
MACRO ASSEMBLER
Reference Manual

Order No. AA-4159C-TM

MACRO ASSEMBLER
Reference Manual

Order No. AA-4159C-TM

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First printing, February 1976
Revised, April 1977
Revised, April 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be u~ed or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1976, 1977, 1978 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DEC tape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II

PREFACE

CHAPTER 1

1.1
1.2
1.3

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.3
2.4
2.4.1
2.4.2
2.4.2.1
2.4.2.2
2.4.3
2.4.4
2.4.5
2.4.5.1
2.4.5.2
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.4.1
2.5.4.2

2.6

CHAPTER 3

CONTENTS

INTRODUCTION TO MACRO

HOW THE ASSEMBLER OPERATES
ADDRESSES AND MEMORY
RELOCATABLE ADDRESSES

ELEMENTS OF MACRO

SPECIAL CHARACTERS
NUMBERS

Integers
Radix
Adding Zeros to Integers in Source Code
Fixed-Point Decimal Numbers
Floating-Point Decimal Numbers
Binary Shifting
Underscore Shifting
Querying the Position of a Bit Pattern

LITERALS
SYMBOLS

Selecting Valid Symbols
Defining Symbols
Defining Labels
Direct Assignments
Variable Symbols
Using Symbols
Symbol Attributes
Local Symbols
Global Symbols

EXPRESSIONS
Arithmetic Expressions
Logical Expressions
Polish (Complex) Expressions
Evaluating Expressions
Hierarchy of Operations
Evaluating Expressions with Relocatable
Values

MACRO-DEFINED MNEMONICS

PSEUDO-OPS

ARRAY
ASCII
ASCIZ
.ASSIGN
ASUPPRESS

iii

Page

ix

1-1

1-2
1-3
1-3

2-1

2-2
2-2
2-2
2-2
2-3
2-3
2-4'
2-6
2-6
2-6
2-7
2-9
2-9
2-10
2-10
2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-14
2-14
2-14

2-15
2-16

3-1

3-2
3-3
3-4
3-6
3-7

CHAPTER 3

CONTENTS (CONT.)

PSEUDO-OPS (CONT.)

BLOCK
BYTE
COMMENT
• COMMON
.CREF
DEC
DEFINE
DEPHASE
.DIRECTIVE
END
.ENDPS
ENTRY
EXP
EXTERN
• HWFRMT
.IF
.IFN
IFx group
INTEGER
INTERN
IOWD
IRP
IRPC
LALL
.LINK
LIST
LIT
.LNKEND
LOC
.MFRMT
MLOFF
MLON
.NODDT
NOSYM
OCT
OPDEF
.ORG
PAGE
PASS2
PHASE
POINT
PRGEND
PRINTX
.PSECT
PURGE
RADIX
RADIX50
RELOC
REMARK
REPEAT
.REQUEST
.REQUIRE
SALL
SEARCH

iv

Page

3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-59
3-60
3-61
3-62
3-63
3-64

CHAPTER 3

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.7.1
4.7.2
4.7.3
4.7.4

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
5.5
5.5.1
5.5.2
5.6
5.7

CHAPTER 6

6.1
6.2
6.3

CONTENTS (CONT.)

PSEUDO-OPS (CONT.)

SIXBIT
SQUOZE
STOPI
SUBTTL
SUPPRESS
SYN
TAPE
.TEXT
TITLE
TWOSEG
UNIVERSAL
VAR
XALL
.XCREF
XLIST
XPUNGE
XWD
Z

MACRO STATEMENTS AND STATEMENT PROCESSING

LABELS
OPERATORS
OPERANDS
COMMENTS
STATEMENT PROCESSING
ASSIGNING ADDRESSES
MACHINE INSTRUCTION MNEMONICS AND FORMATS

Primary Instructions
Mnemonics With Implicit Accumulators
Input/Output Instructions
Extended Instructions

USING MACROS

DEFINING MACROS
CALLING MACROS

Macro Call Format
Quoting Characters in Arguments
Listing of Called Macros

NESTING MACRO DEFINITIONS
CONCATENATING ARGUMENTS
DEFAULT ARGUMENTS AND CREATED SYMBOLS

Specifying Default Values
Created Symbols

INDEFINITE REPETITION
ALTERNATE INTERPRETATIONS OF CHARACTERS
PASSED TO MACROS

ASSEMBLER OUTPUT

THE PROGRAM LISTING FILE
THE BINARY PROGRAM FILE
THE UNIVERSAL FILE

v

Page

3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-73
3-74
3-75
3-77
3-78
3-79
3-80
3-81
3-82
3-83

4-1

4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-6
4-6
4-7

5-1

5-1
5'-2
5-4
5-4
5-6
5-6
5-8
5-8
5-9
5-9
5-10

5-11

6-1

6-1
6-5
6-5

CHAPTER 7

CHAPTER 8

8.1
8.2
8.3

CHAPTER 9

9.1
9.1.1
9.1.2
9.1.3
9.2
9.3

APPENDIX A

APPENDIX B

APPENDIX C

C.l
C.2
C.3
C.4

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

INDEX

G.l
G.l.l
G.l.2
G.l.2.1
G.l.2.2
G.2
G.2.1
G.2.2
G.2.2.1
G.2.2.2

CONTENTS (CONT.)

USING THE ASSEMBLER

ERRORS AND MESSAGES

INFORMATIONAL MESSAGES
SINGLE-CHARACTER ERROR CODES
MCRxxx MESSAGES

PROGRAMMING CONSIDERATIONS

PROGRAM SEGMENTATION
Single-Segment Programs
Two-Segment Programs
Programs With PSECTs

UNIVERSAL FILES
CONDITIONAL ASSEMBLY

MACRO CHARACTER SETS

MACRO SPECIAL CHARACTERS

MACRO-DEFINED MNEMONICS

MACHINE INSTRUCTION MNEMONICS
I/O INSTRUCTION AND DEVICE CODE MNEMONICS
KLIO EXTEND INSTRUCTION MNEMONICS
JRST AND JFCL MNEMONICS

PROGRAM EXAMPLES

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

HISEG
RIM
RIMIO
RIMIOB

STORAGE ALLOCATION

ACCESSING ANOTHER USER'S FILE

USING LOGICAL NAMES
Giving the DEFINE Command
Using the Logical Name
Command Lines
User Programs

USING PROJECT-PROGRAMMER NUMBERS
Running the TRANSL Program
Using the Project-Programmer Number
Command Lines
User Programs

vi

Page

7-1

8-1

8-1
8-3
8-7

9-1

9-1
9-1
9-2
9-3
9-4
9-5

A-I

B-1

C-l

C-l
C-6
C-9
C-IO

D-l

E-l

E-2
E-3
E-4
E-5

F-l

G-l

G-l
G-l
G-2
G-2
G-2
G-2
G-2
G-3
G-3
G-3

Index-l

TABLE 7-1
8-1
8-2
8-3
A-I
B-1
C-l
C-2
C-3
C-4
C-5

CONTENTS (CONT •)

TABLES

MACRO Switch Options
MACRO Informational Messages
MACRO Single-Character Error Codes
MCRxxx Messages
MACRO Character Sets
Interpretations of Special Characters
Machine Instruction Mnemonics
I/O Instruction Mnemonics
I/O Device Code Mnemonics
KLIO EXTEND Instruction Mnemonics
JRST and JFCL Mnemonics

vii

7-3
8-2
8-4
8-8
A-I
B-2
C-2
C-6
C-7
C-9
C-IO

PREFACE

This manual is a reference for the programmer with some knowledge of
assemblers and assembly languages.

Using the MACRO assembler effectively involves using other
DECSYSTEM-20 facilities: the monitor, the LINK program, the CREF
program, a debugging program, a text editor, and machine language.
Therefore the following DECSYSTEM-20 documents will prove useful:

User's Guide
AD-4179B-TI

Monitor Calls User's Guide
AA-4166C-TM

LINK Reference Manual
AA-4183B-TM

EDIT User's Guide
DEC-20-UEUGA-A-D

DDT Dynamic Debugging Technique
DEC-IO-UDDTA-A-D

BATCH Reference Manual
DEC-20-0BRMA-A-DN3

Hardware Reference Manual
EK-IOj20-HR-OOI

ix

CHAPTER 1

INTRODUCTION TO MACRO

MACRO is the symbolic assembler program for the DECSYSTEM-20. The
assembler reads a file of MACRO statements and composes relocatable
binary machine instruction code suitable for loading by LINK, the
system's linking loader.

MACRO is a statement-oriented language;
and are processed in two passes.
assembler:

1. Interprets machine instruction

2. Accepts symbol definitions

3. Interprets symbols

4. Interprets pseudo-ops

5. Accepts macro definitions

6. Expands macros on call

7. Assigns memory addresses

8. Generates a relocatable binary
input to LINK

statements are in free format
In processing statements, the

mnemonics

program file (.REL file) for

9. Generates a program listing file showing source statements,
the corresponding binary code, and any errors found

10. Generates a UNIVERSAL file that can be searched by other
assemblies

In addition to translating machine instruction mnemonics and
special-purpose operators called pseudo-ops, MACRO allows you to
create your own language elements, called macros. In this way you can
tailor the assembler's functions for each program.

Since the assembler is device independent, you can use any peripheral
devices for input and output files. For example, you can use a
terminal for your source program input, a line printer for your
program listing output, and a disk for your binary program output.

MACRO programs must
input/output services.

use the monitor for device-independent
(See the Monitor Calls User's Guide.)

1-1

INTRODUCTION TO MACRO

NOTES

The following conventions
throughout this manual:

are used

1. All numbers in the examples are
octal unless otherwise indicated.

2. All numbers in the text are decimal
unless otherwise indicated.

3. The name of the assembler, MACRO,
appears in uppercase letters;
references to user-defined macros
appear in lowercase letters.

4. Examples sometimes show the code
generated as it appears in the
program listing file. This file is
described in Section 6.1.

1.1 HOW THE ASSEMBLER OPERATES

MACRO is a 2-pass assembler; it reads your source program twice. On
Pass 1, some symbolic addresses will not be resolved, if they refer to
parts of the program not yet read. These symbolic references are
entered in the symbol table and will be resolved on Pass 2.

The main purpose of Pass 1 is to build symbol tables and to make a
rUdimentary assembly of each source statement.

The first task of Passl is initializing all impure data areas that
MACRO uses (internally) for assembly. This area includes all dynamic
storage areas and all buffer areas.

MACRO then reads a command string into memory. This command string
contains specifications for the files to be used during assembly.
After scanning the command string for proper syntax, MACRO initializes
the specified ou~put files.

As assembly begins, MACRO initiates a routine that retrieves source
lines from the proper input file. If no such file is currently open,
MACRO opens the next input file specified in the command string.
Source lines are assembled as they are retrieved from input files.

Assembly Pass 2 performs the same steps as Pass 1. However, during
Pass 2 MACRO writes the object code to the binary (and usually
relocatable) output file; it also generates the program listing file,
followed by the symbol table listing for the program.

MACRO can also generate a cross-referenced symbol table. (See Chapter
6.)

During Pass 2 MACRO also flags erroneous source statements with
single-character error codes. (See Chapter 7.) These error codes
appear in the program listing file.

1-2

INTRODUCTION TO MACRO

The relocatable binary object file created during Pass- 2 contains all
binary code generated; this code is in a form suitable for loading by
the LINK program. (See the LINK Reference Manual.)

MACRO processes relocation counters on both passes. If a labeled
statement has a different relocation value on the second pass, MACRO
generates a phase error.

1.2 ADDRESSES AND MEMORY

The address space of a DECSYSTEM-20 program consists of 512P (IP = 512
words), each word having 36 bits. Since the total number of storage
locations is 2 to the 18th power, the address of a location can be
expressed in 18 bits, or one halfword.

The left halfword of a storage location is bits 0 to 17;
halfword is bits 18 to 35.

1.3 RELOCATABLE ADDRESSES

the right

Normally the binary program generated by MACRO is relocatable. This
means that when the program is loaded for execution, it can be loaded
anywhere in physical memory. (The address for loading is selected at
load time, and depends on what has already been loaded.)

Unless you specify otherwise, MACRO assembles your binary program
beginning with address 0 (400000 for high-segment code). References
to addresses within your program are therefore relative to 0 (400000
for the high segment), and must be changed at loading time. LINK does
this by adding the load address to all such relative addresses,
resolving them to absolute addresses.

For programs assembled with multiple PSECT counters, each PSECT begins
with the relative address o. At load time, each PSECT has its own
relocation constant; PSECT or1g1ns must be selected carefully to
avoid overlapping of PSECTs in memory.

1-3

CHAPTER 2

ELEMENTS OF MACRO

The character set recognized in MACRO statements includes all ASCII
alphanumeric characters and 28 special characters (ASCII 040 through
137). Lowercase letters (ASCII 141 through 172) are treated
internally as uppercase letters (ASCII 101 through 132).

MACRO also recognizes seven ASCII control codes: horizontal tab
(011), linefeed (012), vertical tab (013), formfeed (014), carriage­
return (015), CTRL/underscore (037), and CTRL/Z (032).

MACRO accepts any ASCII character in quoted text, or as text arguments
to the ASCII and ASCIZ pseudo-ops.

NOTES

1. The line-continuation character
(CTRL/_) is always effective.

2. Delimiters for certain pseudo-ops
(such as ASCII, ASCIZ, and COMMENT)
can be any nonblank, non tab ASCII
character.

Characters and their codes are listed in Appendix A.

A MACRO program consists of statements made up of MACRO language
elements. Separated into general types, these are:

1. Special characters

2. Numbers

3. Literals

4. Symbols

5. Expressions

6. MACRO-defined mnemonics

7. Pseudo-ops

8. Macros

The format of a MACRO statement is discussed in Chapter 4.

2-1

ELEMENTS OF MACRO

2.1 SPECIAL CHARACTERS

Characters and combinations that have special interpretations in MACRO
are listed in Appen~ix B. These interpretations apply only in the
contexts described. In particular, they do not apply within comment
fields or text strings.

2.2 NUMBERS

The two properties of numbers that are important to MACRO are:

1. In what radix (base) the number is given.

2. How the number should be placed in memory.

You can control the interpretation of these properties by using
pseudo-ops or special characters to indicate your choices.

2.2.1 Integers

MACRO stores an integer in its binary form, right justified in bits 1
to 35 of its storage word. If you use a sign, place it immediately
before the integer. (If you omit the sign, the integer is assumed
positive.) For a negative in£eger, MACRO first forms its absolute
value in bits 1 to 35, then takes its two's complement. Therefore a
positive integer is stored with 0 in bit 0, while a negative integer
has 1 in bit o.
The largest integer that MACRO can store is 377777 777777 (octal);
the smallest (most negative) is 400000 000000 (octal).

2.2.2 Radix

The initial implicit radix for a MACRO program is octal (base 8). The
integers you use in your program will be interpreted as octal unless
you indicate otherwise.

You can change the radix to any base from 2 to 10 by using the RADIX
pseudo-oPe (See the pseudo-op RADIX in Chapter 3.) The new radix
will remain in effect until you change it.

Without changing the prevailing radix, you can write a particular
expression in binary, octal, or decimal. To do this, prefix the
integer with AB for binary, AO for octal, or AD for decimal. The
indicated radix applies only to the single integer immediately
following it.

2-2

ELEMENTS OF MACRO

NOTES

1. A single-digit number is always
interpreted as radix 10. Thus 9 is
seen as decimal 9, even if the
current radix is 8.

2. In the notations for ~B, ~D, and ~O,

the up-arrow in the text indicates
the up-arrow character, not the
CONTROL character.

For example, suppose the current radix is 8. Then you can write the
decimal number 23 as:

octal (current radix)

decimal

binary

But you cannot write decimal 23 as ~D45-22 since the ~D applies only
to the first number, 45; the 22 is octal. However, you can write
decimal 23 as ~D<45-22>.

2.2.3 Adding Zeros to Integers in Source Code

You can add zeros to an integer (multiply it by a constant) in your
program by suffixing K, M, or G to it.

K adds 3 zeros
M adds 6 zeros
G adds 9 zeros

(K
(M
(G

"kilo-", thousands)
"mega-", millions)
"giga-", billions)

These zeros are suffixed before any conversion, so that in radix la,
5K means 5000 decimal; in radix 8, 5K means 5000 octal, or 2560
decimal.

2.2.4 Fixed-Point Decimal Numbers

To indicate a fixed-point decimal number, prefix it with ~F, include a
decimal point wherever you wish, and suffix Bn to show that you want
to place the "assumed point" after bit n in the storage word. If you
omit the decimal point, MACRO assumes that it follows the last digit.
If you omit the Bn, MACRO assumes B35.

To handle the number, MACRO forms the integer part in a fullword
register, and the fractional part in another fullword register. It
then places the integer part (right justified) in bits 1 to n (n is
from your Bn) of a binary word, and the fractional part (left
justified) in the remaining bits. The integer part is truncated at
the left, and the fractional part at the right. Bit a shows the sign
of the number.

2-3

ELEMENTS OF MACRO

For example, ~F123.45B8 is formed in two registers as

000000 000173

346314 631462

(integer part, right justified)

(fractional part, left justified)

Since the Bn operator sets the assumed point after bit 8, the integer
part is placed in bits 1 to 8, and the fractional part in bits 9 to
35. (The sign bit 0 is 0, showing a positive number.) Truncation is
on the left and right, respectively, giving

173 346 314631

t
assumed point

You can show a fixed-point decimal number as negative by placing a
minus sign before the ~F. The absolute value of the negative number
is formed in two registers as a positive number, then two's
complemented. This complementing sets bit 0 to 1, showing that the
number is negative.

Examples:

000000

000173

346314

777777

777604

431463

NOTE

The binary number resulting from AF does
not show where the assumed point should
be. You must keep track of this through
your own programming conventions.

000173 ~F123.45

346314 ~F123.45B17

631462 ~F123.45B-1

777604 -~F123.45

431463 -~F123.45B17

146316 -~F123.45B-l

2.2.5 Floating-Point Decimal Numbers

In your program, a floating-point decimal number is a string of digits
with a leading, trailing, or embedded decimal point and an optional
leading sign. MACRO recognizes this as a mixed number in radix 10.

MACRO forms a floating-point decimal number with the sign in bit 0, a
binary exponent in bits 1 to 8, and a normalized binary fraction in
bits 9 to 35.

The normallzed fraction can be viewed as follows: its numerator is
the binary number in bits 9 to 35, whose value is less than 2 to the
28th power, but greater than or equal to 2 to the 27th power. Its
denominator is 2· to the 28th power, so that the value of the fraction
is always less than 1, but greater than or equal to o. (This value is
o only if the entire stored number is 0.)

2-4

ELEMENTS OF MACRO

The binary exponent is incremented by 128 so that exponents from -128
to 127 are represented as 0 to 255.

For a negative floating-point decimal number, MACRO first forms its
absolute value as a p6sitive number, then takes the two's complement
of the entire word.

Examples:

The floating-point number 17. generates the binary

a 10 000 101 100 010 000 000 000 000 000 000 000

where bit a shows the positive sign, bits 1 to 8 show the binary
exponent, and bits 9 to 35 show the proper binary fraction. The
binary exponent is 133 (decimal), which after subtracting the added
128 gives 5. The fraction is equal to 0.53125 decimal. And 0.53125
times 2 to the 5th power is 17, which is the number given.

Similarly, 153. generates

a 10 001 000 100 110 010 000 000 000 000 000 000

while -153. generates

1 01 110 III all 001 110 000 000 000 000 000 000

These two examples show that a negative number is two's complemented.
Notice that since the binary fraction for a negative number always has
some nonzero bits, the exponent field (taken by itself) appears to be
one's complemented.

As in FORTRAN, you can write a floating-point decimal number with a
suffixed E±n, and the number will be multiplied by 10 to the ±nth
power. If the sign is missing, n is assumed positive.

Examples:

2840000. can be written 284.E+4

2840000.

.0000284

can be written

can be written

.284E7

.284E-4

.0000284 can be written 284.E-7

Using this E notation with an
allowed, and causes an error.
is illegal.

integer (no decimal point) is not
Therefore you can use 284.E4, but 284E4

NOTE

MACRO's algorithm for handling numbers
given with the E notation is not
identical to FORTRAN's. The binary
values generated by the two translators
may differ in the lowest order bits.

2-5

ELEMENTS OF MACRO

2.2.6 Binary Shifting

Binary shifting of a number with Bn sets the location of the rightmost
bit at bit n in the storage word, where n is a decimal integer. The
shift takes place after the binary number is formed. Any bits shifted
outside the range (bits 0 to 35) of the storage word are lost.

For example, here are some numbers with their binary representations
given in octal:

300000 000000 ~D3B2

000000 042000 ~D17B25

000001 000000 lB17

400000 000000 lBO

777777 777777 -lB35

000000 000001 lB35

000000 777777 -lB35

2.2.7 Underscore Shifting

You can also shift a number by using the underscore operator. (On
some terminals this is a left-arrow.) If V is an expreSSIon with
value n, suffixing _V to a number shifts it n bits to the left. (If n
is negative, the shift is to the right.)

In an expression of the form W_V, Wand V can be any expressions
including symbols. The binary value of W is formed in a register, V
is evaluated, and the binary of W is shifted V bits when placed in
storage.

NOTE

An expression such as -3.75E4_ A D18 is
legal, but the shift occurs after
conversion to floating-point decimal
storage format. Therefore the sign,
exponent, and fraction fields are all
shifted away from their usual locations.
This is true also for other storage
formats.

2.2.8 Querying the Position of a Bit Pattern

You can query the position of a bit pattern by prefixing AL (up-arrow
L) to an expression. This generates the number of leading zeros in
the binary value of the expression. (ALO generates 36 decimal.)

2-6

ELEMENTS OF MACRO

For example, suppose the current radix is 10. Then

"L153 generates 35 (29 decimal)

"L153. generates 1

"L-153 generates a

"L-153. generates a

In the first example, "L153 generates 29 (decimal) because the binary
representation of 153 decimal has its leftmost 1 in bit 28:

000 000 000 000 000 000 000 000 000 010 all 001

But in the second example, the binary form of 153.
floating-point format (see Section 2.2.5),

010 001 000 100 110 010 000 000 000 000 000 000

and its leftmost 1 is in bit 1.

is in

In both of the last two examples, "L-153 and "L-153. generate O. This
is because a negative number in any format sets bit a to 1.

2.3 LITERALS

A literal is a character string within square brackets inserted in
your source code. MACRO stores the code generated by the enclosed
string in a literal pool beginning with the first available literal
storage location, and places the address of this location in place of
the literal. The literal pool is normally at the end of the binary
program. (See the pseudo-op LIT in Chapter 3.)

The statements

135 01 0 00 002016'

22 06 0 00 000137

are equivalent to

135 01 0 00 002020'
• • •
22 06 0 00 000137

LDB T1,CPOINT 6,.JBVER,17J
LIT

LDB T1,PLACE

PLACE: POINT 6,.JBVER,17

A literal can also be used to generate a constant:

PUSH 17,[OJ ;Generate zero fullword

MOVE L,C3"lJ ;Generate a wbrd with 3 in
; lefthalf and 14 in ri~hthalf

2-7

ELEMENTS OF MACRO

Multiline literals are also allowed:

GETCHR: ILDB T2,T1 ;Get a character
CAIN T2,0 ;Is it a null?
JRST [MOVE T1,TXTPTR ;Yes, retrieve pointer

ILDB T2,T1 ;Get a new character
CAIN T2,·?· ;Is it a Guestion mark?
JRST [MOVE Tl,TXTPTl ;Yes, ~et alternate pointer

ILDB T2,T1 ;Get the messa~e character
JRST GETHLPJ ;Go to help routine

POPJ P,J
POPJ R,

;Not Guestion mark, return
;Not a null, return

The text of a literal continues until a matching closing square
bracket is found (unquoted and not in comment field).

A literal can include any term, symbol, expression, or statement, but
it must generate at least one but no more than 99 words of data. A
statement that does not generate data (such as a direct-assignment
statement or a RADIX pseudo-op) can be included in a literal, but the
literal must not consist entirely of such statements.

You can nest literals up to 18 levels. You can include any number of
labels in a literal, but a forward reference to a label in a literal
is illegal.

If you use a dot (.) in a literal to retrieve the location counter,
remember that the counter is pointing at the statement containing the
literal, not at the literal itself.

In nested literals, a dot location counter references a statement
outside the outermost literal.

In the sequence

JRST [HRRZ AC1,V
CAIE AC1,OP
JRST .+1
JRST EVTSTSJ

SKIPE C

the expression .+1 generates the address of SKIPE C, not JRST EVTSTS.

Literals having the same value are collapsed in MACRO's literal pool.
Thus for the statements:

PUSH P,[OJ
PUSH P,[OJ
MOVEI AC1,[ASCIZ /TEST1/J

the same address is shared by the two literals [0], and by the null
word generated at the end of [ASCIZ /TESTI/]. Literal collapsing is
suppressed for those literals that contain errors, undefined
expressions, or EXTERNAL symbols.

2-8

ELEMENTS OF MACRO

2.4 SYMBOLS

MACRO symbols include:

1. MACRO-defined pseudo-ops (discussed in Chapter 3)

2. MACRO-defined mnemonics (discussed in Section 2.6)

3. User-defined macros (discussed in Chapter 5)

4. User-defined opdefs~ (discu3sed at OPDEF in Chapter 3)

5. User-defined labels (discussed in this section)

6. Direct-assignment symbols (discussed in Section 2.4.2.2)

7. Dummy-arguments for macros (discussed in Chapter 5)

MACRO stores symbols in three symbol tables:

1. Op-code table: machine instruction mnemonics and pseudo-ops

2. Macro table: macros, user-defined OPDEFs, and synonyms
(See the SYN pseudo-op in Chapter 3.)

3. User symbol table: labels and direct-assignment symbols

An entry in one of these tables shows the symbol, its type, and its
value.

Symbols are helpful in your programs because:

1. Defining a symbol as a label gives a name to an address. You
can use the label in debugging or as a target for program
control statements.

2. In revising a program, you can change a value throughout your
program by changing a symbol definition.

3. You can give names to values to make computations clearer.

4. You can make values available to other programs.

2.4.1 Selecting Valid Symbols

Follow these rules in selecting symbols:

1. Use only letters, numerals, dots (.), dollar signs ($), and
percent signs (%). MACRO will consider any other character
(including a blank) as a delimiter.

2. Do not begin a symbol with a numeral.

3. If you use a dot for the first character, do not use a
numeral for the second. Do not use dots for the first two
characters; doing so can interfere with MACRO's created
symbols. (See Section 5.5.2.)

4. Make the first six characters unique among your symbols. You
can use more than six characters, but MACRO will use only the
first six.

2-9

ELEMENTS OF MACRO

Examples:

VELOCITY (legal, only VELOCI is meaningful to MACRO)

CHG.VEL (legal, only CHG.VE is meaningful to MACRO)

CHG VEL (illegal, looks like two symbols to MACRO)

ISTNUM (illegal, begins with a numeral)

NUMI (legal)

.1111 (illegal, begins with dot-numeral)

•• 1111 (unwise, could interfere with created symbols)

2.4.2 Defining Symbols

You can define a symbol by making it a label or by g1v1ng its value in
a direct-assignment statement. Labels cannot be redefined, but
direct-assignment symbols can be redefined anywhere in your program.

You can also defin~ special-purpose symbols called OPDEFs and macros
using the pseudo-op OPDEF and the pseudo-op DEFINE. (See Chapter 3.)

2.4.2.1 Defining Labels - A label is always a symbol with a suffixed
colon. A label is in the first (leftmost) field of a MACRO statement
and is one of the forms:

ERRFOUND:

CASEl:

OK:CONTIN:

CASE2::

CASE3:!

CASE4::!

(MACRO uses only ERRFOU)

(legal label)

(legal; you can use more than one label
at a location)

(double colon declares label INTERNAL;
see Section 2.4.5.2)

(colon and exclamation point suppresses
output by debugger)

(double colon and exclamation point
declares label INTERNAL and suppresses
output by debugger)

2-10

ELEMENTS OF MACRO

When MACRO processes the label, the symbol and the current
the location counter are entered in the user symbol
reference to the symbol addresses the code at the label.

value of
table. A

You cannot redefine a label to have a value different from its
original value. A label is relocatable if the address it represents
is relocatable; otherwise it is absolute.

2.4.2.2 Direct Assignments - You define a direct-assignment symbol by
associating it with an expression. (See Section 2.5 for a discussion
of expressions.) A direct assignment is in one of the forms:

symbol=expression

symbol==expression

symbol=:expression

symbol==:expression

(symbol and value of expression are
entered in user symbol table)

(symbol and value of expression are
entered in user symbol table, output by
debugger is suppressed)

(symbol and value of expression are
entered in user symbol table, symbol is
declared INTERNAL; see Section 2.4.5.2)

(symbol and value of expression are
entered in user symbol table, symbol is
declared INTERNAL, output by debugger is
suppressed)

You can redefine a direct-assignment symbol at any time;
direct assignment simply replaces the old definition.

the new

NOTE

If you assign a multiword value using
direct assignment, only the first word
of the value is assigned to the symbol.
For example, A=ASCIZ /ABCDEFGH/ is
equivalent to A=ASCIZ /ABCDE/, since
only the first five characters in the
string correspond to code in the first
word.

2.4.3 Variable Symbols

You can specify a symbol as a variable by suffixing it with a number
sign (#). A variable symbol needs no explicit storage allocation. On
finding your END statement, MACRO assembles variables into locations
following the literal pool.

You can assemble variables anywhere in your program by using the VAR
pseudo-op. This pseudo-op causes all variables found so far to be
assembled immediately. (Variables fO'und after the VAR statement are
assembled at the end of the program or at the next VAR statement.)

2-11

ELEMENTS OF MACRO

2.4.4 Using Symbols

When you use a symbol in your program, MACRO looks it up in the symbol
tables. Normally MACRO searches the macro table first, then the
op-code table, and finally the user symbol table. However, if MACRO
has already found an operator in the current statement and is
expecting operands, then it searches the user symbol table first.

You can control the order of search for symbol tables by using the
pseudo-op .DIRECTIVE MACPRF.

2.4.5 Symbol Attributes

The value of a symbol is either relocatable or absolute. The
relocatability of a label is determined by the relocatability of the
address assigned to it. You can define either an absolute or a
relocatable value for a direct-assignment symbol.

In addition, each symbol in your program has one of
attributes: local, INTERNAL global, or EXTERNAL
attribute is determined when the symbol is defined.

the following
global. This

2.4.5.1 Local Symbols - A local symbol is defined for the use of the
current program only. You can define the same symbol to have
different values in separately assembled programs. A symbol is local
unless you indicate otherwise.

2.4.5.2 Global Symbols - A global symbol is defined in one program,
but is also available for use in other programs. Its table entry is
visible to all programs in which the symbol is declared global.

A global symbol must be declared INTERNAL in the program where it is
defined; it can be defined in only one program. In other programs
sharing the global symbol, it must be declared EXTERNAL; it can be
EXTERNAL in any number of programs.

To declare a symbol as INTERNAL global, you can:

1. Use the INTERN pseudo-oPe

INTERN FLAG1

2. Insert a colon after in a direct-assignment statement.

FLAG2=:200

FLAG3==:200

3. Use an extra colon with a label.

FLAG4::

4. For subroutine entry points, use the ENTRY pseudo-oPe (This
pseudo-op does more than declare the symbol INTERNAL. See
Chapter 3.)

ENTRY FLAG5

2-12

ELEMENTS OF MACRO

To declare a symbol as an EXTERNAL global, you can:

1. Use the EXTERN pseudo-oPe

EXTERN FLAG6

2. Suffix ## to the symbol at any of its uses. (Doing this once
is sufficient, but you can use ## with all references to the
symbol.)

FLAG7tt

2.5 EXPRESSIONS

You can combine numbers and defined symbols with arithmetic and
logical operators to form expressions. You can nest expressions by
using angle brackets. MACRO evaluates each expression (innermost
nesting levels first), and either resolves it to a fullword value, or
generates a Polish expression to pass to LINK. (See Sections 2.5.3
and 2.5.4.)

2.5.1 Arithmetic Expressions

An arithmetic expression can include any number or defined symbol, and
any of the following operators:

+ addition

subtraction

* multiplication

/ division

These examples assume that WORDS, X, Y, and Z have been defined
elsewhere:

MOVEI 3,WORDS/S

ADD! 12,<X+Y-Z>

ADD! 12,«WORDS/S>+1>*S

2.5.2 Logical Expressions

A logical expression can include any number or defined symbol whose
value is absolute, and any of the following operators:

& AND

OR (inclusive-OR)

ft! XOR (exclusive OR)

- NOT

2-13

ELEMENTS OF MACRO

The unary operation A_A generates the fullword one's complement of the
value of A.

Each of the binary operations &, 1, and Al generates a fullword by
performing the indicated operation over corresponding bits of the two
operands. For 'example, A&B generates a fullword whose bit 0 is the
result of A's bit 0 ANDed with B's bit 0, and so forth for all 36
bits.

2.5.3 Polish (Complex) Expressions

MACRO cannot evaluate certain expressions containing relocatable
values or EXTERNAL symbols. Instead MACRO generates special
expressions called Polish expressions, which tell LINK how to resolve
the values at load time. MACRO also generates Polish expressions to
resolve inter-PSECT references.

For example, assum~ that A and B are externally defined symbols. Then
MACRO cannot perform the operations A+B-3, but instead generates a
special Polish block containing an expression to pass to LINK~ the
expression is equivalent to -+AB3. (See REL Block Type 11 in the LINK
Reference Manual.) At load time, the values of A and B are available
to LINK, and the expression is resolved.

NOTE

If you have used reverse Polish notation
with a calculator, you should notice
that although MACRO's Polish expressions
are similar, they are not reversed.
(These notations are called Polish
because they were invented by the Polish
logician Jan Lukasiewicz.)

2.5.4 Evaluating Expressions

2.5.4.1 Hierarchy of Operations - MACRO has a hierarchy of operations
in evaluating expressions. In an expression ~ithout nests (angle
brackets), or within a nested expression, MACRO performs its
operations in this effective order:

1. All unary operations and shifts: +, -, "'-, ""0, ""a, ""B, B
(binary shift), - (underscore shift), ""F, ""L, E, K, M, G.
Zeros are added for K, M, and G before any other operation is
performed.

2. Logical binary operations (from left to right):
(XOR), & (AND).

(OR), ""I

3. Multiplication and division (from left to right): *, I.

4. Addition and subtraction (binary operations): +,-

2-14

ELEMENTS OF MACRO

You can override thi~ hierarchy by using angle brackets to show what
you want done first. For example, suppose you want to calculate the
sum of A and B, divided by C. You cannot do this with A+B/C because
MACRO will perform the division B/C first, then add the result to A.
With angle brackets you can write the expression <A+B>/C, telling
MACRO to add A and B first, then divide the result by C.

Expressions can be nested to any level. The innermost nest is
evaluated first; the outermost, last. Some examples of legal
expressions (assuming that AI, Bl, and C are defined symbols) are:

Al+B1/5
<Al+Bl)/5
~-Al&Bl~!C

~Bl01M-~D98+6

NOTE

An expression given in halfword notation
(that is, lefthalf"righthalf) has each
half evaluated separately in a 36-bit
register. Then the 18 low-order bits of
each half are joined to form a fullword.
For example, the expression <4,,6>/2
generates the value 000002 000003.

2.5.4.2 Evaluating Expressions with Relocatable Values - The value of
an expression is usually either absolute or relocatable. Recall that
relocatable values in your binary code will have the relocation
constant added at load time by LINK.

Assume that A and Bare relocatable symbols, and that X and Yare
absolute symbols, and that the relocation constant is k. Let a+k and
b+k be the values of A and B after relocation. Then A+X makes sense
(to LINK) because it means <a+k>+X, which is the same as <a+X>+k,
clearly relocatable.

Since X and Yare both absolute, any operation combining them gives an
absolute result.

Now look at the expression A+B. This means <a+k>+<b+k), which is the
same as <a+b>+2k, neither absolute nor relocatable. Similarly, A*B
means <a+k>*<b+k>, or <a*b>+<a+b>*k+k*k, again neither absolute nor
relocatable. Such expressions cannot be evaluated by MACRO and are
passed as Polish expressions to LINK.

More generally, you can see if an expression is absolute or
relocatable by substituting relocated forms as above (for example,
a+k), and separating it (if possible) into the form

absolute+n*k

where absolute is an absolute expression. If n=O, the expression is
absolute; if n=l, ii is relocatable. If n is neither 0 nor 1, or if
the expression cannot be put into the form above, then the expression
is neither absolute nor relocatable. (Nevertheless, LINK will
correctly evaluate the expression at load time.)

2-15

ELEMENTS OF MACRO

2.6 MACRO-DEFINED MNEMONICS

MACRO-defined mnemonics are words that MACRO recognizes and can
translate to binary code. These mnemonics include:

1. Machine instruction mnemonics

2. I/O instruction mnemonics

3. I/O device code mnemonics

4. KL10 EXTEND instruction mnemonics

5. JRST and JFCL mnemonics

Each type of mnemonic is discussed and tabulated in Appendix C. These
mnemonics, together with MACRO's pseudo-ops and special characters,
form the MACRO language.

2-16

CHAPTER 3

PSEUDO-OPS

A pseudo-op is a statement that directs the assembler to generate code
or set switches to control assembly and listing of your program. For
example, the pseudo-op RADIX does not generate code, but it tells
MACRO how to interpret numbers in your program. The pseudo-op EXP
generates one word of code for each argument given with it.

To use a pseudo-op in your program, follow it with a space or tab, and
any required or optional arguments or parameters. The program
examples in Appendix D show pseudo-ops used in context.

This chapter describes
(alphabetically) • The
applicable, are:

1. FORMAT

2. FUNCTION

3. EXAMPLES

the use
headings

4. OPTIONAL NOTATIONS

5. RELATED PSEUDO-OPS

6. COMMON ERRORS

and functions
included for

of each pseudo-op
each description, if

Some entries under COMMON ERRORS cite single-character error codes
(for example, M error). These codes are discussed in Section 8.2.

Many of the examples show some parts of the code assembled. The
format and meaning of assembled code is discussed in Section 6.1.

3-1

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

ARRAY

ARRAY sym[expression]

expression = an integer value in the current radix,
indicating the number of words to be allocated;
the expression cannot be EXTERNAL, relocatable, or
a floating-point decimal number, and its value
must not be negative.

Reserves a block of storage whose length is the value
of the expression, and whose location is identified by
the symbol. Storage is allocated along with other
variable symbols in the program.

If the pseudo-op TWOSEG is used, ARRAY storage must be
in the low segment. (See the VAR pseudo-op.)

The allocated storage is not necessarily zeroed.

If you use ARRAY in a PSECT, storage is allocated
within that PSECT.

NOTE

Though the expression portion of an OPDEF must
be in square brackets, this use of the brackets
is completely unrelated to literals or literal
handling.

ARRAY START[200J
ARRAY PLACE[1000J
ARRAY ERRS[2000J

ARRAY syml,sym2 [expression]

Both syml and sym2 have a length equal to the value of
the expression.

BLOCK, • COMMON, INTEGER, VAR

Using an EXTERNAL symbol for name or size of the array
(E error).

3-2

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

ASCII

ASCII dtex.td

d = delimiter; first nonblank character, whose second
appearance terminates the text.

text = string of text characters to be entered.

Enters ASCII text in the binary code. Each character
uses seven bits. Characters are left justified in
storage, five per word, with bit 35 in each word set to
0, and any unused bits in the last word set to o.

105 122 122 117 122 ASCII IERROR MESSAGEI
040 115 105 123 123
101 107 105 000 000

123 124 101 122 124 ASCII !STARTING AGAIN!
111 116 107 040 101
107 101 111 116 000

105 116 104 123 040 ASCII ?ENDS WITH ZEROS?
127 111 124 110 040
132 105 122 117 123

Omit the space or tab after ASCII. This is not allowed
if the delimiter is a letter, number, dot, dollar sign,
or percent sign (that is, a possible symbol
constituent), or if the ASCII value of the delimiter
character is less than 040 or greater than 172.

Right justified ASCII can be entered by
quotes to surround up to five characters;

201 01 0 00 000101 MOVEI AC1,·A·

ASCIZ, .DIRECTIVE FLBLST, RADIX50, SIXBIT

using double
for example,

Using the delimiter character in the text string.

Missing the end delimiter (that is, attempting to use a
carriage return as a delimiter).

Using more than 5 characters in a right-justified ASCII
string, or more than 2 characters if in the address
field (Q error) •

Giving direct assignment of a long ASCII string value
to a symbol (for example A=ASCII /ABCDEFGH/). Only the
first word (five characters, left justified) is
assigned.

Using ASCII when ASCIZ is required.

3-3

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

ASCIZ

ASCIZ dtextd

d = delimiter; first nonblank character, whose second
appearance terminates the text.

text = string of text characters to be entered.

Enters ASCII text exactly as in the pseudo-op ASCII,
except that a trailing null character is guaranteed.
That is, if the number of characters in text is a
multiple of five, a fullword of zeros is generated.

105 122 122 117 122 ASCIZ IERROR MESSAGEI
040 115 105 123 123
101 107 105 000 000

123 124 101 122 124 ASCIZ !STARTING AGAIN!
111 116 107 040 101
107 101 111 116 000

105 116 104 123 040 ASCIZ 1ENDS WITH ZEROS1
127 111 124 110 040
132 105 122 117 123
000 000 000 000 000

Omit the space or tab after ASCIZ. This is not allowed
if the delimiter is a letter, number, dot, dollir sign,
or percent sign (that is, a possible symbol
constituent), or if the ASCII value of the delimiter
character is less than 040 or greater than 172.

ASCII, .DIRECTIVE FLBLST, RADIX50, SIXBIT

Using the delimiter character in the text string.

Missing the end delimiter (that is, attempting to use a
carriage return as a delimiter).

Giving direct assignment of a long ASCII string value
to a symbol (for example A=ASCII /ABCDEFGH/). Only the
first word (five characters, left justified) is
assigned.

In a macro, using a delimiter character that interferes
with recognition of a dummy-argument. For example, in
the macro

DEFINE FOO(X)<
ASCIZ .X.

X is not seen as a dummy-argument because .X. is itself
a valid symbol.

(Continued on next page)

3-4

PSEUDO-OPS

ASCIZ (Cont.)

In the macro

DEFINE FOO(X><
ASCIZ IXI

x is seen as a dummy-argument because the slash (/) i
not valid in a symbol.

The macro

DEFINE FOO(X><
ASCIZ .' X' •

uses the concatenation operator (') to assure
recogni tion of X as a dummy-argument. (See Section 5.4
for a discussion on concatenating arguments.)

3-5

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

COMMON
ERRORS

PSEUDO-OPS

.ASSIGN

.ASSIGN syml,sym2,increment

syml and sym2 = global symbols.

increment = expression with integer value.

MACRO generates a REL Block Type 100. (See the LINK
Reference Manual.) At the time the program is loaded
into memory, assigns the value of sym2 to syml, and
adds increment to sym2.

The .ASSIGN pseudo-op is useful for assigning a block
of storage in one module and providing another module
with the symbols needed to reference that block •

• ASSIGN A,PC,5 ;Assi~ns the value of PC to A,
; then redefines the value of
; PC to be F'C+!:5 +

.ASSIGN ERR1,ERRS,ERNO ;A5si~ns the value of ERRS to
ERR1, then redefines ERRS to
be ERRS plus the current
value of ERNO •

• ASSIGN syml,sym2

If the increment is missing, its value is 1.

Syml or sym2 not global.

Increment not defined at assembly time.

3-6

FORMAT

FUNCTION

RELATED
PSEUDO-OPS

PSEUDO-OPS

ASUPPRESS

ASUPPRESS

Causes all local or INTERNAL symbols that are not
referenced after the ASUPPRESS to be deleted from
MACRO's symbol table at the end of Pass 2. These
symbols will not be output to LINK, will not be
available to the debugger, and will not appear in the
symbol table in the program listing file.

If you use ASUPPRESS at the end of Pass 1, only those
symbols defined or referenced in Pass 2 remain in
MACRO's symbol table. This is useful for parameter
files that define many more symbols than are actually
used, since the unused symbols can be automatically
deleted if they are defined in IFI conditionals.

PURGE, SUPPRESS

3-7

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

BLOCK

BLOCK expression

expression = an integer value in the current radix,
indicating the number of words to be allocated;
the expression cannot be EXTERNAL, relocatable, or
a floating-point decimal number, and its value
must not be negative.

Reserves a block of locations whose length is the value
of the expression. The location counter is incremented
by this value. The allocated locations are not
necessarily zeroed.

Note that the BLOCK pseudo-op does
store code. Therefore it should
literal, since this will result in
reserved space during literal pooling.

not generate or
not be used in a
overwriting the

If you use the BLOCK pseudo-op to reserve words meant
for data storage, these words should be reserved in the
low segment of a two-segment program.

002101' 200 02 0 00 400033' MOVE 2,EXW[I FRM,TOJ
002102' 251 02 0 00 003010' BLT 2,TOENIJ
•••••• • • •
002611' FRM: BLOCK 100
002711' TO: BLOCK 100

003010' TOENrl=. -1

Use the pseudo-op Z inside literals.

ARRAY, .COMMON, INTEGER, VAR

Relocatable expression (R error) •

Floating-point or negative expression (A error).

Value of expression larger than 777777.

Expression contains EXTERNAL symbol (E error).

Expression contains nonexistent symbol (V error) •

BLOCK used in literal (L error).

3-8

FORMAT

FUNCTION

EXAMPLES

COMMON
ERRORS

PSEUDO-OPS

BYTE

BYTE bytedef bytedef

bytedef=(n)expression, ••• ,expression

n = byte size in bits; n is a decimal expression in
the range 1 to 36.

expression = value to be stored.

Stores values of expressions in n-bit bytes, starting
at bit 0 of the storage word. The first value is
stored in bits 0 to n-l; the second in bits n to 2n-l;
and so forth for each given value.

If a byte will not fit in the remaining bits of a word,
the bits are zeroed and the byte begins in bit 0 of the
next word. If a value is too large for the byte, it is
truncated on the left.

If the byte size is 0 or is missing
parentheses), a zero word is generated.

000002 VELOCY=2
05 00 00 01 05 02 BYTE (6)5,0,,101,5,VELOCY

(empty

generates the storage value 050000 010502. The two
commas indicate a null argument; the 101 (octal) is
too_ large for the byte size and is left truncated.

07 00 01 007 000 BYTE (6)7,O,1(9)7,0,1,·A·
001 101 000000

Notice that the code for "A" (101) is right justified
in its 9-bit byte.

Byte size too big (A error).

Missing left or right parenthesis (A error) •

Extraneous comma before left parenthesis;
generates a null byte.

the comma

Using an EXTERNAL symbol or EXTERNAL complex expression
for n or expression.

3~

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

COMMENT

COMMENT dtextd

d = delimiter1 the first nonblank character, whose
second appearance terminates the text.

text = text to be entered as a comment.

Treats the text between the delimiters as a comment.
The text can include a CR-LF to facilitate multiline
comments, as shown below.

COMMENT ITHIS IS A COMMENT
THAT IS MORE THAN 1 LINE LONGI

Omit the space or tab after COMMENT. This is not
allowed if the delimiter is a letter, number, dot,
dollar sign, or percent sign (that is, a possible
symbol constituent), or if the ASCII value of the
delimiter character is less than 040 or greater than
172.

Use a semicolon (;) to make the rest of the line into a
comment.

REMARK

Using the delimiter character in the text string.

Missing the end delimiter (that is, attempting to use a
carriage return as a delimiter).

3-10

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

• COMMON

.COMMON symbol [expression]

symbol = name of at FORTRAN COMMON block.

expression = an expression having
value; this value defines
COMMON block.

a positive
the length

integer
of the

Defines a FORTRAN or FORTRAN-compatible COMMON block.
Causes the equivalent action of a FORTRAN labeled
COMMON. (See the FORTRAN Reference Manual.)

You can use .COMMON to define blank COMMON; to do
this, use the symbol .COMM. as the name of the COMMON
block. (Both FORTRAN and LINK recognize this as the
name of blank COMMON.)

To define a COMMON block, MACRO generates a REL Block
Type 20. (See the LINK Reference Manual.)

If used, the .COMMON pseudo-op must precede any MACRO
statement that generates binary code, and must precede
any other reference to the symbol name.

.COMMON DATA1[SO]

.COMMON symbol, ••• ,symbol[expression]

defines a COMMON array for each symbol
array has a length equal to the
expression.

ARRAY, BLOCK, EXTERN, INTEGER

given. Each
value of the

Missing left or right square bracket (A error) •

Using a relocatable value or EXTERNAL symbol in
expression.

3-11

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

.CREF

.CREF

Resumes output of cross-referencing that was suspended
by the .XCREF pseudo-oPe

Can apply to specific symbols to cancel a previous
.XCREF on those symbols, as in

.CREF symbol, ••• ,symbol

.XCREF

Specifying a nonexistent symbol (A error) •

3-12

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

DEC

DEC expression, ••• ,expression

Defines the local radix for the line as decimal; the
value of each expression is entered in a fullword of
code. The location counter is incremented by 1 for
each expression.

RADIX 8
000000 000012 DEC 10,4.5,3.1416,6.03E-26,3
203440 000000
202622 077714
055452 456522
000000 000003

Use the EXP pseudo-op and prefix AD to each expression
that must be evaluated in radix 10. In the example
above, only the first expression, "10," has different
evaluations in radix 8 and radix 10. Therefore an
equivalent notation is

000000
203440
202622
055452
000000

000012
000000
077714
456522
000003

EXP, RADIX, OCT

EXP ~D10,4.5,3.1416,6.03E-26,3

3-13

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

DEFINE

DEFINE rnacroname (darglist) <macrobody>

macroname ; a symbolic name for the macro defined.
This name must be unique among all macro, OPDEF,
and SYN symbols.

darglist = a list of dummy-arguments.

macrobody = source code to be assembled when the macro
is called.

Defines a macro. (See Chapter 5.)

See Chapter 5.

• DIRECTIVE (with .ITABM, .XTABM, or MACMPD arguments),
IRP, IRPC, OPDEF, STOPI, SYN

Mismatched parentheses.

Mismatched angle brackets.

Using identical names for a macro and an OPDEF or SYN
symbol (X error).

3-14

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

PSEUDO-OPS

DEPHASE

DEPHASE

Suspends the effect of a PHASE pseudo-oPe Restores the
location counter to its mode previous to the segment of
PHASEd code.

For further details, see the pseudo-op PHASE.

400000' RELOC 400000
000000 PHASE 0
000000 201 01 0 00 000000 TAG: MOVEl 1,0
400001' IIEPHASE"
400001' 254 00 0 00 000000' JRST TAG

PHASE

3-15

FORMAT

FUNCTION

EXAMPLES

COMMON
ERRORS

PSEUDO-OPS

.DIRECTIVE

.DIRECTIVE directive, ••• ,directive

Sets switches to enable or disable MACRO features. If
a directive has a logical opposite, you can use NO as a
prefix to reverse the directive. The directives are:

.ITABM - include spaces and tabs as part of passed
arguments in macro call •

• XTABM - strip leading and trailing spaces and tabs
from passed arguments in macro call. .XTABM is
the default setting.

MACMPD - match paired delimiters in macro call.
is the default for assembly. It implies
and disables .ITABM. Using .DIRECTIVE NO
disables all quoting characters except
brackets in macro arguments, and offers
choice of .ITABM or .XTABM.

MACMPD
.XTABM
MACMPD

angle
you a

LITLST - list all binary code for literals in-line.

FLBLST - list only first line of binary code for
multiline text. NO FLBLST is the default •

• OKOVL - allow overflow for arithmetic and for the
pseudo-ops DEC, EXP, and OCT •

• EROVL - give an N error for arithmetic overflow •
• EROVL is the default.

MACPRF - prefer macro definition of symbol over other
definitions of the same symbol. This does not
affect the searching of .UNV files.

SFCOND - suppress source listing for failing
conditional assembly. The lines containing the
opening and closing angle brackets are not
suppressed.

.NOBIN - do not generate binary (• REL) file.

KAlO - enter KAlO as CPU type in header block of binary
file.

KIlO - enter KIlO as CPU type in header block of binary
file.

KLIO - enter KLIO as CPU type in header block of binary
file.

.DIRECTIVE MACMPD,.NOBIN

Using NO with a directive that does not have a logical
opposite.

3-16

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

END

END expression

expression = an optional operand that specifies the
address of the first instruction to be executed;
can be EXTERNAL.

Must be the last statement in a MACRO program.
Statements after END are ignored. The starting address
is optional and normally is given only in the main
program. (Since subprograms are called from the main
program, they need not specify a starting address.)

When the assembler first encounters an END statement,
it terminates Pass 1 and begins Pass 2. The END
terminates Pass 2 on the second encounter, after which
the assembler simulates XLISTed LIT and VAR statements
beginning at the current location. (In a PSECTed
program, the LIT and VAR statements are simulated for
each PSECT.)

END START

START is a label at the starting address.

Use the END statement
some output file formats.
and RIMIOB in Appendix E.)

PRGEND

to specify a transfer word in
(See pseudo-ops RIM, RIMIO,

Failing to end
closing delimiter;

a text string or literal with a
MACRO cannot see the END statement.

Including an END statement in a source file when it is
not the last file in a group of files you want
assembled as a single program.

Closing the input file immediately after the characters
"END" with no following carriage return.

3-17

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

.ENDPS

.ENDPS

Suspends use of the relocation counter associated with
the current PSECT. If the current PSECT is nested in
other PSECTs, the relocation counter for the next outer
PSECT is activated. Otherwise, the relocation counter
for the blank PSECT is activated.

MACRO generates a REL Block Type 22.
Reference Manual.)

(See the LINK

For a complete discussion of PSECTs and their handling,
see Section 9.1.3.

Give the
pseudo-oPe

.ENIIPS A

name of the
For example,

current PSECT with the .ENDPS

causes MACRO to verify that A is the name of the
current PSECTi if not, an error message is issued.

LOC, .ORG, .PSECT, RELOC, TWOSEG

3-18

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

ENTRY ·1

ENTRY symbol, ••• ,symbol

symbol = name of an entry
subroutine.

point in a library

Defines each symbol in the .list following the ENTRY
pseudo-op as an INTERNAL symbol and places them in a
REL Block Type 4 at the beginning of the .REL output
file. If this .REL file· is later included in an
indexed library of subroutines, then the symbol will
also be included in a REL Block Type 14 at the
beg inning of the 1 ibrary. (Except for this, ENTRY is
equivalent to INTERN.)

If LINK is in library search mode, a subroutine will be
loaded if the program to be executed contains an
undefined global symbol that matches a name in the
library entry list for that program.

Since library subroutines
using them, the calling
EXTERN statements.

are external
program must

to programs
list them in

If the MATRIX subroutine is a library subroutine, it
must contain the statement

ENTRY MATRIX

in order to make the symbol MATRIX available to other
programs. In addition, it must define the symbol
MATRIX as a label at the address where execution of the
call is to begin:

MATRIX:

INTERN, EXTERN

Not defining the symbol in the program.

Purging an ENTRY symbol in Pass 2 only. The ENTRY
symbol is normally output at the beginning of Pass 2;
a PURGE of an ENTRY symbol must occur in Pass 1 to be
effective.

3-19

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

PSEUDO-OPS

EXP

EXP expression, ••• ,expression

Enters the value of each expression (in the current
radix) in a fullword of code.

000000
000000
000000
000000
000000

DEC, OCT

000003
000101
000004
000002
000003
000004
000101
000101
000364

X=3
HALF=101
I~=4
A=2
EXP X,4,~D65,HALF,B+362-A

3-20

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

EXTERN

EXTERN symbol, ••• ,symbol

Identifies symbols as being defined in other programs.
EXTERNAL symbols cannot be defined within the current
program.

At load time, the value of
resolved by LINK if you load
symbol as an INTERNAL symbol.
a module, LINK gives an error
EXTERNAL symbol.)

an EXTERNAL symbol is
a module that defines the

(If you do not load such
message for the undefined

An EXTERNAL symbol cannot be used for any program
values affecting address assignment (such as arguments
to LOC or RELOC).

For a discussion of global symbols and their resolution
by LINK, see Section 2.4.5.2.

EXTERN SQRT,CUBE,TYPE

Suffix ## to the symbol. This declares the symbol
EXTERNAL, and eliminates the need for the EXTERN
pseudo-oPe Most programmers who use the ## notation do
so at all occurrences of the symbol to show at each
site that the symbol is EXTERNAL.

For example, the two statements

EXTERN A
ATWO=A*2

can be simplified to

INTERN, ENTRY, UNIVERSAL

Attempting to declare a symbol
first use has made it local (by
(by declaration).

as EXTERNAL after its
default) or INTERNAL

Declaring a
searches a
definition.

symbol as EXTERNAL in a program that
UNIVERSAL file that gives a conflicting

3-21

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

• HWFRMT

. HWFRMT

Causes binary code to be listed in halfword format.

200 01 o 02 000002 MOVE 1,2(2)
.HWFRMT

200042 000002 MOVE 1,2 (2)

Use the /G switch described in Table 7~1.

.MFRMT

3-22

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO~OPS

.IF

.IF expression,qualifier,(code)

Gives criterion and code for conditional assembly. The
code is assembled if:

qualifier is

ABSOLUTE
ASSIGNMENT
ENTRY
EXTERNAL
INTERNAL
GLOBAL
LABEL
LOCAL
LRELOCATABLE
MACRO
NEEDED
NUMERIC
OPCODE
OPDEF
REFERENCED
RELOCATABLE
RRELOCATABLE
SYMBOL
SYNONYM

AND expression is

absolute
a direct-assignment 'symbol
a symbol given in ENTRY pseudo-op
an EXTERNAL symbol
an INTERNAL or ENTRY symbol
a global symbol
a label
a local symbol
a lefthalf relocatable symbol
a macro name
an undefined but referenced symbol
numeric
an opcode
a symbol defined by OPDEF pseudo-op
a symbol already in the symbol table
a relocatable symbol
a righthalf relocatable symbol
a symbol (instead of a number)
a symbol ~efined by,SYN pseudo-op

NOTE

If the expression has- different properties in
Pass 1 and Pass 2, the number of words of code
generated may be different for.each pass •

• IF FOO,MACRO,(FOO>

Abbreviate qualifier up to unique ~nitial letters.
For example, you can abbreviate OPCODi to OPC, but -not
to OP, since OPDEF has the'same first two lett~rs.

Omit the comma preceding the left angle bracket •

• DIRECTIVE SFCOND, .IFN, IFx group

Omitting the comma between expression and qualifier.

Mismatching angle brackets.

Misplacing the .IF statement in such a way that the
'property given by the qualifier is different in Pass I
and Pass 2. For example, the following code generates
phase errors in Pass 2:

.IF FOO,OPDEF,(JFCL>
OPDEF FOOCJRSTJ .

NXTLAB: END

3-23

FORMAT

FU'NCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

____ e_I_F_N ____ 1

.IFN expression,qualifier,<code>

Gives criterion and code for conditional assembly. The
code is assembled if:·

qualifier is

ABSOLUTE
ASSIGNMENT
ENTRY
EXTERNAL

'INTERNAL
GLOBAL
LABEL
LOCAL
LRELOCATABLE
MACRO
NEEDED
NUMERIC
OPCODE
OPDEF
REFERENCED
RELOCATABLE
RRELOCATABLE
SYMBOL
SYNONYM

AND expression IS. NOT

absolute
a direct-assignment symbol
a symbol given in ENTRY pseudo-op
an EXTERNAL symbol

. an INTERNAL or ENTRY symbol
a global symbol
a label
a local symbol
a lefthalf,relocatable symbol
a macro name
an undefined but referenced symbol
numeric
an opcode
a symbol defined by OPDEF pseudo-op
a symbol already in the symbol table
a relocatable symbol
a righthalf relocatable symbol
a symbol (instead of a number)
a symbol defined by SYN pseudo-op

NOTE

If the expression has different properties in
Pass 1 and Pass 2, the number of words of code
generated maybe different for each pass •

• IFN FOO,OPDEF,(OPDEF FOOC270B8J)

Abbreviate qualifier up to unique initial letters. For
example, OPCODE can be abbreviated to OPC, but not to
OP, since OPDEF has the same first two letters.

Omit the comma prededing the left angle bracket •

• DIRECTIVE SFCOND, .IF, IFx group

Omitting the comma between expression and qualifier.

Mismatching angle brackets.

Misplacing the .IFN statement in such a way that the
property given by the qualifier is different in Pass I
and Pass 2. For example, the following code generates
phase errors in Pass 2:

.IFN FOO,OPDEF,(JFCL>
OPDEF FOOeJRSTJ

NXTLAB: END

3-24

FUNCTION

PSEUDO-OPS

IFx group

Gives criterion and code for conditional assembly. A
symbol or expression used to define the conditions for
assembly must be defined before MACRO reaches the
conditional statement. If the value of such a symbol
or expression is not the same on both assembly passes,
a different number of words of code may be generated,
and a phase error can occur.

The forms of the IF pseudo-op are listed below; in the
first six forms, n is the value of the given
expression.

IFE expression,<code> - assemble code if n=O.

IFN expression,<code> - assemble code if n=i=O.

IFG expression,<code> - assemble code if n>O.

IFGE expression,<code> - assemble code if n~O.

IFL expression,<code> - assemble code if n<O.

IFLE expression,<code> - assemble code if n~O.

IFI <code> - assemble code on Pass 1.

IF2 <code> - assemble code on Pass 2.

IFDEF symbol,<code> - assemble code if
defined as user-defined, an
pseudo-oPe

the symbol is
opcode, or a

IFNDEF symbol,<code> - assemble code if the symbol is
not defined as user-defined, an opcode, or a
pseudo-oPe Code is also assembled if the symbol
has been referenced, but is not yet defined. This
can occur during Pass 1.

IFIDN <stringl><string2>,<code> - assemble code if the
strings are identical.

IFDIF <stringl><string2>,<code> - assemble code if the
strings are different.

NOTES

1. For IFIDN and IFDIF, the assembler
compares the two strings (interp~eted
as ASCII) character by character.

2. The IFIDN and IFDIF pseudo-ops usually
appear in macro definitions, where one
or both strings are dummy-arguments.

(Continued on next page)

3-25

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

IFx group (Cont.) I

IFB <string>,<code> - assemble code if the
contains only blanks and tabs.

string

IFNB<string>,<code> - assemble code if the string does
not contain only blanks and tabs.

~~CC==~~CC+l ;Increment character count
IFG ~~CC-5,<~~CC==O ;Word overflowed?
~~WC==~~WC+l> ;Yes, to next word

Omit angle brackets enclosing code for single-line
conditionals.

Omit the comma preceding the code if the code is
enclosed in angle brackets.

For IFIDN, IFDIF, IFB, and IFNB only: use a nonblank,
non tab character other than < as the initial and
terminal delimiters for a string (as in pseudo-ops
ASCII and ASCIZ). You can then include angle brackets
in the string •

• DIRECTIVE SFCOND, .IF, .IFN

Comparison string too large (A error).

Mismatched angle brackets.

EXTERNAL symbol used for comparison (E error).

String not properly delimited.

Missing comma with single-line conditional.

3-26

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

INTEGER .,

INTEGER symbol, ••• ,symbol

symbol = the name of a location to be reserved.

Reserves storage locations at the end of the program on
a one-per-given-symbol basis. The symbols are
equivalent to variable symbols.

For a two-segment program, INTEGER storage must be in
the low segment.

INTEGER A,B,C

Reserve a single storage location by suffixing a number
sign (#) to a symbol in the operand field. For
example,

ADD 3,TEMPI

is equivalent to

INTEGER TEMP
ADD 3,TEMP

ARRAY, BLOCK, .COMMON, VAR

3-27

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

INTERN

INTERN symbol, ••• ,symbol

Declares each given symbol to be INTERNAL global;
therefore its definition, which must be in the current
program, is available to other programs at load time.
Each such symbol must be defined as a label, a
variable, or a direct-assignment symbol.

MACRO builds a list of symbol definitions that will be
available to other programs at load time.

OPDEF symbols can be declared INTERNAL, and thus be
made available to other programs at load time.
However, if the current program has another symbol
(besides the OPDEF symbol) of the same name, the
INTERNAL declaration will apply to that symbol rather
than to the OPDEF symbol.

INTERN SQUARE,CBROOT,TYPE2

TAG: : ;INTERNAL label
VALUE=:expression ;INTERNAL direct assignment

EXTERN, ENTRY

Failing to define an INTERNAL symbol in the current
program.

Using INTERN for a library entry point (when ENTRY is
required) •

3-28

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

COMMON
ERRORS

PSEUDO-OPS

IOWD

IOWD expl,exp2

expl, exp2 = expressions.

Generates one I/O transfer word in a special format for
use in BLKI and BLKO and all five pushdown instructions
(ADJSP, PUSH, POP, PUSHJ, POPJ). The left half of the
assembled word contains the 2's complement of the value
of expl, and the right half contains the value exp2-1.

The following line shows how IOWD 6,A D256 places -6
(octal 777772) in the left halfword and 256 (octal 377)
in the right halfword:

777772 000377 IOWD 6,"'D256

The following lines show IOWD STL,STK used in a
literal. The LIT pseudo-op then shows the code
generated in the literal pool~

000017
000001
000100

200 17 0 00 001053'
261 17 0 00 000001
254 00 0 00 001054'

• • •

777700 000001

STK:

P==17
AC1==1
STL==100
BLOCK STL
MOVE P,[IOWD STL,STKJ
PUSH P,AC1
JRST END . . .
LIT

104 00 0 00 000170 END: HALTF

XWD -expl,exp2-1

-expl, ,exp2-1

Using a relocatable expression for expl (R error).

3-29

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

IRP .,

IRP darg,<code>

darg = one of the dummy-arguments of the enclosing
macro definition. (You can use IRP only in the
body of a macro definition.)

Generates one expansion of code for each subargument of
the string that replaces darg. Each occurrence of darg
within the expansion is replaced by the subargument
currently controlling the expansion. (See Section
5.6.)

Concatenation and line continuation are not allowed
across end-of-IRP, since a carriage return and linefeed
are appended to each expansion. See the example below.

201 02 0

140 02 0
140 02 0
140 02 0

202 02 0

000000
000001
000002
000003
000004

00 000000

00 000003
00 000004
00 000000

00 000001

IRPC, STOPI

LALL
Z=O
ANSWER=l
Q=2
X=3
Y=4
DEFINE SUM(A,B)(

MOVEI Q,O
lRF' A,<ADD Q,A>
MOVEM Q,B

SUM «X,Y,Z>,ANSWER)~

MOVEl thO

ADD lhX
ADII Q, Y
ADD Q,Z

lRF'

MOVEM Q,ANSWER

IRP NOT IN A MACRO (A ERROR).

Argument is not a dummy symbol (A error) .

Argument is a created symbol (A error) •

Mismatched angle brackets.

3-30

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUOD-OPS

COMMON
ERRORS

PSEUDO-OPS

IRPC

IRPC darg,(code)

darg = one of the dummy-arguments of the enclosing
macro definition. (IRPC can only be used in the
body of a macro definition.)

Generates one expansion of code for each character of
the string that replaces darg. Each occurrence of darg
within the expansion is replaced by the character
currently controlling the expansion. (See Section
5.6.)

Concatenation and line
across end-of-IRPC,
linefeed are appended
example below.

continuation are not allowed
since a carriage return and
to each expansion. See the

DEFINE ACB)(IRPC B,(ASCIZ \B\»
ACSTRIN-G)"'IRPC

123 000 000 000 000 ASC1Z \S\
124 000 000 000 000 ASCIZ \T\
122 000 000 000 000 ASC1Z \R\
111 000 000 000 000 ASC1Z \1\
116 000 000 000 000 ASCIZ \N\
107 000 000 000 000 ASC1Z \G\

IRP, STOPI

IRPC NOT IN A MACRO (A ERROR).

Argument is not a dummy symbol (A error).

Argument is a created symbol (A error).

Mismatched angle brackets.

3-31

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

LALL

L~LL

Causes the assembler to print in the program listing
file everything that is processed, including all text
and macro expansions. Since XALL is the default, you
must use LALL if you want full macro expansions listed.
This can be helpful in debugging a program.

LALL does not produce comments in a macro expansion if
the comments are preceded by double semicolons (ii).
This is because such comments are not stored.

Use the IE switch described in Table 7-1.

LIST, SALL, XALL, XLIST

3-32

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

.LINK

.LINK chain-number,store-address,chain-address

chain-number = a
associates
number.

positive
the link

integer expression that
with others having the same

store-address a symbol giving the store address for
this entry in the chain.

chain-address = an optional integer expression giving
the address of this entry in the chain. If you
omit the chain-address, MACRO generates a 0 and
LINK uses the store-address as the chain-address.

Generates static chains at load time. MACRO generates
a REL Block Type 12. (See the LINK Reference Manual
for a full discussion of LINK's handling of these
chains.)

See the LINK Reference Manual (REL Block Type 12) for
extensive examples of using .LINK and .LNKEND •

• LNKEND

Chain-number not absolute (A error) .

EXTERNAL expression for store-address or chain-address
(E error).

3-33

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

LIST

LIST

Resumes listing following an XLIST statement. The LIST
function is implicitly contained in the END statement.

Use the IL switch described in Table 7-1.

LALL, SALL, XALL, XLIST

3-34

FORMAT

FUNCTION

PSEUDO-OPS

LIT

LIT

Assembles literals b~ginning' at the current address.
The literals assembled are those found since the
previous LIT,' or since the beginning of the ,program,
whichever is later. The location counter is
incremented by 1 fo~ each word assembled.

In a PSECTed ,program, LIT assembles 6nly literals in
the crirr~nt PSECT.

A literal found after the LIT is not affected. It will
be assembled at the next followirig LIT, or at the END
statement, whichever is earlier.

At the END statement; uhassembled literals are placed
in open-ended storage after the end-of-program. If
data is also to be entered in open-ended storage,
literals stored ther~ may "be overwritten. (See
Appendix F for a discussion of storage allocation.)
This possibility is avoided by using LIT before the END
statement.

Assembling literals with LIT also produces a listing of
their binary code. Literals unassembled at the END are
XLISTed.

Liter~ls having the same va~ue are collapsed in MACRO's
literal pool. Thus for thest~tements:

PUSH P,[O]
PUSH P,[O]
MOVEI AC1,[ASCIZ ITEST1/]

the same address is shared by the two literals [0], and
by the null word generated' at the end of [ASCIZ
/TESTI/]. Literal collapsing is suppressed for those
literals that contain errors, undefined expressions, or
EXTERNAL symbols.

NOTES

1. If the code immediately preceding a LIT
does not cause a transfer of execution
control to some other location, execution
will "fall into" the literal pool,
producing unpredictable results.

2. In a file containing PRGEND pseudo-ops,
only one LIT is permitted in each module
before the last one. The last module
(containing the END statement), or any file
without PRGENDs, can contain multiple LITs.

(Continued on next page)

3-35

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

J LIT (Cant.)

400046' 200 00 0 00 400050'
400047' 047 00 0 00 000041
400050'
400050' 000001, 000003

MOVE O,[XWD 1,3J
GETTAB 0,
LIT

.DIRECTIVE LITLST, END, PRGEND, VAR

Assembling literals so that some are collapsed on Pass
1, but not on Pass 2. For example, in the following
lines, the literals [A] and [B] are collapsed on Pass 1
since they have the same value~ but on Pass 2 their
values are different and they are not collapsed. This
produces a phase error for the label FOO.

FOO:

IF1,<A=5
:8=5>

IF2,<A=5
:8=4>

MOVE AC,[AJ
MOVE AC,[SJ
LIT

However, literals that have different values in Pass 1
but the same value in Pass 2 do not produce a phase
error. For example, the following code generates two
words of literal storage in Pass 1. During Pass 2 the
values of [A] and [B] are collapsed, but nevertheless
MACRO generates two words of literal storage to avoid a
phase error at the label FOO.

FOO:

MOVE AC1,[AJ
MOVE AC1,[BJ
LIT
A=5
S=5

3-36

FORMAT

FUNCTION

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

.LNKEND

.LNKEND chain-number,store-address

Ends a static chain generated at load time. See the
LINK Reference Manual (REL Block Type 12) for extensive
examples of using .LINK and .LNKEND.)

.LINK

Chain~number not absolute (A error).

EXTERNAL expression for store-address (E error).

3-37

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

Loe .1

LOC express ion'

expression = an optional operand whos •. value gives the
address at which sequential 'address assignment is
to continue. . . ,

Sets the location counter to the value of the
expression and begins assigning absolute addresses to
the instructions and data following the LOC
instruction.

If no address is specified, . the location counter is
restored to its value previous to the last LOC
pseudo-op or RELOC-RELOC sequence. (See example
below.) If no previous LOC pseudo-op was encountered,
the assumed address is o.
To switch to relocatable address mode, use the
pseudo-op RELOC. If no ~rgument is specified, RELOC
(in this context) restores the location counter to its
value previous to the LOC pseudo-op or LOC-LOC
sequence. (An impl ic it RELOC 0 beg ins each program.)

If an entire program is to be assigned absolute
locations, a LOC statement must precede all
instructions and data.

Note that, unlike RELOC-RELOC sequences, typically used
to switch between segments in a two-segment program,
LOC-LOC sequences cannot be successfully interrupted
and then resumed. This is demonstrated in the example
below.

400000'
000000'
000010
000010 000000 000001
000011 000000 000002
000100
000100 000000 000003
000101 000000 000004
000012
000102
000000'

TWOSEG 400000
RELOC
LOC 10
DEC 1,2

LOC 100
[IEC 3,4

LOC
LOC
RELOC

'But we can't resume LOC-LOC
400000' RELOC
000102 LOC
000102 LOC
400000' RELOC

000102 LOC

RELOC, .ORG, TWOSEG

'Set UP hise.
'Back to lowses
'Set UP LOC-LOC

'Resume RELOC­
, RELOC

'But RELOC-
, RELOC is fine

Using an EXTERNAL expression for the address expression
(E error).

3-38

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

.MFRMT

.MFRMT

Causes multiformat listing of binary code. The type of
instruction assembled determines this format. (See
Section 6.1.) .MFRMT is the default setting.

Use the IF switch described in Table 7-1.

.HFRMT

3-39

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

·1 KLOFF

MLOFF

Terminates each literal at end-of-line even if no
closing square bracket is found. This pseudo-op is
intended only to maintain compatibility of programs
written for very old versions of MACRO.

This example shows how MLOFF can be used to interpret
[1234 as [1234].

000000 402001'
000000 402001'

MLOFF
(1234
(1234J

Use the /0 switch described in Table 7-1.

MLON

3-40

FORMAT

FUNCTION

RELATED
PSEUDO-OPS

PSEUDO-OPS

MLON

MLON

Suspends the effect of an earlier MLOFF pseudo-op,
thereby enabling the use of multiline literals. MLON
is the default ,setting;

MLOFF

3-41

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

• NODDT

.NODDT symbo1, ••• ,symbo1

Suppresses debugger output of each 'given symbol. Each
symbol must have been previously defined. Symbols
suppressed with .NODDT can include OPDEF symbols •

• NODDT CALL,PJRST,P

Use -- for direct-assignment symbols. (See Section
2.4.2.2.)

Use :! for label symbols. (See Section 2.4.2.1.)

PURGE

Using .NODDT with an undefined symbol argument.

3-42

FORMAT

FUNCTION

PSEUDO-OPS

NOSYM

NOSYM

Suppresses listing of the symbol table in the program
listing file.

Suppressing the listing of symbol tables is useful for
a library file containing many PRGENDs.

3-43

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

OCT

OCT expression, •.. ,expression

Defines the local radix for the line as octal; the
value of each expression is entered in a fullword of
code. The location counter is incremented by 1 for
each' expression.

000000
000000
000000
000000

000001
000002
000020
000100

OCT 1,2,20,100

Use the EXP pseudo-op and prefix AO to each expression
that must be evaluated in radix 8. In the example
above, only the third and fourth expressions, "20,100,"
could have different evaluations in different radixes.
Therefore an equivalent notation is:

000000
000000
000000
000000

000001
000002
000020
000100

DEC, EXP, RADIX

3-44

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

OPDEF

OPDEF symbol [expression]

Defines the symbol as an operator equivalent to
expression, giving the symbol a fullword value. When
the operator is later used with operands, the
accumulator fields are added, the indirect bits are
ORed, the memory addresses are added, and the index
register addresses are added.

An OPDEF can be declared INTERNAL, using the INTERN
pseudo-op. However, if a symbol of the same name
exists, the INTERNAL declaration will apply only to
that symbol, and not to the OPDEF.

NOTES

1. If you use a relocatable symbol in d~fining
an OPDEF, the value of the symbol may not
be the same for all references to the
OPDEF.

2. Though the expression portion of an OPDEF
must be in square brackets, this use of the
brackets is completely unrelated to
literals or literal handling.

200062 000010
200 02 1 04 000014

OPDEF CAL [MOVE 1,@SYM(2)]
CAL 1,BOL(2)

The CAL statement is equivalent to:

200 02 1 04 000014 MOVE 2,@SYM+BOL(4)

DEFINE, SYN

OPDEF of macroname or SYN symbol (A error).

No code generated by statement in square brackets (A
er ror) •

Missing square brackets (A error).

3-45

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

.ORG

.ORG address

Sets the location counter to the address and causes the
assembler to assign absolute or relocatable addresses
depending on the mode of the argument. If A is
relocatable, then .ORG A is equivalent to RELOC Ai if
A is ab~olute, then .ORG A is equivalent to LOC A .

• ORG with no address sets the location counter to the
value it had immediately before the last LOC, RELOC, or
.ORG.

400000'
400000' RELAD1:
000000'
000000' RELAD2:
000100
000100 ABSAD1:
400100
400100 ABSAD2:
000100

400000'

400100

400000'

000000'

400000'

000000'

LOC, RELOC, TWOSEG

RELOC 400000

RELOC 0

LOC 100

LOC 400100

LOC ABSAD1

RELOC RELAD1

.ORG ABSAD2

.ORG

.ORG RELAII2

.ORG

.ORG

;Set UP some labels

;Set counter to ABSAD1
; and be~in absolute
; address assi~nment.
;Set counter to RELADl
; and be~in relative
; address assi~nment.
;Set counter to ABSAD2
; and be~in absolute
; address assi~nment.
;Set counter to value
immediatel~ before
last LOC, RELOC, or
• ORG, and be~irl
address assi~nment

; in appropriate mode.
;Set counter to.RELAII2
; and be~in absolute
; address assi~nment.
;Set counter to value
immediatel~ before
last LOC, RELOC, or
.ORG, and be~in
address assi~nment

; in appropriate mode.
;Set counter to value
immediatel~ before
last LOC, RELOC, or
.ORG, and be~in
address assi~nment
in appropriate mode.

Using an EXTERNAL symbol or complex EXTERNAL expression
for the address expression.

3-46

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

PSEUDO-OPS

PAGE

PAGE

Causes the assembler to list the current line and then
skip to the top of the next listing page. The subpage
number is incremented, but the page number is not.

A formfeed character (CTRL/L) in the input text
has a similar effect, but increments the page number
and resets the subpage number.

3-47

FORMAT

FUNCTION

EXAMPLES

PSEUDO-OPS

PASS2

PASS2

Switches the assembler to Pass 2 processing for the
remaining code. All code preceding this statement will
have been processed by Pass I only; all following code
by Pass 2 only.

You can use PASS2 to reduce assembly time during
debugging; you can also use PASS2 to omit the second
pass for a UNIVERSAL file containing only symbol
definitions (OPDEFs, macros, and direct assignments).

Testing a macro defined in the Pass I portion:

IFE NON,<
PRINTX 1HORRIBLE ERROR
PASS2
END

stops assembly if NON = O.

3-48

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

PHASE

PHASE address

address = an integer expression; cannot be an EXTERNAL
symbol.

Assembles part of a program so that it can be moved to
other locations for execution. To use this feature;
the subroutine is assembled at sequential relocatable
or absolute addresses along with the rest of the
program, but the first statement before the subroutine
is PHASE, followed by the address of the first location
of the block into which the subroutine is to be moved
prior to execution. All address assignments in the
subroutine are in relation to the address argument.
The subroutine is terminated by DEPHASE, which restores
the location counter.

In the following example, which is the central loop in
a matrix inversion, a block transfer instruction moves
the subroutine LOOP into accumulators 11 to 15 for
execution. (This results in faster execution on KAla
and KIlO processors.)

002000' 200 00 0 00 402002'MAIN:
002001' 251 00 0 00 000015
002002' 254 00 0 00 000011
000011
000011
000012
000013
000014
000015
002010'

210 02 0
160 02 0
142 02 0
365 03 0
254 00 0

03
00
04
00
00

000002
000100
000002
000011
002000'

LOOPX:
LOOP:

MOUE eXWD LOOPX,LOOPJ
BLT LOOP+4
JRST LOOP
PHASE 11
MOUN AC,A(X)
FMP AC,MPYR
FADM AC,A(Y)
SOJGE X,. --3
JRST MAIN
DEPHASE

The label LOOP represents accumulator 11, and the .-3
in the SOJGE instruction represents accumulator 11.

Note that the code inside the PHASE-to-DEPHASE program
segment is loaded into the address following the
previous relocatable code; all labels inside the
segment, however, have the address corresponding to the
phase address. Thus the phased code, if it contains
control transfers other than skips, cannot be executed
until it has been moved (for example, by a BLT
instruction) to the address for which it was assembled.

DEPHASE

Using an EXTERNAL symbol or complex EXTERNAL expression
as the address (E error).

3-49

FORMAT

FUNCTION

EXAMPLES

COMMON
ERRORS

PSEUDO-OPS

POINT

POINT bytesize,address,bitplace

Generates a byte pointer word for use with the machine
language mnemonics ADJBP, LDB, IBP, ILDB, and IDBP.

Bytesize gives the decimal number of bits in the byte,
and is assembled in bits 6 to 11 of the storage word.
Addrese-gives the location of the byte word, and is
assembled in bits 13 to 35. Bitplac~ gives the
position (in decimal) of the rightmost bit of the byte.
MACRO places the value 35 minus bitplace in bits 0 to 5
of the storage word.

If the address is indirect, bit 13 is set. If the
address is indexed, the index is placed in bits 14 to
17. The default bytesize is o. The default bitplace
is -1, so that the byte increment instructions IBP,
ILDB, and IDBP will begin at the left of the address
word.

36 06 0 00 000000
44 06 0-00 000100

POINT 6,0,5
POINT 6,100

Bytesize or bitplace not given in decimal.

Bytesize or bitplace not absolute.

Bytesize or bitplace EXTERNAL.

3-50

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

PRGEND

PRGEND

Replaces the END statement for all except the last
program of a multiprogram assembly. PRGEND closes the
local symbol table for the current module.

You can use PRGEND to place several small programs into
one file to save space and disk accesses. The
resulting binary file can be .loaded. in search mode.
(See the LINK Reference Manual.)

Using PRGEND requires extra memory for assembly, since
the tables for each program must be saved for Pass 2.
Functionally, however" PRGEND· is .identical to END,
except that PRGEND does not end the current assembly
pass.

NOTE

1. PRGEND is not allowed in macros or PSECTs.

2. PRGEND clears the TWOSEG pseudo-oPe

3. Like END, PRGEND causes assembly of all
unassembled literals and variable symbols.

4. In a file containing PRGENDs, using more
than one LIT pseudo-op in any but the last
program produces unpredictable results.

Give an argument with PRGEND, specifying the start
address for the program. See the END pseudo-op for a
discussion of this argument and its meaning.

END, LIT, VAR

Failing to end a text string, REPEAT, conditional code,
DEFINE, or literal with a closing delimiter; MACRO
cannot see any following PRGEND or END.

Confusing multiprogram and multifile assemblies. A
multiprogram assembly involves multiple programs
separated by PRGENDs. A multifile assembly always
involves multiple files separated by end-of-file. The
two types of assemblies are not mutually exclusive.

3-51

FORMAT

FUNCTION

EXAMPLES

PSEUDO-OPS

PRINTX

PRINTX text

Causes text to be output during assembly. On Pass 1
the text. is output to the terminal and the listing
device. On Pass 2 the text is output to the terminal,
but only if the terminal is not the listing device.

PRINTX is frequently used to. output conditional
information and, ln very long assemblies, to report
progress of the assembler through Pass 1.

PRINTX ASSEMBLER HAS REACHED POINT NOWGO

IFGE .-1000,(PRINTX CODE MORE THAN lP)

3-52

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON

PSEUDO-OPS

.PSECT

~PSECT name/attribute,origin

name = a valid symbol giving the name of the PSECT.

attribute = either CONCATENATE or OVERLAID.

origin = an expression giving an address for the PSECT
origin.

Specifies the relocation counter to be used for the
code fOllowing. MACRO generates a REL Block Type 23.
(See the LINK Reference Manual.)

Do not use PRGEND and .PSECT in the same file. MACRO
will treat the first PRGEND as an END statement and
ignore any following source code.

For a complete discussion of PSECTS and th~ir handling,
see Section 9.1.3.

.PSECT A/CONCATENATE,O

.PSECT FIRST/OVERLAID,1000

Omit attribute (defaults to CONCATENATE).

.ENDPS, LOC, .ORG, RELOC, TWOSEG

Using TWOSEG and .PSECT in the same module.

Using HISEG and .PSECT in the same module.

3-53

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

PSEUDO-OPS

PURGE

PURGE symbol, ••• ,symbol

symbol = an assigned symbol, a label, an operator, or a
macro name.

Deletes symbols from the symbol tables. Normally used
at the end of a program to conserve storage and to
delete symbols for the debugger. Purged symbol table
space is reused by the assembler.

If you use the same symbol for both a macro name or
OPDEF and a label, a PURGE statement deletes the macro
name or OPDEF. Repeating the instruction then purges
the label.

Purging a symbol that is EXTERNAL or undefined
suppresses any error messages associated with it.

000040 000001

.NODDT, XPUNGE

3-54

LABEL: 1,1
PURGE LABEL

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

RADIX

RADIX expression

expression = decimal value from 2 to 10

Sets the radix to the value of expression. An implicit
RADIX 8 statement begins every MACRO program.

All numerical expressions that follow (up to the next
RADIX pseudo-op) are interpreted in the given radix
unless another local radix is indicated. (A different
local radix for the line can be indicated by the DEC or
OCT pseudo-ops; a different local radix for an
expression can be indicated by AB, AD, or AO. See
Section 2.2.2.)

Ordinarily, numbers outside the range of the given
radix are not interpreted. For example, in radix 8,
the number 99 causes an error. However, a single-digit
number i.s interpreted in any case. For example, in
radix 8, the number 9 is recognized as octal 11.

000000 000012

000000 000010

RADIX 10
EXP 10
RADIX 8
EXP 10

Use one of the following prefixes to change the radix
for a single expression: AB for binary, ~O for octal,
AD for decimal.

DEC, OCT

Using a relocatable expression (A error).

Using an external expression (E error).

Giving a radix argument not in the range 2 to 10
decimal (A error).

Misusing numbers in a given radix; for example, in the
statements

RADIX 10
RELOC 400000

MACRO treats the number 400000 as decimal.

3-55

FORMAT

FUNCTION

EXAMPLES

OPT!ONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

RADIX50

RADIX50 code,symbol

Packs the symbol into bits 4 to 35 of the storage word,
with the code in bits 0 to 3.

The "50" in RADIX50 is octal, so that the radix in
decimal is 40. The 40 characters permitted in symbols
are the "digits" of the RADIX50 symbol expression.
Thus a symbol is seen by RADIX50 as a "6-digit" number
in base 40, converted to binary, and placed in bits 4
to 35 in storage.

The code expression for RADIX50 is a number in the
range 0 to 74 octal. Its binary equivalent should end
with two zeros (that is,the octal should end with 0 or
4), since the two low-order bits will not be stored.
The four high-order bits are placed in bits 0 to 3 in
storage.

See Appendix A for the octal values of RADIX50
characters.

126633 472376 RADIX50 10,SYMBOL
466633 472376 RADIX50 44,SYMBOL

The mnemonic SQUOZE can be used in place of RADIX50.

RADIX50 ,symbol (code is taken as zero).

SQUOZE

RADIX50 code not absolute (A error).

RADIX50 code does not end with 0 or 4 (Q error) •

3-56

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

·PSEODO-OPS

RELOC

RELOC expression

expression = an optional operand that specifies the
address at which sequential address assignment is
to continue.

Sets the location counter to the value of extression,
and begins assigning relocatable addresses to the
instructions and data that follow.

In a PSECTed program, RELOC sets the location counter
for the current PSECT.

If no address is specified, the location counter is
restored to its value befor~ the last RELOC, or before
the last LOC-LOC sequence, whichever is later. (See
the first example below.) If no previous RELOC or
LOC-LOC sequence was encountered, the location counter
is set to O.

An implicit RELOC 0 begins every MACRO program. To
switch t~ absolute address mode, use the pseudo-op LOC.

Note that· RELOC-RELOC sequences (typically used to
switch between segments in a two-segment program) can
be interrupted and then resumed. This is demonstrated
in the first example below.

400000' TWOSEG 400000 ;Set I.JP hises
000000' RELOC ;Back to lowses
000000' 000000 000001 DEC 1,2
000001' 000000 000002
400000' RELOC ;Back to hises
400000' 255 00 o 00 000000 JFCL
000137 LOC 137 ;Deposit version

; irl absolute 137
000137 000100 000001 XWD 100,1
400001' RELOC ;Back to hises

; where left off
400001' 254 00 0 00 400000' JRST .-1
000002' RELOC ;Back to lowses

LOC, .ORG, TWOSEG

(Continued on next page)

3-57

COMMON
ERRORS

PSEUDO-OPS

RELOC (Cont.)

Using an EXTERNAL symbol or complex EXTERNAL expression
as the address.

Returning to the wrong segment when using RELOC with
TWOSEG. The last four lines of the following example
show how this can occur:

400000' TWOSEG
400000' RELOC 400000 ;Sets first RELOC

; counter to
; 400000'

000000' RELOC 0 ;Saves 400000',
; sets to 000000'

400000' RELOC ;Swaps counters
400000' 000000 000001 EXP 1,2 ;Enter values here
400001' 000000 000002
000000' RELOC ;Swaps asain
000000' 000000 000003 EXP 3,4 ;More values here
000001' 000000 000004
400002' RELOC ;Swaps aSain
400000' RELOC 400000 ;Lost counter

; to 000002'
400002' RELOC ;Swaps aSain
400000' RELOC ; Swaps aSairl
400000' 000000 000001 EXF' 1 ;Overwrites 400000'

3-58

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

REMARK

REMARK text

Text is a comment.

REMARK I CAN SAY ANYTHING HERE.

A comment line can also begin with a semicolon.

COMMENT

Continuing REMARK text to next line without using the
continuation character (CTRL/underscore).

3-59

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

REPEAT

REPEAT expression,<code>

expression = the repeat index, which gives the number
of times to repeat assembly of the code given;
the repeat index can be any expression having a
nonnegative integer value.

Generates the code given in angle brackets n times.
REPEAT statements can be nested to any level.

Line continuation is not allowed across end-of-REPEAT,
since a carriage return and linefeed are appended to
each expansion of the code.

Note that REPEAT O,<code> is logically equivalent to a
false conditional, and REPEAT l,<code> is logically
equivalent to a true conditional.

000000 COUNT=O
TABLE: REPEAT 4,<COUNT
COUNT=COUNT+1>

002020' 000000 000000 COUNT
000001 COUNT=COUNT+1

002021' 000000 000001 COUNT
000002 COUNT=COUNT+1

002022' 000000 000002 COUNT
000003 COUNT=COUNT+1

002023' 000000 000003 COUNT
000004 COLJNT=COUNT+l

REPEAT 3,<.>
002024' 000000 002024' •
002025' 000000 002025' •
002026' 000000 002026' •

DEFINE, IRP, IPRC

No comma after n (A error).

Using an EXTERNAL symbol or complex EXTERNAL expression
as the repeat index.

Mismatching angle brackets.

3-60

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

.REQUEST

.REQUEST· filespec

Causes the specified file to be loaded only to satisfy
a global r~quest~ that is, the file is loaded in
library search mode. (See Chapter '7 for a discussion
of fi,les.)

The filespec ~ust not include a file type. If you
specify a directory, the specification must be a
project-programmer number, not a directory name.

MACRO generates a REL Block Type 17.
Reference Manual.)

.REQUEST DSK:MACROS

.REQUEST MACROS

DSK: is the default device.

(See the LINK

Your connected directory at load time is the default
directory •

• REQUIRE, . TEXT

3-61

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

• REQUIRE

.REQUIRE filespec

Causes the specified file to be loaded automatically,
independent of any global requests. (See Chapter 7 for
discussion of files.)

The filespec must not include a file type. If you
specify a directory, the specification must be a
project-programmer number, not a directory name.

MACRO generates a REL Block Type 16.
Reference Manual.)

.REQUIRE DSK:MACROS

.REQUIRE MACROS

.REQUIRE SYS:MACREL

DSK: is the default device.

(See the LINK

Your connected directory at load time is the default
directory.

.REQUEST, .TEXT

3-62

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

PSEUDO-OPS

SALL

SALL

Causes suppression of all macro and repeat expansions
and their text~ only the input file and the binary
generated will be listed. SALL can be nullified by
either XALL or LALL. Using SALL generally produces the
tidiest listing file.

Use the 1M switch described in Table 7-1.

LALL, LIST, XALL, XLIST

3-63

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

SEARCH

SEARCH tablename(filename) , •.• ,tablename(filename)

Defines a list of symbol tables for MACRO to search if
a symbol is not found in the current symbol table. A
maximum of ten tables can be specified. Tables are
searched in the order specified.

When the
internal
UNIVERSAL
pseudo-op
UNIVERSAL

SEARCH pseudo-op is seen, MACRO checks its
UNIVERSAL table for a memory-resident

of the specified name. (See the UNIVERSAL
for further discussion of memory-resident

tables and use of the /U switch.)

If no such entry is found in the UNIVERSAL table, MACRO
reads in the symbol table using the g~ven file
specification. If no file specification 1S given,
MACRO reads tablename.UNV from the connected directory.
If no such file is found, MACRO then tries
UNV:tablename.UNV and SYS:tablename.UNV, in that order.

When all the specified files are found, MACRO builds a
table for the search sequence. If MACRO cannot find a
given symbol in the current symbol table, the UNIVERSAL
tables are searched in the order specified. When the
symbol is found, it is moved into the current symbol
table. This procedure saves time (at the expense of
core) on future references to the same symbol.

A UNIVERSAL file can
provided all names
assembled.

search
in the

other
search

UNIVERSAL files,
list have been

The internal table of UNIVERSAL names is cleared on
each run (@MACRO) or START command, but is not cleared
when MACRO responds with an asterisk.

In a PSECTed program, all UNIVERSAL symbols belong to
the blank PSECT.

SEARCH MONSYM,MACSYM

Omit the filename and its enclosing parentheses. MACRO
then looks on DSK:, UNV:, and SYS: (in that order) for
tablename.UNV.

UNIVERSAL

Not purging a macro that redefines itself (P error).
If a macro is found in a universal file, the definition
is copied into the current macro table and the
auxiliary table is not searched on Pass 2. Thus, a
macro that redefines itself can cause P errors similar
to enclosing the macro by IFI. Such macros should be
purged before Pass 2.

3-64

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

SIXBIT

SIXBIT dtextd

d = delimiter; first nonblank character, whose second
appearance terminates the text.

Enters strings of text characters in 6-bit format. Six
characters per word are left justified in sequential
storage words. Any unused bits are set to zero.

Lowercase letters in SIXBIT text strings,are treated as
uppercase. Otherwise, only the SIXBIT character set is
allowed. (See Appendix A for SIXBIT characters and
their octal codes.)

64 45 70 64 00 63
64 62 51 56 47 00

644570 640000

SIXBIT \TEXT STRING\

EXP SIXBIT ITEXTI

Omit the space or tab after SIXBIT. This is not
allowed if the delimiter is a letter,
dollar sign, or percent sign (that
symbol constituent) , or if the ASCII
delimiter character is less than 040
172.

Right-justified SIXBIT can be entered by
quotes to surround up to six characters;

006251 475064 'RIGHT'

ASCII, ASCIZ, .DIRECTIVE FLBLST

number, dot,
is, a possible
value of the

or greater than

using single
for example,

Using the delimiter character in the text string.

Missing the end delimiter (that is, attempting to use a
carriage return as a delimiter).

Using more than six characters in a right-justified
SIXBIT string, or more than three characters if in the
address field (Q error) •

Using non,SIXBIT characters in the text string.

3-65

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
Errors

PSEUDO-OPS

SQUOZE 1
SQUOZE code,symbol

SQUOZE is a mnemonic for RADIX50.

126633 472376 RADIX50 10,SYMBOL
126633 472376 SQUOZE 10,SYMBOL

RADIX50 code,symbol

SQUOZE ,symbol. (code is taken as 0).

RADIX50

Code not absolute (A error).

Code does not end with 0 or 4 (Q error) •

3-66

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

STOPI

STOPI

Ends an IRP or IRPC before all subarguments or
characters are used. The current expansion is
completed, but no new expansions are started. STOPI
can be used with conditionals inside IRP or IRPC to end
the repeat if the given condition is met.

000000 000001

000000 000002

IRP, IRPC

LALL
DEFINE ONETWO(A>(

IRP A,(IFIDN(A)(ONE),(STOPI
EXP 1»

IRP A,(IFIDN(A>(TWO),(STOPI
EXP 2»

ONETWO (A,B,D>'"'
IRP

IFIDN(A>(ONE>,(STOPI

IFIDN(B>(ONE>,(STOPI

IFIDN(D>(ONE),(STOPI

IRP
IFIDN(A>(TWO>,(STOPI

IFIDN(B>(TWO>,(STOPI

IFIDN(D>(TWO>,(STOPI

EXP 1>

EXP 1>

EXP 1>

EXP 2>

EXP 2>

EXP 2>

ONETWO (A,ONE,B,ONE,TWO>~
IRP

IFIDN(A>(ONE>,(STOPI
EXP 1)

IFIDN(ONE>(ONE),(STOPI
EXP 1)

IRP
IFIDN(A>(TWO>,(STOPI

EXP 2)
IFIDN(ONE)(TWO>,(STOPI

EXP 2)-
IFIDN(B>(TWO),(STOPI

EXP 2>
IFIDN(ONE)(TWO>,(STOPI

EXP 2>
IFIDN(TWO>(TWO),(STOPI

EXP 2>

STOPI not inside IRP or IRPC.

3-67

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

PSEUDO-OPS

SUBTTL

SUBTTL subtitle

Defines a subtitle (of up to 80 characters) to be
printed at the top of each page of the listing file
until the end-of-listing or until another SUBTTL
statement is found.

The initial SUBTTL usually appears on the second line
of the first page of the input file, immediately
following the TITLE statement.

For subsequent SUBTTL statements, the following rule
applies: if the new SUBTTL is on the first line of a
new page, then the new subtitle appears on that page;
if not, the new subtitle appears on the next page.

The statements

• • •
PRGEND
TITLE FOO
SUB TTL BAR

NOTE

do not cause BAR to appear as the subtitle on
the first page of the listing of FOO.

SUBTTL affects only the listing file, and subtitles can
be changed as often as desired.

SUB TTL THIS SECTION CONTAINS DEVICE-DEPENDENT ROUTIN.ES

TITLE

3-68

FORMAT

FUNCTION

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

SUPPRESS

SUPPRESS symbol, ••• ,symbol

Turns on a suppress bit in the symbol table for the
specified symbols. The s~ppress bit will be turned off
for any symbol later referenced in the program.
Symbols whose suppress bits are on at the end of
assembly are not listed in the symbol table, but will
be listed in any tables built by CREF unless they are
XCREFed.

When an appended parameter file (as opposed to a
UNIVERSAL file) is used in an assembly, many symbols
may be defined but never used. These take up space in
the binary file and complicate listing of the file.

Unused and unwanted symbols can be removed from tables
by SUPPRESS or ASUPPRESS. These pseudo-ops control the
suppress bit in each entry of the symbol table; if the
bit is on, the symbol in that location is not output.

ASUPPRESS

Attempting to suppress an undefined symbol.

3-69

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

SYN

SYN syml,sym2

syml = a defined symbol.

sym2 = a symbol to be defined as synonymous with syml.

Defines sym2 as synonymous with syml.

If syml is defined as both a label and an operator,
sym2 assumes the label definition.

The following are legal SYN statements:

SYN X,K
SYN FAD,ADD
SYN END,XEND

To turn XLIST into a hull operator,

DEFINE .XL <:)­
SYN .XL,XLIST

To restore its operation,

PURGE XLIST

DEFINE, OPDEF

Missing symbol (A error).

Unknown symbol - first operand not defined (A error).

Missing comma (A error) •

Using a variable as one of the symbol arguments (A
error).

3-70

FORMAT

FUNCTION

EXAMPLES

PSEUDO-OPS

TAPE

TAPE

Causes the assembler to begin assembling the program
contained in the next source file in the MACRO command
string.

(Interactive)

@MACRO
*DSK:BINAME,LPT:=TTY:,DSK:MORE
PARAM=6
TAPE
;THIS COMMENT WILL BE IGNORED ,..z

This sets PARAM to 6 and assembles the remainder of the
program from the source file DSK:MORE. Since MACRO is
a two-pass assembler, the TTY: file must be repeated
for Pass 2.

[MCREP1 END OF PASS 1J
PARAM=6
TAPE
,..z

Note that all text after the TAPE pseudo-op is ignored.

3-71

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

.TEXT

.TEXT dtextd

d = delimiter; first nonblank character, whose second
appearance terminates the text.

Generates an ASCIZ REL Block Type for LINK and inserts
the text string directly into the .REL file output as a
separate block. (See the LINK Reference Manual.)

The text inserted in the .REL file is interpreted as a
command string for LINK. Therefore a MACRO program
loaded by user commands to LINK can contain additional
LINK commands, carried out when the MACRO program is
loaded.

.TEXT '/SET:.HIGH.:SOOOOO'

Omit the space or tab after .TEXT. This is not allowed
if the delimiter is a letter, number, dot, dollar sign,
or percent sign (that is, a possible symbol
constituent), or if the ASCII value of the delimiter
character is less than 040 or greater than 172 .

• REQUEST, .REQUIRE

Using the delimiter character in the text string.

Missing the end delimiter (that is, attempting to use a
carriage return as a delimiter).

3-72

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

I TITLE

TITLE title

Gives the program name and a title to be printed at the
top of each page of the program listing.

The first characters (up to six characters, or up to
the first non-RADIX50 character) are the program name.
This name is used when debugging with DDT to gain
access to the program's symbol table.

The entire text of the title is printed on each page of
the program listing.

Only one TITLE statement is allowed
programs with PRGEND statements can
statement for each module.

. in
use

a module;
one TITLE

A TITLE statement can appear anywhere in the program;
it usually appears as the first line of the program.

If no TITLE statement is used, the assembler inserts
the program name ".MAIN".

TITLE FLOATING-POINT NUMBER PACKAGE

The program name is FLOATI; the words FLOATING-POINT
NUMBER PACKAGE will appear at the head of each page and
subpage of the listing.

SUBTTL, UNIVERSAL

Using more than one TITLE in a program.

Using TITLE and UNIVERSAL in the same module (M error).

3-73

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

TWOSEG _I

TWOSEG expression

expression = any expression glvlng a nonnegative value
as the begihning of the program high segment1
cannot be EXTERNAL.

Directs MACRO t~ assemble a two-segment program with
'the high segment beginning at the given address. MACRO
sets the location counter to the given address, and
generates a REL Block Type 3, which tells LINK to
expect two segments. (The address is reduced to the
next lower multiple of 2000 (octal). If this result is
0, the address defaults to 400000.)

Only one TWOSEG pseud6-op is allowed in a program.

High-segment code is controlled by using RELOC with a
value 'at least as large as the TWOSEG address.
Low-segment-code is controlled by smaller RELOC values.

NOTE

Using TWOSEG without an argument sets the
beginning address for the high segment to
400000. However, this does not set the
location counter to 400000.

TWOSEG
RElOC 0

DATA: BLOCK 10000
RElOC 400000

START: EXIT 0

LOC, .ORG, RELOC

flow seSment

;HiSh sesment

Using an EXTERNAL symbol or complex EXTERNAL expression
as the address argument.

Using TWOSEG more than once in a program (Q error).

Generating relocatable code before the TWOSEG pseudo-op
(Q error) •

Using PSECT and TWOSEG in the same program.

3-74

FORMAT

FUNCTION

PSEUDO-OPS

UNIVERSAL

UNIVERSAL tablename

Declares the symbol table of
available to other programs,
tablename in MACRO's internal
tablename is also taken as
appears in the heading of each
file.

the current program
and stores the given

UNIVERSAL table. The
the program name, and
page of the listing

When an END or PRGEND statement is found, the symbol
table is placed immediately after the assembler's
pushdown stacks and buffers. In addition to this
memory-resident copy of the UNIVERSAL symbol table, the
file tablename.UNV is generated. (This file can be
suppressed by the /U switch described in Table 7-1.)

UNIVERSAL files can be used to generate data, but are
more commonly used to generate symbols, macros, and
OPDEFs. The symbols and OPDEFs generated in a
UNIVERSAL program need not be declared INTERNAL, since
its local symbols are available to accessing programs.
(See the SEARCH pseudo-op.)

Memory-resident UNIVERSAL symbol tables are cleared on
each run (@MACRO) or START, but are not cleared when
MACRO responds with an asterisk. This saves redundant
lookups when many programs search a common set of
UNIVERSALs.

Note that if a sequence of programs (or even one
program) searches more than ten UNIVERSAL symbol
tables, a SEARCH table overflow occurs. This overflow
forces reinitialization of the assembler by a run
(@MACRO) or START command.

data
OPDEF

I-pass
contain

For a UNIVERSAL program that does not generate
(that is, it has only symbol, macro, and
definitions), you can save time by using
assembly. However, such a file must not
forward references to symbol definitions.

A UNIVERSAL file cannot contain PSECTs.

(Continued on next page)

3-75

EXAMPLES

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

I UNIVERSAL (Con t. l

NOTES

1. For COMPILE-class commands, the existence
of the file tablename.REL may prevent
recompilation of the UNIVERSAL file
tablename.MAC. To avoid this, force
compilation of the .MAC file by including
/COMPIL in the command string.

2. Generally, a UNIVERSAL file need not be
reassembled when referencing programs are
assembled with newer versions of MACRO.
However, if the UNIVERSAL's assembler
version is newer than the program's, you
may get the MCRUVS message, indicating
skewed UNIVERSAL versions. In this case,
reassembly or one or both files is required
(using the same assembler version).

UNIVERSAL Sl
START=765
AC1=1
F=O
END

SEARCH, TITLE

Using TITLE and UNIVERSAL in the same module (M error).

3-76

FORMAT

FUNCTION

EXAMPLES

RELA.TED
PSEUDO-OPS

PSEUDO-OPS

VAR
I

VAR

Causes variable symbols (defined in previous statements
by sUffixing the number sign (#), or by ARRAY or
INTEGER statements) to be assembled as BLOCK
statements. This has no effect on subsequent
definitions of symbols of the same type.

If the VAR statement does not appear in the program,
all variables are stored at the end of the program.

If the pseudo-op TWOSEG is used, the variables reserved
by an array statement must be assigned to the low
segment;· thus a RELOC back to· the low segment is
required before using the VAR pseudo-oPe

402003' 201 01 0 01 000000 A[I[J2! MOVE I 1,0(1)
402004' 202 01 0 00 402012' MOVEM 1,FIRSTi
402005' 201 02 0 02 000000 MOVE I 2,0(2)
402006' 202 02 0 00 402013' MOVEM 2,SECONDi
402007' 140 01 0 00 000002 ADD 1,2
402010' 200 01 0 00 402014' MOVE 1,SUMi
402011' 263 17 0 00 000000 F'OF'J 17,
001052' RELOC
001052' VAR
001055' BLOCK 2

ARRAY, BLOCK, INTEGER

. 3-77

FORMAT

FUNCTION

RELATED
PSEUDO-OPS

OPTIONAL
NOTATIONS

PSEUDO-OPS

XALL

XALL

Resumes standard listing after previous LALL or SALL.
(XALL is the default among these three.)

XALL suppresses all lines of the program listing file
that do not generate binary code.

XALL does not suppress REPEAT expansions.

NOTE

Under XALL only one listing line is output for
each source line generating binary code in a
macro expansion. Occasionally, a single line
of a macro definition expands into several
lines of listing text. When this occurs, part
of a binary-generating source line may not be
listed.

You can avoid this by temporarily setting the
listing mode to LALL (list all) or SALL
(suppress all) around such lines.

LALL, LIST, SALL, XLIST

Use the IX switch described in Table 7-1.

3-78

FORMAT

FUNCTION

OPTIONAL
NOTATIONS

RELATED
PSEUDO-OPS

COMMON
ERRORS

PSEUDO-OPS

.XCREF

.XCREF symbol, ••• ,symbol

Suspends output of cross-referencing for the specified
symbols. References to these symbols between this
statement and the next .CREF or the end of the program
will not appear in the cross-reference listing •

• XCREF

If no symbol names are specified, MACRO suspends
cross-refer~ncing for all symbols •

• CREF

Specifying a nonexistent symbol (A error).

3-79

FORMAT

FUNCTION

EXAMPLES

RELATED
PSEUDO-OPS

OPTIONAL
NOTATIONS

PSEUDO-OPS

XLIST

XLIST

Suspends output to the program listing file. This
output occurs only in Pass 2; XLIST does not affect
Pass 1. To resume output, use the pseudo-op LIST •

. The following sequence of code shows an XLIST pseudo-op
suppressing listing of literals:

EXIT
XLIST
LIT
LIST
EN[I

This sequence of code lists as:

; Er.d of p rog ram
;[lon't list literals

401023' 104 00 0 00 000170 HALTF ;End of program
XLIST ;[lon't list literals
LIST
EN[I

Note that the high-segment break will be greater than
401023' because the literals are assembled after the
HALTF.

LALL, LIST, SALL, XALL

Use the /S switch described in Table 7-1.

3-80

FORMAT

FUNCTION

RELATED
PSEUDO-OPS

PSEUDO-OPS

XPUNGE

XPUNGE

Deletes all local symbols during Pass 2. This reduces
the size of the .REL file and speeds up loading.
XPUNGE should immediately precede the END statement.

PURGE

3-81

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

COMMON
ERRORS

PSEUDO-OPS

XWD

XWD lefthalf,righthalf

Enters two halfwords in a single storage word. Each
half is formed in a 36-bit register, and the low-order
18 bits are placed in the. halfword. The high-order
bits are ignored.

XWD statements are used to set up pointer words for
block transfer instructions. Block transfer pointer
words contain two 18-bit addresses; the left half is
the starting location of the block to be moved, and the
right half is the first location of the destination.

402017' 200 02 0 00 403040'
402020' 251 02 0 00 403035'
• • • • • •

MOVE 2,CXWD FROM1,T01J
BLT 2,TOENDl
t t •

402636' FROM1: BLOCK 100
402736' T01: BLOCK 100

403035' TOEND1=.-1

lefthalf"righthalf

BYTE (18)lefthalf,righthalf

Using halfword with absolute value larger than 18 bits
(Q error).

Using two commas between the arguments to XWD. For
example, XWD A,3 is correct; XWD A,,3 is incorrect.

3-82

FORMAT

FUNCTION

EXAMPLES

PSEUDO-OPS

z

Z accumulator, address

Z is treated as if it were the null machine langua~e
mnemonic. An instruction word is formed with zeros In
bits 0 to 8. The rest of the word is formed from the
accumulator and address. (See Section 4.7.1.)

403036' 000 00 0 00 000000
403037' 000 01 0 04 000002

3-83

z
Z 1,2(4)

CHAPTER 4

MACRO STATEMENTS AND STATEMENT PROCESSING

A MACRO statement has one or more of the following: a label, an
operator, one or more operands, and a comment. The general form of a
MACRO statement is:

label: operator operand,operand ;comment

A carriage return ends the statement.

4.1 LABELS

NOTES

1. Direct-assignment statements receive
special handling. (See Section
2.4.2.2.)

2. Processing of macros is not
discussed here because a macro call
produces a text substitution. After
substitution, the text is processed
as described In this chapter.
Macros are discussed in Chapter 5.

A label is always a symbol with a suffixed colon. (See Section
2.4.2.1.) The assembler recognizes a label by finding the colon. If a
statement has labels (you can use more than one), they must be the
first elements in the statement.

A label can be defined only once; its value is the address of the
first word of code generated after it.

Since a label gives an address, the label can be either absolute or
relocatable. A label is a local symbol by default. You can declare a
label INTERNAL global or EXTERNAL global. (See Section 2.4.5.)

4-1

MACRO STATEMENTS AND STATEMENT PROCESSING

4.2 OPERATORS

After processing any labels, the assembler views
nonblank, non tab characters as a possible operator.
one of the following:

the following
An operator is

1. A MACRO-defined
Appendix C, and
Manual.

mnemonic. All
are discussed

mnemonics are listed in
in the Hardware Reference

2. A user-defined operator. (See the pseudo-op OPDEF in Chapter
3.) .

3. A pseudo-op. (See Chapter 3.)

If the characters found do not form one of the above, then MACRO views
them as an expression.

An operator is ended by the first non-RADIX50 character: if it is
ended by a blank or tab, op~iands may follow; if it is ended by a
semicolon, there are no operands and the comment field begins; if it
is ended by a carriage return, the statement ends and there are no
operands or comments.

4.3 OPERANDS

After processing labels and the operator, if any, the assembler views
as operands all characters up to the first unquoted semicolon or
carriage return. Commas delimit the operands.

The operator in a statement determines the number (none, one, two or
more) and kinds of permitted or required operands. Any expected
operand not found is interpreted as null. An operand can be any
expression or symbol appropriate for the operator.

4.4 COMMENTS

The first unquoted semicolon in a statement begins the comment field.
You can use any ASCII characters in a comment; however, angle
brackets in a comment may produce unpredictable results. You can
continue a comment to the next line by typing CTRL/ , followed by a
carriage return.

If the first nonblank, non tab character in a line is a semicolon, the
entire line is a comment. You can also enter a full line of comment
with the pseudo-op REMARK, or a multiline comment with the pseudo-op
COMMENT. (See Chapter 3.)

Comments do not affect binary program output.

4-2

MACRO STATEMENTS AND STATEMENT PROCESSING

4.5 STATEMENT PROCESSING

MACRO processes your program as a linear stream of data. During Pass
1, MACRO may find references to symbols not yet defined. These
symbols are entered in the user symbol ~able. Whenever a symbol is
defined, it is entered in the table with its value, so that on Pass 2
all definitions can be found in the table. The values then replace
the symbols in the binary code generated.

NOTE

Delayed definition is allowed only for
labels and direct-assignment symbols. A
symbol that contributes to code
generation (for example, an OPDEF, a
macro, or a REPEAT index) must be
defined before any reference to it.

Statement processing proceeds as follows:

1. Labels are found and entered in the user symbol table.

2. The next characters up to the first unquoted semicolon,
blank, tab, comma, or equal sign are processed.

a. Equal sign: the characters form a symbol, and the
following characters form an expression. The symbol and
the value of the expression are entered in the user
symbol table.

b. Other delimiter: the characters form an expression or an
operator. If an operator, it is found in a table and
assembled. If an expression, its value is assembled.

3. If the operator takes operands, the next characters up to the
first unquoted semicolon or carriage return form operands.
Unquoted commas delimit operands. For each operand, leading
and trailing blanks and tabs are ignored. Operands are
evaluated and assembled for the given operator.

4. The first unquoted semicolon ends processing of the line.
Any further characters up to the first carriage return are
comment.

5. The first unquoted carriage return ends the statement. Any
following characters begin a new statement.

4.6 ASSIGNING ADDRESSES

MACRO normally (and by default) assembles statements with relocatable
addresses. Assembly begins with the zero storage word and proc~eds
sequentially. Each time MACRO assembles a word of binary code, it
increments its location counter by 1.

4-3

MACRO STATEMENTS AND STATEMENT PROCESSING

A mnemonic operator generates one word of binary code. Direct­
assignment statements and some pseudo-ops do not generate code. Some
pseudo-ops generate more than one word of code.

You can control address assignment by setting the assembler's location
counter using the pseudo-ops LOC and RELOC. (See Section 9.1.)

You can also reference addresses relative to the location counter by
using the dot symbol (.). For example, the expression .-1 used as an
address refers to the location immediately preceding the current
location.

In revising MACRO program~, you can cause an incorrect address to be
assembled by adding or removing statements within the range of a .+n
expression. For example, in the sequence

000000' 332 00 0 01 000000
000001' 254 00 0 00 001020'
000002' 344 01 0 00 000000'

SKIPE O(AC)
JRST GOTONE
AOJA AC,.-2

the expression .-2 gives the address of the SKIPE statement. If you
revise this sequence by inserting a statement, you should change the
expression to .-3 so that it still refers to the correct statement.

000000' 332 00 0 01 000000 SKIPE O(AC)
000001' 254 00 0 00 001020' JRST GDTONE
000002' 350 00 0 00 000014 ADS NULCNT ;Added line
000003' 344 01 0 00 000000' ADJA AC,.-3 ;Chansed line

For this reason, use great care with such expressions other than .+1
and • -1. Using labels avoids this problem entirely •

4.7 MACHINE INSTRUCTION MNEMONICS AND FORMATS

There are two kinds of machine instruction mnemonics: primary and
input/output. Primary instructions generate binary code in primary
instruction format; input/output instructions generate binary code in
input/output instruction format.

4.7.1 Primary Instructions

A primary instruction is in one of the forms

mnemonic accumulator,address
mnemonic accumulator,
mnemonic address

where mnemonic is a machine instruction mnemonic, accumulator is an
accumulator register address, and address is a memory address. The
memory address can be modified by indexing, indirect addressing, or
both.

4-4

MACRO STATEMENTS AND STATEMENT PROCESSING

A complete list of machine instruction mnemonics and their octal codes
is given in Appendix C, and these mnemonics are discussed in the
Hardware Reference Manual.

The accumulator address gives the address of a register, and can be
any expression or symbol whose value is an integer in the range 0 to
17 octal.

The memory address gives a location in memory, and can be any
expression or symbol whose value is an integer in the range 0 to octal
777777.

You can modify the memory address by indirect addressing, indexed
addressing, or both. For indirect addressing, prefix an at sign (@)
to the memory address in your program. For indexed addressing, suffix
an index register address in parentheses to the memory address in your
program. This address can be any expression or symbol whose value is
an integer in the range 1 to octal 17.

NOTE

To assemble the index, MACRO places the
index register address in a fullword of
storage, swaps its halfwords, and then
adds the swapped word to the instruction
word.

For an example of a primary instruction (assuming that AC17, TEMP, and
XR have the octal values 17, 100, and 3, respectively), the statement

ADD AC17,@TEMP(XR)

generates the binary code

instruction
code

010 III 000 1 III

indirect
bit

1 o 011

accumulator index
register

which appears in the program listing as

memory
address

000 000 000 001 000 000

270 17 1 03 000100 ADD AC17,@TEMP(XR)

The mnemonic ADD has the octal code 270, and this is assembled into
bits 0 to 8. The accumulator goes into bits 9 to 12. Since the @
appears with the memory address, bit 13 is set to 1. The index
register goes into bits 14 to 17. Finally, the memory address is
assembled into bits 18 to 35.

If any element is missing from a primary instruction, zeros are
assembled in its instruction word field.

4-5

MACRO STATEMENTS AND STATEMENT PROCESSING

4.7.2 Mnemonics With Implicit Accumulators

A few mnemonics set bits in the accumulator field as well as in the
instruction field. Therefore these mnemonics do not take accumulator
operands, and are of the form

mnemonic address

These mnemonics and their octal codes are listed in Table C-5 in
Appendix C.

For example, the mnemonic JFOV gives the octal code 25504; JFCL gives
255. Therefore both give the opcode 255 in bits 0 to 8, but JFOV also
sets the accumulator bits (9 to 12) to binary 0001. This makes JFOV
100 equivalent to JFCL 1,100:

255 01 0 00 000100
255 01 0 00 000100

JFOV 100
JFCL 1,100

4.7.3 Input/Output Instructions

An input/output statement in your program resembles a primary
instruction statement except that the first operand gives a device
number instead of an accumulator. The general format is:

mnemonic device,address

In an input/output instruction, the indirect, index, and address
fields (bits 13 to 35 inclusive) are assembled exactly as in a primary
instruction.

Unlike a primary instruction word, however, an input/output word has a
split instruction code in bits 0 to 2 (always set to III binary) and
10 to 12, and a device code in bits 3 to 9. The device code can be
any expression or symbol giving a valid device code for your system.

(MACRO-defined I/O instruction mnemonics and device code mnemonics are
listed in Tables C-2 and C-3 in Appendix C.)

For example (assuming that NVR has the octal value 1037), the
statement

DATAl CDR,@NVR(4)

generates the binary code

III

device
code

001 001 1

instruction
code

00 1

indirect
bit

1 o 100

index
register

which appears in the listing as

7 114 04 1 04 001037' DATAl CDR,@NVR(4)

4-6

memory
address

000 000 001 000 011 III

MACRO STATEMENTS AND STATEMENT PROCESSING

The octal code for the mnemonic DATAl is 70004, which is written in
bits 0 to 14. The octal device code 114 (for card reader) is then
overwritten in bits 3 to 9. The @ in the statement sets bit 13 to 1.
The index register and memory address are placed in bits 14 to 17 and
18 to 35, as in a primary instruction.

4.7.4 Extended Instructions

The KLIO Extended Instruction Set is a multifunction instruction set
that performs character-string editing, decimal-to-binary conversion,
string move with left or right justification, string move with offset
or translation, and string compare.

The Extended Instruction Set consists of a single KL10 instruction
(EXTEND, octal 123) and a set of 16 extended operators. (See the
Supplement to the Hardware Reference Manual.)

The KL10 EXTEND instruction mnemonics are listed in Table C-4 in
Appendix C.

4-7

CHAPTER 5

USING MACROS

A macro is a sequence of statements defined and named in your program.
When you call a macro (by invoking its name in your program), the
sequence of statements from its definition is generated in line,
replacing the call. A macro can have arguments.

By using macros with arguments, you can generate passages of code that
are similar, but whose differences are controlled by the passed
arguments. This saves repetition in building a source file.

5.1 DEFINING MACROS

Before you can call a macro,
redefine a macro if you wish;
old one.

you must define it. You can also
the new definition simply replaces the

To define (or redefine) a macro, use the pseudo-op DEFINE:

DEFINE macroname {darglist)<macrobody>

where macronam~ is the name of the macro, darglist is an optional list
of dummy-arguments, and macrobody is a sequence of statements.

The macroname is a symbol; you
symbols in selecting a macroname.

must follow the rules
(See Section 2.4.1.)

for valid

The optional dummy-argument list can give one or more dummy-argument
symbols through which values are passed to the sequence of statements.
If a macro definition has dummy-arguments, they must be enclosed in
parentheses. Use commas-as delimiters between dummy-arguments. For
each dummy-argument, leading and trailing spaces and tabs are ignored.

The macrobody is the sequence of statements you want to generate when
you call the macro. The macrobody must be enclosed in angle brackets.

Here is an example of a macro definition:

5-1

DEFINE

).

USING MACROS

VHAG (WHERE,LENG) <
;Vector lensth routine
HOVE O,WHERE ;Get first

; component
FMP 0 ;SalJare it
HOVE 1,WHERE+1 ;Get second

; COI,IF-Onent
FMP 1,1 ;SalJdre it
FAD 1 ;Add SQuare

; of second
HOVE1,WHERE+2 ;Get third

; component
FMP 1,1 ;SQuare it
FAD 1 ;Add SQuare

; of third
PUSHJ 17,FSQRT ;Floatins SQRT

; routine
HOVEM LENG ;Store the

; lensth

NOTE

Comments in a macro use storage. If you
begin a comment with a double semicolon,
the comment is listed in the definition
but not stored for listing with
expansions.

5.2 CALLING MACROS

You can call a macro by putting its name in your program. Recall that
you must define the macro before you can call it. You can use the
macroname as a label, an operator, or an operand.

If the macro's definition has dummy-arguments, the macro call can have
arguments. The arguments passed to the macro are inserted into the
defined sequence of statements as it is generated. The first passed
argument replaces the first dummy-argument; the second passed
argument replaces the second dummy-argument; this treatment continues
for each argument passed. Any missing arguments are passed as nulls
(zeros) or filled in by default arguments (see Section 5.5).

NOTE

If Faa is a macro with four dummy­
arguments, the call Faa A"c passes A
and C as the first and third arguments.
The second argument is passed as nulls;
it is not considered missing and cannot
be replaced by a default argument. The
fourth argument is missing and will be
replaced by a default argument if one
has been defined; otherwise it is
passed as nulls. (See section 5.5.1.)

5-2

OSING MACROS

After argument substitution, the defined sequence of statements
replaces the macroname and argument list in the source text. For
example, suppose you have defined VMAG(A,B) as shown in Section 5.1
above, and VMAG appea~s in your program as

LALL
F'7=245
VLEN=ll
F'LACE=15

TAG1: MOVE 1,F'7 ;Get P7
MOVEM PL.ACE ; PIJt it in PLACE

TAG2: VMAG PLACE,VLEN
TAG3: MOVE 1,VLEN ;Get length

Then the code to be assembled is:

LALL
000245 F'7=2.45
000011 VLEN=11
000015 PLACE=15

200 01 o 00 000245 TAG1: MOVE 1,P7 ;Get P7
202 00 o 00 000015 MOVEM PLACE ;Put it in PLACE

TAG2: VMAG F'LACE,VLEN~
;Vector length rOIJtine

200 00 0 00 000015 MOVE O,PLACE ;Get first
; cOITIPonent

160 00 0 00 000000 FMF' 0 ; SCHJare it
200 01 0 00 000016 MOVE 1,PLACE+1 ;Get second

; cOITIPonent
160 01 0 00 000001 FMP 1,1 ;Sauare it
140 00 0 00 000001 FAD 1 ; Add salJa re

; of second
200 01 0 00 000017 MOVE 1,PLACE+2 ;Get third

; cOITIPonent
160 01 0 00 000001 FMP 1,1 ;Sauare it
140 00 0 00 000001 FAD 1 ;Add sauare

; of third
264 00 0 00 001007' JSR FSQRT ;Floating SQRT

; routine
202 00 0 00 000011 MOVEM VLEN ;Store

; length

200 01 o 00 000011 TAG3: MOVE 1,VLEN ;Get length

Notice that the macro definition has the dummy-arguments A and B in
the macrobody. The call VMAG PLACE,VLEN causes PLACE to replace each
appearance of A, and VLEN to replace each appearance of B.

NOTES

1. Under LALL, when the text of a
macrobody is listed at call, it is
enclosed in up-arrows (A).

2. Under XALL, the beginning of the
text of a macrobody is marked by an
up-arrow; the ending is marked by
an up-arrow only if the last line of
the macrobody generates binary code.

5-3

USING MACROS

5.2.1 Macro Call Format

In a macro'call, deli~it the macroname with one or more blanks or
tabs.

If the macro has arguments, the first nonblank, non tab character
begins the argument list. Each argument ends with a comma, a carriage
return, or a semicolon. These three characters cannot be used within
arguments unless enclosed by special quoting characters. (See Section
5.2.2.)

Leading and trailing spaces and tabs are stripped from' each argument
unless they are within special quoting characters. Embedded spaces
and tabs are not stripped.

You can continue an argument to the next line by using
CTRL/underscore. Otherwise an unquoted carriage return or semicolon
ends the argument and the argument list. An unquoted semicolon also
begins the comment field.

5.2.2 Quoting Characters in Arguments

The special quoting characters for: macro argument handling are:

<)
()
[]

" "

angle brackets
parentheses
square brackets
quote marks

NOTE

Single quote marks (apostrophes) are not
special quoting characters.

Any character, including the semicolon (i), enclosed in special
quoting characters is treated as a regular character. If one of the
special quoting characters is to be passed as a regular character, it
must be enclosed by different special quoting characters.

Here are the rules for macro argument handling. In the examples, Faa
is assumed to be a defined macro:

1. The special quoting characters are not argument delimiters.
They only tell the assembler to treat the enclosed characters
as regular characters.

Faa C<A,B) has one argument: C<A,B).

Faa C,D<A,B) has two arguments: C and D<A,B).

5-4

USING MACROS

2. With the two exceptions explained below, special quoting
characters are always included in passed arguments.

FOO A, (B,C) has two arguments: A and (B,C).

FOO [XWD 1,Ll]-1(AC) has one argument: [XWD 1,Ll]-1(AC).

FOO "(",0 has two arguments: "(" and O.

Exception 1: If the first character of the argument list is
a left parenthesis, then it and its matching right
parenthesis delimit the argument list. They are not treated
as special quoting characters and are not included in passed
arguments. All nested quoting characters except angle
brackets are disabled. After stripping the outer
parentheses, angle brackets are handled as described in
Exception 2 below.

FOO (A,B,C) has three arguments: A, B, and C.

FOO (?LENGTH >132) has one argument: ?LENGTH >132.

FOO ([A,B]) has two arguments: [A and B].

FOO «A,B» has one argument: A,B.

Exception 2: If a left angle bracket is the first
of the argument list, or the first character
unquoted comma, then it and its matching right angle
are treated as special quoting characters, but
included in pas~ed arguments.

FOO <A,B>,C has two arguments: A,B and C.

FOO C,<A,B> has two arguments: C and A,B.

character
after an
bracket
are not

You can alter this argument handling by using the pseudo-op .DIRECTIVE
with MACMPD, .ITABM, and .XTABM. (See Chapter 3.)

NOTE

To pass special characters in a macro
call, we suggest defining the macro so
that the delimiters are part of the
passed argument. For example, use

DEFINE Tl CA) <OUTSTR [ASCIZ AJ)

rather than

DEFINE T2 CA) <OUTSTR [ASCIZ \A\J>

The call Tl "»" will work, but T2 "»"
will not.

5-5

USING MACROS

5.2.3 Listing of Called Macros

You can control the listing of called macros by using ~he pseudo-ops
XALL, SALL, and LALL. LALL causes macro expansions to be listed in
full: XALL suppresses part of the listing; LALL suppresses all of
the listing. The default among these three is XALL.

The following example shows the action of these pseudo-ops on macro
listings:

000000 000002
000000 000001

000000 000002

000000 000001

000000 000002

000000 000001

DEFINE FOO (N)(
IFE N,<2>
IFN N,<l>

SALL
FOO(O)
FOO(l)
XALL
FOO(O)'"
IFE 0,<2>
FOO(l)'"
IFN 1,<1>
LALL
FOO(O)'"
IFE 0,<2>
IFN 0,<1>

FOO(l)'"
IFE 1,<:2>
IFN 1,<:1>
'"

5.3 NESTING MACRO DEFINITIONS

You can nest macro definitions. That is, you can define a macro
within the body of another macro definition. Notice, however, that
the nested macro is not defined to the assembler until the nesting
macro is called.

Here is an example:

DEFINE PERSON (A) <

:::-

DEFINE CHILD CS) (
DEFINE GRANDCHILD CC)(

EXP A,S,C:::-

5-6

USING MACROS

Until the DEFINE PERSON statement is assembled, calls to PERSON,
CHILD, and GRANDCHILD are illegal. These macros are not yet defined
to the assembler.

When the DEFINE PERSON statement is reached and assembled, PERSON can
be called, but not CHILD or GRANDCHILD. The call PERSON 1 generates
the text

PERSON 1'"'
DEFINE CHILD (B) <

DEFINE GRANDCHILD (C) <
EXP 1,B,C>

thus defining CHILD to the assembler.
generates the text

The following call CHILD 2

CHILD 2'"'
DEFINE GRANDCHILD (C) <

EXP 1,2,C>

and GRANDCHILD is defined to the assembler.
GRANDCHILD 3 generates

Finally, a call to

000000
000000
000000

000001
000002
000003

GRANDCHILD 3'"'

Notice the result of a subsequent call to CHILD 10. The text

CHILD 10'"'
DEFINE GRANDCHILD (C) <

. EXP 1,10. C>

is generated, and this definition replaces the old definition of
GRANDCHILD; the definitions of PERSON and CHILD are not changed.
After this, the call GRANDCHILD 3 generates

000000
000000
000000

000001
000010
000003

GRANDCHILD 3'"'

NOTE

EXP 1,10,3'"

Using multiple angle brackets for a
passed argument preserves the argument
as one unit. For example passing the
argument «A,B,C» to nested macros
causes the outer macro to pass <A,B,C>
as one argument; the first nested macro
passes A, B, and C as three arguments.

5-7

USING MACROS

5.4 CONCATENATING ARGUMENTS

The apostrophe (I) is the concatenation operator for macro calls. If
you insert an apostrophe immediately before or after a dummy-argument
in the body of a macro, the assembler removes it at· call. This
removal joins (concatenates) the passed argument to the neighboring
character in the generated text.

(One application of this concatenation is shown under COMMON ERRORS
for the ASCIZ pseudo-op.)

If the apostrophe precedes the dummy-argument, the passed argument is
suffixed to the preceding character; if the apostrophe follows the
dummy-argument, the passed argument is prefixed to the following
character.

You can use more than one apostrophe with a dummy-argument. In this
case only apostrophes next to the dummy-argument will be removed (at
most one from each side). Other apostrophes are treated as regular
characters in the macrobody. The following example shows the
treatment of apostrophes on both sides of the dummy-argument, and of
double apostrophes.

DEFINE 0 (PREFIX,MIDFIX) <
DEFINE OCOMP (SUFFIX) <

PREFIX'O'MIDFIX"SUFFIX>
>

Now the call 0 A,J generates

DEFINE OCOMP (SUFFIX) <
AOJ'SUFFIX>

because when the assembler replaces PREFIX with A, the
following is removed to form AO. When J replaces
preceding apostrophe and first following apostrophe are
form AOJ1SUFFIX.

Now the call OCOMP LE generates

OCOMP LE~
343 00 0 00 000000 AOJLE~

since the apostrophe is removed to join AOJ to LE.

5.5 DEFAULT ARGUMENTS AND CREATED SYMBOLS

apostrophe
MIDFIX, the
removed to

Ordinarily, an argument missing from a macro call is passed as nulls.
For example, the macro defined by

DEFINE WORDS (A,B,C) <
EXP A,B,C>

when called by WORDS 1,1 generates three words containing 1, 1, and 0,
respectively.

000000
000000
000000

000001
000001
000000

WORDS 1,1~

EXP 1,1,"

5-8

USING MACROS

You can, however, alter this handling by specifying default values
other than nulls, or by using created symbols.

5.5.1 Specifying Default Values

If you want a missing argument to default to some value other than
nulls, you can specify the default value in your DEFINE statement. Do
this by inserting the default value in angle brackets immediately
after the dummy-argument. For example, the macro defined by

DEFINE WORDS (A,B(222),C(333»(
EXP A,B,C)

when called by WORDS 1,1 generates three words containing 1, 1, and
333, respectively.

000000
000000
000000

000001
000001
000333

WORDS 1,1~

EXP 1,1,333~

NOTE

An argument passed as nulls by
consecutive commas is not considered
missing and cannot invoke a default
value. Therefore missing arguments can
occur only at the end of the list of
passed arguments.

5.5.2 Created Symbols

A symbol used as a label in a macrobody must be different for each
call of the macro (since duplicate labels are not allowed). Therefore
for each call a d1fferent symbol for the label must be passed as an
argument.

If you do not refer to such a label from outside the macro, you can
simply let the assembler provide a new label for each call. This
label is called" a created symbol, and is of the form •• nnnn where nnnn
is a 4-digit number.

To use a created symbol in place of a passed argument, use the percent
sign (%) as the first character of the dummy-argument in your DEFINE
statement. The assembler then creates a symbol for use in the macro
expansion if that argument is missing from a call to the macro. If
you provide an argument in the call, the passed argument overrides the
created symbol.

5-9

USING MACROS

NOTES

1. A null argument (indicated by two
adjacent delimiters) is not treated
as missing.

2. Avoid using symbols of the form
•• nnnn, since they could interfere
with created symbols.

The following example shows a macro defined with a created symbol, the
macro called using the created symbol, and the macro called overriding
the created symbol:

DEFINE COMPAR (TEST,SAVE,INDEX,~HERE) (
7.HERE: MOVE SAVE, TEST

SETZ INDEX,
CAME SAVE,TABLE(INDEX)
JRST 7.HERE

>
COMPAR T1,T2,T3~
•• 0001: MOVE T2,T1

SETZ T3,
CAME T2,TABLE(T3)
JRST •• 0001

COMPAR T1,T2,T4,HERE1~
HERE1: MOVE T2,T1

SETZ T4
CAME T2~TABLE(T4)
JRST HERE1

5.6 INDEFINITE REPETITION

The pseudo-ops IRP, IRPC, and STOPI give a convenient way to repeat
all or part of a macro; you can change arguments on each repetition
if you wish, and the number of repetitions can be computed at assembly
time. You can use these three pseudo-ops only within the body of a
macro definition.

To see how IRP works, assume the macro definition

DEFINE DOEACH (A) (
IRP A,<A»

The call DOEACH <ALPHA,BETA,GAMMA> produces the code

000000
000000
000000

000200
000300
000400

000200
000300
000400

ALPHA=200
BETA=300
GAMMA=400
DO EACH (ALPHA, BETA, GAMMA>~

IRP
ALPHA
BETA
GAMMA

because each subargument passed to IRP generates one repetition of the
code. Notice that the range of IRP must be enclosed in angle
brackets.

5-10

USING MACROS

NOTE

Using angle brackets in the call to
DOEACH is critical, since they make the
string ALPHA,BETA,GAMMA a single
argument for IRP. IRP then sees the
commas as delimiting subarguments.

IRPC is similar to IRP, but an argument passed to IRPC generates one
repetition for each character of the argument.

STOPI ends the action of IRP or IRPC after assembly of the current
expansion. You can use STOP I with a conditional assembly to calculate
a stopping point during assembly. For example:

;Enter value of 111 for each radix from 2 to K

DEFINE CONVl (L) (

RADIX L ;Set radix
111 ;Evaluate and enter
RADIX 8 ;Back to radix 8

DEFINE CONVERT (A) <
IRP A,(IFE K-A,(STOPI> ;Still OK?

000004

000000 000007

000000 000015

000000 000025

CONVl A> ;CONVl

K=4
CONVERT (2,3,4,5,6,7,8,9)­

IRP
IFE K-2,(STOPI>

RADIX 2
111
RADIX 8

IFE K-3,(STOPI>

RADIX 3
111
RADIX 8

IFE K-4,{STOPI>

RADIX 4
111
RADIX 8

;CONVl

;Still OK?
CONVl 2-
;Set radix
;Evaluate and enter
;Back to radi~·, 8

;Still OK?
CONVl 3-
;Set radix
;Evaluate and enter
; Back to radi~·~ 8

;Still OK?
CONV1 4-
;Set radix
;Evaluate and enter
;Back to radix 8

5.7 ALTERNATE INTERPRETATIONS OF CHARACTERS PASSED TO MACROS

The normal argument passed by a macro call is
characters given with the call. MACRO
interpretations of the passed argument.

5-11

simply
offers

the
three

string of
alternate

USING MACROS

If you prefix a backslash (\) to an expr:ssion argument, the argument
passed is the ASCII numeric character string giving the value of the
expression.

If you prefix a backslash-apostrophe (\') to an expression argument,
the argument passed is the string whose value is the SIXBIT string
with the integer value of the expression.

If you prefix a backslash-quotemark (\") to an expression argument,
the argument passed is the string whose value is the ASCII string -with
the integer value of the expression.

To show how these work, the following example defines a macro to print
the argument passed. Then four different arguments are passed using
the various argument interpretations.

LALL
DEFINE LOOKIE (ARG) .(

REMARK The passed argl.JlTlent is: ARG >

LOOKIE 60'"
REMARK The passed argl.JlTlent is: 60

LOOKIE \60'"
REMARK The passed a rgl.JlTlent is: 60

LOOKIE \'60'"
REMARK The passed argl.JlTlent is: p

LOOK IE \-60'"
REMARK The passed argulTlent is: o

000060 Z=60

LOOKIE Z'"
REMARK The passed argulTlent is: Z

LOOK IE \Z'"
REMARK The passed argl.JlTlent is: 60

LOOKIE \'Z'"
REMARK The passed a rgl.JITIent is: p

LOOKIE \-Z'"
REMARK The passed argulTlent is: o

635170 425164 ZZ='SIXBIT'

LOOKIE ZZ'"
REMARK The passed argl.JlTlent is: ZZ

LOOKIE \ZZ'"
REMARK The passed a rgl.JlTlent is: 635170425164

LOOKIE \'ZZ'"
REMARK The passed argulTlent is: SIXBIT

5-12

USING MACROS

203234 162311 ZZZ=·ASCII·

LOOKIE ZZZ'"
REMARK The passed argument is: ZZZ

LOOKIE 'ZZZ'"
REMARK The passed argument is: 203234162311

LOOKIE ,·ZZZ
REMARK The passed arglJment is: ASCII

5-13

CHAPTER 6

ASSEMBLER OUTPUT

MACRO can generate three kinds of output files:

1. A program listing (.LST) file

2. A binary program (.REL) file

3. A UNIVERSAL (.UNV) file

6.1 THE PROGRAM LISTING FILE

MACRO outputs the program listing file to the device you specify,
usually your terminal or a disk file. You can control the form of the
program listing by using the pseudo-ops .DIRECTIVE FLBLST, .DIRECTIVE
SFCOND, LIST, XLIST, LALL, XALL and SALL. (See Chapter 3.) All MACRO
programs begin with the implicit pseudo-ops LIST and XALL.

The listing has a heading at the top of each page and subpage. The
first line gives the program name, the assembler version, the time and
date of assembly, and the page number. The second line gives the
program filename (including file type), the date and time of creation,
and an optional program subtitle.

Example:

TIMER
TIMER

MACRO %53(711) 10:07 27-APR-77
MAC 27-AUG-77 10:06

PAGE 2
MACDEP

The listing has up to 55 lines per page. You can change this by using
the L switch; /nnL specifies nn lines per page. A formfeed (CTRL/L)
in your program begins a new page and increments the page number. If
the linecount exceeds lines-per-page before a formfeed is found, a
subpage number is formed. For example, the subpages following page 6
are 6-1, 6-2, and so forth. A formfeed would begin page 7.

6-1

ASSEMBLER OUTPUT

The five columns in the program listing give:

1. The CREF line number (if the program was assembled with the
CREF switch on).

2. The line sequence number (if the input file is sequenced).

3. The 6-digit octal address of the storage word, usually a
sequential location assignment.

400066'
400067'
400070'

An apostrophe (') after the address shows that it is
relocatable.

For a PHASE pseudo-op, the phased address is given.

For a BLOCK pseudo-op, only the address of the first word is
given.

For a program with PSECTS, the 2-digit PSECT number of the
current PSECT immediately follows the address. For example,

000100'02

For a LaC or RELOC pseudo-op, only the address to which the
location counter is set is given; the next word of code will
be assembled at that address.

4. The assembled binary code (if any) in one of eight formats.

Fullword: all zeros with number sign (000000000000#),
showing that a fullword Polish fixup is required
for the word of code.

Halfword: two IS-bit bytes. Each halfword can be
followed by an apostrophe (') to indicate that it
is relocatable, or by a pound sign (#) to indicate
that a Polish fixup is required for it. When you
use the .HWFRMT pseudo-op, all code is listed in
halfword format.

Instruction: 9-bit op-code; 4-bit accumulator code;
I-bit indirect code; 4-bit index; IS-bit address.

Input/output: 3-bit
3-bit operand;
IS-bit address.

I/O code; 7-bit
I-bit indirect code;

device code;
4~bit index;

Byte pointer: 6-bit byte position;
unused bit; I-bit indirect
IS-bit address.

6-bit byte size; 1
code; 4-bit index;

ASCII: five 7-bit bytes; one unused bit.

SIXBIT: six 6-bit bytes.

6-2

000056'

000057'
000060'

000061'
000062'

000063'
000064'

000065'
000066'

000067'
000070'

000071'
000072'

000073'
000074'

ASSEMBLER OUTPUT

BYTE: binary representation of specified bytes. Bytes
appear on the program listing only to the extent
that available horizontal space permits. For
example, 36 I-bit bytes cannot be represented as
individual bytes on the listing. Any halfword byte
containing an address can be flagged by an
apostrophe (') or by a pound sign (#). See the
halfword format above.

OPDEF or assignment:
needed.

one or two IS-bit bytes, as

These examples show some code in each format:

000000000000:1: B=A+C

000001 000017' 1"TAGl iHalfword
000017 000001 AC17,,1 iHalfword

255 01 0 00 000100 JFOV 100 ilnstruction
255 01 0 00 000100 JFCL 1,100 ilnstruction

7 114 04 1 04 001037' DATAl CDR,@NVR(4) iI/O
7 110 20 1 05 000004 CONO CDP,@4(5) iI/O

21 06 0 00 000067' Pl: POINT 6,Bl,lS iB~te pointer
44 10 0 00 000070' P2: P.OINT S,B2 iB~te pointer

07 00 01 000000 Bl: BYTE (6)7,0,1 ;B~te

006 004 002 000 00 B"'· ". BYTE (S)6,4,2,0 ;B~te

017000 000000 OPDEF Zl[17BSJ iOPDEF
026000 000000 OPDEF Z2[26BSJ iOPDEF

061 062 063 064 065 ASCII 1123451 iASCII
101 102 103 104 105 ASCII \ABCDE\ iASCII

21 22 23 24 25 26 SIXBIT /123456/ iSIXBIT
41 42 43 44 45 46 SIXBIT \ABCDEF\ ;SIXBIT

An apostrophe (') shows the code as relocatable. The
examples show relocatable values in the right half of some
words. The left half can also be relocatable.

An asterisk (*) shows a symbol to be EXTERNAL or· undefined.

A number sign (#) shows that a Polish expression is required
to resolve the value.

5. Source statements and comments.

If the assembler finds errors in a line of text, it suffixes one or
more letters to the sequence number as error codes. These error codes
are discussed in Chapter S. A code is not repeated for multiple
errors of the same type in a line.

6-3

ASSEMBLER OUTPUT

At the end of the listing, the asselbler gives the total number of
errors, followed by break addresses. The prog~am break is the largest
relocatable address assembled, plus 1. The absolute break is the
largest absolute address assembled. The high-segment break is the
largest high-segment address assemble'. For a program with PSECTs,
the break for each PSECT is also given.

The listing gives CPU time in the form mm:ss.sss where mm is minutes
and ss.sss is seconds. Core used is given in piS; one P is 512 words
(1000 octal).

In the symbol table at the end of the listing, some symbols may have
the following codes:

ent result of ENTRY pseudo-op
ext EXTERNAL symbol
int INTERNAL symbol
pol defined in terms of EXTERNAL symbols
sen suppressed result of ENTRY pseudo-op
sex suppressed EXTERNAL symbol
sin suppressed INTERNAL symbol
spd suppressed for debugger
udf undefined symbol

If you use the IC switch with MACRO, you can generate three additional
tables in the program listing. The /C switch directs MACRO to
generate the listing file in a format suitable for input to CREF, the
cross-referencing program. This is a .CRF file rather than the usual
.LST file.

After assembly, the .CRF file can be used as input to CREF, and the
output is the cross-referenced .LST file. This file contains the
program listing and symbol table as destribed above. In addition, it
tias a cross-referenced symbol table, a table of macros and OPDEFs,
and, if you use the /0 switch with CREF, a cross-referenced table of
opcodes and pseudo-ops.

The cross-referenced symbol table lists each user-defined symbol
(except macros, OPDEFs, and SYN symbols), and lists the sequence
number of each line containing the symbol.

The table of macros and OPDEFs shows each reference to macros, OPDEFs,
and SYN symbols.

The opcode table shows each reference to MACRO-defined opcodes and
pseudo-ops, giving the sequence number of each line containing the
opcode or pseudo-oPe

6-4

ASSEMBLER OUTPUT

6.2 THE BINARY PROGRAM FILE

MACRO outputs the binary program file to the device you specify,
usually a storage device. The default device is a disk •. Most of the
file is the binary expansion of your program instructions. These
instructions are formatted into groups called REL Blocks; each block
is labeled so that LINK can recognize it. Details of this formatting
and labeling are discussed in the LINK Reference Manual.

A relocatable binary program file can be stored on any input/output
device. The output format" is not related to either block types or
logical divisions of the device.

6.3 THE UNIVERSAL FILE

THE UNIVERSAL file is output only if the source file contains the
UNIVERSAL pseudo-op. (See the discussions at UNIVERSAL in Chapter 3
and in Section 9.2.)

A UNIVERSAL file contains only symbols and definitions. These
definitions are available to any program, and can be obtained by using
the SEARCH pseudo-op.

6-5

CHAPTER 7

USING THE ASSEMBLER

To assemble a MACRO program, use one of the following:

1. The operating system command COMPILE
for details.)

(See the User's Guide

2. The $MACRO card for the BATCH program
Reference Manual.)

3. The MACRO command level

(See the BATCH

To assemble a program in the command level of MACRO, type the word
MACRO to the system. The system then runs MACRO, which responds with
an asterisk (*):

@MACRO

*
Then define files for MACRO by typing a command of the form

relfile,listfile=sourcefile, ••• ,sourcefile

where:

reI file is a filespec for the binary program output file.

listfile is a filespec for the program listing output file.

each sourcefile is a filespec for a source program input file~
MACRO assembles source files in the order given.

The default device for each file is DSK:, but you can override this by
prefixing devicecode: to any of the files. Default file types are
.REL for relfile, .LST for listfile (.CRF if you use the IC switch),
and .MAC for each sourcefile. You can override these by suffixing a
file type to any of the files.

You can specify a directory for any of these files by suffixing a
project-programmer number (PPN) in square brackets. (See Appendix G.)
You can set switches by suffixing Ichar or (char) to a file, where
char is a switch code. Switch codes and their meanings are given in
Table 7-1.

7-1

USING THE ASSEMBLER

You can suppress the binary file by omitting its file specification
(but keeping the comma) :

,listfile=sourcefile, ••• ,sourcefile

You can suppress the listing file by omitting its· file specification
and the comma:

relfile=sourcefile, ••• ,sourcefile

You can suppress both output files by
specifications (but keeping the equal sign):

omitting their file

=sourcefile, .•• ,sourcefile

You can access an indirect file (containing valid asterisk-level MACRO
command strings) by typing a command of the form:

@indirectfile

where indirectfile is the file specification for. the file.

Examples:

DATE,DATE=DATE Assemble source file DATE.MAC from disk
into binary ·program file DATE.REL on
disk, and put the listing in file
DATE.LST on disk.

DATE=DATE

,DATE=DATE

=DATE

No listing file.

No binary file.

No binary or listing file. Print all
error diagnostics on the terminal.

DATE,TTY:=DATE Send the listing to the terminal.

DATE,DATE=TTY:

DATE,DATE=TTY:,DSK:DATE

Accept source code from the terminal.

Accept source code from the terminal
(usually symbol definitions), followed
by more source code from the disk.
Notice that DSK must be specified;
otherwise, TTY would be assumed.

NOTE

Many programmers use the following
commands to check assembly of short code
sequences:

*,TTY:=TTV:
F'ASS2

Thi$ displays the assembled code line by
line as you type it in.

7-2

Switch

/A

/B

/C

/E

/F

/G

/H

/L

/M

/N

/0

/P

/Q

USING THE ASSEMBLER

Table 7-1
MACRO Switch Options

Meaning

Advance magnetic tape reel by one file. The /A
switch must immediately follow the device to which
the switch refers~

Backspace magnetic tape reel by one file. The /B
switch must immediately follow the device to which
the switch refers.

Produce listing file in a format acceptable as input
to CREF. Unless the filename is given, CREF.CRF is
assumed; if no file type is given, .CRF is assumed;
if no listing device is specified, DSK: is assumed.

The /C switch can be used only with the file
specification for the program listing file; it must
appear between the comma and the equal sign.

List macro expansions (same as LALL pseudo-op) •

Output binary listing in multiformat (same as .MFRMT
pseudo-op) •

Output binary listing in halfword format (same as
.HWFRMT pseudo-op) •

Print HELP text (list of switches and explanations).

Reinstate listing (same as LIST pseudo-op) •

List only the call and binary produced in a macro
expansion (same as SALL pseudo-op) •

Suppress error printouts on the terminal.

End literal with CR-LF or right square bracket (same
as MLOFF pseudo-op).

Increase the size of the pushdown list. This switch
can appear as many times as desired. The pushdown
list is initially set to a size of 80 (decimal)
locations; each /P increases the size by 80
(decimal). /P must appear on the left of the =.

Suppress
listing.

Q (questionable) warning errors on
/Q must appear on the left of the =.

the

(Continued on next page)

7-3.

Switch

/S

/T

/U

/W

/X

USING THE ASSEMBLER

Table 7-1 (Cont.)
MACRO Switch Options

Meaning

Suppress listing (same as XLIST pseudo-op).

Skip to the logical end of the magnetic tape. The /T
switch must immediately follow the device to which
the switch refers.

Do not generate a .UNV file on DSK. The /U switch
must appear immediately after the specification for
the binary program file; that 1S, it must appear·
between the file specification and the comma.

Rewind the
immediately
refers.

magnetic tape. The /W switch must
follow the device to which the switch

Suppress listing of macro expansions (same as XALL).

7-4

CHAPTER 8

ERRORS AND MESSAGES

MACRO has three kinds of messages:

1. Informational messages

2. Single-character error codes

3. MCRxxx messages (where xxx is a 3-letter mnemonic code)

8.1 INFORMATIONAL MESSAGES

MACRO's informational messages are printed at the foot of the program
listing. These messages and their explanations are given in Table
8-1.

8-1

Message

ABSLUTE BREAK

CORE USED

CPU TIME USED

ERRORS DETECTED

HI-SEG. BREAK

PROGRAM BREAK

PSECT n BREAK

UNASSIGNED DEFINED
AS IF EXTERNAL

WARNINGS GIVEN

ERRORS AND MESSAGES

Table B-1
MACRO Informational Messages

Explanation

The highest absolute address over 137.

The size of the low segment used
assemble the source program.

to

The CPU time for assembly in minutes and
seconds.

The number of errors detected by MACRO
during assembly (errors marked on the
listing by single-character codes other
than Q).

The length of the high segment.

The length of the low segment.

The length of PSECT n.

Undefined symbol; treated as EXTERNAL~

The·number of Q errors found.
is terminated if under BATCH.

8-2

Processing

ERRORS AND MESSAGES

8.2 SINGLE-CHARACTER ERROR CODES

Single-character error codes are printed in the program listing near
the left margin of the line where the error occurs. If more than one
kind of error occurs in the same line, more than one character will be
printed; if more than one error of the same kind occurs in the line,
the code is printed only once.

Codes for M, P, V, and X errors are typed during Pass 1.

If you use CREF to produce a cross-referenced listing file, all the
single-character error codes will appear in the cross-reference table
as % •••• x, where x is the code character.

Table 8-2 gives the single-character
explanations.

8-3

error codes and their

Code

A

ERRORS AND MESSAGES

Table S~2
MACRO Single-Character Error Codes

Explanation

Argument error in pseudo-oPe This is a broad class of
errors that can be caused by an improper argument in a
pseudo-oPe The A errors include:

1. Symbol used is improperly formed.

2. IFIDN comparison string is too l~rge.

3. OPDEF of macro or SYN.

4. Invalid SIXBIT character.

5. Byte size in BYTE more than 36.

6. RADIX50 code not absolute.

7. End of line of IF rea~hed before < character seen.

S. Assignment made in an address field; for example,
MOVEI A=lO. (However, MOVEI <A=lO> is valid.)

9. Assignment of a label; for example, TAG: TAG=l.

10. Missing symbol in SYN.

11. Unknown symbol in SYN.

12. Missing right parenthesis in an index.

13. Missing left parenthesis in a BYTE statement.

14. No comma after repeat count.

15.- IRP or IRPC not in a macro.

16. Argument for IRP or IRPC is not a dummy symbol; for
example, DEFINE GO (A) IRP B.

17. IRP or IRPC argument is a created symbol.

IS. STOPI not in IRP or IRPC.

D Multiply defined symbol. The statement contains a tag
that refers to a multiply defined symbol. The first
definition is used for assembling the statement.

(Continued on next page)

S-4

ERRORS AND MESSAGES

Table 8-2 (Cont.)
MACRO Single-Character Error Codes

Code Explanation

E Improper use of an EXTERNAL symbol. The E errors include:

1. Symbol both EXTERNAL and internal.

2. EXTERNAL symbol used as accumulator register address.

3. EXTERNAL symbol used with IF.

4. EXTERNAL symbol used as address for LOC, RELOC, PHASE,
HISEG, or TWOSEG.

5. EXTERNAL symbol used for array name or size in ARRAY.

6. EXTERNAL symbol used as REPEAT count.

L Literal generates less than 1 or mo~e than 99 words of
data.

M Symbol defined more than once; retains its first
definition. If a symbol is first defined as a variable
and later as a label, it retains the label definition.
This error can be caused by multiple appearances of TITLE,
or TITLE with UNIVER$AL.

N Number error. The N errors ihclude:

1. Number exceeds the permitted range.

2. B shift not absolute.

3. Digits exceed current radix. If radix is 8, the
single character 9 is acceptable but the number 19 is
not acceptable.

4. Character after up-arrow not B, 0, F, L, D, 1, or -

5. Illegal expression after E.

o Operation code undefined. It is assembled as,zeros.

P Phase error. In general, the assembler generates the same
number of program locations in Pass 1 and Pass 2. Any
discrepancy causes a phase error.

Phase errors can be
allocation.

caused by incorrect literal

If a symbol is used as a macro to generate code in Pass 1,
and is used as a label in Pass 2, a phase error can occur.

A relocatable label that is defined in a literal and then
used in an arbitrary expression; MACRO generates a Polish
expression instead of treating the label as EXTERNAL.

(Continu"ed on next page)

8-5

Code

Q

ERRORS AND MESSAGES

Table 8-2 (Cont.)
MACRO Single-Character Error Codes

Explanation

Questionable. This is a broad class of warnings in which
the assembler finds ambiguous language. Statements
causing Q errors may not generate correct code. The Q
errors include:

1. Too many ASCII characters in double quotes (").
the first five are used.

Only

2. Too many SIXBIT characters. Only the first six are
used.

3. Value too large~ high-order bits are lost.

4. Illegal expression after E.

S. Illegal control character.

6. Comma detected after all required fields filled~ for
example, MOVE 1,2,.

7. HISEG or TWOSEG
assembled.

found after relocatable

8. Instruction memory address operand does not
either all D's or alII's in its left half~
example, 1,,0 or -4,,-1.

9. More than l8-bit values used in XWD.

code

have
for

R Relocation error. The R errors include:

1. Expression neither absolute nor relocatable.

2. LaC or RELOC used improperly.

3. Relocatable BLOCK size given.

4. Relocatable accumulator address given.

S PSECT usage error. The S errors include:

1. More than 64 distinct PSECT names used.

2. More than 16 levels of PSECT nesting used.

3. PSECT name given with .ENDPS is not the name of the
current PSECT.

U Undefined symbol.

V Symbol used to control the assembler is undefined.
the definition precede the reference.

X Error in defining or calling a macro during Pass 1.

8-6

Make

ERRORS AND MESSAGES

8.3 MCRxxx MESSAGES

The MCRxxx messages are issued to the terminal during assembly. (The
xxx represents a 3-letter code.)

Any MCRxxx message that is preceded by a question mark is normally
fatal under batch processing. A few MCRxxx messages are
informational; these are issued within square brackets.

Table 8-3 gives all the MCRxxx messages. Each 3-letter code and its
message are printed in boldface type. For some messages, an
explanation is printed in lightface type.

8-7

ERRORS AND MESSAGES

Table 8-3
MCRxxx Messages

Code Message and Explanation

ATS LINES/PAGE ARGUMENT TOO SMALL

The argument given must be greater than three to allow space
for the page heading.

CAP CORE ALLOCATION PROBLEM WITH MEMORY-RESIDENT UNIVERSALS

UNIVERSAL programs assembled with the /U switch must have
the same output specifications as succeeding files. (See
the pseudo-op UNIVERSAL in Chapter 3.) However, if none of
the memory-resident UNIVERSALS are to be searched by
subsequent files in the command sequence, you can clear the
UNIVERSALs and force the needed memory allocation by typing
CTRL/C, followed by START.

CFU CANNOT FIND UNIVERSAL

Correct the request for the UNIVERSAL file, or assemble the
required UNIVERSAL file.

CME COMMAND ERROR

The last command string contains an error.

CTL COMMAND LINE TOO LONG

The last input command string contains more than 200
characters.

DNA DEVICE NOT AVAILABLE

The specified device cannot be initialized because it is in
use.

ECF ERROR READING COMMAND FILE

This is a file status error.

EPI END OF PASS I

Manual input is required to begin Pass 2 because input is
from cards or terminal.

EPP EXPRESSION PARSING PROBLEM

An expression was misinterpreted because MACRO interpreted a
slash as a division operator, or a hyphen as a subtraction
operator.

ERU UNEXPECTED END-OF-FILE READING UNIVERSAL FILE

EWE ERROR WHILE EXPANDING

MACRO has an internal error in expanding a macro. Rewrite
the macro, and submit a Software Performance Report.

(Continued on next page)

8-8

ERRORS AND MESSAGES

Table 8-3 (Cont.)
MCRxxx Messages

Code Message and Explanation

FNF FILE NOT FOUND

IBL INPUT BLOCK TOO LARGE DEVICE

An input block from the specified device is too large.

ICP INPUT CHECKSUM OR PARITY ERROR DEVICE

This is a hard-data error.

IDE INPUT DATA ERROR DEVICE

This is a hard-data error.

ISC ILLEGAL SYNTAX IN CONDITIONAL OR REPEAT

ISO ILLEGAL SYNTAX IN MACRO DEFINITION

The macro is improperly defined.

lSI ILLEGAL SYNTAX IN [IRP or IRPC] INSIDE MACRO

ISR ILLEGAL SYNTAX IN REPEAT

LFO LST FILE OPEN ERROR

LNF LOAD THE NEXT FILE

The command string specifies the next file device as card
reader or terminal. Input the file through the appropriate
device.

LTL LITERAL TOO LONG

MOE MONITOR DETECTED SOFTWARE INPUT ERROR DEVICE

The input file is not in a valid mode.

MPA MISSING CLOSE PAREN AROUND ARG LIST

NEC INSUFFIBIENT CORE

Not enough memory is available to assemble the program.

NES NO END STATEMENT ENCOUNTERED ON INPUT FILE

NUF NOT A REAL UNIVERSAL FILE

No such UNIVERSAL file was found.

(Continued on next page)

8-9

ERRORS AND MESSAGES

Table 8-3 (Cont.)
MCRxxx Messages

Code Message and Explanation

OBL OUTPUT BLOCK TOO LARGE DEVICE

This is a file-status error.

OCP OUTPUT CHECKSUM OR PARITY ERROR DEVICE

This is a hard-data error.

ODE OUTPUT DATA ERROR DEVICE

This is a hard data error.

OQE OUTPUT QUOTA EXCEEDED ON DEVICE

OUF UNIVERSAL FILE DEFAULT ARGUMENTS LOST, REASSEMBLE

POL PDP OVERFLOW, TRY IP
See the IP switch in Table 7-1.

PET INPUT PHYSICAL END OF TAPE DEVICE

PGE PRGEND ERROR

See the PRGEND pseudo-op for proper use of PRGEND.

PTC POLISH TOO COMPLEX

A Polish expression is too complex for MACRO to handle.
Restructure or split the expression.

RFO .REL FILE OPEN ERROR

SOC STATEMENT OUT OF ORDER .COMMON

The .COMMON pseudo-op must precede all statements that
generate code, and all references to the COMMON block.

STO SEARCH TABLE OVERFLOW, CANNOT SEARCH UNIVERSAL

TMU TOO MANY UNIVERSALS

Too many UNIVERSAL files are being
permitted is an assembly parameter;
reassembling MACRO.

searched. . The number
it can be increased by

UVS UNIVERSAL VERSION SKEW, REASSEMBLE UNIVERSAL

The UNIVERSAL file was assembled with a later version of
MACRO than you are using now. Reassemble the UNIVERSAL
file.

UWU UNABLE TO WRITE UNIVERSAL FILE

WLE OUTPUT WRITE-LOCK ERROR DEVICE

8-10

CHAPTER 9

PROGRAMMING CONSIDERATIONS

The previous chapters of this
elements. In particular, the
define many of MACRO's most
usefulness of some pseudo-ops
"family" of pseudo-ops.

manual define the MACRO language
pseudo-op definitions in Chapter 3

important features. However, the
can be seen only in the context of a

In this chapter, we discuss three such families of pseudo-ops. The
programming features concerned are:

1. Program segmentation

2. UNIVERSAL files

3. Conditional assembly

9.1 PROGRAM SEGMENTATION

MACRO's relocation counters can accommodate three types of programs:

1. A single-segment program uses only one relocation counter.

2. A two-segment program also uses one relocation counter, and
is characterized by its use of the TWOSEG pseudo-op.

3. A program with PSECTS can use many relocation counters, and
is characterized by its use of the .PSECT and .ENDPS
pseudo-ops.

9.1.1 Single-Segment Programs

A single-segment program uses only one relocation counter.
counter can be used to assign any address from 0 to 777777.
initial setting of the counter is O.

This
The

As MACRO assembles your program, it places code and data at the
address given by the current value of the relocation counter,
incrementing the counter's value for each word assembled.

For example, a statement can require assembly of one word of code,
incrementing the relocation counter by 1. Another statement can
require assembly of five words of code, incrementing the relocation
counter by 5. Still another statement may not generate code, leaving
the relocation counter unchanged.

9-1

PROGRAMMING CONSIDERATIONS

You can reset the value of the relocation counter by using the
pseudo-op RELOC with an argument. For example, using RELOC A sets the
value of the relocation counter to the value of A.

In the following example, 100 words are allocated for a table,
incrementing the relocation counter by 100. Then the table length is
calculated as TABLEN. A RELOC TABLE returns to the top of the table,
where the first three words are initialized. Finally a RELOC
TABLE+TABLEN sets the relocation to the foot of the table to continue
assembly.

000000' TABLE: BLOCK 100 ;Allocate table
000100 TABLEN=.-TABLE ;Table lensth

000000' R[~LOC TABLE ;To .. :, of table
000000' 000000 000001 EXF' 1,2,3 ; Irli t fi T'st 3
000001' 000000 000002
000002' 000000 000003
000100' RELOC TABLE+TABLEN ; ContinlJe

9.1.2 Two-Segment Programs

By using the TWOSEG pseudo-op, you can divide your program into a high
segment and a low segment. This pseudo-op must precede any statement
in your program that generates code.

The TWOSEG pseudo-op tells MACRO that there will be two segments, and
MACRO generates a REL Block Type 3, which tells LINK to expect two
segments for loading.

You can use TWOSEG either with or without an address argument.
are important differences between the two:

There

1. TWOSEG without an argument specifies that the high segment
begins at the address 400000. The initial value of the
relocation counter is at the address a in the low segment.

2. TWOSEG with an argument specifies that the high segment
begins at the given address, and further specifies that the
initial value of the relocation counter is that address.
(The given address is reduced to the next lower multiple of
2000 octal; if this result is 0, MACRO treats the TWOSEG as
if no argument were given.) .

The high-segment starting address divides all code into two segments.
MACRO and LINK consider all code at addresses above the high-segment
address to be in the high segment, and all other code to be in the low
segment.

MACRO always remembers the value the relocation counter had before the
last RELOC found. (This stored value is initially 0.)

Therefore in a two-segment program, you can begin in one segment, and
then RELOC to the other. From then on, you can switch segments simply
by using RELOC with no argument. MACRO will begin assigning addresses
at the first unused location in the opposite segment.

9-2

PROGRAMMING CONSIDERATIONS

For example,

400000' TWOSEG
000000' 000000 000001 EXP 1,2 iLo-ses
000001' OOOOO~ 000002
400000' RELOC 400000 iHi-ses
400000' 000000 000003 EXP 3,4
400001' 000000 000004
000002' RELOC iLo-seS
000002' 000000 000005 EXP 5,6
000003' 000000 000006
400002' RELOC ;Hi-seS
400002' 000000 000007 EXP 7,10
400003' 000000 000010

9.1.3 Programs with PSECTs

You can construct a program having up to
.PSECT and .ENDPS pseudo-ops. These
among program segments (PSECTs).

64 segments by using the
pseudo-ops control switching

Each PSECT has its own relocation counter; each is separately
relocated at load time. Therefore a program with two PSECTs is
different from a two-segment program in that the PSECTed program has
two relocation counters, while the two-segment program has only one.

The pseudo-op .PSECT specifies that code should be assembled for a
given PSECT. For example, .PSECT A specifies that code is to be
assembled in the program segment (PSECT) called A. The pseudo-op
.ENDPSends assembly in the current PSECT.

PSECTs can be nested up to 16 levels. In a nested PSECT, the .ENDPS
pseudo-op begins assembly in the next outer PSECT; in an unnested
PSECT, .ENDPS begins assembly in the blank PSECT. (You can think of
the blank PSECT· as being outside of all your explicitly declared
PSECTs.)

Here is an example showing three PSECTs (A, B, and C):

000000'00 000000 000001
000001'00 000000 000002
000000'01
000000'01 000000 000003
000001'01 000000 000004
000000'02
000000'02 000000 000005
000001'02 000000 000006
000002'01
000002'01 000000 000007
000003'01 000000 000010
000002'00
000002'00 000000 000011
000003'00 000000 000012
000000'03
000000'03 000000 000013
000001'03 000000 000014
000004'00
000002'02
000002'02 000000 000015
000003'02 000000 000016
000004'00

EXP 1,2

.PSECT A
EXP 3,4

.PSECT B
EXP 5,6

.ENDPS B
EXP 7,10

.ENDPS A
EXP 11,12

.PSECT C
EXP 13,14

.ENDPS C

.PSECT B
EXP 15,16

.ENDPS B

9-3

iBlank PSECT

i1st PSECT

i2nd PSECT (nested)

i1st PSECT

i Blar.k PSECT

i3rd PSECT

iBlank PSECT
;2nd PSECT

iBlank PSECT

PROGRAMMING CONSIDERATIONS

In the example, the blank PSECT surrounds everything. Embedded in the
blank PSECT are:

1. PSECT A (which also nests some of PSECT B)

2. PSECT C

3. Another segment of PSECT B

Each PSECT used in a program generates thePSECT name as a global
symbol. At load time, this symbol will take the value of the origin
specified for the PSECT.

When LINK loads your program, all the parts of the same PSECT are
loaded together. These parts can be in more than one program, or in
more than one file. For details of LINK's handling of PSECTs at load
time, see the LINK Reference Manual.

9.2 UNIVERSAL FILES

A UNIVERSAL file contains direct-assignment symbol definitions. The
symbols defined can have any attributes.

A UNIVERSAL file is convenient because it can contain definitions that
you want for many programs. Those programs can then obtain the
definitions by your use of the SEARCH pseudo-oPe This searching adds
to the assembly only those definitions that are needed; other
definitions in the UNIVERSAL file are not used.

To build a UNIVERSAL file from a MACRO source file, insert the
pseudo-op

UNIVERSAL filespec

wheie the filespec gives the file for output of the UNIVERSAL file.
This file will contain all the symbols and definitions given in the
program.

Another program can obtain these definitions if it contains the SEARCH
pseudo-op:

SEARCH filespec

where filespec names the UNIVERSAL file. At the end of Pass I
assembly, MACRO will search the UNIVERSAL file for any undefined
symbols. If a definition is found in the UNIVERSAL file, MACRO moves
it into the symbol tables of the current program.

For example, a UNIVERSAL file can contain definitions for register
mnemonics:

000000
000001
000002
000003
000004
000005
000016
000017

9-4

UNIVERSAL REGS

RO=O
R1=1
R2=2
R3=3
Tl=4
T2=5
SP=16
P=17
END

PROGRAMMING CONSIDERATIONS

Then another assembly can obtain these by using the SEARCH REGS
pseudo-op:

SEARCH REGS

000000' 000 00 0 00 000000 Z RO,
000001' 000 01 0 00 000000 Z Rl,
000002' 000 02 0 00 000000 Z R2,
000003' 000 03 0 00 000000 Z R3,
000004' 000 04 0 00 000000 Z Tl,
000005' 000 05 0 00 000000 Z T2,
000006' 000 16 0 00 000000 Z SP,
000007' 000 17 0 00 000000 Z p,

A UNIVERSAL file can contain definitions for any user-defined symbols.
You may find it convenient to build UNIVERSAL files containing macros,
OPDEFs, and direct-assignment symbols that you use often in your
programs.

An example of a UNIVERSAL program appears in the program examples in
Appendix D.

9.3 CONDITIONAL ASSEMBLY

Using conditional assembly in your programs can make programming
easier, and can make your assembled programs shorter. The pseudo-ops
used for conditional assembly are IRP, IRPC, STOPI, .IF, .IFN, and the
IF~ group. IRP, IRPC, and STOPI are discussed fully in Chapter 3 and
Section 5.6.

We will confine the discussion here to a few classic uses of the
remaining conditional assembly pseudo-ops.

The first of these is the use of IFNDEF to establish default switch
settings for a program. The example here is from the MACRO program
itself, and concerns assembly of F40-switch-dependent symbols.

Near the beginning of the code, MACRO has the statement:

IFNDEF F40 <F40==O>

This statement has effect only if the symbol F40 is not defined, in
which case the statement F40==O is assembled. This sets the F40
switch to "off."

But if a file defining F40 is assembled with (and before) the MACRO
source file, then the statement F40==O is not assembled, leaving the
"outside" definition in force.

Therefore the statement IFNDEF F40 <F40==O> serves as a default
definition for F40, and this default is used only if no other
definition overrides it.

Another application of conditional assembly is connected with the
symbol F40. In MACRO's program segments on symbol searching, some
symbols will be defined (and therefore found in the search) only if
the F40 switch is "on."

9--5

PROGRAMMING CONSIDERATIONS

Here is how MACRO's code handles chese symbols.
sequence as follows:

;MACRO TO HANDLE F40 UUOS
IFE F4~,<

DEFINE XF (SB,CD) <»
IFN F40,<SYN X,XF>

;NULL MACRO
;USUAL X MACRO

There is a code

The "usual X macro" is merely a macro to set up symbols to be defined
and the code to assemble on finding them. . The macro XF will be used
to handle definitions for r40 UUOs.

Now if the F40 switch is on, the macro XF is made synonymous with the
macro X, and the F40 UUOs are defined in the same way as other
operator~. But if the F40 switch is off, XF is made a null macro so
that all the F40 UUOs are ignored during assembly and are not defined
to MACRO.

The assembly of the F40 UUOs depends on the value of the F40 switch,
and the value of the switch depends on its definition. If MACRO had
no IFNDEF F40 statement, an "outside" file would have to define the
switch at every assembly of MACRO. But the default definition allows
assembly of MACRO alone, and the outside file is needed only to turn
the switch on.

Examples of conditional assembly are shown in the program examples in
Appendix D.

9-6

APPENDIX A

MACRO CHARACTER SETS

Table A-I gives the 101 ASCII characters allowed in MACRO and their
octal ASCII codes: the 64 SIXSIT characters and their octal SIXBIT
codes: and the 40 RADIX50 characters and their octal RADIX50 codes.

Character

(horizontal tab)
(linefeed)
(vertical tab)
(formfeed)
(carriage-return)

(CTRL/Z)
(CTRL/_)

(blank)

II

$
%
&

(
)

*
+

/

Table A-I
MACRO Chara.cter Sets

ASCII SIXBIT RADIX50
Code Code Code

011
012
013
014
015

032
037

040 00 00
041 01
042 02
043 03
044 04 46
045 05 47
046 06
047 07

050 10
051 11
052 12
053 13
054 14
055 15
056 16 45
057 17

(Continued on next page)

A-l

Character

0
1
2
3
4
5
6
7

8
9 . .
1
<
=
>
?

@

A
B
C
D
E
F
G

H
I
J
K
L
M
N
0

p
Q
R
S
T
U
V
W

MACRO CHARACTER SETS

Table A-I (Cont;)
MACRO Character Sets

ASCII SIXBIT
Code Code

060 20
061 21
062 22
063 23
064 24
065 25
066 26
067 27

070 30
071 31
072 32
073 33
074 34
075 35
076 36
077 37

100 40
101 41
102 42
103 43
104 44
105 45
106 46
107 47

110 50
111 51
112 52
113 53
114 54
115 55
116 56
117 57

120 60
121 61
122 62
123 63
124 64
125 65
126 66
127 67

RADIX50
Code

01
02
03
04
05
06
07
10

11
12

13
14
15
16
17
20
21

22
23
24
25
26
27
30
31

32
33
34
35
36
37
40
41

(Continued on next page)

A-2

MACRO CHARACTER SETS

Table A-I (Cont.)
MACRO Character Sets

ASCII SIXBIT RADIX50
Character Code Code Code

X 130 70 42
y 131 71 43
Z 132 72 44
[133 73
\ 134 74

! 135 75
136 76
137 77

a 141
b 142
c 143
d 144
e 145
f 146
9 147

h 150
i 151
j 152
k 153
1 154
m 155
n 156
0 157

p 160
q 161
r 162
s 163
t 164
u 165
v 166
w 167

x 170
y 171
z 172

A-3

APPENDIX B

MACRO SPECIAL CHARACTERS

Characters and combinations having special interpretations in MACRO
are given in Table B-1. These interpretations apply only in the
contexts described. In particular, they do not apply within text
strings or comment fields.

For each usage of special characters, a cross-reference to a text
discussion is given in the rightmost column of the table. For
references to pseudo-ops, only the' pseudo-op name is given; all
pseudo-ops are discussed in alphabetical order in Chapter 3.

B-1

Characters Context

B between two
integer
expressions

AB before integer
expression

AD before integer
expression

E between floating-
point decimal

OJ number and signed
I

N
decimal integer

AF before integer
expression

G after integer

K after integer

AL before decimal
integer
expression

M after integer

Table B-1
Interpretations of Special Characters

Form

mBn

ABn

ADn

fE+n

AFn

nG

nK

ALn

nM

Interpretation

causes the binary representation
of m to be placed with rightmost
bit at bit n (decimal).

shows that n is a binary number.

shows that n is a decimal number.

multiplies f by the
+nth power of 10.

shows that n is a fixed­
point decimal number.

suffixes nine zeros to n.

suffixes three zeros to n.

generates the~umber of. leading
zeros in the binary representa­
tion of n.

suffixes six zeros to n.

Discussed in
Section

2.2.6

2.2.2

2.2.2

2.2.5

2.2.4

2.2.3

2.2.3

2.2.8

2.2.3

(Continued on next page)

3:
~
(")
!:d o
en
'"tI
t'Il
(")
H
~
t"'

(")

:ll
~

$!
(")

t-3
t'Il
!:d en

to
I

LV

Characters

"'0

: !

: : !

i ;

Context

before integer
expression

after symbol

after symbol

after symbol

after symbol

before end of
line

before end of
line (usually
in a macro)

as expression

embedded in
numerals

Table B-1 (Cont.)
Interpretations of Sp~cial Characters

Form

"'On

sym:

sym: :

sym: !

sym: : !

;text

~ ~ text

int.fr

Interpretation

shows that n is an octal number.

shows that sym is a label.

shows that sym is a
global INTERNAL label.

shows that sym is a label,
but not to be output by debugger.

shows that sym is a global
INTERNAL label, but not to be
output by debugger.

shows that text is a comment.

shows that text is a comment
to be printed in the macro
definition but not at call.

generates current value of the
location counter.

shows that int.fr is a
floating-point decimal number.

Discussed in
Section

2.2.2

2.4.2.1, 4.1, 4.5

2.4.2.1, 4.1, 4.5

2.4.2.1, 4.1, 4.5

2.4.2.1, 4.1, 4.5

4.4, 4.5

4.4, 4.5

2.3, 4.6

2.2.5

(Continued on next page)

s:
!:tlI
n
~ o
en
ttJ
ttl
n
H
!:tlI
t"1

n
tIl
!:tlI
!;tI
!:tlI
n
1-3
t7Ij

!;tI
en

OJ
I
~

Characters

, ,

, ,

'" 1-

&

*

I

+

Context

among numbers
and symbols

among numbers
and symbols

between two
expressions

between two
expressions

between two
expressions

between two
expressions

before expression

between two
expressions

between two
expressions

between two
expressions

Table B-1 1Cont.)
Interpretations of Special Characters

Form

, ,

lhw, ,rhw

A!B

A"'!B

A&B

"'-A

A*B

AlB

A+B

Interpretation

delimits operands, accumulator,
arguments.

delimits a null macro argument.

delimits left halfword (lhw)
from right halfword (rhw).

generates the logical
inclusive OR of A and B.

generates the logical
exclusive OR of A and B.

generates the logical
AND of A and B.

generates one's complement of value
of A (logical NOT).

generates product of A and B.

generates quotient of A by B.

generates sum of A and B.

Discussed in
Section

4.3, 4.5
5.1, 5.2

5.2, 5.5

2.5.4.1

2.5.2

2.5.2

2.5.2

2.5.2

2.5.1

2.5.1

2.5.1'

(Continued on next P?ge)

3:
:t­
()

~ o
til
"U
t%]
()
H
:t:o'
t'1

()
::r:
:t:o'

~
()

1-3
t%]

~
til

0:1
I

U1

Characters

n "

\

Context

between two
expressions

before an
expression

around text

around text

adjoining dummy
argument in
macro body

after symbol

after symbol

prefixed to
expression
in macro call

Table B-1 (Cont.)
Interpretations of Special Characters

Form

A-B

-A

"text"

'text'

text'darg
or

darg'text

sym#

sym##

\expr

Interpretation

generates difference of A and B.

generates the two's complement
of the value of A.

shows that text is a 7-bit ASCII
string, to be right justified
in field of five characters.

shows that text is a SIXBIT
string, to be right justified
in field of six characters.

concatenates passed argument to
text at call to macro.

shows that sym is a variable
symbol, whose address is usually
at the end of the binary program.

shows that sym is a global
EXTERNAL symbol.

directs that the argument passed be
the string for the ASCII value of
expr in the current radix.

Discussed in
Section

2.5.1

2.2.1, 2.2.4.,
2.2.5

ASCII, ASCIZ

SIXBIT

5.4

2.4.3

2.4.5.2

5.7.1

(Continued on next page)

3:
~
()
~ o
til
ttl
tt:l
()
H
~
t"t

()
tIl
~

~
()
1-3
ttl
~
til

Characters Context

\1 prefixed to
expression
in macro call

\" prefixed to
expression
in macro call

CTRL/_ before CR-LF
(CONTROL-
underscore)

ttl between two
I expressions

0'\

@ prefixed to
address

% 1st character
of dummy argument
in macro definition

()

Table B-1 (Cont.)
Interpretations of Special Characters

Form

\Iexpr

\"expr

CTRL/_

A B

@address

%darg

(...)

Interpretation

directs that the argument passed be
the string whose SIXBIT code is
the value of expr.

directs that the argument passed be
the string whose ASCII code is

Discussed in
Section

5.7.3

the value of expr. 5.7.3

continues argument to next line; does
not operate across end-of-macro. 5.2.1

shifts the binary representation
of A to the left B positions.
(If B is negative, shift is to right.) 2.2.6

sets bit 13 of the instruction word,
indicating indirect addressing. 4.7.1

directs that %darg be replaced by a
created symbol at macro call; MACRO
will substitute a different symbol
for it on each use of the macro. 5.5.2

enclos~s index field; encloses dummy
arguments in macro definition;
quotes characters for macro
argument handling; swaps the two
halves of enclosed value.

4.7.1, 5.1
5.2.2

(Continued on next page)

3:
:J:II
(")

~
o
til
ttt
t%]
(")
H
:J:II
t'1

(")
::z:
~

~
(")

1-3
t%]

~
til

Table B-,1 (Cont.)
Interpretations of Special Characters

Characters Context Form Interpretation Discussed in
Section

< > < ••• > nests expressions; encloses
conditional assembly code;
encloses code in REPEAT, IRP,
and IRPC pseudo-ops; encloses 2.5.4
macrobody in DEFINE pseudo-op; IFx, .IF, .IFN,
quotes characters for macro REPEAT, IRP,
argument handling; forces IRPC, DEFINE, 3:

~
evaluation of symbol. 5.1, 5.2.2 (')

!:d
0

[] [...] delimits literals; delimits argument
til

in ARRAY, .COMMON, and OPDEF 2.3, ARRAY, "tI

pseudo-ops; quotes characters .COMMON, OPDEF, ~
(')

to for macro argument handling. 5.2.2 H

I ~
-J t'i

between symbol sym=exp assigns value of exp to sym. (')

and expression 2.4.2.2, 4.5 Ol
~
!:d

between symbol sym==exp assigns value of exp to sym but ~
(')

and expression sym is not output by debugger. 2.4.2.2, 4.5 1-3
~
!:d

=: between symbol sym=:exp assigns value of exp to sym and til

and expression declares sym as global INTERNAL. 2.4.2.2, 4.5

==: between symbol sym==:exp assigns value of exp to sym and
and expression declares sym as global INTERNAL,

but sym is not output by debugger. 2.4.2.2, 4.5

APPENDIX C

MACRO-DEFINED MNEMONICS

This appendix contains tables showing all of MACRO's defined mnemonics
and the code they generate. These mnemonics, together with the
pseudo-ops and the special characters given in Appendix B, make up the
entire MACRO language.

NOTE

Throughout this appendix, the following
notes apply to the tables:

* Indicates mnemonic defined only if MACRO
is assembled with the KLlO switch on.

** Indicates mnemonic defined only if MACRO
is assembled with the KIlO switch on.

C.l MACHINE INSTRUCTION MNEMONICS

Table C-l shows MACRO's machine instruction mnemonics and the code
assembled by each mnemonic. See Section 4.7 for a discussion of
machine instructions used in programs.

C-l

MACRO-DEFINED MNEMONICS

Table C-l
Machine Instruction Mnemonics

270 00 0 00 000000 ADD 303 00 0 00 000000 CAlLE
273 00 0 00 000000 ADDB 306 00 0 00 000000 CAIN
271 00 0 00 000000 ADDI 310 00 0 00 000000 CAM
272 00 0 00 000000 ADDM 314 00 0 00 000000 CAMA
133 00 0 00 000000 *ADJBP 312 00 0 00 000000 CAME
105 00 a 00 000000 *ADJSP 317 00 a 00 000000 CAMG
404 00 0 00 000000 AND 315 00 0 00 000000 CAMGE
407 00 a 00 000000 ANDB 311 00 0 00 000000 CAML
410 00 0 00 000000 ANDCA 313 00 a 00 000000 CAMLE
413 00 0 00 000000 AND CAB 316 00 0 00 000000 CAMN
411 00 a 00 000000 ANDCAI 400 00 0 00 000000 CLEAR
412 00 a 00 000000 AND CAM 403 00 a 00 000000 CLEARB
440 00 0 00 000000 ANDCB 401 00 0 00 000000 CLEARI
443 00 0 00 000000 ANDCBB 402 00 0 00 000000 CLEARM
441 00 0 00 000000 ANDCBI 114 00 0 00 000000 *DADD
442 00 0 00 000000 ANDCBM 117 00 0 00 000000 *DDIV
420 00 a 00 000000 ANDCM 110 00 0 00 000000 **DFAD
423 00 a 00 000000 ANDCMB 113 00 0 00 000000. **DFDV
421 00 a 00 000000 ANDCMI 112 00 0 00 000000 . **DFMP
422 00 0 00 000000 ANDCMM 131 00 0 00 000000 DFN
405 00 0 00 000000 ANDI III 00 0 00 000000 **DFSB
406 00 0 00 000000 ANDM 234 00 0 00 000000 DIV
253 00 0 00 000000 AOBJN 237 00 0 00 000000 DIVB
252 00 0 00 000000 AOBJP. 235 00 0 00 000000 DIVI
340 00 0 00 000000 AOJ 236 00 a 00 000000 DIVM
344 00 0 00 000000 AOJA 120 00 0 00 000000 **DMOVE
342 00 0 00 000000 AOJE 124 00 0 00 000000 **DMOVEM
347 00 a 00 000000 AOJG 121 00 0 00 000000 **DMOVN
345 00 0 00 000000 AOJGE 125 00 0 00 000000 **DMOVNM
341 00 0 00 000000 AOJL 116 00 0 00 000000 *DMUL
343 00 0 00 000000 AOJLE 137 00 0 00 000000 DPB
346 00 0 00 000000 AOJN 115 00 0 00 000000 *DSUB
350 00 0 00 000000 AOS 444 00 a 00 000000 EQV
354 00 0 00 000000 AOSA 447 00 0 00 000000 EQVB
352 00 0 00 000000 AOSE 445 00 0 00 000000 EQVI
357 00 a 00 000000 AOSG 446 00 0 00 000000 EQVM
355 00 0 00 000000 AOSGE 250 00 0 00 000000 EXCH
351 00 0 00 000000 AOSL 123 00 0 00 000000 . *EXTEND
353 00 0 00 000000 AOSLE 140 00 0 00 000000 FAD
356 00 0 00 000000 AOSN 143 00 0 00 000000 FADB
320 00 0 00 000000 ARG 141 00 0 00 000000 FADL
240 00 0 00 000000 ASH 142 00 a 00 000000 FADM
244 00 0 00 000000 ASHC 144 00 0 00 000000 FADR
251 00 0 00 000000 BLT 147 00 0 00 000000 FADRB
300 00 0 00 000000 CAl 145 00 0 00 000000 FADRl
304 00 0 00 000000 CAlA 146 00 0 00 000000 FADRM
302 00 0 00 000000 CAlE 170 00 0 00 000000 FDV
307 00 0 00 000000 CAlG 173 00 0 00 000000 FDVB
305 00 0 00 000000 CAIGE 171 00 0 00 000000 FDVL
301 00 0 00 000000 CAlL 172 00 0 00 000000 FDVM

(Continued on Next Page)

C-2

174 00 a 00 000000
177 00 a 00 000000
175 00 a 00 000000
176 00 a 00 000000
126 00 a 00 000000
127 00 0 00 000000
160 00 a 00 000000
163 00 a 00 000000
161 00 0 00 000000
162 00 0 00 000000
164 00 a 00 000000
167 00 a 00 000000
165 00 a 00 000000
166 00 0 00 000000
150 00 a 00 000000
153 00 0 00 000000
151 00 0 00 000000
152 00 a 00 000000
154 00 0 00 000000
157 00 0 00 000000
155 00 a 00 000000
156 00 0 00 000000
132 00 a 00 000000
500 00 a 00 000000
530 00 0 00 000000
531 00 0 00 000000
532 00 a 00 000000
533 00 0 00 000000
501 00 a 00 000000
502 -DO a 00 000000
520 00 0 00 000000
521 00 a 00 000000
522 00 0 00 000000
523 00 0 00 000000
503 00 a 00 000000
510 00 0 00 000000
511 00 a 00 000000
512 00 0 00 000000
513 00 0 00 000000
544 00 a 00 000000
574 00 a 00 000000
575 00 a 00 000000
576 00 a 00 000000
577 00 a 00 000000
545 00 a 00 000000
546 00 a 00 000000
564 00 a 00 000000
565 00 a 00 000000
566 00 a 00 000000
567 00 a 00 000000

-MACRO-OEFINEO-MNEMONICS

Table- C~l(Cont.)
Machine Instruction Mnemonics

FDVR 547 00 a 00
FDVRB 554 00 0 00
FDVRI 555 00 0 00
FDVRM 556 00 a 00

**FIXR 557 00 0 00
**FLTR 504 00 0 00

FMP 534 00 a 00
FMPB 535 00 a 00
FMPL 536 00 0 00
FMPM 537 00 a 00
FMPR 505 00 0 00
FMPRB _ 506 00 a 00
FMPRI 524 00 a 00
FMPRM 525 00 0 00
FSB 526 00 a 00
FSBB 527 00 0 00
FSBL 507 00 a 00
FSBM 514 00 a 00
FSBR 515 00 a 00
FSBRB 516 00 0 00
FSBRI 517 00 a 00
FSBRM 540 00 a 00
FSC 570 00 0 00
HLL 571 00 0 00
HLLE 572 00 0 00
HLLEI 573 00 a 00
HLLEM 541 00 a 00
HLLES 542 00 0 00
HLLI' 560- 00 a 00
HLLM 561 00 0 00
HLLO 562 00 0 00
HLLOI 563 00 0 00
HLLOM 543 00 0 00
HLLOS 550 00 a 00
HLLS 551 00 a 00
HLLZ 552 00 0 00
HLLZI 553 00 0 00
HLLZM 133 00 a 00
HLLZS 230 00 a 00
HLR 233 00 0 00
HLRE 231 00 0 00
HLREI 232 00 a 00
HLREM 136 00 a 00
HLRES 134 00 a 00
HLRl 220 00 a 00
HLRM 223 00 a 00
HLRO 221 00 a 00
HLROI 222 00 a 00
HLROM 434 00 a 00
HLROS 437 00 a 00

000000 HLRS
000000 - HLRZ
000000 HLRZI
000000 HLRZM-
000000 HLRZS
000000 HRL
000000 HRLE
000000 HRLEI
000000 HRLEM
000000 HRLES
000000 HRLI
000000 HRLM
000000 HRLO
000000 HRLOI
000000 HRLOM
000000 HRLOS
000000 HRLS
000000 HRLZ
000000 HRLZI
000000 HRLZM
000000 HRLZS
000000 HRR
000000 HRRE
000000 HRREI
000000 - HRREM
000000 HRRES
000000 HRRI
000000 HRRM
000000 HRRO
000000 HRROI
000000 HRROM
000000 HRROS
000000 HRRS
000000 HRRZ
000000 HRRZI
000000 HRRZM
000000 HRRZS
000000 IBP
000000 IDlV
000000 lDlVB
000000 IDIVl
000000 IDIVM
000000 IDPB
000000 lLDB
000000 IMUL
000000 lMULB
000000 lMULI
000000 lMULM
000000 . lOR
000000 IORB

(Continued on Next Page)

C-3

435 00 a 00
436 00 a 00
255 00 a 00
243 00 a 00
267 00 a 00
254 00 a 00
266 00 a 00
265 00 a 00
264 00 a 00
104 00 a 00
320 00 a 00
324 00 a 00
322 00 a 00
327 00 a 00
325 00 a 00
321 00 a 00
323 00 a 00
326 00 a 00
135 00 a 00
242 00 a 00
246 00 a 00
257 00 a 00
200 00 a 00
201 00 a 00
202 00 a 00
203 00 a 00
214 00 a 00
215 00 a 00
216 00 a 00
217 00 a 00
210 00 a 00
211 00 a 00
212 00 a 00
213 00 a 00
204 00 a 00
205 00 a 00
206 00 a 00
207 00 a 00
224 00 a 00
227 00 a 00
225 00 a 00
226 00 a 00
434 00 a 00
437 00 a 00
454 00 a 00
457 00 a 00
455 00 a 00
456 00 a 00
470 00 a 00
473 00 a 00

000000
000000
000000
000000
000000
000000
000000
000000
000000

MACRO-DEFINED MNEMONICS

Table C-1 (Cant.)
Machine Instruction Mnemonics

IORI 471 00 a 00
IORM 472 00 a 00
JFCL 464 00 a 00
JFFO 467 00 a 00
JRA 465 00 a 00
JRST 466 00 a 00
JSA 435 00 a 00
JSP 436 00 a 00
JSR 262 00 a 00

000000 . JSYS 263 00 a 00
000000 JUMP 261 00 a 00
000000 JUMPA 260 00 a 00
000000 JUMPE 241 00 a 00
000000 JUMPG 245 00 a 00
000000 JUMPGE 424 00 a 00
000000 JUMPL 427 00 a 00
000000 JUMPLE 425 00 a 00
000000 JUMPN 426 00 a 00
000000 LOB 450 00 a 00
000000 LSH 453 00 a 00
000000 LSHC 451 00 a 00
000000 **MAP 452 00 a 00
000000 MOVE 460 00 a 00
000000 MOVEI 463 00 a 00
000000 MOVEM 461 00 a 00
000000 MOVES 462 00 a 00
000000 MOVM 414 00 a 00
000000 MOVMI 417 00 a 00
000000 MOVMM 415 00 a 00
000000 MOVMS 416 00 a 00
000000 MOVN 474 00 a 00
000000 MOVNI 477 00 a 00
000000 MOVNM 475 00 a 00
000000 MOVNS 476 00 a 00
000000 MOVS 400 00 a 00
000000 MOVSI 403 00 a 00
000000 MOVSM 401 00 a 00
000000 MOVSS 402 00 a 00
000000 MUL 330 00 a 00
000000 MULB 334 00 a 00
000000 MULl 332 00 a 00
000000 MULM 337 00 a 00
000000 OR 335 00 a 00
000000 ORB 331 00 a 00
000000 ORCA 333 00 a 00
000000 ORCAB 336 00 a 00
000000 ORCAI 360 00 a 00
000000 ORCAM 364 00 a 00
000000 ORCB 362 00 a 00
000000 ORCBB 367 00 a 00

000000 ORCBI
000000 ORCBM
000000 ORCM
000000 ORCMB
000000 ORCMI
000000 ORCMM
000000 ORI
000000 ORM
000000 POP
000000 POPJ
000000 PUSH
000000 PUSHJ
000000 ROT
000000 ROTC
000000 SETA
000000 SETAB
000000 SETAl
000000 SETAM
000000 SETCA
000000 SETCAB
000000 SETCAI
000000 SETCAM
000000 SETCM
000000 SETCMB
000000 SETCMI
000000 SETCMM
000000 SETM
000000 SETMB
000000 SETMI
000000 SETMM
000000 SETO
000000 SETOB
000000 SETOI
000000 SETOM
000000 SETZ
000000 SETZB
000000 SETZI
000000 SETZM
000000 SKIP
000000 SKIPA
000000 SKIPE
000000 SKIPG
000000 SKIPGE
000000 SKIPL
000000 SKIPLE
000000 SKIPN
000000 SOJ
000000 SOJA
000000 SOJE
000000 SOJG

(Continued on Next Page)

C-4

-

365 00 a 00 000000
361 00 a 00 000000
363 00 a 00. 000000
366 00 a 00 000000
370 00 a 00 000000
374 00 a 00 000000
372 00 a 00 000000
377 00 a 00 000000
375 00 a 00 000000
371 00 a 00 000000
373 00 a 00 000000
376 00 a 00 000000
274 00 a 00 000000
277 00 a 00 000000
275 00 a 00 000000
276 00 a 00 000000
650 00 a 00 000000
654 00 a 00 000000
652 00 a 00 000000
656 00 a 00 000000
610 00 a 00 000000
614 00 a 00 000000
612 00 a 00 000000
616 00 a 00 000000
670 00 a 00 000000
674 00 a 00 000000
672 00 a 00 000000
676 00 a 00 000000
630 00 a 00 000000
634 00 a 00 000000
632 00 a 00 000000
636 00 a 00 000000
641 00 a 00 000000
645 00 a 00 000000
643 00 a 00 000000
647 00 a 00 000000
601 00 a 00 000000
605 00 a 00 000000
603 00 a 00 000000
607 00 a 00 000000
661 00 a 00 000000
665 00 a 00 000000
663 00 a 00 000000

MACRO-DEFINED MNEMONICS

Table C-l (Cont.)
Machine Instruction Mnemonics

SOJGE 667 00 a 00
SOJL 621 00 a 00
SOJLE 625 00 a 00
SOJN 623 00 a 00
SOS 627 00 a 00
SOSA 640 00 a 00
SOSE 644 00 a 00
SOSG 642 00 a 00
SOSGE 646 00 a 00
SOSL 600 00 a 00
SOSLE 604 00 a 00
SOSN 602 00 a 00
SUB 606 00 a 00
SUBB 660 00 a 00
SUBI 664 00 a 00
SUBM 662 00 a 00
TOC 666 00 a 00
TOCA 620 00 a 00
TOCE 624 00 a 00
TOCN 622 00 a 00
TON 626 00 a 00
TONA 651 00 a 00
TONE 655 00 a 00
TONN 653 00 a 0·0
TOO 657 00 a 00
TOOA 611 00 a 00
TOOE 615 00 a 00
TOON 613 00 a 00
TOZ 617 00 a 00
TOZA 671 00 a 00
TOZE 675 00 a 00
TOZN 673 00 a 00
TLC 677 00 a 00
TLCA 631 00 a 00
TLCE 635 00 a 00
TLCN 633 00 a 00
TLN 637 00 a 00
TLNA 130 00 a 00
TLNE 256 00 a 00
TLNN 430 00 a 00
TLO 433 00 a 00
TLOA 431 00 a 00
TLOE 432 00 a 00

C-5

000000 TLON
000000 TLZ
000000 TLZA
000000 TLZE
000000 TLZN
000000 TRC
000000 TRCA
000000 TRCE
000000 TRCN
000000 TRN
000000 TRNA
000000 TRNE
000000 TRNN
000000 TRO
000000 TROA
000000 TROE
000000 TRON
000000 TRZ
000000 TRZA
000000 TRZE
000000 TRZN
000000 TSC
000000 TSCA
000000 TSCE
000000 TSCN
000000 TSN
000000 TSNA
000000 TSNE
000000 TSNN
000000 TSO
000000 TSOA
000000 TSOE
000000 TSON
000000 TSZ
000000 TSZA
000000 TSZE
000000 TSZN
000000 UFA
000000 XCT
000000 XOR
000000 XORB
000000 XORI
000000 XORM

MACRO-DEFINED MNEMONICS

C.2 I/O INSTRUCTION AND DEVICE CODE MNEMONICS

Table C-2 shows MACRO's I/O instruction mnemonics and t~e code each
assembles. Note that I/O machine instructions are executable only in
executive mode.

Table C-2
I/O Instruction Mnemonics

7 000 00 a 00 000000 BLKI 7 000 30 a 00 000000 CONSZ
7 000 10 a 00 000000 BLKO 7 000 04 a 00 000000 DATAl
7 000 24 a 00 000000 CONI 7 000 14 a 00 000000 DATAO
7 000 20 a 00 000000 CONO 7 000 04 0 00 000000 RSW
7 000 34 a 00 000000 CONSO

Table C-3 shows MACRO's I/O device code mnemonics. Each is assembled
with the I/O instruction mnemonic DATAl so that the value of the
device code will be in its proper field. In the first table entry,
for example, the assembled code is:

7 024 04 0'00 000000

where the 7 and 04 are generated by the DATAl instructiori, and the 024
by the ADC device code mnemonic.

NOTE

MACRO leaves these device code mnemonics
as undefined symbols during Pass 1. At
the end of Pass 1, the mnemonics are
found in MACRO's tables only if one or
more I/O instructions have been found.

Therefore, if a device code mnemonic is
not assembled in Pass 1, or if no I/O
instruction mnemonics were found, MACRO
will not have defined the device code
mnemonic.

C-6

MACRO-DEFINED MNEMONICS

Table C-3
I/O Device Code Mnemonics

7 024 04 a 00 000000 DATAl ADC,
7 030 04 a 00 000000 DATAl ADC2,
7 000 04 a 00 000000 DATAl APR,
7 014 04 a 00 000000 DATAl CCI,
7 110 04 a 00 000000 DATAl COP,
7 114 04 a 00 000000 DATAl CDR,
7 070 04 a 00 000000 DATAl CLK,
7 074 04 a 00 000000 DATAl CLK2,
7 000 04 a 00 000000 DATAl· CPA,
7 150 04 a 00 000000 DATAl CR,
7 154 04 a 00 000000 DATAl CR2,
7 200 04 a 00 000000 DATAl DC,
7 204 04 a 00 000000 DATAl DC2,
7 300 04 a 00 000000 DATAl DCSA,
7 304 04 a 00 000000 DATAl DCSB,
7 270 04 a 00 000000 DATAl DDC,
7 274 04 a 00 000000 DATAl DDC2,
7 270 04 a 00 000000 DATAl DF,
7 130 04 a 00 000000 DATAl DIS,
7 134 04 a 00 000000 DATAl DIS2,
7 060 04 a 00 000000 DATAl DLB,
7 160 04 a 00 000000 DATAl DLB2,
7 064 04 a 00 000000 DATAl DLC,
7 164 04 a 00 000000 DATAl DLC2,
7 240 04 a 00 000000 DATAl DLS,
7 244 04 a 00 000000 DATAl DLS2,
7 250 04 a 00 000000 DATAl DPC,
7 254 04 a 00 000000 DATAl DPC2,
7 260 04 a 00 000000 DATAl DPC3,
7 264 04 a 00 000000 DATAl DPC4,
7 464 04 a 00 000000 DATAl DSI,
7 474 04 a 00 000000 DATAl DSI2,
7 170 04 a 00 000000 DATAl DSK,
7 174 04 a 00 000000 DATAl DSK2,
7 460 04 a 00 000000 DATAl DSS,
7 470 04 a 00 000000 DATAl DSS2,
7 320 04 a 00 000000 DATAl DTC,
7 330 04 a 00 000000 DATAl DTC2,
7 324 04 a 00 000000 DATAl DTS,
7 334 04 a 00 000000 DATAl DTS2,
7 124 04 a 00 000000 DATAl LPT,
7 234 04 a 00 000000 DATAl LPT2,
7 260 04 a 00 000000 DATAl MDF,
7 264 04 a 00 000000 DATAl MDF2,
7 220 04 a 00 000000 DATAl MTC,
7 230 04 a 00 000000 DATAl MTM,
7 224 04 a 00 000000 DATAl MTS,
7 010 04 a 00 000000 DATAl PAG,

(Continued on Next Page)

C-7

MACRO-DEFINED MNEMONICS

Table C-3 (Cant.)
I/O Device Code Mnemonics

7 004 04 a 00 000000 DATAl PI,
7 140 04 a 00 000000 DATAl PLT,
7 144 04 a 00 000000 DATAl PLT2,
7 100 04 a 00 000000 DATA! PTP,
7 104 04 a 00 000000 . DATAl PTR,
7 340 04 a 00 000000 DATAl TMC,
7 350 04 a 00 000000 DATAl TMC2,
7 344 04 a 00 000000 DATAl TMS,
7 354 04 a 00 000000 DATAl TMS2,
7 120 04 a 00 000000 DATAl TTY,
7 210 04 a 00 000000 DATA! UTC,
7 214 04 a 00 000000 DATAl UTS,

C-8

MACRO-DEFINED MNEMONICS

C.3 KLIO EXTEND INSTRUCTION MNEMONICS

Table C-4 shows the KLIO EXTEND instruction mnemonics and the code
assembled by each. All of these mnemonics are defined only if MACRO
is assembled with the KLIO switch on.

See the Supplement to the Hardware Reference Manual for a discussion
of these EXTEND instructions.

Table C-4
KLIO EXTEND Instruction Mnemonics

002 00 a 00 000000 *CMPSE 010 00 0 00 000000 *CVTDBO
007 00 a 00 000000 *CMPSG all 00 a 00 000000 *CVTDBT
005 00 a 00 000000 *CMPSGE 004 00 a 00 000000 *EDIT
001 00 a 00 000000 *CMPSL 016 00 a 00 000000 *MOVSLJ
003 00 a 00 000000 *CMPSLE 014 00 a 00 000000 *MOVSO
006 00 a 00 000000 *CMPSN 017 00 0 00 000000 *MOVSRJ
012 00 a 00 000000 *CVTBDO 015 00 a 00 000000 *MOVST
013 00 a 00 000000 *CVTBDT 020 00 a 00 000000 *XBLT

C-9

MACRO-DEFINED MNEMONICS

C.4 JRST AND JFCL MNEMONICS

Table C-5 shows mnemonics that assemble both operator and accumulator
fields in the machine instruction. The left side of th& table shows
the mnemonics and the code they generate7 the right side shows JRST
and JFCL mnemonics with accumulators generating the equivalent code.

Table C-5
JRST and JFCL Mnemonics

Code and Mnemonic Equivalent Code and Mnemonic

254 04 0 00 000000 HALT 254 04 0 00 000000 JRST 4,
255 06 0 00 000000 JCRY 255 06 0 00 000000 JFCL 6,
255 04 0 00 000000 JCRYO 255 04 0 00 000000 JFCL 4,
255 02 0 00 000000 JCRYI 255 02 0 00 000000· JFCL 2·,
254 12 0 00 000000 JEN 254 12 0 00 000000 JRST 12,
255 01. 0 00 000000 JFOV 255 01 0 00 000000 JFCL 1,
255 10 0 00 000000 JOV 255 10 0 00 000000 JFCL 10,
254 02 0 00 000000 JRSTF 254 02 0 00 000000 JRST 2,
254 01 0 00 000000 PORTAL 254 01 O· 00 000000 JRST 1,
254 06 0 00 000000 *XJEN 254 06 0 00 000000 JRST 6,
254 05 0 00 000000 *XJRSTF 254 05 0 00 000000 JRST 5,
254 07 0 00 000000 *XPCW 254 07 0 00 000000 JRST 7,
254 14 0 00 000000 *XSFM 254 14 0 00 000000 JRST 14,

C-I0

APPENDIX D

PROGRAM EXAMPLES

The following pages contain examples of MACRO programs. Each program
has been assembled with the /C (CREF) switch ani this produces a .CRF
file for the program listing (instead of the usual .LST file). The /0
switch has been used with the CREF program to produce a .LST file that
includes all operators in an operator symbol table.

D-l

tj
I

r-v

MACROS
EXAM20

MACRO %53(1017) 16:17 2-Mar-78 Pa~e 1
MAC 2-Mar-78 16:17 Example One

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

NO ERRORS DETECTED

PROGRAM BREAK IS 000000
CPU TIME USED 00:00.570

34P CORE USED

SUBTTL Example One
UNIVERSAL MACROS

;This UNIVERSAL pro~ram contains the macro QUIT, which uses
conditional assembl~ to ~enerate a pro~ram exit monitor
call. If the TOPS10 switch is on when QUIT is called (or if
it is undefined), QUIT ~enerates -EXIT-; if the switch
is off, QUIT ~enerates -HALTF-.

DEFINE QUIT <

).

:>

~:.

:::.
PRGEND

IFNDEF TOPS10,(
TOPS10==-1

IFE TOPS10,':::
HALTF

IFN TOF'S10, <
EXIT

;;Default is TOPS10

I'tI
l:tI o
G1

~
3:

tzl
:><
~
3:
I'tI
t'1
tzl
rn

t:l
I

w

Second Example of MACRO Program MACRO %53(1017) 16:17 2-Mar-78 Page 2
EXAM20 MAC 2-Mar-78 16:17 Example Two

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

SUBTTL Example Two
TITLE Second Example of MACRO Program

;This program contains the macros CLEAR, CONCAT, and EXPAND.

;

These can be used to append arbitrar~ text into a buffer,
and to recall the text later. Two seauences of calls
to the macros show possible uses.

;The following points are of interest:

1. The buffer is cleared b~ calling CLEAR. Text is added
(on the right side of the buffer) b~ calling CONCAT.
EXPAND, when used in a context allowed for macro calls,
expands the contents of the buffer into source code.

2. A call to CLEAR defines the text buffer, EXPAND, to
contain no text. It also defines the macro CONCAT in
such a wa~ that the first call to CONCAT redefines
EXPAND to contain the first piece of text, and CONCAT
redefines itself so that further calls to CONCAT will
call the internal macro CONi. Following the second
call to CONCAT, each further call merel~ appends new
text to the old.

3. A ke~ feature of EXPAND is that it contains no carriage
returns. If it did, then each concatenation of new
text would also insert a carriage return into the text.

4. The first use of these macros shows that EXPAND can be
placed in contexts where more than one argument will
result (as in the BYTE pseudo-op). Note that because
angle brackets are used internall~ (inside the macros)
to delimit text, all concatenated text must contain
matched angle brackets.

5. Note that carriage returns, if desired, can be easil~
conc~tenated to the buffer; this is done in the second
use of the macros.

ttl
!:t' o
Gl

~
3:

t1]
:><
~
3:
ttl
t'"1
t1]
til

t::I
I
~

Second Example of MACRO ProSram MACRO %53(J017) 16:17 2-Mar-78 Pa~e 3
EXAM20 MAC 2-Mar-78 16:17 Example Two

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91 000000' 010 101 006 00000
92
93
94
95
96
97
98
99

100
101
102
103
104

DEFINE CLEAR <
DEFINE CONCAT (FTXT) <

DEFINE CONCAT (TEXT) <
CONl <TEXT),<FTXT)

).

DEFINE EXPAND <FTXT>
~~

DEFINE EXPAND <>
~:.

DEFINE CONl (NTXT,OTXT) <
DEFINE CONCAT (TEXT) <

CONl <TEXT>,<OTXT'NTXT>
:;:.
DEFINE EXPAND <OTXT'NTXT>

:::-

SALL

CLEAR

CONCAT <10>
CONCAT <,>
CONCAT <·A·>
CONCAT <,«-1,,6>&177»

LALL
BYTE (7)EXPAND~10,·A·,«-1,,6>&177)~

SALL
CLEAR

CONCAT <DEF>
CONCAT <INE FOO ()
CONCAT <N»
CONCAT «2*N>
DEFINE)
CONCAT < BAR (N) <3*N)
::. ..

~
~
o
G)

~
~
ttl
~
!):II
3:
""d
t'1
ttl
til

o
I

U1

Second Example o~ MACRO ProSram MACRO %53(1017) 16:17 2-Mar-78 PaSe 4
EXAM20 MAC 2-Mar-78 16:17 Example Two

105
106
107
108
109
110
111
112 000001' 000000
113 000002' 000000
114 000003' 000000
115 000004' 000000
116
117

NO ERRORS DETECTED

PROGRAM BREAK IS 000005
CPU TIME USED 00:00.166

34P CORE USED

000004
000006
000006
000011

LALL
EXPAND-DEFINE FOO (N)(2*N>
DEFINE BAR (N) (3*N>

FOO 2-2*2-
FOO 3-2*3-
BAR 2-3*2-
BAR 3-3*3-

PRGEND

to
l:tI o
G'l

~ s:
tzl
:><
~ s:
to
t'1
tzl
til

0
I

0"1

Third Example of MACRO Pro~ram MACRO %53(1017) 16:17 2-Mar-78 Pa~e 5
EXAM20 MAC 2-Mar-78 16:17 Example Three

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

SUBTTL Example Three
TITLE Third Example of MACRO Pro~ram

;This pro~ram uses the macros NUMLST and X to ~enerate parallel
tables.

;
;This example ~enerates a table that contains ke~words suitable

for comparison to user input; the second table ~enerated
contains addresses or routines that handle those ke~words;
the third table contains useful values.

;
;The ke~word table is arran~ed alphabeticall~ to speed searchin~;

the other two tables correspond entr~-for-entr~ to the
ke~word table.

;
;Ke~ features of this pro~ram include:

1. Chan~in~ the size of the tables is eas~. For example,
if a new entr~, FIFTH, is needed, addin~ the word and
a dumm~ label to the definition of NUMLST will update
both tables; no separate update is reQuired.

2. The macro NUMLST calls the macro X. Before each call
to NUMLST, X is redefined so that the proper kind of
table is built. Note that a definition of X need not
use both ar~uments in the macrobod~. (However, X should
define both ar~uments.)

3. The second definition of X uses concatenation to build
mnemonic labels for the table LBLTBL.

4. The pro~ram uses the macro QUIT so that it can be used
for either TOPS-l0 or TOPS-20. The SEARCH MACROS statement
makes the definition of QUIT available; since the default
for QUIT is TOPS-l0, the pro~ram will run on TOPS-l0 if
either it defines TOPS10=-1 or does not define TOPS10;
the pro~ram will run on TOPS-20 onl~ if it defines
TOPS10=0.

ItJ
~ o
Gl

~
3:

t%j

:><:
):01
3:
ItJ
t"i
t%j
(J)

Third Example of MACRO Pro~ram MACRO %53(1017) 16:17 2-Mar-78 Pa~e 6
EXAM20 MAC 2-Mar-78 16:17 Example Three

158
159
160 SEARCH MACROS,MONSYM
161 000000 TOF'S10==0
162 .DIRECTIVE SFCOND
163
164 DEFINE NUMLST <
165 X (FIRST,1)
166 X (FOURTH,4)
167 X (SECOND,2)
168 X (THIRD,3)
169 :>
170
171 DEFINE X (TEXT, JUNK) <EXP SIXBIT ITEXT/>
172
173 000000' NAMTBL: NUMLST~

174 000000' 465162 636400 X (FIRST,l)~EXP SIXBIT IFIRST/~ "tI
175 000001' 465765 626450 X (FOURTH,4)~EXP SIXBIT IFOURTH/~ ~

0
176 000002' 634543 575644 X (SECOND,2)~EXP SIXBIT ISECOND/~ G'l
177 000003' 645051 624400 X (THIRD,3)~EXP SIXBIT ITHIRD/~ ~

178 000004 TBLLEN==.-NAMTBL :J::II
0 3:
I 179

-.J 180 DEFINE X (JUNK,LABL) ($'LABL> tJ]
~

181 :J::II
182 000004' LBLTBL: NUMLST~ 3:
183 000004' 000000 000014' X (FIRST,l)~$l'"' "tI

t"t
184 000005' 000000 000017' X (FOURTH,4)'"'$4'"' tJ]

185 000006' 000000 000015' X (SECOND,2)'"'$2'"' til

186 000007' 000000 000016' X (THIRD,3)'"'$3'"'
187
188 DEFINE X (JUNK,VALU) <DEC VALU>
189
190 000010' VALTBL: NUMLST'"'
191 000010' 000000 000001 X (FIRST,l)'"'DEC 1'"'
192 000011' 000000 000004 X (FOURTH,4)'"'DEC 4'"'
193 000012' 000000 000002 X (SECOND,2)'"'DEC 2'"'
194 000013' 000000 000003 X (THIRD,3)'"'DEC 3'"'
195
196

o
I

co

Third Example of MACRO Program MACRO Z53(1017) 16:17 2-Mar-78 Page 7
EXAM20 MAC 2-Mar-78 16:17 Example Three

197
198
199
200 000014'
201 000014' 104 00 0 00 000170
202 000015'
203 000015' 104 00 0 00 000170
204 000016'
205 000016' 104 00 0 00 000170
206 000017'
207 000017' 104 00 0 00 000170
208
209

NO ERRORS DETECTED

PROGRAM BREAK IS 000020
CPU TIME USED 00:00.152

34P CORE USED

XALL
$1: aUIT~

HAL ofF
$2: aUIT~

HALTF
$3: aUIT~

HALTF
$4; aUIT~

HALTF

PRGEND

"tI
!:t1
a
G")

$!
::c
t%l
:><
:J::oI ::c
"tI
t'1
t%l
(Jl

o
I

\.0

Third Example of MACRO ProSram MACRO %53(1017) 16:17 2-Mar-78 PaSe 5-1
EXAM20 MAC 2-Mar-78 16:17 SYMBOL TABLE

HALTF 104000 000170 int
LBLTBL 000004'
NAMTBL 000000'
TBLLEN 000004 spd
TOP510 000000 spd
VALTBL 000010'
$1 000014'
$2 000015'
$3 000016'
$4 000017'

ttl
~ o
Gl

~
3:

[I]

~
::t>'
3:
ttl
t'1
[I]
til

0
I

......
0

Fourth Example of MACRO Pro~ram MACRO %53(1017) 16:17 2-Mar-78 Pa~e 8
EXAM20 MAC 2-Mar-78 16:17 Example Four

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

SUBTTL Example Four
TITLE Fourth Example of MACRO Pro~ram

;This pro~ram contains a complex and useful macro, COMMON.
The macro allows declaration of variable names for a
FORTRAN-compatible COMMON block. Note that the pseudo-op
.COMMON allows declaration of a COMMON block, but not of
variable names within the block.

;The COMMON macro uses two ar~uments:

;

1. The name of the COMMON block.

2. An IRP-style list of the variable names for the block.
The list can contain either variable names onl~ (with
an assumed len~th of one word for each variable), or
can contain an an~le-bracketed pair ~ivin~ the name and
the len~th in decimal.

;Key features of the pro~ram include:

1. Len~ths for variables are ~iven in decimal numbers,
so that the definitions look much like those in the
FORTRAN lan~ua~e. This is accomplished b~ storin~
the current radix in a created symbol, and restorin~
it at the end of the macro.

2. The macro uses the techniGue of IRPin~ more than once
on the IRP list. The first IRP counts the len~th of
the entire COMMON block, so that the .COMMON pseudo-op
can be used; the second IRP declares variable names
for each entry in the block.

3. The pseudo-ops .XCREF and PURGE are used often
in the macro; this is to remove references to created
symbols from the CREF listin~ and the s~mbol table.

4. Created symbols are used in the macro for symbols that
are used onl~ within the macro itself. This minimizes
the chance that other definitions will conflict with
these symbols.

5. Once the COMMON macro has been called. symbols in the
COMMON block may be used mu~h as any other symbols;
this is shown in the IFIX and ZERO routines.

tt1
!:Jj
o
G'l

~
3:
tzj
:><
:J:oI
3:
tt1
t""
tzj
ttl

0
I

.......

.......

Fourth Example of MACRO ProSram MACRO Z53(1017) 16:17 2-Mar-78 PaSe 9
EXAM20 MAC 2-Mar-78 16:17 Example Four

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

DEFINE COMMON (COM,VARS,ZRAD,ZLEN,ZVAL,ZCOM,ZPAS) <
.XCREF ZRAD,ZLEN,ZVAL,ZCOM,ZPAS

)*

;;Temp macro to strip one pair of ansle brackets from
;; a macro arSument and pass it to another macro

DEFINE ZPAS (A,B) (A B)

;;Temp macro to ~ompute lensth of COMMON

DEFINE ZCOM (VAR,LEN(I» (%LEN==%LENtLEN)

:r.RAD==10
RADIX 10
ZLEN==O
IRP VARS(ZPAS ZCOM,VARS)
.COMMON COM[:r.LENJ

DEFINE :r.COM (VAR,LEN(l» (
VAR=ZVAL

., .,.
ZVAL==:r.VALtLEN

ZLEN==O
ZVAL==COM
IRP VARS(ZPAS :r.COM,VARS)
RADIX %RAD

;;Save current radix, use 10
;; so defs read like FORTRAN
;;Set to count lensth of COMMQN
;;Get lensth of this COMMON
;;Allocate the whole COMMON

;;Set UP another temp macro
;;Define COMMON block entr~
;;Increment to next entr~

;;Reinitialize lensth
;;Start to define entries in block
;;Define next COMMON entr~
;;Restore current radix

IF2,(PURGE %LEN,ZRAD,ZVAL,:r.COM,:r.PAS) ;;Keep s~mbol table clean

tt:I
:;d
o
Gl

~
3:

trl
:><
:J:>I
3:
tt:I
tot
trl
til

o
I

......
N

Fourth Example of MACRO ProSram MACRO %53(1017) 16:17 2-Mar-78 PaSe 10
EXAM20 MAC 2-Mar-78 16:17 Example Four

291
292
293
294
295
296
297
298
299
300
301
302 000000' 122 01 0 00 OOOOOOt
303 000001' 202 01 0 00 000000*
304 000002' 263 17 0 00 000000
305
306
307
308 000003' 200 01 0 00 000007'
309 000004'402 00 0 00 OOOOOOt
310 000005' 251 01 0 00 OOOOOOt
311 000006' 263 17 0 00 000000
312
313 000007'
314 000007' OOOOOot OOOOOOt
315
316

NO ERRORS DETECTED

PROGRAM BREAK IS 000010
CPU TIME USED 00:00.232

36P CORE USED

INTEGER SNGLE,ARRAY,MULTI
REAL REAL
DOUBLE PRECISION DOUBLE
COMMON /AREA/SNGLE,REAL,DOUBLE,ARRAY(10),MULTI(5,10)

COMMON AREA,<SNGLE,REAL,<DOUBLE,2>,<ARRAY,10>,<MULTI,5*10»~

;Sample routine to do SNGLE=IFIX(REAL)

IFIX: FIX 1,REAL
MOVEM 1,SNGLE
POPJ 17,

;Sample routine to set all elements in ARRAY to 0

ZERO:

LIT

MOVE 1,[XWD ARRAY,ARRAY+1J
SETZM ARRAY
BL T 1, ARRAY+,"'D9
F'OPJ 17,

END

"0
~ o
G1

$!
3:
I:%]
:>c:
):II
3:
"0
t-t
I:%]
til

t:I
I

I--'
W

Fourth Example of MACRO Pro~ram MACRO %53(1017) 16:17
EXAM20 MAC 2-Mar-78 16:17 SYMBOL TABLE

AREA 00000 l' e;·{t
ARRAY 000000000000=1= pol
DOUBLE 000000000000=1= pol
IFIX 000000'
MULTI 000000000000=1= pol
REAL 000000000000=1= pol
SNGLE 000000*
ZERO 000003'

2-Mar-78 Pa~e S-2

to
~ o
G"l

~
3:

[J:]

:>c:
~
3:
to
tot
[J:]
(Jl

o
I

......
,1:::0.

AREA
ARRAY
DOUBLE
IFIX
LBLTBL
MULTI
NAMTBL
REAL
SNGLE
TBLLEN
TOPS10
VALTBL
ZERO
$1
$2
$3
$4

299+
299+
299+
302+
182+
299+
173+
299+
299+
178+
161+
190*
308+
183
185
186
184

299
308

178
302
303

201

200+
202+
204+
206+

309 310

202 203 204 205 206 207 208

"0
~ o
G)

~
3:

ttl
:><
:JlI
3:
"0
t""
ttl
til

o
I

.....
U1

BAR
CLEAR
COMMON
CON1
CONCAT

EXPAND
Faa
HALTF
NUMLST
QUIT
X

•• 0004
•• 0005

1094
641

2591
741
831
98
831

1081
201
1641

101
1711
194
299
299

114 115
83 94

298
86 87 88
85 851 86
984 99 1001
851 861 87:1:

112 113
203 205 207
173 182 190
200 202 204
174 175 176

2991

97 98 100 102
861 87 871 88 881

101 1024
B81 91 941 961 97t

206
177 1801 183 184 185

941 96 961

984 lOOt 1021

186 188t 191

97 97:1=

108

192 193

ttl
~ o
Gl

~
3:

[:I:]

:><:
):II
3:
ttl
t'1
[:I:]

til

BLT 310
BYTE 91
DEC 191 192 193 194
DEFINE 10 64 74 83 85 86 87 88 94 96 97 98 100 102

108 109 164 171 180 188 259 299
END 316
EXP 174 175 176 177
FIX 302
IF2 299
IFE 201 203 205 207
IFN 202 204 206 208
IFNDEF 201 203 205 207
IRP 299
LALL 90 107
LIT 313
MOVE 308
MOVEM 303
POPJ 304 311
PRGEND 21 117 209
PURGE 299 ftJ
RADIX 299 !:tJ

0
SALL 81 93 Gl
SEARCH 160

~ t1 SETZM 309
1 SIXBIT 174 175 176 177 I-' tr.l 0'1 SUB TTL 1 22 118 210 >: TITLE 23 1-19 211 ~. UNIVER 2

XALL 199 t""
XWD 308 tr.l
.COMMO 299 til

.DIREC 162

APPENDIX E

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

The pseudo-ops in this appendix are included for system compatibility;
they are to be used only to assemble TOPS-IO programs while running
TOPS-20.

E-l

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

HISEG

HISEG address

address = program high-segment origin address. Must be
equal to or greater than 400000 and must be a
multiple of 1000.

Directs the loader to load the current program into the
high segment if the program has reentrant (two-segment)
capability. HISEG should appear at the beginning of
the source program.

HISEG does not affect assembler operation. The code
produced by HISEG will execute at either relocatable 0
or relocatable 400000, depending on the loading
instructions given.

The code following HISEG looks as if it was assembled
to start at relocatable o.

This pseudo-op has been replaced by TWOSEG.

E-2

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

-I~ ________ R_I_M ______ ~
RIM

Specifies a format for absolute binary programs (useful
only for PDP-6 systems), and consists of a series of
paired words.

The first word of each pair is a paper-tape read
instruction giving the memory address of the second
word. The last pair of words is a transfer block; the
first is an instruction obtained from the END statement
and executed when the transfer block is read, and the
second is a dummy word to stop the reader.

E-3

FORMAT

FUNCTION

PSEUDO-OPS FOR SYS~EM COMPATIBILiTY

RIMIO

RIMIO

Causes a program format in which programs are ab~olute,
unblocked, and· not checksummed. When the RIMIO
statement follows a LOC statement in a program, the
assembler punches out each storage word in the object
program, starting at the absolute address specified in
the LOC· statement. RIMIO ~ritesan arbitary "paper
tape"~ if it·is in the format given below, it can be
read by the DECsystem-lO Read-In Mode hardware.

IOWD n,first

where n is the length of the program including the
ending word transfer, and first is the first memory
location to be occupied. The last location must
contain a transfer instruction to begin the program,
such as

JRST 4,GO

For example, if a program with RIMIO
first location at START and its
FINISH,you can write

IOWD FINISH-START+l,START

NOTE

output has its
last location at

If the location counter is increased but no
binary output occurs (for example, BLOCK, LaC,
and VAR pseudo-ops), MACRO inserts a zero word
into the binary output file for each location
skipped by the location counter.

E-4

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

RIMIOB

RIMIOB

If a program is assembled into absolute locations (not
relocatable), a RIMIOB statement following the LOC
statement at the beginning of the source program causes
the assembler to write out the object program in RIMIOB
format. This format is designed for use with the
DECsystem-lO Read-In Mode hardware.

The program is punched during Pass 2, starting at the
location specified in the LOC statement. If the first
two statements in the program are

LOC 1000
RIM10B

MACRO assembles the program with absolute addresses
starting at 1000 and punches the program in RIMIOB
format, also starting at location 1000. You can reset
the location counter during assembly, but only one
RIMIOB statement is needed to punch the entire program.

In RIMIOB format, the assembler punches the RIMIOB
Loader, followed by the program in 17-word (or less)
data blocks, each block separated by blank tape. The
assembler inserts an I/O transfer word (IOWD) preceding
each data block, and also inserts a 36-bit checksum
following each data block. The word count in the IOWD
counts only the data words in the block, and the
checksum is the 36-bit added checksum of the IOWD and
the data words.

Data blocks can contain less than 17 words. If the
assembler assigns a nonconsecutive location, the
current data block is terminated, and an IOWD
containing the next location is inserted, starting a
new data block.

The transfer block consists of two words. The first
word of the transfer block is an instruction obtained
from the END statement. This first word is executed
when the transfer block is read. The second word is a
dummy word to stop the reader.

E-5

APPENDIX F

STORAGE ALLOCATION

MACRO allocates storage in two directions:

1. User symbols and macronames are entered in the symbol tables.

2. Macros and literals are entered in free space.

A symbol table entry is two words long. The first word is the symbol
name in SIXBIT. The second word has flags in the left half, and
either the value or a pointer in the right half. The flags indicate
symbol type and attributes.

The following list shows how symbols and values are stored.

Type

IS-bit symbol

36-bit symbol
(includes OPDEFs
and negative numbers)

EXTERNAL symbol

Polish symbol

How Stored

Value in right half of second word.

Value in free storage with a pointer in
symbol table.

Po~nter in symbol table to a 2-word block in
free storage. The first word is the value
that is the last reference in a chain of
references to the symbol; the second word is
the symbol name in SIXBIT.

The symbol table entry points to a 2-word
block:

word 1: 0
word 2: negative number"address

Word 1 is the relocation word and is always
zero. Word 2 gives the address of a Polish
stack in free storage. The Polish stack is
of the form:

word 1: 0
word 2: opcode
word 3: relocation constant
word 4: value
word 5: relocation constant
word 6: value

F-l

Inter-PSECT reference

Synonym operator
(SYN argument)

Macroname

STORAGE ALLOCATION

Words 1 and 4 designate an operand. If the
operator is binary, words 5 and 6 designate
the second operand; if the operator is
unary, the stack contains only four words.

If an operand is EXTERNAL, its two words (3
and 4, or 5 and 6) are:

word i: pointer to EXTERNAL symbol
word i+l: 0

If an operand is itself a Polish symbol, its
two words are:

word i: Polish pointer
word i+l: 0

Polish stack containing:

word 1: 0
word 2: 15
word 3: -2
word 4 : referenced PSECT index
word 5: relocation const~nt
word 6: address

SIXBIT operator riame in. free st6rage with-a
pointer in the symbol table.

Value in -free storage with a pointer to the
text string in symbol table.

The text string is stored in a 4-word block
of the form:

word 1: link to next block (0 if
last) "two ~haracters

word 2: five characters
word 3: five characters
word 4: five characters

However, the first such block is
special:

word l: link to next block"link
- -to last block

word 2: pointer to default
arg."number of args
expected + reference count

word 3: five characters
word 4: five characters

The number of args expected is the number of
dummy-arguments in the macro definition.

The reference count is incremented when the
macro is called and decremented when the
macro is exited. When this count goes to
zero, the macro is removed from free space.

F-2

Macro arguments

Macros

STORAGE ALLOCATION

Stored in the same linked block, but not in
the symbol table. Repeats (two or more
times) are also stored in the same way. The
text blocks are removed when the macro exits
or the repeat exits, since the reference
count has gone to zero.

The addresses of the actual argument blocks
are stored in a pushdown stack in order of
generation.

Default arguments are stored in the same way,
except that the list is in free core. The
pointer to the default arg list is stored in
the left half of the second word of the first
block of the macro definition.

The macrobody is stored as is,
dummy-arguments are replaced
symbols.

except that
by special

ASCII 177 (RUBOUT) signals that the next
character is a special character, as follows:

001. ;end of macro
002 ;end of dummy symbol
003 ;end of REPEAT
004 ;end of IRP or IRPC
005 ;RUBOUT

If the character is more than 5 and less than
100, it is illegal.

If the character is greater than or equal to
100, it is a dummy symbol; the value of the
character is ANDed with 37 to get the dummy
symbol number, and the corresponding pointer
retrieved from the stack of actual arguments.

If the symbol was not specified (that is, has
no pointer), and if the 40 bit is on, this
symbol requires a created symbol, and one is
created; otherwise the argument is ignored.

NOTE

Verbose macros can use too
storage space.

F-3

much

Literals

STORAGE ALLOCATION

Four-word block for each word generated

word 1: form word
word 2: relocation bits
word 3: code
word 4 : pointer to next block

Form word is the word used for listing.
This word is not checked when comparing
literals, so that different forms
producing the same code are classed as
equal.

Relocation bits are 0, 1, or EXTERNAL
pointers.

Pointer is the address of the zero word
of the next block.

NOTE

Long literals slow assembly and
~se storage; they should be
written as subroutines or inline
code.

F-4

APPENDIX G

ACCESSING ANOTHER USER'S FILE

MACRO allows you to access another user's file in two ways. The first
is to give a logical name in place of the device name; the second is
to give a project-programmer number instead of a directory name. You
can give either of these in your program or in a MACRO command line.

For more information about referencing other users' files, refer to
the DECSYSTEM-20 User's Guide.

G.l USING LOGICAL NAMES

To use a logical name in accessing another user's file, you must:

1. Give the DEFINE command to define a logical name (of no more
than six characters) as the other user's directory name.

2. Use the logical name as the device name whenever giving the
file specification.

G.l.l Giving the DEFINE Command

TO give the DEFINE command:

1. Type DEF and press the ESCAPE key;
(LOGICAL NAME) •

@DEFINE (LOGICAL NAME)

the system prints INE

2. Type the logical name, ending it with a colon; then type the
directory name in angle brackets and RETURN:

@DEFINE (LOGICAL NAME) BAK:<BAKER>
@

To check the logical name, give the INFORMATION (ABOUT)
LOGICAL-NAMES command.

@INFORMATION (ABOUT) LOGICAL-NAMES
BAK: => <BAKER>
@

G-l

ACCESSING ANOTHER USER'S FILE

G.l.2 Using the Logical Name

You can include the logical name in a command line or in your program.

G.l.2.1 Command Lines - To include the logical name in a command
line, type the logical name in place of a device name.

The following example shows how to compile the file <BAKER>SPEC.MAC.
You must have already defined the logical name BAK: as <BAKER>.)

@MACRO
*SPEC.REL=BAK:SPEC.MAC

G.l.2.2 User Programs - After giving the DEFINE command, include the
logical name within the program to reference the file.

The following example shows how to
<BAKER>MACROS.MAC with a .REQUEST pseudo-oPe

.REQUEST BAK:MACROS.MAC

ref~renc~ the file

This command causes LINK to load the file MACROS.MAC from the
directory that has been assigned the logical name BAK.

G.2 USING PROJECT-PROGRAMMER NUMBERS

To use a project-programmer number in accessing anothet user's file,
you must:

1. Run the TRANSL program to find "the corresponding
project-programmer number for the given"directory name.

2. Include the project-programmer number after the filename.

You do not have
project-programmer.
sometimes change;

to define a logical name if. you use a
number. Project~programmer numbers," however,

therefore, use logical names wherever possible.

G.2.1 Running the TRANSL Program

To run the TRANSL program, you must:

1. Type TRANSL and press the ESCAPE key. The ~ystem completes
the line as TRANSLATE (DIRECTORY).

@TRANSLATE (DIRECTORY)

2. Type the directory name and press the RETURN key. The system
prints the appropriate project-programmer number.

TRANSLATE (DIRECTORY>(BAKER>
PS:<BAKER> IS PS:C4,204J

G-2

ACCESSING ANOTHER USER'S FILE

You can also use the TRANSL program to make sure a project-programmer
number is correct. Simply replace the directory name with the
project-programmer number.

@TRANSLATE (DIRECTORY)[4,204J
PS:C4,204J IS PS:<BAKER>

G.2.2 Using the Project-Programmer Number

You can include the project-programmer number in a command line or in
your program. Because project-programmer numbers can change, you
should use a logical name.

G.2.2.l Command Lines - To include a project-programmer number in a
command line, type the project-programmer number after the file
specification.

The following example shows how to compile the file <BAKER)SPEC.MAC by
using a project-programmer number.

@MACRO
*SPEC.REL=SPEC.MACC4,204J

G.2.2.2 User Programs - After obtaining the project-programmer
number, you can use it within the program to reference the file.

The following example shows how to reference the file
<BAKER)MACROS.MAC from your program.

.REQUEST MACROS.MACC4,204J

This command causes LINK to load the file MACROS.MAC from the
directory associated with [4,204] •

G-3

jA, 7-3
Absolute address, 3-38,

3-46
Absolute expression, 2-15
Absolute symbol, 2-12 '
Accumulator, 4-4
Accumulator,

implicit, 4-6
Addition, 2-13
Address, 1-3, 4-4
Address,

absolute, 3-38, 3-46
relocatable, 3-46, 3-57
starting, 3-17

Address assignment, 4-3
Allocation,

storage, F-l
Ampersand (&), B-4
AND, 2-13
Angle brackets «», B-7
Apostrophe ('), 6-2, B-5
Argument,

concatenating, 5-8
default, 5-8
dummy, 5-1, 5-2
missing, 5-2
null, 5-2
passed, 5-1, 5~2
quoting characters in,

5-4
Argument handling, 5-4
Argument interpretation,

5-11
Argument list, 5-4
Argument storage,

macro, F-3
Arithmetic expression, 2-13
Arithmetic operator, 2-13
Arithmetic overflow, 3-16
ARRAY, 3-2
ASCII (pseudo-op), 3-3
ASCII character codes, A-I
ASCII characters, 2-1
ASCIZ, 3-4
Assembler output, 6-1
Assembly,

conditional, 3-23, 3~24,
3-25, 9-5

.ASSIGN, 3-6
Assignment,

address, 4-3
Asterisk (*), 6-2, B-4
ASUPPRESS, 3-7
At-sign (@), B-6
Attributes,

symbol, 2-12, 3-23, 3-24

INDEX

B, B-2
jB, 7-3
.... B, B-2
Backslash (\), B-5
Backslash-apostrophe (\'),

B-6
Backslash-quote (\"), B-6
Binary program file, 6-5
Binary shifting, 2-6
Bit 0 (sign bit), 2-2
Bit pattern,

querying,,2-6
BLOCK, 3-8, 6-2
Brackets «»,

angle, B-7
Brackets ([]),

square, B-7
BYTE, 3-9
Byte pointer, 3-50

jC, 7-3
Call,

macro, 5-2
Character codes, A-I
Characters,

ASCII, 2-1
MACRO, 2-1
special, 2-2

Code,
error, 6-3
relocatable, 1-3

Codes,
symbol table, 6-4

Colon, B-3
Colon (:), B-7
Colon (::),

double, B-3
Comma (,), B-4
Comma (,,),

double, B-4
Command level,

MACRO, 7-1
Comment, 3-10, 3-59, 4-2,

4-3
COMMENT (pseudo-op), 3-10
Comment pseudo-ops,

COMMENT, 3-10
REMARK, 3-59

.COMMON, 3-11
Compatibility pseudo-ops,

E-l
Compilation,

program, 7-1

Index-l

Compiler switches,
MACRO, 7-3

Complement,
one's, 2-14
two's, 2-2

Concatenating argument, 5-8
Conditional assembly, 3-23,

3-24, 3-25, 9-5
Conditional pseudo-ops,

.IF, 3-23
• IFN, 3-24
IFx group, 3-25

Counter,
location, 2-8, 3-15, 3-38,

3-46, 3-49, 3-57, 3-74,
4-4, B-3

Counter pseudo-ops,
.ENDPS, 3-18
LOC, 3-38
.ORG, 3-46
.PSECT, 3-53
RELOC, 3-57
TWOSEG, 3-74

Created symbol, 5-9
.CREF, 3-12
Cross-reference table, 3-12,

3-79, 6-4
CTRL/underscore, B-6

.... D, B-2
DEC, 3-13
Decimal number,

fixed-point, 2-3
floating-point, 2-4

Decimal point (.), B-3
Default argument, 5-8
DEFINE (pseudo-op), 3-14
Definition,

label, 2-10
macro, 5-1
nested macro, 5-6
symbol, 2-10, 3-70, 4-3

DEPHASE, 3-15
Device code, 4-6
Device code mnemonics,

I/O, C-6
Direct-assignment symbol,

2-11, 4-3
.DIRECTIVE, 3-16
Division, 2-13
Dot (location counter), 2-8,

4-4, B-3
Double colon (::), B-3
Double comma ("), B-4
Double equal sign (==), B-7
Double pound-sign (##), B-5

INDEX (CONT •)

Double quotation marks ("),
B-5

Double semicolon (11), B-3
Dummy-argument, 5-1, 5-2

E, 2-5, B-2
IE, 7-3
END, 3-17
• ENDPS , 3-18
Ent code, 6-4
ENTRY, 2-12, 3-19
Equal sign (=), B-7
Equal sign (~=),

double, B-7
.EROVL, 3-16
Error code, 6-3

single-character, 8-3
Error messages,

MCRxxx, 8-7
Evaluating expressions,

2-14, 2-15
Examples, .

program, D-1
Exclamation point (1), B-3,

B-4
EXP, 3-20
ExpJ:ession,

absolute, 2-15
arithmetic, 2-13
evaluating, 2-15.
logical, 2-13
nested, 2-15
Polish, 2-14
re1ocatable, 2-15

Expressions,
evaluating, 2-14

Ext code, 6-4
EXTEND, 4-7
EXTEND mnemonics,

KLIO, C-9 ,.
Extended Instruction,

KL-IO, 4-7
EXTERN, 2-13, 3-21
EXTERNAL symbol, 2-12, 2-13,

2-14
EXTERNAL symbol storage,

F-l

/F, 7 3
.... F, B-2
File,

l~sting, 6-1'
UNIVERSAL, 6-5, 9-4

Fixed-point decimal number,
2-3

Index-2

FLBLST, 3-16
Floating-point decimal

number, 2-4

G, 2-3, B-2
/G, 7-3
Global symbol, 2-12, 2-13

/H, 7-3
Halfword, 1-3, 3-82
Halfword notation, 2-15
Hierarchy of operations,

2-14
HISEG, E-2
.HWFRMT, 3-21
Hyphen (-), B-4

I/O device code mnemonics,
C-6

I/O instruction format, 4-6
I/O instruction mnemonics,

C-6
.IF, 3-23
IFl, 3-25
IF2, 3-25
IFB, 3-25
IFDEF, 3-25
IFDIF, 3-25
IFIDN, 3-25
• IFN, 3-24
IFNB, 3-25
IFNDEF, 3-25
Implicit accumulator, 4-6
Indefinite repeat, 3~30,

3-31, 3-67, 5-10
Index register, 4-4
Indexed addressing, 4-4
Indirect addressing, 4-4
Informational messages, 8-1
Instruction format,

I/O, 4-6
primary, 4-4

Int code, 6-4
Integer, 2-2, 3-55
INTEGER (pseudo-op), 3-27
inter-PSECT reference

storage, F-2
INTERN, 2-12, 3-28
INTERNAL symbol, 2-12
Interpretation,

argument, 5-11
IOWD, 3-29
IRP, 3-30, 5-10

INDEX (CaNT.)

IRPC, 3-31, 5-10
.ITABM, 3-16

JFCL mnemonics, C-lO
JRST mnemonics, C-lO

K, 2-3, B-2
KAlO, 3-16
KIlO, 3-16
KL-IO Extended Instruction,

4-7
KLlO, 3-16
KLIO EXTEND mnemonicsj C-9

/L, 7-3
"'L, B-2
Label, 4-1, 4-3
Label definition, 2-10
Label in literal, 2-8
Label symbol, 2-10
LALL, 3-32
.LINK, 3-33
Linkage pseudo-ops,

.COMMON, 3-11
DEPHASE, 3-15
.DIRECT KAlO, 3-16
.DIRECT KIlO, 3-16
.DIRECT KLlO, 3-16
ENTRY, 2-12, 3-19
EXTERN, 2-13, 3-21
INTERN, 2-12, 3-28
.LINK, 3-33
.LNKEND, 3-37
PHASE, 3-49, 6-2
.REQUEST, 3-61
.REQUIRE, 3-62
• TEXT, 3-72
TWOSEG, 3-74
XPUNGE, 3-81

LIST, 3-34
Listing file, 6-1
Listing format, 6-2
Listing pseudo-ops,

ASUPPRESS, 3-7
.CREF,· 3-12
.DIRECT FLBLST, 3-16
.DIRECT LITLST, 3-16
,DIRECT SFCOND, 3-16
• HWFRMT, 3-21
LALL, 3-32
LIST, 3-34
.MFRMT, 3-39
.NODDT, 3-42
NOSYM, 3-43

Index-3

Listing pseudo-ops (Cont.)
PAGE, 3-47
SALL, 3-63
SUBTTL, 3-68
SUPPRESS, 3-69
TITLE, 3-73
XALL, 3-78
• XCREF, 3-79
XLIST, 3-80
XPUNGE, 3-81

LIT, 3-35
Literal, 2-7, 3-35, 3-40,

3-41
Literal,

Label in, 2-8
Literal storage, F-4
LITLST, 3-16
.LNKEND,3-37
LOC, 3-38
Local symbol, 2-12
Location counter, 2-8, 3-15,

3-38, 3-46, 3-49, 3-57,
3-74, 4-4, B-3

Logical expression, 2-13
Logical operator, 2-13

M, 2-3, B-2
/M, 7-3
Machine instruction

mnemonics, 3-83, 4-4,
<:-1

MACMPD, 3-16
MACPRF, 3-16
Macro argument storage, F-3
Macro call, 5-2
Macro call format, 5-4
MACRO characters, 2-1
MACRO command level, 7-1
MACRO compiler switches,

7-3
Macro definition, 5-1

nested, 5-6
Macro listing, 5-6
Macro pseudo-ops,

DEFINE, 3-14
.DIRECT .ITABM, 3-16
.DIRECT MACMPD, 3-16
.DIRECT MACPRF, 3-16
.DIRECT .XTABM, 3-16
IRP, 3-30, 5-10
IRPC, 3-31, 5-10
PURGE, 3-54
REPEAT, 3-60
STOPI, 3-67, 5-10

Macro table, 2-9, 2-12, 6-4
MACRO-defined mnemonics,

2-16, 4-2, C-l

INDEX (CaNT.)

Macrobody, 5-1
Macrobody storage, F-3
Macroname, 5-1
Macroname storage, F-2
MCRxxx error messages, 8-7
Memory, 1-3 .
Message pseudo-ops,

PRINTX, 3-52
Messages,

MCRxxx error, 8-7
.MFRMT, 3-39
Minus sign (-), B-5
Missing argument, 5-2
MLOFF, 3-40
MLON, 3-41
Mnemonics,

I/O device code, C-6
I/O instruction, C-6
JFCL, C-lO
JRST, C-lO
KLIO EXTEND, C-9
machine instruction, 3-83,

4-4, C-lp
MACRO-defined, 2-16, 4-2,

C-l
Multiplication, 2-13

/N, 7-3
Nested expression, 2-15
Nested macro definition,

5-6
NO (with .DIRECTIVE} , 3-16
.NOBIN, 3-16
.NODDT, 3-42
NOSYM, 3--43
NOT, 2-13
Null argument, 5-2
Number, 2~2, 3-55
Number,

fixed-point decimal, 2-3
floating-point decimal,

2-4
Number pseudo-ops,

.ASSIGN, 3-6
DEC, 3-13
.DIRECT .EROVL, 3-16
.DIRECT • OKOVL , 3-16
EXP, 3-20
OCT, 3-44
RADIX, 3-55
RADIX50, 3-56
SQUOZE, 3-66
Z, 3-83

/0, 7-3
"'0, B-3
OCT, 3-44
. OKOVL , 3-16

Index-4

One's complement, 2-14
Op-code table, 2-9
Opcode table, 6-4
OPDEF (pseudo-op), 3-45
OPDEF operator, 4-2
OPDEF storage, F-l
Operand, 4-2, 4-3, 4-4
Operation,

hierarchy, 2-14
Operator, 4-2, 4-3, 4-4
Operator,

arithmetic, 2-13
logical, 2-13

OR, 2-13
.ORG, 3-46
Output,

assembler, 6-1
Overflow,

arithmetic, 3-16

/P, 7-3
P22, 3-21
PAGE, 3-47
Parentheses, B-6
Pass 1, 3-17, 4-3
Pass 2, 3-17, 4-3
Pass control pseudo-ops,

END, 3-17
PASS2, 3-48
PRGEND, 3-51

PASS2 (pseudo-op), 3-48
Passed argument, 5-1, 5-2
Percent-sign (%), B-6
PHASE, 3-49, 6-2
Plus sign (+), B-4
POINT, 3-50
Pointer,

byte, 3-50
Pol code, 6-4
Polish expression, 2-14
Polish symbol storage, F-l
Pound-sign (##),

double, B-5
Pound-sign (#), 6-2, B-5
PRGEND, 3-51
Primary instruction format,

4-4
PRINTX, 3-52
Program,

single-segment, 9-1
two-segment, 9-2

Program compilation, 7-1
Program file,

binary, 6-5
Program listing file, 6-1
Program name, 3-73

INDEX (CONT .)

Program segmentation, 9-1
Program with PSECTs, 9-3
• PSECT, 3-53
PSECTs,

program with, 9-3
Pseudo-op,

format, 3-1
Pseudo-op operator, 4-2
Pseudo-ops,

compatibility, E-l
PURGE, 3-54

/Q, 7-3
Querying bit pattern, 2-6
Quotation marks ("),

double, B-5
Quotation marks ('),

single, B-5
Quoting characters in

argument, 5-4

Radix, 2-2
RADIX (pseudo-op), 3-55
RADIX50, 3-56
RADIX50 character codes,

A-I
Register,

index, 4-4
RELOC, 3-57
Relocatable address, 3-46,

3-57
Relocatable code, 1-3
Relocatab1e expression,

2-15
Re1ocatab1e symbol, 2-12
REMARK (pseudo-op), 3-59
Repeat,

indefinite, 3-30, 3-31,
3-67, 5-10

REPEAT (pseudo-op), 3-60
.REQUEST, 3-61
.REQUIRE, 3-62
RIM, E-3
RIMIO, E-4
RIM10B, E-5

/S, 7-4
SALL, 3-63
SEARCH, 3-64
Segmentation,

program, 9-1

Index-5

Semicolon (i), B-3
Semicolon (i i) ,

double, B-3
Sen code, 6-4
Sex code, 6-4
SFCOND, 3-16
Shifting,

binary, 2-6
underscore, 2-6

Sin code, 6-4
Single quotation marks ('),

B-5
Single-character error code,

8-3
Single-segment program, 9-1
SIXBIT (pseudo-op), 3-6~
SIXBIT character codes, A-I
Slash (I), B-4
Spd code, 6-4
Special characters, 2-2
Square brackets ([]), B-7
SQUOZE, 3-66
Starting address, 3-17
Statement format, 4-1
Statement processing, 4-3
STOPI, -3-67, 5-10
Storage, 3-2, 3-8, 3-11,

3-27, 3-35, F-l
Storage,

symbol, F-l
Storage allocation, F-l
Storage pseudo-ops,

ARRAY, 3-2
BLOCK, 3-8, 6-2
BYTE, 3-9
DEC, 3-13
EXP, 3-20
INTEGER, 3-27
IOWD, 3-29
LIT, 3-35
OCT, 3-44
POINT, 3-50
REPEAT, 3-60
VAR, 3-77
XPUNGE, 3-81
XWD, 3-82
Z, 3-83

Subroutine entry, 3-19
Subtraction, 2-13
SUBTTL, 3-68
SUPPRESS, 3-69
Switches,

MACRO compiler, 7-3
Symbol, 2-9

absolute, 2-12
created, 5-9
direct-assignment, 2-11,

4-3
EXTERNAL, 2-12, 2-13,

2-14

INDEX (CaNT.)

Symbol (Cont.)
global, 2-12, 2-13
INTERNAL, 2-12
label, 2-10
local, 2-12
relocatable, 2~12
valid, 2-9
variable, 2-11, 3-77

Symbol attributes, 2-12,
3-23, 3-24

Symbol definition, 2-10,
3-70, 4-3

Symbol pseudo-ops,
.ASSIGN, 3-6
• CREF, 3-12
DEFINE, 3-14
.DIRECT MACPRF, 3-16
ENTRY, 2-12, 3-19
EXTERN, 2-13, 3-21
INTERN, 2-12, 3-28
.NODDT, 3-42
OPDEF, 3-45
PURGE, 3-54
RADIX50, 3-56
SEARCH, 3-64
SQUOZE, 3-66
SYN, 3-70
UNIVERSAL, 3-75
VAR, 3-77
.XCREF, 3-79

Symbol storage, F-l
Symbol table, 2-9, 3-7,

3-43, 3-54, 3-64, 3-69,
3-75, 3-81, 6-4

Symbol table, .
user, 2-9, 2-12

Symbol table codes, 6-4
SYN (pseudo-op), 3-70
SYN symbol storage, F-2

IT, 7-4
Table,

cross-reference, 3-12,
3-79, 6-4

macro, 2-9, 2-12, 6-4
op-code, 2-9
opcode, 6-4
symbol, 2-9, 3-7, 3-43,

3-54, 3-64, 3-69, 3-75,
3-81, 6-4

user symbol, 2-9, 2-12
TAPE, 3-71
.TEXT, 3-72
Text entry pseudo-ops,

ASCII, 3-3
ASCIZ, 3-4
SIXBIT, 3-65
.TEXT, 3-72

Index-6

TITLE, 3-73
Two's complement, 2-2
Two-segment program, 9-2
TWOSEG, 3-74

/U, 7-4
Udf code, 6-4
Underscore, B-6
Underscore shifting, 2-6
UNIVERSAL, 3-75
UNIVERSAL file, 6-5, 9-4
User symbol table, 2-9,

2-12

Valid symbol, 2-9
VAR, 3-77
Variable symbol, 2-11, 3-77

INDEX (CONT.)

/W, 7-4

/X, 7-4
XALL, 3-78
.XCREF, 3-79
XLIST, 3-80
XOR, 2-13
XPUNGE, 3-81
.XTABM, 3-16
XWD, 3-82

z, 3-83

Index-7

MACRO ASSEMBLER
Reference Manual
AA-4l59C-TM

'\
I READER'S COMMENTS

I
I
I,
I,
I'
I'

:1
I'

,I

)1. '
I'
I
I

:1 , .,
I
1

'.

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use 'of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language progr~mmer

o Higher-level language programmer

o Occasional programmer (experienced)

[J User with little programming experience

o Student programmer

O' Non-programmer interested in computer concepts and capabilities

",Name Date ____________ _

Organization _______________ ~--~----------------------

·Street _____________________________ ~~-~----------------------------

, ci ty _______________________ Sta te _______ Z ip Code ____________ _
or

Country

.---------------------------------------~--------------------Fold lIere---.

. --~-- Do Not Tear· Fold Here and Staple ---.-

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
200 Forest Street MRl-2/E37
Marlborough, Massachusetts 01752

FIRST CLASS

PERMIT NO. 152

MAR LBOROUGH, MA

01752

•

