
Digital Equipment Corporation
Maynard, Massachusetts

PDP-10
FORTRAN IV
PROGRAMMING MANUAL

Order No. DEC-l O-AFCO-D from Program Library, Iv\aynard, Mass.

DEC-l0-AFCO-D

Price $2.00

Direct comments concerning this manual to Software Quality Control, Iv\aynard, Mass.

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD, MASSACHUSETTS

1 st Printing March 1967
2nd Printing {Rev} November 1967
3rd Printing {Rev} September 1968

4th Printing Apri I 1969
5th Printing (Rev) August 1969

Copyright© 1967, 1968, 1969 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

ii

PDP
FOCAL
COMPUTER

FOREWORD

Th is is a reference manua I describing the specific

statements and features in the FORTRAN IV language

for the PDP-l o. Fami liarity with the basic concepts

of FORTRAN programming on the part of the reader is

assumed. This system conforms to the requirements of

USA Standard FORTRAN.

iii

Chapter

2

3

4

CONTENTS

INTRODUCTION•.....•........•.••...•..••••......•..•...•......

Line Format•••..•....•...•...•......•..•.•....•..•..•.••••....

Statement Number Field .•...•....••.••••••.••..••...•.•........

Line Continuation Field .•••••••••...•....•.......•.••.••...•....

Statement Field. • • • . . • . • . . • . • • . . • • . • • • • • . • • • • • . . . 2

Comment Lines•••.••.•••••...........•••...••... 2

Character Set•.....•..•...•...••..•..............•••.•.••..•.. 3

CONSTANTS, VARIABLES, AND EXPRESSIONS .•....•.•.••..••..•..•....• 5

Constants • . . . • • • . . . • . . • • • • • . • • • • . . . • . . • • . • . . • • • • . . . • • . 5

Integer Constants•••...•••••••.••••••••••••••.•••.•••.••.. 5

Real Constants .•.••••...•••...••.•••••••••.••••..•.•.••.. ". • • • • . 5

Double Precision Constants. • • . • • • • . • • • • . • • . • •• • • • . • . .• • • • . • . • • • • 6

Octal Constants •••.•••••.•••••.•.••.••••••••••..•••••.•••.•••. 6

Complex Constants .••.•.••••••..•••••••....•••••.••.•••••••••.. 6

Logical Constants. • • • • • • • • • •• • • . • • . . . • • • • . • • • • • • • • • • • • • • . • • . • . • 7

Literal Constants. . ••• . . • • • . •• • •• . •• •• .•• •• ••• .• .• . • • . . • • • •• • • .• 7

Variables. . . • • • • • • • • • • • • . . • • • • • . • • . • • • . • • • . • • • • • • • • • • • • • • • . . . • • . • . 7

Scalar Variables. • • . • . . • • • • • . • . • . • • • • • • • . . • . • . • • • • . • • . • . . • • . • • • . . • . 8

Array Variables. • • • . • • • • • • • . . • . • . . • . • . . • • • • • • • . • •• •• • • • • . • • • • • • •• • • 8

Ex press ions • . . . • • . . • • . • . . • . . . • • • • . . 9

Numeric Expressions. . • • • . • • . . • • • . • • • . . • • . • . . • • . • • • • . • • • • . 9

Logical Expressions.•.•..•••. .••••.••.••..•••.•••.•••..... 12

Logical Operators. • . • •• • . • . . • . • • • •• . • • • . • . • •• .• . . 12

Relationa I Operators .••..•....•.•••..••..•.....••.•..•.••.••••. 13

THE ARITHMETIC STATEMENT •.......•...••...••.•••..••.•.•..•....•.... 15

CONTROL STATEMENTS .••...•.••...•..••••..••........••....•••••••.. 17

GO TO Statemen t ...•.••...•....•..•.••••.••••..•.•.•..•••........ 17

Unconditional GO TO Statements................................ 17

Computed GO TO Statements. • . • • • • • • • . • • • • • • • • • • • • . • . • • • • • • • • • • 17

Assigned GO TO Statement .••••.•.•••••••••.•••••••••••••••.••. 1@

IF Statement .•••••••••.•.......•.•..•.••••••••.••.••.•••••••••..•• 18

v

Chapter

4 {cont}

5

6

CON TEN T S {continued}

Numerical IF Statements

Page

18

Logical IF Statements....................... 19

DO Statement .. 19

CONTINUE Statement ...•... 21

PAUSE Statement. 21

STOP Statement. • • . • • • . . . • . • . • . . • • • . . • • • • 22

END Statement ..•.•••..••••••.••.••..•..•..•......••.••....•.•..•.. 22

INPUT/OUTPUT STATEMENTS ••.•••••.••..•••.•.••.•..•••••...•..••••..•• 23

Nonexecutable Statements ..•....•.•.••..•.•.••.•..•.......••.•...•..• 23

FORMAT Statement .••• . . . • • • . • • • • . • • • . • • • . • 23

NAMELIST Statement ••••••••.•••..•.••.....•.••••.•.••••••••.•.• 32

Data Transmission Statements .••••......•.......•...•..•..•...•...••.• 34

Input/Output Lists •.••• . • • • . • • . • • • • . . • . • . • . . • . . • . . . • • . . 35

Input/Output Records .•.•.•.•..•.•......••.....•.•.••.•..••..••.• 35

PRI NT Statement ••.•••••••.••••••••.•••.••••.•.•..••.•••.•••••.• 36

PUNCH Statement. • . • • . . . • • • • • . . . • . • • . • • • . . • . • . • • • . • . . • . • 37

TYPE Statement .•••.•...•..••..•.•••.•...•••...••.•.........•... 37

WRITE Statement .•..••.•.....•...•.•..•••••....••..•.••...•.•..• 37

READ Statement • . . . • • . . . • • . . . • . . . • 38

ACCEPT Statement ...••..........•..•...........•...••.•...•.••. 39

Device Control Statements.. • • . . • . • . • . • . • . • . . . • • . • • . . • • . • • . . . • . . . • 40

SPECIFICATION STATEMENTS •....•.•..•.••••.•.....••••••••.•..••....... 41

Storage Specification Statements•...••.•.•••.•..•••.•.••.•....•.. 41

DIMENSION Statement ..•.••...•..••.....••...........•.•.•.••.• 41

COMMON Statement...••...•.••...... .•...........•••. .. 43

EQUIVALENCE Statement ••••........•.....•.•....•...•••.••..•.. 45

EQUIVALENCE and COMMON•....•...•••........••••..... 45

Data Specification Statements. . . . • • . • . • . . • • . . 46

DATA Statement ..••.••••.•..•.•....•......•••.•......•...•..... 46

BLOCK DATA Statement•.•.....•...........•...•..•...... 47

vi

CON TEN T S {continued}

Chapter Page

6 {cont} Type Declaration Statements. . • • • . • .• • . • 48

IMPLIC IT Statement•..••....•............•..•... 48

7 SUBPROGRAM STATEMENTS•.•...•.•.••.•....•......•............. 51

Appendix

2

3

4

5

6

7

Figure

1

2

Dummy Identifiers. ..•.••.••........ .•..•.................... ...• 51

Library Subprograms•...•...•.......•...•.•............•.... 51

Arithmetic Function Definition Statement................... 51

Function Subprograms .••.•.••...••.•...••...••.•••...•....••....•.... 52

FUNCTION Statement•........••••.•.....••••.....•... 52

Fu nct ion Type•...............•.......•.............•.. 53

Subroutine Subprograms•..•.......•...............•...•...... 54

SUBROUTI NE Statement ...••......•.•....•.....•.......•...•...• 54

CALL Statement •..•...•..•..•..•.•.•.•....•........•....•.•...• 55

RETURN Statement•.........•..•.•..•.•...•...••...••..•. 55

EXTERNAL Statement•..••........................... 56

SUMMARY OF PDP-10 FORTRAN IV STATEMENTS .. 00 0" 0 0 0 0 0 0 o. o. o. 0 0 0 0 0000

FORTRAN IV LIBRARY FUNCTIONS 0 o •• 0 • 0 •••••••••••••••••• 00, •••• 0 • 0 0 .0 ••

FORTRAN IV LIBRARY SUBROUTINES .• 0" 0 0 0 o. 00' o. 0" o. 0 ••••••• 0"0' 0 ••••

PDP-10 FORTRAN IV OPERA TING SYSTEM 00 •••• 0000. 0 0 • 0 • 0 0 •••• 0 0 • 00' •••• 0

BASIC DIFFERENCES BETWEEN FORTRAN II AND PDP-10 FORTRAN IV ••••• o. 0 0

PDP-10 FORTRAN IV COMPILER D !AGNOSTICS •• 0 •• 0 ••••• 00, •• 0 • 0 • o ••• 0 •• 0 •

THE SMALL FORTRAN IV COMPILER •••••••••• 0 •• 0 •••• 00' ••••••• 0 0

ILLUSTRATIONS

Typical FORTRAN Coding Form .•....•..•..•••..•.•..•..••................

Device Table for FORTRAN IV ••..••••..•••••••.•••.••••••••••••••••••••••

vii

57

61

65

67

73

75

77

2

69

Table

2

3

4

TABLES

Types of Resultant Subexpressions ..•.....•....•••.•..•.••..•.....•.........

Allowed Assignment Statements .•.....••.•..••.•..•.•..•..•.•..............

Numeric Field Codes ...•....•..•••••••.•..••.•••...••..••..............•.

Device Control Statements .•.•....•..•••...•.••....•.................•....

viii

Page

11

16

25

40

CHAPTER 1

INTRODUCTION

The term FORTRAN IV (FORmula TRANslation) is used interchangeably to designate both the FORTRAN IV

language and the FORTRAN IV translator or compi ler. The FORTRAN IV language is composed of

mathematical-form statements constructed in accordance with precisely formulated rules. FORTRAN IV

programs consist of meaningful sequences of FORTRAN statements intended to direct the computer to

perform the specified operations and computations.

The FORTRAN IV compi ler is itself a computer program that examines FORTRAN IV statements and tells

the computer how to translate the statements into machine language. The compi ler runs in a minimum of

9K of core. The program written in FORTRAN IV language is called the source program. The resultant

machine language program is called the object program.

FORTRAN IV includes such advanced features as logical operators, type declaration statements, double

precision and complex arithmetic, named COMMON, and DATA statements.

FORTRAN IV language elements aie discussed in Chapter 2 of this manual, followed by separate chapters

on the five categories of FORTRAN IV statements (arithmetic, control, input/output, specification, and

subprogram). The appendices contain a list of FORTRAN statements and summary descriptions of library

functions and subroutines. Digitalis small FORTRAN compi ler, which runs in 5.5K of core, is virtually

identical to the larger compi ler, except for differences explained in Appendix 7.

Operating procedures and diagnostic messages for both compilers are explained in the PDP-l0 Systems

Users Guide (DEC-l0-NGCA-D).

LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continuation

field, and statement field. A typical FORTRAN program is shown in Figure 1 .

Statement Number Field

A statement number consists of from one to five digits in columns 1-5. leading zeros and all blanks in

this field are ignored. Statement numbers may be in any order and must be unique. Any statement

referenced by another statement must have a statement number. For source programs prepared on a

teletypewriter, a horizontal tab may be used to skip to the statement field. This is the only place

a tab is legal.

Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement field, the state­

ment fields of up to 19 additional lines may be used to specify the complete statement. Any line which

is not continued, or the first line of sequence of continued lines, must have a blank or zero in column 6.

Continuation lines must have a character other than blank or zero in column 6.

FORTRAN
CODER DATE PAGE

CODING FORM PROBLEM

C-Con".,ent ~

~ ~~:~~el~~ ~
'STATEMENT ~

FORTRAN STATEMENT IDENTIfiCATION

~U"'\5:;;: 8
1 2 3 ~ 5 6 7 8 9 10 11 12131~ 1516171819202122 23 2~ 252627282930 313233 3,0536373839~0A1 ~2~3~H546~7~8'950 515253~5556575859606162636~656661686970n n 137. 75767778798(

t, THIS P R QGR,AM CA.L C U LAT E S P R I,ME NUMBER S FROM 14TO 50

D,Q 10 1=1 1 50 2

J = 1

4 J = J+ 2

IA=J

~=.UA
I II =, 1.I.J
i I IB =.A- L

II F .(B.) 5 10 5

5 II F .(J .. L T . .s,QRT ,(FL QA,T ,U ,L)J .GO TO 4

I iTYPE 105 I
L

10 I ~1~tlTII ~qEI

~,9 F,QRMAT ,CG) ..

105 FORMAT 04 I I S PR IM.E: ',)

lEND
I
I

. , , , .

1 23.56 7. , 101l121l1.1516171'1'12021222J)62526272'2930J1J:n334353637J1l"O~1.2.3«.S".7'''95051S253~55~575~6061626J6.056667''6970Tt 12 7J7.757&nll79'~

PG-3 DIGITAL EQUIPMENT CORPORATION • MAYNARD. MASSACHUSETTS
100 - 12/64

Figure 1 Typical FORTRAN Coding Form

Statement Field

Any FORTRAN statement, as described in later sections, may appear in the statement field (columns 7-72).

Except for alphanumeric data within a FORMAT statement I blanks (or spaces) are ignored and may be

used freely for appearance purposes.

2

Comment Line

Any line which starts with the letter C in column 1 is interpreted as a line of comments. Comment lines

are printed onto any listings requested but are otherwise ignored by the compiler. Columns 2-72 may be

used in any format for comment purposes.

CHARACTER SET

The following characters are used in the FORTRAN IV language:

Blank 0 @ P

1 A Q

II 2 B R

3 C S

$ 4 D T

% 5 E U

& 6 F V

7 G W

(8 H X

) 9 Y

* J Z

+ K

< L

M

> N

/ ? 0

3

CHAPTER 2

CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and variables and for forming expressions are described in this chapter.

CONSTANTS

Seven types of constants are permitted in a FORTRAN IV source program: integer or fixed point, real or

single-precision floating point, double-precision floating point, octal, complex, logical, and literal.

I nteger Constants

An integer constant consists of from one to eleven decimal digits written without a decimal point.

EXAMPLES: 3

-528

8085

An integer constant must fall within the range - 2
35

+1 to 2
35

_1. When used for the value of a subscript

or as an index in a DO statement, the value of the integer is taken as modulo 2
18

.

Rea I Constants

Real constants are written as a string of decimal digits including a decimal point. A real constant may

consist of any number of digits but only the leftmost 9 digits appear in the compiled program. Real

constants may be given a decimal scale factor by appending an E followed by an integer constant. The

field following the letter E must not be blank, but may be zero.

EXAMPLES: 15 •

. 579

5. OE3(i . e., 5000.)

A real constant has precision to eight digits. The magnitude must lie approximately within the range

O. 14E-38 to 1 • 7E38.

5

Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point, which

are followed by the letter D and the decimal scale factor. The field following the letter D must not be

blank, but may be zero.

EXAMPLES: 24.671325982134DO

3.602 (i .e., 360.)

3.60-2 (i.e., .036)

Double precision constants have precision to 16 digits. The magnitude of a double precision constant

must lie approximately between 0.14E-38 and 1.7E38.

Octa I Constants

A number preceded by a double quote represents an octal constant. An octal constant may appear in an

arithmetic or logica I expression or a DATA statement. Only the digits 0-7 may be used and only the first

twelve digits are significant.

EXAMPLES: "7m

"-31563

Comp lex Constants

FORTRAN IV provides for direct operations on complex numbers. Complex constants are written as an

ordered pair of real constants separated by a comma and enclosed in parentheses.

EXAMPLES: (.70712, - .70712)

(8. 763E3,2 .297)

The first constant of the pair represents the real part of the complex number, and the second constant

represents the imaginary part. The real and imaginary parts may each be signed. The enclosing paren­

theses are part of the constant and a Iways appear, regardless of context.

FORTRAN IV arithmetic operations on complex numbers, unlike normal arithmetic operations, must be

of the form:

6

A±B = a
1
±b

1
+i(a

2
±b

2
)

A1:B = (a
1

b
1
-o

2
b

2
)+i (a

2
b

1
+a

1
b

2
)

(a
1

b
1
+a

2
b

2
) . (a

2
b

1
-a

1
b

2
)

A/B= +I~~~-
b 2+b 2 b 2+b 2

1 2 1 2

where A = a
1

+ ia
2

, B = b
1

+ ib
2

, and i =~

Logical Constants

The two logical constants, .TRUE. and .FALSE., have the internal values-1 and 0, respectively. The

enclosing periods are part of the constant and always appear.

Logical constants may be entered in DATA or input statements as signed octal integers (-1 and 0). Logical

quantities may be operated on in either arithmetic or logical statements. Only the sign is tested to de­

termine the truth value of a logical variable.

Literal Constants

A literal constant may be in either of two forms:

1. A string of characters enclosed in single quotes; two adjacent single quotes within

the constant are treated as one single quote.

2. A string of the form:

where x
1
x

2
... x

n
is the constant, and n is the number of characters following the H.

EXAMPLES: ILITERAL CONSTANTI

IDONIITI

5HDON 'T

VARIABLES

A variable is a quantity whose value may change during the execution of a program. Variables are speci­

fied by name and type. The name of a variable consists of one or more alphanumeric characters, the first

one of which must be alphabetic. Only the first six characters are interpreted as defining the variable

name. The type of variable (integer, real, logical, double precision, or complex) may be specified by

a type declaration statement or determined by the first letter of the variable name. A first letter of I,

J, K, L, M or N indicates a fixed point (integer) variable; any other first letter indicates a floating­

point variable. Variables of any type may be either scalar or array variables.

7

SCALAR VARIABLES

A sca lor variable represents a single quantity.

EXAMPLES: A

G2

POPULATION

ARRAY VARIABLES

An array variable represents a single element of an n dimensional array of quantities. The variable is

denoted by the array name followed by a subscript list enclosed in parentheses. The subscript list is a

sequence of integer expressions, separated by commas. The expressions may be arithmetic combinations

of integer variables and integer constants. Each expression represents a subscript, and the values of the

expressions determine the array element referred to. For example, the row vector A. would be represented
I

by the subscripted variable A(J), and the element, in the second column of the first row of the square

matrix A, would be represented by A(l,2). Arrays may have any number of dimensions.

EXAMPLES: Y(l)

STATION (K)

A (~* K+2, I, J-l)

The three arrays above (Y, STATION, and A) would have to be dimensioned by a DIMENSION, COM­

MO N, or type dec laration statement prior to their first appearance in an executable statement or in a

DATA or NAMELIST statement. (Array dimensioning is discussed in chapter 6.)

Arrays are stored in increasing storage locations with the first subscript varying most rapidly and the last

subscript varying least rapidly. For example, the 2-dimensional array B(I,J) is stored in the following

order: B (1 , 1), B (2, 1) I ••• , B (I, 1) I B (1 , 2) I B (2 I 2) I ••• I B (I , 2) , ••• ,B (I, J) .

8

EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program performs

the calculations specified by the quantities and operators within the expression.

Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by numeric

operators and parentheses in accordance with mathematical convention and the rules given below.

The numeric operators are +, -, *, I, **, denoting, respectively, addition, subtraction, multipl ication,

division, and exponentiation.

In addition to the basic numeric operators, function references are also provided to faci I itate the evaluation

of functions such as sine, cosine, and square root. A function is a subprogram which acts upon one or more

quantities, called arguments, to produce a single quantity called the function value. Function references

are denoted by the identifier, which names the function (such as SIN, COS, etc.), followed by an argu-

identifier{argument , argument, ... , argument)

At least one argument must be present. An argument may be an expression, an array identifier, a subpro­

gram identifier, or an alphanumeric string.

Function type is given by the type of the identifier which names the function. The type of the function

is independent of the types of its arguments. (See Chapter 7.)

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828

Z(N)

TAN(THETA)

Compound numeric expressions may be formed by using numeric operators to combine basic elements:

X+3.

TOTAL/A

TAN(PI*M)

9

Compound numeric expressions must be constructed according to the following rules:

1. With respect to the numeric operators +, -, *, /, any type of quantity (logical,

octal, integer, real, doubl e precision, compl ex or literal) may be combined with any

other, with one exception: a complex quantity cannot be combined with a double

precision quantity.

The resultant type of the combination of any two types may be found in Table 1. The

conversions between data types will occur as follows:

(a) A literal constant will be combined with any integer constant as an

integer and with a real or double word as a real or double word quantity.

(Double word refers to both double precision and complex.)

(b) An integer quantity (constant, variable, or function reference) combined

with a real or double word quantity results in an expression of the type real

or double word respectively; e.g., an integer variable plus a complex variable

will result in a complex subexpression. The integer is converted to floating

point and then added to the real part of the complex number. The imaginary

part is unchanged.

(c) A real quantity (constant, variable, or function reference) combined with

a double word quantity results in an expression that is of the same type as the

doubl e word quant ity .

(d) A logical or octal quantity is combined with an integer, real, or double

word quantity as if it were an integer quantity in the integer case, or a real

quantity in the real or double word case (i. e., no conversion takes place).

2. Any numeric expression may be enclosed in parentheses and considered to be a basic

element.

(X+Y)/2

(ZETA)

(C05(5 IN (PI*M)+ X))

10

>...
e
0
:>

0
4-
0
Q)

a...
>...

I--

TABLE 1 TYPES OF RESULTANT SUBEXPRESSIONS

Type of Quantity

Double
Logical,

+,-,*,/ Real Integer Complex
Precision

Octal, or
Literal

Real Real Real Complex Double Real
Precision

Integer Real Integer Complex Double Integer
Precision

Complex Complex Complex Complex Not Complex
Allowed

Double Double Double Not Double Double
Precision Precision Precision Allowed Precision Precision

Logical,
II

Real

I

Integer
I

Complex

I

Double
I

Logical,
Octal, or Precision Octal, or
Literal II I I Literal

3. N.Jmeric expressions which are preceded by a + or - sign are also numeric expressions:

+X

-(ALPHA*BETA)

-SQRT(-GAMMA}

4. If the precedence of numeric operations is not given explicitly by parentheses, it

is understood to be the following (in order of decreasing precedence}:t

Operator

**

*and/

+and-

numeric exponentiation

numeric multipl ication and division

numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left

to right. This is a Iso true for exponentiation.

t See also page 14

11

5. No two numeric operators may appear in sequence. For instance:

is improper. Use of parentheses yields the correct form:

By use of the foregoing rules, all permissible numeric expressions may be formed. As

an example of a typi ca I numeric expression using numeric operators and a function

reference, the expression for the largest root of the general quadratic equation:

-b+ ~ b2
- 4ac

2a

would be coded as:

(-B-t5QRT (B **2-4. *A *C))/(2. * A)

logical Expressions

A logical expression consists of logical constants, logical variables, logical function references, and

arithmetic expressions, separated by logical operators or relational operators. Logical expressions are

provided in FORTRAN IV to permit the implementation of various forms of symbolic logic. Logical con­

stants are defined by arithmetic statements, which are described in Chapter 3. Logical variables and

functions are defined by the LOGICAL statement, described in Chapter 6. Binary variables may be

represented by the logical constants .TRUE. and .FALSE., which must always be written with enclosing

periods.

Logical Operators

The logical operators, which include the enclosing periods and their definitions, are as follows, where

P and Q are logical expressions:

.NOT.P

P.AND .Q

P.OR.Q

Has the value .TRUE. only if P is .FALSE., and has the

value . FALSE . only if P is .TRUE.

Has the value . TRUE. only if P and Q are both . TRUE.,

and has the value .FALSE. if either P or Q is .FALSE.

(Inclusive OR) Has the value. TRUE. if either P or Q is . TRUE.,

and has the value .FALSE. only if both P and Q are. FALSE.

12

P.XOR.Q

P.EQV.Q

(Exclusive OR) Has the value. TRUE. if either P or Q but not

both are .TRUE., and has the value .FAlSE. otherwise.

(Equivalence) Has the value. TRUE. if Pond Q are both

. TRUE. or both. FALSE., and has the value. FALSE. otherwise.

Relational Operators

The relational operators are as follows:

Operator

.GT.

.GE.

.IT.

.lE.

.EQ.

.NE.

Relation

greater than

greater than or equal to

less than

less than or equal to

equal to

not equal to

The enclosing periods are part of the operator and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with relationals.

The value (.TRUE. or .FAlSE.) of such relations will be calculated by subtraction; i.e.,

expression 1 IIrelation li expression
2

will be calculated as though:

expression
1

- expression
2

IIrelation li zero

had been written.

The relational operators. EQ. and. NE. may also be used with COMPLEX expressions. (Double word

quantities are equal if the corresponding parts are equal.)

A logical expression may consist of a single element (constant, variable, function reference, or relation):

• TRUE.

X.GE.3.14159

13

Single elements may be combined through use of logical operators to form compound logical expressions,

such as:

TVAl . AN D .1 N DEX

BOOl(M).OR. K.EQ.lIMIT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T .XOR.S).AND. (R.EQV.Q)

PARITY ((2.GT.Y .OR.X.GE.Y).AND.NEVER)

Any logical expression may be preceded by the unary operator. NOT. as in:

.NOT.T

.NOT .X+7.GR.Y+Z

BOOl(K).AND .. NOT. (TVAl .OR.R)

No two logical operators may appear in sequence, except in the case where. NOT. appears as the second

of two logical operators, as in the example above.

Two decimal points may appear in sequence, as in the example above, or when one belongs to an operator

and the other to a constant.

When the precedence of operators is not given expl icitly by parentheses, it is understood to be as follows

(in order of decreasing precedence):

**

+ -,
.GT., .GE., .IT., .lE., .EQ., .NE .

• NOT .

. AND .

. OR .

. EQV., .XOR.

For example, the logical expression

.NOT .ZETA**2+Y*MASS.GT. K-2.0R.PARITY .AND.X.EQ.Y

is interpreted as

(. NOT. (((ZETA**2)+(Y*MASS)). GT. (K-2))). OR. (PARITY .AND. (X. EQ. V))

14

CHAPTER 3

THE ARITHMETIC STATEMENT

One of the key features of FORTRAN IV is the ease with which arithmetic computations can be coded.

Computations to be performed by FORTRAN IV are indicated by arithmetic statements, which have the

general form:

A=B

where A is a variable, B is an expression, and = is a replacement operator. The arithmetic statement

causes the FORTRAN IV object program to evaluate the expression B and assign the resultant value to the

variable A. Note that the = sign signifies replacement, not equal ity. Thus, expressions of the form:

A=A+B and

A=A*B

are quite meaningful and indicate that the value of the variable A js to be changed.

EXAMPLES: Y=l*Y

P=. TRUE.

X{N)=N*ZETA (ALPHA*M/PI)+{l.,-l .)

Table 2 indicates which type of expression may be equated to each type of variable in an arithmetic state­

ment. D indicates that the assignment is performed directly (no conversion of any sort is done); R indicates

that only the real part of the variable is set to the value of the expression (the imaginary part is set to zero);

C means that the expression is converted to the type of the variable; and H means that only the high-order

portion of evaluated expression is assigned to the variable.

The expression value is made to agree in type with the assignment variable before replacement occurs.

For example, in the statement:

THET A=W*{ABETA+E)

if THETA is an integer and the expression is real, the expression val ue is truncated to an integer before

assignment to THETA.

15

TABLE 2 ALLOWED ASSIGNMENT STATEMENTS

Variable Real Integer

Real D C

Integer C D

Complex D, R,I C,R,I

Double
D,H,L C, H,L Precision

Logical D D

D - Direct Replacement

C - Conversion between integer and floating point

R - Real only

- Set imaginary part to 0

H - High order only

L - Set low order part to 0

Expression

Complex
Double

Precision

R,D H,D

R,C H,e

D H,D,R,I

R,D,H,L D

R,D H,D

16

Logical,
Octal, or

Literal
Constant

D

D

D, R,I

D,H,L

D

CHAPTER 4

CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which they were

presented to the compiler. However, the following control statements are available to alter the normal

sequence of statement execution: GO TO, IF, DO, PAUSE, STOP, END, CALL, RETURN.

RETURN are used to enter and return from subroutines.

GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

Unconditionai GO TO Statements

Unconditional GO TO statements are of the form:

GO TO n

CALL and

where n is the number of an executable statement. Control is transferred to the statement numbered n.

Computed GO TO Statements

Computed GO TO statements have the form:

where n
1

, n
2

, ... , n
k

are statement numbers, and i is an integer expression.

Th is statement transfers control to the statement numbered n
1

, n
2

, ... , n
k

if i has the val ue 1, 2, ... , k,

respectively. If i exceeds the size of the list I or is zero, execution will proceed to the next executable

statement.

For example, in the statement:

GO TO (20, 10,5), K

the variable K acts as a switch, causing a transfer to statement 20 if K=l, to statement 10 if K=2, or to

statement 5 if K=3.

17

Assigned GO TO Statement

Assigned GO TO statements have two forms:

GO TO k

and

GO TO k, (n
1

,n
2

,n
3

, ...)

where k is a nonsubscripted integer variable and n
1

,n
2

, ... n
k

are statement numbers. Both forms of the

assigned GO TO have the effect of transferring control to the statement whose number is currently asso­

ciated with the variable k. This association is established through the use of the ASSIGN statement I

the general form of which is:

ASSIGN i TO k

If more than one ASSIGN statement refers to the same integer variable name, the value assigned by the

last executed statement is the current value.

EXAMPLES: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT, (2,21,1000,310)

IF STATEMENT

IF statements have two forms in FORTRAN IV: numerical and logical.

Numerical IF Statements

Numerical IF statements are of the form:

IF (expression) n
1

,n
2

,n
3

where n 1 ,n
2

,n
3

are statement numbers.

This statement transfers control to the statement numbered n
1

, n
2

, n3 if the value of the numeric expression

is less than I equal to, or greater than zero, respectively. The expression may not be complex.

EXAMPLES: IF (ETA) 4,7,12

IF (KAPPA-L (10)) 201 141 14

18

Logical IF Statements

Logical I F statements have the form:

IF (expressions)S

where S is C! campi ete statement.

The expression must be logical. S may be any executable statement other than a DO statement or another

logical IF statement (see page 12).

If the value of the expression is . FALSE., control passes to the next sequential statement.

If the value of the expression is . TRUE., statement S is executed. After execution of S, control passes

to the next sequential statement unless S is a numerical I F statement or a GO TO statement; in these

cases, control is transferred as indicated.

If the expression is . TRUE. and S is a CALL statement, control is transferred to the next sequential state­

ment upon return from the subroutine.

Numbers are present in the logical expression:

IF (B)Y=X*SIN(Z)

If the value of B is .TRUE., the statements Y=X*SIN(Z) and W=Y**2 are executed in that order. If the

value of B is . FALSE., the statement Y=X*SI N (Z) is not executed.

EXAMPLES: IF (T.OR.S)X=Y+1

IF (Z.GT .X(K)) CALL SWITCH (S, Y)

IF (K.EQ.INDEX) GO TO 15

NOTE: Care should be taken in testing floating point numbers for equal ity in
I F statements as rounding errors may cause unexpected results.

DO STATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the form:

DO n i=m
1

,m
2

,m
3

where n is a statement number, i is a nonsubscripted integer variable, and m
1

,m
2

,m
3

are any integer

expressions. If m3 is not specified, it is understood to be 1 .

19

The DO statement causes the statements which follow, up to and including the statement numbered n, to

be executed repeatedly. This group of statements is call ed the range of the DO statement. The integer

variable i of the DO statement is called the index. The values of m
1

, m
2

, and m3 are called, respectively,

the initial, I im it, and increment val ues of the index.

A zero increment (m
3

) is not allowed. The increment may be negative if m1~m2. If m 1~ m
2

, the increment

m3 must be positive. The parameters m 1 and m
2

may have I ike or unl ike signs as long as m
2

is always

larger than m
3

, or m3 is always larger than m
2

.

EXAMPLES: Form

DO 10 1=1,5,2

DO 10 1=5, 1,-1

DO 10 1= J, K, 5

DO 1 0 1= J , K, - 5

DO 10 L=I,J,-K

DO 10 L=I,J,K

J<K

J>K

Restriction

1< J, K < 0 or I> J, K> 0

I~ J, K>O or I~ J, K>O

Initially, the statements of the range are executed with the initial value assigned to the index. This

initial execution is always performed, regardless of the values of the limit and increment. After each

execution of the range, the increment value is added to the value of the index and the result is compared

with the limit value. If the value of the index is not greater than the limit value, the range is executed

again using the new value of the index. When the increment value is negative, another execution will

be performed if the new value of the index is not less than the I imit value.

After the last execution of the range, control passes to the statement immediately following the range.

This exit from the range is called the normal exit. Exit may also be accompl ished by a transfer from within

the range.

The range of a DO statement may include other DO statements, provided that the range of each contained

DO statement is entirely within the range of the containing DO statement. That is, the ranges of two DO

statements must intersect completely or not at all. A transfer into the range of a DO statement from out­

side the range is not allowed.

Within the range of a DO statement, the index is available for use as an ordinary variable. After a trans­

fer from within the range, the index retains its current value and is available for use as a variable. The

values of the initial, limit, and increment variables for the index and the index of the DO loop, may not

be altered within the range of the DO statement.

20

The range of a DO statement must not end with a GO TO type statement or a numerical IF statement.

A logical IF statement is allowed as the last statement of the range. In this case, control is transferred

as follows. The range is considered ended when, and if, control would normally pass to the statement

following the entire logical IF statement.

As an example, consider the sequences:

DO 5 K =1,4

5 IF(X(K). GT . Y(K))Y(K) =X(K)

6 ...

Statement 5 is executed four times whether the statement Y(K) =X(K) is executed or not.

Statement 6 is not executed unti I statement 5 has been executed four times.

EXAMPLES: DO 22 L=l ,30

DO 45 K =2,LIMIT ,-3

DO 7 X =T ,MAX,L

CONTINUE STATEMENT

The CONTINUE statement has the form:

CONTINUE

This statement is a dummy statement, used primari Iy as a target for transfers, particularly as the last

statement in the range of a DO statement. For example, in the sequence:

DO 7 K = START ,END

IF (X(K))22, 13,7

7 CONTINUE

a positive value of X (K) begins another execution of the range. The CONTINUE provides a target address

for the IF statement and ends the range of the DO statement.

PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of automatic

events. The PAUSE statement assumes one of three forms:

21

PAUSE

PAUSE n

PAUSE IXXXXXI

where n is an unsigned string of six or less octal digits, and IXXXXXI is a literal message.

Execution of the PAUSE statement causes the message or the octal digits, if any, to be typed on the

user1s teletypewriter. Program execution may be resumed (at the next executable FORTRAN statement)

from the consol e by typing II G, II followed by a carriage return. Program execution may be term inated by

typing IIX,II followed by carriage return.

EXAMPLE: PAUSE 167

PAUSE INOW IS THE TIMEI

STOP STATEMENT

The STOP statement has the form:

STOP

The STOP statement terminates the program and returns control to the monitor system. (Termination of a

program may also be accomplished by a CALL to the EX IT or DUMP subroutines.)

END STATEMENT

The END statement has the form:

END

The END statement informs the compiler to terminate compilation and must be the physically last statement

of the program.

22

CHAPTER 5

INPUT/OUTPUT STATEMENTS

Input/output statements are used to control the transfer of data between computer memory and peripheral

devices and to specify the format of the output data. Input/output statements may be divided into three

categories, as follows:

1. Nonexecutable statements that enable conversions between internal form data

within core memory and external form data (FORMAT), or specify lists of arrays and

variables for input/output transfer (NAMELlST).

2. Statements that specify transm ission of data between computer memory and I/O

devices: READ, WRITE, PRINT, PUNCH, TYPE, ACCEPT.

3. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE,

END FILE, UNLOAD, SKIP RECORD.

NONEXECUTABLE 5T ATEMENTS

The FORMAT statement enables the user to specify the form and arrangement of data on the selected ex­

ternal medium. The NAMELIST statement provides for conversion and input/output transmission of data

without reference to a FORMAT statement.

FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium. FORMAT statements are of

the form:

where n is a statement number, and each S is a data field specification.

FORMAT statements may be placed anywhere in the source program. Unless the FORMAT statement con­

tains only alphanumeric data for direct input/output transmission, it will be used in conjunction with the

list of a data transmission statement.

Slashes are used to specify unit records, which must be one of the following:

23

1. A tape record with a maximum length corresponding to the printed line of the off­

I ine printer.

2. A punched card with a maximum of 80 characters.

3. A printed I ine with a maximum of 72 characters for a Teletype and either 120 or

132 characters for the I ine printer.

During transmission of data, the object program scans the designated FORMAT statement. If a specification

for a numeric field is present (see II Input/Output Lists" p 35) and the data transmission statement contains

items remaining to be transmitted; transmission takes place according to the specification. This process

ceases and execution of the data transm ission statement is terminated as soon as all specified items have

been transmitted. Thus, the FORMAT statement may contain specifications for more items than are speci­

fied by the data transmission statement. Conversely, the FORMAT statement may contain specifications

for fewer items than are specified by the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric with

scale factors, logical, alphanumeric. The FORMAT statement also provides for handl ing multiple record

formats, formats stored as data, carriage control, skipping characters, blank insertion, and repetition.

If an input list requires more characters than the input device supplies for a given unit record, blanks

are suppJ i ed.

Numeric Fields

Numeric field specification codes and the corresponding internal and external forms of the numbers are

listed in Table 3.

The conversions of Table 3 are specified by the forms:

1. Dw.d

2. Ew.d

3. Fw.d

4. Iw

5. Ow

6. Gw.d (for rea I)

Gw (for integer or logica I)

Gw.d,Gw.d (for complex)

respective Iy. The letter D, E, F, I, 0, or G designates the conversion type; w is an integer spec ifying

the field width, which may be greater than required to provide for blank columns between numbers; d is

24

an integer specifying the number of decimal places to the right of the decimal point or, for G conversion,

the number of sign ificant digits. {For D, E, F, and G input, the position of the decimal po int in the

external field takes precedence over the value of d in the format.}

For example,

FORMAT (l5,F10.2,D18.10)

could be used to output the line,

bbb32bbbb-17.60bbb.5962547681D+03

on the output listing.

The field width w should always be large enough to include spaces for the decimal point, sign, and expo­

nent. In all numeric field conversions if w is not large enough to accommodate the converted number, the

excess digits on the left will be lost; if the number is less than w spaces in length, the number is right-

adjusted in the field.

Conversion
Code

D

E

F

o

G

TABLE 3 NUMERIC FIELD CODES

Internal Form

Binary floating point
double-precision

Binary floating point

Binary floating point

Binary integer

Binary integer

One of the following:
single precision
binary floating point I
binary integer,
binary logical, or
binary complex

25

Externa I Form

Decimal floating point
with D exponent

Decimal floating point
with E exponent

Decimal fixed point

Decimal integer

Octal Integer

Single precision
decimal floating point,
integer, logical (T or
F), or complex {two
decimal floating point
numbers}, depending
upon the internal form

Numeric Fields with Scale Factors

Scale factors may be specified for D, E, F, and G conversions. A scale factor is written nP where P is

the identifying character and n is a signed or unsigned integer that specifies the scale factor.

For F type conversions (or G type, if the external field is decimal fixed point), the scale factor specifies

a power of ten so that

. (scale factor)
external number = (mternal number)* 10

For D, E, and G (external field not decimal fixed point) conversions, the scale factor multiplies the

number by a power of ten, but the exponent is changed accordingly leaving the number unchanged except

in form. For example, if the statement:

FORMAT (F8.3, E16.5)

corresponds to the line

bb26 .451 bbbb-O .41321 E-Ol

then the statement

FORMAT (-lPF8.3,2PE16.5)

might correspond to the line

bbb2.645bbb-41.32157E-03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the

only types affected by scale factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is specified,

it holds for all subsequent D, E, F, and G type conversions within the same format unless another scale

factor is encountered. The scale factor is reset to zero by specifying a scale factor of zero. Scale factors

have no effect on I and 0 type conversions.

Logical Fields

Logical data can be transmitted in a manner similar to numeric data by use of the specification:

Lw

where L is the control character and w is an integer specifying the field width. The data is transm itted

as the value of a logical variable in the input/output list.

26

If on input, the first nonblank character in the data field is T or F, the value of the logical variable will

be stored as true or false, respectively. If the entire data field is blank, a val ue of false will be stored.

On output, w minus 1 blanks followed by T or F will be output if the value of the logical variable is true

or false, respectively.

Variable Field Width

The D, E, F, G, I, and 0 conversion types may appear without the specification of the field width w.

In the case of input, omitting the w implies that the numeric field is del imited by any character which

would otherwise be illegal in the field in addition to the characters -, +, ., E, D, and blank provided

they follow the numeric field. For example, input according to the format:

10 FORMAT(2I, F, E, 0)

might appear as:

-10,3/15.621-.0016E-l0,777.

On output, omitting the w has the following effect:

Format Becomes

D D25.16

E E15.7

F F15.7

G G15.7 or G25. 16

115

0 015

Alphanumeric Fields

Alphanumeric data can be transmitted in a manner similar to numeric data by use of the form Aw, where

A is the control character and w is the number of characters in the field. The alphanumeric characters

are transmitted as the value of a variable in an input/output list. The variable may be of any type. For

the sequence:

READ 5, V

5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

27

Although w may have any value, the number of characters transmitted is I imited by the maximum number

of characters which can be stored in the space allotted for the variable. This maximum depends upon the

variable type. For a double prec ision variable the maximum is ten characters; for all other variables, the

maximum is five characters. If w exceeds the maximum, the leftmost characters are lost on input and

replaced with blanks on output. If, on input, w is less than the maximum, blanks are filled in to the right

of the given characters until the maximum is reached. If, on output, w is less than the maximum, the

leftmost w characters are transmitted to the external medium. Since for complex variables each word

requires a separate field specification, the maximum value for w is S.

For example, COMPLEX C Could be used to transmit
ACCEPT 1, C ten alphanumeric characters
1 FORMAT (2AS) into complex variable C.

Alphanumeric Data Within Format Statements

Alphanumeric data may be transmitted directly into or from the format statement by two different methods:

H-conversion, or the use of single quotes.

In H-conversion, the alphanumeric string is specified by the form nH. H is the control character and n is

the number of characters in the string counting blanks. For example, the format in the statement below

can be used to print PROGRAM COMPLETE on the output listing.

FORMAT (l7H PROGRAM COMPLETE)

Referring to this format in a READ statem,ent would cause the 17 characters to be replaced with a new

string of characters.

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the same

as in H-conversion; on input, the characters between the quotes are replaced by input characters, and,

on output, the c~racters between the quotes (including blanks) are written as part of the output data. A

quote character within the data is represented by two successive quote marks. For example, referring to:

FORMAT (' DON"T')

with an output statement would cause DON'T to be printed. The first character referenced by the

FORMAT statement for output is interpreted as a carriage control character.

Mixed Fields

An alphanumeric format field may be placed among other fields of the format. For example, the statement:

FORMAT (IS,7H FORCE=F10.S)

can be used to output the line:

bbb22bFORCE=bb 17 .68901

The separating comma may be omitted after an alphanumeric format field, as shown above.

28

Complex Fields

Complex quantities are transmitted as two independent real quantities. The format specification consists

of two successive real specifications or one repeated real specification. For instance, the statement:

FORMAT (2E15.4,2(F8.3,F8.5»

could be used in the transmission of three complex quantities.

Repetition of Field Specifications

Repetition of a field specification may be specified by preceding the control character D, E, F, I, 0, G,

L, or A by an unsigned integer giving the number of repetitions desired. For example:

FORMAT (2E12.4,315)

is equivalent to:

FORMAT (E12.4, E12.4,15,15,15)

Repetition of Groups

A group of field specifications may be repeated by enclosing the group in parentheses and preceding the

whole with the repetition number. For example:

FORMAT (218,2(E15.5,2F8.3))

is equivalent to:

FORMAT (218, E15.5,2F8. 3, E15 .5,2F8 .3)

Multiple Record Formats

To handle a group of input/output records where different records have different field specifications, a

slash is used to indicate a new record. For example, the statement:

FORMAT (308/15,2F8.4)

is equivalent to:

FORMAT (308)

for the first record and

FORMAT (l5,2F8.4)

for the second record.

29

The separating comma may be omitted when a slash is used. When n slashes appear at the end or beginning

of a format, n blank records may be written on output or records skipped on input. When n slashes appear

in the middle of a format, n-l blank records are written or n-l records skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record.

If the I ist of an input/output statement dictates that transm ission of data is to continue after the closing

parenthesis of the format is reached, the format is repeated starting with that group repeat

specification terminated by the last right parenthesis of level one or level zero if no level one group exists.

Thus, the statement:

FORMAT (F7 .2, (2(E15. 5, E15 .4),17))

level O~11J level lJLlevel 0

causes the format:

F7 .2, 2(E15.5, E15.4), 17

to be used on the first record, and the format:

2(E15 .5, E15 .4),17

to be used on succeedi ng records.

As a further example, consider the statement:

FORMAT (F7. 2/(2(E15. 5, E15 .4),17))

The first record has the format:

F7.2

and successive records have the format:

2(E15.5, E15.4),17

Formats Stored as Data

The ASCII character string comprising a format specification may be stored as the values of an array.

Input/output statements may refer to the format by giving the array name, rather than the statement number

of a FORMAT statement. The stored format has the same form as a FORMAT statement excluding the word

II FORMAT ." The enclosing parentheses are included.

30

As an example, consider the sequence:

DIMENSION SKELETON (2)

READ 1, (SKELETON (I), I = 1,2)

FORMAT (2A4)

READ SKELETON, K,X

The first READ statement enters the ASCII string into the array SKELETON. In the second READ statement,

SKELETON is referred to as the format governing conversion of K and X.

Carriage Control

The first character of each ASCII record controls the spacing of the line printer or Teletype. This character

is usually set by beginning a FORMAT statement for an ASCII record with 1 Ha, where a is the desired con­

trol character. The I ine spacing actions, I isted below, occur before printing:

Character

space

o

+

2

3

/
*

Effect

skip TO next line

skip a line

form feed - go to top of next page

suppress skipping - will overprint line

skip 2 lines

skip to next 1/2 of page

sk i p to next 1/3 of page

skip to next 1/6 of page

skip to next 1/10 of page

skip to next 1/20 of page

sk i p to next 1/30 of page

A $ (dollar sign) as a format field specification code suppresses the carriage-return at the end of the line.

Spacing

Input and output can be made to begin at any position within a FORTRAN record by use of the format code:

Tw

where T is the control character and w is an unsigned integer constant specifying the position in a FORTRAN

record where the transfer of data is to begin.

31

For example,

2 FORMAT(T50, 'BLACK'T30, 'WHITE')

would cause the following I ine to be printed:

Print Position 29 Print Position 49

For input, the statements:

~
WHITE

~
BLACK

1 FORMAT (T35, 'MONTH')

READ (3,1)

would cause the first 34 characters of the input data to be skipped, and the next 5 characters would re­

place the characters M, 0, N, T, and H in storage.

Blank or Skip Fields

Blanks may be introduced into an output record or characters skipped on an input record by use of the

specification nX. The control character is Xi n is the number of blanks or characters skipped and must

be greater than zero. For example, the statement:

FORMAT (5H STEPI5,10X2HY=F7.3)

may be used to output the line:

bSTEPbbb28bbbbbbbbbbY=b-3.872

NAMEL 1ST Statement

The NAMELIST statement, when used in conjunction with special forms of the READ and WRITE statements,

provides a method for transmitting and converting data without using a FORMAT statement or an I/O list.

The NAMELIST statement has the form:

where the XiS are NAMELIST names, and the A's, B's, and CiS are variable or array names.

Each I ist or variable mentioned in the NAMELIST statement is given the NAMELIST name immediately

preceding the I ist. Thereafter! an I/O statement may refer to an entire I ist by mentioning its NAMELIST

name. For example:

NAMELIST/FRED/ A, B,C/MARTHA/D, E

32

states that A, B, and C belong to the NAMEL 1ST name FRED, and D and E belong to MARTHA.

The use of NAMELIST statements must obey the following rules:

1. A NAMEL 1ST name may not be longer than six characters; it must start with an

alphabetic character; it must be enclosed in slashes; it must precede the list of entries

to which it refers; and it must be unique within the program.

2. A NAMELIST name may be defined only once and must be defined by a NAMELIST

statement. After a NAMEL 1ST name has been defined, it may only appear in READ or

WRITE statements. The NAMELIST name must be defined in advance of the READ or

WRITE statement.

3. A variable used in a NAMELIST statement cannot be used as a dummy argument in

a subroutine definition.

4. Any dimensioned variable contained in NAMEL 1ST statement must have been de­

fined in a DIMENSION statement preceding the NAMELIST statement.

Input Data for NAMELIST Statements

When a READ statement refers to a NAMELIST name, the first character of all input records is ignored.

Records are searched until one is found with a $ or & as the second character immediately followed by the

NAMELIST name specified. Data is then converted and placed in memory until the end of a data group is

signaled by a $ or & either in the same record as the NAMELIST name, or in any succeeding record as

long as the $ or & is the second character of the record. Data items must be separated by commas and be

of the following form:

V=K1,K
2
,···,K

n

where V may be a variable name or an array name, with or without subscripts. The K1s are constants

which may be integer, real, double precision, complex {written as {A, B} where A and B are real}, or

logical {written as T or . TRUE., and F or . FALSE}. A series of J identical constants may be represented

by J* K where J is an unsigned integer and K is the repeated constant. Logical and complex constants

must be equated to logical and complex variables, respectively. The other types of constants {real, double

precision, and integers} may be equated to any other type of variable {except logical or complex}, and

will be converted to the variable type. For example, assume A is a two-dimensional real array, B is a

one-dimensional integer array, C is an integer variable, and that the input data is as follows:

33

$FRED A(7,2) =4, B =3,6*2.8, C =3.32$

Column 2

A READ statement referring to the NAME LIST name FRED wi" result in the following: the integer 4 wi II

be converted to floating point and placed in A(7,2). The integer 3 wi II be placed in B(1) and the float­

ing point number 2.8 will be placed in B(2), B(3), ... , B(7). The floating point number 3.32 will be

converted to the integer 3 and placed in C.

Output Data for NAMELIST Statements

When a WRITE statement refers to a NAMELIST name, all variables and arrays and their values belonging

to the NAME LIST name wi" be written out, each according to its type. The complete array is written

out by columns. The output data will be written so that:

1. The fields for the data wi II be large enough to contain all the significant digits.

2. The output can be read by an input statement referencing the NAMELIST name.

For example, if JOE is a 2x3 array, the statements:

NAMELIST/NAM1/JOE,K1,ALPHA

WRITE (u ,NAM1)

wi" generate the following form of output:

Column 2

~

$NAMl

JOE= -6.75,

-17.8,

K1 = 73.1,

. 234E-04,

0.0,

ALPHA=3,$

68.0,

- . 197E+07,

DATA TRANSMISSION STATEMENTS

The data transmission statements accomplish input/output transfer of data that may be listed in a NAME LIST

statement or defined in a FORMAT statement. When a FORMAT statement is used to specify formats, the

data transmission statement must contain a list of the quantities to be transmitted. The data appears on

the external media in the form of records.

34

Input /0 utput Lists

The list of an input/output statement specifies the order of transmission of the variable values. During

input, the new values of listed variables may be used in subscript or control expressions for variables

appearing later in the list. For example:

READ 13,LA(L),B(L+l)

reads a new value of L and uses this value in the subscripts of A and B.

The transmission of array variables may be controlled by indexing similar to that used in the DO statement.

The list of controlled variables, followed by the index control, is enclosed in parentheses. For example,

READ 7, (X(K),K=l,4),A

is equivalent to:

READ 7, X(l) ,X(2) ,X(3) , X (4) ,A

As in the DO statement, the initial, limit, and increment values may be given as integer expressions:

READ 5, N, (GAIN(K),K=l,M/2,N)

The indexing may be compounded as in the following:

READ 11, ((MASS (K , L), K = 1,4) , L = 1,5)

The above statement reads in the elements of array MASS in the following order:

MASS(l,l), MASS(2,l), •.. ,MASS(4, 1) ,MASS(l,2), ... ,MASS(4,5)

If an entire array is to be transmitted, the indexing may be omitted and only the array identifier written.

The array is transmitted in order of increasing subscripts with the first subscript varying most rapidly. Thus,

the example above could have been written:

READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAME LIST name (see description

of NAMELIST statement).

Input/Output Records

All information appearing on external media is grouped into records. The maximum amount of information

in one record and the manner of separation between records depends upon the medium. For punched cards,

35

each card constitutes one record; on a teletypewriter a record is one line, and so forth. The amount of

information contained in each ASCII record is specified by the FORMAT reference and the I/O list. For

magnetic tape binary records, the amount of information is specified by the I/O list.

Each execution of an input or output statement initiates the transmission of a new data record. Thus, the

statement:

READ 2, FIRST ,SECOND, THIRD

is not necessarily equivalent to the statements:

READ 2, FIRST

READ 2, SECOND

READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the sing Ie statement:

READ 2, FIRST ,SECOND, THIRD

may requi re one, two, three, or more records dependi ng upon FO RMAT2 .

If an input/output statement requests less than a full record of information, the unrequested part of the

record is lost and cannot be recovered by another input/output statement without repositioning the record.

If an input/output list requires more than one ASCII record of information, successive records are read.

PRINT Statement

The PRINT statement assumes one of two forms:

where f is a format reference.

PRINT f, list

PRINT f

The data is converted from internal to external form according to the designated format. If the data to

be transmitted is contained in the specified FORMAT statement, the second form of the statement is used.

EXAMPLES: PRINT 16,T,(B(K),K= 1,M)

PRINT Fl 06 ,SPEED ,MISS

In the second example, the format is stored in array F106.

36

PUNCH Stotement

The PU NC H statement assumes one of two forms:

where f is a format reference.

PUNCH f, list

PUNCH f

Conversion from internal to external data forms is specified by the format reference. If the data to be

transmitted is contained in the designated FORMAT statement, the second form of the statement is used.

EXAMPLES: PUNCH 12,A, B(A), C(B(A))

PUNCH 7

TYPE Statement

The TYPE statement assumes one of two forms:

where f is a format reference.

TYPE f, list

TYPE f

This statement causes the values of the variables in the list to be read from memory and listed on the user's

teletypewriter. The data is converted from internal to external form according to the designated format.

If the data to be transmitted is contained in the designated FORMAT statement, the second form of the

statement is used:

EXAMPLES: TYPE 14, K, (A(L), L=l, K)

TYPE FMT

WRITE Statement

The WRITE statement assumes one of the following forms:

WRITE(u,f) list

WRITE(u r f)

WRITE(u, N)

WRITE(u) list

37

where u is a unit designation, f is a format reference, and N is a NAMELIST name.

The first form of the WRITE statement causes the values of the variables in the list to be read from memory

and written on the unit designated in ASCII form. The data is converted to external form as specified by

the designated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the specified format

and written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays belonging

to the NAMELIST name, N, to be read from memory and written on the unit designated. The data is

converted to external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read from mem­

ory and written on the unit designated in binary form.

READ Statement

The READ statement assumes one of the following forms:

R-EAD f, list

READ f

READ(u, f) list

READ(u, f)

READ(u, N)

READ(u) list

where f is a format reference, u is a unit designation, and N is a NAMELIST name.

The first form of the READ statement causes information to be read from cardst and put in memory as values

of the variables in the list. The data is converted from external to internal form as specified by the ref­

erenced FORMAT statement.

EXAMPLE: READ 28, Zl, Z2, Z3

The second form of the READ statement is used if the data read from cards is to be transmitted directly into

the specified format.

EXAMPLE: READ 10

t See Appendix 4

38

The third form of the READ statement causes ASCII information to be read from the unit designated and

stored in memory as val ues of the variables in the I ist. The data is converted to internal form as spec ified

by the referenced FORMAT statement.

EXAMPLE: READ(1, 15)ET A, Pl

The fourth form of the READ statement causes ASC II information to be read from the un it designated and

transmitted directly into the specified format.

EXAMPLE: READ(N, 105)

The fifth form of the READ statement causes data of the form described in the discussion of input data for

NAMELIST statements to be read from the un it designated and stored in memory as values of the variables

or arrays spec i fi ed •

EXAMPLE: READ(2, FRED)

The sixth form of the READ statement causes binary information to be read from the unit designated and

stored in memory as values of the variables in the list.

EXAMPLE: READ(M)GAIN, Z, AI

ACCEPT Statement

The ACCEPT statement assumes one of two forms:

where f is a format reference.

ACCEPTf, list

ACCEPT f

This statement causes information to be input from the user's teletypewriter and put in memory as values

of the variables in the I ist. The data is converted to internal form as specified by the format. If the

transm ission of data is directly into the designated format, the second form of the statement is used.

EXAMPLES: ACCEPT 12,ALPHA,BETA

ACCEPT 27

39

DEVICE CONTROL STATEMENTS

Device control statements and their corresponding effects are listed in Table 4.

Statement

BACKSPACE u

END FILE u

REWIND u

SKIP RECORD u

UNLOAD u

TABLE 4 DEVICE CONTROL STATEMENTS

Effect

Backspaces designated tape one ASCII record or one logical
binary record.

Writes an end-of-fj Ie.

Rewinds tape on designated unit.

Causes skipping of one ASCII record or one logical binary
record.

Rewinds and unloads the designated tape.

40

CHAPTER 6

SPECIFICATION STATEMENTS

Specification statements allocate storage and furnish information, about variables and constants to the

compiler. Specification statements may be divided into three categories, as follows:

1. Storage specification statements: DIMENSION, COMMON, and EQUIVALENCE.

2. Data specification statements: DATA and BLOCK DATA.

3. Type declaration statements: INTEGER, REAL, DOUBLE PRECISI0N, COMPLEX,

LOGICAL, SUBSCRIPT INTEGER, and IMPLICIT.

The following specification statements, if used, appear in the program prior to any exec~table statement:

DIMENSION statement

EXTERNAL statement t

COMMON statement

EQUIVALENCE statement

Type declaration statements

Arithmetic function definition statements t

D AT A statements

IMPLICIT statements

In addition, arrays must be dimensioned before being referenced in a NAMELIST or DATA statement.

STORAGE SPECIFICATION STATEMENTS

DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers and to specify the number

and bounds of the array subscripts. The information supplied in a DIMENSION statement is required for

the allocation of memory for arrays. Any number of arrays may be declared in a single DIMENSION

statement. The DIMENSION statement has the form:

DIMENSION Sl,S2'·· .,Sn

where S is an array specification.

tEXTERNAL and arithmetic function definition statements are described in Chapter 7.

41

Each array variable appearing in the program must represent an element of an array declared in a

DIMENSION statement, unless the dimension information is given in a COMMON or TVPE statement.

Dimension information may appear only once for a given variable.

Each array specification gives the array identifier and the minimum and maximum values which each of its

subscripts may assume in the following form:

identifier(m in/max, min/max, ... , min/max)

The minima and maxima must be integers. The minimum must not exceed the maximum.

For example, the statement:

DIMENSION EDGE(-1/l,4/8)

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclusive, and

the second from 4 to 8 inclusive.

Minimum values of 1 may be omitted. For example,

is interpreted as:

EXAMPLES:

NET(5, 10)

NET(1/5, 1/10)

DIMENSION FORCE(-l/l, 0/3,2,2,-7/3)

DIMENSION PLACE(3,3,3), JI(2,2/4), K(256)

Arrays may also be declared in the COMMON or type declaration statements in the same way:

Adjustabie Dimensions

COMMON X(10,4), V,Z

INTEGER A(7,32),B

DOUBLE PRECISION K(-2/6, 10)

Within either a FUNCTION or SUBROUTINE subprogram, DIMENSION and TVPE statements may use integer

variables in an array specification, provided that the array name and variable dimensions are dummy argu­

ments of the subprogram. The actual array name and values for the dummy variables are given by the call ing

program when the subprogram is called. The variable dimensions may not be altered within the subprogram

(i.e., typing the array DOUBLE PRECISION or COMPLEX after it has been dimensioned) and must be less

than or equal to the explicit dimensions declared in the calling program.

42

EXAMPLE: SUBROUTINE SBR(ARRAY,Ml ,M2,M3,M4)

DIMENSION ARRAY (Ml/M2,M3/M4)

DO 27 L=M3,M4

DO 27 K=Ml ,M2

27 ARRAY(K, L)=VALUE

END

The calling program for SBR might be:

DIMENSION Al (l 0, 20),A2(l 000,4)

CALL SBR(Al,5, 10, 10,20)

CALL SBR(A2,100,250,2,4)

END

COMMON Statement

The COMMON statement causes specified variables or arrays to be stored in an area available to other

programs. By means of COMMON statements, the data of a main program and/or the data of its subpro­

grams may share a common storage area.

The common area may be divided into separate blocks which are identified by block names. A block is

specified as follows:

/block identifier/identifier, identi fier, ... , identifier

The identifier enclosed in slashes is the block name. The identifiers which follow are the names of the

variables or arrays assigned to the block and are placed in the block in the order in which they appear

in the block specification. A common block may have the same name as a variable in the same program

or as any subroutine or function name in the same job.

The COMMON statement has the general form:

COMMON/BLOC Kl/A, B,C/BLOCK2/D, E, F/ ...

43

where BLOCKl ,BLOCK2, ... are the block names, and A,B,C, ... are the variables to be assigned to

each block. For example, the statement:

COMMON/R/X, Y, T/C/U, V, w, Z

indicates that the elements X, Y, and T are to be placed in block R in that order, and that U, V, W, and Z

are to be placed in block C.

Block entries are I inked sequentially throughout the program, beginning with the first COMMON statement.

For exampl e, the statements:

COMMON/Oj ALPHA/R/ A, B/C/S

COMMON/C/X, Y/R/U, V, W

have the same effect as the statement:

COMMON/Oj ALPHA/R/ A, B, U, V, W/C/S,X, Y

One block of common storage, referred to as blank common, may be left unlabeled. Blank common is

indicated by two consecutive slashes. For example,

COMMON/R/X, Y//B,C, 0

indicates that B, C, and 0 are placed in blank common. The slashes may be omitted when blank common

is the first block of the statement:

COMMON B,C, 0

Storage allocation for blocks of the same name begins at the same location for all programs executed to­

gether. For example, if a program contains

COMMON A, B/R/X, Y, Z

as its firsT COMMON statement, and a subprogram has

COMMON/R/U, V, W/ /0, E, F

as its first COMMON statement, the quantities represented by X and U are stored in the same location.

A similar correspondence holds for A and 0 in blank common.

Common blocks may be any length provided that no program attempts to enlarge a given common block

declared by a previously loaded program.

44

Array names appearing in COMMON statements may have dimension information appended if the arrays

are not declared in DIMENSION or type declaration statements. For example,

COMMON ALPHA, T(15, 1 D,S), GAMMA

specifies the dimensions of the array T while entering T in blank common. Variable dimension array

identifiers may not appear in a COMMON statement, nor may other dummy identifiers.

Each array name appearing in a COMMON statement must be dimensioned somewhere in the program con­

taining the COMMON statement.

EQUIVALENCE Statement

The EQU IVALENCE statement causes more than one variable within a given program to share the same

storage location. The EQU IVALENCE statement has the form:

EQUIVALENCE(V l' V 2' ...), (V k' Vk+ l' ...), ...

where the ViS are variable names.

The inclusion of two or more references in a parenthetical I ist indicates that the quantities in the I ist are

to share the same memory location. For example,

EQUIVALENCE(RED, BLUE)

spec ifies that the variables RED and BLUE are stored in the same place.

The relation of equivalence is transitive; e.g., the two statements,

have the same effect.

EQUIVALENCE(A,B), (B,C)

EQUIVALENCE(A, B,C)

The subscripts of array variables must be integer constants.

EXAMPLE: EQUIVALENCE(X,A(3), Y(2, 1,4)), (BETA(2,2),ALPHA)

EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the following rules are

observed.

1. No two quantities in common may be set equivalent to one another.

45

2. Quantities placed in a common block by means of EQUIVALENCE statements may

cause the end of the common block to be extended.

For exampl e, the statements:

COMMON/R/X,Y,Z

DIMENSION A(4)

EQUIVALENCE(A, Y)

causes the common block R to extend from X to A(4), arranged as follows:

X

Y A(l)

Z A(2)

A(3)

A(4)

(same location)

(same location)

3. EQUIVALENCE statements which cause extension of the start of a common block

are not allowed. For exampl e, the sequence:

COMMON/R/X,Y,Z

DIMENSION A(4)

EQUIVALENCE(X, A(3))

is not permitted, since it would require A(l) and A(2) to extend the starting location

of block R.

DATA SPECIFICATION STATEMENTS

The DATA statement is used to specify initial or constant values for variables. The specified values are

compiled into the object program, and become the values assumed by the variables when program execution

begins.

DATA Statement

The data to be compiled into the ob ject program is spec ified in a DATA statement. The DATA statement

has the form:

DATA iist/dl,d2' ... I,list/dk,dk+l' . •. 1, ...

where each I ist is in the same form as an input/output list, and the dis are data items for each list.

46

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as constants.

Expressions used as subscripts must have the form:

where c
1

and c
2

are integer constants and i is the induction variable. If an entire array is to be defined,

only the array identifier need be listed. Variables in common may appear on the lists only if the DATA

statement occurs in a BLOCK DATA subprogram.

The data items following each list correspond one-to-one with the variables of the list. Each item of the

data specifies the value given to its corresponding variable.

Data items may be numeric constants, alphanumeric strings, octal constants, or logical constants. For

example,

DATA ALPHA, BETA/5, 16. E-2/

specifies the value 5 for ALPHA and the value. 16 for BETA.

Alphanumeric data is packed into words according to the data word size in the manner of A conversion;

however, excess characters are not permitted. The specification is written as nH followed by n characters

or is imbedded in singie quotes.

Octal data is specified by the letter a or the character ", followed by a signed or unsigned octal integer

of one to twelve digits.

Logical constants are written as • TRUE., .FALSE. , T, or F.

EXAtv\PLE: DATA NOTE,K;7HRADIANS, 0-7712/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates the

number of times the item is to be repeated. For example:

DATA(A(K),K=l, 20}/61E2, 19*32E1/

specifies 20 va lues for the array A; the value 6100 for A(l); the value 320 for A(2) through A(20).

BLOCK DATA Statement

The BLOC K DATA statement has the form:

BLOCK DATA

47

This statement declares the program which follows to be a data specification subprogram. Data may be

entered into common only.

The first statement of the subprogram must be the BLOCK DATA statement. The subprogram may contain

only the declarative statements associated with the data being defined.

EXAMPLE: BLOCK DATA

COMMON/R/S, Y /C/Z, W, V

DIMENSION Y(3)

COMPLEX Z

DATA Y /1 E-1,2*3E2/ ,X ,Z/11.877DO ,(-1.41421, 1.41421)/

END

Data may be entered into more than one block of common in one subprogram.

TYPE DECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, IMPLICIT,

and SUBSCRIPT INTEGER are used to specify the type of identifiers appearing in a program. An identifier

may appear in only one type statement. Type statements may be used to give dimension specifications for

arrays.

The explicit type declaration statements have the general form:

type identifier, identifier ,identifier •.•

where type is one of the following:

INTEGER,REAL,DOUBLE PRECISION ,COMPLEX, LOGICAL,

SUBSCRIPT INTEGER

The listed identifiers are declared by the statement to be of the stated type. Fixed-point variables in a

SUBSCRIPT INTEGER statement must fall between _2-27 and 227.

IMPLICIT Statement

The IMPLICIT statement has the form:

48

where type represents one of the following: INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE PREC lSI ON;

and a
1
a

2
, ... represent single alphabetic characters, each separated by commas, or a range of characters

(in alphabetic sequence) denoted by the first and last characters of the range separated by a minus sign

(e.g., (A-D)).

This statement causes any program variable which is not mentioned in a type statement, and whose first

character is one of those I isted, to be typed according to the type appearing before the I ist in which the

character appears. As an example, the statement:

IMPLIC IT REAL(A-D,L, N-P)

causes all variables starting with the letters A through D,L, and N through P to be typed as real, unless

they are expl icitly declared otherwise.

The initial state of the compiler is set as if the statement

IMPLICIT REAL(A-H,O-Z), INTEGER(I-N)

were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes the

above interpretation; i. e., identifiers, whose types are not expl ic itly declared, are typed as follows:

1. Identifiers beginning with I, J, K, L, M, or N are assigned integer type.

2. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLIC IT statement, this statement will override throughout the program the

impl icit state initially set by the compiler. No program may contain more than one IMPLICIT declaration

for the same letter.

49

CHAPTER 7

SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and may be

used only within the program containing the definition. The arithmetic function definition statement is

used to define internal functions.

External subprograms are defined separately from (i. e., external to) the programs that call them, and are

complete programs which conform to all the rules of FORTRAN programs. They ore compiled as closed

subroutines; i. e., they appear only once in the object program regardless of the number of times they are

used. External subprograms are defined by means of the statements FUNCTION and SUBROUTINE.

Dummy Identifiers

Subprogram definition statements contain dummy identifiers, representing the arguments of the subprogram.

They are used as ordinary identifiers within the subprogram definition and indicate the sort of arguments

that may appear and how the arguments are used. The dummy identifiers are replaced by the actual argu­

ments when the subprogram is executed.

Library Subprograms

The standard FORTRAN IV library for the PDP-1 0 includes built-in functions, FUNCTION subprograms,

and SUBROUTINE subprograms, I isted and described in Appendixes 1, 2, and 3, respectively. Built-in

functions are open subroutines; that is, they are incorporated into the object program each time they are

referred to by the source program. FUNCTION and SUBROUTINE subprograms are closed subroutines;

their names derive from the types of subprogram statements used to define them.

ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement has the form:

identifier{identifier, identifier, ...)=expression

This statement defines an internal subprogram. The entire definition is contained in the single statement.

The first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are single-valued functions with at least one argument. The type of the

function is determined by the type of the function identifier.

51

The identifiers enclosed in parentheses represent the arguments of the function. These are dummy identifiers;

they may appear only as scalar variables in the defining expression. Dummy identifiers have meaning and

must be unique only within the defining statement. Dummy identifiers must agree in order, number, and

type with the actual arguments given at execution time.

Identifiers, appearing in the defining expression, which do not represent arguments are treated as ordinary

variables. The defining expression may include external functions or other previously defined arithmetic

statement functions.

All arithmetic function definition statements must precede the first executable statement of the program.

EXAMPLES: SSQR{K)=K*{K+ 1)*(2*K+ 1)/6

ACOSH{X)={EXP{X/ A)+EXP{-X/ A))/2

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution time, the

function is evaluated using the current value of the quantity represented by A.

FUNCTION SUBPROGRAMS

A FUNCTION subprogram is a single-valued function that may be called by using its name as a function

name in an arithmetic expression, such as FUNC{N), where FUNC is the name of the subprogram that eval­

uates the corresponding function of the argument N. A FUNCTION subprogram begins with a FUNCTION

statement and ends with an end statement. It returns control to the calling program by means of one or

more RETURN statements.

FUNCTION Statement

The FUNCTION statement has the form:

FUNCTION identifer{argument, argument, ...)

This statement declares the program which follows to be a function subprogram. The identifier is the name

of the function being defined. This identifier must appear as a scalar variable and be assigned a value dur­

ing execution of the subprogram which is the function value.

Arguments appearing in the I ist enclosed in parentheses are dummy arguments representing the function

argument. The arguments must agree in number, order, and type with the actual arguments used in the

call ing program. Function subprogram arguments may be expressions, 01 phanumeric strings, array names,

or subprogram names.

52

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, or subprogram

identifiers. A function must have at least one dummy argument. Dummy arguments representing array

names must appear within the subprogram in a DIMENSION statement, or one of the type statements that

provide dimension information. Dimensions given as constants must equal the dimensions of the corre­

sponding arrays in the calling program. In a DIMENSION statement, dummy identifiers may be used to

specify adjustable dimensions for array name arguments. For example, in the statement sequence:

FUNCTION TABLE(A,M,N,B,X,Y)

DIMENSION A(M,N),B(lO),C(50)

The dimensions of array A are specified by the dummies M and N, while the dimension of array B is given

as a constant. The various values given for M and N by the calling program must be those of the actual

arrays wh ich the dummy A represents. The arrays may each be of different size but must have two dimen­

sions. The arrays are dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must be given

absolute dimensions, since C is not a dummy identifier. A dummy identifier may not appear in an EQUIV­

ALENCE statement in the function subprogram.

A function must not modify any arguments which appear in the FORTRAN arithmetic expression calling the

function. Modification of implicit arguments from the calling program, such as variables in common and

DO loop indexes, is not allowed. The only FORTRAN statements not allowed in a function subprogram are

SUBROUTINE, BLOCK DATA, and another FUNCTION statement.

Function Type

The type of the function is the type of identifier used to name the function. This identifier may be typed,

implicitly or explicitly, in the same way as any other identifier. Alternatively, the function may be ex­

plicitly typed in the FUNCTION statement itself by replacing the word FUNCTION with one of the

following:

INTEGER FUNCTION

REAL FUNCTION

COMPLEX FUNCTION

LOGICAL FUNCTION

DOUBLE PRECISION FUNCTION

53

For example, the statement:

is equivalent to the statements:

EXAMPLES:

COMPLEX FUNCTION HPRIME(S,N)

FU NCTION HPRIME(S, N)

COMPLEX HPRIME

FUNCTION MAY{RANGE,EP,YP,ZP)

COMPLEX FUNCTION COT{ARG)

DOUBLE PRECISION FUNCTION LIMIT {X ,Y)

SUBROUTINE SUBPROGRAMS

A subroutine subprogram may be multivalued and can be referred to only by a CALL statement. A sub­

routine subprogram begins with a SUBROUTINE statement and returns control to the calling program by

means of one or more RETURN statements.

SUBROUTINE Statement

The SUBROUTINE statement has the form:

SUBROUTINE identifier{argument ,argument, •••)

This statement declares the program which follows to be a subroutine subprogram. The first identifier is

the subroutine name. The arguments in the list enclosed in parentheses are dummy arguments representing

the arguments of the subprogram. The dummy arguments must agree in number, order, and type with the

actua I arguments used by the ca II i ng program.

Subroutine subprograms may have expressions, alphanumeric strings, array names, and subprogram names

as arguments. The dummy arguments may appear as scalar, array, or subprogram identifiers.

Dummy identifiers which represent array names must be dimensioned within the subprogram by a DIMENSION

or type declaration statement. As in the case of a function subprogram, either constants or dummy identi­

fiers may be used to specify dimensions in a DIME NSION statement. The dummy arguments must not appear

in ar. EQUIVALENCE or COMMON statement in the subroutine subprogram.

A subroutine subprogram may use one or more of its dummy identifiers to represent results. The subprogram

name is not used for the return of results. A subroutine subprogram need not have any argument at all.

54

EXAMPLES: SUBROUTINE FACTOR(COEFF, N, ROOTS)

SUBROUTINE RESIDU(NUM, N,DEN,M,RES)

SUBROUTINE SERIES

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK DATA,

and another SUBROUTINE statement.

CALL Statement

The CALL statement assumes one of two forms:

CALL identifier

CALL identifier (argument ,argument, ••• ,argument)

The CALL statement is used to transfer control to subroutine subprogram. The identifier is the subprogram

name.

The arguments may be expressions j array identifiers, alphanumeric strings or subprogram identifiers; argu-

ments may be of any type, but must agree in number, order, type, and array size (except for adjustable

arrays, as discussed under the DIMENSION statement) with the corresponding arguments in the SUBROUTINE

statement of the called subroutine. Unl ike a function, a subroutine may produce more than one value and

cannot be referred to as a basic element in an expression.

A subroutine may use one or more of its arguments to return results to the call ing program. If no arguments

at all are required, the first form is used.

EXAMPLES: CALL EXIT

CALL SWITCH(SIN,2. LE.BETA,X**4, Y}

CALL TEST(VALUE, 123,275}

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the

arguments. Arguments which are constants or formed as expressions must not be modified by the subroutine.

RETURN Statement

The RETURN statement has the form:

RETURN

This statement returns control from a subprogram to the calling program. Normally, the last statement

executed in a subprogram is a RETURN statement. Any number of RETURN statements may appear in a

subprogram.

55

EXTERNAL Statement

Function and subroutine subprogram names may be used as the actual arguments of subprograms. Such

subprogram names must be distinguished from ordinary variables by their appearance in an EXTERNAL state­

ment. The EXTER NA L statement has the form:

EXTERNAL identifier, identifier, .•• , identifier

This statement declares the I isted identifiers to be subprogram names. Any subprogram name given as an

argument to another subprogram must appear in an external declaration in the call ing program.

EXAMPLE: EXTERNAL SIN,COS

CALL TRIGF(S IN, 1.5,ANSWER)

CALL TRIGF(COS, .87,ANSWER)

END

SUBROUTI NE TRI GF(FUNC, ARG, ANSWER)

ANSWER = FUNC(ARG)

RETURN

END

To reference external variables from a MACRO-l 0 program, place the variables in named COMMON.

Use the name of the variable as the name of the COMMON block:

COMMON /A/A /B/B (1-3) /C C(6,7)

56

APPENDIX 1

SUMMARY OF PDP-10 FORTRAN IV STATEMENTS

CONTROL STATEMENTS

General Form Page References

ASSIGN i to m 18

CALL name (0
1
,0

2
",,)•......•...•..•.•.•...••... 55

CONTINUE .••....•............•.....•...... .•.... . 21

DOim=m 1,m
2

,m
3

••.••••.•••..••.•..••••••••••••.••••••••••• 19

GO TO i 17

GOTOm

GO TO m, (i1' i2,··.)

GO TO {i" il')'.' .),m
I L

18

18

17

IF (e 1)i 1,i2
,i

3
.••.•..••. .•••.•.•.•••• •••••• ••.••••• ••. •••• ••. 18

IF (e2)s•...•..•.....•..•............•....••.••.....•... 19

PAUSE ..•....•...•.••....•..•..•...••......•.•••••...•.•..•. 21

PAUSE i
PAUSE Ihl

RETURN

STOP

END

..
...

...
...
...

INPUT/OUTPUT STATEMENTS

22

22

22

22

22

Genera I Form Page References

ACCEPT f

ACCEPT f,list

BACKSPACE unit

END FILE unit

FORMAT (g)

PRINT f

PRINT f, list

PUNCH f

57

39

39

40

40

23

36

36

37

General Form Page Reference

READ f ...
READ f,list

READ (unit, f)

READ {unit, f)1 ist

READ {unit)1 ist

...
...

...
..

38

38

38

38

38

READ (unit,name
1
) •.••.•••••••••••••.•.••••••••••.•..•••••.•• 38

REWI ND unit• • •• 40

SKIP RECORD unit ...
TYPE f ...
TYPE f,list

WRITE (unit, f)

WRITE {unit,f)list

WRITE {unit)1 ist ••••• G ••

40

37

37

37

37

37

WRITE (unit, name 1) . 37

UNLOAD unit•........... 40

SPECIFICATION STATEMENTS

General Form

COMMON a{n1,n2,·· .),b{n
3
,n4, •••), .. .

COMPLEX a{n
1
,n

2
,·· .),b{n

3
,n

4
, •..), .. .

DATA t, u, ... /k l' k 2' k 3' ••. /

v,w, ••. /k4,k5,k6,···/···

DIMENSION a{n
1
,n

2
,· ••),b{n

1
,n

2
, ••.), ..•

DOUBLE PRECISION a{n
1
,n

2
, ••.),b{n

3
,n

4
, .•.), ...

EQUIVALENCE {a{n
1
, •••),b{n

2
, ...), •.•), .••

{c{n3,·· .),d{n4,···),·· .), ...

EXTERNAL y,z, ...

IMPLIC IT type 1 (1
1
-1

2
), type

2
(1

3
-1 4), ..•

INTEGER a{n
1
,n

2
, .•.),b{n

3
,n

4
, ...), .•.

LOGICAL a{n
1
,n

2
,·· .),b{n

3
,n

4
, ...), .•.

NAMELIST /name 1/a,b, •.. /name!c,d, ...

REAL a{n
1
,n

2
,·· .),b{n

3
,n

4
, ••.), ..•

SUBSCRIPT INTEGER a{n
1
,n

2
, ...),b{n

3
, •..), ...

58

Page Reference

43

48

46

41

48

45

56

48

48

48

32

48

48

ARITHMETIC STATEMENT FUNCTION DEFINITION

General Form

name (a, b, ••.)=e

NOTE:

a 1,a2,···

a,b,c,d

e

m

m
1

,m
2

,m
3

n1,n2,···

name

t,u,v,w

type l' type2 , •••

unit

y,z

Page Reference

are expressions

are variable names

is an expression

is a noncomplex expression

is a logical expression

is a format number

is a format specification

is an alphanumeric string

are statement numbers

:~ rtn :n+~rt~r I""l"\n~+rtn+ "" "~::1~' ... ~ "" ...

are constants of the general form j*k where
k is any constant

are letters

is an input/output list

is an integer variable name

are integer expressions

are dimension spec ifications

is a subroutine or function name

are NAME LIST names

is a statement (not DO or logical IF)

are variable names or input/output lists

are type specifications

51

is an integer variable or constant specifying a
logical device number

are external subprogram names

59

APPENDIX 2

FORTRAN IV LIBRARY FUNCTIONS

This appendix contains descriptions of a II standard function subprograms provided with the FORTRAN IV

library foro the PDP-1 O. These functions may be called by using the function mnemonic as a function name

in an arithmetic expression.

Function

Absolute value

Absolute value

Absolute value

Truncation

Truncation

Truncation

Remaindering

Remaindering

Choosing largest
value

Choosing
sma lIest va lue

Definition
Number of
Arguments

IArgl

IArgl

IArgl

Sign o(Arg times
largest i nteger ~ I Arg I

Sign of Arg times
largest i nteger ~ I Arg I
Sign of Arg times
largest integer ~IArgl

Arg
1

(mod Arg
2

) t 2

2

Max{Arg1/Arg
2

, •••) ?2

Min{Arg1/Arg
2

, ...)

Name
Type of

Argument Function

ABS Real Real

lABS Integer Integer

DABS Double Double

AINT Real Real

INT Real Integer

IDINT Double Integer

AMOD Real Real

MOD Integer Integer

AMAXO Integer Real
AMAX1 Real Real
MAX 0 Integer Integer
MAX 1 Real Integer
DMAX1 Double Double

AMINO Integer Real
AMIN1 Real Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double

tThe function MOD or AMOD (all a2) is defined as al - [a1/a2] a2' where [x] is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same as x.

61

Function Definition
Number of

Name
Type of

Arguments Argument Function

Transfer of si gn Sgn(Arg2)* I Arg11 2 SIGN Real Real

Transfer of si gn Sgn(Arg2)* I Arg11 2 ISIGN Integer Integer

Transfer of si gn Sgn(Arg2)* I Arg11 2 DSIGN Double Double

Positive Arg
1
-Min(Arg

1
,Arg

2
) 2 DIM Real Real

difference

Positive Arg
1
-Min(Arg

1
,Arg

2
) 2 IDIM Integer Integer

difference

Complex For Arg=X +iY ,C=X - iY CONJG Complex Complex
conjugate

Conversion from FLOAT Integer Real
integer to real

Conversion from Result is largest IFIX Real Integer
real to integer integer ~ a

Express single DBLE Real Double
precision argu-
ment in double
preci si on form,
low order part = 0

Express two rea I C=Arg
1
+i*Arg

2
2 CMPLX Real Complex

arguments in
complex form

Obtain most SNGL Double Real
significant part
of double pre-
cision argument

Obtain real REAL Complex Real
part of complex
argument

Obtain AIMAG Complex Real
imaginary part
of complex
argument

Exponentia I e
Arg

EXP Real Real

62

Function Definition Number of
Name

Type of
Arguments Argument Function

Natural log (Arg) ALOG Real Real
logarithm

e

Common iog
10

(Arg) ALOG1O Real Real
logarithm

Arc-sine asin{Arg) ASIN Real Real

Arc-cosine acos{Arg) ACOS Real Real

Arctangent atan{Arg) ATAN Real Real

Arctangent of atan{Arg
1
/ Arg

2
) 2 ATAN2 Real Real

the quotient
of two
arguments

Sine (radians) sin{Arg) SIN Real Real

c:::.:,. (rI.,.,.. .. .,..,."', sin(Arg) S!ND Rea! Rea! oJlll"" \\,,011"'~ """"".;,/

Cosine cos{Arg) COS Real Real
(radians)

Cosine cos (Arg) COSD Real Real
(degrees)

Hyperbolic tanh (Arg) TANH Real Real
tangent

Hyperbolic sinh{Arg) SINH Real Real
sine

Hyperbolic cosh (Arg) COSH Real Real
cosine

Square root (Arg) 1/2 SQRT Real Real

Remaindering t Arg
1

(mod Arg
2
) 2 DMOD Double Double

Exponenti a I e
Arg

DEXP Double Double

Natural log (Arg) DLOG Double Double
logarithm

e

Common 10910(Arg) DLOG1O Double Double
logarithm

tThe function DMOD (a l' 02) is defined as 01 - [a 1/02] 02, where [x] is the integer whose magnitude
does not exceed the magnitude of x and whose sign is the same as the sign of x.

63

Function Definition
Number of

Name
Type of

Arguments Argument Function

Arctangent atan{Arg) DATAN Double Double

Arctangent atan{Arg
1
/ Arg

2
) 2 DATAN2 Double Double

of two
arguments

Sine{radians) sin{Arg) DSIN Double Double

Cosine cos (Arg) DCOS Double Double
(radians)

Square root (Arg) 1/2 DSQRT Double Double

Absolute value C={X2+Y2) 1/2 CABS Complex Real

Exponentia I e
Arg

CEXP Complex Complex

Natural log (Arg) CLOG Complex Complex
logarithm

e

Complex sine sin{Arg) CSIN Complex Complex

Complex cos{Arg) CCOS Complex Complex
cosine

Complex C={X+iY) 1/2 CSQRT Complex Complex
square root

64

APPENDIX 3

FORTRAN IV LIBRARY SUBROUTINES

This appendix contains descriptions of all standard subroutine subprograms provided within the FORTRAN IV

library for the PDP-10. These subprograms are closed subroutines and may be called with a CALL statement.

Subroutine Name

EXIT

DUMP

PDUMP

Effect

Returns control to the monitor and, therefore, terminates the

execution of the program.

Causes particular portions of core to be dumped and is referred

to in the following form:

where L. and U. are the variable names which give the limits
I I

of core memory to be dumped. Either L. or U. may be upper
I I

or lower limits. F. is a number indicating the format in which
I

the dump is to be performed: O=octal, l=real, 2=integer,

and 3=ASC" .

If F is not 0,1,2,3, the dump is in octal. If F is missing,
n

the last section is dumped in octal. If U and F are missing,
n n

an octa I dump is made from L to the end of the job area. If

L , U , and F are missing, the entire job area is dumped
n n n

in octal.

The dump is terminated by a call to EXIT.

Is referred to in the following form:

where the arguments are the same as those for DUMP. PDUMP

is the same as DUMP except that control returns to the calling

program after the dump has been executed.

65

Subroutine Name

SLITE(i)

SLITET(i, j)

SSWTCH(i, j)

OVERFL(j)

Effect

Where i is an integer expression, turns sense I ights on or off.

For 1~i~36 sense light i will be turned on. If i=O, all sense

I ights wi II be turned off.

Checks the status of sense light i and sets the variable i ac­

cordingly and turns off sense light i. If i is on, i is set to 1;

and if i is off, i is set to 2.

Checks the status of data switch i(O~i~35) and sets the variable

i accordingly. If i is set down, i is set to 1; and, if i is up,

i is set to 2.

Checks the status of the AR OV flag and sets the variable i
accordingly. If the AR OV flag is on, i is set to 1. If the

flag is off, i is set to 2.

66

APPENDIX 4

PDP-10 FORTRAN IV OPERATING SYSTEM

SUBPROGRAM CALLING SEQUENCES

FORTRAN Subroutines

FORTRAN subroutine calling sequences appear as follows:

JSA 16, NAME

ARG CODE1,A l
AR G CODE 2 ,A

2

where NAME is the name of the subroutine, ARG is a "pseudo-op" equivalent to a JUMP instruction

o

2

3

4

5

6

7

and A1 ,A
2

, etc. are the argument addresses.

Integer argument

Unused

Rea I argument

Logi ca I argument

Octal argument

Literal argument

Double precision argument

Complex argument

All accumulators are saved in subroutines except 0 for subroutines with single-word arguments and except

o and 1 for subroutines with double-word arguments (high order or real part in 0 and low order or imaginary

part in 1). All scalar arguments in a subroutine call are transferred into and restored from the subroutine

by value.

FORTRAN Function Subprograms and Library Functions

The FORTRAN function calling sequence is the same as that for subroutines. The function value is returned

in accumulator 0 or accumulators 0 and 1. Scalar arguments are not restored as their values may not be

modified within a function.

67

INPUT/OUTPUT

In addition to the arithmetic functions, the PDP-10 FORTRAN IV library (LIB40) contains several sub­

programs whi ch control FORTRAN IV input/output operations at run time. The input/output subprograms

are compatible with the PDP-10 Monitors.

Logical-Physical Device Assignments

The logical and physical device assignments are controlled by a table called DEVTB.. The first entry in

DEVTB. is the length of the table. Each entry after the first word is a sixbit ASCII device name corre­

sponding in its position in the table to the FORTRAN logical number. For example, in Figure 2, magnetic

tape 0 is the 16th entry in DEVTB •• Thus, the statement:

REWIND 16

would refer to magnetic tape O.

The last five entries in DEVTB. correspond to the special FORTRAN statements READ, ACCEPT, PRINT,

PUNCH, TYPE. Any device assignment may be changed by reassembling DEVTB ••

DECtape and Disc Usage

DECtapes may be used for binary mode or ASCII (formatted) input/output.

Binary Mode

In binary mode, each block contains 127 data words, the first of which is a record control word of the

form:

where w is the word count specifying the number of FORTRAN data words in the block (126 for a full

block) and n is 0 in all but the last block of a logical record, in which case n is the number of blocks in

the logical record. (A logical record contains all the data corresponding to one READ or WRITE statement.)

ASCII Mode

In ASCII mode, blocks are packed with as many full lines (a line is a unit record as specified by a format

statement) as possible. Lines are not split across blocks.

68

DEVICE TABLE FOR FORTRAN IV
TITLE DEVTB V.017
SUi3TTL l-APR-69

ENTRY DEVTB.~DEVND.~DEVLS.~DVTOT.

ENTRY MTABF.~MBFBG.~TABPT.~TABPI.

ENTRY MTACL.~DATTB.~NEG1.~NEG2.~NEG3.~NEGS.

P=17

DEVTB. : EXP DEVND.-. ;NO. OF ENTRIES
;LOGICAL#/FILENAME/OEVICE

SIXBIT .DSK. ; 1 FOR01 • DAT DISC
CORP OS: SIX8IT .CDR. ; 2 FOR02.DAT CARD READER
LPTP OS: SIXBIT .LPT. ; 3 FOR03.DAT LINE PRINTER

SIXBIT .CTY. ; 4 FOR04.DAT CONSOLE TELETYPE
TTYPOS: SIXBIT • TTY. ; S FOR0 S. DAT USER TELETYPE

SIXBIT .PTR. ; 6 FOR06.DAT PAPER TAPE ,READER
PTPPOS: SIXBIT .PTP. ; 7 FOR07.DAT PAPER TAPE PUNCH

SIXBIT • DIS. ; 8 FOR08.DAT DISPLAY
SIXBIT .DTA1. ; 9 FOR09.DAT DECTAPE
SIXBIT .DTA2. ; 10 FOR10.DAT
SIXBIT .DTA3. 1 1 FORll.DAT
SIXBIT .DTA4. ; 12 FOR12.DAT
SIXBIT .DTAS. ; 13 FOR13.DAT
SIXBIT .DTA6. ; 14 FOR14.DAT
S I XB IT .OTA7. ~ I S FORIS.OAT
SIXBIT .MTA0. ; 16 FOR16.DAT MAGNETIC TAPE
SIXBIT • MTA 1 • ; 1 7 FOR17.DAT
SIXBIT .MTA2. ; 18 FORI8.DAT
SIXBIT .FORTR. ; 1 n FORTR.DAT ASSIGNABLE nr.l1T0 ...

1 7 Uc..V.lvc..~

SIXBIT • DS K0 • ; 20 FOR20.DAT DISK
SIXBIT • DS K 1 • ; 21 FOR21.DAT
SIXBIT • DSK2 • ; 22 FOR22.DAT
SIXBIT • DS K3 • ; 23 FOR23.DAT
SIXBIT • DS K4. ; 24 FOR24.DAT
SIXBIT .DEVI. ; 2S FOR2S.DAT ASSIGNABLE DEVICES
SIXBIT • DEV2 • ; 26 FOR26.DAT
SIXBIT • DEV3 • ; 27 FOR27.DAT
SIXBIT .DEV4. ; 28 FOR28.DAT

DEVLS. : SIXBIT .DEVS. ; 29 FOR29.DAT V. 00 6
SIXBIT .REREAD. ; -6 REREAD
SIXBIT .CDR. ; -S READ
SIXBIT .TTY. ; -4 ACCEPT
SIXBIT .LPT. ; -3 PRINT
SIXBIT .PTP. ; -2 PUNCH

DEVND. : SIXBIT · TTY. - 1 TYPE

Figure 2 Device Table for FORTRAN IV

File Names

FORTR

File names may be declared for DECtapes or the disc through the use of the library subprograms IFILE and

OFILE. In order to make an entry of the file name BOB on unit u, the following statements could be used:

BOB=3HBOB

CALL OFILE(u ,BOB)

69

Similarly, the following statements might be used to open the file, RALPH, for reading:

RALPH=5HRALPH
CALL IFILE (u, RALPH)

After writing a file, the END FILE u statement must be given in order to close the current file and allow

for reading or writing another file or for reading or rewriting the same file. If no call to IFILE or OFILE

has been given before the execution of a READ or WRITE referencing DECtape or the disc the file name

FORnn. DAT is assumed where nn is the FORTRAN logical number used in the I/O statement that

references device nn.

The FORTRAN programmer can make logical assignments such that each device has its own unique

file as intended, but each can be on the DSK. The programmer needs no additional knowledge to

communicate with up to 17 I/O devices simultaneously. In order to use the devices available, the

programmer can make assignments at run time and assign the DSK to those not available.

For example,the FORTRAN logical device numbers, e. g., 1 =DSK, 2=CDR, 3=LPT, are used in

the fi Ie name. The written file names are FOR01 . OAT, FOR02. DAT, etc. The same is true for

READ. For example, a WRITE (3, 1) A, B, C, in the FORTRAN program generates the file name

FOR03. DAT on the DSK if the DSK has been assigned the logical name LPT prior to running the

program. (Note: REREAD rereads from the file belonging to the device last referenced in a READ

statement, not FOR-6.DAT, as usual.) The programmer must, of course, realize his own folly in

assigning the DSK as the TTY in the case that FORSE tries to type out error messages or PAUSE

messages •

More than one DSK File may be accessed, without making logical assignments at runtime, by

using logical device numbers 1, and 20 through 24 in the FORTRAN program. Logical device

numbers 25 through 29 refer to logical device names DEV1 through DEV5 which may be assigned

to any device at runtime. Logica I device number 19 refers to logica I device FORTR which must

be assigned at runtime and accesses file name FORTR.DAT to maintain compatibility with the past

system of default file name FORTR. DAT. In all cases when the operating system fails to find a file

specified, an attempt will be made to read from file FORTR. DAT as before.

The magnetic tape operation REWIND is simulated on DECtape or the disc. Thus, a program which uses

READ, WRITE, END FILE, and REWIND for magnetic tape need only have the logical device number

changed in order to perform the proper input/output sequences on DECtape or the disc.

70

Magnetic Tape Usage

The format of binary data on magnetic tape is similar to that for DECtape except that the physical record

size depends on the magnetic tape buffer size assigned in the Time-Sharing Monitor. Normally, the buf­

fer size is set at either 129 or 257 words so that either 128 or 256 word records are written (containing a

control word and 127 or 255 FORTRAN data words).

ASCII Mode

The format for ASCII data is the same as that used on DECtape.

Backspacing and Skipping Records

Both the BACKSPACE u and SKIP RECORD u statements are executed on a logical basis for binary records

and on a line basi s for ASCII records.

A. Binary Mode

Both BACKSPACE and SKIP RECORD space magnetic tape physically over one (l) logical

record; i.e., the result of one WRITE (u) statement.

B. ASCII Mode

ASCII records are packed, that is Vv'RITE (u, f) statements do not cause physical writing

on the tape until the output buffers are full or a BACKSPACE, END FILE, or REWIND

command is executed by the program. BACKSPACE and SKIP RECORD on ASCII

record space over one (1) line; i.e., cr --- cr.

C. BACKSPACE and SKIP RECORD following WRITE ASCII commands.

1. BACKSPACE closes the tape, writes 2 EOF's (tapemark) and backspaces over the last

line.

2. SKIP RECORD cannot be used during a WRITE operation. This is an input

function only.

Device Initialization, Release, and Buffering

The Operating System assigns I/O channel numbers from 1 to 178 to each new device in order to use.

Devices are initialized only once and are released only through a CALL [SIXBIT/EXIT/J executed at

the end of every FORTRAN main program.

All devices referenced by a FORTRAN program are double buffered.

71

REREAD

The reread feature allows a FORTRAN program to reread information from the last used input file. The

format used during the reread need not correspond to the original read format I and the information may be

reread as many times as desired.

A reread device of -6 has been added to the Device Table, DEVTB, (see page 69). The definition of the

reread device may be altered as follows:

1. The DEVTB subprogram must be modified to contain a 6-bit device name

(SIXBIT .REREAD.) at the desired position in the table.

2. The altered Device Table must be assembled.

3. The binary file must replace the present Device Table in the library file.

A. To reread from an input device, the following coding would be used:

N=-6
READ (16, l00)A

READ (N I 105)A

where N is the number of the reread device in the DEVTB. table. The READ (N, 105)A

statement will cause the last input device used to be reread according to format statement

105. The origina I read format and a subsequent reread format need not be the same.

B. The reread feature cannot be used until an input from a file has been accomplished.

If the feature is used premature Iy I an error message wi II be generated.

C. Information may be reread as many times as desired using either the same or a new

format statement each time.

D. The reread feature must be used with some forethought and care since it rereads from

the last input fil e used I i. e . :

The following example will reread from the file on Device No. 10, not Device No. 16:

N=-6
READ (16, 1 00) A

READ (10,200)B

READ (N, 11 O)A

72

APPENDIX 5

BASIC DIFFERENCES BETWEEN FORTRAN II
AND PDP-10 FORTRAN IV

1. Variable Type

Variables may be declared by type through the use of the DOUBLE PRECISION, COMPLEX, INTE GER,

LOGICAL, and REAL type specifications. Implicit typing may be accomplished through the use of the

IMPLICIT specification statement.

2. Mixed Mode

Mixed mode expressions are permitted except for the combination of the double precision and complex

quantities.

3. Function Naming

The initial letter of functions is used to type the values of functions. Thus, the LOG, LOGl 0, and

FIX functions have been changed to ALOG, ALOG10, and IflX, etc. The terminal F in function

names is no longer meaningful, and function names may have from one to six characters.

4. Arithmetic Function Statement Dummy Arguments

In FORTRAN IV if a variable appears both as a dummy argument in an arithmetic statement function

and as an ordinary variable in the same program, its type is the same in both contexts.

5 . Hardware Tests

All hardware tests and settings such as IF ACCUMULATOR OVERFLOW and SENSE LI GHT i have been

changed to subroutine calls such as CALL OVERFL(i) and CALL SLlTE(i).

6 . Input/Output

The following input/output statements have been changed:

FORTRAN II

READ TAPE urlist

READ INPUT TAPE urf,list

WRITE TAPE u,list

WRITE OUTPUT TAPE u,f,list

73

FORTRAN IV

READ (u)list

READ (u,f)list

WRITE (u,)list

WRITE (u, f) list

7. COMMON and EQUIVALENCE

In FORTRAN IV, EQUIVALENCE does not affect the ordering within common blocks. EQUIVALENCE

may only have the effect of lengthening a common block. COMMON statements may contain dimen­

sion information.

8. EXTERNAL

Arguments of subprograms which are external subprograms are declared as such through the use of the

EXTERNAL statement.

74

APPENDIX 6

FORTRAN IV COMPILER DIAGNOSTICS

Message and Meaning

1-1 DUPLICATED DUMMY VARIABLE IN ARGUMENT STRING

Page
References

A dummy variable (identifier) may appear only once in anyone argument 51
set representing the arguments of a subprogram.

1-2 ARRAY NAME ALREADY IN USE

1-3

1-4

1-5

1-6

1-7

1-10

1-11

1-12

Any attempt to re-dimension a variable or redefine a scalar as an array
is illegal.

ATTEMPT TO REDEFINE VARIABLE TYPE

Once a variable has been defined as either complex, double precision,
integer, logical or real it may not be defined again.

NOT A VARIABLE FORMAT ARRAY

The variable wh ich contains the FORMAT specification read-in at object
time must be a dimensioned variable, i. e., an array.

NAtJ,E ALREADY USED AS NAME LIST NAf\tIE

After a NAMELIST name has been defined, it may appear only in READ
or WRITE statements and may not be defined again.

DUPLICATED NAMELIST NAME

A NAME APPEARS TWICE IN AN EXTERNAL STATEMENT

A subprogram name has been declared EXTERNAL more than once.

SUBROUTINE NAME ALREADY IN USE

A subroutine name has appeared in another statement wh ich is not a sub-
routine ca II. A subroutine name may be referenced only by a CALL
statement.

DUMMY ARGUMENT IN DATA STATEMENT

Dummy arguments may not appear in DATA statements.

NOT A SCALAR OR ARRAY

An attempt to assign a label number to an arithmetic FUNCTIO N name
is illegal.

1-13 ILLEGAL USE OF DUMMY ARGUMENT

Dummy arguments may be used with functions or subprograms only.

FORTRAN IV (DEC-10-AFCO-D) 75

41-42

4,5,48

30-31

32-33

32-33

56

54-56

46-47

51-52

51

AUGUST 1969

Message and Meaning (Cont)

1-14 ILLEGAL DO LOOP PARAMETER

Page
References

The DO ind~x must be a non-subscripted integer variable while the initial, 19-20
limit and increment values of the index must be an integer expression - the
index may not be zero.

1-15 I/O VARIABLES MUST BE SCALARS OR ARRAYS

Referencing data in an I/O statement other than scalars or arrays is
illegal.

S-l SYNTAX

Indicates an error in the format of the statement referenced.

S-2 ILLEGAL USE OF DO-LOOP

35

Control may not transfer into the range of a DO from any statement out- 19-20
side its range.

S-3 ILLEGAL FIELD SPECIFICATION

The field width or decimal specification in a FORMAT statement must be
integer. The number of Hollerith characters in an H specification must
be equal to the number spec ified .

S-5 ILLEGAL TYPE SPECIFICATION

The type of constant specified is illegal.

S-6 ARGUMENT IS NOT SINGLE LETTER

Arguments in parentheses must be single letters.

S-7 NAMELIST ' NOT FOLLOWED BY "/"

The first character following NAMELIST must be /.

S-10 ILLEGAL CHARACTER-LINE DELIMITER EXPECTED

24,25,
26,27

5,6,7

32

The requirements for a complete FORTRAN statement have been satisfied; 1-2
any additional characters other than a line delimiter are illegal.

S-l1 A NUMBER WAS EXPECTED

Only arrays which are subprogram arguments can have adjustable dimensions. 42

S-12 ILLEGAL USE OF IMPLIED DO LOOP

Implied DO loops in I/O statements must be nested properly. 35

FORTRAN IV (DEC-10-AFCO-D) 76 AUGUST 1969

Message and Meaning (Cont)

S-13 ATTEMPT TO USE AN ARRAY AS A SCALAR

Page
References

Variables may be either scalar or array but not both. Variables appearing 7-8
in a DIMENSION statement must be subscripted when used.

S-14 ARRAY NOT SUBSCRIPTED

See S-13

S-15 ILLEGAL USE OF AN ARITHMETIC FUNCTION NAME

A function may not be redefined.

S-16 ILLEGAL CHARACTER DETECTED - DELIMITER EXPECTED

A / , or other delimiter is missing

0-1 BLOCK DATA NOT A SEPARATE PROGRAM

Block Data must exist as a separate program

0-2 SUBROUTINE IS NOT A SEPARATE PROGRAM

A subroutine following a main program or another subroutine subprogram
may have no statement between it and the preceding programs END state-
ment and must begin with a SUBROUTI NE statement. The previous pro-
gram must have been term inated properly.

0-3 STATEME NT OUT OF PLACE

Specification statements should precede executable statements.

A-1 MINIMUM VALUE EXCEEDS MAXIMUM VALUE

Minimum value of an array exceeds the maximum value specified.

A-2 ATTEMPT TO ENTER A VARIABLE INTO COMMON TWICE

A variable may appear in COMMON statement only once.

A-3 ATTEMPT TO EQUIVALENCE A DUMMY ARGUMENT

Dummy identifiers of subprograms may not appear in EQUIVALE NCE
statements in that subprogram.

A-4 NOT A CONSTANT OR DUMMY ARGUMENT

Only constant and dummy arguments may be used as arguments in dimension
statements.

FORTRAN IV (DEC-10-AFCO-D) 77

51,52,
53

32,34
43-49

47-48

54

41-49,
52

42

43

45,51

53

AUGUST 1969

Message and Meaning (Cont)

M-1 TOO MANY SUBSCRIPTS

An array variable appears with more subscripts than specified.

M-2 NOT ENOUGH SUBSCRIPTS

An array variable appears with too few subscripts.

M-3 CONSTANT OVERFLOW

Too many significant digits in the formation of a constant.

M-4 ILLEGAL 'IF' ARGUMENT

Logical IF or DO statement adjacent to a logical IF statement, or illegal
expression within a logical IF statement.

M-5 ILLEGAL CONVERSION IMPLIED

Attempt to mix double precision and complex data in the same expression.

M-6 NUMBER TOO LARGE

Illegal statement label.

M-7 UNTERMINATED HOLLERITH STRING

A missing single quote or fewer than n characters following an "nH II
specification.

M-10 ILLEGAL DO LOOP CLOSE

Illegal statement terminating a DO loop.

M-ll VARIABLES AND DATA DO NOT MATCH

Incorrect number of constants supplied for a DATA statement.

M-12 NON-INTEGER PARAMETER IN 'DO' STATEMENT

DO statement parameters must be integers.

M-13 NON-INTEGER SUBSCRIPT

M-14 ILLEGAL COMPARISON OF COMPLEX VARIABLES

The only comparison allowed of complex variables is .NE. or .EQ.

M-15 TOO MANY CONTINUATION CARDS

More than 19 continuation cards

FORTRAN IV (DEC-10-AFCO-D) 78

Page
References

8, 42

8, 42

5,6

18, 19

22

28

21

46

19, 20

13

2

AUGUST 1969

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	xBack

