
TEeo

DEC-IO-ETEE-D

~TECO
TEXT EDITOR AND CORRECTOR PROGRAM
PROGRAMMER'S REFERENCE MANUAL

This manual reflects the software as of Version 23 of TECO.

digital E~quipment corporation · maynard. massachusetts

TECO

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (S) 1968, 1969, 1970, 1971, 1972,

by Digital Equipment Corporation, Maynard, Massachusetts

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KA10 UUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-ll
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

8/77-38

NEW AND CHANGED INFORMATION

This manual reflects the software as of version 23. It has been
revised to include all new and changed material since version
21 A of the TECO software. Change bars in the left margin
are used to indicate the new and revised information.

iii

TECO

CHAPTER 1

CHAPTER 2

2. 1
2.2

2.2.1
2.2.2

2.2.3
2.2.4

2.3:

2.4
2.5
2.6
2.7'
2.7'. 1

2.7'.2
2.7'.3
2.8
2.9'

CH.APTER 3

3. 1

3. 1. 1

3.1.2
3.1.3
3.1.4
3.2
3.2.1
3.2.2
3.2'.3
3.2.4

3.2.5
3.2.6
3.2'.7
3.3
3.3:.1

3.3.2
3.3.3

3.4·

3.5
3.5.1

CONTENTS

INTRODUCTION

CONCEPTS

Data Files

Character Set

Speci al Characters

Control Characters

Carriage Control Functions

Symbols

Data Format

Editing Buffer

Buffer Pointer

General Command String Syntax

Arguments

Alphanumeric Arguments

Numeric Arguments

Commands That Return a Value

Q-Registers

Core Expansion

COMMANDS

Initialization Commands

R TECO Command

MAK E Command

TECO Command

Examples of the Use of Initialization Commands

File Selection Commands

ER Command

EM Command

EW Command

EZ Command

EB Command

Editing Line-Sequence Numbered Files

Examples of the Use of File Section Commands

Input Commands

Y Command

A Command

Examples of the Use of Input Commands

Special Characters as Buffer Position Numeric Arguments

Buffer Pointer Positioning Commands

J Command

v

TECO

Page

2-1
2-2

2-3
2-3
2-4
2-4
2-5
2-6
2-7

2-7
2-8
2-8
2-9

2-11
2-11
2-12

3-1
3-1
3-1
3-2
3-4
3-4
3-5

3-5

3-5

3-7
3-7
3-8

3-8

3-9
3-10
3-11

3-11
. 3-11

3-12
3-12

TECO

3.5.2

3.5.3

3.5.4

3.5.5

3.6

3.6.1

3.6.2

3.6.3

3.6.4

3.6.5

3.6.6

3.7

3.7.1

3.7.2

3.7.3

3.8

3.8.1

3.8.2

3.8.3

3.8.4

3.8.5

3.8.6

3.8.7

3.8.7.1

3.8.7.2

3.8.8

3.9

3.9.1

3.9.2

3.9.3

3.9.4

3.10

3.10.1

3.10.2

3.10.3

3.11

3.11. 1

3.11.2

3. 11. 3

CONTENTS (Cont)

C Command

R Command

L Command

Examples of the Use of Buffer Pointer Positioning Commands

Text Type-Out Commands

T Command

@Command

tL Command

nET Command

Case Flagging On Type-out

Examples of the User Text Typeout Commands

Deletion Commands

K Command

D Command

Examples of the Use of Deletion Commands

Insertion Commands

I Command

Tab Command

@I Command

nl CD Command

n\ Command

Examples of the Use of Insertion Commands

Case Control with Insert Commands

Alphabetic Case Control

Special II Lower Case" Characters

Inserting Control Characters

Output Commands

PW Command

P Command

EF Command

Examples of the Use of Output Commands

Exit Commands

EX Command

EG Command

@ and @ Commands

Search Commands

S Command

FS Command

N Command

vi

Page

3-12

3-12

3-13

3-13

3-14

3-14

3-14

3-15

3-15

3-16

3-16

3-18

3-18

3-18

3-19

3-19

3-20

3-20

3-20

3-20

3-21

3-21

3-22

3-22

3-24

3-25

3-26

3-26

3-26

3-28

3-28

3-29

3-29

3-30

3-30

3-32

3-33

3-33

3-33

3.11.4

3. 11.5

3.11.6

3.11.6.1

3.11.6.2

3.11. 7

3.11.8

3.11.8.1

3.11.8.2

3. 11.8.3

3.11.8.4

3. 11. 9

3.11.10

3.12

3. 12. 1

3.12.2

3.13

3. 13. 1

3.13.2

3.13.3

3.13.4

3.14

3.14.1

3.14.1.1

3.14.1.2

3.14.1.3

3.14.2

3.14.2.1

3.14.2.2

3.14.2.3

3.14.3

3.14.4

3.14.5

3.15

3. 16

3.16.1

3. 17

3. 17.1

3.17.2

3.17.3

CONTENTS (Cont)

FN Command

Backarrow Command

Search Command Modifiers

@Modifier

Colon Modifier

Automatic Typeout After Searches

Case Control in Searches

Alphabetic Case Control in Search Arguments

Special II Lower Case" Characters

Control Characters in Search Arguments

Case Match Mode Control in Searches

Special Match Control Characters

Examples of the Use of Search Commands

Iteration Commands

Angle Bracket « ... »
Semicolon Command

Flow Control Commands

Command String Tags

o Command

Conditional Execution Commands

Examples of the Use of Flow Control Commands

Q-Register Commands

Commands for Storing Integers

U Command

_ Q Command

% Command

Commands for Storing Character Strings

X Command

G Command

M Command

Saving the Previous Command String

Q-Register Pushdown List

Examples of the Use of Q-Register Commands

Numeric Typeout Command

Special Numeric Values

Examples of the Use of the Special Numeric Arguments

TECO Programming Aids

@Command

Question Mark (?) Command

The EO Value

vii

TECO

Page

3-34

3-34

3-35

3-35

3-35

3-36

3-36

3-36

3-39

3-39

3-39

3-40

3-41

3-43

3-43

3-43

3-45

3-45

3-46

3-46

3-47

3-49

3-49

3-49

3-49

3-49

3-49

3-49
3-50

3-50

3-50

3-51

3-51

3-54

3-54

3-56

3-57

3-58

3-58

TECO

3. 18

3. 18. 1

CHAPTER 4

4. 1

4.2
4.3
4.4

CHAPTER 5

5. 1

5. 1. 1

5.1.2

5.1.3

5.1.4

5.2

5.2. 1

5.2.2

5.2.3

CONTENTS (Cont)

Command String Type-in Control Commands

Carriage Return, line Feed, and Spaces

TECHNIQUES

Creation, Execution, and Editing of a FORTRAN Program

Rearranging a File

Splitting and Merging Files

Example of an Advanced TECO Macro

USER ERRORS

Erasing Commands

Rubout Command

Double @ Command

@ Command

Bell-Space Command

Error Messages

Question Mark Command

Slash Command

EH Command

APPENDICES

APPENDIX A TECO ERROR MESSAGES

APPENDIX B ASCII CHARACTERS

APPENDIX C SUMMARY OF COMMANDS

viii

Page

3-60
3-60

4-1

4-3
4-4

4-7

5-1

5-1

5-2

5-2

5-3

5-3

5-4

5-5

A-1

B-1

C-1

TECO

CONTENTS (Cont)

Page

TABLES

2-1 Spec i al Characters 2-3

2-2 Special Symbols 2-4

2-~1 Numeric Operators 2-9

3-1 EM Commands 3-6

3-2 Special Buffer Position Arguments 3-12

3-3: L Commands 3-13

3-4- T Commands 3-14

3-5 K Commands 3-18

3-6 P Commands 3-27

3-7 Conditional Execution Commands 3-47

A-1' TECO Error Messages A-1

B-1 ASCII Characters B-1

C-] Command Description C-l

ix

Chapter 1

In'troduc:tion

TECO

This, manual is a complete reference manual for the advanced TECO user. It is not designed to be used

as 01 beginner's text, and people who are learning TECO should not use it as such. Beginners are re­

ferried to the j'utorial "Introduction to TECO", which appears in Section I of the DECsystem-10 Users

Handbook.

TECO is a powerful text editor for use with all DECsystem-10 systems. TECO enables the advanced

user to easily edit any ASCII text. Most editing can be accomplished using a few simple commands;

or tlhe user can select any of a large set of sophisticated commands, such as character string searching,

command repetition, conditional commands, programmed editing, and text block movement. Refer

to Appendix c: for a summary of the commands available.

TECO editing is normally done on-line, using the terminal. However, the user can also write his

edit'ing comm<lnds as a TECO command file and have Ihis editing task run by an operator.

TECO is a ch(lracter-oriented editor; one or more cholracters in a line can' be modified without re­

typing the rest of the line. Any source document can be edited: programs written in FORTRAN,

COBOL, MACRO-la, or any other language, as well as memoranda, specifications, and other types

of clrbitrarily-formatted text. TECO does not require that I ine numbers or any other extraneous in­

formation be (]ssociated with the text. The full ASCII character set, printing and nonprinting

characters al ike, can be processed.

TECO requires a minimum of 5K of core memory, 3K of which is shared in a reentrant system. TECO

takes advantage of any additional core available to expand its buffers, as required.

A single terminal is required for typing in commands. Data can be input or output on any standard

I/O device.

1-1

Chapter' 2

C4:>ncepts

2.1 DATA FILES

TECO

DECsystem-10 TECO operates on ASCII data files. The input file is the file that the user wishes to

ch~Jnge. ThEl output file is the file that receives the newly created or edited data.

Inputting is defined as the process of reading in data, that already exists in some computer-readable

form (paper tape, disk file, etc.). Data can be input from any device except the user's terminal (or

another user's -terminal). Inserting is defined as the actual typing in of new data and is done only at

the user's terminal.

In the case of such hard-copy devices as the card reader and the paper-tape reader, only the device

ne~~d be specified to open a file for input or output. For disk and DECtape files, filenames, as well

as the device, must be specified. If no device is specified, the device DSK: is assumed. Magnetic

tape files are specified by naming the tape drive and by using special TECO commands to position

the tape properly.

Any I/O device name acceptable to the monitor can be used. Some examples are:

DSK:

DTAn:

MTAn:

CDR:

CDP:

PTR:

PTP:

LPT:

TTYn:

Disk (including drums)

DECtape (n is the number of the drive on which the
tape is mounted)

Magnetic tape (n is the number of the drive on which
the tape is mounted)

Card reader

Card punch

Paper-tape reader

Paper-tape punch

Line printer

Terminal number n, usually a terminal having a low­
speed reader or punch

2-1

TECO

NOTE

TTYn: used as an I/O device must be different from the
user's terminal and must not be the terminal of any
attached user.

Filenames for disk and DECtape files consist of two parts: the first part, the filename proper, consists

of from one to six alphanumeric characters; the second part, which is optional, is called the "filename

extension." If given, the filename extension consists of from one to three alphanumeric characters

and is separated from the filename proper by a period. If the fi lename extension is not given, it is

defined as null and as such is distinctive. In the case of a null filename extension, the period after

the filename proper can be omitted.

Examples of fi lenames:

TECO.21

EARNNG .F4

0015J.CBL

GLOB. MAC

GLOB.BAK

FRMTTR. TEC

M20

M20.1

2.2 CHARACTER SET

The source file for TECO version 21

A FORTRAN source program

A COBOL source program

A MACRO-10 source program

A backup file

A file containing a TECO macro

A filename with null extension

A similar filename with non-null extension

The TECO character set is the full ASCII set. To obtain particular information about individual char­

acters, the user should refer to the table of ASCII characters in Appendix B. This tuble contains

the following:

a. A list of all ASCII characters and the symbols used in this manual to represent
them,

b. octal and decimal values of the characters, and,

c. comments concerning any special significance of each character.

In general, the user must be concerned with the character set on two levels: the data level and the

command level.

Every ASC II character from control-A (decimal value 01) through rubcut (decimal value 127) is legal

in TECO data. They can all be input and output, and they can all be inserted. The only character

that is not completely legal as data is the null character (decimal value 0). The null character can be

inserted and output, but it is ignored on input. Form feed characters (decimal value 12) are com­

pletely legal in data but are treated specially on input (see Sections 2.3 and 3.3).

Most of the ASCII characters have some meaning when used as commands. Some are monitor commands.

When used as commands, the lower-case characters have the same meaning as their upper-case

2-2

I

I

TECO

equi'valents. The table in Appendix B tells where in this manual the uses of the various characters

as commands eIre explained.

2.2 .. 1 Specie::!1 Characters

Because of thc~ir use as special immediate-action commands (monitor control commands or erasing

commands), cc~rtain characters must not be typed in explicitly as alphanumeric arguments. All of

them, however, are legal as data (except the null character) and can be inserted using special tech­

niqLles. The c:haracters to which this restriction applies are referred to in this manual as IIspecial

characters. II These special characters are I isted in Table 2-1.

@
@~9

@L-I

@

®
ESCape

ALTmode

Rubout

Character

(control-C)

(two successive
control-Gis)

Table 2-1 t
Special Characters

(control-G, space)

(control-o)

(control-U)

or PREfix

or @

Remarks

A monitor command

An erasing command
(A single control-G is
acceptable.)

Immediate editing command
(causes current line to be
retyped).

A monitor command

An erasing command

Equivalent to ALTmode

Standard text argument
terminator (Two successive
ALTmodes terminate a
command string.)

An erasing command

t In monitors preceding the 5.02 monitor the characters @' @, and @
are also monitor commands and must be included in the aoove list for these systems.

2.2 .. 2 Control Characters

Control characters are characters that are typed by holding down the CTRL key whi Ie striking a char­

act€!r key. The control characters have decimal values 0 through 31. When TECO is printing text,

a control character is printed as an up-arrow, followed by the character which is typed to produce

the control character. For example, control-A prints as II tAli.

In many cases the control character commands can be typed into command strings by using an alternate

proc:edure to the standard method of holding down the CTRL key while striking the desired character.

2-3

TECO

Instead, the user can first type up-arrow and then type the desired character without depressing the

CTRl key. For example, when used as a command, the two-character sequence up-arrow, H (denoted

'by tH) is equivalent to the single character control-H (denoted by @). This method can be used

only when the control character is typed as a command, not when it is typed as text or as an alpha­

I numeric argument. Control characters appearing as text arguments must be preceded by a ®.
Exceptions are noted at appropriate places throughout the manual.

2.2.3 Carriage Control Functions

A few of the control characters are the special terminal functions: bell, tab, line feed, vertical tab,

form feed, and carriage return. All of these characters echo by performing their particular function;

they also perform this function when TECO is printing out text from the buffer.

When a carriage return is typed in, the monitor automatically generates a line feed following it. The

echo to the carriage return type-in is CI carriage return followed by a line feed. If the carriage return

is typed as an insert, a line feed is automatically inserted immediately after the carriage return.

Altmode (or escape or prefix) echoes and prints out as a dollar sign.

2.2.4 Symbols

In the examples in this manual, some special symbols are used to clearly indicate what the user must

type. These special symbols are I isted in Table 2-2.

In all examples containing both characters typed by the monitor or TECO and characters typed by the

user, the characters typed by the monitor or TECO are underlined. Carriage control characters

(carriage return, form feed, etc.) typed by the user are indicated through use of the special symbols.

Symbol

-I
!

@
([~R~

)
L-I

(!)
@
@
fA

Table 2-2
Special Symbols

Character

tab

line feed

vertical tab

form feed

carriage return

space

altmode

rubout

control-A

up-arrow
followed by A

(Other control characters similarly denoted)

2-4

TECO

2.3 DATA FORMAT

TECO is capable of editing text written in any format. There are, however, features in TECO that

mak.e use of the concept of a I ine and the concept of a page. Therefore, the user must know how

these concepts are defined in TECO.

Lines can be of any length. The characters that define the end of a I ine are the I ine feed, vertical

tab l , and form feed. The end of the editing buffer also counts as an end-of-I ine character if there is

no other end-of-line character at the end of the buffer. When TECO counts lines, it does so by

counting thesE~ end-of-line characters. An end-of-line character is considered to belong to the line

that" it termin(ltes.

Examples:

The following text comprises three lines of text as defined by TECO:

LINE ONE l
LINE TWO)

LINE THREE) l

I The following text is considered to be two lines:

BEGINNING) OVERPRINT @ CONTINUATION) l

The first I ine is terminated by the @ character and the second by the l character.

Tex1" to be edited by TECO does not ha~e to contain end-of-line characters; however, if it does not

con1rain them, those features of TECO that count lines will not be useful.

NOTE

If the EO value has been set to 1, the only end-of-line
character is the line feed (refer to Paragraph 3. 17.3 for
a description of the EO value).

Pages are defined in TECO by form feed characters, which act as page separators. They are not con­

sidered to belong to either of the two pages that they separate. Two consecutive form feed characters

delimit a null page. A form feed charater at the beginning of a file delimits a null page at the be­

ginning of the file. A form feed character at the end of a fi Ie has no effect in TECO. It can be

omil-ted.

2-5

TECO

Examples:

The following file consists of two pages:

LINE ONE) ~

LINE TWO ,) ~

«O~~ LINE THREE) l

LINE FOUR.) l

The following consists of four pages; the first and third pages are null:

eliNEONE.)l

LINE TWO ,) ~

<[O~~ eliNE THREE.) l

LINE FOUR,) l

TECO operates most efficiently with files that are divided into pages of approximately fifty or fewer

lines. Files with longer pages or fi les containing no form feed characters can be edited with TECO;

but, this process requires either additional core storage or more care when editing.

The processing of form feed characters by TECO must be thoroughly understood by the user. The page

concept is further discussed in relation to the size of the editing buffer in Section 2.4, and the rela­

tion of form feed characters to input and output commands is discussed in Sections 3.3,3.9,3.10,

and 3.11.

TECO may be used to edit files containing the special line-sequence numbers produced by BASIC,

the PI P /S switch, LINED, and several other editors, but TECO does not need these numbers and

makes no special use of them (nor does it destroy them). See Section 3.2.6 for an explanation of how

these numbers may be processed.

2.4 EDITING BUFFER

Editing is accomplished by:

a. Reading text into the editing buffer

b. Making changes to the text in this buffer

c. Writing the modified text out to a new fi Ie

The editing buffer is a block of core memory within TECO. Data is put in the editing buffer when it

is read in or inserted; it is kept in the editing buffer while it is being modified.

Text is packed in the editing buffer with five 7-bit ASCII characters per 36-bit word. When IECO is

running in the minimum 5K of core, the editing buffer holds approximately 3600 characters. Each

additional 1 K of core assigned to TECO increases the size of the editing buffer by 5120 characters.

2-6

TECO

TECO normailly passes data into and out of the editing buffer a page at a time. Pages are delineated

by form feed characters (see Sections 2.3 and 3.3).

2.5 BUFFER POINTER

TECO is a character-oriented editor, therefore, the concept of the buffer pointer must be understood

by the user. The position of the buffer pointer determines the effect of many editing commands. For

exclmple, insertion and deletion always take place at the current position of the buffer pointer.

The buffer pointer is a movable position indicator. It is always positioned between two characters in

the~ editing buffer, or before the first character in the buffer, or after the last character in the buffer.

It iis never positioned exactly £!l a particular character; it is positioned either immediately before

or after the c:haracter.

Thl3 pointer can be moved forward or backward over any number of characters. It cannot be moved

be)'ond the boundaries of the buffer; i. e., it cannot be moved further back than the position immedi­

atedy prior to the first character in the buffer, and it cannot be moved further ahead than the position

immediately after the last character in the buffer.

In the examples in this manual showing text in the editing buffer, the position of the buffer pointer is

shc)wn by a caret (I\) directly under the line of text ..

TEXT IN THE EDt{lNG BUFFER

When discussing text in the editing buffer in terms of I ines, the phrase "current I ine" is frequently

used. The current line is the line at which the buffer pointer is currently directed. The pointer can

be positioned either at the beginning of the line or in the interior of the line.

2.6 GENERAL COMMAND STRING SYNTAX

Commands are given to TECO by typing a command string; command strings are formed by writing a

series of commands, one immediately after the other, and concluding with two consecutive altmodes

(refer to Appendix C for a summary of commands).

A command string may be typed after TECO indicates that it is ready by printing an asterisk. An

excJmple of a command string is as follows:

~YIHEADING CD 2K4DNTAG CD 2LT CD®

Exc3cution of the command string begins only after the two consecutive altmodes have been typed.

TECO then indicates that it is beginning execution of the command string by typing a carriage return-

2-7

I

I

TECO

line feed. At that point, each command in the string is executed in turn, starting at the left. When

all commands in the string have been executed, TECO prints another asterisk indicating it is ready to

accept another command string.

If a command in the string cannot be executed due to a command error, execution of the command

string stops at that point, and an error message is printed. Commands preceding the command in error

are executed. The erroneous command and the commands following it are not executed. Errors,

error messages, and recovery techniques are fully discussed in Chapter 5.

There are exceptions to the general rule that commands are not executed until the end of the command

string has been indicated by two consecutive altmodes. These exceptions are the commands listed in

Table 2-1 in Section 2.2.

2.7 ARGUMENTS

2.7. 1 Alphanumeric Arguments

Most alphanumeric arguments are text arguments that are interpreted as ASCII data by TECO. Some

examples of text arguments are: data to be inserted in the buffer, search character strings, and com­

mand string tags. Other types of alphanumeric arguments are device and filenames and Q-register

names.

An alphanumeric argument always follows the command to which it applies. As a rule, most commands

that take text arguments require that the argument be terminated by an altmode; however, there are

exceptions to this rule which are explained at appropriate places in the manual.

An altmode used to terminate an alphanumeric argument can also function as one of the two altmodes

necessary to terminate a command string.

Example:

* ITEXT CD STEXT2 CD CD
*

The alphanumeric argument, "TEXT",
is terminated by an altmode. The
second argument, ITEXT2", is also
terminated by an altmode, but this
altmode is also used as one of the
altmodes terminating the command string.

Any printable ASCII character is legal in an alphanumeric argument with the exception of the special

characters listed in Table 2-1, Section 2.2. In addition, non-printing characters are legal when they

are preceded by a ® .

2-8

TEeo

2.7.2 Numeric Arguments

Numeric arguments always precede the command to which they apply. In some cases, only a single

numeric argument is required; in others, a pair of numeric arguments is required.

When two numeric arguments are used, they are separated by a comma. In most cases, numeric argu­

ments must be positive; however, some commands allow a numeric argument to be negative or zero.

The number and type of numeric arguments allowed by each command are stated in the section in

which that c::ommand is explained.

Where a numeric argument is used to specify a buffer position, the number used is the number of

characters in the buffer to the left of that position. Thus, n means the position to the right of the

nt'h character in the buffer (between the nth and n+ 1 st characters).

Nlumeric aq~uments used in pairs are always buffer position arguments. Such a pair specifies all the

characters in the buffer that lie between the two buffer positions represented by the two arguments.

This definition is precise because the term I I buffer position ll always indicates a position before or

after a given character, not Ilon ll or Ilat ll the character.

Example:

12,20 This argument pair specifies the thirteenth (13th)
through the twentieth (20th) characters in the
buffer. These characters are spec ified because
the 12 indicates the position between the 12th
and 13th characters, and the 20 indicates the
position between the 20th and 21st characters.

Numeric ar~luments can be used in arithmetic/logical combinations. The characters shown in Table 2-3

are used as operators.

Operator

+

+

space

-

Table 2-3
Numeric Operators

Function

Ignored, if used before the first term
in a string.

Addition, if used between two terms.

Equivalent to +.

Negation, if used before the first
term in a string.

2-9

E xample

+ 2=2

5

-

+6=11

L-I2=2

5J=11

2=-2

I

TEeo

Operator

-
*

/

&

Table 2-3 (Cont)
Numeric Operators

Function

Subtraction, if used between terms.

Multiply. (Used between two terms.)

Integer Divide (and drop the remainder).
(Used between two terms.)

Bitwise logical AND of the binary
representations of two terms, if used
between the terms.

Bitwise logical OR of the binary
representations of two terms, if used
between. the terms.

Example

8-2=6

8*2=16

8/2=4
8/3=2

12 & 10=8

12# 10=14

When more than one arithmetic/logical operator is used in a single numeric argument, the operations

are performed from left to right. This sequence can be overridden through use of parentheses O. All

operations within parentheses are performed before those outside parentheses. Parentheses can be

nested.

In TECO, numbers are ordinarily assumed to be decimal integers. Preceding a number with to
(uparrow-O, not control-O) causes the number to be read in octal radix.

Example:

Examples:

t0177 is equivalent to 127.

3* t010=24
2+3 * 4=20
2+(3 * 4)=14
2+(3 * (16/(3-1)) /2 +(2 * 5)) =24
2&(3#5) # 16=18
-((2+ (3 * 4) - 1 &(6 +8)) /2) =-6

The arithmetic/logical operators and parentheses can be used to form one or both of the numeric

arguments in a pair.

Example:

260 - (3 * 42), 250 + (77/3)

2-10

I

TECO

2.7.3 Commands That Return a Value

Generally speaking, there are two main categories of TECO commands: 1) those that perform some

operation, ~;uch as inserting text, and 2) those that "return" a value, such as the number of characters

in the editing buffer. (There are also some commands that do both.)

A command is said to Ilreturn" a value if the command causes the current value of some quantity to be

c1:llculated, and then the command takes on this value, becoming itself a numeric argument that may

be used by another command. Using such a command is equivalent to typing the particular number

that the command returns as a value, except that the value is not usually known in advance. This

vl:llue can then be used as an argument by the next command in the command string, provided that the

command is one that can take a numeric argument. Otherwise, it is ignored.

An example of a command that returns a value is the Z command (see Section 3.4). The Z command

returns a value equal to the number of characters in the buffer. It has no other function. Thus, in

olrder to be useful, Z must be used as a numeric argument preceding another command.

Commands that return values may be used in arithmetic/logical combinations with each other and

with explicit numbers. All the same rules apply. Each command that returns a value has all the

plroperties of a number that has been expl icitly typed in.

If commands that return values are concatenated with each other or with digits, the value returned

is that of the last command or number in the string. An operator preceding such a string continues

to apply.

Examples:

ZZ = Z
Z48 = 48
-2Z = -Z
3+ZZ = 3+Z

2.8 Q-REGISTERS

Q-registers are data storage registers that are available to the TECO user. Q-registers give a great

amount of editing power to the user by enabling programmed editing and text block movement. Data

st"ored in Q-registers is not disturbed by the flow of data into and out of the editing buffer. It can be

preserved throughout an entire TECO iob, and it is available for retrieval or change at any time.

There are 36 Q-registers; each Q-register has a single character name, which is either one of the

digits 0 through 9, or one of the letters A through Z. Also, there is a Q-register pushdown stack that

effectively makes available an additional 32 Q-registers for certain applications. 1

1 The number of entries in the pushdown stack can be increased by changing the parameter L PF in
TECO. MAC and reassembling TECO.

2-11

,

TECO

Two types of data can be stored in Q-registers: decimal integers or alphanumeric character strings.

For numeric storage, a Q-register can be used to hold a single positive, negative, or zero decimal

integer in the range _235 + :s n :s 235 -1. Numbers stored in Q-registers can be incremented, tested,

or recalled. Hence, Q-registers can be used as switches and counters, as well as for simple data-save

functions.

For text storage, a Q-register can be used to hold a character string of any length. Two types of

character strings can be stored: ordinary text and TECO command strings. Ordinary textual data

stored in a Q-register is copied into the Q-register from the editing buffer without destroying the copy

in the editing buffer. Storing text in a Q-register is useful for functions such as making many copies

of a given segment of text throughout a file without retyping it each time, for moving a block of text

from one position to another in a file, and for moving a block of text to another file.

Textual data in the form of TECO command strings can also be stored in Q-registers. Such a command

string can be executed over and over throughout an editing iob, much like calling a subroutine. This

feature also enables an editing iob to be typed up off-I ine and then executed by an operator at a later

time. Such command strings can be edited iust as any other text.

2.9 CORE EXPANSION

The minimum 5K of core memory is allocated within TECO in the following manner. The executable

code is allocated 3K of core memory; this code is pure and is shared in a reentrant system. The other

2K of core memory is allocated to the data segment. Part of the data segment is used for program

variables and fixed-length I/O buffers, while the rest is used for three variable-length storage areas:

a. The editing buffer,

b. the command string buffer, and

c. the storage area for Q-registers containing text.

When TECO is initialized, the three variable-length storage areas are assigned a specific amount of

space. After a command string is executed, the command string buffer is cleared. When text is de­

leted from the editing buffer, the formerly occupied space is reclaimed. However, during a TECO

iob, conditions can arise where the available space is not sufficient for the three variable-length

storage areas. For example, a command string having a single insert command with many lines of text

to be inserted may overflow the command string buffer. In such a case, TECO attempts to obtain the

required space from one of the other variable-length storage areas. If, however, all three areas are

filled to such an extent that the total amount of space allotted to all three is insufficient, TECO

automatically requests another 1 K of core memory from the monitor.

If the request for more core is successful, operation continues normally. TECO prints a message of

the form II [nK CORE] II (where n is the new number of 1K segments of (low) core allocated to the

2-12

I
TECO

user) to inform the user that his core has been expanded to the specified amount. (This message is

suppressed while the user is typing a command string.) If the request for more core is unsuccessful,

TECO stops execution of the command string at this point and prints the error message ?COR Storage

Capac ity Exceeded.

2-13

Chaptelr 3

C~ommands

3. I INITIALIZATION COMMANDS

TECO

TECO is called by giving one of three different initial ization commands to the monitor. An initial i­

zaHon command can be given whenever the monitor has typed a period to indicate that it is waiting

for a new command.

3. I • 1 R TECO Command

Th49 general TECO initialization command is the command:

.!.. R TECO)

*

ThIs command calls TECO into core and initializes the program for general use. It does not automati­

cailly initialize any particular devices or files for input or output.

When initialization is complete, an asterisk is typed to indicate that TECO is ready to receive a

command. This state, in which TECO waits for command string type in, is called command mode or

the idle state.

ThiEl R TECO command can be given with an argument:

.!..R TECO n)

where n is a decimal integer. The argument is used to request more than the minimum of 5K of core

memory for the TECO iob. If n is greater than 5, the monitor initializes the user'~ TECO iob with nK

of core, if possible. If n is not greater than 5, it has no effect.

3.1.2 MAKE Command

Thle two main uses of TECO are (1) to create a new file, and (2) to edit an existing file. These two

USE~S are so common that there are special monitor commands to initialize TECO for executing them.

The co:nmand:

.!..MAKE dev:filnam.ext[proi,prog])

3-]

I

TECO

is used to initialize TECO for creating a new file. Filnam.ext is the name that the user, using this

command, gives to the new fi Ie. Dev: is the device on which the fi Ie is to be created; it can be any

output device. If dev: is omitted, DSK: is assumed. If the output device is a disk device, [proi, prog]

is used to specify the user area in whiCh the file is to be created; if [proi,prog] is omitted and the

device is DSK:, the file will be created in the user's own disk area. For a more precise explanation

of file specifications (dev:filnam.ext[proi,prog]), see Section 3.2.1.

The MAKE command opens a new file to receive output from TECO and gives it the narne specified.

Once the file has been opened, it is then actually created by using the insert and output commands.

Care should be used in the choice of the filename used with a MAKE command. If there is already a

fi Ie on the system device with the name specified, the MAKE command wi II cause the old fi Ie to be

overwritten and TECO will output the warning message %SUPERSEDING EXISTING FILE. If the user

does not wish to supersede the fi Ie, he shou Id type @ to return to the mon itor. If no filename is

used with a MAKE command, the name of the last ASCII file used in a MAKE command or any other

edit-class command (MAKE, TECO, EDIT, or CREATE) is used. If no filename is given in a MAKE

command and no edit-class command was previously given, the error message "COMMAND ERROR"

is typed.

When initialization is completed, TECO types an asterisk to indicate its readiness to receive a com­

mand string. Usually the first command following a MAKE command is an insert command .

.!,.MAKE dev:filnam.ext [proi, prog])

is equivalent to

.!,.R TECO)

~EWdev:fi Inam. ext [proi, prog] (!) CD

3. 1 .3 TECO Command

The command

.!,.TECO dev:fi Inam. ext [proi, prog])

is used to initial ize TECO for editing an existing fi Ie on disk or DECtape. The fi Ie specifications

dev:filnam.ext[proi,prog] are interpreted in the same way as for the MAKE command, except that the

device must be a directory-structured device (disk or DECtape).

The filena~e and filename extension must be exactly the same as those of the file that is to be

edited.

3-2

TECO

The TECO commanJ opens the specified fi Ie for input and reads in the first page of that fi Ie. It also

opens a new file, with a temporary name, for output of the edited version. The temporary name is of

the form nnnTEC. TMP, where nnn is the user's job number, including leading zeros. When output of

the new version is completed, the original (input) version of the file is automatically renamed

fi Inam. BAK, and the new version is given the name of the original fi Ie. This operation is identical

to that used for the EB command (see Section 3.2.5).

If no filename is specified in a TECO command, the name of the ASCII file last referenced in any edit­

cl(]ss command is assumed. If no filename is specified and no edit-class command has previously been

given, the error message "COMMAND ERROR" is typed. The TECO command cannot be used with

a fi Ie having the fi lename extension. BAK, nor with a fi Ie name nnn TEC. T MP, where nnn is the

USElr's job number.

When in itial ization is completed, TECO types an asterisk to indicate its readiness to receive a

command string.

Th'3 command

..:...TECO dev:fi Inam. ext [proj, prog].)

is equivalent to

. R TECO

~EBdev:filnam.ext[proLprog] CD V CDCD

If f'he proiecl"-programmer number specified in a TECO fi Inam. ext [pro], prog] command is different

from the user's project-programmer number, the action of the TECO command is somewhat different

from that of i·he standard TECO command explained above. In this case the named fi Ie is taken for

input from the specified proiect-"programmer area, but the output fi Ie is written in the user's own disk

are!a with the same name as the input file. This operation is identical to that used for the EB command

(see Section 3.2.5).

If [pro], progJ is not the user's project-programmer number, the command:

• TECO filnam.ext [pro],progJ)

is equivalent to

..:...R TECO.)

~EBfilnam .ext [proi, prog]

or to

.R TECO.)

~ERfilnam.ext [pro], prog] @EWfilnam.ext(DV('!X!)

and the i'nput' file is not renamed to filnam.BAK.

3-3

I

TECO

3.1.4

NOTE

The R TECO command must be used for iobs involving
editing a file on a device other than disk or DECtape,
or for editing a file named nnnTEC. TMP, or a file with
the fi lename extension. BAK. The R TECO command is
also preferred with complex editing iobs, where user
errors are likely, because of the greater control it
gives over the input and output files. The R TECO
command requires the use of file selection commands
(see Section 3.2), whereas the MAKE and TECO
commands do not.

Examples of the Use of Initialization Commands

.:..MAKE EARNNG.F4)

*
.:..TECO LlB40. MAC)

.:..R TECO)

*

This command initializes TECO for creation
of a FORTRAN file named EARNNG. F4.

This command initializes TECO for editing
the existing file LlB40. MAC. At the com­
pletion of editing, TECO automatically
changes the name of the original version
of LlB40. MAC to LlB40. BAK and gives
the name LlB40. MAC to the new version.

This initializes TECO for editing the disk
fi Ie last referenced in an edit-class com­
mand(MAKE, TECO, EDIT, or CREATE) .

This is the command to initialize TECO
for general-purpose editing. FILE se­
lection commands (see Section 3.2)
should follow.

3.2 FILE SELECTION COMMANDS

Fi Ie selection is the specification of the device from which input is to be taken and the device to

which output is to go. In the case E)f magnetic tape, file selection also involves positioning the tape.

In the case of directory-structured devices, disk and DECtape, a filename must be specified in ad­

dition to the device.

I If the user wants only to create a file, or to edit an existing disk or DECtape file, file selection can

be done by using either of the previously described initial ization commands •

.:..MAKE dev:fi Inam. ext [proi, prog])

or

.:..TECO dev:fi Inam. ext [proi, prog])

In all other cases, and in particular if the user initializes TECO with the R TECO command, one or

more of the file selection commands described in this section must be used.

3-4

3.2. 1 ER Command

The ER command is used to select a fi Ie for input. The general form is

*ERdev:filnam. ext [proi, progl CD
where

a. dev: is the device name, which can be any name acceptable to the monitor.
The device name must be followed by a colon. If dev: is omitted, the
default value DSK: is assumed.

b. [proi,progl is ignored when used with a device other than disk. proi is the
proiect number and prog is the programmer number of the disk area where the
specified file resides or, in the case of output, is to be written. If [proi,progl
is omitted and the device is a disk, the user's proiect-programmer number is
assumed.

c. filnam.ext need be used only if the device is a directory device, i.e., disk or
DECtape. filnam is the one-to-six character filename, and ext is the one-to
three character filename extension conforming to the rules stated in Section
2.1. If the device is a disk or DECtape, filnam must not be omitted;
.ext must not be omitted unless the null extension is explicitly intended.

d. The CD (altmode) functions as the argument terminator.

TECO

The ER command terminates input from any fi Ie that may have been previously opened for input, and

then opens the specified fi Ie for input.

The user may open one file for input, read only part of that file, and then, with another ER command,

release the first fi Ie and open a new fi Ie for input. It is not necessary to read to the end of a fi Ie

before opening another. However, opening the second file does end input from the first. There is

never more than one input fi Ie active. In Section 4.4, an example is given showing how to use multi­

pie ER commands to merge parts of several files. Data cannot be input without first giving an ER, or

equivalent, c:ommand.

3.:2.2 EM Command

E tv! commands are used to position a magnetic tape for input or output. However, EM command apply

only to the magnetic tape that is currently open for input (i.e., opened by the latest ERMTAn: CD
command). To position a magnetic tape for output, it is necessary to first initialize the tape for input,

the!n do the desired EM function, and then reopen the dev'ce for output.

The function of an EM command is determined by the value of a single numeric argument preceding

the EM. The various EM commands are shown in Table 3-1.

3.2.3 EW Command

The EW command is used to select a fi Ie for output. The general form is

:EW dev:fi I nam. ext [proi ,progl CD

3-5

I

rECO

The EW command opens the specified file for output. If any output file is already active, a new EW

command closes that file before opening the new file. Only one output file can be active at anyone

time. If a previously active output file is closed by an EW command, that closed file contains all

and only that data supplied to it by output commands preceding the new EW command.

If there is already an output file with the name specified, the EW command causes the old file to be

overwritten and TECO outputs the warning message %SUPERSEDING EXISTING FILE.

Multiple EW commands may be used without changing the input fi Ie. In Section 4.3, an example is

given showing how to use this technique in order to split a single input file into several parts.

The MAKE filnam.ext initialization command causes an automatic EWDSK:filnam.ext ® command

to be executed. Output may not be done without first giving an EW, or equivalent, command.

Command

EM or 1 EM

3EM

6EM

7EM

8EM

9EM

11EM

14EM

15EM

Table 3-1
EM Commands

Function

Rewind the currently-selected input
magnetic tape to load point.

Write an end-of-file record on the
input tape.

Skip ahead one record.

Back up one record.

Skip ahead to logical end-of-tape
(defined by two successive end-of-file
marks). The 8E M command leaves the
tape positioned between the two end­
of file marks so that successive output
correctly overwrites the second EOF.

Rewind and unload.

Write 3 in. of blank tape.

Advance tape one file. This leaves
the tape positioned so that the next item read
wi II be the first record of the next fi Ie (or
the second end-of-file mark at the logical
end-of-tape) .

Backspace tape one file. This leaves the
tape positioned so that the next item read
will be the end-of-file mark precedin3 th,e
fi Ie backspaced over (un less the fi Ie is the
fi rst on the tape).

NOTE

The EM commands do not clear the internal input buffers.
It is best to reinitial ize with a new ER command before
doing an EM command.

3-6

I

I

TECO

3.2.4 EZC:ommand

Th,e EZ command is used only with disk, DECtape, or magnetic tape. Its function is equivalent to that

of the EW command except that before opening the specified output fi Ie it zeros the output device

directory if I'he device is a disk or DECtape, or it rewinds the tape if the device is a magnetic tape.

FOlr other devices, it is treated exactly like an EW. The form is

~E Zdev:fi Inam. ext [proi, prog] ®

3. :2.5 EB Command

The EB command is used to open a file for editing in a manner similar to the initialization command

TECO dev:filnam.ext[proi,prog]) It can be used only for files on a disk or DECtape. The general

form of the command is

~EBdev:filnam.ext [prol, prog] ®
The exact operation of the EB command is as follows:

First, the EB command executes an automatic ERdev:filnam.ext CD command, opening
the specified file for input and releasing any previously opened input file. Then, it
opens a temporary fi Ie to receive the output of the edited version of the input file.
This temporary file is named nnnTEC. TMP, where nnn is the user's iob number with
leading zeros. This a~n is equivalent to executing the command
EWdev:nnnTEC. TMP \!J. . The output device is the same as the input device.
Finally, the EB commana sets an internal flag indicating that special action must
be taken when the EB file is closed (by an EF, EX, or EG command - see
Sections 3.9 and 3. 10). It also prohibits any further EW, EZ, or EB commands unti I
the file is closed.

When the EB file is closed, the tOllowing action takes place. First, if there already
exists on the device a file with the name fi Inam. BAK, it is deleted. Then, the input
file filnam.ext is renamed filnam.BAK. Finally, the output file, nnnTEC.TMP, is
renamed fi Inam. ext.

The effect of using the EB command is analogous to editing a fi Ie in place, to itself,
and converting the original version into a backup file. It updates the specified file
and keeps the most recent previous version as a backup fi Ie.

If the proiect-programmer number specified in an EBfilnam. ext [proi, prog] ®
command is different from the user's, then the input fi Ie is taken from the specified
area, but the output fi Ie is written in the user's own area with the same name as the
input file. In other words, if [proi,prog] is not the user's proiect-programmer number,

*EBfilnam. ext [proi, prog] CD
is equivalent to

*ERfilnam.ext [proi, prog] CD EWfilnam.ext 0
The EB command cannot be used with a file having the filename extension. BAK
nor with a file named nnnTEC. TMP. The TECO dev:filnam.ext[proi,pr~ ini­
tialization command causes an automatic EBdev:filnam.ext[proi,prog] \!) to
be executed (followed by an automatic Y command).

3-7

TECO

3.2.6 Editing Line-Sequence Numbered Fi les

Some ASCII files, e.g., those created by BASIC, PIP with the /S and /0 switches, and LINED, have

a special type of line number at the beginning of each line. These II line-sequence numbers" conform

to certain rules so that they may be ignored or treated specially by compilers and other programs. The

standards for I ine-sequence numbers are given in the LINE D Program Reference Manual.

TECO does not need line-sequence numbers for operation, but TECO can be used to edit files con­

taining them. If such a file is edited with TECO the line-sequence numbers are, in the normal case,

simply preserved as additional text at the beginning of each line. The line-sequence numbers may be

deleted, edited, and inserted exactly like any other text. On output the line-sequence numbers are

output according to the standard, except that the tab after the number is output only if it is already

there. Leading zeros are added as necessary. If a I ine without a I ine-sequence number is en­

countered, a line-sequence number word of five spaces is placed at the beginning of the line.

The following switches are available for use with line-sequence-numbered files. These switches are

merely added to the appropriate file selection command.

E Rdev:fi Inam. ext [prof, progJ/SU PLSN CD ®
EBdev:filnam.ext[prof,progJ/SUPLSN CD CD

causes line-sequence numbers to be suppressed at input time. The numbers will not be read into the

editing buffer. Also, the tabs following the line-sequence numbers, if they exist, will be suppressed.

EWdev:filnam.ext[prol,progJ/SUPLSN CD CD
causes the I ine-sequence numbers to be suppressed at output time. Tabs following the line-sequence

numbers will also be suppressed if they exist.

EWdev:filnam.ext[prof, progJ/GENLSN ® ®
EBdev:fi Inam. ext [prof, progJ/GENLSN CD CD

causes line-sequence numbers to be generated for the output file if they did not already exist in the

input file. Generated line-sequence numbers begin at 00010 and continue with increments of 10 for

each line.

Note that these swi tches are needed on I y if a change is to be made in the format of the fi I e be i ng

edited. If no switches are specified, a file is output in the same form as it was input.

3.2.7 Examples of the Use of File Selection Commands

* ERDTA2:CREF.2 CD EWDSK:CREF.3 ®®
*

3-8

This command string selects the
DECtape file CREF .2 on DECtape
drive 2 for input and opens a fi Ie
called CREF. 3 on the disk for
output. If there is a file named
CREF.3 already on the disk, it
will be overwritten.

* ERCDR: ® EWPTP: <DC!)
*
*ERMTA1: CD EM14EM14EMEZDTA5:PROFIT.CBL CD <D

~ERPULSE.F4[11, 141] CDC!)
*

~ EZMTA3: CD CD
*
.ER ~IT A 1: CD 8E MEWMT A 1: CD

~ EB22. F4 CD CD
*

* n<14EM> C!) CD
*

~EBCHESS. MAC [1,4] CD CD

3.3 INPUT COMMANDS

TECO

Select the card reader for input
and the paper tape punch for
output.

This command string selects the
tape on magnetic tape drive 1
for input, then positions the tape
at the beginning of the third file
on that tape, and finally zeros
the directory of the DECtape on
drive 5 and opens an output fi Ie
named PROFIT.CBL on it.

Select the fi Ie PULSE. F4 in
proiect-programmer area [11, 14]
on the disk for input. If this fi Ie
is read-protected against the
current user, an error message
resu Its.

Rewind the magnetic tape on
drive 3 and select it for output.

To position a magnetic tape for
output {other than iust a rewind},
the user must first select the tape
for input, then use EM commands
to position the tape, and finally
select the tape for output. In
this example, the 8EM command
positions the tape at the end of
data that had previously been
written on the tape. This enables
new output to the tape without
overwriting any of the previous
data.

This command selects the disk fi Ie
22. F4 for editing. When the
editing is completed, the file
22. F4 is the new version. The
old version is changed to the
backup file 22. BAK, and any
previous backup fi Ie 22. BAK
is deleted.

Advance magnetic tape n fi les.

This command opens the file
CHESS. MAC on the [1, 4] disk
area for input, and opens a fi Ie
CHESS. MAC on the user's own
disk area for output {assuming
the user's proiect-programmer
number is not [1,4]}.

Input commands are used to read data from the input file, which must previously have been opened,

into the editing buffer. Input commands can be used only after an ER command (or the equivalent)

3-9

TECO

has been given. Input always begins at the beginning of the selected input file. Successive input

commands then read successive segments of data from the input file.

The amount ot data read on an input command depends on the buffer size, the particular input command

used, and the data itself, as explained in the paragraphs below.

3.3. 1 Y Command

The Y (yank) corr.lf.ond first clears the editing buffer and then reads text into the buffer until one of

the following conditions is met:

a. The end of the input file is reached;

b. A form feed character is read;

c. the buffer is two-thirds full and a line feed is read (or filled to within
128 characters of capacity);

d. the buffer is completely filled.

The usual effect of the Y command is to clear the editing buffer and then read the next page of the

input fi Ie into it. Less than the entire next page is read in only if that page is too large to fit within

two-thirds of the buffer's capacity. If the cleared buffer is not large enough to accommodate at

least 3000 characters, TECO automatically expands its buffer by 1 K, if possible, before beginning

to input. The user is notified of the buffer expansion by a message of the form [nK CORE], where

n is the new number of 1 K segments of (low) core allocated to the user.

If the end of the input file has previously' been read, the Y command only clears the buffer.

If a form feed is read (i. e., if input stops because of condition b), the form feed flag (®) is set

to -1. The form feed itself is not packed in the buffer with the rest of the text. A succeeding input

command begins input at the character following the form feed. If a form feed is not read, the form

feed flag is set to 0, and the next input command begins input at the character following the last

character previously read in. The form feed flag may be tested by the user (see Section 3. 16), but

ordinarily this is not necessary.

A single Y command is automatically executed by the TECO fi Inam .ext initial ization command causing

the first page of the input fi Ie to be read into the buffer before TECO prints the first asterisk.

The Y command sets the buffer pointer to the position preceding the first character in the buffer.

The Y command does not accept a numeric argument. If multiple Y commands are desired, n <Y >
(where n is the number of pages to be ignored) can be typed.

3-10

TECO

3.3.2 A Command

The A (append) command reads in the next page of the input file without clearing the current contents

of the editing buffer. The new input data is appended to t~at which is already in the buffer (at the

end of that data). The position of the buffer pointer is not changed. If there was a form feed char -

acter in the input file separating the data already in the buffer and the data read in, it is removed.

Thus, the A command can be used to combine several pages of a fi Ie.

I If the editing buffer does not have sufficient space to accommodate 3000 more characters, TECO

automatically expands its buffer by 1K, if possible, and then completes execution of the A command.

The user is notified of the buffer expansion by a message of the form [nK CORE] .

Input begun by an A command is terminated by any of the same four conditions that terminate a Y

command. The A command processes form feeds and the form feed flags in the same manner as the

Y command.

The A command does not accept a numeric argument. If multiple appends are desired, the user can

type n<A > where n is the number of pages to be appended to the buffer. Note that nA is a different

command (refer to Paragraph 3.16).

If the end of the input fi Ie was previously read, the A command has no effect.

3.3.3 Examples of the Use of Input Commands

*ERREPORT.CBL ® Y <DC!)
*

~'A®®

~,®CD
[3K CORE]

*

*ERDTA6:DATA.DOC <D YYY CD CD

This command string opens the disk file REPORT .CBL
for input and reads in the first page of that fi Ie.

This deletes the page of text currently in the editing
buffer, reads in the next two pages of the current input
file, appending the second page to the first.

This inputs the next page of the file, appending it to the
data already in the buffer. The previous contents of the
buffer are not altered and the pointer is not moved.

The buffer is expanded automatically, as required by the
A command. In most cases, this message is of no concern
to the user. It is important only if the system is nearly
overloaded.

This command string reads in and discards the first two
pages of the DECtape fi Ie DATA. DOC, and then reads
in the third page of that file.

3.4 SPECIAL CHARACTERS AS BUFFER POSITION NUMERIC ARGUMENTS

In many eaSElS, numeric arguments are used to specify buffer positions. Because such arguments tend

to be large clnd not easay determined by counting, the buffer positions commonly used as arguments

are represenl'ed by special characters. These special characters are shown in Table 3-2.

3-11

TECO

Character

B

z

• (period)

H

Table 3-2
Special Buffer Position Arguments

Value

Equivalent to 0. It represents the position at
the beginning of the buffer, i.e., preceding
the first character in the buffer.

Equals the total number of characters in the
buffer. Thus, Z represents the position at the
end of the buffer, immediately after the last
character in the buffer •

Equals the number of characters to the left of
the current position of the buffer pointer, and
hence represents the buffer pointer position
itself.

Equivalent to the numeric argument pair B, Z.
Thus, in those commands that take two numeric
buffer position arguments, H represents the
whole of the buffer. This letter is particularly
useful with type-out and output commands.

The characters B, Z and. can be used in arithmetic expressions.

3.5 BUFFER POINTER POSITIONING COMMANDS

This section describes the most elementary commands for moving the buffer pointer. In addition to

these elementary commands, the search commands make up an entire set of powerful pointer­

positioning commands. The search commands are described in Section 3. 11.

3.5.1 J Command

The nJ command moves the buffer pointer to the position immediately after the nth character in the

buffer. The command OJ moves the pointer to the beginning of the buffer, i.e., to the position im­

mediately preceding the first character in the buffer. The command J, not preceded by an argument,

is equivalent to OJ.

3.5.2 C Command

I If n 2: 0, nC moves the pointer forward over n characters in the buffer. If n <0, nC moves the pointer

backward over n characters. The nC command is equivalent to • +nJ. The command C is equivalent

to 1C; -C is equivalent to -lC.

3.5.3 R Command

The R command is equivalent to -C. The nR command is equivalent to -nCo If n 2:0, nR moves the

I pointer backward over n characters in the buffer. If n <0, nR moves the pointer forward over n

3-12

characters. The nR command is equivalent to • -nJ. The command R is equivalent to 1 R; -R is

equivalent to -1 R.

3.5.4 L Command

TECO

The L command is used to move the buffer pointer over entire lines. The use of the L command with

vClrious arguments is shown in Table 3-3.

Table 3-3
L Commands

Command Argument Function
--

L 1 assumed Advances the pointer to the beginning
of the line following the current line.

nL n)O Advances the pointer to the beginning
of the nth I ine following the current line.

OL 0 Moves the pointer back to the beginning
of the current line.

-L -1 assumed Moves the pointer back to the beginning
of the I ine preceding the current line.

nL n <0 Moves the pointer back to the beginning
of the nth I ine preceding the current line.

If the user attempts to move the buffer pointer backward beyond the position immediately prior to the

first character in the buffer, or forward beyond the position immediately after the last character in the

buffer with a C, R, or J command, an error message is printed, and the pointer is not moved from the

position it had before the illegal command was given. With the L command no such error message

results, but the pointer wi II be moved beyond the houndary of the buffer.

3,,5.5 Examples of the Use of Buffer Pointer Positioning Commands

*

~ZJ-2L CDC!)
*

*L4C CDC!)
*

The J command moves the pointer to the beginning
of the first I ine in the buffer. The 3L command
then moves it to the beginning of the fourth line.

The ZJ command moves the pointer to the end of
the I ast line in the buffer. Then the -2L command
moves the pointer to the beginning of the next
to last I ine in the buffer (assuming that the last
line is terminated by a line feed).

Advance the pointer to the position following the
fourth character in the next line.

3-13

I

TECO

*OL2R CD CD
*

*J-L @CD

*ZJC CDC!)

?POP

3.6 TEXT TYPE-OUT COMMANDS

3.6.1 T Command

The OL command moves the pointer back to the
beginning of the current line. Then the 2R com­
mand moves it back past the last two characters
in the preceding line (the second of which must
be a I ine terminator).

The J command moves the pointer to the beginning
of the buffer, and the -L command then has no
effect and therefore does not return an error
message.

The ZJ command moves the pointer to the end of
the buffer, and the C command then causes the
error message.

Attempt to move pointer off the page with the
C command.

Any part of the text in the editing buffer can be typed out for examination. This is accomplished by

using the T commands. The text typed out depends on the position of the buffer pointer and the

argument(s} given. The T commands never move the buffer pointer.

When used with a single numeric argument, T is a I ine -oriented type-out command; when used with a

pair of numeric arguments, T is a character-oriented type-out command. The various T commands are

described in Table 3-4.

3.6.2 ,@Command

During the execution of any T command, the user can stop the terminal output by typing the special

monitor control-character @. The @ command causes TECO to finish execution of the

command string omitting all further type-outs. The effect of the © command does not carryover

to the next command string. (This command may only be typed as a control character. The combina­

tion to (uparrow, O) does not have the same effect.} Occasionally the asterisk output by TECO

when a command is finished is also suppressed by © . If this occurs, the user can type @ .
TECO wi II respond with an asterisk if it is waiting for a command.

Command Argument

T 1 assumed

Table 3-4
T Commands

Function

Types out everything from the buffer pointer
through the next line terminator. If the pointer
is at the beginning of a line, T causes the entire
I ine to be typed out. If the pointer is in the
middle of a line, T causes that portion of the
I ine following the pointer to be typed out.

3-14

Command Argument

nT n >0

.

aT a

-T -1 assumed

nT n<O

m,nT m<n

., .+nT n> a

• -n,. T n >0

HT H = B,Z

3.6.3 tL Command

Table 3-4 (Cont)
T Commands

Function

Types out everything from the buffer pointer
through the nth line terminator following it.
If the pointer is at the beginning of a line,
this command types out the next n lines
(including the current line).

Types out everything from the beginning of
the current I ine up to the pointer. This

--

command is especially useful for determining
the position of the buffer pointer.

Types out everything in the line preceding
the current line, plus everything in the current
line up to the pointer.

Types out everything in the n lines preceding
the current line, plus everything in the current
line up to the pointer.

Types the m+ 1 st through the nth characters
in the buffer.

Types the n characters immediately following
the buffer pointer.

Types the n characters immediately preceding
the buffer pointer.

Types out the entire contents of the buffer.

TECO

If a form feed character, ® or tL, is included in a command string as a command, it causes a form

feed to be printed on the terminal when TECO reaches that point in execution of the command string.

This feature is useful for obtaining a clean printout of the text in the buffer.

3.6.4 nET Command

In normal typeout mode, most control characters print in the up-arrow form and altmodes print as

dollar signs. For the benefit of users with special terminal equipment, this feature can be suppressed.

The command 1 ET (any nonzero argument has the same effect as 1) changes the typeout commands so

th'Jt every ASCII character is delivered to the typeout device literally, i.e., with its own octal mode.

This is called literal type-out mode.

When TECO is in I iteral type-out mode, it can be restored to normal type-out mode, i. e., with sub­

stitutions for control characters and altmodes, by using the command OET.

I The ET command (with no argument) returns the value (0 or 1) of the current setting of the type-out

mode switch. See Section 3.16 for an explanation of this command.

3-15

TECO

3.6.5 Case Flagging On Type-out

TECO has three text type-out case-flagging modes: (1) lower case flagging, (2) upper case flagging,

and (3) no case flagging. In lower case flagging mode, all characters in the range octal 140 to 177.

are preceded by , (apostrophe) when typed out. In upper case flagging mode characters in the range

octal 100 to 137 are flagged with a preceding '. TECO is initially set for lower case flagging.

The case flagging mode may be set as follows:

nEU (n >0)

OEU

nEU (n < 0)

EU

sets the typeout mode to flag upper case characters,

sets the mode to lower case fl agg i ng {standard},

sets the mode to no flagging,

(without argument) returns the value of the C.1Jrrent
case flagging mode.

If TTY LC is on (i.e., the user's terminal handles lower case) or if the ET flag is on, no case flagging

ever occurs regardless of the EU setting.

3.6.6 Examples of the User Text Typeout Commands

The following examples assume the buffer contains the
text shown at the right, with the buffer pointer posi­
tioned between the M and the N

ABCDE) ~
FGHIJ..) ~
KLtv!I\,.NO) ~
PQR:>T) ~
UVWXY) ~
Z)~

Examples:

~T(OO)
NO

*
~3T CD CD
NO

PQRST

UVWXY

*

*OT CD CD
KLM*

Note that no carriage return-line feed exists between
the beginning of the I ine the pointer is on and the
pointer itself, therefore, none are typed. The second

. asterisk indicates that TECO is ready for the next
command.

3-16

*OTT ($)®
RLMNO
'It

~-2T CD®
ABCDE

FGHIJ

KLM*

*., .+6T CD CD
NO
"J5'C:~*
W:-=2, . T CD ®
[M*

~OU CD CD
KLMNO ;v---

~HT ®®
ABCDE

FG@
T""

*t LHT tL CD CD

ABCDE
]!'GmT
RIm 0
"J5'C:rR5I
fJ\IWXY r-

*

*

~T CD CD
TECO M'A'N'U'A'L

~lEUT CDCD
'T'E'C'O I MANUAL

~-'IEUT ®®
TECO MANUAL

*

This pair of commands causes the entire current line to
be typed out without moving the pointer.

The six characters typed are NO) ~PQ.

This pair of commands types out the entire current
line and leaves the pointer at the beginning of
this line.

The user requests typ~ut of the whole buffer,
but stops it with a \!9 immediately after the
G is typed.

This command string causes the entire contents
of the buffer to be typed out, with a form feed
printed before and after the text is printed.

If the buffer contains the text X ® y C!) z) ~,
this command string causes it to be typed out in both
normal and literal modes, as shown. In the first line
typed out, the control-A and altmode are typed in
normal mode as up-arrow, A and dollar sign. In the
second line, typed in literal mode, tA and $ do not
appear because they are delivered to the console
device in their true values, which are nonprinting
charaCters on most terminals.

The appearance of apostrophes in the typed text
indicates that II anual" is lower case.

1 EU changes TECO so that upper case characters
are flagged.

;..1 EU stops case flagging.

3-17

TECO

TECO

3.7 DELETION COMMANDS

The K and 0 commands are used to delete characters from the editing buffer. The K command used

with a single numeric argument is a I ine-oriented deletion command. The 0 command and the K

command used with a pair of numeric arguments are character-oriented deletion commands.

3.7. 1 K Command

The various K commands are described in Table 3-5.

Command

K

nK

OK

-K

nK

m,nK

3.7.2 0 Command

Argument

1 assumed

n >0

o

-1 assumed

n<O

m<n

Table 3-5
K Commands

Function

Deletes everything from the buffer pointer
through the next I ine terminator. If the
pointer is at the beginning of a line, the
K command causes the entire I ine to be
deleted. If the pointer is in the middle of
a line, the K command de I etes on I y the
portion of the I ine following the pointer
(including the line terminator).

Deletes everything from the buffer pointer
through the nth I ine terminator following it.

Deletes everything from the pointer back to
the beginning of the current line.

Deletes everything from the pointer back to
the beginning of the I ine preceding the
current line.

Deletes everything from the pointer back to
the beginning of the nth line preceding the
current line.

Deletes the m+1st through the nth characters
in the buffer and positions the pointer at the
point of deletion (that is, the pointer is set
equal tom).

Using the 0 command, characters can be deleted individually and in short strings. The nO command,

where n ~O, deletes the n characters immediately following the buffer pointer. If the argument n is

I omitted, n = 1 is assumed. The command nO, where n <0, deletes the n characters immediately pre­

ceding the pointer; -0 is equivalent to -1 D.

At the conclusion of any K or 0 command, the buffer pointer is positioned between the characters that

preceded and followed the deletion.

3-18

I

:3.7.3 Examples of the Use of Deletion Commands

The following examples assume that the buffer
contains the text shown at the right; the buffer
pointer is positioned between the M and the N.

ABCDE) ~
FGHIJ) +
KL~NO) I.
PQR~T) l
UVWXY ~~
Z)l

Examples:

~6D®®
*

~-D®®
*

~-5D CDCD
*

~-2D2D CD CD
*

*HK CDC!)
*

~O,.K CDCD
*

;.,ZK CDC!)

. ~K®®
*

*OLK CD CD
*

*L3K CD CD
*

.~KD ®®
*

.~OK ®®

*
'*-K

®®
. *

3.8 INSERTION COMMANDS

Deletes NO) !PQ, changing the third
and fourth lines to KLMRST)!.

Deletes M.

Deletes~ lK LM, changing the second
and third lines to FGHIJNO) !.

Deletes LMNO, changing the third
line to K~ l.

Deletes everything in the buffer, but does
not delete the form feed marking the end
of the page (if there is one).

Deletes everything from A through M.

Deletes everything from N through Z) l .

Deletes NO.)' changing the third and
fourth lines to KLMPQRST ..)+.

Deletes the entire third line.

Deletes the last three I ines (everything
from P through Z) l).

Deletes NO..) ~P, changing the third and
fourth lines to KLMQRST.J !.

Deletes KLM.

Deletes FGHIJ.J !KLM .

TECO

The insertion commands are used to insert characters into the editing buffer from the user's terminal.

3-19

I

I

TECO

3. B. 1 I Command

The basic text insertion command is the I command used with the desired text as its argument. The

text argument is terminated by an altmode. The general form is

~Itext ®
Th is command inserts the ASC II text string, "text", into the editing buffer lust ahead of the buffer

pointer. After the insertion, the buffer pointer is positioned immediately after the last inserted

character. The altmode terminating the text argument is not inserted. The text to be inserted may

contain any character except the special characters (see Table 2-1), but control characters must be

treated specially (see Section 3.B.B).

3. B. 2 Tab Command

The tab command is equivalent to the I command, except that the tab command causes the tab itself

as well as all the following text up to the altmode to be inserted. In other words, if the first charac­

ter of a text string to be inserted by an I command is a tab, the I may be omitted. The general form

of the tab command is

~-Itext CD

3.B.3 @I Command

The @'I command is slightly more powerful than the I command. This command enables the user to

insert single (but not doubJe) altmode characters in addition to the characters that can be inserted

with the I command. (To insert a double altmode, the second altmode must be preceded by a @.)
The @I command is usefu I for inserting TECO command strings into the editing buffer. The general

form is

~@I/text/

In this form, "text" is the text string to be inserted. The text argument must be immediately delimited,

both before and after by any single character which is not itself a part of the text to be inserted. In

this example, the delimiting character is the slash character. Altmode is not required to terminate the

text string; the second occurrence of the delimiting character terminates the text string. The text is

inserted immediately preceding the buffer pointer, as it is with the I command. The delimiting charac­

ter is not inserted.

3.B.4 nlCDCommand

Any ASCII character can be inserted into the buffer using the nl (!) command. This includes all

characters that the I and @I commands cannot insert. However, the nl command inserts only one

character at a time. The command nl CD inserts the character with the ASCII value n (decimal) into

the buffer immediately preceding the pointer.

3-20

Unless the EO value has been set to 1, the nl command must be followed by an altmode (refer to

Paragraph 3.17 for a description of the EO value).

3.e.5 n\Command

TECO

The n\commc,nd is used to insert the ASCII representation of a decimal number n into the buffer. For

example, 349\inserts the ASCII characters 3, 4 and 9 into the buffer immediately preceding the

pointer. Nol'e that n does not have to be a number typed in by the user. It can be a value returned

by some other TECO command. Note that the n\ command always inserts the decimal representation

of n.

3.8:.6 Examples of the Use of Insertion Commands

The following examples assume that the buffer contains ABCDI\EF) ~ with the pointer positioned

bet ween D and E.

*1)

(00)
*

*3RI L-J® 4CI L-J0 CD
*

Produces ABCDXYZI\EF)

Produces ABCD) ~
I\EF) I

Produces ABCD l
/\EF) ~

Produces ABCD -IXYZ/\EF.) ~ ;-IXYZ ®®
:JiJl#IA(I2 SA CD
':'1033100

PW# ®® Produces ABCDIA @ SA ® P~EF) I

Produces J..BCD@EF) ~
':'101 ® 10100
*

':'Z\CD®
;z\z\z\ 00

*

Produces ABCD ~
/\

~

/\EF)1

Produces ABCD~EF) ~ because Z has
the value 8.

Produces ABCD891~EF) I because Z
successively returns the values 8, 9, and 10.

This command is used to separate the page
in the editing buffer into two pages. Both
pages, however, remain in the editing buffer.

This is equivalent to the command in preceding
example. It is convenient because it avoids
the form feed echo.

3-21

TECO

~J ILiNE ONE..}

LINE TWO~
LINE THREE~

*
CDC!)
*KI~

0CD
*

~I).....
~

0CD
*

~@I%TEXT (}}x @ CD %(!)(!)

*

~ to 777 \0 CD

3.8.7 Case Control with Insert Commands

This example shows insertion of several
I ines of text at the beginning of the buffer.
Note that line feeds are inserted automati­
cally as the user types the carriage returns.

This command string is used to delete the
tail of a I ine without removing the carriage
return-line feed at the end of the line. If
the buffer contains

ABI\CD) !

EFGH ~ !
th is command produces

AB) 1

I\EFGH) 1

This is used to insert a carriage return without
a line feed following it. The single rubout
deletes the I ine feed but not the carriage
return. (See Section 5. 1 for an explana-
tion of rubout.)

This is a convenient method for inserting
multiple altmodes when using the @I command.

The sequence x cRQ) ,where "x" is any
character except ¥mode, is typed between
the successive altmodes.

This is used to insert the ASCII characters
511 at the current pointer position.

With the I, @I, and tab insert commands TECO ordinarily inserts text in the same case in which it

appears in the command string. The user may, however, alter the case Of text being inserted by use

of the special case control commands described in this section.

3.8.7.1 Alphabetic Case Control - The features described in this section provide the method by

which alphabetic characters in the upper case range can be converted to the equivalent characters

in the lower case range, and vice-versa. Alphabetic case conversion is done by use of two control­

character commands,

® is used for translation to lower case,

@ is used for translation to upper case.

These two commands may be used within insert text arguments to cause case conversion on a tempo­

rary basis for that text argument, or as independent commands to cause case conversion in all insert

and search text arguments.

Note that ® and @ affect only alphabetic characters. They have no effect on non-alphabetic

characters.

3-22

(1) ® ® and @J @J used within text arguments.

When used inside an insert text argument, two successive ® or @J
commands cause translation, to the specified case, of all following

alphabetic characters in that text argument.

Example:

*IF @@ OR USERS OF @ @ TECO. C!XD
The above command inserts "For users of TECO.II with the initiallF"

and "TECO" capitalized, and all the other letters in lower case.

(2) Single @ and @ used within text arguments.

When used inside an insert text argument, a single @ or @ command

causes translation of the next single character (if it is alphabetic) to the

specified case. The single @ or e in a text argument takes

precedence over the case conversion mode defined by double @ or @
commands.

Example:

*1 @@USER @PROGRAM(j)()

The above command causes the string "user Program II with the II pll in upper

case, and all the other letters in lower case to be inserted.

(3) Independent @ and @ Commands.

As explained above, when ® and @ commands are used inside a text

argument, they affect only that particular text string. When used as inde­

pendent commands, however, @ and @ set TEeO to a prevai I ing case

conversion mode that affects all insert and search text arguments (except as

specified by ® and ® commands within the text arguments). The

independent command @ or tV (or n ®, where n does not equal 0) sets

the prevailing case conversion mode so that all upper case alphabetic characters

in insert and search text prguments are translated to lower case, except where

TECO

@ commands within individual text arguments override the independent @.
Example:

*tV$$

*1 @) FOR USERS OF @) @ TECO.COO)

*IEXAMPLE CD CD
The above commands cause "For users of TECO. II and "example" to be inserted

with all letters lower case except the "FIt and "TECO". Likewise, the inde­

pendent command· @) or tW (or n @ , where n does not equal 0) sets

the prevai I ing case conversion mode so that all lower case alphabetic characters

3-23

TECO

in insert and search text arguments are translated to upper case, except where

@ commands within individual text arguments override the independent @.
The independent @ command has the use explained above, obviously, only

when the user TTY has lower case capabil ity and TTY LC is on. Otherwise the

® command serves merely to turn off the @ command.

(4) 0 @> and 0 @
The independent 0 ® and 0 @ commands both have the same effect, namely,

to restore TECO to the default condition where neither case of alphabetic char­

acters are translated to the opposite case, except by ® and @ commands

within text arguments.

TECO is initially set for no prevailing case conversion.

Note that the prevail ing case conversion mode can have one, and only one,

setting at anyone time. The possible settings are:

convert upper case to lower case

convert lower case to upper case

no prevailing -:onversion

When any of these prevailing modes is put into effect, it cancels any of the

others that were in effect.

The order of precedence of the case conversion commands is as follows:

Highest: single ® and fij) inside text

Next: double ® and @ inside text

Lowest: independent ® and @

NOTE

If the EO value has been set to 1, @ and (tV)have
no special effect when used inside text argument?(refer
to Paragraph 3. 17 for a description of the EO value).

3.8.7.2 Special II Lower Case" Characters - When used inside an insert text argument, the control

command @ causes the immediately following characte~ifit is one of the special characters @,

[, \, J, t, or+i to be converted to the equivalent character in the lower case ASCII range (i.e.,

octal 140 or octal 173-17.7). That is,

@@ becomes ASCII 140

@ [becomes { ASCII 173

@ \becomes I ASCII 174

~
J becomes } ASCII 175

t t t becomes ASCII 176

t t - becomes @ ASCII 177

@ has no special effect within text arguments if the EO value has been set to 1.

3-24

Examples:

* tVI @ EXAMPLES FOR THE

@) @ TECO M @ @ ANUAL.

®®
*0 tVIEXA MPLE 1.

® NI C@ ® OMMAND.

®®
*

3: 13. 8 Inserting Control Characters

Inserts "Examples for the

TECO Manual.

EXAMPLE 1.

nf Command. II.

Inserts a right brace {{}

TECO

As of version 22 of TECO all of the control characters @ - @' @ - @' and ® '
QD, @' and e have been reserved as inside-text-commands {some as yet undefined}. In order

to insert these characters, the user must employ either the ® or ® command.

~!y when used inside an insert text argument causes the next single character to be interpreted as

tex:t rather than as a command, and accordingly to be inserted in the buffer. This applies to all

control charclcters including ® itself. It also appl ies to Altmode. (It does not, however, apply

to ©, C9), @), or RUBOUT.}

~~ when"'used inside an insert text argument causes all succeeding instances of the above mentioned

control characters except ® and ® itself to be interpreted as text rather than as commands.

<!:D does n(>t affect altmodes. A second instance of ® in the same text argument nullifies the

eff'9ct of the first.

If the EO value has been set to 1, @ and ® have no special effect when used inside text

arguments, and all control characters can be inserted with no speci al treatment {refer to Paragraph

3. 17 for a description of the EO value}.

Exclmples:

NOTE

The clever way to create a TECO macro is simply to type
the macro as a long command string iust as if it were to
be executed immediately, but instead of typing (!)(!)
at the end, type @ @. Then type *i to place the
command string in Q-register i. {This stores the macro,
ready for execution, in Q-register i. (Refer to Para­
graph 3. 14.3 for the descri pH on of the *i command.)

*1 @ @ TEXT @ @CD CD Inserts the text II @ TEXT @ II.
*

3-25

TECO

~INSTRING @ CD CD CD
*

~I @@ SEARCH @
NSTRING @®
I @ @) TEXT @®@
!E @®XAMPLE!(!XD

*

3.9 OUTPUT COMMANDS

Inserts "NSTRING (!) ".

Inserts II @ SEARCH @
NSTRING CD
I ®®TEXTG)

! Example I" .

Output commands are used to transfer data from the editing buffer to the output file.

3.9.1 PW Command

The PW command is the basic output command. It does nothing but output. Depending on the argu­

ment used with it, the PW command outputs all or any part of the data in the editing buffer. It does

not, however, delete any data from the buffer, and it never moves the buffer pointer.

The PW command outputs the entire contents of the buffer and always appends a form feed to it.

The n PW command (n >0) outputs n copies of the text in the buffer, appending a form feed to each copy.

3.9.2 P Command

The P command is a combination command; when used with a single numeric argument (or no argument),

the P command does both output and inp'Jt. The various functions of the P command are described in

Table 3-6.

Note that the P command (with a single argument) always clears the editing buffer before it inputs

the next page, and it leaves the pointer at the beginning of the new page. If a P command is exe­

cuted after the end of the input fi Ie has al ready been reached or when there is no input fi Ie, the

buffer is simply cleared. No data is read in.

Unl ike the PW command, the P command does not always cause a form feed to be output at the end of

the data output from the editing buffer. The P command outputs a form feed at the end of the data

~ if a form feed was encountered to terminate the last input command.

3-26

I

I

I

Command Argument

P 1 assumed

nP n >0

m,nP m<n

HP H == B, Z

Table 3-6
P Commands

Function

Simi lar to PWY. Outputs the entire contents
of the buffer, then clears the buffer and reads in
the next page of input. The buffer pointer is
left at the beginning of the page that is read in.
If there is no input file, or no more dota in the
input file, the buffer is left cleared. A form
feed character is appended to the end of the
data that is output only if the last input com­
mand was terminated by a form feed.

Executes the P command n times. This com­
mand can be used to skip over several pages
of text when no editing is required. The
n P command causes the n pages of the input
file, starting with the page currently in the
editing buffer, to be output, and then the
nth page after the current page to be yanked in.

When used with a pair of numeric arguments,
the P command does output onl y; it does not
clear any data from the buffer, it does not
input any more data, and it does not move the
buffer pointer. Also, the m,nP command never
causes a form feed to be appended to output 1 •
The only action of m,nP is to output the
m+ 1 st through the nth characters in the buffer.
(m,nP and m,nPW are equivalent.)

Outputs the entire contents of the buffer without
appending a form feed to it; the buffer is not
cleared, and no new data is read in. (H P 'Jnd
HPW are equivalent.)

1 However, if a form feed character has been inserted in the buffer between the mth
and nth characters, it wi II be output.

TECO

L--__ ~

The PW command does not c I ear the buffer and does not move the buffer po inter. The same is true of

o P commond used with two arguments.

Note also that when a PW command is used, a form feed character is always automatically sent to the

output file immediately following the data from the buffer. (Recall that when the page was read into

the buffer f the form feed character that terminated it, if any, was discarded and not read into the

buffer.) The form feed character is appended to the outgoing data regardless of whether or not a form

Feed character was encountered when the data was read in, i. e., regardless of the setting of the form

feed flag. This is not true of the P command.

NOTE

If the EO value has been set to 1, the P command behaves
like the PW command with regard to form feeds.

3-27

TECO

When a P or PW command is used with a double numeric argument (including an H argument), a form

feed character is never appended to the output data. This is true regardless of whether or not a form

feed character was encountered when the data was read in.

NOTE

The discussion in this section does not apply to the form
feed characters that the us~serted into the editing

buffer using 121 CD or I ~ CD commands. Form
feed characters in the buffer are output exactly as other
characters in the buffer.

If the editing buffer is empty when a P or PW command is executed, no output of any kind takes place.

No form feed character is output. If the user wants to create a blank page, an example of the

procedure is shown below.

As shown in the discussion above, the nP command can be used to skip over several pages to get to the

next page where editing is required. The n P command can also be used with a very large argument,

e. g., 10000, in order to skip to the end of the input fi Ie without doing any more editing. The Nand

EX commands are other commands which can be used for this purpose.

3.9.3 EF Command

The EF command is the output file closing command. The EF command, or an equivalent command,

must be used to close the output file after all output to it is complete. The EF command is normally

used after the P command which outputs the last page of a file. The special exit commands EX and

EG (see Section 3.10) automatically cause an EF to be executed. Also, a new EW command causes

an EF to be executed on the previous output file, if any, before opening the new output file. Note

that if an EF command is executed in the middle of the fi Ie, all succeeding pages of that fi Ie are lost.

3.9.4 Examples of the Use of Output Commands

~PT CD CD
FIRST LINE OF NEXT PAGE

*PEF ®0
*

*PWEF ®®

Output the current page, clear the buffer, read in
the next page, then type out the fi rst line of the
new page.

Output the current page to the output fi Ie, and
then close the output file. This command string
is used to close a file (after writing the last page)
when it is not desirable to exit from TECO.

Equivalent to the preceding example, except that
the buffer is not altered.

3-28

~. , ZPO, . P CD CD
*

I ~., ZP121 <!) 0,. P CD CD
*

*HK121 CD HP CD CD
*

I *HK121 CD PW CD CD
*
*8P CD CD
*

*

*PWJKIJ.DOE CD PW CD CD

. M.AKE FILE
:1 pa!~e of text CD CD
~Pl2nd page of text CD CD
~PI kIst page of text CD EX CD ®

3.10 EXIT COMMANDS

TECO

This command string outputs the entire contents of
the buffer, but it rearranges the data as it is out­
put. The part of the page that follows the buffer
pointer is output first by the., ZP command. Then
that part of the data which precedes the pointer is
output by the 0, • P command. No form feed charac­
ter is appended to either section of the output.

This performs the same function as the preceding
command string except that it does append a form
feed character to that part of the page that is
output last.

This command string produces a single blank page.

This produces two successive blank pages.

If page 6 of a file is in the editing buffer, this
command causes pages 6 through 13 of the fi Ie to
be output one after the other, and then reads in
page 14.

This outputs 300 copies of the current page.

This outputs the current buffer, the modifies
the first I ine and outputs the buffer again.

This is the usual method for creating a text file •

Exit commands .are used to terminate a TECO ;ob and return to the monitor. There are four exit com­

mands: EX, EG, @' and ®.

3. 10. 1 EX Command

The EX command is used to bring an editing ;ob to a satisfactory conclusion with a minimum of effort.

Its use is shown in the example below.

The user is edit'ing a 30-page file and that the last actual change to the file is made on page 10. At

th is point the user gives the command:

~EX CD CD
EXIT

tC

..:..

3-29

TECO

In this case, the action performed by TECO is equivalent to the command string 21 PEF, with an auto­

matic exit to the monitor at the end. Thus, the action of TECO is (1) to rapidly move all the rest of

the input file, including the page currently in the buffer, on to the output file; (2) to close the out­

put fi Ie; and (3) to return control to the monitor.

The EX command is the easiest method of finishing an editing iob, with the latter part of the input

file being properly output and the output file closed.

The EX command performs both input and output functions.

The EX command causes a form feed character to be output after the output of the buffer, on I y if a

form feed was encountered when that buffer of text was read in. In this way, the EX command main­

tains existing page sizes.

3. 10.2 EG Command

The EG command first performs exactly the same functions as the EX command, and then causes the

last compile-class command (COMPILE, EXECUTE, LOAD, or DEBUG) attempted before TECO was

called, to be re-executed (with the same arguments). Generally, the EG command is used only to

exit from an editing ;ob that was initialized by an EB command or a TECO filnam.ext command.

As an example, suppose the user gives the command

~COMPILE PLOT.F4)

to request compilation of a FORTRAN source program, but the compiler encounters errors in the code.

The user then calls TECO to correct these errors with the command:

~TECO PLOT. F4)

*

When all the errors are edited, the user exits from TECO with the command

This command causes (1) the rest of the file PLOT.F4 to be output and closed, and (2) the command

COMPILE PLOT.F4 to be re-executed automatically.

3. 10.3 @and ® Commands

The @ and ® commands do not perform any input or output. They are used strictly for exiting

to the mon i tor.

The command @ (or tZ) is the simple exit command that can be entered into command strings. It

allows any I/O commands that have already been given to be completed, then closes the output fi Ie,

and then returns the user to the monitor.

3-30

E:<ample:

~PWEF @X3X!)
EXIT

tc
.!..

The @ is executed as a regular command
in the command string when its turn comes.

NOTE

If the EO value has been set to 1 (refer to Paragraph 3. 17.3),

a single @ is equivalent t·o @.

TECO

The © command is a monitor command that is used to immediately exit to the monitor. The ®
command can be typed at any time, while typing a command string or while a command string is being

e)cecuted, and it will override everything else. It cannot be entered in the up-arrow, C form. If

there are any input/output functions in progress when ® is typed, a single © will allow them

to be completed before exiting to the monitor. Double @ (© ©) interrupts everything, even

I/O in progress, and exits to the monitor immediately. The ® command does not cause the output

fi Ie to be closed.

Both @ and © are abortive exit commands. However, when they are used, it is possible to

return to the! TECO iob provided no other program has been called into core over the TECO iob.

Simple monitor commands such as ASSIGN, or PJOB, can be executed without damaging the TECO iob.

I After an exit to monitor level, even if the exit was caused not by a user ©, or @", but instead

bY' some problem detected by the monitor itself, the user can return to his TECO iob by using either

the CONTINUE or the REENTER command.

The command CONT causes TECO to begin operations exactl y where it left off. Even I/O can be

interrupted (]nd then continued.

Example:

~ERPTR: CD EWLPT: CD Y3P CD CD
DEVICE LPT OK?

.!..CONT)

*

Here the monitor causes an exit to
monitor level because of a device
problem. After the user corrects the
problem, he continues the iob and the
current command string executes to
completion.

REENTER CCluses the TECO iob to be reentered with the contents of the editing buffer (when the exit

occurred) intact. After reentry by a REENTER, TECO re initial izes itself for a new command string.

Any previous commands still unexecuted at the time of the exit are lost. If a command string was

being executed when the exit occurred, the part of the string that was not executed before the exit will

3-31

I

TECO

not be executed after the REENTER command. The user must determine how much of the command

string was executed. If I/O is interrupted, some portion of the input or output files is frequently

either lost or duplicated.

Examples:

~ICOMME@
• DEASSIGN LPT)
:-DA YTI ME .J
T4-APR-70 10:34
.:..REE.J
*ICO MMENTS (!) CD
*
~< SFOO CD OL > (!) CD
©©

.:..REE.J

*

~50P CD (!)
©
@

• REE)
T

Before finishing a command string the
user exits to perform a monitor command •

He then reenters TECO. The command
string must be retyped, but the buffer is
sti II intact.

This is an in~it~op (if FOO is in the
buffer). ~ (!9stops execution and
returns the user to the monitor. REE re­
starts TECO with the editing buffer intact
and the command buffer empty.

This is an example of what should not be
done. Interrupting execution of anT/O
command does not permit reentry. In
this case, some of the output file will
almost certainly be duplicated •

The contents of any Q-registers (refer to Paragraph 2.8) remain intact after a ®, CONT or ®,
R EE NTE R command sequence.

3.11 SEARCH COMMANDS

In many cases the simplest way to reposition the buffer pointer is by using a character string search.

A search command causes TECO to scan through the text until a specified string of characters is found,

and then to position the pointer at the end of this string.

The string of characters to be searched for is suppl ied as a text argument with the search command.

The search string can be from 1 to 36 character positions in length or up to 80 characters including all

control commands.

If an exact match for the search string is found in the text, the buffer pointer is positioned immediately

after the last character in this match. If the string is not found, TECO positions the pointer at the

beginning of the buffer and notifies the user of the failure. The failure notice may take one of two

forms, depending on the type of search command used. For further explanation see the paragraph

below.

All searches begin at the current position of the buffer pointer.

3-32

I lf no text argument is provided with a search command, e.g., S (!)c!pr @N//, the search is

e>c:ecuted using the last previous search command argument.

3. 11. 1 S Command

TECO

The S Command is used to search for a character string within the current editing buffer. If the string

is not found between the current buffer pointer position and the end of the buffer, t he search fai Is.

After an unsuccessful S search, the buffer pointer is reset to the beginning of the buffer, and, unless

the: modifier (explained below) was used or the search is within an iteration (see Section 3. 12),

an error message is printed.

The general form of the S command is

~Sstring CD
For the standard S command, the search string is provided as a normal alphanumeric argument following

the S and terminated by an altmode. "string" can contain any character except the special charac­

ters listed in Table 2-1.

The S command may be used with a single numeric clrgument. The command nS causes a search for the

nth occurrence of the specified search string. When n is omitted, n=l is assumed. n must be greater

than O.

3" 11 .2 FS Command

The FS command is used to search for a character string within the current editing buffer (function of

the S comm(lnd) and replace it with another string. If the string to be replaced is not found after the

current buffer pointer position and before the end of the buffer, the search fails and no replacement

is made.

The general form of the FS command is

~FSstringl CD string2 CD
where strin~J 1 is the string to be deleted and string2 is the string to be inserted in its place. If string 2

is omitted, string 1 is deleted without any string replacing it. However, even when string2 is omitted,

its terminating altmode must be present as shown in the form:

~FSstring1 (!) (!)

3.11.3 N Command

The N command combines the S command with input/output functions. The N command is used to

search for Q character string in a page of the input file which may not yet have been read into the

buffer. The N command has the same form as the· S command.

3-33

TECO

The N command functions exactly like the S command except that an N search does not terminate at

the end of the page currently in the buffer. If no match for the search string is found between the

current buffer pointer position and the end of the buffer, the current page is output, the buffer is

cleared, the next page is read in, and the search starts over at the beginning of the new page. This

process continues unti I a match is found or the input fi Ie is exhausted.

If an N search fails, the entire input file has been passed through the buffer and delivered to the out­

put fi Ie, and the buffer cleared. The output fi Ie is not closed. Un less the: modifi er was used or the

search is within an iteration, an error message is typed to notify the user that the search has failed.

An N search will not detect a match when the matching characters are spl it across two buffer loads.

The output function of the N command is exactly I ike the P command and the EX command. If a form

feed character was encountered when a given page was read in, a form feed character is appended to

that page when it is output; otherwise, no form feed character is output.

The N command can be used with a single numeric argument. The command nN causes a search for

the nth occurrence of the specified search string. When n is omitted, n=l is assumed. n must be

greater than O.

3.11.4 FN Command

The FN command is used to search for a character string in a page of the input file which may not yet

have been read into the buffer {function of the N command} and to replace it with another string. The

FN command operates like the N command when searching for the string. If the search fails, no

replacement occurs.

The general form of the FN command is

~FNstring 1 CD string2 (!)
where string1 is the string to be deleted and string2 is the string to be inserted in its place. If string2

is omitted, string1 is deleted without any string replacing it. However, even when string2 is omitted,

its terminating altmode must be present as shown in the form

~FNstring 1 CD CD

3.11.5 Backarrow Command

The backarrow command is identical to the N command except that a back arrow search generates no

output. Generally, where the N command executes a P, the backarrow command executes a Y. The

backarrow search is used for examination functions and for discarding parts of a file. The general

form of the backarrow command is

.!-string CD CD

3-34

I

TECO

ThE~ backarrow command can also be used with a single numeric argument. The command n-causes

a search for I"he nth occurrence of the specified search string. When n is omitted, n=l is assumed.

n must be grE~ater than O.

3.11.6 Search Command Modifiers

3.11.6.1 @ Modifier - There are two search command modifiers. The @ modifier is used to alter

thEl method which TECO reads the search command1s text argument from the command string. The

general form of a @ search command is the same for 5, Fs, N, FN, and backarrow. It is

~@ns/string/

Thf3 @ modifier is placed before the 5, Fs, N, FN, or backarrow, and before the numeric argument,

if cmy. When the @ modifier is used, the search string argument is delimited, not by the search

command and an altmode, but by the first character typed after the search command and the next re­

currence of this character. In the example above, the delimiting character is a slash. The delimiting

ch':lracter may be any character except a character that appears in the search string itself. With the

@ modifier, single (but not double) altmodes can be used in the search string. The @ modifier can

be used in an FS or FN command to separate the strings with a delimiting character other than altmode.

This is useful in' cases where a double altmode cannot terminate the command. A double altmode

terminates an Fs or FN command when the replacement string is omitted to allow deletion of the

string for wh ich the search is made. Use of the @ search commands is simi lar to the use of the @I

i ns,ert command (refer to Paragraph 3.8.3).

3. 11.6.2 Colon Modifier - The colon modifier is used to alter the execution of a search command in

the event the search fails. Without the colon modifier, a search that fails causes an error message to

be printed; if the colon modifier is used, no error message is printed. Instead, every colon search

command executed returns a numeric value that can be printed out, stored in a Q-register, or tested

by a conditional branch. A colon search command returns the value -1 if the search is successful,

and the value 0 if the search fails.

The general form of a colon search command is' the same for 5, Fs, N, FN, and backarrow searches:

~:nsstring ®
The colon precedes the search command letter and its numeric argument, if any. Both the colon and

@ modifiers may be used on a search command, in either order.

The concept of a command returning a value is explained in Section 2.7.3. Just as the Z command

takes on a value that may be used as a numeric argument, so also the command :sstring @ takes on

a value of 0 or -1 after it is executed. If this is the last command in a command string, or if the

command following it does not take a numeric argument, the value returned by the colon search is

discarded. Hence, a colon search should be followed by a command that takes a numeric argument.

3-35

TECO

The colon search commands reposition the buffer pointer in the same manner as other search commands,

regardless of whether or not the returned value is used.

The colon searches are used primarily in programmed editing and are usually followed by a conditional

command. Examples of the uses of colon searches are given in Sections 3. 13 and 3. 14.

3. 11.7 Automatic Typeout After Searches

The ES command allows the user to specify automatic typeout of the line where a successful search

has termi nated. The search cannot be in an i terat i on, nor can the search command be preceded by a

colon. When the FS or FN command is used, the typeout occurs after the insertion has taken place.

The user can also specify in the ES command that either a I ine feed or a character be inserted into the

typeout to indicate the position of the pointer. Unless the ES value is set, the default is that no

automati c typeout after searches wi II be performed.

The user can set the ES value in the following manner:

OES

-lES

nES(n >0)

ES

3. 11 .8 Case Control in Searches

Restore TECO to the default of no
automatic typeout.

Set the ES value to cause automatic
typeout of a line on wh i ch a successfu I
search has terminated.

Set the ES value to n. If n is in the
range 1 through 31, a single I ine feed
character is included in the typeout at the
position of the pointer. If n is 32 or
greater, the character with the ASCII
value specified by n is included in the
typeout at the position of the pointer.

Examine the setting of the ES flag.

When searching for alphabetic characters TECO will normally accept either upper or lower case

characters as a match. This is called "either-case model!. TECO may, however, be forced to exe­

cute any or all searches in "exact mode". In exact mode TECO wi II accept an alphabetic character

or a search match only if it has the same case as the corresponding character given Iby the user in the

text argument.

Before the techniques for match mode control can be explained, we must first explain the various

techniques for case control. Match mode control is explained in Section 3.11 .8.4.

3.11.8.1 Alphabetic Case Control in Search Arguments - The case of alphabetic characters in

search text argument is controlled by the same set of commands used to control case in insert text

arguments.

3-36

TECO

The features described in this section provide the method by which alphabetic characters in the upper

case range can be converted to the equivalent characters in the lower case range, and vice-versa.

Alphabetic case conversion is done by use of two control-character commands.

® is used for translation to lower case.

@is used for translation to upper case.

These two commands may be used within search text arguments to cause case conversion on a temporary

basis for that text argument, or as independent commands to cause case conversion in all insert and

search text arguments.

Note that @ and ® affect only alphabetic characters. They have no effect on non-alphabetic

characters.

(1) ® ® and @) @ used within text arguments.

When used inside a search text argument, two successive @ or @ commands

cause translation, to the specified case, of all following alphabetic characters

in that text argument.

Example:

*SF ® @) OR USERS OF @ ® TECO. ®C!)
The above command searches for "For users of TECO. II with the initial "F"

and "TECO" capitalized, and all the other letters in lower case.

(2) Single ® and @ used within text arguments.

When used inside a search text argument, a single @) or ® command causes

translation of the next single character (if it is alphabetic) to the specified case.

The single ® or ® in a text argument take precedence over the case

conversion mode defined by double ® or @ commands.

EXClmple:

*S ® ® USER @ PROGRAM CD (j)
The above command causes a search for the string "user Program" with the II p lI

in upper case, and all the other letters in lower case.

(3) Independent @ and @ commands.

As explained above, when @ and @ commands are used inside a text argument,

they affect only that particular text string. When used as independent commands,

however, ® and @ set TECO to a prevailing case conversion mode that affects

all insert and search text arguments (except as specified by ® and @ commands

within the text arguments).

3-37

TECO

The independent command "® or tV (or n ® where n does not equal 0) sets

the prevailing case conversion mode so that all upper case alphabetic characters

in insert and search text arguments are translated to lower case, except where

@ commands within individual text arguments override the independent @.
Likewise, the independent command @ or tw (or n @' where n does not

equal 0) sets the prevail ing case conversion mode so that all lower case alpha­

betic characters in insert and search text arguments are translated to upper case,

except where <IS? commands within individual text arguments override

the independent 9.
The independent 9 command has the use explained above, obviously, only

when the user TTY has lower case capabi I ity and TTY LC is on. Otherwise

the @ command"serves merely to turn off the ® command.

(4) 0 @) and 0 @
The independent 0 ® and 0 @ commands both have the same effect,

namely, to restore TECO to the default condition where neither case of alpha­

betic characters are translated to the opposite case, except by ® and @
commands within text arguments.

TECO is initially set for no prevailing case conversion.

Note that the prevailing case conversion mode can have one, and only one, setting at anyone time.

The possible settings are:

tv
tw

o tV or 0 tw

convert upper case to lower case

convert lower case to upper case

no prevailing conversion

When any of these prevai I ing modes is put into effect, it cancels any of the others that were in

effect.

The order of precedence of the case conversion commands is as follows:

Highest: single ® and @ inside text

Next: double @ and 9 inside text

Lowest: independent ® and 9

NOTE

If the EO Value has been set to 1 (refer to Paragraph

3.17.3), 9 and ® have no special effect when

encountered inside text arguments.

3-38

TECO

3.11.8.2 Special II Lower Case" Characters - When used inside a search text argument, the control

command (0 causes the immediately following character (if it is one of the special characters @,

[, \,], t, or -) to be converted to the equivalent character in the lower case ASC II range (i. e. ,

oc:tal 140 or octal 173 to 177). @ has no special effect within text arguments if the EO value has

been set tol. Refer to Paragraph 3.8.7.2 for examples.

3. 11 .8.3 Control Characters in Search Arguments - As of version 22 of TECO all of the control

characters @ - @' @ - @' and ®, @' ®, and e have been reserved

as inside-text-commands (some as yet undefined). In order to search for these characters, the user

mlJst employ either the ® or ® command.

<@ when used inside a search text argument causes the next single character to be interpreted as

text rather than as a command. This applies to all control characters including ® itself. It also

applies to altmode. (It does not, however, apply to ©, @' @' or RUBOUT.)

(~ when used inside a search text argument causes all succeeding instances of the above mentioned

control charclcters except ® and ® itself to be interpreted as text rather than as commands.

~l) does not affect altmodes. A second instance of ® in the same text argument nullifies the

effect of the fi rst.

If the EO value has been set to 1, ® and @ have no special effect when used inside text argu­

ments, and all control characters (except the special characters) can be searched for with no special

treatment.

3. 11.8.4 Case Match Mode Control in Searches - Unless special action is taken all searches are

executed in Ueither-case mode II • This means that regardless of the setting of the prevailing case mode

by an independent ® or e command, a search for an alphabetic character will accept either

the corresponding upper or lower case character as a match.

However, if ® or @ case control commands are used within a search text argument, it is

assumed that the user desires an exact mode search, and a match will be accepted only for the cor­

responding characters in the exact case specified by the user.

If I'he user desires a search to be executed partly with exact mode and partly with either-case mode,

he should brclcket the characters to be taken in either case with ® characters. (The ® char­

ac1'er is entered by simultaneously depressing the CTRL, SHIFT, and L keys.)

For example, S @ @ ABC ® DEF ®® will be successful only with strings containing

lower case abc, but it will accept either upper or lower case def as a match for the last 3 characters.

3-39

TECO

NOTE

If EO=l, all searches are executed in exact mode and

® has no special effect in text arguments.

The sear.ch mode can be forced to exact mode for all searches by use of the independent command

n @' where n does not equal O. 0 @ resets fhe search mode to 'either' mode. @without an

argument returns the val ue of the search mode fl ag.

3. 11 .9 Special Match Control Characters

There are five special control characters that can be used in search character string arguments. These

characters alter the usual character-matching process that goes on when a search is in progress. They

actually reside in the search string and are interpreted by the search routine itself.

The presence of a @ command in a search string is a signal that this particu lar character position

in the string is unimportant and that any character is to be accepted as a match for it. The @
command is a free variable in the search string. To find a match, some character mu-st be present in

the position occupied by the @ command; however, it does not matter what this character is.

The ® command in a search string is a restricted variable. Its presence indicates that any sepa­

rator character is to be accepted as a match in its position. A separator character in any character

except a letter, a digit, a period, a dollar sign, or a percent sign; i.e., any character except a

character that is commonly used in symbols. ® also accepts 'the beginning of the editing buffer

as a match.

The 9 command is another restricted variable. It must be followed by a single character argu­

ment: @ x. The Scommand signals that, in the position occupied by the @ and its

argument, any character is to be accepted as a match except the argument.

The ® command is used in a search string to indicate that the character following the @ is

to be interpreted literally rather than as a command, even if this character is one of the special match

control characters. The @ command has the same function as ®, but it is better to use @
because @ will not allow insertion of CD as a text character while @ will.

The @ command when used with an argument in a search string indicates particular groups of

characters to be accepted as a match. Depending on the argument, this command matches on the

fi rst occurrence of one of the following groups.

@A
@D

@L

any alphabetic character.

any digit.

any end of I ine character {or end of buffer character
in the absence of an end of line character}.

3-40

I

I

I

@S
@V

iE W

tE <nnn>

tE [a,b/c, •• J

any string of spaces and/or tabs~,

any lower case al phabeti c character.

any upper case alphabetic character.

the ASCII ch~racter whose octal value is nnn.

anyone of the characters a,b,c, ••• (a/b,c, •• can
be any symbols that represent single characters).

TECO

Since the five commands @' ®, @' ®, and @ are used in the middle of ASC II

seclrch strings, they cannot be entered in the up-arrow, character form allowable for some control

character commands. They must be typed as a single control character.

3. 11. 10 Examples of the Use of Search Commands

Examples~

~SA-IB ®®
*

*SNIX ®®
?SRH CANNOT FIND "NIX"

*

~NDIGITAL (!) CD
*

*NLAST LIN PGl
TST LIN PG2

®CD
?SRH CANNOT FIND "LAST LIN PGl
1ST LIN PG 2
.1

*
*12FSOF CD FOR CD CD

3-41

This causes the pointer to be positioned im­
medi ate I y after the B, in the fi rst occurrence
of the string A -IB after the current position
of the pointer.

The string N IX is not found between the
current pointer position and the end of the
buffer. The error message is typed and the
pointer moved to the beginning of the buffer.
The user may have typed an incorrect search
string, the pointer may have been positioned
somewhere in the buffer after the N, or the
string N IX may not have been read into the
current buffer,

If page 5 of the text is current I yin the
buffer and the string DIGITAL does not occur
unti I page 15, th is command causes pages 5
through 14 to be output and page 15 to be
read in. The pointer will be set immediately
after the L.

If this string actually exists in the file but
the two lines are not read into the same
buffer load, the N search wi II fail.

This command causes Teco to search the
current buffer for the 12th occurrence of the
string "OF" and replace it with the string
"FOR",

I

TECO

*5-VERSION88 (!) CD

~-IESSWORD ® CD
60 FORMAT eWORD')

*

~5FSINTEREST CD CD

~NMASSACHUSETS CD ®
?SRH CANNOT FIND II MASSACHUSETS

~EF®®
~EBOUTPUT.FIL CD y CD CD
~NMASSACHUSETTS CD CD
*
~@ 3S+ ® +IEF CD <D
*

*NA @ B ® C @ .D @ @(!)(!)
*

3-42

This command can be used to determine if the
string VERS ION88 occurs in the input fi Ie
five times. If it does, the pointer is posi­
tioned immediately after the fifth occurrence,
and everything in the input file, preceding
the page on which the fifth occurrence is
located, is discarded.

The ES value is set to -1 to cause the line
where the search ended to be typed. This
makes certain that the search has actually
found the right occurrence of the string. It is
easy to overlook an occurrence of a string
preceding the one which the' user desires.

This command causes TECO to search the
current page for the fifth occurrence of t~
string" INTEREST" and delete it. Two \.!) 's
must be present following the string to be
deleted; the first delimits the string to, be
searched for and the second tells TECO that
there is no replacement string.

An N search should not be used where an S
search wou Id suffice, because user errors with
the N command, such as the spell ing error
shown here, can cause considerable delay.
In this example, the user's error caused him
to have to pass over the entire file twice
instead of iust once.

The command @ 3S + (!) + searches for the
third occurrence of the altmode character
following the buffer pointer. When this alt­
mode is found, the characters EF are inserted
immediately after it. The plus characters
serve as the delimiters for the one-character
search string CD. The plus characters are
not part of the search string.

This command causes TECO to search for the
string "WR ITE#II and replace it with the
string "PRINT#." Each page of the text is
searched until the string is found.

Any of the following three strings of characters
would serve as a match for this N search:

A6B-C?D @
~B-ICJ @
AAB,C CD D @

None of the following four strings would serve
as a match:

AJB C-D3

A.B.C.D.

AABBCCD

AXBL..JCAX

:1 ESSFOUR (1) CD
FOUR

SCORE AND SEVEN YFARS AGO

:lESFSI/O (1) 1-0 CDC!)
1-0
--CONTROL -----

3.12 ITERATION COMMANDS

3. 12. 1 An~lle Bracket « ... »

TECO

Because the ES value was set to 1, automatic
typeout of the line occurs after the string
"FOUR" was found. A line feed was in­
serted at the pointer position in the I ine to
allow the user to easily locate the pointer.

This command string causes TECO to search
for the string "1/0" on the current page and
replace it with the string 111-010. The line
is then typed with a I ine feed at the position
of the pointer.

The user can cause a group of command to be iterated (repeatedly executed) any number of times by

plclcing these commands within angle brackets. The left angle bracket marks the beginning of a

command string loop and the right angle bracket marks the end of the loop. These command string

loops can be nested in the same manner as arithmetic expressions are nested within parentheses. Loops

should be nested to no more than approximately 20 levels; otherwise, pushdown list overflow may occur.

A numeric argument can be used to specify the number of times a given loop is executed. The argu­

ment is placed before the left angle bracket in the form n < ... >. This causes the group of commands

within the brackets to be iterated n times. In a command of the form n < ... >, if the argument

n is less than or equal to zero, the commands contained within the angle brackets are skipped. If no

argument is given, the number of iterations is assumed to be infinite (235).

Exclmple:

*J8< -1(1) L> @ CD
*

3. 12.2 Semicolon Command

Th is command string inserts a tab at the
beginning of the first eight lines in the
buffer and leaves the pointer positioned
at the beginning of the ninth line. The
J command starts the pointer off at the
beginning of the first line. The first com-

mand in the loop, -I CD inserts a tab.
Then the next command, L, moves the
pointer to the next I ine to prepare
for the next iteration of the loop.

Iteration of a command string loop can be terminated before the iteration count is satisfied by using

the conditional iteration exit command, semicolon. The semicolon command can be used only within

angle brackets. It can be used with or without a numeric argument.

Wh~3n used without a numeric argument, the semicolon command evaluates the outcome of the last

search (of any kind) that was executed before the semicolon command was encountered. If this search

was successful, command execution continues within the loop, as if no semicolon were present. If,

however, the most recent search fai led, the semicolon command causes all those commands that follow

3-43

I

I

TECO

the semicolon in the loop to be skipped over, and command execution to pass on to the first command

following the right angle bracket which closes the innermost loop that the semicolon is in.

NOTE

Within a command loop, all searches are colon searches.
They do not generate error messages when a fai lure occurs,
instead they return a value of -1 if successful and 0 if
unsuccessful.

The semicolon command can also be used with a numeric argumenj', The command n; is ignored if

n<O. However, if n,2: 0, the command n; causes command execution to exit from the loop lust as the

semicolon command exits from the loop when a search fails.

Examples:

*J<OLIJAN ($) FS1969 G) 70 (!);>HT (DC!)
JAN REPOR'f'"
DEPT:

JAN 1970 SALES
WHoLESALE:
RETAIL:

JAN 1970 EXPENSES:
OVERHEAD:
ADVERTIsiNG:
COMMissiONS:

JAN 1970 RETURNS:
JAN 1970 INVENTORY:

*

*<51969 ($) ;OLlDEC <D> CD@
16K COREt'
E7K CORE]
taK CORE]

@@
.!...REE)

*

3-44

This command string inserts JAN at the be­
ginning of the first I ine in the buffer and
at the beginning of each line that contains
the string 1970. It also changes the 69 in
every occurrence of 1969 to 70. The action
is as follows: The J command starts the
operation at the beginning of the buffer.
The first execution of the OL does nothing,

IJAN CD then inserts JAN at the beginning

of the first line. Now, a search is made
for 1969. When 1969 is found,

FS1969 CD 70 CD changes the

69 to 70. This completes the first itera­
tion; execution loops back to the <, OL
moves the pointer to the beginning of the
line where the 1969 was found. Here JAN
is inserted and then a search is begun for
the next 1969. Th is conti nues unti I the
search command fails to find another 1969.
When the search fails, the pointer is moved
to the beginning of the buffer, HT is the
next command which is executed, (It is
assumed that no I ine contains more than
one I I 1969. II)

This command puts TECO into an infinite
loop because the OL causes the search com­
mand to keep finding the same 1969 over
and over again. If left to run long enough

the IDEC@command will eventually

exhaust available core and stop execution.
In th is example, the user has stopped the

loop with @ @ , and then REEntered.

~Y<NEXAMPLES: G);<S)

G); -fev L »®®
*

*EBfilnam.ext ® 50000<YHP>EX ® CD
*<FSREAD CD WRITE CD ;>

~<@ FN/ER RORI I; >

TECO

This is an example of nested loops. The
main loop searches for pages in a file that
contain the heading EXAMPLES:. When
this is found, execution enters the secondary
loop, which inserts a tab at the beginning
of all the succeeding lines on that page
(i .e., after every) ~ on that page). When
the second semicolon causes an exit from
the inner loop, execution loops back to the
N search. Finally, when the N search
fai Is, execution is completed.

This example shows how to remove all form
feeds from a fi Ie.

This command causes a search of the current
page for all occurrences of the string
II READ" and replacement of them with the
string "WR ITE".

This command causes TECO to search all
the following pages for the string "ERROR"
and delete every occurrence of it. The @
construction must be used in this case be­
cause it allows the user to specify a de-

I imiting character other than ®. The

delimiting character (in this case j) must
be specified twice after the string; the
fi rst to end the stri ng and the second to
indicate that a replacement string is not

present. If CD were used as the delimiter,

a double CD would be present which would

cause an erroneous result.

Only the methods described in this section should be used to exit from a loop. Specifically, the flow

control commands described in Section 3.13 should not be used. Some violations of this rule may be

successful, but generally they will not succeed.

Matching pairs of angle brackets defining loops within the loop may, however, occur following the

semicolon.

3.13 FLOW CONTROL COMMANDS

TECO contains commands that enable the user to writ'e editing programs capable of solving most com­

plex editing problems. The iteration commands discussed in Section 3.12 are a specialized example.

In <lddition to these, TECO has an unconditional branch command and a set of conditional execution

commands thclt can be used to create any kind of conditional branch or conditional skip.

3. 13. 1 Command Stri ng Tags

To have branching in a command string, there must be a method of naming locations in the command

string. Location tags in the general form

3-45

I

TECO

!tag!

may be placed anywhere in a command string (except in text arguments). A tag is delimited before

and after by an exclamation point and may contain any number of any ASCII characters except the

special characters listed in Table 2-1 and exclamation points.

Command string tags are also the recommended method for putting comments in TeCO macros; they

need not be referenced.

3.13.2 0 Command

The unconditional branch command is the 0 command. The general form is

~Otag CD
The text argument following the 0 command and del imited by an altmode is the tag naming the desti­

nation of the branch. The tag location itself may be either before or after the 0 command in the

command string. The 0 command causes the command string execution pointer to be moved to the

first character following the exclamation point that terminates the tag, and command execution con-,

tinues from that point.

Tags are ignored except when an 0 command forces TECO to scan the command string for them.

3. 13.3 Conditional Execution Commands

All conditional execution commands have the following general form:

*nllx ••• 1

In this form, n is the numeric argument on which the decision to execute or not to execute is based.

The quotation mark (II) is the first character of all conditional execution commands. The letter x re­

presents the second character of the conditional execution command. The letter x may be anyone of

several letters depending on which conditional execution command is intended. The two command

characters, " x , may be followed by any string of commands terminated by an apostrophe(I). If the

condition specified by x is satisfied by the argument n, all the commands between "x and I are exe­

cuted in the usual manner. If there is no branch command within the range "X ••• I, then after the

last command in the range is executed, command execution falls through the apostrophe and executes

the next command following it. If n does not satisfy the condition specified by x, then all the com­

mands between "X and the matching I are skipped, and command execution continues with the first

command following the apostrophe.

The commands ") and I must be used in matching pairs and they may be nested in the same manner that

parentheses surrounding arithmetic expressions may be nested.

The individual conditional execution commands are shown in Table 3-7.

3-46

Command

nl'G

n"l

nilE

n"N

nile
.

n-1 11 L

n+l"G

n"D

n"A

nl'V

n"W

n"T

n"F

nilS

n"U

TECO

Table 3-7
Conditional Execution Commands

Function

Execute the commands that follow if n >0; otherwise, skip to
the matching apostrophe on the right.

Execute the commands that fQllow if n<O; otherwise, skip to
the matching apostrophe 0'1 the right.

Execute the commands that follow if n=O; otherwise, skip to
the matching apostrophe on the right.

Execute the commands that follow if nlO; otherwise, skip to
the matching apostrophe on the right.

Execute the commands that follow if n is the decimal value
of an ASCII symbol constituent character (a letter, digit,
$, ., or %); otherwise, skip to the matching apostrophe
on the right.

Execute the commands that follow if n<O; otherwise,
skip to the matching apostrophe on the-right.

Execute the commands that follow if n>O; otherwise, skip to
the matching apostrophe on the right.

Execute the commands that follow if n is in the digit range
(octal 60 to 71).

Execute the commands that follow if n is in the alphabetic
range (octal 101 to 132 or 141 to 172).

Execute the commands that follow if n is in the lower case
alphabetic range (octal 141-172).

Execute the commands that follow if n is in the upper case
alphabetic range (octal 101 to 132).

Execute the commands that follow if n is Itrue l (flog is on)
(i.e., if n<O).

Execute the commands that follow if n is 'false ' (flag is
off) (i.e., if n=O).

Execute the commands that follow if n is 'successful'
(i.e., if n<O).

Execute the commands that follow if n is I unsuccessfu I'
(i.e., if n=O).

3. 1:3.4 Examples of the Use of Flow Control Commands

:!START! J-I -IPDP-10 TECO)

CD
<S 5K (!) iR-DI6 (j»
<SWAR CD ;-3DILOVE CD >

PZII NOST ART CD I
EF (V (!)

3-47

! INSERT PAGE HEADING!

!CHANGE 5K TO 6K!

ICHANGE WAR TO LOVE I

!GET NEXT PAGE ANDI

I RESTART IF NOT NULL!

I

I
I

TECO

This small editing program contains an example of the 0 command, i. e., the OST ART ® command

which causes a lump back to I START I. It also contains examples of command string tags used purely

for documentation, e.g., IINSERT PAGE HEADING I. Normally, comments would be used only for

lengthy and complex macros that the user expects to maintain.

This example also shows how a conditional execution command may be combined with an 0 command to

produce a conditional branch. When all three of the editing functions have been performed on the

page, the P command is executed to output this page and read in the next. The program then tests

Z (the number of characters in the buffer) to determine if any data was read in. If Z/Q, data was

read in, therefore a branch is taken to restart the program. When fi na II y Z=O, the command

OSTART ® is skipped, and execution branches to the concluding EF command. This technique fails

when a file contains null pages (consecutive form feed characters). Therefore, the 9 end-of-file

test is preferred.

*YZ" N 1## I Z-4000+1 1 'G4000J0L121 ® 0,. PO,. KO## CD I ZJA. -Z" NO## CD II PEF CD CD
*

This slightly more complex command string shows how conditional execution commands may be nested.

If the first Y command produces no data, the II N command sends execution to the matching apostro­

phe on the right. This is the last apostrophe, immediately prior to the PEF. Otherwise, the commands

following the II N are executed.

The function of this command string is to convert a file with pages of arbitrary lengths to one with

pages of approximately 4000 characters each.

The command string operates as follows: Z-4000 + l"G means if Z~4000, i.e., there are at least

4000 characters on the current page, execute the following commands; otherwise, skip to the matching

apostrophe (between CD and Z). If Z~4000, 4000JOL moves the pointer to the end of last complete

I line before the 4000th character in the byffer. Then, 121 (!) 0,. P outputs th is much of the buffer

with a form feed character after it, and O,.K deletes that which has been output. Now, go back to

1## I and test Z again. Stay in this loop until Z<4000. Execution then skips to the apostrophe.

ZJ moves the pointer to the end of the current buffer. A appends another page, but leaves the

pointer (.) at the end of the previous page. • -ZII N checks to determine if any data was actually

read in. If so, the loop is reentered at 1##li otherwise the end of the file has been reached. When

. -Z=O, execution skips to the matching apostrophe and then falls through the next apostrophe to the

PEF that closes the output file.

I ~<NSIN CD i:SCOS ® "S-3DITAN CD IZJ> CD CD

This example shows how the value returned by a colon search can be used as the argument for a con­

ditional execution command. The N command searches through the fi Ie for the first occurrence of

SIN on any page. When SIN is found, the command :SCOS (!) checks for an occurrence of COS

3-48

TECO

following SIN on the same page. The colon search command returns the value -1 if the search is

successful, and ° if there is no COS following SIN on the page. This value is then used as the numeric

argument for the liS command. If :SCOS (!) has a value of -1, the occurrence of COS that was

found is replac:ed by TAN. If :SCOS ® has a value of 0, the commands -3DITAN ® are skipped.

We 1,hen iump to the end of this page, ignoring all further occurrences of SIN and COS on it, and

continue the iteration process.

3.14 Q-REGISTER COMMANDS

Q-registers are a powerful feature of TECO with man)' different uses. The general concept of Q­

registers is explained in Section 2.8. Section 3.14 explains the TECO commands that enable the use

of Q-registers.

The 36 Q-registers have the single character names A, B, C, •.• , Z, and 0, 1, 2, ••. , 9. In this

section, the letter i is used to represent the name of an arbitrary Q-register.

3. 14. 1 Commands for Storing Integers

The following commands enable the use of Q-registers for storing single 36-bit integers.

3. 14. 1. 1 U Command - The command nUi stores the decimal integer n in Q-register i. n may be

any integer in the range _235 + ,:Sn,:s235 -1. If anything was previously in Q-register i, it is destroyed.

3. 14. 1. 2 Q Command - The command Qi is used to read the numeric value in Q-register i. Qi has

no function other than returning the value in the specified Q-register as a numeric argument. It does

not alter the value in the Q-register. In order to be useful, Qi must be used as a numeric argument

for ,::mother command. Qi is often used in coniunctiol1 with conditional commands.

3. 14. 1 .3 % Command - The command % i adds 1 to the integer in Q-register i and then returns the

new value in the same manner as a Qi command. If t'he user wants to increment the value in Q-register

i, but does not want the returned value to be used as an argument for the next command, he should

type an altmode after the % i command.

3. 14.2 Commands for Storing Character Strings

The following commands enable the user to store character strings of any length consistent with the

amount of core avai lable .

. 3. 14.2. 1 X Command - The X command copies characters from the editing buffer into a Q-register.

These characters are not removed from the editing buffer. Any data previously in the Q-register is

destroyed.

3-49

TECO

The various uses of the X command are as follows:

a. m, nXi (m<n) copies the m + 1st through the nth characters in the buffer into
Q-register i.

b. If n>O, nXi copies everything from the current buffer pointer position through
the nth following I ine terminator character into Q-register i. Xi is equivalent to
1 Xi.

c. OXi copies everything from the beginning of the current line up to the buffer
pointer into Q-register i.

d. If n<O, nXi copies everything from the beginning of the nth line preceding
the current I ine up to the buffer pointer into Q-register i. -Xi is equivalent
to -1 Xi.

An X command may require more core space for storage than is available. If so, TECO automatically

tries to expand its core. If successful, TECO prints a message in the form [nK CORE] to show the

new amount of core being used. If unsuccessful, TECO prints an error message and does not execute

the X command.

3.14.2.2 G Command - The command Gi fetches a copy of the entire character string stored in

Q-register i and inserts it into the editing buffer at the current position of the buffer pointer. The

contents of Q-register i are not changed. The buffer pointer is positioned at the right end of the

character string that was inserted by the G command.

3.14.2.3 M Command - TECO command strings are basically ASCII character strings and, as such,

can be inserted or read into the editing buffer lust like any other text. When a command string is in

the editing buffer, it can be edited but it cannot be executed, because at that point it appears to be

data to TECO. However, if the user copies a command string from the editing buffer into a Q-register

(using an X command), then this command string can be executed. The command that accompl ishes

th i sis the Mi command.

The command Mi executes the text in Q-register i lust as if this text had been typed in the command

string instead of Mi. Using an Mi command is analogous to call ing a subroutine. Any TECO com­

mands may be included in the command string or Ilmacro" which is stored in and executed from the

Q-register. Even double altmodes can be included if there are conditions under which the user wants

execution to stop. The only restriction is that the commands must all be complete within the macro

in the Q-register. For example, a command and its argument must not be spl it apart, one in the main

command string with the Mi command and the other in the Q-register. Iterations and conditional exe­

cution strings, if incl~ded, must be complete within the Q-register. If an 0 command is used in the

Q-register macro, the tag to which it branches must be in the Q-register also. M commands may be

nested up to approximately 10 levels, depending on the contents of the internal pushdown list.

3. 14.3 Saving the Previous Command String

After a command string has completed execution or if it has been aborted by means of the @ @
command, it may be stored in a Q-register. This is done by using an *i command as the first command

in the next command string.

3-50

TECO

*i causes the entire previous command string, less one of the two concluding altmodes, to be stored

in Q-register i. If the command string was aborted by @ @, neither @ is stored with the

command string. The previous contents of Q-register i are lost. The asterisk has this function only

when used as the first command in a command string. At any other position in a command string,

asl"erisk has its usual meaning of multiplication (see Section 2.7.2).

If the user intended to use *i as the first command but typed some other command first instead, he may

recover the cJbi lity to use *i as the first command by typing enough rubouts to cause TECO to respond

with a carriclge return/line feed and a new asterisk. This technique will not work perfectly if some

of the characters typed before the *i command were break characters (altmode, carriage return, etc.).

In this case some of the leading characters of the preceding command string will be overwritten.

Thee *i command is especially useful when an error occurs in a long command string. See the example

in Section 3.,14.5.

3.14.4 Q-Register Pushdown List

An additional Q-register feature is the Q-register p'Jshdown list, which may be used for temporary

storage during the execution of a command string.

The command [i pushes the contents of Q-register i onto the stack. It does not change the contents

of i.

The command] i pops the last pushed entry from the top of the pushdown I ist into Q-register i. The

previous conf'ents of Q-register i are lost; the:entry which was popped'off'the pushdown list is erased

from the top of the list.

NOTE

The Q-register pushdown list is cleared after the execu­
tion of each complete command string (i .e., every time
TECO types an * to indicate readiness to accept a new
command string).

The maximum depth of the Q-register pushdown list is 32 entries. (This number can be changed by

redefining LPF in TECO. MAC and reassembling TECD.)

3. 14.5 Examples of the Use of Q-Register Commands

*QR-3UR G) CD

3-51

Th is command subtracts 3 from the value in
Q-register R

I

I

I

I

TECO

*y! ST ! OUC ! ST + 1 !:S l

- CD "S%C-50"LOST + 1 Q)'121 CD 0,. PO, .KOST (!)I.J
ZUEAQE-Z"NQEJOST + 1 Q) PWEF (!) CD

~O, .XlO, .KZJGl ®®

*ZJ-5XAJ8LGA CD CD

3-52

This command string arranges a file into
pages of 50 lines each. The Y command
starts operation at the beginning of the file.
At !ST! the command OUC sets the value 0
in Q-register C. At !ST+l! search begins
for a I ine feed. The command :S l C!)
returns a value of -1 if a line feed is found,
in which case liS causes the following
commands to be executed. The %C com­
mand increments Q-register C by 1 and
returns the new value in C. If %C<50,
iump back to IST+l! and search for another
line feed. However, if %C=50, proceed
as follows: (1) insert a form feed character
because the output command used does not
output one automati cally, (2) output every­
thing from the beginning of the buffer
through the form feed character, then (3)
delete everything that was output and (4) go
back to !ST! where the counter is reini­
tialized and start over.

If the search command fai Is to find another
line, with the value in Q-register C less
than 50, it returns the value 0, therefore
the liS command causes a skip to the apos­
trophe at the end of the second line. The
carriage return is ignored (see Section 3.18).
The ZUE command stores the number of
characters currently in the buffer in Q­
register E. The A command reads in more
data without moving the buffer pointer,
while QE-Z"N checks the old value of Z
with the new value to see if any data was
actually read. If data was read, QEJ sets
the pointer at the end of the old data and
before the new data, then continue the line
count at !ST+l!. If not, output the last
page and c lose the file.

Th is command stri ng moves everyth i ng to the
left of the pointer from its position at the be-
ginning of the page to the end of the page.
The 0, .Xl command puts everything from
the top of the page to the pointer in Q­
register 1. The 0., K command deletes this
data from its present position. The ZJ com­
mand moves the pointer to the end of the
page. At this point the command G 1 copies
the contents of Q-register 1 into the buffer
at the position of the pointer.

This command string puts a copy of the last
five I ines of the page into Q-register A and
then puts a copy of these five lines imme­
diately after the eighth line in the page.
It does not delete the five lines from their
position at the end of the page.

TECO

~~HK@I#J<SREAD CD ;-4DIACCEPT CD >'IHXS CD CD
~~Y4PMS6PMS2PMSEX CD CD
EXIT

tC

In this example, the @I command inserts a
short macro into the buffer. The # char­
acter is used to del imit the insertion. The
HXS command stores this macro in Q-register
S. In the second command string, the MS
command executes the stored macro on
pages 5, 11, and 13 of the input file.
Note that the initial Y command clears the
macro from the buffer before the first page
is read in. The EX command copies all re­
maining pages, closes the output file, and
returns to the monitor.

*J16<[DSDIMENSION CD OL1XDK >J4Ll6<GD]> CD CD
*

~A LOT OF TEXT (!) CD
?NFI NO FILE FOR INPUT

:* Z (!) (1)

~GZ CD CD

*-D (!) G)
*

~5DITITLE CD NLONG STRING CD
-BDIA LOT OF TEXT (!) CD
?NFO No File for Output

~'~Z CD C!)
~"UP (!) (D
*.JGZ CDC!)

*.J9D ®Q)

3-53

The 16 <[DSDIMENSION (i) OLlXDK>
command locates the first 16 I ines on the
current page that have the word
DIMENSION in them, stores them on the
Q-register pushdown list, and then deletes
them from their present positions. Then the
J4Ll6<GD] D> command brings these 16
I ines back onto the page immediately after
the fourth line from the top.

Assume the user meant to insert II A LOT
OF TEXT" but forgot the "1" at the be­
ginning. The following technique illus­
trates the simple way to recover from this
common error.

Move the ent,ire command string (with iust
one altmode at the end) into Q-register Z.

Move the command string from Q-register
Z into the editing buffer at the current
pointer position.

Delete the altmode at the end of the com­
mand string. The rest of the command
string is the text that was to be inserted,
and it is now inserted.

An error is encountered earl y in a long
command string. (The N -search fai led
because it could not output the page in the
editing buffer. The commands preceding
the N -search have been executed.)

Save that entire command string in
Q-register Z.

Save the current pointer position. Move
the pointer to the beginning of the buffer
(a convenient place to edit the command
string), and get the string back from Q­
register Z.

De lete the commands "5D IT ITLE CD II
that have already been executed.

TECO

:EWOUT .FIL (!) ®
:STEXT CD D CD®

:o,.XZ CDC!)
:O,.K®®
:QPJ 00

*
~<SDIVIS CD i s= (j)RINOT '-ICD
LlX1KLG1> 00
?ILL Illegal Command W

:*ZHKGZ 0 CD

*JDHXZ CD CD

3.15 NUMERIC TYPEOUT COMMAND

Correct the error.
Get back to the end of the c~mand string.
The D command de letes the \.!J at the
end of the command string.

Put the corrected string back into
Q-register Z.

Delete the command string from the editing
buffer.

Move the pointer back to its previous po­
sition. (In this particular case this step
is not actually necessary.)

Execute the corrected command string.

This example shows a simple technique for
creating a TECO macro. The user purposely
begins the command string with an illegal
command. The rest of the command string
is the TECO macro the user wishes to
create.

When the expected error occurs, move the
command string to Q-register Z, then
move it into the editing buffer.

Delete the W from the beginning of the
macro, then save the correct macro in
Q-register Z.

The numeric typeout command is n=, where n is the numeric value to be typed in decimal radix. If a

double = sign is used, the numeric value is typed in octal radix.

Example:

:YZ = CDC!)
2529
r-

:IA== (!) CD
40

3.16 SPECIAL NUMERIC VALUES

This reads in a page and then types
out the (decimal) number of characters
in the page.

This types the octal representation of
the next character in the buffer.

Several TECO commands, which have no other purpose than to return some particular numeric value,

have already been discussed in this manual. These commands are B, Z, " and Qi. Some commands

that execute a function while returning a numeric value have also been discussed. These commands

are % i, colon searches, and all searches within iterations. The concept of a command return ing a

numeric value is explained in Section 3. 11 .

3-54

TECO

All of these commands can be used as numeric arguments for commands that take a numeric argument,

e.g., nl, n==, ni, nD, nUi, etc. To perform this function place the command, which returns a numeric

value, in the position of n immediately before the command that takes a numeric argument.

There are several other commands that return numeric valuesi these commands are listed below.

The nA command (where n can be any numeric value, and serves only to differentiate
this command from the A (append) command) is equivalent to the ASCII value of the
charclcter immediatel y to the right of the buffer pointer. The nA command equals 0,
if thE~ pointer is at the end of the buffer. The nA command is used primarily with
conditional commands where one is checkingl for a particular character or range
of characters.

The ® (or tE) command returns the value of the form feed flag. If, on the last input

command (Y or A), input was terminated because a form feed character was encountered,
E equals -1; otherwise, E equals O. For further discussion of the form feed flag, see
Sections 2.4,3.3,3.9,3.10,3.11 and 4.2.

The @ (or tN) command returns the value of the end-of-file flag. If the end of
the input file was seen on the last input command (Y or A), tN = -1; otherwise,
tN=O. When tN is set to -1, it will remain -1 until cleared by an ER or EB command.

When tN is first set to -1, new data mayor may not have been read into the editing
buffer. Consequently, the tN flag should usually be tested after processing the
input data.

The 1'F (or ®) 1
command is equivalent to the value of the console data switches.

The @ (or tH) command is equivalent to the time of day in 60th's of a second
(50th's where 50 rlz power is used).

The ET command (without a numeric argument) returns the value of the ET flag. The
ET command equals -1 if the flag is on and equals 0 if the flag is off. The significance
of this flag is discussed in Section 3.6 When the ET flag is on, the T command delivers
all characters, including altmodes and control characters, to the terminal in their exact
form rather than substituting other characters.

Tlie EU command returns the value of the case flag. The EU value is 1 if upper case
characters are flagged on typeout; 0, if lower case characters are flagged on typeout
(default); and -1, if no case flagging is being performed. Refer to Section 3.6.

The EH command returns the value of the error message flag. The EH value is 1 if only the
error is typed; 2, if the error code plus one I ine is typed (default); and 3 if the full
error message is typed. Refer to Section 5.2.

The EO command returns the value of the version number flag. The EO value is 1 for
version 21 A of TECO and 2 for versions 22 and 23 of TECO. Refer to Section 3. 17.

The ES command returns the value of the automatic typeout flag. The ES value is -1
for automatic typeout after successful searches, 1 through 31 for automatic typeout
with Cl line feed to indicate the pointer position, a decimal number greater than 31
for automatic typeout with the character equal to the ASCII value of the decimal
number indicating the pointer position, and 0 for no automatic typeout (default).
Refer to Section 3. 11.

1When using TECO with monitors prior to the 5.02 monitor, the tF TECO command must be entered in
tht~ up-arrow, F form because control-F is interpreted as a special monitor command (see Section 3.18).

3-55

TECO

The @ (or t t) command, followed by an arbitrary character x, is equivalent to
the ASC II value of the character that immediately follows the @ in the com­
mand string. For example, in the command @ A, the character A is an argu­
ment for ® and is not interpreted as a command. (@ A equals 65.)

The backslash(\) command (without a numeric argument) is equivalent to the decimal
value of the digit string (optionally preceded by a + or - sign) immediately following
the current position of the buffer pointer. The value is terminated by the first nondigit
character encountered. If there is no digit string immediately following the buffer
pointer, backslash equals o. The backsbsh command moves the buffer pointer to the
right end of the digit string and assumes the value of the digit string.

The ® (or H) command is used to enable type-in of characters while the command

string is being executed. When the ® command is enountered in a command
string, execution of the command string stops and waits for the user to type any single

character. When this character is typed, the ® command assumes the value of
this character. Hence, the ® command is useful only as a numeric argument for
another command, e. g., the command HUC puts the ASCII value of the typed
character into Q-register C.

The ® command is most often used with a @ message string preceding it (see
Section 3.17). The message string is used to inform the user that TECO is waiting
for a character to be typed in.

3.16.1 Examples of the Use of the Special Numeric Arguments

*J3C1A== CD CD
71

*

If the fourth character in the buffer is 9,
the command string returns the indicated resu It.

*J!A!lA-97"G1A-123"LlA-32UCDQCI CD OB CD I I

C!B12A"NOA CD I CDCD
*

*P<-l- @ ;A> CD CD
T3K CORE]
[4K CORE]

*

This command string converts all lower case
alphabeti c characters in the buffer to upper case.
Starting at the beginning of the buffer (J), if
the next character has a decimal ASCII value
between 97 and 122 inclusive (lA-97 I G1A-123"L),
store the upper case value of this character in
Q-register C (lA-32UC), delete the character (D)
and replace it with the value in Q-register
C(QCI CD). Then TECO skips to IB! (OB ($));
otherwise, it advances to the next character (C).
In either case, at !B! TECO checks to determine if
there is another character in the buffer (2A"N) and

if so, returns to !A! (OA (j)). When 2A equals 0,
execution stops.

Th i s command string outputs the current page, and
then continues input unti I a form feed character
is detected. This command string could be used
on a file that is not divided into pages of a reason­
able size. The A command is r~atedly executed
unti I ® equals -1. When ® equals -1, the

semicolon command causes an exit from the loop.

3-56

* tF= tH=ET= ® CD
2":3094886497
TB23373
=--r--
-w-

*tt MUO Q0 ®
*
~YNCHAPTER CD\= ® ®
T6 L-.I

*

~<SFUNCTION L...I®; @)

TECO

This command string causes the (decimal) value
of the console data switches, the time of day
in 60th's of a second, and the value of the ET
flag to be typed out. At this execution, the
console switches were set to octal 254064000141,
the time was 08:26:29:33, and the ET flag was on.

This command string stores the ASCII value of the
letter M (77) in Q-register O.

This command string searches for the next chapter
heading and then types out the number of the
chapter. The buffer pointer is positioned immedi­
ately following the 6, after the command in this
example has been executed.

I FUNCTION LETTER @ ® I(!»® ®
FUNCTION LETTER M

Here, the @ command is used as the argument

for an ni <!) insert command. This command string
inserts the letter which is typed in following each
occurrence of the string FUNCTION that is found
by the search command.

I
'FUNCTIoN LETTER K
FUNCTION LETTER C

*
W<YITITLE

-(1) pwt~l; >00
*

3.17 TECO PROGRAMMING AIDS

This command string inserts ITiTLE" at the top
of each page of a fi Ie.

B'Jgs can occur in editing macros written in TECO language as in any other program; therefore, TECO

provides the following debugging aids for the TECO user.

3.17. 1 (§ Command

The user can cause a statement to be typed out at any point in the execution of a command string.

The @ command is used to perform this function. The general form of this command is

@ text @
The first <!:~ is the actual.command. It can be entered either as ® or tAo The string

"jtext" is the character string that TECO types out when the @ command is encountered. The

second @ command marks the end of the text to be typed and must be entered as @. The text

string can contain any characters except @ and the special characters I isted in Table 2-1.

3-57

I

TECO

Example:

:Y!ST! @ NEW PAGE

@ OUC!ST+1!:Sl

CD IN%C-50"LOST+1 CD ' 12 IC!)O,. PO, .KOST ®' ~
ZUEAQE-Z"NOST=l ®' @ END)

@ PWEF CD®
NEW PAGE
NEW PAGE
NEW PAGE
NEW PAGE
NEW PAGE
END
~

3. 17.2 Questi on Mark (?) Command

This command string is identical to a~ample
used in Section 3. 14; however two ~
commands have been added. .

The question mark command has two uses in TECO. When question mark is the first character typed

by the user after TECO has typed out an error message, it has the special function described in

Section 5.2. However, at any other time the question mark can be entered in a command string

exactly I ike any other command. This use of the question mark command causes TECO to enter trace

mode. In trace mode, TECO types out each command as it is executed. A second question mark

command takes TECO out of trace mode.

Example:

*JHT?!L!lA-9I N!M!lA-58"NCOM CD 'CD -I® 'LOL ®CD
AB: LlNE1

LINE 2
C: LINEr-

LlNE4

! L! 1A-91 'N! M! 1A-581 'NCOM$lA-58"NCO! M! 1A-5811 NCD $ 'LOL$lA-9"NLO!L! 1A-91 'N!
M! 1A-581 'NCa! M! 1A-58"NCD $'La!L! 1A-91 'NLa !L! 1A-9"N! M! 1A-581 'NC?POP

*J?HT CD CD
J?
AS: L1NE1

LlNE2
C: LlNE3

L1NE4

*

3.17.3 The EO Value

After the first question mark command, TECO
begins typing out each command as it is exe­
cuted. This enables the user to see exactly
what the command string is doing. The ?POP
error message is caused by the attempt to
move the pointer beyond the end of the
fourth (and last) line (the end of the buffer)
with the C command.

The second question mark command turns off
the trace feature so that the II HT" following
it is not printed.

The EO (Edit Old) feature enables TECO users to protect existing TECO macros from future changes

to the TECO specifications. In most cases when features are added to TEcn. the changes merely

3-58

TECO

involve additional commands whose existence in no way affects old TECO macros. The EO feature

doel; not apply to changes such as these. Occasionally, however, a new feature would cause old

macros not to run properly. The EO feature is designed to protect old macros from such changes.

Every version of TECO has an EO value. For all versions of TECO up through version 21 A, the EO

value is 1. For TECO versions 22 and 23, and all succeeding versions until the next specification

change that would affect old macros, the EO value is 2.

The EO value is always initially set to the maximum value for the version of TECO being run. This

enables all new fealvrE:s.

By u'sing the EO command the EO value can be set to a lower value so as to disable features of TECO

that were implemented since the macro was written and which would cause the macro not to fl!nction

properly. The EO command does not disable all new features, but only those that affect old macros.

OEO or

nEO (n<O)

resets the EO value to the maximum (standard)

for the version of TECO in use.

nED (O<n<=max)

EO (no argument)

sets the EO value to n.

returns the current val ue of the EO fI ag.

All TECO macros written before version 22 should be edited by putting "1 EO" at the beginning and

"OEO" at the end. All macros written with version 22 should have "2EO" at the beginning and

"OEO" at the end, etc.

EO=l

EO=2

Table 3-8
Features Enabled by EO Values Greater Than

Base value.

(1) Standard altmode changed from ASC II 175 to 033.

(2) All control characters within text arguments reserved

as commands, instead of only @' @' ®, @
in search strings.

(3) Standard searches accept either upper or lower case

alphabetic characters as a match.

(4) Vertical tab and form feed recognized as end-of-line

characters in addition to I ine feed.

(5) The P command does not create form feeds.

(6) Command string iumps wi II not accept instances of

the target characters occurring within text arguments.

(7) Because of (6) comment!; should be enclosed only by ! ... !.

(8) The nl command must be followed by altmode.

(9) The @exit command is changed to @.

3-59

TECO

Examples:

~EO= CD®
~

*lEOEO== CD CD
1

*OEOEO== CD CD
2

*

Initial setting is EO=2.

Set EO value to 1.

Revert back to EO=maximum.

3.18 COMMAND STRING TYPE-IN CONTROL COMMANDS

The use of two successive altmodes as the command string terminator has already been discussed in

Section 2.6. The use of rubout, @, and double @ as command string erasing command~ is

discussed in Section 5. 1. There are other characters, however, that are useful in the creation of

command strings.

3. 18. 1 Carriage Return, Line Feed, and Spaces

Except as text arguments, the characters carriage return and line feed are ignored in command strings.

Spaces are also ignored except (1) when used in text arguments, and (2) when used between two nu­

meric arguments as a + (see Section 2.7.2). Hence, these characters can be employed by the user

when formatting command strings. The carriage return (and the monitor-suppl ied I ine feed following

it) is used to enable the user to conven iently type command strings much longer than a single line.

Spaces are used to lend clarity to more complicated macros.

3-60

Ch4apter 4

Techniques

4.1 CREATION, EXECUTION, AND EDITING OF A FORTRAN PROGRAM

This section demonstrates the use of TECO's multi -purpose commands to simplify the creation and

editing of programs.

The following example shows the creation and immediate execution of a FORTRAN program .

. MAKE ATEST.F4)

~ -ITYPE 1)

FORMAT (,COMPILER
ARITHMETIC TESP)..J

J=3)

K=7)

X.5 ~ 5 ~
CD -T CDC!)

X=.5

_~ -III=K/J *(X*l . E+2-K *K/

(3.*J»..J

R=1O.6)

S=3.5)

1=5~

J=2)

N=7)

Z=R+S *I/J *N/3)

TYPE 2,II,Z)

FOR MAT (18, F20. 12)">

END)

G) EX CD ($)

EXIT

tC

• =.5

Give the command to create the
disk fi Ie ATEST. F4 using TECO.

Begin insertion with the TAB command.

Rub out erroneous .5 .

Stop insertion and use the -T command
to verify last I ine inserted.

Continue inserti on.

End insertion, and then use the EX
command to output and close the file.

4-1

TECO

TECO

..:..EXECUTE ATEST)

FORTRAN: ATEST. F4

UNDEFINED LBLS

2

MULTIPLY DEFINED LBLS

1

MAIN. ERRORS DETECTED: 2

?TOTAL ERRORS DETECTED: 2

LOADING

LOADER 4K CORE

?EXECUTION DELETED

EXIT

tC

. TECO)

~SF20. CD OLDI2 CD OTT CD @
2 FORMAT (18,F20.12)

~EG@®
FORTRAN: ATEST. F4

LOADING

LOADER 4K CORE
EXECUTION
COMPILER AR ITHMETIC TEST

EXIT

fC

..:..

103 21.683333118562

NOTES

Give the command to compile and
execute ATE ST. F4.

The FORTRAN compiler discovers
errors in the program.

Call TECO to edit ATEST • F4.

Change the second label 1 to 2,
and then verify the change.

Output the new version and auto­
matically cause a repeat of the ex­
ecution by using the EG command.

Success .

a. The command MAKE ATEST. F4) is equivalent to
the following sequence of commands:

. R TECO)
TEWATEST. F4 CD CD
T

b. The -T command does not move the buffer pointer,
therefore, the user can continue insertion from the
point he left off.

c. In th is example, the EX command is equivalent to
PWEF @.

d. No fi lename is given with the command TECO,
therefore the name of the file used in the most re­
cent edit-class command (i.e., MAKE, or TECO
command) is assumed. In the example, the com­
mand TECO) is equivalent to

.R TECO)
TEBATEST. F4 CD Y (]) CD
T

4-2

NOTES (Cont)

e. The command SF 20. (j) moves the poi nter to the
I ine the user wishes to correct. The OL command
positions the pointer immediately prior to the bad
cha~er 1. The D command deletes the 1; the
12 \.!J command inserts 2 in its place. The OTT
command types out this entire line.

f. The command EG (!) C!) is equivalent (in this
example) to

*PWEF @ CVG)
rXIT
~

.!.. EXEC UTE ATEST. F4)

TECO

4.2 REARRANGING A FILE

In Section 3,.14, an example shows the use of a Q-re'gister in moving a segment of text from one

pl()ce on a page to another place on the same page. This section describes how to move blocks of

text, or whole pages, to entirely different places in a file.

Example:

The user has a file named PGM. MAC on the disk and this file contains data in the following form:

AB C[O~B> CD @ EF C[~? GH @ IJ c[O!~ KL (O~0 MN 8 OF

where each of the letters A, B, c ... represents 20 I ines of text.

The user intends to rearrange the file, as shown in the following example:

AOB @~~ D ~~ MN cEo~~ EF cEo~B> ICJ C[~~ KL c[O~~ P c(O!~ GH

The following commands ach ieve this rearrangement .

. RTEC06)

~EBPGM. MAC (j) Y (j) (j)
~NC CD CD
~J20X1 0(i)
~20KG) CD
~NG G) (i)

~HX2 ®®
~y (j) ®
~20L (!) (!)

4-3

Call TECO with extra core.

Specify the file and get the first page.

Output AB ~0> and input CD.

Save all of C in Q-register 1.

Delete C from its position in the editing
buffer.

Save all of GH in Q-register 2.

Delete GH and input IJ.

Out-

Move the pointer to the beginning of J.

TECO

~Gl CD CD
~NM (!) (!)

~HXl CDCD
:y C!) C!)
~J20X3 (}2 C!)
~20K CDc:!)
:P ®(D
~G2 CD CD
*HPEF CDC!)

*EBPGM.MAC CD Y CD CD

:20L CD c!)
~G3 CDC!)
*ND CD®
:PWHK CDC!)
:Gl CDCD
~EX0CD

EXIT
tC

4.3 SPLITTING AND MERGING FILES

Bring in all of C from Q-register 1.

Output ICJ ®~B> input K L, output

KL (O~B>, and input MN.

Save all of MN in Q-register 1 (there­
by discarding the previous contents).

Delete MN and input 0 P.

Save all of 0 in Q-register 3.

Delete 0 from the editing buffer.

Output P <[O~9> and clear the edit­
ing buffer.

Bring GH into the buffer from Q­
register 2.

Output GH, close the output file (now
called nnnTEC. TMP), rename the input
fi Ie PG M. BAK, and then rename the
output fi Ie PG M. MAC.

Now edit the partial iy revised fi Ie
lust output. Loop around to the be­
ginning of the file.

Move the pointer to the beginning of B.

Bring in all of 0 from Q-register 3.

Output AOB <[ORB> and input D.

Output D ~, and then clear
the buffer.~
Bring in all of MN from Q-register 1.

Output MN ~ and continue the

input/output sequence unti I G H has
been output. Then close the output
file (called nnnTEC.TMP), delete the
previous PGM.BAK, rename the input
fi Ie PG M. BAK, and then rename the
new output file PGM. MAC. Finally,
exit to the monitor.

This section demonstrates the procedure to spl it a fi Ie into several smaller fi les and the procedure to

merge parts of several files.

Example 1: Spl itting a Fi Ie

Assume the user has a file named FILE.CBL on the disk; this file contains data in the following form:

AB 8 CD <[O~B> EF ~ GH 8 IJ @ KL ~ MN <l0~ OP

4-4

where each of the letters A, B, C, ••. represents 20 I ines of text. The user wants to separate

FILE.CBL into two files:

FILE.l containing AB ~ CD and

FILE.2 containing KL OR M

a.

b.

And to discard the rest of the data. To accomplish this proceed as follows •

.:...R TECO)

*ERFILE.CBL CD EWFILE. 1 CD (!)
~Y®CD
~p®®

~HPEF ®CD
*-K CDC!)

~EWFILE.2 CD CD
~P (!)@
*20L CD (!)
~O,. PEF (!) CD
*(9

.:...

Example 2: Merging Files

Assumed the user has two fi les:

a. MATH.BAK containing

Call TECO.

Open the input fi Ie and the first
output fi Ie.

Input AB.

Output AB <[O~B> and input CD.

Output CD and then close the out­
put file FILE. 1.

Clear the buffer (deleting CD from
it) and continue inputting pages of
the fi Ie and search ing for K. If K
is not found on a given page, clear
the buffer, and read in the next
page. The - command does not
perform output. Thus EF, GH, and
IJ are all read in and then deleted.
When K L is read in, the search stops.

Open the second output fi Ie.

Output K L <t:~B> and input MN.

Position pointer at the end of M.

Output M and then close the output
file FILE.2.

Exit to the monitor with the ;ob
completed .

AB <[O~9> CD @ EF @ GH @~9> IJ @!B> KL

b. MATH.F4containing

A'BI @ CDI ~ EIFI

TECO

Where A, B, C, ••• each represents 20 lines of text, and A', B I, ..• represent updated versions of

A, B,

4-5

TECO

The user wants to merge MATH. F4 with the latter half of MATH .BAK to produce:

MATH. NEW containing

AlB <[O~~ C'D' <§ ElF' <[~B> GH @ IJ <[O~ KL

He proceeds as follows.

. R TECO

~ER MATH. F4 CD
EWMATH.NEW CDC!)
~y CDC!)
~NF' CDei)

~PW (!) CD
*ERMATH.BAK CD@
~y CDC!)

~-G CDCD

*H PEF @ (!) CD
EXIT
~

.!...

Call TECO •

Open the first input fi Ie and the out­
put file.

Input A'B'.

Output AIBI~R ,input C'D' ,

output C'D ' FOR M , and input E' Fl.

Output E'F' OR .

C lose input from MATH. F4, and open
MATH.BAK for input.

Delete E' F' from the buffer and input
AB.

Delete AB, input and delete CD and
EF, then inputGH.

Output GH ~ , input and then

output IJ ~ , then input KL.

Output KL, close the output file
MATH. NEW, and then exit to the
monitor with the iob completed.

The technique shown in Example 2 illustrates the best method for recovering from the error indicated

by the error message:

?OUT-200000 Output Error 200000 - Output File 018TEC. TMP Closed

If this error occurs during an editing iob initialized by the TECO filnam.ext) command or an EB

command, the incomplete output file has a temporary name of the form nnnTEC.TMP (see Section 3.2);

otherwise, the incomplete output file will have the name specified by the user. (Refer to Appendix A

for a I ist of error messages and their meanings.)

Example 3 is more expl ic it illustration of recovery from the foregoing error.

4-6

I

Exclmple 3: Recovery from an Output Error

.. TECO FIL. DOC)

:~edit a few pages CD c!)
~~P CD CD
'?OUT-200000 Output Error 200000 - Output File 018TEC. TMP Closed

~~ER018TEC. TMP CD EWFIL. NEW CD y G) G)
_~Nlast page edited and successfully output CD CD
~PW CD@
~~ERFIL. DOC (j) Y CD (!)
~~-Iast page edited and successfully output (!) CD
~~y and edit next page (j) CD
~~Nnext place to edit CD (!)
~finish editing normally CD ®
~EX (!) CD
EXIT

tC

!_RENAME FIL. DOC=FIL. NEW)

4.4 EXAMPLE OF AN ADVANCED TECO MACRO

This section demonstrates a TECO macro for formatting DECsystem-10 Macro assembly language

programs.

The procedure for executing this macro is as follows:

.:._R TECO 6)

~'ERDTA7:PGMFMT. TEC CD CD
~~YHXl CD CD
~·EBPROGRM. MAC Ci) C!)

~~y @ C!)
~~Ml (DC!)
*@

4-7

Call TECO with enough core to cov­
er the maximum page size.

Open the file containing the macro
itself for input.

Input the macro and save it in Q­
register 1.

Open for editing the fi Ie that is to
be formatted by the macro.

Read in the first page of the file.

Execute the macro.

Exit with ;ob completed.

TECO

I
I

I

I

TECO

Formatting Macro (PG MF MT • TEC)

1 EO ISTART IOUL<S 1

@;%L>ZJR1A-1OII N%L' ICOUNT LINES ON PAGEl

ILOOP!JQL<OUC IEXECUTE LOOP ONCE FOR EACH L1NEI

!FSTCHllA"COTAG CD'
!FSTCH2!lA-9"ECOOP CD '1A-32"NOZ (!)I

!FSTCH3! % C-S"GOZ (!) 'C1A-32"EOFSTCH3 CD 11 A-9I EQC-7"GOZ (!) 'COFSTCH4 CV I
QC-SIIGOZ CD I
!FSTCH4!OUS ICHANGE LEADING SPACES TO A TABI

!FSTCHS!-D%S-QC"LOFSTCHS CD' -I(D OOP (!)
!TAG !%C-6"GOZ CD 'C1A"COTAG CD '1A-SS"NOZ CD'
!COLON!OUSC1A-9"ECOOP <D '1A-32"NOZ CD' !LOOK FOR A COLONI

!COLON2 !%S CD C1A-32"EOCOLON2 CD 'QC+QS-7I,'GOZ (!) 'QC+QS-7"EOCOLON3

(!)'1A-9I1 NOZ CD 'D

!COLON3!R1A-32"EDOCOLON3 CD
IC -I ® ICHG S PACES AFTER COLON TO TAB!

!OP! 1A-90"GOZ (!) '1A-6S"LOZ CD IOUC

!OP2!%C CD C1A-90"GOZ CD '1A-64"GOOP2 CD '1A-S7"GOZ (!) '1A-47I1 GOOP2<!)'

1A-9"EC1A-32"EOZ CD '1A-9"EOZ CD !GIVE UP IF NO OPERANDS!

1A-32"NOZ CD IQC-7"GOZ CD 'C1A-32"EOZ (!) '1A-9"EOZ CD'
-D -I ® !IF A SINGLE SPACE FOLLOWS OP, CHANGE IT TO A TAB!

!OP3!OUC

!EOL!%C CD ILOOK FOR END OF LINE OR SEMI-COLON!

!EOL2!lA-9"EOEOL (j) '1A-13"G1A-S9"NOEOL (!) IOUS

!SEMIIR1A-32"N1A-9"NOSEMI2 CD I I%S (!) ILiNE UP COMMENTSI

ISEMI2IQS"NC -I CD QC-QS-S"L -Ie!) I I I

IZIL>

PZ" NOSTART CD IOUC . ! LOOK FOR NEXT -PAGE I

I !GET !YZ"NOSTART (!) '%C-10"NOGET CD 'EFOEO IQUIT WHEN lOYANKS YIELD NO DATA!

I
An explanation of the macro follows.

lEO

!START!

OUL

<S 1 CD ;%L>

ZJR 1 A-lO" N%L'

The 1 EO command enables only those features
found in versions prior to 21A for which this
macro was written.

It is assumed that the pointer is at the begin­
ning of the first page of the file.

Initial ize I ine counter.

Count the I ine feed characters on the page.

If the last character on the page is not
a line feed, count those characters fo 1-
lowing the last line feed character as
one more line.

4-S

I

I

ICOUNT LINES ON PAGE 1

JQl.<

OUe:

lA-90"GOZ CD'

1 A"COTAG (}),

IFSTCH211A-9"ECOOP CD'
lA-32"NOZ (}),

IFSTCH31 %C-8"GOZ CD 'C

lA-:32"EOFSTCH3 (j)'

lA-9 I EQC-7"GOZ (j)'
COFSTCH4 (!) 'QC-8"GOZ (!)'

!FSTCH410US

!FSTCH51-D

%S-OC"LOFSTCH5 (j)'

-I($) OOP (j)

!TAG !%C-6"GOZ (!) 'C

lA"COTAG (j)'

lA-58"NOZ CD 'OCOLON (!)

!COLON !OUSC

This is the standard technique for including
comments in TECO macros.

Execute everything which follows, down
to the > character on the second to the
last line, once for each line on the page.

Initialize first character counter for the line.

If the first character in the line is greater
than Z (decimal 90) in the ASCII set, skip
this I ine by lumping to 1 Z I.
If the first character is alphabetic or period,
or %, or a doll ar sign (i. e., legal as the
fi rst character of a Macro language symbo I),
go to IT AG I. Otherwise, go to 1 FSTCH21.

If tbe first character is a tab, move the
poi nter past the tab, then go to lOP 1 .

If the first character is a space, continue
on to IFSTCH31; otherwise, skip this line.

Increment the character counter (counting
leading spaces), and if the new total is
more than eight spaces, skip to the next
I ine; otherwise, move the pointer to the
next character.

If the next character is another space, go
back to 1 FSTCH31.

If the character is neither a tab nor a space,
and if more than eight spaces preceded this
character, skip to the next line. If the
character is a tab, but more than seven
spaces preceded this tab, skip -to the next
line. Otherwise, go to IFSTCH41.

In itial ize space deleted counter.

Delete last space seen.

Increment space deleted counter. Then, if
t'he new value of this counter is still less
t'han the number of characters (spaces)
counted on the line, go back to IFSTCH5!.

When the count of spaces deleted reaches
the number of spaces there were, insert
(l tab and then go to lOP I .

Increment the character counter (counting
characters in the tag), and if the new total
is more than six spaces, skip to the next
line. Otherwise, move the pointer to the
next character.

If the next character is a symbol constituent,
go back to IT AG!.

If the character is a colon, go on to
!COLON I; otherwise, skip to the next line.

Initial ize counter of spaces following the
colon, and move the pointer to the next
character.

4-9

TECO

TECO

1 A -9" ECOO p@,

1A-32"NOZ (!),

ICOLON21%S (!) C

1A-32"EOCOLON2 CD'
QC+QS-7"GOZ <!)'

QC+QS-7"EOCOLON3 CD'
1A-9"NOZ CD 'D

!COLON3!R

1A-32"EDOCOLON3 CD'
C -I<!)OOP CD

lOP! 1A-90"GOZ CD'
1A-65"LOZ CD 'OUC

!OP21%C CD C

1A-90"GOZ (1),
1A-64"GOOP2 CD'
lA-57"GOZ <!)'
1A-47"GOOP2 CD'

1A -9" E

C1A-32"EOZ (}),

1A-9"EOZ (!) 'OOP3 CD

If the character after the colon is a tab,
move the pointer to the next character
and go to ! 0 P ! .

If the character is not a space either,
skip to the next line. Otherwise, con­
tinue on to !COLON2!.

Increment the space-following-colon
counter, and then move the pointer to
the next character. The altmode following
%S prevents the value returned by the % 5
command from being used as an argument for
the following C command.

If the next character is another space, go
back to !COLON2!.

If the total count of the symbol characters
before the colon and the spaces after the
colon is more than seven, skip to the
next line.

If the count mentioned above exactly equals
seven, go to !COLON3!.

With the count mentioned above less than
seven, if the next character is not a tab,
skip to the next line. If this character
is a tab, delete it and continue to
!COLON3! •

Move pointer back one character (i .e.,
back past the next space or the colon).

If the character passed over is a space
delete it and go back to !COLON3!.

Otherwise, the pointer is now in front
of the colon. Move it forward over the
colon and then insert a tab to replace
the deleted spaces. Then go to lOP!.

If the first character in the operator
field is not alphabetic, skip to the next
line. Otherwise, initialize the op field
character counter.

Increment operator field character counter
and then move pointer to the next character.

If the next character is above Z in the
ASCII set, skip to the next line. If it is
alphabetic, go back to IOP2!.

If the character is greater than the
digit nine in the ASCII set, skip to the
next line. If it is a digit, go back to
!OP2!.

If the character is not a tab, skip to
the' following the comment "G IVE UP IF
NO OPERANDS". The leading spaces
are for appearance on Iy and are ignored.
(A tab could not be used for this purpose.)

If it is a tab, move the pointer to the next
character. If this character is a tab or a
space, skip to the next line. If the charac­
ter is anything else, go to IOP3!.

4-10

lA-:32"NOZ CD'

QC'-7"GOZ CD 'C

lA-:32"EOZ (!) lA-9"EOZ G)'

-D .-1 CD
!OP3!OUC

!EOL!%C CD C

lA-9"EOEOL CD'
lA-13"G

lA-59"NOEOL CD'
OUS

!SEMI !R1A-32IN1A-9"

NOSEMI2 CD ' ,
%S (!) DOSEMI CD
!SEIv112!QS"N

C -~ CD

QC-'QS-8"L -f CD ' , ,

!Z!L>

p

Z"I"-lOSTART(j)'

If the letter following the last letter or
digit of the operator is anything but a
space (or the tab that was processed
above), skip to the next line.

If the operator is more than seven char­
acters long, skip to the next line.
Otherwise, move the pointer to the
character after the space following the
operator.

If this character is another space or a
tab, skip to the next line.

Delete the space between operator and
operand and insert a tab in its place.

Initial ize operand character counter.

~ncrement operand character counter
and move pointer to the next character.

If the character is a tab, go back to
!EOL!.

If the character is equal to or below
carriage return in the ASCII set, skip
to the next I ine by skipping to the last
, in the line starting with !SEMI2!.

If the character is not a semicolon, go
backto!EOL!.

Iinitialize the counter for spaces and
tabs preceding the semicolon.

Move the pointer bock one more charac­
ter from the semicolon. If this character
is not a space or tab, go to !SEMI2!.

Count the space or tab, then delete it
and go bock to ! SE MI ! .

If there are no spaces or tabs preceding
the semicolon, skip to the next line by
skipping to the next to the lost' in this
'line. This check prevents most cases of
inserting tabs before semicolons that
occur in SIXBIT or ASCIZ fields.

Move pointer forward over the lost char­
acter seen, and then insert a tab before
the semicolon.

If the number of characters in the operand
field, not counting the spaces and tabs
preceding the semicolon, is less than
eight, insert a second tab. Otherwise,
skip to the next line.

Move pointer to the next line, and then
go bock to the beginning of the loop.

When every I ine on the page has been
edited by the loop, output this page,
clear the buffer, and then yank in the
next page.

If the yank produces any new data, go
bock to !START!.

4-11

TECO

TECO

OUC

!GET!YZ"N05TART CD'
%C-lO" NOGET CD '
EF

I OEO

Otherwise, initial ize the yank counter.

Try another yank. If this produces any
new data, go back to ! 5T ART! •

Inc rement the yank counter, and if it is
still less than la, try again.

When a total of 10 straight yanks after the
P command fai Is to produce any new data,
close the output file.

The OEO command re-enables TECO com­
mands to the current version.

4-12

Chapter 5

USler Err~ors

TECO

Th is chapter describes two types of errors: (1) typing errors discovered by the user before a command

strin9 is completed, and (2) command errors detected by TECO. The user should realize, however,

that there is a third class of error. Because TECO interprets almost every character as a command,

therE~ can be cases where, if the user fails to notice a command string typing error, TECO executes

a command that the user did not intend. For example, if the user meant to type the commanc.l

*1 NA ME (j) (!)
but forgot to type the "1", then TECO is forced to interpret the command as an N-search for "AMEII

and IJct accordingly. There is no way to protect the user from errors of this type.

5.1 ERASING COMMANDS

If the;! user makes an error whi Ie typing a command string and discovers the error before terminating

the c:ommand string (with a double altmode), the error can be corrected using one of three erasing

commands described below. All of these must be typed before the double altmode that terminates

the c:ommand string.

5. 1. 1 Rubout Command

Rubout is used to erase typed-in characters one at a time starting with the last character typed in.

Example

After typing the portion of the command string shown below, the user discovers that he has mispelled

the name II Eric:son" •

*3LK ILEIF ERICXON

To nullify the (~rror, he types three successive rubouts. As he does this, TECO responds by retyping

the characters whi ch are being rubbed out.

*LKILEIF ERICXON @ N @ 0 @ ~
The (Jctual function of the rubout character is to delete the last typed character in the command string.

Consequently, if the incorrect character is not the last in the string, all characters back to that point

must also be rubbed out.

5-1

I

TECO

Rubout is a nonprinting character; consequently, the actual line appears as follows:

*LK ILEIF ERICXONNOX

When the user has rubbed out the incorrect character, he continues the command string from the last

correct character.

~3LKLEIF ERICXONNOXSON CD OTT CD G)
Two successive rubouts are required to erase a carriage return and the monitor-generated line feed

following it.

5.1.2 Double @ Command

The command @ @ (two successive control-Gs) is used to erase an entire command string.

In the following example the user has decided, after typing the II Nil , to quit and start over. He does

this by typing two successive control-Gs. (Control-G echoes visibly as II tG" and audibly as a

bell ring.)

*3LKILEEF ERIXON @ @
*

@ @ cannot be typed in the alternate up-arrow, character form described in Section 2.2.

5.1.3 @ Command

The @ command is another erasing command avai lable to the TECO user. The @ command

erases everything in a command string back to the last carriage-return/end-of-line character pair.

It does not erase the carriage-return nor end-of-line character. The end-of-line characters are line

feed, vertical tab and form feed.

In monitors previous to 5.028, control-U is intercepted by the monitor and erases only back to the most

recent break character (carriage-return, linefeed, formfeed, altmode).

Example 1:

~ILlNE ONE)

LINE TWO)

LINE THREE)

KINE FOUR @
LINE FOUR)

(j)G)
*

The user makes an error t~g the
fourth line and uses the ~ com­
mand to erase the entire line. The

("fL)\ command causes a carriage
';;e{urn-line feed to be echoed but the
carriage return and I ine feed are not
inserted.

5-2

Example 2:

~ILlNE ONE)

LINE TWO)

KINE THREE)

@) LINE FOUR

(R9
@)

LINE THREE)

LINE FOUR)

CDC!)
*

5. 1 .4 Be II-Space Command

The user makes an error on the th i rd line
but does not notice it until he is on the
fourth line. In order to erase back to his
error without erasing the entire command
string, he types control-U, rubout,

control-U. The first @ erases II LI NE

FOUR ". The rubout erases the I ine feed
that marks the end of the th i rd line, and
the second @) erases II LI NE THREE"
and the carri age -return at its end.

TECO

The bell-space command is not actually an erasing command, but it is usually used in con;unction

with the erasing commands. Its function is to cause the current line of the command string to be re­

typed. It is used when the user has typed so many rubouts on a line that he cannot tell exactly what

has been typed.

Specifically, if the user types @ and space in succession, everything in the command string back

to, but not including, the last carriage return line feed pair is immediately retyped on the next line.

The user may then continue the command string ;ust as if bell-space had not been typed. The bell­

space is not stored in the command string. Neither does it remove anything from the command string.

Example:

~ISTAET: @ _ @ T @ ~RT:-ITRZE -I SW, @L-J
START: TRZE SW,CCLFLG -I; CLEAR FLAG

00
*

5.2 ERROR MESSAGES

When TECO encounters an illegal command or a command that cannot be executed, an error message

is printed on the user's terminal. An error message consists of three parts, some of which are printed

automatically cmd some of which can be printed at the user's option. The first part of the message is

a question mark followed by a 3-letter mnemonic code for the error message. The second is a brief,

one-Iline, statement of the error condition. The last part is a more complete explanation of the error.

In the standard version of TECO the first two parts of the error message are automatically printed; the

third part is printed only if the user requests it. In Section 5.2.2 there is an explanation of how to

5-3

I

TECO

obtain the optional parts of the error message, and in Section 5.2.3 there is an explanation of how to

change TECO so that more or less of the error message is printed automatically.

When an error message is generated, the command to which it refers is not executed, the remainder

of the command string is ignored, and TECO returns to command mode. Also any commands that the

user might have typed ahead are erased.

Example:

':SWORD G) -4DUINEW (i) CD
?NAU No Argument Before U

*

The error message points out the presence
of a U command not preceded by a numeri c

argument. The commands SWO R D (i) -4D

have be.en executed, but the commands

UINEW CD have not.

After an error message has been printed, the user has the option to use either or both of two special

commands, ? and I, that are designed to help the user after a command error has been encountered.

These commands are described below. Note, however, that these two commands have the speci al

properties described below only immediately after an error has occurred. If any other command is

typed after an error has occurred, TECO assumes that a new command string is being typed and the

ability to use the? and I commands for this error is lost.

Also note that the *i command described in Section 3.8.8 is frequently useful after an error is

encountered.

5.2. 1 Question Mark Command

In some cases, the user may not be able to determine immediately which command in the string caused

the error. This could occur, for example, if there were several commands of the same type in the com­

mand string. In such a case, the user can use the question mark command to obtain more information.

The question mark command, when used immediately after an error message typeout, causes the offend­

ing command and several of the preceding characters in the command string to be typed out. A

maximum of 10 characters of the command string are typed; usually this number is sufficient to identify

the command that caused the error. Note that when the question mark command is used in th is manner,

it is not necessary to type altmode or any other character after the question mark.

A second question mark is always typed after the last character of the group. The character at which

the error was detected is the last character before the second question mark typed.

Another use of the question mark command is explained in Section 3.17.

5-4

I

TECD

Example:

*H X 2PG2ZJ-1U2PG2ZJ CD (!)
?NTQ No Text in Q-register 2

According to the error message, one of
the G2 commands specifies a Q-register
that does not contain text. The question
mark command is used and the second *? 2ZJ-l U2PG2?

* G2 command is identified as the offending
command.

5.2 .. 2 Slash Command

When a comm(md error occurs, one or more of the three parts of the corresponding error message is

automatically printed. If all three parts of the error message have not yet been printed and the user

needs a more detai led explanation of the error, he mOlY type the slash command to obtain more

information.

The slash command, when used immediately after an error message, causes the next unprinted part of

the error messclge to be printed. It may be used enough times to cause all three parts of the error

mess,age to be printed, but no more. Note that when the slash command is used in this manner, it is

not necessary to type altmode or any other character after the slash.

NDTE

The verbal parts 2 and 3 of the error messages printed by
TECD are obtained from a system file (TECD.ERR) ex­
ternal to TECD itself. If for any reason this file cannot
be read, only the code portion of the error message is
printed, and this is followed by the special message
"?EEE Unable to Read Error Message File". In this
case the / command cannot be used.

Ano<ther use of' / is described in Section 2.7.2.

Example:

:EBTEST.CBL CD EX (!) (!)
?BAK Cannot Delete Did Backup Fi Ie

5.2.3 EH Command

As was stated above, TECD error messages consist of three parts. The first, or code, part is always

automatically typed. With the standard version of TEeD, the second, brief message, part is also auto­

matically typed. The third, more lengthy part is obtained by the / command at the option of the user.

5-5

TECO

By use of the EH command, the user may change TECO so that more or less of the error message is

automatically typed. This is done as follows:

lEH

2EH

3EH

OEH

EH

sets TECO so that only the code part of the error message is automatically
printed.

sets TECO so that both the code and the 1 -I ine message parts of the
message are automatically printed.

sets TECO so that all three parts of -the error message are always
automatically typed.

resets TECO to the system standard mode of error message typeout.
(Normally equivalent to 2EH.)

(with no argument) returns the value of the current EH setting.

5-6

TECO

Appendix A

TEtCO Error Messages

The following table I ists the error messages from TECO. The three-letter message preceded by a

question mark is always typed; the second part of the error message, which is a short explanation of

the error, is always typed in standard versions of TECO. The detai led message is typed if the user

types a slash command (/) immediately following the short error message.

?ARG

1)
2)
3)
4)

?BAI<

?COR

?COS

?EBD

Table A-l
TECO Error Messages

Improper Arguments
The following argument combinations are illegal:

(no argument before comma)

----------.....,

m,n,
H,
,H

(where m and n are numeric terms)
(because H=B, Z is already two arguments)
(H following other arguments)

Cannot Delete Old Backup File
Failure in rename process at close of editing lob initiated
by an EB command or a TECO command. There exists an
old backup file filnam. BAK with a protection<nnn> such
that it cannot be deleted. Hence the input file filnam.ext
cannot be renamed to "fi Inam. BAK ". The output fi Ie is
closed with the filename "nnnTEC. TEMP", where nnn is
the user's lob number. The RENAME UUO error code is nn.

Storage Capac ity Exceeded
The current operation requ ires more memory storage than
TECO now has and TECO is unable to obtain more core
from the monitor. This message can occur as a result of
anyone of the following things:
1) command buffer overflow whi Ie a long command

string is being typed,
2) Q-register buffer overflow caused by an X or (

command,
3) editing buffer overflow caused by an insert command

or a read command.

Contradictory Output Switches
The GENLSN and SUPLSN switches may not both be used
with the same output fi Ie.

EB with Device dev Is Illegal
The EB command and the TECO command may be specified
only with file structured devices, i.e., disk and DECtape.

A-l

TECO

?EBF

?EBO

?EBP

?EEE

?EMA

?EMD

?ENT-OO

-01

-02

Table A-1 (Cont)
TECO Error Messages

EB with Illegal File filnam.ext
The EB command and the TECO command may not be used
with a file having the filename extension II. BAKII or with
a file having the name IInnnTEC.TMPIi. Where nnn is the
user's ;ob number, the user must either use an E R -EW se­
quence, or rename the fi Ie.

EB, EW, or El Before Current EB Job Closed
After an output fi Ie has been opened by a TECO command
or an EB command, no further EB, EW, or El commands
may be given until the current output file is closed.

EB Illegal Because of File filnam.ext Protection
The file filnam.ext cannot be edited with an EB command
or a TECO command because it has a protection <nnn>
such that it cannot be renamed at close time.

Unable to Read Error Message Fi Ie
An error, whose code was typed previous to this error
message, has occurred, and while TECO was trying to
find the proper error message in the error message file,
one of the following errors occurred:
1) the error message file, TECO.ERR, could not be

found on device SYS:,
2) an input error occurred while TECO was reading the

file TECO.ERR,
3) the error message corresponding to that error code is

missing from TECO.ERR,
4) the user's TECO ;ob does not currently have enough

room for a buffer to read the error message fi Ie into,
and no more core can be obta i ned from the mon i tor,

5) for some strange reason device SYS: could not be
initial ized for input.

EM with Illegal Argument nn
The argument n in an nEM command must be greater than zero.

EM with No Input Device Open
EM commands apply only to the input device, and so
should be preceded by an ER (or equivalent) command.
To position a tape for output, that unit should be tem­
porarily opened for input while doing the EM commands.

Illegal Output Fi lename "fi Inam. ext"
ENTER UUO failure O. The filename "filnam.ext"
specified for the output file cannot be used. The
format is invalid.

Output UFD dev: [p;, pg] Not Found
ENTER UUO failure 1. The file filnam.ext[p;,pg]
specified for output by an EW, El, or MAKE command
cannot be created because there is no user fi Ie directory
with pro;ect-programmer number [pi, pg] on device dev.

Output Protection Failure
ENTER UUO failure 2. The file filnam.ext[pi,pg] speci­
fied for output by an EW, El, EB, MAKE, or TECO command
cannot be created either because it already exists and is
write-protected <nnn> against the user, or because the UFD
it is to be entered into is write-protected against the user.

A-2

-03

-06

-14

-15

-16

-23

-24

-25

-26

-nn

Table A-l (Cont)
TECO Error Messages

Output File Being Modified
ENTER UUO failure 3. The file filnam.ext specified for
output by an EW, EZ , EB, MAKE, or TECO command
cannot be created because it is current being created
or modified by another iob.

Output UFD or RIB Error
ENTER UUO failure 6. The output file filnam.ext cannot
be created because a bad directory block was encountered
by the monitor while the ENTER was in progress. The user
may try repeating the EW, EB, or TECO command, but if
the error persists, it is impossible to proceed. Notify your
system manager.

No Room or Quota Exceeded on dev:
ENTER UUO failure 14. The output file filnam.ext cannot
be created because there is no more free space on device dev:,
or because the user l s quota is already exceeded there.

Write Lock on dev:
ENTER UUO fai lure 15. The output fi Ie fi Inam. ext cannot
be created because the output fi Ie structure is write-locked.

Monitor Table Space Exhausted
ENTER UUO failure 16. The output file filnam.ext cannot
be created because there is not enough table space left in
the monitor to allow t'he ENTER. The user may try repeating
the EW, EB, or TECO command, but if the error persists he
wi II have to wait unti I conditions improve.

Output SFD Not Found
ENTER UUO failure 23. The output file filnam.ext cannot
be created because the sub-file-directory on which it should
be E NTE Red cannot be found.

Search Li st Empty
ENTER UUO failure 24. The output file filnam.ext cannot
be created because the user's file structure search list is empty.

Output SFD Nested too Deeply
ENTER UUO failure 25. The output file filnam.ext cannot
b,e created because the specified SFD path for the ENTER is
nested too deeply.

No Create for Specified SFD Path
ENTER UUO failure 26. The output file filnam.ext cannot
be created because the specified SFD path for the ENTER
is set for no creation.

ENTER Failure nn on Output File filnam.ext
The attempted ENTER of the output file filnam.ext has failed
and the monitor has returned an error code of nn. This error
is not expected to occur on an ENTER. Please send the TTY
printout showing what' you are doing to DEC with an S PR form.

A-3

TECO

TECO

?EOA

?FNF-OO

-01

-02

-06

-16

-23

-24

-25

-nn

Table A-1 (Cont)
TECO Error Messages

nEO Argument Too Large
The argument n given with an EO command is larger than the
standard (maximum) setting in EO=n for this version of TECO.
This must be an older version of TECO than the user thinks he
is using; the features corresponding to EO=n do not exist.

Input File filnam.ext Not Found
LOOKUP UUO failure O. The file filnam.ext specified for
input by an ER, EB, or TECO command was not found on the
input device dev.

Input UFD dev: [pi, pg] Not Found
LOOKUP UUO failure 1. The file filnam.ext[pl,pg] speci­
fied for input by an E R, EB, or TECO command cannot be
found because there is no User Fi Ie Directory with proiect­
programmer number [pi, pg] on device dev.

Input Protection Fai lure
LOOKUP UUO failure 2. The file filnam.ext[pl,pg] speci­
fied for input by an ER, EB, or TECO command cannot be
read because it is read-protected <nnn> against the user.

Input UFD or RIB Error
LOOKUP UUO failure 6. The input file filnam.ext cannot
be read because a bad directory block was encountered by
the monitor while the LOOKUP was in progress. The user
may try repeating the ER, EB, or TECO command, but if the
error persists all is lost. Notify your system manager.

Monitor T able Space Exhausted
LOOKUP UUO failure 16. The input file filnam.ext cannot
be read because there is not enough table space left in the
monitor to allow the LOOKU P. The user may try repeating
the ER, EB, or TECO command, but if the error persists he
wi II have to wait unti I system conditions improve.

Input SFD not Found
LOOKUP UUO failure 23. The input file filnam.ext cannot
be found because the sub-file-directory on which it should be
looked up cannot be found.

Search List Empty
LOOKUP UUO failure 24. The input file filnam.ext cannot
be found because the user's file structure search list is empty.

Input SFD Nested too Deepl y
LOOKUP UUO failure 25. The input file filnam.ext cannot
be found because the specified SFD path for the LOOKUP
is nested too deepl y.

LOOKUP Failure nn on Input File filnam.ext
The attempted LOOKUP on the Input file filnam.ext has
failed and the monitor has returned an error code of nn.
This error is not expected to occur on a LOOK UP. Please
send the TTY printout showing what you were doing to DEC
with an S PR form.

A-4

?FUL

?IAB

?ICE

?ICT

?IDV

?IEC

?IEM

?IFC

?IFN

?ILL

?ILR

Table A-l (Cont)
TECO Error Messages

Device dev: Directory Fu II
ENTER UUO failure n. The file filnam.ext specified for
output by an EW or MAK E command cannot be created on
DECtape dev because the tape directory is fu II.

Incomplete < .•. > or (..•) in Macro
A macro contained in a Q-register and being executed by an
M command contains an iteration that is not closed within the
Q-register by a >, or a parenthetical expression that is not
closed within the Q-register by a).

Illegal Control-E Command in ~ch Argument
A search argument contai ns a ~ command that is
either not defined or incomplete.

Illegal Control Command t < char> in text Argument
In order to be entered as text in an Insert command or s.earch
command, all control characters (t@ - tH and tN - t -)
must be preceded by tR or tT. Otherwise they are inter­
preted as commands. The control character II t <char>1I is
on undefined text argument control command.

Input Davice dev Not Available
Initialization failure. Unable to initialize the device dev
for input. Either the device is being used by someone else
right now, or else it does not exist in the system.

Illegal Character lI<char>1I After E
The only commands starting with the letter E are EB, EF,
EG, EH, EM, EO, ER, ET, EU, EW, and EZ. When used
as a command (i. e., not in a text argument) E may not be
followed by any character except one of these.

TECO

Re-Init Failure on Device dev After EM
Unable to re-initialize the device dev after executing an
EM command on it. If th is error persists after retrying to
initialize the device with an ER command (or EW command
if output to the device is desired), consult your system manager.

Illegal Character "<char>" after F
The only commands starting with the letter Fare FS and FN.
When used as a command (other than EF or in a text argument)
F may not be followed by any character other than one of these.

Illegal Character lI<char>1I in Filename. ~
File specifications must be of the form dev:filnam.ext[m,n] W
where dev, filnarn, and ext are alphanumeric, and m and n
are numeric. No characters other than the ones specified may
appe ar between the E B, E R, EW, or E Z command and the

altmode terminator((!)).
Illegal Command <char>
The character lI<char>1I is not defined as a valid TECO command.

Cannot Lookup Input File filnam.ext. to Rename It
Fai lure in rename process at close of editing iob initiated by an EB
command or a TECO command. Unable to do a LOOKUP on the ori­
ginal input file dev:filnam.ext in order to rename it IIfilnam. BAK".
The output file is closed with the name IInnnTEC. TMP", where nnn
is the user l s lob number. The LOOK U P error code is nn.

A-5

TECO

?INP-nnOOOO

?IOS

?IQC

?IQN

?IRB

?IRN

?ISA

Table A-1 (Cont)
TECO Error Messages

Input Error nnOOOO on File filnam.ext.
A read error has occurred during input. The input file
filnam.ext has been released. The user may try again to
read the fi Ie, but if the error persists, the user wi II have
to return to his backup fi Ie. The input device status word
error flags are nnOOOO. (Note: Th is number represents the
I/O status word (rh) with bits 22-35 masked out.)
(040000 -- block too large).
(100000 -- parity or checksum error).
(140000 -- block too large and parity error).
(200000 -- device error, data missed).
(240000 -- block too large and device error).
(300000 -- parity error and device error).
(340000 -- block too large, parity error, and device error).
(400000 -- improper mode).
(440000 -- block too large and improper mode).
(500000 -- parity error and improper mode).
(540000 -- block too large, parity error, and improper mode).
(600000 -- device error and improper mode).
(640000 -- block too large, device error, and improper mode).
(700000 -- parity error, device error, and improper mode).
(740000 -- block too large, parity error, device error,

and improper mode).

Illegal Character "<char>" in I/O Switch
The only val id characters in switches used with fi Ie selection
commands are the alphabetic characters.

Illegal command II <char>
The only valid II commands are "G, ilL, liN, liE, "C, "A,
II D, " V, II W, II T, II F, II S, an d II U .

Illegal Q-register Name "<char>"
The Q-register name specified by a Q, U, X, G, %, M,
[,], or * command must be a letter (A thru Z) or a digit
(0 thru 9).

Cannot Rename Input File filnam.ext to filnam. BAK
Fai lure in rename process at close of editing iob initiated
by an EB command or a TECO command. The attempt to
rename the original input file filnam.ext to the backup
filename "filnam.BAK" has failed. The output file is
closed with the name "nnnTEC. TMP", where nnn is the
user's iob number. The RENAME UUO error code is nn.

Cannot RE-Init Device dev for Rename Process
Failure in rename process at close of editing iob initiated
by an EB command or a TECO command. Cannot reinitialize
the original input device dev in order to rename the input file
filnam.ext to IIfilnam.BAK". The output file is closed with
the name "nnnTEC. TMP", where nnn is the user's iob number.

n Argument with Search Command
The argument preceding a search command indicates the number
of times a match must be found before the search is considered
successful. This argument must be greater than O.

A-6

?MAP

?MEE

?MEF

?MEO

?MEO

?MEU

?MIQ

?MLA

?MLP

Table A-l (Cont)
TECO Error Messages

Missing I

In attempting to execute a conditional skip command (a II
command whose argument does not satisfy the required con­
dition) no I command closing the conditional execution string
can be found. Note: nil ••• I strings must be complete
within a single macro level.

Macro Ending with E
A command macro being executed from a Q-register ends
with the character II E". This is an incomplete command.
E is the initial character of an entire set of commands. The
other character of the command begun by E must be in the
same macro with the E.

Macro Ending with F
A command macro being executed from a Q-register ends with
the character "F" (not an EF). This is an incomplete command.
F is the initial character of an entire set of commands. The
other character of the command begun by F must be in the same
macro with the F.

Macro Ending with Unterminated 0 Command
The last command in a command macro being executed from a
Q-register is an 0 command with no altmode to mark the end
of the tag-name argument. The argument for the 0 command
must be complete within the Q-register.

Macro Ending with II

A command macro being executed from a Q-register ends with
the II character. This is an incomplete command. The II com­
mand must be fo II owed by one of the characters G, L, N, E,
C, A, D , V, W, T, F, S, or U to indicate the condition under
which the following commands are to be executed. This char­
acter must be in the Q-register with the II •

Macro Ending with t

TECO

A command macro being executed from a Q-register ends with the
t character. This is an incomplete command. The t command
takes a single character text argument that must be in the
Q-register with the t •

Macro Ending with <char>
A command macro being executed from a Q-register ends with
the character "<char>lI. This is an incomplete command.
The <char> command takes a single character text argument
to name the Q-register to which it applies. This argument
must be in the same macro as the <char> command itself.

Missing <
There is a right angle bracket not matched by a left angle
bracket somewhere to its left. (Note: an iteration in a macro
stored in a Q-register must be complete within the Q-register.)

Missing (
Command string contains a right parenthesis that is not matched
by a corresponding left parenthesis.

A-7

TECO

?MRA

?MRP

?MUU

1NAE

?NAI

?NAQ

?NAU

?NCS

?NFI

?NFO

?NTQ

?OCT

Table A-l (Cont)
TECO Error Messages

Missing>
In attempting to exit from an iteration field with a ; command
(or to skip over an iteration field with a 0 argument) no >
command closing the iteration can be found. Note: iteration
fields must be complete within a single macro level.

Missing)
The command string contains, within an iteration field, a
parenthetical expression that is not closed by a right
parenthesis.

Macro Ending with t t
A command macro being executed from a Q-register ends with
control- t or t t. This is an incomplete command. Thet t
command takes a single character text argument that must be
in the Q-register with the t t •

No Argument Before =
The command n= or n== causes the value n to be typed. The
= command must be preceded by either a specific numeric
argument or a command that returns a numeri c val ue.

No Altmode after nl
Unless the EO value has been set to 1, the numeric insert
command nl must be immediately followed by altmode.

No Argument Before II

The" command must be preceded by a single numeric argu­
ment on which the decision to execute the following commands
or skip to the matching I is based.

No Argument Before U
The command nUi stores the value n in Q-register i. The U
command must be preceded by either a specific numeric argu­
ment or a command that returns a numeri c value.

No Command String Seen Prior to *i
The *i command saves the precedirg command string in Q-register i.
In this case no command string has previously been given.

No File for Input
Before issuing an input command (Y or A) it is necessary
to open an input file by use of an ER, EB, or TECO command.

No File for Output
Before giving an output command (PW, P, N, EX, or EG) it
is necessary to open an output file by use of an EB, EW, EZ,
MAKE, or TECO command.

No Text in Q-register x
Q-register x, specified by a G or M command, does not
contain text.

"8" or "9" in Octal Digit String
In a digit string preceded by to, only the octal digits
0-7 may be used.

A-8

?ODV

?OLR

?OUT -'nnOOOO

?PAR

?POP

Table A-l (Cont)
TECO Error Messages

Output Device dev Not Available
Initialization failure. Unable to initialize the device dev
for output. Either the device is being used by someone
else right now, or it is write locked, or else it does not
exist in the system.

Cannot Lookup Output File dev:filnam.ext to Rename It
Failure in rename process at close of editing ;ob initiated by

. an EB command or a TECO command. The special LOOK U P
on the output file filnam.ext required for DECtape in order to
rename the file to IIfilnam.ext" has failed. The original input
file filnam.ext has been renamed "filnam.BAK", but the out­
put fi Ie is closed with the name "nnn TEC. T MP", where nnn is
the user's ;ob number. The LOOK UP UUO error code is nn.

Output Error nnOOOO .. Output Fi Ie nnn TEC. T MP Closed
An error on the output device is fatal. The output file is closed
at the end of the last data that was successfully output. It has
the filename "nnnTEC. TMP", where nnn is the user's ;ob
number. See Section 4.3 for a recovery techn ique. The out­
put device status word error flags are nnOOOO. (Note: This
number represents the I/O status word (rh) with bits 22-35
masked out.)
(000000 -- end of tape).
(040000 -- block number too large: device full or

quota exceeded).
(100000 -- parity or checksum error).
(140000 -- block number too large and parity error).
(200000 -- devi ce error, data missed).
(240000 -- block number too large and device errror).
(300000 -- parity error and device error).
(340000 -- block number too large, parity error,

and device error).
(400000 -- improper mode or device write locked).
(440000 -- block number too large and improper mode).
(500000 -- parity error and improper mode).
(540000 -- block number too large, parity error,

and improper mode).
(600000 -- device error and improper mode).
(640000 -- block number too large, device error,

and improper mode).
(700000 -- parity error, device error, and improper

mode).
(740000 -- block number too large, parity error,

device error, and improper mode).

Confused Use of Parentheses
A string of the form (... < ...) has been encountered.
Parentheses should be used only to enclose combinations
of numeric arguments., An iteration may not be opened
and not closed between a left and right parenthesis.

Attempt to Move Pointer Off Page with J, C, R, or D
The argument specified with a J, C, R, or D command must
point to a position within the current size of the buffer,
i. e., between 0 and Z, inc lusive.

A-9

TECO

TECO

?PPN

?RNO

?SAL

?SNA

?SNI

?SRH

?STC

?STL

?TAG

?TAL

Table A-l (Cont)
TECO Error Messages

Illegal Character "<char>" in Proiect-programmer Number

Proiect-programmer numbers in file specifications must be given
in the form em, n] where m and n are octal digit strings separated
by a comma. No characters other than the ones specified may
appear between the enclosing brackets.

Cannot Rename Output File nnnTEC. TMP
Failure in rename process at close of editing iob initiated by
an EB command or a TECO command. The attempt to rename
the output file nnnTEC.TMP to the name "filnam.ext"
originally specified in the EB or TECO command has fai led.
The original input file filnam.ext has been renamed
"filnam.BAK", but the output file is closed with the
name "nnnTEC. TMP", where nnn is the user's iob number.
The RENAME UUO error code is nn.

Second Argument Less Than First
In a two-argument command, the first argument must be
less than or equal to the second.

Initial Search with No Argument
A search command with null argument has been given, but
there was no preceding search command from whi ch the
argument cou I d be taken.

; Not in an Iteration
The semicolon command may be used only with a string
of commands enclosed by angle brackets, i.e., in an
iteration field.

Cannot Find "<text>"
A search command not preceded by a colon modifier and
not within an iteration has failed to find the specified
character string "<text>". After an S search fails the
pointer is left positioned at the beginning of the buffer.
After an N or _ search fai Is the last page of the input
fi Ie has been input and, in the case of N, output, and
the buffer cleared. Note that when this message occurs,
the text string printed includes all control-character
commands included in the search argument.

Search String Too Long
The maximum length of a search string is 80 characters
including all string control commands and their arguments.

Search String too Long
The maximum length of a search string is 36 character
positions, not counting extra characters required to
specify a single position.

Missing Tag !xxx!
The tag !xxx! specified by an 0 command cannot be
found. This tag must be in the same macro level as the
o command referencing it.

Two Arguments with L
The L command takes at most one numeric argument, namely,
the number of lines over which the buffer pointer is to be
moved.

A-10

?TTY

?UCA

?UFS

?UII\J

?UIS

?USR

?UTG

?UUO

Table A-l (Cont)
TECO Error Messages

Illegal TTY 1-0 Device
A terminal may be specified as an input-output device in an
ER, EW, EZ, or MAKE command only if it is not being used
to control an attached job, the user's own terminal included.

Unterminated tA Command
A tA message type-out command has been given, but there is
no corresponding tA to mark the end of the message. tA
commands must be complete within a single command level.

Macro Ending with Unterminated Fi Ie Selection Command
The last command in a command macro being executed from a
Q-register is a file selection command (ER, EW, ES, or EZ)
with no altmode to mark the end of the file specifications.
The fi Ie selection command must be complete within the
Q-register.

Unterminated Insert Command
An insert command (possibly an @ insert command) has been
given without terminating the text argument at the same
macro level.

Undefined I/O Switch "/xxx"
The switch "/xxx" is not defined with either input or output
file selection commands. The only switches currently defined
for input or output file selection commands are
/GENLSN and /SU PLSN.

Unterminated Search Command
A search command (possibly an @ search command)
has been given without terminating the text argument at
the same macro level.

Unterminated Tag
A command string tag has been indicated by a ! command,
but there is no corresponding I to mark the end of the tag.
Tags must be complete within a single command level.

Illegal UUO
Internal error. The illegal instruction <Ih,rh> has been
encountered at address nnnnnn. This is caused by either a
TECO bug or a monitor bug. Please give printout to your
system manager, or submit it to DEC with an S PR.

A-ll

TECO

,

Appendix B

ASCII C:haracters

Character

N'ullor
Control-ShiFt-P

Control-A

Control-B

Control-C

Control-D

Control-E

Control-F

Bell

B(~ckspace

Tab

Line Feed

Manual
Symbol

@
@

@
@

@

Octal

000

001

002

003

004

005

006

007

010

011

012

Table B-1
ASC II Characters

Decimal

o

2

3

4

5

6

7

8

9

10

B-1

TECO

Comment and Section Reference

Ignored on input. Ignored on type-in.

nl (!) insert onl y.

TECO command (Section 3. 17).

Monitor command (Section 3. 18). A
special character (Section 2.2).

Monitor command (Section 3.10). A
special character (Section 2.2). nle!)
insert only. Echoes as tC-carriage
return-line feed.

TECO command (Section 3.17).

TECO command (Sections 3.11 and
3.16).

TECO command (Section 3.16).
Monitor command (Section 3. 18).
A special character (Section 2.2).

Echoes and prints as a single bell ring

and tG. Double @and @L-Iare

TECO commands (Section 5. 1)
and special characters (Section 2.2).

TECO command (Section 3.16). Prints
as tHo

TECO command (Section 3.8).

Ignored in command strings except as a
text argument (Section 3. 18). The
symbol ! is used only to represent an
expl icitly-typed I ine feed. It is not
used for the I ine feed that the monitor

I

I

I

TECO

Character

Line Feed (Cont)

Vertical Tab

Form Feed

Carriage Return

Control-N

Control-O

Control-P

Control-Q

Control-R

Control-S

Control-T

Control-U

Control-V

Control-W

Control-X

Control-Y

Control-Z

Manual
Symbol

@
@

®
®

@)
@

@
@

Octal

013

014

015

016

017

020

021

022

023

024

025

026

027

030

031

032

Table B-1 (Cont)
ASC II Characters

Decimal

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

B-2

Comment and Section Reference

generates when a carriage return is typed.
In data, I ine feed defines the end of a
I ine (Section 2.3).

In data, vertical tab defines the end of
a I ine (Section 2.3).

TECO command (Section 3.6). In data,
form feed defines the end of a page
(Section 2.3).

Ignored in command strings except as a
text argument. (Section 3.18). When
this character is typed the monitor auto­
matically generates a line feed following
it.

TECO command (Section 3.11).

Monitor command (Section 3.6). A
special character (Section 2.2). nlC!)
insert only. Echoes as to-carriage
return-line feed.

Monitor command (Section 3.18). A
special character (Section 2.2).

TECO command (Section 3.11).

TECO command (Sections 3.8 and 3.11).

TECO command (Section 3. 11).

Two different uses as TECO commands
(Sections 3.8, 3.11, 3.16).

TECO command (Section 5. 1). A
special character (Section 2.2). nl (!) in­
sert only. Echoes as tu carriage
return-line feed.

TECO command (Sections 3.8 and 3.11).

TECO command (Sections 3.8 and 3.11).

Two different uses as TECO commands
(Section 3.11).

TECO command (Section 3.10). Echoes
as tZ-carriage return-line feed. Used
as end-of-file signal when doing data
input from a TTY.

Character Manual Octal
Symbol

Altmode or CD 033
(Control-ShiH-K)

Control-Shift·-L @ 034

Control-Shift·-M @ 035

Control-Shift··N @ 036

Control-Shift··O e 037

Spa,ee L-I 040

! 041

II 042

043

$ 044

% 045

& 046

I 047

(050

) 051

I
'It 052

+ 053

, 054

- 055

056

/ 057

Tab I e B -1 (C on t)
ASC II Characters

Decimal

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

B-3

TECO

Comment and Section Reference

Alphanumeric argument terminator
(Section 2.7). A special character
(Section 2.2). Echoes and prints as $.
Two successive altmodes are used to
terminate a command string (Section 2.6).

TECO command (Section 3.11).

Two different uses as TECO commands
(Sections 3.8, 3.11, 3.16).

TECO command (Section 2.7). Ignored
in command strings except as a text ar-
gument or when used instead of + with
numeric arguments (Section 3. 18).

TECO command (Section 3. 13).

Used as a prefix for a whole c lass of
TECO commands (Section 3. 13).

TECO command (Section 2.7).

TECO command (Section 3. 14).

TECO command (Section 2.7).

TECO command (Section 3.13).

TECO command (Section 2.7).

TECO command (Section 2.7).

Two different uses as TECO commands
(Sections 2.7 and 2.14).

TECO command (Section 2.7).

TECO command (Section 2.7).

TECO command (Section 2.7).

TECO command (Sections 3.2 and 3.4).

Two different uses as TECO commands
(Sections 2.7 and 5.2).

TECO

Character Manual Octal
Symbol

0 060

1 061

2 062

3 063

4 064

5 065

6 066

7 067

8 070

9 071

: 072

; 073

< 074

= 075

> 076

? 077

@ 100

A 101

B 102

C 103

D 104

I
E 105

Table B-1 (Cont)
ASC II Characters

Decimal

48

49

50

. 51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

B-4

Comment and Section Reference

TECO command (Section 3. 11). Device
name delimiter (Section 3.2).

TECO command (Section 3. 12).

TECO command (Section 3. 12).

TECO command (Section 3.15).

TECO command (Section 3. 12).

Two different uses as TECO commands
(Sections 3.17 and 5.2).

TECO command (Sections 3.8 and 3. 11).

Two different uses as TECO commands
(Sections 3.3 and 3.15).

TECO command (Section 3.4). Also used
in the EB command (Section 3.2).

TECO command (Section 3.5). Also used
in the "C command (Section 3. 13).

TECO command (Section 3.7).

Used as a prefix for many TECO com-
mands: EB, EF, EG, EH, EM, EO, ER,
ES, ET, EU, EW, EX, EZ (Sections
3.2,3.6, 3.9, 3.10). Also used in the
liE command (Section 3.13).

Character
Manual
Symbol

I F

G

H

I

J

K

L

M

N

0

P

Q

R

I S

T

U

V

W

X

Octal

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

Table 8-,1 (Cont)
ASC II Characters

Decimal

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

8-5

TECO

Comment and Section Reference

Used in the EF commands (Section 3.9).
Also in FS and FN commands (Section
3. 11).

TECO command (Section 3.14). Also
used in the EG command (Section 3. 10)
and "G command (Section 3.13).

TECO command (Section 3.4).

TECO command (Section 3.8).

TECO command (Section 3.5).

TECO command (Section 3.7).

TECO command (Section 3.5). Also
used in the ilL command (Section 3.13).

TECO command (Section 3. 14). Also
used in the EM command (Section 3.2).

TECO command (Section 3.11). Also
used in the liN command (Section 3.13).
Also used in FN command (Section 3. 11).

TECO command (Section 3.13).

TECO command (Section 3.9).

TECO command (Section 3.14).

TECO command (Section 3.5). Also
used in the ER command (Section 3.2).

TECO command (Section 3. 11). Also
used in ES and FS commands (Section
3. 11).

TECO command (Section 3.6). Also
used in the ET command (Sections 3.6
and 3. 16).

TECO command (Section 3.14).

Used in the EW command (Section 3.2)
and the PW command (Section 3.4).
Otherwise ignored in command strings.

TECO command (Section 3.14). Also
used in the EX command (Section 3.10).

TECO

Character Manual Octal
Symbol

y 131

Z 132

[133

'" 134

] 135

tor 1\ t 136

-or - 137 -

" 140

a 141

b 142

c 143

d 144

e 145

f 146

g 147

h 150

i 151

i 152

k 153

I 154

m 155

n 156

0 157

p 160

q 161

Table B-1 (Cont)
ASC II Characters

Decimal

89

90
\

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

B-6

Command and Section Reference

TECO command (Section 3.3).

TECO command (Section 3.4). Also
used in the EZ command (Section 3.2).

TECO command (Sections 3.2 and 3. 14).

Two different uses as TECO commands
(Sections 3.8 and 3.14).

TECO command (Sections 3.2 and 3. 14).

When used as a command, indicates that
the next character is to be interpre'ted as
a control character.

TECO command (Section 3. 11).

Equivalent to A in command strings.

Equivalent to B in command strings.

Equivalent to C in command strings.

Equivalent to D in command strings.

Equivalent to E in command strings.

Equivalent to F in command strings.

Equivalent to G in command strings.

Equivalent to H in command strings.

Equivalent to I in command strings.

Equivalent to J in command strings.

Equivalent to K in command strings.

Equivalent to L in command strings.

Equivalent to M in command strings.

Equivalent to N in command strings.

Equivalent to 0 in command strings.

Equivalent to P in command strings.

Equivalent to Q in command strings.

Character
Manual
Symbol

r

s

t

u

v

w

x

y

z

{

I
}

'"

Rubout or @
Delete

Octal

162

163

164

165

166

167

170

171

172

173

174

175

176

177

Table B-1 (Cont)
ASC II Characters

Decimal

114

115

116

117

118

119

120

121

122

123

124

125

126

127

B-7

TECO

Comment and Section Reference

Equivalent to R in comma nd strings.

E'1uivalent to S in comma nd strings.

Equivalent to T in I. [' I

Equivalent to U in comma nd strings.

Equivalent to V in comma nd strings.

Equivalent to W in comma nd strings.

Equivalent to X in comma nd strings.

Equivalent to Y in comma nd strings.

Equivalent to Z in comma nd strings.

Converted to al tmode (03 3) when read
pecified from TTY un less user has s

TTY LC mode. Equivalen t to altmode
mands or (033) when executing com

being typed as text if the EO value has
been set to 1 .

Converted to altmode (03 3) when read
pecified from TTY unless user has s

TTY LC mode. Equivalen t to altmode
mands or (033) when executing com

being typed as text if the
been set to 1 .

TECO command (Section
character (Section 2.2).
nl(!)insert only. Does n
Echoes as the character b

EO value has

5.1). A special

ot print.
eing erased.

A,ppendix C

Summatry of Commands

C.1 INITIALIZATION AND FILE SELECTION

Command

dev:fi Inam. ext [proi, prog]

E Rfi lespec ifi cation CD
nE tv1

EWfilespecification (!)
EZfilespec ific:ation (!)
EBfi lespec ific:ation CD
MAK Efi lespec;)

TECOfi lespec)

VGiENLSN

VSUPLSN

y

A

B

Table (-1
Command Description

Function

INITIALIZATION AND FILE SELECTION

File specifications

Select fi Ie for input.

Position magnetic tape

Select fi Ie for output.

Zero directory and select fi Ie for output.

Select file for input and output, with back-
up file protection.

Equivalent to EWfilnam.ext (j).
Equivalent to EBfilnam.ext (i) y.

Used with EW or EB to cause line sequence
numbers to be generated.

Used with ER, EB, or EW to suppress line
sequence numbers.

INPUT

C lear Buffer and input one page.

Input one page and append to current buffer
contents.

BUFFER POSITIONS

Before first character; O.

Current pointer position; number of characters
to the left of the pointer.

C-1

TECO

Reference

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3.2)

(Section 3. 1)

(Section 3. 1)

(Section 3.2)

(Section 3.2)

(Section 3.3)

(Section 3.3)

(Secti on 3.4)

(Section 3.4)

TECO

Table C-l (Cont)
Command Description

Command Function Reference

Z End of the buffer; number of characters in (Section 3.4)
the buffer.

min m+ 1 st through nth characters in the buffer. (Section 2.7)

H Entire buffer; B, Z. (Section 3.4)

ARGUMENT OPERATORS

m+n Add. (Section 2.7)

m n
L...J

Add. (Section 2.7)

m-n Subtract. (Section 2.7)

m*m Multiply. (Section 2.7)

min Divide and truncate. (Section 2.7)

man Logical AND. (Section 2.7)

m#n Logical OR. (Section 2.7)

() Perform enclosed operations first. (Section 2.7)

I to Accept number in octal radix. (Section 2.7)

POINTER POSITIONING

nJ Move pointer to position between nth and (Section 3.5)
n+ 1 st characters.

nC Advance pointer n positions. (Section 3.5)

nR Move pointer back n positions. Equivalent (Section 3.5)
to -nCo

nL Move pointer to beginning of nth I ine from (Section 3.5)
current pointer position.

TYPE-OUT

nT Type all text in the buffer from the current (Section 3.6)
~ointer position to the beginning of the nth
ine from the pointer position.

minT Type the m+lst through the nth characters. (Section 3.6)

n= Type the decimal integer n. (Section 3. 15)

n== Type the octal integer n. (Section 3. 15)

lET Change typeout mode so that no substitutions
are made for nonprinting characters •.

(Section 3.6)

OET Restore typeout mode to normal. (Section 3.6)

C-2

I

OEU

lEU

-lEU

-lES

I1ES(n>O)

OES

Command

@message @
t L or form feed

nD

'-nD

nK

m,nK

Itext ®
nle!)

@I/TEXT/

11\

®
@
@

Table C-l (Cont)
Command Description

Function

Flag lower case characters on typeout
(standard) •

Flag upper case characters on typeout.

No case flagging on typeout.

Set automatic typeout after searches.

Set automatic typeout after searches and
include a character to indicate the position
of the pointer.

Set to no automat i c typeout after searches.

Type the message enclosed.

Type a form feed.

Inhibit typeout.

DELETION

Delete the n chlC:lracters following the pointer
position.

Delete the n characters preceding the pointer
position.

Delete all characters in the buffer from
current pointer position to the beginning
of the nth I ine from the pointer position.

Delete the m+lst through the nth characters.

INSERTION

Insert the text del imited by I and altmode.

Insert the character with ASC II value n
(decimal).

Insert the text delimited by the arbitrary
character following I.

Insert the ASC II representation of the
decimal integern.

Translate to lower case.

Translate to upper case.

When used inside text arguments, this means
translate special characters @, [, '\.,], t,
- to "lower case" range.

C-3

TECO

Reference

(Section 3.6)

(~ection 3.6)

(Section 3.6)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 17)

(Section 3.6)

(Section 3.6)

(Section 3.7)

(Section 3.7)

(Section 3.7)

(Section 3.7)

(Section 3.8)

(Section 3.8)

(Secti on 3.8)

(Section 3.8)

(Section 3.8)

(Section 3.8)

(Section 3.8)

TECO

Table C-1 (Cont)
Command Description

Command Function Reference

INSERTION (Cont)

@ Accept next character as text. (Section 3.8)

@ Used inside text arguments to cause all control (Section 3.8)

characters except @' ®, and altmode
to be taken as text. Null ified by a second @

OUTPUT AND EXIT

PW Output the current page and append a form (Section 3.9)
feed character to it.

I nP Output the current page, clear the buffer, (Section 3.9)
and read in the next page. Continue this
process until the nth page from the current
page has been input.

m,nP Output the m+ 1 st through the nth characters. (Section 3.9)
Do not append a form feed character, and
do not change the buffer.

EF Close the output file. (Section 3.9)

@ or tz Close the output file and exit to the (Section 3. 10)
monitor.

@) Ex i t to the mon i tor. (Section 3.10)

EX Output the remainder of the file, close the {Section 3.10)
output file, and then exit to the monitor.

EG Output the remainder of the file, close and
then re-execute the last compile-class com-

(Secti on 3. 10)

mand that was typed.

SEARCH

nStext ® Search for the nth occurrence (following the (Section 3. 11)
pointer) of the text del imited by Sand
altmode, but do not go beyond the end of
the current page.

nFStext ® text ® Search for the nth occurrence (fol1owing the (Section 3. 11)
pointer) of the first text string and replace
it with the second text string. Do not go
beyond the end of the current page.

nNtext CD Equivalent to nStext (!) except that if (Section 3. 11)

the text is not found on the current page,
pages are input and output until it is found.

C-4

I
Comm(:md

Table C-1 (Cont)
Command Description

Function

TECO

Reference
r--'------------t-----------------,-------f---------,---------

hFNtext (j) text (j)

n _ text (!)

:nStext ®

@nS/text/

o @) or otx

n @) or n tX (nfO)

@)
@
@

@
@

@) a

SEARCH (Cont)

Equivalent to nFStext (j) text (!) except

that if the text is not found on the current
page, pages are input and output until it is
found.

Equivalent to nNtext ® except that it
does input on I y, no output.

Equivalent to nStext ® except that it
returns a value of -1 if the search succeeds
or 0 if it fai Is instead of an error message.
The: command can also be used with FS, N,
FN, and-.

Equivalent to nStext CD except that the
text is del imited by the arbitrary character
following the S. The @ command may also
be used with FS, N, FN, and-.

Reset search mode to accept either case.

Set search mode to "exact" mode.

Translate to lower case.

Translate to upper case.

When used inside text arguments, this means
translate special characters@, [, \,], t,
- to II lower casel! range.

Accept next character as text.

Used inside text arguments to cause all

control characters except @' ®,
and altmode to be taken as text. Nullified

by a second @.
Used inside search argments to indicate
accept either case for following characters.

Nullified by a second ®.
When used inside a text argument, accept
any character at this position in the search
string.

Accept any separator character at this
position.

Accept any character except the arbitrary

character a following @.

C-5

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

TECO

Command

@)

® A

® V

® W

® D

® L

@ S

@ <nnn>

® [a,b,c .•• J

n< >

n° ,

;

!tag!

Otag Ci)
nil Ecommands'

nil Ncommands'

nil Lcommands'

n"Gcommands'

n -1" Lcommands'

n+l "Gcommands'

n"Ccommands'

Table C -1 (Cont)
Command Description

Function

SEARCH (Cont)

Take the next character in the search string
literally, even if it is a control character.

Accept any alphabetic character as a match.

Accept any lower case alphabetic character
as a match.

Accept any upper case alphabetic character
as a match.

Accept any digit as a match.

Accept any end-of-I ine character as a match.

Accept any string of spaces and/or tabs
as a match.

Accept the ASC II character whose octal
value is nnn as a match.

Accept anyone of the characters in the
brackets as a match.

ITERA TlON AND FLOW CONTROL

Perform the enclosed command string n times.

If n=O, lump out of the current iteration field.

Jump out of the current iteration field, if the
last search executed failed.

Define a position in the command string with
the name "tag".

Jump to the position defined by ! tag! •

If n=O, execute the commands specified
between liE and'; otherwise, skip to the' .

If n/O, execute the enclosed commands.

If n<O, execute the enclosed commands.

If n>O, execute the enclosed commands.

If n~O, execute the enclosed commands.

If n~O, execute the enclosed commands.

If n is the ASCII value (decimal) of a symbol
constituent character, execute the enclosed
commands.

C-6

Reference

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 11)

(Section 3. 12)

(Section 3. 12)

(Section 3.12)

(Section 3. 13)

(Section 3.13)

(Section 3.13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

I

Command

nil Dc:ommandsl

nIIAc:ommands'

nllVc:ommandsl

nllWcommandsl

nllTcommandsl

nil Fcommandsl

nil Scommandsl

nil Uc:ommandsl

nUi

Qi

%i

nXi

m,nXi

Gi

Mi

[i

] i

*. I

Table C-1 (Cont)
Command Description

Function

ITERATION AND FLOW CONTROL (Cont)

If n is a digit execute the enclosed commands.

If n is alphabetic, execute the enclosed
commands.

If n is lower case alphabetic, execute the
enclosed commands.

If n is upper case alphabetic, execute the
enclosed commands.

If n is true, execute the enclosed commands.

If n is false, execute the enclosed commands.

If n is "successful", execute the enclosed
commands.

If n is II unsuccessful III , execute the enclosed
commands.

Q-REGISTER

Store the integer n in Q-register i.

Equal to the value stored in Q-register i.

Increment the value in Q-register i by 1
and return this value.

Store, in Q-register i I all characters from
the current pointer position to the beginning
of the nth I ine from the pointer.

Store the m+ 1 st through nth characters in
Q-register i.

Place the text in Q-register i at the current
poi nter position.

Execute the text in Q-register i as a command
string.

Push the current contents of Q-register i onto
the Q-register pushdown list.

Pop the last stored entry from the Q-register
pushdown I ist into Q -register i.

(As first command in a string.) Save the
preceding command string in Q-register i.

TECO

Reference

(Section 3. 13)

(Section 3.13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3. 13)

(Section 3.13)

(Section 3.14)

(Section 3.14)

(Section 3. 14)

(Section 3.14)

(Section 3. 14)

(Section 3. 14)

(Section 3.14)

(Section 3. 14)

(Section 3.14)

(Section 3.14)

~--.-------------------~---------------------.---------------------~----------------~

C-7

I

TECO

Command

1A

® or tE

@ or tN

tF or @
® or tH

ET

@ or tx

EU

EO

EH

@ x or ttx

\

® or tT

/

*. I

Table C-1 (Cont)
Command Description

Function

SPECIAL NUMERIC VALUES

The ASCII value {decimal}.of the character
following the pointer.

The form feed flag. Equals 0 if no form feed
character was read on the last input, -1
otherwise.

The end-of-file flag; equals -1 if end of input
fi Ie seen on last input. Otherwise equals O.

Decimal value of the console data switches.

The time of day in 60th's of a second.

The value of the type-out mode switch.
Equals 0 for normal type-out, -1 otherwise.

Value of the search mode flag. (O=either case
mode, - p:: exact mode.)

The value of the EU flag.
+ 1 = fl ag upper case characters.
o = flag lower case characters,

-1 = no case flagging on typeout.

The value of the EO flag. 1 = version 21 A,
2= versions 22 and 23.

The value of the EH flag. 1= code only,
2= code plus one line, 3= all of error message.

Equivalent to the ASCII value (in decimal)
of the arbitrary character x following t t •

Equivalent to the decimal value of the
digit string following the pointer.

Stop command execution and then take
on the ASCII value (in decimal) of the
character typed in by the user.

AIDS

When used after an error message, this causes
a more detailed explanation of the error to be
typed.

When used at the beginning of a command
string, this causes the entire command string
(with one of the two concluding altmodes)
to be moved into Q-register i.

C-8

Reference

(Section 3. 16)

(Section 3.16)

(Section 3.16)

(Section 3.16)

(Section 3. 16)

(Section 3.16)

(Section 3. 11)

(Section 3.6)

(Section 3.17)

(Section 5.2)

(Section 3. 16)

(Section 3. 16)

(Section 3.16)

(Section 5.2)

(Section 5.2)

?

?

@)&-I
OEO

nEO (n/O)

1EH

2EH

3EH

OEH

TableC-1 (Cont)
Command Description

AI DS (Cont)

When used after an error message, this causes
the offending command to be typed out (with
a few of the commands preceding it).

Enter trace mode. A second? command
takes TECO out of trace mode.

Erase last character typed in the command
string.

Erase the entire command string.

Erase everything typed in back to the last
break character.

Retype current line of command string.

Restore the EO value to standard.

Set the EO val ue to n.

Type on I y code part of error messages.

Type error code plus one line.

Type all three parts of error.

Equivalent to 2EH.

TECO

(Section 5.2)

~Section 3.17)

(Section 5. 1)

(Section 5. 1)

(Section 5. 1)

(Secf'ion 5.1)

(Section 3. 17)

(Section 3.17)

(Section 5.2)

(Section 5.2)

(Sedion 5.2)

(Section 5.2)

1..-_________________________ . ________________ --l..-_. ______ ---J

C-9

INDEX (TECO)

A

fA (control-A) see Control commands

A (append) command, 3-11, 3-47, 3-55

Addition, 2-9

Alphabetic case control
in insert commands, 3-22
in search arguments, 3-36

Alphanumeric argument, 2-4, 2-8,

Altmode, 2-3, 2-4,2-7, 2-8, 3-5, 3-15, 3-20,
3-21, 3"42, 3-45, 3-49, 3-50, 5-1

& (ampersand), 2-1 °
AND, 2-10

< > (angle brackets), 3-42, 3-45

'(apostrophe) command, 3-46, 4-11

Arguments, 3-1

alphanumeric, 2-4, 2-8
numeric, 2-9, 3-5, 3-11
text, 2-13

Argument p<Jir, 2-9

Argument terminator, 3-5

Arithmeti c/logical operators, 2-9, 2-10

* (asterisk), 2-8, 2-10, 3-1, 3-2, 3-3, 3-16

*i command, 3-25, 3-50

@(at si gn modifier), 3-35

@ I command, 3-20, 3-53

Automatic typeout

after searches, 3-36
flag, obtaining the value, 3-55

B

iB (control··B) see Contro I commands

B, 3-12

-'(back arrow) command, 3-34

t',- (control-backslash) command, see control
commands

\ (backslash) command, 3-21, 3-56, 3-57

B ockspace one fi Ie, 3-6

Bock up one record, 3-6

Bockup file, 3-7, 3-9

BAK, 2-2, 3-3, 3-7

Bell, 2-4,5-2

Bell-space command, 5-3

Blank page, 3-28, 3-29

Blank tape, 3-6

Blocks of text, 4-3

Boundary of the buffer, 3 -13

Brackets, angle see Angle brackets

Brackets, square see Square brackets

Break character, 5-2

Buffer boundary, 3-13

Buffer, command string, 2-12

,editing, 2-7, 2-11, 2-12
pointer, 2-7,3-10 3-11 3-12 3-13

3-14, 3-18, 3-21, 3-22, 3-:32 3-34
3-50, 3-56 "

position, 2-9, 3-11

Buffers, 1-1,2-12,3-11

C

tC (control-C) command see Control commands

C command, 3-12, 3-47

Caret, 2-7

Carriage return, 2-4, 2-7, 3-16, 3-21, 3-60,
5-2

Case control

!n insert commands, 3-22
In search arguments, 3-36

Case flagging on typeout, 3-16

Case flag, obtaining the value, 3-55

Case match mode control in searches, 3-39

Categories of TECO commands, 2-11

Causing the current line to be retyped, 5-3

Changing

amo~nt of error reporting, 5-6
maximum number of entries in the Q-register

pushdown list, 3-5

Character set, 2-2

Character strings, 2-12, 3-50

Characters, control, 2-4

,speci ai, 2-3

Close, 3-6, 3-7, 3-28, 3-30, 4-1

Index-1

INDEX (TECO) (Cont)

: (colon), 3-5,

: (colon modifier), 3-33, 3-35

: (colon) search, 3-35, 3-48

Comma, 2-9

Command buffer, 3-32

Command error, 2-8, 5-1

Command mode, 3-1

Command string buffer, 2-12

Command strings, 2-7, 2-8, 2-12, 3-30, 3-31,
3-45, 3-50, 3-60, 5-1, 5-3

Command string syntax, 2-7

Commands

edit class, 3-2
erasing, 2-3
immediate action, 2-3
monitor, 2-3, 3-2
that return a value, 2-11

Commands, summary of see Appendix C

Comments, 3-48

Compile-class command, 3-30

COMPILE command, 3-30

Conditional branch, 3-35, 3-38

Conditional command, 3-30

Conditional execution, 3-40

Conditional execution commands, 3-46, 3-48

Conditional skip, 3-45

Console data switches, 3-55, 3-56

CONTINUE, 3-31

Control characters, 2-3, 3-15, 3-40

Control commands

tt, 3-24
t\ , 3-39
H, 2-3
tA, 3-56, 3-57
tC 2-3 3-29 3-30 3-44
tE; 3-40, 3-55 '
tF, 3-55, 3-57
tG 2-3 3-60 5-2
tG 'tG, 2-3, 5~2
tG L-I 5, 5-3
tH, 3-55, 3-57
tL, 3-15
tN 3-40 3-42 3-55
to' 2-3 '3-14 '3-17
tR '3-25 3-39 3-40
t5; 3-40,' 3-42'
tT, 3-25, 3-39,3-56,3-57

tv, 3-22, 3-37
tv tv, 3-23, 3-37
tw, 3-22, 3-37
tW tw, 3-23, 3-37
tu 2-3 3-60 5-2 5-3
tX: 3-40, 3-42 '
tz, 3-29, 3-30

Converting special characters to lower case,
3-24, 3-39

Core, 1-1,2-6,2-12,3-1,3-10,3-11,
3-50, 4-3

Core expansion, 2-12, 3-10, 3-11

Create, 3-2, 3-4

Creating a TECO macro, 3-25

CTRLkey, 2-3

Current line, 2-7, 3-13, 3-15, 5-3

D

D (delete) command, 3-18, 3-19, 3-47

DEBUG, 3-30

Decimal number, 3-20

Designating particular groups of characters as a
match in searches, 3-40

Determining the command that caused an error,
5-4

Device, 1-1, 3-2, 3-3, 3-4, 3-5, 3-7

Device name, 2-1, 3-5

Digit string, 3-56

Directory structured devices, 3-4

Disk area, 3-5

Divide, 2-10

$ (do II ar sign), 3 -1 5, 3 -40

E

tE (control-E) see Control commands

E command, 3-47

EB command, 3-3, 3-7

Echo, 2-4

Edit, 3-2, 3-4

Edit-class command, 3-2

Index-2

INDEX (TECO) (Cont)

Fditing buffer 2-7 2-11 3-8 3-10 3-14
. 3-19 3-20 3-21 3-26 3~32 3~33 3-50 , , , , , ,
Editing existing files, 3-2

Editing, programmed, 2-11

Editing line-sequence numbered files, 3-8

EF command, 3-28

EG command, 3-29, 3-30, 4-2

EH command, 3-55, 5-5

EM command, 3-5, 3-6

End-of-file flag, obtaining value, 3-55

End of fi Ie record, 3-6

EO command, 3-55, 3-59

EO value, 3-58

=: (equal si9n) command, 3-54, 3-57

ER, 3-5, :-1-8

Erasing

entire command string, 5-2
single character, 5-2

Erasing commands, 2-3, 3-60, 5-1, 5-2

Error, command See Command Error

Error message flag, obtaining the value, 3-55,
5-6

Error messages, 5-3, 5-4, A-1

Errors, 5-1

ESC, 2-3, 2-4

ES command, 3-36, 3-55

ET command, 3-15, 3-55, 3-57

ET flag, 3-55, 3-57

EU command, 3-55

EW command, 3-2, 3-5, 3-6, 3-28

Exclamation point, 3-46

EX command, 3-29, 3-30, 4-1, 4-2

EXECUTE, 3-30

Execution, 2-7, 2-12

Exit, 3-29, 3-30, 3-31

Exit command, 3-29, 3-30, 3-32

EZ command, 3-7

F

lF (control-F) see Control commands

F command, 3-47

Features"enabled by EO values greater than 1,
3-59

file selection, 3-3, 3-5

Fi lename, 2-1, 2-2, 3-2, 3-3, 3-4, 3-5

Filename extension, 2-2, 3-3, 3-5, 3-7

Flow control commands, 3-45

FN command, 3-34

Format, 2-5

Formatting command strings, 3-60

Form feed characters, 2-2, 2-4, 2-5, 2-6, 3-10,
3-15, 3-26, 3-27, 3-28, 4-3, 4-4, 4-6

Form feed flag, 3-10, 3-27, 3-55, 3-56

Form feed processing, 4-3

FS command, 3-33

G

tG (control-G) see Control commands

G command, 3-47, 3-50

/GEN LSN (generate line-sequence numbers)
switch, 3-8

H

t H (control-H) see ~ontrol commands

H,3-12

HP command, 4-4, 4-5

*i command, 3-25, 3-50

I command, 3-20, 3-21

Idle state, 3-1

Immediate action commands, 2-3

Increasing the number of entries in the pushdown
stack, 2-11

Increment, 3-49

Initial ization, 3-1, 3-4

Input, 2-1, 2-2, 3-3, 3-5, 3-7, 3-9, 3-10,
3-26, 3-27, 3-30, 3-32, 3-33

Input file, 2-1, 3-26, 3-30, 3-32, 3-33, 3-42

Insert, 2-1, 2-2, 3-2, 3-18, 3-19

Inserting

control characters, 3-25
single control characters as text, 3-25
succeeding control characters as text, 3-25

Index-3

INDEX (TECO) (Cont)

Insertion, 4-1

Insertion command, 3-18

Inside-text command, 3-25, 3-39

Integer divide, 2-10

Iteration, 3-43, 3-50

Maximum length of search strings, 3-32

Merge, 4-4, 4-5

- (minus), 2-10

Modifiers, 3-35

Monitor commands, 2-3, 3-2

Interpreting control-characters as text in searches Multiply, 2-10

single characters, 3-39 Mu Iti -purpose commands, 4-1
succeeding characters, 3-39

J

J command, 3-12

K

K command, 3-18, 3-19

L

tL (control-L) see Control commands

L command, 3-13, 3-47

Line, 2-5, 3-13, 3-14, 3-22

Line feed, 2-4, 2-5, 3-10, 3-16, 3-60, 5-2

Line sequence numbered files, 3-8

Line sequence numbers, 2-6, 3-8

Line terminators, 2-5

Literal type-out mode, 3-15

LOAD, 3-30

Load point, 3-6

Loop, 3-32, 3-43

Logical AND, 2-10

Logical OR, 2-10

Lower case flagging, 3-16

M command, 3-50, 4-7

Macro, 4-7, 4-8

M

Main uses of TECO, 3-1

Magnetic tape, 3-5, 3-6, 3-9

N

tN (control-N) see Control commands

N command, 3-33, 3-35, 3-47, 4-4

nA command, 3-55

n" command, 3-20

Negation, 2-10

nlC!)command, 3-20

nK CORE, 2-12,3-10

nnnTEC.TMP, 3-3, 3-7

No case flagging, 3-16

No prevai I ing case conversi on, 3-24

Numeric argument, 2-9, 3-5, 3-11, 3-35

Numeric operators, 2-10

Nuli, 2-2

Null extension, 2-2, 3-5

Null page, 2-6

o

to (control-O) see Control commands

Obtaining more information about errors, 5-5

Obtaining the value of

automatic typeout flag, 3-55
case flag, 3-55
end-of-file flag, 3-55
error message flag, 3-55, 5-6
search mode flag, 40
typeout mode switch, 3-15
version number flag, 3-55

o command, 3-46

MAKE command, 3-1, 3-2, 3-4, 3-6, 4-1, 4-2

Octal numbers, 2-10

Opening a new file, 3-2

Operators, 2-10

Index-4

INDEX (TECO) (Cont)

OR, 2-10 ? (question mark) command, 3-58, 5-4

OIJtput, 2-2, 3-4, 3-5, 3-6, 3-26, 3-28, 3-30, II (quotation mark) command, 3-36, 4-8
3-31, 3-41, 3-56, 4-1, 4-4

Output commands, 3-26 R
Output error, 4-7

OlJtput file, 2-1, 3-26, 3-27, 3-29, 3-32, 3-34 tR (control-R) see Control commands

R command, 3-12

P

P command, 3-26, 3-28, 3-34

PClge, 2-5, 2-6, 2-7, 3-10, 3-21, 3-26, 3-33,
3-41, 3-56, 4-3, 4-5

PClrentheses, 2-10

PClrts of error messages, 5-3

% (percent sign) command, 3-49, 4-8

Period, 2-2, 3-40, 3-47

. (period), 3-12, 3-47

+ (pi us), 2-9

Pointer, buffer see Buffer pointer

Position, buffer, 2-9

Programmed editing, 2-11

Programmer number, 3-5

Proiect number, 3-5

Proiect-programmer area, 3-2, 3-3, 3-9

Proiect-programmer number, 3-5, 3-7

[pl"Oi , Iflrog] , 3-5

Protecting old macros from new features in
TECO, 3--59

Pushdown stclck, increasing the number of
entries, 2-11

Putting comments in TECO macros, 3-46

PW command, 3-26, 3-27, 3-28, 4-4, 4-6

PWY command, 3-27

Q

Q command, 3-49

Q--registers, 2-11, 2-12, 3-49, 3-50

Q--register commands, 3-49

Q--register pushdown list, 3-51

Q--register pushdown stack, 2-11

R TECO command, 3-1, 3-3, 3-4

Rearranging, 4-3

REENTER, 3-31, 3-44

Release, 3-5, 3-7

Rename, 3-3, 3-7

Restoring TECO to no prevai I ing case conversion,
3-24, 3-38

Return a numeric value, 3-35, 3-55

Retyping the current line, 5-3

Rewind, 3-6, 3-9

Rubout, 2-3, 2-4, 3-22, 3-60, 4-1, 5-1

S

tS (control-S) see Control commands

S command, 3-33, 3-35, 3-47

Saving the previous command string, 3-50

Search, 3-32, 3-33, 3-34

Search command modifiers, 3-35

Searching

and deleting strings, 3-33, 3-34
and replacing strings, 3-33, 3-34
in I'either-case-mode l' 3-39
in "exact-case-mode": 3-39, 3-40
partly in Ilexact-case ll and partly in

"either-case" mode, 3-39

Search string, 3-32, 3-33, 3-35

; (semicolon) command, 3-43, 3-45

Separator character, 3-40

Setting

case flagging mode, 3-16
EO value, 3-59
TECO to a prevai I ing case conversion mode,

3-23 3-37
version ~umber of TECO, 3-59

Skip, 3-27, 3-28

Skip one file, 3-6

Index-5

INDEX (TECO) (Cont)

Skip one record, 3-6

Skip to end-of-tape, 3-6

/ (slash), 2-10

/ (slash) command, 5-5

Space, 2-4, 2-9, 3-60

Special characters, 2-3, 3-20, 3-46

Spec ial "lower case'l characters, 3-24, 3-39

Spec ial numeric values, 3-54

Spl itting, 4-4

[] (square brackets), 3-51

Strings, command, 2-3, 2-8, 2-12

Subroutine, 2-12

Subtraction, 2-10

/SU PLSN (suppress I ine-sequence numbers)
switch, 3-8

Switches for line-sequence numbers, 3-8

Symbols, 2-4

T

tT (control-T) see Control commands

T command, 3-14, 3-47

Tab, 2-4, 2-5

Tab command, 3-20

Tag, 3-46

TECO command, 3-2, 3-3, 3-4, 3-7, 3-10, 4-2

TECO filnam.ext command, 3-3

Teletype, 1-1, 2-1

Temporary case conversion, 3-22, 3-37

Temporary file, 3-7

Terminator, argument, 3-5

T ext argument, 2-8, 3-20, 3-32, 3-35, 3-46

Text block movement, 2-11

Time of day, 3-55, 3-57

Type-out commands, 3-14, 3-54

Type -out mode, 3-16

Typing a numeri c value

in decimal, 3-54
in octal, 3-54

Typing errors, 5-1

TTY used as an I/O device, 2-2

U

tU (control-U) see Control commands

t t (control up-arrow), 3-24, 3-39, 3-56

U command, 3-47, 3-49

Unconditional branch, 3-46

Underl ine, 2-4

Unload, 3-6

Up-arrow, 2-4

Uparrow-O, 2-10

Update, 3-7

Upper case flagging, 3-16

Uses of TECO, 3-16

v

tV (control-V) see Control commands

V command, 3-47

Values, obtaining

automatic typeout flag, 3-55
case flag, 3-55
end-of-file flag, 3-55
error message flag, 3-55, 5-6
search mode flag, 3-40
typeout mode switch, 3-15
version number flag, 3-55

Version number flag, obtaining the value, 3-55

Vertical tab, 2-4, 2-5

Trace mode, 3-58

Translating W

group of characters to lower case 3-23, 3-37
group of characters to upper case' 3-23 3-37 tw (control-W) see Control commands
single characters to lower case 3-23 3-37 W command, 3-47
single characters to upper case: 3-23: 3-37

Type-in, 3-60

Type-out, 3-14, 3-54

Index-6

x

tx (control-X) see Control commands

X command, 3-49, 3-50

y

Y command, 3-3, 3-7, 3-10, 3-55

Yank command, 3-10

Z

tz (control-Z) see Control commands

Z, 3-12, 3-21, 4-10

ZJ command, 3-13

INDEX (TECO) (Cont)

Index-7

READER'S COMMENTS

DECsystem-~O TECO
TEXT EDITOR AND
CORRECTOR
DEC-~O-ETEE-D

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify ?y page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is 1:here sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programm.er

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

NamE~ Date ____ - ________ _

Organization _________________________ _

StrE~et __ __

Ci ty _______________ Sta te _______ Z ip Code _______ _
or

Country

.--Fold lIere---.

. ---------------------------,-------------------- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
200 Forest Avenue MR1·2/E37
Marlboro, Massachusetts 01752

FIRST CLASS
PERMIT NO. 152

MAR LBORO, MASS.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	index-7
	index-8
	replyA
	replyB

