DECSYSIEM

Monitor Calls
User’s Guide ‘

Order No. DEC-20-OMUGA-A-D

Monitor Calls
User’s Guide

Order No. DEC-20-OMUGA-A-D

digital equipment corporation - maynard, massachusetts

First Printing, May 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright <:> 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

5/76-14

CONTENTS

Page
PREFACE vii
CHAPTER 1 INTRODUCTION
1.1 OVERVIEW 1-1
1.2 MONITOR CALLS 1-2
1.2.1 Calling Sequence 1-2
1.2.2 Returns 1-3
1.3 PROGRAM ENVIRONMENT 1-4
CHAPTER 2 INPUT AND OUTPUT USING THE TERMINAL
2.1 OVERVIEW 2-1
2.2 PRIMARY I/0O DESIGNATORS 2-2
2.3 PRINTING A STRING 2-2
2.4 READING A NUMBER 2-3
2.5 WRITING A NUMBER 2-4
2.6 INITIALIZING AND TERMINATING THE PROGRAM 2-6
2.6.1 RESET Monitor Call 2-6
2.6.2 HALTF Monitor Call 2-6
2.7 READING A BYTE 2-6
2.8 WRITING A BYTE 2-7
2.9 READING A STRING 2-7
2.10 SUMMARY 2-11
CHAPTER 3 USING FILES
3.1 OVERVIEW 3-1
3.2 JOB FILE NUMBER 3-2
3.3 ASSOCIATING A FILE WITH A JFN 3-2
3.3.1 GTJFN Monitor Call 3-4
3.3.1.1 Short Form of GTJFN 3-4
3.3.1.2 Long Form of GTJFN 3-10
3.3.1.3 Summary of GTJFN 3-14
3.4 OPENING A FILE 3-14
3.4.1 OPENF Monitor Call 3-15
3.5 TRANSFERRING DATA 3-17
3.5.1 File Pointer . 3-17
3.5.2 Source and Destination Designators 3-17
3.5.3 Transferring Sequential Bytes . 3-18
3.5.4 Transferring Strings 3-19
3.5.5 Transferring Nonsequential Bytes 3-20
3.5.6 - Mapping Pages 3-21
3.5.6.1 - Mapping File Pages to a Process 3-22
3.5.6.2 Mapping Process Pages to a File 3-23
3.5.6.3 Unmapping Pages in a Process 3-23
3.6 CLOSING A FILE 3-23
3.6.1 CLOSF Monitor Call ’ 3-24
3.7 ADDITIONAL FILE I/O MONITOR CALLS 3-25
3.7.1 GTSTS Monitor Call 3-25
3.7.2 JFNS Monitor Call 3-26

iii

CONTENTS (CONT.)

Page
3.7.3 GNJFN Monitor Call 3-28
3.8 SUMMARY 3-31
3.9 FILE EXAMPLES 3-32

CHAPTER 4 USING THE SOFTWARE INTERRUPT SYSTEM
4.1 OVERVIEW 4-1
4.2 INTERRUPT CONDITIONS 4-3
4.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES 4-3
4.4 SOFTWARE INTERRUPT TABLES 4-6
4.4.1 Channel Table 4-6
4.4.2 Priority Level Table 4-7
4.4.3 Specifying the Software Interrupt Tables 4-7
4.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM 4-7
4.6 ACTIVATING INTERRUPT CHANNELS 4-8
4.7 PROCESSING AN INTERRUPT 4-8
4,7.1 Dismissing an Interrupt 4-9
4.8 TERMINAL INTERRUPTS 4-9
4.9 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS 4-11
4.9.1 SKPIR Monitor Call 4-12
4,9.2 RIR Monitor Call 4-12
4,9.3 DIR Monitor Call 4-12
4.9.4 DIC Monitor Call 4-13
4.9.5 DTI Monitor Call 4-13
4.9.6 CIS Monitor Call 4-13
4.10 SUMMARY 4-13
4.11 SOFTWARE INTERRUPT EXAMPLE 4-14
CHAPTER 5 PROCESS STRUCTURE

5.1 USES FOR MULTIPLE PROCESSES 5-2
5.2 PROCESS COMMUNICATION 5-3
5.2.1 Direct Process Control 5-3
5.2.2 Software Interrupts 5-3
5.2.3 IPCF and ENQ/DEQ Facilities 5-3
5.2.4 Memory Sharing 5-4
5.3 PROCESS IDENTIFIERS 5-4
5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES 5-5
5.5 CREATING A PROCESS 5-6
5.5.1 Process Capabilities 5-7
5.6 SPECIFYING THE CONTENTS OF THE ADDRESS

SPACE OF A PROCESS 5-8
5.6.1 GET Monitor Call : 5-8
5.6.2 PMAP Monitor Call 5-9
5.7 STARTING AN INFERIOR PROCESS 5-10
5.8 INFERIOR PROCESS TERMINATION 5-10
5.9 INFERIOR PROCESS STATUS 5-11
5.10 PROCESS COMMUNICATION . 5-12
5.11 DELETING AN INFERIOR PROCESS 5-13
5.12 PROCESS EXAMPLES 5-14

CHAPTER 6 ENQUEUE/DEQUEUE FACILITY

6.1 OVERVIEW 6-1
6.2 RESOURCE OWNERSHIP 6-2
6.3 PREPARING FOR THE ENQ/DEQ FACILITY 6-3
6.4 USING THE ENQ/DEQ FACILITY 6-5
6.4.1 Requesting Use of a Resource 6-5

iv

CONTENTS (CONT.)

Page
6.4.1.1 ENQ Functions 6-5
6.4.1.2 ENQ Argument Block 6-7
6.4.2 Releasing a Resource 6-10
6.4.2.1 DEQ Functions 6-10
6.4.2.2 DEQ Argument Block 6-11
6.4.3 Obtaining Information About the Resources 6-11
6.5 SHARER GROUPS 6-13
6.6 AVOIDING DEADLY EMBRACES 6-14
CHAPTER 7 INTER-PROCESS COMMUNICATION FACILITY
7.1 OVERVIEW 7-1
7.2 QUOTAS 7-1
7.3 PACKETS 7-1
7.3.1 Flags 7-2
7.3.2 PIDs 7-4
7.3.3 Length and Address of Packet Data Block 7-5
7.3.4 Directories and Capabilities 7-5
7.3.5 Packet Data Block 7-5
7.4 SENDING AND RECEIVING MESSAGES 7-6
7.4.1 Sending a Packet 7-6
7.4.2 Receiving a Packet 7-8
7.5 SENDING MESSAGES TO <SYSTEM>INFO 7-10
7.5.1 Format of <SYSTEM>INFO Requests 7-10
7.5.2 Format of <SYSTEM>INFO Responses 7-11
7.6 PERFORMING IPCF UTILITY FUNCTIONS 7-12
APPENDIX A ERROR CODES AND MESSAGE STRINGS A-1
INDEX Index-1
FIGURES
FIGURES 4-1 Basic Operational Sequence of the
Software Interrupt System 4-2
4-2 Channels and Priority Levels 4-5
6-1 Deadly Embrace Situation 6~4
6-2 Use of Sharer Groups 6-13
7-1 IPCF Packet 7-2
TABLES
TABLES 2-1 NOUT Format Options 2-5
2-2 RDTTY Control Bits 2-8
3-1 Standard System Values For
File Specifications 3-3
3-2 GTJFN Flag Bits 3-4
3-3 Bits Returned on GTJFN Call 3-8
3-4 Long Form GTJFN Argument Block 3-10
3-5 OPENF Access Bits 3-15
3-6 Bits Returned on GTSTS Call 3-25
3-7 JFNS Format Options 3-27

[T T T T N T B A

NN OUT U
AUIRWNHNRFNFN -

CONTENTS (CONT.)

Software Interrupt Channel Assignments
Terminal Codes and Conditions
Process Handles

Process Status Word

ENQ Functions

DEQ Functions *

Packet Descriptor Block Flags

Flags Meaningful on a MSEND Call
Flags Meaningful on a MRECV Call
<SYSTEM>INFO Functions and Arguments
<{SYSTEM>INFO Responses

MUTIL Functions

vi

i)
o]
Q
1]

R L L I e L |
(= =

NNNNNNO U U
= 00 S N U1

N

PREFACE

The DECsystem-20 Monitor Calls User's Guide 1s written for the
assembly language user who is unfamiliar with the DECsystem-20. The
manual introduces the user to the functions that he can request of the
monitor from within his assembly language programs. The manual also
teaches him how to use the basic monitor calls for performing these
functions.

As such, this User's Guide is not a reference document, nor is it
complete documentation on the entire set of monitor calls. It is
organized according to functions, starting with the simple and
proceeding to the more advanced. Each chapter should be read from
beginning to end. A user who skips around in his reading will not
gain the full benefit of this manual. Once the user has a working
knowledge of the monitor calls in this document, he should then refer
to the DECsystem-20 Monitor Calls Reference Manual (DEC-20-OMRMA-A-D)
for the complete descriptions of all the calls.

To understand the examples in this manual, the user is assumed to be
familiar with . the MACRO 1language and the DECsystem-20 machine
instructions. The DECsystem-20 MACRO Assembler Reference Manual
(DEC-20-LMRMA-A~D) contains the documentation on the MACRO language.
The Hardware Reference Manual (EK-DEC10~RF-001) contains the
information on the machine instructions. These two manuals should be
used in conjunction with the Monitor Calls User's Guide and should be
referred to when questions arise on the MACRO language or the
instruction set.

In addition, some of the examples in this manual contain macros and
symbols (e.g., MOVX, TMSG, JSERR, JSHLT) from the MACSYM system file.
This file is a universal file of definitions available to the user as
a means of producing consistent and readable programs. The user
should obtain a listing of this file for more information on 1its
contents.

Finally, the user should be familiar with the TOPS-20 Command Language

to enter and run the examples. The DECsystem~-20 User's Guide
(DEC-20-OUGAA-A~D) describes the TOPS-20 commands and system programs.

vii

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

A program written in MACRO assembly language consists of a series of
statements, each statement usually corresponding to one or more
machine language instructions. Each statement in the MACRO program
may be one of the following types:

1. A MACRO assembler directive, or pseudo-operation (pseudo-op),
such as SEARCH or END. These pseudo-ops are commands to the
MACRO assembler and are performed when the program 1is
assembled. Refer to the DECsystem-20 MACRO Assembler
Reference Manual for detailed descriptions of the MACRO
pseudo-ops.

2. A MACRO assembler direct assignment statement. These
statements are in the form

symbol=value

and are used to assign a specific wvalue to a symbol.
Assignment statements are processed by the MACRO assembler
when the program 1s assembled. These statements do not
generate instructions or data in the assembled program.

3. A MACRO assembler constant declaration statement, such as
ONE:EXP 1
These statements are processed when the program is assembled.

4, An instruction mnemonic, or symbolic instruction code, such
as MOVE or ADD. These symbolic instruction codes represent
the operations performed by the central processor when the
program is executed. Refer to the Hardware Reference Manual
for detailed descriptions of the symbolic instruction codes.

5. A monitor call, or JSYS, such as RESET or BIN. These calls
are commands to the monitor and are performed when the
program is executed. This manual describes the commonly-used
monitor calls. However, the wuser should refer to the
DECsystem-20 Monitor Calls Reference Manual for detailed
descriptions of all the calls.

When the MACRO program is assembled, the MACRO assembler processes the
statements in the program by

. translating symbolic instruction codes to binary codes.

INTRODUCTION

. relating symbols to numeric values.
. assigning relocatable or -absolute memory addresses.

The MACRO assembler also converts each symbolic call to the monitor
into a Jump-to-System (JSYS) instruction.

1.2 MONITOR CALLS

Monitor «calls are used to request monitor functions, such as
input/output, error handling, and number conversions, during the
execution of the program. These calls are accomplished with the JSYS
instruction (operation code 104), where the address portion of the
instruction indicates the particular function. This instruction is
the only instruction that requests monitor functions at the assembly
language level.

Each monitor call has a predefined. symbol indicating the particular
monitor function to be performed (e.g., OPENF to indicate opening a
file). The symbols are defined in a system file called MONSYM.
(Refer to DECsystem-20 Monitor Calls Reference Manual for a listing of
the MONSYM file.) To use the symbols and to cause them to be defined
correctly, the user's program must contain the statement

SEARCH MONSYM

at the beginning of the program. During the assembly of the program,
the assembler replaces the monitor call symbol with an instruction
containing the operation code 104 in the left half and the appropriate
function code in the right half.

The JSYS instruction itself contains no data, nor does it contain
space for returned data. Arguments for a JSYS instruction are placed
in accumulators (ACs). Any data resulting from the execution of the
JSYS instruction 1is returned in the accumulators or in an address in
memory pointed to by an accumulator. Therefore, before the JSYS
instruction can be executed, the appropriate arguments must be placed
in the specific accumulators.

1.2.1 Calling Sequence

Arguments for the calls are placed 'in accumulators 1 through 4
(AC1-AC4). If more than four arguments are required for a particular
call, the arguments are in a list pointed to by an accumulator. The
arguments for the calls are specific bit settings or values. These
bit settings and values are defined in MONSYM with symbol names, which
can be used in the program. 1In fact, it is recommended that the user
write his program using symbols whenever possible. This makes the
program easier to read by another user. Use of symbols also allows
the values of the symbols to be redefined without requiring the
program to be changed. 1In this manual, the arguments for the monitor
calls are described with both the bit settings and the symbol names.
All program examples are written using the symbol names.

The set of instructions that place the arguments in the accumulators
is followed by one 1line of code giving the particular monitor call
symbol. During the program's execution, control is transferred to the
monitor when this line of code is reached.

INTRODUCTION

1.2.2 Returns

After the execution of the call, control returns to the user's program
at one of two places. 1If an error occurs during the call's execution,
control generally returns to the instruction immediately following the
monitor <call. In addition, an error code is stored in an accumulator
to indicate the exact cause of the failure. This error code <can be
obtained by the program and translated into its corresponding error
mnemonic and message string (refer to Appendix A for the list of error
codes, mnemonics, and message strings). If the execution of the call
is successful, control generally returns to the second instruction
following the monitor call. Data returned from the execution of the
call is stored in an accumulator or in an address pointed to by an
accunulator. ’

However, for some monitor «calls, only a single return to the
instruction following the call occurs. On a successful return, that
instruction is executed. If an error occurs during the execution of
the call, the monitor examines the instruction following the call. If
the instruction is a JUMP instruction with the AC field specified as
either 16 or 17, the monitor transfers control to a user-specified
address. If the instruction is not a JUMP instruction, the monitor
generates a software interrupt indicating an illegal instruction,
which the user's program can process via the software interrupt system
(refer to Chapter 4). If the user's program is not prepared to
process the interrupt, it is terminated, and a message 1is output
stating the reason for failure.

To place a JUMP instruction in his program, the user <can include a
statement using one of two predefined symbols. These symbols are

ERJMP address
ERCAL address

and cause the assembler to generate a JUMP instruction. The JUMP
instruction is a non-operation instruction (i.e., a no-op) as far as
the hardware is concerned. However, the monitor executes the JUMP
instruction by transferring control to the address specified, which is
normally the beginning of an error processing routine written by the
user. If the user includes the ERJMP symbol, control is transferred
as though a JUMPA instruction had been executed, and control will not
return to his program after the error routine is finished. If the
user includes the ERCAL symbol, control is transferred as though a
PUSHJ 17, address instruction had been executed. If the error routine
executes a POPJ 17, instruction, control will return to the user's
program at the location following the ERCAL.

The ERJMP and ERCAL symbols can be used after all monitor calls,
regardless of whether the <call has one or two returns. To handle
errors consistently, users are encouraged to employ these symbols with
all calls. The ERJMP or ERCAL 1is a no-op unless it immediately
follows a monitor call that fails.

The following is an example of executing a monitor call (BIN, refer to
Chapter 3) that has a single return. If the execution of the call is
successful, the program reads and stores a character. If the
execution of the call is not successful, the program transfers control
to an error routine. This routine processes the error and then
returns control back to the main program sequence. Note that the
ERCAL stores the return address.

INTRODUCTION

MOVE T1,INJFN ;obtain JFN for input file
BIN ;input one character
ERCAL [PUSH P,T2 ;save character that was input

GTSTS ;read file status
TXNE T2,GS%EOF ;end of file?
JRST EOF ;yes, process end-of-file condition
HRROI T1,[ASCIzZ/ ;no, data error
? INPUT ERROR, CONTINUING
/] .
PSOUT ;print message
POP P,T2 ;jretrieve character that was input
RET] ;return to program (POPJ 17,)

MOVEM T2,CHAR ;store character

1.3 PROGRAM ENVIRONMENT

The user program environment in the TOPS-~20 operating system consists
of a job structure that may contain many processes. A process is a
runnable or schedulable entity capable of performing computations in
parallel with other processes. This means that a runnable program is
associated with at least one process.

Each process has its own independent 256K address space for storing
its computations. This address space is called virtual space because
it is actually a "window" into physical storage. Because the TOPS-20
operating system operates on pages, address spaces and storage are
divided into 512 (decimal) pages, each of which is 512 words. (A word
on the DECsystem-20 is 36 bits.)

A process can communicate with other processes

. explicitly by software interrupts or system facilities (e.g.,
IPCF) .

. implicitly by changing parts of its environment (i.e., its
address space) that are being shared with other processes.

A process can create other processes inferior to it, but there is one
control process from which the chain of creations begin. A process is
said to exist when a superior process creates it and is said to end
when a superior process deletes 1it. Refer to Chapter 5 for more
information on the process structure.

A set of one or more related processes, normally under control of a
single user, is a job. Each active process is part of some job on the
system. A job is defined by a user name, an account number, some open
files, and a set of running and/or suspended processes. This means
that a job can be composed of several running or suspended programs.

INTRODUCTION

The following diagram illustrates a job structure consisting of four
processes.

/ CONTROL PROCESS

/ \
l process A process B \
| |
\ |
\ process C /
\ /

\ /

\\ /

/
N i
\\‘\\\\ q/,////

Both process A and process B are created by the control process and
thus are inferior to it. Process C is created by process B and thus
is inferior to process B only. :

In summary, processes can be considered as independent virtual
machines with well-defined relationships to other processes in the
system, and a job is a collection of these processes.

CHAPTER 2

INPUT AND OUTPUT USING THE TERMINAL

One of the main reasons for using monitor calls is to transfer data
from one 1location to another. This chapter discusses moving data to
and from the user's terminal.

2.1 OVERVIEW

Data transfers to and from the terminal are in the form of either
individual bytes or text strings. The bytes are 7-bit bytes. The
strings are ASCII strings ending with a 0 byte. These strings are
called ASCIZ strings (i.e., a string of up to five 7-bit characters
per word followed by a 7-bit character of zero).

To designate the desired string, the user's program must include a
statement that points to the beginning of the string being read or
written. The MACRO pseudo-op, POINT, can be used to set up this
pointer, as shown in the following sequence of statements:

MOVE AC1,PTR

PTR: POINT 7,MSG
MSG: ASCIZ/TEXT MESSAGE/

Accumulator 1 contains the symbolic address (PTR) of the pointer. At
the address specified by PTR is the pointer to the beginning of the
string. The pointer is set up by the POINT pseudo-op. The general
format of the POINT pseudo-op is:

POINT decimal-byte-size,address,decimal-byte-position

(Refer to the MACRO Assembler Reference Manual for more information on
the PCINT pseudo-op.) In the example above, the POINT pseudo-op has
been written to indicate 7-bit bytes starting at the left-most b1t in
the address specified by MSG.

Another way of setting up an accumulator to contain the address of the
pointer is with the following statement:

HRROI ACl,[ASCIZ/TEXT MESSAGE/]

- The instruction mnemonic HRRCI causes a -1 to be placed in the 1left
half of accumulator 1 and the address of the string to be placed in
the right half. However, in the above statement, a literal (enclosed
in square brackets) has been used instead of a symbolic address. The
literal causes the MACRO assembler to:

INPUT AND OUTPUT USING THE TERMINAL

. store the data within brackets (i.e., the string) in a table.
. assign an address to the first word of the data.
. insert that address as the operand to the HRROI instruction.

Literals have the advantage of showing the data at the point in the
program where it will be used, instead of showing it at the end of the
program.

As far as the I/0O monitor calls are concerned, a word in this format
(-1 1in the left half and an address in the right half) designates the
system's standard pointer (i.e., a pointer to a 7-bit ASCIZ string
beginning at the leftmost byte of the string). The HRROI statement is
interpreted by the monitor to be functionally egquivalent to the word
assembled by the POINT 7, address pseudo-op and is the recommended
statement to use. However, byte manipulation instructions (e.g.,
ILDB, IBP, ADJBP) will not operate properly with this type of pointer.

After a string is read, the pointer 1is advanced to the character
following the terminating character of the string. After a string is
written, the pointer is advanced to the character following the last
non-null character written.

2.2 PRIMARY I/0 DESIGNATORS

To transfer data from one location to another, the user's program must
indicate the source from which the data is to be obtained and the
destination where the data is to be placed. The two designators used
to represent the user's terminal are:

1. The symbol .PRIIN to represent the user's terminal as the
source (input) device.

2. The symbol .PRIOU to represent the wuser's terminal as the
destination (output) device.

These symbols are called the primary input and output designators and
by convention are wused to represent the terminal controlling the
program. They are defined in the symbol file MONSYM and do not have
to be defined in the user's program as long as the program contains
the statement

SEARCH MONSYM

2.3 PRINTING A STRING

Many times a program may need to print an error message or some other
string, such as a prompt to request input from the user at the
terminal. The PSOUT (Primary String Output) monitor call is wused to
print such a string on the terminal. This call copies the designated
string from the program's address space. Thus, the source of the data
is the program's address space, and the destination for the data is
the terminal. The program need only supply the pointer to the string
being printed.

Accumulator 1 (ACl) is used to contain the address of the pointer.
After ACl 1is set up with the pointer to the string, the next line of
code is the PSOUT call. Thus, an example of the PSOUT call is:

INPUT AND OUTPUT USING THE TERMINAL

HRROI AC1,[ASCIZ/TEXT MESSAGE/] ;string to print
PSOUT ;print TEXT MESSAGE

The ASCIZ pseudo-op specifies an ASCII string terminated with a null
(i.e., 0) Dbyte. The PSOUT call prints on the terminal all the
characters in the string until it encounters a null byte. Note that
the string is printed exactly as it is stored in the program, starting
at the current position of the terminal's print head or cursor and
ending at the last character in the string. If a carriage return and
-line feed are to be output, either before or after the string, these
characters should be inserted as part of the string. For example, to
print TEXT MESSAGE on one line and to output a carriage return-line
feed after it, the user's program includes the call

HRROI AC1l, [ASCIZ/TEXT MESSAGE

/1
PSOUT

After the string is printed, the instruction following the PSOUT call
in the user's program 1is executed. Also, the pointer in ACl is
updated to point to the character following the last non-null
character written.

If an error occurs during the execution of the call, the monitor looks
for an ERJMP or ERCAL instruction as the next instruction following
the call. 1If the next instruction is either one of these, the monitor
transfers control to the address specified.. If the next instruction
is not an ERJMP or ERCAL, the monitor generates a software interrupt.

2.4 READING A NUMBER

The NIN (Number Input) monitor call is used to read an integer. This
call does not assume the terminal as the source designator;
therefore, the user's program must specify this. The NIN call accepts
the number from any valid source designator, including a string in
memory. This section discusses reading a number directly from the
terminal. Refer to Section 2.9 for an example of using the NIN call
to -read the number from a string in memory. The destination for the
number 1is AC2, and the NIN call places the binary value of the number
read into this accumulator. The user's program also specifies a
number in AC3 that represents the radix of the number being input.
The radix given cannot be greater than base 10.

Thus, the setup for the NIN monitor call is the following:

MOVEI AC1l,.PRIIN ;ACl contains the primary input designator
;(i.e., the user's terminal)

MOVEI AC3,"Dl0 ;AC3 contains the radix of the number being
;input (i.e., decimal number)

NIN ;The call to input the number

After completion of the NIN call, control returns to the program at
one of two places (refer to Section 1.2.2). If an error occurs during
the execution of the «call, control returns to the instruction
following the call. This instruction should be a jump-type
instruction to an error processing routine. Also, an error code is
placed in AC3 (refer to Appendix A for the error codes). If the
execution of the NIN call is successful, control returns to the second
instruction following the call. The number input from the terminal is
placed in AC2.

INPUT AND OUTPUT USING THE TERMINAL

The NIN call terminates when it encounters a nondigit character (e.g.,
a letter, a punctuation character, or a control character). This
means that if 32X1 were typed on the terminal, on return AC2 would

contain a 40 (octal) because the NIN call terminated when it read the
X.

The following program prints a message and then accepts a decimal
number from the user at the terminal. Note that the NIN call
terminates reading on any nondigit character; therefore, the user
cannot edit his input with any of the editing characters (e.g.,-
DELETE, CTRL/W). The RDTTY call (refer to Section 2.9) should be used
in programs that read from the terminal because it allows the user to
edit his input as he is typing it.

SEARCH MONSYM
HRROI ACl,[ASCIZ/Enter # of seconds: /]

PSOUT joutput a prompt message

MOVEI ACl,.PRIIN ;input from the terminal

MOVEI AC3,"Dl0 ;use the decimal radix

NIN : ;input a decimal number
ERJMP NINERR ;error-go to error routine

MOVEM AC2, NUMSEC ;save number entered

NUMSEC:BLOCK 1

2.5 WRITING A NUMBER

The NOUT (Number Output) monitor call is used to output an integer.
The number to be output is placed in AC2. The user's program must
specify the destination for the number in ACl and the radix in which
the number is to be output in AC3. The radix given cannot be greater
than base 36. 1In addition, the user's program can specify certain
formatting options to be used when printing the number.

Thus, the general setup for the NOUT monitor call is as follows:
ACl: output designator
AC2: number being output
AC3: format options in left half and radix in right half

The format options that can be specified in the left half of AC3 are
described in Table 2-1.

INPUT AND OUTPUT USING THE TERMINAL

Table 2-1
NOUT Format Options

Bit Symbol Meaning

0 NO$MAG Print the number as a positive 36-bit
number. For example, -1 would be printed
as 777777 777777.

1 NO%SGN Print the appropriate sign (+ or -) before
the number. If bits NO¥MAG and NO%SGN are
both on, a plus sign is always printed.

2 NOSLFL Print leading filler. If this bit is not
set, trailing filler is printed.

3 NO%ZRO Use O0's as the 1leading filler if the
specified number of columns allows filling.
If this bit is not set, blanks are used as
the leading filler if the number of columns
allows filling.

4 NO%OOV Use the setting of bit 5 (NO%AST) if column
overflows and give an error return. If
this bit is not set, column overflow is not
printed.

5 NO%AST Print asterisks when the column overflows.
If this bit is not set, and bit 4 (NO%0O0V)
is set, all necessary digits are printed
when the columns overflow.

6-10 Reserved for DEC (must be zero).

11-17 NO%COL Print the number of columns indicated.
This wvalue includes the sign column. If
this field is 0, as many columns as
necessary are printed.

Like the NIN call, the NOUT call returns control to the user's program
at one of two places. Control returns to the instruction following
the call if an error is encountered, and an error code is placed in
AC3. Control returns to the second instruction following the call if
no error is encountered.

The following example illustrates the use of the three monitor calls
described so far. The RESET and HALTF monitor calls are described in
Section 2.6.

INPUT AND OUTPUT USING THE TERMINAL

SEARCH MONSYM
START: RESET
HRROI ACl,[ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /]

PSOUT

MOVEI AC1l,.PRIIN ;source designator
MOVEI AC3,°D10 ;decimal radix

NIN

ERJMP ERROR
HRROI AC1,[ASCIZ/THE OCTAL EQUIVALENT IS /]

PSOUT
MOVEI AC1l,.PRIOU
MOVEI AC3,"DS8 ;octal radix
NOUT
ERJMP ERROR
HALTF ;return to command language
JRST START ;begin again, if continued

ERROR: HRROI ACl,[ASCIZ/
?ERROR-TYPE START TO BEGIN AGAIN/]
PSOUT
HALTF
JRST START
END START

2.6 INITIALIZING AND TERMINATING THE PROGRAM

Two monitor calls that have not yet been described were wused in the
above program - RESET and HALTF, ;

2.6.1 RESET Monitor Call

A good programming practice is to include the RESET monitor call at
the beginning - of every assembly language program. This call
initializes the program's address space and closes any existing open
files. The format of the call is '

RESET

and control always returns to the next instruction following the call.

2.6.2 HALTF Monitor Call

To stop the execution of his program and to return control to the
TOPS-20 Command Language, the user must include the HALTF monitor call
as the last instruction performed in his program. He can then resume
execution of his program at the instruction following the HALTF call
by typing the CONTINUE command after control has been returned to
command level.

2.7 READING A BYTE

The PBIN (Primary Byte Input) monitor call is used to read a single
byte (i.e., one character) from the terminal. The user's program does
not have to specify the source and destination for the byte because
this call wuses the primary input designator (i.e., the user's
terminal) as the source and accumulator 1 as the destination. After
execution of the PBIN call, control returns to the instruction

2-6

INPUT AND OUTPUT USING THE TERMINAL

following the PBIN. If execution of the call is successful, the byte
read from the terminal is right-justified in ACl. 1If execution of the
call is not successful, a software interrupt (refer to Chapter 4) 1is
generated if the user's program does not have, immediately after the
PBIN call, an ERJMP or ERCAL instruction to an error routine.

2.8 WRITING A BYTE

The PBOUT (Primary Byte Output) monitor call is used to write a single
byte to the terminal. This call uses the primary output designator
(i.e., the user's terminal) as the destination for the byte; thus,
the wuser's program does not have to specify the destination. The
source of the byte being written is accumulator 1; therefore, the
user's program must place the byte right-justified in AC1l before the
call.

After execution of the PBOUT call, control returns to the instruction
following the PBOUT. If execution of the call is successful, the byte
is written to the user's terminal. If execution of the <call is not
successful, a software interrupt is generated if the user's program
does not have, immediately after the PBOUT call, an ERJMP or ERCAL
instruction to an error routine. .

2.9 READING A STRING

Up to this point, monitor calls have been presented for printing a
string, reading and writing an integer, and reading and writing a
byte. The next call to be discussed obtains a string from the
terminal and, in addition, allows the user at the terminal to edit his
input as he is typing it. ’

The RDTTY (Read from Terminal) monitor «call reads input from the
user's terminal (i.e., from .PRIIN) into the program's address space.
Input is read until the user either types an appropriate terminating
(break) character or inputs the maximum number of characters allowed
in the string, whichever occurs first. Output generated as a result
of character editing is printed on the user's terminal (i.e., output
to .PRIOU). i

The RDTTY call handles the following editing functions:

1. Delete the last character in the string if the user presses
the DELETE key while typing his input.

2. Delete back to the last punctuation character in the string
if the user types CTRL/W while typing his input.

3. Delete the current line if the user types CTRL/U while typing
his input.

4. Retype the current line if the user types CTRL/R while typing
. his input.

Because the RDTTY call can handle these editing functions, a program
can accept input from the terminal and allow this input to be
corrected by the user as he is typing it. For this reason, the RDTTY
call should be used to read input from the terminal before processing
that input with calls such' as NIN.

INPUT AND OUTPUT USING THE TERMINAL

The RDTTY call accepts three words of arguments in AC1l through AC3.

ACl:

AC2:

AC3:

pointer to area in program's address space where input 1is
to be placed. This area is called the text input buffer.

control bits in the left half, and maximum number of bytes
in the text input buffer in the right half.

pointer to buffer for text to be output before the user's
input if the user types a CTRL/R, or 0 if only the user's
input is to be output on a CTRL/R.

The control bits in the left half of AC2 specify the characters on
which to terminate the input. These bits are described in Table 2-2.

Table 2-2
RDTTY Control Bits

Bit

Symbol Meaning

RD%BRK Terminate input when user types a
CTRL/Z or presses the ESC key.

RD%TOP Terminate input when user types one of
the following:

CTRL/G

CTRL/L

CTRL/Z

ESC key
RETURN key
Line feed key

RD$PUN . Terminate input when user types one of
the following:

CTRL/A-CTRL/F
CTRL/H-CTRL/I
CTRL/K
CTRL/N-CTRL/Q
CTRL/S-CTRL/T
CTRL/X-CTRL/Y

ASCII codes 34-36
ASCII codes 40-57
ASCII codes 72-100
ASCII codes 133-140
ASCII codes 173-176

The ASCII codes listed above represent
the punctuation characters in the
ASCII character set. Refer to an
ASCII character set table for these
characters.

RD%BEL Terminate input when user types the
RETURN or line feed key (i.e., end of
line).

RD%CRF Store only the line feed in the input
buffer when the user presses the
RETURN key. A carriage return will

2-8

INPUT AND OUTPUT USING THE TERMINAL

Table 2-2 (Cont.)
RDTTY Control Bits

Bit Symbol Meaning

still be output to the terminal but
will not be stored in the buffer. If
this bit is not set and the user
presses the RETURN Kkey, both the
carriage return and the line feed will
be stored as part of the input.

5 RD%RND Return to program if the user attempts
to delete past the beginning of his
input. This allows the program to
take <control if the wuser tries to
delete all of his input. 1If this bit
is not set, the program waits for more

input.
6 Reserved for DEC (must be zero).
7 RDRRIE Return to program when there 1is no

input (i.e., the text input buffer is
empty). If this bit is not set, the
program - waits for more input.

8-9 Reserved for DEC (must be zero).

10 RD3RAI Convert 1lower case input to wupper
case.

11 RD%SUI Suppress the CTRL/U indication on the

terminal when a CTRL/U is typed by the
user. This means that if the user
types a CTRL/U, XXX will not be
printed and, on display terminals, the
characters will not be deleted from
the screen. If this bit 1is not set
and the user types a CTRL/U, XXX will
be printed and, if appropriate, the
characters will be deleted from the
screen. In neither case is the CTRL/U
stored in the input buffer.

12-17 Reserved for DEC (must be 2zero).

If no control bits are set in the left half of AC2, the input will be
terminated when the wuser presses the RETURN or line feed key (i.e.,
terminated on an end-of-line condition only).

The count in the right half of AC2 specifies the number of bytes
available for storing the string in the program's address space. The
input is terminated when this count is exhausted, even if a specified
break character has not yet been typed.

The pointer in AC3 is to the beginning of a buffer containing the text
to be output if the user types a CTRL/R. When this happens, the text
in this separate buffer is output, followed by any text that has been
typed by the user. The text in this buffer cannot be edited with any

2-9

INPUT AND OUTPUT USING THE TERMINAL

of the editing characters (i.e., DELETE, CTRL/W, or CTRL/U). If the
contents of AC3 is zero, then no such buffer exists, and if the user
_types CTRL/R, only the text in the input buffer will be output.

If execution of the RDTTY call is successful, the 1input 1is in the
specified area in the program's address space. The character that
terminated the input is also stored. (If the terminating character is
a carriage return followed by a 1line feed, the line feed is also
stored.) Control returns to the user's program at the second 1location
following the <call. The pointer in ACl is advanced to the character
following the last character read. The count in the right half of AC2
is updated, and appropriate bits are set in the left half of AC2. The
bits that can be set on a successful return are:

Bit 12 RD%BTM The input was terminated because one
of the specified break characters was
typed. This break character is placed
in the input buffer. If this bit is
not set, the input was terminated
because the byte count was exhausted.

Bit 13 RD$%BFE Control was returned to the program
because there 1is no more input and
RD3RIE was set in the call.

Bit 14 RD%BLR The limit to which the user can backup
for editing his input was reached.

If execution of the RDTTY call is not successful, an error code is
returned in ACl. Control returns to the wuser's program at the
instruction following the RDTTY call.

The following example illustrates the recommended method for reading
data from the terminal. This example is essentially the same as the
one in Section 2.5; however, the RDTTY call is used to read the
number before the NIN call processes it.

SEARCH MONSYM
START: RESET

HRROI ACl,PROMPT
PSOUT

HRROI AC1l,BUFFER
MOVEI AC2,BUFLEN*5
HRROI AC3,PROMPT
RDTTY

ERJMP ERROR
HRROI AC1,BUFFER
MOVEI AC3,°D1l0
NIN

ERJMP ERROR :
HRROI ACl,[ASCIZ/THE OCTAL EQUIVALENT IS /]
PSOUT
MOVEI ACl,.PRIOU
MOVEI AC3,"DS8
NOUT

ERJMP ERROR
HALTF
JRST START

INPUT AND OUTPUT USING THE TERMINAL

PROMPT: ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /
BUFLEN==10
BUFFER: BLOCK BUFLEN
ERROR: HRROI AC1,[ASCIZ/
?ERROR-TYPE START TO BEGIN AGAIN/]
PSOUT
HALTF
JRST START
END START

2.10 SUMMARY

Data transfers of sequential bytes or text strings can be made to and
from the terminal. The monitor calls for transferring bytes are PBIN
and PBOUT and for transferring strings are PSOUT and RDTTY. The NIN
and NOUT monitor calls can be used for reading and writing a number.
In general, the user's program must specify a source from which the
data is to be obtained and a destination where the data is to be
placed. In the case of terminal I/O, the symbol .PRIIN represents the
user's terminal as the source, and the symbol .PRIOU represents the
user's terminal as the destination.

CHAPTER 3

USING FILES

3.1 OVERVIEW

All information stored in the DECsystem-20 is kept in files. The
basic unit of storage in a file is a page containing bytes from 1 to

36 bits in length. Thus, a sequence of pages constitutes a file. In
most cases, files have names. Although all files are handled in the
same manner, certain operations are unavailable for files on

particular devices.

Programs can reference files by several methods:
. In a sequential byte-by-byte manner.
. In a multiple byte or string manner.

. In a random byte-by-byte manner if the particular
file-storage device allows it.

. In a page-mapping manner for files on the disk.
Byte and string input/output are the most common types of operations.

Generally, all programs perform I/O by moving bytes of data £from one
location to another. For example, programs can move bytes from one
memory area to another, from memory to a disk file, and from the
user's terminal to memory. In addition, a program can map multiple
512-word pages from a disk file into memory or vice versa.

Data transfer operations on files require four steps:

1. Establishing a correspondence between a file and a Job File
- Number (JFN), because all files are referenced by JFNs.

2. Opening the file to establish the data mode, access mode, and
byte size and to set up the monitor tables that permit data
to be accessed. -

3. Transferring data either to or from the file.

4. Closing the file to complete any I/O, to update the directory
if the file is on the disk, and to release the monitor table
space used by the file.

Some operations on files do not require the execution of all four
steps above. Examples of these operations are: deleting or renaming
a file, or changing the access code or account of a file. Although
these operations do not require all four steps, they do require that
the file has a JFN associated with it (step 1 above).

USING FILES

It is possible for disk files on the DECsystem-20 to be simultaneously
read or written by any number of processes. To make sharing of files
possible, all instances of opening a specific file in a specific
directory cause a reference to the same data. Therefore, data written
into a file by one process can immediately be seen by other processes
reading the file.

Access to files is controlled by the 6~digit file access code assigned
to a file when it is created. This code indicates the types of access
allowed to the file for the three classes of users: the owner of the
file, the users with group access to the file, and all other users. A
user has group access to a file if he is in the same group as the
directory in which the file resides is in. (Refer to the DECsystem-20
User's Guide for more information on the file access codes.) If the
user 1is allowed access to a file, according to its file access code,
he requests the type of access desired by including an OPENF monitor
call (refer to Section 3.4) in his program. If the access requested
in the OPENF call does not conflict with the current access to the
file, the user is granted access. Essentially, the current access to
the file is set by the first user who opens it.

Thus, for a user to be granted access to a specific file, two
conditions must be met:

1. The file access code must allow the user to access the file
‘in the desired manner (e.g., read, write).

2. The file must not be opened for a conflicting type of access.

3.2 JOB FILE NUMBER

The Job File Number (JFN) is one of the more important concepts in the
operating system because it serves as the unique identifier of a
particular file on a particular device during a process' execution.
It 1is a small integer assigned by the system upon a request from the
user's program. JFNs are usually assigned sequentially starting with
1.

The JFN is valid for the job in which it is assigned and therefore,
may be used by any process in the job. The system uses the JFN as an
index into the table of files associated with the job and thus, always
assigns a JFN that is unique to the job. Even though a particular JFN
within the job can refer to only one file, a single file can be
associated with more than one JFN. This occurs when two or more
processes are using the same file concurrently. In this case, each of
the processes will probably have a different JFN for the file, but all
of the JFNs will be associated with the same file.

3.3 ASSOCIATING A FILE WITH A JFN

In order to reference a file, the first step the user program must
complete 1is to associate the specific file with a JFN. This
correspondence is established with the GTJFN (Get Job File Number)
monitor <call. One of the arguments to this call is the string
representing the desired file. The string can be specified within the
program (i.e., come from memory) or can be accepted as input from the
user's terminal or from another file. The string can represent the
complete specification for the file:

USING FILES

dev:<directory>name.typ.gen;T(temporary) ;P(protection) ;A(account)

If any fields of the specification are omitted, the system can provide
values for all except the name field. Refer to the DECsystem-20
User's Guide for a complete explanation of the specification for a
file.

Table 3-1 lists the values the system will assign to fields not
specified by the input string.

Table 3-1
Standard System Values For File Specifications

Field Value

Device DSK:
Directory Directory to which user 1is currently

connected.

Name No" default; this field must be
' specified.

Type Null.

Generation number The highest existing generation number

if the file 1is an input file. The
next higher generation number if the
file is an output file.

Protection Protection of next lower generation of
file, if one exists; otherwise,
protection as specified in the
directory.

Account Account specified when user logged in.

If the string specified identifies a single file, the monitor returns
a JFN that remains associated with that file until either the process
releases the JFN or the job logs off the system. After the assignment
of the JFN 1is complete, the wuser's program uses the JFN in all
references to that file.

The user's program can set up either the short or the long form of the
GTJFN monitor call. The short form indicates that the file
specification is to be obtained from a string in memory or from a
file, but not from both. Fields not specified by the input are taken
from the standard system values for those fields (refer to Table 3-1).
This form 1is sufficient for most uses of the call. The long form
indicates that the file specification is to be obtained from both a
string in memory and a file. 1If both are given as arguments, the
string is used first, and then the file is used if more fields are
needed to complete the specification. This form also allows the
user's program to specify nonstandard values to be used for fields not
given and to request the assignment of a specific JFN.

USING FILES

3.3.1 GTJFN Monitor Call

The GTJFN monitor call assigns a JFN to the specified file. It
accepts two 'words of arguments. These argument words are different
depending on the form of GTJFN being used. The wuser's program
indicates the desired GTJFN form by setting bit 17 of ACl to 1 for the
short form or by clearing bit 17 to 0 for the long form.

3.3.1.1 Short Form Of GTJFN ~ The short form of the GTJFN monitor
call requires the following two words of arguments.

0 17 18 35
| ===!
AC1 ! flag bits ! default generation number !
1 ======‘_‘==!
0 35
!===!
AC2 ! source designator for file specification per !
1

bit 16 (GJ%¥FNS) of AC1 !

The flag bits that can be specified in ACl are described in Table 3-2.

Table 3-2
GTJFN Flag Bits

Bit Symbol Meaning

0 GJ%FOU The file specification given is to be
assigned the next higher generation
number. This bit indicates that a new
version of a file is to be created and
is normally set if the file 1is for
output use.

1 GJENEW The file specification given must not
refer to an existing file (i.e., the
file must be a new file).

2 GJ%OLD The file specification given must
refer to an existing file (i.e., the
file must be an old file).

3 GJ¥MSG One of the appropriate messages is to
be printed after the file
specification is obtained. The

message is printed only if the user
types the ESC key to; end his file
specification (i.e., he 1is using
recognition input).

[NEW FILE]
[NEW GENERATION]}
[OLD GENERATION]

USING FILES

Table 3-2 (Cont.)
GTJFN Flag Bits

Bit Symbol Meaning

[OK] if GJ%CFM (bit 4) is off
[CONFIRM] if GJ%CFM (bit 4) is on

4 GJ%CFM Confirmation from the wuser will be
required to verify that the file
specification obtained is correct. To
confirm the file specification, the
user can press the RETURN key.

5 GJ%TMP The file specified is to be a
temporary file.

6 GJgNS Only the first file specification in a
multiple logical name assignment is to
be searched for the file.

7 GJ%ACC The JFN specified 1is not to be
accessed by inferior processes in this
job. However, any process can access
the file by acquiring a different JFN.
To prevent the file from being
accessed by other processes, the
user's program can set OF$RTD (bit 29)
in the OPENF call (refer to Section
3.4.1).

8 GJ$DEL The file specified 1is not to be
considered as deleted, even if it is
marked as deleted.

9-10 GJ%JFN These bits are off in the short form
of the GTJFN call (refer to Section
3.3.1.2 for their description).

11 GJ%IFG The file specification given is
allowed to have one or more of its
fields specified with a wildcard
character (* or %). This bit is used
to process a group of . files and is
generally used for input files. The
monitor verifies that at least one
value exists for each field that
contains a wildcard and assigns the
JFN to the first file in the group.
The monitor also verifies that fields
not containing wildcards represent a
new or old file according to the
setting of GJ%NEW and GJ%OLD.

12 GJ%OFG The JFN is to be associated with the
given file specification string only
and not to the. actual file. The
string may contain a wildcard
character (* or %) in one or more of
its fields. It is checked for correct
punctuation between fields, but is not
checked for the validity of any field.

3-5

USING FILES

Table 3-2 (Cont.)
GTJFN Flag Bits

Bit Symbol Meaning

This bit allows a JFN to be associated
with a file specification even if the
file specification does not refer to
an actual file. The JFN returned
cannot be used to refer to an actual
file (e.g., cannot be used in an OPENF
call) but can be Used to obtain the
original 1input string via the JFNS
monitor call (refer to Section 3.7.2).

13 GJ&FLG Flags are to be returned in the left
half of ACl on a successful return.

14 GJ%PHY Logical names specified for the
current job are to be ignored and the
physical device is to be used.

15 GJ%XTN : This bit is off in the short form of
the GTJFN call (refer to Section
3.3.1.2 for its description).

16 GJ%FNS The contents of AC2 are to be
interpreted as follows:

1. If this bit is on, AC2 contains an
input JFN in the left half and an
output JFN in the right half. The
input JFN is wused to obtain the
file specification to be
associated with the JFN. The
output JFN is used to indicate the
destination for printing the names
of any fields being recognized.
To omit either JFN, the user's
program must specify the symbol
.NULIO (377777).

2. If this bit is off, AC2 contains a
pointer to a string in memory that
specifies the file to be
associated with the JFN.

17 GJ%SHT This bit must be on for the short form
. of the GTJFN call.

18-35 The generation number of the file.
The following values are permitted;
however, 0 is the normal case.

0 to indicate that the next
higher generation number is to
be used if GJ%FOU (bit 0) is
.on, or to indicate that the
highest existing generation
number is to be used if GJ%FOU
is off.

USING FILES

Table 3-2 (Cont.)
GTJFN Flag Bits

Bit Symbol Meaning

1- to indicate that the specified

377777 number is to be used as the.
generation 1if no generation
number is supplied.

-1 to indicate that the next
higher generation number is to
be used if no generation
number is supplied.

-2 to indicate that the 1lowest
existing generation number is
to be used if no generation
number is supplied.

-3 to indicate that all
generation numbers are to be .
used and that the JFN is to be

. assigned to the first file in
the group if no generation
number is supplied. (Bit
GJ$IFG must be set.)

If the GTJFN call is given with the appropriate flag bit set (GJ%IFG
or GJ%OFG), the file specification given as input can have a wildcard
character (either an asterisk or a percent sign) appearing in the
directory, name, type, or generation number field. (The percent sign
cannot appear in the generation number field.) The wildcard character
is interpreted as matching any existing occurrence of the field. For
example, the specification ‘

<LIBARY>* .MAC

identifies all the files with the file type .MAC in the directory
named <LIBARY>. The specification

<LIBARY>MYFILE.FO$%

identifiég all the files in directory <LIBARY> with the name MYFILE
and a three-character file type in which the first two characters are
.FO. Upon completion of the GTJFN <call, the JFN returned is
associated with the first file found in the group according to the
following:

. in numerical order by directory number

. in alphabetical order by filename

. in alphabetical order by file type

. in ascending numerical order by generation number
The GNJFN (Get Next JFN) monitor call can then be given to aésign the
JFN to the next file in the group (refer to Section 3.7.3). Normally,
a program that accepts wildcard characters in a file specification

will successively reference all files in the group using the same JFN
and not obtain another JFN for each one.

3-7

USING FILES

If execution of the GTJFN call is not successful because problems were
encountered in performing the call, the JFN is not assigned and an
error code is returned in the right half of ACl. The execution of the
program continues at the instruction following the GTJFN call.

If execution of the GTJFN call is successful, the JFN assigned is
returned in the right half of ACl and various bits are set in the left

half, if flag bits 11, 12, or 13 were on in the call. (The bits
returned on a successful call are described in Table 3-3.) If bit 11,
12, or 13 was not on in the call, the left half of ACl is zero. The

execution of the program continues at the second instruction after the
GTJFN call.

Table 3-3
Bits Returned on GTJFN Call

Bit Symbol Meaning
0-1 Reserved for DEC.

2 GJ$DIR The directory field of the file
specification contained wildcard
characters.

3 GJENAM The filename field of the file
specification contained wildcard
characters.

4 GJSEXT The file type field of the file
specification contained wildcard

characters.

5 GJ%VER The generation number field of the
file specification contained wildcard
characters.

6 GJ3UHV The file used has the highest
‘ generation number because a generation
number of 0 was given in the call.

7 GJ¥NHV The file used has the next higher
generation number because a generation
number of 0 or -1 was given in the
call.

8 GJ%ULV The file used has the lowest
generation number because a generation
number of -2 was given in the call.

9 GJ%PRO The protection field of the file
specification was given.

10 GJ%ACT The account field of the file
specification was given.

11 GJSTFS The file specification is for a
temporary file.

12 GJ%$GND Files marked for deletion will not be
- considered when assigning JFNs in
subsequent calls.

3-8

USING FILES

Examples of the short form of the GTJFN monitor call are shown in the
following paragraphs.

The following sequence of instructions is used to obtain, from the
user's terminal, the specification of an existing file.

MOVSI ACl, (GJ$OLD+GJ%$FNS+GJ%SHT)
MOVE AC2,[.PRIIN,,.PRIOU]
GTJFN

The bits specified for ACl indicate that the file specification given
must refer to an existing file (GJ%OLD), that the file specification
is to be accepted from the input JFN in AC2 (GJ%FNS), and that the
short form of the GTJFN call is being used (GJ%SHT). Because the
right half of ACl is zero, the standard generation number algorithm
will be used. 1In this GTJFN call, the file with the highest existing
generation number will be used/a Because GJ%FNS is set 1in ACl, the
contents of AC2 are interpreted as containing an input JFN and an
output JFN. In this example, the file specification is obtained from
the terminal (.PRIIN).

The following sequence of instructions is used to obtain, from the
user's terminal, the specification of an output file and to require
confirmation from the wuser once the file specification has been
obtained.

MOVSI AC1l, (GJ%3FOU+GJI$MSG+GJISCFM+GI%FNS+GJI¥SHT)
MOVE AC2,[.PRIIN,,.PRIOU]
GTJFN

In this example, the bits specified for ACl indicate that
. the file obtained is to be an output file (GJ%FOU),

. after the file specification is obtained, a message is to be
typed (GJ%MSG),

. the user is required to confirm the file specification that
was obtained (GJ%CFM),

. the file specification is to be obtained from the input JFN
in AC2 (GJ%FNS),

. the short form of the GTJFN call is being used (GJ%SHT).

Because the right half of ACl is zero, the generation number given to
the file will be one greater than the highest generation number
existing for the file. The contents of AC2 are interpreted as
containing an input JFN and an output JFN because GJ%FNS is set in
ACl.

The following sequence of instructions is used to obtain the name of
an existing file from a location in the user's program.

MOVSI AC1l, (GJ%OLD+GJ%SHT)
MOVE AC2,[POINT 7,NAME]
GTJFN

NAME :ASCIZ/MYFILE.TXT/

USING FILES

The bits specified for ACl1 indicate that the file obtained is to be an
existing file (GJ%OLD) and that the short form of the GTJFN call is
being used (GJ%SHT). Since the right half of ACl is =zero, the file
with the highest generation number will be used. Because GJ%FNS is
not set, the contents of AC2 are interpreted as containing a pointer
to a string in memory that specifies the file to be associated with
the JFN. The setup of AC2 indicates that the string begins at
location NAME in the user's program. The file specification obtained
from location NAME is MYFILE.TXT.

An alternate way of specifying the same file is the sequence
MOVSI AC1l, (GJ%OLD+GJ%SHT)

HRROI AC2,[ASCIZ/MYFILE.TXT/]
GTJFN

3.3.1.2 Long Form Of GTJFN - The long form of the GTJFN monitor call
requires the following two words of arguments.

0 17 18 35
' S P 2 '
ACl ! 0 ! address of argument table !
' 1+ 3+ + ¥+ 3ttt t 31ttt 3ttt 1ttt 11ttt ittt !
0 35
' ===!
AC2 ! pointer to ASCIZ file specification string, or 0 !

The argument table for the long form is described in Table 3-4 below.

Table 3-4
Long Form GTJFN Argument Block

Word Symbol Meaning
0 .GJGEN Flag bits appear in the left half and
generation number appears in the right
half. '
1 .GJSRC An input JFN appears in the left half

and an output JFN appears in the right
half. To omit either JFN, the user's
program must specify the symbol .NULIO
(377777) .

2 .GJDEV Pointer to ASCIZ string that specifies
the device to be used when none is
given. 1If this word is 0, DSK will be
used. '

3 .GJDIR Pointer to ASCIZ string that specifies
the directory to be used when none is
given. If this word is 0, the user's
connected directory will be used.’

USING FILES

Table 3-4 (Cont.)
Long Form GTJFN Argument Block

Word

Symbol

Meaning

10

11-15

.GINAM

.GIJEXT

.GJPRO

.GJACT

.GJJFN

Pointer to ASCIZ string that specifies
the filename to be used when none is
given. If this word is 0, the input
must specify the filename.

Pointer to ASCIZ string that specifies
the file type to be used when none is
given. If this word is 0, a null type
will be used.

Pointer to ASCIZ string or 3B2+octal
protection code. This word indicates
the protection to be used when none is
given. If this word 1is 0, the
protection as specified in the
directory will be used.

Pointer to ASCIZ string or 3B2+decimal
account number. This word indicates
the account to be used when none is
given. If this word is 0, the account
specified when the user logged in will
be used.

The JFN to assign to the file
specification if flag bit GJ%JFN is
set in word .GJGEN (word 0) of the
argument block.

Additional words allowed if flag bit
GJI%XTN (bit 15) is set in word .GJGEN
(word 0) of the argument block. These
additional words are used when
performing command input parsing and
are described in the DECsystem-20
Monitor Calls Reference Manual.

The flag bits accepted in the left half of .GJGEN (word
argument block are basically the same as those accepted in the short
form of the GTJFN call. The entire set of flag bits is listed below.

For further explanations of the bits,

refer to Table 3-2.

0)

of

the

Bit Symbol Meaning
0 GJ&FOU A new version of the file is to be
created.
1 GJIENEW The file must not exist.
2 GJ%OLD The file must exist.
3 GJI$MSG A message is to be typed if the user

terminates his input with the ESC key.

3-11

4 GJ%CFM

USING FILES

The wuser must confirm the file

The file is temporary.

Only the first file specification is
to be searched in a multiple logical
name definition.

The JFN cannot be accessed by other
processes in the job.

specification.
5 GJ$TMP
6 GJ%NS
7 GJ%ACC
8 GJ$DEL

9-10 GJ%JFN

The "file deleted" bit 1is to be
ignored.

The JFN supplied in .GJJFN(word 10) of
the argument block is to be associated
with the file specification given.
The settings of bit 9 and 10 are
interpreted as follows:

1. If bit 9 is on and bit 10 is off,
an attempt 1is made to assign the
JFN. An error return is given if
the JFN is not available.

2. If bit 9 is on and bit 10 is on,
an attempt is made to assign the
JFN. If it is not available, some
other JFN is assigned.

3. For any other combinations of
these bits, the JFN supplied is

The file specification is allowed to

contain wildcard characters.

The JFN is to be associated with the

file specification string and not the

Flags are to be returned in ACl on

successful completion of the call.

The physical device is to be usegd.

The argument block contains more than

10 ° (octal) words. Refer to the
DECsystem-20 Monitor Calls Reference

This bit is ignored for the long form

ignored.

11 GJ%IFG
12 GJ%0FG

file itself.
13 GJISFLG
14 GJ%PHY
15 GJIXTN

Manual.
16 GJ%FNS

of the GTJFN call.
17 GJ%SHT

The generation number values accepted in the right half of .GJGEN

This bit must be off for the long form
of the GTJFN call.

(word 0) of the argument block can be 0, -1, -2, -3, or a specified

number, although 0 is the normal case.
3-2 for explanations of these values.

3-12

Refer to Bits 18-35

of

Table

USING FILES

If execution of the GTJFN call is successful, the JFN assigned 1is
returned in the right half of ACl and various bits are set in the left
half if flag bits 11, 12 or 13 were on in the call. Refer to Table-
3-3 for the explanations of the bits returned. Execution of the
program continues at the second instruction following the call.

If execution of the GTJFN call is not successful, the JFN 1is not
assigned and an error code is returned in the right half of ACl. The
execution of the program continues at the instruction ' following the
GTJFN call.

The following sequence of instructions obtains a specification for an
existing file from the user's terminal, assigns the JFN to the next
higher generation of that file, and specifies default fields to be
used if the user omits a field when he gives his file specification.

MOVEI ACl,JFNTAB
SETZ AC2,
GTJFN

JFNTAB: GJ%FOU

XWD .PRIIN,.PRIOU

0

POINT 7,[ASCIZ/TRAIN/] ;default directory
0

POINT 7,[ASCIZ/MEM/] ;default file type
0

0

0

The address of the argument table for the GTJFN call (JFNTAB) is given
in the right half of ACl. AC2 contains 0, which means no pointer to a
string is given; thus, fields for the file specification will be
taken only from the user's terminal. The first word of the argument
block contains a flag bit for the GTJFN call. This bit (GJ%FOU)
indicates that the next higher generation number is to be assigned to
the file. The second word of the argument block indicates that the
file specification is to be obtained from the user's terminal, and any
output generated because of the user employing recognition is to be
printed on his terminal. TIf the user does not supply a directory name
as part of his file specification, the directory <TRAIN> will be used.
And if the user does not give a file type, the type MEM will be used.
If the user omits other fields from his specification, the system
standard value (refer to Table 3-1) will be used.

USING FILES

3.3.1.3 Summary Of GTJFN ~ The GTJFN monitor <call is required to
associate a JFN with a particular file. 1In most cases, the short form
of the GTJFN call is sufficient for establishing this association.
However, the long form is more powerful because it provides the user's
program more control over the file specification that 1is obtained.
The following summary compares the characteristics of the two forms of
the GTJFN monitor call.

Short Form Long Form

Assigns a JFN to a file. Assigns a JFN to a file.
System decides the JFN User program may request
to assign. ' a particular JFN.

Accepts the file specification Accepts the file specification
from a string in memory from a string in memory
or a file. and a file.

Uses standard system values Allows user-supplied values
for fields not given to be used for fields not
in the file given in the file
specification.) specification.

3.4 OPENING A FILE

Once a JFN has been obtained for a file, the user's program must open
the file 1in order to transfer data. The user's program supplies the
JFN of the file to be opened and a word of bits indicating the desired
byte size, data mode, and access to the file.

The desired access to the file is specified by a separate bit for each
type of access. The file is successfully opened only if the desired
access does not conflict with the current access to the file (refer to
Section 3.1). For example, if the user requests both read and write
access to the file, but write access is not allowed, then the file |is
not opened for this user. The allowed types of access to a file are:

. Read access. The file can be read with byte, string, or
random input.

. Write access. The file can be written with byte, string, or
random output.

. Append access. The file can be written only with sequential
byte or dump output, and the current byte pointer (refer to
Section 3.5.1) cannot be changed.

. Frozen access. The file can be concurrently accessed by at
most one user writing the file, but by any number of users
reading the file. This is the default access to a file.

. Thawed access. The file can be accessed even if other users
are reading and writing the file.

. Restricted access. The file cannot be accessed if another
user already has opened the file. :

'USING FILES

3.4.1 OPENF Monitor Call

The OPENF (Open File) monitor <call opens a specified file. It
requires the following two words of arguments.

0 17 18 35
! ===!
ACl ! 0 ! JFN of file to be opened !
I ===!

0 56 9 18 30 31 35
I ===!
AC2 ! byte !data ! 0 ! access bits ! 0 !
! size Imode ! ! ! !

If the left half of ACl 1is not zero, the contents of ACl is
interpreted as a pointer to a string and not as a JFN of a file.
Therefore, if the user's program requested bits to be returned in ACl
from the GTJFN call, it must clear these bits before executing the
OPENF call.

The byte size (OF%BSZ) in AC2 specifies the number of bits in each
byte of the file and can be between 1 and 36 (decimal). This field
can be 0 if subsequent I/O to the file will be performed with the PMAP
call (refer to Section 3.5.6).

The file data mode field (OF$MOD) can be one of two values:

Value ' Meaning

0 Normal data mode of the file (i.e., byte
: I/0). Dump I/O is illegal.

17 Dump mode (i.e., unbuffered word I/0). Byte
I/0 is illegal and the byte size is ignored.

The access bits are described in Table 3-5.

Table 3-5
OPENF Access Bits
Bit Symbol Meaning
18 OF%HER Halt on the occurrence of an 1I/0
device or medium error during

subsequent I/0 to the file. If this
bit 1is not set, a software interrupt
is generated if a device or medium
error occurs during subsequent I/O.

19 OF%RD Allow read access.
20 OF3%WR Allow write access.
21 Reserved for DEC.

22 OF%APP Allow append access.
23-24 Reserved for DEC.

USING FILES

Table 3-5 (Cont.)
OPENF Access Bits

Bit Symbol Meaning

25 OF$THW Allow thawed access. If this bit is
not set, the file is opened for frozen
access.

26 OF%AWT Bldck (i.e., temporarily suspend) the
program until access to the file is
permitted.

27 OF%PDT Do not update the access dates of the
file.

28 OF$NWT Return an error if access to the file
cannot be permitted.

29 OF%RTD Allow access to the file to only one
process (i.e., restricted access).

30 OF%PLN Do not check for line numbers in the
file.

If bits OF%AWT and OF$NWT are both off, an error code is returned if
access to the file cannot be permitted (i.e., the action taken is
identical to OF%NWT being on).

If execution of the OPENF monitor call is successful, the file is
opened, and the execution of the program continues at the second
instruction after the OPENF call.

If execution of the OPENF call is not successful, the file 1is not
opened, and an error code is returned in ACl. The execution of the
program continues at the next instruction after the OPENF call.

Two samples of the OPENF call follow.
The sequence of instructions below opens a file for input.

HRRZ ACl,JFNEXT
MOVE AC2, [44B5+OF3%RD+0OF%PLN]
OPENF

The JFN of the file to be opened 1is contained in the 1location
indicated by the address in AC1 (JFNEXT). The bits specified for AC2
indicate that the byte size is one word (44B5), that read access is
being requested to the file (OP%RD), and that no check will be made
for line numbers in the file; i.e., the 1line numbers will not be
discarded (OF%PLN). Because bit OF$THW is not set, the file can be
accessed for reading by any number of processes.

The following sequence of instructions can be used to open a file for
output.

MOVE AC1,JFN
MOVE ACZ2,[7B5+OF3HER+OF$WR+OF3AWT]
OPENF

USING FILES

The right half of ACl contains the address that has the JFN of the
file to be opened. The bits specified for AC2 indicate that the byte
size is 7-bit bytes (7B5), that the program is to be halted when an
I/0 error occurs in the file (OF$HER), that write access is being
requested to the file (OF%WR), and that the program is to be blocked
if access cannot be granted (OF$AWT). Because bit OF%THW is not set,
if another user has been granted write access to the file, this user's
program will be blocked until access can be granted.

3.5 TRANSFERRING DATA

Data transfers of sequential bytes are the most common form of
transfer and can be used with any file. For disk files, nonsequential
bytes and entire pages can also be transferred.

3.5.1 File Pointer

Every open file is associated with a pointer that indicates the 1last
byte read from or written to the file. When the file is initially
opened, this pointer is normally positioned before the beginning of
the file so that the first data operation will reference the first
byte in the file. The pointer is then advanced through the file as
data 1is transferred. However, if the file is opened for append-only
access (bit OF%APP set in the OPENF call), the pointer is positioned
after the last byte of the file. This allows the first write
operation to append data to the end of the file.

For disk files, the pointer may be repositioned arbitrarily throughout
the file, such as in the case of nonsequential data transfers. When
the pointer is positioned beyond the end of the file, an end-of-file
indication 1is returned when the program attempts a read operation
using byte input. When the program performs a write operation beyond
the end of the file using byte output, the end-of-file indicator is
updated to point to the end of the new data. However, if the program
writes pages beyond the end of the file with the PMAP monitor call
(refer to section 3.5.6), the end-of-file indicator is not updated.
Therefore, it 1is possible for a file to contain pages of data beyond
the end-of~file indicator. To allow sequential I/0O to be performed
later to the file, the program should update the end-of-file indicator
before closing the file. (Refer to the CHFDB monitor call description
in the DECsystem-20 Monitor Calls Reference Manual.)

3.5.2 Source And Destination Designators

Because I/0 operations occur by moving data from one location to
another, the user's program must supply a source and a destination for
any I/0 operation. The most commonly-used source and destination
designators are the following:

1. A JFN associated with a particular file. The JFN must be
previously obtained with the GTJFN or GNJFN monitor call
before it can be used.

2. The primary input and output designators .PRIIN and .PRIOU,
respectively (refer to Section 2.2). These designators
should be used when referring to the terminal.

USING FILES

3. A byte pointer to the beginning of the string of bytes in the
program's address space that is being read or written. The
byte pointer can take one of two forms:

. A word with a -1 in the left half and an address in the
right half. This form is used to designate a 7-bit ASCIZ
string starting in the left-most byte of the specified
address. A word in this form is functionally equivalent
to a word assembled by the POINT 7,ADR pseudo-op.

. A full word byte pointer with a byte size of 7 bits.

Most monitor calls dealing with strings deal specifically with ASCII
strings. Normally, ASCII strings are assumed to terminate with a byte
of 0 (i.e., are assumed.to be ASCIZ strings). However some calls
optionally accept an explicit byte count and/or terminating byte.
These calls are generally ones that handle non-ASCII strings and byte
sizes other than 7 bits.

3.5.3 Transferring Sequential Bytes

The BIN (Byte Input) and BOUT (Byte Output) monitor calls are used for
sequential byte transfers. The BIN call takes the next byte from the
given source and places it in AC2. The BOUT call takes the byte from
AC2 and writes it to the given destination. The size of the byte is
that given in the OPENF call for the file.

The BIN monitor call accepts a source designator in ACl, and upon
successful execution of the call, the byte is right-justified in AC2.
If execution of the call is not successful, a software interrupt is
generated (refer to Chapter 4). Control returns to the user's program
at the instruction following the BIN call.

The BOUT monitor call accepts a destination designator in ACl and the
byte to be output, right-justified in AC2. Upon successful execution
of the call, the byte is written to the destination. If execution of
the <call 1is not successful, a software interrupt is generated (refer
to Chapter 4). Control returns to the wuser's program at the
instruction following the BOUT call.

The following sequence shows the transferring of bytes from an input
file to an output file. The bytes are read from the file indicated by
INJFN and written to the file indicated by OUTJFN.

LOOP: MOVE 1,INJFN ;get source designator from INJFN

BIN ;read a byte from the source
- JUMPE 2,DONE - ;check for end of file, if O
LOOP2: MOVE 1,0UTJFN ;get destination from OUTJFN

BOUT ;write the byte to the destination

JRST LOOP ;continue until 0 byte is found
DONE: GTSTS ;obtain status of source

TLNN 2, (GS3EOF) ;test for end of file

JRST NOTYET ;ho, test for 0 in input file

: ;ves, process end of file condition
NOTYET:MOVEI 2,0 ;0 in input file

JRST LOOP2

USING FILES

3.5.4 Transferring Strings

The SIN (String Input) and SOUT (String Output) monitor calls are used
for string transfers. These calls transfer either a string of a
specified number of bytes or a string terminated with a specific byte.

The SIN monitor call reads a string from the specified source into the
program's address space. The call accepts four words of arguments in
ACl through AC4.

ACl: source designator

AC2: pointer to area in program's address space

AC3: count of number of bytes to read, or 0

AC4: byte on which to terminate input (optional)

The contents of AC3 are interpreted as the number of characters to
read.

. If AC3 is 0, then reading continues until a 0 byte 1is found
in the input.

. If AC3 is positive, then reading continues until either the
specified number of bytes is read, or a byte equal to that
given in AC4 is found in the input, whichever occurs first.

. If AC3 is negative, then reading continues wuntil minus the
specified number of bytes is read.

The contents of AC4 needs to be specified only if the contents of AC3
is a positive number. The byte in AC4 is right-justified.

The input is terminated when one of the following occurs:
The byte count becomes zero.
. The specified terminating byte is reached.
. The end of the file is reached.

. An error occurs during the transfer (e.g., a data error
occurs) .)

Control returns to the user's program at the instruction following the
SIN call. If an error occurs (including the end of the file is
reached), a software interrupt is generated (refer to Chapter 4). In
addition, several locations are updated:

1. The position of the file's pointer is updated for subsequent
I/0 to the file.

2. The pointer to the string in AC2 is updated to reflect the
last byte read or, if AC3 contained 0, the last nonzero byte
‘read.

3. The count in AC3 is updated, if pertinent, by subtracting the
number of bytes actually read from the number of bytes
requested to be read (i.e., the count is wupdated toward
zero). From this count, the user's program can determine the
number of bytes actually transferred.

USING FILES

The SOUT monitor call writes a string from the program's address space
to the specified destination. Like the SIN call, this call accepts
four words of arguments in ACl1l through AC4.

ACl: destination designator

AC2: pointer to string to be written

AC3: count of the number 6f bytes to write, or 0
AC4: byte on which to terminate output (optional)

The contents of AC3 and AC4 are interpreted in the same manner as they
-are in the SIN monitor call.

The transfer is terminated when one of the following occurs.
. The byte count becomes zero.

. The specified terminating byte is reached. This terminating
byte is written to the destination.

. An error occurs during the transfer.

Control returns to the user's program at the instruction following the
SOUT call. If an error occurs, a software interrupt is generated
(refer to Chapter 4). In addition, the position of the file's
pointer, the pointer to the string in AC2, and the count in AC3, if
pertinent, are also updated in the same manner as in the SIN monitor
call.

The following sequence of instructions shows transferring a string
from an input file to an output file. It is the same procedure as at
the end of Section 3.5.3, but it uses SIN and SOUT calls instead of
BIN and BOUT calls.

LOOP: MOVE 1,INJFN ;get source from INJFN
-HRROI 2,BUF128 ;pointer to string to read into (128
;word buffer)
MOVNI 3,7D128%*5 ;input a maximum of 640 bytes

SIN stransfer until end of buffer or end of
sfile
ERCAL EOFQ ;error occurred
ADDI 3,7D128%*5 sdetermine number of bytes transferred
MOVN 3,3
MOVE 1,0UTJFN ;get destination from OUTJFN
HRROI 2,BUF128 ;pointer to string to write from
SOUT ;transfer as many bytes as read
EOFQ: MOVE 1,INJFN
GTSTS ;obtain status of source
TLNN 2, (GS%EOF) ;test for end of file
RET ;jno, continue copying

3.5.5 Transferring Nonsequential Bytes

As discussed in Section 3.5.3, the BIN and BOUT calls transfer bytes
sequentially, starting at the current position of the file's pointer.
The RIN (Random Input) and ROUT (Random Output) monitor calls allow
the wuser's program to specify where the transfer will begin by
accepting a byte number within the file. The size of the byte is the
size given in the OPENF call for the file. The RIN and ROUT calls can
only be used when transferring data to or from disk files.

3-20

USING FILES

The RIN monitor call takes a byte from the specified location in the
file and places it into the accumulator. The call accepts the JFN of
the file in AC1l and the byte number within the file in AC3. Upon
successful completion of the call, the byte is right-justified in AC2,
and the file's pointer is updated to point to the byte following the
one just read. If an error occurs, a software interrupt is generated
(refer to Chapter 4). Control returns to the user's program at the
instruction following the RIN call.

The ROUT monitor call takes a byte from the accumulator and writes it
into the specified location in the file. The call accepts the JFN of
the file in AC1l, the byte to write right-justified in AC2, and the
byte number within the file in AC3. Upon successful completion of the
call, the byte is written into the specified byte in the file, and the
file's pointer is updated to point to the byte following the one just
written. If an error occurs, a software interrupt is generated (refer
to Chapter 4). Control returns to the user's program at the
instruction following the ROUT call.

3.5.6 Mapping Pages

Up to this point, monitor calls have been presented for transferring
bytes of data. The next call to be discussed is used to transfer
entire pages of data between a file and a process.

Both files and process address spaces are divided into pages of
512(decimal) words. A page within a file can be identified by one
word, where the JFN of the file is in the 1left half and the page
number within the file is in the right half. A page within a process
address space can also be identified by one word, where the identifier
of the process (refer to Section 5.3) is in the left half and the page
number within the process' address space is in the right half. Each
one-word identifier for the pages 1in the process address space 1is
placed in what is called the process page map. When identifiers for
file - pages are placed in the process page map, references to the
process page actually refer to the file page. The following diagram
illustrates a process map that has identifiers for pages from two
files.

File 1

Process Map
JFN1 PAGEA > PAGEA
File 2
JFN2 PAGEB bt PAGEB

3-21

USING FILES

The PMAP (Page Mapping) monitor call is used to map one or more entire
pages from a file to a process (for input), from a process to a file

(for output), or from one process to another process. In general,
this call changes the entries in the process map by accepting file
page identifiers and process page identifiers as arguments. Mapping

pages between a file and a process is described below; mapping pages
between two processes is described in Chapter 5.

3.5.6.1 Mapping File Pages To A Process - This use of the PMAP call
changes the map of the process so that references to pages in the
process reference pages in a file. This does not actually cause data
to be transferred; it simply changes the contents of the map. Later
when changes are made to the actual page in the process, the changes
will also be made to the page in the file, if write access has been
specified for the file.

The PMAP call accepts three words of arguments in ACl through AC3.

ACl: JFN of the file in the left half, and the page number in
the file in the right half

AC2: process identifier (refer to Section 5.3) in the 1left
half, and page number in the process in the right half

AC3: repetition count and access

The repetition count and access bits that can be specified in AC3 are
described below.

Bit Symbol Meaning

0 PMECNT Repeat the mapping operation the number of times
specified by the right half of AC3. The file page
number and the process page number are incremented
-by 1 each time the operation is performed.

2 PM%RD Allow read access to the page.

3 PM3WR Allow write access to the page.

9 PM3CPY Create a private copy of the page if the process
writes into the page. This is called

copy~on-write and causes the map to be changed so
that it identifies the copy instead of the
original. Write access is allowed to the copy
even 1if it was not allowed to the original. This
allows a process to change a page of data without
changing the data for other processes that have
also mapped the page.

18-35 The number of times to repeat the mapping
operation if bit O0(PMRCNT) is set.

With this use of the PMAP call, the present contents of the page in
the process are removed. If the page in the file is currently
nonexistent, it will be created when it is written.

This use of the PMAP call is valid only if the file is opened for at
least read access. If write access is requested in the PMAP call, it
is not granted unless it was also specified in the OPENF call when the
file was opened.

USING FILES

A file cannot be closed while any of its pages are mapped into any
process. Thus, before a file is closed, its pages must be unmapped
(refer to Section 3.5.6.3).

After execution of the PMAP call, control returns to the user's
program at the instruction following the call. If an error occurs, a
software interrupt is generated (refer to Chapter 4).

3.5.6.2 Mapping Process Pages To A File - This use of the PMAP call
actually transfers data by moving the specified page in the process to
the specified page in the file. The process map for the page 1is now
empty. Both the page in the process and the page in the file must be
private; that is, no other process can have the page mapped into 1its
address space. The ownership of the process page is transferred to
the file page. The previous contents of the page in the file are
deleted.

The three words of arguments are as follows:

ACl: process identifier (refer to Section 5.3) in the 1left
half, and page number in the process in the right half

AC2: JFN of the file in the left half, and the page number in
the file in the right half

AC3: repetition count and access (refer to Section 3.5.6.1)

The access requested in the PMAP call is grénted only if it does not
conflict with the access specified in the OPENF call when the file was
opened. ;

This use of the PMAP call does not automatically update the
end-of-file indicator and the file's byte size. To allow the file to
be read later with sequential I/O monitor calls, the program should
update the end-of-file indicator and the byte.size. (Refer to the
CHFDB monitor call in the DECsystem-20 Monitor Calls Reference
Manual) .

3.5.6.3 Unmapping Pages In A Process - As stated previously, a file
cannot be closed 1if any of its pages are mapped in any process. To
unmap a file's pages from a process, the program must execute the
following form of the PMAP call:

ACl: -1

AC2: process identifier in the left half, and page number in
the process in the right half.

AC3: the repeat count for the number of pages to remove from
the process (refer to Section 3.5.6.1).

3.6 CLOSING A FILE

Once data has been transferred to or from a file, the wuser's program
must close the file. When a file is closed, the system automatically
performs the following:

USING FILES

l. Updates the directory information for the file. For example,
for a file to which sequential bytes had been written, the
byte size and byte count are updated when the file is closed.

2. Deassigns the JFN associated with the file. However, the
user's program can request to close the file, but retain the
JFN assignment. This is useful if the program plans to
reopen the same file 1later, but does not want to execute
another GTJFN call.

3.6.1 CLOSF Monitor Call

The CLOSF (Close File) monitor call closes either the specified file
or all files that are opened for the process executing the call. The
CLOSF call accepts one word of arguments in ACl - flag bits in the
left half and the JFN of the file to be closed in the right half. The
flag bits are as follows:

Bit Symbol Meaning
0 CO%NRJ Do not disassociate the JFN from the file.
6 CZ%ABT Abort any output operations currently being done.

That 1is, close the file but do not perform normal
cleanup operations (e.g., do not output any data
remaining in the buffers). If output to a new
disk file that has not been closed is aborted, the
file is closed and then deleted.

If the contents of ACl is -1, all files that are opened for this
process are closed.

If the execution of the CLOSF call is successful, the specified file
is closed, and the JFN associated with the file is released if CO%NRJ
was not set in the call. The execution of the user's program
continues at the second location after the CLOSF call.

If the execution of the CLOSF call is not successful, the file is not
closed and an error code is returned in the right half of ACl. The
execution of the user's program continues at the instruction following
the CLOSF call.

The following sequence illustrates the closing of two files.

CLOSIF: MOVE 1,INJFN ;obtain input JFN
CLOSF ;close input file
ERJIJMP FATAL ;if error, print message and stop
CLOSOF: MOVE 1,0UTJFN ;obtain output JFN
CLOSF ;close output file
ERJMP FATAL 7if error, print message and stop

USING FILES

3.7 ADDITIONAL FILE I/O MONITOR CALLS

3.7.1 GTSTS Monitor Call

The GTSTS (Get Status) monitor call obtains the status of a file.
This call accepts one argument word - the JFN of the file in the right
half of the ACl. The left half of ACl is zero.

Control always returns to the user's program at the instruction
following the GTSTS call. Upon return, appropriate bits reflecting
the status of the specified JFN are set in AC2. These bits, and their
meanings, are described in Table 3-6. Note that if the JFN is illegal
or unassigned, bit 10 (GS%NAM) will not be set.

Table 3-6
Bits Returned on GTSTS Call

Bit Symbol Meaning

0 GS30PN The file is open. If this bit is not
set, the file is not open.

1 GS%RDF If the file is open (e.g., GS%OPN is
set), it is open for read access.

2 GS%WRF If the file is open, it 1is open for
write access.

3 Reserved for DEC.

4 GS%RND If the file is open, it 1is open for

non-append access (i.e., its pointer
can be reset).

5-6 Reserved for DEC.

7 GS$LNG File has pages in existence beyond
page number 511.

8 GS3%EOF The last read operation to the file
was at the end of the file.

9 GS%ERR The file may be in error (e.g., the
bytes read may be erroneous).

10 GS3¥NAM A file specification 1is associated
with this JFN. This bit will not be
set if the JFN is in any way illegal.

11 GS$AST One or more fields of the file
specification associated with this JFN
contain a wildcard character.

12 GS3%ASG The JFN is currently being assigned
(i.e., a process other than the one
executing the GTSTS call is assigning
this JFN).

13 GS%HLT An I/0 error is considered to be a
terminating condition for this JFN.
That is, the OPENF call for this JFN
had bit OF%HER set.

3-25

USING FILES

Table 3-6 (Cont.)
Bits Returned on GTSTS Call

Bits Symbol Meaning

14-16 Reserved for DEC.
17 GS%FRK Access to the file 1is restricted to

only one process.

18-31 Reserved for DEC.
32-35 The data mode of the file (refer to

the OPENF call).

Value Symbol Meaning
0 .GSNRM Normal (sequential) I/O
10 .GSIMG 1Image (binary) I/O
17 .GSDMP Dump I/O

An example of the GTSTS call is shown in the first program in Section
3.9.

3.7.2 JFNS Monitor Call

The JFNS (JFN to String) monitor call returns the file specification
currently associated with the specified JFN. The call accepts three
words of arguments in AC1 through AC3.

ACl: destination designator where the file specification
associated with the JFN 1is to be written. This
specification is an ASCIZ string.

AC2: JFN or pointer to string (see below)

AC3: format to be used when returning the specification (see
below)

The contents of ACl can be any valid destination designator (refer to
Section 3.5.2).

The contents of AC2 can be one of two formats. The first format is a
word with either flag bits or 0 in the left half and the JFN in the
right half. The bits that can be given in the left half of AC2 are
the ones returned from the GTJFN call (refer to Table 3-3). When the
left half of AC2 is nonzero (i.e., contains the bits returned from the
GTJFN call), the string returned will contain wildcard characters for
appropriate fields and 0, -1, or -2 as a generation number 1if the
corresponding bit is on in the JFNS call. When the left half of AC2
is 0, the string returned is the exact specification for the file
(e.g., wildcard characters are not returned for any fields). If the
JFN is associated only with a file specification and not with an
actual file (i.e., bit GJ%OFG was set in the GTJFN call), the string
returned will contain null fields for unspecified fields and the
actual values for specified fields. The second format allowed for AC2
is a pointer to the string in the program's address space that 1is to
be returned upon execution of the call. Refer to the DECsystem-20
Monitor Calls Reference Manual for the explanation of this format.

USING FILES

The contents of AC3 specify the format in which the specification is
written to the destination. Bits 0 through 20 are divided into 3-bit
bytes, each byte representing a field in the file specification. The
value of the byte indicates the format for that field. The possible
values are:

0 Do not return this field when returning the file
specification.

1 Always return this field when returning the file
specification.

2 Suppress this field if it is the standard system value for

this field (refer to Table 3-1).

If the contents of AC3 is zero, the file specification is written in
the format

dev:<directory>name.typ.gen;T
with fields the same as the standard system value (see Table 3-1) not
returned and protection and account fields returned only if bit 9 and
bit 10 in AC2 are on, respectively. The temporary attribute (;T) 1is
returned only if the file is temporary.
Table 3-7 describes the bits that can be set in AC3.

Table 3-7
JFNS Format Options

Bit Symbol Meaning

0-2 JS%DEV Format for device field.

3-5 JS%DIR Format for directory field.

6-8 JSENAM Format for filename field. A value of
2 (i.e., bit 7 set) for this field is
illegal.

9-11 JS%TYP Format for file type field. A value

of 2 (i.e., bit 10 set) for this field
is illegal. .

12-14 JS$GEN Format for generation number field.
15-17 JS%PRO Format for protection field.

18~20 JS%ACT Format for account field.

21 JS$TMP Return temporary file indication ;T if

the file specification is for a
temporary file.

22 JS%S1Z Return size of file in pages (see
below) .

23 JS%CRD Return creation date of file (see
below) .

24 JS3LWR Return date of last write operation to

file (see below).

25 JS$LRD Return date of 1last read operation
from file (see below).

3-27

USING FILES

Table 3~7 (Cont.)
JFNS Format Options

Bit Symbol Meaning

26 JS%PTR AC2 contains a pointer to the string
containing the field to be returned
(refer to the DECsystem~20 Monitor

Calls Reference Manual for a
description of this use of the JFNS
call).

27-31 Reserved for DEC.

32 JS%PSD Punctuate the size and date fields

(see below) in the file specification
returned.

33 JS$TBR Place a tab before all fields returned
(i.e., fields whose value is given as
1 in the 3-bit field) 1in the file
specification, except for the first
field. -

34 JS3TBP Place a tab before all fields that may
be returned (i.e., fields whose value
is given as 1 or 2 in the 3-bit field)
in the file specification, except for
the first field.

35 JS%PAF Punctuate all fields (see below)
returned in the file specification
from the device field through .the ;T
field.

If bits 32 through 35 are not set, no
punctuation is used between the
fields.

The punctuation used on each field is shown below. (The punctuation
is underscored.)

dev:<directory>name.typ.gen;A(account) ;P(protection);T(temporary)
sSize,creation date,write date,read date

Control always returns to the user's program at the instruction
following the JFNS call. 1If an error occurs, a software interrupt is
generated (refer to Chapter 4).

3.7.3 GNJFN Monitor Call

Occasionally a program may be written to perform similar operations on
a group of files instead of only on one file. However, the program
should not require the user to give a file specification for each
~file. Because the GTJFN call associates a JFN with only one file at a
time, the program needs a method of assigning a JFN to all the files
in the group. By using the GTJFN call to initially obtain the JFN and
the GNJFN call to assign the same JFN to each subsequent file 1in the
group, a program can accept a specification for a group of files and
process each file in the group individually. After the user gives the
initial file specification, the program requires no additional input.

3-28

USING FILES

Before an example showing the interaction of these two calls is given,
a description of the GNJFN (Get Next JFN) monitor call is appropriate.

The GNJFN monitor call assigns a JFN to the next file in a group of
files that have been specified with wildcard characters. The next
file is determined by searching the directory in the order described
in Section 3.3.1.1 wusing the current file as the first file. This
call accepts one argument word in ACl - the flags returned from the
GTJFN call in the 1left half and the JFN of the current file in the
right half. 1In other words, the information returned in ACl from the
GTJFN call is given as an argument to the GNJFN call. Therefore, the
program must save this information for use with the GNJFN call.

If execution of the GNJFN call is successful, the same JFN is assigned
to the next file in the group. The left half of ACl contains various
flags and the right half contains the JFN. The execution of the
program continues at the second instruction after the GNJFN call.

The following bits can be returned in ACl on a successful GNJFN call.
Bit Symbol Meaning

14 GNEDIR A change in directory occurred between
the previous file and this file.

15 GN¥NAM A change in filename occurred between
the previous file and this file.

16 GNSEXT A change in file type occurred between
the previous file and this file. If
GN%NAM is on, this bit will also be on
because the system considers two files
with different filenames but with the
same file type as a change in both the
name and type.

If execution of the GNJFN call is not successful, an error code is
returned in the right half of ACl. Conditions that can cause an error
return are:

1. The file currently associated with the JFN must be closed,
and it is not. This means that the program must execute a
CLOSF call (with CO%NRJ set to retain the JFN) before
executing a GNJFN call.

2. There are no more files in this group. This return occurs on
the first GNJFN call if no flags indicating wildcard fields
are on in ACl of the call. The JFN is released when there
are no more files.

The execution of the program continues at the next instruction after
the GNJFN call.

Consider the following situation. The user wants to write a program
that will accept from his terminal a specification for a group of
files and then perform an operation on each file individually without
requiring additional input. Assume the 'user's directory <TRAIN>
contains the following files:

FIRST.MAC.1
FIRST.REL.1

USING FILES

SECOND.REL.1
THIRD.EXE.1

As discussed in Section 3.3.1.1, a group of files can be given to the
GTJFN call by supplying a specification that <contains wildcard
characters in one or more of its fields. Thus, the specification

<TRAIN>* *
would refer to all four files in the user's directory <TRAIN>.

In his program, the user includes a GTJFN call that will accept the
above specification.

The call is

MOVSIbACl,(GJ%OLD+GJ%IFG+GJ%FLG+GJ%FNS+GJ%SHT)
MOVE AC2,[.PRIIN,,.PRIOU]
GTJFN

and indicates that

1. The file specification given must refer to an existing file
(GJ%OLD) .

2. The file specification given is allowed to contain wildcard
characters (GJ%IFG).

3. Flags will be returned in ACl on a successful call (GJ%FLG).
The flags must be returned because they will be given to the
GNJFN call as arguments.

4. The contents of AC2 will be interpreted as containing an
input and output JFN (GJ%FNS).

5. The short form of the GTJFN call is being used (GJ%SHT).

6. The file specification is to be read from the user's terminal
(.PRIIN,,.PRIOU).

When the user types the specification <TRAIN>*.* as input, the system
associates the JFN with one file only. This file is the first one
found when searching the directory in the order specified in Section
3.3.1.1. Thus the JFN returned is associated with the file
FIRST.MAC.1.

After the GTJFN call is successfully executed, ACl1 contains
appropriate flags 1in the left half and the JFN assigned in the right
half. The flags that will be returned in this particular situation
are:

GJgNAM (bit 3) A wildcard character appeared in the name
field of the file specification given.

GJIREXT (bit 4) A wildcard character appeared in the type
field of the file specification given.

GJ%GND (bit 12) Any files marked for deletion will not be
considered.

These flags inform the program of the fields that contained wildcard
characters.

USING FILES

The user's program must now save the contents of ACl because this word
will be wused as the argument to the GNJFN call. The program then
performs its desired operation on the first file. Once its processing
is completed, the program is ready for the specification of the next
file. But instead of requesting the specification from the user, the
program executes the GNJFN call to obtain it. The argument to the
GNJFN call is the contents of ACl1l returned from the previous GTJFN
call. Thus, the call in this case is equivalent to:

MOVE AC1l, [GIJ$NAM+GJREXT+GJ%GND, ,JFN]
GNJFN

Upon successful execution of the GNJFN call, the JFN is now associated
with the next file in the group (i.e., FIRST.REL.1). ACl contains
appropriate flags in the left half and the same JFN in the right half.
In this example, the flag returned is GN%$EXT (bit 16) to indicate that
the file type changed between the two files.

After processing the second file, the user's program executes another
GNJFN call using the original contents of ACl returned from the GTJFN
call. The original contents must be used because this word indicates
the fields containing wildcard characters. If the current contents of
ACl (i.e., the flags returned from the GNJFN call) are used, a
subsequent GNJFN <call would fail because there are no flags set
indicating fields containing wildcard characters. This second GNJFN
call associates the JFN with the file SECOND.REL.1. The flags
returned in ACl are GN$NAM (bit 15) and GN$EXT (bit 16) indicating
that the filename and file type changed between the two files.
(Remember that a change in filename implies a change in file type even
if the two file types are the same.)

After processing this third file, the user's program executes another
GNJFN call using the original contents of ACl. Upon execution of the
call, the JFN is now associated with THIRD.EXE.l, and the flags
returned are GN%NAM and GN%EXT, indicating a change in the filename
and file type.

After processing the file THIRD.EXE.l, the user's program executes a
final GNJFN call. Since there are no more files in the group, the

call returns an error code and releases the JFN. Execution of the
user's program continues at the instruction following the GNJFN call.

3.8 SUMMARY
To read from or write to a file, the user's program must:

1. Obtain a JFN on the file with the GTJFN monitor call (refer
to Section 3.3.1).

2. Open the file with the OPENF monitor call (refer to Section
3.4.1).

3. Transfer the data with byte, string, or page I/O monitor
calls (refer to Section 3.5).

4. Close the file with the CLOSF monitor call (refer to Section
3.6.1).

3-31

USING FILES

3.9 FILE EXAMPLES

Example 1 - This program assigns JFNs, opens an input file and an
output file, and copies data from the input file to the output file.
Data is copied until the end of the input file is reached. Refer to
the DECsystem-20 Monitor Calls Reference Manual for explanation of the
ERSTR monitor call.

Aokl PROGRAM TQ COPY INFUT FILE TO OUTFUT FILE. Sk
i CUSTNG BINABOUT AND TOGNORING NULLS)

[
1

FILELG FTITLE QF PROGRAM
H MONSYM FGEARCH BYSTEM JESYS-8YMROL LIBRARY

Ay TMPURE TATA STORAGE &M DE

INETIONS ok

INFNMD BLOCK L FRTORAGE FOR INFUT JFN
QUTJIFNT BLAOCK 1 FETORGGE FOR OUTFUT JFN

3
LOSTORAGE FOR STACK

Pl N3 FETACK
FOLSTE BLOCK FOLEN FHEET AR

FABYE ACS

§TEMPORARY ACTS
.t'{-(-%»é

FRUSH DOWN FOINTER

INITIALLZATION Sk

STaRT

L P DIOWD FYILEN FIHLST
gk GET INPLUT-FILE ook

Sy DARCIE 7
FILE
FL ML
OF GTIFN
v FLLE-#R78 IN R

MOVE Ay DEIROL OB NE G

FUENLETING L
§o8HORT Call. 2

MOVE
GT.

Boll e FRIINy » JFRIOW]D

JENSG TS WETH CONTREOLLING TERMIMAL
[Fi.E HUME {F
po GIVE WaRNING
HIM TRY AGalN
pe DAVE THE JFN

FLFOER
N T M L
MUMEM @ TN FEUCC

USING FILES

Pk GET QUTRUT-FTLE dlok

QUTFIL: HRROL AyDaSCIZ /
QUTFUT FILEY /1 FFROMPT FOR OQUTPUT FILE

FEQUT ¥l NTOIT

MOVE A LEJAFQUAGIZMBEHEJACFMAGIZFNSHOJEEHT 15 GTJFN SEARCH MODRES
FAULT TO NEW G TION » PRINT
G XGE » REQUIRE CONFIRMATION
“MEROBCIN By GHORT Call

Sp Lo FRIINY » JFRIOUT 5170 WITH CONTROLLING TERMINAL
¥ B-FLLE NMUMBER

1. Py WakN = v GIVE WARNING

COOUTFILY FAND LET HIM TRY AGAIN

MOVEM & r(lll TJFNM FSAVE THE JFN

PO OFEN THE FILES WE JUST GaT
7 INEUT

RIEVE THE ITNFUT JFN
SCLARE MOUES FOR OPENF L7-BIT BYTES +
vINFUTT
U B FUFEN THE FILE
JEET FaTal FLF ERROR: GIVE MESSAGE aND 8TOPF

PMIVE @e TNJFH
PMOVE B D7REHQFZRI

H OUTFUT

SR
FOR OFENF L7-BEIT BYTES +

OUTUFHM

LQUTEUT
o LPRSHOFZWIRD P

SOUTFUT

FOPEMN THE FILE
Fatal FUF ERRORy GIVE MESSAGE aND 8TOF

Fakd MALM LGOF FCOPY BYTES FROM OINFUT TO QUTFUT Rk

Fre DRI

LOGE S

THE
A

MUV @ QUIT N
JIE RS
ST LR

CHTENATIOM
Orb A O BYTE (FOUND

32

O SUCCESS

FUEET STATUS OF THFUT FILE.
AT NI OF FILET
by FLUSH NULL AMND CORTINUE CORY

By €03

COLOOE

CLUBLE HUUI fre TGN FYEGy RETRIEVE INFUT JFN
FOLOSE TNPUT FILE
3T FaTal FAFERR GIMVE MESSAGE anMkt 8TOF

CEVE GUTFUT JFN
SEOOUTFUT FILE
JL\I FATaAL yll EHRUHy GIVE MESSAGE aMNl STOF

CLOSCF: mMOVE ﬁyOUTJFN

HEROL Ay DASCTES
CROEDA] PSUCCESSFULLY DONE

sk ERROR HANDLING ok

FaTal.:
?/1

WARM?

%rl

ERROR

Ziak s

HRROI Ay LABCIZ/

FUSHJ Fy ERROR
JRET ZaP

HRRQI A LABCIZ/

FEOUT

MOVE AyLPRIGUID
MOVE By L FHSLF2o—~11
BETZ Co

ERSTR

JECL
FOFS Fo

HALTF
JERST START
EMIY 8TART

USING FILES

sFATAL ERRORS FRINT 7 FIRST
FTHEN PRINT ERROR MESSAGE.
AN STOF

sWARNINGS FRINT % FIRST
§ AND FALL THRU YERROR BACK TO CALLER

FPRINT THE % OR X

SNECLARE PRINCIPAL QUTFUT REVICE FOR
FERROR MESSAGE

FOURRENT FORKy ¢ LABT ERROR

FNO LIMIT»» FULL MESSAGE

FPRINT THE MESSAGE

FLGNORE UNDEFINED EREOR NUMBER

FLGNORE ERROF DURING EXECUTION OF ERSTR
FRETURN TO CALLER

FUWE ARE RESTARTARLE
FTELL LINKING LOADER S8TART ADNRESS

3-34

USING FILES

Example 2 - This program accepts input from a user at the terminal and
then outputs the data to the line printer. Refer to Section 2.9 for
explanation of the RDTTY call.

TITLE LETENT ~ FROGRAM TO FRINT TERMINAL INFUT ON THE FRINTER
Sall.

SEARCH MACSYMy MONSYM
REQUIRE SYSIMaCREL

BUFSIZ
FOLEN

CouMT: BLOCK 1
BUFFER? BLOCK KU 2
P2 BLOCK PLRLEM

STARTE RESET FRESET L0 ETO.
HEROL TLs DABCLE/ENTER TEXT TO BE PRINTED (END WITH "Z)2

i FOET FOINTER
FsOuUT FOUTPUT FF
HREEQL TLsBUFFER SEET POINTER TO BUFFE
MOVE T2 DRIZRREABUFSIONGD $6GET FLAG AMD MaX & OF CHARACUTERS TO

FREAT

SETEZM T3 FNORE-TYFE BUFFER
ROTTY FIMPUT TEXT FROM THE TERMINAL
JEHLT FERRGOR. STOF
AL BUFSTERS s OOMPUTE NUMEBER OF CHARACTERS READ
MOUEM T2« COUNT FEAVE 4 OF CHARACTERS INFUT

TO FROMP I[NL; TEXT

POGET & JFN FOR THE PRINTER AN GFEN THE PRINTER

MOVSL TLe (G
HERGQT T2, 0a80
GTUF h'

AEHTTGIEFOUY s QUTFUT FILE SHORT ol
T2 ZLPTA71 sGET FOINTER TO NaME OF FILE
.'CL T A ”"l! Fids THE FRINTE Ix

'ummfﬁu

;/ Ifl]
SENOT
§I 5

G OFAWE

FRINM
PONOUW OUTRUT THE TEXT WHICH Was INFUT FROM THE TERMINAL

SUET POINMTER TO TEXT (PRIMTER JFN STILL
FIN T1D

FOMN T COUNT FEET NUME
SOUT FOUTRUT &
PFRINTER
FERFQOR: FRINT EREOR MES

HEROT

QUTEUT
P OTOTHE

QuTEUT THE FRINTER .. .

'

T OCOMFIRMATION MES

FEOUT 5
HALTE PEINISHEL
JEST START COMTINUGED GO SACK TO START

3-35

USING FILES

§OERROR ROUTINES

JFNERR T HREROLI T1.LA8CIZ/A
TOCOULDY NOT GET & JFH FOR THE PRINTER
/1

HALTF

JEET BTART

OFMERRS HREROL T1L.0a8CLE/
TOCOULT NOT OFEN THE PRINTER FOR QUTFUT
/1

HALTF

JRET START

DATERRT HRROL Tl La8CIEY
TonaTa ERROR DURING QUTFUT TO FRINTVER
71

HALTF
SEST BTaRT

ENDt 8TaRT

3-36

CHAPTER 4

USING THE SOFTWARE INTERRUPT SYSTEM

4.1 OVERVIEW

Program execution usually occurs in a sequential manner, whereby one
instruction is executed immediately followed by the next one.
However, there are many occasions when a program must be able to
receive asynchronous signals from terminals or other programs or as a
result of its own execution. By using the software interrupt system,
the user can specify certain conditions that will cause his program to
deviate from its sequential method of execution.

An interrupt is defined as a break in the normal flow of <control
during a program's execution. The break, or interrupt, is caused by
the occurrence of a prespecified condition. By specifying the
conditions that can cause an interrupt, the program has the capability
of dynamically responding to external events and error conditions and
of generating requests for services. Because the program can respond
to special conditions as they occur, it does not have to explicitly
and repeatedly test for them. In addition, the program's size is
reduced and its execution is faster because the program does not have
to include a special test after the possible occurrence of the
condition.

When an interrupt occurs, the system transfers control from the main
program sequence to a previously-specified routine that will process
the interrupt. After the routine has completed its processing of the
interrupt, the system can transfer control back to the program at the
point it was interrupted, and execution can continue. See Figure 4-1.

USING THE SOFTWARE INTERRUPT SYSTEM

user
program
is
executing

Y

interrupt
condition
occurs

Y

Has program Is an interrupt execute
enabled for Yes of higher priority \ No user's
condition on 4 being processed? interrupt
this channel? routine

No Yes

Y

Wait until

I higher priority
perform interrupt finishes
system
default
action
(e.g.,
stop job,
print
message)

user

program

continues

if job has

not been terminated

Figure 4-~1 Basic Operational Sequence of the Software Interrupt System

USING THE SOFTWARE INTERRUPT SYSTEM

4.2 INTERRUPT CONDITIONS

Conditions that cause the program to be interrupted when the interrupt
system is enabled are:

1. Conditions generated when specific terminal keys are typed.
There are 36 possible codes; each one specifies the
particular terminal character or condition on which an
interrupt 1is to be initiated. Refer to Table 4-2 for the
possible codes.

2. Invalid instructions (e.g., I/O instructions given in user
mode) or privileged monitor calls.

3. Memory conditions, such as a reference to unassigned memory.

4, Arithmetic processor conditions, such as arithmetic overflow
or underflow.

5. Certain file or device conditions, such as end of file.
6. Program-generated software interrupts.

7. Termination of an inferior process.

8. System resource unavailability.

9. Interprocess communication (IPCF) and Enqueue/Dequeue
interrupts.

4.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES

Each condition 1is associated with one of 36 software interrupt
channels. Most conditions are permanently assigned to specific
channels; however, the user's program can associate some conditions
(e.g., conditions generated by specific terminal keys) to any one of
the assignable channels. (Refer to Table 4-1 for the channel
assignments.) When the condition associated with a channel occurs, and
that channel has been activated, an interrupt is generated. Control
can then be transferred to the routine responsible for processing
interrupts on that channel.

The user program assigns each channel to one of three priority levels.
Priority levels allow the occurrence of some conditions to suspend the
processing of other conditions. The levels are referred to as level
1, 2, or 3 with level 1 having the highest priority. Level 0 is not a
legal priority level.!l

!If an interrupt is generated in a process where the priority level
is 0, the system considers that the process is not prepared to handle
the interrupt. The process is then suspended or terminated according
to the setting of bit 17 (SC%FRZ) in its capability word.

4-3

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-1
Software Interrupt Channel Assignments

Channel Symbol Meaning

0-5 Assignable by user program

6 . ICAOV Arithmetic overflow

7 +ICFOV Arithmetic floating point overflow

8 Reserved for DEC

9 .ICPOV Pushdown list (PDL) overflow!

10 . ICEOF End of file condition

11 . ICDAE Data error file condition!

12-14 Reserved for DEC

15 .ICILI Illegal instruction!

16 .ICIRD Illegal memory read?

17 .ICIWR Illegal memory write!

18 Reserved for DEC

19 LICIFT Inferior process termination

20 . ICMSE System resources exhausted!

21 Reserved for DEC

22 . ICNXP Nonexistent page reference

23-35 Assignable by user program

!These channels (called panic channels) cannot be completely
deactivated. An interrupt generated on one of these channels
terminates the process if the channel is not activated.

The software interrupt system processes interrupts on activated
channels only, and each channel can be activated and. deactivated
independently of other channels. When activated, the <channel can
generate an interrupt for its associated priority level. An interrupt
for any priority level is initiated only if there are no interrupts in
progress for the same or higher priority levels. If there are, the
system remembers the interrupt request and initiates it after all
equal or higher priority level interrupts finish. This means that a
higher priority level request can suspend a routine processing a lower
level interrupt. Thus, the user must be concerned with several items
‘when he assigns his priority levels. He must consider 1) when one
interrupt request can suspend the processing of another and 2) when
the processing of a second interrupt cannot be deferred until the
completion of the first. See Figure 4-2.

4-4

level 2

level 1

user program

execution

channel 6
interrupt
routine

interrupt
on chan-
nel 6
that has
a prior-
ity level
of 2

lchannel 4

interrupt
routine

waiting

interrupt on

channel 4
that has a

priority level

of 1

Figure 4-2 Channels and Priority Levels

level 3A

waiting

channel 4
interrupt
completes

channel 6 interrupt
routine continues

interrupt
on channel

35 that has
a priority

level of 3

channel 35
interrupt
routine

channel 6
interrupt
completes

Lt

user program
continues

channel 35
interrupt
completes

WILSAXS ILANYYALNI JIYMILAOS HHL DNISN

USING THE SOFTWARE INTERRUPT SYSTEM

4.4 SOFTWARE INTERRUPT TABLES

To process interrupts, the user includes, as part of his program,
special service routines for the channels he will be using. He must
then specify the addresses of these routines to the system by setting
up a channel table. In addition, the wuser must also include a
priority level table as part of his program. Finally, he must declare
the addresses of these tables to the system.

4.4.1 Channel Table

The channel table, CHNTAB!, contains a orne-word entry for each
channel; thus the table has 36 entries. Each entry corresponds to a
particular channel, and each channel is associated at any given time
with only one interrupt condition. (Refer to Table 4-1 for the

interrupt conditions associated with each channel.)

The CHNTAB table is indexed by the channel number (0 through 35). The
left half of each entry contains the priority level to which the
channel is assigned. The right half of each entry contains the
address of the interrupt routine for that channel. 1If a particular
channel is not planned to be used, the corresponding entry in the
channel table should be zero.

The following is an example of a channel table.

CHNTAB: 2,,CHNOSV ;channel 0
2,,CHN1svV ;channel 1
2,,CHN2SV schannel 2
2,,CHN3SV ;channel 3
0,,0 ;channel 4
0,,0 ;channel 5
1, ,APRSRV ;channel 6
0,,0 ;channel 7
0,,0 ;channel 8
1,,STKSRV schannel 9
0,,0 schannel 10
0,,0 schannel 35

In this example, channels 0 through 3 are assigned to priority level
2, with the interrupt routine at CHNOSV servicing channel 0, the
routine at CHN1SV servicing channel 1, the routine at CHN2SV servicing
channel 2, and the routine at CHN3SV servicing channel 3. Channels 6
and 9 are assigned to priority level 1, with the routine at APRSRV
servicing channel 6 and the routine at STKSRV servicing channel 9.
All remaining channels are not assigned.

!The wuser can call his channel table any name he desires; however,
it is a good practice to call the table CHNTAB.

4-6

USING THE SOFTWARE INTERRUPT SYSTEM

4.4.2 Priority Level Table

The priority level table, LEVTAB!, contains a one-word entry for
each of the three priority levels. The left half of each entry is
zero. The right half of each entry contains the address in the user's
program where the system will store the flags and program counter (PC)
for the associated priority level. The system must save the value of
the program counter so that it can return control at the appropriate
point in the program once the interrupt routine has completed
processing an interrupt. If a particular priority level is not used,
its corresponding entry in the level table should be =zero.

The following is a sample of a level table.

LEVTAB: 0,,PCLEV1 ;Addresses to save PC for interrupts
0,,PCLEV2 ;occurring on priority levels 1 and 2.
0,,0 ;No priority level 3 interrupts are

;planned.

4.4.3 Specifying The Software Interrupt Tables

Before using the software interrupt system, the user's program must
set up the contents of the channel table and the priority level table.
The program must then specify their addresses with the SIR monitor
call.

The SIR monitor call accepts two words of arguments - the identifier
for the program (or process) in ACl and the table addresses in AC2.
Refer to Section 5.3 for the description of process identifiers.

MOVEI 1,.FHSLF ;identifier of current process

MOVE 2, [LEVTAB, ,CHNTAB] ;addresses of the tables

SIR '
Control always returns to the user's program at the instruction
following the SIR call. If the call is successful, the table
addresses are stored in the monitor. If the call is not successful, a

software interrupt is generated.

Any changes made to the contents of the tables after the SIR call has
been executed will be in effect at the time of the next interrupt.

4.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM

Once the interrupt tables have been set up and their addresses defined
with the SIR monitor call, the wuser's program must enable the
interrupt system. When the interrupt system is enabled, interrupts
occurring on activated channels are processed by the user's interrupt
routines. When the interrupt system is disabled, interrupts are
processed by the monitor as if the channels for these interrupts were
not activated. -

!The user can call his priority level table any name he desires;
however, it is good practice to call it LEVTAB.

4-7

USING THE SOFTWARE INTERRUPT SYSTEM

The EIR monitor call, used to enable the system, accepts one argument-
the identifier for the process in ACl.

MOVEI 1,.FHSLF , ;identifier of current process
" EIR

Control always returns to the instruction following the EIR call.

4.6 ACTIVATING INTERRUPT CHANNELS

Once the software interrupt system is enabled, the channels on which
interrupts can occur must be activated (refer to Table 4-1 for the
channel assignments). The channels to be activated have a nonzero
entry in the appropriate word in the channel table.

The AIC monitor call is used to activate one or more of the 36
interrupt channels. This call accepts two words of arguments - the
identifier for the process in ACl and the channels to be activated in
AC2. The channels are indicated by setting the appropriate bits
(i.e., setting bit n indicates channel n is to be activated). The
current state of any channel not specified in the AIC call is not
changed. .

MOVEI 1, .FHSLF ;identifier of current process
MOVE 2, [1B<.ICAOQV>+1B<.ICPOV>] sactivate channels 6 and 9
AIC

Control always returns to the instruction following the AIC call.

Some channels, called panic channels by convention, cannot be
deactivated by disabling the channel or the entire interrupt system
(refer to Table 4-1 for these channels). This 1is because the
occurrence of the conditions associated with these channels cannot be
completely ignored by the monitor. If one of these conditions occurs,
an interrupt is generated whether the channel is activated or not. 1If
the channel is not activated, the process is terminated, and usually a
message 1is output before control returns to the monitor. If the
channel is activated, control is given to the user's interrupt routine
for that channel.

4.7 PROCESSING AN INTERRUPT

When a software interrupt occurs on a given priority 1level, the
monitor stores the current program counter (PC) word in the address
indicated in the priority level table (refer to Section 4.4.2). The
monitor then transfers control to the interrupt routine associated
with the channel on which the interrupt occurred. The address of this
routine is specified in the channel table (refer to Section 4.4.1).

Since the user's program cannot determine when an interrupt will
occur, the interrupt routine is responsible for preserving the state
of the program so that the program can be resumed properly. Thus, the
first action taken by the routine is to store the contents of any user
accumulators that will be used during the processing of the interrupt.
After the accumulators are saved, the interrupt routine processes the
interrupt.

Occasionally, an interrupt routine may need to alter locations in the

main section of the program. For example, a routine may change the
stored PC word to resume execution at a location different from where

4-8

USING THE SOFTWARE INTERRUPT SYSTEM

the interrupt occurred. Or it may alter a value that caused the
interrupt. It is important that care be used when writing routines
that alter data because any changes will remain when control is
returned to the main program. For example, if data 1is inadvertently
stored in the PC word, return to the main section of the program would
be incorrect when the system attempted to use the word as the value of
the program counter.

If a higher priority interrupt occurs during the execution of an
interrupt routine, the executing routine is suspended. The value of
its program counter 1is stored at the location indicated in the
priority level table for the new interrupt. When the routine for this
new interrupt is completed, the suspended routine is resumed. If an
interrupt of the same or lower priority occurs during the execution of
a routine, the monitor holds the interrupt until all higher or equal
level interrupts have been processed.

The system considers the user's program unable to process an interrupt
on an activated channel if:

1. The priority level associated with the channel is 0.

2. The program has not defined its interrupt tables by executing
a SIR monitor call.

3. The process has not enabled the interrupt system by executing
an EIR monitor call, and the channel on which the interrupt
occurs is a panic channel.

In any of the above cases, the occurrence of an interrupt terminates
the user's program.

4.7.1 Dismissing An Interrupt

Once the processing of an interrupt is complete, the interrupt routine
should restore the user accumulators to their initial values. Then it
returns control to the interrupted code via the DEBRK monitor <call.
This call restores the PC word and resumes the program. The call has
no arguments and must be the last statement in the interrupt routine.

The user's program is restored to its state prior to the interrupt if
the stored PC word has not been changed. For example, if the program
was interrupted while waiting for I/C to complete, it is restored to
that state after execution of the DEBRK call. If the PC word was
changed, the program resumes execution at the new PC location.

4.8 TERMINAL INTERRUPTS

The user's program can associate channels 0 through 5 and channels 24
through 35 with occurrences of various conditions, such as the
occurrence of a particular character typed at the terminal or the
receipt of an IPCF message. This section discusses terminal
interrupts; refer to Chapters 6 and 7 for other types of assignable
interrupts.

There are 36 codes used to specify terminal characters or conditions
on which interrupts can be initiated. These codes, along with their
associated conditions, are shown in Table 4-2.

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-2

Terminal Codes and Conditions

Code Symbol Character or Condition
0 .TICBK CTRL/@ or break
1 .TICCA CTRL/A
2 .TICCB CTRL/B
>3 .TICCC CTRL/C
4 .TICCD CTRL/D
5 .TICCE CTRL/E
6 .TICCF CTRL/F
7 .TICCG CTRL/G
8 .TICCH CTRL/H
9 .TICCI CTRL/I

10 .TICCJ CTRL/J

11 .TICCK CTRL/K

12 .TICCL CTRL/L

13 .TICCM CTRL/M

14 .TICCN CTRL/N

15 .TICCO CTRL/O

16 .TICCP CTRL/P

17 .TICCQ CTRL/Q

18 .TICCR CTRL/R

19 .TICCS CTRL/S

20 .TICCT CTRL/T

21 .TICCU CTRL/U

22 .TICCV CTRL/V

23 .TICCW CTRL/W

24 .TICCX CTRL/X

25 .TICCY CTRL/Y

26 .TICCZ CTRL/Z

27 .TICES ESC key

28 .TICRB Delete (or rubout) key

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-~2 (Cont.)
Terminal Codes and Conditions

Code Symbol Character or Condition
29 .TICSP Space

30 .TICRF Dataset carrier off
31 .TICTI Typein

32 .TICTO Typeout

33-35 Reserved

To cause terminal interrupts to be generated, the user's program must
assign the desired terminal code to one of the assignable channels.
The ATI monitor call is used to assign this code. This call accepts
one word of arguments - the terminal code in the left half of AC1l and
the channel number in the right half.

MOVE 1,[.TICCE,,INTCHl] ;assign CTRL/E to channel INTCH1
ATI

Control always returns to the instruction following the ATI call. If
the current job 1is not attached to a terminal (i.e., there is no
terminal controlling the job), the terminal code assignments are
remembered; they will be in effect when a terminal is attached.

The monitor handles the receipt of a terminal interrupt character in
either immediate mode or deferred mode. In immediate mode, the
terminal character causes the system to initiate an interrupt as soon
as the user types the character (i.e., as soon as the system receives
it). In deferred mode, the terminal character is placed in the input
stream 1in sequence with other characters of the input, unless two of
the same character are typed in succession. In this case, an
interrupt occurs at the time the second one is typed. If only one
" character enabled in deferred mode is typed, the system initiates an
interrupt only when the program attempts to read the character.
Deferred mode allows interrupt actions to occur in sequence with other
actions specified in the input (e.g., when characters are typed ahead
of the time that the program actually requests them). In either mode,
the character 1is not passed to the program as data. The system
assumes that interrupts are to be handled immediately unless a program
has issued the STIW (Set Terminal Interrupt Word) monitor call.
(Refer to DECsystem-20 Monitor Calls Reference Manual for a
description of this call.)

4.9 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Additional monitor calls are available that allow the wuser's program
to check and to clear various parts of the software interrupt system.
Also, there is a call useful for multiple process communication (refer
to the IIC call in Section 5.10).

USING THE SOFTWARE INTERRUPT SYSTEM

4.9.1 SKPIR Monitor Call

The SKPIR monitor call is used to test the software interrupt system
to see if it 1is currently enabled. The call accepts in AC1l the
identifier of the process. After execution of the <call, control
returns to the next instruction if the system is off or returns to the
second instruction if the system is on.

MOVEI 1,.FHSLF ;identifier of current process
SKPIR ;test interrupt system

return ;system is off

return ;system is on

4.9.2 RIR Monitor Call

The RIR monitor call is used to read the channel and priority 1level
table addresses for the process as set by the SIR monitor call. This
call is useful when several processes in one job want to share the
interrupt tables. The <call accepts in ACl the identifier of the
process and returns in AC2 the table addresses. The left half of AC2
contains the priority level table address and the right half contains
the channel table address. If the SIR monitor <call has not been
executed by the process, AC2 contains zero.

MOVEI 1,.FHSLF ;identifier of current process
RIR sreturn the table addresses

Control always returns to the instruction following the RIR call.

4.9.3 DIR Monitor Call

The DIR monitor call is used to disable the software interrupt system
for the process. It accepts in ACl the identifier of the process.

MOVEI 1, .FHSLF ;identifier of current process
DIR ;disable system

Control always returns to the instruction following the DIR call.

If interrupts occur while the interrupt system is disabled, they are
remembered until the system 1is reenabled. At that time, the
interrupts take effect unless an intervening CIS monitor call (refer
to Section 4.9.6) has been issued. Software interrupts assigned to
panic channels are not completely disabled by the DIR call. These
interrupts terminate the process, and the superior process is notified
if it has enabled channel .ICIFT. In addition, if the terminal code
for CTRL/C (.TICCC) 1is assigned to a channel, it still causes an
interrupt that cannot be disabled by the DIR call. However, the
CTRL/C interrupt can be disabled by deactivating the channel assigned
to the CTRL/C terminal code.

USING THE SOFTWARE INTERRUPT SYSTEM

4.9.4 DIC Monitor.Call

The DIC monitor call is used to deactivate one or more of the 36
interrupt channels. The call accepts two words of arguments - the
identifier for the process in ACl and the channels to be deactivated
in AC2. The channels are indicated by setting the appropriate bits
(i.e., setting bit n indicates channel n is to be deactivated).

MOVEI 1,.FHSLF ;identifier of current process
MOVE 2, [1B<.ICAOV>+1B<.ICPOV>] ;deactivate channels 6 and 9
DIC

Control always returns to the instruction following the DIC call.
When a channel is deactivated, interrupt requests for that channel are

ignored except for interrupts generated on panic channels (refer to
Section 4.6).

4.9.5 DTI Monitor Call

The DTI monitor call is used to deassign a terminal code from a
particular channel. This call accepts one argument word - the
terminal code in the left half of ACl and the channel number in the
right half.

MOVE 1,[.TICCE,,INTCHI1] ;deassign CTRL/E from channel INTCH1
DTI

Control always returns to the instruction following the DTI call.

This monitor call is ignored if the specified terminal code has not
been defined by the current job.

4.9.6 CIS Monitor Call

The CIS monitor call is used to clear the interrupt system for the
current process. This causes interrupts in progress and all waiting
interrupts to be cleared. This call has no arguments, and control
always returns to the instruction following the CIS call. The RESET
monitor call (refer to Section 2.6.1) performs these same actions as
part of its initializing procedures.

4.10 SUMMARY
To use the software interrupt system, the user's program must:
1. Supply routines that will process the interrupts.
2. Set up a channel table containing the addresses of the
routines (refer to Section 4.4.1) and a priority level table
containing the addresses for storing the program counter (PC)

values (refer to Section 4.4.2).

3. Specify the addresses of the tables with the SIR monitor call
(refer to Section 4.4.3).

4. Enable the software interrupt system with the EIR monitor
call (refer to Section 4.5).

USING THE SOFTWARE INTERRUPT SYSTEM

5. Activate the desired channels with the AIC monitor call
(refer to Section 4.6).

4.11 SOFTWARE INTERRUPT EXAMPLE

This program copies one file to another. It accepts the input and
output filenames from the user. The end of file is detected by a
software interrupt, and CTRL/E is enabled as an escape character.

TITLE SOFTWARE INTERRUFT EXASMPLE
SEARCH MONSYM

BTARTL RESET §RE
MOVET T1e FHSLF # CURRE 3
MOVE T2y DLEVTAR. » CHNTARD FINTERRUFT TARLES

IR

[N FENARLE SYS8TEM

MOVE T2 LIBCTNTOHL 2k LB TOEQF =1 SACTIVATE CHANNELS
alc
MOVE TLe L TICTE » » INTCHIL SARHIGN CTRLAE TO CHAMNEL 1
ATE

GETIFC HERQL TLyLABCTIZ/INFOT FILILES 73
EHOuUT FEROAPT USER FOR INFUT NAME
MOVGT TLy cGJIR0LUTELEMSEHEJECT M GUAF NS TOIRBHT)
MOVE T2 L PRIIMY » o RI

FUET FILENAME FROM USER
C ERREORL

T TLe INJFN

TL DASCIZ/Z0UTEFUT FILES 71

GETOF 3

FEROMFT USER FOR OQUTFUT NaME
MOVET T1 e (GURFOULGEAMEBEGHGAALF M GIEF NSHEIEEHT)

MOVE T2 DoPRITMy ¢ L PRIGUD -—

(ERINIE FOET FILEMNASME FROM USER

C O ERAEQRZ

VEMOTL 2 GUT N

VED T L e IR

Tiwi SRR AR

OF e s

FOFEN INFUT FILE

GRMOFE MOV
MOV
FENF FOFEN QUTFUT FILE
JE ERRORE
CRYBYTE MUUE T1rINJFN PREGD THPUT BYTE
BIN

FWRITE QUTFUT BYTE

FLOOF UNTIL EQF
QO 2
NPT FILE

L QUTJFN
S OUTEUT FILE

JFOL
HALTF

USING THE SOFTWARE INTERRUPT SYSTEM

SROUTINE TO HANDLE “E - ARBORTS OPFERATION

CTRLED MOVEL Tl FRIOU
CFOBRF FOLEAR QUTRUT
EAARORTED. 71

§INFORM USER
SCLEAR SYSTEMN

START
FROUTINE 70 HANDLE EQF - COMPLETES OFERATION NORMALLY

EQFINT S MOVEM T INTACL FRaVE ACYS
MOVET T1y DONE FCHANGE FO
MOVEM TLePC2 O DONE
MOVE T1LINTACL FRESTORE AC’8

BUFFER

TR FUISMIGS INTERRUPT

LEVEL TARLE
LEVTAR: O

FLE

&
Fe2t BLOCK 1
FOHANNEL TARLE

CHNTAR: O FUMUSED CHAMNNELS HAVE

2e v CTRLE FCHANNEL L I8

REFEAT
INJFNG BLUOCK 1
OUTAFNT BLOCK 1

ERFRORLE TH
PIMVALTD F

i

LOBPECIFICATION

GRECIFICATION:

R3S

FLANNOT

R 2 PR FUHANNEL 2-9 NOT UBED
INT FUHANMNEL 10 I8 EOF
TRAEy 0 FCHANNEL L1-3% NOT

CTRL

0

USETD

CHAPTER 5

PROCESS STRUCTURE

As stated in Chapter 1, the DECsystem~20 operating system allows each
job to have multiple, simultaneously-~runnable processes. Each process
has its own environment called its address space. Associated with the
environment is the program counter (PC) of the process and a
well~defined relationship with other processes in the job.

The DECsystem~20 operating system schedules the running of processes,
not entire jobs. A process can be scheduled independent of other
processes because it has a definite existence: 1its beginning 1is the
time at which it is created, and its end is the time at which it is
killed. At any point in its existence, a process can be described by
its state, which is represented by a status word and a PC word (refer
to Section 5.9).

The relationships among processes in a job are shown in the diagram
below. Each process has one immediate superior process (except for
the top~level process) and can have one or more inferior processes.
Two processes are parallel if they have the same immediate superior.
A process can create an inferior process but not a parallel or
superior process.

top~level
process
]

{ ! |
process process process
1 2 3
process process
4 5

Process 1 is the superior process of process 4, and process 3 1is the
superior of process 5. Processes 4 and 5 are the inferiors of
processes 1 and 3, respectively. Process 2 has no inferior process.
Processes 1, 2 and 3 are parallel because they have the same superior
process (i.e., the top~level process). Processes 4 and 5, although at
the same depth in the structure, are not parallel because they do not
have the same superior process. Process 1 created process 4 but could
not have created any other process shown in the structure above.

5-1

PROCESS STRUCTURE

5.1 USES FOR MULTIPLE PROCESSES

A multiple~process job structure allows:

1. One job to have more than one program runnable at the same
time. These programs can be independent programs, each one
compiled, debugged, and loaded separately. Each program can
then be placed in a separate process. These processes can be
parallel to each other, but are inferior to the main process
that created them. This use allows parallel processing of
the individual programs.

2. One process to wait for an event to occur (e.g., the
completion of an I/0O operation) while another ©process
continues its computations. Communication between the two
processes is such that when the event occurs, the process
that is computing can be notified via the software interrupt
system. This use allows two processes within a job to
overlap I/0 with computations.)

One application of a multiple~process job structure is the following
situation: a superior process is responsible for accepting input from
various terminals. After receiving this input, the process sends it
to wvarious inferior processes as data. These inferior processes can
then initiate other processes, for example, to write reports on the
data that was received.

Process that TTY
TTY accepts input
from terminals

Processes that
receive the
input as data.

Processes that
write reports
on the data.

Another application is that used for the wuser interface on the
DECsystem~20. On the DECsystem~20, the top-~level process in the job
structure is the Command Language. This process services the user at
the terminal by accepting input. When the user runs a program (e.g.,
MACRO, FORTRAN), the Command Language process creates an inferior
process, places the requested program in it, and executes it. The
Command Language can then wait for an event to occur, either from the
program or from the user. An event from the program can be its
completion, and an event from the user can be his typing of a certain
terminal key (e.g., CTRL/C).

PROCESS STRUCTURE

5.2 PROCESS COMMUNICATION

A process can communicate with other processes in the system in
several ways:

direct process control
software interrupts
IPCF and ENQ/DEQ facilities

memory sharing

5.2.1 Direct Process Control

A process can create and control other processes inferior to it within
the job structure. The superior process can cause the inferior
process to begin execution and then to suspend and later resume
execution. After the inferior process has completed its tasks, the
superior process can delete the inferior from the job structure.

Some of the monitor calls used for direct process control are: CFORK,
to create a process; SFORK, to start a process; WFORK, to wait for a
process to terminate; RFSTS, to obtain the status of a process; and
KFORK, to delete a process. Refer to the DECsystem~20 Monitor Calls
Reference Manual for descriptions of additional monitor calls dealing
with process control.

5.2.2 Software Interrupts

The software interrupt facility enables a process to receive
asynchronous signals from other processes, the system, or the terminal

user or to receive signals as a result of its own execution. For
example, a superior process can enable the interrupt system so that it
receives an interrupt when one of its inferiors terminates. In

addition, processes within a job structure can explicitly generate
interrupts to each other for communication purposes.

Some of the monitor calls wused when communication occurs via the
software interrupt system are: SIR, to specify the interrupt tables;
EIR, to enable the interrupt system; AIC, to activate the interrupt
channels; and IIC, to initiate an interrupt on a channel. Refer to
Chapter 4 and Section 5.10 for more information.

5.2.3 1IPCF And ENQ/DEQ Facilities

The Inter~Process Communication Facility (IPCF) enables processes and
jobs to communicate by sending and receiving informational messages.
The MSEND call is used to send a message, the MRECV call 1is wused to
receive a message, and the MUTIL call is used to perform utility
functions. Refer to Chapter 7 for descriptions of these calls.

The ENQ/DEQ facility allows cooperating processes to share resources
and facilitates dynamic resource allocation. The ENQ call is used to
obtain a resource, the DEQ call is used to release a resource, and the
ENQC call is used to obtain status about a resource. Refer to Chapter
6 for descriptions of these calls.

PROCESS STRUCTURE

5.2.4 Memory Sharing

Each page in a process' address space is either private to the process
or shared with other processes. Pages are shared among processes when
the same page is represented in more than one process address space.
This means that two or more processes can identify and use the same
page of physical storage. Even when several processes have identified
the same page, each process can have a different access to that page,
such as access to read or write that page.

A type of page access that facilitates sharing is the copy—~on~write
access. A page with this access remains shared as long as all
processes read the page. As soon as a process writes to the page, the
system makes a private copy of the page for the process doing the
writing. Other processes continue to read and execute the original

page. This access provides the capability of sharing as much as
possible but still allows the process to change its data without
changing the data of other processes. A monitor call used when

sharing memory is PMAP. Refer to Section 5.6.2 for more information.

5.3 PROCESS IDENTIFIERS

In order for processes to communicate with each other, a process must
have an identifier, or handle, for referencing another process. When
a process creates an inferior process, it is given a handle on that

inferior. This handle is a number in the range 400001 to 400777 and
is meaningful only to the process to which it is given (i.e., to the
superior process). For example, if process A creates process B,

process A is given a handle (e.g., 400003) on process B. Process A
then specifies this handle when it uses monitor calls that refer to
process B. However, process B is not known by this handle to any
other process in the structure, including itself. The handle 400003
may in fact be known to process B, but it would describe a process
inferior to process B.

There are several standard process handles that are never assigned by
the system but have a specific meaning when used by any process in the
structure. These handles are used when a process needs to communicate
with a process other than its immediate inferior or with multiple
processes at once. These handles are described in Table 5-~1.

Table 5-1
Process Handles

Number Symbol Meaning
400000 .FHSLF The current process (or self).
-1 .FHSUP The immediate superior of the current
process.
-2 .FHTOP The +top-level process in the job
structure.
-3 .FHSAI The current process and all of its
inferiors.
-4 .FHINF All of the inferiors of the current
process.
-5 .FHJOB All processes in the Jjob structure.

5-~4

PROCESS STRUCTURE

Consider the job structure below.

T
———

G H

<]
Lo

The following indicates the specific process or processes being
referenced if process E gives the handle:

. FHSLF refers to process E

.FHSUP refers to process D

.FHTOP refers to process A

.FHSAI refers to processes E, G, and H
.FHINF refers to processes G and H
.FHJOB refers to processes A through H

The process must have the appropriate capability enabled in its
capability word to use the handles .FHSUP and .FHTOP (refer to Section
5.5.1).

Process E can reference one of its inferiors (e.g., G) with the handle
it was given when it created the inferior. Process E can reference
other processes in the structure (e.g., F) by executing the GFRKS
monitor call to obtain a handle on the desired process. Refer to the
DECsystem~20 Monitor Calls Reference Manual for a description of the
GFRKS call.

5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES

Monitor calls exist for «creating, loading, starting, suspending,
resuming, interrupting, and deleting processes. When a process is
created, its address space is assigned, and the process 1is added to
the job structure of the creating process. The contents of its
address space can be specified at the time the process is created or
at a later time. The process can also be started at the time it is
created. A process remains potentially runnable until it is
explicitly deleted or its superior is deleted.

A process may be suspended if one of the following conditions occurs:
1. The process executes an instruction that causes a software
interrupt to occur, and it is not prepared to process the
interrupt.

2. The process executes the HALTF monitor call.

PROCESS STRUCTURE

3. The superior process requests suspension of its inferior.

4. The superior process 1is suspended. When a process is
suspended, all of its inferior processes are also suspended.

5.5 CREATING A PROCESS

A process creates an inferior process by executing the CFORK (Create

Process) monitor

call. (The term fork is synonymous with the term

process.) This monitor call can also be used to specify the address
space, capabilities, ACs, and PC for the inferior process and to start
the execution of the inferior.

The CFORK call accepts two words of arguments in ACl and AC2.

ACl: characteristics for the inferior in the left half, and PC

address

AC2: address
for the

The characteristics
following bits:

Bit Symbol
0 CR$MAP
1 CR%CAP
2
3 CR3ACS
4 CRSST

for the inferior in the right half.

of a 20(octal) word block containing the AC values
inferior. :

for the inferior process are defined by the

Meaning

Set the map of the inferior process to the
same .as the map of the superior (i.e.,
creating) process. This means that the
superior and . the inferior will share the
same address space. Changes made by one
process will be seen by the other process.

If this bit is not on in the call, the
inferior's map will contain all zeros.

Set the capability word of the inferior
process to the same as the capability word
of the superior process. (Refer to Section
5.5.1 for the description of the capability
word.)

If this bit is not on in the call, the
inferior will have no special capabilities.

Reserved fof DEC (must be zero).

Set the ACs of the inferior process to the
valués beginning at the address given in
AC2.

If this bit is not on in the call, the
inferior's ACs will be set to zero, and the
contents of AC2 is ignored.

Set the PC for the inferior process to the
address given in the right half of AC1l and
start execution of the inferior.

PROCESS STRUCTURE

If this bit is not on in the <call, the
right half of ACl 1is ignored, and- the
inferior is not started.

If execution of the CFORK call is not successful, the inferior process
is not created and an error code is returned in ACl. The execution of
the program in the superior process continues at the instruction
following the CFORK call.

If execution of the CFORK call is successful, the inferior process is
created and 1its process handle is returned in the right half of ACl.
This handle is then used by the superior process when communicating
with its ' inferior ©process. The execution of the program in the
superior process continues at the second instruction following the
CFORK call. : :

Assume that process A executes the CFORK monitor call twice to create
two parallel inferior processes. This is represented pictorially
below.

Process A
creates process B
by executing a CFORK

Process B is created
and its handle is
given to process A

Process A executes
another CFORK to
create process C

[
l l

Process B Process C is created
and its handle
given to process A

Note that process A has been given two handles, one for process B and
one for process C. Process A can refer to either of its inferiors by
giving the appropriate handle or to both of its inferiors by giving a
handle of -4.

5.5.1 Process Capabilities

When a new process is created, it is.given the same capabilities as
its superior, or it 1is given no special capabilities. This is
indicated by the setting of the CR%CAP bit in the CFORK call. The
capabilities for a process are indicated by two capability words. The
first word indicates if the capability is available to the process,
and the second word indicates if the capability is enabled for the
process. This second word is the one being set by the CR%CAP bit 1in
the CFORK call.

PROCESS STRUCTURE

Types of capabilities represented in the capability words are job,
process, and user capabilities. Each capability corresponds to a
particular bit in the capability words and thus can be activated and
protected independently of the other capabilities. Refer to the
DECsystem-20 Monitor Calls Reference Manual for more information on
the capability words.

5.6 SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A PROCESS

Once a process is created, the contents of its address space can be
specified. - This can be accomplished by one of three ways. As
mentioned in Section 5.5, bit CR%MAP can be set in the CFORK call to
indicate that the address space of the inferior process is to be the
same as the address space of the creating process. In addition, the
creating process can execute the GET monitor call to map specified
pages from a file into the address space of the inferior process.
Finally, the creating process can execute the PMAP monitor call to map
specified pages from another process into the address space of the
inferior process.

If the creating process does not specify the contents of the
inferior's address space, the address space will be filled with zeros.

5.6.1 GET Monitor Call

The GET monitor call is used to map pages from a file into the address
space of the specified process. The file must be a saved file that
was created with either the SAVE or SSAVE monitor call (refer to the
DECsystem-20 Monitor Calls Reference Manual).

The GET monitor call accepts two words of arguments in ACl and AC2.
The first word specifies the handle of the desired process and the JFN
of the desired file. The second word specifies where the pages from
the file are to be placed in the address space of the process. Thus,

ACl: process handle in the left half, and JFN in the right
half. If GT%ADR (bit 19) 1is on, AC2 is used for the
memory limits. If GT%ADR is not on, all existing pages in
the file are mapped into the process.

AC2: number of lowest page in the left half and number of
highest page in the right half. These page numbers are
for the address space of the process and are used to
control the portions of memory that are loaded. These
values are specified only if GT%ADR is on in ACI. '

When the pages of the file are mapped into pages in the process'
address space, the previous contents of the process pages are
overwritten. Any full pages in the process that are not overwritten
are unchanged. Any portions of process pages for which there is no
data in the file are filled with zeros.

For example, a GET call executed for a file that contains 2 1/2 pages
sets up the process' address space as shown in the following diagram.

PROCESS STRUCTURE

Process File
[
page 1 Data Data page 1
GET
Call
page 2 Data Data page 2
page 3 Data . Data page 3
T T T/ EOF
0
page 4- unchanged
page 512

After execution of the GET call, control returns to the user's program
at the instruction following the call. If an error occurs, a software
interrupt is generated, which the program can process via the software
interrupt system.

5.6.2 PMAP Monitor Call

The PMAP monitor call is used to map pages from one process to the
address space of a second process. Data is not actually transferred;
only the contents of the page map of the second (i.e., destination)
process are changed.

The PMAP monitor call accepts three words of arguments in ACl -through
AC3. The first word contains the handle and page number of the first
page to be mapped in the source process (i.e., the process whose pages
are being mapped). The second word contains the handle and page
number of the first page to be mapped in the destination process
(i.e.,the process into which the pages are being mapped). The third
word contains a count of the number of pages to map and bits
indicating the access that the destination process will have to the
pages mapped. Thus,

ACl: source process handle in the left half, and page number 1in
the process in the right half.

AC2: destination process handle in the 1left half, and page
number in the process in the right half.

AC3: count of number of pages to map and the access bits.

The count and access bits that can be specified in AC3 are described
below.

Bit Symbol ‘Meaning
0 PM3CNT Repeat the mapping operation the

number of times specified by the right
half of AC3. The page numbers in both

5-9

PROCESS STRUCTURE

processes are incremented by 1 each
time the operation is performed.

2 PM%RD Allow read access to the page.

3 PM$WR Allow write access to the page.

9 PM%CPY Allow copy-on-write access to the
page.

18-35 The number of times to repeat the
mapping operation if bit 0 (PMRCNT) is
set.

Upon successful execution of the PMAP call, addresses in the
destination process actually refer to addresses in the source process.
The contents of the destination page previous. to the execution of the
call have been deleted. The access requested in the PMAP call is
granted if it does not conflict with the current access of the
destination page (i.e., an AND operation is performed between the
specified access and the current access). Control returns to the
user's program at the instruction following the PMAP call. If an
error occurs, a software interrupt is generated, which the program can
process via the software interrupt system.

5.7 STARTING AN INFERIOR PROCESS

A program in an inferior process can be started in one of two ways.
As mentioned in Section 5.5, the superior process can specify in the
CFORK call the PC for the inferior process and start its execution.
Alternatively, the superior process, after executing the CFORK call to
create an inferior process, can execute the SFORK (Start Process)
monitor call to start it.

The SFORK monitor call accepts two words of arguments in ACl and AC2.
The first word contains the handle of the desired process. The
address of the PC word at which the process is to be started is in the
second word. Thus,

ACl: process handle

AC2: address of inferior's PC
The process handle given in ACl cannot refer to a superior process, to
more than one process (e.g., .FHINF), or to a process that has already
been started.
After execution of the SFORK call, control returns to the user's
program at the instruction following the call. 1If an error occurs, a

software interrupt is generated, which the program can process via the
software interrupt system.

5.8 INFERIOR PROCESS TERMINATION

The superior process has one of two ways in which it can be notified
when its inferiors terminate execution: via the software interrupt
system or by executing the WFORK monitor call. An inferior process
will terminate normally when it executes a HALTF monitor call.

5-10

PROCESS STRUCTURE

Alternatively, the process will terminate abnormally when it executes
an instruction that generates a software interrupt, such as an illegal
instruction, and it has not activated the appropriate channel.

By activating channel L.ICIFT (channel 19) for inferior process
termination and enabling the software interrupt system, the superior
process will receive an interrupt when one of its inferiors
terminates. (Refer to Section 4.6 for information on activating
channel L.ICIFT.) The interrupt occurs when the first process
terminates. Use of the interrupt system allows the superior to do
other processing until an interrupt occurs, indicating that an
inferior process has terminated.

In some cases, however, the superior cannot do additional processing
until either a specific process or all of its inferior processes have
completed execution. If this is the case, the superior process can
execute the WFORK (Wait Process) monitor call. This call blocks the
superior until one or all of its inferiors have terminated.

The WFORK monitor call accepts one argument in ACl, the handle of the
desired process. This handle can be .FHINF (-4) to block the superior
until all inferiors terminate, but cannot be a handle on a superior
process.

After execution of the WFORK monitor c¢a&ll, control returns to the
user's program at the instruction following the <call, when the
specified process or all of the inferior processes terminate. If an
error occurs, it generates a software interrupt, which the program can
process via the software interrupt system.

5.9 INFERIOR PROCESS STATUS

The superior process can obtain the status of one of its inferiors by
executing the RFSTS (Read Process Status) monitor call. This call
returns the status and PC words of the given inferior process.

The RFSTS monitor call accepts one argument in ACl, the handle of the
desired process. This handle cannot refer to a superior process or to
more than one process.

- After execution of the RFSTS call, control returns to the user's
program at the instruction following the call. If the RFSTS call is
successful, ACl contains the status word of the given process and AC2
contains the PC word. The status word is shown in Table 5-2.

Table 5-2
Process Status Word

Bit Symbol ’ Meaning

0 RF%FRZ The process is suspended (i.e., frozen).
If this bit is not on, the process is not
suspended.

1-17 RF$STS The status of the process.
Value Symbol Meaning
0 . RFRUN The process is

runnable.

PROCESS STRUCTURE

Table 5-2 (Cont.)
Process Status Word

Bit Symbol Meaning

1 .RFIO The process. is halted
waiting for I/O

2 .RFVPT The process is halted
by a HFORK or HALTF
monitor <call or was
never started.

3 .RFFPT The process is halted
by the occurrence of a
software interrupt for
which it was not
prepared to handle.
The right half of the
status word contains
the number of the
channel on which the
interrupt occurred.

4 . RFWAT The process is halted
waiting for another
process to terminate.

5 .RFTIM The process is halted
for a specified amount
of time.

18-35 RF%SIC The channel number on which an interrupt
occurred, which the process was not
prepared to handle (see process status code
.RFFPT above).

If an error occurs during execution of the RFSTS call, a software
interrupt is generated, which the program can process via the software
interrupt system. .

5.10 PROCESS COMMUNICATION

A superior process can communicate with its inferiors by sharing the
same pages of memory. This sharing is accomplished with the CFORK
(bit CR%MAP) or the PMAP monitor call. When the superior executes
either of these calls, both the superior and the inferior share the
same pages. Changes made to the shared pages by either process will
be seen by the other process.

Alternatively, processes can communicate via the software interrupt
system. The superior process can cause a software interrupt to be
generated in an inferior process by executing the TIIC (Initiate
Interrupt on Channel) monitor call. For this type of communication to
occur, the inferior's interrupt channels must be activated and its
interrupt system enabled.

PROCESS STRUCTURE

The IIC monitor call accepts two words of arguments in ACl and AC2.
The handle of the process to receive the interrupt is given in the
right half of ACl. AC2 contains a 36-bit word, with each bit
representing one of the 36 software channels. If a bit is on in AC2,
a software interrupt is initiated on the corresponding channel. For
example, if bit 5 is on in AC2, an interrupt is initiated on channel
5. Thus,

ACl: process handle in the right half

AC2: 36-bit word, with bit n on to initiate a software interrupt
on channel n

The process handle given cannot refer to a superior process or to more
than one process.

After execution of the IIC call, control returns to the user's program
at the instruction following the call. If an error occurs, it
generates a software interrupt, which the program can process via the
software interrupt system.

5.11 DELETING AN INFERIOR PROCESS

A process is deleted from the job structure when the superior process
executes the KFORK (Kill Process) monitor call. When a process is
deleted, its address space, its handle, and any JFNs acquired by the
process are released. If the ©process being deleted has processes
inferior to it, the inferiors are also deleted. For example, in the
structure:

process A

|

process B

process C

if process A deletes process B by executing a KFORK call, process C is
also deleted.

The KFORK monitor call accepts one argument in the right half of AC1,
the handle of the process to be deleted. This handle cannot refer to
a superior process, to more than one process (e.g., .FHINF), or to the
process executing the call (i.e., .FHSLF). The RESET monitor call is
used to reinitialize the current process; refer to Section 2.6.1.

After execution of the KFORK call, control returns to the user's
program at the instruction following the call. 1If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

PROCESS STRUCTURE

5.12 PROCESS EXAMPLES

Example 1 - This program creates an 1nfer10r process to prov1de tlmlng
interrupts. .

TITLE TIMINT - EXAMFLE OF USING AN INMFERIOR PRU&LSS TO PROVIDE TIMING INTERRUFTS

BEARCH MUNSYVv MACSYM
CREQUIRE 8YSIMACREL

STARTY RESET FRELEASE FILESy ETC.
MOVE. P DIQWD S0 FDLD FINITIALIZE FUSH-DOWN LIST IN CASE OF ERRORS
MOVX TL» CREMAF vMﬁKE NEW FROCESS SHARE THIS FROCESSS MEMORY
CFORK REATE A NEW FROCESS
FCTED ERROF.
FROCESS HANDLE

JGHLT .
MOVEM T1sHANDLE § SAVE

i HERE TQ START THE INFERIOR PROTDESS

e FINITIALIZE COUNTER AND FLAG

T3y HANIL. FEET FROCESS HANDLE

I T2y 8LEER FOET ALDRESS AT WHICH TO START NEW FROCESS
SFORK FETART THE NEW PROCESS ‘

i

T4 FLAG

STRFROCE

#OMALN PROCESSING LOOF

D& T4 FINCREMENT COUNTER
SKIFN FLAG FHAS TIME ELAPSED YET 7
JESTOLOOF FN0y GO N0 MORE FROCESSING

LOOF ¢

O HERE WHEN LOWER FROCESS HAS INTERRUPTE

THEG <

Counter hes reached » FOUTRUYT FIRST
MOVX Tde FRICU FGET FRIMARY
MOVE T2-T4 SGET COUNTER
MOVET T3«7050 FUSE DECIMAL
NOUT SOUTFUT CURRE LUUNTER VaL.LE
JEERR FUNEXFECTED ERROR
THSG < ‘

T OF MESSAGE
T RN

JEET STPROC FLONTINUE COUNTING
PROGRAM PERFORMED BY INFERIOR PROCESS TO WALT FOR ONME-H&LF MINUTE

MlNUIL

SLEEF? MOV Tly"U3F0RTTE000 PGLEER FOR ONE-H&LF
nrsms yOISMISE FC 3 !
SETOM FLaG FTELL SUF
HAaLTF llN]thh

CONIG HAVE ELASFED

§FOCONSTANTS AND UaRTaRLES

P RLOCK 50

HANDLE S BLOCK 1 FFROCESS HANDLE
Flas BLOCK 1

ENIU STaRT

PROCESS STRUCTURE

Example 2 - This program illustrates how an inferior process may be
used as a source of timer interrupts. The main program increments a
counter. It has an inferior process running for the sole purpose of
timing 10 second intervals. Each time the inferior process has timed
10 seconds, it stops and interrupts the main program. The main
program then reports how many more times it has incremented the
counter since the last 10 second interrupt.

SEARCH H[lll“\ﬂlv MaCEYM
H'..u(.'ll.!.ll-.f. SYSIMACREL

SrakTs RESET SRELEASE FILES. ETC.

;OSET UF THE INTERRUFT SYSTEM

T OUR PROC
T TaR

MOV Ty FHSLF ¥
MOVE T2y DLEVTARy » CHNTAR!
IR B

MOVE T2 180 ITCIFT > GEET FRO
AL FACTIVATE
ETR FEMNARLE T

HANDLE

ANDIRESSES

Ul"T TARLE ARIRESSES

: '"MHMT TON~-CHANNEL RIT

FMINGTION CHANNEL

OCREATE ANDD START THE INFERIOR PROCESS

MOVX TLy CREMAPFCREST 5L EEF
G A

STaRY TIMER AT "SLEEP"
ROR .
FEE HANDLE

.ll“' EJsHLT 1
HUW MoTLy HANDLE

FINITEALLEE THE COUNTER

STFROCE SETIZR T4.0L.07T4 sCLEAR THE COUNTER

sHAlN LOOF OF FROGRAHM WHICH JUST KEEPS DOUNTING. (REAL
FAPFLICATION WOULD PRESUMARLY MAVE A MORE USEFUL MAIN FROGRAM.)

L0 Al T4 LOOE FJUET RKEEF THOREMENTING. ..

E WHEN LOWER PROCESE HAS INTERRUFTED
FROINT S ale 17

FOINTER FOR REST OF ACS
CREST OF ACS

COUNTE

SEET PR anw QUTFUT JOF N

. Uil

COCOUNTS SINCE LAST TIME
ITIVE
ALy
OF COUNTS SINCE Lag8T TIME
NMOUT FAall.URE

MOV T2
MOVEL T3.7010
Nllllr

THEG

bOTHE LINE

COHANDLE ON TIMER PROCESS.

' Tlllﬁ IC, WE WaNT TO START IT aT.
) THE TIMER.

MOVE T4 HANILE
MOVELD T2y SLEEF
BF (IR

MOUST 17 5A0H WTER TO SAVED ACS
BT 17917 PRESTORE SAVED ACS

5-15

PROCESS STRUCTURE

DERRK FNIBMISSE INTERRURT
§THE FOLLOWING LOOF I8 EXECUTEDR A8 A LOWER PROCESS
STIMING. X7 SLEEFS FOR 10 SECONUS ANI THEN STORS.

SLEEFL MOUX TL: DLIOK"LL000 §
LraMs #8
b

HALTF

GET 10 SECONDS
SLEEF
i CONSTANTS AND VARIARLES

CHNTARE REFEAT D19y <EXP OX FCHANNELS 0-18 ARE
12 yPROINT FFROCESS TERMINATI

TURN FEOSTORED
L2 NOT UBED
. 3 NOT USED
<ULL$AS HANDLE
RETURN FC 'STC}FEIEZI'I
HOLOE TIMER valuUiE

-~
=

LEVTARS

[E

BLOCK 1
BLAOCK 1
OLut4: RLOCK 1L
Tacs: BLOCK 20

HANIILE
RETFRCL

e

R e DX TR XY

AT T o

[
Smmmm

ENOG 8TaRT

1T DS e SEXF Ok FREMAINING CHANNELS

TO 00 THE

STOF AND INTERRUFT THE MAIN FROGRAM

NOT USED

ON INTER
ARE =158
AT RETFCL FOR I EVEL

HERE

AT LAGT
STORAGE th AGS TURING

ON

INTERRUPTS
INTERRUFT

INTERRUFTS

UIT LHANNLL

1

PROCESS STRUCTURE

Example 3 - This program creates an inferior process which waits until
a line has been typed on the terminal.

TITLE FREDOC - EXAMFLE OF USING AN INFERIOR FROCESS TO WAIT UNTIL A LINE I8 TYPED

T M

SEARCH FHONSYM» MACS
FEQUIRE SYSIMACREL

PRELEASE FILES, ETC.

FoLLOWD GOy I SINITIALTLZ JEH - M]LJN LIST IN CASE OF ERRORS
MH“” T1 v CRZAMAF Jnnhh HEW FROCESS REOTHIS FROCESSS MEMORY
(lUlb " T f:NlHl

BTaRT

UUNII OAND FlLaG
ﬁT HH T START NEW FROCESS
a

SF ORI
POMATH FROCESSING LOOF
NTEF:

TRFUT YET 7
MORE PROCESSING

yoTA § TMOREMENT
4 FLal sHAE A LINE
i LOOF sy GO0

LOOF 2

3OHAS INFUT A& LITHE OF TEXT

§oOMERE WHEN IMNFERICGR FROC

THEG
Courber

e fUUiIUI FIRST PFaRT QF HESSAGE
ML ¥ WARLY § O DUTRUT JFM
MU T4 FOGET COUNTER Yal.UE
MOVET T3 701G FUSE DECTMAL RaDlx
MOUT COCUUNTER YalUE

RO

COFART OF MESSAGE
T BUFFE
JUST ENTERET

EE fUUl
WL T BRUFFER yh
FEQUT

HALTF thUP
JEET BTART FIN CABE

o oneo

FROGRAM CONTIMUET

FoOPROGRAM PERFORMED BY IMFERIOR PROCESS TO IHPUT & LINE OF TEXT

1L Td e BUFFER

GETOGMT HRRO
T2 70120

» ZWT'I“OlJQ}ll« TOOTEX

‘ﬁ THE TERMIMAL

ROCESS A LINE HAS BEEN INFUT

HALTF

POLONSTANTE ANDD VAR EARLES

D)
5

BLOCK 1

ENMIC START

CHAPTER 6

ENQUEUE/DEQUEUE FACILITY

6.1 OVERVIEW

Many times users are placed in situations where they must share files
with other users. Each user wants to be quaranteed that while reading
a file, other users are reading the same data and while writing a
file, no users are also writing, or even reading, the same portion of
the file.

Consider a data file used by members of an insurance company. When
many agents are reading individual accounts from the data file, they
can all access the file simultaneously because no one is changing any
portion of the data. However, when an agent desires to modify or
replace an individual account, that portion of the file should be
accessed exclusively by that agent. None of the other agents wants to
access accounts that are being changed until after the <changes are
made.

By using the ENQ/DEQ facility, cooperating users can insure that
resources are shared correctly and that one user's modifications do
not interfere with another user's. Examples of resources that can be
controlled by this facility are devices, files, operations on files
(e.g., READ, WRITE), records, and memory pages. This facility can be
used for dynamic resource allocation, computer networks, and internal
monitor queueing. However, control of simultaneous updating of files
by multiple users is its most common application.

The ENQ/DEQ facility insures data integrity among processes only when
the processes cooperate 1in their use of both the facility and the
physical resource. Use of the facility does not prevent
non-cooperating processes from accessing a resource without first
enqueueing it. Nor does the facility provide protection from
processes using it ‘in an incorrect manner.

A resource is defined by the processes using it and not by the system.
Because there 1is competition among processes for use of a resource,
each resource is associated with a queue. This queue is the ordering
of the requests for the resource. When a request for the resource is
granted, a lock occurs between the process that made the request and
the resource. For the duration of the lock, that process is the owner
of the resource. Other processes requesting access to the resource
are placed in the queue until the owner relinquishes the lock.
However, there can be more than one owner of a resource at a time;
this is called shared ownership (refer to Section 6.2).

Processes obtain access to a specific resource by placing a reguest in
the queue for the resource. This reguest is generated by the ENQ
monitor call. When finished with the resource, the process then
issues the DEQ monitor call. This call releases the lock by removing
the request from the queue and makes the resource available to the

6-1

ENQUEUE/DEQUEUE FACILITY

next waiting process. This cycle continues until all requests in the
queue have been satisfied.

6.2 RESOURCE OWNERSHIP

Ownership for a resource can be requested as either exclusive or
shared. Exclusive ownership occurs when a process requests sole use
of the resource. When a process is granted exclusive ownership, no
other process will be allowed to use the resource until the owner
relinquishes it. This type of ownership should be requested 1if the
process plans on modifying the resource (e.g., the process is updating
a record in a data file). Shared ownership occurs when a process
requests a resource, specifying that it will share the use of the
resource with other processes. When a process 1is given shared
ownership, other processes also specifying shared ownership are
allowed to simultaneously use the resource. Access to a resource
should be shared as 1long as any one process is not modifying the
resource.

Two conditions determine when a lock to a resource 1is given to a
process:

1. The position of the process' request in the queue for the
resource.

2. The type of ownership specified by the process' request.

Because each resource has only one queue associated with it, requests
for both exclusive and shared ownership of the resource are placed in
the same gueue. Requests are placed in the queue in the order in
which the ENQ facility receives them, and the first request in the
queue will be the first one serviced (except in the case of single

requests for multiple resources; refer to Section 6.4.1). In other
words, the ENQ facility processes requests on a first in, first out
basis. If this first request is for shared ownership, that request

will be serviced along with all following shared ownership requests up
to but not including the first exclusive ownership request. If the
first request is for exclusive ownership, no other processes are
allowed use of the resource until the first process has released the
lock.

Consider the following gqueue for a particular resource.

E request 1 (shared) 5
o request 2 (shared) !
"""""""""" request 3 (exclusive) i
o request 4 (shared)
1 tequest 5 (shared) :

Request 1 will be serviced first because it is the first request in
the queue. However, since this request 1is for shared ownership,
request 2 can also be serviced. Request 3 cannot be serviced until
the processes with request 1 and request 2 release the lock on the

resource. Eventually the lock is released by the two processes, and

6-2

ENQUEUE/DEQUEUE FACILITY

the first two requests are removed from the queue. The gqueue now has
the following entries:

1 request 3 (exclusive) !

Request 3 is now first in the queue and 1is given a 1lock on the
resource. Because the request is for exclusive ownership, no other
requests will be serviced. Once the process associated with request 3
releases the lock, both request 4 and request 5 can be serviced
because they both are for shared ownership.

6.3 PREPARING FOR THE ENQ/DEQ FACILITY

Before using the ENQ/DEQ facility, the user must obtain an ENQ gquota
from the system administrator and must obtain the name of the resource
desired, the type of protection required, and the level number
associated with the resource.

The ENQ quota indicates the total number of requests that «can be
outstanding for the user at any given time. Any request that would
cause the quota to be exceeded results in an error. The user cannot
use the ENQ facility if the quota is set to zero.

The resource name has a meaning agreed upon by all wusers of the
specific resource and serves as an identifier of the resource. The
system makes no association between the resource name and the physical
resource itself; it 1is the responsibility of the user's process to
make that association. The system merely uses the resource name to
process requests and handles different resource names as requests for
different resources.

The resource name has two parts. In most cases, the first part is the
JFN of the file being accessed. Before using the ENQ facility, the
user must initialize the file wusing the appropriate monitor calls
(refer to Section 3.1). The second part of the name is a modifier,
which is either a pointer to a string or a 33-bit wuser code. The
string uniquely identifies the resource to all users. The pointer can
either be a standard byte pointer or be in the form

-1,,ADR

where ADR is the location of the left-justified ASCIZ text string.
The 33-bit user code similarly identifies the resource by representing

an item such as a record number or block number. The ENQ facility
considers these modifiers as logical strings and does not check for
cooperation among the users. Thus, users must be careful when

assigning these modifiers to prevent the occurrence of two different
modifiers referring to the same resource.

6-3

ENQUEUE/DEQUEUE FACILITY

The type of protection desired for the resource is indicated by the
first part of the resource name. This part of the name can be one of
four values. When the user specifies the JFN of the desired file, the
file is subject to the standard access protection of the system. This
is the most typical case. When the user specifies -1 instead of a
JFN, it means that resources defined within a job are to be accessed
only by processes of that job. Other jobs requesting resources of the
same name are queued to a different resource. When the user specifies
-2 instead of a JFN, it means that the resource can be accessed by any
job on the system. A process must have bit SC%ENQ enabled in its
capability word to specify this type of protection. If the |user
specifies -3 instead of a JFN, it means the same type of protection as
that given when -2 is specified. However, this is reserved for the
monitor and requires that the process have WHEEL or OPERATOR

capability enabled. Quotas are not checked when -3 is given "instead
of a JFN.

In addition to specifying the resource name and type of protection,
the wuser also assigns a level number to each resource. The use of
level numbers prevents the occurrence of a deadly embrace situation:
the situation where two or more processes are waiting for each to
complete, but none of the processes can obtain a lock on the resource
it needs for completion. This situation is represented by Figure 6-1.

Process A is
waiting for a
resource process \
B has.

Process B 1is
A waiting for a
resource process
C has.

i

Process C is
waiting for a
resource process
A has.

Figure 6-1 Deadly Embrace Situation

Each process is in the queue waiting for the resource it needs, but no

request is being serviced because the desired resources are
unavailable.

The use of level numbers forces cooperating processes to order their
use of resources by requiring that processes request resources in an
ascending numerical order and that all processes assign the same level
number to a specific resource. This means that the order in which
resources are requested is the same for all processes and therefore,

requests for the first resource will always precede requests for the
second one.

If both of the above requirements are not met, the process requesting
the resource receives an error, unless the appropriate flag bit is set
(refer to Section 6.4.1.2), and the request 1is not placed in the
queue.. Thus, instead of waiting for a resource it will never get, the
process is informed immediately that the resource is not available.

ENQUEUE/DEQUEUE FACILITY

6.4 USING THE ENQ/DEQ FACILITY

There are three monitor calls available for the ENQ/DEQ facility:
ENQ, to request use of a resource; DEQ, to release a lock on a
resource; and ENQC, to obtain information about the queues and to
specify access to these queues.

6.4.1 Requesting Use Of A Resource

The user issues the ENQ monitor call to place a request in the queue
associated with +the desired resource. This call is used to specify
the resource name, level number, and type of protection required.

A single ENQ monitor call can be wused to request any number of
resources. In fact, when desiring multiple resources, the user should
request all of them in one call. This method of requesting resources
guarantees that the wuser gets either none or all of the resources
requested because the ENQ/DEQ facility never allocates only some of
the resources specified in one call. Because all resources in a
single call must be available at the same time, the first user
requesting a resource (i.e., the first wuser in the queue for the
resource) may not be the first user obtaining it if other resources in
the request are currently not available.

A single call for multiple resources is not functionally the same as a
series of single calls of those resources. In a single call, the
entire request is rejected if an error is returned for one of the
resources specified. In a series of single calls, each request that
did not return an error will be queued.

The ENQ monitor call accepts two words of arguments in ACl and AC2.
The first word contains the code of the desired function, and the
second contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6.4.1.1 ENQ Functions - The functions that can be requested in the
ENQ call are described in Table 6-1.

Table 6-1
ENQ Functions

Code Symbol Meaning

0 .ENQBL Queue the requests and block the
process until all requested locks are
acquired. This function returns an
error code only if the ENQ call is not
correctly specified.

1 .ENQAA Queue the requests and acquire the
locks only if all requested resources
are immediately available. If the
resources are available, all will be
allocated to the process. If any one
of the resources is not available, no
requests are queued, no 1locks are

6-5

ENQUEUE/DEQUEUE FACILITY

Table 6-1 (Cont.)
ENQ Functions

Code Symbol Meaning

acquired, and an error code is
returned in ACI.

2 +ENQSI Queue the requests for all specified
resources. If all resources are
available, this function is identical
to the .ENQBL function. If all
resources are not immediately
available, the requests are queued,
and a software interrupt is generated
when all requested resources have been
given to the process.

3 . ENQMA Change the ownership access of a
previously-queued request (refer to
bit EN%SHR below). The access for
each 1lock in this request is compared
with the access for each lock in the
request already queued. No action is
taken if the two accesses are the
same. If the access in this request
is shared and the access in the
previous request is exclusive, the
ownership access is changed to shared
access. Otherwise, an error is
returned if:

1. The process tries to change
the ownership access from
shared to exclusive. If this
is desired, the process should
issue a DEQ monitor <call for
the shared request and then
issue another ENQ monitor call
for exclusive ownership.

2. Any one of the specified locks
does not have a pending
request.

3. Any one of the specified locks
is a pooled resource (refer to
Section 6.4.1.2).

Each lock specified is checked, and
the access 1is changed for all locks
that were correctly given. On
receiving an error, the process
should issue the ENQC monitor call to
determine the current state of each
lock (refer to Section 6.4.3).

ENQUEUE/DEQUEUE FACILITY

6.4.1.2 ENQ Argument Block - The format of the argument block is
described below.

0 8 9 17 18 35
i“““EE;ZZTZ?Tiii:“““T======EZ§§§E=§§=ZT§Z§==““?
{ " nterrapt chammel 1 Request 1D ;
\ " Elags | ltevel mumber ! 9EN, -1, -2, or -3 1

! Number in pool ! Number requested !
e e e e e e e e e - ——— !
\ \
\ Repetition of each lock specification \
\ \
| e e e e e e e e = = - - > = —— !
! Flags 1Level number ! JFN, -1, -2, or -3 !

! Number in pool 1 Number requested !
| ===!
Word Symbol Meaning
0 .ENQLN Number of locks being requested in the left

half, and length of argument block
(including this word) in the right half.

1 .ENQID Number of software interrupt channel in the
left half, and request ID 1in the right
half.

2 .ENQLV Flags and level number in the 1left half,

and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half.

3 .ENQUC Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

4 .ENQRS Number of resources in the pool in the left
half, and number of resources requested in
the right half.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each lock being requested. These three words are called the lock
specification.

Software Interrupts

The software interrupt system is used in conjunction with the .ENQSI
function (refer to Section 6.4.1.1). " If all locks are not available
when the user requests them, the .ENQSI function causes a software
interrupt to be generated when the locks become available. The user
specifies the software channel on which to receive the interrupt by
placing the channel number in the left half of word .ENQID in the
argument block.

-ENQUEUE/DEQUEUE FACILITY

When the user is waiting for more than one lock to become available,
he will receive an interrupt when the last lock is available. If he
desires to be informed as each lock becomes available, he can assign
the 1locks to separate channels by issuing multiple ENQ calls. The
availability of each lock will then be indicated by the occurrence of
an interrupt on each channel.

When the user requests the .ENQSI function, he must initialize the

interrupt system first or else an interrupt will not be generated when
the locks become available (refer to Chapter 4).

Request 1ID

The 18-bit request ID is currently not used by the system, but is
stored for use by the process. Thus, the process can supply an ID to
use as identification for the request. This ID 1is wuseful on the
.DEQID function of the DEQ monitor call (refer to Section 6.4.2.1).

Flags and Level Numbers

The left half of the first word of each lock specification (.ENQLV) is
used for the following flags.

Bit Symbol Meaning
0 EN3SHR Ownership for this resource is to be
shared. If this bit is not on,

ownership for this resource is to be
exclusive.

1 EN%$BLN Ignore the 1level number associated
with this resource. If this bit is
set, sequencing errors in level
numbers are not considered fatal, and
execution of the call continues. On
successful completion of the call, AC1l
contains either an error <code 1if a
sequencing error occurred or zero if a
sequencing error did not occur.

WARNING

A deadly embrace situation may
occur when 1level numbers are

not used. Use of these
numbers guarantees that such a
situation cannot arise;
therefore, this bit should not
be set.

2-8 Reserved for DEC.

9-17 EN%LVL Level number associated with this

resource. This number is specified by
the user and must be agreed upon by

all users of the resource. 1In order
to eliminate a deadly embrace
situation, users must request
resources in numerically increasing
order.

6-8

ENQUEUE/DEQUEUE FACILITY

The request is not queued, and an error is given, if ENSBLN is not set
and

1. The user requests a resource with a level number less than or
equal to the highest numbered resource he has requested so
far.

2, The level number of this request does not match the level
number supplied in previous requests for this resource.

Pooled Resources

Word .ENQRS of each lock specification is used to allocate multiple
copies from a pool of identical resources. Bit EN%SHR, indicating
shared ownership, is meaningless for pooled resources because each
resource in the ©pool can be owned by only one process at a time. A
process can own one Or more resources in the pool; however, it cannot
own more than there are in the pool or more than there are unowned in
the pool.

The left half of word .ENQRS contains the total number of resources
existing in the pool. This number is previously agreed upon by all
users of the pooled resource. The first wuser who requests the
resource sets this number, and all subsequent requests must specify
the same number or an error is given.

The right half of word .ENQRS contains the number of resources being
requested by this process. This number must be greater than zero if a
pool of resources exists and cannot be greater than the number in the
left half. This means that if a pool of resources exists, the user
must request at least one resource, but cannot request more than are
in the pool.

Once the number of pooled resources is determined, the resources are
allocated until the pool is depleted or until a request specifies more
resources than are currently available. In the latter case, the user
making the request is not given any resources until his entire request
can be satisfied. Subsequent requests from other wusers are not
granted wuntil this request 1is satisfied even though there may be
enough resources to satisfy these subsequent requests. As users
release their resources, the resources are returned to the pool. When
all resources have been returned, they cease to exist, and the next
request completely redefines the number of resources in the new pool.

The system assumes that the resource is in a pool if the left half of
word .ENQRS of the 1lock specification is nonzero. Thus the user
should set the left half to zero if only one resource of a specific
type exists. If this is the case, then the right half of this word is
a number defining the group of users who can simultaneously share the
resource. This means that when the resource is allocated to a user
for shared ownership, only other users in the same group will be
allowed access to the resource. The use of sharer groups restricts
access to a resource to a set of processes smaller than the set for
shared ownership (which is sharer group 0) but larger than the set for
exclusive ownership. (Refer to Section 6.5 for more information on
sharer groups).

ENQUEUE/DEQUEUE FACILITY

6.4.2 Releasing A Resource

The user issues the DEQ monitor call to remove a request from the
queue associated with a resource. The request is removed whether or
not the user actually owns a lock on the resource or is only waiting
in the queue for the resource.

The DEQ monitor call can be used to remove any number of requests from
the queues. 1If one of the requests cannot be removed, the dequeueing
procedure continues until all lock specifications have been processed.
An error code is then returned for the last request found that could
not be dequeued. The process can then execute the ENQC call (refer to
Section 6.4.3) to determine the status of each lock. Thus, unlike the
operation of the ENQ call, the DEQ call will dequeue as many resources
as it can, even if an error 1is returned for one of the lock
specifications in the argument block. However, when a user attempts
to dequeue more pooled resources than he originally allocated, an
error code is returned and none of the resources are degueued.

The DEQ monitor call accepts two words of arguments in ACl and AC2.
The first word contains the code for the desired function, and the
second word contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6.4.2.1 DEQ Functions - The DEQ functions are described in Table 6-2.

Table 6-2
DEQ Functions

Code Symbol Meaning

0 .DEQDR Remove the specified requests from the
queues. This function is the only one
that requires an argument block.

1 .DEQDA Remove all requests for this process
from the queues. This action is taken
on a RESET monitor call. An error
code is returned if this process has
not requested any resources (i.e., if
this process has not issued an ENQ).

2 .DEQID Remove all requests that correspond to
the specified reqguest identifier.
When this function is specified, the
user must place the 18-bit request ID
in AC2 on the DEQ call. This function
allows the user to release a class of
locks in one <call without itemizing
each 1lock 1in an argument block. The

function should be used when
dequeueing in one call the same locks
that were enqueued in one call. For

example, with this function the user
can specify the ID to be the same as
the JFN used in the ENQ call and thus
remove all locks to that file at once.

6-10

ENQUEUE/DEQUEUE FACILITY

6.4.2.2 DEQ Argument Block - The format of the argument block for
function .DEQDR is described below.

Word Symbol Meaning

0 .ENQLN Number of locks being requested in the left
half, and length of argument block
(including this word) in the right half.

1 .ENQID Number of software interrupt channel in the
left half, and request ID in the right
half.

2 .ENQLV Flags and level number in the 1left half,

and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half.

3 .ENQUC Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

4 .ENQRS Number of resources in the pool in the left
half, and number of resources requested in
the right half.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each request being dequeued. These three words are called the lock
specification.

6.4.3 Obtaining Information About The Resources

The user issues the ENQC monitor call to obtain information about the
current status of the given resources. This call can also be used by
privileged users to perform various utility functions on the queue
structure. The format of the ENQC call is different for these two
uses. (Refer to the DECsystem-20 Monitor Calls Reference Manual for
the explanation of the privileged use of the ENQC call.)

The ENQC monitor call accepts three words of arguments in ACl through
AC3:

ACl: function code (.ENQCS)

AC2: address of argument block

AC3: address of area to receive status information
The format of the argument block is identical to the format of the ENQ
and DEQ argument blocks. The area in which the status is to be
returned should be three times as 1long as the number of locks
specified in the argument block.
On successful execution of the ENQC call, the current status of each

lock specified is returned as a 3-word entry. This 3-word entry has
the following format.

ENQUEUE/DEQUEUE FACILITY

! Flag bits indicating status of lock !
o e e !
! 36-bit time stamp !
[it et T T !
! Reserved ! Request ID !

The following flag bits are defined.

Bit Symbol Meaning
0 EN%QCE An error has occurred in the
corresponding lock request. Bits
18-35 contain the appropriate error
code.
1 EN%QCO The process issuing the ENQC - call is

the owner of this lock.

2 EN%QCQ The process issuing the ENQC call is
in the queue waiting for this
resource. This bit will be on when
EN%QCO is on because a request remains
in the queue wuntil a DEQ <call is
given.

3 EN%QCX The lock has been allocated for
~ exclusive ownership. When this bit is

off, there is no way of determining

the number of sharers of the resource.

4 EN$QCB The process issuing the ENQC call is
in the queue waiting for exclusive
ownership to the resource. This bit
will be off if EN%QCQ is off.

5-8 Reserved for DEC.
9-17 EN%LVL The level number of the resource.
18-35 EN%JOB The number of the job that owns the
lock. For locks with shared

ownership, this value will be the job
number of one of the owners. However,
this value will be the current Jjob's
number if the <current job is one of
the owners. If this 1lock 1is not
owned, the value is -1.

If EN%QCE is on, this field contains
the appropriate error code.

The 36-bit time stamp indicates the last time a process locked the
resource. The time is in the universal date-time standard. If no one
currently has a lock on the resource, this word is zero.

The request ID returned in the right half of the third word is either

the request ID of the current process if that process is in the queue
or the request ID of the owner of the lock.

6-12

ENQUEUE/DEQUEUE FACILITY

6.5 SHARER GROUPS

Processes can specify the sharing of resources by using sharer group
numbers (refer to Section 6.4.1.2). The wuse of sharer groups
restricts the ownership for a resource to a set of processes smaller
than the set for shared ownership but 1larger than the set for
exclusive ownership.

Sharer group number 0 is used to indicate the group of all cooperating
processes of the resource. This group number is assumed when no group
is specified in the ENQ call. To restrict use of the resource, a
group number other than 0 must be explicitly specified in the call.

Consider the following example. The resource is the WRITE operation
on a file. There are four types of uses of this resource as shown in
Figure 6-2.

Process' own use of
the resource
WRITE Not allowed
to write
Other
process' use
of the resource
WRITE 1 2
Shared, group O No need to use
ENQ/DEQ
Not allowed 3 4
to write
Exclusive Shared, group 1

Figure 6-2 Use of Sharer Groups

In block 1 of the figure, the process owning the lock wishes to allow
all cooperating processes to also lock the resource (i.e., to perform
the WRITE operation). Therefore, in the ENQ call, the process
specifies the resource can be locked by all cooperating processes. In
block 2 of the figure, the process does not plan on locking the
resource and does not care if other processes lock it. Thus, there is
no need for the process to use the ENQ/DEQ facility. In block 3 of
the figure, the process desires to lock the resource exclusively and
does not want other processes to lock it. Thus, the process obtains
exclusive ownership for the resource. In block 4 of the figure, the
process does not want to lock the resource immediately but also does
not want other processes to lock it because it soon plans to request a
lock on the resource. If the process were the only one requesting
this type of use, exclusive ownership would be sufficient, because the
resource would be unavailable to others as long as the process owned
the 1lock. However, if other processes desire this same type of use,
exclusive ownership 1is not sufficient, because once one process
releases the lock, another process with a different type of use could

6-13

ENQUEUE/DEQUEUE FACILITY

obtain its own lock. Thus, in this example, sharer group 1 is defined
to include all processes with the same type of use (i.e., all
processes who do not want to lock the resource immediately but also do
not want other processes to lock it). This elimates the problem of
another user obtaining the resource for a different type of use.

Sharer group 0 should be sufficient for most uses of the ENQ/DEQ
facility. Additional groups should only be needed in those situations
where a subset of the cooperating processes must have a specific use
of a resource, as in the above example.

6.6 AVOIDING DEADLY EMBRACES

Processes can interact in many undesirable ways if improper
communication occurs among the processes or if resources are
incorrectly shared. An example of one undesirable situation 1is the
occurrence of a deadly embrace: when two processes are waiting for
each other to complete but neither one can gain access to the resource
it needs for completion. This situation can be avoided when processes
consider the following guidelines.

1. Processes should request resources at the time they need
them. If possible, processes should request resources one at
a time and release each resource before requesting the next
one.

2. Processes should request shared ownership whenever possible.
However, the process should not request shared ownership if
it plans on modifying the resource.

3. When a process needs more than one resource, it should
request these resources in one ENQ call instead of multiple
calls for each resource. The process should also release the
entire set of resources at once with a single DEQ call.

4. When the use of one resource depends on the use of a second
one, the process should define the two resources as one in
the ENQ and DEQ calls. However, there is no protection of
the resources if they are also requested separately.

5. Occasionally processes use a set of resources and require a
lock on the second resource while retaining the lock on the
first. 1In this case, the order in which the 1locks are
obtained should be the same for all users of the set of
resources. The same ordering of locks is accomplished by the
processes assigning level numbers to each resource. The
requirements that processes request resources in ascending
numerical order and that all processes use the same level
number for a specific resource ensure that a deadly embrace
situation will not occur.

6-14

CHAPTER 7

INTER-PROCESS COMMUNICATION FACILITY

7.1 OVERVIEW

The Inter-Process Communication Facility (IPCF) allows communication

among Jjobs and system processes. This communication occurs when
processes send and receive information in the form of packets. Each
sender and receiver has a Process I. D. (PID) assigned to it for

identification purposes.

When the sender sends a packet of information to another process, the
packet 1is placed into the receiver's input queue. The packet remains
in the queue until the receiver checks the gqueue and retrieves the
packet. Instead of periodically checking 1its input gqueue, the
receiver can enable the software interrupt system (refer to Chapter 4)
to generate an interrupt when a packet is placed in its input queue.

The <SYSTEM>INFO process 1is the information center for the
Inter-Process Communication Facility. This process performs system
functions related to PIDs and names, and any process can request these
functions by sending <SYSTEM>INFO a packet.

7.2 QUOTAS

Before using IPCF, the user must obtain two quotas from the system
administrator: a send packet quota and a receive packet quota. These
quotas designate, on a per process basis, the number of sends and
receives that can be outstanding at any one time. For example, if the
process has a send quota of two and it has sent two packets, it cannot
send any more until at least one packet has been retrieved by its
receiver. A send packet quota of two and a receive packet guota of
five are assumed as the standard quotas. If these guotas are zero,
the process cannot use IPCF.

7.3 PACKETS

Information is transferred in the form of packets. Each packet 1is
divided 1into two portions: a packet descriptor block of four to six
words and a packet data block the length of the message. The format
of the packet is shown in Figure 7-1.

 INTER-PROCESS COMMUNICATION FACILITY

Packet Descriptor Block

.IPCFL ! flags !
I il el D e !
+IPCFS ! PID of sender !
e —— ———————— 1
.IPCFR ! PID of receiver !
It et T il !
.IPCFP ! length of message ! address of message !
! n ! ADR !
| e e e e e e e e e e e e e e e et e e e e o e o e e e e 1
.IPCFD ! sender's connected i sender's logged in !
! directory ! directory !

.IPCFC ! enabled capabilities of sender

Packet Data Block

ADR ! message word 1 !

Figure 7-1 IPCF Packet

7.3.1 Flags

There are two types of flags that can be set in word .IPCFL of the
packet descriptor block. The flags in the left half of the word are
instructions to IPCF for packet communication, and the flags in the
right half are descriptions of the data message. The flags in the
right half are returned as part of the associated variable (refer to
Section 7.4.2). The packet descriptor block flags are described in
Table 7-1.

Table 7-1
Packet Descriptor Block Flags

Bit Symbol Meaning

0 IP%CFB Do not block the process if there are no
messages 1in the queue. If this bit is on,
the process receives an error if there are
no messages.

1 IP3CFS Use the PID obtained from the address in

word .IPCFS of the packet descriptor block
as the sender's PID.

INTER-PROCESS COMMUNICATION FACILITY

Table 7-1 (Cont.)

Packet Descriptor Block Falgs

Bit

Symbol

Meaning

19

20-23

24-29

IP3CFR

IP3CFO

IPRTTL

IP3CPD

IP3JWP

IPENOA

IP%CFP

IP3CFV

IP3CFE

Use the PID obtained from the address in
word .IPCFR of the packet descriptor block-
as the receiver's PID.

Allow the process one send above the send
quota. (The standard send quota is two.)

Truncate the message if it is longer than
the area reserved for it in the packet data
block. 1If this bit is not on, the process
receives an error if the message is too
long.

Create a PID to use as the sender's PID.
The PID created is returned in word .IPCFS
of the packet descriptor block.

Make the PID created be permanent until the
job logs out (if both bits IP%CPD and
IP$JWP are on). Make the PID created be
temporary until the process executes a
RESET monitor call (if bit IP$CPD is on and
bit IP%JWP is not on). If bit IP%CPD is
not on, bit IP%JWP is ignored.

Do not allow other processes to use the PID
created when bit IP%CPD is on. If bit
IP%CPD is not on, bit IP%NOA is ignored.
Reserved for DEC.

The packet is privileged. This bit can be
set only by a process with WHEEL capability
enabled. Refer to the DECsystem-20 Monitor
Calls Reference Manual for a description of
this bit.

The packet is a page of 512 (decimal) words
of data.

Reserved for DEC.

Field for error code returned from <SYSTEM>
INFO.

Code Symbol Meaning
15 .IPCPI insufficient privileges

16 .IPCUF invalid function

67 .IPCSN <SYSTEM>INFO needs name

72 .IPCFF <SYSTEM>INFO free space
exhausted :

74 .IPCBP PID has no name or is invalid

INTER-PROCESS COMMUNICATION FACILITY

Table 7-1 (Cont.)
Packet Descriptor Blocks Flags

Bit Symbol Meaning
75 .IPCDN duplicate name has been
specified
76 .IPCNN unknown name has been
specified
77 .IPCEN 1invalid name has been
specified
30-32 | IP%CFC System and sender code. This code <can be

set only by a process with WHEEL capability
enabled, but the monitor will return the
code so a nonprivileged process can examine
it.

Code Symbol Meaning

1 .IPCCC Sent by <SYSTEM>IPCF
2 .IPCCF Sent by system-wide
<SYSTEM>INFO
3 .IPCCP Sent by receiver's
<SYSTEM>INFO
33-35| IP%CFM Field for special messages. This code can

be set only by a process with WHEEL
capability enabled, but the monitor will
return the code so that a nonprivileged
process can examine it.

Code Symbol Meaning
1 .IPCFN Process' input queue contains

a packet that could not be
delivered to intended PID.

7.3.2 PIDS

Any process that wants to send or receive a packet must obtain a PID.
The process can obtain a PID by sending a packet to <SYSTEM>INFO
requesting that a PID be assigned. The process must also include a
symbolic name that is to be associated with the assigned PID.

The symbolic name can be a maximum of 29 characters and can contain
any characters as 1long as it is terminated by a zero word. There
should be mutual understanding among processes as to the symbolic
names used in order to initiate communication. Once the name is
defined, any process referring to that name must specify it exactly
character for character.

Before a process can send ' a packet, it must know the receiver's
symbolic name or PID. If only the receiver's name is known, the
sender must ask <SYSTEM>INFO for the PID associated with the name,
since all communication is via PIDs.

INTER-PROCESS COMMUNICATION FACILITY

The association between a PID and a name is broken:
1. On a RESET monitor call.
2. When the process is killed or the job logs off the system.

3. When a request to disassociate the PID from the name is made
to <SYSTEM>INFO.

<SYSTEM>INFO will not allow a name already associated with a PID to be
assigned again unless the owner of the name makes the request. Nor
will <SYSTEM>INFO assign a PID once it has been used. This action
protects against messages being sent to the wrong receiver by
accident.

The PIDs of the sender and the receiver are indicated by words .IPCFS
and .IPCFR, respectively, of the packet descriptor block.

7.3.3 Length And Address Of Packet Data Block

Word .IPCFP of the packet descriptor block contains the length and the
beginning address of the message. The length specified is one of two
types, depending on the type of message (refer to Section 7.3.5). If
the message is a short-form message, the length is the actual word
length of the message. If the message is a long-form message, the
length is 1000 (octal), i.e., one page.

The address specified is either an address or a page number, depending
on the type of message (refer to Section 7.3.5). When a message is
sent, it is taken from this address. When a message is received, it
is placed in this address.

7.3.4 Directories And Capabilities

Words .IPCFD and .IPCFC describe the sender at the time the message
was sent and are used by the receiver to validate messages sent to it.
These two words are not used when a message is sent, and if the sender
of the packet supplies them, they are ignored. However, when a
message is received, if the receiver of the packet has reserved space
for these words in the packet descriptor block, the system supplies
the appropriate values of the sender of the packet. The receiver of
the packet does not have to reserve these words if it is not
interested in knowing the sender's directories and capabilities.

7.3.5 Packet Data Block

The packet data block contains the message being sent or received.
The message can be either a short-form message or a long-form message.

A short-form message is one to n words long, where n is defined by the
installation. (Usually, n is assumed to be 10 words.) When a
short-form message is sent or received, word .IPCFP of the packet
descriptor block contains the actual word length of the message in the
left half and the address of the first word of the message in the
right half. A process always uses the short form when sending
messages to <SYSTEM>INFO.

INTER-PROCESS COMMUNICATION FACILITY

A long-form message is one page in length (512 decimal words). When a
long-form message is sent or received, word .IPCFP of the packet
descriptor block contains 1000 (octal) in the left half and the page
number of the message 1in the right half. To send and receive a
long-form message, both the sender and receiver must have bit IP%CFV
(bit 19) set in the first word of the packet descriptor block, or else
an error code is returned.

7.4 SENDING AND RECEIVING MESSAGES

To send a message, the sending process must set up the first four
words of the packet descriptor block. The process then executes the
MSEND monitor call. After execution of this call, the packet is sent
to the intended receiver's input gueue.

To receive a message, the receiving process must also set up the first
four words of the packet descriptor block. The last two words for the
directories and capabilities of the sender can be supplied, and the
system will fill in the appropriate values. The process then executes
the MRECV monitor call. After execution of this call, a packet 1is
retrieved from the receiver's input queue. The input gqueue is emptied
on a first-message-in, first-message-out basis.

7.4.1 Sending A Packet

The MSEND monitor call is used to send a message via IPCF. Messages
are in the form of packets of information and can be sent to a
specified PID or to the system process <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

" The MSEND call accepts two words of arguments. The length of the
packet descriptor block is given in ACl, and the beginning address of
the packet descriptor block is given in AC2. Thus,

ACl: 1length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

The packet descriptor block consists of the following four words:

.IPCFL Flags

.IPCFS Sender's PID

.IPCFR Receiver's PID

.IPCFP Pointer to packet data block containing the

message being sent.

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when sending a packet are described
below. Refer to Table 7-1 for the complete list of flag bits.

INTER-PROCESS COMMUNICATION FACILITY

Table 7-2
Flags Meaningful on a MSEND Call

Bit Symbol Meaning

1 IP%CFS The sender's PID is given in word .IPCFS of
the packet descriptor block.

2 IP%CFR The receiver's PID is given in word .IPCFR
of the packet descriptor block.

3 IP%CFO Allow the sender to send one message above
its send quota.

5 IP3CPD Create a PID for the sender and return it
in word L.IPCFS of the packet descriptor
block. The PID created is to be permanent
and useable by other processes according to
the setting of bits IP%JWP and IP3%NOA.

6 IPRJWP The PID created 1is to be Jjob wide and
permanent until the job logs out. If this
bit is not on, the PID created 1is to be
temporary until the process executes the
RESET monitor call.

7 IP¥NOA The PID created is not to be used by other
processes.

18 IP%CFP The message being sent is privileged (refer
to the DECsystem-20 Monitor Calls Reference
Manual).

19 IP%CFV The message being sent 1is a long-form

message (i.e., a page). The page the
message is being sent to cannot be a shared
page; it must be a private page.

When bit IP%CFS is on in the flag word, the sender's PID is taken from
word .IPCFS of the packet descriptor block. This word is zero if bit
IPSCPD is on in the flag word, indicating that a PID is to be created

for the sender. In this case, the PID created is returned in word
. IPCFS.

When bit IP%CFR is on in the flag word, the receiver's PID 1is taken
from word .IPCFR of the packet descriptor block. If this word is O,
then the receiver of the message is <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

On successful execution of the MSEND monitor call, the packet is sent
to the receiver's input queue. Word .IPCFS of the packet descriptor
block is updated with the sender's PID. Execution of the user's
program continues at the second location after the MSEND call.

If execution of the MSEND call is not successful, the message 1is not
sent, and an error code 1is returned in ACl. The execution of the
user's program continues at the instruction following the MSEND call.

INTER-PROCESS COMMUNICATION FACILITY

7.4.2 Receiving A Packet

The MRECV monitor call is used to retrieve a message from the process'
input queue. Before a process can retrieve a message, it must know if
the message is a long-form message and also must set up a packet
descriptor block.

The MRECV monitor call accepts two words of arguments. The length of
the packet descriptor block is given in ACl, and the beginning address
of the packet descriptor block is given in AC2. Thus,

ACl: 1length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block
The packet descriptor block can consist of the following six words.

The last two words are optional, and if supplied by the receiver, the
values of the sender will be filled in by the system.

. IPCFL Flags
. IPCFS Sender's PID
. IPCFR Receiver's PID
+IPCFP Pointer to packet data block where the message is
to be placed.
.IPCFD Connected and logged-in directories of the sender.
. IPCFC Enabled capabilities of the sender.

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when receiving a packet are described
below. Refer to Table 7-1 for the complete list of flag bits.

Table 7-3
Flags Meaningful on a MRECV Call

Bit Symbol Meaning

0 IP3CFB If there are no packets in the receiver's
input queue, do not block the process and
return an error code if the queue is empty.
If this bit is not on, the process waits
until a packet arrives, if the queue is
empty.

2 "IP%CFR The receiver's PID is given in word .IPCFR
of the packet descriptor block.

4 IPSTTL Truncate the message if it is larger than
the space reserved for it in the packet
data block. If this bit is not on and the
message is too large, an error code is
returned and no message is received.

19 IP3CFV The message is expected to be a long-form
message (i.e., a page). The page the
message is being stored into cannot be a
shared page; it must be a private page.

7-8

INTER-PROCESS COMMUNICATION FACILITY

The information in word .IPCFS is not supplied by the receiver when
the MRECV call is executed. The system f£ills in the PID of the sender
of the packet when the packet is retrieved.

Word .IPCFR is supplied by the receiver. If bit IP%CFR is on in the
flag word, then the PID receiving the packet is taken from word .IPCFR
of the packet descriptor block. If bit IP%CFR is not on in the flag
word, then word .IPCFR contains either -1, to receive a packet for any
PID belonging to this process, or -2, to receive a packet for any PID
belonging to this . job. When -1 or -2 is given, packets are not
received in any particular order except that packets from a specific
PID are received in the order in which they were sent. Any other
values in this word cause an error code to be returned.

The information in words .IPCFD and .IPCFC is also not supplied by the
receiver. If these two words have been specified by the receiver, the
system fills in the information when the packet 1is retrieved. Word
.IPCFD contains the sender's connected directory in the left half and
the sender's logged-in directory in the right half. Word .IPCFC
contains the enabled capabilities of the sender. These words describe
the sender at the time the message was sent.

On successful execution of the MRECV monitor «call, the packet is
retrieved and placed into the packet data block as indicated by word
.IPCFP of the packet descriptor block. ACl contains the length of the
next packet in the queue in the left half and flags from the next
packet in the right half (see below). This word returned in ACl is
called the associated variable of the next packet in the queue. If
there is not another packet in the gqueue, ACl contains zero.
Execution of the wuser's program continues at the second instruction
after the MRECV call.

The flags returned in the right half of ACl on successful execution of
the MRECV monitor call are described below.

Bit Symbol Meaning

30-32 IP%CFC System and sender code, set only by a
privileged process. The packet was sent by
<SYSTEM>IPCF if the code is 1(.IPCCC). The
packet was sent by the system-wide
<SYSTEM>INFO if the code is 2(.IPCCF). The
packet was sent by the receiver's
<SYSTEM>INFO if the code is 3(.IPCCP).

33-35 IP3CFM Field for return of special messages. If
the field contains 1(.IPCFN), then the
process' input queue contains a packet that
was sent to another PID, but was returned
to the sender because it could not be
delivered.

If execution of the MRECV call is not successful, a packet 1is not
retrieved, and an error code is returned in ACl. The execution of the
user's program continues at the instruction following the MRECV call.

INTER-PROCESS COMMUNICATION FACILITY

7.5 SENDING MESSAGES TO <SYSTEM>INFO

The <SYSTEM>INFO process is the central information utility for IPCF.
It performs functions associated with names and PIDs, such as,
assigning a PID or a name or returning a name associated with a PID.

A process can request functions to be performed by <SYSTEM>INFO by
executing the MSEND monitor <call (refer to Section 7.4.1). The
message portion of the packet (i.e., the packet data block) sent to
<SYSTEM>INFO contains the request being made. 1In other words, the
total request to <SYSTEM>INFO is a packet consisting of a packet
descriptor block and a packet data block containing the request.

Packet Descriptor Block

|

|

|

|

|

1

[=]
i

1

|

|

|

1
|

|

1

|

|

|

|

1

|

1

i Hh
I~
[
[RYe}
]
[
i O
t
[T
]

1

i

1

1

|

1

]

|

{

i

|

1

|

|

)

]

!

!

|

|

|

|

] |
| |
[} [}
| |
] |
]]
]]
| |
| 1
| 1
| |
| |
| |
! |
] |
|]
] {
1 |
Lol]
(<2 |
(ol |
= | [0
[1 O
D | 13
[I | |
! [IKL]
o | [a
O 1ol -
| I 0
| |
D 1 |
Q | [
c | 1 O
o 1 |
[[}
|]
|]
|]
1 |
|]
1]
|]
1 |
|]
1 |
|]
| |
| |
| |
| 1
| 1
] |
| |
1 |
| |

Q
o
Q
(1]
Hh
=
3
Q
t
e
o
=]

[}
|
|
i
|
|
|
|
I
I
|
|
|
|
|
|
[}
|
!
|
|
|
|
|
|
|
| ©
[
| O
|
]
|
[}
[}
I
|
|
]
|
|
|
[}
[}
]
|
|
|
]
|
[}
[}
[}
[}
|
1

h
=
3
Q
o+
-
o
=}
Q
(a1}
Q
=
3
[
3
ct

Refer to Section 7.4.1 for the descriptions of the words in the packet
descriptor block. The receiver's PID (word .IPCFR) is 0 when sending
a packet to <SYSTEM>INFO.

7.5.1 Format Of <SYSTEM>INFO Requests

As mentioned previously, the packet data block (i.e., the message
portion) of the packet contains the request to <SYSTEM>INFO.

The first word (word .IPCI0) contains a user-defined code in the left
half and the function being requested in the right half. The
user-defined code is used to associate the response from <SYSTEM>INFO
with the correct request. The functions that the process can request
of <SYSTEM>INFO are described in Table 7-4.

The second word (word .IPCI1l) contains a PID associated with a process
that 1is to receive a duplicate of any response from <SYSTEM>INFO. If
this word is zero, the response from <SYSTEM>INFO is sent only to the
process making the request.

The third word (word .IPCI2) contains the argument for the function
specified in the right half of word .IPCI0O. The argument is different
depending on the function being requested. The arguments for the
functions are described in Table 7-4.

7-10

INTER-PROCESS COMMUNICATION FACILITY

Table 7-4
<SYSTEM>INFO Functions and Arguments

Function Argument Meaning

.IPCIW name Return the PID associated with the
given name (refer to Section 7.3.2 for
the description of the name).

.IPCIG PID Return the name associated with the
given PID.
.IPCII name in Assign the given name to the PID
ASCIZ associated with the process making the
request. The PID is permanent if

IP3JWP was set in the flag word when
the PID was originally created (refer
to Table 7-1).

7.5.2 Format Of <SYSTEM>INFO Responses

Responses from <SYSTEM>INFO are in the form of a packet sent to the
process that made the request. A copy of the response is sent to the
PID given in word .IPCI1l, if any.

The message portion (i.e., the packet data block) of the packet
contains the response from <SYSTEM>INFO. The format of this response
is

|
|
|
|
1
i
1
|
|
1
]
|
1
1
|
1
1
I
1
|
1
1
]
[
I o
[I4]
(e
1 O
[=
[IY]
1 o
|
1
|
I
|
1
|
1
|
|
|
1
1
1
|
|
]
|
1
]
1
|
|
I

=
[
]
o]
]
3
1]
o

The first word (word .IPCIO) contains the user-defined code in the
left half and the function that was requested in the right half.
These values are copied from the values given in the request.

The second and third words (words .IPCI1 and .IPCI2) contain the
response from the function requested of <SYSTEM>INFO. The response is
different depending on the function requested. The responses from the
functions are described in Table 7-5.

Table 7-5
<SYSTEM>INFO Responses

Function Requested Response

.IPCIW The PID associated with the name given in
the request is returned in word .IPCIIl.

.IPCIG The name associated with the PID given in
the request is returned in word .IPCII1.

.IPCII No response is returned.

7-11

INTER~-PROCESS COMMUNICATION FACILITY

7.6 PERFORMING IPCF UTILITY FUNCTIONS

A process can request various functions to be performed by executing
the MUTIL monitor call. Some of these functions are enabling and
disabling PIDs, creating and deleting PIDs, and returning gquotas.
Several of the functions that can be requested are privileged
functions. These are described in the DECsystem-20 Monitor Calls
Reference Manual.

The MUTIL monitor call accepts two words of argument. The 1length of
the argument block is given in ACl, and the beginning address of the
argument block is given in AC2.

The argument block has the following format:

! function code
| e e o e o e e e e o e e e e e e e e e s e — A ——— A " "> S > > —

! argument for function
| o e e e e e e e e e e e e e o e e e e e e e e e — — ———————

! argument for function
' 2 3 s 3 1 1t + 1 &+ t 3 &ttt ittt r:t:i:i:t:r:ritr:ttt::i '

The arguments are different, depending on the function being
requested. Any values resulting from the function requested are
returned in the argument block, starting at the second word.

Table 7-6 describes the functions that can be requested, the arguments
for the functions, and the values returned from the functions.

Table 7-6
MUTIL Functions

Function Meaning

.MUENB Allow the PID given to receive packets. If the
process executing the call is not the owner of
the PID, the process must be privileged.

Argument
PID

Value Returned
None

.MUDIS Disable the PID given from receiving packets.
If the process -executing the call is not the
owner of the PID, the process must be
privileged.

Argument
PID

Value Returned
None

INTER~-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MUTIL Functions

Function Meaning

.MUGTI Return the PID associated with <SYSTEM>INFO.

Argument

PID or job number
Value Returned

PID of <SYSTEM>INFO

.MUDES Delete the PID given. The process executing the
call must own the PID being deleted.

Argument

PID to be deleteéed
Value Returned

None

.MUCRE Create a PID for the process or job given. If
the job number given is not that of the process
executing the call, the process must be
privileged. The flag bits that can be specified
are IPRJWP and IP%NOA (refer to Table 7-1 for
their descriptions).

Argument
flag bits in the 1left half, and process
handle or job number in the right half

Value Returned
PID that was created

.MUFOJ Return the number of the job associated with the
PID given.

Argument
PID
Value Returned
Job number associated with PID given

.MUFJP Return all PIDs associated with the job given.

Argument
job number or PID belonging to the job

Values Returned

Two-word entries for each PID belonging to
the job. The first word of the entry is the
PID, and the second word has bits IP%JWP and
IPENOA set 1if appropriate (refer to Table
7-1 for the descriptions of these bits).
The 1list of entries returned is terminated
by a zero word.

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MUTIL Functions

Function Meaning
.MUFSQ Return the send quota and the receive quota for
. the PID given.
Argument
PID

Values Returned
Send quota in bits 18-26 and receive quota
in bits 27-35.

.MUFFP Return all PIDs associated with the process of
the PID given.

Argument
PID

Values Returned
Two-word entries for each PID belonging to
the process. The first word of the entry is
the PID, and the second word has bits IP%JWP
and IP%NOA set if appropriate (refer to
Table 7-1 for the descriptions of these
bits). The 1list of entries returned is
terminated by a zero word.

.MUFPQ Return the maximum number of PIDs allowed for
the job given.

Argument

Job number or PID belonging to the job
Value Returned

Number of PIDs allowed for the job given

.MUQRY Return the packet descriptor block for the next
packet in the queue of the PID given.

Argument
PID, -1 to return the next descriptor block
for the process, or -2 to return the next
descriptor block for the job

Values Returned
Packet descriptor block of next packet in
queue.

.MUAPF Associate the PID given with the process given.
Arguments
PID

-process handle

Value Returned
None

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MUTIL Functions

Function Meaning

.MUPIC Place the PID given on the software channel
given in order to cause an interrupt to be
generated when a packet is received in the input
queue of the PID given.

Argument
PID
channel number, or -1 to remove the given
PID from its current channel
Value Returned
None

.MUMPS Return the maximum packet size for the PID
given.

Argument
PID
Value Returned
Maximum packet size for PID

On successful completion of the MUTIL monitor <call, the function
requested is performed, and any value is returned in the argument
block. Execution of the user's program continues at the second
location following the MUTIL call.

If execution of the MUTIL monitor call is not successful, no requested
function is performed and an error code is returned in ACl. Execution
of the user's program continues at the location following the MUTIL
call.

APPENDIX A

ERROR CODES AND MESSAGE STRINGS

Many monitor calls return an error number (usually in the right half
of ACl) on a failure return. This error number indicates the reason
that the call could not perform its intended function. The error
number is associated with a unique error symbol and message string,
all three of which are defined in the MONSYM file. The ERSTR monitor
call can be used to translate the returned number into its
corresponding message string. Refer to the DECsystem-20 Monitor Calls
Reference Manual for the description of this call.

Symbol Code Message String

LGINX1 600010 Invalid account identifier

LGINX2 600011 Directory is "files-only" and cannot be logged in to

LGINX3 600012 Internal format of directory is incorrect

LGINX4 600013 Invalid password

LGINX5 600014 Job is already logged in

LOUTX1 600035 Illegal to specify job number when logging out own job

LOUTX2 600036 No such job

CACTX1 600045 Invalid account identifier

CACTX2 600046 Job is not logged in

EFCTX1 600050 WHEEL or OPERATOR capability required

EFCTX2 600051 Entry cannot be longer than 64 words

EFCTX3 600052 Fatal error when accessing FACT file

GJFX1 600055 Desired JFN invalid

GJFX2 600056 Desired JFN not available

GJFX3 600057 No JFN available

GJFX4 600060 Invalid character in filename

GJFX5 600061 Field cannot be longer than 39 characters

GJFX6 600062 Device field not in a valid position

GJFX7 600063 Directory field not in a valid position

GJFX8 600064 Directory terminating delimiter is not preceded by a
valid beginning delimiter ,

GJFX9 600065 More than one name field is not allowed

GJFX10 600066 Generation number is not numeric

GJFX1l 600067 More than one generation number field is not allowed

GJFX12 600070 More than one account field is not allowed

GJFX13 600071 More than one protection field is not allowed

GJFX14 600072 Invalid protection

GJFX15 600073 Invalid confirmation character

GJFX16 600074 No such device

GJFX17 600075 No such directory

GJFX18 600076 No such filename

GJFX19 600077 No such file type

GJFX20 600100 No such generation number

GJFX21 600101 File was expunged

GJFX22 600102 Job Storage Block full

GJFX23 600103 Directory full

GJFX24 600104 File not found

GJFX27
GJFX28
GJFX29
GJFX30
GJFX31
GJIFX32
GJFX33
GJFX34
GJFX35
OPNX1
OPNX2
OPNX3
OPNX4
OPNX5
OPNX6
OPNX7
OPNX8
OPNX9
OPNX10
OPNX12
OPNX13
OPNX14
OPNX15
OPNX16
OPNX17
OPNX18
OPNX19
OPNX20
OPNX21
OPNX22
DESX1
DESX2
DESX3
DESX4
DESX5
DESX6

-DESX7
DESX8
CLSX1
CLSX2
RIFNX1
RIFNX2
RJFNX3
DELFX1
SFPTX1
SFPTX2
SFPTX3
CNDIX1
CNDIX3
CNDIX5
SFBSX1
SFBSX2
10X1
10X2
I0X3
10X4
10X5
10X6
PMAPX1
PMAPX2
SPACX1
FRKHX1
FRKHX2
FRKHX3

600107
600110
600111
600112
600113
600114
600115
600116
600117
600120
600121
600122
600123
600124
600125
600126
600127
600130
600131
600133
600134
600135
600136
600137
600140
600141
600142
600143
600144
600145
600150
600151
600152
600153
600154
600155
600156
600157
600160
600161
600165
600166
600167
600170
600175
600176
600177
600200
600202
600204
600210
600211
600215
600216
600217
600220
600221
600222
600240
600241
600245
600250
600251
600252

ERROR CODES AND MESSAGE STRINGS

File already exists (new file required)
Device is not on-line

Device is not available to this job
Account is not numeric

Invalid wildcard designator

No files match this specification
Filename was not specified

Invalid character "?" in file specification
Directory access privileges required
File is already open

File does not exist

Read access required

Write access required

Execute access required

Append access required

Device assigned to another job

Device is not on-line

Invalid simultaneous access

Entire public disk full

List access required

Invalid access requested

Invalid mode requested

Read/write access required

File has bad index block

No room in job for long file page table
Reserved

Reserved

Reserved

Reserved

Reserved

Invalid source/destination designator
Terminal is not available to this job
JFN is not assigned

Invalid use of terminal designator or string pointer

File is not open
Device is not a terminal

JFN cannot refer to output wildcard designators

File is not on disk

File is not open

File cannot be closed by this process
File is not closed

JFN is being used to accumulate filename
JFN is not accessible by this process
Delete access required

File is not open

Illegal to reset pointer for this file
Invalid byte number

Incorrect password

Invalid directory number

Job is not logged in

Illegal to change byte size for this opening of file

Invalid byte size

File is not opened for reading

File is not opened for writing

File is not open for random access

End of file reached

Device or data error

Illegal to write beyond absolute end of file
Invalid access requested

Invalid use of PMAP

Invalid access requested

Invalid process handle

Illegal to manipulate a superior process
Invalid use of multiple process handle

A-2

ERROR CODES AND MESSAGE STRINGS

FRKHX4 600253 Process is running

FRKHX6 600255 All relative process handles in use
SPLFX1 600260 Process is not inferior or equal to self
SPLFX2 600261 Process is not inferior to self

SPLFX3 600262 New superior process is inferior to intended inferior
GTABX1 600267 Invalid table index

GTABX2 600270 Invalid table number

GTABX3 600271 GETAB privileges required

RUNTX1 600273 Invalid process handle -3 or -4

STADX1 600275 WHEEL or OPERATOR capability required
STADX2 600276 Invalid date or time

ASNDX1 600300 Device is not assignable

ASNDX2 600301 Illegal to assign this device

ASNDX3 600302 No such device

ATACX1 600320 Invalid job number

ATACX2 600321 Job already attached

ATACX3 600322 Incorrect user number

ATACX4 600323 Incorrect password

ATACX5 600324 This job has no controlling terminal
STDVX1l 600332 No such device

DEVX1 600335 Invalid device designator

DEVX2 600336 Device already assigned to another job
DEVX3 600337 Device is not on-line

MNTX1 600345 Invalid directory format

MNTX2 600346 Device is not on-line

MNTX3 600347 Device is not mountable

TERMX1 600350 Invalid terminal code

TLNKX1 600351 Illegal to set remote to object before object to remote
ATIX1 600352 Invalid channel number

ATIX2 600353 Control-C capability required

TLNKX2 600356 Link was not received within 15 seconds
TLNKX3 600357 Links full

TTYX1 600360 Not a terminal or no such terminal

RSCNX1 600361 Overflowed rescan buffer, input string truncated
CFRKX3 600363 Insufficient resources available

KFRKX1 600365 Illegal to kill top level process

KFRKX2 600366 Illegal to kill self

RFRKX1 600367 Processes are not frozen

HFRKX1 600370 Illegal to halt self with HFORK

GFRKX1 600371 Invalid process handle

GETX1 600373 Invalid save file format

GETX2 600374 System Special Pages Table full

SFRVX1 600377 Invalid position in entry vector

NOUTX1 600407 Radix is not in range 2 to 10

NOUTX2 600410 Column overflow

IFIXX1 600414 Radix is not in range 2 to 10

IFIXX2 600415 First character is not a digit

IFIXX3 600416 Overflow (number is greater than 2**35)
GFDBX1 600424 Invalid displacement

GFDBX2 600425 Invalid number of words

GFDBX3 600426 List access required

CFDBX1 600430 Invalid displacement

CFDBX2 600431 Illegal to change specified bits

CFDBX3 600432 Write or owner access required

CFDBX4 600433 Invalid value for specified bits

DUMPX1 600440 Command list error

DUMPX2 600441 JFN is not open in dump mode

DUMPX3 600442 Address error (too big or crosses end of memory)
DUMPX4 600443 Access error (cannot read or write data in memory)
RNAMX1 600450 Files are not on same device

RNAMX2 = 600451 Destination file expunged

RNAMX3 600452 Write or owner access to destination file required
RNAMX4 600453 Insufficient resources to rename file
BKJFX1 600454 Illegal to back up terminal pointer twice

A-3

TIMEX1
ZONEX1
ODTNX1
DILFX1
TILFX1
DATEX1
DATEX2
DATEX3
DATEX4
DATEX5
DATEX6
SMONX1
SACTX1
SACTX2
SACTX3
SACTX4
GACTX1
GACTX2
FFUFX1
FFUFX2
FFUFX3
DSMX1

RDDIX1
SIRX1

SSAVX1
SSAVX2
SEVEX1
WHELX1
CAPX1

PEEKX2
CRDIX1
CRDIX2
CRDIX3
CRDIX4
CRDIX5
CRDIX7
GTDIX1
GTDIX2
FLINX1
FLINX2
- FLINX3
FLINX4
FLOTX1
FLOTX2
FLOTX3
HPTX1

FDFRX1
FDFRX2
RNAMX5
RNAMX6
RNAMX7
RNAMXS8
RNAMX9
RNMX10
RNMX11
RNMX12
GJFX36
ILINS1
ILINS2
ILINS3
CRLNX1
INLNX1
LNSTX1
MLKBX1

600460
600461
600462
600464
600465
600466
600467
600470
600471
600472
600473
600516
600530
600531
600532
600533
600540
600541
600544
600545
600546
600555
600560
600570
600600
600601
600610
600614
600615
600617
600620
600621
600622
600623
600624
600626
600640
600641
600650
600651
600652
600653
600660
600661
600662
600670
600700
600701
600750
600751
600752
600753
600754
600755
600756
600757
600760
600770
600771
600772
601000
601001
601002
601003

ERROR CODES AND MESSAGE STRINGS

Time cannot be greater than 24 hours
Time zone out of range

Time zone must be USA or Greenwich
Invalid date format

Invalid time format

Year out of range

Month is not less than 12

Day of month too large

Day of week is not less than 7

Date out of range

System date and time are not set

WHEEL or OPERATOR capability required
File is not on multiple-directory device
Job Storage Block full

Directory requires numeric account

Write or owner access required

File is not on multiple-directory device
File expunged

File is not open

File is not on multiple-directory device
No used page found

File(s) not closed

Illegal to read directory for this device
Table address is not greater than 20
Illegal to save files on this device
Page count is not less than or equal to 1000
Entry vector is not less than 777

WHEEL or OPERATOR capability required
WHEEL or OPERATOR capability required
Read access failure on monitor page
WHEEL or OPERATOR capability required
Illegal to change number of o0ld directory
Job Storage Block full

Sub index full

Directory name not given

File(s) open in directory

WHEEL or OPERATOR capability required

No such directory number

First character is not blank or numeric
Number too small

Number too large

Invalid format -

Column overflow in field 1 or 2

Column overflow in field 3

Invalid format specified

Undefined clock number

Not a multiple-directory device

No such directory number

Destination file is not closed
Destination file has bad page table
Source file expunged

Write or owner access to source file required
Source file is empty

Source file is not closed

Source file has bad page table

Illegal to rename to self

Internal format of directory is incorrect
Undefined operation code

Undefined JSYS

UUO simulation facility not available
Logical name is not defined

Index is beyond end of logical name table
No such logical name

Lock facility already in use

A-4

MLKBX2
MLKBX3
MLKBX4
VBCX1

RDTX1

GFKSX1
GTJIX1
GTJIX2
GTJIX3
IPCFX1
IPCFX2
IPCFX3
IPCFX4
IPCFX5
IPCFX6
IPCFX7
IPCFX8
IPCFX9
IPCF10
IPCF11
IPCF12
IPCF13
IPCF14
IPCF15
IPCF16
IPCF17
IPCF18
IPCF19
IPCF20
IPCF21
IPCF22
IPCF23
IPCF24
IPCF25
IPCF26
IPCF27
IPCF28
IPCF29
IPCF30
GNJFX1
ENQX1

ENQX2

ENQX3

ENQX4

ENQX5

ENQX6

ENQX7

ENQX8

ENQX9

ENQX10
ENQX11
ENQX12
ENQX13
ENQX14
ENQX15
ENQX16
ENQX17
ENQX18
ENQX19
ENQX20
ENQX21
IPCF31
IPCF32
PMAPX3

601004
601005
601006
601007
601010
601011
601013
601014
601015
601016
601017
601020
601021
601022
601023
601024
601025
601026
601027
601030
601031
601032
601033
601034
601035
601036
601037
601040
601041
601042
601043
601044
601045
601046
601047
601050
601051
601052
601053
601054
601055
601056
601057
601060
601061
601062
601063
601064
601065
601066
601067
601070
601071
601072
601073
601074
601075
601076
601077
601100
601101
601102
601103
601104

ERROR CODES AND MESSAGE STRINGS

Too many pages to be locked

Page is not available

Illegal to remove previous contents of user map
Display data area not locked in core
Invalid string pointer

Area too small to hold process structure
Invalid index

Invalid terminal line number

Invalid job number

Length of packet block cannot be less than 4
No message for this PID

Data too long for user's buffer
Receiver's PID invalid

Receiver's PID disabled

Send quota exceeded

Receiver quota exceeded

IPCF free space exhausted

Sender's PID invalid

WHEEL capability required

WHEEL or IPCF capability required

No free PID's available

PID quota exceeded

No PID's available to this job

No PID's available to this process
Receive and message data modes do not match
Not enough arguments

Invalid MUTIL JSYS function

No PID for [SYSTEM] INFO

Invalid process handle

Invalid job number

Invalid software channel

[SYSTEM] INFO already exists

Invalid message size

PID does not belong to this job

PID does not belong to this process

PID is not defined

PID not accessible by this process

PID already being used by another process
Job is not logged in

No more files in this specification
Invalid function code

Level number too small

Request and lock level numbers do not match
Number of pocol and lock resources do not match
Lock already requested

Requested locks are not all locked

No ENQ on this lock

Invalid access change requested

Invalid number of blocks specified
Invalid argument block length

Invalid software interrupt channel number
Invalid number of resources requested
Indirect or indexed byte pointer not allowed
Invalid byte size

ENQ/DEQ capability required

WHEEL or OPERATOR capability required
Invalid JFN

Quota exceeded

String too long

Locked JFN cannot be closed

Invalid job number or job not logged in
Invalid page number

Page is not private

Illegal to move shared page into file

A-5

PMAPX4
PMAPX5
PMAPX6
SNOPX1
SNOPX2
SNOPX3
SNOPX4
SNOPX5
SNOPX6
SNOPX7
SNOPX8
SNOPX9
SNOP10
SNOP11
SNOP12
SNOP13
SNOP14
SNOP15
SNOP16
IPCF33
SNOP17
OPNX23
GJFX37
CRLNX2
INLNX2
LNSTX2
ALCX1

ALCX2

ALCX3

ALCX4

ALCX5

SPLX1

SPLX2

SPLX3

SPLX4

SPLX5

CLSX3
CRLNX3
ALCX6

CKAX1
CKAX2
CKAX3
TIMX1
TIMX2
TIMX3
TIMX4
SNOP18
GJFX38
GJFX39
CRDIXS8
CRDIX9
CRDI1O0

DELDX1
DELDX2
GACTX3
DIAGX1
DIAGX2
DIAGX3
DIAGX4
DIAGXS
DIAGX6

601105
601106
601107
601110
601111
601112
601113
601114
601115
601116
601117
601120
601121
601122
601123
601124
601125
601126
601127
601130
601131
601132
601133
601134
601135
601136
601137
601140
601141
601142
601143
601144
601145
601146
601147
601150

601151
601152
601153

601154
601155
601156
601157
601160
601161
601162
601163
601164
601165
601166
601167
601170

601171
601172
601173
601174
601175
601176
601177
601200
601201

ERROR CODES AND MESSAGE STRINGS

Illegal to move file page into process
Illegal to move special page into file
Disk quota exceeded
WHEEL or OPERATOR capability required
Invalid function code
.SNPLC function must be first
Only one .SNPLC function allowed
Invalid page number
Invalid number of pages to lock
Illegal to define breakpoints after inserting them
Breakpoints is not set on instruction
No more breakpoints allowed
Breakpoints already inserted
Breakpoints not inserted
Invalid format for program name symbol
No such program name symbol
No such symbol
Not enough free pages for snooping
Multiply defined symbol
Invalid index into system PID table
Breakpoint already defined
Disk quota exceeded
Input deleted
WHEE1l or OPERATOR capability required
Invalid function code
Invalid function code
Invalid function code
WHEEL or OPERATOR capability required
Device is non-assignable
Invalid job number
Device not available
Invalid function code
Invalid argument block length
Invalid device designator
WHEEL or OPERATOR capability required
Illegal to specify 0 as generation number for first
file
File still mapped
Invalid function code
Device assigned to user Jjob, but will be given to
allocator when released
Not enough arguments
Invalid directory number
Invalid access code
Invalid function code
Invalid process handle
Time limit already set
Illegal to clear time limit
Data page is not private or copy-on-write
File not found because output-only device was specified
Logical name loop detected
Invalid directory number specified
Invalid format directory file encountered
Maximum directory number exceeded; index table needs
expanding
WHEEL or OPERATOR capability required
Invalid directory number
Bad block type in dlrectory
Invalid function
Device is not assigned
Too few arguments
Invalid device type
WHEEL, OPERATOR, or MAINTENANCE capability required
Invalid channel command list

A-6

ERROR CODES AND MESSAGE STRINGS

DIAGX7 601202 Illegal to do I/O across page boundary
DIAGX8 601203 No such device

DIAGX9 601204 Unit does not exist

DIAG10 601205 TUl6é does not exist

SYEX1 601206 Unreasonable SYSERR block size

SYEX2 601207 No buffer space available for SYSERR
MTOX1 601210 Invalid function

I10X7 601211 No room in Job Storage Block

I10X8 601212 Monitor internal error

MTOX5 601213 Invalid hardware data mode for magnetic tape
DUMPX5 601214 No-wait dump mode not supported for this device
DUMPX6 601215 Dump mode not supported for this device
I0X9 601216 Function legal for sequential write only
CLSX4 601217 Device still active

MTOX2 601220 Record size was not set before I/0O was done
MTOX3 601221 Function not legal in dump mode

MTOX4 601222 Invalid record size

MTOX6 601223 Invalid magnetic tape density

OPNX25 601224 Device is write locked

GJFX40 601225 Undefined attribute in file specification
MTOX7 601226 WHEEL or OPERATOR capability required
LOUTX3 601227 WHEEL or OPERATOR capability required
LOUTX4 601230 LOG capability required

CAPX2 601231 WHEEL or OPERATOR capability required
SSAVX3 601232 No job storage available

SSAVX4 601233 Directory area of EXE file is more than one page
TDELX1 601234 Table is empty

TADDX1 601235 Table is full

TADDX2 601236 Entry is already in table

TLUKX1 601237 Internal format of table is incorrect
I0X10 601240 Record is longer than user requested
CNDIX2 601241 WHEEL or OPERATOR capability required
CNDIX4 601242 Invalid job number

CNDIX6 601243 Job is not logged in

SJBX1 601244 Invalid function code

SJBX?2 601245 Invalid magnetic tape density

SJIBX3 601246 Invalid magnetic tape data mode

TMONX1 601247 Invalid TMON function

SMONX2 601250 Invalid SMON function

SJIBX4 601251 No such job

SJIBX5 601252 Job is not logged in

SJIBX6 601253 WHEEL or OPERATOR capability required
GTJIX4 601254 No such job

ILINS4 601255 UUO simulation is disabled

ILINS5 601256 DMS facility is not available

COMNX1 601257 Invalid COMND function code

COMNX2 601260 Field too long for internal buffer

COMNX3 601261 Command too long for internal buffer
COMNX4 601262 Invalid character in input

PRAX1 601263 Invalid PRARG function code

PRAX2 601264 No room in monitor data base for argument block
COMNX5 601265 Invalid string pointer argument

COMNX6 601266 Problem in indirect file

COMNX7 601267 Error in command

PRAX3 601270 PRARG argument block too large

CKAX4 601271 File is not on disk

GACCX1 601272 Invalid job number

GACCX2 601273 No such job

MTOX8 601274 Argument block too long

DBRKX1 601275 No breaks in progress

SJPRX1 601276 Nonexistent job

GJFX41 601277 File name must not exceed 6 characters
GJFX42 601300 File type must not exceed 3 characters
GACCX3 601301 Confidential Information Access Capability required

A-7

TIMEX2
DELFX2
DELFX3
DELFX4
DELFX5
DELFX6
DELFX7
DELFX8
FRKHX7
DIRX1

DIRX2

DIRX3

UFPGX1
LNGFX1
IPCF34
COMNX8
MTOX9

MTOX10
MTOX11
MTOX12
MTOX13
MTOX14
SAVX1

MTOX15
LPINX1
LPINX2
LPINX3
MTOX17
LGINX6
DESX9

601302
601303
601304
601305
601306
601307
601310
601311
601312
601313
601314

601315
601316
601317
601320
601321
601322
601323
601324
601325
601326
601327
601330
601331
601333
601334
601335
601336
601337
601340

ERROR CODES AND MESSAGE STRINGS

Downtime cannot be more than 7 days in the future
File cannot be deleted because it is currently open
System scratch area depleted; file not deleted
Directory symbol table could not be rebuilt
Directory symbol table needs rebuilding

Internal format of directory is incorrect

FDB formatted incorrectly; £file not deleted

FDB not found; file not deleted

Process page cannot exceed 777

Invalid directory number

Not enough internal system resources to open directory
file

Internal format of directory is incorrect

File is not open for write

Page table does not eXist and file not open for write
Cannot receive into an existing page

Number base out of range 2-10

Output still pending

VFU or RAM file cannot be OPENed

Data too large for buffers

Input error or not all data read

Argument block too small

Invalid PSI channel

Illegal to save files on this device

Device does not have Direct Access (programmable) VFU
Invalid unit number

WHEEL or OPERATOR capability required

Illegal to load RAM or VFU while device is OPEN
Device is off-line

No more jobs available for logging-in

Illegal operation for this device

Aborting output operations,
3-24
AC setup, 1-2
Access,
Copy-on-write, 3-22, 5-4
File, 3-14
Access bits,
OPENF, 3-15
Access code,
File, 3-2
Accumulators, 1-2
ACs, 1-2
Setting process, 5-6
Activated channels, 4-4
Activating interrupt
channels, 4-8
Address space, 1-4, 5-1
Address space,
Sharing, 5-6
Address space of processes,
Specifying, 5-8
AIC monitor call, 4-8, 4-13
Append access, 3-14
Applications of multiple
processes, 5-2
Argument block,
DEQ, 6-11
ENQ, 6-7
GTJFN, 3-10
MUTIL, 7-12
ASCIZ pseudo-op, 2-3
ASCIZ strings, 2-1, 3-18
Assembly language programs,

Assigning JFNs, 3-2, 3-4,

3-10, 3-28
Assigning priority levels,
4-4 '
Assigning terminal codes,
4-11
Associating JFN to next
file, 3-28
Asynchronous signals, 4-1,
5-3

ATI monitor call, 4-11
Avoiding deadly embrace,
6-14

BIN monitor call, 3-18
Bits,

CFORK flag, 5-6

ENQ flag, 6-8

GTJFN, 3-8

INDEX

Bits (cont)
GTJFN flag, 3-4, 3-11
GTSTS, 3-25
IPCF flag, 7-2
MRECV flag, 7-8
MSEND flag, 7-7
OPENF access, 3-15
PMAP flag, 3-22, 5-9
Process status, 5-12
RDTTY control, 2-8
Resource status, 6-12
Block,
DEQ argument, 6-11
ENQ argument, 6-7
GTJFN argument, 3-10
MUTIL argument, 7-12
Packet data, 7-2, 7-5
Packet descriptor, 7-2
Block specification, 6-7
BOUT monitor call, 3-18
Break,
Execution, 4-1
Break characters, 2-7, 2-8
Buffer,
CTRL/R, 2-8, 2-9
Byte I/O example, 3-18
Byte input, 3-18, 3-21
Byte output, 3-18, 3-21
Byte pointer, 3-18
Byte size, 3-15, 3-23
Bytes, 2-1, 3-1
Bytes,
Reading, 2-6
Transferring
nonsequential, 3-20
Transferring sequential,
3-18
Writing, 2-7

Calling sequence, 1-2
Capability word, 5-6, 5-7
CFORK flag bits, 5-6
CFORK monitor call, 5-6
Changing access to
resources, 6-6

‘Channel,
, .ICIFT software, 5-11
Channel numbers, 4-6
Channel table, 4-6
Channels,

Activating interrupt, 4-8

Deactivating interrupt, 4-13

Index-1

Channels (cont)
Panic, 4-8, 4-12
Placing PIDs on, 7-15
Software interrupt, 4-3
Characteristics,
Process, 5-6
Characters,
Break, 2-7, 2-8
Editing, 2-7
Wildcard, 3-5, 3-7, 3-26,
3-29, 3-30
CHNTAB table, 4-6
CIS monitor call, 4-13
Clearing the interrupt
system, 4-13
CLOSF example, 3-24
CLOSF monitor call, 3-24
Closing files, 3-23
Code,
Error, 1-3, A-1l
File access, 3-2
Symbolic instruction, 1-1
Codes,
Assigning terminal, 4-11
Deassigning terminal,
4-13
Terminal interrupt, 4-10
Communication,
Process, 1-4, 5-3, 5-12,
7-1
Conditions,
Interrupt, 4-3
Terminal, 4-3, 4-10
Confirming file
specification, 3-5
CONTINUE command, 2-6
Control bits,

RDTTY, 2-8
Copy-on-write access, 3-22,
5-4

Copying files, 3-32, 4-14

Creating PIDs, 7-3, 7-4,
7-13

Creating processes, 5-6

CTRL/R, 2-7

CTRL/R buffer, 2-8, 2-9

CTRL/U, 2-7, 2-9

CTRL/W, 2-7

Data mode, 3-15, 3-26
Data transfers, 3-1, 3-17,
3-31
Dates,
File, 3-27
Deactivating interrupt
channels, 4-13

INDEX (CONT.)

Deadly embrace, 6-4, 6-8
Deadly embrace,

Avoiding, 6-14
Deassigning JFNs, 3-24
Deassigning terminal codes,

4-13
DEBRK monitor call, 4-9
Default file specification
fields, 3-3
Default GTJFN fields, 3-10
Deferred mode interrupt,
4-11
Deferring interrupts, 4-12
DELETE key, 2-7
Deleting PIDs, 7-13
Deleting processes, 5-13
DEQ argument block, 6-11
DEQ functions, 6-10
DEQ monitor call, 6-10
Designators, 3-17

Primary I1/0, 2-2

Destination designators,
3-17

DIR monitor call, 4-12

Direct process control, 5-3

Directive, 1-1

Directory order, 3-7, 3-29

Disabling PIDs, 7-12

Disabling the interrupt
system, 4-12

Dismissing interrupts, 4-9

DTI monitor call, 4-13

Editing,

Terminal, 2-7
Editing characters, 2-7
EIR monitor call, 4-8
Enabling PIDs, 7-12
Enabling the interrupt

system, 4-7
End-of-file pointer, 3-23
ENQ argument block, 6-7
ENQ flag bits, 6-8
ENQ functions, 6-5
ENQ monitor call, 6-5, 6-11
ENQ quotas, 6-3
ENQ requests,

Removing, 6-10
ENQ/DEQ, 5-3, 6-1
ENQ/DEQ,

Using, 6-3, 6-5
Environment,

Program, 1-4
ERCAL, 1-3
ERCAL example, 1-4
ERJMP, 1-3
Error code, 1-3, A-1

Index~-2

Error returns, 1-3
Errors,
Handling, 1-3
1/0, 3-15, 3-25
Example,
Byte I/0, 3-18
CLOSF, 3-24
ERCAL, 1-4
File, 3-32, 3-35
GNJFN, 3-30
GTJFN, 3-9, 3-13, 3-30
OPENF, 3-16
Process, 5-14, 5-15, 5-17
Software interrupt, 4-14
String I/0, 3-20
Terminal I/0, 2-6, 2-10
Terminal input, 2-4
Exclusive ownership, 6-2
Execution break, 4-1

.FHSLF process handle, 5-4
Field punctuation, 3-28
Fields,
Default file
specification, 3-3
Default GTJFN, 3-10
File,
Associating JFN to next,
3-28
MONSYM, 1-2, 2-2
File access, 3-14
File access code, 3-2
File dates, 3-27
File example, 3-32, 3-35
File I/0, 3-1
File pages,
Mapping, 3-22, 5-8
File pointer, 3-17
File sharing, 3-2
File size, 3-27
File specification, 3-2
Confirming, 3-5
Formatting, 3-27
Returning, 3-26
File specification fields,
Default, 3-3
File status,
Obtaining, 3-25
File summary, 3-31
Files, 3-1
Closing, 3-23
Copying, 3-32, 4-14
Opening, 3-14, 3-15
Fillers, 2-5
Flag bits,
CFORK, 5-6
ENQ, 6-8
GTJFN, 3-4, 3-11

INDEX (CONT.)

Flag bits (cont)
IPCF, 7-2
MRECV, 7-8
MSEND, 7-7
PMAP, 3-22, 5-9
Flow chart,
Interrupt system, 4-2
Fork, 5-6
Format of <SYSTEM>INFO
requests, 7-10
Format of <SYSTEM>INFO
responses, 7-11
Format options,
JFNS, 3-27
NOUT, 2-5
Formatting file
specification, 3-27
Frozen access, 3-14
Functions,
DEQ, 6-10
ENQ, 6-5
Monitor, 1-2
MUTIL, 7-12
Performing IPCF, 7-12
<SYSTEM>INFO, 7-11

Generating terminal
interrupts, 4-11
Generation numbers, 3-4,
3-6
GET monitor call, 5-8
GNJFN example, 3-30
GNJFN monitor call, 3-7,
3-28
Groups, 3-2
Sharer, 6-13
GTJFN,
Long form of, 3-3, 3-10
Short form of, 3-3, 3-4
GTJFN argument block, 3-10
GTJFN bits, 3-8
GTJFN example, 3-9, 3-13,
3-30
GTJFN fields,
Default, 3-10
GTJFN flag bits, 3-4, 3-11
GTJFN monitor call, 3-2,
3-4, 3-10, 3-29
GTJFN returns, 3-8, 3-13
GTJFN summary, 3-14
GTSTS bits, 3-25
GTSTS monitor call, 3-25

HALTF monitor call, 2-6,
5-5, 5-10

Index-3

Handles,

Process, 5-4
Handling errors, 1-3
HRROI instruction, 2-1

1/0,
File, 3-1
Page, 3-21
Terminal, 2-1
Types of, 3-1
I/0 designators,
Primary, 2-2
1/0 errors, 3-15, 3-25
.ICIFT software channel,
5-11
iD,
Process, 7-1
Request, 6-8, 6-10, 6-12
Identifiers,
Process, 3-21, 5-4
IIC monitor call, 5-12
Immediate mode interrupt,
4-11
Inferior process, 5-1
Information about resources,
Obtaining, 6-11
Initializing programs, 2-6
Initiating software
interrupts, 5-12
Input,
Byte, 3-18, 3-21
String, 3-19
Terminal, 2-3, 2-6, 3-35
Instruction,
HRROI, 2-1
Jsys, 1-2
JuMp, 1-3
Instruction mnemonic, 1-1
Interrupt channels,
Activating, 4-8
Deactivating, 4-13
Software, 4-3
Interrupt codes,
Terminal, 4-10
Interrupt conditions, 4-3
Interrupt priorities,
Software, 4-3
Interrupt routine, 4-6, 4-8
Interrupt routine,
Suspending, 4-9
Interrupt system,
Clearing the, 4-13
Disabling the, 4-12
Enabling the, 4-7
Testing the, 4-12
Using the, 4-1
Interrupt system flow chart,
4-2

INDEX (CONT.)

Interrupt table addresses,
Obtaining, 4-12

Interrupt tables, 4-6

Interrupts,
Deferring, 4-12
Dismissing, 4-9
Generating terminal, 4-11
Initiating software, 5-12
Processing, 4-8
Software, 1-3, 4-1, 5-3,

6-7 '

Terminal, 4-9

Introduction, 1-1

IPCF, 5-3, 7-1

IPCF flag bits, 7-2

IPCF functions, -~
Performing, 7-12

IPCF messages,
Long-form, 7-6
Receiving, 7-8
Sending, 7-1, 7-6
Short-form, 7-5

IPCF gquotas, 7-1
Returning, 7-14

IPCF symbolic name, 7-4

JFN, 3-2
JFN to next file,
Associating, 3-28
JFNs,
Assigning, 3-2, 3-4, 3-10,
3-28
Deassigning, 3-24
JFNS format options, 3-27
JFNS monitor call, 3-26
Job, 1-4
Job file numbers, 3-2
Job structure, 1-5, 5-2,
5-5
Jsys, 1-1
JSYS instruction, 1-2
JUMP instruction, 1-3

Key,
DELETE, 2-7 .
KFORK monitor call, 5-13

Length,

Word, 1-4
Level numbers, 6-4, 6-8
Levels,

Assigning priority, 4-4

Index-4

Levels (cont)

Priority, 4-3, 4-9
LEVTAB table, 4-7
Literals, 2-1
Lock, 6-1
Lock specification, 6-11
Long form of GTJFN, 3-3,

3-10
Long-form IPCF messages,
7-6

Map,

Page, 3-21

Process, 5-6
Mapping file pages, 3-22,

5-8
Mapping pages, 3-21
Mapping process pages, 3-23,
5-9
Memory sharing, 5-4
Message strings, A-1
Messages,

Long-form IPCF, 7-6

Receiving IPCF, 7-8

Sending IPCF, 7-1, 7-6

Sending <SYSTEM>INFO,

7-10

Short-form IPCF, 7-5
Mode,

Data, 3-15, 3-26
Monitor call, 1-1, 1-2
Monitor call,

AIC, 4-8, 4-13

ATI, 4-11

BIN, 3-18

BOUT, 3-18

CFORK, 5-6

CIs, 4-13

CLOSF, 3-24

DEBRK, 4-9

DEQ, 6-10

DIR, 4-12

DTI, 4-13

EIR, 4-8

ENQ, 6-5, 6-11

GET, 5-8

GNJFN, 3-7, 3-28

GTJFN, 3-2, 3-4, 3-10,

3-29

GTSTS, 3-25

HALTF, 2-6, 5-5, 5-10

IIC, 5-12

JFNS, 3-26

KFORK, 5-13

MRECV, 7-8

MSEND, 7-6

MUTIL, 7-12

NIN, 2-3

INDEX (CONT.)

Monitor call (cont)

NOUT, 2-4

OPENF, 3-15

PBIN, 2-6

PBOUT, 2-7

PMAP, 3-22, 5-9

psouT, 2-2

RDTTY, 2-4, 2-7

RESET, 2-6, 4-13, 5-13

RFSTS, 5-11

RIN, 3-21

RIR, 4-12

ROUT, 3-21

SFORK, 5-10

SIN, 3-19

SIR, 4-7

SKPIR, 4-12

souT, 3-20

WFORK, 5-10, 5-11
Monitor calls,

Process, 5-5
Monitor functions, 1-2
MONSYM file, 1-2, 2-2
MRECV flag bits, 7-8
MRECV monitor call, 7-8
MSEND flag bits, 7-7
MSEND monitor call, 7-6
Multiple process structure,

5-2

Multiple resources, 6-5
MUTIL argument block, 7-12
MUTIL functions, 7-12
MUTIL monitor call, 7-12

Name,
IPCF symbolic, 7-4
Resource, 6-3
NIN monitor call, 2-3
NIN termination, 2-4
Nonsequential bytes,
Transferring, 3-20
NOUT format options, 2-5
NOUT monitor call, 2-4
Numbers,
Channel, 4-6
Generation, 3-4, 3-6
Job file, 3-2
Level, 6-4, 6-8
Reading, 2-3
Writing, 2-4

Obtaining file status, 3-25
Obtaining information about
resources, 6-11

Index-5

Obtaining interrupt table
addresses, 4-12

OPENF access bits, 3-15
OPENF example, 3-16
OPENF monitor call, 3-15
Opening files, 3-14, 3-15
Options,

JFNS format, 3-27

NOUT format, 2-5
Output,

Byte, 3-18, 3-21

String, 3-20

Terminal, 2-2, 2-4, 2-7
Ownership,

Resource, 6-2, 6-8

Packet data block, 7-2, 7-5

Packet descriptor block,
7-2
Packets, 7-1
Retrieving, 7-8
Sending, 7-6
Page I1/0, 3-21
Page map, 3-21
Pages, 1-4, 3-1
Pages,
Mapping, 3-21
Mapping file, 3-22, 5-8
Mapping process, 3-23,
Shared, 3-22, 5-4
Unmapping, 3-23
Panic channels, 4-8, 4-12
Parallel process, 5-1
Parallel processing, 5-2
PBIN monitor call, 2-6
PBOUT monitor call, 2-7
PC word, 4-7, 5-1, 5-10
PC word,
Setting process, 5-6
Performing IPCF functions,
7-12
PIDs, 7-1, 7-4
PIDs,
Creating, 7-3, 7-4, 7-13
Deleting, 7-13
Disabling, 7-12
Enabling, 7-12
Placing PIDs on channels,
7-15 '
PMAP flag bits, 3-22, 5-9
PMAP monitor call, 3-22,
5-9
POINT pseudo-op, 2-1
Pointer, 2-1, 2-2
Pointer,
Byte, 3-18
End-of-file, 3-23

INDEX (CONT.)

Pointer (cont)

Pooled resources, 6-9

.PRIIN, 2-2, 3-17

Primary I/O designators,
2-2

Printing strings, 2-2

Priorities,

Software interrupt, 4-3
Priority level table, 4-7
Priority levels, 4-3, 4-9
Priority levels,

Assigning, 4-4
.PRIOU, 2-2, 3-17
Process, 1-4, 5-1
Process ACs,

Setting, 5-6 ‘

Process capabilities, 5-7

Process characteristics,
5-6

Process communication, 1-4,
5-3, 5-12, 7-1

Process example, 5-14, 5-15,
5-17

Process handles, 5-4

Process ID, 7-1

Process identifiers, 3-21,
5-4

Process map, 5-6

Process monitor calls, 5-5

Process pages,

Mapping, 3-23, 5-9
Process PC word,

Setting, 5-6
Process status bits, 5-12
Process status word, 5-11
Process structure, 5-1

Multiple, 5-2
Processes,

Creating, 5-6

Deleting, 5-13

Specifying address space

of, 5-8

Starting, 5-10

Status of, 5-11

Suspending, 5-5

Termination of, 5-10
Processing,

Parallel, 5-2
Processing interrupts, 4-8
Program counter, 4-7, 5-1
Program environment, 1-4
Programs,

Initializing, 2-6

Terminating, 2-6
Protection,

Resource, 6-4
Pseudo-op, 1-1

ASCI1Z, 2-3

POINT, 2-1
PSOUT monitor call, 2-2

Index-6

INDEX (CONT.)

Queue, RIR monitor call, 4-12
Resource, 6-1, 6-2 ROUT monitor call, 3-21
Quotas, Routine,
ENQ, 6-3 Interrupt, 4-6, 4-8

IPCF, 7-1 Suspending interrupt, 4-9
Returning IPCF, 7-14 .

Sending IPCF messages, 7-1,

. ' 7-6
R 2-3, 2-4 .
Rzgégé I/O: 3-20 Sending packets, 7-6
RDTTY control bits, 2-8 Sending <SYSTEM;E§50
RDTTY monitor call, 2-4, Sequegiiziggsées
. I
ReadzaZcess 3-14 Transferring, 3-18
Reading bytés 2-6 Setting process ACs, 5-6
14 .
Reading numbers, 2-3 Sett;gz process PC word,
Reading strings, 2-7 Set
Reading table addresses, eAgpll-z
4-12 ’
S SFORK monitor call, 5-10
Receiving IPCF messages : !
7-8 e ges. Shared ownership, 6-2

Releasing resources, 6-10 ggareg Pigisé 3;E§§ 5-4
Removing ENQ requests, 6-10 Sharg g ps,
Request ID, 6-8, 6-10, 6-12 aring,

Requesting resources, 6-5 File, 3-2
Memory, 5-4
Requests, Sharing address space, 5-6
1 ’
Fo;TiB of <SYSTEM>INFO, Short form of GTJFN, 3-3,
; 3-4
Removing ENQ, 6-10
RESET monitor call, 2-6, Short-form IPCF messages,
4-13, >-13 SIN 7—5't “call, 3-19
Resource name, 6-3 SIR mon}tor call’ e
Resource ownership, 6-2, Sizemonl or call,
6-8 ’
Resource protection, 6-4 ?y;e, g‘ég' 3-23
Resource queue, 6-1, 6-2 SKPiRe' T 11, 4-12
Resource status, 6-11 ot monlﬁor C? , 4-
Resource status bits, 6-12 oftware channel,
Resources, -ICIFT, 5-11
Changing access to, 6-6 Software interrupt channels,
Multiple, 6-5 -3
Obtaining information Software interrupt example,
- 4-14
about, 6-11 .
Pooled, 6-9 Software interrupt
Releasing, 6-10 priorities, 4-3
Requesting, 6-5 Software interrupt summary,
Responses, 4-13 . 1-3
Format of <SYSTEM>INFO, Software interrupts, 1-3,
7-11 4-1, 5-3, 6-7
Restricted access, 3-14 Sogtyage }nterguggs,
Retrieving packets, 7-8 nitiating, o=
Returning file §ource d§51gnators, 3-17
specification, 3-26 ggggemonltor call, 3-20
] - ’
Returning IPCF quotas, 7-14 Address, 1-4, 5-1
Returns, 1-3 :
Error, 1-3 Sharing address, 5-6
GTJFN, 3-8, 3-13 Spgilficagignr
Successful, 1-3 L oﬁ ’6-11
RFSTS monitor call, 5-11 ock, ©
RIN monitor call, 3-21 Specifiying table addresses, 4-7

Index-7

Specifying address space of
processes, 5-8
Starting processes, 5-10

Status,
Obtaining file, 3-25
Resource, 6-11
Status bits,
Process, 5-12
Resource, 6-12
Status of processes, 5-11
Status word,
Process, 5-11
String I/O example, 3-20
String input, 3-19
String output, 3-20
Strings, 2-1
ASCIZ, 2-1, 3-18
Message, A-1
Printing, 2-2
Reading, 2-7
Transferring, 3-19
Structure,
Job, 1-5, 5-2, 5-5
Multiple process, 5-2
Process, 5-1
Successful returns, 1-3
Summary,
File, 3-31
GTJFN, 3-14
Software interrupt, 4-13
Terminal, 2-11
Superior process, 5-1
Suspending interrupt
routine, 4-9
Suspending processes, 5-5
Symbolic instruction code,

1-1
Symbolic name,
IPCF, 7-4

Symbols, 1-2

<SYSTEM>INFO, 7-1, 7-10

<SYSTEM>INFO functions,

7-11

<SYSTEM>INFO messages,
Sending, 7-10

<SYSTEM>INFO requests,
Format of, 7-10

<SYSTEM>INFO responses,
Format of, 7-11

Table,
Channel, 4-6
CHNTAB, 4-6
LEVTAB, 4-7
Priority level, 4-7
Table addresses,
Reading, 4-12
Specifiying, 4-7

INDEX (CONT.)

Tables,
Interrupt, 4-6
Terminal codes,
Assigning, 4-11
Deassigning, 4-13
Terminal conditions, 4-3,
4-10
Terminal editing, 2-7
Terminal I/0, 2-1
Terminal I/O example, 2-6,
2-10
Terminal input, 2-3, 2-6,
3-35
Terminal input example, 2-4
Terminal interrupt codes,
4-10 .
Terminal interrupts, 4-9
Terminal output, 2-2, 2-4,
2-7
Terminal summary, 2-11
Terminating programs, 2-6
Termination of processes,
5-10
Testing the interrupt
system, 4-12 .
Thawed access, 3-14
Transferring nonsequential
bytes, 3-20
Transferring sequential
bytes, 3-18
Transferring strings, 3-19
Transfers,
Data, 3-1, 3-17, 3-31
Types of I/0, 3-1

Unmapping pages, 3-23
Updating directory
information, 3-24
Using ENQ/DEQ, 6-3, 6-5
Using the interrupt system,
4-1

WFORK monitor call, 5-10,
5-11
Wildcard characters, 3-5,
3-7, 3-26, 3-29, 3-30
word,
Capability, 5-6, 5-7
pCc, 4-7, 5-1, 5-10
Process status, 5-11
Setting process PC, 5-6
Word length, 1-4
Write access, 3-14
Writing bytes, 2-7
Writing numbers, 2-4

Index-8

Thi_s I_ine .

Please cut along

Mohitor Calls
User's Guide
DEC-20-OMUGA~-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

