PDP-10

COBOL
PROGRAMMER'’S
REFERENCE MANUAL

For additional copies, order No. DEC-10-KC1B-D from Program Library,

Digital Equipment Corporation, Maynard, Mass. 01754 Price $6.00

DIGITAL EQUIPMENT CORPORATION * MAYNARD, MASSACHUSETTS

Copyright © 1969, 1970 by Digital Equipment Corporation

The material in this manual is for informa-
tion purposes and is subject to change with-
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

1st Printing August 1969
2nd Printing (Rev) July 1970

CONTENTS

CHAPTER 1 ELEMENTS OF THE COBOL LANGUAGE

1.1 Program Structure
1.2 Character Set

1.3 Words

1.4 Punctuation

1.5 Literals

1.5.1 Numeric Literals
1.5.2 Nonnumeric Literals
1.6 Figurative Constants
1.7 Special Registers

CHAPTER 2 COBOL REFERENCE FORMAT

2.1 Format Rules and Conventions

CHAPTER 3 THE IDENTIFICATION DIVISION

3.1 General Structure
3.2 Technical Notes

CHAPTER 4 THE ENVIRONMENT DIVISION

4.1 General Structure
4.2 Configuration Section
4.3 Input-Output Section

CHAPTER 5 THE DATA DIVISION

5.1 File Section
5.2 Working=Storage Section
5.3 Data Descriptions

5.3.1 Elementary Items and Group Items
5.3.2 Independent Items and Nonindependent Items
5.3.3 Records and Files

5.4 Qualification
5.5 Subscripting and Indexing

Page

4-1
4-3
4-8

5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-4

CONTENTS (Cont)

CHAPTER 6 THE PROCEDURE DIVISION

6.1 Syntactic Format of the Procedure Division
6.1.1 Statements and Sentences

6.1.2 Paragraphs

6.1.3 Sections

6.2 Sequence of Execution
6.3 Segmentation and Section=Name Priority Numbers
6.4 Arithmetic Expressions

6.4.1 Arithmetic Operators

6.4.2 Formation and Evaluation Rules
6.5 Conditional Expressions

6.5.1 Relation Condition

6.5.2 Class Condition

6.5.3 Condition-Name Condition
6.5.4 Switch=Status Condition

6.5.5 Sign Condition

6.5.6 Logical Operators

6.5.7 Formation and Evaluation Rules

6.5.8 Abbreviations in Relation Conditions

6.6 Common Options Associated with the Arithmetic Verbs
6.6.1 The SIZE ERROR Option

6.7 The Corresponding Option

6.8 Procedure Division Verb Formats

CHAPTER 7 THE COBOL LIBRARY

CHAPTER 8 STANDARD I-O PROCESSING

8.1 Access Mode

8.1.1 SEQUENTIAL Mode
8.1.2 RANDOM Mode
8.2 Recording Mode
8.2.1 Default Conditions
8.2.2 DISPLAY-7

Page

6-1
6-3
6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-8
6-9
6-9
6-10
6-10
6-11
6-14
6-14
6-15
6-16
6-16

8-1
8-1
8-2
8-3
8-3

8.2.3
8.3
8.3.1
8.4
8.5
8.5.1
8.5.2
8.6
8.6.1
8.6.2
8.7
8.8
8.9
8.10

CHAPTER 9 SOURCE LIBRARY MAINTENANCE PROGRAM

9.1
9.1.1
9.1.2
9.2
9.3
9.4
9.5
9.5.1
9.5.2
9.6
9.6.1
9.6.2
?.6.3
9.7
9.7.1
9.7.2
9.7.3

CONTENTS (Cont)

DISPLAY-6

File Tables

Explanation of Fields

Channel Tables

Blocking

Reading and Writing Blocked Files
Reading and Writing Unblocked Files
Label Records

Standard Label Records
Non-standard Label Records
Multiple~File Tape

Same Area Clause

Same Record Area Clause

File-Limits

Equipment

Machine Requirements

Machine Options

Salient Features of Maintenance Program
Input Format

Output Format

Organization of the Maintenance Program
Internal Organization

Operational Organization

Operating Procedure

Start-Up

Default Assignments

Switches

Command Language

Commands to Position Files

Commands to Alter Contents of Source File

Example of the Use of the Commands

Page

8-3
8-3
8-5
8-8
8-8
8-8
8-9
8-9
8-9
8-10
8-10
8-11
8-11
8-11

9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-3
9-3
9-3
9-3
9-4
9-4
9-4
9-5
9-5

9.8

9.8.1
9.8.2
9.8.3
9.9

9.9.1
9.9.2
9.9.3

CONTENTS (Cont)

Error Recovery

Input Errors

Operator Errors

Hardware Errors

Software Interfaces
Format of the Rough Table
Format of the Fine Table

Format of the Source Routines

APPENDIX A COBOL RESERVED WORDS

APPENDIX B CHARACTER COLLATING SEQUENCE

APPENDIX C THE ENTER PROCEDURE

APPENDIX D COMMAND STRINGS

8-1

6-1
6-2
6-3
8-1
8-2
8-3
9-1
9-2
9-3

9-5
9-6

ILLUSTRATIONS
Structure of a File Table

TABLES

Procedure Verb and Statement Categories
Types of Segments

CLOSE Options and File Types

Flags and Fields in File Table

Channel Table Entry

Standard Label for Nonrandom-Access Media
Data Sections in the Library File

Commands for Positioning Files

Commands for Altering Contents of Source File
Operator Errors

Format of a Rough Table Entry

Format of a Fine Table Entry

vi

Page

9-6

9-6
9-7
9-8
9-8
9-8
9-9

6-2
6-4
6-23
8-6
8-8
8-10
9-2
9-4
9-5
9-7
9-8
9-8

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company or group of

companies, or of any organization or group of organizations.

No warranty, expressed or implied, is mode by any contributor or by the COBOL
Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the

committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries con-
cerning the procedures for proposing changes should be directed to the Executive

Committee of the Conference on Data Systems Languages.

The authors and copyright holders of the copyrighted material used herein are:
FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the Univac (R) I and II, Data Automation Systems copyrighted 1958,
1959, by Sperry Rand Corporation; IBM Commercial Translator Form
No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis=Honeywell.

They have specifically authorized the use of this material , in whole or in part,
in the COBOL specifications. Such authorization extends to the reproduction

and use of COBOL specifications in programming manuals or similar publications.

vii

Introduction

COBOL (COmmon Business Oriented Language) is an easy-to-use programming language particularly
suited to business applications. The COBOL programmer uses a subset of the English language to de-
scribe his computer configuration, the formats of his data, and the actions to be performed on this data.
A typical COBOL statement is "IF TAX-AMOUNT IS GREATER THAN FICA-LIMIT GO TO OVER-
ROUTINE".

»

Since COBOL is independent of any particular computer, o programmer who has learned COBOL can
write programs for any computer for which a-COBOL compiler (a program that translates the program-

mer's "English-language" statements into the language of the computer) exists.

This document is a reference manual for COBOL programmers. It is not a tutorial text. Persons who

wish to learn COBOL are referred to the following books:

Farina, Maria V., COBOL Simplified, New Jersey, Prentice=Hall, Inc., 1968.

McCameron, Fritz A., COBOL Logic and Programming, Homewood, Illinois,
Richard D. Irwin, Inc., 1966.

McCracken, Daniel D., A Guide to COBOL Programming, New York, John Wiley
and Sons, Inc., 1963.

The purpose of this manual is to aid the programmer who wishes to write COBOL programs for the PDP-10
computer. Chapter 1 covers the language elements that comprise COBOL. Chapter 2 discusses the four
major divisions of a COBOL program and their respective formats. Chapters 3 through 6 cover each of

t hese divisions in greater detail. Each chapter contains numerous examples of the topics presented.
The equipment required for running the PDP-10 COBOL compiler is as follows.

A PDP-10 computer with at least 48K of core
One teleprinter console

A disk file having at least 100,000 words of storage

The equipment required for running the object program (the machine language coding produced by com-
piling the programmer’s English=language statements) is a PDP-10 computer with one teleprinter console

and any peripheral devices used by the object program.

CONVENTIONS USED IN THIS MANUAL

Several terms are used in this manual that have special meanings in COBOL. These terms are block,

record, and item.

BLOCK

RECORD

ITEM

In the COBOL sense, block signifies a physical grouping of
records. This term commonly refers to a physical block of records
on some storage medium.

In the COBOL sense, record signifies a logical unit of information.
When referring to data files, a record is the largest unit of logical
information that can be accessed and processed at a particular point
in time. Records can be subdivided into fields or items.

In the COBOL sense, an item is a logical field, or group of fields
within a record. A group item is one that is further broken down
into subitems (e.g., a group item called "TAX" might be broken
down into subitems called "FED-TAX" and "STATE-TAX"). Sub-
items may be further broken down into other subitems. An item that
has no subitems is called an elementary item.

Two other terms that the reader should understand are source program and object program.

SOURCE PROGRAM

OBJECT PROGRAM

The collection of COBOL statements that the programmer writes fo
describe his program, his computer, his data, and the procedures to
be performed on that data. This source program cannot be executed
by the computer; it must first be input to the COBOL compiler pro-
gram for translation into the language of the PDP-10.

The machine language output produced by the transiation process.
The Linking Loader is used to load this program into PDP-10 core
memory for execution.

The diagram below illustrates the steps performed to obtain an executable program.

PDP-10 PDP-10

OBJECT
PROGRAM

PROGRAMMER'S COMPILATION RELOCATABLE LOAD WITH
ENGLISH- BINARY LINKING LOADER
LANGUAGE FORMAT AND EXECUTE
COBOL STATEMENTS

The symbology adopted for illustrating the various COBOL statement formats is essentially the same as
that used in other COBOL publications.

Lower=-case characters
Upper—case characters,
underscored

Upper=case characters, not
underscored

Braces { }

Brackets []

Ellipsis ...

Represent information that must be supplied by the programmer, such
as values, names, and other parameters.

Key words in the COBOL lexicon which must be used when the
formats which they form a part of are used.

Other words in the COBOL lexicon, serve only to make the COBOL
statement more readable. Their use or nonuse is optional and has
no effect on the meaning of the formats of which they are a part.

Indicate that a choice must be made from the two or more lines
enclosed.

Indicate an optional feature. The contents of the brackets are used
according to the rules above if the feature is desired.

Indicates that the information contained within the preceding pair
of braces or brackets can be repeated at the programmer's option.

xi

NEW AND CHANGED INFORMATION
Second Edition, July 1970

This edition has been extensively revised to increase technical accuracy, incorporate new

material, and improve the overall presentation of technical information. The locations of

specific technical changes are listed below.

Page
1-1
1-2
1-3
1-5
1-6
2-2
2-3
4-1
4-2
4-3
4-4
4-5
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
5-2 through 5-5
5-5
5-6
5-7
5-8
5-10

Reference

Section 1.2 (punctuation characters)

Special Editing Characters and Section 1.3 (Paragraphs 2 and 4)
Paragraph 1 and Section 1.4

HIGH-VALUE and LOW-VALUE

Section 1.7

Notesb, 3, 5, ¢, and d

Notes 5, ¢, and d

SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs
INPUT-OUTPUT section and I-O CONTROL
SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs
General Format

General Format and Note a

Note e

ACCESS MODE Clause

SEGMENT-LIMIT and Note ¢ deleted

ACCESS MODE Clause

Notes ¢, d, and e

Note f

General Format (SEGMENT-LIMIT deleted)

Note e deleted

Sections 5.2 through 5.5 added

5.5 added

General Format

Notes a, b, and ¢

General Format and Notes a, b, and ¢

General Format and Note d

1of 4

Page
5-11
5-12
5-13
5-14
5-16
5-17
5-18
5-21
5-22
5-24
5-25
5-26
5-27
5-28
5-29
5-34
5-35
5-37
5-39
5-40
5-42
5-43
5-44
5-45
5-46

6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-25

Reference

Notes b and ¢

SD filename added
General Format and Note a
Note f

OCCURS Clause

Note d

Notes b and ¢

Function and Note ¢
Notes a and ¢

Note b

General Format and Notes d and e
Note a

Footnote

Note i

Symbol * added

Note (1)

Note r

Note g

Note ¢

Paragraph 1

Note b

Notes d and e

Notes f and g

Note ¢

Notes fand g

Format 3 added

General Format

Option 1

Notes b and e

Notes e and f

Note b

Symbols C, E, F, and G
Table 6-6 (items deleted)

Note ¢

20of 4

Page
6-27
6-29
6-31
6-32
6-33
6-35
6-36
6-37
6-38
6-39
6-41
6-42
6-46
6-47
6-49
6-50
6-51
6-52
6-53
6-61
6-62
7-2

8-1

8-2

8-3

8-4

8-7

8-8

8-9

8-11

9-1 through 9-9
A-1

A-2

Reference

Note b

General Format and Note b

General Format and a

General Format and Notes a, b, and ¢
Function, General Format, and Note b
Note ¢

Note (2)

Note a

Note ¢

General Format

Option 4

Notes a and e

Notes k and | added

Note d

RELEASE statement added

RETURN statement added

Note b

Function, General Format, and Notes a and b
SORT statement added

Function, General Format, and Note ¢
Note e

Note a

Section 8.1

Sections 8.1.1and 8.1.2

Sections 8.2.2 and 8.2.3

Figure 8-1

MULTIPLE FILE ADDRESS, ADDRESS OF ERROR USE PROCEDURE,
and FILE-LIMIT PAIRS

Table 8-2

Paragraphs 2 and 5

Section 8.10 (Paragraph 1)

New Chapter

CALL deleted; asterisks deleted from ASCENDING and DESCENDING
Asterisk deleted from KEYS

3of4

Page Reference
A-3 RELATIVE deleted; asterisk deleted from RELEASE, RETURN, SD, and SORT
D-1 through D-3 New Appendix

4of 4

Chapter 1
Elements of COBOL Language

1.1 PROGRAM STRUCTURE

A COBOL program consists of four divisions, all of which must be present. These divisions are:

IDENTIFICATION DIVISION Identifies the source program.

ENVIRONMENT DIVISION Describes the computer on which the source program is to be
compiled, the computer on which the object program is to be
run, and certain relationships between program elements and
hardware devices.

DATA DIVISION Describes the data to be processed by the object program.
PROCEDURE DIVISION Describes the actions to be performed on the data.

Each of these divisions is covered briefly in Chapter 2 and in greater detail in Chapters 3 through 6.

1.2 CHARACTER SET

The character set used in writing source program statements contains all the ASCII characters, except

the null, delete, end-file, and printer control characters.

Of this character set, 37 characters (the digits 0 through 9, the 26 letters of the alphabet, and the hy-

phen) can be used by the programmer to form COBOL words, such as data-names, procedure~names, etc.

Punctuation characters include:

A (space) " (quotation mark)
, (comma) ((left parenthesis)
; (semicolon)) (right parenthesis)

(period) ~ (horizontal tab)

1-1

Special editing characters include:

+ (plus sign) * (check protection symbol)
- (minus sign) z (zero suppression)
$ (dollar sign) B {blank insertion)
, (comma) 0 (zero insertion)
(decimal point) CR (credit)

DB (debit)

Special characters used in arithmetic expressions include:

+ (plus sign) / (division)
- (minus sign) *% (exponentiation)
* (multiplication) t (exponentiation)

Special characters used in conditional (IF) statements include:

= (equal sign) > (greater than) < (less than)

1.3 WORDS

A COBOL "word" is composed of not more than 30 characters chosen from the 37 characters given in
the previous section. COBOL literals and picture-strings, which are defined later in this monual, are

exceptions to this rule.

A word is terminated by a space, period, right parenthesis, quote, comma, semicolon, or horizontal tab
If the terminator is not a space or horizontal tab, at least one space or horizontal tab must follow the

terminator.

Words used in writing COBOL source programs are of two types: COBOL reserved words and user-create

words.

COBOL reserved words are those that comprise the COBOL lexicon and have special meaning to the

compiler (e.g., DIVISION, PROCEDURE, ADD); these words are listed in Appendix A. They include
all the standard COBOL division, section, and paragraph names, descriptive clauses, procedure verbs,
certain prepositions, figurative constants, etc. They must be spelled and used exactly as shown in the

formats given in this manual.

1-2

User-created words are words used to label the various parts of the user's data (files, records, and
fields) and the user's procedures (sections and paragraphs); they also include literals. They may contain
only the symbols 0 through 9, A through Z, and the hyphen. With the exception of procedure~-names,

they may not be all digits. A user-created word may neither begin nor end with a hyphen.

Words can be further categorized into several subgroupings. To understand the remainder of this chap-

ter, the user should be familiar with the following types:

data-name The user-created name assigned to an item (field) within a record.

file~name The user-created name assigned to a data file.

record-name The user-created name assigned to a data record within a file.
procedure-name The user-created name assigned to a paragraph or section in the PROCEDURE

DIVISION. When assigned to a section, it is referred to as a section-name;
and when assigned to a paragraph, it is referred to as a paragraph-name.

verb One of the set of COBOL verbs used in the PROCEDURE DIVISION to spe-
cify a particular process (e.g., ADD, MOVE, PERFORM).
identifier Used in PROCEDURE DIVISION statement formats to indicate a data-name

followed, as required, by the syntactically correct combination of qualifi-
ers, and/or subscripts, and/or indexes necessary to make reference to a
unique item of data.

mnemonic-name A user—created name assigned to a hardware device.
condition-name A user-created name assigned to a value or range of values of the associated
data item.

Condition-names can also be assigned to console switch settings.

index-name A user—created name defined in the INDEXED BY clause (see OCCURS in
Chapter 5).
index data-name A user-created name defined with USAGE INDEX.

1.4 PUNCTUATION

When a period, comma, or semicolon is used, it must immediately follow the preceding word (i.e., no
space or tab may intervene) and it must be followed by a space or tab (literals and picture-strings are

exceptions).

1.5 LITERALS

A literal is a special kind of COBOL word, the value of which is identical to the characters comprising

the literal. Literals are of two types: numeric and nonnumeric.

1.5.1 Numeric Literals

A numeric literal must contain at least one numeric character (0 through 9). It cannot contain any al-
phabetic characters. It may be preceded by a + (plus sign) or a = (minus sign); if no sign is used, the

literal is assumed to be positive.

A decimal point can appear anywhere in the literal, except to the left of the sign or as the rightmost

character. If no decimal point is used, the literal is assumed to be an integer.
A numeric literal can be from 1 to 18 digits in length.

A numeric literal is considered to be of the numeric class; that is, it can be used legitimately as a value

in arithmetic expressions.

Examples of Numeric Literals:

123 -123 +123 1.23456 . 123456789
-.123456789 1234567890.12345678 -1234567890.12345678

1.5.2 Nonnumeric Literals

Nonnumeric literals are enclosed in quotation marks and can contain from 1 to 120 characters. The val-
ve of the literal is equal to the characters, including any spaces, enclosed by the quotation marks. Any
ASCII character, except the quotation mark, null, delete, carriage-return, and printer-control, can

appear within the quotes.

All nonnumeric literals are considered to be in the alphanumeric category; they cannot be used as val-
ves in arithmetic operations, and numeric editing cannot be performed on them. If a literal conforms
to the rules for formation of a numeric literal, but is enclosed in quotation marks, it is considered to be

a nonnumeric literal. That is, "120.45" is not equivalent to 120.45.
Examples of Nonnumeric Literals:

"A" "THIS ACCOUNT HAS A CREDIT BALANCE" " RETURN "
"-125.50" "DEDUCT 10% IF PAID BEFORE JAN. 31ST"

1.6 FIGURATIVE CONSTANTS

Certain values have been assigned fixed data=names and are called figurative constants. When used as

figurative constants, these words must not be bound by quotation marks; otherwise they will be treated

as nonnumeric literals.

The figurative constants are given below. Except for one case (the ALL constant), singular and plural

forms are given; these forms are equivalent and may be used interchangeably .

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL any-literal

Represents the value 0 or one or more of the character 0 depending on con-
text.

Represents one or more blanks or spaces.

For DISPLAY =6 and DISPLAY -7 items this represents the highest value in the
collating sequence. For COMP and COMP-1 items, this represents the
largest number that can be placed in the machine word(s) containing the item.

For DISPLAY -6 and DISPLAY-7 items, this represents the lowest value in the
collating sequence. For COMP and COMP-1 items, this represents the
smallest number (most negative) that can be placed in the machine word(s)
containing the item.

Represents one or more quotation marks ("). It can be used anywhere that the
character " is valid, except to delimit nonnumeric literals (see "Nonnumeric
Literals"). QUOTE(S) is frequently used where an actual " would errone-
ously appear to delimit a nonnumeric literal. For example, if the user wanted
his program to type out the exact character string

MOUNT TAPE LABELLED "MASTER" ON DRIVE 3
he could use the procedure statement

DISPLAY "MOUNT TAPE LABELLED " QUOTE
"MASTER"” QUOTE " ON DRIVE 3".

Represents repetitions of the string of characters comprising the literal. The

literal specified must be either a nonnumeric literal or a figurative constant

(other than ALL any-literal). If a figurative constant is used, the ALL is re-
dundant; thus, ZEROS and ALL ZEROS are equivalent.

Figurative constants generate a string of characters whose length is determined, based on context, by
the compiler. For example, if TOTAL-AMOUNT is a 5~character field, the procedure statement MOVE
ALL ZEROS TO TOTAL-AMOUNT moves a string of five zeros to the field TOTAL-AMOUNT; MOVE
ALL "AB" TO TOTAL-AMOUNT moves "ABABA" to TOTAL-AMOUNT. If the length cannot be deter-

mined by context, a single character (or a single-character sequence, in the case of ALL) is generated.

For example, the procedure statement DISPLAY ALL QUOTES will result in the output of a single " to
the Teletype®.

Examples of Use of Figurative Constants:

DATA DIVISION Usage: 02 AMOUNT PICTURE IS 9999.992 VALUE IS ZERO.
04 MESSAGE PICTURE IS A (10) VALUE IS SPACES.
PROCEDURE DIVISION Usage: MOVE ZEROS TO AMOUNT. (Puts the value of zero in the

AMOUNT field)

MOVE SPACES TO MESSAGE. (Puts spaces in the MESSAGE
field)

IF TOTAL IS EQUAL TO ZERO....

EXAMINE FLD-A TALLYING LEADING ZEROS.

1.7 SPECIAL REGISTERS

In addition to figurative constants, COBOL recognizes two other special data~-name constants: TALLY
and TODAY.

TALLY is the name of a fixed 5-digit signed computational field. It is used primarily to hold informa-
tion produced by the EXAMINE verb. However, the programmer may utilize TALLY in any situation
where a signed numeric field is valid, e.g., temporary storage of any integer value of five or fewer

digits.

TODAY is a 12-character alphanumeric display field that contains the current data and time. Its for-

mat is yymmddhhmmss

where yy is the year (last two digits) hh is the hour
mm is the month mm is the minute
dd is the day ss is the second

® Teletype is a registered trademark of Teletype Corporation.

1-6

Chapter 2
COBOL Reference Format

COBOL source entries are entered in the form of lines. The general format of a line is given below.

The numbers refer to card columns.

Continuation column

Margin L Margin A Margin B Margin R
v
12 3 4 5 6 7 8 9 10 11 12 13
S~ gv L V‘J A N
Sequence Area A Area B
number area

Continuation area

Margin L designates the leftmost character position of a line. The continuation column designates the

seventh character position relative to the left margin.

Margin A designates the eighth character position relative to the left margin.
Margin B designates the twelfth character position relative to the left margin.
Margin R designates the rightmost character position of a line.

The sequence number area occupies the six character positions beginning at margin L.

The continuation area occupies one character position beginning at the continuation column.

Area A occupies four character positions beginning at margin A.

Area B occupies a finite number of character positions (68 for card input, and 107 for Teletype input)

beginning at margin B.

2.1 FORMAT RULES AND CONVENTIONS

There are two valid input formats to the COBOL compiler: the conventional format, and the standard
mode format. The conventional format should be used when the programmer wants his source program to

be compatible with other COBOL compilers.
The conventional format is described below.

a. Sequence numbers - The line begins with a sequence number, which consists of six charac-
ters which are ignored by the compiler.

b. Continuation Area - The continuation area is used whenever it is necessary to split a word,
a numeric literal, or a nonnumeric literal between the end of one line and the beginning of the
next, or when a comment line is to be inserted.

1. Comment lines may be inserted in a program by placing a * in the continuation area.

2. To split a word or numeric literal from one line to the next, a hyphen is placed in the
continuation area of the second line, and the first continuing character of the word or lit-
eral is placed at or after margin A. As many spaces as desired can occur after the last
character of the word or literal on the first line, or this last character can occur immedi-
ately prior to margin R.

3. To split a nonnumeric literal between two lines, the character immediately prior to the
split must appear immediately prior to margin R. Otherwise, all spaces following this char-
acter on the first line will be treated as part of the literal. A hyphen appears in the con-
tinuation area. A quotation mark is placed at or after margin A, followed by the first con-
tinuation character of the literal. In cases where the last character of the literal appears
immediately prior to margin R on the first line and only the quotation mark signaling the end
of the literal remains to be entered, the same rules apply (a hyphen in the continuation
field, a quotation mark at or after margin A followed by the terminating quotation mark).

4. To continue a line without splitting words or literals, the first continuing word on the
second line must begin at or after margin A. As many spaces as desired can follow the last
word on the first line, or the last word can continue up to margin R.

5. A continuation line may not be immediately preceded by a blank or comment line.

c. Area A - All division-names, section-names, and paragraph-names must begin in area A.
In the DATA DIVISION, the FD and the level-number entries may begin in area A, but are not
required to.

d. Area B - All remaining entries begin in area B. Margin B can be reached on the Teletype
by typing horizontal-tab anywhere in area A.

In the conventional format, which assumes a total line length of 80 character positions (i.e.,
a standard card image), area B is 61 positions in length and ends in column 72.

e. Identification Area - In the conventional format, character positions 73 through 80 are re-
served as an identification field into which any combination of eight or fewer characters can be
punched to identify the card deck.

The standard mode format is identical to the conventional format with two exceptions. If the user sets

the COBOL compiler to accept standard mode input, the compiler assumes the following:

2-2

a. The input line contains no sequence number in positions 1 through 6. The first character
position of the line is assumed to be the seventh position (the continuation field) if the first
character in the line is a hyphen, asterisk, space, or tab. Otherwise, the first character posi-
tion of the line is assumed to be the eighth position (margin A).

b. Area B is up to 107 characters in length, extending to the end of the line with no identifi-
cation area present.

Chapter 3
The IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION is required in every source program and identifies the source program
and the output from compilation. In addition, the user may include other documentary information such
as the name of the program's author, the name of the installation, the dates on which the program was

written and compiled, any special security restrictions, and any miscellaneous remarks.

3.1 GENERAL STRUCTURE

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name [comment paragraphl .

[AUTHOR. comment paragraph .1
[INSTALLATION. comment paragraph .]
[DATE-WRITTEN. comment paragraph .]
[DATE-COMPILED. [comment paragraph. 1]
[SECURITY. comment paragraph .]
[REMARKS. comment paragraph .]

3.2 TECHNICAL NOTES

a. The IDENTIFICATION DIVISION must begin with the reserved words IDENTIFICATION
DIVISION followed by a period and a space.

b. The PROGRAM-ID paragraph contains the name identifying the program. The program-
name may have up to six characters, and must contain only letters, digits, and the hyphen.

This paragraph must be present.

c. The remaining paragraphs are optional and, if used, may appear in any combination and in
any order. A comments paragraph consists of any combination of characters from the COBOL
character set organized to conform to COBOL sentence and paragraph format. All text appears
as written on the output listing, except the DATE-COMPILED paragraph, which will be replaced
by the current date.

3-1

Chapter 4
The ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION, required in every COBOL source program, allows the programmer to
describe the particular computer configurations upon which the compilation and resulting object program

are to be run, and to specify the hardware features of his computer configuration.

4.1 GENERAL STRUCTURE

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

[SO URCE-COMPUTER. [comment-paragraph]]

[O BJECT-COMPUTER. PDP-10

CHARACTERS
[MEMORY SIZE integer-1 { WORDS]
MODULES

[SEGMENT-LIMIT 1S integer-2] ._]

[SPECIAL-NAMES. [CONSOLE IS mnemonic-name-11

[CHANNEL (m) IS mnemonic~name~2

[, CHANNEL (n) IS mnemonic-name-3]. :l

[1S mnemonic-name-4 [; ON STATUS IS condition-name-11])
[; OFF STATUS IS condition-name-2]
J ON STATUS IS condition-name-1
[; OFF STATUS IS condition-name-21]
OFF STATUS IS condition-name-2
[; ON STATUS IS condition-name-11] J

I:SWITCH (m)

4-1

-

pr—

[SWITCH (n)

[CURRENCY SIGN IS literal]
[DECIMAL-POINT IS COMMA]T .

INPUT-OUTPUT SECTION.

FILE-CONTROL. SELECT [OPTIONAL] file-name

—

ASSIGN TO [integer-11 device-name-~1 [, device-name-21]...

REEL
[FOR MULTIPLE _—UNlT}]
integer=2 AREA
RESERVE {NO } ALTERNATE I:AREAS :|

} THRU

FILE-LIMIT IS data-name-1 {data—name—2}
FILE-LIMITS ARE literal -1 literal -2
data-name-3 data-name-4
, THRU -
literal-3 — Lliteral-4

[PROCESSING MODE IS SEQUENTIAL]

SEQUENTIAL

ACCESS MODE IS {RANDOM

[ACTUAL KEY IS data-name-51.

[SELECT..... I..
- END OF { ——EE,\E”LT }
I-O-CONTROL. [RERUN EVERY _ OF file-name—]]
integer-1 RECORDS

I:SAME [RECORD]1 AREA FOR file-name-2, file-name-3 [, file-name-41]..]

[MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-1]

[file-name=-6 [POSITION ini'eger-2]] . :I .

4.2 CONFIGURATION SECTION

The CONFIGURATION SECTION allows the user to describe the computer configurations on which he

will compile his source program and run the resulting object program. It also allows him to assign mne-

monic names to certain hardware features.

CONFIGURATION SECTION.

[SOURC E-COMPUTER. [comment-paragraph]]

‘:OBJECT-COMPUTER. PDP-10

[; MEMORY SIZE integer-1 { WORDS

CHARACTERS
]
MODULES

[SEGMENT=-LIMIT IS integer-2]]

SPECIAL-NAMES. [CONSOLE IS mnemonic=name=-11]

I:CHANNEL (m) IS mnemonic~name=-2
[, CHANNEL (n) IS mnemonic-name-3]. :]

IS mnemonic-name-4 [; ON STATUS IS condition~name-11]
[OFF STATUS IS condition-name=21]
ON STATUS IS condition-name-1
l:_SﬂI'I'_C_I'_l_ (m) [OFF STATUS IS condition-name-21
OFF STATUS 1S condition-name=2
[ON STATUS IS condition-name-11]

[SWITCH (n)]]
[CURRENCY SIGN IS literal]
[DECIMAL-POINT IS COMMA] ..

—

Technical Notes

a. This section must appear in every source program.

b. All commas and semicolons are optional . A period must terminate the entire entry in each
of the three paragraphs.

4-3

SOURCE-COMPUTER

Function

The SOURCE-COMPUTER paragraph describes the computer on which the program is to be compiled.

General Format

[SOURC E-COMPUTER. [comment-paragraph ._]]

Technical Notes

a. This paragraph is optional.

b. This paragraph is for documentation only. The comment paragraph is replaced in the listing
by the word PDP-10.

4-4

OBJECT-COMPUTER

Function

The OBJECT-COMPUTER paragraph describes the computer on which the program is to be executed.

General Format

OBJECT-COMPUTER. PDP-10

CHARACTERS
|: MEMORY SIZE integer { WORDS]
MODULES

I:SEGMENT—LIMIT IS integer—Z] .

Technical Notes

a. This paragraph is optional .
b. PDP-10 must appear as the first entry following the paragraph-name OBJECT-COMPUTER.

c. The MEMORY SIZE clause is optional. If it is omitted, 262,144 WORDS are assumed. If
it appears, the following ranges are applicable.

CHARACTERS Up to 1,572,864 (262,144 words x 6 character/word)
WORDS Up to 262,144
MODULES Up to 256 (1 module equals 1024 words)

The MEMORY SIZE clause indicates the amount of core for the object code only, and does not
include the core required by the COBOL operating system.

d. If the SEGMENT-LIMIT clause is given, only those segments having priority numbers from
0 up to, but not including, the value of integer-2 are considered as resident segments of the
program. Integer-2 must be a positive integer in the range 1 to 49.

If the SEGMENT-LIMIT clause is omitted, segments having priority numbers from 0 through 49
are considered as resident segments of the program (that is, SEGMENT-LIMIT IS 50 is assumed).

More on segmentation can be found in Chapter 6.

SPECIAL-NAMES

Function

The SPECIAL-NAMES paragraph provides a means of associating hardware devices with user—specified

mnemonic names.

General Format

SPECIAL-NAMES. [CONSOLE IS mnemonic-name-11]
ECHANNEL (m) IS mnemonic-name=-2
[CHANNEL (n) IS mnemonic-name-3]..]

IS mnemonic-name-4 [; ON STATUS IS
SWITCH (m){ ON STATUS IS condition-name-1 [; OFF
OFF STATUS IS condition-name-2 [; ON

condition-name-1] [; OFF STATUS IS condition-name-21]

STATUS IS condition-name-21
STATUS IS condition-name-11

[CURRENCY SIGN IS literal]

[[DECIMAL-POINT 1S COMMA] .

Technical Notes

a. This paragraph is optional.

b. The name CONSOLE refers to the user's Teletype console. The assigned mnemonic-name
may be used with the ACCEPT and DISPLAY verbs in the PROCEDURE DIVISION to input data
from and output data to the console.

c. The name CHANNEL refers to a channel on the line-printer control tape. m and n represent

any integer from 1 to 8 and refer to any one of the eight channels on the tape. Control tape
channels can be referred to in the ADVANCING clause of the WRITE verb in the PROCEDURE
DIVISION to advance the paper form to the desired channel position. For example, if the entry

4-6

CHANNEL (1) IS TOP-OF-PAGE

is included in this paragraph, the following procedure statement will print the line and then
skip to the top of the next page.

IF LINE-COUNTER IS GREATER THAN 50 WRITE PRINT-RECORD BEFORE
ADVANCING TOP-OF-PAGE.

d. The name SWITCH refers to the hardware switches on the PDP-10 console. m and n repre-
sent any integer from O to 35 and refer to the corresponding console switches.
The mnemonic-name can be used in conditional expressions in the PROCEDURE DIVISION. For
example, if the entry

SWITCH (4) 1S INPUT-1

is included in this paragraph, the following condition is considered to be true if switch (4) is on.
IF INPUT-1 IS ON....

If a condition-name is specified for the ON or OFF STATUS of a switch, that condition-name
can be used in a conditional expression. For example, if the entry

SWITCH (4) IS INPUT-1; OFF STATUS IS NO-INPUT
is included in this paragraph, the following procedure statements are functionally equivalent.

IF INPUT-1 1S OFF....
IF NO-INPUT. ...
e. The literal which appears in the CURRENCY SIGN clause must be used in PICTURE clauses

(DATA DIVISION) to represent the currency symbol. If this clause is not present, only the
standard $ may be used as a currency symbol in a PICTURE clause.

This literal is limited to a single printable character and must not be one of the following char-
acters:

digits O through 9
alphabetic characters A, B, C, D, P, R, S,V, X, Z
special characters *+ =, .; () "
f. The clause DECIMAL-POINT IS COMMA, if present, causes the functions of the comma

and the period to be interchanged in any PICTURE clause character-string and in any numeric
literal .

4.3 INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION names the files and external media required by the object program and
provides information required for transmission and handling of data during execution of the object

program.

INPUT-OUTPUT SECTION.
[FILE-CONTROL. SELECT [OPTIONALI file-name
ASSIGN TO [integer-1] device-name-1 [, device-name-21

—

REEL
_ FOR MULTIPLE {UNIT}]

integer-2 AREA
RESERVE NO } ALTERNATE [AREAS

FILE-LIMIT IS [data-name-1] data-name-2
FILE-LIMITS ARE literal-1 THRY literal-2
[data-name-3 data-name-4]
literal-3 THRU literal-4 tUe

SEQUENTIAL
RANDOM

ACCESS MODE IS

([PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS data-name-5] .

| [seecr...]

I-O-CONTROL.

REEL
RERUN EVERY({ END OF UNIT OF file-name-1

integer-1 RECORDS

[SAME [RECORD1 AREA FOR file-name-2, file-name-3 [, file-name-4] . :]

[MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-21

[, file-name-6 [POSITION integer-3]:]:]. .

Technical Notes

a. This section is optional.

b. All semicolons and commas are optional. Each SELECT statement in the FILE-CONTROL
paragraph must end with a period. The entire entry in the I-O-CONTROL paragraph must end
with a period.

FILE-CONTROL

Function

The FILE-CONTROL paragraph names each file, identifies the file medium, and allows logical

hardware assignments.

General Format

FILE-CONTROL. SELECT [OPTIONAL] file-name

ASSIGN TO [integer-1] device-name-1 [, device-name-21

—

REEL
FOR MULTIPLE {UNIT}]

—

integer-2 AREA
RESERVE NO }ALTERNATE [AREAS

FILE-LIMIT IS data-name-1 data-name-2
FILE-LIMITS ARE literal=1 THRU literal-2
[{ afa—nome—3} THRU {dai’a-name-4}] .
literal=3 literal-4

SEQUENTIAL
ACCESS MODE IS RANDOM

[PROCESSING MODE IS SEQUENTIAL]

[:ACTUAL KEY IS dai’a—name—5] .

[(sELecT....] ...

4-10

Technical Notes

a. Each file described in the DATA DIVISION must be named once and only once as a file-
name in a SELECT statement. Conversely, each file named in a SELECT statement must have a
File Description entry in the DATA DIVISION. Each file-name must be unique within a pro-
gram.

b. The key word OPTIONAL is required for input files that are not necessarily present each
time the object program is run. When an OPEN statement is executed for a file that has been
declared OPTIONAL, the question "IS file-name PRESENT?" is typed and the operator re~
sponds with "YES" or "NO". If the response is "YES", the file is processed normally; if the re-
sponse is "NO", the first READ statement executed for the file will immediately take the AT
END or INVALID KEY path.

c. The ASSIGN clause specifies the file medium. Device-names may be either physical
device-names or logical device~names.

Physical device-names are fixed mnemonic-names that are associated with specific peripheral
devices. When specified in an ASSIGN clause, a physical device~name assigns the associated
file to that device. Physical device-names are specified in the Timesharing Monitors manual,
which appears in the PDP-10 Timesharing Handbook and in the PDP-10 Software Notebook .

Logical device-names are names created by the programmer. They may contain up to six char~
acters, consisting of any combination of letters and digits. At object execution time, each
logical device-name must be assigned to one of the physical devices listed above by use of a
Monitor ASSIGN command (see Time~Sharing Monitors manual, DEC~10-MTEO-D, for details
of ASSIGN).

More than one device may be assigned to a file to avoid delay when switching from one reel or
unit to the next. When more than one device is specified, the object program automatically
uses the next device, in a cyclical manner, when an end-of-reel condition is detected.

Whether or not multiple devices are assigned, the FOR MULTIPLE {BE\IIE}-T clause must be in=-
cluded for any file that occupies (or might occupy) more reels than the number of devices as-
signed.

d. The RESERVE clause allows the user to specify the number of input-output buffer areas to be
allocated by the compiler to this file.

If the access mode is RANDOM, this clause is ignored, and only one buffer area is assigned.
If the NO option is used, only two such areas will be allocated.

If the integer-2 option is used, the integer specifies the number of areas to be assigned in ad-
dition to the two areas always assigned by the compiler. Integer-2 must be positive.

e. The FILE-LIMIT clause is required only for files whose access mode is RANDOM,; it is op-
tional for files with SEQUENTIAL access mode residing on mass~storage devices; it is ignored in
all other cases.

Each pair of operands within this clause represents a logical portion of the file. If the first of a
pair of operands is not specified, it is assumed to be 1.

The operands represent logical record numbers relative to the beginning of the file.

The logical beginning of a random-access file is considered to be that record represented by the
first operand of the FILE-LIMIT clause. The logical end of a random-access file is considered
to be that record represented by the last operand.

4-11

The value of data items specified in this clause is utilized by the object operating system only
when the file is opened by an OPEN procedure statement .

f. The ACCESS MODE clause is required only for random=-access files; it is ignored in all
other cases.

If ACCESS MODE IS SEQUENTIAL, the random-access records are obtained or placed sequen-
tially. That is, the next logical record is made available from the file on a READ statement
execution, and an output record is placed into the next available area on a WRITE statement
execution. Thus, sequential access processing on a random-access device is functionally similar
to the processing of a magnetic tape file.

If ACCESS MODE IS RANDOM, the contents of the data item associated with the ACTUAL KEY
specifies which record, relative to the beginning of the file, is made available by a READ state-
ment, or where the record is to be placed by a WRITE statement .

g. PROCESSING MODE IS SEQUENTIAL is for documentation only; records are always pro-
cessed in the order in which they are accessed.

h. If a sort-name is selected, at least three devices must be assigned. The devices must be
retrievable, i.e., disks, DECtapes, or magnetic tapes.

1-O-CONTROL

Function

The I-O-CONTROL paragraph specifies the points at which a rerun dump is to be performed, the memory

area which is to be shared by different files, and the location of files on a multiple-file reel.

General Format

[-O-CONTROL.

—

REEL
END OF {UNIT} OF file-name-1
integer-1 RECORDS

RERUN EVERY
L

-

SAME [RECORD] AREA FOR file-name-2, file-name-3 [file-nqme-4]

MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2]

[, file-name-6 [POSITION integer-3 1].] .

[SEGMENT-LIMIT IS integer-4:] .

Technical Notes

a. This paragraph is optional.

b. The RERUN clause specifies when a rerun dump is to be performed.

The dump is always written onto a disk file, using the program-name (from the PRO GRAM-ID
paragraph in the IDENTIFICATION DIVISION) as the filename, and an extention of RER.

If the END OF {EENE{T} option is used, a rerun dump is taken at the end of each input or output
reel of the specified file.

If the integer-1 RECORDS option is used, a rerun dump is taken whenever a number of logical
records equal to a multiple of integer-1 is either read or written for the file.

c. The SAME AREA clause specifies that two or more files are to use the same area during
processing; this includes all buffer areas and the record area.

4-13

If the RECORD option is specified, the files share only the record area (i.e., the area in which
the current logical record is processed). If the RECORD option is not used, only one of the
named files can be open at one time.

d. The MULTIPLE FILE clause is required when more than one file shares the same physical
reel of tape. This clause is invalid for media other than magnetic tape.

Regardless of the number of files on a single reel, only those files defined in the program may be
listed. If all files residing on the tape are listed in consecutive order, the POSITION option
need not be given. If any file on the tape is not listed, the POSITION option must be included;
integer-2, integer-3, etc., specify the position of the file relative to the beginning of the
tape.

All files on the same reel of tape must be ASSIGNED to the same device in the FILE-FCONTROL
paragraph.

Not more than one file on the same reel of tape can be open at one time.

4-14

Chapter 5
The DATA DIVISION

The DATA DIVISION, required in every COBOL program, describes the characteristics of the data to be
processed by the object program.

This data can be divided into two major types:

a. Data contained in files, both input and output.

b. Data initially stored as part of the program (e.g., constant data such as messages, tables
of fixed values, etc.), or data developed during processing (e.g., intermediate information
such as partial arithmetic results).

To handle these two types of data, the DATA DIVISION consists of two sections:

a. The FILE SECTION, which describes the characteristics and the data formats for each file
processed by the object program.

b. The WORKING-STORAGE SECTION, which contains any fixed values and the working
areas into which intermediate data can be stored.

5.1 FILE SECTION

In the FILE SECTION, the characteristics of each file to be processed are described by two types of

entries.

The first type of entry . the file description (FD), describes the physical aspects of the file. These

aspects include

a. How the logical data records of the file are physically grouped into blocks on the file
medium

b. The maximum length of a logical record

c. Whether or not the file contains header and trailer labels and, if so, whether the format
of these labels is standard or nonstandard

d. The names of the records contained in the file.

5-1

The second type of entry, the data description, describes the data formats of the logical records in the
files.

The FILE SECTION begins with the section-header FILE SECTION.

5.2 WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is used to define (1) data (such as constant values and messages)
that is to be initially stored when the object program is loaded and (2) areas that are to be used for
storing intermediate results. The WORKING-STORAGE SECTION is similar to the FILE SECTION, ex-

cept that (1) it cannot contain FD and SD entries and (2) it may contain level-77 entries.

The WORKING-STORAGE SECTION begins with the section-header WORKING-STORAGE SECTION.

5.3 DATA DESCRIPTIONS

5.3.1 Elementary Items and Group Items

The basic user-defined datum in a COBOL program is called an elementary item; it may be referenced
directly only as a unit. An elementary item may be associated with contiguous elementary items to
form blocks of data; these blocks are called group items. Group items may be associated with other
group items and/or elementary items to form more inclusive group items. Thus an elementary item may
be contained within more than one group item, and a group item may contain more than one elementary

item.

5.3.2 Independent Items and Nonindependent Items

Items fall into one of two classes: independent items and nonindependent items. Independent items are
those that are not contained within any other data item; independent items may be either group items or
elementary items. Nonindependent items are those contained within some other item; nonindependent
items may be either group or elementary items. Every nonindependent item must belong to some inde-

pendent item.

5.3.2.1 Level Numbers - The level number indicates the class to which a data item belongs. Inde-
pendent items must be assigned a level number of 2 through 49, or the special level number 66. Inde-

pendent items with a level number of 1 are called records; they may contain nonindependent items.

Independent items with a level number of 77 are called noncontiguous elementary items; they may not

contain nonindependent items (hence, level 77 items must be elementary items).

The sequence of level numbers in definitional entries is the means of determining the association of
items into blocks. Each independent item is a block; the independent item ends where another indepen-
dent item begins, signified by the occurrence of a level number of 1 or 77, or when the special level
number 66 or a section or division header, or one of the special level indicators FD or SD is encoun=
tered. A nonindependent item is a block that ends when another item of the same or a numerically low-
er level number is encountered, or when the independent item containing it is terminated (as determined

by the criteria stated above).

Level-66 data items are special blocks that contain an explicitly specified portion of a record (or pos-

sibly the whole record). These items are explained in detail under the RENAMES clause.

5.3.3 Records and Files

Records may be divided into two categories: those associated with a file and those not associated with a
file. A file is the highest level of data organization in COBOL; and in PDP-10 COBOL, a file repre-
sents a collection T of data held on some external medium, i.e., not wholly in real or virtual core

storage.

5.4 QUALIFICATION

Any data item which is to be referenced must be uniquely identified. This can be achieved by assigning
a unique nome to each item; however, in many applications this is tedious and inconvenient (1) because
of the large number of names required and (2) because items containing the same type of information on
different blocks would have different names. Therefore, qualification is introduced to allow similar

nonindependent items and certain records to have identical names.

Qualification is simple; it means giving enough information about the item to specify it uniquely. In
COBOL this information is the names of the blocks containing it, in order of increasing inclusiveness.
It is not necessary to name each block containing it but only enough blocks so that no other item with
the same name as the original item could be identically qualified. It is also unnecessary to name each
successively higher block containing the item until a unique qualification is made; any set of block

names that uniquely describe the item may be used.

tA collection may be thought of as a block.

Example:

o1 RECORD-1. 01 RECORD-2.
02 ITEM-1. 02 ITEM=-2.
03 SUB-ITEM. 03 SUB-ITEM.
04 FIELD PIC X. 04 FIELD PIC X.

FIELD in the left~hand example can be referenced uniquely in any of the following ways:

FIELD OF SUB-ITEM OF ITEM-1 OF RECORD-1.
FIELD OF SUB-ITEM OF ITEM-1.

FIELD OF SUB-ITEM IN RECORD-1.

FIELD IN ITEM~-1 OF RECORD~1.

FIELD IN RECORD-1.

FIELD IN ITEM-1.

Since the connectives OF and IN are equivalent, they may be used interchangeably .

The only data items which need have unique names are level~77 items and records not associated with
files, since they are not contained in any higher level data structure. Records associated with files may
be qualified by the file name, as may any item contained within the record. File names must be

unique.

Level-66 items may be qualified only (1) by the name of the record with which they are associated and

(2) by the name of any file with which that record is associated.

5.5 SUBSCRIPTING AND INDEXING

In some applications, it is convenient to specify a block of data as consisting of repetitions of some
block of data. The COBOL facility for this function is the OCCURS clause (described below), which
specifies that the block of data in which the clause appears actually consists of some user-specified num~
ber of repetitions of the same block. This does not mean that the block is a group item containing the
repetitions, but rather that the block ifself, regardless of whether it is a group or elementary item, is

repeated and that any block containing this block actually contains all of the identical blocks.

Since each of these repeated blocks has the same name as the originally described block and is at exact=-
ly the same place in the same hierarchy, qualification is not sufficient to specify which of these blocks
one wishes to reference; subscripting (or indexing, which is identical to subscripting in PDP-10 COBOL)

must be used to distinguish among the repetitions.

Subscripting is merely a formal method of specifying which repetition of the block is desired and must

be used whenever reference is made to any block described with an OCCURS clause or to any item

contained within such a block, since each of the latter also is part of each of the repetitions. Thus, if
an OCCURS clause appears in an entry contained in a block with an OCCURS clause, it is necessary to
specify (1) in which of the repetitions of the more inclusive block the desired item can be found, and

then (2) which of the repetitions of the less inclusive block within the particular repetition of the more

inclusive block, is desired. The format for subscripting is described in the OCCURS clause.

FILE DESCRIPTION (FD)

Function
The File Description (FD) furnishes information concerning the physical structure, identification, and

record names pertaining to a given file.

General Format

FD file=name
]) RECORDS
BLOCK CONTAINS [integer~1 TO] integer~2 {CHARACTERS}}

—

RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS:|

-
STANDARD

RECORD IS AMITTERN
LABEL {RECORDS ARE} MITTED
record-name-1[, record-name-21...

—

IDENTIFICATION data-name-1 DATE-WRITTEN
DATE-WRITTEN literal -1 ’ IDENTIFICATION Is

{dafo -name-Z}
literal-2

DATA {ggggggsliRE} record-name=3 |:, record-nume-4]. .. j| .

VALUE OF {

Technical Notes

a. An FD entry must be present for each file~name selected in the FILESCONTROL paragraph
of the ENVIRONMENT DIVISION.

b. All semicolons and commas are optional. The entire FD entry must terminate with a period.
c. The clauses may appear in any order within the File Description entry.
d. Each of the above clauses appears in alphabetical order on the following pages.

5-6

BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a physical block .

General Format

. _ . _» J RECORD(S)
[BLOCK CONTAINS [integer-1 TO] integer-2 {mCHARACTERS]

Technical Notes

a. If this clause is not present, the records will be read or written without regard to any phys-
ical boundaries imposed by the device.

b. [f the CHARACTERS option is used, the physical block size is specified in terms of the num-
ber of character positions required to contain the record. If the recording mode is ASCII (that
is, all records for the file are described, explicitly or implicitly, as USAGE DISPLAY-7), it is
assumed that the size is specified in terms of DISPLAY=7 characters. If the recording mode is
SIXBIT (that is, the records for the file are all described as other than USAGE DISPLAY-7), it is
assumed that the size is specified in terms of DISPLAY=6 characters. See "USAGE" for a dis-
cussion of the USAGE of group items, including records.

c. Integer-1 and integer-2 must be positive integers. If only integer-2 is specified, it repre=~
sents the exact size of the physical block. If both integer-1 and integer-2 are given, they rep~
resent the minimum and maximum sizes of the physical block.

5-7

DATA RECORD

Function

The DATA RECORD clause cross references the record descriptions with their associated file.

General Format

DATA {ggggggsli“} record-name~3 [, record-name-4i|

Technical Notes

a. This clause is optional. If this clause is not included, all records not associated with a
LABEL RECORDS clause will be assumed to be data records.

b. Both record~name-3 and record-name=-4 must be the names given in Ol1-level data entries
subordinate to this FD. The presence of more than one such record-name indicates that the file
contains more than one type of data record. These records may have different descriptions.
The order in which they are listed is not significant.

c. All records within a file share the same area.

FD file-name

Function

The FD file-name clause identifies the file to which this file description entry and the subsequent

record descriptions relate.

General Format

FD file-name

Technical Notes

a. This entry must begin each file description.

b. The file=name must appear in a SELECT statement in the FILEFCONTROL paragraph of the
ENVIRONMENT DIVISION.

LABEL RECORD

Function

The LABEL RECORD clause specifies whether or not labels are present on the file and, if so, identifies
the format of the labels.

General Format

LABEL {RECORDS AR STANDARD

record-name-1[, record-name-2]...

RECORD IS } OMITTED
E

Technical Notes

a. If the clause is omitted, LABEL RECORDS ARE STANDARD is assumed.
b. The OMITTED option is used when the file has no header or trailer labels.

c. The STANDARD option is used when the file has header and trailer labels that conform to
the PDP~10 standard format (see Chapter 8). LABEL RECORDS ARE STANDARD must be

specified for files on disk or DECtape.

d. The record-name option is used when the file labels do not conform to the PDP-10 standard
format. The record=names must appear as the name of a record description (level-01) subordinate
to this FD; the record-names must not appear in a DATA RECORDS clause.

5-10

RECORD CONTAINS

Function

The RECORD CONTAINS clause specifies the size of the data records in this file.

General Format
[RECORD CONTAINS |integer-1 TQ] integer-2 CHARACTERS}

Technical Notes

a. Because the size of each data record is completely defined by its record description entry,
this clause is for documentation purposes only and is never required. However, if it is used,
the following rules must be observed.

b. Integer-1 and integer-2 must be positive integers. Integer-2 may not be less than the size
of the largest record.

c. The data record size is specified in terms of the number of character positions required to
contain the record.

5-1

SD file-name

Function

The SD file-name clause identifies the sort file to which this file description entry and the subsequent

record descriptions relate.

General Format

SD file-name

Technical Notes

a. This entry must begin each sort file description.

b. The file=name must appear in a SELECT statement in the FILES=CONTROL paragraph of the
ENVIRONMENT DIVISION.

c. The DATA RECORD and RECORD CONTAINS clauses are the only descriptive clauses al-
lowed.

5-12

VALUE OF IDENTIFICATION/DATE-WRITTEN

Function

The VALUE OF clause provides specific data for an item within the label records associated with a
file.

General Format

VALUE OF {IDENTIFICATION} {dofo-name- }

DATE-WRITTEN literal -1
DATE-WRITTEN data-name-
! IDENTIFICATION IS | literal-2

Technical Notes

a. The VALUE OF IDENTIFICATION clause is required only if label records are standard; it is
ignored in all other cases. The VALUE OF DATE-WRITTEN is always optional .

b. Only one value may be specified for IDENTIFICATION, and only one value for DATE-
WRITTEN, for each file.

c. IDENTIFICATION represents the file-name and file~name extension of a file with
standard labels. If a data=name is specified, it must be associated with a data item nine

Examples:
(1) VALUE OF IDENTIFICATION IS "COSTAATST"
(2) VALUE OF IDENTIFICATION IS FILE-1-NAME

(WORKING-STORAGE SECTION.)

77 FILE-1-NAME PICTURE IS X(9).
d. DATE-WRITTEN represents the date that a file (with STANDARD labels) was written. If

a data-name is specified, it must be associated with a data item six characters in length. If a

5-13

literal is specified, it must be a nonnumeric or numeric literal six characters in length. The
first two characters are taken as year, the next two as month, and the last two as day. The
DATE-WRITTEN clause is ignored when the file is OPENed for output; instead, the current date
is used.

Examples:
(1) VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS 690612
(2) VALUE OF IDENTIFICATION IS "DATAAAAAA", DATE~-WRITTEN IS FILE-T1-DATE

(WORKING-STORAGE SECTION.)
77 FILE-1-DATE PICTURE IS 9(6).

e. For input files, this information is checked against the file when the file is OPENed. For
output files, the VALUE OF IDENTIFICATION is written when the file is OPENed. See Chapter
8, "Standard Label Procedures".

f. All data items must be either level-77 or level-01 items in working=storage, with usage
either DISPLAY =6 or DISPLAY~7.

RECORD DESCRIPTIONS

Following the FD for a file, a record description is given for each different record format in the file.

A record description begins with a level-01 entry:
01 data-name
where the data-name is one of those listed in the DATA RECORDS clause of the FD.
A complete record description may be as simple as
01 data=name PICTURE picture-string.
or it may be more complex, where the O1-level is followed by a long series of data description entries

of varying hierarchies that describe various portions and subportions of the record.

Record Concepts

A record description consists of a set of data description entries which describe a particular logical re-
cord. Each data description entry consists of a level-number followed by a data-name (or FILLER) which

is followed, as required, by a series of descriptive clauses.

The general format of a data description entry follows.

5-15

DATA DESCRIPTION ENTRY

Function

A data description entry describes a particular item of dats.

General Format

level-number data-name-1
FILLER

[REDEFINES dara-name-Z:l

i P}ETURE} IS picfure-sfring_J

r (~ N
COMPUTATIONAL

COMP
COMPUTATIONAL-1
COMP-1 5
DISPLAY

DISPLAY -6
DISPLAY~7
i _ INDEX]

[('SYNCHRONIZED)/ LEFT
| | SYNC RIGHT
JUSTIFIED) (RIGHT
JUST LEFT

BLANK WHEN ZERO—l

USAGE IS

r

1

VALUE IS Iiferul-]]

FOCCURS [integer-1 TO] integer-2 TIMES ENDEXED BY index-name-~1 [, index~name=2]..]

[DEPENDING ON data-name-1 .ﬂ

5-16

RENAMES ENTRY

66 data-name-1 RENAMES data-name=2 I:THRU dafa-name-3] -

CONDITION-NAME ENTRY

88 condition-name {\LA-LU-E IS E} literal -1 l:THRUlifera|-2j|

VALUES AR E—

[literal=3 EI'HRU Iii'eral-4:|} - .

Technical Notes

a. Each data description entry must be terminated by a period. All semicolons and commas
are optional .

b. The clauses may appear in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name.

c. The VALUE clause must not appear in a data description entry which also contains an
OCCURS clause, or in an entry which is subordinate to an entry containing an OCCURS clause.
The latter part of this rule does not apply to condition-name (level-88) entries.

d. The PICTURE clause must be specified for every elementary item, except a USAGE INDEX
or COMP-1 item.

e. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO can be
specified only at the elementary level.

f. The clauses shown in the General Format appear in alphabetical order on the following
pages .

5-17

BLANK WHEN ZERO

Function

The BLANK WHEN ZERO clause causes the blanking of an item when its value is zero.

General Format

l: BLANK WHEN ZERO:|

Technical Notes

a. When the BLANK WHEN ZERO option is used and the item is zero, the item is set to
blanks.

b. BLANK WHEN ZERO can be specified only at the elementary level and only for numeric or
numeric~edited items whose usage is DISPLAY -6 or DISPLAY-7.

c. More comprehensive editing features are available in the PICTURE clause. If a PICTURE
clause appears in the same data description entry and contains the zero suppression symbol *
(zero suppress and replace with *), the field is replaced with * (see PICTURE).

5-18

condition-name (level-88)

Function

To assign a name to a value or range of values of the associated data item.

General Format

_ VALUE 1S . - . _
88 condition-name VALUES ARE} literal-1 [I'HRU literal 2}

, literal-3 I}HRU liferal-4]

Technical Notes

a. Each condition-name requires a separate level=88 entry. This entry contains the name
assigned to the condition, and the value or values associated with that condition. Condition-

name entries must immediately follow the data description entry with which the condition-name
is to be associated.

b. A condition-name entry can be associated with any elementary or group item except
(1) another condition-name entry, or
(2) alevel-66 item.

c. Some examples of possible level-88 entries are given below.

(1) 05 B-FIELD PICTURE IS 99.
88 B1 VALUEIS 3.
88 B2 VALUES ARE 50 THRU 69.
88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.
88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.

(2) 02 C-FIELD PICTURE IS XXX.
88 C-YES VALUE IS "YES".
88 C-NO VALUE IS "NOA".

d. The data item with which the condition=name is associated is called a conditional variable.
A conditional variable may be used to qualify any of its condition-names. If references to a
conditional variable require indexing, subscripting, or qualification, then references to its

associated condition-names also require the same combination of indexing, subscripting, or
qualification.

5-19

e. A condition=name is used in conditional expressions as an abbreviation for the related
condition. Thus, if the above DATA DIVISION entries (note ¢) are used, the statements in
each pair below are functionally equivalent.

Relational Expression Condition=Name
(1) IF B~FIELD IS EQUALTO 3 IF Bl
(2) IF B~FIELD IS GREATER THAN 49 IFB2
AND LESS THAN 70
(3) IF B~FIELD IS EQUAL TO 20 OR IFB3

EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND LESS
THAN 38 .

(4) IF B~FIELD IS GREATER THAN 69 IFB4
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96

(5) IF C~FIELD IS EQUAL TO "YES" IFC-YES

f. Literal-1 must always be less than literal=2, and literal-3 less than literal-4. The values
given must always be within the range allowed by the format given for the conditional variable.
For example, any condition-name values given for a conditional variable with a PICTURE of

PP999 must be in the range of .00000 to .00999. (See Note | under PICTURE in this chapter for
the meaning of P in a picture=string.)

5-20

data-name/FILLER

Function

A data-name specifies the name of the data being described. The word FILLER specifies an unreferenced

portion of the logical record.

General Format
level -number data-name
FILLER

Technical Notes

a. A data-name or the word FILLER must immediately follow the level-number in each data
description entry.

b. A data-name must be composed of a combination of the characters A through Z, 0 through
9, and the hyphen. It must contain at least 1 alphabetic character and must not exceed 30
characters in length. It must not duplicate a COBOL reserved word.

c. The key word FILLER is used to name an unreferenced elementary item in a record (that is,
an item to which the programmer has no reason for assigning a unique name). A FILLER item
cannot, under any circumstances, be referenced directly in a PROCEDURE DIVISION statement .
However, it may be indirectly referenced by referring to a group-level item of which the

FILLER item is a part.

5-21

JUSTIFIED

Function

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data item.

General Format

JUSTIFIED | | RIGHT
JUST LEET

Technical Notes

a.

The JUSTIFIED clause cannot be specified at a group level, or for numeric or numeric

edited items. If neither RIGHT nor LEFT is specified, RIGHT is assumed.

b.

C.

d.

The standard rules for positioning data within an elementary data item are as follows:

(1) Receiving data item described as numeric or numeric-edited (see definitions in Notes
f and i under PICTURE in this chapter).

The data is aligned by decimal point and is moved to the receiving character positions with
zero fill or truncation on either end as required.

If an assumed decimal point is not explicitly specified, the data item is treated as if it had
an assumed decimal point immediately following its rightmost character, and the sending
data is aligned according to this decimal point.

(2) Receiving data item described as alphanumeric (other than numeric edited) or alpha=
betic (see definitions in Notes e and g under PICTURE in this chapter).

The data is moved to the receiving character positions and aligned at the leftmost character
position with space fill or truncation at the right end as required.

When a receiving item is described as JUSTIFIED LEFT, positioning occurs as in b (2) above.
When a receiving data item is described with the JUSTIFIED RIGHT clause and is larger

than the sending data item, the data is aligned at the rightmost character position in the re-
ceiving item with space fill at the left end.

When a receiving data item is described with the JUSTIFIED RIGHT clause and is smaller than
the sending data item, the data is aligned at the rightmost character position in the receiving
item with truncation at the left end.

Examples are given below.

5-22

03 ITEM-A PICTUREIS
X(8) VALUE IS "ABCDEFGH".

03 ITEM-B PICTUREIS
X(4) VALUE IS "WXYZ".

03 ITEM-C PICTURE IS X(6).

03 ITEM-D PICTURE IS X(6)
JUSTIFIED RIGHT.

Contents of Receiving Field

MOVE ITEM-A TO ITEM-C. |als[c|p|E |F]
MOVE ITEM-A TO ITEM-D. [c|p|E[F]G[H]
MOVE ITEM-B TO ITEM=C. w|x|Y|z| ala
MOVE ITEM-B TO ITEM-D. Al ajwl x| Y|z

5-23

level-number

Function

The level-number shows the hierarchy of data within a logical record. In addition, special level-
numbers are used for condition-names (level-88), noncontiguous WORKING-STORAGE items (level-
77), and the RENAMES clause (level-66).

General Format

level-number data-name
FILLER

Technical Notes

a. A level-number is required as the first element in each data description entry.
b. Level-numbers may be placed anywhere on the source line, at or after margin A.

c. Level-number 88 is described under "condition-name (level-88)", and level=number 66 is
described under "RENAMES (level-66)", both in this section. Level-number 77 is described
under "WORKING-STORAGE SECTION", in Section 5.2.

d. A further description of level~numbers and data hierarchy can be found in the introduction
to this chapter.

5-24

OCCURS

Function

The OCCURS clause eliminates the need for separate entries for repeated data and supplies information
required for the application of subscripts and indexes.

General Format

,:OCCURS [integer=1 TO] integer~2 TIMES ENDEXED BY index-name-~1 [, index-name-21].]

[DEPENDING ON data-name-1]:l

Technical Notes

a. This clause cannot be specified in a data description entry that has a 66 or 88 level-number,
or in one that contains a VALUE clause.

b. The OCCURS clause is used in defining tables or other homogeneous sets of repeated data.
Whenever this clause is used, the associated data~name and any subordinate data-names must
always be subscripted or indexed when used in a PROCEDURE DIVISION statement .

c. All clauses given in a data description entry that includes an OCCURS clause apply to each
repetition of the item.

d. The integers must be positive. If integer-1 is specified, it must have a value less than in-
teger-2. No value of a subscript may exceed integer=2; in addition, if data~name-1 is speci-
fied, no subscript may exceed the value of data-name~1 at the time of subscripting.

e. An index-name is not defined elsewhere; its appearance in an INDEXED BY clause is its
only definition. There may be no items of the same name defined elsewhere. The usage of
each index-name is assumed to be INDEX.

f. Subscripting is described in the introduction to this chapter.

5-25

PICTURE

Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary

item.

General Format
PICTURE
PIC

Technical Notes

} IS picl'ure-sfring]

a. A PICTURE clause may be used only at the elementary level. It may not be used with an
item described as USAGE INDEX or COMP-1.

b. A picture~string consists of certain allowable combinations of characters in the COBOL
character set used as symbols. These symbols are as follows:

(M

2)

3)

4)

Symbols representing data characters

9 represents a numeric character (0 through 9)

A represents an alphabetic character (A through Z, and the space)

X represents an alphanumeric character (any allowable character)

Symbols representing arithmetic signs and assumed decimal point positioning
V represents the position of the assumed decimal point

P represents an assumed decimal point scaling position

S represents the presence of an arithmetic sign

Symbols representing zero suppression operations

Z represents standard zero suppression (replacement of leading zeroes by spaces)
* represents check protection (replacement of leading zeroes by asterisks)
Symbols representing insertion characters

$ represents a dollar sign (this sign floats from left to right and replaces rightmost
leading zero when more than one $ appears)

T1f the CURRENCY SIGN IS clause appears in the SPECIAL-NAMES paragraph, the symbol specified
by the literal must be used in all instances in place of the $.

5-26

, represents an insertion comma T
. represents an actual decimal poinfT
B represents an insertion blank
0 represents an insertion zero
(5) Symbols representing editing sign-control symbols
+ represents an editing plus sign These float and replace rightmost leading zero
- represents an editing minus sign when more than one + or - appear
CR represents an editing Credit symbol
DB represents an editing Debit symbol

(6) Consecutive repetitions of a picture=string symbol can be abbreviated to the symbol
followed by (n), where n indicates the number of occurrences.

c. A maximum number of 30 symbols can appear in a picture=string. Note that the number of
symbols in a picture~string and the size of the item represented are not necessarily the same.
There are two reasons for this discrepancy. First, the abbreviated form for indicating consecu-
tive repetitions of a symbol may result in fewer symbols in the picture=string than character po-
sitions in the item being described. For example, a data item having 40 alphanumeric character
positions can be described by a picture=string of only 5 symbols:

PICTURE IS X(40)

The second reason is that some symbols are not counted when calculating the size of the data
item being described. These symbols include the V (assumed decimal point), P (decimal point
scaling position), and S (arithmetic sign); these symbols do not represent actual physical char-
acter positions within the data item. For example, the character=string

S9IPV99

represents a S-position data item.

Other size restrictions for numeric and numeric edited items are given under the appropriate
headings below.

d. There are five categories of data that can be described with a PICTURE clause: alphabetic,
numeric, alphanumeric, alphanumeric edited, and numeric edited. A description of each cate-
gory is given in the notes below.

e. Definition of an Alphabetic Item

(1) Its picture=string may contain only the symbol A.

(2) It may contain only the 26 letters of the alphabet and the space.
f. Definition of a Numeric Item

(1) Its picture~string may contain only the symbols 9, P, S, and V. It must contain at
least one 9.

(2) It may contain only the digits O through 9 and an operational sign.

TIf the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES paragraph, the function
of the comma and decimal point is reversed.

5-27

g. Definition of an Alphanumeric Item

(1) Its picture=string can consist of all Xs, or a combination of the symbols A, X, and 9
(except all 9s or all As). The item is treated as if the character-string contained all Xs.

(2) Tts contents can be any combination of characters from the complete character set
(see Section 1.2, Chapter 1).

h. Definition of an Alphanumeric Edited Item

(1) TIts picture=string can consist of any combination of As, Xs, or 9s (it must contain at
least one A or one X), plus at least one of the symbols B or 0.

(2) Tts contents can be any combination of characters from the complete character set.
i. Definition of a Numeric Edited Item
(1) Its picture-string must contain at least one of the following editing symbols:

It may also contain the symbols 9, V, or P.

The allowable sequences are determined by certain editing rules for each symbol and can be
found in Note j.

The picture=string must have from 1 to 18 digit positions.

(2) The contents can be any combination of the digits O through 9 and the editing
characters.

i- The symbols used to define the category of an elementary item and their functions are as
follows.

A Each A in the picture=string represents a character position which can contain only a
letter of the alphabet or a space.

B Each B in the picture-string represents a character position into which a space charac-
ter will be inserted during editing.

Examples: (A-FLD contains the value 092469)

B-FLD picture=string Result
MOVE A-FLD TO B-FLD. 99B99B99 [o]o] A]2[4 a6][9]
MOVE A-FLD TO B-FLD. 99998888 [o]9]2]4] A[Al Al A]

Also see Note n, "Simple Insertion Editing".

P Each P in the picture=string indicates an assumed decimal point scaling position and is
used to specify the location of an assumed decimal point when the point is outside the
positions defined for the item. Ps are not counted in the size of the data item. They
are counted in determining the maximum number of digit positions (18) allowed in nu-
meric edited items or numeric items. Ps can appear only to the left or right of the
picture=string and must appear together. The assumed decimal point is assumed to be
to the left of the string of Ps if the Ps are at the left end of the picture=string and to

5-28

the right of the string of Ps if the Ps are at the right end of the picture=string. If the V
symbol is used in this case, it must appear in either of those positions; it is redundant.

Examples:

PPP9999 (or VPPP9999) defines a data item of four character positions whose contents will be
treated as .000nnnn during any decimal point alignment operation (such as in a MOVE or ADD).

9PPP (or 9PPPV) defines a data item of one character position whose contents will be treated as
n000 during any decimal point alignment operation.

S

An S in a picture=string indicates that the item has an operational sign and will retain
the sign of any data stored in it. The S must be written as the leftmost character in the
picture-string. If S is not included, all data will be stored in the item as an absolute
value and will be treated as positive in al! operations. The S symbol is not counted in
the size of the data item.

A V in a picture=string indicates the location of the assumed decimal point and may
appear only once in a picture=string. The V does not represent a physical character
position and is not counted in *he size of the data item. If the assumed decimal point
position is at the right of the rightmost character position of the item, the V is redun-
dant (that is, 9999 is functionally equivalent to 9999V).

Each X in a picture-string represents a character position which can contain any allow-
able character from the complete character set.

Each Z in a picture-string represents the leftmost leading numeric character positions
in which leading zeroes are to be replaced by spaces. Each Z is counted in the size of
the item.

Each * in a picture-string represents the leftmost leading numeric character positions in
which leading zeros are to be replaced by *. Each * is counted in the size of the item.

Examples: (A-FLD contains the value 00305)

B-FLD picture=string Result
MOVE A-FLD TO B-FLD 999999 lo jo]o]3]0]5]
MOVE A-FLD TO B-FLD 229999 [alalo]3]o]3]
MOVE A-FLD TO B-FLD 222777 |A]A]A]3]0]5]
MOVE A-FLD TO B-FLD 2777.277 la[3 [o]5].ToJ0]

Also see Note S, "Zero Suppression Editing".

9

Each 9 in a picture-string represents a character position which can contain a digit.
Each 9 is counted in the size of the item.

Each 0 in a picture-string represents a character position into which a zero will be in-
serted. It is counted in the size of the item. The O symbol works in the same manner
as the B symbol .

Each, in a picture-string represents a character position into which a comma will be
inserted.

5-29

Examples: (A~FLD contains 362577)

B-FLD picture-string Result
MOVE A-FLD TO B-FLD 9,999,999 lof,13]s]2],[5]7]7]
MOVE A-FLD TO B-FLD z,222,272Z [alAl3]6] 2], [5]7]7]

Also see Note n, "Simple Insertion Editing".

A . (dot or period) in a picture=string is an editing symbol that represents an actual deci-
mal point. It is used for decimal point alignment and also indicates where a point (.) is
to be inserted. This cymbol is counted in the size of the item. Only one . may appear
in a picture=string.

Examples: (A-FLD contains 352699) 1

B-FLD picture-string Result
MOVE A-FLD TO B-FLD 99,999.99 lo[a],[5]2]e].]9]9]
MOVE A-FLD TO B-FLD 77,222.72 [al3].]5]2]6].]9]9]
MOVE A-FLD TO B-FLD 99999.9999 lol3[5]2]6].]9]9]0]0]

See Noted under MOVEin Chapter 6 for a clarification of the rule governing the third example.
Also see Note O, "Special Editing".

+

_ Each of these symbols is used as an editing sign-control symbol. When used, they
CR represent the character position(s) into which the editing sign-control symbol will be
DB placed. Only one of these symbols can appear in a character-string.

The + and = symbols can appear either at the beginning or at the end of a picture-string. The
CR and DB symbols can appear only at the end of a picture=string.

+ The character position containing this symbol will contain a + if the sending field either
was unsigned (absolute) or had a positive operational sign; it will contain a - if the send=-
ing field had a negative operational sign.

~ The character position containing this symbol will contain a space if the sending field
either was unsigned (absolute) or had a positive operational sign; it will contain a - if the
sending field had a negative operational sign.

DB {either of these symbols will contain spaces if the sending field either was unsigned
(absolute) or had a positive operational sign; they will contain the symbol specified if the
sending field had a negative operational sign.

CR} Each of these symbols requires two character positions. The character positions containing

TThe caret (A) symbol is used to indicate the location of the assumed decimal point.

5-30

Examples: (A-FLD contains 3456/\25, B-FLD contains -345?\25)T

C FLD picture=string Result
MOVE A-FLD TO C-FLD 9999.998CR [3[4]5]6].[2] 5]alA]A]
MOVE B-FLD TO C-FLD 9999.99BCR [3]4]5]6].]2]5]A]lC[rR]
MOVE A-FLD TO C-FLD +9999.99 [+]3]4]5]6].[2]5]
MOVE B-FLD TO C-FLD +9999.99 |-13]4]5]6].]2]5]
MOVE A-FLD TO C-FLD -9999.99 [al3[4]5]6] .12]5]
MOVE B-FLD TO C-FLD -9999.99 [-13[4]5[6] .]2]5]
MOVE A-FLD TO C-FLD 9999.99DB 13]4]5]6] .] 2] 5]a]a]
MOVE B-FLD TO C-FLD 9999.99DB [3]4]5]6] .[2[5]p]8]
MOVE B-FLD TO C-FLD $9999.99+ ls13[4]5]6] [2]5]-]

Also see Note p, "Fixed Insertion Editing".

The + and - can also be used to perform floating insertion editing, a combination of zero sup-
pression and symbol insertion. Floating insertion editing is indicated by the occurrence of two
or more consecutive + or - symbols at the beginning of the picture-string. The total number of
significant positions in the editing field must be at least one greater than the number of signifi-
cant digits in the data to be edited. The floating + or ~ moves from left to right through any
high-order zeros until a decimal point or the picture character 9 is encountered.

Examples: (A-FLD contains 005(}\25; B-FLD contains —0056/%5)

C-FLD picture=string Result
MOVE A-FLD TO C-FLD +4999.99 [al+]o]5]6]. 2] 5]
MOVE B-FLD TO C-FLD +H+49.99 La[a]-]5]6].]2] 5]
MOVE ZERO TO C-FLD +999.99 [Al+]o]o]o]. o] o]
MOVE ZERO TO C-FLD L [ala[a]a]a]a]a] 4]

(In order for floating to go past decimal point, all numeric positions of item must be represented
by the floating insertion symbol)

MOVE A-FLD TO C-FLD --999.99 [alalo]s5]6].2]5]
MOVE B-FLD TO C-FLD --999.99 |Al-Jo[5]6].[2]5]
MOVE ZERO TO C-FLD -==99.99 LAl a[AJofo].]o]o]
MOVE ZERO TOC-FLD ==--- - LAl Al Al ATATAJA] A

Also see Note o, "Floating Insertion Editing".

T
The caret (A) symbol is used to indicate the location of the assumed decimal point.

5-31

Note that the + and - symbols are distinct from the S (operational sign) symbol. Normally,

the + and - symbols are used to describe display items that are to appear on some printed report;
they provide visual sign indication and cannot be used with items appearing as operands in
arithmetic statements.

$ A$ (or the symbol specified by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph) represents the character position into which a $ (or the currency symbol) is to
be placed. This symbol is counted in the size of the item.

Examples: (A-FLD contains 345?\75)

B-FLD character-string Result
MOVE A-FLD TO B~FLD $9,999.99 Is13],14][5]¢] .]7]5]
MOVE A-FLD TO B-FLD $999,999.99 [s o o[3].[4]5]¢].]7]5]

Also see Note p, "Fixed Insertion Editing".

The $ symbol can also be used to perform floating insertion editing. Floating insertion editing
is indicated by the occurrence of two or more consecutive $ symbols at the beginning of the
character string. The total number of significant positions in the editing field must be at least
one greater than the number of significant digits in the data to be edited. The floating $ symbol
floats from left to right through any high-order zeros until a decimal point or the picture char-
acter 9 is encountered.

Examples: (A-FLD contains 005625)
A

B-FLD picture-string Result
MOVE A-FLD TO B-FLD $$9,999.99 als|ol, Jo]5]6] .|2]3]
MOVE A-FLD TO B-FLD $$5,588.99 |a[Al Al Al$ [5]6] -]2]5]
MOVE ZERO TO B-FLD $$$,999.99 [aja]al$]o]ofo] .[0]0]
MOVE ZERO TO B~FLD $$5,555.$% [a]a] A AlATA]A[A] ATA

Also see Note q, "Floating Insertion Editing".
k. There are two general methods of performing editing in the PICTURE clause:
(1) insertion, or
(2) suppression and replacement.
There are four types of insertion editing available:
(1) Simple insertion
(2) Special insertion
(3) Fixed insertion
(4) Floating insertion
There are two types of suppression and replacement editing:
(1) Zero suppression and replacement with spaces

(2) Zero suppression and replacement with asterisks

5-32

[. The type of editing that may be performed upon an item depends on the category to which
the item belongs.

Category Type of Editing Allowed
Alphabetic None
Numeric None
Alphanumeric None
Alphanumeric edited Simple insertion: 0 and B
Numeric Edited All (except for the restrictions given in Note m)

m. Floating insertion editing and zero suppression/replacement editing are mutually exclusive
in a PICTURE clause. Only one type of replacement can be used with zero suppression in a
PICTURE clause.

n. Simple Insertion Editing (, B 0)

The , (comma), B (space), and O (zero) constitute those editing symbols used in simple
insertion editing. These insertion characters represent the character position in the item into
which the character will be inserted. These symbols are counted in the size of the item.

o. Special Insertion Editing (.)

The . (decimal point) symbol is used in special insertion editing. In addition to its use as
an insertion character, it also represents the position of the decimal point for decimal point
alignment. This symbol is counted in the size of the item. The symbols . and V (assumed
decimal point) are mutually exclusive in a PICTURE clause. If the . is the last symbol in the
character=string, it must be immediately followed by one of the punctuation characters (semi-
colon or period) followed by a space.

p. Fixed Insertion Editing ($ + - CR DB)

The currency symbol ($) and the editing sign control characters (+ - CR DB) constitute the
characters used in fixed insertion editing. Only one $ and one of the editing sign control
characters can be used in a PICTURE character=string. When the symbols CR or DB are used,
they represent two character positions in determining the size of the item. The symbols + or -
when used must be the leftmost or rightmost character positions to be counted in the size of the
item. The $ when used must be the leftmost character position to be counted in the size of the
item, except that it can be preceded by a + or = symbol. A fixed insertion editing character
appears in the same character position in the edited item as it occupied in the PICTURE
character=string.

Editing sign control symbols produce the following results depending on the value of the
data being edited.

5-33

Editing Symbol in Result
PICTURE character=string Data Positive Data Negative
+ + -
- space -
CR 2 spaces CR
D8 2 spaces D8

q. Floating Insertion Editing (§$ ++ =-)

The $ and the editing sign control symbols + and - are the floating insertion editing char-
acters and are mutually exclusive in a given PICTURE string.

Floating insertion editing is indicated in a PICTURE character=string by using a string of ot
least two of the allowable insertion characters to represent the leftmost numeric character
positions into which the insertion characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion characters or to the immediate right of
this string are part of the floating string.

In a PICTURE character-string, there are only two ways of representing floating insertion
editing:

(1) Represent any two or more of the leading numeric character positions on the left of the
decimal point by the insertion character. The result is that a single insertion character will be
placed in the character position immediately preceding the leftmost nonzero digit of the data
being edited or in the character position immediately preceding the decimal point, or in the
character position represented by the rightmost insertion character, whichever is encountered
first.

(2) Represent all numeric character positions in the character=string by the insertion char~
acter. If the value is not zero, the result is the same as when the insertion character appears
only to the left of the decimal point. If the value is zero, the entire item is set two spaces.

A picture=string containing floating inserting characters must contain at least one more
floating insertion character than the maximum number of significant digits in the item to be
edited. For example, a data field containing five significant digit positions requires an edit-
ing field of at least six significant positions.

All floating insertion characters are counted in the size of the item.
r. Zero Suppression Editing (Z *)

The suppression of leading zeroes and commas in a data field is indicated by the use of the
Z or the * symbol in a picture=string. These symbols are mutually exclusive in a given picture-
string. Each suppression symbol is counted in the size of the item. If a Z is used, the re-
placement character is a space. If an * is used, the replacement character is an *.

Zero suppression and replacement is indicated by a string of one or more Zs or *s to repre~
sent the leading numeric-character positions which are to be replaced when the associated
character position in the data contains a leading zero. Any of the simple insertion characters
embedded in this string of zero suppression symbols or to the immediate right of this string are
part of the string.

If the zero suppression symbols appear only to the left of the decimal point, any leading
zero in the data that corresponds to a zero suppression symbol in the string is replaced by the
replacement character.

Suppression terminates at the first nonzero digit in the data represented by the suppression
symbol in the string or af the decimal point, whichever is encountered first.

If all numeric character positions in the picture=string are represented by the suppression
symbol and the value of the data is not zero, the result is the same as if the suppression char-
acters were only to the left of the decimal point. If the value is zero, the entire item will be
set to the replacement character (with the exception of the decimal point if the suppression
symbol is an *).

When the * is used and the clause BLANK WHEN ZERO appears in the same entry and
zeros are moved to the field, all character positions with the exception of the decimal point
are replaced by *.

s. The symbols + - * Z and $ when used as floating replacement characters are mutually ex-
clusive within a given picture=string.

t. The following chart shows the order of precedence of the various picture=string symbols.
Each "Y™ on the chart indicates that the symbol in the top row directly above can precede the
symbol at the left of the row in which the "Y" appears.

{ } indicate that the symbols are mutually exclusive.
The P and the fixed insertion + and - appear twice.

P9, +9, and -9 represent the case where these symbols appear to the left of any numeric
positions in the string.

9P, 9+, and 9- represent the case where these symbols appear to the right of any numeric
positions in the string.

The Z, *, and the floating ++, ==, and $$ also appear twice.

Z.,*., 8., +., and --. represent the case where these symbols appear before the
decimal point position.

.Z, .*, .$%, .++, ond .-- represent the case where these symbols appear following the
decimal point position.

5-35

OTHER

}55. .$5

Y

Y

++

[
!

i

++

{

9

7

2

YIY|Y Y YI[YIY]Y

YILY|Y Y Y|YI|Y]|Y

YILYLIY Y| Y|Y|Y]Y

Y|Y |Y Y

Y|Y Y]Y

Y

Y

Y

Y

FIXED INSERTION

Y

Y

Y

A
}$ XP99PS V{

CR
DB

i

36

&

Y|Y]Y]Y

YIY]LY]Y

Y

Y

YIY]IYIY]Y

YIYILY |Y|Y

YIY|Y |Y]Y

YIYIY |Y]Y

B

0

4

+

I

lo

E}YYYY

P9

9P

v |y |y]yY
}YYYYY

Z
*

{

9

++
}YYYY

--}YYY
SS Y |[Y Y |Y]Y

(

NOIL3ISNI a3IxId

5-36

REDEFINES

Function

The REDEFINES clause allows the same core memory area to be allocated to two or more data items.

General Format

level-number data=name-1 REDEFINES data-name-2

Technical Notes

a. The REDEFINES clause, when used, must immediately follow data-name-1.
b. The level-numbers of data-name-1 and data-name-2 must be identical.

c. This clause must not be used for level-number 66 or 88 items. Also, it must not be used
for level =01 entries in the FILE SECTION; implicit redefinition is provided by specifying more
thon one data-name in the DATA RECORDS ARE clause in the FD.

d. When the level-number of data-name-2 is other than level-01, it must specify a storage
area of the same size as data-name=-1. FILLER items may be used to comply with this rule.

e. This entry must immediately follow the entries describing the area being redefines.

f. The data description entry for data~-name-2 cannot contain an OCCURS clause or be sub-
ordinate to an entry that contains an OCCURS clause. Also, the redefinition entries cannot
contain VALUE clauses, except in condition-name (level-88) entries.

g. Data-name-2 must not be qualified.

h. The following example illustrates the use of the REDEFINES entry. The entries shown
cause AREA-A and AREA-B to occupy the same area in memory .

03 AREA-A.

04 FIELD-1 PICTURE IS X(7).
04 FIELD-2 PICTURE IS A(13).
04 FIELD-3.

5-37

05 SUBFIELD-1 PICTURE IS
S999V99 USAGE IS COMP.
05 SUBFIELD-2 PICTURE IS
S999V99 USAGE IS COMP.
03 AREA-B REDEFINES AREA-A.
04 FIELD-A PICTURE IS X(22).
04 FIELD-B PICTURE IS X(5).
04 FILLER PICTURE IS X(5).

Note how the length of each area is calculated so that AREA-B can be defined so that its
size is equal to that of AREA-A.

AREA-A: FIELD-1 7 6-bit characters (DISPLAY=6 assumed)
FIELD-2 13 6-bit characters (DISPLAY=-6 assumed)
SUBFIELD-1 6 6-bit characters (COMP items occupy one word, or
six 6-bit character positions)
SUBFIELD-2 _ 6 6-bit characters (COMP items occupy one word, or
six 6-bit character positions)
Total 6-bit characters 32
AREA-B: FIELD-A 22 6-bit characters (DISPLAY-6 assumed)
FIELD-B 5 6-bit characters (DISPLAY=6 assumed)
FILLER 5 6-bit characters (needed to make AREA-B size equal
to AREA-A)
Total 6-bit characters 32

Other examples and uses of REDEFINES are given under "Setting Up Tables" in Section 5.2.

5-38

RENAMES (level-66)

Function

The RENAMES clause permits alternate, possibly overlapping, groupings of elementary items.

General Format

66 data-name-1 RENAMES data-name-2 [THRU dafa-name-3]

Technical Notes
a. All RENAMES entries associated with items in a given record must immediately follow the
last data description entry for that record.

01 data-name-a

(data description entries)

(level-66 entries associated with this logical record)

01 data-name-b.

b. Data-name-1 cannot be used as a qualifier, and can be qualified only by the names of the
level-01 or FD entries associated with it.

c. Data-name-2 and data-name-3 must be the names of items in the associated logical re-
cord and cannot be the same data-name.

Neither data-name-2 nor data-name-3 can have a level-number of 01, 66, 77, or 88.
Neither of these data-names can have an OCCURS clause in its data description entry, nor be
subordinate to an item that has an OCCURS clause in its data description entry.

Data-name-2 must precede data-name-3 in the record description, and data-name-3 can-
not be subordinate to data~-name=2. If there is any associated redefinition (REDEFINES), the
ending point of data-name -3 must logically follow the beginning point of data-name-2.

When data-name-3 is specified, data-name-1 is a group item that includes all elementary
items starting with data-name-2 (if data-name-2 is an elementary item) or the first elementary
item in data-name-2 (if data-name-2 is a group item) and concluding with data-name-3 (or
the last elementary item in data-name-3).

5-39

If data-name=3 is not specified, data-name~2 can be either a group or elementary item.
If it is a group item, data-name-1 is treated as a group item and includes all elementary items
in data~name~2; if data-name-2 is an elementary item, data-name-1 is treated as an elementary
item with the same descriptive clauses.

d. The following examples illustrate the use of the RENAMES entry.
01 RECORD-NAME.
02 FIRST-PART.
03 PART-A.
04 FIELD-1 PICTUREIS ...
04 FIELD-2 PICTURE IS ...
04 FIELD-3 PICTURES ...
03 PART-B.
04 FIELD-4 PICTUREIS ...
04 FIELD-S5.
05 FIELD-5A PICTUREIS ...
05 FIELD-58 PICTUREIS ...
02 SECOND-PART.
03 PART-C.
04 FIELD-6 PICTUREIS ...
04 FIELD-7 PICTUREIS ...
66 SUBPART RENAMES PART-B THRU PART-C.
66 SUBPARTI RENAMES FIELD-3 THRU SECOND-PART.
SUBPART2 RENAMES FIELD-58 THRU FIELD-7.
AMOUNT RENAMES FIELD-7.

& &

5-40

SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the positioning of an elementary item within a computer word

(or words).

General Format

SYNC RIGF

SYNCHRONIZED LEFT
RIGHT

Technical Notes

a. This clause can appear only in the data description of an elementary item.

b. This clause specifies that the item being defined is to be placed in an integral number of
computer words and that it is to begin or end at a computer word boundary. No other adjacent
fields are to occupy these words. The unused positions, however, must be counted when cal-
culating (1) the size of any group to which this elementary item belongs, and (2) the computer
core allocation when the item appears as the object of a REDEFINES clause. However, when
a SYNCHRONIZED item is referenced, the original size of the item (as indicated by the
PICTURE clause) is used in determining such things as truncation, justification, and overflow.

c. SYNCHRONIZED LEFT or SYNC LEFT specifies that the item is to be positioned in such a
way that it will begin at the left boundary of a computer word.

SYNCHRONIZED RIGHT or SYNC RIGHT specifies that the item is to be positioned in
such a way that it will terminate at the right boundary of a computer word.

d. When the SYNCHRONIZED clause is specified for an item within the scope of an OCCURS
clause, each occurrence of the item is SYNCHRONIZED.

e. Any FILLER required to position the item as specified will be automatically generated by
the compiler. The content of this FILLER is indeterminate.

f. COMP(UTATIONAL) and COMP(UTATIONAL)-1 items are always implicitly
SYNCHRONIZED RIGHT.

5-41

USAGE

Function

The USAGE clause specifies the format of a data item in computer storage.

General Format

r ~N
COMPUTATIONAL
COMP

COMPUTATIONAL-1
[USAGE 15 { SOME-) :l

DISPLAY
DISPLAY=6
DISPLAY -7
| INDEX

Technical Notes

a. The USAGE clause can be written at any level. If it is written at a group level, it

applies to each elementary item in the group. The USAGE clause of an elementary item can-
not contradict the USAGE clause of a group to which the item belongs.

The implied USAGE of a group item is DISPLAY=7 if all items subordinate to it are de-
fined as DISPLAY-7; otherwise, its USAGE is DISPLAY-6 (DISPLAY).

b. This clause specifies the manner in which a data item is represented within computer
memory .

c. COMPUTATIONAL (COMP)
(1) COMRP is equivalent to COMPUTATIONAL.

(2) A COMPUTATIONAL item represents a value to be used in computations and must be
numeric. Its picture-string can contain only the symbols: 9 S V P
Its value is represented as a binary number with an assumed decimal point.

(3) If a group item is described as COMPUTATIONAL, the elementary items in the group
are COMPUTATIONAL. However, the group item itself is not COMPUTATIONAL and
cannot be used as an operand in arithmetic computations.

(4) COMPUTATIONAL items of not more than 10 decimal positions will be SYNCHRO-
NIZED RIGHT in one computer word. COMPUTATIONAL items of more than 10 decimal
positions will be SYNCHRONIZED RIGHT in two full computer words.

5-42

(5) The following illustrations give the format of a COMPUTATIONAL item.

sign
01 35
1-WORD COMPUTATIONAL ITEM
i__sign
01 35
l_'___.not used
0 35

2-WORD COMPUTATIONAL ITEM

COMPUTATIONAL-1 (COMP-1)
(1) COMP-1 is equivalent to COMPUTATIONAL-1.

(2) A COMPUTATIONAL-1 item can contain a value, in floating point format, to be
used in computations and must be numeric. A COMP-1 item must not have a PICTURE.

(3) If a group item is described as COMPUTATIONAL-1, the elementary items within
the group are COMPUTATIONAL-1. However, the group item itself is not COMPUTA-
TIONAL-1 and cannot be used as an operand in arithmetic computations.

(4) COMPUTATIONAL-1 items will be SYNCHRONIZED in one full computer word.
(5) The following illustration gives the format of a COMPUTATIONAL-1 item.

sign

binary
exponent

01 9 35

mantissa

DISPLAY-6 (DISPLAY)
(1) DISPLAY is equivalent to DISPLAY=6.

(2) A DISPLAY-6 item represents a string of 6-bit characters. Its picture-string may
contain any picture symbols.

(3) DISPLAY=-6 items may be SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT, as
desires; otherwise, they may share a computer word with other DISPLAY -6 items.

(4) The illustration below gives the format of a DISPLAY -6 word.

(5) If the USAGE clause is omitted for an elementary item, its USAGE is assumed to be
DISPLAY-6 (DISPLAY).

DISPLAY-7

(1) A DISPLAY-7 item represents a string of 7-bit ASCII characters. Its picture-string
may contain any picture symbols.

(2) If any item in a record is DISPLAY-7, all items in that record must be DISPLAY-7.

(3) DISPLAY-7 items can be SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT, as
desired; otherwise, they may share a computer word with other items. [f the item is
SYNCHRONIZED RIGHT, the last character of the item will end in bit 34 of a computer
word.

(4) The illustration below gives the format of a DISPLAY-7 word.

7

0 7 14 21 28 35

INDEX

(1) An elementary item described as USAGE INDEX is called an index data-item. It is
treated as a COMP item with PICTURE $9(5).

(2) An index data-item must not have a PICTURE.

(3) If a group item is described as INDEX, the elementary items within the group are
treated as INDEX. However, the group item itself is not INDEX and cannot be used as
an operand in arithmetic statements.

(4) Index data items and index-names (defined in the OCCURS clause by the INDEXED
BY option) are equivalent.

VALUE

Function

The VALUE clause defines the initial value of WORKING-STORAGE items, and the values associated

with condition-names (level-88).

General Format
FORMAT 1: I: VALUE IS literal __J

FORMAT 2: VALUE IS)) [.]]
[{MARE} literal-1 | THRU literal-2

|:, literal-3 [THRU |ifera|—4] :l

Technical Notes

a. Format 2 can be specified only for level-88 items.

b. Inthe FILE SECTION, the VALUE clause can be used only with level-88 items. In the
WORKING-STORAGE SECTION, it can be used at all levels, except level=66. It must not
be stated in a data description entry that contains an OCCURS clause or that is subordinate to
an entry containing an OCCURS clause. Also, it must not be stated in an entry that contains
a REDEFINES clause or that is subordinate to an entry that contains a REDEFINES clause (unless
the VALUE clause is part of a level-88 entry).

c. If the VALUE clause is used at a group level, the literal must be a figurative constant or
a nonnumeric literal. The group item is initialized to this value without consideration for the
individual elementary or group items contained within this group. No VALUE clauses can ap-
pear at subordinate levels within the group.

d. If no VALUE clause appears for a WORKING=-STORAGE item, the initial value of the
item is unpredictable.

e. More information concerning Format 2 can be found under "condition-name (level-88)"
in this chapter.

5-45

f. The VALUE clause must not conflict with other clauses in the data description entry or in
the data description entries within the hierarchy of the item. The following rules apply:

(1) If the category of an item is numeric, all literals in the VALUE clause must be nu-
meric. All literals in @ VALUE clause must have a value within the range of values in-
dicated by the PICTURE clause; for example, an item with PICTURE PPP9 may have only
the values in the range .0000 through .0009.

(2) If the category of the item is alphabetic or alphanumeric, all literals in the VALUE
clause must be nonnumeric literals. The literal will be aligned according to the normal
alignment rules (see "JUSTIFIED") except that the number of characters in the literal must
not exceed the size of the item.

(3) If the category of an item is numeric-edited or alphanumeric-edited, no editing of
the value is performed.

The figurative constants SPACE(S), ZERO(E)(S), QUOTE(S), LOW-VALUE(S), and HIGH-
VALUE(S) may be substituted for a literal. If the item is numeric, only ZERO(E)(S) is allowed.

5-46

Chapter 6
The PROCEDURE DIVISION

This processing is described by a series of COBOL procedure statements. Statements, sentences, para-
graphs, and sections are generally described in Section 1.7 in Chapter 1. The PROCEDURE DIVISION
must contain at least one paragraph, and each paragraph must contain at least one sentence. Sections
are optional and permit a group of consecutive paragraphs to be referenced by a single procedure-name;
sections can also be used for segmentation purposes (see "Segmentation”). If any section appears in the

PROCEDURE DIVISION, then all paragraphs must appear within a section.

The first entry in the PROCEDURE DIVISION of a source program must be the division-header.
PROCEDURE DIVISION.

The next entry must be either the DECLARATIVES header (see "USE"), or a parograph-name or section-

name.

6.1 SYNTACTIC FORMAT OF THE PROCEDURE DIVISION

The PROCEDURE DIVISION consists of a series of procedure statements grouped into sentences, para-
graphs, and sections. By grouping the statements in this manner, reference can be made to them via a
procedure-name (i.e., a paragraph-name or a section-name). The order in which procedure-statements

are executed can be controlled by using the sequence—control verbs ALTER, GO TO, and PERFORM.

6.1.1 Statements and Sentences

Statements and sentences are generally described in Chapter 1. Statements fall into three categories:
imperative, conditional, and compiler-directing, depending upon the verb used. Verbs, in turn, are
also classified into certain categories. These categories and their relationship to the three statement

categories are given in Table 6-1.

6-1

Table 6-1
Procedure Verb and Statement Categories

Verb Verb Category Statement Category

ADD ARITHMETIC IMPERATIVE
COMPUTE
DIVIDE

MULTIPLY
SUBTRACT

ALTER SEQUENCE-CONTROL
GO 10O
PERFORM

EXAMINE DATA MOVEMENT
MOVE
SET

ENTER
SORT MISCELLANEQUS

STOP

ACCEPT [-O
CLOSE
DISPLAY
OPEN
READ
SEEK
WRITE

IF CONDITIONAL CONDITIONAL

Cory COMPILER-DIRECTING COMPILER-DIRECTING
EXIT
NOTE
USE

A statement or sequence of statements terminated by a period forms a sentence. Sentences are classified

into the same three categories as statements.

An imperative sentence consists solely of one or more imperative statements. Except for imperative
sentences containing one of the sequence control verbs, control passes to the next procedural sentence
following execution of the imperative sentence. If a GO TO or STOP RUN statement is present in an

imperative sentence, it must be the last statement in the sentence.

A conditional sentence performs some test and, on the basis of the results of that test, determines
whether a "true" or a "false"” path should be taken. A conditional sentence is one that contains the
conditional verb (IF) or one of the option clauses ON SIZE ERROR (used with arithmetic verbs), AT
END (used with the READ verb), or INVALID KEY (used with the READ verb for mass storage devices).

A compiler—directing sentence consists of a single compiler-directing statement. Compiler-directing
sentences are used to indicate the end point of a PERFORM loop (EXIT), insert comments in the
PROCEDURE DIVISION (NOTE), and specify procedures for input-output errors and label handling

(USE). Generally, compiler—directing sentences generate no object program coding.

6.1.2 Paragraphs

A single sentence or a group of sequential sentences can be assigned a paragraph-name for reference.
The paragraph-name must begin in Area A (see Chapter 2) and terminate with a period. The first sen-
tence of the paragraph can begin after the space following this period or it can begin on the next line,

beginning in Area B.

A paragraph-name must be unique within its section, but need not be unique within the program. A
non-unique paragraph-name must be qualified by its section-name except when it is references from

within its own section.

6.1.3 Sections

A single paragraph or a group of sequential paragraphs can be assigned a section-name for reference.
The section-name must begin in Area B and be followed by the word SECTION followed by a priority
number, if desired, followed by a terminating period.

section-name SECTION nn.

If the section-name is in the DECLARATIVES portion, it may not have a priority number. A USE state-

ment may appear following the terminating space after the period.

The section=-name applies to all paragraphs following it until another section-header is encountered.

All section-names must be unique within a program. Sections are optional within the PROCEDURE
DIVISION, but if a DECLARATIVES portion is used there must be a named section immediately following
the END DECLARATIVES statement.

When a section-name is referenced, the word SECTION is not allowed in the reference.

6.2 SEQUENCE OF EXECUTION

In the absence of sequence-control verbs, sentences are executed consecutively within paragraphs,
paragraphs are executed consecutively within sections, and sections are executed consecutively within
the PROCEDURE DIVISION (with the exception of sections within the DECLARATIVES portion, which

are executed individually when the related condition occurs).

6.3 SEGMENTATION AND SECTION-NAME PRIORITY NUMBERS

COBOL source programs can be written to enable certain portions of the PROCEDURE DIVISION code
to share the same core memory area at object run time, thus decreasing the amount of core required to

run the object program. The method used to achieve this reduction is called segmentation.

Segmentation consists of dividing the PROCEDURE DIVISION sections into logically related groupings
called segments. The programmer defines a segment by assigning the same priority-number (a priority-
number follows the word SECTION in the section-header, and can be in the range 00 through 99) to all
the sections he wants included in that segment; these sections need not appear consecutively in the

source program.

Segments are classified into three groups, depending upon their priority-number. These three groups
are described in Table 6-2.

Table 6-2
Types of Segments
Priority-Number Type Description
None, or 00 up to Resident This segment is always resident in core and is
SEGMENT-LIMIT Segment never overlaid.
minus 1
SEGMENT-LIMIT Nonresident; These segments are nonresident and are brought
up to 49 ALTERed GO into core when needed. Any ALTERed GO TOs
TO:s retained retain their most recently set values.

6-4

Table 6-2 (Cont)
Types of Segments

Priority =Number Type Description
50 through 99 Nonresident; These segments are also nonresident and are
ALTERed GO brought into core when needed. Any ALTERed
TOs reset GO TO:s do not retain their latest values, but
are reset to their original setting each time the
segment is entered from another segment.

In addition to the resident segment, all data areas described in the DATA DIVISION are resident at all

times. Thus, memory can be thought of as being divided into two parts:

a. Aresident area, in which reside all data areas and the resident segment, and

b. A nonresident area, equal to the size of the largest nonresident segment, into which each
nonresident segment is read when needed. Since each nonresident segment reads into the same
memory area, any previous nonresident segment in that area is overlaid and must be brought in
again when it is to be executed again.

The resident segment should consist of those sections that constitute the main portion of the
processing. Infrequently used sections can be allocated to the nonresident segments.

6.4 ARITHMETIC EXPRESSIONS

An arithmetic expression is an identifier of a numeric elementary item, or a numeric literal, or such

identifiers and literals separated by arithmetic operators.

Algebraic negation can be indicated by a unary minus symbol.

6.4.1 Arithmetic Operators

There are five arithmetic operators that may be used in arithmetic expressions. They are represented by

specific character symbols that must be preceded by a space and followed by a space.

Arithmetic Operator Meaning

+ Addition or unary plus

- Subtraction or unary minus
Multiplication

/ Division

Exponentiation
Exponentiation

6.4.2 Fomation and Evaluation Rules

The following rules for formation and evaluation apply to arithmetic expressions.

a. Parentheses specify the order in which elements within an arithmetic expression are to be
evaluated. Expressions within parentheses are evaluated first. Within a nest of parentheses,
the evaluation proceeds from the elements within the innermost pair of parentheses to the outer-
most pair of parentheses. When parentheses are not used, or parenthesized expressions are at
the same level of inclusiveness, the following hierarchal order of operations is implied:

First: unary +
then ** agnd 1
then * and /
and then + and -

unary -
(exponentiation)
(multiplication and division)

(addition and subtraction)

b. When the order of a sequence of operations on the same hierarchal level (e.g., a sequence
of + and - operations) is not completely specified by use of parentheses, the order of operations

is from left to right.

c. An arithmetic expression may begin only with one of the following:

(- + variable

and may end only with one of the following:

) variable

d. There must be a one-to-one correspondence between left and right parentheses in an arith-
metic expression; each left parenthesis must precede its corresponding right parenthesis.

6.5 CONDITIONAL EXPRESSIONS

A conditional expression causes the object program to select between alternate paths (called the true

and false paths) of control depending upon the truth value of a test. Conditional expressions can be
used in conditional (IF) statements and in PERFORM statements (options 3 and 4). A conditional ex-

pression can be one of the following types:

Relation condition

Class condition
Condition-name condition
Switch-status condition

Sign condition

Each of these types is discussed below.

(greater than, equal to, less than)
(numeric or alphabetic)

(level-88 condition-names)
(SPECIAL-NAMES paragraph)

(positive, negative, zero)

6-6

6.5.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may be an identifier, a literal,
a figurative constant, or an arithmetic expression. Comparison of two numeric operands is permitted re-
gardless of their formats as described by their respective USAGE clauses. Comparison of two operands is
permitted if each is either DISPLAY-6 or DISPLAY-7. However, for all other comparisons, the operands
must be described as having the same USAGE.

6.5.1.1 Format of a Relation Condition - The general format for a relation condition is

identifier-1 {"identifier-2
literal-1 relational operator literal -2
arithmetic-expression-1 arithmetic-expression-2

The first operand is called the subject of the condition; the second operand is called the object of the
condition. The subject and the object cannot both be literals.

6.5.1.2 Relational Operators - Relational operators specify the type of comparison to be made in the
relation condition. Relational operafors must be preceded by a space and followed by a space.

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than, not greater than
IS [NOT1] > THAN

1S [NOTJ LESS THAN Less than, not less than
Is [NOTI < THAN

IS [NOT] EQUAL TO Equal to, not equal to
IS [NOT] = TO

6.5.1.3 Comparison of Numeric Items - For operands whose category is numeric, a comparison results
in the determination that the algebraic value of one of the operands is less than, equal to, or greater
than the other operand. The number of digits contained in the operands is not significant. Zero is con-
sidered a unique value regardless of the sign (i.e., +0 and -0 are considered equal). Unsigned numeric

operands are considered positive for purposes of comparison.

6.5.1.4 Comparison of Nonnumeric Items - For operands whose category is nonnumeric (or where one
operand is numeric and the other is nonnumeric), a comparison results in the determination that one of
the operands is less than, equal fo, or greater than the other operand with respect to a specified col-
lating sequence of characters (see Appendix B). The size of an operand is the total number of characters

in the operand.

There are two cases to consider: operands of equal size, and operands of unequal size.

a. Operands of equal size - If the operands are of equal size, characters in corresponding
character positions of the two operands are compared, starting at the higher-order (leftmost) end
and continuing through the low-order end. If all pairs of characters compare equally through
the last pair, the operands are considered to be equal. If they do not all compare equally, the
first pair of unequal characters encountered is compared to determine their relative position in
the collating sequence. The operand containing the character that is positioned higher in the
collating sequence is considered to be the greater operand.

b. Operands of unequal size - If the operands are of unequal size, the comparison of characters
proceeds from the high-order end to the low-order end until either

(1) A pair of unequal characters is encountered, or

(2) One of the operands has no more characters to compare.

If a pair of unequal characters is encountered, the comparison is determined in the manner
described for equal-sized operands.

If the end of one of the operands is encountered before unequal characters are encountered,
this shorter operand is considered to be less than the longer operand unless the remaining char-
acters in the longer operand are spaces, in which case the two operands are considered equal.

6.5.2 Class Condition

The class condition determines whether the operand is numeric (i.e., whether it consists entirely of the
digits O through 9, with or without an operational sign) or alphabetic (i.e., whether it consists entirely

of the characters A through Z and the space).
6.5.2.1 Format of a Class Condition - The general format of a class condition is

L NUMERIC
identifier IS [NOT] {A_LM,HQ}

The identifier must be described, implicitly or explicitly, as DISPLAY, DISPLAY-6, or DISPLAY-7.

6-8

6.5.2.2 The NUMERIC Test - The NUMERIC test cannot be used with an item that is described as al-
phabetic. If the item being tested is not described as containing an operational sign, it will be con-

sidered numeric only if the contents are numeric and an operational sign is not present.

6.5.2.3 The ALPHABETIC Test - The ALPHABETIC test cannot be used with an item that is described
as numeric. The item being tested is determined to be alphabetic only if the contents consist entirely

of any combination of the alphabetic characters A through Z and the space.

6.5.3 Condition-Name Condition

In a condition-name condition, a conditional variable is tested to determine whether or not its value is

equal to one of the values associated with a condition-name (level-88).
6.5.3.1 Format of a Condition-Name Condition - The general format for a condition-name condition
is

[NOT] condition-name

If the condition-name is associated with a range of values, then the conditional variable is tested to

determine whether or not its value falls within this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as those spec-

ified for relation conditions.

The result of the test is true if one of the values associated with the condition-name equals the value

of its associated conditional variable.

6.5.4 Switch=-Status Condition

A switch-status condition determines the on or off status of a hardware switch.

6.5.4.1 Format of a Switch-Status Condition - The general formats for a switch-status condition are

Format 1: [NOT] condition-name

o]
Format 2: mnemonic=name IS [NOT] {a:N_F

ON
Format 3: SWITCH (integer) IS [NOT] {ﬁ

In format 1, condition-name is associated with a SWITCH IS ON or OFF STATUS clause in the
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.,

In format 2, mnemonic-name is associated with a SWITCH (not an ON or OFF STATUS) in the SPECIAL-
NAMES paragraph of the ENVIRONMENT DIVISION.

In format 3, integer must be in the range from 0 through 35.

In format 1, the result of the test is true if the switch is [NOT] set to the position associated with the

condition-name.

In formats 2 and 3, the result of the test is true if the switch is [NOT] set to the position specified in

the condition.

6.5.5 Sign Condition

The sign condition determines whether or not the algebraic value of a numeric operand is less than,

greater than, or equal to zero.

6.5.5.1 Format of a Sign Condition - The general format for a sign condition is

identifier POSITIVE
ithmetic— . IS [NOTI] NEGATIVE
arithmetic-expression ZERO

An operand is positive if its value is greater than zero, negative if its value is less than zero, and zero

if its value is equal to zero (the sign is ignored if the value is zero).

6.5.6 Logical Operators

The interpretation of any of the above conditions is reversed by preceding the condition with the logical
operator NOT. Any of the above types of conditions can be combined by either of two logical opera-~
tors. A logical operator must be preceded by a space and followed by a space.

Logical Operator Meaning

OR Entire condition is true if either or both of the
simple conditions are true.

AND Entire condition is true if both of the simple con-
ditions are true.

6-10

6.5.7 Formation and Evaluation Rules

A conditional expression can be composed of either a simple-condition or a compound-condition. A
simple-condition is one that performs a single test. A compound-condition is one that contains a string
of simple-conditions connected by the logical operators AND, OR. A compound-condition can contain
any combination of types of conditional expressions (relational, class, condition-name, switch-status,

and sign).

The evaluation rules for conditions are analogous to those given for arithmetic expressions, except that

the following hierarchy applies:

arithmetic-expressions
all relational operators
NOT

AND

OR

Parentheses may be used either to improve readability or to override the effects of the hierarchy given
above. Each set of conditions within a pair of parentheses is reduced to a single condition. When this

is accomplished, reductions which cross parentheses are done.

Examples:

a. Using parentheses for ease of reading.

The following expression
A=BORC>D AND F< G AND H IS ALPHABETIC ORI IS NEGATIVE
can be parenthesized for readability without changing its effect as shown below.
(A =B) OR (C>D AND F< G AND H IS ALPHABETIC) OR (I IS NEGATIVE)

If all the conditions within any of the three sets of parentheses are true, then the entire con-
ditional expression is true.

The diagram below illustrates the effect of this statement and the order of evaluation.

6-11

I
NEGATIVE

TRUE

b. Using parentheses to override normal order of evaluation.

To illustrate this usage, a compound-conditional is shown in three forms, each accompanied by a flow

diagram showing the result of each.

F1=F2 AND F3=F4 OR F5=F6 AND F7=F8

‘ F1=F2 AND (F3=F4 OR F5=F6 AND F7=F8)

F1=F2AND (F3=F4 OR F5=F6) AND F7=F8)

FALSE
PATH

FALSE

6-13

6.5.8 Abbreviations in Relation Conditions

When a string of consecutive relation conditions appears in a statement, abbreviations can be used, in
certain cases, for any relation condition other than the first. The subject, or the subject and rela-
tional operator, or the subject, relational operator and logical connective may be omitted. In each of
these cases, the effect of the abbreviated relation condition is as if the omitted parts were the same as
those in the nearest preceding complete relation condition within the same sentence. There are three

valid forms of abbreviation.

a. Abbreviation 1

If the subject is identical in a series of relational conditions, it can be omitted in all the
relational conditions except the first.

Example: A=BORA<CAND A=D ORA=E
can be abbreviated to
A=BOR<KCAND=DOR=E

b. Abbreviation 2

If subjects and relational operators are identical in a series of relational conditions, they
can be omitted in all the relational conditions except the first.

Example: A=BORA=CANDA=DORA=E
can be abbreviated to
A=BORCANDD ORE

c. Abbreviation 3

If the subjects, relational operators, and logical connectives are all identical in a series
of relational conditions, the subject and relational operator can be omitted in all the rela-
tional conditions except the first, and the logical connective can be omitted in all the rela-
tional conditions except the last.

Example: A=BAND A=CANDA=DANDA=E
can be abbreviated to
A=B,C,D, AND E

6.6 COMMON OPTIONS ASSOCIATED WITH THE ARITHMETIC VERBS

Associated with the five arithmetic verbs (ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT) are
two options: the ROUNDED option, and the ON SIZE ERROR option. These two options are described

here to avoid the necessity of including their descriptions with each of the arithmetic verbs.

If the ROUNDED option is specified, the absolute value of the item is increased by 1 if the leftmost
truncated digit is greater than 4.

Example: result: 567,8756
resultant-identifier picture: 999VI9

stored result without
ROUNDED option: 567,87

stored result with
ROUNDED option: 567,88

When the low-order positions in a resultant-identifier are represented by the symbol P in the PICTURE
associated with the resultant-identifier, rounding or truncation occurs relative to the rightmost integer

position for which storage is allocated.

Example: result: 5388
resultant-identifier picture: 9o9PP
stored result without 53
ROUNDED option:
stored result with 54

ROUNDED option:

6.6.1 The SIZE ERROR Option

If, ofter decimal point alignment, the number of significant digits in the result of an arithmetic opera-
tion is greater than the number of integer positions provided in the result-identifier, a size error con-
dition occurs. Division by zero always causes a size error condition. The size error condition applies
to both the intermediate results and the final result of an arithmetic operation. If the ROUNDED option
is specified, rounding takes place before checking for size error. When such a size error does occur,

the subsequent action depends upon whether or not the SIZE ERROR option is specified.

If the SIZE ERROR is not specified and a size error condition occurs, the value of the resultant-identifier

is unpredictable, and no additional action is taken.

If SIZE ERROR is specified, and a size error condition occurs, then the values of the resultant-
identifier(s) affected by the size errors are not altered. Values for resultant-identifier(s) for which no
size error condition occurs are unaffected by size errors that occur for other resultant-identifier(s). Af-

ter completion of the execution of the arithmetic operation, the statement after SIZE ERROR is executed.

Example: ADD A TO B ON SIZE ERROR GO TO OVERFLOW.
A: 954
B: PICTURE IS 999; VALUE 954.
Result: The contents of B are left unchanged and control is transferred

to the paragraph or section named OVERFLOW.

6-15

6.7 THE CORRESPONDING OPTION

The CORRESPONDING option is used in the formats of two of the arithmetic verbs (ADD and SUBTRACT)
and in the format of the MOVE verb.

For the purpose of this discussion, dy and d2 represent identifiers that refer to group items. A pair of

data items, one from d] and one from d2, correspond if the following conditions exist:

a. Adata item in dj and a data item in dy have the same data-name and the same qualifica-
tion up to, but not including, dy and dj.

b. Both of the data items are elementary numeric data items in the case of an ADD or SUBTRACT
statement with the CORRESPONDING option.

Neither dy nor d2 may be data items with level-number 66, 77, or 88.

Each data item subordinate to d} or d2 that contains a RENAMES, a REDEFINES or an
OCCURS clause is ignored. However, d} and d may have REDEFINES or OCCURS clauses or
be subordinate to data items with REDEFINES or OCCURS clauses.

See "ADD," "MOVE, " and "SUBTRACT" for information on the specific formats and results of the use
of the CORRESPONDING option.

6.8 PROCEDURE DIVISION VERB FORMATS
The format of each PROCEDURE DIVISION verb is given on the following pages. The verbs are pre-

sented in alphabetical order.

The word "identifier" is a data-name followed, as required, by any qualification, subscripts, and/or

indexes to make the data-name unique.

ACCEPT

Function

The ACCEPT statement causes low-volume data to be read from the user's Teletype console.

General Format

ACCEPT identifier-1 [idenﬁﬁer-Z] [FROM mnemonic-name]

Technical Notes

a. The ACCEPT statement causes the next set of data available from the hardware device to
replace the contents of the item named by identifier-1, identifier-2,....

b. If the FROM option is specified, the mnemonic-name must appear in the CONSOLE IS
clause of the SPECIAL-NAMES paragraph.

ADD

Function

The ADD statement computes the sum of two or more numeric operands and stores the result.

General Format

Option 1
identifier-1 identifier-
ADD . TO identifier-m E{QQNDED:]
literal-1 literal-2
, identifier-n [ROUNDED]
I:ON SIZE ERROR si'arement_._:l
Oprion 2
identifier-1 identifier-2 identifier-3
literal=1 literal-2 i literal-3
GIVING identifier-m [ROUNDED— |z identifier-n I:ROUNDED]:I
[ON SIZE ERROR statement. |
Option 3
CORRESPONDING
ADD identifier-1 TO identifier-2
CORR

[ROUND ED:] l:ON SIZE ERROR sfatemenf::I

6-18

Technical Notes

a. Each ADD statement must contain at least two operands (i .e., an addend and an augend).

In options 1 and 2, each identifier must refer to an elementary numeric item, except that
identifiers appearing to the right of the word GIVING may refer to numeric edited items. In
option 3, each identifier must refer to a group item.

Each literal must be a numeric literal; the figurative constant ZERO is permitted.

b. The composite of all operands (i .e., the data item resulting from the superimposition of
all operands aligned by decimal point) must not contain more than 19 decimal digits.

c. Option 1 causes the values of the operands preceding the word TO to be algebraically
summed. The resultant sum is then added to the current value of identifier-m and this result
replaces the current value in identifier-m. If other identifiers follow, the same process is re-
peated for each of them.

d. Option 2 causes the values of the operands preceding the word GIVING to be algebrai-
cally summed. The resultant sum then replaces the current contents of identifier-m. If other
identifiers follow, their contents are also replaced by this resultant sum. The current values of
identifier-m, identifier-n, ... do not enter into the arithmetic computation.

e. Option 3 causes the data items in the group item associated with identifier-1 to be added
to the current value of the corresponding data items associated with identifier-2, and each re-
sult replaces the value of the corresponding data-items associated with identifier-2. The cri-
teria used to determine whether two items are corresponding are described under "The COR-
RESPONDING Option" at the beginning of this chapter.

f. The ROUNDED and ON SIZE ERROR options are described earlier in this chapter under
"Common Options Associated with Arithmetic Verbs".

6-19

ALTER

Function

The ALTER statement changes the object of one or more GO TO statements.

General Format
ALTER procedure-name-1 TO PROCEED TO procedure-name 2

l:, procedure-name-3 TO PROCEED TO procedure—name-4:| -

Technical Notes

a. During execution of the object program, the ALTER statement modifies the GO TO statement
in the paragraph named procedure-name-1, procedure-name-3, ... replacing the object of the
GO TO by procedure-name-2, procedure-name-4, ..., respectively.

b. Each procedure-name-1, procedure-name-3, must be the name of a paragraph that
contains only a single GO TO statement without the DEPENDING option.

c. Each procedure-name-2, procedure-name-4, ... must be the name of a paragraph or sec-
tion within the PROCED URE DIVISION.

d. A GO TO statement in a section whose priority is greater than or equal to 50 must not be
referred to by an ALTER statement in a section with a different priority.

e. An ALTER statement in a procedure not in the DECLARATIVES portion of the program may
not reference a procedure name within the DECLARATIVES; conversely, an ALTER statement
with the DECLARATIVES may not reference a procedure=name not in the DECLARATIVES.

f. Restrictions similar to those in Note e also apply to the INPUT PROCEDURES and to the
OUTPUT PROCEDURES associated with sort verbs.

6-20

CLOSE

Function

The CLOSE statement terminates the processing of input and output files, reels, or units.

General Format

. REEL NO REWIND
CLOSE Fule-name[—UNIT}:I [WITH {L—OC—K }]
. REEL NO REWIND
, file-name-1 [: UNIT] [:WITH{ LOCK }]

Technical Notes

a. Each file-name must appear as the subject of an FD entry in the FILE SECTION of the
DATA DIVISION.

b. The REEL, UNIT, and NO REWIND options apply only to magnetic tape files. UNIT
is synonymous with REEL.

c. For the purpose of showing the effect of various CLOSE options as applied to the various
storage media, all input, output, and input-output files are divided into the following three
mutually exclusive categories:

)] NO N-REEL A file whose device is such that the concepts of REWIND,
REEL, or UNIT have no meaning. This category includes
files residing on disk, punched cards, paper tape, line
printer, and Teletype.

2 SINGLE-REEL A file that is entirely contained on one reel or unit.
®)] MULTI-REEL A file that may be contained on more than one reel or unit.

The results of each CLOSE option for each of the above types of files are summarized in
Table 6-6. The definitions for the symbols used in this table are given below. Where the
definition depends upon whether the file is an input or output file, alternate definitions are
given; otherwise, the single definition given applies to both input and output files.

6-21

Any subsequent reels of this file will not be processed.
The current reel is not rewound.
Standard CLOSE File Procedure

INPUT and I-O Files (see "OPEN")

If the file is positioned at its end, the user's ENDING FILE LABEL PROCEDUREs
are performed, if the user has specified any via a USE statement. An input file
is considered to be at the end-of~file if the imperative~statement in the AT END
clause of a READ for the file has been executed, and no CLOSE statement for
the file has been executed.

OUTPUT Files

If LABEL RECORDS are STANDARD, an ending label is created and written on
the output medium. Then, any user ENDING FILE LABEL PROCEDUREs are per-
formed.

The current reel is rewound and unloaded.

Any attempt to subsequently OPEN this file will result in an error message being typed
and the run terminated.

Standard CLOSE REEL Procedure
INPUT Files

(1) If the file is assigned to more than one device, the next device specified in
the ASSIGN clause becomes the current device. If no other device is specified,
the first device mentioned becomes the current device.

(2) The standard beginning reel label procedure and the user's BEGINNING
REEL LABEL PROCEDURE (specified in a USE statement) are performed for the

new reel.
OUTPUT and I-O Files

(1) The standard ending reel label procedure and any user's ENDING REEL
LABEL PROCEDURE are performed.

(2) If the file is assigned to more than one device, the devices are swapped. A
halt occurs to allow the user to mount an available reel.

(3) The standard beginning reel label procedure and any user's BEGINNING
REEL LABEL PROCEDURE are performed.

The tape is rewound.

Illegal. This is an illegal combination of a CLOSE option and a file type.

6-22

Table 6-3
CLOSE Options and File Types

File Type
SINGLE
NON-REEL REEL/UNIT MULTI-REEL
CLOSE C C,G C,G,A
CLOSE C,E C,G,E C,G,E,A
WITH LOCK ‘
CLOSE WITH X c,B C,B,A
NO REWIND
CLOSE REEL X X F,G
[=
-2| CLOSE REEL X X F,D
Ol WITH LOCK
v CLOSE REEL X X F,B
O WITH NO
| REWIND

d. Ifa file is OPENed but not CLOSEd before the STOP RUN statement is executed, the file
will be automatically CLOSEd.

e. [If the file has been specified with an OPTIONAL clause in the FILE-CONTROL paragraph
of the ENVIRONMENT DIVISION and the file was not present for this run, the CLOSE has no
effect.

f. If a CLOSE statement without the REEL or UNIT option has been executed for a file, a
READ, WRITE, or CLOSE statement for that file must not be executed until another OPEN for
that file has been executed.

6-23

COMPUTE

Function

The COMPUTE statement assigns to a data item the value of a numeric data item, literal, or arithmetic

expression.

General Format

EQUALS identifier=2
COMPUTE identifier-1 [@UNDED] EQUAL TO) { literal-1
= arithmetic-expression

l: ON SIZE ERROR statement.. |

Technical Notes

a. The COMPUTE statement allows the user to combine arithmetic operations without the
restrictions on the composite of operands and/or receiving data items imposed by the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE. If the composite operand exceeds 19
decimal digits, the composite is converted to COMP-1 format.

b. Identifier-1 must be an elementary numeric or numeric edited item.
c. Identifier-2 must be an elementary numeric item. Literal-1 must be a numeric literal.

The identifier-2 and literal-1 options provide a method for setting the value of identifier-1
equal to identifier-2 or literal-1.

d. The rules for forming arithmetic expressions and the order of evaluation are given earlier
in this chapter under "Arithmetic Expressions."

e. The ROUNDED and SIZE ERROR options are described earlier in this chapter under
"Common Options Associated with the Arithmetic Verbs".

6-24

DISPLAY

Function

The DISPLAY statement causes low—volume data to be written on the user's Teletype console.

General Format

literal-1 literal-2
DISPLAY {idenﬁfier-]} l:' {idenfifier—2}:] Tt

I:U PON mnemonic-name]

Technical Notes

a. The contents of each operand are written on the user's Teletype console in the order listed.

b. Each of the literals can be numeric or nonnumeric, or one of the figurative constants. If
a figurative constant is specified as one of the operands, only a single occurrence of that con-
stant is written on the device.

c. The mnemonic-name must appear in the CONSOLE clause in the SPECIAL-NAMES para-
graph of the Environment Division.

6-25

DIVIDE

Function
The DIVIDE statement divides one numeric item into another and sets the value of a data item equal to

the result.

General Format

Option 1

DIVIDE {:‘i’r‘:’:fi‘;"'} INTO identifier-2 [ROUNDED| [REMAINDER identifier~4|

[ON SIZE ERROR statement. |

Option 2

DIVIDE {;‘i’r‘::ﬁ;"z} BY identifier-1 [ROUNDED | [REMAINDER identifier—4 |

[ON SIZE ERROR statement. |
Option 3

DIVIDE {i?r::ﬁ?r-]} INTO ﬁi::f-';r_z} GIVING identifier-3

[ROUNDED | [REMAINDER identifier-4 |

[ON SIZE ERROR statement. |

Option 4

literal-1

DIVIDE {;‘:;’:L‘E;"z} BY {‘de"”ﬁe"'} GIVING identifier-3

[ROUNDED | [REMAINDER identifier-4 |

[ON SIZE ERROR statement. |

6-26

Technical Notes

a. The value of identifier-1 or literal-1 is divided into the value of identifier-2 or literal-2.

In option 1, the resulting quotient replaces the value of identifier-2. In option 2, the re-
sulting quotient replaces the value of identifier-1. In options 3 and 4, the resulting quotient
replaces the value of identifier-3.

b. Each DIVIDE statement must contain two operands (i.e., a dividend and a divisor). Both
of these operands (identifier-1 and identifier-2) must refer to elementary numeric items. Iden-
tifier-3 may be an elementary numeric or numeric edited item. Each literal-1 or literal=2 must
be a numeric literal.

c. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com-
mon Options Associated with Arithmetic Verbs".

d. If the REMAINDER clause is used, the resulting remainder replaces the value of identifier-4.

6-27

ENTER

Function
The ENTER statement allows the execution of MACRO and FORTRAN 1V subroutines in conjunction with
the COBOL program.

General Format

MACRO
ENTER { FORTRAN IV external-name
identifier-1 identifier-2
USING (literal-1 literal =2
procedure-name~1 procedure-name~2

4

Technical Notes

a. The ENTER statement generates a subroutine call followed by the address in which the
items associated with the USING clause are located. The ENTER statement is discussed fur-
ther in Appendix C.

6-28

EXAMINE

Function

The EXAMINE statement replaces or counts the number of occurrences of a given character in a data

item.

General Format

_ ALL
TALLYING LEADING literal -1
UNTIL FIRST

EXAMINE identifier g

ALL
(REPLACING ¢ LEADING literal-1
[UNTIL] FIRST

rREPLACING BY meml-zJT

)

BY literal-2 J

Technical Notes

a. The USAGE of identifier must be DISPLAY or DISPLAY-7, implicitly or explicitly.

b. Each literal must consist of a single character belonging to a class consistent with that of
the identifier. A literal may be any figurative constant.

Examination starts at the leftmost character of the identifier and proceeds to the right.
d. When the TALLYING option is used, a count is kept of
(1) Occurrences of literal-1 when the ALL option is used.

(2) Occurrences of literal-1 prior to a character other than literal-1 when the LEADING
option is used.

(3) Characters prior to the first occurrence of literal-1 when the UNTIL FIRST option
is used.

6-29

This count replaces the contents of the special register called TALLY (see "Special Registers, "
Chapter 1). TALLY has a PICTURE of $99999, and can be referenced in any statement where an
identifier referring to an el ementary numeric data item is valid.

If the REPLACING BY clause is used with the TALLYING option, replacement is performed
according to the rules below.

e. When either of the REPLACING BY options are used, replacement rules are
(1) If the ALL option is used, literal-2 is substituted for each occurrence of literal-1.

(2) If the LEADING option is used, the substitution of literal-2 for literal-1 terminates
as soon as a character other than literal-1 is encountered.

(3) If the UNTIL FIRST option is used, literal-2 is substituted for each character prior to
the first occurrence of literal-1.

(4) If the FIRST option is used, literal-2 is substituted for only the first occurrence of
literal-1.

f. If the identifier is classified as numeric, it must consist solely of numeric characters. It
may possess an operational sign, but this sign is ignored by the EXAMINE process.

6~30

EXIT

Function

The EXIT statement provides a common end point for a series of routines executed by a PERFORM or

USE statement.

General Format

paragraph-name. EXIT. [NOTE ...]

Technical Notes

a. EXIT must be the first sentence in a paragraph. Only NOTE may follow.

b. The EXIT statement may be used to provide an end point for a series of paragraphs that are
PERFORMed, or at the end of a section in the DECLARATIVES. By using EXIT at the end of
the range of a PERFORM or USE, a variety of exits from the performed procedure can be ac-
complished by making each point at which an exit is required a transfer to the EXIT paragraph.

Example:

PERFORM TAX-ROUTINE THROUGH EXIT-RTE.

TAX-ROUTINE.
IF TOTAL-TAX 1S EQUAL TO OR GREATER THAN TAX-LIMIT
GO TO EXIT-RTE.
MULTIPLY

DEDUCTION-RTE.
IF NO-OF -DEPENDENTS IS EQUAL TO ZERO

GO TO EXIT-RTE.
MULTIPLY NO~OF-DEPENDENTS BY DEP-DEDUCT....

EXIT-RTE. EXIT.

c. If control reaches an EXIT statement and no associated PERFORM or USE statement is active,
control passes through the EXIT paragraph to the first statement of the next paragraph.

6-31

GO

Function

The GO TO statement causes control to be transferred from one part of the PROCEDURE DIVISION to

another.

General Format
Option 1
GO 10 |:procedure-name—l:|
Option 2

GO TO procedure-name-1, procedure-name-2 l:, procedure-name—3] .-

DEPENDING ON identifier.

Technical Notes

a. Each procedure~name is the name of a paragraph or section in the PROCEDURE DIVISION
of the program.

b. Option 1 causes transfer of control to the specified procedure-name, or to some other
procedure-name if the GO TO has been previously ALTERed.

In order to be alterable, Option 1 must appear as the first sentence in a paragraph; only
NOTE may follow.

If procedure=name-1 is not specified, the GO TO must be alterable and an associated
ALTER statement must be executed prior to executing this GO TO.

When this form of GO TO appears in an imperative sentence, it must appear as the last
or only statement in the sentence, except for NOTE.

c. Option 2 causes transfer of control to procedure~-name=1, procedure-name-2, ... or
procedure-name-n depending on whether the value of the identifier is 1, 2, ...or n, re-
spectively.

The identifier must refer to an elementary numeric item having no positions to the right of
the decimal point.

If the value of the identifier is other than the positive integers 1, 2, ... or n, the GO TO
statement is by-passed.

6-32

IF

Function
The IF statement causes a conditional expression to be evaluated and the subsequent operations to be

performed to be determined as a result of this evaluation.
General Format

IF conditional expression statement -1 ; ELSE statement -2
- NEXT SENTENCE —— 1 NEXT SENTENCE

a. Conditional expressions are discussed in Paragraph 6.5 in this chapter.

b. The subsequent action of the program is determined by whether the conditional expression
is true or false.

(1) T1f the conditional expression is true and statement-1 is given, statement-1 is executed
and, provided that it does not contain @ GO TO or STOP RUN, control passes to the next
sentence.

If the conditional expression is true and NEXT SENTENCE is given, control passes to
the next sentence.

(2) If the conditional expression is false and statement-2 is given, statement-2 is exe-
cuted and, provided that it does not contain a GO TO or STOP RUN, control passes to
the next sentence.

If the conditional expression is false and either ELSE NEXT SENTENCE is given or
the entire ELSE clause is omitted, control passes to the next sentence.

c. Statement-1 and statement=2 may be any statement or sequence of statements.

Either statement may contain another IF statement; in this case, this second IF statement
is said to be nested. Nested IF statements may be considered paired IF and ELSE combinations.
Each subsequent ELSE encountered is considered to apply to the nearest preceding IF that has
not already been paired with an ELSE. In other words, the pairing process begins with the in-
nermost nested IF .. .ELSE pair and works outward.

6-33

Example: (c = condition; s = statement)

]
IF ¢=1 IF ¢~2 s~2 ELSE IF c¢-3 s-3 ELSE s-4 lELSE s=5.

MOVE

Function

The MOVE statement transfers data in accordance with the rules of editing, from one data area to one

or more data areas.

General Format

Option 1

MOVE {‘de"””e"'} TO identifier-2 [, identifier-3] ...

literal-1

Option 2

MOVE {ESEEESPONDING} identifier=1 TO identifier—2

Technical Notes

a. Identifier-1 (or literal-1) represents the data to be moved and is called the sending item.
Identifier-2, identifier-3, ... represent the receiving data items.

b.

c. The following rules apply to both group and elementary items; a group item is treated as

a single alphanumeric field.
(1) A numeric edited, alphanumeric edited, or alphabetic data item must not be moved to
a numeric or numeric edited data item.
(2) A numeric or numeric edited item must not be moved to an alphabetic data item.

(3) A numeric item whose implicit decimal point is not immediately to the right of the
least significant digit must not be moved to an alphanumeric or alphanumeric edited item.

All other moves are legal .

6-35

d.

e.

The following rules apply to legal moves.
(1) When an alphanumeric, alphanumeric edited, or alphabetic item is the receiving item,

(@) If the size of the sending field is greater than the size of the receiving field, the
least significant (rightmost) characters are truncated if the receiving field is not de-
scribed by a JUSTIFIED RIGHT clause; the most significant (leftmost) characters are
truncated if the receiving field is described as JUSTIFIED RIGHT.

(b) 1If the size of the sending field is less than the size of the receiving field, spaces
are placed in the remaining rightmost characters of the receiving field if the receiving
field is not described by a JUSTIFIED RIGHT clause; spaces are placed in the remain-
ing leftmost characters of the receiving field if the receiving field is described by a
JUSTIFIED RIGHT clause.

(c) If the sizes of the sending and receiving fields are equal, no truncation or filling
with spaces takes place.

(2) When a numeric or numeric edited item is the receiving item, the sending and re-
ceiving fields are aligned by decimal point. If the sending field is not numeric, the deci-
mal point is assumed to be on the right. Any necessary zero filling takes place before
editing. If the receiving item has no operational sign, the absolute value of the sending
item is stored. If the receiving item has fewer digits to the left or right of the decimal
point than does the sending item, the excess digits are truncated. If the sending item
contains any nonnumeric characters, the result is unpredictable.

(3) Any necessary conversion of data from one form of internal representation fo another is
performed automatically during the move, along with any editing specified by the PICTURE
of the receiving item.

Any move that is not an elementary move (that is, both the sending and receiving items are

not elementary items) is called a group move. A group move is treated as if it were an alpha-
numeric to alphanumeric elementary move, except that there is no conversion of data from one
form of internal representation to another. In other words, the individual data descriptions of
the items within the sending group item and the receiving group item are completely ignored
and both items are treated as though they were described by a PICUTRE IS X(n) clause, where n
is the number of character positions in the particular item.

6-36

MULTIPLY

Function

The MULTIPLY statement causes one data item to be multiplied by another data item and the resulting

product to be stored in a data item.

General Format

Option 1

MULTIPLY {:idenﬁfier-

1 S
il } BY identifier-2 | ROUNDED]

[ON SIZE ERROR statement.. |

Option 2

MULTIPLY {ldenfifier—]} BY {:ldenﬁfler-Z} GIVING identifier-3

literal-1 literal-2

[ROUNDEQ:I [ON SIZE ERROR sfafemenf;]

Technical Notes

a. Each MULTIPLY statement must contain at least two operands (a multiplicand and a multi-
plier). Each identifier must refer to an elementary numeric item, except that identifier-3 may
refer to either a numeric or a numeric edited item. Each literal must be a numeric literal; the
figurative constants ZERO and TALLY are permitted.

b. Option 1 causes the value of identifier-1 or literal-1 to be multiplied by the value of
identifier-2. The resultant product replaces the value of identifier-2.

c. Option 2 causes the value of identifier-1 or literal-1 to be multiplied by the value of
identifier-2 or literal-2. The resultant product replaces the value of identifier-3.

d. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com-
mon Options Associated with Arithmetic Verbs".

6-37

NOTE

Function

The NOTE statement allows the programmer to insert comments in the PROCED URE DIVISION of his

program.

General Format

NOTE character=string .

Technical Notes

a. Any combination of characters from the ASCII character set may be included in the
character-string.

b. [If the NOTE sentence appears as the first sentence in a paragraph, the entire paragraph
is considered to be part of the character-string.

c. If the NOTE statement appears as other than the first sentence in a paragraph, the
character=string ends at the first period followed by a space.

d. The contents of the character-string appear on the compilation listing, but are not compiled.

6-38

OPEN

Function

The OPEN statement initiates the processing of files and, where necessary, performs the checking and

writing of labels.

General Format

INPUT Y .
{WT} file-name~1 [WITH NO REWIND] [file~name-2 [WITH NO REWIND]] }
OPEN{ ——
1-O

WUT-OUTPUT} file-name-3 [, file-name-41] ...

Technical Notes

a. The OPEN statement must be executed for a file prior to the execution of any SEEK,
READ, WRITE, or CLOSE for that file.

b. A second OPEN statement for a file cannot be executed prior to the execution of a CLOSE
statement for that file.

c. An OPEN statement does not obtain or release the first record of a file. A READ statement
must be executed to obtain the first record (or a WRITE statement must be executed to release
the first record).

d. More than one file can be opened at a time. The key word INPUT, OUTPUT, INPUT-
OUTPUT, or I-O applies to each subsequent file-name until another such key word is encoun-

tered or until the end of the OPEN statement is reached.

e. The NO REWIND option has meaning only for magtape files and is ignored for all other
devices. If the NO REWIND clause is not specified for a tape file, the tape is rewound to the
beginning of tape.

f. If a file has been described as LABEL RECORDS ARE STANDARD, standard label checking
or label writing is performed; the user's BEGINNING LABEL (USE) routines are executed if
provided. If a file has been described as LABEL RECORDS ARE data-name-1, the user's BE-
GINNING LABEL (USE) routines are executed. If a file has been described as LABEL
RECORDS ARE OMITTED, no label checking or writing is perfermed.

6-39

g. Ifan INPUT file is described as OPTIONAL (in the FILE-CONTROL paragraph), the
operating system will type the message

IS file-name PRESENT?

and wait for the user to type "YES" or "NO". If the user types "NO", the first READ state-
ment for this file causes the imperative~statement at the AT END or INVALID KEY clause to
be executed.

h. The I-O or INPUT-OUTPUT options permit the opening of a file on a random-access de-
vice for both input and output processing. Since this option requires the existence of a file, it
cannot be used when initially creating the file. When the I-O option is specified, the execu-
tion of the OPEN statement causes the standard beginning label procedures (see Chapter 8) and
the user's BEGINNING LABEL routines, if specified by a USE statement, to be executed.

6-40

PERFORM

Function

The PERFORM statement is used to depart from the normal sequence of execution in order to execute

one or more procedures and then return control to the normal sequence.

General Format

Option 1
PERFORM procedure-name-1 ['[ﬂELJ procedure—name-Z]
Option 2
PERFORM procedure-name-1 l:'m&l_l procedure-name-Z:]
(i) s
Option 3
PERFORM procedure-name-1 I:MJ procedure-name-2]
UNTIL condition-1
Option 4

PERFORM procedure-name-1 [THRU procedure—name—Z:l

VARYING identifier-] FROM {.'”e"’.'fl
e —— {identifier-2

literal -2
BY {idenﬁfier-B

} UNTIL condition-1

[AFTER VARYING identifier-4 FROM | Teral-3
—_— — lidentifier-5

6-41

literal-4 oo
BY {idenfifier-é} UNTIL condition=2

identifier-8

literal-6 -
BY {iden’rifier-?’} UNTIL c0nd|l'|on-3]]

[AFTER VARYING identifier-7 FROM {!”e"’"‘r’ }

Technical Notes

a. Each procedure-name is the name of a section or paragraph in the PROCEDURE DIVISION.
Each identifier must refer to a numeric elementary item described in the DATA DIVISION.
Each literal must be a numeric literal or the figurative constants ZERO and TALLY.

b. When the PERFORM statement is executed, control is transferred to the first statement
of procedure-name-1. An automatic return to the statement following the PERFORM
statement is established as follows. The procedures executed constitute the range of the

PERFORM.

(1) If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, the
return is after the last statement of proccdure-name-1.

(2) 1If procedure-name-1 is a section-name and procedure-name-2 is not specified, the
-eturn is after the last statement in the last paragraph in procedure-name-1.

(3) If procedure-name-2 is a paragraph-name, the return is after the last statement in that
paragraph.

(4) If procedure-name-2 is a section-name, the return is after the last statement in the last
paragraph of that section.

c. There is no relationship between procedure-name-1 and proced:re-name-2, except that the
sequence of operations beginning at procedure-name-1 must eventually end with the execution
of procedure-name-2 in order to effect the return at the end of procedure-name-2. Any number
of GO TO and/or PERFORM statements may occur between proceaure-name-1 and procedure-
name-2.

d. If control passes to these procedures by means other than a PERFORM statement, control
passes through the return point to the following statement as though no return mechanism were
present.

e. No perform statement may terminate until all PERFORM statements that it has executed
have terminated. No PERFORM statement may be executed which terminates at the same
procedure-name as another active PERFORM.

6-42

f. Option 1 causes the PERFORM range to be executed once, followed by a return to the
statement immediately following the PERFORM.

g. Option 2 causes the PERFORM range to be executed the number of times specified by
identifier-1 or integer-1. The value of identifier-1 or integer~1 must not be negative; it may
be zero. Once the PERFORM statement has been initialized, any modification to the contents
of identifier=1 has no effect on the number of times the range is executed.

h. Option 3 causes the PERFORM range to be executed until the condition specified in the
UNTIL clause is true. If this condition is true at the time the PERFORM statement is initial-
ized, the range is not executed. Conditions are explained under "Conditional Expressions"
earlier in this chapter.

i. Option 4 is used to augment the value of one or more identifiers during the execution of
a PERFORM statement .

In option 4, when only one identifier is varied, identifier-1 is set equal to identifier-2
or literal-2 when the PERFORM statement is initialized. If the condition specified is deter-
mined to be false at this point, the PERFORM range is executed once. Then the value of
identifier~1 is augmented by identifier-3 or literal-3 and the test of the condition is done
again. This cycle continues until condition-1 is true; at this point, control passes to the
statement following the PERFORM statement. If condition-1 is true at the beginning of the
execution of the PERFORM, control immediately passes to the statement following the PER-
FORM.

The flow chart below illustrates the logic of the PERFORM cycle when two identifiers are
varied.

6-43

Set dj equal

todyor 13

Set d4q equal
todgor g

each d, represents an wdentifier
each 1, represents a lileral
each ¢, represents a condition

each p, represents a procedure-name

Execute
p) [THRU p3)

Augment dg
by dg or 1g

Set d4q equal
todgorlg

Augment d)
by dzor 13

6-44

The following flow chart illustrates the logic of the PERFORM cycle when three identifiers

are varied.

Setdytodpor 1
Set d4 tods or 15
Setd7todgorlg

Execute p) Set dy to Setdy to
[THRU p3| dgorlg dsorls

‘ ==
Augment dy Augment dgq Augment d|
by dgorlg by dg or 1¢g by d3zorlgy

j. A PERFORM statement that appears in a section whose priority is less than the SEGMENT-
LIMIT can have in its range only those procedures contained in sections

(1) Each of which has a priority number less than 50, or
(2) Wholly contained in a single segment whose priority number is greater than 49.

A PERFORM statement that appears in a section whose priority number is equal to or greater
than SEGMENT LIMIT, can have in its range only those procedures contained in sections

(1) Each of which has the same priority number as that containing the PERFORM statement,
or

6-45

(2) Each of which has a priority that is less than the SEGMENT-LIMIT.

When a procedure-name in a segment with a priority number greater than 49 is referred to
by a PERFORM statement contained in a segment with a different priority number, the segment
referred fo is made available in its initial state (that is, with all ALTERable GO TO:s set to their
initial setting) for each execution of the PERFORM statement.

k. A PERFORM statement in a section not in the DECLARATIVES may have as its range, pro-
cedures wholly contained within the DECLARATIVES; however, a PERFORM statement in a
section within the DECLARATIVES may not have any non-DECLARATIVE procedures within its
range. -

. A PERFORM statement within an INPUT or OUTPUT PROCEDURE associated with a SORT
verb may not have within its range any procedures outside of that INPUT or OUTPUT proce-
dure.

6-46

READ

Function

The READ statement makes available a logical record from an input file and allows performance of a

specified imperative statement when end-of-file or invalid key is detected.

General Format

READ file-name RECORD

. .pe . [LAT END
[INTO |denhf|er] ; {INVALID KEY} statement .

Technical Notes

a. An OPEN INPUT or OPEN I-O statement must be executed for the file prior to execution
of the first READ statement for that file.

b. The AT END clause is valid only for those files whose ACCESS MODE IS SEQUENTIAL
(explicitly or implicitly).

The INVALID KEY clause is valid only for those files whose ACCESS MODE IS RANDOM.

If an end-of~file condition is encountered during the execution of a READ statement for a
sequential file, the statement specified in the AT END clause is executed, and no logical
record is made available.

The logical end-of-file depends upon the type of device to which the file is assigned (see
PDP~-10 Timesharing Monitors manual, which appears in the PDP-10 Timesharing Handbook and
in the PDP~10 Software Notebook). After execution of the imperative~statement in the AT
END clause, no further READ statements can be executed for that file without first executing a
CLOSE statement followed by an OPEN statement for the file.

If, during the execution of a READ statement for a file whose ACCESS MODE IS RANDOM,
the ACTUAL KEY is found to contain a value not within the range specified by the FILE-
LIMITS clause for that file, the statement specified in the INVALID KEY clause is executed
and no logical record is made available.

c. If afile described by an OPTIONAL clause is not present, the imperative-statement in
the AT END or INVALID KEY clause is executed on the first READ for that file. Any specified
USE procedures are not performed.

d. If logical end-of-reel is recognized during execution of a READ statement, the following
operations are carried out.

6-47

e.

(1) The reel is rewound and the user's ENDING LABEL PROCEDUREs are executed, if
specified in a USE statement.

(2) If the file is assigned to more than one device, the devices are swapped. The pre-
vious reel is rewound and the message

MOUNT REEL nn OF file-name ON device-name
is typed on the user's Teletype console. The program then waits for the operator to type

CONTINUE

after he has mounted the next reel.

(3) The standard beginning label procedure (see Chapter 8) and the user's BEGINNING
LABEL PROCEDURE are executed, if specified in a USE statement.

(4) The first data record on the new reel is made available.

If a file consists of more than one type of logical record, these records automatically share

the same storage area. This is equivalent to an implied REDEFINE for the record area. Only
information in the current record is accessible.

f.

If the INTO identifier option is specified, the READ statement is then equivalent to a

READ without the INTO option, followed by a MOVE of the record area associated with the
file-name to identifier.

6-48

RELEASE

Function

The RELEASE statement transfers records to the initial phase of the sort operation.

General Format

RELEASE record-name [FROM identifier]

Technical Notes
a. A RELEASE statement may be used only in an input procedure associated with a SORT
statement for a file whose SD description contains record-name.

b. If the FROM option is used, the contents of identifier are moved to record-name, then the
contents of record-name are released to the sort subroutines.

c. After the RELEASE statement is executed, the contents of record-name may no longer be
available.

6-49

RETURN

Function

The RETURN statement obtains sorted records from the final phase of a sort operation.

General Format

RETURN file=name RECORD [INTO identifier]; AT END statement

Technical Notes

a. File~-name must be described by an SD file descriptor.

b. A RETURN statement may be used only in an output procedure associated with a SORT
statement for file-name.

c. If the INTO phrase is specified, the current record is moved from the record area associ-
ated with file-name to identifier.

d. Afrer executing the statement in the AT END clause, no RETURN statements may be exe-
cuted until another SORT is executed.

6-50

SEEK

Function

The SEEK statement initiates the accessing of a mass storage data record for subsequent reading or

writing.

General Format

EEK file-name RECORD

Technical Notes

a. The SEEK statement uses the contents of the ACTUAL KEY item to position the read-write
arms on a mass storage device. If the key is invalid, no action is taken; however, if the con-
tents of ACTUAL KEY are not changed before the next READ or WRITE statement is executed,

that READ or WRITE statement will then take the INVALID KEY path.

b. The file must be assigned to a mass-storage device, and the ACCESS MODE must be
RANDOM.

6-51

SET

Function

The SET statement allows a data-item to be incremented, decremented, or set to a value.

General Format

IO ‘dentifier-3
SET identifier=1 [, identifier-2]... { UP BY {;ifee:q'l.iTr }
DOWN BY

Technical Notes

a. All identifiers must be numeric elementary items described without any positions to the
right of the assumed decimal point.

All literals must be integers, or the figurative constant ZERO .

b. The SET statement causes identifier-1, identifier-2, ... to be set (TO), incremented
(UP BY), or decremented (DOWN BY) the value of identifier-3 or literal-1.

6-52

SORT

Function

The SORT statement provides the capability of ordering a file of records according to a set of user-

specified keys within a record.

General Format

ASCENDING

SORT file-name-1 ON { DE@

} KEY data-name=~1

ASCENDING

[, data-name-2] ... [; ON {DESCENDING

} KEY data-name-3

[, data-name-4]1 ...] ...

{ ' L@fﬂgi‘?ifﬂﬁi‘i‘;ls procedure-name~-1 [THRU procedure-name~2]}
{ ; OUTPUT PROCEDURE IS

" GIVING file-name=-3 procedure-name~-3 [THRU procedure-name-4]}

Technical Notes

a. File~-name=-1 must be described in an SD file description entry in the Data Division. Each
data-name must represent data items described in records associated with file~name-1.

b. File-name-2 and file-name-3 must be described in an FD file description, not an SD file
description, in the Data Division. All records associated with file-name~2 must be large
enough to contain all of the KEY data-names.

c¢. The data~names following the word KEY are listed in order of decreasing significance
without regard to how they are divided into KEY clauses.

d. The data-names may be qualified but not subscripted.

e. SORT statements may appear anywhere in the Procedure Division except in the Declara-
tives portion or in an input or output procedure associated with a sort.

f. When the ASCENDING clause is used, the sorted sequence is from the lowest value to
the highest value; when a DESCENDING clause is used, the sorted sequence is from the
highest value to the lowest value.

6-53

g. The input procedure, if present, must consist of one or more sections or paragraphs that
appear contiguously in a source program and do not form a part of any outpout procedure. The
input procedure must contain at least one RELEASE statement in order to transfer records to the
sort subroutine.

h. The output procedure, if present, must consist of one or more sections or paragraphs that
appear contiguously in a source program and do not form a part of any input procedure. The
output procedure must contain at least one RETURN statement in order to make sorted records
available for processing.

i. ALTER, GO and PERFORM statements in the input procedure are not permitted to refer to
procedure-names outside the input procedures; similarly, ALTER, GO and PERFORM statements
in the output procedure are not permitted to refer to procedure-names outside the output pro-
cedures.

j. If an input or output procedure is specified, those procedures are PERFORMed by the SORT
statement, and all rules relating to the range of a PERFORM must be observed.

k. If the USING option is specified, all the records in file-name-2 are automatically trans-
ferred to the sort subroutine. At the time of the execution of the SORT statement, file~-name-2
must not be open. Any USE procedures associated with file-name-2 will be executed as ap-

propriate.
The USING option is equivalent to the following input procedure:

% 1. OPEN INPUT file=-name~2

%2. READ file-name=2 INTO sort-record; AT END GO TO % 3.
RELEASE sort=-record.
GO TO %2.

%3. CLOSE file=-name=2.

I. 1If the GIVING option is specified, all the sorted records in file-name-1 are automatical-
ly transferred to file=name=3. At the time of the execution of the SORT statement,
file-name=-3 must not be open. Any USE procedures associated with file-name-3 will be exe-
cuted as appropriate.

The GIVING option is equivalent to the following output procedure:

%4. OPEN OUTPUT file-name-3.

% 5. RETURN sort-file INTO record=name=-3; AT END GO TO %6.
WRITE record~name-3.
GO TO %5.

%6. CLOSE file=-name=3.

6-54

STOP

Function

The STOP statement halts the object program.

General Format

literal

RUN

STOP

Technical Notes

a. Ifthe literal option is used, the literal is displayed on the user's Teletype console, and the
program waits for the operator to type

CONTINUE

Following receipt of this message, the program continues execution at the statement following
the STOP.
The literal may be a figurative constant; in this case, a single character is displayed.

b. If the RUN option is used, all files currently open are closed, and execution of the program
is terminated.

6-55

SUBTRACT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric items from one or

more numeric items and set the values of one or more items to the result.
General Format
Option 1

identifier-1 identifier-2
SUBTRACT {:Iirercﬂ-] } |:' {Iitera|—2 }:] Tt
FROM identifier-m [ROUNDEQ] l:, identifier-n [ROUNDEI%':I e

[: ON SIZE ERROR sfafement._]

identifier-1 identifier-2
SUBTRACT {:Ii’reral—l } l;{|irera|—2 }:I)

FROM{‘de"”ﬁe"m} GIVING identifier-n I:ROUNDED]

Option 2

literal-m

Edenﬁﬁer—p EQOUNDEQ:I:I ...

l: ON SIZE ERROR statement :]

Option 3

SUBTRACT {ggggESPONDING } identifier-1 FROM identifier-2

I:ROUNDED:] I: ON SIZE ERROR sfufemenr;:l

6-56

Technical Notes

a. Each SUBTRACT statement must contain at least two operands (i.e., a subtrahend and a
minuend).

In options 1 and 2, each identifier must refer to an elementary numeric item, except that
identifiers to the right of the word GIVING may refer to numeric edited items. In option 3,
each identifier must refer to a group item.

Each literal must be a numeric literal or the figurative constant ZERO.

b. The composite of all operands (i .e., the data item resulting from the superimposition of
all operands aligned by decimal point) must not contain more than 19 decimal digits.

c. Option 1 causes the values of the operands preceding the word FROM to be added together,
and this sum to be subtracted from the values of identifier-m, identifier~n, etc.

d. Option 2 causes the values of the operands preceding the word FROM to be added together,
the sum subtracted from identifier-m or literal-m, and the result stored as the new values of
identifier-n, identifier~p, etc. The current values of identifier-n, identifier-p, etc., do not
enter into the computation.

e. Option 3 causes the data items in the group item associated with identifier-1 to be sub-
tracted from and stored into corresponding data items in the group item associated with iden-~
tifier-2. The criteria used to determine whether two items are corresponding are described
under "The CORRESPONDING Option™ at the beginning of this chapter.

f. The ROUNDED and SIZE ERROR options are described earlier in this chapter under "Com-~
mon Options Associated with Arithmetic Verbs".

6-57

USE

Function

The USE statement specifies procedures for input-output label and error handling that are in addition to

the standard procedures provided.

General Format

Option 1
file-name-1
INPUT
USE AFTER STANDARD ERROR PROCEDURE ON OUTPUT .
1-O
INPUT-OUTPUT
Option 2
BEFORE BEGINNING REEL
STANDARD FILE
AFTER ENDING UNIT
file-name-1
INPUT
LABEL PROCEDURE ON OuUTPUT .
1-O -

INPUT-OUTPUT

Technical Notes

a. USE statements may appear only in the DECLARATIVES portion of the PROCEDURE DIVI-
SION.

The DECLARATIVES portion follows immediately after the PROCEDURE DIVISION header
and begins with the word

DECLARATIVES.
The DECLARATIVES portion ends with the words

END DECLARATIVES.

6-58

Following this must be a section-header as the first entry of the main portion of the
PROCEDURE DIVISION.

The DECLARATIVES portion itself consists of USE sections, each consisting of a section-
header, followed by a USE statement, followed by the associated procedure paragraphs.

The general format for the DECLARATIVES portion is given below.

PROCEDURE DIVISION.
DECLARATIVES.

section-name~1 SECTION. USE
paragraph-name-la. (statement)

[poragraph-nome-lb. (sratemenf)]

[secﬁon-name-Z SECTION. USE......]

END DECLARATIVES.
section-name-m SECTION.

b. The USE statement may follow on the same line as the section-header and must be terminated
by a period followed by a space. The remainder of the section must consist of one or more pro-
cedural paragraphs that define the procedures to be used.

c. The USE statement itself is never executed, rather it defines the conditions calling for the
execution of the USE procedures.
d. The designated procedures are executed at the appropriate time as follows (see also Chap-
ter 8):
(1) Format 1 causes the designated procedures to be executed after completing the stand-~
ard input-output error routine.
(2) Format 2 causes the designated procedures to be executed at one of the following times,
depending upon the options used.

(a) Before or after a beginning or ending input label check procedure is executed.
(b) Before a beginning or ending output label is created.

(c) After a beginning or ending output label is created, but before it is written on
tape.

(d) Before or after a beginning or ending input-output label check procedure is
executed,

e. There must not be any references to any non-DECLARATIVES procedure within a USE pro-
cedure. Conversely, there must be no reference to procedure-names that appear within the
DECLARATIVES portion in the non-DECLARATIVES porticn, except that PERFORM statements
may refer to a USE section or to a procedure contained entirely within such a USE section.

6-59

f. Format 1 causes the associated procedures to be executed after the standard input-output
error routine has been executed. If the INPUT option is used, the procedures will be executed
for all INPUT files; if the OUTPUT option is used, they will be executed for all OUTPUT files;
if the I-O or the INPUT-OUTPUT option is used, they will be executed for all INPUT-OUTPUT
files; if the file-name-1 option is used, they will be executed only for that particular file.

g. Format 2 causes the associated procedures to be executed at the appropriate times, as in-
dicated by the options selected (see note d and Chapter 8). If the words BEGINNING or
ENDING are not included in Format 2, the designated procedures are executed for both the
beginning and ending labels. If neither UNIT, REEL, nor FILE is included, the designated
procedures are executed for both REEL (or UNIT) labels and for FILE labels.

If the INPUT, OUTPUT, INPUT-OUTPUT, or I-O option is specified, the label procedure
applies to every file of that type except those files described as LABEL RECORDS ARE
OMITTED.

If the file-name-1 option is used, its file description must not contain a LABEL RECORDS
ARE OMITTED clause.

h. Within a given format, a file-name must not be referred to, either implicitly (i.e., by an
INPUT, OUTPUT, INPUT-OUTPUT, or I-O option) or explicitly (i.e., by a file~=name-1 op-
tion), in more than one USE statement.

i. The following chart indicates the valid combinations of USE formats and file types.

6-60

WRITE

Function

The WRITE statement transfers a logical record to an output file.

General Format
Option 1

WRITE record-name-1 I:FROM identifier-]]

identifier-2 LINES
%%Ff%g—E ADVANCING { integer-1 LINES }
-_— mnemonic~-name

Option 2

WRITE record-name-1 [FROM identifier-]] ; INVALID KEY statement.

Technical Notes

a. An OPEN OUTPUT or OPEN I-O or OPEN INPUT-OUTPUT statement must be executed
for the file prior to the execution of the WRITE statement .

b. After the WRITE is executed, the data in record-name-1 may no longer be available.

c. Record-name-1 must be the name of a logical record in a DATA RECORDS clause of the
FILE SECTION of the DATA DIVISION.
d. Format 1 is valid for any file currently open for output, with ACCESS MODE IS SEQUEN-
TIAL.

The ADVANCING clause allows control of the vertical positioning of the paper form for
print files as follows.

(1) If the ADVANCING clause is not specified and the recording mode is ASCII (see
Chapter 8), BEFORE ADVANCING 1 LINE is assumed.

(2) If identifier-2 or integer-1 is specified, it must represent a positive integer or zero.
The form is advanced the number of lines equal to the value of identifier-2 or integer-1.

(3) If mnemonic-name is specified, the form is advanced until the specified channel is
encountered on the paper-tape format control loop. Mnemonic-name must be defined by
a CHANNEL clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

6-61

(4) If the BEFORE option is used, the record is printed before the form positioning.

(5) If the AFTER option is used, the record is printed after form positioning occurs, and
no form positioning takes place after the printing.

If end-of-reel is encountered while writing on magtape, the WRITE statement performs the
following operations.

(1) The user's ENDING LABEL PROCEDURE is executed, if specified by a USE statement.
(2) A file mark is written, and the tape is rewound.
(3) If the file was assigned to more than one tape unit, the units are swapped.

(4) The operating system types the message.
MOUNT AVAILABLE TAPE ON device-name

and waits for the operator to type CONTINUE.

(5) A label is written on the new tape, if labels are not OMITTED, and any user's BE-
GINNING LABEL PROCEDURE is executed.

e. Format 2 is valid only for random=-access files whose ACCESS MODE IS RANDOM.

The imperative-statement in the INVALID KEY clause is executed when an attempt is made
to execute a WRITE to a segment outside the range of the FILE-LIMITS of the file.

f. When executing a WRITE statement for a SEQUENTIAL file opened for 1-O (or INPUT-
OUTPUT), the logical record is placed on the file as the next logical record, if the previous
input-output operation was a WRITE, or it replaces the previous record, if the previous input-
output operation was a READ.

g. If the FROM option is used, the statement is equivalent to:

MOVE identifier-1 TO record~name-1
WRITE record-name-1 (without the FROM option)

6-62

Chapter 7
The COBOL Library

The COBOL Library contains source language entries that are available for inclusion in a user's source

program at compile time.

For example, a library entry might consist of a PROCEDURE DIVISION section containing procedure
statements associated with a frequently used rate computation. If a programmer wishes to include this
computation procedure in his program, he need only write a COPY statement referencing this library
entry at the point where he wants this procedure included; it is unnecessary for him to write out the

full procedure himself. The effect of the COPY is the same as if the text contained in the library entry
were actually written as part of the source program. In addition to PROCEDURE DIVISION entries,
ENVIRONMENT DIVISION paragraphs and DATA DIVISION FDs and record descriptions can be copied

from the library into a user's source program.

7-1

COoPY

Function

The COPY statement causes inclusion of a library entry into a COBOL source program at the point where
the COPY statement appears.

General Format

COPY library-name

word=2
REPLACING word-1 BY (identifier-1

procedure-name-1
word-4
, word-3 BY({ identifier-2 cee |
procedure-name=-2

a. The COPY statement may appear as follows:
(1) In any of the following paragraphs of the ENVIRONMENT DIVISION:

Technical Notes

OBJECT-COMPUTER. COPY library-name...
SPECIAL-NAMES. COPY library-name...
FILE-CONTROL. COPY library-name...
[-O-CONTROL. COPY library=name. ..

(2) In any of the following places in the DATA DIVISION:

(a) In place of any clause in the data or file descriptor.
(b) In place of any FD or SD.
(c) Wherever a level-number may appear.

(d) Wherever a section-header may appear.

7-2

(3) In a paragraph in the Procedure Division:
paragraph-name. [statement-11 COPY statement. [statement-2].

statement-1 may not start with NOTE.

b. In the IDENTIFICATION and ENVIRONMENT DIVISIONSs, no other statement or clause
may appear in the same sentence as the COPY statement .

c. COPY causes the specified library text to be copied from the COBOL Library, and the re-
sult of compilation is the same as if the text were actually a part of the source program. The
COPYing process is terminated by the end of the library text.

d. Both the COPY statement itself and the statements of the library text, after any specified
replacing has been performed, appear on the output listing produced by the compiler.

e. The text in the library entry must not contain any COPY statements.

f. If the REPLACING option is used, each word specified in the format is replaced by the
stipulated word, identifier, or procedure-name that is associated with it in the format. That
is, word=2, identifier-1, or procedure-name-1 replaces every occurrence of word-1 in the
text copied from the library. The library entry itself is not altered.

Word-1 and word-3 may be a data-name, procedure-name, condition-name, mnemonic-
name, or file=name.

Word-2 and word-4 may be any COBOL word, including literals but excluding picture-
strings .

Example:
COPY LIBOOT REPLACING ITEM1 BY AMOUNT OF INCOME-REC.

Library entry:
TAX-CALC. MULTIPLY ITEM1 BY TAX-RATE GIVING TAX-DUE......

Result of COPY:
TAX-CALC. MULTIPLY AMOUNT OF INCOME-REC BY TAX-RATE
GIVING TAX-DUE......

7-3

Chapter 8
Standard 1-O Processing

This chapter describes how the data is structured, stored, accessed, and moved in I-O operations at

run-time. Each of the following topics is described and explained in detail .

Access mode

T o

Recording mode
File tables

a o

Channel tables

Blocking

o

-
.

Label records

Multiple-file tape

SAME AREA clause

SAME RECORD AREA clause

j. File=limits

> @

8.1 ACCESS MODE

Each file has either SEQUENTIAL or RANDOM access mode. For random=-access files the mode must be
specified by means of the ACCESS MODE clause of the FILESCONTROL paragraph in the ENVIRON-
MENT DIVISION (see page 4-12).

8.1.1 SEQUENTIAL Mode

In the SEQUENTIAL mode records are accessed in the order in which they appear on the file. Each
READ (after the first) brings into memory from the peripheral device the logical record on that device

that immediately follows the logical record previously read from or written on that device.

If the file is open for output, each write appends the record to the end of the file. If the file is open
for input-output, the write replaces either the record previously read (if the last operation was READ) or

the record following the one previously written (if the last operation was WRITE).

8.1.2 RANDOM Mode

The record to be accessed is specified by the contents of the ACTUAL KEY, without regard to the physi-

cal characteristics of the device. The following conditions must exist:

a. The device must be a random=-access medium.
b. The records must be blocked (the blocking factor may be 1).
c. If the recording mode is DISPLAY-7 (see Section 8.2), the blocking factor must be 1.

The contents of the ACTUAL KEY determine which record, relative to the beginning of the file, is to be
read or written. For example, to read the fifth record of a file, the following statements would appear

in the source program.

Example:

SELECT FILE ASSIGN TO DSK;
ACCESS MODE IS RANDOM.
ACTUAL KEY IS FILE-KEY.

MOVE 5 TO FILE-KEY.
READ FILE; INVALID KEY GO TO YOU-LOSE.

NOTE

File=key is a computational item defined by the user.
It consists of 10 or fewer digits with no decimal
places.

8-2

8.2 RECORDING MODE

8.2.1 Default Conditions

At both compilation time and run time, assumptions are made regarding the structure, or recording mode,
of data as it appears on the external devices. At compilation time, the recording mode for a file is as-
sumed to be DISPLAY-7 if all the data records for that file are described implicitly or explicitly as
DISPLAY-7, or if the WRITE verb is used with the ADVANCING option. In all other cases, the re-
cording mode is assumed to be DISPLAY=6. At run time, if the device is found to be other than mag-
netic tape DECtape, or a random-access device the recording mode is assumed to be DISPLAY-7. Con-

versions necessary to conform to the USAGE of the records are made automatically by the I-O routines.

8.2.2 DISPLAY-7

DISPLAY -7 records contain a contiguous set of characters. Each record is terminated by a printer con-
trol character (ASCII code 12~15, 20-24), or by a string of such characters. The first record in a block
starts in the first character position; each succeeding record in that block starts in the first character

position following the previous record.

8.2.3 DISPLAY-6

DISPLAY-6 records contain a contiguous set of words. The right half of the first word, supplied by the
I-O routines, contains the number of characters in the record. The last word in the record will, if
necessary, have filler added to insure that the record ends at a word boundary, so that records always

occupy an integral number of words.

8.3 FILE TABLES

There is a file table for each file named in a SELECT statement in the user's program (see SELECT state-
ment on page 4-11). The address of the last file thus named is contained in the right half of the global
FILES..

Figure 8-1 shows the structure of a file table. The various fields in that table are described in the

paragraph following the figure.

G AW N

10

11
12
13

14

15
16
17
18
19

35

0 4 6 12 18
NAME OF THE FILE (IN SIXBIT)

NOT NUMBER OF

USED CHANNEL DEVICES ADDRESS OF FIRST DEVICE NAME
NUMBER OF
FILE LIMITS | BLOCKING FACTOR | POSITION ADDRESS OF NEXT FILE TABLE
NUMBER OF

BUFFERS RECORD SIZE RERUN COUNT

FLAGS

ADDRESS OF RECORD AREA

MAXIMUM SIZE OF ANY NON-STANDARD

LABEL

MULTIPLE-FILE ADDRESS

BUFFER LOCATION

ADDRESS OF ACTUAL KEY

BYTE POINTER FOR VALUE OF IDENTIFICATION

BYTE POINTER FOR VALUE OF DATE-WRITTEN

ADDRESS OF A FILE TABLE THAT SHARES
BUFFER AREA

ADDRESS OF ERROR USE PROCEDURE

ADDRESS OF BEFORE BEGINNING REEL

ADDRESS OF BEFORE BEGINNING FILE

ADDRESS OF AFTER BEGINNING REEL

ADDRESS OF AFTER BEGINNING FILE

ADDRESS OF BEFORE ENDING REEL

ADDRESS OF BEFORE ENDING FILE

ADDRESS OF AFTER ENDING REEL

ADDRESS OF AFTER ENDING FILE

FILE-LIMIT PAIRS (AS NEEDED)

Figure 8-1

8-4

Structure of a File Table

8.3.1 Explanation of Fields

NAME OF THE FILE

CHANNEL

NUMBER OF DEVICES

ADDRESS OF FIRST DEVICE

NAME

NUMBER OF FILE-LIMITS

BLOCKING FACTOR

POSITION

ADDRESS OF NEXT FILE
TABLE

NUMBER OF BUFFERS

RECORD SIZE

RERUN COUNT

FLAGS

The name specified by the SELECT clause. It is used only for

error messages.

The relative address of the channel table entry assigned to this
file when opened.

The number of devices specified by the ASSIGN clause (see
page 4~11). This number cannot exceed 63.

The address of the first device name in the device-name table.
Device names are kept in a table in the order in which they are
assigned. After the first name, the addresses of any other as-
signed device names follow in sequence (i.e., each one is con-
secutive and contiguous to its predecessor).

The number of file-limit pairs associated with the file (see
FILE LIMIT clause on page 4-11).

The number of records in a block, as specified by the BLOCK
CONTAINS clause (see page 5-7).

The position of this file relative to the beginning of a multi~file
tape. This position is specified by the POSITION clause in the
I-O CONTROL paragraph (see page 4-13).

The address of the first word of the next file table. Each file
table points to the succeeding table, in reverse order to that in
which the files are named in the SELECT statement. The last
file table has zeros in this field.

The number of buffers requested from the monitor. If the access
mode is RANDOM or RELATIVE this number is 1. If the access
mode is SEQUENTIAL, this number is 2, unless the user requests
a different number of buffers by means of the RESERVE clause
(see page 4-11).

The size of the record given in bytes if the recording mode of
the file is FIXED, or VARIABLE ASCII. However, if the re-
cording mode is VARIABLE and not ASCII, the size of the larg-
est record is given in words.

The value of the integer, if the RERUN EVERY integer RECORDS
clause is given for this file.

A half-word containing flags and fields with the meanings shown
in Table 8-1.

8-5

Table 8-1
Flags and Fields in File Table

Bits Meaning
0-1 Type of data on the device:
00 = SIXBIT (DISPLAY=-6)
01 = BINARY
10 = ASCII (DISPLAY-7)
2-3 Type of labels:
00 = OMITTED

01 = STANDARD
10 = NON-STANDARD

4 This file is open for input.
5 This file is open for output.
6 This is a random=access device.
7 AT END path has been taken.
8 Device is a console
9 Type of record:
0 = Fixed length
1 = Variable length
10 Rerun is to be taken at end of reel.
n Rerun is to be taken every now and

then (see RERUN COUNT field).

12 File is optional and not present.
13 File is optional .
14-15 Type of data in core:
00 = SIXBIT
01 = BINARY
10 = ASCII
16 Data and Recording modes differ.
17 Access mode:
0 = SEQUENTIAL
1 = RANDOM

8-6

ADDRESS OF RECORD AREA
MAXIMUM SIZE OF ANY
NON-STANDARD LABEL

MULTIPLE FILE ADDRESS

BUFFER LOCATION

ADDRESS OF ACTUAL KEY

BYTE POINTER FOR VALUE
OF IDENTIFICATION

BYTE POINTER FOR VALUE
OF DATE-WRITTEN

ADDRESS OF A FILE TABLE
THAT SHARES BUFFER AREA

ADDRESS OF ERROR USE PRO-
CEDURE

FILE-LIMIT PAIRS

The address of the first location in core memory allocated to
a record in this file.

The size of the largest label record described in the FD
clause.

The link between file tables which share a device. If the
same device is used by more than one file, the file tables

will be linked in a circular, or round-robin, manner through
this field.

The first location used by the 1-O routines for buffers.

The address of the word containing the value to be used as an
actual key .

A byte pointer that points to the byte preceding the first
character of a string of characters containing the value of
identification.

A byte pointer that points to the byte preceding the first
character of a string of characters containing the value of
date=-written.

The link between file tables which share a buffer area. If
this file appears in a SAME AREA clause, all associated files
in that clause are linked in a circular, or round-robin, man-
ner through this field.

The address (words 14 through 18) of the first instructions of
the USE procedure as declared in the DECLARATIVES (see
page 6-58). The compiler generates the following code to
call a USE procedure:

PERF. 17,%Y
JRST <use procedure >
POPJ 17,

%Y is a location in working storage that will contain the re-
turn location for a PERFORM. When the I-O routines want
to execute a USE procedure, they pick up the appropriate ad-
dress in an AC and then execute.

PUSHJ 17, (AC)

For each file=limit, three words are allocated. The left-
half of word 1 contains the address of the lower limit; the
right=half of word 1 contains the address of the higher limit.
Words 2 and 3 contain the actual values of these limits, at
OPEN time.

8.4 CHANNEL TABLES

For each open file, a 10-word entry is placed in a channel table. Table 8~2 shows the contents of each

word in that entry.

Table 8-2
Channel Table Entry
Word Contents
1 Number of bytes per word.
2 Relative number of the current physical block.
3 Number of buffers per logical block.
4 Number of buffers yet to be processed for current block.
5 Number of records required to fill current logical block.
6 IOWD pointing to device-name being used with multi-device file.
7-9 A 3-word header used for output.
10-12 A 3-word header used for input.
13 Number of records remaining until next rerun dump.
14 Current record number.
15 Characteristics of the device, as returned by a DEVCHR UUO.

8.5 BLOCKING

A file is said to be blocked when a BLOCK CONTAINS clause is part of its description; conversely, a
file is unblocked when no BLOCK CONTAINS clause is specified. The number of records in a block is
termed the blocking factor. The next two paragraphs show how 1-O processing differs for blocked and

unblocked files.

8.5.1 Reading and Writing Blocked Files

For each READ statement referencing a SEQUENTIAL blocked file, the I-O routines transfer to the re-
cord area (i.e., core memory allocated to contain the current record) the next consecutive record from
the file. If a number of records, equal to the blocking factor, have been transferred since the previous

block was read, the I-O routines do a physical read of the device.

When a RANDOM blocked file is read, both the blocking factor and the ACTUAL KEY are used to spe-

cify which physical segment to read and which record in that segment to transfer to the record area.

Writing SEQUENTIAL blocked files is accomplished in a manner similar to the reading of them, except

that records are transferred from the record area to the buffer area.
When a RANDOM blocked file is written, the I-O routines do the following:

a. Read a physical segment whose address is determined by the blocking factor and the
ACTUAL KEY, if necessary.

b. Transfer the record to a portion of that segment.

c. The segment is written either when another segment is to be read or when the file is

closed.

8.5.2 Reading and Writing Unblocked Files

When an unblocked file is either read or written, the I-O routines have complete control over the time
when the actual read or write takes place. The user need not concern himself with the physical charac-
teristics of the device; in fact, he does not have to know anything about such characteristics as block or

segment sizes.

8.6 LABEL RECORDS

The term label records refers to header or trailer labels on the file. The presence or absence of label
records is specified by the LABEL RECORDS clause (see page 5-10). Their format can be standard or non-

standard .

8.6.1 Standard Label Records

The standard label for DECtape and random-access devices is the directory block used by the monitor.
For magnetic tape, the standard label is 30 characters in length and is written in a separate block from
the data, with the same recording made as the data. Table 8-3 shows the contents of each character in

a standard label for non-random=-access devices.

Table 8-3
Standard Label for Nonrandom-Access Media

Characters Contents
1-9 Value of identification.

10-12 Not used.

13-18 Date that the file was written: two characters each for the
year, month, and day, respectively.

19-22 Time that the file was written. This is given in military
clock time: 0000 < hhmm <2400.

23-24 Reel number. This field always contains 01 for the begin-

ning file label; it is incremented by 1 for each succeeding
beginning reel label. This field is not used in ending file
or reel labels.

25-29 Not used.
30 Label type: B = Beginning file or reel.
F = Ending File.
R = Ending Reel.

8.6.1.1 Ending Labels = Magnetic tapes are the only devices with ending labels. Each ending !abel
is preceded by and followed by an end-of-file mark.

8.6.2 Non-Standard Label Records

Non-Standard labels are specified by the LABEL RECORDS clause (see page 5-10). Similar to standard

labels, they are written in a separate block on the device.

When a file is opened, the beginning non=standard label will be read (as input) or written (as output)
automatically by the 1-O routines. If the file is being opened for output, the data for the record must
be supplied by a USE procedure in the DECLARATIVES (see page 6-58). If the file is being opened for
input, no checks are made by the I-O routines to determine the validity of the label; the user may write

any check in a USE procedure.

8.7 MULTIPLE-FILE TAPE

Only magnetic tapes can contain multiple files in the COBOL sense. This may seem to conflict with the
obvious fact that random=access devices contain more than one file, but the programmer will recall that
files on a random=access device are treated by the monitor as though they are on separate devices. Each

file on a multi-file magnetic tape must have labels, and must be wholly contained on one reel .

8-10

8.8 SAME AREA CLAUSE

The SAME AREA clause specifies that two or more files are to share the same memory area during pro-
cessing. Since the area shared includes all storage areas (including alternate areas) assigned to the

files specified in this clause, only one file at a time can be open.

8.9 SAME RECORD AREA CLAUSE

The SAME RECORD AREA clause specifies that two or more files are to use the same memory for pro-
cessing the current logical record. All or any of the files specified in this clause may be open at any

time. The record area contains only one record at any time.

8.10 FILE-LIMITS

File-limits must be specified for RANDOM files. They may also be specified for input SEQUENTIAL
files, in which case only that portion of the file that is within the file-limits is read. [

File-limits for files whose access mode is RANDOM specify the allowed range, or ranges, for the AC-
TUAL KEY (see ACTUAL KEY on page 4~12). When the contents of the ACTUAL KEY fall outside all
ranges given in the FILE-LIMITS clause for that file, the read or write transfers control to the statement

specified in the associated INVALID KEY clause (see pages 6-47 and 6-62).

8-11

Chapter 9
Source Library Maintenance Program

The COBOL Source Library Maintenance Program maintains on disk or DECtape a library file of COBOL
source-language text that can be copied into a source program at compile time. Specifically, the pro-
gram has the capability of adding source-language data to the library file, replacing and/or deleting
lines, and listing entries in that file. Thus it allows the user to specify those source routines that are
used in many programs and to place them in a common file for use by the COBOL compiler. The rou-
tines on the library file are made available through the use of the COPY verb. (See pages 7-2 and 7-3
for the description of the COPY verb.)

9.1 EQUIPMENT

9.1.1 Machine Requirements

Required hardware for the COBOL Source Library Maintenance Program consists of the following:

a. A PDP-10 central processor.
b. A diskfile.
c. ATeletype.

9.1.2 Machine Options

With a small sacrifice of running time, the original and/or updated version of the library file can be

put on DECtape. Any device capable of handling ASCII output can be used as the listing device.

9.2 SALIENT FEATURES OF MAINTENANCE PROGRAM

a. The routine runs in 2K of user core.

b. Though the routine is designed around disk, other devices can be used where appropriate.

c. The routine runs under the control of BATCH.

d. Commands can be taken from any device.

9.3 INPUT FORMAT

The input file is a collection of COBOL source-language routines, each identified by a unique

8-character library=name. The library file must be on a directory device.

The data in the library is divided into the three sections shown in Table 9-1.

Table 9-1
Data Sections in the Library File
Section Description
Source Language This is a collection of name COBOL routine (in ASCII)

that are to be referenced by the COPY verb. The routines
are arranged in alphabetic order by library-name. The
maximum number of routines that can appear in the file is

3869.

Fine Table This is a table of library-names. It may extend over as
many as 63 blocks. Each entry has a pointer to the data
in the source language section.

RougH Table This table points to the blocks in the Fine Table. If- is one
block (126 words) in length.

9.4 OUTPUT FORMAT

The format of the output files is identical to that of the input file. (See Section 9.3.)

9.5 ORGANIZATION OF THE MAINTENANCE PROGRAM

9.5.1 Internal Organization

All subroutines are resident. The Maintenance program uses the core UUO to increase its core usage, if

necessary .

9-2

9.5.2 Operational Organization

The Maintenance program copies the input file to disk, updating as it does. When the update is com=
pleted, the new library is copied to the output file; however, if the output is to disk, the Maintenance
program does a RENAME.

9.6 OPERATING PROCEDURE

9.6.1 Start-Up

As one of the CUSPs, the Maintenance program is started with the R, RUN, or GET and START monitor
commands. There is no REENTER procedure.

The operator specifies the devices to be used by typing
FILET,FILE2+FILE3
where FILEn is of the form DEV : NAME . EXT [PROJ , PROG] .
FILE 1 is the file to contain the output, FILE 2 is the listing file, and FILE3 contains the library to be

updated.

9.6.2 Default Assignments

If FILE2 is not specified, no listing of corrected routines is produced.
If filename extensions are not specified, the following extensions are assigned:

a. LIB for FILE1 and FILE 3, and
b. LST for FILE2.

If devices are not specified, DSK is assigned.
If filenames are not specified, LIBRARY is used.

If the input file and the output file have the same filename and extension, and are both on the disk, the
extension of the input file is changed to BAK at the completion of the run.

9.6.3 Switches

The following switches may be used:

Z =~ Clear an output directory (for DECtape only).

W - Rewind (listing on magtape only).

See Appendix D, Table D-1 for a complete list of COBOL switches.

9.7 COMMAND LANGUAGE

9.7.1 Commands to Position Files

The six commands used to position the input and scratch files are shown in Table 9-2.

Table 9-2

Commands for Positioning Files

Command

Function

INSERT library~name

The input file is copied to the scratch file, starting at the
current position of the files, until a source routine with a
name alphabetically greater than the one specified is en-
countered. The new name is inserted in the Fine Table,
and the program awaits another command.

DELETE library~name

The input file is copied to the scratch file until the source
routine with the name specified is encountered. The in-
put file is then positioned after that source routine.

REPLACE library~name

The program does a DELETE followed by an INSERT.

CORRECT library~name

The input file is copied to the scratch file until a source
routine with the name specified is encountered. Typing
/N after the CORRECT command causes new line numbers
to be applied to the output version of the source language
routine.

The remainder of the input file is copied to the scratch

END
file, and the output file is created, and the program then
terminates.
RESTART The remainder of the input file is copied to the scratch

file. The scratch file then becomes the input file, and a
new scratch file is started. This command allows the user
to update routines out of library-name order.

9-4

9.7.2 Commands to Alter Contents of Source File

The three commands used to alter the contents of a source file are shown in the following table.

Table 9-3
Commands for Altering Contents of Source File
Command Function
Dnnnnnn The input file is copied to the scratch file until nnnnnn,
the specified line, is encountered. That line is then
skipped.
Innnnnn COBOL~statement The input file is copied until either a line having a larger

line=-number or a new source language routine is encoun-
tered. The COBOL-statement is inserted at that point.

Rnnnnnn COBOL-~statement The input file is copied until the specified line is encoun-
tered. The COBOL statement with that line-number is
replaced by the statement in the command.

9.7.3 Example of the Use of the Commands

A library on disk contains the routines PAYCOMPUT, FIND-MP, and MP-DESCR. The user wants to do

the following:

a. Delete PAYCOMPUT.
b. Correct MP-DESCR.
c. Insert a new routine called JOB-DESC.

The MP-DESCR routine contains the following source statements:

000010 LABEL RECORDS ARE OMITTED
000020 DATA RECORD IS MP-RECORD.

The dialog at the Teletype might appear as follows:

R LMAIN

LIBRARY . NEW = LIBRARY . OLD

INSERT JOB-DESC

1000010 LABEL RECORDS ARE STANDARD;
1000020 VALUE OF ID IS "JOBS";
1000030 DATA RECORD IS JOB-RECORD.
CORRECT MP-DESCR/N

000005 BLOCK CONTAINS 5 RECORDS
DELETE PAYCOMPUT

END

9-5

The file LIBRARY . NEW now contains the following:

a. FIND-MP

b. JOB-DESC

c. MP-DESCR, altered to appear as follows:
000010 BLOCK CONTAINS 5 RECORDS
000020 LABEL RECORDS ARE OMITTED
000030 DATA RECORD IS MP-RECORD.

9.8 ERROR RECOVERY

9.8.1 Input Errors

The input file is not a library file if one of the following conditions exists:

a. The Rough Table is not in order by library-name.
b. A Fine Table is not in order by library-name.

c. A library routine is not in order by line~number.
If the input file is not a library file, the program types
? INCORRECT LIBRARY FILE FORMAT

and terminates with a CALL I SIXBIT/EXIT/I.
9.8.2 Operator Errors

If an improper command is detected, an error message is typed, and the program looks for another com-

mand. For a complete list of operator error messages see Table 9-4.

9-6

Table 9-4

Operator Errors

Message

Meaning

? THAT ROUTINE HAS ALREADY BEEN PASSED

An attempt was made to alter a routine
that had already been copied to the
output file.

? THAT ROUTINE DOES NOT EXIST

An attempt was made to correct, de-
lete, or replace a routine not in the
input file.

? THAT ROUTINE ALREADY EXISTS

An attempt was made to insert a routine
that already exists in the input file.

? THAT LINE HAS ALREADY BEEN PASSED

An attempt was made to insert, delete,
or replace a source line that had al-
ready been copied to the scratch file.

? THAT LINE DOES NOT EXIST

An attempt was made to replace or de-
lete a line not found in the source rou-
tine.

T— ? THAT LINE ALREADY EXISTS

An attempt was made to insert a line
that already exists in the source rou-
tine.

? IMPROPER LIBRARY-NAME

The specified library=name is longer
than 8 characters or contains charac-
ters other than A-Z, 0-9, and the hy-
phen.

9.8.3 Hardware Errors

If an error is detected while reading or writing on a device,

?ERROR ON FILE DEV : filename, extension
If the operator wants the read or write re-tried, he types

AGAIN

9-7

the program types

9.9 SOFTWARE INTERFACES

9.9.1 Format of the Rough Table

The Rough Table consists of a single block of 128 words. The first word is unused; the last word contains
all 1s. The intervening space is divided into sixty-three 2-word entries. The format of an entry is

shown in Table 9-5.

Table 9-5
Format of a Rough Table Entry
Word Bits Contents
1 0-35 The routine name (in SIXBIT) that is
2 0-11 found in the first entry of a Fine Table.
2 12-28 The block-number of the Fine Table

block that contains the routine name
mentioned above. The block-number
is relative to the beginning of the
file.

2 29-35 Not used.

9.9.2 Format of the Fine Table

The Fine Table consists of one or more blocks of 128 words. In each block, the first word is not used,
and the last word is all 1s. The intervening space is divided into sixty~three 2-word entries. The for-

mat of an entry is shown in Table 9-6.

Table 9-6
Format of a Fine Table Entry
Word Bits Contents
1 0-35 The name of the routine in the library
2 0-1 (in SIXBIT).
2 12-28 The block-number that contains the

start of the first line of the source rou-

tine mentioned in the preceding entry.

The block-number is relative to the be-
ginning of the file.

2 29-35 The relative word-number within that
block which contains the sequence num-
ber of the first line of that routine.

9-8

9.9.3 Format of the Source Routines

Source routines contain lines of COBOL source language. Each line has a line=number word, followed
by a string of ASCIL. The line-number word has a line number, or sequence number, in bits 0-34 and a
1 in bit 35. Any space left between the last character of a line and the following line~number is filled

with nulls. The last line of a routine is followed by a line with a sequence number of all Is.

Appendix A
COBOL Reserved Words

In the listing below, words preceded by no symbols are standard COBOL reserved words that are also
reserved in PDP-10 COBOL. Words preceded by a single * are standard reserved COBOL words that
are not reserved in PDP-10 COBOL, but should be avoided for compatibility with other COBOL com-
pilers. Words preceded by ** are reserved in PDP-10 COBOL only and should be used for checking
programs written for other COBOL compilers.

A B **COMPUTATIONAL-1

ACCEPT BEFORE COMPUTE
ACCESS BEGINNING CONFIGURATION
ACTUAL BLANK **CONSOLE
ADD BLOCK CONTAINS
ADVANCING BY *CONTROL
AFTER - *CONTROLS
ALL < COPY
ALPHABETIC CH CORR

*ALPHANUMERIC **CHANNEL CORRESPONDING
ALTER CHARACTERS CURRENCY
ALTERNATE CF b
AND *CLOCK-UNITS B

*APPLY CLOSE DATA
ARE COBOL DATE-COMPILED
AREA *CODE DATE-WRITTEN
AREAS *COLUMN *DE
ASCENDING COMMA DECIMAL-POINT
ASSIGN COMP DECLARATIVES
AT **COMP-1 DEPENDING
AUTHOR COMPUTATIONAL DESCENDING

*DETAIL GREATER *LIMIT

DISPLAY *GROUP *LIMITS
**DISPLAY -6 H LINE
**DISPLAY-7 *HEADING *LINE-COUNTER

DIVIDE HIGH-VALUE LINES

DIVISION HIGH-VALUES LOCK

DOWN *HOLD LOW-VALUE

E 1 LOW-VALUES

ELSE 1-0 M

END I-O-CONTROL MEMORY

ENDING IDENTIFICATION MODE

ENTER IF MODULES

ENVIRONMENT IN MOVE

EQUAL INDEX MULTIPLE

EQUALS INDEXED MULTIPLY

ERROR *INDICATE N

EVERY *INITIATE NEGATIVE

EXAMINE INPUT NEXT

EXTT INPUT-OUTPUT NO

F INSTALLATION NOT

FD INTO NOTE

FILE INVALID *NUMBER

FILE-CONTROL 1S NUMERIC

FILE-LIMIT J o

FILE-LIMITS JusT OBJECT-COMPUTER

FILLER JUSTIFIED OCCURS

*FINAL K OF

FIRST KEY OFF

*FOOTING KEYS OMITTED

FOR L ON

FROM LABEL OPEN

G *LAST OPTIONAL

*GENERATE LEADING OR

GIVING LEFT OUTPUT

GO LESS

P
*PAGE
*PAGE-COUNTER

**PDP-6

**pDP-10

PERFORM
*PF
*PH
PIC
PICTURE
*PLUS
POSITION
POSITIVE
PROCEDURE
PROCEED
*PROCESS
PROCESSING
PROGRAM-ID
Q
QUOTE
QUOTES

R
RANDOM

*RD
READ
RECORD
RECORDS
REDEFINES
REEL
RELEASE
REMAINDER
REMARKS
RENAMES
REPLACING

*REPORT
*REPORTING
*REPORTS
RERUN
RESERVE
*RESET
RETURN
*REVERSED
REWIND
*RF
*RH
RIGHT
ROUNDED
RUN
s
*SA
SAME
SD
*SEARCH
SECTION
SECURITY
SEEK
SEGMENT-LIMIT
SELECT
SENTENCE
SEQUENTIAL
SET
*SIGN
SIZE
SORT
*SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES

A-3

STANDARD
STATUS
STOP
SUBTRACT

*SUM

**SWITCH
SYNC
SYNCHRONIZED

T
TALLY
TALLYING
TAPE

*TERMINATE
THAN
THROUGH
THRU
TIMES
TO
**TODAY
*TYPE
u
UNIT
UNTIL
up
UPON
USAGE
USE
USING
v
VALUE
VALUES
VARYING
w
WHEN
WITH

Appendix B
Character Collating Sequence

The following table gives the collating sequence for ASCII (DISPLAY-7) fields as used in condition com-

parisons.

ASCII Character | ASCII Character | ASCII Character | ASCII Character
040 blank 070 120 P 150 h
041 ! 071 121 Q 151 i
042 " 072 122 R 152 i
043 # 073 ; 123 S 153 k
044 $ 074 < 124 T 154 I
045 % 075 = 125 U 155 m
046 & 076 > 126 v 156 n
047 ' 077 ? 127 w 157 o
050 (100 @ 130 X 160 p
051) 101 A 131 Y 161 q
052 * 102 B 132 V4 162 r
053 + 103 C 133 { 163 s
054 ’ 104 D 134 \ 164 t
055 - 105 E 135] 165 u
056 . 106 F 136 t 166 v
057 / 107 G 137 - 167 w
060 0 110 H 140 \ 170 x
061 1 111 I 141 a 171 y
062 2 112 J 142 b 172
063 3 113 K 143 c 173
064 4 114 L 144 d 174
065 5 115 M 145 e 175
066 6 116 N 146 f 176 ALT MODE
067 7 117 o 147 g 177 DEL

Appendix C
The ENTER PROCEDURE

The ENTER verb is used for linkage to subroutines external to the COBOL program. These subroutines
may be written in either MACRO or FORTRAN-IV language.

If the ENTER verb is ENTER MACRO, the subroutine linkage is
PUSHJ 17, user-routine

If the ENTER verb is ENTER FORTRAN-IV, the subroutine linkage is
JSA 16, user-routine

If the USING clause appears, a single parameter for each identifier or literal follows the subroutine
linkage. (ARG is a PDP-10 instruction that does nothing.)
a. For 1-word COMP, index data items, and index-names:
ARG 0, identifier
b. For 2-word COMP:
ARG 6, identifier
c. For COMP-I1:
ARG 2, identifier
d. For DISPLAY=-6 or DISPLAY-7:
ARG 10, byte-pointer
("byte-pointer" contains a byte pointer to the identifier)
e. For Procedure-names:

ARG 17, procedure-name

C-1

C.1 EXAMPLES OF CALL PROCEDURES

Example 1

77 FIELD1 PICTURE S9(6).

77 FIELD2 USAGE INDEX.

77 FIELD3 PICTURE $9(15).

77 FIELD4 PICTURE XX; DISPLAY-7.
77 FIELD5 PICTURE XX.

01 DUMMY.
02 FIELD6 OCCURS 3 TIMES INDEXED BY FIELD?.

ENTER MACRO ROUTIN USING FIELD1, FIELD2, FIELD3, FIELD4, FIELD5, FIELD7.

The preceding coding will generate:

PUSHJ 17, ROUTIN
ARG 0, FIELD1
ARG 0, FIELD2
ARG 6, FIELD3
ARG 10, @%LIT
ARG 10, @%LIT+1
ARG 0, FIELD7

% LIT: POINT 7, FIELD4
POINT 6, FIELDS, 14

Example 2

PROCEDURE DIVISION.
ONLY SECTION.

PARA-NAME. ENTER FORTRAN-IV.

The preceding will generate:

JSA 16, ROUTIN

Appendix D
Command Strings

The general form of the command string is as follows:

RELFIL,LSTFIL+-SRC1,SRC2, ...

Table D-1
Explanation of Command String Terms
Term Meaning
RELFIL The file that is to hold the generated code. If

no generated code is desired, the descriptor for
RELFIL is replaced by a hyphen.

Example: -,LSTFIL-SRCI1,SRC2...
LSTFIL The file that is to hold the generated listing.

If no listing is desired, the descriptor for
LSTFIL is replaced by a hyphen.

Example: RELFIL,-+SRC1,SRC2,...

SRC1,SRC2 The source files required to form one input pro-

gram.

Each file description has the following form:
DEVICE:FILE.EXT [PROJECT,PROGRAMMER] /SWITCH

Certain default assignments are made by the compiler whenever terms are omitted from the command

strings or the file descriptions.

a. If the device is omitted in any output file description, DSK is assumed. If the device is
omitted in an input file description, either the preceding device or DSK (if no preceding device
is specified) is assumed.

b. If the filename for RELFIL and/or LSTFIL is omitted, the filename of the first source file is
used.

D-1

Table D-2
Explanation of File Description Terms

Term Meaning

DEVICE The name of a device. The name is composed
of 6 or fewer letters and/or digits.

FILE The name of a file. The name is composed of
6 or fewer letters and/or digits.

EXT The filename extension. It is composed of 3 or
fewer letters and/or digits.

PROJECT A user's project number.
PROGRAMMER A user's programmer number .
SWITCH Any of the switches shown in Table D-3.

c. If the filename extension is omitted from RELFIL, REL is assumed, if omitted from LSTFIL,
LST is assumed; and if omitted from the source file descriptors, CBL is assumed.

d. If the [PROJECT, PROGRAMMER] option is omitted on any file, the file area for the user
is used.

Examples:
DTA1:RELOUT.A/Z,LPT:+~DSK:SRCIN.C[27,361 /M /S

The compiler compiles the program found in the file SRCIN . C in the area reserved for project-
programmer 27, 36. It treats columns 1-6 of the source as a sequence number (/S). The generated code
is written on DTA1, after the directory is cleared (/Z). The listing, including maps (/M) is put on the
LPT.

«LIB1/L,PROG/A

The compiler compiles the program found in PROG .CBL (CBL is assumed because the filename extension
is omitted from the source file descriptor) on the disk, using LIB1.LIB whenever a COPY verb is seen
(/L). The generated code goes into the file DSK:PROG.REL, and the listing onto the file
DSK:PROG.LST. The generated code is listed (/A).

-<«LIB1/L,PROG/A

Table D=3
COBOL Switch Summary

Switch Action by Compiler
A Allows the listing of the code generated (the
source program is listed whenever a listing file
is specified).
C This switch is ignored. It is included only for

compatibility with the COMPILE monitor com=
mand. CREF listings are never generated by
the COBOL compiler.

E Checks the program for errors but does not gen-
erate code.

L Uses the preceding file descriptor as a library
file whenever it encounters the COPY verb.

1. This switch is legal only with source files.

2. The file descriptor is not part of the main
program.

3. More than one descriptor may have the /L
switch. If the first source file is not a li-
brary file, the file LIBRARY. LIB is used
(if present on the DSK) until the /L file is

described.

M Prints a map showing the parameters of each
user-defined item (e.g., data~names and
procedure-names).

S The source file is in conventional format (with

sequence numbers in columns 1-6 and with com-
ments starting in column 73).

w Rewinds the device before reading or writing.
(This is valid for magnetic tape only.)

y4 Clears the directory of the device before writ~
ing. (This is valid for output DECtape only.)

This is identical to the preceding example, with the exception that no generated code is produced be~

cause the file descriptor for the file has been replaced by a hyphen.

INDEX

ACCEPT Statement, 6~17 BATCH, 9-2
FROM Option, 6~17 BLANK WHEN ZERO Clause, 5-16, 5-17, 5-18
ACCESS MODE Clause, 4-8, 4-10, 4-11, PICTURE Clause, 5-17, 5-18

4-12, 6-51, 6-61, 81, 8-6

ACTUAL KEY Clause, 4-8, 4~-10, 4-12,
6-51, 8-2, 8-11

BLOCK CONTAINS Clause, 5-6, 5-7

CHARACTERS Options, 5-7
DISPLAY=6 Characters, 5-7

ADD Statement, 6~18 DISPLAY~7 Characters, 57

ADVANCING Clause, 4-6, 6-61 Blocked Files, 8-8

ALL Option (EXAMINE Statement), 6-29 Blocking Factor, 8-8

Alphabetic Item, 5-27

ALPHABETIC Test, 6~9 Categories of Files, 621

Alphanumeric Item, 5~-28 CHANNEL IS Clause, 4-3, 4-6

Alphanumeric Edited Item, 5-28, 5-46 Channel Table, 8-8

ALTER Statement, 6~20, 6~54 Character Collating Sequence, B-1
GO TO Statement, 6-20 Character Set, 1~1

DEPENDING Option, 6-20 Punctuation Characters, 1-1

Area A, 2-1, 6-3 Special Characters Used in Arithmetic
_ _ Expressions, 1-2
Area B, 2-1, 6-3 Special Characters Used in Conditional
Arithmetic Expressions, 6-5 (IF) Statements, 1-2
Arithmetic Operators, 6-5 Special Editing Characters, 1-2
Rules for Formation and Evaluation, 6~6 CHARACTERS Option (BLOCK CONTAINS
Arithmetic Signs, Symbols Representing, 5-26 Clause), 5-7

Arithmetic Verbs, Options Associated Class Condition, 6-8
With, 6~14 ALPHABETIC Test, 6~9

Format of, 6=9
ON SIZE ERROR Option, 6-15 q
ROUNDED Option, 6-14 NUMERIC Test, 6-9
ASCII Fields, B-1 CLOSE Statement, 6-21, 6-39

Categories of Files, 6-21
ASSIGN Clause, 4-8, 4-10, 4-11, 6~22 NO REWIND Option, 621

Assumed Decimal Point Positioning, OPEN Statement, 6-22, 6-23
Symbols for, 5-26 REEL Option, 6-21
Standard CLOSE File Procedure, 6~22
AT END Clause, 4-11, 6-47 Standard CLOSE REEL Procedure , 6-22
STOP RUN Statement, 6~23
UNIT Option, 6~23

INDEX (Cont)

COBOL Language, Elements of, 1-1
COBOL Library, 7-1
COBOL Reference Format, 2-1

Line, 2-1
Format of a Line, 2-2

COBOL Reserved Words, A-1

PDP-10 COBOL Reserved Words, A-1
Standard COBOL Reserved Words, A-1

Command Language (Source Library Mainten-
ance Program), 9-4

Altering Contents of Source File, 9-5
Positioning Files, 9-4

Command String, General Form of, D~1
Comment Paragraph, 4-4

Comparison of Nonnumeric Items, see Non-
numeric Items, Comparison of

COMP-1, 5-17, 5-26, 5-43

COMPUTE Statement, 6~24
COMPUTATIONAL Items, 5-41, 5-42, 5-43
Condition=Name, 1-3, 5-19, 7-3
Condition=Name Condition, 6=9

Conditional Expressions, 6~6, 6~33

Abbreviations in Relation Conditions, 6-14
Class Condition, 6-8

Condition-Name Condition, 6-9

Formation and Evaluation Rules, 6-11

IF Statement, 6~33

Logical Operators, 6-10

Relation Condition, 6-7

Sign Condition, 6-10

Switch=Status Condition,.6-9

Conditional Sentence, 6~3
Conditional=Variable, 5-19

Configuration, Computer
(ENVIRONMENT DIVISION}), 4-1

CONFIGURATION SECTION, 4-3
CONSOLE Clause, 4-3, 4-6, 6~-17, 6~25

Constants

Figurative, 1-5
Special , 1-6

Continuation Area, 2-2
Conventional Format, 2-2

Continuation Area, 2-2
Sequence Numbers, 2-2

Conventions Used in This Manual

Block, x

Item, x

Object Program, x
Record, x

Source Program, x

COPY Statement, 7-2, 9-1
CORRESPONDING Option, 6-16
CURRENCY SIGN Clause, 4-3, 4-6, 5-26, 5-32

Data Characters, Symbols Representing, 5-26
Data Description Entry, 5-2, 5-16

BLANK WHEN ZERO Clause, 5-16, 5-17
Condition-Name (Level-88), 5-19
Data=Name FILLER, 5-24

JUSTIFIED (JUST) Clause, 5-16, 5-22
Level-Number, 5-24

OCCURS Clause, 5-16, 5-17, 5-25
PICTURE (PIC) Clause, 5-16, 5-26
REDEFINES Clause, 5-16, 5-37
RENAMES Clause, 5-39
SYNCHRONIZED (SYNC) Clause, 5-16, 5-41
USAGE Clause, 5-16, 5-42

VALUE Clause, 517, 5-45

DATA DIVISION, 1-1, 5-1

FILE SECTION, 5-1

See FILE DESCRIPTION (FD)

See DATA DESCRIPTION ENTRY
WORKING STORAGE SECTION, 5-2

Data Name, 1-3
Data-Name/FILLER, 5-21
DATA RECORD Clause, 5-6, 5-8, 5-10

I-2

INDEX (Cont)

Data Sections (Source Library Maintenance
Program), 9-2

DATA Types, 5-1
DATE-WRITTEN Clause, 5-14

DECIMAL-POINT IS COMMA Clause, 4-3,
4-6, 4-7, 5-27

Decimal Point Positioning (Assumed), 5-26

DECLARATIVES, 6-20, 6-46, 6-58
(see USE Statement)

Default Assignments (Source Library
Maintenance Program), 9-3

DEPENDING Option (GO TO Statement),
6-20, 6-32

DEPENDING Option (OCCURS Clause), 5-25

DISPLAY-6, 5-14, 5-18, 5-42, 5-43, 8-3,
8-6, C~1

DISPLAY-6 Characters, 57, 8-3

DISPLAY-7, 5-14, 5-18, 5-38, 5-42, 6~29,
8-2, 8-3, 8-6, C-1

DISPLAY-7 Characters, 57, 8-3, B~1
DISPLAY Statement, 6~25

UPON Option, 6-25
CONSOLE Clause, 6-25

DIVIDE Statement, 6~26
REMAINDER Clause, 6~26, 6-27
DOWN BY (SET Statement), 6~52

Edited Items,

Alphanumeric, 5-28
Numeric, 5~28

Editing Sign~Control Symbols, 5-27
Editing, Types of, 5-32
Elementary Item, 5-2, 5-21, 6~35, 6~52

Symbols Used to Define the Category
of, 5-28

Elements of the COBOL Language, 1-1
Ending Labels, 8~10

ENTER Statement, 6-28, C~1

ENTER FORTRAN-1V, 6-28, C-1
ENTER MACRO, 6-28, C-1
USING Option, 6-28, C-1

ENVIRO NMENT DIVISION, 1-1, 4-1
CONFIGURATION SECTION, 4-3

SOURCE-COMPUTER, 4-4
OBJECT-COMPUTER, 4-5
SPECIAL-NAMES , 4-6

INPUT-OUTPUT SECTION, 4-8

FILE-CONTROL, 4-10
I-O CONTROL, 4-13

Error Recovery (Source Library Maintenance
Program), 9-6

EXAMINE Statement, 6-29

ALL Option, 6-29

FIRST Option, 6~30

LEADING Option, 6~30
REPLACING BY Options, 6~30
TALLYING Options, 6-29, 6~-30
UNTIL FIRST Option, 6~29

Execution, Sequence of, 6~-4
EXIT Statement, 6=31

PERFORM Statement, 6~31
USE Statement, 6~31

FD File=name Clause, 5-9, 7-2

Figurative Constants, 1-5, 5-46, 6-31, 6-37,
6~52, 6~57

FILE-CONTROL Paragraph, 4-2, 4-8, 4-10, 5-6

FILE DESCRIPTION (FD), 5-6

BLOCK CONTAINS Clause, 5~7
DATA RECORD IS Clause, 5-8

FD file~-name Clause, 5~9

LABEL RECORD Clause, 5-10
RECORD CONTAINS Clause, 5-11
SD file=name, 5-12

VALUE OF Clause, 5-13

File Descriptor, D-1
FILE-LIMIT Clause, 4-8, 4-10, 4-11, 8-11

I-3

File-name, 1-3, 7-3

File Option (USE Statement), 6~58, 6-60
FILE SECTION, 5-1

File, Standard CLOSE Procedure, 6-22
File Table, 8-4

Files, Categories of, 6~21

FILLER, 5-21, 5-37, 5-41

Fine Table, 9-2, 9-8

FIRST Option (EXAMINE Statement), 6~30
Fixed Insertion Editing, 5~33

Floating Insertion Editing, 5-34

Format of a Class Condition, 6~8

Format of a Relation Condition, 6-7
Format of a Sign Condition, 6-10

Format of Source Routines (Source Library
Maintenance Program), 9-9

Format of Switch-Status Condition, 6-9
Format Rules and Conventions, 2-2

FROM Option (ACCEPT Statement), 6~17

GET Monitor Command, 9-3

GO TO Statement, 6-20, 6-32, 6-54
DEPENDING Option, 6~20, 6~32

Group Item, 5-2, 6-35

Hardware Errors (Source Library Maintenance

Program), 9-7

IDENTIFICATION DIVISION, 1-1, 3-1

AUTHOR Paragraph, 3-1
DATE-COMPILED Paragraph, 3-1
DATE-WRITTEN Parograph, 3-1
INSTALLATION Paragraph, 3-1
PROGRAM-ID Paragraph, 3-1
REMARKS Paragraph, 3-1
SECURITY Paragraph, 3-1

INDEX (Cont)

Identifier, 1-3, 6~18

IF Statement, 6-33
Nested IF Statements, 6~33

Imperative Sentence, 6-2

INDEXED BY Clause, 5-25

INDEXING , 5-4
Subscripting, 5-4

Input Errors (Source Library Maintenace
Program), 9-6

Input Format (Source Library Maintenance
Program), 9-2

Input Formats, 2-2

INPUT Option (OPEN Statement), 6~39, 6~60

INPUT-OUTPUT Options (OPEN Statement),
6-39, 6-40, 6-60

INPUT-OUTPUT SECTION, 4-8

ACCESS MODE Clause, 4-2, 4-8, 4-10,
4-12, 8-1

ASSIGN Clause, 4-2, 4-8, 4-10, 4-11

FILE CONTROL Paragraph, 4-2, 4-8, 4-10

FILE-LIMIT Clause, 4-2, 4-8, 4-10, 4-11

I-O-CONTROL Paragraph, 4-2, 4-8, 4-13

MULTIPLE FILE Clause, 4-2, 4-9, 4-13, 4-14

PROCESSING MODE IS SEQUENTIAL Clause,
4-2, 4-8, 4-10, 4-12

RERUN Clause, 4-2, 4-8, 4-13

RESERVE Clause, 4-2, 4-8, 4~11

SELECT Clause, 4-2, 4-10, 4~11

Insertion Characters, Symbols Representing, 5-26

Internal Organization (Source Library Maintenance
Program), 9-2

INTO Identifier Option (READ Statement), 6-47,
6-48

INVALID KEY Option (READ Statement), 6~47,
6-61, 6~62, 8-11

INVALID KEY Path, 4-11, 6-51, 8-11

INDEX (Cont)

[-O-CONTROL Paragraph, 4-2, 4-8, 4-13

END-OF-REEL Option, 4-2, 4-13
END-OF-UNIT Option, 4-2, 4-13
MULTIPLE FILE Clause, 4-2, 4-9, 4-13,
4-14

POSITION Option, 4-2, 4-9, 4-13,

. 4-14
RECORD Option, 4-2, 4-9, 4-13, 4-14
RERUN Clause, 4-2, 4-8, 4-13
SAME AREA Clause, 4-2, 4-9, 4-13

I-O Option (OPEN Statement), See INPUT-
OUTPUT Options

Item

Elementary Item, x, 5-2
Independent Item, 5-2
Group Item, x, 5-2
Nonindependent Item, 5-2

JUSTIFIED (JUST) Clause, 5-16, 5-17, 5-22

LABEL RECORD IS Clause, 5-6, 5-8, 8-9

LABEL RECORDS ARE OMITTED, 5-6,
6-39

LABEL RECORDS ARE STANDARD, 5-6,
6-22, 6-39

Label Records, 8-9
Language, Elements of, 1-1

LEADING Option (EXAMINE Statement),
6-29, 6=30

Level-number, 5-2

Hierarchic, 5-24
Special , 5-3, 5-19, 5-24, 5-39, 5-45

Level=66, 5~2, 5-3, 5-4, 5-39, 5-45
Level~77, 5-3, 5-4
Level-88, 5-19, 5-24, 5-39, 5-45

Library File, 9-1

Data Sections, 9-2
Input File, 9-6

Library-Name, 9-2
Literal Option in STOP Statement, 6-55

LITERALS, 1-3

Nonnumeric, 1-4
Numeric, 1-4

Logical Operators, 6-10

Machine Options (Source Library Maintenance
Program), 9-1

Machine Requirements (Source Library Maintenance

Program), 9~1
MEMORY SIZE Clause, 4-3, 4-5
Mnemonic-Name, 1-3, 46, 625, 7-3
MOVE Statement, 6=35
Multiple File Clause, 4-14
Muitiple File Tape, 8~-10
MULTIPLE REEL Clause, 4-10, 4-11
MULTIPLE UNIT Clause, 4-10, 4-11
MULTIPLY Statement, 6-37

Nested IF Statements, 6-33

NO REWIND Option (CLOSE Statement), 6-21,
6-23, 6-41

Nonnumeric Items, Comparison of, 6~-8

Operands of Equal Size, 6-8
Operands of Unequal Size, 6~8

Nonnumeric Literals, 1-4

Non-Random-Access Devices, Labels for, 8-10
Non-Standard Label Records, 8-10

NOTE Statement, 6-31, 6~38, 7-3

Numbers, Sequence, 2-2

Numeric Edited Item, 5-22, 5-28, 5-46
Numeric Item, 5-22, 5-27, 5-46, 6-52, 6~56
Numeric Literals, 1-4, 5-46

NUMERIC Test, 69

INDEX (Cont)

OBJECT-COMPUTER Paragraph, 4-1, 4-3,
4-5

MEMORY SIZE Clause, 4-4, 4-5
Object Program, x

OCCURS Clause, 5-16, 5-17, 5-25, 5-37,
5-41, 5-44, 5-45

INDEXED BY Clause, 5-25
VALUE Clause, 5-25

OPEN Statement, 5-14, 6~39, 6-47, 6~61
Operands of Equal Size, 6~8
Operands of Unequal Size, 6-8

Operational Organization (Source Library
Maintenance Program), 9-3

Operator Errors (Source Library Maintenance
Program), 9-6

Operators
Arithmetic, 6~5

Logical , 6-10
Relational , 6-7

OPTIONAL, Key Word, 4-11

Output Format (Source Library Maintenance
Program), 9-2

OUTPUT, Option (USE Statement), 6~58,
6-60

Paragraphs, 6-3
Comment Paragraph, 4-4
Paragraph-Name, 6-3

PERFORM Statement, 6-31, 6-41, 6-54

PICTURE Clause, 5-16, 5-18, 5-20, 5-26,
5-44

Alphabetic Item, 5-27

Alphanumeric Edited Item, 5-28
Alphanumeric Item, 5-28

CURRENCY SIGN Clause, 5-26, 5-32

Decimal Point Positioning (Assumed), 5-26

Editing Sign=Control Symbols, 5-27
Numeric Item, 5-27

Numeric Edited Item, 5-28

Symbols of Data Characters, 5-26

Symbols Defining the Category of an Elemen-
tary Item, 5-28

Symbols of Insertion Characters, 5-26

Symbols of Zero Suppression Operations, 5-26

Type of Editing, 5-33

USAGE INDEX Clause, 5-26

POSITION Option (IO CONTROL Paragraph), 4-14
PROCEDURE DIVISION, 1-1, 6-1

ACCEPT, Statement, 6-17
ADD, 6-18
ALTER, 6-20
CLOSE, 6-21

C OMPUTE, 6~24
DISPLAY, 6-25
DIVIDE, 6-26
ENTER, 6-28
EXAMINE, 6-29
EXIT, 6-31

GO 10, 6-32
IF, 6-33

MOVE, 6-35
MULTIPLY, 6-37
NOTE, 6-38
OPEN, 6~39
PERFORM, 6~41
READ, 6-47
RELEASE, 6-49
RETURN, 6-~50
SEEK, 6~51

SET, 6~52
SORT, 6~53
STOP, 6-55
SUBTRACT, 6-56
USE, 6-58
WRITE, 6-61

Procedure-Name, 1-3, 7-3

PROCESSING MODE IS SEQUENTIAL Clause,
4-8, 4-10, 4-12

PROGRAM-ID Paragraph, 3-1
Program-name , 3-1
PROGRAM STRUCTURE

DATA DIVISION, 1-1
ENVIRONMENT DIVISION, 1-1
IDENTIFICATION DIVISION, 1-1
PROCEDURE DIVISION, 1-1

I-6

PUNCTUATION, 1-3

QUALIFICATION, 5-3, 5-37

Example of Qualification, 5-4
Level-66 Items, 5-4
Level-77 Items, 5-4

R Monitor Command, 9~-3
Random-Access Medium, 8-2, 8-9

RANDOM Mode, 4-11, 4-12, 6-51, 8-2, 811

READ Statement, 4-13, 6-39, 6~47

AT END Clause, 6-47

INTO Identifier Option, 6-48
INVALID KEY Clause, 6-47
OPEN INPUT Statement, 6-47
OPEN I-O Statement, 6-47

Record, x
Record Area, 8-7
RECORD CONTAINS Clause, 5-11
Record Descriptions, 5-15

DATA RECORDS Clause, 515
Recording Mode, 8-3

Default Conditions, 8~3
DISPLAY-6, 8-3
DISPLAY-7, 8-3

Record=-Name, 1-3

Record=Name Option, 5-10

RECORD OPTION (I-O Control) Paragraph,

4-13, 4-14

REDEFINES Clause, 5-16, 5-17, 5-37, 5-41,

5-45

DATA RECORDS Clause, 5-37
FILE SECTION, 5-37

FILLER Items, 5-37

OCCURS Clause, 5-37
VALUE Clause, 5-37, 5~45

REEL Option (Close Statement), 6~21
REEL Option (USE Statement), 6~58

INDEX (Cont)

REEL, Standard CLOSE Procedure, 6-22
Relation Condition, 6-7

Abbreviations in, 6-14

Comparison of Nonnumeric Items, 6-8
Comparison of Numeric Items, 6-7
Format of a Relation Condition, 6~7
Relational Operators, 6~7

USAGE Clause, 6~7

RELEASE Statement, 6~49, 6-54
FROM Option, 6~49

REMAINDER Clause, 6-27

RENAMES Clause, 5-17, 5-24, 5-39

REPLACING BY Options (EXAMINE Statement),
6-29, 6-30, 7-2

RERUN Clause, 4-13
RESERVE Clause, 4-10, 4-11
Reserved Words

Standard, A-1
PDP-10, A-1

RETURN Statement, 6~50, 6~54

AT END Clause, 6~50
INTO Phrase, 650
SORT Statement, 6-50

Rough Table (Source Library Maintenance Program),
9-2, 9-8

ROUNDED Option (Arithmetic Verbs), 6~14
RUN Monitor Command, 9-3
RUN Option (STOP Statement), 6=55

SAME AREA Clause, 4-2, 4-9, 4-13, 8-11

SAME RECORD AREA Clause, 4-2, 4-9, 4-13,
811

Scratch File (Source Library Maintenance Program),
9-4

SD File=Name, 5-12, 6-50, 6~53, 7-2

DATA RECORD Clause, 5-12
RECORD CONTAINS Clause, 5-12
SELECT Statement, 5-12

1-7

INDEX (Cont)

Sections, 6~3
Section=-Name, 6-3
SEEK Statemens, 6-39, 6-51

ACCESS MODE, 6-51
ACTUAL KEY Item, 6~51
INVALID KEY Path, 6-51

SEGMENT-LIMIT Clause, 4-1, 4-5
Segmentation, 6-4
SELECT Statement, 4-8, 4-9, 4-10, 4-11, 5-9
Sequence Numbers, 2-2
Sequence of Execution, 6-4
SEQUENTIAL MODE, 4-12, 6-61, 8-1, 8-8,
8-11
SET Statement, 6~52
DOWN BY Option, 6~52

TO Option, 6=52
UP BY Option, 6~52

Sign Condition, 6~10
Format of, 6-10

SIZE ERROR Option, (Arithmetic Verbs),
6-15, 6-19, 6-24, 6-26, 6=27

Sort File, 5-12
SORT Statement, 6-53

ASCENDING Clause, 6-53
DESCENDING Clause, 6-53

GIVING Option, 6=53

INPUT PROCEDURE, 6-20, 6~46, 6-54
OUTPUT PROCEDURE, 6~20, 6~46, 6~54
USING Option, 6-54

SOURCE-CC MPUTER, 4-1, 4-3, 4-4
Source Libraiy Maintenance Program, 9-1

Command Language, 9-4

Data Sections, 9-2

Default Assignments, 9-3

Error Recovery, 9-6

Fine Table, 9-2, 9-8

Format of Source Routines, 9-9
Hardware Errors, 9-7

Input Errors, 9-6

Input Format, 9-2

Internal Organization, 9-2
Machine Options, 9-1
Machine Requirements, 9-1
Operational Organization, 9-3
Operator Errors, 9-6
Qutput Format, 9-2
Rough Table, 9-2, 9-8
Start-Up, 9-3
Switches, 9-4
SOURCE PROGRAM, x, 2-2
SOURCE PROGRAM Divisions

DATA DIVISION Format, 5-1
ENVIRONMENT DIVISION Format, 4~1
IDENTIFICATION DIVISION Format, 3-1
PROCEDURE DIVISION Format, 6~1

SPECIAL-NAMES Paragraph, 4-3, 4-6, 6~27
STANDARD LABELS, 5-13, 8-9

Standard Mode Format, 2-2

START Monitor Command, 9=3

Start=Up (Source Library Maintenance Program), 9-3
Statements and Sentences, 6~1

Compiler-Directing Sentence, 6~3
Conditional Sentence, 6~3
Imperative Sentence, 6~2

STOP Statement, 6-55

Literal Option, 6-55
RUN Option, 6~55

Subgroupings of Words, 1-3
Condition-Name, 1-3
Data=-Name, 1-3
File-Name, 1-3
Identifier, 1-3
Mnemonic=-Name, 1-3
Procedure-Name, 1-3
Record=Name, 1-3
Verb, 1-3

Subscripting, 5-4, 5-25

SUBTRACT Statement, 6~56

SWITCH, 4-3, 4-6, 4-7, 6-10

Switches (Source Library Maintenance Program), 9-4

I-8

INDEX (Cont)

Switches, Summary of, D-3

Switch=Status Condition, 6~9
Format of, 69

Symbols

Arithmetic Signs, 5-26

Assumed Decimal Point Positioning, 5-26
COBOL Conventions, x

Data Characters, 5-26

Editing Sign-Control , 5-27

Elementary Item Categories, 528
Insertion Characters, 5-26

Zero Suppression Operations, 5-26,

SYNCHRONIZED Clause, 5-16, 5-17, 5-41,
5-42, 5-43, 5-44

COMPUTATIONAL, 5-41, 5-42

FILLER, 5-41

OCCURS Clause, 5-41

REDEFINES Clause, 5-41

SYNCHRONIZED LEFT, 5-41, 5-43, 5-44

SYNCHRONIZED RIGHT, 5-41, 5-42,
5-43, 5-44

Syntactic Format PROCEDURE DIVISION, 6~1

Paragraphs, 6=3
Sections, 6-3
Statements and Sentences, 6~1

TALLY (Special Constant), 1-6, 6-37
TALLYING Option (EXAMINE Statement), 6-29
TODAY (Special Constant), 1-6

Unblocked Files, 8-8, 8-9
UNIT Option (CLOSE Statement), 6-21

UNTIL FIRST Option (EXAMINE Statement),
6-29

UP BY Option (SET Statement), 6~52
UPON Option (DISPLAY Statement), 6-25
USAGE Clause, 5~42, 6~7

COMPUTATIONAL (COMP), 5-42, 5-43,
5-44
COMPUTATIONAL-1 (COMP-1), 5-43

DISPLAY-6, 5-42, 5-43, 5-44
DISPLAY-7, 5-42, 5-44

OCCURS Clause, 5-44

PICTURE Clause, 5-44
SYNCHRONIZED LEFT, 5-43, 5-44
SYNCHRONIZED RIGHT, 5-43, 5-44

USE Statement, 6-31, 6-58

FILE Option, 6-60

INPUT Option, 6-60
INPUT-OUTPUT Option, 6~60
OUTPUT Option, 6-60

REEL Option, 6-60

UNIT Option, 6-60

USING Clause, C-1
UNIT Option (USE Statement), 6-60

VALUE Clause, 5-16, 5-17, 525, 5-37, 5-45,
5-46

Figurative Constant, 5~46
Numeric Literals, 5-46
OCCURS Clause, 5-45
REDEFINES Clause , 5-45

VALUE OF IDENTIFICATION Clause, 5-13

DATE-WRITTEN, 5-13
LABEL RECORDS ARE STANDARD, 5-13
OPEN Statement, 514

Verb, 1-3

WORKING-STORAGE SECTION, 5-2
Level=77, 5-=3
Words, 1-2

COBOL Reserved Words, 1~2, A-1
PDP-10, A-1

Standard, A-1

User-Created Words, 1-3

Write Statement, 4-12, 6~39, 6~61

ADVANCING Clause, 6-61

INVALID KEY Clause, 6-61

OPEN INPUT-OUTPUT Statement, 6~61
OPEN OUTPUT Statement, 6~61

Zero Suppression Operations (Symbols of), 5-26

I-9

COBOL Language
Programmer’s Reference Manual
DEC-10-KC1B-D

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publica-
tions. To do this effectively we need user feedback: your critical evaluation of this document. Please give specific
page and line references when appropriate.

ERRORS NOTED IN THIS PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT OF THIS PUBLICATION:

DEC also strives to keep its customers informed about current DEC software and publications. Thus, the following
periodically distributed publications are available upon request. Please check the publication(s) desired.

D PDP-10 User’s Bookshelf, a bibliography of current programming documents.

D Program Library Price List, a list of available software documents and programs.

Name Date

Organization

Please describe your position

Street

City State Zip Code

————————————————— — FoldHere - - —~- - - - - - —— —— —— — —..

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

COBOL Language
Programmer’s Reference Manual
DEC-10-KC1B-D

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publica-
tions. To do this effectively we need user feedback: your critical evaluation of this document. Please give specific
page and line references when appropriate.

ERRORS NOTED IN THIS PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT OF THIS PUBLICATION:

DEC also strives to keep its customers informed about current DEC software and publications. Thus, the following
periodically distributed publications are available upon request. Please check the publication(s) desired.

D PDP-10 User’s Bookshelf, a bibliography of current programming documents.

D Program Library Price List, a list of available software documents and programs.

Name Date

Organization

Please describe your position

Street

City State Zip Code

————————————————— — FoldHere ~ == =—-= - - - — = = —— — . —— — .

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	000a
	000b
	000c
	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	D-3
	D-4
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	i-7
	i-8
	i-9
	x0
	x1
	x2
	x3

