decsyUsceno

FORTRAN
PROGRAMMERS
REFERENCE MANUAL

dlilgliltiall

January 1977

This document describes the language elements of the
FORTRAN-10 compiler for the DECsystem-10.

decsystemito

FORTRAN PROGRAMMER’S
REFERENCE MANUAL

Order No. AA-0944E-TB

SUPERSESSION/UPDATE INFORMATION: This document supersedes the document of the
same name, Order No. DEC-10-LFORA-D-D,
published June 1975,

OPERATING SYSTEM AND VERSION: Any Digital-supported operating system for the
DECsystem-10.

SOFTWARE VERSION: FORTRAN-10, Version 5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation - maynard, massachusetts

First Printing, June 1973
Revised: January 1974
October 1974

May 1975

June 1975

November 1975

January 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (C) 1973, 1974, 1975, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem~20 TYPESET-11

8/77-14

PREFACE

This manual has two parts: PART I, Introduction to Using FORTRAN-10
with SOS, and PART II, FORTRAN-10 Languagje Manual.

Part I is a short guide to using the DECsystem—-10 Operating System.
It describes the minimum sct of commands necessary to input, edit, and
exacute FORTRAN programs. It assumes that the reader has a
rudimentary knowledge of or is presently learning FORTRAN programming.
It is a guide to implementing FORTRAN on the DECsystem-10.

The complete set of Operating System commands 1s given in the
DECsystem—-10 Operating Systems Commands Manual (DEC-10-0OSCMA-A-D).
The SOS text editor is described completely in the S0OS User's Guide
(DEC-10-US0OSA~-A-D) .

Part II describes the FORTRAN 1language as implemented for the
FORTRAN-10 TLanguaje Processing System (referred to as FORTRAN-10).
The language manual (PART II) is intended for reference purposes only.
The reader 1s expected to have some experience in writing FORTRAN
programs and to be familiar with the standard FORTRAN language set and
terminology as defined in the American National Standard FORTRAN,
X3.9-19566. Descriptions of FORTRAN-10 extensions and additions to the
standard FORTRAN language set are printed with gray shading.

Operating procedures and descriptions of the DECsystem-10 programmning
environment are included in the apvendixes.

iii

PART I

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

PART II

CHAPTER
CHAPTER
CHAPTER

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

MASTER TABLE OF CONTENTS

INTRODUCTION TO USING FORTRAN-10 WITH SOS

WO ~~NOYUT > WDN KM

LOGGING IN

TYPING IN YOUR PROGRAM

RUNNING YOUR PROGRAM

CHANGING YOUR PROGRAM

FORTRAN-10 INPUT AND OUTPUT OF DATA
SOME HELPFUL COMMAWNDS

SAYING GOODBYE TO THE COMPUTER
EXAMPLES

FORTRAN-10 LANGUAGE MANUAL

INTRODUCTION

CHARACTERS AND LINES

DATA TYPES, CON3TANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS
EXPRESSIONS

COMPILATION CONTROL STATEMENTS
SPECIFICATION STATEMENTS

DATA STATEMENT

ASSIGNMENT STATEMENTS

CONTROL STATEMENTS

I/0 STATEMENTS

NAMELIST STATEMENTS

FILE CONTROL STATEMENTS
FORMAT STATEMENT

DEVICE CONTROL STATEMENTS
SUBPROGRAM STATEMENTS

BLOCK DATA SUBPROGRAMS
ASCII-1968 CHARACTER CODE SET
USING THE COMPILER

WRITING USER PROGRAMS

FOROTS

FORDDT

COMPILER MESSAGES

FORTRAN-10 REALTIME SOFTWARE
FOROTS ERROR MESSAGES

INTRO
INTRO
INTRO
INTRO
INTRO
INTRO
INTRO
INTRO

Page

W1 O U W
[
R R

OWoOJO U W N
| I I N R | [
gy T T PR g T —

PART I

Introduction to Using FORTRAN-10 with SO0S

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

5

6

CONTENTS

LOGGING IN

TYPING IN YOUR PROGRAM

TO S5TOP ENTERING LINES INTO YOUR PROGRAM
ENDING OR STORING YOUR PROGRAM(E)

THE RUBOUT OR DELETE KEY (CORRECTING
TYPING MISTAKES)

RUNNING YOUR PROGRAM
THE EXECUTE COMMAND
CTRL/C ("C) (GETTING THE MONITOR'S
ATTENTION
Stopping Your Program's Execution
Deleting a Command
CTRL/U ("U) (CHANGING A LINE)

CHANGING YOUR PROGRAM
THE R SOS COMMAND (CORRECTING MISTAKES IN
YOUR PROGRAM)
S0S COMMANDS
- Inserting Lines Into Your Program
- Deleting Lines From Your Program
- Replacing Lines In Your Program
- Printing Lines Of Your Program On
The Terminal
Changing The Line Numbers
- End (Ends Editing and Stores

the Program)

EQ - Returning To the Monitor Without
Storing Your Program

A FEW 50S CONVENTIONS
TAB (CTRL/I)
CORRECTING MISTAKES

T WO H

[
|

FORTRAN-10 INPUT AND OUTPUT OF DATA
READ STATEMENT
WRITE STATEMENT
DEVICE UNIT NUMBERS
ACCEPT STATEMENT
TYPE STATEMENT
DATA FILES
Letting FORTRAN Use a Predefined
Filename
Using Your Own Filename

SOME HELPFUL COMMANDS

TYPE COMMAND (PRINTING OUT YOUR PROGRAM)
DIRECT COMMAND (LISTING ALL STORED
PROGRAMS AND FILES)

DELETE COMMAND (ERASING A PROGRAM

OR FILE)

ix

INTRO

INTRO
INTRO
INTRO

INTRO

INTRO
INTRO

INTRO
INTRO
INTRO
INTRO

INTRO

INTRO
INTRO
INTRO
INTRO
INTRO

INTRO
INTRO

INTRO

INTRO
INTRO
INTRO
INTRO

INTRO
INTRO
INTRO
INTRO
INTRO
INTRO
INTRO

INTRO
INTRO

INTRO
INTRO

INTRO

INTRO

CHAPTER

CHAPTER

7

8

CONTENTS (CONT.)

RENAME COMMAND (GIVING A PROGRAM OR FILE
A NEW NAME)

CTRL/O (SUPPRESSNG PRINTED OUTPUT)
GRIPES

SAYING GOODBYE TO THE COMPUTER
KJOB COMMAND (LOGGING OUT)

K/F Command (Fast Logout)

HELP Command (Getting Assistance)
WHAT TO DO IF YOU ARE DISCOWNECTED FROM
YOUR JOB (ATTACH)
FORGOT YOUR JOB NUMBER? (SYS)

EXAMPLES

INTRO
INTRO

INTRO

INTRO
INTRO
INTRO
INTRO

INTRO
INTRO

INTRO

CHAPTER 1

LOGGING-IN

To begin programming on the DECsystem-10 Timesharing Systenm,
you need an account number and a password. You may also
need to make a telephone connection to the computer; if so,
you need the computer's telephone number. Write this
information here:

Telephone Number:
(if needed)

Account Number:

Password:

NOTE

Before logging-in, be sure to read Chapter 7 on KJOB
(logging-out). If you do not log out, but merely
disconnect your terminal, the DECsystem-10
accounting system will not know you have finished
and WILL CONTINUE TO CHARGE YOU FOR TERMINAL TIME.

First, make sure that the terminal is turned on to LINE. If
you are to make a telephone connection to the computer, turn
on the acoustic coupler and then dial the telephone number
to make the connection to the DECsystem-10.

The computer now may print a few 1lines identifying itself
and will print:

PLEASE LOGIN OR ATTACH

followed by a line beginning with a period (.). This period
signifies the computer's readiness to accept your LOGIN
command. If the computer does not orint a veriod, type
CTRL/C ("C). The may appear as an + on some terminals.
The computer will respond with a period.

NOTE

To type CTRL/C, hold the Control (CTRL) key down
while typing C. This causes the computer to print
the characters "C on the terminal. 1In this book,
the symbols “C will mean that you are to type
CTRL/C. 1In order to signal the computer system
that you wish to give it a command, you can type
“C. This is your way of getting the computer's
attention so that vyou can give it your next
command.
INTRO-1-1

MONITOR

LOGIN

PASSWORD

LOGGING-IN

Monitor: In what follows we shall often call the computer
system the monitor; this is the operating system or
executive program that directs the execution of all the
programs and performs the record-keeping duties for the
computer.

You may now log in by typing:

.LOGIN account number <CR> ("<CR>" means carriage
return.)

Example: If your account number were 27,240 you would type

SADGIN 27y 240G<CR>

NOTE

We shall use the symbol <CR> to show where vyou are
to press the RETURN key. This key may also be
labelled CR or CAR RET and is often referred to as a
"carriage return"”. To distinguish between
characters you type and those the computer prints,
uderlining will be used for the characters you, the
user, type.

The monitor will now respond with the lines:

JOB job number system number TTY terminal 1line number
PASSWORD:

(The job number is assigned by the monitor.)

The monitor is now asking for your password. You should
respond by typing your password and pressing the RETURN key.
Since many users prefer to keep their passwords secret, the
password 1s not ©printed. If your password were the word
TROLL, and if everything you typed were printed, the output
would appear as:

PASSWORD: TROLL
But what actually appears is
FASSWORD

The monitor siqgnals its acceptance of your account number
and password by typing the time, date, and perhaps a
message. Then it types a period (.) indicating that it is
ready to accept your command. What you now have on the page
will look something like this (remember that the underlined
passages are those that you have typed).

Example:

LOGIN 27y 240<CR>

JOR 2% RE72500 8YS #4072 TTY106
FASSWORD: <CR>

1242 18-NOV-76 THUR

INTRO-1-2

CHAPTER 2

TYPING IN YOUR PROGRAM

To type in your program, you will wuse an editing program
called SOS. Call SOS by giving the monitor command:

503 responds with:
[W

asking you for the name of your file. (The computer stores
your program on a disk.) You must give the file a name by
which you and the computer can refer to it - you may think
of this name as the name of your program. This name must be
from one to six letters or digits. Because the computer can
handle several different computer languages, you must also
declare that this file will be wused to store a program
written in FORTRAN language. This is done by extending the
name of your file with the letters FOR. These letters will
be separated from the filename (or program name) by a
period. Some examples of filenames in which you may store
programs written for FORTRAN are:

ASPEN.FOR
ASC123.FOR
INSPIR.FOR

Whenever you refer to your program, use its full name with
extension.

New you should type in the name of your file/program.

Example: (Here the name of the file or program is
ASPEN.FOR.)

O 8OB<KCR>

FTLED ASFEN. FORKCR>

SO0S will now print:
INFUTE ASPEN.FQOR

Q0100

and the carriage will move to the correct position (column
1) for you to begin typing your vrogram. Remember that in a
FORTRAN program, columns 1 through 5 are reserved for the

INTRO-2-1

ESCAPE

S0S

(f=3}

TYPING IN YOUR PROGRAM

statement number, column &5 is the continuation field, and
columns 7 through 72 are for the FORTRAN statement. The
number 00100 that 305 has printed 1is not vart of your
program, but is 350S's line number for the first statement of
your program. If this first statement is not a numbered or
comment statement, you must skip 6 spaces (to column 7)
before beginning to type in the statement. When you have
typed in the first line of your program, vpress the RETURN
key, and SOS will print the next line number (in increments
of 100); vyou may enter the next 1line of vyour program.
Thus, when S0S ©prints a line number, you know that it is
ready to accept a line of your program. (For a fast way of
skipping the label field, see the section on TAB, page INTRO
4-6.)

TO STOP ENTERING LINES INTO YOUR PROGRAM (ESCAPE)

When you wish to stop entering lines into your program, you
should press the ESCape key (on some terminals labeled ESC,
ALT, ALTMODE, or PREFIX). We shall refer to this Kkey as
ESCape. Pressing the ES3Cave key causes a $ to be printed on
the terminal.

Example: (In this example, the first statement is a comment
statement: the character C is in column 1.)

L BOGBLCR>

FORCCR>
N F O

O THES T8 AN EXAMPLE K CR>
Q0200 TYFE 10<CR>
00300 10 FORMAT €7 ASFEN IS5 A NICE FLACE TO 8SKI!<KCR>
Q0400 ENIKCR>
QOGO $
¥

Note that we have two programs that are already stored in

the computer - the system monitor program and SOS. As you
know, the monitor indicates its readiness to accept vyour
command by printing a period (.); SOS indicates its

readiness to accept your command by printing an asterisk
(*). When vyou press the ESCape key, SOS returns with an
asterisk (*) showing that it is ready to accept a command.

ENDING OR STORING YOUR PROGRAM (E)

It is very important, when you have finished writing vyour
program, that you tell SOS you are done and that it should
store your program until you are ready to use it again. You
respond to S0S's request for a command by typing the End
command (the letter E) and the RETURN key.
Example:

KE<CR>

COEBKEEASFEN . F)

INTRO-2-2

TYPING IN YOUR PROGRAM

In this example, SOS tells us that the program ASPEN.FOR has
been stored on the disk (named DSKC:). Then SOS turns
control over to the monitor, which signals its readiness to
accept your next command by printing a period.

NOTE
The SOS END command, E, is essential. If you don't

tell SOS to store your file beforz you return to the
monitor, your program will be lost.

RUBOUT THE RUBOUT OR DELETE KEY (CORRECTING TYPING MISTAKES)

If you make a mistake while tyving a 1ine, the RUBOUT
(DELETE or DEL) key allows you to correct your mnistake
without having to retype the entire line. Press the RUBOUT
key once for each character you wish deleted. This causes
the deleted characters to be printed with a backslash (\)
before and after them. Then, type the correct characters.

Example:

FILED ASPNNNANEN FORKCRY

In this example, the character 'N' has been rubbed out.

Example:

00300 Lo FORMAT (7 APENEPNSPEN TS A NICE FLACE TO 8KI!7Y<CR>

In this example, the RUBOUT key was pressed twice to erase
the unwanted characters PE. Note also that the deleted
characters are printed in reverse order.

Think of the RUBOUT key as a "backspace plus erasure" key!

INTRO-2-3

CHAPTER 3

RUNNING YOUR PROGRAM

THE EXECUTE COMMAND

EXECUTE
£X To execute or cause the computer to follow the instructions
given by the program, command the monitor to:

.EXECUTE filename.extension<CR>

Example:

CEXECUTE ASFENFORCCRY
FORTRAN: ASFEN
MATN

TLIOND
ET0 BRI

ENDCOF
CFU
EXTT

CUTTON
D00 ELAFSED TIME? 0,18

EXECUTE may be abbreviated to EX.

NOTE

You may have becn puzzled at the occurrence of lines
written by the monitor before the actual execution
in the above example. They appear because before
your FORTRAN source program can be cxecuted, it must
be translated or compiled into a machine language
program (the object program) that the computer can
execute. This 1is done during the step 1labeled
FORTRAN: filename. This object program, like the
original source program, is stored in a disk file.
Before the program can be executed, a copy of the
compiled or object program must be wvlaced (loaded)
into the working memory of the computer - this copy
is often called a core image of the object oprogram.
This 1s accomplished during the LINK: LOADING step.
Finally, the execution step is performed.

INTRO-3-1

RUNNING YOUR PROGRAM

Few programs will complete execution the very first time you
try to execute them. Do not be discouraged! Chances are
that the compiler will find at least one mistake 1in vour
projran. To help you find your mistake(s), it will type out
a message to you. For example, suppose that you have made
the following mistake in the program on page INTRO 2-2: in
the FORMAT statement in line 300 the closing quote has been
omitted. The program would look like this:

QO1L00 CoOTHIS TS AN EXAMPLE.

() 10 TYFE 10

DQIO0 1G FORMAT 7 ASFEN IS A NICE FLACE TO K1)
GOAGT F N

An attempt to EXECUTE it will cause the following:

ASFEN . FORCCR>
FORTRANG AGFPEN
QOO0 10 FORMAT ¢ ASFEN IS A NICE FLACE TO SKI!D)
TETMCOL LINEIOOX00 NO CLOSING QUATE IN LITERAL
FETRNFWE LINEZQOIOO0 FOUNDD END QF STATEMENT WHEN EXPECTING A
I|)Il

LIMOEF ITNED LARELS
10
FETNFTIL. MATN . I FATAL ERRORSE ANID NO WARNINGS

LM LOATITNG
CLMENSS MO START ARDRESS

LT

If the compiler has found errors in your program that make
execution impossible, you will again have to call on SOS to
help you correct your orogram. Do this by using the R SOS
command discussed in Chapter 4.

NOTE
The compiler will only print error messages for
cases where the program is not clearly understood.
It is possible to have a program that consists of
valid FORTRAN statements, but gives the wrong
answers. For example, suppose you intended to enter
TAX = RATE*AMOUNT
out by mistake typed

TAX = RATE+AMOUNT

INTRO-3-2

RUNNING YOUR PROGRAM

The compiler cannot detect this as an error Dbecause
both are possibly wvalid formulas. Errors of this
type (logic errors) are the most difficult to find.
The program will run, but the answers will be wrong.
Frequently the author of the program will read the
statement and see what he meant to write instead of
what he actually wrote. One extremely wvaluable
method of finding errors of this kind is to attemot
to explain to someone else why the program should
work. The act of explaining will often highlight
the error. Another method of locating errors is to
have another programmer "proofread" your code.

CTRL/C ("C) (GETTING THE MONITOR'3 ATTENTION)

CTRL/C informs the monitor that you wish to give it a
command. The monitor interrupts whatever the computer is
doing and prints a period to indicate that it 1is ready to
accept vyour command. To type CTRL/C, hold the Control
(CTRL) key down while typing C.

Stopping Your Program's Execution

CTRL/C interrupts a program during execution, returning
control to the monitor. Sometimes it is necessary to type
CTRL/C twice to interrupt a program.

Example:

s FOR<CCR>

EN

Deleting a Command

You may also use CTRL/C to delete the line you are presently
typing and return control to the monitor.

Example:

EXECUTE ASPFENFORTE

Typing "CONT" in answer to a monitor prompt will return you
to your previous activity IF AND ONLY IF you have not:

. tampered with the core image, OR
. caused the FORTRAN compiler image in core to be
overwritten.
If, for instance, you interrupt the executing program to
send a messaje to someone on another terminal, you can

INTRO-3-3

|

RUNNING YOUR PROGRAM

return., If you, say, request a directory activity, then the
FORTRAN compiler is overwritten and you cannot return to
your previous activity. When 1in doubt, wait until the
execution 1s complete, unless you want to restart the
execution anyway.

CTRL/U ("U) (CHANGING A LINE)

CTRL/U deletes the entire line you are typing and moves the
carriage to the beginning of the next line. You may then
retype the line. Note that CTRL/U only deletes that part of
the 1line you have typed and not the part the computer
prints, i.e., in the following example the 1line number |is
not deleted. CTRL/U is typed by holding the Control (CTRL)
key down while typing U.

Example:
01800 40 HROOT = SRT (RISC) ~u

40 SROOT SERT (OTSEISCR>
01900

In this example, CTRL/U deletes your input line, which vyou
then reenter. CTRL/U does not delete the line number, 1800,
printed by SO0S.

If you wish to delete the line entirely, follow CTRL/U with
the RETURN key.

INTRO-3-4

R_S0S

I

CHAPTER 4

CHANGING YOUR PROGRAM

THE R SOS COMMAND (CORRECTING MISTAKES IN YOUR PROGRAM)

To correct a mistake in a program, you must return to SOS.
A3 we saw on page INTRO 2-1, we turn control over to SOS by
commanding the monitor:

(B_BOSCCRY

305 responds with:

FILED aual. FORCCR>

and we type the filename and extension, 1in this case
QUAD.FOR. But now SOS recognizes that this program alrecady
exists and correctly assumes that, instead of inputting a
file, you wish to edit it. SOS thus types:

EOITs QUADFOR
X

The asterisk (*) indicates that SOS is at your command. The
remainder of this section 1lists SO5 commands that are
essential for typing and editing simple FORTRAN programs.
Use the ESCape to terminate these commands.

S0OSs COMMANDS

I - Inserting Lines Into Your Program

To Insert lines into your program beginning with line 2700,
for instance, you give SOS the command:

KL27G0<KCR>

SOS types out each line number, and you respond by inserting
the 1line into the program. When you press the RETURN key
after typing each line, SOS will type the next line number.
(This is called "Insert Mode".)

INTRO-4-1

CHANGING YOUR PROGRAM

Cxample:

TF anIacy 20y 30y A4KCR>
FOOTL = (-8 4 SURT NISE) 73 KER>
Terminate the Insert command by typing ESCape

(ALTMODE/PREFIX) ; this causes a $ to be printed on the
terminal.

Example:

K LADOOKCR>
(] 10 a0 WERETE (8y 70)<KCR>
i +

Note that in the above examples, 30S has numbered the 1lines
in increments of 100. The reason for providing this
increment is to allow you room tO maneuver — suppose you
have accidentally omitted lines that must now be Inserted,
or suppose vyou now find 1t necessary to changes vyour
original program. If you have left out 2 lines that should
have qgone between lines 3200 and 3300, you may Insert these
lines by changing the increment size, say, to 20, using the
command:

FLA2L0220<KCR>

This allows you to Insert lines 3210, 3230, 3250, 3270, and
3290 into your program. The size of the increment is of no
inportance as long as it is small enough to accommodate all
additional 1lines. Each time you change the increment size,
the new size is kept until you change it.

Example:

S0) RQATLy ROOTIKCR>
O ROQTS aRE"y FL1O.2y “ANDy F10.2)<CR>

If you try to insert a line whose 1line number 1is greater
than or equal te that of the next existing line, S0OS will:

. use a different line number, or
. ignore the command entirely

INTRO-4-2

1O

R

REPLACE

CHANGING YOUR PROGRAM

D - Deleting Lines From Your Program

To declete line 500 from your vrogram, type

YO<LCR>

Example:

OEOO<CRY
TOLINES (0050071 DELETED
¥

If you wish to delete lines 1400 through 1600 from vyour
program, use:

KOLA00ELE00CR>

Example:

*OLA4008L&00KCR>
FOLINES (QLA00/ 121600 DELETED

R - Replacing Lines in Your Progranm

The Replace command is a combination of a Delete command
followed by an 1Insert command. To instruct SOS to Adclete
line 1700 and to begin inserting lines at line 1700, usc the
Replace command:

¥RLZOOKCRY
This is equivalent to the command D1700 followed by the
command I1700.
Example:

*RLZ0GSCR>

Q1700 &0 FORMAT

LOLINES (Q170071) DEI
¥

(7 ROQY 167 F10.2)KCR>

To replace lines 500 through 700 use:

*EGOO7O0O<CR>

This is equivalent to D500:700 commanding S05 to delete
lines 500 through 700, followed by the command 1500
instructing 305 to begin inserting lines at 500.

INTRO-4-3

Iro

PRINT

CHANGING YOUR PROGRAM

Example:

KRGO FOGLCR>

QOHO0 20 FORMAT (QGEIVE COEFFICIENMTS " KCR>
Q0600 READ ¢Sy 102 Ay By CKCR>

QO700 19 FORMAT (F10.2)<CR>

I LITNES C0AB00/1 000700 NELETED

X

If you also wish to change the increment size to 10, use the
Replace command:

FRIOOO0:1L 100y LOKCR>

This is equivalent to the command D1000:1100 followed by the
command I1000,10.

Example:

AR1OD0: 1100y LOCCR>

01000 49 SROOT = SORT (DIECIKCR>

01010 DENOM = 2%A<CR>

01020 ROQTI = (~F + SROOTY /7 DENOMCCRY
01030 ROOT2 = (R - SROOT) /7 DENOM<CR>
01040 $

2OLINES 01000/ 1 G100y NELETED

*

As with the 1Insert command, to terminate the Replace
command, use the ESCape as in the above example.

P - Printing Lines of Your Program on the Terminal

If you wish to print line 1800 of your program, type

*¥FLBOOKCR>

Example:

F1800<CR>
01800 40 GROOT = SART (NISCH
*
To print lines 2700 through 3000 of your program, use

XFE70013000<CR>

INTRO-4-4

N

NUMBER

|t

END

QuitT

o

CHANGING YOUR PROGRAM

Examplec:

EQOT = -8/ (2%0)

WRITE (5 &0 ROOT

FORMAST 7 ROOT I& 79 FLO.2)
GO TO 100

N - Changing the Line Numbers

The Nuanber command instructs SOS to renumber your ©vrogranm
beginning at 1line 100 in increments of 100. 530S doecs not
print anything on the terminal. If vyou wish ¢to sec the
renumbered program, you must usc the Print command.

Examnple:

FHLCR>
*

E - End (Ends Editing and Stores the Program)

Wwhen you have completed editing your program, inform 3085
that it should now store your program on the disk by typing
E (end). 1If you do not instruct S80S to store your program,
the editing you have just completed will be lost.

Example:

*ELCR>

CNERCIQUADFORC27y2401010

This indicates that the program named QUAD.FOR has becn
stored on DSKC:. The End command turns control cver to the
monitor, which prints a veriod to indicate its readiness to
accept your next command.

EQ - Returning to the Monitor Without Storing Your Program

If you decide that the current editing session is worthless,
you may return to the monitor without storing your program
by using the Quit command.

INTRO-4-5

TAB

CHANGING YOUR PROGRAM

Example:
FEQLCR>

¢

This restores the original copy of the ©program as it was
when you last typed R SOS. If the program is a new one, it
is deleted since an original program did not exist.

A FEW 505 CONVENTIONS

1. A range of lines is indicated by a <colon between the
first and last line numbers of the range, i.e., 500:700.

2. A period represents the current line. Thus, D. means
delete the current line.

Example:

QOF00 &0 FORMAT (7OGIVE COEFFICIENTS)
¥ . <CR>

LOLINES <0700/ DELETED

¥

In the above example the current line is line 700 and it
is deleted.

3. An asterisk is used to represent the last 1line of the
file. Thus, to 1instruct SOS to print out your entire
file use:

*F 0 ¥<CR>
TAB8 (CTRL/I)

The TAB or Horizontal Tab (sometimes labeled HT or—|) is
handy when vyou are entering lines into your program. The
TAB, similar to that on a typewriter, is set at 8-character
intervals. It moves the carriage to the next column that is
a multiple of 8; no characters are output on the terminal.
As you know, a FORTRAN statement must be located within
columns 7 through 72, although it may appear at any point
within this range. Using the TAB to skip over all or part
of the label field will bringy the carriage to column 8,
enabling you to begin your FORTRAN statement in that column.
If your terminal does not have a key labeled TAB, use CTRL/I
instead. To type CTRL/I, hold down the Control (CTRL) key
while typing I.

CORRECTING MISTAKES

To correct one or more characters use the RUBOUT key (see
page INTRO 2-3).

To change an entire line use CTRL/U (see page INTRO 3-4).

INTRO-4-6

CHANGING YOUR PROGRAM

Example:

2000

In the above example, CTRL/U ("U) allows you to change the
command "Delete line 1500" to an insert command.

Example:

J SOE<CRY

FILE! ZELUA.FORCCR>
INFUTS ZELDA . FOR
00100 C_THIS FROGRAM DUES NOTHING.<CR>
00200 TYFE 10<CR>
00300 10 FORMAT (7 IT77% WORKING! 3<CR>
00400 TYENENFE 20<CR>
00500 &
KFAQ0<CR>
00400 TYFE 20
KI500CCRD
00500 20 FORMAT (7 WHAT I8 YOUR NAME?)<CR>
00600 ACEFT 30y YORNAM U
AGCEFT 30y YORNAMKCR>
00700 X0 FORMAT (A%I<CR>
RO TYFE 40y YORNAMCCRY
00900 40 FORMAT (“0°y “HIy s A5y ‘DO YOU EANT?IKCR>
01000 %
*¥RPOOCCR>
00900 40 FORMAT COHILy* » A%y ‘00 YOU’ IKCRY
01000 TYFE 50<CR>
01100 50 FORMAT (° WANT T0 RE FRIENDS? JCCR>
01200 ENIK CR>
01300 %
1LINES (0090071 QELETED
KRPOO L1 100KCRY
0000 40 FORMAT (COHIy ‘v A%y ‘v WANT TO RE FRIENDS?’)<CR>
01000 %
FLINES (00900/1:01100) DELETED
KN<CR>
00100 © THIS FROGKRAM LOES NOTHING.
00200 TYFE 10
00300 10 FORMAT (7 IT7/8 WORKING! ‘)
00400 TYFE 20
00500 20 FORMAT (¢ WHAT IS YOUR NAME?’)
00600 ACCEFT 30y YORNAM
00700 30 FORMAT (A%)
00800 TYFE 405 YORNAM
00900 40 FORMAT (7OHIy ‘v A%y 75 WANT TO BE FRIENDS?)
01000 ENI
*¥E<CR>

CRSKCE ZELDAGFORD

INTRO-4-7

CHANGING YOUR PROGRAM
Let us look at the above example in detail.
L BOELCR>
Commands the monitor to turn control over to the editor

program SOS.

FILE: ZELOAFORKCR>

S0S requests the name of the file you wish to edit. You
respond with the name of your file or program: ZELDA.FOR.

INFUT: 2
Q0100 G

LOGRAM DOES NOTHING.CR>

When SOS fails to find a file by this name, it concludes
that you intend to create a new file. SOS then prints the
name of the file and the first line number. Now you are
ready to enter the first line of the program.

00200 TYFE 10<KCR>

Each time you finish typing a line and press the RETURN key,
SOS prints out the next line number so that you may input
that line. In typing line 200, the first character actually
typed was a TAB (CTRL/I), which caused the label field to be
skipped over; this avoids the necessity of counting spaces
so that our FORTRAN statement would begin in the proper
column. TAB is a non-printing character.

00300 10 FARMAT €7 T7T7°6 WORKING!3<CR>

This statement 1is labeled. After typing the FORTRAN
statement label (10), vyou type the non-printing character
TAB (CTRL/I) to skip over the remainder of the label field.
Remember that the first character of a printing FORMAT
statement must be the carriage control (here a blank, which
means single space output). Notice that because apostrophes
are used to enclose literal fields, they are not allowable
characters within a 1literal field but wmust instead be
represented by two successive apostrophes. 1In other words,
although line 300 appears in the program with two successive
anostrophes (IT''S), in the execution it causes the word
IT'S to be printed (see the EXECUTION which follows).

00400 TYENENFE 20<CR>

Again, a non-printing TAB is used here to skip over the
label field. The RUBOUT key erases the E.

00500 %
The ESCape key terminates the input of 1lines into the
program.

X 400<CR>

INTRO-4-3

CHANGING YOUR PROGRAM

SOS is now ready for a new command. You ask it to ©print
line 400.

QQa00 TYFE 20
S0S prints line 400.

*THOGKCR>

Your next step 1is to insert 1lines 1into vyour orogram
beginning with line 500.

QGO0 20 FORMAT 7 WHAT I8 YOUR NAMET’)KCR>

You type line 500 into your program.

DOLOO ACEFT 30y YUORNAM U
ACCERT 30y YUORNAMCCRY

After typing in line 600 but before pressing the RETURN key,
you wvause and notice that vyou have misspelled ACCEPT.
CTRL/U ("U) delzstes the 1line, which vyou then retype
beginning with the non-printing TAB.

00200 A0 FORMAT (A%HIKCR>

QOBOO T 400 YORNAMCCR>

Qo000 490 FORMAT 7070 "HYy oA ‘N0 YOU EANTZICCRY
QL0000 &

You enter lines 700 through 990 into vyour program and
terminate the insert. The carriage control '0' in the
FORMAT statement causes the output to be double spaced.

KRFOOSCR>
At this point, you decide to replace 1line 900. The R900

command causes it to be deleted and initiates an Insert
command beginning with line 900.

OO0 40 FORMAT (“QHY» " » ASy 7 00 YOU’ZIKCR>
01006 TYFE SOKCR>

Q0100 iy FORMAT (7 WANT TO BE FRIENDS?ZIKCR>
01200 ENDKCR>

01300 %

1 LINES (0090071) DELETED
when you use the ESCape key to terminate the insert command
(initiated by the replace command), SOS informs you that one
line (line 900) has been deleted.

K¥RPOO T LLIO00<KCR>

INTRO-4-9

CHANGING YOUR PROGRAM

You decide to replace lines 900 through 1100.

Q0700 40 FORMAT (70HLI» 7» A% 7y WANT TO RBRE FRIENDG?’ICCR>
L0000 &

Line 900 is replaced and the command 1is terminated. S0S
confirms that three 1lines (900 through 1100) have been
deleted.

*M<CR>

508 is now asked to renumber the lines beginning with 100
and in steps of 100.

#FO ECCRY

You instruct S0S to print out your entire program.

¥EKCR>

To conclude the editing session, instruct SOS to store vyour
program on the disk.

EXSRE S ZELDA FORD

Your program has been stored on DSKC:. The monitor 1is now
in control.

The EXECUTION of the above program:

CEX_ZELDA FORCCR
FORTRANT ZELDA

MATN.

LINKS LOADING

CLMKXCT ZELDA EXECUTION
IT/6 WORKING!

WHAT T6 YOUFR NAME?
HAL<CR>

HIy HAL v WANT TO RE FRIENDG?
ENDOF EXECUTION

CRU TIMES .10 ELAPSED TIME? 10.20
EXIT

INTRO-4-10

CHAPTER 5

FORTRAN-10 INPUT AND OUTPUT OF DATA

Although FORTRAN-10 is essentially the same as standard
FORTRAN, a few minor differences do arise in statements that
involve the input and output of data.

READ STATEMENT

READ The statement
READ (u,f)list

where u=device unit number and

f=FORMAT statement number
reads data from the device with unit number u (refer to the
section on Device Unit Numbers, below) according to the
specifications given by FORMAT statement f.
Example:

00800 READ (S 35) TGRADE
QOPQ0O 3G FORMAT (132

WRITE STATEMENT

WRITE This has the form

WRITE (u,f) list
where u=device unit number and

f=PORMAT statement number

Example:
01000 WRITE ¢ly 30) (STUINT D) » D=1y 82 1TGFANE
01100 Z0 FORMAT (8afy T3

NOTE
The ERR option of the OPEN and CLOSE statements 1is

also applicable to the READ and WRITE statements.
Refer to Chapter 12

INTRO-5-1

ACCEPT

TYPE

FORTRAN-10 INPUT AND OUTPUT OF DATA

DEVICE UNIT NUMBERS

In READ and WRITE statements, we must specify to which

device (Disk, Line Printer, Terminal, etc.) we are
referring. For the DECsystem-10, the device unit numbers,
u, are uniform - they are the same on all DECsystem-10s.

The most commonly used are:

Device Device Unit Number,u
Disk 01
Card Reader 02
Line Printer 03
Terminal 05

(For a complete list see FORTRAN-10 Language {anual, Table
10-1.)

Thus, WRITE (5,7) causes outnut to be printed on your
terminal; READ (1,25) causes data to be read from the disk.

ACCEPT STATEMENT

To input data from the terminal you may use
ACCEPT f,list

where f=the FORMAT statement number.

Example:
00500 TR0 TGRAKE
004600 20 FORMAT (13)

Thus, “ACCEPT f,list" is equivalent to "READ (5,f) list".

TYPE STATEMENT

To have output typed on your terminal use
TYPE f,1list

where f=the FORMAT statement number.

Example:
00200 TYFE 10
00300 10 FORMAT (7ASFEN I8 A& NICE FLACE TQ SKI!P7)

Thus, "TYPE f,list" is equivalent to "WRITE (5,f) list".

NOTE

To print something on your terminal, you must include a
carriage control character similar to the way you do for
a line prnter. For example, to print the word HELLO on
your terminal, use the format statement below:

Q200 TYFE 101
00300 101 FORMAT ¢/ HELLQO")

INTRO-5-2

FORTRAN-10 INPUT AND OUTPUT OF DATA

The space before HELLO tells the system to start on a
new line.

DATA FILES

You may use data files in onc of two ways:

1. In the first method, you let FORTRAN use a oredefined
filename.

2. In the second method, you choose the filename by using
the OPEN statement.

Letting FORTRAN Use A Predefined Filename

There are six Device Unit Numbers for disk files; whenever
you use one of them, FORTRAN uses a predetermined filename.
Te device numbers and their filenames are listed below.

Device Unit Number Filename
1 FORO1.DAT
20 FOR20.DAT
21 FOR21.DAT
22 FOR22.DAT
23 FOR23.DAT
24 FOR24 .DAT
NOTE

If you omit the filename from an OPEN statement,
FORTRAN wuses the filename corresponding to the
device unit number.

Examples:

Q0200 WERITE (1.101) X Writes the value of X in
the file FORO01.DAT,
according to FORMAT
statement 101.

OOI00 READ (22X 109 Y Reads the value of Y from
the file FOR23.DAT,
according to FORMAT

statement 109.

Using Your Own Filename

To use your own filename, place an OPEN statement before the
first READ or WRITE statement that accesses the file. The
OPEN statement has the format:

OPEN (UNIT=n, FILE='filename.ext')

n is the device unit number, and filename.ext is the name of
the file you want to usec.

INTRO-5-3

CLOSE

FORTRAN-10 INPUT AND OUTPUT OF DATA

Example:

QFEN CUNTT=200 FILILE='TESTDAT)

Instructs FORTRAN to open
the file TEST.DAT on
logical unit number 20.

DRG0 REAT (20020052 Y Reads Y from logical unit
number 20. (The file
name implied is the same
as the file name in the
OPEN statement with the
same logical unit
number.)

After the last READ or WRITE statement that accesses a file,
it 1is recommended (though not required) that you include a
CLOSE statement. The CLOSE statement has the format:

CLOSE (UNIT=n, FILE='filename.cxt')

n is the device unit number, and filename.ext is the name of
the file you are closing.

Example:

QOEHOO CLOSE CUNIT=20 FILE="TEST . DAT)

Closes the file TEST.DAT on logical unit number 20.

INTRO-5-4

CHAPTER 6

SOME HELPFUL COMMANDS

TYPE COMMAND (PRINTING OUT YOUR PROGRAM)

TYPE Usually you will have made many changes in your program. If
- you would like the monitor to TYPE out your program on your
terminal as it now stands, command it to:
.TYPE filename.extension<CR>

Exanple:

STYPE ASFEN.FORSCR>
Q0100 COTHIS 18 AN EXAMPLE .

Q0200 TYFE 10
Q0300 10 FORMAT (7 ASFEN I8 A NICE PLACE TO SKI!7)
00400 ENT1

+

DIRECT COMMAND (LISTING ALL THE STORED PROGRAMS AND FILES)

DIR The DIRECT command causes the monitor to 1list all the

- programs and files stored in disk files under your account
number. It also lists the length of each program or file in
terms of DECsystem-10 disk blocks (a disk block is 640
characters) and the data on which each was created. This
command may be abbreviated to DIR.

Exanple:

+IITR<CR>

REL. 1 18-NOY-76 NSKEC: [27024071
QOR 1 18-NOV-76
FOR 1 18-NOY-76
2 18~NOU-74
3 18-NOV-74
2 18-NOY-764
2 18-NOV-74
1 18-NOV-764
QUAD 2 X 18-NOV-74
TaTAL RLOCKS IN 9 FILES ON DSKCS L27532400

+

These files belong to the programmer(s) with account number
27,240.

INTRO-6-1

SOME HELPFUL COMMANDS

You may find that files you did not create are also listed.
These may be programs and files created by the computer in
editing and compiling your program. The compiled program 1is
contained in a file named "filename.REL" where the filename
is the same one that you used. If you have edited vyour
orogram there will be a program whose name is identical to
yours except that it has a Q as the first letter of the
extension. This is a backup file containing your orogram as
it existed prior to your most recent editing of 1it. Each
time your orogram is edited, the program immediately before
editing becomes the backup, and the previous backup - if it
existed - 1s lost. 1In the foregoing example, the only files
explicitly created were ASPEN.FOR, NEW.FOR, SNOW.FOR, and
QUAD.FOR. The backups are ASPEN.QOR, NEW.QOR, and QUAD.QOR.
SNOW.FOR has not been edited, so it has no backup.

DELETE COMMAND (ERASING A PROGRAM OR FILE)

DELETE To erase a file from the disk, command the monitor to:
.DELETE filename.extension<CR>

Example:

SRELETE ASFEN.FORKCR>
G Dk 9 L

E N FOR
01 RLOCKS FREED

]

RENAME COMMAND (GIVING A PROGRAM OR FILE A NEW NAME)

RENAME To rename a file use the command

.RENAME newfilename.extension = oldfilename.extension<CR>

Example:
e RENASME EXAMP FOR=8NOW .. FORCCR>
FITLES RENAMED:
SNOW . FOR

This will cause the name of SNOW.FOR to be changed to
EXAMP.FOR

CTRL/O (SUPPRESSING PRINTED OUTPUT)

CTRL/O ("0) stops printed output on the terminal The program
sending the output CONTINUES TO RUN. Use CTRL/O, for
example, to stop the message of the day during LOGIN or to
stop the monitor as it TYPEs a program you have asked for.
CTRL/O is typed by holding the Control (CTRL) key down while
typing the letter O.

lo

INTRO-6-2

SOME HELPFUL COMMANDS

Example:

cTYPE ASFENFORKCRY
QOLOO CTHIS IS AN EXAMPLE.
40200 TYFE 16

QOI00 0

3

Although CTRL/C also stops output on the terminal, it also
stops program execution.

Complaints to the Computer - the "Court of Last Resort"

Wnen all else fails and you must q9ripe to someone, GRIPE to
the computer by commanding the monitor to:

The computer will respond with:

YEST (DEPFRESSE ESCAFE KEY WHEN THROUGH)

Now enter your gripe and press the ESCape key when you have
finisned. Remember that typing ESCape causes a $ to be
printed.

Example:

B GRITFE

e (DE S ESCARE KEY WHEN THROUGH)
THIS CONSOLE IS ALMOST OUT OF PFAPER.$
THANK YQU

INTRO-6-3

KJOB

KILL

SAVE

CHAPTER 7

SAYING GOODBYE TO THE COMPUTER

KJOB COMMAND (LOGGING-OUT)

To say goodbye to the computer, command the monitor to KJOB
(KillJOB) :

HJOB<CR>
The monitor will respond with

COMFTRM:2

Sanould you now decide to abort the logout, type CTRL/C ("C).
If you still wish to logout, you must instruct the monitor
to kill, preserve, or save each of your disk files. If a
file is killed, it 1is =erased from the computer memory;
saved and preserved files, con the other hand, are retained
in the computer memory. FPreserve and save are essentially
alike except in the matter of protection against inadvertent
loss or destruction. Preserve, unlike save, protects your
files from accidental destruction by another user who shares
your account number. This may occur if, for instance, the
other user fails to recognize the name of vyour ©program
during his logout and, failing to see any need for its
preservation, kills it. To take advantage of the protection
afforded by the preserve file status, it is best to respond
to the CONFIRM with the letter U:

CONFIREM: W <CR>

This will automatically preserve any files that have already
been preserved during a previous logout. After you have
typed in the letter U and pressed the RETURN key, the
monitor will 1list the name and storage information of each
uapreserved file stored in your Jdisk area, pausing after
each name for vyour response. Following the name of each
file you must respond by typing one of the three commands:

(a) K 1if you wish to kill the file,
() P to preserve it, and
()

S to save it.

Please remember the saved or preserved files occupy valuable
soace on the disk.

In general, the only files you need preserved have the
extension FOR. If vyou have no further changes to make in
your program, you may preserve the compiled version - this
will have the extension REL.

INTRO-7-1

SAYING GOODBYE TO THE COMPUTER

NOTE

The DECsystem-10 offers the option of detaching the
terminal from your job, thereby freeing the terminal
and the telephone line for another task while vyour
program is executing. (This option is, of course,
only used for vrograms with long execution times;
for dectails see the DECsystem=-10 Operating System
Commands Manual.) Therefore, TURNING OFF THE
TERMINAL OR BREAKING THE TELEPHONE CONNECTION TO THE
COMPUTER DOES NOT END YOUR JOB, NOR DOES IT STOP THE
COMPUTER CLOCK; ONLY THE COMMAND KJOB WILL DO THIS.
If you should inadvertently hang up without using
KJOB, the computer clock, thinking that you have not
yet completed your Jjob, will keep ticking and
CHARGING YOU FOR TERMINAL TIME. So please remember
to USE KJOB BEFORE LEAVING THE TERMINAL. If vyou
should be accidentally disconnected, always call
again and end your job properly. (See wpage INTRO
7-3.)

Example

IO B<CR>
CONFIRM: U<CR>
RERAL

RHREGR

N W REL S BLKS s H<CR>
ABFEN «QOR e BLKS ¢t K<CR>
NEW < QOR S RLKS + N<CR>
QAual JREL G BLKS t G<CR>
EXAME L FOR v RLKS ¢ 8<CR>
QuAall L Q0R S RLKES ¢ K<CR>
BNOW FOR e BLKS ¢ F<CR>
Quan JFOR U BLKS t P<CR>
NEW FOR e BLKS ¢ K<CR>
AGFEN +FOR U RLKS ¢t P<CR>

NERE

JOR2G
DELE
SAVED F

KUNT T

K/F

04 FILES (20 RLOCKS)

Command (Fast Logout)

L2792401 LOGGED OFF TTYL106 1430 18-NOV-76

For a fast logout in which all programs and files are saved,

use

K/F<CR>

Although this form of the KJOB command has the advantage
being fast, you <cannot preserve the programs you wish to
keep nor kill those you no longer need.

INTRO-7-2

of

ATTACH

SAYING GOODBYE TO THE COMPUTER

Example:

 K/F<CR>
JOB 2E2USERLC272y24001 LOGGED OFF TTYL06 1432 18-NOU-264
SGAVED ALL FILES (30 RLOCKS)

FUNTIME 1.8586 SEC

HELP Command (Getting Assistance)

To get assistance during logout, type H (for Help) and the
monitor will respond.

WHAT TO DO IF YOU ARE DISCONNECTED FROM YOUR JOB (ATTACH)

Although this can happen to anyone, it will most often
happen when the teleohone 1lines connecting vyou and the
computer break that connection. If necessary, recdial the
telephone number to the computer. Under normal conditions,
the computer will print:

FLEASE LOQGIN OR ATTACH
You will wish to attach yourself to the job on which you had
been working. To do this vyou must know its job number.
This is given after your LOGIN command. For example, in the
LOGIN example on page INTRO 1-3, the job number is 25.
You may attach to a job by using your account number

.ATTACH job number [account number]

The programmer with account number 27,240 may attach to Jjob
25 by typing:

CATTACH 28 L27y2401<CR>

If the programmer with this account number is the owner or
originator of job 25, the monitor asks for his password.
Otherwise, access to the woprogram 1is denied. As during
LOGIN, the password 1is not printed. If the password is
accepted, the monitor prints a period and the programmer now
is attached to his job.

Example:

ATTACH 2% E27y2401<CR>
FASSWORIE <CR>

NOTE

Account numbers are often called Project-Programmer
Numbers (PPNs). In the ATTACH command, the account
number must be enclosed in square brackets []. If
your terminal does not have keys labeled [and 1,
use SHIFT/K for the 1left square bracket, [, and
SHIFT/M for the right square bracket, 1.

INTRO-7-3

SAYING GOODBYE TO THE COMPUTER

FORGOT YOUR JOBNUMBER? (3YS)

Suppose you have forgotten your job number. You have thrown
away your LOGIN, or perhaps you are using a Visual Display
(CRT) terminal and the LOGIN has long since disappeared from
the screen. What now? You may find out which jobs are
obeing run under your account number by typing:

o

.3YS [account number]<CR>

Examole:

G _L27v2401<CR>
T 3 TS 1

279 2401<CR>
<CR>

Here, the orogrammer with account number 27,240 wishes to
find out which jobs are logged in under his account number.
The monitor answers that job 25 is logged in under account
number 27,240 and that this job is DETached from a terminal.
Then the programmer ATTACHes to job 25.

The SYS command may be given whether or not the wuser is

logged 1in. If the user is not logged in, the S5YS command
automnatically ends with the KJOB command.

INTRO-7-4

gxample 1

CHAPTER 38

EXAMPLES

(Executing a Program More than Once):

This program computes the roots of the quadratic egquation
FORTRAN statement labels may be in any order and also that
printing

Note

that

carriage control characters are necessary for
FORMAT statements.

<TTVFE QUAD . FOR<CR>
y G T

QOLO0

00400
QOO
GOH00
QOO0
QOBONO
QOO0
D1LGO0O
Q1L100
Ol
01300
L4400

0700
02B00
0900

DX400
O3GO0
03600

3

Below,
words

this program is EXECUTEd twice.

FORTRAN:

HIS FROGRA

WRITE 80
FORMAT
FEAT (G
FORMAT

(S

CALCULATE
DLGE = R¥R -

HT
20

no
TF

THE R
(Nrse)

0T SQRT
NOM = KA

THENT
ROQOTL =
rROOTZ =
WRTTE (S
FORMAT (7
GO TO 100

50

ZERD DISCRIMINANT
C2%kA)

ROQT = R/

)

THE

¥

)

COGTIVE
10) Ay
FLO 2

DISCRIMINANT

THING
B0y

AXANE

A0

- DITSCRIMINANT

(IS

(&
pw

A
>

ROOT)
SROOTY
ROQT1 »
ROOTS ARE »

/ TENOM

s TENOM

ROOT2
FLO.2»

NLfTE (dr 60) ROOT

FORMAT
GO T

rax

100

NEGATIVE
WRITE (G
FORMAT (7
STOF
END

ROOT

IS7y

FLd.2)

DISCRIMINANT
700
ROOTE ARE COMPLEX?)

COEFFICTENTS)
Lre

ROOTS

ACCORDING TO

s

In the

each

OF A

THE

AN »

second

of

SIGN OF

the

nrac

F10.2)

execution

ax +bx+c=0.

the

QUAD are missing because the program has already been

INTRO-8-1

EXAMPLES

compiled, making it unnecessary for the compile step to be repeated.
The program is simply loaded into core and executed. (5ee page INTRO
3-1.)

EXECUTE QUAD. FOR<CR>
FORTRAND QUAD

MATIN.

LINKE LOADING

CLNRXCT Quall EXECUTIONI

GIVE COEFFICTENTS

2. <CR>

~10.<CR>

12, <CR>

T0TG ARE 3,00 AND 2,00
STOF

ENT OF EXECUTION
CrRU TIME? 0013 FLAPSED TIMED 18.9%5
EXIT

CEXECUTE QUADLFOR<CR>
LINKE LOADING
CLNRXCT Quan EXECUTIONI

GITVE COEFFICIENTS
Y. <CR>

2« <CR>

10.<CR>

ROOATS ARE COMPLEX
STOF

END OF EXECUTION
CFU TIMES 0.12 ELAFSED TIME? 18.30
EXITT

Example 2 (Reading A Disk File):

Student grades are recorded on a disk file named STDGRA.DES. Each
record has a student name (40 characters) and his numerical grade (a
3-digit integer). The following program will read the grades and
compute the mean and standard deviation.

S~

L TYRE F L FOR<CR>

00100 € THIS FPROGRAM COMPUTES THE MEAN AND
00200 € STANDARD DEVIATION OF STUDENT GRANES
00300 C

00400 OFEN (UNIT=1, FILE='STHGRAOES)
D0B00 NUMEER = 0

00600 SUM = 0

00700 SUMBAR = 0

00800 20 READ (1s 10y END=100) IGRADLE
00900 10 FORMAT (40Xs 13)

01000 NUMEER = NUMEBER + 1

01100 SUM = SUM + TORADE

01200 SUMBAR = SUMSQR + IGRADEXIGRADE
01300 GO TO P

01400 100 AMEAN = SUM/NUMEER

01500 VARTIAN = (SUMBOR — (SUMKSUM) /NUMEER) / (NUMEEFR-1)
01600 871 s BART (VARTAN)

01700 TYFE 30y NUMBEFRs AMEANy $THEV

INTRO-8-2

EXAMPLES

01800 30 FORMAT (TONUMRBER OQF STULRENTS = 7y 13 7/
Q1900 L MEAN GRADE = “» Fé&.2 /

02000 L7 STAONDARD DEVIATION = ‘y F&,2)

02100 CLOSE CUNIT =1y FILE=/S8TOGRA,.DES)
02200 ENT

JEX GRADE . FOR<CR>
FORTRANG GRADE

MATN .

LIME R LOAGTING

CLNKXCT GRADE EXECUTION]

NUMRER OF STURENTS = 17

MEAN GRAOE = 80.29

STANTARD DEVIATION = 10.4%5

ENTC OF EXECUTION

CRU TIMES 0,23 ELAFSED TIME: 1.00

We are opening a disk file, reading the grades stored 1in it, and,
closing the file. (See lines 400 and 2100.) Note that the logical
unit number given in the OPEN and CLOSE statements (UNIT = 1) is the
same as that given in the READ statement (line 800) and refers to the
device disk.

Execution starts at statement 400 (the OPEN statement). There 1is a

controlled loop at statements 800 - 1300. The last statement executed
is the END statement at 2200.

CONTINUATION LINES

Lines 1300, 1900, and 2000 are one FORTRAN statement, lines 1900 and
2000 being continuations of line 1800. Since TABs have becn used at
the beginning of each line to skip over all or part of the label
field, a way must be provided to inform the computer that the line is
a continuation line.

The rule is: If the first character (after the TAB) is any number
between 1 and 9, then the line is a continuation line.

Example 3 (Writing A Disk File):

The following is the program that created the Jdata file STDGRA.DES.
Notice that in the OPEN, WRITE, and CLOSE statements (lines 500, 1100,
and 1400) the device unit number is an integer variable, IUNIT. TIUNIT
has been given the value 1 (line 400) before it is used.

oS08

FILES WOE,FOR<CR>

ENIT: WOE.FOR

*EQ L K<CR>

00100 C THIS PROGRAM ENTERS STUDENT GRADES

00200 C ENTER GRADE OF -1 AFTER LAST STUDENT GRADE TO END

00300 DIMENSTON STUDONT (8)

Q0400 TUNLT=1

00500 OFEN (UNIT=ITUNITy FILE= STOGRA.DES)
00600 40 ACCERPT 10y (STUONTC(I) » T=148)

00700 10 FORMAT (8A%5)

INTRO-8-3

EXAMPLES

QOEO0 720y LGRADE
QOO0 20 FORMAT (137
1000 T CTGERADE JEQe 1) GO TO 100
LGO WRITE (TUNITs 300 (STUDNNTCD) y1=1+8)y IGRADE
A0 FORMAT (865 13)

GO TO 40
- CUNET =

CTHIS IS

TUNTITy FILE=STOGRADES)
THE ENIZ

01500
14600
¥

After this orogram has been executed, the file STDGRA.DES will be
listed by the DIRECT command (see page INTRO 6-1) and during the KJOB
command (see page INTRO 7-1).

S X WOE FOR<CR>
FORTRAMS WO
M TN
LTNES LOALENG

XOT WOE EXECUTION
. CLINTON<CR>

ELRRINGE GERFRY<CR>
73<CR>

UANTEL X1, TOMPRINS8<CR>
58<CR>

JOHN _CALHOUN<CR>
3O<CR>

CHARD Mo JOHNSON<CR>
Y<CR>

GEORGE DALLAS<CR>
YE<CR>

WILLIAM K. KING<CR>
&9 <CR>

SOHN BRECKINEIDGE<CR>
77<CR>

HANNTEAL HAML ITN<CR>
&5 <CR>

CHUYLEFR COLFAX<CR>
77<CR>

HEMFY WILSON<CR>

_77<CR>

WILLTAM WHEELER<CR>

Y &E<CR>

CHESTER ARTHUR<CR>

3<CR>

LEVT F. MORTON<CR>
91<CR>

GARKET HORART<CR>

8% <CR>

CHARLES DAWES<CR>
$3<CR>

CHARLES CURTIS<CR>

7% <CR>

<CR>

~1<CR>

THIS I8 THE END

END OF EXECUTION
CRU TIMES 0.92 ELAFSED TIME? 4:21.33
EXTT

INTRO-8-4

EXAMPLES

Example 4:

This program prepares grade reports for the students whose grades are
recorded on the disk file 3TDGRA.DES.

CTYPE REFORT . FOR<CR>

QO100 ¢ FRO WM TO FREFARE GRADE REPORT

DOR200 DTMENGTON ANGME (8)

GOAE00 EN CUNTT=1y FILE=8THGRAJIES)

GO400 COPRIMT HEADINGS

QQN00 WIRITE (S 1)

00400 1 FORMAT ¢707» SEX» “GTUDENT y 27Xy TGRANE)
QOPO0 30 READ Ly 20y ENIE=S0) (ANAME(D) vI=1,8)s IGRADE
QOROO 20 FORMAT (8085 13)

DOF00 WERITE (% 40) (ANAMEC(I) s L=1ly8)y TGRANE

QLOGGO 40 FORMAT <7 79 8ATy 132D

01100 GO TO X0

012 1 CLOSE (UNXT=1)y FII
01LX00 ’ ENTE OF GRADE
01400

‘"‘,,..I(J]‘II(JF\AQL‘L.)
REFORT

S QR FOR<CR>
Nt REFORT

MATN .
L ENKS LOADING
CLNRXCT REFORT EXECUTION]

STURENT GRADE
CLINTUN 83

I TUMI KING B8
ALHOUN 80
U Mo JOHNSON 79
 DALLAS kg
MII!lﬁM Re KING &9
JOHN BRECKINRIDGE

HANNIEAL HAMLIN
SCEHUYLER COLFAX 77
HINFY NlIQUN 77

JUHN
h CHA

H [& ? Ak ”th

LhU! Fe MORTON 91
RRET HOBART 89

ES DAWES 93
GOCURTIS Vi

ENDUOF GRADE REFORT

ENROF EXECUTION
CRU TIMES 0.68 ELAFSED TIMED 1:34.77
EXTT

INTRO-8-5

EXAMPLES

Example 5 (Trying To Read A Non-Existent File):

Now DELETE the data file containing the students' grades, STDGRA.DES,
and then EXecute REPORT.FOR (the ©program in Examole 4). The READ
statement in line 700 cannot be executed since the file to which it
refers does not exist. The execution is thus aborted.

STOGRA , IES
01 BLOCKS FREED

SEX REFORT . FQR<CR>
LLTNR LOATIING —
CLNKXCT REFORT EXECUTTIONI

STUDENT GRATHE
AFRGSDAT ATTEMFT TO READR REYOND VAL ID INFUT
UNIT=1 DEKISTHGERACDESL2y 2403208055 /ACCESS=8EQINOU/MOIE=ABCTT

NAME (L.QC)
IN. (402703)

e GALLER CLOCH <HEARGS> LARG TYPES
4 MATN.HLL (2200 5 FUTUIUl

TOJOR ARQRTED
ENIUOF EXECUTION

CRU TIME? 0,35 ELAFSED TIME? 1.22
EXIT

INTRO-3-6

PART I1

FORTRAN-10 Language Manual

The FORTRAN-10 Language Manual reflects the software as of Version 5
of the FORTRAN-10 Compiler, Version 5 of the FORTRAN-10 Object Time

System (FOROTS), and Version 5 of the FORTRAN-10 Debugging Program
(FORDDT) .

CONTENTS

Page
CHAPTER 1 PROLOGUE 1-1
1.1 BACKGROUND 1-1
CHAPTER 2 CHARACTERS AND LINES 2-1
2.1 CHARACTER SET 2-1
2.2 STATEMENT, DEFINITION, AND FORMAT 2-2
2.2.1 Statement Label Field and Statement
Numbers 2-3
2.2.2 Line Continuation Field 2-3
2.2.3 Statement Field 2-3
2.2.4 Remarks 2-4
2.3 LINE TYPES 2-4
2.3.1 Initial and Continuation Line Types 2-4
2.3.2 Multi-Statement Lines 2-5
2.3.3 Comment Lines and Remarks 2-5
2.3.4 Debug Lines 2-6
2.3.5 Blank Lines 2-6
2.3.6 Line-Sequenced Input 2-6
2.4 ORDERING OF FORTRAN-10 STATEMENTS 2-17
CHAPTER 3 DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS 3-1
3.1 DATA TYPES 3-1
3.2 CONSTANTS 3-2
3.2.1 Integer Constants 3-2
3.2.2 Real Constants 3-2
3.2.3 Double~-Precision Constants 3-3
3.2.4 Complex Constants 3-3
3.2.5 Octal Constants 3-4
3.2.6 Logical Constants 3-5
3.2.7 Literal Constants 3-5
3.2.8 Statement Label Constants 3-6
3.3 SYMBOLIC NAMES 3-6
3.4 VARIABLES 3-7
3.5 ARRAYS 3-7
3.5.1 Array Element Subscripts 3-8
3.5.2 Dimensioning Arrays 3-9
3.5.3 Order of Stored Array Elements 3-10
CHAPTER 4 EXPRESSIONS 4-1
4.1 ARITHMETIC EXPRESSIONS 4-1
4.1.1 Rules for Writing Arithmetic
Expressions 4-2
4.2 LOGICAL EXPRESSIONS 4-4
4.2.1 Relational Expressions 4-7
4.3 EVALUATION OF EXPRESSIONS 4-9
4.3.1 Parenthesized Subexpressions 4-9
4.3.2 Hierarchy of Operators 4-9
4.3.3 Mixed Mode Expressions 4-10

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

4.3.4

[92]

.

(S22 IR O3]
.
> w N

[«)}

oo oo
.
=W N =

(el

e o e »
« o
w N -

. .
.
w N =

WO 00O WWWOWOWWYWWOWYWDOD
N

NN O U D DB WW W W N NN -
N

o o s o o
« o .
w N =

CONTENTS (CONT.)

Use of Logical Operands in Mixed Mode
Expressions

COMPILATION CONTROL STATEMENTS

INTRODUCTION
PROGRAM STATEMENT
INCLUDE STATEMENT
END STATEMENT

SPECIFICATION STATEMENTS

INTRODUCTION

DIMENSION STATEMENT
Adjustable Dimensions

TYPE SPECIFICATION STATEMENTS

IMPLICIT STATEMENTS

COMMON STATEMENTS
Dimensioning Arrays in COMMON
Statements

EQUIVALENCE STATEMENT

EXTERNAL STATEMENT

PARAMETER STATEMENT

DATA STATEMENT
INTRODUCTION
ASSIGNMENT STATEMENTS

INTRODUCTION

ARITHMETIC ASSIGNMENT STATEMENTS
LOGICAL ASSIGNMENT STATEMENTS
ASSIGN (STATEMENT LABEL) ASSIGNMENT
STATEMENT

CONTROL STATEMENTS

INTRODUCTION
GO TO CONTROL STATEMENTS
Unconditional GO TO Statements
Computed GO TO Statements
Assigned GO TO Statements
IF STATEMENTS
Arithmetic IF Statements
Logical IF Statements
Logical Two-Branch IF Statements
DO STATEMENT
Nested DO Statements
Extended Range
Permitted Transfer Operations
CONTINUE STATEMENT
STOP STATEMENT
PAUSE STATEMENT
T (TRACE) Option

I/0 STATEMENTS
DATA TRANSFER OPERATIONS
TRANSFER MODES

Sequential Mode
Random Access Mode

ii

@ @ ®
[
NN

[Xe] @
| 1
ol >

WWYWWOWWWYWWWWYWWWYWWYWWLWYWOWOWYY
L N Y S I S B |

HR OO R WWNN

N OO

b
(o)
]
—

10-1
10-1
10-1
10-1

CHAPTER

11.1
11.2
11.2.1
11.2.2

CONTENTS (CONT.)

Append Mode
I/0 STATEMENTS, BASIC FORMATS AND
COMPONENTS
I/0 Statement Keywords
FORTRAN-10 Logical Unit Numbers
FORMAT Statement References
I/0 List
Implied DO Constructs
The Specification of Records for
Random Access
List-Directed I/0
NAMELIST I/O Lists
OPTIONAL READ/WRITE ERROR EXIT AND
END-OF-FILE ARGUMENTS
READ STATEMENTS
Sequential Formatted READ Transfers
Sequential Unformatted Binary READ
Transfers
Sequential List-Directed READ
Transfers
Sequential NAMELIST-Controlled READ
Transfers

Random Access Formatted READ Transfers

Random Access Unformatted READ
Transfers

SUMMARY OF READ STATEMENTS

REREAD STATEMENT

WRITE STATEMENTS
Sequential Formatted WRITE Transfers
Sequential Unformatted WRITE Transfer

Sequential List-Directed WRITE Transfers

Sequential NAMELIST-Controlled WRITE
Transfers

Random Access Formatted WRITE Transfers

Random Access Unformatted WRITE
Transfers
SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT
Formatted ACCEPT Transfers

ACCEPT Transfers Into FORMAT Statement

PRINT STATEMENT
PUNCH STATEMENT
TYPE STATEMENT
FIND STATEMENT
ENCODE AND DECODE STATEMENTS
ENCODE Statement
DECODE Statement
Example of ENCODE/DECCDE Operations
SUMMARY OF I/0 STATEMENTS

NAMELIST STATEMENTS
INTRODUCTION
NAMELIST STATEMENT

NAMELIST~Controlled Input Transfers
NAMELIST-Controlled Output Transfers

iii

Page
10-2

10-2
10-3
10-3
10-3
10-6
10-6

10-7
10-8
10-10

10-10
10-11
10-11

10-12
10-12

10-13
10-13

10-13
10-14
10-14
10-16
10-16
10-16
10-17

10-17
10-17

10-17
10-18
10-18
10-18
10-19
10-19
10-20
10-21
10-21
10-22
10-23
10-23
10-23
10-25

11-1

11-1
11-1
11-2
11-3

CHAPTER

CHAPTER

CHAPTER

CHAPTER

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15

15.1
15.1.1
15.2
15.3

15.4
15.4.1

15.4.2
15.5.1
15.5.2
15.6

15.6.1

15.7

CONTENTS (CONT.)

FILE CONTROL STATEMENTS

INTRODUCTION

OPEN AND CLOSE STATEMENTS
Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION
FORMAT Statement, General Form
FORMAT DESCRIPTORS
Numeric Field Descriptors
Interaction of Field Descriptors
With I/0 List Variables
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors
Variable Numeric Field Widths
Alphanumeric Field Descriptors
Transferring Alphanumeric Data
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications
Record Formatting Field Descriptors
$ Format Descriptor
CARRIAGE CONTROL CHARACTERS FOR PRINTING
ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION

REWIND STATEMENT

UNLOAD STATEMENT

BACKSPACE STATEMENT

END FILE STATEMENT

SKIP RECORD STATEMENT

SKIP FILE STATEMENT

BACKFILE STATEMENT

SUMMARY OF DEVICE CONTROL STATEMENTS

SUBPROGRAM STATEMENTS

INTRODUCTION
Dummy and Actual Arguments
STATEMENT FUNCTIONS
INTRINSIC FUNCTIONS (FORTRAN-10 DEFINED
FUNCTIONS)
EXTERNAL FUNCTIONS
Basic External Functions (FORTRAN-10
Defined Functions)
Generic Function Names
SUBROUTINE SUBPROGRAMS
Referencing Subroutines (CALL Statement)
FORTRAN-10 Supplied Subroutines
RETURN STATEMENT AND MULTIPLE RETURNS
Referencing External FUNCTION
Subprograms
MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY
STATEMENT)

iv

Page
12-1

12-1
12-1

15-13
15-14
15-14
15-16

15-17

CHAPTER

APPENDIX

APFENDIX

APPENDIX

CONTENTS (CONT.)

16 BLOCK DATA SUBPROGRAMS

16.1 INTRODUCTION
16.2 BLOCK DATA STATEMENT

A ASCII-1968 CHARACTER CODE SET

o]

USING THE COMPILER

RUNNING THE COMPILER

1
1.1 The /DEBUG Switch
2 COMPIL-Class Commands

.

ERROR REPORTING

N b

o

Message Summary

Do owmowmw
B W W WA R e
—

¢ o+ o o

WITH LINK-10

@]

WRITING USER PROGRAMS

Numbers

@} a0
PN . .
[
. . . .
gqoubsw N

NN NN N e

Optimization Technigques

= e
. .
W

Loops

I/0 Optimization

WO ~O U

Test Replacement

WA H B

OO0 0O0000 OO0 00000n
NN DN

Optimization

Switches Available with FORTRAN-10

READING A FORTRAN-10 LISTING
Compiler~Generated Variables

Fatal Errors and Warning Messages

CREATING A REENTRANT FORTRAN PROGRAM

GENERAL PROGRAMMING CONSIDERATIONS
Accuracy and Range of Double-Precision

Writing FORTRAN--10 Programs for
Execution on Non-DEC Machines
Using Floating-Point DO Loops
Computation of DO Loop Iterations
Subroutines ~ Programming Considerations
Reordering of Computations
Dimensioning of Formal Arrays

FORTRAN-10 GLOBAL OPTIMIZATION

Elimination of Redundant Computations
Reduction of Operator Strength
Removal of Constant Computation From

Constant Folding and Propagation
Removal of Inaccessible Code
Global Register Allocation

Uninitialized Variable Detection

Improper Function References
Programming Technigues for Effective

[veBlvelivelliveiovilvsRvellveRivv]
|
O U W

[co LN IEN)

(‘)OO(PO(POOOO
[[1
UGB WN NN -

|
OO I

AOOQOQOO0O000
1

(@}
!
O

Cc.3 INTERACTING WITH NON-FORTRAN-10 PROGRAMS
AND FILES

C.3.1 Calling Sequences

C.3.2 Accumulator Usage

C.3.3 Argument Lists

C.3.4 Argument Types

C.3.5 Description of Arguments

C.3.6 Converting Existing MACRO-10 Libraries
for use with FORTRAN-10

C.3.7 Mixing FORTRAN-10 and F40 Compiled
Programs

C.3.8 Interaction with COBOL-10

Cc.3.8.1 Calling FORTRAN-10 Subroutines from

COBOL-10 Programs

\4

APPENDIX

APPENDIX

(@}

(@]

W)

o

jollw)

aO0O0O0On

lsBvivlvRw]

lvlviviw]
U1 s

leBvivivivivivivlolw)

lvBoRw

oM

bW N

.
(e e W W WO NG, U, NG)|

.

.
W W N

=

[\CIN O S
.

W NN

[\

—

O W~

.6.3.10
.6.3.11

b

N =

CONTENTS (CONT.)

Calling COBOL-10 Subroutines from
FORTRAN-10 Programs

LINK-10 Overlay Facilities

Conventions

FOROTS/FORSE Compatibility
FORTRAN-10/F40 Data File Compatibility
Converting FOROTS Data File to
FORSE-Accepable Form

General Restrictions

FOROTS

HARDWARE AND SOFTWARE REQUIREMENTS
FEATURES OF FOROTS
ERROR PROCESSING
INPUT/OUTPUT FACILITIES
Input/Output Channels Used Internally by
FOROTS
File Access Modes
Sequential Transfer Mode
Random Access Mode
ACCEPTABLE TYPES OF DATA FILES AND THEIR
FORMATS
ASCII Data Files
FORTRAN Binary Data Files
Format of Binary Files
Mixed Mode Data Files
Image Files
USING FOROTS
FOROTS Entry Points
Calling Sequences
MACRO Calls for FOROTS Functions
Formatted/Unformatted Transfer
Statements, Sequential Access Calling
Sequences
NAMELIST I/0O Sequential Access Calling
Sequences
Array Offsets and Factoring
I/0 Statements Random Access Calling
Sequences
Calling Sequences for Statements Which
Use Default Devices
Statements to Position Magnetic
Tape Units
List Directed Input/Output Statements
Input/Output Data Lists
OPEN and CLOSE Statements,
Calling Sequences
Memory Allocation Routines
Software Channel Allocation and
De-~allocation Routines
FUNCTIONS TO FACILITATE OVERLAYS
LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

FORDDT
INPUT FORMAT

Variables and Arrays
Numeric Conventions

vi

? TTYT
wwN

777T
B W

[\

!
Ll o G2 RO B -

w

I
— -
bW

UUUUIUUUUUU

|
—
w

APPENDIX

APPENDIX

APPENDIX

TABLE

w

[

mmomommmEmEm@mmm
WO~ UEWN N

3

(9]

" s s e e s e e
« e e e
W N

.
.

.
b b = b b O 00~ OY U1 S LS N

U WNHO

(RPN NN RANANINI NP NINININORNNININANI RPN
WWWWWWWWWWWWWWWWNNNN N -

jas]

B W W N
[}
IR R

CO W >
I
Hao0 0 bW

CONTENTS (CONT.)

Statement Labels and Source Line Numbers

NEW USER TUTORIAL
Basic Commands
FORDDT AND THE FORTRAN-10 /DEBUG SWITCH
LOADING AND STARTING FORDDT
SCOPE OF NAME AND LABEL REFERENCES
FORDDT COMMANDS
ENVIRONMENT CONTROL
FORTRAN-10 /OPTIMIZE SWITCH
FORDDT MESSAGES

COMPILER MESSAGES
FORTRAN-10 REALTIME SOFTWARE

INTRODUCTION

USING FORRTF
Core
Modes
Priority Interrupt Levels
Masks

SUBROUTNES
LOCK
RTINIT
CONECT
RTSTRT
BLKRW
RTREAD
RTWRIT
STATO
STATI
RTSLP
RTWAKE
DISMIS
DISCON
UNLOCK
GETCOR, A Temporary Subroutine

FOROTS ERROR MESSAGES RETURNED BY ERRSNS

TABLES

FORTRAN-10 Statement Categories
FORTRAN-10 Character Set

Constants

Use of Symbolic Names

Arithmetic Operations and Operators
Type of the Result Obtained From
Mixed Mode Operations

Permitted Base/Exponent Type Combinations

Logical Operators

Logical Operations, Truth Table
Relational Operators and Operations
Hierarchy of FORTRAN-10 Operators
Rules for Conversion in Mixed Mode
Assignments

FORTRAN-10 Logical Device Assignments
Summary of READ Statements

i

)
o]
Q
D

mmmomoEomeEmmme
|
HHEHFO®ONIJWWwW

~

xs]
| | i
—

| I Y O N R R A I |
N UIUTULIUIUTLER B WWWWRNNN N

OOOOOOOOOOOG{)OOOOOOOOOO (9]

jas]
|
—

10-3
10-4
12-1
13-1
13-2

| 2

1
HENDHFWND D

AOmUoOOONOmW—
i

jss]
| i
[

jas}
1
[\

CONTENTS (CONT.)

Summary of WRITE Statements

Summary of FORTRAN-10 I/0 Statements
OPEN/CLOSE Statement Arguments
FORTRAN-10 Conversion Codes

Action of Field Descriptors On

Sample Data

Numeric Field Codes

Descriptor Conversion of Real and Double
Precision Data According to Magnitude
FORTRAN-10 Print Control Characters
Summary of FORTRAN-10 Device Control
Statements

Intrinsic Functions (FORTRAN-10 Defined
Functions)

Basic External Functions (FORTRAN-10
Defined Functions)

FORTRAN-10 Library Subroutines
FORTRAN-10 Compiler Switches
Modifiers to /DEBUG Switch

Argument Types and Type Codes

Upward Compatibility (FORSE TO FOROTS)
Downward Compatibility (FOROTS TO FORSE)
Function Numbers and Function Codes
FORTRAN Device Table

Table of Commands

Error Messages, Code Format and Full
Message Format

FOROTS I/0 Error Messages and ERRSNS
Returned Values

FOROTS Arithmetic and Library Error
Messages

viii

Page

10-17
10-24
12-11
13-3

13-8
13-17

14-4
15-4

15-10
15-19
B-2
B-3
C-12
C-24
C-26
D-30
D-33
E-1

CHAPTER 1

PROLOGUE

1.1 BACKGROUND

The FORTRAN-10 language set 1s compatible with and encompasses the
standard set described 1in "American National Standard TFORTRAN,
X3.9-1966" (referred to as the 1966 ANSI standard). FORTRAN-10 also
provides many extensions and additions to the standard set that
greatly enhance the wusefulness of FORTRAN-10 and increasc its
compatibility with FORTRAN lanjuage sets implemented by other major
computer manufacturers. In this manual, the FORTRAN-10 extensions and
additions to the 1966 ANSI standard set are printed with gray shading.

A FORTRAN-10 source program consists of a set of statements
constructed wusing the language elements and the syntax described in
this manuval. A given FORTRAN-10 statement will perform any one of the
following functions:

1. It will cause operations such as multiplication, division,
and branching to be carried out.

2. It will specify the tyove and format of the data being
processed.

3. It will specify the characteristics of the source vrogram.

FORTRAN-10 statements are composed of keywords, i.e., words that are
recognized by the compiler, used with elements of the language set:
constants, variable, and expressions. There are two basic types of
FORTRAN-10 statements: exccutable and nonexecutable.

Executable statements specify the action of the program;
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and the kind of
subprograms that may be included in the program. The compilation of
executable statements results in the creation of executable <code in
the object program. ~Nonexecutable statements provide information only
to the compiler; they do not create executable code.

In this manual, the FORTRAN-10 statements are grouped 1into 12
categories, each of which is described in a separate chapter. The
nane, definition, and chapter reference for each statement category
are given in Table 1-1.

The basic FORTRAN-10 language eclements, (constants, variables, and
expressions), the character set from which they may be formed, and the
rules that govern their construction and use are described in Chapters
2 through 4.

PROLOGUE

Table 1-1
FORTRAN-10 Statement Categories

Chapter Catcgory
Reference Name Description
5 Compilation Control | Statements in this category
Statements identify ©programs and indicate
their beginning and ending
points.
3 Specification Statements in this category
Statements declare the properties of
variables, arrays, and functions.
7 DATA This statement assigns initial
Statement values to wvariables and array
elements.
3 Assignaent Statements in this category cause
Statements named variables and/or array
elements to be replaced by
specified (assigned) values.
9 Control Statements in this category
Statements determine the order of execution
of the object program and
terminate its execution.
10 Input/Output Statements in this category
Statements transfer data Dbetween internal
storage and a specified input or
output medium.
11 NAMELIST This statement establishes lists
Statement that are used with certain
input/output statements to
transfer data that appears in a
special type of record.
12 Ffile Control Statements in this category
Statements identify, open, and close files
and parameters for input and
output operations between files
and the processor.
13 FORMAT This statement is used with
Statement certain input/outout statements
to specify the form in‘*which data
appears in a FORTRAN record on a
specified input/output medium.
14 Device Control Statements in this category

Statements

enable the programmer to control
the positioning of records or
files on certain perioheral
devices.

PROLOGUE

Table 1-1 (Cont.)
FORTRAN-10 Statement Categories

Chapter Category
Refecrence Name Description
15 Subprogram Statements in this category
Statements enable the programner to define
functions and subroutines and
their entry points.
16 BLOCK DATA Statements in this category
Statements are used to declare data
specification subprograms that
may initialize common storage
areas.

CHAPTER 2

CHARACTERS AND LINES

2.1 CHARACTER SET

Table 2-1 1lists the digits, letters, and symbols

FORTRAN-10.

recognized by

acceptable within 1literal constants or comment text,
characters cause fatal errors in other contexts.

CONTROL-Z, which,

NOTE
Lower—-case alohabet characters are
treated as upper—-case outside the

context of Hollerith constants, literal
strings, and comments.

Table 2-1
FORTRAN-10 Character Set
Letters
A,a J,J 3,s
B,b K,k T,t
C,c L,1 U,u
D,d M,m V,v
E,e N,n W,w
F,f 0,0 X,X
G, P,p Y,y
H,h Q,9 2,z
I,1i R,t
Digits
0 5
1 5
2 7
3 8
4 9

1. The complete ASCII-1968 character set is defined in
the "American National Standard for

version of
Interchance,

and is given in Appendix A.

2-1

The remainder of the ASCII-1968 character sect(l), is

but these

An exccption is

the

when used in Teletype input, means end-of-file.

X3.4-1958
Information

CHARACTERS AND LINES

Table 2-1 (Cont.)
FORTRAN-10 Character Set

Symbols
! Exclamation Point , Comma
" Quotation Marks - Hyphen (Minus)
Number Sign . Period (Decimal Point)
$ Dollar Sign / Slant (slash)
& Ampersand : Colon
' Apostrophe ; Semicolon
(Opening Parenthesis < Less Than
) Closing Parenthesis = Equals
* Asterisk > Greater Than
+ Plus " Circumflex

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Note that horizontal tabs normally advance the character position

pointer to the next position that 1is an even multiple of 8. An
exception to this is the initial tab, which is defined as a tab that
includes or starts in character position 6. (Refer to Section 2.3.1

for a description of initial and continuation line types.) Tabs within
literal specifications count as one character even though they may
advance the character position as many as eight places.

2.2 STATEMENT, DEFINITION, AND FORMAT

Source program statements are divided into physical lines. A line is
defined as a string of adjacent character positions, terminated by the
first occurrence of a 1line termination character regardless of
context. Each line is divided into four fields:

ll< Line Character Positions =1'
1 2 3 4 5 6 7 8 70 71 72 73 . .
v JH—/& v J ;_Y_J
Statement Continuation Statement Ficld Remarks
Label Field Field

CHARACTERS AND LINES

2.2.1 Statement Label Field and Statement Numbers

You may place a number ranging from 1 to 99999 in the statement label
field of an initial 1line to identify the statement. Any source
program statement that is referenced by another statement must have a

statement number. Leading =zeroes and all blanks in the label field
are ignored, e.9., the numbers 00105 and 105 are both accepted as
statement number 105. You may assign the statement numbers in a

source program in any order; however, each statement number must be
unigue with respect to all other statements in the program or
subprogram. You cannot label non-executable statements other than
FORMAT and END statements.

A main program and a subroutine may contain identical statement
numbers. In this case, refercnces to these numbers are understood to
mean the numbers in the same program unit in which the reference is
made. An example:

Assume that main module MAINMD and subprogram SUBl1 both
contain statement number 105. A GO TO statement, for
instance, in MAINMD will refer to statement 105 in MAINMD,
NOT to 105 in SUBl1. A GO TO in SUB1l will transfer control
to 105 in 35UBI.

When you enter source programs 1into a DECsystem-10 system via a
standard user terminal, you may use an initial tab to skip all or part
of the label field.

If an initial tab 1s encountered during compilation, FORTRAN-10
examines the character immediately following the tab to determine the
type of line being entered. If the character following the tab is one
of the digits 1 through 9, FORTRAN-10 considers the 1line as a
continuation line and the second character after the tab as the first
character of the statement field. 1If the character following the tab
is other than one of the digits 1 through 9, FORTRAN-10 considers the
line to be an initial 1line and the character following the tab is
considereéd to be the first character of the statement field. The
character following the initial tab is considered to be in character
position § in a continuation line, and in character position 7 in an
initial line.

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in this
field (pcsition ©) identifies the line as a continuation line. (Sec
Section 2.3.1 for description.)

Whenever you use a tab to skip all or part of the 1label field of a

continuation 1line, the next <character you enter must be one of the
digits 1 through 9 to identify the line as a continuation line.

2.2.3 Statement Field

Any FORTRAN-10 statement may appear in this field. Blanks (spaces)
and tabs do not affect compilation of the statement and may be used
freely in this field for appearance purposes, with the exception of
textual Jdata given within either a literal or Hollerith specification
where blanks and tabs are significant characters.

CHARACTERS AND LINES

2.2.4 Remarks

In lines consisting of 73 or morc character positions, only the first
72 characters are interpreted by FORTRAN-10. (Note that tabs
generally occupy more than one character position, wusually advancing
the counter to the next character position that is an even multiple of
eight.) All other characters in the line (character positions 73, 74
...etc.) arece treated as remarks and do not affect compilation.

Note that remarks may also be added to a line in character positions 7

through 72, provided the text of the remark is preceded by the symbol
1" (Refer to Scection 2.3.3.)

2.3 LINE TYPES

A line in a FORTRAN-10 source program may be:
1. An initial line,
2. A continuation line,
3. A multi-statement line,
4., A conmment line,
5. A debug line, or
6. A blank line.

Each of these line types is described in the following paragraphs.

2.3.1 1Initial and Continuation Line Types

A FORTRAN-10 statement may occupy the statement fields of wup to 20
consecutive 1lines. The first line in a multi-line statement group is
referred to as the initial line; the succeeding lines are referred to
as continuation lines.

Initial lines may be assigned a statement number and must have either
a blank or a zero in their continuation line field, i.e., character
position 6.

If you enter an initial line via a keyboard input device, you may use
an initial tab to skip all or part of the label field. 1If you use an
initial tab for this purpose, you must immediately follow it with a
non-numeric character, 1i.e., the first character of the statement
field must be non-numeric.

Continuation lines cannot be assigned statement numbers; they are
identified by any alphanumeric character (except for a blank or zero)
placed in character position 5 of the line, 1i.e., continuation 1line
field. The label field of a continuation line is treated as remark
text.

If you are entering a continuation line via a keyboard, you may use an
initial tab to skip all or part of the label field; however, the tab
must be followed immediately by a numeric character other than =zero.
The tab-numeric combination identifies the 1line as a continuation
line.

CHARACTERS AND LINES

Note that blank lines, comments, and debug lines that are treated like
comments, i.e., debug lines that are not compiled with the rest of the
program (refer to Section 2.3.4) terminate a continuation seguence.

Following is an example of a 4-line FORTRAN-10 FORMAT statemant using
initial tabs:

105 FORMAT (1H1,l17UINITIAL CHARGE = ,F10.6,108 COULOMB,5X,
213HRESISTANCE = ,F9.3,6H OHM/15H CAPACITANCE = ,F10.56,
364 FARAD,11X,13UINDUCTANCE = ,F7.3,8H HENRY///
4214 TIME CURRENT/7H MS,10X.20MA///)

Continuation Line Characters, i.e., 2, 3, and 4

2.3.2 Multi-Statement Lines

You may write more than one FORTRAN-10 statement in the statement
field of one line. The rules for structuring a multi-statement line
are:

1. Successive statements must be separated by a semicolon (;).

2. Only the first statement in the series can have a statement
number.

3. Statements following the first statement cannot be a
continuation of the preceding statement.

4. The last statement in a line may be continued to the next
line if that next line is made a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME ;TIME=TIME+0.05 ;CALL PRIME(TIME,DIS3T)

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment
lines. Comment lines are commonly used to identify and introduce a
source program, to describe the purpose of a particular set of
statements, and to introduce subprograms.

To structure a comment line:

1. You must place one of the characters C (or ¢), $,/,*, or I
in character position 1 of the 1line to identify it as a
comment line.

2. You may write the text into character positions 2 through the
end of the line.

3. You may place comment lines anywhere in the source program,
but they cannot precede a continuation line because comments
terminate a continuation seguence.

4. You may write a large comment as a sequence of any number of
lines; however, each 1line must carry the identifying
character (C,$,/,*, or !) in its first character position.

CHARACTERS AND LINES

The following is an example of a comment that occupies more than one
line.

CSUBROUTINE - Al2

CTHE PURPOSE OF THIS SUBROUTINE IS
CTO FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-1101

Zomment lines are printed on all listings, but are otherwise ignored
by the compiler.

You may add a remark to any statement field, in character positions 7
through 72, provided the symbol ! precedes the text. For example, in
the line

IF(N.EQ.Q)3TOP! 3TOP IF CARD IS BLANK

the character group "Stop if card is blank" is identified as a remark
by the preceding ! symbol. Remarks do not result in the generation
of object program code, but they will appear on listings. The symbol
t, indicating a remark, must appear outside the context of a literal
specification.

Note that characters appearing in character positions 73 and Dbeyond
are automatically treated as remarks, so that the symbol ! need not
be used. (Refer to Section 2.2.4.)

2.3.4 Debug Lines

As an aid in program debugging, a D (or d) in character position 1 of
any line causes the line to be interpreted as a comment line, i.e.,
not compiled with the rest of the program unless the /INCLUDE switch
is present in the command string. (Refer to Appendix C for a
description of the file switch options.) When the /INCLUDE switch is
present in the command string, the D (or d4) in character position 1 is
treated as a blank so that the remainder of the line is compiled as an
ordinary (noncomment) line. Note that the initial and all
continuation lines of a debug statement must contain a D (or 4) in
character position 1.

2.3.5 Blank Lingf

You may insert lines consisting of only blanks, tabs, or no characters
anywhere in a FORTRAN-10 source program except immediately preceding a
continuation line, because blank lines are by definition initial lines
and as such terminate a continuation sequence. Blank lines are used
for formatting purvoses only; they cause blank 1lines to appear in
their corresponding positions in source program listings; otherwise,
they are ignored by the compiler.

2.3.6 Line-Sequence Input

FORTRAN-10 optionally accepts DECsystem-10 line-sequenced files as
produced by LINED or BASIC. These seguence numbers are used in place
of the listing line numbers normally generated by FORTRAN-10.

CHARACTERS AND LINES

2.4 ORDERING OF FORTRAN-10 STATEMENTS

The order in whicn you place FORTRAN-10 Statements in a oprogram unit

is important. That 1is, «certain types of statements have to be
processed before others to guarantee that compilation takes w©place as
you expect. The oproper sequence for FORTRAN-10 statements 1is

summarized by the following diagram.

PROGRAM, FUNCTION, SUBPROGRAM, or
BLOCK DATA Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
Comment Lines FORMAT Statements EQUIVALENCE, EXTERNAL
NAMELIST, or Type
Specification Statements

Statement
Function
Definitions
DATA Statements

Executable
Statements

END Statement

Horizontal lines indicate the order in which FORTRAN-10 statements
must appear. That 1is, vyou cannot intersperse horizontal sections.
For example, all PARAMETER statements must appear after all IMPLICIT
statements and before any DATA statements, i.e., PARAMETER, IMPLICIT,
and DATA statements cannot be interspersed. Statement function
definitions must appear after 1IMPLICIT statements and before
executable statements.

Vertical lines indicate the way in which certain types of statements
may be interspersed. For example, you may intersperse DATA statements
with statement function definitions and executable statements. you
may 1intersperse FORMAT statements with IMPLICIT statements, parameter
statements, other specification statements, DATA statements, statement
function definitions, and executable statements. The only restriction
on the placement of FORMAT statements is that they must appear after
any PROGERAM, FPFUNCTION, subprogram, and BLOCK DATA statements, and
before the END statement.

CHARACTERS AND LINES

Cases:

The placement of an INCLUDE statement is dictated by the
tyoes of statements to be INCLUDCA.

The ENTRY statement 1s allowed only in functions or
subroutines. All executable references to any of the dummy
parameters must ohysically follow the ENTRY statement unless
the references appear in the function definition statement,
the subroutine, or in a preceding ENTRY statement.

BLOCK DATA subprograms cannot contain any executable

statements, statement functions, FORMAT statements, EXTERNAL
statements, or NAMELIST statements. (Refer to Section 16.1.)

When statements are out of place, FORTRAN-10 issues messages, some of
which may indicate fatal errors.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES,

3.1 ©DATA TYPES

CHAPTER 3

VARIABLES, AND ARRAYS

The data types you may use in FORTRAN-10 source programs are:

1. integer,

2. real,

3. double-precision,

4. complex,

5. octal,

6. double-octal,

7. literal,

8. statement label, and

9. logical.

The use and format of each of the foregoing data types are discussed

in the descriptions of th
(Sections 3.2.1 through 3.2.8

3.2 CONSTANTS

e constant having

) .

the same data type

Constants are quantities that do not change value during the execution

of the object program.

The constants you may use in

FORTRAN-10 are listed in Table 3-1.

Table 3-1
Constants

Category

Numeric Integer,
octal

Truth Values Logical

Literal Data Literal

real, double-precision, complex, and

Statement Label Address of FORTRAN statement label

Constant (s) Types

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.1 Integer Constants

An integer constant is a string of from one to eleven digits that
represents a whole decimal number (a number without a fractional
part). Integer constants must be within the range of (-2*%*35)-1 to
(+2**35) -1 (-34359738357 to +34359733367). Positive integer constants
may optionally be signed; negative integer constants must be signed.
You cannot use decimal ©points, commnas, or other symbols on integer
constants (e2xcept for a preceding sign, + or -). Examples of wvalid
integer constants are:

345
+345
-345

Examples of invalid integer constants are:

+345. (use of decimal point)
3,450 (use of comma)
34.5 (use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant mnay have any of the following forms:

1. A basic real constant: a string of decimal digits followed
immediately by a decimal wvoint followed optionally by a
decimal fraction, e.g., 1557.42.

2. A basic real constant followed immediately by a decimal
integer exponent written in E notation (exponential notation)
form, =2.3., 1559.E2.

3. An integer constant (no decimal point) followed by a decimal
integer exponent written in E notation, e.g., 1559E2.

Real constants may be of any size; however, each will' be rounded to
fit the precision of 27 bits (7 to 9 decimal digits).

Precision for real constants 1is maintained to approximately eight
significant digits; the absolute precision depends upon the numbers
involved.

The exponent field of a real <constant written in E notation form

cannot be empty (blank); it must Dbe either a zero or an integer
constant. The magnitude of the exponent must be greater than -38 and
equal to or less than +38 (i.e., -38<n< + 38). The following are

examples of valid real constants.

-93.765

7.0E+0 (7.)
.7E-3 (.0007)
5E+5 (500000.)
50115.

50.E1 (500.)

The following are examples of invalid real constants.

72.6E75 (exponent is too large)
.375E (exponent incorrectly written)
500 (no decimal point given)

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.3 Double-Precision Constants

Constants of this type are similar to real constants written in E
notation form; the direct differences between these two constants
are:

1. Double-precision constants, depending on their magnitude,
have precision to either 15 to 17 vlaces (system with a KAlO
Processor) or 16 to 13 places (system with a KI1l0 or KL10O
Processor), rather than the 8-digit precision obtained for
real constants.

2. Each double-precision constant occupies two storage
locations.

3. The letter D, instead of E, 1is wused 1in double-precision
constants to identify a decimal exponent.

You must use both the letter D and an exponent (even of zero) in
writing a double-precision constant. The exponent need only be signed
if it is negative; its magnitude must be greater than -38 and equal
to or 1less than +38 (i.e., =38<n +38). The range of magnitude
permitted a double-precision constant depends on the type of processor
present in your system (on which the source program is to be compiled
and run). The permitted ranges are:

Processor Range
KAl0 1.97 X 10**(-31) to 3.4 X 10**(+38)
KI10 or KL1O 0.14 X 10**(-38) to 3.4 X 10**(+38)

The following are valid examples of double-precision constants.

7.9003 (= 7900)
7.90+03 (= 7900)
7.9D-3 (= .0079)
79003 (= 79000)
79D0 (= 79)

The following are invalid examples of double-precision constants.

7.9D99 (exponent is too large)
7.9E5 ("E" denotes a single-precision constant)

3.2.4 Complex Constants

You can represent a complex constant by an ordered pair of integer,
real, or octal constants written within parentheses and separated by a
comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are
complex constants.

In a complex constant the first (leftmost) real constant of the wvair
represents the real vart of the number; the second real constant
represents the imaginary part of the number. Both the real and
imaginary parts of a complex constant can be signed.

The real constants that represent the real and imaginary parts of a
coaplex constant occupy two consecutive storage locations in the
object program.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.5 Octal Constants

You may use octal numbers (radix 8) as constants in arithmetic
expressions, logical expressions, and data statements. Octal numbers
up to 12 digits in length are considered standard octal constants;
they are stored right~justified in one processor storage location.
When necessary, standard octal constants are padded with leading zeros
to fill their storage location.

If you specify more than 12 digits in an octal number, it 1is
considered a double octal constant. Double octal constants occupy two
storage locations and may contain up to 24 right-justified octal
digits; =zeros are added to fill any unused digits.

If you assign a single octal constant to a double precision or complex
variable, it is stored, right-justified, in the high-order word of the
variable. The low-order portion of the variable is set to zero.

If you assign a double octal constant to a double precision or complex
variable, it 1is stored right-justified starting in the low-order
(rightmost) word and precedes leftwards into the high-order word.

All octal constants must:

1. be preceded by a double guote (") to identify the digits as
octal, e.g., "777, and

2. be signed if negative, but optionally signed if positive.

3. contain one or more of the digits 0 through 7, but not 8 or
9.

The following are examples of valid octal constants:

123456700007
"123456700007
+"12345
-"7777

"-7777

The following are examples of invalid octal constants:

"12368 (contains an 8)
7777 (no identifying double quotes)

When you use an octal constant as an operand in an expression, its
form (bit pattern) is not converted to accommodate it to the type of
any other operand. For example, the subexpression (A+"202 400 000
000) has as 1its result the sum of A with the floating point number
2.0; while the subexpression (I+"202 400 000 000) has as its result
the sum of I with a large integer.

Octal constants may not be used as stand-alone arguments for 1library
functions that require non-octal arguments. MINO, for instance,
requires INTEGER arguments and cannot accept octal arguments.

When you combine a double octal constant in an expression with either
an integer or real wvariable, only the contents of the high order
location (leftmost) are used.

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represcnted in
FORTRAN-10 source programs as the logical constants .TRUE. and
.FALSE.. Always write logical constants enclosed by periods as in the
preceding sentence.

Logical quantities may be operated on in arithmetic and logical
statements. Only the sign bit of a numeric used in a logical IF
statement is tested to determine if it is true (sign is negative) or
false (sign is positive).

3.2.7 Literal Constants

A literal constant may be cither of the following:

1. A string of alphanumeric and/or special characters contained
within apostrophes, e.g., 'TEST#5'.

2. A Hollerith 1literal, which is written as a string of
alphanumeric and/or special characters preceded by nH (=.3.,
nHstring). 1In the prefix nH, the 1letter n represcnts a
number that specifies the exact number of characters
(including blanks) that follow the letter Hd; the letter H
identifies the literal as a Hollerith literal. The following
are examples of Hollerith literals:

2HAB

14HLOAD TEST #124
6H#124-A

NOTE

A tab (=]) in a Hollerith literal is counted as one
character, e.g., 3H-| AB.

You may enter literal constants into DATA statements as a string of:

1. up to ten 7-bit ASCII characters for complex or double
precision type variables, and

2. up to five 7-bit ASCII characters for all other type
variables.

The 7-bit ASCII characters that comprise a literal constant are stored
left-justified (starting in the high-order word of a 2-word precision
or complex literal) with blanks placed in empty character positions.
Literal constants that occupy more than one variable are stored as
successive variables in the list. The following example illustrates
how the string of characters

A LITERAL OF MANY CHARACTERS

is stored in a six-element array called A.
DIMENSION A(6)
DATA A/'A LITERAL OF MANY CHARACTERS'/

3-5

DATA TYPE3, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

A(l) is set to 'A LIT'
A(2) is set to 'ERAL '
A(3) is set to 'OF MA'
A(4) is set to '"NY CH'
A(5) is set to 'ARACT'
A(6) is set to ‘'ERS !

3.2.8 Statement Label Constants

Statement labels are
statement numbers.

numeric identifiers that represent progranm

You write statement label constants as strings of from one to five
decimal digits, which are preceded by either a dollar sign ($) or an
ampersand (&). For example, either $11992 or &11992 may be used as a

statement label constant.
You use statement label constants only in the argument 1list of CALL

statements to identify the statement to return to in a multiple RETURN
statement. (Refer to Chapter 15.) i

3.3 SYMBOLIC NAMES

Symbolic names may consist of any alphanumeric combination of from one
to six characters. You may use more than six characters, but
FORTRAN-10 will ignore all but the first six. The first character of
a symbolic name must be an alphabetic character.

The following are examples of legal symbolic names:
Al12345
IAMBIC
ABLE

The following are examples of illegal symbolic names:

$AMBIC (symbol used as first character)
1AB (number used as first character)

You use symbolic names to identify specific items of a FORTRAN-10
source program; Table 3-2 lists these items, together with an example
of a symbolic name and text reference for each.

Table 3-2
Use of Symbolic Names

For a Detailed

Symbolic Names
Can Identify

For Example

Description
See Section

1. Variables PI, CONST, LIMIT 3.4
2. Arrays TAX 3.5
3. Array elements TAX (NAME, INCOME) 3.5.1
4., Functions MYFUNC, VALFUN 15.2
5. Subroutines CALCSB, SUB2, LOOKUP 15.5
6. External library SIN, ATAN, COS5SH 15.4
functions
7. COMMON block names DATAR, COMDAT 5.5

3-6

DATA TYPES5, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

3.4 VARIABLES

A variable is a datum (storage location) that 1is 1identified by a
symbolic name and 1s not a constant, an array or an array element.
Variables specify values that are assigned to them by either
arithmetic statements (Chapter 8), DATA statements (Chapter 7), or at
run time via I/O references (Chapter 10). Before you assign a value
to a variable, it is termed an undefined variable, and you should not
reference it except to assign a value to it.

If you reference an undefined variable, an unknown value (garbage)
will be obtained.

The value you assign to a variable may be either a constant or the
result of a calculation that is performed during the cxecution of the
object program. For example, the statement IAB=5 assigns the constant
5 to the variable IAB; in the statement IAB=5+B, however, the value
of IAB at a given time will depend on the value of variable B at the
time the statement was last executed.

The type of a variable i3 the type of the contents of the datum that
it identifies. Variables may be:

1. 1integer

2. real

3. logical

4. double-precision, or

5. complex.
You may declare the type of a variable by using either implicit or
explicit type declaration statements (Chapter 6). However, if you do
not use type declaration statements, FORTRAN-10 assumes the following

convention:

1. Variable names that begin with the letters I, J, K, L, M, or
N are normally integer variables.

2. Variable names that begin with any letter other than I, J, K,
L, M, or N are normally real variables.

Examples of determining the type of a wvariable according to the
foregoing convention are given in the following table:

Variable Baginning Letter Assumed Data Type
ITEMP I Integer

OTEMP 0 Real

KA123 K Integer

AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array
names are symbolic names and must conform to the rules given in
Section 3.3 for writing symbolic names.

DATA TYPES, CONSTANT3, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

Each datum within an array 1is called an array element. As with
variables, you mwmay assign a value to an array element. Before you
assign a value to an array element it is considered to be undefined;
you should not reference it until you have assigned it a value. If
you reference an undefined array element, the value of the element
will be unknown and unpredictable (garbage).

Name each element of an array by using the array name together with a
subscript that describes the position of the element within the array.

3.5.1 Array Element Subscripts

Give the subscript of an array element identifier within wvarentheses,
as either one subscript gquantity or a set of subscript guantities
delimited by commas. Write the parenthesized subscript immediately
after the array name. The general form of an array element name is AN
(31, S2,...Sn), where AN is the array name and 51 through Sn represent
n number of subscript quantities. You may use any number of subscript
gquantities in an element name; however, the number used must always
equal the number of dimensions (Section 3.5.2) specified for the
array.

A subscript can be any compound expression (Chapter 4), for example:

1. Subscript guantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (a+B,C*5,D/2) and
(A**3,(B/4+4C)*E,3) are valid subscripts.

2. Arithmetic expressions used in array subscripts may be of any
type, but noninteger expressions (including complex) are
converted to integer when the subscript is evaluated.

3. A subscript may contain function references (Chapter 14).
For example: TABLE (SIN (A) *B,2,3) is a valid array element
identifier.

4. Subscripts may contain array element identifiers nested to
any level as subscripts. For example, 1in the subscript
(I(J(K(L))),A+B,C) the first subscript quantity given 1is a
nested 3-level subscript.

Here are examples of valid array element subscripts:

1. 1AaB(1,5,3)

2. ABLE(A)

3. TABLE1(10/C+K**2,A,B)

4. MAT(A,AB{(2*L),.3*TAB(A,M+1,D),55)

DATA TYPES, CONSTANTS, SYMBOLIC NAME3, VARIABLES, AND ARRAYS

3.5.2 Dimensioning Arrays

You must declare the size (number of elements) of an array in order to
enable FORTRAN-10 to reserve the needed amount of locations in which
to store the array. Arrays are stored as a scries of sequential
storage locations. Arrays, however, are visualized and referenced as
if they were single or multi-dimensional rectilinear matrices,
dimensioned on a row, column, and plane basis. For example, the
following figure represents a 3-row, 3-column, 2-plane array.

3 ROWS o

S
&
o

J///?QV

[S SO P

3 COLUMNS

10-1058

You specify the size of an array by an array declarator written as a
subscripted array name. In an array declarator, however, each
subscript quantity is a dimension of the array and must be cither an
integer variable or an integer constant.

For example, TABLE(I,J,K) and MATRIX (10,7,3,4) arc valid array
declarators.

The total number of elements that comprise an array is the product of
the dimension quantities given in its array declarator. For example,
the array IAB dimensioned as IAB (2,3,4) has 24 elements (2 X 3 X 4 =
24) .

You use dimension arrays only 1in the specification statements
DIMENSION, COMMON, and type declaration (Chapter 6). Subscripted
array names appearing in any of the foregoing statements are array
declarators; subscripted array names appearing in any other
statements are always array element identifiers. 1In array declarators
the position of a given subscript quantity determines the particular
dimension of the array (e.g., row, column, or plane) that it
represents. The first three subscript positions specify the number of
rows, columns, and ©planes that comprise the named array; each
following subscript given then specifies a set comprised of n-number
(value of the subscript) of the previously defined sets. For example:

DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS

The Dimension Declarator Specifies the Array(s)
e [12]
TAB (2,2) 1] 1.2
2,1 2,&_
TAB(2,2,2) _,,—”' ﬁl,l‘Z ;i;
L 20 pel2l 222
200 220 -7
TAB(2,2,2.2) e [EENI Y -7 [22]1222
T em” I == I
L1,1,111,2,1,1 2,1.2,1 2,2.3,1 11121212 2122 2,2.’2,’2’
21102211 __‘,_—” a002]2202| -7
NOTE

FORTRAN-10 permits any number of
dimensions in an array declarator.

3.5.3 Order of 3tored Array Elements

The elements of an array are arranged in storage in ascending order.
The wvalue of the first subscript quantity varies between its minimum
and maximum values most rapidly. The value of the 1last given
subscript guantity increases to its maximum value least rapidly. For
example, the elements of the array dimensioned as I(2,3) are stored in
the following order:

I(1,1) TI(2,1) I(1,2) (2,2) (1,3) (2,3)

In the following list, the elements of the three-dimensional array

(3(3,3,3)) are stored row by row from left to right and from top to
bottom.

B(1,1,1) B(2,1,1) B(3,1,1) —4
-B(21) BQL) BB --
=+ B(1,3,1) B(23,1) B(33,1) -
“e-B(112) BQLY) BGRL2) -~
L8122 B(22) BB -4
“+B(132) B(232 B(332) -~
“eB(113) B3 BGIL3) --
“+B(123) B(Q23) B(323) --
-+ B(1,3,3) B(2,3,3) B (3,3,3)

Thus B(3,1,1) is stored before B(1,2,1), and so forth.

CHAPTER 4

EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions may be either simple or compound. Simple
arithmetic expressions consist of an operand that may be:

1. a constant

2. a variable

3. an array element

4. a function reference (see Chapter 14 for description), or

5. an arithmetic or logical expression written within
parentheses.

Operands may be of integer, real, double precision, complex, octal, or
literal type.

The following are valid examples of simple arithmetic expressions:

105 (integer constant)

IAB (integer variable)
TABLE(3,4,5) (array element)

SIN (X) (function reference)

(A+B) (a parenthetical expression)

A compound arithmetic expression consists of two or more operands
combined by arithmetic operators. Table 4-1 lists the arithmetic
operations permitted in FORTRAN-10 and the operator recognized for
each.

Table 4-1
Arithmetic Operations and Operators
Operation Operator Example
1. Exponentiation k% or ° A**B or A"B
2. Multiplication * A*B
3. Division / A/B
4. Addition + 3+B
5. Subtraction - A-B

4.1.1

Observe

EXPRESSIONS

Rules for Writing Arithmetic Expressions

the following rules in structuring compound arithmetic

expressions:

1.

The operands comprising a compound arithmetic expression may
be of different types. Table 4-2 illustrates all vermitted
combinations of data types and the type assigned to the
result of each.

NOTE

Only one combination of data types, double-precision
with complex, is prohibited in FORTRAN-10.

An expression cannot contain two adjacent and unseparated
operators. For example, the =xpression A*/B 1is not
permitted.

all operators must be included; no operation is implied.
For example, the expression A (B) does not specify
multiplication although this is implied in standard algebraic
notation. The expression A* (B) 1is required to obtain a
multiplication of the elements.

When you use exponentiation, the base gquantity and its

exponent may be of different types. For example, the
expression ABC** 13 involves a real Dbase and an integer
exponent. The permitted base/exponent type combinations and

the type of the result of each combination are given in Table
4-3.

Table 4-2
Type of the Result Obtained From Mixed Mode Operaticns

[ype of Arpument

For operaton Double
+ : Real Precision Complex Logical Octal Double Ontal Literal
— e 4 - e e — e —
I iype ot operation | I. Real 1. Double Precision 1. Complea 1. Integer . Integer 1. Integer 1. Integer
nsed
2 bype assocted S odnreper 2 Real 2. Dounble Precision 2 Camplex 2. Integer 2 Integer 2. Integer 1. Integer
with result
3 Conversion on ioNene 3 From Integer tu 3. From Integer to 3 From Integer to 3 None 1. None 3. None X None
Integer Arzument | Real Double Precision Complex. Vilue
used as Real part
4 Conversion on 4 None 4 None 4. None 4. None 3 None 4. None 1. High order word 4. High order word
Arzunient 0 15 used directly . is used directly;
low order word further words
is ignored are ignored.
I Ivpe ot operation 1. Real 1 . Double Precision I Comples 1 Real 1 Real 1. Real 1. Real
used
2 bype assocated 1 Real D Real 2 Double Precision 2 Compley 2 Real 2 Real > Real 2 Real
with result
3 Convenson on i None PoNone 3 Used directly as 2 tised durectly as T Nooe 2 None 2 None T None
Real Arpument | the high order the Redl purt,
word: low order unagImary part
word is zero I8 2610
4 Conversion on 4. brom Integer to 1 None 4. None 4 None 4. Nane 4. None 4. High order word 4 High order word
Arpanent ! Real 15 used directly. is used directly;
low order word further words
is ignored are ignored.
I lype ot operation ! Double Precision ! Double Precision 1 Double Precision I Double Precision I Double Frecision 1. Double Precision I Double Precision
sed
Dolvpe associared 2. Dowble Precision 2 Double Precision S Douhle Precision 2 Bouble Precision 2 Double Fracsion Double Presision > Double Precision
watin resutt
Double o tonverston v 3. None 1. None 3 None 3 None 3. None 4 None 1 None
Precision Arpument |
4 Conversion an 4 From Integer to 1. Used directly as 4 None 4 Used directly as 4. Uyed directly as 4 None 4 First two words
Areument Double Precision the high order the tugh order the high order are used directly:
word . low order word . low order word fow order further words
word is zero. word.1s Zero word 1y zero are ignored.
1 dype ot operdtion 1. Complex I Complea I Connnles I. Complex 1 Complex b Complex 1 Complex
el
2 lype assocuted 2 Complex 2 Complex 2 Comples 2. Complex 2 Complex 2 Comiplex 2 Complex
with result
Complex T oConversion on 3 None A None 3 Non X None 3 None I None 3 None
Areument |
4 Conversion on 4. From Integer to 1 Used directly as boNane 4 Used directly us 4. Used directly as 4, None 4 First two words
Arpument 2 Complex Value the Real part, the Real part. the Real part. are used directly.
used s Real part maginary part imaginary part itnaginary part FFurther words
s /T i eTo is sero are ignored.
b fvpe ol opetation 1 lateper 1. Real 1 Double Preasion I. Complex I Integer 1. Integer 1. Integer 1 TInteger
el
Jodype assoviared 2. Integer 2 Resl 2 Douhle Precsion 2. Complex 2ol 200l 2 Odtal 2 Octal
with resuit
4 tomersion on oNone 3 Naone 3 Used dizectly as 3. Used directly as o None i None . None 3 None
\rpument 1 the high order the Real part
Logical word, low order aginury puart
word 1s zero 8 7ero
4 Conversion an 4. None 4. None 4 None 4. Nonv 4 None 4. None 4 High order word 4 High order word
Arvument Y is used directly. is used directly,
low order word further wards
is ignured. are ignored
b Lype ot operstion boInteger I Real I Double Precision I Complex . Inteper 1 Integer 1. Integer 1 Integer
used
2 lype assocuted 2 Integer 2 Regl 2 Douhie Precision 2 Comples 2 Ot 20 Octal SoOctal 2. Octal
with tesuit
Octal 3 Conversion on 4 None 3 None 3 Used ducectiy as 30 Used directly as 3 Nome 3. None 1 None 3 Nonc
Argunient | the high order the Reat part,
word. low order uagnary part
word 18 zero 15 20T
4 Conversion on 4 None 4 Naone 4 None 4 Nane 4 Nane 1. Nonce 4. High order word 4. High order word
Arpument S 15 used directly . is used directly;
fow order word further words
15 ignored arc ignored.
1. lype of operation 1. integer 1. Real 1. Double Precision 1. Compley I integer 1. Integer L. Integer 1 Integer
used
2. bype assoctated 2. Integer 2. Real 2 Double Precision 2 Complen 2 Octal - Octal J. Octal 2 Octal
with result
Double 3. Conversion on 3 High order word 3. High order word 3. Nane 3 None 3. High order word 3. High order word 3. High order word 3 digh order wora
Octal Argument | is used durectly. 15 used directly is used directly is used directly: is used directly: i used directiy:
low order word tow order word low order word low order word low order word tow order words
is ignored is ignored 15 ignored is ignored . is ignored. e gnored
4. Conversion on 4. Nane 4. None 4. None 4. None 4. None +. Nonae 4. High order word 4 ihgh order word
Argument 2 is used directly, is wed durectly
low order word taw arder words
is ignored. re gnored.
1. lype of operation . Integer 1 Reai 1. Double Precision 1 Complea I Integer I Integer 1 Integer 1. Integer
used
= Type associated 2. Integer 2 Rual 2. Double Precisicn 2 Complex 2 Octal 2 Octal 2. Octal 2. Octal
with resuit
3. Conversion on 3. High order word 3. High order word 3. First two words 3 First two words 3 High order word 3. High order word 3. High order word 3 High order word
Litcral Argument | is used directly., is used directiy: are used directly: are used directly ., 15 used directly is used dicectly. is uscd directly. is used directly;
turther words further words further words further words further words further words further words further words
are ggnored. are ignored are ignored. are ignored are ggnored are ignored. are ignorad are ignored.
4. Conversion on 4. None 4 4. None 4 None 4 None <. None 4 High order word 4 High order word
Argument 2 iy used directly . is used directly,
low order word further words
is ignored. are ignored

EXPRESSIONS

Table 4-3
Permitted Base/Exponent Type Combinations

! Base Operand Exponent Operand
T
Integer fReal Double Complex
i Precision
Integer Integer Real Double Complex
Precision
Real Real Real Double Complex
Precision
Double Double Double Double
Precision Precision|{PrecisioniPrecision
Complex Complex Complex (Undefined) Complex

4.2 LOGICAL EXPRESSIONS

Lojical expressions may be either simple or compound. 3Simple 1logical
expressions consist of a logical operand, which may be a logical type:

1. constant

2. wvariable

3. array element

4. function reference (see Chapter 15), or

5. another expression written within parentheses.

Compound logical expressions consist of two or more omerands combined
oy logical opverators.

Table 4-4 gives the logical operators permitted by FORTRAN-10 and a
description of the operation each provides.

>
!
R3S

EXPRESSIONGS

Table 4-4
Logical Operators

Opcrator Description

. AND. AND operator. Both of the logical operands combined by
this operator must be true to produce a true result.

.OR. Inclusive OR operator. 1f either or both of the 1logical
operands combined Dby .OR. are true, the result will be
true.

. XOR. Exclusive OR operator. If either but not both of the
logical operands combined by .XOR. 1is true, the result
will be true.

LEQV. Equivalence operator. If the 1logical operands being
combined by .EQV. are both the same (both are true or
poth are false), the result will be true.

.NOT. Complementation operator. This operator is wus=2d as @
prefix that specifies complementation (inversion) of the
item (operand or cxpression) that 1t modifies. The
original item, if true by itself, becomes false, and vice
versa.

Write logical expressions in the general form P .OP. Q, where P and
Q are 1logical operand and .0OP. 1is any logical oocrator but ".NOT.".
The .NOT. operator complements the value of a logical overand; you
nust write it immediately before the operand that it modifies, e.g.,
.NOT.P. Table 4-5 is a truth table illustrating all vossible logical
combinations of two logical operands (P and Q) and the resultant of
each compination.

When an operand of a logical expression 1is double-precision or
complex, only the high-order word of the operand is used in the
specified logical operation.

The assignment of a .TRUE. or a .FALSE. value to a given opcrand 1is
based only on the sign of the numeric representation of the operand.

EXPRESSIONS

Table 4-5
Logical Operations, Truth Table

when P 1is And Q is: Then the Expression: Is:
True | =—==== .NOT.P False
False | = —-==-- .NOT.P True
True True P .AND. Q True
True False P .AND. Q False
False True P .AND. Q False
False False P .AND. Q False
True True P .OR. 0 True
True False P .OR. 9 True
False True P .0OR. 9Q True
False False P .OR. 0 False
True True P .XOR. Q False
True False P .XOR. Q True
False True P .XOR. Q True
False False P .XOR. Q False
True True P .EQV. Q True
True False P .EQV. Q False
False True P. EQV. O False
False False P LEQV. Q True

Examples

Assume the following variables:

Variable Type
REAL, RUN Real
I,J,K Integer
DP,D Double Precision
L, A, B Logical
CPX,C Complex

Examples of valid logical expressions consisting of the
variables are:

L.AND.B
(REAL*I) .XOR. (DP+K)
L.AND.A.OR..NOT. (I-K)

foregoing

EXPRESSIONS

Logical functions are performed on the full 36-bit binary processor
representation of the operands involved. The result of a logical
operation is found by nerforming the specified function,
simultancously, for cach of the corresponding bits in each operand.

Fcr cexample, consider the expression A=C.OR.D, where (C="455 and

D="201. The operation performed by the processor and the result is:
Wword
Bits 0 11— 24 25 26 27 23 29 30 31 32 33 34 35
Operand C 0 Q0Q—— 0 0 0 1) 0 1 0] 1 1 1 0
Operand D O Q0 ——— 0 a 0 0 1 0 0 0 0 0 0 1
Result A 0 Q0Q—— 0 0 0 1 1 0 1 0 1 1 1 1
Table 4-5 also illustrates all possible logical combinations of two
one-bit Dbinary operands (P and Q) and gives the result of each

combination. Just read 1 for truec and 0 for false.

4.2.1 Reclational Expressions

consist of two expressions combined by a
The relational operator permits the programmer

Relational expressions
relational overator.

to test, quantitatively, the reclationship between two arithmetic
expressicns.
The result of a relational expression is always a 1logically true or

false value.

In FORTRAN-10, you may write relational owerators either as a 2-letter

mnemonic enclosed within periods, e.g., .GT., or symbolically using
the symbols, >, <, = and #. Table 4-5 lists both the mnemonic and
symbolic forms of the FORTRAN-10 relational overators and specifies

the type of guantitative test performed by each operator.

Table 4-6
Relational Opcrators and Operations
Operators Relation Tested
Mnemonic Symbolic

LGT. > Greater than
.GE. >= Greater than or equal to
.LT. < Less than
.LE. <= Less than or ecqual to
.EQ. == Egual to
NE. # Not equal to

EXPRESSIONS
Write relational expressions in the general form A(l) .OP.A(2), where
A represents an arithmetic operand and .0OP. 1is a relational operator.

You may ®ix arithmetic operands of type 1integer, real, and double
precision in relational expressions.

You may compare comolex operands using only the operators .EQ. (==) and
.NE. (#) . Complex quantities are equal if the corresponding narts of
both words are cqual.

Exanples

Assume the following variables:

Variables Type

REAL, RON Real

I,J,K Integer

DP,D Double Precision
L,A,B Logical

ceX,C Complex

Examples of valid relational expressions consisting of the foregoing
variables are:

(REAL) .GT.10
I ==5
C. .CPX

5]
| @)

Examples of invalid relational expressions consisting of the foregoing
variables are:

(REAL) .GT 10 (closing period missing from operator)

C>CPX (complex operands can only be combined by .EQ. and
.NE. operators)

Examples of valid expressions that use both logical and relational
operators to combine the foregoing variables are:

(I.GT. 10).AND. (J<=K)
((I*RON)==(I/J)).0R.K
(I.AND.K)# ((REAL) .OR. (RON))
C4#CPX.OR.RON

EXPRESSIONS

4.3 EVALUATION OF EXPRESSIONS

The following determine the order of computation of a FORTRAN-10
expression:

1. the use of parentheses

2. an established hierarchy for the execution of arithmetic,
relational, and logical operations and

3. the location of operators within an expression.

4.3.1 Parenthetical 3ubexpressions

In an expression, all subexpressions written within parentheses are

evaluated first. When parenthetical subexpressions are nested (one
contained within another) the most deeoly nested subexpression 1is
evaluated first, the next most deeply nested subexpression 1is
evaluated second, and so on, until the value of the final

parenthetical expression is computed. When more than one operator is
contained by a parenthetical subexpression, the required computations
are performed according to the hierarchy assigned operators by
FORTRAN~-10 (Section 4.3.2).
Example:
The separate computations performed in evaluating the expression

A+B/ ((A/B)+C)-C are:

1. R1=A/B

2. 2=R1+C

3. R3=B/R2

4. R4=R3-C

5. R5=A+R4

WHERE: R1 THROUGH R5 REPRESENT THE INTERIM AND FINAL RESULTS OF THE
COMPUTATIONS PERFORMED.

4.3.2 Hierarchy of Operators

The following hierarchy (order of execution) 1is assigned to the
classes of FORTRAN-10 operators:

first, arithmetic operators,
second, relational operators, and
third, logical opecrators.

EXPRESSIONS

Table 4-7 specifies the nprecedence assigned to the individual
operators of the foregoing classes.

With the exception of integer Jdivision and exponentiation, all
operations on expressions or subexpressions involving operators of
equal precedence are computed in any order that 1is algebraically
correct.

A subexpression of a given expression may be computed 1in any order.
For example, 1in the expression (F(X) + A*B), the function reference
may be computed either before or after A*B.

Table 4-7
Hierarchy of FORTRAN-10 Operators

Class Level 3ymbol or Mnemonic
EXPONENTIAL | First * x
Second -{unary minus) and + (unary plus)
ARITHMETIC | Third *,/
Fourth +,-
RELATIONAL Fifth .GT.,.GE.,.LT.,.LE.,.EQ.,.NE.
or

>>=,<{,K=,==,4

Sixth -NOT.

Seventh .AND.
LOGICAL Eighth .OR.
Ninth .EQV., .XOR.
Operations specifying integer division are evaluated from left to
right. For example, the expression I/J*K is evaluated as if it had

been written as (I/J)*K. But this left-to-right evaluation process
can be overridden by parentheses. I/J*K(evaluated as(I/J) *K) does
not equal I/(J*K),which is evaluated as written here.

When a series of exponentiation operations occurs in an expression, it
is evaluated in order from right to left. For example, the cxpression
A**2%*B jig evaluated in the following order:

first Rl = 2**B (intermediate result)
second R2 = A**R]1l (final result).

Similarly, here too, parentheses alter the -evaluation of the
expression . (A**2)**B is evaluated in these two steps:

first Rl = A**2 (intermediate result)

second R2 = R1**2 (final result)

4.3.3 Mixed Mode Expressions

Mixed mode expressions are evaluated on a
subexpression-by-subexpression basis, with the type of the results
obtained converted and combined with other results or terms according
to the conversion procedures described in Table 4-2.

»”

EXPRESSIONS

Example

Assume the following:

Variable Type
D Double-Precision
X Real
I,Jd Integer

The mixed mode expression D+X* (I/J) is evaluated in the following
manner:

1.R1 = 1/J Rl is integer

2,R2 =¥*R1 Rl is converted to type real and is multiplied by X
to produce R2

3.R3 = D+R2 R2 is converted to type double precision and is added
to D to produce R3

where Rl and R2, and R3 represent the interim and final results
respectively of the computations performed.

4.3.4 Use of Logical Operands in Mixed Mode Expressions

When you use logical operands in mixed mode expressions, the value of
the 1logical operand is not converted in any way to accommodate it to
the type of the other operands in the expression. For example, 1in
L*R, where L 1is type logical and R is type real, the expression is
evaluated without converting L to type real.

CHAPTER 5

COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

You use compilation control statements to identify FORTRAN-10 programs
and to specify their termination. Statements of this type do not
affect either the operations performed by the object program or the
manner in which the object program is executed. The three compilation
control statements described in this chapter are: PROGRAM statement,
INCLUDE statement, and END statement.

5.2 PROGRAM STATEMENT

This statement allows you to give the main program a name other than
the compiler-assumed name “MAIN." The general form of a PROGRAM
statement is:

'PROGRAM name
where:
name is a symbolic name that begins with an alphabetic
: character and <contains a maximum of six characters.
(Refer to Section 3.3 for a description of symbolic
names.)
The following rule governs the use of the PROGRAM statement:
The PROGRAM statement must be the first statement in a program

unit. (Refer to Section 2.4 for a discussion of the ordering of
FORTRAN-10 statements.)

5.3 INCLUDE STATEMENT
This statement allows you to include code segments or predefined
declarations 1in a program unit without having them reside in the same
physical file as the primary program unit. The general form of the
INCLUDE statement is

INCLUDE 'dev:filename.ext[proj,prog]/NOLIST'
where:

dev: is a device nane. When no device name is
specified, DSK: 1is assumed.

COMPILATION CONTROL STATEMENTS

filename.ext is the filename and extension of the FORTRAN-10
statements that you wish to include. The name of
the file is required; the extension is optional.
If vyou specify "filename" only, .FOR 1is the
assumed extension. If you specify the filename
and period (filename.), the null extension is
assuned. You nay not specify wild (*)
information.

[proj,proq] is the project-programmer number. Your project-
programmer number is assumed if none is specified.
You cannot specify subdirectory information.

/NOLIST is an optional switch indicating that the included
statements are not to be included in the
compilation listing.

The following rules govern the use of the INCLUDE statement:

1. The INCLUDEd file may contain any legal FORTRAN-10 statement
except another INCLUDE statement, or a statement that
terminates the current program unit, such as the END,
PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statements.

2. The proper placement of the INCLUDE statement within a
program unit depends upon the types of statements to be
INCLUDEd. (Refer to Section 2.4 for information on the
ordering of FORTRAH-10 statements.)

3. The file(s) to be INCLUDEd must be on disk.
Note that an asterisk (*) is appended to the 1line numbers of the

INCLUDEd statements on the compilation listing, provided /NOLIST is
not specified.

5.4 END STATEMENT

Use this statement to signal FORTRAN-10 that the physical end of a
source program or subprogram has been reached. END is a nonexecutable
statement. The general form of an END statement is:

END

The following rules govern the use of the END statement:

1. This statement must be the 1last physical statement of a
source prograin or subprogram.

2. When used in a main program, the END statement implies a STOP
statement operation; in a subprogram, END implies a RETURN
statement operation.

3. You way label an END statement.

CHAPTER &

SPECIFICATION STATEMENTS

6.1 INTRCDUCTION

Use specification statements to specify the tyve characteristics,
storage allocations, and data arrangement. There are seven tyves of
specification statements:

1. DIMENSION

2. Statements that explicitly specify tyve, such as REAL or
INTEGER

3. IMPLICIT

4. COMMON

5. EQUIVALENCE
6. EXTERNAL

7. PARAMETER

Specification statements are nonexecutable and conform to the ordering
guidelines described in Section 2.4.

6.2 DIMENSION STATEMENT

DIMENSION statements provide FORTRAN-10 with information needed to
identify and allocate the space required for source program arrays.
You may specify any number of subscripted array names as array
declarators in a DIMENSION statement. The general form of a DIMENSION
statement is

DIMENSION S1, S2, ...,Sn

where Si is an array declarator. Array declarators are names of the
following form:)

name (max, ... ,max) or name (min:max,...,min:max)

where name is the symbolic name of the array, and each min:max value
representsz the lower and upper bounds of an array dimension.

SPECIFICATION STATEMENTS

Each min:max value for an array dimension may be cither an integer
constant or, if the array 1is a dummy argument to a
subprograin, an integer vwvariable. The value given the minimum
specification for a dimension must not exceed the value given the
maximum specification. Minimum values of 1 with their following colon
delimiters may be omitted from a dimension subscript. This is because
minimum values are assumed to be 1 in the first place.

Examoles
DIMENSION EDGE (-1:1,4:8), NET (5,10,4), TABLE (567)
DIMENSION TABLE (IAB:J,K,M,10:20)

(where IAB, J, K, and M are of type integer).

Note that you may use a slash in pnlace of a colon as the delimiter
between the upper and lower bounds of an array dimension.

5.2.1 Adjustable Dimensions

Wwhen used within a subprogram, an array declarator may use type
integer ©parameters as dimension subscript quantities. The following
rules govern tne use of adjustable dimensions in a subprogram:

1. For single entry subprograms, the array name and each
subscript wvariable must be given by the calling program as
parameters when the subprogram is called. The subscript
variables may also be in COMMON.

2. For multiple entry subprograms in which the array name 1is a
parameter, any subscript wvariables may be passed. If all
subscript variables are not passed or in COMMON, the wvalue of
the subscript as passed for a previous entry will be used.

3. The type of the array dimension variables cannot be altered
within the program.

4. If the value of an array dimension variable is altered within
the program, the dimensionality of the array will not be
affected.

5. The original size of the array cannot exceed the array
dimensions assigned within a subprogram, i.e., the size of an
array is not dynamically expandable.

Examples

SUBROUTIWE SBR (ARRAY,M1,M2,M3,M4)
DIMENSION ARRAY (M1:M2,M3:M4)
DO 27 L=M3,M4
DO 27 K=M1l,M2
ARRAY (K,L)=VALUE
27 CONTINUE
END

SUBROUTINE SB1 (ARRL,M,N)
DIMENSION ARRI (M,N)

ARR] (M,N) =VALUE

ENTRY 3SB2(ARR1,M)

ENTRY SB3(ARR1,N)

ENTRY SB4 (ARR1)

[€)}
1
[\

SPECIFICATION STATEMENTS

In the foregoing example, the first call made to the subroutine must
be made to SBl. Assuming that the call is made at SBl with the values
M=11 and N=13, any succeeding call to SB2 should give M a new value.
If a succeeding call is made to SB4, the last values passed through
entries SBl, SB2, or SB3 will be used for M and N.

Note that for the calling program of the form:
CALL SBl(A,11,13)
M=15
CALL SB3(A,13)

the value of M used 1in the dimensionality of the array £for the
execution of SB3 will oe 11 (the last value passed).

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data tyve of
variable, array, or function symbolic names. You may give an array
nane in a type statement either alone (unsubscripted) to declare the
type of all its elements or in a subscripted form to specify both its
type and dimensions.

Write type specification statements in the following form:
type list
where type may be any one of the following declarators:
1. INTEGER
2. REAL
3. DOUBLE PRECISION
4. COMPLEX

5. LOGICAL

NOTE

In order to be compatible with the type
statements wused by other manufacturers,
the data type size modifier, *n, is
accepted by FORTRAN-10. You may append
this size modifier to the declarators,
causing some to elicit messages warning
users of the form of the variable
specified by FORTRAN-10:

SPECIFICATION STATEMENTS

NDeclarator Form of Variable Specified

INTEGER*2 Full word integer with warning message
INTEGER*4 Full word integer

LOGICAL*1 Full word logical with warning message
LOGICAL*4 Full wrd logical

REAL*4 Full word real

REAL*3 Double-precision real

COMPLEX*3 Complex

COMPLEX*1%6 Complex with warning message

In addition, you may ampend the data
type size modifier to individual
variables, arrays, or function names.
Its effect 1is to override, for the
particular element, the size modifier
(explicit or implicit) of the orimary
type. For example,

REAL*4 A, B*3, C*3(10), D

A and D are single-precision (one full
word) real, and B and C are
double-precision (two full words) real.

The list consists of any number of variable, array, or functicon names
that are to be declared the specified type. The names listed must be
separated by commas and can appear in only one type statement within a
program unit.

Examples

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY (5:10,10:20,5)

NOTE

Variables, arrays, and functions of a
source program, which are not typed
either implicitly or explicitly by a
specification statement, are typoed by
FORTRAN-10 according to the following
conventions:

1. Variable names, array names, and
function names that begin with the
letters 1, J, K, L, M, or N are type
integer.

2. Variable names, array names, and
function names that begin with any
letter other than I, J, K, L, M, or
N are type real.

If a name that is the same as a predefined FORTRAN-10 function name
appears 1in a conflicting type statement, it is assumed that the name
refers to a user-defined routine of the given type. If vyou place a
generic predefined FORTRAN-10 function name 1in an explicit tyve
statement, it loses its generic properties.

SPECIFICATION STATEMENTS

6.4 IMPLITIT STATEMENTS

IMPLICIT statements declare the data type of variables and functions
according to the first letter of each variable name. IMPLICIT
statements are written in the following form:

IMPLICIT type (Al,A2,...,An), type (B1,B2,...,Bn),...,type.....

As shown in the foregoing form statement, an IMPLICIT statecment
consists of one or more type declarators separated by commas. Each
type declarator has the form

typve (Al,A2,...,An)

where type represents one of the declarators listed in Section 6.3,
and the parenthetical list represents a list of different letters.

Each letter in a type declarator 1list specifies that each source
program variable (not declared in an explicit type specification
statement) starting with that letter is assigned the data type named
in the declarator. For example, the IMPLICIT type declarator REAL
(R,M,N,0) declares that all names that begin with the letters R, M, N,
or O are type REAL names, unless declared otherwise in an explicit
type statement.

NOTE

Type declarations given in an explicit
type specification override those also
given in an IMPLICIT statement.
IMPLICIT declarations do not affect the
FORTRAN~-10 supplied functions.

You may specify a range of letters within the alphabet by writing the
first and last letters of the desired range separated by a dash, e.qg.,
A~-E for A,B,C,D,E. For example, the statement IMPLICIT INTEGER
(I,L-P) declares that all variables which begin with the letters
I,L,M,N,0, and P are INTEGER variables.

You may use more than one IMPLICIT statement, but they must appear

before any other declaration statement in the program unit. Refer to
Section 2.4 for a discussion on ordering FORTRAN-10 statements.

6.5 COMMON STATEMENT

The COMMON statement enables you to establish storage that may be
shared by two or more programs and/or subprograms and to name the
variables and arrays that are to occupy the common storage. The use
of common storage conserves storage and provides a means to imolicitly
transfer arguments between a calling program and a subprogram. Write
COMMON statements in the following form:

COMMON/ALl/V1,V2,...,Vn.../An/V1,V2,...,Yn

where the enclosed letters /Al/, ..., /An/ represent opticnal name
constructs (referred to as common block names when used).

(WAl
1
N

3PECIFICATION 3TATSMENTS

The list (e.g9., V1,V2...,Vn) appearing after each name construct lists
the names of the variables and arrays that are to occupy the common
area identified by the construct. The items specified for a common
area arc ordered within the storage area as they are listed in the
COMMON statement.

Either label COMMON storage areas or leave them blank (unlabeled). If
the common area is to be labeled, give a symbolic name within slashes
immediately before the list of items that is to occupy the names area.
For cxample, the statement

COMMON/AREALl/A,B,C/AREA2/TAB(13,3,3)
establishes two labeled common arcas (i.e., AREAl and AREA2). Common
block names bear no relation to internal variables or arrays that have
the same name.
If a common area is to be declared as unlabeled, give either nothing
or two sequential slashes (//) immediately before the list of items
that is to occupy blank common. For example, the statement
COMMON/AREAl1/A,B,C//TAB(32,3,3)

establishes one 1labeled (AREAL) and one unlabeled commcn area.
Unlabeled common area is also called "blank common".

A given labeled common name may appear more than once in the same
COMMON statement and in more than one COMMON statement within the same
program or subprogram.

Each labeled common area is treated as a separate, specific storage

area. The contents of a common area, i.e., variables and arrays, may
be assigned initial wvalues by DATA statements 1in BLOCK DATA
subprograms. Declarations of a given common area in different

subprograms must contain the same number, size, and order of variables
and arrays as the refercence area.

Items to be placed in a blank common area may also be given ir. COMMON
statements throughout the source program.

During compilation of a source program, FORTRAN-10 will string
together all items listed for each labeled common area and for blank
common areas in the order in which they appear in the source program
statements. For example, the series of source program statements:

COMMON/3T1/A,B,C/ST2/TAB(2,2)//C,D,E

COMMON/S5T1/TST(3,4)//M,N

COMMON/3T2/X,Y,2//0,P,Q
has the same effect as the single statement
comMON/ST1/A,B,C,TST(3,4)/ST2/TAB(2,2) ,X,Y,%2//C,D,E,M,N,C,P,Q
All items specified for blank common are placed into one area. Items
within blank <common are ordered as they are given throuchout the
source program. Common block names must be unique with respect to all

subroutine, function, and entry point names.

The largest definition of a given common area must be loaded first.

SPECIFICATION STATEMENTS

56.%.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array
dimension declarators. However, variables cannot be used as subscriopt
quantities in a declarator appearing in a COMMON statement; variable
dimensioning is not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either
by the COMMON statement or by another dimensioning statement within
the program or subprogram that contains the COMMON statement but not
both.

Example

COMMON /A/B(100), C(10,10)
COMMON X (5,15),Y(5)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables you to control the allocation of
shared storage within a program or subprogram. This statement causes
specific storage locations to be shared by two or more variables of
either the same or different types. Write the EQUIVALENCE statement
in the following form:

EQUIVALENCE(V1,V2,...,Vn),(Wl,W2,...,Wn), (X1,X2,...,Xn)

where ecach parenthetical list contains the names of variables and
array elements that are to share the same storage locations. For
example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(1))

specify that the variables named A, B, and C are to share the same
storage lccation, and that the variable LOC and array elcement SHARE(1)
are to share the same location.

The relationship of equivalence is transitive; for example, the two
following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

When you use array elements in EQUIVALENCE statements, they must have
either as many subscript quantities as dimensions of the array or only
one subscript gquantity. In ecither of the foregoing cases, the
subscripts must be integer constants. Note that the single case

treats the array as a one-dimensional array of the given type.

You may use the items given in an EQUIVALENCE 1list in both the
EQUIVALENCE statement and in a COMMON statement providing the
following rules are observed:

1. You cannot set two quantities declared in a COMMON statement
to be equivalent to one another.

SPECIFICATION STATEMENTS

2. Quantities placed in a common area by means of an EQUIVALENCE
statement are permitted to extend the e2nd of the common area
forwards. For example, the statements

COMMON/R/X,Y,%
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from Z to A(4) arranged as
follows:

) (shared location)
) (shared location)
)
)

3. You cannot use EQUIVALENCE statements that cause the start of
a common block to be extended backwards. For ecxample, the
invalid sequence

COMMON/R/X,Y,2Z
DIMENSION A(4)
EQUIVALENCE (X,A(3))

would require A(1l) and A(2) to extend the starting 1location
of block R in a backwards direction as illustrated by the
following diagram:

DN XK —
PN T4
=W -

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument to another subprogranm
must appear in an EXTERNAL statement in the calling subprogram. The
EXTERNAL statement declares names to Dbe subprogram names to
distinguish them from other wvariable or array names. Write the
EXTERNAL statement in the following form:

EXTERNAL namel,name2,...,namen

where each name listed is declar-d to Dbe a subprogram name. If
desired, these subprogram nam~s may be FORTRAN-10 defined functions.

You may also use FORTRAN-10 defined function names for your

subprograms by prefixing the names by an asterisk (*) or an ampersand
(&) within an EXTERNAL statement. For example,

EXTERNAL *3IN, &COS

SPECIFICATION STATEMENTS

declares SIN and COS to be user subprograms. (If a prefixed name is
not a FORTRAN-10 defined function, then the prefix is ignored.)

Note that specifying a predefined FORTRAN-10 function in an EXTERNAL
statement. without a prefix, i.e., EXTERNAL SIN, has no effect upon the
usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual
argument list. (The name has no generic properties within an argument
list.)

The names declared in a program EXTERNAL statement are reserved

throughout the compilation of the program and cannot be used in any
other declarator statement, with the exception of a type statement.

6.8 PARAMETER STATEMENT

The PARAMETER stateﬁent allows you to define <constants symbolically
during compilation.

The general form of the PARAMETER Statement is as follows:
PARAMETER P1=Cl1,P2=C2,...
where

Pi is a standard user-defined identifier (referred to in this
section as a parameter name)

Ci is any type of constant (including literals) except a 1label
or complex constant. (Refer to Chapter 3 for a description
of FORTRAN-10 constants.)

During compilation, the parameter names are replaced by their
associated constants, provided the following rules are obsecrved:

1. Place parameter names only within the statement field of an
initial or continuation line type, i.e., not within a comment
line or literal text.

2. Place parameter names only where FORTRAN-10 constants are
acceptable.

3. Place parameter name references after the PARAMETER statement
definition.

4. Use parameter names that are unique with respect to all other
names in the program unit.

5. Do not redefine parameter names in subsequent PARAMETER
statements.

6. Do not use parameter names as part of some larger syntactical
construct (such as a Hollerith constant count or a data type
size modifier).

CHAPTER 7

DATA STATEMENT

7.1 INTRODUCTION

DATA statements are used to supply the initial wvalues of variables,
arrays, array elements, and labeled common.(l) Write DATA statements
as follows:

DATA Listl/Datal/,List2/Data2/,...,Listn/Datan/

where the List portion of each List/Data/ pair identifies a set of
items to Dbe 1initialized and the /Data/ portion contains the list of
values to be assigned the items in the List. For example, the
statement

DATA IA/5/,1IB/10/,IC/15/

initializes variable IA to the value 5, variable IB to the wvalue 10,
and the variable IC to the value 15. The number of storage locations
you specify in the list of variables must be less than or equal to the
nuiaber of storage locations vyou specify in its associated list of
values. TIf the list of variables is larger (specifies more storage
locations) than its associated wvalue 1list, a warning message 1is
output. When the value list specifies more storage locations than the
variable list, the excess values are ignored.

The List portion of each List/Data/ set may contain the names of one
or more variables, array names, array elements, or labeled common
variables. You may specify an entire array (unsubscripted array name)
or a pecrtion of an array in a DATA statement List as an implied DO
loop construct. (See Paragraph 10.3.4.1 for a description of implied
DO loops.) For example, the statement

DAT2 (NARY(I),I=1,5)/1,2,3,4,5/

initializes the first five e¢lements of array NARY as NARY(1l)=1,
NARY (2)=2, NARY(3)=3, NARY(4)=4, NARY(5)=5.

When you use an implied DO loop in a DATA statement, the loop index
variable must be of type INTEGER and the loop Initial, Terminal, and
Increment parameters must also be of type INTEGER. In a DATA
statement, references to an array element must be integer expressions
in which all terms are either integer constants or indices of
embracing implied DO 1loops. Integer expressions of the foregoing
types cannot include the exponentiation operator.

The /Data/ portion of each List/Data/ set may contain one or more
numeric, logical, 1literal, or octal constants and/or alphanumeric
strings.

1. Refer to Paragraph 6.5 for a description of labeled common.

7-1

DATA STATEMENT

You must identify octal constants by preceding them with a double
quote (") symbol, e.g, “777.

You may specify literal data as either a Hollerith specification,
e.3., SHABCDE, or a string enclosed in single quotes, e.g., 'ABCDE'.
Each ASCII datum is stored left-justified and is padded with blanks up
to the right boundary of the variable being initialized.

When you assijn the same value to more than one item in List, a repeat
specification wmay be used. Wwrite the repeat specification as N*D
where N is an integer that specifies how many times the value of item
D is to be used. For example, a /Data/ specification of /3*20/
specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3%20/
assigns the value 20 to the variables M, N, and L.

When the specified data type is not the same as that of the variable
to which it is assigned, FORTRAN-10 converts the datum to the type of
the variable. The type conversion is performed using the rules given
for type conversion in arithmetic assignments. (Refer to Chapter 8,
Table 8-1.) Octal, logical, and literal constants are not converted.

Sample Statement Use
DATA PRINT,I,O/'TEST',30,"77/,(TAB(J),J=1,30)/30*5/ The first 30
elements of array
TAB are
initialized to
5.0.
DATA((A(I,J),I=1,5),3=1,5)/30*1.0/ No conversion

required.

DATA((A(I,J),I=5,10),J=6,15)/60*2.0/ No conversion
required.

When a literal string is specified that is longer than one variable
can hold, the string will be stored left-justified across as many
variables as are needed to hold it. If neccessary, the 1last variable
used will be padded with blanks up to its right boundary.
Example
Assuming that X, Y, and Z are single-precision, the statement

DATA X,Y,%2/'ABCDEFGHIJKL'/
will cause

X to be initialized to 'ABCDE’

Y to be initialized to 'FGHIJ'

Z to be initialized to 'KLBPE'
When a literal string is to be stored in double-precision and/or

complex variables and the specified string is only one word long, the
second word of the variable is padded with blanks.

DATA STATEMENT

Example
Assuming that the variable C is complex, the statement
DATA C/'ABCDE','FGHIJ'/
will cause the first word of C to be initialized to 'ABCDE' and its

second word to be initialized to ‘PBYPPB'. The string 'FGHIJ' is
ignored.

CHAPTER 8

ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Use assignment statements to assign a specific value to one or more
program variables. There are three kinds of assignment statements:

1. Arithmetic assignment statements
2. Logical assignment statements

3. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

You use statements of this type to assign svecific numeric wvalues to
variables and/or array elements. Write arithmetic assignment
statements in the form

v=e

where v is the name of the wvariable or array element that 1is to
receive the specified value and e is a simple or compound arithmetic
expression.

In assignment statements, the equal symbol (=) does not imply equality
as it would 1in algebraic expressions; it implies replacement. For
example, the expression v=e 1is correctly interpreted as "the current
contents of the location identified as v are to be replaced by the
final value of expression e; the current contents of v are lost.”

When the type of the specified variable or array element name differs
from that of its assigned value, FORTRAN~-10 converts the value to the
type of its assigned variable or array element. Table 8-1 describes
the type conversion operations performed by FORTRAN-10 for each
possible combination of variable and value types.

Table €-1
Rules for Conversion in Mixed llode Assignments

Expression Type

(e)

Variable Tyve (wv)

Real Inteqger Complex Couble-Precision | Loaical

REAL D C E,I 5,L)
INTECER C e rR,C,I 54,C,L I3
COMPLEX R C,k P prohibited R
DOUBLE- 5l C,BE,L prohibited | D 13
PSECISION

LOCICAL 9] D R, I H,L C,B
OCTAL C e R, I 7,C,L D
LITERAL D,HES C,H% D& D& C%
DOUBLE I H D# D H

OCTAL*

INIWNDISSV

SILNAWAIVIE

Table §-1 (Cont.)

Rules for Conversion in Mixed Mode Assiqnments

Legend

D = Direct replacerent

C = Conversion between integer and floating-point with truncation

k = Real part only

I = Set imaginary part to O

H = High-order only

L = Set low-order pvart to 0

Notes

* Octal numbers with 13 to 24 digits are termed double octal.
Double octals require two storage locations. They are stored
right-justified and are padded with =zeros to fill the
locations.

& Use the first two words of the literal. If the literal is only
one word long, the second word is padded with blanks.

% Use the first word of the literal.

To convert double octal numbers to complex, the low-order octal

digits are assumed
digits are assumed

to be the imaginary part, and the high-order
to be the real part of the comolex value.

L

LNAWNDISSY

SILNIWHLYLS

ASSIGNMENT STATEMENTS

8.3 LOGICAL ASSIGNMENT STATEMENTS

Use this type of assignment statement to assign values to variables
and array elements of tyve logical. Write the logical assignment
statement in the form

v=e

where v is one or more variables and/or array element names, and e 1is
a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type 1logical, the
following statements are valid:

Sample Statement

L=.TRUE. The contents of L is replaced by logical
truth.
F=.NOT.G The contents of L is replaced by the

logical complement of the contents of G.

M=A.GT.T or M=A>T If A is greater than T, the contents of
M is replaced by logical truth; 1if A is
less than or equal to T, the contents of
M is replaced by logical false. This

can also be read: If A is greater than
T, then M 1is true, otherwise, M is
false.

L=((I.GT.H) .AND. (J<=K)) The contents of L are replaced by either

the true or false resultant of the
expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

Use the ASSIGN statement to assign a statement label constant, i.e., a
1- to 5-digit statement number, to a variable name. Write the ASSIGN
statement in the form

ASSIGN n TO I

where n represents the statement number and I is a variable name. For
example, the statement

ASSIGN 2000 TO LABEL

specifies that the variable LABEL represents the statement number
2000.

With the exception of complex and double-precision, you may use any
type of variable in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN-10 will
consider it a 1label wvariable. If a label variable is used in an
arithmetic statement, the result will be unpredictable.

ASSIGNMENT STATEMENTS

Use the ASSIGN statement in conjunction with assigned GO TO
statements (Chapter 9). The ASSIGN verb sets up
variables that are then referenced 1in
statements.
statement:

control
statement label
subsequent GO TO control
The following sequence illustrates the use of the ASSIGN

555 TAX=(A+B+C)*.05

ASSIGN 555 TO LABEL

GO TO LABEL

CHAPTER 9

CONTROL STATEMENTS

9.1 INTRODUCTION

FORTRAN-10 object programs normally execute statement-by-statement in
the order in which they were presented to the compiler. The following
source program control statements, however, enable you to alter the
normal sequence of statement cxecution:

1. GO TO
2. IF
3. DO

4. CONTINUE
5. STOP

6. PAUSE

9.2 GO TO CONTROL STATEMENTS

There are three kinds of GO TO statements:
1. Unconditional
2. Computed
3. Assigned
A GO TO control statement causes the statement that it identifies to

be executed next, regardless of its position within the program. The
following paragraohs describe each type of GO TO statement.

9.2.1 Unconditional GO TO Statements

Write GO TO statements of this type in the form
GO TO n

where n is the 1label, i.e., statement number, of an executable
statement, e.g., GO TO 555. When executed, an unconditional GO TO
statement transfers control of the program to the statement that it
specifies.

CONTROL STATEMENTS

You may position an unconditional GO TO statement anywhere in the
source program except as the terminating statement of a DO loop.

9.2.2 Computed GO TO Statements

Write GO TO statements of this type in the form
GO TO (N1,N2,...,NK)E

where the parenthesized list is a list of statement numbers and E 1is
an arithmetic expression. You may include any number of statement
nunpers in the list of this type of GO TO statement; however, each
number you give wmust be used as a label within the program or
subprogram containing the GO TO statement.

NOTE

A comma may optionally follow the
parenthesized list.

The value of the expression E must be reducible to an integer value
that 1is greater than 0 and 1less than or equal to the number of
statement numbers given in the statement list. If the wvalue of the
expression E does not compute within the foregoing range, the next
statement is executed.

When a computed GO TO statement 1is executed, the wvalue of its
expression, 1i.e., E, is computed first. The value of E specifies the
position within the given list of statement numbers of the number that
identifies the statement to be executed next. For example, in the
statement sequence

GO TO (20, 10, 5)K
CALL XRANGE (K)

the variable K acts as a switch, causing a transfer to statement 20 if

K=1, to statement 10 if K=2, or to statement 5 if K=3. The subprogram
XRANGE is called if K is less than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

Write GO TO statements of this type in either of the following forms:

GO TO K
GO TO K, (L1,L2,...Ln)

where K 1s a variable name and the parenthesized list of the second
form <contains a 1list of statement labels, i.e., statement numbers.
The statement numbers you give must be within the program or
subprogram containing the GO TO statement.

Assigned GO TO statements of either foregoing form must be logically
preceded Dby an ASSIGN statement that assigns a statement label to the
variable name represented by K. The wvalue of the assigned label
variable must be in the same program unit as the GO TO statement in
which it is used. 1In statements written in the form

GO TO K, (L1,L2,...Ln)

CONTROL STATEMENTS
if K is not assigned one of the statement numbers given 1in the
statement list, the next sequential statement is exccuted.
Examples

GO TO STATI1
GO TO STAT1,(177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements: arithmetic, 1logical, and
logical two-branch.

9.3.1 Arithmetic IF Statements

Write IF statements of this type in the form
IF(E)L1,L2,L3

where (E) is an expression enclosed within parentheses and L1, L2, L3
are the labels, 1i.e., statement numbers, of three executable
statements.

This type of IF statement transfers control of the program to one of
the given statements according to the computed value of the given
expressions. If the value of the expression is:

1. Less than 0, <c¢ontrol 1is transferred to the statement
identified by L1;

2. FEqual to 0, control 1is transferred to the statement
identified by L2;

3. Greater than 0, control is transferred to the statement
identified by L3.

You must give all three statement numbers in arithmetic IF statements;
the expression given may not compute to a complex value.

Examples
Sample Statement
IF(ETA)4, 7, 12 Transfers control to statement 4 if
ETA is negative, to statement 7 if
ETA is 0, and to statement 12 1if
ETA is greater than 0.
IF (KAPPA-L(10))20, 14, 14 Transfers control to statement 20

if KAPPA is 1less than the 10th
element of array L and to statement
14 if KAPPA is greater than or
equal to the 10th element of array
L.

CONTROL STATEMENTS

9.3.2 Logical IF Statements

Write IF statements of this type in the form
IF(E)S

where E 1s any expression enclosed in parentheses and S is a complete
executable statement.

Logical IF statements transfer control of the program either to the
next sequential executable statement or the statement given in the IF
statement, i.e., S, according to the computed 1logical wvalue of the

given expression. If the wvalue of the given logical expression is
true (negative), control is given to the executable statement within
the IF statement. If the value of the expression is false (positive

or zero), control is transferred to the next sequential executable
program statement.

The statement you give in a logical IF statement may be any FORTRAN-10
executable statement except a DO statement or another logical IF
Statement.

Examples
Sample Statement

IF (T.OR.S) X=Y+1 Performs an arithmetic
replacement operation 1if the
result of IF is true.

IF (Z.GT.X(K)) CALL SWITCH(S,Y) Performs a subroutine call if
the result of IF is true.

IF (K.EQ.INDEX) GO TO 15 Performs an unconditional
transfer 1if the result of IF
is true.

9.3.3 Logical Two-Branch IF Statements

Write IF statements of this type in the form
IF (E) N1, N2

where E 1s any parenthetical expression, and N1 and N2 are statement
labels defined within the program unit.

Logical two-branch IF statements transfer control of the program to
either statement N1 or N2, depending on the computed value of the
given expression. If the value of the given 1logical expression is
true (negative), control is transferred to statement N1. If the value
of the expression is false (positive or zero), control is transferred
to statement N2,

Note that you must number the statement immediately following the
logical two-branch IF so that control can later be transferred to the
portion of code that was skipped.

Examples

IF

CONTROL STATEMENTS

Sample Statement

(LOG1) 10,20 Transfers control to statement 10

if LOGl 1is negative; otherwise
transfers control to statement 20.

IF (A.LT.B.AND.A.LT.C) 31,32 Transfers control to statement 31

9.4 DO

if A 1is 1less than both B and C;
transfers control to statement 32
if A is greater than or equal to
either B or C.

STATEMENT

DO statements simplify the coding of iterative procedures; write them
in the following form:

where

Indexing Parameters

———— "~ —
DO N I = MI1,M2,M3

VN T

TERMINAL INCREMENT
STATEMENT PARAMETER
LABEL TERMINAL
INDEX PARAMETER
VARIABLE
INITIAL
PARAMETER

Terminal Statement Label N is the statement number of the
last statement of the DO statement range. The range of a DO
statement is defined as the series of statements that follows
the DO statements up to and including its specified terminal
statement.

Index Variable I is an unsubscripted variable whose value 1is
defined at the start of the DO statement operations. The
index variable is available for use throughout each execution
of the range of the DO statement, but its value should not be
altered within this range. It is also available for use 1in
the program when:

a. control is transferred outside the range of the DO 1loop
by a GO TO, arithmetic IF or RETURN statement located
within the DO range,

b. a CALL is executed from within the DO statement range
that uses the index variable as an argument, and

C. if an input-output statement with either or both the
options END= or ERR= (Chapter 10) appears within the DO
statement range.

CONTROL STATEMENTS

3. 1Initial Parameter M1 assigns the index wvariable, I, its
initial wvalue. This parameter may be any variable, array
element, or expression.

4. Terminal Parameter M2 provides the value that determines how
nany repetitions of the DO statement range are performed.

5. 1Increment Parameter M3 specifies the value to be added to the
initial parameter (Ml) on completion of each cycle of the DO
loop. If M3 and its ©preceding comma are omitted, M3 is
assumed to be equal to 1.

An indexing parameter may be any arithmetic expression resulting in

either a oositive or negative value. The values of the indexing
parameters are calculated only once, at the start of each DO-loop
operation. The number of times that a DO 1loop will execute 1is

specified by the formula:
MAX ((M2-M1)/M3+1,1)

Since the count is computed at the start of a DO 1loop operation,
changing the value of the loop index variable within the loop cannot
affect the number of times that the loop is executed. At the start of
a DO loop operation, the 1index wvalue 1is set to the value of the
initial parameter (Ml), and a count variable (generated by the
compiler) 1is set to the negative of the calculated count. At the end
of each DO loop cycle, the value of the increment parameter (M3) 1is
added to the 1index variable, and the count variable is incremented.
If the number of specified iterations have not been performed, another
cycle of the loop is initiated.

One execution of a DO loop range is always performed regardless of the
initial values of the index variable and the indexing parameters.

Exit from a DO 1loop operation on completion of the number of
iterations specified by the 1loop count is referred to as a normal
exit. In a normal &exit, control passes to the first executable
statement after the DO loop range terminal statement, and the value of
the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control

by a statement within the DO loop range to a statement outside the
range of the DO statement (Paragraph 9.4.3).

9.4.1 Nested DO Statements

One or more DO statements may be contained, i.e., nested, within the
range of another DO statement. The following rules govern the nesting
of DO statements.

CONTROL STATEMENTS

1. The range of each nested DO statement must be entirely within
the range of the containing DO statement.

Example
Valid Invalid
DO 1 DO 1
DO2_ DO 2
The range of

" I DO 2 is outside
that of DO 1.

2. The ranges of nested DO statements cannot overlap.

Example
Valid Invalid
DO 1 DO 1
DO 2 DO2
DO 3 DO3 The ranges of
[::—— {EEE: loop DO 2 and

— DO 3 overlap.

3. More than one DO loop within a nest of DO loops may end on
the same statement. When this occurs, the terminal statement
is considered to belong to the innermost DO statement that
ends on that statement. The statement label 4 of the shared
terminal statement cannot be used in any GO TO or arithmetic
IF statement that occurs anywhere other than within the range

- of the DO statement to which it belongs.

Example

DO 4
Do4 All the DO statements
share the same terminal
DO 4 statement, however, it

belongs to DO 4.
DO 4

v

CONTROL STATEMENTS

9.4.2 Extended Range

The extended range of a DO statement 1is defined as the set of
statements that execute between the transfers out of the innermost DO
statement of a set of nested DOs and the transfer back into the range
of this innermost DO statement. The extended range of a nested DO
statement is as follows:

DO |
DO 2

DO 3

(out)

- (in)

-

Extended Range

The following rules govern the use of a DO statement extended range:

1. The transfer out statement for an extended range operation
must be contained by the most deeply nested DO statement that
contains the location to which the return transfer is to be
made.

2. A transfer into the range of a DO statement is permitted only
if the transfer is made from the extended range of that DO
statement.

3. The extended range of a DO statement must not contain another
DO statement.

CONTROL STATEMENTS

4. The extended range of a DO statement cannot change the index
variable or indexing parameters of the DO statement.

5. You may use and return from a subprogram within an extended
range.

9.4.3 Permitted Transfer Operations

The following rules govern the transfer of program control from within
a DO statement range or the ranges of nested DO statements:

1. A transfer out of the range of any DO loop 1is permitted at
any time. When such a transfer executes, the value of the
controlling DO statement's index variable is defined as the
current value.

2. A transfer into the range of a DO statement is permitted 1if
it is made from the extended range of the DO statement.

3. You may use and return from a subprogram from within the
range of any:

a. DO loop,

0. nested DO loop, or

c. extended range loop (in which you leave the loop via a GO
TO, execute statements eclsewhere, and return to the
original loop).

The following examples illustrate the transfer operations permitted
from within the ranges of nested DO statements:

vValid Transfers

K
extended range
—

Invalid Transfer

D

-

>

D3

CONTROL STATEMENTS

9.5 CONTINUE STATEMENT

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GO TO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a 1logical IF statement
containing any of the foregoing statements. Write this statement as

12 CONTINUE
Example

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

DO 45 ITEM=1,1000

STOCK=NVNTRY (ITEM)

CALL UPDATE (STOCK,TALLY)

IF(ITEM.EQ.LAST) GO TO 77
45 CONTINUE

77 PRINT 20, YEADING,PAGENO

9.6 STOP STATEMENT

Execution of the STOP statement causes the execution of the object
program to be terminated and returns control to the DECsystem-10
Monitor. A descriptive message may optionally be included in the STOP
statement to be output to your I/0 terminal immediately before program
execution is terminated. Write this statement like this:

3TOP

sTop 'N!
or

STOP n,

where 'N' is a string of ASCII characters enclosed by single quotes
and n is an octal string up to 12 digits. The string N or the value n
is printed at your I/0 terminal when the STOP statement executes. The
string N may be of any length. (Continuation lines may be used for
large messages.)

CONTROL STATEMENTS

Examples
STOP 'Termination of the Program'
or

sToP 7777

9.7 PAUSE STATEMENT

Execution of a PAUSE statement suspends the execution of the object
program and gives you the option to:

1. Continue execution of the program
2. Exit
3. Initiate a TRACE operation (Paragraph 9.7.1).
The permitted forms of the PAUSE statements are:
1. PAUSE
2. PAUSE 'literal string'
3. PAUSE n, where n is an octal string up to 12 digits.

Execution of a PAUSE statement of any of the foregoing forms causes
the standard instruction:

TYPE G TO CONTINUE, X TO EXIT, T TO TRACE
to be printed at your terminal. If the form of the PAUSE statement
contains either a literal string or an integer constant, the string or
constant prints on a line preceding the <standard message. For
example, the statement

PAUSE 'TEST POINT A’

causes the following to be printed at your terminal:

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

The statement
PAUSE 1
causes the following to be printed at your terminal:

PAUSE 000001
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

CONTROL STATEMENTS

9.7.1 T(TRACE) Option

The entry of the character T in response to the message output by the
execution of a PAUSE statement starts a TRACE routine. This routine
causes a complete history of all subroutine calls made during the
execution of the program, up to the execution of the PAUSE statement
to be printed at your terminal. The history printed by the TRACE
routine consists of:

1. The names of all subroutines called, arranged in the reverse
order of their call;

2. The absolute location (written within parentheses) of the
called subroutine;

3. The name of the calling subroutine plus an offset factor and
the absolute 1location (written within parentheses) of the
statement within the routine that initiated the call;

4. The number of arguments involved (written within angle
brackets) ;

5. An alphabetic code (written within square Dbrackets) that
specifies the types of each argument involved. The
alphabetic codes used and the meaning of each are:

Code Character Type Specified
8] Undefined type; the wuse of the
argument will determine its type.
L Logical
I INTEGER
F Single-precision REAL
[¢] Octal
S Statement Number
D Double-precision REAL
C COMPLEX
K A literal or constant

Example

The following printout illustrates the execution of the PAUSE
statement "PAUSE 'TEST POINT A'", the entry of a T character to
initiate the TRACE routine, the resulting trace printout, and the
entry of the character G to continue the execution of the program.

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE.

*T

NAME (LOC) {{--- CALLER (LOC) <#ARGS> [ARG TYPES]
TRACE. (414056) <<K--- PAUS.+141(376) <#1> [U]
PAUS. (235) ==~ MAIN.+4(151) <#1> [U]
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE.

*G

CONTROL STATEMENTS

In addition to its use with the PAUSE statement, you may call the
TRACE routine directly, using the form

CALL TRACE
or as a function, using the form
X=TRACE (x)

Execution of the foregoing statements starts the TRACE routine, which
prints the history of all subprogram calls made during the execution
of the program, up to the execution of the CALL statement or up to the
execution of the function, respectively. The history printed by the
TRACE routine under these circumstances 1is as described in the
preceding paragraph.

CHAPTER 10

I/0 STATEMENTS

10.1 DATA TRANSFER OPERATIONS

FORTRAN-10 I/0 statements permit the transfer of data between
processor storage (core) and peripheral devices and/or between storage
locations. Data in the form of logical records may be transferred by
use of an a) sequential, b) random access, c¢) append transfer mode, or
d) dump mode. The areas in core from which data is to be taken during
output (write) operations and into which data is stored during input
(read) operations are specified by:

1. A list in the I/0 statement that initiated the transfer

2. A list defined by a NAMELIST statement, or

3. Between a specified FORMAT statement and the external medium.
The type and arrangement of transferred data may be specified by
format specifications located in either a FORMAT statement or an array
(formatted I/0), or by the contents of an 1I/0 1list (list-directed
I/0).

The following sections describe the statements and data format
required to initiate I/0 transfer operations.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequential, b) random
access, and <c¢) append data modes are described in the following
parajraovhs.

10.2.1 Seguential Mode

Records are transferred during a sequential mode of operation in the
same order they appear in the external data file. Each I/0 statement
executed 1n a seguential mode transfers the record immediately
following the last record transferred from the accessed source file.

10.2.2 Random Access Mode

This mode permits access to and transfer of records from a file in any
desired order. Random access transfers, however, may be made only to
(or from) a device that permits random—-type data addressing
operations, i.e., disk, and to files that have previously been set up

10-1

I/0 STATEMENTS

for random access transfer operation. Files for random access must
contain a specified number of identically sized records that may be
accessed, individually, by a record number.

You may use the FORTRAN-10 OPEN statement - see Chapter 12 - or a
subroutine call to DEFINE FILE to set up random access files.

Use the OPEN statement to establish a random access mode to permit the
execution of random access data transfer operations. The OPEN
statement should logically precede the first 1I/0 statement for the
specified logical unit in the user source vrogram,

10.2.3 Append Mode

This mode is a special version of the sequential transfer mode: Use
it only for sequential output (write) operations. The append mode
permits you to write a record immediately after the last logical
record of the accessed file. During an append transfer, the records
already in the accessed file remain unchanged. The only function
performed is the appending of the transferred records to the end of
the file.

You must use an OPEN statement to establish an append mode before
append I/0 operations can be executed.

10.3 I/0 STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/0 statements described in this chapter are
written in one of the following basic forms or in some modification of
these forms:

Basic Statement Forms Use

Keyword (u,f)list Formatted I/O Transfer

Keyword (u#R,f)list Random Access Formatted I/0 Transfer

Keyword (u,*)list List-Directed I/0 Transfer

Keyword (u,N) NAMELIST-Controlled I/0 Transfer

Keyword (u)list Binary I/0 Transfer

Keyword (u#R)list Random Access Binary I/O Transfer

where

Keyword = the statement name (READ or WRITE)

u = FORTRAN-10 logical unit number

£ = FORMAT statement number in the current program
unit or the name of an array that contains the
desired format specifications

list = I/0 list

#R = the delimiter # followed by the number of a
record in an established random-access file

* = symbol specifying a list-directed I/0 transfer

N = the name of an I/0 list defined by a NAMELIST

statement
The following paragraphs provide details of the foregoing components.

10-2

I/0 STATEMENTS

10.3.1 I/0 Statement Keywords

The keywords (names) of the FORTRAN-10 I/0 statements described in
this chapter are:

1. READ 5. WRITE
2. REREAD 7. PRINT
3. ACCEPT 8. PUNCH
4. FIND 9. TYPE
5. DECODE 10. ENCODE

10.3.2 FORTRAN-10 Logical Unit Numbers

Decimal numbers identify the physical devices used for most FORTRAN-19

I/0 operations. During compilation, the compiler assigns default
logical unit numbers for the REREAD, READ, ACCEPT, PRINT, PUNCH and
TYPE statements. Default unit numbers are negatively signed decimal

numbers that you cannot access.

You may make the logical device assignments at run time, or vyou may
use the standard assignments contained by the FORTRAN-10 Object Time
System (FOROTS) . Table 10-1 1lists the standard 1logical device
assignments., We recommend that you specify the device explicitly in
the OPEN statement.

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications that
defines the structure of a record and the form of the data fields
comprising the record. Format specifications may also be stored in an
array rather than in a FORMAT statement. (Refer to Chapter 13 for a
complete description of the FORMAT statement.)

The execution of an 1I/0 statement that includes either a FORMAT
statement number or the name of an array that contains format
specifications causes the structure and data of the transferred record
to assume the form specified in the referenced statement or array.
Records transferred under the control of a format specification are
referred to as "formatted" records. Conversely, records transferred
by I/0 statements that do not reference a format specification are
referred to as "unformatted" records. During unformatted transfers,
data is transferred on a one-to-one correspondence between internal
(processor) and external (device) locations, with no conversion or
formatting operations.

Unformatted files are binary files divided into records by FORTRAN-10
embedded <control words; the control words are invisible to you. You
cannot prepare files of this type without using FOROTS. Unformatted
files are for use only within the FORTRAN-10 environment.

10-3

¥-01

Table 10-1
FORTRAN=-10 Logical Device Assiqgnments

Device/Function Default Filename FORTKAN Logical Unit Number Use

Standard Devices*

C 0Q ILLEGAL

DSK FCExx .DAT 01 Disk

CDR 02 Card Reader

LPT 03 Line Printer

CTY G4 Conscle Teletyrve
TTY 05 User's Teletype
PTR 06 Paper Tape Reader
PTF 7 Paper Tape Punch
DIS 08 Pisplay

DTA1 09 CECtape

CTAZ2 10

DTA3 11

DTA4 12

DTAS 13

DTA6 14

DTA7 15 CECtave

MTAQ 16 Magnetic Tape
1TAl 17

MTA2 18

FOKRTR 19 Assignable Device
DSK 20 DISK

DSK 21

DSK 22

DSK 23

LSK Y 24

*The total number of standard devices permitted is en installation

parameter.

SINAWALYLS O/1

-0T

(7]

Table 10-1 (Cont.)

FORTRAK~10 Logical Device Assignments

Device/Function

Default Filenamne

FORTRAN Logical Unit Humber

Use

Standard Devices*

DEV1
DEVZ
BEV3
DEV4
BEV5

SEV6 3
Default LCevices

REKREALD
CDR
TTY
LPT
PTP
TTY

FORxx.DAT

Y
FOK63.DAT

Current file
FORCDR.DAT
FORTTY.DAT
FORLFT.DAT
FORPTP.DAT
FORTTY.CAT

25
6
27
28
29

53

(inaccessible to the user)

Assignable Devices

REREAD statement
READ statement
ACCEPT statement
PRINT statement
PUNCH statement
TYPE statement

*The total number of standard devices vermitted is an installaticn

paraneter.

FIVLS 0O/1

SLNHW

I1/0 STATEMENTS

10.3.4 1/0 List

An I/0 list specifies the names of variables, arrays, and array
elements to which input data is to be assigned or from which data is
to be output. Implied DO <constructs (Paragraph 10.3.4.1), which
specify sets of array elements, may also be included in I/0 lists.
The number of items in a statement list determines the amount of data
to be transferred during each execution of the statement.

10.3.4.1 Implied DO Constructs - When an array name is given in an
I/0 1list, all elements of the array are transferred in the order
described in Chapter 3 (Paragraph 3.5.3). 1If only a specific set of
array elements 1is involved, they may be specified in the I/0 list
either individually or in the form of an implied DO construct.

Write implied DOs within parentheses in a format similar to that of DO
statements. They may contain one or more variable, array, and/or
array element names, delimited by commas and followed by 1indexing
parameters that are defined as for DO statements.

The general form of an implied DO 1is

(name (3L) ,I=M1,M2,M3)

where
name = an array name
SL = the subscript 1list of an array or an array
clement identifier
I = the index control variable that may represent a
subscript appearing in a preceding subscript list
M1,M2,M3 = the indexing parameters that specify,
respectively, the initial, terminal, and
increment values that control the range of I. If
M3 is omitted (with its preceding comma), a value
of 1 is assumed.
Examples

(A(S),5=1,5) Specifies the first five elements of the
one—-dimension array A, i.e., A(l), A(2),
A(3), A(4), A(5).

(A(2,S),5=1,10,2) Specifies the elements A(2,1), A(2,3),
A(2,5), A(2,7), A(2,9) of array A.

(I,I=1,5) Specifies the integers 1,2,3,4, and 5.

As stated previously, implied DO constructs may also contain one or
more variable names.

Example
I, J, B, and C must be integer variables.
((aA(B,C),B=1,10) ,C=1,10) ,1,3 S3Specifies a 10 X 10 set of elements
of array A, the location identified

by I, and the 1location identified
by J.

10-6

I/0 STATEMENTS

You may also nest implied DO constructs. Nested implied DOs may share
one or more sets of indexing parameters.

Example

((A(J,K),J=1,5),D(K) ,K=1,10) Specifies a 5 X 10 set of elements
of array A and the first 10
elements of array D.

When you specify an array or set of array elements as either a storage
or transmitting area for I/0 purposes, the array elements involved are
accessed in ascending order with the wvalue of the first subscript
quantity wvarying most rapidly and the wvalue of the 1last given
subscript increasing to its maximum value least rapidly. For example,
the elements of an array dimensioned as TAB(2,3) are accessed in the
order:

TAB(L,1)
TAB(2,1)
TAB(1,2)
TAB(2,2)
TAB(L,3)
TAB(2,3)

10.3.4.2 Formatted Record Handling - Data is processed under format
control so that each item in the I/0O list is matched with a field
descriptor in the FORMAT statement. If the end of the FORMAT
specification 1is reached and more items remain in the I/0 list, a new
line or record is established and the data processing 1is restarted,
either:

1. at the first item in the FORMAT specification or,

2. (if parenthesized sets of FORMAT specifications exist within
the FORMAT specification) with the last set within the FORMAT
gspecification.

On input, if the record is exhausted before the data transfers are

completed, the remainder of the transfer is completed as if the record
were extended with blanks. See Section 13.2.2 for more dectails.

10.3.5 Specification of Records for Random Access

You must identify records to be transferred in a random access mode in
an I/0 statement by an integer expression or variable preceded by an
apostrophe used as a delimiter, e.qg., '101.

NOTE
You may use a pound sign (#) in place of

the apostrophe ('), e.g9., both #101 and
'101 are accepted by FORTRAN-10.

10-7

I/0 STATEMENTS

10.3.6 List-Directed I/O

The ,use of an asterisk in an I/0 statement 1in place of a FORMAT
statement number causes the specified transfer operation to be
"list~directed". In a 1list-directed transfer, the data to be
transferred and the type of each transferred datum are specified by
the contents of an I/0 list included in the I/0 command used. The
transfer of data in this mode is performed without regard for column,
card, or line boundaries. The list-directed mode is specified by the
substitution of an asterisk (*) for the FORMAT statement reference,
i.e., £, of an I/0 statement. The general form of a list-directed I/0O
statement is

keyword (u,*)list
Example
READ (5,*)I,IAB,M,L

You may use list-directed transfers to read data from any acceptable
input device, including an input keyboard terminal.

NOTE

Do not use device positioning commands,
such as BACKSPACE, SKIP RECORD, etc., in
conjunction with list-directed I/0
operations. If you do, the results are
unpredictable.

Data for list-directed transfers should consist of alternate constants
and delimiters. The constants used should have the following
characters:

1. Input constants must be of a type acceptable to FORTRAN-10.
Octal constants, although acceptable, are not permitted in
list-directed I/0 operations.

2. Literal constants must be enclosed within single quotes,
e.g., 'ABLE'. A gquoted string which is too long tec fit in
one element of the input list will be placed in adjacent
elements and will be padded with blanks. If a quoted string
is being placed in any array and it fills more than one
elament of the array, the remaining elements of the array
will be unchanged. 1In this case, it is assumed that the user
meant for the 1long string to go into the array and for any
following data to go into the rest of the input list. If the
string fits 1into one element of the array, the array will
continue to be filled.

3. Blanks are delimiters; therefore, they are not permitted 1in
any but literal constants.

4. You may omit decimal points from real constants that do not
have a fractional part. FORTRAN-10 assumes that the decimal
point follows the rightmost digit of a real constant.

5. Complex constants must be enclosed in parentheses.

10-8

I/0 STATEMENTS

Delimiters in data for list-directed input must comply with the
following:

1. Delimiters may be either commas or blanks.

2. Delimiters may be either preceded by or followed by any
number of blanks, carriage return/line feed characters, tabs,
or line terminators; any such combination is considered by
FORTRAN~-10 as being only a single delimiter.

3. Represent a null (the complete absence of a datum) by two
consecutive commas that have no intervening constant(s). You
may place any number of blanks, tabs, carriage return/line
feed c¢haracters, or end-of-input conditions between the
commas of a null. Each time you specify a null item in the
input data, 1its <corresponding 1list element 1is skipped
(unchanged) . The following illustrates the effect of a null

input:
INPUT Items 101,'A',tab,'NOLl"',
Corresponding A ,LIT,IAB,NUMBER
I/0 List Items 1 j //
Resulting 101.A un- NO1
Contents of changed
List Items IAB

4. Slashes (/) cause the current input operation to terminate
even 1f all the items of the directing list are not filled.
The contents of items of the directing I/0 list that either
are skioped (by null inputs) or have not received an input
datum before the transfer 1s terminated remain unchanged.
Once the I/0 1list of the controlling 1I/0 statement is
satisfied, the use of the / delimiter is optional.

5. Once the I/O 1list has been satisfied (values have been
transferred to each item of the list), any items remaining in
the input record are skipped.

Constants or nulls in data for list-directed input may be assigned a
repetition factor so that an item is repeated.

The repetition of a constant is written as
r*g

where r is an integer constant that specifies the number of times the
constant represented by K is to be repeated.

The repetition of a null is written as an integer followed by an
asterisk.

Examples
10*5 represents 5,5,5,5,5,5,5,5,5,5
3*'ABLE" represents 'ABLE','ABLE','ABLE'
3% represents null,null,null

10-9

I/0 STATEMENTS

10.3.7 NAMELIST I/O Lists

You may define one or more lists by a NAMELIST statement (Chapter 11).
Each I/0 1list defined in a NAMELIST statement is identified by a

unique (within the routine) 1- to ©6-character name that may be
referenced by one or more READ or WRITE statements. The first
character of each I/0 list name must be alphabetic. By using the

NAMELIST statement, vyou eliminate the need for specifying the entire
I/0 list.

I/0 statements that reference a NAMELIST-defined 1I/0 1list cannot
contain either a FORMAT statement reference or an I/0 list. You
cannot use NAMELIST-controlled I/0 operation to transfer octal numbers
or literal strings.

You may use only NAMELIST-controlled READ/WRITE statements to bring
in/write out records formatted in the following manner. Format
records for NAMELIST-controlled input operations as follows:

$SNAME ©01,D2,D3...Dn$
where

1. $ symbols delimit the beginning and end of the record. The
first $ must be in column 2 of the input record; column 1
must be blank.

2. NAME is the name of a NAMELIST-defined input list. The named
list identifies the processor storage locations that are to
receive the data items read from the accessed record.

3. D1 through Dn are pairs of the form "variable=value" where
the wvalue 1is assigned to the associated variable. These
items cannot be octal numbers or literal strings.

NOTE

Do not use device positioning commands
such as BACKSPACE, SKIP RECORD, etc., in
conjunction with NAMELIST-controlled I/O
operations. If you do, the results are
unpredictable.

See Chapter 11 for more information on NAMELIST I/0 transfers.

10.4 OPTIONAL READ/WRITE ERROR EXIT AND END-OF~-FILE ARGUMENTS

You may optionally add either or both an error exit or an end-of-file
argument to the ©portion in parentheses of any form of the READ and
WRITE statements when a unit is specified.

Write the error exit argument as ERR=c where c is a statement number
in the current program unit. Using this argument terminates the
current I/0 operation and transfers program control to the statement
identified by the argument if an error is detected. For example, the
detection of an error during the execution of

READ (10,77 ,ERR=101) TABLE, I ,M,J

10-10

I/0 STATEMENTS

terminates the input operation and transfers program control to
statement 101. See the FORTRAN-10 Library Subroutine ERRSNS (Chapter
15) to find out how to identify the actual error that occurred.

When an ERR= transfer occurs, all items on the input 1list and all
implied DO indexes on input or output lists become undefined.

Write the end-of-file argument as END=d, where d is a statement number
in the <current program unit. This branch, when taken, stops the
current I/0 operation and transfers program control to the statement
identified by the argument. In the example below, the detection of an
end-of-file condition during the execution of

READ (10,77 ,END=50) TABLE,I ,M,J
results in the transfer of control to statement 50.

When an END= transfer occurs, all items on the input list receive the
value zero and all implied DO indices on input lists become undefined.

If the END= argument is not present, but an ERR= argument 1is, an
end-of-file (EOF) condition is treated as a user-trappable error. If
neither the ERR= nor the END= argument is present and an end-of-file
condition 1is detected, a message 1is printed, the file is closed,
program execution is terminated, and <control is returned to the
monitor.

10.5 READ STATEMENTS

READ statements transfer data from peripheral devices into specified

processor storage locations. The permitted forms of this type of
input statment permit READ statments to be used on both sequential and
random access transfer modes for formatted, unformatted,

list-directed, and NAMELIST-controlled data transfers.

10.5.1 Sequential Formatted READ Transfers

Descriptions of the READ statements that may be wused for the
sequential transfer of formatted data follow:

1. Form: READ (u,f)list

Use: Input data from logical unit u, formatted
according to the specification given in f, into
the processor storage locations identified in
input list.

Example: READ (10,555)TABLE(10,20) ,ABLE,BAKER,CHARL
2. Form: READ(u,f)
Use: Input the data from logical unit u directly into
either a Hollerith (H) field descriptor or a

literal field descriptor given within the format
specifications of the referenced FORMAT statement.
If the refercnced FORMAT statement does not
contain either of the foregoing types of format
field descriptors, the input record 1is skipved.
If a required field descriptor is vpresent, its
contents are replaced by the input data.

Example: READ(15,101)
10-11

10.5.2

Example:
Form:

Use:

Examnple:

I1/0 STATEMENTS

READ £

Input the data from the READ default device (card
reader) directly into either a Hollerith (H) field
descriptor or a literal field descriptor given
within the format specifications of the referenced
FORMAT statement. If the referenced FORMAT
statement does not contain either of the fcregoing
types of format field descriptors, the input
record is skipped. 1If a required field descriptor
is present, its contents are replaced by the input
data.

READ 66
READ f,list

Input the data from the READ default device (card
reader) into the processor storage locations
identified in the input list. The input data 1is
formatted according to the specifications given in

c
L e

READ 15, ARRAY (20,30)

Sequential Unformatted Binary READ Transfer

You may use only the following form of the READ statement for the
sequential transfer of unformatted input FORTRAN binary data:

10.5.3

Form:

Use:

Example:

READ (u)list

Input one logical record of data from logical unit
u into processor storage as the value of the
location identified in list. You may read only
binary files output by a FORTRAN-10 unformatted
WRITE statement by this type of READ statement.

NOTE
If you wuse the form READ (a), one

unformatted input record will be skipped.

READ (10) BINFIL (10,20,30)

Sequential List-Directed READ Transfer

You may use the following forms of the READ statements to control a

sequential,

1.

Form:

Usea:

Example:

list-directed input transfer:

READ(u,*)1list

Read data from logical device u 1into processor
storage as the value of the locations identified
in 1list. Each input datum 1is converted, if
necessary, to the type of its assigned 1list
variable.

READ(10,*) IARY(20,20) ,A,B,M
10-12

I/0 STATEMENTS

2. Form: READ *,list
Use: Read the data from the READ default device (card
reader) into the ©processor storage 1locations

identified in the input list. Each input datum is
converted, 1if necessary, to the type of its
assigned list variable.

Example: READ *,ABEL(10,20),1,J,K

10.5.4 Sequential NAMELIST-Controlled READ Transfers

You may use only the following form of the READ statement to initiate
a sequential NAMELIST-controlled input transfer:

Formg READ(u,N)

Use: Read data from 1logical wunit u into processor
storage as the value of the locations identified
by the NAMELIST input specified by the name N.
The input data 1is converted to the type of
assigned variable if type conflicts occur. Only
input files that contain records formatted and
identified for NAMELIST operations (Paragraph
10.3.7) may be read Dby READ statements of this
form.

10.5.5 Random Access Formatted READ Transfers

You may use only the following form of the READ statement to initiate
a random access formatted input transfer:

Form: READ (u#R,f)list

Use: Input data from record R of 1logical unit u.
Format each input datum according to the format
specifications of f and place into processor
storage as values of the locations identified in
list. Only disk files that have been set up by
either an OPEN or DEFINE FILE statement may be
accessed by a READ statement of this form. (1f
record R has not been written, an error results.)

Example: READ(1#20,100) I, X{(J)

10.5.6 Random Access Unformatted READ Transfers

You may use only the following form of the READ statement to initiate
a random access unformatted input transfer:

10-13

Form:

Use:

Example:

I/0 STATEMENTS

READ (u#R)list

Input data from record R of logical unit u. Place
the input data into processor storage as the value
of the locations identified in list. Only binary
files that have been output by an unformatted
random access WRITE statement may be accessed by a
READ statement of this form. (If record R has not
been written, an error results.)

READ (1#20) BINFIL

Read record number 20 into array BINFIL.

NOTE
If the form READ (u#R) is used, it will
cause logical input record R to be
skipped.

10.6 SUMMARY OF READ STATEMENTS

Table 10-2 summarizes the various forms of the READ statements.

Table 10-2
Summary of READ Statements

Tyoe of Transfer

Transfer Mode

Sequential Random Access
Formatted READ(u,f)list READ(u#R,f)list
READ (u, £)
READ f,list
READ f
Unformatted READ (u)list READ(u#R)1list
READ (u) READ (u#R)
List-Directed READ(u,*)list
READ *,list
NAMELIST READ (u,N)
Note: You may include the ERR=c and END=4 arguments in any of

the above READ statements. When included, the
foregoing arguments must be last, e.g., READ
(10,20,END=101,ERR=500) ARRAY (50,100) .

10.7 REREAD STATEMENT

The REREAD statement causes the last record read from the last active
input device to again be accessed and processed.

10-14

I/0 STATEMENTS

You cannot use the REREAD feature of FORTRAN-10 until an input (READ)
transfer from a file has been accomplished. If you use REREAD
prematurely, an error results.

Once a record has been accessed by a formatted READ statement, the
record transferred may be reread as many times as desired. 1In a
formatted transfer, you may use the same or new format specification
by each successive REREAD statement.

You may use the REREAD statement only for seguential formatted data
transfers. The form of the REREAD statement is:

Form: REREAD f,list

Use: Reread the last record read during the last
initiated READ operation and input the data
contained by the record into the processor storage
locations specified in the input list. Format the
data read according to the format specifications
given in statement f.

Example: DIMENSION ARRAY{10,10),FORMA(10,10),FORMB(10,10),
1 FORMC(10,10)
90 READ(16,100)ARRAY

100 FORMAT (————o)

110 REREAD 100,FORMA
115 REREAD 150,FORMB
120 REREAD 160,FORMC

150 FORMAT (--——-)
160 FORMAT (===—=-)

In the above sequence, statement 90 inputs data formatted according to
statement 100 into the array ARRAY. Statement 110 reads the record
read by statement 90 and inputs the data formatted as in the initial
READ operation into the array FORMA.

Statement 115 reads the record read by statement 90 and inputs the
data formatted according to statement 150 into the array FORMB.

Statement 120 reads the record read by statement 90 and inputs the
data formatted according to statement 160 into the array FORMC.

NOTE

If you try to REREAD a record input from
the teletype, vyou will get either the
current record or the last 150
characters of the current record,
whichever is the lesser.

10-15

I1/0 STATEMENTS

10.3 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage
locations to peripheral devices. The various forms of the WRITE
statement enable it to be used in sequential, append, and random
access transfer modes for formatted, unformatted, list-directed, and
NAMELIST-controlled data transfers.

10.8.1 Sequential Formatted WRITE Transfers

You may use the following forms of the WRITE statement for the
sequential transfer of formatted data:

1. Form: WRITE(u,f)list
Use: Outout the wvalues of the Drocessor storage
locations identified in 1list into the file
associated with 1logical unit u. Convert and
arrange the output data according to the

specifications given in f.

Exanple: WRITE(06,500)0U0T(10,20) ,A,B
2. Form: WRITE f,list
Use: Outout the wvalues of the pProcessor storage

locations identified in list to the default device
(line printer). Convert and arrange the output
data according to the specifications given in f.

Example: WRITE 10,SEND(5,10),A,B,C

3. Form: WRITE £
Usec: Output the contents of any Hollerith (H) or
literal ('') field descriptor(s) contained by f to

the default device (line printer). If neither of
the foregoing types of field specifications is
found in f, no output transfer is performed.

Example: WRITE 10

10.3.2 Sequential Unformatted Binary WRITE Transfer

You may use the following form of the WRITE statements for the
sequential transfer of unformatted data:

Formu: WRITE (u)list
Use: Output the wvalues of the processor storage
locations identified in 1list into the file

associated with logical unit u. No conversion or
arrangement of output data is performed.

Example: WRITE(12)ITAB(20,20) ,SUMS(10,5,2)

10-16

1/0 STATEMENTS

10.8.3 Sequential List-Directed WRITE Transfers

You may use the following form of the WRITE statement to initiate a
sequential list-directed output transfer.

Form:

Use:

Example:

WRITE(u,*)list

Output the wvalues of the DroOCessor storage
locations identified in 1list into the file
associated with logical unit u. The conversion of
each datum from internal to external form is
performed according to the type of the 1list
variable from which the datum is taken.

WRITE(12,*)C,X,Y,ITAB(10,10)

10.8.4 Sequential NAMELIST-Controlled WRITE Transfers

You may use only the following form of the WRITE statement to initiate
a sequential WAMELIST output transfer.

Form:

Use:

Example:

WRITE (u,N)

Qutnut the values of the Drocessor storage
locations identified by the contents of the
NAMELIST-defined list specified by name W into the
file associated with logical unit u.

WRITE(12,NMLST)

10.8.5 Random Access Formatted WRITE Transfers

You may use only the following form of the WRITE statement to initiate
a random access type formatted output transfer:

Form:

Use:

WRITE (u#R,f)list

Output the wvalues of the processor storage
locations 1identified by the contents of list to
record R of the file associated with 1logical
device u. Only disk files that have been set up
by either an OPEN statement or a <call to the
subroutine DEFINE FILE may be accessed by a WRITE
transfer of this form. The data transferred will
be formatted according to the specifications given
in f£. Only those records that have been
specifically written are available to be read.

10.8.6 Random Access Unformatted WRITE Transfers

You may use only the following form of the WRITE statement to initiate
a random access unformatted outout transfer:

Form:

Use:

WRITE(u#R)1list
Output the wvalues of the processor storage

locations identified by the contents of list to
record R of the file associated with logical

10-17

1/0 STATEMENTS

device unit u. Only disk files that have bheen set
up by either an OPEN or a call to the DEFINE FILE
subroutine may be accessed by a WRITE transfer of
this form. Only those records that have been
specifically written are available to be read.

10.9 SUMMARY OF WRITE STATEMENTS

Table 10-3 summarizes the various forms of the WRITE statements.

Table 10-3
Summary of WRITE 3tatements
Type of Transfer Transfer Mode
Sequential Random Access
Formatted WRITE(u,f)list WRITE (u#R,f)1list
WNRITE f,list
WRITE £
Unformatted WRITE(u)list WRITE (u#R)list
List-Directed WRITE(u,*)list
NAMELIST-controlled WRITE (u,N)
Note: You may include the ERR=c and END=d arguments in
any WRITE statement which has a unit number;
however, they must be last.

10.10 ACCEPT STATEMENT

The ACCEPT statement enables you to input data via either a terminal
keyboard or a batch control file directly into specified processor
storage locations. Use this statement only in the sequential transfer
mode for the formatted transfer of inputs from your terminal keyboard
during program execution. The following paragraphs describe the
permitted forms of the ACCEPT statement.

10.10.1 Formatted ACCEPT Transfers

Use the following forms of the ACCEPT statement for the sequential
transfer of formatted data.

1. Form: ACCEPT f£,list
Use: Input data character-by-character from the user's
terminal into the ©processor storage 1locations
identified by the contents of 1list. Forimat the

input data according to the format specifications
given in f.

Example: ACCEPT 101,LINE(73)

10-18

I/0 STATEMENTS

2. Form: ACCEPT *,list
Use: Input data character-by-character from the user's
terminal into the processor storajge locations
identified by the contents of list. Convert the

input characters, where necessary, to the type of
its assigned list variable.

Example: ACCEPT *,IAB,ABE,KAB,MAR

10.10.2 ACCEPT Transfers Into FORMAT Statements

You may use the following form of the ACCEPT statement to input data
from your terminal keyboard directly into a specified FORMAT statement
if the FORMAT statement has either or both a Hollerith (43), or a
literal ('s') field descriptor. If the referenced statement has
neither of the foregoing descriptors, the input record is skipped.

Form: ACCEPT £
Use: Replace the contents of the apvnropriate fields of
statement f with the data entered at the user's

terminal keyboard.

Example: ACCEPT 101

10.11 PRINT STATEMENT

The PRINT statement causes data from specified ©processor storage
locations to be output on the standard output device (line printer).
Use this statement only for seguential formatted data transfer

operation; write it in either of the three following forms:
1. Form: PRINT f,list
Use: Output the values of the processor storage

locations identified by the contents of list to
the line printer. The values output are to be
formatted and arranged according to the format
specifications given in f.

Example: PRINT 55,TABLE(10,20),I,J,K
2. Form: PRINT *,list

Use: Output the values of the processor storage
locations identified Dby the contents of list to
the line printer. The conversion of each datum
from internal to external form 1is ©performed
according to the type of the 1list wvariable from
which the datum is taken.

Example: PRINT *,C,¥X,Y,ITAB(10,10)
3. Form: PRINT £
Use: Output the contents of the FORMAT statement

Hollerith (49) or literal field descriptors to the
line printer. If neither an H nor a literal field

10-19

1/0 STATEMENTS
descriptor 13 present in the referenced FORMAT
statement, no operation is verformed.
Example: PRINT 55

The second form of the PRINT statement 1is particularly wuseful when
employed with ACCEPT f statements to cause desired data (comments or
headings) to be inserted into reports at program execution time.
Lxamole
The sequence

55 FORMAT (' END OF ROUTINE')

PRINT 55

results in the printing of the phrase "END OF ROUTINE" on the 1line
nrinter.

10.12 PUNCAH STATEMENT

The PUNCH statement causes data from specified processor storage
locations to be outnut to the system standard paper tape punch. Use
this statement only for sequential formatted data transfers; write it
in one of tne three following forms:

1. Forms: PUNCH f,list
Use: OQutput the wvalues of the processor storage
locations identified by the contents of list to
the standard paper tape punch unit. The values

output are to be formatted and arranged according
to the format specifications given in f£.

Example: pPUNCH 10,TABLE(10,20),1,J,K
2. Form: PUNCH *,list
Use: Output the wvalues of the processor storage

locations identified by the contents of 1list to
the paper tape punch unit. The conversion of each
datum from internal to external form is performed
according to the type of the 1list wvariable from
which the datum is taken.

Example: PUNCH *,I,A,B,M,TAB(5,10)
3. Form: PUNCH f
Use: OQutput the contents of the referenced FORMAT

statement Hollerith (") or literal field
descriptors to the standard paper tape punch unit.
If neither an H nor a literal field descriptor is
present in the referenced FORMAT statement, no
operation is performed.

The third form of the PUNCAd statement 1is particularly wuseful when
caployed in conjunction with an ACCEPT f statement to cause
user-entered data (comments or headings) to be added to an output file
at program execution time.

10-20

I/0 STATEMENTS

10.13 TYPE STATEMENT

The TYPE statement causes data from specified processor storage
locations to be output to your (control) terminal printing or display
device. Use this statement only for sequential formatted data
transfers; write it in one of the following forms:

1. Form: TYPE f,list

Use: Output the wvalues of the processor storage
locations 1identified by the contents of list to
the user's terminal. The values output are to be
formatted according to the format specifications
given in f.

Example: TYPE 101,TABLE(10,20)1I,J,K
2. Form: TYPE £
Use: Output the contents of the referenced FORMAT
statement Hollerith (1) or literal field

descriptors to the user's terminal device. 1If the
referenced FORMAT statement does not contain
either an H or a 1literal field descriptor, no
operation is performed.

Example: TYPE 101
3. Form: TYPE *,list
Use: Qutput the wvalues of the processor storage

locations identified by the contents of list to
the user's terminal. The conversion of each datum
from internal to external form 1is ©performed
according to the type of the 1list wvariable from
which the datum is taken.

Example: TYPE *,IAB(1,5),A,B

10.14 FIND STATEMENT

The FIND statement does not initiate a data transfer operation; use
it during random access read operations to locate the next record to
be read while the current record is being input. The program does not
have access to the “found”" record until the next READ statement is
executed.

The form of the FIND statement is
FIND(u#R)

Example:

In the sequence

READ(01#90)
FIND{O1#101)

.

-

READ (01#101)

10-21

I/O STATEMENTS

the FIND statement will locate record #101 on device 01 after record
90 has been retrieved. Record #101 is not processed until the second
READ statement in the sequence i3 executed.

10.15 ENCODE AND DECODE STATEMENTS

Use the ENCODE and DECODE statements to perform sequential formatted
data transfer between two defined areas of processor storage, i.e., an
I/0 list and a user-defined Dbuffer; no vperipheral 1/0 device 15
involved in the operations performed by these statements.

The ENCODE statement transfers data from the variables of a specified
I1/0 list into a specified storage area. ENCODE operations are similar
to those performed by a WRITE statement.

The DECODE statement transfers data from a specified storage area into
the processor storage locations identified by the variables of an I/0
list. DECODE operations are similar to those performed by a READ
statement.

Write the ENCODE and DECODE statements in the following forms:

ENCODE(c,f,s)list
DECODE(c,f,s)list

where

¢ specifies the number of characters to be in each internal
storage area. This argument may be an integer, an integer
expression, or either a real or double precision expression that
is converted to an integer form.

NOTE

5 characters per storage location are stored in the
buffer without regard to the type of variable given as
the starting location.

f specifies either a FORMAT statement or an array that contains
format specifications.

s specifies the address of the first storage location that is to
be used in the transfer operations. When multiple records are
specified by the format being used, the succeeding records follow
each other in order of increasing storage addresses.

list specifies an I/0 1list of the standard form (Paragraph
10.3.4).

when multiple records are stor<d by ENCODE, each new record starts on
a new storage location Dboundary rather than there being a CRLF
inserted between records.

10-22

10.15.1

I1/0 STATEMENTS

ENCODE Statement

A description of the form and use of the ENCODE statement follows:

10.15.2

ENCODE (¢,f,s)list

The values of the processor storage locations
identified by the contents of list are converted
to ASCII character strings according to the format

specifications given in f. The converted
characters are then written into +the destination
area starting at 1location s. If you try to

transfer more characters than the specified area
can contain, the excess characters are ignored.

If you transfer fewer characters than specified
for the record size, the empty character locations
are filled with blanks.

ENCODE (500,101 ,START) TABLE

DECODE Statement

A description of the form and use of the DECODE statement follows:

10.15.3

DECODE(c,f,s)list

The character strings are taken starting at
location s, converted (decoded) according to the
format specifications given in £, and stored as
the wvalues of the processor storage locations
identified in list.

If the format specification requires more
characters from a record than are swecified by c,
the extra characters are assumed to bhe blanks. If
fewer <characters are required from a record than
are specified by ¢, the extra characters arec
ignored.

DECODE(50,50,START) GET (5,10)

Example Of ENCODE/DECODE Operations

The following program illustrates the use of both the ENCODE and

DECODE statements:

Example

Assume the contents of the variables to be as follows:

A(1)
A(2)
J
B
C

10

DO 2 J=1,2
ENCODE (16,10,B)J,A(J)
FORMAT (1X,2HA(,I1,4H) = ,F8,2

contains the floating point number 300.45
contains the floating point number 3.0

is an integer variable

is a 4-word array of indeterminate contents
contains the ASCII string 12345

10-23

I/0 STATEMENTS

(4) TYPE 11,B

(5) 11 FORMAT (4A5)

(5) 2 CONTINUE

(7) DECODE (5,12,C)B

(3)y 12 FORMAT (3F1.0,1X,F1.0)
(9) TYype 13,B

(10) 13 FORMAT (4F5.2)

(11) END

Array B can contain 20 ASCII characters. The result of the ENCODE
statement after the first iteration of the DO loop is:

B(l) = 'A(l) Typed at line 4 as
B(2) = ‘= '

B(3) = '300.4°', A(l) = 300.45
B(4) = '5 !

The result after the second iteration is:

B(l) = '‘A(2) ¢! Typed at line 4 as
B(2) = ‘= '

B(3) = '3.0 A(2) = 3.0
B(4) = ' '

The DECODE statement:
1. Extracts the digits 1, 2, and 3 from C
2. Converts them to floating point values
3. Stores them in B(l), B(2), and B(3)
4. Skips the next character (the digit 4)
5. Extracts the digit 5 from C
6. Converts it to a floating-point value, and,
7. Stores it in B(4)

The output from the TYPE statement at line 9 is:
1.00 2.00 3.00 4.00 5.00

10-24

I/0 STATEMENTS

10.16 SUMMARY OF I/O STATEMENTS

Table 10-4 on pages 10-26 and 10-27 presents a summary of all
permitted forms of the FORTRAN-10 I/O statement.

10-25

9Z-01

Summary of

Table 10-4
FORTRAN-1C I/0 Statements

I/0 Statements

Transfer Format Control

Formatted Unformatted Namelist List-Directed
KREAD i
Seguential READ (u,f)list READ (u)list . READ(u,N) READ (u,*)1list
READ f,list : READ *,list
READ £ é

Random

WKITE
Sequential or
Append (1)
Random (2)

REREAD
Sequential

FIND
Random=-only

ACCEPT

Seguential only

READ (u#R,f)list

WRITE (u,f)list
WRITE f,1ist
WRITE £

WRITE (u#k,f)list

REREAD f,1list

FIND (u#R)

ACCEPT f,list
ACCEPT £

READ (u#R)1list

WRITE(u)list WRITE (u,N)

WRITE (u#R)list

FIND (u#R)

WRITE(u,*)list

ACCEPT *,list

1. You must use an OPEN statement to set up an append mode.

2. You must use either the OPEN statement or a call to the DEFINE

FILE subroutine to set up a

random access mode.

SINAWAIYIS 0O/1

LZ-0T

Table 10-4 (Cont.)
Surmary of FORTRAN-1(C I/0 Statements
I/0 Statements Transfer Format Control
Formatted Unformatted Namelist List-Direction
PRINT
Secuential only PRINT f,list PRINT *,list
i PRINT f{
L i
i PULCH i
; Sequential only | PFUNCH f,list L PUNCH *,list
1 . PUNCH f 5
TYFE |
Sequentizl only | TYPE f,list TYPE *,list :
TYPE £
ENCODE §
Sequential only ENCODE (c,f,s)list |
i
DECCLE ;
Sequential only | DECCLE (c,f,s)list !
H !

Legend:
u logical unit number *
f staterent number cf FORMAT
statement or name of array #K
containing format information
list I/C list c
[name of specific NAMELIST s

I/C list

symbol used to specify list-directed I1I/0
overator

variable which specifies logical record
position

number of characters over internal record
address of the first storage location to
be used

SINAWALYIS O/I

CHAPTER 11

NAMELIST STATEMENTS

11.1 INTRODUCTION

Use the NAMELIST statement to define I/0 1lists similar to those
described in Chapter 10 (Paragraph 10.3.4). Reference defined
NAMELIST [/0 lists in special forms of the READ and WRITE statements
to provide a method of transferring and converting data without
referencing format specifications or specifying an I/0 list in the I/0
statement.

11.2 NAMELIST STATEMENT

Write NAMELIST statements in the following form:
NAMELIST/N1/al,A2,...,An/N2/B1,B2,...,Bn/Nn/...
where

/N1/ through /Nn/ represents names of individual 1lists.
Always enclose the name with slashes

(/N/)

Al through An are the items of the lists identified,
and respectively, by names N1 and N2. A

Bl through Bn list may contain one or more variable,
array, or array element names. Delimit
the items of a 1list by commas. Each
list of a NAMELIST statement is
identified (and referenced) by the name
immediately preceding the list.

Example

DIMENSION C(2,4)
NAMELIST/TABLE/A,B,C/SUMS/TOTAL

In the foregoing example, the name TABLE identifies the list
A,B,C(2,4), and the name SUMS identifies the list consisting of the
array TOTAL.

Once a list has been defined in a NAMELIST statement, one or more I/0
statements may reference its name.

11-1

NAMELIST STATEMENTS

The rules for structuring a NAMELIST statement are:
1. You may use a maximum of six characters for a NAMELIST name.
2. You must begin it with an alphabetic character.
3. You must enclose it in slashes.

4. The NAMELIST name must precede the list of entries to which
it refers.

5. The NAMELIST name must be unique within the program.

6. You may define a NAMELIST name only once, and you must define
it by a NAMELIST statement. Once defined, you may use a name
only in READ or WRITE statements.

7. You must define the NAMELIST name in advance of the 1I/0
statement in which it is used.

8. You cannot use a variable used in a NAMELIST statement as a
dummy argjument in a SUBROUTINE definition.

9. You must define any dimensioned variable contained in a

NAMELIST statement in an array declaration statement
preceding the NAMELI3T statement.

11.2.1 NAMELIST-Controlled Input Transfers

During input (READ) transfer operations in which a NAMELIST-defined
name 1s referenced, the records are read until a record is found that
begins with the sequence ' $' (a space followed by a dollar sign)
followed Dby the referenced name. The dollar sign must be the second
character in the record; the first character in the record must be a

blank. Once the ©proper symbol-name combination is found, the data
items following it are transferred on a one-to-one basis to the
processor storage 1lccations identified by the contents of the

referenced list. The input data is always converted to the type of
the 1list wvariable when there is a conflict of types. The input
operation continues until another $ symbol is detected. If variables
appear in the NAMELIST record that do not abpear in the NAMELIST list,
an error condition will occur. Data items of records to be input
(read) wusing NAMELIST-defined 1lists must be separated by commas and
may be of the following form:

Vv=K1l,K2,...,Kn

where

1. V may be a variable, array, or array element name.

2. K1 through Kn are constants of type integer, real, double
precision, complex (written as (A,B) where A and B are real),
or logical (written as T for true or F for false). A series
of identical <constants may be represented as a single

constant preceded by a repetition factor (5*5 represents
5,5,5,5,5).

11-2

NAMELIST STATEMENTS

In transfers of this type, 1logical and complex constants must De
equated to variables of their own Lype. Other type constants (real,
double-precision, and integer) may be equated to any other tyoe of
variable (except 1logical or complex), and will be converted to the
variable type. For example, assume A is a 2-dimensional real array, E
is a 1l-dimensional integer array, C is an integer variable, and tha!l
the input data is as follows:

$SFRED A(7,2)=4, B=3,6%*2.8, C=3.32$

A READ statement referring to the NAMELIST defined name FRED will
result in the following: The integer 4 will be converted to floating
point and placed in A(7,2). The integer 3 will be placed in B(1l), and
the integer 2 (converted) will be placed in B{(2),B(3),...,B(7). The
floating point number 3.32 will be converted to the integer 3 and
placed in C.

NOTE

"&" may be used instead of “$" in
NAMELIST-controlled input.

11.2.2 NAMELIST-Controlled Output Transfers

When a WRITE statement refers to a NAMELIST-defined name, all
variables and arrays and their values belonging to the named list are
written out, each according to its type. Arrays are written out by
columns. Output data is written so that:

1. The fields for the data will be large cnough to contain all
the significant digits.

2. The output can be read by an input statement referencing 2
NAMELIST- defined list.

For example, if JOE is a 2 X 3 real array, the statement

NAMELIST/NAM1/JOE,K1,ALPHA
WRITE (u,NAM1)

generates the following form of output:

Column
SNAME1
JOE= -6.750000 ’ 0.2340000E-04, 680.0000 ’ -17.80000
0.0000000E-01, -1970000. , Kl= 73.10000 ’
ALPHA= 3.000000 . S

NOTE

Do not use device ©positioning commands
such as BACKSPACE, SKIP, RECORD, etc.,
with NAMELIST-controlled I/0 operations.
If you do, the results are
unpredictable.

11-3

CHAPTER 12

FILE CONTROL STATEMENTS

12.1 INTRODUCTION
This chapter describes the OPEN and CLOSE statements.

They are file control statements used to set up files and establish
parameters for I/O operations and to terminate I/0 operations.

12.2 OPEN AND CLOSE STATEMENTS

Both the OPEN and CLOSE statements are unique to FORTRAN-~10; they
both use the same format and have the same options and arguments.

The OPEN statement enables you to define all of the important aspects
of each desired data transfer operation; it provides an extensive
list of required and optional arguments that define in detail:

1. the name and location of the data file

2. the type of access required

3. the data format within the file

4. the protection code(l) to be assigned an output data file

5. the disposition of the data file

6. data file record, block and file sizes

7. a data file version identifier
In addition, a DIALOG argument is provided that permits you to
establish a dialogue mode of operation when the OPEN statement
containing it 1s executed. In a dialogue mode, interactive
terminal/program communication 1is established. This enables you to
define, redefine, or defer the values of the optional arguments
contained by the current OPEN statement during program execution.

The general form of the OPEN statement is:

OPEN (Argl,Arg2,...,Argn)

1. Refer to Chapter 8 of the DECsystem—-10 Monitor Calls Manual,
DEC~10-OMCMA-B-DN3, for a description of file access protection codes.

12-1

FILE CONTROL STATEMENTS

Use the CLOSE statement in the termination of an 1I/0 operation to
dissociate the I/0 device being used from the active file and
file-related information, and to restore the core occupied by I/O
buffers and other transfer-related operations. Aall required device
dependent termination functions are also performed on the execution of
a CLOSE statement. Note that the CLOSE statement can change the name,
protection, directory, and disposition of the file being closed.

Once a CLOSE statement has been executed, you must use another OPEN
statement to regain access to the closed file.

The general form of the CLOSE statement is:

CLOSE (Argl. ,Arg2.,...,Argn)

CAUTION

If you use a filename argument in a
CLOSE statement that is different from
the current filename, the file will be
renamed.

12.2.1 Options for OPEN and CLOSE Statements

The options and their arguments, which you may use in Dboth the OPEN
and CLOSE statements, are:

1. OUNIT This option is required; it Jdefines the
FORTRAN I/0 unit number to be used. FORTRAN
devices are identified by assigned decimal
numbers within the range 1-63; however, UNIT
may be assigned an integer variable or
constant. The general form of this argument
is: '

UNIT= An integer variable or constant

NOTE

FORTRAN-10 standard logical unit
assignments are described in Chapter 10
(Table 10-1). The range, i.e., 1-63, of
the possible UNIT numbers is an
installation-defined parameter.

2. DEVICE This option may specify either the physical
or the 1logical name of the 1I/0 device
involved. (A logical name always takes

precedence over a physical name.) The DEVICE
arguments may specify I/O devices located at
remote stations, as well as logical devices.
The general form of the DEVICE argument is:

DEVICE= A literal constant or variable

12-2

3.

ACCESS

FILE CONTROL STATEMENTS

If you omit this option, the logical name u
(where u 1is the decimal wunit number) 1is
tried; if this 1is not successful, the
standard (default) device is attempted.

ACCESS describes the type of input and/or
output statements and the file access mode to
be used in a specified data transfer
operation. You may assign ACCESS any one of
six possible names, each of which specifies a
specific type of I/0 operation. The
assignable names and the operations svecified
are:

a. SEQIN The specified data file 1is
to be read in sequential
access mode.

b. SEQOUT The specified data file 1is
to be written in a
sequential access mode.

c. SEQINOUT The specified data file may
be first read, then written

(READ/WRITE sequence)
record-by-record in a
sequential access mode.
When you specify SEQINOUT, a
WRITE/READ sequence is
illegal. If no access is
specified, SEQINOUT is
assumed.

d. RANDOM The specified data file may

be either read or written
into, one record at a time.
In a random access mode of
operation, the relative
position of each record is
independent of the previous
READ or WRITE statement;
all records accessed must
have a fixed logical record
length. The RECORD SIZE
option is required for
random access operations.
You must specify a disk
device when the random
argument is used.

e. RANDIN This argument enables you to
establish a special,
read-only random access mode
with a named file. During a
RANDIN mode, you may read

‘the named file
simultaneously with other
users who have also

established a RANDIN mode
and with the owner of the
file. The wuse of RANDIN
enables a data base to be
shared by more than one user
at the same time.

12-3

FILE CONTROL STATEMENTS

f. APPEND The record specified by a
corresponding WRITE
statement is to be added to
the 1logical end of a named
file. You must close and
then reopen the modified
file to permit it to Dbe
read.

The general form of the
ACCESS argument is:

'SEQIN'
'SEQOUT!
'SEQINOUT!
ACCESS= 'RANDOM'
'RANDIN'
'APPEND'
variable (set to
literal)

4., MODE This option defines the character set of an
external file or record. The use of this
argument is optional; 1if you do not use it,
one of the following is assumed:

a. ASCII for a formatted I/0 file transfer
b. Binary for an unformatted 1/0 file
transfer.

NOTE

Refer to the DECsystem-10 Monitor Calls
Manual for a detailed description of the
data modes given in the following list.

You must use one of the following character
set specifications with the MODE argument:

Literal Action Indicated
'ASCII' Specifies an ASCII character set.

'BINARY' Specifies data formatted as a
FORTRAN binary data file,

"IMAGE' Specifies an image (I) wmode data
transfer for the associated READ or
WRITE statements. IMAGE is an
unformatted binary mode.

'DUMP! The data file to be transferred 1is
to be handled in a DUMP mode of
operation.

The general form of the MODE argument is:

'ASCII®
'BINARY'
MODE= 'IMAGE'!
'DUMP!
variable (set to literal)

12-4

5.

6.

DISPOSE

FILE

FILE CONTROL STATEMENTS

This option specifies an action to be taken
regarding a file at close time. When used,
DISPOSE must be either a variable or one of
the following literals:

Literal Action Indicated

'SAVE' Leave the file on the device.

'DELETE' If the device involved is either a
DECtape or disk, remove the file;

otherwise, take no action.

'PRINT' If the file is on disk, gueue it for

printing; otherwise, take no
action.
'LIST! If the file is on disk, gqueue it for

printing and delete the file;
otherwise take no action.

'PUNCH' Paper tape punch output.

'RENAME' Change filename. (This is redundant
if a new filename is given.)

If the DISPOSE argument is not given, the
argument DISPOSE = 'SAVE' is assumed. The
general form of the DISPOSE argument is:

'SAVE'
'DELETE'
DISPOSE= 'PRINT'
‘LIsT!
'PUNCH!
'RENAME'
variable (set to literal)

This option specifies the name of the file
involved in the data transfer operation.

FILE must be either a literal,
double-precision, complex, or
single~precision variable. Single-precision
variables are assumed to contain a 1- to
5-character file specification;
double-precision variables permit

l0-character file specification. The format
is a 1- to 6-character filename optionally
followed by a period and a 0- to 3-character
extension. Any excess characters in either
the name or extension are ignored. If vyou
omit the period and extension, the extension
.DAT is assumed; 1if just the extension is
omitted, & null extension is assumed. So if
you want a filename without an extension,
remember to use the period.

If a filename is not specified or is zero, a
default name is generated that has the form

FORxx .DAT

where xx is the FORTRAN logical unit number
(decimal) or is the logical unit name for the

12-5

FILE CONTROL STATEMENTS

default statements ACCEPT, PRINT, PUNCH,
READ, or TYPE. The general form of a FILE
argument is:

FILE= A literal or variable set to a
literal
7. PROTECTION This option specifies a protection code to be

assigned the data file being transferred.
The protection code determines the 1level of
access to the file that three ©possible
classes of users (owner, member, or other)
will have. PROTECTION may be a 3-digit octal
literal or a variable; if the argument is
assigned a =zero wvalue or is not given, the
default protection code established for the
DECsystem-10 installation is used. The
general form of the PROTECTION argument is:

PROTECTION= 3-digit octal constant or
integer variable

8. DIRECTORY Use this option for disk files only. It
specifies the location of the user file
directory (UFD) or the sub-file directory
(SFD) that contains the file specified in the
OPEN statement. A directory identifier may
consist of either:

a. Your project programmer number that
identifies tnhe UFD, for example, 10,7, or

b. A UFD/SFD directory path specification. A
path specification lists the UFD and the
names of its SFDs that form a path to the
desired SFD. For example, the following
path specification identifies the path
leading to SFD 1234:

10,7,SFDA,SFDB,1234

NOTE

Refer to the DECsystem-10 Monitor Calls
Manual for a complete description of
directories and multilevel directory
structures.

The general form of a DIRECTORY argument 1is:

DIRECTORY= Literal or array name
containing directory path
specification

You may also establish an array containing
the directory specification as its elements
and reference the array in the DIRECTORY
argument. Single-precision arrays permit
5-character directory names to be used;
double-precision arrays permit 6-character

12-6

FILE CONTROL STATEMENTS

names to be used. You must use a zero (0)
entry to terminate a directory path
specification given in an array.
Examples of the use of single- and
double-precision arrays in an OPEN statement
DIRECTORY specification follow:
a. Single-Precision Array
OPEN (UNIT = 5, DIRECTORY = PATH,...)
where PATH and its elements are:
- DIMENSION PATH (5)
PATH (1)= "10 ! (PROJECT NUMBER)
PATH (2)= "7 ! (PROGRAMMER NUMBER) UFD
PATH (3)='SFDA' Names of sub-file
PATH (4)='SFDB' directories (SFD's)
PATH (5)=0
b. Double-Precision Array
OPEN (UNIT=5, DIRECTORY = PATH,...)
where PATH and its elements are:

DOUBLE PRECISION PATH (5)

PATH (1)="000000000010000000000007
! (PROJ.,PROG. NUMBERS=UFD)

PATH (2)='SFDARBC'

PATH (3)="MYAREA' tnames of sub-file
PATH (4)='YOURIT' !directories (SFDs)
PATH (5)=0

The elements of a directory specification
may then be either a literal or a single-
or double-precision array.

The following is an example of a literal
specification:

DIRECTORY="10,7,SFD1,SFD2,SFD3"

TN
Project Sub-File
Programmer Directory

Number Path

Whenever the specification is an array, you
may specify the required project and
programmer numbers either of two ways. You
can use one word with the project number in
the left half and the programmer number in
the right half, or, use the right halves of
separate sequential word locations.

12-7

9.

10.

11.

12.

13.

BUFFER COUNT

FILE SIZE

VERSION

BLOCK SIZE

RECORD SIZE

FILE CONTROL STATEMENTS

This option enables you to specify the number
of I/0 buffers to be assigned to a particular
device. If this argument is not given or is
assigned a value of zero, the Monitor default
is assumed. The general form of this
argument is:

BUFFER COUNT= An integer constant or
variable

Use this option for disk operations only; it
enables you to estimate the number of words
that an output file is going to contain. The
use of FILE SIZE enables you to ensure at the
start of a program that enough space 1is
available for 1its execution. If the size
specified is found to be too small during
program executions, the Monitor allocates
additional space according to the normal
Monitor algorithms. The value assigned to
the FILE SIZE arguments may be an integer
constant or wvariable and will be rounded up
to the next higher block boundary (multiple
of 200 octal). The general form of this
argument is:

FILE SIZE= An integer constant or
variable

Use this option for disk operations only; it
enables you to assign a 12-digit octal
version number to a file when it 1is output.
The gquantity assigned to the VERSION argument
may be either an octal constant or variable.
The general form of the argument is:

VERSION= An octal constant or integer
variable

You can use this option for all storage media
except disk and DECtape. It enables you to
specify a physical storage block size for
devices other than disk or DECtape. The
value assigned the BLOCK SIZE arguments may
be an integer constant or variable. The size
specified must be greater than or equal to 3
and less than or equal to 4095. The general
form of this argument is:

BLOCK SIZE= An integer constant or
variable

This option enables you to force all 1logical
records to be a specified 1length. If a
logical record exceeds the specified 1length,
it is truncated; if a logical record is less
than the specified size, nulls are added to
pad the record to its full size. The RECORD
SIZE argument is required whenever a random
access mode is specified. The value assigned
to this argument may be either an integer
constant or variable, and may be expressed as

12-8

FILE CONTROL STATEMENTS

the number of words or characters, depending
on the mode of the file being described. The
general form of this argument is:

RECORD SIZE= An 1integer constant or
variable

14. ASSOCIATE

VARIABLE Use this option for disk random access
operations only. It provides storage for the
number of the record to be accessed next if
the program being executed were to continue
to sequentially access records starting from
the current READ. For example, if record
number 3 were read, the ASSOCIATE VARIABLE
would be equal to 4. The general form of
this argument is:

ASSOCIATE VARIABLE = Integer variable

15. PARITY Use this option for magnetic tape operations
only; it permits you to specify the type of
parity to be observed (odd or even) during
the transfer of data. The general form of
this option is:

PARITY= 'ODD!
'EVEN"
variable (set to literal)

16. DENSITY Use this option for magnetic tape operations
only; it permits you to specify any of four
possible bit-per-inch (bpi) tape density
parameters for magnetic tape transfer
operations. The general form of this option
is:

'200'
DENSITY= '556"
800"
*1600°
variable (set to literal)

17. DIALOG The use of this option in an OPEN statement
enables you to supersede or defer, at
execution time, the values previously
assigned to the arguments of the statement.
There are two forms of this argument. The

first is:
DIALOG

This form establishes a dialogue with your
terminal when the OPEN statement is executed.
FOROTS outputs the following messages at the
user's terminal.

UNIT=n:/ACCESS=SEQINOUT/MODE=ASCII
ENTER NEW FILE SPECS. END WITH A $ (ALT)

Once the message and defined file
specification are output, you may enter any
desired changes. You need enter only the
arguments that are to be changed.

12-9

FILE CONTROL STATEMENTS

The second form of the argument is:
DIALOG= Literal or array

The value assigned to DIALOG may be a literal
or an array containing a file specification
with the desired information.

18. ERR The use of this option in an OPEN or CLOSE
statement enables you to transfer program
control to an executable statement when an
error 1is detected during the processing of
the OPEN or CLOSE statement. The general
form of this option is:

ERR= s

where s is the statement label of an
executable statement (that appears 1in the
same program unit as the error specifier) to
which program control is transferred when an
error is detected.

Associated with the ERR= option on OPEN/CLOSE
is the subroutine ERRSNS that enables you to
pinpoint the error. See Appendix H for
FOROTS error values returned by ERRSNS.

Examples:
OPEN (UNIT= 1, DEVICE= 'DSK', ACCESS= 'SEQIN', MODE= 'BINARY')

causes a disk file named FORO1l.DAT (since no FILE= option was
specified) to be opened on unit 1 for sequential input in binary mode.

OPEN (UNIT= 3, DEVICE= 'DSK', FILE= 'PAYROL.DAT',
1 ACCESS= 'RANDOM', MODE= 'ASCII', RECORD SIZE= 80,
2 ASSOCIATE VARIABLE= I, ERR= 240)

causes a disk file named PAYROL.DAT to be opened on unit 3 for random
input/output operations in ASCII mode. The records in PAYROL.DAT are
80 characters long; the ASSOCIATE VARIABLE for this file is I. 1If an
error occurs during the execution of this OPEN statement, the OPEN
will terminate and control will transfer to the statement labeled 240.

CLOSE (UNIT= 3, DISPOSE= 'DELETE')

causes the file on unit 3 to be closed and removed if the file 1is on
DECtape or disk.

12.2.2 Summary of OPEN/CLOSE Statement Options

Table 12-1 summarizes the options permitted and required in the OPEN
and CLOSE statements and the type of value required by each.

12-10

FILE CONTROL STATEMENTS

Table 12-1
OPEN/CLOSE Statement Arguments
Argument Possible Value Open* | Close*

ACCESS= 'SEQIN', 'SEQOUT', 'SEQINOUT', 0 I

'RANDIN', 'RANDOM', 'APPEND',

or variable
ASSOCIATE VARIABLE= | Integer variable 0 I
BLOCK SIZE= Integer constant or variable o] 1
BUFFER COUNT= Integer constant or variable 0 I
DENSITY= Literal constant or variable 0 I
DEVICE= Literal constant or variable 0 I
DIALOG= Literal or array or none 6] I
DIRECTCRY= Literal or variable or array 0 0
DISPOSE= Literal constant or variable 0 0
ERR= Statement Number 0 0
FILE= Literal constant or variable 0 0
FILE SIZE= Integer constant or variable o] I
MODE= Literal constant or variable 0 I
PARITY= Literal constant or variable 0 I
PROTECTION= An octal constant or 0 0]

integer variable
RECORD SIZE= Integer constant or integer 0 I

variable
UNIT= Integer variable or constant R R
VERSION= Octal constant or variable 0 o]
*
R = Required
0 = Optional
I = Ignored

12-11

CHAPTER 13

FORMAT STATEMENT

13.1 INTRODUCTION
Use FORMAT statements in conjunction with the I/0 1list of 1I/0
statements during formatted data transfer operations. The FORMAT
statements contain field descriptors that, together with the 1list
items of associated I/0 statements, specify the forms of the data and
data fields that comprise each record.

FORMAT statements may appear almost anywhere in a FORTRAN-10 source
program. The only placement restrictions are that they follow
PROGRAM, FUNCTION, SUBPROGRAM, or BLOCK DATA statements; and that
they precede the END statement. (Refer to Section 2.4.)

You must label FORMAT statements so that I/0 statements can reference
them.

13.1.1 FORMAT Statement, General Form

The general form of a FORMAT statement follows:

k FORMAT(SAl,SA2,...,5An/SBl,SB2,...,SBn/...)

where
k = the required statement label (which <can only
be referenced by I/0O statements).
SA1l through SAn = individual field descriptor sets

and
SB1 through S5Bn
In the foregoing statement form, the individual field descriptors are
delimited by commas (,). Field descriptor sets and records are

delimited by slashes (/). For example, a FORMAT statement of the
form:

FORMAT (SA1,SA2/5B1,582/35C1,SC2).

contains format specifications for three records with each record
containing two field descriptor sets.

Adjacent slashes (//) in a FORMAT statement specify that a record 1is
to be skipped during input or is to consist of an empty record on
output. JFor example, a FORMAT statement of the form:

FORMAT (SAl1,SA2///SB1,SB2)

13-1

FORMAT STATEMENT

specifies four records are to be processed; however, the second and
third records are to be skipped.

You may represent repeated field descriptors or groups of field
descriptors by using a repeat form. Indicate the repetition of a
single field descriptor by preceding the descriptor with an integer
constant that specifies how many times the descriptor 1is to be
repeated. For example, a FORMAT statement of the form:

FORMAT (SA1,SA2,3A3,5A1,SA2,5A3,3A1,SA2,8A3)
may be written as

FORMAT (3 (SAl1,SA2,SA3))

You may nest the repeat forms of field descriptors to any depth. For
example, a FORMAT statement of the form:

FORMAT (SAl,SA2,SA2,SA3,SA1,SA2,SA2,SA3)
may also be written in the form:
FORMAT (2 (35A1,25A2,5A3))
The following paragraphs discuss the manner in which you may use the

foregoing statement forms and the effect each has on the data
involved.

13.2 FORMAT DESCRIPTORS

FORMAT statement descriptors describe the record structure of the
data, the format of fields within the record, and the conversion,
scaling, and editing of data within specific fields. The following
descriptors can be used with FORTRAN-10:

Descriptors Comments
rFw.d
rEw.d Floating point numeric field descriptors
rDw.d
rGw.d
riw Integer field descriptor
rLw Logical field descriptor
rAw } Alphanumeric data field descriotor
£ Rw
kHs } Alphanumeric data in a FORMAT statement field
'text' descriptor
rx } Field formatting descriptors
Tw
np Numerical scale factor descriptor
/ Record delimiter
$ Carriage return suppression for terminal
rOw Octal field descriptor

13-2

FORMAT STATEMENT

where

r = an optional unsigned integer representing a repeat count.
This option enables a field descriptor to be repeated r
times.

W = an optional integer constant representing the width (total
number of characters contained) of the external form of
the field being described. All characters, including
digits, decimal ©points, signs, and blanks that are to
comprise the external form of the field, must be included
in the value of w.

.d = an optional unsigned integer specifying the number of
fractional digits that are to appear 1in the external
representation of the field being described. Note that w
must be specified if ' .d is included in the descriptor.

k = an unsigned integer specifying the number of characters to
be processed during the transfer of alphanumeric data.

s = represents a string of ASCII (alphanumeric) characters.

n a signed integer constant (plus signs are optional).

The characters A, D, E, F, G, H, I, L, O, P, and R indicate the manner
of conversion and editing to be performed between the internal
(processor) and external representations of the data within a specific
field; these characters are referred to as conversion codes. Table
13-1 gives the FORTRAN-10 conversion codes and a brief description of
the function of each.

Table 13-1
FORTRAN-10 Conversion Codes

Code Function

Transfer alphanumeric data

Transfer real data with a D exponent (1)
Transfer real data with an E exponent (1)
Transfer real data without an exponent
Transfer integer, real, complex, or logical data
Transfer literal data

Transfer integer data

Transfer logical data

Transfer octal data

Numerical scaling factor

Transfer alphanumeric data

WOOr-TIOm@Tmo P

1. An exponent of 0 is assumed if none is given.

The use of commas to delineate format descriptors within a format
specification 1is optional as 1long as no ambiquity exists. For
example,

FORMAT (3X,A2)

can be written as

FORMAT (3XA2)

13-3

FORMAT STATEMENT

Since interpretation of a format specification is 1left associative,
the specification

FORMAT (122,15)
can be written as

FORMAT (I12215)
However, a comma is required when you wish to specify

FORMAT (I2,215)
The following paragraphs provide detailed descriptions of the wvarious

types of format descriptors, the manner in which they are written and
employed, and their use in FORMAT statements.

13.2.1 QNumeric Field Descriptors

The forms of the field descriptors used to specify the format and
conversion of numeric data follow.

Description Type of Data Used For
Dw.d Double-precision data with a D exponent
Ew.d Real data with an E exponent
Ew.d,Ew.d For the real and imaginary parts of a complex
datum
Fw.d Real or double-precision data without an exponent
Fw.d,Fw.d For the real and imaginary parts of a complex
datum
Iw Integer data
Oow Octal data
Gw.d Real or double-precision data
Gw For integer (or logical) data
Gw.d,Gw.d For the real and imaginary parts of a complex
datum
NOTE

The G conversion code may be used for
all but octal numeric data types.
Examples
Consider the following program segment:
INTEGER I1,I2

REAL R1,R2,R3
DOUBLE PRECISION D1,D2

I1 = 506

12 = 8

Rl = 506.0

R2 = 13.1

R3 = 506001.0
D1 = 13.0

D2 = -504.0

13-4

FORMAT STATEMENT

Table 13-2 describes the actions performed by several types of
formatted WRITE statements on the data given in the foregoing program
segment.

Table 13-2
Action of Field Descriptors On Sample Data
Item|Descriptor | Sample WRITE External
Form Descriptor Statement Form External
Using the of Sample | Appearance
Sample Field of Sample
Descriptor Described | Data
1 Dw.d D8.2 WRITE(-,-)D1| Z.nnD nn | 0.18D+02
2 Ew.d E8.2 WRITE(-,-)R1| Z.nnE nn | 0.51E+03
3 Fw.d F5.2 WRITE(-,-)R2| aa.nn 13.10
4 Iw I5 WRITE(-,-)I1| aaaan BPB506
5 Iw I2 WRITE(-,-)I1] an * ok
) Ow 05 WRITE(-,-)I2| nnnnn 00010
7 Gw.d G8.2 WRITE(-,-)D2| Z.nnD nn{ -.50D+02
8 Gw.d G8.2 WRITE(-,-)R3| Z.nnE nn| 0.51E+06
9 Gw.d G8.2 WRITE(-,-)R2| aa.nn Brr18.10
10 Gw G5 WRITE(-,-)I1}| aaan BB506
where: a. n represents a numeric character.
b. 7 represents either a - or 0. (Note that if n-4d>6,
a negative number cannot be output.)
c. a represents a digit, leading blank (B) or a minus
sign depending on the numeric output.
Notes:

1. In Item 1, the value D1 has only two significant digits and
d=2, so no rounding will occur on input.

2. In Item 2, since Rl has 3 significant digits, it is rounded
to fit into the specified field.

3. In Item 5, the width (w) part of a format descriptor
specifies an exact field that ©permits no rounding of its
contents. If the w specification is too small for the datum
to be transferred, asterisks are output to indicate that the
transfer was not made.

4. In Ttém 6, Integer 8 = Octal 10.

5. In Items 8 and 9, the relationship between G and fixed and
floating real data is discussed in Paragraph 13.2.3.

6. In Items 1, 2, 3, 7, and 8, the D and E exponent prefixes are
optional in the external form of the floating point
constants. For example, 1.1E+3 may be written as 1.1+3.

Table 13-3 summarizes the internal and external forms of the data
specified by the numeric format conversion code.

13-5

FORMAT STATEMENT

Table 13-3
Numeric Field Codes
Internal Form Conversion External Form
Code

Binary floating-point D Decimal floating-point with D

double-precision exponent

Binary floating-point E Decimal floating-point with E

exponent

Binary floating-point F Decimal fixed-point

Binary integer I Decimal integer

Binary word 0 Octal value

One of the following: G Single-precision decimal

single-precision floating-point, decimal

binary floating-point, integer, logical (T or F), or

binary integer, binary complex (two decimal

logical, or binary floating-point numbers),

complex depending upon the internal

form

Complex quantities transfer as two independent real quantities. The
format specification for complex gquantities consists of either two
successive real field descriptors or one repeated real field

descriptor. For example, the statement
FORMAT (2E15.4,2(F8.3,F8.5))

may transfer up to three complex quantities.

The equivalent of the foregoing statement is

FORMAT (E15.4,E15.4,F8.3,F8.5,F8.3,F8.5)

13.2.2 1Interaction of Field Descriptors With I/O Variables

The execution of an I/O statement that specifies a formatted data
transfer operation initiates format control. The actions performed by
format control depend on information provided by the elements of the
I/0 statement's 1list of variables and the field descriptors that
comprise the referenced FORMAT statement's format specifications.

In processing each FORMAT controlled I/0 statement that has an 1I/0
list, FORTRAN-10 scans the contents of the 1list and the format
specifications in step. Each time another variable or array element
name 1is obtained from the 1list, the next field specification is
obtained from the format specification. If the end of the format
specification is reached and more items remain in the list, a new line
or record is established and the scan process is restarted, either at
the first item in the format specification or, if parenthesized, sets
of format specifications exist within the format specification, with
the last set within the format specification.

13-6

FORMAT STATEMENT

When the I/0 list is exhausted, control proceeds to the next statement
in the program, but not before the FORMAT statement is scanned either
to 'its end or to the next variable transfer format descriptor. (That
is, the FORMAT statement is scanned past slashes, literal constants,
flollerith field descriptors, and spacing descriptors, but not past
data field descriptors.)

A record is terminated by one of the following:
1. a slash in the FORMAT specification
2. the delimiting right parentheses,), of the FORMAT statement
3. a lack of items in the I/O list

4. a lack of Hollerith or 1literal field descriptors in the
FORMAT statement

On input, an additional record is read only when a single slash, /, is
encountered in the FORMAT statement. A record is skipped when two
slashes, //, are encountered or a slash is followed by the end of the
FORMAT statement. If the FORMAT statement finishes a record by a
slash or the end of the FORMAT statement, any data left in the input
record 1is ignored. If the input record is exhausted before the data
transfers are completed, the remainder of the transfer is completed as
if the record were extended with blanks.

On output, an additional record is written only when a slash, /, is
encountered in the FORMAT statement. If a pair of consecutive
slashes, //, or a single slash followed by the end of the FORMAT
statement is encountered, an empty record is written.

13.2.3 G, General Numeric Conversion Code

You may use the G conversion code in field descriptors for the format
control of real, double-precision, integer, logical, or complex data.

With the exception of real and double-precision data, the type of
conversion vperformed by a type G field descriptor depends on the type
of its corresponding I/0 list variable. In the case of real and
double-precision data, the kind of conversion performed is a function
of the external magnitude of the datum being transferred. Table 13-4
illustrates the conversion performed for various ranges of magnitude
(external form) of real and double-precision data.

13.2.4 Numeric Fields with Scale Factors

You may add scale factors to D, E, F, and G conversion codes in field
descriptors. The scale factor has the form

npP
where n is a signed integer (+ is optional) and P identifies the

operation. When wused, a scale factor is added as a orefix to field
descriptors.

13-7

FORMAT STATEMENT

Examples

-2PF10.5
1PE8.2

When you add a scale factor to an type F field descriptor (or type G
if the external field 1is a fixed point decimal) a power of 10 is
specified so that

External Form of Number = (Internal Form)*10**(scale factor)

For example, assuming the data involwed to be the real number 26.451,
the field descriptor

F8.3
produces the external field
BB26.451
Table 13-4

Descriptor Conversion of Real and Double-Precision
Data According to Magnitude

Magnitude of Data in Equivalent Method of
External Form (M) Conversion Performed
0.1 M<1 F(w—-4) .d,4X
1 M<10 F(w-4).(d-1) ,4X
10d-2 M<104-1 F(w-4).1,4X
10d-1 M<lo0d F(w-4).0,4X
ALL OTHERS Ew.d

NOTE

In all numeric field conversions, the
field width (w) vyou specify should be
large enough to include the decimal
point, sign, and exponent character in
addition to the number of digits. If
the specified width 1is too small to
accommodate the converted number, the
field will be filled with asterisks (*).
If the number converted occupies fewer
character positions than specified by w,
it will be right-justified in the field
and 1leading blanks will be used to fill
the field.

13-8

FORMAT STATEMENT

The addition of the scale factor of -1P
-1PF3.3
produces the external field

BpB2.645

When you add a scale factor to D, E, and G (external field not a
decimal fixed-point) type field descriptors, it multiplies the number
by the specified power of ten and the exponent is changed accordingly.

In input operations, type F (and type G, if the external field is
decimal fixed=-point) conversions are the only ones affected by scale
factors.

when you specify no scale factor, it is understood to be zero. Once
you specify a scale factor, however, it holds for all subseguent types
D, E, F, and G field descriptors within the same format specification
unless another scale factor is specified. A scale factor is reset to
zero when you specify a scale factor of zero. Scale factors have no
effect on I and O type field descriptors.

When you add a scale factor to a D or E field descriptor, it specifies
a power of 10 so that the external form of the number has its mantissa
multiplied by the specified power of 10; its exponent 1is adjusted
accordingly.

For example, assuming the data involved to be the real number 12.493,
the field descriptor

E11.3

prcocduces the external field
BBO.125E+02

The addition of the scale factor 2P
2PE11.3

prcduces the external field
bbl12.49E+00

With a scale factor of zero, the number of significant digits printed
by a format of the form

Ew.d
or

Dw.d
is the number of digits to the right of the decimal point.
For a negative scale factor nP, for d<n<0, there will ©be ABS(n)
leading zeros and d-ABS(n) significant digits after the decimal point,
for a total of d digits after the decimal point. If n -d, there will
be 4 insignificant digits (zeros) to the right of the decimal point.
If the scale factor nP is positive, for 0<n<d+2 there will be n

significant digits to the left of the decimal point and d-n+l
significant digits to the right of the decimal point (for a total of

13-9

FORMAT STATEMENT

d+1 significant digits). If n>d+2, there will be d+1 significant
digits and n-d-1 insiqgnificant trailing zeros on the 1left of the
decimal point.

If the data to be printed is 12.493, these formats produce results as
follows:

FORMAT OUTPUT SIGNIFICANT REASON
DIGITS

E15.3 bbbbbb0.125E+02 3 n=0
1PE15.3 bbbbbbl.249E+01 4 n<d+2
-1PE15.3 bobbbb.012E+03 3 -d<n
2PE15.3 bbbbbbl2.49E+00 4 n<d+2
-3PE15.3 bbbbbb0.000E+05 0 n -d
4PE15.3 bbbbbb1249.E-02 4 n<d+2
6PE15.3 bbbb124900.E-04 4 n d+2

13.2.5 Logical Field Descriptors

You may transfer logical data under format control in a manner similar
to numeric data transfer by use of the field descriptor

Lw

where L is the control character and w is an integer specifying the
field width. The data is transmitted as the value of a corresponding
logical variable in the associated input/output list.

On input, the first non-blank character in the logical data field must
be T or F, the value of the logical variable is stored in the list
variable as true or false, respectively. If the entire input data
field is blank or empty, a value of false is stored.

On output, w minus 1 blanks followed by T or F will be output if the
value of the logical variable is true or false, respectively.

13.2.6 Variable Numeric Field Widths

Several of the conversion codes are acceptable in FORMAT statements
without field width specifications, the w.d portion of the
specification so that can be omitted(1l).

On input, the conversion codes D, E, F, G, I, L, and O are acceptable
without field width specifications. The field begins with the first
non-blank character encountered and ends with the first illegal
character 1in the given field. (Blanks and tabs also terminate a
field.) ©Note that for <conversion code L (logical data) , all
consecutive alphabetics following a T (true) or an F (false) are
considered part of the field and are ignored. In succeeding fields
the input stream is scanned wuntil a non-blank <character is
encountered. If the character is a comma (,), the next field 1is
skipped, and the following input field begins with the character
following the comma. Any character other than a comma is assumed to
be the first character in the next input field. Null fields are

1. If 4 is given, w must also be specified.

13-10

FORMAT STATEMENT

denoted by successive commas optionally separated by blanks or tabs.
A null field 1is -equivalent to a fixed-field input of blanks. For
example, the source code

READ 1, X, ¥, 2, L, I, J
1 FORMAT (3F, L, I, A3)

with data as follows
,1.0E+5,,TRUEXXX 1 BBBEBABC

results in

X = 0.0

Y = 1.0E+5
Z =0.0

L = TRUE

I =1

J = 'ABC'

Note that if a comma is included in the input data after the XXX1 and
before the blanks, i.e., the data is

,1.0E+5 ,, TRUEXXX1,BBBBABC
then J = ‘BB’
On output, the format codes A, D, E, F, G, I, L, 0O, and R are

acceptable - without field width specifications. The following defaults
are assumed:

Format Code Assumed Default
for KAlO for KI10,KL10

A single-precision A5 A5

A double-precision Al0 Alo0

D D25.16 D25.18
E E15.7 E15.7
F F15.7 F15.7
G single-precision Gl15.7 Gl5.7
G double-precision G25.16 G25.18
I I15 I15

L L15 L15

0 015 015

R single-precision R5 R5

R double-precision R10 R10

13.2.7 Alphanumeric Field Descriptors

You may accomplish the formatted transfer of alphanumeric data 1in a
manner similar to the formatted transfer of numeric data by use of the
field descriptors Aw and Rw, where A and R are the control characters
and w is the number of characters in the field.

The A and R descriptors both transfer alphanumeric data into or from a
variable in an input/output list depending on the I/0 operation. A
list variable may be of any type. For example,

READ (6,5) V
5 FORMAT (A4)

13-11

FORMAT STATEMENT

causes four alphanumeric characters to be read from unit 6 and stored
in the variable V.

The A descriptor deals with variables containing left-justified,
blank-filled characters; the R descriptor deals with wvariables
containing right-justified, =zero-filled <characters. The following
paragraphs summarize the result of alphanumeric data transfer (both
internal and external representations) using the A and R descriptors.
These paragraphs assume that w represents the field width and m
represents the total number of characters possible in the wvariable.
Double precision variables contain 10 characters (m=10); all other
variables contain 5 (m=5).

A Descriptor

1. 1INPUT, where w>m -- The rightmost m characters of the field
are read in and stored left-justified and blank-filled in the
associated variable.

2. INPUT, where w < m -- All w characters are read in and stored
left-justified and blank-filled in the associated variable.

3. OUTPUT, where w>m ~-- m characters are output and
right-justified 1in the field. The remainder of the field 1is
blank-filled.

4, OUTPUT, where w < m -- The left most w characters of the
associated variable are output.
R Descriptor
1. 1INPUT, where w>m -- The right most m characters of the field
are read 1in and stored right-justified, zero-filled in the

associated variable.

2. INPUT, where w < m -- All w characters are read in and stored
right-justified, zero-filled in the associated variable.

3. OUTPUT, where w>m -- m characters are output and right
justified 1in the field. The remainder of the field is blank
filled.

4. OUTPUT, where w < m -- The right most w characters of the

associated variable are output.

13.2.8 Transferring Alphanumeric Data

You may transmit alphanumeric data directly into or from the FORMAT
statement by two different methods: H-conversion, or the use of
single quotas, i.e., a literal field descriptor.

In H-conversion, the alphanumeric string is specified in the form nH,
where H 1s the <control character and n 1is the total number of
characters (including blanks) in the string. For example, you may use
the following statement sequence to print the words PROGRAM COMPLETE
on the device LPT:

PRINT 101
101 FORMAT (17HPPROGRAMPCOMPLETE)

13-12

FORMAT STATEMENT

Read and write operations of this type are initiated by I/0 statements
that reference a format statement and a logical device, but do not
contain an I/0 list (see preceding example).

Write transfers from a FORMAT statement cause the contents of the
statement field descriptor to be output to a specified logical device.
The contents of the field descriptor, however, remain unchanged.

Read transfers with a FORMAT statement cause the contents of the field
descriptors involved to be replaced by the characters input from the
specified logical device.

Alphanumeric data is stored in a field descriptor left-justified. If
the data input into a field has fewer characters than the field,
trailing blanks are added to fill the field. If the data input is
larger than the field of the descriptor, the excess rightmost
characters are lost.

Examples

WRITE (1,101)
101 FORMAT (17HYPROGRAMBCOMPLETE)

cause the string PROGRAM COMPLETE to be output to the file on device
1.

Assuming the string START on device 1, the sequence

READ (1,101)
101 FORMAT (17HPPROGRAMPCOMPLETE)

would change the contents of statement 101 to
101 FORMAT (l7HSTARTBBBBLBEEBBYL)
The foregoing functions may also be accomplished by a literal field
descriptor consisting of the desired character string enclosed within-
apostrophes, i.e., 'string'. For example, you may use the descriptors
101 FORMAT (17HKPROGRAMPCOMPLETE)
and
101 FORMAT ('BPROGRAMPCOMPLETE')
in the same manner.
The result of literal conversion is the same as Hd-conversion. On
input, the characters between the apostrophes are replaced by input
characters, and on output, the characters between the apostrophes

(including blanks) are written as part of the output data.

An apostrophe character within a literal field should be represented

by two successive apostrophe marks; otherwise, the statement
containing the field will not compile. For example, the statement
seguence

50 FORMAT ('DON''T')
PRINT 50

will compile and will cause the word DON'T to be output on the line
printer. The statement

50 FORMAT ('DON'T"')

however, will cause a compile error.
13-13

FORMAT STATEMENT

13.2.9 Mixed Numeric and Alphanumeric Fields

You may place an alphanumeric field descriptor among other fields of
the format. For example, you may use the statement:

FORMAT (14,7HYPFORCE=F10.5)
to output the line:
BB 22PBFORCE=B¥B17.68901

You may omit the separating comma after an alphanumeric format field,
as shown in the foregoing statement.

Wwhen you omit a comma delimiter from a format specification, format

control associates as much information as possible with the leftmost
of the two field descriptors.

13.2.10 Multiple Record Specifications

To handle a group of input/output records where different records have
different field descriptors, use a slash to indicate a new record.
For example, the statement

FORMAT (303/15,2F8.4)
is equivalent to

FORMAT (303)
for the first record, and

FORMAT (I5,2F8.4)
for the second record.
You may omit separating commas when you use a slash. When n slashes
appear at the end or beginning of a format, n blank records will be
written on output or skipped on input. When n slashes appear in the
middle of a format, n-1 blank records are written on output or n-1
records skipped on input.
Both the slash and the closing parenthesis at the end of the format
indicate the termination of a record. If the list of an input/output
statement dictates that the transmission of data is to continue after
the closing parenthesis of the format 1is reached, the format is
repeated, starting with:

1. that group repeat specification terminated by the last right
parenthesis of the next lower level group, or

2. 1level zero if no higher level group exists.
Thus, the statement
FORMAT (F7.2,(2(E15.5,E15.4),17))
level 0 level 0
level 1 level 1

level 2

13-14

FORMAT STATEMENT

causes the format
2(E15.5,E15.4) ,17

to be used after the first record.

As a further example, consider the statement
FORMAT (F7.2/(2(E15.5,E15.4),17))

The first record has the format
F7.2

and the next 5 records have the format

2(E15.5,E15.4) ,17

13.2.11 Record Formatting Field Descriptors

You may use two field descriptors, Tw and nX, to position data within
a record.

You may use the field descriptor Tw to specify the character position
(external form) in which a record begins. 1In the Tw field descriptor,
the letter T is the control character, and w is an unsigned integer
constant that specifies the character position, in a FORTRAN-10
record, where the transfer of data is to begin. When the output is
printed, w corresponds to the (w-1l)th print position, since the first
character of the output buffer is a forms control character and is not
printed. It is recommended that the first field specification of the
output format be 1X, except where a forms control character is used.

NOTE
Two successive T field specifications
will result in the second field
overwriting the first field.
Examples
The statement sequence

PRINT 2
2 FORMAT (T50,'BLACK',T30,'WHITE'")

causes the following line to be printed

WHITE BLACK

(print position 29) (print position 49)
The statement sequence

1 FORMAT (T35,'MONTH')
READ (2,1)

13-15

FORMAT STATEMENT

causes the first 34 characters of the input data associated with
logical wunit 2 to be skipped, and the next five characters to replace
the characters M, O, N, T, and I in storage. If an input record
containing

ABCPBBEBXYZ
is read with the format specification

10 FORMAT (T7,A3,T1,A3)
then the characters XYZ and ABC are read in that order.
You may use the field descriptor nX to introduce blanks into output
records or to skip characters of 1input records. The letter X
specifies the operation, and n is a positive integer that specifies
the number of character positions to be either made blanks (output) or
skipped (input).
Example
The statement

FORMAT (5HBSTEP,I15,10X,2HY=,F7.3)

nay be used to print the line

STEPBBIB28BBBBRBBIBKY=p-3.872

13.2.12 $ Format Descriptor

A $ format descriptor at the end of an output FORMAT 1is used to
suppress the carriage return at the end of the current record. It is
mainly used on terminal output but will work on non-terminal devices.
A $ format descriptor is ignored in input FORMATs and has no effect if
embedded in an output FORMAT. The $ format descriptor must be the
next format descriptor to be processed when the corresponding output
list is exhausted for the $ descriptor to have the defined effect.

13.3 CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

You may use the first character of an ASCII record to <control the
spacing operations of the line printer or Teletype terminal printer
unit on which the record 1is being printed. Specify the control
character desired by beginning the FORMAT field specification for the
ASCII record to be output with 1Ha...where a is the desired control
character. Table 13-5 describes the control characters permitted in
FORTRAN-10 and the effect each has on the printing device.

13-16

FORMAT STATEMENT

Table 13-5
FORTRAN-10 Print Control Characters

FORTRAN Character | Printer Character | Octal Value Effect

space LF 012 Skip to next
line with form
feed after

60 lines

0 zero LF,LF 012 Skip a line

1 one FF 014 Form feed - go
to top of next
page

+ plus suppress

skipping -
overprint the
line

* asterisk DC3 023 Skip to next
line with no
form feed

- minus LF,LF,LF 012 Skip two lines

2 two DLE 020 Space 1/2 of a
page

3 three VT 013 Space 1/3 of a
page

/ slash DC4 024 Space 1/6 of a
vage

. period ' DC2 022 Triple space
with a form
feed after
every 20 lines
printed

s comma DC1 021 Double space

with a form
feed after
every

30 lines
printed

NOTE

Printer control characters DLE, DC1,
DC2, DC3, and DC4 affect only the line
printer.

13-17

CHAPTER 14

DEVICE CONTROL STATEMENTS

14.1 INTRODUCTION

You may use the following device control statements in FORTRAN-10
source programs:

1. REWIND

2. UNLOAD

3. BACKSPACE(1)
4. ENDFILE

5. SKIPRECORD(1)
6. SKIPEILE

7. BACKFILE

The general form of the foregoing device control statements is

keyword u
keyword (u)

where
keyword is the statement name
u is the FORTRAN-10 logical device number (Chapter 10,
Table 10-1) ‘
The operations performed by the device control statement are normally
used only for magnetic tape devices (MTA). In FORTRAN-10, however,

the device control operations are simulated for disk devices.

The following paragraphs describe the form and wuse of the device
control statements.

14.2 REWIND STATEMENT

Form: REWIND u

Use: Move the file contained by device u to its initial
(load) point. If the medium is already at its load
point, this statement has no effect. Subsequent READ

1. The results of these commands are unpredictable when used on 1list-
directed and NAMELIST-controlled data.
14-1

14.3

14.4

14.5

Example:

DEVICE CONTROL STATEMENTS

or WRITE statements that reference device u will
transfer data to or from the first record located on
the medium mounted on device u.

REWIND 196

UNLOAD STATEMENT

Form:

Use:

Example:

UNLOAD u

Move the medium contained on device u past 1its 1load
point until it has been completely rewound onto the
source reel.

UNLOAD 156

BACKSPACE STATEMENT

Form:

Jse:

Example:

END FILE

SACKS5PACE u

Move the wmedium contained on device u to the start of
the record that precedes the current record. If the
preceding record prior to execution of this statement
was an endfile record, the endfile record becomes the
next record after execution. If the current record 1is
the first record of the file, this statement has no
affect.

NOTE
You cannot use this statement for files

set up for random access, list-directed,’
or NAMELIST-controlled I/O overations.

BACKSPACE 16

STATEMENT

Form:

Use:

Example:

END FILE u

Write an endfile record in the file located on device
u. The endfile reccord defines the end of the file that
contains it. If an endfile record is reached during an
I/0 operation initiated by a statement that does not
contain an END= option, the operation of the current
orogram is terminated.

END FILE 1%

14-2

14.6

14.7

14.8

14.9

Table
contr

DEVICE CONTROL STATEMENTS

SKIP RECORD STATEMENT
Form: SKIP RECORD u
Use: In accessing the file located on device u, skip the
record immediately following the current (last
accessed) record.
NOTE
You cannot use this statement for files set up
for random access, list~directed, or
NAMELIST-controlled I/O operations.
Example: SKIP RECORD 15
SKIP FILE STATLMENT
Form: 3KIP FILE u
Use: In accessing the medium located on wunit wu, skip the
file immediately following the current (last accessed)
file. TIf the number of SKIP FILE overations specified
exceeds the number of following files available, an
error will occur.
Example: 3KIP FILE 01
BACRKFILE STATEMENT
Form: BACKFILE u
Use: Move the medium mounted on device u to the start of the

Example:

file that precedes the current (last accessed) file.

If the number of BACKFILE operations performed exceeds
the number of preceding files, completion of the last
operation will move the medium to the start of the
first file on the medium.

BACKFILE 20

SUMMARY OF DEVICE CONTROL STATEMENTS

14-1 summarizes the form and use of the FORTRAN-10 device
ol statements

14-3

DEVICE CONTROL STATEMENTS

Table 14-1

Summary of FORTRAN-10 Device Control Statements

Statement Form

Use

REWIND u
UNLOAD u

END FILE u
SKIP RECORD u
SKIP FILE u
BACKFILE u
BACKSPACE u

Rewind medium to its load point

Rewind medium onto its source reel

Write an endfile record into the current
Skip the next record

Skip the next file

Move medium backwards one file

Move medium back one record

file

14-4

CHAPTER 15

SUBPROGRAM STATEMENTS

15.1 INTRODUCTION

Procedures you use repeatedly in a program may be written once and
then referenced each time you need the procedure. Procedures that may
be referenced are either internal (written and contained within the
program in which they are referenced) or external (self-contained
executable procedures that mav be compiled separately). The kinds of
FORTRAN-10 procedures that may be referenced arc:

1. statement functions,
2. intrinsic functions (FORTRAN-10 defined functions),
3. external functions, and
4. subroutines.
The first three of the foregoing categories are referred to

collectively as functions or function procedures; w»rocedures of the
last category are referred to as subroutines or subroutine procedures.

15.1.1 Dummy and Actual Arguments

Since you may reference subprograms at more than one point throughout
a program, many of the values used by the subproqgram may be changed
cach time it is used. Dummy arguments in subprograms represent the
actual values to be used, which are passed to the subprogram when it
is called.

Functions and subroutines use dummy arguments to indicate the type of
the actual arguments they represent and whether the actual arguments
are variables, array elements, arrays, subroutine names, or the names
of external functions. Each dummy argument must be used within a
function or subroutine as if it were a variable, array, array element,
subroutine, or external function identifier. Dummy arguments are
given in an argument list associated with the identifier assigned to
the subprogram; actual arguments are normally given in an argument
list associated with a call made to the desired subprogranm. (Examples
of argument lists are given in the following paragrapnhs.)

The position, number, and type of each dummy argument in a subprogram

list must agree with the position, number, and type of each argument
list of the subprogram reference.

15-1

SUBPROGRAM S5TATEMENTS

Dunmy arguments may be:
1. variables,
2. array names,
3. sudbroutine identifiers,
4, function identifiers, or

5. statement label identifiers that are denoted by the symbol
[LROR1} ["en
, "$", or "&".

wWwhen you reference a subprogram, its dummy arguments are replaced by
the <corresoonding actual argjuments supplied in the reference. All
apvearances of a dummy argument within a function or subroutine are
related to the given actual arguments. cExcept for subroutine
identifiers and literal constants, a valid association between dummy
and actual arguments occurs only 1if both are of the same type;
otherwise, the results of the subprogram computations will be

unpredictable. Argument association may be carried through more than
one level of subprogram reference if a valid association is maintained
through each level. The dummy/actual argument associations

established when a subvrogram is referenced are terminated when the
desired suborogram operations are completed.

The following rules govern the use and form of dummy arguments:

1. The number and type of the dummy arguments of a procedure
must be the same as the number and type of the actual
arguments given each time the procedure is referenced.

2. Dumay argument names may not appear in EQUIVALENCE, DATA, or
COMMON statements.

3. A variable dummy argument should have a wvariable, an array
element 1identifier, an expression, or a constant as its
corresponding argunmnent.

4. An array dummy arjument should have either an array name or
an array element identifier as its corresponding actual
argument. If the actual argument is an array, the length of
the dummy array should be less than or equal to that of the
actual array. Each element of a dummy array 1is associated
directly with the corresponding elements of the actual array.

5. A dummy argumnent representing a subroutine identifier should
have a subroutine name as its actual argument.

6. A Junmmy argument representing an external function must have
an external function as its actual argument.

7. A dummy argument may be defined or redefined in a referenced
subprogram only 1if its <corresponding actual argument is a
variable. 1If dummy arguments are array names, then elements
of the array may be redefined.

Additional information regarding the use of dummy and actual arguments

is given in the description of how subprograms are defined and
referenced.

15-2

SUBPROGRAM STATEMENTS

15.2 STATEMENT FUNCTIONS

Statement functions define an internal subprogram in a single
statement. The general form of a statement function is:

name (argl,arg2,...,argn)=E

where

name is a name you assign that consists of one to six
characters. The name you use must conform to the
rules for symbolic names given in Section 3.3.

The type of a statement function 1is determined
either by the first character of its name or by it
being explicitly declared in a type statement.

(argl...argn) represents a list of dummy arguments.
E is an arbitrary expression.

The expression E of a statement function may be any legitimate
arithmetic expression that may use the given dummy arguments and
indicates how they are combined to obtain the desired value. You may
use the dummy arguments as variables or indirect function references;
but you cannot use them as arrays. The dummy argument names bear no
relation to their use outside the context of the statement function
except for their data type. The expression may reference FORTRAN-10
defined functions (Paragraph 15.3) or any other defined statement
function, cr call an external function. It may not reference any
function that directly or indirectly references the given statement
function or any subprogram in the chain of references. That 1is,
recursive references are not allowed. Statement functions produce
only one value, the result of the expression that it <contains. A
statement function cannot reference itself.

You must define all statement functions within a program unit before
the first executable statement of the program unit. When used, the
statement function name must be followed by an actual argument 1list
enclosed within parentheses and may appear in any arithmetic or
logical expression.

Examples:

SSQR (K) = (K* (K+1) *2*K+1) /6
ACOSH (X) = (EXP (X/A) +EXP (=X/A)) /2.0

15.3 INTRINSIC FUNCTIONS (FORTRAN-10 DEFINED FUNCTIONS)

Intrinsic functions are subprograms that are defined and supplied by
FORTRAN-10. You can reference an intrinsic function by using its
assigned name as an operand in an arithmetic or 1logical expression.
Table 15-1 describes the names of the FORTRAN-10 intrinsic functions,
the type of the arguments that each accepts, and the function it
performs. These names always refer to the intrinsic function unless
they are preceded by an asterisk (*) or ampersand (&) in an EXTERNAL
statement, declared 1in a conflicting explicit type statement, or are
specified as a routine dummy parameter.

15-3

7-S1

NOTE

Octal constants may only be

used as

actual input to an intrinsic function

when the function expects

arqunents.

Table 15-1

Intrinsic Functions (FCRTRAN-10 Defined Functions)

octal

Function Mnemonic Definition Number of Type of
Arguments Argument Function
Absolute value:
Real ABS* arg 1 Real Feal
Integer IAES* arqg 1 Integer Integer
Double- precision DAES* ara 1 Double Double
Complex to real CABS C=(X**24Y**x2)**x (1/2) 1 Complex Real
Conversion:
Integer to real FLOAT** 1 Integer Real
Real to integer IFIX** Sign of arg * 1 Real Integer
largest integer
< largl
Double to real SHGL 1 Double Peal
Real to double DBLE* 1 Real Coukbkle

* In line functions.

**In line functions on KI10 and KL10 only.

SINIWALYIS WYYD0oddgns

6-aT

Intrinsic Functions

Table 15-1 (Cont.)

(FORTRAN-10 Defined Functions)

Function Mnemonic Cefinition Number of Type of
Arguments Argunment Function
Integer to double DFLOAT 1 Integer Double
Complex to real REAL* 1 Complex Real
(obtain real part)
Complex to real AIMAG 1 Complex Real
(obtain imaginary
part)
keal tc complex CMPLX* c=Arg + i*Arg 2 Real Complex
s] , i ;
! Truncation: ;
! Real to real \ AINT Sign of arg* 1 Real . Real
| largest integer |
| < |arg]
Real to integer INT* 1 Keal Integer
Double to integer IDINT 1 Double Integer
Remaindering:
Real AMCD The remainder 2 keal Real
Integer ! LOD* {when Arg 1 is 2 I Integer Integer
Double- precision | DMCD divided by Arg 2 2 ! Double Double
| |
Maximun value: i 1
! AMAXO >1 i Integer keal
i AMAX1* I >1 ' Real Real
{ MAXQ* “Max (Argl,Arg2,...) >1 Integer Integer
| HMAX1 l $ >1 keal Inteager
DMAX1 >1 | Double Double
| i

* In line functions.

SLNIWALVLS WYYD0¥ddns

9-GT

Intrinsic Functions

Table 15-1 (Cont.)

(FORTREAN-10 Defined Functionsg)

Function Yinemonic Pefinition Rumber of Type of
Arguments Argument Function
Adinimum Value:
AMING >1 Integer ' Real
I AMIN1* I >1 Real Real
MINO* Min (Argl,Arg2,...) >1 Integer Integer
MIN1 l s >1 Real Integer
CMINI >1 Double Doubtle
Transfer cf Sign:
Real SICN* 2 Real Real
Inteqger ISIGN San (Arg2) * |Argl| 2 Inteqger Inteqger
Double precision DSIGN Z Double Couble
Positive LCifference:
keal DIn* {Argl—Min(Argl,ArgZ& 2 Real Real
Integer IDIM 2 Inteqger Integer

In line functions.

SINAWILVYILS WvYDOAddNs

SUBPROGRAM STATEMENTS

15.4 EXTERNAL FUNCTIONS

External functions are function subprograms that consist of a FUNCTION
statement followed by a sequence of FORTRAN-10 statements that define
one or more desired operations; subprograms of this type may contain
one or more RETURN statements and must be terminated by an END
statement. Function subprograms are independent programs that may be
referenced by other programs.

The FUNCTION statement that identifies an external function has the
form:

type FUNCTION name (argl,arg2,...,argn)
where

type is an optional type specification as
described in Section 6.3. These include
INTEGER, REAL, DOUBLE PRECISION, COMPLEX or
LOGICAL (plus the optional size modifier, *n,
for compatibility with other manufacturers.)

name is the name you assign to the function. The
name may consist of from one to six
characters, the first of which must be
alphabetic. You may include the optional
size modifier (*n) with the name if the type
is specified. (Refer to Section 6.3.)

(argl,...,argn) is a list of dummy arguments.

If you omit type in the FUNCTION statement, the type of the function
may be assigned, by default, according to the first character of its
name, or may be specified by an IMBLICIT statement or by an explicit
statement given with the subprogram itself.

Note that if you want to use the same name for a user-defined function
as the name of a FORTRAN-10 defined function (library basic external
function), the desired name must be declared in an EXTERNAL statement
and prefixed by an asterisk (*) or ampersand (&) in the referencing
routine. (Refer to Section 6.7 for a description of the EXTERNAL
statement.)

The following rules govern the structuring of a FUNCTION subprogram:

1. You must use the symbolic name assigned a FUNCTION subprogram
as a variable name in the subprogram. During each execution
of the subprogram, this variable must be defined and, once
defined, may be referenced or redefined. The value of the
variable at the time of execution on any RETURN statement 1is
the value of the subprogram.

NOTE

A RETURN statement returns control to the calling
statement that initiated the execution of the
subprogram. See Section 15.6 for a description of
this statement.

15-7

SUBPROGRAM STATEMENTS

2. You may not use the symbolic name of a FUNCTION subprogram in
any nonexecutable statement in the subprogram except in the
initial FUNCTION statement or a type statement.

3. Dummy argument names may not appear in any EQUIVALENCE,
COMMON, or DATA statement used within the subprogram.

4. The function subprogram may define or redefine one or more of
its arguments so as to effectively return results in addition
to the value of the function.

5. The function subprogram may contain any FORTRAN-10 statement
except BLOCK DATA, SUBROUTINE PROGRAM, another FUNCTION
statement, or any statement that directly or indirectly
references the function being defined or any subprogram in
the chain of subprograms leading to this function.

6. The function subprogram should contain at least one RETURN
statement and must be terminated by an END statement. The
RETURN statement signifies a logical conclusion of the
computation made by the subprogram and returns the computed
function value and control to the «calling program. A
subprogram may have more than one RETURN statement.

The END statement specifies the physical end of the
subprogram and implies a return.

15.4.1 Basic External Functions (FORTRAN-10 Defined Functions)

FORTRAN-10 contains a group of predefined external functions that are
called basic functions. Table 15-2 describes each basic function, its
name, and its use. These names always refer to the basic external
functions unless declared in an EXTERNAL or conflicting explicit type
statement.

15.4.2 Generic Function Names

The compiler generates a call to the proper FORTRAN-10 defined
function, depending on the type of the arguments, for the following
generic function names:

ABS
AMAX1
AMIN1
ATAN
ATAN?2
cos
INT
MOD
SIGN
SIN
SQRT
EXP
ALOG
ALOG10

In the following example

K=ABS (I)

15-8

SUBPROGRAM STATEMENTS

the type 0of I dete.mines which function 1is called. If I 1is an
integer, the compiler generates a call to the function IABS. If I is
real, the compiler generates a call to the function ABS. If I |is

double precision, the compiler generates a call to the function DARBS.

The function name loses its generic properties if it appears 1in an
explicit type statement, 1if it is specified as a dummy routine
parameter, or if it is prefixed by "*" or "&" in an EXTERNAL
statement. When a generic function name that was specified unprefixed
in an EXTERNAL statement is used as a routine parameter, it is assumed
to reference a FORTRAN-10 defined function of the same name, or if
none exists, a user-defined function. Note that IMPLICIT statements
have no effect upon the data type of generic function names unless the
name has been removed from its class by use of an EXTERNAL statement.

15.5 SUBROUTINE SUBPROGRAMS

A subroutine is an external computational procedure that is identified
by a SUBROUTINE statement and may or may not return values to the
calling program. The SUBROUTINE statement wused to identify a
subprogram of this type has the form:

SUBROUTINE name (argl,arg2,...,argn)

where
name is the symbolic name of the subroutine to he
defined.
(arcl,...,argn) is an optional list of dummy arguments.

15-9

0T-GT

Table 15-2

Basic External Functions (FORTR2AN-10 Defined Functions)
Function Mnemonic Definition Number of Type of
Arguments Argument Function
Exponential:
Real EXP Arqg 1 Real Feal
Double DEXP 1 Pouble Double
Complex CEXP ' 1 Complex Complex
Logarithm: :
Real ALCG ! In (Arqg) 1 Real Real
ALOG1G | log (Arg) 1 Real Real
Double DLOGC : In (Ara) 1 Double Double
DLOG10 log (Arqg) 1 Double Double
Complex CLOG In (Ara) 1 Complex Complex
Square Root:
Real SQRT* (Arg)**1/2 1 Real Real
Double DSQRT (Arg)**1/2 1 Double Double
Complex CSQRT (Arg)**1/2 1 Complex Complex
Sine:
Real (radians) SIN* 1 Real Real

*Ceneric functions

SINIWILVLS WYIDO0UYddNs

BRasic External Func

~
ap
1

1 ~ -
15-2 (Cont.)

1 A
1<
ons (FORTRAN-10 Defined Functions)

TT-6T

Function Mnenoc Definition Number of T of
Arguments Argument Function
Real (degrees) SIND 1 Real Real
Double (radians) DSIN sin(Arqg) 1 Double Double
Complex CSIN 1 Complex Complex
Cosine:
Real (radians) COs* I 1 Real ' Real
Real (degrees) CcsD 1 Real | Real
Double (radians) DCCS cos(Arg)‘ 1 Double { Double
Complex CCos 1 Complex i Complex
i
Hyperbolic
Sine SINH sinh (Arg) 1 Real Real
Cosine cosH cosh (Arqg) 1 Real Real
Tangent TANH tanh (2rqg) 1 Real Real
Arc sine ASIN asin(Arqg) 1 Real Real
Arc cosine ACOS acos (Arqg) 1 Real Real i
| |
Arc tangent ; f
Real | ATAN* atan (Arqg) 1 Real Real
Double | DATAN datan (Arqg) 1 Double Double
Two REAL arguments i ATAN2* atan(Argl/Arqg?2) 2 Real Real

*Generic functions

SINAWALYLS WYdD0dddns

¢T-ST

Basic Externail

Functions

Table 15-2 (Cont.)
(FORTRAWN-1C Defined Functions)

Function Mnemonic Definition Number of Tyoe of
Arguments Argument Function
Two DOUELE arauments CATANZ atan(Argl/Arg?2) 2 Double Double
Complex Conjugate CONJG Arg=X+iY,CONJG=X-1Y 1 Complex Complex
Random Number RAN Result is a random Inteqger, Real
number in the range 1 Dunmnmy Real,
of 0 to 1.0 Argument | Couble,
or
Remainder of time limit TIM2GC Remainder of time 1 Cunmy Integer, Real
limit for job in Argument | Real,
seconds Double,
or Complex

SINIWILYLS WRID04ddNS

SUBPROGRAM STATEMENTS

The following rules control the structuring of a subroutine
subprograim:

1. You may not use the symbolic name of the subprogram in any
statement within the defined subprogram except the SUBROUTINE
statement itself.

2. You may not use the given dummy arguments in an EQUIVALENCE,
CCMMON, or DATA statement within the subprogram.

3. The subroutine subprogram may define or redefine one or more
of its arguments so as to effectively return results.

4. The subroutine subprogram may contain any FORTRAN-10
statement except BLOCK DATA, FUNCTION, another SUBROUTINE
statement, or any statement that either directly or
indirectly references the subroutine being defined or any of
the subprograms in the chain of subprogram references leading
to this subroutine.

5. Dummy arguments that represent statement labels may be either
an *, §, or &.

6. The subprogram should contain at least one RETURN statement
and must be terminated by an END statement. The RETURN
statements indicate the logical end of a computational
routine; the END statement signifies the physical end of the
subroutine.

7. Subroutine subprograms may have as many entry points as

desired (see description of ENTRY statement given in Section
15.7).

15.5.1 Referencing Subroutines (CALL Statement)

You must reference subroutine subprograms by using a CALL statement of
the following form:

CALL name (argl,arg2,...,arqn)
where

name is the symbolic name of the desired
subroutine subprogram.

(argl,...,argn) is an optional 1list of actual arguments. If
the list is included, the given actual
arguments must agree in order, number, and
type with the corresponding dummy arguments
given in the defining SUBROUTINE statement.

The use of literal constants is an exception to the rule requiring
agreement of type between dummy and actual arguments. An actual
argument in a CALL statement may be:

1. a constant

2. a variable name

15-13

SUBPROGRAM STATEMENTS

3. an array element identifier
4. an arrav name
5. an expression
6. the name of an external subroutine, or
7. a statement label.
Example:
The subroutine

SUBROUTINE MATRIX (I,J,K,M,*)

END
may be referenced by

CALL MATRIX(10,20,30,40,$101)

15.5.2 FOKTRAN-10 Supplied Subroutines

FORTRAN-10 provides you with an extensive group of predefined
subroutines. Table 15-3 gives the descriptions and names of these
vredefined subroutines.

15.6 RETURN STATEMENT AND MULTIPLE RETURNS

The RETURN statement causes control to be returned from a subprogram
to the calling program unit. This statement has the form:

RETURN (standard return)
or
RETURN e (multiple returns)
where e represents an integer constant, variable, or expression. The

execution of this statement in the first of the foregoing forms (i.e.,
standard return) causes control to be returned to the statement of the
calling program that follows the statement that called the subprograim.

The multiple returns form of this statement, i.e., RETURN e, enables
you to select any labeled statement of the calling program as a return
point. When the multiple returns form of this statement is executed,
the assigned or calculated value of e specifies that the return is to
be made to the eth statement label in the argument list of the calling
statement. The value of e should be a positive integer that is equal
to or less than the number of statement labels given in the argument
list of the calling statement. If e is less than 1 or is larger than
the number of available statement labels, a standard return operation
is performed.

15-14

SUBPROGRAM STATEMENTS

NOTE
A dummy argument for a statement label

must be either a *, $, or & symbol.

You may use any number of RETURN (standard return) statements in any
subprogram. The use of the multiple returns form of the RETURN
statement, however, is restricted to subroutine subprograms. The
execution of a RETURN statement in a main program will terminate the
program.
Example

Assume the following statement sequence in a main program:

CALL EXAMP(1,$10,K,$15,M,$20)
GO TO 101

10 ..ceea. ‘o

15 e,

20 i i

15-15

SUBPROGRAM STATEMENTS
Assume the following statement sequence 1in the <called SUBROUTINE
subprogram:

SUBROUTINE EXAMP (L, *,M, *,N,*)

RETURN

RETURN

éETURN(C/D)

END
Each occurrence of RETURN returns control to the statement GO TO 101

in the calling program.

If, on the execution of the RETURN(C/D) statement, the value of (C/D)
is:

Less than or equal to: The following is performed:

0 a standard return to the GO TO 101
statement is made

1 the return is made to statement 10

2 the return is made to statement 15

3 the return is made to statement 20
Greater than or egqual to: The following is performed:

4 a standard return to the GO TO 101

statement is made.

15.6.1 Referencing External FUNCTION Subprogram

Reference an external function subprogram by using its assigned name
as an operand in an arithmetic or logical expression in the calling
program unit. The name must be followed by an actual argument 1list.
The actual arguments in an external function reference may be:

1. a variable name,

2. an array element identifier,

3. an array name,

4. an expression,

5. a statement number, or

15-16

SUBPROGRAM STATEMENTS

6. the name of another external procedure FUNCTION or
SUBROUTINE) .

NOTE
Any subprogram name to be used as an
argument to another subprogram must
first appear in an EXTERNAL statement
(Chapter 6) in the calling program unit.
Example

The subprogram defined as:

INTEGER FUNCTION ICALC(IX,IY,IZ)

RETURN
END

may be referenced in the following manner:

TOTAL=ICALC (IAA,IAB,IAC)+500

15.7 MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT)

FORTRAN-10 provides an ENTRY statement that enables you to specify
additional entry points into an external subprogram. This statement
used in conjunction with a RETURN statement enables you to employ only
one computational routine of a subprogram that contains several such
routines. The form of the ENTRY statement is:

ENTRY name (argl,arg2,...,argn)
where

name is the symbolic name to be assigned the
desired entry point

(argl,...,argn) is an optional list of dummy arguments. This
list may contain

l. variable names,

2. array declarators,

15-17

SUBPROGRAM STATEMENTS
3. the name of an external procedure
(SUBROUTINE or FUNCTION), or

4. statement label identifiers that are
denoted by either a *, $, or & symbol.

The rules for the use of an ENTRY statement follow:

1.

10.

11.

12.

The ENTRY statement allows entry into a subprogram at a place
other than that defined by the subroutine or function
statement. You may include any number of ENTRY statements in
an external subprogram.

Execution 1is begun at the first executable statement
following the ENTRY statement.

Appearance of an ENTRY statement in a subprogram does not
negate the rule that statement functions in subprograms must
precede the first executable statement.

Entry statements are nonexecutable and do not affect the
execution flow of a subprogram.

You may not use an ENTRY statement in a main program or have
a subprogram reference itself through its entry points.

You may not use an ENTRY statement in the range of a DO or an
extended DO statement construction.

The dummy arguments in the ENTRY statement need not agree 1in
order, number, or type with the dummy arguments in SUBROUTINE
or FUNCTION statements of any other ENTRY statement in the
subprogram. However, the arguments for each call or function
reference must agree with the dummy arguments in the
SUBROUTINE, FUNCTION, or ENTRY statement that is referenced.

Entry into a subprogram initializes only the dummy arguments
of the referenced ENTRY statement.

You may not reference a dummy argument unless it appears in

the dummy list of an ENTRY, SUBROUTINE, or FUNCTION statement
by which the subprogram is entered.

The source subprogram must be ordered such that references to
dummy arguments in executable statements follow the
appearance of the dummy argument in the dummy 1list of a
SUBROUTINE, FUNCTION, or ENTRY statement.

Dummy arguments that were defined for a subprogram by some
previous reference to the subprogram are undefined for
subsequent entry into the subprogram.

The value of the function must be returned by use of the
current entry name.

»

SUBPROGRAM STATEMENTS

Table 15-3
FORTRAN-10 Library Subroutines

Subroutine Name Effect

AXIS

DATE

DEFINE FILE

CALL AXIS(X,Y,ASC,NASC,S,THETA,XMIN, DX)

AXIS causes an axis with tick marks and scale values
at 1l-inch increments to be drawn. An identifying
label may also be plotted along the axis. Parameters
X and Y specify the start of the axis. The axis is
plotted, starting at X, Y, at an angle of THETA
degrees for a distance of S inches. The angle THETA
is usually either 0 (X axis) or 90.0 (Y axis).
Characters ASC of array ASC are plotted as a label
for the axis drawn. If NASC 1is positive, the tic
marks, 1label, and scale values are placed on the
counterclockwise side of the axis; if NASC is
negative, the foregoing items are placed on the
clockwise side of the axis.

Parameter XMIN is the wvalue of the scale at the
beginning of the axis; parameter DX is the change in
scale for a l-inch increment. The values of XMIN and
DX may be determined by subroutine SCALE.

CALL DATE (array)

This subroutine places today's date as left-justified
ASCII characters into a dimensioned 2-word array.
The date is in the form:

dd-nmm-yy

where dd is a 2-digit day (if the first digit is 0,
it 1is converted to a blank), mmm is a 3-letter month
abbreviation, e.g., Mar, and yy is a 2-digit year.
The data is stored in ASCII code, left-justified, in
the two words.

CALL DEFINE FILE (u,s,v,f,pj,p9)

The arguments of this subroutine are defined as
follows:

u = logical FORTRAN-10 device numbers.

s = the size of the records comprising the file
being defined. The argument s may be an integer
constant or variable.

v = an associated variable. The associated variable
is an integer wvariable that is set to a value
that points to the record that immediately
follows the last record transferred. This
variable is used by the FIND statement (Chapter
10). At the end of each FIND operation, the
variable is set to a value that points to the
record found. The variable v cannot appear in
the I/0 list of any I/0 statement that accesses
the file set up by the DEFINE FILE statement.

15-19

SUBPROCRAM STATEMENTS

Table 15-3 (Cont.)
FORTRAN-10 Library Subroutines

Subroutine Name Effect
f = filename to be given the file being defined.
pJj = your project number.
pg = your programmer's number.
NOTE
Numbers pj and pg identify your File
Directory.
Example

DUMP

The statement
CALL DEFINE FILE (1,10,ASCVAR,'FORTFL.DAT',0,0)

establishes a file named FORTFL.DAT on device 01, a
disk, which contains ten word records. The
assoclated variable is ASCVAR, and the file 1is in
your area.

A DEFINE FILE call <can be used to establish and
define the structure of each file to be used for
random access I/0 operations.

NOTE

the OPEN statement may be used to perform the
same functions as DEFINE FILE.

CALL DUMP (L(1),Y(1),F(1),«..,L(n),U(n),F(n))

DUMP causes particular portions of core to be dumped.
L(l1) and U(l) are the variable names that give the
limits of core memory to be dumped. Either L(1) or
U(l) may be upper or lower limits. F(1l) is a number
indicating the format in which the dump 1is to be
performed: 0 = octal, 1 = real, 2 = integer, and 3 =
ASCII.

If F is not 0, 1, 2, 3, the dump 1is in octal. If
F(n) is missing, the last section is dumped in octal.
If U(n) and F(n) are missing, an octal dump 1is made
from L to the end of the job area. If L(n), U(n),
and F(n) are missing, the entire job area 1is dumped
in octal.

The dump is terminated by a call to EXIT.

15-20

SUBPROGRAM STATEMENTS

Table 15-3 (Cont.)
FORTRAN-10 Library Subroutines

Subroutine Name Effect

ERRSET

ERRSNS

EXIT

ILL

LEGAL

LINE

CALL ERRSET (N)

ERRSET allows you to control the typeout of
execution-time arithmetic error messages. ERRSET is
called with one integer argument.

Typeout of all arithmetic and library error messages
is suppressed after N occurrences of these error
messages. If ERRSET is not called, the default value
of N is 2.

CALL ERRSNS(I,J)

ERRSNS allows you to determine the exact nature of an
error on READ, WRITE, OPEN, or CLOSE that was trapped
with the "ERR= statement label" option. ERRSNS
returns one or two integer values that describe the
status of the last I/0 operation performed by FOROTS.
(The second integer value is optional.)

CALL ERRSNS(I,J)

returns a FORTRAN-standardized number in I and a
processor~dependent number in J to describe the last
1/0 operation. See Appendix H and Table H-1 for more
information and a detailed description of the values
returned.

EXIT

EXIT returns control to the Monitor and, therefore,
terminates the execution of the program.

CALL ILL

ILL sets the ILLEG flag. If the flag is set and an
illegal character is encountered in floating-
point/double~ precision input, the corresponding word
is set to zero.

CALL LEGAL

LEGAL clears the ILLEG flag. If the flag is set and
an 1illegal character is encountered in the floating-
point/double~ precision input, the corresponding word
is set to zero.

CALL LINE (X,Y,N,K)

LINE causes a line to be drawn through the N points
specified by (X(1),¥(1)),(X(2),¥(2)) ... (X(N),Y(N})
where the elements of X and Y are spaced K words
apart in storage.

15-21

SUBPROGRAM STATEMENTS

Table 15-3 (Cont.)
FORTRAN-~10 Library Subroutines

Subroutine

Name Effect

MKTBL

NUMBER

PDUMP

PLOT

PLOTS

CALL MKTBL(I,J)

MKTBL specifies a special character set where I 1is
the number to be assigned the set and J contains the
starting address of a character table of 200(8)
consecutive words. In each character table word, the
left half contains the number of strokes 1in the
character (0 1if nothing 1is to be plotted for the
word) and the right half contains the address of the
table of strokes for the character.

CALL NUMBER(X,Y,SIZE,FNUM,THETA,NDIGIT)

NUMBER causes a flcating- point number to be plotted
as text. Parameters X, Y, SIZE, and THETA have the
same meanings as for the SYMBOL call. Parameter
NDIGIT is the number of digits plotted to the right
of the decimal point. If NDICIT is a negative value,
only the integer part of the number is plotted. FNUM
specifies the number to be plotted.

CALL PDUMP(L(1),U0(1),F(1)s+..,L(n),U(n),F(n)

The arguments of PDUMP are the same as those of
PUMP. PDUMP 1is the same as DUMP except that control
returns to the calling program after the dump has
been exccuted.

CALL PLOT(X,Y,IPEN)

PLOT moves the pen in a straight 1line from 1its
current position to the position specified by X,Y.
If IPEN=3, the pen is raised before the movement; if
IPEN=2 the pen is lowered before movement; if IPEN=1
the pen is left unchanged from 1its previous state.
If the wvalue of IPEN is negative (-1, -2 or =-3) the
pen action is the same as for the corresponding
positive wvalues except that on completion of the
indicated motion, the new pen position is taken as a
new origin and the output buffer is sent to the
plotter.

The plotter is not released on completion of the
specified movement.

CALL PLOTS (I)

PLOTS is the plotter setup routine. If the plotter
is not available, I 1is set to =-1; if it 1is
available, I is set to 0. This call must be the
first plotter routine called.

15-22

SUBPROGRAM STATEMENTS

Table 15-3 (Cont.)
FORTRAN-10 Library Subroutines

Subroutine Name Effect

RELEAS

SAVRAN

SCALE

SETABL

SETRAN

SLITE

SLITET

CALL RELEAS (unit)

RELEAS closes out I/O on a device initialized by the
FORTRAN Operating System and returns it to the
uninitialized state. RELEAS should be the last call
referencing that device.

CALL SAVRAN (I)

SAVRAN is called with one integer argument. SAVRAN
sets its argument to the 1last random number
(interpreted as an integer) that has been generated
by the function RAN.

CALL SCALE(X,N,S,XMIN,DX)

SCALE selects scale values for an AXIS call where X
and N specify a l-dimensional array X with the length
N. Parameter S specifies the length of the desired
axis, SCALE determines a value of DX that allows X to
be plotted in S inches. XMIN 1is selected as the
smallest element of the array X, and is truncated to
be a multiple of DX.

CALL SETABL(I,J)

SETABL specifies a character set where I is an
integer that gives the number of the desired
character set. If a character set has been defined
by I, the value of J is set to @; 1if not, J is set
to -1. The standard ASCII character set 1is defined
as 1.

CALL SETRAN (I)

SETRAN has one argument, which must be a non-negative
integer <2(31). The starting value of the function
RAN is set to the value of this argument, unless the
argument 1s zero. In this case, RAN uses its normal
starting value.

CALL SLITE(I)

SUITE turns sense lights on or off. I is an integer
expression. For 1<I<36, sense light I will be turned
on. If I=0, all sense lights will be turned off.

CALL SLITET(I,J)

SLITET checks the status of sense light I, sets the
variable J accordingly, and turns off sense light I.
If i is on, j is set to 1l; and if i is off, j is set
to 2.

15-23

SUBPROGRAM STATEMENTS

Table 15-3 (Cont.)
FORTRAN-~10 Library Subroutines

Subroutine Name Effect

SORT

SSWTCH

SYMBOL

TIME

CALL SORT ('OUTPUT/SWS=INPUT/SWS,INPUT/SWS')

SORT sorts one or more files using the 30RT program.
The argument 1is an ASCII string that represents
(version 3 or later) the standard SORT command
string. 1Its components are:

OUTPUT = file specification of the output file.
INPUT = file specification of the input file(s).
SWS = one or more switches for the output file,

the input file(s), the sorting process, and
sometimes SCAN. The switches not allowed
-in the FORTRAN call are:/BLCCk, /COMP3,
/EBCDIC, /INDUSTRY, /LABEL, /SIXBIT, and
/VERSION.

Wild card format is not allowed in the FORTRAN call.

For information about using the SORT program, see the
SORT USER'S GUIDE (AA-0997C-~TB). Example:

CALL SORT('SRTFIL.SRT=INSTRT/REC:80/KEY:1:2")
SSWTCH(I,J)

SSWTCH checks the status of data switch i (0<i<35)
and sets the wvariable J accordingly. If I is set
OFF, J is set to 1; and, if I is ON, J is set to 2.

CALL SYMBOL(X,Y,SIZE,ASC,THETA,NASC)

SYMBOL raises the plotter pen and wmoves it to
position specified by X and Y. Lower pen and plot
characters found in array ASC. Parameter SIZE
specifies the height of the characters plotted in
inches (floating~ point values); THETA specifies the
direction of the base line on which the text of array
ASC is to be plotted, and NASC specifies the number
of characters in array ASC.

CALL TIME(X) or CALL TIME (X,Y)
TIME returns the current time in its argument(s) 1in
left~justified ASCII characters. If TIME is called
with cone argument,

CALL TIME (X)
the time is in the form

hh :mm

where hh is the hours (24-hour time) and mm is the
minutes. If a second argument is reguested,

CALL TIME (X,Y)

15-24

SUBPROGRAM STATEMENTS

Table 15-3 (Cont.)
FORTRAN-10 Library Subroutines

Subroutine Name Lffect

WHERE

the first argument is returned in the same form as
the one-argument call, and the second has the form

bss.t

where b is a blank, ss is in seconds, and t 1is in
tenths of & second.

CALL WHERE(X,Y)

Variables X and Y are set to the wvalues which
identify the current position of the pen.

15-25

CHAPTER 16

BLOCK DATA SUBPROGRAMS

16.1 INTRODUCTIOE

Use block data subprograms to initialize data to be stored in any
commnon areas. You may use only specification and DATA statements,
i.e., DATA, COMMON, DIMENSION, EQUIVALENCE, and TYPE, in BLOCK DATA
subprograms. A subprogram of this type must start with a BLOCK DATA

statement.

You may enter initial values into more than one labeled common block
in a2 single subprogram of this type.

An executable program may contain more than one block data subprogram.

16.2 BLOCK DATA STATEMENT

The form of the BLOCK DATA statement is:
BLOCK DATA name
where

name is a symbolic name given to identify the
subprogram.

l16-1

APPENDIX A

ASCII-1968

CHARACTER CODE SET

The character code set defined in the X3.4-1968 Version of the
American National Standard for Information Interchange (ASCII) is
given in the following matrix.
Ist 2 Last octal digit
octal 0 1 2 3 4 5 6 7
digits .
00x NUL SOH STX ETX EOT ENQ ACK BEL
01x BS HT LF VT FF CR SO S1 Graphic
02x DLE DC1 DC2 DC3 DC4 NAK SYN ETB subsets
03x CAN EM SUB ESC FS GS RS uUs 64 95
04x B ! » # $ T & ’ [
05x () * + , - . /
06x 0 | 2 3 4 5 6 7
07x 8 9 : ; < = > ?
10x @ A B C D E F G
11x H I J K L M N 0
12x P Q R S T U \% w
13x X Y Z | \] A (+)
14x grave a b ¢ d e f T
15x h i j k | m n o
16x p q r s t u v w
17x X y ’ { | } ~(ESC) DEL A
Characters inside parentheses are ASCII-1963 Standard.
NUL Null DLE Data Link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB End of Transmission Block
BS Backspace CAN Cancel
HT Horizontal Tabulation EM End of Medium
LF Line Feed SUB Substitute
VT Vertical Tabulation ESC Escape
FF Form Fecd FS File Separator
CR Carriage Return GS Group Separator
SO Shift Out RS Record Separator
SI Shift In US Unit Separator
DEL Delete (Rubout)

APPENDIX B

USING THE COMPILER

This appendix explains how to access FORTRAN-10 and how to make use of
the information it provides. You should be familiar with the
FORTRAN-10 language and the DECsystem-10 TOPS-10 monitor.

B.1l RUNNING THE COMPILER

The command to run FORTRAN-10 is:
.R FORTRA

The compiler responds with an asterisk (*) and is then ready to accept
a command string. A command is of the general form:

object filename, listing filename=source filename (s)
You are given the following options:
1. The filenames can be fully specified SFD paths.
2. You may specify more than one input file in the <compilation
command string. These files will be logically concatenated

by the compiler and treated as one source file.

3. Program units need not be terminated at file boundaries and
may consist of more than one file.

4., If no object filename is specified, no relocatable binary
file is generated.

5. If no listing filename is specified, no listing is generated.
6. If no extension is given, the defaults are .LST (listing),

.REL (relocatable binary), and .FOR (source) for their
respective files.

B.1.1 Switches Available with FORTRAN-10

Switches to FORTRAN-10 are accepted anywhere in the command string.
They are totally position- and file-independent. Table B-1 lists the
switches.

USING THE COMPILER

Table B-1
FORTRAN-10 Compiler Switches

Switch Meaning Defaults
CROSSREF Generates a file that can be input to OFF

the CREF program
DEBUG (See Section B.l.1l.1l.) OFF
EXPAND Includes the octal-formatted version of| OFF

the object file in the listing.

INCLUDE Compiles a D in card column 1 as OFF
as space.
KA1Q Compiles code to run on a KALO Compilation
processor. processor
KI10 Compiles code to run on a KI1l0 Compilation
processor. pProcessor
LNMAP Produces a line number/octal location OFF

map in the listing only if /MACROCODE
was not specified.

MACROCODE Adds the mnemonic translation of the OFF
object code to the listing file.

NOERRORS Does not print error messages OFF
on the terminal.

NOWARNINGS Does not output warning messages. OFF

OPTIMIZE Performs global optimization. OFF

SYNTAX Performs syntax check only. OFF

Each switch must be preceded by a slash (/). Switch names need only
contain those letters that are required to make the switch name
unique. You are encouraged to use at least three letters to prevent
conflict with switches in future implementations.

Example

.R FORTRA
*OFILE,LFILE=SFILE/MAC,S2FILE

The /MAC switch will cause the MACRO code equivalent of SFILE and
S2FILE to appear in LFILE.LST.

If you do not specify a processor (KAlQ0 or KI1l0 switch), the code will
be compiled for the processor type on which the compilation occurs.
The processor type of the code in the object file and all switches,
used or implied, are printed at the top of each listing page.

USING THE COMPILER

B.1.1.1 The /DEBUG Switch - The /DEBUG switch tells FORTRAN-10 to
compile a series of debugging features into your program. Several of
these features are specifically designed to be wused with FORDDT.
Refer to Appendix E for more information. By adding the modifiers
listed in Table B-2, you can include specific debugging features.

Table B-2
Modifiers to /DEBUG Switch

Modifiers Meaning

:DIMENSIONS Generates dimension information in .REL file for
FORDDT.

:TRACE Generates references to FORDDT required for 1its
trace features (automatically activates :LABELS).

:LABELS Generates a label for each statement of the form
"line-number L." (This option may be used without
FORDDT.)

: INDEX Forces DO LOOP indices to be stored at the

beginning of each iteration rather than held in a
register for the duration of the loop.

: BOUNDS Generates the bounds checking code for all array
references. Bounds violations will produce
run-time error messages. Note that the technique
of specifying dimensions of 1 for subroutine
arrays will cause bounds check errors. (You may
use this option without FORDDT.)

:NONE Do not include any debug features.

:ALL Enable all debugging aids.

The format of the /DEBUG switch and its modifiers is as follows:
/DEBUG:modifier

or
/DEBUG: (modifier list)

Options available with the /DEBUG modifiers are:

1. No debug features -~ Either do not specify the /DEBUG switch
or include /DEBUG:NONE.

2. All debug features - Either /DEBUG or /DEBUG:ALL.

3. Selected features - Either a series of modified switches;
i.e.,

/DEBUG:BOU/DEBUG : LAB
or a list of modifiers

/DEBUG: (BOU,LAB,...)

USING THE COMPILER

4. Exclusion of features (if vyou wish all but one or two
modifiers and do not wish to list them all, you may use the
prefix "NO" before the switch you wish to exclude). The
exclusion of one or more features implicitly includes all the
others, i.e., /DEBUG:NOBOU is the same as
/DEBUG: (DIM,TRA,LAB,IND) .

If you include more than one statement on a single 1line, only the
first statement will receive a label (/DEBUG:LABELS) or FORDDT
reference (/DEBUG:TRACE). (The /DEBUG option and the /OPTIMIZE option
cannot be used at the same time.)

NOTE

If a source file contains line sequence
numbers that occur more than once in the
same subprogram, the /DEBUG option
cannot be used.

The following formulas may be wused to determine the increases in
program size that will occur as a result of the addition of various
/DEBUG options.

:DIMENSIONS For each array, 3+3*N words where N is the number
of dimensions, and up to three constants for each
dimension.

: TRACE One instruction per executable statement.
:LABELS No increase.
: INDEX One instruction per inner loop plus one

instruction for some of the references to the
index of the loop.

:BOUNDS For each array, the formula 1is the same as
DIMENSIONS:.

For each reference to an array element, use 5+N
words where N is the number of dimensions in the
array. If you do not specify :BOUNDS,
approximately 1+3* (N-1) words will be used.

B.1.2 COMPIL-Class Commands

You can invoke FORTRAN-10 by using COMPIL-class commands. These
commands cause the monitor to run the COMPIL program, which interprets
the command and constructs new command strings for the system program
actually processing the command. When both FORTRAN-10 and F40 are
present in your DECsystem-10 system, you can specify which compiler is
to be wused by adding the switches /F10 or /F40 to the following
commands:

COMPILE
LOAD
EXECUTE
DEBUG

USING THE COMPILER

Example
.EXEC ROTOR/F10

The compiler switches KA, KI, OPT, CREF, and DEBUG may be specified
directly in COMPIL-class commands and aay be used globally or locally.

Example
.EXECUTE/CREF/KA/F10 P1.FOR,P2.FOR/DEBUG:NOBOU

The other compiler switches must be passed 1in parentheses for each
specific source file.

Example
.EXECUTE P1.FOR(M,I)

Refer to the DECsystem-10 Operating System Commands Manual for
further information.

B.2 READING A FORTRAN-10 LISTING

When you request a listing from the FORTRAN-10 compiler, it contains
the following information:

1. A printout of the source prcgram plus an internal sequence
number assigned to each line by the compiler. This internal
sequence number 1is referenced in any error or warning
messaqges gencrated during the compilation. If the input [ile
is line-sequenced, the number from the file is used. If code
is added via the INCLUDE statement, all INCLUDEd lines will
have an asterisk (*) appended to their line-sequence number.

2. A summary of the names and relative ©program locations (in
octal) of scalars and arrays in the source program plus
compiler generated variables.

3. All COMMON blocks and the relative locations (in octal) of
the variables in each COMMON block.

4, A listing of all equivalenced variables or arrays and their
relative locations.

5. A listing of the subprograms referenced (both user defined
and FORTRAN-10 defined library functions).

6. A summary of temporary locations generated by the compiler.

7. A heading on each page of the listing containing the program
unit name (MAIN., program, subroutine or function, principal
entry), the input filename, the list of compiler switches,
and the date and time of compilation. Whether a specific
processor switch (/KAl0, /KI1l0) was used and the processor
for which the code was generated is also at the top of the
listing page.

8. If you used the /MACRO switch, a mnemonic printout of the
generated <code (in a format similar to MACRC-10) is appended
to the listing. This section has four fields:

i.e.,

10.
11.

B.2.1

USING THE COMPILLER

LINE: This column contains the internal seguence number
of the 1line corresponding to the mnemonic code. It
appears on the first of the code sequence associated
with that internal sequence number. An asterisk
indicates a compiler ins2rted line.

LOC: The relative location in the object program of the
instruction.

LABEL: Any ©program or compiler generated label.
Program labels have the letter "P" appended. Labels
generated by the compiler are followed by the letter
"M". Labels generated by the compiler and associated
with the /DEBUG:LABELS switch consist of the internal
sequence number followed by an "L".

GENERATED CODE: The MACRO-10 mnemonic code.

I1f you used the /LNMAP switch and did ©NOT use the /MACRO
switch, a 1line number/octal location map is appended to the
listing. This section lists the line numbers in increments
of 10 on subsequent lines and each number from 0 through 9
for each line in adjacent columns. The numbers appearing
inside the matrix are the relative octal locations of the
statements in the FORTRAN program unit. For example, to find
the relative octal location of line number 001043, find the
row marked 001040 and then column 3 on that line. The number
in that place is the desired relative location. This listing
can be very large and sparse for line-numbered files with
large increments, such as those produced by SOS.

NOTE

One FORTRAN 1line can produce multiple octal
locations. In this «case the line number map lists
only the first location.

A list of all argument blocks generated by the compiler. A
zero argument appears first followed by argument blocks (or
subroutine calls and function references (in order of their
appearance in the program). Argument blocks for all I/O
operations focllow this.

Format statement listings.

A summary of errors detected or warning messages 1issued
during compilations.

Compiler Generated Variables

In certain situations the compiler will generate internal variables.
Knowing
expansion. The variables are of the form:

what these wvariables represent can help you read the macco

.letter digit digit digit digit

.50001

where:

Letter

USING THE COMPILER

Function of Variable
Register save area.
Arithmetic statement function formal parameters.

Result of a DO LOOP initial wvalue expression or
parameter of an adjustably dimensioned array.

Result of a common subexpression (see Section C.2.1.1)
or constant computation (C.2.1.3).

Temporary storage for expression values.

Result of reduced operator strength expression
(C.2.1.2).

Result of the DO LOOP step size expression of computed
iteration count .for a loop.

You may find these variables on the listing under SCALARS and ARRAYS.

The following example shows a listing where all these features are

pointed out.

Name of
Program

!

MAIN.

00001
00002
00003
GG004
60005
0C006
00007
goooe
00009
00010
00011
0Ccol2
00613
00014
60015
00016
00017
00C1ls
G0019

Name of

Compiler

Source File Version

TIM1.FOR

1G6C
C

10

!

FCETRAN V.5(515)

IMPLICIT INTEGER (A-2)

/RI/M 19-NOV-76 15:00 PAGE 1

I Macro Code eguivalent included
code was compiled for a KI processor

DIMENSION A(10C,200),B(100,200)

SUM1=0
50M2=0
DO 100 J=1,200
CO 100 I=1,1C0

Kl=1I*J

IF (K1 .LT. 500 .OR. Kl
A(I,J)=Kl1

K2=1I+J

IF (K2 .EQ. 100 .OR. K2
B(I,J)=K2

SUM1=5UMI+K1
SUM2=SUM2+K?2
CONTINUE

TYFPE 10,5UM1,SUM2
FORMAT (7H SuUMl= ,19,1CH
END

.GT. 1500) K1=0

.EQC. 200 .OR. K2.EQ.300) K2=K2+1

SUM2= ,1I9)

YdTIdW0D dHL DNISN

SUBPROGRAMS CALLED

The relative address of each variable is given

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "$" NO REFERENCED]
compiler generated variable
*K1 1 B 2 *J 47042 A 47043 .S50001 116103
.S50000 116104 *SUM2 116105 *I 116106 *K2 116107 *SuMl 116110

Internal sequence number on first instruction that goes with this line
octal displacement of instruction

LINE LOC LABEL GENERATED CODE
0 JFCL ¢,0
1 JSP 16,RESET.
2 0,0
3 3 SETZR 2,8UM1
4 4 MOVEM 2,SUM2
5 5 MOVE 2,[777470000001]
6 HLREM 2,.50000
7 2M:
HRRZIM 2,d
6 10 3M
MOVE 2,[777634000001)
7 11 4M:
MOVE 3,d
12 IMULI 3,0(2)
13 MOVEM 3,K1
8 14 CAIL 3,764

15 CAILE 3,2734

YATIAWOD HHL DNISN

0T-d

MAIN.

10

11

11

13
14
15

16 JRST G,6M
17 JRST 0,5M
20 6M - compiler generated label
SETZB 4,K1
TIM1l.FOR FORTRAN V.5(515) /KI/M 19-NOV-76
21 S5M:
MOVEI 2,144
22 IMUL 3,37
23 ADDI 3,0(2)
24 MOVE 4,K1
25 i1OVEM 4,A-145(3)
26 MOVE 2,J
27 ADDI 3,0(2)
30 MOVEM 3,K2
31 MOVE 5,K2
32 CAIEL 5,144
33 CAIN 5,310
34 JRST 0,8M
35 9M:
CAIN 5,454
36 §M:
AGS 3,KZ2
37 R
MOVEI 3,144
40 IMUL 3,3d
41 ADLI 3,0(2)
42 MOVE 5,K2
43 MOVEM 5,B-145(3)
44 ADLM 4,5UM1
45 ADCM 5,5U0M2
46 10CP:=— pregram label
AOBJN 2,4M
47 AOS 2,3
50 AGSCGE 0,.s50000
51 JEKST 0,3M

15:060

PAGE 1-1

JITIdWOO dHI ODNISA

T1-4

17 52 MCVEI 16,10M
53 PUSHJ 17,0UT.
54 MOVEI 16,11M
55 PUSHJ 17,I0LST.
19 56 MOVEI 16,1M
57 PUSHJ 17,EXIT.
ARGUMENT BLGCKS: function and subroutine argument blocks
60 0,/0
61 1M: 0,,0
62 777773,,0
€3 10M: 0,,777777
64 0,,0
65 0,,0
66 34G,,10P
67 C,.,7
70 ¢,,0
71 11M: 1100, ,5UM1
72 1100, ,S0M2
73 4000,,0
MAIN. TIM1.FOR FORTRAN V.5(515) /KI/M 19-NOV-76 15:00 PAGE 1-2

FORMAT STATEMENTS (IN LOW SECMENT) :

18 116111 10P: (76 5
116112 UM1=
116113 16,1
116114 Ol
116115 SUM2
116116 = ,I9
116117)

MAIN. [NO ERRORS DETECTED] summary of detected errors

MFATIAWOD JHL DNISN

¢1-4d

MAIN. TIM1.FOR FORTRAN V.5(515) /KI 19-NOV-76 15:01 PAGE 1

00001 IMPLICIT INTEGER (A-2)

00002 DIMENSION A(100,200),B(100,200)

00003 SUM1=0

¢0004 SUM2=0

00605 DC 100 J=1,200

00006 DC 160 I=1,100

00007 K1=I*J

00008 IF (K1 .LT. 500 .OR. K1 .GT. 1500) K1=0
00009 A(I,J)=K1

00010 K2=I+J

00011 IF (K2 .EC. 100 .OR. K2 .EQ. 200 .OR. X2.EC.300) K2=K2+1
00012 B(I,J)=K2

00013 SUM1=SUM1+K1

00014 SUM2=SUM2+K2

00015 100 CONTINUE

00016 C

60017 TYPE 10,SUM1,SUM?2

00018 10 FORMAT (7H SUM1= ,19,10H suM2= ,19)
00019 END

SUBPROGRAMS CALLED

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]
*K1 1 B 2 *J 47042 A 47043 .S0001 116103
.S0000 116104 *SUM2 116105 *I 116106 *K2 116107 *SUMl1 116110

LINE NUMEER/OCTAL LOCATION MAP line number may request with /LNMAP switch

dIATIdWOD dJHL ONISN

€T-4

00000

1 2 3 4 5 6 7 8
3 4 5 10 11 14
31 37 44 45 46 52

00010

MAIN.

MAIN.

00001
00002
000603
00004
06005
00006
00007
60008
00069
06010
00011
6001z
00013
C0014
G0015
G001le
00017
000618
00019

26

[NO ERRORS DETECTED]

line number 11 starts at octal location 31 (from the
previous listing, notice that line 11 uses locations
31 through 36 but only the first location 1is shown
here)

TIM1.FOR FORTRAN V.5(515) /KI/OBT/M 19-NOV-76 15:00

100

10

IMPLICIT INTECER (A-Z)

DIMENSION A(100,200),B(100,200)

SUM1=0

5UM2=0

DO 100 J=1,200

DO 100 I=1,100

K1=I*J

IF (K1 .LT. 500 .OR. K1 .GT. 1500) K1=0
A(I,J)=Kl

K2=I+J

IF (Kz .EQ. 100 .OR. K2 .EQ. 200 .OR. K2.EQ.300) K2=K2+1
B(I,J)=K2

SUM1=SUM1+K1

SUM2=SUM2+K2

CONTINUE

TYPE 10,SUM1,SUM2
FORMAT (7H SUMl1= .I9,10H sumM2= ,I9)
END

PAGE 1

YITIAWOD IHL DNISO

72 k3

SUBPROGRAMS CALLED

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION "%" NOT REFERENCED

optimizer created variables

*K1l 1 E 2 .RO001 47042 .RO000 47C43 *J
A 47045 .50001 116105 .50000 116106 *SUM2 116107 *I
.000C1 116111 *K2 116112 *sUM1 116113

optimizer created variables

LINE LCC LABEL GENERATED COCE
0 JFCL 6,0
1 JSP 16 ,RESET.
2 0,0
4 3 SETZB 10,11
* 4 MOVEIX 12,144
5 MCVEM 12,.K0001
5 6 MOVNI 7,1
7 MOVEI 7,1
10 MCVEM 12,.50000

optimizer created statement

* 11 4M:
MOVE 6,7
6 12 MOVE 2,[777634000001]
* 13 5M:
MOVEI 4,0(2)
14 ADD 4,.R0C01
7 15 MOVE 5,6
g 16 CAIL 5,764

17 CAILE 5,2734

47044
116110

MITIJWOD dHIL ONISN

ST-49

o

MAIN.

10

11

[

20
21

29
L L

TIM1.FOR

23

24
25
26
27
30
31

33

34
35
36
37

40
41
42

43
44
45
46
47
50
51
52

1CM:

9M:

8M:

100P:

1M:

JRST
JRST

0,7M
0,6M

FORTRAN V.5(515)

MOVEI

MOVEM
MOVL
ADDI
CAIE
CAIN
JRST

CAIN

ADDI

MOVEM
ADD
ADD
ACD

AOBJN
MOVEI
ADDM

ADDI

AOSGE
JRST

MOVEM
MOVEM
MOVEM
MOVEM
MOVEI
PUSHJ

3,B-145(4)
11,5

1¢,3

6,7

2,5M
12,144
12,.r0001

7.1
0,.50000
0,4M
11,SUMl1
16,S0Mm2
5,K1
3,K2
16,11M
17,00T.

/KI/OPT/M 19-NOV-76

15:00

PAGE 1-1

JATIJWOD HUHIL DNISN

9T-4

19

ARGUMENT

MAIN.

FORMAT STATEMENTS

18

MAIN.

53
54
55

56
BLOCKS:

57
60
61
62
63
64
65
66
67
70
71
72

2M:

3M:

11M:

12M:

TIM1.FGOR

116114
116115
116116
116117
116120
116121
116122

MOVEI 16,12M
PUSHJ 17,I0LST.

MOVEI 16, 3M
PUSHJ 17,EXIT.

6,,0

0,,0
777773,,0
G,,777777
0"0

G,,0
3406,,10P
0,[7

6,,0

1100, ,5UMl
1100, ,SUM2
4006,,0

FORTRAN V.5(515)

(IN LOW SEGMENT) :

10P:

(7H S
UMl=
;19,1
O0H
SUM?2
= ,I9
)

[NO ERRORS DETECTED |}

/KI/OPT/M 19-NOV-76

15:00

PAGE 1-2

YIATIJNOD FIHL DNISN

USING THE COMPILER

B.3 ERROR REPORTING

If an error occurs during the initial pass of the compiler (while the
actual source code is being read and processed), an error message is
printed on the listing immediately following the 1line in which the
error occurred. Each error references the internal sequence number of
the incorrect line. The error messages along with the statement in
error are output to the user terminal. For example:

.EXECUTE DAY.FOR

FORTRAN:DAY

01300 K1

?FTNNRC LINE:01300 STATEMENT NOT RECOGNIZED

01500 100 CONTINE

?FTNMSP LINE:01500 STATEMENT NAME MISSPELLED

01600 2

?FTNICL LINE:01600 ILLEGAL CHARACTER C IN LABEL FIELD
?FTNFTL MAIN. 3 FATAL ERRORS AND NO WARNINGS

LINK: LOADING
[LNKNSA NO START ADDRESS]

EXIT

If errors are detected after the initial pass of the compiler, they
appear in the list file after the end of the source listing. They are
output to your terminal without the statement in error, but they may
reference its internal sequence number.

B.3.1 Fatal Errors and Warning Messages

There are two levels of messages, warning and fatal error. Warning
messages are preceded by "%" and indicate a possible problem. The
compilation will continue, and the object program will probably be
correct. Fatal errors are preceded by a "?". If a fatal error is
encountered in any pass of the compiler, the remaining passes will not
be called. Additional errors that would be detected in later compiler
passes may not become apparent until the first errors are corrected.
It 1is not possible to generate a correct object program for a source
program containing a fatal error.

The format of messages is

?FTNXXX LINE:n text

or
SFTNXXX LINE:n text
where:
? = fatal
% = warning
FTN = FORTRAN mnemonic
XXX = 3-letter mnemonic for the error message
LINE:n = line number where error occurred
text = explanation of error

USING THE COMPILER

The printing of fatal errors and warning messages on your terminal can
be suppressed by the use of the /NOERRORS switch; however, messages
will still appear on the 1listing. The /NOWARNINGS switch will
suppress warning messages on both user terminal and listing.

B.3.2 Message Summary

At the end of the listing file and on the terminal, a message summary
is printed after each program unit is compiled. This message has two

forms:

1. when one or more messages were 1issued

{?FTNFTL}
?FTNWRNf name NO/number FATAL ERRORS AND NO/number WARNINGS

or
2. when no messages were issued
name [NO ERRORS DETECTED]
where name is the program or subprogram name. (INO ERRORS DETECTED]

appears on the listing only.) Appendix G is a complete list of fatal
errors and warning messages.

B.4 CREATING A REENTRANT FORTRAN PROGRAM WITH LINK-10

To produce a sharable program from the .REL file, such as MAIN.REL,
give either one of the following commands to LINK-10:

1. /SEG:DEFAULT MAIN/G
2. /OTS:NONSHAR MAIN/G

The resulting core image can be SSAVEd or the /SSAVE switch can be
used to produce a .SHR file.

APPENDIX C

WRITING USER PROGRAMS

This appendix is a gquide for writing effective programs with
FORTRAN-10. It contains techniques for optimization, interaction with
non-FORTRAN programs, mixing of FORTRAN-10 and F40 object programs,
and other useful programming hints.

C.l1 GENERAL PROGRAMMING CONSIDERATIONS

The following paragraphs describe programming considerations you
should observe when preparing a FORTRAN program to be compiled by
FORTRAN-10.

C.1.1 Accuracy and Range of Double-precision Numbers

Floating-point and real numbers may consist of up to 16 digits in a
double-precision mode. Their range is specified in Chapter 3, Section
3.2 of this manual. You must be careful when testing the value of a
number within the specified range since, although numbers up to 10**38
may be represented, FORTRAN-10 can only test numbers of up to eight
significant digits (REAL precision) and 16 significant digits (DOUBLE
precision).

You must also be careful when testing the floating-point computation

for a result of 0. In most cases the anticipated result, i.e., 0 will
be obtained; however, in some cases the result may be a very small
number that approximates 0. Such an approximation of 0 will cause

tests within statements, i.e., an arithmetic IF, to fail.

C.1.2 Writing FORTRAN-10 Programs for Execution On Non-DEC Machines

If you prepare a program to run on both a DECsystem-10 computer and a
non-DIGITAL machine, you should:

1. Avoid using the non-ANSI standard features of FORTRAN-10, and

2. Consider the accuracy and size of the numbers that the
non-DIGITAL machine is capable of handling.

C-1

c.1.3 Us

WRITING USER PROGRAMS

ing Floating-Point DO Loops

FORTRAN-1
precision
enables y
variables
computati
occur .

c.1.4 Co

0 permits vyou to employ non-integer single- or double-

numbers as the parameter variables in a DO statement. This
ou to generate a wider range of values for the DO loop index
, which may, 1in turn, be wused inside the 1loop for
ons. Be sure to consider the 1loss of precision that may

mputation of DO Loop Iterations

The numbe

is not

loop. Th
DO 1
MAX

The value
you must
logicals.

r of times through a DO loop is computed outside the loop and
affected by any changes to the DO index parameters within the
e formula for the number of times a DO loop is executed is:

0 1=M1,M2,M3
(1, ((M2-M1) /M3)+1)=Number of cycles
s of the parameters M1, M2, M3 may be of any type; however,

consider the foregoing formula, particularly when using
One pass through each DO loop is always performed EVEN IF

THE RESULT OF THE FOREGOING CALCULATION IS LESS THAN OR EQUAL TO ZERO.

C.1.5 Su

broutines - Programming Considerations

Consider

1.

2.

the following items when preparing and executing subroutines:

During execution, no check is made to see 1if the proper
number of parameters was passed.

If the number of actual arguments passed to a subroutine is
less than the number of dummy arguments specified, the values
of the unspecified arguments are undefined.

If the number of actual arguments passed to a subroutine is
greater than the number of dummy arguments given, the excess
arguments are ignored.

If an actual parameter is a constant and its corresponding
dummy argument 1is set to another value, all references made
to the constant in the calling program may be changed to the
value of the dummy argument.

No check is made to see if the parameters passed are of the
same type as the dummy parameters. If an actual parameter is
a constant and the corresponding dummy is of type real, be
sure to include the decimal point with the constant. If the
dummy is double-precision, be sure to specify the constant
with a "D".

Examples

If the function F(A) is called by inputting F(2) and A is
type real, F interprets the integer 2 as an unnormalized
floating-point number. In this instance, F(A) should be
called with F(2.0).

Similarly, if the function F1(D) 1is called by inputting
F1(2.5) and D 1is double-precision, F1 assumes that its

Cc-2

WRITING USER PROGRAMS

parameters have been specified with two words of precision
and picks up whatever follows the constant 2.5 in core. The
proper method is to use F1(2.5D00).

NOTE

You are given no notice if any of the situations
described in items 1,2,3,4, and 5 occur.

C.1.6 Reordering of Computations

Computations that are not enclosed within parentheses may be reordered
by the compiler. Sometimes it is necessary to use parentheses to
ensure proper results from a specific computation.

For example, assuming that

1. RL1 represents a large number such that RL1*RL2 will cause an
overflow condition, and

2. RS1 is a very small number, i.e., less than 1, the program
sequence

A=RS1*RL1*RL2
B=RS2*RL2*RL1

will not produce an overflow when evaluated 1left to right,
since the first computation in each expression, i.e., RS1*RL1
and RS2*RL2, will produce an interim result that is smaller
than either large number (RL1 or RL2).

However, the compiler will recognize RL1*RL2 as a common subexpression
(see Section C.2.1.1) and generate the following sequence:

temp = RL1*RL2
A = RSl*temp
B = RS2*temp

The computation of temp will cause an overflow.

You should write the program as follows to ensure that the desired
results are obtained:

A=(RS1*RL1) *RL2
B=(RS2*RL2) *RL1

Computations may be reordered even when global optimization 1is not
selected.

WRITING USER PROGRAMS

C.1.7 Dimensioning of Formal Arrays

When you specify an array as a formal parameter to a subprogram unit,
you must indicate to the <compiler that the parameter is an array.
Dimension the array in a specification statement. This 1is the only
way the compiler is able to distinguish a reference to such an array
from a function reference. Designating the array with a dimension of
1 is a common practice.

Example

SUBROUTINE SUB1(A,B)
DIMENSION A (1)

There are disadvantages to wusing the above technique because the
dimension information provided 1is not adequate 1in some cases,
specifically:

1. Reading or writing the array by name

DIMENSION ARRAY (10)
READ (1) ARRAY

The above is a binary read that will read ten words into
ARRAY.

SUBROUTINE SUBI (A)
DIMENSION A (1)
READ (1) A

This binary read will cause one word to be read into A.
2. Reading the array as a format
SUBROUTINE SUB2 (FMT)
DIMENSION FMT (1)
READ (1,FMT)

This will cause one word of the array FMT to be written over
with the characters read from the record on unit 1.

When you use the /DEBUG:BOUNDS compilation switch, the dimension
information used is that which is specified in the array declaration.

SUBROUTINE DO IT (A)
DIMENSION A(1l)
A(2)=0

The reference to A(2) will cause the out-of-bounds warning message to
be generated.

C.2 FORTRAN-10 GLOBAL OPTIMIZATION

You have the option of invoking the global optimizer during
compilation. The optimizer treats groups of statements in the source
program as a single entity. The purpose of the global optimizer is to
prepare a more efficient object program that produces the same results
as the original unoptimized program, but takes significantly less
execution time. The output of the lexical and syntactic analysis
phase of the compiler is developed into an optimized source program
equivalent (in results) to the original. The optimized program is
then processed by the standard compiler code generation phase.

C-4

WRITING USER PROGRAMS

C.2.1 Optimization Technigues

C.2.1.1 Elimination of Redundant Computations - Often the same
subexpression will appear 1in more than one computation throughout a
program. If the values of the operands of such a common expression
are not changed between computations, the subexpression may be written
as a separate arithmetic expression, and the variable representing its
resultant may then be substituted where the subexpression appears.
This eliminates unnecessary recomputation of the subexpression. For
example, the instruction sequence:

A=B*C+E*F

H=A+G-B*C

IF((B*C)~H) 10,20,30

contains the subexpression B*C three times when it really needs to be
computed only once. Rewriting the foregoing sequence as:

T=B*C
A=T+E*F

H=A+G-T

.

DIF((T)-H) 10,20,30

eliminates two computations of the subexpression B*C from the overall
seguence.

Decreasing the number of arithmetic operations performed in a source
program by the elimination of common subexpressions shortens the
execution time of the resulting object program.

C.2.1.2 Reduction of Operator Strength - The time required to execute
arithmetic operations will vary according to the operator(s) involved.
The hierarchy of arithmetic operations according to the amount of
execution time required is:

MOST TIME OPERATOR
* %
/
*
LEAST TIME +, -

During program optimization, the global optimizer replaces, where
possible (1), some arithmetic operations that require the most time
with operations that require less time. For example, consider the
following DO loop that is used to create a table for the conversion of
from 1 to 20 miles to their equivalents in feet.

DO 10 MILES=1,20
10 IFEET(MILES)=5280*MILES

1. Numerical analysis considerations severely 1limit the number of
cases where this is possible.

C-5

WRITING USER PROGRAMS

The execution time of the foregoing 1loop would be shorter if the
time-consuming multiply operation, i.e., 5280*MILES, could be replaced
by a faster operation. Since you increment MILES on each pass, you
can replace the multiply operation by an add and total operation.

In its optimized form, the foregoing loop would be replaced by a
sequence eguivalent to:

K=5280

DO 10 MILES=1,20

IFEET (MILES) =K
10 K=K+5280

In the optimized form of the loop, the value of K is set to 5280 for
the first 1iteration of the 1loop and is increased by 5280 for each
succeeding iteration of the loop.

This foregoing situation occurs frequently in subscript calculations
that implicitly contain multiplications whenever the size is two or
greater.

C.2.1.3 Removal of Constant Computation From Loops - The speed with
which a given algorithm may be executed can be increased if
instructions and/or computations are moved out of frequently traversed
program sequences into less frequently traversed program Sequences.
Movement of code is possible only if none of the arguments in the
items to be moved are redefined within the code sequences from which
they are to be taken. Computations within a loop <consisting of
variables or constants that are not changed in value within the loop
may be moved outside the loop. Decreasing the number of computations
made within a 1loop greatly decreases the execution time required by
the loop.

For example, in the sequence:

DO 10 I=1,100
10 F=2.0%Q*A(I)+F

the value of the computation 2.0*Q, once calculated on the first
iterations, will remain unchanged during the remaining 99 iterations
of the loop. Reforming the foregoing sequence to:

Q0=2.0*Q
DO 10 I=1,100
10 F=QQ*A(I)+F

moves the calculation 2.0*Q outside the scope of the 1loop. This
movement of code eliminates 99 multiply operations.

In addition, it is possible to remove entire assignment statements
from loops. This action can be easily detected from the macro
expanded listings. The internal sequence number remains with the
statement and appears out of order in the leftmost column of the macro
expanded listing (LINE).

WRITING USER PROGRAMS

C.2.1.4 Constant Folding and Propagation - In this method of
optimization, expressions containing determinate constant values are
detected and the constants are replaced, at compile time, by their
defined or calculated value. For example, assume that the constant PI
is defined and used in the following manner:

-

PI=3.14159

.

X=2*PI*Y

.

At compile time, the optimizer will have used the defined value of PI
to <calculate the wvalue of the subexpression 2*PI. The optimized
sequence would then be:

PI=3.14159

.

X=6.28318*Y

thereby eliminating a multiply operation from the object code program.

The computation of determinate constant values at compile time 1is

termed "folding"; the wuse of the defined value of a constant for
replacement purposes throughout a program sequence is termed
"propagation of the <constants." The execution time saved by the

foregoing type of compile time optimization is particularly important
when the modified instruction occurs in a loop.

C.2.1.5 Removal of Inaccessible Code - The optimizer detects and
eliminates any code within the source program that cannot be accessed.
In general, this will not happen since programmers do not normally
include such code in their programs; however, inaccessible code may
appear in a program during the debugging process. The removal of
inaccessible code by the optimizer will reduce the size of the object
program. A warning message is generated for each inaccessible 1line
removed.

C.2.1.6 Global Register Allocation - During the compilation of a
source program, the optimizer controls the allocation of registers to
minimize computation time 1in the optimized object program. The
allocation process is designed to minimize the number of MOVE and
MOVEM machine instructions that will appear 1in the most frequently
executed portions of the code.

WRITING USER PROGRAMS

C.2.1.7 1I/0 Optimization - Every effort 1is made to minimize the
number of required calls to the FOROTS system. This is done primarily
through extensive analysis of implied DO 1loop constructs on READ,
WRITE, ENCODE, DECODE, and REREAD statements. The formats of these
special blocks are described in Appendix E. These optimizations
reduce dthe size of the program (argument code plus argument block
size is reduced) and greately improve the performance of programs that
use implied DO loop I/O statements.

C.2.1.8 Uninitialized Variable Detection - A warning message is
generated when a scalar variable is referenced before it has received
a value.

C.2.1.9 Test Replacement - If the only use of a DO loop index 1is to
reduce operator strength (D.2.1.2) and the loop does not contain exits
(GO TOs out of the loop), the DO loop index is not needed and can be
replaced by the reduced variable.

For example:
DO 10 I=1,10

K=K+7*1
10 CONTINUE

Reduction of operator strength and test replacement together transform
this loop into

Do 10 1=7,70,7
K=K+I
10 CONTINUE

This occurs frequently in subscript computation.

C.2.2 Improper Function References

Consider this statement:

P = F(X) + Q(Y)

1. the evaluation of F(X) defines or changes the variables A, B,
and C, and

2. the evaluation of Q(Y) defines or changes the values of B, C,
and D,

then it is possible that different values of P could result, depending
on which function 1is evaluated first. Let's see how this works.
Let's assign some values (to begin with) to A, B, C, and D and define
the functions F(X) and Q(Y):

Let:
F(X): Q(Y):
A = 2. A = 6. B = 10.
B = 3. B = 7. C = 11.
C = 4. C = 8. D =12.
D = 5. F =D + 9. Q =A + 13.

WRITING USER PROGRAMS

Now play computer and evaluate P, calling first F(X), then Q(Y). Now
re-evaluate P, calling Q(Y) first, then F(X). Notice that you got
different values for P because the variables A, B, C, and D changed
value depending on the order in which the functions were called. (Our
answers were 33 when F(X) was called first and 36 when Q(Y) was called
first.)

The ANSI FORTRAN standard prohibits this kind of situation. But the
compiler won't catch it unless you mention the affected variables in
the function call itself. The compiler depends on strict adherence to
this rule. There's a strong possibility that you won't get the
results you want if you don't look for situations of this type and
avoid them. Your best bet is to define your variables OUTSIDE the
function and not change them in the course of the evaluation of the
function itself.

C.2.3 Programming Technigues for Effective Optimization

Observe the following recommendations during the coding of a FORTRAN
source program. They will improve the effectiveness of the optimizer.

1. Lo not use DO loops with an extended range.
2. Specify label lists when using assigned GO TOs.

3. Nest loops so that the innermost index is the one with the
largest range of values.

4. Avoid the use of associated input/output variables.

5. Avoid unnecessary use of COMMON and EQUIVALENCE.

C.3 INTERACTING WITH NON-FORTRAN-10 PROGRAMS AND FILES

C.3.1 Calling Sequences

The following paragraphs describe the standard procedures for writing
DECsystem-10 subroutine calls.

1. PFrocedure
a. The <calling program must load the right half of
accumnulator (AC) 16 with the address of the first
argument in the argument list.

b. The left half of AC 16 must be set to zero.

c. The subroutine is then called by a PUSHJ instruction to
AC 17.

d. The return will be made to the instruction immediately
after the PUSHJ 17 instruction.

e. If you use the /DEBUG:BOUNDS option of the FOROTS trace
facility, the calling sequence must be

MOVEI 16,AP
PUSHJ 17,F

c.3.2

WRITING USER PROGRAMS

where AP is the pointer to the argument list. If you use
the trace facility, the word preceding the first word of
an entry point should have its name in SIXBIT.

Restrictions

a. Skip returns are not permitted.

b. The contents of the pushdown stack located before the
address specified by AC 17 belong to the calling program;
they cannot be read by the called subprogram.

c. FOROTS assumes that it has control of the stack;
therefore, you must not create your own stack. The
FOROTS stack is initialized by:

JSP 16,RESET.

or the library routine

CALL RESET.

Accumulator Usage

The specific functions performed by accumulators (AC) 17,16,0, and 1
are as follows:

1.

Pushdown Pointer - AC 17 is always maintained as a pushdown
pointer. Its right half points to the last location in use
on the stack, and its left half contains the negative of the
number of (words-1) allocated to the unused remainder of the
stack. (A trap occurs when something is pushed into the next
to last location. The trap instruction may itself be a PUSHJ
on the KI1l0 processor, which wuses the last 1location.) A
positive left half is not permitted.

Argument List ©Pointer - AC 16 is wused as the argument
pointer. The called subprogram does not need to preserve its
contents. The calling program cannot depend on getting back
the address of the argument list passed to the callee. AC 16
cannot point to the ACs or to the stack.

Temporary and Value Return Registers - AC 0 and 1 are used as
temporary registers and for returning values. The called
subprogram does not need to preserve the contents of AC 0 or
1 (even if not returning a value). The calling program must
never depend on getting back the original contents of the
data passed to the called subprogram.

Returning Values - At the option of the designer of a called
subprogram, a subroutine may pass back results by modifying
the arguments, returning a single-precision value in AC 0 or
a double-precision or complex value in AC 0 and 1. A
combination of the above may be used. However, two
single-precision values cannot be returned in AC 0 and 1,
since FORTRAN would not be able to handle it.

WRITING USER PROGRAMS

5. Preserved ACs - FORTRAN-10 FUNCTION subprograms preserve ACs

2 through 15; subroutine subprograms do not.

The design of the called subprogram cannot depend

on the

contents of any of the ACs being set up by the calling
subprogram, except for ACs 16 and 17. Passing information
must be done explicitly by the argument list mechanism.
Otherwise, the called subprograms cannot be written in either

FORTRAN-10 or COBOL.

C.3.3 Argument Lists

The format of the argument list is as follows:

Arg count word
Arg list addr.---First arg entry
Second arg entry

Last arg entry
The format of the arg count word is:
bits 0-17 These contain -n, where n 1is the number
entries.

bits 18-35 These are reserved and must be 0.

The format of an arg entry is as follows (each entry is
word) :

bits 0-8 Reserved for future DEC development (set to
now) .

bits 9-12 Arg type code.

bit 13 Indirect bit if desired.

bits 14-17 1Index field, must be 0 for present.
bits 18-35 Address of the argument.

The following restrictions should be cbserved:

of arg
single
0 for

1. Neither the argument list nor the arguments themselves can be
on the stack. This restriction is imposed so that the stack

can be moved. The same restriction applies to any
argument pointers.

2. The called program may not modify the argument 1list

indirect

itself.

The argument list may be in a write-protected segment.

Note that the arg count word is at position -1 with

respect

to the contents of AC 16. This word is always required even
if the subroutine does not handle a variable number of
arguments. A subroutine that has no arguments must still
provide an argument list consisting of two words, 1i.e., the
arqgument count word with a 0 in it and a zero argument word.

WRITING USER PROGRAMS

Example

MOVEI 16,AP ;SET UP ARG POINTER
PUSHJ 17,SUB ; CALL SUBROUTINE
N ; RETURN HERE

s ARGUMENT LIST
-3,,0
AP: A
B
C

; SUBROUTINE TO SET THIRD ARG TO SUM OF FIRST TWO ARGS

SUB: MOVE T,@0(16) ;GET FIRST ARG
ADD T,@1(16) ;ADD SECOND ARG
MOVEM T,@2(16) ;SET THIRD ARG
POPJ 17, ;RETURN TO CALLER

C.3.4 Argument Types

Table C-1
Argument Types and Type Codes
Type Code Description
FORTRAN Use COBOL Use

0 Unspecified Unspecified

1 FORTRAN Logical Not applicable

2 Integer l-word COMP

3 Reserved Reserved

4 Real COMP-1

5 Reserved Reserved

6 Octal Reserved

7 Label Procedure address
10 Double real Not applicable
11 Not applicable 2-word COMP

12 Double Octal Reserved

13 Reserved Reserved

14 Complex Not applicable

15 Not applicable Byte string descriptor
16 Reserved Reserved

17 ASCIZ string Not applicable

Literal arguments are permitted, but they must reside 1in a writable
segment. This is because the FORTRAN-10 compiler makes a local of all
non-array elements and copies all formals back to the <caller's
arguments. All unused type <codes are reserved for future DIGITAL
development.

C.3.5

WRITING USER PROGRAMS

Degcription of Arguments

The types of the arguments that may be passed are:

1.

Type 0 - Unspecified

The calling program has not specified the type. The called
subprograms should assume that the argument is of the correct
type if it is checking types. If several types are possible,
the called subprogram should assume a default as part of its
specification. If none of the above conditions is true, the
called subprogram should handle the argument as an integer
(type 2).

Type 1 - FORTRAN logical

A 36-bit binary value containing 0 or positive to specify
.FALSE. and negative to specify .TRUE..

Type 2 - Integer and l-word-COMP
A 36-bit 2's complement signed binary integer.
Type 4 - Real and COMP-1

A 36-bit DECsystem-10 format floating-point number.

bit 0 sign
bits 1-8 excess 128 exponent
bits 9-35 mantissa

Type 6 — Octal
A 36-bit unsigned binary value.
Type 7 ~ Label and procedure address

A 23-bit memory address.

bits 0-12 always 0

bit 13 indirect flag
bits 14-17 0

bits 18-35 the address

Type 10 - Double real

A double-precision floating~point number for the CPU on which
code is being executed, i.e., KA format on a KAlQ processor
and KI format on a KI10 processor.

Type 11 - 2-word COMP

A 2-word (72-bit) 2's complement signed binary integer.

word 1, bit O sign

word 1, bits 1~35 high order

word 2, bit 0 same as word 1, bit 0
word 2, bits 1-35 low order

Type 12 - Double octal

A 72-bit unsigned binary value.

WRITING USER PROGRAMS

10. Type 14 - Complex

A complex number represented as an ordered pair of 36-bit
floating-point numbers. The first represents the real part,
and the second represents the imaginary part.

11. Type 15 - Byte String Descriptor
The format of the byte string descriptor is:

word 1l: ILDB-type pointer, 1i.e., aimed at the byte
preceding the first byte of the string
word 2: EXP byte count

The byte descriptor may not be modified by the called
program. The byte string itself must consist of a string of
contiguous bytes of uniform size. The byte size may be any
number of bits from 1 to 36. The byte count must be large
enough to encompass 256K words of storage, i.e., 24 bits for
1-bit bytes. (See COBOL Program Reference Manual.)

12. Type 17 - ASCIZ string

A string of contiguous 7-bit ASCII bytes 1left Jjustified on
the word boundary of the first word and terminated by a null
byte in the last word. The length of the string may be from
1 to 256K words.

C.3.6 Converting Existing MACRO-10 Libraries for use with FORTRAN-10

The following simple example 1illustrates the FORTRAN-10 calling
seguence.

ST-D

MAIN. EX1.FOR FORTRAN V.5(515) /KI/M 4-NOV-76 12:19 PAGE 1

00001 C AN EXAMPLE OF A CALL TO A SUBROUTINE WITH A VARIETY OF ARGUMENTS
00002

00003 DOUBLE PRECISION DP

00004 DIMENSION B {10}

00005

00006 C THE ARGUMENTS ARE:

00007 o 1. A REAL VARIABLE

00008 C 2. AN ARRAY NAME

00009 C 3. AN ARRAY ELEMENT

00010 C 4. AN INTEGER VARIABLE

00011 C 5. A DOUBLE PRECISION VARIABLE
00012 C 6. AN OCTAL CONSTANT

00013 C 7. A LITERAL

00014

00015 CALL SUBl (A, B, B(I), K, DP, "777, 'ABC')
00016

00017 END

SUBPROGRAMS CALLED

SuBl
SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

DP 1 *K 3 B 4 *A 16 *1 17
TEMPORARIES

.Q0000 20

SWYYO0Yd ddSN ONILIYM

9T1-0

LINE LOoC LABEL GENERATED CODE

0 JFCL 0,0
1 JSP 16,RESET.
2 0,0
15 3 MOVE 2,1
4 MOVEI 2,B-1(2)
5 MOVEM 2,.Q0000
6 MOVEI 16,2M
7 PUSHJ 17,SUBI1
17 10 MOVEI 16,1M
11 PUSHJ 17,EXIT.

ARGUMENT BLOCKS:

12 0,,0
13 1M: 0,,0
14 777771,,0
15 2M: 200, ,A
MAIN. EX1.FOR FORTRAN V.5(512) /KI/M 4-NOV-76 12:19 PAGE 1-1
16 200,,B
17 220,,.00000
20 100,,K
21 400, ,DP
22 300,,[000000000777]
23 740,,[406050320100)
MAIN. [NO ERRORS DETECTED]
MAIN. EX1.FOR FORTRAN V.5(512) /KI/M 4-NOV-76 12:19 PAGE 1
00001
00002 SUBROUTINE SUBl (REAL1, ARYNAM, ARYELM, INT1, DBLPRC, OCT, LIT)

00003 DOUBLE PRECISION DBLPRC

SHWYYO0Yd ¥ISN ONILIUM

LT-D

00004 DIMENSION ARYNAM (10)
00005

00006 C AN EXAMPLE OF THE USE AND MODIFICATION OF FORMAL PARAMETERS
00007

00008 X1 = REAL]

00009 X2 = ARYNAM (J)

60010 X3 = ARYELH

00011 I1 = INT1

00012 X4 = DBLPRC

00013 I2 = OCT

00014 I3 = LIT

00015

00016 REAL]l = X1

00017 ARYNAM (J) = X2

00018 ARYELM = X3

00019 INT1 = Il

00020 DBLPRC = CMPLX (X4, 0.0)
00021 OCT = "55

00022 LIT = '"ZYXW'

00023

00024 RETURN

00025 END

SUBPROGRAMS CALLED

COMPLX.

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

*LIT 1 *OCT 2 *X4 3 *ARYELM 4 *X3 5
DBLPRC 6 *I3 10 *REAL1 11 *J 12 *X2 13
*INTI1 14 *12 15 *X1 16 *I1 17 ARYNAM 20

TEMPORARIES

.A0016 21

SWYIDOUd JdSN ONILIYM

8T-0

LINE LOC LABEL GENERATED CODE

0 636542,,210000
SUB1

2 0 MOVEM 16,.A0016
1 MOVE 0,@0, (16)
2 MOVEM 0,REAL1
3 MOVEI 1,@1(16)
4 MOVEM 1,ARYNAM
5 MOVE 1,@€2(16)

SUB1 EX1.FOR FORTRAN V.5(512) /KI/M 4-NOV-76 12:19 PAGE 1-1
6 MOVEM 1,ARYELM
7 MOVE 2,@3(16)
10 MOVEM 2,INT1
11 DMOVE 4,@4(16)
12 DMOVEM 4,DBLPERC
13 MOVE 3,@5(16)
14 MOVEM 3,0CT
15 MOVE 6,@6(16)
16 MOVEM 6,LIT

8 17 3M

MOVEM 0,X1

9 20 MOVE 7,J
21 ADD 7,ARYNAM
22 MOVE 7,777777(7)
23 MOVEM 7,X2

10 24 MOVEM 1,X3

11 25 MOVEM 2,11

12 26 PUSHJ 17,SNG.4
27 MOVEM 4,X4

13 30 FIX 3,3
31 MOVEM 3,12

14 32 MOVEM 6,13

16 33 MOVEM 0,REAL1

SWYID0Yd ¥ISN ONILIYM

6T-D

ARGUMENT

SUB1

34 MOVE

35 ADD
36 MOVEM
37 MOVEM
40 MOVEM
41 MOVEIL
42 MOVEI
43 DMOVEM
44 MOVEIL
45 MOVEM
46 MCVE
47 MOVEM
50 2M:

MOVE
51 MOVE
52 MOVEM
53 MOVE
54 MOVEM
55 MOVE
56 MOVEM
57 DMOVE
60 DMOVEM
61 MOVE
62 MOVEM
63 MOVE
64 MOVEM
65 POPJ
BLOCKS:
66 0,,0
67 1M: 0,,0

[NO ERRORS DETECTEL]

3,J
3,ARYNAM
7,777777(3)
1,ARYELM
2,INT1

5,0

5,0
4,DBLPRC
2,55

2,0CT

2,[552633053500]}

2,LIT

16,.A0016
0,REAL1
0,@0(16)
0,ARYELM
0,82(16)
0,INT1
0,@3(16)
0,DBLPRC
0,@4(16)
0,0CT
0,@5(16)
0,LIT
0,@6(16)
17,0

SWYYD0dd YHSN ONILIUM

WRITING USER PROGRAMS

To convert existing MACRO-10 programs conveniently so that they will
still load and execute correctly when called from F40 or FORTRAN-10:

1. Transfer the initial entry sequence for a routine to

entry: CAIA
PUSH 17,CEXIT.##

2. Change all returns to POPJ 17,0

These are the functions performed by the HELLO and GOODBY macros.
These macros (available in the file FORPRM.MAC, part of the FOROTS
release) were successfully used to convert the library routines to run
with both F40 and FORTRAN-10.

In addition, since the FORTRAN-10 compiler uses the indirect bits on
argument lists (note that this permits shared, pure code argument
lists), it is essential for code that accesses parameters to take this
into account. Specifically, sequences that obtained the values of
parameters through use of operations such as

HRRZ R,1(16)
to pick up the address of the second argument should be changed to
MOVEI R,@1(16)

The latter operation will work when interfacing with either F40 or
FORTRAN-10.

Refer to the previous example, which illustrates the code generated by
the FORTRAN-10 compiler, for specific details of how each argument is
accessed. Note that in the case of the formal array, it 1is the
address of the array that is accessed.

C.3.7 Mixing FORTRAN-10 and F40 Compiled Programs

Starting with Version 1A of LINK-10, use of the switch /MIXFOR will
permit loading FORTRAN-10 and F40 programs. This is achieved by
modifying the code while it is loaded.

This introduces extra code that results in a degradation of the
execution of programs so 1loaded. This feature 1is provided as a
convenience for conversion. It is not intended to be used for other
than conversion assistance.

C.3.8 Interaction with COBOL-10

The FORTRAN-10 programmer may call COBOL-10 programs as subprograms,
and, conversely, the COBOL programmers may call FORTRAN-10 programs as
subprograms.

In either of the foregoing cases, I/O operation must not be performed
in the called subprogram.

WRITING USER PROGRAMS

C.3.8.1 Calling FORTRAN-10 Subprograms from COBOL-10 Programs - COBOL
programmers may write subprograms in FORTRAN-10 to wuse the
conveniences and facilities provided by this language. The COBOL verb
ENTER is used to call FORTRAN-10 subroutines. The form of ENTER is as
follows:

identifierl identifier?2
ENTER FORTRAN program name |USING (literall , (literal2
procedure namel procedure?2

The USING clause of the foregoing forms names the data within the
COBOL program that 1is to be passed to the <called FORTRAN-10
subprogram. The passed data must be in a form acceptable to
FORTRAN-10.

The calling sequence used by COBOL in calling a FORTRAN-10 subprogram
is:

MOVEI 16, address of first entry in argument list
PUSHJ 17, subprogram address

If the USING clause appears 1in the ENTER statement, the compiler
creates an argument list that contains an entry for each identifier or
literal in the order of appearance in the USING clause. It is
preceded by a word containing, in its left half, the negative number
of the number of entries in the list. If no USING clause is present,
the argument 1list contains an empty word, and the preceding word is
set to 0. Each entry in the list is one 36-bit word at the form:

0-8 9-12 13-35

0 type address

Bits 0-8 are always 0.

Bits 9-12 contain a type code that indicates the USAGE of the
argument.

Bits 13-35 contain the address of the argument of the first
word of the argument; the address can be indexed or indirect.

Following is a description of the types, their codes, how the codes
appear 1in the argument 1list, and the locations specified by the
addresses.

1. For l-word COMPUTATIONAL items

CODE: 2
IN ARGUMENT LIST: XWD 100, address
ADDRESS: that of the argument itself

2. For 2-word COMPUTATIONAL items

CODE: 11

IN ARGUMENT LIST: XWD 440, address

ADDRESS: that of the high-order word of the
argument

3. For COMPUTATIONAL-1 items

CODE: 4
IN ARGUMENT LIST: XWD 200, address
ADDRESS: that of the argument itself

c-21

WRITING USER PROGRAMS

4. For DISPLAY-6 and DISPLAY-7 items

CODE: 15

IN ARGUMENT LIST: XWD 640, address

ADDRESS: that of a 2-word descriptor for the
argument

WORD1: a byte pointer to the identifier or
literal

WORD2: bit 0 is 1 if the item is numeric

bit 1 is 1 if the item is signed

bit 2 is 1 if the item 1is a figurative
constant (including ALL)

bit 3 is 1 if the item is a literal

bits 4 through 11 are reserved for
expansion

bit 12 is 1 if the item has a PICTURE
with one or more Ps just before the
decimal point, e.g., 99PPV.

bits 13 through 17 are the number of
decimal places. If bit 12 is 1, this
is the number of Ps.

bits 18 through 35 contain the size of

the item in bytes.

5. For procedure names (which cannot be used for calls to COBOL
subprograms)

CODE: 7
IN ARGUMENT LIST: XWD 340, address
ADDRESS: that of the procedure

The return from a subprogram (via POPJ 17,) is to the statement after
the call.

C.3.8.2 Calling COBOL-10 Subroutines from FORTRAN-10 Programs - To
call COBOL subroutines use the standard subroutine calling mechanism:

CALL COBOLS (args...) subroutine call
X=COBOLS (args...) function call

You must have compiled the COBOL subroutine using the COBOL compiler
described in the DECsystem-10 COBOL Programmer's Reference Manual.

C.3.9 LINK-10 Overlay Facilities

LINK-10 provides several routines that are accessible directly from a
FORTRAN-10 program. These routines are presented here briefly,
together with the FORTRAN-10 specification of their parameters. In
general, LINK-10 performs these functions automatically. These
routines are available only for your convenience. Full details of the
use of the overlay facilities can be found in the LINK-10 Reference
Manual.

WRITING USER PROGRAMS

C.3.9.1 Conventions - The following terms are used to describe the
parameters to LINK-10 overlay routines.

File spec A literal constant consisting of device:
filename.ext [directory]

Name A LINK name or number that 1s a 1literal
constant or variable.

List of 1ink names A sequence of name items separated by
commas.

The routines available are:

INIOVL (File spec) Used to specify the overlay
file to be found if the 1load time
specification is to be overridden.

GETOVL (List of l1link names) Used to change the
overlay structure in core.

RUNOVL (Name) Loads the specified LINK and
transfers to that LINK.

REMOVL (List of link names) Removes the specified
LINKs from core.

LOGOVL (File spec) Used to specify where the 1log
file is to be written. If no arguments are
given, the log file is closed.

For a full description of these routines, refer to the LINK-10
Reference Manual.

C.3.10 FOROTS/FORSE Compatibility

The information presented in Sections C€.3.10.1 and C.3.10.2 1is
intended only for those users who have programs and data files that
were developed using the F40 FORTRAN compiler and the FORSE object
time system. The following sections describe the manner in which both
upward and downward compatibility between the FORTRAN-10, FOROTS and
F4(0, FORSE FORTRAN systems may be achieved.

C.3.10.1 FORTRAN-10/F40 Data File Compatibility - Table C-2 describes
upward compatibility of data files (FORSE TO FOROTS). Table C-3
describes downward compatibility of data files (FOROTS TO FORSE).

WRITING USER PROGRAMS

Table C-2
Upward Compatibility (FORSE TO FOROTS)

May Be
FORSE read By In The Following
File Type FOROTS Manner:

1. Sequential ASCII Yes May be read directly;
record positioning
operations, e.g.,
BACKSPACE, SKIP RECORD,
may be used.

2. Sequential Binary Yes May be read directly in
a forward fashion only;
record positioning
operations are not
permitted.

3. Sequential Mixed files Yes May be read directly in

Random Access ASCII Files

Random Access Binary Files

No}
No

a forward fashion only;
record positioning
operations not
permitted.

NOTE: We suggest that
a random access file
be read (using FORSE)
and be rewritten as a
sequential file that
can be accepted by
FOROTS.

C.3.10.2
following

WRITING USER PROGRAMS

Converting FOROTS Data Files to FORSE-Acceptable Form - The
paragraphs describe procedures that may be used to convert

FOROTS sequential mixed, random access ASCII, and random access binary

data file
Conversio
procedure
seguentia

1.

2.

s into a form that can be read by FORSE.

n of FOROTS Sequential Mixed Files - We suggest the following
to convert a FOROTS sequential mixed file into either a
1 ASCII or sequential binary file acceptable to FORSE.

Prepare and run a FORTRAN-10 I/O program that will produce
either a sequential ASCII or a sequenial binary output file.

If a seguential ASCII file 1is produced, it must be
line-blocked before it can be read by FORSE. Line-blocking
is accomplished by copying the file using either the system
COPY command (with an A switch) or PIP. The copy will be
line blocked and will be acceptable to FORSE. The following
iz an example of the command sequence needed to line-block
the data file FOROT.DAT:

.COPY FOROT.DAT=FOROT.DATA/A

If a sequential binary file 1is produced, it must be
record-blocked before it can be read by FORSE.
Record-blocking is accomplished using the /K feature of the
program BAKWDS. The following is an example of the command
sequence needed to record-block the data file FOROT.DAT:

.R BAKWDS
*FOROT.DAT=FOROT.DAT/K

WRITING USER PROGRAMS

Table C-3
Downward Compatibility

(FOROTS TO FORSE)

FOROTS
File Type

May Be
Read By
FORSE

In The Following
Manner:

1. Seguential ASCII File

2. Sequential Binary File

3. Sequential Mixed File

4., Random Access ASCII File

5. Random Access Binary File

Yes

Yes

No

No

No

This operation is
permitted 1if the file is
line-blocked. This may
be accomplished by making
a copy of the file using
either the system copy
command {(with an A
switch) or the PIP
program. The resulting
copy will be
line-blocked.

An example of the command
sequence needed to line
block a FOROTS file,
using PIP, follows:

.R PIP
*FOROTS .DAT=FOROTS.DAT/A

This operation is
permitted if the file is
record-blocked. This
type of blocking is
accomplished by using the
/K option of the program
BAKWDS. The following is
an example of a command
sequence which
record-blocks a file.

.R BAKWDS
* FORSE.DAT=FOROTS.DAT/K

(See Section C.3.10.2 for
suggested conversion
procedure.)

(See Section C.3.10.2 for
suggested conversion
procedure.)

(See Section C.3.10.2 for
suggested conversion
procedure.)

WRITING USER PROGRAMS

Conversion of FOROTS Random Access ASCII Files - We suggest the
following procedure to convert a FOROTS random access ASCII file into
a form acceptable to FORSE.

1. Prepare and run a FORTRAN-10 I/O program that will <create a
sequential ASCII file consisting of the records of the random
access file.

2. Line-block the sequential ASCII file using either the system
COPY command (with an A switch) or the PIP program. The
following is an example of the COPY command:

.COPY LNBLK.DAT=SEQFL.DAT/A

The foregoing command would produce a line-blocked copy
(LNBLK.DAT) of the sequential file SEQFL.DAT.

3. Prepare and run an F40 I/O0 program that will read the file
produced in step 2 and will rewrite the file as a FORSE
generated random access file.

Conversion of FOROTS Random Access Binary Files - We suggest the
following procedure to convert a FOROTS random access binary file into
a form acceptable to FORSE.

1. Prepare and run a FORTRAN-10 I/O program that will create a
sequential binary file consisting of +the records of the
random access file.

2. Record-block the sequential file. This 1is accomplished by
using the /K feature of the program BAKWDS. The following
example illustrates the command sequence required to convert
the file FOROTS.DAT into the record-blocked file FORBLK.DAT.

.R BAKWDS
*FORBLK.DAT=FOROTS.DAT/K

3. An F40 I/O program may then be written to convert the
sequential record-blocked file into a FORSE generated random
access file.

C.3.10.3 General Restrictions - Observe the following restriction
during the preparation of FORTRAN-10 programs and data files:

CHAIN functions (as implemented for the F40 compiler) are not
implemented in FORTRAN-10. An overlay capability that is greatly
superior to CHAIN is available with LINK-10 version 2.

APPENDIX D

FOROTS

This appendix describes the facilities that FOROTS provides for the
FORTRAN user. FOROTS implements all standard FORTRAN I/O operations
as set forth in the "American National Standard FORTRAN, ANSI
X3.9-1966." 1In addition it provides the user with capabilities and
programming features beyond those defined in the ANSI standard.
The primary function of FOROTS is to act as a direct interface between
user object programs and the DECsystem-10 monitor during input and
output operations. Other capabilities include:

1. Job initialization

2. Channel and core management

3. Error handling and reporting

4. TFile management

5. JFormatting of data

6. Mathematical library

7. User library (non-mathematical)

8. ©SBpecialized applications packages

9. Overlay facilities

10. F40 compatibility

D.1 HARDWARE AND SOFTWARE REQUIREMENTS

You can run FOROTS on a DECsystem-10 KAlO0, KI10, or KL1l0 processor.
FOROTS may interface with all DECsystem-10 peripheral devices. 1In
addition to monitor or user program reguirements, a minimum of 14
pages of user core is needed to run FOROTS.

FOROTS

The software required with FOROTS is the 5.06 monitor or a later

version.
include:

Other software items that can be associated with FOROTS

The MACRO-10 assembler (version 47 or later)
The LINK-10 loader (version 1A or later)
The system program COMPIL (version 22 or later) and

The FORTRAN-10 compiler (version 1 or later)

D.2 FEATURES OF FOROTS

The following list briefly describes many specific features; more

detailed

information concerning the implementation of these features

is given later in this appendix.

1.

10.

11.

Your program may run in either batch or timesharing mode
without requiring a program change. All differences between
batch mode and timesharing mode operations are resolved by
FOROTS.

Your programs may access both directory and non-directory
devices in the same manner.

FOROTS helps provide complete data file compatibility between
all DECsystem-10 devices.

FOROTS does not require 1line-blocking (a requirement that
each output buffer must contain only an integral number of
lines).

Up to 15 data files may be accessed simultaneously. Any
number or all of the open data files may be accessed
randomly.

FOROTS treats devices located at remote stations similarly to
local devices.

Programs written for magnetic tape operations will run
correctly on disk under FOROTS supervision. FOROTS simulates
the commands needed for magnetic tape operations.

You may change or specify object program device and file
specifications via a FOROTS interactive dialogue mode.

Non-FORTRAN binary data files may be read in image mode by
FOROTS.

FOROTS provides interactive program/operating system error
processing routines. These routines permit you to route the
execution of the program to specific error processing
routines whenever designated types of errors are detected.

An error traceback facility for fatal errors provides a
history of all subprogram calls made back to the main program
at the address of the point where the error occurred.

FOROTS

12. FOROTS provides a trap handling system for arithmetic
functions, including default values and error reports.

13. You may mix ASCII and binary records in the same file, and
both may be accessed in either sequential or random access
mode.

14. FOROTS permits your program to switch from READ to WRITE on
the same I/O device without loss of data or buffering.

15. Although primarily designed for wuse with the FORTRAN-10
compiler, vyou may also use FOROTS as an independent I/O
system, as an I/0 system for MACRO-10 object programs, and
for FORTRAN-10 and F40 object programs.

D.3 ERROR PROCESSING

Whenever a run-time error is detected, the FOROTS error processing
system takes control of program execution. This system determines the
class of the error and either outputs an appropriate message at the
controlling terminal or Dbranches the program to a predesignated
processing routine.

D.4 INPUT/OUTPUT FACILITIES

FOROTS uses monitor-buffered I/0 during all modes of access except
DUMP mode. Display devices are supported in dump mode; formatted
text 1s handled in ASCII line mode; unformatted files are accessed as
FORTRAN binary files. (Refer to DECsystem-10 Monitor Calls Manual.)

The following paragraphs describe I/0 data channel and access modes.

D.4.1 Input/Output Channels Used Internally by FOROTS

Fifteen software channels (1 through 15) are available in I/O
operations. Software channel 0 is reserved for the following system
functions:

1. The printing of error messages, and

2. The 1loading and initialization of FOROTS (GETSEG uuo
operations)

Software channels 1 through 15 are available for user program data
transfer operations. When a request is made for a data channel, a
table is scanned until a free channel 1is found. The first free
channel 1is assigned to the requesting program; on completion of the
assigned transfer, control of the software channel 1is returned to
FOROTS.

FOROTS

D.4.2 File Access Modes

Data may be transferred between processor storage and peripheral
devices in two major modes -~ sequential and random.

D.4.2.1 Seguential Transfer Mode - In sequential data transfer
operations, the records involved are transferred in the same order as
they appear in the source file. Each I/0 statement executed in this
mode transfers the record immediately following the 1last record
transferred from the accessed source file. A special version of the
sequential mode (referred to as APPEND) 1is available for output
(write) operations. The special APPEND mode permits you to write a
record immediately after the last logical record of the accessed file.
During the APPEND operation, the records already in the accessed file
remain unchanged; the only function performed is the appending of the
transfY2red records to the end of the file.

You must specify transfer modes (other than SEQINOUT) by setting the
ACCESS option of a FORTRAN-10 OPEN statement to one of several
possible arguments. For the sequential mode, the arguments are

ACCESS='SEQIN' (sequential read-only mode)

ACCESS='SEQOUT' (sequential write-only mode)

ACCESS='SEQINOUT' (sequential read followed by a sequential
write)

ACCESS="APPEND' (seguential Append mode)

D.4.2.2 Random Access Mode - This transfer mode permits records to be
accessed and transferred from a source file in any desired order.
Random access transfers must be made between processor core and a
device (disk) that permits random addressing op.rations to files that
have been set up for random access. Files [random access must
contain a specified number of identically siz«d records that may be
individually accessed by a record number.

You may accomplish random access transfers in «¢ither a read/write mode
or a special read-only mode. You must specify random transfer modes
by setting the ACCESS option of an OPEN statsment to one of several
possible arguments.

ACCESS='RANDOM' (random read/write mode)
ACCESS='RANDIN' (random special read-only mode)

D.5 ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS

The following paragraphs describe the types of data files that are
acceptable to FOROTS.

D.5.1 ASCII Data Files

Each record within an ASCII data file consists of a set of contiguous
7-bit characters. A vertical paper-motion character, such as, a Form
Feed, a Vertical Tab, or a Line Feed, terminates each set. All ASCII
records start on a word boundary; the last word in a record is padded
with nulls, if necessary, to ensure that the record also ends on a
word boundary. Logical records may be split across physical blocks.
There 1s no implied maximum length for logical records.

D-4

FOROTS

NOTE

On sequential input, FOROTS does not
require conformation to word boundaries;

it reads what it sees. Therefore, any
file that 1is written by FOROTS will
conform to the foregoing format

requirements.

D.5.2 FORTRAN Binary Data Fileg

Each logical record in a FORTRAN binary data file contains data that
the executing program wmway reference with either a READ or WRITE
statement. A logical record is preceded by a control word and may
have one or more control words embedded within it. In FORTRAN binary
data files, there is no relationship between 1logical records and
physical device block sizes. There is no implied maximum length for
logical records.

D.5.2.1 Format of Binary Files - A FOROTS binary file may contain
three forms of Logical Segment Control Words (LSCW). These LSCWs give
FOROTS the ability to distinguish ASCII files from binary files.

LSCwW
START 001+ the number of words in the segment (exclusive of
any "END" LSCWs)
CONTINUE 002 indicates that the segment of a disk block
boundary continues
END 003+ number of words in the preceding segment including
LSCWs.
If the access you specify for a file (through the OPEN statement
ACCESS = ©parameter) is 'SEQIN', 'SEQOUT', or 'SEQINOUT', all three
LSCWs may appear in a record. If the access you specify is 'RANDIN',
or 'RANDOM', all records are of the same length, and there are no

CONTINUE LSCWs.

The following examples illustrate the LSCW. The random access binary
file contains only 001 and 003 LSCWs.

c LOOK AT A BINARY FILE AND SEE THE LOGICAL SEGMENT
c CONTROL WORDS.

OPEN(UN]IT=1,ACCESS='RANDOM’ ,MODEa/BIRARY/,
1 RECORD=108)

135
WRITE(1'3) (1, J=1,100)

NED4
WRITE(12) (J,K=1,100)
END

Bp.oop
207003
Ppspo2
29,003
ggcoo4
ggrenps
29006
dgs007
Ppie1g@
2prp11
22012
222013
29.914
Qp.:215
2016
2p., 017
Pp a2
gp21
2p.p22
22,223
2p.'024
2pp25%
Pee2e6
g24027
2p 23p
2po03¢
Ppe32
Bp o33
2p 034
2p:035
2036
Pgc037
Ppr04p
Ppr04y
2p 042
P 043
Pps044
Ppro4s
2p224e
02247
22292592
Poc051
P52
2R 053
Pp. 254
2g70255
22056
Pp>057
292260
PR 061
22062
Pe7063

201002
200022
2gg20p
2po020
200029
202202
29¢ed00
2900202
200222
200000
2020082
200229
Zoeozo
2p2222
Coooog
Coeoon
coe00e
2p2000
gpodoe
2pedae
2poRad
2ge220
200020
200220
200000
2p00020
2gecon
2002020
0p2d20
280220
0pgoape
2pepee
dogoze
200020
2p2d00
2gezZog
eoplag
2p0020
2peeeo
200000
2p2220
200022
290700
202020
200220
o220
dgeoee
2000282
2pp220
202020
¢aeda0
390220

FOROTS

209 1 45 «— Number of words
in record counting
END LSCW or the
number of words

pepogs
00095
200205
222005
gepags
222205
209¢e5
Jeg0p5
229025
229295
292025
200005
220095
2008005
270005
AC0AQ5
222005
200025
2C0ap5
208025
A00205
200205
200095
290a25
200025
2208025
200025
gegngs
200205
02005
200205
gRgags
pP0225
argegs
228005
o%p005
200225
229005
200285
gopegs
oRBoRs
2990205
p20205%
geeops
22705
p2002g5
areaps
220205
200025
2090395
2egoes

following this
word to the
END LSCW.

294064
2p:R65
Bp:066
Bpreey
2p.070
o771
2p.'072
222073
Pp2074
2e2075%
PpiR76
@ps077
Pe.1og
@p2101
2p.:102
222103
Pp2104
2’1025
dp’106
221027
fp:119
Pp7111
Ravi1i2
Bei113
2pil14
2pai11s
Pprile
291117
Ppei2p
2ps121
2122
Pp2123
Ppr124
Bpe12s
Bgz126
2po127
2p2130
202134
290132
292133
PP0134
egCr13s
2p0136
2p0137
Pgirl14p
Pp2l4al
Ppini42
Bp2143
Pp1144
2p.:145%
Pp.'146
Gp.r147
2pg-15p

2pr020
2p0000
on2o0
2oedn0
20ad00
eonRae
000220
ggoea0
2peReo
2pe220
oacap
202020
200220
2902720
202000
2oe200
2922002
200008
2000200
200200
2gaeoe
202220
2goonp
2000220
2geco0
292000
200000
202202
2opooe
200022
2poR20
opoden
200200
2op000
Poecoe
908020
dgeden
0geoo0
2geReg
2pe2oe
20002002
200099
0pode0
¢o00p0
2ped00Q
2gepo0
2p0000
202000
2pacop
2p3020
2012292
2a202p
2ogdop

a2gees
gegoes
2092025
a0pnps
200005
200285
goeges
229025
220205
pepags
peeags
2ngees
200025
20pags
200205
200005
poeoes
200025
2opeRes
200005
270205
200805
220225
2000205
2000205
220205
pepags
202205
20p@5
228205
22eme5
299005
020205
p2goes
220005
2209225
gogees
gepeps
200005
popoes
eegees
009005
gegops
200228
aveaps
202005
209295
209005
299005

23@146 —ENDLSCW

P00145
220007
s20007

Containing the
number of words
in the record
including LSCW’s.

2gir151
2e2152
Bp’l153
@p2154
222155
g 156
2@.:157
Apz16@
Bp- 161
20162
Pp 163
2164
P@2165
Ppr166
Bp.167
22179
@pr171
20,172
85173
2. 174
21175
222176
177
Qe 229
A 201
2. 282
2p.c223
P2. 204
g 208
Pp-206
Pp.1207
0p.210
2gi211
Pp,212
2p..213
Ppr214
2g 215
2. 216
Rp217
Pp222@
Pp.221
P@2222
Ppa2223
Bp2224
Ppa22s
@pn226
Ppa227
Ppu239
Ppa23l
Pp232

2909222
200020
2palep
202220
202202
agaRz2a
200208
202220
2gel2p
fgacae
opeda0
2090022
20002202
200000
0002020
2020282
202000
ognR2e
Qgrdpe
200220
Apg200
207000
202220
fgpdo0
202222
apeR20
202028
200022
2000292
200020
2p0C20Q
2p2000
282222
coalao
00220
200000
00000
200020
2000208
goacao
gogoao
Pgecpoe
202000
290000
2000022
Pogoae
oooR00
Poedop
200020
200200

220307
s00207
20907
200007
reee7
200207
pegen7
pegen7
popog?
200887
22207
2veag7
gvpag?
g2paa7
uopea7
200807
pop2e7
Ly lduy
pogap7
220207
220007
a%g2a7
220207
a2egag7
200007
200087
gnoap?
200¢07
2epag?
poaep7
zopea?
gPeep7
gepeg?
200207
20207
peeaeg7
pogep7
p0p207
220007
200007
aeoog?
pogeg?
gepgee”
gopoa?
presa?
gepea?
290007
po0ae7
200007
pooeR?

FOROTS

PR2233
Pps234
Ppa23s
Pp2236
Ppz23y
Ppit240@
Ppi24y
Pp242
Pp:243
Ppi244
Bpr245
Bp.246
Bpii247
Bp 2259
28.:251
2@7252
2p2253
2p.2254
27255
2p: 256
2gr2s57
Ber2ép
2pz261
8p.,262
02263
Bp.-264
Bpr265
021’266
Beg. 267
Bgr279
Aps271
2p2272
2er273
Bpr274
2p227%
@p 1276
295277
Pps309
Bpc3oy
Pe2322
005303
B34
P2p305
P33z
Qpc3a7
Pps310
Pp2311
2312
2en3Ly

200020
200200
2o2200
202020
0008
2p0200
LILEL)
000200
000020
T ELLT)
000220
200700
202220
780220
202200
602200
000230
202230
L ELEL)
000080
202200
200200
228200
200200
202200
200020
620000
LLLET)
200080
200000
290020
202220
202000
200200
202020
ope220
202200
200220
200028
202200
202000
220200
200000
2000020
LETET,
202200
202200
6ee2e0
083200

020007
poeap7
gRpgag?
200087
200027
220307
gleag7
p00807
0000297
2090037
202037
220007
220287
geeng7
290a97
e20207
2apap7
pagee?
goooe7
228207
g202p7
pPpag7
220007
geoag7
gegae7
220007
200207
erene?
290007
gogoe7
200007
peeop7
200097
200007
goBeR7
gog297
200207
onp2a7
pepep?
270007
gne2e7
popoR?
2002a7
220087
aepen7
2200027
pepeg?
pegoe7
gep146

In the sequential access binary file, the second
128-word disk boundary and contains a 002

c
C

20020
2p 3001
gp.op2
Cp.ea3
2p. 0024
2p.:00%
Bp:206
%p. 207
Pp 219
2p 011
20212
22013
Pp. 014
2p 015
2p:216
2p 017
Pp’e2p
2pr021
PR 022
Pp:@23
2o 024
2p., @825
2g-n26
2p.op27
00..03p
20.031
2p 032
2giR33
220234
B35
224836
20037
2pv24p
22041
20042

FOROTS

record crosses
(CONTINUE)

LSCW.

LOOK AT A BINARY FILE AND SEE THE LOGICAL SEGMENT
CONTROL WORDS.,

OPEN(UN]T=1,MO0DE='BINARY’)

128

WRITE(L) (1, J=1,180)

Ju?

WRITE(L) (J,K=1.,100)

END

201229
2gedae
200228
2gz20302
¢ogdoe
200229
202220
202020
2en220
2gr220
200220
2¢2320
?aecae
292020
2p0020
2ooRae
20e¢220
200020
2e0220
200920
200220
egaren
022220
200020
2on0ae
2002082
opeedp
ogeRap
2g0020
202229
2¢oco0
292202
200220
200020
2gecon

220145
200025
200025
208005
200005
pegaps
g2p2p5
220205
278205
270005
onpags
pePegs
areees
298905
200005
220985
o005
228225
270025
27R2p5
peeAnSs
2005
poeoes
220005
200085
290225
gagags
groaRs5
20025
298225
222225
2008225
220085
202005
gRoges

BpiR43
a7 P44
2045
Bp.046
Bp. 047
2p 2050
PR-:05%
Bp:R52
202053
29054
20.'055
29256
22.:857
PR, 060
20,061
Qg 062
2R Q63
2R 064
Pg.I06s
Po’066
28 067
2p070@
P2p 071
gprR72
22073
20,274
Ap: @75
22076
2p 77
2p. 100
2971081
Pp.102
29’103
29124
092185

200209
2p20200
220020
202200
2000092
200020
2¢0020
gpe09e
200002
292029
2000292
292000
2000282
2002¢82
200228
290030
200020
Zoneap
202220
ppeooe
2000282
2peoag
29¢220
002220
Pperae
292220
0022232
2020232
2e2000
202272
200020
232020
200020
2g2030
gae220

20gags
200205
oeesgs
gogegs
J2geps
29p2p5
220205
220005
oepees
p2gees
geoaps
2reeps
200325
pRRoOgs
gog2es5
200005
228005
2280¢5
220085
200205
a2gpes
228205
p20025
gegags
229205
270023
g2g0p5

geeoRs
279025
20pag5
2%pags
298295
290925
200295
200095

the

8p:106
Pezioy
Ggs11p
2pri1y
gpe112
PEr11y
2p4114
Bpz115
2paiie
Q3117
Bpr12p
@pr121
Bp2122
Ppr123
Bpa124
Pp212%
Pp"126
29p127
2p213p
Pp2131
2pv132
Pp2133
0pu134
2prL3s
Pp2136
2pr137
0149
Ppr141
Bgz142
292143
Ppl144
Ppr14%
Bpvr146
Pp.147
Apc 159
2gi151
@gir152
2p 153
02154
2g..155%
22156
287157
/160
902161
81162
27163
2p164
B3pc165%5
Pp2166
Q80167
Peu17@
Bgr171
Bpi172

202209
228200
gpedeo
2geooe
292029
Apocop
2opdee
¢opooe
foppRoo
oppCoa
2poee0
J2op222
doe0000
ooge0ge
dopde2
2poong
gpooe2
Ppoodon
gpeope
doe000Q
oooc0Q
200000
2geden
2pa2a0
2pp000
2p0020
dgedoa
2epReQ
ogelee
200000
200022
gg3000
201000
Zeo000
200020
2920082
2goo20
2oeoeg
2pe200
opav20
2ppea0
200000
2pcpo0
o000
282290
2p0020
goa02e
2ppooe
v2p0080
200200
2p2200
g
20000

gegeas
3egags
20005
220005
2C0805
220095
e2ges
gegeas
gPgees
20gens
2Ppees
aeongs
pegeps
200005
220205
220005
229025
gPpees
2200205
2Paaes
202205
pPgops
efgees
goooos
%2005
209005
p00005
220005
229205
202005
27205
goRL46
220032
aroee7
270807
2000207
p2e207
220007
20307
ueoee7
2800207
270007
gepag7
208907
700307
A0Q207
200027
200027
augag7
2000827
gopea7
gapag7
2002a7

~— Number of
words to
next LSCW.

FOROTS

207173
29,174
2avivs
2176
Ppu177
Ppeap
Ppregy
2pv2od2
2pr2o3
02204
Bpr2ps
2pr2ae
2,237
Pp.,21@
272211
Pp2212
Ppr213
8gr214
Bpr21%
Ppr2le
Ppz217
2pr229
Bpz22%
Bpre22
Ppre23
Ppa224
2p2225
Ppp2e
PprR27
Pp2232
Ppr23y
Pp2232
202233
2p2234
Ppz235
82,236
292237
0242
0g7241
Bpr242
2pr243
Pp2244
032245
Pp2246
0p1247
Qe 25@
Bpr2sy
Ppc252
22253
Pp-254
Pp.255
Pg.:256
Pg 1257

2pocoe
2900220
ognd20
opp@og
20p002
2p2209
0p0022
220329
bpedoe
oga200
cogopp
doooap
2ppdap
Ppe2on
200200
202020
2p022p
2009200
doreae
2g2¢0@
202000
o000
2pe220
2oeR20
2p0020
2000200
vpolap
voe0ag
copB20
2poco0
Poe030
0peoeR
Zoelae
2pocog
2000002
Zpzoeo
2p0R00
2020080
202020
PReoap
opeoan
daeeno
200030
goecoe
2pe020
200200
2003302
200220
ooponp
2000320
2ooeoe
200008
P20020

200007
200007
#0007
220007
gogea7
2R@1 14~ Continue LSCW.
200297
a0@ag7
c2peg?
2PQep7
200007
20pap7
gegap7
zoeep7
2eg207
2292387
220007
eLoRp7
200007
a0pea7
gRagag?
Q20¢07
2op2a?
pZpep7
208827
R2geg7
gopaa?
gopea?
200007
290207
20@0@@7
208007
22po07
202207
pogea7
plepaa7
220207
29207
gnezaz
aopea7
220307
grpen7
geprg7
2000e¢7
220027
220027
2709%@7
e2e027
270007
22g207
200227
220007
prgag?

FOROTS

Ppr26p 7PpogE voeee? Gp2277 0Qp208 200027
Ppir26y 200020 Q2900¢7 Ppz30p 000000 290027
gpi262 Ooelee 20@Q@7 Pe23@1 200000 29029007
Pp2263 ApePzpe 298227 Pp2302 000000 AVO0R7
Pps264 02QP000 @2RRARY7 Per3o3 000000 200007
Ppr265 000000 220007 Pp¢304 2QP00Q 020207
Bpc266 0Qpeo@ 00QQRQ7 Pp7230S 0PO222 0000Q7
epr267 T02000 020007 2p2306 0g00eQ 200027
0e227p 02000200 292007 2p2307 OCQ200p 290CQ7
0p2271 @pp0eD 290027 Ppc3i@ QQ0020 2090207
Ppc272 QJop00Q 290007 Pps3Ly 000000 200007
Ppv273 0p@Q0p 220007 0p2312 02p002Q Q0P@2Q7
Pec274 0Opolo@ 200087 Pp2313 200000 2920207
Pgc.275 0Oppda@ 200027 Ppr3i14 OP3000 QVQR147
Ppi276 PQpcoep 020007
Image mode files contain no LSCWs. You cannot backspace this file.

C LOOK AT AN IMAGE MODE FILE AND SEE NO LOGICAL BEGMENT
c CONTROL WORDS.

OPEN(UNIT=4,MODE® IMAGE")

1%

WRITE(1) (1, J=3,100)

Js7

WRITE(L1) (J)K=1,1p0)

END
2p200@ 202020 220005 PpJi024 200020 U7QQ208
2p2001 200020 2%P00% Pore2s 0QpoonQ 200005
Ppnepz Op220p P0@2P5 Ppr26 Q00000 000005
epl003 002700 220005 297027 0@0022 209025
2pr004 Q00020 020205 2p¢030 QQ0000 200005
2guP05 0Qppl0p 200005 2203y CQoQRQe 20p0RS
2p*006 7200000 270025 292032 290000 200225
2p2007 Q20¢020 200205 Pev@33 Q200022 229025
Pps01p 200000 C0BGES Pgr034 200220 208005
0p3@11L JQpP0@Q 222205 22035 0polep 220025
Pp<012 0CQ00Cop 2908925 Pp2036 2000022 Q200005
207013 QCQ0o0e@ 20Q0Q5 Ppro37 22002 220025
0p?014 202220 220025 Ppag4p Op0000 200025
Pp2@15 0OQgoP@o 2370005 Bgro4y Q@23220 222005
207016 2000290 Q02205 Bprg42 290020 202025
Pp7017 0CQ00pp 2000025 202043 0p0Qap 202095
P02y 202020 022Q2@5 PpuP4q 020000 022005
Pp2021 700000 292005 BpuR45 0Opplop 2220225
Pplr022 200020 Q20005 Qp7P46 OQoO@ED BPPA2S
202023 200023 2900025 Bgnd4y 0Qplep 302225

24050
Ppapsy
A p52
2272053
Bp2054
227055
2056
dp20857
2p206@
02061
Ppra62
P2p2063
2p064
222065
2o1066
2eree6y
2e-o7e
dgre71
22/ 272
2p 073
2p:207%
Bp @76
20077
Ggr1ep
29101
2p~i02
222103
292104
22105
Rprioe
Gpa107
Pp211p
Pp2111
Pez112
2113
Pp2114
22115
297116
Pe2147
Gp212p
23121
Pp2122
Pps123
0p2124
Ppr12%
202126
apei127
8pC130
292131
Ppa132
22133
Ppc134

2200089
Pgndog
Pppoe0
2po02p
o@adae
200090
022000
Lrrry
0ga0ee
202200
Qpocoe
2p000@
2petng
2g0000
oped0p
200720
2ge2a0
Jop20Q
2p0Q2p
00000
2g2deQ
202200
2genop
ogodan
220008
200200
ogo0ep0
doePap
200000
@200
Poe20n
202000
PpePoQ
2or0a0
opeRoR
2pePeR
2peze00
200000
opedop
agenee
2pe0pn0
Ppe200
opedon
dgedng
opR00
Qgenan
000020
L LT
2go02a0
ogelen
opo220
cgeden
Z2oodp00

gePepes
gepoas
popeps
200005
300005
200205
299095
2282083
202095
2ee0ps5
gegapgs
200005
202025
Jeeaps
200005
2eeags
209095
27200205
2000205
pegeps
p2papes
220025
20p@25
20p0g5
2202g5
200005
208025
peReBS5
200205
220005
200005
222025
022025
2000205
pogees
208285
2220225
ocee0es
290285
pepons
gopags
aepags
222005
290005
208225
eepags
220005
220025
gooees
goeeas
g2@2e5
gepgegs
290005

FOROT

S

292135
Ppz136
2pri13y
Pegaldp
2pai4y
Pp7142
P 143
Peclag
Bp2145
Pp 146
Pp147
Pp215@
02151
Pe2152
227153
2154
@p”155
Bpli156
Bgr157
Bpr16p
Ppr161
297162
227163
2@7164
202165
Pp2166
2167
202170
292171
Bp.r172
Bp2i7y
Pp72174
202175
Pp2176
292177
200200
2ps201
2pr2a2
Q02203
Bprené4
dpr208s
Bg.rane
Pp2207
Ppe219
Ppr21i
Ppr212
2213
2pc214
Qpr21s
Ppl2Le
2@2217
02220
2pr224

ogadon
opa2en
200020
pelep
200000
0000292
2po000
opocee
epeRoo
wrrry.
290020
eaedse
vpoRen
2pa0e0
2op020
2p0022
2oed20
Cgedoo
2peRe0
2900209
200020
200220
000020
0po2ap
poeR20
290000
Co0229
200020
202000
200020
200220
202200
200220
Zog020
202020
coned20
0a2200
eoalo0
200220
2geR29
2002020
200200
eoproce
ope220
2pp222
2po0o0
2go2en
200200
2pe200
200000
2pecog
202200
oggeen

greeos
208025
202005
020205
278205
200025
200005
390027
pogra7
000007
202007
gceep?
820007
200027
202207
200007
200007
avgea?
200007
208207
200007
000207
200007
200707
¢reeg7
209007
220007
2022087
220007
@807
200007
020207
222007
300007
200007
200007
290007
270007
LLITXY
200027
200007
200007
200007
LTI
200007
2020307
220007
000007
292007
200087
200007
20@en?
209207

FOROTS

0p0222 0Oppleo 220237 9p.255 0ga2oe 202237
0p2223 200002 202227 Ppr256¢ 0Q20Q0 200237
Ppe224 20002 202007 2gr257 222279 290227
2092225 0009000 220207 20269 290007 @027
0pJ226 0202000 220027 @726y 700028 220227
Bp2227 000000 2900227 22262 200000 @PEIP?
Ppr23p 020000p 390037 2pl263 0Q@p2020 200227
2p223y 0202000 2020737 Q@264 220200 270007
Gp2232 @Qedpp @203@7 Ppc26s 2poogp 22009y
002233 Q@@ed0p 200087 2g.,266 20030 200207
Qpr234 02000220 0PQGR7 Bp"267 200000 29¢32T
Ppz235 0220000 00QMQ7 9p.:27p 29@0e@ 2707@7
Ppu236 200009 200307 2gr271 020y 2RQ0Q7
0237 0Qn02%p Q28297 Bg272 0podgg 29vp0g7
20249 202279 290007 202273 0p02208 298007
Ppr24y 0P00%Q0Q @007 Pp'274 0OQodzQ 270027
2@ 2242 292023 208207 2p275 2polgop 209007
P2:,243 230033 7000997 2276 Qp00pe ©9Q2CQ7
Q0244 202072¢ 220227 201277 2000200 0°Q22?
Pp-24% 2900090 200007 20300 Q2¢0200 Q2902007
Bpr246 2023079 7220007 Bp23081 Rp223p 220087
292247 02p@20g In@0Q7 Pp: 302 2@p0¢Q 290207
00250 02020233 29@0g? 22333 2200070 Q000237
92’251 202020 920007 2304 Q0032 320017
Bp/252 Qpo0o30 290037 Pp>305 @p23%0p 229027
902253 200220 2007977 20306 J000p0 290327
@p 254 Q2320 2290227 e300y 0goloo %0007

D.5.3 Mixed Mode Data Files

FOROTS permits files containing both ASCII and binary data records to

be read. Mixed files may be accessed in either sequential or random
access mode. Logical ASCII and binary records have the same format as
described in the preceding paragraphs. In random access mode, the

record size must be large enough to contain the largest record, either
ASCII or binary.

»

FOROTS

D.5.4 1Image Files

The image data transfer mode is a buffered mode in which Jdata is
transferred 1in a blocked format consisting of a word count located in
the right half of the first data word of the buffer followed by the
number of 36-bit data words. The devices that permit image data
transfers and the form in which the data is read or written are:

Device Data Forms
Card Punch In image mode, each buffer contains three 12-bit
bytes. Each byte corresponds to one card column.

Since there is room for 81 columns in the buffer
(3 X 27) and there are only 80 columns on a card,
the last word contains only 2 bytes of data; the
third byte 1is thrown away. Image mode causes
exactly one card to be punched for each output.
The CLOSE punches the last partial card and then
punches an EOF card.

Card Reader All 12 punches in all 80 columns are packed into
the buffer as 12-bit bytes. The first 12-bit byte
contains column 1. The last word of the Dbuffer
contains columns 79 and 80 as the left and middle
bytes, respectively. Cards are not split between
two buffers.

Dick Data is written on the disk exactly as it appears
in the buffer. Data consists of 36-bit words.

Magnetic Tape Data appears on magnetic tape exactly as it
appears in the buffer. No processing or
checksumming of any kind 1is performed by the
service routine. The parity checking of the
magnetic tape system is sufficient assurance that
the data 1is correct. All data, both binary and
ASCII, is written with odd parity and at 800 bits
per inch unless changed by the installation.

Paper Tape Punch Binary words taken from the output buffer are
split into six 6-bit bytes and punched with the
eighth hole punched in each frame. No format

control or checksumming 1is performed by the I/0
routine. Data punched in this mode is read back
by the paper tape reader in the same mode.

Paper Tape Reader Characters not having the eighth hole punched are
ignored. Characters are truncated to six bits and
packed six to the word without further processing.
This mode is wuseful for reading binary tapes
having arbitrary blocking format.

Plotter Six 6-bit characters per word are transmitted to
the plotter exactly as they appear in the buffer.

D.6 USING FOROTS

FOROTS has been designed to lend itself for use as an I/0 system for
programs written in languages other than FORTRAN. Currently, MACRO
programmers may employ FOROTS as a general I/0 system by writing

D-13

FOROTS

simple MACRO calls that simulate the calls made to FOROTS by a FORTRAN
compiler. The calls made to FOROTS are to routines that implement
FORTRAN I/0 statements such as READ, WRITE, OPEN, CLOSE, RELEASE, etc.

FOROTS will provide automatic memory allocation, data conversion, I/0
buffering, and device interface operations to the MACRO user.

D.6.1 FOROTS Entry Points

FOROTS provides the following entry points for calls from either a
FORTRAN compiler or a non-FORTRAN program:

Entry Point Function

ALCHN. Allocate software channels
ALCOR. Allocate dynamic core blocks
CLOSE. Close a file

DBMS. DBMS interface

DEC. DECODE routine

DECHN. De-allocate software channels
DECOR. De-allocate dynamic core blocks
ENC. ENCODE routine

EXIT. Terminate program exeuction

FIN. Input/Output list termination routine
FIND. Position to the next record (RANDOM ACCESS)
FORER. Error processor

FUNCT. Overlay interface

IN. Formatted input routine

IOLST. Input/Output list routine

MTOP. File utility processing routine
NLI. NAMELIST input routine

NLO. NAMELIST output routine

OPEN. Open a file

OouT. Formatted output routine

RELEA. Release a device (CLOSE implied)
RESET. Job initialization entry

RTB. Binary input routine

TRACE. Trace subroutine calls

WTB. Binary output routine

D.6.2 Calling Sequences

You must use the following general form for all calls made to FOROTS:

MOVEI 16,ARGBLK
PUSHJ 17,Entry Point
(control is returned here)

where:

1. ARGBLK is the address of a specifically formatted argument
block that contains information needed by FOROTS to
accomplish the desired operation.

2. Entry Point is an entry point identifier (see list given in
Paragraph D.6.1) that specifies the entry point of the
desired FOROTS routine.

FOROTS

With three exceptions, all returns from FOROTS will be made to the
program instruction immediately following the call (PUSHJ 17, entry
point instruction). The exceptions are:

1. An error return to a specified statement number, i.e., READ
or WRITE statement ERR=option,

2. An end-of-file return to a statement number, i.e., READ or
WRITE statement END=option,

3. A fatal error that returns to the monitor or to a debug
package.

Paragraphs D.6.3.1 through D.6.3.11 give the MACRO calls and required
argument block formats needed to initialize FOROTS and FOROTS I/O
operations.

Argument blocks conform to the subprogram calling convention described
in Appendix C. However, there is one exception in dealing with the
first word of an I/0 initialization <c¢all, i.e., WTB., ENC., RTW.,
etc., for a FORTRAN 1logical unit number. In previous versions of
FOROTS and FORTRAN-10, if the indirect bit was not set, the argument
was immediate; 1if it was set to 1 (one), the argument was the address
of the variable. The type field was always 0 (zero).

With Version 4 of FORTRAN-10 and Version 4 of FOROTS this convention
has been changed. If the type field of the first word of an I/0
initialization call for the FORTRAN logical unit number is 0 (zero),
the argument is an immediate mode (18 bit) constant wherever possible.
If the type field is integer, the argument is indirect (see Appendix
C, Table C-1, Type 2).

This exception should not cause any upward compatibility problems,
since all previously working programs will still function. An added
feature with this convention 1is that it permits the following
construct to be correctly implemented:

N=-4 {SET FOR TERMINALS

READ (N,100) I,J
100 FORMAT (21I5)

D.6.3 MACRO Calls for FOROTS Functions

The following paragraphs describe the forms of the MACRO calls to
FOROTS that are made by the FORTRAN-10 compiler. The calls described
are 1identified according to the 1language statement that they
implement. The following terms and abbreviations may be used in the
description of the argument block (ARGBLK) of each call:

—= = pointer to the second word in the argument block. (This
is the address pointed to by the argument ARGBLK in the
calling sequence.)

n = count of ASCII characters,

f = FORMAT statement address,

v = the name of an array containing ASCII characters,
list = an Input/Output list,

FOROTS

c = the statement to which control is transferred on an "END
OF FILE" condition,
d = the statement to which control 1is transferred on an
"ERROR" condition,
name = a NAMELIST name,
R = a variable specifying the 1logical record number for
random access mode,
* = 1list directed I/0; the FORMAT statement 1s not used,
type = type specification of a variable or constant,
where ARGBLK is
0-8 9-12 13 14-17 18-35
-6 0
Reserved type I X n
7 I X c
7 I X d
type I X f
‘ type I X Format Size (in words)
ReseLved type I X v

P.6.3.1 I/0
and WRITE statements for formatted sequential data transfer
operations and their calling sequences are:

READ

and

Statements, Sequential Access Calling Sequences - The

READ (u, f

,END=c, ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, 1IN.

WRITE (u,
MOVEI 16
PUSHJ 17

f,END=c, ERR=d) 1list
;, ARGBLK
, OUT.

where ARGBLK is

FOROTS

0-8 9-12 13 { 14-17 18-35 |
-5 0
— Reserved type I X u
7 I X C
7 I X d
type I X f
Reserved type I X Format Size (in words)

The READ and WRITE statements for unformatted sequential data transfer

operations and their calling sequences are:

READ (u,END=c, ERR=d) list

MOVEI 16, ARGBLK

PUSHJ 17, RTB.
and

WRITE (u,END=c, ERR=d) list

MOVEI 16, ARGBLK

PUSHJ 17, WTB.
where ARGBLK is

0-8 9-12 13 14-17 18-35

-3 0

— Reserved type I X u
l 7 I X C

Reserved 7 I X d
D.6.3.2 NAMELIST I/0O, Sequential Access Calling Sequences - The
and WRITE statements for NAMELIST-directed sequential data transfer

operations and their calling sequences are:

READ

READ (u, n

MOVEI 16,
PUSHJ 17,

and

WRITE
WRITE

(u,
(u,

MOVEI
PUSHJ

16,
17,

(u,name)

ame, END=c, ERR=4)
ARGBLK

NLI.

name)

name, END=c, ERR=4d)
ARGBLK

NLO.

READ

FOROTS

where ARGBLK is

0-8 9-12 13 14-17 18-35
-4 0
—| Reserved type I X u
7 I X c
7 I X d
Reserved type I X NAMELIST table address

The NAMELIST table is generated from the FORTRAN NAMELIST. The first
word of the table is the NAMELIST name; following that are a number
of 2-word entries for scalar variables, and a number of (N+3)-word
entries for array variables, where N is the dimensionality of the
array.

The names you specify in the NAMELIST statement are stored, in SIXBIT
form, first in the table. Each name 1is followed by a list of
arguments associated with the name; this argument list may be of any
length and is terminated by a zero entry. The name argument list may
be in either a scalar or an array form (refer to the following
diagrams) .

D.6.3.3 Array Offsets and Factoring - Address calculations used to
reference a given array element 1involve factors and offsets. For
example:

Array A is dimensioned
DIMENSION A (L1/U1,L2/0U2,L3/03,...Ln/Un)

The size of each dimension is represented by

S1 = Ul-L1+1
S2 = U2-L2+1
etc.

In order to calculate the address of an element referenced by
A (I1,12,13,...1In)

the following formula is used:
A+(I1-L1)+(I2-L2)*S1+4+(I3-L3)*S2*S1+...+(In-Ln)*S[n-1]*...*¥S2*S1

The terms are factored out depending on the dimensions of the array
and not on the element referenced to arrive at the formula

A+(-L-L2*31-L3*S2*S1...)+I1+I2*S1+I3*%S2*S1...

The parenthesized part of this formula is the offset for a single
precision array and it is referred to as the Array Offset.

FOROTS

For each dimension of a given array, there is a corresponding factor
by which a subscript in that position will be multiplied. From the
last expression, one can determine the factor for dimension n to be
S[n=-11*S[n-2]*,..*S2*S1
For double-precision and complex arrays, the expression becomes
A+2* (I1-L1)+2* (I2-L2)*S1+2*(I3-L3)*S2+S1+...
Therefore, the array offset for a double-precision array is
2% (-L1-L2*S1-L3*S2*S1...)
and the factor for the nth dimension is
2*¥S[n-1]*S[n-2]*...*52*31
The factor for the first dimension of a double-precision array 1is
always 2. The factor for the first dimension of a single-precision

array is always 1.

SCALAR ENTRY in a NAMELIST Table

0. . .8 9. . .11 }t12. . .14|15. . .17 18. . .35

SIXBIT/SCALAR NAME/

0 0 I X Scalar addr

ARRAY ENTRY in a NAMELIST Table

0-8 9-11 12-14 15-17 18-35

SIXBIT/ARRAY NAME/

#DIMS type I X
ARRAY SIZE N OFFSEfrm“wm]
I X Factor 1
I X Factor 2
I X Factor 3
I X Facéor n

FOROTS

D.6.3.4 I/0 Statements, Random Access Calling Sequences - The READ
and WRITE statements for random access data transfer operations and
their calling sequences are:

READ (u#R,f,END=c, ERR=d) list
READ (u#R,END=c, ERR=d) list
MOVEI 16, ARGBLK

PUSHJ 17, RTB.

and
WRITE (u#R,f,END=c, ERR=d4) list
WRITE (u#R,END=c, ERR=d) list
MOVEI 16, ARGBLK
PUSHJ 17, WTB.

where ARGBLK is

0-8 9-12 13 14-17 18-35
-6 0
—»| Reserved type I X u
7 I X c
7 I X d
type I X f
type I X format size (in words)
Y
Reserved 2 I X address of
Record Number

f and the format size in words are 0 if the I/O statement is
unformatted.

D.6.3.5 Calling Sequences for Statements That Use Default Devices -
The FORTRAN-10 statements that require the use of a reserved system
default device and their calling sequences are:

Default Device

ACCEPT f, list UNIT=-4 (TTY)
READ f, list UNIT=-5 (CDR)
REREAD f, list UNIT=-6 (REREAD)

MOVEI 16, ARGBLK
PUSHJ 17, IN.

where ARGBLK is

FOROTS

e
0-8 9-12 13 14~17 18-35
-5 0
-+ Reserved 2 I X u
7 I X C
7 I X d
type I X f
Reserved type I X Format Size
(in words)

Default Device

PRINT f, list UNIT=-3 (LPT)
PUNCH f, list UNIT=-2 (PTP)
TYPE £, list UNIT=-1 (TTY)
MOVEI 16, ARGBLK
PUSHJ 17, OUT.
where ARGBLK is
0-8 9-12 13) 14-17 18-35
-5 0
—»| Reserved 2 I - X u]
7 I X c
7 I X d
type I X £
Reserved type I X format size (in words)

FOROTS

D.6.3.6 Statements to Position Magnetic Tape Units - The formatted
and unformatted FORTRAN-10 statements that may be used to control the
positioning of a magnetic tape device and their calling sequences are:

Function FOROTS Code
(FORTRAN Statement)
SKIPFILE (u) 7
BACKFILE (u) 3
BACKSPACE (u) 2
ENDFILE (u) 4
REWIND (u) 0
SKIPRECORD (u) 5
UNLOAD (u) 1
CALL:
MOVEI 16, ARGBLK
PUSHJ 17, MTOP.
where ARGBLK is
0-8 9-12 13 14-17 18-35
-4 0
— Reserved type I X u
7 I X c
7 I X d
Reserved type I X FOROTS code

D.6.3.7 VList Directed Input/Output Statements - You may write any
form of a sequential Input/Output statement as a list-directed
statement by replacing the referenced FORMAT statement number with an
asterisk (*) . The list-directed forms of +the READ and WRITE
statements and their calling sequences are:

READ (u, *, END=c, ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, IN.

and
WRITE (u, *, END=c, ERR=d) list

MOVEI 16, ARGBLK
PUSHJ 17, OUT.

FOROTS

where ARGBLK is

0-8 9-12 13 14-17 18-35
-5 0
— Reserved 2 I X u
7 I X C
7 I X d
0 0 0 0
Reserved 0 0 0 0

D.6.3.8 Input/Output Data Lists - The compiler generates a calling
sequence to the runtime system if an I/O list is defined for the READ
or WRITE statement. The argument block associated with the calling
sequence c¢ontains the addresses of the variables and arrays to be
transferred to or from an I/O buffer. The general form of an I/0 list
calling sequence 1is:

MOVEI 16, ARGBLK
PUSHJ 17, IOLST.

Any number of elements may be included in the ARGBLK. The end of the
argument block 1is specified by a zero entry or a call to the FIN.
entry.

Mnemonic Name FOROTS Value
DATA 1
SLIST 2
ELIST 3
FIN 4

The elements of an I/0 list are:
1. DATA

The DATA element converts one single- or double-precision or
complex item from external to internal form for a READ
statement and from internal to external form for a WRITE
statement. Each DATA element has the following format.

0-8 9~-12 13 14-17 18-35

DATA type I X SCALAR ADDR

FOROTS

SLIST

The SLIST argument converts an entire array from internal

to

external form or vice versa, depending on the type of
statement, i.e., READ or WRITE, involved. An SLIST table has

the following form:

0-8 9-12 13 14-17 18-35
SLIST I X #ELEMENTS
I X INCREMENT
0 type I X BASE ADDRI.

For example, the sequence:

DIMENSION A(100),B(100)
READ (-,~)A
or

READ(-,-) (A(I),I=1,100) !only when the /OPT switch is used

develops an SLIST argument of the form:

0-8 9-12 13 14-17 18-35
0
2 0 0 0 144
0 0 0 0 1
0 2 0 0 A
4 0 0 0 0

More than one base address may appear in a SLIST as 1long
the increment is the same. The sequence

DIMENSION A(100), B(100)
WRITE (-,-) (A(I),B(I),I=100) ! only when the /OFT
switch is used

develops a SLIST argument of the form:

as

0-8 9-12 13 14-17 18-35
0
2 0 0 0 144
0 0 0 0 1
0 2 0 0 A
0 2 0 0 B
4 0 0 0 0

FOROTS

ELIST

The SLIST format permits only a single increment for a number
of arrays to be specified while the ELIST permits different
increments to be specified for different arrays.

The format of the ELIST is

0-8 9-12 13| 14-17 18-35
ELIST No. Elements to
transfer

increment 1

Base ADDR 1
increment 2

Base ADDR 2
increment N

Base ADDR N

For example, the FORTRAN sequence

DIMENSION IC(6,100), IB(100)
WRITE(-,-) (IB(I),IC(1,I),I=1,100)

produces the ELIST

0-8 9-12 13 14-17 18-35
3 0 0 0 144
0 0 0 0 1
0 2 0 0 IB
0 0 0 0 12
0 2 0 0 IC
4 0 0 0 0

The increment may be zero. This could be produced by the
sequence

DIMENSION A(100)
WRITE(-,-) (K,I=100) lonly when the /OPT switch is used

The zero may not appear as an immediate constant in the
argument block. The ELIST for the previous example would be

0-8 9-12 13 14-17 18-35
3 0 0 0 144
0 2 0 0 Pointer to a word

containing a zero

D.6.3.9

FOROTS

FIN

The end of an I/0 list is indicated by a <call to the FIN
routine in the object time system. This call must be made
after each I/0 initialization call, including calls with a
null I/0 list. The FIN routine may be entered by an explicit
call or by an argument in the I/O list argument block. If
both «calls are used, the explicit call has no meaning. The
FIN element has the following format:

EXPLICIT CALL:

PUSHJ 17, FIN.

OPEN and CLOSE Statements, Calling Sequences - The form and

calling sequences for the OPEN and CLOSE FORTRAN-10 statements are:

OPEN STATEMENT CALL

MOVEI 16, ARGBLK
PUSHJ 17, OPEN.

CLOSE STATEMENT CALL

MOVEI 16, ARGBLK
PUSHJ 17, CLOSE.

where ARGBLK is

0-8 9-12 13 14-17 18-35

Negative of

the number

of words in

block not 0

including

this one.
0 2 I X u
0 7 I X c
0 7 I X d
G type I X H
G type I X H
G type I X H
G type I X H

The G field (bits 0 through 8) contains a 2-digit numeric that defines
the argument name; the H field (bits 18 through 35) contains an
address which points to the value of the argument.

FOROTS

The numeric codes that may appear in the G field and the argument that
each identifies are:

G Field Open Argument G Field Open Argument
01 DIALOG 12 MODE
02 ACCESS 13 FILE SIZE
03 DEVICE 14 RECORD SIZE
04 BUFFER COUNT 15 DISPOSE
05 BLOCK SIZE 16 VERSION
06 FILENAME 22 ASSOCIATE VARIABLE
07 PROTECTION 23 PARITY
10 DIRECTORY 24 DENSITY

D.6.3.10 Memory Allocation Routines - The memory management module is
called to allocate or de-allocate core blocks. There are two entry
points, ALCOR. and DECOR., that control memory allocation and
de-allocation.

Use the ALCOR. entry to allocate the number of words specified in the
argument block wvariable. Upon return, AC 0 will contain either the
address of the allocated core block or a -1 wvalue, which indicates
that core is not available. The calling sequence for ALCOR. call is:

MOVEI 16, ARGBLK
PUSHJ 17, ALCOR.

where ARGBLK is

0--8 9-12 13 14-17 18-35
-1 0
—»i Reserved type I X Address of
Number of Words

Use the DECOR. entry to de-allocate a previously allocated block of
memory; the argument variable must be loaded with the address of the
core block to be returned. Upon return AC 0 is set to 0.

If the number of desired words is N, ALCOR. actually removes N+l
words from free storage. The pointer returned points to the second
word (word 1 as opposed to word 0) removed from free storage. The 0
word contains the negative value of N in its left half. This word is
used by FOROTS to maintain linked lists of allocated (using ALCOR.)
and free storage.

The calling seguence for a DECOR. call is:

MOVEI 16, ARGBLK
PUSHJ 17, DECOR.

FOROTS

where ARGBLK 1is

—
0-8 9-12 13 14-17 18-35

—- -

-1 0

Pointer to word
—»| Reserved type I X containing
address of block
to be returned

D.6.3.11 Software Channel Allocation And De-allocation Routines -~ You
may allocate software channels 1in MACRO programs via calls to the
ALCHN. routine and de-allocate them by calls to the DECHN. routine.
Values are returned in AC 0.

Use the ALCHN. entry to allocate a particular channel or the next
available channel. The channel to be allocated is passed to ALCHN.
in the argument block variable. Zero is passed in the argument block
variable to allocate the next available channel. Allowed channels are
1 through 17 (octal). If the channel requested is not available, or
all channels are in use, ALCHN. returns with a -1 in AC 0. In normal
returns, AC 0 contains the assigned number.

The calling sequence of an ALCHN. routine is:

MOVEI 16, ARGBLK
PUSHJ 17, ALCHN.

where ARGBLK is

0-8 9-12 13 14-17 18-35

-1 0

Pointer to a word
—» Reserved type I X containing

the channel #

or zero

Use the DECHN. entry to de-allocate a previously assigned channel.
The channel to be released is passed to DECHN. in the argument block
variable. 1If the channel to be de-allocated was not assigned by
ALCHN. and thus cannot be de-assigned, AC 0 is set to -1 on return.

The calling sequence for a DECHN. routine is:

MOVEI 16, ARGBLK
PUSHJ 17, DECHN.

FOROTS

where ARGBLK is

0--8 9-12 13 14-17 18-35

-1 0

Pointer to a word
— Reserved type I X containing

the channel #

to be released

D.7 FUNCTIONS TO FACILITATE OVERLAYS

FOROTS provides a subroutine (FUNCT.) to serve as an interface with
the LINK-10 overlay handler. This subroutine consists of a group of
functions that allow the overlay handler to perform 1I/0, core
management, and error message handling. These functions have only one
entry point, FUNCT., and they are called by the sequence

MOVEI 16, ARGBLK
PUSHJ 17, FUNCT.

The general form of the ARGBLK is

0-17 18-35
Negative of the 0
number of words
in block

ARGBLK —» type function number
type error code
type status
type argument 1
type argument 2
type argument 3
type argument n

where

type
function number
error code

the FORTRAN argument type (see Appendix C)

the number of one of the required functions
the 3-letter mnemonic output by the object
time system after ?, %, or [. (See Table
D-1.)

undefined on the call and set on the return
with one of the values below.

status

-1 Function not implemented
0 Successful return
l....n Specific error message

FOROTS

Table D-1
Function Numbers and Function Codes
Function Function Function Description
Number Mnemonic
0 ILL Illegal function
1 GAD Allocates core from a specific address
2 COR Allocates core from available core
3 RAD De-allocates core
4 GCH Gets or assigns an I/0 channel
5 RCH Releases an I/0 channel
6 GOT Allocates core from FOROTS
7 ROT De—-allocates core from FOROTS
8 RNT Returns the initial runtime from FOROTS
9 IFS Returns initial runtime file spec. from
FORQOTS
10 CBC Cuts back core if possible

FUNCTION 0 (ILL) - This function is illegal. The argument block is
ignored, and the function always returns a status of -1.

FUNCTION 1 (GAD) - This function allocates core from a specific
address. The arguments are:

arg 1 address at which to begin core allocation
arg 2 number of words of core to allocate

The return statuses are:

0 core allocated (arg 1 and 2 unchanged)

1 not enough core available in system (arg 1 and arg 2 unchanged)

2 cannot allocate core at specified address (arg 1 and arg 2
unchanged)

3 illegal arguments (i.e., address + size is greater than 256K)
(arg 1 and arg 2 unchanged)

FUNCTION 2 (COR) - This function allocates core from any address. The
arguments are:

arg 1 undefined
arg 2 size of core to allocate

The returned statuses are:

0 core allocated (arg 2 unchanged, arg 1 beginning address of the
allocated core)

1 not enough core available in system (arg 2 unchanged)

3 illegal argument (i.e., size is greater than 256K)

FUNCTION 3 (RAD) - This function de-allocates core at the specified
address. The arguments are:

arg 1 address of core to be de-allocated
arg 2 number of words to be de-allocated

The returned statuses are:
0 core de-allocated
1 core cannot be de-allocated
3 illegal argument (i.e., both the address and the size are
greater than 256K)

D-30

FOROTS

FUNCTION 4 (GCH) - This function assigns an I/O channel. The argument
is:

arg 1 undefined
The returned statuses are:

0 I/C channel assigned (arg 1 channel number)
1 no I/0 channels available

FUNCTION 5 (RCH) - This function releases an I/0 channel. The
argument is:

arg 1 I/0 channel number to be released
The returned statuses are:

0 channel released
1 invalid channel number

FUNCTION 6 (GOT) - This function gets core from the object time system
list. The arguments are:

arg 1 address at which to allocate core
arg 2 number of words of core to allocate

The returned statuses are:

0 core allocated (arg 1 and arg 2 unchanged)

1 not enough core available in system (arg 1 and arg 2 unchanged)

2 cannot allocate core at specified address (arg 1 and arg 2
unchanged)

3 illegal argument (s)

This function differs from function 1 in that if the object time
system has two free core lists, then function 1 is used to allocate
space for links, and this function is used to allocate space for I/O
buffers. Function 1 uses the free core list for LINK-10, and function
6 uses the list for the object time system.

FUNCTION 7 (ROT) - This function returns core to the object time
system. The arguments are:

arg 1 address of core to be de-allocated and returned
arg 2 size of core to be de—-allocated and returned

The returned statuses are:
0 core de-allocated
1l core cannot be de-allocated

3 illegal argument

FUNCTION 8 (RNT) - This function returns the initial runtime from the
object time system. The argument is:

arg 1 undefined
The returned status is:
0 always (arg 1 - runtime from the object time system)

This function is used only if the user desires a log file.

FOROTS

FUNCTION 9(IFS) - This function returns the 1initial runtime file
specification from the object time system. The specification is
obtained from accumulators 0, 7, and 11 after the initial RUN command.
The arguments are:

arg 1 undefined
arg 2 undefined
arg 3 undefined

The returned status is:

0 always (arg 1 - device from accumulator 11, arg 2 - filename
from accumulator 0, and arg 3 - directory from accumulator 7)

This function tells the overlay handler which file to read after the
initial RUN command.

FUNCTION 10 (CBC) - This function cuts back core if possible and 1is
used to reduce the size of the user job. There are no arguments.

The returned status is:

0 always

D.8 LOGICAL/PHYSICAL DEVICE ASSIGNMENTS

You make FORTRAN logical and physical device assignments at run time,
or standard system assignments are made according to a FOROTS Device
Table, 1i.e., DEVTB. Table D-2 shows the standard assignments
contained by the Device Table.

Table D-2

FOROTS

FORTRAN Device Table

Device/Function

FORTRAN Logical

Unit Number

REREAD
CDR
TTY
LPT
PTP
TTY
0
DSK
CDR
LPT
CTY
TTY
PTR
PTP
DIS
DTAl
DTA2
DTA3
DTA4
DTAS
DTA®6
DTA7
MTAQ
MTAl
MTA2
FORTR
DSK
DSK
DSK
DSK
DSK
DEV1
DEV2
DEV3
DEV4
DEV5

DEV39

Use

-6
-5
-4
-3
-2
-1
00
01
02

-]

REREAD statement
READ statement
ACCEPT statement
PRINT statement
PUNCH statement
TYPE statement
ILLEGAL

DISK

Card Reader

Line Printer
Console Teletype
User's Teletype
Paper Tape Reader
Paper Tape Punch
Display

DECtape

DECtape

DECtape

DECtape

DECtape

DECtape

DECtape

Magnetic Tape
Magnetic Tape
Magnetic Tape
Assignable Device
DISK

DISK

DISK

DISK

DISK

Assignable Devices

D-33

APPENDIX E

FORDDT

FORDDT is an interactive program used to debug FORTRAN programs and
control their execution. By using the symbols created by the FORTRAN
compiler, FORDDT allows you to examine and modify the data and FORMAT
statements in your ©program, set breakpoints at any executable
statement or routine, trace your program statement-by-statement, and
make use of many other debugging techniques described in this
appendix.

Table E-1 lists all the commands available to the user of FORDDT.

Table E-1
Table of Commands

Command Purpose

Data Access Commands
ACCEPT Modifies data locations.
TYPE Displays data locations.

Declarative Commands

GROUP Defines indirect lists for TYPE statements.

MODE Specifies format of typeout.

OPEN Accesses program unit symbol table.

FAUSE Places pause requests.

REMOVE Removes pause requests.

CIMENSION Defines dimensions of arrays for FORDDT
references. (Unnecessary if
/DEBUG:DIMENSIONS was used. See Table
B-2.)

DOUBLE Defines dimensions of double-precision

arrays for FORDDT references. (Unnecessary
if /DEBUG: DIMENSIONS was used. See Table
B-2.)

FORDDT

Table E-1 (Cont.)
Table of Commands

Command Purpose

Control Commands

START Begins execution of FORTRAN program.
CONTINUE Continues execution after a pause.
GOTO Transfers control to some program statement

within the open program unit.

NEXT Traces execution of the program.

STOP Terminates program and returns to monitor
mode .

DDT Enters DDT (if DDT is loaded).

Other Commands

LOCATE Lists program unit names in which a given
symbol is defined.

STRACE Displays routine backtrace of current
program status.

WHAT Displays current DIMENSION, GROUP, and
PAUSE information.

E.1 INPUT FORMAT

FORDD'T commands are made up of alphabetic FORTRAN-like identifiers and
need consist of only those characters required to make the command
unique. If you wish to specify parameters, a space or tab is required
following the command name. FORDDT expects a parameter if a delimiter

(i.e., space or tab) is found. Comments may be appended to command
lines by preceding the comment with an !.

E.1.1 Variables and Arrays

FORDDT allows you to access and modify the data locations in your
program by using standard FORTRAN-10 symbolic names. Variables are
specified simply by name. Array elements are specified in the
following format:

name (S1,...,Sn)
where

name
(S1,...,Sn)

a FORTRAN variable or array name
the subscripts of the particular array.

You may reference an entire array simply by its unsubscripted name;
you may specify a range of array elements by inputting the first and
last array elements of the desired range, separated by a dash(-).

E-2

FORDDT

Examples

ALPHA

ALPHA (7)

ALPHA (PI)
ALPHA (2) -ALPHA (5)

E.1.2 Numeric Conventions

FORDDT accepts optionally signed numeric data in the standard
FORTRAN-10 input formats:

1. INTEGER - A string of decimal digits.
2. FLOATING-POINT =~ A string of decimal digits optionally
including a decimal point. Standard engineering and

double-precision exponent formats are also accepted.

3. OCTAL - A string of octal digits optionally preceded by a
double gquote (").

4. COMPLEX - An ordered pair of integer or real constants
separated by a comma and enclosed in parentheses.

E.1.3 Statement Labels and S5Source Line Numbers

FORTRAN statement labels are input and output by straightforward
numeric reference, 1i.e., 1234. However, source line numbers must be
input to FORDDT with a number sign (#) preceding them. This mandatory
sign distinguishes statement labels from source line numbers.

E.2 NEW USER TUTORIAL

The new FORDDT user can rely on the commands described below as a
basis for debugging FORTRAN programs. These commands are easy to
understand and apply.

E.2.1 Basic Commands

The easiest method of loading and starting FORDDT is:
.DEBUG filename.ext (DEBUG)/F10
FORDDT will respond with

ENTERING FORDDT
>>

Just as an asterisk (*) signifies FORTRAN-10's readiness, the two
angle Dbrackets signify that FORDDT is awaiting one of the following
commands:

OPEN Makes available to FORDDT the symbol names in a

particular program unit of the FORTRAN program. When a
program unit symbol table 1is opened, the previously

E-3

START

STOP

MODE

TYPE

FORDDT

open program unit is automatically closed. When FORDDT
is entered, the MAIN program i1s automatically opened.
The command format is:

OPEN name

This will open the particular program unit named and
allow all wvariables within that subprogram to be
accessible to FORDDT.

OPEN

with no arguments will reopen the symbol table of the
main program unit.

Starts your program at the main program entry point.
The command format is:

START

Terminates program execution, causes all files to be
closed, and exits to the monitor. The command format
is:

STOP

Defines the display format for succeeding FORLDT TYEFE
commands. You need type only the first character of
the mode to identify it to FORDDT. The modes are:

Mode Meaning

ASCII (left-justified)
COMPLEX
DOUBLE-PRECISION
FLOATING-FOINT

INTEGER

OCTAL

RASCII (right-justified)

"MOH=m OO Y

Unless the MODE command is given, the default typeout
mode is the floating-point format.

The command format is:
MODE 1list

where list contains one or more of the mode identifiers
separated by commas. The current setting can be
changed by issuing another MODE command. If more than
one mode 1is given, the wvalues are typed out in the
order: F,D,C,I1,0,A,R

MODE

with no arguments will reset FORDDT to the original
setting of floating-point format.

Allows you to display the contents of one or more data
locations. They are displayed on your terminal
formatted according to the 1last MODE specification.
The command format is:

TYPE list

ACCEPT

PAUSE

FORDDT

where list may contain one or more arrays, variables,
array elements, or array element ranges separated by
commas. For example:

TYPE I, ALPHA, BETA(2),J(3)-J(5)

Each item will be displayed in each of the «currently
active typeout modes as set by the last MODE command.

Allows you to <change the contents of a FORTRAN
variable, array, array element, or array clement range.
The command format is:

ACCEPT name/mode value

where

the name of the wvariable, array, array
element, or array element range to be
modified. If the field contains an
unsubscripted array name or an element
range, it causes all the elements to be
set to the given value (see special case
for ASCII in Section [.6).

name

the format of the data value to be
entered. If given, it must be preceded by
a slash (/) and immediately follow the
name. (Note that /mode does not apply to
FORMAT modification.)

mode

value the new value to be assigned. It must

correspond in format to the given mode.
Data Modes

You need type only the first character of a data mode
to identify it to FORDDT. If not specified, the
default mode is REAL. The following input modes are
available:

Mode Meaning Example
A ASCII(left-justifiedq) /F00/
C COMPLEX (1.25,-78.E+9)
D DOUBLE-PRECISION 123.4567890
F REAL 123.45678
I INTEGEK 1234567890
C OCTAL 76543210
R RASCII(right-justified) \BAR\
S SYMBOLIC PSI(2,4)

An example of the ACCEPT command format is:
ACCEPT ALPHA 100.6

This changes the value of the variable ALPHA to 100.6
with the default input mode of REAL, since mode was not
specified.

Allows you to set a breakpoint at any 1label, line
number, or subroutine entry in your program. You may
set up to ten pauses at one time. When one of these
pauses is encountered, execution of the FORTRAN program

E-5

CONTINUE

REMOVE

WHAT

FORDDT

is suspended and control is transferred to FORDDT.
Also, when a pause is encountered, the symbol table of
that subprogram is automatically opened. The command
format is:

PAUSE P
where P is a statement label number, 1line number, or
routine entry point name; for example,

PAUSE 100

will cause a breakpoint at statemeﬁt label 100 of the
currently open program unit.

Note that subprogram parameter values will be displayed
when a pause 1s encountered at a subprogram entry
point.

Allows the program to resume execution after & FORDDT
pause. After a CONTINUE 1is executed, the program
either runs to completion, or it runs until another
pause is encountered. If you include a value with this
command, the program will run until the nth occurrence
of the given pause or until a different pause is
encountered. The command formats are:

CONTINUE
or
CONTINUE n

Example
CONTINUE 15

will continue execution until the fifteenth occurrence
of the pnause.

Used to remove those pauses from the program previously
set up by the PAUSE command. The command format is

REMOVE P

where P is the number of the statement label where the
pause was set, i.e.,

REMOVE 100
will remove the pause at statement label 100.

Note that REMOVE with no arguments will remove all
nauses; therefore, no abbreviation of the command is
allowed in this instance. This precaution prevents the
accidental removal of all pauses.

Displays on your terminal the name of the currently
open program wunit and any currently active pause
settings. The command format is:

WHAT

FORDODT

E.3 FORDDT AND THE FORTRAN-10/DEBUG SWITCH

Most facilities of FORDDT are available without the FORTRAN-10 /DEBUG

features;

however, if you do not use the /DEBUG switch when comoiling

a FORTRAN program, the trace features (NEXT command) will not be
available, and several of the other commands will be restricted.

Using the /DEBUG switch tells FORTRAN-10 to compile extra information
for FORDDT. (See Appendix B, Using the Compiler, for a complete

descripti

1.

on of each feature.) The additional features include:

/DEBUG:DIMENSIONS, which will generate dimension information
to the REL file for all arrays dimensioned in the subprogram.
The dimension information will automatically be available to
FORDDT if you wish to reference an array in a TYPL or ACCEPT
command . This feature eliminates the need to specify
dimension information for FORDDT by using the DIMENSION
command.

/DEBUG:LABELS, which will generate labels for every
executable source line in the form "line-number L". 1If these
labels are generated, they may be used as arguments with the
FORDDT commands PAUSE and GOTO.

This switch will also generate labels at the last location
allocated for a FORMAT statement so that FORDDT can detect
the end of the statement. These labels have the form
"format-label F". 1If they are generated, you will be able to
display and modify FORMAT statements via the TYPE and ACCEPT
commands. :

Note that the :LABELS switch is automatically activated with
the :TRACE switch, since labels are needed to accomplish the
trace features.

/DEBUG:TRACE, which will generate a reference to FORDDT
before each executable statement. This switch is required
for the trace command NEXT to function.

Note that if more than one FORTRAN statement has been placed
on a single input line, only the first statement will have a
FORDDT reference and line-number label associated with it.
This also applies to the :LABELS switch.

/DEBUG: INDEX, which will force the compiler to store in its
respective data location as well as a register the index
variable of all DO 1loops at the beginning of each 1loop
iteration. You will then be able to examine DO loops by
using FORDDT. If you modify a DO loop index using FORDDT, it
will not affect the number of 1loop iterations because a
separate loop count is used. (See Section D.1.5.)

Note that this switch has no direct affect on any of the
commands in FORDDT.

E.4 LOADING AND STARTING FORDDT

1.

The simplest method of loading and starting FORDDT is with
the following command string:

.DEBUG filename.ext (DEBUG)/F10

E-7

FORDDT

FORDDT responds with

ENTERING FORDDT
>>

The angle brackets indicate that FORDDT is ready to receive a
command, just as an asterisk (*) signifies FORTRAN-10's
readiness.

The DEBUG command to the monitor will also load DDT (standard
system debugging program). DDT can be used or ignored, but
it does require an extra 2K (octal) of core.

2. You may wish to 1load vyour compiled program and FCRDDT
directly with the LINK-10 loader. (Loading with LINK-10 was
accomplished implicitly in the previous command string.) The
command sequence is as follows:

.R LINK
*filename.ext /DEB/G (loads DDT)
*filename.ext /DEB: FORDDT /G (loads FORDDT)
FORTRA
*fjilename.ext /DEB: (DDT, FORDDT)/G loads both DDT
FORTRA and FORDDT

If the total FORTRAN program consists of many subroutines and
insufficient <core is available to complete 1loading with
symbols, it is possible to load with symbols Jjust those
sections expected to give trouble. The remaining routines
need not be loaded.

E.5 SCOPE OF NAME AND LABEL REFERENCES

Each program unit has its own symbol table. When you initially enter
FORDDT, you automatically open the symbol table of the main program.
All references to names or labels via FORDDT must be made with respect
to the currently open symbol table. If you have given the main
program a name other than MAIN by using the PROGRAM statement (see
Chapter 5, Section 5.2), FORDDT will ask for the defined program name.
After you enter the program name, FORDDT will open the appropriate
symbol table. At this point, symbol tables in programs other than the
main program can be opened by using the OPEN command. (See Section
F.5.)

References to statement 1labels, 1line numbers, FORMAT statements,
variables, and arrays must have 1labels that are defined in the
currently open symbol table. However, FORDDT will accept variable and
array references outside the currently open symbol table, providing
the name 1is unique with respect to all program units in the given load
module.

E.6 FORDDT COMMANDS

This section gives a detailed description of all commands in FORDDT.
The commands are given in alphabetical order.

ACCEPT

FORDDT

Allows you to change the contents of a FORTRAN variable,
array, array element, array element range, or FORMAT
statement. The command format is:

ACCEPT name/mode value

where

name = the variable array, array element, array
clement range, or FORMAT statement to be
modified.

mode = the format of the data value to be entered.
The mode keyword must be preceded by a slash
(/) and immediately follow the name.
Intervening blanks are not allowed. (Note
that /mode does not apply to FORMAT
modification.)

value = the new value to be assigned. The format of

the input value must correspond to the
specified mode.

DATA LOCATION MODIFICATION
Bata Modes

The following data modes are accepted:

Mode Meaning Example
A ASCII (left-justified) /FO0/
C COMPLEX (1.25,-78.E+9)
D DOUBLE-PRECISION 123.4567890
F REAL 123.45678
I INTEGER 1234567890
0 OCTAL 76543210
R RASCII (right-justified) \BAR\
S SYMBOLIC PSI(2,4)

If not specified, the default mode is REAL.
Two-Word Values

For the data modes ASCII, RASCII, OCTAL, and SYMBOLIC,
FORDDT will accept a "/LONG" modifier on the mode switch.
This modifier indicates that the variable and the value
are to be interpreted as two words long.

Example
ACCEPT VAR/RASCII/LONG '1234567890'

will assume that VAR is two words long and store the given
l0-character literal into it.

Initialization of Arrays

If the name field of an ACCEPT contains an unsubscripted
array name or a range of array elements, all elements of
the array or the specified range will be set to the given
value.

CONTINUE

FORDDT

Example

ACCEPT ARRAY/F 1.0
or
ACCEPT ARRAY (5)-ARRAY(10)/F 1.0

Note that this applies only to modes other than ASCII and
RASCII.

Long Literals

When the value field of an ACCEPT contains an
unsuoscripted array name or range of array elements, and
the specified data mode is ASCII or RASCII, the value
field is expected to contain a 1long literal string.
ACCEPT will store the string linearly into the array or
array range. If the array is not filled, the remainder of
the array or range will be set to zero. If the literal is
too long the remaining characters will be ignored.

Example
ACCEPT ARRAY/RASCII 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
FORMAT STATEMENT MODIFICATION

When the name field of an ACCEPT contains a label, FORDDT
expects this label to be a FORMAT statement label and that
the value field contains a new FORMAT specification.

Example
ACCEPT 10 (1HO,F10.2,3(I2))

The new specification cannot be 1longer than the space
originally allocated to the FORMAT by the compiler. The
remainder of the area is cleared if the new specification
is shorter.

Note that FOROTS performs some encoding of FORMAT
statements when it processes them for the first time. If
any I/0 statement referencing the given FORMAT has been
executed, the FORTRAN program has to be restarted
(re-initializing FOROTS).

Allows the program to resume execution after a FORDDT
pause. After a CONTINUE is executed, the program either
runs to completion or until another pause is encountered.
The command format is:

CONTINUE n

where the n is optional and, if omitted, will be assumed
to be one. If a value is provided, it may be a numeric
constant or program variable, but it will be treated as an
integer. When the value n is specified, the program will
continue execution until the nth occurrence of this pause.
For example,

CONTINUE 20

will continue execution after the 20th occurrence of the
pause.

DDT

DIMENSION

FORDDT

Transfers control of the projyram to DDT, the standard
system debugging program (if loaded). Any files currently
opened by FOROTS are unaffected and return to TORDDT 1is
possible so that program execution may be resumed.

.F10 is the global symbol used to return control to
FORCDT. The command format is:

.F10$G

where $ represents altmode or escape. Your program will
be in the same <condition as before unless you have
modified your core image with DDT.
Sets the user-defined dimensions of an array for FORDDT
access purposes. These dimensions need not agree with
those declared to the compiler in the source code. FORDDT
will allow you to redimension an array to have a larger
scope than that of the source program. If this is done, a
warning is given. The command format is:

DIMENSION S
where S is the name of the array specified.
For example:

DIMENSION ALPHA(7,5/6,10)

FORDDT will remember the dimensions of the array until it
is redefined or removed.

The command

DIMENSION

will give a full list of all the wuser-defined dimensions
for all arrays.

DIMENSION ALPHA

will display the current information for the array ALPHA
only.

DIMENSION ALPHA/REMOVE

will remove any user defined array information for the
array ALPHA.

Arrays, Array Elements, and Ranges
Array elements are specified in the following format:

name [dl/d2,...](S1l,...)

where
name = the name of the array
[...] = optional, and contains dimension information.

This form 1is equivalent in effect Lo the
DIMENSION statement.

DOUBLE

GOTO

GROUP

FORDDT

(«..) = the subscripts of the specific element
desired.

The entire array is referenced simply by its unsubscripted
name. A range of array elements is specified by inputting
the first and last array elements of the desired range
separated by a dash (-) (A(5)-A(10)).

Defines the dimensions of a double-precision array. The
result of this command is the same as for the DIMENSION
command except that the array so dimensioned is understood
by FORDDT to be an array with word entries and, therefore,
reserves twice the space. The command format is:

DOUBLE arrayname

Allows you to continue your program from a point other
than the one at which it last paused. The GOTO allows you
to continue at a statement label or code-generating source
line number provided that the /DEBUG:LABELS switch has
been used or the contents of a symbol previously ASSIGNed
during the program execution.

Note that the program must be STARTed before this command
can be wused, and also note that a GOTO is not allowed
after the "C°C REENTER sequence. (See F.6.)

The command format is:
GOTO n

Sets up a string of text for input to a TYPE command. You
can store TYPE statements as a 1list of wvariables
identified by the numbers 1 through 8. This feature
eliminates the need to retype the same list of variables
each time you wish to examine the same group. Refer to
the TYPE command for the proper format of the list.

The command format is:

GROUP n list

where
n = the group number 1-8
list = a string of TYPE statements to be called in
future accessing of the current group number.
GROUP

with no arguments will cause FORDDT to type out the
current contents of all the groups

GROUP n

will type out the contents of the particular group
requested.

Note that one group may call another.

LOCATE

MODE

NEXT

FORDDT

Lists the program unit names in which a given symbol is
defined. This is useful when the variable you wish to
locate is not in the currently open program unit and is
defined in more than one program unit. The command format
is:

LOCATE n

where n may be any FORTRAN variable, array, label, line
number, or FORMAT statement number.

Defines the default formats of typeout from FORDDT. In
initial default mode, variables will be typed 1in
floating-point format. If you wish to change the typeout
modes, the command format is:

MODE 1list

where list contains one or more of the modes 1in the
following table. (Only the first character of each mode
need be typed to identify it to FORDDT.)

Mode Meaning

FLOATING-POINT
DOUBLE~-PRECISION
COMPLEX

INTEGER

OCTAL

ASCII (left-justified)
RASCII (right-justified)

YO OO M

A typical command string might be:
MODE A,I,OCTAL

Allows you to cause FORDDT to trace source lines,
statement labels, and entry point names during execution
of your program. This command will only provide trace
facilities if the program was compiled with the FORTRAN-10
/DEBUG switch. If this switch was not used, the NEXT
command will act as a CONTINUE command. The command
format is:

NEXT n/sw
where
n = a program variable or integer numeric value
and
SwW = one of the following switches

/S= statement label
/L= source line
/E= entry point

The default starting value of n is 1, a single statement
trace. The default switch is /L.

The command

NEXT 20/L

OPEN

PAUSE

FORDDT

will trace the execution of the next 20 source 1line
numbers or until another pause is encountered.

Note that if no argument is specified, the 1last argument
given will be used. TFor example,

NEXT /E

will change the tracing mode to trace only subprogram
entries using the numeric argument previously supplied.

Allows you to open a particular program unit of the loaded
program so that the variables will be accessible to
FORDDT. Any previously opened program unit 1is closed
automatically when a new one 1is opened. Only global
symbols, symbols in the currently open unit, and unique
locals are available at any one time. Note that starting
FORDDT automatically opens the MAIN program. The command
format is:

OPEN name

where name is the subprogram name. OPEN with no arguments
will reopen tne MAIN program.

If the PROGRAM statement was used in the FORTRAN program,
the name supplied by you will be requested upon entering
FORDDT.

Allows you to place a pause request at a statement number,
source line number, or subroutine entry point. Up to ten

pauses may be set at any one time. When a pause is
encountered, execution 1is suspended at that point and
control is returned to FORDDT. Also, when a pause Iis

encountered, the symbol table of that subprogram is
automatically opened.

The command formats include:

PAUSE P
PAUSE P AFTER n
PAUSE P IF condition
PAUSE P TYPING /g
PAUSE P AFTER n TYPING /g
PAUSE P IF condition TYPING /g
where
P = the point where the pause is requested,
n = an integer constant or variable or array
element
g = a group number
PAUSE 100

will set a pause at statement label 100, cause execution
to be suspended, and cause FORDDT to be entered on
reaching 100 in the program.

PAUSE #245 AFTER MAX(5)
will cause a pause to occur at source line number 245
after encountering this point the number of times

specified by MAX(5). Note that AFTER may not be
abbreviated.

E-14

REMOVE

START

STOP

FORDDT

PAUSE DELTA IF LIMIT(3,1).GT.2.5E-3

If the variable LIMIT(3,1) is greater than the value
2.5E-3, the pause request will be granted. The IF may not
be abbreviated, but all the usual FORTRAN logical
connectives are allowed.

PAUSE 505 TYPING /5

will request a pause to be made at the first occurrence of
the 1label 505, and the wvariables in group 5 will be
displayed. The TYPING specification may not be
abbreviated.

PAUSE LINE#24 AFTER 16 TYPING 3

will place a request at source line number 24 after 16
(octal) times through; however, the contents of group 3
will be displayed every time.

When the TYPING option is used with the PAUSE command,
control <can be transferred to FORDDT at the next typeout
by typing any character on the terminal.

Note that pause requests remain after a control C REENTER
sequence, a START command, or a control C START sequence.

Removes the previously requested pauses. The command
format is:

REMOVE P
For example,
REMOVE L#123

will remove a pause at program source line number 123.

REMOVE ALPHA
will remove a pause at the subroutine entry to ALPHA.

REMOVE with no arguments will remove all your pause
requests, and, in this case, no abbreviation of REMOVE is
allowed. This prevents the unintentional removal of
pauses.

Starts your program at the normal FORTRAN main program
entry point. The command format is:

START
Terminates the program, requests FOROTS to close all open
files, and causes an exit to the monitor. The usual
command format is:

STOP

STOP/RETURN

will allow a return to monitor mode without releasing
devices or closing files so that a CONTINUE can be issued.

STRACE

TYPE

WHAT

FORDDT

Displays a subprogram level backtrace of the current state
of the program. The command format is:

STRACE

Causes one or more FORTRAN defined variables, arrays, or
array elements to be displayed on your terminal. The
command format is:

TYPE list

where list may be one or more variable or array references
and/or group numbers. These sgspecifications must be
separated by commas, and group numbers must be preceded by
a slash (/). The command with no arguments will usc the
last argument list submitted to FORDDT.

An array element range can also be specified. For
example:

TYPE PI(5)-PI(13)

will display the values from PI(5) to PI(13) inclusive.
If an unsubscripted array name is specified, the entire
array will be typed.

There are several methods of choosing the form of typeout
in conjunction with the MODE command.

1. If you do not specify a format, the defaultis
floating-point form.

2. You can specify a format via the MODE command
described in this appendix.

3. You can change the format previously designated
by the MODE command by including print modifiers
in the TYPE or GROUP string. The print modifiers
are:

/By/Cy/Dy/F4/1,/0,/R

The first print modifier specified in a string of
variables determines the mode £for the entire
string unless another mode is placed directly to
the right of a particular variable. For example,
in

TYPE /IK,L/O,M,N/A,/2

the typeout mode is integer until another mode is
specified. Therefore,

K,M,and/2 = Integer
L = OCTAL
N = ASCII

Displays the information saved by FORDDT. The command
format is:

WHAT

FORDDT

E.7 ENVIRONMENT CONTROL

If a program enters an indefinite loop, you can recover by typing a
"C”C REENTER sequence. This action will cause FORDDT to simulate a
pause at the point of reentry and allow you to control your run-away
program.

Most commands can be used once the program has been reentered;
however, GOTO, STRACE, TYPE, and ACCEPT cause transfer of control to
routines external to FORDDT. No guarantee can be made to ensure that
any of these commands following a “C”C REENTER sequence will not
destroy the user profile. The program must be returned to a stable
state before any of these four commands can be issued. In order to
restore program integrity, you should set a pause at the next label
and then CONTINUE to it. If the /DEBUG:TRACE switch was used, a NEXT
1 command can be issued to restore program integrity.

E.8 FORTRAN-10/0PTIMIZE SWITCH

You should never attempt to use FORDDT with a program that has been
comgiled with the /OPTIMIZE switch. The global optimizer causes
variables to be kept in ACs. For this reason, attempts to examine or
modify variables in optimized programs will not work. Also, since the
optimizer moves statements around in your program, attempts to trace
program flow will lead to great confusion.

©.9 FORDDT MESSAGES

FORDDT responds with two levels of messages - fatal error and warning.
Fatal error messages indicate that the processing of a given command
has been terminated. Warning messages provide helpful information.
The format of these messages is:

?FDTXXX text
or
$FDTXXX text

where
? = fatal
% = warning
FDT = FORDDT mnemonic
XXX = 3-letter mnemonic for error message
text = explanation of error
Square brackets ([1) in this section signify variables and are not

output on the terminal.
Fatal Errors

The fatal errors in the following list are each preceded by ?FDT on
the wuser terminal and on listings. They are listed in alphabetical
order.

BDF [symbol] IS5 UNDEFINED OR IS MULTIPLY DEFINED

BOI BAD OCTAL OUTPUT

An illegal character was detected in an octal input value.

E-17

CFO

CNU

CSH

DTO

FCX

FNI

FNR

IAF

IAT

IER

IGN

INV

FORDDT

CANNOT CONTINUE

Fause has been placed on some form of skip instruction
causing FORDDT to 1loop; should never be encountered in
FORTRAN-10 compiled programs.

CORE FILE OVERFLOW

The storage area for GROUP text has been exhausted.

THE COMMAND [name] IS NOT UNIQUE

More letters of the command are required to distinguish it
from the other commands.

CANNOT START HERE

The specified entry point is not an acceptable FORTRAN-10
main program entry point.

DIMENSION TABLE OVERFLOW

FORDDT does not have the space to record any more array
dimensions until some are removed.

FORMAT CAPACITY EXCEEDED

An attempt was made to specify a FORMAT statement requiring
more space than was originally allocated by FORTRAN-10.

FORMAL NOT INITIALIZED

Reference to a FORMAL parameter of some subprogram that was
never executed.

[array name] IS A FORMAL AND MAY NOT BE RE-DEFINED
FORMAL parameters may not be DIMENSIONed.
ILLEGAL ARGUMENT FORMAT

The parameters to the given command were not specified
properly. Refer to the documentation for correct format.

ILLEGAL ARGUMENT TYPE = [number]

An unrecognized subprogram argument type was detected.
Submit an SPR if this message occurs.

COMPARE TWO CONSTANTS IS NOT ALLOWED

Conditional test involves two constants.

E (number)

Internal FORDDT error - please report via an SER.

INVALID GROUP NUMBER

Group numbers must be integral and in the range 1 through 8.
INVALID VALUE

A syntax error was detected in the numeric parameter.

E-18

ITM

LGU

LNF

MLD

MSN

NAL

NAR

NDT

NFS

NFV

NGF

NPH

NSP

NUD

PAR

FORDDT

ILLEGAL TYPE MODIFIER - S
The mode S is only valid for ACCEPT statements.
[array name] LOWER SUBSCRIPT.GE.UPPER

The lower bound of any given dimension must be less than or
equal to the upper bound.

[label] IS NOT A FORMAT STATEMENT
[array name] MULTI-LEVEL ARRAY DEFINITION NOT ALLCWED

The same array cannot be dimensioned more than once (via the
[dimensions] construct) in a single command.

MORE SUBSCRIPTS NEEDED

The array is defined to have more dimensions than were
specified in the given reference.

NOT ALLOWED

An attempt has been made to modify something other than data
or a FORMAT.

NOT AFTER A RE-ENTER

The given command is not allowed until program integrity has
been restored via a CONTINUE or NEXT command.

DDT NOT LOADED

CANNOT FIND FORTRAN START ADDRESS FOR [program name]
Main program symbols are not loaded.

[symbol] IS NOT A FORTRAN VARIABLE

Names must be 6-character alphanumeric strings beginning
with a letter.

CANNOT GOTO A FORMAT STATEMENT
CANNOT INSERT A PAUSE HERE

An attempt has been wade to place a pause at other than an
executable statement or subprogram entry point.

[symbol] NO SUCH PAUSE

An attempt has been made to REMOVE a pause that was never
set up.

[symbol] NOT A USER DEFINED ARRAY

An attempt has been made to remove dimension information for
an array that was never defined.

PARENTHESES REQUIRED (..)

Parentheses are required for the specification of FORMAT
statements and complex constants.

E-19

PRO

SER

STL

TMS

URC

FORDDT

TOO MANY PAUSE REQUESTS

The PAUSE table has been exhausted. The maximum 1limit is
10.

SUBSCRIPT ERROR

The subscript specified is outside the range of its defined
dimensions.

[array name] SIZE TOO LARGE

An attempt has been made to define an array 1larger than
256K.

TOO MANY SUBSCRIPTS

The array is defined to have fewer dimensions than are
specified in the given element reference.

UNRECOGNIZED COMMAND

Warning Messages

Each warning message in this list is preceded by %FTN on your terminal
and on listings. They are given here in alphabetical order.

ABX

CHI

NAR

NSL

NST

POV

SFa

SPO

XPA

[array name] COMPILED ARRAY BOUNDS EXCEEDED

FORDDT has detected another symbol defined in the specified
range of the array. Note that this will occur in certain
EQUIVALENCE cases and can be ignored at that time.

CHARACTERS IGNORED: " [text]"

The portion of the command string included in "text" was
thought to be extraneous and was ignored.

[symbol] IS NOT AN ARRAY

NO SYMBOLS LOADED

FORDDT cannot find the symbol table.
NOT STARTED

The specified command requires that a START be previously
issued to ensure that the program is properly initialized.

PROGRAM OVERLAYED

The symbol table is different from the last time FORDDT had
control.

SUPERSEDES F10 ARRAY

The FORTRAN-10 generated dimension is being superseded for
the given array.

VARIABLE IS SINGLE-PRECISION ONLY
ATTEMPT TO EXCEED PROGRAM AREA WITH [symbol name]
An attempt has been made to access memory outside the

currently defined program space.
E-20

APPENDIX F

COMPILER MESSAGES

FORTRAN~-10 responds with two levels of messages - fatal error and
warning. If a warning message 1is received, the compilation will
continue, but a fatal error will stop the program from being compiled.
The format of messages is:

?FTNXXX LINE:n text
or
$FTNXXX LINE:n text

where
? = fatal
% = warning
FTN = FORTRAN mnemonic
XXX = 3-letter mnemonic for the error message
LINE:n = line number where error occurred
text = explanation of error

Square brackets ([]) in this appendix signify variables and are not
output on the terminal.

Fatal Errors

Each fatal error in the following list is preceded by ?FTN on the user

terminal and on listings. They are presented here in alphabetical
order.
ABD [symbolname] HAS ALREADY BEEN DEFINED [definition]

The usage given conflicts with current information about the
symbol. For example, a symbol defined in an EQUIVALENCE
statement cannot be referenced as a subprogram name.

ATL ARRAY [name] TOCO LARGE

The total amount of core necessary to accommodate this array
is greater than 512P.

AWN ARRAY REFERENCE [name] HAS WRONG NUMBER OF SUBSCRIPTS

The array was defined to have more or fewer dimensions than
the given reference.

BOV STATEMENT TOO LARGE TO CLASSIFY
To determine statement type, some portion of the statement
must be examined by the compiler before actual semantic and

syntactic analysis begins. During this classification the
entire portion of the required statement must fit into the

F-1

CER

CFF

CPE

CQL
CSF
DDA

OFC

DFD

DIA

DID

DLN

DNL

PR
DSF
PTI
DVE
DWL
ECT
DN
EID

EIM

COMPILER MESSAGES

internal statement buffer (large enough for a normal 20-line
statement) . This error message is issued when the portion
oE a given statement required for classification 1is too
large to fit in the buffer. Once FORTRAN-10 has classified
a statement, there is no explicit restriction on its length.
COMPILER ERROR IN ROUTINE [name]

Submit an SPR for any occurrence of this message.

CANNOT FIND FILE

The file referenced in an INCLUDE statment was not found.

CHECKSUM OR PARITY ERROR IN [source/listing/object] FILE
[name]

NO CLOSING QUOTE IN LITERAL
ILLEGAL STATEMENT FUNCTION REFERENCE IN CALL STATEMENT
[symbolname] IS DUPLICATE DUMMY ARGUMENT

VARIABLE DIMENSION [name] MUST BE SCALAR, DEFINED AS FORMAL
OR IN COMMON

DOUBLLE [type] NAME ILLEGAL

Duplicate fields were encountered in an INCLUDE file
specification.

DO INDEX VARIABLE [name] IS ALREADY ACTIVE

In any nest of DO loops, a given index variable may not be
defined for more than one loop.

CANNOT INITIALIZE A DUMMY PARAMETER IN DATA

CPTIONAL DATA VALUE LIST NOT SUPPORTED

The extended FORTRAN statement form that allows data values
to be defined 1in type specification statements 1is not

supported by FORTRAN-10.

IMPLIED DO SPECIFICATION WITHOUT ASSOCIATED LIST OF
VARIABLES

DUMMY PARAMETEK [namec] REFERENCED BEFORE DEFINITION
ARGUMENT [name] IS SAME AS FUNCTION NAME

THE DIMENSIONS OF [arrayname] MUST BE OF THE TYPE INTEGER
CANNOT USE DUMMY VARIABLE IN EQUIVALENCE
[source/listing/object] DEVICE [[device]] WRITE LOCKED
ATTEMPT TO ENTER [symbolname] INTO COMMON TWICE
EXPRESSION TOO DEEPLY NESTED TO COMPILE

ENTRY STATEMENT ILLEGAL INSIDE A DO LOOP

ENTRY STATEMENT ILLEGAL IN MAIN PROGRAM

F-2

ENF

ETF

EXB

FNE

FWE

HDE

IAC

IAL

IBK

ICL

IDN

IDS

D’

IDV

IED

IFD

IID

IIP

I1s5

ILF

INN

I0D

ISD

COMPILER MESSAGES
LABEL [number] MUST REFER TO AN EXECUTABLE STATEMENT, NOT A
FORMAT
ENTER FAILURE [filename]
EQUIVALENCE EXTENDS COMMON BLOCK [name] BACKWARD
FOUND [symbol} WHEN EXPECTING EITHER [symbol] OR A [symbol]
General syntax error message.

LABEL [number] MUST REFER TO A FORMAT, NOT AN EXECUTABLE
STATEMENT

FOUND [symbol] WHEN EXPECTING [symbol]

HARDWARE DEVICHE ERROR ON [source/listing/object] DEVICEH
[[device]]

ILLEGAL ASCII CHARACTER ([character] IN SOURCL
INCORRECT ARGUMENT TYPE FOR LIBRARY KFUNCTICMN [name]
ILLEGAL STATEMENT IN BLOCKDATA SUBPROGRAM

ILLEGAL CHARACTER ([character] IN LABEL FIELD

DO LOOP AT LINE: [mnumber] IS ILLEGALLY NESTED

You are attemping to terminate a DO loop before terminating
one or more loops defined after the given one.

IMPLICIT DO INDICES MAY NOT BE SUBSCRIPTED
ILLEGAL OR MISSPELLED DATA TYPE

IMPLIED DO INDEX IS NOT A VARIABLE
INCONSISTENT EQUIVALENCE DECLARATION

The given EQUIVALENCE declaration would cause some symbolic
name to refer to more than one physical location.

INCLUDED FILES MUST RESIDE ON DISK
NON-INTEGER IMPLIEC DO INDEX

ILLEGAL IMPLICIT SPECIFICATION PARAMETELR
INCORRECT INCLUDE SWITCH

ILLEGAL STATEMENT AFTER LOGICAL IF

Refer to Section 9.3.2 for restrictions on logical IF object
statements.

INCLUDE STATEMENTS MAY NCT BE NESTED
ILLEGAL STATEMENT USED AS OBJECT OF wuO
ILLEGAL SUBSCRIPT EXPRESSION IN DATA STATENMENT

Subscript expressions may be formed only with implicit ©TO
indices and constants combined with +, -, *, or /.

F-3

ISN

IU0T

IVP

IXM

IZM

LAD

LED

LFA

LGB

LLS

LNI

LTL

MCE

MSP

MWL

NCF

NEX

NFS

NIO

NGS

NIR

NIU

NLF

COMPILER MESSAGES

[symbolname] IS NOT [symboltype]

The symbol cannot be used in the attempted manner.
PROGRAM UNITS MAY NOT BE TERMINATED WITHIN INCLUDED FILES
INVALID PPN

ILLEGAL MIXED MODE ARITHMETIC

Complex and double-precision cannot appear 1in the same
expression.

ILLEGAL [datatype] SIZE MODIFIER [number]

Refer to Section 6.3.

LABEL [number] ALREADY DEFINED AT LINE: [number]
ILLEGAL LIST DIRECTED [statement type]

LABEL ARGUMENTS ILLEGAL IN FUNCTION OR ARRAY REFERENCE
LOWER BOUND GREATER THAN UPPER BOUND FOR ARRAY [name]
LABEL TOO LARGE OR TOO SMALL

Labels cannot be 0 or greater than 5 digits.

LIST DIRECTED I/0 WITH NO I/O LIST

TOO MANY ITEMS IN LIST - REDUCE NUMBER OF ITEMS

In rare instances, a combination of long lists in a single
statement can exhaust the syntax stack.

MORE THAN 1 COMMON VARIABLE IN EQUIVALENCE GROUP
STATEMENT NAME MISSPELLED

ATTEMPT TO DEFINE MULTIPLE RETURN WITHOUT FORMAL LAEEL
ARGUMENTS

NOT ENOUGH CORE FOR FILE SPECS. TOTAL K NEEDED= [number]
NO EXPONENT AFTER D OR E CONSTANT

NO FILENAME SPECIFIED

The INCLUDE statement requires a filename.

NAMELIST DIRECTED I/0 WITH I/O LIST

CANNOT GET SEGMENT [name] - ERROR CODE: [number]

Refer to Appendix E of the Monitor Calls Manual for full
description of codes.

REPEAT COUNT MUST BE AN UNSIGNED INTEGER
NON-INTEGER UNIT IN 1/0 STATEMENT

WRONG NUMBER OF ARGUMENTS FOK LIBRARY FUNCTION [name]

COMPILER MESSAGES

NNF NO STATENENT NUMBER CN FORMAT

NRC STATEMENT NOT RECCGNIZED

NUO .NOT. IS A UNARY OPERATOR

NWD INCORRECT USE OF * OR ? 1IN [filename]

OPW CFEN PARAMETER [name] IS OF WRONG TYPE

PD6 FORTRAN WILL NOT RUN ON A FDP-6

PIC THE DO PARAMETERS OF [index name] MUST BE INTEGER CONSTANTS
PRF FROTECTION FAILURE [filename]

ETL PROGRAM TOO LARGE

The program takes up more than 512P

QEF QUOTA EXCEEDED OR DISK FULL [filename]

QEX BLOCK TOO LARGE OR QUOTA EXCEEDED FOR
[source/listing/cbject] FILE [name]

RDE RIB OR DIRECTORY ERRKOR [filename]

RFC [function name] IS A RECURSIVE FUNCTION CALL

RIC COMFLEX CONSTANT CANNOT EE USED TC REPRESENT THE REAL OR

IMAGINARY PART OF A COMPLEX CONSTANT

SAD ARRAY [name] - SIGNED DIMENSIONS MAY APPEAR ONLY AS CONSTANT
RANGE LIMITS

SNL [statement name] STATEMENTS MAY NOT BE LABELED
SOR SUBSCRIPT OUT OF RANGE

TFL TOO MANY FORMAT LABELS SPECIFIED

TOF MORE THAN 2 OUTPUT FILES ARE NOT ALLOWED

Only a 1listing and a relocatable binary file may be
specified as output files.

UCE USER CORE EXCEEDED
UMP UNMATCHED PARENTHESES
USI [symbol type] [symbol name] USED INCORRECTLY

The given symbol cannot be used in this way.

VNA SUBSCRIPTED VARIABLE IN EQUIVALENCE BUT NOT AN ARRAY
VSE EQUIVALENCE SUBSCRIPTS MUST BE INTEGER CONSTANTS
VSO VARIABLE DIMENSION ALLOWED IN SUBPROGRAMS ONLY

COMPILER MESSAGES

Warning Messages

Each warning message in the following list is preceded by %FTN on the
user terminal and on listings. They are presented here in
alphabetical order.

AGA OPT - OBJECT VARIABLE, OF ASSIGNED GOTO WITHOUT OPTIONAL
LIST, WAS NEVER ASSIGNED

CAI COMPLEX EXPRESSION USED IN ARITHMETIC IV

CTR COMPLEX TERMS USED IN A RELATIONAL OTHER THAN EQ OR NE

The result of the other relational operators with complex
operands is undefined.

Ccuo CONSTANT UNDERFLOW OR OVERFLOW

This message 1is 1issued when overflow or underflow 1is
detected as the result of building constants or evaluating
constant expessions at compile time.

DIM POSSIBLE DO INDEX MODIFIED INSIDE LOOP
A program that does this may be incorrectly compiled by the
optimizer, since it assumes that indices are never modified.
Note that the number of iterations is <calculated at the
beginning of the loop and is never affected by modification
of the index within the loop.

DIS OPT - PROGRAM IS DISCONNECTED - OPTIMIZATION DISCONTINUED

Submit an SPR if this message occurs.

DXB DATA STATEMENT EXCEEDS BOUNDS OF ARRAY [name]

FMR MULTIPLE RETURNS DEFINED IN A FUNCTION

ENA A FUNCTION WITHOUT AN ARGUMENT LIST

ICC ILLEGAL CHARACTER, CONTINUATION FIELD OF INITIAL LINE

Continuation lines cannot follow comment lines.

ICD INACCESSIBLE CODE. STATEMENT DELETED

The optimizer will delete statements that cannot be reached
during execution.

ICS ILLEGAL CHARACTER IN LINE SEQ#

IDN OPT - ILLEGAL DO NESTING - OPTIMIZATION DISCONTINUED
A GO TO within a DO loop goes to the ending statement of an
inner, nested DO loop. The line number printed out with the

warning message is that of the OUTER DO.

DO

IFL

LID

MvC

NED

NOD

NOF

RDI

SOD

VAI

VND

VNI

WOP

XCR

ZMT

COMPILER MESSAGES

DO

.

CONTINUE

.

éONTINUE
OPT - INFINITE LOOP. OPTIMIZATION DISCONTINUED
IDENTIFIER [name] MORE THAN SIX CHARACTERS
The remaining characters are ignored.

NUMBER OF VARIABLES DOES NOT EQUAL THE NUMBERS OF CONSTANTS
IN DATA STATEMENT

NO END STATEMENT IN PROGRAM

GLOBAL OPTIMIZATION NOT SUPPORTED WITH /DEBUG - /OPT IGNCRED
NO OUTPUT FILES GIVEN

PROGRAM STATEMENT PARAMETERS IGNORED

For compatibility purposes.

ATTEMPT TO REDECLARE IMPLICIT TYPE

[name] STATEMENT OUT OF ORDER

[name] ALREADY INITIALIZED

FUNCTION RETURN VALUE IS NEVER DEFINED

OPT - VARIABLE [name] IS NOT INITIALIZED

The optimizer analysis determined that the given variable
was never initialized prior to its use in a calculation.

OPT - WARNING GIVEN IN PHASE 1. OPTIMIZED CODE MAY NOT BE
CORRECT

One or more of the messages issued prior to this message
resulted from situations that violate assumptions made *by

the optimizer and thus may cause it to generate code that
does not execute as desired.

EXTRANEOUS CARRIAGE RETURN

Carriage return was not immediately preceded or followed by
a line termination character.

SIZE MODIFIER [number] TREATED AS [data type]

Message 1is issued when one of the data type size modifiers
is used that is accepted only for compatibility.

COMPILER MESSAGES

Internal Compiler errors
An internal compiler error is either an attempt by the compiler or the
monitor to document an error inside the FORTRAN compiler. An
occurrence of an internal compiler error signifies that something 1is
wrong with the FORTRAN-10 compiler.
Monitor-detected internal errors are of the form

[message] AT LOCATION [address] IN PHASE [segment]

WHILE PROCESSING STATEMENT [line-number]
where [message] can be one of

ILLEGAL MEMORY REFERENCE

STACK EXHAUSTED

MEMORY PROTECTION VIOLATION
Compiler-detected errors are of the form
? INTERNAL COMPILER ERROR PROCESSING STATEMENT NUMBER [line-number]

? CALL TO [routine-name] FROM [address]

Submit an SPR if you received an internal conpiler error.

APPENDIX G

FORTRAN-10 REALTIME SOFTWARE

This appendix explains how to use the FORTRAN-10 realtime software.

G.1l INTRODUCTION

The FORRTF library subroutines (LOCK, RTINIT, CONECT, RTSTRT, BLKRW,
RTREAD, RTWRIT, STATO, STATI, RTSLP, RTWAKE, DISMIS, DISCON, UNLOCK,
and temporary subroutine GETCOR (refer to Section CG.3)) are designed
to allow the timesharing FORTRAN wuser to do realtime programming.
With these subroutines, the timesharing job can dynamically connect
realtime devices to the priority interrupt (PI) system, respond to
these devices at interrupt level, remove the devices from the PI
system, and change their PI level. Use of these routines requires
that you have realtime privileges and are able to 1lock your job in
core. The privilege bits required are:

JPORTT (BIT 13) - realtime privileges
JPOLCK (BIT 14) - locking privileges

The number of realtime devices that can be handled at one time is an
assembly-time constant, RTDEVN, in the FORRTF source. The
DIGITAL-distributed software has RTDEVN equal to 2 but it can be
changed (up to &) by editing the statement "RTDEVN==2" in FORRTF.MAC
and reassembling.

The error messages output by FORRTF can be in either full message
format or coded format. (Refer to Table G-1.) Use of the code and
format saves 165 words of run-time core. If core 1is 1limited,
reassembly of FORRTF.MAC with the assembly-time constant SHORT changed
from the DIGITAL-distributed 0 (full format) to -1 (coded format)
accomplishes the core saving.

On multiprocessor systems, the realtime traps apply only to the
processor specified by the job's CPU specification. If the
specification indicates more than one processor, the specification is
changed to indicate CPUO. Note that the priority interrupt channel is
only for the indicated CPU.

FORTRAN-10 REALTIME SOFTWARE

G.2 USING FORRTF

Users of FORTRAN-10 realtime software must consider the following:
1. Use of core
2. PDevice control in block or single mode
3. Priority interrupt levels

4. Masks

G.2.1 Corq

The job being executed must be 1locked in core with ‘*the LOCK

subroutine. Any data being read into core can only be read into the
low segment and above the protected job data area (the first 140
locations). The subroutine BLKRW tests the validity of the locations

specified to receive data in Dblock-reading to ensure that no
overwritings occur.

However, when in block mode, the block vointer must be reset before
dismissing the end-of-block interrupt; otherwise, all memory could be
overwritten.

G.2.2 Modes

Realtine jobs can control their devices in one of two ways: block
mode or single mode. In block mode, an entire block of data is read
or written before the user interrupt routine is run, whereas in single
mode, the wuser interrupt program 1is run every time the device
interrupts. There are two types of block mode; fast block mode and
normal block mode. The response time to read a word of data is 6.5
microseconds for fast mode and 14.6 microseconds for normal mode.
(These are the times necessary to completely service the interrupts on
a KI10 processor). In single mode, the response time measured from
the receipt of a realtime device interrupt until the start of the user
control program is 100 microseconds on a KI10 processor. A device 1in
fast block mode requires that a PI channel be dedicated entirely to
itself.

G.2.3 Priority Interrupt Levels

Priority interrupt levels 1 through 6 are 1legal depending on the
system confiqguration. The lower the number of the level, the higher
the priority of that level. Programs that execute for a 1long time
should not be put on high-priority interrupt levels, since they could
cause other realtime programs on lower levels to lose data.
Specification of the PI level as zero for a particular device causes
the device to be removed from the PI system.

FORTRAN-10 REALTIME SOFTWARE

G.2.4 Masks

For a description of the bits included in the startmsk and intmsk
parameters of RTSTRT and the status word in STATO and STATI, see
Chapters 3 through 8 of the DECsystem-10 System Reference Manual and
Appendix C, IN-OUT DEVICE BIT ASSIGNMENTS of that manual.

G.3 SUBROUTINES

Each of the 15 subroutines associated with FORTRAN-10 realtime
software is described briefly in this section. These subroutines have
been programmed to be compatible with programs written according to
the RTTRP: REAL TIME TRAPPING UUO specifications, edition 4 of
12-Feb~-73.

G.3.1 LOCK

LOCK locks the job in core and allocates and initializes the internal
controlling tables for all realtime devices. LOCK must be called
before any other of the realtime routines, except GETCOR (refer to
Section G.3.15), and must be called exactly once.

CALL LOCK

G.3.2 RTINIT

RTINIT initializes the internal tables controlling a realtime device.
RTINIT must be called for each individual device being used.

CALL RTINIT (unit, dev, pi, trpadr, intmsk)

unit ~ realtime device unit number (any number from 1 to
RTDEVN)
This number is not connected in any way with the

FORTRAN logical unit number.

dev - device code for the realtime device (see Appendix
A, DEVICE MNEMONICS in the DECsystem-10 System
Reference Manual DEC-10-XSRMA-A-D).

pi - priority interrupt level on which the realtime
device is to be run.
Each individual device in fast block mode wmust
have a level dedicated to itself. TIf the level is
equal to zero, the device will be removed from the
priority interrupt system altogether. If it is
necessary to connect one device to several levels
simultaneously, a negative value for pi tells the
system not to remove any other occurrences of the
device from any other (or the same) PI level.
(Note that this counts as another realtime
device.)

FORTRAN-10 REALTIME SOFTWARE

trpadr - address of a FORTRAN entry to which realtime
interrupts are to trap. This can be a FUNCTION or
SUBROUTINE subprogram. Any variables that must be
shared between the user level code and the
interrupt level routine must be passed by means of
COMMON. Passing them as parameters causes
disastrous results.

intmsk - mask of all interrupting flags for the realtime
device. This 1is actually set up by RTSTKT and
should be zero whenever the realtime device 1is
inactive, i.e., in a call to RTINIT, except in the
case of fast block mode. In fast block mode,
intmsk must be set to -1.

G.3.3 CONECT

CONECT tells the system to connect a realtime device to the proper PI
level and sets up several elements of the device controlling tables.
Every device must be CONECTed.

CALL CONECT (unit, mode)

unit - realtime device unit number (see RTINIT)

mode - -2, write a block of data, fast mode; then
interrupt.
-1, write a block of data, normal mode; then

interrupt.
0, interrupt every word

+1, read a Dblock of data, normal mode; then
interrupt.
+2, read a block of data, fast mode; then

interrupt.

G.3.4 RTSTRT

RTSTRT can be used to start a realtime device as well as to stop it

and zero its interrupt mask. A device must be started to be used and
should be stopped before it is disconnected.

CALL RTSTRT (unit, startmsk, intmsk)
unit - realtime device unit number (see RTINIT)
startmsk - flags necessary to start the device (see the
System Reference Manual, Appendix C). If the

device is being stopped, this parameter should be
zZero.

intmsk ~ mask of all interrupting bits for the particular
device (see the System Reference Manual Appendix
C). If the device 1s in fast block mode and bheing
started, intmsk should equal -1; if, however, the
device in any mode is being stopped, the parameter
must be 0.

FORTRAN~10 REALTIME SOFTWARE

G.3.5 BLKRW

BLKRW is ased with either of the block modes. It sets up the size and
starting address of the data block being handled. A new count and
starting address must be set up each time the current one runs out.

CALL BLKRW (unit, count, blkadr)

unit - realtime device unit number
count - number of words to be read or written
blkadr - array into which the data is to be written or from

which it is to be read.

G.3.6 RTREAD

RTREAD, used with a device in single mode, reads from the device a
single word of data.

CALL RTREAD (unit, datadr)
unit - realtime device unit number (sec RTINIT)

datadr - address of where to store the data read

G.3.7 RTWRIT

RTWRIT sends a single word of data to a realtime device 1in single
mode .

CALL RTWRIT (unit, datadr)
unit - realtime device unit number (see RTINIT)

datadr - location of the data word to be sent to the device

G.3.8 STATO

STATO sends the specified status word to the status register of a
realtime device. (See Appendix C, In-Out Device Bit Assignments, in
the DECsystem-10 System Reference Manual, DEC-10-XSRMA-A-D.)

CALL STATO (unit, statadr)
unit - realtime device unit number (see RTINIT)

statadr - location of the word of status bits to be sent to
the realtime device

G.3.9 STATI

STATI reads the current device status bits into the location specified
fr inspection by the FORTRAN program. (See Appendix C, "In-Out Device
Bit Assignments", in the DECsystem-10 System Reference Manual,
DEC-10-XSRMA~-A-D.)

FORTRAN-10 REALTIME SOFTWARE

CALL STATI (unit, adr)

unit - realtime device unit number (see RTINIT)
adr -~ location into which the device status bits are to
be read.

G.3.10 RTSLP

RTSLP is called from the timesharing level and causes the FORTRAN job
to sleep until RTWAKE 1is called from interrupt level. The program
goes to sleep for the specified number of seconds (up to 60). When it
wakes up, it checks to see if RTWAKE has been called from interrupt
level. If RTWAKE has bheen called, RTSLP returns to the «calling
program, otherwise the job goes back to sleep again.

CALL RTSLP (time)

tine2 -~ 1length of sleep time in seconds

G.3.11 RTWAKE
RTWAKE is called at interrupt level to wake up the FORTRAN program.

CALL RTWAKE

G.3.12 DISMIS

DISMIS dismisses the interrupt currently being processed. The user

interrupt must be sure to dismiss the interrupt that causes its

execution to begin.

CALL DISMIS

G.3.13 DISCON

DISCON disconnects a realtime device from its PI level. All devices
should be disconnected through calls to DISCON before the job is
terminated.

CALL DISCON (unit)

unit - realtime device unit number (see RTINIT)

G.3.14 UNLOCK

UNLOCK unlocks the 3job from core. When execution of a job is
complete, the Jjob is automatically unlocked before the return to the
monitor. The UNLOCK subroutine provides a method to wunlock a job
before execution is complete. Note that all realtime device handling
must be finished before the job is unlocked.

CALL UNLOCK

FORTRAN-10 REALTIME SOFTWARE

G.3.15 GETCOR, A Temporary Subroutine

GETCOR is a routine that allocates a specified amount of core for
FOROTS use. The design of FOROTS does not allow FORTRAN jobs to be
locked in core due to 1its run-time core needs. Thus, you mnust
allocate an amount of core sufficient to satisfy FOROTS for running
the particular program being exccuted through a GETCCR «call. The
GETCOR call must precede the LOCK call (see G.3.2). Unfortunately,
the only way to determine the core required for each program 1is by
running the job with ever- increasing arguments to GETCOR. If the
argument is too small, the following error message appears:

?FRSSYS USER PROGRAM REQUESTED MORE CORE THAN IS AVAILABLE
CALL GETCOR (wds)
wds - number of words of storage to be allocated
Table G-1

Error Messages
Code Format and Full Message Format

Subroutine in
which message
Code Format Full Message Format occurs

1 ?ILLEGAL UNIT NUM3ER.
TO HANDLE MORE DEVICES,
REASSEMBLE FORKTF WITH A
LARGER "RTDEVN"
A ?ERROR COMES FROM THE
SUBROUTINE "subroutine name"

2 ?RTINIT MUST BE CALLED BEFORE CONECT
CONECT

3 ?CONECT MUST BE CALLED BEFORE RTSTRT ,BLKRw
RTSTRT OR BLKRW

4 ?REAL TIME BLOCK OUT OF BOUNDS
A ?END OF BLOCK TOO HIGH BLKRW
[i.e., overwrites some program
or in high segment]
B ?END OF BLOCK TOO LOW,
i.e., start address less
than 140

5 ?2JOB CANNOT BE LOCKED IN LOCK
CORE
A ?2JOB NOT PRIVILEGED
B ?NOT ENOUGH CORE AVAILABLE
FOR LOCKING

6 ?APR ERROR AT INTERRUPT
LEVEL
A ?PDL OVERFLOW
B ?ILLEGAL
MEMORY
REFERENCE

FORTRAN—-10 REALTIME SOFTWARE

Table G-1 (Cont.)
Error Messages
Code Format and Full Message Format

Code Format

Subroutine in

which message
Full Message Format occurs

?RTTRP ERROR

realtime trap error of the
following sort

?ILLEGAL PI NUMBER

PI channel not available
?TRAP ADDRESS OUT OF EBOUNDS
?SYSTEM LIMIT FOR REALTIME
DEVICES EXCEEDED

?JOB NOT LOCKED IN CORE OR NOT
PRIVILEGED

?DEVICE ALREADY IN USE BY
ANOTHER JOB

0 7?20CCURRED IN THE DISCON DISCON
ROUTINE

1 ?0CCURRED IN THE CONECT CONECT
ROUTINE
?NOT ENOUGH CORE AVAILABLE
FOR THE CONTROL BLOCKS LOCK
?NOT ENOUGH CORE AVAILABLE
FOR THE GETCOR ROUTINE GETCOR
?FRSSYS USER PROGRAM REQUESTED GETCOR

MORE CORE THAN IS AVAILABLE

APPENDIX H

FOROTS ERROR MESSAGES

Errors detected at run-time by FOROTS fall into the following
categories:

1. system errors (SYS) - errors internal to FOROTS

2. open errcs (OPN) - I/O errors that occur during file OPEN and
CLOSE
3. arithmetic fault errors (APR) - errors in numeric

calculations

4. library errors (LIB) - errors generated by FORLIE library
routines

5. data errors (DAT) - errors in data conversion on I/O

6. device errors (DEV) - I/0 hardware errors

APR and LIB errors are usually reported as warnings and the. progranm
continues. The number of APR and LIB errors listed on the user's
terminal can be changed by the FORTRAN Library Subroutine ERRSET. See
Table 15-3 for details. The I/0 errors (SYS, OPN, DAT, and DEV)
either cause messages to be printed on the terminal or can be trapped
by an error exit argument (ERR=statement label) on OPEN, READ, WRITE,
and CLOSE.

Table H-1 gives the text of the messages which can be printed for SYS,
OPN, DAT, and DEV errors. The included footnotes give additional
information. Table H-2 gives the text of the messages which can be
printed for APR and LIB errors.

The FORTRAN Library Subroutine ERRSNS allows you to find out which I/O
error occurred. When called, ERRSNS returns one or two integer values
that describe the status of the 1last I/0 operation performed by
FOROTS. (The second integer value is optional.)

CALL ERRSNS (I,J)

calls this subroutine. J is the second, optional integer value.

FOROTS ERROR MESSAGES

Table H-1
FOROTS I/0 Error Messages and ERRSNS Returned Values

First Second Explanation
Value Value
0 No error detected
0 Satisfactory completion (no error detected)
101 Normal end of job (1)
1 Invalid error call
243 Unidentified entry in FORERR (3)
246 Unidentified entry in FORERR (3)
23 Backspace error
312 BACKSPACE illegal for device (9)
24 End-of-file during READ
308 Attempt to READ beyond valid input (8)
25 Invalid record number
302 LSCW illegal in binary record or reading

ASCII; or attempt to read unwritten ASCII
RANDOM ACCESS record or unwritten or
destroyed cecord number

26 Direct access not specified
311 Cannot RANDOM ACCESS a SEQUENIAL file
28 CLOSE error
252 DTA directory is full (2) or ©protection
error
254 Rename file already exists (2)
262 No room or guota exceeded (2)
268 Cannot delete or rename a non-empty
directory (2)
29 No such file
250 File was not found
30 OPEN failure
237 DUMP mode KANDOM or APPEND access not
implemented; +try IMAGE MODE
238 DIALOG file cannot be opened (3)
240 Record length missing for RANDOM ACCESS
242 Too many devices open: fifteen maximum
245 Device not available (2)
248 Illegal ACCESS for device (2)
249 Illegal MODE or MODE switch (2)
251 No directory for project, programmer
number (2)
253 File was being modified (2)

1. Not currently implemented.

2. OPEN errors 251 through 276 map directly onto error numbers
returned by the OPEN UUO; see Appendix E, "Error Codes", in Software
Notebook 4, "DEC-10 Monitor Calls".

3. Error cannot currently occur.

8. Occurs when simulating mag tape output; SKIP RECORD and SKIP FILE
are illegal. Also occurs when a non-existent file is opened in MODE=
SEQINOUT and the first operation on that file is a READ.

9. Occurs if OPEN output with BACKSPACE is not a mag tape or disk.

FOROTS ERROR MESSAGES

Table H-1 (Cont.)
FOROTS I/O Error Messages and ERRSNS Returned Values

First Second Cxplanation
Value Value
255 Illegal sequence of Monitor Calls (11)
256 2ad UFD or bad RIB (2)
259 Device not available (2)
265 Partial allocation only (2)
266 Block not free on allocation (2)
267 Cannot supersede an existing directory (2)
269 SFD not found (2)
270 Search list empty (2)
271 SFD nested too deeply (2)
272 No CREATE flag for specified UFD (2)
274 File cannot be updated (2)
277 LOOKUP ENTER or RENAME error (2)
31 Mixed access modes
315 Cannot do SEQUENTIAL ACCESS on a RANDOM
file
32 Invalid logical unit number
239 Illegal FORTRAN unit number (2)
39 Error during READ
310 REREAD before first READ is illegal (1)
42 Device handler not resident
244 No such device (2)
260 No such device (2)
45 OPEN statement keyword error
241 Switch error during DIALOG or OPLN
statement scan (2)
47 Write on read-only file
263 Write-lock error (2)
59 List-directed I/0 syntax error
313 Illegal delimiter in LIST DIRECTED input
62 Syntax error in FORMAT
301 Illegal character in FORMAT statement (4)
306 I/0 list without data conversion in FORMAT
314 Missing width field for A or R on input
63 Output conversion error
305 Optional * fill: unidentified entry in
FORERR (7)

1. Not currently implemented.

2. OPEN errors 251 through 276 map directly onto error numbers
returned by the OPEN UUO; see Appendix E, "Error Codes", in Software
Notebook 4, "DEC-10 Monitor Calls".

4. In runtime FORMAT.

7. * fill controlled by compile-time variable ASTFIL.

11. Can occur on OPEN (MODE= 'APPEND') when file is found in LIB: or

on [1,4] when device specified was SYS: and /NEW was in your search
list.

FOROTS ERROR MESSAGES

Table H-1 (Cont.)
FOROTS 1/0 Error Messages and ERRSNS Returned Values

First Second Explanation
Value Value
64 Tnput conversion error
303 Checksum error reading binary records (5)
307 Illegal character in data
67 Record too small for I/0 list
304 I/0 list greater than record size (6)
81 Invalid argument
102 Argument block not in correct format
261 Argument block not in correct format (2)
699 Unclassifiable error on OPEN
247 FOROTS system error (2,3)
257 FOROTS system error (2)
258 FOROTS system error (2)
264 Not enough monitor table space (2)
273 FOROTS system error (2)
275 FOROTS system error (2)
276 FOROTS system error (2)
799 Unclassifiable data error
309 Variable cannot be found in NAMELIST block
899 Unclassifiable device errors
400 Write protected
401 Device error
402 Parity error
403 Block too large, quota exceeded, or file
structure full. Nonexistent CDR reader.
Spooled CDR file does not exist.
404 End-of-file (10)
407 End-of-tape
999 Unclassified system error
100 FOROTS system error
103 Monitor not build to support FOROTS
104 Fatal error
105 User program has requested more code than
is available
106 Run time memory management error

2. OPEN errors 251 through 276 map directly onto error numbers
returned by the OPEN UUO; see Appendix E, "Error Codes", in Software
Notebook 4, "DEC-10 Monitor Calls".

3. Error cannot currently occur.

5. Checksumming controlled by compile-time variable CHKSUM.

6. Occurs when a type 2 LSCW is found in a FORSE binary record.

10. Trappable if there is no END= clause.

FOROTS ERROR MESSACGES

Table H-

2

FOROTS Arithwmetic and Library Error Messages

APR

LIB

Integer Overflow
Integer Divide Check
Illegal APR Trap
Floating Divide Check

Floating Underflow

Attempt
Attempt
ACOS of
ASIN of
Attempt

Attempt

to take DLOG of Negative Arg.
to take DSQRT of Negative Arg.
Arg. > 1.0 in Magnitude
Arg. > 1.0 in Magnitude
to take SQRT of Negative Arg.

to take LOG of Negative Arg.

INDEX

A format descriptor, 13-12 BACKFILE statement, 14-3
ACCEPT, INTRO-5-2 BACKSPACE statement, 14-2
ACCEPT statement, 10-18 BASIC,

ACCEPT transfer, input from, 2-6
formatted, 10-18 Basic external function
into FORMAT statement, 10-19 subprogram, 15-8

Account number, INTRO-5-2 Beginning a job, INTRO-1-1

ACCESS in file control BINARY with MODE, 12-4

statement, 12-3 Blank line, 2-6
Accumulator usage, C-10 BLOCK DATA statement, 16-1
Accuracy of double- BLOCK SIZE in file control

precision numbers, C-1 statement, 12-8

ACOS function, 15-11 Block data subprogram, 16-1

Addition, 4-1 BOUNDS with DEBUG, B-3

Adjustable dimensions, 6-2 BUFFER COUNT in file control

ALL with DEBUG, B-3 statement, 12-8

Allocation,
register, C-7
ALOG function, 15-10

ALDG10 function, 15-10 +C, INTRO-1-1
Alphanumeric data transfer, 4C monitor call, INTRO-3-3
13-12 Call,
Alphanumeric FORMAT field FUNCTION, 15-16
descriptor, 13-11 subroutine, 15-13
.AND., 4-5 CALL statement, 15-13
ANSI standard, 1-1 Carriage control character,
APPEND with ACCESS, 12-4 13-16
Argument, Carriage return key, INTRO-1-2
subprogram, 15-1 Category,
Argument type, statement, 1-1
COBOL/FORTRAN, C-12 CCOS function, 15-11
Arithmetic, CEXP function, 15-10
mixed-mode, 4-2 Changing a line, INTRO-3-4
Arithmetic assignment Changing a program, INTRO-4-1
statement, 8-1 Changing line numbers, INTRO-4-5
Arithmetic expression, 4-1 Character code, A-1
Arithmetic IF statement, 9-3 Character set, 2-1
Arithmetic operator, 4-1 Character set with MODE, 12-4
Array, 3-7 Characters,
dimensioning, 3-9, C-4 line formatting, 2-2
Array elements, line termination, 2-2
storage of, 3-10 CLOG function, 15-10
Array subscript, 3-8 CLOSE, INTRO-5-4
ASCII with MODE, 12-4 CLOSE statement, 12-1
ASCIZ string, C-14 CLOSE statement summary, 12-10
ASIN function, 15-11 CONFIRM, INTRO-7-1
ASSIGN statement, 8-4 COBOL-10,
Assigned GOTO statement, 9-2 interaction with, C-18
Assignment statement, COBOL/FORTRAN argument type,
arithmetic, 8-1 c-12
label, 8-4 Command,
logical, 8-4 COMPILE, B-4
mixed-mode, 8-1 DEBUG, B-4
ASSOCIATE VARIABLE in file EXECUTE, B-4
control statement, 12-8 LOAD, B-4
ATTACH, INTRO-7-3 Comment line, 2-5
ATAN function, 15-11 Common block name, 6-5
ATAN2 function, 15-11 COMMON statement, 6-5
AXIS subroutine, 15-19 COMPIL in FOROTS, D-2

Index-1

INDEX (CONT.)

Compilation control statement, DATA statement, 7-1
5-1 Data transfer operations,
COMPILE command, B-4 10-1
Compiler commands, B-4 Data type, 3-1
Compiler generated variable, DATAN function, 15-11
B-6 DATAN2 function, 15-12
Compiler switches, B-1 DATE subroutine, 15-19
Compiler version, B-8 DCOS function, 15-11
Complex constant, 3-3 DEBUG command, B-4
Complex format, 13-4 Debug line, 2-6
COMPLEX statement, 6-3 DEBUG switch, B-2, B-3
Computation, Debugger,
redundant, C-5 FORDDT, E-1
reordering, C-3 Debugger code size, B-4
Computation in DO-loop, DECODE statement, 10-22
constant, C-6 DEFAULT, B-15
Computeé GOTO statement, 9-2 DEFINE FILE subroutine,
CONJG function, 15-12 15-17
Constant, 3-1 DELETE, INTRO-4-3, INTRO-6-2
complex, 3-3 DELETE with DISPOSE, 12-5
double-precision, 3-3 Deleting a file, INTRO-6-2
integer, 3-2 Deleting a line, INTRO-4-3
label, 3-6 DENSITY in file control
literal, 3-5 statement, 12-9
logical, 3-5 Descriptor,
octal, 3-4 G format, 13-7
real, 3-2 Device control statement,
Constant computation in 14-1
DO-loop, C-6 Device control statement
Constant folding, C-7 summary, 14-3
Constant propagation, C-7 DEVICE in file control state-
Continuation field, ment, 12-2
line, 2-3 Device number,
Continuation line, 2-4 logical, 10-3
Continue (G) option after DEXP function, 15-10
PAUSE, 9-11 DIALOG in file control
CONTINUE statement, 9-10 statement, 12-9
Control statement, 9-1 DIMENSION statement, 6-1
compilation, 5-1 Dimensioning,
Control Z, 2-1 array in COMMON, 6-7
COS function, 15-11 Dimensioning array, 3-9, C-4
COSD function, 15-11 Dimensions,
COSH function, 15-11 adjustable, 6-2
<CR>, INTRO-1-2 DIMENSIONS with DEBUG, B-3
CROSSREF switch, B-2 DIR, INTRO-6-1
CSIN function, 15-11 Directory,
CSQRT function, 15-10 sub-file, 12-6
user file, 12-6
DIRECTORY,
in file control statement,
D, INTRO-4-3 12-6
D (double-precision notation), Directory file, INTRO-6-1
3-3 DISPOSE in file control
D format descriptor, 13-4 statement, 12-5
.DAT extension, 12-5 Division, 4-1
Data, DLOG function, 15-10
input/output, INTRO-5-1 DL.OG10 function, 15-10
Data file, INTRO-5-3 DO statement, 9-5
Data files, DO-1loop,
FOROTS, D-4 constant computation in, C-6

Index-2

INDEX (CONT.)

DO-loop (Cont.),
execution, 9-6
extended range, 9-8
floating-point, C-2
implied in I/O list, 10-5
nested, 9-6
parameters, 9-6
permitted transfers, 9-9
range, 9-5
DO-loop iteration, C-2
DO-loop replacement, C-8
DOUBLE PRECISION statement,
6-3
Double-precision constant,
3-3
Double-precision format,
13-4
Double-precision numbers,
accuracy of, C-1
range of, C-1
DSIN function, 15-11
DSQRT function, 15-10
Dummy argument,
subprogram, 15-1
DUMP subroutine, 15-20
DUMP with MODE, 12-4

E, INTRO-2-2, INTRO-4-5

E (exponential notation),
3-2

E format descriptor, 13-4

EDIT, INTRO-4-1

Editing source files, INTRO-4-1

ENCODE statement, 10-22
END, INTRO-4-5

END argumeat in I/0 statement,

10-10
END FILE statement, 14-2
END statement, 5-2, 15-7

Ending source input, INTRO-2-2

ENTER in FOROTS, C-18
Entering a program, INTRO-2-1
ENTRY statement, 15-17

EQ, INTRO-4-5

.EQ., 4-7

EQUIVALENCE statement, 6-7
.EQV., 4-5

ERR argument in I/0O statement,

10-10

ERR in file control statement,

12-10

Error,

fatal, B--17
Error processing,

FOROTS, D-3
Error reporting, B-17
ERRSET subroutine, 15-21
ERRSNS subroutine, 15-21
ESCAPE, INTRO-2-2

Evaluation of expression,
4-9

EVEN with PARITY, 12-9

EX, INTRO-3-1

Examples,

S0S, INTRO-8-~1
Executable statement, 1-1
EXECUTE, INTRO-3-1
EXECUTE command, B-4
Execution,

interrupting, INTRO-3-3
Execution on non-DEC

machines, C-1
Exit (X) option after PAUSE,
9-11
EXIT subroutine, 15-21
EXP function, 15-10
EXPAND switch, B-2
Exponential notation, 3-2
Exponentiation, 4-1

permitted, 4-4
Expression,

arithmetic, 4-1

evaluation of, 4-9

logical, 4-4

mixed-mode, 4-10, 4-11

nested, 4-9

relational, 4-7
Extension,

.SHR, B-18
External function subprogram,

15-7

basic, 15-8

EXTERNAL statement, 6-8

F format descriptor, 13-4
F40 compiled programs, C-18
.FALSE., 3-5
Fatal error, B-17
Field,
label, 2-3
line continuation, 2-3
remarks, 2-4
statement, 2-3
Field descriptor,
alphanumeric FORMAT, 13-11
FORMAT, 13-2
logical FORMAT, 13-10
numeric FORMAT, 13-4
FILE, INTRO-2-1
File,
.FOR, INTRO-2-1
.REL, INTRO-7-1
data, INTRO-5-3
deleting a, INTRO-6-2
directory, INTRO-6-1
directory subfile, 12-6
editing, IMTRO-4-1

Index-3

INDEX (CONT.)

File (Cont.),
FOROTS data, D-4
non-FORTRAN-10, C-9
renaming a, INTRO-6-2
source, INTRO-2-1
File control statement, 12-1
File directory,
user, 12-6
FILE in file control
statement, 12-5
FILE SIZE in file control
statement, 12-8
FIND statement, 10-21
Floating~point DO-loop, C-2
Folding,
constant, C-7
.FOR extension, INTRO-2-1
FORDDT debugger, E-1
FORDDT messages, E-17
FORMAT field descriptor,
alphanumeric, 13-11
logical, 13-10
numeric, 13-4
record formatting, 13-15
FORMAT statement, 13-1
ACCEPT transfer into, 10-19
transfer into, 10-3
FORMAT statement descriptor,
13-2
Formatted ACCEPT transfer,
10-18
Formatted READ transfer,
random access, 10-13
sequential, 10-11
Formatted WRITE transfer,
random access, 10-17
sequential, 10-16
FOROTS,
using, D-13
FOROTS data files, D-4
FOROTS error processing, D-3
FOROTS features, D-2
FOROTS hardware reguirements,
D-1
FOROTS input/output
facility, D-3
FOROTS messages, H-1
FOROTS software requirements,
D-1
FOROTS/FORSE compatibility,
c-21
FOROTS/LINK interface, D-28
FORSE/FOROTS compatibility,
c-21
FORTRAN-10 compiler, B-1
FORTRAN-10 messages, F-1
FUNCTION call, 15-16
Function references,
order, C-8
FUNCTION statement, 15-7

Function subprogram,
basic external, 15-8
external, 15-7
intrinsic, 15-3
statement, 15-3
Function subprogram structure,
15-7
FUNCTION type, 15-7

G (option after PAUSE), 9-11
G format descriptor, 13-4,
13-7
.GE., 4-7
General (G) numeric format,
13-7
GETOVL in LINK, C-20
Global optimization, C-4
GOTO statement, 9-1
assigned, 9-2
computed, 9-2
unconditional, 9-1
GRIPE, INTRO-6-3
.GT., 4-7

H (literal notation), 3-5

H format descriptor, 13-12

Hardware requirements,
FOROTS, D-1

Hierarchy of operators, 4-9

Hollerith literal, 3-5

I, INTRO-4-1
I format descriptor, 13-4
I/0 list, 10-5
IF statement, 9-3
arithmetic, 9-3
logical, 9-4
ILL subroutine, 15-21
IMAGE with MODE, 12-4
IMPLICIT statement, 6-5
In I/0 list DO-loop,
implied, 10-6
Inaccessible code, C-7
INCLUDE statement, 5-1
INCLUDE switch, B-2
INDEX with DEBUG, B-3
INIOVL in LINK, C-20
Initial line, 2-4
INPUT, INTRO-2-1
Input,
line-sequence, 2-6
Input from BASIC, 2-6
Input from LINED, 2-6
N

Input/output data, INTRO-5-1

Index-4

INDEX (CONT.)

Input/output facility, Line (Cont.),
FOROTS, D-3 initial, 2-4
Input/output list, 10-2 multi-statement, 2-5
NAMELIST, 10-10 Line continuation field,
Input/output optimization, 2-3
c-8 Line formatting characters,
Input/output statement, 10-1 2=-2
list-directed, 10-8 Line sequence number, B-5
Input/output statement LINE subroutine, 15-21
format, 10-2 LINE terminal setting,
Input/output statement INTRO-1-1
summary, 10-24 Line termination characters,
INSERT, INTRO-4-1 2-2
Inserting a line, IN"RO-4-1 Line types, 2-4
Integer constant, 3-2 Line~-sequence input, 2-6
Integer format, 13-4 LINED,
INTEGER statement, 6-3 input from, 2-6
Intrinsic function sub- LINK-10 overlay facility,
program, 15-3 c-20
Iteration, LINK/FOROTS interface, D-28
DO-loop, C-2 List,
Interrupting execution, input/cutput, 10-2
INTRO-3-3 NAMELIST input/output, 10-10

LIST with DISPOSE, 12-5
List-directed input/output
statement, 10-8

Job, . List-directed transfer,
beginning a, INTRO-1-1 sequential READ, 10-12
disconnected (attach), sequential WRITE, 10-17

-INTRO"7—3 Listing,
killing a, INTRO-7-1 program, B-5
number forgotton, INTRO-7-4 Literal constant, 3-5
JOB number, INTRO-1-2 Literal format conversion,
13-13

LNMAP switch, B-2
LOAD command, B-4

K (kill file), INTRO-7-1 Location in object program,
KA1l0 switch, B-2 B-5

Keyword, 1-1 Logging in, INTRO-1-1

K/F fast logout, INTRO-7-2 LOGIN, INTRO-1-2

KIl0 switch, B-2 Logical assignment statement,
Killing a job, INTRO-7-1 8-4

KJoB, INTRO-7-1 Logical constant, 3

-5

Logical expression, 4-4
Logical FORMAT field
descriptor, 13-10

L format descriptor, 13-10 Logical IF statement, 9-4
Label assignment statement, 8-4 Logical operator, 4-5
Label constant, 3-6 LOGICAL statement, 6-3
Label field, 2-3 Logical unit number, 10-3
LABELS with DEBUG, B-3 LOGOVL in LINK, C-20
-LE., 4-7 .LT., 4-7
LEGAL subroutine, 15-21
Line,
blank, 2-6
comment, 2-5
continuation, 2-4 MACRO in listing, B-5
debug, 2-6 MACRO-10 libraries, C-14
daefinition, 2-2 MACROCODE switch, B-2

fields, 2-2

Index-5

INDEX (CONT.)

Messages,
FORDDT, E-17
FOROTS, H-1
FORTRAN-10, F-1
realtime, G-7
Mixed-mode arithmetic, 4-2
Mixed-mode assignment
statement, 8-1
Mixed-mode expression, 4-10,
4-11
MKTBL subroutine, 15-22
MODE in file control
statement, 12-4
MONITOR, INTRO-1-2
Monitor,
calling the, INTRO-3-3
Multi-statement line, 2-5
Multiple record transfer,
13-14
Multiplication, 4-1

N, INTRO--4--5
Name,
symbolic, 3-6
NAMELIST input/output list,
10-10
NAMELIST statement, 11-1
NAMELIST-controlled transfer,
input, 11-2
output, 11-3
sequential READ, 10-13
sequential WRITE, 10-17
.NE., 4-7
Nested DO-loop, 9-6
Nested expression, 4-9
NOERRS switch, B-2
NONE with DEBUG, B-3
Nonexecutable statement, 1-1
Non-FORTRAN-10 files, C-9
Non-FORTRAN-10 programs, C-9
NONSHAR, B-18
.NOT., 4-5
NOWARNINGS switch, B-2
NUMBER, INTRO-4-5
NUMBER subroutine, 15-22
Numeric,
field width variable, 13-10
Numeric format,
general (G), 13-7
Numeric FORMAT field
descriptor, 13-4

+0, INTRO-6-2
0 format descriptor, 13-4
Object program, INTRO-3-1

Object program,
location in, B-5
Octal constant, 3-4
ODD with PARITY, 12-9
OPEN, INTRO-5-3
OPEN statement, 12-1
OPEN statement summary, 12-10
Operator,
arithmetic, 4-1
hierarchy, 4-9
logical, 4-5
Operator strength, C-5
Optimization,
global, C-4
program, C-9
OPTIMIZE switch, B-2
.OR., 4-5
Order of statements, 2-7
0TS, B-18
Output,
suppressing printed,
INTRO-6-2
Overflow, C-3
Overlay facility,
LINK-10, C-20

P, INTRO-4-4
P (preserve file), INTRO-7-1
PARAMETER statement, 6-9
PARITY in file control
statement, 12-9
PASSWORD, INTRO-1-2
PATH with DIRECTORY, 12-7
PAUSE statement, 9-11
PDUMP subroutine, 15-22
PLOT subroutine, 15-22
PLOTS subroutine, 15-22
PPN, INTRO-7-3
Precision for real constant,
PRINT, INTRO-4-4
PRINT statement, 10-19
PRINT with DISPOSE, 12-5
Printed output,
suppressing, INTRO-6-2
printing lines of source,
INTRO-4-4
Program listing, B-5
PROGRAM statement, 5-1
Program,
changing, INTRO-4-1
entering, INTRO-2-1
running, INTRO-3-1
storing, INTRO-2-2
Programs,
non-FORTRAN-10, C-9
optimizing, C-9
writing, C-1

Index-6

3-2

»

INDEX

Propagation,
constant, C-7
PROTECTION in file control
statement, 12-6
PUNCH statement, 10-20
PUNCH with DISPOSE, 12-5

QUIT, INTRO-4-5

R, INTRO-4-3
R format descriptor, 13-12
.RS0OS, INTRO~2-1
RAN function, 15-12
RANDIN with ACCESS, 12-3
Random access data transfer,
10-1
Random access record
specification, 10-7
Random access transfer,
formatted READ, 10-13
formatted WRITE, 10-17
unformatted READ, 10-13
unformatted WRITE, 10-17
RANDOM with ACCESS, 12-3
Range of double-precision
numbers, C-1
READ, INTRO-5-1
READ statement, 10-11
READ statement summary,
10-14
READ transfer,
random access, 10-13
sequential, 10-11, 10-12,
10-13
Real constant, 3-2
Real format, 13-4
REAL statement, 6-3
Realtime messages, G-7
Realtime software, G-1
Record formatting (T and X),
13-15
RECORD SIZE in file control
statement, 12-8
Record specification,
random access, 10-7
Reentrant program, B-18
Register allocation, C-7
.REL extension, INTRO-7-1
Relational expression, 4-7
RELEAS subroutine, 15-23
Remarks field, 2-4
REMOVL in LINK, C-20
RENAME, INTRO-6-2
RENAME with DISPOSE, 12-5
Renaming a file, INTRO-6-2

(CONT.)

Repeat for format
descriptor, 13-3

REPLACE, INTRO-4-3
Replacement,

DO-loop, C-8
Replacing a line, INTRO-~4-3
Reporting,

error, B-17
REREAD statement, 10-14
RESET in FOROTS, C-10
Return key,

carriage, INTRO-1-2
RETURN statement, 15-8, 15-14
REWIND statement, 14-1
RUBOUT key, INTRO-2-3
Running a program, INTRO-3-1
RUNOVL in LINK, C-20

S (save file), INTRO-7-1
SAVE with DISPOSE, 12-5
SAVRAN subroutine, 15-23
Scale factor in FORMAT
statement, 13-7
SCALE subroutine, 15-23
SEG, B-18
SEQIN with ACCESS, 12-3
SEQINOUT with ACCESS, 12-3
SEQOUT with ACCESS, 12-3
Sequence number,
line, B-5
Sequential data transfer,
10-1
Sequential transfer,
READ, 10-11, 10-12, 10-13
WRITE, 10-16, 10-17
SET RECORD statement, 14-3
SETABL subroutine, 15-23
SETRAN subroutine, 15-23
SFD, 12-6
Sharable program, B-18
.SHR extension, B-18
SIN function, 15-10
SIND function, 15-11
SINH function, 15-11
SKIP FILE statement, 14-3
SLITE subroutine, 15-23
SLITET subroutine, 15-23
Software reguirements,
FOROTS, D-1
SORT subroutine, 15-24
S0S, INTRO-2-1
S0S examples, INTRO-8-1
Source file, INTRO-2-1
Source program, INTRO-2-1
Specification statement,
6-1
SQRT function, 15-10

Index-7

SSAVE switch, B-18

SSWTCH subroutine, 15-23

Statement,
ACCEPT, 10-18

Arithmetic assignment,

8-1
arithmetic IF, 9-3
ASSIGN, 8-4
assigned GOTO, 9-2
BACKFILE, 14-3
BACKSPACE, 14-2
BLOCK DATA, 16-1
CALL, 15-13
CLOSE, 12-1
COMMON, 6-5
COMPLEX, 6-3
computed GOTO, 9-2
CONTINUE, 9-10

INDEX (CONT.)

Statement (Cont.),
REAL, 6-3
REREAD, 10-14
RETURN, 15-7, 15-14
REWIND, 14-1
SET RECORD, 14-3
SKIP FILE, 14-3
sToP, 9-10
SUBROUTINE, 15-9
TYPE, 10-21
type specification,
unconditional GOTO,
UNLOAD, 14-2
WRITE, 10-16
Statement category, 1-1
Statement descriptor,
FORMAT, 13-2
Statement field, 2-3

control, 9-1 Statement format,
DATA, 7-1 input/output, 10-2
DECODE, 10-22 Statement function
device control, 14-1 subprogram, 15-3
DIMENSION, 6-1 Statement label constant,
DO, 9-5 3-6
DOUBLE PRECISION, 6-3 Statement numbers, 2-3
ENCODE, 10-22 Statement summary,
END, 5-2, 15-7 CLOSE, 12-10
END FILE, 14-2 device control, 14-3
ENTRY, 15-17 input/output, 10-24
EQUIVALENCE, 6-7 OPEN, 12-10
executable, 1-1 READ, 10-14
EXTERNAL, 6-8 WRITE, 10-18
file control, 12-1 Statements,
FIND, 10-21 order of, 2-7
FORMAT, 13-1 STOP statement, 9-10
FUNCTION, 15-7 Storage of array elements,
GOTO, 9-1 3-10
IF, 9-3 Storing a program, INTRO-2-2
IMPLICIT, 6-5 Sub-file directory, 12-6
INCLUDE, 5-1 Subprogram,
input/output, 10-1 basic external function,
INTEGER, 6-3 15-8
label assignment, 8-4 block data, 16-1
list~-directed, external function, 15-7
input/output, 10-8 intrinsic function, 15-3
LOGICAL, 6-3 multiple entries to, 15-17
logical assignment, 8-4 multiple returns from, 15-14
logical IF, 9-4 statement function, 15-3
mixed-mode assignment, subroutine, 15-9
8-1 Subprogram argument, 15-1
NAMELIST, 11-1 Subprogram dummy argument,
nonexecutable, 1-1 15-1
OPEN, 12-1 Subprograms, 15-1
PARAMETER, 6-9 Subroutine,
PAUSE, 9-11 DATE, 15-19
PRINT, 10-19 ERRSET, 15-21
PROGRAM, 5-1 ERRSNS, 15-21
PUNCH. 10-20 EXIT, 15-21
READ, 10-11 FORTRAN supplied, 15-14

Index-8

Subroutine (Cont.),

ILL, 15-21

LEGAL, 15-21

LINE, 15-21

programming consideration,

Cc-2

Subroutine call, 15-13
SUBROUTINE statement, 15-9
Subroutine structure, 15-13
Subroutine subprogram, 15-9
Subscript,

array, 3-8
Sub+raction, 4-1
Suppressing printed output,

INTRO-6-2

Switches,

compiler, B-1
SYMBOL subroutine, 15-24
Symbolic name, 3-6
SYNTAX switch, B-2
SYS, INTRO-7-4

T (trace after PAUSE), 9-12
T format descriptor, 13-15
TAB. INTRO-4-6
TANH function, 15-11
TIM2GO function, 15-12
TIME subroutine, 15-24
Trace (T) option after PAUSE,
9-12
TRACE function, 9-13
TRACE subroutine, 9-13
TRACE with DEBUG, B-3
Transfer operations,
data, 10-1
.TRUE., 3-5
TYPE, INTRO-5-2, INTRO-6-1
Type,
FUNCTION, 15-7
Type specification statement,
6-3
TYPE statement, 10-21

+U, INTRO-3-4
UFD, 12-6

INDEX (CONT.)

Unconditional GOTO statement,

9-1

Uninitialized wvariable, C-8
UNIT in file control

statement,

Unit number,
logical, 10-3
Unformatted transfer,
random access,
READ, 10-13
WRITE, 10-17
sequential binary,
READ, 10-12
WRITE, 10-16

UNLOAD statement,

12-2

14-2

User file directory, 12-6

Variable, 3-7
compiler generated, B-6
uninitialized, C-8

VERSION in file control

tement, 12-8

sta

Warning message,

WHERE subroutine,

WRITE,
WRITE statement, 10-16
WRITE statement summary,

10-

INTRO-5-1

18

WRITE transfer,
random access,
sequential, 10-16, 10-17

Writing programs, C-1

B-17
15-25

10-16, 10-17

X (option after PAUSE), 9-11
X format descriptor, 13-15
.XOR.,

+z,

Index-9

2-1

4-5

e e o

FORTRAN
Programmer's
Reference Manual

AA-0944E-TB

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?

| o Please make suggestions for improvement.

o

z -

o - — P —
e
12 - -
2 — I e

]

- — —

=)

o

Q

g

£ Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

(J Assembly language programmer

(] Higher-level language programmer

[J occasional programmer (experienced)

[] user with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date

Organization -

Street

City State Zip Code
or
Country

Fold Here ----

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postag: will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

