2.4 Commas

When a comma is encountered in an argument scan, it acts as the
delimiter of the current argument. If it delimits the last argument,
the character following it will be the first scanned after the sub-

sitution is processed.
G.2.5 Semicolons

When a semicolon is encountered in an argument scan, the scan is
discontinued. If an argument has not been satisfied, the remainder
is considered null. It is saved, however, and will be the first
character scanned after the substitution is made, normally acting

as a comment flag.
G.2.6 Carriage Return

A carriage return, except when pre-empted by angle brackets (see
Section G.2.2), will terminate the scan similar to the semicolon.
This can be circumvented, if desired, by the control left arrow key
described elsewhere.

G.2.7 Back-Slash

If the first character of any argument is a back-slash, it must be
directly followed by a numeric term. The value of the numeric term
is broken down into a string of ASCII digits of the current radix,
just the reverse of a fixed-point number computation. The value is

VERSION 47 JuNe 1972

-329- MACRO

considered to be a 36-bit positive number having a value of 0 to
777777 777777. Leading zeros are suppressed except in the case of 0,
in which case the result is one ASCII 0. The ASCII string is sub-
stituted and the scan continued in the normal manner (no implied

terminator) .

The default listing mode ‘is XALL, in which case the initial macro
call and all lines within its range that produce binary code are
listed. The pseudo-op LALL will cause all lines to be listed.
Substituted arguments are bracketed by +'s by the assembler.

G.3 CONCATENATION

The rule for concatenation is as follows:

For each string of apostrophes, one is removed if and only if it is

next to (either before or after) a dummy argument to that macro.

VERSION 47 \ JuNe 1972

-331- MACRO

Appendix H
Operating Instructions

H.1l REQUIREMENTS
The following are MACRO-10 operating requirements:

Minimum Core 7K pure plus 1lK impure

Additional Core Automatically requests additional core assign-
ments from the timesharing monitor as needed.

Equipment One input device (source program input); up to
two output devices (machine language program
output and listing output). If the listing
output is to be used as input to the Cross

Reference (CREF) program, it must not be TTY,
DIS or LPT.

H.2 INITIALIZATION
The following are commands and corresponding indications:

+R MACRO) Loads the MACRO-10 Assembler into core. .

* The Assembler is ready to receive a command.

VERSION 47 | ' June 1972

MACRO -332-

H.3 COMMANDS

H.3.1 General Command Format

MACRO-10 general commands are as follows:

objprog-dev:filename.ext,list~dev:filename.ext source-dev:filename.ext,...... source-n)
obiprog-dev: The device on which the object program is to be written.
MTAn: (magnetic tape)
DTAn: (DECtape)
PTP: (paper-tape punch)
DSK: (disk)
list-dev: The device on which the assembly listing is to

be written.

MTAn: (magnetic tape) Must be one
DTAn: (DECtape) of these if
DSK: (disk) input to CREF!
LPT: (line printer)
TTY: (Teletype)
PTP: (paper-tape punch)

source-dev: The device(s) from which the source-program

input to assembly is to be read.

MTAn: (magnetic tape)
CDR: {(card reader)

DTAn: (DECtape)

DSK: (disk)

PTR: (paper-tape reader)
TTY: (Teletype)

If more than one file is to be assembled from a
magnetic tape, card reader, or paper tape reader,
dev: is followed by a comma for each file beyond
the first.

Input via the Teletype is terminated by typing
CTRL Z (4%Z) to enter pass 1l; the entries must
be retyped at the beginning of pass 2.

filename.ext The filename and filename extension of the object
(DSK: and DTAn: only)program file, the listing file, and the source
file(s).

The object program and listing devices are
separated from the source device by the left
arrow symbol,

H.3.2 Disk File Command Format

MACRO-10 disk file commands are as follows:

DSK:filename.ext [proj,prog]

1Tf /C switch is given, but no list-dev: is specified, DSK:CREF.CRF is assumed.

VersioN 47 -2 June 1972

-333- MACRO

[proj ,prog] Project-programmer number assigned to the disk
area to be searched for the source file(s) if
other than the user's project-programmer number.

The installation standard protection is assigned
to any disk file specified as output.

NOTE

If object coding output is not desired (e.g., a program is
being scanned for source language errors), objprog-dev: is
omitted., TIf an assembly listing is not desired, list-dev:
is omitted. If device is not specified, DSK is assumed.

Examples:

.R MACRO) Assemble one source program file from the card

EDTA3305JPRG,LPT: CDR 1) reader; write the object code on DTA3 and call
the file OBJPRG; write the assembly listing on
the line printer. i

END OF PASS 1) The source program cards must be manually re-
fed for pass 2.

22 ERRORS DETECTED)

PROGRAM BREAK IS gﬂ2537) Number of source errors; size of object pro-
2K CORE USED) gram; core used by assembler.
*¥4:C) Return to the monitor.

R MACRO) Assemble the next three source files located
¥MTA3: ,MTA2: MTAL:,) at the present position of MTAl; write the
— object program on MTA3; write the listing on

NO ERRORS DETECTED) MTA2 for later printing.

PROGRAM BREAK IS ©@3552)
2K CORE USED)

e

¥ LPT: DTALl:FILEl ,FILE2,FILE5) Assemble the source files named FILEl, FILEZ2,

[NO ERRORS DETECTED) and FILE5 from DTAl; produce no object coding;
PROGRAM BREAK IS #@1427) write the listing on the line printer.
2K CORE USED)
__*_,*‘DSKZFILE]--MAC[]-“,12]) Scan the source program called FILEl.MAC,
NO ERRORS DETECTED) located in area 14, 12 on the disk, for source
PROGRAM BREAK IS @g@s5il language errors; produce no object coding or
2K CORE USED) assembly listing; print all error diagnostics
on the terminal.
¥1C) Return to the monitor.
.R MACRO
¥MTAL:,TTY: TTY:) Assemble a source file from the terminal; write
the object code program on MTAl and print the
JMP R) assembly listing on the terminal.
R: A0S G
G: JFCL)
END)
I Terminate input.
END OF PASS Reenter terminal input.
' JMP R Type first statement again.

VERs1ON 47 H-3 June 1972

MACRO -334-
[.maty MACRO 18:14 2¢-DEC-67
0 2PR088 BRRIPE BAEEE1! JMP
R: A0S G
2eP89) 350008 @pege2’ R: A0S
G: JFCL)
geAga2 255008 BAOPDE G: JFCL)
END)
END)
21 ERROR DETECTED)
PROGRAM BREAK IS £##@#3)
.MAIN MACRO 18:14 2@-DEC-67
o e
R 209901')
|__2K CORE USED)
X
H.4 SWITCHES

Switches are used to specify such options as:

a. Magnetic tape control
b. Macro call expansion

c. Listing suppression

d. Pushdown list expansion

e. Cross-reference file output.

PAGE1)

R)
Gy

PAGE2)

Page heading.

First assembled.
Reenter second.

Second assembled.
Réenter third.
Third assembled.
Reenter fourth.

Fourth assembled.

Typeout of symbol

table.

Return to the monitor.

All switches are preceded by a slash (/) or enclosed in parentheses,

and usually occur prior to the left arrow (see Table H-1).

VERSION 47

June 1972

-335- MACRO

Table H-1
MACRO-10 Switch Options

Switch Meaning
A Advance magnetic tape reel by one file.
B Backspace magnetic tape reel by one file.
C Produce llstlng file in a format acceptable as input to’ CREF, unless the file
is named, CREF. CRF is a551gned as the filename; if no extension is given,

.CRF is assigned; if no llst—dev. is specified, DSK: is assumed. /C must
appear between the comma and the left-arrow.

E List macro expansibns (same function as LALL pseudo—ob).

F New format for outéut binary listing (.MFRﬂT pseudo-op) .

G 014 format for output binary listing (.HWFRMT pseudo-op).

H Print Help text (i.e., this list of switches and explanations).

L : Reinstate listinq (used after list suppression by either the XLIST

pseudo-op or 5 switch).

M ' List only call, no binary, in macro expansion (same .SALL pseudo~op) .
N Suppress error printouts on the terminal.
0 Sets the pseudo-op MLOFF which allows literals to occupy on a single

line. This means literals may be terminated with a carriage return,
line feed instead of a right bracket.

P Increase the size of .the pushdown list. This switch may appear as
many times as desired (pushdown list is initially set to a size of 80
locations; each /P increase$s its size by 80l
left of the left arrow.

). /P must appear on théo

Q Suppress Q (questionable) error indications on the listing; Q messages
indicate assumptions made during pass 1. /Q must appear on the left
of the left-arrow.

S Suppress listing (same function as XLIST pseudo-op).

T Skip to the logiéal end of the magnetic tape.
W Rewind the magnetic tape.
X Suppress all macro expansions (same function as XALL pseudo-op) .
Z Zero the DECtape directory.
NOTE

Switches A through C and T, W, X, and Z must im—
mediately follow the device or file to which the
individual switch refers.

VERSION 47 JunNe 1972

MACRO -336-

Examples:

R MACRO) . Assemble one source file from the paper tape

*MTAl:,DTA3: ,/C«PTR:) reader; write the object code on MTIAl; write
the assembly listing on DTA3 in cross-
reference format and call the file CREF.CRF.

END OF PASS 1) The paper tape must be re-fed by the operator
for pass 2.

—23 ERRORS DETECTED) End-of-assembly messages.
PROGRAM BREAK IS g@@Lgl)
__2K CORE USED)
¥DTA2:ASSEMB.ONE/Z,LPT: Rewind MTA4 and assemble the first two source
MTAU:/W,) files on it; write the object code on DTA2,

after zeroing the directory, and call the file
ASSEM.ONE; write the assembly listing on the
T NO ERRORS DETECTED) line printer.
PROGRAM BREAK IS #@5231)
__ 3K CORE USED)
Rewind MTAl and MTA3 and assemble files 1, 4,
X*MTAL:/W,LPT:<+MTA3: and 3 (in that order) from MTA3; print the
/W, (AA), (BB)) assembly listing on the line printer; write
the object code on MTAL.

PROGRAM BREAK IS @#@@655)

~"?1 ERROR DETECTED)
__2K CORE USED)

#F00,/C F0O) Assemble source file FOO on DSK:; write the

NO ERRORS DETECTED) assembly listing on DSK in cross-reference
PROGRAM BREAK IS @@@765) format calling the file CREF.CRF. Write ob-
2K CORE USED) ject code on DSK calling it FOO.REL.
f;‘fC) Return to the monitor.

VERsION 47 June 1972

	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336

