TOPS-10 MONITOR INTERNALS

Educational Services

Digital Equipment Corporation
‘Bedford, Massachusetts- -
Revision 6,.November 1980

EY-CD150-HO-006

DIGITAL TOPS-18 MONITOR INTERNALS

Copyright (c) 1986 by Digital Equipment Corporation.

The material in this document is for informational
purposes and is subject to change without notice; it should
not be construed as a commitment by Digital Equipment
Corporation, Digital Equipment Corporation. assumes no
responsibility for any errors that may appear in this
document. :

The software described in this document is furnished
under a license and may only be used or copied in accordance
with the terms of such license. Digital Equipment
Corporation assumes no responsibility for the wuse or
reliability of 1its software on equipment that 1is not
supplied by Digital or its affiliated companies.

The £following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

COMPUTER LABS COMTEX DBMS-10
DBMS-11 DBMS-20 DDT

DEC DECCOMM DECsystem~10
DECSYSTEM=-29 DECtape DECUS

DIBOL DIGITAL " EDUSYSTEM
FLIPCHIP FOCAL INDAC

LAB-8 MASSBUS OMNIBUS

0s/8 PDP PHA

RSTS RSX TYPESET-8
TYPESET-10 TYPESET-11 TYPESET-20

UNIBUS DECSYSTEM=-20240

DIGITAL : TOPS~10 MONITOR INTERNALS

CONTENTS

Student Guide.isieeeesececsccsecesesseaeeeaSG
Introduction to TOPS~10 MONitOCeeeeeceecssses INTR
The Command CyCle..escsscccscscsssccscsssssC¥C
Core Management.icesseseseecccoceccccccsseseCM
The Command ProCeSSOC.ececsceccssescocsecsssss CMND
The Scheduler..ceceeeecscsscsescascascsassssSCH
The SWaPPEer ccccecssssessscsccecscscssccccsncssSWP
Programmed Operator ServiCeicecececcccesessUU0

I/0 Device Service Routines and
Interrupt ProcessSingecececcccccssccccccsceseslOl

I/0 Introduction and UUO Level Routines....IO2
Disk Service......I....'..'......I.O.......DsK

SCanner SerVice.....--o....o.o.o-..o.o'.-..SCN

TOPS-19 MONITOR INTERNALS

ntrocduction to TOPS-19 Moni

- DIGITAL TOPS-12 MONITOR INTERNALS

Introcduction to TOPS-1% Monitor

COURSE MAP

INTRO-1

DIGITAL TOPS-17 MONITOR INTERNALS
Introduction to TOPS-19 Monitor

This page is for notes

INTRO-ii

DIGITAL TOPS-19 MONITOR INTERNALS
Introduction to TOPS-19 Monitor

INTRODUCTION TC TOPS-19 MONITOR

INTRODUCTION

This module prepares the student for
the later modules by introducing basic
information about the KL1# processor and the
TOPS-19 monitor. Included are such topics
as: monitor addressing, coding conventions,
monitor building, the EPT and using
microfiche.

INTRO-1

DIGITAL

TOPS-19 MONITOR INTERNALS
Introduction to TOPS-19 Monitor

RESOURCES

Microfiche of the TOPS-18 Monitor

TOPS-10 Monitor Internals Course Supplement

Course Material - Chapter 1
Supplement - KL Document Pages 1-14

38-45, 63-65
- Graphics Section 1

LECTURE OUTLINE

Introduction to the TOPS-10 Monitor

I.

II.

Iv.

V.

VI.

ViI.

VIII.

IX.

Course Introduction And
Administration

Monitor Addressability

A, Review of Paging

B. Page Map Entries

C. Monitor and Mapping

D. Per Process Area

E. Exec Execute

F. Exec Virtual Memory

The Monitor as an Event Processor
A. Traps

B. Interrupts

EPT Revisited

Monitor Components and Building
Monitor Coding Conventions
Monitor Tables

Microfiche Usage

GLOCB

Universals Files

INTRO-2

DIGITAL TOPS-19 MONITOR INTERNALS
Introduction to TOPS-10 Monitor

This page is for notes

INTRO-3

- DIGITAL TOPS-19 MONITCOR INTERNALS
Introduction to TOPS-14 Monitor

INTRODUCTION

The DECsystem-18 consists of hardware and software
designed to allow users to run a variety of programs
efficiently and conveniently. Throughout most of this text,
we shall be concerned with the details of the system
software. Initially, however, it is necessary to develop
some basic concepts and define terms involving both the
software and hardware.

The DECsystem-10 is specifically designed = for
interactive multi-program operation. WNormally there will be
several active programs, and control will be switched from
one to another by the system executive program, or monitor.
Programs which are not using the CPU can still have active
input and output devices. The overlapping of I/0 with
processing of several programs permits efficient use of both
the CPU and the I/0 devices.

User Progrém Addressing

The DECsystem-17 has several hardware features to
facilitate multiprogram operation. There are two basic
modes of operation, executive and user. The monitor runs in
executive mode, with no restrictions on its operations. 1In
user mode, a program can access core memory only within
areas assigned to it by the monitor. Also, certain
instructions can not be -executed in user mode. These
include all 1I/0 instructions, and the instructions ¢to
control memory access and mode of operation.

Bach program consists of instructions, constants, and
data areas, which may be either one or two segments of the
user's virtual space. The address provides a mapping from a
virtual address to a physical address.

The users virtual address space, as well as physical
memory, is divided into fixed size pages of 512 words. Each
user's page (called a wvirtual page) will be assigned a
physical page in core. When the monitor initially assignes
physical pages to a user's segment, it builds a page table,
telling where each of the user's virtual pages resides in
core.

INTRO-4

DIGITAL TOPS-19 MONITOR INTERNALS
Introduction to TOPS-19 Monitor

Thus, in the KL-18 processor the mapping of a user
virtual address to physical address is accomplished by the
user's page map.

On an indirect memory reference, the paging mechanism
is wused for each memory reference made in the effective
address calculation. The addresses §-17 always refer to the
hardware accumulators. The KL has 8 sets of accumulators or
fast register blocks; three sets in use by the monitor, one
set for the current user and one set for the KL microcode.
The other 3 sets are available for real-time programs. The
KI-10 has 4 sets of fast register blocks (ACs). The monitor
uses one set. The current user another, and the other 2
sets are available for real-time programs.

Also associated with each user's page is an access bit
which provides protection for the monitor and other user
programs when this user is running. The monitor £ills the
page table and sets the access bit only for those entries
which are allowed to be accessed. A zero access bit in the
page table will cause a reference to the associated page to
initiate a page failure trap to the monitor.

Before the monitor allows the user's program to begin,
it passes the address of the user's page table to a hardware
register called the user base registers, UBR. Now 1it's
ready to start up the user's program in User Mode. It does
so, and the hardware, because it is executing in User Mode,
uses the specificed wuser's page map to map the virtual
addresses into physical addresses.

To speed up memory referencing time, (current scheme
would require two actual memory references: one to obtain
the memory mapping data and one to obtain the user's mapped
memory reference) the last 512 distinct pages referenced (32
on a KI) have a copy of their associated physical page
numbers and access bit information stored into a special
memory in ~ the <Central Processor, Thus, only 1if the
information of the page referenced is not in this special
memory {(called a KL Hardware Page table or a KI Associative
Memory) must 2 actual memory references into core be made.

In a timesharing system such as the DECsystem-18, it is
quite 1likely that several users might want to run the same
program at the same time. The system <can do this more
efficiently by allowing wusers to share portions of the

INTRO-5

DIGITAL TOPS-10 MONITOR INTERNALS
- Introduction to TOPS-19 Monitor

program. To allow sharing of code the program (virtual
address space) is divided into 2 parts or segments a pure or
reentrant segment and an impure segment. The reentrant
segment will normally consist of all the constants and
instructions. which do not change during the program
execution. Since this part of the program does not change,
a single copy in physical memory may be shared by more than
one user program. That is the same physical page numbers
for the pure segment will appear in more than one page map.
All parts of the program which are subject to change must be
set up separately for each user.

The impure segment of the program begins with wvirtual
address 000000 and can go as high as 777777. However, that
would leave no room for the pure segment. The pure segment
usually begins with virtual address 400000 extending as high
as 777777.

Because the virtual addresses in the pure segment are
greater than those in the impure segment, the pure segment
is called the high segment and the impure segment is called
the 1low segment. Note that these terms, high and low
segment, refer to the virtual addresses, not the physical
addresses at which the pages of the segment are located.
Any instruction can refer to a memory location in either
segment. Hence, the two segments function as a single
program. To the program the only effect of segmentation is
that there may be a range of invalid user virtual addresses
in the middle of the range of valid ones.

INTRO-6

DIGITAL TOPS-19 MONITOR INTERNALS
Introduction to TOPS-189 Monitor

Monitor Calls

The monitor performs a number of services for user
programs, including all 1I/0 operations. The instruction
codes from 940 through 877 provide the means for programs to
request the monitor to ©perform these services. The
operation codes, called Unimplemented User Operations or
UUOs, 'have no hardware function except to give control to
the monitor. When a UUO is executed, a routine in the
monitor decodes the request and calls a subroutine to
perform the requested operation. Each UUO appears as only
one instruction in a program, but it actually functions as a
subroutine call. Hence, those 1instructions are sometimes
called "programmed operators.”

Interrupts

The KL-13 processor has a multiple level priority
system. There are seven levels of priority with level one
being the highest priority and level seven being the lowest.
BEach I/0 device 1is assigned a level and can interrupt any
pPrograms running at a lower priority level. 1Interrupts can
also be requested programatically.

When an standard interrupt occurs on level N, the next
instruction 1is taken from physical address 44 + 2*N, and is
executed in executive mode. When a wvectored interrupt
occurs the device/controller requesting the interrupt
supplies, to the CPU, a Function word the contents of which
is wused to determine what instruction should be executed to
service the interrupt. This allows transfer of control
directly to the device service routine rather than a Fixed
address of 40 + 2*N as with a standard interrupt. Upon
completion of interrupt processing control is restored to
the interrupted program. All accumulators and processor
flags must be saved and restored by the interrupt routine.

All DECsystem-19 processors have a clock which
interrupts 68 times per second (actually at power line
frequency if it makes a difference). This clock interrupt
guarantees that the monitor will always get control back
from a wuser ©program. One sixtieth of a second is,
therefore, the basic unit of CPU time which the monitor
allocates to a program. Upon each clock interrupt, the
monitor reconsiders the question of which programs to run.

INTRO-7

DIGITAL _ TOPS-19 MONITOR INTERNALS
Introduction to TOPS-19 Monitor

The Monitor

The monitor provides the interface with which users and
‘user programs interact. It controls each user job in such a
way that no user needs to be concerned that there are other
users on the same system. The monitor presents the
appearance of a complete and independent system to each
user. In addition to its control functions, the monitor
provides many services to users and user programs. ~We might
think of any function performed upon request as a service.
A function performed without a user request would then be a
contreol function.

Requests for service can come from user terminals, as
monitor commands, or from user programs, as UUOs. The most
important command is the command to run & program. In
response to this command, the monitor assignes core memory
to the user job, reads a executable file into core from some
other storage medium, and adds the program to the set of
programs sharing the CPU. The most frequent regquests for
service from programs are the I/0O UUOs. These UUOs allow a
program to access data by file name and block number without
being concerned about the physical location of the data.
The monitor computes physical addresses on disk, starts 1I/0
transfers, and handles the resulting I/0 interrupts.

Control functions are performed as necessary by the
monitor, according to algorithms which attempt to give
optimum overall system performance. One of the most
important of these functions is dividing the available CPU
time among the active user programs. Jobs must be stopped
when clock interrupts occur, and their computational states
must be preserved so that they may be restarted at a later
time. The monitor must also decide which user jobs to keep
in physical core and which to "swap out" to drum or disk
memory. In addition, it must decide where to put jobs in
physical core as they are swapped back in and when they
change in size.

Structure of the Monitor

The monitor consists of many separate and more or less
independent routines and modules which are called according
to events which occur within the system. Figure INTRO-2
shows a functional diagram of the major routines, and the
control paths between them. Some of these routines operate

INTRO-8

DIGITAL TOPS~-13 MONITOR INTERNALS
Introduction to TOPS-18 Monitor

on a regular cycle based on the clock interrupt. Others are
called only 1in response to system events such as 1I/0
interrupts and execution of UUOs.

The Control Routine 1is executed on each clock
interrupt. It dispatches to the Command Processor, the
Scheduler, and the Context switching routine each time it is
executed. The <Command Processor 1s the routine which
handles commands typed by users. It frequently calls the
SAVE/GET routine and the Core Management module in
processing commands to set up and run various programs. The
Scheduler is the routine which decides which user program to
run during the next jiffy. The Context Switching routine
restores the computational state of the chosen job and then
allows it to run for the rest of the time slice.

The Swapper is called by the Scheduler on each clock
interrupt. It " transfers user programs between core memory
and drum or disk, attempting to keep the highest priority
jobs in core.

The UUQ Processor responds to all requests for service
by user programs, and specifically handles all 1I/0 required
by user ©programs. The UUO processor itself 1is device
independent. It will be the same in all monitors,
regardless of the hardware configuration for which they were
built., The device dependent code requred for any device
will be included 1in a device service routine for that
device, Any given monitor will be built for a specific
hardware configuration, and will contain device service
routines for the devices in that configuraton.

The Core Management module handles all changes in size
of wuser Jjobs and all changes 1in their physical core
locations. It is called as needed by the Command Processor,
the UUO Processor, and the Swapper.

At any point throughout this cycle there <could be an
interrupt due to <completion of an I/0 transfer. The
interrupt routine must save and restore the state of the
interrupted routine. The lower priority routine normally
does not need to give any consideration to the possibility
of being interrupted. However, if there is an interaction
between an interrupt routine and a lower ©priority routine,
the 1lower priority routine must be written so that it will
work properly with an interrupt on any instruction. £ this

INTRO-9

DIGITAL TOPS-19 MONITOR INTERNALS
Introduction to TOPS-1% Monitor

is impossible, .the priority interrupt hardware may be
disabled for a few instructions when it is critical that no
interrupt should occur.

The Monitor as an Event Processor

Overall the Monitor can be envisioned as a real time
program which responds to events which occur within the
system. The routines which operate on a regular cycle are
called as a result of a periodic event, the clock interrupt.
The UUO processor responds to the execution of UUOs, and the
Command Processor responds to a user typing a command on his
console. Each I/0 device interrupt 1is an event which
results in the execution of a specific interrupt routine.

There is a well-defined function which the monitor
performs in response to each event., However, a given event
will not necessarily result in the same action every time it
occurs. The specific action taken on a given event depends
on the state of the system. The system state is represented
by many variables in core memory and device registers and
depends on the past history of the system. Given the state
of the system, the monitor will perform a specific
predictable function in response to any specific event.

In summary, the Monitor both controls wuser Jjobs and
provides services to them. The monitor presents the
appearance of a complete and independent system to each user
job. It switches control among the user jobs so that each
user appears to have a system to himself, The Monitor runs
and stops user programs according to the user's commands.
It handles all I/0 operations, according to requests from
‘user programs. It attempts to allocate all system resources
in such a way as to give the best overall system
performance.

INTRO-19

DIGITAL TOPS-10 MONITOR INTERNALS
Introduction to TOPS-18% Monitor

EXERCISES

This laboratory exercise requires the student to use
the microfiche of the current TOPS-184 monitor. For each
starred (*) question, the student should supply the module
name(s) and CREF line number(s) of the relevant code, e.g.,
COMMON line 4627.

*1. What does JPOPJ1l do?

*2. Describe the PJBSTS byte pointer.

*3. Where are CPU data blocks defined? How many were
defined for this system? Why?

*4, Where are the definitions and redefinitions of the C
and V macros used in constructing the CPU data blocks?

*5, What location contains "overhead" time?

*5. Where is the serial number of CPUl stored for a
dual-CPU system?

INTRO-11

DIGITAL : TOPS-19 MONITOR INTERNALS

*7.

*3.

*9,.

*19.

Introduction to TOPS-19 Monitor

Find the definitions and explain the interrelationships
between M.JOB, JOBMAX, JOBN, SEGN, and MD.SEG.

Which feature test switches must be on in order that
the JBTUPM table will be generated? How big will this
table be?

How is the decision made whether or not to 1load the
device service routine for the incremental plotter? 1Is
it loaded in this monitor?

Describe the effect of the SAVE4 subroutine on the
pushdown 1list. What happens if a call is now made to
CPOPJ1?

INTRO-12

TOPS~19 MONITOR INTERNALS

The Monitor Cycle

[t

W)

i

T

COURSE MAP

CYC-i

o

p

S-13 MONITOR INTERNALS
The Monitor Cycle.

DIGITAL TOPS~10@ MONITOR INTERNALS
The Monitor Cycle

This page is for notes

CYC~ii

DIGITAL TOPS-19 MONITOR INTERNALS
The Monitor Cycle

THE MONITOR CYCLE

INTRODUCTION

The heart of the monitor is the monitor
cycle. Time accounting, command processing,
scheduling, swapping and context switching
takes place in this cycle every clock tick.
It is this cycle that allows TOPS~-19
timesharing to work effectively by
reallocating resources periodically. All
knowledge of the monitor is built upon an
understanding of this process and serves as
the real starting point for the course.

cYC-1

DIGITAL

TOPS~19 MONITOR INTERNALS
The Monitor Cycle

RESOURCES

TOPS~19 Microfiche

TOPS~10 Monitor Internals Course Supplement

Course Materials - Chapter 2

Supplement - KL Document Pages 33-37 =~
Graphics 2-All

LECTURE OUTLINE

I. The Control Routine

A.
B.

c.
D.
E.
F.

What and Why

Overview Level 3 and 7 Timing
Charts

Level 3 Detail

Level 7 to RSCHED

Level 7 RSCHED to End

Partial Cycles

DIGITAL TOPS~-19 MONITOR INTERNALS
The Monitor Cycle

THE CONTROL ROUTINE

Every sixtieth of a second the Monitor repeats an
overall cycle which ends with giving control to a user
program. In this cycle the monitor performs all functions
which are repeated on a regular, periodic basis. These
include all monitor funcitons except servicing interrupts
and UUQC's. The functions which are performed in-line within
the control routine will be discussed in this chapter. We
will be particularly interested in the manner in which the
major routines are called, and the circumstances under which
the entire cycle is repeated.

Time accounting

At the beginning of the cycle, we account for use of
the CPU during the previous cycle. 1If a user program was
running, we add the elapsed time to the total for the job in
its Process Data Block (PDB). If the Null Job was running
we add the elapsed time to the total Null Job time in the
CPU Data Block (CDB). If the Null Job was running, but
there were jobs in one or more Run Queues which could not be
run for some reason, the time is considered "lost"™ CPU time.
If there was no job in a Run Queue the time is considered
"idle" time. Lost time 1is accumulated separately in the
CDB, in addition to total Null time.

CPU times are accunulated in a manner which might seem-
peculiar at first. Original KA systems measured time in
sixtieths of a second, or "jiffies".* vVarious system
programs such as SYSTAT, and possibly some user programs,
look into the Monitor's tables, and expect these times to be
in jiffies. It has been found desirable to measure CPU
times with a higher degree of resolution then the Jiffy;
this is useful for charging usage of the machine for partial
jiffies. Hardware is available to measure time 1internals
with 10 micro-second resolution, the DK1g real time clock
(KA and XKI) and the time base meter on the KL. 1In order to
use the additional precision, without having to change all
the programs which look at these time intervals, we maintain
the interval in two parts. The table entries which have
historically been in jiffies are still in Jiffies. An
additional word is used to hold the excess beyond the last

*Strictly speaking, a jiffy is defined as the time for one
cycle of AC line current. Hence it means one sixtieth of a
second or one fiftieth of a second depending on the country
in which you are located.

CYC~3

DIGITAL TOPS~13 MONITOR INTERNALS
The Monitor Cycle

even jiffy, in units of jiffies*1@¢~5. When the interval |is
updated, the 1incremental time is added to the excess. If
the excess goes past one jiffy, then the excess and the
jiffy total are each corrected. The code which updates time
intervals is written so that it will work with no changes on
systems which do not have a DK~10 or time base meter. On
these systems it will simply appear that every interval
happened to be an intergral number of jiffies.

On systems using a DK1# or time base meter the time
interval for a user Jjob 1is measured from the time the
program is given control until the time it is stopped again.
Time spent servicing priority interrupts is included in this
total, but is assumed to be insignificant. The time spent
performing monitor overhead functions -~ from stopping one
user program until starting the next =~~ 1is measured and
accumul ated separately in the <CDB as overhead. This
overhead time can be excluded or included in user runtime as
determined at MONGEN time.

KL processors have two additional «clocks, or meters,
that can be used for even a higher degree of accuracy and
repeatablity than the DK14 or time base meter. These meters
are called the EBOX and MBOX meters. The EBOX meter counts
EBOX cycles during 1instruction execution while the MBOX
meter counts memory references. These meters can be
operated in a mode such that they are stopped during
interrupt processing hence the current Jjob will not
accumul ate EBOX cycles during interrupt processing. The
EBOX and MBOX counts are scaled by the appropriate scaling
factors to be equated to CPU run time as obtained from a
DK18 clock or time base meter. Job accounting via the use
of EBOX - MBOX accounting is more accurate than time base
meter accounting since varying instruction execution times
due to memory contention and interrupt processing are
excluded from the job's accounting data.

In addition to CPU time, we accumulate a total of CPU
time weighted by core size for each job. Each time a job
accunulates a jiffy of CPU time, its current size 1is added
to this "kilocore-tick"™ total. Most commercial timesharing
bureaus base their charges partially on this figure.

DIGITAL TOPS-10 MONITOR INTERNALS
The Monitor Cycle

Time Limit

It is possible to set a CPU time 1limit for any Jjob.
This is especially important for the Batch Controller, but
can be set by timesharing users if they so desire. If a
time limit has been set up, we decrement the remaining time
each time the job accumulates another jiffy of CPU time.
When this time limit, in table JBTLIM, expires the job will
be stopped. A timesharing user can type a CONT command, but
a batch job will be aborted by the Batch Controller.

Timing Requests

The next function in the overall cycle 1is processing
timing requests. A timing request is a request submitted by
a monitor routine for some function to be performed at a
specified time in the future, i.e. waking a job that is
just going to sleep. Each request includes the address of
the routine to be called, the time interval in jiffies, and
seven bits of data to be passed to the routine. The
requests are stored in table CIPWT. On each clock tick, the
monitor decrements the remaining time for each request and
calls the routine for any request whose time has expired.

The Monitor performs some functions only once per
second. A counter is decremented on each clock tick to
indicate when another second has elapsed. Each time this
counter expires, the Once-a~Second routine is called. Among
other things, this routine checks for hung I/0 devices. it
also maintains a counter, and calls a Once-a-Minute routine.

Major Routines

Next, the monitor checks 1if there are any commands
waiting to be processed. If there are, the monitor calls
the Command Processor. The Command Processor will choose
one of the waiting commands to interpret and process, and
will then return to the Control Routine. The Command
Processor is a major routine, which will be treated in
detail in a later chapter.

The scheduler, which is also a major routine, is called
next, The Scheduler requeues any jobs which have changed
state during the last cycle, and then determines which user
program should be run on this cycle. It also calls the
Swapper, which 1is another major routine. Al though the

CYC-5

DIGITAL TOPS~10 MONITOR INTERNALS
The Monitor Cycle

Scheduler determines which user program is to be run next,
it does not give control to that program directly. Instead
it returns to the overall Control Routine which called it.

Context Switching

Before going to the wuser program, the monitor must
restore all conditions which affect its execution to the
state -which they were in when the monitor 1last interrupted
it. The same conditions must be saved for the user program
which ran last. The software conditions are represented by
data stored in a part of the user page map page (JOBDAT on
non VM systems). On non-VM systems this information, which
must not be changed except by the Monitor, is copied from
the Job Data Area into the CPU Data Block before the program
is given control. When the program 1is stopped, this
information is copied back into the Job Data Area. This
portion of the Job Data Area is said to be protected, since
it is put out of reach from the program while the program is
running. The Monitor also prevents the user from doing
input into this area, or changing it with a D (Deposit)
command. The information contained in the protected part of
the Job Data Area includes which devices are being used and
the address at which the program should be continued.

When virtual memory was implemented this protected part
of the JDBDAT was moved to the UPMP to increase its
integrity.

The hardware registers which must be restored are the
User Page Map Base Register, the accumulators, and the
program counter and processor flags (PC word). The PC word
is saved immediately whenever the program is stopped. The
information necessary to set up the User Page Map (UPMP)
register 1is maintained in table JBTUPM, having an entry for
each job in core. Restoring these hardware registers is the
final action before giving control to the user program.

Repeating the Cycle

Once control is given to a user ©program it may run
until the next clock interrupt, or until it "blocks" within
a UUO because it needs data or a resource which is not vyet
available. If a clock interrupt occurs during execution of
a UUO0, we do not interrupt the job at that point, but allow
the UUO to run to completion. The job will then be stopped

CYC-6

DIGITAL TOPS~1% MONITOR INTERNALS
The Monitor Cycle

in the exit routine of the UUO processor by software action.
There are therefore three conditions under which a user
program might be interrupted, and three corresponding entry
points to the overall Monitor cycle:

l. Clock interrupt occurs while the program is running
in user mode.

2. Clock interrupt occurs during execution of a UUO,
and then the UUO is completed.

3. A UUO routine reaches a point where it can not
immediately continue. (A clock interrupt may or
may not have occurred.)

Clock Interrupt

The interrupt which causes the monitor to begin a
monitor cycle originates from the arithmetic processor,
device APR on a KA or KI, or the interval timer, device TIM
on a KL. These devices are assigned a very high interrupt
priority, usually level 1, 2 or 3 for two reasons: (1) the
interrupt triggers the maintenance of time of day which must
be accurate, (2) the APR device (XA & KI) also interrupts
the CPU for various errors which must be .processed
immediately. However, there is no urgency °‘for restarting
the control cycle., Therefore the hardware interrupt is used
to drive a lower priority "software" clock interrupt. The
software clock interrupt is always assigned to Channel 7, so
that all I/0 device interrupts can take priority over it.
The software clock interrupt is also requested by certain
other monitor routines in order to start a new cycle before
the hardware clock interrupt has occurred. The flag .CPCKF
is set by any routine which requests the Channel interrupt;
the flag .CPTMF is set only by the interval timer (APR)
interrupt routine and indicates that an actual clock tick
has occurred.

When the software clock interrupt occurs, control
passes to the CKOINT routine in KLSER. If the interrupted
program was in exec mode, the interrupt 1is immediately
dismissed and the new cycle is delayed until the current
monitor function is finished. Otherwise, the user's PC is

saved in the Job Data Area, control and the overall cycle is
repeated.

CyCc-~7

DIGITAL TOPS-1@ MONITOR INTERNALS
The Monitor Cycle

The UUO Processor checks if a clock tick occurred while
it was running, before returning control to the user
program. If it finds .CPTMF set, it passes control to the
USCHED routine, which performs a similar function to
CKOINT. USCHED sets the "user program" return address to the
next address in the UUO Processor. It then saves the
necessary AC's and passes control on to RSCHED. Whenever
the interrupted program is selected to run again, it will be
restarted in the UUO Processor at a point Just prior to
where control is restored to the user program.

Program Blocked
In some cases a user program may reach a point where it

can not immediately continue. For example, it may execute
an INPUT UUO at a time when the next buffer has not yet been

filled. In such cases, the monitor routine can request a
new cycle be started, so that another job may be selected to
run. To do so, the monitor routine passes control to

WSCHED. WSCHED, 1like USCHED, will set up the return
address, save the AC's and pass control to RSCHED. When the
program is restarted it will be at the point where the
monitor routine requested a new cycle. Some functions on
the overall cycle will not be performed if the clock has not
ticked.

Saving the PC

When the software clock interrupt occurs, the first
instruction executed 1is a JSR. This JSR saves the PC word
for the user program at location CK@CHL. If the interrupted
program was in user mode the contents of CK@CHL are copied
into .COPC in the CPU Data Block. If the job is not choosen
to run nexts its PC is copied from .C@APC in the CDB to JOBPC
in the users UPMP. The time during which the program is not
running its PC werd is preserved in JDBPC. When the job is
chosen to run again, the opposite process occurs. The
contents of JOBPC 1is copied into .COPC during context
switching, and control is given to the user program with the
instruction:

JEN @ .CgpC
After execution of this JEN the PC and processor flags have

the same value which they had when the program was
interrupted. ‘

CYC-8

DIGITAL TOPS~-18 MONITOR INTERNALS
The Monitor Cycle

When the program is stopped by software action (at
USCHED or WSCHED) rather than an interrupt, the stored PC
word i1s set up to continue the program within the routine
which stopped it., Both USCHED and WSCHED are called with a
PUSHJ, which leaves the PC word on the push down list. This
PC word 1is PQPed into .C@PC, and from that point on is
handled by the same code executed on a clock interrupt.

- In returning control to the user ©program, we do not
need to be concerned with the manner in which it was
stopped. When the PC word is restored from the contents of
JOBPC, the program will continue running in the correct
state. 1If it was interrupted in user mode, it will continue
with the next instruction that would have been executed. If
the program was stopped by a PUSHJ to WSCHED or USCHED, it
will continue with the next instruction after the PUSHJ.
Therefore, from the point of view of a single program, the
PUSHJ appears to behave like a normal subroutine call. 1In
reality, however, the "subroutine” is the execution of an
arbitrary assortment of other programs.

C¥C~9

DIGITAL TOPS~19 MONITOR INTERNALS
The Monitor Cycle

This page is for notes

CYC~-18

DIGITAL TOPS-19 MONITOR INTERNALS

The Monitor Cycle

EXERCISES

All questions marked by a "*" should be answered by

specifying routines and line numbers.

* 3

-

*2.

*3.

*4.

*5.

*60

Where is control passed to RSCHED?

Where does the monitor give control to a user program?
I.e., where 1is the very last instruction executed in
the monitor before control goes to a user job?

At what location is the user program’'s PC stored when a
channel 7 clock interrupt occurs?

Under what circumstances is a jiffy counted as "lost
time"?

Where is the job's PC word saved when it is not the
current job?

Assuming a job blocks for I/0 and transfer of control
flows to WSCHED. How does WSCHED supply RSCHED with
the PC word to restart the job once I/0 is complete?

C¥C-11

DIGITAL . TOPS~19 MONITOR INTERNALS

*7 .

*9.

The Monitor Cycle

How do USCHED and WSCHED differ? How do you account
for these differences?

Under what circumstances would a job be picked to run
by the scheduler, set up by the context switching
routine and then be started up in exec mode?

In what parts of what modules 1is context switching
performed?

C¥Cc-12

TOPS-19 MONITOR INTERNALS

Core Management

GITAL

TOPS-12 MONITOR INTERNALS
Core Managenent

COURSE MAP

CM-1i

DIGITAL TOPS-i@ MONITOR INTERNALS
Core Management

This page is for notes

CM-ii

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

CCRE MANAGEMENT

INTRODUCTION

KLif memory is organized 1into ©pages
that are shared between the monitor and user
jobs. The core management modules handle
memory by manipulating the monitor data base
and the page maps. Al though system
programmers rarely would change the core
management routines or data base, a
knowledge of how they work 1is necessary
because many other features (such as virtual
memory) depend on it.

CM-1

DIGITAL

TOPS-12 MONITOR INTERNALS
Core Management

RESOURCES

Monitor Table Descriptions

Microfiche of TOPS-19 Monitor

TOPS-19 Monitor Internals Course Supplement -

Course Material - Chapter 3
Supplement - Graphics 3-All

LECTURE OUTLINE

I. Core Management

A.
B.
C.

D.

E.
F.

Introduction

The Data Base

Demands on CORE1l and General Flow
l. Core Command

2. Core UUO

3. Swapper

Allocation and Assignment Flow
Charts

Setting up a UPMP

Virtual Memory

CM-2

DIGITAL TOPS—-19 MONITOR INTERNALS
Core Management

INTRCDUCTION

Core management is concerned with the management of
both physical pages (memory) and virtual pages (disk space
used for swapping and paging). This activity can take the
form of simple bookeeping or high level decisions about
swapping and the running of programs. This module will
discuss the bookeeping functions performed by the monitor
modules CORE1l and KxXSER (KLSER for KL1# processors or KISER
for KI1l9 processors).

These modules can be accessed by three different means:
1) by the command decoder (COMCON) when the CORE monitor
command is issued, 2) by the UU0 handler, UUOCON, when a
CORE. or PAGE. monitor call is issued and 3) by the
swapper.

Allocation Vs. Assignment

For this discussion, the following terms will be
defined:

Allocation - Management of virtual memory
{swapping space)
Assignment - Management of physical core

Core management is comprised of both allocation and
assignment phases.

CORE MANAGEMENT DATA BASE

PAGTAB - is a table containing many 1linked 1lists for all
physical pages in the system. There is a one word entry for
every physical memory page in the system. All the pages for
a Jjob are 1linked together within PAGTAB. Each entry
contains the physical page number of the next entry (page)
in the 1list. For every job, logical page zero is always
first in the 1list. The RH of UPMP+468 points to the
physical page number of page zero, i.e. the start of the
PAGTAB chain for that job. The UPMP for each job with core
is not part of the job's PAGTAB linked list but rather a
separate linked list of only one entry pointed to by JBTUPM.
PAGPTR points to the first page in a linked list of pages
that are not being used and hence are available for
assignment.

CM-3

DIGITAL TOPS-19 MONITOR INTERNALS
‘ Core Management

PAGPTR - is a pointer to the start of the free chain in
-PAGTAB as shown in the PAGTAR drawing.

BIGHOL - is the number of unassigned physical memory pages
(the same as the number of links in the linked list pointed
to by PAGPTR).

CORTAL ~ is the number of £free pages (BIGHOL) plus the'
number of idle and dormant high segment pages.

VIRTAL - contains the total number of free pages 1in the
swapping space. ’

JBTUPM - is a table whose entries (one per Jjob) point to
core resident UPMP.

JBTADR - contains the core address and 1length <for each
segment in core for each job.

CORE MANAGEMENT ALGORITHMS

Requests for core generally go through four steps
before core 1is assigned: . 1. dispatch to core handling
routines, 2. preprocessing and argument checking, 3.
allocation and 4. assignment.

Core Command

When a CORE monitor command is issued by a user,
monitor control passes to the core routine in COMCON, then
to COREF in the module COREl, where preprocessing in
performed. Next, the COREl routine is called. When done,
CORE1l falls into CORElA for assignment. Through the use of
the core command a user can give up all of the job's core
allocation as well as create a core image starting from 3
core.,

CORE. UUO
The CORE. monitor call allows the user to allocate and
deallocate pages subject to two restrictions. This UUO does

not allow all pages to be deallocated and will not allocate
from zero pages.

CM-4

DIGITAL TOPS—-19 MONITOR INTERNALS
Core Management

When this meonitor call is issued, control passes to the
CORE UUO routine in UUOCON, -then to CORUUO to check the
arguments. Finally, the same routines as executed by the
CORE command are called: COREl, VIRCHK and CORElA.

Swapper

The swapper (discussed on day 5) goes staight to CORGET
to allocate and assign memory. The general flow of core
management for these three processes is summarized in the
chart CM-2,. '

CORE ALLOCATION
Core Command

The CORE monitor command accomplishes its preprocessing
at CORE@ before going to COREl to allocate the core. CORE#
may also be entered from COMCON when minimal core (2K) must
be assigned for the KJOB, RUN, ASSIGN and DEASSIGN commands.

At CORE@ (CM-3), the monitor checks that the job is in
core with no active I/0 before going to COREl. If the job
is swapped out and the user gives a core command, IMGIN 1in
JBTSWP 1s <changed to reflect the amount of core desired by
the job as specified in the CORE command. This amount will
be allocated and assigned at the time the job is swapped in.

The CORE command, unlike the CORE. UUO, may deallocate
all of a job's core,

CORE. UUO

Whenever a CORE. UU0 is issued, control comes to
CORUUO in COREl where two cases must be handled. 1If the UUO
has a zero argument, the core size is not changed; instead,
the amount of the user's core is returned. If the job size
must be altered, CHGCOR is called to allocate and assign
core.,

CHGCOR is called either from CORUUO or UUOCON (to set

up buffer rings). Its first function is to wait for all I/0
to finish so that no data is lost. Otherwise, incoming data

CM-5

DIGITAL TOPS~-13 MONITOR INTERNALS
Core Management

may have no place to go (pages deallocated (decreasing case)
or job swapped out (increasing case)).

If the job is not locked, the COREl routine 1is called
to allocate and assign core followed by a call to UCORHI to
assign high segment core 1f needed. If the Jjob is
increasing 1in size but couldn't get core, the Jjob is marked
for swap out. This is called the expanding case. The Jjob
will eventually be swapped in with the correct amount of
core.

Errors will occur if the job is locked, the expansion
request exceeds CORMAX or limits, or if I/0 is active.

COREl Routine

COREl is concerned only with allocation and 1its main
function is to insure that certain conditions are met.
Control reaches routine COREl in module COREl from both the
CORE. UU0 and the CORE command. The conditions that are
tested are:

Job not locked in core

Job not expanding into high segment
Job not exceeding virtual limits
Job not exceeding VIRTAL

Job not exceeding CORMAX

00000

If all the conditions are met successfully, the pages are
allocated and assigned wusing VIRCHK (except for two cases
noted on the flowcharts) and return goes to UUOCON or
COMCON.

If the low segment is expanding from zero or a sharable
high seg is changing, control returns to CCOREl for
allocation and eventually to CORElA for assignment.

CORE ASSIGNMENT

Once core allocation has been accomplished, in routine
COREl, and sometimes VIRCHK, the actual core assignment must
be done. The two routines responsible for core assignment
are VIRCHK and COREl1A. VIRCHK will do core assignment for
CORE commands and core UUC's except for changes to sharable

CM-6

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

high segments and 1low segments expanding from zero size
while routine CORE1A will do the assignment for the other
cases of CORE command and UUO usage as well as for the
swapper. In order to understand this division of labor, the
following five cases must be considered:

1. Case 1 - In the event that core is being
deassigned, the monitor will destroy the UPMP if
all of the jobs core is being given up. CORE1A
handles this.

2. Case 2 - The job is increasing in size and in not
going wvirtual. VIRCHK calls routine PHYCRZ which
then causes PAGTAB to be manipulated in the event
core 1is available or. the XPN bit to be set
otherwise. (VIRCHK)

3. Case 3 - If the job is increasing in size and Iis
virtual or will be going virtual, the S bit is set
in the corresponding page map entries. (VIRCHK)

4, Case 4 - Jobs starting with @ are and requesting an
amount not available will cause control to pass to
routine CORGT7 so that they may be marked as
expanding. (COREla) '

5. Case 5 - The monitor must perform two steps in this
case: build the UPMP and get +the core. Once
CORE1lA is entered, dispatch is made to CORGTd.
There, the pages are assigned in the low segment
including one for UPMP and all pages are zeroed,
Then the UPMP 1is built (refer to later in this
chapter for more information on the steps necessary
to complete this task). Updating JBTADR, JBTREL
and the UPMP completes the operation.

CM-7

I

DIGITAL TOPS-1%2 MONITOR INTE
Core Manag

m
Py

RNa
eme

ct U'l.

,
i
n

When a user joh expands from zero core, the job's UPMP
must ©De created. Even though a2 page has been assigned for
the UPMP, it cannoct be accessed since all exec mapping for
EVA 34¢ (the UPMP) must go through the still non-existant
UPMP. In other words, an alternative mapping scheme must be
used to access the UBMP until is has been completely

initialized.

The UPMP, besides pointing to all the user pages, must
point to itself so that it can be accessed. This is done
through location UPMP+440:

UPMP MAPPING
FOR EVA 341

MAPPING
FOR EVA 340

1ST LOGICAL PAGE
MR 4557
CM-3

DIGITAL TOPS-1% MONITOR INTERNALS
Core Managenent
The right half of location 42¢ (EVA 341) will point t2 the
first iecgical page of the user's program and the left half
of location 4672 (EVA 343) will point to the UPMP itself.
Supposs a page has been assigned to create a UPMP and
its 13-bit phvsical page number is known. How can the page
be accessed to create the necessary links? EVA 34 cannot
be used since the per process aresa is not set up.

The solution lies in the use of the EPMP. The EPMP-
always exists and is always pointed to by the EBR register.
If the physical page number is placed in a spare nmappring
slot in the Executive Map Page, it can be accessed through
the EVA. a

For example, suppose page 1832 has been allocated as
the -UPMP. The number 1832 is stored in the EPMP mapping
location corresponding to EVA 44¢g.

UPMP PHYSICAL
PAGE NUMBER

\\\\ EPMP

200 10321

MR-4658

CM-2

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

gndé in JBTUPM. [
each job.) Executive virtual address 408909 now maps through
1232208 to the UpPMPp. The UPMP 1link to itself is
accomplished by this instruction:

MOVEM AC,400409 ;AC holds pPhy. Page %

Since the UPMP can now stand by itself, 1832 1is placed in
the UBR making it addressable at executive address 340000.
Then, the remainder of initialization can be performed.

UBR

1032

UPMP

400 |>~— 1032 1055 ~

FIRST LOGICAL PAGE

MRI6E9

CM-12

DIGITAL - TOPS-10 MONITOR INTERNALS
Core Management

VIRTUAL MEMCRY

Virtual memory was first implemented in TOPS-1§ with
the release of 6.91. The monitor module VMSER was added to
handle references to logical addresses that are not in
memory as well as to handle the PAGE. UUO. The overall
handling is resolved via a combination of hardware and
software.

References to addresses in pages with the A bit cleared
produce a page fault. The page fault condition, in most
cases, traps to a routline called a page fault handler (PFH).
The PFH will decide which pages must be brought into core so
that the job can continue to run. The system default PFH is
kept in SYS:PFH.EXE (SYS:PFH.VMX pre 7.61) but users may
write and use their own. 1In all cases, the user bears the
burden of overhead for using virtual memory. The page fault
handler resides in user space and is considered part of his
program.

There are two sets of controls for virtual memory; one
for administrators and one for the user. The administrator
may specify for each PPN the:

1. Maximum Physical Page Limit (MPPL) =~ The maximum
number of pages a user job may have in core at any
one time,

2. Maximum virtual Page Limit (MVPL) - The maximum
size that a program may reach including memory and
what is stored on disk.

For example, take a user whose MPPL is 128K and MVPL is
256K.

CM-11 .

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

MVPL
258K
—————————— — CVPL
‘
128K MPPL
- — = — — ——= — —~ 4 CPPL
USER CORE
MR-4560

As long as the program size is less than the MPPL (128XK),
the program is not "virtual™. When the program is bigger
than 128K, the program is virtual and not all pages may be
in memory at the same time. For users without VM, the MPPL
and MVPL are identical.

These parameters are set by the administrator 1in
ACCT.SYS and stored in the Process Data Block when a job is
running.

The user alsc has limits he/she can set for a specific
job during program execution.

l. Current Physical Page Limit (CPPL) - the maximum
number of physical pages a user may have. This
number is always less than or equal to the .MPPL and
is modified by wusing the "SET PHYSICAL LIMIT"
monitor command.

2. Current Virtual Page Limit (CVPL) - the maximum
program size a wuser may have. This number is
always less than or egqual to the MVPL and is
modified by wusing the "SET VIRTUAL LIMIT" monitor
command .

CM-12

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

In lieu of a CPPL, the user may set a physical
guideline. The guideline may be exceeded but the job's size
will be brought down to the guideline each wvirtual time
trap. (A virtual time trap is defined later).

Given either of these limits, what event will cause a
job to run virtual? There are three causes: a RUN or GET
command, a CORE. UUO or a PAGE UUO.

Virtual Memory Data Base

When a job is run using virtual memory, there is much
more accounting that must be done to keep track of the
Pages. Because the information is unique to the Jjob, the
data base for virtual memory is kept in the UPMP,

AABTAB - is a subtable of bits within the UPMP starting at
word 457. There is one bit per page which reflects whether
the pages exists or not.

WSBTAB - is a subtable of bits within the UPMP starting at
449. This is the working set table and contains one bit per
page. If a bit is 1, the corresponding page is in core.

The UPMP entries for each page are composed of 18 bits. For

more information, see the drawing in the supplement that
describes UPMP entries.

CM-13

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

PAGE MONITOR CALL

The PAGE monitor call allows a user to manipulate pages
and the data contained in them. PFHs use the PAGE. UUO for
all page manipulation. The calling seguence is:

MOVE ac,[XWD ftn,,addr]
PAGE. ac,

error return
normal return

addr: number of words
argument 1

argument n

The functions are:

g Swap a page in or out
1 Create or destroy a page
2 Move or exchange a page
3 Set or clear the access-allowed bit
4 Return WSBTAB
5 Return AABTAB
6 Return the status of a page
o Does not exist
0 Writable
o Readable
o Accessible
o High segment
o Shareable
o Can't be paged
o ABZ
7 Create a high segment from a collection of pages
19 Set or clear the cache bit

PAGE FAULT HANDLERS

Page Fault Handlers (PFHs) manage memory for individual
jobs when a job's program exceeds its current physical page
limit., It tries to keep the number of pages in core below
the 1limit and close to the guideline. To do this, pages
must be paged in and out. The decision as to the specific
pages +to be swapped in and out is one of the the major

CM-14

DIGITAL ' , TOPS-12 MONITOR INTERNALS
Core Management

functions of a page fault handler. A list of pages must be
maintained according to some algorithm. 1In addition, page
fault handlers may create pages (allocated but zero).

Until a program exceeds the CPPL, a page fault handler
is not needed. But when that limit is reached, the monitor
lcoks at .JBPFH in the wuser's Jjob data area. If that
location is non-zero, the contents are treated as the
address ¢f the PFH and dispatch is made there. If zerec, the
monitor gets SYS:PFH.EXE and stores it in page 777 of user
space, From that point on, the PFH will manage user core

for the job.

Control is sent to the PFH for some types of page
failures, a time trap or a potential page failure (UUO
call).

Page Failure

A page failure (or page fault) will occur for the
following reasons:

o Proprietary Violation - a concealed page has been
referenced

Page Refill Fallure - hardware problem

Address Failure - address break’

Page Table Parity Error

AR Parity Error

ARX Parity Error

Reference to a location whose UPMP entry has A=

O 0Co0oO0opoO

Only this last case will actually be handled by the PFH;
the rest are handled by the monitor.

For a KI1l#, page fault traps go through location 428 in
the UPMP. KL1@ page faults trap through locations 581 and
5¢2. When the trap occurs, on a KL, the page fail word Iis
stored in location 580 of the UPMP, the current PC is stored
in 561 and a new PC is retieved from 502.

CM-15

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

The new PC in the page fail word is the address of the
SEILM routine in COMMON which will sort out the type of
condition and dispatch to the correct 1location. If the
normal condition is met (a page needing to be read in),
control passes to USRFLT.

The USRFLT routine in VMSER never returns to SEILM if
the user 1is running virtual. 1If the A bit is off and the
page is in the working set, the A bit 1is turned on and
control is returned to the user program. The other cases (A
equal to zeroc and page not in the working set, time trap, or
UUO check) will cause the PFH argument block to be filled
and control to be transferred to the user PFH.

The format of the PFH arugment block is shown in the
supplement.

Potential Page Failure

This case handles the special situation where a monitor
call has been issued and a test must be made to see if the
argument block is in core. The UUOCHK routine in UUOCON
will perform this test by entering the USRFLT routine at
USRFL1 which eventually runs the PFH if necessary to get the
page 1in core. See the flowchart of the USRFLT routine on
the previous page.

Time Trap

Time traps are used to maintain the list of pages due
for replacement and are 1initiated by the monitor in the
clock cycle. A counter in the UPMP is decremented for the
current Jjob every virtual clock tick (runtime). When the
counter reaches zero, control passes to USRFL1 and on to the
PFH. Time traps also allow the PFH to bring core usage down
from the current usage to the guideline by paging pages out.

CM-16

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

Page Fault Handler

Finally, the PFH is reached and the decision to page
pages can be made. The default PFH (SYS:PFH.EXE) Iis
organized as a second chance £first-in first-out (FIFO)
algorithm. This means that the first page paged in will be
the first page paged out unless there are pages that have
not been accessed (the second chance).

Four conditions must be actually handled by the PFH:

1. Page Not In Memory — The decision at this point is
made by examining the physical 1limit. If the
physical limit has been reached, the first page in
the FIFO 1list 1is paged out and the new page is
paged in. If the limit has not been reached, the
page is just paged in.

2. Page Allocated But Zero - This case also depends on

: the core limit. If the limit has not been reached,
a page is created and stored on the FIFO list. If
the 1limit has been reached, the first entry in the
FIFO is swapped out and the new page created.

3. "A"™ Bit Off - Simply turn the bit on.

4, Time Interrupt - The decision at this point depends
on the guidelines. If the guideline has not been
exceeded, only the virtual time trap counter must
be reset to its initial value (1/2 second). If the
guideline is exceeded, enough pages with "A"™ off
and "W" on are paged out to bring the number of
pages down to the limit, the FIFO list 1is rebuilt
and time trap counter is reset.

CM-17

DIGITAL TOPS~-19 MONITOR INTERNALS
Core Management

This page is for notes

CM-18

DIGITAL | TOPS-10 MONITOR INTERNALS
Core Management

EXERCISES

*]1., For what reasons will the COREl routine take the error
{nonskip) return?

*2. When would a segment be marked as expanding?

In executing the CORE UUO, why 1isn't there a need to
allocate an extra page for the UPMP as the swapper
does? !

*4, What are the mechanics involved in creating a UPMP?

5. Why is it necessary to clear the hardware page table in
the process of creating the UPMP? To set up the User
Base Address Register?

6. When might the size of a swapped out job be changed?

7. When might a zero length job be marked as needing to be
swapped out (JXPN set)?

CM-19

DIGITAL TOPS-19 MONITOR INTERNALS
Core Management

8. When would a job's physical core assignment b echanged
without its's allocation being changed?

CM-28

TOPS-14 MONITOR INTERNALS

The Command Processor

DIGITAL

COURSE MAP

CMND~1

TOPS~1@ MONITOR
The Command

INTERNALS
Processor

DIGITAL TOPS~-18 MONITOR INTERNALS
The Command Processor

This page is for notes

CMND~1ii

DIGITAL TOPS~19 MONITOR INTERNALS
The Command Processor

THE COMMAND PROCESSOR

INTRODUCTION

The command processor (COMCON) is
called once a tick from the monitor cycle to
-decipher commands typed at monitor level
from a Jjob. COMCCN will decide upon the
appropriate function and either run a
program or handle the request itself. This
module will explain how COMCON preprocesses
commands and dispatches to various routines,
how error checking is done and how a |user
may add new commands.,

CMND~1

DIGITAL

TOPS~-12 MONITOR INTERNALS
The Command Processor

RESQURCES

TOPS~-19 Microfiche

TOPS-18 Monitor Internals Course Supplement

Course Materials - Chapter 4
Supplement -~ Graphics 4-all

III.

Iv.

VII.

VIII.

LECTURE OUTLINE

Overview Including Functionality
Where Commands Come From and How Do
We Know We Have Them

A, SCNSER Interrupt Level Activity
B. Forced vs Regular Commands
C. CMDMAP

Data Base

A. Predispatch Bits

B. Post Dispatch Bits

Monitor Cycle Entry

A, CMDMAP

B. COMDEV

C. COMCON

Command Identification

A, Command Extraction

B. Command Validation and Setup
Predispatch

A. Errors

B. Delayed

Dispatch
A. Short

B. Long

Post Dispatch

CMND-2

DIGITAL TOPS~19 MONITOR INTERNALS

The Command Processor

A, Error
B. Terminal Mode

IX. Example -~ PJOB Command
A, Flow in COMCON
B. TTY 1/0 Routines

Homework Sample Command

iLy

CMND-3

DIGITAL TOPS-13% MONITOR INTERNALS
The Command Processor

This page is for notes

CMND-4

DIGITAL TOPS~13 MONITOR INTERNALS
The Command Processor

“THE COMMAND PRCCESSOR

The Command Processor, COMCON, provides the means for
users to request the services of the Monitor. Each time a
command is typed on a user terminal, the Command Processor
interprets the command and calls a routine to handle it. In
this chapter we shall be concerned with the process of
interpreting the command and dispatching to the routine to
handle 1it. We shall also look at some important
housekeeping functions per formed before and after
dispatching to the command .routine. We shall not be
concerned with the functions of the various commands at this
time, nor shall we worry about most of the ©possible errors
that might be detected. Several of the most important
commands will be considered in detail in later chapters.

As the user types a command, there is an interrupt on
each character, The terminal interrupt routine reads in
each character and stores it in an input buffer for that
terminal. The interrupt routine tests each character to
determine if it is a break character indicating the end of a
character string. When a break character is received, the
interrupt routine recognizes it as the terminator of a
command . At that time, assuming the terminal line is at
command level, a bit is set indicating that there 1is a
command from that line waiting to be processed. This bit is
in a table called CMDMAP.

On the next clock interrupt, the overall control
routine will check CMDMAP, and finding any bit set dispatch
to the Command Processor. The Command Processor will call
the routine to handle one line's command , and then return to
the control routine.

The Command Processor will not process more than one
command on each call, If several commands happen to be
completed by users during the same monitor cycle, the
Command Processor will be called on successive clock ticks
until all the commands have been processed. This policy
ensures that too much of any one cycle is not spent within
the Command Processor.

CMND-5

DIGITAL TOPS-19 MONITOR INTERNALS
The Command Processor

Terminal Considerations

There is an input buffer and output buffer within the
monitor for each terminal line. All terminal I/O0 is to and
from these buffers. A data block, called the Line Data
Block (LDB), contains the buffer pointers and a great deal
of additional information about each Teletype line.

A bit in the LDB, LDLCOM, indicates whether the line is
being used for command input or for user program input.
Initially a line is at "command level ,” and any characters
typed on the terminal will be interpreted as a command. If
the user gives a command to run a program the 1line |is
normally switched to "user level," and any characters in the
input buffer are available as terminal input for the
program. When the program exits or is stopped, the line
goes back to command level. It is possible to start a
program but leave the line at command level by means of a
CSTART or CCONT command. This allows the user to give
certain simple commands while his program runs.

In processing commands, characters are always extracted
directly from the terminal input buffer. Such
considerations as file names and logical device names do not
apply to the Command Processor. For example, assigning TTY
as a logical device name for the card reader would not cause
the command processor to take commands from the care e reader.

The Dispatch Process

when the Command Processor has identified the line
having a command, the contents of the first word Iis
extracted from that line's input buffer as the command. Any
additional words in the input buffer may be taken as
arguments by the routine which handles the specific command,
but will not be considered in the dispatch process.

The table COMTAB contains a list of all valid commands,
in SIXBIT format. The table DISP has an entry,
correspending to each entry in COMTAB, which gives the
address of the routine to process that commmand. The DISP
entry alse has a number of bits which specify functions to
be performed before and after calling the command routine.

CMND~5

DIGITAL TOPS~-18 MONITOR INTERNALS
The Command Processor

The Dispatch Routine gets the first six characters from
the terminal input buffer, converts them to SIXBIT, and
performs a table lookup on COMTAB. If it finds an entry
which exactly matches the command given by the user, that
entry identifies the command. If no entry matches exactly,
it checks if one and only one entry matches for as many

characters as the user typed (i.e. if the wuser typed an
abbreviation of a command.) If exactly one entry matches the
user's command, for as many characters as he typed, that
entry identifies the command. If the command can be
identified, the address of the routine to process it is

picked up from DISP.
Long Routines

Since the Command Processor operates as a part of the
overall Monitor Cycle, and the time spent in it reduces the
time spent in the next user program, the command routine
must be written to run to completion quickly. Many
commands, however, require more time than we can afford to
take out of the overall cycle. The way we handle these
commands is to set up a Monitofr routine to run as the user's
job. All the command routine does then is set up the job,
and the lengthy processing is then done 1in the Monitor
routine running in the user's time. Such a routine appears
very similar to a UUO, except that it will not return to the
user program upon completion. Since the processing of these
commands uses the user's accumulators and PC, they will not
be accepted while the user has a program running.

Many commands which may appear to be handled by the
Monitor actually run system programs for the user, and pass
the command arguments on to the program. All COMPIL-class
commands are of this type. Giving such a command is
equivalent to running the system program with an R command,
and then giving the appropriate commands to the program. In
the command dispatch process these commands are all
equivalent to R.

Forced Commands

Certain Monitor routines sometimes need to "cause" a
command to e executed for a given line. For example, if a
user at a dataset hangs up (or the telephone circuit 1is
broken) we want to DETACH the job. The forced command
mechanism allows us to do this. A monitor routine which

CMND-7

DIGITAL TOPS~-19 MONITOR INTERNALS
The Command Processor

wants to force a command to be performed for some line can
deposit a "forced command index™ into the line's LDB and set
the forced command bit, LDBCMF. The Command Processor will
not look at input buffer on a forced command. Instead, it
- will use the forced command index as a pointer into a table
of forced commands, TTFCOM. The SIXBIT command from TTFCOM
is then oprocessed exactly as a normal command would have
been.

Macro Flow

The macro level flow chart of the Command Processor is
given in the supplement. The first action taken is to
determine the line having a command to process. We do this
by checking the CMDMAP bits in COMDEV. Each time a line is
chosen, we save the line number in LINSAV and start scanning
at the next line on the next call. This guarantees that
every line has the same chance of getting its commands
processed. Before processing a second command for any line
we give every other line a chance.

Once the terminal line has been chosen the LDBCMP bit
is checked to determine if a forced command is pending; 1if
so, a sixbit command is extracted from TTFCOM otherwise up
to six characters are extracted from the terminal buffer,
skipping any leading blanks, and converted to sixbit.

Next we look up the command in COMTAB. If we find the
command, we pick up its entry from DISP and do the legality
checking. Upon successful completion of the legality
checking, we dispatch to the routine for this command.

Upon return from the command routine we do some
necessary housekeeping to account for the fact that the
command has been processed. Additional housekeeping is
necessary 1f a Jjob was initialized as a result of this
command. If appropriate, according to bits in DISP, we type
a carriage return line feed and a period. 1If the command
causes a program to run as the user job, we set bits to tell
the Scheduler that the job is runnable. Finally if the job
was put into the Command Wait Queue, and will not be
requeued as a result of the normal action of the command, we
mark it be requeued back to its former queue. We then exit
to the Control Routine in CLOCKI1.

Predispatch Bits

CMND-8

DIGITAL TOPS~-10 MONITOR INTERNALS
The Command Processor

A number of bits in DISP specify conditions to be
checked and functions to be performed before dispatching to
the command routine.

NOLOGIN specifies whether the job must be logged in
before the command 1is legal. Most commands have this bit
set to zero. One obvious exception is LOGIN.

NOJOBN specifies whether the command requires a Jjob
number . If the terminal on which the command was typed ‘is
not attached to a job, and this bit is not set, a job number
will be assigned to the terminal.

NORUN specifies whether the command may be performed
for a Jjob which has a program running. All commands which
result in setting up a routine to run as the user job will
have this bit set, 1If such a command is typed while the job
has a program running, there will be an error message, "Type
“C first."

INCCR indicates that the job must be in physical core
if it has any core allocated. This bit does not make the
command illegal for a job which has no core allocated. 1If a
command with this bit is given while the job is swapped out
(or being swapped) the command must be delayed, and the Jjob
will be put into the Command Wait Queue. In the Command
Wait Queue it will have very high priority to be swapped in.

The NOACT bit can cause the command to be delayed
similar to the INCOR bit. In this case however the job is
already in core, because there is active 1I/0, however we
would 1like the scheduler to 1ignore running the job, to
insure that more I/0 will not be started. To accomplish
this goal the CMWB is set and the job is eventually requeued
to the CMWQ. Keep in mind the use of the CMWB and CMWQ 1is
two fold; it says swap the job in if it is swapped out and
don't run me.

NOCORE specifies whether the command is legal for a job
with no virtual core allocated. This bit does not cause the
command to be delayed. The command is simply 1legal or
illegal according to whether the job has any core allocated.

NXONLY indicate that the command is illegal for a Jjob
running an execute only program. "Execute only" is a
specification that may be given to a disk file to allow

DIGITAL TOPS~19 MONITOR INTERNALS
The Command Processor

users to run it as a program, but not lcok at it. The
purpose of this specificaton 1is to allow proprietary
programs to be executed by users which do not have the
privilege of looking at them.

MBATCH specifies that the command is not legal from a
batch program. Batch programs are treated almost
identically to normal timesharing programs in most respects.
However some commands, such as DETACH, are not permitted.

CMND~12

DIGITAL . TOPS-19 MONITOR INTERNALS
The Command Processor

Postdispatch Bits

The remaining bits in DISP specify actions to be
performed upon return from the command routine.

NOINCK indicates that a job will not be initialized as
a result of this command. It is set initially in DISP for
certain commands. It is set in the accumulator in which the
DISP bits are held in case of an error in a command which
otherwise would have initialized a job.

NOCRLF and NOPER specify whether a carriage return,
line feed and a period should be typed upon completion of a
command. NOPER will be set for any command on which we are
not ready to accept another command immediately after
completion of the command routine. This includes all
commands which set up a monitor routine to run as the user
job. ‘

_ There are three bits which say to set the job runnable
under different conditions. TTYRNU says to make the job
runnable, and switch the terminal to user 1level. The RUN
command is an example which has this bit set. TTYRNC says
set the job runnable, but leave the terminal at <command
level. Both these bits will cause the job to be put into a
RUN queue by the Scheduler. TTYRNW says to make the job
runnable, but check if it was stopped in terminal I/0O Wait.
If so, it will be put back into the terminal I/0 wait gqueue.
CONT has this bit set. Not more than one of these three
bits will be set for any command. None of them will be set
for a command which does not make the job runnable.

Command routines which output to the wuser's terminal
simply deposit characters in the output buffer. They do not
start the terminal. One of the functions performed wupon
return from the command routine is to start the Teletype, in
case there are characters to be typed. The NOMESS bit
suppresses this action for commands which never type a
message. ‘

The Command Wait Requeue Bit, CMWRQ, has the funcion of
getting the Jjob ocut of the Command Wait Queue. The bit is
set in DISP for any command which might cause the job to be
put into the Command Wait Queue and which does not cause the
job to be requeued. The bit is cleared in the accumulator
if the Jjob did not actually have to be requeued to Command

CMND-11

DIGITAL TOPS~13 MONITOR INTERNALS
The Command Processor

Wait. Upon completion of the command routine, if this bit
is set 1in the accumulator, we mark the job to be put back
into its former queue.

The CUSTMR bit is reserved for installations to use for

their own purposes, and has no function in the standard
Monitor.

CMND-12

DIGITAL TOPS~-19 MONITOR INTERNALS

*2.

The Command Processor

EXERCISES

When is the Command Ready bit set in CMDMAP?

Where is the Command Ready bit cleared?

What determines whether the line will be at command

level or user 1level upon completion of the command
routine?

Suppose a user types a line while his program is still
running. What determines whether this line will be
taken as a command or as input for the program.

What determines how many characters a user must type
in order to give a valid abbreviation of a command?

CMND~13

DIGITAL TOPS~-13 MONITOR INTERNALS
The Command Processor

5. Why is R not taken as an abbreviation for RUN?

7. What happens if a forced command is set up for a line
which already has a command waiting to be processed.?

*8. When is a user assigned a job number by the Monitor?

9. PFor what reasons might a command have to be delayed?

*19. Why would a job be put into the Command Wait Queue?

CMND-14

DIGITAL TOPS~10 MONITCR INTERNALS

12.

13.

14. .

15,

The Command Processor

If a job is put into the Command Wait Queue how does
it get out and where does it go?

How do we avoid taking too much of any one Monitor
cycle for command processing?

After which commands does the Monitor not type a
period? Wwhy?

What does the Monitor do in response to an invalid
command?

)

Why can some commands be performed while the user has

a program running while others can not?

CMND~-15

DIGITAL TOPS~19 MONITOR INTERNALS
The Command Processor

This page is for notes

CMND-16

TOPS-1¢ MONITOR INTERNALS

The Scheduler

COURSE MAP

SCH-1

TOPS~10 MONITOR INTERNALS
The Scheduler

DIGITAL TOPS~-19 MONITOR INTERNALS
’ The Scheduler

This page is for notes

SCH~-ii

DIGITAL

TOPS~12 MONITOR INTERNALS
The Scheduler

THE SCHEDULER

INTRODUCTION

The last of
components is the
and runs a ijob
scarce system
explain how jobs
queues and

based

are
how they

based on schedul ing parameters.

SCH-1

placed in

monitor cycle

scheduler. which selects
unon the

—_- il

resources,

need for
This module will
different
selected to run

DIGITAL

TOPS~10 MONITOR INTERNALS
The Scheduler

RESOURCES

TOPS-19 Microfiche

TOPS-18 Monitor Internals Course Supplement

Course Materials - Chapter 5
Supplement - Graphics Section 5-All

II.

ITI.

Iv.
V.

VI.

VIII.

IX.

~ 603A Scheduler/Swapper PLM
Read Chapters 1,2,5
Skim Chapters 3,6
- 603A Scheduler/Swapper Flow Charts

LECTURE OUTLINE

Cverview

Data Base

A, JBTSTS
B. JBT?Q
Job States

A. Macro Defintions
B, Long vs Short
C. Sharable Resource Management

Determining the State of a Job
Job Regqueuing Overview
Job Regqueuing Details
A. QXFER

B. Special Cases

C. Regueuve Flow Charts
Queue Scanning

A, Scan Tables

B. QSCAN

C. Examples

Scheduler Flowcharts

Scheduler Performance

SCH-2

DIGITAL : TOPS~13 MONITOR INTERNALS
The Scheduler

A. Parameters
B. Defaults and Effects
1. ICPT
2. ORT
3. Fairness
4. Response

SCH-3

DIGITAL TOPS~-13 MONITOR INTERNALS
The Scheduler

This page is for notes

SCH=-4

DIGITAL TOPS~18 MONITOR INTERNALS
The Scheduler

The Scheduler

The Scheduler controls the allocation of system
resources among user jobs. Specifically, it selects the job
to run next, performs all requeuing, controls the allocation
of sharable rescurces and governs the priority of jobs to be
in core memory. In this chapter we look at the overall
philosophy of scheduling in the DECsystem~14 and at the

[1E S . 7

specific procedures by which this philosophy is implementad.

Queues

- Schedul ing in the DECsystem~l1d is based on the use of
queues and wait state codes. The queue which a job is in,
and its position within the queue, determine its relative
priority for the use of the CPU. The wait state code can be
used to indicate that a job 1is waiting for a particular
resource and will not be able to use the CPU until the
resource is available., Jobs which are most 1likely to be
able to use the CPU are in processor queues, called PQl and
PQ2. All jobs in PQl are given high response but for a very
short time. Jobs will enter into the back of PQl when they
come out of any long term wait such as terminal 1I/0 wait,
command wait, DAEMON wait, or just starting to run. Certain
jobs that have been sleeping or hibernating will also be
queued into PQl1 if they were sleeping for more than one
second. PQ2 is divided into an arbitrary number of ordered
classes (9~32), the number of classes is to be determined at
"MONGEN" time. These subclasses of PQ2 are scanned for job
selection according to their assigned quotas of CPU time.
Jobs will enter PQ2 from PQl when they have exceeded the
short amount of time that they are allowed in PQl. In some
systems there are also high priority processor queues, HPQ1,
HPQ2, etc. Users must have special privileges to get their
jobs into these gueues. They are normally not used except
for real time applications.

- Wait state codes are maintained for each Jjob in the
JBTSTS table and are useful in defining the notions of short
and long term states. Short term states apply to walt
satisfied, shareable resource wait, IO wait and short sleep.
There are no queues associated with short term states. Jobs
in short-term wait states will maintain their position in a
run queue but have their wait state code altered. Long term
states refer to the processor, command wait, job waiting for
DAEMON, teletype IO wait, sleep, event wait, stop and null

SCH-5

DIGITAL TOPS~-19 MONITOR INTERNALS
: The Scheduler

queues. Jobs going into long term states enter at the rear
of the respective gueue (never at the front).

Sharable Resources

There are a number of sharable resource wait states. A
sharable resource is some part of the system, either
hardware or software, which can be used by only one job at a
time but is shared among different jobs over relatively
short periods of time. For example, a DECtape controller is
a sharable resource. It must be shared by all jobs doing IO
on units which it controls. Only one of these jobs may have
I0 in ©progress at any given time. A line printer is not a
sharable resource. It is given to a single Jjob, and that
job has its exclusive use until the job chooses to give it
up.

Access to sharable resources 1is controlled by table
REQTAB. REQTAB has one entry for each sharable resource.
Each entry is referenced by its own label, which will be of
the £form ZXX'REQ. XX represents a two letter mnemonic for
the resource. Each REQTAB entry is initialized to ~l. The
ccde which uses the resource begins with an instruction
which increments and tests the appropriate entry. If the
value 1is now greater than zero, the job for which the code
was being executed must have its wait state changed to the
short term state associated with the sharable resource. The
job will become unblocked when it is being considered to run
by the scheduler and the resource is available. For some
resources such as monitor buffers or executive virtual
memory the REQTAB entry will be initialized to -n where n is
the number of monitor buffers or executive virtual memory
slots.

Ano ther table, AVALTB, contains entries
parallel to the REQTAB entries, which are used as flags to
the Scheduler that the corresponding resources are

available. The flag in AVALTB is set to a nonzero value at
the end of the code which uses the sharable resource. It is
set, however, only 1f there is a Jjob waiting for the
resource,

Sharable resource management 1is accomplished by two
routines in CLOCKl, XX'WAIT for resource allocation and
XX'FREE for resource deallocation (where XX 1s the two
letter mnemonic for the resource). These routines are

sCcH-8

DIGITAL . TOPS-lQ'MONiTOR INTERNALS
: The Scheduler

called from various modules within the monitor that use the
resources,

The code within CLOCKl1l for resource allocation does the
following:

XX'WAIT: -
housekeeping
AQSG XX'REQ ;is resource available
JRST SRAVAL ;yes, go use it
~go return EVM ;no, block job

if necessary
~start partial cycle via entry to WSCHD1

SCAVAL: housekeeping ;have resource
return to calling module

The code within CLOCK for resource deallocation does
the following:

XX'FREE: SOSL XX'REQ
SETCM XX'AVAL

return to calling module’

NOTE that REQTAB entries are incremented and tested
with a single instruction. If the resource is given up at
1nterrupt level, we do not have to worry about the 1nterrupt
occuring between incrementing and testing.

'NOTE also that in the case of magtape usage a job will

be placed in the long term event wait state and associated
event wait que ue if the mag tape controller is not availabhle,

ue ape contreolle

The basic purpose of the sharable resource mechanism is
to interlock a section of code so that only one job at a
time will be executing any part of it. Since we do not
allow rescheduling due to clock ticks during a UUO, we
normally do not ave to worry about another Jjob starting
through a monitor routine before a previous job finishes it.
The only case in which this is possible occurs when a Jjob
might go into 1I/0 wait within the routine. We expect any

job which has been given a sharable resource to quickly go
into I/0 wait.

SCH~7

DIGITAL TOPS~19 MOMITOR INTERNALS
The Scheduler

Requirements for sharable resources may be nested. A
job which owns one resource may have to gqueue for another.
This leads to the possibility of deadlock situation wherein
two Jjobs are each waiting for the resource which the other
owns. Neither job will run, and therefore neither will
release the resource which it owns. We overcome this
problem by a programming convention that any time there are
nested requirements for sharable resource they must be
nested in the same order. The order convention also
prevents more complicated deadlocks involving several jobs.

Core memory is a "sharable" resource for which there is
no one queue or wait state. Jobs in any processor gqueue may
be either in an in-core queue or an out-core Qqueue.
Maintaining separate 1in-core and out-core queues for each
processor queue reduces overhead in queue scanning for Jjob
selection. The scheduler wuses the in-core queues for job
selection while the swapper uses the out-core queue for swap
in job selection and the in-core queues for swap out Jjob
selection. The Swapper attempts to keep jobs in core which
are most 1likely to do productive work (i.e. make use of
system resources.) However swapping depends very much on the
sizes of jobs, as well as the queue in which they are
located.

SCH-8

DIGITAL TOPS~19 MONITOR INTERNALS
The Scheduler

CPU SCHEDULING

The scheduling of CPU time is based primarily on the
order indicated by the scheduler scan table, SSCAN. SSCAN
indicates that the in-core jobs in HPQ's should be scanned
first followed by in~-core PQl ijobs, in-core PQ2 jobs by
subclasses and finally in-core background batch jobs. If no
runnable jobs can be found the null job will run. There are
however, three additional factors 1influencing the normal
selection of jobs. These are the quantum run time, in core
protect time (ICPT) and subclass quotas. The gquantum run
time 1is an amount of run time assigned to a job when it
enters a run queue. It is used to limit the amount of time
a job maintains the same position in the processor queue and
therefore provides for a fairness consideration in CPU
schedul ing. Once it expires the Jjob is requeued to the
bottom of PQ2. The ICPT in core protect time provides a
mechanism wherein the swapper is prevented from immediately
swapping out a Jjob which has been Jjust swapped in.
Additionally it ensures that a job gets its fair share of
the CPU when it is in core. A Jjob's 1ICPT value will be
decremented if it is in the EWQ or SLPQ, or was scanned to
run but rejected (e.qg. because it was waiting for a
sharable resource). Upon expiration of ICPT a job will be
requeued to the back of PQZ.

The subclass quota is a percentage of a scheduling
interval which 1is "allocated"™ to a subclass. During each
schedul ing interval the scheduler will consider the highest
class. If no runnable Jjobs are found in this class, the
next class in the ordering is scanned.

Some Details

The felleowing p s describe some details o¢on the
mechanics of queue scanning and queue transfers. They are
not essential parts of the scheduler philosophy but they do
illustrate the table~driven nature of the scheduler and an
understanding of these sections will make it easier to

understand the detailed flow charts that follow.

ow

QUEUE SCANNING. There is a generalized routine, called
QSCAN, wnich 1s used whenever we want to scan through one or
more of the job queues. To use QSCAN, the caller must

supply a scan table, which specifies which queues are to be
scanned and thne direction in which each is to be scanned.

SCH-9

DIGITAL TOPS~13 MONITOR INTERNALS
The Scheduler

A scan table consists of an arbitrary number of words,
each with the following format:

T e o e e e s e e s e e e e e e +
1 Queue # ! Scan Code !

o - - ——— o e e e e b

Queue % is the negative queue number, and is always
written as a label. (e.g. =~ PQ2)

The scan code has 18 possible values, the following are
some of the meanings:

QFOR Scan the entire queue forward

QFOR1 Look at the first entry only

OBAK Scan the entire queue backward

QBAK1 Scan backward, but omit the first entry in
the queue

SQFOR Scan subqueues forware according to SOSCAN

A zero word terminates the table. (See Table 3-5 in
the scheduler PLM, Monitor Internals Supplement for complete
list)

To use QSCAN, a routine puts the scan table address
into an accumulator, and does a JSP to QSCAN. QSCAN will
give a skip return, with the first Jjob number in an
accumul ator. QSCAN also supplies the address to which the
caller may return to get the next job number. Each time the
caller returns to that address (with JRST), QSCAN will
return to the second word beyond the original call supplying
the next Jjob number. OSCAN will automatically step from
entry to entry in the scan table, and will give a no skip
return if the table is exhausted.

QSCAN is used by the Scheduler in choosing the Jjob to
run next, It is also used by the Swapper in selecting jobs
to swap in and out.

QUEUE Transfers

All transfers of jobs from one gqueue to another are
performed by the routine QXFER in SCHEDl. Transfers may be
either to the beginning or to the end of a specified
destination queue, The destination queue may be specified
in one of three ways. On a fixed transfer, a queue number

SCH~10

DIGITAL TOPS-10 MONITOR INTERNALS
The Scheduler

is given directly. On a link transfer the destination queue
is specified as a function of the job's current queue. And
on a job size transfer, the destination queue is determined
by the size of the job. The routine requesting a queue
transfer can also request that the job's quantum run time be
reset, This is done when the job is being requeued intoc a
run queue,

In regquesting a queue transfer, the calling program
specifies the job number, its current queue number (on link
transfers) and the address of a Transfer Table, The
Transfer Table specifies how the job should be requested. A
Transfer Table consists of two words, in the following
format:

+- -+
! PLACE ! FUNC TION !
- _— -~ !
! QUANT ! DEST !
P - ————t

PLACE will be negative for a transfer to the end of a
queue, for a transfer to the geginning of a queue it will be
zero.

FUNCTION will have one of three values, QFIX, QLINK or
QJSIZ, corresponding to the manner in which the destination
queue is to be determined. These are actually 1labels for
the entry points of the routines whthin OQXFER which
determine the destination queue. However, they might as
well be thought of as codes specifying the type of transfer.

On fixed destinaticn transfers, QUANT and DEST are the
actual wvalue of the new quantum run time and destination
queue number. A negative value of QUANT indicates that the
quantum run time is not to be changed. DEST will always be
negative. :

On link and job size transfers, QUANT and DEST are
addresses of tables to be used to determine the destination
queue and quantum run time.

Let us examine actions taken by the Queue Transfer
routine on a fixed destination transfer. The calling
routine sets up the job number in AC J and the address of a
Transfer Table in AC U, and does a PUSHJ to QXFER.

SCH-11

DIGITAL TOPS~19 MONITOR INTERNALS
The Scheduler

At QXFER AC R is loaded from the second word of - the
transfer table. Then there is a jump to the address in the
right half of the first word. On a fixed destination
transfer, the jump will be to QFIX.

At QFIX we check if the job is being requeued to a Run
Queue and has successfully requested a High Priority Queue
(HPQ). If so, the priority level 1is obtained from table
JBTRTD. The corresponding HPQ number and quantum run time
are obtained from tables QTTAB and QQSTAB.

Next, at QFIXI, the job is removed from its current
queue, This is done by giving its "following job" entry to
its preceding job, and its "preceding job"™ entry to its
following Jjob. Note that this procedure works correctly
when the job is first or last in its queue, or is the only
job in its queue.

Example: Deletion of Job 4 from its queue
+- - - +
~4 ! ! !
! ~——-1
-3 1 ! !
1- - - —————————
-2 ! 7 ! 2 !
i= ——— - —_— -1
-1 ! !
e - -1
JBTCQ ! ! !
! - !
1 ! ! !
l- —— - !
2 1 -2 ! 4 !
1=~ e e e e e e !
3 1 ! !
1= ~—— - e e o e e e !
4 1 2 ! 7 !
| S S Py —— !
5 1 ! !
| e e e e e e e e e e o e e 1
5 !]
| ot o e i e et e e e o o e o o e e 1
7 1 4 ! -2 !
e T +

SCH~12

DIGITAL TOPS~17 MONITOR INTERNALS
The Scheduler

Next the job will be inserted into the destination
queue, The job will be inserted following either the first
link (i.e., the queue header) or the last link - depend ing
on the value of the "PLACE" entry in the Transfer Table.

Py S

will be set to point to the entry which this entry will
follow.

AC J points to the entry which is to be inserted. AC R

AC R initially points to the queue header, which is
correct if the insertion is to be at the beginning of the
queue. If the insertion is to be at the end of the queue,
AC R is backed up one entry, to point at the last entry.
This is done with the instruction:

HLR R, JIBTCQ(R)

AC Tl is loaded with the index of the entry in front of
which the insertion will be made. This is the value in the
RH of therentry to which AC R now peints.

Now the new linkages are set up with four -easy
instructions:

HRRM J,JBTCQ (R) New "preceding" entry gets {(J)
as following entry

HRIM J,JBTCQ (T1l) New "Following" entry gets (J)
as preceding entry

HRRM T1,JBTCQ (J) This job's entry gets (T1l) as
following entry

HRIM R,JBTCQ (J) This job's entry gets (R) as
preceding entry

SCH-13

DIGITAL TOPS~10 MONITOR INTERNALS
The Scheduler

Example: 1Insert Job 1 at end of queue 1:

T

o — - — o 2

JBTCQ

[
[}
i

G- 4 gus G5 e $7C fuw G Gum VM ey O g D gs O gy b s
A
um fam hes Bem S Gem gmm b O m 4P g 0 e e G S e em o

R initially contains ~1, the index of the queue Iinto
which the insertion is to be made.

Since the insertion is to be at the end of the queue,.
AC R is backed up one entry, by loading it from the LH of
the entry it points to. Then Tl is loaded with the entry to
which R points. The AC's are now set up as follows, all
values are relative to JBTCQ:

J points to the entry to be inserted (+1)

R points to the entry after which it will be
inserted (+5)

Tl points to the entry before which it will be
inserted (~1)

To insert the new job,
(J) 1is placed into the RH of JBTCQ (R) and LH of
JBTCQ (T1)

(Tl) RH is placed into the RH of JBTCQ (J).,
(R) RH is placed into the LH of JBTCQ (J).

SCH-14

DIGITAL TOPS~10 MONITOR INTERNALS
The Scheduler

Final result:

e - —————— ~+

-3 1! ! !
|- —— e e e e e e !

-2 ! ! !
1- - - ~1

-1 1! 1 ! 3 !
! - — - !
JBTCQ ! ! !
e m - e . o o s s . e e S . S . s P 2o 7t P S !

1 5 : -1 !
§ e e e e e e e e e e e e e e e 1

2 ! ! !
1= —————— !

3 1 -1 ! 5 !
1- - m———————————— !

4 1 ! !
- - ————————1

5 1 3 ! 1 !
] e e e e e e e e e e e e e o e !

5 ! ! !
+ —————————————— - ———————— +

After the job has been inserted into its new queue, if
QUANT = @, there is a jump to the routine exit.

Otherwise, QUANT is inserted into the Process Data
Block for Job (J) - 1i.e., the job's guantum run time is
reset. Also when QUANT = @, the Wait State Code in that
word is set to @, we then exit with a POPJ.

On the OQLINK and QJSIZ transfers, we must first
ermine the destinaticn gueue and, possibly, quantum run
me. This is done by a simple table lookup. The Jjob's
current queue number, or its size, is found in the table to
which DEST points. The destination queue number is picked
up from a corresponding entry in the table. If QUANT is
given it is also a table address, and the new quantum run
time is picked up from a corresponding entry in that table.
Once the destination queue number and quantum run time have
been determined, QLINK and QJIZ continue through the same
procedure executed for QFIX.

SCH~15

DIGITAL TOPS-19 MONITOR INTERNALS
The Scheduler

The QFIX transfer is wused for all queue transfers
except for requeuing done as a result of quantum runtime
expiration; 1in this case the QLINK Function is used. All
requeuing is always done to the back of the destination
queue. Transfers involving PQ2 will result in an additional
transfer in JBTCSQ.

Mechanics of Regueuin Jobs are requeued according to
events. Each time a Jjob 1is to be requeued a specific
transfer table is used. Transfer tables are not set up or
modified dynamically. Rather, for each event, the requeuing
algorithm will produce the address of a specific transfer
table. This is done by means of several data structures and
a number of checks for special cases.

The most general mechanism for requeuing jobs uses the
wait state code (WSC) in the job's JBTSTS entry. On the
next clock tick the Scheduler is called. It picks up the
job's WSC and wuses: it as - a pointer into QBITS. QBITS
contains a dispatch address as well as the transfer table
address, 1if there 1is one. Contrcl flows to the dispsatch
address and if necessary routine QXFER 1is called for an
actual queue transfer as described by the transfer table.
The WSC indicates the event, and the QBITS entry specifies
the response. QBITS is used in putting jobs into I/0 wait
and sharable resource wait, removing jobs from I/0 wait, and
in requeuing Jjobs into a run queue after they have been
Stopped.

There are a number of special conditions which the
Scheduler checks for individually, and which <call for
specific transfer tables. For example, if the job's RUN bit
is not set, the 3job will be put into the Stop Queue,
regardless of its WSC. 1If the Command Wait bit is set, it
will be put into the Command Wait Queue. The use of the
special bits allows the WSC to indicate a previous event.
Since the WSC is unchanged the job can be put back into its
previous queue after going into the Stop Queue or Command
Wait Queue. v

Another bit used for this purpese is the JDC bit, which
is used to put the job into a queue to wait for a function
to be performed by DAEMON. The DAEMON is a system program
which runs as a user job, and performs various functions
required by other user Jjobs. It 1is, in effect, a
non-resident portion of the Monitor. ©One function performed

SCH-16

DIGITAL . TOPS-10 MONITOR INTERNALS
The Scheduler

by the DAEMON is the taking or core dumps of user programs.

DETAILED FLOWS

We are now ready to look at the scheduler in detail. A
complete £flow chart and program logic manual (PLM) is
included in the supplement.

SCH-17

DIGITAL TOPS-10 MONITOR INTERNALS
The Scheduler

This page is for notes

SCH-18

DIGITAL . TOPS-19 MONITOR INTERNALS

*l.

*4.

. The Scheduler
EXERCISES
Why might a job be unrunnable even though in one of the

processor gueues? List 1line numbers to support your
answer.

What does the Scheduler do with the job number which it
chooses to run next?

What is the function of a job's wait state code? Where
can the wait state code for a given job be found?

What determines the order 1in which the scheduler
considers jobs for the possibility of running next?

What is the meaning of non zero entry in AVALTB?

SCH-19

DIGITAL TOPS-19 MONITOR INTERNALS

*6‘

The Scheduler

When is a clock tick <considered "lost™ rather than
simply idle?

If there are several Jjobs waiting for a sharable
resource which has become available, which job gets it?

When is a job's minimal core utilization cleared by the
requeuing routine? Why?

When is a job's run bit cleared? Where is the run bit
located?

SCH-29

DIGITAL TOPS-10 MONITOR INTERNALS
The Scheduler

18. Answer the following questions for each of the
situations described below.
i. Describe the events that could cause this
situation.
ii. What transfer table or dispatch address will
be used to requeue the job?
iii, What will the wait state code be after the
requeuing?

Current Run JRQ CMWB Wait State

" Question Job bit bit bit Code

+ - -
i a I yes 1 1 t @ ' @ 1 I0WQ

! b ! yves ' '@ t+ @6 Vv @ ! RNQ

! c ! no [T A | WSQ

! d ! no ! 7] P01 11 i RNQ

! e 1 no fF1 1 1t g RNQ

+

Assume the normal values for all conditions not
specified.

In particular, assume that the JDC and JS.DEP bits are
always off.

SCH-21

DIGITAL TOPS-13 MONITOR INTERNALS
The Scheduler

11. Why is the MCU reset every time it expires?

SCH-22

DIGITAL TOPS-10 MONITOR INTERNALS
The Scheduler

12, sShow the changes which would be made to the table 1if
QXFER were called with the following transfer table
specified.

+ - -+

| 4006066 ! QFIX |

| s —— —— 1

! -1 ! -3 !

+ _— _—

AC 3/ 1

-3 1 3 15 !
- ;
-2 1 -2 1o-2 !
- !
-1 1 2 ro4 !
! :
JBCTQ ! @ LB !
| . -
1 1 4 16 !
- !
2 1 6 1o-1 :
- -1
3 1 5 1 -3 !
- !
4 1 -1 L1 !
- -— !
5 1 -3 13 !
! !
6 1 1 L2 !
+ +

13. What is the effect of setting the JS.008 bit?

SCH-23

DIGITAL TOPS-19 MONITOR INTERNALS
The Scheduler

This page is for notes

sCH-24

TOPS-10 MONITOR INTERNALS

The Swapper

DIGITAL TOPS-1¢ MONITOR INTERNALS
The Swapper

COURSE MAP

SWP-1

DIGITAL TOPS-19 MONITOR INTERNALS
The Swapper

~This page is for notes

SWP-1ii

DIGITAL TOPS-12 MONITOR INTERNALS
The Swapper

THE SWAPPER

INTRODUCTION
The swapper allows TOPS-18 timesharing
to Tun efficiently by moving Jjobs of
variable size in and out of core. This

process is made difficult because it must
handle not only swap selection, disk 1I/0,
and swapping area maintenance but also take
into account scheduler decisions arnd high
segments.

SWp-1

DIGITAL

TOPS-10 MONITOR INTERNALS
The Swapper

RESOURCES

TOPS-18 Microfiche
TOPS-10 Monitor Internals Course Supplement

Course Materials - Chapter 6
Supplement - Graphics Section 6
- 6@3A Scheduler/Swapper PLM
Read Chapter 4
- 603A Scheduler/Swapper Flow Charts

LECTURE OUTLINE

I. Introduction
A. VM vs. Non VM
B. Clock Level vs. Interrupt Level
C. Swap Time vs. Monitor Cycle Time
D. Swapping IO vs. Paging IO

II. Data Base

III. Major Algorithms
A. Criteria for Swap-In
B. Criteria for Swap-Out
C. Migration
D. Nofit
E. High Segs

IV. Disk Swapping Space Management

V. Flow Charts - Cases

DIGITAL TOPS-19 MONITOR INTERNALS
The Swapper

THE SWAPPER

Introduction

Swapping allows the timesharing system to present the
appearance of having more core memory than it actually has.
The. core images of some subset of the user jobs are written
in disk or drum memory and read back into core memory as
required, Ideally, no user can tell whether his Job Iis
swapped in or out. Whether or mnot this artifice will
succeed depends on many factors, including the number of
users, their interaction rates, their core requirements,; the
speed of the swapping device, and the amount of physical
core memory. In this chapter we first discuss the overall
philosophy of swapping on the DECsystem-18 and then the
procedures by which this philosophy 1is implemented. We
shall see that the procedures are general enough to allow a
great deal of flexibility in policy.

Swapping Philosophy

Under light loading all active jobs will be in physical
core, However, 1if physical core is needed, a job may be
swapped out when the program has been stopped and requires a
response from the user. Each time the user requests another
function there will be a short delay while the core image is
swapped in, and the program will run without being swapped
out again until another user response is needed. Since the
time to swap in a job is normally very short compared to
human response times the user will probably notice no delay.
Under these conditions, swapping can be quite successful.

Under heavier loading, the system will be unable to.
keep all active Jjobs 1in physical core. 1In this mode of
operation, swapping gives the system the appearance of a
larger, but correspondingly slower, system. The swapping
algorithm becomes much more complex, because of the
possibility of jobs which are in core being blocked by a job
which is swapped out. System overhead may spiral due to the
requirement for swapping a Jjob many times for a single
interaction. The effective size of core memory 1is reduced
because an active Jjob which 1is being swapped does not
contribute to overall system efficiency. It is not
available to run, and cannot have an I/0 in progress.

SWP-3

DIGITAL TOPS-10 MONITOR INTERNALS
The Swapper

However, the physical core memory which it occupies is not
available wuntil the swapping transfer is complete. The
total system throughput would probably be greatest 1if
runnable Jjobs were never swapped out. However, we must
balance the total throughput consideration against the value
of dividing the system resources fairly among all the users.
We would prefer the system to appearing twice as slow to all
users than four times as slow to half the users.

As swapping is implemented on the DECsystem-1¢, we do
not directly distinguish between the two modes of swapping
discussed above. Swapping is based on the job queues, and
the queue transfers are set up to give the desired swapping
characteristics. We define three basic levels of priority,
and normally give jobs at each level complete priority over
jobs at the next level. Some exceptions are made. to this
policy in the interest of fairness. (Real time jobs also
get special treatment which will not be considered here.)

Highest priority is given to jobs which must be in core
in order for a command to be processed. Users expect
instantaneous response to commands, but are normally more
tolerant of delay when a program must be run. Actually, the
class of commands which regquire the job to be in core is so
small that the effect of this top priority level on the
overall swapping behavior of the system is probably
insignificant.

Next priority is given to jobs which, in some way, are
considered interactive. This class includes jobs doing I/0,
all jobs which own shareable resources or are waiting for
them, and all Jjobs which have had a recent user response.
We assume that these jobs are the ones which are making the
most use of system resources, or whose users will be less
tolerant of delay. We hope under normal operating
conditions to keep at least the jobs in these top two levels
in core.

The lowest priority for core memory is given to CPU
bound Jjobs. We assume that if a job is CPU bound, it is
doing a considerable amount of processing, and that the user
does not expect immediate response. Also these jobs would
not contribute to:the total system I/0 throughput. Because
they are not using system resources other than the CPU and
core, there is no advantage to having more than one of these
jobs in core at a time,

DIGITAL TOPS-10 MONITOR INTERNALS
The Swapper

As we shall see, the actual implementation is somewhat
more complicated than that discussed 1in the preceeding
paragraphs. It is important, however, to understand the
overall philosophy on which the implementation is based. We
shall then consider the details as we reach them.

Mechanics of Swapping - - Data Structures

Two Scan tables; ISCAN and OSCAN, specify the relative
priorities of Jjobs for being in core as a function of the
queue positions. The entries. in these tables are fixed in
any specific Monitor, although they may be easily changed to
implement a change in swapping policy. 1In addition to ISCAN
and OSCAN, all the tables which control the requeuing of
jobs are also important to the swapping process. The
contents of ISCAN and OSCAN, as well as the requeuing tables
can be obtained from module COMMON.

The STOP Queue and SLEEP Queue will be the first to be
swapped out and will not be considered for swapping in. The
Command Wait Queue will have top priority for being swapped
in and will be followed by PQl. In general, queues which
are in ISCAN will be listed in the opposite order to OSCAN.
All queues (except possibly the IO Wait Queues) will be in
OSCAN. ISCAN will specify only jobs which are runnable or
soon will be runnable.

After a job is swapped in, there is an interval during
which it is protected from being swapped out. This
interval, called the in~core protect time acts by specifying
the time when the job is again eligible to be swapped out.
That time, in jiffies, is contained 1in the Process Data
Block for each job. When a job is swapped in, the ICPT is
computed according to the basic formula: (the actual
formula 1includes some scaling factors to account for the
units actually being used)

(PROTZ) + [(PROT) * (Size in K)]

PROT and PROT@ are constants computed during system
initialization according to the speed of the swapping
device. The purpose of these values is to make the ICPT
interval dependent on the time required to swap the job.
Typical values are 3 seconds for PROTS and @ seconds PROT.
This default ICPT of 3 seconds applies to all job,

SWP-5

DIGITAL TOPS-10 MONITOR INTERNALS
The Swapper

regardless of size. PROT may be modified via the SCDSET
program to make the ICPT a function of size.

Several other items are important to the Swapper. The
table JBTSWP tells the size of each swapped out core image
and the amount of core required when the Jjob 1is to be
swapped back in. (Note that these may not be the same.) The
table PAGTAB specifies which pages of core are free and
which are in use, CORTAL tells how many pages are
available, either as free pages or pages occupied by dormant
or idle segments.* BIGHOL tells the number of pages
available in core. The table JBTADR gives the size and
location of the job data area for each segment which has any
physical core assignment. A job's JBTADR entry is still set
up while it is being swapped either direction. The physical
core assignment must be made before we can begin to swap a
job in and cannot be canceled until it is completely swapped
out.

The Swapper Cycle

The Swapper operates on an overall cycle which it
repeats as often as possible. This cycle typically will
require many jiffies to complete. Hence, the Swapper must
operate as an asyncronous process under the control of the
Monitor, rather than as a simple closed subroutine. Each
clock tick the Scheduler dispatches to the Swapper's single
entry point. The swapper proceeds through as much of its
cycle as it can, and then returns to the Scheduler. A
number of flags are set up to allow the Swapper to
"remember"” actions completed on earlier calls. Whenever the
Swapper reaches a point at which it cannot immediately
continue, it exits, and will attempt to continue on the next
clock tick. '

Although we know that the entire Swapper cycle normally
requires many clock ticks, we shall initially look at the
cycle as a continuous process. Then we shall 1look at a
detailed flow chart which includes all the exit points. 1In
both cases, we shall restrict our attention to the swapping
of Jjobs consisting only of low segments. The general
approach to swapping high segments and some of the special
*An idle segment 1is a shareable high segment whose low
segments are all swapped out. A dormant segment is a
shareable high segment which no job is using.

DIGITAL TOPS-13 MONITOR INTERNALS
The Swapper

problems involved, will be discussed in the final section of
this chapter.

A macro flow chart of the entire Swapper cycle appears
further 1into this chapter. The first step cf the cycle is
to choose the job to swap in. The job number will be stored
in FIT, and remembered from this peoint on. All the
following actions are directed toward the goal of getting
this job into core. If there is not a job which needs to be
swapped in, we check for jobs which must be swapped out in
order to expand. If there is such a job, we proceed to swap
it out. 1If there is not, the Swapper has nothing to do.

Once a job has been <chosen to be swapped in, all
further actions have the objective of creating enough room
for the size specified by its incore image size in JBTSWP.
The first step 1s to ensure that the total amount of
available core exceeds the amount required. If CORTAL 1is
less than the amount required, we choose a job to swap out,
and force it out of core. This is a somewhat involved task
and will be described in detail later. 1If CORTAL is greater
than or equal to the amount of core required, then it is
possible to make the required assignment without swapping
out any more jobs.

If there are enough free pages, core will be assigned.
If not, dormant and idle segments will be deleted until the
necessary pages are obtained. The core assignment routine
is called to assign physical core to the job chosen to be
swapped in. Then an I/0 regquest for disk service 1is setup
to read in the core image. When the transfer has been
completed, the necessary housekeeping is performed and the
Swapper cycle begins again.

Choosing the Job to Swap Out

The relative priorities of jobs for being swapped out
are specified by the scan table 0SCAN. When we must swap
out a job we scan the 1in-core gqueues according to OSCAN
looking for jobs eligible to be swapped. We reject any job
whose in-core protect time has not expired or which |is
locked in core. We keep a tally of the amount of core which
we have checked. When this tally reaches the amount we
need, we stop scanning and choose the first of the jobs
which we found available as the one to swap. Note that |if

DIGITAL TOPS-10 MONITOR INTERNALS
The Swapper

we swapped the jobs strictly according to priority, all of
the jobs we examined would have to be swapped.

Example: Suppose we need 16K and the jobs 1in the order
specified OSCAN are set up as follows:

Job Physical Core
14 2
20 LOCKED
6 6
12 4
19 12

We would stop scanning when we reached Job 12, and Job 14
would be <chosen to be swapped out. If the queues were
unchanged after we completed swapping Job 14, Job 6 would be
chosen on the next scan.

Swapping I/0

All 1/0 for the Swapper 1is performed by the Disk
Service Routine according to requests set up by the Swapper.
Since we have not yet studied the Disk Service in detail,
let us assume that we have a black box routine which will
write specified physical disk blocks from specified core
areas. The Swapper sets up and submits a request for
transfers. The Disk Interrupt Routine clears a flag, SQREQ,
each time a transfer has been completed.

Swapping space is reserved on a per unit basis when the
disk storage facility is initialized. This space is marked
as in use so far as the rest of the system 1is concerned.
The Swapper maintains a Storage Allocation Table (SAT) for
each unit on which it has space. It uses one bit in a SAT
to represent 1K, or 1824 words of disk space. A SAT bit is
set when a block is used for swapping ocut a job and cleared
when the job is swapped in.

Swapping space may be reserved on any or all disk-like
units--drum, fixed-head disks, or disk pack. Since the
actual I/0 is handled by the disk service, the Swapper logic
is independent of the type of unit being used for swapping.
Each unit having swapping space is assigned a <class for

SWP-8

DIGITAL TOPS-19 MONITOR INTERNALS
The Swapper

swapping at the time the space 1is reserved. The class
indicates the priority of the device for swapping, and
normally the fastest device is assigned the lowest numbered
class, When the Swapper needs to find space to write out a
segment, it will start with the lowest class. It will scan
through its SAT for each unit in the lowest class, and if it
finds a 1large enough hole, it will use the corresponding
area for the transfer. If it cannot £find a large enough
single hole, it will search for sewveral holes which
altogether have the required amount of space. If it finds
enough space, it will write the core 1image as several
fragments within that class. If there is not enough space
altogether within a class, it will try the next class. If
no single class has enough space, it will fragment the image
across classes.

Shareable segments are normally left -on the swapping
device 1if there is a copy in core or even if the segment is
dormant. This prevents our having to write the same segment
out to the swapping device at a later time, If there is not
enough free swapping space, we will delete one of these
unnecessary segments, and rewrite it when we have to.
However, there is ncrmally nc. reason not to have enocugh
swapping space for all dormant segments.

Examples

Before going into further details of the Swapper, let
us look at some examples of how jobs will be swapped under
some highly simplified loading conditions. In the examples
we shall use specific values for CPU time requirements, but
average or "expected" values for delays. The average delay
time will more closely approximate the effect of the delay
when actual CPU times vary randomly about the specified
average value. Also, 1in these examples, we shall not
consider the additional complications introduced by user
I/0, competition for shareable resources, or any transient
conditions. It is quite possible that in actual operations,
these might have significant, or even dominant effects.

Example 1. Small, Interactive Jobs

SWP-9

DIGITAL ‘ TOPS-17 MONITOR INTERNALS
The Swapper

A small, single disk pack system runs 20 Jobs. The
available wuser <core 1is 1g6K. Each Jjob runs in 19X and
requires an average of one-tenth second (l@8ms) of CPU time
for each interaction. Each job does only a small amont of
I/0 to disk and TTY. Hence, swapping and CPU time are the

primary considerations in computing expected performance.

Normally, the Swapper will choose a job to swap in on
the next clock tick after a user inquiry. Thus, there will
be an-average 8 ms (1/2 clock tick) delay between the user
action and the Swapper initial actions. We expect to have
core filled with inactive jobs. Hence, we will have to swap
a job out to make room for the job to be swapped in, but
there will be swappable jobs available. We shall assume
that the Jjob to be swapped out has no I/0 in progress and
that the Swapper can immediately submit its output regquest
to the Disk Service. Assuming that the disk access arms are
randomly positioned, and that the swapping space is in the
center of the pack, the seek will take an average of 28ms
(4027 cylinders). The transfer can be initiated immediately
upon completion of the sesek. There will be a 8ms (1/2
rotation) average latency, or rotational delay time,
followed by a 60ms transfer (5.6 micro-sec per word X18K).
The Swapper will not be called again until the next <clock
tick, giving an average 8 ms delay. On the next call the
Swapper can start the input transfer. We assume another
28ms seek for this transfer. There will be another 8ms
latency, 60ms transfer, and 8 ms delay until housekeeping
for swapping in the active job. The job will then run for .5
consecutive clock cycles (190ms) . Assuming ideal
conditions, where the wuser requests are regularly spaced,
with one arriving every 1/2 second, each user would get his
job completed within 288ms. This would appear to be
instantanecus response. There will then be a 212ms
(5906-288) period while the system is idle and waiting for
the next user regquest.

In the worst case, where all 20 users made a response
at the same time, the last request f£inished would require
5.7 seconds (if we assume the same sequence of actions for
swapping each job).

Operating as described, the system would repeat a cycle
which takes an average of 568 ms. Of this 560 ms, 196 ms of
CPU time would be used for the user job. Of the Null job
time, 188ms would be counted as lost time and 212ms as idle

DIGITAL TOPS-19 MONITOR INTERNALS
The Swapper

time. Hence, the system would show 28% user program CPU
time plus 38% lost plus 42% idle.

We might ask how many such Jjobs the . system could
support. At saturation, the running of one job would be
completely overlapped by the swapping of another. Assuming
the same sequence of actions for swapping, we could have a
maximum of one inquiry every 188ms, or 53 users. (Note,
however, that any disk 1I/0 done by user programs would
increase swapping time, and decrease the maximum request
rate accordingly.)

Example 2., Large, CPU Bound Jobs

Suppose ten users start compute bound Jjobs which
require 49K each and 18 seconds CPU time. The system has
50K available user core. Hence one Jjob will be 1in core
while the other nine are swapped out, therefore the jobs
will be processed and swapped on a round robin basis.
Assume that all jobs circulate entirely within PQ2 and the
ICPT in each job is greater than 6 seconds.

The scheduler will chocose the 3job in <core to run.
Since this Jjob 1is the only Jjob 1in core it is the only
runnable job hence it will be run in the PQ2 quantum run
time, 6 Jjiffies, and then requeed to the back of PQ2.
During this time the swapper will have choosen a swapped out
PQ2 Jjob to swap in but found no eligible jobs, i.e. with
expiled MCU, to swap out. Since the MCU is assured to be
greater than 6 seconds this NOFIT condition will persist
until the swapper becomes frustrated. During this time the
job in core will be run continuously regardless of position
within PQ2, After the Frustration timer has goone off the
job in core will be eligible for swap out after which the
original job choosen for swap in will be brought in.

In this example a RPZ6 disk will be used for swapping.
There 1is an average 27ms seek, 9ms latency and 224ms
transfer time. There will be an average 8ms delay until the
next clock tic. The save sequence will occur on the input
transfer. Hence changing jobs requires a total of 536 msec
for swapping, both out and in.

SWp-11

DIGITAL . TOPS-12 MONITOR INTERNALS
' The Swapper

The system will report a cycle in which a job gets 6
seconds CPU time and then 536 msec are spent swapping. Each
job will run for one such cycle then be swapped at for nine
cycles.

Therefore each job will run just once, accumulating &
seconds CPU time every 65.36 secs elapsed time. " Three such
passes will be required to accumulate 18 seconds CPU time
for each job with all jobs completing after 196.08 seconds.
During this time the system will have .536 seconds lost out
of 6.536 seconds elapsed or about 8.2% lost time.

Detailed Flow Chart

A detailed flow chart of the Swapper appears in the
supplement. This flow <chart indicates the various exits
from the Swapper and the decisions necessary to continue the
process on the next call. 1In studying the flow charts you
must keep in mind that the Swapper 1is an asynchronous
process relative to the overall Monitor cycle. 1In between
calls to the Swapper, life goes on in the rest of the
system. New jobs are created, and existing jobs are logged
off. Core assignments are changed. Between calls to the
Swapper, core might be either taken or freed as a result of
commands and UUO's. The hole which we were preparing over
the 1last eighteen <clock ticks could suddenly disappear.
Hence, the Swapper must recheck the core situation on each
call.

Note that a job cannot be swapped while it has active
I/0. Once a job is chosen to be swapped out, the Swapper
can go no further until the job's I/0 has stopped. It does
set bits to prevent the job from being scheduled to run and
thereby start more I/0.

In the actual flow, we first of all attempt to
determine where we 1left off on the last call. There are
several words which are used as flags in this process. FIT
contains the number of the job chosen to be swapped in. 1If
a job has been chosen to be swapped out, its number is in
FORCE. 1If we are waiting to shuffle a job, its number is in
CHKSHF. 1If there is a swapping transfer pending, SQREQ will
be nonzero. And on the next call after completion of the
transfer, the number of the job Jjust swapped will :‘be in
FINISH. In determining where we are within the cycle, we

SWpP-12

DIGITAL TOPS—-19 MONITOR INTERNALS
The Swapper

start with the innermost 1levels of the overall logical
cycle. We <check flags, working our way back toward the
beginnings of the cycle until we determine what needs to be
done next.

Notes which follow the flow chart are referenced by the
numbers within parentheses inside the blocks.

SWP-13

DIGITAL TOPS-~10 MONITOR INTERNALS
: The Swapper

SWAPPER DATA BASE

SPRCNT contains the number of jobs that have been selected
for swapping.

SWPCNT contains the number of Jjobs that finished data
transmission, and are waiting for final cleanup at the
scheduler level.

SQREQ contains the number of data transmissions awaiting the
swapper. This 1is the number of fragments plus the
number of page I/0 requests.

PAGTAB is a table containing one word per page of physical
memory. Whereas it once had many uses, it is now used
only as a memory management tool. It contains a
linked 1list of ©pages for every segment currently in
core, not necessarily in the same order as they are in
the segment address space. It also contains a linked
list of pages not in use.

MEMTAB is also one word per page of core. It is used during
swap requests to keep track of where pages end up on
the swapping area and which page to transmit next.
The format is:

Bit @ - on for the last page in a fragment

Bits 5-17 next virtual page in this fragment

Bits 21-23 unit number in active swapping list
Bits 24-35 - page number on unit

Note: Bits 21-35 are the format of all pointers to
the swapping space.

JBTSWP is used the same way it used to be while allocating
swapping space. After allocation, an entry for a
segment has the following format:

Bit @ - on indicates a fragmented segment

Bits 1-17 - swapping pointer (as in the RH of
MEMTAB) if not fragmented, the
address of the fragment table if
fragmented) .

Bits 27-35 - segment size in pages

SWwp-14

DIGITAL TOPS-18 MONITOR INTERNALS
The Swapper

after allocation, and before the swap is queued, 1if
the seg 1is a low seg, LH of JBTSWP becomes the
swapping pointer for the UPMP.

Fragment table entries are put into the four word
space and are the same format as JBTSWP entries
terminated by a zero word. If there 1is not enough
room in the current four word entry, there will be a
fragment pointer (bit # on) to the next four word

block.

There are 3 parallel tables used by the swapper to
keep track of the Jjobs currently under its control
(swapping and paging). They are SWPLST, SW2LST, and
SW3LST, each SLECNT 1long. If more than SLECNT jobs
are given to the swapper, you will get a STOPCD.

SWPLST is used to keep track of the progfess of the I/O0 on
the job it is assigned to. 1Its format is:

Bit @ - on if fragmented swap

Bit 1 - direction of I/0 (on if out)

Bit 2 - swapping or paging (on if swapping)

Bit 3 - I1/0 in progress

Bit 4 - 1/0 is done

Bit S - on if an IPCF page

Bit 12 - I/0 error (IODERR, IOTERR, or
IOIMPM)

Bit 13 - channel error (IOCHMP or IOCHNX) if

not a fragmented entry
Bits 14-26 - starting physical page number
Bits 27-35 - number of pages if fragmented
Bits 18-35 - address of fragmented table

The fragment table is linked the same way the JBTSWP
fragment table is, but the entries are as above.

SW2LST is used to save the original SWPLST entry during the
swap because it is needed for cleanup, but the SWPLST
entry is modified while I/0 is progressing.

SW3LST contains the job number in the right half, the

contents of SWPOUT as of when the entry was created in
the left half.

SWP-15

DIGITAL ' TOPS-10 MONITOR INTERNALS
The Swapper

Swapping High Segments

High segments are never chosen directly to be swapped
in or out. We only consider job numbers (i.e., low segment
numbers) when looking for jobs to swap 1in or out. High
Segments are swapped as appropriate for the low segments
with which they are associated.

A high segment is swapped out along with the 1last low
segment using it. This means that nonshareable high
Segments are always swapped at the same time as their 1low
segments., A shareable high segment 1is never swapped if
there are any jobs still in core which are using it. Also,
shareable high segments normally have to be written out to
the swapping device only once. If there is a copy of a
write protected high segment on the swapping device, we do
not have to write it again. Hence, commonly used shareable
high segments will be on the swapping device all day. If
the last job using a given high segment is swapped out, the
high segment becomes idle. As an idle segment, it is
subject to being deleted from core memory If we need the
space which it occupies. However, we will always be sure to
have a copy on the swapping device before deleting the core
image. A high segment is swapped in whenever a job which is
using it is swapped in and there is not a copy of it in
core,

Essentially, the same c¢ode 1is wused to swap high
segments as is used to swap low segments. The routines
which swap jobs in and out look at the numbers in FIT and
FORCE as segment numbers and swap the specified segment in
or out. We alwways choose a job to swap in. We swap the
low segments in first and then check 1if it has a high
segment which needs to be swapped in. If it does, we put
the high segment number into FIT and go back through
practically the entire routine to swap in the high segment.

When we choose a job to swap out, we check before
swapping it out to determine if it has a high segment which
should be written out. If it does, we store the low segment
number and swap out the high segment first. Upon completion
of swapping out the high segment, we £ind that it has a
corresponding 1low segment to be swapped out. We then put
the 1low segment number into FORCE and repeat the
swapping-out routine. The reason for this is that we cannot
write out the low segment until all its 1I/0 stops. A

SWP-16

DIGITAL TOPS-19 MONITOR INTERNALS
' The Swapper

shareable high segment cannot have 1I/0 in progress, and
therefore can always be written out immediately. Hence, the
high segment can be swapped out while we wait for I/O to
stop in the low segment.

Complications and High Segments

A number of complicatons can arise in swapping Jjobs
with shareable high segments. Let us identify several cases
and consider them individually.

1. Low Segment in Core, High Segment Swapped Out

This case does not normally occur because the high
segment is normally not removed from core until the last job
is swapped out and is brought back with the first. However,
it 1is possible for a job to do a RUN for a swapped out high
segment. The low segment could possibly be set up in core
while the high segment is swapped out. 1In this case, the
low segment will be marked as swapped even though it is in
core. When we choose it to swap in, we see that the low
segment is already in core and proceed to swap in the high
segment. This problem can also occur on a GETSEG.

2. Zero Length Core Images

A segment can exist in that it has a number and is
recognized as a Jjob or high segment but have no core
allocated. This is quite common when a job or high segment
initially expands from zero to a nonzero size. If the Core
Management Routine cannot make the requested assignment in
core, it marks the Jjob to be swapped out and sets the In
Core Image Size to the size requested. The Swapper will
eventually choose the Jjob to swap out. Upon finding that
the segment to be swapped out is of zero length, it bypasses
the output process and simply marks the segment as swapped
out. This gives a =zero length segment on the swapping
device, When the Jjob is <chosen to be swapped in, the
Swapper finds enough free pages of the size specified by the.
In Core 1Image Size and assigns it to the segment being
swapped in. The assignment routine sets the entire area to
zeros., The Swapper's input routine detects that the swapped
out image size is zero and bypasses the process of reading
in the core image. The segment is then marked as swapped in
and is available for use.

SWP-17

DIGITAL TOPS-12 MONITOR INTERNALS
The Swapper

3. 1Idle Segment not on Swapping device.

This does not normally occur because the high segment
is written on the swapping device along with the last low
segment using it. However, it is possible that the last low
segment will not be swapped out. The user could run another
program or the program could do a GETSEG, detaching from the
high segment and leaving it with no attached low segments in
core. When an idle segment is chosen to be deleted, we
check 1if it 1is in this situation. 1If so, before deleting
the core image, we force the segment to be written out.

SWp-18

DIGITAL TOPS-19 MONITOR INTERNALS

*2.

The Swapper

- EXERCISES

Under what conditions will a job be swapped out?

' In what order does the swapper consider Jjobs for

possibly swapping in? What determines this order?

What conditions must be met before a high segment will
be swapped out?

Why can the swapper be sure of a successful return from
CORGET when it tries to assign core for a job to bring
in?

If both segments of a two segment job are to be swapped
out which segment goes first? Wwhy?

If two segments must be swapped in, which segment Iis
swapped in first?

SWP-19

DIGITAL TOPS~10 MONITOR INTERNALS

*7,

1d.

11.

12,

The Swapper

What determines the order in which jobs are considered
for swapping out? What is the order in which they are
considered?

What happens if the swapper can't £ind enough room to
swap in the job it has chosen?

Why could CORTAL be greater than BIGHOL?

Suppose the swapper has selected a job to swap in and
has been making room for it by swapping out jobs over a
number of clock ticks. If, when there is enough room,
a higher priority job has now become eligible to swap
in, which Jjob will actually be swapped in? What
justification do you see for this?

Why would a job be rejected by the swapper when it |is
looking for jobs to swap out?

Under what conditions will a high segment be swapped
in?

SWP-29

TOPS-18 MONITOR INTERNALS

UUO Processing

MONITOR INTERNALS
yYuQ Processing

TOPS-10

~TTAL

COURSE MAP

yuo-i

DIGITAL TOPS-19 MONITOR INTERNALS
UUO Processing

This page is for notes

uuo-ii

DIGITAL TOPS-19 MONITOR INTERNALS
UUO Processing

UUQ Processing

INTRODUCTION

UUOCON 1is the monitor module that
executes programmed operators (UUOs) for the
user. It must perform three functions: UUO
preprocessing, dispatch to the correct
service routine, and exit. This module will

- explain how each operation functions and how
to add new UUOs.

In order to introduce the topic of

crash analysis, this module will explain how
illegal UUOs are handled.

Uuo-1

DIGITAL

TOPS~-19 MONITOR INTERNALS

RESQURCES

TOPS-19 Microfiche

UUO Processing

TOPS-19 Monitor Internals Course Supplement

Course Materials - Chapter 7
Supplement - Graphics Section 7

Crash Analysis Guide - Chapters 1-3

Chapters 4 Section 4-1 thru
4~4
Chapters 7 and 8

LECTURE OUTLINE

I. Introduction
A. Why Have UUOs
B. What Are They
C. Methods of Passing Arguments
II. Trapping
III. Data Base
A. UUOTAB
B. UCLTAB-UCLJMP
C. CHCKTAB-CHKTBC
D. CNAMES and NAMES MACRO
IV. Flow Charts
V. Adding a UUO
VI. GETTABS
VII. UUO Error Handling
A. User Mode
B. UIL Interrupt Level
C. EUE

guo-2

DIGITAL . TOPS-19% MONITOR INTERNALS
UUO Processing

PROGRAMMED OPERATOR SERVICE (UUOCON)

DESCRIPTION

The function of UUOCON is to service in some manner
those codes which are trapped to locations 424 and 425 of
the current job's UPMP by the processor hardware. These are
op codes 000, 040 through 877, and (in user mode) 7xx
(input/output, HALT (JRST 4,), JEN (JRST 14,), and the
unassigned operation codes.

The operations of UUOCON might, £for the purpose of
discussion, be divided into three sections.

1. Operator-independent preprocessing and dispatch
2. Operator service (operator-dependent algorithms)

3. Exit routines

Preprocessing includes switching to the exec AC block,
setting up a push down list in the job's UPMP (for use by
the monitor during UUO execution), saving the return PC .on
the stack, 1loading of accumulators with information to be
used by the operator service routines and dispatching to the
proper service routine.

Operator service routines perform the algorithm
designed for the ©particular UUO, allowing the user to
receive information about the system, to alter the operation
of the system <concerning his job, and to communicate with
the input/output devices. A few specific examples are
included 1in this module to demonstrate the information flow
between the three sections of UUOCON and the user's 3job.
Input/output UUO's are dealt with 1in the chapter on
Input/Output Service.

The exit routines (normal or error) perform the setup
necessary to return to the calling program or, in the case
of errors, produce error messages and appropriately alter
the status of the job. One important function of the normal
exit routine is to check if the clock went off while the UUO
was being executed before returning to the calling program.

uuo-3

DIGITAL TOPS-1¢ MONITOR INTERNALS
UUO Processing

A software interlock between the Scheduler and UUOCON allows
a UuUo (which 1is, after all, one instruction) to run to
completion before the current job is stopped. The normal
exit routine calls the Scheduler if the interlock flag was
set sometime during the UUOQ processing.

OPERATOR PREPROCESSING AND DISPATCH

SPECIAL REGISTERS

A rather important function of this section is to place
information about this user's job (i.e., the job that issued
the UUO) into «certain accumulators and index registers
before dispatching. Therefore, these registers and their
contents are described briefly before going into the
operations of this section.

P A pushdown pointer to a 133 (octal) location list
in the wuser's page map area. The first item
placed in this 1ist (.JBPDl) is the user's return;
i.e., a copy of the PC word in location 425
(UPMP) .

R Contains a copy of the contents of JBTADR: XWD
' highest (KA) relative address, relocation for this
job. Used as an index register by the system to
relocate references to the user's program area on
KA systems.

On KI and KL processors the first page of the
users virtual address space, which contains the
JOBDAT, is accessed via executive wvirtual page
341. Hence unless a2 job is locked in core, R will
contain the contents of JBTADR which is Jjob size
in the LH and 341000 in the RH.

M A copy of the programmed operator as trapped into
location 424, The address R is set into the X
field so that operator service can refer to (E)
indirectly through M.

Pl A copy of the AC address field of M. Pl could be
for a User I/0 Channel, which it is in the case of

uuo-4

DIGITAL TOPS-10 MONITOR INTERNALS
: UUC Processing

input/output operators.

F* A copy of USRJDA (protected .JBJDA) for this
software channel. This register contains @ if
this channel is unassigned. If the channel is in
use, the 1left half of this word has status bits
indicating what UUO's have been performed for the
device so far; the right half contains the base
address of the device data block (DDB).

S* A copy of the DEVIOS status word for the device on
this channel.

T4* A copy of the DEVSER word for the device on this
channel. The left half of this word contains the
address. of the next DDB in a chain of all such

" blocks; the right half contains the base address
of the dispatch table for this device's service
routine.

W Contains the address of the job's PDB.

* These registers are pertinent only to input/output
programmed operators, but will be loaded, in any case, when
an AC address (Pl) happens to correspond to an assigned 1I/0
channel.

FUNCTIONAL DESCRIPTION

The following is a narrative of the
operator-independent preprocessing and dispatch section of
UUOCON.

MUuo After selecting the EXEC AC block the user mode
(COMMON) flag bit of the trapped PC word is used to detect
whether the call is from the Monitor (as in a GET
command) or from the user. If from the Monitor,
certain AC's have been set up and a portion of the
UUOCON coding can be skipped; control goes to
UUCSYl. If in user mode the user's AC's are saved

uuo-5

DIGITAL

yuosYl

DISPO

TOPS-19 MONITOR INTERNALS
UUO Processing

in the .JBAC part of his job data area (KA only)
and the contents of R, J , and P are established.

If the job doing the UUO is the null job and the
UUO is a wake UUO the scheduler is called. This
ogcurs only on dual processor systems when one
processor stops running a runable job while the
other processor is running the null job. This
event forces the CPU running the null job to stop
and select the runnable job to run.

This routine in UUOCON loads register M with the
UUO itself and J with the job number.

If the UUO is in the op-code range of #-37 control
is transfered to UUOERR in ERRCON.

The return PC is taken from lcoation 425 in the
UPMP and placed on the stack to ensure that it is
not overwritten in the event a UUO is done by the
monitor itself.

The op code is checked for a wvalue greater than
106 (illegal at this point). If the value is
legal, accumulator Pl is set up. If there 1is a
device on this channel, F, S, and T4 are set up.
If no device has been assigned to this channel
coincident with this UUO's AC address, the routine
NOCHAN is entered. Otherwise, 1if this UUO is
indeed an I/0 operator of op code 72 or greater
(long dispatcch I/0 UUO) then routine DISPl is
entered.

DISPY is entered directly for non-I/0 UUO's or I/0
UUO's between codes 55 and 71 if the channel is
found to be assigned.

This coding obtains an address from a
2-address-per-word dispatch table wusing the op
code as an index. Prior to dispatch routine

UUOCHK, in module VMSER, is called to verify that
the UUO arguments are incore; if not control will
be transfered to the users PFH which will page in
the page or pages containing the UUO arguments.
This approach 1s taken so as to prevent a page
fault from occuring as a result of a memory

Uuo-5%

DIGITAL

NOCHAN

DISPl

TOPS-19 MONITOR INTERNALS
UUQ Processing

reference made by the monitor. If this UUQ was
from user mode, the service routine is dispatched
to by a PUSHJ which puts the address of the user
exit routine on the list as it jumps. If it was
from the Monitor, then the desired address is
already on the list and is left undisturbed when
dispatching to the service routine.

This routine calls DISP@ if the UUO was £from the
Monitor or if it was from the user and is not an
I/0 operator. If the UUO is a CLOSE or RELEASE
operator, the successful return exit is called.
Otherwise, the routine IOIERR is entered to type
the message "I/0O TO UNASSIGNED CHANNEL..." and
stop the job.

This routine "fakes" a successful return to the
user if the UUO was a "long dispatch"™ one and the
device service routine does not have a 1long
dispatch table (this 1is an important concept in
making user programs "device independent”; €.9.,
it enables a LOOKUP to a physical paper tape
reader to be ®successful®). If the device service
routine 1is capable of performing long UUQ's, the
dispatch routine DISP@ is called.

uuo-7

DIGITAL TOPS-10 MONITOR INTERNALS
UUO Processing

OPERATOR SERVICE

Before discussing a particular operator, let us first
see how communication between the user's program and the
monitor takes place. Information is passed to the monitor
thru the user AC block or thru argument lists somewhere in
the users address space. These lists as well as the actual
arguments themselves may be in a page of address space that
is incore or paged out.

The primary method of referencing UUO arguments, given
a user virtual address, is by the use of the executive
execute instruction (PXCT). However, before making memory
references to a user virtual address two conditions must be
verified. One that the address is a valid wvirtual address
for that users address space and secondly that the page
containing that address is incore. There are also some
locations in the JOBDAT that need to be protected as well as
some references to user ACs that must be prevented.

There are three address checking routines in UUOCON
which are called from many UUO service routines.

UADCK1 - Takes successful return if the address being
checked is an AC, otherwise falls into UADRCK.

UADRCK - Called only from UUO level, however the address
being checked may be referenced from interrupt
level sometime in the future hence AC references
are 1illegal. References to 1locations in the
protected part of JOBDAT and to pages that don't
exist (> USRREZ) are also rejected. If the
reference is to a paged out page the job's page
fault handler will be invoked to get the page
incore before proceeding or if the reference is
to the high segment the error return is taken.

If an illegal address is encountered in either
UADCKl or UADRCK the job will be stopped and the
message "ADDRESS CHECK" will be typed on
the user's terminal. ‘

IADRCK - This routine 1is called from interrupt 1level
primarily for 1I/0 buffer address verification.
Hence references to ACs, protected part of
JOBDAT, non-existent pages and pages not in core

Uuo-8

DIGITAL TOPS-19 MONITOR INTERNALS
: : UUO Processing

are all illegal.

Once the user virtual address has been verified the
monitor proceeds to make the memory reference through the
use of the PXCT instruction. In some instances the PXCT
instruction will appear inline with the code that called the
routines to verify the addreses. The EXCTUX, EXCTXU and
EXCTUU macros will be used to generate the appropriate PXCT
instruction. 1In other instances calls will be made to other
routines to complete the memory reference. Consider the
following four cases.

1. Fetch the contents of the EA of the UUO into Tl.
The routine GETWDU in DATMAN is called. After some
rechecking of the wuser virtual address the code
generated by the following macro is executed.

EXCTUX <MOVE T1l,@M>
The interpretation and translation of the contents
of M as a user virtual address is done strictly by

the hardware due to the execution of a PXCT
instruction in executive mode.

2. Store the contents of Tl into the EA of the UUO

The routine PUTWDU in module DATMAN executes the
code generated by the following macro

EXCTXU <MOVEM S,@Mm>
where S had previously been loaded from Tl.

3. Get an argument from the AC referenced by the UUO
itself,

Routine GETTAC in DATMAN extracts the AC number via
use of the PUUOAC byte pointer and executes the
GETWDU routine.

4. Store the contents of Tl into the AC referenced by
the UUO.

Routine STOTAC in DATMAN uses routine PUTWDU to
accomplish the desired results. There 1is an

yuo-9

DIGITAL TOPS~-10 MONITOR INTERNALS
UUQ Processing

alternate entry point, STOTCl, that accomplishes
the same result as STOTAC but takes a skip return.

In returning to the user, one may wish to skip one or
more arguments that followed the UUO, or to give a skip or
non-skip return to signify success or failure of the
operation. The UUOCON exit routine is designed to pass on
to the user either a skip or non-skip return. 1If, when at
the level equal to that following the dispatch, a POPJ P, is
uséd to exit, the user will receive a non-skip return. If
the sequence

A0S (P)
POPJ P,

is used, a skip return occurs. This could be used to bypass
one argument following the UUO (a system routine, CPOPJ1
performs this action if called by a JRST CPOPJ1). If it 1is
necessary to bump up the user's return by more than one, the
routine must take care of adding the correct guantity to the
correct entry on the pushdown 1list (recall that, 1f the
original UUO was issued by the Monitor, the preprocessor
dispatch was not a PUSHJ). If, for example, two arguments
are to be skipped in return to a user mode call, this
sequence could be used.

AOS -1(P)
JRST CPOPJ1

To give the same return to a call from the Monitor,

AOS (P)
JRST CPOPJ1

Example

All operators that do not deal with some phase of
input/output are invoked through the use of the CALLI UUOC.
To keep this example reasonably simple, we will choose one
of these:

CALLI ac, 27

or
RUNTIME ac

ugo-14

DIGITAL TOPS-10 MONITOR INTERNALS
‘ UUO Processing

The referenced AC is loaded with a Jjob number before the
CALLI, and the 'CALLI returns the total running time (in
mseconds) of that job in the same AC.

The preprocessor routine of UUOCON sets up the standard
accumulators and, using the UUO op code (CALLI - 047),
dispatches to UCALLI. UCALLI picks up the UUO effective
address and uses it as an index into UCLJMP to find the
dispatch address for the specific CALLI, in this case
RUNTIM. This argument is used to effect another dispatch to
the routine JOBTIM, which gets the appropriate run time and
stores it in the user accumulator.

When entered, the JOBTIM routine checks the contents of
Tl for a valid job number and then uses it as an argument to
the FNDPDB routine to find the process data block for the
job. The desired time is extracted from the PDB, cconverted
to msec and placed into Tl. A JRST STOTAC causes this
result to be stored in the user's accumulator, now addressed
by M, and return to the UUOCON exit routine.

EXIT ROUTINES

ERROR EXITS

Error exits, which do not allow a return to the user,
occur when a UUO op code is illegal or an address supplied
by the user is illegal. A nonimplemented UUO in the range
49 through 77, or a UUO of @ will stop the job with the
error bit on (cannot continue) and print "ILLEGAL UUO at
USER loc." 2An illegal op code (e.g., @ DATAI in user mode)
causes the job to be stopped with the error bit set and the
message "ILL. INST. AT ..." to be printed. The HALT
instruction stops the job, types "HALT AT USER 1loc.", but
does not set the error bit. Thus, the CONTINUE command does
function after a HALT.

When an illegal address is detected by a non-I/0 UUOQ,
the UUOERR routine 1is called to print the message noted
above ("ILLEGAL UUO AT USER loc") and puts the job into an
error stop. When a UUO 1is associated with a particular
device, ADRERR may be called. ADRERR prints "ADDRESS CHECK
FOR DEVICE dev: EXEC CALLED FROM loc," and results in an
error stop condition.

Uuo-11

DIGITAL TOPS-10 MONITOR INTERNALS
UUO Processing

NORMAL EXITS

If the original UUO was 1issued by the Monitor, the
preprocessor dispatch was by a JRST rather than by a PUSHJ.
The service routine's last POPJ would bypass the user exit
routine and go directly back to the Monitor coding following
" the call.

If the UUO was from the wuser, the service routine's
terminating POPJ returns to location USRXT1-1 (no-skip
return) or a JRST CPOPJ1 returns to USRXT1l, which passes a
skip return to the user by adding 1 to the address on the
pushdown list.

USRXIT This routine checks to see if the user has typed a
CTRLC (C), or 1if the clock has ticked (software
interlock), or if the system wants to stop this
job (to swap it, for instance). If none of these
conditions exists, the wuser's accumulators are
restored and control is returned to his program.
Otherwise, the Scheduler is called (SCHED) to take
appropriate action. If the user's job continues
in the future, control will come back here to
restore the user's accumulators and continue the
job.

II. ADDING A PROGRAMMED OPERATOR

There are two ways to add a new UUO function to the
Monitor. One is to wuse a previously unused op code (42
through 46). The other is to add an additional CALLI.
Adding customer defined CALLIs with negative arguments is
the prefered technique. Before adding anything to any
section of the Monitor, it 1is, of course, desirable to
understand what is already there. Assuming that one already
has this understanding and has written a tightly coded new
routine that obeys the rules of address protection and uses
as much existing coding as possible, we can investigate the
process of getting this routine 1included in a running
Monitor.

ADDING A NEW OPERATOR

yuoc-12

DIGITAL

TOPS-18 MONITOR INTERNALS
UU0 Processing

Edit the new coding into the source (£file for
UUOCON. If it 1is desired to make this routine a
conditional feature, it may be enclosed in
conditional assembly brackets preceded by a symbol
like the feature test switches presently in use.

Edit the CALLI UUO dispatch table macro definition,
CNAMES, to . include the name of the UUOQ, dispatch
address and legality bits. For instance to add a
new CALLI called UDUMP the dummy entry for CALLI
-2, in the CNAMES, definition would be changed.
Conditional assembly could be used to set up the
dispatch table entry if conditional assembly was
used with the routine itself., For example:

Routine Coding CNAMES Entry

IFN FTDMPU, <UDUMP: IFN FTDMPU,<

!
!
!
(coding) ! X UDUMP, UDUMP
! >
I IFE FTDMPU,<
1
! X CPOPJ, CPOPJ##
> ! >

In this example, the routine will be assembled and
the address of UDUMP is added to the dispatch table
if the feature switch FTDMPU is nonzero.

In preparation for assembling the new UUOCON, edit
the correct feature test switch settings into the S
(system parameter) source £ile, including any new
ones you have established.

Assemble, naming as input first the S £file, then
the new UUOCON file.

Use FUDGE2 to or MAKLIB to replace the old version
of UUOCON with the new one in the library file to
be used in building your system, see the MAKLIB
User's Guide for details.

Uuo-13

DIGITAL TOPS-10 MONITOR INTERNALS
UUO Processing

6. Build a new monitor, using this new 1library file,
according to the procedures in the Monitor
Installation Guide.

Uuo-14

DIGITAL - TOPS-10 MONITOR INTERNALS
' UUO Processing

EXERCISES

1. When a UUO is executed, what will be the contents of
location 424 (UPMP)?

2. What is the range of op codes which are 1legal monitor
yuo's?

*3. How is the address of the routine for a specific UUO
determined?

4. Where are the user's AC's saved while a UUO 1is being
processed?

uuo-15

DIGITAL TOPS-1@ MONITOR INTERNALS
UUO Processing

*S, Suppose a UUO cannot run to completion (IO problems,
etc.) . When context switching occurs, USRPC
(.CPPCYwill contain the address for restarting the Job
somewhere in UUOCON. How does UUOCON then know the
return address in the user's program, considering that
UUOCON may have been called by any number of other jobs

in the meantime?

*6, What action does UUOCON take if a UUO requiring a long

dispatch table 1is executed, and the specified device
service routine has a short dispatch table?

*7, How does UUOCON respond to a UUO without a currently
defined function; 1i.e., 09427

uuo-16

DIGITAL TOPS-19 MONITOR INTERNALS

UUO Processing

*8., How does UUOCON respond to a CALLI UUO with an
undefined function; 1i.e., CALLI, 4092

*9, Which AC's are 1loaded with what values by UUOCON,

before it dispatches to the routine for a specific
function?

19. Write the routine and specify all necessary monitor
modifications to implement the following new CALLI:

OPDEF CHAN [CALLI -4]

The CHAN routine will put into the user's specified AC

the number of the first unused software channel for his
job.

yuo-17

DIGITAL TOPS-10 MONITOR INTERNALS
UUO Processing

3
-
mn
e}
[\1]
[te]
(1}
=
n
h
[}
~
3
[}
[
(]
wn

Uuo-18

TOPS-10 MONITOR INTERNALS

I/0 Introduction and UUQ Level Routines

/0

TOPS-19 MONITOR INTERNALS -
Introduction and UUO Level Routines

COURSE MAP

I01-:

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

3
o
| o
1]
"g
2
(]
[
0]
rh
o]
[a
o}
(o)
ot
[(4
]

IC1-ii

DIGITAL

TOPS-19J MONITOR INTERNALS
I/0 Introduction and UUQ Level Routines

I/0 INTRODUCTION AND UUO LEVEL ROUTINES

INTRODUCTION

User programs perform I/0 using a select
group of UUOs (OPEN, INIT, IN, CLOSE, FILOP,
etc.) . Each UUO requires two phases:
device 1independent processing and device
dependent routines. This module will
discuss the first of those two phases;
i.e., what each UUO does at the device
independent level.

DIGITAL

TOPS-18 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

RESQOURCES

TOPS~19 Microfiche

TOPS-19 Monitor Internals Course Supplement
Course Materials - Chapters 8 and 9
Supplement - Graphics Section 8 and 9

LECTURE OUTLINE

I. Introduction

II. Hardware Principles
A. 1I/0 Bus
B. Data Channel

III. I/0 Routines Organization
A, UUOCON
B. Device Service Routines

IV. Device Independent UUO Level Flows

A. INIT

B. INBUF

C. INPUT

D. CLOSE input
E. OUTPUT

F. CLOSE output
G. RELEAS

V. Device Service Introduction
A, DDB
B. Dispatch Table
C. Interrupt Level

VIi. DDB
A. Purpose
B. Table Description
C. PTP Example

VII. UUO Level Code

A. Dispatch Table
B. PTP Flow

I01-2

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUQO Level Routines

This page is for notes

I01-3

DIGITAL TOPS-129 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

I/0 INTRODUCTION AND UUO LEVEL ROUTINES

Input-output handling in the DECsystem-18 Monitor |is
based on the objectives of device independence and
modularity of code. Any user program should be able to
operate using any device capable of meeting 1its
requirements. The user should not -have to specify the
device wuntil run time and should be able to specify
different devices for different runs. Modularity of <code
plays an important role in meeting this objective.
Modularity also makes it convenient to tailor a monitor for
any specific configuration from a single set of source
files. The systematic manner in which the IO modules are
organized makes it possible for an installation to add code
to handle a special device without <changing the existing
code in any way. The new code can take full advantage of
all device independent routines 1in the standard system.
User programming for the special device can follow the same
device independent principles which apply to standard
devices,

In this module we briefly discuss the hardware
principles which apply to IO processing. Then we look at
the organization of the IO processing code and the functjons
performed by wvarious modules. Next we examine the device
independent functions performed within the UUO processor.

Next we discuss device service routines which perform
the device dependent functions, and the macros used to
generate configuration dependent code. Finally, we examine
timing problems which must be taken into consideration by
device service routines and some techniques by which these
problems are solved.

Hardware Principles

All IO transfers are done by DATAQ or DATAI
instructions. Each such instruction addresses a specific
device (or controller) by a device code in bits 3-9. Upon
execution of the instruction a single word is transferred
between core memory and a register of the device. Execution
of the instruction requires only a few microseconds after
which the CPU will continue execution of the program. The
device, however, will not be ready to accept another
instruction for a relatively long time. When it 1is ready,
the device will request a priority interrupt.

I01-4

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

There are two basicaly different types of IO devices,
I0 bus devices and data channel devices. IO bus devices
require use of the IO bus for each word transferred. Data
channel devices require wuse of the 1I0 bus only for the
initiation of the transfer.

I0 bus devices will cause an interrupt for each word
(or character) to be transferred for the slower devices, an
entire interrupt routine will be executed on each interrupt.
This interrupt routine will check for reaching the end of
the buffer, check the device status £for error conditions,
and normally will request the next transfer. The faster
devices, DECtape and non-DMA magnetic tape (TM10A) also
cause an interrupt for each word, but the interrupt results
in execution of only one instruction...a BLKO or . BLKI. At
the beginning of a "block™ the BLKx instruction is set up at
the interrupt location and a pointer-counter word is set up.
On each interrupt the next transfer 1is performed, the
pointer-counter is incremented and tested, the interrupt Iis
dismissed, and <control 1is returned to the . interrupted
routine. If the counter expires, the interrupt remains in
effect and the next instruction after the BLKx will be
executed. This instruction will call an interrupt routine
which will do the necessary housekeeping and set up the next
block transfer. The BLKx devices are assigned two pricrity
interrupt 1levels. One of these, which'is normally a very
high priority level, is used for the BLKx instruction on
normal data interrupts. A lower level is used for error
interrupts. The lower priority channel is called the "£flag
channel."

The TM1fB magnetic tape controller, and all disk
controllers, make wuse of a data channel to access memory
directly without interrupting the CPU or using the IO bus.
A single instruction is used to initiate the transfer, and
the controller requests an interrupt when the entire block
is finished. Although these devices have very high data
rates, their interrupts are infrequent. They are normally
assigned a low priority interrupt channel. The hardware
principles of data channel transfers will be discussed in
more detail in the chapter on disk. '

IC1-5

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

Organization of IO Routines

All device 1independent routines are contained in
UUOCON. This includes outer level routines to handle all IO
UUO's. The UUO decoder dispatches to these routines, with
various "global" AC's set up, and the IO routines return to
the UUO decoder for final housekeeping functions before it
returns to the user program. Also included in UUQOCON are
subroutines to perform various device 1ndependent functions
for device dependent routines.

All device dependent code for one device 1is normally
included in a device service routine for that device. There
will be only one service routine for a given type device,
regardless of the number of such devices or units in the
configuration. These service routines are written to work
for any possible number of units. Therefore, any
configuration dependent code 1is included in COMMON (or
COMMOD for disk). The Device Data Block for a device will
normally be included in the service routine. For devices
having multiple wunits on a single controller--such as
DECtape~-additional copies of the DDB are set up at system
initialization time, according to information in a table in
COMMON. Where there are separate controllers for several
devices of the same type, a small amount of code is
dependent on which controller is being used. (The 1line
printer 1is an example of such a device.) The code which
depends on the specific controller is incorporated into the
DDB and put into COMMON. In COMMON, a DDB and the
controller dependent code are assembled for each controller
in the configuration. The bulk of the code, which is
independent of the specific controller, is included 1in the
single device service routine.

Also included in each device service routine are
routines to perform device dependent functions for each UUO.
The entry points for these routines are put into the Device
Dispatch Table, whose base address is included in the Device
Data Block. These routines are called only as subroutines
from the device independent routines in UUOCON.

Finally, 1included 1in each service routine 1is the
interrupt routine £for that device. The interrupt routine
gets control when the corresponding device has caused a
priority interrupt. It must perform the actions required by
the device and then dismiss the interrupt without

I0l-6

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUOQ Level Routines

interfering with the interrupted process.
Independent Functions

In this section we examine the functions performed by
the device independent routines in processing buffered IO.
We begin with a general discussion of actions taken by each
UUO routine. First we follow the steps taken by a program
reading a file from an arbitrary device. Then we follow the
steps taken by a program writing a file. Finally there is a
set of annotated flow charts for the same routines.
Throughout this section we concentrate on presenting a major
concept. Neither the descriptions nor the flow charts are
complete in every detail. Complete details would probably
obscure the concepts more than they would clarify them.
However, once you are thoroughly familiar with the material
in this section, you should be well prepared to go into the
listings for the ultimate detail.

INIT

The INIT {(or OPEN) is the means by which the user
program specifies the device which it wants to use. The
main function of the INIT is to find, or in some cases set
up, a . DDB for 'the specified device. The DEVSRC routine
performs this function. It first searches for a DDB
assigned to the Jjob having a 1logical device name which
matches the argument of the INIT. If this fails, it 1looks
for a DDB having a physical device name which matches the
argument. Finally, if a generic device name (e.g., DTA) is
given, it 1looks for a DDB which is appropriate for that
generic specification. If a DDB is found the
Assigned-by-program bit, ASSPRG, is set in the DEVJOB word,
and the job number is put into the DEVCHR word. The user
bits in DEVIOS, 1including the data mode, are initialized
according to the program's specifications. According to the
data mode, the byte size field in the buffer ring header is
initialized. The first and third words of the ring header
are cleared. Hence, after INIT the ring header appears as
follows:

I01-7

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

If the specified device does not exist, or is not available,
the INIT routine gives an error return to the UUO decoder.
There is no call to the service routine for device dependent
functions.

INBUF

The user program may execute an INBUF UUO to ask the
monitor to set up an input buffer ring of any specified
number of buffers. If the program does not execute an INBUF
UUO, the same routine will be called on the first INPUT UUO
to set up a ring of two buffers.

The buffer ring is set up beginning at the job's first
free 1location, according to the .JBFF word in the Job Data
Area. If necessary, more core will be obtained. .JBFF will
be updated to point to the first location after the buffer
ring.

The length for each buffer is obtained by calling a
device dependent routine. Normally, the length, including
buffer header, will be two greater than the value obtained
from DEVCHR, in the DDB.

The buffer linkages are set up, and the use bit in each
buffer header is cleared. The first buffer address is put
into DEVIAD in the DDB, and into the first word of the
user's buffer control block. The sign bit of this word in
the buffer control block is set, indicating that the buffer
ring is in an initial state, the ring buffer control block
has the following form:

I01-8

DIGITAL TOPS-14 MONITOR INTERNALS
I/0 Introduction and UUC Level Routines

- - coen. - = s e e

11 | ADR |

i i s | i

[N

1
i

There is no call to the device service routine.

I01-9

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

INPUT

With each INPUT UUO the user program asks that a buffer
of data be made available to it. The major functions of the
UUO are to ensure that the next buffer is full, set up the
necessary pointers and byte count in the user's buffer
control block, and return to the user. If necessary it will
start the device.

On the first INPUT after the INIT, if the buffer ring
has not previously been set up, it must now be set up. A
ring of two buffers will be set up by the same code
described under INBUF.

On all INPUT UUO's except the first, we clear the use
bit on the buffer previously available to the user.
Clearing the use bit indicates that there is no "good" data
in the buffer. This informs the interrupt routine that it
may continue reading into this buffer as soon as the
previous buffer is full,

One very important function of the INPUT routine is to
start the device. Whenever an INPUT UUO is executed and
there is only one buffer remaining full, and the device Iis
not running (IOACT=0), we call the device service routine to
start the device. Since starting the device requires an
actual IO instruction, it 1is always a device dependent
function. It is, in fact, the only device dependent
function required by the INPUT UUO. Note that it is always
necessary to start the device on the first INPUT UUO after
the INIT.

Before returning control to the user, we must ensure
that the next buffer is full. If the use bit on the next
buffer of the ring is set, it is already full. Hence, we
can return control to the user immediately. If the next use
bit is not set, we must not allow the Jjob to continue
running until the buffer has been filled. This is the
function of a device dependent routine WSYNC, which Is
called with a PUSHJ.

WSYNC informs the scheduler that this job is to go into
IO Wwait. (It sets the wait state code IOWQ). It sets up
its own return address, from the push down 1list, as the
restart address for the job and exits to the monitor's outer
loop. This job will be put into an IO Wait state and

I01-149

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUO Level Routines

another job will be chosen to run. It is the responsibility
of the interrupt routine to get the job out of the IO Wait
state when the next buffer has been filled. When the job is
continued, it will be started at the next instruction after
the PUSHJ to WSYNC. At this time, the next buffer should be
full and control can be returned to the user program.

Note that--to the calling routine--WSYNC presents the
appearance of a subroutine which can be called to fill the
next buffer. From the monitor's point of view it is simply
a way of terminating the job's time slice because it can not
immediately continue. Note also that the UUO processor must
be reentrant at this point. Before this job continues
running, any number of other Jjobs may execute this same
code, Hence, when we call WSYNC, all variables must be in
job-dependent storage locations. Specifically, all stored
variables will be either on the push down list in this job's
UPMP or in accumulators. When an end of file condition |is
recognized on the device, the IOEND bit is set in the DEVIOS
word of the DDB. This is not the end of file bit which the
user sees, however, The purpose of ICEND is to prevent our
trying to restart the device after it has been stopped at
end of file. The user may have several buffers full of data
yet to process when we reach end of £file on the device.
After the 1last buffer has been given to the user and he
executes another INPUT UUO, we call the routine, CALIN,
which normally dispatches to the device service routine to
start the device. But CALIN does not attempt to start the
device because the IOEND bit is set. 1Instead, it gives an
immediate return with IOACT still not set. When we call
WYSNC, it does not put the job into IO Wait because IOACT is
not set. At this time we set the user's end of file bit,
IODEND, in DEVIOS. We give an error return to the user, and
IODEND is his indication that he has reached end of file.
This bit 1is never stored in the status bits of a buffer
header; the user must check for it with a STATO or similar,
uuo.

CLOSE Input

The CLOSE UUO restores conditions to the initial state,
ready to begin reading another file. The use bit is cleared
in each buffer of the ring. The ring header use bit is set,
indicating that the ring has been set up but never
referenced. Both end of file bits are cleared. The Close

I01-11

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Introduction and UUQ Level Routines

routine in the device service routine is called to perform
whatever actions might be necessary. Most devices other
than disk do not require any special actions on input close.

OUTPUT

In writing a file, the INIT and OUTBUF UUO's play roles
directly analogous to INIT and INBUF in reading. One OUTPUT
UUO is then issued for each buffer of data to be written.

The first OUTPUT normally does not write any data. The
first OUTPUT is a dummy UUO by which the user program asks
the monitor to set up his buffer control block so that the
user program can start putting data into the first buffer.

On each additional OUTPUT the user 1is supplying one
buffer of data and asking that a free buffer be made
available to him. We make the full buffer available to the
interrupt routine by setting the use bit. If the device is
not running, we call the device dependent routine to start
it. Then we check the use bit of the next buffer to see if
we can allow the user to put more data into it. 1If the use
bit of the next buffer is not set, the buffer is empty, and
we can allow the job to continue running immediately. If
the use bit is set, there is still data in the buffer which
. must be written out. We call WSYNC to put this Jjob in IO
Wait until the interrupt routine restarts it. When the next
buffer is- free, we clear it to zeroes, and set up the buffer
control block to allow the user to start filling the buffer.

CLOSE Output

On the CLOSE for an output £file we ensure that any
remaining buffers are written out, keeping the job in IO
Wait until all buffers' use bits have been cleared. We call
the device dependent routine for any device dependent
functions. Then we restore the buffer ring to 1its initial
state, The buffer control block is also reinitialized with
its use bit being set to indicate an unused ring.

I01-12

DIGITAL TOPS-19 MONITOR INTERNALS
;/0 Introduction and UUO Level Routines

RELEASE

The RELEASE UUO countermands the INIT. It first does a
CLOSE for both input and output and puts the job into I0
Wait until the device 1is 1inactive. The device service
routine is called for any device dependent actions. If the
channel on which the RELEASE is being done 1is the highest
channel in use by this job, we update the word where we
remember the highest channel in use, JOBHCU. We clear the
ASSPRG bit in DEVIOS, and unless the ASSCON bit is set,
clear the job number from DEVJOB. Hence the RELEASE makes a
device available for other jobs if it was not assigned by an
ASSIGN command. If the device was disk, the DDB--which Iis
set up by either the INIT or an ASSIGN command--is deleted
when the job number is cleared.

Annotated Flow Charts of IO Routines

On the following pages are flow charts of each of the
device independent routines for IO UUO's. The small numbers
below and to the right of various blocks refer to notes at
the end of the flow c¢harts for that routine. The page
numbers listed beside some connectors and subroutine calls
refer to pages within that flow. These page numbers are at
the top off the page.

I0l-13

TOPS~19 MONITOR INTERNALS

I/0 DEVICE SERVICE ROUTINES AND INTERRUPT PROCESSING

DIGITAL TOPS-13 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

COURSE MAP

I02-1i

DIGITAL

TOPS~-10 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

I02-ii

DIGITAL TOPS-1@ MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

I/0 DEVICE SERVICE ROUTINES AND INTERRUPT PROCESSING

INTRODUCTION

This module continues the description
of 1/0 processing that was begun in the
previous module., It focuses on the three
components of device service routines: the
device data block, UUO 1level routines and
the interrupt routines.

I02-1

DIGITAL TOPS-179 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

RESOURCES

TOPS-10 Microfiche

TOPS-10 Monitor Internals Course Supplement

- LECTURE OUTLINE

I. Interrupt Level
A, Fielding of Interrupts
B. Functions of Device Service Routines
C. PTP Example

II. UUO Level vs Interrupt Level Interface
A, Data Base
B. Routines .

ITI. 1I/0 Macros
A, Purpose
B. INTTAB
C. MONGEN Interface

I02-2

DIGITAL TOPS-13 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

I/0 DEVICE SERVICE ROUTINES AND INTERRUPT PROCESSING

All device dependent code necessary to perform IO operations
on a given device is usually included in a device service
routine for that device. The only device dependent code
that is put into COMMON or COMMOD is 1if it must be
conditionally assembled according to configuration
parameters. The service routine itself is an independently
~assembled module which 1is included in the monitor for
configurations which have the corresponding device, and left
out otherwise. It does not contain any code which must be
assembled with configuration dependent parameters such as
how many devices of some type are present, or to which
interrupt level it is to be assigned.

Device service routines normally include three components:
1. A device data block

2. A dispatch table, and the corresponding routines to
perform UUQ level operations.

3. An interrupt routine.

The following section contains a brief discussion of each of
these components.

1. The device data block must contain the standard
entries described in the monitor table description.
These entries are used by device independent code,
and therefore must be present for any device which
the device independent code serves. In addition to
the standard entries, the DDB may have as many
additional entries as needed by the device
dependent code.

Since the service routine 1is to be assembled
independently, we do not know what other devices
will be present in the system. We therefore can
not fill in the linkage to the "next" DDB. This
linkage is supplied by the system initialization
code according to information from INTTAB. Also,
we may not know how many units will be present 1in
the system, Hence we can not write a DDB for each
unit. Rather we write a single DDB, and the
additional DDB's are set up during system

I02-3

DIGITAL

TOPS-10 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

initialization by copying this one and using
sequential device numbers.

For devices which might have multiple controllers,
and therefore controller dependent code, the DDB is
coded in COMMON, rather than 1in the service
routine. The controller dependent code is
incorporated into the DDB, and DDB's are
conditionally assembled for as many devices as
specified by the configuration parameters.

The device dispatch table provides a standardized
set of entry points for all UUO Level functions for
this device. There are two possible formats, short
dispatch table and long. The short table contains
only the basic entries required of all service
routines. If the device requires any additional
functions, it must have the 1long dispatch table.
The DVLNG bit in the DEVMOD word of the DDB
specifies which format the corresponding dispatch
table has. The base address of the dispatch table
is contained in the DEVSER word of the DDB. A
detailed description of the dispatch table Iis
contained in the Monitor Table Desciptions. Most
of the UUO 1level routines depend so much on the
nature of the device which they handle, that little
can be said about them in general. The
initialization routine is <called during system
initialization, and performs whatever functions
might be appropriate. Generally all conditions
bits for the device will be initialized, and its
priority interrupt level assignment will be cleared
with a CONO instruction. The RELEASE routine might
perform the same functions. The CLOSE routine does
whatever is appropriate for completion of a file on
its device. For example the paper tape punch
routine punches several inches of leader. The disk
routine adds an entry for the new £file to a
directory upon output close.

The only routine in the dispatch table which is not
the device dependent part of some UUO is the hung
device routine. When a transfer is started on a :
device, a hung device timer is initialized in the
DEVCHR word. Each second, the <clock interrupt
routine calls DEVCHK in UUOCON., Here we decrement

I02-4

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

the value of the timer for each active device, and
if the expected interrupt occurs the field will be
cleared. 1If the field is decremented to zero, the
interrupt has not occurred within a reasonable
amount of time. We then assume that the device is
hung, and dispatch to the hung routine in the
device service routine. This routine can attempt
to recover from the hung condition, or can attempt
simply to reinitialize the device. If the device
hung routine gives a skip return, no further action
is taken by DEVCHK. If the device hung routine
gives a nonskip return, DEVCHK calls the DEVHNG
routine in ERRCON. DEVHNG clears the IOACT bit for
the device, and types an error message on the job's
controlling TTY. The job is stopped unless it has
enabled error trapping for hung device.

The function of the input and output routines is to
start the device, Normally this is done by

- executing a DATAI or DATAO instruction. For disk,
however we usually only add a request for a
transfer to an appropriate queue, and the actual
transfer will be started at a later time. The
IOACT bit is always set before returning to device
independent code. The IOACT bit indicates that we
are expecting an interrupt from this device. As
long as IOACT remains set, the device independent
code will not call the device dependent code
again--because the function. of "starting the
device" does not need to be performed.

Several other housekeeping functions are performed.
The hung time is initialized, if one is specified
for this device. The IOFST bit in DEVIOS is set to
inform the interrupt routine that the next
interrupt is the first for the buffer.

The Interrupt Routine

When an standard interrupt occurs on channel N, control goes‘

to location 40 + 2*N. Location 49 + 2*N will contain a JSR

to location CH'N.

Example: At 406 + 2*4 would be the instruction

JSR CH4

I02-5

DIGITAL TOPS-12 MONITOR INTERNALS
I1/0 Device Service Routines And Interrupt Processing

This instruction saves the PC and processor flags for the
interrupted routine in location CH'N and executes the
instruction at CH'N +l.

Since several devices may be assigned to each PI channel,
out first task is to determine which device caused the
interrupt. This is the function of the "interrupt skip
chain.® The instruction at CH'N +1 will be a JRST to the
interrupt routine for some device assigned to Channel N.
This routine begins with a CONSO which will skip if its
device has an interrupt pending. If the CONSO does not
skip, we execute the next instruction which will be a JRST
to the interrupt routine for another device assigned to this
channel. This will also be a CONSO followed by a JRST to
another 1interrupt routine on the channel. The chain
continues through the interrupt routines for all devices
assigned to the channel. The last CONSO is followed by a
JEN which dismisses the 1interrupt, instead of the normal
JRST. When an interrupt occurs, control is passed from one
interrupt routine to another. Each interrupt routine checks
its device and passes control to the next--until we find the
device which caused the interrupt. When we reach the
routine for that device, the CONSO will skip, and begin
execution of the interrupt routine. 1In case of a spurilous
interrupt--when, no device 1is found, with an interrupt
pending--the interrupt is dismissed by the JEN at the end of
the chain.

The interrupt skip chain can not be coded directly 1in the
device service routine. This is because when writing a
given service routine, we don't know what other devices will
be on the same PI channel. The instruction following the
CONSO is normally something like

JRST .

At system initialization these instructions are replaced by
the correct ones, according to information found in INTTAB.

The skip chain is not necessary for the newer peripherals on
the KI-10 and KL-10. These devices are able to supply their
own interrupt addresses, thus giving control directly to the
correct routine, this is called a "Vectored Interrupt”.

102-6

DIGITAL TOPS-13 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

There are several functions which must be performed by
every interrupt routine. If the interrupt routine is to use
any accumulators, it must save their contents and 1later
restore them. A routine is provided in COMMON to perform
this function for each interrupt routine which requires it.
Since an interrupt routine can be interrupted only by a
higher priority interrupt, we only need one save routine and
save area per PI channel. The routine for channel N will be
assembled, if needed, with the label SAV'N. Since we don't
know - which channel a given device will use, we can not use
this label directly in the service routine. 1Instead we use
the 1label XYZ'SAV for each device XY¥Z and its PI channel N.
In addition to saving the accumulators, the save routine
sets up a push down list with the address of another routine
which restores. the accumul ators, and dismisses the
interrupt. This allows the interrupt routine to execute an
unmatched POPJ to restore accumulators and dismiss the
interrupt.

Most devices can cause interrupts due to error conditions as
well as successful completion of a transfer. The interrupt
routine must therefore check the conditions bits from the
device to determine what caused the interrupt. If a
hardware error has occured, the routine must take some
appropriate action, possibly attempting to recover from the
error.

Interrupt routines must always check for reaching the end of
the current buffer. If we have reached the end of a buffer,
a device independent routine in UUOCON must be <called to
advance the pointer to the next buffer. ADVBFE advances the
output pointer, DEVOAD, and clears the use bit in the buffer
just finished. ADVBFF advances the input pointer DEVIAD and
sets the use bit in the buffer just filled. Both routines
check 1if the next bpuffer 1is available to the interrupt
routine. They also check if IO is to be stopped so that
this Jjob may be swapped or shuffled, if the user wants only
one buffer at a time, if the user has typed “C, or 1if the
job is being locked in core. 1If, for any of these reasons,
the interrupt routine must not continue processing out the
next buffer, the buffer advance routine gives it a nonskip
return. If the interrupt routine may continue processing,
it is given a skip return.

If we may continue into the next buffer, we issue the next
I0 instruction. Otherwise we "turn off" the device. This

102-7

DIGITAL TOPS-18 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

normally means clearing its PI assignment. If we turn off
the device, we <clear the IOACT bit in DEVIOS to indicate
that no more data will be transferred wunless the device
dependent routine is called again at UUO level to start the
device.

Another function which every interrupt routine must perform
upon reaching the end of a buffer is checking if the job is
in IO Wait. 1If, the IOW bit is set when we finish a buffer,
we call the device independent routine SETIOD to get the job
out of IO Wait. If the job is in TIWQ, SETIOD changes the
job's wait state code to TSQ, indicating to the scheduler
that the job should be removed from IO Wait. It sets the
JRQ bit as a flag that this job needs to be requeued by the
scheduler. Then, unless the null jub was running when the
interrupt occured, it returns to the calling routine. For
all other I/0 wait states, SETIOD changes the WSC to RNQ (8)
directly. If the null job was running, we do not want to
return to it upon dismissing the interrupt, because there is
now a user job to run. In this case, SETIOD calls a routine
to stop the current job. This routine requests a scheduler
cycle (PI 1level 7 interrupt). Hence as soon as the IO
interrupt which we are handling is dismissed, there will be
a partical scheduler <cycle. The scheduler will be called
and will choose the job which just came out of IO Wait to be
run.,

On the next page 1is a flow chart showing the general
functions performed by any interrupt routine.

I02-8

DIGITAL

SAVE 4cs
SET uP FDL

yYZ'say (3

-

S&ETLPR A

Ios&T
(39)

CINT?

QuUTAUT
DATA

SET TeacT
 HUNG 5imE

!
Process
ERRCS ye | Error

TOPS-12 MONITOR INTERNALS
1/0 Device Service Routines And Interrupt Processing

Oureur L NTECRUPT S E m
A
_/

LG Jog To i
& APy cuel

SE£7/00

6.8

N

Q

STEP 70
MNEXT BUFFE

ADVEBFE
1253

(QM

|

KESresE
ACS

| yyzger

< D}wx{'f -)

} S70P DEVICcE

Crear mj

CLRACT,

SEJ‘ACT s

A

i g

DIGITAL

5.

TOPS-19 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

Notes on Output Interrupt Routine

This is normally a CONSO instruction.

This exit, to next interrupt routine, is set up by
the system initialization routine.

Routine is in COMMON. The label XYZ'SAV will be
equated to the correct address.

Some devices will not have this step because they
only get interrupts at the end of a buffer.

ADVBFE will advance DEVOAD, the current buffer for
the interrupt routine, to the next buffer of the
ring. The use bit will be cleared on the buffer
just finished, making it available to the program.
ADVBFE will give the "OK-TO-CONTINUE" return if all
the following conditions are true:

l. The next buffer is full. (Use bit set.)

2. Scheduler is not trying to stop Jjob. - (SHF,
CMWB, CNTRLC, and LOK not set.)

3. User did not ask for "Synchronous" IO (IOCON
bit in DEVIOS not set.)

Set job's wait state code to Wait Satisfied and set

JRQ bit.

Routine in COMMON. Its address is put on PDL by

XYZ'SAV, allowing the service routine to get there

with an unmatched POPJ. '

Device independent routine in UUOCON.

This routine sets up AC's F, J, and S according to
the DDB whose address is given in AC F.

I02-19

DIGITAL TOPS-13 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

PI Channel Assignment

By convention all device service routines are written so
that they may operate on any PI channel, without having to
be reassembled. This convention is necessary if we are to
aveid assembling service routines with

SVGala

o AL

parameters, since a given device may operate on different
channels 1in different systems. All requirements for data
dependent on the PI channel or the hardware configuration
are met by macros defined in COMMON. Since COMMON is
assembled for each installation, with configuration
parameters, it 1is a convenient place for the configuration
dependent code needed by service routines. The need for
configuration dependent code 1is ‘handled in several ways,
including INTERAL symbols for reference by the service
routines and the INTTAB table used at system initialization
time. 1Internal symbols in COMMON allow a service routine to
set up external symbols for its own PI channel number, the
locaton where the PC is stored on the interrupt, and a
routine to save and restore AC's., The INTTAB entry for each
device is used to link the interrupt routine for that device
into the interrupt skip chain, to link its DDB into the
system's DDB list, and, if necessary, to set up a copy of
the DDB for each unit of that device. Defining these
symbols and setting up the INTTAB entry for each device is
the function of the "channel assignment®™ macros in COMMON.

ranfionrat+rian
V!Bb‘guhuh

The channel assignment macros are nested several deep, and
combined in different combinations depending on the
requirements of the device. One of the simplest of these is
the ASGINT, which is used for a device having an interrupt
routine, but no DDB and needing no AC save routine. The
software clock interrupt is an example of such a routine.

Example: ASGINT CKg, 7
This macro sets up the definitions

CK@CHN == 7
CKOCHL == CH7

and generates the INTTAB entry

XWD 7, CKOINT
XWD @, 6

I02-11

DIGITAL TOPS-129 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

Devices which have DDB's and need AC Save Routines require a
more complicated sequence of assignment macros. One such
sequence is ASGSAV, ASGSV1, and ASGSV2. This sequence is
used for single devices (controllers) which have DDB's and
save routines. We shall examine the functions of these
macros, beginning with the innermost and working out.

ASGSV2 is used to cause an AC save routine to be set up for
the specified channel. Also it equates the labels used (by
convention) in the service routine to the labels which will
be set up in the save routine.

Example ASGSV2 LPG, 4

This generates the definition

USED4 ==

which will later cause a CHAN macro to be assembled,
generating an AC save routine for PI channel 4.

In addition it defines the following symbols:

LP@SAV == SAV4 Address of save routine

LPORET == RET4 Address of AC restore routine

LPACHL == CH4 Place where PC is stored on
channel 4 interrupt

LPASAV == SVAC4 Location where AC's are saved

LP@PDP == C4PDP Word used to initialize push down
pointer

LPGJEN == C4JEN Address of instruction which dis-

misses the channel 4 interrupt.

All symbols are declared as INTERNAL to COMMON. Many
service routines will only use the first of these symbols.
The restore routine is normally reached by an unmatched POPJ
from the device interrupt routine.

ASGSV1 sets up the INTTAB entry and defines a symbol by
which the service routine can refer to its own PI channel
number. For all standard devices ASGSV]1 also calls ASGSV2
to generate a channel AC save routine.

I02-12

DIGITAL TOPS-19 MONITOR INTERNALS
1/0 Device Service Routines And Interrupt Processing

Example ASGSV1 PTR, 4

This generates: PTRCHN ==
XWD 1004, PTRINT
XWD a, PTRDDB
ASGSV2 PTR, 4

ASGSAV calls ASGSV1 to set up an INTTAB entry and generate a
channel AC save routine. Its only other function is to
declare the DDB and interrupt addresses EXTERNAL on Pass 2,
if they are not defined in COMMON.

For multiple devices, such as the line printer, there must
be a separate INTTAB entry for each device. These entries
are set up by the MULASG macro, which repeatedly calls the
DEVASG macro.

DEVASG is written with four arguments.
DEVASG DE,X,PI,DSKFL

DE will be a two letter device mnemonic. Sequential values
for X are used for the devices. Hence if there are two line
printers, they will be LPF and LP1. PI 1is an argument
specifying the PI channel. DSKFL is a "disk flag." It is
set to a non zero value for disk in Level D disk service
monitors (i.e. 5.%X%x and later monitors.)

The DEVASG macro defines one symbol, and then does an ASGSV1
for the device specified by its first two arguments.

Example: DEVASG LP, 4, 4, @
This will generate:

LPAN ==
ASGsVl LPg, 4

The MULASG macro simply repeats the DEVASG macro for each of
the devices of the given type present in the configuration,
incrementing the value of the second argument.

Example MULASG LPT, LP, 4, @

If LPTN has the value 2, this will have the effect
of generating:

I02-13

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

DEVASG LP, 9, 4, 0O
DEVASG LP, 1, 4, @

Specificatién of PI Level

Devices are divided into groups for the purpose of assigning
PI channels, All devices in a group will be assigned the
same channel number. If any devices of a group are present
in a given configuration, we step to the next channel for
the next group. If it turns out that no devices of a group
are present, the channel number is not advanced for the next
group. Advancing the channel number is the function of the
NEXTCQ macro.

If any of the devices of the preceeding group were present
in the configuration, the symbol .CHAS will be non zero.
This symbol determines whether or not NEXTCQ will increment
the value of .CH, the symbol used for all PI arguments. The
process of advancing .CH is complicated by the fact that we
might want to reserve one or more channels for use by
special devices. If the symbol UNIQ'N, where ©N=1-7, Iis
defined and equal to a non zero value, no standard devices
will be assigned to channel N.

The NEXTCQ macro does nothing if the symbol .CHAS s equal
to zero, indicating that no devices in the previous group
were present in the given configuration. If .CHAS 1is non
zero, NEXTCQ calls the NEXTCH macro. NEXTCH then calls the
NEXTCU macro, which has the function of skipping over a
channel if the corresponding symbol, UNIQ'N is non zero. If
UNIQ'N is non zero, NEXTCU calls the NEXTCH macro, which
increments the value of .CH and calls NEXTCU again for the
new value. The sequence is repeated until a channel Iis
reached for which UNIQ'N is not defined or equal to zero.

Channel AC Save Routines

For each service routine which needs to save AC's there will
be an ASGSV2 macro. An AC save routine will be generated
for each channel having any service routines that need to
save AC's. Note that we do not need a separate save routine
for each device, since a device can not interrupt another
device having the same PI level.

Channel AC save routines are generated by the CHAN macro,
with an argument to designate the PI level. The CHAN macro

I02-14

DIGITAL TOPS-19 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

for channel N is conditionally assembled according to the
value of the symbol USED'N., USED'N is set to 1 by an ASGSV2
macro with a second argument of N. Hence a save routine
will be generated for each device for which ASGSV2 was
called.

In addition to generating the save routine, the CHAN macro
also sets up the location CH'N which begins the interrupt
skip chain. For those channels with USED'N equal to zero, a
NULL macro is called to generate only the CH'N location and
no save routine,

Example: The following code would be generated if USEDS5 is
non zero. HIGHAC is defined as the highest AC to be saved
by this routine. PDL is a symbol which specifies the length
of the push down list to set up. :

CH5: 2 Initial skip chain
JEN@CHS5 This word replaced during
. system initialization
SAVS: 2 Called with JSR
MOVEM HIGHAC, SVACS + HIGHAC Save highest AC
"MOVEI HIGHAC, SVACS Set up BLT pointer
BLT HIGHAC, SVACS + HIGHAC-1 Save other AC's
MOVE P, CS5PDP Set up push down
pointer
JRST @savs Return to caller
Return here on POPJ from calling routine
RETS5: MOVSI HIGHAC, SVACS Set up BLT pointer
BLT HIGHAC, HIGHAC Restore AC's
CSJEN: JEN @CHS Dismiss interrupt
SVAC5: BLOCK HIGHAC Place to save AC's
C5PDP: XWD -PDL+1, .+1 . Initial push down
. pointer
CS5pDPl: EXP RETS First word on push

down list

-Set so that POPJ

returns to RETS
BLOCK PDL-1 Rest of push down

list

Timing and Interlock Comsiderations

I02-15

DIGITAL TOPS~19 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

Whenever there is a possibility of interactions between
separate asynchronous processes, we must take special care
to ensure that the interaction takes place correctly and
that the process do not interfere with each other. This
problem can occur with separate user jobs executing a UUO
which can not immediately run to completion. It can also
occur when there is a device active at the same time a UUO
is being processed for a job. In this section we examine
several of the problems that occur, and techniques for
overcoming them.

Starting a Device

In order to guard against unsolicited interrupts from a
device, we set up in core the bits to test in checking if
that device caused the interrupt. When we do not have the
device "turned on" those bits are <cleared, making it
impossible to recognize an interrupt from that device. When
the device 1is started, the bits are set up. In turning on
the device, we must be careful that we do not get the
interrupt before we set the bits indicating that we were
expecting an interrupt. Essentially "turning cn the device"
and "setting the bits which indicate that it is on" must
appear to be simultaneous actions. We create this effect by
turning off the PI system while we start the device and set
the bits. The STARTDV macro may be used for this purpose.

Before calling the STARTDV macro, we set the bits to be
tested on interrupts in the 'left half of AC Tl. The
condition bits to be sent to the device are put in the right
half. The STARTDV macro is then written with the device
mnemonic as an argument,

Example for PTP

HRLI T1, PTPDON Bit to test an interrupt
HRRI Tl, PTPCHN PI Assignment
TRO T1l, PTPDON " CONO bit to start device

STARTDV PTP
The STARTDV generates:

EXTERNAL PIOFF, PION

CONO PI, PIOFF Disable interrupts
CONOC PTP, (T1) Start PTP
HLRM T1, PTPCON Store bit to test

DIGITAL TOPS-13 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

CONO PI, PION Enable interrupts
(Expect immediate interrupt)

The interrupt routine begins with:

CONSO PTP, QPTPCON Did PTP cause interrupt?
JRST Next Interrupt Routine; No, check next device

If you use the STARTDV macro, vyou must set up location
XXX'CON in the service routine. Also you must ensure that
the device does not cause a normal interrupt while you have
XXXCON set to zero. If a condition which causes an
interrupt occurs while XXX'CON 1is cleared, the interrupt
will be dismissed as a spurious interrupt, by the JEN at the
end of the skip chain. However, since the condition has not
been cleared, the device will immediately cause another
interrupt, and the system will be hung in an infinite 1loop.
Normally the device initialization routine should clear the
PI assignment in the hardware, as well as clearing XXX'CON.

Race Conditions

Whenever the final result of two asynchronous processes
depends on which of them finishes first, a race condition is
said to exist. Since race conditions lead to unpredictable
results, they must always be avoided. We are in jeopardy of
a race condition any time there is a possible interaction
between an interrupt routine and a lower priority routine.
Race conditions are also possible when a process may be
interrupted for any reason, and the same code then be
executed for another process before being finished for the
first. There are basically two ways of avoiding race
conditions. One is to set up interlocks to <control the
order 1in which events occur in the separate processes. The
other is to arrange things so that the results are the same
regardless of the order in which the events occur.

As an example, consider the following problem: &the use bit
in buffers provides synchronization between UUO level
routines and interrupt routines. On output, if the use bit
is set it indicates that there is at least some data in the
buffer, which still needs to be written at interrupt 1level.
The IOACT bit and IOW bit are also significant. IOACT
indicates that we are expecting an interrupt €from the
device, and hence the UUO level routine need not call the
OUTPUT routine to start the device. The IOW bit indicates

I02-17

DIGITAL ‘ TOPS-19 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

that the job is in I0 Wait, and the interrupt routine should
call SETICD upon completion of a buffer. There 1is a
potential problem if we are about to put the job into IO
Wait at the time we get the interrupt completing a buffer.
We check the next buffer's use bit, and finding it set we
set the IOW bit. The IOW bit is the flag to the interrupt
routine that the job should be taken out of IO Wait. What
if the interrupt which completes the buffer occurs after we
find the use bit set, but before we set the IOW bit? We
will put the job into IO Wait, and the event which should
take it out of I0 Wait has already occurred. It turns out
that this is a case where we arrange to do the right things,
even when the events occur in the "wrong" order.

There are two possible cases, depending on whether or not
there 1is another full buffer. If there is another full
buffer, the interrupt routing continues writing from it.
Upon completion of that buffer it will detect the IOW bit
and call SETIOD to get the job out of IO wWait. If there Iis
not another full buffer, the problem is somewhat more
complicated. The interrupt routine will turn off the device
and clear IOACT, since it can not continue in the next
buffer. Since IOW is not yet set, it will not call SETIOD.
Back in the UUO routine, we will attempt to put the job into
I0 Wait by calling WSYNC. WYSNC normally sets the Jjob's
Wait State Code to IO Wait and exits to WSCHED for
rescheduling. 1If it did this in the case we have just
described, the Jjob would be put into IO Wait, and would
never be taken out of that state. To avoid this problem
WSYNC will never put a job into IO Wait if the IOACT bit is
not set. Rather, it will give an immediate return to its
caller. 'Upon return from WSYNC, we check the next use bit
again. This time we f£ind the buffer available, and allow
the Jjob to continue. Hence, even if the interrupt occurs
after we test the use bit but before we call WSYNC, the
final result 1is the same as if the interrupt had occurred
before we tested the use bit.

Suppose in the above example the interrupt had occurred
during WSYNC--after we checked IOACT and found it set, but
before we set the IOW bit. Here again, the interrupt
routine would turn off the device, if it did not have
another buffer, without getting the Jjob ot of IO Wait.
Again the Jjob would be hung. To avoid this problem, WSYNC
turns off the PI system before it checks IQACT and back on
after setting IOW. Hence the two 1instructions appear

I02-18

DIGITAL

TOPS-195 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

simul taneous to the interrupt routine. This is an

of preventing a race condition by means of an interlock to

control the order in which certain events occur.

CH'N:

DEV1'INT:

DEV2'INT:

DEV3'INT:

JSR CH'N
JSR PIERR
]

JRST DEV1'INT

CONSO DEV1, Conditions
JRST DEV2'INT

Process DEV1 Interrupt

CONSO DEV2, Conditions
JRST DEV3'INT

Process DEV2 Interrupt

CONSO DEV3, Conditions
JEN @CH'N

Process DEV3 Interrupt

I02-19

DIGITAL TOPS—-10 MONITOR INTERNALS
I/0 Device Service Routines And Interrupt Processing

I02-29

DIGITAL TOPS-10 MONITOR INTERNALS
I1/0 Device Service Routines And Interrupt Processing

EXERCISES

What is the basic function of the OUTPUT routine in a

l.
device service routine?

*2. In general, where is an output device turned off if it
has emptied the 1last buffer supplied by the user?
Where is the specific instruction for the paper tape
punch?

*3., What is the INTTAB entry for the paper tape reader? --
the software clock interrupt?

4, If an interrupt occurs, but no device assigned to the
causing 1it, how 1is the interrupt

channel admits
dismissed?

5. Which interrupt assignment macros denerate (directly)
INTTAB entries? -- device save routine definitions?

Which instruction results in CKOCHL being defined? How

*35.,
is it defined?

I02-21

DIGITAL TOPS-19 MONITOR INTERNALS

7.

*10.

1/0 Device Service Routines And Interrupt Processing

What would be the result of defining UNIQ3 = 12

How could you ensure that a special device is assigned
as the only device on a specific channel, without

making any changes to COMMON.MAC?

List the actions taken by PTPINT if a buffer has been
finished and the next buffer is not available to it.

Where do the CONSO skip chains get initialized?

I02-22

TOPS~148 MONITOR INTERNALS

Disk Service

)
)

-4
-3

>

COURSE MAP

DSK-1i

TOPS~18 MONIT

OR INTERNALS
Disk Service .

DIGITAL ’ TOPS~-10 MONITOR INTERNALS
Disk Service

This page 1is for notes

DSK-ii

DIGITAL TOPS~1@ MONITOR INTERNALS
Disk Service

DISK SERVICE

INTRODUCTION

the most

.
1ls
. .
rvvicoe rontinasg
Ao WV daw e &

[S 81

The disk service routine
complicated of all the se
because it is heavily used and it has a
compl icated incore data base. This module
will explain how jobs compete for use of the
disk, how that competition is resolved by
the queue mechanisn and how I/0 1is ' done
within the framework of the file structure.

DSK-1

DIGITAL TOPS~103 MONITOR INTERNALS
Disk Service

This page is for notes

DSK~-2

DIGITAL

TOPS~-10 MONITOR INTERNALS
Disk Service

RESOURCES

TOPS~-1@ Microfiche

TOPS~19 Monitor Internals Course Supplement

Course Materials -~ Chapter 149
Supplement ~ Graphics Section 16-1 thru 18-~16

LECTURE OUTLINE

I. Introduction

A. FILSER
B. COMMOD
C. ?7?27KON

IT. Hardware Principles
A, Fixed Head
B. Movable Head
C. Configuration
D. Channel Command List
E. 1I/0 States

ITI. Disk Resident Data Base
A. STR
B. MFD
C. UFD
D. RIB
E. FILE

IV, Files And Structures
A. DSKDDB
B. Physical Disk Block Usage
C. Home Block
D. TABSTR
E. STR Data Block
F. UDB

V. Space Management

A. CLUSTER
B. SAT
C. SPT
D. SAB

DSK-3

DIGITAL TOPS~-109 MONITOR INTERNALS
Disk Service
E. Swapping Space

VI. Accessing Disk Files
A. How Many Reads To Get Data Block

B. STR
Cc. PPB
D. UFB
E. NMB
F. ACC
VII. UUO Processing
A, ASSIGN
B. INIT
C. LOOKUP

D. Input/Output
VIII. Introduction

IX. Data Base
A. DISK DUB

B. CHN
C. KON
D. UDB
X. I/0 Queues
A. PW
B. TW

XI. 1I/0 Request/Queue Processing

XII. Interrupt Processing
A, 7?7?7?7KON~- FILINT
B. FILINT Flow
C. Positioning Optimization
D. Transfer Optimization
E. Start I/0 Including Creation
of Command List

XIII. Dual Porting
A. What is it
B. Data base considerations
C. Code Implications

DSK-4

DIGITAL TOPS~13 MONITOR INTERNALS
' Disk Service

DISK SERVICE

All device dependent functions for disk files are
performed by a group of modules coliectively known as the
disk service. The disk service performs two different and
logically independent types of functions; IO operations and
file operations. IO operations are the reading/writing of
specific blocks on specific units. File operations involve
the processing of directories, pointers, etc. The file
processing software accepts requests stated in terms of file
names, file structures, and relative blocks within a file.
From such requests it sets up requests for operations on
specific blocks which can then be handled by the 1I0
software. The file processor itself must frequently call
upon the IO processor to read and write various special disk
. blocks.

The disk software includes several modules which are
assembled separately and included in the monitor, as needed,
at load time. Most of the executable code is included in
FILSER. FILSER per forms all operations which are
independent of the controller type, and will be present in
any disk monitor. There are separate routines to handle
controller dependent functions on each controller. These
routines, RPXKON for RH16/2¢ disk controllers, DPXKON for
RP1§ disk controllers and FHXKON for RCld fixed head
controllers, are loaded only if needed. SWPSER creates IO
requests for the swapper and interfaces with FILSER. The
data base for the disk service is contained in a separate
module named COMMOD. COMMOD is analogous to COMMON for the
rest of the monitor.

Hardware Principles

Each disk unit is connected to a controller, and all
communications to that unit must go through the controller.
The controller is connected to the CPU by the IO bus. The
controller is also connnected to a data channel, which
allows the controller to access memory without going through
the CPU or the IO bus. Each disk transfer is started by the
CPU executing a DATAO to a specific controller. As a result
of the DATAQ, a word is sent to the controller. This word
specifies one particular unit of those connected to the
controller, a physical disk address (i.e. track number,
etc.) and the core address of a list of core areas. The

DSK-5

DIGITAL TOPS-19 MONITOR INTERNALS
Disk Service

transfer will be to or from consecutive locations on the
disk, but may be scattered among an arbitrary number core
areas. The length and address of each of these core areas
is on the list whose core address is sent to the controller.
This 1list 1is known as the Channel Command List. The total
length of the areas on the Channel Command List determines
the number of words transferred.

Before a transfer may be started, the unit, the
controller, and the data channel must all be idle. All will
be busy until the transfer is complete. The CPU, however,
is needed only for the time required to send the instruction
to the controller. If can then go on processing while the
transfer takes place. When the transfer is complete, the

controller will cause a priority interrupt on its assigned
channel.

Before a transfer can be started on a disk pack, the
access arms must be positioned to the correct track. A
positioning operation requires the unit and controller to be
idle (RP1# only), but not the data channel. The unit will
be busy until it reaches the designated track, but the
controller is almost immediately available for other
operations. When the unit reaches position, it will inform
the controller. The controller will cause a priority
interrupt at that time if it does not have a transfer in
progress. If the controller is busy when the unit reaches
position, there will be no interrupt, but an attention bit
for the unit will be set 1in the controller. When the
interrupt occurs upon completion of a transfer, the
attention bits indicate which units reached position (or had
errors) during the transfer. (Note that RH18/20 controllers
can 1initiate additional position requests to other idle
units even-though the controller itself 1is transferring
data) .

The basic addressable unit of disk storage is a sector.
The size of a sector is different for various types of disk,
but there are always an even number of sectors per track.
It is sometimes useful to know which sector (of each track
currently accessable) will reach the read-write heads next.
Therefore, the controller has a sector counter for each of
its units. The contents of the sector counter for a given
unit may be obtained by a DATAI instruction to the
controller., The unit must have been previously selected by
"a DATAO or CONO.

DSK-5

DIGITAL . TOPS~179 MONITOR INTERNALS
Disk Service

Structure of Disk Files

To the software, the basic unit of disk storage 1is a
block, which is always 128 words. Any number of blocks may
bé combined to make up a file. Te normal user programs,
disk blocks can be read or written only as part of a file.
The file is identified by a file name and extension, and the
project-programmer number of its owner. The program may
read or write the blocks of a file either sequentially or
randomly. Likewise, the file may be accessed in either
buffered mode or dump mode. The structure of a file |is
independent of the manner in which it was written or is to
be read.

The first block of every f£ile is a Retrieval
Information Block or RIB. The RIB contains a great deal of
descriptive information about the file, and tells where the
data blocks of the file are 1located. The RIB itself,
however, is not a data block and is never seen by a program
reading the file nor directly written by a program writing a
file. The monitor reads and writes RIB's as necessary in
order to perform functions requested by user programs.

Files are usually written as groups of consecutive
blocks. There is a pointer in the RIB corresponding to each
group. The pointer tells the location of the first block of
the group and the number of blocks in the group. It is
desirable to have as few separate groups as possible.
However, a group could possibly consist of only one block.

Directories

The locations of all files belonging to one user are
found in a User File Directory for that user. The User File
Directory, or UFD, is itself a file with a RIB and the
normal structure of a file., The file name of a UFD is the
binary project-programmer number of the user. The extension
is always UFD. The data blocks of a UFD contain a two word
entry corresponding to each file belonging to that |user.
Each entry specifies a file name and extension, and contains
a pointer to the RIB of that file.

All the UFD's belong to an "artificial wuser" with
project-programmer number [1,1], and no other files belong
to [1,1]. Hence, the UFD for [l,1] is a directory to the
directories. It is commonly called the Master File

DSK~-7

DIGITAL TOPS~128 MONITOR INTERNALS
: Disk Service

Directory or MFD. The collection of files consisting of an
MFD, all the UFD's to which it points, and all the user
files to which the UFD's point ~ - is called a file
structure.

File Structures

As a collection of files, the file structure Iis
logically independent of any hardware considerations, such
as units, controllers, etc. In actual practice, however,
there are several restrictions. All the files on a single
pack or unit must belong to the same structure, A single
structure may be spread over several units, and a single
file may be spread over several units of the structure. But
different type units, those with different models of
controllers, can not be combined in one structure. Hence
RP@4 and RPG6 disk packs may be combined, and RM10B drums
and RD10 fixed head disks may be combined. But the same
structure will never include both disk packs and fixed head
devices.

The file structure, rather than the unit, 1is the
logical entity recognized by the file processing software.
On every LOOKUP or ENTER a structure or structures must be
specified. (Note that a file name and extension and
project-programmer number uniquely identify a file only
within a given structure,) 1If any part of a structure is
removed from the system, the entire structure becomes
inaccessable. Thére is only one case in which data is
accessed without necessarily being part of a file structure.
The swapper addresses the disk system in terms of physical
disk addresses. Therefore, if an entire unit is to be wused
only for swapping, that wunit need not be included in any
structure.

Allocation of Disk Space

Before a block may be added to a file it must be
allocated for that file. Disk space 1is allocated in
clusters, where a cluster is a fixed number of consecutive
olocks. On each unit there is a Storage Allocation Table,
or SAT, block which has a bit corresponding to each <cluster
of the wunit. 1If a cluster is allocated, the corresponding
bit is set in the SAT block. The bit being set will prevent
that block from being allocated to any other file.

DSK-8

DIGITAL TOPS~190 MONITOR INTERNALS
Disk Service

The number of blocks per cluster is a parameter of the
file structure and can be changed only when the structure is
refreshed, or reinitialized. The total number of c¢lusters
for a unit depends on the size of the unit and the number of
blocks per cluster. There may possibly be more clusters

than can be accounted for with a single SAT block. 1In this
case, there will be as many separate blocks of SAT's as
necessary, and each SAT block will be physically near the
blocks which it describes. All the SAT blocks for a file
structure are combined into a file called SAT.SYS. SAT.SYS
is initially set up by the refresh code, and the information
in it is updated regularly as the system operates. However,
SAT.SYS is not normally read or written as a file. There is
a table called a Storage Allocation Pointer Table, or SPT,
for each unit which tells the physical disk address of each
SAT block for that unit. When the monitor needs to read or
write a SAT block, it sets up a request for the specific
block which is needed.

When a SAT block is in core, it resides in a Storage
Allocation Block, or SaB. All the SaB's for a unit are
linked together and to the SPT. If a unit has several SAT
blocks all of them may, or may not, be in core at one time.
The number of SAT blocks to be kept in core is a parameter
of each unit. This parameter may be changed during system
initialization without the file structure being refreshed.

Allocation of disk space is done in two different ways.
If a user is writing a file and reaches the end of the space
previously allocated, additional space will be allocated at
that time. If possible, the space will be allocated
immediately after the last group, so that an additional
pointer will not have to be set up. The number of blocks to
be allocated is a parameter of the structure and may be
changed without refreshing. The wuser may explicitly
allocate any number of blocks at the time he builds a file
by doing an extended ENTER. These blocks will be allocated
as a single group of consecutive blocks, ‘allowing the file
to be written or read with the least amount of overhead
processing. When the file is closed, any unused blocks.

DSK~S)

DIGITAL TOPS~12 MONITOR INTERNALS
Disk Service

I1/0 Processing

The disk I/0 processing software maintains information
about each piece of disk hardware in tables found in COMMOD.
These tables include the Unit Data Block (UDB), Controller
Data Block (KON), and Channel Data Block (CHN). The IO
processor acts on requests set up by other processors. Each
- request resides in a disk device data block, and specifies a
unit, block number, core address and operation to be
performed. Significantly, the number of words to be read or
written is not specified initially, but is determined Jjust
before the transfer is initiated. A disk device data block
or DDB, has all the standard features of any DDB, plus a
great deal of additional information unique to disk. Disk
DDB's are set up dynamically as INIT UUO's, and ASSIGN
commands which give a logical name to disk, are done. There
is, therefore, a DDB for each user software channel which is
doing disk I/0. 1In addition, on non-VM systems there is a
DDB for use by the swapper. Every disk transfer which 1is
done 1is the result of a request being set up in a disk DDB
and presented to the IO processor. This 1includes reading
and writing of user files, non-VM swapping transfers, and
all transfers done by the monitor for its own purposes.

Request Queues

When an I/O request is presented to the I/0 processor,
the transfer or positioning will be started immediately if
all the necessary devices are available, Usually, however,
the request must be added to a que ue of requests for a
specific device., 1If the request requires positioning, it is
added to the Position Wait, or PW, Queue for that unit. If
the request does not require positioning, it is added to the
Transfer Wait, or T, Queue for the Data Channel. The
queues are formed simply by 1linking together the DDB's
beginning with the Unit Data Block for a PN Queue or the
Channel Data Block for a T™W Queue.

Each time there is a disk interrupt, each unit which
needs positioning 1is positioned for one of the requests in
its PN Queue. Then a transfer is started for one of the
requests in the T™ Queue for that channel. The task of
choosing which request to process next is the function of
two optimization routines.

DSK-149

DIGITAL TOPS~13 MONITOR INTERNALS
Disk Service

. Optimization Routines

The positioning and latency optimization routines try
to choose the best request to process next from the PW and
™W Queues. To decide what we mean by "best" 1is somewhat
difficult, but there are twe basic considerations. First of
all we attempt to minimize the time that each unit is not
doing data transfers. 1In addition, we try not to be grossly
unfair to any individual request. We do not want to delay
one request indefinately in favor of requests which can be
processed more efficiently. Therefore, each optimization
routine 1is written to choose the request which has been
waiting the longest every so often., "Fairness" counts are
maintained for positioning and for transfers on each data
channel. Each time there is a transfer done interrupt the
fairness counts for that channel are decremented. On an
interrupt when the positioning fairness count has expired,
each unit which needs positioning is sent to the track
required by the oldest request in its PW Queue. Similarly,
if the fairness count for transfers has expired, the
transfer is initiated for the oldest request in the TW
Queue, Whenever either count expires, it is reset to a
value which may be specified when the monitor is built.

DSK-11

DIGITAL . TOPS~19 MONITOR INTERNALS
Disk Service

This page is for notes

DSK-12

DIGITAL

TOPS~-10 MONITOR INTERNALS
Disk Service

EXERCISES

Hardware Principles

1.

To the hardware, what is the basic addressable unit
of disk storage?

Under what conditions will a disk controller be
"busy" (i.e. unable to accept a command)?

What events cause a disk controller to 1interrupt
the CpPU?

How can a program determine which sector of a given
unit will be next available for access?

DSK-13

DIGITAL

13.

TOPS~10 MONITOR INTERNALS
Disk Service

Structure of Files

Py

s between blocks, clusters,

l“rU

How are blocks of disk storage linked together to
form a file?

What is a "file structure?"

What is the purpose of directories?

What factors 1limit the length of a disk
file?~~~~the number of files which one user can
own?

How does the structure of a file written by random
access output differ from that of a file written

‘sequentially?

DSK~14

DIGITAL

11.

12.

13,

14,

15.

TOPS~10 MONITOR INTERNALS
Disk Service

I1/0 Processing

Under what conditions would a positioning operation
be started immediately upon execution of a
UU0?~-~~a transfer operation?

What does the IOACT bit mean in a disk DDB?

How many requests can there be at any one time in
the:
a. TW Queue for a fixed head disk?

b. TW Queue for a disk pack?

C. PW Queue for a disk pack?

What determines the number qf blocks read or
written on a single transfer?

After a transfer has been completed for a user who
is reading a file sequentially, when will the next
request be set up?

" DSK~15

DIGITAL TOPS-10 MONITOR INTERNALS

Disk Service

16. State, in your own words, the rules used to select

the next request to be processed, from each type of
queue,

DSK~16

DIGITAL

17.

18.

19.

20.

21.

TOPS-19 MONITOR INTERNALS
: Disk Service

Allocation

What are the advantages of a file being written as
a single group?

How can a user ensure that a file is written as a
single group.

What are the relative advantages and disadvantages
of a larger cluster sigze?

What happens to space which is allocated for file,
but has not been used when the file is closed?

What factors should influence the choice of
"minimum amount to allocate"™ for disk files?

DSK-17

DIGITAL TOPS~19 MONITOR INTERNALS
Disk Service

File Operations

22, List three ways a STR may be put on a job's search
list.

23, When a LOOKUP is done, what determines the STR(S)
where the disk service will look for the file?

24. When are disk DDB's set up?-==~- deleted?

25, When are directories

a. Created?

b. Updated?

c. Deleted?

26, Explain the differences between c¢cr eating, updating
and superseding a disk file.

DSK-18

DIGITAL

27.

28.

29.

3@.

TOPS-19 MONITOR INTERNALS
Disk Service

Miscellaneous

What are the effects of a disk unit going off line?

What factors should be considered in deciding on
the configuration of units into file structures?

If a program which is writing a disk file fails to
run to completion, what happens to the file? What
happens to the old version, if the program Iis
superseding a file?

How can blocks be marked as in use in a SAT, but
not be included in any file?

) DSK-19

DIGITAL TOPS~19 MONITOR INTERNALS
" Disk Service

This page is for notes

DSK=-20

TOPS-18 MONITOR INTERNALS

Terminal Scanner Service

DIGITAL"

TOPS-1¢ MONITOR INTERNALS
Terminal Scanner Service

MODULE OQUTLINE

TERMINAL SCANNER SERVICE

-
Lo

Q-
w

ope

II. Data Structures

A,

B.

c.

D.

Line Information

1.
2.

Line Data Blocks (LDBs)
LINTAB

Job Information
l. TTY DDBs

2. JDA

3. TTYTAB

Job vs. Line Information

Chunks

ITII. Terminal I/0

Iv.

A.

B.

- Qutput

Input

Data Structures Revisited

Control Character Handling

A.
B.
C.
D.
E.
F.

CONTROL /0
CONTROL/C
CONTROL/D
CONTROL/T
CONTROL/R
CONTROL/Q and CONTROL/S

DIGITAL . TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

VI. Terminal Image Modes
A. Image Mode

B. Packed Image Mode (PIM)
C. Half Duplex Terminals

VII. Other Terminal Monitor Calls
VIII. Pseudo-terminals (PTYs)

IX. Macro Interpreted Commands (MIC)

DIGITAL ‘ ’ TOPS-1¢ MONITOR INTERNALS
Terminal Scanner Service

SCOPE

All device dependent functions for teletypes are
performed by the scanner service comprising SCNSER and an
additional module depending on the type of scanner. This
module contains the actual I/O instructions, the beginning
" of the interrupt routine, and other sections which vary
according to the scanner being used. The bulk of the
‘service routine 1is independent of scanner type and is
contained in SCNSER. :

This module deals with terminal communications at the
local 1level. Local terminals are connected to a PDP-14 via
DClgs, DC76s, PDP-lls and DL1@Gs (DN87), or PDP-1lls and DTEs
. (DN87S or DN28). TOPS-18 must handle special characters and
echoing for these terminals. The specifics of the device
‘drivers will not be investigated in detail; the main focus
is on the SCNSER module.

Remote terminals are those on a TOPS-18 network. The
node will handle echoing and most special characters, not
TOPS-18. They are discussed in detail in the TOPS-1§ Data
Communicatiocns course.

SCN-1

DIGITAL’ . ’ TOPS—-19 MONITOR INTERNALS
Terminal Scanner Service

DATA STRUCTURES

Line Information

LINE DATA BLOCKS (LDBS)

LDBS contain information about a terminal line. There
is one LDB for each terminal and ‘it is built when the
monitor is initialized. LDBs are not dynamically created;
when they are setup they are around forever. The reason for
- this choice is simple. Even though a job may not be logged
in on a terminal, users may still type on that line. To
speed response, the LDBs already exist which allows the
.monitor to aveid having to spend the time to allocate an
LDB. The code to allocate and initialize the LDBs is in
COMMON where it is discarded when system initialization is
compl ete.

For a complete description of an LDB, see the monitor
tables. However, it is important to remember thaat the LDB
contains

1. Pointers to input and output chunks

2. Line status bits -

3. Line characteristic bits

4, Horizontal position counter

S. MIC information

6. Break characters for Packed Image Mode

7. Count of characters to echo

. LINTAB

The LINTAB table is used to locate the LDB entry for a
line. It contains one entry for each terminal in the system
(including CTY and PTYs). Refer to the monitor tables for a
£ull description of each entry including bit descriptions.
The bits in LINTAB are used to initialize the LDBs and
cannot be changed.

SCN-2

DIGITAL - ‘ TOPS-1% MONITOR INTERNALS
’ Terminal Scanner Service

Job Information

TERMINAL DEVICE-DATA BLOCKS .

Terminal Deyicé Data Blocks (DDBs) are created
dynamically as Jjobs login and contain terminal information
that relate to the job. This includes:

l. Pointers to user buffers

2. Device and logical names for the terminal

;3. I/b status information (DEVSTA)

4. Device mode information (DEVMOD)

5. CPU number of the CPU that owns thié terminal

6. A pointer to the LDB;
There are two tables that contain ?ointers to TTY DDBs:
TTYTAB and JDA. :
TTYTAB

TTYTAB is a table in COMMON that has oné entry per Jjob

and points to the DDB of the controlling (attached) terminal
of the job. A zero entry indicates no attached terminal.

JDA

The Job Device Assignment (JDA) table is part of each
job's _UPMP. It has one entry per channel number and points
to the DDB that is associated with a channel (RH). The LH
describes which UUOs have been done on that channel.

SCN=-3

DIGITAL o ' TOPS-140 MONITOR INTERNALS
‘ Terminal Scanner Service

Job vs. Line Information

The reason that job information for terminals is kept
separate from line information lies in the processes that
use the information. TTY DDBs are used by the UUO processor
to locate user buffers and are used only by jobs (only Jjobs
can issue UUOs). Commands are issued by lines so there must
be another source of information. COMCON looks at LDBs to
find lines with commands typed on them. Refer to figure
SCN-1 to - see how Jjob and :line data structures are
inter-related.

SCN-4

TOPS-19 MONITOR INTERNALS

DIGITAL

Terminal . Scanner Service

.W-Q‘Vwbm

m&:DJ\U

A

SCN-5

.

gaa

8ad "

w sy

aad [srd

/

QvAALL

C..O.J‘dci :uv wT _A.e.m\

yas-

)4

aon /

800 | sya

8v_LnNTl

..’gcﬁ.d.;s ra)tA T o

DIGITAL o ' TOPS-19 MONITOR INTERNALS
' Terminal Scanner Service

The connections between LDBs and DDBs are made when;
1) a2 job logs in, 2) a job ATTACHs or 3) when a user that is
not logged in runs a program. The connection is broken via
1) LOGOUT, 2) DETACH or 3) when the program that a
non-logged in user has run finishes. The routines to handle
‘the connections are TTYATI (to attach to a job initially)
‘and TTYATT (for the ATTACH command). When a non-logged-in
user 1issues. a request to run a program, the TTY DDB is
.created and entrance is made at TTYATI.

SCN-6

TTYATS

B

!
VDB skC

Gel a new
po8

TIY0TZ

Detach form
sid DDE

¥ any

t
3

Clear Afz'mc'.
Gr a'::fﬂse_fl
if needed

Set atfacked
avd assigned
Hts v DO

|

Link DDB
= LDB8

Ling LDE
< DDF

SETDVL

Put job +
" 208

Sioe DDE

cddress in
—TYTAFE

TOPS-1¢ MONITOR INTERNALS
Terminal Scanner Service

SCN -2

| SCANNAM
! Se‘b canec‘?

i SCN-7

wmoe”
<ETSTA
Set ¢ rrect

station
nomper

an élbdn]

SigNAL
Attach

I S—

(Return) |

DIGITAL : ' TOPS-1¢ MONITOR INTERNALS
‘ Terminal Scanner Service

'Aﬁa.aé'mj o] qMCJna’ rPow
stme PPN 4 must detach this
K b Grst

fféDEz’
{:gna/

attach

TTYATR
SCN=-3

SCN-8

DIGITAL _ - ‘ TOPS~-18 MONITOR INTERNALS
' Terminal Scanner Service

The routines to break the links are TTYDET (for all
user detaches) and TTYDTC {(for a DAEMON detach).

.- TTY DDBs are created when a Jjob number 1is assigned
(when a program is run). If the job is not logged in, the
DDB is deleted when the program finishes. If the 3job is
logged in, the DDB stays until the job KJOBs or DETACHs.

SCN-9

Frere & DAEMON Detach

Clear

SACCT |

Vo

DIGITAL

/ .\ £ NT \

{ |.r7’u-t:_J

Se{:up

TOPS-1¢ MONITOR INTERNALS
Terminal Scanner Service

SCN-4

Lo

‘\ TTY0ET

TR

SIGDET’
6!5!"6{
Detach . < oA

 DETACH Cammmd
User Debach ’

“Last

pregram

teouT
k]

Yes

TTKS08

CAC MOD

Forte console 5

to tommand

level

Set K308
n LDEB

o PTYDET
| TDTZ
Dss;onn?c't
oD8 fom LDP
CNCMOD
Does an_Yes Pz L0B

LOB exist?

ot tp leve]

Teil COMRET

£o0 dean w

at commanJ
level

wait for
detoch and
return

Ketrn

! SCN-10

\ CMDSET)

Huve COMCON
perform KSOB

. //_5_
\ TTFORC)

Face b to

comnard’ lewe]

DIGITAL TOPS-10 MONITOR INTERNALS

Terminal Scanner Service

Chunks

Terminal data is stored in four-word buffers called
chunks. Chunks are maintained as doubly linked lists. Each
terminal line may potentially have two 1linked-lists of
chunks; one for input and one for output. When chunks are
no longer needed by a line they are returned to a free 1list
of chunks. The pointers to the chunks are kept in the LDB.

Each chunk has the the following format:

Ptr to_previous_._. | Pir. 4 rext.____ .|

o chunk - : chunk ‘

-|-Character— | —character-|-chaacter- |- Character—-

Aeharacter—character | charac te | -chavacter|-

A charctem—-characker | chamcter | character=|-

- T . SEN-5 T

Character data 1is stored as nine-bit gquantities which
permits a maximum of 12 characters to be stored in a chunk

(4 £to a word).

: All the chunks are kept in a pool in the monitor. The
pool is initialized by the TTYINI routine in SYSINI. There,
the space is allocated and all the initial links created.

The location TTFTAK points to the first free chunk in
the pool. When a line needs a chunk, it gets the chunk
pointed to by this location. TTFPUT points to the last free

chunk in the list and returned chunks are stored after this
chunk. TTFREN contains the number of £free <chunks 1in the

. System.

SCN-11

DIGITAL

TTFTAK

TrEPYT

TOPS~18 MONITOR INTERNALS
Terminal. Scanner Service

SCN-6
Cf'\.unk_ Free LJ.S'T’Z

'
= | TTFREN
free chum ks g
| .

Y
/
Q

scN -1

i

TOPS-18 MONITOR INTERNALS

DIGITAL
Terminal. Scanner Service

The total number of <chunks allocated at MONGEN time 1is

determined by the following formula:
. ~ SCN-7
chunks allocated ot MONGEN

Tr.r i
TTCHEN = TTPLEN 1]

H TTPLEN I 5
L TTPLEN L AC 5 TTCHKA = TTPLEN ¥ (0
TL qTeLE N LAS , TTCHEN

TTCHEN = TTPLEN X6

= TTPLEN * 7

Else | | ,
wheses ’ -
TTPLEN = T ComLN t PTYN * /
and |
TeoNLN = M. TLTL t+ M.RMCR + M.cPU

M-'f‘-TL = £ T7Y lnes + #TTs on CFE + ERTC hns +

(EumwiE
M. RMCR =#Network TT¥s
| M.cPU =# CPUS

SCN-13

DIGITAL T ' TOPS-16 MONITOR INTERNALS
' Terminal Scanner Service

Characters are placed in and removed from chunks using three
macros: LDCHK, LDCHR and STCHK. Macros are used in place
of subroutines to make handling faster (at a slight cost of
size). They do the following things:

1. LDCHK - takes a character out of a chunk but does
give back used chunks (useful when echoing input).

2. LDCHKR - takes a character out of a chunk and
deallocates (returns) used chunks to the free list
if necessary.

'3, STCHK - puts a character in a chunk, allocating
’ chunks from the free list if necessary.

‘The last two must only be called with SCNSER interrupts
turned off or problems will result. ' '

The SCNON macro turns on scanner interrupts and SCNOFF
. turns off scanner interrupts. Both are defined in S.MAC.

" TERMINAL I/0

Terminal I/0 can be a difficult subject. to understand
because of the many options and special characters involved.
Terminals can be in character mode, line mode, image mode or
packed image mode. 1/0 can be performed using INs, OUTs,
TTCALLS or TRMOP.s. There are over ten special characters,
each demanding unusual treatment. Sometimes COMCON must use
the characters; other times the user (through UUOCON) wants
to use the characters. Some terminals have special
character sets or modems. Each terminal type has its own
fill, length, width, etc. The SCNSER module and various
device drivers must handle all these cases, and handle them
efficiently.

To simplify the presentation, the next two sections
will describe how terminal I/0 is accomplished on one
terminal for the following "simple" case: ‘

. 1. DTE-20/PDP-11 based local communications

SCN-14

DIGITAL ' : ’ TOPS-19 MONITOR INTERNALS
Terminal Scanner Service
2. Terminal is in line mode

3. No special characters (only Carraige return/line
feed)

4, . User programs will use TTCALLs for I/0
Variations can be easily understood in relation to this

basic structure. 1In a later module, the specifics of DClg,
DL1@-based and DTE-based communications will be discussed.

Qutput

‘OQutput is the easiest case to consider. It can come
.from two sources: UUOCON (via a TTCALL) or COMCON (the
monitor must print something). Terminal output is

non-blocking: once the ocutput has been queued up, the job
or process may continue to run without having to wait for
the output to finish.

Consider the case of TTCALL 1, (output one ASCIZ
character). When the UUO is issued, control passes from
UUOCON to ONEOUT in SCNSER. This routine (figure SCN-8)
..will get the wuser character, check to see that a null
character is not being output ~and start the output. In
addition, terminal response data is recorded. '

SCN-15

CSCN-B

TOPS-19 MONITOR INTERNALS
Terminal Scanner Service

in SCNSER
Dutput one character

<etup
cCTY0 as

' outpt

| reutine

SetuR
T’YO7V-] as
cutpuUT’
routine

RSP . Toe

Recotd
response

deta

¥
GETWOU

Get user

word

v
Mesk ovt
Junk,

No
- TYOT7W
Type out
character

Ne

vyes
|_PIYPE
Tt
AT SCN-16
1&\:‘4\2&{&* 8\:{
lez

e

f Retuvrn -

DIGITAL . : ' TOPS-16 MONITOR INTERNALS
Terminal Scanner Service

ONEOUT will call TYO7W (also in SCNSER) to perform the
cutput. There, the character will be placed in a chunk in
the output list. Checks are made to see if Control/C has
been. typed, if enough free chunks are left, if a line has
been Control/0'd (throw away output), or if a user has too
much output in the queue. : .

The output request is made by entering the LDB of the

line into the start output queue. This is done by adjusting
the LDBQUE word of the LDB.

SCN-17

DIGITAL ' : TOPS-18 MONITOR INTERNALS
i Terminal Scanner Service

If .wmage
Mc‘]eg use
owwn

parity

(TyoTw) ' { VoA).
N———

Wat fbr 5 semnds
ard then go T2 TYOIW

To many charsg
wait for his Aaunks
b ewgty

| Alow

‘ 'm'keprts

2 Sart outpdt P&

— D Gueve LOEB e
TOFPOKE avd retwen

- SCN-IB

DIGITAL : : TOPS-19 MONITOR INTERNALS
‘ Terminal Scanner Service

At this point, return is effected from the UUO and the
user program continues to run. The character has not
reached the terminal but the 3job can continue because

terminal output is non-blocking. A time chart would look
like this: ‘

Output at the UUO Leuel

Juo lewel ; WLocoN § SENSER
; oNEOUT
i
Clocy iewefl
“Ihterrupt
Le vef

SCN-19

DIGITAL . . TOPS-10 MONITOR INTERNALS
o : Terminal Scanner Service

) But when does the output get started? The clock cycle
is responsible for calling the correct routines. 1In CLOCK1
at CIPS:, there is the following instruction

~T - e
CIP5:: PUSHJ P,2.CPSTO

.CPSTO is a location within the CPU data block that holds
the terminal output routine, in this case .SCOTIC.

The function of .SCHTIC is to start output for a
variety of types of lines. It will call several routines:

CTYSTO - CTY for KS14, KI1lQ

TTDSTO - DTE-20 basedd terminals
NETSTO - Network terminals

D76STO - DC76 Terminals

DL@STO DC1l@ Terminals

DL1STO - DL14 Terminals

DZSTO - DZ1ll Terminals (KS18 only)

' The routine for our example is TTDSTO in TTDINT (the device
driver for DTE-20 terminals).

4 TTDSTO searches for an LDB 'in the queue, gets a
"character from the chunk, deallocates the chunk if
necessary, puts the character in the DTE-20 queue and starts
the DTE. Return is made is made from TTDSTO after a string
or charcter has been sent. This means that only one
DTE-based terminal 1line will be serviced every clock ticke.
This is true for every line type; only one line of that
type will be started every clock tick.

SCN-28

sew-t\

DIGITAL : TTUSTO TOPS-18 MONAI,TOR INTERNALS
' Terminal Scanner Service

~.

ybude
ct
(TToseN - 9o 4 -
: TOTAKLE . ;’

Get next : !
active |
line

Ouvtput will onfj be
started for one lice
’ durir;g a- clock ‘t'fc."{ .

TOPS-19 MONITOR INTERNALS

DIGITAL
Terminal Scanner Service

SCN-\T

Store .
charagter
. in bufer

G et ancther chaacter

Yes .

SCN-22

DIGITAL , - ' " TOPS-10 MONITOR INTERNALS
Terminal .Scanner Service

The DTE driver will not be discussed 1in this module.
Suffice to say that the character gets to the PDP-11l and is
finally output. The sequence of actions is:

SCN-\3

Output at the VUO Leuel

serSeb ; |

l

10 level B e R

Slock leel okt | rrom [V

Y

nterrypt
Lewe|

time —>

SCN-23

DIGITAL : ' TOPS-10 MONITOR INTERNALS
Terminal Scanner Service

The process to output a string (TTCALL 3,) 1is only
slightly more complicated. Essentially it calls the TYOTW
routine multiple times. From that point on, the same

routines as were previously discussed take over. The flow
can be seen in Figure SCN-14. :

SCN-24

DIGITAL TOPS-1§ MONITOR INTERNALS

Terminal. Scanner Service
(ouTsTR) SeN A%
N——

RSPToR

Rezacd
tespense datq

—

CLRIMT

clear image
1npué stabe

CETWO 1L
Get a Userig
. word

g v

cescneduie ~allsws mivrnption of lag LAY

/VU// marl’s énd aP annj
Start PTY (£ e1Y) :

T | soneas

DIGITAL " ' TOPS-16 MONITOR INTERNALS
Terminal Scanner Service

The command processor (COMCON) interface to these
routines follows a slightly modified path. When output must
be done by COMCON, CONMES is called. CONMES calls COMTYO
for each character which in turn calls CCTYO (in SCNSER).

6o pfmf character

Observe that control reaches TYO9W, part of the same routine
(TYO7TW) that performs output for UUOs. Output follows the
_ same path from that point on with one difference. Since
' COMCON is part of the clock cycle, the decision to queue the
output request and start the output request may occur in the
same clock cycle. If not started right away, output will
begin at a later clock interrupt.

SCN-26

DIGITAL - o S TOPS-10 MONITOR INTERNALS
Terminal Scanner Service

SCN-\6

Output qt Cqmmano{ /,e,c.e/

“Usec Lewe| ‘ z
| |
VLo Laue| ' i
Clo Ck LEvs ! quae reguast| < h::‘;'pu:
Infernpt : T
Lews | g - : '
time —>

SCN-27

DIGITAL 4 , TOPS-19g MONITOR INTERNALS
Terminal Scanner Service

Input

Terminal input is more difficult to understand because
oc echoing and the fact that the job will change status and

go into terminal wait state, requiring rescheduling. When a
break character is received, the job can continue.

Assuming the same "simple" case as before, consider
what happens when a job is waiting for:a line of input from
the attached terminal. The job will issue .the INCHWL UUO
(INput CHaracter and Wait, Line mode). '

When this monitor call is issued, the terminal goes
into TI wait until a break character is received. Only the
_first character is returned at that time. Successive UUOs
return the reamining characters until none remain. At that
time, the next INCHNL will put the terminal back into TI
wait.

when INCHWL is issued, control passes from UUOCON to
INCHNL in SCNSER. This routine calls in turn TWAITL to wait
for a line, TYI to get a character and PUTWDU to give the
character to the user. If a line has been input already,
_return from TWAITL is immediate, otherwise, the 3job goes
into TI wait and will not return until a break character is
received. The job blocks. ot

SCN-28

DIGITAL - _ ’ ' TOPS-19 MONITOR INTERNALS
Terminal Scanner Service

SCN-T

- TNCHWL

TWAITL

Watt $pe
Line

TYIZ

Get
chancter

PuTwoU
Gue

» user

Retur

SCN~-29

TWAL
T ~ TOPS-10 MONITOR INTERNALS
Terminal Scanner Service

DIGITAL -
sen-iB.

CKATTL
Wait fr | l
477&[14 : E

TTLLHK

Check for
Lme present

start .
. deérfd echo
TWATLR ' {
- Flag lne
acbve and
warting
l
TTLCHK
Check fr |
Line p(ésmt
Fargcf
about
' watb;\cj
TWATLL
TIWAIT g
waik for Ca‘l5 -

Input | WSYNC

DIGITAL -

TOPS-10 MONITOR INTERNALS
Terminal Scanner Service

- 3er-\9 , . 5

Tt job detac{ﬂeci
teemica| will wait with
progam at thig pt.

SCN-31

DIGITAL . ‘ TOPS—-1§ MONITOR INTERNALS
Terminal Scanner Service

After a character is typed, the particular device or
front end to which the terminal is attached will eventually
interrupt the KL1g. After a certain amount of processing,
the interrupt routine will call RECINT in SCNSER. This is
true for all terminal device interrupt routines.

RECINT is the heart of terminal input. It must handle
many special cases. Among the tests it makes are: ' :

l. Network Virtual Terminals

2. Dataset interrupt

3. Half-duplex -terminal

4., Packed image mode

5. Input image mode

6. Special characters

7. Break characters

8. Auto CRLF and upper case conversion

9. Positioning on a line :

Once all the tests have been met, the character is placed in
a chunk and the TOPOKE routine 1is called to terminate
RECINT. -

Calling TOPOKE is far more important than it appears.
Remember from the output section that TOPOKE places the LDB
into the output gueue. But in this case, what 1is in the
output queue? Nothing. Then why do it? The answer to that.

will be seen-in a moment. First, review what has happened
so far by looking at the following diagram:

SCN-32

DIGITAL - ' TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

ScN-20 o |

Lrput ot UUO Lovel

User B ___
Usec A [} |
o Lewe|

Sob

blec ks
“lock Levef '
Taferngt | (Trpuvt)

Recer
Level | (output) | Bocaie

SCN-33

DIGITAL - _ ' | ~ TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

scN-2\

SCNOFF

Torn off
interrvpts

Tanore \wi—errup-b
Tura on interrvpls and Betumn

—

SCNON
Tura on
LZnterrupts

| .
RECINU

Process
Taterruet

!
add count |
o#dwuﬁq

!

l

SCN-34

Terminal Scanner Service

' (. RECINU- |
DIGITAL) ' TOPS-13 MONITOR INTERNALS

Mask OEF
deuice -

degndent -
'?’;?'ZS sSc-2T

- Avﬁl ipeaa TS \
»wm‘l VimKOo.
mMing
7 f
W

Indicate
terminal g

online

Check datoset bit

Is
«eerm\‘m! _
ha&\f’

Mark in

b/t 7

SCN-35

DIGITAL - o ' TOPS-18 MONITOR INTERNALS
XN Terminal Scanner Service

HPOS

Yes

Sebracker on Get positn
Ure, tn bine

Dispatzh
2] .
agrepriaic
rovtng

Convert B

vpper case

1€ necessany

HPaS
get posthen
tn Lne

DIGITAL - . TOPS-18 MONITOR INTERNALS
e Terminal Scanner Service

Scu-2%

RECINA

Clear
- uﬂced !C“O')"!“ .

bt

Too wmawy characters

RQWARN

..

<end XOF[=
- STCHE
Store
Chgracter
Note
Bace o
AY

=cn-37

DIGITAL V TOPS-14 MONITOR INTERNALS
Terminal Scanner Service

recter

SCN-38

DIGITAL" - ' ' TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

Once the interrupt has been dismissed, the <character
has been stored in an input chunk and the LDB is in the
output queue (with no output in the queue). Nothing happens
until the clock interrupt. There, the monitor, during its
service of the terminal queues, sees the LDB in the gqueue
and calls XMTCHR to start output for that line. Because
- there is no output, XMTCHR will call ZAPBUF to clean up the
cutput chunks. ZAPBUF, besides deallocating chunks, is also
responsible for starting character echoing via a call to
XMTECH. RECINT placed the LDB into the output queue without
any output so that ZAPBUF and eventually XMTECH will be
-called to produce the necessary echoing. The cycle of
interrupt 1level (receive character)-clock level (echo
character) will be repeated until a break character is

.reqeived.
SCN-26

—

..L.npuf" at U0 Leue/

Jsex B ‘ P ;_—-3
Joec A § :)
20 Lewe] -
Sab
plocksS
lock Levef
gfa}:gc {er
rfe rw,:‘.‘ L/ z n,out)

Recene

- .
Level (o uf.pu.) Thternct

Repeat urty] break
Crarcter

SCN-39

DIGITAL TOPS-18 MONITOR INTERNALS

Terminal Scanner Service
scu-27 |
@a’é‘me H echo a character
when bufered od Hller cotput
done , called at eloct [evel,

LDCHK
Take character
“om Input
save zhunks
Count
characters
ochoed
Break ?,w-'
character ';%zs.&a
b‘t |
AP : .
l Count 2
< Brealk
Characters

DIGITAL - YMTECL | TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

XMTCHR

<CN-4Y -

DIGITAL - , ' TOPS-13 MONITOR INTERNALS
Terminal Scanner Service

SCN-2D @

XMTCHR)
Do mot echo character

STCHE

. Store ovitput
- char in chunk
Lees tount

[pPrsTeRT

Wake v

i lime HC
Ty

| |
XMTCHR sSeN-42

Jser B
Usec A

20 Lewel

“lock Level

Caferrys?
Level

DIGITAL

character
that it may
character
wake the job.

Done) in CLOCK1.

The next question is:
be detected and the job brought out of TI wait so

TOPS-1% MONITOR INTERNALS
Terminal Scanner Service

where in this cycle will a break
run? The answer: in XMTECH, if a break

is received, a call is made to ECHBRK which will
ECHBRK eventually calls STTIOD (Start TTy I/O

The complete timing of the process now looks like this:s

SCcN-30

(Trput)
(Jdmut)

Tput o+ U0 Levef
Scob
blocks
Ech
d;ugder 32:593 ﬂ:ﬁ
< eche & echd
) and chonis
qnbbCk

i yob
R&e“g T . ﬂemuc -
W S i —

Qepest wrti| break
¢harcter

SCN-43

DIGITAL - TOPS-10 MONITOR INTERNALS
Terminal Scanner Service

There are two other cases that must be mentioned in
this basic discussion. One is the case of input going to
COMCON for command processing instead of to the user. The
job will be in monitor mode and not in user mode. This is
also handled in ECHBRK. If the command is waiting in
. command wait, the job will not be woken up but instead the

command bit will be turned on for detection during a future
clock tick. .

The other case is when a user issues a INCHRW which
~only waits for one character. 1In this case, all characters
are break characters. XMTECH will handle this condition at
XMTEC1, calling RCWAK to revive the job if necessary.

SCN—-44

DIGITAL . - TOPS-16 MONITOR INTERNALS
‘ Terminal Scanner Service

DATA STRUCTURES REVISITED

Now that the fundementals of terminal I/0 have been
pPresented, a closer look at the data structures is
necessary. In particular, the LDB pointers to the chunks
must be discussed. The are 10 words in the LDB that are

LDBTIP - where to put characters into the input buffer
LDBTIT -~ where to take characters from the input buffer
LDBTIC - the count of the echoed characters in the
. input buffer '

LDBBKC -~ the count of the break characters in the

' ' input buffer
.LDBTOP - where to put characters in the output buffer
LDBTOT - where to take characters from the output buffer
LDBTOC - the count of the characters in the output buffer.
LDBECT - where to take characters from for echoing
LDBECC -~ count of characters to echo)
LDBBKU - the lcoation of the last break character in the

' input buffer

These words handle the input buffers, output buffers and
. echoing. When the system is restarted, all the words are
cleared. The use of these words can best be illustrated by
showing various cases.

CASE I - No input

When the line is idle, all the words are zero.

SCN-45

DIGITAL -

LDR
Taeut |
LDBTIT o
LDB TIF o)
Lo8 TIC o
Siook Chasacters ‘
LD® BKU o)
[LoBBKC o
.. Cuiput
LogTCT ! ©
LDETCP 0
LDB Toc o
Echong :
| LDBECT o.
‘l LDEECL o)

TOPS~19% MONITOR INTERNALS
Y~y Terminal Scanner Service
<6 -3\

Cose T - No inpvt o
oquput. |

No quunks Allocafea’

LDBTIT — where to (ke characlers
. GO\M mpUt bufler
LOBTIP- where 0 pUT chamacters
| inta wput boflec
LDBTIC - count of echoed chars
n input buffer
LDBBEU - pownicl to lagt oreak
chavacter
LD@ BKC -~ Coumt of bisak characlers
n input buffer
LDB T - whee 4o get charact eve
fomoutput bufler
LDBTOP- where +o put. chaacters
o outpot bufler
LoeTOoC - ccont of chaactels
. o culput buf(er
LOBECLT - u..vl‘-é/.:-" 40 +ake Crancers
fem {or coiaomng
LDBECL - courz of characicls

" !
= ©lrd

SCN-456

DIGITAL ‘ . TOPS-18 MONITOR INTERNALS
' Terminal Scanner Service

CASE II - Less than one line typed

Here, the user has been typing without hitting a break
character. The drawing shows how LDBTIT points to the first
character and LDBTIP to the first free slot. Assuming that
all characters have been echoed, LDBTIC will be 17, equal to
the number of received <characters. All other words are
zZero.

SCN-47

DIGITAL

Lo
—weot :
LDETIT
LDB TIP
LDB TIC
ook Chaiacters
LD® BKU
LDB BKC

&
g

Output
LOBTOT 14
g
&z

{1 LDBYOP
LDBToc
Echoing
LDBELT
LDBECL

BCYAY

‘LDBTIT' - where @ fale charactie:

Gam mpuf bufler
LDETFF'- whewe W pUT ghaacion:
In waput vufler
DQTI’C - count . of echoed chars
N 1nplT bufler
- LDBBEU - pawnter iz lagt lveak
cthavacter "
LD2eKC ~ count of prcak charazicrs
i input pufler

SCN -3

TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

Case IL - less +than one line
ﬂped (no break,

character),

Note: "7—»:5 case asswnes
all echaing is complete.

Text .
THIS IS, AL TEST.OF

‘ LoB TOT- whee ..b 991_’ Chagu({ evs
Lomoutput buffer
LDBTOP- where = put. chaaclers
o ouipgit bufler
LDBTOC - ceurt of characters
Wi output bued
LOBELCT- wherd taie craracteis
fico. &(échowta
LDEECL = cowi of cnaialisis

, .
oz 2.0

SCN-48

DIGITAL -) TOPS-10 MONITOR INTERNALS
‘ Terminal Scanner Service

CASE III - One Line Typed

This case is the same as case 2 except that a carraige
return has been typed. The monitor will £ill in a line feed
for both echoing and in the input buffer. LDBBKU will point
to the 1line feed. If any further typing follows, LDBBKU
becomes especially important because CONTROL/U, CONTROL R,
CONTROL/W and DELETE will not back up past the character
pointed to by LDBBKU. Note that carraige return 1is not
considered a break character, line feed is.

SCN-49

DIGITAL

SCN-33

TOPS~-18 MONITOR INTERNALS
Terminal . Scanner Service

Case TIL - One ¢omple~‘:e ine has
been ‘h.jpeci. ,

LbB

Tweut

4

LDETIT
LOB TIF :
LB TIC 19,
Break Chawiess
LDE BKU
LDB BKC
Output
- lLpBTCT
LDETCOP
LDE ToC
= iv‘iotﬁa
LDBECT
LDBECL

v

—

el [Qfefs|

LDBTIT -= where $o ¢abe characlers
. ~ Gom input bufler
LOBTIP- whee puf CJ".M'.QC{C‘I:)
. nto wput dofler
LDSTIC - count of echoed ciracs
n mpU'«'-' bifer
LDB BEU - gownte

chavacsel

i lagd lreak
LDB BKC - Court of beeak CAAralicrs
n inpst bufer
LDE TOT - whee 4 get charactevs
fromoutput bufler

- Note: @ Tus assumes alf
— echong 5 complete
Thig _assumes tha
the nput hne has
" pot been process

. turv
@ Carraig grde a’ preak

conSlaef)
cwaracter g line (eed

Text '

amm—
77‘“5 o "suAUTE
LD3TOP- where o put. chaaciers
o outpat bufler
LDBTOC - ceunt of characterg
i oulput Buffer

LDEECT- whee o take chatctee
Bem {or echion

ST o OF LCR”

court of chafacicts

-4 echo

LDBECLCC -

SCN-58

4

s Ne=,

DIGITAL - ‘ TOPS-18 MONITOR INTERNALS
‘ Terminal Scanner Service

CASE IV - Several lines of type ahead

This example is similar to the previous one except that

there is Jjust more input. The pointers and counts are
adjusted accordingly. :

SCN-51

Cése L - More than one [ine
| has been typed

Scu-34 and no processing |
oz has been performed.
Taest :
LDBTIT — P -
OB TIP — T" L
i TIA | wike
LDB TIC 2l anlelaiv
Bieak Characici?
LDE BKU — D D) ~d
LDB BKC 2 LA ELELE
N T ey <7
Cuiput clo i P
LoBTOT g -
LDBIGP 5 ~ 4
ILDB ToC Z °. : : =
Echowna i oA
i LDBECT g g
LDEELL z
Note - © Echowng s compleE€
|) @ This s o TUPE ahea
. - sitvation
LDBTIT — where = fnkbe characters
fom input buffer T e s
LOPTIP- whee @ puf characters =
| o wput doflec DIGITAL £ER>
LDBTIC - count ot echoe_J chars EQU\QME-NT<CE>
' n npUt buffer CORPORATION
LDBBEU - gawnier 4o lagct loreak
_ chavacted
LDB BKC - Count of break craralicis
N gt b é’cr
LDE TCT - whoe 4o get charactevs -

fromeutput buffec

LDBTOP-
.LDBTOC -
LDEECT-

LdBECC -

where o pVe characters
o output bufler
count of characterg
pufer

whee f +ake ciharaciets
fom {er e,choz'-‘.g

n outlpvl

sourt of characicrs

sz eInd

LN B2

DIGITAL C ' TOPS-1¢ MONITOR INTERNALS
' Terminal Scanner Service

CASE V - Incomplete Echoing for Several lines of input
This is a more complex case. The same text as case 4
has -been typed but echoing 1is incomplete. The user has
typed: :
DIGITALKCR>
EQUIPMENT<CR>
CORPORATION

but all that has been echoed is:

DIGITALKCR><LF>
EQ.

The characters

UIPMENT<KCR><LF>
CORPOR

are waiting in the output buffer and "ATION" must still be
echoed (placed in the output buffer).

Note also:

1., LDBTIC reflects only those characters that have
been echoed, not the total number of characters
input. Once the copy of an input character is
placed in the output buffer, it is considered as
having been echoed.

2. LDBECT points to where echoing must continue.

3. LDBTOP and LDBTOT function similar to LDBTIP and
LDBTIT. ’

SCN-53

Case [Type Ahead with
. er_ho'\ﬂb 'mc_omp(e‘b?..

<SCU-35
S LDB Lnpot
LDBTIT ¢ > D¢l éh?\
‘L.DBTIP ¢ \ { T/A cho\
LD8 TIC | - xvEle v
Sieak Clhauacitrs ' \ j
LD BKU — _J\l‘p m .s\‘
1 LDB BKC 2 _ N|T leolam
Ouiput) clo | RAP
LOBTCT —
LDETOP — et
LDB Toc 15 . SPMTE
Schana - ; ! ‘
1 LDBECT e
LDEECC 5
Out put
/J g ~
: - — U\
LDBTIT = where & take characiers LipiM =
) . GGM anut bua.:r N T | Ry >
LOBTIP- where ®© pUT chanractors o | o
e wput duflec cloiRiP
LDBTIC - count of echoed chars _ ° ;r
n nput bufler) !
LDBBEU - ponter 4o lagt break
. chavacter - T,ped
LDBBKC - court of bisak characicrs DreITAL >
ininput | buffer CQUIPMENT LCRD
LOE 0T - whre i .381’7 charactevs . . " coRPORATION
. fomavtput buffer Edoed
LD3TOP- where w put chaatiers DIGITAL 4CBYLLF>
o outfyt bufler £4

. LDBTOC - ceurt of cnaactois
wiooutput bufee
LDBECT - wheie to +ake Couaciers
r N
ter tor ;‘A‘»c-x-"-v.‘.',

CL -~ zourt of cha.aticis

m

LDB

= olng

Y.

ScN -54

DIGITAL o ' . TOPS-18 MONITOR INTERNALS
' Terminal Scanner Service

CASE VI - Simple Output

Only the 6utput pointers and counts are used when a OUT
or OUTSTR TTCALL is issued by a program.

SCN-55

Case b - Ouvutput

| SCeN-36

L DD

Twnput
LDETIT
LDB Ti#P
LDB TIC
Beak Clhasacters
"LDP BKU
LDB BKC
Output)
LoBTCT —
LDBTOP -—
LDB ToC 27
E:hau'no) |

i LDBECT
LDBECL

QR N e

o (&

~.

LDB IT = where & fakbe characiers

Gom input bufler
LDBTI_P' wheee © pr characters
' Int wput duflec
LDETIC - count of echoed chars
n npUt bufler
LDBBEU - porier 4o lagt \D'eﬂk
chavacter "
LDBBKC - Count of bwsak characiers
in mw- bufer
LDB T - whee get charact eve
 fromoutput buffer
LDBTOP- where o put. characiers
o outpot bufer
. LDBTOC - count &f characterg
W oulput buRel
LOEECT- whee o 4ake Ciaaiicig
fieor {Br cchrnng
LOBECL - czurm of charazicil

, " .
= &2r.Q

& .
Alal LIS
| A |<eRtasR
T H E —

.. .
1A [W[o
Q FlwawuilX
o lein T
. &z
HEARA

—

“To Be Prmn feJ

A ISLA Lerir>
-THE LAW,LOFy 1cENTITY

SN -BE

DIGITAL" - ‘ TOPS-12 MONITOR INTERNALS
Terminal Scanner Service

CASE VII Mixed I/0°
In this case, the user has typed a line while the
program was outputting, scrambling the screen to a certain
extent. The program typed :
BOOKS BY AYN RAND

Then the user typed "GOOD B". Before the user could type
more, the program printed , : S

ATLAS SHRUGGED
THE FOUNTAINHEAD

,Thg remainder of the user line "OOKS"™ was then echoed.
TheAuser would see on his terminal:
BOOKS BY AYN RANDLKCR>LKLFE>
GOOD BATLAS SHRUGGEDKCR>LKLF>

THE FOUNTAINHEAD<CR><LF>
OOKS

SCN=-57

Case VIL Mixed L/0

Scr-3
LD
Taput
LDETIT — = —
LOBTIP o B oo e
LDB TIC 10, . _lelole
<] <
Greak Characters
LDP BKU &
LDB BKC P
Ouiput . ,
LDBTOT ¢ /fgﬁo _—
LDBTOP * =T 157
LDB Toc 63 K_L_. ATY u)
Eciowna
| LOBECT AI.N\;
LDBECL l a

L YLN
e
E;:/
@n

\ f ~
‘ = INEE
LDBTIT = where ©© fake characlers IAlS lalsi
. fom input bufler iR VIO
LOBTIP- whete @ pUT characicrs)
jr wput pufler o |E| D™
LDETIC =~ count of echoed cha.s A an|T | # |E
in npUt bufler : \ = lFlo
LDBBEU - panter iz lacd loreak "a\ =
chavacter \ N T 1A/
- LDBBKC - Cout of bicak charaticrs i NlHIE LA
) i l.f\p'Jt b()t?éf' k‘:‘ D <= 4m)0 k
LD B 0T - whee 4 get charact evs '\, -
, fomoutput buffer =Tz 4
. . ! o
LDBTOP- where o put. characters =l
o output bufler \ A
\

- LDBTOC - count of characterg

W oulput bufler
LDBECT- whee to take ciancices
- ben {or cchong

LDBECL - :zzum of charalicts

SCN - 5%

DIGITAL" o ' TOPS-1¢ MONITOR INTERNALS
Terminal Scanner Service

CONTROL CHARACTER HANDLING

All input characters are checked to see if they require
special handling (except when the terminal is in image mode
or packed image mode). The test is made by indexing into a
table, CHTABL, with the octal value of the character. Each
- entry in CHTABL contains definition bits in the LH and a
routine address in the RH. If the RH is zero, there is no
special handling routine. For a definition of the bits in
the LH, see the monitor table descriptions. The routines

for special handling are: .

RINUL Null character

RICA CONTROL/A (MIC)

RICB CONTROL/B (MIC)

RICC , CONTROL/C

RICD CONTROL/D (MIC)

RIBSP BACKSPACE

RICM CONTROL/M (Carraige Return)
RICO CONTROL /0

RICP CONTROL /P

RICQ CONTROL/Q

RICR CONTROL/R

RICS CONTROL/S

RICT CONTROL/T

RICU CONTROL /U I
RICDEL DELETE and CONTROL/W

RIALT . ' ALTMODE ,

A brief discussion of some of the routines now follows.

CONTROL/O

When CONTROL/O is typed, all output to the terminal |is
suppressed until the terminal needs input, a CONTROL/C is
typed or another CONTROL/O is typed. This function |is
controlled by the LDROSU (output suppress) bit in the LDBDCH
. word in the LDB. When on, all output will not be sent.

The routine.to handle CONTROL/Os is RICO in SCNSER. It
performs three functions; 1) complement the LDROSU bit, 2)
clear the output buffer and 3) echo "O" on the terminal.
Successive CONTROL/Os act as a toggle for LDROSU.

SCN-59

DIGITAL ; . , TOPS-13 MONITOR INTERNALS
Terminal Scanner Service

The initial CONTROL/O clears any pending output. Any
further output will be intercepted in the TYO routine where
output is discarded when LDROSU is turned on.

CONTROL/C

A CONTROL/C interrupts the currently running program
.and returns the terminal to monitor mode. It also causes
the input line, back to the 1last break character, to be
deleted (equivalent to a CONTROL/U). Two CONTROL/Cs must be
- typed if the program is in the middle of execution.

In order to return the job to monitor mede, a forced
.command is |used. A forced command is wused instead of
rescheduling because a CONTROL/C implies that the user wants
his Jjob stopped immediately and does not want to wait for
rescheduling. Two CONTROL/Cs also have the effect of
clearing both the input and output buffers for a terminal.

In order to distinguish between the first and second

CONTROL/C, the L2LCCS bit in LDBBY2 is used. It is set with
the first CONTROL/C and cleared with the second.

SCN-69

DIGITAL

TOPS-19 MONITOR INTERNALS

Terminal Scanner Service

RICC
MICRIC
s Checle 1A
ad ¢
|
Se:oad N
Coniwol /C 8
!
L :
Clear TIY
paae =top
bk '
Act No
yoon
@ﬂhd’/‘ Sla,w TT‘f -~ 1
TTHALT Set
, Force conindic G:n*ﬂ/c lagt |
command o bk

scn-b)

®

DIGITAL - ’ TOPS-190 MONITOR INTERNALS
Terminal Scanner Service

© ©

PTYDET

$epaﬂke
DB &omDDE

oot ——

RILL 3 1
TsETBL

Clear input
buber

T<ETED
Cleart
outout
pufec

(ArFreT) Echo ¢
anJ feﬂﬁn

SCN-62

DIGITAL C ‘ TOPS-18 MONITOR INTERNALS
‘ Terminal Scanner Service

CONTROL/D

CONTROL/D has a special purpose that is used when
debugging the monitor. The code to handle CONTROL/D is
located in the low segment of the monitor unlike the rest of
SCNSER. It is placed there so that breakpoints may be set.
The high segment of the monitor is genereally write locked
and can not be modified. Therefore, one easy to always gain
control is to set a breakpoint in RICD while in EDDT and
then type a CONTROL/D. Control will always pass through
that point, stopping the monitor.

CONTROL/T

CONTROL/T performs the same function as the USESTA
monitor command, reporting various user statistics. Both
USESTA and CONTROL/T use the USESTA forced command to force
the report. The forced command is used so that the amount
- of interrupt level code is reduced and so that the user must
pay for his own command.

. CONTROL/R

. Typing a CONTROL/R will cause the system to retype the
current 1nput line, processing all deletes. .Like CONTROL /T,
CONTROL/R is implemented as a forced command so that some
processing may be eliminated from interrupt level. The
routine RETYPE handles the retyping. It will find the last
break character in the buffer (pointed to by LDBBKU) and
print every character from that point on.

CONTROL/Q and CONTROL/S

These two control characters allow terminal output to
be selectively started or stopped by a user. CONTROL/Q
. stops all output (including echoing); CONTROL/S starts
-output. This feature operates only if the TERMINAL PAGE
command has been enabled. CONTROL/C will issue an automatic
CONTROL/Q. .

The routines to handle CONTROL/Q and CONTROL/S are in

SCNSER; the output is stopped or started in the front end.
This requires queued protocol messages to be sent to the

SCN-63

DIGITAL _ ' V TOPS-19 MONITOR INTERNALS
Terminal Scanner Service

front end.

When a CONTROL/S is typed, the RICS routine in SCNSER
will +turn on two bits in the LDB; LDLSTP (to indicate that
output is to be stopped) and LIRCHP (to announce the need to
change hardware parameters). The LDB of the line is then
- placed in the output regquest queue. At clock level, TTDSTO
will be called to remove the entry from the LDB queue. A
test is made to see if LIRCHP is set and if so, control
passes to TTDCHP (also in TTDINT). There, the need for a
CONTROL/S is uncovered and the appropriate queued protocol
- message is sent. .

OQutput will then accumulate at the front end until
.CONTROL/Q is typed. The RICQ routine will then follow the
same procedure as CONTROL/S to send the XON message to the
-front end.

TERMINAL IMAGE MODES

These two data modes for terminals have been
implemented so that users may bypass most of SCNSER's
character processing. They are for use with special devices
or situations. Special characters will be treated as any
regular character. Neither mode can be used with PTYs.

Image Mode

When image mode is used, every input character (eight
bits) is stored right justified in a PDP-10 word and causes
an interrupt. There are no break characters. The terminal
must first be ASSIGN'ed and INITed before it can be used.

The image input state begins when the program starts
waiting as a result of an INPUT in image mode. It ends when
a program . executes any non-image mode terminal output
. operation, If no input characters are received for ten
_seconds, the monitor forces an ECF. After another ten
seconds, the monitor terminates the image input state and
simul ates a CONTROL/C. Characters will be stored directly
in the user input buffer, one character per word.

SCN-64

DIGITAL" ‘ ') TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

Packed Image Mode (PIM)

PIM is designed for high efficiency character
throughput between programs and external devices,
accomplished by minimizing character manipulation . and
testing. In packed image mode, characters are maintained as
- 8-bit quantities (7 data bits and 1 parity bit). These
8-bit characters are stored in user buffers at the rate of
-four per word. A program may define from one to four break
characters for each line using the TRMOP. monitor call.

When the monitor receives a charcter wvia an 1IN or
INPUT, the character is compared to each field in the break
set. If no match is found, the <character is put 1in the
.buffer and the interrupt is dismissed. 1In the case where a
match does occur, the character is put into the buffer. The
.input wait 1is then terminated and the controlling program
awakened. To avoid the poossibility of a terminal getting
stuck. in PIM mode and to- allow for the case where your
program wishes to be awakened on each character, a program
can specify an empty (8,,8) break set. In general
operation, all characters, including control characters, are
passed by PIM with no moniter intervention with the
following exception: if page mode is set, the characters
CTRL/S (XOFF) and CTRL/Q (XON) react the same as for normal
. pPage mode. ' Ct

Half Duplex Términals

Conceptually, terminals can be considered as two
separate devices; a keyboard for input and a screen or

printer for output. Most. terminals can transmit (input) and

receive (output) data over the same line at the same time.
This i$s known as a full duplex line. Half duplex terminals
can send and receive data over the same line but not at the
same time. When transmission occurs in one direction, the
receiver cannot send until the incoming message is finished.

, In order to regulate the flow of messages, the
following convention is used. When either side of the link
wants to send a message over an idle half duplex 1line, it
sends a control message to the receiver. When an ACK is
sent back, the message is started. This is all accomplished
at the hardware level between the terminal and the device
controller.

SCN-65

-

DIGITAL] ' TOPS-1¢ MONITOR INTERNALS
Terminal Scanner Service

Little must be done at the software 1level to handle
half duplex 1lines. In fact, the only code in SCNSER for
half duplex is concerned with error checking. At RECHDX, a
test is made to see if a receive interrupt has occured while

output is in progress. If so, the line is not functioning
as. a half duplex 1line.

-OTHER TERMINAL MONITOR CALLS

Terminal I/O can be performed using. IN and OUT monitor
- calls besides the simpler TTCALL mecchanism. The INs and
OUTs obey the same structure as was mentioned in the chapter
on 1I/0 processing; data is read in and out of user buffers
.that are pointed to by a ring buffer header. The header
must be. setup using an INIT or OPEN monitor call. The code
. .for the monitor calls is necessarily larger (to accommodate
- more argument checking) but has many subroutines in common
with TTCALLS. ‘

TTYOUT (in SCNSER) is the routine that performs the OUT
and OUTPUT monitor call. It uses the saeme output routine
(TYO) to enter data in the _chunks as do TTCALLS. Since
packed image mode and image mode use OUTPUTs, extra code is
in TTYOUT to handle this special case. Extra code is also
necessary for the proper stoarge of data in the user
buffers.

TTYIN handles IN and INPUT monitor calls. Like
TTCALLS, they use the TWAITL routine to wait for input and
will return when a break character is detected. Data will
be read out of the chunks and stored in the user buffer.

TRMOP. monitor calls are useful for reporting/setting
terminal characteristics and for special terminal functions.
They use the same exact routines as the TTCALLs for
outputting characters or groups of lines. ’

SCN-66

DIGITAL - TTYIN

TOPS-10% MONITOR INTERNALS
Terminal Scanner Service

CKATTL

Make sure
7Y afach

SCN-4AD

DIGITAL

BUFCLR

BLrepaxe
bJE;' and
oddress check

< RLPTR

Set o byte
ptT At AsciZ

er \mage

TYICC

Cbet a.
charvac "<e(

TOPS-19 MONITOR INTERNALS
Terminal Scanner Service

scn-4|

SCN-42 TOPS-10 MONITOR INTERNALS

DIGITAL - A
Terminal Scanner Service

\.5'*=°'fe EXCTUY < IDPE P3P
. gsel
Qarea

DIGITAL

SN -435

TOPS-13 MONITOR INTERNALS
Terminal Scanner Service

- Compute
word count

& VUOCON

Stote |
count in

bulfer ning,
]

ADVBFF

Nowe 2
wext bufer]

Set virgin
bufer bi+

DIGITAL -

TTYoUT

RsPTOR

Record
Qesponse

CKATou

Make su@
there 5 g
fine Gi‘hd'd

CLRIM [

gmxr 1mage

npUt =tqte

T7OoVTe

Clear

beg. bit

ANOCTRO

Clear
confrol/ O

clear old
parha
byte ptr,

TOPS-19 MONITOR INTERNALS
Terminal Scanner Service

Scn-4%

DIGITAL - TOPS~-19 MONITOR INTERNALS

Terminal Scanner Service

UADRCK -
Check bage | don't retun K tad

o
Skip

€ ewmpiy

Check Ensh | dowrt ekuen 1€ bad
address

L) parﬁa i ptr

sca-4b

TOPS-1% MONITOR INTERNALS
Terminal Scanner Service

DIGITAL

Get a :
yser ’ ,
charactec f

ADNB EE
Aduawee g

bo&ers

DIGITAL o ' TOPS-1¢ MONITOR INTERNALS
Terminal Scanner Service

seo-41
TTOoUTS
Clear
active
bt
y TYPE ?
! Walke up
conkrolled .
iy
NO

SCN=-74

DIGITAL - TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

PSEUDO-TERMINALS (PTYs)

A pseudo-TTY (or PTY) is a simulated terminal that
allows a job to be initiated by a program instead of a user.
The program sends commands to and receives typeout from the
controlled job. The PTY is the monitor's method of allowing
the connection. :

The controlling program uses the PTY in the same way a .
user uses a physical device. It initiates the PTY, inputs
to and waits for output from the PTY, and <closes the PTY
using the appropriate monitor calls. The job controlled by
the program performs I/O to the PTY as though the PTY were a
physical terminal.

SCN-48
r -—— ﬁ
| I
- puysicaL | f |PEVICETTY. | | conTrouLed
B a— A e a————
TERMINAL 7171 pevice Trvn | | Jo8
I i
- — -t mowmTor - I ‘;
oo oevice 1v, l
CoNTROLLING _ | | oo o ory ‘ or- | controLLED |
PROGRAM | DEVICETTYm | 1. Jce
i |
I S —

The controlling job cannot wait for PTY I/O because it may
be - controlling several PTYs or the controlled job may go
into 2 loop. To solve this problem, the HIBER monitor «call
has been modified so that when the controlling job HIBERS,
any activity by the controlled job will wake it.

: When a controlling program opens a PTY, 1its DDB
. reflects that fact. The controlled job, however, thinks it
is connected to a regular TTY. Its DDB is the regular TTY
DDB. The important difference between the DDBs is in the RH
of the DEVSER word. The RH contains the device service
dispatch table for that dev1ce, which points to specific I/0
routines. The device service routines are different for
PTYs and TTYs. But both sets of service routines will use

SCN-75

DIGITAL - ' TOPS-19 MONITOR INTERNALS
' Terminal Scanner Service

the same TTY chunks fbr the PTY "line".

There are two directions that data may go: from the
controlling program to the controlled job or vice versa.
Consider the first case. The controlling program, after
having setup the PTY with an INIT or OPEN, will send data to
the PTY by using an OUTPUT monitor «call. UUOCON searches
the RH of DEVSER for the dispatch table (in this case
PTYDSP) and transfers control to PTYOUT in PTYSER. PT YOUT
will take characters from the controlling job's buffer and
store them in the PTY's chunks wusing PTYPUT. PTYPUT (in
SCNSER) will not permit echoing of the characters and will
wake the controlled job via a call to ECHBRK if a break
character is received. Then the controlled job will proceed
in the normal way either at command level or user level. 1If
the controlled job had done an INPUT to get into the wait
state, the routine it uses (for input from a TTY) is TTYIN,
not PTYIN. :

The other direction is slightly more compl icated
because the monitor must prevent characters from being typed
anywhere when the controlled job does output to what it
thinks is a TTY. When the controlled job issues an OUTPUT
monitor call, OUTSTR TTCALL or OUTCHR TTCALL, the data will
be stored in the chunks but the LDB is not placed in the
output request queue. Instead control passes to PTSTRT
where the controlling job is awakened from its HIBER using a
call to PTYPE (in PTYSER). The controlling program will
then get the data using an INPUT UUO. The routine to handle
PTY input is PTYIN (in PTYSER). PTYIN gets characters from
the chunks using PTYGET and stores them in the controlling
job's buffers.

SCN-76

DIGITAL - ' TOPS-1@ MONITOR INTERNALS
Terminal Scanner Service

scN-49

The controlled b believes & s pecforming I/0 |

Cwibh a

(Prviny Grvour)
ot , TTCALL
Co«ho“\v"% 'ﬁ—'InPUt vuo Rl — Can‘l‘ro“ed
programn GoTPr 000° ¢ X Trputy TICALL Jab
- (PTYour) é Griny
=/0 T7Y
Buffers Chunks

SCN=-77

DIGITAL - ' TOPS-18 MONITOR INTERNALS
Terminal Scanner Service

MACRO INTERPRETED COMMANDS (MIC)

MIC, or Macro Interpreted Commands, is a feature of
TOPS-19 that allows a user to execute a command file at his
terminal. The commands are processed in a similar manner to
BATCH commands with several important exceptions. The
commands are processed for the user directly, not through
another 3job logged in on a PTY. The user sees the commands
and their results printed directly on his terminal. Batch
is not involved at all. For a complete description of
features and operation, see MICV2.DOC. This discussion is
concerned with the monitor changes, specifically in SCNSER,
necessary to accommodate MIC.

) The MIC system revolves around a copy of MIC.EXE that
is always running under an operator ([1,2]) or privileged
user. That one copy of MIC controls all jobs that are using
MIC. In the low segment of this MIC "master” is a PDB
(Process Data Block) for each-job wanting to using the MIC

- facility. The PDB holds such items as the file to get

commands from, the arguments from the DO command line and
information about labels within the £file. The master
responds to the needs of the slaves, feeding them command

_lines from the appropriate files. The command lines are fed

directly into the terminal's input chunks where they can be

processed via regular channels.

- When the user issues the DO command, COMCON sets up and
runs the MIC program, The user enters a section of code
different from that of the master, setting up the PDB for
itself. Once the user exits from MIC, the master takes
control. It will open the command file. For each 1line in
the command file, it resolves all arguments and then issues
a TRMOP. monitor call, function 21. This places an ASCIZ
string directly into the terminal's 1input buffer. The
routine in SCNSER to perform this task is TOPMTY.
Characters are entered one by one via calls to RECINU (which
as we know is the receive interrupt routine). Refer to
. earlier flowcharts for a detailed look at RECINU. SCNSER
-will then perform the usual echoing, alerting UUOCON- or

. COMCON when a break is received.

The only time when special monitor handling is
necessary for MIC occurs when the master MIC must be
awakened to read another line from a file and keep the slave
running. When not servicing slaves, the master HIBERs. A

SCN-78

DIGITAL : ' TOPS-18 MONITOR INTERNALS
‘ Terminal Scanner Service

WAKE. monitor call from SCNSER will wake up the master.
There are two situations when wakeup calls must be made:
return is about to be made to command level or the Jjob |is
about to enter TI wait state. Whenever a command has
finished, COMCON will call TTYCMR to alert ' SCNSER. In
TTYCMR, the MICWAK routine is called, waking the master for
more useful work. If the job is about to enter TI, the
TIWAIT routine 1is called which will also call MICWAK.
Notice that in either case, the job will still go into its
wait state.. The master will soon follow with a command
line.

Note that nothing has been mentioned about an interlock
against the wuser typing during the processing of a MIC
.command file. If a user types during this process, the
characters will be stored as usual in the input buffer. The
line of data could slip in and cause an error to the MIC
command. The user should be careful about typing during MIC

if he/she wants proper execution to occur. .

The organization of MIC is summarized in the (following
diagram:

SCN-79

DIGITAL _ ' ' TOPS-19 MONITOR INTERNALS

SCN-50 Terminal. Scanner Service
SCNSER
: Tob |
: : .' Output Buffers ////////////)(
| T7Y — Theut E’ut"\fer; \: Seb 2.
, Sob 3
MIC
Maszer Sob 4

PDE | POE | POB | POE
#/ #2 #3 &4

v

Take Take Take Take
Gle Bl Hle 'QQ
&/ #2 ' #3 %4

SCN-88

DIGITAL

TOPS—-18 MONITOR INTERNALS
Terminal Scanner Service

MCDULE TEST

On all questions which ask "where", specify page and
"line number and describe the circumstances under which the
line will be executed. o

l.

2.

3.

4.

When will UUOCON call the device dependent routine
in SCNSER, for:

a. INPUT

b. OUTPUT

Where is the decision made to put a 3job into 10
wait for TTY input?

Why can-a job be swapped out while in TTY IO wait,
but not while in IO Wait for other devices?

Where is the decision made to seﬁ the "Command
Ready” bit, LDBCMR?

Where is the "Output in Progress" bit, LDLOIP?
a. Set?

b. Cleared?

When is a TTY "attached" to a Jjob? What actions
does this involve?

SCN-81

DIGITAL

14,

11,

TOPS-19 MONITOR INTERNALS
Terminal Scanner Service

When are the characters typed as a monitor command
discarded? Characters typed as TTY input?

If a paper tape is being read on a TTY and the

~buffer is nearly full, the Receive Interrupt

Routine stops the reader by sending out an XOFF
character. When and how is the reader restarted?

What determines whether a special character Iis
acted on by the Scanner Service or passed to the
program?

What action does the Scanner Service take 1if a
program doing image mode input "times out"?

.

Suppose a job is running deteached and runs into a
program error. When and where will the monitor
error message be typed?

SCN-82

	001
	002
	003
	004
	01_intro-000
	01_intro-001
	01_intro-002
	01_intro-01
	01_intro-02
	01_intro-03
	01_intro-04
	01_intro-05
	01_intro-06
	01_intro-07
	01_intro-08
	01_intro-09
	01_intro-10
	01_intro-11
	01_intro-12
	02_cyc-000
	02_cyc-001
	02_cyc-002
	02_cyc-01
	02_cyc-02
	02_cyc-03
	02_cyc-04
	02_cyc-05
	02_cyc-06
	02_cyc-07
	02_cyc-08
	02_cyc-09
	02_cyc-10
	02_cyc-11
	02_cyc-12
	03_cm-000
	03_cm-001
	03_cm-002
	03_cm-01
	03_cm-02
	03_cm-03
	03_cm-04
	03_cm-05
	03_cm-06
	03_cm-07
	03_cm-08
	03_cm-09
	03_cm-10
	03_cm-11
	03_cm-12
	03_cm-13
	03_cm-14
	03_cm-15
	03_cm-16
	03_cm-17
	03_cm-18
	03_cm-19
	03_cm-20
	04_cmnd-000
	04_cmnd-001
	04_cmnd-002
	04_cmnd-01
	04_cmnd-02
	04_cmnd-03
	04_cmnd-04
	04_cmnd-05
	04_cmnd-06
	04_cmnd-07
	04_cmnd-08
	04_cmnd-09
	04_cmnd-10
	04_cmnd-11
	04_cmnd-12
	04_cmnd-13
	04_cmnd-14
	04_cmnd-15
	04_cmnd-16
	05_sch-000
	05_sch-001
	05_sch-002
	05_sch-01
	05_sch-02
	05_sch-03
	05_sch-04
	05_sch-05
	05_sch-06
	05_sch-07
	05_sch-08
	05_sch-09
	05_sch-10
	05_sch-11
	05_sch-12
	05_sch-13
	05_sch-14
	05_sch-15
	05_sch-16
	05_sch-17
	05_sch-18
	05_sch-19
	05_sch-20
	05_sch-21
	05_sch-22
	05_sch-23
	05_sch-24
	06_swp-000
	06_swp-001
	06_swp-002
	06_swp-01
	06_swp-02
	06_swp-03
	06_swp-04
	06_swp-05
	06_swp-06
	06_swp-07
	06_swp-08
	06_swp-09
	06_swp-10
	06_swp-11
	06_swp-12
	06_swp-13
	06_swp-14
	06_swp-15
	06_swp-16
	06_swp-17
	06_swp-18
	06_swp-19
	06_swp-20
	07_uuo-000
	07_uuo-001
	07_uuo-002
	07_uuo-01
	07_uuo-02
	07_uuo-03
	07_uuo-04
	07_uuo-05
	07_uuo-06
	07_uuo-07
	07_uuo-08
	07_uuo-09
	07_uuo-10
	07_uuo-11
	07_uuo-12
	07_uuo-13
	07_uuo-14
	07_uuo-15
	07_uuo-16
	07_uuo-17
	07_uuo-18
	08_io1-000
	08_io1-001
	08_io1-002
	08_io1-01
	08_io1-02
	08_io1-03
	08_io1-04
	08_io1-05
	08_io1-06
	08_io1-07
	08_io1-08
	08_io1-09
	08_io1-10
	08_io1-11
	08_io1-12
	08_io1-13
	08_io1-14
	09_io2-000
	09_io2-001
	09_io2-002
	09_io2-01
	09_io2-02
	09_io2-03
	09_io2-04
	09_io2-05
	09_io2-06
	09_io2-07
	09_io2-08
	09_io2-09
	09_io2-10
	09_io2-11
	09_io2-12
	09_io2-13
	09_io2-14
	09_io2-15
	09_io2-16
	09_io2-17
	09_io2-18
	09_io2-19
	09_io2-20
	09_io2-21
	09_io2-22
	10_dsk_000
	10_dsk_001
	10_dsk_002
	10_dsk_01
	10_dsk_02
	10_dsk_03
	10_dsk_04
	10_dsk_05
	10_dsk_06
	10_dsk_07
	10_dsk_08
	10_dsk_09
	10_dsk_10
	10_dsk_11
	10_dsk_12
	10_dsk_13
	10_dsk_14
	10_dsk_15
	10_dsk_16
	10_dsk_17
	10_dsk_18
	10_dsk_19
	10_dsk_20
	11_scn_000
	11_scn_001
	11_scn_002
	11_scn_01
	11_scn_02
	11_scn_03
	11_scn_04
	11_scn_05
	11_scn_06
	11_scn_07
	11_scn_08
	11_scn_09
	11_scn_10
	11_scn_11
	11_scn_12
	11_scn_13
	11_scn_14
	11_scn_15
	11_scn_16
	11_scn_17
	11_scn_18
	11_scn_19
	11_scn_20
	11_scn_21
	11_scn_22
	11_scn_23
	11_scn_24
	11_scn_25
	11_scn_26
	11_scn_27
	11_scn_28
	11_scn_29
	11_scn_30
	11_scn_31
	11_scn_32
	11_scn_33
	11_scn_34
	11_scn_35
	11_scn_36
	11_scn_37
	11_scn_38
	11_scn_39
	11_scn_40
	11_scn_41
	11_scn_42
	11_scn_43
	11_scn_44
	11_scn_45
	11_scn_46
	11_scn_47
	11_scn_48
	11_scn_49
	11_scn_50
	11_scn_51
	11_scn_52
	11_scn_53
	11_scn_54
	11_scn_55
	11_scn_56
	11_scn_57
	11_scn_58
	11_scn_59
	11_scn_60
	11_scn_61
	11_scn_62
	11_scn_63
	11_scn_64
	11_scn_65
	11_scn_66
	11_scn_67
	11_scn_68
	11_scn_69
	11_scn_70
	11_scn_71
	11_scn_72
	11_scn_73
	11_scn_74
	11_scn_75
	11_scn_76
	11_scn_77
	11_scn_78
	11_scn_79
	11_scn_80
	11_scn_81
	11_scn_82

