TOPS20 Coding Standards and Conventions
Revision 0 - 17 January 1974
Revision 1 - 8 September 1976
Revision 2 - § March 1983

1.0 INTRODUCTION

The following is the machine language source code standard for
TOPS20. Portions of it are applicable to all sources while the
remainder is specifically relevant to the monitor.

The following conventions apply to MACRO sources.

2.0 STATEMENTS
The general form of a statment shall be:

TAG: OPCODE AC,@ADDR (X) ; comment

where:
1. Tabstops are assumed to be set every 8 spaces.
2. The TAG begins at the left margin.

3. The OPCODE begins at the first tab stop. There will be one
TAB before the opcode. |If the TAG and colon(s) occupy 8 or
more spaces, there will be nothing between the colon(s) and
the opcode. Exceptions to this rule apply in blocks,
multi-line literals, and following skipping subroutine calls,
see below. .

L., One SPACE shall follow the opcode unless there are no other
fields except the comment to be specified in the statement.

5. When any field is not used by the instruction, it may be
omitted along with its directly related punctuation. A field
which is affected by an instruction may NCT be defaulted to 0
by omitting it.

6. The semicolon which begins the COMMENT shall be at the &4th
tab stop. There shall be one or more tabs preceeding the
semicolon as necessary to place the semicolon at the Lth tab
stop unless the preceeding fields extend to or beyond the k4th
tab stop. In this case, onz SPACE shall be used to separate
the last preceeding field and the semicolon.

TOPS20 Coding Standards - 9 March 1983 Page 2

The instruction which follows a skipping monitor call or
subroutine call shall be indented 1 additional space (1 space beyond
the first tab stop) to indicate the possibility of that instruction
being skipped. The ERJMPx or ERCALx following a JSYS shall be
simitarly indented. Indenting in this manner shall NOT be done
following skipping machine instructions.

A1l symbols shall be typed in upper case only. Appropriate
upper/lower case usage is recommended for any text that will be
displayed to users. See comment case conventions below.

3.0 COMMENTS

A comment on the same line as a statment shall begin at the Lth
tab stop as described above. When a comment consists of a single
sentence or phrase which requires more than one line, the subsequent
lines should have one SPACE between the semicolon (at the Lth tab
stop) and the comment to indicate to the reader that the several lines
are part of one logical statement. E.g.,

IDIVI T1,XYZ ;Now compute the remainder which
; will be the number of bytes.

A comment that is not part of a particular statement shall begin
at the left margin. Such comments, whether one or more lines, shall
be preceded and foliowed by a blank 1line. This type of comment
appears as routine headers and as general description of the purpose
or algorithm of following code, and may appear within the flow of
control. E.g., '

code ;comment
code ;comment

;Long comment line 1
; long comment line 2

code ;scomment

.o

Comments may be upper and lower «case, or upper case only.
Appropriate upper/lower case usage is particularly recommended for
full-line comments, routine headers, and other cases where the
comments may be read as english.

A long comment (10 or more lines) may be enclosed within a REPEAT
0 or COMMENT pseudo-op and the semicolons omitted.

Extensive commenting of source listings is strongly encouraged.
1. Routines, modules, sections, macro definitions, etc. should

be described at their beginning. See requirements for
subroutine comments below.

TOPS20 Coding Standards - 9 March 1983 Page 3

2. Comments should appear on almost every statement line. As
the reader views the listing page, the comments (aligned at
the Lth tab stop) should appear as a running commentary on
what the <code s doing. These on-line comments should
describe the logical procedure being carried out, not just
describe the obvious action of the instruction. Humorous or
irrelevant comments (e.g. s00PS..., ;OH WELL...) are
discouraged since they provide no information to the reader.

A reader should be able to read the comments WITHOUT SEEING THE
CODE and obtain a coherent understanding of what the program is doing.

When a variable or other mnemonic symbol is referred to in the
comments, an english phrase rather than the mnemonic itself should
frequently be used (e.g. 'last page address' rather than ''LPGADR").

Comments, particularly routine headers, should describe ''why"
non-obvious actions are being taken and/or what assumptions are being
made (e.g. 'here when ..').

4.0 LISTING PAGES

Source listings shall be divided into pages by formfeed
(control-L) characters. A CRLF shall precede and follow each
“ormfeed. The last character in a source file shall be a formfeed

with no CRLF following. Source files shall be arranged so that major
modules, subroutines, etc. begin at the top of a page. Only when a
subroutine is a quarter page or less in total size shall it begin
other than at the top of a page.

I't should rarely be necessary for flow of control to cross a
listing page. That is, the last instruction on each page would
normally be an unconditional transfer of control not preceeded by a
skipping instruction. An unbroken sequence of instructions longer
than one listing page is strong evidence of insufficient
subroutinization.

However, when a sequence of instructions does cross a page, the
last line on the preceeding page and the first line on the following
page should be a comment line of the form

.
s

where the semicolon appears at the first tab stop directly under
the preceeding opcode. E.g.,

TOPS20 Coding Standards - 9 March 1983 Page &

MOVE A,FO0O scomment
AL ’
s COMMENT
TAG: MOVEM A,FIE ;comment
5.0 MACROS

A1l assemblies shall begin with SALL which has been shown to
produce the most readable assembly listings.

In general, macros worth defining at all are worth defining on a
monitor-wide basis. Therefore, localized, special-purpose macros are
discouraged.

For top-level macro definitions, the DEFINE shall appear at the
left margin and be followed by one space. The name of the macro being
defined shall appear next, followed by one space. The dummy argument
list, if any, shall appear next, followed by the open angle-bracket.
E.g.,

DEF INE MACNAM (A,B,C)<
or
DEF INE MACNAM <

A CRLF shall follow the open angle-bracket, and the body of the
macro definition shall begin on the next line, except when the entire
macro definition is on one line in order to be used as part of an
expression.

Macro calls generally do not require parentheses surrounding the
arguments and should generally be avoided for short calls, e.g.

LOAD T1,STRUC, (Q1) ;jdata structure ref, Q1 index

Parentheses may be used when helpful for clarity, e.g. in
instances of the BUG. macro.

Angle brackets must be used to quote any argument containing
non-alphanumeric characters, except where such characters are paired
delimiters and matching open and close characters are contained within
the argument.

TOPS20 Coding Standards - 9 March 1983 Page 5

>.0 CONDITIONALS

Top level assembler conditionals shall be indented 3 spaces from
the left margin (so that tag and comment lines may always be
leftmost) . Lower level conditionals shall be indented 3 or more
spaces. The terminating angle-bracket of a conditional shall appear:

1. Immediately following the last instruction if the conditional
has a short range.

2. On a separate line indented the same amount as the pseudo-op
which began the conditional.

E.g.
TAG:
IFE FTFOO,<
MOVE A, MUMBLE ;comment
MOVEM A,ZO0T> ;comment
or
IFN FTFOO,<
TAG: MOVE A,MUMBLE ;comment
JRST XYZ ;comment
> sEND OF [FN FTFOO

A closing anglebracket shall NEVER appear in a comment (i.e.
following a semicolon on the same line). The coding shall be correct
even if the assembler were made to ignore angle-brackets in comments.

Assembler conditionals are generally to be avoided; inclusion of
individual features under assembly switch control is not planned for
TOPS20.

7.0 INSTRUCTION MNEMONICS

The standard PDP-10 instruction mnemonics as defined by the
DECsystem-10 reference manual shall be used throughout. No
abbreviated opcodes shall be used.

Macro or opdef definitions shall be made to define a useful
mnemonic which is related to a function being performed in the code.
See the subroutine conventions below for examples. Additional

definitions consistent with this philosophy and these examples may be
made with the approval of the project leader.

TOPS20 Coding Standards - 9 March 1983 Page 6

8.0 VARIABLES AND STRUCTURES

Use of the stack variable and data structure facilities in MACSYM
is recommended. See MACSYM documentation. Because of these
facilities, the following should be observed:

1. Explicit PUSHing and POPing of quantities is never done.

2. Explicit referencing of the stack, e.g. as -n{(P) is never
done.

3. Fields within data blocks or tables are not referenced by
half-word instructions or explicit byte pointers but rather
by LOAD, STOR, etc. In particular, the following technique
is to be avoided:

LDB T1,DATPTR ;LOAD VIA MAGIC POINTER

DATPTR: POINT 9,0FSET(Q1),17 sPOINTER TO PARTICULAR DATA ITEM

The above obscures the AC being used for the reference,
particularly if the byte pointer is not nearby in the
listing. Recommended instead is an appropriate structure
definition with DEFSTR, and a reference like:

LOAD T1,STRNAM, (Q1)
which makes the index explicit.

L. Flags are defined with DEFSTR, MSKSTR, or as full-word
parameters, and are referenced with the TX, TM, or TQ macros.
Flags should never be defined as half-word quantities which
require the programmer to remember whether to use TL or TR.

9.0 JSYS CALLS

Monitor-call JSYSes may be used in user or monitor code. All ACs
are preserved over a JSYS call unless an explicit statement to the
contrary appears in the JSYS description. ACs are changed over a JSYS
call only when values are to be returned to the caller.

The JSYS name shall appear as the opcode in the statment which
performs the call. The JSYS mnemonic includes the instruction field,
so no other fields are supplied by the user.

Unimplemented JSYSes will invoke the illegal instruction sequence
(with error code ILINS2). Defined and implemented JSYSes will return
to caller +1 on success, or will invoke the illegal instruction

sequence on failure. The illegal instruction sequence recognizes an
ERJMPx or ERCALx following the failing JSYS and causes the appropriate

TOPS20 Coding Standards - 9 March 1983 Page 7

iction. If the following instruction is not an ERJMPx or ERCALXx, an
illegal instruction interrupt is requested which will be handlied by
the executing fork if enabled, or otherwise cause a forced fork
termination. See paragraph below on JSYS returns for proper
indication of JSYS failure.

All constant values, bits, and fields of JSYS arguments shall
have mnemonics defined according to the rules in MONSYM. The JSYS
code itself shall use these symbols for 1loading arguments, testing
bits, etc.

When writing code to implement a JSYS, the following conventions
shall be observed:

1. The entry point of the JSYS is defined by a global tag which
consists of a DOT concatenated with the symbolic name of the
JSYS, e.g. .GTJFN::.

2. The first statement of the JSYS code shall be MCENT (Monitor
Context ENTry). This establishes the normal JSYS context for
a "slow" JSYS. At this writing, MCENT is a null macro and
the JSYS entry procedure is invoked automatically. The use
of MCENT is required so that this implementation may be
changed in the future if necessary.

3. A1l caller ACs are automatically preserved by the entry and
exit procedures. Therefore JSYS routines specifically should
NOT save and restore the ACs. The contents of the «caller's

ACs 1-L are copied into the callee's ACs. No callee ACs are
copied back to the caller's AC block on return however; one
of the ‘'previous context" instructions* must be used to

return any values to the caller. E.g.,
UMOVEM T1,T1 ;store monitor T1 into user TI
A previous context instruction may also be used at any
time to fetch the original contents of the caller's ACs
unless they have been explicitly changed by a previous
context store operation. €E.g.,

UMOVE T2,T1 ;load user T1 into monitor T2

4. Return from JSYS code should be effected by the statement

% - UMOVE, UMOVEM, XCTU [instruction], etc.

TOPS20 Coding Standards - 9 March 1983 Page 8

MRETNG sMonitor RETurn Good

This transfers to the JSYS exit sequence (returning
caller +1) and should be used to indicate successful
completion of the JSYS. |[If the JSYS could not be completed
successfully, the following statement should be used:

ITERR errcod ;causes an Instruction Trap
sERRor, leaves
;the error code in LSTERR

Certain other statements are defined which effect JSYS
returns according to a previous convention. They are:

RETERR errcod sRETurn ERRor, return
;caller +1 with error code
;left in AC1 and LSTERR

EMRETN errcod sError Monitor RETurn, return
scaller +1 with error code left
sin LSTERR

RETERR and EMRETN should not be used in new JSYS code
but may be needed if existing JSYSes are modified.

A1l error returns shall include an error code (mnemonic)
which shall be defined in MONSYM.MAC. |If the appropriate
error code has already been loaded into ACl1, then the errcod
field may be omitted from the above and the contents of ACI
will be taken as the error code. No JSYS shall return other
than +1 or instruction trap, therefore no occurrance of A0S
0(P) should ever be required in JSYS code.

When invoking an error return from JSYS code, care must
be taken to unlock any locks and release any resources that
may have been acquired in the execution up to that point.
The only exceptions are:

1. An explicit OKINT need not be done.

2. Any stack usage created by STKVAR, TRVAL, SAVEAC, etc.
will be released automatically.

10.0 SUBROUTINE CALLING - INTERNAL MONITOR ROUTINES

The allocation of ACs for all inter- and intra-module subroutine
calls shall be:

TOPS20 Coding Standards - 9 March 1983 Page 9

ACs 1,2,3,k -- Arguments for simple subroutine calls.

ACs 0, 5-14 -- Preserved, not changed by subroutine (or saved and
restored if necessary).

AC 15 -- Preserved, frame pointer. (See TRVAR, BLCAL., etc.)

AC 16 -- Temporary, used by JSYS <call/return procedure and
reserved for use by other call/return procedures.

AC 17 -- Global stack pointer

In the past, ACs 1-4 have been used as general temporaries.
However, they are not consistently saved by calling code. Hence, when
modifying any existing subroutine, you must assume that any AC not
already being changed by the subroutine is assumed to be preserved by
the callers, and such ACs should continue to be preserved. Current
recommended practice is that ACl-4 be preserved except where values
are explicitly intended to be returned.

For "simple'" subroutines, call and return shall be effected by
PUSHJ P, and POPJ P, respectively. 'CALL' (= PUSHJ P,) shall be used
to call subroutines, e.g. CALL SUBR.

For larger subroutines and for those with more than 4 arguments,
RLCAL./BLSUB. shall be used.

'RET' (= POPJ P,) shall be used to return +1 from all
subroutines.

'RETSKP' shall be used to return +2 from subroutines. RETSKP is
equivalent to:

JRST [A0S 0O(P) sMay be skipped
RET]

'RETBAD errcod' may be used to return +1 with an error code from
a subroutine. RETBAD assembled as one instruction and may be skipped
over.

'CALLRET' may be used to call a subroutine and return immediately
thereafter. |t is an abbreviation for

CALL SUBR

RET
or

CALL SUBR

RET

RETSKP

CALLRET assembles as a single instruction and may be skipped

ver, but all uses of it must be such that the code would still work
correctly if the CALLRET were replaced by a jump to the above
sequence. Keep in mind also, that use of CALLRET provides less

debugging information on the stack on a crash or breakpoint.

TOPS20 Coding Standards - 9 March 1983 Page 10

Return may also be effected by transferring control to the global
tag RTN or RSKP, e.g.

JUMPE A,RTN ;equivalent to JUMPE A, [RET]
JUMPN A,RSKP ;equivalent to JUMPN A, [RETSKP]
ACs 1-4 shall be used for passing arguments to "'simple

subroutines and returning values. AC1 shall be used for a single
argument routine, ACs 1 and 2 for a two-argument routine, etc.

The BLCAL./BLSUB. mechanism places arguments on the stack and
makes them available symbolically within the subroutine. Values
already in ACs may be given in the call, e.g.:

BLCAL. SUBR,<T2,Q1,Z0T>

A routine defined to return caller +2 (skip) on success and

caller +1 (noskip) on failure is acceptable. Returns greater than
caller +2 are not permitted.

See ''Subroutine Documentation' below for commenting practices at
subroutine call and entry points.

11.0 AC DEFINITIONS

The following mnemonics have been chosen to be consistent with
the AC wuse conventions above. The preserved ACs are divided into
three groups, F (1 AC) intended for Flags, and Q1-Q3 and PI1-P6
intended for general use. The ACs within each group are consecutive.

0-F 10 - PI
1 - T 11 - P2
2 -T2 12 - P3
3 - 713 13 - Pk
b~ Th 14 - P5
5 - QI 15 - P6
6 - Q2 16 - CX
7-Q3 17 - P

The programmer should assume that each group (Tn, Qn, Pn,) is in

ascending order, e.g. that T2=T1+1, but that the specific assignment
of numbers may change.

Explicit numeric offsets from AC symbois (e.g. T1+1) should
NEVER be used. Instructions which use more than one AC (e.g. DIV,
JFFO) must be given an AC operand such that the other AC(s) implicitly
affected are in the same group. E.g. T3 (and T4) is OK for IDIV
because T3+1=ThL, but Q3 is not because Q3+1=77,

There are several facilities to save and automatically restore
ACs. Each of these will save all of the indicated ACs on the stack at
the point of execution and will place a dummy return on the stack
which causes these ACs to be restored automatically when the current

TOPS20 Coding Standards - 9 March 1983 Page 11

‘outine returns. Use of these facilities eliminates the need for
matching PUSH/POP pairs at the entry at exits of routines and
eliminates the bugs which often arise from an unmatched PUSH or POP.

The available macros are:

SAVEAC <list> - save the ACs given in the list, e.g. <T2,Q1,...>
SAVEQ - saves ACs Q1-Q3

SAVEP - saves ACs P1-P6

SAVEPQ - saves ACs Q1-Q3 and PI1-P6

SAVET - saves ACs Ti1-Thk

Defining alternate names for ACs may be done only in specific
ways. These methods ensure that only one mnemonic is valid for a
particular AC at any place in the code. Multiple definitions must be
avoided because of the possibility of inadvertently referring to the
same AC in two different ways.

The ACVAR facility may be used to define variables which reside
in ACs within a subroutine. The matching ENDAV. will purge the local
AC names. The general preserved AC names should not be used within
the range of an ACVAR.

In some cases, it may be desirable to define a variable as an AC
throughout an entire module, or within several cooperating modules.
Within these modules, the usual name for the AC must be purged so that
there is no possibility of using two different symbols for the same
AC.

Only preserved ACs may be used for special definitions. The
procedure for declaring a functionally defined AC is:

DEFAC NEWAC,OLDAC

This must be done at the beginning of an assembly, and it defines
NEWAC to be equal to OLDAC. OLDAC must be the mnemonic for one of the
regular preserved ACs, and this mnemonic will be purged and therefore
unavailable for use in the current assembly.

An AC with a special definition should not be used for other
purposes; e.g. '"'JFN" should not be used to hold some quantity other
than a JFN merely because it happens to be available.

Where a module has a special AC definition, or where two
cooperating modules have the same special AC definition, a value may
be passed in the AC for subroutine calis within or between the
modules. This is the only case where subroutine arguments may be
passed in preserved ACs. Only the type of data implied by the AC
variable name may be passed in the AC. As above, AC "JFN" may be not
used to pass some quantity that is not a JFN.

TOPS20 Coding Standards - 9 March 1983 Page 12

12.0 SUBROUTINE DOCUMENTATION

The following is a suggested format for documenting the <calling
sequence of a JSYS or subroutine. A description of this sort should
appear at the beginning of every subroutine, no matter how short.

;name of subroutine - function of subroutine, etc.
; T1/ description of first argument

; T2/ description of second argument

; e

: CALL NAME or JSYSNAME ; (arglist)

; RETURN +1: conditions giving this return,

; T1/ value(s) returned

s RETURN +2: conditions and values as above.

1. The arguments, if any, should be documented as the contents
of registers and/or variables as shown. MONSYM mnemonics
should be used when available; e.g. at JSYS entry points.
For BLSUB. routines, the argument names rather than ACs
should be used in the description.

2. The actual instruction to do the call should be shown,
including the argument comment as described below.

3. The return(s) should be noted as shown; ''ALWAYS' or ''NEVER"
may be wused as the condition where appropriate; the +2
return need not be shown if it does not exist; values
returned should be described in the same form as arguments.

Examples:

SIN - Computes sine of an angle

T1/ angle in radians, floating point
CALL SIN s (T1/T1)

Return +1: Failure, unnormalized number or out of range
+2: Success, T1/ value, floating point

we we we we we

SiN::

;Assign request node

; DTENO - Number of DTE to which message is being sent.

;3 BLKFLG - Non-0 if blocking is prohibited.

;s FAILFL - Non-0 if failure can't be handled. |If failure
H can be handled, the reserve won't be used.

H BLCAL. ASGNOD,<DTENO,BLKFLG,FAILFL>

; Return +1: Failure, no space available

H +2: Success, T1/ node address

ASGNOD: BLSUB. <DTENO,BLKFLG,FAILFL>

TOPS20 Coding Standards - 9 March 1983 Page 13

;GJINF - Get job information jsys

; GJINF 3 (/T1,T2,73,TL)
; Return +1: always,

; T1/ Logged-in directory number

; T2/ Connected directory number

; T3/ Job number

; TL/ Terminal number or -1 if detached

.GJINF::

12.1 Subroutine Calls

Each call to a subroutine shall be commented such as to indicate
the AC variables being passed to the subroutine. The form shall be:

; (list of input variables/list of returned variables) comment
Example:
CALL FOO ; (T1,T2/T1) fix ornary overflows

This means that T1 and T2 are passed to the routine, and TI1 is
-~eturned.

CALL FORKXY ; (FX) xy the fork

This indicates that an argument is passed in a preserved AC.
CALL GETZOT ; (/T1) Get a zot

This indicates that no arguments are accepted, but T1 is returned.
CALL UPDTCK ;) update TODCLK

This indicates no AC variables are accepted or returned.

The comment implies nothing about the rest of the ACs; they are
presumed to be preserved or not according to the normal conventions or
as documented at the head of the subroutine.

This convention need not be followed if a call syntax is used
which explicitly identifies the arguments, e.g. BLCAL.

New code should follow this convention. Existing code may be
modified as the opportunity arises. Any call in existing code can be
updated without necessarily updating other calls in the same area or
other occurances of the same call. Updating only some calls causes no
ambiguity since the case of 'no arguments'' is distinct from 'not
jocumented"'.

TOPS20 Coding Standards - 9 March 1983 Page 14

13.0 STRUCTURE

Clean and orderly structuring of code is required. To a large
extent, this is accomplished by appropriate use of subroutines
according to the foregoing conventions. In order to make code modular
and easy to understand, a subroutine may be created which is only
called from a single place.

Beyond that, techniques for representing structure in code within
subroutines is also recommended as follows.

Use IFSKP. group of macros. See MACSYM documentation for more
details. For example:

SKIPE FLAGWD ;TEST FLAG WORD
| FSKP.

. ;THIS EXECUTED |F FLAG WORD 1S O

ENDIF.

PMAP%
{FJER.

.. ;THIS EXECUTED IF PMAPX fails

..

ENDIF.

IFN. T3
. s THIS EXECUTED IF T3 IS NOT O

ENDIF.
Small loops can be constructed with DO./ENDDO.

The opcode should be indented an extra two spaces for each
nesting level of IF or DO. E.g.,

CAMN T1,F00
| FSKP.,
MOVE T2,FIE
TXNN T2,BIT
IFSKP.
CALL FUM
SETZM FLAG
ENDIF.
MOVEM T1,F00
ENDIF.

Generally, the block structure macros are preferred over
multi-line Jliterals for branching paths. With the macros, the binary
listing is continued within the range, nesting can be added more
easily, and there may be some speed advantages in a pipeline machine.
The macros generally assemble the same or fewer instructions for the
same semantics. For example, a common case is:

TOPS20 Coding Standards - 9 March 1983 Page 15

SKIPx

JRST [code
code
JRST .+1]

code

This can be represented as:

SKIPx
| FNSK.
code
code
ENDIF.

which assembles as the same number of instructions. |f the sense
of the skip can conveniently be reversed, the representation:

SKIPNx
| FSKP.
code
code
ENDIF.

assembles as one fewer instruction.

A further advantage of the block macros is that labels are not
required. A label can potentially be referenced anywhere in nearby
code or in the module, and so the filow of control is less clear. The
equivalent of the above case,

SKIPNXx

JRST LAB1

code

code
LAB1: .

leaves the reader to guess whether there is any other branch to
LAB1 or consult the CREF.

I'f multi-line literals are used, the following rules apply:

1. The opening bracket for a multi-line literal should occur in
the position that the first character of the address field
would have appeared if the instruction had an ordinary
address, e.g.

TOPS20 Coding Standards - 9 March 1983 Page 16

SKIPGE FO0O
JRST [

2. The first and all following instructions within the literatl
shall begin at the second tabstop, e.g.

JRST [MOVE A,MUMBLE ;comment
JRST FIE] ;comment

The tab between the open bracket and the first opcode
may be omitted if the line position is already at or beyond
the second tab stop, e.g.

JUMPGE A, [MOVE A,MUMBLE

3. The closing bracket shall follow the last field of the 1last
instruction (as above), and shall be before the comment on
the same line.

L, Nesting of multi-line literals to a depth greater than one is
discouraged because of awkward formatting problems.

5. Tags may not appear in multi-line literals.

6. Multi-line literals should be of limited length, about 10
lines maximum.

7. Use of ".+1" is legal in a literal to return to the main
sequence.

13.1 Flow Of Control - Branch Conventions

in general, jumps should be to tags forward (down the page) from
the point of branch except for loops. Tops of loops should be
identified by comment.

The expressions '.+1" and ".-1" are the only legal wuses of "."
(this location). All other uses should be strictly avoided.

"Global'" jumps should be avoided altogether. Higher-level
languages do not permit them, and with good reason. The only
exceptions are jumps to well defined and published exit sequences,
e.g. RTN, RSKP (see subroutine conventions, above).

TOPS20 Coding Standards - 9 March 1983 Page 17

'L.0 NUMBERS

There should be no occasion to use a literal number in in-line
code. All parameters, bit definitions, CONO/CON! codes, etc. should
be defined mnemonically at appropriate places.

TOPS20 Coding Standards - 9 March 1983 Page 18

Appendix A
LIVING IN AN IMPERFECT WORLD

Much of the present TOPS20 code was written before the existence
of this standard and therefore does not conform to it. A great deal
of systematic editing has already been done to improve conformance,
but obvious irregularities exist. |In general, new code being added
should conform exactly to this standard even if being integrated with
old code. The following are some specific problems which may arise
and the recommended solutions:

14.1 AC Mnemonics

Some code uses absolute numeric ACs. If new code is being
integrated into a sequence which uses numeric ACs, it is desirable
that the existing code be edited to use the standard mnemonics,
particularly for the preserved ACs. |f the programmer cannot take the
time to do that, then the mnemonics T1-Thk should be used for ACs 1-k,
and other ACs should be referenced in the same way as is done by the
existing code.

Some code uses mnemonics A,B,C,D for the temporary ACs. These
same mnemonics should be used for new code integrated into this
existing code, or all references can be edited to use the standard
mnemonics.

You may write some code using the standard mnemonics for
preserved ACs and then discover that the module into which you wish to
put this code has redefined some of these ACs. The solution is one or
a combination of the following:

1. Move the new code to a module which does not redefine the
preserved ACs.

2. \Use different preserved ACs -- ones which have not been
redefined. (Note it is not acceptable to use an AC with a
special definition for other than its special purpose.)

Clearly, code which needs some of the special definitions must be
placed in a module which has these ACs defined and must therefore use
only the other preserved ACs.

Note that a value which usually resides in a special AC need not
ALWAYS reside there. For example, if code in JSYSF needs to call a
routine in PAGEM and pass a JFN index as an argument, the JFN should
be loaded into T1-TL for the <call since PAGEM does not have JFN
defined and cannot accept an argument in it.

TOPS20 Coding Standards - 9 March 1983 Page 19

L.2 Stack Handling

Use of the several stack variable facilities defined in MACSYM is
recommended. Some old code uses explicit PUSH and POP and references
of the form -n(P) however, and when anything more than trivial
modifications must be made to such code, it is most strongly
recommended that the code be edited to use STKVAR or TRVAR. Failing
that, references must be consistent with the existing code.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

