Jecsystenic
BASIC CONVERSATIONAL
LANGUAGE MANUAL

This manual reflects the software as of version 17D.

Additional copies of this manual may be ordered from: Software Distribution Center, Digital Equipment
Corporation, Maynard, Massachusetts 01754 Order code: DEC-10-LBLMA-A-D

digital equipment corporation - maynard. massachusetts

1st Printing December 1968

2nd Printing (Rev) May 1969

3rd Printing September 1969

4th Printing (Rev) January 1970
5th Printing (Rev) September 1970
6th Printing (Rev) August 1971
7th Printing (Rev) February 1972
Update Pages May 1972

Update Pages September 1972
Update Pages January 1974

Update Pages March 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright(:)1968,1969,1970,1971,1972,1973,1974 by Digital Equip. Corp.

The pcstage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

Page
CHAPTER 1 INTRODUCTION
1.1 Example of a BASIC Program 1-1
1.2 Discussion of the Program 1-2
1.3 Fundamental Concepts of BASIC 1-5
1.3.1 Arithmetic Operations 1-5
1.3.2 Mathematical Functions 1-6
1.3.3 Numbers 1-7
1.3.4 Variables 1-7
1.3.5 Relational Symbols 1-8
1.4 Summary 1-8
1.4.1 LET Statement 1-8
1.4.2 READ and DATA Statements 1-9
1.4.3 PRINT Statement 1-10
1.4.4 GO TO Statement 1-11
1.4.5 - IF = THEN Statement 1-11
1.4.6 ON - GO TO Statement 1=-11
1.4.7 END Statement 1-12
CHAPTER 2 LOOPS
2.1 FOR and NEXT Statements 2-2
2.2 Nested Loops 24
CHAPTER 3 LISTS AND TABLES
3.1 The Dimension Statement (DIM) 3-2
3.2 Example 3-3
3.3 Summary 3-4
3.3.1 The DIM Statement 3-4
CHAPTER 4 HOW TO RUN BASIC
4.1 Gaining Access to BASIC 4-1
4.1.1 Contacting the DECsystem=-10 Computer 4-1
4.1.2 Completing the LOGIN Procedure 4-]

ifi January 1974

4.1.3
4.2
4.3
4.4
4.5
4,5,]
4.6
4.7
4.8
4.8.1

CHAPTER 5

5.1

S.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

5.2
5.2.1
5.2.2

CHAPTER 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

CONTENTS (Cont)

Accessing BASIC

Entering the Program

Executing the Program

Correcting the Program

Interrupting the Execution of the Program
Returning to Monitor Level

Leaving the Computer

Example of BASIC Run

Errors and Debugging

Example of Finding and Correcting Errors

FUNCTIONS AND SUBROUTINES

Functions

The Integer Function (INT)

The Random Number Generating Function (RND)
The RANDOMIZE Statement

The Sign Function (SGN)

The Time Function (TIM)

The Define User Function (DEF) and
Function End Statement (FNEND)

Subroutines
GOSUB and RETURN Statements
Example

MORE SOPHISTICATED TECHNIQUES

More About the PRINT Statement
INPUT Statement

STOP Statement

Remarks Statement (REM)
RESTORE Statement

CHAIN Statement

MARGIN Statement

PAGE Statement

NOPAGE Statement

Page

4-2
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-7
4-7

5-1
5-1
5-2
5-3
5-4
5-4

5-4
5-5
5-5
5-6

6-1

6-9

January 1974

CONTENTS (Cont)

Page
CHAPTER 7 VECTORS AND MATRICES
7.1 MAT Instruction Conventions 7-2
7.2 MAT C = ZER, MAT C = CON, MAT C = IDN 7-2
7.3 MAT PRINT A, B, C - 7-3
7.4 MAT INPUT V and the NUM Function 7-4
7.5 MATB = A 7-5
7.6 MATC=A+Band MATC=A -8B 7-5
7.7 MATC=A*8B 7-5
7.8 MAT C = TRN(A) 7-5
7.9 MATC=(K)* A 7-5
7.10 MAT C = INV(A) and the DET Fynction 7-6
7.1 Examples of Matrix Programs 7-6
7.2 Simulation of N-Dimensional Arrays 7-7
CHAPTER 8 ALPHANUMERIC INFORMATION (STRINGS)
8.1 Reading and Printing Strings 8-1
8.2 String Conventions 8-2
8.3 Numeric and String Data Blocks 8-3
8.4 The Change Statement 8-3
8.5 String Concatenation 8-7
8.6 String Manipulation Functions 8-7
8.6.1 The LEN Function 8-7
8.6.2 The ASC and CHR$ Functions 8~8
8.6.3 The VAL and STR$ Functions 8-9
8.6.4 The LEFT$, RIGHTS, and MID$ Functions 8-10
8.6.5 The SPACES Function 8-11
CHAPTER 9 EDIT AND CONTROL
9.1 Creating the File in Core Memory 9-1
9.2 Listing Files 9-5
9.3 Editing a File in Core Memory 9-7
9.3.1 Replacing Complete Lines 9-7
9.3.2 Deleting Lines 9-7

v January 1974

9.3.3
9.3.4
9.3.5
9.4

9.4.1
9.4.2
9.4.3
9.5

9.6
9.6.1
9.6.2
9.6.2.1
9.6.2.2
9.7

9.8

9.9

CHAPTER 10

10.1
10.1.1
1u.1.2
10.2
10.3
10.4
10.5
10.5.1
10.5.2
10.6
10.7

10.8
10.9

10.10

CONTENTS (Cont)

Renumbering Lines in the Core File

Clearing the Entire File

Merging Another File into the File

Transferring Files

Transferring Files From the User's Core Storage
Transferring Files From One Storage Device to Another
Destroying Files

Compiling and Executing a BASIC Program in
Core Memory

Entering Monitor Mode From BASIC
What is Monitor Mode?

Returning to BASIC From Monitor Mode
User's Core Preserved

User's Core Destroyed

Obtaining Information

Setting the Input Mode

Leaving BASIC

DATA FILE CAPABILITY

Types of Data Files

Sequential Access Files

Random Access Files

The FILE and FILES Statements

The SCRATCH and RESTORE Statements

The READ and INPUT Statements

The WRITE and PRINT Statements

WRITE and PRINT Statements for Sequential Access Files
WRITE and PRINT Statements for Random Access Files
The SET Statement and the LOC and LOF Functions

The QUOTE, QUOTE ALL, NOQUOTE, and
NOQUOTE ALL Statements

The MARGIN and MARGIN ALL Statements

The PAGE, PAGE ALL, NOPAGE, and NOPAGE ALL
Statements

The IF END Statement

vi

Page
9-8
9-8
9-9
9-10
9-10
9-H
9-1

9-12
9-13
$-13
9-14
9-15
9-15
9-16
9-18
9-19

10-1
10-1
10-3
10-4
10-6
10-7
10-9
10-9
10-11
10-11

10-13
10-15

10-16
10-18

January 1974

CHAPTER 11

1.1
11.2
11.2.1
11.2.1.1
11.2.1.2
11.2.2
11.2.3
11.2.4

APPENDIX A

A.l
A.2
A.3
A.4
A5

APPENDIX B

APPENDIX C

C.1
C.2
Cc.3
C.4
C.5

CONTENTS (Cont)

FORMATTED OUTPUT

The USING Statements

Image Specifications

Numeric Image Specifications
Integer Image Specifications
Decimal Image Specifications
Edited Numeric Image Specification
String Image Specifications

Printing Characters

SUMMARY OF BASIC STATEMENTS

Elementary BASIC Statements
Advanced BASIC Statements

Matrix Instructions

- Data File Statements

Functions

BASIC DIAGNOSTIC MESSAGES

TAPE AND KEY COMMANDS

KEY and TAPE Modes

Preparing and Input Tape In Local Mode
Saving an Existing Program on Tape
Inputting to BASIC From the Reader
Listing an Input Tape

0o
Vit

Page

A-l
A-2
A-3
A-3
A=5

c-2
c-2
c-3
c-4
c-4

January 1974

8-

9-2
9-3
9-4

B-2
B-3

ILLUSTRATION

LT33B Teletype

TABLES

ASCII Numbers and Equivalent Characters

Commands That Enter Monitor Mode From BASIC
Useful Monitor Commands

Commands That Reenter BASIC When Core is Preserved
Input Mode Commands

Command Error Messages

Compilation Error Messages

Execution Error Messages

viii

Page

C-1

8-4

9-14
9-15
9-16
9-19

B-2
B-4

Januvary 1974

PREFACE

WHY BASIC? BASIC is a problem-solving language that is easy to |earn and conversational , and has
wide application in the scientific, business, and educational communities. It can be used to solve

both simple and complex mathematical problems from the user's Teletype®and is particularly suited for

time-sharing .

In writing a computer program, it is necessary to use a language or vocabulary that the computer
recognizes. Many computer languages are currently in use, but BASIC is one of the simplest of these
because of the small number of clearly understandable and readily |earned commands that are required,

its easy application in solving problems, and its practicality in an evolving educational environment.

BASIC is similar to other programming languages in many respects; and is aimed at facilitating com-
munication between the user and the computer in a time-sharing system. As with most programming

languages, BASIC is divided into two sections:

a. Elementary statements that the user must know to write simple programs, and

b. Advanced techniques needed to efficiently organize complicated problems.

As a BASIC user, you type in a computational procedure as a series of numbered statements by using
common English syntax and familiar mathematical notation. You can solve almost any problem by
spending an hour or so leaming the necessary elementary commands. After becoming more experienced,
you can add the advanced techniques needed to perform more intricate manipulations and to express
your problem more efficiently and concisely. Once you have entered your statements via the Teletype,
simply type in RUN or RUNNH . These commands initiate the execution of your program and return

your results almost instantaneously .

SPECIAL FEATURES OF BASIC - BASIC incorporates the following special features:

a. Matrix Computations - A special set of 13 commands designed exclusively for per-
forming matrix computations.

®Teletype is the registered trademark of Teletype Corporation.

Alphanumeric Information Handling - Single alphabetic or alphanumeric strings or
vectors can be read, printed, and defined in LET and IF...THEN statements,
Individual characters within these strings can be easily accessed by the user. Con-
version can be performed between characters and their ASCII equivalents. Tests can
be made for alphabetic order.

Program Control and Storage Facilities -~ Programs or data files can be stored on or
refrieved from various devices (disk, DECtape, card reader, card punch, high-
speed paper-tape reader, high-speed paper-tape punch and line printer). The user
can also input programs or data files from the low-speed Teletype paper-tape reader,
and output them to the low-speed Teletype paper-tape punch.

Program Editing Facilities -~ An existing program or data file can be edited by adding
or deleting lines, by renaming it, or by resequencing the line numbers. The user
can combine two programs or data files info one and request either a listing of all

or part of it on the Teletype or a listing of all of it on the high-speed line printer.

Formatting of OQutput - Controlled formatting of Teletype output includes tabbing,
spacing, and printing columnar headings.

Documentation and Debugging Aids ~ Documenting programs by the insertion of
remarks within procedures endbles recall of needed information at some later date
and is invaluable in situations in which the program is shared by other users. De-
bugging of programs is aided by the typeout of meaningful diagnostic messages
which pinpoint syntactical and logical errors detected during execution.

CHAPTER 1
INTRODUCTION

This chapter infroduces the user to PDP-10 BASIC and fo its restrictions and characteristics. The best
introduction lies in beginning with a BASIC program and discussing each step completely.

1.1 EXAMPLE OF A BASIC PROGRAM

The following example is a complete BASIC program, named LINEAR, that can be used to solve a sys-

tem of two simultaneous Iinear equations in two variables

ax +by =¢

dx +ey =f
and then ysed to solve two different systems, each differing from the above system only in the constants
cand f. If ae - bd is not equal to 0, this system can be solved to find that

_ce - bf d =af-cd
X~ ge - bd an Y " ge - bd

If ae - bd =0, there is either no solution or there are many, but there is no unique solution. Study
this example carefully and then read the commentary and explanation. (In most cases the purpose of

each line in the program is self-evident.)

10 KEAD A,F,N,FJ

15 LET G=A*E-B*D,)

20 IF G=0 THEN 65)

30 READ C,F)

37 LET X=(C*E~B*F)/G)
a2 LET Y=(A*F-C*D)/G)
55 PRINT X,Y)

60 GO TO 30)

65 PKINT "NO UNIGUF SOLUTICGN')
70 DATA 1,2,4)

a0 DATA 2,-7,5)

85 DATA 1,3,4--17)

L END,)

1-1

NOTE

All statements are terminated by pressing the RETURN
key (represented in this text by the symbol)). The
RETURN key echoes as a carrioge return, line feed.

1.2 DISCUSSION OF THE PROGRAM

Each line of the program begins with a line number of 1 to 5 digits that serves to identify the line as a
statement. A program is made up of statements. Line numbers serve to specify the order in which

these statements are to be performed. Before the program is run, BASIC sorts out and edits the program,
putting the statements into the orders specified by their line numbers; thus, the program statements can
be typed in any order, as long as each statement is prefixed with a line number indicating its proper
sequence in the order of execution. Each statement starts after its line number with an English word
which denotes the type of statement. Unlike statements, commands are not preceded by line numbers
and are executed immediately after they are typed in. (Refer to Chapter 9 for a further description of
commands.) Spaces and tabs have no significance in BASIC programs or commands, except in messages
which are printed out, as in line number 65 above. Thus, spaces or tabs may, but need not be, used

to modify a program and make it more readable.
With this preface, the above example can be followed through step-by-step.
10 KEAD ALB,D»F

The first statement, 10, is a READ statement and must be accompanied by one or more DATA statements,
When the computer encounters a READ statement while executing a program, it causes the variables
listed after the READ to be given values according to the next available numbers in the DATA state-
ments. In *-is example, we read A in statement 10 and assign the value 1 to it from statement 70 and,
similarly, with B and 2, and with D and 4. At this point, the available data in statement 70 has been

exhausted, but there is more in statement 80, and we pick up from it the value 2 to be assigned to E.

15 LET G=A*E-Rx*D

Next, in statement 15, which is a LET statement, a formula is to be evaluated. [The asterisk (*) is
used to denote multiplication.] In this statement, we compute the value of AE - BD, and call the
result G. In general, a LET statement directs the computer to set a variable equal to the formula on

the right side of the equal sign.
20 IF G=A THEN 65

If G is equal to zero, the system has no unique solution. Therefore, we next ask, in line 20, if G is

equal to zero.

A5 PRINT "NO UNIQUE SOLUTION"

70 DATA 1,2.,4 :
204 DATA 2,-7,5

85 DATA 1,3,4,-7

M END

If the computer discovers a "yes" answer fo the question, it is directed fo go fo line 65, where it prints
NO UNIQUE SOLUTION. Since DATA statements are not executable statements, the computer then
goes to line 90 which tells it to END the program.

30 READ C,F

If the answer is "no" to the question "Is G equal to zero ?", the computer goes to line 30. The com-
puter is now directed to read the next two entries, -7 and 5, from the DATA statements (both are in
statement 80) and to assign them fo C and F, respectively. The computer is now ready to solve the

system
x +2y =-7
4 +2y =5
37 LET X=(C*»E~-B=*F)/G
42 LET Y=(A*F=C*D)/G

In statements 37 and 42, we instruct the computer to compute the value of X and Y according to the
formulas provided, using parentheses to indicate that C*E - B*F is calculated before the result is

divided by G .

5% PRINT X,Y
1 GO TO 30

The computer prints the two values X and Y in line 55. Having done this, it moves on to line 60 where
it is reverted to line 30. With additional numbers in the DATA statements, the computer is told in
line 30 to tuke the next one and assign it to C, and the one after that o F. Thus,

x +2y =1
4x +2y =3

As before, it finds the solutions in 37 and 42, prints them out in 55, and then is directed in 60 to re-

vert to 30.

In line 30, the computer reads two more values, 4 and -7, which it finds in line 85. [t then proceeds

to solve the system

x+2y =4
4x + 2y =-7

and print out the solutions. Since there are no more pairs of numbers in the DATA statement available
for C and F, the computer prints OUT OF DATA IN 30 and stops.

If line number 55 (PRINT X, Y) had been omitted, the computer would have solved the three systems
and then told us when it was out of data. If we had omitted line 20, and G were equal to zero, the
computer would print DIVISION B8Y ZERO IN 37 and DIVISION BY ZERO IN 42, Had we omitted
statement 60 (GO TO 30), the computer would have solved the first system, printed out the values of
X and Y, and then gone to line 65, where it would be directed to print NO UNIQUE SOLUTION.

The particular choice of line numbers is arbitrary as long as the statements are numbered in the order
the machine is to follow. We would normally number the statements 10, 20, 30, ..., 130, so that
later we can insert additional statements. Thus, if we find that we have omitted two statements
between those numbered 40 and 50, we can give them any two numbers between 40 and 50 -~ say 44
and 46. Regarding DATA statements, we need only put the numbers in the order that we want them
read (the first for A, the second for B, the third for D, the fourth for E, the fifth for C, the sixth for
F, the seventh for the next C, etc.). In place of the three statements numbered 70, 80, and 85, we

could have written the statement:

75 DATA 1,2,452,-75551,3,4,-7

or, more naturally,

70 DATA 1,254,2
75 DATA -7,5

80 DATA 1,3

&5 DATA 4,-7

to indicate that the coefficients appear in the first data statement and the various pairs of right-hand
constants appear in the subsequent statements.

The program and the resulting run is shown below as it appears on the Teletype.

10 KEAD A»B,DsFE

15 LET G=A*E-B*D

20 IF G=0 THEN 65

37 READ CsF

37 LET X=(C»E-R*xF)/G
42 LET Y=(A*F-C*D)/G
55 PRINT X,Y

60 GO TO 30

65 PRINT *NO UNIQUE SOLUTION"
70 DATA 1,254

80 DATA 2,-755

&5 DATA 153,45-7

o END

KUN

(continued on next page)

LINFAk 11:03 19-0CT-69

4 =S5.50000
Mebb66E7 Nel166A67
=3.66667 3.#3333

o'T OF DATA IN 30
TIME: .10 SECS.

NOTE

Remember to terminate all statements by pressing the
RETURN key.

After typing the program, we type the command RUN and press the RETURN key fo direct the computer
to execute the program. Note that the computer, before printing out the answers, printed the name
LINEAR which we gave to the problem (refer to Paragraph 4.1) and the time and date of the computa-
tion. The message OUT OF DATA IN 30, may be ignored here. However, in some instances, it ind%-
cates an error in the program. The TIME message, printed out at the end of execution, indicates the
compile and execute time used by the program; this time is slightly dependent upon other jobs being
processed by the éompufer and consequently will not be exactly the same sach time the some program

isrun.

1.3 FUNDAMENTAL CONCEPTS OF BASIC

BASIC can perform many operations such as adding, subtracting, multiplying, dividing, extracting

square roofs, raising a number to a power, and finding the sine of an angle measured in radians.

1.3.1 Arithmetic Operations

The computer performs its primary function (that of computation) by evaluating formulas similar fo those
used in standard mathematical calculation, with the exception that all BASIC formulas must be written

on a single line. The following operafors can be used to write a formula.

Operator Example Meaning
+ A+B add B to A
+ +A A itself
- A-B subtract B from A
- -A make A negative
* A*B multiply B by A
/ A/B divide A by B
t X t2 find X2 the symbols t and ** have
bl X**2 find X2 the same meaning

If we type A +B * C 1 D, the computer first raises C to the power D, multiplies this result by B, and

then adds the resulting product to A. We must use parentheses to indicate any other order. For

1-5

example, if it is the product of B and C that we want raised to the power D, we must write
A+ (B *C) tD; or if we want to multiply A +B by C to the power D, we write (A +B) *C tD. We
could add A to B, multiply their sum by C, and raise the product to the power D by writing
((A +B) *C) t D. The order of precedence is summarized in the following rules.
a. The formula inside parentheses is evaluated before the parenthesized quantity is
used in computations.

b. Normally two operafors cannot be contiguous. However the operators + and -
can follow the operators *, /, **, or ! (e.g., *-). In such a case, the +or
- takes precedence over its leading *, /, **, or t. Otherwise:

¢. In the absence of parentheses in a formula, ** and t take precedence over *
and /, which take precedence over +and -.

d. In the absence of parentheses in a formula whose only operators are * and /,
BASIC performs the operations from left to right, in the order that they are
read.

e. In the absence of parentheses in a formula whose only operators are +and -,
BASIC performs the operations from left to right, in the order that they are
read.

The rules tell us that the computer, faced with A - B - C, (as usual) subtracts B from A, and then C
from their difference; foced with A/B/C, it divides A by B, and that quotient by C. Given A tB t C,
the computer raises the number A to the power B and takes the resulting number and raises it to the
power C. If there is any question about the precedence, put in more parentheses to eliminate possible

ambiguities.

1.3.2 Mathematical Functions

In addition fo these five arithmetic operations, BASIC can evaluate certain mathematical functions.

These functics are given special three-letter English names.

Function Interpretation
SIN (X) Find the sine of X
COs (X) Find the cosine of X X interpreted as
TAN (X) Find the tangent of X an angle measured
COT (X) Find the cotangent of X in radians
ATN (X) Find the arctangent of X
EXP (X) Find e raised to the X power (e”")
LOG (X), or LN(X), Find the natural logarithm of X (log to the base e) .
or LOGE(X) X mferprefed
ABS (X) Find the absolute value of X (I X |) as a
SQR (X) or SQRT(X) Find the square root of X (A/ X) number
CLOG (X) or LOGI0(X) Find the common logarithm of X (log to the base 10)

Other functions are also available in BASIC. They are described in Chapters 5 (INT, RND, SGN, TIM),
7 (NUM, DET), 8 (string functions), and 10 (LOC, LOF). In place of X, we may substitute any formula

or number in parentheses following any of these functions. For example, we may ask the computer to find

1-6 January 1974

Vi4+ x3 by writing SQR (4 + X ?3), or the arctangent of 3X 2% + 8 by writing
ATN (3 * X - 2 *EXP (X) + 8). If the above value of(g-)]7 is needed, the two-line program can
be written:

10 PRINT(S5/6)117
29 END

and the computer finds the decimal form of this number and prints it out.

1.3.3 Numbers

A number may be positive or negative and it may contain up fo eight digits, but it must be expressed

in decimal form (i.e., 2, -3.675, 12345678, -.98765432, and 483.4156). The following are not
numbers in BASIC: 14/3 and SQR(7). The computer can find the decimal expansion of 14/3 or SQR(7),
but we may not include either in a list of DATA. We gain further flexibility by using the letter E,
which stands for: times ten to the power. Thus, we may write 0012345678 as .12345678E-2 or
12345678E-10 or 1234 .5678E-6. We do not write E7 as a number, but write 1E7 to indicate that it is

1 that is multiplied by 107 .

1.3.4 Variables

Asimple (i .e., unsubscripted) numeric variable in BASIC is denoted by any letter or by any letter
followed by a single digit. (Refer to Chapter 3 for a discussion of subscripted numeric variables and to
Chapter 8 for a discussion of subscripted and unsubscripted string variables.) Thus, the computer inter-
prets E7 as a variable, along with A, X, N5, 10, and O1. A numeric variable in BASIC stands for a
number, usually one that is not known to the programmer ot the time the program is written. Variables
are given or assigned values by LET and READ statements. The value so assigned does not change until
the next time a LET or READ statement is encountered with a value for that variable. However, all
numeric variables are set equal to 0 before a RUN. Consequently, it is only necessary to assign a value

to a numeric variable when a value other than 0 is required.

Although the computer does little in the way of correcting during computation, it sometimes helps if an
absolute value hasn't been indicated. For example, if you ask for the square root of -7 or the logarithm
of -5, the computer gives the square root of 7 along with an error message stating that you have asked
for the square root of a negative number, or it gives the logarithm of 5 along with the error message

that you have asked for the logarithm of a negative number.

1.3.5 Relational Symbols

Six other mathematical symbols of relation are used in IF~-THEN statements where it is necessary to
compare values. An example of the use of these relation symbols was given in the sample program
LINEAR.

Any of the following six standard relations may be used:

Symbol Example Meaning
= A =B A is equal to B
< A <B A is less than B
<= A<=B A is less than or equal to B
> A>B A is greater than B
>= A >=B A is greater than or equal fo B
<> A <>B A is not equal to B

Note that while BASIC outputs ifs answers with only six places of accuracy, variables and formulas
may have values accurate fo more than six places. If it is desired that result X be checked fo only

N places, the function
INT (X*]1PtN+eS)/1AEN

should be used.

1.4 SUMMARY

Several elementary BASIC statements have been infroduced in our discussions. In describing each of
these statements, a line number is assumed, and brackets are used to denote a general type. For

exampie, [variable] refers to any variable.

1.4.1 LETStatement

The LET statement is used when computations must be performed. This command is not of algebraic
equality, but a command to the computer to perform the indicated computations and assign the answer
to a certain variable. Each LET statement is of the form:

LET [variablel = [formulal

or
[variable] = [formulal

Generally, several variables may be assigned the same value by a single LET statement. Examples of

assigning a value to a single variable are given in the following two statements:

1060 LET X=x+1
256 WT=(W=-Xat3)%(Z-A/C(A-FK)-17)

Version 17A BASIC 1-8 May 1972

Examples of assigning a value to more than one variable are given in the following statements:

50 X=Y3=A(3,1)=1 The variables X, Y3, and A(3,1) are
assigned the value 1.

el LET W=Z=3%X-4%X12 The variables W and Z are assigned the
value 3X-4X2

1.4.2 READ and DATA Statements

READ and DATA statements are used to enter information into the computer. We use a READ statement
to assign to the listed variables those values which are obtained from a DATA statement. Neither
statement is used without the other. A READ statement causes the variables listed in it fo be given in
order, the next available numbers in the collection of DATA statements. Before the program is run,
the computer takes all of the DATA statements in the order they appear and creates a large data block.
Each time a READ statement is encountered anywhere in the program, the data block supplies the next
available number or numbers. If the data block runs out of data, the progrom is assumed fo be finished
and we get an OUT OF DATA message.

Since we have to read in data before we can work with it, READ statements normally occur near the
beginning of a program. The location of DATA statements is arbitrary, as long as they occur in the

correct order. A common practice is to collect all DATA statements and place them just before the

END statement,

Each READ statement is of the form:

READ [sequence of variables]

Each DATA statement is of the form:

DATA [sequence of numbers]

150 READ X»>YsZ»X1,Y2,69

330 DATA 422517

340 DATA 6«734E=3,~174321231415927

234 KEAD B(K)

263 DATA 233555759511 ,10,&06,4

10 READ KCI1.J)

440 DATA -31555=9,2¢3722+9876,=437.234E-5
450 DATA 27655 555765, 2.3789E2

Remember that numbers, not formulas, are put in a DATA statement, and that 15/7 and SQR(3) are

formulas. Refer to Chapter 3 for a discussion of the subscripted variables.

1-9

1.4.3 PRINT Statement
The common uses of the PRINT statement are:

a. to print out the results of some computations
b. fo print out verbatim a message included in the program
c. a combination of the two

d. ftoskip aline.

The following are examples of a type a.:

100 PRINT X,SQR((X)
135 PRINT X»Y.,Z, B*B-4%A%C, EXP(A-B)

The first example prints X, and a few spaces fo the right, the square root of X. The second prints

five different numbers:

X, Y, Z, B2, -4AC, and B

The computer computes the two formulas and prints up to five numbers per line in this format.

The following are examples of type b.:

100 PRINT **NO UNIQUE SOLUTION"
430 PRINT "X VALUE'", "SINE", "KESOLUTION"
SO0 PRINT X,M,D

Line 100 prints the sample statement, and line 430 prints the three labels with spaces between them.
The labels in 430 automatically line up with the three numbers called for in PRINT statement 500.
The follc ving is an example of type c.:

156 PRINT "THE VALUE OF Xx IS X
30 PRINT "“THE SGQUARE ROCT OF'" X "IS" Sek(x)

If the first has computed the value of X to be 3, it prints out: THE VALUE OF X IS 3. If the second
has computed the value of X to be 625, it prints out: THE SQUARE ROOT OF 625 IS 25.

The following is an example of type d.:

256 PrINT

The computer advances the paper one line when it encounters this command.

1.4.4 GO TO Statement

The GO TO statement is used when we want the computer to unconditionally transfer to some statement
other than the next sequential statement. In the LINEAR problem, we direct the computer to go
through the same process for different values of C and F with a GO TO statement. This statement is in
the form of GO TO [line number] .

150 GO TO 75

1.4.5 IF - THEN Statement

The IF - THEN statement is used to transfer conditionally from the sequential order of statements
according to the truth of some relation. It is sometimes called a conditional GO TO statement. Each

IF - THEN statement is of the form:

IF [formulal [relation] [formulal, THEN [line number]
The comma preceding THEN is optional and can be omitted.

The following are two examples of this statement:

20 IF SIN(X)<=M THEN 80
20 IF G=@» THEN 65

The first asks if the sine of X is less than or equal to M, and skips to line 80 if so. The second asks
if G is equal fo 0, and skips to line 65 if so. In each case, if the answer to the question is no, the

computer goes to the next line.

1.4.6 ON - GO TO Statement

The IF - THEN srtatement allows a two-way fork in a program; the ON - GO TO statement allows a
many-way switch, The ON - GO TO statement has the form:

ON [formulal, GO TO [line numberl, [line numberl, ... [line number]

The comma preceding the GO TO can be omitted. For example:

54 CN X GO TO 190, 202, 150

This condition causes the following to occur:
If X =1, the program goes to line 100,

If X =2, the program goes to line 200,
If X =3, the program goes to line 150

Version 17 BASIC -1 August 1971

In other words, any formula may occur in place of X, and the instruction may confain any number of
line numbers, as long as it fits on a single line. The value of the formula is computed and its integer
part is taken. If this is 1, the program fransfers to the line whose number is first on the list; if its
integer part is 2, the program transfers to the line whose number is the second one, etc. If the integer
part of the formula is below 1, or larger than the number of line numbers listed, an error message is
printed. To increase the similarity between the ON - GO TO and IF - THEN instructions, the instruc~

tion
75 IF X>S THEN 200
may also be written as:

75 IF X>5 GO TO 20¢

Conversely, THEN may be used in an ON - GO TO statement.

1.4.7 END Statement

Every program must have an END statement, and it must be the statement with the highest line number
in the program.

999 END

CHAPTER 2
LOOPS

We are frequently interested in writing a program in which one or more portions are executed a number
of times, usually with slight variations each time. To write a program in such a way that the portions
of the program to be repeated are written just once, we use loops. A loop is a block of instructions

that the computer executes repeatedly until a specified terminal condition is met.

The use of loops is illustrated and explained by using two versions of a program that performs the
simple task of printing out the positive integers 1 through 100 together with the square root of

each. The first version, which does not use a loop, is 101 statements long and reads

10 PRINT 1,S0k(1)

29 PRINT 2,5GR(2)

3n PRINT 3,S0kK(3)

990 PRINT 99,SQR(99)
1000 PRINT 100,SGR(100)
19010 END

The second version, which uses one type of loop, obtains the same results with far fewer instruc=
tions (5 instead of 101):

19 LET X=1

20 PRINT X»SeR(X)

30 LET X=X+1

40 IF X<=100® THEN 20
50 END

Statement 10 gives the value of 1 to X and initializes the loop. In line 20, both 1 and its square root
are printed. Then, in line 30, X is increased by 1, to a value of 2. Line 40 asks whether X is less
than or equal to 100; an affirmative answer directs the computer back to line 20, where it prints 2

and +/2 and goes to 30. Again, X is increased by 1, this time to 3, and at 40 it goes back to 20.
This process is repeated -- line 20 (print 3 and WV 3), line 30 (X = 4), line 40 (since 4 <100, go back
to line 20), etc. —- until the loop has been fraversed 100 times. Then, after it has printed 100 and its
square root, X becomes 101. The computer now receives a negative answer to the question in line 40
(X is greater than 100, not less than or equal to it), does not return to 20 but moves on fo line 50, and

ends the program. All loops contain four characteristics:

Version 17A BASIC 2-1 May 1972

a. initialization (line 10)
b. the body (line 20)
~ modification (line 30)

d. an exit test (line 40)

2.1 FOR AND NEXT STATEMENTS

BASIC provides two statements to specify a loop: the FOR statement and the NEXT statement.

10 FOR Xx=1 TO 100
20 PRINT X,S@R(X)
30 NEXT X

50 END

In line 10, X is set equal to 1, and a test is executed, like that of line 40 above. Line 30 carries
out two tasks: X is increased by 1, ond control transfers back to the test in line 10, There the test
is carried out to determine whether to execute the body of the loop again or to go on to the state-
ment following line 30. Thus, lines 10 and 30 take the place of lines 10, 30, and 40 in the pre-

vious program.

Note that the value of X is increased by 1 each time BASIC goes through the loop. If we want a
different increase, e.g., 5, we could specify it by writing the following:

10 FOR X=1 TO 1P@® STEP S

and then the value of X on the first time through the loop would be 1, on the second time 6, on
the third 11, and on the last time 96. The step of 5 which would take X beyond 100 to 101 causes
control to transfer to line 50, which ends the program. The STEP may be positive, negative, or
zero. We could have caused the original results to be printed in reverse order by writing line 10

as follows:

10 FOR X=10® TC 1| STEP-1

In the absence of a STEP instruction, a step-size of +1 is assumed.

The word BY may be substituted for the word STEP; FOR TO BY and FOR TO S TEP statements are com-
pletely equivalent.

More complicated FOR statements are allowed. The initial value, the final value, and the step-size

may all be formulas of any complexity. For example, we could write the following:

FOR X=N+7%Z TO (Z-N)/3 BY(N-4%Z)/10

Version 17A BASIC 2-2 May 1972

For a positive or zero step-size, the loop continues as long as the control variable is less than or equal
to the final value. For a negative step-size, the loop continues as long as the control variable is

greater than or equal to the final value.

If the initial value is greater than the final value (less than the final value for negative step-size),
the body of the loop is not performed at all, but the computer immediately passes to the statement
following the NEXT. The following program for adding up the first n integers gives the correct result

OwhennisO.

10 READ N

20 LET 5=0

30 FOR K=1 TO N
40 LET S=S+K

S0 NEXT K

60 PRINT S

7@ GO TO 10

99 DATA 3.,10.,0
99 END

In the following description of the instructions used to specify a loop, a line number is assumed and

brackets are used to denote a general type.

A FOR statement has one of two forms:

numeric
FOR | variable | = [formula]l TO [formulal STEP [formula]

or
numeric
FOR | variable | = [formula]l TO [formulal BY [formulal
Most commonly, the expressions are integers and the STEP or BY is omitted. In the latter case a step~
size of +1 is assumed. The accompanying NEXT statement has one of two forms.
NEXT [variabie]
NEXT [variable, variable,. . .variable]

The first form contains one variable that must be the same as that following FOR in the FOR statement.
The second form of the NEXT statement contains two or more variables separated by commas. These

variables must also match the variables in their accompanying FOR statements.
When the second form of NEXT is used, the variables must be written in the same order as they would

be written in separate NEXT statements. That is, the variable that matches the last FOR statement is

first, that which matches the next-to-last FOR is second, and the variable that matches the first FOR

Version 17B BASIC 2-3 September 1972

statement is last. This causes the loops to be nested properly (refer to section 2.2). For example:

FOR X FOR X

FORY FORY

FORZ isequivalentto FORZ

NEXT Z NEXTZ, Y, X
NEXT Y

NEXT X

Note that for each FOR statement there is one and only one variable in a NEXT statement,

and vice versa. Some examples of FOR and NEXT statements are:

30 FOR X=¢ TC 3 STEP D

“ NEXT X

120 FCR Xa4=(17+C0S(Z))/3 TO 3* SGK(10) BY 174
235 NEXT X4

240 FOR X=& TQ 3 STEP =1

456 FOn Je=3 TO 12 HY 2

SMA NEXT Jsx

Line 120 specifies that the successive values of X4 are .25 apart, in increasing order. Line 240 speci=
fies that the successive values of X will be 8, 7, 6, 5, 4, 3. Line 456 specifies that J will take on
values =3, -1, 1, 3, 5, 7, 9, and 11. If the initial, final, or step-size index values are given as
formulas, these formulas are evaluated only upon entering the FOR statement; therefore, if after this
evaluation we change the value of a variable in one of these formulas, we do not offect the index

value.

The control variable con be changed in the body of the loop; it should be noted that the exit test
always uses the Iatest value of this variable. :

The following difficulty can occur with loops, both FOR-NEXT loops ond loops explicitly written with
LET and IF statements (as in the example on page 2-1). The calculation of the index values (initial,
final, and step-size) is subject to precision limitations inherent in the computer. These volues are
represented in the computer as binary numbers. When the values are integer, they can be represented
exactly in binary; however, it is not always possible to represent decimal values exactly in binary

when they contain a fractional port, For example, a loop of the form:

492 FOR X=0 TO 10 STEP 2.1
95 NEXT X

executes 100 times instead of 101 times because the internal value for 0.1 is not exactly 0.1 After
the hundredth execution of the loop, X is not exactly equal to 10, it is slightly larger than 10, so the
loop stops. Whenever possible, it is advisable to use indices that have integer values because then

the loop will always execute the correct number of times.

Version 178 BASIC 2-4 September 1972

2.2 NESTED LOOPS

Nested loops (loops within loops) can be expressed with FOR and NEXT statements. They must be
nested and not crossed as the following skeleton examples illustrate:

Allowed Allowed Not Allowed

FOR X — FOR X FOR X
EFORY [FORY ‘EFORY
NEXT Y FOR Z NEXT X

NEXT X ENEXT y4 ——NEXT Y

NEXTW

——NEXT Y
FORZ -
NEXT Z

L NEXT X

2-5

CHAPTER 3
LISTS AND TABLES

In addition to the ordinary variables used by BASIC, variables can be used to designate the elements
of a listor a table. Many occasions arise where a list or a fable of numbers is used over and over,
and, since it is inconvenient to use a separate variable for each number, BASIC allows the program-
mer to designate the nome of a list or table by a single letter or a single letter followed by asingle digit.

Lists are used when we might ordinarily use a single subscript, as in writing the coefficients of a
polynomial (co, Qs g +eey an) . Tables are used when a double subscript is to be used, as in writing
the elements of a matrix (bi i). The variables used in BASIC consist of a single letter or a letter

and a digit which is the name of the list or table, followed by the subscript in parentheses. Thus,

A©), A(M), AQ@), ..., A(N)

represents the coefficients of a polynomial, and

87(1,1), B7(1, 2), ..., BZ(N,N)
represents the elements of a matrix. (Refer to Chapter 8 for a discussion of string variables.)

The single letter or the letter and digit denoting a list or a table name may also be used without con-
fusion to denote a simple variable. However, the same name may not be used to denote both a list and
a table in the some program because BASIC recognizes a list as a special kind of table having only one
column. The form of the subscript is flexible: A list item B(1 + K) may be used, or a table item
Q(A(3,7), B-C) may be used. The value of the subscript must not be less than zero.

We can enter the list A(0), A(1), ..., A(10) into a program by the following lines:

10 FCk 1= TC 10

20 READ ACI)

30 NEXT 1

49 DATA V52535 -552:2545=95123545-4,3

Version 178 BASIC 3-1 September 1972

3.1 THE DIMENSION STATEMENT (DIM)

BASIC automatically reserves room for any list or table with subscripts of 10 or fewer. However, if we
want larger subscripts, we must use a DIM statement. This statement indicates to the computer that
the specified space is fo be allowed for the list or table. DIM can also be written as DIMENSION,

For axomple, the instruction

10 DIM AC15)

reserves 16 spaces for list A (A(0), A(1), A(2), ..., A(15)). The instruction

20 DIMENSION Y5(14,15)

reserves 176 spaces for matrix Y5 (10 + 1 rows * 15 + 1 columns), Spoce may be reserved for more than
one list and/or table with a single DIM statement by separating the entries with commas, as shown in
the following example:

30 DIM AC100),B(20,30).,C4(25)

A DIM (or DIMENSION) statement is not executed; therefors, it may appear on any line before the
END statement. However, the best place to put it is at the beginning so that it is not forgotten. If
we enter @ fpblo with a subscript greater than 10, without a DIM statement, BASIC gives an error
message, telling us that we have a subscript error. This condition can be rectified by entering a DIM
statement with a line number less than the line number of the END statement,

A DIM (or DIMENSION) statement is normally used to reserve odditional space, but in a long progrom
that requires many small tables, it may be used to reserve less space for tables in order to have more
space for the progrom. When in doubt, declare a larger dimension than you expect to use, but not one
so large that there is no room for the program. For example, if we want a list of 15 numbers entered,

we may write the following:

10 DIM A(25)

20 READ N

39 FOR I=1 TO N

49 READ ACI)

S0 NEXT I

60 DATA 15

70 DATA 2535557211513,17,19,23,29,31,37,41,43:47

Statements 20 and 40 could have been eliminated by writing 30 as FOR 1 =1 TO 15 but the program as
typed allows for the lengthening of the list by changing only statement 60, as long as the list does not
exceed 25 and there is sufficient data.

Version 178 BASIC 3-2 September 1972

We could enter a 3-by-5 table into a program by writing the following:

10 FOR I=1 TO 3
20 FOR J=1 TO 5
| 3an KFAD K2 (1,0)
40 NEXT J
SR NEXT 1
60 DATA 2,35-5,-9,2
70 DATA 4,~-7,3,4,-2
80 DATA 3,-3,5,7,8

' Again, we may enter a table with no DIM (or DIMENSION) statement: BASIC then handles all the
entries from B(0, 0) to B(10,10).

3.2 EXAMPLE

Below are the statements and run of a problem which' uses both a list and a table. The program com-
putes the total sales of five salesrﬁen, all of whom sell the same three products. The list, P, gives the
price per item of the three products and the fable, S, tells how many items of each product each man
sold. Product 1 sells for $1.25 per item, product 2, for $4.30 per item, and product 3, for $2.50 per
item; also, salesman 1 sold 40 items of the first product, 10 of the second, 35 of the third, and so on.
The program reads in the price list in lines 40 through 80, using data in lines 910 through 930. The
same program could be used again, modifying only line 900 if the prices change, and only lines 910
through 930 to enter the sales in another month. This sample program does not need a DIM statement,

because the computer automatically reserves enough space to allow all subscripts to run from 0 to 10,

NOTE

Since spaces are ignored, statements may be indented for
visual identity of the various loops within the program.

10 FOK =1 TO 3

20 READ P(C1)

30 NEXT 1

29 FOR I=1 TO 3

50 FOk J=1 TO S

60 READ S(I,J)

79 NEXT J

[2{%] NEXT 1

o0 FOkR J=1 TC 5

100 LFT S=0

116 FOR I=1 TO 3

120 LET S=S+P(1)*S(I1,J)
132 NEXT 1

142 PRINT "TOTAL SALES FCOK SALESMAN"UJ,''$"S
152 NEXT J

E.o1%) DATA 1+25,4.30,2.50
91¢ DATA 40,20:37,29s42
920 DATA 10,16s3521,8

93@ DATA 35,47529516533
999 END

(continued on next page)

Version 178 BASIC 3-3 September 1972

RUIN
SALFS1 11:06 20-0CT-69

TOTAL SALES FCKk SALESMAN | $ 180.500
TOTAL SALES FOk SALESMAN 2 $ 211 .300
TOTAL SALES FCk SALESVMAN 3 $§ 131.650
TOTAL SALES FOR SALESMAN 4 $§ 166.500
TOTAL SALES FOR SALESMAN S & 169.400

TIME: A.16 SECS.

3.3 SUMMARY

Becouse the number of simple voriable nomes is limited, BASIC allows o programmer to use lists and
tables to increass the number of problems that can be programmed easily and concisely. A single
letter or a single letter followed by a single digit is used for the name of the list or table, and the
subscript that follows is enclosed in parentheses. A subscript may be a number or any legal expression.

Lists and tobles are called subscripted variables, and simple variables are called unsubscripted variables.
Usually, you can use a subscripted variable anywhere that you use an unsubscripted variable.

However, the varicble mentioned immediately after FOR in the FOR statement and ofter NEXT in the
NEXT statement must be an unsubscripted variable. The initial, terminal,, and step values may be any
legal expression.

3.3.1 The DIM (or DIMENSION) Statement

To entor a list or o table with a subscript greater than 10, a DIM statement, which has DIMENSION
as an alternate form, is used to retain sufficent space, as in the following examples:

fn DIMENSION H(35)
35 DIV GR(S,25)

The first example enables us to enter list H with 36 items (H(0), H(1), ..., H(35)). The second reserves
space for o table of 156 items (5 + 1 rows * 25 + 1 columns).

Version 17B BASIC 3-4 September 1972

CHAPTER 4
HOW TO RUN BASIC

After learning how to write a BASIC program, we must learn how to gain access to BASIC via the
Teletype so that we can type in o program and have the computer solve it. Steps required to
communicate with the monitor must first be performed. These steps are fully explained in DECsys-
tem-10 Users Handbook and the DECsystem-10 Operating System Commands manual.

4.1 GAINING ACCESS TO BASIC
After arriving at a terminal, follow three steps in order to enter BASIC

1. Contact the DECsystem~10 computer,
2. Complete the LOGIN procedure, and
3. Access BASIC,

4.1.1 Contacting the DECsystem=10 Computer

Turn the terminal knob to LINE. Next, the terminal must be connected to the computer, either
directly, by means of a cable that leads from the terminal to the computer, or indirectly, using the

telephone system to link the terminal to the computer.

For direct connections, the user is not required to do anything more to contact the system than to

turn the knob to LINE,

Since the procedure for obtaining a telephone system connection differs from one installation to

another, the user should obtain the instructions from the operations staff at his particular installation.

4,1.2 Completing the LOGIN Procedure
Three steps comprise the LOGIN procedure:

1. Depress +C and type LOGIN, This signals the computer that you want to use it.
After you type LOGIN, the monitor types your job number, the version of the monitor,
and your terminal number. It then types a #

4~ January 1974

2. Type your project-programmer number. This number is assigned to you by the computer
administration staff, Next, the monitor asks for your password by typing PASSWORD:,

3. Type your password (also assigned by the computer administrations staff). It is not
printed.

If your password and project-progrommer number are both valid, the monitor types the time, date and

day of the week. Refer to Parograph 4.7 for an example of the LOGIN procedure.

4,1.3 Accessing BASIC

When the DECsystem-10 is ready to accept commands, the monitor responds with a period. Type
R BASIC to clear the user's core memory area and establish contact with the BASIC program. When

BASIC is ready to accept commands it types READY, FOR HELP TYPE HELP,

NOTE

In some cases the system automatically executes
the R BASIC commond for the user. [|f READY,
FOR HELP TYPE HELP appears immediately
after the LOGIN procedure, this option has
been enacted.

You can either type HELP to get a list of commands that you can give to BASIC or type any command

or statement that you wish.

If you are going to create a new program, type in:
NE W
BASIC responds with the following:

NEW FILE NAMF--
Type in the name of your new program. If you want to work with a previously created program that

you saved on a storage device, type in the following:
oLD

BASIC then asks for the name of the old program, as follows:

OLD FILE NAME--

4-2 January 1974

Respond by typing in the name of your old file. If your old file is stored on a device other than the

disk , you must type in the device name as in the following example:

OLD FILE NAME--DTA6:SAMPLE

BASIC retrieves the file named SAMPLE from DECtape 6 and replaces the current contents of user core
with the file SAMPLE. The disk may be specified as the device on which the old program is stored,
but this is not necessary because the disk is the device used when no device is specified. For example,

the following statements are equivalent:

OLD FILE NAME--DSK:TEST!
OLD FILE NAME--TEST 1

Device names are as follows:

DSK the disk

DTAO through DTA7 DECtapes number O through 7 on the first control unit
DTBO through DTB7 DECtapes number 0 through 7 on the second control unit
Y your Teletype

TTYO through TTY177 Teletypes number 0 through 177

LPT the line printer

MTAO through MTA7 magnetic tapes number 0 through 7

PTP the high-speed paper—tape punch

PTR the high—speed paper—tape reader

CDP the card punch

CDR the card reader

SYS the system device where system programs are stored
BAS or ***] the library where your installation stores BASIC programs

for all BASIC users

Not all ir;smllarions have all of these devices; if you specify a device that does not exist or that is not
available for your use, BASIC returns an error message. Also, while it is possible to store a file on
the card punch, for example, the file cannot be refrieved from this device but must be retrieved from
the card reader. If you specify for OLD a device that can only do output, an error message will be

retumed. .

Program names can be any combination of |etters and digits up to and including six characters in length .
In addition to specifying a program name, you may also specify an extension. The extension follows
the name and is separated from it by a period. An extension is any combination of letters and digits

up to and including three characters in length. In previous chapters we have used program names such
as LINEAR and SALEST. If you recall an old program from storage, you must use exactly the same

name and extension you assigned to it when it was saved.

-
When the asterisk is used, it follows the filename and extension rather than preceding them as with

the other devices.

4-2q January 1974

You can also type the nome of your file (and the device on which it is located) on the same line as

the NEW or OLD command. In this case, BASIC will not ask for the name of the file. For example:

NES TEST

OLD NTAASSAMPLE

The NEW OR OLD -- request can be answered not only by NEW or OLD, but also by any other com-
mand (refer to Chapter 9 for a description of the commands) or statement. If NEW OR OLD -- is
answered by a NEW, OLD, or‘RENAME command, the current device, filename, and extension are
established by the arguments specified with the command; if a device is not specified explicitly, the
disk is assumed; if a filename is specified without an extension, the extension BAS is assumed; it is

illegal to specify an extension without specifying a filename.

If NEW OR OLD -- is answered by anything other than a NEW, OLD, or RENAME command, the cur-
rent device, filename, and extension are established as DSK, NONAME, and BAS, respectively. For
example, the following sequence creates a disk file called NONAME .BAS .

«R BASIC
NEW OR OLD == 5 PRINT "TESTING"
10 END
SAVE
A new current device, filename, and extension are established whenever a NEW, OLD, or RENAME

command is given,

To indicate that you wish to use the library BAS, you can type either of the following:

filename .ext***

BAS:filename . ext

When BASIC reads either of these forms, it looks for ''device'' BAS. If BASIC cannot find BAS, it

assumes that you mean the disk area with the project-programmer number [5, 1] where BAS normally

resides,

4.2 ENTERING THE PROGRAM

After you type in your filename (whether it is old or new), BASIC responds with the following:

.

READY

You can begin to type in your program. Make sure that each line begins with a line number contain-

ing no more than five digits and containing no spaces or nondigit characters. Also, be sure to start

Version 178 BASIC 4-3 September 1972

at the beginning of the Teletype line for each new line. Press the RETURN key upon completion of

each line.

If, in the process of typing a statement, you make a typing error and notice it before you terminate
the line, you can correct it by pressing the RUBOUT key once for each character to be erased, going
backward until the character in error is reached. Then continue typing, beginning with the character

in error. The following is an example of this correcting process:

10 PRNITNTINNINT 2,3

NOTE

The RUBOUT key echoes as a backslash (\), followed by
the deleted characters and a second backslash .

4.3 EXECUTING THE PROGRAM

After typing the complete program (do not forget to end with an END statement), type RUN or RUNNH,
followed by the RETURN key. BASIC types the name of the program, the time of day, the current date
(unless RUNNH is specified), and then it analyzes the program. If the program can be run, BASIC
executes it and, via PRINT statements, types out any results that were requested. The typeout of re-
sults does not guarantee that the program is correct (the results could be wrong), but it does indicate
that no grammatical errors exist (e.g., missing line numbers, misspelled words, or illegal syntax). If
errors of this type do exist, BASIC types a message (or several messages) to you. A list of these diag~

nostic messages, with their meanings, is given in Appendix B.

4.4 CORRECTING THE PROGRAM

If you receive an error message typeout informing you, for example, that line 60 is in error, the line
can be corrected by typing in a new line 60 fo replace the erroneous one. If the statement on line 110

is to be eliminated from your program, it is accomplished by typing the following:

110

If you wish to insert a statement between lines 60 and 70, type a line number between 60 and 70 (e.g.,
65), followed by the statement .

4.5 INTERRUPTING THE EXECUTION OF THE PROGRAM

If the results being typed out seem to be incorrect and you want to stop the execution of your program
or suppress its typeout, type 1O (hold down CTRL key and at the some time type O) to suppress the

typeout, or type {C twice to stop execution, as indicated in the following example:

Version 17B BASIC 4-4 September 1972

" Stops execution of your program, closes any files that
0 are open in the program (refer to Chapter 10), and

Returns to BASIC command level.

If you typed tC, BASIC responds with the following:

READY
whereupon you can modify or add statements and/or type RUN or any other command.

4.5.1 Returning to Monitor Level
If you wish to leave BASIC and return to monitor level, .fype:

MON T Nk
the monitor responds with a period and waits for you to type a monitor command. If you wish to
return to BASIC, you must not type a command that will change what you have in core (i.e., the
ASSIGN command does not change what is in core, but the DIRECT command does change core).
To return to BASIC, type the following: .START or .REENTER or ,CONT

«START oOF +KFFNTER or «CONT

BASIC responds with
READY

and you can continue working in BASIC.

4.6 LEAVING THE COMPUTER

When you wish to leave the computer, type the BYE or GOODBYE command.

No files created on the disk by BASIC commands or program statements are deleted by this

procedure.

The system monitor responds te the BYE or GOODBYE command by logging you off the
system completely, unless your files stored on the disk take up so much room that you
are over the logged-out quota set by the system administrator. In that case, the fol-

lowing message is typed out (n and m are the appropriate integers):

NSk ocaeb C0T 0CTa n FACEFDFD BY m H1LCCKS
[GLAR D AT

If you then type
HJ

instructions for deleting files at logout time are typed on your Teletype.

Version 17B BASIC 4-5 September 1972

4.7 EXAMPLE OF BASIC RUN

The following is a simple example of the use of BASIC under a timesharing monitor:

ot
«LOGIN
JOR 7 5S0318A TTY34

”27,20

PASSWCRD ¢

9927 29-0CT-69 WED

R BASIC

RFANY, FOr HELP TYRPE HELP

NEW

NEW FILE NAME~~SAMPLE

GO TO MONITOR LEVEL

REQUEST LOGIN

MONITOR TYPES OUT YOUR ASSIGNED
JOB NUMBER, THE CURRENT VERSION
NUMBER OF THE MONITOR, AND YOUR
TELETYPE NUMBER

MONITOR REQUESTS YOUR PRO JECT-
PROGRAMMER NUMBER; TYPE IT IN

MONITOR REQUESTS YOUR PASSWORD;
TYPE IT IN; IT WILL NOT ECHO BACK

MONITOR TYPES OUT THE TIME OF
DAY, THE CURRENT DATE, THE DAY OF
THE WEEK, AND A PERIOD

INSTRUCT MONITOR TO BRING BASIC
INTO CORE AND START ITS EXECUTION

BASIC INDICATES THAT IT IS READY
TO RECEIVE A COMMAND OR STATE-
MENT

TYPE THE COMMAND NEW

BASIC ASKS FOR NEW FILENAME

READY BASIC IS NOW READY TO RECEIVE
STATEMENTS
10 FOKk N=1 TO 7 TYPE IN STATEMENTS
20 PRINT Ns» SOR(N)
3 NEXT N
4R PRINT "DONE™
50 END
RIIN RUN PROGRAM
SAMPLF 11:14 29-0CT-69
1 1
2 1.4142]
3 1.73205
4 2
S 2.23607
& 2.44949
(continued on next page)
Version 178 BASIC 4-6 September 1972

7 ’ 264575

DONE

TIVME: @.20 SECS.

READY

HYF

JOB 7, USER (27, 20) LOGGED OFF TTY34 9930 25-0CT=-69
SAVED ALL 1 FILE (5 DISK BLOCKS)

RUNTIMF @ MIN, @1 SEC

4.8 ERRORS AND DEBUGGING

Occasionally, the first run of a new problem is free of errors and gives the correct answers, but, more
commonly, errors are present and have to be corrected. Errors are of two types: errors of form (gram-
matical errors) which prevent the running of the program, and logical errors in the program which cause

the computer to produce wiong answers or no answers at all .

Errors of form cause error messages fo be printed, and the various types of error messages are listed and
explained in Appendix B. Logical errors are more difficult to uncover, particularly when the program
gives answers which seem to be nearly correct. In either case, after the errors are discovered, they
can be corrected by changing lines, by inserting new lines, or by deleting lines from the program. As
indicated previously, a line is changed by typing it correctly with the same line number; a line is in-
serted by typing it with a line number between those of two existing lines; and a line is deleted by
typing its line number and pressing the RETURN key. Note that you can insert a line only if the orig-
inal line numbers are not consecutive integers. For this reason, most programmers begin by using

arbitrary line numbers that are multiples of five or ten.

These corrections can be made either before or after a run. Since BASIC sorts out lines and arranges
them in order, a line may be retyped out of sequence. Simply retype the offending line with its orig-

inal line number.

4.8.1 Example of Finding and Correcting Errors

We can best illustrate the process of finding the errors (bugs) in a program and correcting (debugging)
them by an example. Consider the problem of finding that value of X between 0 and 3 for which the

sine of X is @ maximum, and ask the machine to print out this value of X and the value of its sine.

Version 17B BASIC 4-7 September 1972

Although we know that n/2 is the correct value, we use the computer to test successive values of X

from O to 3, first using intervals of .1, then of .01, and finally of .001. Thus, we ask the computer
to find the sine of 0, of .1, of .2, of .3..., of 2.8, of 2.9, and of 3, and to determine which of

these 31 values is the largest. It does so by testing SIN(0) and SIN(.1) to see which is larger, and
calling the larger of these two numbers M, It then picks the larger of M and SIN (.2) and calls it M,

This number is checked against SIN (.3). Each time a larger value of M is found, the value of X is
"remembered” in XO. When it finishes, M will have been assigned to the largest value. It then repeats
the saarch, this time checking the 301 numbers 0, .01, .02, .03, ..., 2.98, 2.?9, and 3, finding
the sine of each, and checking to see which has the largest sine. At the end of each of these three

searches, we want the computer fo print three numbers: the value X0 which has the largest sine, the

sine of that number, and the interval of search.

Before going fo the Teletype, we write a progrom such as the following:

10 READ D

20 LET X0=0

30 FOR X=A TO 3 STEP D
249 IF SIN(X)<=M THEN 100
50 LET X0=X

60 LET M=SIN(X2)

70 PRINT X0,X,»D

80 NEXT X0

%9 GO TO 29

100 DATA «1s.01,.001
110 END

The following is a list of the entire sequence on the Teletype with explanatory comments on the right

side:
KFADY» FOKk HELP TYPE HFLP
N W
NEW FILE NAME--MAXSIN
READY
10 READ D
20 LWR X0=@
30 PUR ASY TO S STEP U
49 IF SINE\E\(X)<=M THEN 100
) LET X0=X
60 LET M=SINCX)
10 PRINT AOsXsD
80 NEXT T\T\X@
99 GO TO 20
20 LET X0=0
100 DATA <1,.01,.001
110 END
RUN

4-8

Note the use of the RUBOUT key
(echoes as a \) to erase a character
in line 40 (which should have storted
IFSIN (X), etc.) and in line 80.

We discover that LET was mistyped
in line 20, and we correct it after

90.

January 1974

MA XS IN 11:35 20-0CT-69
ILLEGAL VARIABLE IN 70
NEXT WITHOUT FOR IN 80
FOR WITHOUT NEXT IN 30

TIME: P.05 SECS.

After receiving the first error mes-
sage, we inspect line 70 and find
that we used XO for a variable in-
stead of XO. The next two error

READY messages relate to lines 30 and 80
10 PRINT X@»XsD having mixed variables. These are
40 IF SIN (X) <=M THEN &0 corrected by changing line 80.
SSN NEXT X Both of these changes are made by
retyping lines 70 and 80. In looking
MAXS IN 11:36 20-0CT-69 over the program, we also discover
that the IF - THEN statement in 40
@l 2.1 D1 directed the computer to a DATA
@.2 7.2 0.1 statement and not fo line 80 where
0.3 rCC it should go. This is obviously in=-
READY correct. We are having every value
of X printed, so we direct the
20 machine to cease operations by
RUN typing tC twice even while it is
: running. We notice that SIN(0) is
MAXS IN 11337 20-0CT-69 compared with M on the first time

) UNDEFINED LINE NUMBER 20 IN 99
TIME: #.03 SECS.

through the loop, but we had assign-
ed a value to X0 but not to M,
However, we recall that all variables

;3N GO TO 10 are set equal to zero before a RUN;
therefore, line 20 is unnecessary.
MAXSIN 11243 20-0CT-69 Line 90, of course, sent us back to
Bt Aol 3ol line 20 to repeat the operation and
2.2 @2 Dol not back to line 10 to pick up a
2.3 +C+C new value for D. We retype line 90
KEADY and then type RUN again.
We are about to print out the same
table as before. Each time that it
goes through the loop, it is printing
out X0, the current value of X, and
the interval size.
70 We rectify this condition by moving
85 PRINT X@,MsD e . the PRINT statement outside the loop.
5 PRINT "X VALUE","SIN",RESOLUTION Typing 70 del etes that line, and
RUN line 85 is outside of the loop. We
MAXS IN 1144 oA -0CT-69 also realize that we want M printed,
not X. We also decide to put in
JLLEGAL VARIABLE IN S headings for the columns by a
TIME: 7.08 SECS. PRINT statement.
READY
5 PRINT "X VALUE","SIN","RESOLUTION" Thereisan error in our PRINT state-
RUN ment: no left quotation mark for the
third item.
(continued on next page)
Version 178 BASIC 4-9 September 1972

MAXS TN 11:47 20-0CT-69 Retype line 5, with all of the re-

X VALUE S INE RESOLUTION quired quotation marks.
. 999574 2.1

: gg ?. 3 2.01 These are the desired results. Of

1.57099 1. ?.001 f'ho3| nUmbm (0, .l, .2, .3,...,
OUT OF DATA IN 10 2.8,2.9,3), itis 1.6 which has
TIME: .96 SECS. the largest sine, namely .999574;
READY this is true for finer subdivisions.
LIST Having changed so many parts of the

program, we ask for a list of the cor-

MAXSIN 11148 20-0CT-69 rected program. '
S PRINT X VALUE"”,"SINE","RESOLUTION"
10 READ D
30 FOR X=0 TO 3 STEP D
o9 IF SIN(X)«<=M THEN 80
S0 LET X=X
(%] LET M=SIN(X)
&9 NEXT X
8] PRINT X0,M,D
9 GO TO 1@
100 DATA o1, 01,.001
110 END
READY
SAVE The program is saved for later use.
READY

A PRINT stqgtement could have been inserted fo check on the machine computations. For example, if -
M were checked, we could have inserted 65 PRINT M, and seen the values.

CHAPTER 5 |
FUNCTIONS AND SUBROUTINES

5.1 FUNCTIONS

Occasionally, you may want to calculate a function, for example, the square of a number. Instead
of writing a small program to calculate this function, BASIC provides functions as part of the language,
some of which are described in Chapter 1. The remaining functions are described here, in Chapter 7,

and in Chapters 8 and 10.

The desired function is called by a three~letter name. The value to be used is expressed explicitly or
implicitly in parentheses and follows the function name. The expression enclosed in parentheses is
the argument of the function, and it is evaluated and used as indicated by the function name. For

example:

15 LET B=SOR(4a+Xt3)

indicates that the expression (4 + X 13) is to be evaluated and then the square root taken.

5.1.1 The Integer Function (INT)

The INT function appears in algebraic notation as [X] and returns the greatest integer of X that is less
than or equal to X. For example:
INT (2.35) =2

INT (-2.35) = =3
INT (12) =12

One use of this function is to round numbers to the nearest integer by asking for INT (X + .5). For

example:

INT (2.9 +.5) =INT (3.4) =3

rounds 2.9 to 3. Ancther use is to round to any specific number of decimal places. For example:

INT(X*10t2+ .5 /10 1t2

Version 178 BASIC 5-1 September 1972

rounds X correct to two decimal places and

INT(X*10tD+ .5 /10tD

rounds X correct to D decimal places.

5.1.2 The Random Number Generating Function (RND)

The RND function produces random numbers between 0 and 1. This function is used to simulate events

that happen in a somewhat random way. RND does not need an argument.

If we want the first 20 random numbers, we can write the program shown below and get 20 six-digit

decimals.
10 FOR L=l TO 20
20 PRINT RND.»
30 NEXT L
49 END
RUN
RANDOM 13124 20-0CT=-69
P .406533 N .88445 D.681969 0.939462
@2.863799 ?.880238 2.638311 0.602898
P.B63TS9 2.897931 0.628126 0.613262
5.AAS48E ~2 0.393226 P.680219 0632246
NOTE
This is a somple run of random numbers. The format of the
PRINT statement is discussed in Chapter 6.
RUN
RANDOM 13:25 20-0CT~-69
A .406533 P .88445 D.681969 9 +939462
#.863799

0.253358
0.990032
0.303217
0.668218

0.253358

A second RUN gives exactly the same random numbers as the first RUN; this is done to facilitate the

debugging of programs. If we want 20 random one-digit integers, we could change line 20 to read as

foliows:

20 PRINT INT (1Q#RND).,
RUN

We would obtain the following:

RANDCM 13:26 20-0CT-69

4 & A 9 z
=« & [6 9
5 & 6 6 3
4 3 & 6 6

To vary the type of random numbers (20 random numbers ranging from 1 to 9, inclusive), change line

20 as follows:

20 PKINT INTC(9*RND +1)3
RUIN
RANDG M 13:2& 20-0CT=-69

4 & 7 9 3 & ®w 6 6 9 6 6 3 1 4 7 6 17

To obtain random numbers which are integers from 5 to 24, inclusive, change line 20 to the following:

20 PRINT INT(2@*RND +5);
RUIN
RANDOM 13:30 20-0CT=-69

13 22 18 23 19 22 22 17 17 24 16
12 18 17 1&

n
no
~
-~
—
—
o

If random numbers are to be chosen from the A integers of which B is the smallest, call for

INT (A*RND+8) .

5.1.3 The RANDOMIZE Statement

As noted when we ran the first program of this chapter twice, we got the same numbers in the same
order each time. However, we get a different set with the RANDOMIZE statement, as in the follow-

ing program:

5 KANDOMIZE

10 FOR L=1 TO 20

20 PRINT INT(12*KkND)J;

3@ NEXT L

40 END

RUN

RNDNOS 13:32 2n-0CT-69

1 9 4 2 1 1 € 6 3 & 4 9 88 6 5 & 6 2 6 0

RUN
RNDNOS 13:33 20-0CT-69

1 1 4 6 6 6 @ S5 3 8 4 0 8 1 © 5 1 g8 0 1

RANDOMIZE (RANDOM) resets the numbers in o random way. For example, if this is the first instruc-
tion in a program using random numbers, then repeated RUNs of the program produce different results.
If the instruction is absent, then the official list of random numbers is obtained in the usual order. It
is suggested that a simulated model should be debugged without this instruction so that one always ob-
tains the same random numbers in test runs. After the program is debugged, and before starting produc-

tion runs, you insert the following:

1 KANDOM

5.1.4 The Sign Function (SGN)

The SGN function is one which assigns the value 1 to any positive number, 0 to zero, and -1 to any
negative number. Thus, SGN (7.23) =1, SGN (0) =0, and SGN (-.2387) = -1. For example, the

following statement:

50 ON SGN(X)+2 GO TO 100,200,300

transfers to 100 if X <0, to 200 if X =0, and to 300 if X >0,

5.1.5 The Time Function (TIM)

The TIM function returns the elapsed execution time, in seconds, of a program from the beginning of
execution. This time does not include compile and load time when a single program is run. However,
when programs are chained together (refer to 6.6 for a description of chaining), TIM returns the total
of the elapsed execution time since the start of execution of the first program plus the compile, load
and execution times of each subsequent program. The TIM function does not accept an argument.

For example:

163 KFAD A, &5 C
1186 IF TIr = 1A THFEN 158
150 N

5.1.6 The Define User Function (DEF) and Function End Statement (FNEND)

In addition to the functions BASIC provides, you may define up to 26 functions of your own with the
DEF statement. The name of the defined function must be three letters, the first two of which are FN,

e.g., FNA, FNB, ..., FNZ. Each DEF statement introduces a single function. For example, if you

Version 17B BASIC 5-4 September 1972

-X2
repeatedly use the function e X<, 5, introduce the function by the following:

30 DEF FNE(X)=EXP(~Xt2)+S
and call for various values of the function by FNE (.1), FNE (3.45), FNE (A+2), etc. This statement
saves a great deal of time when you need values of the function for a number of different values of the

variable.

The DEF statement may occur anywhere in the program, and the expression to the right of the equal
sign may be any formula that fits on one line. It may include any combination of other functions,
such as those defined by different DEF statements; it also can involve other variables besides those de-
noting the argument of the function.

As in the following exomple each defined function may have zero, one, two, or more numeric
variables; string varicbles (refer to Chapter 8) are not allowed:

19 DEF FNB(X»Y)=3*X»Y-Y*3
185 DEF FNC(XsYsZsW)=FNB(X»Y)/FNB(Z,W)
530 DEF FNA=3.1416*R*2

5-4a

In the definition of FNA, the current value of R is used when FNA occurs, Similarly, if FNR is de-

fined by the following:

70 DEF FNR(X)=SQR(2+LOGIX)~EXPC(Y*Z) : (X+SIN(2%*7Z)))
you can ask for FNR(2.7), and give new values to Y and Z before the next use of FNR.

The method of having multiple line DEFs is illustrated by the "max" function shown below. Using this
method, the possibility of using IF .., .THEN as part of the definition is a great help as shown in the

following example:

10 DEF FNNM(X,Y)

en LET FNM=X

30 IF Y<=X THEN 5@
46 LET FNM=Y

S0 FNEND

The absence of the equals sign (=) in line 10 indicates that this is a multiple line DEF. In line 50,

FNEND terminates the definition. The expression FNM, without an argument, serves as a temporary

variable for the computation of the function value. The following example defines N-factorial:

10 DEF FNF(N)

20 LET FNF=1

30 FOR K=1 TO N
40 LET FNF=K*FNF
50 NEXT K

60 FNEND

Any variable which is not an argument of FN in a DEF loop has its current value in the program.
Multiple line DEFs may not be nested and there must not be a transfer from inside the DEF to outside
its range, or vice versa. GOSUB and RETURN statements (refer to Section 5.2) are not allowed in

multiple line DEFs.

5.2 SUBROUTINES

When you have a procedure that is to be followed in several places in your program, the procedure
may be written as a subroutine. A subroutine is a self-contained program which is incorporated into
the main program at specified points. A subroutine differs from other control techniques in that the
computer remembers where it was before it entered the subroutine, and it returns to the appropriate

place in the main program after executing the subroutine.

5.2.1 GOSUB and RETURN Statements

Two new statements, GOSUB and RETURN, are required with subroutines. The subroutine is entered

with a GOSUB statement which can appear at any place in the main program except within a multiple

5-5

line DEF. The GOSUB statement is similar to a GO TO statement; however, with a GOSUB stotement,
the computer remembers where it was prior to the transfer. Following is an example of the GOSUB

statement:

99 GOSUB 210

where 210 is the line number of the first statement in the subroutine. The last line in the subroutine is
a RETURN statement which directs the computer to the statement following the GOSUB from which it

transferred. For example:

350 RETURN

returns to the next highest line number greater than the GOSUB call.

Subroutines may appear anywhere in the main program except within the range of a multiple line DEF.
Care should be taken to make certain that the computer enters a subroutine only through a GOSUB

statement and exits via a RETURN statement.

5.2.2 Example

A program for determining the greatest common divisor (GCD) of three integers, using the Euclidean
Algorithm, illustrates the use of a subroutine. The first two numbers are selected in lines 30 and 40,
and their GCD is determined in the subroutine, lines 200 through 310. The GCD just found is called
X in line 60; the third number is called Y, in line 70; and the subroutine is entered from line 80 to
find the GCD of these two numbers. This number is, of course, the greatest common divisor of the

three given numbers and is printed out with them in line 90.

A GOSUB inside a subroutine to perform another subroutine is called a nested GOSUB. It is necessary
to exit from a subroutine only with a RETURN statement. You moy have several RETURNSs in the sub-

routine, as long as exactly one of them will be used.

10 PRINT A", "B"» "C", "GCD"
20 READ A, B» C

30 LET X=A

40 LET Y=B

50 GOSUB 200

60 LET X=G

70 LET Y=C

RO GOSUIB 200

9 PRINT A,BsCsG

100 GO TO 20

110 DATA 60,99 :120

120 DATA 38456,64872,98765
130 DATA 32,384,72

200 LET @=INT(X/Y)

(continued on next page)

28A-B is illegal
A storage word may be relocatable in the left half as well as in the right half. For example:

XWD A,B

5-7

CHAPTER 6 |
MORE SOPHISTICATED TECHNIQUES

The preceding chapters have covered the essential el ements of BASIC. At this point, you are in a
position to write BASIC programs and to input these programs fo the computer via your Teletype. The
commands and techniques discussed so far are sufficient for most programs. This chapter and remaining
ones are for a programmer who wishes to perform more intricate manipulations and to express programs

in a more sophisticated manner.

6.1 MORE ABOUT THE PRINT STATEMENT

The PRINT statement permits a greater flexibility for the more advanced programmer who wishes to
have a different format for his output, BASIC normally outputs items from PRINT statements in the forms
described in this chapter*, Numeric items are printed in the format:

Snn...nb
eV

L L——one space
numeric value
sign: space if positive; - if negative

String items (refer to Chapter 8) are printed exactly as they appear but without the enclosing quotes.

The Teletype line is divided into zones of 14 spaces each. A comma in a PRINT statement is a signal
to the Teletype to move to the next print zone on the current line or, if necessary, to the beginning of
the first print zone of the next line. A semicolon in a PRINT statement causes no motion of the
Teletype. <PA> (page) in a PRINT statement moves the Teletype to the beginning of the first print
zone of the first line on the next page of output. Commas, semicolons, and <PA> delimiters can
appear in PRINT statements without intervening data items. Each delimiter causes Teletype movement

as previously described. For example, PRINT A, B causes the value of A to be printed in the first zone,

*This chapter describes the noquote mode of output. The user can explicitly change the mode to quote
mode by using a QUOTE statement. Refer to Chapter 10 for the description of quote and noquote
modes and their associated statements.

Version 17 BASIC 6-1 August 1971

the Teletype to be moved fo the third zone, and the value of B to be printed in the third zone. If two
items in a PRINT statement are clecarly distinct, the separating commas, semicolons, or <PA> delimiters

can be omitted and the items are treated as though they were separated by one semicolon.

When you type in the following program:

10 FOR I=1 TO 15
29 PRINT 1

30 NEXT 1

49 END

the Teletype prints 1 at the beginning of a line, 2 at the beginning of the next line, and, finally, 15
on the fifteenth line. But, by changing line 20 to read as follows:

20 PRINT I.»

the numbers are printed in the zones, reading as follows:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

If you want the numbers printed in this fashion, but compressed, change line 20 by replacing the

comma with a semicolon as in the following example:

20 PRINT 13

The following results are printed:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The end of a PRINT statement signals a new line, unless a comma or semicolon is the last symbol . Thus,

the following instruction:

50 PRINT X» Y

prints two numbers and then retumns to the next line, while the instruction:

5@ PRINT X, Yo

prints these two values and does not return. The next number to be printed appears in the third zone,

after the values of X and Y in the first two zones.

Since the end of a PRINT statement signals a new line,

250 PRINT

Version 17 BASIC 6-2 August 1971

causes the Teletype to advance the paper one line, to put a blank line for vertical spacing of your

results, or to complete a partially filled line.

S0 FOR ™M=1 TO N
110 FOR J=0 TO M
120 PRINT B(MsJ)3
130 NEXT J

140 PRINT

150 NEXT M

This program prints B(1,0) and next to it B(1,1). Without line 140, the Teletype would go on printing
B(2,0), B(2,1), and B(2,2) on the same line, and then B(3,0), B(3,1), etc. After the Teletype prints
the B(1,1) value corresponding to M =1, line 140 directs it to start a new line; after printing the valuve
of B(2,2) corresponding to M = 2, line 140 directs it to start another new line, etc.

The following instructions:

50 PRINT "TIME-="3 °*SHAR"3 ' ING";
51 PRINT * ON"3 * THE *3 “PDP-10"

cause the printing of the following:

TIME-SHARING ON THE PDP-~10
(The items enclosed in quotes in statements 50 and 51 are strings.)

The following instructions:

18 N=5
20 PRINT "END OF PAGE" N <PA>
30 PRINT “ITEM™,,'NO. ORDERED",,"TOTAL PRICE"

cause the printing of

END OF PAGE 5

followed by a form-feed to position the Teletype paper at the top of a new page, where the following
is printed:

ITEM NO. ORDERED TOTAL PRICE

Formatting of output can be controlled even further by means of the TAB function, in the form TAB(n),
where n is the desired print position. TAB can contain any numeric formula as its argument. The value
of the numeric formula is computed and then truncated to an integer. This integer is freated modulo
the current output right margin. Setting the output right margin is described in Section 6.7. For
example, if the output right margin is 72, which is the default margin, a value in the range 0 through
71 is obtained. The first print position on the line is column 0. Thus, TAB(17) causes the Teletype to

6-3

move to column 17 (unless it has already passed this position, in which case the TAB is ignored). For
example, inserting the following line in a loop :

S5 PRINT X3 TAB(12)3 Y3 TAB(27)3Z

causes the X values to start in column O, the Y values in column 12, and the Z values in column 27,

The following rules are used fo interpret the printed results:
a. If a number isan integer, the decimal point is not printed. If the integer contains
more than eight digits, it is printed in the format as follows.
. E
sn &nm)

I E (Exponent) followed by the sign of the exponent,
followed by p (power of 10)

next five digifs

first digit

—sign: space if positive; - if negative
For example, 32,437,580,259 is written as 3.24376E+10.
b. For ony decimal number, no more than six significont digits are printed.

c. For a number less than 0.1, the E notation is used, unless the entire significont
part of the number can be printed as a 6-digit decimal number. Thus, 0.03456
indicates that the number is exactly .0345600000, while 3.45600E-2 indicates
that the number has been rounded to .0345600.

d. Trailing zeros after the decimal point are not printed.

The following progrom, in which powers of 2 are printed out, demonsirates how numbers are printed.

10 FOR N=-5 TO 30

20 PRINT 2¢N3

30 NEXT N

49 END

POWERS 11:54 20-0CT-69

0.83125 0A.N0625 A.125 B.25 B5 1 2 4 8 16 32 64 128 256
512 10924 2948 4096 8192 16384 32768 65536 131072 262144
524288 1048576 2097152 4194304 8368860 16777216 33554432
67108864 1.324218E+8 2.6B435E+8 5S5.36BTI1E+E 1.,07374E+9

6.2 INPUT STATEMENT

At times, during the running of a program, it is desirable to have data entered. This is particularly
true when one person writes the program and saves it on the storage device as a library program (refer
to SAVE command, Chapter 9), and other persons use the program and supply their own data. Data
may be entered by an INPUT statement, which acts as a READ but accepts numbers of alphanumeric
data from the Teletype keyboard. For example, to supply values for X and Y info a program, type the
following:

6-4

29 INPUT X»Y

prior to the first statement which uses either of these numbers. When BASIC encounters this statement,
it types a question mark. The user fypes two numbers, separated by a comma, and presses the RETURN
key, and BASIC continues the program. No number can be longer than 8 digits.

Frequently, an INPUT statement is combined with a PRINT statement to make sure that the user knows

what the question mark is asking for. You might type in the following statement:

20 PRINT "YOUR VALUES OF X»Y» AND Z ARE"3
30 INPUT X,Y»Z

and BASIC types out the following:

YOUR VALUE OF X,Y», AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been printed on the next
line. Data entered via an INPUT statement is not saved with the program. Therefore, INPUT should
be used only when small amounts of data are to be entered, or when necessary during the running of
the program.

6.3 STOPSTATEMENT

STOP is equivalent o GO TO xxxxx, where xxxxx is the line number of the END statement in the pro-

gram. For example, the following two program portions are exactly equivalent:

250 GO TO 999 250 STOP
340 GO TO 999 3490 STOP
999 END 999 END

6.4 REMARKS STATEMENT (REM)

REM provides a means for inserting explanatory remarks in the program. BASIC completely ignores the
remainder of that line, allowing you fo follow the REM with directions for using the program, with
identifications of the parts of a long program, or with any other information. Although what follows
REM is ignored, its line number may be used in a GO TO or IF-THEN statement as in the following:

100 REM INSERT IN LINES 908-998. THE FIRST

110 REM NUMBER IS N» THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY
200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS
309 RETURN

520 GOSUB 2090

A second method for adding comments to a program consists of placing an apostrophe (') at the end of
the line, and following it by a remark . Everything following the apostrophe is ignored. This method
cannot be used in an imoge statement. Imoge statements are described in Chapter 11. Apostrophes
within string constants are not treated as remark characters.

6.5 RESTORE STATEMENT

The RESTORE statement permits READing the data in the DATA statements of a program more than once.
Whenever RESTORE is encountered in a program, BASIC restores the data block pointer to the first num-
ber. A subsequent READ statement then starts reading the data all over again. However, if the desired
data is preceded by code numbers or parameters, superfluous READ statements should be used fo pass
over these numbers. As an example, the following program portion reads the data, restores the data
block to its original state, and reads the data again. Note the use of line 570 (READ X) to pass over

the value of N, which is already known.

180 READ N

110 FOR I=1 TO N
120 READ X

200 NEXT I

560 RESTORE

570 READ X

580 FOR I=1 TO N
590 READ X

700 DATA eceee
710 DATA eeccee

6.6 CHAIN STATEMENT

The CHAIN statement provides a means for one program to call another program so that programs can
be written separately and executed together in a chain. The CHAIN statement has one of the forms:

CHAIN [alphabetic string]
or CHAIN I[alphabetic stringl , [numeric formulal

The alphabetic string is either: o) the name of the program being chained to, in the form
device:filename .ext (optionaliy enclosed in quotes), or b) a string variable* that has as its value the

name of the program being chained to, in the form device:filename.ext. The device and the extension

*A string variable is a variable that is used o store an alphabetic string. A string variable is composed
of a letter and a dollar sign ($) or a letter, a number, and a dollar sign (§), e.g., A$ or B2$. String
variables are described in Chapter 8.

Version 17 BASIC 6-% August 1971

can be omitted, but the filename must be present. If the devi ce is omitted, DSK: is assumed; if the

extension is omitted, .BAS is assumed.

The numeric formula specifies a line number in the program being chained to; its value is truncated to

an integer.

A few examples of the CHAIN statement are:

CHAIN A$
CHAIN B2$, N*EXPW)
CHAIN PTR:MAIN, 50

When BASIC encounters a CHAIN statement in a program, it stops execution of that program, refrieves
the program named in the CHAIN statement from the specified device, compiles the chained program,
and begins execution either at the line number specified in the CHAIN statement or at the beginning
of the program if no line number was specified. Only the heading of the first program in the chain is
printed, and the TIME: message is printed only after the last program in the chain has been executed.
Error messages for the programs in the chain, excluding the first program, have the name of the program
appended. For example:

OVERFLOW IN 1100 IN TEST4.BAK

indicates that an overflow error occurred in line 1100 in the chained program TEST4.BAK. Programs

that run individually, or the first program in a chain will not have the program name appended .

The following is an example of program chaining.

LIST
PROG3 12:05 25-JAN-T1
12 PRINT 10
11 SToP
20 PRINT 20
21 END '
READY
SAVE
NE W
NEW FILENAME -- PROG2
READY
19 INPUT N
20 CHAIN PROG3s N
30 END
RUNNH
?10
i@

TIME: 0.02 SECS

6-7

6.7 MARGIN STATEMENT

Normally, the right margin for output fo the Teletype is 72 characters. The MARGIN statement allows
the user to specify a right margin of 1 to 132 characters. This margin becomes effective on the first
new line of output after the MARG IN statement, and remains in effect until the next time the margin
is set by a MARGIN statement or until the end of the program's execution, whichever is sooner. At

the end of program execution, the output margin is reset fo 72 characters.

The form of the margin statement is:

MARGIN [numeric formulal

The numeric formula is a numeric constant, variable, or expression that specifies the right morgin; it
is truncated fo an integer before the margin is set. Some examples of the MARGIN statement are:

MARGIN 75
MARGIN 132*N

The right margin for input from the Teletype is not affected by MARGIN statements; it is always 142

characters. Lines of input that are longer thon 142 characters will result in error messages.

The monitor, as well as BASIC, considers the normal Tel etype output margin to be 72 characters.
Therefore, when a margin greater than 72 characters is nesded, the monitor command SET TTY WIDTH
must be used in addition to the BASIC MARGIN statement. Otherwise, the monitor will output a lead-
ing carriage retum-line feed if an attempt is made fo output a seventy-third character on a line.
Before the program is run, the user must issue the command:

MONITOK
to BASIC and then type:

SET TTY WIDTH 132
REENTER

(3

to reenter BASIC. The monitor will not output its carriage retum-line feed until after the 132nd
character on a line; consequently, BASIC can control the margin as the MARGIN statements specify
without interference from the monitor. The SET TTY WIDTH monitor command is implemented in 5.02

and later monitors.

6.8 PAGE STATEMENT

Normally, output to the Teletype is not divided into pages. The PAGE statement allows the user to
set a page size of any positive number of lines. This page size remains in effect until the page size is
set again by a PAGE statement, or until the Teletype is set back into nopage mode by a NOPAGE
statement (described in Section 6.9), or until the end of the program’s execution. At the end of pro-
gram execution, the Teletype is reset to nopage mode. o
Version 17B BASIC 6-8 September 1972

The form of the PAGE statement is:
PAGE [numeric formulal

The numeric formula specifies the page size; it is truncated to an integer before the page size is set.

When a PAGE statement is executed, BASIC ends the current output line (if necessary), outputs a form-
feed to position the Teletype paper at the top of the next page, and starts counting lines beginning
with the next line of output. As soon as a new page is necessary, a form-feed is output. Whenever a

PRINT statement containing <PA> is executed, the line count for the Teletype page is set back to zero.

6.9 NOPAGE STATEMENT

The NOPAGE statement sets the Teletype back to nopage mode (i .e., the output to the Teletype is no
longer automatically divided into pages). The NOPAGE statement need only be used to change the
mode back from page mode (set by a PAGE statement) because the default is nopage mode for all

Teletype output. The form of the statement is:

NOPAGE

The NOPAGE statement has no effect on the execution of <PA> delimiters in PRINT statements; they

are executed as usual .

6-9

CHAPTER 7 |
VECTORS AND MATRICES

Operations on lists and tables occur frequently; therefore, a special set of 13 instructions for matrix
computations, all of which are identified by the starting word MAT, is used. These instructions are
not necessary and can be replaced by combinations of other BASIC instructions, but use of the MAT in-

structions results in shorter programs that run much faster.

The MAT instructions are as follows:

MAT READ a, b, ¢

Read the three matrices, their dimensions
having been previously specified.

MAT ¢ =ZER Fill out ¢ with zeros.
MAT ¢ =CON Fill out ¢ with ones.
MATc =IDN Set up ¢ as an identity matrix.

MAT PRINTa, b, ¢

Print the three matrices. (Semicolons can
be used immediately following any matrix
which you wish to have printed in a close-
ly packed format.)

MAT INPUT v Call for the input of a vector.

MATb =a Set the matrix b equal to the matrix a.

MATc =a +b Add the two matricesa and b.

MATc =a-b Subtract the matrix b from the matrix a.

MATc =a *b Multiply the matrix a by the matrix b.

MAT ¢ = TRN(a) Transpose the matrix a.

MATc =() *a Multiply the matrix a by the number k. The
number, which must be in a parentheses, may
also be given by a formula.

MAT ¢ = INV (a) Invert the matrix a.

7.1 MAT INSTRUCTION CONVENTIONS

The following convention has been adopted for MAT instructions: while every vector has a component
0, and every matrix has a row 0 and a column 0, the MAT instructions ignore these. Thus, if we have

a matrix of dimension M-by-N in a MAT instruction, the rows are numbered 1, 2, ..., M, and the

columns 1,2, ..., N.

If @ numeric array is referenced in a MAT statement other than MAT INPUT, BASIC sets up the orray
] o3 o matrix with two dimensions unless the user has specifically declared in a DIM (or DIMENSION)

statement that the array is a vector.

The DIM statement may simply indicate what the maximum dimension is to be. Thus, if we write the
following:

DIM M(20,35)

M may have up to 20 rows and up to 35 columns, This statement is written to reserve enough space for
the matrix; consequently, the only concern at this point is that the dimensions declared are large

] enough to accomodate the matrix. However, in the absence of DIM (or DIMENSION) statements, all
vectors may have up to 10 components and matrices up to 10 rows and 10 columns. This is to say that

I in the absence of DIM (or DIMENSION) statements, this much space is automatically reserved for vec-
tors and matrices on their appearance in the program. The actual dimension of a matrix may be deter-

mined either when it is first set up (by o DIM statement) or when it is computed. Thus the following

10 DIM M(28,7)

50 MAT READ M

reads a 20-by~-7 matrix for M, while the following:

S0 MAT READ M(17,3@)

reads a 17-by-30 matrix for M, provided sufficient space has been saved for it by writing

] 10 DIMENS TON M(2¢,35)

7.2 MATC =ZER, MAT C = CON, MAT C = IDN

The following three instructions:

MAT M = ZER (sets up matrix M with all components equal to zero)
MAT M = CON (sets up matrix M with al! components equal to one)
MAT M = IDN (sets up matrix M as an identity matrix)

Version 178 BASIC 7-2 September 1972

act like MAT READ as far as the dimension of the resulting matrix is concerned. For example,

MAT M =CON (7,3)

sets up a 7-by-3 matrix with 1 in every component, while in the following:

MAT M = CON

sets up a matrix, with ones in every component, and a 10-by-10 dimension (unless previously given
other dimensions). It should be noted, however, that these instructions have no effect on row and

column zero. Thus, the following instructions:

10 DIM M(20,7)

20 MAT READ M(7,3)
35 MAT M=CON

79 MAT M=ZER(15,7)
9% MAT M=ZER(16,510)

first read in a 7-by-3 matrix for M. Then they set up a 7-by-3 matrix of all 1s for M (the actual
dimension having been set up as 7-by=3 in line 20). Next they set up M as a 15-by-7 all-zero matrix.
(Note that although this is larger than the previous M, it is within the limits set in 10.) An error mes-
sage results because of line 90. The limit set in line 10 is (20 + 1) x (7 + 1) = 168 components, and in
90 we are calling for (16 +1) x (10 + 1) = 187 components. Thus, although the zero rows and columns

are ignored in MAT instructions, they play a role in determining dimension limits. For example,

99 MAT M=ZER(25,5)

would not yield an error message.

Perhaps it should be noted that an instruction such as MAT READ M(2,2) which sets up a matrix and
which, as previously mentioned, ignores the zero row and column, does, however, affect the zero row
and column. The redimensioning which may be implicit in an instruction causes the relocation of some
numbers; therefore, they may not appear subsequently in the same place. Thus, even if we have first
LET M(1,0) = M(2,0) =1, and then MAT READ M(2,2), the values of M(1,0) and M(2,0) now are 0.

Thus when using MAT instructions, it is best not to use row and column zero.

7.3 MATPRINTA, B, C

The following instruction:

MAT PRINT A, B; C

causes the three mafrices fo be printed with A and C in the normal format (i .e., with five components

to a line and each new row starting on o new line) and B closely packed.

Vectors may be used in place of matrices, as long as the above rules are observed. Since a vector like
V(D) is treated as a column vector by BASIC, a row vector has to be introduced as a matrix that has

only one row, namely row 1. Thus,
DIM X(7), Y(0,5)

introduces a 7-component column vector and a S-component row vector.

If V is a vector, then
MAT PRINT V

prints the vector V as a column vector.
MAT PRINT YV,

prints V as a row vector, five numbers to the line, while
MAT PRINT V;

prints V as a row vector, closely packed.

7.4 MATINPUTV AND THE NUM FUNCTION
The following instruction:
MAT INPUT V

calls for the input of a vector. The number of components in the vector need not be specified. Nor-
mally, the input is limited by its having to be typed on one line. However, by ending the line of
input with an ampersand (&) before the carriage return, the machine asks for more input on the next
line. There must be at |east one data item preceding the ampersand on the line or an error message
will be issued. Note that, although the number of components need not be specified, if we wish to
input more than 10 numbers, we must save sufficient space with a DIM statement. After the input,
the function NUM equals the number of components, and V(1), V(2), ..., V(NUM) become the num-

bers that are input, allowing variable length input. For example,

5 LET S=¢

10 MAT INPUT V

20 LET N=NUM

30 IF N=@ THEN 99
40 FOR 1I=1 TO N
45 LET S=S5+V(I)
50 NEXT 1

69 PRINT S/N

70 GO TO S

99 FND

allows the user to type in sets of numbers, which are averaged. The program takes advantage of the
foct that zero numbers may be input, and it uses this as a signal to stop. Thus, the user can stop by
simply pushing RETURN on an input request. If an ampersand is used, it need only be preceded by a

comma when the item immediately preceding it is an unquoted string.

7.5 MATB=A

This instruction sets up B to be the same as A and, in doing so, dimensions B to be the some as A, pro-
vided that sufficient space has been saved for B.

7.6 MATC=A+BAND MATC=A-8B

For these instructions to be legal, A and B must have the same dimensions, and enough space must be
saved for C. These statements cause C to assume the same dimensions as A and B. Instructions such as
MAT A = A £ B are legal; the indicated operation is performed and the answer stored in A. Only a
single arithmetic operation is allowed; therefore, MATD = A +B - C is illegal but may be achieved
with two MAT instructions.

7.7 MATC=A*B

For this instruction fo be legal, it is necessary that the number of columns in A be equal to the number
of rows in B. For example, if matrix A has dimension L-by-M and matrix B has dimension M-by-N,
then C = A * B has dimension L-by-N. It should be noted that while MAT A = A +B may be legal,
MAT A = A * B is self-destructive because, in multiplying two matrices, we destroy components which
would be needed to complete the computation. MAT B = A * A is, of course, legal provided that A

is a "square" matrix.

7.8 MAT C = TRN(A)

This instruction lets C be the transpose of the matrix A. Thus, if matrix A is an M-by~N matrix, C is
an N-by-M matrix. The instruction MAT C = TRN (C) is legal .

7.9 MATC=(K) *A

This instruction allows C to be the matrix A multiplied by the number K (i.e., each component of A
is multiplied by K to form the components of C). The number K, which must be in parentheses, may
be replaced by a formula. MAT A =(K) * A is legal..

7-5

7.10 MAT C = INV(A) AND THE DET FUNCTION

This instruction allows C to be the inverse of A. (A must be a "square" matrix.) The function DET is
available ofter the execution of the inversion, and it will equal the determinant of A. Consequently,
the user can obtain the determinant of a matrix by inverting the matrix and then noting what value

DET has. If the determinant of a matrix is zero, the matrix is singular and its inverse is meaningless.

When an attempt is made to invert a matrix whose determinant is zero, the waming message is printed,

Z SINGULAKR MATKIX INVERTED IN nn

DET is set equal to zero, and the progrom execution continues.

7.11 EXAMPLES OF MATRIX PROGRAMS

The first example reads in A and B in line 30 and, in so doing, sefs up the correct dimensions. Then,
inline 40, A + A is computed and the answer is called C. This automatically dimensions C to be the
same as A. Note that the data in ine 90 resuits in A being 2-by-3 and in B being 3-by-3. Both
MAT PRINT formats are illustrated, and one method of labeling a matrix print is shown.

10 DIM A(20,20), B(20,20), C(20,20)
20 READ M,N

30 MAT READ A(M,N),B(N,N)
40 MAT C=A+A

SO MAT PRINT C3

60 MAT C=A=*B

70 PRINT

75 PRINT "A=B='",

8@ MAT PRINT C

%9 DATA 2,3

91 DATA 1,2,3

92 DATA 4,5.:6

93 DATA 1,0,-1

94 DATA A»5=-1,-1

95 DATA -:,0,0

99 END

RUN

MATRIX 28:31 A9-MAR-T1
2 a4 6

< 1A 12

A*B =

-2 -2 -3
-2 -9 -9

TIME: 2.13 SECS.
Version 17 BASIC 76 Februery 1972

The second example inverfs an n-by-n Hilbert matrix:

]
1/2
1/3

.

1/.n

1/2 /3. .. 1/n

1/3 /4 ... 1/n+1
1/4 /5. .. 1/n +2
1/n+1 1/n+2 1/2n-1

Ordinary BASIC instructions are used to set up the matrix in lines 50 fo 90. Note that this occurs after

correct dimensions have been declared. A single instruction then results in the computation of the in-

verse, and one more instruction prints it. Because the function DET is available after an inversion,

it is taken advantage of in line 130, and is used to print the value of the determinant of A. In this

example, we have supplied 4 for N in the DATA statement and have made a run for this case:

S
10
20
30
S0
62
70
80
99
100
115
120
125
130
190
199
RUN

HILMAT

INV(A) =
16.0001
-120.001

240.003
~140.002

REM THIS PROGRAM INVERTS AN N-BY-N HILBEKRT MATRIX
DIM A(20,20), B(20,20)

READ N

MAT A=CON(N,N)

FOR I=1 TO N

FOR J=1 TO N

LET ACI,J)=1/7C1+J-1)

NEXT J

NEXT 1

MAT B=INV(A)

PRINT " INVCA)=""

MAT PRINT B

PRINT

PRINT "DETERMINANT OF A=" DET
DATA 4

END

13:52 20-0CT-69

-129.0201 240 .903 ~140.002
1200 .01 -2709 .03 1680.02

-2720.03 6480 .08 -4200.05
1680 .02 T-4200 .05 2800 .03

DETERMINANT OF A=1.65342E-7

A 20-by-20 matrix is inverted in about 0.5 seconds. However, the reader is warned that beyond

n =7, the Hilbert matrix cannot be inverted because of severe round—off errors.

7.12 SIMULATION OF

N-DIMENS IONAL ARRAYS

Although it is not possible to create n—dimensional arrays in BASIC, the method outlined below does

simulate them. The example is of a three-dimensional array, but it has been written in such a way

7-7

that it could be easily changed fo four dimensions or higher. We use the fact that functions con have

any number of variables, and we set up a 1-t0-1 correspondence between the components of the array

and the components of a vector which equals the product of the dimensions of the array. For example,

if the array has dimensions 2, 3, 5, then the vector has 30 components. A multiple line DEF could be

used in place of the simple DEF in line 30 if the user wished to include error messages. The printout
is in the form of two 3-by-5 matrices.

10
20
32
S0
55
-]
80
99
190
110
112
1135
120
990
999
RUN

3ARRAY

o ~Nwn [N 3

DIM V(i000)

MAT READ D(3)

DEF FNACI W ,K)=(CI=1)%D(2)+(J~1))*D(3)+K
FOR 1=1 TO D(1)

FOR J=1 TO D(2)

FOR K=1 TO D(3)

LET VC(FNACI,»JoK))= 428 J+Ke2

PRINT V(FNACI»JsK)),

NEXT K
NEXT J
PRINT
PRINT
NEXT I

DATA 2,3,5

END

083107

11

10
12

7-8

27-0CT~69

12
14
16

13
15
17

19
23
20
24

January 1974

CHAPTER 8
ALPHANUMERIC INFORMATION (STRINGS)

In previous chapters, we have dealt only,with numerical information. However, BASIC also processes
alphanumeric information in the form of strings. A string is a sequence of characters, each of which is
a letter, a digit, a space, or some other character. A string, however, cannot contain a character

that is a line terminator (i .e., a line feed, form feed, or vertical tab), or a carriage return.

String constants are normally enclosed in quotes (e.g., "TOTAL VALUE"). In some cases in some
statements, the quotes can be omitted. Where this is allowed, it is explicitly stated in the description

of the particular type of statement found elsewhere in this manual .

Variables may be introduced for simple strings and string vectors, but not for string matrices. Any
simple variable, followed by a dollar sign ($), stands for a string; e.g., A$ and C7$. A vector vari-
able, followed by $, denotes a list of strings; e.g., V$(n) or A2$(n), where n is the nth string in the
list. For example, V$(7) is the seventh siring in the list V.

8.1 READING AND PRINTING S TRINGS

Strings may be read and printed. For example:

10 READ A%, BS$, C$%

20 PRINT C$%$3 BS$3 AS

30 DATA ING»SHAR,,TIME-
20 END

causes TIME-SHARING to be printed. The effect of the semicolon in the PRINT statement is consistent
with that discussed in Chapter 6; i.e., it causes output of the alphanumeric items in a close-packed

form. Commas, <PA> delimiters, and TABs may be used as in any other PRINT statement. The loop:

70 FOR I=1 TO 12
80 READ M$(I)
9 NEXT 1

reads a list of 12 strings.

Version 17A BASIC 8-1 May 1972

In place of the READ and PRINT, corresponding MAT instructions may be used for lists. For example,
MAT PRINT M$; causes the members of the list to be printed without spaces between them. We may
also use INPUT or MAT INPUT. After a MAT INPUT, the function NUM equals the number of strings
inputted. When using the MAT INPUT statement, you can continue inputting strings on the next line
by typing an ampersand (&) on the current line immediately before pressing the RETURN key. A comma
must precede the ampersand if the string immediately before the ampersand is unquoted. If the string

is unquoted and a comma does not separcte the string from the ampersand, the ampersand will be

treated as part of the string. Thus, either MARY, & or "MARY"& is legal input.

As usual, lists are assumed to have no more than 10 elements; otherwise, a DIM (or DIMENSION)

statement is required. The following statement:
10 DIM M$(20)

saves space for 20 strings in the M$ list.

In the DATA statements, numbers and strings may be intermixed. Numbers are assigned only to numer-
ical varigbles, and strings only to string variables. Strings in E)ATA statements are recognized by the

foct that they start with a letter. If they do not, they must be enclosed in quotes. The same require-
ment holds for a string confaining a comma. For example:

1%} DATA 1@,ABC,5,"4FG”,"SEPT. 22, 1968",2

The only convention on INPUT and MAT INPUT is that a string containing a comma must be enclosed

in quotes. The following example shows the correct format for a response to a MAT INPUT:

MR. JONES, "146 MAIN ST., MAYNARD , MASS ."

8.2 STRING CONVENTIONS

In every method of inputting string information into a program (DATA, INPUT, MAT INPUT, etc.),
leading blanks are ignored unless the string, including the blanks, is enclosed in quotes. String con-
stants (which must be enclosed in quotes) or string variables may occur in LET and IF-THEN statements.
The following two examples are self-explanatory: -

10 LET Y$="YES"
20 IF AT7$=""YFS" THEN 204¢

8-2 January 1974

The relation "<" is interpreted as "earlier in alphabetic order." The other relational symbols work in

a similor manner. In any comparison, trailing blanks in a string are ignored, as in the following:

IIYES o IIYES "

We illustrate these possibilities by the following program, which reads a list of strings and alphabetizes
them:

10 DIM L$(50)

20 READ N

30 MAT READ LS$S(N)

. FOR I=1 TO N

50 FOR J=1 TO N-1

60 IF L$C(J) < LSC(J+1) THEN 100
70 LET AS=LSC(D)

80 LET LSC(JI=LS(J+1)

90 LET LS(J+1)=AS

170 NEXT J

110 NEXT 1

120 MAT PRINT LS

900 DATA S,ONE,TWO»THREE,FOUR,FIVE
999 END

Omitting the $ signs in this program serves to read a list of numbers and fo print them in increasing

order.

A rather common use is illustrated by the following:

339 PRINT DO YOU WISH TO CONTINUE'":;
340 INPUT AS

350 IF AS="YES'" THEN 1@

360 STOP

8.3 NUMERIC AND STRING DATA BLOCKS

Numeric and string data are kept in two separate blocks, and these act independently of each other.
The RES TORE statement resets both the data pointers for the numerical data and string data back to the
beginning of their blocks. RES TORE* resets the pointer only for the numerical data and RES TORE $

only for the string data.

8.4 THE CHANGE STATEMENT

In BASIC, it is very easy to obtain the individual digits in a number by using the function INT. One
way to obtain the individual characters in a string is with the instruction CHANGE. The use of
CHANGE is best illustrated with the following examples.

Version 17A BASIC 8-3 May 1972

5 DIM AC65)
10 READ AS
15 CHANGE AS TO A

29 FOR 120 TO A(®)

25 PRINT ACI)3

3S NEXT 1

40 DATA ABCDEFGHIJKLMNOP@RSTUVWXYZ
45 END

RUN

CHANGE 13:55 20-0CT-69

26 65 66 67 68 69 7@ 11 72 73 74 1S 16 77 78 79
g 81 B2 B3 B84 85 B6 87 B8 89 90

In line 15, the instruction CHANGE A$ TO A has caused the vector A fo have as ifs zero component
the number of characters in the string A$ and, also, to have certain numbers in the other components,
These numbers are the American Standard Code for Information Interchange (ASCII) numbers for the
characters appearing in the string (e.g., A(1) is 65 - the ASCII number for A).

Table 8-1 lists the ASCII numbers for printing and nonprinting characters. Note that the nonprinting
choracters are shown in the table as codes containing two or three letters. These codes are not output;
the actual meaning of the ASCII number is output (e.g., 7 causes the bell to ring, it does not print
BEL).

Table 8-1
ASCII Numbers and Equivalent Characters
ASCII ASCIl
Decimal | Character Mecning , Decimal | Character Mecning
Number Number
0 NUL Null 14 SO Shift out
1 SOH Start of heading 15 S1 Shift in
2 STX Start of text 16 DLE Data link escape
3 ETX End of text 17 DC1 Device control 1
4 EOT End of fransmission 18 DC2 Device control 2
5 ENQ | Enquiry 19 DC3 Device control 3
é ACK Acknowledge 20 DC4 Device control 4
7 BEL Bell 21 NAK Negative acknowledgement
8 BS Backspace 22 SYN Synchronous idle
9 HT Horizontal tab 23 ETB End of transmission block
10 LF lLine feed 24 CAN Cancel
11 VT Vertical tab 25 EM End of medium
12 FF Form feed 26 SUB Substitute
13 CR Carriage return 27 ESC Escape
Note: Recall that line feed (LF), form feed (FF), vertical tab (VT), and carriage return (CR) are
illegal in strings.

(continued on next page)

Version 17A BASIC 8-4 May 1972

Table 8-1 (Cont)
ASCII Numbers and Equivalent Characters

ASCII ASCII
Decimal | Character Meaning Decimal | Character Meaning
Number Number
28 FS File separator 72 H Upper case H
29 GS Group separator 73 I Upper case |
30 RS Record separator 74 J Upper case J
31 us Unit separator 75 K Upper case K
32 SP Space or blank 76 L Upper case L
33 l Exclamation mark 77 M Upper case M
34 " Quuotation mark 78 N Upper case N
35 # Number sign 79 @] Upper case O
36 $ Dollar sign 80 P Upper case P
37 % Percent sign 81 Q Upper case Q
38 & Ampersand 82 R Upper case R
39 ' Apostrophe 83 S Upper case S
40 (Left parenthesis- 84 T Upper case T
41) Right parenthesis 85 U Upper case U
42 * Asterisk 86 \ Upper case V
43 + Plus sign 87 w Upper case W
44 , Comma 88 X Upper case X
45 - Minus sign or hyphen 89 Y Upper case Y
46 . Period or decimal point %0 z Upper case Z
47 / Slash 91 { Left square bracket
48 0 Zero 92 \ Back slash
49 1 One 93] Right square bracket
50 2 Two 94 ~ort Circumflex or up arrow
51 3 Three 95 ~or Back arrow or underscore
52 4 Four 96 T Grave accent
53 5 Five 97 a Lower case a
54 6 Six 98 b Lower case b
55 7 Seven 99 c Lower case ¢
56 8 Eight 100 d Lower case d
57 9 Nine 101 e Lower case e
58 : Colon 102 f Lower case f
59 ; Semicolon 103 g Lower case g
60 < Left angle bracket 104 h Lower case h
61 = Equal sign 105 i Lower case i
62 > Right angle bracket 106 i Lower case j
63 ? Question mark 107 k Lower case k
64 @ At sign 108 | Lower case |
65 A Upper case A 109 m Lower case m
66 B Upper case B 110 n Lower case n
67 C Upper case C 11 o Lower case o
68 D Upper case D 112 p Lower case p
69 E Upper case E 113 q Lower case q
70 F Upper case F 114 r Lower case r
71 G Upper case G 115] Lower case s
(continued on next page)
Version 17 BASIC 8-5 August 1971

Table 8-1 (Cont)
ASCII Numbers and Equivalent Characters

ASCII ASCII
Decimal | Character Meaning Decimal | Character Meaning
Number Number
116 t Lower case t 122 z Lower case z .
117 u Lower case u 123 { Left brace
118 v Lower case v 124 ! Vertical line
119 w Lower case w 125 } Right brace
120 X Lower case x 126 ~ Tilde
121 y Lower case y 127 DEL Delete

The other use of CHANGE is illustrated by the following:

19
15
20
25
30
35
2

FOR I=@ TO S

READ ACI)

NEXT 1

DATA 5,65,66+,67,68,69
CHANGE A TO AS

PRINT AS

END

This program prints ABCDE because the numbers 65 through 69 are the code numbers for A through E.

Before CHANGE is used in the vector-to-string direction, we must give the number of characters

which are to be in the string as the zero component of the vector. In line 15, A(0) is read as 5. The

following is a final example:

79

RUN

EXAMPLE

DIM v(128)

PRINT *WHAT DO YOU WANT THE VECTOR V TO BE'"3}
MAT INPUT V

LET V(Q)=NUM

IF NUM=8 THEN 70

CHANGE V TO AS

PRINT AS

GO TO 19

END

13:59 20-0CT-69

WHAT DC YOU WANT THE V TO BE? 40,45,60,45,89,90
(-<-YZ
WHAT DO YOU WANT THE VECTOR V TO BE? 32,34,35536,37238539,40,41,42 &
? 43544,45,46,47,48,49,50

14828 () *+,-./012

WHAT DO YOU WANT THE VECTOR V TO BE?

TIME :

2.10 SECS.

8-6

Note that in this example we have used the availability of the function NUM after a MAT INPUT to

find the number of characters in the string which is to result from line 40,

8.5 STRING CONCATENATION

Strings can be concatenated by means of the plus sign operator (+). The plus sign can be used to con-
catenate string formulas wherever a string formula is legal, with the exception that information cannot
be stored by means of LET or CHANGE statements in concatenated string variables. That is, concate-
nated string variables cannot appear to the left of the equal sign in a LET statement or as the right-
hand argument in a CHANGE statement. For example, LET A$=8$+C$ is legal, but LET A$+8$=C$ is
not; and similarly, CHANGE A$+8$ TO X is legal , but CHANGE X TO A$+8$ is not. An example

of string concatenation is:

10 INPUT AS

20 CHAIN AS+"MAIN.PRG"
30 END

RUNNH

?DTA4:

The program causes chaining to DTA4:MAIN .PRG, which is the program MAIN.PRG on DECtape

drive 4.

8.6 STRING MANIPULATION FUNCTIONS

A number of functions have been implemented that perform manipulations on strings. These functions
are LEN, ASC, CHR$, VAL, STR$, LEFT$, RIGHTS, MID$, SPACES, and INSTR. Functions that
retum sirings have names that end in a dollar sign ($); those functions that return numbers have names

that do not end in a dollar sign.

8.6.1 The LEN Function
The LEN function returns the number of characters in a string. It has the form:

LEN (string formula)

Version 17 BASIC 8-7 August 1971

Examples:

19 READ A%, BS

20 PRINT LENC(AS+BS$+""AxkOUND'")
3 DATA ""UP, ', "'DOWN» AND "
40 END

RUNNH

2a

10 IF LEN (AS%)<>@ THEN 39

20 PRINT ""A% IS A NULL STKING"
32 END

8.6.2 The ASC and CHR$ Functions
The ASC and CHR$ functions perform conversion of ASCII numbers in the same manner as the CHANGE
statement. The ASC function converts one character to its ASCII decimal equivalent, and the CHR$
function converts an ASCII decimal number to its equivalent character.
The ASC function has the form:

ASC (argument)
The argument can be either one character or the two= or three-letter code that represents a nonprinting
character (refer to Table 8-1 for these codes). ASC returns the equivalent ASCII decimal number for
the character.
The CHR$ function has the form:

CHR$ (numeric formula)

The value of the numeric formula is truncated to an integer that must be in the range 0 through 127
and cannot be the numbers 10 through 13. If the integer is less than O or greater than 127 or one of

I the numbers 10 through 13, an error message is issued. This integer is then interpreted as an ASCI|
decimal number that is converted to its equivalent character (refer to Table 8-1 for the ASCII numbers

and the equivalent characters).

An example of the ASC and CHR$ functions follows.

) FOR T=ASC(A) TO ASC(A)+3
10 PRINT “THIS IS TEST ' + CHRS$(T)

This is the beginning of a FOR loop that successively prints:

Version 17A BASIC 8-8 May 1972

THIS IS TEST A

THIS IS TEST B

THIS IS TEST C

-

THIS IS TEST D

8.6.3 The VAL and STR$ Functions

The VAL and STR$ functions perform conversions from numbers to strings and strings o numbers. The
form of the VAL function is:

VAL (string formula)

The string formula must look like a number; if it does not, an error message is issued. VAL returns the
actual number that the string represents. The VAL function does not return the ASCII value of the
number that the string represents, it returns the number. For example, VAL ("25") returns the number
25. The 25 that is the argument to VAL is a string, the 25 that VAL returns is a number.

If the string argument represents a number that is greater than about 1.7E38 in mognitude or non-zero,
but less than about 1.4E-39 in magnitude, the appropriate overflow or underflow message is issued and
the value returned is about 1.7E38, about -1.7E38, or zero, whichever is appropriate.

Example:
19 INPUT A%
20 PRINT VAL (AS$)*2
100 END
RUNNH
722.4611121
4.9222°2

The STR$ function returns the siring representation (as a number) of its argument. The form of STRS is:

STR$ (numeric formula)

The string that is returned is in the form in which numbers are output in BASIC (see Section 6.1). For
example, PRINT STR$ (1.76111124) prints the string 1.76111,

Version 17 BASIC 8-9 August 1971

Examples:

10 A=2561
20 BR$=STR$(A)
30 PRINT BS
40 END
RUNNH
2561
10 A=25
20 B$=STR$ (A)
32 CHANGE BS TO X
40 PRINT X(@); X(1)5; X(2)
50 END
RUNNH
2 50 53

8.6.4 The LEFTS$, RIGHTS, and MID$ Functions
The LEFTS, RIGHTS, and MID$ functions return substrings of their string arguments.
The LEFTS function retumns a subsiring of a specified number of characters starting with the lefimost
character of its siring argument. The LEFTS function has the form:

LEFTS (string formula, numeric formula)
The value of the numeric formula is truncated to an integer that specifies the number of characters in
the substring. If the specified number of characters is greater than the length of the string argument,

the entire string is retumed. If the specified number of characters is less than or equal to zero, an

error message is issued. For example,

10 PRINT LEFTS("THIS IS A TEST",7)

prints the substring
THIS 1S

The RIGHTS function retumns a substring of specified length ending at the rightmost character of its
string argument. The form of the RIGHTS function is:

RIGHT$ (string formula, numeric formula)
The value of the numeric formula is truncated to an integer that specifies the number of characters in
the subsiring fo be returned. If the number of characters is greater than the length of the string argu-

ment, the entire string is retumed. If the specified number of characters is less than or equal to zero,

an error message is issued. For example,

Version 17 BASIC 8-10 August 1971

5 AS="HERE AND THERE"
- 10 PRINT RIGHT$CA%,5)

prints the substring

THERE

The MID$ function returns a substring of its string argument starting a specified number of characters
from the |eftmost character of the string agument. The number of characters in the substring can also

be specified. The form of the MID$ function is:

MIDS$ (string formula, numeric formula-1, numeric formula-2)

The second numeric formula, which is fruncated to an integer that specifies the number of characters

in the substring, is optional and can be omitted. If thisargument is omitted, the substring includes all
the remaining characters in the string argument. The first numeric formula is truncated to an integer
that specifies the | eftmost character at which the substring is to start. MID$ returns a null string if the
first numeric formula when truncated to an integer is greater than the number of characters in the

string argument; if it is less than or equal to zero, an error message is issued. If the number of charac-
ters in the substring is specified by the second numeric formula) and is greater than the number of
characters in the string argument beginning at the specified character, MID$ returns the string argu-
ment starting at the specified character. If the number of characters is less than or equal to zero, an

efror message is issved.

Examples:

10 PRINT MIDS$ ("TOTAL OUTPUT IN MARCH",17)

.

RUNNH

MARCH

10 PRINT MIDS ("ABCDEF'".,3,1)

RUNNH

C

8.6.5 The SPACES$ Function
The SPACE$ function retums a string of spaces. The form of the SPACE$ function is:

SPACES (numeric formula)

Version 17 BASIC 8-11 August 1971

The value of the numeric formula is fruncated to an integer that specifies the number of spaces in the
string fo be returned. If the integer is less than or equal to zero or greater than 132, an error message

is issued,
Example:
10 AS=BS$='"HERE"
20 FOR T=1 TO 3
30 PRINT A$3 SPACES(T); BS
RUNNH
HERE. HERE
HERE HERE

HERE HERE

8.6.6 The INSTR Function

The INS TR function searches for a specified substring within a string and returns the position of the first
character of that substring within the siring. The positions are numbered from the leftmost character

in the string. The user can optionally specify that the search for the substring begin at a character
position other than the first. The form of the INS TR function is:

INS TR (numeric formula, string formula-1, string formula~2)

The numeric formula, which is truncated to an integer that specifies the starting character position, is
optional and can be omitted. If the numeric argument is omitted, the search begins at the first charac-
ter position. The first string argument is the string searched; the second string argument is the sub-
string searched for. If the value of the numeric formula (if specified) is greater than the number of
characters in the string or if the substring cannat be found in the string, INSTR returns a value of

zero. If the value of the numeric formula is less than or equal to zero, an error message is issued.

If the second string argument is a null string, INSTR retums the character position at which the search
started, unless that position is past the last character in the string. In that case, INSTR returns a

value of zero.

Version 17 BASIC 8-12 August 1971

Examples: »
10 PRINT INSTK ("ABCDCEF', "C')

RUNNH

3

10 PRINT INSTK (4,"ABCDCEF', "C'")

.
.

RUNNH

5

Note that if the second string argument occurs more than once within that part of the first string argu-

ment that is searched, the first occurrence found is used.

Version 17 BASIC 8-13 August 1971

CHAPTER 9
EDIT AND CONTROL

There are BASIC commands which:

—
.

Create, edit and manipulate files,
Run BASIC programs,
. Cause the user to enter monitor mode,

Obtain information, and

G h W N

. Set the input mode.

These commands operate on an entire BASIC program, and therefore are functionally different from the
BASIC statements which comprise the program. For example; typing the LENGTH command causes
BASIC to output the length (in characters) of the current program in the user's core memory. If,
however, the user includes the LENGTH command as a statement in his BASIC program, an error is

generated and the program cannot run.,

9.1 CREATING THE FILE IN CORE MEMORY

A file is a collection of data. This data may be BASIC statements, thereby comprising a BASIC
program; it may be data for a BASIC program, or it may be a combination of a program and data.

Seven media are used to store files. They are:

—
.

Core memory,
Disk pack and drum,
DECtape and magnetic tape, and

AW N

. Paper tape and punch cards.

At the time the user types R BASIC, a core memory area is allocated for his use and cleared of any

previous user's files. Core memory may be thought of as a working storage area. Any work done on a
file is performed in core memory, however, the user may not keep files in core memory for a prolonged
period of time. Permanent storage of that nature is reserved for storage devices such as disk, magnetic

tape, DECtape, paper tape and punch cards.

9-1 January 1974

In order to create a new file, edit an existing file or run a file containing a BASIC program, the file
must first be established in the user's core memory., The NEW command, the OLD command and the
default to NONAME provide the means by which a file is established in core memory. Refer to the

WEAVE command in Parograph 9.3 for an-additional method of moving files into core memory .

NEW filenome .ext

The user gives the NEW command to establish a new file in core memory. This file is given
the name filename .ext. Before establishing the new file, BASIC clears the user's core memory .
Thus, the file previously in user core (if any) is destroyed. (To retain the file, a SAVE

command should be issued before the NEW command is given. Refer to Paragraph 9.3.)

When issuing the NEW command, filename.ext may be omitted. In this case BASIC asks for
the filename ,ext by typing:

NEW FILE NAME--

The user types the filename.ext.

If the extension is not included (i.e., .ext is left out) BASIC assumes it is .BAS. If a carriage

return is substituted for filename.ext, BASIC types ?WHAT? and disregards the NEW command.

Once the NEW command is given, BASIC establishes the file by clearing the user's core and
assigning the filenome, When it is ready to accept the contents of the file, BASIC types
READY. The user then inputs the file simply by typing it on the terminal.

When the user is finished inputting the new file, he types +C to return to the BASIC user

mode (he was in input mode).

The user should be aware that at this point the new file is only in core memory and not in
permanent storage. This means that a command which clears the user's core memory (for
example; a BYE, NEW or OLD command) destroys the file the user just input. The SAVE and
REPLACE commands (described in Paragraph 9.4) store a file on the disk.

January 1974

READY

NEW RESIS.BAS . Establish a new file cailed RESIS.BAS.
READY ')
t®@ INPUT RI, R2, R3 Type the file.

20 R:= (RI=R2%R3) / ((R2%R3) + RI=(R2+R3))
3@ PRINT " HE PARALLEL RESISTANCE = "3 R

402 END
SAVE Put RESIS .BAS on disk storage.

READY

OLD dev:filename .ext

By using the OLD command, the user replaces the file in core memory with one from a storage
device. As with the NEW command, the contents of the user's core memory are cleared
before the designated file is brought in. The storage device on which the file is located is
given by dev:. Omitting dev: causes the default device (i.e., disk) to be selected. The file

is identified by filename.ext, If omitted, BASIC requests the filename.ext by typing:

OLD FILE NAME--

The user should then type the filename.ext. If he presses carriage return, the command
aborts and returns to BASIC user level. [f the extension is omitted .BAS is assumed. The file
obtained from the device must have line numbers. The indicated filename is now the current

filename.

Retrieving a file from a device in this manner does not delete the file on the source storage
device. However, if the user modifies the file in core memory, thereby creating a new
version of that file, the new version is not retained on a permanent storage device until a

SAVE, REPLACE or COPY command is executed, (Refer to Paragraph 9.4.)

READY

OLD DTAl: S0S,0UT Bring a copy of the file SOS.OUT, which is
presently on DTA1:, into user core,

READY

Default to NONAME

There is a third way to establish a file in core memory. After BASIC responds with READY,
the user may start typing the contents of his file. By this action the user is adding to the

material in core memory without assigning a new name to core memory and without initially

9-3 January 1974

clearing the contents of core. If no filename is assigned to core memory (as is the case after
issuing R BASIC), it takes the default name NONAME. Any action the user takes with the
file should use NONAME unless a RENAME command is given,

«R BASIC

READY, FOR HELP TYPE HELP .

25 INPUT EI T.ypa in contents of

1@ INPUT R file.

2% I:zEI/R

35 PRINT " ME EQUIVALENT CURRENT I1S",1, " AMPERES”

40 END

LIST Request output of
file in user core.

NONAME 14306 12-SEPT-13 Filenome is called
NONAME since no
filenome was specified.

@ INPUT EI

19 INPUT R

25 1:=EI/R

35 PRINT " THE EQUIVALENT CURRENT 1S8",I, ™ AMPERES™

49 END

READY

The RENAME command alters the name of the file in core memory. This function is useful

especially after a default to NONAME.

[RENAME dev:filename .ext

The name of the user's file in core memory is changed to dev:filename.ext when the user

issues the RENAME command.

If dev: and/or .ext are left out when the command is given, the original dev: and/or .ext

are kept.

READY
RENAME EQUIV.BAS

READY

-4 January 1974

9.2 LISTING FILES

Often the contents of a file in the user's core memory or of a file in permanent storage must be ex-
amined. The LIST, QUEUE and tO commands-produce a printed copy of the desired file. In
addition, refer to the COPY command in Paragraph 9.4,

LIST range, range, ...
LISTNH range, ronge, ...

The LIST and LISTNH commands, given without any range arguments, print the entire contents
of a file in the user's core memory area. LIST prints a one~line heading which includes the
name of the file, the time and the date. LISTNH prints the specified lines without the

heading.

If only part of the core storage file is desired, range arguments are used to identify the
desired lines. |If more than one part is needed, additional range arguments can be added

provided thot each succeeding range specification is separated by a comma.

Range arguments are permitted in one of two forms:
n A single line is printed when its line-number, n, is used as a range argument,

x=-y A group of lines is output when the range argument is put in the form x-y, where x is
the line=number of the first line in the group, and y is the line-number of the last line
in the group.

The lines are printed on the user's terminal in order of ascending line-numbers.

LISTREVERSE
LISTNHREVERSE

LISTREVERSE and LISTNHREVERSE print the contents of the user's core memory area in order of
descending line numbers. LISTREVERSE precedes the output with a heading, LISTNHREVERSE

eliminates the heading.

9-5 March 1974

LISTREVERSE

EQUIV,BAS lagid 12=- SEPT-73

40 END

35 PRINT " THE EQUIVALENT CURRENT IS",I, " AMPERES®
2% 1I:=E/R

1@ INPUT R

25 INPUT EI

READY

+ O suppresses the output of a file, BASIC responds with READY after termination,

QUEUE filenome.ext/UNSAVE/nCOPIES/LIMITm

The QUEUE command causes the specified file to be printed on the line printer. This file
must have been previously stored on disk by a SAVE, REPLACE or COPY command. The file

in core storoge is not affected by this command.
If the extension of the filename is omitted, .BAS is assumed.

The three optional switches /UNSAVE, /nCOPIES, and /LIMITm can be included in any order.
UNSAVE and LIMIT con be abbrevioted to as little as U and L respectively while the word
COPIES can be omitted entirely. For example, QUEUE RETURN/U/L12/2 tells BASIC to list
two copies of the file RETURN ,BAS, but not exceed 12 pages in doing so. The file is deleted
(unsaved).

When the /UNSAVE switch is given, the file is immediately removed from the user's permanent
(disk) storage area, then it is listed. Without this switch the file is retained. The n/COPIES
switch causes n copies of the file to be printed to a maximum of 63 copies. Without this
switch, one copy is printed. The /LIMITm switch indicates the maximuym number of line
printer pages that can be printed. Without this switch 200 pages is the limit. The arguments

n and m must be integers.

More than one file listing can be requested by placing o comma between each succeeding

filename and its associated switches,

9-6 January 1974

QUEUE EQUIV,BAS/2COPIES Request 2 copies of the file EQUIV .BAS

be output on the line printer,
FILES QUEUED:

EQUIV, BAS
READY

9.3 EDITING A FILE IN CORE MEMORY

After a file has been entered into the user's core memory by a NEW command, OLD command or @

default to NONAME, the user may want to edit the file to eliminate any errors.
9.3.1 Replacing Complete Lines

The user inserts new lines and replaces existing lines by first typing the appropriate line-nymber and

following it with a line of text.

Type Line Number

When BASIC is in user mode, typing a line number followed by text can have one of two

consequences.

1. If there is no existing line associated with that line-number, BASIC enters both the
new line-number and the line into the file in the user's core memory.

2, If there is already a line in the core file with the specified line-number, that line is

deleted and the new line is inserted in its place.

Simply typing a line number without any text establishes a blank line.

9.3.2 Deleting Lines

DELETE range, range, ...

The DELETE command eliminates lines from the user's file in core memory. The range

arguments specify which line(s) are to be eliminated.

9-7 January 1974

Range arguments are permitted in one of two forms:

n A single line is deleted when its line=number, n, is used as a range argument.

x-y A group of lines is deleted when the range argument is put in the form x-y, where x is
the line-number of the first line in the group, and y is the line~number of the last line

in the group,

DELETE 125, 298-42%, 500 Delete line 125, |ines 250 thru 425
inclusive and line 900,
READY

9.3.3° Renumbering Lines in the Core File

,RESBQUENCE n,f,k

RESEQUENCE modifies the line=numbers of the file in user core. Line=number f is changed
to line-number n. Succeeding lines are then incremented by k. f must be less thon n,

When f is omitted entirely the first line of the file takes line-number n, and succeeding

lines take line~-numbers n+k, n+2k, and so forth, Even though f is omitted, both commas

are retained,

In cases where a single argument, n, is given, the first line=number is chonged to n and

succeeding line-numbers are produced, incrementing by 10,

RESEQUENCE 100,255,100 Renumber line 25 to 100 and number
READY succeeding lines incrementing by 100,

9.3.4 Clearing the Entire File

SCRATCH

The SCRATCH command deletes all {ine-numbers and their associated lines from user core.

The name associated with the file in core is kept the same,

SCRATCH
READY

9-8 January 1974

9.3.5 Merging Another File Into the File

WEAVE dev:filename.ext

The WEAVE command locates a file with the name filename .ext on dev:. This file is then
merged into the file in user core. If two lines have the same line~number, the line in the
file named in the WEAVE command replaces the line in the file in user core. Otherwise, the

lines from the file are merged in sequential line-number order into the file in user core.

OLD RESIS.BAS Take a copy of file RESIS.BAS from disk storage and
put it in user core,

READY

LISTNN List RESIS.BAS

1@ INPUT RI, R2, R3

28 Rz (RI%R2%R3) / ((R2%xR3) + RI1%(R2+R3))

30 PRINT " HE PARALLEL RESISTANCE = "3 R

40 END

READY

OLD EQUIV.BAS Toke EQUIV .BAS and put it in user core. (RESIS.BAS
is cleared from user core.)

READY

LISTNH List EQUIV .BAS

@85 INPUT EI

1@ INPUT R

25 1=EI/R

ig ES%’NT " THE EQUIVALENT CURRENT IS",I, " AMPERES"

READY
WEAVE RESIS.BAS MERGE RESIS.BAS into the file in user core

(EQUIV.BAS).

READY

LIST

EQUIV. BAS 15325 12- SEPT-73

#5 INPUT EI Line 05 is inserted.
18 INPUT RI, R2, R3 Line 10 is replaced.
20 Rz (RI*R2%R3) / ((R2%R3) + RI*(R2+R3)) Line 20 is inserted.
25 1:-El/R Line 25 is retained.

3@ PRINT " THE PARALLEL RESISTANCE = *s R Line 30 is inserted.

35 PRINT " THE EQUIVALENT CURRENT Is",1, " AMPERES"
Line 35 is retained.

49 END Line 40 is replaced.
READY

9-9 January 1974

9.4 TRANSFERRING FILES

Once a user has prepared a file in his portion of core memory, he will want to move the modified file
to permanent storage such as, disk, DECtape, or papertape. In addition, the user may want to move
files from one storage device to another, especially from disk to DECtape.

9.4.1 Transferring Files From the User's Core Storage

Upon creating, weaving and editing a file in core storage, a user wants to retain a copy of the file

for future use. The SAVE and REPLACE commands are then used.

SAVE dev:filenome .ext

The SAVE command puts the file currently in user core on the storage device dev:, under the

name of filenome.ext.

If dev: is omitted DSK: is assumed. If .ext is omitted .BAS is assumed. The filename.ext may
be omitted, in which case the current filename.ext is used. The extension cannot be specified

if the filename is omitted.

The SAVE command does not overwrite an existing file of the some name. REPLACE should be

used if that result is desired.

SAVE Instruct BASIC to SAVE the present file on disk storage.

READY

REPLACE dev:filename.ext

The REPLACE command deletes an existing file called filename.ext which is on the device

dev: and inserts a@ new file from user core in its place, keeping the same name.

If the device is DSK: or DECtape, the old file must be present on the device or an error

message will be issued.

9-10 January 1974

The arguments dev:, filename, and .ext can be omitted with the same conditions described

for the SAVE command.

Also, refer to the OLD command (Paragraph 9.1) and the WEAVE command (Paragraph 9.3.5),

both of which transfer lines into core memory .

REPLACE
READY

Transferring Files From One Storage Device to Another

COPY dev! :filenamel ,ext >dev2:filename2 .ext

The COPY command reads filenamel .ext on devl: and transfers a copy of it to dev2: where it

is given the name filename2.ext,

If the device is omitted, DSK: is assumed. [f the device is not a disk or DECtape, the filename
and extension can be omitted. Note, when the filename is omitted, the extension must also be
omitted. Should the device be a disk or DECtape, the filename must be specified, but the

extension can be omitted, and then the extension .BAS is used.

The filenamel .ext need not have line-numbers to be acceptable to COPY, The program

currently in core is not disturbed by a COPY command.

COPY RESIS,BAS > DTA3:24RES,.BAS Make a copy of RESIS .BAS
(which is on disk storage) on
READY DECtape 3, and call it 24RES .BAS.

Destroying Files

UNSAVE dev:filename.ext, dev:filename.ext, ...

The UNSAVE command deletes the named files from the indicated devices.

The arguments dev:, filename, and .ext can be omitted. If dev: is omitted, DSK: is assumed.
If .ext is omitted, .BAS is assumed. If filename.ext is omitted, the current filename.ext is

used.

9-11 January 1974

In specifying more than one file to be UNSAVEd, the user must separate the filenames with

commas,

UNSAVE RESIS.BAS

FILES UNSAVED:
RESIS

READY
9.5 COMPILING AND EXECUTING A BASIC PROGRAM IN CORE MEMORY

If the user's core file is a BASIC program and it has been created, edited, and saved, it is ready to
be compiled and executed. Note: A BASIC file does not have to be a BASIC program. The Edit and
Control Commands discussed in this chapter are also used in creating files containing data and files
containing text. The user does not want to compile and execute a data file or a text file. The RUN,

CHAIN and +C commands aid the user in processing his BASIC program.

RUN n
RUNNH n

The RUN commands compile the entire program residing in user core. The RUN command
generates a heading upon running the program; while RUNNH deletes the heading. After
compilation, the program is executed starting at statement number n. If n is omitted,

execution starts at the very beginning of the program.

CHAIN

The CHAIN statement can be included in a BASIC program to cause one program to run

another program. For further information refer to Paragraph 6.6,

+C+C

Two *C's stop a running program and return the user to the BASIC command mode. All files

that were opened by the program are closed. '
YIn monitors prior to 5.05 (and in 1040 monitors), two CTRL-C's (+C+C) may return the user to
monitor mode, which is indicated when a period is typed. If this occurs, type REENTER to return to
BASIC command mode.

9-12 January 1974

9.6 ENTERING MONITOR MODE FROM BASIC

While in BASIC, the user may desire to use additional 1/0O devices, obtain system information or

request a special service. In order to accomplish these and other similar tasks, the user must put his

terminal in monitor mode.
9.6.1 What Is Monitar Mode?

Once BASIC has printed "READY, FOR HELP TYPE HELP", the user knows that he has successfully
entered BASIC and he can now type BASIC commands. In the DECsystem-10 environment, there can
be many people using a large variety of system programs (of which BASIC is one), running their own
programs, or performing other functions. The monitor is the supervisory program which schedules and

controls those operations requested by each user, so that the system can better serve all users.

To issue a request to the monitor (a monitor command) after entering BASIC, the user must leave

BASIC and enter monitor mode. He may then use the appropriate monitor command(s).

When the user is finished and desires to reenter BASIC, he must type certain monitor command(s) to

leave monitor mode and enter BASIC.

Refer to the DECsystem-10 Operating System Commands in the DECsystem~10 User's Handbook
(DEC-10-NGZB-D) or to the DECsystem~-10 Software Notebooks .

"Operating system commands" is another name for " monitor commands" .

Table 9-1
Commands That Enter Monitor Mode From BASIC

Command Result

MONITOR Causes the user to leave BASIC and enter monitor mode. The process is
complete when the monitor types a period, indicating that the user may
type any monitor command,

Caution -- All Monitor Commands which run a program in performing their
function, destroy the contents of the user's core. This means that all work
done in BASIC that has not been permanently stored somewhere else (e.g.,
papertape, DECtape, or disk) by using a BASIC command will be lost.
Refer to Paragraph 9.4,

SYSTEM Is almost identical to the MONITOR command in function. Unlike
MONITOR, however, it does not allow the user to reenter BASIC by
typing CONTINUE; only REENTER or START will succeed.

9-13 March 1974

Table 9-2

Useful Monitor Commands

Command Function

LASSIGN dev: Allocates an 1/O device to the user's job for the duration of the job or
until o DEASSIGN command is given. No operator intervention is
required (preserves user core).

.DAYTIME Types the date followed by the time of day (preserves user core).

.DEASSIGN dev:

.DIRECTORY

LDISMOUNT dev:

.R GRIPE

LMOUNT dev:

.PLEASE

REWIND dev:
SEND

SYSTAT

JIME

LUNLOAD dev:

Releases a device the user has previously assigned to his job (preserves
user core).

Lists the names of all user files currently on disk storage (destroys user
core).

Releases a device the user has previously requested through a MOUNT
command. This command requires operator intervention (destroys user

core).

Records user comments for later review by the operations staff (destroys
user core),

Requests an |/O device be allocated to the user's job. This command
requires operator intervention (destroys user core).

Allows the user uninterrupted communications with the operator
(destroys user core). :

Rewinds a magnetic tape or a DECtape (destroys user core).
Transmits a one-way message to a designated station (preserves user core).

Runs a program which prints status information about the system (destroys
user core).

Types out the total running time of the whole job (preserves user core).

Rewinds and DEASSIGNs or DISMOUNTs o DECtape or magnetic tape
(destroys user core).

dev: can be DTAn:, DSKa:, LPTn:, etc. n=numeric, o=alphanumeric

9.6.2 Returning to BASIC From Monitor Mode

There are two different methods of returning to BASIC from monitor mode. The method the user

employs depends upon whether he preserved or destroyed his core memory area.

9-14 January 1974

9.6.2.1 User's Core Preserved - If the user has entered monitor mode and has not issued o monitor
command which destroys the contents of his core memory, he may use one of the following commands

to reenter BASIC.

Table 9-3

Commands That Reenter BASIC When Core is Preserved

Command Function
.REENTER or The user can exit from the monitor and reenter BASIC by typing either
.START REENTER or START. If, while in the monitor, the user has issued a

monitor command which destroys user core, neither the REENTER nor the
START command causes the user to reenter BASIC. In this case he must
type R BASIC.

CONTINUE The CONTINUE command serves exactly the same purpose as REENTER or
START as far as BASIC is concerned, However, it will only be successful
in reentering BASIC after a BASIC MONITOR command; it will not work
after a SYSTEM command has been used.

READY

SYSTEM Enter Monitor Mode.

«ASSIGN DTA3: Request DECtape 3 be allocated to the job.

DTA3 ASSIGNED Monitor assigns DTA3:

. CONTINUE Try to reenter to BASIC.,

7CAN‘T CONTINUE Cannot type CONTINUE after a SYSTEM command.
+START Alternative request to return to BASIC.

READY O.K. BASIC responds,

9.6.2.2 User's Core Destroyed - When the user desires to return to BASIC after he has destroyed
his core storage area he does so by typing R BASIC. BASIC responds with "READY, FOR HELP TYPE

HELP" when it is ready to accept commands.,

9-15 March 1974

READY

MONITOR Enter Monitor Mode.

«DIRECTORY Request listing of user files.

NEADGS BAS 2 <055> 23- APR- 73 DSKXC: 127,23
BASE2 BAS 3 «155» 15-4UL-T73

BTPLSR RNO T <B55> 15-AUG-73

TOTAL OF 12 BLOCXS IN 3 FILES ON DSKXC: (27,23)

.REENTER Try to get back to BASIC.

780 START ADR No starting address exists since ,DIRECTORY destroyed
user core,

.R BASIC BASIC must be recalled.

READY, FOR HELP TYPE HELP

9.7 OBTAINING INFORMATION

Three commands, CATALOG, HELP and LENGTH, retrieve important information from the system

concerning available 1/O devices, commands and progrom size.

CATALOG device:

After the CATALOG device: command is entered, the system lists on the user's terminal the

names and extensions of the user's files residing on the named device. When device: is

omitted, DSK: is assumed.

device: can be

BAS:

SYS:

DSKn:

DTAn:

Typing BAS: as the device outputs the library programs residing on the storage
area BAS.

Typihg SYS: as the device lists the system programs stored on the system device
SYS.

n (a number or letter) specifies a particular disk when more than one is available.
If n is omitted, files on all disks are listed.

n (usually a number 0,1,2, ...) identifies a particular DECtape when more than
one is available. If the operating system command, ASSIGN, has been used to
assign a DECtape or DECtapes, n may be omitted. The files on the DECtape
with the lowest logical number will be listed. Should n be omitted and no
DECtapes are assigned the user, logical unit O is assumed. Errors may result
from omitting n in this situation. Refer to ASSIGN in Paragraph 9.2 for more
guidance in using DECtapes.

9-16 January 1974

HELP

READY
CATALOG DSKC:

HEADGS. BAS
BASE2.BAS
POPUL.BAS

READY

READY
CATALOG DTA:

OPERI ACTION REQUESTED

READY
MONITOR
«ASSIGN DTAl:

DTAl ASSIGNED
REENTER

READY
CATALOG DTAs

FILA,REL

UPPER. CAS
S0S.0UT

READY

explanation of each on the user's terminal ,

READY
HELP

Type the names of all files on disk DSKC:

Files on DSKC: are listed.

Type the names of files on the DECtape with
the lowest logical unit number which is
assigned to the user.

In this case no DECtape was assigned to the
user so DTAO: was assumed, but this DECtape
was assigned to another user,

Assign DTAT: to your job.

Type the names of files on DTAI:

After the user types the HELP command BASIC types a list of BASIC commands and a brief

Request BASIC to output a brief description
of its commands.

THIS IS THE HELP FILE FOR DECSYSTEM=-10 BASIC VERSION 17B

THE FOLLOWING IS A SHORT (TWO PAGE) DESCRIPTION OF
SOME OF THE MOST COMMONLY USED COMMANDS., FOR MORE
INFURMATION SEE THE BASIC MANUAL IN THE DECSYSTEM-10

SOFTWARE NOTEBOOKS,
BYE

LOGS THE USER'S JOB OFF THE SYSTEM,

READY

9-17

January 1974

LENGTH

The LENGTH command instructs the system to output the approximate length of the source

program (stored in the user's core memory) expressed as the number of characters.

READY
LENGTH
295 CHARACTERS

READY

ADDITIONAL INFORMATION

Information about the system is available via the use of operating system commands, Refer

to Parograph 9.6.
9.8 SETTING THE INPUT MODE

The two input mode commands (TAPE and KEY) are useful only to users whose terminals are equipped

with paper tape apparatus. One commonly used machine of this type is the LT33B (Figure C-1).

Table 9-4

Input Mode Commands

By specifying: Input Mode

KEY The system is set to accept input from the
terminal keyboard.

TAPE The user is aided in inputting information
stored on paper tape.

When neither command is input, KEY is assumed. Refer to Appendix C for more information. TAPE

and KEY apply only to input mode, and do not affect output to the terminal.

READY
TAPE

READY

9-18 January 1974

9.9 LEAVING BASIC

When the user has finished all his work, he wants to yse BYE or GOODBYE,

BYE
GOODBYE

BYE ond GOODBYE exit the user from BASIC and log him off the DECsystem-10. Refer to

Section 4.6.

9«19 January 1974

CHAPTER 10
DATA FILE CAPABILITY

The data file capability allows a program to write information into and read information from data files

that are on the disk.

Nine input/output channels are reserved for handling data files from a program. A data file must be
assigned to a channel before it can be referenced in the program. At any given time, a program can
have one and only one file on each channel and one and anly one channel assigned to each file. Con-
sequently,, a maximum of nine files can be open simultaneously . However, because it is possible for
a program to change or establish file/channel assignments while it is running, there is no limit to the

number of data files that can be referenced in one program.

10.1 TYPES OF DATA FILES

There are two types of data files acceptable to BASIC: sequential access files and random access files.

10.1.1 Sequential Access Files

Sequential access files are those files that contain information that must be read or written sequentially,
one item after another, from the beginning of the file. A sequential access file is either in write mode
or read mode, but cannot be in both modes at the same time. When read mode is established, reading
starts at the beginning of the file. When write mode is established, the file is erased and writing starts
at the beginning of the file.

An important distinction to note about sequential access files is that they can be listed in readable form
on the user's Teletype or the line printer. Sequential access files consist of lines that contain data
items. A sequential access file is either a line~numbered file or a nonline-numbered file, depending
upon whether or not its lines begin with line numbers. Line-numbered files are like BASIC programs in
that they can be manipulated by any of the commands described in Chapter 9 (e.g., OLD, LIST,
DELETE) except the RUN{NH) and CHAIN commands. Nonline-numbered files cannot be handled by

any of the commands that expect a file to have line numbers; they can only be manipulated by the

Version 17 BASIC 10~1 August 1971

COPY, QUEUE, and UNSAVE commands. They can be listed on the user's Teletype by means of the

COPY command; for example:

COPY TEST4a > TTY:

Sequential access files do not necessarily have to be created by a program; they can be created at the
editing level in BASIC. Line-numbered files can be created or modified just as a BASIC program is
created or modified. Nonline-numbered files can be created at the Teletype and then transferred to a
storage device such as the disk by means of the COPY command. The following conventions must be
observed when dealing with a sequential access file at the editing level:
a. In line-numbered files, each line number must be followed immediately by at
least one space, a tab, or the letter D.

b. A line can contain any number of data items separated from one another by at
least one space, a comma, or a tab. However, the line must not be longer than
142 characters (counting the line number and its following delimiter, but not
the carriage retumn and line feed that terminate the line). It is not necessary
to have a space, comma, or tab after the last data item on the line. Note that
blanks and tabs are not ignored in a data file as they are in a program.

c. A data item is any numeric constant (refer to Section 1.3.3) or string constant
(refer to Chapter 8). Numeric constants must not contain blanks or tabs. If a
string is to contain a blank, comma, or tab, the user must enclose the string
in quotes; otherwise it will be read as more than one data item by the statements
that read data.

Section 10.4 contains an example of the use of a line-numbered data file created at the editing level.
Section 10.5.1 contains an example of a program that creates both a line-numbered data file and a

nonline-numbered data file and shows what these files look like when they are copied to the Teletype.

Because it requires execution time for a program to read and write line numbers in a data file, a
nonline -numbered data file should be used in preference to a line-numbered data file unless the user

specifically wishes to edit the data file with commands such as DELETE.

Another distinction between sequential access files is whether the file is a pure data file or a text file.
A pure data file is used primarily for the storage of data. A text file contains data that is probably
destined for output to the line printer, because it is a report, a financial statement, or the like. The
user must follow slightly different procedures in his program depending on the type of file he wishes to
handle. For example, a string that contains a blank must be enclosed in quotes when it is written into
a pure data file, otherwise it will be seen as more than one string when data is read from the file.
However, such a string should not be enclosed in quotes when it is written into a text file because text
files are not normally read back into a program, and the superfluous quotes would spoil the appearance
of the file when it is printed. The procedures to follow when handling each type of file are explained
in Sections 10.5.1 and 10.7.

Version 17A BASIC 10-2 May 1972

10.1.2 Random Access Files

Random access files are data files that are not necessarily read or written sequentially. The user can
read items from or write items into a random access file without having the items follow one after the
other. The items in a random access file are not recorded in a form suitable for listing, and therefore
cannot be output to the user's Teletype or the line printer. Random access files cannot be handled by
any of the BASIC commands other than COPY and UNSAVE. A random access file can be copied to
the disk, DECtape, or magnetic tape, but not to any other device (Teletype, paper-tape punch, card
punch, or line printer). Copying a random access file to a device other than disk, DECtape, or mag-
netic tape will cause errors to be introduced into the file. If the system program PIP is used to transfer
a random access file to disk, DECtape, or magnetic tape, the file must be tronsferred in binary mode.

Refer to the PIP manual for information on how to use PIP.

Random access files, unlike sequential access files, do not distinguish between read mode and write
mode. The user can read or write any item in o random access file at any time by first setting a
pointer to that item. A random access file contains either string data or numeric data, but not both.
Each data item in a random access file takes up the same amount of sforc'xge space, called a record,

on the disk. BASIC must know the record size for the random access file in order to correctly move
the pointer for that file from one data item to another. The record size for a random access numeric
file is set by BASIC because the storage space required for a number in such a file is always the same.
The storage space required for a string, however, is dependent upon the number of characters in the
string. Thus, for a random access string file the user must specify the number of characters in the
longest string in the file so that BASIC can set the record size accordingly . This specification takes
place when the file is assigned to a channel. Refer to the description of the FILES and FILE statements
in Section 10.2. When creating a new random access string file, if the user specifies too few charac-
ters an error message is issued when a string too long to fit into a record is written. If too many
characters are specified for a record, the strings will always fit, but space will be wasted on the disk.
When he is dealing with an existing file, the user does not have to specify a record size. If he does
specify a record size for an existing file, the record size must match that with which the file was

written.

BASIC processes random access files more quickly than it processes sequential access files. Consequent-
ly, if the user wishes to read or write large amounts of data in sequential order, but does not require
that the data be in listable form, he should consider using a random access file to take advantage of its

speed. A random access file can easily be read or written in sequential order.

Version 17 BASIC 10-3 February 1972

10.2 THE FILE AND FILES STATEMENTS

The FILE and FILES statements perform identical functions. They both assign a file to a channel and
establish the type of the file (sequential, random access string, or random access numeric). The
difference between FILE and FILES is that FILE is an executable statement while FILES is not. Before
execution of the program begins, BASIC collects all of the FILES statements in the program, makes the
channel assignments, and sets the file types as they were declared in the FILES statements. The FILES
statements are not used again during that execution of the program. GO TO and GOSUB statements
to FILES statements work just as they do to REM statements; i.e., execution will transfer to the first
executable statement following the FILES statement. The FILE statement, on the other hand, assigns
channels and establishes file types during program execution, thereby allowing the user to change
file/channel assignments during the running of his program. '

The FILE and FILES statements accept filename arguments of the form:
filenm.ext type

where filenm and .ext are the filename and extension of the file in the form described in Chapter 4.
The filename must be specified, but the extension can be omitted. If the extension is omitted, .BAS

is assumed. Type can be a percent sign (%); a dollar sign ($) optionally followed by one, two, or
three digits; or omitted, If type is omitted, the file is assumed to be a sequential access file. If a
percent sign is specified, the file is assumed to be a random access numeric file. A dollar sign option=
ally followed by a one- to three-digit number indicates a random access string file. The number follow-
ing the dollar sign specifies the number of characters in the longest string that the file will contain.

A maximum of 132 characters and @ minimum of one character can be specified. If the number is
omitted from the dollar sign type and the file does not presently exist, a default length of 34 characters
is established. If the number is omitted from the dollar sign type and the file does exist, the length
with which the file was previously written is established.

The FILES statement has the form:
FILES filenm.ext type, filenm.ext type, .. .filenm.ext type

where the arguments can be separated by a comma or a semicolon. Channels are assigned consecutively
to the arguments of all the FILES statements in the program. If an argument is omitted, the channel for

the missing argument is skipped. For example, if a proéram contains only these FILES statements:

10 FILES ,», A3,B
20 FILES C,D»,
30 FILES E

file A will be assigned to channel 3, file B to channel 5, file C to channel 6, file D to channel 7, and
file E to channel 9.

Version 17 BASIC 104 Aygust 1971

The FILE statement has the form:
FILE argl, arg2, ... argn

where the arguments can be separated by a comma or a semicolon. At least one argument must be
present in a FILE statement. Each argument that assigns a sequential access file to a chonnel is of the

form:

#N, string formula
or "N: string formula

Each argument that assigns a random access file to a channel is of the form:

:N, string formula
or :N: string formula
N is a numeric formula having a value from 1 to 9 that specifies the channel; the value is truncated to

an integer if necessary. The string formula is of the form:
filenm. ext type

Note that the channel specifier for a random access file is preceded by a colon (:) while the channel
specifier for a sequential access file is preceded by a number sign (*). This is true of all data file
statements and functions that include channel specifiers. Some data file statements and functions do
not require the number sign or colon to be specified explicitly, but default to one or the other. See
the description of the various statements and functions in the following sections for details. An attempt
to reference a file with a channel specifier of the wrong type causas an error message.

The FILE statement does not permit the enclosing quotes to be omitted when its string formula argument
is a constant. This is because a statement of the form FILE :1, B$ would cause an ambiguity. The B$

could be taken as a variable (B$) or as a random access string file named B.

Before the FILE statement assigns a file to a channel, it checks to see if a file already exists on that
channel; if so, the old file is closed and removed from the channel before the new file is assigned.
The type of the old file is immaterial; it is permissible, for example, to close an old sequential access
file on a channel and then open a random access file on that channel. Any file open on a channel at
the end of program execution or whenever BASIC is reentered is automatically closed and removed from
that channel.

Examples of FILES and FILE statements are:

10 FILE #1, "ONEDAT*: #4,"QUTDAT"

20 FILE #9: "CHKDAT.4", :4, BS+"2%"

30 FILES FOUR.OUTS», MAIN.8B333 PROGS16
40 FILF #Bx*2, "BASFIL"

Version 178 BASIC 10-5 September 1972

10.3 THE SCRATCH AND RESTORE STATEMENTS

The SCRATCH statement has the form:

SCRATCH argl, arg2, ... argn

The RESTORE statement has the form:
RESTORE argl, arg2, ... argn
where the arguments can be separated by a comma or a semicolon. An argument is of the form:

For sequential access files:
N
For random access files:
:N
where N is a numeric formula having a value from 1 through 9 that specifies the channel. If necessary,
the value is truncated to an integer. If neither a number sign nor a colon is present in front of the N,

the number sign is assumed. At least one orgument must be present in o SCRATCH or RESTORE statement.

Scratching a sequential access file erases it and sets it in write mode. Writing will start at the begin-
ning of the file. Referencing a sequential access file with a statement that does input (READ, INPUT,
or IF END, described in Sections 10.4 and 10.10) while it is in write mode results in a fatal error.

Scratching a random access file simply erases it and sets the pointer for the file to the first record in
the file.

Restoring a sequential access file sets the file in read mode. Reading will start at the beginning of the
file. Referencing a sequential access file with a statement that does output (WRITE or PRINT, described
in Section 10.5) while it is in read mode results in a fatal error. When a sequential access file is
opened by a FILES or FILE statement and the file exists at that time, it is automatically set in read

mode; it is not necessary to restore it. It is only necessary to restore a sequential access file if it has

been set in write mode and the user wishes to set it to read mode in the same program.

Restoring a random access file simply sets the pointer for the file to the first record in the file. When
a random access file is opened on a channel by a FILE or FILES statement, its pointer is automatically

set to point to the first record of the file.

Examples of the SCRATCH and RESTORE statements are:

19 SCRATCH #4, 25 #T~-1, 1
20 SCRATCH #1, 2, 3, 4

80 RESTORE :2 $9, 1

99 WFSTORF SUR (X)) ¢s 3, 7

Version 17B BASIC 10-6 September 1972

10.4 THE READ AND INPUT STATEMENTS

The READ and INPUT statements read data items from files. The READ statement has the following

forms:

For sequential access files:
READ #N, variable, variable, ... variable

For random access files:
READ :N, variable, variable, ...variable

The INPUT statement has the following forms:

For sequential access files:
INPUT #N, variable, variable, ... variable

For random access files:
INPUT :N, variable, variable, ...variable

N is a numeric formula having a value from 1 through 9 that specifies the channel. The value is trun-
cated to an integer if necessary. At least one variable must be present in each READ or INPUT state-
ment. The delimiter following N can be a comma or a colon. The variables are separated from one

another by a comma or semicolon.

" The variables in a READ or INPUT statement for a sequential access file can be string or numeric or a
mixture of both. The variables in a READ or INPUT statement for a random access file can be string
or numeric, but not both, because a given random access file cannot contain both string and numeric

data items.

READ and INPUT statements for sequential access files differ from one ancther in the following way.
The READ statement expects each line of data in the file to begin with a line number, which it then
skips. That is, the line number is not treated as data. If a line number is not present, an error mes-
sage is issued. The INPUT statement, on the other hand, does not expect a line number on each line
of data. If one is present, it is read as data. It is illegal to use both INPUT and READ statements to
read from the same sequential access file unless the file has been restored between the two types of
statements. An attempt to mix READ and INPUT statements for sequential access files results in a fatal

error message .

Examples of the READ and INPUT statements for sequential access files are:

12 READ #2, ACI)» L, BS%
30 READ #6, Z%

125 INPUT #4, B(K)

120 INPUT #7, WS, ™

READ and INPUT statements for random access files are completely equivalent. They both begin read-

ing at the item that the pointer for the file specifies, and continue reading sequentially until all of

Version 17B BASIC 10-7 September 1972

the variables have been filled. It is legal to use both READ and INPUT statements to input from the

same random access file.

If the user attempts to read beyond the last item in either o sequential access or a rondom access file,

a fatal error message is issued. In a random access file, it is possible to have items that have not been

written but that are within the file (because some subsequent item has been written). If such an item

is in a numeric file and is read, a value of zero is input. If such an item is in a string file, a string

containing no characters is returned.

Examples of READ and INPUT statements for random access files are:

20 READ :2, A, B(I)» C3 F2
50 READ :4, F$, G$(8)

210 INPUT :1, Q(2)

240 INPUT :S: N13 N23 N3

The following axample shows a sequential access file being created ot the editing level and then read

by a program.

NEW
NEW FILE NAME--TEST2

READY
10
20
25
SAVE

TMsYB,LU»DS7571

READY
OLD
OLD FILE NAME--TABLE

READY

LISNH

1 DIM AS(15)
5 FILES TEST2

"LANTHANIDE SERIES*"
LA>CE,PRsND,PM,SM,EU,GD»TB»DY>»HOsER

The user types in and then
SAVEs the data file
"TEST2".

The old file "TABLE" is re-
trieved and listed.

**iB%

"ATOMIC NUMBER™

12 READ #1,BS

15 FOR X=1 TO 15

28 READ #1,A%(X)

25 NEXT X

30 READ #1,N1,N2

35 PRINT ""THIS IS THE
4 PRINT

42 PRINT "ELEMENT'",
44 PRINT

45 FOR Y=1 TO 1S

S9 PRINT AS(Y)sNI-1+ Y
SS NEXT Y -

180 END

Version 17 BASIC

(continued on next page)

10-8 August 1971

READY
RUN

TABLE 13:31 15-JUL-70

THIS IS THE LANTHANIDE SEKIES

ELEMENT ATuUMle MUMDER
LA 57
CE 58
PR 59
ND 60
PM 61
SM 62
EU 63
GD 64
T8 65
DY 66
HO 67
ER 68
™ 69
YB 70
LU 71

TIME: @©.18 SECS.
READY

An example of reading from a random access file is given in Section 10.6.

10.5 THE WRITE AND PRINT STATEMENTS

The WRITE and PRINT statements write data items into files.

10.5.1 WRITE and PRINT Statements for Sequential Access Files
The WRITE and PRINT statements for sequential access files have the following forms:

WRITE #N, list of formulas and delimiters

PRINT ?N, list of formulas and delimiters
where N is the channel specifier. The delimiter following N can be a comma or a colon; it can be
omitted if the list is omitted. The formulas in the list can be string or numeric or both. The TAB
function can be used. The delimiters can be commas, semicolons, or <PA> delimiters; they have the

same meanings that they have in the PRINT statement for the Teletype (refer to Chapter 6).

WRITE and PRINT statements for sequential access files differ from one another in the following way .
The WRITE statement begins each line of output with a line number followed by a tab. The first line
in the file is numbered 1000 and subsequent line numbers are incremented by 10. The PRINT statement,
on the other hand, does not begin lines with line numbers. It is illegal to use both WRITE and PRINT

10~9 January 1974

statements to write to the same sequential access file unless the file has been erased (by means of the
SCRATCH command) between the two types of statement. An attempt to mix WRITE and PRINT state-

ments results in a fatal error message.

Files created by WRITE statements are normally read by READ statements. Files created by PRINT

statements are normally read by INPUT statements.

Examples of the WRITE and PRINT statements for sequential access files are:

50 WRITE #2, SQRC(A)+EXP(G)3 QG(CI1)
75 PRINT #7, <PA> B(I)>»5C(1),,DCI1)
110 WRITE #3

The normal mode of output for WRITE and PRINT statements for sequential access data files is noquote
mode. In noquote mode, strings are not enclosed in quotes even if they contain characters that the
READ and INPUT statements see as delimiters. Also, strings are concatenated if they are output with
a semicolon separating them. Noquote mode is the mode used when writing a text file (refer to
Section 10.1.1 for a description of text files and pure data files). Noquote is the default mode; a
sequential access file is automatically set in noquote mode when it is assigned to a channel by a FILE
or FILES statement. However, noquote mode is not suitable when writing pure data files because the
integrity of the data is not maintained. In order to write a pure data file, the file must be set in quote
mode. This can be done by the QUOTE or QUOTE ALL statement, both of which are described in
Section 10.7. When a file is in quote mode, BASIC accepts WRITE and PRINT statements that are in
the usual form, but it makes whatever small changes that are necessary to the formatting in order to
preserve the integrity of the data items. Refer to Section 10.7 for details about the changes that are

made.

An example of the actions performed by the WRITE and PRINT statements follows.

10 FILES A, B

20 SCRATCH #1.,2

30 WRITE #1, 13 2, TAB(70), 3
€20 PRINT #2, "A'; 4

50 END

RUNNH

TIME: @.02 SECS.
READY

COPY A > TTY:
21000 1 2

21010 3

(continued on next page)

10-10

READY
cory B > TTY:

A4

READY

10.5.2 WRITE and PRINT Statements for Random Access Files
The WRITE and PRINT statements for random access files have the forms:

WRITE :N, formula, formula, ... formula
PRINT :N, formula, formula, ... formula

where N is the channel specifier. The delimiter following the channel specifier can be a comma or a
colon. At least one formula must be present in each statement. The formulas are separated from one
another by a comma or semicolon. In a given statement, all of the formulas must be string or all of

them must be numeric because a random access file is either string or numeric but not both.

WRITE and PRINT statements for random access files are exactly equivalent; they both begin writing
into the record that the pointer for the file specifies, and continue writing sequentially until all of
their arguments have been written. It is legal to use both WRITE and PRINT statements to write to the

same random access file.
Examples of WRITE and PRINT statements for random access files are:

25 WRITE :2, N» L3 M
35 PRINT :4: AS, BS+Q3(I)

An example of writing to a random access file is shown below in Section 10.6.

10.6 THE SET STATEMENT AND THE LOC AND LOF FUNCTIONS
The SET statement has the form:
SET argl, arg2, ... argn
where the arguments can be separated by commas or semicolons. Each argument has the form:

:N, numeric formula
or :N: numeric formula
where N is the channel specifier. The colon preceding the channel specifier can be omitted because
SET is only used for random access files; the colon is therefore redundant. Each SET statement must
have at least one argument. When a SET statement is executed, the pointer for the file on the speci-
fied channel is moved so that it points to the item in the file that is specified by the numeric formula,

which has been truncated to an integer. If the numeric formula after truncation is less than or equal to

Version 17 BASIC 10-11 August 1971

zero, an error message is issued. The items in the file are numbered sequentially; the first item in the
file is 1, the second 2, and so forth. The next statement in the program that reads from or writes to
the random access file will read or write the item to which the pointer was set, provided that the
pointer has not been moved again by a subsequent SET statement or ancther statement .

Examples of SET statements are:

55 SET t3, 100, a4, 150
8s SET t1s13 24,215

An example of a program using the SET statement follows.

10 FILES TESTAa2
20 FOR T=1 TO 10
30 WRITE t1, T
240 NEXT T

S0 FOR T=1 TO 18 BY 2
60 SET 31, T
72 READ :1, X
89 PRINT X

59 NEXT T

190 END
RUNNH

1

3

5

7

S

TIME: ©.01 SECS.

Two functions, LOC and LOF, return information about random access files. LOC returns the number
of the record to which the pointer for the file currently points, and LOF returns the number of the
last record in the file.

The forms of LOC are:

LOC(N)
LOC(:N)

The forms of LOF are:

LOF(N)
LOF(:N)

where N is the channel specifier. An error message is issued if a random access file is not assigned to

the specified channel when the function is executed.

10-12 January 1974

An example of these functions is:

10 IF LOC(2)<=L0OF(2) THEN 30
20 PRINT “FINISHED FILE ON CHANNEL 2"

10.7 THE QUOTE, QUOTE ALL, NOQUOTE, AND NOQUOTE ALL STATEMENTS

As was discussed in Section 10.5.1, the default mode for output to sequential access data files or to
the TELETYPE is noquote mode. The QUOTE and QUOTE ALL statements allow the user to change the
mode of the Teletype and sequential access files to quote mode. Quote mode changes the way that
the data items are written into the files or onto the Teletype. In quote mode, strings are enclosed in

double quotes by BASIC if they contain blanks, tabs, or commas; a leading blank is output immediately
before strings and negative numbers; and a double quote character cannot be output by the user. If such
an attempt is made to output a double quote character, an error message is issued. Also a data item

cannot be longer than the maximum amount of space available on a new line. If an attempt is made to
output a data item longer than this, a fatal error message results. In noquote mode, the data item
would be split across two or more lines. These modifications to the normal formatting are sufficient to

insure that the integrity of the data is maintained, as was discussed in Section 10.5.1.

The opposite of quote mode is noquote mode, which can be set by the NOQUOTE and NOQUQOTE ALL
statements. Noquote mode is the default mode for the Teletype and sequential access files. Whenever
a sequential access file is assigned to a channel by a FILES or a FILE statement, it is automatically set
in noquote mode. NOQUOTE and NOQUOTE ALL statements are only necessary if the user wishes to

change a file from quote to noquote mode.

When creating a pure data file, in addition to setting the file in quote mode, it is good practice to
separate the formulas in the WRITE or PRINT statements with semicolons to pack the data items close
together. Although separating the formulas with commas is permissible, it will waste space on the
disk.

The form of the QUOTE statement is:
QUOTE argl, arg2, ... argn
where each argument has the form:

#N
or N

where N is the channel specifier. If an argument is omitted, the Teletype is specified; for example,
30 QUOTE » 15 4

refers to the Teletype and the files on channels 1 and 4.

Version 17A BASIC 10-13 May 1972

Since QUOTE is assumed to have at least one argument, the statement
Sa QUOTE

specifies the Teletype.

The form of the QUOTE ALL statement is:

QUOTE ALL
QUOTE ALL refers to channels 1 through 9, but not to the Teletype.

When a channel is referenced in a QUOTE or QUOTE ALL statement and that channel has a sequential
access file currently assigned to it, output to the file is done in quote mode. If a sequential access

file is not presently assigned to the channel, nothing is done and no error message is returned.

The form of the NOQUOTE statement is the same as that of the QUOTE statement, except that the
word NOQUOTE is substituted for the word QUOTE. Examples of NOQUOTE statements are:

10 NOQUOTE #7,,2
20 NOQUOTE

The first example specifies the files on channels 7 and 2 and the Teletype. The second example speci-

fies the Teletype.
The form of the NOQUOTE ALL statement is:
NOQUOTE ALL
When a channel is referenced by a NOQUOTE or NOQUOTE ALL statement and that channel has a
sequential access file currently assigned to it, output to the file will be written in noquete mode. If

a sequential access file is not presently assigned to the channel, nothing is done and no error message

is returned.

The use of the QUOTE ALL or NOQUOTE ALL statement is a convenient way to set all sequential
access files currently assigned to channels into the appropriate mode, since the statements will not
return error messages about or affect unassigned channels or the Teletype, and will not damage any of

the random access files currently assigned to channels.

Quote or noquote mode can be set even if the file is in read mode because these modes have no effect

on input. They will affect the output if the file is subsequently put into write mode.

If the mode is changed from quote to noquote or vice versa, the change takes effect immediately.

Version 17 BASIC 10-14 August 1971

10.8 THE MARGIN AND MARGIN ALL STATEMENTS

Normally, the right output margin for the Teletype and sequential access files is 72 characters.
Whenever a sequential access file is assigned to a channel by a FILES or a FILE statement, the file's
output margin is automatically set to 72 characters. At the beginning of and also at the end of program
execution, the Teletype output margin is set to 72 characters. There is no margin in a random access

file.
The MARGIN and MARGIN ALL statements allow the user to set the right output margin for the Tele-
type or any sequential access file from 1 to 132 charccfers.] The form of the MARGIN statement is:
MARGIN argl, arg2, ... argn
where each argument has the form:
#N, numeric formula
The arguments can be separated by commas or semicolons. N is the channel specifier. The numeric

formula specifies the margin size; it is truncated to an integer. Either a comma or a colon can be used

to separate the channel number from the margin size.

If only the margin size is present in the argument, that argument refers to the Teletype. For example:

35 MARGIN 75, #8:132

sets a margin of 75 characters for the Teletype and a margin of 132 characters for the file on channel

8.

The form of the MARGIN ALL statement is:

MARGIN ALL numeric formula

This statement sets the sequential access files on channels 1 through 9 to the margin specified by the
numeric formula, the value of which is truncated to an integer before the margin is set. The Teletype

is not affected by the MARGIN ALL statement. Examples of the MARGIN ALL statement are:

60 MARGIN ALL 132
65 MARGIN ALL N*ABS(K(I))

Neither the MARGIN nor MARGIN ALL statement has any effect on random access files or on chan-
nels that have no files assigned to them. Consequently, the MARGIN ALL statement is a convenient

way to set a margin for all sequential access files currently assigned to channels.

]The monitor command SET TTY WIDTH must be used in addition to the BASIC MARGIN statement if
the user wishes to set the output margin for the Teletype to any size greater than 72 characters. Refer
to Section 6.7 for details.

Version 17 BASIC 10-15 February 1972

The margins set by the MARGIN and MARGIN ALL statements apply only to output. The margin for
input lines for both the Teletype and sequential access files is not affected by these statements; it is
always 142 characters. An attempt to input a line longer than 142 characters results in an error

message .

A margin set by @ MARGIN or MARGIN ALL statement takes effect as soon as a new line of output is

begun for the Teletype or the sequential access file.

Although the right margin can be set to any number between 1 and 132 characters, the margin for lines
output by WRITE statements must be ot least 7 characters to allow for the line number and its following
tab. If the margin is less than 7 characters for a line-numbered file, an error message is issued by the

first WRITE statement referencing the file.

10.9 THE PAGE, PAGE ALL, NOPAGE, AND NOPAGE ALL STATEMENTS

Normally, output to the Teletype or to sequential access files is not divided into pages; that is, it is
in nopage mode. Whenever a sequential access file is assigned to a channel by a FILES or a FILE
statement, it is automatically set in nopage mode. At the beginning and also at the end of program
exacution, the Teletype is set to nopage mode. The PAGE and PAGE ALL statements allow the user
to set a page size of any positive number of lines for the Teletype and sequential access files. The
NOPAGE and NOPAGE ALL statements allow the user to set the Teletype and sequential access files

to nopage mode. Nopage and page modes are meaningless for random access files.
The form of the PAGE statement is:
PAGE argl, arg2, ... argn
where each argument has the form:
#N, numeric formula
The arguments can be separated by commas or semicolons. N is the channel specifier. The numeric
formula is truncated to an integer and used to specify the page size. Either a comma or a colon can
be used to separate the channel number from the page size.
If only a page size is present in an argument, that argument refers to the Teletype; for example:

40 PAGE #1, 663 S0, #7:62

sets the files on channels 1 and 7 to page sizes of 66 and 62 lines respectively, and the Teletype to a

page size of 50 lines.

Version 17 BASIC 10-16 August 1971

The form of the PAGE ALL statement is:

PAGE ALL numeric formular

This statement sets the sequential access files on channels 1 through 9 to a page size specified by the
numeric formula; however, the Teletype is not affected. The value of the numeric formula is truncated

to an integer before the page size is set. An example of the PAGE ALL statement is:

£4 PAGE ALL Q(2)*B

Neither the PAGE nor PAGE ALL statement has any effect on random access files or on channels that
have no files assigned to them. Consequently, the PAGE ALL statement is a convenient way to set a
page size for all of the sequential access files currently assigned to channels. If a PAGE or PAGE ALL

statement specifies a page size of zero or less than zero, an error message is issued.

When a PAGE or PAGE ALL statement is executed for a sequential access file that is in write mode or
for the Teletype, BASIC ends the current line of output (if necessary), outputs a leading form feed,
and starts counting lines beginning with the next line output. Subsequently, whenever a new page
becomes necessary, a form feed is output and the line count is set back to zero. Execution of a <PA>
delimiter sets the line count to zero. PAGE and PAGE ALL statements can be executed for sequential
access files in read mode; in this case, the leading form feed is not output. A page size remains in
effect until another PAGE or PAGE ALL statement changes it, until a NOPAGE or NOPAGE ALL
statement is executed for that file or the Teletype, or until the end of program execution. Setting the

page size for the Teletype is further described in Chapter 6.
The form of the NOPAGE statement is:
NOPAGE argl, arg2, ... argn

where each argument has the form:

#N
or N

where N is the channel specifier. If an argument is omitted, the Teletype is specified; for example:
10 NOPAGE #35», 2

refers to the Teletype and the files on channels 2 and 3.

Since the NOPAGE statement is assumed to have at least one argument, the statement

72 NOPAGE

refers to the Teletype.

Version 17 BASIC 10-17 August 1971

The form of the NOPAGE ALL statement is:

NOPAGE ALL

The NOPAGE ALL statement sets all of the sequential access files on channels 1 through 9 in nopage

mode, but does not affect the Teletype.

Like the PAGE and PAGE ALL statements, NOPAGE and NOPAGE ALL statements have no effect on
channels that have random access files or no files assigned to them. Consequently, the NOPAGE ALL
statement is a convenient way to set all of the sequential access files currently assigned to channels

into nopage mode.

10.10 THE IF END STATEMENT

The IF END statement allows the user to determine whether or not there is any data left in a file

between the current position in the file and the end of the file.

The statement forms are:

For sequential access files:

IF END 'N,{?._’OENTO}IMQ number

For random access files:

IF END :N, {?SELO}line number

where N is the channel specifier. The line number must refer to a line in the program and must follow
the rules for line numbers discussed in Chapter 1. Either THEN or GO TO must be used in the state-
ment. The comma preceding THEN or GO TO is optional.

The IF END statement will execute for o sequential access file only if the file is in read mode; an error
message will be issued if the file is in write mode or if it does not exist. The IF END statement will
always execute for a random access file that exists because such a file does not distinguish between
read and write modes. For the purposes of the IF END statement, the end of a random access file is
considered to be just beyond the final record in the file. The LOC and LOF functions described in
Section 10.6 can also be used to determine whether or not there is any data between the current pointer

position in a random access file and the end of the file.

If an IF END statement is executed for a sequential access file that is in read mode but that has not yet
been referenced by a READ or INPUT statement, the IF END statement will assume that the file does
not have line numbers. Thus, if an IF END statement is executed for a line-numbered file that has not

been referenced by a READ statement, the IF END statement will treat line numbers as data items and

Version 17 BASIC 10-18 August 1971

will erroneocusly report that there is data in the file if only line numbers remain in the file. As soon
as a READ or INPUT statement is executed for a file, the IF END statement correctly interprets the
kind of file (line-numbered or nonline~-numbered) and can distinguish between line numbers and data.

The following example shows how the IF END statement works for sequential access files.

10
20
30
40
5@
69
70
89
%9
100
110
120
130
140
150
160
170

RUNNH

et et ot b bt
nnwaewawn

TIME:

DN D NN —

FILES TEST
SCKRATCH #1

FOk X=1 TO S
READ A

WRITE #1, A

NEXT X

RESTORE #1

FOK 1=1 TC 1v
PRINT 1 = "3 1,
IF END ¢1 THEN 170
READ #1, B(I)

PRINT B(1)
NEXT 1
PRINT "FAILED"
STOP
DATA «1,=2,-3,-45-5,-6,=7,~8,-9,~10
END

-1

-2

-3

-4

-5
?.10 SECS.

If the final record written into a random access file is record number 1804, for example, the IF END

statement will cause a transfer when it is executed only if the pointer for that file has a value of 1805

or greater at that time.

10-19 January 1974

CHAPTER 11
FORMATTED OUTPUT

The user who wishes to control the format of his output more than is permitted by the PRINT, PRINT#,
and WRITE? statements described in Chapters 6 and 10 can use the statements described in this chapter.
These statements are PRINT USING, PRINT USING#, and WRITE USING?. They all use a special

formatting string, called an image, to format their output.

11.1 THE USING STATEMENTS

The PRINT USING statement allows formatting of string and numeric output to the Teietype. The forms
of the PRINT USING statement are:

PRINT USING line number, list
PRINT USING string formula, list

The PRINT USING¥ and WRITE USING# statements allow formatting of output to data files.
PRINT USING# formats output to data files without line numbers; WRITE USING? formats output to
line=numbered data files. The forms of the PRINT USING? statement are:

PRINT USING #N, line number, list

PRINT USING #N, string formula, list

PRINT #N, USING line number, list
PRINT #N, USING string formula, list

The forms of the WRITE USING# statement are:

WRITE USING #N, line number, list
WRITE USING #N, string formula, list
WRITE #N, USING line number, list
WRITE #N, USING string formula, list

N is a numeric formula having a value from 1 through 9 that specifies the channel that the file is on.
The comma following N can be omitted in the forms in which N precedes the word USING. The list

has the form:

formula delimiter formula delimiter. . .formula

Version 178 BASIC 11-1 September 1972

The formulas are either string or numeric and the delimiters are commas or semicolons. At least one

formula must be present in the list.

The USING statements output each formula in their lists under the control of an image that specifies
the format. The image is a string of characters that describe the form of the output (integer, decimal,
string, etc.) and the plocement of the output on the output line. If the USING statement contains a
line number as its argument, the image is on the line specified by that line number. Such aline is

called an image statement and has the form:

line number : string of characters

The string of characters in an image statement is not enclosed in quotes. For example:

10 PRINT USING 20, A
20 : THE ANSWER 1S ####
Image statements cannot be terminated by the apostrophe remarks indicator because an apostrophe can

be used as a format control character in an image.

If the USING statement contains a string formula as its argument, the image is the value of the string
formula. If the string formula is a string constant, it must be enclosed in quotes. An example of the
image in the USING statement is:

1@ PRINT USING ''THE ANSWER IS ####", A

When a USING statement is executed, BASIC begins a new line of output, and the first argument in
the USING statement is output into the first specification in the image. If there are more arguments
in the USING statement than specifications in the image, a new output line is begun and the specifi-
cations in the image are used again. USING statements always write complete lines. The current
margin set for the Teletype or the data file referenced does not affect USING statements; however,

an attempt to create a line longer than 132 characters results in an error message. Quote and noquote

modes do not affect USING statements; USING statements ignore both modes.

The WRITE USING# statement performs the same functions as the PRINT USING# statement except that
WRITE USING? places a line number and o tab at the beginning of each line. Neither the line num-
ber nor the tab are specified in the image. WRITE USING? statements must be used for files that have
line numbers, and PRINT USING? statements must be used for files that do not have line numbers. If
an attempt is made to use a WRITE# or WRITE USING?# statement for a file that was previously written
by PRINT# or PRINT USING/ statements, an error message will be issued unless an intervening
SCRATCH* statement erased the file. Similarly, an attempt to use PRINT# or PRINT USING? state-
ments for a file that was previously referenced by WRITE# or WRITE USING? statements results in an

error message unless an intervening SCRATC H¥ statement erased the file.

Version 17 BASIC 11-2 February 1972

An example of PRINT USING? and WRITE USING? is shown below.

10 FILES TEST1, TEST2

20 SCRATCH #1, #2

30 A$ = "THE INDEX IS ##"
20 FOR T =1T0 3

59 PRINT USING #1, AS, T

62 WRITE USING #2, AS, T

4 NEXT T

890 END

RUNNH

TIME: @.01 SECS.

READY
COPY TESTI > TTY:
THE INDEX IS 1
THE INDEX IS 2
THE INDEX IS 3

READY

COPY TEST2 > TTY:
1000 THE INDEX IS |
10190 THE INDEX IS 2
1920 THE INDEX IS 3

READY

11.2 IMAGE SPECIFICATIONS

An image is a string that contains format characters and printing characters. The format characters
form specifications that describe how the values of the arguments of the USING statement will be
arranged on an output line. More than one specification can be present in an image, but to avoid
ambiguities when outputting numbers, the user should separate numeric specifications by string specifi-
cations, printing characters, or spaces. Note that spaces are printing characters and, therefore, as
many spaces as are inserted between specifications will be inserted between the output items. That is,
if two spaces separate a numeric specification from the preceding specification, two spaces will sepa-
rate the numbers that are output according to these specifications. If numeric specifications are not
separated from one another, ambiguities will generally exist and BASIC will make arbitrary decisions
about the specifications. In general, it will accept as much of the specifications as it can, stopping
when a character is seen that clearly delimits a specification because it considers that it has reached
the end of the specification. String specifications need not be separated from one another because

they are not ambiguous. Printing characters are output exactly as they appear in the image.

Image specifications can be divided into three major kinds:

a. Numeric image specifications
b. Edited numeric image specifications

c. String image specifications

Version 17 BASIC 11-3 August 1971

11.2.1 Numeric Image Specifications

Numeric image specifications are used to describe the formats of integer and decimal numbers. Format
characters within the image specification indicate the digits, sign, decimal point, and exponent of the
number. Numbers in BASIC normally contain eight significant digits, and never contain more than

nine significant digits. If a numeric image specification would cause a number to be output with more
than nine significant digits, zeroes are substituted for all digits after the ninth. The format characters

in all numeric image specifications must be contiguous.

The format characters used in numeric image specifications are:

(number sign)
. (decimal point)
11111 (four up—arrows)

Number signs in the specification indicate the digits in the number and a minus sign if the number
is negative. At least two number signs must be present at the beginning of the image specification;
an isolated number sign is treated as a printing character. A number sign is written in the image
specification for each digit in the number to be output plus one additional number sign to indicate
a minus sign if the number to be output is negative. For example, to output a negative four-digit
integer, at least five number signs should be written in the image specification; a non-negative
number containing four digits requires only four number signs.

11.2.1.1 Integer Image Specifications -~ Numbers can be output as integers by means of an image
specification containing only number signs, As stated above, an additional number sign must be in-
cluded in the image specification for a minus sign if the number is negative. If the number is positive
or zero, no sign is output; if the number is negative, a minus sign is output. If insufficient characters
are present in the image specification, an ampersand (&) is placed in the first position of the output
field and the field is widened to the right to accommodate the number. If the image specification
width is larger than necessary to accommodate the number, the number is right—justified in the output
field, The number to be output is truncated to an integer if it is not on integer. An example showing
integer image specifications follows.

19 FEAD 2,3,C,4D,kL
T DATA 25.6, =14,7, 4, =9,1, =41%76.3
34 PRINT USING “##ps ##4", 04, 5, C
49 LS AR EEET
5¢ PFINT USING A%, D, E
5¢ END
F UNNH
25 <14
4
-

&-41376

lOn some Teletypes, the circumflex (") is used instead of the up-arrow (1).

11-4 January 1974

11.2.1.2 Decimal Image Specifications - Decimal image spociﬁcgﬁons must contain number signs, as
in integer image specifications, and a single decimal point. Optionally, the user can include four

up-arrows (1 111) at the end of a decimal specification to indicate that the number is to be output with
an explicit exponent. A number output under control of a decimal image specification always contains

an explicit decimal point.

When four up~-arrows are present in the image specification, an explicit exponent is output in the form
Etnn. The sign of the exponent is always output, a plus sign for positive or zero exponents, a minus

sign for negative exponents (e.g., E+01),

The decimal point in the image specification causes the decimal point to be fixed in the output field.
Thus number signs that precede the decimal point in the image specification reserve space in the output
field for the digits before the decimal point and a minus sign if the number is negative. At least one
digit is always output before the decimal point, even if the digit is zero. The number signs that follow
the decimal point in the image specification reserve space for the digits ofter the decimal point in the

output field.

If the number is to be output with an explicit exponent, a position must be reserved for the sign of the
number even if the number is positive (a space is output for the sign of g positive number). When the
number with the exponent is output all of the pbsirions before the decimal point in the output field are
used and the exponent is adjusted accordingly. If the number is not to be output with an explicit
exponent, and more spaces are reserved before the decimal point than are necessary, the number is
right=justified in the output field and leading spaces are appended. If insufficient spaces are reserved
before the decimal point, an ampersand (&) is placed in the first position of the output field ond the

field is widened to the right to accommodate the number,

Whether or not the number is output with an explicit exponent, as many digits are output following
the decimal point as there are number signs following the decimal point in the image specification.

The number is rounded or trailing zeros are added if necessary.

An example of the use of decimal image specifications follows.

12 FEAD 4,3,C,D,E,F

20 SHREF AR PR, B EARS

34 PPINT USING 2@, A,B,C,D,E,r
47 DATA 10€.256, 3.6, 213.24318%
52 DATA -4.6, 3, 0.01256

A2 PEINT

72 PFINT USING 8@, 100.2, 14

8d THFRATTTT H#F L, TTTT

o END

F UNNH

12.76 4. &218.2432
"4.6@ 3; @.2126

1¢.0E+81 14.E+00

11-5 January 1974

11.2.2 Edited Numeric Image Specification

For those users who wish to output numbers in a form suitable for accounting reports, payrolls, and the
like, additional format characters can be included in numeric image specifications to cause the numbers
to be edited. The format characters used for edited numeric specifications are:

(comma)

{minus sign)

(asterisk)
(dollar sign)

o o+ |~

Comma

One or more commas in the integer part of a numeric image specification causes the digits in the out~
put number to be grouped into hundreds, thousands, etc., and separated by commas (e.g., 1,000,000).
The commas, however, cannot be in the first two places in the specification. Only one comma need
be present in the image specification for the number to be output with commas in the required places,
but a pound sign or a comma must be present in the image specification to reserve space for each comma
to ba output. For example, to print the number 1,365,072, the image specification must contain one
comma and at least eight pound signs and/or commas. It is useful, however, to position commas in the
specification where they will appear when they are output, e.g., ## ### M A comma that is not
part of a numeric image specification is treated as a printing character.

Example:
10 PRINT USING ' ###0, 444" ,1E4,1E5,1F6
20 PRINT
30 PRINT USING 4@, ~-141516.8
49 XA XX X Y]
5@ END
RUNNH
10,000
100,000

%1,000,000

-141,516.8

Trailing Minus Sign

A trailing minus sign in a numeric image specification causes the number to have its sign printed at

its end, rather than at its beginning (e.g., 27-). A trailing minus sign in a number is often used in a
report to indicate a debit. When a trailing minus sign is present in the image specification, a position
need not be saved af the beginning of the image specification for the sign of the number, since the
minus sign reserves a place for the sign. When the trailing minus sign is present in the image specifi-
cation and the output number is positive or zero, the sign field on output is blank. A minus sign that

does not end a numeric image specification is treated as a printing character.

Version 17A BASIC 11-6 May 1972

Example:

19 PRINT USING ""##4-"510,-145,137.8
20 PRINT
30 PRINT USING 40, -141516.8, ~14
20 SHHLHENPN W= FH Y
S9 END
RUNNMH
10
14~
137

1415,516.8~- 14.E+90-

Leading Asterisk

If a numeric image specification begins with two or more asterisks instead of number signs, the number
is output with leading asterisks filling any unused positions in the output field. Leading asterisks are
often used when printing checks or in any application that requires that the numbers be protected (i .e.,
so that no additional digits can be added).

Within an image specification, an asterisk can replace one or all of the number signs. In image speci-
fications with leading asterisks, negative numbers can be output only if there is a trailing minus sign

in the image specification. If a trailing minus sign is not present in the image specification and an
attempt is made to output a negative number, an error message will be issued. Thus, an additional
position need not be saved for o leading sign. Four up-arrows cannot be present in an image specifi-
cation that contains leading asterisks. Thus, numbers with explicit exponents cannot be output with
leading asterisks. An isolated asterisk in an image is treated as a printing character.

An example showing image specifications with leading asterisks follows.

10 AS="khk, nn'

20 READ XsYoZasWal

25 DATA 13565 45775 315 19.612, 100.50
30 PRINT USING AS», XsYs»ZaW,oU

35 PRINT

49 PRINT USING *"*%xix,x%% *x##-", 1E6,-1E3
S0 END

RUNNH

*13056

*%4.58

**3 .10

*’9.61

100 .50

1,000,000 1000-

Version 17 BASIC 11-7 August 1971

Floating Dollar Sign

If a numeric image specification begins with two or more dollar signs instead of number signs, the num-
ber is output with a floating dollar sign. That is, a dollar sign is always output in the position immedi-
ately preceding the first digit of the number, even if there are fewer digits in the number than there
pesitions specified in the image specification. This capability is often used to protect checks so that
there are never any spaces left between the dollar sign and the number.

The dollar sign can replace any or all of the number signs in the image specification (i.e., $$$$.$$ is
exactly the same as $$?* .##), An odditional position ot the beginning of the image specification must
be indicated to save a place for the dollar sign in the output field.

When the floating dollar sign is used in the image specification, negative numbers can be output only
if there is o trailing minus sign. If a trailing minus sign is not present in the image specification and
an attempt is made to output a negative number, an error message is issued. Thus, a space need not be
reserved for a leading sign in the output fleld. Four up=-arrows cannot be present in o numeric image
specification that contains dollor signs. Thus, numbers with explicit exponents cannot be output with
floating dollar signs. An isolated dollar sign in an image is treated as a printing character.

An example showing floating dollar sign specifications follows. Note that the imoge in line 10 con-
tains a decimal numeric image specification that is preceded by a dollar sign. This single dollar sign
is treated as a printing character and, as shown in the example, is fixed in the output field.

10 1588S.58 SHsas 04

20 READ A,B.,C

25 DATA 100.43, 19.678, 9.97
30 PRINT USING 10, A»,A»,BsB,C»C
3s PRINT

49 PRINT USING *$%5,555",1000
59 END

RUNNH

$100.43 S 100.43
$19.68 $ 19.68
$0.97 % P.97

51,000

11.2.3 String Image Specifications

The string image specifications allow the user to right-justify, left-justify, or center strings in the
output field. In addition, the user can specify an image that causes the width of the output field to be
extended if the string is larger than the image specifies. The format characters used for string output

are:

Version 17 BASIC 11-8 August 1971

(apostrophe)
(center)
(left-justify)
(right~justify)
(extend)

morrO -

A string image specification contains one apostrophe (') and as many of the format characters C, L, R,
or E as are necessary to output the string. The apostrophe is counted with the format characters when
BASIC determines the length of the output field. The format characters cannot be mixed within an
image specification. If the image specification contains only the apostrophe, only the first character

in the string is output. The characters in a string image specification must be contiguous.

C Format Character

C format characters following the apostrophe in a string image specification cause the string to be

centered in the output field. If a string cannot be exactly centered (e.g., a two-character string in a
three~character field), it will be off-center one character position to the left. If the string to be out-
put is longer than the image specification, the string is left-justified in the output field and the right-

most characters that overflow are truncated.

L Format Character

L format characters following the apostrophe in a string image specification cause the string to be left-
justified in the output field. If the string to be output is longer than the image specification, the string
is left-justified in the field and the rightmost characters that overflow are truncated.

R Format Character

R format characters following the apostrophe in a string image specification cause the string to be
right-justified in the output field. If the string to be output is longer than the image specification, the
string is left-justified in the field and the rightmost characters that overflow are truncated.

E Format Character

E format characters following the apostrophe in a string image specification cause the string to be left-
justified in the output field. If the string to be output is longer than the image specification, the out-

put field is widened (extended) to the right to accommodate all the characters in the string.

The following example shows the use of string image specifications.

Version 17 BASIC 11-9 August 1971

120 : 'Cccc 'EFFE 'LLLL “Kkkk O °
110 INPUT AT
120 IF A$="STOP'" GO TO 159
130 PRINT USING 1040, A$,A5,A8,A%,A%
140 GO TO 119
150 END
RUNNH
?ABCD
ABCD ABCD ABCD ABCD A
?ABCDEF
ARCDFE ARCDEF ABCDE ABCDE A
?A
A A A A A
?5TOP

Note that the last three fields in the second line printed are displaced one position because of the field

extension necessary in the second field of the line.

11.2.4 Printing Characters

All characters in an image that are not format control characters are printing characters. Printing

characters are output exactly as they appear in the imoge. Format control characters only appear as

part of image specifications; if a character used as a format control character (e.g., $, E, *) does

not appear as part of an image specification, it is treated as a printing character. If the USING

statement does not use all of the specifications in an image, all of the printing characters except those

following the unused specifications are printed. Similarly, if the USING statement uses the specifica-

tions in an image more than once, the printing characters in the image will be output as many times as

the image is used.

An example showing the use of printing characters in images follows.

: 'E TRUNCATED

1a 'RRRR ROUNDED
23 : THFE DATE IS: 'RRRRRRR1972
30 :A=##4 AND THE SQUARF ROOT OF A=##
40 PRINT USING 20,'"1~-JULY-"
57 PRINT
60 PRINT USING 17, "ALL NUMERIC QUTPUT FKOM THIS PROGRAM IS"
70 PRINT
8 A=25
97 PRINT (JSING 30, 4, SARCA)
172 END
READY
HINNH
THE DATF IS: l-JULY=-1972

ALL NJMERIC OJOUTPUT FRCM THIS PROGRAM IS TRUNCATED

a=

Version 17B BASIC

25 AND THE SCIUJARE RKCOT

OF A= 5

11-10 September 1972

APPENDIX A
SUMMARY OF BASIC STATEMENTS

A.1 ELEMENTARY BASIC STATEMENTS

The following subset of the BASIC command repertoire includes the most commonly used commands and

is sufficient for solving most problems.

DATA [data list]
READ [sequence of variables]

DATA statements are used to supply one or more
numbers or alphanumeric strings to be accessed by
READ statements. READ statements, in turn, assign
the next available data, numeric or string as appro-
priate, in the DATA statement to the variables
listed.

Types the values of the specified formulas, which
may be separated by format control characters. If
two formulas are not separated by one or more for-
mat control characters, they are treated as though
they were separated by a semicolon.

PRINT [sequence of formulas and
format control characters]

LET [variable] = [formulal or
[variable]l = [formulal

GO TO [line number]

IF [formulal [relation] [formulal,

{Z;Hét;{o} [line nrumber]

Assigns the value of the formula to the specified
variable.

Transfers control to the line number specified and
continues execution from that point.

If the stated relationship is true, then transfers con-
trol to the line number specified; if not, continues
in sequence. The comma preceding THEN and GO
TO is optional.

FOR [nun:e:lc = [formulo]] TO Used for looping repetitively through a series of
vartaole] STEP steps. The FOR statement initializes the variable
[formulaz] { BY } [Formulcs] to the value of formula) and then performs the fol-
. lowing steps until the NEXT statement is encountered.
NEXT [numeric or The NEXT statement increments the variable by the
variable | value of formulag. (If omitted, the increment value

numeric numeric
NEXT [voriable, variable, ...

Version 17B BASIC

numeric
variable

is assumed to be +1.) The resultant value is then
compared to the value of formulay. If variable
<formula,, control is sent back to the step following
the FOR statement and the sequence of steps is re-
peated; eventually, when variable > formula,,, con-
trol continues in sequence at the step following the
current NEXT argument.

A-1 September 1972

GO TO .
ON [, THEN } [line mrnbor],]

[line numbcrz,] «eoo[line rumber]

DIM [verioble] (subscript) or
DIMENSION [variable] (subscript)

END

A.2 ADVANCED BASIC STATEMENTS

GOSUB [line number]
[line number]

Subroutine

RETURN
INPUT [variable(s)]

sTOP
REM
RESTORE
r;!'ring formula |
CHANGE or
L_uumﬂ'it: vector |
TO
[numeric vector]
or

siring variable

CHAIN [string formulal
or CHAIN [string formulal ,
[numeric formulal

MARGIN [numeric formulal

PAGE [numeric formulal

NOPAGE
QUOTE
NOQUOTE

Version 17B BASIC

If the integer portion of x = 1, transfers control to
line numbery, if x = 2, to line number,, etc. [x]
may be a formula. The comma preceding GO TO
and THEN is optional.

Enables the user to enter a table or array with a
subscript greater than 10 (i.e., more than 10 items).

Last statement to be executed in the program, and
must be present.

Simplifies the execution of a subroutine at several
different points in the progrom by providing an auto-
matic RETURN from the subroutine to the next se-
quential statement following the cppropriate GOSUB
(the GOSUB which sent control to the subroutine).

Causes typeout of a ? to the user and waits for user
to respond by typing the value(s) of the variable(s).

Equivalent to GO TO [line number of END state-
ment] ,

Permits typing of remarks within the program. The
insertion of short comments following any BASIC
statement (except an imoge statement) is accom-
plished by preceding such comments with an apos-

trophe (').

Sets pointer back to beginning of string of DATA
values.

Changes a string formula to @ numeric vector, or
changes a numeric vector to a string variable.

Stops execution of the current program and begins
execution of the new progrom ot the beginning or
at the specified line.

Sets the Teletype to the specified output margin.

Output to the Teletype is divided into pages of the
specified length.

Output to the Teletype is not divided into pages.
The Teletype is set to quote mode (see Chapter 10).
The Teletype is set to noquote mode (see Chapter 10).

A-2 September 1972

line number
PRINT USING or
al .,

string formul
[sequence of formulas]

A.3 MATRIX INSTRUCTIONS

Types the values of the formulas in the format de-
termined by the image specified by the line number
or string formula.

NOTE

The word "vector"” may be substituted for the word
"matrix"” in the following explanations.

MAT READ a, b, ¢

MAT ¢ = ZER
MAT ¢ = CON
MAT ¢ = IDN

MAT PRINT a, b, ¢
MAT INPUT v
MAT b =a
MATc=a+bh
MATc=a-b
MATc=a*h

MAT ¢ = TRN(a)
MAT c= (k) * a

MAT ¢ = INV(a)

Read the three matrices, their dimensions having
been previously specified.

Fill out ¢ with zeros.

Fill out c with ones.

Set up ¢ as an identity matrix.
Print the three matrices.

Input a vector,

Set matrix b = matrix a.

Add the two matrices, aand b.
Subtract matrix b from matrix a.
Multiply matrix a by matrix b.
Transpose matrix a.

Multiply matrix a by the number k. (k, which
must be in parentheses, may also be given by a
numeric formula.)

Invert matrix a.

(Refer to Section A.5 for the special matrix functions NUM and DET,)

A.4 DATA FILE STATEMENTS

FILE [sequence of [channel specifier]
[filename arguments]]

FILES [sequence of filename arguments]

SCRATCH [sequence of channel
specifiers]

RESTORE [sequence of channel
specifiers]

Version 17 BASIC

Assigns files to channels during program execution.

Assigns files to channels before program execution
begins.

Erases a sequentiat access file and puts it in write
mode; or erases a random access file and sets the
record pointer to the beginning of the file.

Puts a sequential access file in read mode or sets
the record pointer for a random access file to the
beginning of the file.

A-3 August 1971

WRITE [channel specifier]
[sequence of formulosl

READ [channel specifier]
[sequence of variables]

PRINT [channel specifier]
(sequence of formulas]

INPUT [chonnel specifier]
[sequence of variables]

IF END [channel specifier],

g‘é'}{o} [line number]

MARGIN [sequence of [channel
specifier] [numeric formulal]

MARGIN ALL [numeric formulal

"\

PAGE [sequence of [channel
specifier] [numeric formulall

PAGE ALL [numeric formulal

NOPAGE [sequence of channel
specifiers]

NOPAGE ALL

QUOTE [sequence of channel
specifiers]

QUCTE ALL

NOQUOTE [sequence of channel
specifiers]

NOQUOTE ALL

SET [sequence of [channel specifier]

[numeric formulal]

PRINT [channel specifier] , USING

line number
or ’

| string formula
-

or

(sequence of
formulasl

[line number 7 [sequence of
string formulaj formulasl

Version 17 BASIC

PRINT USING ([channel specifier] ,

Causes data to be output to a file on the specified
channel. Used for sequential access files with line
numbers, or for random access files.

Causes data to be input from a file on the specified
channel. Used for sequential access files with line
numbers or for random occess files.

Causes data to be cutput to a file on the specified
channel. Used for sequential access files without
line numbers or for random access files.

Causes dato to be input from a file on the specified
chonnel . Used for sequential occess files without
line numbers or for random access files.

Determines whether or not there is data in o file
between the current position and the end of the file.
The comma preceding THEN or GO TO is optional.

Sets the specified output margins for the sequential
access files on the specified channels.

Sets the specified output margin for the sequential
access files on channels 1 through 9.

Sets the specified output page sizes for the sequential
access files on the specified channels,

Sets the specified output page size for the sequential
access files on channels 1 through 9.

Output to the sequential access files on the spec-
ified channels is not divided into pages.

Output to the sequential access files on channels
1 through 9 is not divided into pages.

Puts the sequential access files on the specified
channels into quote mode (see Chapter 10),

Puts the sequential access files on channels 1
through 9 into quote mode (see Chapter 10).

Puts the sequential access files on the specified
channels into noquote mode (see Chapter 10),

Puts the sequential access files on channels 1
through 9 into noquote mode (see Chapter 10).

Moves the record pointers for random access files.

Causes data to be output to a sequential access file
without line numbers on the specified channel .

The data is output in the format determined by the
image specified by the line number or string for-
mula. In the first form, the comma following the
channel specifier can be omitted.

A-4 August 1971

WRITE [chonnel specifier] , USING

[’mo nomber [sequence of
or ! formulasl

string formula

or

WRITE USING [channel specifier],

line number [sequence of
or ’ formulasl

string formula

A.5 FUNCTIONS

Causes data to be output to a line-numbered se-
quential access file on the specified channel. The
data is output in the format determined by the image
specified by the line number or string formula. In
the first form, the comma following the channel
specifier can be omitted.

In oddition to the common arithmetic operators of addition (+), subtraction (=), multiplication (*),
division (/), and exponentiation (* or **), BASIC includes the following elementary numeric functions:

SIN (numeric formula) COT (numeric formula) LOG, or LN, or LOGE (numeric formula)

COS (numeric formula) ATN (numeric formula) ABS
TAN (numeric formula) EXP (numeric formula) SQR or SQRT

(numeric formula)
(numeric formula)

CLOG or LOGIO

(numeric formula)

Some advanced numeric functions include the following:

INT (numeric formula)

RND

SGN (numeric formula)

TIM

Finds the greatest integer not greater than its argu-
ment.

Generates random numbers between 0 and 1. The
same set of random numbers can be generated re-
peatedly for purposes of program testing and debug-
ging. The statement

RANDOMIZE

can be used to cause the generation of new sets of
random numbers,

Assigns a value of 1 if its argument is positive, 0
if its orgument is 0, or -1 if its argument is negative.

Returns the elapsed execution time, in seconds,
since the program started execution. The time does
not include compile and load time except when
progroms are chained. In such a case, the compile
and load times of the programs after the first are in-
cluded in the time returned.

Two functions used with matrix computations are as follows:

NUM
DET

Two functions for use with random access files are:

LOC (channel specifier)

LOF (channel specifier)

Version 17B BASIC

Equals number of components following an INPUT.

Equals the determinant of a matrix after inversion.

Returns the number of the current record in the file
on the specified channel.

Returns the number of the last record in the file on
the specified channel.

A-5 September 1972

Functions for manipulating strings are:

ASC (one character or a 2~ or
3-letter code)

CHR$ (numeric formula)

INSTR (numeric formula, string
formula, string formula)
or
INSTR (string formula, string
formula)

LEFTS (string formula, numeric
formula)

LEN (string formula)

MIDS$ (string formula, numeric
formula, numeric formula)
or
MIDS (string formula, numeric
formula)

RIGHTS (string formula, numeric
formula)

SPACE$ (numeric formula)

STR$ (numeric formula)
VAL (string formula)

Returns the decimal ASCII code for its argument.
The two~- or three-letter codes are listed in Table
8-1.

The opposite function to ASC. The argument is

truncated to an integer that is interpreted as an

ASCII decimal number; a one-character string is
returned.

Searches for the second string within the first string
argument. In the first form, the search starts ot the
character position specified by the numeric formula,
truncated to an integer. In the second form, the
search starts at the beginning of the string. Returns
zero if the substring not found; returns the position
of the first character in the substring if it is found.

Returns a substring of the string formuia, storting
from the left. The substring contains the number of
characters specified by the numeric formula trun-
cated to an integer.

Refurns the number of characters in its argument.

Returns a substring of the string formula, starting at
the character position specifiad by the first numeric
formula truncated to an integser. In the first form,
the substring contains the number of characters
specified by the second numeric formula truncated
to an integer. In the second form, the substring
continues to the end of the string.

Returns a substring of the string formula, starting
from the right, containing the number of characters
specified by the numeric formula truncated to an
integer.

Returns a string of the number of spaces specified
by the numeric formula truncated to an integer.

Returns a string representation of its argument.

The opposite function to STRS. Returns the number
that the string argument represents.

The user can also define his own functions by use of the DEFine statement. For example,

[line number] DEF FNC(x) = SIN (x) + TAN(x) - 10

where x is a dummy varicble. (Define the user function FNC as the formula SIN(x) + TAN(x) - 10.)

NOTE

DEFine statements may be extended onto more than one
line; all other statements are restricted to a single line
(refer to Section 5.1.5).

Version 17 BASIC A-6 August 1971

APPENDIX B

BASIC DIAGNOSTIC MESSAGES

Most messages typed out by BASIC are self-explanatory, BASIC diagnostic messages are divided into

three categories and listed in the three tables below:

a. Command errors in Table B-1
b. Compilation errors in Table B-2

c. Execution errors in Table B-3

Table B-1
Command Error Messages

Message

Explanation

PCANNOT INPUT FROM THIS DEVICE

?CANNOT OUTPUT TO THIS DEVICE
?CANNOT OUTPUT filenm. ext

?CATALOG DEVICE MUST BE DISK OR
DECtape

2COMMAND ERROR (YOU MAY NOT OVER-
WRITE LINES OR CHANGE THEIR ORDER)

?COMMAND ERROR (LINE NUMBERS MAY
NOT EXCEED 99999)

?DELETE COMMAND MUST SPECIFY WHICH
LINES TO DELETE

?DUPLICATE FILENAME, REPLACE OR
RENAME

?DUPLICATE SWITCH IN QUEUE ARGUMENT

?FILE dev:filenm.ext COULD NOT BE
UNSAVED

?FILE dev:filenm.ext NOT FOUND

An attempt has been made to input to a device that
can only do output, or vice versa.

A COPY, SAVE, or REPLACE command could not
enter a file to output it. The actual name of the
file is typed, not filenm,ext.

A device other than disk or DECtape was specified
in a CATALOG command,

The given RESEQUENCE command would have
changed the order of lines in the file. The com-
mand is ignored,

The given RESEQUENCE command is not executed
for that reason.

A DELETE command has no arguments,

User tried to SAVE a file that already exists.

Two switches of the same type have been specified

for one QUEUE argument.

A file that was requested did not exist,

Version 17 BASIC

B-1 February 1972

Table B-1 (Cont)
Command Error Messages

Message

Explonation

?LINE TOO LONG
?LOGOUT FAILED -- TRY AGAIN

PMISSING LINE NUMBER FOLLOWING
LINE nn*

?NO SUCH DEVICE, device

?PPAGE LIMIT >9999 OR < 1 IN QUEUE
ARGUMENT

?QUOTA EXCEEDED OR BLOCK NO, TOO
LARGE ON QUTPUT DEVICE

?THIS COMMAND IS NOT IMPLEMENTED FOR
THIS MONITOR

PUNDEFINED LINE NUMBER mm IN LINE nn

PUNSAVE DEVICE MUST BE DISK OR DECTAPE,
FILE dev:filenm, ext

PWHAT?

?>63 OR <1 COPIES REQUESTED IN QUEUE
ARGUMENT

A line of input is greater than 142 characters, not
counting the terminating carriage return, line feec, |

A BYE or GOODBYE command could not transfer
control to the LOGOUT cystem program.,

During @ WEAVE or OLD command, o line without
o line number was found in the file., The line is
thrown oway.

The device is not available,

A LIMIT switch for a QUEUE argument was out of
bounds.

Normally, this indicates that all of the pace altow-
ed on the output device has been used; no more can
be output to this device unless some of the user's
files are deleted from it. This con also meen that
the block numer is too lorge for the output device,

A device other than disk or DECtape was specified
in an UNSAVE command.

Catechall command error.

A COPIES switch for a QUEUE argument was out of
bounds.

*If the current program was called by @ CHAIN stotement, the name of the currant progrom is appended

to the error message.

Version 17 BASIC

Februarn 1072

Table B-2
Compilation Error Messages

Message

Explanation

?BAD DATA INTO LINE n
?DATA IS NOT IN CORRECT FORM

?END IS NOT LAST IN nn
?EOF IN LINE nn

?FAILURE ON ENTRY IN LINE nn
?FNEND BEFORE DEF IN LINE nn
?FNEND BEFORE NEXT IN LINE nn

?FOR WITHOUT NEXT IN LINE nn
?2GOSUB WITHIN DEF IN LINE nn
?PFUNCTION DEFINED TWICE IN LINE nn
?ILLEGAL ARGUMENT FOR ASC FUNCTION
IN LINE nn

?ILLEGAL CHARACTER IN LINE nn
?ILLEGAL CONSTANT IN LINE nn
?ILLEGAL FORMAT IN LINE nn
?ILLEGAL FORMAT WHERE THE WORDS
THEN OR GO TO WERE EXPECTED IN
LINE nn

?ILLEGAL FORMULA IN LINE nn
?ILLEGAL INSTRUCTION IN LINE nn

?ILLEGAL LINE REFERENCE IN LINE nn

?ILLEGAL LINE REFERENCE mm IN LINE nn

?ILLEGAL RELATION IN LINE nn
?ILLEGAL VARIABLE IN LINE nn

Input data is not in correct form.

Incorrect number or string data in a DATA state-
ment,

An attempt was made to read data from a file after
all data had been read.

Channel is not available for SCRATCH command.
FNEND occurs, but not in a function DEF.
A FOR occurred in a DEF, but its NEXT did not.

A GOSUB statement is within a multiple line DEF.

A meaningless character; e.g., DIMF (1).

Catchall for other syntax errors.

Syntax error in arithmetic formula.

The first three non-blank, non-tab characters of
the statement do not match the first three charac-
ters of any legal statement.

BASIC syntax required an integer, but user typed
something else; e.g., GO TO A.

In line nn, line mm was referred to illegally
because:

a. Line mm is a REM

b. The first character in line mm is an
apostrophe {').

c. One of the lines nn or mm is inside
a function; the other is not inside
that function.

Incorrect IF relation.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST.BAK.

Version 178 BASIC B-3

September 1972

Table 8-2 (Cont)
Compilation Error Messages

Message

Explanation

2?INCORRECT NUMBER OF ARGUMENTS IN
LINE nn

?INITIAL PART OF STATEMENT NEITHER
MATCHES A STATEMENT KEYWORD NOR
HAS A FORM LEGAL FOR AN IMPLIED LET--
CHECK FOR MISSPELLING IN LINE nn

?MIXED STRINGS AND NUMBERS IN LINE nn

?NESTED DEF IN LINE nn
?NEXT WITHOUT FOR IN LINE nn
?nn IS NOT AN IMAGE IN LINE nn

?NO CHARACTERS IN IMAGE IN LINE nn
?NO DATA

?NO END INSTRUCTION

?NO FNEND FOR DEF FNx

?0UT OF ROOM

?PRETURN WITHIN DEF IN LINE nn

?SPECIFIED LINE IS NOT AN IMAGE IN
LINE nn

PSTRING RECORD LENGTH >132 OR<C 1IN
LINE nn

?STRING VECTOR IS 2-DIM ARRAY

A function used with the wrong number of argu-
ments,

Line nn illegally contains a string variable or lit-
eral because:

a. No-element of this statement may be a
string.

b. All elements must be strings but some
were not,

DEF within multiline DEF.

The specified line was referenced by a USING
statement as an image, but it is not an image state-
ment.

Program contains READ but not DATA,

The multiline DEF for FNix (the actual function
neme, not FNx is typed) has no FNEND.

Cannot get more core to make room for:
a. More compilation space.

b. Maximum space for all the vectors
and arrays

c. Space to store another string during
execution,

A RETURN statement is within a multiple line DEF.

The length of a record in a string random access
file was specified as greater than 132 or less than 1.

The user managed to do this error despite many
other checks.

NOTE: [f the current progrom was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA N TEST. BAK.

Version 17B BASIC

B-4

September 1972

Table B-2 (Cont)
Compilation Error Messages

Explanation

?SYSTEM ERROR
?2TOO MANY FILES IN LINE nn

?PUNDEFINED FUNCTION -- FNx
PUNDEFINED LINE NUMBER mm IN LINE nn

?PUSE VECTOR, NOT ARRAY IN LINE nn
?VARIABLE DIMENSIONED TWICE IN LINE nn

?VECTOR CANNOT BE ARRAY IN LINE nn

?Character, WAS SEEN WHERE character

WAS EXPECTED IN LINE nn 2

An |/0 error, or the UUO mechanism drops a bit,
or something similar to those errors.

A maximum of nine files can be open at one time
in a program.
The actual function name, not FNx, is typed.

In line nn, mm is used as a line number. Line num-
ber mm does not exist.

A varigble previously defined as a two-dimensional
array is now used in MAT input or CHANGE.

A variable previously used in a MAT INPUT or
CHANGE statement is now defined as a 2-dimen-
sional array in a DIM statement.

An erroneous character was used in place of the
correct character. Character, and character,, are
replaced by the appropriate characters or “a
phrase describing the characters when the message
is issued.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST.BAK,

Table B~3
Execution Error Messages

Message

Explanation

%ABSOLUTE VALUE RAISED TO POWER IN
LINE nn

?PATTEMPT TO OUTPUT A NEGATIVE NUMBER
TOA $ OR* FIELD IN LINE nn

PATTEMPT TO OUTPUT A NUMBER TO A
STRING FIELD OR A STRING TO A NUMERIC
FIELD IN LINE nn

2ATTEMPT TO READ#¥ OR INPUT# FROM A
FILE WHICH DOES NOT EXIST IN LINE nn

2ATTEMPT TO READ# OR INPUT# FROM A
FILE WHICH IS IN WRITEf OR PRINT# MODE
IN LINE nn

A USING statement attempted to output a negative
number to a floating dollar sign or leading asterisk
field that did not end in a minus sign.

A USING stotement attempted to output a number
to a string field or a string to a numeric field.

An attempt was made to read from a file that does
not exist on the user's disk area.

An attempt was made to read from a sequential
access file that is not in read mode.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST, BAK.

Version 17B BASIC B-5

September 1972

Table B-3 (Cont)
Execution Error Messages

Message

Explanation

PATTEMPT TO WRITE A LINE NUMBER
>99,999 IN LINE nn

2ATTEMPT TO WRITE? OR PRRINT? TO A
FILE WHICH HAS NOT BEEN SCRATCH¥ED
IN LINE nn

?2ATTEMPT TO WRITE? OR RRINT? TO A
FILE WHICH IS IN READ# OR INPUT#
MODE IN LINE nn

?2CHR$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?DATA FILE LINE TOO LONG IN LINE nn

?DIMENSION ERROR IN LINE nn
%DIVISION BY ZERO I[N LINE nn

PEXPONENT REQUESTED FOR * OR $ FIELD
IN LINE nn

?FILE IS NOT RANDOM ACCESS IN LINE nn

PFILE NEVER ESTABLISHED -~ REFERENCED
IN LINE nn

?FILE NOT FOUND BY RESTORE COMMAND
IN LINE nn

?FILE filenm.ext ON MORE THAN ONE
CHANNEL IN LINE nn

?FILE NOT IN CORRECT FORM [N LINE nn

?FILE RECORD LENGTH OR TYPE DOES NOT
MATCH IN LINE nn

?IF END ASKED FOR UNREADABLE FILE IN
LINE nn

access file that is not in write mode.

- A data error has been detected in a string random

An attempt was mode to write to a sequential
access file that is not in write mode.

An attempt was made to write to a sequential

The argument to the CHR$ function was less than
zero or greater than 127.

An attempt has been made to read from a data file
a line which is greater than 142 characters long.

The user fried to establish the some file on more
than one channel. The actual filenome and ex-
tension are typed, not filenm,ext.

access file.

An existing random access file does match the type
or record length specified for it in a FILE statement.

t An OVERFLOW error message means that an attempt has been made to create a number larger in mag-
nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is retumed (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1.4E «39); in this
case, zero is returned and execution continues. Division by zero is considered overflow; the largest

representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST. BAK.

B-6

Table B-3 (Cont)
Execution Error Messages

Message

Explanation

?ILLEGAL CHARACTER IN STRING IN LINE

?ILLEGAL CHARACTER SEEN IN LINE nn

?ILLEGAL FILENAME IN LINE nn

nn

?ILLEGAL LINE REFERENCE IN RUN (NH) OR

CHAIN
?IMPOSSIBLE VECTOR LENGTH IN LINE nn

?INPUT DATA NOT IN CORRECT FORM --
RETYPE LINE

?INSTR ARGUMENT OUT OF BOUNDS IN
LINE nn

?LEFT$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?LINE NUMBER OUT OF BOUNDS IN LINE

nn

%LOG OF NEGATIVE NUMBER IN LINE nn
%LOG OF ZERO IN LINE nn

%MAGNITUDE OF SIN OR COS ARG TOO
LARGE TO BE SIGNIFICANT IN LINE nn

?MARGIN OUT OF BOUNDS IN LINE nn

?MARGIN TOO SMALL IN LINE nn

?MID$ ARGUMENT QUT OF BOUNDS IN
LINE nn

?MIXED RANDOM & SEQUENTIAL ACCESS
IN LINE nn

An attempt has been made to write onto a data
file a string containing an embedded line termina-
tor or quote.

An attempt has been made to create an illegal
character in a CHANGE statement.

The string argument is not in the correct form. If
the argument is variable, check that it has been
defined.

The line ot which execution is to begin is inside a
multiline DEF.

In a CHANGE (to string) statement, the zero ele-
ment of the number vector was negative or exceeded
its maximum dimension.

The line number argument is less than zero or -
greater than 99,999. The RUN (NH) commands
return a ?WHAT? message in this situation.

When the argument for COS or SIN is too large to
be significant, this message is issued and an onswer
of 0 returned.

A MARGIN or MARGIN ALL statement specified a
margin greater than 132 characters or less than 1
character.

A WRITE# statement referenced a file that has o
margin of fewer than seven characters.

A rondom access statement or function referenced
a sequential access file, or vice versa.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN LINE 20 IN TEST. BAK.

Version 17B BASIC

September 1972

Table B-3 (Cont)
Execution Error Messages

Message Explanation

?MIXED READ# ANPUT? IN LINE nn An attempt was made to reference a file with both
a READ# and on INPUTY statement without an inter-
vening RESTORE? statement .

2MIXED WRITE? /PRINT# IN LINE nn Anaga t was mode to reference a file with both
a WRITE? and o PRINT? statement without an inter-
vening SCRATCHY statement.

?NEGATIVE STRING LENGTH IN LINE nn In a MID$, LEFTS, or RIGHTS function, a negotive
- number of characters was specified for a substring.

?NO FIELDS IN IMAGE IN LINE nn An image contains nelther string nor numeric fields.

?NO ROOM FOR STRING IN LINE nn In a CHANGE A$ TO A, the number of characters

in AS exceeds the maximum size of A. A DIM
statement appropriately increasing the size of A
will cover this.

?NQ SUCH LINE IN RUN (NH) OR CHAIN The specified line doss not exist in the program.
?NOT ENOUGH -- ADD MORE
?0N EVALUATED OUT OF RANGE IN LINE nn| The value of the ON index was <1 or> the num-

ber of branches.
?0UT OF DATA IN LINE nn
?OUTPUT ITEM TOO LONG FOR LINE IN In quote mode, an attempt was made to write a
LINE nn string or number that is too long to fit on one line.
?0UTPUT LINE 132 CHARACTERS IN A line of output created by a USING statement
LINE nn is greater than 132 characters.
?0UTPUT STRING LENGTH RECORD An attempt has been mode to output to a random
LENGTH IN LINE nn access file a string which is too long to fit in one
record.
%OVERFLOW IN LINE nn t
%OVERFLOW IN EXP IN LINE nn An exponent greater than 88.028 has been speci-

fied for the EXP function. An answer of the largest
representable number is returned and execution con-
tinues.

T An OVERFLOW error message means that an attempt has been made to create a number larger in mag-
- nitude than the largest number representable in the computer (approximately 1.7E + 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1.4E - 39); in

this case, zero is returned and execution continues, Division by zero is considered overflow; the
largest representable positive number is returned.

NOTE: If the current progrom was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST,.BAK.

B-8

Table B-3 (Cont)
Execution Error Messages

Message

Explanation

?PAGE LENGTH OUT OF BOUNDS IN LINE nn

?QUOTA EXCEEDED OR BLOCK NQ. TOO
LARGE ON OUTPUT DEVICE

PRETURN BEFORE GOSUB IN LINE nn

PRIGHTS ARGUMENT OUT OF BOUNDS IN
LINE nn

?SET ARGUMENT OUT OF BOUNDS IN
LINE nn

% SINGULAR MATRIX INVERTED IN LINE nn

?SPACE$ ARGUMENT OUT OF BOUNDS IN
LINE nn

%SQRT OF NEGATIVE NUMBER IN LINE nn

?STRING FORMULA 132 CHARACTERS IN
LINE nn

?STRING RECORD LENGTH
LINE nn

1320R 1IN

?SUBROUTINE OR FUNCTION CALLS ITSELF
IN LINE nn

%TAN OF P1/2 OR COTAN OF ZERO IN
LINE nn

?TOO MANY ELEMENTS ~- RETYPE LINE

A PAGE or PAGE ALL statement specified a page
length of less than one line.

Normally, this indicates that all of the space
allowed on the output device has been used; no
more can be output to this device unless some of
the user's files are deleted from it. It may also
mean that the block number is too large for the
output device.

The user attempted to set the value of the pointer
to zero or to a negative number.

The SPACES$ function was requested to return a
string that was less than or equal to zero or greater
than 132 characters.

A string formula contains more than 132 characters.

The record length for a string random occess file
was specified as less than one or greater than 132
characters,

FNA is defined in terms of FNB which is defined
in terms of FNA, or a similar situation with FUNC-
TIONS or GOSUBS.

Version 178 BASIC

NOTE: [f the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

Sepf'ember 1972

Table B=3 (Cont)
Execution Error Messages

Message Explanation

%UNDERFLOW [N EXP IN LINE nn An exponent less than -88.028 has been specified
for the EXP function. An answer of zero is re-

turmed and the execution continues. T

% UNDERFLOW IN LINE nn t
?VAL ARGUMENT NOT IN CORRECT FORM The string argument to the VAL function does not
IN LINE nn represent a legal number,

%ZERO TO A NEGATIVE POWER IN LINE nn

t An OVERFLOW error message means that an attempt has been made to create a number larger in mag-
nitude than the lorgest number representable in the computer (opproximately 1,7E + 38); when this
occurs, the largest representable number is returned (with the correct sign) and execution continues.
An UNDERFLOW error messoge means that an attempt has been made to create o nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1.4E - 39); in

this case, zero is returned and execution continues. Division by zero is considered overflow; the
largest representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the nome of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST.BAK.

APPENDIX C
TAPE AND KEY COMMANDS

The TAPE and KEY commands are designed for user Teletypes with attached paper-tape readers; for
example, the LT33B shown in Figure C-1.

UNLOCK
REL

B. SP.

Lock "oN'

START

STOP
FREE

OFF
LINE O LocAL

Figure C-1 LT33B Teletype

C.1 KEY AND TAPE MODES

KEY mode is produced by typing the KEY command to BASIC. In this mode, the user types input to
BASIC on the keyboard in the normal manner. KEY mode is also the default mode.

TAPE mode is produced by typing the TAPE command to BASIC. The user initiates this mode whenever
he wants to input from the paper tape reader while the Teletype is in LINE mode.

C.2 PREPARING AN INPUT TAPE IN LOCAL MODE

The following procedure should be followed for preparing an input tape.

Step Procedure

1 Turn the Teletype control to LOCAL (see Figure C-1).
2 Feed blank tape into the punch.

3 Depress the LOCK "ON" control.

4 Generate the leader tape by doing the following:

a. Depress the SPACE bar several times,
b. Depress the RETURN key once.
c. Depress the LINE FEED key once.

5 Type on the keyboard the commands and statements to be punched on the
tape.

a. At the end of each line, type both the RETURN and LINE
FEED keys.

b. If an incorrect character is typed, do the following:

(1) Depress the BACKSPACE control
(2) Depress the RUBOUT key,
(3) Type the correct character.

c. A TAB is received correctly when typed, even though the
Teletype typewheel moves only one position to the right
when TAB is typed.

d. Any normal input to BASIC can be punched on the tape.
A typical example is as fol|ows:

NEW

TEST4

5 PRINT “THIS IS A TEST"
10 END

LIS

RUNNH

6 Generate a trailer tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETURN key once.
c. Depress the LINE FEED key once.

C-2

St

ep
7
8
9

Procedure

Depress the UNLOCK control .
Remove the tape from the punch.

Depress the CTRL and T keys simultaneously.

C.3 SAVING AN EXISTING PROGRAM ON TAPE

The following procedure should be performed to save an existing program on tape.

Step

1
2

M O N O

10

12

13
14
15
16
17

Procedure

Turn the Teletype control to LINE,
Depress the LOCK "ON" control .
Generate a leader tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETURN key once.

Turn the Teletype control to LOCAL,

Depress the UNLOCK control.

Depress the CTRL and T keys simultanecusly.

Tum the Teletype control to LINE.

Type the LISTNH command, but do not depress the RETURN key .
Depress the LOCK "ON" control,

Depress the RETURN key.

Wait until the program has been listed and the READY message has been
typed.
NOTE

The tape will contain not only your program but also an
extra line at the end with the READY message on it.
This is not important. Since READY is not c legal com-
mand, it will simply produce a WHAT? error message
when the tape is input to BASIC, and then it will be
ignored.,

Generate a frailer tape by doing the following:

a. Depress the SPACE bor several times.
b. Depress the RETURN key once.

Turn the Teletype control to LOCAL.

Depress the UNLOCK control .

Remove the tape from the punch.

Depress the CTRL and T keys simu!taneously.

Turn the Teletype control to LINE; now you are back in BASIC.

Step Procedure
18 To stop the tape output while the program is being listed, do the following:
a. Depress the UNLOCK contirol.

b. Depress the CTRL ond T keys simultaneously.
c. Twice depress the CTRL and C keys simultaneously.
C.4 [INPUTTING TO BASIC FROM THE READER

The following procedure should be followed for inputting to BASIC from the reader.

Step Procedure
1 Turn the Teletype confrol to LINE.
2 With the reader control on STOP (see Figure C-1), position the tape on

the sprocket wheel and close the tape retainer cover.

Type the command TAPE to BASIC.

Depress the RETURN key.

When BASIC answers READY, set the reader control to START.
When the tape has been read in, set the reader control to STOP.
Type KEY.

Depress the RETURN key.

Depress the LINE FEED key. (The Key mode is now restored.)
10 To stop the tape input while it is in progress, do the following:

Switch the reader control to STOP.

Twice depress the CTRL and C keys simultaneously.
Type KEY.

Depress RETURN.

Depress LINE FEED.,

NV O N O AW

o 20 T Q

NOTE
Do not type on the keyboard without first

stopping the tape.
C.5 LISTING AN INPUT TAPE
An input tape is. listed in the following manner:

Step Procedure

1 Turn the Teletype control to LOCAL. (In LOCAL mode the tape is not in-
putted to the computer.)

Version 17B BASIC C+4 September 1972

.o |f

Procedure

Set the reader to STOP.’
Put the tape in the reader.

Set the reader to START. (The contents of the tape is then printed on the
console.)

INDEX

A C (Cont)
ABS, 1-6, A-5 Correcting a BASIC program, 4-3, 4-4
Absolute value, 1-6, A-5 COsS, 1-6, A-5
Access to BASIC, 4-1 COT, 1-6, A-5
American Standard Code for Information Inter- Creating a file, 9-1
change (ASCIl), 8-4 AC, 4-4, 9-12
Apostrophe,
Format choracter, 119
Remarks indicator, 6-6 D
Arithmetic operations, 1-5 DATA, 1-2, 1-9, 8-2, A-1
ASC function, 8-8, A-6 Data block, 1-8, 8-3
ASCII numbers, 8-4 F Data file capability, 10-1, A-3
ATN, 1-6, A-5 Debugging, 4-7
Decimal image specification, 11-5
8 DEF, 5-4, A=6
BAS (library), 4-2a, 9-16 Defined function, 5-4, A=6
Bugs, 4-7 DELETE, 9-7
BY, 2-2 DET, 7-6, A-5
BYE, 4-5, 9-19 Define names, 4-2a

Diagnostic messages, B-1
C DIM, 3-2, 3-4, 7-2, A-2
DIMENSION, 3-2, 3-4, 7-2, A-2

C format character, 11-9
Dimensioning, 3-2, 3-4, 7-2, 7-3

CATALOG, 9-16
CHAIN, 6-6, A-2

CHANGE, 8-3, A5 E

CHRS$ function, 8-8, A-6 E format character, 11-9

CLOG, 1-6, A=5 Edit commands, 9-1, 9-7

Comma, Edited numeric image specifications, 11-6
In image specification, 11-6 END, 1-3, 1-12, A=2

In PRINT statement, 6-1
_ Entering a BASIC program, 4-3, 4-5, 9-1
Concatenation operator (+), 8-7
Errors

Conditional GO TO grammatical, 4-6
see IF-THEN logical, 4-6
Constants Executing a BASIC program, 4-4, 9-12

see numbers
EXP, 1-6, A5
Control commands, 9-1
COPIES Switch (QUEUE), 9-6

COPY, 9-11

Extensions (filename), 4-2a

INDEX -1

INDEX (Cont)

F | (Cont)
FILE, 10-4, A=3 Inpuffing from Paper-Tape Reader, C-4
Filename, 4=2a INSTR function, 8=12, A=6
FILES, 10-4, A=3 INT, 5«1, A-5
Crecting, 9-1 Iinteger function, 5-1, A=5

Editing, 9-7

Listing, 9=5 Integer image specification, 11-4
’

Saving, 9-10 Interrupting execution of a BASIC program,

Transferring, 9-10 4-4
Floating dollar sign, 11-8
FNEND, 5-4 K
FOR, 2-2, A-l KEY, 9-18, C~1
Format charocters, 11-3 KEY Mode, C-2

G L

Gaining Access to BASIC, 4~-1 L format choracter, 11-9
GOODBYE, 4-5, 9-19 Leading asterisk, 11-7
GOSUB, 5-5, A-2 Leaving the computer, 4-5
GO TO, 1-3, 1-11, A-l LEFT$ function, 8-10, A-6

LEN function, 8-7, A-6
LENGTH, 9-18

H
LET, 1-2, 1-8, A-]
HELP, 4-1, 9-17 LIMIT Switch (QUEUE), 9-6
Hilbert matrix, 7-7 Line-numbered file, 10-1, 9-3
Line numbers, 1-2, 1-4, 4-3, 9-7, 9-8
! LIST, 9-5
Identity matrix, 7-2, A=3 LIST REVERSE, 9-5
IF END, 10-18, A-4 Lists, 3-1, 3-4
IF-THEN, 1-2, 1-11, 8-2, 8-3, A-] LN, 1-6, A=5
Image specifications, 11-3 LOC function, 10-11, A=5
Image statement, 11-~2 LOF function, 10-11, A-5
INPUT, 6-4, A-2 LOG, 1-6, A-5

data file, 10-7, A-4 LOGE, 1-6, A-5

LOG10, 1-6, A-5

Loops, 2-1
nested, 2-5

Input/output channels, 10-1

Input Tape, C-2
listing an, C-4

INDEX -2

INDEX (Cont)

L (Cont) N (Cont)
LT338 Teletype, C-1 Numbers, 1-7 .
Numeric image specifications, 11-4
M

MARGIN, 6-8, 10-15, A-2, A-4 o
MARGIN ALL, 10-15, A-4 OLD, 4-2, 9-3
Mathematical Functions, 1-6, A=5 - ON-GO TO, 1-11, A-2
Matrices, 7-1 +Q, 4-4, 9-6

MAT B=A, 7-5, A-3

MAT C = A +8B, 7-5, A-3

MATC=A -8B, 7-5, A-3 P

MAT C=A *B, 7-5, A-3

MAT C = CON, 7-2, A-3 < PA> delimiter, 6-1

MAT C = IDN, 7-2, A=3
MAT C = INV(A), 7-6, A-3 PAGE, 6-8, 10-16, A-2, A-4

MAT C = (K) * A, 7-5, A-3 PAGE ALL, 10-16, A-4

MAT C = TRN(A), 7-5, A-3 PRINT, 1-3, 1-10, 6-1, 8-1, 8-2, 10-9,
MAT C = ZER, 7-2, A-3 R N

MAT INPUT, 7-4, 8-2, A-3 P AL
MAT PRINT, 7-3, 8-2, A-3 PRINT USING, 11-1, A-3, A-4
MAT READ, 7-1, 8-2, A-3

MIDS$ function, 8-10, A-6

MONITOR, 4-5, 9-13
Monitor commands, 9-14
Monitor mode, 9-13

Printing characters in imoges, 11-10
Program names, 4-2a

Pure data file, 10-2

Q
N QUEUE, 9-6
Natural logarithm, 1-6, A-5 QUOTE, 10-13, A-2, A-4
N-dimensional arrays, simulation of, 7-7 QUOTE ALL, 10-13, A-4
Nested Loops, 2-4
NEW, 4-1, 9-2 R

NEXT, 2-2, 2-3, A-1
Nonline-numbered files, 10-1
NONAME, default to, 9-3
NOPAGE, 6-8, 10-16, A-2, A-4
NOPAGE ALL, 10-16, A-2
NOQUOTE, 10-13, A-2, A-4
NOQUOTE ALL, 10-13, A-4
NUM, 7-4, 8-2, A-5

R format character, 11-9

R BASIC, 4-2

Random access files, 10-3

Random numbers, 5-2, A-5

RANDOMIZE, 5-3, A-5

READ, 1-2, 1-9, 8-1, 8-2, 10-7, A-1, A-4
Reading and Printing strings, 8-1

INDEX-3

INDEX (Cont)

R (Cont) S (Cont)
Record size for random access files, 10-3 String constants, 8~1
Relational symbols, 1-8 String conventions, 8-2
REM, 6-5, A=2 String imoge specifications, 11-9
RENAME, 9-4 String manipulation functions, 8~7, A-6
ASC, 8-8, A-6
REPLACE, 9-10 CHRS, 8-8, A-6
RESEQUENCE, 9-8 INSTR, 8-12, A-6
RESTORE, 6-6, 83, A-2 tgﬂs' R
data file, 10-16, A-3 AN
! ! MID$, 8-10, A-6
RETURN, 5-5, A-2 RIGHTS, 8-10, A~$
Returning to monitor level, 4-5 ' g::;ess’_;-r_’é A6
RIGHTS functions, 8-10, A-6 , VAL, 8-9, A=6
RND, 5-2, A-5 String vectors, 8-1
RUBOUT Key, 4-2a, 4~7 Strings, 6=3, 8-1
RUN, 1-5, 4-4, 9-12 Subroutines, 5-5
nested, 5-6

RUNNH, 1-5, 4-4, 9-12
Subscripts, 3-1, 3-4

SYS (system device), 4-2a, 9-16

: SYSTEM, 9-13
SAVE, 4-8, 9-10
SCRATCH, 9-8 I
data file, 10-6, A-3
Semicolons (in PRINT), 6-1 TAB, 6-3
Sequential occess files, 10-1 Tubles, 3-1, 3-4
SET, 10-11, A-4 Tabs, 1-2
SGN, 5-4, A-5 TAN, 1-6, A-5
Sign function, 5-4, A-5 TAPE, 9-18, C-2
SIN, 1-6, A-5 TAPE Mode, C-2
SPACES functions, 8-11, A-6 Text data file, 10-2
Spaces, 1-2 TIM, 5-4, A=5
SQR, 1-6, A-5 Trailing minds sign, 11-6
SQRT, 1-6, A-5 Transferring files, 9-10

Statements, 1-2
STEP, 2-2, 2-4 . U

STOP, -5, A-2 UNSAVE, 9-11

String concatenation, 8-7 UNSAVE Switch (QUEUE), 9-6

INDEX -4

\%

VAL function, 8-9, A-6
Variables

alphanumeric, 8-1
numeric, -7
subscripted, 3-1

Vectors, 7-1

WEAVE, 9-9
WRITE, 10-9, 10-11, A-4
WRITE USING, 11-1, A-5

INDEX (Cont)

INDEX -5

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-02a
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-04a
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	index-1
	index-2
	index-3
	index-4
	index-5

