
TOPS-10
DDT Manual
AA-BH82B-TB

April 1986

This manual describes the use of TOPS-1 0 DDT, the
Dynamic Debugging Tool for MACRO-10 programs.

This document su·persedes the previous version of the same
name, order number AA-BH82A-TB.

OPERATING SYSTEM:

SOFTWARE:

TOPS-10 V7.03

DDT V44

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation
PO Box CS2008
Nashua, New Hampshire 03061
Telephone:(603)884-6660

Digital Equipment Corporation Digital Equipment Corporation
Accessories and Supplies Center Accessories and Supplies Center
1050 East Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale. California 94086
Telephone:(312,)640-5612 Telephone:(408)734-4915

digital equipment corporation. marlboro. massachusetts

First Printing, September 1984
Revised, April 1986

Copyright ©1984, 1986 by Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC
DECmate
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter
DIBOL

MASSBUS
PDP
P/OS
Professional
Q-BUS
Rainbow
RSTS

RSX
RT
UNIBUS
VAX
VMS
VT
Work Processor

The postpaid READER'S COMMENTS form on the last page of this document requests
the user's critical evaluation to assist us in preparing future documentation.

PREFACE

CHAPTER 1

1.1
1.2

CHAPTER 2

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4
2.5

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3

CHAPTER 4

4.1
4.1.1
4.1.2
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.6
4.7
4.8
4.9
4.10
4.11

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3

CONTENTS

INTRODUCTION TO DDT

SYMBOLIC DEBUGGING •
TOPS-10 VARIANTS OF DDT

GETTING STARTED WITH DDT

INTRODUCTION • • •
LOADING DDT
BASIC FUNCTIONS

Error Conditions ••
Basic Concepts • • •

• 1-1
• 1-1

• 2-1
• • • 2-1

• 2-2
• • • • • • 2-3

• 2-3
Starting and Stopping the Program
Examining and Modifying Memory
Executing Program Instructions

• • • • • • • 2-4

A SAMPLE DEBUGGING SESSION USING DDT •
PROGRAMMING WITH DDT IN MIND • •

DDT COMMAND FORMAT

COMMAND SYNTAX • • • • • • • •
INPUT TO DDT • • • • • • • • •

Values in DDT Expressions
Operators in DDT Expressions •

COMMAND FILES •••••

DISPLAYING AND MODIFYING MEMORY

2-5
• • 2-8

• • • • 2-8
2-18

• • • • • 3-1
• 3-2

• • 3-2
• 3-6

• • 3-9

DISPLAY MODES •••••• • • • • • • • 4-1
Default Display Modes • • • • • • 4-1
Selecting Display Modes • • • • • • 4-2

DISPLAYING EXPRESSIONS • • 4-5
DISPLAYING BYTE POINTERS • • • 4-5
DISPLAYING AND DEPOSITING IN MEMORY • • • • 4-6

Commands That Use the Current Location • • • • • 4-8
Commands That Use the Location Sequence Stack • 4-9
Commands That Use an Address Within the Command 4-10

DISPLAYING ASCIZ STRINGS 4-15
ZEROING MEMORY • • • • • • • • • • • • • • • 4-16
AUTOMATIC WRITE-ENABLE • • • • • • • • • • 4-16
AUTOMATIC PAGE CREATION •• • • • • • • • 4-17
DISPLAYING PAGE ACCESSIBILITY INFORMATION 4-17
WATCHING A MEMORY LOCATION 4-18
TTY CONTROL MASK • • • • • • • • • • • • • • 4-19

CONTROLLING PROGRAM EXECUTION

BEGINNING EXECUTION • • • • • • • • •
USING BREAKPOINTS • • • • • •

Setting Breakpoints ••••
Proceeding from Breakpoints
Conditional Breakpoints
The "Unsolicited" Breakpoint ••

EXECUTING EXPLICIT INSTRUCTIONS

iii

• • • 5-1
• • 5-1

• '3-3
• • 5-6

• • • • • • 5-8
• • • 5-8

• 5-9

April 1986

5.4
5.5
5.5.1
5.6

CHAPTER 6

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

CHAPTER 8

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5

CHAPTER 10

10.1
10.2

CHAPTER 11

CHAPTER 12

12.1
12.1.1
12.1.2
12.2
12.3
12.3.1
12.3.2
12.4
12.5

APPENDIX A

GLOSSARY

INDEX

SINGLE-STEPPING INSTRUCTIONS • • • • • • • • •• 5-10
EXECUTING SUBROUTINES AND RANGES OF INSTRUCTIONS 5-11

Single-Stepping "Dangerous" Instructions • 5-13
USER-PROGRAM CONTEXT •••• •• • • • •• 5-13

SEARCHING FOR DATA PATTERNS IN DDT

MANIPULATING SYMBOLS IN DDT

OPENING AND CLOSING SYMBOL TABLES • • • • • • • • 7-1
DEFINING SYMBOLS • • • • • • • • •• 7-2
SUPPRESSING SYMBOL TYPEOUT • • •• • • • • • • 7-2
KILLING SYMBOLS •• • • • • • • • • • • • • 7-3
CREATING UNDEFINED SYMBOLS a • • • • • • • • • • • 7-3
FINDING WHERE A SYMBOL IS DEFINED • • • • •• 7-3
LISTING UNDEFINED SYMBOLS • • • • 7-3
LISTING SYMBOLS • • • • • • • • • • • • 7-4

INSERTING PATCHES WITH DDT

FILDDT

INTRODUCTION • • •• •• • • 9-1
USING FILDDT • • • • • • • • • • • 9-1

FILDDT Commands • • • • • 9-2
Symbols •••••••• • • • • • • • • 9-3
Establishing Formats and Parameters •••••• 9-3
Selecting the Target • • •• 9-3
Exiting FILDDT • • • ••••• • • 9-4

EDDT

EXECUTIVE MODE •
USER MOOT!:

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

EXTENDED ADDRESSING

BREAKPOINTS

. . . .

The Breakpoint Block • • • • • • • • • • • • •
Enabling and Disabling Intersection Breakpoints

DISPLAYING SYMBOLS IN NON-ZERO SECTIONS
DEFAULT SECTION NUMBERS • • • • • • • • • •

Permanent Default Section •••••
Floating Default Section ••••••

EXECUTING SINGLE INSTRUCTIONS ••••
ENTERING PATCHES IN EXTENDED SECTIONS

ERROR MESSAGES

10-1
10-2

12-2
12-2
12-3
12-4
12-4
12-5
12-5
12-7
12-7

iv April 1986

FIGURES

2-1 Sample Program X.MAC • • • • • • • • • • • 2-9
2-2 Annotated Debugging Session •••••• 2-10
2-3 Terminal Display of Debugging Session 2-17
4-1 DDT Session Showing Columnar Output 4-20
8-1 Annotated Patching Session • • • • • • • 8-3
8-2 Terminal Display of Patching After an Instruction 8-4
8-3 Terminal Display of Patching Before an Instruction 8-5

TABLES

3-1 Commands That Return Values •••••••• • • • 3-3
3-2 Effects of Operators When Evaluating Expressions • 3-7
4-1 Evaluation of Symbolic Display Mode ••••• 4-1
4-2 DDT Display Modes •••••••••••• 4-4
4-3 Commands to Display Expressions • • • 4-5
4-4 DDT Commands to Display Memory • • • • • 4-8
4-5 TTY Control Mask • • • • • • • • • 4-19
5-1 Breakpoint Locations of Interest • • • • 5-2
5-2 User-Program Context Values • • • • 5-14

v

PREFACE

MANUAL OBJECTIVES AND AUDIENCE

This manual explains and illustrates the features of TOPS-10 DDT, the
debugger for MACRO-10 programs, Although TOPS-10 DDT can be used to
debug the compiled code of programs written in higher-level languages,
this manual illustrates the use of TOPS-10 DDT to debug programs
written in MACRO-10 only.

This manual is both an introduction to the basic functions of TOPS-10
DDT and a reference guide to all TOPS-10 DDT commands and functions.

This manual assumes that the reader is familiar with using TOPS-10,
has done some programming in MACRO-10, and is familiar with the format
of MACRO-10 instructions.

STRUCTURE OF THIS DOCUMENT

This manual has 12 chapters, 1 appendix, and 1 glossary.

o Chapter 1 introduces the concept of symbolic debugging and
describes the variants of TOPS-10 DDT.

o Chapter 2 describes loading TOPS-10 DDTwith your program,
discusses basic TOPS-10 DDT commands, and illustrates a
sample debugging session.

o Chapter 3 explains the syntax of a DDT command. Chapter 3
also describes expressions to enter data and explains how
TOPS-10 DDT evaluates expressions.

o Chapter 4 discusses how to examine and modify a program using
TOPS-10 DDT.

o Chapter 5 describes the use of TOPS-10 DDT to control program
execution: how to start, stop, and monitor the running of a
program.

o Chapter 6 explains how to perform searches of a program's
address space using TOPS-10 DDT.

o Chapter 7 discusses the manipulation of program symbols using
TOPS-10 DDT.

o Chapter 8 describes how to use the TOPS-10 DDT patching
function to insert and test a new series of instructions in
your program without reassembling the program.

vii April 1986

o Chapter 9 describes the use of FILDDT.

o Chapter 10 describes the use of EDDT.

o Chapter 11 describes special-use commands that control
physical and virtual addressing. These commands are useful
primarily when running EDDT and FILDDT.

o Chapter 12 describes the use of DDT in non-zero sections
(NZS) •

o Appendix A explains DDT and FILDDT error messages.

o The glossary defines important TOPS-10 DDT terms.

OTHER DOCUMENTS

Other documents to which the reader should have access are:

o MACRO Assembler Reference Manual

o LINK Reference Manual

o TOPS-10 Operating System Commands Manual

o DECsystem-10/DECSYSTEM-20 Processor Reference Manual

o TOPS-10/TOPS-20 RSX-20F System Reference Manual

CONVENTIONS

The following conventions are used in this manual in the description
of DDT commands and concepts.

{ }

• (period)

addr

c

expr

filnam

instr

Curly brackets (braces) indicate that the enclosed item
is optional.

The address contained in DDT's location counter; also
called the current location.

A symbolic location within a program, a symbolic or
absolute address in memory, an AC, or ".", the current
location.

A single ASCII or SIXBIT character.

Any expression that is legal in DDT.

One or more components of a file specification.

Any instruction in the PDP-10 machine instruction set.

location sequence stack

n

page

DDT V44

A circular stack of memory locations that is used to
store the addresses of certain previously referenced
locations.

A numeric argument.

A page in memory. A page equals 512 words of memory_

viii April 1986

symbol

text

word

<ESC>

A symbol name of up to 6 RADIX50 characters.

Any string of ASCII or SIXBIT characters.

Any 36-bit value occupying one word of memory.

Represents pressing the ESCAPE or ALTMODE key once.

<ESC><ESC> Represents pressing the ESCAPE or ALTMODE key twice.

<CTRL/X>

<BKSP>

<LF>

<RET>

<TAB>

Represents pressing a key (represented by X) at the
same time as you press the key labeled CTRL.

represents pressing the BACKSPACE key or <CTRL/H>.

Represents pressing the LINE FEED key.

Represents pressing the RETURN key.

Represents pressing the TAB key or <CTRL/I>.

Numbers are in octal radix unless otherwise specified.

Examples of interaction between the user and DDT show user input in
lowercase and DDT output in uppercase.

The symbols <BKSP>, <CTRL/x>, <ESC>, <LF>, <RET>, and <TAB> always
represent user input.

NOTE

The descriptions of many DDT commands list the actions
and effects of those commands. The actions and
effects may not occur in precisely the order
specified, but this has no effect on the user.

ix

CHAPTER 1

INTRODUCTION TO DDT

DDT is a utility program you can use that will help you debug your
MACRO-10 programs. This manual describes how to use the DDT utility.

1.1 SYMBOLIC DEBUGGING

It is sometimes difficult to understand precisely the operation of a
program by reading the source code. DDT is a tool for interactively
examining the operation of a MACRO-10 program while it is running.
DDT is useful for finding programming errors (bugs) in programs that
do not run correctly. You can also use DDT to analyze the flow of
control in a program that is to be revised or rewritten.

With DDT, you can interrupt the execution of your program at locations
(breakpoints) you choose, and then examine and modify the program's
address space as required. You can execute instructions one-by-one to
check whether the effect of each instruction is what is intended. You
can then set other breakpoints in your program before continuing
execution.

When you refer to program locations and values, DDT allows you to use
the symbols that are defined in the program rather than absolute
values and addresses. This makes it much easier to refer to the
source listing and to find specific locations in memory.

After modifying the program's instructions or data, you can exit DDT
and save (with the monitor-level SAVE command) the changed version of
the program for further testing.

1.2 TOPS-10 VARIANTS OF DDT

There are several variants of DDT, each useful under specific
circumstances or for specific tasks.

The variants of TOPS-10 DDT are:

o DDT.REL

o DDT.EXE

o VMDDT.EXE

o FILDDT.EXE

o EDDT.EXE

1-1

INTRODUCTION TO DDT

DDT.REL is the re10catab1e variant of DDT, and can be loaded directly
with your MACRO-10 program by using (at TOPS-10 command level) the
TOPS-10 command DEBUG command. For example, enter the command string:

DEBUG filnam

where filnam is the name of your MACRO-10 program (with default
extension .MAC). The DEBUG command causes LINK to retain your program
symbol table and to merge DDT.REL with your program modu1e(s). See
the TOPS-10 Operating System Commands Manual for a description of the
DEBUG command.

If you use the DEBUG command with a program written in a higher-level
language, such as COBOL or FORTRAN, you will invoke the
language-associated debugging tool, such as COBDDT or FORDDT, rather
than DDT. To use DDT.REL to debug a program written in a higher-level
language, you can explicitly run LINK and load DDT.REL with your
program. See the LINK Reference Manual for a description of the /TEST
and /DEBUG switcheS:--you can also use the DEBUG command with the /DDT
switch, as:

DEBUG/DDT filnam

where filnam is the name of your program. The /DDT switch tells LINK
that you wish to use DDT, rather than the associated debugging tool.

DDT.EXE is a stand-alone variant of DDT that you can use to enter
MACRO-10 instructions directly for testing. You run DDT.EXE as a user
program by using the TOPS-10 RUN command:

R DDT

DDT.EXE has system symbols defined as in UUOSYM
recognizes hardware instructions (for example,
TOPS-10 UUOs (for example, TTCALL and CORE).

and MACTEN, and
MOVE and ADDI) and

VMDDT.EXE is the variant that is merged with your program when, at
TOPS-10 command level, you enter:

DDT

Your program must be loaded in memory, such as by using the TOPS-10
GET command, or the TOPS-10 RUN command. You can use the DDT command
to load VMDDT, whether your program has just been loaded, if it ran to
completion, if it crashed, or if you used <CTRL/C> to exit from your
program. If JOBDAT location .JBDDT is zero, indicating that there is
no other debugger (for example, FORDDT) loaded with your program, the
DDT command loads and starts VMDDT. Pages 700-777 are reserved for
VMDDT.EXE.

If, during the debugging session, your program executes a CORE UUO to
shrink core, the monitor reclaims the memory used by VMDDT, and your
program will get an Illegal memory reference error if it reaches a
breakpoint.

If your program was not saved with symbols, VMDDT can display only
numeric values and may not be of much use. See the LINK Reference
Manual for a description of how to use the /SYMSEG--and /LOCALS
switches to save your program symbols when loading your program.

1-2

INTRODUCTION TO DDT

FILDDT.EXE is used to examine a~d modify disk files and structures,
the monitor, and other running jobs. FILDDT is discussed in Chapter
9.

EDDT.EXE is used to debug and patch the monitor. EDDT is discussed in
Chapter Ie.

1-3

CHAPTER 2

GETTING STARTED WITH DDT

2.1 INTRODUCTION

This chapter is an introduction to using DDT. It describes how to
load DDT.REL with your program and shows how to perform basic DDT
functions. It then illustrates a sample session debugging a simple
MACRO-Hi7 program, using basic DDT functions. You can use DDT to debug
programs, using only the commands described in this chapter. Once you
are familiar with using these commands, you may wish to learn how to
use the commands and functions that are described in the rest of the
manual, to perform more sophisticated debugging.

The commands used in this chapter are described only in sufficient
detail for the debugging task being performed; all commands are
thoroughly described in Chapters 3 through 11 of this document.

The best way to learn is by doing. You will learn the commands and
techniques discussed in this manual if you use them as you read about
them. If you have a MACRO-10 program that you wish to debug, use it
to practice the commands discussed here. If not, type in the program
X.MAC listed in Figure 2-1.

2.2 LOADING DDT

It is much easier
are defined in
symbols, DDT must
to provide this
DDT.REL with your
existing MACRO-10

DEBUG filnam

to debug a program when you can use the symbols that
the program. For you to be able to use program
have access to your program's symbol table. One way

access is to use the TOPS-10 DEBUG command to load
program and retain your program symbols. Load an
program with the TOPS-10 DEBUG command as follows:

where filnam is the name of your MACRO-10 program. The following
appears on your terminal (if your .REL file is older than your .MAC
file, MACRO-10 reassembles your program, otherwise the second line
does not appear):

.DEBUG
MACRO:
LINK:
[LNKDEB
DDT

PROG
filnam
Loading
DDT execution]

where filnam is the name of your MACRO-10 program (with default
extension .MAC). The last line (DDT) indicates that DDT is loaded,
and is ready to accept your commands.

2-1

GETTING STARTED WITH DDT

2.3 BASIC FUNCTIONS

You must be able to perform certain basic functions to interactively
debug a program. Basic DDT functions are:

o starting the program

o stopping the program at specified locations

o examining and modifying memory

o executing program instructions one-at-a-time

o continuing execution of the program

o deleting input

o exi ting DDT

You must give DDT commands to tell DDT what functions to perform. DDT
does not wait for a line terminator (such as a carriage return) to
indicate the end of your command. Instead, DDT reads your commands
character-by-character as you enter them. When you enter a DDT
command, you almost never have to press the RETURN key. This manual
explicitly indicates the occasions when a command requires you to
press the RETURN key.

NOTE

You must press the ESCAPE key as part of entering many
DDT commands. This manual uses the symbol <ESC> to
indicate where you press the ESCAPE key. When you
press the ESCAPE key, DDT displays a dollar sign ($)
on the screen. DDT never displays <ESC> when you
press the ESCAPE key.

NOTE

This manual uses the symbols <BKSP>, <ESC>, <LF>,
<RET>, and <TAB> to indicate where you press the
BACKSPACE, ESCAPE, LINE FEED, RETURN, and TAB keys,
respectively. This manual also uses the symbol
<CTRL/X> to indicate where you simultaneously press
the CONTROL key and the key indicated by X. These
symbols ALWAYS indicate where you press the specific
keys noted here. You need NEVER enter the characters
<BKSP>, <ESC>, <LF>, <RET>, <TAB>, or <CTRL/X>, to
enter a DDT command.

Your commands appear on the screen as you type them. Use the DELETE
key to delete partially entered commands character-by-character. If
you try to delete more characters than you have entered, DDT displays:

xxx

You can delete an entire command line with <CTRL/U>. When you do, DDT
displays:

xxx
To exit DDT, enter:

<CTRL/Z>

2-2

GETTING STARTED WITH DDT

The other basic DDT functions are described in the rest of this
chapter.

2.3.1 Error Conditions

If DDT cannot execute a command, it displays a message to let you
know. The message may be only a single character (such as M or U, for
Multiply-defined symbol or Undefined symbol), a question mark (?), or
a complete message string~ For most errors, DDT also sets a pointer
to the error string, so that if DDT did not display it, you can enter
a command to display the error string. The error string is available
for display until another error occurs, when DDT changes the pointer.
To display the error string that describes the last DDT error, enter:

<ESC)?

(press the ESCAPE key, followed by a question mark) •

2.3.2 Basic Concepts

A very useful DDT concept is that of the current location. The
current location is a memory location that you have referenced, either
implicitly or explicitly, with your last command, and that is the
default point of reference of your next command. The current location
can be thought of as the location "where you are". The symbol "."
(period) refers to the address of the current location, and can be
used as an argument in DDT commands.

The location counter is a DDT pointer that contains the address of the
current location. The location counter performs a function similar to
that of a bookmark. You can enter a command to display the contents
of a specific location but not change the address of the current
location, in order to maintain a specific point of reference for your
next command. Most DDT commands change the address of the current
location, and therefore also change the location counter. The
commands that do not change the current location are so indicated.

The open location is a memory word that can be modified by your next
command 8 DDT "opens" the location as a result of a command you give
to examine or modify memory. There is never more than one location
open at any given time. The open location is usually also the current
location.

To find the symbolic address of the current location, enter:

(a period followed by an underscore)

This causes DDT to display the following:

ADDRl+n

where ADDRI is a label defined in your program, and n is the offset of
the current location from that label (if the current location is
ADDRl, DDT does not display +n).

Another useful DDT concept is that of the current quantity. This is a
value that is the contents of the last word that DDT displayed, or the
value that you last deposited in memory. The current quantity is the
most recent of those values. Many DDT commands use arguments that
default to the current quantity.

2-3

GETTING STARTED WITH DDT

The location sequence stack is a DDT storage area used to store the
addresses of previous current locations. Certain DDT commands store
the address of the current location on the location sequence stack.
Other DDT commands change the address of the current location to an
address that has already been stored on the location sequence stack.
The location sequence stack functions in a fashion similar to
inserting place-markers in a source code listing, to be able to "get
back" to prior references.

2.3.3 Starting and Stopping the Program

When your program is loaded and DDT is ready to accept your commands
(as indicated by DDT appearing on the terminal display), you can begin
execution of your-p(ogram at its start address by entering:

<ESC>G

Unless you set one or more breakpoints before you start the program,
your program runs either to completion or until it commits a fatal
error. A breakpoint is a location in a program's executable code that
has been modified so that if the program attempts to execute the
instruction at that location,--control passes to DDT before the
instruction is executed.

The command to set a breakpoint is:

addr<ESC>B

where addr is the address at which to stop execution. If the
user-program PC reaches addr, DDT interrupts execution of the program
before the program executes the instruction at the specified address.
When DDT interrupts program execution at a breakpoint, it changes the
current location to the breakpoint and opens the current location (the
breakpoint).

While program execution is stopped at a breakpoint, you can display
and change the contents of instruction and data words, remove
breakpoints, set new breakpoints, and execute instructions one at a
time (single-step). As you examine memory, you may find an
instruction that is incorrect, and modify it. You can also examine
and modify data words in memory. After modifying incorrect
instructions and data in memory, you can immediately execute the
instructions to check the effects of the modifications, without having
to reassemble the source code.

Once you have made your changes, you can continue program execution at
the place where execution was interrupted, restart the program at the
beginning, or start execution at any other location you choose. The
program will run to completion, until it reaches a breakpoint, or
until it gets a fatal error.

2-4

GETTING STARTED WITH DDT

2.3.4 Examining and Modifying Memory

One command to examine memory Is:

addrl

where addr is the address of the memory word you wish to examine
(display) , and can be numeric or symbolic. DDT displays the contents
of the word located at addr. If the opcode field (bits 0-8) of the
memory word matches a recognized instruction or user-defined OPDEF,
DDT displays the contents of addr as an instruction (or OPDEF). If
DDT finds (in the symbol table) any of the values to be displayed, DDT
displays those symbols rather than the numeric values. For example,
either of the following display lines might appear on your terminal
(depending on the address and contents of the word):

ADDRII MOVE 2,SYMI

ADDRl+51 SYMl"SYM2

where ADDRl, SYMl, and SYM2 have been defined in the program.

If you enter a symbol that DDT does not find in the symbol table, DDT
sounds the terminal buzzer or bell, and displays U on the screen. If
you enter a symbol that is defined as a local symbol in-more than one
module, DDT sounds the terminal buzzer or bell and displays M. You
can eliminate the multiply-defined symbol problem by "opening" the
symbol table of the module in which the correct symbol is defined.
See Chapter 7 (Manipulating Symbols in DDT) for more information.

When searching for a symbol to display, DDT uses global symbols in
preference to local symbols. However, DDT searches the "open" symbol
table first, and treats local symbols found in the open symbol table
as global symbols. If DDT finds only a local symbol that is not in
the open symbol table, DDT displays the symbol with a pound-sign (#)
appended to the symbol. For example, DDT might display:

ADDR#I MOVE 2,SYMI

See Chapter 7 (Manipulating Symbols in DDT) for more information on
symbols and symbol tables.

The command addrl changes the current location to addr and opens the
word at addr.

If you omit addr from an examine-memory command, such as addr/, DDT
uses the current quantity to determine the address of the location to
display. For example, after DDT displays the contents of ADDRl+5 as
above, if you enter "I", DDT displays the contents of the word located
at SYM2. The display line then appears:

ADDRl+51 SYMl"SYM2 I value

where value is the contents of the word located at SYM2. By default,
DDT displays value symbolically if it can.

The command I by itself (without addr) does not change the current
location. Both forms of the I command open the location displayed,
enabling you to modify the location with your next command.

2-5

GETTING STARTED WITH DDT

Another very useful command for examining memory is <TAB>. This
command starts a new display line before displaying the contents of
addr, making the display easier to read. For example, if you enter
<TAB> after DDT displays the address and contents of ADDRI+5 (as
above) on your terminal, the terminal display appears:

ADDRI+5/ SYMI"SYM2
SYM2/ value

<TAB>

where value is the contents of the word located at SYM2. <TAB> does
not appear on the screen, but is shown above to indicate where you
press the <TAB> key. <TAB> changes the current location to SYM2 and
opens the word at SYM2. In this example, the current quantity becomes
value.

<TAB> also stores the address of the current location (ADDRI+5) on the
location sequence stack before changing the current location to the
location just displayed (SYM2). DDT uses the location sequence stack
to "remember" previous values of the location counter. To "get back"
to the previous current location, enter:

<ESC><RET>

In the above example, after you press <TAB> at ADDRI+5, DDT displays
the contents of SYM2 and changes the current location to SYM2. When
you enter <ESC><RET>, DDT changes the current location to ADDRI+5,
opens the location at ADDRI+5, and again displays the contents of
ADDRI+5.

If you use the command addr<TAB>, DDT deposits addr in the open
location and closes the location before opening the location at addr
and displaying its contents. <TAB> by itself does not deposit
anything, but does save the current location on the location sequence
stack, making <TAB> more useful than / (slash by itself).

You can display and open the word after the current location by
entering:

<LF>

DDT changes the current location to the next word in memory, starts a
new line, and displays the address of the (new) current location (as a
symbol or a symbol plus an offset, if it can find a corresponding
symbol in the symbol table), displays the contents of the current
location, and opens the current location. For example, to display the
next word in memory after ADDRI+5, enter:

<LF>

DDT changes the current location to ADDRI+6, starts a new line, and
displays the address and contents of ADDRI+6. The screen display then
appears as follows:

ADDRl+5/
ADDRl+6/

SYMl"SYM2
-1"SYM3

<LF>

Note that DDT does not display the characters <LF>.
affect the location sequence stack.

<LF> does not

Entering another <LF> causes DDT to display and open the next word.

2-6

GETTING STARTED WITH DDT

To display and open the word previous to the current location, enter:

(BKSP>

DDT changes the current location to the previous word, starts a new
line, displays the address and contents of the (new) current location,
and opens the current location. (BKSP> does not affect the location
sequence stack. For example, if you enter <BKSP> to open and display
the location before ADDRI+5, the screen appears as follows:

ADDRl+5/
ADDRl+4/

SYMl"SYM2
-3"SYM2

<BKSP>

Note that <BKSP> does not appear on the screen.

To change the contents of the open location, enter:

value<RET>

where value can be an instruction, a symbol, or a numeric expression.

For example, if you enter the command LABL2/, DDT displays the
contents of the memory word at LABL2, and "opens" that word. If the
word at LABL2 contains:

MOVE l,SYMI

and you wish to change SYMl to SYM2, enter:

MOVE l,SYM2<RET>

DDT stores the new instruction in the location at LABL2 and "closes"
the location. DDT does NOT display <RET>. The terminal display
appears as follows (your input is in lowercase):

labl2/ MOVE l,SYMI move 1,sym2<RET>

The current location is still LABL2, but there is no open location.
To check whether the instruction is now correct, you can enter:

./

to display the contents of the current location. The screen display
now appears (your input is in lowercase): .

labl2/ MOVE I,SYMl
./ MOVE l,SYM2

move l,sym2<RET>

After entering a command to display and open a location, if you enter:

value<LF>

DDT stores the new value, changes the current location to the next
location in memory, starts a new display line and opens and displays
the new current location. The example above would then appear as
follows (your input is in lowercase):

labl2/ MOVE I,SYMI
LABL2+1/ CONTENTS

move l,sym2(LF>

where CONTENTS is the value stored at LABL2+1.

2-7

GETTING STARTED WITH DDT

2.3.5 Executing Program Instructions

When you have interrupted program execution at a breakpoint, you can
execute the next instruction (the one at the breakpoint), by entering:

<ESC>X

DDT executes the instruction, displays the results of executing the
instruction, and displays the address and contents of the next
instruction to be executed. This command changes the current location
to the next instruction to be executed. For example, assume that the
next instruction to be executed is located at LABELl, which contains:

MOVE 1,VARIBL

If the word at VARIBL contains SYMl, when you enter <ESC>X, DDT starts
a new line and displays:

1/ SYMI VARIBL/
LABELl+l/ instr

SYMI

where instr is the contents of LABELl+l, and is the next instruction
to be executed. You can continue to execute instructions
one-at-a-time by entering successive <ESC>X commands. This is known
as single-stepping.

To execute ~ subroutine, enter:

<ESC><ESC>X

DDT executes the subroutine and returns control to you if the
subroutine returns to a location +1, +2, or +3 from the instruction
that calls the subroutine. DDT changes the current location to the
address of the next instruction to be executed.

To continue execution of the program until the next breakpoint or
until program completion, enter:

<ESC>P

DDT starts the program running again, beginning with the next
instruction to be executed. If you did not single-step any
instructions, the program begins by executing the instruction at the
breakpoint. If you have executed any instructions by single-stepping,
the program continues where you stopped. The effect is as if the
program were running without DDT in control.

2.4 A SAMPLE DEBUGGING SESSION USING DDT

This section describes a debugging session using DDT. The program
being debugged is X.MAC, shown in Figure 2-1. The program and the
sample session are for illustration only. There are many styles of
programming and debugging, and these examples are descriptive rather
than prescriptive in intent.

You will understand this section and learn the commands described more
easily if you type in the program listed in Figure 2-1 and use the
commands as they are described.

2-8

GETTING STARTED WITH DDT

Figure 2-1: Sample Program X.MAC

SEARCH UUOSYM
TITLE X

R0=0
IDX=6
P=17

START: : MOVE P,PWORD
MOVE I IDX,TABLEl
PUSHJ P,ADDEM
MOVEI IDX,TABLEl
MOVE R0,ANSWER(IDX)
JFCL 0
EXIT

ADDEM: MOVE R0,X(IDX)
ADD R0,Y(IDX)
MOVE R0,ANSWER(IDX)
POPJ P,

TABLEl: BLOCK 3
X==0
Y==l
ANSWER==2
STKSIZ==10
PWORD: IOWD STKSIZ,STACK
STACK: BLOCK STKSIZ

END START

iAC0
iINDEX REGISTER
iSTACK COUNTER

iSet up stack counter
iAddress of table with
iDo the addition
iAddress of table
iAnswer to R0

iAll donel
iLoad X
iX + Y
iStore answer
;Return

;3 words
iOffset for X
;Offset for Y
;Offset for answer
;Stack size
,Stack pointer
,Staok

X & Y

Figure 2-2 is an annotated session debugging X.MAC, the program in
Figure 2-1. In the annotated session, the DDT terminal display is on
the left, user input is in the center 1n lowercase, and explanatory
comments about the session are on the right. This is not always the
way it appears on the terminal. Figure 2-3 shows the session as it
actually appears on the terminal.

The program is designed to pass the address of a table to a
subroutine. The table contains three elements. The subroutine is to
add the first two elements of the table and store the result in the
third element before returning to the main program. There are no
input or output routines in the program. The table is initialized
using DDT, and the result is checked while in DDT.

NOTE

DDT does not display <LF>, <RET>, or <TAB>. These are
shown in the sample session to indicate user input.

NOTE

DDT does not display the AC field of an instruction if
it is zero. This means that if your program contains
the instruction MOVE R0,LABL1, where R0=0, DDT
displays the instruction as MOVE LABL1.

2-9

GETTING STARTED WITH DDT

Figure 2-2: Annotated Debugging Session

SCREEN DISPLAY

MACRO: X
LINK: Load ing
[LNKDEB DDT execution]
DDT

MOVE P,PWORD#

USER INPUT

debug x<RET>

start/

<LF>

DDTEND+l/ MOVEI IDX,TABLEl#

ddtend<ESC>k

x<ESC>:

2-lel

EXPLANATION

TOPS-lei prompt.

Begin the session by entering
"debug x<RET>", where x is the
name of your MACRO program.

MACRO reassembles your program
(if needed), and LINK loads
your program with DDT. DDT
displays the "DDT" prompt.

Begin examining code at
label "START".

DDT displays the instruction
at START.

Press <LF> to display the next
instruction.

The first symbol in this
program happens to coincide
with DDTEND, a DDT symbol.
When DDT scans the symbol
table, it finds DDTEND before
it finds START, and displays
DDTEND instead. DDT still
accepts START as an input
symbol.

Also note the pound-sign (#)
appended to TABLEI and
PWORD. PWORD and TABLEI are
local symbols that are not
in the open symbol table.

Enter ddtend<ESC>k
to suppress DDT typeout of
symbol DDTEND. DDT will
display START rather than
DDT END from now on.

Enter the module name (X)
followed by <ESC> and a
colon to open the symbol
table associated with
X. DDT will not append any
more pound-signs.

GETTING STARTED WITH DDT

Figure 2-2: Annotated Debugging Session (Cont.)

SCREEN DISPLAY USER INPUT EXPLANATION

TAB LEI/

TABLEl+l/

TABLEl+2/

START+l/ MOVEI IDX,TABLEI

<TAB>

2<LF>

3<LF>

Press <TAB> to start a new
display line, evaluate the
current quantity as if it
were an instruction, and
display the contents of the
location addressed by the Y
field of the instruction.
(Entering / (slash) displays
the same word as <TAB>, but
does not start a new line.)
<TAB> also saves your place
(like a bookmark) on the
location sequence stack, so
you can get back here easily.

When you enter the <TAB>
command, DDT displays the
address and the contents of
the location. The first
element of the table contains
zero. The <TAB> command also
opens the location.

Enter "2" followed by <LF> to
deposit the value "2" in the
first element, and to open and
display the second element.

The second element contains
zero.

Enter "3" followed by <LF> to
deposit the value "3" in the
second element and open and
display the third element.
The addition to be performed
by the program is 2+3.

The third element (the answer)
contains zero.

<ESC><RET> Press <ESC>, then press <RET>
to return to the address you
saved on the location sequence
stack.

<LF>

2-11

DDT displays the address and
contents of the last location
you displayed before you
entered <TAB>.

Press <LF> to look at the
next locatioh.

GETTING STARTED WITH DDT

Figure 2-2: Annotated Debugging Session (Cont.)

SCREEN DISPLAY USER INPUT

START+2/ PUSHJ P,ADDEM

.<ESC>b

<ESC>g

$lB»START+2/ PUSHJ P,ADDEM

<ESC><ESC>x

START+3/ MOVEI IDX,TABLEI

<ESC>x

IDX/ TABLEI TABLEI

START+4/ MOVE 2 (IDX)

2-12

EXPLANATION

This is the call to the
subroutine that does the
computation.

Enter ".", press <ESC>, and
enter "b" to set a
breakpoint at the current
location.

Enter <ESC>g to start
program execution.

DDT disp~ays the breakpoint
number, the address of the
breakpoint, and the
instruction at the breakpoint.
This instruction has not yet
been executed.

Press <ESC> twice, then
enter "x" to let DDT
execute the subroutine.

DDT returns from the
subroutine at the next
instruction, and displays the
address and contents of the
instruction. If there is a
"skip return", DDT displays
"<SKIP>" if the program
skipped one instruction. If
the program skips 2 or 3
instructions, DDT displays
"<SKIP n>", where n is the
number of instructions
skipped.

Press <ESC> and enter "x"
to execute the instruction.

DDT displays the address and
contents of lOX (the result of
executing the instruction),
and also displays "TABLEI"
(the result of evaluating the
Y field of the instruction).

DDT then starts a new line and
displays the address and
contents of the next
instruction. Note that
DDT does not display the
zero in the AC field of
the instruction.

GETTING STARTED WITH DDT

Figure 2-2: Annotated Debugging Session (Cont.)

SCREEN DISPLAY USER INPUT

<ESC><TAB>

TABLE1+2/

<BKSP>

TABLE1+l/ 3

<BKSP>

TABLE1/ 2

start<ESC>b

<ESC>g

$2B»START/ MOVE P,PWORD

<ESC>x

P/ -10"PWORD PWORD/ -10" PWORD

2-13

EXPLANATION

Press <ESC>, then <TAB> to
display the contents of the
location addressed by the
instruction, using any
indexing and indirection.
(If you omit <ESC>, DDT uses
only the Y field, without
indexing and indirection.)

The location addressed by the
instruction is TABLEl+2, and
its contents is zero. This is
the table element that
contains the answer, which
should be 5.

Press <BKSP> to see the
previous element in the table.

This element contains 3. That
is correct.

Press <BKSP> again to check
the previous element.

This element contains 2. That
is also correct. One way to
find the error is to
single-step through the
program.

Enter "start", press <ESC>,
and enter Db" to set a
breakpoint at the beginning of
the program.

Press <ESC> and enter "gO to
start the program again.

DDT displays the breakpoint
number, and the address and
contents of the instruction
at the breakpoint.

Press <ESC>, then enter "x" to
execute the instruction. This
instruction moves a memory
word to a register.

DDT displays the address and
new contents of the register,
and the address and contents
of the memory word.

GETTING STARTED WITH DDT

Figure 2-2: Annotated Debugging Session (Cont.)

SCREEN DISPLAY USER INPUT

START+l/ MOVEI IOX,TABLEl

<ESC>x

IOX/ TABLEl TABLEl

START+2/ PUSHJ P,ADDEM

<ESC>x

P/ -7"STACK

<JUMP>

ADD EM/ MOVE 0 (IDX)

<ESC>x

0/ 2 TABLE1/ 2

ADDEM+l/ ADD l(IDX)

<ESC>x

fJ/ 5 TABLE1+l/ 3

ADDEM+2/ MOVE 2 (IDX)

<ESC>x

2-14

EXPLANATION

DDT then displays the address
and contents of the next
instruction.

Press <ESC>, then enter "x" to
execute this instruction,
which moves an immediate value
to a register.

DDT displays the address and
new contents of the register,
and the immediate value.

DDT then displays the address
and contents of the next
instruction.

Press <ESC>, then enter "x"
to execute the instruction.

DDT displays the address and
new contents of the stack
pointer used by the PUSHJ.

DDT displays "<JUMP>" if the
change in PC is less than one
or greater than 4.

DDT displays the address and
contents of the next
instruction to be executed.

Press <ESC> and enter "x" to
execute the instruction.

The instruction moved the
contents of the word at
TABLEl (which is 2) to ACfJ.
Looks OK so far.

DDT displays the next
instruction.

Press <ESC> and enter "x"
to execute the instruction.

The instruction added the
contents of the word at
TABLE1+l (which is 3) to ACfJ,
which now contains 5. OK.

DDT displays the next
instruction.

Press <ESC> and enter "x"
to execute the instruction.

GETTING STARTED WITH DDT

Figure 2-2: Annotated Debugging Session (Cont.)

SCREEN DISPLAY

0/ TABLEl+2/

ADDEM+3/ POPJ P,0

ADDEM+2/ MOVE 2 (lOX)

USER INPUT

<BKSP>

EXPLANATION

The instruction moved the
contents of the word at
TABLEl+2 to AC0. The MOVE
instruction at ADDEM+2 should
be MOVEM.

DDT displays the next
instruction (as a result of
the <ESC>x).

Press <BKSP> to display and
open the location with the
incorrect instruction.

DDT displays the previous
instruction. This is the
incorrect instruction.

movem r0,answer{idxJ<RET>

. /
MOVEM 2{IDX)

.<ESC>b

<ESC>g

$2B»START/ MOVE P,PWORD

<ESC>p

$lB»START+2/ PUSHJ P,ADDEM

<ESC>p

$3B»ADDEM+2/ MOVEM 2 (lOX)

<ESC>x

0/ 5 TABLEl+2/ 5

2-15

Enter the new instruction
and press <RET> •

Check the current location
to see what you deposited.

Looks OK.

Set a breakpoint at
".", the current location.

Restart the program at
the beginning.

DDT displays the breakpoint
information.

Press <ESC> and enter "p" to
proceed from breakpoint 2
to the next breakpoint.

DDT displays the breakpoint
information.

Proceed from breakpoint 1.

DDT displays the breakpoint
information. This is the
instruction you changed.

Single-step the instruction
to watch what it does.

The instruction moves the
contents of AC0 to the word
at TABLEl+2. OK!!

GETTING STARTED WITH DDT

Figure 2-2: Annotated Debugging Session (Cont.)

SCREEN DISPLAY USER INPUT

ADDEM+31 POPJ P,0

start+4<ESC>b

<ESC>p

$4B»START+4I MOVE 2(IDX}

<ESC>x

01 5 TABLEl+21 5

START+51 JFCL 0

<CTRL/Z>

2-16

EXPLANATION

DDT also displays the address
and contents of the next
instruction.

Set a breakpoint at
START+4 to check the results.

Proceed from breakpoint 3.

DDT displays the breakpoint
information.

Single-step the instruction.

The instruction moves the
contents of the word at
TABLEl+2 to AC0. The new
value of AC0 is 5. OK!

DDT displays the address and
contents of the next
instruction.

Quit.

Back at TOPS-10 command level.

GETTING STARTED WITH DDT

Figure 2-3 shows the session as it actually appears on the terminal
screen. Again, user input is in lowercase. Comments on the right
indicate where you enter characters that do not echo.

Figure 2-3: Terminal Display of Debugging Session

.debug x
MACRO: X
LINK: Load ing
[LNKDEB DDT execution]
DDT
start/ MOVE P,PWORD#
DDTEND+l/ MOVEI IDX,TABLEl#
TABLEl/ 0 2
TABLEl+l/ 0 3
TABLEl+2/ 0 $
START+l/ MOVEI IDX,TABLEl
START+2/ PUSHJ P,ADDEM .$b
$lB»START+2/ PUSHJ P,ADDEM
START+3/ MOVEI IDX,TABLEl

IDX/ TABLEl TABLEl
START+4/ MOVE 2(IDX) $
TABLEl+2/ 0
TABLEl+l/ 3

ddtend$k

$g
$$x

$x

TABLEl/ 2 start$b $g
$2B»START/ MOVE P,PWORD

P/ -l0"PWORD PWORD/
START+l/ MOVEI IDX,TABLEl

$x
-l0"PWORD
$x

lDX/ TABLEl TABLEl
START+2/ PUSHJ P,ADDEM

P/ -7"STACK
<JUMP>
ADDEM/ MOVE 0(lDX)

0/ 2 TABLEl/
ADDEM+l/ ADD l(IDX)

0/ 5 TABLEl+l/
ADDEM+2/ MOVE 2(lDX)

0/ 0 TABLEl+2/
ADDEM+3/ POPJ P,0

$x
2

$x
3

$x
o

$x

x$:

ADDEM+2/ MOVE 2(IDX) movem r0,answer(idx)
• / MOVEM 2 (IDX) • $b $g
$2B»START/ MOVE P,PWORD $p
$lB»START+2/ PUSHJ P,ADDEM
$3B»ADDEM+2/ MOVEM 2(IDX)

$p
$x

0/ 5 TABLEl+2/ 5
ADDEM+3/ POPJ P,0 start+4$b
$4B»START+4/ MOVE 2(IDX) $x

0/ 5 TABLE1+2/ 5
START+5/ JFCL 0 A Z

$p

2-17

Enter <LF>.
Enter <TAB>.
Enter <LF>.
Enter <LF>.
Enter <ESC><RET>.
Enter <LF>.

Enter <ESC><TAB>.
Enter <BKSP>.
Enter <BKSP>.

Enter <BKSP>.
Enter <RET> •

GETTING STARTED WITH DDT

2.5 PROGRAMMING WITH DDT IN MIND

There are a few MACRO-10 programming techniques that make debugging
with DDT easier. These techniques primarily concern the use of labels
and symbols.

Labels that meaningfully describe (perhaps mnemonically) the function
of the code are more helpful when examining code and setting
breakpoints than labels that are alphanumerically coded (such as
A0001).

When using symbols as offsets into tables, you can prevent DDT from
displaying the offset symbol in place of the symbol's numeric value if
you define the symbol in this way:

symbol==expression

Symbol is still entered in the symbol table, and you can use symbol as
input to DDT, but DDT does not display symbol on output.

For example, if you have defined:

OFFSET==3

DDT displays the contents of a word that contains the value of 3 as:

addr/ 3

rather than:

addr/ OFFSET

where addr is the address of the word. See the MACRO Assembler
Reference Manual for more information about defining symbols.

2-18

CHAPTER 3

DDT COMMAND FORMAT

3.1 COMMAND SYNTAX

The complete syntax of a DDT commana is:

{argl<}{arg2>}{arg3}{<ESC>{<ESC>}{arg4}}c{arg5}

where argl, arg2, arg3, arg4, and arg5 are arguments to the command c.
Argl, arg2, and arg3 can be any legal DDT expression. Argl must be
followed by a left angle bracket «), and arg2 must be followed by a
right angle bracket (». Arg4 can only be a number. Arg5 is a text
argument of the form:

Itextl or c<ESC>

where text is a string of characters, the slashes (I) are delimiters
that can be any character not contained in text, and c is a single
character.

DDT commands never use all five arguments. Each argument is
or required according to the syntax of the specific command.
commands are not more complicated than:

arg3<ESC>c or arg3<ESC>arg4c

optional
Most DDT

You can enter alphabetic commands and text arguments in uppercase or
lowercase.

An argument to a command can be the result of executing another
command. For example, you can enter a command to evaluate a text
string, and then enter another command to deposit in memory the result
of evaluating the text string. The entire command line would be:

"/abcd/<RET>

where labcdl is the argument to the command" (quotation mark). The
function of the quotation mark command is to evaluate the string
(abcd) within the delimiters (I) as a left-justified ASCII string.
The left-justified ASCII string abcd is then the argument to the
command <RET> (entered by pressing the RETURN key). The function of
the <RET> command is to deposit an argument (in this case, the string
abcd) into the open location. The" command is described in this
chapter, and the <RET> command is described in Chapter 4 (Displaying
and Modifying Memory).

3-1

DDT COMMAND FORMAT

Most commands produce results that are immediately visible, such as
commands that display the contents vf memory locations. However,
commands such as those that invoke search functions or those that
evaluate text expressions (as above) may not produce immediately
visible results. If you enter a question mark (?) while DDT is
performing a function invoked by one of these commands, DDT displays a
message that tells you what DDT is currently doing. For example, such
a message might be:

Searching: addr/ value

where addr is the address that DDT is to next test as part of a
search, and value is the contents of the memory location at addr.
Still other commands return values that DDT does not display, but--can
use as arguments to other commands.

3.2 INPUT TO DDT

You enter arguments to DDT as expressions. An expression can be a
single value, or a combination of two or more values with one or more
operators.

3.2.1 Values in DDT Expressions

Values in DDT expressions can be:

o octal or decimal integers

o floating point numbers

o symbols

o values that are returned by commands

o text

To enter an octal integer value, simply enter the integer in octal
digits. For example:

7e707065

To enter a decimal integer value, enter the integer in decimal digits
and follow the value with a decimal point. For example:

9876.

To enter a floating point number, use regular or scientific notation.
For example, you can enter the value .034 as one of the following:

.034
3.4E-2

Note that L. is a decimal integer, while 1.0 is a floating point
number.

3-2

DDT COMMAND FORMAT

To enter a symbol as a value in an expression, type in the symbol name
as defined in your program. To enter an undefined symbol that you can
define later, enter:

symbo1#

where symbol is the symbol that you will later define. See Chapter 7
(Manipulating Symbols in DDT) for more information about using
undefined symbols.

You can enter a command that returns a
expression. DDT commanas--that return
return are listed in Table 3-1.

value
values

as a value in an
and the values they

Table 3-1: Commands That Return Values

COMMAND VALUE RETURNED VALUE ALSO
KNOWN AS

. The address of the current location. .
<ESC>. The address of the next user program $.

instruction to be executed.

<ESC><ESC>. The previous value of "<ESC>.". $$.

<ESC>nB The address of the DDT location that $nB
contains the address of breakpoint n.

<ESC>nI The address of the DDT location that
contains the saved machine state flags
(user-program context).

<ESC>nM The address of DDT "mask" n.

<ESC>Q The current quantity. $Q

<ESC><ESC>Q The current quantity, with halves $$Q
swapped.

<ESC>nU The address of the DDT location that
contains the argument (or default) that
was given in the virtual addressing
command: expr<ESC>nU.

The commands <ESC>nB, <ESC>nI, <ESC>nM, and <ESC>nU, return values
that are the addresses of locations internal to DDT, which contain
information that you can use and modify. For brevity, these commands
are said to address those internal DDT locations.

For example, the command <ESC>nB returns (but does not display) the
address of the DDT location that contains the address of breakpoint n,
and the command addr/ (address followed by slash) displays the
contents of the location at addr. To display the address of
breakpoint n, enter:

<ESC>nB/

where you enter the command <ESC>nB as the expression for DDT to
evaluate as addr.

3-3

DDT COMMAND FORMAT

You can enter text to be interpreted in the following ways:

o left-justified ASCII strings

o left-justified SIXSIT strings

o single right-justified ASCII characters

o single right-justified SIXSIT characters

o RADIX50 words

You can enter text
translates strings
required.

expressions
to uppercase

in uppercase or lowercase. DDT
for SIXSIT or RADIX50 text as

The term long text string refers to an expression in a DDT command
that is a string of text characters that requires more than one 36-bit
expression for full evaluation. You can enter long text strings in
SIXSIT and ASCII as DDT expressions. If you use a long text string as
an expression, DDT assumes that you will enter a command that deposits
the expression in memory.

DDT evaluates the string one 36-bit expression at a time. After
evaluating the first 36-bit expression, DDT deposits the expression in
the open location, closes the open location, and opens the next
location.

DDT then evaluates the next 36-bit expression contained in the string,
and deposits that expression in the (new) open location. This process
continues until you enter c, the command. If you enter a command that
does deposit to memory,-DDT deposits the final 36-bit expression in
the open location, and updates the location counter according to the
rules of that particular command. The current quantity is the last
36-bit expression that DDT evaluated.

If you do not enter a command that deposits to memory, DDT uses, as
the argument to the command, the 36-bit expression that was last
evaluated. All other 36-bit expressions that were evaluated as part
of the string have been deposited, and the current and open locations
were updated accordingly. The current quantity is then the last
36-bit expression that DDT evaluated.

If there is no open location when you begin typing the long text
string, DDT evaluates only the first 36-bit expression, ignores the
rest of the string, and uses the first 36-bit expression as the
argument to the command. The current quantity is then the first
36-bit expression that DDT evaluated in the string. If you enter a
command that deposits to memory, it has no effect because there was no
open location.

The syntax to enter an ASCII string is:

"/textl

where text is the string, and the slashes (I) represent any printing
character that is not contained within text. DDT evaluates the string
as a series of 36-bit expressions, -each in 7-bit ASCII format
(left-justified), with all unused bits reset.

3-4

DDT COMMAND FORMAT

For example, if you enter:

"+abc/def+

DDT evaluates one 36-bit expression as the 7-bit ASCII string abc/d in
bits 0-34, and bit 35 reset. If there is no open location, DDT uses
that expression as the argument to the command, and that expression
becomes the current quantity.

If there is an open location, DDT deposits abc/d in the open location,
closes it, and opens the next location in memory. DDT then evaluates
a second 36-bit expression as the 7-bit ASCII string ef in bits 0-13,
and bits 14-35 reset. The last 36-bit expression evaluated becomes
the current quantity.

NOTE

You cannot use this format to enter an ASCII string
that begins with the ESCAPE character, because <ESC>
terminates the command that enters a single
right-justified ASCII character (in this case, your
intended delimiter).

The syntax to enter a SIXBIT string is:

<ESC>"/text/

where text is the string,and the slashes (/) represent any printing
character that is not contained within text. DDT evaluates the string
as a series of 36-bit expressions-,---each in SIXBIT format
(left-justified), with any unused bits in the last 36-bit expression
reset. DDT translates lowercase characters to uppercase; all other
non-SIXBIT characters cause DDT to sound your terminal buzzer or bell
and display a question mark.

For example, if you enter:

<ESC>">qwertyu>

DDT evaluates one 36-bit expression as the SIXBIT string QWERTY in
bits 0-35. If there is no open location, DDT uses that expression as
the argument to the command, and that expression becomes the current
quantity.

If there is an open location, DDT deposits QWERTY in
location, closes it, and opens the next location in memory.
evaluates a second 36-bit expression as the SIXBIT character
0-5, with bits 6-35 reset. The last 36-bit expression
becomes the current quantity.

NOTE

the open
DDT then

U in bits
evaluated

You cannot use this format to enter a SIXBIT string
that begins with the ESCAPE character, because <ESC>
terminates the command that enters a single
right-justified SIXBIT character (in this case, your
intended delimiter).

The syntax to enter a right-justified ASCII character is:

"c<ESC>

where c is the character. DDT evaluates this as one 36-bit expression
with the 7-bit ASCII character ~ in bits 29-35, and bits 0-28 reset.

3-5

DDT COMMAND FORMAT

The syntax to enter a right-justified SIXBIT character is:

<ESC>"c<ESC>

where c is the character. DDT evaluates one 36-bit expression with
the SIXBIT character c in bits 30-35, and bits 0-29 reset. DDT
translates lowercase characters to uppercase; all other non-SIXBIT
characters cause DDT to sound your terminal buzzer or bell and display
a question mark.

The syntax to enter a RADIX50 word is:

text<ESC>5"

where text is any string of RADIX50 characters up to six characters
long. DDT evaluates one 36-bit expression with bits 0-3 reset and the
RADIX50 string text in bits 4-35. DDT ignores any characters in text
after the sixth-.---

For example, if you enter:

poiuytr<ESC>5"

DDT evaluates one 36-bit expression with bits 0-3 reset and the
RADIX50 string POIUYT in bits 4-35. DDT ignores the character r. DDT
translates lowercase characters to uppercase. Characters in text not
in the RADIX50 character set that are DDT commands use, as an argument
to the command, any characters already entered. Characters in text
not in the RADIX50 character set that are not DDT commands cause DDT
to sound your terminal buzzer or bell and display a question mark.

3.2.2 Operators in DDT Expressions

When you enter an expression, DDT evaluates the expression to create a
36-bit quantity but does not necessarily use all 36 bits when it
executes the command. For example, you can enter a complete MACRO
instruction when giving an argument to a command that requires an
address, but DDT uses only the address specified by the instruction
(and ignores the rest of the evaluated expression) when it executes
the command.

Table 3-2 lists DDT's expression operators and the effects those
operators produce on the evaluation. The term value so far represents
the accumulated 36-bit value resulting from evaluation of the
expression to that point.

3-6

DDT COMMAND FORMAT

Table 3-2: Effects of Operators When Evaluating Expressions

OPERATOR

+

*

, (apostrophe)

space

, (comma)

EFFECT ON EVALUATION

Add the 36-bit value on the left to
value on the right, using two's
addition.

the 36-bit
complement

Subtract the 36-bit value on the right from the
36-bit value on the left, using two's complement
subtraction.

Multiply the 36-bit value on the left by the
36-bit value on the right, uSlng PDP-10
full-word integer multiplication. DDT uses only
the low-order 36 bits of the result.

Divide the 36-bit
36-bit value on
full-word integer
remainder.

value on the left by the
the right, using PDP-10

division. DDT ignores any

NOTE

Apostrophe is DDT's
operator. / (slash) is
command to examine memory,
never used in DDT to
division.

division
a DDT

and is
indicate

Add the previous expression (normally an opcode)
to the value so far, and add the low-order 18
bits of the value at the right of the space to
the low-order 18 bits of the value so far. DDT
ignores carries resulting from the addition, and
does not change the left half of the value so
far.

If you are entering an I/O instruction, shift
the low-order 18 bits of the expression at the
left of the comma 26 bits to the left (to the
device field of the instruction), otherwise
shift the low-order 18 bits of the expression at
the left of the comma 23 bits to the left (to
the A field of an instruction). Then logically
OR the result into the value so far.

NOTE

DDT does not check whether the
value at the left of the comma is a
legitimate device or AC address,
and may overwrite other parts of
the instruction.

3-7

DDT COMMAND FORMAT

Table 3-2: Effects of Operators When Evaluating Expressions (Cont.)

OPERATOR

()

@

" (two commas)

EFFECT ON EVALUATION

Swap the halves of the expression within the
parentheses and add the resulting expression to
the value so far. This makes it possible to
enter an instruction that uses an index
register.

NOTE

DDT does not check whether
value within the parentheses
legitimate AC address, and
overwrite other parts of
instruction.

the
is a
may
the

Assume the expression is an instruction and set
the indirect bit (bit 13) of the value so far.

Move the low-order bits of the expression at the
left of the commas to bits 0-17 and build a new
18-bit expression in the right half.

The nonarithmetic operators allow you to enter expressions in
instruction format as well as in data format.

To enter an instruction, format the instruction as you would in a
MACRO-10 program. For example:

MOVE R4,@VAR1+0FFSET{R5)

NOTE

Follow an opcode (such as MOVE) with a space, not a
<TAB>.

To enter halfwords, enter the values (numbers or symbols) separated by
two commas (,,). The halfwords can be symbolic or absolute values.
For example:

-1"SYM1

NOTE

DDT is not designed to evaluate complicated arithmetic
expressions. The nonarithmetic operators are
implemented to enable DDT to evaluate expressions you
enter as MACRO-10 instructions and halfwords. Using
values and operators for other purposes may not
produce the results you intend.

3-8 April 1986

DDT COMMAND FORMAT

3.3 COMMAND FILES

If you frequently use DDT or FILDDT to debug the same file (such as
the monitor), and execute the same commands each time (such as loading
symbols, suppressing symbols, applying patches, and setting virtual
addressing conditions), you can save time by creating a file that
contains these commands. At any time that you are in DDT you can give
the command:

<ESC>Y

to indicate that you wish to load a command file. DDT prompts:

File:

Enter the file specification, followed by <RET>. You can enter a
complete TOPS-10 file specification. DDT reads the file and executes
the commands. If you append /A after the file specification, DDT
stops executing the command file if it encounters any errors while
executing the commands in the file. If you do not use the /A switch,
DDT executes all legal commands in the control file regardless of any
errors.

An alternate form of the command is:

filnam<ESC>Y

where filnam is a SIXBIT file name up to six characters long, with
default device DSK: and default extension .DDT. For example, to have
DDT execute the DDT commands contained in frre-DSK:PROG.DDT, enter:

<ESC>"/PROG/<ESC>Y

The delimiters (/) can be any character not in filnam.

If bit 15 of the TTY control mask is reset, DDT displays the commands
and resulting output as i~xecutes them. If bit 15 is set, DDT
suppresses the display. The command <ESC>IM returns the address of
the DDT location that contains the TTY control mask. See Chapter 4
(Displaying and Modifying Memory) for more information about the TTY
control mask.

3-9

CHAPTER 4

DISPLAYING AND MODIFYING MEMORY

4.1 DISPLAY MODES

A major function of DDT is displaying the contents of memory words,
both data and instructions. You can choose whether to display the
contents of memory words as symbols or as numeric values. You can
also select the radix in which DDT displays numeric values.

DDT displays symbols, labels, and most messages in uppercase.

4.1.1 Default Display Modes

There is no sure way for DDT to distinguish between instruction and
data words, or between data words of different formats.

DDT displays memory words in symbolic mode by default. Symbolic mode
is described in Table 4-1. DDT tests for the condition on the left,
and if the condition is met, displays the word in the format described
on the right. DDT performs the tests in descending order.

Table 4-1: Evaluation of Symbolic Display Mode

CONDITION DDT DISPLAYS EXAMPLE

Bits 0-18 are all set. A negative number -45
in the current
radix.

The 36-bit value is defined The symbol. SYMBLl
in the user program symbol HALT
table.

The opcode field is zero. Halfwords. 345,,-27

The opcode and I, X, and Y The OPDEF. CORE 6,
fields, or the opcode and A
fields match an OPDEF in the
user program symbol table.

The opcode matches a The instruction. MOVE 3,SYMBL
definition in DDT's internal
hardware instruction table.

No match. Halfwords. 3445,,-23

4-1

DISPLAYING AND MODIFYING MEMORY

By default, DDT displays numeric values in radix 8. Leading zeros are
always suppressed.

4.1.2 Selecting Display Modes

You can select display modes to control:

o the format in which DDT tries to interpret the contents of
memory locations; for example, as instructions, or as
floating-point numbers.

o whether addresses are displayed as symbolic or numeric
values.

o the radix in which numeric values are displayed.

In addition, you can specify these modes on a short-term (temporary
mode) or long-term (prevailing mode) basis.

A prevailing display mode remains in effect until you select another
prevailing mode, but may be overridden by a temporary mode until you
enter a command that restores the prevailing display mode. DDT
commands that restore the prevailing display mode are:

0 {expr}<RET> (deposit expr and close location)

0 <ESC>G (start program execution)

0 <ESC>P (proceed from a breakpoint)

0 <ESC>W, <ESC>E, <ESC>N (perform a search)

0 <ESC>Z (zero memory)

0 instr<ESC>X (execute instr)

0 <ESC>Y (execute DDT command file)

0 <ESC>V (watch a location)

The syntax of commands that set the prevailing mode is:

<ESC><ESC>mode

where mode is one of the display modes shown in Table 4-2.

The syntax of commands that set a temporary mode is:

<ESC>mode

where mode is one of the display modes shown in Table 4-2.

The current display mode is the mode (prevailing or temporary) in
which DDT will display the next word (unless you enter a .command to
change the display mode).

4-2

DISPLAYING AND MODIFYING MEMORY

DDT has two "masks" that control the action of two of the display
modes.

<ESC>3M is a command that addresses a DDT location that contains the
output byte size mask. When the current display mode is 0, each bit
that is set in the mask indicates the position of a low order bit of a
byte in the word being displayed. In this mode, bit 35 is always
assumed to be set. For example, if the output byte size mask
contains:

510410100400 (octal)

the byte sizes specified are, from left to right, 1, 2, 3, 4, 5, 6, 7,
and 8. When displaying a word in 0 mode that contains 777777,,777777,
and the current radix is 8, DDT displays:

1,3,7,17,37,77,177,377

The default value of the output byte size mask is zero, specifying one
36-bit byte.

You can set the output byte size mask with the command:

expr<ESC>3M

where expr evaluates to the bit pattern required.

You can also examine and change the output byte size mask with the
examine and deposit commands described later in this chapter.

<ESC>2M is a command that addresses a DDT location that contains the
maximum symbolic offset. When DDT displays an address in R(elative)
mode, it displays the address symbolically, that is, as a symbol, or
as a symbol + the numeric offset of the address from that symbol. The
maximum symbolic offset (minus 1) determines the maximum offset
address that DDT displays symbolically, and defaults to 1000 (octal).
DDT displays addresses beyond that offset in A(bsolute) mode. For
example, assume that the maximum symbolic offset is 2, and that you
are examining subroutine ADDEM in program X.MAC (Fig 2-1), using <LF>
to display instructions in sequence. DDT displays:

ADDEM/ MOVE 0(6)
ADDEM+1/ ADD 1(6)
addr/ MOVE 2(6)

where addr is the absolute address (for example, 14414) of the
location:-

You can set the maximum symbolic offset with the command:

expr<ESC>2M

where expr evaluates to the offset required.

You can also examine and change the maximum symbolic offset with the
examine and deposit commands described later in this chapter.

4-3

DISPLAYING AND MODIFYING MEMORY

DDT display modes and the commands that select them are described in
Table 4-2.

Table 4-2: DDT Display Modes

FORMAT MODES

MODE EFFECT

C Display memory word as numbers in the current radix (see
Radix Modes).

F Display m,emory word as a floating point decimal number.

H Display memory word as two halfword addresses (see
Address Modes) separated by two commas (, ,) .

0 Display memory word as numeric bytes of sizes that are
specified by the <ESC>3M mask.

n0 Display memory word as n-bit numeric bytes, (with
trailing remainder byte, as required) •

S Display memory word in symbolic mode (default) •

IS Search DDT's internal hardware opcode table before
searching the user's symbol table, otherwise follow
rules for symbolic mode.

nT Display memory word as ASCII text, using n-bit bytes.

n=5: RADIX50

n=6: SIXBIT

n=7 through 36:
Specifies the number of bits per byte. The
default is 7-bit ASCII.

n=0: ASCIZ

(Stop ASCIZ typeout by typing any character.)

A Display addresses as absolute values in the current
radix.

R Display addresses as values relative to symbols
(default). DDT displays the offsets in the current
radix. The maximum offset is controlled by the value
stored in the <ESC>2M mask, and defaults to 1000
(octal) •

RADIX MODES

MODE EFFECT

nR Display numeric values in radix n (default=8), where n
is a decimal number greater than 1. If n=8, DDT
displays the word as octal halfwords, otherwise DDT
displays the word as one number.

DDT V44 4-4 April 1986

DISPLAYING AND MODIFYING MEMORY

4.2 DISPLAYING EXPRESSIONS

DDT has three commands you can use to display expressions in different
modes. They are:

(semicolon)

(equal sign)

(underscore)

The syntax of these commands is:

{expr}c

where expr is the expression to display (expr defaults to the current
quantity), and c is one of the above commands. These commands are
useful for redisplaying the current quantity without affecting the
current display mode. Table 4-3 lists the commands to display
expressions and their effects.

Table 4-3: Commands to Display Expressions

COMMAND EFFECT

i Display the current quantity in the current display
mode.

expri Display expr in the current display mode.

= Display the current quantity as a number in the
current radix.

expr= Display expr as a number in the current radix.

- Display the current quantity in 1$ mode.

expr_ Display expr in 1$ mode.

4.3 DISPLAYING BYTE POINTERS

If you set the display mode to IT, DDT displays the contents of the
memory location as a byte pointer. DDT can display one-word local,
one-word global, and two-word byte pointers. DDT displays the P and S
fields, and the address as determined by the I, X, and Y fields of the
byte pointer.

In section zero, DDT displays only one-word byte pointers (local and
global).

For example, if the contents of the location at ADDR2 is 100702"addr,
where addr is the value of symbol LABL2, the following illustrates
one-word local byte pointer display:

addr2/ 100702"addr <ESC>lTi 10 7 LABL2(2)

DDT V44 4-5 April 1986

DISPLAYING AND MODIFYING MEMORY

The following illustrates one-word global byte pointer display, where
addr is the value of symbol LABL2:

1"addr2/ 610002"LABL2 <ESC>lT; 44&7 2"LABL2

The following illustrates two-word global byte pointer display, where
addr is the value of symbol LABL2 (DDT echoes <BKSP> as ~H):

1"addr2/
1"addr2+1/
1"addr2/

440740,,0 <LF>
3"addr <ESC>lT~H

44 7 3"MAIN. <2>

4.4 DISPLAYING AND DEPOSITING IN MEMORY

DDT allows you to display the contents of memory locations and deposit
a new value in the open location. In performing these functions, you
must understand the concept of the open location, the current
location, the location sequence stack, and the current quantity.

The open location is a memory location (or AC) that is "open" for
modification by the next command. There is never more than one
location open at a time. DDT always closes the open location before
opening another.

The location counter contains the address of a word in memory that has
been referenced (implicitly or exp~icitly) by the previous command,
and that is the default point of reference for the next command. That
word is known as the current location. DDT uses the address of the
current location as the default address in most commands. The current
location is often, qut not always, the open location.

Most DDT commands change the current location to a word specified by
an address given (explicitly or by default) in the command. Commands
that do not are so indicated.

"." (period) is a command that returns (but does not display) the
address of the current location.

When you first enter DDT, the current location is zero.

The location sequence stack is a "ring" of seventeen words, each
containing the address of a prior current location, or of a match
found during a search. The present value of the current location is
not placed in the ring.

Entries are made to and retrieved from the location sequence stack in
a last-in, first-out manner. Most commands that change the location
counter by values other than +1 and -1 cause DDT to place the address
of the current location (before the change) on the location sequence
stack. Addresses of matching locations found during searches are also
placed on the location sequence stack. When DDT enters a new value in
the next word on the stack, the new value becomes the current location
stack entry. This is similar to PUSHing entries on a stack. When the
current location stack entry is the last location on the location
sequence stack, DDT enters a new value on the stack by "wrapping
around" to the beginning of the stack and overwriting the value in the
first location on the stack. The first location on the stack then
contains the current location stack entry.

DDT V44 4-6 April 1986

DISPLAYING AND MODIFYING MEMORY

Certain DDT commands change the address of the current location to the
current location stack entry, and then change the current location
stack entry to the previous entry. This is similar to POPping entries
off a stack, and allows y~u to "return" to locations that have
previously been the current location. When the first location on the
location sequence stack contains the current location stack entry and
DDT changes the address of the current location to the current
location stack entry, DDT "wraps around" to the end of the stack, and
the value contained in the last word o·f the stack becomes the current
location stack entry (whether or not the stack was previously "full").

The current quantity is a value that is the most recent of:

o the last 36-bit quantity that DDT displayed (an expression or
the contents of a memory location)

o the last expression that you entered as an argument to a
command that deposits to memory

This value is also known as the last value typed. <ESC>Q is a command
that returns (but does not display) the current quantity. DDT issues
an implicit <ESC>Q to return this value for use as the default
argument for some commands.

You can give the current quantity as an argument to a command by
entering the command <ESC>Q as the argument.

The command <ESC><ESC>Q returns the current quantity with the right
and left halves swapped.

This manual uses the term $Q to refer to the value that is returned by
the command <ESC>Q, and the term $$Q to refer to the value that is
returned by the command <ESC><ESC>Q.

Some commands calculate the address of the location to be opened from
an expression given or defaulted in the command. Other commands use
the address of the current location or entries on the location
sequence stack.

The general syntax of these commands is:

{expr}{<ESC>}c

where expr is any legal DDT expression, and c is the command.

NOTE

See Values in DDT Expressions in
discussion of long text strings
expressions.

4-7

Chapter 3 for a
as values in DDT

DISPLAYING AND MODIFYING MEMORY

Table 4-4 summarizes the commands and their effects.
descriptions of the commands follow the table.

Complete

Table 4-4: DDT Commands to Display Memory

COMMAND DISPLAY MODE OPEN CHANGE DEPOSIT
CONTENTS OF THE CURRENT EXPR

DISPLAY LOCATION LOCATION

/ Yes Current Yes Yes(l) No

[Yes Numeric Yes Yes(l) No

] Yes Symbolic Yes Yes(l) No

1 No Suppress Yes Yes(l) No

\ Yes(2) Current Yes No Yes(l)

<TAB> Yes(2) Current Yes Yes Yes(l)

<RET> No Restore No No Yes(l)

<LF> Yes(2) Current Yes Yes(.+l) Yes(l)

<BKSP> Yes(2) Current Yes Yes (• -1) Yes (1)
or '"

(1) If you enter expr.

(2) If not suppressed by 1 •

4.4.1 Commands That Use the Current Location

The commands <RET>, <LF>, and <BKSP> use the address of the current
location to determine the next address of the current location.

These commands do not make entries to the location sequence stack.

{expr}<RET> does the following:

o deposits expr (if given) in the open location

o closes the open location

o resets the current typeout mode to the prevailing typeout
mode

o does not change the address of the current location

4-8 April 1986

DISPLAYING AND MODIFYING MEMORY

{expr}<LF> does the following:

o deposits expr (if given) in the open location

o closes the open location

o increments the location counter

o opens the current location

o displays the open location (unless
suppressed by 1)

{expr}<BKSP> and {expr}A do the following:

display

o deposit expr (if given) in the open location

o close the open location

o decrement the location counter

o open the current location

has been

o display the open location (unless display has been suppressed
by 1)

4.4.2 Commands That Use the Location Sequence Stack

The commands <ESC><RET>, <ESC><LF>, and <ESC><BKSP> use the current
location stack entry to determine the next address of the current
location.

Repetitions of these commands refer to successively earlier entries on
the stack, until you again address the most recent entry.

These commands do not make entries to the. location sequence stack.

{expr}<ESC><RET> does the following:

o deposits expr (if given) in the open location

o closes the open location

o changes the value contained in the location counter to the
current location stack entry

o opens the current location

o starts a new line and displays the address and contents of
the open location in the current display mode

o causes the previous entry on the location sequence stack to
become the current location stack entry

NOTE

If display is suppressed as a result of using the
command, the command {expr}<ESC><RET> restores the
current display mode, which can be either a temporary
or prevailing display mode.

4-9 April 1986

DISPLAYING AND MODIFYING MEMORY

{expr}<ESC><LF> does the following:

o deposits expr (if given) in the open location

o closes the open location

o changes the value contained in the location counter to the
current location stack entry

o increments the location counter

o opens the current location

o starts a new line and displays the address of the open
location

o displays the contents of the open location (unless display
has been suppressed by 1)

o causes the previous entry on the location sequence stack to
become the current location stack entry

{expr}<ESC><BKSP> and {expr}<ESC>A do the following:

o deposit expr (if given) in the open location

o close the open location

o change the value contained in the location counter to the
current location stack entry

o decrement the location counter

o open the current location

o display the address of the open location

o display the contents of the open location (unless display has
been suppressed by!)

o cause the previous entry on the location sequence stack to
become the current location stack entry

4.4.3 Commands That Use an Address Within the Command

The commands:

/
[
]

\
<TAB>

(slash)
(left square bracket)
(right square bracket)
(exclamation point)
(backslash)

use an expression given
default) to determine
open location.

in the command (either explicitly or by
the addresses of the current location and the

4-10 April 1986

DISPLAYING AND MODIFYING MEMORY

The complete syntax of these commands is:

{expr}{<ESC>{<ESC>}}c

where expr may be an address, ".", a symbol, or any expression that is
legal in DDT, and c is the command.

When you use the commands /, [,], 1, \, and <TAB>:

o If you omit expr

o

> DDT uses the current quantity as a default.

> <TAB> enters the address of the current location on the
location sequence stack and changes the current location
to the address determined from the current quantity.

If you enter fixpr, DDT enters the address of the
location on t e location sequence stack (except \).

current

o DDT treats expr (whether given or defaulted) as if it were in
instruction format and performs the effective address
calculation as follows:

> If you omit <ESC>, DDT does not perform indexing or
indirection.

,
> If you include one <ESC>, DDT treats expr as an IFIW

(instruction format indirect word), and uses the I and Y
fields of expr to perform indexing and indirection when
appropriate.

> If you use <ESC><ESC>, DDT utilizes EFIWs (extended
format indirect words), as appropriate,. when performing
effective address calculations, and can thereby calculate
30-bit addresses.

> In section zero, when you include <ESC><ESC>, it is
treated as one <ESC>.

These commands always do the following:

o close the open location

o open the location at the address indicated by expr

o change the current quantity to the value displayed (all
commands except 1)

The following is a list that gives a complete description of the
effects of each command.

COMMAND EFFECTS

/

o closes the open location

o opens the location at the address calculated from the current
quantity

o displays the contents of the open location in the current
display mode

o sets the current quantity to the value displayed

4-11

expr/

expr[

DISPLAYING AND MODIFYING MEMORY

o closes the open location

o opens the location at the address calculated from expr

o enters the address of the current location on the location
sequence stack

o changes the current location to the location at the address
calculated from expr

o displays the contents of the open location in the current
display mode

o sets the current quantity to the value displayed

o closes the open location

o opens the location at the address calculated from the current
quantity

o displays the contents of the open location in numeric mode in
the current radix

o sets the current quantity to the value displayed

o closes the open location

o opens the location at the address calculated from expr

o enters the address of the current location on the location
sequence stack

o changes the current location to the location at the address
calculated from expr

o displays the contents of the open location in numeric mode in
the current radix

o sets the current display mode to numeric mode in the current
radix

o sets the current quantity to the value displayed

o closes the open location

o opens the location at the address calculated from the current
quantity

o displays the contents of the open location in symbolic mode

o sets the current display mode to symbolic mode

o sets the current quantity to the value displayed

4-12

expr]

expr!

\

DISPLAYING AND MODIFYING MEMORY

o closes the open location

o opens the location at the address calculated from expr

o enters the address of the current location on the location
sequence stack

o changes "the current location to the location at the address
calculated from expr

o displays the contents of the open location in symbolic mode

o sets the current display mode to symbolic mode

o sets the current quantity to the value displayed

o closes the open location

o opens the location at the address calculated from the current
quantity

o does not display the contents of the open location

o suppresses display of the open location by the \, <TAB>,
<LF>, and <BKSP> commands (any other display command restores
the current display mode)

o does not change the current quantity

o closes the open location

o opens the location at the address calculated from expr

o enters the address of the current location on the location
sequence stack

o changes the current location to the location at the address
calculated from expr

o does not display the contents of the open location

o suppresses display of the open location by the \, <TAB>,
<LF>, and <BKSP> commands (any other display command restores
the current display mode)

o does not change the current quantity

o closes the open location

o opens the location at the address calculated from the current
quantity

o displays the contents of the open location in the current
display mode (unless display has been suppressed by 1)

o sets the current quantity to the value displayed

4-13

expr\

<TAB>

DISPLAYING AND MODIFYING MEMORY

o deposits expr in the open location

o closes the open location

o opens the location at the address calculated from expr

o does not change the address of the current location (and does
not enter the address of the current location on the location
sequence stack)

o displays the contents of the open location in the current
display mode (unless display has been suppressed by 1)

o sets the current quantity to the value displayed

o closes the open location

o opens the location at the address calculated from the current
quantity

o enters the address of the current location on· the location
sequence stack

o changes the current location to the location at the address
calculated from the current quantity

o starts a new line and displays the address of the open
location (which is also the current location)

o displays the contents of the open location in the current
display mode (unless display has been suppressed by 1)

o sets the current quantity to the value displayed

expr<TAB>

o deposits expr in the open location

o closes the open location

o opens the location at the address calculated from expr

o enters the address of the current location on the location
sequence stack

o changes the current location to the location at the address
calculated from expr

o starts a new line and displays the address of the open
location (which is also the current location)

o displays the contents of the open location in the current
display mode (unless display has been suppressed by 1)

o sets the current quantity to the value displayed

4-14

DISPLAYING AND MODIFYING MEMORY

You can treat e~pr as an IFIW (instruction format indirect word), and
use any indexIng and indirection specified by expr to compute the
effective address of the location to be opened. Use the command form:

{expr}<ESC>c

where c is I, [,], 1, \, or <TAB>.

For example, assume the following conditions as indicated by the
display commands:

COMMAND DISPLAY EXPLANATION

LABL11 SYM1 Display contents of LABL1.
LABL1+11 SYM2 Display contents of LABL1+1.
SYM21 SYM3 Display contents of SYM2.
21 1 Display contents of AC 2.
@LABL1(2)/ SYM1 DDT uses Y field only.
@LABL1(2)<ESC>1 SYM3 <ESC> causes indexing and indirection.

Note that DDT does not start a new line unless you enter <TAB>, <RET>,
<LF> or <BKSP>, or until the display wraps around the end of the line.
DDT also displays three spaces (or a tab, depending on the TTY control
mask) before and after its output. Thus, an actual DDT terminal
display might be the following (user input is lowercase; <LF> and
<TAB> do not appear on the screen, but are shown to indicate where you
pressed the corresponding keys):

21 1 1ab111 SYM1 <LF>
LABL1+11 SYM2 <TAB>
SYM21 SYM3 sym41 MOVE 1,@LABL1(2)
SYM21 SYM3

<ESC><TAB>

You can treat expr as an EFIW (extended format indirect word) and use
any indexing and indirection specified by expr to compute the (global)
effective address of the location to be opened. Use the command form:

{expr}<ESC><ESC>c

where c is I, [,], 1, \, or <TAB>.

4.5 DISPLAYING ASCIZ STRINGS

You can display memory as an ASCIZ string. The command

addr<ESC>0T

where addr defaults to the open location (if there is one, otherwise
addr defaults to the current location), displays memory, beginning
with addr, as an ASCIZ string. The display stops when DDT finds a
zero byte, or when you type in any character, which DDT displays, but
otherwise ignores. The current location remains unchanged.

DDT V44 4-15 April 1986

DISPLAYING AND MODIFYING MEMORY

4.6 ZEROING MEMORY

To deposit the same value in each of a string of memory words (useful
for initializing memory to zero), enter:

addrl<addr2>{expr}<ESC>Z

where expr is any legal DDT expression, addrl is the first word to
receIve expr, and addr2 is the last. Follow addrl with a left angle
bracket «) and addr2 with a right angle bracket (». Both addrl and
addr2 are required. If you omit expr, it defaults to zero. Prior to
execution, DDT enters the address of the current location on the
location sequence stack and closes the open location. When DDT has
completed execution of the command, the current location is the word
at addr2 + 1. There is no open location. This command restores the
prevailing display mode.

If you enter:

?

while DDT is executing the <ESC>Z command, DDT displays:

Depositing: addr/ value

where addr is the location where DDT will make the next deposit, and
value is the contents of addr before the deposit.

If you enter any other character, DDT stops executing the <ESC>Z
command, and waits for your next command. The character that you
enter to terminate the <ESC>Z command is otherwise ignored.

4.7 AUTOMATIC WRITE-ENABLE

If you attempt to change a word that is write-protected, DDT removes
the protection, makes the change, and then reinvokes the protection.

To prevent DDT from changing write-protected memory, enter:

<ESC><ESC>{0}W

If you attempt to modify write-protected memory while automatic
write-enable is turned off, DDT returns the message:

?NOT WRITABLE

To allow DDT to change write-protected memory, enter:

<ESC>{0}W

This is the default condition.

The zero in the above commands is optional and has no effect on the
operation of the commands.

4-16 April 1986

DISPLAYING AND MODIFYING MEMORY

4.8 AUTOMATIC PAGE CREATION

If you attempt to deposit a value in a word within a nonexistent page,
DDT sounds your terminal buzzer or bell and displays a question mark
(?) •

To allow DDT to create a page when you attempt to deposit a word
within a nonexistent page, enter:

<ESC>lW

If DDT tries to create the page and fails, DDT displays:

?CAN'T CREATE PAGE

To prevent DDT from creating a page when you attempt to deposit a
value within a nonexistent page, enter:

<ESC><ESC>lW

This is the default condition.

4.9 DISPLAYING PAGE ACCESSIBILITY INFORMATION

You can get information about the access requirements of the pages and
sections in the program you are debugging, using the $L and $$L
commands. The complete format for this command is:

{{argl<}arg2}{<ESC>}<ESC>L

where argl and arg2 are sections numbers. Using one <ESC> causes DDT
to display access information about the section and about individual
pages. Using <ESC> twice causes DDT to display access information
only about the section(s). If you include both argl and arg2, DDT
displays the information for all sections that your program and DDT
are using, in the range argl to arg2, inclusive. If you include only
arg2, DDT displays access information for that section only. If you
omit both arguments, DDT displays access information for all sections
that your program and DDT are using.

The page and section accessibility bits and their meanings are:

Read
Write
AA
Sharable
Hiseg
Zero
Spying
Cannot page
Paged out
Locked
Not cached

DDT V44

Page can be read.
Page can be written.
Page access is allowed.
Page can be shared.
Page is part of high segment.
Page is allocated but zero.
Page is spying on someone.
Page cannot be paged out.
Page has been paged out.
Page is locked in core.
Page is not cached.

4-17 April 1986

DISPLAYING AND MODIFYING MEMORY

For example, the command <ESC>L might produce the following display:

Section 0
000
001-030
577
600-656

Section 1
000
001-030
577
600-656

Section 3
000-777

Section 4
000-354

Read, Write, AA, Cannot page
Read, Write, AA
Read, Write, AA
Read, AA, Sharable, Hiseg

indirect to section 0
Read, Write, AA, Cannot page
Read, Write, AA
Read, Write, AA
Read, AA, Sharable, Hiseg

Read, Write, AA

Read, Write, AA

And the command <ESC><ESC>L might product a display like the
following:

Section 0
Section 1 indirect to section 0
Section 3
Section 4

4. H~ WATCHING A MEMORY LOCATION

If you wish to have DDT monitor or "watch"
your program is running, and display
contents change, enter:

addr<ESC>V

a memory location while
the location whenever its

where addr is the address of the location to be watched, and defaults
to the current location. When you enter the command, DDT starts a new
line and displays:

addr/ value

where addr is the address of the location being watched, and value is
the contents of the location. This command also restores the
prevailing display mode.

DDT checks addr every "jiffy" (about 20 milliseconds), and displays
the address--and contents of addr whenever those contents change.
(Executive mode EDDT watches addr continuously.)

If you enter a question mark (1) while DDT is watching, DDT displays:

Watching: addr/ value

where addr is the address of the location being watched, and value is
the contents of addr.

To terminate the watch, enter any other character. DDT stops
monitoring the word, starts a new display line, echoes the character
you enter, starts another line, and waits for more input. The
character that you enter to terminate the watch is otherwise ignored.

DDT V44 4-18 April 1986

DISPLAYING AND MODIFYING MEMORY

Because any input character terminates the watch, you cannot continue
execution and watch your own user program. The <ESC>V command is
useful to watch activity in a separate process (such as the running
monitor or other job, for which you must be using EDDT or FILDDT).
The page that contains the word you wish to watch must be mapped into
your own process (the one that contains DDT and your program).

4.11 TTY CONTROL MASK

You can control certain aspects of DDT's display by setting DDT's TTY
control mask. The command <ESC>lM returns a value that is the address
of the DDT location that contains this mask. Table 4-5 summarizes the
features controlled by the bits in the TTY control mask.

Table 4-5: TTY Control Mask

BIT VALUE EXPLANATION

15 0 Display the commands (and results) from the file
executed by the <ESC>Y command (defau1 t) •

1 Do not display the commands (or resu1 ts) from the
file executed by the <ESC>Y command.

16 0 When interrupting program execution at a
breakpoint, display the address and contents of
the breakpoint (default) •

1 When interrupting program execution at a
breakpoint, display only the address of the
breakpoint.

17 0 Display 3 spaces when spacing DDT output (1) •

1 Display DDT output fields at tab stops (I) •

34 0 The terminal doesinot have a tab mechanism (2) •

1 The terminal has a tab mechanism (2) •

35 0 Echo deleted characters (3) •

1 Backspace over deleted characters (3) •

(1) If bit 17 is reset (default) , DDT displays 3 spaces between
output fields (such as between the address of a location and the
contents of the location), and at the end of display lines. If
bit 17 is set, DDT lines up the output fields in columns
beginning at tab stops (see bit 34).

Figure 4-1 illustrates the two different modes.

(2) If bit 34 is set, DDT displays a tab character «CTRL/I»
between fields. If bit 34 is reset, DDT displays enough spaces
to start the field at the next tab stop. When starting up, DDT
checks whether your terminal can handle TAB characters
«CTRL/I», and sets this bit accordingly.

(3) When starting up, DDT checks whether your terminal can
backspace to delete characters, and sets this bit accordingly.

4-19 April 1986

DISPLAYING AND MODIFYING MEMORY

To change the settings of the TTY control mask, use the command:

expr<ESC>lM

where expr evaluates to the required bit pattern.

You can also open the location addressed by <ESC)lM with one of the
DDT display commands, and deposit an expression that contains the new
bit settings.

Figure 4-1 is an illustration of the effects of bit 17 in the TTY
control mask. The code being examined is the first few lines of
X.MAC, listed in Figure 2-1. The example is not a complete debugging
session; only enough is shown to illustrate the effects of bit 17 of
the TTY control mask. The numbers at the left of the DDT display
lines are to assist you in following the commentary that follows the
display. User input is in lowercase.

Figure 4-1: DDT Session Showing Columnar Output

SCREEN DISPLAY

1. DDT
2. start/ MOVE P,PWORD x$: .$b $g
3. $lB»START/ MOVE P,PWORD $x
4. P/ -10"STACK PWORD/ -10"STACK
5. START+l/ MOVEI IDX,TABLEI $x
6. IDX/ TABLEI TABLEI $lm/ 2 1,,2
7. start$g
8. $lB»START/ MOVE P,PWORD $x
9. P/ -10"STACK PWORD/ -10"STACK
10. START+l/ MOVEI IDX,TABLEI $x
11. IDX/ TABLEI TABLEI

COMMENTARY

Line 1:

o DDT is loaded and waiting for a command.

Line 2:

o Enter start/ to examine location start.

o Enter x<ESC>: to open the symbol table for module X.

o Enter .<ESC>b to set breakpoint at location START.

o Enter <ESC>g to begin execution.

Line 3:

o DDT displays breakpoint information.

o Enter <ESC>x to execute the next instruction.

Line 4:

o DDT displays results of executing the instruction.

4-20

DISPLAYING AND MODIFYING MEMORY

Line 5:

o DDT displays the next instruction.

o Enter <ESC)x to execute the instruction.

Line 6:

o DDT displays the results of executing the instruction.

o Enter <ESC)lm/ to display and open the TTY control mask.

o DDT displays the mask. Bit 34 is set.

o Enter 1,,2<RET) to set bits 17 and 34.

Line 7:

o Enter start<ESC)g to restart the program.

Line 8:

o DDT displays the breakpoint information.

o Enter <ESC)x to execute the instruction.

Line 9:

o DDT displays the results of executing the instruction.

Line 10:

o DDT displays the next instruction.

o Enter <ESC)x to execute the next instruction.

Line 11:

o DDT displays the results of executing the instruction.

4-21

CHAPTER 5

CONTROLLING PROGRAM EXECUTION

5.1 BEGINNING EXECUTION

To begin execution of your program, enter:

<ESC>G

Your program will run, beginning at its start address. If you have
not set any breakpoints, your program runs to completion, or until it
makes a fatal error. At TOPS-10 command level, you can then use the
DDT command to reenter DDT and examine your program.

You can start or continue program execution at any address with the
command:

addr<ESC>G

5.2 USING BREAKPOINTS

A breakpoint is a program location that has been altered such that if
your program PC reaches the address of the breakpoint, your program
transfers control to DDT.

When you set a breakpoint with DDT, DDT stores the address of the
breakpoint in an internal table. When you command DDT to begin or
continue program execution, DDT stores the instructions from all
breakpoints in the table, and replaces them with JSRs into a DDT entry
table.

While program execution is suspended at a breakpoint, you can examine
and modify memory, remove breakpoints, insert new breakpoints, execute
individual instructions, and continue program execution.

During this time, the command "<ESC>." returns the value that is the
address of the next instruction to be executed. The command
"<ESC><ESC>." returns a value that is the previous value returned by
"<ESC>.". When you first receive control at the breakpoint, "<ESC>."
returns the address of the breakpoint and "<ESC><ESC>." returns zero.
Before you start execution with <ESC>G, "<ESC>." and "<ESC><ESC>." are
illegal commands (if you try to execute them, DDT sounds the terminal
buzzer or bell and displays a question mark).

NOTE

This manual uses the term "$." to represent the value
returned by the command "<ESC>.", and the term "$$."
to represent the value returned by the command
"<ESC><ESC>.".

5-1

CONTROLLING PROGRAM EXECUTION

You can set up to 12 breakpoints at a time (this is a DDT assembly
parameter) in your program. These breakpoints are numbered 1 through
12. There 1S also one breakpoint (the unsolicited breakpoint,
numbered zero) that can be used by your MACRO program to "call" DDT.

Each breakpoint has several internal DDT locations associated with it,
which contain information to control DDT action with respect to the
breakpoint. You can examine and modify these DDT locations with the
same DDT commands that you use to examine and modify locations in your
user program. <ESC)nB is a command that returns the value that is the
address of the first DDT word associated with breakpoint n. The
symbol $nB is used here to represent that address.

Table 5-1 contains a list of the breakpoint locations of interest to
the user, and their contents.

Table 5-1: Breakpoint Locations of Interest

LOCATION CONTENTS

$nB Address of breakpoint n.

$nB+l Instruction for conditional breakpoint n.

$nB+2 Proceed count for conditional breakpoint n.

$nB+3 Address of a location to be opened and displayed when
the breakpoint is reached.

$nB+4 Address of an ASCIZ DDT command string to be executed
when the breakpoint is reached.

When your user-program PC reaches a breakpoint, your program executes
the JSR into DDT. When this occurs, DDT does the following:

o saves your user-program context

o replaces the JSR instructions at all breakpoints with the
original program instructions

o displays the breakpoint number, breakpoint address, and the
contents of the breakpoint (depending on bit 16 of the TTY
control mask)

o sets "$." to the breakpoint address

o sets "$$." to zero

o enters the address of the current location (set before you
started the program or proceeded from a breakpoint) on the
location sequence stack

o changes the current location to the breakpoint

o waits for you to give a DDT command

5-2

CONTROLLING PROGRAM EXECUTION

When you command DDT to restart or continue program execution, DDT
does the following:

o saves the program instructions from all breakpoints

o replaces the program instructions at all breakpoints with JSR
instructions to DDT

o if you have not executed the instruction at the breakpoint
with <ESC>X, DDT simulates execution of the instruction at
the breakpoint

o restores your user-program context

o DDT performs a JRSTF (if in section zero, otherwise XJRSTF)
to the next instruction to be executed

5.2.1 Setting Breakpoints

To set ~ breakpoint, enter:

addr<ESC>{n}B

where addr is the address where you want to suspend execution (addr
can be ".", the command that returns the address of the current
location), and n is the number of the breakpoint (and defaults to the
lowest unused breakpoint number).

If you do not specify n, it defaults to the lowest available (unset)
breakpoint. If you have already set twelve breakpoints, DDT displays
A?" and sounds the terminal buzzer or bell.

If you specify n, it must be greater than zero and less than 13. DDT
restores the original contents of any (previously set) breakpoint
designated as breakpoint n before setting new breakpoint n.

You cannot set more than one breakpoint at the same address. DDT
simply sets the same breakpoint again, even if you explicitly specify
a breakpoint number the second time.

You cannot set a breakpoint at AC zero.

Assume the following conditions:

o location LABLI+3 contains the instruction MOVE I,LABL2

o breakpoint 2 is set at LABLl+3

If your program reaches LABLl+3 it executes the JSR to DDT, and DDT
does the following:

o saves your user-program context

o restores the original program instructions to the breakpoints

o sets "$." to LABLl+3

o sets "$$." to zero

o enters the address of the current location on the location
sequence stack

5-3

CONTROLLING PROGRAM EXECUTION

o changes the current location to LABLl+3 (the breakpoint)

o opens location LABLI+3

o displays: $2B»LABLI+3/ MOVE 1,LABL2

To set ~ breakpoint and have DDT display .~ additional location when
your program reaches the breakpoint, enter:

addrl<addr2<ESC>{n}B

where addrl is the location to be displayed, and addr2 is the location
of the breakpoint. Follow addrl with a left angle bracket «).
Assume the following conditions:

o location LABLI+3 contains the instruction MOVE 1,LABL2

o location LABL3 contains value SYMBLI

o breakpoint 2 was set by the command:

LABL3<LABLI+3<ESC>B

If your program reaches LABLI+3 it executes the JSR to DDT, and DDT
does the following:

o saves your user-program context

o restores the original program instructions to the breakpoints

o sets "$." to LABLl+3

o sets "$$." to zero

o enters the address of the current location on the location
sequence stack

o changes the current location to LABLI+3 (the breakpoint)

o enters the address of the current location (the breakpoint)
on the location sequence stack

o changes the current location to LABL3

o opens location LABL3

o displays: $2B»LABLI+3/ MOVE 1,LABL2 LABL3/ SYMBLI

Note that, because DDT placed the breakpoint address on the location
sequence stack, you can enter <ESC><RET> to change the current
location back to the breakpoint.

When invoked at a breakpoint, DDT can also execute a string of DDT
commands that is stored as an ASCIZ string. To invoke this function,
enter:

{addrl<}addr2>addr3<ESC>{n}B

where addrl is an optional location to be displayed, addr2 is the
address of the ASCIZ string containing the DDT commands, and addr3 is
the address of the breakpoint. Follow addrl with a left angle bracket
«) and addr2 with a right angle bracket (».

5-4

CONTROLLING PROGRAM EXECUTION

This command is legal only if feature-test FTYANK was turned on when
DDT was assembled.

If your program reaches addr3 it executes the JSR to DDT, and DDT does
the following:

o saves your user-program qontext

o restores the original program instructions to the breakpoints

o sets "$." to addr3

o sets "$$." to zero

o enters the address of the current location on the location
sequence stack

o changes the current location to addr3 (the breakpoint)

o displays the breakpoint number

o displays the address and contents of the location at addr3

o if you give addrl< in the command, DDT does the following:

> enters addr3 on the location sequence stack

> changes the current location to addrl

> opens the location at addrl

> displays the contents of the location at addrl

o executes the DDT commands stored as an ASCIZ string at addr2

If you give addrl< in the command, DDT places the breakpoint address
on the locatIon sequence stack, and you can enter <ESC><RET> to change
the current location back to the breakpoint.

To display the address of any breakpoint, enter:

<ESC>nB/

where n is the address of the breakpoint. DDT displays the address of
breakpoint n, and you can use the examine commands to open and display
the instruction at breakpoint n. If breakpoint n is not set, DDT
displays zero.

To remove breakpoint n, enter:

0<ESC>nB

To remove all breakpoints, enter:

<ESC>B

5-5

CONTROLLING PROGRAM EXECUTION

5.2.2 Proceeding from Breakpoints

After your program has reached a breakpoint, you can continue
execution at "$." by entering:

<ESC>P

DDT saves the program instructions from all breakpoints, replaces the
program instructions with JSRs to DDT, restores your user-program
context, and if you have not executed any program instructions with
the <ESC>X command, simulates execution of the instruction at the
breakpoint. DDT then executes a JRSTF (in section zero, otherwise DDT
executes an XJRSTF) to the next instruction to be executed.

You can cause the program to start execution at a different location
with the {addr}<ESC>G command, where addr defaults to the program's
start address.

Once your program has reached a breakpoint and DDT has interrupted
execution, you can cause DDT to continue execution but NOT stop at
that breakpoint until your program has reached that breakpoint a
specified number of times. To do this, enter:

expr<ESC>P

where expr is the proceed count. DDT places expr at location $nB+2,
where n is the number of the breakpoint at which your program has
stopped. DDT resumes execution of your program. Each time your
program reaches breakpoint n, DDT decrements the proceed count stored
at $nB+2. Your program continues execution until:

o it reaches a different breakpoint

o it terminates normally

o it commits a fatal error

o the proceed count reaches zero

Each breakpoint has an associated automatic proceed flag. If this
flag is set and the program reaches the breakpoint, DDT decrements the
proceed count at $nB+2 (where n is the number of the breakpoint) and
displays the breakpoint information if the proceed count is less than
one. DDT then automatically continues program execution.

The <ESC>P command
associated with the
execution.

resets (clears)
breakpoint at

the automatic proceed flag
which DDT has suspended program

To set ~ breakpoint and set the associated automatic proceed flag,
enter:

{addrl<}addr2<ESC><ESC>{n}B

where addr2 is the address of the breakpoint and may be ".", addrl is
an (optional) additional location to be displayed, and n is optional
and defaults to the lowest unused breakpoint.

5-6

CONTROLLING PROGRAM EXECUTION

Each time your program reaches
associated proceed count, and
displays:

$nB»addr2/ instr

breakpoint n, DDT
if the result is

decrements the
less than one,

where n is the breakpoint number, addr2 is the address of the
breakpoint, and instr is the contents of the word at addr2.

If you entered addrl< when you gave the command, DDT displays:

$nB»addr2/ instr addrl/ contents

where n is the breakpoint number, addr2 is the address of the
breakpoint, instr is the contents of the word at addr2, addrl is the
additional location to be displayed, and contents is the contents of
the word at addrl.

DDT then automatically continues program execution until:

o your program reaches a different breakpoint

o your program terminates normally

o your program commits a fatal error

o you enter any character while your program i~ at breakpoint n

You can interrupt the automatic proceed function if you enter a
character while your program is at breakpoint n. DDT then resets the
automatic proceed flag and suspends program execution at the
breakpoint. DDT echoes the character that you entered, which is
otherwise ignored.

To have DDT execute a DDT command stored as an ASCIZ string when you
interrupt the automatic proceed cycle, enter:

{addrl<}addr2>addr3<ESC><ESC>{n}B

where addrl is an optional location to be displayed, addr2 is the
address of the ASCIZ string containing the DDT commands, and addr3 is
the address of the breakpoint. Follow addrl with a left angle bracket
«) and addr2 with a right angle bracket (».

If your program reaches breakpoint n, DDT displays the requested
information and automatically continues program execution. DDT
executes the ASCIZ DDT command string stored at addr2 only when you
interrupt the automatic proceed cycle by entering any character.

If feature-test FTYANK was not turned on when DDT was assembled, DDT
does not execute the command string stored at addr2.

To proceed from ~ breakpoint and set the associated automatic proceed
flag, give the command:

{expr}<ESC><ESC>P

where expr is the proceed count. DDT stores the proceed count at
$nB+2.

5-7

CONTROLLING PROGRAM EXECUTION

5.2.3 Conditional Breakpoints

To cause DDT to interrupt program execution at a breakpoint only if a
specific condition is satisfied, you must store a single test
instruction or a call to a test routine in DDT's breakpoint table.
You can use a test routine in your program, or one that you enter in
DDT's patching area. See Chapter 8 (Inserting Patches with DDT) for
more information about the patching area. To enter the test
instruction (or the call to the test routine), open the DDT location
addressed by the command <ESC)nB+l by entering:

<ESC)nB+l/

where n is the number of the breakpoint. You must enter n, or DDT
interprets the command as <ESC)B, and removes all breakpoints.
Deposit the test instruction or the call to the test subroutine. If
your program reaches breakpoint n, DDT executes the instruction at
$nB+l. DDT then proceeds as follows:

o If the instruction does not cause a program counter skip, DDT
decrements the proceed count at $nB+2. If the result is zero
or less, DDT interrupts execution at breakpoint n.

o If a program counter skip of 1 does occur, DDT interrupts
execution at breakpoint n.

o If the conditional instruction is a call to a subroutine that
returns by skipping over two or more instructions, DDT does
not interrupt program execution.

If DDT interrupts execution because the test instruction resulted in a
program counter skip, DDT displays only one angle bracket after the
breakpoint identification, as:

$3B)LABL1/ MOVE 1,LABL2

5.2.4 The "Unsolicited" Breakpoint

You can cause your MACRO program to "call" DDT by inserting the
following instruction in your program:

JSR $0BPTf#

The two pound-signs (#f) appended to $0BPT in your MACRO program
declare the symbol as EXTERNAL.

NOTE

"$" represents the dollar sign character, which is
part of the symbol, and is not the DDT echo of the
ESCAPE key.

5-8

CONTROLLING PROGRAM EXECUTION

You must load DDT.REL with your program or you will get a LINK error
(?LNKUGS undefined global symbol) when you load your program. Load
DDT.REL with your program as follows (your input is in lowercase; the
last line indicates that DDT is loaded and ready to accept your
commands):

.r link
*/debug filnam/go
DDT

where filnam is the name of your MACRO-10 program. You can start your
program running with the <ESC>G command. If your program executes the
JSR instruction, DDT interrupts program execution and displays:

$0B»addr+l/ instr

where addr+l is the first location after the JSR $0BPT instruction,
and instr is the contents of that location.

The following sequence of instructions provides another way to have
your MACRO program call DDT:

CALDDT: SKIPN
JRST

JSR
POPJ

.JBBPT
[OUTSTR ASCIZ\%DDT not loaded\
POPJ P,]

@.JBBPT
P,

If DDT is loaded in memory (as indicated by a nonzero value in JOBDAT
location .JBBPT), you can interrupt your program and transfer control
to DDT by entering:

<CTRL/D>

You must have first used the TOPS-10 command SET DDT BREAKPOINT ON
(see the TOPS-10 Commands Reference Manual). The monitor interrupts
your program and transfers control to DDT, which displays:

$0B»CALDDT+3/ POPJ P,

You can use the sequence of TOPS-10 commands shown in the following
terminal display to get DDT loaded into memory with your program (the
commands you enter are in lowercase):

.get filnam

.ddt
DDT
<ESC>g

If you did not load and save DDT.REL with your program, you will get
VMDDT instead of DDT.

5.3 EXECUTING EXPLICIT INSTRUCTIONS

To execute a specific instruction, enter the instruction followed by
<ESC>X:

instr<ESC>X

For example:

MOVE 1,@LABLI(3)<ESC>X

5-9

CONTROLLING PROGRAM EXECUTION

After executing the instruction, DDT starts a new line and displays:

0

0

0

0

<> if in-line execution of instr would result
skipping no instructions.

<SKIP> if in-line execution of instr would result
skipping 1 instruction.

<SKIP 2> if in-line execution of instr would result
skipping 2 instructions.

<SKIP 3> if in-line execution of instr would result
skipping 3 instructions.

NOTE

"In-line execution" means execution of the instruction
as part of normal program flow. The execution of
instructions with this command has no effect on your
user-program PC.

This command restores the prevailing display mode.

5.4 SINGLE-STEPPING INSTRUCTIONS

in

in

in

in

After your program has transferred control to DDT from a breakpoint,
you can execute program instructions one at a time. This is called
"single-stepping."

"<ESC>." is a command that returns the address of the next instruction
to be executed.

To execute the instruction whose address is returned by "<ESC>.",
enter:

<ESC>X

For example, breakpoint 3 is set at LABLl+3. If your program PC
reaches LABLl+3, control passes to DDT, which displays:

$3B»LABLl+3/ ADD 1,LABL2(2)

Examining the environment, you learn the following:

o AC 1 contains 1

o AC 2 contains 3

o LABLl+4 contains MOVEM 1,@LABL2(3)

o LABL2+3 contains SYM3

as shown by the following terminal display (DDT does not display <LF>
or <ESC»:

$3B»LABLl+3/ ADD 1,LABL2(2)
LABLl+4/ MOVEM 1,@LABL2(3)
2/ 3

<ESC>\ SYM3
1/ 1 <LF>

5-10

<LF>

CONTROLLING PROGRAM EXECUTION

If you now enter the command <ESC>X, DDT does the following:

If

o changes "$$." to LABLl+3

o executes the instruction at LABLl+3

o changes "$." to LABLl+4

o changes the current location to LABLl+4

o opens LABLl+4

o displays:

1/ SYM3+1 LABL2+3/ SYM3
LABLl+4/ MOVEM 1,@LABL2(3)

single-stepping an instruction results in a value of ($ • minus $$.)
not equal to 1, DDT also begins a new line and displays:

0 <SKIP> if ($ • minus $$.) 2

0 <SKIP 2> if ($. minus $$.) 3

0 <SKIP 3> if ($ • minus $$.) 4

0 <JUMP> if ($ • minus $$.) is greater than 4 or less than 1

before displaying the address and contents of the next instruction to
be executed." For example, the following shows a typical terminal
display where you enter <ESC>X to single-step the first instruction at
a breakpoint (DDT echoes <ESC> as $):

$4B»LABLl+5/
3/ 1

AOSN 3

<SKIP>
LABLl+7/ MOVEM 1,LABL2

/ <ESC>x

5.5 EXECUTING SUBROUTINES AND RANGES OF INSTRUCTIONS

To execute a series of n instructions beginning with the instruction
whose address is returned by the command "<ESC>.", enter:

n<ESC>X

where n is the number of instructions to execute.

DDT then does the following for each instruction:

o starts a new display line

o executes the instruction

o displays the address
referenced by the
contents of those
instruction

of any
execution
locations

register
of the
after

or memory location
instruction, and the
execution of the

o changes the current location to the next instruction to be
executed

5-11

CONTROLLING PROGRAM EXECUTION

o opens the current location

o displays the address and contents of the next instruction to
be executed

o changes "$." to the address of the next instruction to be
executed

o changes "$S." to the address of the instruction just executed

To suppress typeout of all but the last instruction executed, use the
command:

n<ESC><ESC>X

where n is the number of instructions to execute.

To continue program execution until the PC (program counter) enters a
range of instructions, enter:

{addrl<}{addr2>}<ESC><ESC>X

where addr1 is the lower end of the range, and addr2 is the upper end.
Addr1 defaults to 1 + "S." and addr2 defaults to addr1 + 3. Follow
addr1 with a left angle bracket «) and addr2 with a right angle
bracket (».

This command also indicates skips and jumps.

This command is useful for executing a loop or a subroutine call
quickly and without typeout.

For example, breakpoint 3 is at location LABLI.

S3B»LABLI/ PUSHJ 17,SUBRTN
<SKIP>

<ESC><ESC>X ;Enter <ESC><ESC>X
iSUBRTN returns + 2

LABLI+2/ ADD 1,2

If you enter a question mark (?) while DDT is executing an <ESC><ESC>X
command, DDT displays:

Executing: addr/ instr

where addr is the address of the next instruction to be executed, and
instr is the instruction.

To terminate the execution of the series of instructions, enter any
character other-than? (question mark) • -nOT does the following:

o echoes the character

o displays <SKIP>, <SKIP 2>, <SKIP 3>,
appropriate

o starts a new display line

or <JUMP>, as

o changes the current location to the address of the next
instruction to be executed

o displays the address and contents of the current location

o opens the current location

o waits for your next command

5-12

CONTROLLING PROGRAM EXECUTION

5.5.1 Single-Stepping "Dangerous" Instructions

DDT classifies the following as "dangerous" instructions:

o instructions that can modify memory

o instructions that can cause an arithmetic trap

o instructions that can cause a stack overflow

o a monitor call or I/O instruction

Before single-stepping one of these instructions, DDT saves and
replaces the original instructions at the breakpoints with JSRs to
DDT, and restores the full user-program context (including interrupt
system and terminal characteristics) before executing the instruction.
After executing the instruction, DDT replaces the JSRs at the
breakpoints with the original program instructions, and saves the full
user-program context.

DDT does not check whether the instruction actually results in one of
these conditions, only whether the opcode is in the class of
instructions that can cause these effects. This can make executing
subroutines and ranges of instructions under DDT control extremely
time-consuming.

To execute a subroutine or series of instructions without checking for
dangerous instructions, use the command:

{addrl<}{addr2>}<ESC><ESC>lX

where addrl is the lower end of the range, and addr2 is the upper end.
Addrl defaults to 1 + "$." and addr2 defaults to 3 + addrl. Follow
addr1 with a left angle bracket «), and addr2 with a right angle
bracket (». This command executes much faster than <ESC><ESC>X, but
if the execution of an instruction causes a software interrupt, the
error and trap handling mechanism may not function correctly. In
addition, program instructions that change or rely on terminal or job
characteristics that are also used by DDT can cause unpredictab~e
results.

5.6 USER-PROGRAM CONTEXT

When DDT interrupts your program's execution at a breakpoint, and
after it has executed a dangerous instruction during an <ESC>X or
<ESC><ESC>X command, it saves the user-program context. The command
<ESC>nI, where 0<=n<=10 (octal), returns the address of the word that
contains the information for "function" n. You can use this address
to display and modify these values. Most of these values are useful
only in executive mode. DDT displays the address of the word
containing the information for function n as:

$I+n

where 1<=n<=10 (octal). If n 0, DDT displays only $I.

5-13

CONTROLLING PROGRAM EXECUTION

Table 5-2 lists the functions.

Table 5-2: User-Program Context Values

FUNCTION VALUE

0 Executive mode CONI PI.

1 Executive mode PI channels turned off.

2 Executive mode CONI APR.

3 User PC flags.

4 User PC address.

5 EPT page address.

6 UPT page address.

7 CST base virtual address.

10 SPT base virtual address.

DDT restores the user-program context whenever you execute <ESC>G,
<ESC>P, and when you execute <ESC>X, or <ESC><ESC>X of dangerous
instructions.

Functions 5 through 10 (octal) affect DDT's interpretation of your
program's virtual address space. You can alter DDT's interpretation
of your program's virtual address space with the physical and virtual
addressing «ESC>nU) commands described in Chapter 11 (Physical and
Virtual Addressing Commands). However, any alterations that you make
do not become part of your user-program context, and do not affect
TOPS-10's interpretation of your program's virtual address space.

DDT also saves and restores the user-program ACs as part of the
user-program context. DDT stores the contents of the ACs in an
internal "register" block. Any references you make to addresses 0-17
refer to the relative locations in DDT's internal register block.
These actions are totally transparent to you.

5-14

CHAPTER 6

SEARCHING FOR DATA PATTERNS IN DDT

With DDT you can search for memory locations that contain a specific
value, and conversely, for words that do not contain a specific value.
You can also set a mask to indicate to DDT that only specified bits
are to be considered when performing the search. In addition, you can
search for words that reference a specific address. You can specify a
range within which to perform the search, or default the range to all
of your program's address space. In either case, DDT compares the
contents of each location within the range with the specified value.

To search for words that match a specific value, enter:

{addrl<}{addr2>}expr<ESC>W

where expr is the value for which DDT is to search, and addrl and
addr2 delimit the range in which the search is to be conducted.
Follow addrl with a left angle bracket «) and addr2 with a right
angle bracket (». Addrl defaults to zero and addr2 defaults to
777777 in the current section. Expr can be any legal DDT expression.

DDT does the following:

o compares each location (after ANDing it with the search mask)
within the search range with the 36-bit value resulting from
evaluating expr

o starts the search by comparing the contents of addrl with
expr

o stops the search after comparing the contents of addr2 with
expr

o displays (on a new line) the address and contents of each
location that matches expr

o enters the address of each matching location on the location
sequence stack

o sets the current location to addr2

o displays a blank line to indicate the search is over

o restores the prevailing display mode

NOTE

If DDT finds more matching locations than there are
words on the location sequence stack, the earlier
entries are overwritten.

6-1

SEARCHING FOR DATA PATTERNS IN DDT

NOTE

When you use the DDT search
FILDDT, addr2 defaults to
section) unless:

functions while running
777777 (in the current

o the target is the running monitor or other running
job and you are using physical addressing

o the target is an .EXE file and you are using
normal virtual addressing

o the target is a disk structure or data file

In these cases, addr2 defaults to the last word of the
target. See Chapter 9 (FILDDT), and Chapter 11
(Physical and Virtual Addressing Commands), for more
information.

To search for words that do NOT match a specified value, enter:

{addrl<}{addr2>}expr<ESC>N

where expr is the value which is not to be matched, and addrl and
addr2 delimit the range within which DDT is to search. Follow addrl
with a left angle bracket «) and addr2 with a right angle bracket
(». Addrl defaults to zero and addr2 defaults to 777777 in the
current section. (If you are using FILDDT, see the note following the
description of the <ESC>W search command.) Expr is any legal DDT
expression.

DDT functions as for the <ESC>W command, except:

o DDT searches for and displays the address and contents of any
word within the address range that does NOT match the 36-bit
value resulting from evaluating expr.

o DDT enters the locations of non-matching words on the
location sequence stack.

To search for references to an address, enter:

{addrl<}{addr2>}expr<ESC>E

where addrl and addr2 delimit the range of the search, and expr
contains the address for which DDT is to search. Follow addrl with a
left angle bracket «) and addr2 with a right angle bracket (».
Addrl defaults to zero and addr2 defaults to 777777 in the current
section. Expr is any legal DDT expression.

DDT performs an IFIW effective address calculation on the expression
contained in each word within the range, and uses the 18-bit result to
determine whether there is a match.

Thus, if bits 14-17 (the X field of an instruction) or bit 13 (the I
field of an instruction) are nonzero, indexing or indirection may
result in DDT finding different search results at different times.

DDT does not check whether the expression is actually an instruction
before performing the effective address calculation.

6-2

SEARCHING FOR DATA PATTERNS IN DDT

If you enter a question mark (?) while DDT is performing any of the
above searches, DDT displays:

Searching: addr/ value

where addr is the address of the location that will next compare, and
value ~he contents of addr.

To abort the search, enter any character other than question mark (?).
DDT stops-searching, and waits for more input. The character that you
enter to terminate the search is otherwise ignored.

Each of the above search commands restores the prevailing display
mode.

<ESC>M is a command that addresses a DDT location that contains a
search mask used to prevent specified bits in the memory word from
being considered during the search. This mask is used only by <ESC>W
and <ESC>N, not by <ESC>E. DDT logically ANDs the search mask with
the memory word before making the comparison, but does not change the
memory word. If DDT finds a match, it displays the entire word.

DDT sets the search mask to 777777,,777777 (compare all 36 bits) by
default.

To set the search mask, enter:

expr<ESC>M

where expr evaluates to the required bit pattern.

For example, to search for all of the RADIX50 references to MAIN.
(user input is in lowercase):

<ESC><ESC>5t
37777,,777777<ESC>m
main.<ESC>5"<ESC>w

4112/
4775/

4 MAIN.
o MAIN.

;Set typeout mode to RADIX50.
;Ignore the left 4 bits.
;Enter RADIX50 symbol, start search.

;DDT displays match found.
;DDT displays match found.
;Search over, DDT displays blank line.

You can also examine and modify the search mask with the examine and
deposit commands described in Chapter 4 (Displaying and Modifying
Memory) •

6-3

CHAPTER 7

MANIPULATING SYMBOLS IN DDT

7.1 OPENING AND CLOSING SYMBOL TABLES

Each separate program module has its own symbol table. When
displaying a value symbolically, if more than one symbol is defined
with that value, DDT displays the first global symbol found. When
searching for a symbol, DDT searches the "open" symbol table first.
For display purposes, DDT treats local symbols found in the open
symbol table as global symbols. DDT appends a pound-sign (#) to local
symbol names that it finds in a symbol table that is not open. For
example:

SYMBLl#

where SYMBL1 is a local symbol that DDT found in a symbol table that
is not open.

If you enter an expression that contains a symbol that is defined in
more than one of your program modules, DDT uses the value of the
symbol that is contained in the open symbol table. If the symbol is
not defined in the open symbol table, or if there is no open module
and there is not a global definition of the symbol, DDT displays:

M

To open the symbol table of a program module, enter:

name<ESC):

where name is the name of the program module as specified by the TITLE
pseudo-op in your MACRO-10 program (or the equivalent mechanism in a
higher-level language program). DDT closes any currently open symbol
table and opens the symbol table associated with module name.

To close the open symbol table, enter:

<ESC):

7-1

MANIPULATING SYMBOLS IN DDT

7.2 DEFINING SYMBOLS

To redefine a symbol or to create a new symbol in the current symbol
table, enter:

expr<symbol:

where e~ is any legal DDT expression, and symbol is the symbol name.

To define symbol as the address of the open location, enter the
command:

symbol:

If there is no open location, DDT uses the address of the last
location that was open. DDT defines symbol as a global symbol. If
you previously used symbol as an undefined symbol, DDT inserts the
correct value in all the places you referenced symbol, and removes
symbol from the undefined symbol table.

7.3 SUPPRESSING SYMBOL TYPEOUT

To prevent a symbol from being displayed, enter:

symbol<ESC>K

where symbol is the symbol to be suppressed. DDT still accepts symbol
as input, but no longer displays symbol as output.

To suppress the last symbol that DDT displayed (in an address, in the
contents of a memory word, or in the evaluation of an expression),
enter:

<ESC>D

DDT suppresses the last symbol displayed, and then redisplays the
current quantity. DDT does not display its usual three spaces between
the command and the displayed value.

In the following example, assume that symbol SIZE is
User typein is lowercase «LF> does not appear
screen).

start/
LOOP/
LOOP+l/
START+3/

JFCL ~ <LF>
AOS 1 <LF>

MOVE 2,1 <ESC>dMOVE 2,1 <LF>
MULl 2,SIZE <ESC>dMULI 2,3

defined as 3.
on the terminal

To reactivate ~ symbol for typeout, redefine the symbol. For example,
to reactivate the display of symbol SIZE, above, enter:

size<size:

Note that SIZE is now defined as a global symbol, even if it was
previously a local symbol.

7-2

MANIPULATING SYMBOLS IN DDT

7.4 KILLING SYMBOLS

To remove a symbol from the symbol table, enter:

symbol<ESC><ESC>K

DDT removes symbol from the symbol table, and no longer displays
symbol or accepts symbol as input.

7.5 CREATING UNDEFINED SYMBOLS

It is sometimes convenient to use symbols that have not yet been
defined. To create an undefined symbol, enter:

symbolf

where symbol is the undefined symbol name. DDT enters symbol in the
undefined symbol table. When you later define the symbol, DDT enters
it into the defined symbol table, removes it from the undefined symbol
table, and enters the correct value in all locations where you
referenced the symbol.

You can use undefined symbols only as parts of expressions that you
are depositing to memory. Undefined symbols can be either fullword or
right-halfword values; they cannot be used as the A or X fields of an
instruction, or as the left-halfword of an expression.

7.6 FINDING WHERE A SYMBOL IS DEFINED

To determine the modules in which a symbol is defined, enter:

symbol?

where symbol is the name of the symbol. DDT displays the name of each
program module in which symbol is defined. If the symbol is a global
symbol, DDT displays a "G", as:

sym?
MAIN. G

DDT does not display G following a local
symbol table. When DDT has searched
displays a blank line.

7.7 LISTING UNDEFINED SYMBOLS

symbol found in the open
the entire symbol table, it

To get a list of all currently undefined symbols, enter:

?

DDT displays a list containing each undefined symbol.

7-3

MANIPULATING SYMBOLS IN DDT

7.8 LISTING SYMBOLS

To get a list of all symbols starting with a certain character or set
of characters, type:

sym<ESC>?

where sym is the set of characters that all the symbols start with.
DDT lists all symbols starting with sym, the modules where they are
defined, and the values that symbols are defined as.

For example, typing the following command will list all symbols
starting with TECD:

TECO<ESC>?

TECD
TECD01
TEC002
TECD03

DDT V44

TECO
TECD
TECD
TECD

600030
600040
600047
600055

7-4 April 1986

CHAPTER 8

INSERTING PATCHES WITH DDT

To replace the instruction at the open location with a series of
instructions and test the new instructions without reassembling your
program, you can use the DDT patch function. DDT deposits (in a
patching area) the replaced instruction, the new series of
instructions, and one dr more JUMPA instructions back to the main line
of your program. DDT also deposits (in the location that contains the
replaced instruction) a JUMPA instruction to the first word of the
patch.

To insert ~ patch that will be executed before the instruction at the
open location, enter:

{expr}<ESC><

where expr is the start of the patching location, and defaults first
to PAT •• , then to PATCH. EDDT defaults to PAT (an area created during
the monitor build), PAT •• , and PATCH, in that order. If you do not
enter expr, and DDT finds none of the default symbols, DDT uses the
value contained in JOBDAT location .JBFF as the address to begin the
patch. If expr is a symbol (or the default), DDT updates the symbol
table when you terminate the patch, so that the symbol identifies the
first word after the patch that you just terminated.

If there is no open location when you initiate the patch, DDT displays
"?n and sounds the terminal buzzer or bell.

NOTE

If expr is an AC address, or resolves to a value less
than 0,,140, DDT displays n?n and sounds the terminal
buzzer or bell.

When you issue a command to start a patch, DDT saves the
the open location, closes the open location, changes
location to the first word in the patching area, and opens
DDT also displays the address and contents of the first
patching area. For example:

<ESC><
PAT •• / 0

address of
the current
that word.
word of the

You can now enter the patch, using deposit instructions (the expr<LF>
format is probably most useful). DDT updates the current and open
locations according to the rules for the command that you use.

8-1

INSERTING PATCHES WITH DDT

To terminate the patch, enter:

{expr}<ESC>{n}>

where expr is the last word of the patch you are entering, and n is
the number of returns possible from execution of the patch. The
default for n is 2, allowing for a return to 1 + the address of the
instruction being replaced, and for a "skip return" to 2 + the address
of the instruction being replaced.

When you terminate the patch, DDT
replaced into the first location
unless:

deposits the instruction being
following the current location,

o display is not suppressed by AND

o the current location is zero AND

o the current location is closed OR you omitted expr

in which case DDT deposits the instruction being replaced into the
current location. This prevents the patch from containing unintended
null words.

DDT deposits n JUMPA instructions in the locations immediately
following the one in which it deposited the original program
instruction. The first JUMPA instruction has 1 in its A field, and
jumps to 1 + the address of the replaced instruction, the second JUMPA
instruction has 2 in its A field and jumps to 2 + the address of the
replaced instruction, and so on. The AC numbers are used for
identification purposes only. Any JUMPA instruction beyond the
sixteenth contains 17 in its A field.

DDT then changes the current location to the location that was open
when you initiated the patch, deposits in the current location a JUMPA
instruction to the first word of the patch that you entered, and
displays the address, original contents, and new contents of the
current location. The current location is "open", and can be modified
by your next command.

If you default expr, or enter a symbol in the {expr}<ESC>< command,
when you terminate the patch, DDT redefines the symbol that identifies
the start of the patch. If DDT used the value contained in JOBDAT
location .JBFF as the address of the patching area, DDT changes the
values contained in .JBFF and the left half of JOBDAT location .JBSA.
In all cases, the new value is the address of the memory location
after the last word of the patch.

By default, there are 100 (octal) words in the patching area. DDT
does not check whether your patch overflows the patching area. You
can control the size of the patching area with the /PATCHSIZE switch
in LINK.

NOTE

DDT allows you to use other DDT commands while you are
in the process of entering a patch. DDT does not
check whether the current and open locations are in
the patching area, or whether you are ent~ring p~tch
instructions in sequence. When you terminate the
patch, DDT deposits the instruction being replaced in
the current location regardless of whether the current
location is in the patching area.

8-2

INSERTING PATCHES WITH DDT

To insert ~ patch that will be executed after the instruction at the
open location, enter:

{expr}<ESC><ESC><

where expr is the address of the patching location (PAT.. is the
default). The results are the same as inserting the patch before the
instruction as above, except:

o When you open the patch DDT deposits the replaced instruction
in the first word of the patch.

o When you terminate the patch, DDT deposits the first JUMPA
instruction (rather than the instruction being replaced) in
the first location following the current location unless:

> display is not suppressed by AND

> the current location is zero AND

> the current location is closed OR you omitted expr

in which case DDT deposits the first JUMPA instruction in the
current location. This is to prevent the patch from
containing unintended null words.

NOTE

If expr is an AC address, or resolves to a value less
than 0,,140, DDT displays "?" and sounds the terminal
buzzer or bell.

Figure 8-1 illustrates the patching function. The program being
patched is X.MAC (see Figure 2-1). The patch inserts a SKIPN
instruction that is to be executed after the instruction at START+4.

Figure 8-1: Annotated Patching Session

DDT OUTPUT USER INPUT

START+41 MOVE 2(IDX)

<ESC><ESC><

PAT • • 1 MOVE 2(IDX)

PAT • • +11

pat •• =

8-3

EXPLANATION

As a result of your last
command, DDT displays the
contents of START+4.

Enter <ESC><ESC>< to start
the patch.

DDT displays the address
and contents of the first word
word of the patch area, and
deposits the instruction from
START+4 in the first word of
the patch.

DDT displays the address
and contents of the next word
of the patch area.

Check the address of PAT •• "
(the first word of the patch
area) •

INSERTING PATCHES WITH DDT

Figure 8-1: Annotated Patching Session (Cont.)

DDT OUTPUT USER INPUT EXPLANATION

14432 DDT displays the current
address of "PAT •• ".

PAT •• +2/

PAT •• +3/

skipn 1,0<ESC>2> Enter the new instruction,
and terminate the patch with
a normal return and one skip
return by entering <ESC>2>.

JUMPA 1,START+S

JUMPA 2,START+6

DDT displays the next word
of the patch area, then
deposits a JUMPA instruction
to 1 + the address of the
replaced instruction.

DDT displays the address
and contents of the next word
of the patch area, then
deposits a JUMPA instruction
to 2 + the address of the
replaced instruction.

START+4/ MOVE 2 (lOX) JUMPA STACK+10

pat •• =

14436

DDT displays the address
and original contents of the
replaced instruction, then
deposits and displays a
JUMPA instruction to the
first word of the patch.
START+4 is the current
location, and is "open".

Check the address of the
patch area.

DDT updated "PAT •• ".

Figure 8-2 shows the terminal display as it actually appears when you
insert the patch described above. Your input is in lowercase.

Figure 8-2: Terminal Display of Patching After an Instruction

START+4/
PAT •• / 0
PAT •• +1/
PAT •• +2/
PAT •• +3/
START+4/

MOVE 2{IDX} $$<
MOVE 2{IDX}

o pat •• =14432 skipn 1,O$2>
o JUMPA 1,START+5
o JUMPA 2,START+6
MOVE 2(IDX) JUMPA STACK+10

8-4

pat •• =14436

INSERTING PATCHES WITH DDT

Figure 8-3 shows the terminal display when inserting the same patch
before the instruction at START+4. You enter the instruction in the
form expr<LF> (user input is lowercase). Note the use of the patch
termination command without expr and without n.

Figure 8-3: Terminal Display of Patching Before an Instruction

START+4/ MOVE 2 (lOX) $<
PAT •• / 0 .=14432 skipn 1,0
PAT •• +1/ 0 $>
PAT •• +1/ 0 MOVE 2(IOX)
PAT •• +2/ 0 JUMPA 1,START+5
PAT •• +3/ 0 JUMPA 2,START+6
START+4/ MOVE 2 (lOX) JUMPA STACK+10 pat •• =14436

To abort the patch you ~ entering, enter:

<ESC>0<

DDT displays 3 spaces (or a tab, depending on the TTY control mask)
and changes the current location to the location that was open when
you initiated the patch. The symbol that denotes the start of the
patching area is unchanged. Any deposits that you made as part of the
patch remain in the patching area. This allows you to restart the
same patch, or to write over the patch with a new one.

8-5

CHAPTER 9

FILDDT

9.1 INTRODUCTION

FILDDT is a utility used to examine and change disk files and physical
disk blocks. You can also use FILDDT to examine monitor crash dumps,
and to examine and change the running monitor or running jobs. With
FILDDT, you can look at .EXE files as if they had been loaded with the
monitor GET command, or as if they were binary data files.

In selecting a disk file, the .monitor, or a running job, with FILDDT,
you are really establishing the virtual address space that FILDDT
accesses. When discussing the contents of that virtual address space,
where the contents can be any of the above objects, this chapter uses
the term target.

Once you have accessed a target you can examine and modify it with the
DDT examine and modify commands, and then save it with your
modifications. You can use all of DDT's commands for examining and
modifying memory, but you cannot use any commands that cause the
execution of program instructions, such as <ESC>X, <FSC>G, and so on.
If you attempt to execute a program instruction, DDT sounds the
terminal buzzer or bell.

9.2 USING FILDDT

There are two command levels in FILDDT. This document refers to these
two levels as FILDDT command level and DDT command level.

FILDDT command level accepts FILDDT commands to control session
parameters and to select the target. When at this level, FILDDT
displays the prompt:

File:

Once you access a target, FILDDT enters DDT command level.
level, use DDT commands to examine and modify the target.

9-1

At this

FILDDT

The syntax to use at FILDDT command level is:

dev:file.ext[path]/switch/switch

where dev:file.ext[path] is the TOPS-l~ file specification, and switch
is a FILDDT command. The commands are described below. With a FILDDT
command you can:

o request HELP on FILDDT

o specify the target to be examined

o establish certain parameters about the operations that you
can perform (enable patching, for example)

o enter DDT command level

A FILDDT command can have more than one of the above effects.

At TOPS-l~ command level, start FILDDT by entering:

R FILDDT

FILDDT enters FILDDT command level and prompts:

File:

9.2.1 FILDDT Commands

There are two classes of FILDDT-level commands; those that select the
target that FILDDT is to access and those that establish what function
FILDDT is to perform for the target (enable patching, extract symbols,
and treat an .EXE file as data).

The following are the targets (virtual address spaces) that FILDDT can
access, and the commands that select them:

o disk files

o disk structures

o the running monitor

o running jobs

/F (default)

/U

/M

/J

To examine a running job or the running monitor, you must have PEEK or
Spy privileges.

The following are the functions you can select for FILDDT to perform
on the target and the commands that select them:

o load the file (used with IS) /F

o treat file as pure binary data /D

o enable patching /P

o load symbol table only from file /S

To patch the running monitor or a running job, you must have POKE
privileges.

9-2

FILDDT

To get HELP, enter:

IH

FILDDT displays a very brief description of the FILDDT commands and
redisplays the File: prompt.

9.2.2 Symbols

To enhance performance, FILDDT uses a symbol table which it builds in
its own address space, rather than one which exists in the target
address space.

FILDDT automatically extracts symbols from the first .EXE file it
loads during a session to build its internal symbol table. Once
FILDDT has an internal symbol table, it ignores any symbols in
subsequently loaded .EXE files unless you use the IS command.

9.2.3 Establishing Formats and Parameters

IF

ID

IP

IS

Use the IF command in conjunction with the IS command, to load
the same file from which FILDDT copies the symbol table, as:

file-spec/S/F

By default, FILDDT loads .EXE files in virtual memory as if they
were to be executed. When you give the ID command you can look
at an .EXE file as if it were a data file. FILDDT then loads the
entire file (including the .EXE directory blocks) as a binary
file, starting at virtual location zero.

The IP command enables patching (lets you modify) the target. If
you do not enter IP, you can only examine the target.

The IS command tells FILDDT to copy the symbol table from the
file you named in the command. FILDDT then again prompts you
with File:

9.2.4 Selecting the Target

To select a disk file, you need only name the file. This is the
default, and requires no explicit command switch. Enter:

file-spec<RET>

FILDDT loads the file. If FILDDT does not already have an internal
symbol table and file-spec names an .EXE file, FILDDT builds an
internal symbol by default. FILDDT then enters DDT command level.

9-3

/J

/M

/U

FILDDT

To examine a running job, enter:

number/J

where number is the job number. You must have PEEK or Spy
privileges to examine a running job, and POKE privileges to
modify the monitor or a running job.

To examine the running monitor, enter the /M command with no file
specification, as:

/M

You must have PEEK or Spy privileges to examine the running
monitor, and POKE privileges to modify the running monitor.

To examine a disk structure, use the /U command:

disk-name/U

where disk-name is the logical name of the disk structure. If
you use the logical name of a multi-disk structure, you can
examine and patch the entire logical disk. If you use a physical
disk name, you are restricted to that physical disk.

9.2.5 Exiting FILDDT

When you are through examining and modifying the target, save the
modified file by entering:

<CTRL/E>

FILDDT closes the file, saving any changes that you have made, and
again prompts you for a file name.

Any symbol table that you have loaded (explicitly or by default)
remains loaded until you specify another with the /S command.

If you have modified symbols, FILDDT also modifies the symbol table of
the disk file, if one of the following occurred:

o FILDDT automatically loaded the symbol table.

o you loaded the symbol table and entered DDT command level by
entering:

file-spec/S/F

FILDDT sometimes runs out of memory when you use the <CTRL/E> command
to save files without exiting FILDDT. If FILDDT runs out of memory
while loading a file, it displays the message:

? Not enough memory for file pages

9-4

FILDDT

If FILDDT runs out of space while building a symbol table, it displays
the message:

? Not enough memory for symbols

To reclaim all of your available memory, exit FILDDT with the <CTRL/Z>
command, and then restart FILDDT with the TOPS-10 command R FILDDT.
Note that this technique restores standard virtual addressing
conditions, as if you had used the <ESC>U command. See Chapter 11
(Physical and Virtual Addressing Commands) for more information about
virtual addressing conditions.

To close the file, save all modifications (as with <CTRL/E>, above)
and exit from FILDDT, enter:

<CTRL/Z>

If you exit FILDDT by entering <CTRL/C>, changes that you make to a
disk file can still be in FILDDT's output buffer; if so, they will NOT
be saved. However, modifications to the monitor and running jobs take
effect as you enter them.

When you exit FILDDT with <CTRL/Z>, you can save FILDDT with its
internal symbol table. This saves time if you often use FILDDT to
debug a specific target (such as the monitor) that has a very large
symbol table.

Start FILDDT, load the symbol table, then exit with <CTRL/Z>. Use the
TOPS-10 SAVE command to create a copy of FILDDT to be used with that
specific file.

9-5

CHAPTER l~

EDDT

EDOT is used to debug the monitor. You can run EOOT in executive mode
to debug the running monitor, or in user mode to examine and patch the
monitor .EXE file.

l~.l EXECUTIVE MOOE

When you use EOOT in executive mode, it appears as if you were running
the monitor as a user job with OOT merged in. You can set
breakpoints~ examine and modify memory, and perform all other OOT
functions. When at a breakpoint, timesharing is suspended, and you
have total control of the system.

You can run EOOT is executive mode only from the CTY. To obtain
faster response than from a printing terminal, you can redirect the
CTY (only on a KL-l~) to a OH-11 line that is connected to a video
terminal (see the TOPS-10/TOPS-2~ RSX-2~F System Reference Manual).

To use BOOT in executive mode, you must invoke it when booting the
monitor. EOOT is built and loaded with the monitor, but if you do not
invoke it when booting the system, it is discarded to save space.
Invoke EOOT by using the /E switch when giving BOOT the name of the
monitor file:

BOOT>file-spec/E

where file-spec is the name of the monitor file that BOOT is to load.

After receiving the EOOT prompt, enter:

OEBUG<ESC>G

This tells EOOT to start the monitor in debugging mode, in which EOOT
remains in memory. The monitor goes through a minimal start-up dialog
and then begins timesharing in "DEBUG" mode.

Once timesharing has begun, enter EOOT by typing <CTRL/O> on the CTY.

The monitor traps <CTRL/O>, and calls an internal subroutine that
executes a JSR to DOT location $~BPT (dollar sign, zero, BPT). This
causes EOOT to suspend execution at the unsolicited breakpoint, and to
display:

$~B»addr/ instr

where addr is the monitor location following the JSR instruction and
instr rs-the instruction at addr.

l~-l

EDDT .

Timesharing is suspended and you can perform any DDT functions.

If the system is hung (and EDDT has been kept in memory), you may be
able to enter EDDT through the PARSER. On the CTY, type:

<CTRL/\> (control backslash)

When you receive the following prompt:

PAR>

enter:

HALT

to freeze the machine state. The parser again prompts PAR>. Now
enter:

EXAMINE KL

to type out the machine state at the time of the HALT. At the parser
prompt, enter the command:

JUMP 401

to enter EDDT. The monitor is frozen in its state at the time of the
HALT. The start address of EDDT is 401.

The dialog on the CTY after you enter <CTRL/\> might appear as follows
(your input is in lowercase):

PAR>halt
PAR>examine kl
PC/ 1450
VMA/ 405452
PI ACTIVE: ON, PION: 000, PI HOLD: 020, PI GEN: 000
NO KL PC FLAGS ARE SET
PAR>jump 401
EDDT

You can now use DDT commands to debug the monitor.

NOTE

The <ESC>Y command in executive mode EDDT reads from
the console paper tape reader.

10.2 USER MODE

You can use EDDT in user mode, to examine and patch the monitor .EXE
file, and then use the TOPS-10 SAVE command to save (and rename, as
appropriate) the new version of the file. You can then boot and test
the patched version later, during stand-alone time.

Invoke user-mode EDDT by first using the TOPS-10 GET command:

GET filnam

where filnam is the name of the monitor .EXE file.
TOPS-10 DDT command. EDDT prompts:

DDT

10-2

Then use the

EDDT

EDDT does not prompt EDDT because you are in user mode rather than
executive mode. YoU--Can now use DDT commands to set breakpoints,
examine, and patch the monitor .EXE file. When you exit EDDT, you can
use the TOPS-10 SAVE command to save the .EXE file. If you left
breakpoints set when you exited, they are still active when you boot
the monitor using the saved .EXE file.

10-3

CHAPTER 11

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

All TOPS-10 DDTs (including FILDDT) can do their own page mapping.
The commands described in this chapter allow you to set parameters to
govern the interpretation of the address space which you are
examining. You can control the mapping of the address space you are
examining by choosing to use or bypass the user process table (UPT) or
the executive process table (EPT). You can choose which special pages
table (SPT) to use, and which hardware register block to use. Other
commands allow you to emulate either KI-paging or KL-paging, control
address relocation, and set memory protection limits. In each of the
following commands, the argument (page, addr, n) defaults to zero.

COMMAND

<ESC>U

NOTE

The DDT commands <ESC>G, <ESC>P, and <ESC>X have side
effects that affect your control over physical and
virtual addressing. In addition to their normal
functions, these commands also do the following:

o restore normal virtual addressing as if <ESC>U had
been given «ESC>X does NOT do this)

o set the FAKEAC flag (as if <ESC>U had been given)

o clear the relocation factor (as if 0<ESC>8U had
been given)

o reset the address-protection address to infinity
(377777,,777777)

o restore the active hardware register block to the
one in use before any <ESC>4U command was given

EXPLANATION

This command enables memory mapping by standard TOPS-10 virtual
addressing. When you give this command, DDT restores the virtual
addressing conditions that were in effect before any
{<ESC>}<ESC>nU (where 0<=n<=2) commands were given, and sets
DDT's FAKEAC flag, thereby forcing DDT to interpret memory
addresses 0-17 as DDT's own internal "registers", in which the
user's registers were saved.

11-1

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

<ESC><ESC>U

This command enables DDT to use actual physical addresses when
accessing memory, and clears DDT's FAKEAC flag, causing DDT to
interpret memory addresses 0-17 as the hardware registers 0-17.
This command is meaningful only when using EDDT in executive
mode, or when using FILDDT to look at the running monitor.
Although DDT accepts <ESC><ESC>U at other times, this command
then produces the same effect as <ESC>U.

The general syntax of the following virtual addressing commands is:

arg<ESC>nU

where n is the function number of the command, and ~ is dependent on
the function (see the function descriptions below).

Functions 0, 1, and 2 enable you to control memory mapping by
selecting the executive process table (EPT), user process table (UPT),
or the section map through which mapping occurs. Setting a mapping
condition with anyone of these functions (0, 1, and 2) also has the
effect of clearing the effects of any prior use of one of these
functions (0, 1, and 2).

You can also specify the offset into the special pages table (SPT)
with functions 0, 1, and 2 by using the following command:

arg<ESC><ESC>nU

where arg is the SPT offset, and 0<=n<=2. This form is legal only if
KL-paging is in effect.

NOTE

All forms of <ESC>B and <ESC>X are illegal if you have
used the page mapping functions (0, 1, or 2) and have
not restored standard mapping with the <ESC>U command.

COMMAND EXPLANATION

page<ESC>0U

This command causes memory mapping to occur through the executive
process table (EPT) that is located at physical page ~.

offset<ESC><ESC>eU

This command produces the same effect as page<ESC>eU (above),
except that offset is an offset (in words) into the SPT.

pagel<page2<ESC>eU

This command is an exception to the general syntax, and is legal
only under KI-paging. You can select both the user page table
(UPT) and the executive page table (EPT) with this command, where
pagel is the page number of the UPT, and page2 is the page number
of the EPT. Follow pagel with a left angle bracket «).

page<ESC>lU

This command causes memory mapping to occur through the user
process table (UPT) that is located at physical page~. With
this command, you can bypass the EPT.

11-2

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

offset<ESC><ESC>lU

This command produces the same effect as page<ESC>lU (above),
except that offset is an offset (in words) into the SPT.

page<ESC>2U

This command causes mapping to occur through the section map at
physical page ~. This command is legal only if KL-paging is
in effect.

offset<ESC><ESC>2U

This command produces the same effect as page<ESC>2U (above),
except that offset is an offset (in words) into the SPT. This
command is legal only if KL-paging is in effect.

n<ESC>3U

This command determines whether DDT interprets references to
memory locations 0-17 as references to hardware registers, or to
DDT's own internal "registers" (which normally contain the
user-program ACs) , by setting or resetting DDT's FAKEAC flag.

If n=0, reset FAKEAC flag (use the hardware regist~rs 0-17).
If n is nonzero, set FAKEAC flag (use DDT's internal registers
0-17).

If you enter a nonzero value for n, DDT stores the value -1.

n<ESC>4U

This command tells DDT to copy hardware register block n
(0<=n<=7) to its own internal register block, set the FAKEAC
flag, and use hardware register block n as its own registers. If
the FAKEAC flag is set when you give this command, DDT first
restores the contents of its internal register block to the
hardware register block from which they were copied. This
command is legal in executive mode EDDT only. Note that the
microcode uses register block 7, and any attempt to use this
block produces an almost immediate system crash.

addr<ESC>5U

This command copies the 20 (octal) word block located at addr to
DDT's internal "registers" and sets the FAKEAC flag.

addr<ESC>6U

This command sets the special pages table (SPT) to addr.

addr<ESC>7U

This command sets the core status table address (CST) to addr.

addr<ESC>8U

This command sets the address relocation factor to addr. DDT
adds addr to all user addresses that you enter.

addr<ESC>9U

This command read-and-write-protects all addresses above addr
(before adding relocation factor).

11-3

PHYSICAL AND VIRTUAL ADDRESSING COMMANDS

n<ESC>10U

This command controls whether KI paging is enabled or cleared.

If n is nonzero, KI paging is enabled.
If n=0, KI paging is cleared.

If you enter a nonzero value for n, DDT stores the value -1.

This command is illegal in executive mode EDDT.

n<ESC>llU

This command controls whether KL paging is enabled or cleared.

If n is nonzero, KL paging is enabled.
If n=0, KL paging is cleared.

If you enter a nonzero value for n, DDT stores the value -1.

This command is illegal in executive mode EDDT.

22<ESC>U
23<ESC>U

These commands specify the type of CPU on which the program is
being debugged. 22<ESC>U refers to a KL processor. 23<ESC>U
refers to a KS processor.

For DDT, this
current CPU
FILDDT.

command is meaningless, because DDT uses the
type. However, these commands may be useful for

You can interrogate DDT to determine the last virtual addressing
command that was given for a specific function. The command:

<ESC>nU

where 0<=n<=11, returns the address of a DDT location that contains
the argument that was given if the command for that function was used,
and returns the default value-i~hat functIon was-not used. ---If--yQu
entered a nonzero argument to a command that requires zero or nonzero
values (or if the default is nonzero), this location contains -1. You
can use DDT commands to examine this location.

The command:

<ESC><ESC>nU

where 0<=n<=2, returns the address of a DDT location that contains
information that indicates which function you used, and whether you
set a page address or an offset. You can use DDT commands to examine
this location. This command is illegal for all functions where n>2.
If you did not enter any commands affecting functions 0-2 since the
last <ESC>U command, the right half of this DDT location word contains
zero. Otherwise, the right half contains n+l, where n is the number
of the command function you used. If you set a page address (with
arg<ESC>nU), bit 1 of this word is reset. If you set an offset (with
arg<ESC><ESC>nU), bit 1 of the word is set.

DDT V44 11-4 April 1986

CHAPTER 12

EXTENDED ADDRESSING

You can load your program with LINK so that the program resides in
extended sections (sections other than Section 0).

If you are debugging a program with extended sections (also called
non-zero sections, or NZS), DDT is automatically loaded into Section
0, started at location 700000. To access non-zero sections, you must
issue the <ESC>4M command to enable intersection (global) breakpoints.
After you use the <ESC>4M command, you can set intersection
breakpoints and execute instructions that cross section boundaries.
(Refer to Section 12.2 for more information about intersection
breakpoints.)

You can load a normal, Section 0 program into a non-zero section (NZS)
using one of the following monitor commands:

.RUN prog/USE:n

.GET prog/USE:n

where n is the section number in which to load the program. These
commands are documented in the TOPS-10 Operating System Commands
Manual.

If the program does not already have DDT loaded, then a DDT command
will merge SYS:VMDDT with your program, starting at address 700000 (in
Section 0). In this case, DDT will be able to examine and deposit to
locations in the program, but you cannot set breakpoints or
single-step the program. You can merge VMDDT into a NZS section using
the monitor command:

.MERGE SYS:VMDDT/USE:n

A subsequent DDT command will then start DDT in section ann. When you
merge DDT into the same section that you specified in the GET/RUN
command, you can immediately set breakpoints and single-step the
program.

DDT V44 12-1 April 1986

EXTENDED ADDRESSING

When DDT is first started in Section 0, if it detects an
extended-section symbol table pointer, it will attempt to map itself
into an extended section so that it can access the symbol table. For
example, the monitor works this way. DDT is load~d into Section 0
along with the rest of the monitor's low and high segments, and the
symbol table is placed in Section 2. The section chosen is the
entry-vector section, if any; otherwise, the section that contains the
symbol table is used, or Section 1. If DDT can find a section to use,
DDT displays the following message:

[DDT - Section 0 mapped into section n for NZS symbol table access]

where n is the section number that is actually used. If DDT is unable
to find a section where it can be mapped, it displays the following
message and continues running:

[DDT - Can't access NZS symbol table(s) from Section 0]

When your program is running in extended sections, DDT searches for
the symbol table first in the entry vector section, if any; otherwise
it searches JOBDAT (locations .JBSYM, .JBUSY, and .JBHSM) in Section
~.

Although TOPS-l0 does not support Program Data Vectors (PDVs), you can
set up your own PDV, and use the $SM command to specify the address of
a PDV to use for the symbol table vector(s).

12.1 BREAKPOINTS

If DDT is running in a non-zero section, breakpoints can be set in any
section.

12.1.1 The Breakpoint Block

To set breakpoints in a section other than the section containing DDT,
DDT requires an area of storage in the section containing the
breakpoint. This storage area, also known as the "breakpoint block,"
is required for saving global addresses for transferring control
between your program and DDT, and for executing single-stepped
instructions that refer to memory locations outside their section.

Each section in your program's memory space that contains a breakpoint
must have one breakpoint block, located at the same relative local
address within the section, of 100 octal words in length. (If two or
more sections of the program are mapped together, the breakpoint
blocks must also be mapped together.)

Each breakpoint block is contiguous within the section. Breakpoint
blocks cannot be extended across section boundaries, and do not wrap
around the end of the section to the beginning of the section.

Your program can refer to locations in the breakpoint block; remember,
however, that DDT can overwrite this information.

DDT V44 12-2 April 1986

EXTENDED ADDRESSING

12.1.2 Enabling and Disabling Intersection Breakpoints

The section-relative (18-bit) address of the breakpoint block is
stored in an internal DDT location. The command <ESC>4M returns the
address of that location. The symbol $4M refers to the DDT location
at the address returned by <ESC>4M. Intersection breakpoints are
enabled when $4M contains the locations of the breakpoint block.

To specify the address of the breakpoint block, use the following DDT
command:

n<ESC>4M

where n is the address of the breakpoint block, and can be any valid
DDT expression {from 20 to 777700}. DDT uses only the right half of
n, and changes only the right half of the DDT location at $4M.

To display the location of the breakpoint block, use the following DDT
command:

<ESC>4M/

When this location contains 0, breakpoints are disabled. Therefore,
you can use the following command to disable intersection breakpoints:

0<ESC>4M

While intersection breakpoints are disabled, you cannot set a
breakpoint in a section external to DDT, and any breakpoints already
set in such a section are lost when you begin program execution with
<ESC>P or <ESC>G. For each breakpoint that is lost, DDT displays the
following message:

% CAN'T INSERT $nB - IN NON-DDT SECTION

where n is the breakpoint number.

While intersection breakpoints are disabled, DDT cannot execute the
<ESC>X command under the following circumstances:

o When you try to execute the instr<ESC>X command, and the
default section is not the section that contains DDT.

o When you try to single-step a dangerous instruction and the
user program PC is not in the section that contains DDT.

In these cases, when you try to use <ESC>X, DDT rings the terminal
bell or buzzer and sets its error message text to:

Intersection reference and no $4M global breakpoint/execute block

DDT V44 12-3 April 1986

EXTENDED ADDRESSING

12.2 DISPLAYING SYMBOLS IN NON-ZERO SECTIONS

DDT normally uses right-halfword values when searching symbol tables
for symbols to display. However, code linked in a non-zero section
has symbols defined with the section number in the 1eft-ha1fword. DDT
uses a 3~-bit value when searching for a symbol in the following
circumstances:

o when displaying the address of a location

o when displaying the contents of a location as an address

o when displaying the Y field of an instruction

When displaying an address, DDT searches for a symbol defined with the
3~-bit value of the address. If such a symbol is not found, DDT
displays the address in ha1fword format.

When displaying the Y field of an instruction, DDT searches for a
symbol defined with a 30-bit value consisting of:

o the section number of the address of the word being displayed

o the section-relative address contained in the Y field of the
instruction

If DDT does not find a symbol defined with that 30-bit value, it looks
for a symbol defined with the l8-bit value contained in the Y field of
the instruction.

Assume a program with the following conditions:

Symbol LABL1 is defined as ~,,300
Symbol LABL2 is defined as 3,,300
Location 1,,300 contains 3,,300
Location 1,,301 contains 2,,300
Location 3,,400 contains 200040,~300

(MOVE contents of location 300 to AC 1)

When displaying the contents of location 1,,300, DDT displays:

1"LABLl/ LABL2

When displaying the contents of location 1,,301, DDT displays:

1"LABL1+1/ 2"LABLl

When displaying the contents of location 3,,400, DDT displays:

LABL2+100/ MOVE 1,LABL2

12.3 DEFAULT SECTION NUMBERS

To reduce th~ need to type in the section number as part of the
address when you specify a location, DDT uses a default section number
when you do not specify one. DDT has two section defaulting options:

o Permanent default section

o Floating default section

DDT V44 12-4 April 1986

EXTENDED ADDRESSING

The command (ESC>6M returns the address of an internal DDT location
that contains section default information. The symbol $6M refers to
the DDT location at the address returned by the command (ESC>6M.

When DDT is in Section 0, the default section number is always 0,
regardless of the contents of $6M.

12.3.1 Permanent Default Section

If the value contained in $6M is positive (Bit 0 is reset), the
permanent default section option is in effect. DDT then takes the
left half of $6M as the section number of any address that you type in
without a section number.

Set the permanent default section by typing the following DDT command:

n,,0(ESC>6M

where n is the section number, and can be any legal DDT expression.

12.3.2 Floating Default Section

If the value contained in $6M is negative (Bit ° is set), the floating
default section option is in effect. This is the default option (at
startup, DDT initializes $6M to -1). DDT selects the floating default
section as follows:

o If you enter DDT from its normal start address, DDT sets the
default section to one of the following:

a. the section that contains the program entry vector (if
there is an entry vector)

b. Section °
o If you enter DDT from a breakpoint, DDT sets the default

section to the section that contains the breakpoint.

o If you open a local address between 20 and 777777, DDT sets
the default section to the section that contains the open
address.

o If you type in an address that contains a section number
(including a symbol that is defined with a section number),
DDT sets the default section to the one in the address you
typed in.

If you exit DDT with (CTRL/C> or (CTRL/Z>, and then reenter DDT, the
current location does not change. If you give a command that takes
the current location as its default address argument, DDT sets the
floating default section to the section of the current location.

DDT V44 12-5 April 1986

EXTENDED ADDRESSING

In the following example, the DDT screen display is on the left, and
explanatory comments are on the right. The entry vector is in section
1. Symbol START is not defined with a section number. User typein is
in lowercase.

Screen Display User Input

3"place/

LABLI

<LF>

3"PLACE+1/ LABLl+2

<CTRL/C>

@

@ddt

DDT

<LF>

3"START+2/ LABL1+4

start/

JFCL 0

<LF>

1"START+l/ MOVE 1,LABLl

DDT V44 12-6

Explanation

Examine location 3"PLACE.

DDT displays the contents.

Type in <LF> to examine the
next location.

DDT displays the next
location. The floating
default section = 3.

Exit with
current
3"PLACE+l.

<CTRL/C>.
location

The
is

TOPS-20 prompts you.

Reenter DDT.

DDT is loaded and ready for
your command. The floating
default section is 1, because
the entry vector is in section
1.

Type in <LF> to examine the
next location.

DDT displays the address and
contents of the next location.
DDT doesn't use the floating
default section, because your
<LF> command defaults addr to
the current location, and uses
its section number (3).

Examine location START. DDT
uses the floating default
section number because symbol
START is defined with no
section number.

DDT displays the contents.

Type in <LF> to examine the
next location.

DDT displays the address and
contents of the location.

April 1986

EXTENDED ADDRESSING

12.4 EXECUTING SINGLE INSTRUCTIONS

Instructions that are executed by means of the command:

instr<ESC>X

where instr is the instruction for DDT to execute, are executed within
the current default section. If that section is not the one that
contains DDT, DDT uses the breakpoint block in that section to execute
instr. If the floating default section option is in effect, and you
are unsure of the current default section, use the addr/ command to
open a location in the section in which you wish DDT to execute instr.
This sets the default section to the section specified by addr.

Instructions that are executed by means of the command:

instr<ESC><ESC>nX

where instr is the instruction for DDT to execute, are executed within
the section specified by n. If you type this command without
specifying the section number, DDT uses its current section.

If DDT is to execute the instruction in a section other than the one
that contains DDT, intersection breakpoints must be enabled.

If you try to execute instr outside DDT's section while intersection
breakpoints are disabled, DDT sounds the terminal buzzer or bell,
displays "?", and sets its error string to:

Intersection reference and no $4M global breakpoint/execute block

12.5 ENTERING PATCHES IN EXTENDED SECTIONS

You cannot type in a patch if a patching area does not exist in the
section that contains the word to be replaced. To ensure that there
is a patching area for each section that contains user-program code,
do one of the following:

o Reserve the same part of each section for patches, and define
the patch symbol as 0"addr, where addr is the local address
of the patching area.

o Use only one patching area, and map it into all the sections
that contain user-program code. Define the patch symbol as
0"addr, where addr is the local address of the patching
area.

o Define a different symbol for each section's patching area,
and use the symbol appropriate to the section being patched.

If the left half of expr is 0, DDT defaults the section to the section
that contains the open location. If the left half of expr is a value
that is not the section that contains the open locations, DDT displays
the following message:

?CAN'T PATCH ACROSS SECTIONS

DDT V44 12-7 April 1986

APPENDIX A

ERROR MESSAGES

DDT and FILDDT display error messages to indicate the results of your
commands. DDT sometimes (and FILDDT usually) displays these messages
on the screen, and at other times displays only a question mark. When
only a question mark is displayed, a location internal to DDT usually
points to a text string that is the error message. To display the
error message, enter the command:

<ESC>?

Following is a list of DDT messages together with explanations of what
the messages indicate.

? ABOVE PROTECTION REGISTER LIMIT

The address of the location you tried to display or modify is
above the protection register limit, which is set by n<ESC>9U.

? ACTUAL REFERENCE FAILED

A memory reference failed unexpectedly (the page exists and is
readable, but the reference failed anyway).

? ADDRESS GREATER THAN 777777

An address to be mapped through a section table has a nonzero
section number. This can occur only if you specified a section
table with the n<ESC>{<ESC>}2U command.

? ADDRESS BEYOND END OF PHYSICAL MEM

You attempted to examine a physical memory location beyond the
end of physical memory. This error occurs only if you have used
the <ESC><ESC>U command to enable physical addressing_

? BAD FORMAT FOR .EXE FILE

You specified a file that appears to have an .EXE directory, but
the directory is badly formatted or DDT cannot read it because of
some other reason.

? BAD $4M VALUE

You used the n<ESC>4M command where 777700<n<20.

DDT V44 A-I April 1986

ERROR MESSAGES

? BAD POINTER ENCOUNTERED

DDT does not recognize the type code contained in a page map
pointer. This can occur only if you are trying to do your own
virtual address mapping, and used the expr<ESC>{<ESC>}nU command,
where 0<=n<=2.

? CAN'T BE WRITE ENABLED

Even though you have automatic write-enable turned on, DDT is
unable to write-enable a page that exists and is write-protected.

? CAN'T CREATE PAGE

DDT attempted to create a page and failed, or else is unable to
attempt to create the page (see the <ESC>lW command).

? CAN'T DEPOSIT INTO SYMBOL TABLE BECAUSE •••••

You tried to define or kill a symbol, but DDT was unable to
modify the symbol table. Look up the second part of the error
message in this appendix.

? CAN'T DEPOSIT INTO SYMBOL TABLE BECAUSE DEPOSIT FAILED

You tried to define or kill a symbol, but DDT was unable to
modify the symbol table, and cannot identify the specific reason.

% CAN'T INSERT $nB BECAUSE •••••

DDT is not able to access the location where you inserted your
breakpoint. Look up the second part of the error message in this
appendix. This occurs before DDT tries to execute <ESC>G,
<ESC>P, <ESC>X, or <ESC><ESC>X.

% CAN'T INSERT $nB BECAUSE BREAKPOINT IS IN DIFFERENT SECTION

DDT is not able to access the location where you inserted your
breakpoint because inter-section breakpoints are not enabled
«ESC>4M contains zero). This error occurs before DDT tries to
execute <ESC>G, <ESC>P, <ESC>X, or <ESC><ESC>X. To enable
inter-section breakpoints, deposit the breakpoint block address
in the location addressed by the command <ESC>4M.

% CAN'T INSERT $nB BECAUSE MEM REF FAILED

DDT is not able to access the location where you inserted your
breakpoint. DDT is not able to identify the reason. This occurs
before DDT tries to execute <ESC>G, <ESC>P, <ESC>X, or
<ESC><ESC>X.

% CAN'T REMOVE $nB BECAUSE •••••

DDT is not able to access the location where you inserted your
breakpoint. Look up the second part of the error message in this
appendix. This error occurs when your program enters DDT from a
breakpoint.

DDT V44 A-2 April 1986

ERROR MESSAGES

%CAN'T REMOVE $nB BECAUSE BREAKPOINT IS IN DIFFERENT SECTION

DDT is not able to access the location where you inserted your
breakpoint, because inter-section breakpoints are not enabled
«ESC>4M contains zero). This error occurs when your program
enters DDT from a breakpoint. To enable inter-section
breakpoints, deposit the breakpoint block address in the location
addressed by the command <ESC>4M.

% CAN'T REMOVE $nB BECAUSE MEM REF FAILED

DDT is not able to access the location where you inserted your
breakpoint. DDT is not able to identify the reason. This error
occurs when your program enters DDT from a breakpoint.

%CAN'T SET BREAKPOINT, $4M NOT SET

You attempted to set a breakpoint in a section other than the one
containing DDT while inter-section breakpoints were not enabled.

? Device must be a disk unit or a file structure

The device that you specified to the /U command is not a disk.

? Explicit structure required with /U

You used the /U command without specifying a device.

? FAILURE ON SWITCHING ADDRESS SPACE

EDDT (Executive mode EDDT only) encountered an error while trying
to access the virtual address space where monitor symbols are
kept.

? FILOP. failure (n) for input file

The FILOP. call to open the specified file or unit failed with
error code n.

?Garbage at end-of-command

FILDDT encountered extra text at a place in the command where
there should have been only <RET>.

Intersection reference and no $4M global breakpoint/execute block

Inter-section breakpoints are not enabled, and:

o you tried to execute the command instr<ESC>X but the default
section is not the section that contains DDT, or

o you tried to single-step a dangerous instruction but the
user-program PC is not in the section that contains DDT.

DDT V44 A-3 April 1986

ERROR MESSAGES

? I/O error

An I/O error occurred when FILDDT attempted to read or write to
the file or unit.

? I/O error reading command file

DDT encountered an I/O error when reading the command file that
you specified to the <ESC>Y command.

? Illegal job number

You entered an illegal job number with the /J command.

? Illegal switch "c" specified

You entered a command other than /D, /F, /H, /J, /M, /P, IS, or
/u.

? Incorrect symbol table pointer

FILDDT is unable to read the symbol table specified by the symbol
table pointer in the file.

? Input device must be a disk

The device you specified is not a disk.

? Insufficient memory to read EXE file directory

FILDDT does not have enough free memory to read in the directory
section of the .EXE file that you specified.

? INVALID DDT INTERNAL ADDRESS

You addressed an internal location that is not defined. This is
most likely to occur after you use a command that returns a value
(such as <ESC>M) to examine a DDT location and then use <LF> or
<BKSP> to look at nearby memory.

? /M illegal with /0, /F, IS, or /U

M

You entered an illegal command along with /M.

You entered a symbol that is defined in more than one module.
You can select the correct symbol by opening the symbol table
associated with that module, using the module<ESC>: command.

? NO READ ACCESS

You tried to display a word in a page to which you do not have
read access.

A-4

ERROR MESSAGES

? No such file structure

COMND% and DEVST% think you supplied a disk name in a STRUCTURE
command, but no unit with that name was returned by MSTR%.

? Not enough memory for file pages

FILDDT does not have enough free memory for its file page
buffers.

NOTE

FILDDT sometimes runs out of memory when you use
the <CTRL/E> command to save files without
exiting FILDDT. If this is the case, exit with
the <CTRL/Z> command, and then restart FILDDT
with the TOPS-10 command: R FILDDT.

? Not enough memory for symbols

FILDDT does not have enough free memory to read in the symbol
table from the specified .EXE file. See the note above.

? NOT IN CORE

You tried to map through a page map pointer (in a UPT, SPT, or
section table) that addresses a page that is swapped out. This
can occur only if you are trying to do your own virtual address
mapping, and used the expr<ESC>{<ESC>}nU command, where 0<=n<=2.

% Not in .EXE format -- Data file assumed.

A file was specified without ID which is not in .EXE file format.
FILDDT assumes it is a data file.

? NOT WRITABLE

You tried to modify a word in a write-protected page. To enable
writing on protected pages, use the <ESC>0W command.

? Null filename illegal

You did not enter a file specification to a command that requires
one.

? Null file spec with IF

You entered a IF command without a file specification.

? OUTPUT error on CLOSE

An error occurred when FILDDT tried to CLOSE the file.

DDT V44 A-5 April 1986

ERROR MESSAGES

? PAGE DOES NOT EXIST

You tried to display a word in a nonexistent page.

? Patching is not enabled

You attempted to modify a file, a disk, the monitor, or a job but
did not give the IP command.

% Patching the running monitor is illegal

You entered an ENABLE PATCHING command and then gave a PEEK
command.

? PEEK FAILED

You tried to PEEK at the monitor, but do not have PEEK, POKE, or
[1,2] privileges enabled.

? IS illegal with ID or IU

You used the IS command with a command other than IF.

% Symbols cannot be extracted from a data file

You entered the command fi1nam/S/F, where the file specified by
filnam is not in .EXE format. FILDDT assumes it is a data file
and does not attempt to read in any symbols from the file.

? Symbols cannot be extracted from a data file

U

You entered the command filnamlS, where the file specified by
filnam is not in .EXE format. FILDDT prompts for a new command.

You entered a symbol that DDT cannot locate in any symbol table.
Cure this by entering the correct symbol, or by defining the
symbol with the {expr<}symbo1: command.

? UNEXPECTED MOVEM FAILURE

DDT could not deposit to memory even though the page exists and
is write-enabled.

% Update of file's symbol table failed

FILDDT was unable to write the modified symbol table back to the
file after you gave a <CTRL/Z> or <CTRL/E> command.

DDT V44 A-6 April 1986

bit

GLOSSARY

Bit is a contraction of "binary digit". A bit is the smallest
unit of information in a binary system of notation. It is the
choice between two possible states, usually designated as zero
and one. Bits of data are often used as flags to indicate on/off
or yes/no conditions.

breakpoint

A breakpoint is a location in a program's executable code that
has been modified so that if the program attempts to execute the
instruction at that location, control passes to DDT before the
instruction is executed.

current display mode

The current display mode is the mode in which DDT displays the
next word (unless there is an intervening command that changes
the current display mode). Also known as the current typeout
mode.

current quantity

The current quantity is the most recent of:

o the last 36-bit quantity that DDT displayed

o the 36-bit evaluation of the last expression that you entered
as an argument to a command that deposits to memory

This value is often used as the default argument for the next
command. Also known as the last value typed.

current typeout mode

See current display mode.

current location

The current location is a memory word that has been referenced by
an earlier DDT command. The address of the current location is
the default address for most DDT commands.

current location stack entry

The location that will become the current location as a result of
the next <ESC><RET> command.

Gloss-l

GLOSSARY

current radix

The current radix is the radix in which DDT displays
values.

debugging

EDDT

Debugging is the process of finding and removing programh
errors from programs.

EDDT is the DDT variant that is used to debug executive-mode
programs.

FILDDT

jiffy

FILDDT is the DDT variant that is used to examine and modify disk
files and disk structures. FILDDT is also used to examine and
modify the running monitor and other running jobs.

A jiffy is a unit of time defined as one AC (alternating current)
cycle. If your line power has a frequency of 60 Hz., a jiffy is
one sixtieth of a second (about 16 milliseconds). If your line
power has a frequency of 50 Hz., a jiffy is one fiftieth of a
second (20 milliseconds).

last value typed

See current quantity.

location

A location is a numbered or named place in storage or memory
where a unit of data or an instruction can be stored. This
manual also uses the terms word and memory word.

location counter

The location counter is a memory word that contains the address
of the current location.

location sequence stack

The location sequence stack is a stack in which DDT stores the
addresses of locations used earlier. DDT uses the stack to
access these locations again without having you explicitly enter
the address of each of the locations. DDT references these
addresses in a last-in, first-out manner.

open location

The open location is a memory word that you can modify with your
next DDT command.

prevailing display mode

The prevailing display mode is a user-defined default display
mode. DDT displays memory words in the prevailing mode unless
you specify a temporary display mode. You can restore the
prevailing mode with the <RET> command. See Chapter 4
(Displaying and Modifying Memory) for a list of other commands
that restore the prevailing display mode.

Gloss-2

reset

set

GLOSSARY

Reset refers to the zero condition of a bit or flag. A bit that
is zero is said to be reset. To reset is the verb that refers to
the act of turning the bit off-,-"clearing" the bit, or making it
zero.

Set refers to the nonzero condition of a bit or flag. A bit that
is nonzero is said to be set. To set is the verb that refers to
the act of turning the bit on, or-making it nonzero.

single-stepping

Single-stepping is the process of executing program instructions
one-at-a-time using DDT, to verify the result of each
instruction.

target

Target refers to the contents of the virtual address space that
FILDDT is accessing. The virtual address space may contain a
disk structure, a disk file, a running job, or the running
monitor.

temporary display mode

The temporary display mode is a short-term, user-selected display
mode which overrides the prevailing display mode. Temporary
display mode remains in effect until you enter <RET>, <LF>,
<BKSP>, or <TAB>. Also known as the temporary typeout mode.

temporary typeout mode

See temporary display mode.

Gloss-3

INDEX

$, 2-2 Commands
$", 5-1, 5-2
$$., 5-1, 5-2
$$0, 4-7
$$000, 5-8
$$3, 5-2
$3, 4-7

ASCIZ strings, 4-15
Automatic page-creation, 4-17
Automatic proceed

terminating, 5-7
Automatic proceed flag, 5-6
Automatic write-enable, 4-16

BACKSPACE key, 2-2
<BKSP), 2-2
$0BPT, 5-8
Breakpoints, 2-4, 5-1

conditional, 5-8
DDT action at, 5-2
display additional location at,

5-4
display address of, 5-5
executing command strings at,

5-4, 5-7
executing instructions at, 5-9
executing subroutines at, 5-11
proceeding from, 5-3, 5-6
removing, 5-5
setting, 5-3
single-stepping at, 5-10
unsolicited, 5-8

Byte pointers, 4-5

Command files, 3-9
Commands

DDT
, 4-5
1, 4-8, 4-10, 4-11, 4-13,

4-14
n, 3-4
""<"""), 3-5
., 4-6
I, 4-8, 4-10, 4-11
;, 4-5
=, 4-5
?, 4-16, 4-18, 5-12, 6-3,
[, 4-8, 4-10, 4-11, 4-12
\, 4-8, 4-10, 4-11, 4-13
],4-8, 4-10, 4-11, 4-12
... , 4-8

7-3

Backslash, 4-8, 4-10, 4-11,
4-13

<BKSP), 2-2, 4-8
<CTRL/D), 5-9
<CTRL/U), 2-2
<CTRL/Z), 2-2
deleting, 2-2

Index-l

DDT (Cont.)
Equal sign, 4-5
<ESC), 2-2, 4-10
<ESC)", 3-5
<ESC)"5, 3-6
<ESC)"c<ESC), 3-6
<ESC)., 5-1
<ESC):, 7-1
<ESC)<, 8-1
<ESC)<0, 8-5
<ESC», 8-2
<ESC)?, 2-3
<ESC)B, 5-5, 11-2
<ESC)BBKSP), 4-9, 4-10
0<ESC)Bn, 5-5
<ESC)Bn, 3-3, 5-3, 5-4, 5-5,

11-2
<ESC)C, 4-4
<ESC)D, 7-2
<ESC)E, 6-2
<ESC)F, 4-4
<ESC)G, 5-1, 5-6, 5-14, 11-1
<ESC)H, 4-4
<ESC)I, 3-3, 5-13
<ESC)K, 7-2
<ESC)LLF), 4-9, 4-10
<ESC)M, 3-3, 6-3
<ESC)Ml, 4-19, 4-20
<ESC)M2, 4-3
<ESC)M3, 4-3
<ESC)N, 6-2
<ESC)O, 4-4
<ESC)P, 5-6, 5-14, 11-1
<ESC)Q, 4-7
<ESC)RRET), 4-9
<ESC)S, 4-4
<ESC)Sl, 4-4
<ESC)T0, 4-4
<ESC)T5, 4-4
<ESC)T6, 4-4
<ESC)Tn, 4-4
<ESC)U, 3-3, 5-14, 11-1
<ESC)Uq, 11-2
<ESC)V, 4-18
<ESC)W (search), 6-1
<ESC)W (write-protect), 4-16
<ESC)Wl, 4-17
<ESC)X, 5-9, 5-10, 5-11, 5-13,

5-14, 11-1, 11-2
<ESC)Y, 3-9
<ESC)Z, 4-16
<ESC)ZZSC)., 5-1
<ESC)ZZSC)<, 8-3
<ESC)ZZSC)Bn, 5-7
<ESC)ZZSC)K, 7-3
<ESC)ZZSC)P, 5-7
<ESC)ZZSC)Q, 4-7
<ESC)ZZSC)U, 11-2

April 1986

Commands
DDT (Cont.)

(ESC>ZZSC>Uq, 11-2
(ESC>ZZSC>W (write-protect),

4-16
(ESC>ZZSC>W1, 4-17
(ESC>ZZSC>X, 5-12, 5-13, 5-14
(ESC>ZZSC>X1, 5-13
Exclamation point, 4-8, 4-10,

4-11, 4-13, 4-14
Left square bracket, 4-8,

4-10, 4-11, 4-12
(LF>, 2-2, 4-8
Per iod, 4-6
(RET>, 2-2, 4-8
Reverse slash, 4-8, 4-10,

4-11, 4-13
Right square bracket, 4-8,

4-10, 4-11, 4-12
Semicolon, 4-5
Slash, 4-8, 4-10, 4-11
(TAB>, 2-2, 4-8, 4-10, 4-11,

4-14
Underscore, 4-5

(ESC
L (page access), 4-17

FILDDT
(CTRL/E>, 9-4
(CTRL/Z>, 9-5
/D, 9-3
/F, 9-3
/H, 9-3
/J, 9-4
/M, 9-4
/P, 9-3
/S, 9-3
syntax, 9-2
/U, 9-4

CONTROL key, 2-2
CPU type for FILDDT, 11-4
Current display mode, 4-2
Current location, 2-3, 4-6
Current location stack entry, 4-6
Current quantity, 2-3, 4-7

Dangerous instructions, 5-13
DDT

re10catab1e, 1-2
stand-alone, 1-2

DDT variants, 1-1
DDT.EXE, 1-2
DDT.REL, 1-2
DEBUG

TOPS-10, 1-2
Disabling breakpoints, 12-3
Display mode

C, 4-4
current, 4-2
F, 4-4
H, 4-4
0, 4-4
prevailing, 4-2
IS, 4-4

Display mode (Cont.)
S, 4-4
symbolic, 4-1
0T, 4-4
5T, 4-4
6T, 4-4
temporary, 4-2

EDDT, 10-1
EFIW, 4-11, 4-15
(ESC>, 2-2
ESCAPE key, 2-2
Expression operators, 3-6
Expressions, 3-2
Extended format indirect word,

4-11

FILDDT
exiting, 9-4
starting, 9-2
symbol table, 9-3

Floating default section, 12-5

IFIW, 4-11, 4-15
Initializing memory, 4-16
Input

ASCII character, 3-5
ASCII string, 3-4
decimal integer, 3-2
floating point, 3-2
ha1fwords, 3-8
instructions, 3-8
long text string, 3-4
octal integer, 3-2
RADIX50 word, 3-6
SIXBIT character, 3-6
SIXBIT string, 3-5
text, 3-4
value returned by a command,

3-3
Input to DDT, 3-2
Instruction format indirect word,

4-11
Intersection breakpoints, 12-3

Last quantity typed, 4-7
(LF>, 2-2
LINE FEED key, 2-2
Location counter, 2-3, 4-6
Location sequence stack, 2-4, 4-6

Mask
output byte size, 4-3
search, 6-3
TTY control, 4-19

Maximum symbolic offset, 4-3
Memory protection, 4-16
Memory watch, 4-18

Non-zero sections (NZS), 12-1

Open location, 2-3, 4-6

Index-2 April 1986

Operators
in expressions, 3-6

Output byte size mask, 4-3

Page accessibility, 4-17
Patch

abort, 8-5
before instruction, 8-1
following instruction, 8-3
in a non-zero section, 12-7
terminate, 8-2, 8-3

Permanent default section, 12-5
Prevailing display mode, 4-2
Proceed count, 5-6

$$Q, 4-7
$Q, 4-7

<RET>, 2-2
RETURN key, 2-2

Saving global addresses, 12-2
Search

for address, 6-2
for matching value, 6-1
for non-matching value, 6-2
terminate, 6-3

Search mask, 6-3
Single-stepping, 5-10

Symbol table
closing, 7-1
opening, 7-1

Symbolic debugging, 1-1
Symbols

creating undefined, 7-3
defining new, 7-2
delet i ng, 7-3
in a non-zero section, 12-4
listing specific, 7-4
listing undefined, 7-3
locating, 7-3
multiply-defined, 7-1
reactivating typeout of, 7-2
redefining old, 7-2
suppressing typeout of, 7-2

TAB key, 2-2
<TAB>, 2-2
Temporary display mode, 4-2
TTY control mask, 3-9, 4-19

Unsolicited breakpoint, 5-8
User-program context, 5-13

VMDDT.EXE, 1-2

Watching memory, 4-18

Zeroing memory, 4-16

Index-3 April 1986

READER'S COMMENTS

TOPS-10
DDT Manual

AA-BH82B-TB

NOTE: This form is for document comments only. DIGITAL will use comments submitted
on this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPR) service, submit your comments
on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name ________________ Date _____________ _

Organization ____________________________ _

Street ____________________________________ _

City __________________ State ______ Zip Code, ____ _
or Country

- - - Do Not Tear - Fold Here and Tape - I

BUSINESS RE'PL V MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

11

No Postage

Necessary
if Mailed in the

United States

- - - Do Not Tear - Fold Here -

I

aJ
I:

:.:3
"'0
~ -o
Q
01)
c: o
~
:;
u

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	gloss-1
	gloss-2
	gloss-3
	gloss-4
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB

