TOPS-20
Monitor Internals

DIGITAL

’

Copyright (c)19§6 hy DPigital Equipment Corporation.

The material in this document 1is for informational
purposes and is subject to change without notice; it should
not ke construed as a commitment by Digital Equipment
Corporation. Digital Eguipment Corporation assumes no
‘responsibility for any errors that may appear 1in this
document.

The software described in this document 1is furnished
uncder a license and may only be used or copied in accordance
with the terms of such license. Digital Eguipment
Corporation assumes no responsibility £for the use or
reliahility of 1its software on equipment that 1is not
supplied by Digital or its affiliated companies.

The following are trademarks of - Digital Equipment
Corporation, Maynard, Massachusetts:

COMPUTER LARS COMTEX : DBRMS=-1C
DBEMS=11 DBMS=-27 . DDT

REC DECCOmMM DECsystem=1¢
DECSYSTEM=2(CECtape DECUS

CIRCL DIGITAL EDUSYSTE™
FLIPCHIP FOCAL INDAC

LAB=8 MASSBUS OMNIBUS

ns/8 PDP PHA

RSTS RSX TYPESET=-28
TYPESET-1@ TYPESET-11 TYPESET-2¢

UNIBUS DECSYSTEM=-2G20

TABLE OF CONTENTS

Monitor Program Logic Manual

Chapter 1 Extended Addressing in TOPS-2f
Bias Control

Class Scheduling

Execute-Only

Monitor Address Space

Monitor Modules

N Y s WwN

Watch

8 Working Set Swapping

9 System Debugging and Crash Analysis
Index

10 1-23 DDT41

11 TOPS-20 Coding Conventions

Monitor Program Logic Manual

This reflects version 3 of TOPS-24.

VI.

VII.

VIII.

DECSYSTEM=29 MONITOR FLOWCHARTS

*

Scheduler

Page Fault Handling

JSYS Calls - Device Independent Level

JSYS Calls - Disk Dependent Level

JSYS Calls - Magtape Dependent Level
Requesting DSK/MTA I/0 & Interrupt Handling
JSYS Calls - TTY Dependent Level

Requesting TTY I/0 & Interrupt Handling

SCHEDULER FLOWCHARTS

Channel 7 Interrupt - Context Switching Overview

SCHEDO -

PISC7 - Detailed Context Switching

Process Controller |

UCLOCK = Process and System Accounting

SKCLK - Update Clocks

TCLKS - Test Clocks & Perform Action on Timeout

SCDRQLl - Process Requests in Scheduler's Queue
JOBSRT - 'Job Startup

SKDJOB - Select Process to Run
GCCOR - Global Garbage Collect

TSTBAL - Check if Balance Set Needs
Ad justment

AJBALS - Adjust Balance Set

. PI71

PI72
SCH1
SCH2
SCH2
SCH2
SCH9
SCHY
SCH3
SCH7

SCH5

SCH5

CHANNEL 7 INTERRUPT
AN OVERVIEW

Channel 7
Interrupt

From a Process

That Can Now

Be intaerrupted
?

Yes

Housekesp

Clock Tick

(Alarm Clk)
?

Yes

Set Process Clic
Flag (SKEDF3)

From Scheduler
(SKEDF1) # 0
?

Do Contaxt Switching for
Process Chosen to Run

lgnore

interrupt

(ie in Scheduler

Already)
?

Dismiss Interrupt
(Start Process)

Dismiss interrupe)

0K to

Rescheduie
?

Set Trap to Cause
Process to Interrupt
Here When Can
Reschedule

Context Switch
To Scheduler

Diseniss interrupt
{Start Scheduler)

)

Pi71

‘ Dismiss Interrupt) ’

(9]]

[ot vt |

Calt From
RESKED Check .
(RSKCHK) =0

CHANNEL 7 INTERRUPT

NOSKED Process Can
Now Be Interrupted.
Stare its PC in Proper
Placs.

{is In PISC7R)

{SKEDFC *0)
or Alarm Clk

Yes

Incrament Process
Cik Flag {SKEDF3)

SCKATM) < 0)

@

Store PC in PSB

Reset NOSKED Trap
in PSB to a NOOP
Increment “In Sched”’
Flag (INSKED)

KISSAV

Save Time Sched Ovhd Started
Store Fork’s Runtime in FKRTT |
Save User's Acs in Blk 1 in
PSB(UAC arsa)

Cail Scheduler
XJEN @ (0
_SCHE|

Set Up & Resume Process

SCDR:

Claar Sched Local

In Sched Now
(INSKED > Q) or

- Ignore Interrupt

No Requests For Scheduling >

UTEST JSYS s
Testing/Batw.

Set Monitor Context &
Save AC-Block O In
PAC Ares of PSB

Y XJEN @ PISC7R
L]

SCDOW:

Set Trap at Adr. ASKED
in PS8 to Cause Interrupt
On OKSKED (JSR
ASKCHK — RSKED)

Resume Procass
XJEN @ PISC7R

Remember Scheduling

is Needed So

increment SCHEDF3 &
Set Deferred Sched. Trap

(JSR RSKCHK — RSKED]

Flag (SKEDF1)

1

Claar INSKED Flag
{No Longer in Sched.)

1

Raset SSKED Flag to =1
{Usad to Hold the Current
NOSKED Fork No.)

1
KISLOD

Restore User AC's (UAC) to Bik 1
Store Fork’s Starting Time
Charge Sched Overhead

!

Restore Bk O AC's from
PAC Area in PSB

Set up User or Monitor
Context Depending on

The Moda

Resuming
a NOSKED
Process ?
No

| Adjust PC to Reexecuts

{f at Point of Return to
User (At GOUSR + 1),

SETUSR When Resumed

|

mM72

|

Run Process
PFL @ PPC

)

Process Scheduier
(Entry to Scheduier)

Any Priority
interrupts
in Progress?

Yes

Setup Sched’s PDL Ptr
Updare TODCLK (UPDTCK)
& Incremant Keep-Alive Cnt.

“Fork
Setup
(FORKX) > 0?

UCLOCK pSCH2
Update Clocks

f—

SCLDAV

Check
Losd Avs, (1)

SKCLK pSCH2
Update Clks
& Set Alarm

!

TCLXS pSCH2

SWTST

Process
Request (3)

Test Clks &
Perform Actions
on Timeout
Clear Process
Clk Flag
(SKEDF3)
Any Requests SCDRQ1 pSCHO
i Process
Requests
Fork) SETPSK
nunue Set Paging
(FORKX) 3 0? 1 Sched
Context

|

Power Fail
Detected
?

Request
From the
Switches
? o

SCH1

SCHPRE:

Flush Cur. Fork

Dump & Disable Cache
Wait 2 ms for /0

to Stop Before
Powering Down

Power Down (2)

SKDJOB pSCH3

Schedule
Next Process

]

Accumuiate
Sched. Overhesd
Time

No

Run Nuli Job

SCHEDS:

PS1 Now Being
Deferred or

NOSKED Fork
. ? .

SCHEDA4:

UPDTCK

Update
TODCLK

Y
SKCLK pSCH2

Set
Alarm
Clock

!

Clear SKEDF3 Flag
& Set Sched's
Chan-7 Req Flag
{SKEDF1)

Software Intwmt
an Channel 7

Move Oid PC to
PIPC in PSB
Xter P! Req. info
into pSB

Set PC (PPC) t0

PIRQ
I

Compute Increm.
Run Time & Subt.
from BSQNT

1

Update FKTLST if nec.,
Job's Run Time,

Foric’s Run Time, &
Time Since SETRT

Alarm
Due On 20 MS ™\ Yo
Clack (TIMT)
?

No

Increment
| (SKEDF3)

Set Alarm to Short Cycle Time
(Move 20 MS into SCKATM,
Sched’s Alarm Clock)

Set Bit 0 & TLE Bitin
Fork’s PSI lrterrupt
Word in FKINT

1

PSIR4

Starts the Fork Up if

Accumulate
Subsystemn Time

40 MS of Run Time
Since Last Age
Increment

On & Wait List
Otherwise, Movas it
to 8 Higher Run Q.

Incremant Age
Stamp and Load it
Into Pager and
Imo FKNR

(SKCLKS ’

i

Get Time interval
Since Last Update

i

Decrement Intervai
Fram 20 MS and
100 MS Clks
(TIM? & TIM2)

Return

0IsSMSJ

Dismiss

| Current Job
(Force SKDJOB)

20 MmMS
Clk Expired
?

No

SKDLVA

Do Integrais for SUMNR
& NRPLQ
Do Dev-Dep. Tasks (i.e. Chk)
| for DECNET Messages

Chk for Chars in TTY Buffer
Chk Deleted Pg Queue
Chk Forks Waiting for
Clk Wakeup
Dismiss Current Procass if
Page 1/0 Satisfied has
Qccurred
Reset TIM1 to 20 MS

100 MS
Clk Expired
?

No

CLK2

Dismiss Current Process

| Reser TIM2 t0 100 MS

Check WTLST

Call Devics Dep. Routines
Whose Timers Have Expired
Clear QSKED

Y

(Return)

Balance Set Scheduler
Called to Select Process to Run

Foreed
Mem Unioad
(SKEDFC)#0

e

SKDJFC:

Remove All Forks
From the BALSET
& Collact Ali Pgs
That Are Not Locked
Clear (SKEDFC) ' Yes

NOSKED
Fork ?

S——

TSTBAL pSCHS5

Test & Adjust
Balancs Set
if Necessary

GCCOR pSCH7

ree Pgs plus

Writes-in-Progress
elow Sys Min

Global
Garbage
Coliection

——y

SKDJ1: No 4

Clear Pg 1/0O Satisfied
Flag (PSKED)

‘ pSCH3a

SCH3

Get List of BALSET
forks from 8SPT Queue

Yes

8KGND1
No

Compute BALSET Indax
& Gt Fork’s Entry in
BALSET Table

Have a
NOSKED
Fork?

This Pork
NOSKED
?

SKDJ2:

SETPPG

Setup Pagar :

MMAP Entries for
Cur JSB & PSB
in SPT
Age & Pur Regs
Clear Hdw Thi

]

Clear BALSET Flags for Fork
Stors Remaining Run Quant.
into RJONT & 88 Quant.
into-BSQNT.

Clesr increm. Time Kept

in FXT1
{

Put Fork’s Q Level & Care No.
in SJOBD (Loe 21)

SETOVF: f

Setup Overflow Trap (Op Cods 041)
in UPT if User has Ensbled for
Qverflow Interrupts

Return
(to Process Convroiler)

SCH3a

!

SKDJ3 pSCH4

Test it

Get Next Fork on
BALSET Qusue,

BSPT

Cexanor

UPDTCK

Update
TOOCLK

WTCHK

Chk Non-Speciai
Waiting Forks

XCLKS

Do Periodic Actions
Call SKCLK pSCH2
Call SKDLVS
Calt CLK2

!

WTCHK

Chk Non-Special
Waiting Forks

1

AJBALS pSCHS

Adjust Balance Set

!

B8KGND2:

Note, Have No Fork
to Run
(=1 = FX)

10

Return to
Process Controlier

Test Waiting Balset Forks

Coross >

Set Up Fork's
Tast Data &

Call Test Routine
for Wait Chk

Wait
Satisfied
?

DISMT3:

Clear Balance
Set Wait Flag &
Decr. NBWT

Y

Compute Time Waited
and Add to Total
Wait in BSWT

!

Wait For

) Add Wait Time
Swapping
?

To DRMWT

C oismta)

Wait For
Dsk Write
?

Add Wait Time
To DWRWT

Wait For ™\
Utility Dsk or

(N

Dsk Read No
?

Add Wait Time
to DSKWT

DISMTS: ¥

Reduce Fork’s BS Hoid
Time, BS Quantum

& Run Quantum By
MIN(S MS, Actual Wait)

SCH4

11

Crom >

Y

" Wait Due
to Swapping in of

Overhd Pgs
?

Preloading
Desired .
" ?

‘ Enough
Core to Preload
?

g Fru Pages ™

on the Way Qut

(1/0Q in Progress)
7

| Yes

Return Runnable

RETSKP

SKDJS1:

SOSNEB

Remove Preload Size
From Core Reserve
(NRPMIN) &
Decrem. NEBAL

A
PRELD

Preioad
Working
Set

|

Put Fork Back Into
BALSET Wait State,
incrament NBWT, &
Reset Time Started
to Wait in NBW Tbl.

Increment Giobal
Garb. Collection
Flag (CGFLG)

RET

Return Unrunnabie

No

Losd as Much as -
Possible Now

Clear AJLODN
Test if AJBALS Clear Running HQ
TSTBAL and LQ Sums

1

Caicuiate Partition Values
{Upper Limits that HQ &

Yas LQ Pages Can Reach} (4)
{SUMNR) > '
(MAXNR)
? Save{BALSHC)in(BSHC)
Init SUMNR Cat to
(BALSHC) + BSPAD
(§)
Add Its Res Ws to Accum.
| Sum (Init. to (BALSCH) +
8SPAD)
—)
TSTBLI: '
- AJBUGS N
Initislize GOLST Prr, —-————-‘ﬁ"—u Baate Aunmng NO Of FOTKS
Count Forced Calls & No of Pgs for Eithar
(Increment NAJBAL) HQ or LQ Sum

AJBALS '

Adjust T Fork

BALSET Count BALSET Forl
Step to Next Fork

Yes
NOSKED .
? Yes A Step to fot Fork
No

Clear Hold Flag

Yes
AJBALS
pSCHSs
Res WS BIBSHK
Fitin BALSET ‘ Shrink It
? So it Does 6)
Yus
Cnt. BALSET Fark
Add WS to Accum. Sum
Remember Last Fork
in AUBLFK
AJBUQS
Hoalding Fla
Update Q Sums Set Holding Flag

12

AJBALY

®

Clear “Just Passed Fork
Not in BALSET Flag

!

Init GOLST Pointer

AJBALX: ¥

Reduce Accum. Sum
by Pad Otfset (BSPADO)

Get Next Entry
on GOLST

If More Than 1 Fork in the
BALSET, Remove the Last
One Kept in the BALSET
with Hold Time Lefe. (7)

J

End Of Yes
GOLST

Chk for Consistency
in BALSET Sum
Caiculated & SUMNR
(BUGCHK if not OK)

?
No

Determine Whether Fork
Belongs to HQ or LQ

AsBaLy: ¥

Set Tima for Nent

Periodic Cali to

AJBALS

Now + 1 See. —~ (NXTAJB)

1

Get Count of Forks
Loaded this Call

Holding Fork
Over BALSET

imit (> MAXNR
?

Y Vax
AJBSHK

Shrink Fork
So It Fits (6)

SCHSe

13

AlBALS

Sub (Di#t + 2)

rst
Fork
Yes >
No
B
. Chk if Adding Fork
4 Would Exceed
Partition Limit

L 99

Fark Exceed
Max No of Forks in
BALSET (MAXBP)
?

ork‘s Res Ws -

Pad Offset + Accum Sum

> Max Pgs in BALSET

(MAXNR)
?

Update Accum Sum
with Fork’s WS Size

1

AJBUQO

Update Q Sums for
sither HQ or LQ
{Running Totai of Pgs)
(Running = of Forks)

{

Count BALSET Fork

AJBAL1

from Res WS and
from SUMNR

Increm GOLST Prr

]

REMBS

——————

Remove Fork

!

Note Passed Fork
Not in BALSET

AJBL10

SCHé6

14

Room in

BALSET for Another

Fark (Test MAXBP)
?

Fork's Res WS
+ Pad Offset (=8SPADO) +
Accum Sum
> (MAXNRI

Yes

AJBCQS ;
Chk Partition Linuit

LOADBS
Load Fork

AJBLIT:

| Note Just Pansed
Fark Not in
No | BALSET

AJLODN

]

it a Previous Fork
Not Loaded, Give
No Hoid Quantum

'

Update Accum Sum
with Fork’s WS Size

1

AJBUQO

WA - T
Update Running
Q Sym |

[Count BALSET Forks|

[
AJBAL1
SCHSa

Yas !
increm C“BA L >
:

1SCHS 3
 Smam———

GCCOR

Have Enough
Pgs/File Sys.
Not (nit.

Calcuiate
N = MIN(NRPMIN, NRPLQ)

GCCORX:

Desperate for
Pgs. NRPLQ =0
& iOIP=0

Increm = of GCCOR's
(NGCCOR)

Geect:]

For 15t N Pgs on RPLQ,
Undo Their Ptrs, Flush Their
Back Ptrs, & Clear Their

CST2 Entries
GCPC2: Y
Compute Needed Pgs
GCMINP = GCMINQ + NRPMIN
(8)

1

Clear BSHC1

Setup P with NRPLQ + IOIP

GCCOR3: y

‘Setup in P2 All the Bit
Positions for Forks in
the BALSET

GCCOR2 Y

Store P2 Complement (Forks Not

in BALSET) in PUBCL

!

SWPOMI pPF12
Init Swapout List

1

Satup to Scan CSTO
After Res. Mon./Last
Scanned Pg. (in GCCLPG)

Reached

GCECOR

End of Core

2 Yes

Adjust SUMNR by
(BSHC1) — (BALSCH)

Reset to Scan
After Res. Mon.

Set (BALSCH) to (BSHC1)
Clear BSCH1

I

Forced
Clear of Mem

Get Owning Fork
of Page

Pg Assigned

&

Fork Not Deleted
’ .

Clear PUR Bits in Page’s
CSTO Entry for Forks
Qutside BALSET

OnGOLST & ™\

Othar Users in BALSET

Ref This Pg
?

increm BSHC1
(Charge Pg to Sys)

GCC1
pSCHS8

Don't Collect Pg, But
Continue Scan If More

Pgs to Look at

SCH?

15

Rds
By a

Tight on
Core _*
N ?

Not Initiated
Fork or Fork

Collect

Collect Page

DASWSP
Design Pg
From Fork

!

Get Backup Adr

Pg

Locked
? Yes

No

Page
Baing
Written Yes
?

No

Pg
Modified
?

Yes

Reassigning
Swp Storage
SWRSAF >0
?

Yeas

GCCQ1:

{ncrem.
BSHC1

No

SWPOUT pPF14

Do Single Pg
No Swp Qut

SWPOML pPF12

Put Pg on List

F—

{ncrem. Pgs
Collected (P1)

Collected
Enough Pgs
(P1) 2GCMINP
?

Continue Scan

Reached
Highest Known
Phys Pg In
Core

Yes

SCH8

16

Y Yes

Step to
Next Pg

Remember Last Page
Done-in GCCLPG

Y

SWPOMG pPF13

Do All Swaps
Queued Above

V

Clear PUBCL & CGFLG

C

GCC2
pSCH 7
——m—

Scheduler Request
Procussor

‘Gnt Entry From
Reg Tble, SCORQSB
{Data, Disp Adr)

Dispatch To
Routine {i.e.
JOBSRT)

Reset Ptr, SCORQO, to
the Top of the List

SCH9

17

Curront
$PT Count Above
Login Limit
(SPTC) 3 (SPCI)

. No

JOBSR2:

JOBSR1: §

TTEMES

Give User
Bad New

t

Prints “Full”

Assign Job No. From
FREJOB Linked List

Clear TTY's
Entry in TTFORK
Table

ASSFK pSCH10

Get 3
Fork

!

Store Job No. in
FKJOS Table

{
ASFSB

‘Assign a SPT Slot &
Adjust She Count

Use Index for JSB
Store SPT index for
JSB in FKJOB Table

¥
Store
NEWJBF Flag,, TTY No.
in the Pseudo-interrupt
Communications
Tabie, FKINT

(Return)

Assign Fork Slot

Cassec)
}

Get Fork No
From FREFK
Linked List

1

Set Up Wait Test
Routine for Fork
in FKSTAT

(0,, JSKP)

Y

Set Up
FKCOTM~Quantum (300ms)
FKXTIME - Time Fork Put
on Run Q (TODCLK)

FKQN — Run Q Levei (Q)

!

WTCONC

Put on Wait
Queue (9)

!

Set Flags in LH of FKINT
(400000 + NEWFKF)]

(]

Cloar Entries for Fork in
Following Fork Tables
FKINTB, FKPGS,
FKCNO, FKJOB,
FKWSP

Y

Set Fork’s Age
Stamp to 100 &
Reserve Working
Setto 3

1

Cail ASFSB Three Times
to Obtain Three SPT Slots,
Each with Their Share
Count Updated. The Slots
are for the Fork's PSB, &
UPTA Tables.

Y

‘ Return

SCHIO

18

Scheduler Comments
SCHEDO:

(1) Running averages, exponentially weighed over intervals
of 1, 5, and 15 minutessare maintained for the number
of runnable processes overall, as well as for those in
High Run Queues and those in the Low Run Queues,

(2) Final phase of powerdown seg. clears the priority
interrupt system and causes the system to loop ia the
ACs until power actually vanishes. If the power fail
interrupt was spurious, the loop will time out after a
few seconds and the system will be continued a
address SYSRST,)

(3) A very limited set of central functions for debugging
purposes has been built into the Scheduler. To invoke
a function, the appropriate bit or bits are set into loc 20
(SCTLW) via MDDT. The word is scanned from left to
right (JFFO); the first bit found set on the scan
selects the function.

Bit 0 Causes the scheduler to dismiss the
-current process and to stop timesharing.
Useful to effect a clean manual transfer
to Exec-mode DDT. System may be resumed
at SCHEDO if no IOB reset is done.

Bit 1 Causes job specified by (20) gy to be run
exclusively.

Bit 2 Forces running of Job 0 back-up function
before halting the system.

If loc 30 (SﬁLTW) is set not equal to g, the system
will crash. (Same as setting bit 2 of SCTLW word.)

19

AJBALS

(4) Upper Limit for LQ=MAXNR-MIN [Max HQ Reserve, HQ Load Avg.* (16)]
Upper Limit for HQ=MAXNR-MIN ([Max LQ Reserve, No. of LQ forks * (32

(5) SUMNR reflects the number of timesharing pages in use. 1Its wvalue
after AJBALS equals the number of pages reserved for balance set _
members plus BALSHC (the number of pages shared, but not ownead, by
balance set members plus the number of locked pages).

BSPAD reflects the number of pages set aside for balance set member:
as their working set reserves grow. The real value of BSPAD is
offset by a factor of BSPADO. When forks are trying to stay in the
balance set, the adjustment algorithm allows the pad offset to be
subtracted from the accumulated sum before it checks if the Ffork

can fit,
i.e., n '
(8SPAD + = Res. WS) - BSPADO + Res. WS > MAXNR
i=1 i n+l

The adjustment algorithm does the opposite (i.e., adds the BSPADC™™
factor) for forks trying to get into the balance set. The overal:
affect of this is to ensure (as much as possible) a certain number
of pages be available for balance set forks.

(5) The shrink algorithm shrinks the fork's reserve working set by:
MIN [Reserve WS = Current WS, Accum. Sum + Fork's Res WS=-MAXNR]

Notice that the fork's reserve working set will not be reducad
below its current working 'set.

(7) This is the rare case of forks, with hold-time left, expanding.
The lowest priority one is removed. If there is only one fork in
the balance set, it is not removed. (Note: it is possible for one
fork to he greater than MAXNR due to the BALSHC count changing).

GCCOR

(?) 1If it is a forced clear, then GCMINO is made very large so all of
core will be collected. However, its usual value is much lower.
(Currently A4 decimal).

20

ASSFX

(3) The fork is actually placed on the GOLST at this time. WTCONC,
after putting a fork on WTLST, checks if the wait condition is
satisfied. The test routine, JSKP, gives a skip return indi-
cating that the wait is satisfied. This causes UNBLX1l to be
called which in turn calls SCHEDJ to unblock the fork and to
requeue it from the WTLST to the GOLST.

21

22

PGRIRP -

PAGE FAULT HANDLING FLOWCHARTS

Performs the Principal Accounting, Analysis,
and Resolution of Page Faults

PGTACC - Accounts for Page Traps
XGC - "Local Garbage Collection
SWPOUT - Swapping Out a Page
NICCKS - Check In-Core Size Limits
GETTPD - Determine Cause of Trap
NIC - Not in Core Trap

SWPINW - Swap In and Wait

SWPIN - Swap In a Page
WCPY - Write Copy Trap -
ILRD - Illegal Read Trap
ILWR - Illegal Write Trap

TRPO

Age <100 Trap

23

PFl

PF2

PF4

PFl4

PF3

PF5

PF6

24

Enter Here on Pg Fault

Set Mon. AC Bik
& NOINT

Extended
Addrassing

Save Trap
| Reason &
Flags

No

Get Flags, PC from
TRAPFL, TRAPPC &
Store on Stack

BUGHLT

Save ACP

Setup Trap Stk Ptr
(TRAPSP) — P
increm Trap Cntr.
+«1 - UTRPCT

Yes

BUGHLT if Ref.
Invaiid Section

Store PC
in (UPDL)

Get Teap Status (Fail)
Word, (TRAPSW) in PSB

Dispatch to Erv. Handler

PGRTH: Pg Th Parity/Refill Error
iLRD: Proprietary

ADRCMP: Address Compare
ILSCN: lilegai Section

{LIND: litegsi Indirect

]

NOSKED for
Ouration of Trap

'

if Pg Trap Time Flag
(IPTIM} is Set, Do Not
Charge P.F. Handling
to Fork’s Run Time

1

init Time interval of
Trap Code uniess
Already Initialized
lie, Nasted Trap)

Y
CormsD—~

PGMPEQ
Handle in APRSRY
Save AC's 14,7.CX '
and (TRAPSW) on It Not Recoverabie.]]
Stk Adr +(BHC +1} Handle as ilieg. Ref. - PGUNTP) _RQW
Otherwise, Retry if Recoverable

pPF1a

PGTACC pPF2

Account for
one Py .Trap

GETTPD pPF5

Dstermine
cause of Trap

. Pg or Pg Tbi Not in Core
(pPF6)

- ;Pg or Pg Tbl Age -~ 100
Oispatch (pPEGY
to one of -

The following ;Nuil Pre (pPFB)

Addresses

Write Copy (pPF8)

) lllegal Write (pPF7)
PF1

;illeg. Ref. Due :0 Dismounted OFN
(pPF7} :

25

Page OK to Ref.

(PGUE'B

Y

If 1st Trap & Including

Pg Trap Time, Read Current
Time to Complete Timing
of Trap Code & Updats
PTTIM, HSPTTM, SPTTIM

Yes

No

Restore Fiags, PC to
TRAPFL, TRAPPC & ACs
14,7, CX & TRAPSW
from Stack

Restore P if Quter Trap

Y

OKSKED
OKINT

)

Return
XJRST @ TRAPFL

PF1a

Fiags, PC — FFL, FPC
-1-TRAPC
OKSKED

-1 — INTDF

GOUSR: |

Setup User AC BIK
as current Blk

\

' Return
XJRST @ FFL

e

Account for one Pg Trap
" PGTACC

Update Interfault Av
Av = {C x Av + Time)/C + 1

1

Get Sybsystem index
{if any for job) and
account for Pg fault

|

Gat Difference betwesn
Age at last XGC and
Current Age (Adjust for
wrap around if nec.)

No

XGC pPF4
Local Garbage Coilect

1s Current in Core WS

Yes

Near Rersarve WS A
es WS-Cur WS < 4
?

Reduce Reserve WS
and SUMNR by X
X=Res WS-(Cur WS + 4)

Time for Another
XGC (1)
?

Caiculate Ratio of Actual
Interfault Avg to Desired
(Dasired = 2 x Avg Swp Lat}

e

Ratio too low
<.9?

e

Ratio too High

increase Window Size (CAPT)
(CAPT) + (CAPT) — {CAPT)
16

No

e

>1.5?

Reducs Window Size {CAPT)
(CAPT) — (CAPT) — (CAPT)
16

'

A Y

| i

\e

See if CAPT within Limits
1f > CAPTMX, Set CAPT to CAPTMX
if < CAPTMN, Set CAPT to CAPTMN

!

Set CAPT to Fixed
Window Size (3 Sec)

PF2

27

NicmG:: Y
NICCKS pPF3

Check for
Allowabls Size

1

Set Bit for Fauited
Pg in the Fork’s WS
Bit Table in the PSB

|

e

Check Overail Size for
Physical Core Limit

Is Fork's
Reserve + (GNPBAS) (4.,

= MAXNR)
?

Is Reserve WS
+ (GNPBAS) > FNPM'AX>

Res WS
+ (GNPBAS)
> Cur. WS

RET

Yes

NG
Init Temp Window Size to Reduce Temp
7{CAPY) for Possible XGC Window by CAPT
] 2
NIC3B:
NIC3: No
CurwWs +1 " XGC pPFé
+ (GNPBAS) Ooing Quter Windowr
> MAXNR/FNPMAX Lavel Fauit Do Local Size=q
Garb. Coil. 2,

CurWS +1

+(GNPBAS) ™S\ _ g —
> Smaller Max 2= ‘-"_9:.‘;" A':":,“;" I Get Cur WS +1 |
{SNPMAX) ? Yes)
v Yes, Let Fork
be Larger

E NIC3E: ,'L'

Set Ras WS = Cur WS + 1
Update SUMNR (BALSET TOTAL)

)>No‘

BALSET Now
Too Full
(SUMNR) > (MAXNR

?

Set up Sched Test
for BALSET Size
NICTST — AC!
RDISMS

PF3

28

Local Garbage Collection

|

Setup to Scan
CSTO Beyond Res Mon

Compute Max No. of Pgs For
To Collect (All of Pgs For
Process in Core)

Calculate Cutoff Age

¥

XGC2:

1

Get Age Field of Entry
in CSTO

It Pg Ret, by Other Fork
Age invaiid, so
Set to Cur Age

Pg Locked
or
ch_g Written

Yes

DASWSP

Deassign Pg From Process
Decr. WSP
Release Core No. if
WSP=0
Mark Pg Unassigned
in CSTOFK

]

SWPOUT pPF14

Swap it Out

increment Pg No.|
For CSTO SCAN

No

Reached

Max No.of Pgs

To Collect
“

No

XGC1:

- elched "

Highest Known

Pg in Core
?

29

pF4é

PGRCLD
Clear Hdw. Pg Thi.

!

Setup to do
Housekeeping for
the Fork’s Working Set

X.GCS: *

For Each Pg in the Fork's WS .
Clear its bit in the WS Bit Tbi (in PSB)
if the Pg is:
Deleted, Not in Core, or Unassigned -
in CSTO (Uniess Rd. Compl.}
if the Pg is Rd. Complete, Call AGESN
10 Assign the Pg & Set the Age

Y

Oetermine Cause of Trap

GETTPO

Get Pg Fail Word
From TRAPSW

FPTA

Gat Ident
of st Ptr

P GETTP1:
| GepTident |

CHKDMOQ
Chk for Dismounted
OFN

Ne

Pg Feil Ward
Indicate This A
Wriu, Ref

Construct

identity Prr Typa
of Pg Yes Indirect
Pointed ta ?

GETT1F: ;

| I—
No
Yes

Get Ident of Pg
From SPT- - -

CHKDMO

CHK for
Dismounted OFN

Ptr Word
Indicate Copy
on Write
?

30

GETT10:

Stors Err, PMAPX?7
in LSTERR
Get Disp Adr -m
Get Adrof PT ILRD
GETT1A: f
GetDispAde | Pg Assigned
NI
c Age Field > 102
GETT1B 2 .
\ Yes
Dine A Get Disp Adr
?::po“n " LamReturn PGUNTP
!
GETT1C: |
Get Disp Adr
Yes NPG

Get Disp Adr

weey

GETTIE:

Get Disp Adr
ILWR

<

Accessed
Chked
Already

NIC2; i

GETTPD pPFS

Uod

Trap info

Not in
Core Trap

CHKRPQ pPF9

Make Sure

| Thera is Enough Pgs

on the RPLQO

. SWPINW pPF10
1s Original
Request a Swo In
Write P
2
' No
Must See if (3}
Write is Possible
Rechk Access & If
Can't, then go to ILRD
nNice2: Y
Get PTN
Get Core Adr &
Lock itin CST1
in Case Resked
Below
(41

QCHK

Chk for Enough
Disk Space for
Pg Creation

Set up Sched Test
Btk until Unlocked
ACI/OFNLKT
MODISMS

] 'Whon Resched

Sat OFN Lock & OFN
Modified in SPTH

!

FNDLDA

Find Last Disk Address
Assignad in this XB

]

Get OFN & Pass
Str No. to DSKASN

{

OSKASN

Assign Dsk
Adr for Fila

Py

]

Get OFN & Subtr.
1 from Quota Thi.

NiC

| index Blk

Store New Addr in

!

Store New Addr Uniock Index
in SPT Blk in Core
]
NICB3:
Unlock OFN

No Room

PF6

31

Illegal Write

|legal Refarencs Traps

ILWRI:

User/

\

| Set Error Code
ILLX02 ~ LISTERR

Extended
Adr. Ref
?

Set Error Cade
| LLXO1 — LSTERR

(C ILRF)y

Store Trap Status Word
in UTRSW in PSB
(In Case User Wants it)

|

To Resident
or Write-Prot.
Monitor?,

Yas

ILRFU:
Mod Save int Code({.ICIRD)
Juar ? Yas on Stack
No Y
ITRS!
l Get instr After Trap’ I Sim
Check for ERJMP
or ERCAL
Alter Ret Adr
With Adr Gotten —
from ITRSIM ; PGl_JNTP
No | Routina and pPFla -
Prune POL Ptr "
Y (Subt. BHC + 1)
—LRFX: Y
No, Post Interrupt
PSIRQO
Request
interrupt

Simulate PUSHJ by for This Fork
Updating POL Ptr *
(BHC +1) + (TRAPAP) = (TRAPAP)

and Saving instr Trap Adr + 2 Get it Seen
(Ret Adr) on The Updated Stk. (S) by Executing
CHKINT Macro
(ie AQS SKEDF3
ILRFI: . 188 SCOCHN)

Get Adr to Transfer to
from Word Following the
Instr Causing the Trap

!

Alter Return Adr Stored. on
Stack Pointed to by ACP
by Storing Adr to Transf to

< PGUNTP pPFla)

PC in User Mode or

Process Interruptabie

(INTDF < Q)
?

Yes

tncre, Ret Adr
Stored on Stack
(Skp over Instr
Causing Trap)

|

CPGUNTP pPF‘la)

PE7

32

Copy On Write Trap

&0

Clear Write Ref Bit
in Pg Failure Word
(TRAPSW)

]

GETTPD pPFS
See if Pg Readable

Page Ready
for Copying
Disp Adr = PGUNTP

Get Adr of Source Pg
& Lock itin CST 1

Handle Other
Q "

SETSPG

Map The PT in
The Monitor Map

!

Get Ptr & Modify Pt
Type to Immed. With
Select Access Bits &
‘Copy’ Adr and Store
-4in Pg Thi

Put Original Ptr in
CPYPG in PSB

1
[RELSPG
l&luu Monitor Map Slot

!

Reference Source Pg,
CPYPGA, to Ensure Access

1

SWPINP

NOSKED
CALL SWPINW pPF10
OKSKED
Will Copy from CPYPG
to New Page

L

33

l Uniocek Source Pg in CST 1 I

MRPT

Get Ident of
Shared Pg Being Released

!
RELMPG

Reiease Orig Pg
from CPYPG

!

RELCPT

Clear Mag

JFNDCR

Decrem. Map
Count for JFN

e

NiC
pPF6

PF8

Pg Not in Existance Trap

NPG

BUGHLT if Pg Nat
in Legal Rangs if
Monitor Trapped
or lllegal Section

Pg T
ident an OFN

PTn<NOFN,
? NO, PT

Process No
NOINT

Yes

Drum
Spacs Above ‘p‘}?:‘;
Min No
?

Yes

Yes

Setup an Immed

Ptr With O for Storage
Adr & UAAB (bit 17) Set
in Pg Thie

Sat err Code &
Reg Int..ICNXP

PSIREQ
PS1 Ref.

!

Get Int Seen
With CHKINT Macro

.

PF 8a

34

On RPLQ
or Write in Progress

Pgor Pg Tole
Age < 100 Trap

Age
Field Within
Range
< ?

TRPARST
pPF1

Start Trap Over
Pg Probably Has
Compileted Writing

Yes

Dispatch to One of
The Following Based
On Age Field

Rd Compiste

No

Rd in Progress

[

Py s:u ;

CHKRPQ pPF9a

Make Sure Enough
Pages an RPLQ

Enough Pgs
SKP RET
?

TRPRST
pPF1

} Untrap & Continue

TRPSPM:
SKPNWR pPF9a
Write in Skp If No Writes In
Progress Progress On Core Pg.
? Otherwise Reschedule
Unti) Write Complete
Yez
TRPSPI: '
RPCST
Remove Pg
From CST
ONSPMQ
Place On
sPMQ

Untrap &
/ Try Again

PF9

35

$ Set Up Sched Test .)
Available AC1/Age Field,, SWPRT| Wait for Py
(On RPLO) RDISMS
NOSKED
TI;::?) Recheck Trap

Write

In Progress

CST3 Entry <O
?

Yes
increment DWRCFL Flag
Set Up Sched Test {Says Fork Waiting for
AC1/(NRPMX)},, TRPOCT Write Completion)
RODISMS
Y
| |
Sat up Schedule Test
NOSKED AC1/Core Pg No.,, DWRTST
ROISMS
Y
(Return) - Y
NOSKED

' 7

NRPLQ Above

Stated Min (NRPMX)

& Normal Min (NRPMIN)
N

es

Succsassful

{ncrement Global Garbage
Cullection Flag (CGFLG)

(' Return)

unsuccassful

PF9a

36

REQUESTING DRUM OR DISK READ

(PAGEM LEVEL)

Swap In & Wait
for Completion

\ (6)

Count Swaps
increm USWPCT

-

SWPIN pPF11

Swap in & Wait
for Completion

SWPtw4:

AGESN
Fix Age on Pg
Y

Lock Pgin
csT1 -

Get Original
OFN,, PN

!

SWPIN pPF11

Swap the
Orig Pg

Y

Uniock PT Pg

in CST1

—

SWPIW1:

PGIWT

Chks If Pg State Code
Says Read in Progress

and RDISMS if so

SWPIW3:
NOSKED

!

SWPIN pPF11

Swap in PT

!

OKSKED

Lock Pg in CST1
Wait to Finish
With PDISMS

!

AGESN

Assign Pg

an Age

PF10
37

REQUESTING DRUM OR DISK READ (Continued)
(PAGEM LEVEL)

CSWP!N

Swap in Page " When Reached

SWPQT:]

Set up Sched Test
I SWPWTT - ACT
No PDISMS

Any

Replacsabie Pgs

(NRPLQ #* Q)
?

SWPIL1: Yes

Decrsment NRPLQ &
Remave Pg From
Repiacement Q (Linked
List in CST3) (6}

!

Clear CSTO & CST3
Entries for the Pg

- —

Reset Previous
Qwnership

. BUGHLT
Fauited Pg et |f Adr From

Farol;! PT "No, SPT SPT In Care

SWPI3: Yas

Get Owning
PT OFN Y

v Store New Core
SETSPG Adr (Pg From
Repl. Q) in
Map PT Through SPT Slot
Monitor Map

1

Lock PT in Core
(BUGHLT if Pg in Pg
Tb Already in Core)

Y

Store New Core
Adr for Pg in PT

[T RELSPG

Ralease Slot in pPF11a

Monitor Map

PF11

38

Store Old Adr in CST1
(Backup Adr)

Store Loc of Owning
PTin CST2

Backup
Adr. Assigned On
DSK or Deum

Clear All Words in
New Py from RPLQ

Copy Old Py (Adr
Saved in PSB's
CPYPG) into New Pg

1
!

Set Age Fieid To Read
Complets, Set Modify
Bit, & Store Owning

Fork Index -

v

Return with Approp.
Sched Test,
Pg No.,, SWPRT

Backup
Adr Disk

SWPZPG DRMIQ pPHY1
Newly Assigned L
2evo Pgin Yes . Adr on Disk initiate Read
Core . > *
| _ I
DSKIO pPHY1 ncrem DRMRD
Set Ag State Code
. to Read Complete initiate Disk '
Read
Return with Approp.
t Sched Test,
Increm DSKRD (Pg No.,, SWPRT}
¥
1
Return Approp. Sched
Test, (Pg. No.,, DSKRT)
1 : Y
Return
PF11a) '

39

MULTIPLE PAGE SWAP QUT ROUTINE

SWPOMI - Init List

SWPOML. - Called to Add Page to Swap Out List if Possibie
SWPOMG - To Begin 1/0 for All Pages on Swap Out List
SWPOQUT - Initiata Swap Qut of Single Page

Add Pg to Swap Out List if Possible Init Swap Out List

. Clear
~Ptr Backup ™\ N0» Exception Case (SWPRCO)
in CST2 Exist
for Page *
? Init End Ptr

SWPLST — (SWPLSI)

!

Init List Ptr
0 — (SWPLST)

|

)

No, XB or PT

Get SPT Index

GETSHR

Get Share
Count

swoma: ¥

Get Pg Backup
Adr from CST1

SWPOM1

Pg Can’t be Written on Drum
| or has no Drum Address

No, Exception Case |SWPOUT pPF14

isita Drum
Adr

Use Single
Pg Swpout

—

GDSTX

Get DST
Index for
Drum Addr

Get Adr of Pg
On Drum & if

Modified bit is

Set, Set Modified
Bit in CSTO Entry

1

Clear OST Entry &
Put its Formgr Contents

Into CST1

DASDRM

Deassign
Drum Addr

1

Put Pg Want
to Swap Out
on End of
Swap Out List

1

Increment Count
of Pgs on List
(SWPRCO)

PF12

40

Assign New Drum Storage &
Initiate 1/0 for All Pages on
SWPQUT List

Clear Modified Bit (If Ser)
of Page in CSTO Entry

g:: lc':;:: ;qsp;oﬁ; Store Write-in-Progress Code
on List in Age Field in CSTO
* Increment Writes in Progress (101P)
DRMAM and Drum Writers (DRMWR)
Try to Get *
Specified No.
of Sequential . ORMIAD
Pages Bump Drum Adr to
* Next Page

Remember First
Adr of Group

1

Remember Count)
of Pgs in Gp Ty
n No, End of G
) sweogz: ["meofGe
Remember No. of Get Ptr to Next Go., Tie Off
Pgs Left Out of Gp E;::um List & Set Up Next

T

Get Current List
& Set Write Flag

i

Get Drum Adr DRMiom
in Seq. Do Muitipage Write
* (Caiis DAMIO pPHY1
for Each Pg.)
DRMASA
Assign
Adr on Drum

Store Orum Adr

in CST1 Entry

for Page & Former
Contents of CSTY
(Disk-Adr} into DST
Entry for the Orum
Address, Marking the
Modified Bit (BWR8IT)

if Pg to be Swapped Was |
Modified in Core.

SWPOG2
Do Another gp

@)

PF13

Irnplies Top Here to Assign
[Cloar SWPKPF 8t | reea B
(wossy—=tin
Backup Ptr
in CST2 No ' Yes
?
Yes OFRQ
Put Pg an

Get Home Mao Top of RPLO
Loe in CST2 for *
p' “ b. @ Y

(Return)

the Home
Msp?

Backup Adr in

Room an Drum
DRUMP3* o

SWOFN:
ORMASN
] Assign Drum Adr

GETSHR
Get Shre Cot

Pg's Home Msp
Loca Fork Pg Tb
? .

Dsk Update

‘ 1

Set Drum Adr as
New Adr in CST1 &
Put Former Adr. in
08T

Suppressed?
(OFNOUD=1)
?

Pg Live
in File X8

Swap to DSK

NO, in Fork PT
Send to Orum

Bkup Adr from
CST1a OSK Adr,

o Unassigned Assign Drum Adr,
. 2

GDSTX
Yes Get DST Index
for Orum Adr.
ONRQ
Put Pg on End @
of RPLQ

PF14

42

Set Mod. Bit in DST Entry

SWPO2: *.‘—_._-
Clasr Mod Bit & Stors
PSWIP Code in CSTO
Entry

Increm. Writes in Progress
(101P
Set Write Req.

DRMIOQ pPHY1

Initiate Drum
Weite

Increm. DRMWR

G > G

Swap to Disk
(BKUPD > ONRQ
Err From | Pug Pg on
BKUPD1: \ Rt)ld Yes End of RPLQ
Get Backup Adr)
from CST1
1 No

Pg Unchanged
in CSTO
n, ?

Disk or
Drum?

No
Flag ™
SWPKPF =0
ot ?
Yes

No

BKUPN:

Clear Modify

8itin CSTO oFRa

Entry Put Pg on

No, Drum y Top of
RPLQ
GDSTX . Request Write
Increm DSKWR

Get DST index & 101P

! v
Get Next Level

Bkup Adr from DST Clear DSKNB Bit
B im CST1 Entey if Set

1

Set Write-in-Progress
(PSWIP) in Age Fisid

Written Since

Last Backup?
(BWRBIT Set) No of CSTO
’ DSKI0 pPHY1
Sst Modify Bit Regl_mn 1o
— in CSTO Entry to Disk
Jl._‘
Release DST Slot (Rewurn ,
(Sett0-1) &

Put Former Contents
of DST Siot into
CST1 Entry

!

DASDRM

Deassign
Drum Adr.

PF15

43

44

Page Fault Handling Comments

PGTACC

(1)

NICCKS

(1)

GETTPD

NIC

(2)

(3)

(4)

(5)

Checks if process has accrued more than or equal to
the number of age ticks of GCRATE. Currently, this
is set to 58, which implies 2 sec. of process
virtual time (i.e., the age stamp is incremented
every 49 ms of process run time).

GNPBAS is currently initialized at system startup to
zero and is incremented/decremented only when pages
are locked/unlocked. It is currently only tested by
NICCKS as well,

The age field when used to hold the age stamp, will
always. have a value of 1A0.or greater. This checks

if any of the lefthand 5 bits of the age field are
set.

Could take the ILRD path, for example, when OPENed
file for write, but PMAPed for each of a nonexistent

-Page. A page would have to be created which would
_then imply a write which was not enabled under PMAP.

If file page faulted does not have its own SPT slot,

~..but has to be mapped (using indirect pointer) via
-the-index blk slot in the OFN area, then the index

blk will be locked in core. (So can't be swapped in
case of reschedule.)

Note in the predispatch code that ACl was stored in

BAC + 1 and AC, P, which holds a push down list
pointer, was saved in TRAPAP,

45

SWPINW

(5) SWPINW will invoke SWPIN to swap in a page into a
page from the RPLQ. However, this same code can
also be entered with different flag settings and be
used to swap in a page into a page from the special
memory queue (SPMQ), a queue used by the memory
‘error handling code. ‘

SWPOUT

(7) SWPOUO is called from:

SWPOTO which clears the SWPKPF bit (for top of
RPLQ) before calling SWPOUO and

SWPOTK (called from the UPDPGS JSYS) which sets
the SWPKPF bit (for end of RPLQ) before
calling SWPOUO. '

JSYS CALL FLOWCHARTS

DEVICE INDEPENDENT LEVEL

STJFN - Get a JFN
JOPENF - Open a File
SIN/SINR- Sequential Input

3YTINA - Call Device Dependent Code
to Get a Byte

SIOR2 - String I/0 Multiple Byte
Transfer

SOUT/SOUTR - Sequential Output

BYTOUA - Send Byte to a Service Routine

DMAP - Map a File or Fork
JFPGS = Update File Pages
CLOSF - Close a File

47

0Pl

sl

S2

2

S3

PM1
unl

CLl

48

GTJFN JSYS

Assign First Free
JFN Block in JSB
{This Determines JFN =)

Parse User Arguments

Field By Fieid. Defauit

the Arguments Not
Specified if Have Legal
Defauit’)

Valid |
Argqument for
Fie)ld

Ne

Yes

Store Argument
in JFN Block @

Cleanup Temporary
Cells Used by

GTJIFN

1

Setup of Fiags or
indexable File Handle
to Give 10 User

Disk File
?

GETFDS8

Address of FDB —~ FiLFUB
(May Have to Create FDB
for New File) {3)

Gn

49

\ ERR-GJFX3

Setup User
ACI with
JFN

w OPENF JSYS

CHKJFN
Check JFN
Validity. Set
Stacus Bits
Setup Dispatch
Table Adr "
ERR-DESXN
n®1,20r3)

/ opeuomev'msﬂ

Dispatch and Exe-
cute Dev. Dep. Coda

Is This the User's
TTY or an Unassigned
TTY?

ﬂOr

Any Access
Requested?

Successful

Init JFN Blk Variables
1 = FILLFW(LH)
Flags — FILSTS

Successtul

Ret
RAR-DESX7) un

Is JFN
Alresdy
QPEN?

ERR-OPNX1

!

Requesting
Wild Card Output
?

E

Stors Sytasize
in FILBYT (0 implies
A Byte Size of a Word)

is This
Device Assignable?

: ERR-OPNX7
Yes :

Yes

s Mode
Requested
Legal
?

ERR-OPNX14

Store Moda
in FILSTS

oP1

PMAP JSYS

——

Will Cat of PMAPO
Pgs Left to Map Calt This
Cross any Pg Thie Routine
XB) Boundary for Pgs up

? to the Pg
Thbie
No Boundary
PMAPO
Cail This
Routine for
All Pages

Asking

to Map File

w to File
?

No

is PMAP’s
Requested Access
Consistent with

OPENF Access

ERR-PMAPX1 -
No

Must Have Write
Access to Dest.

is Destination
a File

PMAP2
No :

No

Delating
Pages
?

No

1

ERR-PMAPX2 |

~ Are All

Fork (Source)

Pgs Private
?

No

=] Yes
PMAPS PMI

51

No Y
ERR-PMAPX2 PMAPS o
Yes V

Destination is a Fork

PMAP2

incremsnt
Cnt of Pgs
Mapped in

PMAPSG:

Ave Any Dast® N
Pgs of the Fork | Seduce Map
Currently Mapped unt in

Yes| Bk (FILLFW)

from ?/
?

MSETPT

Set up Pg Tables

Release Old Contents
of Dest. & Have New
Contents Be Sex With
Copy-on-Write Accass

"Did . PREPG
User Ask Yes ["Request
for Preload _~ Swap in

? of Pgs

SIN/SINR JSYS

If This is Speciai
Byte Ptr (-1 in LH)
Craate Equivalent
Regular Byte Pr. (1)

Set Flag to
Say SINJSYS

L

1NO

CHKJFN

Chk JFN
Validity & Set
Up Status Flags

JFNID(DEV'DTB)
init JFN for

input

S10R2 pS2

Setup & Do
Byte Blk Xfer

* (4)

UNLCKF

(Return to
User)

Satisfied

User Request

for Bytes
?

Unlock File

Update Byte
Pers in User [r——
ACS No

Set Flag to
Say SINR JSYS

SINBYT:
SIOR2 pS2
Update Byte
| Setup & Do 4 perg in
Byte Bik Xfer User's ACs
4)

SING:

CNT Gone

to Zsro No

| Yes

Tack Nuil
Byte to
String

1

Return to
User

Rec. Size Longer
Than User’s flequest

(ERR-!OX@
Yes

to User

SatisfiewN

User’s Request >

for any

Read All

Bytes from

Buffer
?

s

52

C siNTTY)

Y

JFNID(DEV'DTB)

Init JFN for
Input

SINTT1: §

BYTINA pS2

Read 2 Byte

From Source

EOF or

Picked Up

Nuil Byte at

End of String
?

SIN/SINR JSYS (continued)

UNLDIS

Uniock and
MDISMS

with Sched Test
From Dev Routine

SIND

Put Byte
in User's
Adr. Space

!

SIONXT

Chk it “End
of String”
Char

Sle

33

BYTINA pS2

Get Byze
from Sourca

Picked up
Nui! Byte at
End of String
'_} P

When Resched.

SIND

Put Byte
in User's
Adr. Space

]

SIONXT

Chk if “End

UNLCKF

Uniock File

Y

eturn
t0_User

Cail Device Dep. Code to
Geta Byte

BYTINA

!
BYTINX

Get the
Byte

User Not
Getting Line =3 and
This a Line = Byte

Discard Line = Byte

String Input/Output Muitiple Byte Xfer

Set Up Counts & ptrs
for transfer

]
BYTBLT

Do the
Transter

7

Update FILCNT & FILBYN

User cnt
Gone to Zero or
Found Terminator
Y,n :

Yes

Set Flag to Teil
Cailer JSYS is
Finished

BYTINX

ERR-1OXS)

ERR-IOX4

)

BUGCHK if BLKF Flag
Set. (Should Only Bs
Set by Code Ahead)

1

Unsuccassful
Return BIND(DEV'DTB)
Dispatch Through
DEV'DTB Table to
Device Dependant
Code

with Byte

Succassful
Return

8YTBLT

Chking for
Line =sora
Terminator

This JSYS's Byte
Size Diff. from OPENF's

Jo Transfer

“Return)

with Sched Test
to Caller

)

Err-10OXS

ERR-10X4

)

CHKTRM:

Chk for Line =3

& Terminator

Transfers Byte One at a Tima,
Until Terminator Found or
FILCNT (Buffer Pg Cat) or
User Count Exhausted

(Return

8YTLP:

Transfer Byte
One at'a Time

o Until FILCNT
or User Count
< 20 Bytss Left Exhausted

| —

Transfer Byts to User
Until Page Cat (Buffer
or Window) or User
Count is Exhausted

S2

54

SOUT/SOUTR JSYS

If Using (-1, Addr}

Sat Flag to Remem-
ber Doing a SOUT

Special Byte Ptr,

N~

Set Flag to Remem-

ERR-1OX2

{Err Ret if Not OK)
Setup JFN Status

Yes

TTY
or
NUL:

?
BL)

Byte Ptr Yes
) ?

No

Qpen for
Write
Acgess

Yes

JENOD(DEV'DTB) ~

Init JFN for
Qutput

UNLCKF

Untock the
JFN

™1 Changeto 7-Bit | | ber Doinga SOUTR
Byte Ptr,
&
souto: |}]
c“K": : T SOUTTY
Chic JPN Vatidity JFNODIDEV'DTB)

init JEN for Output

SOUTTT:
SOUTB pS4
Send Byte
Through Dev.
Dep. Cade
SOUBYT:

SIOR2 pS2
Setup &

Do Byte Blk
Transfer (4)

APPNUL
Append NULL

Yes

(Return to User

souToo: SOUT1: Not End of String A Yes
FILCNT =0 Yes SOUTSB psSa
Need to Cail Dev Call Devics RETSKP
Dep Code Dep Code to ?
? Write Qut the

No

SIOR2

Setup & Do
Byte Transfer

4)
1

pS2

Record

UNLDIS

Update Usar AC2 Byte Ptr
Update FILBYT

Any More
Bvtes to

Yes Transter
?

Unlock &
UNLCKE DISMS
Unloek the
JFN

SOUTRR:

)

l No

RECOUTIDEV'DTB)

Call Dev Dep Code
to do a Record Out

(SOUTB)

|
BYTOUA

Send Byte to
Servica Routine

eed to Blk,

Yes

Err, or Quota
Exceeded

SOUTW:

Retuen
to User

APPNUL
Append
Nuil to
String
MBRISMS
Y with Sched
SIONXT Test Routine
ChK for :rom. Service
End of) outine
String
Return
RFALSE:
End? 2sro AC1
Yes
No Y
(RETURN)
RETSKP

56

BUGCHK if BIKF Flag
Set (Shouid Oniy Bs
Set By Dav Dap Code)

Y

SOUD(DEV'DTB)

Cail Dev Dep.
Code Through
Dispatch Table

Error or EQF
or Want to
Blk?

Unsuccessful
Error Return

) .

reman”’

Unsucgessful
Return

)

Updaste File Pages

UFp
Cause Changed Paged GS JSYS/DOMP
to be Written to Digke
) C uees?)
Cur Adr of

XB on Dsk
?

Gee Prr to

SETMPG
Map index Blk
in PSB Slot
Set up to Do °
Req::st:d Pgs in SWPINW pPF10
This Index Blk
Swap in
Pg & Wait

No, Unassigned
Pg = ignore

SKPNWR pPFd

Check if Write in

Progress. RDISMS{ Yes
if so,

/

Set Pass 2
Flag & Set up
& Do All Pgs Got Next Pg.
Again
SKPMWR
Checic if Write
SETMG in Prograss.
Release ROISMS if s0.
Index Bik
from Map
(R'_m"'_) Yet, Recheck Pg
AGESET SWPOTK
. Set SWPKPF = 1
Assign Page Jcait swPoUO(RPF 14
to Swap Out the Pg
Pg Request Swap to
Locked | Disk. Set DSKSWB
? Ne Bit in CST3 Entry
Yas
uD1

CLOSF JSYS

CLZALL

Does a CLZFF
JSYS for .FHSLF
(Foark Issuing Cail)

[

CLZF pCL2
Da Close

- Don't
< Releass or Still
Open

RELJFN
Release JFN

cL1

58

Requesting
CLOSF on Some
Other Current
Primary 1/O JFN
2)y

. ERR-CLSX2
Yes

CHKJED
If JFN Chk
Not OK, Err Ret

Clasing Device
NUL:, TTY:
or String Ptr

?

w{ ERR-CLSX1)

Any Other
JEN Open for
Same File in
This Job

?

ls Thisa
" Disk File with
Pgs Mapped
) ?

No

ERR-CLSX3

CLZDO y Yes
Call Device Dep Code Assign Pg
CLOSD(DEV'DTB) - Map Cat to
that JFN (2}

UNLKE

Yo Uniock file

When

Unblked
UNLDIS UNLKF
Does MDISMS
with Reason Rea to Blk No ‘1 Unilock file
to Blk ?

cL2

59

60

GTJFN Comments

(1) This code is looking for a file specification of the form:
Dev:Directory Name, type,gen:T(temporary) ;P (protection) ;A (account
One or more fields can be defined by logical names.

If any fields are omitted from the specification, the
system will default the values as follows:

Device DSK:
Directory Connected directory
Name No default for disk
Null for other devices
Generation Highest existing for input
Next highest for output
Protection As specified for directory or
protection of next lower generation
Account Current user account

(2) The internal GTJFN code uses several locations in the
JFN block as temporary cells. These locations have two
names in the JFN block table descriptions. The JFN
block storage locations set up or used by GTJFN are:

FILLCK* FILDDN FILNEN
FILTMP* FILPRT FILVER
FILACT* FILSTS1 FILCOD (LH)
FILOPT* - FILLNM*

FILDEV FILDNM

*Used internally only by the GTJFN JSYS.

~ (3) The creation process of the FDB simply asks for space
o in the directory for the FDB.

61

.OPENF Comments

(1)

Cell FILDEV in the JFN blk has the device dispatch.
table address. For example, for disk, GTJFN sets
the dispatch table address to DSKDTB. If spooling
to disk, GTJIFN sets the dispatch table address to
SPLDTB, but the OPENF code changes the dispatch
table address to DSKDTB and sets up a file
specification in the JFN block.

.SIN/.SOUT Comments

(1)

(2)

(3)

(4)

(5)

TOPS-20 allows a user to specify a special byte pointer
of ~1,, Address which is interpreted as a 7-bit byte
size beginning on the word boundary, Address.

A user can do I/O from one place to another in core by
specifying byte pointers for both source and destination.
This differs from BLT in that the use can transfer

on non-word boundaries. ’

For disk files, FILCNT will be the number of bytes
remaining in the window page. For magtape and other
devices it will be the number of bytes remaining in
the current page of the buffer.

The' routine BYTBLT only moves data up to the page
boundary of the current buffer page.

If the user has not specified OF$PLN in the OPENF,
line numbers are stripped off the beginning of each
line. (See SIN JSYS in Monitor Calls manual for
definition of terminator.) '

63

.PMAP Comments

(1) A page is private if it is not shared between a
file and a fork.

64

UPDPGS Comments

(1)

(2)

Routine scans page table twice: first time to regquest
writes on all changed pages. Second time to wait for
completion of writes. (This is faster than waiting
for each write to complete as it is requested.)

If page has not been modified, a check is made to see
if the drum is full and if so, to release this page
back to the drum. The map pointer to the page will be
changed to its disk address. :

65

CLOSF Comments
(1) If user has switched primary I/O to some other JFN
and attempts to close it, an error results.

(2) The page map count in FILFW reflects the number of
pages mapped and a CLOSF can't be done on a file if this

count is greater than g.

66

JSYS CALL FLOWCHARTS
DSK DEPENDENT LEVEL

DSKOFN - Disk Opening of a File

ASFOFN -~ Assign OFN

UPDOFN - Update OFN
DSKSQIL/0 -Disk Sequential Input/Output

NEWWND - New Window Page (Next Page of File)
DSKCLZ - Disk Closing of a File

RELOFN - Release OFN

' DASOFN - Deassign OFN

MOVDSK - Move Page Back to Disk .

67

oDl
0D2
OoD1
SD1
SD2
CD1
Cbh2

Cb3

68

Disk Dev Dep Code
Called From Table Slot
OPEND (DSKDTB)

File & Dir
Protection
oK?

Update Date Time Info
in FDB. Update Last
Writer If Writing.

!

If Superceding (i.e. Opened
for Write Only to an
Existing File), Delete File
and Mark File as New

OPENF9:

OPENF-DISK
Dev Dep Code

OPENF3:

Incr. OFN Cnt. in SD8

!

GETLEN

Set up FILLEN from
OFNLEN Table

L}

Transiate OPENF Access Bits
to QFN Bits for SPTH
Comparison or Storage

DSKASN UPOBTE
Assign Disk Space " Update Bit
for index Bik Table
Yes
No
OPNLNG:

if New QFN (1

ASFOFN pOD2

Assign OFN for
Index Block
if Err, Err Return

!

Store OFN in
LH of FILOFN

!

UPDOFN pCDS

Write XB on Disk
{(if Opened New File
With Thawed Access)

|

ASFOFN pOD2

Assign OFN for
Super index Bik
If Error, Err Return

1

Store OFN in
RH of FILOFN

!

ASFOFN pOD2 .

Agsign OFN for
Index Block 0
if Error, Err Return

Y

Store OFN in LH of
FILOFN and RH of
FILCOD (2}

- oD

69

Assign OFN
Structure :
No. Valid? |

BUGHLT
Str. Bad
Yes

ASOFC: o

Get Stor. Adr. for XB
and Bits Caller -
Allowed to Spacify

No ERR-OPNX16)

Yes

OFNSAC
Search OFN Portion of
SPTH Table for Matching
Str. No. & XB Adr.

Found
in Table

OPENF - DISK (Cont)

Whan
Rescheduled
Set up Sched Test '
OFN,, OFNLKT —~ AC1
MDISMS
DPENF Request
Consistent With Unlock OFN

OFN Access?

UPSHR

Update Shr Cnt
in SPTO Thble

I Unlock OFN l

Y

(Return)

Success Ret with
OFN in AC1

e @::.ba.t

oDz

70

SPT Tb

Add new OFN to

te & Friends

=(ERR-QPNXIO

Mark; As Now

For SPT Entry

\

Access & Stor Adr —~ SPTH(OFN)

Stor Adr -~ SPT(OFN)
Str. No. ~ SPTO(OFN)
PGTCAL

It This Directory on This Str.
Already Has Open Files, Store
1ts ALOC1 & ALOC2 Index
Into the SPT Entry. If Not
Make New ALOCT & ALOC2
Tbie Entries.

ASOF6A: Y

Increment OFN Use Catin RH

of ALOCI
!

Update Shr Cat for

OFN in SPTQ(OFN)

!

SETXB1

Map Index Blk
Through PSB Slot

New
index Blk?

Mark OFMWRSB
bit in SPTH so
DDMP will
migrate the pg

o (ERR-OPNX16) !

1

RELCXB
Reilease (Unmapi "'"‘{ RETURN
Index Blk _‘-)

DsKsQl

SEQUENTIAL i/0-DSK
(String & Byte Dev Dep Code)

Get Byt No. of
Cur. Byte From
FILBYN in JFN BLK

Val < Tot File Length
FILBYN < FILLEN

Has Window

No

No

Set EOF Flag
in Status Word

(Retuen)

SETWND

Been.Set Up
?

After Decremanting
Bytes Left in Cur..Buf
Vaiue > 0 ?
{ie. (FILCNT) 3> 0)

Get next byte
From Window as Pointed
to by FILBYT

]

increm. Byte Count
(FILBYN)

)

Set Window

Pq Up

Cails ASGPAG .
To Assign a

JSB Page

Clears FILCNT

NEWWND pSD2
Get New Pg in
Window Pg.
Set FILCNT to

No. of byees in a Pg

Bytes Left in
File < Bytes
in aPg

Yes

Set FILCNT w0
No. of bytes Laft

in File

sD1

Has 3 Window
Pg Been Set
UnZ,

SETWND

Assign Pg
from JSB
Soacs

!

NEWWND pSD2

Get Next
Pg into
Window

]

Deposit User byis
in Buffer and
Increment FILBYN

!

FILBYN 3 FILLE
Size of Pile
Grown ?

Set EOF Flag
Update FILLEN to
New Lengthk

Y
UPDLEN

Update OFN Langth
in OFNLEN Tbi

Create Pg
of Zeros

Y

Disk Dep Code to
Update Window Pg
{Movas 0 Next Page
of File)

NEWWND)

Sat Flag to Say
Allow Pg Tbie
Creates

!

If FILBYN > FILLEN
Set FILBYN to FILLEN

Routine to Convert Your JFN, PN to
OFN, PN. Creates Long File Pg Table

if Legal and Requested

QMOCHK

Chk That
Structure
Still Mounted

Error R)
rror Return

1s Pg Currently @ hanging NEWIL.FP
Mlppv;d “:'Q"' Yes Pg Tables Chanye Pg
e {Index Biks) Table for
? Long File
No '
SETMPG
T o If Error,
nmap Err-Return
Page in Window JFNOF2: | - -
v Set Up [
OFN,, PN 0~ FILCNT |
JENQFS
Get OFN,, PN
For This Pa _ é
Ervor
Error Yes in
Return Trying to Create ERR-10X5
? a Long File
No Y NEWNA1
Yes
Does int:ht:;:m Give User
Py No To Fils a Fake Pg Stora Pg No. in
Exit? 2 of Zeros LH of FILWND
Yes Yes 1 NEWWNZ
SETMPG Store Pg Adr in
FILBYT & Bytes
Map the Pg . !
into Window Per Py 'm; FILCNT
Yes ADJCNT
[t
Writin-u>-— I;’“‘*‘ Adjust FILCNT it
? o FILBYN Not at
No Beqinning of Pg

e NEWNAT

\—

sD2

-

Mo @ Yes

1
(Return |

CLOSF - DSK
Dev. Dep. Code

Unmap Window Pg

| Return Space to JSB

Free Space

(cNTLNG)

Y

i

1
GETLEN

Update FILLEN
Before Close

!

If Opened for Write and
Have a Window, Update
FDB Entries, FBBSZ,
FBMOD, FBSIZ

Long
Fi’le Yes

No

Write Index
Blk to Disk
if Modified

)

RELOFN p CD2

Reieass OFN

DS

—

CNTLNG
Close

Long
File

KCLO

Update FOB
Last Dir Change Time
(If Open for Write)
Quota Info
Pg Count for File
Byte Size, Mode, Size
in Bytes

1

DSKDV

lestu
Excess File
Versions

)

UPDDIR

Update
Directory

1

Decrement OPEN

File Cnt for Str.

cD1

73

Get OFN of
PG Tabie 0

!

RELOFN pCD2

Release OFN

STR
Dismounted

Count all
Pgs in Use
for File

—

SETMPG

Unmap Super
index block

V

RELPAG

Return Page
10 JSB Free
Space

1

RELOFN p CD2

Release OFN
of Super-

Index Blk

CLOSF-DSK (Continued)
Release OFN Delete Pgs

UPDOFN pCDS | Yes XB Been Mark Oelete
Writa XB [Modified Pgs Flag
to
DISK
L * -
GETSHR
Get OFN Shr Cat
f; SPTO Thi
rom : Not Last Close
of OFN
RELOF®6:
A
ny Yes Decrement OFN

Sharers
?

Shr Cat in SPTO

NOSKED

DASOFN pCD4

If This is the

Deassign OFN
Frozen Writer of

the File, Turn Off

The Writa Bit
OKSKED SETXB1 —

Map XB into Y

PSB Ma
Return L { Return)

\
Touch Index Pg
(So Will Be Brought
Into Core if Not
Already in Core)

. Y
SKPNWR pPf9 3
If Writes in Progress
for XB, RDISMS
with Sked Test,
Pg =, DWRTST
Y
Lock XB in CST1
So Won't Get Written

I

(2) e

cD2

CLOSF.DSK {Continumﬁ

SCNOFN
Move All of Setup to Check
Pas to Disk All Ptrs in XB
SCNOF3: lf- 1

ound Some

Pgs & Want to

Deiete
?

immediate
(1}

Yes
Update Quota
PGLFT
Scan XB & Reiease
OFN Onily Goad Pgs from
Marked as Bad Disk Bit Tbi
in SPTH Clear XB Slot Whether MOVOSK nCD4
? Pg is Good or Bad Move Py
OFNDLN: Y No to DSK
Scan XB & Release
All Pgs from Disk SCNOF4:
Bit Tbl for Str and ;
Zero Each Pg's Siot
in XB No
| T)
L
RELOF7: | DWNSHR
SKPNWR pPF9a
Decrem. OFN -
Shr Cat in SPTO Wait for Write
(BUGHLT if Cnt to Complete
Already 0}]
DASOFN pCD4
Deassign OFN
REMFPY
Flush Core & OFRQ
Drum Adr.
Put Pg on Top
DEDSK of RPLQ
D.::;M AL Delete Disk Adr Yes '
? of XB from Bit
’ f;
No Table o'r Str APCST
(_RELOFA > Fores Disk Adr
RELCXS . Back to XB
Release Temp
Mapping
cD3

75

CLOSF - DISK (Continued)

Maove File Page
to its Home on Deassign
Disk _ OFN

l —@vosx (oasorn)

[T SKPNWR pPFoa| 1
RDISMS if
Write in 0> SPTH (OFN!
0+ALOCX Field
in SPTIOFN!

AGESET -
Page Unassigned No Mors Files Open
Make Pg in Use Flush it for Dir., So Clear
ALOCT & ALOC2
Entries
Y
SWPOTO pPF14 Get DST ‘
Entry -
Swap Pygs to . 0~ QFNSHC
Disk. Remove Decrement Open
Pg from CST3 File Cnt
Entry
. Deiete from
Y DST Tble Unlock Pg in CST1
Return v
DASDRM

SWPINW pPF10 Deassign < Return |

- Swap Py into Core Drum Adr
& Wait for Completion ‘

‘ Return)

cDa

76

CLOSF-DISK (continued)

UPDOFOD

OFN"
on Disk or
Unchanged?

OFN
Modified?

Yes .
UPD8BTB No
Update Bit SETMPG
Table Map index Blk
t Through PSB
UPDOFO : *
Write index Set up to do
Blk to Disk chksum for XB
Unlock OFN Puf Qisk Ad::s of
Existing Pgs in XB

Slots & Store
Checksum in XB

— 3

UDSKIO pPHY1
Write XB to Disk

|

MSETMP
Unmap index Block

~

CDS
77

78

CPENF-DISK Comments

(1) OFN bits: O=read, l0=write, ll=thawed, Ol=restricted
(2) For a long file, the OFN of index block g is

remembered in the JFN blk and used as the identity
of the file by the ENQ/DEQ facility.

79

CLOSP-DISK Comments

(1) All storage addresses pléced in an index blk have the
pointer type field set to immediate.

80

MTAOPN

MTASQI

MTASQO

MTACLZ

JSYS's CALLS
MTA DEPENDENT LEVEL

Magtape Opening of a File

Magtape Sequential Input

MTAIRQ - Queue Up Specified‘IORB
Magtape Sequential Output

Magtape Closing of a File

81

oMl

SM1

sM2

SM3

CMl

82

OPENF -~ MAGTAPE
DEVICE DEPENDENT CODE

Called via Contents of
OPEND (MTADTB}

Accaess Bits
Specified?

Is Drive
On-Line

_ Error

If Dump Mode,
Opened for Rd &
Write

Mark Unit Open in
MTASTS (Unit =)

If Writing,
Unit Write
Logked

om1

83

initialize Per Unit
Storage and Figure
Bytes Per Word

!

Store Magtape Parameters

Density —~ MTDN

Parity - MTPAR

0 — FILCNT, FILLEN,
FILBYT (2)

!

Init Units IORBs

Init MTBUF & MTCUP

Store Prog. Name & Logged-in
Dir. Number in UDB

[

Unlock Unit
in MTALCK

MTAASB

Call ASGPAG to Assign
JSB Pgs for 2 Buffars,

Each of Size Rec. Length.

Store Adr of Buf Pgs in

List Pointed to by MTBUF

MTSIQO

CLRINP

Zaro FILLEN,
FILBYN, FILCNT

Mark IORB
As Free

Step Buffer No. in
MTCUB for this Unit

L

Called At JSYS Level
Through BIND (MTADTSB)

_UPDSTS
(Update Status for |
[This Unit (If Last

Function Not a Read)

CHKERI

Chk IORB far
Ervors. (Ret if s0)

FILBYN > FILLEN

MTIRQI pSM2
Queue up any Free
IORB’s (Ready for
Filling)

Yes

GETUBF

Get next IORB for User

to Empty.If Need to Blk,
Setup Sched Tast:

IORB Waiting for, MTARWT

SEQUENTIAL INPUT — MTA
(STRING & BYTE DEV. DEP. CODE)

Chars

in IORB
?

Transiate No. of
Hardware Bytes
to User Bytes

!

0 — FILCNT
0 -~ FILBYN
No. of Bytes in
Buf ~ FILLEN |
Step to Next
Pg of Buffer

MTSQi1:

Any More Bytes
In This Pg of Buf
FILCNT >0

Step to Next Pg of Buffer

Byte Ptr for this Pg — FILBYT
MIN (No. of Bytas Left in Buf,
No. of User Bytes/Pg) — FILCNT

1

increment Buf Pg if Reading Forward
Decremant Buf Py if Reading Backward

MTSQI2: /

Decrament FILCNT
Increment FILBYN
Get Byte from Buffer

Unsuccessful Return

sy

84

Queus up any Free
10RB's for Filling

MITRQQ:
GETCS8

Get Adr of
System Buffer

MTAIRQ

|

' Queue up Specified IORB
IORB

Stilt Active

Frames Cnt = IRBCNT
Char Crit —~ IRBOC
Func Code — IRBSTS
(Adr of List
of But Pgs)~ IRBPB
mrTiraz: Y
For Each Pg in Buf:
1. Put Phy Pg Adein LH
of Each Buf Pg Ptr (aueirs)
2. Call PHYSIO & Dev.
Dep Code to Set up Chan \
Command Word in Xfar
{ Sat Status Bits
RETSKP List for the Pg. o (ORB
GETIRB Y Step I0RB for
Should Not this Unit
Get Next | gioek Store 0 at End
I0R8 of Xfer List Gat Adr of CDB & UDB
- for this Unit
1]
) 1
Store List
Taii,, Hesd ~ IRBXFL PHYSIO pPHY2
) Lall Physio w0
\ ' Queus Request
Get Record Size Return
& Func Code Data Mods, Density,
Parity = IRBMOD \
' MTCHKA,, MTAINT) Return
MTAIRQ ~- |RBIVA .
Queus up \
this IORB
QUEIRB
Y Queus up
IORB
/

85

Called at JSYS Level
Through 80UD (MTADTB)

MTASQO

MTAASB
Assign Buffer
Space if Needed

First Time
FILLEN = Q
?

Byte Cnt
< No. of Bytes in Buf
FILBYN < FILLEN

SEQUENTIAL QUTPUT - MTA
STRING & BYTE DEV. DEP. CODE

ILCNT > 0
Space Leftin Cur.
Pg of Buf

Yes

Qutput Buffer

GETCSB

Get IORB Adr.

!

Step to Next Pg of Buf
Byte Ptr for this Pg — FILBYT
Zaro Buffer Py

Get Record Size & *
Convert to Hdw Byres

MTsQo2:

CHKERO
Chk for
Errors

Yes

No

Bytes/Buf — FILLEN
0 — FILCNT
0 — FILBYN

MTSQ00
Output Butf *
MIN (No. of Bytes/Pg, No. of
— Bytes Left in Buf) — FILCNT
GETIRB MTSQ03: ¥
?"L';‘"“tm:'lf‘ Decrement FILCNT
of _serte Incrament FILBYN

Store Byte in Butfer

No § Successful
(Retlmm }
Unsuccessful
‘ Err-Ret >
sm3

86

Is Record
Too Small

Set to Min.
Size (4 Words)

f_‘__._
MTAIRQ pSM2

Queue Up
IORB

!

0— FILLEN
o— FILBYN
0 - FILCNT

Al
EO‘T Yes | et Error

? Flag

Clear Wait Flags
in MTASTS

Clear Close Func

CLOSF ~ MAGTAPE

Wait for Activity
to Stop

Cnt (MTSTC)
Mark Close in
Progress
Increm Fune Cat
Dump {Used to index into
Mode | @ Table Below)
? Yes Don‘t Fores Out
Last Buf.
| No T
MTACLA:
Abort MTAKIL
Type Kili Al
Close Yes Reqs in Q
No i
MTACLW Any Wait for Finish
Chi if Need to Blk {Any IORBs Still
10REs Leftin Q7) Active Yes | MOISMS

1f so, Return with Sched

Test (Unit No.,, MTAWAT!

Do Next Func in Fol. Table indexed by Punc.
CALL MTRECO ~ Force Out Last Partial Buf
CALL MTCHKE — Chk it EOF's Need Writing
CALL MTABKE — Then Backspaca over 2nd EOF
CALL MTFLSH = Flush Out aii Remaining IORBs

Unit no.,, MTAWAT-=ACI

?

MTACLR

Writing
? Yus

(MTACLR)

MTARLS
Reiease Buf Pgs

!

Clear Status Word,
MTASTS, for Unit

No, Reading

MTACL1

MTPOSO

Sequantisi Reag ~
Go Leave Tape in
Correct Position (1)

y
MTACLW

Wait for Activity to
Stoe.

cm

87

No

Unsuccessful

88

OPENF-MAGTAPE Comments

(1)
(2)

One can open

FILCNT/Count
buffer.
FILLEN/Count

for read and write only in dump mode.
of bytes left to use in current page of

of bytes in buffer.

FILBYN/Buffer byte number user is referencing.

89

CLOSF - MAGTAPE Comments

(1) Since the monitor reads ahead, backspacing to just after last user
record read may be necessary.

g0

REQUESTING DISK/MTA I/0 & INTERRUPT HANDLING FLOWCHARTS
(PHYSIO LEVEL)

DRMIO/DSKIO/UDSKIO - Requesting Drum or Disk Read/Write

PHYSIO - Queue Up IORB Request for Disk, Drum
or Magtape
SI0ol - Post IORB
STRTPS - Start Unit Positioning
STRTIO - Start Unit Transferring
PHYINT - Disk and Magtape Interrupt Handler
DONIRB - Post IORB as Dome
SWPDON/UDIINT - Housekeep for
Drum/Disk Done
MTAINT - Housekeep for Magtape
Done

SCHSEK = Schedule "Best" Seek Request

SCHXFR - Schedule "Best" Transfer Request

91

PHY9

PHY6

PHY7

92

REQUESTING DRUM OR DISK READ/WRITE
(PHYSIO LEVEL)

DSKIO
DRMIO

PAGEM Interface
DRM/DSK 1/0

If Writing, Set
DWRBIT Bit in
CST3 Entry for Pg.

Y

Set IS.SHT Bit and Function
Code into Short IORB (1 Word

Blk in CST5 Entry for Pg)

Y

Gst 1ORB Adr for
Py (ie CSTS + Pg No.)

!

PHYSIO pPHY2

Enqueue
1/0 Request

i

(Return)

Called From UPDOFN for
Writing Out Index Bik.

GETIRB

Get IORB + CCW Block
From Pool. Wait if Nec.

!

Store Disk Adr, Count,
Function & Specific
Status Bits in IORB

I

Store UDISIE in IRBIVA
it Caller Wants Error on
Offline Unit.

!

Get COB & Unit-

Set Up Err

Code of a =1

Get Unit Type & Construct
CCW List & Store in IORB

Store
Tail,, Head of CCW List
int. Routine Adr, UDHNT

in v

| w~oskep |
!
PHYSIO pPHY2

Enqueue 1/0
Request

!

| oxskep |

———— U103 |

(IOR8 ADR,,
UDWDON) ~ AC1
POISMS

Done Bit
Set in (ORB

No

PHY1

23

&mwm
°?

GIVIRB
Reiease this . ‘W
I0RB

y

¢ woxit)

Wait for Done on this
IORB as a Pg Fault

Cail to Queus Up IORB
w for Disk/Drum or MTA Post IOR8

Set Up Local
Stk Ptr

s101

Determine
Chan & Unit
and Post
IORB

Restore Caller’s
Stk Pee

|

Py . - ‘ d
Short Farm Pasitioning 5103 > t0 igwa
10RB (PAGEM)
?
UDSPRQ(UDBDSP)
GETCUB See it Request
| Should Go Through
Get CDB & o
OB From Position Cycie
PAGEM Adr
Get Core Pg No.
From Offset in
CSTS
Store Unit No. Into
CST3 Enuy for Pg.
"l siOR2: >
Add
[Gn Units Dise Tole |- to PWQ
Decremaent Fairness
Turn Oft PHYSIO Count for the Unit .
Pt Channais in UDBFCT
Get Unit's Status ‘Any Reas 10
Word (UDBSTS) Other Cylincders
wPWQ = Q)
No
Add to TWQ
Any ways
S104
Add to
TWQ

PHY2

94

Add Req to PWQ

!

ONPWQ

Put IORB
Req On End of PWQ

Activity Disabled
On This Chan or
Unit Active
?

If There is
a Controiler,
Is it Busy
?

Any Xfers
Pending on Cur
Cvilinder
(TWQ=0)

STRTPS pPHY3

Unit Free
Start Positioning

Enable P!

PHY2s

Here When Request
Needs No Positioning

Si04

\

ONTWQ

Place IORB on
End of TWQ

Activity Disabied

On This Chan or

Unit Active
?

if There is

a Controlier,

Is it Busy
?

ONRET _

SCHXFR pPHY7

See if Should
Start This Xfer

(onRer)

95

Start it
STRTIO pPHY3a v (Skp Ret)
[-]
Start up This ?
IOR8
|
oS

.

Here to Start Positioning
for an IORB

Any Pending
Regs (TWQ=0)
or Unit Active

BUGCHK
Inconsistency
Chk

| |

If There is 3 Controiler,
Set KS.ACT in KDB
(BUGHLT if Already Set)

!

Set US.ACT & US.POS
Bits in Unit's Status Word

Y

SET 10
Clesr All Err Bits in - .
{ORB Status Word
Store Overdue Time
for Xfer in UDB

Get Channei’s Disp Adr
from CDBDSP (CD8)

Y
CDSPOS (Chan Disp Adr)

Dispatch to Lower Lavel
Positioning Function

RETSKP

Succassful Ret

SETOIR

Set Operator
Needed Bit

Y
CLRPOS
Clear Positioning
Active Bits,
US.ACT & US.POS

RETURN

Unsuccessful
Return

PHY3

96

Here To Start I/0
onan IORB

STRTIO

Short IORB

Get STRTIO Exit
Adr from IORB
{LH of IRBIVA)

PAGEM Req No

STRTI:

Unit/
Controller
Free
?

Yes

BUGHLT - Unit
Status Inconsistent

BUGHLT-llleg
Chan Status

Set Chan, Control, &
Unit Active Bits in

CDB. KD8, & UDB
Mark in COB that a Unit
is Holding the Chan

(]
SETIO
Set Up For iO—Clear
Al Ere Bits & Set

Overdue Time
{(Now +17 Sec)

1

CDSSI10 (Chan Disp Adr)

Go Start 1/Q at
Lower Lavel

RETSKP

OSK-UDISIE
MTA-MTCHKA

Yes

No

Executs Routine
DSK~Sers Bits if
Unit Offline
MTA—Sets Bit if
ABORTF on

Successful
No, Offline Rerurn

CLRACT

Clear Chan &

Unit Active Bits

el
, Yes
SETOIR No
Set Operator Unsuccessful

Intervention bit
Clear Overdue Timer

97

PHY3a

Clear US.OIR &
US.OMS Bits {Don't
Need any Longer

for Oper. Intervention)

1

QFFTWQ

Remove Req
from TWG

1

DONIRS p PHYS

Flag as Done

Unsuccessful
Return

Save AC's in PHYACS

Setup Intarrupt POL
(Stares at PHYIPD)

Get Channel’s Disp. Thi
Adr. ie COBOSP (CDB)

1

CDSINT (Chan Disp Tbi Adri
Analyze Cause of Interrupt

Here Whan Int. Dev.
Has Been Determined

at Channel Oep. Level (1)

Yes

INTDON:

QFFTWQ

Remove IQRB from PWQ/TWQ

{CDB Adr Indi- *
cates this) CLRACT

Note No Longer Active

!

DONIRB pPHYS
Post IORB as Done

: |
SCHSEK aPHYS

Schedule Seeks
(1f Needed)
Shut Down Stk Command *

{0 »CS.AC2)

SCHXFR pPHY7

Schedule
Transfers

T D

i

13 This the
IORB We Expected
Fram Either the PWQ

or TWQ on the
interrupting

JU—
(BUGHLT

PWQ or TWQ Incorrect

Set up BLT
Per for ACs

CDBJEN(CD8)

Restore ACs and
Dismiss Int.

No Honor Request

No

DONIRB pPHYS SCHSEK nPHYS
Post IORB as Oone Scheduie Seeks

Here When

IORBTerminates 1

INT2:
OFFPWQ CLRPOS Chan Yes
-~ . Busy
Pull From PWQ Clear Positioning Flag ?
INT3: No

XINT

Clr 2nd Command
Active 8it (CS.AC2) SCHXFR pPHY7
+ Seheduie Transfers
QFFTWQ DONIRB pPHYS
Pull From TWQ Post IORB as Oone
PHY4

INTERR

Error

Y
Bik Setup for e

Unit?

Unit
Transferring

Yes

Set Err Rec.
Bit for Chan.

ERRSET

Create Error Blk

.

UDSERR (Unit Disp Adr)

Invoke Error Retry

Retry
in Progress

99

No Done with
Recovery

Clear Err Rec
Bit if Xferring

(INTDON)

PHY4a

Hou to Post an IORB Compiete

oo)

Set Done Fiag
in IRBSTS
Set Error Bit
S .
Yes IS.ERR in IORB
No
ERRFIN
Terminats Err
Recovery if Needed
DONIR1:

Cartain
Err Bits Set
in IORB Yas

Get Int Disp. Adr.

~m Erom Long IORB Entry

(RH of IRBIVA)

Set Error Bit, SWPERR, in

1 Short IORB for PAGEM

UDINT pPHYS8 or
MTAINT pPHY9 or
MTDINT (Dump Made)

SWPDON pPHYS

Notify
PAGEM

Rat

PHYS

100

Do Dev (Disk/MTA)
Depesndent |ORB Done
Code. {The Two MTA
{nterrupt Routines
Perform the Sama
Cleanup Tasks)

|

Ret

et SEK1: Y

(ot st e

l If Chan in Maint Mode, ch

KDB

Exist for This

Unit
?

Any Xfars
Pending on Cur. Cyl.
{Unit's TWQ #0)

| Reset Rd Pref
Cnt (1D15)

Mark Reads
| Get Preference

Get Cylinder
of Request

Get Praferance

Get Best Req & Remove
it from its Position in the
.PWQ to the Beginning

of the PWQ

Waiting
far Operator
" ?

Ne

STRTPS pPHY3

Start Unit
Positioning

Scan Algorithm with
Read Pref Remembers

‘Best’ (2}

101

Yes
- "
Secan Algorithm
Remembers
‘Best’
Y
Move Req from PWQ to
TWQ & Advance Prr. SEKS: |
| -y A
SEK2: y
Get Next
IORB
Request
PHYE

SCHPOS

Controller

Fres
ONTWQ
Y | e Append to
pos1: Y ™Wa
[Get Mead of PWQ] “
OFFPWQ
| Pull Request
from PWQ

Yes, Scan Other Units Yes, Try

Other Units

s POS5: .
L Gat Next Unit I

POS3:

Back
to Qriginal
Unit

Unit
Prasant &
Avgilable

Unit Have
Xfer Reqs
TWQ+=0

Any
Pasitioning

Reqs
?

No

Yes

Save Current Unit
Per in KDB

1

STRTPS pPHY3
Try to Start

Yes, See if
Anything Else

PHY6a
102

"Decrement

Fairness Cnt

Exhausted
4

Command Stack
Scheduler

Yes

init to Very Large
Latency & No
‘Best’ IORB -

Unit
Unavailabte for
Xfer lie Oper
Intervention or
Rewinding)?

Set up Min
Latency
Can Handle

!

UDSLTM (Unit Disp Thi)
Cait Oev. Dep Code to
Get Best Latency Req
From All Xfer

Requests for the Unit

1

if Nonskp Return,
BUGHLT (Unexpectad
LATOPT Failure)

—

SCHEDULE TRANSFER

| Reset Fairness Cne¢
(1040} in COBFCT

Time to Round
Robin

103

LTM2:

Better
Than Current
“Best'"?

Yes

l Get “Best” Choice

]

ONFTWQ

- Move to Head
of TWQ

STRTIO pPHY3a

Attempt to Start
1o

Save As
Current Best

No ,

Stap to Next Unit

Y

Chan
¢ C

Yes

Stacking
?

pHY?

XFRO
pPHY7a

Round Rabin

STK1

pPHY7b

Enter Command
Stk Scheduler

XFRIDL
pPHY7s

Now {dle

< XFRO

Fram Last Active Unit
(Kept in COBCUN)

Setup to Continue Scan

- XFR3: ™
CxFRz) | sten to Next Unit |
XFR1:
Looked Any
. at All Units Such Unit
No on Chan No ?
GERioD-= ¥ -
Blk
Reset Fairness Cnt Typea
{1D40) in COBFCT ug:a No
Yes
Return
Need to
Chk Home Blk &
Special IORB
XFRCHB: Yes Present ?
it Unit Available,
Move Special IORB No
to Head of TWQ
' " TWQ+0 No
XERX & Umf7 Aucil
Try to Start 1/0 for
this Unit Yes CXFR2)
Call STRTIO pPHY3a
XFRX
Try to Start 1/0
v for this Unit
® lcail STRTIO pPHY3a
Yeas
Puil IOR8 from TWQ
Indicate Hard Err.
Post as Done (DONIRB
pPHYS) No
|
PHY7a

104

XFR4:

KDB Active
? Yes

No

XFR7: |
r Get Next Unit

|

XFRS:

Present, Avail &

XFRX

Try to Start 1/0
for this Unit
Call STRIO pPHY3a

Back to
Starting Unit
?

Continue
Chan Scan

No, Try Another Unit

Stack

Chan
Support a
Command Stk
?

Currently
Transferring
Unit
?

Command

Scheduler

UDSLTM (Unit Disp Thi) ‘
Compute Best Latency

| save ‘st 10RE |

Y

ONSTWQ

Move it to 2nd Place on TWQ

Y

STKiO

Stack Command
Call CDSSTK (Chan Disp Tbi)

105

PHY7b

“INTERRUPT DONE" DSK/DRUM DEPENDENT CODE

Pg Have
Swap Error
?

Was This
a Write Oper.
? ’

Ciear Write Bitin
CST3 Age Fieid

Called When Short IORB
Done for Disk or Drum

incremn. PSKED
(Tell Sched Rd
Complete)

]

Stare Rd Done for
Pg State Code in
CSTO Entry

Return

Decrem. 101P I

Fork Waiting

for Write Completion

{(DWRCFL) #(
?

incram. PSKED

If 1QIP = Q (Writes
| All Complsted) ,
Clear DWRCFL

Put Py on Delsted
Queue & Set Pg
State to Deieted

If Error on Write, Clear Error Flag
Mark Pg Still Needs Writing

Pg Reassigned
While Writing? g

Pg Requested
(DSKSWEB=1)

()

)

ONRQ

Put Pg on End
of RPLQ

OFRQ

Put Pg on Top

No of RPLQ

ONRQ

}

Put Pg on
End of RPLQ

Called When Long IORB Done
for Disk (Infrequent Case)

Satisfied Flag -
(PSKED)

Increment Page /0

Swap Error

I Get SPTN of Page

B8UGCHK
| Swp Errin
index Blk
(sweerx)
Pg Have ENDFEFG
OFN Owner IFind Typeof
? No, Pg of Fork Page
Yes 2 Fork v
Dispatch to
Correct
BUGHLT
SWPER3: €]
Y
Ordinary Mark Error
File Yes |inSPTH
?
SWPERX)
FNDFFG
Find Type of
Fork Pags
Dispatch 10
Correct
BUGHLT

PHYS8

106

“INTERRUPT DONE” MAGTAPE DEPENDENT CODE

Called When Non-Dump Xfer Done For
MTA At lmerum Lavel

Int. Received for
Nonactive IORB

MTAIND

No 1 Uniock Pgs &
] Mark Done

(Return ’

MTAINE:

Check Ail
Error Flags

Only Want To Abort
for a Good Reason

Error Bits on
{ie EOF)?

No

MTAIND

Unlock Pgs &
Mark Done

)
MTAKIL

Kil! All IORB's Left
On Queue for This Unit

)

(Return)

PHYS

107

(MTAKIL)

Y

Set ““Abort All IORB’s
For This Unit”
Flag (ABORTF)

Y

PHYKILL

Dequeue All Nonactive

"IORB's From TWQ

for Unit

oy

Mark Alf iIORB’s
as Aborted
(IRBAB Flag)

)

Cali MTAINT
for Each IORB
for This Unit

w

Mark Buffer Ready
Flag (IRBFRI &
Clear Active Bit
{IRBFA)

Y

MULKCR

Unblock All
Buffer Pgs.

Y

Decrement No. of
Requests Pending

i

(Return)

MTAINT is
Being Called
Recursively

108

Requesting DISK/MTA I/0 Comments

(1) The algorithm Edr queuing up a MTA request is:

If the request requires positioning, append the
request to the PWQ.

If the request requires no positioning (i.e.,
Read/Write Forward or Read Reverse) append the
request to the TWQ only if the PWQ is empty.
Otherwise, append it to the PWQ.

109

DSK/MTA Interrupt Handling Comments

PAYINT

(1)

The channel dependent routine (RH2INT for RH20s) s
called to analyze the interrupt. Lower level routines
called by RH2INT (i.e., Unit dependent routines) return
an argument in AC, P4, to PHYINT to indicate whether to
dismiss the interrupt (P4 = @), to schedule another
channel c¢ycle right away (P4 < @) or to housekeep the
current request (P4 > @) before scheduling another
channel cycle. The channel dependent routine also
records error information so that P4YINT can see |if
error recovery is in progress or should be started.

The request to dismiss (P4 = @) is invoked for example
when the done flag 1is on and the channel 1is not
occupied. The request for an immediate channel cycle
(P4 < @) is made when a positioning done interrupt has
occurred and there is no transfer in progress. Transfer
Done requests will require further housekeeping (P4 > @)
by PHYINT before scheduling another channel cycle.

SCHSEK

(2)

The scan algorithm with read preference in effect
performs as follows:

Take the next higher-numbered cylinder read request from
the current cylinder. If none, take the next
higher-numbered c¢ylinder (write) request from the
current cylinder.

If none, take the lowest numbered cylinder read request
from the current cylinder. If none, take the lowest
numberad cylinder (write) request £from the <current
cylinder.

110

JSYS CALL FLOWCHARTS

TTY DEPENDENT LEVEL

TTYOPN - Teletype Opening of a File
TTYIN - Teletype Sequential Input

TCI/TCIB - Get Character from Line's
Input Buffer

TCIO - Get a Character
TCOE - Echo Character
TTYOUT - Taletype Sequential Output
TCO/TCOB - 1st Level: Output a Single
Character - Translate According

to Fork's Specification

TCOY - 2nd Level: Do Links & Formats
for a Particular Device

TCOUT - 3rd LeQelé Do Buffering
and Output 1 Character

TTSND = Send Character to Line

TTYCLS - Teletype Closing of a File

111

OTT1

STT1

STT2
STT3 -
STTS

STT4

STTS

STT6

11

TTYOPN

CHKAPD
Set WRTF Bitif
Append Requested

TTYOP1:

CKJFTT

See it Device
is TTY:

OPENF-TTY

Dev. Dep. Code

RETSKP
Successful
Return

LCKDVL

Lock the DEV Tbis. Lock,

Setup in AC?
Line No.,. TSACT1/2
and MDISMS

LDEVLCK, & Go NOINT

Y
FNDUNT

Get DEV This. Index
for this Unit

Y

DEVAV
See if Device is
Avail. to this Job

" Yes

Store this User’s Job No.
for Line in DEVUNT Thi.

!

Set Open Bit, DV%OPN,
for Line in DEVCHR Thi,

Unlock DEV
This.

Y
(Err Rat-OPNX7)

TTYASO
Assign TTY
if Possible

Unlock DEV This. Lock
& Go OKINT

a9 x

oTTi

!

Uniock DEV This.
Lock, DEVLCK

TTOP3: +
OKINT

!

Setup to Return
with SIZF Bit Set

RETSKP

Successful
Return

Get 1 Input Char
for the Line

SEQUENTIAL INPUT -TTY
STRING & BYTE DEV. DEP. CODE

Get Line No. for
Job from JOBPT

If 15t 3 Char of Dev. Name
are TTY, Get Control. TTY
Na. from JOBPT

e & BKJFN

Lin

Get Char from
RSCAN Buffer

Yes

Call lnput
Routine
in TTYSRV

Yes

Get Dispatch Adr.,
TCIB

Get Dispatch Adr.,
TC!

(Routine that Allows

Transiation)

Line No.

TTYATW

in AC, DEV,

Wait for Attach

Available

y

LCKTTY ‘
Lock Byn. Data for

|_Line {Prevents Deslloc.)

Line
Active?
(RETSKP?)

ULKTTY

Unlock Dynamic ‘
Data for Line

!

Inclicate Error to
Cailer (Sex ERRF Bit)

Y
(Return

QTT

Perform RESCAN
Housakeeping

Use Normail Mode
for TTYs

Dispatch to
TCI/TCIB pSTT2
to Input Char.

ULKTTY

Uniock Dyn. Data
for Line
(Allow Alloc.)

No, (i.e.
400000,, Line)

Setup to Return in
AC, A, Just Byte Size
of Char Specified

at OPENF

1
G

{Char in AC, A)

Gat Char-From
Input Buffer
Called from TTYIN

Dats
Mode Binary

Get Binary Char

(T1CIB) from Input Buffer

Called from TTYIN

? Yes

Echoed

indicate Already

Repeat
Last Char?
(BKJFN?}

Return LF with

No Echo

TCIO pSTT3

Get Next Char
from Buffer

TCI13:
TCITTI
Test for TTY Interrupt

on this Char & Lst
PSI Handle It

Clear Repeat Char Flag
Get Last Char input

Set Flag to Indicate
Binary Terminal Mode

TCiB1:

Echo CR-LF

Call TCIECO
for Each Char

TTRAIS

‘Raise’ Input

Char it Nec.

| |

TCIECO

Echo Char

if Necassary \

C TCR)

Save Last Char in TYLCH
in Dyn. Data Block for Line

Y
RETSKP Charin T1,

Successful Return STT 2

]
TCIO pSTT3
Get a Char

Y

TCITT!

Chk for TTY Int.
& Let PSI Handle it |

Was

itaTTY
Interrupt
?
"No

Setup to Return in
T1 Char. + Parity

Do Deferred

TCIECO) Echo if Nec.

Echo Flag On
% Char Needs Echg
?

Yeas

Input Reguest Means
tmplicit Clsar of
CTRL/O so Ciear
CTRL/Q Flag, TOFLG

{

TCOE pSTTS
Echo Character

1
)

Will Echo Char if

Not Echoed by Sched.

Get Char From

Line Input Buffer

Cailed from TCI/TCIB

| NoOskeD |

Any Chars

TClO1: Make Sure No Other

in Line's input

No

TTICNO:

BUGHLT if No
Ptr. for Char.

!

Step to Next Buffar
if at End of Current Buf.

1

et Next Char. &
Store Updated Ptr.
in TTIOUT

!

Reduce Cnt of Chars
in Buffer

Buffer
Empty?
TCICT=0

Wait

a Fork Waiting
or this Line

Save Data Mode

Record this Fork is
Waiting for TTY
(in TWFRK)

Indicate No Forced
‘Wakeup in TTFWK

[

TTRLBF

Release
Buffers

!

SNDXON

Send XON if
Needad

Succassful
Return

Dispatch to
Function Table
TTXXVT

at Offsat,
. TTVT 32
(FE Disp. Adr. = Ret.)
(PT Disp. Adr. = TCIPTY
{Input Char.))

Y

Perform
Housekesping
Tasks

Y
ULKTTY

Uniock Dynamic
Data Blk for Line

|

Gat into AC1
Line No.,, TCITST|

& MDISMS

Fork is Waiting,
Then Go Into Input

TCIF1:

it N

Yas
This Fork Dweemem

?/ I

ULKTTY

Release TTY Lock
& Go OKINT

!

TTERKT

Resolve Conflict by
Haiting Fork if it’s
Infarior or Putting
itin Fork Wait

if Not

e

Non-skip Return
to Raverify TTY
in Case We Blocked

Non-Skip Rat to Say
&tﬂ-ﬂ—) a Block has Occured

STT3

116

Qutput 1 Char
to the TTY

AC, JFN, Hold
\ 400000, Line No.
or-1?

Yes

Dispatch to
TCO/TCOB pSTTS

If 15t 3 Char of Dev. Name to Output Char

are TTY, Get Controlling ‘
TTY No. from JOBPT

ULKTTY

’ Unlock Dynamic
Data for Line

Setup to Send Out in
AC, A, Just Byte Size of
Char Specified at OPENF

|

Get Dispatch Adr.,

TCOB
Gat Dispatch Adr.,
TCO
|
Line No. TTYATW
in AC, DEV, -
. ’ Wait for
Avan;able Attach
)
LCKTTY
Lock Dynamic
Data for Line
ULKTTY
™1 Uniock Dynamic
Data for Line

Y

indicate Error to
Cailer (Set ERRF Bit)

Y
{ Return >

117

SEQUENTIAL OUTPUT - TTY
STRING & BYTE DEV. DEP. CODE

Cali Qutput
Routine in
TTYSRV

Allow
Translation

. STT4

TCO - 1st Level - Transiate According to Program’s Desires
TCOY - 2nd Level - Do Links & Format for a Particular Device

TCOUT - 3rd Levei -

Do Buffering, atc.

Output a Single Char.

1st Lovel: Called From TTYOQUT

I Save L

(Tcos)

\

Yes

Get Low Order
7-Bits of Char.

in Effect for
Echo?Only

Echo Character
Cailed from Sched.

TCOoB1:

Y

1st Level: Called From TTYOUT
Qutput a Binary. Char.

Get 7 Bits of Char.
& Parity

1

TCOU1 pSTT7

Qutput the Char.
Without Adding Parity

——)

TCOE
i!
if in Page Mode, Clear

Line Position Within
Page to Prevent XOFF

Char.
in Control
Groups
?

Yes

No

ransiation

Get Qutput Control Mode Bits
for CTRL Char,

00 - Send Nothing

01 - Indicate, ie. T

10 - Send Actual Code

11 - Simulate Format Action
(For Escape, Usa S)

for Echo and/or
Qutput Required,
?

C Tci8)

Yes

TCOY pSTTH

Call Level 2 to
Qutput the Char.

Flush
Char.

ba=(TCI1C)

| Get Char. into AC1 |

Yes

(00 Case?)
?

STTS

118

TC18

TC1D:

Convert Char. to
Printing Equiv.

]

Get T Code & if
Echoing (IMECHF = 0),
Incr. LINKF Flag

Y

TCOY pSTTE

Print Indicator (i.e.T)

i

TCOY pSTT6

Print Char.

I

If Doing Echoing,
Decr. LINK.F Flag

>

TCOY

Y

2nd Levei: Called from TCO/TCOE
Handle Dev. Idiosyncrasies
and Character Accounting

Save Registers

Yes

)

TCOUT pSTT7

Send Char. Out
Directly

lmmsdiate

Echo Char.

(IMECHF # 0
: ?

Linked

Char?

(LINKF %= 0)
or

Full Duplex

TTY

?

)

Yes

Upper
Case Letter
) ?

" indicate

On
?

Bit, TT%UQC,

m
TTOHA

Account Spacing
Performed by
Half Dupiex TTY

if Lower Case
Char. Convert to
Upper Case

TCOP

Output i Char.
& Account Space

5T Yes, Echo CTRL Funec.

Use Char..ﬁdc to index in CHITAB
to Pick up Disp. Adr.:
TCOUT pSTT?

oF
Format Routine (ie for CR, FF ate.)
(Later Cails TCOUT)

Step to Next
Position on Line

TTCO6:

TCOP

Qutput Char.

& Account Space

i

lReston Registers

Y

STT6

119

Eall Routines to

Output CR & LF
& Reset Line Position

TCOUT pSTT7

Qutput Char.
(3rd Level Outnut)‘

Y
(Return)

TCOUT

3rd Lavel: Cailad From TCOY/TCOB_
Do Buffering & Qutput 1 Char.

Parity Bit .

Do Parity Logic 8y
Executing Instr. in Thi.

(Gcotco)
[

Spacial Sched Entry Point When
Entering from TTEMES

If Parity Bit Needed
Far Char., Do Parity Logic
By Executing Instr. in Thi.

1

Step to Next Buffer
if at End of Current Buf.

!

Store Char. in Qutput Buf.
Updated Ptr. in TTOIN
& Updated Cnt in TTOCT

Turn on DLS Chan.
& OKSKD1

S

C Tcous)

Go Stors in
Output Buffer

Needed for TIXVT
Char at Offset
Entered From 5"
TC08 ? TTVT12 TTXXVT
Y at Offset
TCOU TTVT12
TTLNK3
Scan Link Word,
Sending Chars.
to Lines Specified
TCOU3: L™ 1
- CTRL/Q
Typed or Feturn
TY Lin Yes
?
No
TCOU6
Wil Char. n th Setup Sched. Test Word
Fit in Output o osey, Line No.,, TCOTST
Buffer No) No & MDISMS
Yes
TCous Yes :
Indicate Failure to Sched. -
. (-1 to TCOEER)
Line a
PTY & Not \
Opened Yes ’
Feturn)
No
NOSKD1 & Turr|
Off DLS Chan
Buffers Exist TTGBE -
(TTOIN # 0) "No | Try to Assign
? Needed No. of Buffars
Yes

STRTOU

Start Ouzput to Line if Needed
Dispatch to Table
TTXVT
at Offset
TTVTi3
(Disp. Adr = STRTO1 for TTFEVT)

Store Byte Ptr. (to

New Buf) into TTQUT

Setup Sched. Test Word
No. Needed,, TTBUFW
& MDISMS

QT

Start Qutput to
Line if Nec.

STRTO1

TTSNDO

Turn

Send Char. Routine
NOSKD1

Turn Off DLS Chan,
Cail TTSND pSTTS
On OLS Chan.

MsrAawma

Callabie from
Non-P1 Context

TCOUS

Send Char. to Line
Calied at Interrupt Level, or
in Sched/Process Context with

TTSND

Line
Doing a
SENDALL
?

Chars in .
Output Buf.?
(TTOCT = Q)
?

TTY tnterrupts Disabled

Housekesp
SENDALL Variabies

Clesr Output-Active Flag I._.

Get Next
Char.

Cosnoz

|

(Return)

Clear Outpur-Active Fiag |

Y

CLENUP

Get Buf Ptr from
TTOQUT. (BUGHLT
if No Ptr.) & Save it

Qutput Buifers

Buf. Requested, Put

{

a Word in BIG BUF
with Bit TTOIRQ Set

Step to Next Buf. if
at End of Current Buf.
& Update Ptr. in TTOOUT

(Sched. (TTCH?7)
Will Find it}

Cail TTRLOB to Reiease

If Int. On Empty Qutput

!

Get Next 9-Bit Char. &
Reduce Cnt. in TTOCT

Function
Escape Char.
>

Page Full

Function
?

- No
] Get Char & Parity BUGCHK
& a : d
SND-Unrecognized
(Low Order 8:8its) | [T on0-"

!

Call Dev. Dep. Code t0
Send it to TTY by
Dispatching to

TTXXVT
at Offset

TTVT23
(FE Disp Adr = TTSND1)
(PT Disp Adr = Rat)

Start Up a Line Xfer
via the DTE20

DTECHO]

Output via
Secondary

Set Waiting for 11 Done
& Line Active Flags
increase Cnt. of Bytes in 11

| Simuiate CTRL/S
(Set TTSFG Flag)

STT8

121

1

Setup Nec. Args
for Call to DTESRV

DTSNGL __ pDTE1
Go Do a Singie Request

Succeed
{RETSKP)
. ?

Dacy. Bytes in-11

Restore Orig. Ptr. in
TTOOUT

ince. TTOCT

INTRST: 'GO. Sched. Retry
,'Nou Not Waiting

for Packet
{ie Clear TTFPK)

!

Get Line No., Time Until
Event (=0}, & Disp. Adr.,
(=TTSN10)

!
TTQAD

Compute Time to Do Function
for Line & Save in TTIME
Save Disp. Adr. in TROUT
Incr. TTQCNT
Set Scan Ptr. to Hare if
First Entry

TTYCLZ

CKJFTT

See if JFN is
for "TTY:"”

(RETSKP

Successful
Return

LCKDVL

& Go NOINT

[Tock the DEV Thls.

!

FNDUNT

Get DEV This. Index
{for this Lina

| |

DEVAV
Sae if Devica is
Available to this Job

CLOSF-TTY
Dav. Dep. Coda

GTCJO8

Get Controlling Job
for this TTY

Was
There One?
(RETSKP?)

This TTY
Also Assigned
?

TTYCL4: Y

Uniock DEV This.
Lock, DEVLCK

(ERR RET-DEVX2)

Na, Shouidn’t
Happen ’

Deailocate Bymmic
Data for this Line

Succeed?
(RETSKP?)

TTYCLO:

Indicats No Job Owns
Line in DEVUNT Thi.

TTYCL2:

{Unlock DEV Tbls.
Lack, DEVLCK

!

OKINT

1

Indicate Line No Longer
Opened (DV%OPN Bit)
in DEVCHR Thl.

If Suppose 1o BIk, Setup
AC1/Lina No.,, TSACT3
and Set BLKF Bit

!

Unlock DEV This.
Lock, DEVLCK

Y

OKINT

RETSKP

Successful
Return

~ T

e

Unsuccassful
Return

SCHEDULER TTY INPUT ANALYSIS & STORAGE

TTCH7 - Moves Characters from the Big Buffer
to Line Buffers SCHTT1

TTCHI - Initiates a PSI Interrupt if

Needed, Echoes if Appropriate
& Wakes Up Waiting Forks SCHTT2

123

124

SCHEDULER TTY INPUT ANALYSIS & STORAGE

Sched. Short Cycle Task
Moves Chars from Big Buf
to Line Buffers

Do
Next
Char.

TTPSRQ

Go Wake
Up Process

Do Dev, Dep Functions for Lines

TTCH7X:

Some Scanning

Yes

incr. Ptr. & ifat -
End of Big Buf., Set
Ptr. to Beginning

!

Get Next Entry
(Line No. + Char.)
Decr. TTBIGC Cat.

1

Decr. Line's Cnt. in
TTFBB8 of Big Buf
Entries

!

SNDXON
Send XON if Needed

Char.
a Requaest for
PS! int on Qutput
Buf Emp!

Carrier
Transition
Bit Set
?

Receiver

No,

Shouidn't
Happen

Transition
Bit Set
?

Carrier
On?

Get 7 _Bits of Char.
+ Parity

TTCHI pSCHTT2

Put Char. in Lines
Input Buffer

!

-] at Offset

Setup to Check 8
Lines for Special
Requests

DOLINE

Do Line’s Req if it’s
Time to Do it, Where
Disp Adr is in TROUT
in Line's Dyn. Data Btk
Decr. TTQCNT if do Func.
Housekeep Message Btk
or Qutput Buf if Nec.

!

Get Next Line

Start at this Line Naxt
Time (Store it in TTCQLN)

SeE T:T(;ON Flag &
Dispatch to Thi
TTXXVT

TTVT17
(FE Disp Adr = TTCON1))

Clear TTCON Flag &
Dispatch to Tbi
TTXXVT

at Offset
TTVT17

(FE Disp Adr. = NTYCOF)!-Z,

Called from:

TTCH? if Char. Found in 8ig Buf;
initiates a PS| Interrupt if Needed;
Echoes if Appropriate & Wakes up
Waiting Forks

STADYN

Chk for Fuily
Active Line

Permanent

8lock Yes

?
o

>

TTCHI2:
GPSICD

Get PS] Cods
for Char.

Iner. lnput Chars
(NTTYIN)

|

Clear Err. Flag,

Fork
in Input Wait
for _;.im

Turn off CTRL/S Flag
if Prasant

Set Echo Char. Flag for
TCOUT(-1 to IMECHF)

If in Page Mode & Char. 2
XON/XOF, Dispatch through
TTXXVT +TTV10/TTV20

to Do XON/XOF & Ref to TTCH?7

TTCHIT:

Binary
Dats Mode
?

input Buffer
Full

TCOEF%R Yes
. No
TCOE pS1 TS
Echo CR TTRAIS
v Raise for Echo
if Nec.
1
Get LF
l.__——l TTCHIS:
Clear Err & Echo Flags,
TCOERR & TTCHFL
TCOE pSTTS
Echa Char. vis Normal
Output Stream
Clr. IMECHF)
& Note Char. TCOUT Fail
Nat Echoed

?

Cail SCDTCO pSTTY

to Echo a Beil

Send XOF to 1TTY
if lnput Buf. Cat. within
8 of the Max.

1

1f Char. Caused Buf. to
Become Fuil, Request
PSI int. if Job) Enabled
for Input Buf. Fuil Int.

Set Char. Echoed Bit
(Most Sig Bit of 9-8it Char.)
& Clear IMECHF

Assign Buffers if

Nec. {Ring Bell & Ret
it Fail) Save Ptr. in
TTIQUT

if at End of Buf, Step
to Next Buf.

Stors Char in Lines Input
Buf.

Updatd Ptr in TTHN &
Cat. in TTICT

SCHTT2

126

Fork in
tnput Wait
for this l.ine

Yes

Tell Sched to Unblk Fork
(ie Call UNBLKF) if:
Data Mode Binary or
inp. Buf D32 Chars

Away from Being Full or

Char is in Wkup Class
Specified by Job or

Failed to Echo a Char. *

Return

Line Not Fully Active

TTC7N and/or Has No Controiling Job
Nuil
Char/Ignoring
Chars on this Yes Return
TTY?
No No
+C Yes Line
? Inactive
?
No Yes
Line Yes Go Create Job
Becoming on Line if LOGINs
Inactive Allowed
No
Return
i
Tnactive TTCH73: TTEMS
or Temp Active Get Bell Clear |~ Send Short Message| Send Bell
& Not Perm. Yes (i.e. Beil from & Lose
? Sched. (3)] Char.
No Have TTY ‘
Interrupt Char.
Return
Last TTFWAK
Deferred Inp. Char. Same Force Wake
Char. as Current (So Program Can
? Char, See Interrupt
No, immediate <
4 Yes
TTCLPS TTCIBF Is thers Yas
Clear Pg Ctr. Clear Inp. Buf. Room in TTYs : -
{on Double Int.) inp. Buf
(TTPSRQ
Request Int f
Mp%rs’v:m,:m Smash Char, on
' Top of Last Char.,
iner. Cat. of Ints. \
(TTINTS) (_ Return)

SCHTT 3
127

128

Scheduler TTY Input Comments

 TTCHT

(1)

(2)

TTCTN

(3)

The carrier-on routine for the FE device is TTCOM1.
If the line is in use or a job is being created, it
just returns. Otherwise, it creates a job by the
CTRL/C mechanism (i.e., putting a request in
Scheduler's Request Queue, SCDRQB) before re-
turning.

The carrier-off routine for the FE device |is
NTYCOF., It flushes outputs and issues an interrupt
via the PSI system if process has enabled for
carrier-off interrupt. It then issues a monitor-
internal interrupt via routine, PSIR4, which causes
the top fork to go to JOBCOF in MEXEC to cause the
job to be detachegd.

TTEMES is called at Scheduler Level to send a short
message to a line. If the 1line is active, it
appends characters to the line's output buffer. If
the line is not active, it creates a message-length
dynamic block for the line and puts the characters
into this hlock.

TTEMES calls SCDTCO (pSTT7) to output each char=-
acter via TCOUT to the buffer or message block.

129

130

REQUESTING DTE OUTPUT & DTE INTERRUPT HANDLING FLOWCHARTS

(DTEOPROTOCOL HANDLER)

DTSNGL - Queue Up a Single Character Output Request
DTEQ = DTE Request Queues for RSX2@F Protocol
DTESKD = Start a To =1l Operation
SKVER1l = Process RSX20F Packet
INTDTE - DTE Interrupt Handler
| DN11X = To =11 Done
DEQDTE = Dequeue Completed Request,
Post it, and Schedule Next

One

TTYINT - Complete a TTY Output
Request

DNSNGL =~ Post Single Character Done
DINGME -~ 19 Received a Doorbell Interrupt
DOFRGM = Start a To =12 Transfer
DN1ORS = To =10 Done

TAKLC2 - Process To =12 Done for
RSX2AF Protocol

BIGST2 = Store Character into the
Big Buffer ‘

131

13

REQUESTING DTE QUTPUT
Called From Interrupt, JSYS

Queue Up a Single
(DTSNGL) Char Output Request

{Called from TTSND pS7TT38)

SNGPK1 ™\,
Inactive & Have
Room ?

Unsuccessful

DTSNG3:

SNGPK2
inactive & Have
Room ?

In Sched.
(INSKED = 0)
?

No
Get Interrupt Loc.,
| I——— TTYINT
{To Be Stored Into QINT
Field of a DTEQ Packet)
oTsnae: Y
DTSNG2 DTEQ

Add Line No. & Byte to
Single Packet

Link Packet to DTEQS Queue
if Not Already There

Update Packet’s Byte Cnt
& Fiag Bits (If Fuli,
Set SNGAVL. Bit)

If DTE inactive, Start it
Call DTESKD pDTE2

RETSKP

Successful
Return

& Scheduler Levels

DTE Request Queue

) for RSX20F Protocoi
oTEQ (Catled from DTSNGL,

Sched. & Interrupt Lavais)

Perfqrm Housekeep. on
Args. from Caller

Y

SETRGN
Get Comm Region
Pointers

Yes, éan’t Block

From Sched
(INSKED#0) or
NOSKED
?

ASGNDI

Get a Request Node
Yes | from COMQ Area

ASGNOD

Get a Reguest Node Get One)

from COMQ Area . ?

(Blk. if Nec.)
: Have a COMQ Unsuccessful
HAVNOD: ¥ Packet Adr. Return

Store Caller’s Args into
Packet’s Fields:
QINT, QMODE, QCNT,
QPNTR, QLIN, & QDEV

oreais: ¥

Put Unique Code from
Caller into QCOD

(For TTYINT's Benefit
at int. Level)

oreat: |

Add Packet to End
of DTEQS Q.

DTESKD pDTE2
j———————

Go Start Up the
DTE

" .11 Idie

Routine to Start a

To -11 Operation from
the Top of the DTE's
Driver Queue

Process Protocol Version 1
{RSX20F) Packets

.

DTESKD SKVER1

Set DTE11 Bit in DTESTS &
Active Bit (SNGACT) in Single
Packet

DTEQS
Queue Empty
: ?

DTSNGL Packat!

No (No Formatting
Needed) v
) If Packet Flushed (QFNC=0), SETRGN
Reloading Go to] Get My Comm.
the -11 DEQDTE pDTE4 Region
to Post Packet & Retumn t
+ Get Single Packet’s
SETRGN Byte Count
From Packat in COMQ Ares,

M A i
Get My Comm. Region Setup in PKTADR:

to This -11 HDDEV & HDFNC 'l‘
i & Clear HDSPR @'SKD“D

‘Use Protocol’s Vers. No.
in CMVRR to Pick Up
Disp. Adr in SKDVEC Thi.

Store in HDDAT
MIN{QCNT, MAXINP)

Set Indir Bit, DTE111l in
DTESTS

2Zaro HDLIN PN
DTEQS i
Queue Still
Not Empty Store Datum from
? QPNTR into HDDT1
Set DTE11 Bitin DTESTS
(-11 Receiving Bytes)
. STOREG: -
Vectar to Dispatch Adr Store 1D10 in HDCNT &
& S QUIN (i 0] into HDLIN
{Disp. Adr. = SKVER1 for
SETRGN
Get My Comm. Region
Get a Packet Byte
Count of TDIO
Build 8-BitByte Ptrto
RSX20F Formatted Packet
Z2aro CMFWD (i.e.,Byte Mode) BT ch —
DTSTRT: Y Go Start the -11
(Ring Its Doorbeil)

Store Packet’s Byte Cat in
cvacTt !
Iner. To- 11 Catin CM1IC Return
Store 3-Bit Byte Packet Ptr.. C_LD
in DTEEBP (in -EPT Tbl)

INTDTE All Primary Protocol Interrupts @
Come Here After AC's Are
Stored by DTETRP Routine
DTEPRG: | Clear DTETDN Bit by CONO instr.]
Spurious DTREST
DTE or
Reloading Yes, Reset the DTE
-11? Shut Off Recieving
No This -11 Any Flavor of
Message, DODMSG:
POW11: Get RSX20F’s
11 DTEPF1 ‘ Processing Adr.,
Power o 1T Abous ’ SUGCHK -To 70 D108
3i . ;
Yes Ringing 11°s Doorbell OTEDNE Df.mc Received
with No Message P
No TO11DN: Dismiss DN 10
- Intarrupt pOTES
Clear -11 Done Bit
by CONO instr.
T .
-1 i . DINGER Reload the Machine
Done ~Yes [SeTRoN
No Get Comm. Region
Yes “To" Get RSX20Fs Disp.
-10 Adr., DN11X
Done .
?
TO100N No DNI1X DTREST
pDTE ’ Resat this
-10 DTE
Doarbeli DINGME
lnu;mm Yes, pDTES]
=10 was -
No Interrupted Set Reload Say Not Running
Flag, DTRLD a Protocol
(Clear DTRLD)
"To"
=11 Error *
ermination 'y, CLRDTE:
? Tell Job 0 of
Reioad .
S No if DTE inactive &
TO11ER: i+ to LOADYY DTEQS Not Empty,
e to10er: | * Dagueus & Pot
. a p
10 Buggg ';“ Ervor All Requests for this
Ef;ol Yes Schedule Job 0 DTE
. No {+1 to JBOFLG) _
DTEDNE y g
Y «T
Restore ACs

Dismiss
XJEN DTETRA, Interrupt

DTE3

135

Daing To
11?

To-11 Done Interrupt

Clear CMIP Bit
(No Longer Daing
Indirect)

Set To 11 Bit, DTE11
Store MIN[(QCNT),MAXINP]
into CMQCT

.‘r
TSTSGL

Ses if This
is a Single
Packet Gp

@ Dequeue Campleted Request,
Post it, & Sched, Mext Req,

Put Next Packet an
Top of DTEQS Queue &
Get Args from Packet

!

Clear - 11’s Ptr, DTEEBP

!

RLENOD
Free the Node

+

Do Special
Posting

DTESKD pOTE2

Satup Approp. Byte Ptr
if a Full Word Ptr., Set
CMFWD Bit

NOTWRD: {

Store Byte Ptr. into
DTEEPP
Set CMIP Bit (i.e.

Indir. Ptr. is Set Up)

1

DING11
Go Ring the -11

No, Packet Must
Be Partitioned

Update QCNT by No.
of Chars. Alrsady Sent
Adjust Byte Ptr. & Store
into QPNTR

!

OTESKD pDTE2

Go Do Next
Part

Start it

If QINT+0,

Vector to its Disp. | R

it e TS
pDTES

@ Return to Post a
Single Char. Dona

Put Next Packet on Top
of DTEQS Queue

Clear Single Packet Fiag Wd.

#

DTESKD pDTE2
Reactivats the DTE

!

Setup 16-8Bit Ptr. to
1st Char. in Packet

SNGPST: +

For Each Line No., Char Entry
in the Packet, Pick Up the Line No.,
& With Unigue Code = 0, Do the
Post Via Cail to:

TTYINT pDTES

!

Called at Int. Level to Compiete
a TTY Output Request

(Chars. have been sent to

the -11, but not acknowiedged)

GETLIN

Get Proper
Line

STADYN

Get Adr. of Line's
Dynamic Data Area

Line
Becoming Active
or Inactive or
Not a TTEMES
Blk
?

Update No. of Chars,
By No. of Chars. Sent
Store New Cnt in TTOCT

"TTYINT:

Add No. of Chars. Sent
to F.E. Cnt, TTFCT
Clear To-11 Done Pending

Bit, TTFPK
Get Line’s Allocation
from TTIFMC

Line
Have Room
For More
Chars,

Set Line Waiting For
Unbiock Bit, TTFOW

?
Yes
TTYIN2:
CTRL/S

N\ Typed Yes
?

=Y No

Clear Outp;ut Active
_Bit, TTOTP

<

Get Output Prr., TTOOUT |
& Advance if Nec.

{

CNTSET
Adjust Output Cnt,
FNDEND
Go Get Chars,

At N\

Least 2 Chars.

in Output

Buf
?

DTEQ Faiied;
Restore Cnts. &
Arrange Sched. to
Restart OQutput

Add Buf Cat. (TTOCT)
to Adr. of Dyn. Data.

Store Orig. Outp. Byte
Ptr. into TTOOUT

iNTRsT: Y

Clear TTFPK Bit 1

Dao Single i
Store New Output Ptr. Char.
in TTOOUT Get Args:
Get Cnt, of Bytes Found Line No.
Get Int; Disp. Adr (= TTYINT) Time Until Event (= 0)
Set Waiting for -11 Done Disp. Adr. (= TTSN10)
Bit, TTFPK
Store Line’s Dyn. Data .
Adr. into TTYVR2 TLOAD: v

Any
Qutput
Chars. No

Clesr Output Active
Bit, TTOTP & Clean up

Yes
TTYIN3

Y

Get Line No., Cat. &
String Data;
[.DFHSD,,.FEDLS]

Compute Time to Do Func.
for Line & Save in TTIME
Save Disp. Adr. in TROUT
Iner. TTQCNT
Set Scan Prr. to this Entry
if 1st Entry

Y

FIXARGS
Fix Up the Args

DTEQpDTE1
Queue the Request

RSCHED

-10 Recsived 3
(DINGME) Doorbeil Interrupt

Start to -10 Transfer

SETRGN
Get Comm Region

Want
Reload or
Rainit (i.e. Did
-11 Crash)
?

DINGM1: INDRCT:

End of
Indir. Xfer
(DTUD = 1)
: ?

“11's
Indir. Bit
{CMIP) =0
?

DINGM2:

TO10IC
= TO11IC?
(2)

TO101C
=TO111C

Yes

CLARBEL
Clear Doorbell

No

Around & -10
at Max Vaiue
(377)
?

Equalize Count

INDRC1

Is
There a
TO10 in

Progess DINGM4:
?
No BUGINF - To-10

In Progress on
Doorbell

Yes

Set TOIT Bit in Comm
Region (CMTOT) (4)

!

GLRBEL
Clear Doorball

Q Count

Go Reload

DINGER
Yes : pDTE3

BUGINF -

Clear Expacting
Indir. Bit (DT1ID)

DINGMS:

BUGINF - Incorrect
Indirect Setup

DINGER
pDTE3 Go Reload

DTEDNE Dismiss
pDTE3 Interrupt

DINGM3:

BUGINF- To -10

Cats Don't Match

3ad Indir. Cnt.

No

Cnt. of Hdr
(INCNT) = Cnt

Being Sent

{CMCQCT)

(INDRC1)
S ——

>

F

DINGER
pDTE3 .

DOFRGM pDTE7

Go Reload

Start
Transfer

> 0? QCount=0

arror

DTE &

e
< DTEDNE
pDTE3 ;
Dismiss Interrup.

(DOFRGM)

SETRGN

Get Comm
Region

Get Protocol Type &
Dispatch to its “To"”
-10 Xfer Routine

(Disp. Adr = DOFRRS
for RSX20F)

Save Cur. Buf &
Store Next Buf
into DTEBF

+

Set Up Approp. Byte -
Ptr. (Full Word {16 Bits)
or Byte Mode) According
to CMFWD Bit

Room
for Message

in Buf Yes

Set -10 is Receiving 1st
Frag. Message Bit, DTET1F

in AC, P2

Store No. Left for
Subsequent Reads
into DTEBC

if Byte Mode, Get No.
of Bytes or if Not, Word
Cntinto AC,B &

Store Buf Size (in Bytes)
into DTEB1

Routine to Start
a To-10 Transfer

RSX20F Protocol
To -10 Transfer

(seT1)

Store Approp. Byte
Ptr. in DTETBP

SET2: Y

Update Status Word, DTESTS,

From AC, P2

Clear DTEBC (No Pending
-QOperation)

‘| Store Q Cnt (Bytes Left)

into DTEB1
Get Neg. Wd Cnt & | Bit into
AC.,8

Set Doing -10 Transfer (Last
Fragment) Bit, DTET10,
in AC, P2

OTE?7
139

!

Start To - 10 Transfer
by Sending Contents
of AC, B, (Via DATAO
instr.) Qver the DTE

Sending
Count
Over

the DTE

DNIORS

Process RSX20F

To-10 Done.
esidus DOFRGM pOTE7
Cnt From 2
DTEBC Yes | Stare this Fragment

No

Clear Intransit Bit,
CMTOT

Get Cat of Completed

Reg from DTEB1
Get Cur. Buf from DTEBF

DODMS1: Yrmet—

Make Buf Byte Ptr from
Adpr. in DTBFWD

“Have

a Residual
Fune Gk —
(INCNT=0)
No, Get Func &
Dev. from Initial
Packet
BUGCHK
TO10DN - Packet
Too Small
(i.e. < 124)
Get Args from Packet
Store Func with Indir. pDTE3
Bit Cleared in DT1FC Dismiss
Store Dev. Code into OT1DV Interrupt
Skip Spare
Clear INVLD
{Unit in Indir. Word o
is Invalid)

Set Waiting for indir.
Setup Bit, DT1ID

ompleted
Reg. Cnt = 12
or -10 Receiving
Massage

No

QLDFC2:

Fune.
Fully Within
Packet?

Save Cnt in
1 Next Packet
in INCNT

as

Save Catin INCNT
& Line in INUNT
Set Vaiid Unit Bit, INVLD

Indir. Painter with

Garbage Packet
DTEDNE Dismiss
pOTE3 Interrupt

OTES

140

Clear INCNT

Find Local Residual
Cat.

Get Next Function

OLDFC1:

Any
Non-Header

Bytes No, Done

Dispatch to Adr. in Thi,

FNCTBL (S)
at Func, Code Offset
(Disp Adr = TAKLC
for DLS Line Chars)

DTEDD
Fun\
Code =

Yes
o
?
DTENE
No <~ pDTE3

Get Packet Size
& DTE No.

(_TAKLC) Line Chars (for DLS)

TAKLC2

pDTES

Call Procassing Routine

Cereon)

-11 Has Sent Store Char.
Line Chars. DTESTO in Big Buf.

TAKLC2

Sent an BUGCHK - Odd Indicate Data is Char for
Even No. of Byte Cnt. for TTYBUF by Setting DLSRCF Bit
Bytes Line Chars. ‘ Get Dev. Type & Char.
Yes f '
GETLIN

Get Dev. Type from-
DT1DV & Store into
SAVTYP

Get internal Line
No. for this Line

Line Not

) on F.E.
Yes

Clear
SAVOFS

Get Internal Line

No. & Char into AC1

BIGSTO: Y

Dispatch to Tbi.

" TTXXVT
Nor;TTY4Dev, at Offset
on Fune. & TTVT22
Get Line Offset F.E. Disp Adr. = BIGST2
& Save in SAVOFS pDTE10

ISCTY: - ’

Save Byte Cnt in BYTC
& Byte Ptr. in BYTP

AKLC1T:
Subtract 2 from BYTC

(BYTC)>0
?

No, Must
Be At Least
Two Bytes

Get Byte, Line No. & Line
Offset & Type

!

DTESTO

Store in Big Buf.

NnTEa

BIGST2

MAXABC (=TTBSIZ/2)

Called from BIGSTO
to Check Lina Limit
& Store Char.

Beyond Bad
Guy Cutoff

Store Updated Cnt.
in TTFBB

Beyond
Max. Count,

?

SNDXOEF

MAXBBC (=TTBSIZ/4)

Send X-OFF

to Terminal

'

Iner. In Ptr to

Big Buf (TTBIGI)
& Adjust for Wrap
Around if Nec.

!

Store AC1 Contents
into TTBBUF &
Incremant TTBIGC

!

‘ Return)

DLSSX1:

BUGCHK - Big
Buffer Overflow

Dispatch to Table
TTXXVT
at offset
TTVT2S

F.E.Disp. Adr = DLSSX2 >

Big Buf Has
@ESXZ Qvaerflowed

Y

Decrement Big
Buf Cnt, TTFBB

=0
A ~e(_Rewmn)
No

SNDXOF

Send X-OFF to
Terminal

DTE10
142

!

Get Linein AC, C

Get [.DFTOL,..FEDLSI| into AC, B
Clesr AC, A (To the Master)

Get .DFTLO (Turn it off Func.)

into AC, D
1

FIXARG

' Fix‘Arguments

Y

[oTEQeoTET |

Qutput it

Setup When to Restors
Line (1D5000)

Make ita
l.onger Wait
Time (1D600C

e

Get Disp. Adr. to
Call TTTOBL

TTQAD: |]

Compute Time to Do Func.
for Line & Save in TTIME
Save Disp. Adr. in TROUT
Incr. TTQCNT
Sat Scan Ptr. to this Entry
if First Entry

!

DTE Interrupt Handling Comments

TTYINT

(1)

DINGME

(2)

(3)

(4)

The Unigque Code argument of form (2, count) tells
TTYINT the number of characters that have been sent
to the <1l in some call to DTEQ that specified
TTYINT as its return address.

Count = @ implies this was a single
character (DTSNGL was called)
and buffer counts have already
been updated.

Count # @ implies this was multiple
characters and the count must
be updated.

TOl2IC and TOllIC are wrap-around counters of In-
direct Transfers where TOl2IC is maintained by the
=1l and TOllIC is maintained by the =10. If the two
wrap—around counters are equal, it means the trans-
fer finished correctly.

If the difference between the wrap—around counters
ils greater than 1, the -11 has tried to send a
direct transfer before the last indirect transfer

finished or a doorbell has been lost in a previous
transaction.

Receiver sets TOIT equal to 1 1in Sender's section
of Receiver's communication region after Sender
sets @ or increments Q count and rings the door-
bell; Receiver clears TOIT upon getting To=-Receiver

Done (This assures that the Receiver doesn't lose
an interrupt).

143

DN1ORS

(5) The function table has dispatches for such features
as:

e F.E. telling about the CTY

e String data for the CDR

® Line characters (for DLS)

® ~11 Sending error information

® -1l wants or is sending time of day

e Line dialed up, hung up or line buffer empty
@ Set line speed or allocation

® Take ~11 reload information

® Acknowledge all devices and units

® Take KLINIK data.

144

CHAPTER |
EXTENDED ADDRESSING IN TOPS=20

lel INTRODUCTION

fhe information in this section is of a preliminary nature, and
should not be construed as a commitment by Digital Equipment
orp, TOPS=20 does NOT support user=mode extended addressing at
:his tine, The Jsys described herein is available but not
locumented nor supported, The purpose of this information is to
lnform the student of the eventual availability of this feature
:0 user mode programs, as we have already learned about the
ionitor’s use of this hardware functionality of the Model B KL
ITOCESSOr,

teiﬁ;ence:
DECsystem=10/DECSYSTEM=20 Hardware Reference Manual, Vol,
1 Chapter 3, section 4, page 3=233% Tops=20
Paging and Process Tables

lelease 4 of TOPS=20 does NOT support user mode extended
iddressing, Extended addressing is a feature of the current KL.
.sometimes referred to as "Model B"), With this feature, TOPS=20
.tself will use extended addressing to expand its own address
ipace, This is true to different extents depending on whether
.he system 1is running version 3A or version 4, and also vhether
:he machine is running a 2050 or 2060 monitor,

'he main purpose of extended addressing is to allow expansion of
-he previous 18 bit virtual address on the KI, KS and Model A KL
irocessors to 23 pits. Actually, the software is capable of
‘upporting a processor with 27 bit virtual addresses, The design
s described herein i{s intended to support a 30 bit virtual
iddress space, making our high=end products support larger
iddress spaces than VAX/VMS, (VAX supports a 30 bit address
‘pace as . well, but VAX is byte~addressed), Since the code to
iandle the extended capabilities exists within the monitor (for
.he KL), the monitor is the first program built to take advantage
£ the £irmware features,

TOPS=20 Monitor Internals Page 1=2
INTRODUCTION

The implementation of extended addressing calls for the
nsectioning® of the 1large virtual address space, Each section
contains 512 pages, and corresponds to the <traditional 18 bit
address spaces we are used to, The number of sections avallable
depends on the software and firmware capabilities, Current
support is ‘for the KL, meaning 5 more bits for the section
number, Therefore, each process can have 32 address spaces each
containing 512 pages, All sections work the same, with the
exception of section 0, Section 0 references are always in the
traditional 18 bit format, Nonesection 0 references can be local
or global, With local addressing, instructions executed in that
section can rTeference other locations within the section, using
the same old 18 bit addresses and instruction format as always.
Global references need to -supply a ‘full virtual address,
including a section number,

1,1,1 cCurrent Implementation Objectives

The current implementation of user mode extended addressing
tavallable but not supported by Digital) intends to provide the
capability for programs to create and use multiple sections ¢for
data storage, Also, to allow programs to be run in any section,
or in multiple sections, with certain restrictions, These
restrictions are that addresses passed to most Jsys’s as
arguments must specify arguments in the same section as the call
itself,

1.1.,2 JSYS Interface

Each section has a page map, and the page maps for a given
process are pointed. to by the process’ section map, which exists
in the User Process Table starting at location USECTB (540), To
£ind the page map for section n, we simply look at USECTB plus n,
where we find a section pointer to the page map, . The Jsys'’s
which deal with user mode extanded addressing manipulate these
maps., The SMAP% Jsys sets the map for a sectlion or a virtually
contiguous series of sections, The SMAP% Jsys does with sectiocns
what the PMAP% Jsys does with pages, This 1includes the
possibilty of specifying whether the section is private, shared
with a f£ile (files don‘t really have sections, so this specifies
any group of 512 contiguous pages in the file), or shared with
some other fork, or some other section within the current fork,
This indirect relationship is analogous to the indirect mapping
available on a page basis with the PMAP% call, This means that
when the source mapping is changed, the destination will see the
change in the section’s map.

The RSMAP% Jsys (currently unavailable) will be used to obtain
information about the current mapping of sections. This
corresponds to the RMAP% Jsys used to obtain information on pages

TOPS=20 Monitor Internals Page 1=3
INTRODUCTION

w in a section, Some other Jsys’s will be added or changed to
allow certain functions to occur within the extended environment,
and usually these have the letter X prefixed to the name of the
corresponding Jsys. For example, XSIR and XRIR are used to
specify channel and level tables with full 30 bit addresses, so
the software interrupt system can be section iIndependent, Note
that most Jsys calls which allow the program to supply an
argument block address will currently not work if executed in a
non=zero section,

1.2 PROGRAMMING IMPLICATIONS AND METHODOLOGY

The basic architecture of the DECsystem~10 family of processors
up through the KL10 provided an 18~bit, 256K~word addressing
space, This means in particular that:

i1, The Program Counter register is 18 bitss

2, Each and every instruction executed computes an 18e=bit
effective address, The contents of this address may or
may not be referenced depending on the actual

- instruction, but the algorithm for calculating it
(including indexing and indirecting rules) is the same
for all instructions,

[he above s true regardless of the size of the physical core
hemory avallable on any particular configuration, Note also that
>aging (or relocation on earlier processors) will determine it a
>articular virtual address corresponds to an existing physical
vord in memory, but the fundamental size of the virtual address
jpace is a constant, '

uring the design of the KL10 processor, the need for a larger
rirtual address space was recognized, A design was developed
thich provides an extended address space to new programs while
itill allowing existing unmodified programs to execute correctly
n the same processpr, Although most of the essential data paths
'ere provided in the original KL10 implementation, various design
‘hanges caused actual availability of extended addressing
peration as described here to be deferred to the "model B" KLiO
PU,

TOPS=20 Monitor Internals Page 1=4
PROGRAMMING IMPLICATIONS AND METHODOLOGY .

1,2.1 Virtual Address Space

Under the extended addressing design, the virtual address space
of the machine is now 30 bits, or 1,073,741,824 words, Although
one can think of this as a single homogeneous space, it s
generally more useful to consider an address as conslisting of two
components, the section number, and the word number,

0 5 6 17 18 35

! ! ! o
] { section] vord !
! ! 12 bits 1 18 bits [

The word (more precisely word=within=section) field consists of
18 bits and thus represents a 256K=-word address space similar to
the single address space on earlier machines, The section number
€ield i& 12 bits and thus provides 4096 separate sections, each
of 256K words,

Each section is further divided into pages of 512 words each Jjust
as on earlier machines, The paging facilitlies allow the monitor
to independently establish the existence and protection of each
section as a unit,

In order to implement this extended 30=bit address space, the PC
must be .extended to hold a £full address, The PC 1is always
considered to consist of a section field and a word field, and
the incrementing of the PC never allows a carry from the word
field into the section fleld, That is, if a program allows flow
of control to reach the last word of a section and the
{nstruction in that location is not a Jump, then the PC will
"wrap~around", and the next instruction fetched will be word 0 of
the same section, This will in fact be AC 0 as described below,
The consequence of this is that flow of control of a progran
cannot inmplicitly cross section boundaries, In general, it
would be a programming error to allow the PC to reach the last
location of a section and execute a non-jump instruction or to
execute a skipping instruction in either of the last two
locations of a section,

1.2,2 Compatibility

In order to allow efficlient use of the extended address space, it
was necessary to modify the operation of various machine
instructions and to change the algorithm for the calculation of

rCPS=~20 Monitor Internals Page 1«5
PROGRAMMING IMPLICATIONS AND METHODOLOGY

2£” ctive addresses, Because these changes have a high
:fi!%bility of causing any existing program to malfunction, the
following convention was adopted:

I1f a program 1s executing in section 0, all
instructions are executed exactly as they
would be on a non-~extended machine, I1f a
program §s executing in any section other
than 0, the extended addressing algorithms
are used for effective address calculation
and instruction execution,

\ program is said to be executing in section 0 when the section
ifeld of the PC contains 0, Effective address calculations and
.nstruction executions are performed exactly as on a non=~extended
1achine; hence any existing program will work correctly if run
.n section 0, Note however, that this also implies that no
1ddresses outside of section 0 can be generated, either for data
‘eferences or for jumps, That is, a program executing in section
) cannot leave section O except via a monitor call, The only
ixception to this is the XJRSTF instruction, :

.t is easy however to write or generate code which is compatible
ith both extended and non=extended execution, This was a
'peclfic goal of the design, and in general requires only that
‘ertain precautions must be taken regarding previously unused
1. 18, Since these precautions must be taken however, one
:aﬂﬂ@t generally assume that any existing program will have
'bserved them and so execute correctly in an extended section,

e2¢3 Effective Address Calculation

Inless explicitly stated otherwise, everything in the £following
liscussion refers to execution of instructions with the PC in a
ion=0 section; nothing applies to instructions executed ¢£rom
iection 0, "

i, Instruction format

The format of a machine instruction is the same as on a
nen=extended machine, In particular, the effective
address computation is dependent on three quantities
from the instruction, the Y (address) field, the X
(index) fleld, and the I (indirect) fielid, These are 18
bits, 4 bits, and 1 bit respectively,

TOPS=20 Monitor Internals Page (=6
PROGRAMMING IMPLICATIONS AND METHODOLOGY

2,

0 8 9 12 13 14 27 18 35
{ ! [! H
! OPCODE | AC I I X ! Y !
i o ¢ ! {

--.ﬂ.-----'----------.i‘-‘--.’-----ﬂ----b-.---'-'--.

Depending on the format of the index and indirect words,
the effective address algorithm will perform either
18=bit or 30=bit address computations, When a 30=hit
quantity {is indicated, an explicit section number 1s
being specified and the address s called a global
address, When an 18=bit gquantity 1is indicated, the
section field is defaulted from some other aquantity
(e,9,, the PC), and the address is thus local to the
default section and 1s called a local address,

In the simplest case, consider an instruction which
specifies no indexing or indirection, E,g.,

3,,400/ MOVE T,1000

Here the effective address computation yields a 1local
address 1000, and the section used for the reference is
3, i.2., the section from which the instruction 1itself
was fetched, Precisely stated:

Whenever an instruction or indirect word specifies
a local address, the default section 1is the
section from which the word containing that
address was taken,

This means that the default section will change during
the course of an effective address calculation which
uses indirection, The default section will always be
the section from which the last indirect word was
fetched,

Indexing

The f£irst step in the effective address calculation 1is
to perform indexing if specified by the instruction,
The calculation performed depends on the contents of the
specified index register:

1, If the left half of the contents of X 1s negative or
0, the right half of X 1is added to Y (from the
instruction word) to yleld an 18«bit local address,

This is consistent with indexing on a non=extended
machine, and means, for example, that the usual
AOBJN and stack pointer formats .can be used for

rops=20 Monitor Internals Page {=7
ROGRAMMING IMPLICATIONS AND METHODOLOGY

3,

tables and stacks which are in the same section as
the program,

2. 1If the left half of the contents of X is positive
and non=0, the entire contents of X are added to ¥
(sign extended) to yield a 30=bit global address,

This means that index registers may be used to hold
complete addresses which are referenced via indexed
instructions, A Y field of 0 will commonly be used
to reference exactly the address contained in X,
Small positive or negative offsets (magnitude Jless
than 2%x17) may also be specified by the Y field,
e,gd,, for referencing data structure items in other
sections,

‘Indirection

If indirection 1s specified by the instruction, an
indirect word is fetched from the address determined by
Y and 1indexing (if any), The .indirect word is
considered to be "instruction format®" if bit 0 is a i,
and "extended format" if bit 0 is a 0,

s Instruction format indirect word (IFIW): This word
contains Y, X, and I fields of the same size and in
the same position as instructions, i,e,, 1in bits
13=35, Bit { must be 0 (its use is reserved for
future hardware); bits 2=12 are not used, The
effective address computation continues with the
quantities in this word just as for the original
instruction., That is, indexing may be specified and
may be local or global depending on the left half of
the index, and further indirection may be specified,
Note that the default section for any local
addresses produced from this indirect word will be
the section from which the word itself was fetched,

2., Extended Format Indirect Wword (EFIW): This word
contains ¥, X, and I fields also, but in a different
format such as to allow a full 30=«pit address fileld,

0 1 2 5 6 17 18 35

L LY L L Ty XL L L B2 P L3 & Xt X L A X P2 X L L X L L X & 1 B 1 1 2 L 1 J

i { { {

! {nonnaasanme] swsseasavwamsaneend |

]
1

0! I! X ! (section) ! Y (word) {
[| 1) ! !

L L L A L L2 2 0 L L2 XL L AL L 2 3 2 L L L0 K 2 L X LA L2 2 & 2 X 4 1]

§ o= 9w o 0m
Qo

TOPS=20 Monitor Internals Page 1=8
PROGRAMMING IMPLICATIONS AND METHODOLOGY

4. Some

1.

2,

3,

4.

If indexing is specified in this indirect word, the
entire contents of X are added to the 30=bit Y to
produce a global address, A local address is never
produced by this operation, and the type of
operation is not dependent on the contents of X,
Hence, either Y or C(X) may be used as an address
or an offset within the extended address space just
as is done in the 18-pit address space,

'1¢ gurther indirection 1s specified, the next

indirect word 1s fetched from Y as modified by
indexing if any., The next indirect word may be
instruction format or extended format, and its
interpretation does not depend on the format of the
previous indirect word,

examples

Simple instruction reference within the current PC
sections

3,,400/ MOVE T,1000 :7fetches from 3001000
JRST 2000 ;jumps to 3002000

Local tables may be scanned with standard AOBJN

loops:

MOVSI X,=SIZ)

LP: CAMN T,TABL(X) ;TABL in current section
JRST FOQUND
AOBJN X,LP

Global tables may be scanned with full address and
index:

MOVEL X,0 -
LP: CAMN T,@[EFIW TABL,X] JTABL(X) 1in ext
fmt

JRST FOUND

CAIGE X,S1Z=1

AOJA X,LP

Subroutine argument polnter may be passed to
subroutine ‘in another sectiont

word in arglist:

IFIW @VAR(X) 7indexing and indirecting
31t specified will be relative
sto the section in which this
spointer resides, i,e,, the

[OPS=20 Monitor Internals Page 1=9
ROGRAMMING IMPLICATIONS AND METHODOLOGY

L4
}section of the caller

le2.4 1Immediate Instructions

\1l effective address computations yield a 30=pit address
iefaulting the section 1f necessary, as described above,
(mmediate instructions use only the low=order 18-bits of this as
their operand however, setting the high=-order 18 bits to 0,
ience, instructions such as MOVEI, CAI, etc, produce identical
results regardless of the section in which they are executed,

'wo immediate instructions are implemented which do retain the
jection field of thelr effective addresses, '

i1, XMOVEI (opcode 415) Extended Move Immediates

This iIinstruction 1loads the entire 30-bit effective
address into the designated AC, setting bits 0=5 to 0,
If no indexing or indirection is specified, the current
PC section will appear i{in the section field of the
. result, 7Tnis instruction would replace MOVEI in those
b cases where an address (rather than a small constant) is
being loaded, and the full address is needed,

Example: calling a subroutine 1in another section
(assuming arglist in same section as caller):

XMOVEI AP,ARGLIST

PUSHJ P,@{EFIW SUBR]
The subroutine could reference arguments ass

MOVE T,@1(AP)
or could construct argument addresses bys

XMOVEI T,Q2(AP)
In both cases, the arglist pointer would be found in the
caller’s section because of the global address in AP,
The actual section of the efftective address is
determined by the caller, and 1is implicitly the same as
the caller 1f an IFIW is uysed as the argiist pointer, or
is explicitly given if an EFIW is used,

This instruction replaces the left hailtf of the
designated accumulator with the section number of its

TOPS=20 Monitor Internals Page 110
PROGRAMMING IMPLICATIONS AND METHODOLOGY

effective address, It is convenient where global
addresses must be constructed,

1.2.5 AC Refgrences

Any reference to a local address in the range 0=17(8) will be
made to the hardware ACs, Also, ‘any gobal reference to an
address in section 1 in the range 0-17(8) (i,e,, 1000000=1000017)
will be made to the hardware ACs, Global references to locations
0=17¢8) in any section other than section { will reference
memory., Thusg

1, Simple addresses in the usual AC range will be reference
ACs as expected, e,9,, MOVE 2,3 will fetch from hardware
AC 3 regardless ot the current section,

2, To pass a global pointer to an AC, a section number of 1
must be included,

3, Very large arrays may lle across section poundaries;
they will be referenced with global addresses which will
always go to memory, never to the hardware ACS,

4, PC references are always considered 1local references;
hence a jump instruction which yields an effective
address of 0=17 in any section will cause code to be
executed from the ACs,

1.,2,6 38pecial Case Instructions

In addition to the differences in effective address calculation,
certajin instructions are affected in other ways by extended
addressing, ‘

i, Instructions which stores/load the PC; PUSHJ, POPJ, JSR,
JSP, These instructions store a 30-bit PC without flags
and with bits 0=5 of the destination word set to O,
POPJ restores the entire 30-bhit PC from the stack word,
JSA and JRA are not affected by extended addressing and
store/load only 18 bits of PC, Hence they are not
useful for inter=section calls,

2, Stack instructions (PUSHJ, POPJ, PUSH, POP, ADJSP) use a
local or global address for the stack according to the
contents of the stack register following the same
convention as for indexing, That is, if the left half
of the stack pointer 1s 0 or negative (prior to

[OPS=20 Monitor Internals Page 1=-1}
PROGRAMMING IMPLICATIONS AND METHODOLOGY

3.

4.

incrementing or decrementing), @ local address using the
right half of the stack pointer is computed and used for
the stack reference, I£f the Jleft half of the stack
pointer i{s positive and non=0, the entire word is taken
as a global address, In the latter case, incrementing
and decrementing of the stack pointer is done by adding
of subtracting 1, not 1000001, Hence, a global stack
for routines in many sections may be used in a similar
manner to present stacks, Stack overflow and underfow
protection would be done by making the pages before and
atter stack inaccessible since a space count field 1is
not present in a gobal stack pointer,

Byte {nstructions, Two formats of byte pointer are
recognized by the byte instructions, The none=extended
format is identical to the present standard pyte pointer
format and 1is recognized if bit 12 (previously unused)
is5 0, If bit 12 is i, a two=word extended byte pointer
format is recognized which contains the fields as shown:

0 5 6 11 12 13 17 18 : 35

b A A A A L 2 L L AL E L L LI LI Y LT T YT Y P Y Y Y Y Yy Y Y Y Y.

! l 4 { ! i

! P ! S 11 ! MBZ § AVAIL TO SFTW, ¢
! ! ! ! { i
RN o o i
$ 11X (-n-.------.nnoron i Y evrmowsosencenand |
i L1l ! !
0125 | « 35

Note that the second word is identical to the Extended
Format 1Indirect word (EFIW), The right half of the
first word 1s specifically reserved to software for byte
counts, etc, Incrementing of this format "of byte
pointer {s consistent with noneextended format;: the P
field 1s reduced until the end of the word is reached,
whereupaon the address in the second word in incremented,
Incrementing may cause a carry from the word field to
the section field of the address; hence extended byte
arrays may lie across section boundaries,

Other new or modified instructions are LUUOs, BLT, XBLT,
XCT, XJRSTF, XJEN, XPCW, XSFM, Some of these are valid
only in exec mode, Consult the System Reference Manual
or chapter 2,2 o0f the KL10 Functional Specifications for
dﬁtails.

T0PS=20 Monitor Internals Page 1=12
PROGRAMMING IMPLICATIONS AND METHODOLOGY

1.2,7 Compatible Programming

It is possible to generate code which works correctly in both
extended ‘and nonwextended environments, “Such code may. even
ut{lize inter~section references when running in an extended
environment; it is not limited to local addressing,

The basic rule is to observe the extended addressing rules in the
construction or computation ofs

i, Index wordsf{ be sure the left half 1s cleared or
contains a negative .gquantity (e,g,, a8 count) when
setting up and using an index register, This will cause
a local reference in the extended environment which will
produce the same result as on the non~extended machine,

2, 1Indirect wordsi always set bit 0 of indirect words used
in argument 1lists, etc, 80 as to produce local
addresses,

3, Stack pointers: the most common present format
(negative count 4in left half) works consistently under
extended addressing; modifying a program to use an
extended stack should require no change to stack
instructions except if the code expects to £find the
processor flags in the stacked PC words,

when generating addresses to be passed to subroutines or used by
other code, XMOVEI and XHLLI instructions may be used, In the
non=extended environment, these opcodes are SETMI (eguivalent to
MOVEI) and HLLI respectively, which always load 0 into the left
hal¢g, *

1,2.8 Program Architecture And Facilities

Ultimately, the extended addressing hardware in conjunction with
the monitor should provide some of the power of general
segmentation and some other useful conventions and facilities,
The following are some of the ideas which have been advanced,

1, The fact that {instructions are generally executed
relative to the current sections suggests that
subroutine libraries and facilities packages can be
written which can be dynamically loaded into any
available section and used by many programs, An
important point to observe in connection with this and
most of the following conventions is that programs must
not be compiled with fixed section numbers built into

FOPS=20 Monitor Internals Page 1=13
PROGRAMMING IMPLICATIONS AND METHODOLOGY

2,

3,

the code, Programs should be bullt so as to be loadable
into any section and to request additional section
allocations from the monitor as necessary, This is the
Only reasonable way to ensure that conflicting use o¢
particular sections is avoided,

An entire section can be mapped by the monitor as
quickly as a single page, Hence, an entire file (up to
256K) can be mapped into a section, and the data therein
manipulated with ordinary instructions,

‘Programs can greatly reduce memory management Jlogic by

merely assuming very large sizes for all data bases, It
i1s not however, very efficient to use many sections,
each with only a small amount of data, A reasonable
middle ground should be chosen, :

CHAPTER 2
BIAS CONTROL

+1 BIAS CONIROL

he bias control knob provides for administrative control over
ome scheduling algoritnhms, The . Kknob allows a system
daministrator to blas the system according to the needs of the
nstallation, to establish degrees of "fairness*® among
nt ‘active and compute-bound users, This logical Kknob has
ef®ings from 1 to 20, The lower the setting of the knob, the
ore interactive jobs are favored, The higher the setting of the
nob; the more compute=bound jobs are favored,

10 11
9 E 33] 12
* %¥
X ¥ X
5 x x * 15
x ¥ %
¥ % *
) ¥ X *
nteractive | % xx% ¥ 20 compute

KEREEEKERRERARRERRRENRERNRRRR
Figure of the bias control knob

Figure

TOPS*20 Monitor .Internals Page 2«2
BIAS CONTROL

2,1,1 USER INFORMATIOQN

The bias control knob can be set through the use of a command to
OPR, the operator interface, The command has the forms

OPR>SET SCHEDULER BIAS=CONTROL (to) n
where n is a decimal number from 1 to 20,

The bias knob can also be set through the use of a GCONFIG
command, The following command ¢an be placed in 4~CONFIG,CMD?

BIAS n

where n is a decimal number from i to 20,

2.1.2 PROGRAMMING INFORMATION

Bias control can also be changed under program control through
the use of the new SKED% JSY¥S, The ,SKRBC function of this JSYS
reads the bias control knob settingy; the ,SAKNB function sets
the bias control knob setting,

2,4,3 IMPLEMENTATION

The value of the bias control knob is a displacement into a table
of twenty entries, Each table entry represents a set of pinary
switches controlling a scheduler algorithm, Any binary value
that causes an "on" setting (1) causes a bilas in favor of
interactive jobs while any binary switch that is "off" (0) is
biased in favor of computeebound jobs, .

2,1,4 SWITCH SPECIFICS

The following 1s a graph of the current table (which starts at
location SKFLGV) being used for the bias control knob,

‘0PS=20 Monitor Internals Page 2»3
}JIAS CONTROL

Graph of Bias Settings

TOPS=20 Monitor Internals - Page 2-4
BIAS CONTROL

The following describes the current switches and their actions:

SKSCYT Bit 18, default setting is on,

Used for adjusting the length of the cycle times for the
short and long cycle clocks, If i, standard values for the
cycle times are used (20 ms and 100 ms), If 0, the cycle
times used are four times the standard c¢ycle times (80 ms
and 400 ms), This switch favors compute=bound jobs if off,
since longer cycle times should reduce overhead, interactive
jobs may not be allowed in during the longer cycles (they
wait longer to be chosen), and a computé=bound job can hold
the processor longer during longer c¢ycles (which reduces
context switching),

SK3IOC Bit 19, default setting is off; does not change,

Used to decide 1f a fork’s quantum time should receive a
charge for 1/0, This is not really a blas between
interactive and compute~bound processes in the strict sense,
Jobs that do a large amount of disk file I/0 are affected,
Off indicates the charge is to be made; on eliminates this
charge,

SK$HT1 Bit 20, default setting is on,

The SK%HT1 switch controls the number of processes with
balance set hold time, If the switch is on, there is no
more than one other process with balance set hold time, and
less than half of memory is allocated, the process under
consideration is given hold time, If the switch is off or
the other conditions do not hold, the process is given hold
time, The switch favors interactive processes if on by
controlling the amount of hold time for a process, This
keeps the balance set membership more dynamic which helps
interactive processes back into the balance set,

SK3HT2 B8it 21,default setting is off,

If on, a process that enters the balance set after a process
of higher priority has been skipped receives no palance set
hold time, This favors interactive processes DYy not
allowing processes of lower priority to run for long periods
when processes of higher priority c¢annot £1it into the
balance set,

SKSHOR Bit 22, default setting is off,

Used to control "HQ disaster avoidance," If, 'during system

'‘0PS=20 Monitor Internals Page 2=5
JIAS CONTROL

-’

operation, the locad average reaches a certain level (a load
average between 4 and 6) low queue jobs (which tend to be
compute~bound Jobs) are no longer allowed into the balance
set, 1f the load average goes higher (to between 6 and 9)
low gqueue Jjobs are forced out of the balance set, If this
switch is off, the code that causes the above to happen |is
skippeqa, Having this switch off favors compute=bound jobs
since they can stlll get machine time when the load average
is nigh, '

iits 23 and 24 are currently not used,

K%RSQ Bit 25, default setting is on,

The SK%RSQ switch determines whether an overhead c¢ycle 1is
initiated when a process with higher priority than the
running process becomes runnable as the resuylt of disk I/0
completion, 1If the switch is on and the cgnditions are met,
the current process is dismissed and the higher priority one
selected to run during the overhead c¢ycle, This favors
interactive processes since they can be run immediately
after unblocking, If the switch is off, the dismissal

- 0CCUTS in the next normal overhead cycle,

K$RQ1 Bit 26, default setting is on.

Used for controlling the use of the interactive gqueues, If
this switch is off when setting the queue level for an
unblocking process, the interactive Qqueues are not used,
This favors compute=bound Jobs if this switch is off since
the interactive jobs do not get the increased priority and
the extra quantum of the interactive queues,

KATTP Bit 27, default setting is on,

Used to control the moving of processes to the interactive
gueues for TTY wait, 1If on, the added boost of moving the
process to Q1 1is given, which favors -interactive processes
with an increased priority.

KSWCF Bit 28, default setting is off,

Used to decide whether to decrease the walt credit of a
previously blocked process based on the load average in
determining the new queue, When off, the wait time . is
wrdivided by the short=term load average to maintain fairness
(that is, decrease the advantage gained for a wait if the
load average is high), Other processes on the system have
not fared that well while the process was blocked, When on,

TOPS=20 Monitor Internals Page 2=6
BIAS CONTROL _

interactive Jjobs are favored since they are not penalized
for a high load average,

Bits 29 to 35 are not uysed,

It is interesting to see how values change from one setting of
the knob to the next, Some changes of the knob may cause no
change in the scheduler, For example, changing the knob from 1
to 4 currently causes no change in the scheduler, Changing from
16 to 17, however, causes three specific switches to be changed,
Also, notice that the design of the table lends itself to changes
in the future, '

CHAPTER 3
CLASS SCHEDULING

1 CLASS SCHEDULING

lass scheduling enables the administrator of a system to
llocate the system according to classes of users,

n & particular system there may be classes of users that need
arge amounts of resources at a given time, There may also be a
l,, Of users that should not be given a large amount of
egsﬂrces. Class scheduling permits the administrator of a
ystem to allocate system resources (specifically, CPU resources,
hich ‘implies other resources such as I/0 and memory) on the
asls of class,

NOTE
Class scheduling is not regquired,
If it is not tnabled, its
parameters are ignored,
onsider the following examples

DECSYSTEM=20 is used for computer courses at a university,
his system has three definite classes of userss

i1, Students that are taking the computeyr science courses
2, Faculty members that give the courses

3, Administrative users that do some processing during free
time on the machine

e ¥ Wish to divide up the machine as shown belows

TOPS+20 Monitor Internals . page 3=2
CLASS SCHEDULING

Figure 2=3

Using class scheduling, the administrator would define three
classes on the system, Each class would be defined to receive
the indicated percentage and each user would be assigned to a
class, '

An important point should be realized concerning the divisions
made in the example above, The machine is divided using class
scheduling, If there is one student, three faculty members, and
five administrators on the machine at a given time, the systen
would try to give the one student 75% of the machine, each of the
faculty would receive 5% of the machine, and each of the
administrators would receive only 2% of the machine, Or, another
situation might have 25 students and only one member ot the
faculty and administrative groups at a given time, In the latter
case, even though the students were allocated a larger percentage
.0f the machine, each student would receive only 3% while the
faculty user and the administrative user would receive 15% and
10%, respectively, It is therefore important to consider the
size of a class of users when defining the percentage of the
machine for that class, ’

As in the case where one student was logged on the system, it 1is
possible that a particular class may sometimes not be able to use
all of its allocated percentage, The amount of unused CPU
resource in such a case is known as gindfall, Another possible
case that creates windfall is when all of the machine {is not

IOPS=20 Monitor Internals Page 3=3
CLASS SCHEDULING

-
allocated with class percentages, In either case, windfall can
>e either withheld or allocated, 1If withheld, the system runs
ldle rather than give a class more than its share, 1If windfall
ls allocated, the system distribuytes the excess CPU resource
>roportionately among the active processes,

NOTE

withholding of windfall {s not
recommended, Its use should be
restricted for at least two
reasonss

1. If withholding windfall is
enabled before all of the class
percentages are defined
correctly, a condition could
exist where no one could do any
useful work,

2, It wastes system resources,

leled USER CHARACTERISTICS

'he first step in implementing class scheduling is to determine
ihether it is really needed, Class scheduling should pgt be used

ynly because it is there, There should be a definite need for

tIividing up the machine, It is important to remember that while
'lass scheduling may improve throughput for a particular class,
.t probably decreases throughput for the system as a whole,
'here is overhead involved with class scheduling and for this

‘éason its use is not recommended with small machines (2020s and:
10508 with less than 256K), It is not that class scheduling does’
10t work with these machines == the expense in overhead of using

'lass scheduling on small machines probably outweighs the
)ossible benefits,

ek ad CLASS ASSIGNMENT

Mgy @ Need 15 established to use the class scheduler, the class
reﬁizrs must be identified and assigned, 1Identifying the members
equires grouping them according to characteristics, Assigning
sérs to a c¢lass on the system requires using one of two

TOPS=20 Monitor Internals Page 3=4
CLASS SCHEDULING

available methods,

To identify the classes requires some considerations of the
méchanisms that the system uses, The system only supports eight
classes, each specified on the system with a number from 0 to 7.

The characteristics of a class can be determined in a number of
ways, ‘In. the previous example, the groupings were based on the
obvious - distinctions between -students, faculty, and
administrators, In the case of a timesharing bureau, the
divisions could be made based on specific customers, with the end
result being the sale of specified portions of the machine,

After the classes are defined, they need to be assigned on the
system, There are two methods for accomplishing this,

The recommended method of assigning class members 1s to use the
accounting system, Using this method, class membership becomes
an attribute of a particular account, AS the user logs in and is
assigned an account, the user 1is also placed in the class that is
identified as an attribute of that account, If the user is able
to change accounts with the SET ACCOUNT command, the action of
changing accounts may also change the class of the user,

NQTE

Using the accounting method
requires that account validation be
enabled,

An alternate method of assigning class membership is to wuse the
access control 3job, By using this method, the user’s class can
be determined dynamically by a userewritten policy program, This
enables class assignments to be based on the current state of the
system,

I¢f the class 1s not assigned by one of these methods, the system
assigns a user to a default class as the user logs in,

3,1.3 CLASS PERCENTAGES

The next step in implementing class scheduling 1is to determine
the c¢lass percentages, The number of members in the class needs
to be considered, As seen previously, the more members of a
class with active Jjobs on the system, the less the percentage
each member of the class recelves, Factors unique to the
installation, such as time as day, need to be considered, In the

[OPS=20 Monitor Intetnals Page 3=§5
LASS SCHEDULING

Inwsersity example, students may receive a very large percentage
)£ the machine during the day, when they are doing a majority of
:heir work, At nignht, however, the administration may need a
.arge percentage of the machine for administrative work,)

’inally, the mechanics of the implementation need to be
'onsidered, In assigning percentages to classes, the total
'ercentage can be less than 100 % of the machine but not more
han 100 %,

'he percentages for classes can be defined in one of three vays:
Yy using CONFIG commands, by OPR commands or by a pollicy program,

0 define the class percentages using CONFIG commands, a command
£ the following form must be placed in 4~CONFIG,CMD:

CREATE n frac
where: n is the class number (0=7),

frac is the class percentage expressed as a
fraction of i (0,00~,99),

here should be as many CREATE commands as there are classes on
he system,

o WEsfine the class percentages using OPR commands, a command of
he following form must be ysed:

OPR>SET SCHEDULER CLASS (number) n (to percent) per
where: n is the class number (0=7),

Per is the class percentage (0=99)
(note that per is actual percentage in
this case),

his command enables the operator to change class percentages
iring normal system operations,

¢ class percentages can also be changed using a pollicy program,
21is enables the percentages to be changed dynamically as based
Y administrative policy,

v1.4 Batch Class

)r added control of batch jobs, the administrator can require
18, batch Jobs be placed in a specific class on the system,
;fEE/this option, pbatch jobs are placed in the specified batch
lass, This overrides the class assignment that would be

TOPS=20 Monitor Internals ' Page 3=6
CLASS' SCHEDULING

received if the user were to log in normally., This option 1is
indicated either through a CONF1G command, an OPR command, or
through the use of a policy program,

NOTE

This “option requires. class
scheduling to be implemented using
the accounting method, 1t the
¢classes are assigned with the
policy program, the batch class
commands have no effect,

The CONFIG command has the form3
BATCH=CLASS n

where n is the class to be used for batch jobs (0=7),

The OPR command has the formt
OPR>SET SCHEDULER BATCH=CLASS n

where n is the class to be used for batch jobs (0=7),

3,1,5 TURNING CLASS SCHEDULING ON/OFF

class scheduling can be turned on and off using either CONFIG
compmands, OPR commands, or a policy program, The CONFIG and OPR
commands are described below,

starting class scheduling with a CONFIG command requires two
additional pileces of information, First, the disposition of the
windfall must be determined by the requirements of the system,
For example, if the regquirements are such that no user is to
receive - more than his allocated share, windfall should be
withheld, .

NOTE

If windfall is withheld and there
are errors in the CONFIG flle, a
situvation could occur where no one
has processor time allocated to

TOPS=20 Monitor Internals Page 3=7
CLASS SCHEDULING

them,

jecond, the method for determining class assignments, either by
accounting or by policy program, should be identified, The
.ONFIG command has the forms

INABLE CLASS~=SCHEDULING ACCOUNTS WITHHELD
’ POLICY=PROGRAM ALLOCATED

NOTE

This command must be the last class
scheduling command in the CONFIG
file, That {s, it must follow all
of the CREATE and BATCH commands,
If it does not, all CREATE or BATCH
commands that follow the ENABLE
command will have no effect, If
windfall is withheld and all of the
CREATE commands follew the ENABLE
command, no class will have
percentages and no one will be able
to do any useful work,

'hne OPR command for starting the class scheduler regquires the
;affe information that the CONFIG command requires, Both the
iethod for assigning classes and the disposition of the windfall
ihould be indicated, The OPR command has the form:

OPR>ENABLE CLASS~SCHEDULER
/CLASS~ASSIGNMENTS: ACCOUNTS
POLICY=PROGRAM
/WINDFALL: ALLOCATED
- WITHHELD

IPR has an additional command for disabling the class scheduler:

OPR>DISABLE CLASS=SCHEDULER

'e1.6 IMPLEMENTATION

'17 -3 scheduling is used to influence the priority of a process,
. wOCess that is ahead of lts percentage will tend to have its
rlority reduced and a process that is behind its percentage will
end to have 1its vpriority increased, Therefore, a process’

TOPS=20 Monitor Internals ‘ Page 3=8
CLASS SCHEDULING

relation to its "target® percentage is a new metric that becones
part of the heuristic that dictates the transition rules among
the queues, The following is a description of the new metrics
and how they are employed,

A job’s "utilization" 1is periodically computed by the process
controller as a decaying average of the CPU time used by the
processes of the job, The computation performed is

UCI+1)=UCI)*e~(=t/C)+F(ime”(~t/C))

wheres UCI) is the current process utilization,
F is the fraction of the CPU used by the process in- the
recent interval "t",

t is the time since the last computation of U,

C is the "decay" interval, After time C, the utilization
decays by e, This number represents the amount of
*pistory®” that the monitor uses in determining a process’
behavior, The number 1is chosen to insure as uniform a
behavior as possible,

The utilization function for each of the classes is the sum of
the ‘utilizations of the ijobs 1in the class, The class
uytilization, CU, is used to compute the class "distance" (CD)
from its ideal (target) utilization as follows:

CP = CU

CD = wewanasan

cp

where: CP i{s the class’ ideal utilization, CP is the class
percentage assigned when the class is defined,

Each job also has a job distance (JD) calculated as follows:

CcP

sons » JU

N

Jb = Y XX Y Y 1

cp

N
wherey JU is the job utilization,

N is the "population" of the class of which this job 1s
a member, N is currently the number of logged=in Jobs
. belonging to the class,
The class distance and the job distance serve as a two-key sort
for the GOLST for assigning priorities, CD is the primary key

TOPS«20 Monitor Internals ' Page 3=9
CLASS SCHEDULING

an®”JD is the secondary key, In addition to this sorting,
"specials"™ in the assigning of priorities ensure that certain
sritical and interactive processes are scheduled promptly (for
axample, NOSKED, CRSKED, high priority gueue processes),

CHAPTER 4
EXECUTE~ONLY

‘«1 EXECUTE=-ONLY

xecute=only provides the capablility o0f protecting £files from
eing changed or examined, while allowing the same files to be
xecuted,

o

vlel DEEINITION

n execute=only file is one that cannot be copied or read in a
ormal manner, but can be run as a program, In order to provide
his i{n TOPS=20, the following constraints must be placed on a
ile in order for it to be considered an execute=only filet

1. The tile must be protected with EXECUTE access allowed
but without READ access allowed, ' ’

2, The f£ile cannaot be read or written using any of the
file~oriented nmonitor calls (i,e,, SIN, SOUT, BIN, PMAP
in referencing a file, etc,),

3. The file can be mapped into a process (via GET), but
only in its entirety and only into a virgin process,

n execute-only process is a process that is created by
ertorming a GET on an-execute=only file, To insure security for
he execute-only flle and process, the execute=only process nmust
lso be restricted:

=i, No other process can read from an execute=only proéess*
address space or accumulators,

TOPS=20 Monitor Internals page 4-=2
EXECUTE=-ONLY

2., No other process can change any part of an executee-only
process’ context in sych a way as to cause the
execute=only process to reveal any part of 1its address
space uynintentionally.

3, An execute~only process must start at either 1its START
or REENTER entry point (ENTRY VECTOR), Allowing a
process to start elsewhere could cause it to reveal
itselt,

4. An inferior fork that is created from an executewonly
process with the same map should be execute~only also,

Some related definitions are

Virgin vtocess == A process that has Jjust been created (using
CFORK) with none of its pages having been mapped and no
operations having yet changed its context,

Context of a process == The context of a process includes {its
address space, PC, ACs, interrupt system, traps, etc,

4,1.2 USER CHARACIERISIICS

An execute=only f£ile s created by modifying the protection
attribute of the £file, This can be done by setting the
protection field for the the desired class of users (owner, group
or world) to FPSEX+FP%DIR, or 12 (octal), For example, to make a
tile executemonly for everyone except the owner of the file, set
the protection to 771212, This indicates that the file can only
be seen with the directory command and executed; the file cannot
be read or written,

NOTE

Any file can be made eXxecute=only,
This can include data files, for
example, but the results of such an
exercise prevents any use of the
file, It does npat indicate that
the £ile can only be read by an
executing process,

An execute=only process is created by performing a GET on an
execute=only file ~= using a virgin process’ address space, This
- prevents merging the execute-only file into an address space

'0PS=20 Monitor Internals , Page 4=3
' XECUTE=ONLY

'hWh may already contaln c¢ode that could reveal the address
pace of the execute=only file,

'e1+¢3 WHAT CAN AND CANNOT BE EXECUTE=ONLY

ue to the characteristics of execute=only, there are some
estrictions as to where it can and cannot be used,

ost programs (,EXE files) can be protected execute=-only, For
xample, saved COBOL, FORTRAN, and BASIC programs can be:
xecute~only, Some utilities that can be execute=only include:
UMPER, TV, EDIT, -etc,

NQTE

Although COBOL and FORTRAN programs
can be made execute~only, care must
be exercised, The object time
system (OTS) must be included in
the EXE file, Otherwise, users can
make their own "QOTS" and define
S5YS: to cause that 0TS to be used
and to cause the execute=-onliy
process to reveal itself,

here are some programs that cannot be execute=only, Some of the
ajor ones are listed here along with an explanation of why they
annot be execute=only?

i1, Any objJect time system such as FOROTS == These are
merged into an address space, This violates the
restriction that confines the reading of an execute=only
file into a virgin address space, Note: This does not
imply that an execute=only process cannot bring in an
0TS, but only that the 0TS cannot be execute=only,

2, The TOPS=10 Compatablilty Package (PA1050) == This
cannot be execute=only for the same reason that an 0TS
cannot,

3, Any program that is brought in &ith“ the TOPS~10 UUQ’s
RUN and GETSEG == These UlOs require the program to be
mapped into nonvirgin address space,

TOPS=20 Monitor Internals Page 4=4
EXECUTE«ONLY

4, Any program that needs to be started at any location
except its entry vector (START or REENTER address) == To
start elsewhere may cause an execute-only process to
reveal itselgf, ‘

5, Any program that uses TOPS=10=~style "CCL starts"
(starting at the start address plus one) == Again, the
program cannot start at a location other than that
specified in the entry vector,

6, A compiler or linker invoked through the
COMPILE/LOAD/EXECUTE/DEBUG commands == These use the CCL
start,

4,1,4 SOME OTHER RESTRICTIONS ON THE USER

Some other restrictions on using an execute=only flle or process
are extensions of the previous definitions,

EXAMINE, DEPOSIT, MERGE, DDT, SET ENTRY=VECTOR, SET PAGE=ACCESS,
SET ADDRESS~BREAK commands d0 not work for execute=only
processes, These commands would either cause the process to
reveal itself or allow a modification to the process that could
eventually cause the process to reveal itself,

The START command cannot be used with a stért address argument
for an executee-only process, The process must be started using
its defined entry points (entry vector),

The INFORMATION (ABOUT) VERSIOR will only return the name of the
program, The version information is part of the process address
space that is not to be revealed, '

It is important to note that the use of execute=-only protection
does not guarantee the security of the file, It 1s the
programmer’s responsibility to insure that the program does not
reveal itself through programming mistakes that would, for
example, allow the program to map itself to unsecured forks or
use nonce;tified libraries,

WHEEL privileges can affect the use of execute=only flles, An
enabled WHEEL cannot create an execute=-only process, It is when
the process is initialized that it becomes execute=only. If the
user has WHEEL privileges and they are enabled, the execute=only
code in the initialization is bypassed since the enabled WHEEL
has read access as well as execute access, For a user with WHEEL
privileges enabled to create an execute-only process, privileges
must first be disabled, the GET performed, and the privileges
reenabled if needed,

'OPS=20 Monitor Internals Page 4=5
XECUTE=QONLY

-’
tel,5 IMRLEMENIAIIQAN

'he implementation of execute=only involves some data in the JSB,
'hecks 1In & number of JSYSs to see 1f the user is allowed to
'Xamine a particular process, and steps in a few JSYSs to set up
'xecute=only processes, '

.1.5.1 DATA STRUCTURE =

n the JUSB i{s a SYSFK area that has an entry for each process of
he Job, Three flags contain information about the process
eeded for execute=only, An entry appears as follows:

01234 8 9 17 18 35

5 04 G5 58 G5 49 SN S0 4N) 4 S0 €5 G5 W oy S G5 9 55 B 05 U 4R U« MR WS N 2y U WD OF S G O SF N 08 G BN O SN A G5 9 S0 N A B0 OB W I o

4 i ! ! !

u.-ﬁ-------q---u---------QQCQOGQQQ‘--.--d-.-.-------.nﬂ+

iLs Balnter Contents

If set, indicates entry not in use,

- fork has been deleted
' SFEX0 If set, fork is execute=only
SFNVG If set, fork is not virgin
SFGXO0 If set, indicates fork can PMAP into

execute=only forks becayse it is doing
an execute=only GET

-8 NOt used
=17 FKHCNT Count of handles on a given fork
8=35 System fork number

ost of the use of the flags in the SYSFK area described ‘above
akes place in general routines, These routines are described
elow,

HKNXS = CHecK 1f Not eXecute-only or Self =« Routine CHKNXS is a
eneral test routine to determine if the process specified is
ither SELF or not an execute=only process, Otherwise, an
llegal instruction trap occurs, returning the error FRKHX8 ==
Illegal to manipulate an execute=only process®, If the
p¢ fled process 1is not execyute=only, it will be declared
or¥Irgin by clearing the virgin process bit SFNVG,

ETEXO = SET process EXecute=Only =« This routine in FORK will

TOPS=20 Monitor Internals Page 4=6
EXECUTE=ONLY

cause the .selected process to become execute=only, I1£ the
process 1is not virgin, this does not succeed,

SETGX0/CLRGX0 =« SET/CLeaR GET eXecute=-Only status == These
routines set and clear the execute~only GET bit (SFGXO0) 1in the
current process, These routines are called by GET to allow
mapping into an execute=only process,

CLRVGN = CLeaR VirGin flag == This routine sets SFNVG to indicate
the process is not virgin, ' ’

SREADF = Set READF, read access and restricted-access == This
routine will set the read access bit (READF) and the
restricted=access bit (FRKF) in the status word for the selected
JFN, Also, the previous state of the FRKF f£lag is returned,
This routine is required to allow GET to use BIN, SIN, PMAP, etc,
to a file opened for execute=only access,

CREADF = Clear READF == This routine undoes what SREADF dald.

4,1,5,3 Major JSYSs =

Certaln JSYSs have a major role in implementing execute=only.
These JSYSs are presented below,

CFORK

CFORK creates a virgin process if CR$ST (start process) and
CRSMAP (give process same map as creating process) are not set,
Note that loading parameters in the ACs using CR%ACS does not
make this a nonvirgin process, Setting CR%ST and either CRIACS
or CR%MAP allows the process to execute code and, therefore,
makes the process nonvirgin, Setting CR%ST without CR%MAP or
CR3ACS seems rather useless,

CFORK creates an executeeonly process if bit CRYMAP is set and
the creating process is an execute=only process, This 1s the
only way (besides GET) to create an execute=only process,

SFORK

SFORK has a switch to indicate that a process is to be continued,
ignoring any PC change that may be specified in the right half of
AC2, This is to insure that an execute=only process 1is not
halted and continued from another location that could cause the
process to reveal litself,

[OPS=20 Monitor Internals Page 4=7
IXECUTE-ONLY '

PMAP

([t is 1llegal to specify an execute-only process as either the
jource or the destination in a PMAP call unless that execute=only
yrocess 1s executing the PMAP, If the executing process 1is doing
1 GET of an execute~only file (that is, if SFGXQ is set), the
Jrocess may map pages into any execute=only process,

iET

\ GET call that addresses an execute=only process is illegal
Inless the calling process is the same execute=only process
‘SELF), '

(£ the JFN specified in the GET call refers to a file for which
.he user only has execute access, the process specified must be a
rirgin process, GET must overcome two protection featuyres to GET
In execute=only files

1. Reading the file without READ access (and not allowing
others access at the same time),

2, Mapping pages from the file i{nto an execute=only
: process,
-
i GET must then perform the following steps:

i1, Perform OPENF on the file for READ and EXECUTE (as 1in
the past),

2, If the OPENF succeeds, proceed as usual since ‘the ¢£ile
i5 not execute-only,

3, If the OPENF for READ and EXECUTE fails and either the
specified process 1is not virgin or GT%ADR (address
limits) was specified, return the error from the OPENF,

4, Perform QPENF for only EXECUTE access,

5, If Step 4 fails, return the error from the QOPENF,

6, Lock the process structure,

7, Set the execute=only bit (SFEX0) 4in the destination

process by calling SETEXO, If the destination process

is not virgin, the execute=only bit will not be set ands

a, Unlock the process structure,

be, Mark the process as not virgin, .
) Ce Return to Step i, Since the process is not virgin,
-’ Step 3 will faii,

TOPS=20 Monitor Internals page 4=8
EXECUTE=ONLY

8, Unlock tnhe process structure,
9, Remember that this will be an eXxecutee=only GET,

10, Disable interrupts within this process (NOINT), This is
to protect the use of READ access to the file and the
use of the execute=only GET bit (SFGX0),

14, Set READ access and restricted access in the JFN status
for the selected JFN by calling SREADF,

12, ‘Set the execute=only GET bit (SFGX0) in the executing
process by calling SETGXO,

13, Perform the normal operations required to GET the file
into the process,

14, If any errors occur, c€lean up but return error,

15, If this was an executew=only GET, clear the READ access
and the restricted access in the JFN status by c¢alling
CREADF, clear the execute~only GET bit (SFGX0) in the
executing process by calling CLRGXO, and enable process
interrupts (OKINT),

16, Close the file (if possible) using CLOSF, Note that 1if
pages are mapped from the file, it will not be closed,
but will be left open with on;y EXECUTE access,

4,4,5,4 Minor JSYSs -

There are a number of JSYSs that either change a process’ context
or allow access to a process’ address space, Since many of these
functions are disallowed if the process involved is execute-only,
calls to CHKNXS are contained in these JSYSs, Routines that uyse
CHKNXS either directly or indirectly and return the error
"FRKHX8: TIllegal to manipulate an execute=-only process" include:

ADBRK AIC DIC DIR EIR 11C
RFACS SAVE SCYEC SDVEC SETER SEVEC
SFACS SFRKV SIR SIRCM SPACS SSAVE

STIW TFORK UTFRK

OPENF returns fail if a attempt is made to open an execute=only
file with i1illegal access specified,

CRJOB creates a virgin process as the top~level process, Thus,
an execute=only program can be run as the top=level fork,

'0PS=20 Monitor Internals Page 4=9
XECUTE=QONLY

;.??E BESIBILIIONS AMD LIMITIAIIQNS

'his section summarizes some restrictions and limitations of. the
'urrent implementation of executewonly?

l.

2,

3,

4,

There is no hardware concealment of process pages, The
KL10 hardware has the. capabllity to conceal pages within
a process from other parts of the same process, This
feature, if used,. would provide an additional feature
that would allow non=execute=only programs to load
execute=only programs (such as an execute=only object
time system) into their address space, ’

There {s no protection from a process revealinq itself
through its own carelessness, : '

Compllers and object time systenms cannot be
execute=only,

There is no page=by=page protection, Only an entire
file can be execute=only,

Only disk files can be execute=only,

PA1050 must exist on physical disk for execute=only
programs, A user cannot use his own version of PA1050
with execute-only programs,

An enabled WHEEL cannot create an execute=only procéss.
The version of an execute=only program cannot be read,

since that information 1is stored only in the program’s
address space,

CHAPTER 5

MONITOR ADDRESS SPACE

‘el MONITOR ADDRESS SPACE

uaring the development of Release 4, the TOPS=20 monitor ran out
£ address space, Extended addressing c¢could not be used to solve
he problem, Even though 2060 and ARPA monitors require extended
ddressing, there are DECSYSTEM=20s that do not support extended
d%_;ssing (20208 and older 2040s and 2050s},

«1.1 QADDBESS SRAGE REARRANGEMENT

0 80lve the shortage of address space, the symbol table was
oved ouf of the monitor address space and placed in an alternate
ddress space, The symbol table was selected since 1its removal
rees a large amount of space and it is used only infrequently
nder normal conditions, Making the symbol table harder to
ccess . does not degrade normal operations, 1In addition to the
emoval of the symbol table, other psects of the monitor have
een reorganized,

n order td make the changes easier to understand, the following
hort description of the address space layout for Release 3A is
resented,

TOPS=20 Monitor Internals " Page 5=2
MONITOR ADDRESS SPACE

Sei,1.1 ADDRESS SPACE IN RELEASE 3A =

The address space in Release 3A of TOPS~20 had two layouts (see
Figure 1) because of ¢two different phases that occured in the
loading of the monitor, The difference between the two layouts
was the location of the symbol table, The symbdl table was moved
by POSTLD from its original location to immediately after RSVAR,

'OPS=20 Monitor Internals
IONITOR ADDRESS SPACE

'
1771177

symbol
table

| e —

| PSVAR i
| I
| JSVAR |
[|

I free i
| |
| NPVAR - |
| |

| i

NRCOD

|
{
l
|
|
|
| NRVAR |
i I
| free |
| space i
| |
| |
| RSVAR |
i |
I
|
|
|

INCOD |
0 50 U5 WS oS GF uy 6N Gn W M) e .
|
RSCOD |
|

Before POSTLD

Notes:

1.

POSTCD. 2,

2

s

1

ymbol
table

PPVAR

g = om -)

3,

i PSVAR |

| JSVAR |
| |
i free i
| i
| NPVAR }

i |

NRCOD

|

|

[

|

|

|

| NRVAR i
(LA AL K & A 2 X 1 2 1 32 X 2 X]
) }
I free j
| space i
| §
L. X X 2 L X2 X X X 1 X X ¥ 3
i {
| RSVAR i
[i
|

INCOD i

| i
| RSCOD |

After POSTLD

PPVAR 4.

Figure § Release 3A Address Space

BGPTR

Page 5=3

TOPS=20 Monitor Internals ‘Page 5=4
MONITOR ADDRESS SPACE '

5s1s1,2 ADDRESS SPACE IN RELEASE 4 =

In order for the symbols to be available from monitor startup
time, they must reside in the MONITR,EXE file and be read in by
BOOT, Any scheme to put them into a different file would mean
that they would not be available until after all of the monitor’s
disk mounting and other startup code had been executed, This
would mean that EDDT would have no symbols for debuggind, To put
the symbols into the EXE file without overwriting code or data,
an allwzero area big enough to hold them must be used,

Based on this, the monitor’s address space 1s laid out as
indicated in Figure 2, BOOT reads in RSCOD (resident monitor)
and INCOD (which contains initialization code and EDDT) and the
symbols, The symbols are initially read into the area wnere the
psects PPVAR and RSVAR will ultimately reside, STG then moves
the symbol table up to immediately following the SYVAR psect in
physical memory. STG does this to free up the -RSVAR and PPVAR
psects so that MMAP and the CSTs can be set up to turn on paging.

Later, PGRINI sets up SUMMAP to point to an alternate address
space containing EDDT, the symbols, and parts of the monitor,
EDDT and the symbols live at the same addresses in this virtual
address space as they do in physical memory, (See Filgure 3,) The
symbols do not appear in the monitor’s main address space at all.

[OPS«20 Monitor Internals
AONITOR ADDRESS SPACE

w1117

before monjtor startup

|

|
| |
| |
| |
| |
| |
| |
i)
{ |
} |
| |
| I
| |
i i
| |
| ~ i
| | |
| | |
| | !
| | I
i i)
| |
} symbols |
{ |
| INCOD i
| |
! RSCOD |
I I

Monitor

address space

Notes:

i,

PPVAR 2,

BGSTR

3.

i |
I NPVAR |
I !

NRCOD

|
|
|
|
|
|
| NRVAR |
L L L A L L LY L X 1 § %]
| l
| JSVAR i
| !
!

LA A R L X ¥ F F L § ¥ X ¥ %

PSVAR |

| [SYVAR] !
| i
| RSVAR i
| !

| INCOD !
i !
! RSCOD |
} i

L L L L L X L L Y 1 ¥ ¥

Monitor
address space
after startup

BGPTR 4,

Figure 2 Release 4 Address Space

2,3,4

POSTCD

Page 5=5

TOPS=20 Monitor Internals Page S5=6"
MONITOR ADDRESS SPACE

e w— o ,.

| |
| |
| |
| |
| |
400000 | |
| |
| o
I symbols |
| |
| SYVAR |
| |
| |
| RSVAR 1
i |
| |
i "INCOD [
} |
| RSCOD |
| I
0 90 4 un % OB ED =) GA €3 N0 N W 4B . o

Notes:
1., PPVAR 2. BGSTR 3. BGPTR 4, POSTCD

Figure 3 Alternate Address Space

5.,1,2 MODULE CHANGES

Wwith the changes to implement the alternate address space (which
is also often referred to as hidden symbol processing) some
modules now function differently.

BOOT

BOOT is read in by the front end at @a predetermined physical
address (currently on top of the RSCOD psect) and started, The
£irst thing BOQOT does is find the highest 20 pages in section 0
of physical memory, and move itself there, It then S5ets up a
mapping that is straight physical to virtual, except that it
alvays maps itself at the end of virtual memory (pages 760000 and
beyond),

'0PS=20 Monitor Internals Page 5=7
IONITOR ADDRESS SPACE

1oy of

lith Release 4 EDDT now has two conditions, In the first
‘ondition, when the monitor iIs loaded by BOOT but not started,
.ne symbols are in the monitor’s virtual address space and EDDT
iccesses them much as it d4id in past releases, In the second
‘ondition, the monitor has been started and EDDT must reference
he symbols using the alternate mapping,

'he alternate mapping Is accomplished using an alternate page
able, To access the symbols, EDDT changes the page table
ointers at MSECTB and MSECTB+1 (for sections 0 and 1), The old
age table pointers are placed in OSECTB and OSECTB+1, New page
able pointers are retrieved from SSECTB and SSECTB+i,

DDT

DDT accesses symbols when it needs them by mapping needed pages
f the alternate address space, This {s accomplished through the
se of a new monitor subroutine called ,IMOPR (Internal Monitor
peRation),

NDmP JSYS

- . .
he SNOOP JSYS accesses symbols in the alternate address space by
sing ,IMOPR in the same fashion as MDDT,.

+1.3 LIST OE MONITOR BSECIS

he following is a 1list of all of the TOPS=20 monitor’s psects,
long with a short description of each, Note that each psect
hose name ends in VAR is alle=zero, and is not filled in until
he monitor starts running,

1., Page 0 (and 1 on 2020s) == Not really a psecty; these
pages are Joaded with LOC statements and are full of
miscellaneous communication areas, flags, etc,

2, RSCOD (Resident code) == This psect contains the code
and data that can never be swapped out, This psect is
hard=wired into the monitor as the first one, and the
location MONCOR contains the last page number in 1it,

3, INCOD (Initialization code) == This psect contains some
routines used only auring monitor initialization
-’ (including the 14335G dialog)., It also contains Exec
DDT, This psect is locked when the monitor is started,

‘but gets unlocked at GETSWM unless EDDT is needed,

TOPS=20
MONITOR

4,

S

6

T
8.
9.

10,

11,

12,

‘13,

Monitor Internals Page 5=8
ADDRESS SPACE

PPVAR (Per=processor variables) == This psect contains
nothing, It is used to reserve a few slots in MMAP for
use in setting up temporary mappings to memory pages,
APRSRV uses these map slots to Trecover from parity
errors, for example, ’

RSVAR (Resident variables) == This psect contains the
monitor’s variables that must always remain resident,
including the EPT, MMAP, and the CSTs, :

SYVAR (Symbol varlables) == This psect contains
everything that should appear only in EDDT’s alternate
address space (for example, symbols), and not in the
monitor’s normal address space, The symbols are
appended to this psect early in the monitor’s
initialization, and then, both the symbols and the psect
are "hidden," This psect is of zero size if the HIDSYM
conditional 1s not set.

PSVAR (PSB variables) == This psect contains the PSB,
JSVAR (JSB varlables) == This psect contains the JSB.

NRVAR (Nonresident variables) == This psect contains
monitor data locations that can be swapped,

NRCOD (Nonresident code) == This psect contains the
monitor code that can be swapped, 1including the
processing routines for all the JSYSs. This psect |is
usually write~locked,

BGSTR (Bugstrings) == This psect contains ASCIZ strings
that describe each BUGINF, BUGCHK and BUGHLT., Like
NRCOD, this psect is swappable and write-locked,

BGPTR (Bugpointers) == This psect contains a few words
for each BUGXxxx, including the additional arguments and
pointer to the corresponding Bugstring., This psect 1is

also swappable and write-locked,

NPVAR (Nonresident page variables) == This psect
contains monitor varlables that are allocated a page at
a time and can be swapped, One of the main features of
this psect 1is the resident free pool (RESFRP), whose
pages are locked in memory one at a time as they are
allocated,

[OPS=20 Monitor Internals Page 5=9
YTONITOR ADDRESS SPACE

5,4

HINIS ON MQONIIOQR BUILDRING

'he following hints appear belaow as an aid to those who must
*ebulld monitors, ~

{HY THE PSECTS ARE WHERE THEY ARE

jeveral rules must be followed when rearranging the psects:

.

BOOT reads the monitor in around itself 1in virtual
memory, Since BOOT needs to remain mapped and
functioning until the swappable monitor has been read in
and started, it must not 1lie in any part of the
monitor’s virtual address space that will be used by the
monitor’s initialization code, For this reason, the
only three areas that can be used are a gap between
psects, the NRVAR psect, or the last part of the NPVAR
psect (the first part contains the resident free pool
that is used by the

TOPS=»20 Monitor Internals . Page 5=10
MONITOR ADDRESS SPACE , .

disk mounting code and the swapper), The last area |{is
the one currently used,

2. RSCOD must be first; 4t checks to see 1f an address
lies in RSCOD are just CAMLE MONCOR, which will not work
if any psect falls below RSCOD, ’

3, All of the psects in the part of the monitor that |is
started f£irst and that reads in the swappable monitor
must be first, In addition, the last item in that part
of the monitor must be the symbol table, which includes
the RSCOD, INCOD, PPVAR, RSVAR, and SYVAR psects, The
code in these psects must work before any swapping or
paging can occur; therefore, they must all be low
enough to fit in physical memory on the smallest
configuration supported, . Also, BOOT stops reading in
the resident monitor when it hits the end of the symbol
table, So the symbol table must be the last psect in
this group,

4, The group of nonzero psects that swap are treated as a
unit by certain parts of the monitor, and should
therefore be together, These psects are NRCOD, BGSTR,
and BGPTR,

%, PSVAR, JSVAR, POSTCD, NRVAR, and NPVAR can generally be
put anywhere, They have been moved in the past with
success, '

5.1.5 WHICH PSECTS CAN OVERLAP

The POSTCD psect can overlap any xxVAR psect, since it will be
gone by the time MONITR,EXE ls generated, POSTCD 1s currently
allocated its own three pages to avold psect overlap warnings
from LINK (a cosmetic precaution only).

with hidden symbol processing, the SYVAR psect and the symbol
table can overlap any other xxVAR psects, The SYVAR psect is
currently allocated its own page to avoid psect overlap warning
messages from LINK,

If BUGSTF 1is not set and the bugstrings and bugpointers are not
present in the running monitor, the BGSTR and BGPTR psects can
overlap any XxVAR psect, In the current monitor, they would
probably be overlapped with the NPVAR psect, which immediately
follows them,

No other psect overlaps can be allowed without breaking the
monitor,

TOPS=20 Monitor Internals Page 5=11
MONITOR ADDRESS SPACE

5,16 HOW TO CONTROL THE SYMBOL TABLE ORIGIN

The psect origins of all the real psects are controlled by /SET
switches in the LINK ,CCL f£ile, The symbol table, however, must
pe controlled in a more indirect way, via the LINK switches
/SYMSEG and /UPTO,

Ihe /SYMSEG:PSECT:name switch directs LINK to append the symbol
table to the named psect. If symbols are hidden, the symbols
should be appended to INCOD; 1if not, they should be appended to
SYVAR, The symbols normally start 200 words after the end of the
>receding psect, The extra 200 words are the PAT,. area,

(he /UPTO:address switch tells LINK the highest legal address for
he symbol table, 1If there are enough symbols to make the symbol
:able attempt to exceed the specified address, LINK will output a
varning message and truncate the symbol table, (The resulting
nonitor should still run if this occurs,) The address should be
iet to one less than the base of the first psect that the symbol
:able cannot overlap,

TOPS=20 Monitor Internals . Page 5=12
MONITOR ADDRESS SPACE .

Sels7 SANMPLE QUTPUT FROM LINKING A MONITOR

The following 1s part of the output from linking a 2020 monitor;
{t shows both a new format for the output and the new address
layout,)

Monitor address space:

Psect Start End Length Free Limit
RSCOD 2000 63633 61634 6144
INCOD 72000 112634 20635 1143
PPVAR 114000 117777 4000 0
RSVAR 120000 214226 74227 13551
SYVAR 230000 230777 1000 7000
PSVAR 240000 325777 66000 2000
JSVAR . 330000 417777 70000 0
NRVAR 420000 441426 21427 2351
NRCOD 444000 660347 214350 13430
BGSTR 674000 702602 6603 1175
BGPTR 704000 704714 715 1063
POSTCD 706000 710217 2220 560
NPVAR 711000 772777 62000 5000 777177

Loaded symbols 112735 251750 137014 172027 NRCOD
Runtime symbols 231000 370013 137014 320764 NPVAR

The symbols will be moved to their runtime area right after
the SYVAR psect by STG early in the monitor’s initialization,

There are 57 (octal) free pages, not counting symbols,

% Runtime symbols must end by 360000 in order to run on a
128K system,

Wwriting sorted bug list to file BUGSTRINGS,TXT.!
Saving monitor as SMONITR,EXE,1

CHAPTER 6
MONITOR MODULES

IQNIIOR ¥ORULES

'he source code for the TOPS=20 monitor is in the form of macro
iles, Each file contains code pertaining to a particular
unction or device, These files are assembled into monitor
odules, Some of the modules are assembled from onhly one file,
hi~h may include searching certain universal files, But some of
hi g Modules are a combination of files, For example, consider
he module TTYSRV, The file TTYSRV,MAC contains the terminal
ervice functions, The module TTYSRV, however, is built of four
iles: TTYSRV,MAC, KLPRE,MAC which indicates the terminal
ervice 1is for a KL, TTFEDV,MAC which contains information about
he lines being connected to a front-end, and TTPTDV,MAC which
ontains the code required to support pseudo terminals,

11 modules are not contained in every TOPS=20 monitor, Some
odules are built for certain hardware and/or software, For
xample, the TTYSRV module described above is contained in a
onitor built for a KL10, but the TTYSSM module contains the
erminal information needed for a monitor that is to run on a
020,

he following describes the modules contained in the Release 4
onitor,

BEEBSBY This is the processor dependent service module for the
KLio, It contains the initialization code for paging, MUUD
handlers, and the priority interrupt system as well as for
the clocks, APR, and DTE devices, Interrupt handling for
these devices, pager control routines, and pre and post JSYS
handling {s also performed here,

Bhowd This is the processor dependent service module for the
KS10, It performs the same functions as APRSRV (excluding
service for devices that do not exist on the KS10 such as

TOPS=20 Monitor Internals Page 6=2
Monitor Modules .

DTE service),
CDRSBY Card punch service,
CDBSM Card reader service for the KS10 processor,
CORSRY Card reader service for the KL10 processor,
COMMR Code for the COMND JSYS.
DATIME Code for the date and time conversion JSYSs.,
DEYICE Device initialization and lookup code,

DIAG This module contains the code to support the DIAG JSYS for
the KL10,

RIRECT Directory management code,

DISC This module contains the pre-PHYSIO disk dependent routines
for 1/0 JSYSs and a dispatch table of vectored addresses,
DSKDTB, which points to them, ’

Dsklncv'brive type independent code for disk block allocation,
including swapping space allocation, front=end file system
definition, and structure definitipn. '

DIESM Dummy repla;ement code for DTESRV for the KS10,

DIESRY DTE service driver; protocol handler for requests to and
from the front-end,

EEILIN This module performs the same functions as FILINI using
" extended directory support,

ENG This module implements the ENQ/DEQ facility to control
simultaneous access to user specified sharable resources,

EESBY Device code for FE devices, This code contains the
device=dependent routines for the FE pseudo devices FEQ=FE3,

EILINI This module contains code to {initialize the file system
at system startup,

EILESC Thls module contains miscellaneous routines for the PTY,
TTY string (includes break mask and field width support) and
null I/0 devices and also includes a device dispatch table
for each of these devices,

EILNSE This module contains the filesystem interface to NSP, It
includes the device dispatch tables for SRV!? and DCNg,

EQOBRK Contains the fork controlling JSYSs and support code,

TOPS=20 Monitor Internals ' Page 6=3
Monitor Modules .

EE™ Job storage free area management,

EUIILI Utility module which contains routines to copy strings
to/from JSBs, routines to retrieve/change connected
structure and directory information and routines to get a
yes/no answer from CTY,

iTJEN Contains the code for GTJFN, and the JSYSs which support
lookup, recognition, and creation of file names,

LEAN22 AN22 driver for the 2020,

[¥RANX IMP driver for AN10.

(¥BDY This module contains the Interface~=Message=Protocol (IMP)

‘ device independent code, It runs cyclically as a separate
fork (i.e,, under JOB0) and handles the interface to the
ARPA network by monitoring network activity and managing the
message queues,

MBBAR This is the parameter file for the IMP modules,

.80 Contains most of the Vdevice-independent - sequential,
random,and dump input/output routines for BIN, BOUT, SIN,
SOUT, DUMPI, and DUMPO,

:Eaf? Code for the system interprocess communications facility,

ISXSA Random JSYSs for system and directory access, device
allocation, Job parameter settings, system accounting and
file/fork mapping,

ISXSE Contains code which implements various file system JSYSs,

DRSBY This module provides support for DUP11°'s with a KMCi1 for
NSPSRV on a 2020,

RINIT This module at load time defines storage PCs for the JSYS
dispatch table, JSTAB,

JINERR Lineprinter service for the KL10,
ZNBS¥ Lineprinter service for the KSi0,

OGNAM Contains the logical name definition and recognition
JSYSs and routines,

OOKUR Device independent file name lookup,
AGIAR This module contains the pre=PHYSIO magtape=~dependent
routines for 1I/0 JSYSs and a dispatch table of vectored

ww @ddresses, MTADTB, which points to thenm,

EXEC This module contains the MINI=EXEC (MX) which is a limited

TOPS=20 Monitor Internals Page 6~4
Monitor Modules

command interpreter for certain system loading/maintenence
functions, and swappable monitor bootstrap procedures, It
‘i{s part of the swappable monitor and also contains many JSYS

‘rogtines,
&EILR Floating point-inéut and converéion JsYSs,
'MELOUT Floating point output and conversion JSYSs,

!siﬁ Contains the code to implement the mountable struéture
JSYS, MSIR,

NETWBK This module contains the interface for all standard 1I/0
JSYSs that communicate with the ARPA=network, It also
provides a finite state machine of various events assoclated
with a connection for the network control program (NSP),

NSRINT Network Services Protocol Internal Interface,

NSBRAR This parameter module contains data structures and symbol
' definitions reguired by NSPSRV, In particular, NSPPAR
contains the definitions of the loglcal link blocks,

NSRSEBY This module contains the control routines and JSYS
‘{nterfaces for the .message level protocol of DECNET known as
NSP (Network Services Protocol), which allows communication
between processes on hosts by means of logical links,

BAGEYX Page management code} core management routines, swapper
routines, pager trap 1logic, OFN control, and CST and SPT
initialization,

BHYH1L Channel dependent code for RHii controller,

RHINZ Channel dependent code for RH20 controller at direct 1I/0
level,

23!!2 pDevice dependent code for TM02/TM4S magtapes at direct 1/0
level,

PHIR4 Device dependent code for RPO4/RP06 disks at direct I/0
" level,

RHYRAR Universal file for PHYSIO and assoclated modules, It
contains the definitions for the Channel Data Block, Channel
Dispatch Table, Unit Data Block, Unit Dispatch TAble, and
the Input/Output Request Block,

BHYSIC This module handles the channel and driver I/0 routines,
It 1is responsible for queueling I1/0 requests into their
proper queue, choosing the "best" request for seeking and/or
transferring and starting I/0,

BHYY2 Device dependent code for DX20,

TOPS=~20 Monitor Internals Page 6=5
Monitor Modules .

Ef!ﬁfplotter service,

20SILD This code runs immediately following the loading of the

- monitor, and performs functions outside the capabilities of

LINK, It builds the MONITR,EXE file, writes a BUGSTR text
file and deletes {tself from core,

2BOKL Parameter file indicating KL10,
3R0KS Parameter file indicating KSi10,

2BQLOG This is a file of parameters, storage assignments,. and
macro definitions, The major reqions of the monitor address
space are defined as well as macros affecting PI bug
strings, pseudo~interrupts, and scheduling, All PSB and JSB
storage defined by the monitor at_assembly time is specified
here, All of the BUGXXX definitions are included 1in this
module from the file BUGS,MAC,

IR Paper tape punch service,
I1& Paper tape reader service;

WCHER This module contains the Channel 7 Interrupt routine
(vhich performs context switching), the process controller,
wwr the working set manager, the job/fork initialization/dismiss
routines, and the Program Software Interrupt (PSI) analysis

and resolution routines,

ERCOD This module contains the error codes and fields for
SYSERR, a program which produces hardware performance
reports for field service personnel,

IG The bulk of the monitor storage, both resident and
non=resident, is defined in this module,

WBACL This is the swapping space allocator which handles a

' device of some number (SWPSEC) of sectors, and some number
(DRMMXB) of tracks, It has a resident bit table which {s
used to allocate swapping storage,

iSERB Error reporting module for field service (not ¢to be
comfused with the SYSERR program used to read the error
information),

ARE This module contains the tape handler and record processor,

1MER This module implements the TIMER JSYS and all of {ts
support,

IY "M This is the terminal service module for a KS10 ARPA
wmonitor, See TTYSRV,

IYSMX This is the terminal service module for a KLiO ARPA

TOPS=20 Monitor Internals ' Page 6=6
Monitor Modules

monitor, See TTYSRYV,

TTYSRY This is the terminal service module for the KL10O, This
module contains the TTY 1I/0 drivers, speclal control
character conversion routines, terminal JSYS routines and
the 1interface to the primary and secondary protocols in
DTESRV, 'Its device dispatch table 1s contained in FILMSC,

TTYSSY This is the terminal service module for the KSi0, See
TTYSRV,

YERSIN Version information for the monitor.

CHAPTER 7
WATCH

'el HAICH

'ATCH 1s a TOPS=20 data collection tool that can be used to
jather the information necessary to analyze both system and job
rerformance, WATCH periodically samples many system variables,
'riting them in a format that is usable for analysis, Collecting
IAT"H statistics is beneficial whenever the system is running,
‘ug/ Statistics are often useful when usage trends are being
inalyzed in order to plan system growth, Any user can run WATCH
ind obtain most of the system information and some of the job
nformation, These statistics are normally sufficient for
letermining overall system performance and for spotting short=
ind long=term usage trends, Expanded system and job information
.§ avajilable for users who are running with WHEEL or OPERATOR
rivileges enabled, This expanded set of statistics provides the
'uch more detailed information that is often required to observe
nd tune the wecrkload of an individual application,

‘21,1 OUTPUT
'he WATCH output consists-of nine different display sections:

1. Heading == This section contains the date, time, number
of Jobs logged in, and the time interval over which the
data sample was collected,

2, System Statistics == This section contains system=wide
statistics that reflect the resource utilization of the
CPU, disk, and memory.

TOPS=20
WATCH

3.

4,

S

6o

7.

8.

9

Monitor Internals page 7T=2

Load Averages == Load averages indicate the number of
runnable processes over specified Iintervals, This
section indicates the load average for the system, for
the interactive and computational queues, and for each
class (when class scheduling is 1in use),

Directory Cache == A cache of the most recently used
directories 1is kept by the monitor, This section
displays statistics that indicate the usefulness of this
cache,

Normal Per=Job Information == Per=job statistics that
relate the amount of CPU resource distributed to each
job are displayed along with statistics concerning class
utilization (when the class scheduler 1s in use),

Expanded Per=Job Information == In addition to the CPU
information, this display presents rany statistics that
show the states in which the Jjob spent time and how
large the 3job is. The display also provides disk and
swapping information,

system Utilization Statistics == The system utilization
statistics 1include a summary, of the expanded per=job
section, additional system statistics, and computations
of several key variables,

Disk I/0 == Disk 1/0 statistics are displayed on a
per=drive basis, Included in these statistics are the
.number of seeks, reads, and writes performed Dby each
~drive,

Tune Mode Display == This display is a single line that
contains some of the more revealing system statistics
and summary statistics £from the system utilization
section, It 1is a useful "quick and dirty" display for
users who are monitoring changes in the system load,

In addition to the above displays, data record output can also be
requested, . This form permits further computer analysis of data
output from WATCH, Consider the following example of systenm
statistics:

TOPS=20 Monitor Internals Page 7-3
WATCH

SUNFARY at 8-Oct=79 10352:21 ,_ |
for an interval of 1:159,9 with 54 active jobs,

JSED: 21,1 IDLE: 42,7 SWPW: 2,0 SKED? 2,9
SUSE: 20,7 TCOR: 0.1 FILW: 29,6 BGND: 1,6
VTRP: 10,2 NCOR: 2,00 AJBL: 24,03 NREM? 0
FRAP:? 1.2 NRUN: 0.9 NBAL:S 0,9 NWSM: 66,6
3SWTS 0,5 DSKRrR: 18,0 DSKW3 9.4 SWPR} 5,7 -
VLOD: 13,52 CTXSs: 21,9 UpPGs: 1966, FPGSs 205,
JMRD 8 1,1 DMWR? 0,7 DKRD3 3,0 DKWR$ 2,5
PTIN: 12,8 TTOU: 242, WAKE: 13,7 TTCC: 2,50
'DIO: 7.4 RPQS: 3.3 GCCWe 1.6 XGCwWe 0
(NOB?$ 11 _
JUEUE DISTRIBUTION PERCENTAGE}

0,20 6.95 10,28 3,64 0,00 0,00

'he output data record for this WATCH output would have the
iollowing form:

)100110/08/79 10852:2100119,90540021,100042,700002,000002,90
1020,700000,100029,600001,600010,200002,000021,030000,000001
,200000,900000,900066,600000,500018,000009,400005,700013,520
121,901966,200205,400001,100000,700003,000002,500012,800242,
)00013,700002,500007,400003,300001,600000,00000110000,200006
9%°010,280003,640000,000000,000000,000000,000000,000000,000
) -

1l of the variables and the format of the data records are
escribed in the "WATCH VARIABLES" section that follows,

ed+.2 RUNNING WATCH

ATCH can be run by all users, though users with OPERATOR or
HEEL privileges enabled can obtain more information than others,
ATCH is run by typing either "WATCH" or "R WATCH", When WATCH
tarts, it identifies itself with a message likes

ATCH 4(3), /H tor help,
nformation is then requested in the following order:

Output to file:
Would you like to output data records? (Y/N)
OQutput file for data recordss
Print monitor statistics?
Print job summary ?
. 'une mode?
wrime period (MM3:SS):

ome O0f these requests are not made if previous answers indicate

TOPS=20 Monitor Internals Page 7=4
WATCH

that_the information s unnecessary. The following diagranm
outlines the order of the questions:

Output to file:
|
|
Would you like to output data records? (y/n)s
| (.
NO | | YES
| L |
| output file for data records?
| |
o . I
Print monitor statistics?
! | |
ALL | | YES | NO
| | |
i print job summary?
| | : / \
| YES | / \ NO
| or | / YES \
| NO | / Tune mode?
| ’ | / /
| I / / YES or NO
" 7/ /

Time period (MM:SS8):

The output of data records is indicated with the second and third
questions, The output display received is as follows:

1, Headings and load average displays are always received
except in tune mode, :

2, "Yes®" to the monitor statistics gquestion causes the
system statistics display to be output, :

3. "Yes” to the fob summary question causes the normal
per~job statistics display to be output,

4, "™All" to thé monitor statistics gquestion causes all
displays but the tune mode display to be output,

s, "Yes" to the tune mode question (which occurs only when

"no" is given for both the monitor and job summary
gquestions) causes the tune mode display to be output,

After the user enters the necessary information, WATCH displays
the message:
WATCH IN OPERATION ==

and then takes 1its first sanmple, This message is seen
immediately after entering the interval time unless the user s

TOPS=20 Monitor Internals Page 7=5
WATCH

r;gsestinq displays that require privileges (extended and tune
mode), Then, a 10=30 second pause occurs (depending on system
load) while the SNOOP breakpoints necessary to collect the
information are inserted into the TOPS=20 monitor,

When the user desires to stop collecting statistics, the
following procedure should be followed:?

~C
~C
CLOSE
RESET

At this point, the output can be printed,

7.1.3 SOME INDICATORS

When variables have the values indicated in the following 1ist,
the system is usually in "balance," Since 1t is quite possible
for one variable to appear in balance, while others are not, this
Iin“~rmation is only a guideline.
-)
1. NCOR = 30 PER MINUTE == Expensive if higher,

2., NRUN/NBAL = | =~= All processes wanting to run can £it in
memory, -

3. SWPR less than 20% == Swap reads/writes are overhead and
thus should be (ideally) a small component 0f disk
usage,

4., SWPW close to 0 == Since this variable represents
Processes waiting for memory when no others can run,
utilization of the system can normally be increased by
adding memory until this is a small value, However, if
the load has a large 1/0 component, additional memory
may merely shift the CPU idle time from SWPW to FILW,

5. SKED = 15% == Scheduler overhead detracts from cycles
going to user programs, Programs that do very little
WOrk each time they are scheduled generally drive this
value up, If this value is high, it is important to
determine if there is a set of applications which could
be reprogrammed in order to do more work between
interactions, Programs that become active as each
character is typed (like some screen formatting
software) should be viewed with suspicion,

TOPS=20 Monitor Internals page 7=6
WATCH

6, FILW close to 0 == This is CPU {dle time caused by
processes waiting for disk 1/0 to complete, More memory
permits larger numbers of programs to be resident, At
other times, reconfiguring the disk access patterns to
spread the disk I1/0 more evenly across the disks and
channels lowers this value,

7. BSWT/NBAL small == If a large proportion of processes in
memory are waiting on the disk, the CPU is not being
utilized,

8, NREM = 0 == Since this counts the times runnable
processes are removed from the balance set, performance
{s best when 1t is zero, Performance degrades rapidly
as the value increases,

9, FPGS large == If the number of free pages 1s low, the
system needs to expend resources to garbage collect more
often, This statistic, along with NREM, can be used to
indicate a system overload,

10, DMRD+DMWR less than 20 per second == Because drum
reads/writes utilize a percentage of the disk system’s
bandwidth, higher throughput is possible when swapping
1s low, Normally, swapping of less than 30 pages per
second does not cause any visible effect, If the normal
load contains a large amount of user disk I/0, swapping
at rates higher than 20 will decrease the systen
throughput, If the normal load is mostly interactive or
computational, higher swapping rates can be sustained,

7.%.,4 WATCH VARIABLES
The following is a 1ist of the displays produced by WATCH,
Beside each display type is the output data record type used for
that display’s information when data records are written,

1. Heading (All record types)

2, 8System Statistics (01)

3, Load Average (02)

4, Directory Cache (05)

s, Normal Per=Job Information (04)

6. Expanded Per=Job Information (03)

TOPS=20 Monitor Internals Page 7«7
WATCH

- , .
7. System Utilization Statistics (05)

8, Disk I/0 Statistics (05)

9, Tune Mode Statistics (06)

(n the following sections, each display {is described and the
‘ormat of the output data records is given, 1In the formats of
-he data records, the length of the fields is measured in
‘haracters (all fields in the records are ASCII characters), The
lorm of each field is shown as a COBOL PICTURE (9 represents a
\ymeric character, X an alphanumeric character), The first field
)£ each record is the record type; the second fleld 4{s the
‘ecord Ssequence number, For record types 01, 02, and 05, the
‘ecord sequence number is always "001%,

'ele4,1 Heading =

'he following is an example of the heading display., It shows the
la* and time, the 1length of the interval, and the number of
s&® logged in, The interval shown 1S nearly equal to that
peciflied by the user,

SUMMARY at 6=Aug=79 09:28:23
for an interval of 0s1i,3 with 52 active jobs,

he heading information appears 4in fields 3, 4, and 5 of all
utput data records,

w1.4,2 System Statistics =

he following example of the system statistics display may be
eferenced while reading the descriptions of the variables,

USED: 87,6 IDLE: 0.0 SWPW? 0,0 SKED: 10,0
SUSE: 80,0 TCOR: 0,1 FILW? 0,8 BGND3 1,8

NTRP: 22,3 NCOR: 2,02 AJBL: 58,44 NREM3 0
TRAP: 3,2 NRUN: 5,7 NBAL: 5,7 NWSM: 61,0
BSWT: 2,8 DSKR: 23,0 DSKW: 4,8 SWPR: 6,4
NLOD: 16,12 CTXS: 64,1 UPGS: 1992, FPGS: 147,
DMRD: 4,1 DMWR 4,7 DKRD: 10,7 DKWR ¢ 4,3
I7 ‘s 11,0 TTOU: 401, WAKE: 48,3 TTCC: 1,51
I0%¥: 23,8 RPQS: 4.4 GCCWS 6.4 XGCWs 0

KNOB¢ 11
QUEUE DISTRIBUTION PERCENTAGE:

TOPS=20 Monitor Internals Page 7=8
WATCH

0,19 20.48 21,28 11,04 2,69 31,74

The statistics in this display are expressed either as
percentages (%), as averages (AV), or as rates (Px), The rates
are in units per minute (PM) or in units per second (PS),

The display i{ncludes "CPU usage statistics® from which the
distribution of the CPU resource can be determined, The usage
statistics are all percentages; their sum should be 100% (+/=
roundoff error). The CPU Usage Statistics are USED, IDLE, SWPW,
SKED, TCOR, FILW, BGND, and possibly TRAP,

Each of the variables in the example are described below) they
are taken line by line in left=to~=right order,

USED: (%) == Percentage of the interval during which the CPU was
executing instructions on behalf of some user, This
includes user, JSYS, page fault, and interrupt processing,

IDLE: (%) == Percentage of the interval during which the CPU was
idle because there were no active processes on the system,
If this number is nonzero, the system can accommodate sone
additional usage, If the CPU is idle when there are active
processes, its idle time is accounted for in SWPW or FILW,
not under IDLE time,

SWPW: (%) == Percentage of the interval during which the CPU was
idle and while one or more processes was waiting on the
completion of a memory management service (normally a swap
in). For time to be accounted in this variable, all active
processes must be in wait states,

SKED: (%) == Percentage of the interval during which the system
was scheduling users for memory and the CPU, Other systenm
overhead functions are measured by the variables TCOR and
BGND,

SUSE: (%) == Sum of the runtime percentages accumulated for each
job running at the time of the report, This value differs
$rom USED only by the skew that builds up during the time
that it takes WATCH to collect all of the data about each
job and by the loss of data from jobs that logged out during
the interval,

TCOR: (%) == Percentage of the interval spent garbage collecting
memory. This represents part of the memory management
overhead, The garbage collection process requires the
monitor to 1look at ¢the age of each page in memory to
determine the ones that have not been referenced in a while,
The least recently used pages become the prime candidates
for being swapped out.

FILW: (%) == Pe:centage of the interval during which the CPU was

TOPS~20 Monitor Internals Page 7=9
WATCH

-~ idle, no processes were walting for memory management
services, and at least one active process was waiting for a
short=-term, user=initiated event (disk I/0) to complete,

BGND: (%) == Percentage of the interval during which the monitor
was performing background tasks, The primary backgrcund
task is moving terminal input characters from a system=wide
buffer to the individual terminal input buffers, This
variable also includes the CPU overhead to echo terminal
input characters,

VTRP: (PS) == Number of page faylt traps per second, Not all
page faults require disk input to be resolved, Some page
faults are resolved with pages that are currently in memory
‘but not assigned to the process generating the page fault,
Some of these pages are found in the replaceable gueue (see
RPQS below) while others may be shared by other processes,

ICOR:" (PM) == The average number of memory garbage collections
per minute performed by the monitor during the last
interval,

wWBL: (PM) == The average number of times per minute the system
was forced to adjust the balance set during the last
interval., A rate of 60 times per minute is normal on a

wr system with several) users and no IDLE time,

IREM: (PM) == The average number of times per minute the monitor
had to remove a process from the balance set before the
process came to a natural wait state (such as terminal input
wait), This number becomes nonzero whenever there are more
Jobs to be run than can ¢£it simultaneously in memory,
Whenever this situation occurs, the monitor removes
processes from the balance set, swapping them out to make
room for other runnable processes, In general, whenever
this number goes nonzero, response time gets .longer,

RAP: (%) =~ Percentage of the interval during which the CPU was
responding to page faults. This time is normally charged to
the user, and is therefore also part of "USED" time, If the
monitor was built to remove this "TRAP" time from "USED"
time, it will become part of the system overhead (like SKED)
and cannot be billed, 1In such a case, the TRAP time must be
added to the "CPU Usage Statistics" in order to account for
100% of the CPU time,

RUN: (AV) == The average number of processes that were
simultaneously active during the {nterval, This number
represents the CPU load on the system during the interval,
When NRUN is greater than 1,0, the user programs experience
an average execution time at least "NRUN" times longer than

“w {f the system were stand-alone,

BAL: (AV) == The average number of processes in the balance set

T0PS=20 Monitor Internals . Page 7-=10
WATCH

during the {interval, ‘I# this number is less than NRUN by
more than .5, the implication is usually that there is not
.enough memory to hold all active processes,

NWSM: (AV) == The average number of working sets in memory
during the interval, If this number is significantly larger
than NRUN or NBAL, working sets are not being forced out of
memory when processes go into a wait state (like terminal
input wait) and, consequently, response times should not be
greatly affected by paging,

BSWT: (AV) == The average number of processes in the balance set
that are walting for the completion of some event, Normally
this number reflects the number of processes waiting for a
page to be read in from the disk. If NBAL = BSWT is less
than one, there are not enough runnable processes in memory
to keep the CPU busy 100% of the time, The idle time is
included in SWPW or FILW,

DSKR: (3) == Percentage of the processes in balance set walt
¢CBSWT) that are waiting for a file page to be read into
MeMOory.

DSKW: (%) == Percentage of the processes in balance set walt
(BSWT) that are walting for file pages to be written back to
‘the disk,

SWPR: (%) == Percentage of the processes in balance set wait
(BSWT) that are walting for a page to be swapped into memory
¢rom the swapping area of the disk,

NLOD: (PM) == The average number of working sets 1loaded per
minute into memory.

CTXS: (PS) == The average number of context switches performed
per second by the scheduler, A context switeh happens when
the running process voluntarily blocks, or faults on a page
that 1s not in memory, or when a higher priority process {is
ready to run, Since it takes CPU time to perform a context
switch, CTXS directly aftects SKED,

UPGS: (AV) == The average number of pages assiqned to processes
with loaded working sets, These processes may or may not be
in the balance set, but they are allocated memory.

FPGS: (AV) == The average number of physical memory pages that
are currently available for swapping in user processes, The
monitor normally Keeps between 20 and 100 free pages, The
monitor uses these pages (and the rest of memory not in use
by balance set processes) as a page cache, For example, 1f
a process reenters the balance set after waking up from a
blocked state and it still has some of its pages in memory
in the free page pool, those pages are used directly without
requiring any disk I/0, 1t has been -demonstrated that this

fOPS=20 Monitor Internals Page 7-11
YATCH

™ cache plays an important part in overall system performance,
Therefore, if FPGS is very small, the system performance has
mest likely been degraded,

)J¥RD? (PS) =< The number of reads per second made to the
swapping area,

JMWRS (PS) == The number of writes per second made to the
swapping area,

)KRD: (PS) == The number of reads per second made to the file
system, ‘

'KWR: (PS) == The number of writes per second made to the file
system,

'TIN: (PS) == The number of terminal input characters received
per second from all terminals (real and pseudo) on the

'TQU: (PS) == The number of terminal characters output per
second by all Jobs on the system, This includes real and
pseudo=terminails, :

AKT™s (PS) == The number of process wake=ups per second, Some
ww 0f the types of wake=-ups that fall into this category are

IPCF Process Termination
ENQ DISMS

Terminal Input TIMER

Terminal Output IIC

TCC: (PS) == The number of terminal interrupt characters (e.g.,
CTRL/C) typed per second,

DIO: (PS) =~ The aggregate number of disk pages read or written
per second to both the file system area and the swapping
area, Normally, 60 pages per second for a one~=channel and
100 pages per second for a two~channel system are saturation
levels, Thils variable is the summation of DMRD, DMWR, DKRD
and DKWR,

PQS: (PS) == The average number of pages per second that were
retrieved from the replaceable gqueue in order to satisfy
page faults., These page faults do not require disk I/0,

CCW: (PS) == The average number of pages per second that were
freed by global garbage collectilions,

GCW: (PS) == The average number of pages per second that .were

freed by 1local garbage collections on specific processes,

“wrThese garbage collections remove those pages from a process’
working set that have not been used in a long time,

TOPS=20 Monitor Internals Page 7«12
WATCH

KNOB: (value) == This is the setting of the bias control Kneb,
' The twenty possible bias control Kknob settings can only
‘represent six switch settings in Release 4, Low settings
‘f¢avor interactive 3Jjobsy high settings favor compute=bound
jobs, The default setting is ii,

The QUEUE DISTRIBUTION PERCENTAGE represents the portion of USED
time allocated to processes in the various scheduling queues,
The f£irst queue is only used by Job 0 and Jobs in the speclal
high priority category. Normally the percentage of runtime
accumulated in this queue is small, The second and third queues
are the {nteractive gqueues, If the sum of these two values is
high, there is a high interactive locad on the systenm, The last
three gueues are the computational queues, Processes move onto
these gueues only if they have entered a compute=bound phase, If
the sum of these three values is high, the system load is
primarily computational, When the class scheduler i{s turned on,
interactive users are scheduled in queue order while processes 1in
the lower three (computational) queues are given priority on the
pasis of their class’ distance from its target share,

The system statistics data record (record type 01) has the
following form:

Item Length Pilcture

1., Record Type 2 99

2., Record Sequence Number 3 999

3, Date & Time 17 XC17)

(MM/DD/YY HH$MM:SS)

4, Interval 7 9(5),9
5, Number of Jobs 3 999

6., USED 7 9(4),.99
7. IDLE 7 9(4),99
8, SWPW 7 9(4),99
9, SKED 7 9(4),99
10, SUSE 7 9(4),99
12, FILW 7 9(4),99
13, BGND 7 9(4),.,99
14, NIRP 7 9(4),.99
15, NCOR 7 9(4),99
16, AJBL 7 9(4).99
17, NREM 7 9(4),99
18, TRAP 7 9(4),99
19, NRUN 7 9(4).99
20, NBAL 7 9(4),99
21, NWSM 7 9(4).99
22, BSWT 7 9(4),99
24, DSKw 7 9(4),99
25+ SHPR 7 9(4).99
26, NLOD 7 9(4),99
27, CTXS 7 9(4),99

fOPS=20 Monitor Internails . Page 7=13
{ATCH

'8 PGS 7 9(4),99
!9, FPGS 7 - 9(4),99
i, DMRD 7 9(4),99
}1s DMWR 7 9(4),99
12, DKRD 7 9(4),99
4 TTIN 7 9(4),99
15, TTOU 7 9(4),99
164 WAKE 7 9(4),99
7 TTCC 7 9(4),99
8y TDIO 7 9(4),99
9, RPOS 7 9(4),99
Qe GCCW 7 9(4),.99
1, XGCW 7 9(4),99
2, KNOB S 9(5)
3, Quenye Distribution %°’s 70

Max 10 entries; each entry 9(4),99
4, Number of Queue Dist Entries 2 99

Total 361 Characters

.%ﬁv.B Load Averages =

he term "Load Average" refers to the average number of processes
imultaneously demanding service over some interval of time, The
ollowing is an example of the load average display:

LOAD AVERAGES: 5.29 4,06 3,39
HIGH QUEUE AVERAGES: 3,76 2,86 2,25
LOW QUEUE AVERAGES: 1.54 1,20 1,14

CLASS LOAD AVERAGES
CLA SHR UTIL

0 80,00 96,20 4,70 3,08 2,94
1 15,00 3,80 0,23 0,19 0.15
2 5.00 0,00 0,00 0,00 0,00

JAD AVERAGES==The system keeps three exponential load averages,
"ése values represent the average load over the last i minute,
e last 5 minutes, and the last 15 minutes, These numbers can
* used to estimate the expected elongation of the elapsed time
:quired to run a program, If the system load average equals X,
¢ approximate elapsed ¢time required to run an additional
rorvam on the system {s at least (1+X)*Y, where Y 1is the
& -"8l0ne elapsed time required to run this program,

TOPS=20 Monitor Internals Page 7-14
WATCH

HIGH QUEUE AVERAGES==These values represent the load of
interactive jobs (gueues i and 2),

LOW (QUEUE AVERAGES==These values represent the load _of
compute=bound jobs (queues 3, 4, and 5), The sum of the high
queue average and the low gqueue average equals the load average,

CLASS LOAD AVERAGES==This display is of interest when class
scheduling is being utilized, The following information is
presented for all classes defined for the system,

CLA =~ The class number,

SHR »» The class share of the processor, This share corresponds
to the percentage of the CPU that the monitor will try to
distribute among the jobs in this class,

UTIL == The actual utilization achieved by each class, The value
nere should be 1less than the share unless the class has
received some windfall,

The i=minute, 5-m1nute, and i5=minute load averages are displaved
for each of the classes, These load averages may appear to be
very large because they are computed as follows:?

84 Processes in class making demands

Class Load Average = prpnpipepnpeprr YT LTI L LY LT L DL L L L DLl d ol

Maximum (Share, Utilization)

Thus, 1£Athere are 5 processes making demands in a class with a
share of .20 and a utilization of .15, that class’ load average
is 25 (5/,20),

I¢ the class scheduler is not running, the utilization and load
averages are all zero,

The fbllowinq is the form of the load averages data record
(record type 02):

Item Length Pilcture
i1, Record Type 2 99
2. Record Sequence Number 3 999
3, Date & Time 17 X(17)

(MM/DD/YY HH3MMSS) '
4, Interval 7 9(%),9
5, Number of Jobs 3 999
6, Load Averages (3 values) 21

Each Value 9(4),99

7. Hignh Queue Avgs (3 values) 21
Each Value 9(4),99

TOPS~20 Monitor Internals Page 7-15
WATCH

Bwwilow Queue Avgs (3 values) 21

Each Value 9(4),99
9, Class Load Averages

Max 32 entries;

each entry as follows:

a, Class Number 5 9(5)
b, Share 7 9(4),99
¢, Utilization 7 9(4),99
d, Load Avgs (3 values) 2% :
Each Value - 9(4),99
0o Number of Class Load Avg, 2 99

Total 1377 Characters

'e1.,4,4 Directory Cache Statistics =

'he directory cache statistics are only available when an enabled
Iser responds "ALL" to the question "Print monitor statistics 2",
'he following is a sample display:

Directory Cache hits: 175
Directory Cache Misses = Cache Full: 0
WWpirectory Cache Misses = New Entry Added: 321

irectory Cache hits: = The number of times an accessed
directory was found in the cache,

irectory Cache Misses = Cache Full: == The number of times an
accessed directory was not found in the cache while all the
cache slots were filled with active directories, In this
case the most recently accessed directory cannot be put into
the cache,

irectory Cache Misses « New Entry Added: == The number of times
the accessed directory was not found in the cache, though
room was available to add it (possibly as a replacement for
an inactive entry), :

he "hit ratio" is computed by HITS/(HITS+MISSES) and provides a
00d indication of the cache’s effectiveness, For instance, the
it ratio in the example is 175/(0+321) or 35% (not very good),

he directory cache portion of data record type 05 is shown in
he "Disk I/0 Statistics" section below,

TOPS=20 Monitor Internals Page 716
WATCH

7.1.4,5 Normal Per=job Information =

The normal per=job information which is available to all users
running WATCH and consists of a line for each job that had an
active process during the interval, The following example Sshows
the statistics reported for each job!?

JoB TTY USER PROGRAM DELTA RT %RT Ju CSH
0 DET OPERATOR SYSJOB 7,81 4,3 23,94 3,64
1 43 OPERATOR PTYCON 1.7% 0.9 1.86 3.64
5 47 OPERATOR OPR 0,35 0.2 0.28 3,64

10 3 KELLEY BASIC 5,31 3,0 9,85 3,64
13 12 DENNING EXEC 8,46 4,7 717 3,64
14 24 KOVALCIN WATCH 3,80 2.1 3,92 10,00
16 2 GRAVES BASIC 3,72 2,1 9,18 3,64
18 21 BLIZARD SYSTAT 4,46 2.5 13,55 3,64
19 14 BOYACK EDIT 10,74 6,0 20,71 3,64
20 20 WOLFE EDIT 0,27 0,1 0,34 3,64

JOB == The job number assigned by the system when the user logged
in,

TTY == The number of the terminal that is being used by the user
running this Jjob, "DET" means detached,

USER == The name of the directory that the user logged into,

PROGRAM == The name of the program being run or the name of the
EXEC command being used, Please note that the program name
i{s obtained at the time the sample is taken, It s not
possible to tell if the program or command was running
during the entire interval,

DELTA RT == The incremental amount of CPU time (in seconds) that
the job used during the interval,

$RT == The percentage of the interval represented by the DELTA
RT, The sum of all %RT values is used to compute the SUSE,

JU e« Job Utilization, When the class scheduler is running this
will normally be a nonzero value, It represents the CPU
utilization accumulated by this job and charged to the job’s
class share, Because the class scheduler tries to divide
the class share equally among all active users in the class,
computational Jobs within the same class should normally
receive nearly the same job utilization,

CSH == Class Share, When the class scheduler is running, this
value reflects the class’ share divided by the number of
active jobs in that class == this is the target share for
the Job, Normally the job utilization (JU) is less than a
job’s class share.

rOPS=20 Monitor Internals Page 7-17
VATCH

rni_; is one normal per=Job data record (record type 04) for each
fob, The sequence numbers begin with "001" and increment by

'00i", The form of a record is

Item Length Plcture
1, Record Type 2 99
2, Record Sequence Number 3 999
3, Date & Time 17 X€17)

(MM/DD/YY HH:MM:SS)
4, Interval 7 9(5),9
S. Number of Jobs 3 999
6, Job Number 3 999
7. TTY Number (777 = DET) 3 999
B, User Name 20 X€20)
9, Program Name 6 X(6)
0, DELTA RT 7 9(4),.,99
1+ %SRT 4 '99,9
3, CsH 7 9(4),99
Total 89 Characters
-

+1.4,6 Expanded Per=job Information =

ost of the information presented in this display is obtained by
etting breakpoints in the monitor with the SNOOP JSYS., Thus,
his information is only available to users who are running WATCH
ith either WHEEL or OPERATOR privileges enabled,

he presented information occupies a full 132=character 1line,
or purposes of explanation, the columns are broken up as
ollows:

ob Identification Information:

0B TTY USER PRDGRANM

hese variables are the same as those 1listed in the normal
er=job display,

ob Utilization Informationt

RT DEMD USED GRDY BRDY SWPTR DSKR DSKW RPQW OTHR
emory, Response, and Disk Informationt

Kii'NLD NRSP RESP SP WSS UPGS‘SWPR DSKR .TPF IFA

e job utilization information and memory, response, and disk

TOPS=20 Monitor Internals ' Page 7-18
WATCH

information are discussed in the next two sections belov,

JOB UTILIZATION INFORMATION

The following is an example of the job utilization portion of the
extended per=job displays

JOB ..., SRT DEMD USED GRDY BRDY SWPR DSKR DSKW :RPQW OTHR

0 1,0 14,3 8,6 72,9 5.7 4.0 8,8

2 0.1 0,7 18,0 82,0

4 0.6 3,6 19,3 34,8 38,4 5,8 1,8

7 0.0 0,3 15,5 19,3 65,2

9 0,5 1,2 43,0 15,7 35,6 5,7

10 9,7 49,8 20,7 63,5 2,9 11,9 0,9 0.5
12 0,1 0.4 29,4 70,6

15 1,0 6,0 19,4 20,2 1,1 16,0 43,3

16 22,4 38,7 61,5 38,5

19 1.1 Se7 27,7 72,3

RT (%) == The percentage of the interval during which this Job
actually received CPU time,

DEMD (%) == Summation of the percentages of the interval that
each process in the Job was active, If only one process in
the job is active during the interval (the normal case),
DEMD is 1less than or equal to 100%, 1£f more than one
process are simultaneously active, DEMD couyld exceed 100%
(for a job of n processes, DEMD could be up to n¥100%),

The rest of the variables in this display indicate what a job was
doing during 1its “active" period, These statistics are all
expressed as percentages of DEMD and thus their sum {is 100%,
Wwhen assessing the importance of the statistics for a specific
job, you should multiply these percentages hy DEMD to get the
percentage of the interval time,

USED (%) == The percentage of DEMD that the processes in this job
spent using the CPU,

GRDY (%) == The percentage of DEMD that -processes in this Job
were runnable but could not £it .in the balance set, The
most common cause for processes to be on this 1list 1is that
there is not enough memory to hold all runnable Jjobs,

BRDY (%) == The percentage of DEMD that processes in this Job
were in the balance set but were not being run, Usually
processes in this state are waiting for their turn to use
the CPU,

SWPR (%) == The percentage of DEMD that processes in this Jjob
wajted for page faults from the swapping area to be
satisfled,

TOPS=20 Monitor .Internals Page 7=19
WATCH

DS (%) == The percentage of DEMD that processes in this 3job
W wajited for file pages to read in from the disk,

JSKW (%) == The percentage of DEMD that processes in this job
waited for file pages to be written to the disk,

POW (%) == The percentage of DEMD that processes iIn this 3job
wajted for a physical memory page to become available for
svapping into. Usually, when time is accumulating here,
there is a shortage of memory on the systenm,

JTHR (%) == The percentage of DEMD that processes in this job
spent in any of the other wait states,

'e1.4.,7 Memory, Response, And Disk Information =

'he following 1s an example of the memory, response, and disk
nformation portion of an extended per=job display:

JOB,,sIMEM NLD NRSP RESP SR WSS UPGS SWPR DSKR TPF IFA

0 917,41 1 165 0,06 6 410,0 7,7 20 17 45 40
<, 99,9 0 12 0,07 6 8,0 7,0 0 0

™ 492,5 3 28 0,11 6 37.0 7.2 29 4 87 25
7 78,2 0 1 0,39 6 27,0 25,0 8 o 32 7
9 99,9 0 12 0,12 2 S6,0 54,8 0 9 57 69
10 198,1 4 95 0,12 S 124,0 54,2 32 109 62 87
12 199,8 0 17 0,03 3 18,0) 0 0)
15 99,9 0 12 0,61 5 27,0 17,2 3 24 45 514
16 99,9 0 357 0,13 2 22,0 20,6 0 0

19 99,9 0 329 0,02 4 15,0 13,1 0 0

MEM (%) == The percentage of the time that the working sets of a
job’s processes are in memory, This number is the summation
of the percentages for each process in the job and thus may
exceed 100%,

LD (CNT) == The number of times working sets for processes 1in
this Jjob were loaded into memory, If this number is zero,
no working sets were loaded during the interval (i,e,, the
working sets were in memory for the whole interval),

RSP (CNT) == The number of responses that a job had during the
interval, A response is counted whenever a process wakes up
for one of the reasons specified under WAKE:,

ESP (AV) == The average response time in seconds during the
interval, Responses that require more than two seconds of
w’'CPU time to finish are not counted in this column,

TOPS=20 Monitor Internals Page 7#20
WATCH

SR () == The "stretch ratio" for each response (as represented in
RESP), The stretch ratio is obtained by ~dividing the
elapsed time of each response by the compute time required
to satisfy 1t, (SR = elapsed time/CPU time), The only
‘responses counted are’ those that require 1less than two
seconds of CPU time to complete, Thus, the stretch ratio is
the elongation perceived by the interactive user,

WSS (SUM) == The sum of the maximum working set sizes of all
active processes in the job.

UPGS (AV) == The average number of pages actually in memory when
a process from a job is in the pbalance set,

SWPR (CNT) == The number of times a process in a job waited for a
faulted page to be read in from the swapping area, This
does not include pages that were preloaded by the vworking
set manager,

DSKR (CNT) == The number of times a process waited for a disk
read to complete, Because many programs prefault pages,
this count will be different from the actual number of pages
read,

TPF (AV) == The average number of milliseconds that 1t took to
satisfy each page fault for this job during the interval,

IFA (AV) == The "inter=-fault average", Thils value represents the
average compute time in milliseconds between page faults for
job, A large "IFA" means that the working sets of processes
in this job are very stable,

There is one expanded per=job data record (record type 03) for
each job, The seguence numbers begin with "001" and increment by
"001", The form of the record ls

Item Length Plcture

1. Record Tvpe 2 99

2, Record segquence Number 3 999

3, Date & Time 17 X(17)

(MM/DD/YY HH3MM$SS)

4, Interval 7 9(5).9
5, Number of Jobs 3 999

6, Job Number 3 9(3)
7. TTY Number 3 9(3)
8, User Name 20 X(20)
9, Program Name 6 X(6)
10, SRT 4 99,9
11, DEMD) 9(4),9
12, USED 5 999,9
13, GRDY 5 999,9
14, BRDY 5 999,9
15, SWPR -) 999,9

fOPS=20 Monitor Internals ‘ Page 7-21
{ATCH

6.)SKR 5 999,9
7 ®hgky 5 999,9
.8+ RPOW 5 999,9
.9, OTHR 5 999,9
'1, NLD 4 9¢4)
12, NRSP 5 9(5)
'3, RESP 6 999,99
'4, SR 3 999
'S, WSS 7 9(5),9
7. SWPR 5 9(5)
8, DSKR L] 9(5)
9, TPF 4 9999
0, IFA 4 9999

Total 170 Characters

«1.4,8 System Utilization Statistics =

wo sections comprise the system utilization statistics, The
ir=t consists of summaries for expanded per=job statistics,
N grding summaries for the job utilization information and the
emory, response and disk information, The second consists of
dditional system variables and several computations,

v1,4,9 System Summary Of Per=job Variables =

hese statistics are listed under the per-job statistics on the
ine that begins "System Summary", The following is an example
E such a summary:

DEMD USED GRDY BRDY SWPR DSKR DSKW RPOW QOTHR
339,2 28,6 51,9 5,0 11,5 3,0

IMEM NLD NRSP RESP SR WSS UPGS SWPR DSKR TPF IFA
102,9 37 1772 0,13 3 2168, 231,8 370 911 52 90

IMD (%) == The sum:of each 1item in the DEMD coluymn, This
represents the total demand put on the system over the
interval,

SE” GRDY BRDY SWPR DSKR DSKW RPQW OTHR (%) - These
wwrValues represent the average percentage of the DEMD time
that the jobs were in these states,

TOPS=20 Monitor Internals Page 7=22
WATCH .

IMEM (SUM) == The summation of all IMEM per=job values, This sum
i{s significant as an indicator of how many working sets
belonging to processes active during the interval were
simultaneously 1in memory, For instance, the value 4102,9%
indicates that approximately 41 working sets belonging to
active processes were simultaneously in memory, This number
can be compared with NWSM3,

NLD (SUM) == This is the number of working sets loaded during the
interval, It should correspond to the rate given by the
variable NLODs,

NRSP (SUM) == The number of responses counted for all jobs during
the interval,

RESP CAVJ -= The average response time .for those responses
measyred (requiring less than two seconds of CPU time)
during the interval,

SR (AV) -= The average stretch ratio for all interactions
requiring less than two seconds of CPU time,

WSS == The arithmetic sum of the WSS values for all Jobs, This
represents the maximum amount of memory that would have been
required during the interval 1f all ~active processes
achieved their largest size at the same time and were al) in
memory,

UPGS (AV) =~=-The average number of pages needed by the active
: processes at any specified point in time,

SWPR (SUM) == The total number of swap reads done by Jobs on the
system in response to page faults, This does not include
pages preloaded by the working set manager,

DSKR (SUM) == The total number of disk pages read that caused
processes to walt,

TPF (AV) == The average time required to wait for a page fault
(swap or disk) to be resolved,

IFA (AV) == The average amount of compute time a Job spends
between page faults,
Additional System Variables and Computations

The information in this display includes additional system
statistics not available in the system statistics display and
computations of various other variables, The following 1s an
examples

TOTRC: 1992 LOKPGS: 104 SHR PGS: 245 AVAIL MEM: 1888
NRUN MIN,MAX: 1 i1 :
SUMNR MIN,MAX: 1879 2073

NRPLQ MIN,MAX: 28 170

TOPS=20 Monitor Internals Page 723
WATCH

MEM DMD = 255,2
SW RATIO (SUM WSS / AV MEM) = 1,15
ACTIVE SWAP RATIO (DMD/AVMEM) = 0,14
MEM UTILIZATION ((UPGS+SHRPGS)/AVMEM) = 0,25
AV WS SIZE = | 28,84
AV CPU TIME (MS) PER INTERACTION = 40,57
THINK TIME (SEC) PER INTERACTION s 1.43

FOTRC == The number of physical memory pages available, This 1is
the total physical memory minus the number of pages required
by the resident monitor,

+OKPGS == The current number of pages locked down by the monitor
beyond the resident monitor pages, Out of this set of pages
comes the terminal buffers, magtape buffers, 1line printer
buffers, and other pages locked down during certain file
system operations,

SHR PGS == The number of pages of physical memory being shared by
more than one process at the end of the interval. This 1is
included in the count "AVAIL MEM",

\VAIL MEM == The difference between "TOTRC" and "LOKPGS", This
is the actual number of pages available for use by user
programs,

IR‘_,MIN, MAX == The minimum and maximum number of simultaneously
active processes during the interval,

‘UMNR MIN, MAX == The minimum and maximum number of pages
belonging to working sets in memory during the interval,

IRPLQ MIN,MAX: == The minimum and maximum number of pages on the
replaceable queue during the interval,

'YS MEM DMD == The system average memory demand derived by
computing the integrals of the memory forecast for each
process during its active period, summing over all processes
and dividing by the interval time, Whereas the "systenm
summary UPGS" is the average amount of memory actually in
use at any point in time, this value is the average amount
forecast at any point in time,

‘WAP RATIO (SUM WSS / AV MEM) == The swap ratio is the system WSS
divided by the amount of available main memory. If this is
greater than §, it represents the amount by which main
memory would have to be increased to avoid any swapping,

CTIVE SWAP RATIO (DMD/AVMEM) == The active swap ratio 1is the
system average memory demand divided by the amount of
available main memory, If this number is greater than i, it
represents the amount by which main memory would have to be

‘pfincreased to hold all jobs wanting to run simultaneously,

TOPS=20 Monitor Internals Page 7=24
WATCH -

MEM UTILIZATION ((UPGS+SHRPGS)/AVMEM) == The memory utilization
is _the number of system=used pages divided by the amount of
available main memory, For active swap ratios greater than
1, this indicates how well the monitor is doing in keeping
memory used,

AV WS SIZE = The average working set size is calculated from the
integrals computed from the vorking set demands over the
active perjiod of each process divided by the sum of the
active periods of each process,

AV CPU TIME (MS) PER INTERACTION == The average amount of CPU
time a job spends between each response,

THINK TIME (SEC) PER INTERACTION == The average time spent by the
user betveen the time the system requests a response and
when that response is recejived,

The system utilization portion of data record type 05 is' shown
under the "Disk 1/0 Statistics" section belovw,

7.1,4,10 Disk I/D Statistics =

The following is an example of the disk 1/0 statistics display:

DISK I/0
CHN,UNIT SEEKS READS WRITES
0,6 380 485 300 PS #1
0,7 REL4 #0
1,0 49 185 34 SNARK #0
1,1 2 6 LANG %0
1,2 .
2,3 57 68 32 MISC #0
2,4
2,5 602 652 449 PS #0

These statistics display the following information:

CHN,UNIT == The channel number and the unit number on the channel
to which the disk is connected,

SEEKS == The number of times the disk heads had to be moved to
get to the next request during the interval, 1If multiple
requests can be answered on the same cylinder, no seek will
take place,

READS == The number of pages read on this unit during the

rOPS=20 Monitor Internals Page 7=2%
fATCH -

interval,

VRITES == The number of pages written on this unit during the
interval,

'he last column shows the name of the structure and its relative
unit number within the structure,

lata record type 05 contains the information from three displays:
lirectory cache, system wutilization, and disk I/0 statistics,
'he following shows the format of these records: :

Item Length Picture
i, Record Type 2 929
2, Record sequence Number 3 999
3, Date & Time 17 X(17)
(MM/DD/YY HH:MM:SS)
4, Interval 7 9(5),9
5, Number of Jobs 3 999
6, Dir Cache Hits 6 9(6)
7 Dir Cache Misses = Full 6 9(6)
8, Dir Cache Misses = New Entry 6 9(6)
9, TOTRC 5 9(5)
0. LOKPGS 5 9(5)
1, SHR PGS 5 9(Ss)
2. .VAIL MEM -] 9¢5)
3 RUN MIN 5 9¢5)
4, NRUN MAX 5 9(5)
5¢ SUMNR MIN 5 9(5)
6, SUMNR MAX 5 9(%)
7« NRPLQ MIN 5 9(5)
8o NRPLO MAX 5 9(¢(5)
9, SYS MEM DMD 7 9(5),9
0s SWAP RATIO 8 9(5),.,99
1, ACTIVE SWAP RATIO 8 9¢(5),99
2s MEM UTILIZATION 8 9¢5),99
3¢ AV WS SIZE 8 9(5),99
4., AV CPU TIME 8 9(5),99
5 THINK TIME 8 9(5),99
5 Disk 1I/0
Max 15 entries;
‘each entry as follows
a, Channe}l 2 99
b, Unit 2 99
C, Seeks 6 9(6)
d, Reads 6 9(6)
e, Writes 6 9(6)
f. Name 10 X¢i10)
g, Number 2 99
'e Number of Disk I/0 entries 2 99

- Total 667 Characters

T0PS=20 Monitor Internals Page 7=26
WATCH .

7.1.,4,11 Tune Mode Statistics =

Tune Mode is designed to display on one line some of the more
interesting statistics so that a system programmer can easily
monitor the changes 1n load during a test period, This mode is
useful when a very short interval i{s desired (around 10 seconds).
The information is abstracted from the system statistics and
system utilization statistics displays and includes the following
variables: '

USED SWPW SKED CTXS WAKE TDIO NRUN NWSM NLOD USED
52,8 2,4 6,8 41,2 16,6 13.1 2.2 62,5 6,87 34.8

GRDY BRDY SWPR DSKR DSKW RPQW QOTHR
41,7 2,3 19,5 1.8

IMEM NLD NRSP RESP SR
2207,9 0 198 0,05 2

The definition of the variables on the first row can be obtained
from the system statistics display and the definitlons on the
second and third rows from the system utilization statistics
display,

The form of the tune mode data record (record type 06) 15 as
follovs: _

Item Length Plcture

1, Record Type 2 99

2, Record Sequence Number 3 999

3, Date & Time 17 X7

(MM/DD/YY HHIMM:SS)

4, Interval 7 9(5).9
5, Number of Jobs 3 999

6, USED 7 9(4),99
7« SWPW 7 9(4),.,99
8, SKED 7 9(4),99
9, CTXS 7 9(4),99
10, WAKE 7 9(4),99
11, TDIO 7 9(4),99
12, NRUN 7 9(¢4),99
13, NWSM 7 9(4),99
14, NLOD 7 9¢4),99
15, USED 5 9¢3),9
16, GRDY 5 9¢3),9
17, BRDY 5 9€3),.9
18, SWPR 5 9(3).9
19, DSKR 5 9(3).9
20, DSKW S 9(¢(3),9
21. RPOW 5 9(3).9

TOPS=20 Monitor Internals ‘ Page 7=27
WATCH

22, OTHR 5 9(3),9
23, IMEM 6 9(4),9
24, NLD 4 9(4)
25, NRSP 5 9(5)
26, RESP 6 9(3),99
27, SR 3 999

Total 159 Characters

CHAPTER 8
WORKING SET SWAPPING

'«1 HWOBKING SEI SKABRING

'{th TOPS=20, the working set of a process can be brought in with
he overhead pages (preloading) and is removed upon being
elected to be removed (postpurging), Postpurging of process
'orking sets always occurs, Preloading is not done by default,
uf {s a parameter that can be set by the administrator. If
Taesvading is not done, the process page faults {ts pages in much
he same way as it did previous to Release 4,

«1.,1 WORKING SET DATA BASE

he information about the fork’s vworking set 1is Kkept in a
28=word table in the PSB, This table is the working set cache,
ach word contains four, nine-bit entries for a total of 512
ntries, An entry appears as followst

---------.-----‘-ﬂ-.-.ﬂ--------.---”ﬂ..-ﬂ.ﬂﬂnﬂ---------
H ! , i i
1w u ! Section ‘] Page 1
! H ! . !

‘heres
v indicates whether the entry is valid,
U indicates whether the entry is a user page or a
} monitor page,
-

Section indicates which section this page is in,

TOPS=20 Monitor Internals ' Page 8=2
WORKING SET SWAPPING

page {s the higher=order two bits of the address of
this page,

The lower=order seven bits of the page number are used as an
index into the table, There can be conflict since pages with the
same lower=order seven bits will have the same index, For this
reason there are four entries at each index, If the number of
conflicts exceeds four, the word is shifted left one entry, . The
leftmost entry 4is lost and the new entry is added on the right,
This way the four most recent entries are "remembered,"

Much of the information pertinent to the working set swapping of
a particular fork is contained in the table FKSWP, This table,
indexed by fork, contains a flag that 1indicates whether the
fork’s working set is in memory as well as wvhether other types of
information are used to determine a fork’s eligibility to be
swapped in or out,

FKSWP: ! flags | FKGOLN ! FKHST !

*-------.----------.Q-—-m----------ﬁ-------------0.--+

! . !

! . l

! . !

! ' !

\ . \

+n-----.--.-----------l--m------u------0-.--.--..-0.---}
012345678 17 18 35
*u-------------------_------n------------------q-----n--+
$ Ll Lyl FKGOLN FKHST !

+“--"---’.‘-----.--------—-ll------‘-----------.--.—-“--*

Symbal BiLs Contents

FKWSL 0 Wworking set loaded == on 1f the working set
of the fork 1s loaded

FKBLK 1 Fork blocked == on 1f fork is blocked and
on the wait 1list; off 1f the fork is on the
GOLST

FKIBS 2 Fork in balance set == on if fork is in

balance set (note that it is not
necessarily in memory)

BSWTB 3 Balance set wait == on if fork is in balance
set (short-term, i,e, page fault) walit

BSNSK 4 NOSKED == on if fork is NOSKED and not
actually running

BSCRSK 5 Critical section == on if fork is CRSKED
and not actually running

FKIBH 6 In balance set hold == on if fork entered

balance set since last update to history
FKBSHF 7 In balance set hold == local to AJBALS

TOPS=20 Monitor Internals ' Page 8=3
WORKING SET SWAPPING

FKEOLN 8=17 GOLST position

FKHST 18~35 Fork history == value based on the recent
history of the fork, particularly whether
fork has been in the balance set or not

Bele2 IMPLEMENTATION

I'wo areas of interest in the 1mplementétion' of working set
swapping are 1) the process of deciding which processes should be
swapped in or out, and 2) the mechanics of maintaining a vworking
set,

3,1,2.1 Swapping In/Out =

the working set manager must malntain enough available memory for
>r-~esses to run, but {t is desirable to keep in memory poorly
e arVed processes that block and unblock f£requently to minimize
swapping, To accomplish these goals, a fork’s history 1is
naintained,

fhe nistory (FKHST) of a fork 4is calculated ©periodically
(currently twice a second) in the ‘routine STEPFH using the
following algorithm:

FKHST (old) *(STEPC=1) ([+400000 (octal) if FKIBH]

LA L L L L DL L AL LA XLEE A Xl Y I YE EEEYETEY Y X XK 1}

"KHST (new) = STEPC
theres
FKHST (new) is the new history value of the process

FKHST (old) is the previous history value of the
process

STEPC ~ 1s a time constant used to control the rate
of change; currently set to 8

400000 (octal) is added if FKIBH is set, which indicates
that the process was in the balance set during
the previous interval

'n&larger the history value, the more recently and to a greater
txtent a process was in the balance set, This favors keeping the
irocess’ working set in memory.

TOPS=20 Monitor Internals Page 8=4
WORKING SET SWAPPING -

To determine which working sets to keep in memory, which. working
sets to remove from memory, and which working sets to bring into
memory, the working set manager calculates a value for each
process, This value 4is calculated by tallying points of a
process based on its characteristics, If a process has a
specific characteristic, it gets the points indicated by that
characteristic, The value’s calculation is based on the
information contained in the following tables .

Item L value .. Symbol
Chacked Chazacteristic Addad Loz Yalue
PIEBMP Priority interrupt 40,,0 FHMBIP

bump
BSNSK NOSKED ' 4000,,0 FHMNSK
BSCRSK Critical section 100,,0 FHMCSK
FKON on priority queue 400,,0 FHMPOQ
FK1BS In balance set 200,,0 FHMBS

If not runnable (based on the value FKBLK) add FKHST
¢{history)., .
1f runnable (FKBLK again) add FKGOLN (GOLST position).

If memory 1s overloaded, remove the working set of the process in
memory with the smallest value,

If the largest value for a process not in memory is greater than

the smallest value for a process in memory, try to bring the
largest process not in memory into memory,

8.1.2,2 Mechanics 0f Maintaining The Working Set =
The following operations must be able to occur:
{1« Working set swapped out:
The swapping=out is nandled in a Straiqhtforward manner;
the working set is selected and most of the mechanics is
handled using the same code as XGC, the 1local garbage
collection,
2, Working set swapped in3
Swapping=in is handled by ¢first getting the overhead

pages for the process (PSP, UPT, and JSB), 1f necessary,
Then, the working set 1s swapped in based on the working.

roPS=20 Monitor Internals pPage 8=5
JORKING SET SWAPPING

3,

set table (that was being used the last time the process
was running),

Wworking set table updated as pages are usedt

Maintenance of the working set table occurs in two major
areas, When a process page faults, the page is added to
the working set table by 'the page fault code, XGC
(local garbage collection) now scans the working set
cache to decide which pages to remove, '

CHAPTER 9

SYSTEM DEBUGGING

‘el INTRODUCTION

'his document contains information pertinent to debugging, Some
¢ it §s relevant mostly to crash analysis, The last section
'‘ontains information about NDDT, EDDT, and FILDDT,

nalyzing a crash is different than debugging a c¢rash, Analysis
.ells vyou what happened and debugging tells you why (and thus,
ow to £ix it), The information here can help you analyze what
appened,

Ui §SEUl crash analysis depends heavily on how well vyou Kknow
he data base and whether you can discover inconsistencies that
'ive you clues about what happened, There are some basic things
hat help vou 1look at any crash, The {information in this
locument shows you how to use available tools to look at a crash
ind how to £find basic information about the state of the machine
it the time of the crash, Further analysis of a crash requires
hat, based on the state of the data hase, you are able to
'ropose a reason for what happened that matches the state of the
lata base,

'e2 CTY QUTPUT

‘ollect any CTY output that 1Is relevant to the crash, This
hould {include the KLERR printout and the BUGHLT (as well as
ecent BUGCHKs anda BUGINFs), 1f any, If the machine got a
EEP=ALIVE CEASED, then the KLERR output is the only reliable
nformation you get (in release 3A), See the section on the
UGHLT location for an explanation of why this is true,

TOPS=20 Monitor Internals Page 9=2
CTY QUTPUT

9,2.,1 Explanation 0f KLERR Output

KLERR includes the PC, the last memory fetch and information on
the P system, The PI information includes the following:

PI STATE: ON or OFF -=indicates whether the
PI system is on or not,

PI ON: n e= n {ndicates which of the
7 ehannels are enabled,

PI HLD: n = n indicates which of the
7 channels have an
interrupt in progress,

PI GEN: n e n indicates which of the
' 7 channels have a pending
interrupt,

Here is an example of the KLERR output on a KEEP=ALIVE CEASED
error:

§DECSYSTEM=20 NOT RUNNING

KEEP ALIVE CEASED

KLERR == VERSION V02=02 RUNNING

KLERR == KL NOT IN HALT LOOP

KLERR == KL ERROR OTHER THAN CLOCK ERROR STOP

KLERR == KL VMA: 000000 035717 PC: 000000 035717

KLERR == PI STATE: ON, PI ON: 177, PI HLD: 004, PI GEN: 001
KLERR == EXIT FROM KLERR

9,3 GETTING A DUMP

DUMP.EXE is a pre-allocated file into which BOOT writes the dump,
When the system comes up, SETSPD copies DUMP,EXE to DUMP,CPY,

9,3,1 How To Get A Dump

1f the system does an auto-reload, the console front end will
give BOOT the commands to get a dump, If the auto-reload doesn'’t
work for some reason, you can force a dump as follows:

KL == VERSION VB06=07 RUNNING

POPS=20 Monitor Internals Page 9=3
SETTING A DUMP .

hd KLI == ALL CACHES ENABLED
KLI o= BOOTSTRAP LOADED AND STARTED
?DUPL STR UNI?DUPL STR UNIjproblem because two PS:
, fstructures on line,
BOOT>/d4 sreguest a dump (after the
jproblem is corrected),

BOOT> Jtype CR for default monitor

)1y3.2 Where BOOT Lands

'he console front end loads BOOT into KL memory. Of course, this
wverwrites whatever used to be in that part of memorv.
'herefore, BOOT is always loaded into a part of the monitor that
rontains pure code (i,e,, s0 no data is destroyed)y currently
I00T is brought in on top ¢f part of APRSRV, If you need to look
It code that is loaded where BOOT lands, you have to go to the
.istings, BOOT also uses some of high core to build the EXE
l{irectory for the file DUMP,EXE,

‘-ﬁiiSYSERR
v4,1 Overview 0f SYSERR Functions And Data Base

YSERR is a program that reads PS{<SYSTEM>ERROR,SYS and generates
eports on hardware errors, system crashes, front end reloads,
tc, Entries in the file ERROR,SYS are written via the SYERR
SY¥S, For a description of each of the types of entries, see the
onitor tables,

hen an ERROR,SYS entry is desired, the caller (which is one of
he system programs such as QUASAR or the monitor itself) builds
SYSERR block as described in the monitor tables and does. the
YERR JSYS, The SYERR JSYS adds the block to a gqueue in the
onitor’s address spacey; the gqueue header 1is SEBQOU (location
4), Then it wakes up the Job 0 task which processes the queue
nd writes the queued entries to ERROR,SYS,

+4.2 Queued SYSERR Blocks In A Crash

BUGHLT entry is generated when the system BUGHLTS; this entry
S queued but not written to ERROR,SYS, The system is considered
o be in an unsafe state at the time of the c¢rash, When the
ys“<m comes back up, code in SETSPD is called to move any gueued
YSewR blocks in the dump to ERROR,SYS,

TOPS=20 Monitor Internals B Page 9=4
SYSERR

The gqueue header is location 24 (called SEBQOU); each SYSERR
block consists of the standard SYSERR header followed by the
information in the specific block type,

Sometimes it 1s useful to look at the queued SYSERR blocks in_ a
crash, particularly the BUGHLT block, The BUGHLT bloeck contains
certain status intormation at the time of the crash, The status
words are described below:

1, CONI APR,

Read the status of the processor error and sweep flags,
This {nformation 1is stored In offset BGIAPS of the
BUGHLT block, The flags and status information returned
by a CONI APR, are described on page 3=59 of the
Hardware Reference Manual,

2. CONI PAG,

This information is stored in offset BGYPGS of the
BUGHLT block, A CONI PAG reads the system status of the
pager, 1f TOPS=20 pagins i{s on, there is a i in bit 21,
Bits 2335 contain the contents of the EBR (the address
of the EPT), For a description of all the flelds, see
page 3=-41 of the Hardware Reference Manual,

3. DATAI PAG,

This information is stored in offset BGIPGD of the
BUGHLT bloek, A DATAI PAG returns the process status of
the pager, DATAI PAG, returns the current and previous
contex AC blocks, and the address of the UPT, For a
complete description of the filelds returned by a DATAI
PAG, see page 3=42 of the Hardware Reference Manual,

4, CONI PI,

This information is stored in offset BGIPIS of the
BUGHLT block, .A CONI PI returns the status of the
priority interrupt systemy; it indicates which levels
are on, whether the PI system is on, and on vhich levels
interrupts are currently being held, For a complete
description, see page 3=7 of the Hardware Reference
Manual,

9,4,3 Moving SYSERR Blocks From A Crash To ERROR,SYS

As stated before, SETSPD moves gqueued SYSERR blocks from the
crash to ERROR,SYS, A Job 0 task starts the SETSPD program at
START3; this code coples DUMP,EXE to DUMP,CPY and then issues a
SYERR JSYS for each gueued SYSERR block in the crash, '

OPS=20 Monitor Internals Page 9e5
UGHLT

3 BUGHLT

ocation BUGHLT contains the location the BUGHLT came from, That
ocation contains an XCT BUGHLT=name, All BUGHLT code s
enerated by the BUG macro which is defined in PROLOG, '

«5.,1 BUG Macro

EFINE BUG(TYP,TAG,STR,REGS,%NAM,$STR)<
XCT [TAGS: JSR BUG’TYP
IRP REGS,<
Z REGS>
SIXBIT /TAG/)
+PSECT BGSTR
STR: ASCIZ \STR\
«ENDPS BGSTR
+PSECT BGPTR
XWD TAG,%STR
+ENDPS BGPTR

his is an example of a call to the BUG macro:
UETﬁLT,JONRUN.(JDB 0 NOT RUN FDOR TOOQO LONG, PROBABLE SWAPPING HANGUP

£ a JONRUN BUGHLT occurred, then the data base would look like
his: .

BUGHLT/ CAIA CLK2+6 taddress the BUGHLT came from
CLK2+6/ XCT JONRUN jgenarated by BUG macro

JONRUN/ JSR BUGHLT
/ SIXBIT \JONRUN\

«5,2 BUGHLT Contents

ocation BUGHLT is set up with the location the BUGHLT came £from
£ the machine BUGHLTed, That location c¢ontains an XCT
UGHLT=name, All the BUGHLT’s are listed in the OPERATOR’S GUIDE
ith a short descriptive phrase,

£ there is a zero in location BUGHLT the machine probably got a
EEP ALIVE CEASED, This happens if you get either a "clock error
to~" or "deposit/examine failure", Both of these errors are
alegwrale fajilures and Field Service should be called, Aithough
hese two errors are the most likely cause of keep alive ceased,
ou cannot rule out the possibility of a software bug, Get the

TOPS=20 Monitor Internals Page 9=6
BUGHLT

KLERR output from the CTY, It will have the PC and PI state,

Note that because the console front end Just does a reload for a
KEEP ALIVE CEASED, the information in the dump is not dependable,
This is because the. cache has not been written out, the AC’s have
not been saved, etc,y these things are normally done by the
BUGHLT code, The only valid information is the CTY output from
KLERR,

'For more information on release 4 changes, refer to the chapter
"Bug’Typ Macro Changes for Version 4 of TOPS~=20",

9.5.3 Creating Your Own BUGHLT

If you should desire the machine to stop in a certain state and
save the information in a dump to allow later ‘examination, you
may want to create your own BUGHLT or BUGCHK, To patch a BUGHLT
into the monitor, follow these steps?

In the patch are, create the BUGHLT information that is generated
by the BUGHLT macro, 1Its format is:
BUGHLT name/ JSR BUGHLT _
/ o jaddresses of any locations
jwhose contents are to be
sjdumped (left half must be
$zZero)
/bughlt name in Sixbit

Redefine the patch area to begin after the BUGHLT information you
just created,

Use the DDT patch facility to insert the code to check for the
condition you wish to cause a BUGHLT,

9,6 PUSH DOWN LISTS AND RELATED DATA BASES,

The push down list that is currently in use implies generally
what was going on, For example, if the scheduler was running,
SKDPDL is the push down list, IF a page fauylt was in progress,
TRAPSK is the push down list, Also, the former P 1s saved,

9,6,1 How To Look At A Stack
1, P contains the current stack pointer,
2. If an entry was made on the stack by a PUSHJ, then |t

will 1look .1ike a PC. This 1isn’t a hard and fast rule,
but it can help, A user mode PC ususally has bits 1,2,

'0PS=20 Monitor Internals Page 9«7
'USH DOWN LISTS AND RELATED DATA BASES

and 3 on and a monitor PC has bits { and 2 on,

3, If a return address is still on the stack ({,e,, has an
address less than the stack pointer), then you haven’t
returned from the routine,

4, The monitor uses the stack for temporary storage, The-
macros STKVAR, TRVAR, etc, leave recognizable things on.
the stack, Knowing these conventions helps you to
recognize which stack 1loactions are being used as
temporary storage, '

«6.,2 Push Down List/ Machine State
he monitor uses different stacks to do different things,
egister P {s the current stack pointer and indicates which stack

as in use at the time of the stack, The stacks and their uses
re listed below!?

1, UPDL == Used when running in exec¢ mode £for the user,
i.e, doing a JSYS, Also used by the Job 0 tasks that
run in exec mode,

2, TRAPSK ==~ Used for page fault handling,

3, PIPDB == Used for software interrupt handling,

4, SKDPDL == Used by the scheduler for the overhead cycle,

5., DTESTK == DTE interrupt level stack (PI level 6),

6. PHYPDL Used by PHYSIO when queueing and IORB,

7. PHYIPD == Used when PHYSIO is handling an interrupt.,

8¢ MEMPP == Used when handling APR interrupts,

6,3 Stack Usage For Local Storage

here are several macros that provide local storage; they use
he stack, What they put on the stack is usuyally recognizable,
ee MACSYM,MEM for further information,

1, STKVAR
STKVAR uses the stack as temporary storage; the local

variables have names that are really stack locations.
STKVAR uses n stack locations for loca) variables where

TOPS=20 Monitor Internals Page 9=8
PUSH DOWN LISTS AND RELATED DATA BASES

2,

n is the number of local varlables requested, ‘a count of
local variables, and the return addres ,STKRT, On the
stack you will seeg

local variable
local variable

[]
local varianle n
N,eN scount of local variables
s (used to adjust the stack
¢« STKRT sroutine to clean up the
. sstack and return
Therefore, when you £ind ,STKRT on the stack, the word
before it is the count of local varlables and tells you
now many locations on the stack are in use by STKVAR,

N NSNS NNN

TRVAR

TRVAR uses the stack much the same way as STKVAR but it
also uses AC15; this is pushed on the stack first, The
stack locations it uses look like this:

AC15
local variable
local varliable

L] .

local variable n
n,,n

+TRRET

NNNNNNNN

Therefore, when you find ,TRRET on the stack, the word
before it 1is the count of local variables and register
16 {s stored on the stack in front of the local
variables,

ASUBR

ASUBR saves AC15, AC’s 1=4, followed by the return
address LASRET, which is a routine to clean up the
stack, When you see the address ,ASRET on the stack you
can expect the following in this part of the stack:

AC1S
ACl
AC2
AC3
AC4
+ASRET

NNNNNN

O0PS=20 Monitor Internals Page 9=9
USH DOWN LISTS AND RELATED DATA BASES

4, ACVAR

ACVAR can save ACS5, ACS5 and AC6, ACS=AC7, ACH5~ACi10, or
ACS=AC14, depending on the arguments given, In each
case, the return address to clean up the stack Is the
last item pushed on the stack by the ACVAR macro; the
return address stored on the stack is the clue to what
else was pushed on the stack, Each of the possible
cases is listed below:

i, ACS5 saved

/ ACS
/ o+SAV1i+2 sreturn address

2. ACS5 and AC6 saved

/ ACS
/ AC6
/ «SAV2+3 sreturn address

3, ACS5, AC6, and AC7 saved
/ ACS
/ ACH
/ AC7
/ +SAV3+4 jreturn address

4, ACS, AC6, and AC7 saved

ACS

ACH

AC?

AC10

«SAV44+5 jreturn address

NNNNN

S, ACS through AC14 saved

ACS

ACH

ACT

AC10

ACii

AC12

AC13

ACi14 ‘

o SAVE+7 sreturn address

NMNNNNNNNNN

TOPS=20 Monitor Internals : Page 9«10
PUSH DOWN LISTS AND RELATED DATA BASES ‘

‘5'

6

SAVEAC

SAVEAC takes a list of AC’s to be saved as an argument,
It pushes the list of AC’s on the stack, followed by the
address of a literal which is the routine that restores
the stack, One of the instructions in the literal does
a SUB P,[.NAC,,«NAC], This macro does not leave such
eagily recognizable data on the stack, but if you find a
return address on the stack that i1s a literal that does
the following, SAVEAC was used, If you look at the code
in the literal, you will be able to tell which AC’s were
pushed on the stack and how many there are (,NAC 1is the
count of AC’s pushed), The stack is left like this:

AC
AC

[4
last AC saved
address of literal to restore stack

NN N

The literal to restore the stack 1looks (approximately)
like this:

LIT= address of literal to restore stack
for this example, :

LIT=1/ 3,,3 jcount of AC’S saved =3
LIT/ CAIA O

AGS =N(P)

MOVE 1,=2(17) jrestore ACi

MOVE 5,=1(17) srestore ACS

MOVE 10,0(17) srestore AC10

SUB 17,LIT=1 jreclaim stack locations
POPJ P, jreturn to calleg

NNNNNN

SAVEP

This macro calls the routine SAVP (in APRSRV) to save
the AC’s Pi=P6 on the stack followed by the address
RESTP, which i{s the routine to restore the AC’s,

P1
P2
P3
P4
P5
P6
RESTP

NONNNNNN

{OPS=~20 Monitor Internals Page 9«11
USH DOWN LISTS AND RELATED DATA BASES

7’ []

9.

SAVEQ

This macro calls the routine SAVQ (in APRSRV) to save
the AC’s 01-03 on the stack, followed by the address
RESTQ, which is the routine to restore the AC’s,

/7 Q1
/ Q2
/ 03
/ RESTQ

SAVEPQ

This macro calls the routine SAVPQ (in APRSRV) to save
the AC’s Q1-Q3 and Pi=P6 on the stack, followed by the

address RESTPQ, which is the routine to restore the

AC’s,

01
Q2
Q3
P1
P2
P3
P4
PS
P6 :
RESTPQ

NNNSNYNNNNSNNN

SAVET

This macro calls the routine SAVT (in APRSRV) to save
the AC’s Ti=<T4 on the stack, followed by the address
RESTT, which is the routine to restore the AC’s,

T1
T2
T3
T4
RESTT

NANNNN

«+6,4 Stack Adjustment

any times the stack pointer is adjusted, Table BHC, Iindexed by
s Contains n,,n which may be added to or subtracted from the
t(‘ , pointer,

TOPS=20 Monitor Internals L Page 9=12
MACHINE STATES AND RELEVANT DATA BASES -

9,7 MACHINE STATES AND RELEVANT DATA BASES

9.7.1 . PC Storage

1,

2,

3,

4.

Se

9.7‘.2

PC at the time of the crash

Location BUGHLT contains the PC at the time of the
crash, ’

PC when JSYS began
Two coples of the PC are saved on the stack;
PFL/PPC

current PC of process when the process was last context
switched, Can be exec or user mode PC,

PIFL/PIPC

Exec mode PC saved here while the software interrupt
code 1is in progress,

Temporary PC storage

when the system is changing state, it must always be
prepared for a context switch., This is a concern when a
JSYS is starting, when a process blocks, and when a
software interrupt Dbegins, In each case, the PC is
temporarily stored in case of a context switch while the
state change 1s in progress,

1. SKDFL/SKDPC = PC saved here wvhile process is
blocking,

2. MONFL/MONPC = PC saved here while nested JSYS is
starting,

3, ENSKR/ENSKR+i1 = PC saved here vwhile entering the
scheduler via the ENTSKD macro, This is the PC the
ENTSKD macro was called with,

AC Storage

'OPS=20 Monitor Internals Page 9=13
'ACHINE STATES AND RELEVANT DATA BASES

o, Tl

AC Storage In The PSB =

ach process’s PSB contalns several storage areas £or saving

C’s,

1,

2,

3

AC’s are saved in the PSB in these casesg

Nested JsSYS (JSYS called by a JSYS)

when a user called JSYS 1is in progress, AC block 0
contains the monitor’s AC’s (the current JSYS code AC’s)
and AC block i contains the user mode AC’'s, If the JSYS
code does a JSYS, AC block 1 (user mode AC’s) are saved
in the UACB area and the AC block 0 AC’S are moved to AC
block §, For each level of JSYS, the AC block § AC’s
are pushed onto the UACB stack and the AC block 0 AC’s
are moved to AC block 1, Therefore, the AC block 1 AC’s
are always the previous context AC’s; i,e., the AC’s
when the JSYS was called,

If a nested JSYS is in progress, then the user mode AC'’S
are the first stacked AC’s in UACB, If the nesting is
more than one level deep, then each subsequent JSYS’s
calling AC’s are also saved in UACB; the current JSYS
AC’s are saved in UAC 1f the process 1s not currently
running or in BUGACU if the process was running at the
time of the c¢rash., The maximum nesting level for JSYS’s
is 53 this 1limit is dependent on how much storage is
reserved for AC stacking in UACB,

ACBAS is the "pointer"™ for the AC stack UACB, but is not
stored as an address, The contents of ACBAS must be
shifted left 4 places to make it an address, The
resulting address {s the £first saved AC for the last
pushed AC blocks 1i.,e, the saved AC’s for the next
higher 1level of nesting, If there are no saved AC‘’s
pushed on the stack, ACBAS contains its initial value of
<UACB>B39=1=37677} 1f ACBAS contains anything else,
there are pushed AC blocks saved in UACB,

Process is context switched while‘rdnning in user mode,

The current AC’S (1;e.. the user mode AC’s) are saved in
block UAC,

Process is context switched while running in exec mode,

The current AC’s (i,e,, the exec mode AC’s) are saved in
block PAC, The previous context AC’s are saved in block
UAC, The AC’s saved in UAC are the user mode AC’S
unless a nested JSYS is in progresst 1in this case, the
AC’s saved in UAC are the AC’s the nested JSYS was
called with. The user mode AC’s for this case are saved
on the AC stack called UACB; the user mode AC’s are the
first saved AC*’s on UACB,

TOPS-zo Monitor Internals‘ D Page 9~14
MACHINE STATES AND RELEVANT DATA BASES ‘ .

4, Software interrupt processing -

The exec mode AC’s are saved in block PIAC while a
software interrupt 1is in progress,

9,7.2.2 AC Storage At The Time Of The Crash =
{, BUGACS

Exec mode AC'S at the time of the. crash, Copied to
current AC’s. when using FILDDT,

2, BUGACU

Previous context AC’s at the time of the crash, These
are the user mode AC’s unless a nested JSYS was in
progress, i,e,, & JSYS called from a JSYs, If a nested
JSYS was in progress at the time of the crash, BUGACU
contains the AC’s the current JSYS was called with, In
this case, the user mode AC's are saved in the AC stack
called UACB,

9,7.2,3 Summary Of AC Storage =«
i1, UAC

Previous context AC’s are saved here when the wuser s
context switched, For the currently scheduled process,
UAC contains the AC’s the last time the process was
dismissed, Once again, if a nested JSYS was {n
progress, UAC’s contains the AC’s that JSYS was called
with, In this case, the user mode AC’s are saved in the
AC stack called UACB,

2. 'UACB and ACBAS

Pushed AC blocks when nested JSYS in progress,

3, PAC
Exec mode AC’S saved there for process when (it s
dismissed,

4, PIAC

Exec mode AC’s saved there when software interrupt is in
progress,

[OPS=20 Monitor Internals ' Page 9~=15
fACHINE STATES AND RELEVANT DATA BASES -
Se BUGACS
Exec mode AC's at time of crash,
6, BUGACU

Previous context AC’s at time of crash,

le7.3 Fork Scheduled Or Not

‘£ a fork is scheduled, location FORKX contains the fork’s systenm
iork number, The scheduled fork’s PSB and per process pages, JSB
ind per job storage, and page table are all mapped into the
ionitor’s address space, If no fork is currently scheduled,
.ocation FORKX contains a =i,

'v7.4 Fork NOSKED

£ a fork is NOSKED, its fork number is stored in SSKED; if
.here {is not a NOSKED fork, SSKED contains =i, The FKSWP table
roptains status bits for both NOSKED (no other process may be

Cauililed) and CRSKED, CRSKED is a new process state in release
or processes manipulating the monitor resident free pool,

leT7Te+5 Extended Vs, Non=extended Addressing
£ the machine supports extended addressing, flag EXADDR contains

1 13 1£ the machine does not support extended addressing, EXADDR
‘ontains 0 °

'+7.6 Silzes (resident, Non=resident, Total)

MONCOR/ number of pages in resident monitor
TOTRC/ total number of swappable core pages

NHIPG/ highest physical core page number

TOPS=20 Monitor Internals Page 9=16
MACHINE STATES AND RELEVANT DATA BASES

9,7.7 MDDT Page (release 3A)

When MDDT is in use for a process, DDTPPG (currently page 774)
exists, If the running process’s page 774 exists, then that

process has been using MDDT; you might suspect that the crash
was caused by an accidental deposit in MDDT or some such thing,

9,7.8 Interrupt Vs, Non=interrupt Level
9,7,9 Relevant Data Base For Each Machine State
9.7"9.1 JSYS -
i, Stack
UPDL
2. Initial stack setup
Initial UPDL set up for JSYS if from user modes
/ PC at time of JSYS
/ PC flags at time of JSYS
/ PC at time of JSYS
/ PC flags at time of JSYS
Initial UPDL set up for JSYS if from exec mode (nested)
INTDF
MPP (for higher level JSYS)

PC at time of JSYS (return PC)
PC flags at time of JSYS

NNNN

3, Previous PC

The return PC is pushed on stack; MPP is stack pointer
for return PC,

4, Saved AC'’s

AC’S saved in UACB if nested JSYS, See section on AC
STORAGE for a description of UACB,

5, Saved stack pointer

If the JSYS was from user mode, this 1is not relevant,
If the JSYS is nested, the previous JSYS also used this
stack and the MPP pointer can be used to determine where
the stack pointer was when this JSYS began:

'0OPS=20 Monitor Internals Page 9=17
IACHINE STATES AND RELEVANT DATA BASES .

Previous

stack ptre=> /
/ INTDF
/ MPP (for higher level JSYS)
/ MONPC

MPP => / PC at time of JSYS (return PC)

6, AC usage

There is no standard for AC usage that all JBSYS'’s
conform to,

7. Related Storage
i, MPP == points to?
==return PC for JSYS
==last location of initial setup for this JSYS
2, FPC = KIMUPC == dispatch address for JSYS
3, KIMUUl = last UUO from user in format:
KIMUU1l/ flags,,opcode
/ J8YS number
4, INTDF
Indicates whether the process is NOINT, and to how
many levels, Set to =1 i{f the process is not NOINTj}

greater than or edqual to 2zero 1f the ©process 1is
NOINT, :

e749,2 Page Fault =
1, Stack
| TRAPSK
2; Initial stack setup

The initial stack setup differs for each of three cases:
m=Dage fault from user mode

==page fault from exec mode

--;ecursive page fault

TOPS~20 Monitor Internals ' Page
MACHINE STATES AND RELEVANT DATA BASES

4,

6

1; Stack setup onh page fault from user mode

/runtime
/return PC
/return PC flags

2. ©Stack setup on page fault from exec mode

AC1

AC2

AC3

AC4

AC7

ACl6
TRAPSW
runtime
PC

PC £lags

NN NNNNNNNN

3, Stack setup on recursive page fault
ACY

AC2

AC3

AC4

AC7

AC16

TRAPSHW

PC

PC f£lags

MNNNNNNNN

Previous PC
Saved on stacky; see initial stack setup for where,
Saved AC’S

Those AC*s that are saved are kept on the stack,
the initial stack setup for where each AC 1is saved,

saved Stack Pointer
TRAPAP
AC usage

Differs for each type of page fault,

9=-18

See

OPS=20 Monitor Internals Page 9-19
ACHINE STATES AND RELEVANT DATA BASES

7

07.903
i,

2,

3.

Related Storage

1, TRPID w==identity of page causing ¢trap in form
PTN, ,PN or PTN

This is the identity of the page the page fault
handler 1s working on, TRPID contains the page’s
page table identity while the page’s page table 1is
brought Iinto core (if the page table was not in
core),

2, TRPPTR

Storage address of the page the page fault handler
i1s working on,

3, TRAPSW (copy of TRAPSO)
4, TRAPC

0 1f first level page fault; if greater than 0, it
indicates the level of recursion,

5« TRAPFL/TRAPPC UPTPFL/UPTPFO
Flags and PC at time of page fault,
6, TRAPSO = UPTPFW

Page fail word; contains the address that page
faulted,

Scheduyler =

Stack

SKDPDL

Initial stack setup

None -

Previous PC

Saved in PSB for a process when context switech to ‘the
scheduler; the PC is saved in PFL/PPC of the process’s
PSB, If FORKX contains a fork number, it is the number
of the fork running when the scheduler was invoked, If

FORKX is not setup, you cannot determine which fork was
running last,

TOPS=20
MACHINE

4,

L

6,

7.

9,7.944

1.

2,

3,

4,

Monitor Internals Page 9«20
STATES AND RELEVANT DATA BASES

Saved AC’s

The process’s AC’s are saved in blbcg PAC (exec mode
AC’S) and block UAC (previous context AC’s) of the PSB
for the process, 1If FORKX 1is not setup, you cannot
determine which process was running last,

Saved Stack Pointer

In the saved AC's.,

AC usaqe

FX/ =1 1f no fork chosen or system fork
number of chosen fork

Related Storage
1, FORKX

FORKX contains a =1 if no fork is chosen or the fork
number of the chosen fork,

2, Temporary storage while entering scheduler

Physio Queueing Level =

Stack

PHYPDL

Initial Stack Setup

The P and Q AC’s are saved on the stack by the macro
SAVEPOQ; the AC’s are saved in order of Q1 through Q3
followed by P1 through P6, See the section on Stack
Usage for Local Storage for the format,)
Previous PC

since PHYSIO is called with a PUSHJ, the previous PC 1is
the top of the saved stfack,

Saved AC’s
AC’s 01=-Q3 and Pi1 through P6 are saved on the stack,

See the section in Stack Usage for Local Storage
entitled SAVEPQ,

'OPS=20

Monitor Internals

ACHINE STATES AND RELEVANT DATA BASES

Se

6

74

«7.9,5
1,

2.

3.

4,

Se

6.

Saved Stack Pointer
The previouys stack pointer is saved in PHYSVP,
AC usage

P4/ address of IORB being aqueued,

P1/ address of CDB

P3/ address of UDB

P2/ address of KDB or 0 if no KDB

Related Storage

Physio Interrupt Level =
Stack

PHYIPD

Initial Stack Setup
None,

Previous PC

The previous PC is saved by the XPCW instruction 1in
two word block, beginning at the CDBw=6,

Saved AC’'s
PHYACS == block where AC’s saved
Saved Stack Pointer
The saved stack pointer is in PHYA&S+17.
AC usage '
P1/ address of CDB
P2/ address of KDB or 0 if none
"P3/ address of UDB

P4/ IORB address or argument
indicating action code:

Page 9=21%

a

TOPS=20
MACHINE

T4

97946
1.

24

3.

4,

Se

6o

Monitor Internals Page 9=22
STATES AND. RELEVANT DATA BASES

P4<0 schedule a channel cycle
(P4) = =1
P4=0 dismiss interrupt
P4> housekeep current request
(contains IORB address)
Related Storage

Home block check funtion, 1In STG, starts at CHBUDB,

APR Interrupt Level =

Stack

MEMPP

Initial stack setup
/UPTPFQ= TRAPPC
/UPTPFL= TRAPFL
/UPTPFN
/UPTPFW= TRAPSO

Previous PC

saved as double word PC by XPCW in location PIAPRX and
PIAPRX1L

Saved AC's

MEMPA == block where AC’s 0~10 are saved,

NOTE
Beginning in 3A, uses a different AC block while

at APR interrupt level; therefore, no AC’s are
saved,

Saved Stack Pointer
MEMAP =« previous stack pointer saved there,

AC usage .

OPS=20 Monitor Internals Page 9=23
ACHINE STATES AND RELEVANT DATA BASES
im&,.?. Related Storaqe

1, Sets "local" page fail routine to MEMPTP

¢7.9.7 DTE Interrupt Level =«
t. Stack
DTESTK
2, Initial stack Setup
None,
3, Previous PC
Saved in DTETRA,
4, Saved AC's
DTEACB == block where Ac;s saved,
wb., Saved Stack Pointer
Previous stack pointer is saved in DTEACB+17,
6., AC usage
F/ result of CONI DTEn,
A/ DTE number of DTE that caused interrupt
3/ count (i1f RSX20F protocol)

4/ Byte pointer (if RSX20F protocol)

7 Related Storage

e7.9.,8 PSI Handling =
i1, Stack
. PIPDB

TOPS=20
MACHINE

2.
3,

4,

Se

6,

Te

9:709.9

1.

24

3.

4,

6o

Monitor Internals Page 9=24

STATES AND RELEVANT DATA BASES

Initial stack Setup

Previous PC,

PIDL/PIPC

Saved AC’s

PIAC == block where AC’s saved,

Saved Stack Pointer

Previous stack pointer is saved in PIAC+17,
AC usage

FX/ interrupt flags from FKINT

Related Storage

1, How to tell if interrupt in progress

Job 0 EXxec Mode Tasks =
stack

UPDL

Initial Stack Setup
Previous PC

since these are scheduled processes, this 1is
relevant, :

Saved AC’s

Since these are scheduled processes, this |{is
relevant,

Saved Stack Pointer

Ssince these are scheduled processes, this 1is
relevant,

AC usage

not

not

not -

OPS=20 Monitor Internals Page 9=25
ACHINE STATES AND RELEVANT DATA BASES
w |+ Related Storage
1. How can you tell this use of UPDL from a JSYS?
If the FKJOB entry for the running fork is Job O,
then this s probably a Job 0 task as opposed to a

JSYS in progress, Also, if the PC is in a Job 0
routine, this indicates a Job 0 task,

.7'9.10 User Mode =
he system never BUGHLTs in user modes but it could KEEP ALIVE

EASE, The PC is from user mode if the flag UMODF is set in the
Ce

«8 DDT’S
8,1 FILDDT

he ‘atest version of DUMP,CPY is the last crash, The program
IlveT is used to analyze a crash,

«8,1.,1 How To Use FILDDT On A Crash =

o look at a crash with FILDDT you need the dump and the monitor
ile it came from (for symbols), For exampleg

RENABLE

SFILDDT

FILDDT>LOAD <SYSTEM>MONITR,EXE jload symbols
FILDDT>GET <SYSTEM>DUMP,CPY $load dump

ne AC’s contain their contents at the time of the dump, By
efault you look at physical (not virtual) addresses,

8,1,2 $U Command =

ILDDT can simulate KL paging, You can set paging using the
ILDDT 8U command, This command allows you to specify the
ocation of the page table different ways, depending on how much
nformation you bhave .on where the page table is, For more
nf. mation on the s$U command, refer to the section on DDT
er¥ron 41, In the part of the monitor that BOOT loads, there {is

one=to=one correspondence between physical and virtual

TOPS=20 Monitor Internals Page 9«26
DDT’S

addresses; MMSPTN 1is in this part - of the monitor‘’s address
space,

It you wish to look at some fork’s address space, find its page
table’s SPT slot in the 1left half of FKPGS, indexed by fork
number,

If you wish to return to physical addressing (i,e,, no KL paging
simulation), type $sU,

9,8,2 Relevant DDT/FILDDT Commands

These are standard DDT commands} however, you may not be
familiar with them, They are included here along with examples
of thelir use, :

9,8,2.,1 Question Mark (?) =

If you type a symbol followed by a guestion mark, DDT tells you
which module(s) that symbol appears 1inj; the module name is
followed by a8 G 1f the symbol is global, A local symbol may be
defined in more than one module,

This facllity can be used to locate symbols, 1like GLOB, but
faster, .

BUGSTO? .

APRSRYV jsymbol is local and defined in APRSRYV
SPT? . -

STG G ssymbol is global and defined in STG

9.,8,2,2 Underscore () =

A value, followed by underscore, 15 a request to DDT to £find a
symbol with that value,

This facility can be used to locate the symbollc address of a
value,

14156 _LSCHED+5
101400.SPT

'DPS=20 Monitor Internals Page 9=27
DT’S

cvawled Effective Address Search (SE) =

he $E command is used to search for all locations where the
ftective address, following all indirect and index-register
hains to a maximum length of 64, base 10, equals the address
eing searched for,

he format of the command is ac$E; a is the range and {s
ptional, If no range is specified, the whole address space s
ssumed, The ¢ argument 1is the address to search for,

MMSPTNSE

PGRI10+3/ MOVEM Ti,MMSPTN
FPTA4/ SKIPA T1,MMSPTN
MLKPGM+2/ CAMN T2,MMSPTN
SWPER3+2/ CAMN T2,MMSPTN
GSMLER+11/ HRL T1,MMSPTN
BSMGP1i+2/ HRL T1,MMSPTN
212777/ HRL T1,MMSPTN
SNPFOA+15/ HRL T1,MMSPTN
SNPF5B+10/ HRL T1,MMSPTN
UT1LL+1/ HRL T1,MMSPTN

JSB<SJSB+5>08E
JOBMAP+2/ 0
JOBMAP+3/ 0
JOBMAP+5/ 0

e8,2,4 Word Search (§W) =

ord search compares each storage word with the word being
earched for 4in those bit postitions where the mask, located at
M, has ones, The mask word contains all ones unless set by the
ser, If the comparison shows equality, the word search types
ut the address and the contents of ¢the 1location; if the
omparison results 1in inequality, the word search types out
othing.

he format of the command is ac$W, a is the range and c 1is
he quantity searched for, To set the mask type n$M where n is
he quantity to be placed in the mask word,

uppose we wish to find all share pointers ipn the current user’s
age map between pages 0 and 10, We want to store a 7 (for
ointer type) in bits 0=2 of the mask, Our command is
PTA<UPTA+10>200000,,08%W and works as follows:?

7000000,,08M

UPTA<UPTA+10>200000,,08W
UPTA+2/ 206000,,1244

TOPS=20 Monitor Internals Page 9=28
DDT’S

UPTA+4/ 206000,,1242

9,8.2,5 Not Word Search (SN) =

Not word search works like word search, the only difference s
that it types out the contents o¢f the register when the
comparison is an inequality and types nothing when an equality is
reached,

Not word search is commonly used to type out all non=zero
locations in some range, Suppose we wish to find all existint
(non=zero) entries in the JSB map,

=1§M

JOBMAP<SJOBMAP+66>08N

JOBMAP/ 224000,,635

JOBMAP+1/ 124003,,7044

JOBMAP+4/ 124003,,2764

JOBMAP+6/ 124003,,7050

9,8,3 MDDT

MDDT is a part of the monitor that allows you to look at the
running monitor with the standard DDT commands; Your process is
always the running process when you use MDDT, You can also call
monitor routines to map pages, etc,; however, extreme caution
should be taken when using MDDT, If you change any locations,
you can crash the monitor, It 1is a good practice to type
carriage return immediately after you open any location to
prevent accidental deposits into memory.

You can enter MDDT in either of two ways, In the first example,
the running fork will be the top fork of your job; i.e,, the
EXEC, In the second example, the running fork will be the fork
running user level DDT,

RENABLE
$~EQUIT
MX>/
MDDT

GENABLE

3SDDT

MDDTSSX (Jsys 777)
MDDT

IPS=20 Monitor Internals ‘Page 9«29
0T?’S ‘

dwpr 8N Use either method to enter MDDT, ,Returh from MDDT by
alling the routine MRETN, Do this by typing:

MRETNSG

,8,3,1 MAPPING MONITOR PAGES =

rere is oftentimes a need to examine pages of the Monitor which
re not currently part of its virtual address space, Examples
lght be the JSB or PSB of a hung job or fork or the Index Block
t a fille, The safest and easiest way to do this is to use the
ITMPG routine (or MSETMP for a set of contiguous pages) to map
'e page(s) 1into the User’s address space, Optionally read and
rite or just read access can be requested, The only valid
2ason for write access would be if you intended to change a
>cation in the mapped page Iin order to un-~hang the job,

The following is the setup for calling SETMPG or MSETMP:S
AC1/ Internal Identity of page
(in form 0,,SPT index
or
SPT index,,Page number)

AC2/ Access, ,Address to map to
(500000,,XXX000 for read access
mapping to page XXX
or
540000, ,XXX000 1f read and write
access desired)

AC3/ Number of Pages
(i€ calling MSETMP)

The following is an example of mapping the JSB area pages
E a job and the PSB for a fork:

na

jet <systemd>monitr.exe jget monlitor’s symbols
st 140 sDDT

)T

idegsx fgo to MDDT

JDT

fapping the PSB

cp¥® 400 1672,,1704 ;SPT index of fork 40°‘s PSB

TOPS=20 Monitor Internals Page 9=30
MAPPING MONITOR PAGES

T11 1704 sinternal ID

T2! 500000, ,psbpga saccess, ,destination

call setmpgsx jonly one page so call

<> SETMPG

mretnsg jreturn to user

<>

uptptl/ CAIA O 1£flags,,pc of fork'’s
UPTPFO/ T1,,SFRKV+12 $ last page fault

UPTPFN/ PGRTRP

fkrel 4160 ‘ ;fo:k's runtime
maddtisx sreturn to MDDT
MDDT

jMapping the JSB pages for a job

fkjob 40[L 22,,2152 jget fork 40’s JSB index
T1! 2152,,0 }SPT index,,page 0 of JSB
T2! 500000, ,3sbpga jaccess,,destination

of mapping (JSB area)
T3! 4s1lsta’1000=3sbpga’1000snumber of pages to map

}JSBPGA is the address of the first page
¢t in the JSB area (the JSB itself)
$JSBLSTA is the addresss of the last page
3 in the JSB area

tthe first N locations in the JSB (where
$ N.1s the number of pages in the JSB

;7 area) contain pointers to the JSB

3 area pages

call msetmpsx jcall the routine

<>

mretnsg jreturn to user mode

<> to see mapped pages
jobmapl 224000,,2152 t1look at first few locatlions
JSBPGA+1(124003,,7170 in JSB

JSBPGA+2[0

'0PS=20 Monitor Internals Page 9=31
[APPING MONITOR PAGES

wwrBPGA+3L 0

‘{1nen mljfni 331501,,331503 ;pointer to extension
131503 777777,,2 st string for first JFN
131504/ EXE

ISRNAM[3 juser name
'SRNAM+1 422371,,640620 StsDONAH
'SRNAM+2/ UE

y GET’ing MONITR,EXE vyou can map the pages to their own
ddresses and then be able to use the defined symbols rather than
etermining the offsets within a different page address, Since
he pages have Dbeen mapped to the User’s Address space rather
han to the Monitor’s it is not necessary to unmap them when
one, A RESET will get rid of thenm,

«8.4 EDDT

hSe? Yyou are in EDDT, timesharing ceases, Only the EDDT process
an run, :

DDT must be locked in memory, This is accomplished by one of
he following:) ,
Bringing the monitor up with EDDT and setting a flag
to request that EDDT be kept locked in memory,

Calling the routine LCKINI from MDDT; this routine
locks EDDT in memory and must be called BEFORE
entering EDDT,

+8.,4,1 Debugging Switches =

he locations described in this section can contain flags that
re useful for debugging, The flags must be set before normal
onitor startup; 1,e, from EDDT startup, The default setting
or each of the locations is zero,

EDDTF 1 Keep EDDT in core when system comes
up
DBUGSW 0 or 1 Stop on BUGHLTs
2 Write-enable swappable monitor,

start up Sysjob using the file
SYysJoB,DEBUG for the Sysjob commands
and stop on BUGHLTs,

DCHKS® 0 Do not stop on BUGCHKSs

TOPS=20 Monitor Internals Page 9=32
MAPPING MONITOR PAGES

DINFSW O Do not stop on BUGINFs

9,8.4,2 Loading The Monitor With EDDT =

Observe the following steps to load the monitor with EDDT locked
in memory: . _)
Load the monitor and start it at location 1431 (EDDT
startup),

Set the EDDTF flag to i this keeps EDDT locked in
memory, The DBUGSW switch can also be set at this
time if desired,

Set any desired breakpoints in the resident monitor,
Only the resident monitor is loaded; therefore you
cannot access any part of the swappable monitor,
The breakpoint which {s usually set at this point is
GOTSWM, Wwhen the montiro reaches GODTSWM, the
swappable monitor 1s already loaded,

Start the monitor at 147, This is the normal
startup address, Since EDDIF is set, EDDT remains
in memory.

Wwhen 1t reaches the breakpoint at GOTSwM, you may
wish to do one or more of the following: remove the
breakpoint, write-enable the swappable monitor (Call
SWPMWE), lock the swappable monitor (Call SWPMLK),
set breakpoints, continue the monitor (§P),

whenever you hit an EDDT breakpoint, timesharing
ceases until you continue from the breakpoint,

9.,8,4,3 Page Faulting In EDDT =

If you reference a page that is swapped out while you are in
EDDT, the page is NOT fauled in; EDDT types ? in this case,
EDDT does not change the state of the system, You can cause a
page to be brought in by typing SKIP LOC$SX where LOC is some
location in the page you wish to have swapped in,

9,8,4,4 How To Re=enter EDDT =

Once EDDT has been locked in memory, you may re=-enter by doing
the following: enter MDDT; type EDDTS$G, If the system hangs, ’
and you wish to enter EDDT: type control backslash to qet 1into
the command parser? examine the PC to see where the system is
hungy start the monitor at location 140, If this fails, ask to

[PS=20 “onjitor Internals Fage 9=33
AAPPIMG HONITOR PAGES

sBes't at 141 to force a Reset and then enter EDDT,

2,8.,4,5 To Leave EDDT =

To exit £rom EDDT (unless in a breakpoint), type HODTSG to
reenter MDNT: type MRETNSG to return £rom the Jsys,

9,85,5 Sending TOPS=20 Crash Dumps In To Re Analyzed

ihen sencding vour crashes {n for analysis, here are sore hints
vhich will makxe the analysis easier:

Put a copy of the dump AND a copy of the monitor
that w#»as running at the time of the crash on a
magtape, The tape should NQOT be in DUMPER
interchange format, Use a density of 1600bpi, Put
a second corv of the dump and monitor on the tace to
minimize the possibility of read probhlems,

Use the DUMPER Print command to make a hard copy of
the savesets and file names on the tpae, and send it
with the tape,

Include the CTY output at the time of the crash.

NPS=20 Monitor Internals Page 9=1
RASH ANALYSIS

CRASH DUMPS

ach time there is a BUGHLT there 1is an automatic dumping ©0f the
ystem core 1image into PS:<SYSTEMDDUMP.EXE, If there is sufficient
oom on the DSK tne data that was previously in DUMP.EXE will be
opied into DUMP,CPY by SETSPD after the system is reloaded, DUMP,CPY
oes not get deleted and you may £ind several generations of DUMP,CPY,

in the case you have set no auto reload you can dump the crash by
and by typing /D to the system BOOT> prompt, You can get into BOOT
£ you are reloading the system by pringing the systeam up from the
witen reqisters rather than hitting <ENABLE> <DISK> on the console,
ee the Uperators Guide for a discussion of the meaning of the various

witenes on the DEC=20, _
9=Sep=80

TOPS=20 Monitor Internals Page 9«2
CRASH ANALYSIS

CRASH "ANALYSIS

- EN aY) WY ND S5 S GW U) B9 SN a8 W

First when analyzing software or software/hardware problems be
sure you have the proper tools?

t. Internals reference materials (tables and flowcharts),

2., A full copy of the current Telease microfiche MONITOR and
EXEC,

3, A MONITOR CALLS REFERENCE MANUAL,
4, A SYSERR manual,

5, A listing of the SYSERR 1log, especially if hardware is
suspected,

6. A CTY output for BUGHLTs and BUGINFs or other problenm
indications, or an accurate reproduction of this infornmation,

7. Any other manuals you may need for reference such as the
proper version Installation Gulde, Operators Gulde, Systenm
Managers Guide, etc,

8, A TOPS=20,BWR flle,

You will need listings of the latest versions of monitor ,
modules in case the microfiche are not up to date, FILDDT is
on the customers distribution tape,

Be sure you have analysed the SYSERR log., Be sure, also, that
you have looked uyp the BUGHLT and/or BUGCHKs in question in the
1istings (microfiche) and have at least read the comments around themn,
Probably tracing down how it got called is a good idea, If you happen
to be without a GLOB (provided on microfiche) you can £ind the BUGHLT
tag of interest in the monitor as follows?

SGET <SYSTEM>MONITR,EXE

$ST 140

DDT o

ILPP37? 3 BUGHLT of interest followed by "?"
PAGEM G 3 it is defined in PAGEM and is global

Some other useful bits of information. There is a GLOB 1listing
provided in the microfiche which contains a list of all the global
symbols in the monitor, Most of the symbols are defined in the module
STG,MAC, If you don't know a tag name but want to look at the storage
for DTEs, say, look through STG, STG also contains some small portion

QeSep=8()

OPS=20 Monitor Internails Page 9=3
RASH ANALYSIS)

f%sx‘ode mostly to do with restart, start, auto reload, dispatches for
I channels and A few scheduler tests, 'STG stands for storage, Note
hat some stuff may be defined in PROLOG, and of course lots of stuff
s defined throughout the monitor, You may alsc want to get a listing
£ MACSYM to be able to understand the. macros you see while reading
ne monitor listingsy MONSYM is also useful at times, Be syre you
now how PARAMS has been changed in case it has, See BUILD,MEM on the
Istribution tapes for the currently distributed information on what
> do to change various system parameters in PARAMO.,MAC, Be sure that
>U know about any variables that the site may have changed in STG as
e2ll,

9m=Sep=80

TOPS=20 Monitor Internals Page 9=4
CRASH ANALYSIS .

EXAMINING THE MONITOR

FEYYYY T Y YL Y L LY YL Y Y

Debugging a complex, multi=process software system is largely a
matter of absorbing sufficient knowledge, experience and folklore
about the particular system with a considerable element of persconal
preference, or .‘taste’ also involved, This document 1s a cursory
description of features built into the system to aid debugging, and
such folklore as can be described in written English,

There are four different versions of DDT that may be used to
examine the monitor, Each 1s used for a different purpose and has
special capablilites, The versions of DDT are:

1, UDDT (user DDT) used to examine or modify the MONITR,EXE
‘£ile,

2, MDDT (monitor DDT) used to examine or modify the running
monitor under timesharing,

3, EDDT (exec DDT) used to examine or modify the running monitor
from the CTY in a stande~alone mode,

4, FILDDT used to examine dumps,

All the DDT’s are versions of TOPS=20 DDT documented 4in the
TOPS=20 DDT manual, and have all of the features described in the
manual, See also the document DDT41,MEM,

The use of all four versions of the DDT’s is the same and will be
described latter, however, -each version is started differently,

gwSen=8Q

OPS=20 Monitor Internals Page 9=5
RASH ANALYSIS :

D

-*

ive

his
sed
art
ave
ave

ack

To use UDDT to modify your MONITR.EXE file on system, you must
the following EXEC commands: .

QGET <SYSTEMPMONITR,EXE
@START 140 or on Release 4 systems, QDDT

cauyses EDDT to start in user mode, This is the .same DDT that s
wvhen examining any program, You may now look at or change any
of the monitor, If you make changes to the monitor and want ¢to
it, vyou should get back to the EXEC by typing *Z, Then you may
the monitor,

You will probably have to be enabled‘in order to save the monitor
in <SYSTEM>, This 1iIs the safest, best, and recommended method of

utting patches into the monitor,

9=Sep=80

TOPS=20 Monitor Internals Page 9=6
CRASH ANALYSIS .

MDDT:

A version of DDT which runs in monitor space s avallable, It
can examine and change the running monitor, and can breakpoint code
running as a process but not at PI or scheduler level, ¥hen patching
or breakpointing the swappable monitor, the normal write protection
must be defeated, either by setting DBUGSW to 2 on startup, or calling
SWPMWE, If you insert breakpoilnts with MDDT, remember monitor code is
reentrant and shared so that the breakpoint could be hit by any other
process in the system, In this event, the other process will nmnost
l1ikely crash since it will be executing a JSR to a page full cf zeros,

_ To use MDDT you must have WHEEL or OPERATOR capabilities. You
first issue the EXEC command:

@ENABLE
8~EQUIT

} You are now in the mini~exec and receive a prompt
.0f MX>, Now you .give the "/" command:

-e

MX>/

You are now put into MDDT, To return to the EXEC
you can issue a ~“Z or a "C which produces a
message like "INTERRUPT AT 17372" and returns Yyou
to the mini-exec, If you type a “P In MDDT vYyou
will get a message, "ABORT", and be returned fo
the mini-exec, If you once go into the mini=exec
the CONTROL=P interrupt is enabled and typing this
character will return you to the mini-exec, This
is a good thing to use when debugging programs
that do CONTROL=C trapping. From the mini=-exec
you may give either:

Ve VG NG VG WG Ve Ve W W W e

MX>S

e

or
MX>E

The 8 is filled out as START and the E as EXEQC,
both of these commands will return you to the
EXEC, See the document EXEC-DEBUGGING,MEM for more
apout “P and getting out of the EXEC to MX> and
returning from MX> to either your copy of the EXEC
or the system EXEC,

e NG N4 B4 e NS

You may also give the command:

-.

MRETNSG

From MDDT to return directly to the EXEC, While
in MDDT you may examine any core location in the
running monitor, You may also change any location
in the resident monitor (done frequently by
accident), If you wish to change any of the

e N0 we W8 e

9=Sep=80

OPS=20 Monitor Internals Page 9=7
RASH ANALYSIS :

. ¢ locations in the swappable monitor you must give
o : the command:

CALL SWPMWESX

7 To write enable the monitor, After 90u have made
7 vour changes you must give the command:!

CALL SWPMWPsX
; to write protect the monitor again.
MDDT may also be entered from process level via JSYS:
JSYS 7778X
or ,
MDDT%$sX 7 will enter MDDT from the context of the current process

If vyou wish to examine the system from the EXECs inferior fork
>hitor context: ’

GENA
S$SDDT
DDT

JSYS 777sX
MDDT

-
) return to user context:
MRETNSG
je SETMPG to map pages to this contexts
page 677 has been traditionally used for this;
but any unused page may be used, To make sure that the page
is currently unused type:

ADDRESS/ 7 J the guestion mark from DDT indicates that the
3 page is nonexistent,

when the destination page has been found, set up AC2 as:

AC2/ ACCESS,,677000

I1f the page has its own SPT slot}

AC1/SPT INDEX
i the source page does not have its own SPT slot, it will belong to
.ther a file or process page table, It will be represented as an
idev into this page tables

AC1/ SPT INDEX OF PAGE TABLE,,INDEX INTO PAGE TABLE

9=Sep=80

TOPS=20 Monitor Internals Page 9=8
CRASH ANALYSIS

Access = read or/and or write access
Read/Write access = 140000 in LH

Therefore, to map a page, call with eithers

AC1/SPT INDEX OF PAGE
AC2/140000,,677000

or

AC1/SPT INDEX OF PAGETABLE,,INDEX INTO PAGE TABLE
AC2/140000,,677000

AND SAY:
CALL SETMPGSX

The page will then be mapped to page 677, In examining locations
677000~677777, you will be looking at the contents of the page,

If you desire to map another page into this slot, merely call SETMPG
again with arguments for the new page, You need not first un=map the
old page, However, when yYyou are finished, page 677 should be
un=mapped in the following manner:

AC1/0

AC2/ACCESS, ,677000

CALL SETMPGSX
WARNING:

Calling SETMPG incorrectly can crash the system, Be CAREFUL! Do not
use SETMPG on a time sharing system 1f a crash will cause bad
feelings., :

QwSep=8(

'OPS=20 Monitor Internals Page 9=9
'RASH ANALYSIS :

L 3
-

NOTE

Not to be confused with “EEDDT command
to get into UDDT used with the command
processor,

. To get into EDDT you must bring the -system up using ‘the
witch=register, See the DECSYSTEM=20 Operators Guide for a
iscussion of switches, Go through the KLINIT dialog and when you get
he prompt BOOT>, respond with?

BOOT>/L
BOOT>/G141

he */L" command causes the monitor to be 1loaded, but not started,
he "/G141" starts the monitor at location 141, which is a jump to
DDT. You can use EDDT like UDDT under timesharing on the MONITR.EXE
ile by giving the following commands:

SGET <SYSTEM>MONITR.EXE

' SSTART 140

DDT is linked into the monitor and is always there, You may also get
o EDDT from MDDT by issuing the following:
EDDTSG

rom MDDT, This stops timesharing, To resume timesharing and /or get
ack to MDDT give the commands

MDDTSG 3 back to MDDT _
MRETNSG _ 7 back to normal timesharing

Breakpoints may be inserted in the resident monitor with EDDT,
it not in the swappable monitor in general, because its pages may be
vapped out and be unavailable to EDDT, You c¢an bring them in by
/ping:

SKIP LOCSX s where LOC is some address not in core

9wSep=80

TOPS=20 Monitor Internals ' Page 9=10
CRASH ANALYSIS

 There are some locations in the monitor that are very useful when
using EDDT for debugging., They must be set before going on to start
the monitor,

They are:

keep EDDT in core when system comes up
delete DDT when system comes up (default)

EDDTF

stop on BUGHLTs (hit EDDT breakpoint)
write enable swappable monitor,

do not start up SYSJOB, and stop on
BUGHLTs, Also it dosn’t run CHECKD
auytomatically on startup,

1
0
DBUGSW 0 do not stop on BUGHLTs, crash and reload
1
2

DCHKSW do not stop on BUGCHKs (default)

0

1 stop on BUGCHKs (hit EDDT breakpoint)
DINFSW 0 do not stop on BUGINFs (default)
1 stop on BUGINFs (hit EDDT breakpoint)

In addition the symbol GOTSWM appears 1in the code just after the
swappable monitor 1is loaded, So, if you want to debug the swappable
part of the monitor you must put a preakpoint at GOTSWM (to getl
swappable part in core) by,

GOTSWHMSB

Then start the MONITOR by,
14736G
CALL SWPMLKsX

CALL SWPMLK 1is used to lock swappable monitor in core for debugging,
You must have more than 96K of core to give this command since the
resident and swappable monitor are larger than 96k, To start up_the
monitor after you have gone into EDDT and set up Yyour breakpoints
(remember the 1last two are used for BUGHLT and BUGCHK) give the
command:

14786
or
SYSGO1sG

If you are in EDDT and DBUGSW is not 2, that is the monitor is write
protected, you can use the routines SWPMWE and SWPMWP to write enable
and write protect the monitor, CALL SWPMWESX in DDT,

O=Sep=80

OPS=20 Monitor Internals Page 9=1i
RASH ANALYSIS

I7 T2
BT

[LDDT is distributed on the customer software tape,
1e following is an chewed=up FILDDT,HLP file,
ST(FILE) FILE=-SPEC

>ads a file for DDT to examine, If you are looking at a monitor dump
>u must load DUMP,.CPY explicitly, FILDDT looks £for MUMBLE.EXE not
JMBLE,CPY that is DUMP<KESC> will tell vou that there is no such file
 will load DUMP.,EXE, When looking at a dump and you wish to load
1@ symbols you must f£irst issue the load command followed by the get
ymmand, Be sure that the file from which you get the symbols is the
ime version as the dump, Be sure, also that the monitor that was
imped is the same monitor you use for symbols, That is don’t get
JNMED symbols to use with MONBCH etc,

IAD (SYMBOLS FROM) FILE SPEC

r‘ads specified f£ile and builds internal symbol table, This must be
i@ first command to FILDDT before "GET" when looking at a dymp, You
.11 most probably use <KSYSTEM>MONITR.EXE which would have been the
mitor running at the time of the dump,

-

IT (FROM FILDDT)

'furns to command level, You then may type a save command if a4 load
mmand was Just done to preload symbols, You will get a version of
LDDT that has the symbols you just loaded in it so _you no longer
ed to "LOAD" symbols, You now have a monitor specific FILDDT, which
S common practice for TOPS=10, but is not generally done for
PS=20,

LP

pes something like this text,

ABLE PATCHING

lows writing on an existing file specified by a GET,

ABLE DATA=FILE
sumes file is raw binary (i,e, no ACs, and not an EXE file),

Tw‘.ATURESS

9=Sep=80

TOPS=20 Monitor Internals page 9=i3
CRASH ANALYSIS

EPSOU Sets monitor context for FILDDT mapplng. EP is a symbol

4

which 1s equal to the page number of the EPT, (Rel 4)
‘<CTRL/E> Returns to FILDDT command level,
TRACKING DOWN UNMAPPED ADDRESSES:

The resident monitor may be looked at without any digficulties,
byt the swappable monitor may not pe in core at the time of the dump,
If the value of the symbol |is in the swappable .monitor Yyou must
sometimes go through the monitor map to £ind where the location really
i{s, The location MONCOR contalns the number of . pages of ‘resident
monitor and the location SWPCPO contains the tirst page of real core
for swapping, So if the value of the symbol is greater than contents
of MONCOR times 1000 then it is in swappable monitor,

If the page of the swappable monitor you want to look at is in core it
will probably not be in core in the location that it’s address refer
to since the dump is of core and relocation of pages does not happen,
To find where a symbol really is in the dump, first type the symbol
followed by an "=", DDT will respaond with the value of this symbol,
The value of the symbol can pe divided into two, three octal digit,
fields, The high order three digits are the page number and the low
order three digits are the offset into the page,

If the value of the symbol is 324621 the high order three dlgits, 3124,
are the page nhumber and the .low order three digits, 621, are the
offset into the page, To find the location of the page in question in
the dump you must look at the monitor map indexed by the page number,
For example:

MMAP+324/

would give you the monitor map word for page 324, This word contains
some protection bits for the page and the address of the page when the
dump was taken,

The page may have been in core, on the swapping area or on the disk aft
the time of the dump.

1¢ bits 1417 in the monitor map word are nonezero the page
was on the swapping area or disk and is no longer available,

1f bits 14=17 are zero then the paée was in core, and the right half
of the word contains the page number in the dump of the page you are
looking for (the dump program overwrites the 1last several pages of
memory, the dump therefore does not contain these last pages,)

If the page was in core the new address of the symbol you are 1looking
for can be found by using the page number from the monitor map word
and appending the offset into the page to it, For example if MMAP+324
contains 104000,,256; then the new address of our symbol would be
256621,

9=Sep=80

DPS=20 Monitor Internals Page 9=13
RASH ANALYSIS

1m ddress in the swappable monitor must be resolved in this manner,

addition address of 600000 and above are in the JSB or PSB (PSB is
age 777) and must be resolved by finding the page containing the JSB
r PSB of the process that was running when the dump occured, There
re some locations and tables in the monitor that make this easy:?

NAME INDEX DESCRIPTION

FORKX none Number of the fork that was running at the time of
the dump, =1 1f in the scheduler,

JOBNO In PSB Job number to which c¢urrent fork belongs,

FKJOB Fork # Job numper,,SPT index of JSB

JOBDIR Job ¢ logged in directory number

JOBPT Job # controlling TTY number,,top fork number

FKSTAT Fork # test data,,address of fork wait routine

FKPGS Fork # SPT index of page table,,SPT index of PSB

PT indexes are indexes into a share pointer table starting at SPT,
> £ind the PSB of fork 20, you €£irst look at FKPGS+20, If this
scation contains 425,,426, the word at SPT+426 1s the pointer to the
58, This pointer can point to disk, swap area, or a page in the
mp, If bits 14=17 are zero it is a pointer to a page in the dump
1d the right half of the SPT word is the page number of the PSB |in
re dump,

Y YOU look at a dump, you should first try to find why the dump
rcured by looking at the location BUGHLT, If BUGHLT is zero then you
yould check the CTY log to £ind out why the dump was taken and for
1formation 1l1like the PC at the time of the dump and the status of the
[system, If BUGHLT 1s non=zero it 1s the address of where the
JGHLT was issued, You should look up the BUGHLT in BUGSTRINGS,TXT eor
JGS,MAC to find additional information about the BUGHLT, If at this
int you are not sure as to why the BUGHLT occured, you will have to
ok at the listings for more information, A copy o0f BUGSTRINGS,TXT
3 in Appendix A of the Operators manual, You can £ind the location
! the call to the BUGHLT by typing the BUGHLT tag to DDT followed by

bl DDT will tell which monitor module the BUGHLT is in and you
in go to your microfiche and read all about the conditions
recipitating the BUGHLT,

2xt if necessary look at FORKX, It it contains a =i the scheduler
3s running; otherwise it is the number of the fork that was running
yen the crash occurred, The registers are saved at BUGACS on a
JGHLT, but if BUGACS+i17 contains something,,BUGPDL+n, then the
tgisters are invalid and you must go to the SYSERR buffer to get the
)od registers, This is done by adding to the right half of the
[SERR buffer pointer, SEBQQOU, the offset intoe the buffer for the
rading and ACs, SEBDAT+BG3%ACS, This value points to a 16 block of
3 rds containing the users ACs, You may have to chain down more than
1@ queued=up SYSERR entry to get to the BUGHLT block,

- 9=Sep=80

TOPS=20 Monitor Internals Page 9=14

Do not forget to get a print out of the
SYSERR log which will give you and the
field service representative much of the
information you can get out of the dump,
The SYSERR output is much easier to
examine, however, clearly you cannot get
as much info as you can from a dump,

Some other locations in the PSB of interest areg

LOCATION DESCRIPTION
UAC User’s ACs when he did his last JSYS,
PAC monitors ACs
PPC processors PC
UPDL users pushdown stack while in a JSYS
NSKED 0 = ok to run Scheduler
>0 = cannot run scheduler .
INTDF =1 = 0k to.recejive software interrupts

= 0 , cannot receive software interrupts

It may be useful to know the status of a fork when it is hung or you
are unsure of its status, This can be determined by looking at FKSTAT
indexed by the fork number, The right half of this 1location 1is <the
address of a test routine and the left half is data to be tested, For
example 1f FKSTAT+12 contains 23,,FKWAT, then fork 12 is waiting for
fork 23 to complete, FKWAT is a routine that waits for another fork
to complete and its data (the left half of the word) is the number of
the fork it 1is walting for, There are many different wait routlnes
and you will have to look at the code to see what individual ones are
walting for, There 1S a memo on scheduler tests which details most
all of the scheduler tests in the monitor,

“You can easily determine all of the forks associated with a Jjob
by giving the commands:i

'1"°$M)
FKJOB<KFKJOB+NFKS>N, ,08W

where N is the job you are looking for, A fork structure can usually
be determined by looking at the FKSTAT of the forks and seeing which
forks are waiting on which forks, A FKSTAT of FKSKP indicates a fork
is inactive,

You should refer to STG,MAC for other fork and job tables and other
locations in the PSB and JSB of interest, All of the above locations
can be examined with MDDT or EDDT while the monitor 4is running, Qf
course at these times you do not have to go through MMAP and the PSB
and JSB that are in core are your own,

There are two separate patch areas in the monitor (FFF and SWPF), FFF
is the resident patch area and SWPF is the swapable patch area, These
two symbols should be updated to point to the next free location in

9eSep=80

'0PS=20 Monitor Internals Page 9=15
'RASH ANALYSIS

h. .patch area when a patch is inserted, PAT,, 1Is defined to be
q to SWPF, By convention, all distributed patches are applied at
FF, This serves the purposes of reducing confusion, always working
ntil the patch area is exhausted, and leaving patches always present

n a dump for the cases where that is important,

here are several general purpose routines that can be used to look at
he the monitor while it is running, These routines should be used
ith caution since it is certainly possible to crash the monitor by
sing them incorrectly, Two 0f the more general routines are MAPDIR,
or mapping a directory 1into core, and SETMPG for mapping pages
someone elses PSB or JSB) into core, You will have to look at the
isting for the exact use of these and other general routines, Beware
£ the precautions that should be taken when using them, You can find
he module they are located in by looking in the GLOB listing which is

cross reference 1listing of all the global symbols in the monitor,
ou get a GLOB listing in your microfiche,

9=Sep=80

TOPS=20 Monitor Internals Page 9-15
CRASH ANALYSIS

. BUGHLT, BUGCHK, BUGINF

The monitor contains a c¢onsiderable number of internal redungdgancy
checks which generally serve to prevent unexpected hardware or
software failures from cascading into severely destructive reactions,
Also, by detecting failures early, they tend to expedite the
correction of errors, '

There are two failure routines, BUGCHK and BUGHLT for lesser and
greater severity of failures, Calls to them with JUSR are included in
_code by use of a macro which records the locations and a text string
describing the failure, The general form 1isi

BUG (TYPE,NAME,<STRING>)
Where type is HLT or CHK, and string describes the cause,
For example,
BUG(HLT,SKDPFL,<PAGE FAULT FROM SCHEDULER CONTEXT>)

The strings are constructed during loading and are dunmped into a file,
The BUGSTRINGS,TXT file will produce an ordered 1listing of the bug
messages for operator or programmer use,

BUGCHK 1is used where the inconsistency detected is probably not fatal
to the system or to the Job being run, or which can probably be
corrected automatically,

Typical is the sequence in MRETN in the SCHED module,

AOSGE INTDF
BUG(HLT, IDFOD2,<AT MRETN = INTDF OVERLY DECREMENTED>)

This BUGCHK is included strictly as a debugging aid, Detection of a
failure takes no corrective action, This situation usually results
from executing one or more excessive OKINT operations (not balanced by
a preceding NOINT), It 1is considered a problem because a NOINT
executed when INTDF has been overly decremented will not inhibit
interrupts and will not protect code changing ‘sensitive data,

BUGHLT is used where the failure detected is 1llkely to preclude
further proper operation of the system or £ile storage might be
jeopardized by attempted turther operation, For axample, the
following appears in the SCHED module:

MOVE 1,TODCLK JCURRENT TIME

CAML 1,CHKTIM s TIME AT WHICH JOBO OVERDUE

BUG(HLT,JONRUN,<JOB 0 NOT RUN FOR TOO LONG>)
This check accomplishes two things:

YeSep=80

OPS=20 Monitor Internals Page 9-17
RASH ANALYSIS

L. A function of JOBO is to periodically update the disk
version of bittables, file directories and other
files, Absence of this function would make the systen
vulnerable to considerable loss of information on a
crash which loses core and swapping storage, JOB 0
protects itself against various types of malfunction,
this BUGHLT detects any failure resulting in a hangup,

2, Detects 1f the entire system has become hung due to
fallure of the swapping device or some such event, on
the basis that 1f JOB 0 isn’t :running, nobody’s
running,

NOTE

For Release 4, the program form the
BUGxxX calls takes has been modified,
and the new file BUGS.MAC contains
hopefully useful information on each of
the BUGXXx calls in one place, This
should be considered a reguireq
debugging file,

-’
3UGSW:

monitor cell, DBUGSW, controls the behavior of BUGHLT and BUGCHK
'en they are called, DBUGSW is set according to whether the system
;3 attended by system programmers,

! C(DBUGSW)=0, tnhe system is not attended by system programmers, So
L1 automatic crash handling is invoked, BUGCHK will return +i
mmediately, appearing effectively as NOP, BUGHLT will, {if called
'om the scheduler or at PI level, invoke a total reload from the disk
1d a restart of the system, The BUGCHK/INF output will appear on the
'Y and in the SYSERR log when JOBO gets around to them,

: the system continues to run or is restarted properly, the 1location
 the bug (saved over a reload) and its message will be reported on
e CTY, ,

: C(DBUGSW),NEQ.0, the system is8 attended, and one of the EDDT
‘eakpoints willl be hit, This allows the programmer to look for the
Ig and/or possibly correct the difficulty and proceed, There are two
:fined non=zero settings of DBUGSW, 1 and 2, which have the following
.Stinction,

wr C(DBUGSW) = 1

g=Sep=80

TOPS=20 Monitor Internals) ‘pPage 9~18
CRASH ANALYSIS

Operation is the same as with 0 except for breakpoint
action, 1In particular the swappable monitor is write
protected and SYSJOB is started at startup as
described,)

C(DBUGSW) = 2
Is used for actual system debugging, the swappable
monitor is not write protected so it may conveniently
be patched or breakpointed, and the SYSJOB operation
is not started to save time,
BUGCHK and BUGHLT procedures are the same as for 1,

The following is a summary of DBUGSW settings:

0 1 2 i
MEANING - Unattended Attended Debugging
BUGCHK action NOP 5 Hit Breakpoint Hit Breakpoint
BUGHLT action Crash System Hit Breakpoint Hit Breakpoint
SWPMON write protect? Yes Yes Mo
CHECKD on startup Yes Yes No

Other console functions:

In addition to EDDT, several other entry points are defined as

absolute addresses, The machine may be started at these as
appropriate,

140 JRST EDDT 3 go to EDDT

141 JRST SYSDDT ;3 reset and go to EDDT

142 JRST EDDT 7 copy of EDDT address

143 JRST SYSLOD 3 initialize fille system

144 0

145 JRST SYSRST ? restart

146 JRST SYSGOX 3 reload and start

147 JRST SYSGO1 3 start

The soft restart (address 145, EVRST) restarts all I1/0 devices, but
leaves the system tables intact, If it is successful, all Jobs and
all (or all but 1) process will continue in their previous state
without interruption, This may be used i1f an I/0 device has
malfunctioned and not recovered properly., The total restart
initializes core, swapping storage and all monitor tables,

O=Sep=80(

rops=20 Monitor Internals Page 9=19
"RASH ANALYSIS

. ry limited set of control functions for debugging purposes has
>J§ﬁ built into the scheduler, To invoke a function, the appropriate
>it or bits are set into location 20 via MDDT, The word is scanned
irom left to vright (JFFO), The f£irst 1 bit found will select the
unction, '

JIT O
Causes scheduler to dismiss current process 1f any and stall
(execute a JRST ,), with =1 in ACO, Useful to effect a clean
manual transfer to EDDT, System may be resumed at SCHEDO,
IT 18
Causes the job specified by data switch bits 18=35 to be run
exclusively, Temporarily defeats JOB 0 not run BUGHLT,
IT 28

Forces running of JOB 0 backup function before halting the
system, .

9eSep=80

TOPS=20 Monitor Internals o Page 9=20
BUG’TYP MACRO CHANGES FOR VERSION 4 OF TOPS=20

BUG’TYP MACRO CHANGES FOR VERSION 4 OF TOPS=20

Version 4 of TOPS=20 will include some changes in the BUG c¢ode
“generation, The purpose of these changes is to generate a document
describing the TOPS=20 BUGCHKs, BUGHLTs, and BUGINFs that are more
descriptive than the previous BUGSTRINGS,TXT £file,

The logistics of this change include moving the BUG definitions out of
the monitor source 1listings and into a central source file, This
source file will serve both as the definition file for the bugs and as
documentation for the BUGS, This file is called BUGS,MAC and willl be
distributed to all sites on the distribution tape, These BUGS are
still referenced in the source module where the bug is invoked but
they are defined in BUGS,MAC. '

This involves a modification to the old BUG macro and a new macra
called DEFBUG, The BUG macro appears in the source modules and the
DEFBUG macro appears 1in BUGS ,MAC,

The format of the new BUG macro 1s as follows?
BUG (BUGNAM,<<%1,desi>,<X2,des2>,,.>)

This {s placed in the monitor code where the BUG called BUGNAM 1is to
occur, This macro executes a macro with name *BUGNAM’ which generates
a XCT BUGNAM where the contents of BUGNAM is a JSR BUG’TYP, Following
the 1location BUGNAM are the Accumulators to be printed (one AC per
word) followed by SIXBIT/BUGNAM/, The Accumulators to be printed are
defined with the DEFBUG macro while the locations specified in the BUG
macro are for documentation only.

Accompanying this BUG macro is a DEFBUG macro which is placed 1in the
file BUGS.,MAC, This entry completely defines the BUG, including its
type (BUGHLT, BUGCHK, or BUGINF) and documentation,

The format of the DEFBUG macro is:
DEFBUG (TYP,TAG,MOD,WORD,STR,LOCS,HELP)

~ For a description of the arguments to thls macro see the SWSKIT
article called BUGS,MEM,

In order to make listings (output from MACRO or CREF) more informative
than before, the BUG macro will cause the statement of the short
description displayed in the listing where the BUG macro 1s called,
Also, the flavor of bug (INF, CHK, or HLT) and whether it’s hardware
or software related will be displayed in the 1listing, Hence the
QVRDTA bug would appear in the listing as

9=Sep=80

'OPS=20 Monitor Internals) Page 9=21
WUG*TYP MACRO CHANGES FOR VERSION 4 OF TOPS=20

L BUG(OVRDTA)
- ;BUG Type: hardware=related BUGINF
sBUG description: - PHYSIO = OVERDUE TRANSFER ABORTED

When fully documented, the BUGS,MAC file will be extremely useful
or speclalists., It will describe, in one convenient place, what the
dditional data printed on the console is, what caused the bug, and
hat the site or speciallst should do if that particular bug occurs,

ere is a section of the current BUG definition/documentation for the
UG GIVTMR from BUGS.MAC?

EFBUG(INF,GIVTMR,JSYSA,S0FT,<GIVOK TIMEOUT>,<<T2,FUNC>>,<

ause: The access control job has not responded with a GIVOK within
the designated time period,

ction: If this consistently happens with the same function code; you
should see if the processing of the function can be made
faster,

If there is no obvious function code pattern, you may need to
increase the timeout period or rework the way in which the
access control program operates,

ag_, FUNC = the GETOK function code

>)

NF specifies the bug is a BUGINF, GIVTIMR is the name of the bug,
5YSA 1s the module that the bug would occur in, SOFT specifies that
t 1s likely the bug 1s caused by a software bug, <GIVOK TIMEOUT> is
¢ bug string, <T2,FUNC> specifies the data that will be printed on
e operator’s console, The initial spec called for the descriptor
JNC to be included in the operator’s message but at this time, this
rscriptor is just for source documentation,

¢ blurbs following the initial line of the BUG definition attempt to
:scribe to the specialist, in & more detailed manner than the
:scription printed on the console, what it means when this bug occurs
'd what should be done first in order to resolve the situation., 1In
11s case the ACTION is to examine the GETOK routine which is executed
)I the additional data FUNC, This routine is getting hung up,
ymetimes, the ACTION will state to call the hot line or to submit an
'R, These descriptions will help the specialist be more informed
out the bugs which may occur at one of thelr sites and save them the
.me of calling the hot line or searching through the source module
)T an idea of the problem,

9=Sep=80

TOPS=20 Monitor Internals ' . page 9=22
T0PS=20 SCHEDULER TEST -ROUTINES

TOPS=20 SCHEDULER TEST ROUTINES

The following is a tabulation of (hopefully) all of the scheduler
tests used by the TO0PS=20 monitor, time~frame approximately Release 3A,
This includes ARPA and DECNET tests. This is the data one finds in the
monitor table FKSTAT indexed by fork number for forks which have blocked
and left the GOLST (i.e., LH(FKPT) contains WILST). The format of the
FKSTAT table words 1s TEST DATA,,TEST ROUTINE ADDRESS, The scheduler
test routines are called periodically to determine if a process can be
unblocked, This is indicated by a skip return from the scheduler test,
A nonskip return is taken 1f the process cannot yet be unblocked,

when examining the monitor because of a hung job or fork, the
FKSTAT table can often reveal the reason the fork is hung, and this
sometimes even allows corrective action to be taken,

The table below gives routine name, what you should expect to see
in the FKSTAT table, and the module in which the scheduler test is
defined, followed finally by a short description of what the particular
condition is which is being tested,

SCHEDULER TESTS

TEST CONTENTS OF T1 AT TIME OF SCHEDULER CALL " DEFINED

meemen "-ﬂ--..---...-ll-----------P-.----------. L L X ¥ XX}

BALTST {CONNECTION #,,BALTST] [(NETWRK]
Walt for network bit allocation,

BATTST (UNIT #,,BATTISTI] (DSKALC]
wWait for US,.BLK, the lock bit for the BAT blocks
on the unit, in the UDB to be Zero,

BLOCKM {TIME, ,BLOCKM) ' [SCHED]
Wait for TIME in BLOCKM format which is the low
order 17 bits of the desired future time to be
compared against a suitably masked TODCLK,

BLOCKT {TIME, ,BLOCKT] [SCHED]
Wait for TIME in BLOCKT format which is a
value that is shifted left 10 bits and compared
against a suitably masked TUDCLK, providing a
longer delay than BLOCKM, but less precision,

BLOCKW [TIME, ,BLOCKW] . CSCHED]
Wwait for TIME in BLOCKW format (same as BLOCKM).
CDRBLK {UNIT NUMBER,,CDRBLK] {CDRSRV]
: Wwait for card=reader offline, or not waiting for
a card.

9=Sep=80

[OPS=20 Monitor Internals Page 9=23
[OPS=20 SCHEDULER TEST ROUTINES

:&iﬁnx [ADDRESS, , CHKLOK]) [NSPSRV]
Wait for NSP block lock at address to free,

>OFTST [TIME,,COFTST) _ ’ {MEXEC]
Wait for job in FKJUBN to be attached or time
in BLOCKT form to elapse,

IBWAIT [DTE #,,DBWAITI]) [DTESRV]
Wait for the TO=10 doorbell from the given DTE,

JGLTST {0, ,DGLTST] {DIAG]
Walt for DIAGLK lock to be free,

)GUIDL (ubB ADDRESS,,DGUIDL) [DIAG]
Wait for the unit to show as idle in the UDB,

IGUTST (ubB ADDRESS,,DGUTST] _ [DIAG]
Walt for the maintenance bit to set in the UDB,

IISET [ADDRESS, ,DISET] (SCHED]
Wait for contents of ADDRESS to be zero,

'ISGET [ADDRESS ,,DISGET] {SCHED])
Wait for contents of ADDRESS to be positive,

IS8T {ADDRESS, ,DISGT] [SCHED]

- Wait for contents of ADDRESS to be greater than

Zero, '

IsLT [ADDRESS, ,DISLT] [SCHED]
Walt for contents of address to be less than
Zero., :

ISNT [ADDRESS, ,DISNT] _ [SCHED)
Wailt for contents of ADDRESS to be non=-zero,

MPTST " [COUNT, ,DMPTST] {10}
Wailt for COUNT to be less than DMPCNT to indicate
dump mode buffers freed,

SKRT [(PAGE #,,DSKRT] [PAGEM]
Wait for CSTAGE for PAGE # to not be PSRIP,
meaning disk read completed,

NRTST CPAGE #,,DWRTST] [PAGEM]
Walt for DRWBIT to clear in CST3(PAGE #),
meaning write completed,

VOTST ‘ [FORK #,,ENQTST]) , v [ENQ]
Wait for the lock on ENFKTB+FORK #,

EB T [ADDRESS OF FE UDB,,FEBWT] . [FESRV]

L4 Wait for EOF or input bytes available from FE,

Wake also on invalid assignment,

9=Sep=80

TOPS=20 Monitor Internals " page 9=24
TOPS=20 SCHEDULER TEST ROUTINES .

FEDOBE

FEFULL

FORCTM
FRZWT
HALTT
HIBERT

HUPTST

IDVTST

IMPBPT

JBOTST

JRET
JSKP
JTQWT
ﬂCKTSS

LKDSPT

[ADDRESS OF FE ups, ,FEDOBE] [FESRV]
Wait for output buffer empty and all bytes are
acknowledged by the FE, Wake also 1f not a

valid assignment,

[ADDRESS OF FE uUDB,,FEFULL] {FESRV]
wait for the current count of outpuf bytes to be

less than the count of bytes in the interrupt

buffer, Wake also on invalid assignment,

{SUPERIOR FORK INDEX,,FORCTM] . ‘ . {SCHED]
Identifiable wait forever, forced termination,

{PREVIOUS TEST,,FRZNWT]: . {FORK]
Identifiable wait forever, frozen fork,

[SUPERIOR FORK INDEX,,HALTT] (SCHED])

Identifiable wait forever for halted fork.

{TIME, HIBERT] {SCHED]
Wait for TIME in BLOCKT format,

[<0:9>TIME<10317>HOST #,,HUPTST] (NETWRK]
Wait for IMPHRT bit set for host or time out in
BLOCKW form,

{o,,IDVTSTI CIMPDV]
Wait for the lock an IDVLCK to free, lock it,

to,,IMPBPT] [IMPDV]
Wait for IMPFLG nonzero, or IBPTIM timer to Tun

out, or IDVLCK lock free and output scan needed

for the IMP,

(TIME, ,JBOTST] _ [MEXEC]
Wait for JBOFLG set nonzero for explicit request
or time in BLOCKT form to elapse,

o, ,JRET] [SCHED])
walit forever, interruptible,

(o, ,JSKP] , [(SCHED]
Unconditional skip used to schedule immediately.,

to, ,JTQWT] , [SCHED]
Wait for JSYS trap queue,

{ADDRESS, , LCKTSS] {10]
Wait for lock at ADDRESS to unlock, lock 1it,

to,,LKDSPT] {(STG]
Wwait for room in LDTAB table of directorles
currently locked,

9=Sep=80

'0PS=20 Monitor Internals Page 9=25
'OPS=20 SCHEDULER TEST ROUTINES

»K%-}T

\ODWAT

PTDIS

TARWT
TAWAT

TDWT1

PP

[CTST

JTTST

SPTST

IINTT
"NLKT
.DWAT

BPST

[INDEX INTO LDTAB,,LKDTST) , , [STG]
Walt for bit in LCKDBT to clear, indicating
directory unlocked,

[ADDRESS OF STATUS WORD,,LODWAT] (LINEPR]
Walt for flag LPSLHC to set in the addressed

word, indicating loading has completed of the

VFU or RAM flle,

(UNIT ADDRESS,,LPTDIS] [LINEPR]
Walt for an error condition on the addressed

unit, or for all buffers cleared and no bytes

still in the front=end, before finishing close
operation on the device,

[{IORB ADDRESS,,MTARNT] - "[MAGTAP]
Wait for IRBFA in the IORB to indicate that this
IORB 1s no longer active,

[UNIT #,,MTAWAT] (MAGTAP]
Walt for all outstanding IORBs for unit to b
finished., -

(UNIT #,,MTDWT1) , [MAGTAP]
Walt for the count of outstanding requests on the
unit to go to one,

o, ,NCPLKT] - [NETWRK]
Wait for lock NCPLCK to free, lock it,

[0, ,NICTST) (PAGEM]
Walt for SUMNR less than or equal to MAXNR or
only one fork in BALSET.

[<O03B8>CONNECTION $#<9:17>STATE, ,NOTTST] (NETWRK]
Wait for connection to leave state,

[0, ,NSPTST] 4 [NSPSRV]
Wait for KDPFLG nonzero, indicating KMCii wants

service, or MSGQ nonzero, indicating messages to
process,

[<0:8>O0PTION #,<9:17>LINE $,,NVINTT] (TTNTDV)
Wait for completed NVT negotiation, ‘

[OFN, ,OFNLKT] [(PAGEM]
Wailt for OFN unlocked=<SPTLKB zero in SPTH(OFN),

{FORK #,,PIDWAT] [IPCF]
Wait for bit for fork in PDFKTB to set,

(0, ,SEBTST] ‘ [(SYSERR]
Wait for SECHKF to go nonzero before starting
Job 0 task to write queued SYSERR entries,

g=Sep=80

T0PS=20 Monitor Internals pPage 9=25
T0PS=20 SCHEDULER TEST ROUTINES .

SEEALL

SPCTST

48T
fST

AT

KT

T

TCOTST

TRMTS1

to,,SEEALL] [TTYSRV]
Walts ‘for SNDALL to go to zero, indicating the
send=all buffer avallable,

to,,SPCTST] (DTESRYV]
Hait_tor a node, .

{0, ,SPMTST] _ {PAGEM])

wait for page in SPMTPG to be on SPMQ or the
time SPMTIM to expire,

to,,SQLTST] _ CIMPDV]
Wait for the special queues lock SQLCK and lock
it,.

[sDB ADDRESS OF STRUCTURE, ,STRTSTI] [MSTR]
Walt for the structure lock to be free,

[ADDRESS OF STATUS WORD, ,STSWAT] [CDRSEV]
Wwait for flag CD%SHA to come on in the addressed

word, indicating that cardreader status has

arrived,

[ADDRESS OF STATUS WORD, ,STSWAT] [LINEPR]
Wwait for flag LP%SHA to set in the addressed
word, indicating that printer status has

arrived,

{FORK #,,SUSFKT] : (FORK]
wait for fork to be on WTLST in either SUSWT

OR FRZWT,

(PAGE #,,SWPRT] , [PAGENK]
Walt for CSTAGE for PAGE # to not pbe PSRIP,

meaning swap read completed,

{0,,SWPWTT] {PAGEM]
Wwait for NRPLQ nonzero, Increment CGFLG each

time test 1s unsuccessful,

(FORK #,,TCIPIT] _ {TTYSRV]
Waits for no interrupts pending for FORK #,.

[LINE #,,TCITST] [TTYSRV]
Wwait for line inactive, no fork in input wait,

or input buffer non=empty,

(LINE #,,TCOTST] _ _ [TTYSRV]
Wait for line inactive, or output buffer not

too full to add a character to {it,

to, ,TRMTS11] {FORK]

Identifiable wait forever for inferior fork termination,

9=Sep=80

'0PS=20 Monitor Internals

'OPS=20 SCHEDULER TEST ROUTINES

'R’ T

'RPOCT

'SACT1

'SACT2

'SACT3

STSAL

TBUFW
S’
TIBET

TOAV

TOBET
DITST
DWDON

PBGT

SGWAT
VBWAT

ATTST

[FORK #,,TRMTST]
Walt for FORK # to be on WTLST for either HALTT
or FORCTM,

(MINIMUM NRPLQ,,TRPOCTI]

Walt for NRLPQ to be above stated minimum or
normal minimum, Increment CGFLG each time
test is unsuccessful,

[LINE %,,TSACT1])
Wailt until line inactive, becoming active, or
has a full length dynamic block assigned,

[LINE #,,TSACT2]
Wait for line available-=inactive or fully
active.

[LINE #%,,TSACT3) A
wWait for line inactive=~dynamic data uynlocked,

o, ,TSTSALI i
Wwalt for SALCNT to go to zero, indicating the
send~all is finished for this buffer,

[NUMBER, , TTBUFW]
Walt for NUMBER of buffers,

(LINE #,,TTIBET]
Wait for line inactive or input buffer empty,

[LINE #%,,TTOAV]
Wait for line inactive and output buffer not
empty.,

[LINE #,,TTOBET)
Walt for line inactive or output buffer empty,

{0,,UDITST]
Walt for at least two free IORBS on UIOLST,

(IORB ADDRESS,,UDWDON}
Wait for 1IS,DON to set in IRBSTS for tnis IORB,

[CONNECTION INDEX, ,UPBGT]
Wait for LTDF connection done flag to set, or
output buffers to appear,

{0,,USGWHAT]
Wait for lock on gqueued USAGE blocks to free,

[UNIT #,,VVBWAT))
Walt for the MDA to reset TPVV nandling EOV,

[<0$8>CONNECTION #<9317>STATE,.HATTSTJ

Page 9=27

[(FORK]

[PAGENM]

[TTYSRV]

(TTYSRV]

(TTYSRV]

[TTYSRV]

[TTYSRV]

(TTYSRV]

[TTYSRV]

(TTYSRV]

[PHYSIO]

(PHYSIO]

CIMPDV]

- {JSYSA)

(TAPE]

{NETWRK]

9=Sep=8§0

TOPS-ZO Monitor Internals

pPage 9=28
TOPS=20 SCHEDULER TEST ROUTINES ')
wait for connection to be in state,
WIFKT (FORK #,,WTIFKT] ‘ {FORK)
Wait for fork to be on WTLST,
WTSPTT (PAGE #, ,WISPTT] (SCHED]}

wait for share count on PAGE # to go to 1,

9=Sep=80

'0PS=20 Monitor Internals Page 9=29
{APPING DIRECTORIES IN MDDT)

MAPPING DIRECTORIES 'IN MDDT

L L X L & L 2 & X 2 2 X B L X B K 3 2 & 1 R X % 2 X J

Release 3 of TOPS=20 can take advantage of the extended
iddressing features of the model B processor, Some of its data has
)een reorganized and moved into non=zero sections of the addressing
‘pace, One of the things moved was directories, Directories are now
iapped into section 2, starting at the beginning of the section. Thus
.he o0ld procedure of reading a user’s directory in MDDT is no longer
'‘alid, This will describe how to map a directory correctly, for
‘elease 2 and for releases 3, 3A, and 4,

The procedure for release 2 was the following, You first have to
‘ind out the structure number and directory number for the directory
0 be mapped, You can . use the TRANSL program to get the directory
umber, or use the *“EPRINT command to list the directory information,
S an example, suppose'you want to £ind the directory and structure
nformation for the ‘directory SNARK:<DBELL>, You run TRANSL and
btain the resultst

TRANSL SNARK:<CURDS> _
N_ 's<CURDS> (IS) SNARK:(4,1171]

-

he "programmer number" obtained i{s the directory number, in octal,
n this example, the directory number is 1i17. If the directory is in
ad shape, and you can’t run TRANSL or use “EPRINT, vou will have to
ind out the directory number by looking at the output from a DLUSER
r ULIST run, or from BUGCHK output,

To £ind the structure number, yvou have to work harder, If the
tructure is mounted as PS;, its structure number is always 0, For
tructures mounted other than PSi, you do the following., You get into
DDT, and 1look at the table STRTAB, This table contains all of the
ddresses of the structure data blocks in the system, The first word
f each structure data block 1s the structure name in SIXBIT. So you
earch the tables looking for the desired structure, The offset into
he table STRTAB is then the structure number, For our example:

ENABLE

SDDT

DT

SYS 7778X

DDT

$67T .

TRTAB/ o8 / PS
TRTAB+1/ MeI / REL3
TRTAB+2/ Ma% / SNARK

- . .
n the example above, Yyou see that PS: is the f£irst structure,
ollowed by the structures REL3: and SNARK:, 8ince the offset into

9=Sep=80

TOPS=20 Monitor Internals pPage 930
MAPPING DIRECTORIES IN MDDT

STRTAB was 2 for SNARK:, the structure number you want is 2,

Knowing the structure number and the directory number, you <can
now map the directory and look at it, When the directory is mapped,
location DIRORA will point to the area in the monitor you can find {t
at, This is currently the address 740000, To save typing, you can
use the symbol DA, which has the value 740000 (none of the examples
here uses this symbol however), To map the directory, vou call the
routine MAPDIR which is in the module DIRECT, It takes two arguments,
The directory number goes in ACi, and the structure number goes in
AC2, For our example, the output looks likes

DIRORAL 740000

740000/ ?
‘11 117

28 2

CALL MAPDIRSX
§$s

740000 400300,,100

The skip return from MAPDIR means you have successfully mapped the
directory. You can now look at the whole directory by examining the
proper locatlons, The nuymber of pages that are mapped by MAPDIR is
30, which is the 1length of a directory, so the whole thing 1s
available to look at, By examining or changing location 740000+N in
core, you are examining or changing location N of the directory. when
you are £inished, you can just leave MDDT by jumping to MRETN or by
typing “C,

in release 3, however, when you examine location DIRORA after
calling MAPDIR, it doesn’t have to contain 740000, If it does, then
your machine cannot support extended addressing and the monitor s
running the same as release 2 did, 1In this case vou can ignore the
rest of this document, If your machine does have extended addressing,
when you examine location DIRORA you will see the number 2,,0, This
address is now in section 2 of the monitor, and MDDT cannot read the
data there directly, If you look at the location 740000 after calling
MAPDIR, it will still be unreadable, since the directory is no longer
read in there, Those pages are now unused, -

To be able to read the directory now, you have to tell the
monitor to map in the pages where you can see thenm with MDDT, The
first step is to examine the location DRMAP, This 1location 1is the
section pointer for section 2, where the directories are mapped. This
i{s a share=type pointer, which contains the OFN for the desired
directory in the right half, This number is one of the arguments for
the MSETMP routine, MSETMP takes the following arguments., AC1
contains the OFN in the left half, and the first page number to be
mapped in the right half, AC2 contains flag pits in the left half, .
and the address where Yyou want to map the pages in the right haltf,

9=Sep=80

[OPS=20 Monitor Internals Page 9=31
{APPING DIRECTORIES IN MDDT .

\C% contains the number of pages to be mapped, For mapping
iirectories, you can use 740000 as the address, and you want to map 30
rages, You also want to set flag bits so that the directory c¢an be
hanged, For the example, you d0 the following:

IJRMAP(224000, ,147

147,,0
140000,,740000
30

'ALL MSETMP$X

i

l
!
)

s am g

\fter the call to MSETMP, the directory is now mapped in 740000, ana
‘ol can proceed as you used to in release 2, When you are finished
t1ith the directory, you should call MSETMP again to unmap the
lirectory. This is done by supplying the same arguments as before,
txcept that ac | contains zero, As an examples

4 0
' 140000, ,740000
X 30

'ALL MSETMPs$X

)

losiﬁou can simply ~“C out of MDDT or jump to MRETN,

For Release 4 of TOPS=20, the various flavors of DDT have been
.rajined to wunderstand extended addresses, s0 the mapping contortions
ised for 3 and 3A are once again unnecessary., On extended machines
ne can reference section two directly as beilow:

'‘IRORAL 2' 0
100(400300,,100
hen done, you can still just *C out or Jump to MRETN,

9-s§p-80

TOPS=20 Monitor Internals Page 932
JSB AND PSB MAPPING

‘An Easy Way to Examine the PSB and JSB of Another Job

There is an occasional need to look at the state in detail of
another 3job on the system, A common reason for doing this is to find
the cause and cure of a "hung Jjob"™ which cannot be 1logged out, To
£ind out what the 3Jjob is doing you usually start by looking at the
JSYS stack in the PSB, But you cannot examine such data easily
because the fork data in the PSB_and the job data in the JUSB are not
in the monitor’s address space until the fork is run, If you <try to
lo0k at the PSB or JSB using MDDT you will see the data for your own
fork, To look at the data for another fork Yyou must do what the
monitor does, and that 1s to map it,

A procedure for doing the mapping of a PSB or JSB was given 1in
the release 3 and 3A SWSKITs, You first find the SPT index of the PSB
or JSB you want to map, then you call SETIMPG or MSETMP to set up
pointers to the data, and then you can examine it, But there are
several problems {n using that method, which are:s

{, You have to find an empty set of pages in the monitor‘s
address space which can be used for mapping,

2, There is not enough room to map all of the PSB and JSB, So
if vyou want to examine many different things you have to do
the mapping many times,

3, The routines SETMPG and MSETMP do no vallidity checking of
thelr " arguments, Thus i1f you feed them bad data the system
will probably crash, &o if you need to map things many times
your chances are you will make a mistake once too often,

4, The addresses of the data are not correct, To 1look at PPC
for example, you can’t just examine locatlion PPC (which would
be for your own fork). You have to look in the page you are
using for mappPing, So every reference has to be offsel by
some constant,

when you are done looking at the fork, you can’t simply leave
MDDT, You have to call SETMPG or MSETMP again to unmap the
data,

ot
°

Q=Sep=8(

'0PS=20 Monitor Internals Page 9=33
ISB AND PSB MAPPING

- Since that documentation was written I have found a procedure
thich is much easier, It eliminates almost all of the above problems,

'ne procedure {s this:

1. Do a "GET" of the file the monitor was loaded from, usually
SYSTEM:MONITR,EXE,

2, Enter user mode DDT in the f£ile you got, and then do a JSYS
777 to get into MDDT,

3, Find out the SPT indexes as before, and call MSETMP to map
the PSB or JSB to the USER address space, in the correct

place!l}

4, Return from MDDT, and examine PSB and JSB locations directly,
and see the correct data in the right place,

5, When you are done, just “C and do a RESET,

The rest of this document will document step by step how the
rocedure above is done, by using an example, Assume that we wish to
xamine the state of fork 105, which belongs to job 2%, We then

egiiz
9=Sep-80

TOPS=20 Monitor Internals Page 9=34
JSB AND PSB MAPPING

@ENABLE {Get a copy of the monitor
$GET PS53<SYSTEM>MONITR,.EXE .

$§START 140 {Get into user DDT

DDT :

JSYS 777X {Enter MDDT

MDDT

IFollowing 1S an example of the procedure to map the JSB of a Jjobs

FKJOB+105C 25,,2035 }Get the SPT index of the JSB
lof fork 105

T1! 2035,,0 {Put SPT index in left half

T2! 540000, ,JSBPGA l* Flags and where to map to

T3! JSLSTA’1000=JSBPGA’1000 {Number of pages to map

CALL MSETMPS$X iDo the mapping

$

IFollowing is an example of the procedure to map the PSB of a fork:

FKPGS+105(2657,,2332 {Get the SPT index of the PSB

lof fork 105
T1! 2332, ,PSEMAP=PSBPGA 1Put SPT index in left half,
: iand offset in right half
T2} 540000, ,PSSPSA 1*x Flags and where to map Lo
T3! PSBMSZ LNumber of pages to map
CALL MSETMPS$X _ . iDo the mappling
3

9=Sep=80

'‘OPS=20 Monitor Internals Page 9«35
'SB AND PSB MAPPING

Egw'Ple 0f returning to user mode and looking at data from both
the PSB and the JSB of the fork:

'RETNSG {Return to user mode

SRNAML 3 lExamine job’s user name
SRNAM+1 L 422050,,546230 $T3;DBELL

TRLTTC 777777,,77771717 {Controlling terminal
ILBYT+MLJFN[4400,,334010 istart of data block for JFN 1
PC/ T1,,DISXE#+2 iCurrent PC of the fork

AC+17/ -215,,UpPDL+62 {Current stack pointer

PDL/ CHKHOS# IFirst few stack locations

PDL+1/ CAM CHKAEO#+12
PDL+2/ CHKHOS #

PDL+3/ CAM CHKAEO#+12
PDL+4/ T1,,.COMND+1
PDL+5/ -273"UPDL+4

Eeiple of terminating the mapping we have done:

RESET _ {To £inish, just quit and reset

The procedure as given above maps the JSB and PSB write-enabled,
 if you £find something you want to change, you can simply deposit
ne new value into the 1location, If you want the data to be
rite-protected, then change the 540000 to 500000 in the two steps
arked with an asterisk,

Warning: The procedure of mapping things into your user address
’ace has 1its limitations., Mapping the JSB and PSB works because the
ser core used for mapping was previously empty, In general, you can
1ly map things into your user core if your core pages are either
ynexistant or are private, 1If yoy call MSETMP or SETMPG and .map
>mething over a shared page, the old file page is unmapped without
e share counts being updated, which prevents your job from logging
it later, To get around this problem you can BLT vour core image to
>r all of the pages to be private,

-

9=Sep=80

TOPS=20 Monitor Internals Page 9=36
BREAKPOINTING MULTI=-USER CODE

HOW TO USE BREAKPOINTS IN CODE THAT MANY USERS EXECUTE

'Q----ﬂﬂ----------'----.ﬂ..-.-..--...-------‘--.-----.Q

when inserting a breakpoint into the running monitor, vou have to
be careful that no other users will execute the code containing the
breakpoint, If some other user hits the breakpoint, they will blow up
with an illegal instruction since MDDT willl not be there to handle the
breakpoint. This normally limits the places you can set breakpoints,
since most of the monitor can be gotten to by any user, Even i£ you
run the system stand=alone, it is possible that the routine you are
debugging will be called by Jjob 0, However, it is stil)l possible to
do such debugging, even on a system which is not stand-alone, and this
document will describe how this is done,

The essential element of this technique is to put in the patch in
such' a way that only your own fork can ever reach the breakpoint,
First you write a simple routine which will skip if it 1is not being
run by your particular fork., This can be done easily 1£ vyou remember
that the location FORKX contains the currently running fork number,
An example of such a routine is the following:

Q@ENABLE
$SDDT
DDT
JSYS 7778X%
MDDT

. FORKX{ 23 3 check our fork number
FFF/ 0 NOTMES PUSH P,T1 ;7 save an AC
NOTME+1/ 0 MOVE Ti,FORKX ;3 get currently running fork number
NOTME+2/ 0 CAIE Ti1,23 7 1s it us=23?
NOTME+3/ 0 AQs =1(P) s no, setup skip return
NOTME+4/ 0 POP P,T1 3 restore the saved AC
NOTME+5/ 0 POPJ P, 3 and return to caller
NOTME+6/ 0 FFF$: reset the position of FFF

The routine above simply saves AC T1l, gets the currently running fork
number, compares it with your own fork number which vyou obtained by
looking at location FORKX, and skips if they differ,

9=Sep=80

O0PS=20 Monitor Internals Page 9=37
REAKPOINTING MULTI=USER CODE .

-
Now assume that you want to set a breakpoint into ¢the following
ode, which 1s in the routine BLKSCN in the module DIRECT,

LKsC2/ BLRZ C,BLKTAB(B)
LKSC2+1/ CAME A,C
LKSC2+2/ AOBJN B,BLKSC2
LKSC2+3/ JUMPGE B,BLKSCE
LKSC2+4/ HRRZ B,BLKTAB(B)

ssume you want the breakpoint at location BLK8C2+3, You 40 the
pllowing:

LKSC2+3/ JUMPGE B,BLKSCE FFF$< 7 patch this location
FF/ 0 PUSHJ P,NOTME 7 call the NOTME routine
FF+1/ 0 «$B JFCLS> ? me if it gets here, set breakpoint

FF+2/ JUMPGE B,BLKSCE
FF+3/ JUMPA A,BLKSC2+4
FF+4/ JUMPA B,BLKSC2+5
LKSC2+3/ JUMPA NOTME+6

>tice that the bpreakpoint has been set in the JFCL instruction
2llowing the call to NOTME, Only your fork will execute it, so you
an now debug the section of code while other users are executing it
[wwe same time, Remember to remove the breakpoint when you are
ne,

To run a particular program while having breakpoints set, you
i1st Tremember that the breakpoint has to be set by the same process
1ich vyou expect to hit it, So for example, typing “EQUIT, setting a
reakpoint, returning to the EXEC and running your program will not
)TKs You must enter MDDT and set the breakpoints from your progranm
YU want to debug, As an example:

:NABLE

;ET PROGRAM 3 get the program to be used
DT 3 enter DDT

T

3YS 7778X 7 and enter MDDT from there
DT

'UT IN "NOTME" ROUTINE AND SET BREAKPOINTS HERE)
'ETNSG 7 return to the context of the test program
) 3 start the test program

Q=Sep=80

TOPS=20 Monitor Internals Page 9=38
USING ADDRESS BREAK TO DEBUG THE MONITOR

Using Address Break to Debug the Monitor

Sometimes when examining a set of dumps, vou will notice the crashes
are caused by some location being destroyed, If you have no idea
where the destruction is done from, f£inding the problem could be very
difficult, One useful procedure in such cases 1s to use the address
preak feature of the hardware to track down the problem (except for
2020's!). The only problem is that the use of address break 1s not
obvious, This is a manual describing how to use address break in the
TOPS=20 monitor, '

In order to use address break, four things must be done, First,
the current routines the monitor uses to set address breaks for users
must be disabled. Secondly, your own address break must be set from
MDDT or EDDT, Thirdly, 1instructions which you want to execute
properly have to be modaified so that they will not cause an unwarited
address break, Finally, breakpoints must be placed in the monltor so
that the state of the monitor can be examined when the address break
occurs. The following is a step by step example of doing this,

i. Load the monitor for debugging, and enter EDDT, The procedure
starting from BOOT is the following:
BQOT>/L jLoad monitor but don’t start it
BOOT>/G140 sStart EDDT
EDDT
DBUGSW/ 0 2 1Set debugging mode
EDDTF/ 0 1 sKeep EDDT once system starts
GOTSWMSB sInstall useful breakpoint
SYSGO1s5G jStart the monitor

{PS MOUNTED]

$1B>>GOTSWM 0818 jRemove breakpoint now

2. Disable the monitor‘’s normal changing of the address break,
This is currently done at two places:
K1ISSAV+4/ DATAQ UNPFGL+26 JFCL s1Disable instruction
SETBRK+12/ DATAO A JFCL tHere too

9=Sep=80

'0PS=20 Monitor Internals Page 9=39
ISING ADDRESS BREAK TO DEBUG THE MONITOR

- .
bo Set your own address break at the desired location, Refer to
the Hardware Reference Manual for details, The instruction to
set an address break is:
DATAQ APR,ADDR ‘$Note: APR = 0
where ADDR contains the following fields:
Bits Description
- onmw LA L L L L L 1 LY]))
9 Break at given address on instruction fetches
10 : Break at given address on reads
11 Break at given address on writes i
12 O=exec address space, isuser address space
13=~35 Address to break on,
So now assume you want to catch a bug which is blasting
location CURDS. Yoy want to break only for writes, and want
to use exec virtual space, Therefore you type the following!
FFF/ 0 100000000+CURDS sPut data in convenient place
DATAO APR,FFFsX sSet the address break
-
. Now you want to disable address break for all instructions

which you expect to change the given location, Assume in this
example that only 1location DIDDLE should change 1location
CURDS, Then you do the following for a model B CPU:

FFF!} IT: sDefine location to get old flags
IT+1! 10ld PC

IT+2! sNew flags

IT+3! IT+4 tNew PC

IT+4! EXCH IT 1Save AC and get old flags

IT+5! TLO 1000 3Set address break inhibit bit
IT+6! EXCH IT $Restore flags and AC

IT+7! JRST 5,17 sReturn to caller

IT+10!} FFF3: ?Redefine FFF

DIDDLE/ MOVEM A,CURDS FFF$< ;Insert patch ‘

FFF/ 0 JRST 7,IT8> 7Call above routine :
FFF+1/ 0 MOVEM A,CURDS 1 Typed by DDT when £inishing patct

FFF+2/ 0 JUMPA A,DIDDLE+%
FFF+3/ 0 JUMPA B,DIDDLE+2
DIDDLE/ MOVEM A,CURDS JUMPA IT+10

The JRST 7,1IT instruction is used to save the old PC at IT and
IT+1, and take a new PC from IT+2 and IT+3, There the old PC
- is changed to include the address break inhibit bit, Then a
JRST 5,IT is done which returns to the caller. The next
instruction then executes without causing an - address break,
You have to insert the JRST 7,IT instruction at every

9=Sep=80

TOPS=20 Monitor Internals Page 9=40
USING ADDRESS BREAK TO DEBUG THE MONITOR

instruction you want to succeed,

For model A CPUs the procedure is similar, but a little easier:

FFF! IT: sDefine location to hold PC

IT+1! EXCH IT 1Get old PC and save AC

IT+2! TLO 1000 jSet address break inhibit flag
IT+3! EXCH IT sRestore PC and AC

IT+4! JRSTF @IT sReturn to caller

IT+51 FFF? $Redefine FFF

DIDDLE/ MOVEM A,CURDS FFF$< 3Insert patch

FFF/ 0 JSR ITS> jCall above routine

FFF+1l/ 0 MOVEM A,CURDS s Typed by DDT when finishing patch

FFF+2/ 0 JUMPA A,DIDDLE+1
FFF+3/ 0 JUMPA B,DIDDLE+2
DIDDLE/ MOVEM A,CURDS JUMPA IT+5

5. Now put the breakpoints into the monitor so that when an
address break occurs, you will get into EDDT, There are two
locations to patch, one for PI level and one for non=pPI level,
You also have to patch a monitor bug in release 3 and 3A so
that the page fall dispatch code wWOrks properly.

ADRCMPSH jSet breakpoint at non=PI routine
PFCD23sB ;Set breakpoint at PI routine
PIPTRP+1/ MOVE A,TRAPSW MOVE A,TRAPSO $And £ix a bug
$P ' jNow let the monitor proceed

6, when either of the above .breakpolints is hit, the flags and PC
of the instruction which caused the address break will be in
locations TRAPFL and TRAPPC, If the address break was from

JSYS level (breakpoint. was to ADRCMP and location INSKED 1s
zero) then an §P will proceed properly, If the address break
was from the scheduler or from Pl level, dolng $P will be
useless since the monitor will then BUGHLT because it doesn’t
want to see an address break under these conditlions, However,
this is ok if all you want to do 1Is £ind the instruction
causing the trashing, -

If the location still gets trashed after trying to catch it this
way, either your procedure is wrong; you are trying this on a 2020
(which has no address break feature); the location is being changed
by some 10 being done (RH20s, DTEs, etc); or else the machine is
having some hardware problens,

9=Sep=80

OPS=20 Monitor Internals Page 9541
ECOVERING FROM DIRECTORY ERRORS

RECOVERING FROM DIRECTORY ERRORS

Sometimes after a monitor crash due to disk problems, some of the
{rectories on the system will contain errors, These errors cause
JGCHKs such as DIRFDB, NAMBAD, DIRPGO, and DIRPGi, It is sometimes
3sslble to find the error 1in the directory by getting into MDDT,
apping the directory, finding what is wrong, and £ixing 1t, This
rocedure is described in the SWSKIT, However, this is not always
asy, and may take a lot of time, It s therefore better in many
ases to simply delete the bad directory and recreate it, This is
asy to do for most directories, But special procedures are necessary
>r the directories <SYSTEM> and <SUBSYS>, The rest of this memo will
escribe the methods of recovering from bad directories, handling in
articular the difficult case of the <SYSTEM> directory,

You can first try to give the EXPUNGE command with the REBUILD
'd PURGE subcommands, If the problem with the directory is very
lmple, it may £ix your problem, As an example, suppose the directory
3¢<SICK=DIRECTORY> 1s incorrect, You would type:

SEXPUNGE (DIRECTORY) PS$:<SICK=DIRECTORY>,
$§SREBUILD (SYMBOL TABLE)

$§SPURGE (NOT COMPLETELY CREATED FILES)

§8

PSt<SICK=DIRECTORY> [NO PAGES FREED]

s -

If this does not help the problem, vyou will have t¢o delete the
.rectory and then recreate it, Before proceeding, you should make
ire that any files you can reference are copled to another directory,

else are saved on tape, Now £first try to delete the directory
irmally, as follows: :

SBUILD (USER) PS:i<SICK=DIRECTORY>
{oLD)

$SKILL -
[CONFIRM]

§8

8

9=Sep=80

TOPS=20 Monitor Internals Page 9-42
RECOVERING FROM DIRECTORY ERRORS
!

If this is successful, then simply recreate the directory again,
and restore the user’s files, You should recreate the directory with
the same directory number as it had before, so that DLUSER’s data will
still be correct,

The procedure above will fail 1f either the directory 1is mapped
by another 3Job, or if it is totally unuysable, If it is mapped, and
the directory is a random user, you can wait until the directory is no
longer in use, or you can take the system stand~alone so that no user
can reference 1it,

I£ the directory is totally unusable, you will then have to try
to delete 1t the hard way, Before proceeding, you should try to
delete and expunge all files in the directory., This will mininize the
amount Of lost pages that will result, Now there are two cases to
consider, 1If the directory is not a sub=directory, you type the
following:

SDELETE (FILE) PS:<ROOT=DIRECTORY>SICK«DIRECTORY,DIRECTORY,
8SDIRECTORY (AND "FORGET" FILE SPACE)

88 i}
<ROOT=DIRECTORY>SICK~DIRECTORY,DIRECTORY,1 [OK]

]

If the directory is a subdirectory, You modify the above command
by replacing "ROOT=DIRECTORY" by the name of the next higher
directory. Thus if the directory was PS:<ANOTHER,BAD=ONE>, you type:

SDELETE (FILE) PS:<ANOTHER>BAD=ONE,DIRECTORY,
SDIRECTORY (AND “FORGET" FILE SPACE)

53

<ANOTHER>BAD=ONE,DIRECTORY.1 [OK]

]

The above procedure tells the monitor to treat the directory Eile
1ixe a normal file, and to delete it as such, This means that any
files in the directory will become "lost", The disk pages can be
recovered later with CHECKD, If the above works, you simply can
recreate the directory and restore the files,:

The only reason the above command should fall 1s if the directory
is still mapped, For PS:<SUBSYS>», you can bring up the system
stand=alone so that no programs are run from it, and then delete it,
For PS:<SYSTEM>, even taking the system stand-alone will not help, for
it is always mapped by job 0, But there are two procedures Yyou can
use which do work,

9=Sep=8()

OPS=20 Monitor Internals Page 9=43
ECOVERING FROM DIRECTORY ERRORS

-

The safest method can be used if the user’s system has mountable
tructures, If you have bullt another PS: structure, you can mount
he pack with the bad directory as an alias, and then the directory
ill not be mapped and can be deleted, As an example:

§SMOUNT (FILE STRUCTURE) SICK:,

§SSTRUCTURE~ID (IS) PS¢

§§

WAITING FOR STRUCTURE SICK: TO BE PUT ON LINE,,,
STRUCTURE SICK: MOUNTED

]

SDELETE (FILES) SICK:<ROOT=DIRECTORY>SYSTEM,DIRECTORY,
SSDIRECTORY (AND "FORGET" FILE SPACE)

8s

SICK:<ROOT~DIRECTORY>SYSTEM,DIRECTORY.i1 (OK)

8

Then you can build the new directory, restore the files to 1it,
id then use it again for your normal PS: pack, Be sure to build the
:w directory with the same number, This is especlally important for
1@ special system directories,

‘i&£ you do not have another disk drive or another PS: disk, or if
'u don‘’t want to bother SMOUNTing the disk, you can fix the <SYSTEM>
‘ea by using MDDT, The basic idea is to patch the monitor so that it
) longer thinks that the directory s 4in use, This is done as
)llows: -

$“EQUIT

INTERRUPT AT 17117

MX>/MDDT _

CHKOFN/ JSP CX,.SAVE JRST RSKP
MRETNSG

]

Then you should have no problems deleting the directory.
imediately after doing the delete, you should reload the systen,
en the system restarts, you can read the monitor and the EXEC either
'om the distribution magtape or from another directory where you had
'pt coples, Then recreate the <SYSTEM> area, making sure to give it
@ sSame directory number as it had before, :Then you can restore the
le= and let the users back on, Finally, vyou should run CHECKD
MeaMe to recover the lost pages,

020 ¢ & & & ¢ 9 0 0 0 * & 0

> references ¢ o & ® 8 o @

33SP 4 0 s 6 e s e 8 e 0 o

2 s o
3ECH ClaSS o ¢ o o ¢ o o o
fas control « ¢ 4 ¢ o o 0 o
20 4 ¢ o o ¢ 2 4 s 0 9 0 s @
JIGRIE & s o ¢ o 0 0 & s 0 e 0
yte instructions , 4 o o o o

lass scheduling , o, o, »
smpatibility * o o ® ® e o @

afanlt section . . o
lrectory cache , , o 4
Jmp.exe [] [] L] [] [] [] [] L] e

’¢b ‘e ® ¢ o €& o e o & @& & o
tfective address computation
tecute=only « o o o o o o o o
ttended addressing ., o+ ¢ o o
ttended format indirect word

l1ddt & 4 o o o o o 5 0 0 o o
erware 0 0 0 o B e @ @
3TK hiStOry o o o ¢ » o o

\0bal addresssing o o « o o o
lobal stack pointer , ¢ ¢ o o

ldden symbols , * ¢ e * 9 o @

rmediate mode , , .
‘plementation , ,
icrementing the pe
1dexXing o o o 0 o
idirection , o , .
istruction format in

.« 0 @ » e
He 2 o 0 o

;p 2 ¢ 9 ¢ ¢ o o

L]
*
L
L]

T * o 9 e ® o o

L]
*
L]
*

T % 0 ® o 8 ¢ ¢ 0 ¢ 9 @

CT ¢ e e 0 e 4 e 0

/ad averages e 5 s 9 2 8 o @
cal addressing , . . :

INDEX

® ® ® ® e ® ® * ® ®* & * 8 o s @ &

o e

6=1

1=10
1=10
1=6

3=5
2=1
9«3
9e5
1=11

3=1
1-5‘1

1=6
7'2 ']
9=2

9=31
1=5
4«1
5'10
1=7

9«25

=1

8«3
1=2

1=11

1=9.
1=2
1w4
1=6
1=6
1=7

i=10
1=10

6=1
92

o 1%2,

1=2

1=12

7=15

9=15

T7=13

Page Index=1

MAAL 4 ¢ o 0. »
Model b k1l ,

Monitor address space

Monitor modules

Monitor stacks

OPT o o o o o

Page map
Pmap%
Pop o o
PopPd & 4.
Postpurging
Preloading ,
Program count
Push , ¢ o o
Pushy o o o

Rsmap% " 0 .

Section , .
Section map
SkedS o
Smap% »
Support .
sSyerrs o o
Syserr ,

Usectd o o o o

Vax/vms o o o
vVirgin process

*

®

¢ @

*®
e & & & 3 o @ L)
.

® ® @ @ @& @ o
® ® @ © & 9

Vvirtual address Space

watch o o o o
windfall , .

working set swapping .,

Xh1ll o o o o
XIrstf o o o o
Xmovei , ¢ o »

P e @ ¢ ¢ 5 o s e @ -

s & & 9

® © & & & v & o o

o ® @ % @

® @ & ® @ s o

9«28
i-1,
S=1
6=1
9e7

2'2'

1=2
1=2
1=10
1=10
Bel

1=3
1=10
1=10

1=2

1=2

3-5'

3=7

pPage Index=2

DT41 = DDT %41(260) Users Guide to New Features Page 10=1

~ copyright (C) 1978, 1979 ,
Digital Equipment Corporation, Maynard, Kassachusetts, U,S,A,

nls software 1s furnished under a license and may be used and copyed
aly in accordance with the terms of such license and with the {nclue=
fon of the above copyright notice, This software or any other copies
nereof may not be provided or otherwise made avallable to any other
srson, No title ¢to and ownership of the softwvare is hereby transe
arred,

'e information in this software is subject to change without notice
1d should not be construed as a commitment by Digital Equipment Corw
»ration,

lgital assumes no responsibility for the use or reliability of its
dftware on equipment which is not supplied by Digital,

DDT41 = DDT $41(260) Users Guide to New Features Page 10=2
Introduction and overview

1,0 Introduction anda Overview

This document 1s designed as a users guide to DDT version 41 in so far
as it has changed from previous versions of DDT, It is not a c¢omplete
users guide to all the wonders of DDT, Just those new features which
have recently been implemented (although directed primarily at new
features only ‘in DDT version 41, some documentation 1s included to
describe other aspects of DDT which have been around for a longer
period of time, but were never fully understood or otherwise
documented),

Throughout this document it is assymed that the reader is already
familiar with DDT and the MACRO assembly language in general as well
as the appropriate operating system(s),

This is the first revision of this document, {ncorporating the addie
tional changes to DDT version 41 as of edit 260,

2.0 Configurations

ODT version 41 will run on KA=10°’s, KI-10‘s, KL-10's, and KS=10°’s,
using no paging, KI-paging, or KLewpaging, with or without extended
addressing in user or executive mode (user and flle DDT's run only in
user mode) with no speclal assembly needed, DDT version 41 must ©be
assembled to run under either the TOPS=10 or the TOPS=20 operating
systemnm,

It traditionally has been a goal to maintain one single set of source
files from which all flavors of DDT are bullt, This goal has Dbeen
maintained,

Note

TOPS=20 UDDT (and SDDT) now use memory locations 764000
through 777777 (previously 770000 through 777777), but the
starting address for DDT continues to be location 770000,
This requires version 4 of the PA1050 "compatibility pack=
age",

3,0 Memory and Address Control

The single biggest change to DDT version 41 from earlier versions 1is
in the realm of memory control and how the user addresses memory locam=
tions,

3,1 Extended addressing

All flavors of DDT except FILDDT will run in any memory section., Full
extended addressing is supported, as are "large" addresses = ppT will
now accept a full 36=blt expression as an address although obviously
only FILDDT can actually handle an address over 30-bits wide, In all
cases the actual address must be positive (i,e,, effectively a 3Sepit
address).,

DT41 = DDT %41(260) Users Guide to New Features Page 10=~3
emory and Address Control

-w

»1.1 Symbol table restrictions '

nere are certain restrictions however: which must be adhered to in
rder for DDT to function correctly, The first restriction is that the
/mbol table loglc is essentially section~dependent, i,e,, the symbol
able and its polinters (,JBSYM=116 and ,JBUSY=i17, also ,JBHSM=6 relaw=
lve to the start of the "high segment") must reside (i.e., be mapped)
» the same section as that in wnich DDT itself is running, Further,
1¢ symbol table can be no longer than 128K words in length and must
* RADIX~50 format,

ach thought is being given towards the implementation of a totally
*w Symbol table scheme which would address all of these problems, the
Ingle biggest one of which is simply how is extended addressing going
> be used =~ as a single fixed address space with one or more "global"
ymbol tabples (like the TOPS=20 monitor currently works), or as a
sllection of independent sections each of which has section~local
/Bbols/symbol tables (whatever that means), or what?

y4.2 Breakpoint restrictions :

1¢ second restriction of which the user must be aware concerns
reakpoints, Since the hardware has no facllity to unconditionally
ransfer control to DDT wusing only 36=blits, DDT must be mapped into
ich section (at the same relative address obviously) which contains
»de into which the user wishes to place breakpoints,

1™ Location examining restrictions ,)
ren if running on an extended addressing machine 1f DDT 1is running in
»ction 0, then only locations within section 0 (addresses 0 to
17777) may be manipulated, DDT will make no effort to outsmart _the
ymbined efforts of the user and the operating system by sneaking into
non=zero section even momentarily to do the memory reference,

v2 Effective address calculation

)T version 41 can calculate effective address references using either
local" or IFIW (Instruction Format Indirect Word) or "global® or EFIW
ixtended Format Indirect Word) formats, In a normal DDT address=~open=
1g command ("/", "\", <TAB>, etc,)] a single <ESC> delimiting the
ldress expression (e,g,, "MOVE 3,8200(10)8/" or Jjust "s{") instructs
)T to treat the expression as an IFIW word and calculate the effec=
lve address exactly 1like the hardware would, were the hardware to
tecute that 36~bit word as an instruction at location "," (whether or
't location ®," {s currently open),

10 <ESC>‘’s delimiting the address expression instructs DDT to treat
¢ 36=-bit expression as an EFIW word and calculate the effective
ldress exactly as the hardware would, were the hardware to 1ndirect1y
idress the 36~bit expression at location "," (whether or not location
* is currently open), A strange case can_come up about which the
:er should be cautioned = there i{s an ambiguity as to where (i,e,,
la g/ Section") to start the effective address calculation, DDT as=-
imes the left half of ",* (i,e,, the 1last location opened by the
ier)., If for example having opened 1location 0,,1234 which contains
04321 the user issues the command "S$[" then DDT will calulate the
ifective address as the contents of location 4321 {n section 0
idexed by the right half of register 7, and If bit 13 is on, treating

DDT41 =~ DDT $41(260) Users Guide to New Features - Page 10=4
Memory and:Address Control

that word as an IFIW and continuing the address calculation, This,
although probably not what was expected, s in fact exactly what the
hardware would do since the indirect word came from section 0, Had the
user opened location 1,,1234 (containing 7,,4321) then DDT would take
the contents of location 7004321 and continue from there,

I1f no <ESC>*s delimit the address expression, then DDT simply uses the
full 36=bit expression as the address (e,g,, "30,,30/" says open loca«
tion 30000030 and "=1/" says open location 777717717177777), Again, only
FILDDT can actually reference an address greater than 30-bits wide
(not .that anyone has that much disk space, but the hardware will not
permit an address space over 30=-bits wide), and in any case the ade-
dress must be a non=negative 36~bit integer,

There is a special case in which DDTI does something "kinky" = 1f &
space was typed in entering the address expression, or if no explicit
address was typed (i,e,, the uyser is using the "last word typed" by
simply typing only (for example) <TAB>), DDT will form the 36=bit
actual address by using only the right half of the 36~-bit address
expression plus the left half of "," as the section number, This note
at=all=obvious behavior i{s so that the user can type in expressions
such as "JRST PAT<TAB>" and have DDT go to 1location PAT in the same
section as the JRST PAT instruction rather than going to address
254000000000+ (PAT modulo 2**18), Another common usage of this “feanw
ture® would be in chaining down linked lists where the link pointer is
an 18=bit sectione=local address in the left half of a word, To do tnhis
the user may type "sp$sQ/" (where "sp" means space), This is one of
those cases where usefullness outweighs cleanliness . of implementation
and documentation,

3,3 Modifying memory

Two new commands have been added to facilitate DDT'’s manipulation o2
the user address space,

3,3.1 Automatic write-enable

The 8W or SOW command instructs DDT to, if the user attempts to depos«
{t into a write-protected memory location, automatically attempt to
write=enable the memory location, do the memory deposit, then £finally
re=write=protect the memory location (default for TOPS=10)3 the $§W or
$30W command instructs DDT to simply give an error indication if the
user attempts to change a write=protected memory location (default for
TOPS~20), For FILDDT the use of this command is restricted to non=file
usage such as "DDT’ing" the running monitor/memory space,

3,3.,2 Automatic page=creation .

The $1W command instructs DDT to automatically try to create the page
the user is trying to deposit into if it doesn’t already exist (de=
fault for TOPS=20); the $$14 command instructs DDT to simply give an
error indication if the user attempts to write 1into a non=existant
page (default for TOPS~10), EDDT and FILDDT doing super 1I/0 or
"ODT’ing" an L EXE file will NEVER attempt to create a non=existant
page, For FILDDT .the user must specify patching the file when he
starts FILDDT in order to be able to create new pages (e,g,, extend
the file or £11l in a gap in the middle of the file (TOPS=20 only)),

5T41 = DDT %41(260) Users Guide to New Features Page 10e=5
emory and Address Control

4 Page mapping and physical addressing

n DDT version 41 all flavors of DDT support page mapping and address
slocation as well as register and physical address manipulation, All
£ these functions use some variation of the sU/s$sU DDT command, In
eneral these functions may be mixed together (for example address
slocation and page mapping).

*¥%% Warning **x

The sU command syntax in DDT is totally different (and maine=
ly incompatible) from previous versions of DDT! The user is
MOST strongly urged to carefully read thls section on memory
mapping and addressing!

y4.1 Physical addressing _
)T now has the concept of "physical" addressinq in addition to its
srmal "virtual®” addressing, The $U command instructs DDT to use nore
al virtual addressing (wnat it used to do); the $sU command instructs
JT to manually track down the honest physical address rather than the
irtual address space in which DDT finds itself running, Physical ad=
ressing is really applicable only to EDDT or to FILDDT looking at
Jnninq monitor/memory (TOPS=10 only), User mode DDT (inc¢luding EDDT

ng in user mode, MDDT (TOPS=~20 only), and VMDDT (TOPS=10 only))
u&irinoor looking at a disk all treat $U and $$U identically, 1In
iysical addressing location 0 is not register 0 (i,e,, DDT’s internal
py of user register 0) but rather physical memory location 0 page 0
ink 0 box 0 (that memory 1location on the hardware memory bus that
»sponds to all address bits = 0),

1en the $$U DDT command is issued "physical" locations 0 to {7 become
registers” 0 to 17, For user mode DDT this means locations 0 to {7
rcome DDT’s reglsters rather than the user’s registers (although the
jer’s registers will be properly restored on DDTwexit, $8U_ merely
lrects DDT not to 'use the internal "fake® ({,e,, user) registers),
v FILDDT this means £ile words ¢ to 17 (as mapped by the - JEXE
lrectory 1f used) become locations 0 to 17 (normal for a data file),

ibsequent issuance of the $U DDT command will redirect locations 0 to
I to being DDT's internal "fake" registers again, except for FILDDT
yoking at an data file or doing super 1/0 to a disk,

yte that for executive mode EDDT to utilize physical addressing the
1ging hardware must have been enabled PRIOR to DDT-=entry. This re=
iirement exists because EDDT, in order to access all of physical
ymory, needs to map the desired physical address into its own (execue
lve) virtual address space, which it does by fondling the already=
ttant page maps, For EDDT to provide physical addressing capability
.thout this restriction would require 2 (3 if KL«paging) more memory
194, P dedicated to EDDT for building temporary page maps, Pplus
ippoOrt code etc, '

»r FILDDT to examine/modify physical memory a 7,00 or later release
. 'the TOPS=10 monitor is required; no release: of TOPS=20 supports
(LDDT*ing physical memory,

DDT41 = bDT %41(260) Users Guide to New Features Page 10«6
Memory and Address Control .

3,4,2 Page mapping ‘ 4

All flavors of DDT now support page mapping in both the KI- and the
KL=tradition, EDDT in executive mode will dynamically figure out which
style of paging is in effect and operate accordingly, All other fla«
vors of DDT (including EDDT running in user mode) will assume the mode
of paging used by the operating _system for which DDT was assembled «
KI-paging for TOPS~10 and KL=paging for TOPS+20, To select KI=paging
emulation the £1g810U command i3 used; to select KL-paging the £lgstiy
command is issued; in eitner case 1if fl1g 1s zero then the paging
emulation is disabled, if £1g 1is non-zero then the appropriate paging
emulation is enabled,

In -executive mode EDDT or FILDDT looking at running monitor/memory
space DDT will internally utilize physical addressing in order to
provide the user the true mapped virtual address space desired,

3.,4.2,1 KI=paging = For KI-paging (TOPS~10 default) the page mappling
command for the executive virtual addressing space is [upt<lepts(0]U
where upt is the optional physical memory page number of the user
process table (for setting the "per=process" addressing space = exec
virtual addresses 340000 through 377777) and ept is the physical memo=«
ry page number of the executive process table, The user virtual ade
dressing space is selected by the uptsil command, The command $U re=-
turns DDT to regular ynmapped virtual addressing,

3,4.2.2 KL-paging = For KL=paging (TOPS=20 default) the page mapping
command for the executive virtual addressing space i{s epts(0lJU where
ept is the physical memory page number of the executive process tapole,
or epx8s[0lU where epx is the index into the SPT of the executive
process table pointer, To select the user virtual addressing space the
command is upts$iU where upt is the physical memory page number of the
user process table, or upx$siU where upx is the index into the SPT of
the user process table pointer. The command $U returns DDT to regular
unmapped virtual addressing,

To map a single section (256K address space) under KL=paging the
command 1is either sec$2U where sec is the physical memory page number
of a KL=paging section map, or sex$s2l where sex is the index into the
SPT of the section map,

Basically, under KL-paging, $0U selects the ept, $iU selects the upt,
and 352U selects a single section, A single $ indicates the physical
memory page number and two $°s indicate an SPT index,

3,4,3 Setting the SpT _ _)
FILDDT will automatically define the start of the SPT from a disk file
(assumed monitor dump) from the symbol "SPT" i{f it exists (TOPS=20
only)., The command spts6U specifies to DDT that the SPT starts at
address spt,

3,4.4 Register addressing

The command acssS5U instructs DDT to use the 20 consecutive locations
starting at acs as the registers (DDT maintains an internal copy of
the registers so changing "register® 3 will not affect (for example)
acs+3), FILDDT, when reading an ,EXE file, will automatically load 1its
internal "fake" registers as though the user had typed CRSHACSSU (¢

DT41 = DDT $%41(260) Users Guide to New Features

emory and Address Control

-
OPS=10 or BUGACS$5U i1f TOPS=20, Note
as been entered (the user has issued
al "fake" registers are ignored; 1f
irtual addressing (via some form of
ommand may also have to be re=issued

the $U

ser or executive DDT,
to 17).

he command £lg33U
fake!"
i.e.,
lg is
spies

explicitly controls the us
registers = if £f1g i{s O then the "fake"
0 to 17 are taken
non=zero then addresses 0
of the regjisters,

ne sSU command, except for FILDDT’ing
o a disk, will return DDT
sction of registers is completely independent
ffect, Changing virtual address spaces does
ars®,

n executive mode DDT only the
and thus display) hardware AC block n (availab
5-10°s), The user is warned that 734U on a KL=
ak " death (the microcode uses AC block 7).,

asW¥re the ac block context to the state it wa

»4.5 Address relocation and protection

5.an ald to looking at data structures wh
»inters as offsets rather than pointers as ab
ton 41 will allow the user to set both a base
* added to all addresses used in location ex
rotection address beyond which the user "virt
tirtual® here as meaning pre-relocated) addre
rolncidently) exactly analguous to the KA=10 h
rotection strategy, and in fact could be used

J KI/KL/KS=10 functionality on a KA=i0 in exec
11s command is bas$8U where bas is the base
*t$9U where prt is the maximum address the u
rpe in, Note that page mapping and address rel
e independent mechanisms, with address reloca

from the true current addressing space),
to 17 are taken from DDT’s

a data file or doing super
to its internal "fake" registers, The

command ns$4u Jill

Page 107

that 1f physical addressing mode
the $sU command) then the inter=
the user subseguently
command) then an
to get the registers back
oes not affect the saving and restoring of the hardware registers
only what DDT will use for typing out locations

reenters
acss5U

(this
in

age of DDT’s
registers are

internal

ignored
‘1
internal

1/0
se=

in
"regis=

of any page mapping
not change- the

switch DDT to use
le only for KL~i0*’s and
10 will bring rapid and

On DDT exit DDT will
s in at DDT entrv,

ich are formed using
solute values DDT ver=

relocation address to
amining commands and a
ual" (note the use of
ss 1s illegal, This s

ardware relocation and
as such to "mimic"* the
utive mode, The form of

virtual address, and
ser will be allowed to
ocation and protection
tion and protection be=

1g performed before any mapping is done, The
) effect on the £inal "physical" address gen
irrently in effect,

4.6 8U command summary
.1 8U/$8U commands take the following form:

protection address has
krated ‘by any mapping

:ake registers

) sU Unmapped virtual addressing;

. .88U Unmapped physical addressinq

. . ptssltoly Select executive virtual addressing
. upts(sliu Select user virtual address;nq

| secs([s]2U Select single section

\ £lgs3u Select (deselect) internal

) achs4u Select hardware ac block.

. acsssSU Load internal fake registers

DDT41 = DDT %41(260) Users Guide to New Features Page 10=8
Memory and Address Control

9, sptsel Select base of SPT

10, basssU Set base relocation address
11, presou Set protection address

12, £lgsiou Select (deselect) KI=paging
13, £lgsiiu Select (deselect) KL=paging
where:

) ach := integer ac block number

2, acs := address of 20=word register block

3, pas := base relocation address ,

4, ept := executive process tahle page number

Se flg := selection flag, zero to deselect, non=zero to select
6, prt := protection (maximum allowable) address
7. sec := section map page number

8, spt := address of SPT

9, upt $= user process table page number

3,4,7 Address checking (Executive EDDT only)

EDDT version 41, when running in executive mode, now 1is much more
extensive in validity=checking memory references, In particular, EDDT
will not cause a NXM (page fault) trap to the resident operating sys=
tem 1f the user types in an 1illegal (non=existent or unmapped]
address, but rather will simply type its ubiquitous ?<DINK><TAB> error
message,

3,4.8 Address breaking

DDT will no longer cause an address break to occur when examining or
depositing a location at which an address break condition has Dbeen
set, This applies only to "user" examines and deposits, an address
preak set in DDT will still cause an address break to occur,

4,0 Speclfying the start Address

The $G command now expects a 36=bit address (obviously with bits 0 to
5 off) at which to start the user program, This means that the users
of programs such as the TOPS=10 monitor which define symbols like
"DEBUG=3<JRST .,>" can no longer go either DEBUGSG or DEBUGSX at the
users whim but must decide on one form or the other (the default
obviously being to do nothing = i,e,, to settle for the DEBUGSX form)

5,0 Symbolic expression typein and typeout

DDT version 41 has expanded the range of both symbolic typein and
symbolic typeout,. :

5.1 Symbolic typein
The JSYS opcode (opcode 104) has been added to TO0PS=20 DDT, as have

all the TOPS=10 UUO‘’s (but not the CALLI’s etc,) for debugging prow
grams which run under the compatibllity package,

)IT41 = DDT %41(260) Users Guide to New Featurek Page 10=9
'mbolic expression typein and typeout
-’

2 Multiply=-defined symbol typein i
. the user types an ambiguous symbol (a symbzl defined two or more

.aces outside of the current local symbol table and not in the cure
nt local symbol table) DDT will issue an "M" error message,

3 Selecting no local symbol table

e §: command issued without an explicit module name to use as the
cal (or "opened") symbol table will deselect any local symbol table,
is is the initial state in which DDT starts,

4 Symbol cache

T now has a symbol "cache" 0f symbols recently used to type out
lues, This cache is used primarily for typeout; typein will check
e symbol cache for a matching symbol from the currently opened or
cal symbol table, 1f no match is found the cache is ignored and the
gular symbol table 1s used, The symbol cache is "flushed" on the
suance of any $: command,

5 Symbolic typeout

T ~ow goes to great pains to find any possible user=defined -symbol
Ung 85 an OPDEF) to match the expression DDT is trying to type out,
e order in which DDT searches for a symbol match in symbolic typeout
de for non=I/0 instructions is:

Full 36=bit matcnh; OP, AC, I, X, and Y flelds (e.,g., the TOPS=20
monitor calls such as GTJFN)

opP, I, X, and Y flelds (e.g.,, the TOPS=10 monitor c¢alls such as
FILOP,))
OP and AC flelds (e,g9., the TOPS=10 monitor calls such as INCHWL

or "instructions”" such as HALT)
OP field only (e,g,, user UUO’s or "OPDEF XMDVEI ([SETMII")
DDT’s internal hardware opcode table

e order in which DDT searches for a symbol match in symbolic typeout
de for I1/0 instructions is:

1/0 OP and DEV fields (bits 0 to 12 -«e;g., KL=10 APRID or KS=10
RDCSB)
Regular (non=I/0) QP field (e.Q.a KS=10 UMOVE)

0 ASCII typeout

T version 41 adds the typeout mode commands $8T and $9T to typeout 8

t ""CII or 9 bit ASCII respectively (i.,e,, pick up 8 or 9 bit bytes

d Sype" them straight as is = which with current TOPS=10 and TOPS=
operating systems means as 7=bit ASCII),

DDT4% = DDT $41(260) Users Gulde to New Features Page 10=10
Command files

7,0 Command f£iles

The 8Y command (TOPS=10 DDT only) has been changed somewhat, both in
input and output (logging) functions,

7.1 Command input

I1f the user does not type a 36=bit expression to be used as a file
name (such as $""FILNAM"S$Y) but just types $Y by itself then DDT will
prompt with "File: ", After the prompt the user can enter a TOPS=10
file specification in the form deviname,typef{directoryl/switches where
{directory] can of course contain SFD’s,

7.1.1 /A switch
The /A switch instructs DDT to abort the command file i1f a DDT-detect=
ed command error occurs (such as reference to an undefined symbol),

7.2 Command output (logging)

when reading a command file ($Y command) DDT will no longer "log" all
output onto device LPT: but rather just type out onto the user
terminal,

8,0 Automatic patch insertion

The automatic patch insertion facility (8< and $> commands) are pasiw
cally the same as in version 40 of DDT with only minor differences,

8,1 Patch opening

The user may specify patching either by Sym$< where sym is the name of
a symbol (which will be automatically updated at the termination of
the patch) or via exps< where exp is any 36=-bit expression represente
ing the address of the resultant patch, If the later form of the patch
command is used no symbol will be updated to the end of the patch,

8,2 Default patching symbol

The 1ist and order of default patching symbols which DDT uses when the
user does not supply an explicit patching symbol is now:

PAT (TOPS=10 EDDT only)

2, FFF (TOPS=20 EDDT and MDDT only)

3, PAT,. (all flavors)

4, PATCH (all flavors) , ,

Se PAT (all flavors except TOPS=10 EDDT)

8,3 Default patching address

1f the user does not supply an explicit patching symbol and DDT is
unable to find one of the default patching symbols then the address
specified by the right half of location ,JBFF (even on TOPS=20) 18
used, On patch close ($> command) if the patching address was defaulte
ed to via ,JBFF, then both the right halt of location ,JBFF and the

DT41 = DDT %41(260) Users Guide to New Features Page 10=11{
utomatic patch insertion

e g Nalf of location ,JBSA are updated,
.4 Patch closing confusion and restriction

ith DDT version 41 it no longer matters how (when) the user types the
» command, either immediately after the final word expression, or
fter a <CR> or <LF> to terminate the final word expression = DDT will
aver generate a 0 word for free,

nere is a very obscure restriction however on the uyse of the #
>mmand in conjunction with the $> command, If the user i{s referencing
1 undefined symbol in the expression £for the last word of the patch
1en that expression must explicitly be terminated in such a tashion
5 to close the location before terminating the patch, For example,
MOVE T1,BLETCH#$>" is illegal but "MOVE Ti,BLETCH#cr$> (where t“er®
ydicates a carrlage return) 1is ok,

»0 Breakpoints

1@ breakpoint logic in DDT version 41 has been extensively revamped
1 order to support extended addressing. The default number of breake
yints is now 12 (decimal); and can be set (by defining the symbol
iP=number of breakpoints) arbitrarily high (within memory space limie
1tions) rather than being limited to 9 or 36 (decimal) depending on
117~ code restriction one choose to believe,

-
4 Setting breakpoints

)T can now S8et a breakpoint in code running in any section with two
'strictions:

. I1£f DDT is currently running in section 0 then breakpoints can
only be set in section 0 (see section 3,1,3 above),
DDT must be mapped in the section containing the c¢ode in which
breakpoints are to be placed (the 1logic of this {s that since
there is no way for DDT to cause unconditional transfer of cone
trol to DDT with only 36 bits some portion of the section address
space must be devoted to DDT; therefore, given this restriction,
one might just as well put all of DDT in that section since it
makes for a cleaner and simpler implementation), Note that this
does not mean DDT must be running in that section, but merely
that DDT must be mapped in that section!

- does not matter into how many different sections the same code is
pped as long as DDT 1Is mapped into the same sections since DDT {s
ection=independent", For example (taking the TOPS=20 monitor which
Ps section 0 and section i identically) if a breakpoint is set at
dress 1004567 (or 4,,4567) but the PC was 4567 (or 0,,4567, i,e., in
ction 0 rather than section 1) when the breakpoint was executed DDT
eés not care (as long as DDT is mapped in that section, which in the
ar ‘e of the TOPS=20 monitor it is), -
-

e syntax for setting a breakpoint 1is now opn<bpt$nB where 'n {is
tional and, if specified, declares the breakpoint number to be ase
gned to that address; bpt is the 36=bit address at which to place a

DDT41 = DDT %41(260) Users Guide to New Features Page 10=12
Breakpoints '

breakpointy and opn is an optional 36~bit address to open and display
upon execution of the breakpoint, The syntax was changed because two
full 30=bit addresses could not be squeezed into two halg¢words,

DDT will no longer assign two different preakpoints to the same adw
dress, either accidentally or under user control = i the user atw
tempts to set a breakpoint at a location at which ‘a (different)
breakpoint is already set, the old breakpoint is cleared tirst,

9,2 Breakpoint typeout

Upon execution of a breakpoint DDT will now ‘always typeout ‘the user
tnstruction (in instruction format regardless of the permanent typeout
mode) at that breakpoint and set "," to the breakpoint address, 1If,
further, opn was specified as in section 9,1 above, then DDT will also
display the contents of location opn in the permanently set typeout
mode and ".® will be updated to opn (with the breakpoint address itw-
self becoming the previous PC sequence and so available via the $ <CR>»
etg, commands),

9,3 Examining breakpoint locations
The $nB command continues to be the "“address"® of breakpoint n’s datae

base, but $nB is no longer equal to $n~1B+3, The breakpoint database
of interest to the user now has the following format:

1. $nB+0/ It nonzero the address for breakpoint n

2. $nB+1/ The conditional break instruction (break if skips)

3. $nB+2/ The proceed count (break on transition to 0)

4, $nB+3/ If greater than or equal to zero then the address to be
displayed

The rest of the breakpoint data base should not be of use to the user,

9,4 Unsolicited breakpoints

DDT version 41 has a new breakpoint facility - the ability to handlae
unsolicited breakpoints (i.,e,, breakpoints that DDT did not itself
set), If control passes to location S$OBPT+1 (SOBPT is a global DDT
symbol) then DDT will act as if a breakpoint had been set at the
address=1 contained in location $0BPT, The address in $0BPT must be
setup as if the cpu executed a JSR $0BPT instruction = 1f in section 0
then f£lags,,PC otherwise Just global 30~bit PC, After "hitting" an
unsolicited breakpoint the user can proceed with progranm execution
with the $P command (all arguments to the $P command such as proceed
count or auto=proceed (s$SP) are ignored).

Although this facility gives programs the ability to cause pbreakpoints
at any time (thus getting {nto DDT with the progranm state carefully
preserved) it is intended to be of most use {n conjunction with an as~
yet=unimplemented monitor c¢ommand (such as control=D) to "force" a
breakpoint on a program without having to control=-C/DDT the program,
Then the user could simply continue with the program by typing SP,

DT41 = DDT %41(260) Users Guide to New Features Page 10=13
ingle~stepping the program

JmwrSingle=stepping the program

¢ $X DDT command has been significantly modernized (and sped up in
:neral) with version 41 of DDT,

el New aDcodeg

1¢ ADJSP, DADD, DSUB, DMUL, and DDIV instructions have been added to
'T’s $X table although double= and quad~word integers (for DADD ete,)
‘e Still typed out as two or four single words rather than one bpig
iltiple precision integer, All of the extended JRST=class instruce
'Ons are correctly simulated/traced, A user=yuo being executed in a
'‘N=zero section is simply XCT’ed and is not traced,

'e2 BYte-manipulation typeout

rudimentary byte=manipulationeinstruction typeout facility was added
0 DDT version 40 actually) to display the byte pointer and the
ntents of the effective address of the byte pointer, The EXTENDe=
ass instructions are not handled, :

3 Effectivg address calculation

T now always calculates the effective address of the instruction
ing $X‘’ed rather than just blindly "doing it" in order to both pre~

n’ ODT from getting an illegal ‘memory reference as well as to make

Twre independent of the section in which the user PC resides (i,e,,

T does not have to be mapped into the user PC section to handle
‘es although if the user PC is in a non~zero section then DDT must
in a non~zero section), Besides, it’s usually faster tool

¢4 K5=10 I/Q instruction trace

2 KS5=10 specific I/0 instructions which reference the UNIBUS (execuy=
ve mode only) are not traced, only the contents of the register
2cified in the AC field are displayed, Since the UNIBUS device rege=
ters can be reference-volatile (i.e,, merely referencing one can
ise it to change = such as the DL=ii data registers) DDT does not
>eout the contents of the referenced UNIBUS address, Further, since
* effective address of the instruction is not calculated in a
indard format (at least as far as DDT is concerned) the effective
Iress itself is not even displayed,

S PC skipping

the user instruction being $X’ed skips then DDT will now typeout
KIP>" {f the PC skips by one location, or "<SKIP n>" if the PC
-PS by n locations, where n is less than or equal to the DDT assem=:
' parameter SKPMAX (by default 3), If the PC changes more drasticale

than that (e,g,, goes to a smaller address) DDT will type "<JUNP>
‘tead, .

6™ERCAL/ERJNMP

(TOPS=20 only) will now handle instructions followed by either an
AL or an ERJMP instruction (which is really just a 72~bit instruce

DDT41 = DDT %41(260) Users guide to New Features Page 10=14
Single=stepping the program

tion with two effective addresses), If the instruction being executed
does not take the error jump then DDT will print "<ERSKP>" after the
normal instruction trace to indicate to the user that an ERCAL or
ERJMP was just skipped (i,e.,, the PC incremented by 2 rather than 1)
and will not display the ERCAL or ERJMP instruction, 1f the
instruction does take the error jump then the ERCAL or ERJMP instruce
tion will be displayed, if an ERCAL instruction then register 17 will
also be displayed, and the PC will be changed to the error address,

DDT will print "<ERSKP>" rather than showing the ERCAL or ERJMP 1ine
struction since DDT has no way of telling whether or not the instruc~
tion itself caused the skip (as in a SKIPA) or if the PC merely "fell
through" the ERCAL or ERJMP instruction (as in a successful MOVE),

Users of EDDT and MDDT should be cautioned about sXing instructions
followed by an ERCAL or ERJMP in none=zero sections = the monitor has a
tendency to transfer control to the error address in section 0, which
will cause a BUGHLT because DDT (running 1in executive mode) doces nonw-
zero section things thinking it {s still in a non=zero section,

10,7 $X*ing an INIT

DOT will now let the user $X an INIT (TOPS=10) monitor call, DDT will
print out <SKIP 2> if the INIT fails or <SKIP 3> if the INIT succeeds,

10,8 $X speed up

By building into DDT a table of instructions which can cause the state
of the known world to change, and assuming the state of the world does
not change 1f the instruction being $§X'ed is not so marked, the time
required to $X an instruction is cut by roughly a factor of 10, This
results in a dramatic performance lncrease especially for EDDT on KL=
10’s where waiting for the console front end to switch Dbetween
secondary and primary protocol is very time=consuming,

10,9 Repetitive $X’es

The $$X command now takes an optional address range, Normally $$X will
terminate when the user PC inclusively enters the range otl TO (¢
SKPMAX (default value of SKPMAX is 3), The user may specity
lwr<upr>$$X where lwr 1is the lower address boundary and upr is the
upper address boundary which, {¢ the user PC ever inclusively enters
the range so specified, terminates the §sX, If only 1wr is speclfied
then upr defaults to IWr+SKPMAX, This command is very useful for re-
covering from having $X‘ed a (for example) PUSHJ 1instead of having
$3X’ed the (for example) PUSHJ.

10,10 $X°ing from instrsX

If the user $X‘'es a return from a subroutine which was entered Dby
doing an instr$x (for example "pyUSHJ P,SUBRINS$X where SUBRTN has a
preakpoint in it) then DDT simply nreturns® from the original instriX
rather than proceding to $X the {nternals of DDT itself, This is a
very obscure condition so don’t worry too much about it,

DT41 = DDT %41(260) Users Guide to New Features " page 10-15S
ingle=~stepping the program

oiﬁi $$X status .

DT will now respond to a ? character being typed during an §s8X se-
sence by typing "Executing: * followed by the current user "pe" and
istruction being executed, Typing any other character terminates the
5X lmmediately,

Jel2 8X PC

¢ §, command now acts like the , command only §, returns the value
£ the $X PC (i,e,, the address of the next instruction to be §X’ed),
¢ $$, command returns the previous $, value (useful for $5,<$8X as
} section 10,9 above), '

ie0 Searches

'St of the differences in how DDT version 41 handles searches are
.mply bug fixes, not major changes in the logic of searching,

el Non=existant pages

'T version 41 now simply skipPs over pages which don‘t exist in the
idress space being searched, rather than terminating the search as
‘on as a8 hole has been found,

¢"Missed matches

e bug which caused TOPS=20 DDT to miss many valid matches is fixed
DDT version 41,

o3 Effective address searches

nce almost all address calculations start with an IFIW basis (with
¢ exceptions being such things as interrupt vectors and the like on
=10’s or KS=10's), DDT version 41 will assume that each word {t
amines 1s an instruction and perform an IFIW effective address cal=
lation, The final result must match in all 30 bits (actually
ternally DDT will do a full 36=bit compare so the address being
arched for had better not contain anything in bits 0 to 5J)a

«4 Address limit defaults
th the advent of extended addressing and physical addressing the
dress limits are defaulted somewhat differently than from previous
rsions of DDT:

EDDT, MDDT (TOPS=20 only), UDDT, and VMDDT

1. Lower Limit: <current section>,,0
2, Upper Limit: <current section>»,,777777

ww'ILDDT looking at an LEXE file

1, Lower Limits: 0]
2, Upper Limit: highest virtual address mapped

DDT41 = DDT $41(260) Users Guide to New Features Page 10=16
Searches -

3, FILDDT looking at a data file

t, Lower Limit: O "))
2, Upper Limit: highest word written in file

4, FILDDT looking at disk structuresunit

1, Lower Limit: O) _ ,
2. Upper Limit: highest word in daisk structure/unit

5, FILDDT looking at runing monitor

b 3% Lower limit: O
2 Upper 1limit: 777777

6, FILDDT looking at physical memory (TOPS=10 only)

L Lower Limit: O
2 Upper Limit: Highest extant memory address

As with any defaults not all cases will be properly "gyessed" by DDT,
In particular if the user has mapping or address relocation in effect
the virtual address range 8o produyced may have nothing whatscever 1in
common with the address limit defaults chosen by DDT,

11,5 Search matches

DDT will leave each address matched by its search on the "pc stack"
available to $<CR> etc, commands, when the search is terminated DDT
will set "," to the last address searched,

11,6 Searching status

DDT will now respond to a ? character being typed during a search by
typing "Searching: " followed by the current location and value being
searched. Typing any other character terminates the search immediate=

lye.

12,0 watching

DDT version 41 allows the user to "watch" a location, waiting for |t
to change, Although primarily useful for FILDDT’ing the running moni=
tor, it is present in all flavors fo DDT for completeness. The syntax
of the watching command 1s exp$V, where exp is the address to be
watched, If no explicit address is specified the last location opened
by the user will be used,

Upon initial issuance of the 4V command the location is displayed,
Thereafter the location 1s continuously monitored, and will be dils=-
played every time its contents change, In user mode DDTs (and this
includes TOPS=20 MDDT as well) the location is checked once a ClockK
tick (approximately 50 to 60 times a second), in exec mode EDDT the
location is continuously being monitored = no "pause" is attempted,

DDT will respond to a ? character being typed during an 8V seguence by

'DT41 =~ DDT %41(260) Users Guide to New Features Page 10=17
atching -

Yo 'd9 "Watching: " followed by the current location .and contents
eTHE watched. Typing any other character terminates the $V immediate=
Yo

3,0 Zeroing memory

he algorithm used by DDT previous to version 41 has only limited
sefulness in today’s modern virtual worild (especially on TOPS~=20),
Jwever, to avoid "breaking" already extant control or MIC f£iles which
3y use the $352 command it ‘remains unchanged, A new command has been
tplemented = lwr<upr>expsz where lwr is the lowest (starting) ade
"éss, upr is the highest (ending) address, and exp 1s the 36=bit
lantity to deposit in each word inclusively bounded by 1lwr and upr,
>th lwr and upr must be specified, If eXp is not specified then 0 is
ied as the default,

speclal note: The creation of zeroed pages (which formerly were none
tistent) by the $Z and $3Z commands is under the control of the
Itomatic page create flag (i.e, the $1iW and $§SiW commands « see secw
.on 393.2).

)T will now respond to a ? character being typed during an §2
‘quence by typing "Zeroing: " followed by the current locatian and
llue being "zeroed", Typing any other character terminates the §2Z
imediately,

b4
«0 Special masks

T version 41 (it actually started with DDT version 40) has several
w "magks" (for lack of a better name and/or command) of interest to
e user, None of these masks are currently displayable (eeQ,e, "83M/")
FILDDT although they may be set normally,

el 50M =« Search mask

e operation of the search mask continues unchanged, The -search mask
Y now be referenced by either the §M (old style) or the 30M come
nds. The default value remains 1717717777717,

«2 §1M « TTY control mask

is mask controls special TTY behavior (primarily TOPS=10 and exec
de EDDT).

»2,1 Tab separator display
t 17 controls whether DDT will print its usual <TAB> or three spaces

r the <TAB> separator, A 0 (the default) selects three spaces, a
lects a <TAB>,

7 7 Tab simulation . :

s controls tab simulation. A 0 selects literal <TAB> characters
€5 the terminal handles <TAB>’s directly, a 1 selects space=f£ill
itead, This condition is automatically set for user mode DDT’s (in
'r mode <TAB>s are.always output literally) = it is only useful to

DDT41 = DDT %41(260) Users Guide to New Features Page 10=18
Special masks -

manually set tab simulation in exec mode EDDT,

14,2.3 Rubout control . _

Bit 35 controls rubout (and ~%) operation, A 0 selects "hardcopy"
operation (DDT will echo a "* character and the character beling
deleted), a 1 will cause rubouts to echo as a backspace, space, back=
space sequence, Thils condition 1is automatically set for user mode
DDT’s (1f TTY DISPLAY 1s set then rubouts echo as <BS><SP><BS>) ~ 1t
i{s only useful to manually set fancy rubouts in exec mode EDDT.,

14,3 $2M = Offset range

The 36=bit "mask" in this case is really a value, used as the maxlmum
offset allowable for typing addresses in the form symbol+offset, The
default offset is 1000 (octal).

14,4 33M = Byte mask

This mask is used in conjunction with the 80 command for typing bytes
in a word that are not necessarily evenly spaced, Whenever an $0 come
mand is issued without an explicit byte size the byte boundaries are
determined by one=bits in the byte mask = each one bit in the byte
mask marks the low order bit of a byte, Bit 35 is always considered
on. The default value 1is 0 (i.e., one 36=bit byte), For example the
DDT command 04010020040153M sets the byte mask for typing right=justi=
fied 8-bit bytes (preceded by the leading 4=-bit byte),

15.0 RADIX=S50 symbol typein

Since prehistoric times DDT has supported RADIX=50 symbol typein, but
that fact was never documented, The syntax for using a RADIX=50 symbol
as an 36=bit item in an expression is symg5" where sym 1s the desired
RADIX=50 symbol, For example, to search for all occurences of the
symbol PAT,, the DDT commands 37777,,=18M (only look at low=order 32
bits) and PAT,.$5"8W sufflice,

16,0 New DDT runtime information

Several new words have been added to DDT’s runtime table describing
the state of the machine upon (executive mode only) DDT=entry. These
words are all accessible via the DDT command $I+offset (not available
in FILDDT):

i, $1-01/ APR CONI word
2, $I+00/ PI CQNI word
3. $1+01/ Mask of PI channels turned off by EDDT

4, $§I+02/ Executive virtual address of EPT
Se §I1+03/ Execuytive virtual address of UPT
6, $I+04/ Executive virtual address of CST
7. sI+05/ Executive virtual address of SPT

8, sI+06/ original AC=block word (DATAI PAG) 1f acbs4u

DT41 = DDT %41(260) Users Guide to New Features Page 10=19
psolete commands -

} - Obsolete commands

e executive mode paper tape facilities (“R, $J, and $L DDT commands)
re no longer supported, The code is left .in the source file for
:ference purposes but will soon be removed,

},0 FILDDT startup and commands

(LDDT is a special version of DDT with the facilities for "DDT’ing"
ldress spaces other than its own, such as disk files and in particue
It .EXE files, FILDDT has existed for years but has always been off
} ‘the background as a specialized "tool" for the exclusive use of
)nitor programmers looking at crash dumps, With DDT version 41 FILDDT
} now a general purpose utility for use by the "general public",
iIrticularly people who have databases resident in disk files (.REL
.les for example),

'sel Symbols

t of efficiency considerations FILDDT builds the symbol table(s) it
11 actually use at runtime in its own address space, Virgin FILDDT
S no symbols (the symbol table (if any) for FILDDT in FILDDT.EXE is
mpletely independent of the address space being FILDDT’ed and does
t count), There are special commands to instruct FILDDT to extracet
n~ build internal-to=~FILDDT copies of) symbol tables from EXE files
ewwsbelow), Once FILODT has setup its internal symbol table(s), it
Y then be SAVEd with the 4internal symbol table(s) for later use by
iting to monitor level (with the *Z FILDDT command) and typing the
AVE" command,

«2 TOPS=~10

en FILDDT is started it will prompt "File: ", The user may at this
me optionally enter a standard TOPS~10 file specification in the
rm deviname,typeldirectoryl/switch, At least one function switch s
ndatory. SFD’s are of course legal in the directory specification,

e2.1 /D command

e /D command or function switch instructs FILDDT that the file
ecified 1s a data file - {i,e,, do not map the £ile as an «EXE fille
d use real file words 0 to 17 for locations 0 to 17,

v2+,2 /F command) i

8@ /F command or function switch instructs FILDDT to "DDT this file
yway", It is useful only in conjunction with the /S command or func=
°n switch which normally re=prompts for another file specification,
ad in conjunction with /5 (which implies an EXE file) FILDDT will}l
® the file from which symbols were extracted as the file to be
)T ’eqd",

». Y /H command ' . . . :
»WH command or function switch instructs FILDDT to type out a brieg
Lp text, abort the current command, and prompt the user for another
amand, '

DDT41 = DDT %41(260) Users Guide to New Features Page 10=2¢
FILDDT startup and commands -

18,2.,4 /J command L. _

The /J command or function switeh 1s applied to a job number rather
than a file specification and lnstructs FILDDT to "DDT" the address
space of the job specified, Since FILDDT uses JOBPEK monitor calls to
access the specified job‘’s address space the success or fallure of any
given memory reference is dependent on the job being resident in maln
memory = if the job 1s swapped put or if the memory reference is to a
page which is paged out the memory reference will fail, This is a
privileged command,

18.2,5 /M command

The /M command or function switch instructs FILDDT to "DDT" the cur-
rently running monitor and physical memory addreéss space ({controlled
by use of the $U and $8U commands), This is a privileged command.,

18,2,6 /P command .

The /P command or function switch instructs FILDDT to enable for writ-
ing as well as reading the specified address space, Note that DDT’s
internal fake registers are always writable,

18,2,7 /S command _

The /S command or function switeh instructs FILDDT to only extract the
symbol table from the £ile specified, replacing any ‘symbol table
FILDDT may already have, Unless .overridden by the inclusion of a /F
command FILDDT will, after naving read the symbol table, agaln prompt
the user for the next FILDDT command.

18,2.8 /U command ,

The /U command or function switch is applied to a file structure or
disk unit only rather than a complete file speciftcation and indicates
to FILDDT that the user wants the entire physical address space repre=
sented by that file structure or disk unit name independent of any
sfile structure mapping" normally imposed by the monitor, This is a
privileged command,

18,3 TOPS=~20

Wwith DDT version 41, FILDDT on TOPS=20 runs in native mode, and 1in
particular, uses the PMAP monitor call for all regular file access,
FILDDT will also type a brlef message telling what address space s
about to be "DDT’ed" before going into DDT mode,

18.,3.1 DRIVE command
The format of the DRIVE command 1s:

DRIVE (FOR PHYSICAL I/0 IS ON CHANNEL) ¢ (UNIT) u

The DRIVE command allows examination of the disk unit u on system
channel ¢ without regard for whether it is mounted as part of a fille
structure, or indeed whetner it even has the necessary information So
that it could be so mounted (as 1f the HOME blocks were wiped out),
I1f, however, the drive is part of a mounted file structure, FILDDT
will type a message indicating the structure to which it belongs, This
is a privileged command,

DT41 = DDT %41(260) Users Guide to New Features Page 10=21
ILDDT startup and commands .

8¢,72 ENABLE DATA=FILE command N

he ENABLE DATA~FORMAT command instructs FILDDT to treat the file as
ure data, even if a valid ,EXE directory is detected, and in particue
ar to use real file words 0 to 17 as locations 0 to 17,

8¢.3,3 ENABLE PATCHING command

e ENABLE PATCHING command instructs FILDDT to enable any subsequent=
/ specified address space for patching (writing), This command 1is
jnored when looking at the running menitor -since there is no monitor
111 to "poke" the running monitor,

}e3e4 EXIT command
e EXIT command instructs FILDDT to return to command level, 1Ig
(LDDT has an internal symbol table (due to a previous LOAD or GET

(LDDT command) then a SAVE command will save FILDDT with the symbols
‘e=]lo0aded,

e3¢5 GET command
/e format of the GET command isi

GET (FILE) filespec (optianél switches)

¢ GET command instructs FILDDT to set up the disk file filespec as
¢ address space to be "DDT’ed", as modified by the optional switches
previous ENABLE commands, The available switches are:

awdel /DATA = The /DATA switch is equivilent to a previous ENABLE
TA=FILE command,

#3542 /PATCH = The /PATCH switch is equivilent to a previous ENABLE
TCHING command,

*3¢5.3 /SYMBOL = The /SYMBOL switch instructs FILDDT to extract sym=
ls from the specified ,EXE file before "DDT’ing" the file, discarde=
g any symbols that FILDDT may already have, This switch is legal
ly with -,EXE files,

e3,6 HELP command

e HELP command instructs FILDDT to type out a shoft summary of the
allable FILDDT commands,

+3.7 LOAD command
e format of the LOAD command is:

LOAD (SYMBOLS FROM) filespec

* LOAD command instructs FILDDT to extract symbols £rom the disk
le fllespec, which must be an LEXE file, then to return to FILDDT
mmand level, This command is legal only for +EXE files,

13Q8 PEEK command B
* JEK command instructs FILDDT to use the currently running monitor

¢ address space to be "DDT’ed", The address space so avallable is
‘rently limited to monitor executive virtual addresses 0 -to 7771711,
iIce the PEEK monitor call will only accept 18~bit address arquments
" executive wvirtual addresses, Physical memory addressing is not

DDT41 = DDT %41(260) Users Guide to New Features Paqe 10=22
FILDDT startup and commands

available, This is a privileged command,

18.3,9 STRUCTURE command o
The format of the STRUCTURE command 1s:

STRUCTURE (FOR PHYSICAL I/0 IS) strs

Tne STRUCTURE command instructs FILDDT to use as the address space to
be "DDT'ed" the entire disk £ile structure str independent of any
"gi{le structure mapping” normalily Aimposed by the monitor, Tnis is a
privileged command,

18,4 Defaults
Following is a list of the vérious defaults supplied by FILDDT?

1a pSK: is the default file device unless super '1/0 is speclfied
(which requires an explicit file structure or disk unit name),

2, .EXE is the default file type or extension unless either a data
£ile or super I/0 is specified, in which case there is no default
file type or extension, _ '

3. The default directory is the user’s default directory.

4, The specified address space is read~only,

S, If "DDT*ing" an LEXE flle and FILDDT does not already have a
symbol table, extract the symbol table (if any) from the LEXE
file first. _

6. 1¢ "DDT’ing" an (EXE file and the symbol CRSHAC (if TOPS=10) or
BUGACS (1f TOPS=20) exists, glve a "free" CRSHACSSU or BUGACSSS5U
command, If the CRSHAC/BUGACS symbol does not exist then use file
words O to 17 (if any) as mapped by the ,EXE directory for loca=
tions 0 to 17. For TOPS~=20 only, if the symbol SPT exists then
also give a free SPTS$6U command as well,

18,5 Other FILDDT=specific commands
Following are the commands which are unigue (or different) to FILDDT,

18,5,1 “E command .

The ~E command instructs FILDDT to exit the current address space and
prompt the user for a new address space, The “E command is equivilent
to a ~Z, START command sequence,

18,5,2 *“Z command

The “~Z command instructs FILDDT to exit to monitor level after having
written out any changes to the current file (if any). It is most
important that the user exit only via *“Z (or “E which does an implicit
~7) in order to guarantee the integrity of the flle data (i1t any) = a
~C can leave a £file in an indeterminate state (some changes wrltten
out to the disk and some not),

18,5,3 1/0 errors _))

should FILDDT incur an I1/0 error reading or writing & disk file, a
warning message will be issued but FILDDT will otherwise ignore the
error, This is to allow the user the ability to manually fix a file
with bad data by rewriting the data correctly (hoping the rewriting

DT41 = DDT %41(260) Users Guide to New Features Page 10-23
'ILDDT startup and commangdgs N

Pwsition clears the error condition = if the physical disk

surface
tself is at fault, then it is probabply hopeless),

TOPS22 Coding Standards
SUBROUTINE CALLING - JSYS

Monitor-call JSYSes may be used in user or monitor code.
All ACs are preserved over a JSYS call unless an explicit
Statement to the contrary appears in the JSYS description.
ACs are changed cver a JSYS call only when values are to be
returned to the caller.

The JSYS name shall appear as the opcode in the statment
which performs the call. The JSYS mnemonic includes the
instruction field, so no other fields are supplied by the
user.

Unimplemented JSV¥Ses will invoke the illegal 1instruction
Sequence (with error code ILINS2). Defined and implementad
JS¥Ses will return to caller +1 on success, or will invoke
the illegal instruction Sequence on failure. The illegal
instruction sequence recognizes an ERJMP or ZRCAL following
the <£failing JSYS and causes the appropriate action. If <the
following instructisn is not an ERSMP or ERCAL, an 1illegal
instruction interrupt is requested which will be handled by
the executing fork if enabled, or otherwiss cause a Sorcad
fork termination. See paragraph below on JSVY3 returns for
Froper indicatien of JSYS failure.

All constant values, bits, and fields of JS¥YS arguments
shall have mnemonics defined according to the rules in
MONSYM. The JSVYS code itself shall use &these symbols for
loading arguments, testing bits, etc.

When writing code to implement a JSY¥S, the following
conventions shall be observed:

11-1

TOPS23 Coding Standards

2.

e entry point of the JSYS is defined by a glokal
tag which consists of a DOT concatenated with the
symbolic name of the JSYS, e.g. LGTJIFN::.

The first statsment of the JSYS code shall be MCENT
(Menitar Context ENTTY). ™is establishes tle
normal JSYS context for a "glow” JSYS. At this
writing, MCINT is a aull macro and the JSYS entry
procedure 1is invoked automatically. The use ot
MCZINT is required so that this implementation may
be changed in the future {f necessarv. ’

All caller ACs are automatically oreserved DBy tie
entzy and exit proceadures. Therefore JSYS routines
are specifically required NOT to save and restore
she ACS. The contents of tle caller's ACs l-4 are
copied into the callse's ACs. No callee ACs are
copied back to the ealler's AC bleck on return
however; ane of cthe "nravious contesxtz”
instructions* must be used to return any values ts
the caller. =Z.G.,

gMQVEM TI,TL ;s=ore monitar Tl into user Tl
A previous context instruction may alsc be usad
any time to fatch the original contants of T
caller's ACs unless they ' navse peen explicit
changed DYy & pravious context sStarTe eperatio

gogo'

UMQVE T2,7TL ;load user TI ints monitar T2

* =« UMOVET, UMQVEM, XCTU [instruc:ion], abs.

11-2

TOPS20 Coding Standards

4,

Return from JSYS code should be effected by the
sStatament

MRETNG iMonitor RETurn Good

This transfers to the JSYS exit sequence (returning
caller +1) and should be wused =to indicate
successful completion of the JSYS. If the Jsvs
could not be completad successfully, the following
Statement should be used:

ITERR errcod icauses an Instruction Trap
ERRor, leaves
ithe error code in LSTERA

Certain other statements are defined which effect
JSYS returns according to a previous convention.
They are:

RETERR errcod ;RETurn EZRRer, return
icaller +1 with error code
;left in ACl and LSTZRR
EMRETN errcod :Error Monitor RETurn, return
icaller +1 with error code laft
;in LSTERR

These should not be used ina new JSYS code but may
Ce needed if existing JSVYSes are modified.

All error returns shall 1include an error code
{mnemonic) which shall be defined in MCNSYM.MAC,
If the appropriate error code has already been
loaded into ACl, then the errcod field may be
omitted £rom the above and the contents of ACl will
be taken ' as. the errar code. No JSYS shall re=urn
other than +l or instruction trap, therefore no
eccurrance of AQOS 2(P) should aver De reguired in
JSYS codae.

When invoking a JSYS error return, it is not

.lécessary to pop temporary quantities from the

Stack. The successful return however, should bhe
given only when the stack is properly clearsg.

11-3

TOPS238 Coding Standards

SUBROUTINE CALLING - racarnal moniter routines

The allocation of ACs for all intec- and intra-mcdule
subroutine calls shall be:

aCs 1,2,3,4 — Ganeral temporary, may me clotbered bV
subroutine.

ACs @, S=lS5 — Presarved, not changed by subroutine (ar
saved and restored if necessary).

AC 15 — Temporary, used by JSYS call/rveturn
procedure and resarved for use By other
eall/rcaturn procedurses.

ac 17 -— Glabal stack peinter
call ané raturn shall ne effected by PUSHJ 7, and POPJ P,

respectively. A sat of asssmbler mnemonics nas sean defined
2or subroutine mechanics as follows:

|

reaLL' (= PUSET F.) shall be usad £to cal
subroutines, e.3. CALL_SUER.

tgeT' (= PCPJ P,) ghall be usad to return L €rsm

suproutines.

'RETSKP! shall be usad ta rsturn +2 frem
sunroutines. RETSKP is equivalent to:

JRST [AQS 3(P)
RET]

12ET3AD errcod’ snall be usad T2 return +1L wizh an
arraor code from 2 suhroutine. The arrar code
field is optional as wieh JSYS errer returns
apove. AETBAD is equivalent t3:

JRST (MOVEL A, ERRCCD
RET]

11-4

TOPS29 Coding Standards

"CALLRET' may be used to call a subroutine and
return immediately thereafter. It is an
abbreviation for

CALL SUBR
RET
or
CALL SUBR
RET
RETSKP

Note that CALLRET is not guarantesed to be a single
instruction; therefore it may not be skipped over. The
other returns above are guaranteed to be single
instructions.

These mnemonics are used to emphasize the FUNCTION being
performed (calling, returning) rather than the mechanics of
the functicn (pushing, jumping, etc.) . Also, these
mnemonics could continue to be used even if a more general
calling standard wers adopted at some time in the future.

Return may alsoc be effected by transferring contral to the
global tag R or RSKP, e.g.

JUMPE A,R ;equivalent to JUMPE A, [RET]

JUMPN A,RSKP ;equivalent to JUMPN A, {RETSKP]
The general temporaries shall be used for passing arguments
to subroutines and returning values. ACl shall be used for

a single argument routine, ACs 1l and 2 for a two-argument
routine, etc. .

A routine defined to return caller +2 (skip) on success and
caller +l (noskip) on failure is acceptabla. Returns
greater than caller +2 are not permitted.

11-5

?APS20 Coding Standards
AC DEFINITICMS

The following mnemonics have been chosen to Dbe consistent
with the AC use conventions above. The preserved ACs are
divided into three groups, F (L AC) intended for Flags, and
Ql-Q3 and PL-P6 intended for genaral use. The ACs witain
each group arsa cansacutive.

F 19

g - - Pl

1 «7T1 11 - P2

2. -T2 12 - P3

3 - T3 13 - P4

4 - T4 14 - PS

s - Ql 15 - P8

6 = Q2 16 - CX

7 - Q3 17 - P
The Dreogrammer should assume that each grous (Tn, ¢n, °Pn,)
is 1in ascending order, @&.9. emat T2=Tl+l, but that the
specific assignment of numbers may change. Ex isitc numerlc

affsecs frem AC symbols (2a.g. Ti+l) snoul
Instructions witich use maore rhan one ac a,35.
mustc be given an AC eperané sucl that &3
implicitly affactad are in the same grous. Z.
m4) {is JR Sor IDIV mecausa T3I+l=T4, Dut g3 i
23-1=277,

There are saveral facilizias in cthe monizs ra save and
' ‘agtsmatically restors ACs. CSach of these will save all =2
rha indicated ACs on tae stack at the point of execution and
will place a dummy return on the stack wnich causes these
ACsS 4o be restored autamatically when Gtle surrent routine
raturns. Usa of these facilities aliminates the need Iz
matczshing PUSH/POP pairs at the entry ae axizs of vtoutines
anéd eliminatas the Bugs which of=en arise ftom an unmatcshed
PUSHE or POP. The available macres ars:

SAVEQ - saves ACS QL=23

1i-5

TOPS27 Coding Standards

SAVEP = saves ACs Pl-P§
SAVEPQ - saves ACs Ql-03 and Pl-P6 .
SAVET - saves ACs T1-T4

Defining a different mnemonic for a preserved AC may be of
value when the AC is used for a specific function by a large
body of code. However, it offers the possibility of
confusion because two different symbols may refer to the
same AC unbeknownst to the Programmer. In smaller programs,
use of certain ACs can be restricted to specific functions,
and a global definiticen is appropriate. A timesharing
monitor however, is too large to accomodita all of the
possible dedicated ACs. BT

Therefore, when a specific function-eriented AC: definition
is made, it shall be explicitly decided wnich' modules shall
use the definition. Within these modules, the usual name
for the AC must be purged so that there is neo possibilitx of
using two different symbols for the same AC.- : S

Only preserved ACs may be usad 'for special definiticns.
Parameters to subroutines may be passed in functionally
defined ACs in the follewing cases: - '

l. On an intra=-module call where the contents of the
AC are appropriate to its funetion definition.

2. On an inter-module call where tha same; .definition

exists in both modules and the AC is being .used - for
its intended function. ' '

11-7

TOFSZQ:Codinq_Staq¢a:§$

» »
wt

& parameter may NOT se pdssed in a presarved AC unless ag k!
caller and callee knaow it by the same name, and that name
.must be a speciﬁic“one.related-ta =he function which the Ac
is performing. o '

TheVﬁfaeeddfgffpf declaring avﬁﬁnctionally defined AC is:
DEFAC NEWAC,QLDAC

T™is must be done at the seginning of an assembly, and 1Lt
defines NEWAC to be egqual =ta OLDAC. OLJAC must be toe
anemonic for one of the .zegular preserved ACs, and this
mnemonic will be purged and therafore unavailable faor use ia
the current assembly.

An AC withwa 'speclal dafinition should not be usad for atier
surposes; ‘2.3, "3PN" should not 5Se usad o neld some
quanticy cther than a JFN merely because i= happens to De
available. :

SUBROUTINE COCUMENTATION

The following is a suggested format far Zdecumenting the
calling sequence of a JSYS or subroutine. A descripticn of
chis sort should appear at the negianing oz avary

subrousine, ne matter oW shor®t.

;name of subroutine = function of subroutine, et.
T1/ description of first argument
72/ description of secsnd argument
CALL NAME or JSYSNAME
RSTURN +l: condlitlons giviag this return,
71/ ‘value(s) returned

ASTURN ~2: ‘cénditions and values as abeve.

~o we e ws Ne Ns N0

The arguments, if any., should be documented 28 wn
contents of rtegiscers and/er variables as shown
MONSYM mnemonics should ©be usad wnen avalilakzlz

e.g. 2t JSYS entry seints.

.-‘
-
«

-

11-3

TOPS22 €oding Standards

TN I IR S
2. The actual ianstruction to do“‘tﬁe cdll " should be

shown. This will be ”CALL subname" in the case of
internal subroutines, and, the single-word JS¥S nape
in the case of a. JSYS enﬁby pcint.,‘ v LT

) X

3. The return(s) should ‘be noteéd “as - “stiown; ‘ALWAYS”

or "NEVER" may be used as the condition where
appropriate; the +2 return need not be shown if it
does not exist; = values . retyrned should be.
described in the same form‘as'’ arguments.' EE

L L
SIN - COMPUTES SINE OFf' AN ANGLE~ "ﬁQ‘»i“ B
T1l/ ANGLE IN RADIANS, 'FLOATING PGEYT Gl e i
CALL SIN R E. v g emrn e

RETURN +1: FAILURE, UNNORMALIZED NUMBER OR OUT OF
RETURN +2: SUCCESS, T1/ VALUE, FEOATING POINT® °. :-

B X £ . R R
- [EE R Tl # ‘ R o e

. , . e PR .
SIN:: . I 3 T A A R

;GIJINF - GZT JOB INFORMATION :J8S¥S: . o

; GJINF

; RETURN +1: ALWAVS,

¢ T1/ LCGGED-IN DIRECTORY. NUMBER E : raiwen L w0

; T2/ CONNECTED DIRECTORY: YUMBER 3D“vﬁ;&{ B, LG

7 T4/ TERMINAL NUMBER OR -1 LF DE?ACBEQ I AR

«GJINF:: .. R S P dug Dooume
MULTI-LINE LITERALS - ;'”f

The use of multi- line lite:als isfencou:aaed as a» Pechnlcue

for

making code more readable'and =asier to fal’ow. The

£ollowing additional rules apply:

TOPS28 Coding Standards

l.

Te

The cpening bracket for a multi-line literal should

occur .in - the :position -that the first character of
the address field. would have appeared LZ the
instruction had an .erdinary address, e.g.

SKIPFGE EOO
JRST ("M e s '-‘_v'_‘

Tﬁe first :dnd * al*’fcllawinq instructions within the

l1i=eral shall begin at the second tabstod, e.g.

SJRST (FMOVE A,Muwar.z . COMMENT

PR JR‘;T FI;I‘ bt 'COMMENT

[T 5 :
"“Tha tab be:ween Ehe open bracke: and the Efirst

opcode may be omitted 1f the line posit ion is
already at or beyond the sacond tab stop, e.g.

JUMPGE A, (MQVE A,MUMBLE

The closing bracket shall fallew the last Iield of
the last instruction (as abeove), and shall Se
befcre bhe cammen: on ghe same line.

Veatinq cﬁ mu’ti-’iﬁe -ibe als to a depth graater

thdn. ‘dde is ' discouraged because of awkwarcd
fa:mat:zng ctcblams.u o

Tags may not appear ia multi-line literals

No nard and fast fulss can be given as te when =0
use er not use multi-line literals. HAowever, 3
literal 1lenger than about 17 lines becames
suspect.

Use of ".+l" is legal in a literal =o re2turn =2
the main segquencse.

10-13

TOPS29 Coding Standards

FLOW OF CONTROL - 3RANCH CONVENTIONE

. - y, .‘1~ ;E Cowm 3 ‘,‘ 3 ,,jhn, ,,\’ id (.ﬂ. (: ., .,J"' ¥
In general, jumps should b@ :m'esqs ﬂuxward ‘(down: the page)
from the point of" branQerxceptwforeiongs. Tops of loops
should be identified by’ ¢ombant. l:z* ~n.oliv.wren

«-,.« LB I T
d - M

The expressions h.+l" and ".-1l" are the only &aqal uses of
"." (this location). Al1 other potential uses should be
aveided in favor of an:explighksly. defined.&aqu‘a

s ‘:"A‘h,,,. 1.

© s
bk *

. o
FE S A I R SR

"Global" jumps shouid’ ‘be aveided . altogether. s xHigher-level
languages do not" ‘:permit themz-and with good reason. The
only exceptions are jumps to well defined and published exit
sequences, e.g. R, RSKP a(see subrou&ine.wconven:ions,
abovsd) . s

FCT LE wavma
O - F S P R

v . o ?

- b ”nw‘“iw' e -

gy e ®
PP AT

NUMBERS
Lh T FeMnge v b ; &
In general, here should be po ccpaaion ._o qse a literal

number in in-line code. Al’ parametats, oit "definitions,
CONC/CONI codes, etc. shau’d ~be. defined mnemonlga¢ly at

appropriate places.. .. IE" much gget 0., err in the
direction of toc littlla usda af mremon c§ .a hdr than too
much; therafore, when in 'the" slightESt dcubt, define a
mnemonic.

1i-11

TOPS29 Coding Standard

-

b N A I A T F AP S
P E N s " . 1
L% R Il . w N - EANM 3 P! .w:fi"“rf,f LRI
poowmIrr L ILOB 5 ﬁh&pggaq;xr ERA
) R

REECE woRLD [T
E - S S . 1 o 4 o« v - o 5

LI

Tenowmetomostop e 0 =t
- LIVEING (I AN IMPE

Much of the present TOPS2Z code was written before the
existencs of this standard and therafore does not conform to
ie. A great deal of systematic editing has already ©Been
donea . 24 .. improve . ceonformance,. :ypﬁ$pbvicus'irregul;ritias
-awist.® In-deneral,-new code. being added should conform
.exactly: ta:. this.istandard even 1f being integrated with old
‘code.. The :fsllawing. are. some specific problems wnich may
:arise-and ithe-recbunended: solutionss,

li’
= Y
- Al -
o 1. - : : :
vE A b g om mow . e im e .o s
TEOVLOBY LELT T YLD oeS VR SRET e >0

vigg N
e o

= L oeom
LA -

1. AC Mnemenics

Some code usas absolute numeric ACs. If new code is heing
integrated into a sequence which usas numeric ACs, it is
desirable that the existing code be edited &to use the
standard mnemonics, particularly for the preserved ACs. 1If
the programmer cannct take the time to do that, ¢then the
mnemonics TLl-T4 should be used for ACs l-4, and otler ACs
ehould be referenced in the same way as is done D2y <tie
existing code. . :

Some cade usas mnemeonics A,3,C,D £for &the ctempsrary ACs.
T™ese same cnemonics should be used for new code intagracad
ints this sxisting cede, or all refarances can 2e adited o
use the standard mnemonics.

You may write sSome code using the standard mnemonics Zor
sresarved ACs and then discover that tle noduls into .which
you wish to put this code has redefined scome of these ACs.
Twe soluticn is one or a cembination of the Zollowing:

1. Move the new cada to a module which deoes not
radefine the Sresarved ACs.

2. Use d!fS%aran: preserved AC3 -— cnas which have naot
been redefined. (Note it is not accaptable B3 use
an AC with a special definition for other than i:s
special gurvose.)

Claarly, code which needs some of Lae special de
must G=e gplaced in a module which has thess ACs de
must "herefaras usa onlv the sther srasersvad ACs.

- EARE
ot me L,
. - B

11-12

TOPS29 Coding Standards

““NM&”““#‘- Tk e »<A:Jv_‘v'.;'v-
R [EL L opnanat L

Note that a value which usually resides in a speclal AC need
not LWAYS reside. there.,, For example, if code in JSYSF
neads to call a routine in“PAEEMT4nd pass a JFN index as an
argument, the JFN shouldmbghlcgded into T1=-T4 for the call
since PAGEM does not have JFR-Yefinéd 'dnd danndc lidadept an
argument in *t.

o

2. Stack aanéixd

Use of the several " Stack vatiabﬂe“ E&eilitiéﬁ‘ deﬁined »in
MACSYM is tecommended. *Boine oiaﬁﬁode ‘usescerpiicit PUSH .and
POP and references=af “the~ Toth “~A%Pj rhowdver; and..when
anything more than ©-triviad - modificaridns . mude rb% made :to
such code, it is most strongly- tecommendedrshasrthércode ! he
edited to use STXVAR or TRVAR. Failing that, references
must bBe consistent with the existing code.
e nmeany DA -

1k-13

	0-0001
	0-0002
	0-0003
	0-0004
	0-001
	0-002
	0-003
	0-004
	0-005
	0-006
	0-007
	0-008
	0-009
	0-010
	0-011
	0-012
	0-013
	0-014
	0-015
	0-016
	0-017
	0-018
	0-019
	0-020
	0-021
	0-022
	0-023
	0-024
	0-025
	0-026
	0-027
	0-028
	0-029
	0-030
	0-031
	0-032
	0-033
	0-034
	0-035
	0-036
	0-037
	0-038
	0-039
	0-040
	0-041
	0-042
	0-043
	0-044
	0-045
	0-046
	0-047
	0-048
	0-049
	0-050
	0-051
	0-052
	0-053
	0-054
	0-055
	0-056
	0-057
	0-058
	0-059
	0-060
	0-061
	0-062
	0-063
	0-064
	0-065
	0-066
	0-067
	0-068
	0-069
	0-070
	0-071
	0-072
	0-073
	0-074
	0-075
	0-076
	0-077
	0-078
	0-079
	0-080
	0-081
	0-082
	0-083
	0-084
	0-085
	0-086
	0-087
	0-088
	0-089
	0-090
	0-091
	0-092
	0-093
	0-094
	0-095
	0-096
	0-097
	0-098
	0-099
	0-100
	0-101
	0-102
	0-103
	0-104
	0-105
	0-106
	0-107
	0-108
	0-109
	0-110
	0-111
	0-112
	0-113
	0-114
	0-115
	0-116
	0-117
	0-118
	0-119
	0-120
	0-121
	0-122
	0-123
	0-124
	0-125
	0-126
	0-127
	0-128
	0-129
	0-130
	0-131
	0-132
	0-133
	0-134
	0-135
	0-136
	0-137
	0-138
	0-139
	0-140
	0-141
	0-142
	0-143
	0-144
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09a-01
	09a-02
	09a-03
	09a-04
	09a-05
	09a-06
	09a-07
	09a-08
	09a-09
	09a-10
	09a-11
	09a-12
	09a-13
	09a-14
	09a-15
	09a-16
	09a-17
	09a-18
	09a-19
	09a-20
	09a-21
	09a-22
	09a-23
	09a-24
	09a-25
	09a-26
	09a-27
	09a-28
	09a-29
	09a-30
	09a-31
	09a-32
	09a-33
	09a-34
	09a-35
	09a-36
	09a-37
	09a-38
	09a-39
	09a-40
	09a-41
	09a-42
	09a-43
	09a-44
	09a-idx1
	09a-idx2
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14

