~643-

DEC-10-ULKMA-A~D

DECsystem=10

LINK-10

PROGRAMMER'S REFERENCE MANUAL

This document reflects the software as of Version 1.

LINK-10 -644-

1st Printing May 1973

COPYRIGHT (E) 1973 by Digital Equipment Corporation

The material in this document is for
informational purposes and is subject to
change without notice.

Actual distribution of the software
described in this specification will be
subject to terms and conditions to be
announced at some future date by Digital
Equipment Corporation.

DEC assumes no responsibility for the
use or reliability of its software on
equipment which is not supplied by DEC.

The software described in this manual is
furnished to purchaser under a license
for use on a single computer system and’
can be copied (with inclusion of DEC's
copyright notice) only for use in such
system, except as may otherwise be
provided in writing by DEC.

LINK=10

Chapter 1

H
® & ¢ o o ¢ & o o
VUV UTD WN
L I
N

N =

Chapter 2

Chapter 3

LWWwwwwwwww

BWWWWWwWwWwN -

Chapter 4

-b45-

TABLE OF CONTENTS
INTRODUCTION TO LINK-10

Input to LINK=10
Relocatable Code

Symbols and Libraries
Output From LINK-10

Overlay Facility
Miscellaneous Features
Initialization of LINK=10
Using LINK-10 Automatically
Using LINK-10 Directly

AUTOMATIC USE OF LINK=-10

General Command Format

COMPIL Switches

Specifying Disk Areas Other Than SYS
SAVE and SSAVE System Commands
COMPIL Examples

Summary

USING LINK-10

LINK-10 Command Strings

Changing Defaults

LINK-10 Switch Algorithms

Device Switches

File Dependent Switches

Output Switches

Immediate Action Switces

Delayed Action Switches

Switches that Create Implicit File Specifications
LINK-10 Switches

LINK-1¢ SWITCHES

/BACKSPACE
/COMMON
/CONTENTS
/CORE
/COUNTER
/CPU
/DEBUG
/DEFAULT
/DEFINE
/ENTRY

iii

LINK-10

651
651
652
653
654
655
656
656
657

661
662
667
668
669
673

676
678
679
680
681
682
683
684
684
685

691
692
694
697
698
700
701
703
705
707

LINK-10

LINK-10

/ERRORLEVEL
/ESTIMATE
/EXCLUDE
/EXECUTE
/FOROTS
/FORSE
/FRECOR
/GO
/HASHSIZE
/ INCLUDE
/LOCALS
/1OG.
/LOGLEVEL
/MAP
/MAXCOR
/MPSORT
/MTAPE -
/NOINITIAL
/NOLOCAL
/NOSEARCH
/NOSTART
/NOSYMBOL
/NOSYSLIB
/0TS
/PATCHSIZE
/REQUIRE
/REWIND
/RUNCOR
/RUNAME
/SAVE
/SEARCH
/SEGMENT
/SET
/SEVERITY
/SKIP
/SSAVE
/START
/SYMBOL
/SYMSEG
/SYSLIB
/SYSORT
/TEST
/UNDEFINED
/UNLOAD
/VALUE
/VERBOSITY
/XPN

/ZERO

-646-

iv

708
709
711
713
714
715
716
718
719

722
723
725
727
729
731
732
734
736
737
738
739
740
742
744
746
747
748
749
750
752
753
754
755
756
757
758
759
761
763
765
766
767
768
769
770
772
774

LINK=-10

Chapter 5
Chapter 6
Appendix A

Link
Link
Link
A.4 Link

Wk

A.
A.
A.

Appendix B

GLOSSARY

-647-

LINK-10 MESSAGES
LINK-10 EXAMPLES
LINK ITEM TYPES

Item Types 0-37 . |
Item Type 400 FORTRAN
Item Type 401 FORTRAN
Item Types 1000-1777

LOADER AND LINK-10 DIFFERENCES

LINK-10

775

803

816
828
829
829

843

849

-649- LINK-10

LINK-10

FOREWORD
This manual is the reference document on the DECsystem-10
Linking‘ Loadef. LINK-10. Iﬁ is aimed at the
intermediate-ievel applications programmer and contains
cemplete éocumentation on LINK-10, including descriptions of
the LINK Item Types generated by the DECsystem=-10

Translators.,

Chapter 1 is aq introduction to LINK~10 and describes the
two methods of initializing the Linking-Loader. Chapter 2
discusses ﬁhe automatic use bof LINK-10 through the
COMPIL-class commands, and Chapter 3 discusses the direct
use of LINK-10 through the R LINK system comniand. LINK~10
switcﬁes are described in alphabetical order in Chapter 4.

LINK~10 messages and examples appear in Chapters 5 and 6,

respectively. The Appendices and Glossary contain

supplementary information.

A beginning user of LINK~10 can benefit from this manual by
reading Chapters 1l and 2, whereas an advanced user would be
more interested in Chapters 3 and 4. A user who has been
employing the LOADER program will find Appendix B a valuable

aid in the transition to the LINK~10 program.

vii

-651- LINK-10

LINK~10 -

Input to LINK-1g

CHAPTER 1

INTRODUCTION TO LINK=-10

LINK-10, the DECsystem-10 Linking Loader, is the system utility
program that merges independently-translated modules of a user's
program into a sinéle module. Its main function is to prepare and
iink this input with other modules required by the user into a form

that can be executed by the operating system.
1.1 INPUT TO LINK-10

LINK-lO accepts as its primary input'the output from the DECsystem-~10
translators in order to produce an executable version of the user's
program. This output, known as object modules, is in the form of

binary files which contain the user's programs and additional
information generated by the translators. This additional information
is necessary for linking separately-translated modules, for debugging,

and for generating auxilary output such as map, log, and save files.
l.1.1 Relocatable Code

Most object modules contain relecatable code so that the module's
position in core can be determined by LINK-10. Relocatable code is a
benefit to both the user and the system, ‘The user benefits because he
is able to code a;l of his modules without regard to where they will
be located in core. He need not be concerned with the location where
one module ends and another one begins. The system benefits because a
module written in relocatable code can be placed anywhere in core

memory. When moving the relocatable object modules into the areas of

LINK-10 -652-

LINK=-10

Input to LINK-18

core menory at which they will be executed, LINK-10 adjusts all
relocatable addresses in the modules into actual machine locations.
In reality, LINK=-10 places the modules in a user virtual address space
(refer to the Glossary) and the operating system, as it schedules the
usage of the system, transfers the modules to and from core memorye.
However, for simplicity, the user virtual address space is referred to

as core memory in the remainder of the manual.
1.1.2 Symbols and Libraries

In addition to relocating and loading the user's object -modules,
LINK-10 is also responsible for linking these modules with other
modules required for execution. Linkages among modules are provided
through the use of symbols. By including symbols in his programs, the
user is delaying the assignment of actual values until load time.
This'method of assigning values is advantageous because:

. It allows the user to change only the definition of the
symbol instead of changing every occurrence of the value,
and

. Only the module containing the definition of the symbbl
must be retranslated when a change occurs. Since other
modules using the symbol are bound to it at load time,
they do not have to be retranslated.

Although a user can define and use a symbol entirely within a single
module, he usually refers to additional symbols that are defined in
other modules. It is these modules that must be linked to the user's
program for execution. In most cases, these required modules are

contained in a library of relocatable binary programs. Modules within

a library can either be created and translated previously by the user

-653- LINK-10

LINK-10

Output from LINK-1g¢

or be part of the system's repertoire of programs. For instance, most
higher-level languages have associated with them a library containing
commonly-used mathematical, input/output, and data conversion
routines. The user refers to modules in the library via symbols in
his program and these symbols are then linked to the proper 1location
in the 1library modules themselves, By linking these symbols and
loading the reQuired modules, LINK-10 provides communication between

independently-translated modules and library routines.

In order to satisfy any undefined symbols, the required system
libraries are usually searched after all loading specified by the user
has-been performed. However, the user can indicate that libraries be
searched at a particular point in the loading procedure by specifying
the appropriate switch to LINK-10 (refer to /SEARCH and /SYSLIB in
Chapter 4). When LINK-10 processes the switch, the indicated
libraries are séarched and the required modules are loaded. The user
also has the option of specifying by name which modules he wants (or
does not want) loaded from a library or of inhibiting the search of

the library altogether.
1.2 OUTPUT FROM LINK-10

When LINK-10 has performed the tasks of loading the wuser's object
modules in core, bringing in and linking any other modules required
for execution, and adjusﬁing all the addresses, there is in core an
executable version of the user's program. This executable version is
the primary output of LINK-10. Since the loaded program at this point

reflects the state of the user's core memory, it is usually referred

LINK-10 —654-

LINK-10

Overlay Facility

to as his core image. Having arrived at this state, the user can
request LINK-10 to either:

. Transfer control to the core image for immediate
execution (using the EXECUTE or START system commands, or
the /DEBUG, /EXECUTE, or /TEST switches in LINK-10), or

. Output the core image to a device for storage (using the
SAVE or SSAVE system commands, or the /SAVE or /SSAVE
switches in LINK-10) in order to avoid the loading
procedure in the future.

If the complete, loaded program is saved on a device in core image
form, it can be brought into core and executed at a later time (using
the GET and RUN system commands). The loading process does not have
to be repeated since the results of all of LINK-10's actions are
contained in the core image. However, if the user wishes to revise

the modules that made up his core image, he must once again use

LINK-10.

While the primary output of LINK-10 is the executable version of the
user's program, the user can request auxilary output from LINK-10 in
the form of map, log, save, symbol, and expanded core image files (XPN
files). This additional output is not automatically generated by
LINK-10 and the user must include the appropriate switches to obtain
this output (refer to Chapter 4 for a description of the switches).

This output is for the user's convenience when debugging his program.
1.3 OVERLAY FACILITY

LINK-10 will have an overlay facility to be used when the total core
required by a program is more than the core available to the user.

The user then organizes his program so that only some parts of the

-655- LINK-10

LINK-10

Miscellaneous Features

program are required ih core at any one time and the remaining parts
are ﬁransferred in and out of core. During execution, these
t;ansferred parts are brought into core as required. The part brought
into core overlays the part currently in that area. Because these
parts of the. program reside in the same area of core at different

times, the amount of core required for the entire program is reduced.
1.4 MISCELLANEOUS FEATURES

LINK-10 has a large number of options in order that the user can gain
precise control over the loading process. The user can set various
1qading parameters and can control the loading of symbols and modules.
By -éetting switches in his input command strings to LINK-10, he can
speéify the core 8ize of LINK-10 modules, ‘the start address of
modules, the size of the symbol table, the messages that he will see
on his terminal or in his log £ile, and the severity 1level and
verbosity of the messages. He can control the loading of modules by
specifying the modules that should be loaded and the files that should
be searched-for symbol definitions., - He has control over the number of
Segments to be allowed and the segment into which the symbol table

will be placed.

The user has coritrol over file specifications that LINK-10 examines to
determine device names and filenames. He can accept the LINK-10
defaults for components in a file specification or he can set his own
defaults which will be used automaticaliy when he omits a component
fidm his command string. He can also position devices, allocate space
and assign protections to output files, and clear directories of

DECtapes.

LINK-10 -656-

LINK-10

Initialization of LINK-1p

Some options available to the user are interactive. In the process of
producing a core image, LINK-10 attempts to satisfy all requests for
symbols defined in other modules and allows the user to interactively
ask for a list of undefined symbols during the loading procedure. The

user then has the opportunity to define them without reloading.
1.5 INITIALIZATION OF LINK-10
LINK-10 is initialized by the user in one of two ways:

« Automatically through the use of the LOAD, EXBECUTE, or
DEBUG system commands. This is the most common usage of
LINK-10.

. Directly through the use of the R LINK system command.
This is recommended for very large and relatively complex
loading procedures.

1.5.1 Using LINK-10 Automatically

LINK-10 is automatically initiated when the user issues one of the
system commands LOAD, EXECUTE, or DEBUG. These commands are known as
COMPIL-class commands because they use the COMPIL program to control
the actions of DECsystem-10 translators and LINK-10. COMPIL's job is
to accept the command string typed by the wuser, interpret it, and
construct and pass new command strings to various system programs,
including the translators and LINK=-10. This action taken by COMPIL is
a convenience to the user since it saves him from typing the command
strings to LINK-10. Once the command string to COMPIL is processed,
the user does not interactively communicate with the translators or

LINK-10. LINK~-10 processes the appropriate command strings passed to

-657- : LINK-10

LINK-10

Initialization of LINK-1g

it by COMPIL and supplies intelligent defaults for aﬁy parameters rot
specified by the user. If LINK-10 obtains an error condition, it
terminates the - load and returns control to the o#erating system for
further instructions. otherwise, it ioads the program and, depending
on the COMPIL-class cbmmand,usea, either exits or stérts the loaded
program. Refer to Chapter 2 for the descriptions and use of the

COMPIL-class commands.,

In general, the extremely fine control of the loading process that is
provided by manually running LINK-10 is not required for the average
user because the COMPIL program supplies reasonable defaults to

LINK-10.
l.5.2 Using LINK-10 Directly

Direct use of LINK-10 is useful for those who are developing large and
complex programs, ioading from devices other than disk, manipulating
symbol tables for cdmplex débugging situations, and performing segment

manipulations.

The user runs LINK=-10 directly by using the system command R LINK.
LINK-10 responds with an asterisk which indicates that the user can
type his input as a series of specifications which are to be used in
the loading process. LINK-10 accepts input until the user specifies
the exit condition; at which point it finishes all of its tasks and

exits or begins the program, as specified by the user.

This method of running LINK-10 gives the user access to its full

capability. The wuser does not have to accept LINK-10's default

LINK-10 -658-

LINK-10

Initialization of LINK-1§

conditions, but can supply his own set of defaults. He can
interactively monitor the loading process by setting internal
parameters, requesting values of particular items, specifying modules
and files to be loaded, and controlling the format and contents of
output files. Refer to Chapter 3 for the description of the LINK-10
command string, and Chapter 4 for the switches used when directly

running LINK-10.

-659- LINK-10

LINK-10

Automatic Use of LINK-1f¢

CHAPTER 2

AUTOMATIC USE OF LINK-10

The user causes LINK=10 to be ruﬁ automatically whenever he types the
LOAD, EXECUTE, and DEBUG system commands. These commands accept a
simple command string format and are converted internally to a series
of more complex command strings that are directly processed by various
system programs, including language translators and LINK-10. . The
aforementioned commands are used to compile, load, and execute
programs, to obtain output in the form of maps, to search files in
library search mode, and to invoke the various debugging aids. The

following paragraphs describe each of these system commands.
NOTE

The information in this chapter is a subset of the
‘material available on the LOAD, EXECUTE, and DEBUG
commands. The subset presented here assumes that the
source files have previously been. translated, and thus
only the switches directly applicable to loading the
binary ‘files are listed, Complete reference
documentation on the COMPIL-class commands, their valid
command formats, and all available switches can be
obtained from the appropriate command descriptions in
DECsystem=-10 OPERATING SYSTEM COMMANDS, DEC-10-MRDC-D,
located in the DECsystem-10 SOFTWARE NOTEBOOKS and in
the DECsystem=-10 USERS HANDBOOK, DEC-10-NGZB~D.

The LOAD command translates the user-s?ecified source files into
relocatable object modules (if necessary) and loads these object
modules to form a core image. This command does not cause execution
of vthe rgsulting core image. After completion of this command, the

user can either execute his program (START system command) or save the

core image (SAVE or SSAVE system command) for future execution.

LINK-10 -660-

LINK~10

Automatic Use of LINK-1f

The EXECUTE commmand translates the user-specified source files (if
necessary), loads the object modules into a core image, and, in
addition, begins execution of the program. The action of this command
is the same as that of the LOAD command followed by the START system

command.

The DEBUG command translates the user-specified source files (if
necessary), loads the object modules into a core image, and prepares
for debugging by additionally 1loading a system debugging program.
Usually this debugging program is loaded first, followed by the user's
program and other information required by the debugging program (e.g.,
the symbol table), However, when COBOL programs are being loaded,
COBDDT (the COBOL debugging program) is loaded after the user's
program, Upon completion of loading, control is transferred to the
debugging program, rather than the user's program, so that the user
can -check out his program by examining and modifying the contents of
locations. This examination and modification can occur both before
program execution begins and during execution if the user specifies

breakpoints in the program at which execution is to be suspended.

The debugging program can be COBDDT, MANTIS, or DDT, depending on the
’first source file in the command string. If the first file is a COBOL
file, COBDDT (the COBOL debugging program) is loaded. If the first
file is a FORTRAN source file, MANTIS (the FORTRAN debugging program)
is loaded. (Note that MANTIS is under the control of an assembly
copditional switch which is normally off. Therefore, the installation

must turn this assembly switch on for the loading of MANTIS.) If the

2-2

-661- LINK-10

LINK-10

General Command Format

first file is any other file, DDT (the Dynamic Debugging Technique) is
loaded. When the first file has previously been compiled (i.e., the
file has vaﬁ extension of .REL, meaning relocatable binary object
module), COMPIL does not determine the type of source file from which
it came so DDT is loaded with the binary files. In this case, if the
user desires COBDDT or MANTIS, he must explicitly specify this
debugging program via the appropriate switch (refer to the /COBOL and

/MANTIS switches in DECsystém-lo OPERATING SYSTEM COMMANDS) .
2.1 GENERAL COMMAND FORMAT

The LOAD, EXECUTE, and DEBUG system commands have the same dgeneral

command format. They all accept a list of file specifications.

LOAD output file spec = concatenated input file specs
EXECUTE output file spec = concatenated input file specs

DEBUG output file spec = concatenated input file specs

An input or output file specification consists of a device name, a
filename with or without a filename extension, and a directory
enclosed in square brackets. Only one output file gpecification can
be given on the left of each equals sign, but any number of input file
specifications can occur on the right. Input file épecifications are
separated from each other by commas or plus signs. If commas are
used, ,the translator produces separate relocatable object modules for
each output file. If plus signs are used, the input files separated
by plus signs will be translated into a single relocatable object

module. Plus signs must be used when a collection of files must be

LINK-10 -662-

LINK-10

COMPIL Switches

concatenated to produce an acceptable module as input to a translator.
The sequence of "output file spec = concatenated input file specs" can
be given repeatedly in a command string by separating each sequence

with a comma.

The output file specification and the equals sign can be omitted, in
which case the object module is pPlaced in the user's default directory
on the disk with a name derived from the source file and the extension
<REL. The filename given to the output file dépends upon the form of
the user's input file specifications. If the user has only one input
file, the output file is given the name of the input file. If the
user has more than one input file and the files are separated by
commas, the name of each output file is the name of the corresponding
input file, If the user has plus signs separating the file
specifications, the name given to the output file is the name of the

last input file in the series of files separated by plus signs.
2.2 COMPIL SWITCHES

Switches can be included on the LOAD, EXECUTE, and DEBUG command
strings to direct LINK~10 in its processing. These switches are used
to generate listings, to create libraries, to search user libraries,
and to obtain loader maps. Each switch is Preceded by a slash and can
be either temporary or permanent. A temporary switch applies only to
the file immediately preceding it. Characters (including spaces or
commas) cannot separate the filename and the switch. A permanent
switch applies to all files following it wuntil modified by a
subsequent switch. It is separated from the file it precedes by a

sSpace or a comma.

-663~ LINK-10

LINK-10

COMPIL Switches

LINK-10 switches described in Chapter 3 can be passed on the
COMPIL~-class command strings by preceding the switch specification
with a % character instead of a / character. Following the %
character is the LINK-10 switch specification preceded and followed by
a delimiter. The delimiter can be any character; however, the user
must be careful that the character he uses does not have a specific
meaning to the COMPIL program. For example, the @ character indicates
an indirect command file, and the semicolon causes the remainder of
the line to be treated as a comment and thus ignored. The recommended
delimiter is a single or double quote character. The beginning and
ending delimiter must be the same character. A LINK-1l0 switch
specification consists of the switch name and optionally a keyword and
a value. The items in the spécification bare separated by colons.
(Refer to Chapter 4 for the formats of the individual LINK-10
switches.) Note that LOADER switches (those beginning with a % but
without enclosing delimiters) are'il;egal wﬁen passed to LINK-10. As
an aid to users, a warning message is printed if the LINK-10 switch
delimiter is one that could be interpreted as a LOADER switch

(e.g.,A—Z,a4z,0—9,&, and =).

Since the first function of - each of these three commands is to
determine if the source files need translating’(i.e., compiling or
assembling), there are many switches that pertain to the translating
process. The purpose of this manual is to describe the use of LINK-10

and switches pertaining to the translation of the source file are not

LINK-10

- LINK-10

-664-

COMPIL Switches

included.

All switches that can be placed on the command string are

described in DECsystem=~10 OPERATING SYSTEM COMMANDS.

NOTE

Since currently there are two linking-loaders on the
DECsystem-10, the user must indicate the desired loader
when using the LOAD, EXECUTE, or DEBUG command. At the
present time, the LOADER program is the default case,
and the user must include the /LINK switch to indicate
that he wishes to use the LINK-10 program. (The setting
of the LOADER program as the default is a system
parameter that can be changed by individual
installations.,) In the future, LINK-10 will become the
standard default.

Table 2-1

COMPIL Switches Pertaining to Loading

/DDT

/FOROTS

/FORSE

Loads DDT regardless of the extension of the
first file in the command string. This is a
permanent switch in that it applies to all
subsequent files regardless of its position

in the command string.

Loads the file with FOROTS (the new FORTRAN
object time system) instead of FORSE. This

switch affects FORTRAN files only.

Loads the file with FORSE (the old FORTRAN

object time system) instead of FOROTS. This

switch affects FORTRAN files only.

-665- LINK-10

LINK-10 .
Table 2-1 (Cont)

COMPIL Switches Pertaining to Loading

/LIBRARY The action 1is identical to that of the
/SEARCH switch. The use of the /SEARCH
switch is recommended since it is the

complement of /NOSEARCH.

/LINK - Causes the files to be loaded by the LINK-10
p;ogiam instead of the LOADER program. If
used, this switch must be placed before any
file specifications (either implied or
explicit) since the COMPIL program may have

to generate load-control switches.

/LMAP Produces a loader map during the loading
process (same action as /MAP) containing the

local symbols,

/LOADER | Causes the file to be loaded by the LOADER
‘ program instead of the LINK-10 program.
Since this is - the current default action,
this switch is needed only if the
installation'has specified LINK-iO as the
default linking-loader. 1In a future release,

LINK~10 will become the standard default.

/MAP Produces a load map during the loading
process. The map does not contain local
symbols. When this switch is encountered, a

-loader map is requested from LINK-10. After

LINK-10

LINK-10

-666-

Table 2-1 (Cont)

COMPIL Switches Pertaining to Loading

/NOSEARCH

/SEARCH

the iibrary search of the default system
libraries, the map is written in the user's
disk area with the filename specified by the
user (e.g., /MAP:dev:file.ext[directoryl) or
the default filename (e.g., the name of the
last program seen with a start address or
nnnLNK.MAP (where nnn is the wuser's job
number) if there is no such program). This
switch is an exception to the permanent
switch rule in that it causes only one map to
be produced even though iF may appear as a

permanent switch.

Loads all routines of the file whether the
routines are referenced or not. Since this
is the default action, this switch is wused
only to turn off 1library search mode
(/LIBRARY or /SEARCH). This switch is not
equivalent to the /NOSYSLIB switch of
LINK-10, which does not search any libraries,
including the default system libraries. The
/NOSEARCH default is to search the default

system libraries.

Loads the files in library search mode. This
mode causes a module in a special library

file to be loaded only if one or more of its

-667- LINK-10

LINK=-10
Specifying Disk Areas Other Than SYS
Table 2-1 (Cont)
COMPIL Switches Pertaining to Loading

declared entry symbols satisfies an undefined
global request. The default system libraries
are always searched regardless of the state

of this switch.

2.3 SPECIFYING DISK AREAS OTHER THAN SYS

When ﬁranslating his source files, the user has the option of
selecting the disk area from which the language translator is
obtained. The disk areas are [1,3] for OLD, [1,4] for sys, [1,51 for
NEW, and the user's area for DSK and are specified by the switches
/OLD, /SY¥YS, /NEw; and /SELF, respectively. (These four switches are
described in DECsystem-10 OPERATING SYSTEM COMMANDS.) For example, if
the user is translating his source files with a FORTRAN compiler that
is on the OLD disk area of [1,3], he gives the following command
string:
COMPILE/OLD FILEA.F4,FILEB.F4,FILEC.F4

The FORTRAN compiler is then obtained from area {1,3].

The first disk area seen in the command string is also the area from
which LINK-10 is obtained. Thus, in the’command string:
LOAD /LINK /OLD FILEA.F4,FILEB.F4,FILEC.F4

not only is the FORTRAN coﬁpiler obtained from OLD, but also the
LINK-10 linking-loader. If LINK-10 is not found on the specified
area, then the SYS disk area of [1,4] is searched. However, if the
first disk area seen is the user's area (as indicated by the /SELF
switch), only the areas specified in the user's job search list, which

may include a user library (LIB), are searched. The searching does

LINK-10 -668-

LINK=-10
SAVE and SSAVE System Commands

not continue onto the NEW, OLD, and SYS areas. Thus, a user who is
using a copy of a translator in his disk area but who does not have a
copy of LINK-10 in that area must use two disk area specifications.
For example,
LOAD /LINK /SYS /SELF FILEA.FOR,FILEB.FOR,FILEC.FOR

LINK-10 is obtained from the SYS disk area and the FORTRAN compiler
from the user's disk area. Since SYS will be searched for LINK-10 on
all disk specifications other than SELF, the user needs to specify two

disk areas only when he is using a translator from his area.
2.4 SAVE AND SSAVE SYSTEM COMMANDS

After loading is completed, the loaded program may be written onto an
output device so that it can be executed at some future date without
rerunning LINK-10. The SAVE and SSAVE system commands outpui the core
image onto the specified device as one or two files. If the SAVE
command is used, the program will be nonsharable when it is later
loaded into core. When the SSAVE command is used, the high segment
(if any) of the program will be sharable when the program is loaded.

The general command format of the two commands is the same:
SAVE dev:file.ext[directory]core

SSAVE dev:file.ext[directorylcore

where

dev: is the name of the device on which to write the saved file.
If omitted, DSK: isg assumed.

file is the name of the saved file. If omitted, the job's
current name is used. This name is set by the last R, RUN, GET,
SAVE, or SSAVE system command, the last command which ran a

LINK-10

-669- LINK-10

COMPIL Examples

program (e.g., DIRECT),Ior the last SETNAM UUO.

.ext is the extension of the low segment file. If omitted, the
following extensions are assigned:

If the program has one segment, the extension .SAV is
assigned.

If the program has two segments, the low segment file has
the extension .LOW, and .the high segment £file has the
extension .HGH when a SAVE command is used and the extension
«SHR when a SSAVE command is used.

{directory] is the area in which to save the file. If omitted,
the user's default directory is used.

core is the amount of core in which to save the program, If
omitted, the minimum required is assignéd.

Refer to DECsystem-10 OPERATING SYSTEM COMMANDS for complete

descriptions on the SAVE and SSAVE commands.

2.5 COMPIL Examples

In the following example, the user is translating, 1loading, and

executing a MACRO program. The /LINK switéh requests that the LINK-~10

linking loader be used instead of the LOADER.

(EXECUTE /LJNK SIMPLE ,MAC)

MACROI SIMPLE

LINKE LOADING

CEXECUTION]

THIS IS A VERY SIMPLE TWO=SEGMENY MAGCRO PROGRAM,

EXIT

2-11

LINK-10 - -670-

LINK-10

COMPIL Examples

In the example below, the user is compiling, loading, and executing
three COBOL programs. The /MAP:PROGMP.MAP switch requests the
generation of a map file with the name PROGMP.MAP.

VEXECUTE /| [NK /MAPIPROGMP Fy A F1 B)FyC D

coBOLt CB3UBA EFXLAnCBHJ

coBoLt CBS@BB [FILB,CBL]

c0BOL¢ CBS@PAC LFILC,CBL]

L INKI LOADING

EEXECUTIONT

RUNNING CBS@8A

RUNNING CBS@8B

RUNNING CBS@BC

EXIT
The map file is now on the user's disk area. He can print the file
with the following command:

\PRINT PRQGMP,MAP)

TOTAL OF 3 BLOCKS IN LPT REQUEST

The following is a listing of the map file generated.

2-12

LINK-10

-671-

LINK-10

COMPIL Examples

(ivwlnaa) ns i
1241

gt
aBty

(Yutadgy 23 ‘v
eo(¥3i

(N
(IYWl0303 sve 'Ly

SRBUONEIRDRBO N

398Y, Y003y IN1Od AMINS bobl

50) ¢9p HiON3Y ovB2 AV SON3 s6¢%
lY £4%ydv*2 NO 0805 AE 03L1v3INYD

iy Sidvi
nmmmhwu4um

§

8gps80

LNIW93S MON
81141¥%s0 WON4 B82SED

BRRADBBURNDRGON

348V .v00"3y INlOd AWINY TXA

40) g5t HLIEN3T gsgt AV SON3 P22%
8 LY S.%HdY®2Z NO 10800 A8 03.V3¥)

1930y 214 K19N3Y
430) ool HlN3Y po2t iv S0N3 287

v8gsaes x«xuom& NI ©3lvad tpezt -

LY sluvi
ter2t 2943y

§

Vaos8o

ININ93S MDY o
YIL4tNS0 WONd vefsad

sRbRauEBRD NS

NBWWOD 2yl

‘WWOD*

iV SiuviS INIWS3S MBS

<mm<:u~k<»maqomn4

't‘t#t*‘ttt##

39n00W x»uzu4.omum

8

10EWAS“IVILINT®LvaE6r

[IXIZTIT YRR T

S1 ss3y0ayY ONTLNvIS

2 ® 3%p2 MLION3Y 032 LY 8AN3 ¢ AV slu¥is INIw93s mOY
ea.mm.a LV §£/844V92 NO nmnv NOISHIA 2Ys)MNIY A8 030n00Hd
ov4 dWo0dd 40 4YW “08WAS 23eNNIY

2-13

-672-

LINK-10

LINK-10

COMPIL Examples

(SYWio30) 2 Ye30) L

tvwioaa wnm

Al
gis

1
4

v
!

H
gole

A00) 2¥S.
8 v SL%wgve?

i
v

 WLON3T Leve

LdWooHd

SRBBRBERRRERS

3Y%avivaoi3u INlod AuIN3 2%v2
398v.v3073y ANlOd AMINI 2%h2
398v1iv0073y IN1Od AMIN3 Lo¥e
3298Y.1v50738 0BWAS ¥80Y9 pive
3"avlvo0iay INIod AMINI £3¥2
2"8Y, V0093 ANTod AMINI 2tve

¢zu4 9tbe LV SAN3 L@

0% LV £4*uYWEEZ NO Q3LV3IMD LV

313y

(YXXXIXLXELZLY

318V YI0" 3y INIOd AMLNT avte

4Y SON3 2902
NO 10800 A8 034V3ud

40 dYW BTeMNNIY 40 ON33

Yd0dul
0dul
'30v4l
‘994ld
YiQadn
Yavy |8

Ly, S4uv4S ININ93IS MmO
T 908171SAS HOM4

Jdqused

Ly 84¥ViS IN3IKH3S w07
geeZ’ 22399y 2141580 WOMd

030vul

58888

3

2-14

-673- , . LINK-10

LINK-10

Summary

2.6 SUMMARY

The LOAD, EXECUTE, and DEBUG system commands, along with the switches
described in Table 2-1, are sufficient for loading and executing most
programs. The wuser c¢an load separately-compi;ed programs and
debugging programs, obtain maps, search files in a library search
mode, and execute the program. To produce a saved file of hisv core
image, the user can employ the system commands SAVE and SSAVE. More
complex loading procedures can be performed by directly using LINK-10,

as described in Chapter 3.

-675- LINK-10

LINK=-10
Using LINK-1¢

CHAPTER 3

USING LINK-10
The user runs LINK-10 directly by issuing the system command
R LINK

LINK~10 responds with an asterisk at which point the user types in his
command stringé. The .LINK-10 program interprets all of the input
typed by the user up to the end of the command string. A command
string is defined as a series of characters terminated by a carriage
return-line feed. A carriage return-line feed is generated when the
user depresses the ‘RETURN key on his terminal. The RETURN key is
represented in this manual by the symbol). If the user needs to
continue a command string on another line, he can place a hyphen as
the last non-blank, non-comment character before the carriage
return~line feed. Continuation lines are considered part of the
current command string, and the current string is not considered
terminated until a carriage return-line feed is seen without a
preceding hyphen; Comments may be édded to any line by preceding the
’commenﬁ with a semicolon. Trailing spaces and tabs (including those

before comments) are always ignored.

When the command string is terminated, LINK-10 processes the data in
the command string by peiforming the actions specified by the user.
This usually entails setting relevant internal conditions and stqring
information for later use. Each command string is completely scanned

and processéd before LINK-10 accepts a new one. After scanning and

C3-1

LINK-10 -676-

LINK=-10

Command Strings

processing the current command string, LINK-10 returns with another
asterisk signifying its readiness to accept more input. The program
accepts command string input until the user gives the exit condition
switch (/GO) indicating that LINK-10 is to finish all loading tasks.
At this point control is either returned to the operating system or
given to the 1loaded program for execution, depending upon the

preceding command strings.
3.1 LINK-10 COMMAND STRINGS

Command strings to LINK-10 contain a series of input and/or output
file specifications and non-conflicting switches to direct the loading

process. The general command string format is as follows:
*output specifications=input specifications

Any number of specifications can be included in the command string by
separating each specification from other specifications with a comma.
Aithough the equals sign is not required, it is recommended that the
user include it so that he can distinguish his output specifications
from his input ones. 1If the user does not include an equals sign, he
must use a comma to separate the specifications. The input and output
specifications are then distinguished by the type of switch associated
with the specification, and the specifications can appear in any order

(e.g., input specifications can precede output specifications).

An input or output specification consists of a file specification and
switches appearing before and/or after the file specification. A file

specification is in the form

-677- . LINK-10

LINK=-10

Command Strings

dev:file.ext[directory]
and the individual switches that can be used in the command string are

described in Chapter 4.

When items in a file specification are missing, LINK-10 has a set of
initial values to be used as defaults. On input specifications, the
default values assumed for missing items in a file specification are

as follows:

Device DSK:

Filename A blank filename
Extension +REL
Directory The user's default directory

On output specifications, the default values are as follows:

Device DSK:

Filename Name of the last program containing a start
address. If there is no program with a start
address, the name nnnLNK, where nnn is the
user's job number, is used.

Extension. Dependent on the type of output file
requested via switches. :
Log file +«LOG
Map file +MAP
Saved file «SHR, .HGH, . SAV, . LOW

Symbol file +SYM
Expanded save
file « XPN
Directory The user's default directory.
These defaults are applied just prior to initializing the device and
opening the file, and are used only if the user has not given values
for items in a file specificaiion. The initial LINK=-10 defaults for

items in a file specification are used only when a value for the item

LINK-10 -678-

LINK=-10

Changing Defaults

does not appear in the command string or until the value is seen if it

is after the beginning of the string.

If a component of a file specification is given before the filename,
it remains in effect until changed by a value given subsequently by
the user for the same component or until the end of the command
string. For example, a user can specify a device name at the
beginning of the string and not have to repeat the device name for
each specificdtion if he is wusing the same device for all
specifications in the command string. However, once the device name
is changed, the new name is wused as the default device for the

reaminder of the command string.

As another example, the user can specify an extension and a directory

to be used by issuing a command string such as
*.BIN[lO,?]DSKB:FILI,DSKC:FILZ.REL[10,20],DSKA:FIL3)

The extension .BIN and the directory [10,7] are used for any
specifications that do not include an extension or directory. The

above command string is equivalent to

*DSKB:FIL1.BIN[10,7],DSKC:FIL2.REL[10,20],DSKA:FIL3.REL[10,7])

3.2 CHANGING DEFAULTS

The /DEFAULT switch is used to change the initial wvalues that are
assumed when the user does not include a component of a file

specification in his command string. The values specified with this

-679- LINK-10

LINK-10

Switch Algorithms

switch remain in effect for the entire load unless changed by another

/DEFAULT switch. The form of the /DEFAULT switch is as follows:

components of file specification /DEFAULT : keyword
where

components of file specification are the components which
the user wants as his default components.

keyword is either INPUT or OUTPUT to change the default
components for the input or output specifications,
respectively. If this argument is omitted, INPUT is
assumed.
For example, the following specification
DSKB: .BIN[10,20]/DEFAULT
changes the values to be used as defaults for the input specifications
to be DSKB: for the device, .BIN for the extension, and [10,20] for

the directory.
NOTE

Because the extensions for output files depend
upon . the types of file being requested, the user
cannot change the output extensions. Any attempt
to do so is 'ignored. ' :

3.3 LINK-10 SWITCH ALGORITHMS

LINK-10 allowsvthe user to request various loading parameters via
switches in the command string. Switches afe used to specify output
files, to set defaults, to control the loading of programs, to set
valués, to format maps and symbol tables, to request values of
symbols, and to position aevices. Some switches merely change the

status of LINK-10 by setting internal values; others request immediate

LINK-10 -680-

LINK=-10
. Switch Algorithms
action to be taken.

LINK-10 has several categories of switches with a specific algorithm

for the handling of each category. These categories are:

. Device Switches

- File Dependent Switches

. Output Switches

. Immediate Action Switches

. Delayed Action Switches

. Switches that create implicit file specifications

3.3.1 Device Switches

Switches in this category (e.g., /SKIP, /REWIND) affect the device
within an input or output specification. The switch is in effect
after the device is initialized and, depending on its position, either
before or after the file is read or written. 1If the switch appears
before the filename, the appropriate action is taken before the file
is processed, and if it appears after the filename, action is taken
after the file is processed. Switches in this category apply only to
the current input or output specification and do not carry over to
subsequent devices. 1In other words, once the requested action is
performed, it is not performed again unless another device switch is

given.
For example, the following specification may be given by -the user:

/SKIP:2 MTAl:MYFILE/UNLOAD,

-631- LINK-10

LINK-10

Switch Algorithms

After the magnetic tape is initialized, LINK~10 skips forward over two
files (/SKIP:2), reads the file called MYFILE, and after reading the

file, rewinds and unloads the tape (/UNLOAD) .
3.3.2 File Dependent Switches

Switches belonging to this category (e.g.,/NOLOCAL, /SEARCH) modify
the loading or the contents of a file. These swiﬁches are either
temporary or permanent in nature. A ﬁemporary switch applies only to
the file specification immediately preceding it. An intervening comma
cannot separate the file specification and the switch. A permanent
switch éppears before the file specification and applies to all file
specifications following it until modified By a subsequent switch or
until the end of the current command string is reached. (Remember
that continuation lines are considered part of the :current command
string). This means that permanent file-dependent switches, unlike
device switches, continue to apply to following specifications (i.e.,
the action requested by the switch is not terminated at the comma

which separates specifications).
For example, the following specifications may be issued by the user:
»/NOLOCAL DTA3:MAIN1,MAIN2,MYLIB/SEARCH,

Two files, MAINLl and MAIN2, are loaded in their entirety from DTA3
without their local symbols. The file MYLIB is searched and parts of
it are loaded only if required (i.e., they are required to satisfy any
undefined symbol requests); if needed, they are also loaded without

local symbols.

LINK-10 _g%2-

LINK=10

Switch Algorithms

3.3.3 Output Switches

Switches in this category (e.g.,/MAP, /LOG, /SAVE) initialize the
output devices and create the output files. Eaéh output specification
must contain one of these switches because LINK-10 does not create
output files wunless explicitly requested to do so. Each switch
represents a specific type of output file and is used with a file
specification to indicate the device and filename of the file. Only
one output switch can be used with each output specification. If the
switch is the only item appearing in the output specification, the
device name and filename are taken from the previous specification or

from the LINK-10 defaults for output.

For example, if the user desires a saved file and a map file on DSKB:
and both with the name OUTPUT, he can issue the following

specifications:

DSKB :QUTPUT/SAVE , /MAP=
The two files will have the same filename (OUTPUT) but, by default,
the extensjons will be different (refer to Paragraph 3.1). The comma
separating the two switches is required to indicate that two output
files are desired. If the user is satisfied with accepting the
LINK-10 defaults for output specifications, he can give the following

/SAVE, /MAP=

-683- LINK-10

LINK=10

switch Algorithms

NOTE

Although the /LOG switch is considered an output
switch, it is handled in a slightly different
fashion from the remaining output switches. By
assigning a device the logical name LOG before
initializing LINK-10, the user receives the log
file on the device assigned as LOG, even if he
does not include the /LOG switch in his command
string. The filename associated with the log file
is nnnLNK.LOG, where nnn is the user's job number.
The /LOG switch can then be used in the LINK-10
command string to change the filename of the log
file. For example,

.ASSIGN DSKC:LOG: J

.R LINK)

*DSKC : MYLOG/LOG J)
renames the log file on DSKC: from nnnLNK.LOG to
MYLOG.LOG. If the logical device is not assigned,
then the building of the log file begins when the
/LOG switch is seen. This results in the

initialization timings not being included in the
file.

3.3.4 Immediate Action Switches

Switches in this category (e.g.. /UNDEF, /VALUE, /NOINITIAL, /NOSYM)
are processed by LINK-10 as soon as they are seen. These switches are
divided into two types:

. Those that request typeout from LINK=-10.

. Those that change the status of the loading procedure.
Type-out switches (e.g., /UNDEF) request information from LINK-10 and
are not dependent upon a particular specification. For this reason,
they can appear anywhere in the command string but are usually on a
command line by themselves because the user is interactively
requesting information to determine if he may have forgotten to

specify needed parameters. After processing the switch (i.e., at the

LINK-10 -684-

LINK~-10

Switch Algorithms

end of the command string), LINK-10 returns the requested information
immediately. Once the information is returned to the user, the switch

is cleared.

Status changing switches (e.g.,/NOINITIAL, /NOSYM) are related to the
entire loading procedure and not to an individual specification. They
are placed in the command string at the point at which the user wants
the action to be performed. Once the action has been taken, it is in
effect for the entire loading process and cannot be overridden. For
example, once the user gives the /NOSYM switch to notify LINK-10 not
to generate a local symbol table, he cannot, in the same load, give a

switch to LINK=-10 to nullify this action.
3.3.5 Delayed Action Switches

Switches in this category (e.g., /MAXCOR,/HASHSIZE) are used to change
operational parameters of LINK~10 to the specified values. When the
switch is seen, LINK-10 accepts the value but does not use it until it
is needed. For example, there is a preset value for the maximum core
LINK-10 can occupy during loading. Use of the /MAXCOR switch changes
this value immediately but LINK-10 does not examine the value until it

needs to expand its core size.
3.3.6 Switches that Create Implicit File Specifications

Switches in this category {e.g., /DEBUG, /SYSLIB) cause LINK=10 to
Ccreate one or more input file specifications for programs that must be
loaded along with the user's program and to set various other switches

related to the implicitly specified file. As an example, the /DEBUG

-685- LINK-10

LINK=~10

LINK-1g Switches

" switch indicates that a debugging program is to be loaded and that
subsequent modules are to - be loaded with local symbols, unless
otherwise specified by the user. If one of these switches appears
before +the file specification, the program implied by the switch is
loaded before the currenf file. If the Switch is after the file
specification, the program is loaded after the current file. Once the

program implied by the switch is loaded, the sWitch is cleared.
3.4 LINK-10 SWITCHES

Switches to LINK-10 have one of the following forms:
/switch
/switch:arg
/switch: (arg,...,arq)
/switch:value
/switch:arg:value
/switch: (arg:value,...,arg:value)
where
/switch is the name of the desired switch. This name can be
truncated to a unique abbreviation. The first six
characters of the name are sufficient to ensure

uniqueness.

arg is a keyword or a symbol name. Keywords can be
truncated to a unique abbreviation.

value is either a decimal or octal number. An octal value
can be used with a switch that accepts decimal values
by preceding the octal value with a number sign (#).

is the Separator ‘between components in a switch
specification and must be present if more than one item
is given.

() are used to enclose multiple keywords and/or values to
a switch. They are required if more than one argument
appears with the switch.

3-11

LINK-10 -686-

LINK-10

LINK—lﬂ Switches

NOTE
For the first release of LINK-10, iultiple
keywords cannot be specified in a single switch
specification. This means that the user must
issue a switch specification for each. desired
keyword (e.g., /CONTENTS : LOCAL /CONTENTS:
RELOCATABLE) . This restriction will be removed in
a later release of LINK-10.
Each switch specification must be terminated with a space; however,
spaces cannot appear within a switch specification (i.e., between the

slash and the end of the value).

Table 3-1 briefly describes the switches that can be used on ‘the
LINK-10 command string, and Chapter 4 contains the complete

descriptions of the switches in alphabetical order.

3-12

-687- LINK-10

LINK-10
Table 3-1
LINK-10 Switches
Switch ‘ Meaning
/BACKSPACE Spaces backwards over the
' specified number of files.

/COMMON Allocates a COMMON area.

/CONTENTS Specifies the types of symbols
to be output in a map.

/CORE ; Specifies LINK-10's initial
low segment size.

/COUNTER ‘ Lists the relocation counters
and their values.

/CPU Specifies the processor on
which the program will run.

/DATA Loads defined constant data.
This switch is not implemented
in Version 1.

/DEBUG or /D Loads and specifies execution
of a debugging program.

/DEFAULT . Changes default values for
missing components in a file
specification.

/DEFINE Assigns values to undefined
global symbols interactively.

/ENTRY : Lists library search symbols.

/ERRORLEVEL Selectively suppresses
messages to the terminal.

/ESTIMATE Allocates disk space for an
output file.

/EXCLUDE : Inhibits the loading of
specified modules.

/EXECUTE or /E Specifies execution of the
program upon completion of
loading.

3-13

/LOCALS or /L

/LOG

/LOGLEVEL

/MAP or /M

/MAXCOR

/MPSORT

/MTAPE

/NOINITIAL

/NOLOCAL or /N

/NOSEARCH

LINK-10 -688-
LINK-10
Table 3-1 (Cont.)
LINK~-10 Switches
Switch Meaning

/FOROTS Loads FOROTS, if required,
during default system library
searching. :

/FORSE Loads FORSE, if required,
during default system library
searching.

/FRECOR Specifies the amount of free
core guaranteed after each
expansion.

/GO or /G Terminates the loading
progress.

/HASHSIZE Specifies the size of the
global symbol table.

/ INCLUDE Forces the loading of

specified modules from a
library.

Loads with local symbols.

Causes a log file to be
generated.

Suppresses messages to the log
file. '

Causes a map file to be
generated.

Specifies LINK-10's maximum
low segment core size.

Sorts the symbol table for
output to the map file.

Performs magnetic tape
functions.

Clears the initial global
symbol tables.

Loads without local symbols.

Turns off user library search
mode.

-689- LINK-10

LINK=10 Table 3-1 (Cont.)

LINK~10 Switches
Switch Meaning

/NOSTART Ignores starting addresses.

/NOSYMBOL Inhibits the generation of a

: symbol table in core.

/NOSYSLIB Prevents a- search of the
default system libraries.

/0TS Indicates the segment for the
object time system.

/PATCHSIZE Allocates patch space.

/REQUIRE Generates global requests for
the specified symbols.

/REWIND Rewinds the DECtape or
magnetic tape.

/RUNCOR Assigns the initial low
segment core size for the
program.

/RUNAME Assigns the program name.

/SAVE Causes a saved file to be

/SEARCH or /S

/SEGMENT
/SET
/SEVERITY
/SKIP
/SSAVE
/START

/SYMBOL

generated.

Turns on user library search
mode.

Specifies the segment in which
to load the modules.

Defines the values of a
relocation counter.

Defines the fatality level of
errors.

Spaces forward on a magnetic
tape.

Causes a sharable saved file
to be generated.

Specifies the start address of
a program,

Causes a symbol file to be
generated. :

LINK-10 -690-
LINK-10 Table 3-1 (Cont.)
LINK-10 Switches
Switch Meaning

/SYMSEG Moves the symbol table to the
specified segment.

/SYSLIB Performs a search of the
default system libraries.

/SYSORT Sorts the symbol table for
output to the symbol file.

/TEST Loads a debugging program.

/UNDEFINED or /U

/UNLOAD

/VERBOSITY

/VALUE

/XPN

/ZERO

Types undefined global symbols
on the terminal.

Rewinds and unloads the
DECtape or magnetic tape.

Specifies the amount of text
to be printed for a message.

Lists the current values of
the specified global symbols.

Creates or saves the expanded
core image file.

Clears the specified DECtape
directory.

3-16

-691- LINK-10

LINK~-10
Switches
CHAPTER 4
LINK=-10 SWITCHES
/BACKSPACE
Function

The /BACKSPACE switch is used to space backwards over the
. specified number of files. This switch has an effect only on

tape devices and is ignored for non-tape devices.

Switch Format

- —— —— —— - - -

/BACKSPACE:n
n is a decimal number representing the number of files to

backspace over. If n is omitted, n=1 is assumed.

Category of Switch

Device Switch (refer to Paragraph 3.3.1)
Examples

+MTAO:/BACK:3,

Backspace MTAO by three files.,

LINK-10

-692-

LINK-10

Switches

/COMMON

Function

The /COMMON switch is used to allocate an area of storage of the
specified size before loading any more code. An array of storage
(a COMMON area) is reserved into which data can be placéd in
order that it may be shared by several programs and routines.
Because the FORTRAN language contains a statement that reserves
space for a COMMON area, this switch is used to reserve CdMMON
arrays when loading non-FORTRAN programs or to allocate a
different size area than given via the COMMON statement in a
FORTRAN program. However, if this switch is used to allocate a
larger size area of the same name as that given in the FORTRAN
program, the switch specification must be given before the

FORTRAN program is loaded.

The name of each labeled area of COMMON storage is defined as an
internal symbol whose value is the address of the first word of
the COMMON area. These symbols may be used by other programs as

external symbols.

Switch Format

/COMMON : name:n
Name is the symbolic name of up to six SIXBIT characters of the
COMMON area. Blank COMMON is designated with the symbolic name

".,coMM.".

-693- | LINK-10

LINK=-10

Switches

n is a decimal number representing the size of the area in words.

Restrictions

Although various modules may redefine COMMON areas of the same
name, the =size of a COMMON area cannot be increased during the
loading process. Therefore, the largest definition of a given
- COMMON area must be loaded first. Any attempt to increase the
size of a COMMON area by redefinition will result in a fatal
error.. This applies to both modules defining COMMON areas and

the /COMMON switch.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)
Examples

/COMMON: ,COMM.:1000

Allocate blank COMMON to be 1000 words.

LINK-10

-694-

LINK-10

Switches

/CONTENTS

Function

The /CONTENTS switch gives the user control over the contents of
the map file by allowing him to specify the types of symbols to
be included in the file. Each symbol is marked as to its type hy
the translator that processed the module containing the symbol.
Some symbols may be of more than one type. For example, a symbol
may be both a global symbol and a relocatable symbol. To insure
the inclusion of such a symbol in the map file, the user must
specify both the GLOBAL, and the RELOCA?ABLE keywords in the
/CONTENTS switch.

Each specification of the /CONTENTS switch is cumulative;
keywords set by t+the first specification are not automatically
cleared by ihe second specification. If the user desires to
clear a keyword set in a previous - specification, he must

explicitly specify its complement.
NOTE

This switch does not produce a map file. The user
must specify the /MAP switch on an ' output
specification in order to obtain the file. Unless
the /MAP is given, the /CONTENTS switch has no
meaning and is ignored. : :

Switch Format

/CONTENTS : keyword

/CONTENTS : (keyword,. . ., keyword)

-695- LINK-10
LINK~-10
Switches
Keywords are as follows:
ABSOLUTE include "all absolute symbols (usually flags,
accumulators, and masks) . Complement of
NOABSOLUTE..
ALL A inqlude all symbols. Complement of NONE.
COMMON include all COMMON symbols. Complement of
NOCOMMON. ;

DEFAULT) 1nc1ude the symbols accordlng to LINK-10's default
: . setting, that is: COMMON, GLOBAL, ENTRY, ABSOLUTE,

RELOCATABLE, NOLOCAL, and NOZERO.

This keyword is

used to reéset the /CONTENTS switch to the original

default setting.

ENTRY include all entry name symbols, Complement of
. NOENTRY., '
GLOBAL include all global gymbols - including COMMON and

ENTRY' symbols unless: these symbols are suppressed
with - the NOCOMMON and ~ NOENTRY keywords.

cOmplement of NOGLOBAL.

LOCALS k lnclude all local symbols. Complement of NOLOCAL.

NOABSOLUTE do not lnclude absolute symbols

(i.e., turn off

the condition corresponding to absolute symbols).

Complement of ABSOLUTE.

NOCOMMON do not include COMMON symbols. Complement of
COMMON. T

NOENTRY do not include entry name symbols. Complement of
ENTRY. '

NOGLOBAL do not include global symbols including COMMON and

ENTRY symbols unless these symbols are requested
with the COMMON and ENTRY keywords. Complement of

GLOEAL.

NOLOCAL do not include 1local symbols. Complement of
LOCALS. ’ ’ '

NONE do not include any symbols of any kind. However,

header information is still output in the map.

Complement of ALL.

NORELOCATABLE do not 1nclude relocatable symbols. Complement of

RELOCATABLE.

LINK-10

-696-

LINK-10

Switches

NOZERO do not include symbols from zero length programs.
Complement of ZERO.

RELOCATABLE include symbols that are relocatable (usually
addresses). Complement of NORELOCATABLE.

ZERO include symbols from zero length modules (usually
parameter files). A zero length module is one
which defines symbols but generates no code.
Complement of NOZERO.

If the /CONTENTS switch is not specified, the default setting is

COMMON, GLOBAL, ENTRY, RELOCATABLE, ABSOLUTE, NOLOCAL, and

NOZERO. When the user specifies a keyword, the keyword is either

added to the default setting or deleted from the default setting.

For example, if the user issues the /CONTENTS:ZERO 'switch, the

condition for symbols in zero length programs is added to the

default setting. However, the keywords ALL, NONE, and DEFAULT

reset the default setting to their respective meanings.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

/CONTENT: ZERO, /CON : LOCAL,

Include in the map local symbols and symbols from zero
length modules, 'in addition to the types of symbols in
LINK-10's default setting.

-697- LINK-10

LINK-10

Switches

/CORE

Function

The /CORE switch is used to specify the initial size of LINK-10's
low segment, Generally, this size is 1less than or equal to
MAXCOR (the maximum size of LINK-10's low segment). If the size
specified in the /CORE switch is greater than MAXCOR, the core
will be assigned. However, the next time LINK-10 needs to expand

core, the size will be reduced to MAXCOR.

Switch Format

/CORE:n

n is a decimal number that represents the initial low segment

'core size for LINK-10. An octal value can be given by preceding

it with a number sign (#). N is expressed in units of 1024 words
or 512 words (a page) by following the nﬁmbex with K or P

respectively. If K or P is omitted, K (1024 words) is assumed.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/CORE: 17K

Specify 17K words as the initial size of LINK-10's low
segment.

LINK-10 ~698-

LINK-10

Switches

/COUNTER

Function

—— — o - -

The /COUNTER switch is wused to output to the terminal the
relocation counters, their initial and current values, and for
undefined counters, the length of code depending on them. When a
relocation counter is not known, a count of the amount of core
used by the counter is kept so that loading can be resolved.,
Code depending on the counter is stored on the disk until the

counter is defined.

Although LINK-10 is designed to handle an indefinite .number of
relocation counters to provide efficient program construction,
the first release of LINK-10 only uses two relocation counters,
the low segment counter (.LOW.) and the high segment counter
(.HIGH.) . These counters are listed in a map file with their

initial and final values.

Switch Format

/COUNTER

Category of Switch

Immediate Action Typeout Switch (refer to Paragraph 3.3.4)

-699-

LINK-~10

Switches

Examples

/COUNTER

RELOCATION COUNTER INITIAL VALUE
+«LOW. 0
+HIGH, 400000

LINK-10

CURRENT VALUE
140
400010

LINK-10

-700-

LINK-10

Switches

/CPU

Function

The /CPU switch is used to indicate the central processor on

which the program will run once it has been loaded.

Switch Format

/CPU: keyword

Keyword is either KAlO or KI10. If the keyword is omitted, KAlO
is assumed. If the /CPU awitch is omitted, the machine on whiqh

the program is loaded is assumed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

—— - - -

/CPU:KI1l0

Run the program on the KIl0 processor.

4-10

=701~ | LINK-10

LINK-10

Switches

/DEBUG
Function

The /DEBUG switch is used to load a debugging program and to
specify that execution of the loaa will begin at the normal start
address of the éebugging program instead of the user's program.
The debugging programs available are DDT, MANTIS, and COBDDT.
This switch does noﬁ‘cause termina;ion of the loading procedure,
the /GO switch is needed for termination. The /EXECUTE switch is

not used for execution when the /DEBUG switch is given.

The /DEBUG switch turns on the load with local symbols mode and
causes it to be in effect for the remainder of the load unless
overridden by the /NOLOCALS switch. However, since the /NOLOGALS
switch is file dependent, it is cleared at the end of the command
string in which it appears and local symbols mode is reinstated.
Note that the /LOCALS switch is also file dependent; therefore,
the use of the /LOCALS switch and the implicit use of the /LOCALS
switch in the /DEBUG switch context have different results (i.e.,
the /LOCALS switch is cleared at the end of the command string
and the loadlwith local symbols mode implied by‘the /DEBUG switch

is not).

The /DEBUG switch does not cause the local symbols of the
debugging program to be loaded, regardless of the state of the

/LOCALS switch.

LINK-10 -702-

LINK-10

Switches

Switch Format

/DEBUG : keyword

Keyword is one of the following: COBDDT, COBOL, DDT, FORTRAN,
MACRO, MANTIS. When a compiler or the assembler is specified,
the debugging aid associated with that translator is used. For
example, if MACRO is sgpecified, the loading of DDT is implied.
If the keyword is omitted, DDT is assumed. '

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

»/DEBUG:DDT DTA3:FILEA.MAC,

4-12

-703- LINK-10

LINK-10

Switches

/DEFAULT

Function

The /DEFAULT switch is used to change LINK-10's initially-assumed
values for components missing in a file speqification. A file
ﬁpecification is in the form dev:file.ext[directory]. The
initial defaults for input specificatibns are

DSK:.#EL [user's default directory)
and for output specifications are

DSK:name of main program.ext dependent on type of

output file [user's default directory].
Thus, the user cannot change the extensions of output files, and

any attempt to do so is ignored.

Values specified via the /DEFAULT switch are in effect for the
entire loading process or until the user issues another /DEFAULT

switch.

Switch Format

/DgFAULT;keyword
Keyword is either INPUT or OUTPUT to specify default conditions
for input and output specifications, respectively. If the

keyword argument is omitted, INPUT is assumed.

Category of SWitch

Immediate Action Switch (refer to Paragraph 3.3.4)

4-13

LINK-10 -704-

LINK-10

Switches

DSK:MAIN, /DEFAULT .BIN[10,7],

Load the file MAIN.REL from the user's default directory of
the disk and then change the input defaults to load .BIN
files from the [10,7] area of the disk.

-705- LINK-10

LINK-10

Switches

/DEFINE

Function

The /DEFINE switch is used interactively by the user to assign
values to undefined global symbols in order to satisfy global
requests before LINK-10 terminates the load with undefined
symbols. The user can employ the /UNDEF switch to obtain a list
of the undefined symbols and then use the /DEFINE switch to

satisfy the requests for these symbols.

Switch Formats

/DEFINE:symbolzvalue

/DEPINE: (symbol:value, « . . sSymbol:value)

Symbol is the name of the symbol to be defined. If the name
given 1is one of an alreadyédefined symbol; the user receives an

error message.

value is the decimal number to be associated with the symbol. An

octal value can be given by preceding it with a number sign (#).

4-15

LINK-10 -706-

LINK-10

Switches

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

*/UNDEF .J)

1 UNDEFINED SYMBOL
NOW 400123

*/DEFINE :NOW:897)
*/DEFINE:OCT: $1234.)

4-16

-707- | © LINK-10

LINK=10

Switches

/ENTRY

Function

The /ENTRY swifch is used to type out ail library search symbols
(ice., entry points) that have been loaded up to the time the
switch is given. These symbols are recognized by a specific
conditioh set in the first word of the symbol by the translator
that processed the module containing the symbol. The user
defines symbols as library search symbols with an ENTRY statement
in a ﬁACRO-lO or BLISS~10 module, with a SUBROUTINE, FUNCTION, or
ENTRY statement in a FORTRAN module, or with a SUBROUTINE

statement in a COBOL module.
This switch is useful for the future overlay facility of LINK-10.

Switch Format

/ENTRY

Category of Switch

L

Immediate Action Typeout Switch (refer to Paragraph 3.3.4)

Examples

*/ENTRY)
Library Search Symbols
SQRT. 3456

LINK-10 -708-

LINK-10

Switches

/ERRORLEVEL

Function

The /ERRORLEVEL switch is used to selectively suppress LINK-10
messages to the user's terminal. Associated with each message is
a decimal number from 0 to 31 called the message level. Via this
switch, the user can decide that messages with a message level
less than or equal to a specific number are not to be output to
his terminal. A user would normally want to suppress informative
messages rather than error messages. The higher the message
level, the more serious the message. Refer to Chapter 5 for the

message level of each LINK-10 message.

Switch Format

/ERRORLEVEL:n

n is a decimal number from 0 to 30. Messages with a message
level less than or equal to n will not be output to the terminal.
Note that a message with a level of 31 cannot be suppressed. If
this switch, or the value of the switch, is omitted, informative

messages are suppressed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/ERRORLEVEL: 10

-709- LINK-10

LINK=10

Switches

/ESTIMATE

Function

The /ESTIMATE switch is used to reserve disk space for an output
file and must be associated with an output specification.
Because each occurrence of the switch allocates space for only
one file,- the user must issue an /ESTIMATE switch for each file

that needs spﬁce reserved.

This switch is not required for space allocation for an output
file, but its wuse can both help the user stay within his quota
allotment and reduce the number of (RIB) pointers associated with

the file.

Switch Format

/ESTIMATE:n
n is a decimal number representing the estimated number of blocks
of 128 words of the output file. A warning message is given if

LINK-10 fails to allocate the requested size.

If this switch is omitted, or if an insufficient estimate is

given, space is allocated automatically as needed.

4-19

LINK-10 -710-

LINK-10

Switches

Category of Switch

Output Switch (refer to Paragraph 3.3.3)
Examples

DSKC:OUTPUT/MAP/ESTIMATE: 50, /SAVE/ESTIMATE: 200,

Allocate 50 blocks for the map file and 200 blocks for the
save file.

4-20

-711- : LINK-10

LINK-10
Switches -

/EXCLUDE

Function

The /EXCLUDE switch is used to inhibit the loading of certain
modules in a file when ldading the file in the current mode
(either search or nonsearéh mode). This switch is useful when
the user is searching a library file and definitely knows he does
not want certan modules, even though his program may reference
the names of these modules. For example, if a library file has
éeveral modules with the same library search symbols (e.g., as in
dummy routihes) and the user wants to load a module other than
the fifst ohe, he can use this switch fo prevent the loading of
the modules not desired. Another use of the /EXCLUDE switch is
to satisfy global symbol definitions during library searching by

excluding the modules that would cause multiply-defined symbols.

Switch Formats

/EXCLUDE : symbol
/EXCLUDE: (symbol, . . ., symbol)
Symbol is the name of the module.

4-21

LINK-10 | 712~

LINK=-10

Switches

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

,/SEARCH LIBFIL.REL/EXCLUDE: (MOD1,MOD2),

Search the file LIBFIL as a library but do not load the
modules MOD1 and MOD2 from the £file, even if they are
referenced.

4-22

-713- LINK-10

LINK-10

Switches
/EXECUTE

Eunction

The /EXECUTE switch is used to specify that the loaded program is
to be staitéd at the nérmél entry ﬁoint‘(i.e.; the start address)
upon completidn bf'lbadiﬁg.; This Switch doés not cause the
términatién of loadiﬁg; the /GO switch is needed to terminate

loading.

The /EXECUTE and /DEBUG switches cannot be used together because
one switch specdifies execution of the user's program (/EXECUTE)
and the other switch épecifies execution of the debugging program

’ (/DEBUG) Pl

Switch Format

/EXECUTE

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)
: o

Examples

4-23

LINK-10 -714-

LINK=-10

Switches

/FOROTS

Function

The /FOROTS switch is used to specify the object time system
FOROTS, instead of FORSE, for use with FORTRAN programs. FOROTS
is then loaded, if required, when LINK-10 searches the default

system libraries.

Switch Format

/FOROTS

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

+/FOROTS DSK:MAIN,SUB1,

~715- LINK-10

LINK-10

SWitches

/FORSE

Function

The /FORSE switch is used to specify the object time system
FORSE, instead of FOROTS, for use with FORTRAN programs. FORSE
is thep loaded, if required, when LINK=-10 searches the default

systém libraries.

Switch Format

/FORSE

Category of Switch

Creates an impiicit file specification (refer to Parégraph 3.3.6)
Examples

+DSK:MAIN.F4/FORSE,

4-25

LINK-10

-716-

LINK=10

Switches

/FRECOR

Function

The /FRECOR switch guarantees that the specified amount of free
core will remain after LINK-10 expands specific areas in its low
segment. Since LINK-10's default amount of free core 1is 2K,
users do not need this switch when loading most modules.
However, when the modules being loaded are quite large (e.g.,
monitor modules), a larger amount of FRECOR will result in a
faster loading process because LINK-=-1C will not have to move

areas around in core as often.

During the loading procedure, LINK-10 has five areas that can be
expanded beyond their initial sizes. These areas are: the user's
low segment code area (LC), the user's high segment code area
(HC), the local symbol table area (LS), the fixup area (FX), and
the global symbol table area (GS). Each area has a lower
boundary, a maximum upper boundary, and an actual upper boundary.
LINK~10 tries to maintain space between the actual upper boundary
and the maximum upper boundary at all times. However, as the
loading procedure progresses, LINK~-10 may have to expand an area
to accomodate the user's input. If the sum of the amount of free
core between the actual upper boundary and the maximum upper
boundary £for all areas minus the size required for the expansion
is less than FRECOR, core is expanded to an amount large enough
to maintain FRECOR. If the required size of the low segment

becomes greater than MAXCOR (the user specified limit) or CORMAX

-717- LINK-10
LINK=10

Switches

(the system limit) allows, no further expansion is attempted and
core is obtained from the free space recovered by shuffling
areas. When all of the free space has been obtained, some or all
of the above-mentioned areas must overflow to the disk. Note

that free core is not maintained when areas overflow to the disk.

Switch Format

/FRECOR:n

n is a decimal number representing the number of words of free
core rounded to the next 128-word multiple. If this switch, or
the value of this switch, is omitted, 2K words is assumed.

Category of Switch

Delayed Action Switch (refer'to Paragraph 3.3.5)
Examples

/FRECOR: 3K

4-27

LINK-10

-718-

LINK-10

Switches

/GO

Function

The /GO switch is used to terminate the loading process and is
the only terminatioﬁ switch available. When LINK-10 executes the
/GO switch, it finishes loading the current specification,
searches default libraries (if this action has not been
suppressed with the /NOSYSLIB switch), produées the requested
output files, and either exits to the monitor or runs the core
image produced depending upon the switches appearing in the input
command strings. If the /DEBUG switch has been specified,
execution begins at the normal start address of the appropriate
debugging program. If the /EXECUTE or /TEST switch has been
specified, execution begins at the normal start add#ess of the
user's program. If one of these switches has not been specified,

LINK-10 exits to the monitor.

Switch Format

/GO '

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

_719- LINK-10
LINK-10

Switches

/HASHSIZE

Function

The /HASHSIZE switch is used to épecify the initial size of the
global symbol table. LINK-10 uses the lowest prime number in its
internal list that is greater than or equal to the given value as
fhe hashsize for the symbol table. This switch can be employed
by a user who knows before loading that thé number of global
symbols used by his program is going to be quite large. By
setting the hashsize of the symbol table to a larger number, the
user can save LINK-IO time and space that would be used in
expanding the hash table. When the user receives the message
REHASHING GLOBAL SYMBOL TABLE on a load, it serves as an
indication that he should use the /HASHSIZE switch at the
beginning of subsequent loads of the same programs. Refer to the
LINK-10 Design Specification for the hashing technique used in

symbol tables.

Switch Format

/HASHSIZE:n

n is a decimal number representing the estimated hashsize of the
global symbol table. A recommended hashsize is a number 1/3
larger than the total number of global symbols in the load. The

default size (initially 127) is an assembly parameter.

LINK-10 -720-
LINK=-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

/HAS:1000

LINK-10 uses the prime number 1021.

-721- LINK-10

LINK-10

Switches

/INCLUDE

Function

The /INCLUDE switch is used, when 10ading a file in search mode,
to force thé loadihé of speéified modules in that file whetlier or
not the user's program reféfendes ﬁhem. For example, if the user
doeé not have a global request for a desired module, he can use

this switch to cause that module t6 be loaded.

Although the /INCLUDE switch is implemented in Version 1, its
primary use is for the overlay facility in order to call a

module.

Switch Format

/INCLUDE: symbol
/INCLUDE: (symbol, . . ., symbol)

Symbol is the module name of the desired module.

Catedgory of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

»SYS:LIB40/INCLUDE: (SIN,COS,TAN),

Search the library Lino, but always load the modules SIN,
COs, and TAN. _

LINK-10 -722-
LINK-10

Switches

/LOCALS

Function

The /LOCALS switch is used to load local symbols with the
specified programs. Local symbols are not processed by LINK-10,

but are useful to the user when debugging.

This switch does not cause local symbols to be saved as part of
the core image requested by the /SAVE or /SSAVE switch. The
/SYMSEG switch or an entry in the JOBDAT location .JBDDT is

required if local symbols are to remain in core.

Switch FPormat

/LOCALS

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

(MYFILE,/LOCAL MYDATA,MYSUB,MYLIB,

Load local symbols with the programs MYDATA, MYSUB, and
MYLIB.

-723- LINK-10

LINK-10

Switches

/LOG

Function

The /LOG switch is used to specify an output log file into which
LINK-10 places information that is useful for the user when he is
debugging his program. This file is a report of LINK-10's
progress in loading the user's program because the actions taken
by\LiNK-lo are shown. The times aﬁ which these actions took

place are also indicated.

This switch is not required to obtain a log file if the user
assigné a device the logical name LOG before running LINK-10.
Then all log information will be recofded in a file on this
assigned device. The file is named nnnLNK.LOG where nnn is the
user's.job number. In this case, the /LOG switch merely causes

the file to be renamed to the user's specifications,

If the user does not assign a device the logical name LOG prior
to running LINK-10, .he must use the /LOG switch in order to
obtain a log filé. 'However, any times and messages output before
the /LOG switéh'is seen in the command string will not appear in

the log file.

Switch Format

file specification/LOG
File specification is in the form dev:file,ext [directory] to

specify the device and name associated with the log file. The

LINK-10 -724-
LINK-10
Switches

default file specification is DSK:name of main program. LOG

{user's default directoryl. The user's terminal may be specified

as the log device.

Category of Switch

Output‘Switch (refer to Paragraph 3.3.3)

DSKB :MYLOG/LOG

Create a log file on DSKB: with the name MYLOG.

4-34

-725- LINK-10
LINK-10

Switches

/LOGLEVEL

Function

The /LOGLEVEL switch is used to suppress LINK-10 messages to the
user's log file. This switch permits the user to set the level
of messages that are to appear in the log file. Refer to the

/ERRORLEVEL switch and Chapter 5.

If the log file is output to the user's terminal (i.e., the 1log
device is the wuser's terminal), the messages output are
determined by the 1lower of the arguments specified in the
/ERRORLEVEL and /LOGLEVEL switches. The user would rarely set
the log device as the terminal because the /ERRORLEVEL switch
with a low number allows him to obtain all messages on the

terminal.

Switch Format

/LOGLEVEL:ﬁ

n is a decimal number from 0 to 30; Messages with a message
level less than or equal to n will not be output to the log file.
The user cannot suppress messages with a level of 31. If this
switch, or the value of the switch is omitted, a message level of

0 is assumed (i.e., all messages are output to the log file).

4-35

LINK-10 -726-

LINK-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/LOGLEVEL: 5

Do not output any message to the log file with a message
level less than or equal to 5.

_797- LINK-10 -

LINK-10

Switches

/MAP

Function

The /MAP switch is used to specify an output map file which
consists of the types of symbols requested by the user with the
/CONTENTS switch. The map file is useful to the user when he is
debugging his program because it lists the symbols used by his
program along with their values. Header information (e.g.,
relocation counters with their lengths and starting addresses) is

also included in the map.

Switch Format

file specification/MAP:keyword

File specification is in the form dev:file.ext [directory] and
specifies the device and name associated with the map file. The
default specification is DSK:name of main program.MAP[user's

defauit directory].

Keyword is one of the following:
END to produce a map file at the end of loading.

ERROR to produce a map file of the code 1loaded if a fatal
error occurs (i.e.,an error from which LINK-10 cannot
recover).

NOW to produce a map file at the time this keyword is seen.
The map contains all of the information up to and including
the last file loaded. Default libraries will not be searched
unless specified. This keyword is normally used during
debugging to determine how the load is progressing.

If the /MAP switch is not issued by the user, no map file will be"

4-37

LINK-10 -728-
LINK-10

Switches

generated. If the switch is given, but the keyword is omitted,

the keyword END is assumed.

Category of Switch

——————— — - - - - -

Output Switch. Also, /MAP:NOW is an immediate action switch.
Examples

DSKB :MYMAP/MAP

Specify a map file on DSKB: with the name MYMAP.

-729- LINK-10

LINK-10

Switches

/MAXCOR

Function

The /MAXCOR switch is used to specify the maximum amount of core
LINK~1l0 may use as its low segment while loading. LINK-=10 will
expand to this size if required and then will overflow to the
disk, rather than expandiqg in core, when it reaches the maximum
core size allowed. When LINK-10 must overflow to the disk, it
writes out part or all of the symbol area, the low code area,
and/of the high core area in order that loading can continue. If
the current amount of core used is greater than the size
specified by the user, the next time LINK-10 requests more core,
the size will decrease to the amount specified by the user and
the remaining code will overflow to the disk. If +the amount
specified by the user is less than the minimum amount required by
LINK—lO, he receives a warning message indicating the amount
required. He should then respecify the switch with a larger

argument.

Switch Format

/MAXCOR:n

n is a decimal number that represents the maximum low segment
core gize for LINK-10. An octal value ¢an be given by preceeding
it with a number sign (#). N is expressed in units of 1024 words
or 512 words (a page) py following the number with Kor P

;espéctively. If K or P is omitted, K (1024 words) is assumed.

LINK-10 -730-

LINK=~10

Switches

The default size is all of available user core. The minimum size

i.s dependent upon the code already loaded.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/MAXCOR: 30K

Allow LINK-10 to expand its 1low segment to 30K before
overflowing to the disk.

LINK-10

Switches

/MPSORT

-731- LINK-10

Function

The /MPSORT switch is used to arrange the symbol table for output

to the map file in the order most convenient to the user.

Switch Format

/MPSORT : keyword

Keyword is one of the following:

UNSORTED to print the symbols in the order in which they are
placed‘in the symbol table. This keyword is the default.

ALPHABETICAL td arrange the symbol table in alphabetical
order for each module or for each block in a
block-structured module.

NUMERICAL to arrange the symbol table in numerical order
according to the values of the symbols for each module.

NOTE
For the first release of
LINK=10, UNSORTED is the only
keyword — implemented. The
other keywords - listed above
are ignored and a warning
message is output.

Category of Switch

Delayed A¢tion Switch‘(refer to Paragraph 3.3.5)

Examples

MYMAP/MAP/MPSORT : UNSORTED

Specify a map file with thé name MYMAP and print the symbols
in the orxder in which they appear in the symbol table.

LINK-10

LINK-10

Switches

/MTAPE

Function

-732-

The /MTAPE switch allows the user to perform magnetic tape

functions such
given in an
immediately.

specification,

as

rewind, backspace, and skip. If this switch is

input specification, the action is

performed

However, when the switch is part of an output

the action requested is not

output device has been initialized.

Switch Format

/MTAPE: keyword
Keyword is one
MTWAT
MTREW
MTEQF
MTSKR
MTBSR
MTEOT
MTUNL
MTBLK
MTSKF
MTBSF

MTDEC

of
to
to
to
to
to
to
to
to
to
to

to

the following:

wait for spacing and I/0 to finish,
rewind the tape to load point.
write an EOF,

skip one record.

backspace one record,

space to the logical end-of-tape.
rewind and unload the tape.

write 3 inches of blank tape.
skip one file.

backspace one file.

initialize for Digital-compatible

tape.

performed until the

9-channel

-733- LINK-10
LINK-10

Switches

MTIND to initialize for industry-compatible 9-channel
tape.

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

MTAQ: /MTAPE : MTEOT/MAP

Output the map file to MTA@: after spacing to the logical end
of tape (i.e., to the first'frge block) .

4-43

LINK-10 | 73

LINK=10
Switches

/NOINITIAL

Function

The /NOINITIAL switch is used to clear LINK-10's initial global
symbol table. This initial global symbol table consists of the
.JBxxx symbols in JOBDAT. (Refer td DECsystem-10 Monitor Calls
for a description of JOBDAT.) This switch is normally employed
when the user is loading LINK-10 itself (in order to get the
latest copy of JOBDAT), when the user wants to load a private
copy of JOBDAT in order to use new values, or when the user is
loading a program (for the purpose of creating a core image file)
that will eventually run as an exec mode program (e.g., the
monitor, diagnostics, a bootstrap loader) . This switch must
appear before the first file specification in the command string
or else the initial LINK-10 global symbol table (JOBDAT) will be
loaded. If the /NOINITIAL switch is specified, JOBDAT will Dbe

searched when the default system libraries are searched.

Switch Format

/NOINITIAL
Tf this switch is omitted, LINK-10's internal JOBDAT area symbols

are used as the initial global symbol table.

-735- LINK-10
LINK-10

Switches

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

—— — o o -~ -

/NOINITIAL,COMMON,COMDEV,COMMOD,TOPSIO/SEARCH/GO

Load the monitor without LINK-10's initial global symbol
table. :

/NOINITIAL,DTBOOT,EDDT/GO

Load the exec mode program without LINK-10's initial global
symbol table.

4-45

LINK-10
LINK-10
Switches
/NOLOCAL

Function

-736-

The /NOLOCAL switch is used to load the programs without their

local symbols.

Switch Format

/NOLOCAL

This is the default action.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

/LOCAL FIRST,SECOND,THIRD,FOURTH/NOLOCAL

Load the programs FIRST, SECOND, and THIRD with their local

symbols
symbols.

and load the program FOURTH without its local

~737- LINK-10

LINK-10

Switches

/NOSEARCH

Functionv

The /NOSEARCH switch is used to turn off library search mode
(i.e., to always load theventire indicated file or files whether
or not the files are required). The files are not searched to
detérmine if they are needed. This switch is normally used after
a /SEARCH switch has set library search mode. This is the

defahlt action.

Switch Format

/NOSEARCH

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

PARTA,/SEARCH LIBMAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC

The files LIBMAC, LIBCBL, and LIBFOR are searched as
libraries. The files PARTA, PARTB, and PARTC are loaded in
their entirety. ‘

4=-47

LINK-10 -738-

LINK-10

Switches

/NOSTART

Function

The /NOSTART switch indicates to LINK-10 to ignore all start
addresses in the binary input programs. The start address for

the current program is not changed.

Switch Format

/NOSTART
If this switch is omitted and more than one start address is

encountered, the last one seen is used.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)
Examples

MAIN1,/NOSTART MAIN2,MAIN3

Start addresses are ignored in files MAIN2 and MAIN3.

-739- | LINK-10

LINK-10

Switches

/NOSYMBOL
Function

The /NOSfMBOL switch éignals LINK-10 not to construct a table of
thé symbols used ﬁy the useris program, This switch affects the
speed of‘loéding_in that LINK-10 is no£ required to spend time in
generéting a symbol table for the user. If this switch is givén,
the user is not able td obtain output syhbol files or output map
files contaihing symbol listings., A map file can be

obtained,ﬁowever, with header information only.

Switch Format

/NOSYMBOL

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

/NOSYM

4-49

LINK-10

-740-

LINK-10

Switches

/NOSYSLIB

Function

The /NOSYSLIB switch is used to inhibit the searching of one or
more of the system libraries upon completion of the loading
process. The system libraries required by the loaded modules are
usually searched at the end of the load in order to sdtisfy
undefined global requests. These libraries are LIBOL for COBOL
modules, FORLIB for FORTRAN-10 modules, LIB40 for F40 modules,

and ALGLIB for ALGOL modules.

Switch Format

/NOSYSLIB:keyword

/NOSYSLIB: (keyword, . . .,keyword)

Keyword is one or more of the following:

ALGOL to suppress the searching of ALGLIB.

BCPL to suppress the searching of BCPLIB (not supported
by DEC). o

COBOL to suppress the searching of LIBOL.

FORTRAN to suppress the searching of FORLIB.

F40 to suppress the searching of LIB40.

NELIAC to suppress the searching of LIBNEL (not supported
by DEC). ,

If the keyword is omitted, the searching of all system libraries

is suppressed.

~741- LINK-10

LINK-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)
Efamples
/NOSYSLIB:ALGOL/NOSYSLIB:COBOL

Do not search ALGLIB and LIBOL.

/NOSYSLIB

Do not search any system libraries.

LINK-10

-742-

LINK-10

Switches

/0TS

Function

The /OTS switch is used to indicate the segment into which the

appropriate object time system is to be loaded.

Switch Format

/0TS : keyword

Keyword is one of the following:
DEFAULT to load the object time system into the segment
specified by its code. FORTRAN, NELIAC, and ALGOL specify
the high segment. This keyword is used to reset to normal
conditions after specifying a /OTS switch with either the

HIGH or LOW keywords.

LOW to load the object time system into the low segment.

HIGH to load the object time system into the high segment.

If this switch, or the value of this switch, is omitted, the
default action 1is to load the object time system into the high
segment unless either:
Code already exists in the high segment and /SEGMENT:HIGH is
not set, or
The user has specified the /SEGMENT:LOW switch.
In these two cases, the object time system is loaded into the low

segment,

-743- LINK-10

LINK=-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)
Examples

FILA.REL/SYSLIB/OTS:HIGH

Load the required object time system into the high segment.

LINK-10 -744-

LINK=-10

Switches

/PATCHSIZE

Function

The /PATCHSIZE switch is used to allocate space between the top
of the loaded code and the bottom of the symbol table. This
space is then used for new symbols defined by the user with DDT
and/or for patching. Note that when the user defines symbols
with DDT, each symbol will occupy two words. The space is
allocated in either the high or low segment, depending upon the
placement of the symbol table as specified with the /SYMSEG
switch, The default is to place the symbol table in the low

segment.

Switch Format

/PATCHSIZE:n

n is a decimal number representing the number of words to be
allocated as patching space. An octal value can be given by
preceding it with a number sign (#). A global symbol, PAT.., is

defined to be equal to the first location in the patching system.

If this switch, or the value of this switch, 1is omitted, the

default allocation is 64 (decimal) or 100 (octal) words.

4-54

~745- LINK-10

LINK-10

Switches

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SYMSEG : HIGH/PATCHSIZE: 200

Load the symbol table ihto~the high segﬁent and allocate 200

words between the loaded code and the symbol table.

LINK-10

~-746-

LINK~10

Switches

/REQUIRE

Function

The /REQUIRE switch is used to generate global requests for the
indicated symbols. Thus, this switch can be used to load library
modules out of their normal loading sequence or to force the

loading of modules for overlays.

The /REQUIRE switch is used to load a module by specifyin§ one or
more of its library search symbols (entry points), whereas the
/INCLUDE switch is used to load a module by specifying its name.
Thus, the /REQUIRE switch is useful when the user knows the
function he wants loaded (e.g., SQRT), but does not know the name

of the module containing . that function.

Switch Format

/REQUIRE :symbol
/REQUIRE: (symbol, . . .,Symbol)
Symbol is the SIXBIT symbol name for which the user wants a

global request generated.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/REQUIRE : NAME

Generate a global request for the symbol called NAME.

747 LINK-10

LINK-10

Switches

/REWIND

Function

The /REWIND switch is used to rewind the current input or output
device. The device associated with this switch must be a DECtape
or magnetic tape. If the device is not a tape device, the switch

is ignored.

Switch Format

/REWIND

Category of Switch
Device Switch (refer to Péragraph 3.3.1)
Examples

,/REWIND MTAO:,

4-57

LINK-10

-748-

LINK-10

Switches

/RUNCOR

Function

The /RUNCOR switch is used to specify the amount of core to be
assigned to the low segment of the program when it is executed.
The effect of this switch is identical to that produced when the
program is run by the system run commands (R or RUN) with the

given core argument.

Switch Format

/RUNCOR: 1

n is a decimal number that represents the amount of core to be
used as the initial core size for the program when obtained with
the GET system command. An octal value can be given by
preceeding it with a number sign (#). N is expressed in units of
1024 words or 512 words (a page) by following the number with K
or P respectively. If K or P is omitted, K (1024 words) is
assumed. If n is omitted or is less than the amount required,

the number of blocks required by the core image area is assumed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

/RUNCOR: 50P

-749- LINK-10

LINK=-10

Switches

/RUNAME

Function

The /RUNAME switch is used to assign the name to the program that
is to be used while the program is running. This name is stored
in a job-associated table in the Monitor and is used by the
SYSTAT program and the VERSION system command. This switch

affects high segment programs only.

Switch Format

/RUNAME : symbol

Symbol is the name to be assigned to the program. Only the first
six characters specified are used. If this switch is omitted,
the default name is the name of the module with the last start
address. If there is no module containing a start address, the

name used is nnnLNK, where nnn is the user's job number.

Categofy of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/RUNAME : PRIV, MYPROG/SSAVE

Save the file with the name MYPROG (i.e., MYPROG.SHR), but
the program is run with the name PRIV,

LINK-10

-750-

LINK-10

Switches

/SAVE

Function

The /SAVE switch is used to define an output save file which will
contain the core image generated by LINK-iO; The core image is
saved as one or two files: a low segment file and/or a high
segment file, After the core image is saved on the specified
output device, it can later be brought into core and executed as
a non-sharable program (by using the RUN or GET system commands)

without rerunning LINK-10.

Before writing low segment files (i.e., files with extensions
.SAV or .LOW), LINK-10 compresses the core image by eliminating
all zero blocks., High segment files are not compressed. This
action is known as zero-éompression and is used to save space on
the storage device. The resulting zero-compressed file is, in

essence, identical to the one produced by the SAVE system

command.

Switch Format

file specification/SAVE:n
File specification is in the form dev:fileldirectory] and
specifies the device and name associated with the save file. The
default specification is:

DSK:name of main program. [user's default directory]

751~ LINK-10

LINK=10

Switches

User-supplied extensions are ignored and the extension given to
the file depends on the number of segments saved. If there is
only one éegment, the extension .SAV is used. If there are two
segments, the exﬁensiOn «LOW is used for the low segment and .HGH

for the high segment.

N is a decimal number that fepreaents the amount of core (sum of
high and 1low segmehts) in which the program is later to be run.
An octal value can be given by preceding it with a number sign
(#). ﬁ is expressed in units of 1024 words or 512 words (a page)
by following the nﬁmber with K or P respectively. If Kor P is

omitted, K (1024 words) is assumed.

If the /SAVE is not used, a save file will not be generated. If
the switch is given but the core argument is omitted, the minimum

core required by the core image is used.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Examples

DTA3:MYPROG/SAVE: 4K=

Define a save file on DTA3: with the name MYPROG, The
program will be run in 4K.

LINK-10 -752-

LINK=10

Switches

/SEARCH

Function

The /SEARCH switch is used to turn on library search mode (i.e.,
to search specified files in order to load only thcse modules of
the file that are required to satisfy undefined global requests).
The user gives this switch to search either library files that he
may have created or ones that are not part of the required system
libraries. The /NOSEARCH switch is used to turn off library
search mode. The required system libraries are still searched
unless the user has inhibited the searching with the /NOSYSLIB

switch.
Switch Format
/SEARCH

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

PARTA,/SEARCH LIBMAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC

The files LIBMAC, LIBCBL, and LIBFOR are searched as
libraries. The files PARTA, PARTB, and PARTC are loaded in
their entirety.

-753- LINK-10

LINK=-10

Switches
/SEGMENT
Function

The /SEGMENT switch is used to indicate to LINK-10 the segment

into which to load the input modules.

Switch Format

/SEGMENT : keyword

Keyword is one of the following:
DEFAULT to follow the specifications in the program. The
typical case is to load pure code into the high segment and
impure code into the low segment. This keyword is wused to
reset to normal conditions after specifying a /SEGMENT
switch with either the HIGH or LOW keywords.
LOW to load code into the low segment.

HIGH to load code into the high segment, even if the code is
impure.

If this switch, or the value of the switch, 1s omitted, high
segment code is loaded into the high segment and low segment code

into the low segnient.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

/SEGMENT : LOW TESTPRG,ANSWER}ROUTIN/SEGMENT:HIGH,

Load the modules TESTPRG and ANSWER into the low segmerit and
the module ROUTIN into the high segment.

\

4-63

LINK-10

-754-

LINK-10

Switches

/SET

Function

The /SET switch is used to set the value of a relocation counter
to a specified number. Although LINK=10 will handle many
relocation counters, in the first release only two relocation
counters are implemented: the counter for the low segment (.LOW.)
which begins at zero, and the counter for the high segment
(.HIGH.) which begins at location 400000 or the end of the low
segment, whichever is greater. Other counters can be set, but

they are currently not used by LINK=-10.

Switch Format

/SET:symbol:n

Symbol is the name of the relocation counter.

i is an octal number representing the value of the counter. For
the first release of LINK-10, only two relocation counters can

usefully be given, .LOW. and HIGH.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

.SET:.LOW,.:1000,/SET: .HIGH.:400000

4-64

~755- LINK-10

LINK-10

Switches

/SEVERITY

Function

The /SEVERITY switch specifies to LINK-10 the level at which
messages are to be considered fatal. Associated with each
messa?e‘is é decimal number from 0 to 31 called the severity
level. with this switch, the user can specify that messages with
a severity level less than or equal to a specific number are not
to‘ cause his job to be terminated. Any message with a severity

level above the specified number will cause his job to abort.

Switch Eormat

/SEVERITY:n

n_is’a decimal number from 0 to 30. LINK-10 messages with a
severity level above 'n will cause a user's job to be aborted.
Even though the highest severity level is 31, the user cannot
indicate that a ‘message with this severity 1evelv is to be
considered non-fatal. If +this switch, or the value of the
switch, is omitted, a fatal error for a timesharing job is one
whose seve:ity level is greater than 24 (decimal), and for a

batch job, one whose level is greater than 16 (decimal).

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SEVERITY : 30

4-65

LINK-10 -756-

LINK-10

Switches

/SKIpP

Function

The /SKIP switch is used to space forward over the specified
number of input or output files. This switch is implemented for
magnetic tape only and is ignored if it is given for any other

device.

Switch Format

/SKIP:n
n is a decimal number representing the number of files to skip

over,

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

/SKIP:4 MTA3:

-757- LINK-10

LINK-10

Switches

/SSAVE

Function

The /SSAVE switch is used to define an output save file which
will contain the core image produced b§ LINK-10. It is similar
to the /SAVE switch except that the high segment will be sharable
when it is brought into core and executed. The saved file
produced by this switch is the same as the one produced by the

SSAVE system command. Refer to the /SAVE switch.

Switch Format

file specification/SSAVE:n

Arguments are the same as for the /SAVE switch except for the
following difference: when there are two segments, the extension
.LOW is assumed for the low segment and .SHR for the high

segment.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Examples

DTA:SHRPRG/SSAVE,

Define a sharable save file with the name SHRPRG on the
user's DECtape. The minimum core required by the core image
is assigned.

4-67

LINK-10 -758-

LINK-10

Switches

/START

Function

The /START switch is used to specify the start address of the
loaded program or to allow a pProgram to specify its own start
address. When a start address is specified, all subsequent start

addresses are ignored. This is the default action.

Switch Format

/START:n
n is either of the following:

an octal number preceded by a number sign (#) representing
the starting address of the program, or

a SIXBIT global symbol whose value is the start address.
The global symbol specified must be defined. ,

If n is omitted, LINK~-10 does not change the current start
address but will accept all start addresses from the following
modules (i.e., the action is to turn off a /NOSTART switch

setting),

Category of Swit:ch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

+MAINPG/START , /NOSTART PROG1,PROG2,

Use the start address in MAINPG and ignore the start
addresses in PROG1l and PROG2.

-759- LINK-10

LINK-10

Switches

/SYMBOL

Function

The /SYMBOL swiﬁch is used to specify an output syhbol file which
will consist of local symbols (if loaded), information stored in
the local symbol table, such as module names and lengths, and

global symbols sorted for DDT.

Via keywords, the user can specify that the symbol file is to be
either in radix-50 representation or in triplet format. These
two symbol table formats can be distinguished from each other in

several ways:

1. The first word of the radix-50 symbol table is always
negative. The first word of the triplet symbol table is

always zero.

2. The listing of each radix=-50 symbol requires two words;
the first word is the symbol name in radix-50

representation, and the second word is the value.

3. The listing of each triplet symbol requires three words;
the first one contains flags, the second is the symbol

name in SIXBIT, and the third is the value.

This switch is useful wheh DDT is not 1loaded with the wuser's
program because it guarantees that the symbols will be available.
Note that if the user issues the /NOSYMBOL switch in the command

string, he is not able to obtain the output symbol file.

4-69

LINK-10

-760-

LINK=-10

Switches

Switch Format

file specification/SYMBOL:keyword

File specification is in the form dev:file[directory] and
specifies the device and name associated with the symbol file.
The default specification is

DSK:name of main program .SYM[user's default directory])

If there is no main program, the filename nnnLNK, where nnn is

the user's job number, is used.

Keyword is one of the following:
RADIX-50 to obtain the symbols in radix-50 representation.,

TRIPLET to obtain the symbols in triplet format.

If the /SYMBOL switch is not issued by the user, no output symbol
file will be generated. If the keyword is omitted, RADIX-50 is

assumed.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

DSKB:SYMFIL([20,235)/SYMBOL,

Define a symbol file with the name SYMFIL on the [20,235]
?rea of DSKB:. The symbols will be output in the RADIX~50
ormat.

4-70

-761- LINK-10

LINK~10

Switches

/SYMSEG

Function

The /SYMSEG switch causes symbols to be loaded with the program
and indicates the segment into which the symbol table is to be
placed. With this switch, the user insufes that his program when
loaded with DDT will run in as much core as is available without
overwriting the symbol table. Loading DDT or setting the JOBDAT
loc#tion «JBDDT to a non-zero value also causes the symbols to be

loaded.

Switch Format

/SYMSEG:keyword

Keyword is one of the following:
DEFAULT to move the symbol table from its current position
at the top of core to the first free location after the
patching space. The JOBDAT location .JBFF, which points to
the first free location, is adjusted to point to the first
free location after the symbol table. This keyword is used
to reset' to ‘the normal action after invoking the /SYMSEG
switch with either the HIGH or LOW keywords.
HIGH to place the symbol table into the high segment.

LOW to place the symbol table into the low segment,

If the switch, or the valﬁe of the switch, is omitted, the symbol
table is moved from its current position in the segment to the
first free location in that segment. The first free location is
determined after the allocatijon of space (default allocation is
64 decimal or LOO octal words) for patching of symbols. A global

symbol, PAT.., is defined to be equal to the first location in

4-71

LINK-10 -762-

"LINK=~10

Switches

the patching space.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)
Examples

/SYMSEG:HIGH

4-72

-763- LINK-10

LINK-10

Switches

/SYSLIB

Function

The /SYSLIB switch forces the system libraries to be searched in
order to satisfy any undefined global requests. LINK-10 examines
the main program first and, depending on the compiler used,
searches the appropriate 1library (e.g., an ALGOL main program
causes ALGLIB to be loaded). Then LINK-1l0 looks at any remaining

programs and searches the relevant libraries.

A system library is not automatically searched unless its
corresponding compiler-produced code has been loaded. This means
that a user must explicitly request a system library when he is
not loading the corresponding compiler-produced code for that
library. For example, if the user is 1loading only MACRO-10
programs and he wants the LIB40 library searched, he must specify
it in the switch format; LIB40 is not automatically searched

unless F40 code has been loaded.

The normal action taken by LINK-10 is to search all required
libraries at the end of the loading procedure; however, this
switch without any keywords causes the libraries to be searched
at the time the switch is given. If keywords are specified on
the switch, the searcing of the indicated libraries occurs at the
end of the loading procedure or on a subsequent /SYSLIB switch

with no arguments, whichever occurs first.

4-73

LINK-10 -764-

LINK-10

Switches

Switch Format

/SYSLIB:keyword
/SYSLIB: (keyword, . . . ,keyword)

Keyword is one of the following:

ALGOL to search ALGLIB

BCPL to search BCPLIB (not supported by DEC)

COBOL to search LIBOL

FORTRAN to search FORLIB ’

F40 to search LIB40 or FORLIB. The 1library searched

depends upon the /FOROTS or /FORSE switch, if
given, or on .the default FORTRAN library, which is
normally FORLIB, if neither switch is given. ‘
NELIAC to search LIBNEL (not supported by DEC)
If the keyword is omitted, only the libraries for which
corresponding compiler-produced code has been loaded will be

searched.

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)
Examples

/SYSLIB

4-74

LINK~10

Switches

/SYSORT

Function

. -7€5-

LINK-10

The /SYSORT switch is used to arrange the symbol table for output

to the symbol file into the order most convenient to the user.

Switch Format

/SYSORT :keyword

Keyword is one of the following:

UNSORTED to leave the symbols in the order in which they are
placed in the symbol table. This is the default.

ALPHABETICAL to arrange the symbol table in alphabetical
order for each module or for each block in a
block-structured module. :

NUMERICAL to arrange the symbol table in numerical order for
each module according to the values of the symbols.

NOTE

For the first release of LINK-10,
UNSORTED is the only keyword
implemented. The other keywords
described above are accepted but
LINK-10's action is the same as
that taken with the UNSORTED
keyword.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SYSORT s UNSORTED

4-75

LINK-10 -766-

LINK-10

Switches

/TEST

Function

The /TEST switch is used to load a debugging program and to
specify execution of the user's program. Thus, it is similar to
the /DEBUG switch except that it specifies execution of the
user's program instead of the debugging program. This switch
does not cause termination of the 1loading; the /GO switch is

required to terminate laoding.

Switch Format

/TEST:keyword

Keyword is one of the following: COBDDT, COBOL, DDT, FORTRAN,
MACRO, MANTIS. When a compiler or the assembler is specified,
the debugging aid associated with that translator is used (e.g.,

if MACRO is specified, the debugging program DDT is loaded).

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

(MAIN1,/TEST:COBOL DATPRG,DATA,TEST,

-767- LINK-10

LINK-10

Switches

/UNDEFINED

Function

The /UNDEEINED switch is used to type all undefined global
requests on the user's terminal. The user can employ this switch
to determine the undefined 'symbols and then use the /DEFINE
switch to satiéfy the :equests for these symbols. Thus, the user
éan interactively satisfy reéuegts before LINK-10 terminates the
load with undefined symbols. |

Switch Format

/UNDEFINED

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

* /UNDEF)
1 UNDEFINED SYMBOL
NAME 400100

400100 is a word in the chain of fixups depending on the
symbol.

4-77

LINK-10 -768-

LINK=10

Switches

/UNLOAD

Function

The /UNLOAD switch is used to rewind and unload the current input
or output device. The device associated with this switch must be
a DECtape or a magnetic tape; the switch is ignored for non-tape
devices.

Switch Format

/UNLOAD

Category of Switch

Device Switch; however, the action of this switch is always
performed after the file is processed regardless of its position
in the specification (refer to Paragraph 3.3.1)

Examples

»/REWIND DTA3:FILNAM/UNLOAD,

4-78

-769- LINK-10

LINK=-10

Switches

/VALUE

Function

The /VALUE switch allows the user to interac;ively type in the
names of global symbols in oxrder to find out their current
values. The output given to the user consists of the requested
symbol, its current Qalqe, and its status. The status can be one
of: DEFINED (i.e., in the symbol table with its final value),
UNKNOWN (i.e., not in the symbél table), UNDEFINED (i.e., in the
symbol table’as undefined), COMMON (i.e., in thé symbol table and
defined as COMMON).

Switch Format

/VALUE : symbol
/VALUE: (symbol, ., . .,symbol)
Symbol is the name of the symbol in ASCII.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)
*/VALUE: (TAG1,START))

TAGl 400010 DEFINED

START 0 UNDEFINED

The symbol TAGl is defined to be the value 400010, and the
symbol START is undefined.

4-79

LINK-10 -770-

LINK=-10

Switches

/VERBOSITY
Function

The /VERBOSITY switch gives the user control over the amount of
text transmitted to both his terminal and his log file whenever
he receives a message from LINK-10. Associated with each message
is a verbosity indicating the amount of text contained in the
message., A verbosity of SHORT indicates that the message
consists only of a 3-letter code (e.g., STC). A message with a
verbosity of MEDIUM consists of the 3-letter code and one line
that explains the code (e.g., STC Symbol Table Completed). A
message with a verbosity of LONG consists of the 3-letter code,
the one line of explanation, plus a more detailed explanation of
the message. Thus, the user can specify via this switch the

amount of explanation output to his terminal and log file.

LINK-10 has the folléwing feature to aid users receiving fatal
messages (i.e., ones preceded by ?). If the user receives a
fatal message but has not indicated that he wants to- see the
detailed explanations (i.e., verbosity LONG),.he can give the
CONTINUE system command after he receives the message. LINK=-10
then types out the remainder of the message (if there is more
information available) on the user's terminal. This additional
information is not included in the user's log file nor is the job

continuable after the message is output.

4-80

-771- LINK-10

LINK=-10

Switches

Switch Format

/VERBOSITY : keyword
Keyword is one of the following:
SHORT 3=letter code only.
MEDIUM 3-letter code and a one=line explanation,

LONG 3~letter code, a one-line explanation, and a
detailed explanation.

The default value is MEDIUM if this switch, or the keyword to the

switch, is omitted.

1f the user specifies a verbosity greater than the one available
for the message, the specified keyword is ignored for that
message and only the available text is output. For example, if
the user specifies MEDIUM as the verbosity but the message only
has a 3-letter code available (i.e., SHORT), only the 3-letter
code awill be output because there is no additional information

available for that message.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)
Examples

/VER: SHORT

4-81

LINK-10

-772-

LINK-10

Switches

/XPN

Function

The /XPN switch is used to create or save on the disk the
expanded core image file (XPN file) of the low segment. If the
program has not been loaded onto the disk, this switch causes the
file to be created with the name specified by the user. If the
program has been loaded onto the disk, the file already exists,
but with the name nhnLLC.TMP where nnn is the user's job number.
Since this extension indicates a temporary file, the expanded
file is normally deleted upon the completion of LINK-10's
processing. Thus, in.this case, the /XPN switch is used to
rename the file with the .XPN extension, so that it will not be

deleted.

Switch Format

file specification /XPN
File specification is in the form dev:file[directory] and
specifies the device and name to be associated with the expanded

core image file. The default specification is
DSK:name of main program.XPN[user's default directory]

If there is no main program, the filename nnnLNK, where nnn is

the user's job number, is used.

~773- LINK-10

LINK-10

Switches

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Example

DSKC:XPNF1L[20,270]/XPN

#

Save the expanded core image file on the {20,270] area of

DSKC: and with the name XPNFIL.

4-83

LINK-10

LINK-

=774~

1o

Switches

/ZERQ

Function

- — o -

The /ZERO switch is used to clear the directory of the éssociated
DECtape. The directory is always cleared before the file is
writfen, regardless of the switch's position in the current
specification. This switch is ignored for all non-DECtape

devices.

Switch Format

file specification/ZERO

File specification is an output specification.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)
Examples

DTA3:MYPROG/SAVE/ZERO

4-84

-775- LINK-10

LINK=10

Messages

CHAPTER 5

LINK-10 MESSAGES

The following table of LINK-IO messages consists of four columns:
CODE, LVL, SEV, and MESSAGE. The leftmost column (CODE) contains a
3=-letter code, which represents a tetse, abbreviated form of the
message. The user can indicate, via the /VERBOSITY:SHORT switch, that
he desires only this code to be output whenever he receives a LINK-10
message. Refer to the /VERBOSITY switch in Chapter 4 for additional

information.

The second column of each message (LVL) indicates the message level
associated , with that message. The message level is the factor that
determines if the message is to be output. Normally, informative
messages are suppressed. to the user's terminal and all messages are
output to the log file,rif the user has designated one. However, the
user can override this action with the /ERRORLEVEL and /LOGLEVEL
switches. These switches accept a decimal number and indicate to
LINK—lO that messages with a message level less than or equal to the
specified number are not to be output to the user's terminal
(/ERRORLEVELi or to his log file (/LOGLEVEL); Messages with a message
level greater than the specified number will be output. The two
switches are independent if the user's log file is not being output to
his terminal. That is, he can have one set of messages printed on his
terminal and another set listed in his log file. When the device for
the log file is the user's terminal, only one set of messages is

output. This set is the one generated by the lower argument in either

5-1

LINK-10 - -776-

LINK-10

Messages

the /ERRORLEVEL or /LOGLEVEL switch.
There are currently representations for three message levels:

$I message level 1 kinformative)
tW message level 10 (warning)

%F message level 31 (fatal)

Refer to the /ERRORLEVEL and /LOGLEVEL switches in Chapter 4 for

additional information.

The third column (SEV) contains the severity 1level associated with
each message, The severity 1level 1is the point at which LINK-10
considers a message to be fatal (i.e., one which will terminate the
load). The predefined LINK-10 severity levels can be overridden by
the user via the /SEVERITY switch. This switch accepts a decimal
number and indicates to LINK-10 that messages with a severity level
less than or equal to the specified number are not to be considered
fatal. Messages with a severity 1level greater than the specified
number will cause the load to be terminated. (Note that messages with
a severity level of 31 are always fatal and that the user cannot
override the action taken with these messages.) If the user does not
give a /SEVERITY switch, or does not give an argument to the switch, a
severity level of 24 iz considered fatal for a timesharing job and a

severity level of 16 is considered fatal for a batch job.

777- LINK-10

LINK-10

Messages

Currently the representations. for the severity levels are as follows:

&I sé?érity level 1. The message ié enclosed in square brackets
{(informative).

W se?eiity level 10. The ﬁessage is pfecédéd by a percent sign
(wa:ning). v .

3E severity level 30. The meSsagé:ié §receded by a percent sign
and followed by a line requesting the user to re-edit the
current file specification, if he wishes. This option is
available only to a time-slaring user (editing).
F éeverity,level 31. The message is preceded by a question
mark (fatal). '
Refer to the /SEVERITY switch in Chapter 4 for additional information.

The riéhtmost,colﬁmn (MESSAGE) contains a more detailed explanation of
the meséagé than the one éppearing in the CODE column. This message,
élong with the thrée-letﬁer code; is normally output. However, the
user carn override Eﬂis action with the /VERBOSITY switch. Refer to

the /VERBOSITY switch in Chapter 4 for further information.

LINK-10

LINK~10

Messages

CODE

AZW

CEF

CLF

LVL

F

8F

SF

I

aF

SEV

F

F

3F

$I

&F

-778-

MESSAGE

ADDRESS NOT IN CORE (1)

LINK-10 expected a particular user address to
be in core, but it is not there. This is a
LINK-10 internal error.

ALLOCATING ZERO WORDS (1)

LINK-10's space allocator was called with a
request for zero words. This is an internal
error in LINK-10,

CORE EXPANSION FAILED (1)

All attempts to obtain more core, including
writing files onto disk, have failed.

CLOSING LOG FILE, CONTINUING ON [file
specification]

This message occurs when the user changes the
device on which the log file is being
written. The log file is closed on the first
device and the remainder of the file is
written on the second device.

COBOL MODULE MUST BE LOADED FIRST

The COBOL~produced file must be the first
file loaded when 1loading COBOL modules.
COBDDT, the COBOL debugging program, or any
other modules, such as a MACRO routine,
cannot be the first file in the command
string. The user should begin loading again
and place the COBOL main Program or routine
as the first file in the command string.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC.,

LINK-10

Messages

CODE

CNW

CSF

DNS

LVL

F

L2

$I

SEV

§F

31

31

-779- LINK-10

MESSAGE

CODE NOT YET WRITTEN AT ([label] (1)

The user attempted a feature that is not yet
implemented. This 1is an internal error in
LINK=10. '

CREATING SAV FILE

LINK~10 is generating the requested save file
by running the core image through a zero
compressor routine in order to produce a SAV
format file.

DEVICE NOT SPECIFIED FOR /switch

A device switch, such as /REWIND or
/BACKSPACE, has been given, but there is no
device to be associated with it, The switch
is ignored. This occurs when the user does
not give a device name in the specification
containing the switch or has not specified a
device name in the current line, (Remember
that devices are c¢leared at the end of the
line.) LINK-10's default device DSK does not
apply to device switches nor does a device
specified in a /DEFAULT switch apply. The
user should respecify the command line and
include the appropriate device name with the
switch,

(1) This message is not expected to occur. If it does, please notify
your Software. Specialist or send a Software Performance Report (SPR)

to DEC.

LINK-10

LINK~-10
Messages

CODE LVL
DRC W
DSO $F
DUZ &F
EID 8F

SEV

W

F

sF

F

-780-

MESSAGE

DECREASING RELOCATION COUNTER [syﬁbol] FROM
[value] TO [value]

The user is reducing the size of ‘an already
defined relocation counter via the /SET
switch. The new value is accepted. The user
should be extremely careful when he does this
because code previously loaded under the old
relocation counter may be. overwritten. This
practice of reducing counters is dangerous
unless the user knows exactly where modules
are loaded.

DATA STATEMENT OVERFLOW (1)

Incorrect code has been generated by the F40
compiler.

DECREASING UNDEFINED SYMBOL COUNT BELOW 3ZERO
(1)

On an internal check of the counter for
undefined symbols, LINK=10 determined that
the counter was negative. This is an
internal error.

ERROR ON INPUT DEVICE STATUS (xxxxxx) FOR
[file specification]

A read error has occurred on the input

device. Use of the device is terminated and

the file is released. The status is

represented by the right half of the file
status word. Refer to DECsystem=10 Monitor

galls for the explanation of the file status
its.,

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC.

5=6

LINK=10

Messages

CODE

ELC
EHC
ELS
EFX
\ EGS

EMS

ESN

EXP

LVL

gF

31

F

31

SEV

sF

31

F

I

-781- LINK-10

MESSAGE
LC

; HC

ERROR CREATING OVERFLOW FILE FOR AREA { LS
FX

G

LINK~-10 could not make the named file on the
disk (LC=user's low segment code, HC=user's
high segment. code, LS=local symbol table,
FX=fixup area, and GS=global symbol table).
The user could be over quota, or the disk
could be full or have errors.

END OF MAP SEGMENT

Notification that the LINK-10 module LNKMAP
has completed the writing of the map file.
The map is now closed.

EXTENDED SYMBOL NOT EXPECTED (1)

The code to handle symbols 1longer than six
characters has not been completed. This code
will be available in a future release.

EXPANDING LOW SEGMENT TO [n] K

LINK-10 needs more core and is expanding to
the specified amount. 1In future loads of the
same programs, the user can run LINK-=10 more
efficiently by requesting this amount of core
at the beginning of the load with the /CORE
switch,

(1) This message is not expected to occur. If it does, please notify
Specialist or send a Software Performance Report (SPR)

your Software

to DEC.

LINK-10

LINK-10

Messages

CODE

EXS

FCD

FCF

FIA

LVL

31

sF

%I

8F

SEV

3I

3F

$I

$F

-782-

MESSAGE

EXIT SEGMENT

LINK-10 is entering the completion stages of
the loading process. These stages include
the creation of save and symbol files and, if
required, the execution of the core image.

FORTRAN CONFUSED ABOUT DATA STATEMENTS (1)

Incorrect code was generated by the F40

compiler for a data statement in the form
DATA A(I),I=1,4/1,2,3,4/

as opposed to a data statement in the form
DATA (A(I),I=1,4)/1,2,3,4/

FINAL CODE FIXUPS

LINK=-10 is now reading the low and/or high
segment overflow files backwards in order to
do all remaining code fixups. This process
may cause considerable disk overhead. Note
that the message occurs only if the load was
too large to fit entirely in core,

CANNOT MIX KI10 AND KAl0 FORTRAN-10 COMPILED
CODE ,

The FORTRAN-10 compiler generates different
output for the KAl0 and the KI1(Q processors
(e.g., double precision code) and thHe user
cannot load this mixture. He should decide
which processor he wants to wuse and then
recompile the appropriate programs.

(1) This message is not expected to occur. If it does, please notify
Specialist or send a Software Performance Report (SPR)

your Software

to DEC.

-783- LINK-10

LINK-10

Messages

CODE LV, SEV MESSAGE

FIN $I I LINK=10 FINISHED

LINK-10 has completed its task of loading the
user's program and other required programs.
Control is either returned to the monitor or
given to the user's program for execution.

FON SF 8F CANNOT MIX F40 AND FORTRAN-10 COMPILED CODE

Output from the F40 and FORTRAN-10 compilers
cannot be used together in the same load.
The user should decide which compiler he
wants and then recompile the. appropriate
program with that compiler.

(FEE’ $F sF NTER ERROR (0) ILLEGAL FILENAME FOR
FRE RENAME [file specification])

One of the following conditions occurred:
l. ' The filename given was illegal.
2. When updating a file, the filename
given did not match the file to be
updated.

3. The RENAME UUO following a LOOKUP
UUo failed.

(FLE) <LOOKUP'
GSE SF SE GETSEG/ ERROR (0) FILE WAS NOT FOUND

The file requested by the user was not found.
The user should respecify the correct
filename.

LINK-10
LINK~-10

Messages

CODE LVL

FEE“\

FLE 3F
FRE

GSE

FEE
FLE 3F

.GSE
FRE F

FEE
FLE 8F

GSE

FEE\\

FLE F
FRE

GSE

SEV

3E

$E

$E

sF

&F

-784-

MESSAGE

ENTER

LOOKUP\\ ERROR (1) NO DIRECTORY FOR

RENAME PROJECT-PROGRAMMER NUMBER FOR [file
GETSEG specification]

The UFD does not exist on the named file
structure, or the project-programmer number
given was incorrect.

ENTER

LOOKUP ERROR (2) PROTECTION FAILURE FOR
RENAME [file specification]

GETSEG

The user does not have the correct privileges
to access the named file.

ENTER ERROR (2) DIRECTORY FULL

The directory on the DECtape has no room for
the file.

ENTER

LOOKUP ERROR (3) FILE WAS BEING MODIFIED
RENAME FOR [file specification]

GETSEG,

Another user is currently modifying the named
file. The user should try accessing the file
later.

ENTER
LOOKUP ERROR (4) RENAME FILENAME
RENAME ALREADY EXISTS FOR [file

_GETSEG specification] (1)

The specified filename already exists, or a
different filename was given on the ENTER UUO
following a LOOKUP UUO.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC,

5-10

-785- LINK-10

LINK-10

Messages .

CODE LVL SEV MESSAGE

FEE : ENTER) } o

FLE SF sF LOOKUP ERROR (5) ILLEGAL SEQUENCE OF

FRE : RENAME UUOS FOR [file specification] (1)

GSE GETSEG .
The user specified an 4illegal sequence of
monitor calls, UUOs, (e.g., a RENAME without
a preceding LOOKUP or ENTER, or a LOOKUP
after an ENTER).

FEE ENTER _ . .

FLE $F $F 'LOOKUP ERROR (6) BAD UFD OR BAD RIB

FRE RENAME FOR [file specification] (1)

.GSE GETSEG. .)
One of the following conditions occurred:

l. Transmission, device, or data error
occurred while attempting to read
the UFD or RIB.

2. A hardware-detected device or data
error was detected while reading the
UFD RIB or UFD data block.

3. A software-detected data
inconsistency error was detected
while reading the UFD RIB or file

_ RIB.
('FEE ENTER , .
FLE \ SF $F LOOKUP ERROR (7) NOT A SAV FILE FOR
FRE RENAME [file specification] (1)
GSE - GETSEG

The named file is not a core image file.
This message can never occur and is included
only for completeness of the LOOKUP, ENTER,
and RENAME error codes.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

LINK-10

LINK=-10

Messages

CODE LVL SEV

FEE .
FLE F SF

GSE

EE
FLE F F

GSE

EE
FLE RF %F

GSE

-786-

MESSAGE

ENTER C
LOOKUP ERROR (10) NOT ENOUGH CORE FOR
RENAME [file specification] (1}
GETSEG

The system cannot supply enough core to use
as buffers or to read in a program. This
message can never occur and is included only
for completeness of the LOOKUP, ENTER, and
RENAME error codes.

ENTER :

LOOKUP ERROR (11) DEVICE NOT AVAILABLE FOR
RENAME [file specification] (1)

GETSEG,

The device indicated by the user is currently
not available. This message can never occur
and is included only for completeness of the
LOOKUP, ENTER and RENAME error codes,

ENTER

LOOKUP ERROR (12) NO SUCH DEVICE FOR
RENAME [file specification] (1)
GETSEG

The device specified by the user does not
exist. This message can never occur and is
included only for completeness of the LOOKUP,
ENTER, and RENAME error codes.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC.

5-12

LINK=-10

Messages

CODE LVL SEV

FEE
FLE P

GSE

FEE
FLE §F
FRE
GSE

FEE
FLE SF

GSE

EE
FLE \ sF
FRE
GSE

(1) This message is not expected to occur.

sF

8F

3F

-787- LINK-10

MESSAGE

ENTER

LOOKRUP ERROR (13) NOT TWQO RELOC REG
RENAME CAPABILITY FOR [file specification]

GETSEG (1)

The machine does not have a two-register
relocation = capability. This message can
pever occur and 1is included only for
completeness of the LOOKUP, ENTER and RENAME
error. codes.

ENTER

LOOKUP ERROR (14) NO ROOM OR QUOTA
RENAME EXCEEDED FOR [file specification]
GETSEG

There is no room on the file structure for
the named file, or the user's quota on the
file structure would be exceeded if the file
were placed on the structure.

ENTER

LOOKUP ERROR (15) WRITE LOCK ERROR
RENAME FOR [file specification]
GETSEG.

The user cannot write on the specified device
because it is write-locked.

ENTER

LOOKUP ERROR (16) NOT ENOUGH MONITOR
RENAME TABLE SPACE FOR [file specification]
GETSEG

There is not enough table space in the
monitor's (FILSER) 4-word blocks for the
specified file. The user should try running
the job at a later time,

If it does, please notify

your Software Specialist or send a Software Performance Report (SPR)

to DEC.

5-13

LINK-10 -788-

LINK-10

Messages

CODE LVL SEV MESSAGE

FEE ENTER

FLE W W LOOKUP ERROR (17) PARTIAL ALLOCATION

FRE | RENAME (ONLY FOR [file specification]

GSE GETSEG
Because of the user's quota or the available
space on the device, the total number of
blocks requested could not be allocated and a
partial allocation was given.,

FEE ENTER

FLE LF 3F LOOKUP ERROR (20) BLOCK NOT FREE ON

FRE RENAME (ALLOCATION FOR [file specification]

GSE GETSEG.) (1)
The block required by LINK-10 is not
available for allocation. This message can
never occur .and is included only for
completeness of the LOOKUP, ENTER, and RENAME
error codes. ‘

FEE ENTER

FLE $F F LOOKUP ERROR (21) CAN'T SUPERSEDE (ENTER)

FRE RENAME AN EXISTING DIRECTORY FOR [file

GSE GETSEG specification] (1)

The user attempted to supersede an existing
directory. This message can never occur and
is included only for completeness of the
LOOKUP, ENTER, and RENAME error codes.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC. '

LINK-10

Messages

CODE LVL SEV

(FEE
FLE $F

GSE

EE

FLE \ SF -

GSE

FEE
FLE $F

GSE

EE
FLE F

GSE

(1) This message is not expected to occur.
your Software

to DEC.

&F

F

3F

-789- LINK-10

MESSAGE

ENTER

LOOKUP ERROR (22) CAN'T DELETE (RENAME)
RENAME A NON-EMPTY DIRECTORY FOR [file
GETSEG specification] (1)

The user attempted to delete a directory that
was not empty. This message can never occur
and is included only for completeness of the
LOOKUP, ENTER, and RENAME error codes.

ENTER

LOOKUP ERROR (23) SFD NOT FOUND FOR
RENAME [file specification]

GETSEG

The required sub=-file directory in the
specified path was not found.

ENTER

LOOKUP ERROR (24) SEARCH LIST EMPTY FOR
RENAME [file specification]

GETSEG

A LOOKUP and ENTER UUO was performed on
generic device DSK and the search list is
empty.

"ENTER

LOOKUP \ ERROR (25) SFD NEST LEVEL TOO
RENAME DEEP FOR [file specification] (1)
GETSEG.

- An attempt was made to create a subfile

directory nested deeper than the maximum
level allowed. This message can never occur
and is included only for completeness of the
LOOKUP, ENTER, and RENAME error codes.

If it does, please notify

Specialist or send a Software Performance Report (SPR)

LINK-10 -790-

LINK=~10

Messages

CODE LVL SEV MESSAGE

FEE ENTER

FLE SF 8F LOOKUP ERROR (26) NO=-CREATE ON FOR ALL

FRE RENAME SEARCH LIST FOR [file specification]

GSE GETSE
No file structure in the job's search 1list
has both the no=-create bit and the write-~lock
bit equal to zero and has the UFD or SFD
specified by the default or explicit path,

FEE ENTER

FLE SF SF LOOKUP ERROR (27) SEGMENT NOT ON SWAP

FRE RENAME SPACE FOR [file specification] (1)

GSE GETSEG ’
A GETSEG UUO was issued from a locked 1low
segment to a high segment which is not a
dormant, active, or idle segment. This
message can never occur and is included only
for completeness of the LOOKUP, ENTER, .and
RENAME error codes,

FEE ENTER

FLE 3F $F LOOKUP ERROR (nn) UNKNOWN

FRE RENAME (CAUSE FOR [file specification] (1)

GSE GETSE

This message indicates that a LOOKUP, ENTER,
or RENAME error occurred which was larger’ in
number than the errors LINK-10 knows about.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

5-16

LINK=-10
Messages

CODE LvL
HSL sF
HSO W
HTL 8F

SEV

F

W

SF

-791- LINK-10

MESSAGE

ATTEMPT TO SET HIGH SEGMENT ORIGIN TOO LOW

The user is trying to set the beginning of
the high segment below 400,000 or below the

end of the low segment, whichever is larger.

This can be the result of a /SET:.HIGH.
switch with a value less than 400,000, If
this is the case, the switch is ignored and
the user should again specify the /SET:.HIGH.
switch with a valid argument. This message
can also occur when the 1low segment is
greater than 400,000 and a module being
loaded is requesting the high segment to
start at 400,000. The user can either give a
/SET switch or retranslate the module.

ATTEMPT TO CHANGE HIGH SEGMENT ORIGIN FROM
[value] TO [value]

The user is attempting to change the starting
address of the high segment. The specified
value is ignored. The cause may be that the
user gave a /SET:.HIGH,: value switch which
does not agree with the LINK item type 3, or
that two LINK item type 3's have different
origins. The wuser should recompile the
incorrect files. !

SYMBOL HASH TABLE TOO LARGE (1)

The user has more global symbols than can fit
in the maximum hash table (about 25K in size)
LINK-10 can generate. Possible action is to
increase . the maximum allowable size of the
hash table.

(1) This message is not expected to occur. If it does, please notify
Specialist or send a Software Performance Report (SPR)

your Software
to DEC.

5=17

LINK-10

LINK=-10

Messages

CODE LVL

I4D
I4s F
I4T

IBC $F
ICI F
IDM 3F
IFD $F

SEV

3F

3F

3F

%E

F

-792-

MESSAGE

DATA CODE
ILLEGAL F40 SUB-BLOCK (xxxxxx) (1)
TABLE ENTRY

Incorrect code was produced by the F40
compiler.

ATTEMPT TO INCREASE SIZE OF BLANK COMMON

An attempt was made to expand the blank
COMMON area. Once a COMMON area is defined,
the size cannot be expanded. The user should
load the module with the largest blank COMMON
area first or specify the 1larger area with
the /COMMON switch before loading either
module.

INSUFFICIENT CORE TO INITIALIZE LINK=-10

There is not enough core in the system to
initialize LINK-10,

ILLEGAL DATA MODE FOR DEVICE

The data mode specified for a device is
illegal, such as dump mode for the terminal
(e.g., TTY:/SAVE). The user should respecify
the correct device.

INIT FAILURE FOR DEVICE [dev]

The OPEN or INIT UUO failed for the specified

device. The device could be in wuse by
another user.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC,

5~-18

LINK-10
Messages
CODE LVL SEV
ILC
THC

" ILS | §F SF
IFX
IGs
ILI $F SF
IMA $I s3I
INS F &F

_793- LINK-10

MESSAGE
LC
HC

ERROR INPUTTING AREA (LS) = STATUS (xXXXxxx)
FX
GS

An error occurred while reading in the named
area (LC=user's low segment code, HC=user's
high segment code, LS=local symbol table,
FX=fixup area, and GS=global symbol table).
The status is represented by the right half
of the file status word. Refer to
DECsystem=10 Monitor Calls for the

explanation of the file status bits,

ILLEGAL LINK ITEM TYPE (xxxxxx) ON
[file specification]

The input file either was generated by a
translator that LINK-10 does not recognize

(e.g., a non-supported translator) or is not

in proper binary format (e.g., is an ASCII or
sav file).

INCREMENTAL MAPS NOT YET AVAILABLE

The INCREMENTAL keyword for the /MAP switch
is not implemented. The switch is ignored.
I/0 DATA BLOCK NOT SET UP (1)

LINK~10 attempted to do I/0 (LOOKUP, ENTER

UUOs) for a channel that has not been set up.
This is an internal LINK-10 error.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC.

5-19

LINK-10

LINK=-10

Messages

CODE

IPO

IsD

180

1sp

ISsT

Ive

LVL

8F

$F

F

F

$F

3F

SEV

$F

8F

F

F

sF

3F

-794-

MESSAGE

INVALID POLISH OPERATOR (1)

An incorrect link item ¢type 11 was seen.
This is an internal LINK-10 error.

INCONSISTENT SYMBOL DEFINITION FOR [symbol]

An already-defined symbol has been given a
second "partial® definition. The user should
examine the usage of the named symbol.

INCORRECT STORE OPERATOR (1)

An incorrect link item type 11 was seen.
This is an internal LINK-10 error.

INCORRECT SYMBOL POINTER (1)

The current symbol pointer does not point to
a valid symbol triplet. This can occur if an
extended symbol does not terminate properly.
This is an internal LINK-10 errocr.

INCONSISTENCY IN SWITCH TABLE (1)

An internal error occurred in the switch
tables built by the SCAN module.

INDEX VALIDATION CHECK FAILED AT [address]
(1)

The range checking of LINK~10's internal
tables and arrays failed. The address output
is the point in the appropriate LINK=-10
segment at which this occurred.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC.

5=-20

LINK=-10

Message

CODE

LDS

LIM

LIT

MDs

LVL

I

31

sF

I

W

I

SEV

31

$I

SF

%I

14

31

-795- LINK-10

MESSAGE

LOAD SEGMENT

Indication that the LINK-10 module LNKLOD has
started its processing.

LINK=10 INITIALIZATION

LINK-10 has begun its processing of the
user's input,

LINK ITEM TYPE (xxxxxx) TOO SHORT FOR [file
specification]

An error occurred in the named 1link item.
This could result from incorrect output
generated by a translator (e.g., no argument
is seen on an END block when one is
required). The user should retranslate the
module.

LOADING MODULE {(name]

LINK-10 is in the process of loading the
named module.

MULTIPLY-DEFINED GLOBAL SYMBOL [symbol] IN
MODULE [name] DEFINED VALUE = [value], THIS
VALUE = (value]

The user has given an existing global symbol
a value different from its original one. The
second occurrence of the global symbol is in
the named module. The currently defined
value is used. The user should change the
name of the symbol or reassemble one of the
files with the correct parameters.

MAP SORTING NOT YET IMPLEMENTED
Alphabetic and numeric sorting of the map
file is not yet implemented. The symbols

appear in the order in which they were placed
in the symbol table.

5-21

LINK-10 -796-

LINK=10

Messages

CODE LVL SEV MESSAGE

MOV $I $I MOVING LOW SEGMENT TO EXPAND AREA[area]

This message indicates that LINK-10 is making
inefficient use of core. In future loads of
the same programs, the user should allocate
more core to LINK-10 at the beginning of the
load. Area 1is one of the following:
LC=user's low segment code, HC=user's high
segment code, LS=local symbol table, FX=fixup
area, and GS=global symbol table.

MPS 31 $I MAP SEGMENT

Indication that the LINK-10 module LNKMAP has
begun to write a map file.

Mss W W MAXCOR SET TOO SMALL, INCREASING TO nK

The current value of MAXCOR is too small for
LINK-10 to operate. In future loads of this
program, the user can save LINK=10 time by
setting MAXCOR to this new expanded size at
the beginning of the load.

MTS W W MAXCOR TOO SMALL, AT LEAST nK IS REQUIRED

The user specified the /MAXCOR switch with an
argument that is below the minimum size
LINK-10 requires as its low segment. The
switch is ignared. The minimum size is
dependent upon the code already loaded. The
user should respecify the switch.

NCL W W NOT ENOUGH CORE TO LOAD JOB, SAVED AS [file
specification]

The user's program was too large to load into
core., Thus, LINK-10 created a saved file on
disk and cleared user core. The user can
perform a GET or RUN operation on the program
to load it into core. If the core image is
still too big, the user can either employ a
bigger machine or obtain a larger core limit

(e.g., increase CORMAX) .

5=22

LINK-10
Messages
CODE LVL
NCX W
NED §F
NYI W
OLC

OHC

oLS SF
OFX

0GS

SEV

31

$E

W

sF

-797- LINK-10

MESSAGE

NOT ENOUGH CORE TO LOAD AND EXECUTE JOB, WILL
RUN FROM [file specification]

The user's program was too large to load into
core and LINK-1l0 created a saved file on
disk. It automatically executes the program
by performing a RUN UUO. However, the saved
file remains on disk and the user must delete
it, if he wishes.

NON=EXISTENT DEVICE [dev]:

The user has specified a device that does not
exist in the system. The user can re-edit
the input files to correct the device name or
type control-C to abort the load.

NOT YET IMPLEMENTEP - /switch

The wuser issued a switch that is not
implemented in this version of LINK-10.

ERROR OUTPUTTING AREA (LS =STATUS (XXXXXX)

An error occurred while writing out the named
area (LC=user's 1low segment code, HC=user's
high segment code, LS=local symbol table ,
FX=fixup area, and GS=global symbol table).
The status is represented by the right half
of the file status word. Refer to
DECsystem~10 Monitor Calls for the
explanation of the file status bits.

5-23

LINK-10

LINK-10

Messages

CODE LVL SEV

OEL
OEM
OES
OEX W

OFN 3F

OMN F

PLC
PHC
PLS $I
PFX
PGS,

W

$F

F

$I

-798-
MESSAGE
LOG
MAP
SYMBOL
OUTPUT ERROR ON XPN FILE.
FILE CLOSED. JOB CONTINUING - STATUS
[xxxxxx]

An error has occurred on the output file.
The output file is closed at the end of the
last data that was successfully output. The
status is represented by the right half of
the file status word. Refer to DECsystem-10
Monitor Calls for the explanation of the file
status bits.

OLD FORTRAN (F40) MODULE NOT AVAILABLE

The standard released version of LINK-10
includes the LNKF40 module that loads F40
code. However, the installation has removed
it by loading a dummy version of LNKF40 and
thus LINK-10 is unable to handle F40 compiler
output. - The user should request his
installation to load a version of LINK-10
with the real LNKF40 module.

OBSOLETE MONITOR WILL NOT SUPPORT LINK-10

LINK-10 requires a monitor that contains the
DEVSIZ UUO. :

AREA(LS OVERFLOWING TO DSK

The job is too large to fit into the allowed
core and the named area is being moved to
disk (LC=user low segment code, HC=user high
segment code, LS=local symbol table, FX=fixup
area, and GS=global symbol table).

5-24

LINK-10

Messages

CODE

PSF

RCF

RGS

SIF

‘LVL

F

3F

31

$I

$F

SEV

sF

$F

$I

31

gF

-799- LINK-10

MESSAGE

POLISH SYMBOL FIXUPS NOT YET IMPLEMENTED

The requested feature is not yet available.

'RELOCATION COUNTER TABLE FULL

The relocation counter table is a fixed
length and cannot be expanded in the current
version of LINK-10. This restriction will be
eliminated in a future release.

" REDUCING LOW SEGMENT TO [n] K

LINK=10's internal tables have been deleted
and core has been reclaimed. This message
occurs near the end of loading.

REHASHING GLOBAL SYMBOIL TABLE FROM [o0ld size]
TO [new size]

LINK-10 is expanding the global symbol table
either to the next prime number as requested
by the user (via /HASHSIZE) or to its next
expansion of about 50%. In future loads of
this program, the user can save LINK-10 time
by setting the hash table to this new
expanded size at the beginning of the load.

SYMBOL INSERT FAILURE, NON~ZERO HOLE FOUND
(1)

An internal LINK-10 error. LINK-10's hashing
algorithm failed., . A symbol already exists in
the location in which LINK-10 needs to place
the new symbol. The error may disappear if
the user 1loads the files in a different
order.

(1) This message is not expected to occur, If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)

to DEC.

5-25

LINK-10

LINK-10

Messages

CODE

SFU

SNC

SNL

SOE

SSN

LVL

$I

F

$I

LF

$I

SEV

%I

$F

%I

3F

I

-800-

MESSAGE

SYMBOL TABLE FOULED UP (1)

An internal LINK-10 inconsistency. LINK-10
cannot locate the TITLE triplets in order to
store the lengths of the control sections.
The loading process continues. Any maps
requested by the user will not contain the
lengths of the control sections.

SYMBOL [symbol] ALREADY DEFINED, BUT NOT AS
COMMON

The user has defined a non-COMMON symbol with .
the same name as a COMMON symbol. The user
should decide which symbol definition he
wants. If he uses the COMMON definition, the
COMMON area should be loaded first.

SCANNING NEW COMMAND LINE

LINK~10 has completed the scanning and
processing of the current command line and is
ready to accept the input on the next line.

SAVE FILE OUTPUT ERROR =~ STATUS (xxXxxxx)

An error has occurred on the save file. The
file 1is closed at the end of the last data
that was successfully output. The status is
represented by the right half of the file
status word. Refer to DECsystem-10 Monitor
Calls for the explanation of the file status
bits.

SYMBOL TABLE SORTING NOT YET IMPLEMENTED
Alphabetic and numeric sorting of the symbol
table is not yet implemented. The symbols

appear in the order in which they were placed
in the symbol table.

5-26

LINK=-10

Messages

CODE

SST

STC

T1l3

TDS

TEC

LVL

I

$I

$F

W

3F

SEV

I

I

F

W

3F

-801- LINK-10

MESSAGE

- SORTING SYMBOL TABLE

LINK-10 is arranging the symbol table in the
order specified by the user via the /SYSORT
switch, and if required, is converting the
symbols = from the new to old format as
inglcated on the /SYMSEG, /SYMBOL, or /DEBUG
sw tch.

SYMBOL TABLE COMPLETED

The symbol table has bee“ sorted and moved

‘according to the wuser's request via the

/SYMSEG, /SYMBOL, or /DEBUG switch.

LVAR (TYPE 13) CODE NOT IMPLEMENTED

LINK item type 13 (LVAR) is not implemented
in LINK-10 nor supported by DEC. The TWOSEG
pseudo-op in the MACRO-10 language should be
used.

TOO LATE TO DELETE INITIAL SYMBOLS

The /NOINITIAL switch was placed in the
command string after the first file
specification. Because this switch was not
first in the command string, LINK-=10's

initial symbol table was loaded.

TRYING TO EXPAND COMMON

An attempt was made to expand a COMMON area.
The largest occurrence of the COMMON area of
a given name must be linked first. Once
defined, the size cannot be expanded although
new COMMON areas of different names can be
defined. The wuser should load the largest
occurrence first.

5-27

LINK-10
LINK~10
Messages
CODE LVL
TSO $F
URC $I
UsSA W

SEV

F

$I

W

-802-

MESSAGE

CANNOT LOAD TWO SEGMENT MODULE INTO ONE
SEGMENT)

The user attempted to force two segments into
one segment via the /SEGMENT switch.
However, the binary file does not contain the
necessary information (i.e., the length of
the high segment) in LINK item type 3. This
situation 4is usually caused by a one-pass
compiler (e.g.,ALGOL).

UNKNOWN RADIX-~-50 SYMBOL CODE

Bits 0-3 of the first word of the 1link item
contain an unknown symbol code. Either the
translator is generating incorrect code or
the binary file is bad. The user should
recompile the file.

UNDEFINED STARTING ADDRESS

The user has given a global symbol as the
start address and the symbol is currently
undefined. The user should load the module
that defines the symbol.

-803~ LINK-10

LINK-~10

Examples
CHAPTER 6
LINK-10 EXAMPLES
EXAMPLE 1 Loading and Executing COBOI, Programs

The following files are on the user's disk area:

\PIRECT)

FILA cel, 1 <P55> anang3 nsSkBp £27,235]
r};e cBL 2 <ps5> 6oFEB=

FILC c8l. 1 <P55> 6aFEBa?D3

AR 6LNK 1,06 1 <g55> 28eFEBm?3

SIMPLE MAC 1 <P55> 28aFEB=Y3

TOTAL OF 6 BLOCKS IN 5 FILES ON DSKBI (27,235]

In the command string shown below, the user is automatically
compiling, loading, and executing the programs and generating a map.
The /CONT:ZERO switch is passed to LINK,

JEXECYTE ZLINK/MAP FILA,FILE)FILCX/CONTIZERO!)
COBOL} CBSEBA [FILA,CBLJ

CoBOL} cBSE8B (F1L.B, 1CBL)

COBOL | CBS@8C [FILC,CBL)

L INK? LOADING

LEXECUTION] : ,

RUNNING CBS@BA '

HUNNING CBS@8B

RUNNING CBS@8C

EXIT

In the followng command seguences the user is compiling the files and
then directly loading and executing them through LINK=10.

LINK-10 -804~

LINK=-~10
Examples

1COM FILA,FILB,FILC J

cO80Lt cBSe8a LFiLa,ceLY
COoB8OL | CBSP8B [FILB,CBLJ
COBOL | CBSP8G [FiLC,CBLI

EX1T
ROLINK)

SFILA,FILB,FILC,/MAP/CONT{ZERO/EXECUTE/GD)
LEXECUTION?

RUNNING CBS28A

RUNNING CBS@8B

HUNNING CBS28C

EXIT

EXAMPLE 2 - Loading and Executing a MACRO Program
The user assembles the following MACRO program:

«COMPILE SIMPLE MAC J)
MACRO} SIMPLE

EXIT

In the following command sequences, the user loads the MACRO program,
interactively requests a listing of the relocation counters, library
search symbols, and undefined global symbols, and then executes the
program.

'RLINK)

sSIMPLE J

#/CQUNTER)

RELOCATION COUNTER INIT]AL VALUE CURRENT VALVE (QCTAL)
Low, o 140

yHIGH: 400200 4000825

#/ENTRY)

NO LIBRARY SEARCH SYMBOLS (ENTRY POINTS)

#/UNDEFINE)

NO UNDEFINED GLORAL SYMBOLS
#/EXECUTE/GO)

-805- LINK-10

LINK-10

Examples

- LEXECUTION] ‘
THIS IS A VERY SIMPLE TWO#SEGMENT MACRO PROGRAM,

X7

EXAMPLE 3 Loading COBOL Programs and Creating a Saved File

In the following example, the user is individually loading each file
and requesting a listing of undefined global symbols after each file
is loaded. He also is requesting the searching of the default system
libraries. After searching has been performed, the user creates a
saved file and executes the core image. .

ROOLINK D
aFILAZY)

6 YNDEFINED GLOBAL SYMBOLS
BTRAC, 1212

TRACE, 1277

TRPD, ~ 1214

TRPOP, 1213

CBSPBB 1327

CBODT, 1262

«FILB/Y)

6 UNDEFINED GLOBAL SYMBOLS
BTRAC, 1367

TRACE, 1473

TRPD, 1374

CBSDEC 1615

TRPOP, 1370

€BDOT, 1454

#FlLC/V)

% UNDEFINED GLOBAL SYMBOLS
BTRAC, 2052
TRAGE, 2147

TRPD, 2054
TRPOP 2953
CBODT, 2130
#/SYSL1B/U)

NO UNDEFINED GLOBAL SYMBOLS

LINK-10 -806-

LINK-10

Examples

*FILE/SAV/EXECUTE/ GO)
LEXECUT]ON]

HUNNING CBSQBA
RUNNING CHSP8B
HUNNING CBS@8¢

EX1T
(DJR #,8AV)
FILE SAV 5 <K@B55> R23«APR=7S DSKC! [27,235]

Example 4 Loading LINK=10

The Command File

/NDINITIAL /LOGLEVELIL DSKILINK/MAP /GONTINOABS 3/RUNAME I INKe
/MASHS 1 ZE 11000/ TESTIODT/SYMSEGIH LNKEXD,SCAN, HELPER=

sLNKIN], /NOSTART LNKSCN,LNKWLD, LNKFIO LNKLOD, LNKOLD, LNKNEW, NKF 40n
1 LNKCST,LNKGOR, LMKLOG,LNKERR,LNKMAP,LNKXIT LNKSUB/SEARCH/GO

Running LINK-10 With the Terminal as the Log Device

LINK=30 LOG fTle 23wApprn73
8158111 3 1 LIM LINKei@ In|tiallzation

8158146 4 3 EXP Expanding |ow segment te 14P
8158146 { 1 MOV MoyIng low segment t0 eypand area DY
8158146 1 1 LMN Loading modyle UDDT

8158146 1 1 MOV Moving |ow ssgment to expand ares GS
BI58147 4 4 EXP Expandimg |ow segment ta 48P

8158547 4 1 MOV MovIing |ow segment to eypang area |LC
8158147 4 4 MOV Moving Tow ssgment to eipand area LC
BIBBJ47 ¢ 4 LMN Load|mg modyle LNKEXQ

8158147 1 1 EXP Expanding |ow segment te 22P

BI158]47 ¢ 4 MOV Moving |ow sesgment to expand ares |C
8158)48 1 1 LMN Loading modyle SCNDCL

8158148 ¢ 4 LMN Loading medyle ,SCAN

B158]18 1 1 MOV MoyIng |ow Segment to expand area HE
8158148 4 1 MOV MovIng |ow segment to expand area WC
5158148 4 4 MOY Moving |ow segment %o exband area HC
8158118 4 3 EXP Expanding jow segment te 26P

B158)18 ¢ 1 MOV Moving |ow segment to eyxpand area |S
8156148 1 1 MOV MoyIng |ow sSegment t0 expand area |5
8158148 4 1 LMN Loading modyle ,TOUTS

-807- LINK-10

LINK-10
Examples
8158148 1 1 MOV MovIing jow segment %o expand area HC
8156148 4 1 LMN Loading modyle ,CNTOT
8158]48 1 1 EXP Expanding |ow segment %» 3gP
BI158f48 1 1 MOV MovIing low segment to expand area LS
8158148 ¢ 1 LMN Load|ng modyle ,SAVE
8158148 1 1 LMN Lead|mg mogyle MELPER
81581419 1 1 LMN Leading modyle LINK
8158119 ¢ 1 MOV MevIng low Segment to expand area HC
6158119 4 1 EXP Expand|mg |ow segment te 34P
8158149 1 1 MOY Moving low segment %0 expand area LS
8158149 1 41 LMN Loadinmg modyle LNKSCN
81581149 41 4 MOV Meving Jow sagment %0 expand area HC
8158119 4 1 LMN Loading modyle LNKWLD
81581349 4 1 MOV MovIng |ow Segment t0o expand area HC
8158129 4 4 EXP Expanding |ow segment to .38P
81581280 4 3 MOV Moving |ow Segmeant %o expand ares HC
8158129 1 3 MOV Moving |ow segment to expand area HC
8158120 1 4 EXP Expanding |ow segment te 42P
81588120 4 4 MOV MovIng low segment to expand mrea LS
81%8121 1 1 LMN Load|ng modyie LNKFJOQ
8158121 1 1 MOV MoyTng |ow segment %0 expand area LS
8158324 1 1 LMN Leading modyle LNKLOD
8158121 1 1 MOV MovIng low Segment %o expand area HC
8158121 1 4 EXP Expandimg |ow segment ta 46P
8158121 4 1 MOV MevIng |ow Segment to expand ares HC
81%8121 4 1 MOY Moving Jow segment %o expand area LS
83156122 41 1 LMN Loading modyle LNKQLD
8158122 4 1 EXP EXpand|nmg jow segment ta SpgP

[]

®

[]
8158125 1 1 PLS Arem .S overflowing teo ASK
8158128 31 1 MOV MoyIng low segmant to eypand area LS
8158128 1 1 LMN Loading mody|e |L,NKMAP
Bi5%8128 4 1 LMN Lecading modyle LNKX]T
8158129 1 1 LMN Loading modyle LNKPRM
8156129 1 4 LMN Leading modyle ,TSUBS:
8158129 1 1 LMN Loading moedyle stus
8188129 4 1 LMN Loading modyle JOBDAT
8158133 1 1 MPS MAP segment
815813 1 1 MOV Moving Jow Segment to expand area |5
8158)32 4 4 EMS End of MAP segmant
8158132 4 4 EXS EX]T segment
8158133 4 1 SST Sorting symbo| tab|e
8158134 4 4 EXP Expandimg |ow segment to 67P
8158134 1 1 MOV Moving low segment to expand area HC
8158134 3 1 STC Symmbo| table comp|eted
8158136 1 4 FIN LINKel? finlsned

CEND QF LOG FILE]

-808-

LINK-10

LINK~10

The Map File

Examples

(lewlsepj & "(ieaoe

(lew|sep) Ligz V(w300

% ebud

w
s
[~
=
g
o
o
"~
L]
>
(14
&
L
wif
-
L3]

) Qﬁ uibue| pezoene
[

ppls 3w pimidvez2 Uo

é{qeqesc|ex
o|qegeso|ey
olquesndojon
Giqugecojey
olgeieddioy
dlquieddjey
8|dquzedojey
0lguasoojen
olquzucojoy
@|Qejuvoojoey
olgezedcioy
e|deieop |8y

144 witue| gggv

geigoio %% gledensgl YO pelvwedd

WNIT wedBodd W] peiuwoc|

dug & ASbGH yabue|
4% & /[v2g w3BuUe|

o
@
ar
aff
«Q

L
-

48 Bpue
pejedis

| 0QuAs
|0QuAs
| 0QuAs
|oGwAg
|6QuAs
|oQWAs
| 6QuAs
| 0QuAs
|oduAs
joquis
|oquAsg
4¥jod

3% Bpue

PovEbY
iv2a

(Y2221 L L 1)

6inpoduw ujbue| o

(XXZXXXZ 2228 2]

-
@
L3

(747
[]
B

[
1
-

0Toagy 4u_s3Je46 3juowbes US|H
EECTiTeIN3ntOXDINANSE wody

YIS IIXIITITY
|egol9 cZhy Wg
ivao|9 2evy s
ieqol9 11 aes
i9q0 |9 asvy 8.8
fwgolg 17127 898
leaslo 421 g85%
{vaqoin LEYY gbs
jeqsin pEhy gcs
leael9 3347 gzs
_ano 9 92vd gt
wqolo 1141 OnN3400
Riaul geT iaa
2T Av 63448 JUOWBES MoN

HRRCRERRANRRG

tefT9434'i0018AS wody

‘chacdh S| s50dppu 3J84S

NO8

(&
[=3

Ox3INNT

laan

38 gpue 7A20Ey Jv 64Je3s JueuBes UB|M

3% spue 1

28iagle 3¢ f/meovVegz W6 (o) uolsdea pls¥NIT Ag peonpodg

(Sf) wojsdea

YNTA

40 deu [oquAs @Ts%NEN

48 63J¥36 JWOWBES MOY

6=6

LINK-10

~809-

LINK-10

Examples

¢ &inol’ t
Tt Nvdg! g%
R LAL 9
¥t ansnt’ g
¢ IoINB' v3
; Laén 6
ed8, susy . eb%y

. g7 ebed

(E8) wdlsdon

s [qe3u00 0y
#jqe3uso ey
d[dwyuod oy
‘8] qugnds) oy
Glqeseso| oy
9[4uawdd | oy
#|qeyucojon
91 qeqe00 oy
éjguauds) oy
dfqeyusd|oy

- ofgqesuss|oy

Ciewioep)- @utz '{iwsde) yolv
(leupoop) 258 ' u300) gib

-G Gupesd| ey
B [qeresd| oy

yibue| w229y
-MABUe| €928 §
poleopgtle 3% 2,eA0Nel UO Fodiusdd

MOGNSS
LEXUNT
~QIMANT
NISANA
Wy diNT
090ANT

Suey

- WNET

toduds
SLLULY
16QuAs
|6QuAE
| oQuwAs
| 6QwAS
1 64quhs
© | oQuAS
{oQuAs
| 6QuAis
|6quAs
| 6GuAg
joquAs

49 Spue
4% Spue

A NG

At RaANXNI

£T dVWAINY

£1 H0TINY

& apINY

L 81 45%NT

IT pvdNT

obuy duey

46 a8

- @

[]

[J
{easl9 25120y
jugol9 c6tzoy
RTCIE 18%20%
sasis 98200
1ege 19 -99120%
ivqels .e£ie0¥
jeqols @Biedy
-legélg 131
R LTTE] L8028
feasld L0200
iwaelo 20%20y
104619 gzLany
fea®ls teLo08
@200
{11;

0 aww gTeiNIT

%
€3
%1
11
’
22
*

ey

40 Pul]

- OXIANY
HEIANT
LSI¥NT
HOAWNT

WNET
lyasol
H3d3H

ouwey

| oquwAs pgIeNN]T 63 Xepul

411va;
Wilve!
911v0,
414v0"
ativa’
4g¥%3°
zoo;«.
WYN 4
1As'3

" ONAS ' 3
oWd'3
IW4'3

4% 634e48 jJudubes UG|H
- -49 63446 jUeuLBES

“64

EEET P99y YOS NST wldy

Nyos'

LINK-10 -810-

LINK-10

Examples

Example 5 ILoading the Monitor

The Command File

/NOINITIAL /LOGLEVELIL /HASHI7BRO T0Ps10/5AVEe
» TOPS10/MAP 3 /L0OCALS /MAXCOR | 200K COMMON, COMDEV , COMMOD»
+ TOPSL2/SEARCH /NOSYSL]BRARY /GO

The Log File

- LINKe1@ LOG f]|e 23eppra73

yieags2 1 3 1IN LINKeLi@ Inj¢|ajlzatlon

184119 1 1 EXP Expandimg |ew segment ta 14P

YI04119 1 1 MOV MovIng |ow segment to 8kpaAngd area DY
PIB4119 1 3 LMN Loadling modyle COMMON

YI04119 1 1 MOV Meving jow Segment to eixpand area LC
P104119 1 1 EXP Expand|ng |ow segment te 28P

YIp4139 1 1 EXP Expandimg |ew segment ta 32p

104149 4 1 MOV MeyTng |ow segment %o expang area |C
124119 4 1 MOV Moying |ow segment to expand area |C
7ig49149 1. 4 MOV Moving |ow segment to expangd area (€
7194128 1 1 EXP EXpand|mg |ow segment te 36P

7104120 1 1 MOV Moving |ow segment to expand area LS
7i04120 1 1 EXP Expandimg |ow segment te 4pP

104128 1 4 MOV MoavIng |ow segment to eyxpand area |S
9104129 4 31 EXP Expandimg |ew segment ta a4P

9ip4120 1 1 MOV Meving fow Segment %o expand area |8
Yipaj21 1 4 EXP Expanding |ow segment ty 48P

1p4124 1 1 MOV MoyIng |ow segmant to expand area ($
714121 4 4 EXP Expand|ng |ow segment te 52P

Yig4j21 1 1 MOV Movling Jow Segment to expand srea LS
Yig4122 { 1 MOV MoyTng low Segment to eixpand area S
Yip4j22 1 4 LMN LoadIng mody|e coMpeEy

Fi04122 1 1 EXP Expanding |ew segmemt te S6P

Ylp4f22 4 4 MOV MovIng Jow Segment to expand area LG
YIp4j22° 1 4 MOV MoyTng |ow megment to expand area (C
9104122 1 1 MOV Moying |ow segment to expand area G
9104123 4 1 EXP Expand|ng |ow segment ta 6gP

104123 1 4 MOV Moying |ow segment o expand area L3
104123 4 3 MOV MeyTno |ow segment t0 expand area (§
104123 1 1 LMN Leading modyle COMMOD

9104123 4 1 EXP EXxpand|ng |aw segmenmt to 1P

104123 4 1 MOV MoyTng Jow segment to expand area |C
194123 ¢ 4 EXP EXpanding |ow segment ta 2P

-811- LINK-10

LINK-10

Examples

9124123 ¢ 1 MOV Moving Jow Segment %o sxpang area |C
Yip4123 4 1 EXP Expgnding jow segment tp 63P

Yip4]23 ¢ 4 MOV MovIng |ow segment to expand area (C
9184423 1 1 MOV Moving low segment %o expand area LC
9194124 1 1 MOV Moving low segment to ekpand area LC
9104124 1 1 MOV MovIng |ow Segmant to expand area S
9104124 3 1 MgV MeyTng [ow segment to expand area LS
9104124 1 1 MOV Moving low 8egment %0 ekPangd area L3
9104124 1 1 MOV MovIng oW segmént to eypand area GS
9104124 1 1 MOV MoyIng jow segment to eypand area S
91pat24 4 1 MOV MevIng |ow segment to eypand aroa LS
91gat24 4 1 MOV Meying |ow segment to eypand area GS
Yig4lz24 4 4 MOV MoyIng |ow segment to expand area LS
9194124 34 1 MOV MovTng low segment to ewpand area LS
Yipai24 1 1 PLS Area LS overflowing to 0SK

91p4aj25 4 4 MOV MoevIng jow segment to expand ares GS
91p4l27 4 1 MOV Moving low segment %o einand area (S
9ip4l27 34 1 MOV MoyIng |ow segment to eykpand area S
9124127 1 1 MOV MovIng |ow Seament to expang area [S
9ig4ai27 4 1 MOV MovIng |ow segment %0 expand area GS
91g4127 1 4 LMN Leading modyle EJBDAT

9104127 1 1 MOV MovIing |ow Segment to expand area (S
914127 1 41 LMN Loading modyie FILFND

9124)28 1 4 MOV MovIng |ow segment %o expand area S
91p4128 4 1 MOV Moving |ow Segment to expand area LS
91pgat28 1 1 MOV Moving Jow segmant to expand area GS

9104156 4 1 MOV MovIng [ow Segment %0 expangd area L9
9104157 1 1 MOV MovInge |ow Segment to ekxpand area LS
9104157 4 1 MOV Moving |ow segment to expand area LS
Yi241%7 31 1 LMN Loadling modyle ONCE
YIB4157 1 1 MOV Meving |ow segment to expand area LS
9)04157 1 1 MOY MovIing Tow Ssegment %0 expand area |C
9194157 1 4 MOV MeyTno low segment %o eipand area LC
9184157 4 1 MOV Moving fow segment to eypand area C
F104158 4 1 MOV MevIng |ow segment to expand arsa GS
914158 1 4 MOV MoyIng |ow segment to expand area |S
124158 4 1 MOV MovIng low segment to expand Aarea LS
9124158 1 1 MOV MovIing jow segment to expand area LS
Y1p4i58 4 1 FCF Final| core *]xyups
9105102 1 4 MPS MAP segment
9105102 4 1 MOV MoyIng |ow segment %0 expand araea |9
9195148 4 1 EMS Eng of MAF sggment
9195129 1 1 EXS EX]T segment
9105131 1 1 SST Sortimg symbo| tabje
91p5135 4 4 STC Symmbo| table comp|eted
9195137 1 41 CSF Creating SAV ff]e
9105153 1 4 FIN LINKei@ finlshed

LEND OF QG FILE]

-812-

LINK-10

LINK=10

Examples

The Map File

T efed

(lew|oep) 2249 "(iw30e) /724

$[gvinoo ey uwon
slgeieodfey=uoN
slqugeddjoy*udy
ofqeseo0 | aNTuON

|oQuAs
|0GwAs
JoQuAsg
joQuAs
joGuAs
| oQuAs
| 6QuAs
[oQuAs
| 0GuWAs
| oQuUAs
|0QuAs
| 6Quids
| oQuAsg
| oduwAs
| 6QuAs
LT
| oQuAs
| oQuAs
LI
| oQuAs
ELTTY
| cQuAs
|oQuAs
joduAs
| 0QuAs
| 0duisg
| 0QuAs
oquig
| oquis
|6RuAsg

19 Bpue

[eqe |9 ByTs 8L9vAY
|sgeis £¢%2 ¥3SNAY
leqol9 2 ofv
leqe|9 A IVAVAY
R LIIE) pogeee 9udSsY
1ego|9 AeBe0Y NOasSSY
lsael9 1417 SLlSHdY
leqoln oy2 NSHdY
1sqel9 g NsTudy
luqel9 gy2 Ns@yav
RLTIE) P31 AvS@yv
leqo|9 629¢ ovsl4v
ALLIE] £66ee9 LsHldY
ELLIR) p89¢ 13804V
[vaslo 1171 dodBdy
Ivqoi9 £6GEEY INNBgY
[egol9 909¢g N3f2dy
Ieqel9 2%ss IN1@dY
RLLIE] ¢ NHA@dY
leqelo L 7311 THABLY
|%q0l9 Azs9 PRELPL
leasls %2dg NNYANY
|eqels ¢2ec dsfti9y
leqe|9 1] v
Ivagel9o 41 WA3AQY
fegol9 2ty gyLisSgy
fegoio 2 sagoty
lwgeln 134114 H3ApaY
lwaels Be0LL doN'av
|®Qol9)] v
et 49 534838 jueubaes MmHA

EICTHTTIY 130 NOWWOAIYSa wedy

I ITIEY Y

INISAS wedbodd W| pejsoo| ';60%07 5] sSedppu 34838

94088

pessoJddfis ol qeiuso| ey uoN
£ossoddifg o dvywoo ey udN
0/aBiu00 | 0N uoN

pessedddfs eslqesesd oy ucy
PacsoJOORS ol QelEoO|oNmUEN
pessSeJadns ofgugedd|eysuoN
PessoJddens e(Qeied0]ey=uoN
pescoddEAS ¢[geqaed0 ey uoN
pessbddEfs e|geiudojoy*ubn
POESOJANAS S/ gwpedO| oy UdN
pesseddifis o|qejuoojey®udy
pesseddENs olawivad|oN®uoN
EeEsoJdONS G| guiud0 oy uwoN
elgejuddjeyuon

possedddAs elgeandojey®uln
pessodUUfg elquivad oy uwoy
d/qeiesd|ey*uonN

peEBeJdUAS o |guRiIR00|@YTUON
pesseJdddfAg elaeqgeso|ey2uoyN
poEseddUAS o] dB3e00 | aySuUoN
pessodddfs elgeieso| oy uoN
dlqeivad 0N uoN

posseJddfs Blgesieso|eyeudn
pessedddng 6| avawdojeysuON
pesseddifig alquipgoo]|eyauoy
PegseJddfig 9 [dB B0 |0yauly

/ i M3Bue| [af4
Poiopiat 3w 2/s0eQm2T U pededdo
d¥6 2 9/(281 uiBue|
enicels
(b0G06) uojsdga

g3sdod

ie spue 2

4o dew joquAs 2%ayN

(B
i1

49 greduaV¥epz WO (£f) wbisdeA gtedNIT AQ peonpoug

NOWWDD

% 544836 Juouwbes MmoH

6-10

LINK-10

-813-

LINK-10

Examples

6L
6L
Be
08
6L
be
oL
69

89
obed

yg ebBa

posseddifs
gesssdcans

pessedddhs

pessdddang
pesgodding

pessadddng

NOJOAN
BhNdwWi
INISAS
¥HOSAS
H3SdMS
ERED
HASNAS
Ta3uas
_d¥ilM
X90wgY

eueN

T8
L9
L9
49
L9
84
28
28
99
99
ety

(BSEDE) uOI8d0A

§/avau00 o ysuoN
slaviess oy Ut
olquiedo oy udN
sloviudojoeysdoy
olawauddjeymuoN
61guiudo joymuiN
ICLES FERETRT LY
olgesuss|onsuoN
Blaesesojonu®udN
o[qu3ud6|oysuoN
olgeiBso|oNSuoN
efdejeds| ey uon
o/gejndo ey uoN
blaedeoojoy=uoN
alaeiudojey®uin

HiSd3w
¥35Ald
43sdld
d38dld
43844

HO4Vd
QOWIND

“33N0
H3ISKLIW
NOS43INW

SWeN

2¥sdol

| oQwAs
[$8uwAs
| oGuwAs
| oQuAs
joduAs
|oQuAs
j 0QUAs
[O6QwAs
| 6QUWAs
| 6QuAs
[oQuAS
| 6Quis
| 68WAs
| 6QuAs
| o8uAs

(ets40l

€9
b9
g9

obed

40 deuw

|egel9
leasls
feaeld
Isqel9
jeqsdio
18a0(9
18d0(9
198619
IR
|sasi9
legeia
Ivae |9
|9a019
l2qol9
{vaol9

jo dew gtednlT 40 PuIj

¥38ld1
HIBY
%909V X
onndl 4
o194
R F]
NOMXH 4
NOSHY3
lvosf3

.agy

NHSYLQ

SWBN

bs

29.

%9
T

2t
X
85
9¢
(1]
&5
14

8bey

NOXXda
NYHiYQ

135800
NOKWROD
QOWKOD
A30WOD
NOJHOD
T2690
Xy8u00
438202
Intuls

owenN

joquAs gT&uNLY 03 xepu]

post

bR Xal

[»]14
22
ary
£

114
ttv2
focy
GLboy
7344
AT

NH42D
NdT20
8viiAs8

NHlE
ixloos
Gmloos
S1HXNE
ddsitg
L ELE R
Aalslise
oMols
WNNLYE
NIWiYS
XYWive
OWBLAY

6-11

-815- LINK-10

LINK~10

Item Types

APPENDIX A

LINK Item Types

Input to LINK=10 is in the form of relocatable binary (.REL) files.
Each LREL file is composed of link items of varying lengths. Each
link item contains a specific type of information for LINK-10. The
first word of these items is a header word containiﬁg, in/the left
half, an octal code for the item type and, in the right half, usually
the number of words in the item., For item types 0-37, the count of
words does not include overhead words (i.e., relocation words); for
item types 1000-1777, the count does include these words. The format
of the remaining words depends upon the individual 1link item. The

link items are as follows:

Link Item Type Use

0-37 Reserved for DEC

40-77 Reserved for customers

100-377 Reéerved for DEC

400 FORTRAN-IV (F40) marker block

401 FORTRAN~-IV (F40) with MANTIS information

402=-777 Reserved for customers

1000-1777 Reserved for DEC (not used in the first
release of LINK-10)

2000-3777 Reserved for customers

4000-~777777 gesirved to avoid conflict with ASCII
ex

LINK-10 -816-

LINK=-10

Item Types @g-37

A.l Link Item Types 0-=37

Link items in this range are the LOADER program block types and all
have an identical format. The first word of the item, the header
word, contains the item type in the left half and the count of data
words in the «right half. Following the header word is a relocation
word containing up to 18 2-bit bytes which specify the relocation bits
for the 18 words or 1less that follow. The relocation bits are

left-justified and have the following meanings:

Byte Value Meaning
0 Do not relqcate
1 Relocate right half of word
2 Relocate left half of word

3 Relocate both halves of word

Following the relocation word are up to 18 words of the item. If
there are more than 18 words in the item, there is another word of
relocation bytes for the next 18 words. The relocation words are not
included in the count of data words appeariﬁg in the left half of the
header word. Thus, an item with a word count of 23 decimal would be

as follows:

-817- LINK-10

LINK-10

Item Types @#-37

. —word 1 word 18

link item type code ,, 23 l g——word 2 word 17—————;1t
18 relocation bytes | ll I | J

18 words

i~—~word 1 .
n WO Lt ord

5 relocation bytes ﬁf:f:F”

5 words

A.l.1 Link Item Type 0
This item type is ignored by LINK-10 and therefore car be used to
store information not required by it. Totally null woirds look like

this item type.
A.l.2 Link Item Type 1 CODE

This itém type contains code and data. The first data word specifies
the beginning addresal into which the iﬁem is to be loaded. The
remaining words of the item are lbaded into contiguous locations
starting at that address. All words, includiné the load address, are

relocated as specified by the relocation bytes.

If bit 0 of the first data word is 1, the word is assumed to be a
Radix=50 symbol. The load address is then the value of this symbol
plus the next word. Thus, in this case, there is one less actual data

word than is indicated by the count in the header word.

LINK-10

LINK-10

-818-

Item Types @-37

A.1l.3 Link Item Type 2 SYMBOLS

This item type consists of symbols, with each symbol occupying two

words.

The first word of each symbol contains 4 bits of code (bits

0-3) and 32 bits of the Radix-50 representation of the symbol (bits

4-35) .

The second word is the value of the symbol.

The code bits are as follows:

00

04

10

14

44

50

60

This symbol is a program name. It is entered intc the
symbol table by a 1link item type 6, not an item type 2.
(This code should never happen.)

This symbol is a global definition. Its value is available
to other programs. Two global symbols with the same name
but different values cause an error message.

This symbol is a local symbol and is not loaded unless. the
user requests the loading of local symbols. Local symbols
of the same name can occur in different modules without
causng an error, even though the values may be different.

This symbol is a block name and is used by translators that
are block structured. This symbol is not loaded unless the
user requests loading of local symbols.

Same as code 04, with the addition that the global symbol is
suppressed to DDT typeout.

Same as code 10, with the addition that the local symbol is
suppressed to DDT typeout.

This symbol is a global request.

If bit 0 of the second word in the pair is 0, then bits
18-35 contain the address of the first word in a chain of
requests for the global. In each request, the right half of
the second word contains the address of the next request.
The chain is terminated when the right half of the second
word contains zero.

If bit 0 of the second word in the pair is 1, the request
involves additive global processing. When bit 2 of this
word is 0, bits 18-35 contain an address of a word of code.
The right half of the value of the symbol requested is added
to the left or right half of this word of code according to
the following rule:

If bit 1 of the second word in the pair is 1, the add

-819- LINK-10

LINK-10

Item Types @-37

is to the left half.

If bit 1 of the second word is 0, the add 1is to the

right half.
The result is stored back into the word of code. (Note that
there is no full word add; that result must be accomplished
by a left and a right add.)
When bit 2 of the second word is 1, bits 3-35 contain the
Radix-50 representation of a second symbol, whose value
depends upon the global being requested. The second symbol
must be the last symbol defined before the global request or
else it will be treated as a local symbol and no action will
occur, unless local symbols are being loaded. When the
value of the requested global is determined, it is added to
the right half of the value of the second symbol if bit 1 of
the second word is 0, or to the left half if bit "1 is 1.
Since the actual value of the symbol is not determined until
the definition of the global upon which it depends, the code
bits of the symbol indicate that the value of the symbol
will change and cannot be used to satisfy requests until the
symbol is fully defined.

A.l.4 Link Item Type 3 HISEG

This item type indicates to LINK-10 that code is to be loaded into the
high segment. This item type has either one or two data words. The
right half of the first data word is the initial address in the high
segment (usually 400000). When the left half of the data word is
zero, subsequent CODE items are assumed to have been produced by the
HISEG pseudo-op in MACRO-10. This means that the addresses are
relative to zero but are to be placed into the high segment. When the
left half of the first data word is negative (i.e., gfeater than the
right half) , subsequent CODE items have been generated by the TWOSEG
pseudo-op in MACRO-10. This requires that addresses greater than the
right half be placed into the high segment and addresses less than the
right half be . placed into the 1low segment. The left half is

interpreted as the high segment break (i.e., the first free location

LINK-10 | -820-

LINK-10

Item Types @-37

after the high segment) with the maximum length of the high segment
being the difference between the left and right halves of the word.
One-pass translators that cannot determine the high segment break

should set the left half of the data word equal to the right half.

If there is a second data word (e.g., as in FORTRAN-10), the right
half of this word is the low segment origin (usually 0) and the left

half is the low segment program break.
A.l.5 Link Item Type 4 ENTRY

This item type is the entry item and must be the first item in a .REL
file if the «REL file 1is to be loaded in a library search, It
consists of a list of Radix=50 symbols which are separated every 18
words by a relocation word of zeroes. When LINK-10 is in library
search mode, each global symbol in the list is checked against the
undefined global requests for the load. If one or more matches occur,
the following module is loaded. If a match does not occur, the module
is ignored. If LINK~10 is not in library search mode, this checking

of undefined global requests is not performed.

The entry items are stored. If the module is not loaded, these items
are ignored. If the module is loaded, the entry items are scanned
again and the entry point bit is turned on for the corresponding

symbol in the symbol table.
A.l1.6 LINK Item Type 5 END

This item type is the end item and is the last link item in the .REL

-821- LINK-10

LINK-10

Item Types @-37

file. It contains two words whose meanings depend on whether the file
contains two segments or one. If the file has two segments, the first
word is the high segment break and the second word is the low segment
break. If the file has only one segment, the first word is the first
free location above the program.(this word is relocatahle) and the
second word is the highest absolute address seen, if higher than

location 137.
A.l.7 Link Item Type 6 NAME

This item is the name item and must appear before any type 2 link item
(SYMBOL), The item has one or two data words. The first word is the
program name in Radix-50 symboi format. The second word, if it
appears, contains in bits 6~17 a code for the translator that produced
the binary file, and in the right half the length of blank COMMON.
(FORTRAN programs use both named and blank COMMON. COBOL uses blank
COMMON to indicate the length of LIBOL's static area. Thus, the
length has meaning for FORTRAN and COBOL programs.) The- octal codes
(bits 6-17) for the various translators are as follows:

Octal
Code Translator

UNKNOWN
F40
COBOL
ALGOL~60
NELIAC
PL/1
BLISS-10

FHRFENOUSWNEO
vHO

n

>

H

o

LINK-10 -822-

LINK-10

Item Types @#-37

Bits 0-5 of the second word indicate the processor on which the
program will execute. If the value of these bits is 0, the program
will execute on either processor; if the value is 1, the program will
execute only o the KAl0 processor; and if the value is 2, the program
will execute only on the KI10 processor. Remaining wvalues are

reserved for the future.
A.l.8 Link Item Type 7 START ADDRESS

This item type contains in the right half of the data word the address
at which execution of the program is to begin. The start address for
a relocatable program may be relocafed by means of the relocation
bits. The last link item of this type encountered by LINK-10 is the
one used, unless LINK-10 is ignoring start addresses (indicated by the
user via switches). If the program is not to specify a start address,

no item of this type should be included.
A.1.9 Link Item Type 10 INTERNAL REQUEST

This item type is provided for one-pass language translators when
internal symbols are used before they are defined. The item type
consists of a series of data words where each word represents one
request. Each data word has a value in the right half and a pointer
to the last request in the chain of requests for that value in the
left half. FEach quantity may be relocatable. The symbols are chained
in a manner similar to the global requests which have bit 0 in the
second word of each pair equal to zero (i.e., the value is substituted

in the right half of each location in the chain). However, if a data

-823- LINK-10

LINK=~10

Item Types @-37

word is -1, then the next data word indicates a chained request to the

left half of the word specified rather than the right half.
A.1.10 Link Item Type 11 POLISH

This item type is provided for Polish fixups involving arithmetic and
logical operations on relocatable or externally-defined quantities.
Each item contains only one Polish string. The data words in each
item are a series 6f half-words consisting of operators and operands
followed by store operators and store addresses. The operators and

operands are as follows:

0 The next half word is an operand.

1 The next two half-words form a 36-bit operand.

2 The next two half-words form a Radix-50 symbol which is
a global request. The operand is the value of the
global.

3 Add.

4 Subtract.

5 Multiply.

6 Divide.

7 Logical AND.

10 Logical OR.

11 Left shift.

12 logical XOR.

13 One's complement (not).

14 Two's complement (negative).

The store operators are as follows:

18 bit value

-1 Right half chained fixup (777777).
-2 Left half chained fixup (777776).
-3 Full word chained fixup (777775) . The entire word

pointed to is replaced and the old right half points to
the next full word.

The half word following the store operator is used as the address of

the first element in the chain.

LINK-10 -824-

LINK~10

Item Types @-37

A.l.11 Link Item Type 12 LINK

pata words in this item type occur in pairs. The first word of the
pair is a link number and the second word is an address. There are 20
(octal) links numbered from 1 to 20. When LINK-10 is initialized, the
value of each link is set to zero. Each time a specific link is seen,
the current value of the link is stored in the address specified by
the second word of the word pair, and the specified address becomes
the new value of the link. If the number of the 1link seen is
negative, the address is saved as the end of the link . At the end of
loading, the current value for each link is stored in the address
indicated by the end of each link. If the end of the link is 0, no

storing is done.
A.l.12 Link Item Type 13 LVAR

This item type is used in LVAR fixups and is not currently handled by
LINK-~10. It is not supported by DEC and is not needed because the
TWOSEG pseudo-op is superior. The first data word is the location of
a variable area in the low segment. The second data word is the
length of the area needed. The low segment relocation counter is
incremented by the area needed. Data words after the first two data
words occur in pairs. If bit 2 of the first worxd of the pair is zero,
then the second word contains, in its left half, the address of a
fixup chain, and in the right half, the relative location in the
variable area to use for this fixup. The chaining occurs with the
right half of the words if bit 0 of the first word is 0; otherwise,

chaining occurs with the left half of the words.

A-10

-825- LINK-10

LINK=-10

Item Types g-37

If bit 2 of the first word of the pair is one, then the pair is used
to make a symbol table fixup. The right half of the first word is the
value of the fixup. The second word is the Radix~-50 representation

for the symbol.
A.1,13 Link Item Type 14 INDEX

This item type is produced by FUDGE2 to identify an index to LINK-10.
The index is a 1list of all entry poihts (Link item type 4) in a
library .REL file with pointers to the beginning of the individual
modu;es. The index is 200 octal words long and if there are more
entries in the library than will fit in 200 words, other item types 14
are created to contain the remainder of the entries. Each index is
divided into sub-items of various lengths. The sub-items do not
include the relocation word normally found in entry items of a
library. Each sub-item has a header word with the word count in the
right half and thé link item type 4 in the left half. Following this
header is the list of Radix-50 entry symbols. After the 1list of
entries, there is a pointer to the individual module within the
library file. The right half of the pointer is the block number of
the module, and the left half is the word count within the block for
the start of the module. The last word of the index item type
contains a -1 in the left half to signal the end of the index item and
the block number of the next index item in the right half., If LINK-10

is not in library search mode, index items are ignored.

A-11

LINK-10 -826-

LINK-~10

Item Types #-37

A.l.14 Link Item Type 15 ALGOL

This item type is the special ALGOL OWN item., The first data word is
the length of the OWN area to be allocated in the low segment. The

remaining words are chained with the right half of the OWN fixups.
A.l.15 Link Item Type 16 REQUEST LOAD

This item type is produced by the SAIL compiler and is used to request
the loading of programs. Thus, a .REL file can request libraries and
other files to be loaded, thereby keeping the command string to
LINK-10 simple. LINK-10 maintains a table for the names of libraries
to be loaded and another table for the names of standard relocatable
binary files to be loaded. When a new file is requested by link item
type 16 or 17, LINK-10 searches the appropriate table to verify that
the file has not already been specified. If it has not been
specified, an entry is made in the appropriate table. After all files
in the LINK-10 command string have been loaded, the files specified in
the two tables are loaded. The relocatable binary files are loaded

first; the libraries are loaded last.

The data words in this link item type appear in triplets. The first
word contains the filename in SIXBIT (the extension of .REL is
assumed). The second word is the UFD number in binary, and the third

word is the SIXBIT name of the device containing the file.
A.l.16 Link Item Type 17 REQUEST LIBRARY

This item type is the same as item type 16 except that the specified

A-12

-827- LINK-10

LINK-10

Item Types @-37

files are loaded only if they are needed to satisfy global requests.
That is, the files are loaded in library search mode. The data words

are identical to those in item type 16.
A.l1.17 Link Item Type 20 COMMON ALLOCATION

This item type is used to allocate named COMMON areas., The relocation
word must be presént. but the bits should be zero. The data words are
grouped in pairs, where the first word contains the Radix-50 symbol
for the name of the COMMON area and the second word contains the

length of the area required by this program.

This item type causes LINK~-10 to éearch for the specified COMMON area
to determine if it has been previously loaded. If it has, the length
given in this item type must be less than or - equal to the length
already allocated. Thus, the first program that defines a COMMON area
also defines the maximum size of that COMMON aréa. No subsequent
program can expand thié particular area, although COMMON areas of

different names can be defined.

If the specified COMMON area has not been loaded, the symbol name is
given the current low segment relocation value, and the length of the

area is added to the low segment relocation counter.
A.l.18 Link Item Type 21 SPARSE DATA

This item type is used to load data into arrays when link item type 1
is inefficient for this éurpose. The data words are grouped in

sub~items and each sub~item is treated in the same manner as link item

A=13

LINK-10 -828-

LINK-10

Item Type 400

type 1. The first word of each sub-~item contains in the left half a
count of the number of data words in the sub-item, and in the right
half the beginning address into which the data words are to be loaded.

The remaining words of each sub-item are the data words.

If bit 0 of the first word of a sub-item is 1, the £first word is
assumed to be a Radix-50 symbol. The left half of the second word is
the count of data words and the right half contains an offset. The

load address is then the value of the symbol plus the offset.
A.l.19 Link Item Types 22-36

These item types are not yet defined and return an error message if

used.
A.l.20 Link Item Type 37 DEBUG

This item type is used for the debugging symbol table for COBDDT (the
COBOL debugging program). If debugging is requested in local symbol
mode, the data from this item type is loaded in the same manner as the
data from 1link item type 1. If local symbols are not required, this

item type is ignored.
A.2 Link Item Type 400 FORTRAN (F40)

This item type is output by the 0ld one-pass FORTRAN=-IV complier
(F40). It does not contain a word count, relocation words, or data

words. It contains only the one word indicating the item type code.

A-14

-829- LINK-10

LINK-10
Item Type 401

A.3 Link Item Type 401 FORTRAN (F40)

This item type is similar to link item type 400 and in addition it

indicates that the file contains MANTIS debugging information.
A.4 Link Item Types 1000-1777

Link items in this range do not have identical formats. There is a
general pattern in that the first word of each item contains an item
type number in the left half and a word count in the right half.
However; unlike 1link item types 0-37, the word count of item types
1000-1777 is a count of all followiny words including overhead words
(relocation words). The structure of the relocation words depends
upon the link item; there may be any nuﬁber of relocation bits from 1
to 18 per half or full word.. Link items that do not need relocation
do not have relocation words. These item types are nbt used in the

first release of LINK=-10.
A.4.1 Link Item Type 1000

This item type is ignored by LINK-10 and thus can be used to store

information not required by it.
A.4.2 Link Item Type 1001 ENTRY

This item type is the simple entry item and consists of a list of
SIXBIT symbols. BEach data word contains one left-adjusted symbol
which éan be a maximum of six characters in length. There are no
relocation words, thus distinguishing this item type from item type 4.

However, the two item types are used in the same manner.

A-15

LINK-10 -830-

LINK-10

Item Types 1000-1777

A.4.3 Link Item Type 1002 LONG ENTRY

This item type contains one extended symbol (i.e., the symbol contains
more than six characters) in SIXBIT, which is tested to determine if
it is required as an entry point. This link item type is used in the

same manner as link item type 1001.
A.4.4 Link Item Type 1003 NAME

This item type contains information about the file and the translator
that produced it. The information in this item is stored in the

symbol table and can be output on a map listing.

The data words occur in triplets. The left half of the first word of
each triplet contains flag bits for that triplet and the right half is
unused. The first triplet of data (the primary triplet) contains the
program name in SIXBIT in the second word. This program name is taken
from the TITLE statement in a MACRO-10 program., If the program name
is 1longer than six characters, one or more triplets follow containing
the remaining characters of the name. Triplets following the program
name are identified by the flag bits in the first word of each
triplet. The triplet after the name triplets contains the low segment
relocation counter in the second word and the high segment relocation
counter in the third word. The next triplet has, in the second word,
the SIXBIT name of the translator that produced the file and in the
third word, the version number of the translator. This version number
is taken from location 137. The following triplet contains the

compilation date and time obtained from the LOOKUP UUO block in the

A-16

-831- LINK-10

LINK~-10
Item Types 1000-1777

second word, and in the third word, a default code for the translator
used, in case LINK-10 could not determine the translator from the
information in the previous triplet. The default translator codes are
listed in Paragraph A.l.7. The next triplet contains in the second
word, the name of the device on which the source file is stored, and
in the third word, the SIXBIT filename of thé source file. The
information in the next triplet is the source filename extension in
the second word and the name of the UFD containing the séurce file in
the third word. The next triplet ‘contains sub-file directory
information. The folldwing triplet contains the version number of the
source file as obtained by the translator that processed the file.
The information in the last triplet is interpreted as ASCII text and

is stored in the format in which it is given,

More than one NAME link item may be seen per module for programs made
from several source files. The program and compiler name triplets
must be the same in the the NAME link items, but the source filename

and any remaining triplets can be different.
A.4.5 Link Item Type 1004 RELOCATION

This item type consists of groups of words (usually pairs) without any
relocation words, The first data word of the item type contains the
total number of relocation groups in the item in order that sﬁfficieht
space can be allocated. The first.word of each relocation group has a
relocation level in the left half-and the count of the number of words
in the relocation counter name in the right half. The remaining words

in each group are the relocation counters. The relocation 1level is

A~-17

LINK-10 -832-

LINK=-10

ftem Types 1000-1777

the position in the table of relocation counters, such that for any
word needing relocation, the value of the relocation byte will receive

the correct constant for addition.

If a relocation counter is not yet defined (or a complex Polish
expression not yet resolved), it must be placed in the undefined
table, and its slot in the relocation tables is marked as wundefined.
All code referring to the undefined counter is stored in the fixup
area or on the disk. In other words, if the location into which code
is to be loaded is not yet defined, all the code under the relocation
counter must be placed in the fixup table or on the disk. Link item
type 1004 can appear anywhere and must be used whenever a new
relocation counter is used. The standard name for the low segment
relocation counter is .LOW. and the standard for the high segment
counter is .HIGH.. These counters normally occupy positions 1 and 2

in the table of relocation counters.

A.4.6 Link Item Type 1005

This item type is undefined and reserved for future definition.
A.4.7 Link Item Type 1006 START

This item type contains the start addresses for the program. It
consists of a relocation word with 4-bit bytes for £full word
relocation, followed by the list of relocatable start addresses in
order of their use. These addresses are used or ignored depending on
the switches given by the user. Currently, only one start address per

program is recognized.

A-18

-833- LINK-10

LINK=-10

Item Types 1000-1777

A.4.8 Link Item Type 1007 START

This item type is used for additional start addresses or external
symbolic start addresses. The 1link item is divided into groups of
words for each start address. The first word of each éroup contains
flag bits in the left half and the count of the number of words in the
group in the right half. Currently, bit 0 is ﬁhe only flag bit. If
this bit is 1, a Polish. expression follows; if it is 0, a symbol

follows. This item type does not inclﬁde relocation words.
A.4.9 Link Item Types 1010-1017 CODE

The link items in the range 1010-1017 are similar except for the size
of the relocation byte. The most general case uses 18 bits per half
word, but this method consumes too much spaée for simple programs.
Item type 1010 has a byte size of 2 bits, thereby allowing three
relocation counters and absolute code. Relocation occurs only on the
right half of the word and is positive; the left half is considered
absolute. Since in most programs the code consists of constants in
the 1left half (op-codes, indexes, ACs) and relocatable addresses or
constants in the right half, this item type should be sufficient for

most programs.,

Item type 1011 also has 2~-bit bytes but has relocation for the left
half as well as the right half of the word. This item type allows
three relocation counters plus absolute code. Link item type 1011 is

used mainly for table generatioh.

A-19

LINK-10 -834-

LINK~-10

Item Types 1000-1777

Item type 1012 allows relocation only for the right half of the word
(similar to item type 1010) but has a byte size of 4 bits, giving

allowances for 15 relocation counters.

Item type 1013 allows relocation for both the left and right halves of

the word (similar to item type 1011l) but uses a 4-bit byte size.
Item types 1014-1016 are reserved for future use.

Item type 1017 has 18 bits of relocation per half word.

A.4.10 Link Item Types 1020-1027 SYMBOL

All symbols are in triplet format. The 1link items in the range
1020~1027 differ only in the size of the relocation b-te. This byte
is the same as the byte size for the corresponding CODE item. For
example, symbol type 1020 and code type 1010 use 2-bit bytes, symbol
type 1022 and code type 1012 use 4-bit bytes, and so forth, The
relocation word applies only to the third word of the triplet (the
symbol value). Thus, for example, in the case of symbol type 1020,
each relocation word is followed by up to 18 triplets rather than 18

words.
A.4.11 Link Item Type 1030 POLISH

This item type is provided for Polish fixups and consists of operators
and operands, including store operators and store operands in
pre~fixup form. Each item contains only one Polish string, but may
contain many different store pointers. Operators aré stored one per

half word, and symbols are stored in contiguous half words. Store

A-20

LINK-10

-835-

Item Types 1000-1777

pointers

LINK-10

are in the form of either an address in a halfword or a byte

pointer in a full word. Associated with store pointers are store

operators that

operator.

shift the value to the correct field and store

The store operator may also point to a symbol that is to be

stored in the symbol table.

The operators and operands are as follows?

a v > W N O

7

10-77
100
10l
102
103
104
105
106
107
110
111
112
113

The next half word is an operand.
The next two half words form a 36~bit operand.

The next two half words form a 36-bit symbol which is a
global request. The operand is the value of the global.
The next half word is the count of half words in an extended -

symbol. The subsequent half words are the symbol.

The next half word is a numeric relocation counter for the

program.

The next two half words are a symbolic relocation counter.
The next half word is a count of the number of half words in
an extended symbolic relocation counter. The following

halfwords are the relocation counter.
The next two half words are a byte pointer to code
loaded.

Reserved for future use.

Add

Subtract

Multiply

Divide

Logical AND

Logical OR

Left Shift (LSH)

Logical XOR

One's complement (not)

Two's complement (negate)

Get contents (MOVE)

Reserved for future use

The store operators are as follows:

18 Bit Value

-1 Right half chained fixup (777777).

-2 Left half chained fixup (777776).

-3 Full word chained fixup (777775).

-4 The next two half words are a byte

A-21

already

pointer

LINK-10 -836-

LINK-10

Item Types 1000-1777

(777774) .
-5 The next two half words are an instruction plus an
address (ANDM,XORM) (777773).
-6 The next two half words are a symbol and the value
) is stored in the half words (777772) .
-7 The next half word is the count of the number of

half words in an extended symbol. The half words
following are the extended symbol and the value is
stored in these half words (777771).

-10 The next half word is a numeric relocation counter
(777770).

-11 The next two half words are a symbolic relocation
counter (777767).

-12 The next half word is a count of the number of

half words in an extended symbolic relocation
counter. The following half words are the counter
(777766) .

-13 Reserved for future use.

The store operators obtain their arguments from a stack; the first
word is usually the value and the second is the memory address.
Addresses can be built using other Polish operators. For chained
fixups, the half word preceding the store operator is used as the

address of the first element in the chain.
A.4.12 Link Item Type 1031 POLISH

This item type is similar to item type 1030 except +that Polish
notation in post-fixup form is used. The operators and operands are

the same.,

A.4.13 Link Item Types 1032-1033

These item types are reserved for future use,
A.4.14 Link Item Types 1034-~1037 CONDITIONAL

There are three kinds of conditonal loading item types: the Begin

A-22

-837- LINK-10

LINK-10

Item Types 1000-1777

conditional, the End conditional, and the Else conditional. The Begin
conditional has a unique number assigned by the translator which is
matched with the unique number in the End and Else conditionals. It
also contains a conditional operand and operator. The End conditional
cancels the conditional loading, updates the relocation counters, and
generates the next implicit relocation counter, if it is not
explicitly defined by the user, so that following code can be loaded.
The Else conditional is the inverse of the condition in the Begin
conditional in that code is loaded if the condition is false. The

three kinds of condition items can be nested.

A.4.14.1 The Begin Conditional = Link Item Type 1034 - This item type
has four relocation bits per half word thereby allowing 15 possible
relocation counters. Thé first data word contains the unique |
conditional number. If a number is not specified, zero is‘assumed and
LINK~10 matches the Begin with the first End or Else conditional at
that level. The second data word contains the conditional operator in
the left half and the conditional operand in the right half. The

remaining words contain the rest of the operand.
The conditional operators are coded as follows:

null

if zero

if greater than zero

if greater than or. equal to zero
if less than zero

if less than or equal to zero
if not equal to zero

if defined

if not defined

if global

if local

N~oubkwNhH-HO

i
NHo

A-23

LINK~10 -838-

LINK=-10

Item Types 1000-1777

The operand is either a symbol or a Polish expression. If the operand
cannot be evaluated, the words are stored on the disk. The operands
are:
100 The next two half words coritain a SIXBIT symbol.
101 The next half word is a count of +the number of

half words in an exterided symbol. The following
words contain the SIXBIT symbol. '

102 A pre-fixup Polish expression follows (refer to
Paragraph A.4.11).
103 A post-fixup Polish expression follows (refer to

Paragraph A.4.12).

If the condition is met, all code up to an End or Else conditional is

loaded. When the condition is not met, the code is not loaded.

A.4.14.2 The Begin Conditional - Link Item Type 1035 - This item
type is similar to Link Item Type 1034 except that it has half word

relocation per half word.

A.4.14.3 The Else Conditional - Link Item Type 1036 = This item type
contains no relocation words and has one data word containing a unique
number matching the one in the Begin conditional. If the condition in
the Begin conditional is true, the code in the current Else
conditional to its matching End conditional or to the next matching
Else conditional is ignored. If the condition is not true, the code

is loaded.

A.4.14.4 The End Conditional - Link Item Type 1037 - This item type
also has no relocation words. The first data word is a unique number
matching the one in the Begin conditional. 1If the condition in the

Begin conditional is false and no Else conditional is seen, the End

A-24

-839- LINK-10

LINK=10

Item Types 1000-1777

conditional is ignored. However, if code was loaded, the End
conditional is read. The item type contains one data word for each
relocation counter used in the same order as specified ih the last
relocation setting link item. The data words are the highest value of
the relocation counter used in the conditionally-loaded code. These
values are added to the current values, and to the accumulation of

such values, until the final END item type of the REL file.
A.4.15 . Link Item Type 1040 END

This 1link item marks the end of a link module. It does not contain
relocation words but does contain a list of all relocation counters
used and their final values. Any conditional code that was loaded
plus other overhead items, such as the ALGOL item, are added to the
final values. The resulﬁing values are Ehen added to the current
values of the relocation counters to obtain the value for the next
module. The beginning and ending addresses are stored in the symbol
table in order that DDT has the range of the program and that they can

be output in a map listing.
A.4.16 Link Item Type 1041 Special FORTRAN-10 Block

This 1ink item defines a call to a special once-only routine that is

to be executed by LINK-10 after all code has been loaded.
A.4.17 Link Item Type 1042 Program Request

This link item requests the loading of .REL files required for this

program. It is similar to 1ink item type 16; however, there are no

A-25

LINK-10 -840-

LINK=-10

Item Types 1000~1777

relocation words. This item replaces the need for library searches
and is wuseful when loading real and dummy routines because it

specifies filenames rather than modules names.

The data appears in groups of four or more words. Each group contains

the following words:
Name of the device in SIXBIT containing the file.
Name of the file in SIXBIT.

Extension of the file in SIXBIT in the left half, and the length

of the directory in the right half.
UFD in octal.
Remaining words in the group are sub-file directory names in SIXBIT.

The requests are stored until the end of loading and are loaded before
the default 1libraries and requested libraries (link item type 1043).

Any number of files can be requested.,
A.4.18 Link Item Type 1043 Library Request

This item type requests the searching of libraries, either in search
mode for all unresolved entries or for particular modules. The data

is identical to that in item type 1042,
A.4.19 Link Item Types 1044-1047

These item types are reserved for future use,

A-26

-841- LINK-10

LINK-10

Item Types 1000-1777

A.4.20 Link Item Type 1050 Global Data

This item type contains data that is common to many programs (i.e.,
constanﬁs, argument'iisté, literals in MARCO-lO langdage). The global
data item‘consists of two other link items: the relocation setting
item (type 1004) and a code item (types 1010-1017). The initial
glbbal data itém has no relocation words. The first data word is the
header of the relocation item and only the relocation actually used
should appear in this word; all other entires should be zero. The
next data words are thévdata for the relocation item. Following these
data words is a codé_item with relocation bits and data which may be
ieldcatablelor absoiuﬁe; LINK-10 collects all the global data blocks,
compares them, and keeps.dnly one copy of those with the same data and
relocation. The global data items are loédeé,at the end of loading or
immediétely after a /DATA switch is seen. These items should reduce

the size of loaded programs be¢au9e of pooling of literals.
A.4.21 Link Item Types Greater Than 3777 ASCII

These items are recogniéed by the first seven bits being non-zero
(i.e., an ASCII character)., There is no word count in the item.
Termination of the item occurs at a null byte. These items‘ are
generated by translators and contain ASCII commands similar to those
tYped on the user's terminal. Thus they are similar to an indirect
file. ASCII items allow the overlay structure to be embedded in the

file to simplify the maintaining of large overlay programs.

A=-27

-843- LINK-10

LINK-10

LOADER and LINK-10 Differences

APPENDIX B

LOADER AND LINK-10 DIFFERENCES

This appendix is intended as an aid for users who have been employing
the LOADER program and who are now converting to the LINK-10 program.
Both programs are linking loaders. Both have the same basic functions
of loading and relocating user's object code modules and résolving
references among the modules. But LINK-10 is not just an updated
‘version of LOADER. It is a completely new, more sophisticated, and
more flexible piece of software. This appendix itemizes the
differences between the two programs in order to facilitate conversion

to LINK~10.

LOADER LINK=10

The default output device is The default output device is
TTY. DSK.

The default name of the MAP The default name of the MAP

file is MAP.MAP, file is the name of the last
: program with a start address.
If there is no program with a
start address, the default name
is nnnINK.MAP, where nnn is
the user's job number.

Command files are specified Command files are specified
in the form in the form
* file @ * @ file
The default extension of The default extension of
the command file is .TMP. the command file is .CCL.
Input and output specifications Input and output specifications
are separated by a back-arrow may be separated by an equals
(+). Thus, an output file sign (=), but this is not
is defined as being on the required. An output file is

LINK-10

844~

LINK-10

LOADER and LINK-10 Differences

left side of the back-arrow.

The only output file
produced by LOADER is
a map file.

Exit conditions are /G,
altmode, and +42Z.

Line terminators

(e.g. <carriage return, line feed>)
are treated in the same way

as commas (i.e., they terminate the
specification)., File dependent
switches remain in effect until
overridden by a subsequent switch
or until the end of the load.

The most recently specified

source device remains the default
until a new device is specified

or until the end of the load.
Defaults carry across lines.

To load local symbols for
FILE1l and FILE2 and

then load DDT, the following
sequence could be used:

*/S
*FILEl,FILE2
*/W/D$

To search FILEA and FILEB
in library search mode, the
sequence:

*/L
* FILEA,FILEB

B-2

they belong.

specified by giving a file
specification followed by an
output switch.

LINK-10 can be instructed
to produce map, save, log,
symbol, and XPN files.

The only exit condition is
/GO.

LINK-10 has a line oriented
scanner. All file-dependent
switches are turned off at the
end of the line to which

The most recently
specified source device remains
the default until a new device
is specified or until the end
of a line is reached. Standard
defaults are restored at the
beginning of each line. In
dgeneral, it is best to place all

the commands for loading a
program on a single 1line. A
hyphen is used as the line

continuation character.

To load local symbols for
FILEl and FILE2 and then
to load DDT, the following
sequence is used:

*/LOCALS FILEl,FILE2,
*/TEST /GO

Note that if the /LOCALS switch

had appeared on a line by
itself, it would have had no
effect.

To search FILEA and FILEB
in library search mode, the

sequence is:

*/SEARCH FILEA,FILEB
The sequence

-8U45- LINK-10

LINK-10

LOADER and LINK-10 Differences

could be used.

When performing a search of

the default libraries at the

end of the load, LOADER
makes one pass through all
required libraries. In
addition, LIB40 is always
searched.

The /D and /T switches

load with local symbols.
This mode remains in effect
until it is turned off with
the /W switch, and remains
off until another switch
which loads local symbols
is given.

The following table lists each LOADER switch and the LINK=-10

which performs the nearest equivalent action.

*/SEARCH
*FILEA,FILEB

does not cause FILEA and FILEB
to be searched. Instead, they
are loaded in their entirety.

LINK-10 performs multiple passes
through all required libraries
until no undefined symbols
remain or until no additional
routines have been loaded. In
addition, LIB40 is not
automatically searched unless it
is required by an F40 program.
Thus, when loading MACRO
programs which utilize routines
in LIB40, the user must
explicitly request that LIB40 be
searched. Also, JOBDAT.REL is
not searched unless the
/NOINITIAL switch is used.
LINK-10 automatically
initializes its global symbol
table to include JOBDAT symbols.

The /TEST and /DEBUG switches
instruct LINK=-10 to load all
subsequent files with their
local symbols. The /NOLOCAL
switch can be used to suppress
the loading of local symbols.
However, since the /NOLOCAL
switch is file dependent, it is
cleared at the end of the line
and load with local symbols mode
is reinstated.

switch

Note that there is not

always a one-to-one correspondence between the action performed by the

LOADER switch and by the LINK-10 switch.

Refer to Chapter 4 of the

LINK-10 Programmer's Reference Manual for the complete descriptions of

the LINK-10 switches.

LINK-10 | -846-

LINK-10

LOADER and LINK-10 Differences

LOADER LINK-10

/A /CONTENT : ZERO

/B /SYMSEG: LOW

/1B /SYMSEG:HIGH

/nnnnB /PATCHSIZE:nnnn

/C No equivalent switch. LINK-10 does
not support the old CHAIN facility.

/D /TEST:DDT or /TEST:MACRO

/E /EXECUTE

/F /SYSLIB

/1F /FORSE

/2F /FOROTS

/G /GO

/nnnG /START :nnn

/H /SEGMENT : LOW

/1H /SEGMENT : HIGH

/nnnnH /SET: .HIGH, :nnnn

/=-H /SEGMENT : DEFAULT

/1 /NOSTART

/3 /START

/nkK /RUNCOR:n

/=K No equivalent switch. Use /RUNCOR.

/L /SEARCH

/™ /MAP : END

/1M /MAP : END/CONTENT : LOCALS

-847- LINK-10

LINK-10
LOADER and LINK-10 Differences

/N /NOSEARCH

/nnno /SET: .LOW. :nnn

/P ' /NOSYSLIB

/Q /SYSLIB at the end of the command
string.

/R No equivalent switch. LINK-10 does
not support the old CHAIN facility.

/8 ‘ /LOCALS

/T ' /DEBUG:DDT or /DEBUG:MACRO

/0 /UNDEFINED

/v /OTS:HIGH

/=v /OTS : LOW

/W /NOLOCALS

/X /CONTENT :NOZERO

/Y /REWIND

/2 /RUN:LINK

-849- LINK-10

LINK-10

Glossary

GLOSSARY
Absolute Addréss

A fixed location in user virtual éddfess gspace which cannot be
reiocatea. For example, the high-speed accumulators on the
DECsystem-10 occupy locations 0 through 17 (octal) in the wuser's
virtual address space. All modules that reference the
accumulators must reference these locations. Thus the addresses

0 through 17 (octal) are absolute addresses.
Absolute Module

A module whose location counters are set to absolute addresses

only.
Address Binding

The assignment of virtual address space to the physical address
space in computer memory. This is automatically performed by the
DECsystem=10 monitor and 4is completely invisible to user

programs.
Assemble

To prepare a machine-language ﬁodule from a symbolic-language
module by substituting the actual numeric operation codes for
symbolic operation codes, And absolute or relocatable addresses

for symbolic addresses.

Glossary-1

LINK-10

-850~

LINK-10

Glossary

Assembler

A program which accepts symbolic assembly code and translates it
into machine instructions. MACRO-10 is the standard assembler

supplied by DEC.

Base Address

An address used as a basis for computing the value of some other
address. This computation is usually of the form

final address = base address (+ or =) offset.

Clear

To erase the contents of a location by replacing the contents

with blanks or zeroes.

COMMON Area

A section in a program's address space which is set aside for
common use by many modules. COMMON is usually set up by modules
written in the FORTRAN language. It is used by

independently-compiled modules to share the same data locations.

Control Section

A unit of code (instructions and/or data) that is c¢onsidered an
entity and that can be relocated separately at load time without
destroying the logic of the program. Control is passed properly
from one Control Section to another regardless of their relative

positions in user virtual address space. A Control Section is

Glossary-2

-851- LINK-10

LINK=-10

Glossary

identified by a relocation counter and thus is the smallest unit

of code that can be relocated separately.
Default Directory

The directory in which the Monitor searches if a directory
specification has not been given by the user. Typically, this is
the UFD corresponding to the user's logged~in project~-programmer

number but it may another UFD or a SFD (sub-file directory).
Directory

A file which contains the names and pointers to other files on
the device. The MFD, UFDs, and SFDs are directory files. The
MFD is the directory containing all the UFDs. The UFD is the
directory containing the files existing in a given
project-programmer number area. The SFD is a directory pointed
to by a UFD or a higher-level SFD. The SFDs exist as files under
the UFD.

External Symbol

A global symbol which is referenced in one module but defined in
another module. The EXTERN statement in MACRO-10 is used to
declare a symbol external. A subroutine name referenced in a
CALL statement in a FORTRAN module is automatically declared

external.

Glossary-3

LINK-10 -852-

LINK-10

Glossary

File
An ordered collection of 36-bit words comprising computer
instructions and/or data. A file is stored on a device, such as
disk or magnetic tape, and can be of any length, limited only by
the available space on the device and . the user's maximum space
allotment on that device.

File Specification
A list of identifiers which uniquely specify a particular file.
A complete file specification consists of: the name of the device
on which the file is stored, the name of the file including its
extension, and the name of the directory in which the file is
contained.

FUDGE2
A system utility program used to update libraries containing one
or more modules and to manipulate modules within these libraries.

GET

To transfer a saved program from a file on a device into core
memory using a bootstrap program or the Monitor. The GET command
places a program into memory. The RUN command performs the same
operation and, in addition, starts the program. The GET

operation differs from the LOAD operation (refer to LOAD).

Glossary-4

-853- LINK-10

LINK-10

Glossary

GLOB

A system utility program used to read libraries and to generate
an - alphabetical cross-referenced list of all the global symbols
encountered. When a program is composed of many modules which
communicate via global symbols, it is wuséful to have an
alphabetical list of all global symbols with the names of the

modules in which they are defined and referenced.

Global Request

A request to LINK-10 to link a global symbol to a module.

Global Symbol

High

A symbol that is accessible to modules other than the one in

which it is defined. The value of a global symbol is placed in

LINK-10's global symbol table when the module containing the

symbol definition is loaded.
Segment

That portion of the user's addressing space, usually beginning at
relative location 400000, which generally is used to contain pure
code that can be shared by other users. This segment is wusually
write-protected in order to presérve the data. The user can
élace information into a high segment with the TWOSEG pseudo-op
in MACRO-10. Higher-level language, such as COBOL and FORTRN,

also have provisions for loading pure code in the high segment.

Glossary-5

L.INK-10

-854-

LINK=-10

Glossary

Initialize

To set counters, switches, or addresses to zero or other starting
values at prescribed points in the execution of a computer

routine,

Internal Symbol

A global symbol located in the module in which it is defined. 1In
a MACRO-10 program, a symbol is declared internal with the INTERN
or ENTRY pseudo~-op. These pseudo-ops generate a global
definition which igs used to satisfy all global requests for the
symbol. In FORTRAN programs, internal symbols are generated to
match the names of SUBROUTINEs, FUNTIONs, and ENTRYs. An
internal symbol is similar to a library search symbol; however,

it will not cause a module to be linked in search mode.

Job Data Area (JOBDAT)

The first 140 octal locations of a user's address space. This
area provides storage for certain data items used by both the
Monitor and the wuser's program. Refer to the DECsystem-10

Monitor Calls Manual.

Label

A symbolic name used to identify a location in a program.

Glossary-6

-855- LINK-10

LINK-10

Glossary

Library

A relocatable binary file containing one or more modules which
may be loaded in Library Search Mode. FUDGE2 is a system utility
program which enables users to merge and edit a‘ collection of
relocatable binary modules into a library file. PIP can also be
used to merge relocatable binary modules into a library, but it

has no facilities for editing libraries.
Library Search Mode

The mode in which a module (one of many in a library) is leoaded
only if one or more of its declared entry points satisfy an

unreéolved global request. .

Library Search Symbol (Entry Symbol)

A list of symbols that are matéhed against unresolved symbols in
order to load the apérop;iate modules. This list is used only in
library‘search mode. A library search symbol is defined by an
ENTRY statement in MACRO-10 and BLISS-10 and ‘a SUBROUTINE,

FUNCTION, or ENTRY statement in FORTRAN.
Linker

A program that combines many input modules into a single module
for loading purposes. Thus, it allows for independent
compilations of modules. Typically, it satisfies global

references'and may combine control sections.

Glossary—-7

LINK-10

-856-

LINK-10

Glossary

Link

To combine independently-translated modules into one module in
which all relocation of addresses has been performed relative to
that module and all external references to symbcls have been

resolved based on the definition of internal symbols.

Linking Loader

Load

A program that provides automatic loading, relocation, and

linking of compiler and assembler generated object modules.

To produce a core image and/or a saved file from one or more
relocatable binary files (REL files) by transforming relocatable
addresses to absolute addresses. This operation is not to be
confused with the GET operation, which initializes a core image

from a saved file (refer to GET).

Local Symbol

A symbol known only to the module in which it is defined.
Because it is not accessible to other modules, the same symbol
name with different values can appear in more than one module.
These modules can be loaded and executed together without
conflict. Local s8ymbols are primarily used when debugging
modules; symbol conflicts between different modules are resolved

by mechanisms in the debugging program.

Glossary=-8

~857- LINK-10

LINK-10

Glossary

Low Segment

The segment of user virtual address space beginning at zero. The
length of the low segment is stored in location +JBREL of the Job
Data Area. When writing two-segment programs, it is advisable to

place data locations and impure code in the low segment.
Main Program

The module containing the address at which object program

execution normally begins.
Module

The smallest entity that can be loaded by LINK-10. It is
composed of a collection of control sections. In MACRO-10, the
code between the TITLE and END statements represents a module.
In FORTRAN, the code between the first statement and the END
statement is a module. In COBOL, the code between the
IDENTIFICATION DIVISION statement and the last statement is a

module.
Module Origin

The first location in user virtual address space of the module.
Object Module

The primary output of an assembler or compiler, which can be
linked with other object modules and loaded into a runnable

program. This output is composed of the relocatable machine

Glossary-9

LINK-10 -858-

LINK=-10

Glossary

language code for the translated module (i.e., link items),
relocation information, and the corresponding symbol table

listing the definition and use of symbols within the module.
Object Time System

The collection of modules that supports the compiled code for a
particular language. This collection usually includes I/0 and

trap~handling routines.
Offset

The number of locations relative to zero that a Control Section

must be moved before it can be executed.
Operating System

The collection of modules that automatically permits continuous
job processing by scheduling and controlling the operation of
user and system programs, performing 1/0, and allocating

resources for efficient use of the hardware.
Physical Address Space

A set of memory locations where information "can actually be

stored (i.e., core memory) for the purpose of program execution.
Program

A collection of routines which have been linked and loaded to

produce a saved file or a core image. These routines typically

Glossary-10

-850- LINK-10

LINK-10

Glossary
consist of a main program and a set of subroutine which may have
come from a library.

Pure Code

Code which is never modified in the process of execution.
Therefore, it is possible to let many users share the same copy

of a program.
REL File

One or more relocatable object modules composed of link items

(refer to Appendix A).
Relocatable Address

An address within a module which is specified as an offset from

the first location in that module.
Relocatable Control Section

A control section whos addressés have been specified relative to
zero. Thus, the control section can be placed into any area of

core memory for execution.
" Relocation Counter

The number assigned by LINK-10 as the beginning address of a

Control Section. This number is assigned in the process of

Glossary-11

LINK-10 -860-

LINK=-10

Glossary

loading specific Control Sections into a saved file or a core
image and is transformed from a relocatable quantity to an

absolute quantity.
Relocation Factor

The contents of the relocation counter for a control section.
This number is added to every relocatable reference within the
Control Section. The relocation factor is determined from the
relocatable base addresa for the control section (usually 0 and
400000) and the actual address in user virtual address space at

which the module is being loaded.

Routine

A set of instructions and data for performing one or more

specific functions.
Segment

An absolute Control Section.
Source Language Program

The original, untranslated version of a program written in a
higher-level language (e.g., FORTAN, COBOL, MACRO). Source
programs, when translated, produce object modules as their
primary output. A program may exist as a source program, an

object module, and a runnable core image.

Glossary-12

-861- , LINK-10

LINK=-10

Glossary

Symbol

Any identifier (composed of SIXBIT characters) used to represent
a value that may or may not be known at the time of its original
use in a source language program. Symbols can appear in source
language statements as labels, addresses, operators, and

operands.

Symbol Binding

To resolve references in one module to symbols which are defined

(i.e., are assigned a value) in another module.

Symbol Table

A table containing entrie for each symbol defined or used within

a module.

Translate

User

To compile or assemble a source program into a machine language

program, usually in the form of a (relocatable) object module.
Virtual Address Space

A set of memory addresses within the range of 0 to 256K words.
These addresses are mapped int§ physica; core addresses by the
paging or relocation-protection hardware when a program is
executed. On a KAl0 processor, the range of addresses is limited

by the amount of physical core available to a given user.

Glossary-13

LINK-10 -862-
LINK~-10
Glossary
User's Program

All of the code running uder control of the Monitor in a user

virtual address space of its own.
Zero Length Module

A module containing symbol definitions but no instruction or data
words (e.g., JOBDAT). Note that the word "length"™ in this

context refers to the program length of the module after loading.

Glossary-14

	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827
	828
	829
	830
	831
	832
	833
	834
	835
	836
	837
	838
	839
	840
	841
	842
	843
	844
	845
	846
	847
	848
	849
	850
	851
	852
	853
	854
	855
	856
	857
	858
	859
	860
	861
	862

