TOPS-20
Monitor Calls User’s Guide

AA-D859C-TM

September, 1985

This manual describes the use of TOPS-20 monitor calls,
which provide user programs with system services such as
input/output, process control, file handling, and device control.

This manual supersedes the DECSYSTEM—20 Monitor Calls
User’s Guide, order number AA-D859B-TM

Change bars in the margins indicate material that has been
added or changed since the previous printing of this manual.
Bullets indicate that material has been deleted.

OPERATING SYSTEM: TOPS-20 V6.1

Software and manuals should be ordered by title and order number. In the United States, send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, Mew Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, lliinois 60195 Sunnyvale, California 94086
Telephone:(312)640-5612 Telephone:(408)734-4915

- digital equipment corporation @ marlboro. massachusetts

First Printing, May 1976
Revised, April 1982
Revised, September 1985

© Digital Equipment Corporation 1976, 1982, 1985. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

020020

DEC MASSBUS RSX

DECmate PDP RT
DECsystem—10 P/OS UNIBUS
DECSYSTEM-20 Professional VAX

DECUS Q-BUS VMS

DECwriter Rainbow vT

DIBOL RSTS Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing future
documentation.

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

[S

o

LSS SRy SR G SRR NN S S S S N)
L Y . .

LA Lo Lo L0 Lo o o o W o W b W o o o W we
VTUOTUT TV OUTUT TN 8 WwWwwwwWw N

[eaNoa N e 2NV 5 ¥ g DU S I

i s e o
w NN -
. o

—= O O~ OO W —
o .

(]

N —

N —

—

—_— i ot
.

CONTENTS

INTRODUCTION

OVERVIEW
MONITOR CALLS

Calling Sequence .

Error Returns . . . « « « ¢ « + . .
PROGRAM ENVIRONMENT

INPUT AND OUTPUT USING THE TERMINAL

OVERVIEW .

PRIMARY 1/0 DESIGNATORS
PRINTING A STRING
READING A NUMBER .
WRITING A NUMBER .

INITIALIZING AND TERMINATING THE PROGRAM .

RESET% Monitor Call .
HALTF% Monitor Call
READING A BYTE . .
WRITING A BYTE
READING A STRING .
SUMMARY

USING FILES

OVERVIEW . .
JOB FILE NUMBER .
ASSOCIATING A FILE WITH A JFN
GTJFN% Monitor Call
Short Form Of GTJFN% .
Long Form Of GTJFN%
Summary Of GTJFN%
OPENING A FILE
OPENF% Monitor Call
TRANSFERRING DATA
File Pointer
Source And Destnnation Desngnators
Transferring Sequential Bytes
Transferring Strings . .
Transferring Nonsequent|a] Bytes .
Mapping Pages
Mapping File Pages To A Process
Mapping Process Pages To A File

e o s e 2 e s e o o
NN
F o NN NN NN
1

I wwWwww
]

W W w W ww
1 !
—_ e

]
N w N —

_— 1
N OWWWW 0O W —

t

t
1
DN~ FUTUTwW W

W W W

[I R R | | 1
NN NN
[caANE —u UN I S I N IS

3-27

w
1
N
oo

3-30

CHAPTER

CHAPTER

w N —

. e o o e a2 o e =
WO oI~~~ oo

P g

e e e .
— — W oo~ WwWN —

g o o 2 o - i i o i i i o
. . e e o & s s o o« B
o

[l S
o O o

L.10.
L.10.
L.10.
L.ho.

L.
L.12

(%,]

(O RN RU, R RV RV RV RN BV RN, |
iUy oMM —

o

oAUt Fw NN D —

oo N o—

~N O

—

W N —

—

W

.2

Unmapping Pages In A Process . .
Mapping File Sections to a Process
CLOSING A FILE « & v & v ¢ ¢ v v v v v
CLOSF% Monitor Call C e

ADDITIONAL FILE 1/0 MONITOR CALLS
GTSTS% Monitor Call .
JFNS% Monitor Call

GNJFN% Monitor Call . . + v v v v v & 4
SUMMARY . .« v« v v v v e e e e e e e e
FILE EXAMPLES . + . v ¢ v v v v ¢ ¢ v v o

USING THE SOFTWARE INTERRUPT SYSTEM

OVERVIEW . . e e e e e e e e e e
INTERRUPT CONDITlONS e e .
SOFTWARE INTERRUPT CHANNELS AND PRIORIT!ES .
SOFTWARE [NTERRUPT TABLES . .

Specifying the Software Interrupt Tables .

Channel Table .

Priority Level Table . e e e e
ENABLING THE SOFTWARE INTERRUPT SYSTEM .
ACTIVATING INTERRUPT CHANNELS
GENERATING AN INTERRUPT
PROCESSING AN INTERRUPT . .

Dismissing An Interrupt e e e
TERMINAL INTERRUPTS . . . e e
ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Testing for Enablement . .

Obtaining Interrupt Table Addresses

The RIR% Monitor Call
The XRIR% Monitor Call

Disabling the interrupt System .

Deactivating a Channel

Deassigning Terminal Codes .

Clearing the Interrupt System
SUMMARY e e e e
SOFTWARE INTERRUPT EXAMPLE

PROCESS STRUCTURE

USES FOR MULTIPLE PROCESSES e e e
PROCESS COMMUNICATION « « .« .

Direct Process Control

Software Interrupts .o

|PCF and ENQ/DEQ Facilities

Memory Sharing . .
PROCESS IDENTIFIERS .
OVERVIEW OF MONITOR CALLS FOR PROCESSES
CREATING A PROCESS .

Process Capabilities .

VMM OO0 Imww — —

AV R VS R VAR VIAC RVIRVIEVIRVIRVE
1
Ll A LR VAR VIR VL R VSR VL RV

.

[B i i o o e
— = ! 1

1 | I S B B |
—_ et e e s

-
.

O~ ~IJ W N —~ — O O0O\WOoOoO~NI~ W —

1

O e -3 S S S S
/ 1
0 W WO o

=
1

L-20
4=21

[S R R R A |
— OO oW\ i rwro

RS R R RV R RV RV BV, BN,]

\n

CHAPTER

CHAPTER

CHAPTER

o

(SRR RV AV RV RV RN)| U

R B B e e B B B B e e R Y
. . T

.

—_ e — 0 O~ OO o

N — O

o oo

« e e . . e
AAUMTUVTUNI - wWwwwww N —

N -

[« AR R g~ N o i g A VU X
. o« e e

.
N —

.

. .
W N NN -
DY o e

(6 I R UN I N

N

SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A

PROCESS . . .

GET% Monitor Call e

PMAP% Monitor Call
STARTING AN INFERIOR PROCESS .
INFERIOR PROCESS TERMINATION .
INFERIOR PROCESS STATUS
PROCESS COMMUNICATION e e e e e
DELETING AN INFERIOR PROCESS
PROCESS EXAMPLES .

ENQUEUE/DEQUEUE FACILITY

OVERVIEW . . e e e e e e e e
RESOURCE OWNERSHIP e e e e e e e e
PREPARING FOR THE ENQ/DEQ FACILITY .
USING THE ENQ/DEQ FACILITY .
Requesting Use of a Resource .
ENQ% Functions . . « « « . .
ENQ% Argument Block
Releasing a Resource .
DEQ% Functions .
DEQ% Argument Block .o .
Obtaining Information About Resources
SHARER GROUPS
AVOIDING DEADLY EMBRACES

INTER-PROCESS COMMUNICATION FACILITY

OVERVIEW .

QUOTAS .

PACKETS
Flags
PiDs .

Length And Address Of Packet Data Block

Directories and Capabilities
Packet Data Block .

SENDING AND RECE!VING MESSAGES .
Sending a Packet .

Receiving a Packet .
SENDING MESSAGES TO <SYSTEM>INFO .
Format of <SYSTEM>INFO Requests

Format of <SYSTEM>INFO Responses
PERFORMING IPCF UTILITY FUNCTIONS

USING EXTENDED ADDRESSING

OVERVIEW . . .
ADDRESSING MEMORY AND ACS

5-11
5-11
5-16
5-16
5-17
5-18
5-22
5-23
5-24

»
H
I LI B |

P ooV O
1]
wWwoooNNTIEFEwooOnonosEN —

|
R P U

1

[eaN el N0 AN 0 AN ¢)

[B e R |
! 1
O~ NNF O ONNINOOWN —

NN NN
I
_— et

oo oo

1 Instruction Format . . 8-4
2 INdEXTING « « v ¢ v v v 0 o o v e e e e e . 8-5
3 Indirection . . 8-5
3.1 Instruction Format Indnrect WOrd (IFIw) 8-6

.2.3.2 Extended Format Indirect Word ({(EFIW) . 8-6
.3.3 Macros for Indirection . . « + + « « « « . . . 8-7

2.4 AC Referentes . « « « o o« « o o « o« o« o . 8-7
.5 Extended Addressing Examples 8-8
.6 Immediate Instructions . . . + « « « ¢« « « « o+ . 8-9
.6.1 XMOVEL & & v v v ¢ ¢ v o ¢ o « 4 W -10
6.2 8 2 1 T -10
.7 Other Instructions e e e e e e -10
.7.1 Instructions that Affect the PC =11

2.7.2 Stack Instructions . . . =11
7.3 Byte Instructions . . . « « « v « ¢ o

8
8
8
8
8
8
USING MONITOR CALLS T -
Mapping Memory . . . « « « « « « v ¢« « + « . . B8-13
Mapping File Sections to a Process .. 8
Mapping Process Sections to a Process 8
Creating Sections . 8
Unmapping a Process Sectlon I -
Starting A Process In Any Section 8
Setting the Entry Vector In Any Section 8
Obtaining Information About a Process . 8
Memory Access Information 8-18
Entry Vector Information 8-21
Page-Failure Information 8-21
Program Data Vectors . . . e e e e e v e o . B-22
Manipulating PDV Addresses e e e e e e . 8-22
POV Names . & « v v ¢« « ¢ v « « o « « « « . 8-23

VT E FFFFuwwwwulLuwWWWWiwWWWW NN NNONON
e . e » . . e+ e+ e s s e o . . e o s o

. e e

w N - £ N -

—

N o« o o
UVTUOYUTUnNn &N
e o . e o e .

N

3 Version Number . . . e e e e e e e .. 8-23
MODIFYING EXISTING PROGRAMS O - L

A Data Structures . . . +« v « v v 4 4w+ W . . . 8-24
1.1 Index Words . . « « ¢« v « v « ¢ 4 « + v . . 8-24
1.2 Indirect Words . . . « . « « « + « « « . . . 8-24
1.3 Stack Pointers . . . e LA

00 00 OO0 00 02 00 O 00 00 00 00 OO 00 CO 00 00 00 00 OO O CO 00 OO CO O 00 00 00 00 OO 00 00 OO 00 Co O0 OO

WRITING MULTISECTION PROGRAMS B L

INDEX

FIGURES
L= Basic Operational Sequence of the Software

Interrupt System . B 4

L-2 Channels and Priority Levels O S)
6-1 Deadly Embrace Situation 6-5
6-2 Use of Sharer Groups + « « + +« « « « « « « « . . 6-18
7-1 |PCF Packet . P EA
8-1 Program Counter Address Fuelds B <
8-2 Instruction Word Address Fields 8-4

8-3 Instruction Format Indirect Word .
8-4 Extended Format Indirect Word

TABLES

NOUT% Format Option . « . . « « .« . .

RDTTY% Control Bits e e e
Standard System Values For Flle Spec1fications
GTJFN% Flag Bits e e e e

Bits Returned on GTJFN% Call e e e e e e e
Long Form GTJFN% Argument Block
OPENF%Z Access Bits « « v v ¢ v « ¢ v o o v o
PMAPS Access Bits « « v v ¢ ¢ ¢« o v o « o o &
SMAP% Access Bits

I
SNOVITEWN —mOOWVTFWRN =N T WN =N —= = =00~ WN SN —

- CLOSF% Flag Bits . . . e e e e e e
- Bits Returned on GTSTSé Call e e e e e e e
-10 JFNS% Format Options . . + « « « « & « « « .
=11 GNJFN% Return Bits e e e .

Software Interrupt Channel Assugnments .
Terminal Codes and Conditions

Process Handles . . . o e v
Inferior Process rharactersstsc Blts

GET% Flag Bits .

GET% Argument Block .

GET% Argument Block Flags

Process Status Word e e e e e e e e
RFSTS% Status-Return Block e e e e e e e e e
ENQ% Functions .

ENQ% Argument Block

Lock Specification Flags

DEQ% Functions .

DEQ% Argument Block

ENQC% Flag Bits

Packet Descriptor Block Flags

Flags Meaningful on a MSEND% Call

Flags Meaningful on a MRECV% Call

MRECVZ Return Bits

<SYSTEM>INFQC Functions and Arguments
<SYSTEM>INF0O Responses e

MUTIL% Functions

IR R A N R R N R N S BN N SR B |

NN~~~ NN UTUNT T UNTUTUNT NI LWL W W WD W W NN
1

Vi

o
oo

PREFACE

The TOPS-20 Monitor Calls User's Guide is written for the assembly
language user who is unfamiliar with the DECSYSTEM-20 monitor calls.
The manual introduces the user to the functions that he can request of
the monitor from within his assembly language programs. The manual
also teaches him how to use the basic monitor calls for performing
these functions.

This manual is not a reference document, nor is it complete
documentation of the entire set of monitor calls. It is organized
according to functions, starting with the simple and proceeding to the
more advanced.

Each chapter should be read from beginning to end. A user who skips
around in his reading will not gain the full benefit of this manual.
Once the user has a working knowledge of the monitor <calls in this
document, he should then refer to the TOPS-20 Monitor Calls Reference
Manual for the complete descriptions of all the calls,

To understand the examples in this manual, the user must be familiar
with the MACRO 1language and the DECSYSTEM-20 machine instructions.
The TOPS-20 MACRO Assemblier Reference Manual documents the MACRO
language. The TOPS-20 LINK Reference Manual describes the linking
loader. The DECsystem-10/DECSYSTEM-20 Processor Reference Manual
contains the information on the machine instructions. These three
manuals should be used together with the Monitor Calls User's Guide,
and should be referred to when questions arise on the MACRO language
or the instruction set. Another useful reference is Introduction to
DECSYSTEM-20 Assembly Language Programming by Ralph E. Gorin,
published by the Digital Press. It provides a thorough treatment of
assembly language programming for the DECSYSTEM-20, emphasizing the
analysis of programs and various methods of program synthesis.

in addition, some of the examples in this manual contain macros and
symbols (MOVX, TMSG, JSERR, or JSHLT, for example) from the MACSYM
system file. This file is a universal file of definitions available
to the user as a means of producing consistent and readable programs.

Finally, the user should be familiar with the TOPS-20 Command Language
to enter and run the examples. The TOPS-20 User's Guide describes the
TOPS-20 commands and system programs. The TOPS-20 Commands Reference

Manual describes all operating system commands available to the

nonprivileged user of TOPS-20.

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

A program written in MACRO assembly language consists of a series of
statements, each statement wusually corresponding to one or more
machine language instructions. Each statement in the MACRO program
may be one of the following types:

1. A MACRO assembler directive, or pseudo-operation (pseudo-op),
such as SEARCH or END. These pseudo-ops are commands to the
MACRO assembler and are performed when the program is
assembled. Refer to the DECSYSTEM-20 MACRO Assembler
Reference Manual for detailed descriptions of the MACRO
pseudo-ops.

2. A MACRO assembler direct assignment statement. These
statements are in the form

symbol=value

and are used to assign a specific value to a symbol.
Assignment statements are processed by the MACRO assembler
when the program is assembled. These statements do not
generate instructions or data in the assembled program.

3. A MACRO assembler constant declaration statement, such as
ONE: EXP 1
These statements are processed when the program is assembled.

L. An instruction mnemonic, or symbolic instruction code, such
as MOVE or ADD. These symbolic instruction codes represent
the operations performed by the central processor when the
program is executed. Refer to the DECsystem-10/DECSYSTEM-20
Processor Reference Manual for detailed descriptions of the
symbolic instruction codes.

1-1

INTRODUCTION

5. A monitor call, or JSYS, such as RESET or BIN. These calls
are commands to the monitor and are performed when the
program is executed. This manual describes the commonly-used
monitor calls. However, the user should refer to the TOPS-20
Monitor Calls Reference Manual for detailed descriptions of
all the calls. :

When the MACRO program is assembled, the MACRO assembler processes the
statements in the program by

e translating symbolic instruction codes to binary codes.
e relating symbols to numeric values.
® assigning relocatable or absolute memory addresses.

The MACRO assembler also converts each symbolic call to the monitor
into a Jump-to-System (JSYS) instruction.

1.2 MONITOR CALLS

Monitor calls are used to request monitor functions, such as input or
output of data (1/0), error handling, and number conversions, during
the execution of the program. These calls are accomplished with the
JSYS instruction (operation code 104), where the address portion of
the instruction indicates the particular function.

Each monitor call has a predefined symbol indicating the particular
monitor function to be performed (for example, OPENF% to indicate
opening a file). The symbols are defined in a system file called
MONSYM. Monitor calls defined in Release L4 and later require a
percent sign (%) as the final character in the call symbol. Moni tor
calls defined prior to Release 4 do not require the %, but do accept
it. The current convention is that all monitor calls use the % as
part of the call symbol. This manual follows that convention. To use
the symbols and to cause them to be defined correctly, the user's
program must contain the statement

SEARCH MONSYM

at the beginning of the program. During the assembly of the program,
the assembler replaces the monitor call symbol with an instruction
containing the operation code 104 in the left half and the appropriate
function code in the right half,

Arguments for a JSYS instruction are placed in accumulators (ACs).
Any data resulting from the execution of the JSYS instruction are
returned in the accumulators or in an address in memory to which an
accumulator points. Therefore, before the JSYS instruction can be
executed, the appropriate arguments must be placed in the specific
accumulators,

1-2

INTRODUCTION

The system file MACSYM.MAC contains a number of useful macros for the
assembly language programmer. To wuse MACSYM macros, the user's
program must cnntain the statements

SEARCH MACSYM
.REQUIRE SYS:MACREL ;include support routines

at the beginning of the program. Since most bits defined for use with
the monitor have symbolic names, macros enable the programmer to
utilize these bits without knowledge of their exact position. Several
MACSYM macros that are especially valuable to the TOPS-20 assembly
language programmer are MOVX, TXnn (where nn indicates one of the 64
test instructions provided by the hardware), and FLD. MOVX loads an
AC with a constant using the proper MOVE instructions, depending on
the constant's position in the word. The TXnn macros expand to allow
all combinations of modification and testing to be defined. For
example

TXNN AC1,GS%EOF
tests AC1 for the presence of GS%EOF, no modification, and skip if not
equal to zero. This instruction will work regardiess of the actual
bit position of GS¥EOF. The FLD macro causes a value to be right
justified in a field. For example

FLD (7,0F%BS2Z)
places the value 7 in position OF%BSZ, right justified at bit 5

(0OF%BSZ is defined as bits 0-5). These macros will be used
consistently throughout this document,

1.2.1 Calling Sequence

Arguments for the calls are placed in accumulators 1 through &

(AC1-ACh) . If more than four arguments are required for a particular
call, the arguments are placed in a list to which an accumulator
points. The arguments for the calls are specific bit settings or

values. These bit settings and values are defined in MONSYM with
symbol names, which can be used in the program. |In fact, it is
recommended that the user write his program using symbols whenever
possible. This makes the program easier to read by another user. Use
of symbols also allows the values of the symbols to be redefined
without requiring the program to be changed. In this manual, the
arguments for the monitor c¢alls are described with both the bit
settings and the symbol names. All program examples are written using
the symbol names.

The set of instructions that place the arguments in the accumulators
is followed by one line of code giving the particular monitor call
symbol. During the program's execution, control is transferred to the
monitor when this line of code is reached.

1-3

INTRODUCT I ON

1.2.2 Error Returns

TOPS-20 provides a consistent way to handle all JSYS errors. For most
monitor calls upon a successful return, the instruction following the
call is executed. |If an error occurs during the execution of the
call, the monitor examines the instruction following the call. |If the
instruction is a JUMP instruction with the AC field specified as
12-17, the monitor transfers control to a user-specified address. |If
the instruction is not a JUMP instruction, the monitor generates an
illegal instruction trap indicating an illegal instruction, which the
user's program can process via the software interrupt system (refer to
Chapter L). If the wuser's program is not prepared to process the
instruction trap, the program execution halts, and a message is output
stating the reason for failure.

To place a JUMP instruction in his program, the user can include a
statement using one of six predefined symbols. These symbols are

ERJMPR address (= JUMP 12,address)
ERCALR address (= JUMP 13, address)
ERJMPS address (= JUMP 1k4,address)
ERCALS address (= JUMP 15,address)
ERJMP address (= JUMP 16,address)
ERCAL address (= JUMP 17,address)

and cause the assembler to generate a JUMP instruction. The JUMP
instruction is a non-operation instruction (that is, a no-op) as far
as the hardware is concerned. However, the monitor executes the JUMP
instruction by transferring control to the address specified, which is
normally the beginning of an error processing routine written by the
user., If the user includes the ERJMP symbol, control is transferred
as though a JUMPA instruction had been executed, and control does not
return to his program after the error routine is finished. If the
user includes the ERCAL symbol, control is transferred as though a
PUSHJ 17, address instruction had been executed. |f the error routine
executes a POPJ 17, instruction, control! returns to the user's program
at the location following the ERCAL.

If the user includes the ERJMPR symbol, the monitor behaves the same
as it would if the ERJMP symbol! had been included, except that the
last error encountered by the process is stored in the user's ACl.
(Refer to Appendix B of the TOPS-20 Monitor Calls Reference Manual for
the list of error codes, mnemonics, and message strings.) The ERCALR
symbol functions the same as ERCAL except the error code encountered
is returned in the user's ACl1. ERJMPS and ERCALS function similarly
except the monitor suppresses the storing of the error code in the
user's AC1, Instead, AC1 is preserved and contains either the
original contents from when the monitor call was given, or a partially
updated value prior to the error.

INTRODUCT I ON

Prior to the implementation of the ERJMP/ERCAL facilities, certain
monitor calls returned control to the user's program at various
locations after the calling address. Approximately one third of the
JSYSs return to the +1 address only on failure, and to the location
immediately following that (the +2 address) on successful execution of
the call. A few calls return +1, +2, or +3, dependent on varying
conditions of success or failure (for examples, see ERSTRY or GACTF%
in the TOPS-20 Monitor Calls Reference Manual); and some calls do not
return at all (see HALTF% or WAITY). Refer to Chapter 3 of the
TOPS-20 Monitor Calls Reference Manual for the possible returns for
each monitor call.

When a failure occurs during the execution of a monitor call, the
monitor stores an error code. The error code indicates the cause of
the failure. This error code is usually stored in the right half of
ACl, but can also be stored in the monitor's data base or a user's
data block. |In either case, you can obtain the message associated
with the error by using the GETER%¥ or ERSTR% call.

The ERJMP/ERCAL facilities can also be used following a machine

instruction, and will trap for the following conditions:
e Illegal instruction
e I|llegal memory read
e Illlegal memory write

® Pushdown list overflow

The ERJMP/ERCAL facilities can be wused after all monitor calls,
regardiess of whether the call has one or two returns. To handle
errors consistently, users are encouraged to employ either the ERJMPR,
ERCALR, ERJMPS, or ERCALS symbol with all calls. All of the six
predefined jump symbols are no-ops, unless they immediately follow a
monitor call or instruction that fails. Error codes can be obtained
by the program and translated into their corresponding error mnemonic
and message strings with the GETER¥ and ERSTR% monitor calls.

TOPS-20 provides convenient macros and subroutines for handling
monitor call error routines. They can be found in the system file
MACSYM.MAC. Two such macros are EJSERR and EJSHLT. EJSERR prints out
an error message and returns control to the next instruction following
the failing monitor call. EJSHLT prints out an error message and
halts processing of the program.

1-5

INTRODUCT I ON

The following is an example of executing the BIN%¥ monitor call (see
Chapter 3 for more information on this monitor call) that has a single
return. |f the execution of the call is successful, the program reads
and stores a character. If the -execution of the call is not
successful, the program transfers control to an error routine. This
routine processes the error and then returns control back to the main
program sequence. Note that ERCALS stores the return address on the
stack.

DOIT: MOVE T1, INJFN ;obtain JFN for input file
BIN% ;input one character
ERCALS ERROR scall error routine if problem
MOVEM T2,CHAR ;store character
JRST DOIT ;and get another
ERROR: GTSTS% ;read file status
TXNE T2,GSYEOF send of file?
JRST EOF ;yes, process end-of-file condition

HRRO! T1,[Asciz/
?INPUT ERROR, CONTINUING

/1] ;no, data error
PSOUT% ;print message
RET ;jreturn to program (POPJ 17,)

The ASCIZ pesudo-op specifies a left-justified ASCI| string terminated
with a null (that is, a byte containing all bits equal to zero) byte.

1.3 PROGRAM ENVIRONMENT

The user program environment in the TOPS-20 operating system consists
of a job structure that can contain many processes. A process is a
runnable or schedulable entity capable of performing computations in
parallel with other processes. This means that a runnable program is
associated with at least one process.

Each process has its own address space for storing its computations.
This address space is called virtual space because it is actually a
"window'" into physical storage. The address space is divided into 32
(decimal) sections. Each section is divided into 512 (decimal) pages,
and each page contains 512 (decimal) words. Each word contains 36
bits.

A process can communicate with other processes in the following ways:

e explicitly, by software interrupts or system facilities (the
inter-process communication facility, or IPCF, for example).

e implicitly, by changing parts of its environment (its address

space, for instance) that are being shared with other
processes.

1-6

INTRODUCT I ON

A process can create other processes inferior to it, but there is one
control process from which the chain of creations begins. A process
is said to exist when a superior process creates it and is said to end
when a superior process deletes it. Refer to Chapter 5 for more
information on the process structure.

A set of one or more related processes, nhormally under control of a
single user, is a job. Each active process is part of some job on the
system. A job is defined by a user name, an account number, some open
files, and a set of running and/or suspended processes. A job can be
composed of several running or suspended programs.

The following diagram illustrates a job structure consisting of four
processes.

/ TOP PROCESS \\ Job

Process A Process B ,

\ Process C /

— I MR-S-2037-82

Both process A and 1 process B are created by the TOP PROCESS and thus
are directly inferior to it. Process C is created by process B and
thus is directly inferior to process B only. Process C is indirectly
inferior to the TOP PROCESS.

In summary, processes can be considered as independent virtual jobs

with weli-defined relationships to other processes in the system, and
a job is a colliection of these processes.

1-7

CHAPTER 2

INPUT AND OUTPUT USING THE TERMINAL

One of the main reasons for using monitor calls is to transfer data
from one location to another. This chapter discusses moving data to
and from the user's terminal.

2.1 OVERVIEW

Data transfers to and from the terminal are in the form of either
individual bytes or text strings. The bytes are 7-bit bytes. The
strings are ASCI| strings ending with a 0 byte. These strings are
called ASCIZ strings.

To designate the desired string, the user's program must include a
statement that points to the beginning of the string being read or
written. The MACRO pseudo-op, POINT, can be used to set up this
pointer, as shown in the following sequence of statements:

MOVE AC1,PTR

PTR: POINT 7,MSG
MSG: ASCIZ/TEXT MESSAGE/

Accumulator 1 contains the symbolic address (PTR) of the pointer. At
the address specified by PTR is the pointer to the beginning of the
string. The pointer is set up by the POINT pseudo-op. The general
format of the POINT pseudo-op is:

POINT decimal-byte-size,address,decimal-byte-position

(Refer to the TOPS-20 MACRO Assembler Reference Manual for more
information on the POINT pseudo-op.) In the example above, the POINT
pseudo-op has been written to indicate 7-bit bytes starting before the
left-most bit in the address specified by MSG.

INPUT AND OUTPUT USING THE TERMINAL

Another way of setting up an accumulator to contain the address of the
pointer is with the following statement:

HRROI AC1,[ASCIZ/TEXT MESSAGE/]

The instruction mnemonic HRROI| causes a -1 to be placed in the left
half of accumulator 1 and the address of the string to be placed in
the right half. However, in the above statement, a literal (enclosed
in square brackets) has been used instead of a symbolic address. The
literal causes the MACRO assembler to:

e store data within brackets (the string) in a table.
® assign an address to the first word of the data.
e insert that address as the operand to the HRROI instruction.

Literals have the advantage of showing the data at the point in the
program where it will be used, instead of showing it at the end of the
program.

As far as the |/0 monitor calls are concerned, a word in this format
(-1 in the left half and an address in the right half) designates the
system's standard pointer (that is, a pointer to a 7-bit ASCIZ string
beginning before the leftmost byte of the string). The result of the
HRRO! statement is interpreted by the monitor as functionally
equivalent to the word assembled by the POINT 7, address pseudo-op and
is the recommended statement to use in preparation for a monitor call,
However, byte manipulation instructions (for example, |LDB, IBP,
ADJBP) will not operate properly with this type of pointer.

After a string is read, the pointer is advanced to the character
following the terminating character of the string. After a string is
written, the pointer is advanced to the character following the last
non-null character written.

Most TOPS-20 monitor calls accept one-word global byte pointers when
executed from a nonzero section (see Section 8.3). Global byte
pointers are used with extended addressing and are fully explained in
Chapter 8 of this document. Unless specifically stated, TOPS-20
monitor calls do not accept two-word global byte pointers.

2-2

INPUT AND OUTPUT USING THE TERMINAL

2.2 PRIMARY 1/0 DESIGNATORS

To transfer data from one location to another, the user's program must
indicate the source from which the data is to be obtained and the
destination where the data is to be placed. By default, the wuser's
terminal is defined as the source and destination. The default can be
overridden by using the SPJFN% monitor call (refer to the TOPS-20
Monitor Calls Reference Manual). Examples in this book assume the
user's terminal to be the source (input) and destination (output)
device. Two designators are used to represent the user's terminal:

1. The symbol .PRIIN to represent the user's terminal as the
source (input) device.

2. The symbol .PRIOU to represent the user's terminal as the
destination (output) device.

These symbols are called the primary input and output designators and
by default are used to represent the terminal running the program.
They are defined in the system file MONSYM.MAC and do not have to be
defined in the wuser's program as long as the program contains the
statement

SEARCH MONSYM

2.3 PRINTING A STRING

Many times a program may need to print an error message or some other
string, such as a prompt to request input from the user at the
terminal. The PSOUT% (Primary String Output) monitor call is used to
print such a string on the terminal. This call copies the designated
string from the program's address space. Thus, the source of the data
is the program's address space, and the destination for the data is
the terminal. The program need only supply the pointer to the string
being printed.

Accumulator 1 (AC1) is used to contain the address of the pointer.
After ACl1 is set up with the pointer to the string, the next line of
code is the PSOUT% call. Thus, an example of the PSOUT% call is:

HRROI AC1, [ASCIZ/TEXT MESSAGE/] ;string to print
PSOUT% sprint TEXT MESSAGE

2-3

INPUT AND OUTPUT USING THE TERMINAL

The PSCUT% call prints on the terminal all the characters in the
string until it encounters a null byte. Note that the string is
printed exactly as it is stored in the program, starting at the
current position of the terminal's print head or cursor and ending
with the last character in the string. |If a carriage return and line
feed are to be output, either before or after the string, these
characters should be inserted as part of the string. For example, to
print TEXT MESSAGE on one line and to output a carriage return-line
feed after it, the user's program includes the call

HRRO! AC1,[ASCIZ/TEXT MESSAGE
/]
PSOUT%

After the string is printed, the instruction following the PSOUT% call
in the wuser's program is executed. Also, the pointer in ACl is
updated to point to the character following the last non-null
character written.

The macro TMSG, found in the system file MACSYM, does the same thing
as the example above. This macro offers the programmer a convenient
way for printing messages on the terminal. For example

TMSG <TEXT MESSAGE
>

caused the text message contained between the angle brackets,
including the carriage return and line feed, to print on the terminal.
The TMSG macro, along with others previously mentioned, will be wused
consistently in examples throughout this document. Refer to the
system file MACSYM.MAC for further information on MACSYM macros.

Refer to Section 1.2.2 for information concerning error returns.

2.4 READING A NUMBER

The NIN% (Number Input) monitor call is used to read an integer. This
call does not assume the terminal as the source designator; therefore,
the user's program must specify this. The NIN% call accepts the
number from any valid source designator, including a string in memory.
This section discusses reading a number directly from the terminal.
Refer to Section 2.9 for an example of using the NIN% call to read the
number from a string in memory. The destination for the number s
AC2, and the NIN% call places the binary value of the number read into
this accumulator. The user's program also specifies a number in AC3
that represents the radix of the number being input. The radix given
can be in the range 2-36.

2-4

INPUT AND OUTPUT USING THE TERMINAL

Thus, the setup for the NIN% monitor call is the following:

MOVEI| AC1,.PRIIN ;AC1 contains the primary input designator
; (the user's terminal)

MOVE] AC3,AD10 ;AC3 contains the radix of the number being
sinput (in this case a decimal number)

NIN% ;The call to input the number

After completion of the NIN% call, control returns to the program at
one of two places (refer to Section 1.2.2). If an error occurs during
the execution of the call, control returns to the instruction
following the call, This instruction should be a jump-type
instruction to an error processing routine (see Section 1.2.2). Also,
an error code is placed in AC3 (refer to Appendix B of the TOPS-20
Monitor Calls Reference Manual for the error codes) . |f the execution
of the NIN% call is successful, control returns to the second
instruction following the call. The number input from the terminal is
placed in AC2.

The NIN% call terminates when it encounters a nondigit character (for
example, a Jletter, a punctuation character, or a control character) .
This means that if 32X1 were typed on the terminal, on return AC2
contains a 40 (octal) because the NIN% call terminated when it read
the X.

The following program prints a message and then accepts a decimal
number from the user at the terminal. Note that the NIN% call
terminates reading on any nondigit character; therefore, the user
cannot edit his input with any of the editing characters (for example,
DELETE, CTRL/W). The RDTTY% call (refer to Section 2.9) should be
used in programs that read from the terminal because it allows the
user to edit his input as he is typing it.

SEARCH MONSYM
HRRO! AC1, [ASClZ/
Enter # of seconds: /]

PSOUT% sjoutput a prompt message
MOVE! AC1, .PRIIN sinput from the terminal
MOVEI AC3,AD10 suse the decimal radix
NIN% ;input a decimal number
ERJMP NINERR serror-go to error routine

MOVEM AC2, NUMSEC ; save number entered

.

NUMSEC:BLOCK 1

INPUT AND OUTPUT USING THE TERMINAL

2.5 WRITING A NUMBER

The NOUT% (Number Output) monitor call is used to output an integer.
The wuser's program moves the number to be output into AC2. The
program must specify the destination for the number in AC1 and the
radix in which the number is to be output in AC3. The radix given
cannot be greater than base 36. |In addition, the user's program can

specify certain formatting options to be used when printing the
number.

Thus, the general setup for the NOUT% monitor call is as follows:
ACI: output designator
AC2: number being output
AC3: format options in left half and radix in right half

The format options that can be specified in the left half of AC3 are
described in Table 2-1.

INPUT AND OUTPUT USING THE TERMINAL

Table 2-1: NOUT% Format Option
Bit Symbol Meaning

0 NOZMAG Print the number as a positive 36-bit
number . For example, -1 would be printed
as 777777 777777 if radix=8).

] NO%SGN Print the appropriate sign (+ or -) before
the number. |If bits NO¥MAG and NO%SGN are
both on, a plus sign is always printed.

2 NO%SLFL Print leading filler. |If this bit is not
set, trailing filler is printed and bit
NO%ZRO is ignored.

3 NO%ZRO Use O's as the 1leading filler if the
specified number of columns allows filling.
If this bit is not set, blanks are used as
the leading filler if the number of columns
allows filling.

& NO%0O0V Output on column overflow and return an
error. If this bit 1is not set, column
overflow is not output.

5 NO%AST Print asterisks when the column overflows.
if this bit is not set, and bit 4 (NOZOOV)
is set, all necessary digits are printed
when the columns overflow.

6-10 Reserved for Digital (must be 0).

11-17 NO%COL Print the number of columns indicated.

This value includes the sign column. |If
this field is O, as many columns as
necessary are printed.

2-7

INPUT AND OUTPUT USING THE TERMINAL

The following instruction sequence is an example of the NOUT% monitor
call. This sequence prints a number, stored in location NUMB, on the
user's terminal. The number can be positive, negative or zero, with
no special formatting.

MOVX AC1,.PRIOU suse primary output
MOVE AC2,NUMB ;get number from location NUMB
MOVX AC3,AD10 sno special format,decimal radix
NOUT% sprint number

EJSHLT sunexpected fatal error. Halt

;and print message.

Refer to Section 1.2.2 for information concerning error returns. The
following example illustrates the use of the three monitor calls
described so far, as well as the TMSG macro. The RESET%¥ and HALTF%
monitor calls are described in Section 2.6.

SEARCH MONSYM
SEARCH MACSTM
+REQUIRE SYS:!MACREL

ACL==1
AC2==2
ACT==3
START?! RESETZ irrerare rrodram environment
HRROI AC1,CASCIZ/FLEASE TYFE A DECIMAL NUMRER: /1
FSOUTZ
MOVEI AC1s.FRIIN isource desidgnator
MOVEI AC3,"IN10O idecimal radis
NINZ
ERJMFS ERROR $if inrut errvor eprint messasges halt.,
TMSG < THE OCTAL EQUIVALENT IS =
MOVEI AC1.,.FRIOU idestination desidgnator
MOVEI AC3,"I8 toctal radix
NOUTZ
EJSHLT ifatal error, Same as ERJMFS ERROR.
HALTFZ ireturn to command landuade
JRST START jbegin adainy if continued

ERROR? TMSG«

PTERROR-TYFE START TO REGIN AGAIN:
HALTFZ
JRST START juser tures continue-start adain
ENDIN START

2.6 INITIALIZING AND TERMINATING THE PROGRAM

Two monitor calls that have not yet been described were used in the
above program - RESET% and HALTF%.

2-8

INPUT AND OUTPUT USING THE TERMINAL

2.6.1 RESET% Monitor Call

A good programming practice is to include the RESET% monitor call at
the beginning of every assembly language program. This call closes
any existing open files and releases their JFNs, kills any inferior
processes, clears the software interrupt system (see Chapter 4), and
performs various other process initilization functions. For a
complete 1list of the functions provided by the RESET% monitor call,
refer to the description of the call in the TOPS-20 Monitor C(Calls
Reference Manual. The format of the call is

RESET%

and control always returns to the next instruction following the call.

2.6.2 HALTF% Monitor Call

To stop the execution of a program and return control to the TOPS-20
Command Language, the user must include the HALTF% monitor call as the
last instruction performed in the program. The user can then resume
execution of the program at the instruction following the HALTF% call
by typing the CONTINUE command after control has returned to command
level.

2.7 READING A BYTE

The PBIN% (Primary Byte Input) monitor call is used to read a single
byte (that is, one character) from the terminal. The user's program
does not have to specify the source and destination for the byte
because this call uses the primary input designator (that is, the
user's terminal) as the source and accumulator 1 as the destination.
After execution of the PBIN% call, control returns to the instruction
following the PBIN%. |f execution of the call is successful, the byte
read from the terminal is right-justified in ACl., |If execution of the
call is not successful, an illegal instruction trap is generated, as
explained in Section 1.2.2.

2.8 WRITING A BYTE

The PBOUT% (Primary Byte Output) monitor <call is used to write a
single byte to the terminal. This call wuses the primary output
designator (that is, the user's terminal) as the destination for the
byte; thus, the wuser's program does not have to specify the
destination. The source of the byte being written is accumulator 13
therefore, the wuser's program must place the byte right-justified in
AC1 before the call.

INPUT AND OUTPUT USING THE TERMINAL

After execution of the PBOUT% call, control returns to the instruction

following the PBOUT%. If execution of the call is successful, the
byte is written to the user's terminal. |If exetution of the call s
not successful, an illegal instruction trap is generated, as explained

in Section 1.2.2,

2.9 READING A STRING

Up to this point, monitor calls have been presented for printing a
string, reading and writing an integer, and reading and writing a
byte. The next call to be discussed obtains a string from the
terminal and, in addition, allows the user at the terminal to edit his
input as he is typing it.

The RDTTY%Z (Read from Terminal) monitor call reads input from the
user's terminal (that is, from .PRIIN) into the program's address
space. Input is read until the user either types an appropriate
terminating (break) character or inputs the maximum number of
characters allowed in the string, whichever occurs first. Output
generated as a result of character editing is printed on the user's
terminal (that is, output to .PRIOU).

The RDTTY% call handles the following editing functions:

1. Delete the last character in the string if the user presses
the DELETE key while typing his input.

2. Delete back to the last punctuation character in the string
if the user types CTRL/W while typing his input.

3. Delete the current line if the user types CTRL/U while typing
his input.

L. Retype the current line if the user types CTRL/R while typing
his input.

Because the RDTTYZ call can handle these editing functions, a program
can accept input from the terminal and allow this input to be
corrected by the user as he is typing it. For this reason, the RDTTY
call should be used to read input from the terminal before processing
that input with calls such as NIN%.

INPUT AND OUTPUT USING THE TERMINAL

The RDTTY% call accepts three words of arguments in AC1 through AC3.

ACl:

AC2:

AC3:

pointer to area in program's address space where input is
to be placed. This area is called the text input buffer.

control bits in the left half, and maximum number of bytes
in the text input buffer in the right half.

pointer to buffer for text to be output before the user's
input if the user types a CTRL/R, or 0 if only the user's
input is to be output on a CTRL/R.

The control bits in the left half of AC2 specify the characters on
which to terminate the input. These bits are described in Table 2-2.

Table 2-2: RDTTYX Control Bits
Bit Symbol ' Meaning
0 RD%BRK Terminate input when user types a
CTRL/Z or presses the ESC key.
1 RDXTOP Terminate input when user types one of

the following:

CTRL/G

CTRL/L

CTRL/Z

ESC key
RETURN key
Line feed key

INPUT AND OUTPUT USING THE TERMINAL

Table 2-2: RDTTY% Control Bits (Cont.)
Bit Symbol Meaning

2 RD%PUN Terminate input when user types one of

the following:

CTRL/A-CTRL/F

CTRL/H-CTRL/|

CTRL/K

CTRL/N-CTRL/Q

CTRL/S-CTRL/T

CTRL/X-CTRL/Y

ASCI| codes 3L4-36

ASCl| codes LO-57

ASCl| codes 72-100

ASCI | codes 133-140

ASCI| codes 173-176

The ASCI| codes listed above represent
the punctuation characters in the
ASCI| character set. Refer to the
ASCI1 character set table in Appendix
A of the TOPS-20 Moni tor Calls
Reference Manual for these characters.

3 RD%BEL Terminate input when user types the
RETURN or line feed key (that is, end
of line).

k RD%CRF Store only the line feed in the input
buffer when the wuser presses the
RETURN key. A carriage return will
still be output to the terminal but
will not be stored in the buffer. |If
this bit is not set and the user
presses the RETURN key, both the
carriage return and the line feed will
be stored as part of the input.

5 RDZRND Return to program if the user attempts
to delete past the beginning of his
input. This allows the program to
take control if the wuser tries to
delete all of his input. |[f this bit
is not set, the program waits for more
input.

6 Reserved for Digital (must be 0).

2-12

Table 2-2:

INPUT AND OUTPUT USING THE TERMINAL

RDTTY® Control Bits (Cont.)

Bit

Symbol

Meaning

10

11

RDZRIE

RDYBEG

RDXRA|

RD%SUI

RDANED

Return to program when there is no
input (that is, the text input buffer
is empty). If this bit is not set,
the program waits for more input.

Reserved for Digital (must be 0).

Return to user program if the user
attempts to edit beyond the beginning
of the input buffer.

Convert lower case input to upper
case.

Suppress the CTRL/U indication on the
terminal when a CTRL/U is typed by the
user. This means that if the user
types a CTRL/U, XXX will not be
printed and, on display terminals, the
characters will not be deleted from
the screen. |If this bit is not set
and the user types a CTRL/U, XXX will
be printed and, if appropriate, the
characters will be deleted from the
screen. |In neither case is the CTRL/U
stored in the input buffer.

Disable editing characters in user
break mask. |If this bit is set, then
any editing character (AR, AU, AV, AW,
and DELETE) in the user supplied break
mask does not have its editing
function.

INPUT AND OUTPUT USING THE TERMINAL

If no control bits are set in the left half of AC2, the input will be
terminated when the user presses the RETURN or line feed key (that is,
terminated on an end-of-line condition only).

The count in the right half of AC2 specifies the number of bytes
available for storing the string in the program's address space. The
input is terminated when this count is exhausted, even if a specified
break character has not yet been typed.

The pointer in AC3 is to the beginning of a buffer containing the text
to be output if the user types a CTRL/R. When this happens, the text
in this separate buffer is output, followed by any text that has been
typed by the user. The text in this buffer cannot be edited with any
of the editing characters (that is, DELETE, CTRL/W, or CTRL/V) . I f
the contents of AC3 is zero, then no such buffer exists, and if the
user types CTRL/R, only the text in the input buffer will be output.

|f execution of the RDTTY% call is successful, the input is in the
specified area in the program's address space. The character that
terminated the input is also stored. (If the terminating character is
a carriage return followed by a line feed, the line feed is also
stored.) Control returns to the user's program at the second location
following the call. The pointer in ACl is advanced to the character
following the last character stored. The count in the right half of
AC2 is updated to reflect the remaining bytes in the buffer, and
appropriate bits are set in the left half of AC2. The bits that can
be set on a successful return are:

Bit 12 RD%BTM The input was terminated because one
of the specified break characters was
typed. This break character is placed
in the input buffer. |If this bit is
not set, the input was terminated
because the byte count was exhausted.

Bit 13 RD%BFE Control was returned to the program
because there is no more input and
RD%RIE was set in the call.

Bit 14 RD%BLR The limit to which the user can backup
for editing his input was reached.

For consistent handling of error returns refer to Section 1.2.2.

INPUT AND OUTPUT USING THE TERMINAL

The following example illustrates the recommended method for reading
data from the terminal. This example is essentially the same as the
one in Section 2.5; however, the RDTTY% call is used to read the

number

before the NIN¥ call processes it. This program stores the

last error encountered in location LASTER and therefore uses the
ERJMPR pseudo-op.

START:

PROMPT :

BUFFER:
LASTER:
ERROR:

SEARCH MONSYM
SEARCH MACSYM
.REQUIRE SYS:MACREL

ACl==
AC2==
AC3==3
RESET% ;prepare program environment
HRRO} AC1,PROMPT
PSOUT% ;type prompt
HRRO!I ACI1,BUFFER slocation to store number
MOVE! AC2,BUFLEN%*5 ;size of buffer
HRROI AC3,PROMPT spointer to prompt
RDTTY% ;read number from term. with editing
ERJMPR ERROR ;save error code, print message and halt
HRRO! AC1,BUFFER ;source designator
MOVE| AC3,ADI10 ;jdecimal radix
NIN%
ERJMPR ERROR ;if input error, print message and halt
TMSG <THE OCTAL EQUIVALENT 1S >
MOVE| AC1, .PRIOU ;destination designator
MOVE| AC3,7D8 soctal radix
NOUT%
ERJMPR ERROR ;save error code, print message and halt
HALTF% ;return to command language
JRST START ;begin again, if continued
ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /
BUFLEN==10
BLOCK BUFLEN
BLOCK 1
MOVEM AC1,LASTER ;save error code
TMSG <
7ERROR-TYPE START TO BEGIN AGAIN>;print general error message
HALTF% shalt
JRST START sstart over if continued
END START

INPUT AND OUTPUT USING THE TERMINAL

2.10 SUMMARY

Data transfers of sequential bytes or text strings can be made to and
from the terminal. The monitor calls for transferring bytes are PBIN%
and PBOUT% and for transferring strings are PSOUT% and RDTTY%. The
NIN% and NOUT% monitor calls can be used for reading and writing a

number. In general, the user's program must specify a source from
which the data is to be obtained and a destination where the data is
to be placed. In the case of terminal 1/0, the symbol .PRIIN

represents the user's terminal as the source, and the symbol .PRIOU
represents the user's terminal as the destination.

CHAPTER 3

USING FILES

3.1 OVERVIEW

All information stored in the DECSYSTEM-20 is kept in files. The
basic wunit of storage in a file is a page containing bytes from 1 to
36 bits in length. Thus, a sequence of pages constitutes a file. In
most cases, files have names. Although all files are handled in the
same manner, certain operations are unavailable for files on
particular devices.

Programs can reference files by several methods:
e In a sequential byte-by-byte manner.
® in amultiple byte or string manner.

e In a random byte-by-byte manner if the particular
file-storage device allows it.

® In a page-mapping or section-mapping manner for files on
disk.

Byte and string input/output are the most common types of operations.

Generally, all programs perform |/0 by moving bytes of data from one
location to another. For example, programs can move bytes from one
memory area to another, from memory to a disk file, and from the
user's terminal to memory. In addition, a program can map multiple
512-word pages or 512-page sections from a disk file into memory or
vice versa.

3-1

USING FILES

Data transfer operations on files require four steps:

1. Establishing a correspondence between a file and a Job File
Number (JFN), because all files are referenced by JFNs.

2. Opening the file to establish the data mode, access mode, and
byte size and to set up the monitor tables that permit data
to be accessed.

3. Transferring data either to or from the file.

L, Closing the file to complete any |/0, to update the directory
if the file is on the disk, and to release the monitor table
space used by the file.

Some operations on files do not require the execution of all four
steps above. Examples of these operations are: deleting or renaming
a file, or changing the access code or account of a file. Although
these operations do not require all four steps, they do require that
the file has a JFN associated with it (step 1 above).

It is possible for disk files on the DECSYSTEM-20 to be simultaneously
read or written by any number of processes. To make sharing of files
possible, all instances of opening a specific file in a specific
directory cause a reference to the same data. Therefore, data written
into a file by one process can immediately be seen by other processes
reading the file.

Access to files is controlled by the 6-digit (octal) file access code
assigned to a file when it is created. This code indicates the types
of access allowed to the file for the three classes of users: the
owner of the file, the users with group access to the file, and all
other users. (Refer to the TOPS-20 User's Guide for more information
on the file access codes.) |f the user is allowed access to a file, he
requests the type of access desired when opening the file with the
OPENF% monitor call (refer to Section 3.4.1) in his program. |f the
access requested in the OPENF% call does not conflict with the current
access to the file, the user is granted access. Essentially, the
current access to the file is set by the first user who opens it.

Thus, for a user to be granted access to a specific file, two
conditions must be met:

1. The file access code must allow the user to access the file
in the desired manner (for example, read, write).

2. The file must not be opened for a conflicting type of access.

3-2

USING FILES

3.2 JOB FILE NUMBER

The Job File Number (JFN) is one of the more important concepts in the
operating system because it serves as the identifier of a particular
file on a particular device during a process' execution. It is a
small integer assigned by the system upon a request from the user's
program. JFNs are usually assigned sequentially starting with 1.

The JFN is valid for the job in which it is assigned and may be used
by any process in the job. The system uses the JFN as an index into
the table of files associated with the job and always assigns a JFN
that is unique within the job. Even though a particular JFN within
the job can refer to only one file, a single file can be associated
with more than one JFN. This occurs when two or more processes are
using the same file concurrently. In this case, each of the processes
will probably have a different JFN for the file, but all of the JFNs
will be associated with the same file.,

3.3 ASSOCIATING A FILE WITH A JFN

in order to reference a file, the first step the user program must
complete is to associate the specific file with a JFN. This
correspondence is established with the GTJFN% (Get Job File Number)
monitor call. One of the arguments to this «call is the string
representing the desired file. The string can be specified within the
program (that is, come from memory) or can be accepted as input from
the user's terminal or from another file. The string can represent
the compliete specification for the file:

dev:<directory>name.typ.gen;T (temporary) ;P (protection) ;A (account) ;
(device dependent attributes)

If you omit any fields of the specification, the system can provide
values for all except the name field. Refer to the TOPS-20 User's
Guide for a complete explanation of the specification for a file.

Table 3-1 lists the values the system will assign to fields not
specified by the input string.

USING FILES

Table 3-1: Standard System Values For File Specifications

Field Value
Device DSK:
Directory Directory to which user is currently

connected.

Name No default; this field must be
specified.

Type Null.

Generation number The highest existing generation number
if the file is an input file. The
next higher generation number if the
file is an output file.

Protection Protection of next lower generation of
file, if one exists; otherwise,
protection as specified in the

directory.

Account Account specified when user logged in.

If the string specified identifies a single file, the monitor returns
a JFN that remains associated with that file until either the process
releases the JFN or the job logs off the system. After the assignment
of the JFN is complete, the wuser's program uses the JFN in all
references to that file.

The user's program can set up either the short or the long form of the
GTJFN% monitor call. The long form of the GTJFN% call requires an
argument block; the short form does not. The long form of GTJFN% has
functions and flexibility not available in the short form of the call.
The short form of GTJFN% allows a file specification to be obtained
from a string in memory or from a file, but not from both. Fields not
specified by the input are taken from the standard system values for
those fields (refer to Table 3-1). This form is sufficient for most
uses of the call. The long form allows a file specification to be
obtained from both a string in memory and a file. |f both are given
as arguments, the string is used first, and then the file is wused if
more fields are needed to complete the specification. This form also
allows the user's program to specify nonstandard values to be used for
fields not given and to request the assignment of a specific JFN.

3-4

USING FILES

3.3.1 GTJFN% Monitor Call

The GTJFN% monitor call assigns a JFN to the specified file. It
accepts two words of arguments. These argument words are different
depending on the form of GTJFN% being used. The wuser's program
indicates the desired GTJFN% form by setting bit 17(GJ%SHT) of AC1 to
1 for the short form or by clearing bit 17 (GJ%SHT) for the long form.

3.3.1.1 Short Form Of GTJFN% - The short form of the GTJFN% monitor
call requires the following two words of arguments.

0 17 18 35
! |
AC1 ! flag bits | default generation number !
! !
0 35

AC2 source designator for file specification per

bit 16 (GJ%FNS) of ACI

The flag bits that can be specified in AC1 are described in Table 3-2.

Table 3-2: GTJFN% Flag Bits

Bit Symbol Meaning

0 GJXFOU The file specification given is to be
assigned the next higher generation
number. This bit indicates that a new
version of a file is to be created and
is normally set if the file is for
output use.

1 GJINEW The file specification given must not
refer to an existing file (that is,
the file must be a2 new file).

2 GJ%OLD The file specification given must
refer to an existing file. This bit
has no effect on a parse-only JFN.
(See bit GJ¥OFG.)

3-5

USING FILES

Table 3-2: GTJFN% Flag Bits (Cont.)
Bit Symbol Meaning

3 GJBMSG One of the appropriate messages is to
be printed after the file
specification is obtained. The
message is printed only if the user
types the ESC key to end his file
specification (that is, he is using
recognition input).

[NEW FILE]

[NEW GENERATION]

[OLD GENERATION]

[0K] if GJ%CFM (bit 4) is off
[CONFIRM] if GJ%CFM (bit &) is on

b GJ%CFM Confirmation from the wuser will be
required to verify that the file
specification obtained is correct. To
confirm the file specification, the
user can press the RETURN key.

5 GJSTMP The file specified is to be a
temporary file.

6 GJRNS Only the first file specification in a
multiple logical name assignment is to-
be searched for the file.

7 GJ%ACC The JFN specified is not to be
accessed by inferior processes in this
job. However, any process can access
the file by acquiring a different JFN.
To prevent the file from being
accessed by other processes, the
user's program can set OF%RTD (bit 29)
in the OPENF call (refer to Section
3.4.1).

8 GJ%DEL The file specified is not to be
considered as deleted, even if it is
marked as deleted.

9-10 GJ%JFN These bits are off in the short form

of the GTJFN call (refer to Section
3.3.1.2 for their description).

3-6

Table 3-2:

USING FILES

GTJFN% Flag Bits (Cont.)

Bit

Symbol

Meaning

11

13

GJXIFG

GJ%OFG

GJXFLG

The file specification given is
allowed to have one or more of its
fields specified with a wildcard
character (% or %). This bit is used
to process a group of files and s
generally used for input files. The
monitor verifies that at least one
value exists for each field that
contains a wildcard and assigns the
JFN to the first file in the group.

The monitor also verifies that fields
not containing wildcards reprsent a
new or old file according to the
setting of GJYNEW and GJ%OLD.

The JFN is to be associated with the
given file specification string only
and not to the actual file. The
string may contain a wildcard
character (% or %) in one or more of
its fields. It is checked for correct
punctuation between fields, but is not
checked for the validity of any field.
This bit allows a JFN to be associated
with a file specification even if the
file specification does not refer to
an actual file. The JFN returned
cannot be used to refer to an actual
file (for example, cannot be used in
an OPENF call) but can be used to
obtain the original input string via
the JFNS monitor call (refer to
Section 3.7.2).

Flags are to be returned in the left
half of AC1 on a successful return.

3-7

USING FILES

Table 3-2: GTJFN% Flag Bits (Cont.)

Bit Symbol Meaning

14 GJ%PHY Logical names specified for the
current job are to be ignored and the
physical device is to be used.

15 GJEXTN This bit is off in the short form of
the GTJFN call (refer to Section
3.3.1.2 for its description).

16 GJ%FNS The contents of AC2 are to be
interpreted as follows:

1. If this bit is on, AC2 contains an
input JFN in the left half and an
output JFN in the right half. The
input JFN is wused to obtain the
file specification to be
associated with the JFN. The
output JFN is used to indicate the
destination for printing the names
of any fields being recognized.
To omit either JFN, the user's
program must specify the symbol
NUL1O (377777) .

2. If this bit is off, AC2 contains a
pointer to a string in memory that
specifies the file to be
associated with the JFN.

17 GJ%SHT This bit must be on (set) for the

short form of the GTJFN% call; it must
be off for the long form of the call.

3-8

USING FILES

Table 3-2: GTJFN%¥ Flag Bits (Cont.)

Bit Symbol Meaning
18-35 The generation number of the file
(between and 377777) or one of the

following:

0 (.GJDEF)

-1 (.GJNHG)

-2 (.GJLEG)

-3(.GJALL)

to indicate that the next
higher generation number
of the file is to be used
if GJXFOU (bit 0) is on,
or to indicate that the
highest existing
generation number of the
file is to be used if
GJBFOU is off. (This
value is wusually used in
this field.)

to indicate that the next
higher generation number
of the file is to be used
if no generation number is
supplied.

to indicate that the
lowest existing generation
number of the file is to
be used.

to indicate that all
generation numbers (%) of
the file are to be used
and that the JFN is to be
assigned to the first file
in the group. (Bit GJ%IFG
must be set.)

3-9

USING FILES

If the GTJFN% call is given with the appropriate flag bit set (GJXIFG
or GJ%0FG), the file specification given as input can have a wildcard
character (either an asterisk or a percent sign) appearing in the
directory, name, type, or generation number field. (The percent sign
cannot appear in the generation number field.) The wildcard character
is interpreted as matching any existing occurrence of the field. For
example, the specification

<L | BRARY>% ,MAC

identifies all the files with the file type .MAC in the directory
named <LIBRARY>. The specification

<L IBRARY>MYF I LE.F0%

identifies all the files in directory <LIBRARY> with the name MYFILE
and a three-character file type in which the first two characters are
.FO. Upon completion of the GTJFN call, the JFN returned is
associated with the first file found in the group according to the
following:

® in numerical order by directory number

® in alphabetical order by filename

® in alphabetical order by file type

e in ascending numerical order by generation number

The GNJFN% (Get Next JFN) monitor call can then be given to assign the
JFN to the next file in the group (refer to Section 3.7.3). Normally,
a program that accepts wildcard characters in a file specification -
will successively reference all files in the group using the same JFN
and not obtain another JFN for each one.

If execution of the GTJFN% call is not successful because problems
were encountered in performing the call, the JFN is not assigned and
an error code is returned in the right half of ACl. The execution of
the program continues at the instruction following the GTJFN% call.

If execution of the GTJFN% call is successful, the JFN assigned is
returned in the right half of AC1 and various bits are set in the left
half, if flag bits 11, 12, or 13 were on in the call. (The bits
returned on a successful call are described in Table 3-3.) If bit 11,
12, or 13 was not on in the call, the left half of ACl is zero. The
execution of the program continues at the second instruction after the
GTJFN% call.

USING FILES

Table 3-3: Bits Returned on GTJFN% Call

Bit Symbol Meaning

0 GJYDEV The device field of the file
specification contains wildcard
characters.

1 GJEUNT The unit field of the file
specifications contains wildcard
characters. This bit 1is never set
because wildcard characters are not
allowed in unit fields.

2 GJ%DIR The directory field of the file
specification contains wildcard
characters.

3 GJINAM The filename field of the file
specification contains wi ldcard
characters.

L GJREXT The file type field of the file
specification contains wildcard
characters.

5 GJ%VER The generation number field of the
file specification contains wildcard.
characters.

6 GJZUHV The file wused has the highest
generation number because a generation
number of O was given in the call.

7 GJINHV The file wused has the next higher
generation number because a generation
number of O or -1 was given in the
call.

8 GJRULV The file wused has the lowest
generation number because a generation
number of -2 was given in the call.

9 GJ%PRO The protection field of the file
specification was given.

10 GJZACT The account field of the file

specification was given.

3-11

USING FILES

Table 3-3: Bits Returned on GTJFN% Call (Cont.)

Bit Symbol Meaning

1 GJXTFS The file specification is for a
temporary file.

12 GJRGND Files marked for deletion are not

considered when assigning JFNs in
subsequent calls. This bit is set if
GJXDEL was not set in the call.

13 GJINOD The node name field of the file
specification was given.

17 GJ%GIV Invisible files were not considered
when assigning JFNs.

Examples of the short form of the GTJFN% monitor call are shown in the
following paragraphs.

The following sequence of instructions is used to obtain, from the
user's terminal, the specification of an existing file.

MOVX AC1,GJ%OLD+GJ%FNS+GJ%SHT
MOVE AC2,[.PRIIN,,.PRIOU]
GTJFN%

The bits specified for AC1 indicate that the file specification given
must refer to an existing file (GJ%OLD), that the file specification
is to be accepted from the input JFN in AC2 (GJ%FNS), and that the
short form of the GTJFN% call is being used (GJ%SHT). Because the
right half of ACl is zero, the standard generation number algorithm
will be used. In this GTJFN% call, the file with the highest existing
generation number is used. Because GJ¥FNS is set in ACl1, the contents
of AC2 are interpreted as containing an input JFN and an output JFN.
In this example, the file specification is obtained from the terminal
(.PRIIN) .

The following sequence of instructions is used to obtain, from the
user's terminal, the specification of an output file and to require
confirmation from the user once the file specification has been
obtained.

MOVX AC1,GJ%FOU+GJEMSG+GJECFM+GIZFNS+GISSHT
MOVE AC2,[.PRIIN,,.PRIOU]
GTJFN%

USING FILES

In this example, the bits specified for ACl indicate that
e the file obtained is to be an output file (GJ%FOU),

e after the file specification is obtained, a message is to be
typed (GJ%MSG),

e the user is required to confirm the file specification that
was obtained (GJ%CFM),

e the file specification is to be obtained from the input JFN
in AC2 (GJXFNS),

e the short form of the GTJFN% call is being used (GJ%SHT).

Because the right half of AC1 is zero, the generation number given to
the file will be one greater than the highest generation number
existing for the file. The contents of AC2 are interpreted as
containing an input JFN and an output JFN because GJ¥FNS is set in
AC1.

The following sequence of instructions is used to obtain the name of
an existing file from a location in the user's program.

MOVX AC1,GJ%OLD+GJESHT
MOVE AC2,[POINT 7,NAME]
GTJFN%

NAME :ASCIZ/MYFILE.TXT/

The bits specified for AC1 indicate that the file obtained is to be an
existing file (GJ¥OLD) and that the short form of the GTJFN¥ call is
being used (GJ%SHT). Since the right half of ACl1 is zero, the file
with the highest generation number will be used. Because GJXFNS is
not set, the contents of AC2 are interpreted as containing a pointer
to a string in memory that specifies the file to be associated with
the JFN. The setup of AC2 indicates that the string begins at
location NAME in the user's program. The file specification obtained
from location NAME is MYFILE.TXT.

USING FILES

An alternate way of specifying the same file is the sequence

MOVX AC1,GJ%OLD+GJESHT
HRRO! AC2, [ASCIZ/MYFILE.TXT/]
GTJFN%

3.3.1.2 Long Form Of GTJFN% - The long form of the GTJFN%¥ monitor
call requires the following two words of arguments:

0 17 18 35
! !
AC1 1 0 ! address of argument table !
1 !
0 35
! !
AC2 ! pointer to ASCIZ file specification string, or O !

The argument block for the long form is described in Table 3-4.

Table 3-L: Long Form GTJFN% Argument Block

Word Symbol Meaning
0 .GJGEN Flag bits appear in the left half and
generation number appears in the right
half.
1 .GJSRC An input JFN appears in the left half

and an output JFN appears in the right
half., To omit either JFN, the wuser's
program must specify the symbol .NULIO
(377777) ©

2 .GJDEV Pointer to ASCIZ string that specifies
the device to be wused when none is
given. |If this word is O, DSK will be
used.

USING FILES

Table 3-4: Long Form GTJFN% Argument Block (Cont.)

Meaning

Word Symbol
3 .GJDIR
L .GJNAM
5 .GJEXT
6 .GJPRO
7 <GJACT
10 .GJJFN

11-17

Pointer to ASCIZ string that specifies
the directory to be used when none is
given. |If this word is 0, the wuser's
connected directory will be used.

Pointer to ASCIZ string that specifies
the filename to be used when none is
given. |If this word is 0, the input
must specify the filename.

Pointer to ASCIZ string that specifies
the file type to be used when none is
given. If this word is 0, a null type
will be used.

Pointer to ASCIZ string or 3B2+octal
protection code. This word indicates
the protection to be used when none is
given. I f this word is 0, the
protection as specified in the
directory will be used.

Pointer to ASCIZ string or 3B2+decimal
account number. This word indicates
the account to be used when none s
given., |If this word is 0, the account
specified when the user logged in will
be used.

The JFN to assign to the file
specification if flag bit GJEJFN is
set in word .GJGEN (word O0) of the
argument block.

Additional words allowed if flag bit
GJEXTN (bit 15) is set in word .GJGEN
(word 0) of the argument block. These
additional words are used when
performing command input parsing and
are described in the TOPS-20 Monitor
Calls Reference Manual.

USING FILES

The flag bits accepted in the left half of .GJGEN (word 0) of the
argument block are the same as those accepted in the short form of the
GTJFN% call. The entire set of flag bits is listed in Table 3-2.

The generation number values accepted in the right half of .GJGEN
(word 0) of the argument block can be 0, -1, -2, -3, or a specified
number, although O is the normal case. Refer to Bits 18-35 of Table
3-2 for explanations of these values.

| f execution of the GTJFN%¥ call is successful, the JFN assigned is
returned in the right half of AC1 and various bits are set in the left
half if flag bits 11, 12 or 13 were on in the call. Refer to Table
3-3 for the explanations of the bits returned. Execution of the
program continues at the second instruction following the call.

If execution of the GTJFN call is not successful, the JFN is not
assigned and an error code is returned in the right half of ACi. The
execution of the program continues at the instruction following the
GTJFN% call.

The following sequence of instructions obtains a specification for an
existing file from the user's terminal, assigns the JFN to the next
higher generation of that file, and specifies default fields to be
used if the user omits a field when he gives his file specification.

MOVE! AC1,JFNTAB
SETZ AC2,
GTJFN%

JFNTAB: GJRFOU
XWD .PRIIN,.PRIOU
0

POINT 7,[ASCIZ/TRAIN/] ;default directory
0

POINT 7, [ASCIZ/MEM/] ;default file type
0
0
0

3-16

USING FILES

The address of the argument table for the GTJFN% call (JFNTAB) s
given in the right half of ACI. AC2 contains 0, which means nho
pointer to a string is given; thus, fields for the file specification
will be taken only from the user's terminal. The first word of the
argument block contains a flag bit for the GTJFN% call. This bit
(GJ%FOU) indicates that the next higher generation number is to be
assigned to the file. The second word of the argument block indicates
that the file specification is to be obtained from the user's
terminal, and any output generated because of the user employing
recognition is to be printed on his terminal. |If the user does not
supply a directory name as part of his file specification, the
directory <TRAIN> will be used. And if the user does not give a file
type, the type MEM will be used. |If the user omits other fields from
his specification, the system standard value (refer to Table 3-1) will
be used.

3.3.1.3 Summary Of GTJFN¥ - The GTJFN% monitor call is required to
associate a JFN with a particular file. In most cases, the short form
of the GTJFN% call is sufficient for establishing this association.
However, the long form is more powerful because it provides the user's
program more control over the file specification that is obtained.
The following summary compares the characteristics of the two forms of
the GTJFN% monitor call.

Short Form

Assigns a JFN to a file.
System decides the JFN
to assign.

Accepts the file specification
from a string in memory
or a file.

Uses standard system values
for fields not given
in the file
specification.

Long Form

Assigns a JFN to a file.
User program may request
a particular JFN.

Accepts the file specification
from a string in memory
and a file.

Allows user-supplied values
to be used for fields not
given in the file
specification.

3.4 OPENING A FILE

Once a JFN has been obtained for a file, the user's program must open
the file in order to transfer data. The user's program supplies the
JFN of the file to be opened and a word of bits indicating the desired
byte size, data mode, and access to the file.

3-17

USING FIiLES

The desired access to the file is specified by a separate bit for each
type of access. The file is successfully opened only if the desired
access does not conflict with the current access to the file (refer to
Section 3.1). For example, if the user requests both read and write
access to the file, but write access is not allowed, then the file is
not opened for this user. The allowed types of access to a file are:

® Read access. The file can be read with byte, string, or
random input.

@ Write access. The file can be written with byte, string, or
random output.

e Append access. The file can be written only with sequential
byte or dump output, and the current byte pointer (refer to
Section 3.5.1) cannot be changed. The initial position of
the file pointer is at the end of the file.

® Frozen access. The file can be concurrently accessed by at
most one user writing the file, but by any number of users
reading the file. This is the default access to a file.

e Thawed access. The file can be accessed even if other users
are reading and writing the file.

@ Restricted access. The file cannot be accessed if another
user already has opened the file.

® Unrestricted read access. The file can be read regardless of
what other users might be doing with the file.

3.4.1 OPENF% Monitor Call

The OPENF% (Open File) monitor call opens a specified file. It
requires the following two words of arguments.

0 17 18 35
! 1
AC1 ! 0 ! JFN of file to be opened !
1 1
0 56 9 18 30 31 35
! !
AC2 ! byte !data ! 0 ! access bits | 0 !
I size Imode | ! ! !
! !

USING FILES

If the left half of AC1 is not O, the contents of ACl is interpreted
as a pointer to a string, not as a JFN. |If the user's program

requests bits returned in AC1 from the GTJFN% calil, these bits must be
cleared before executing the OPENF% call.

The byte size (OF%¥BSZ) in AC2 specifies the number of bits in each
| byte of the file and can be between 1 and 36 (decimal). |If this field
| is O a byte size of 36 (decimal) is assumed.

| The file data mode field (OF%MOD) usually has one of two values:

Value Meaning

0 Normal data mode of the file (that is, byte

1/0) . Dump 1/0 is illegal.

17 Dump mode (that is, unbuffered word 1/0).

Byte 1/0 is illegal and the byte size is

ignored.

The access bits are described in Table 3-5.

Table 3-5: OPENF% Access Bits

Bit Symbol Meaning
| 0-5 OF%BSZ Byte size (maximum of 36 decimal).
|
| 6-9 OF%MOD Data mode in which to open file.
18 OF%HER Halt on the occurrence of an 1/0
device or med i um error during
subsequent 1/0 to the file. If this

bit is not set, a software interrupt
is generated if a device or medium
error occurs during subsequent |/0.

19 OF%RD Allow read access.
20 OF%WR Allow write access.

| 21 OF%EX Allow execute access.
22 OF%APP Allow append access.

3-19

USING FILES

Table 3-5: OPENF% Access Bits (Cont.)

Bit Symbol Meaning

23 OF%RDU Allow unrestricted read access.

24 Reserved for Digital.

25 OF¥THW Allow thawed access. |f this bit is
not set, the file is opened for frozen
access.

26 OFZAWT Block (that is, temporarily suspend)
the program until access to the file
is permitted.

27 OF%PDT Do not update the access dates of the
file.

28 OFSNWT Return an error if access to the file
cannot be permitted.

29 OF%RTD Allow access to the file to only one
process (that is, restricted access).

30 OF%PLN Do not check for line numbers in the
file.

31 OF%DUD Suppress system updating of modified
pages in memory to thawed files on
disk unless CLOSF or UFPGS issued.

32 OF%0FL Open device even if off-line.

33 OF%FDT Force update of .FBREF (last read) in
FDB and increment RH of .FBCNT (number
of references).

34 OF%RAR Wait if file off-1ine.

If bits OFSAWT and OF¥NWT are both off, an error code is returned

access

to

if

the file cannot be permitted (that is, the action taken is
identical to OF3NWT being on).

3-20

USING FILES

If execution of the OPENF% monitor call is successful, the file is
opened, and the execution of +the program continues at the second
instruction after the OPENF% call.

| f execution of the OPENF% call is not successful, the file is not
opened, and an error code is returned in ACl. The execution of the
program continues at the next instruction after the OPENF% call.

Two samples of the OPENF% call follow.
The sequence of instructions below opens a file for input.

HRRZ AC1, JFNEXT
MOVX AC2,FLD (kk,OF%BSZ) +OF %RD+OF%PLN
OPENF%

The JFN of the file to be opened is contained in the location
indicated by the address in AC1 (JFNEXT). The bits specified for AC2
indicate that the byte size is one word FLD(LL4,0F%BSZ), that read
access is being requested to the file (OP¥RD), and that no check will
be made for line numbers in the file; that is, the line numbers will
not be discarded (OF%PLN). Because bit OF¥THW is not set, the file
can be accessed for reading by any number of processes.

The following sequence of instructions can be used to open a file for
output.

MOVE AC1,JFN
MOVX FLD (7,0F%BSZ) +OF ¥HER+OF ¥WR+OF%AWT
OPENF%

The right half of AC1 contains the address that has the JFN of the
file to be opened. The bits specified for AC2 indicate that the byte
size is 7-bit bytes FLD(7,0F%BSZ), that the program is to be halted
when an |/0 error occurs in the file (OF¥HER), that write access is
being requested to the file (OF%WR), and that the program is to be
blocked if access cannot be granted (OF%AWT). Because bit OF¥THW is
not set, if another user has been granted write access to the file,
this user's program will be blocked until access can be granted.

3.5 TRANSFERRING DATA
Data transfers of sequential bytes are the most common form of

transfer and can be used with any file. For disk files, nonsequential
bytes and entire pages can also be transferred.

3-21

USING FILES

3.5.1 File Pointer

Every open file is associated with a pointer that indicates the last
byte read from or written to the file. When the file is initially
opened, this pointer is normally positioned before the beginning of
the file so that the first data operation will reference the first
byte in the file. The pointer is then advanced through the file as
data is transferred. However, if the file is opened for append-only
access (bit OF¥APP set in the OPENF% call), the pointer is positioned
after the last byte of the file. This allows the first write
operation to append data to the end of the file.

For disk files, the pointer may be repositioned arbitrarily throughout
the file, such as in the case of nonsequential data transfers. When
the pointer is positioned beyond the end of the file, an end-of-file
indication is returned when the program attempts a read operation
using byte input. When the program performs a write operation beyond
the end of the file using byte output, the end-of-file indicator is
updated to point to the end of the new data. However, if the program
writes pages beyond the end of the file with the PMAP% monitor call
(refer to section 3.5.6), the byte count is not updated. Therefore,
it is possible for a file to contain pages of data beyond the
end-of-file indicator. To allow sequential 1/0 to be performed later
to the file, the program should update the byte count before closing
the file. (Refer to the CHFDB%¥ monitor call description in the
TOPS-20 Monitor Calls Reference Manual.)

3.5.2 Source And Destination Designators

Because 1/0 operations occur by moving data from one location to
another, the user's program must supply a source and a destination for
any |/0 operation. The most commonly-used source and destination
designators are the following:

1. A JFN associated with a particular file. The JFN must be
previousiy obtained with the GTJFN% or GNJFN% monitor call
before it can be used.

2. The primary input and output designators .PRIIN and .PRiOU,

respectively (refer to Section 2.2). These designators
should be used when referring to the terminal.

3-22

USING FILES

3. A byte pointer to the beginning of the string of bytes in the
program's address space that is being read or written. The
byte pointer can take one of two forms:

® A word with a -1 in the left half and an address in the
right half. This form is used to designate a 7-bit ASCIZ
string starting in the left-most byte of the specified
address. A word in this form is functionally equivalent
to a word assembled by the POINT 7,ADR pseudo-op.

e A full word byte pointer with a byte size of 7 bits.

Most monitor calls dealing with strings deal specifically with ASCII
strings. Normally, ASCI| strings are assumed to terminate with a byte
of 0 (that is, are assumed to be ASCIZ strings) . However some calls
optionally accept an explicit byte count and/or terminating byte.
These calls are generally ones that handle non-ASCI | strings and byte
sizes other than 7 bits.

3.5.3 Transferring Sequential Bytes

The BIN% (Byte Input) and BOUT%¥ (Byte Output) monitor calls are used
for sequential byte transfers. The BIN¥ call takes the next byte from
the given source and places it in AC2. The BOUT% call takes the byte
from AC2 and writes it to the given destination. The size of the byte
is that given in the OPENF% call for the file.

The BIN% monitor call accepts a source designator in ACl, and upon
successful execution of the call, the byte is right-justified in AC2.

If execution of the call is not successful, an illegal instruction
trap is generated. Control returns to the user's program at the
instruction following the BIN% call. If the end of the file is

reached, AC2 contains O instead of a byte. The program can process
this end-of-file condition if a jump style error return is the next
instruction following the BIN% call.

The BOUT% monitor call accepts a destination designator in ACl and the
byte to be output, right-justified in AC2. Upon successful execution
of the call, the byte is written to the destination. |If execution of
the call is not successful, an illegal instruction trap is generated
Control returns to the user's program at the instruction following the
BOUT% call.

3-23

USING FILES

The following sequence shows the transferring of bytes from an input
file to an output file. The bytes are read from the file indicated by
INJFN and written to the file indicated by OUTJFN.

LOOP: MOVE 1,INJFN sget source designator from INJFN

BIN% s;read a byte from the source

ERJMP DONE scheck for end of file, if O
LOOP2: MOVE 1,0UTJFN sget destination from OUTJFN

BOUT% ;swrite the byte to the destination

JRST LOOP scontinue until O byte is found
DONE: GTSTS% sobtain status of source

TXNN 2,GSBEOF ;test for end of file

JRST NOTYET sno, test for O in input file

: syes, process end of file condition
NOTYET:MOVEI 2,0 30 in input file

JRST LOOP2

3.5.4 Transferring Strings

The SIN% (String Input) and SOUT% (String Output) monitor calls
are used for string transfers. These calls transfer either a
string of a specified number of bytes or a string terminated with
a specific byte.

The SIN% monitor call reads a string from the specified source
into the program's address space. The call accepts four words of
arguments in AC1 through AChL.

AC1: source designator

AC2: pointer to area in program's address space

AC3: count of number of bytes to read, or 0

ACh: byte on which to terminate input (optional)

The contents of AC3 are interpreted as the number of characters to
read.

e |f AC3 is O, then reading continues until a O byte is found
in the input.

e |if AC3 is positive, then reading continues until either the
specified number of bytes is read, or a byte equal to that
given in ACh is found in the input, whichever occurs first.

e |If AC3 is negative, then reading continues wuntil minus the
specified number of bytes is read.

The contents of ACh needs to be specified only if the contents of AC3
is a positive number. The byte in ACL is right-justified.

3-24

USING FILES

The input is terminated when one of the following occurs:
® The byte count becomes zero.
® The specified terminating byte is reached.
e The end of the file is reached.

® An error occurs during the transfer (for example, a data
error occurs) .

Control returns to the user's program at the instruction following the
SIN% call. If an error occurs (including the end of the file is
reached), an illegal instruction trap is generated. In addition,
several locations are updated:

1. The position of the file's pointer is updated for subsequent
1/0 to the file.

2. The pointer to the string in AC2 is updated to reflect the
last byte read or, if AC3 contained 0, the last nonzero byte
read.

3. The count in AC3 is updated, if pertinent, by subtracting the
number of bytes actually read from the number of bytes
requested to be read (that is, the count is updated toward
zero) . From this count, the user's program can determlne the
number of bytes actually transferred.

The SOUT% monitor call writes a string from the program's address
space to the specified destination. Like the SIN% call, this call
accepts four words of arguments in AC1 through ACL.

AC1: destination designator

AC2: pointer to string to be written

AC3: count of the number of bytes to write, or 0

ACL: byte on which to terminate output (optional)

The contents of AC3 and AChL are interpreted in the same manner as they
are in the SIN% monitor call.

The transfer is terminated when one of the following occurs.
e The byte count becomes zero.

® The specified terminating byte is reached. This terminating
byte is written to the destination.

® An error occurs during the transfer.

3-25

USING FILES

Control returns to the user's program at the instruction following the
SOUT% call. If an error occurs, anh illegal instruction trap is
generated. In addition, the position of the file's pointer, the
pointer to the string in AC2, and the count in AC3, if pertinent, are
also updated in the same manner as in the SIN% monitor call.

The following code sequence shows transferring a string from an input
file to an output file. The procedure is the same as at the end of
Section 3.5.3, using SIN% and SOUT% calls instead of BIN% and BOUT%.

LOOF: MOVE 1sINJFN et source Trom INJFN
HRROT 2RUF128 srointer to string to read into (128
iword huffer)
MOUNT 3y "IN 28%Y%5 Fineut a8 maximum of 640 butes
SINZ stramgfer until end of buffer or end of
ifile
ERCAL EOFQ serror ocourred
ALY Jy"D128%XS idetermine megative number of betes transferred
MOUN 343 iconvert to rositive
MOVE 1s0UTJFN et destination from OUTJFN
HRROI 2yRUF 128 srointer to string to write from
SOUTX stransfer as many butes as read
EOFQ$ MOVE 1sINJFN
GTSTSZ sobtain status of source
TXNN 2+GSXZEOF stest for end of file
RET snoy continue corwing

3.5.5 Transferring Nonsequential Bytes

As discussed in Section 3.5.3, the BIN% and BOUT% calls transfer bytes
sequentially, starting at the current position of the file's pointer.
The RIN% (Random Input) and ROUT% (Random Output) monitor calls allow
the wuser's program to specify where the transfer will begin by
accepting a byte number within the file. The size of the byte is the
size given in the OPENF% call for the file. The RIN% and ROUT% calls
can only be used when transferring data to or from disk files.

The RIN% monitor call takes a byte from the specified location in the
file and places it into the accumulator. The call accepts the JFN of
the file in AC1 and the byte number within the file in AC3. Upon
successful completion of the call, the byte is right-justified in AC2,
and the file's pointer is updated to point to the byte following the
one just read. If an error occurs, an illegal instruction trap is
generated. Control returns to the user's program at the instruction
following the RIN% call.

The ROUT% monitor call takes a byte from the accumulator and writes it
into the specified location in the file. The call accepts the JFN of
the file in AC1, the byte to write right-justified in AC2, and the
byte number within the file in AC3. Upon successful completion of the
call, the byte is written into the specified byte in the file, and the
file's pointer is updated to point to the byte following the one just
written. If an error occurs, an illegal instruction trap is
generated. Control returns to the user's program at the instruction
following the ROUT% call.

3-26

USING FILES

3.5.6 Mapping Pages

Up to this point, monitor calls have been presented for transferring
bytes and strings of data. The next call to be discussed is used to
transfer entire pages of data between a file and a process.

Both files and process address spaces are divided into pages of
512(decimal) words. A page within a file can be identified by one
word, where the JFN of the file is in the left half and the page
number within the file is in the right half. A page within a process
address space can also be identified by one word, where the identifier
of the process (refer to Section 5.3) is in the left half and the page
number within the process' address space is in the right half. Each
one-word identifier for the pages in the process address space is
placed in what is called the process page map. When identifiers for
file pages are placed in the process page map, references to the
process page actually refer to the file page. The following diagram
illustrates a process map that has identifiers for pages from two
files.

File 1
Process Map
JFN1 Page 1 »| Page 1
File 2
JFN2 Page 2 »| Page 2
MR-5-2033-82
The PMAP% (Page Mapping) monitor call is used to map one or more
entire pages from a file to a process (for input), from a process to a
file (for output), or from one process to another process. In

general, this call changes the entries in the process map by accepting
file page identifiers and process page identifiers as arguments.
Mapping pages between a file and a process is described below; mapping
pages between two processes is described in Chapter 5.

3-27

USING FILES

3.5.6.1 Mapping File Pages To A Process - This use of the PMAP% call
changes the map of the process so that references to pages in the
process reference pages in a file. This does not actually cause data
to be transferred; it simply changes the contents of the map. Later
when changes are made to the actual page in the process, the changes
will also be made to the page in the file, if write access has been
specified for the file.

Note that you cannot map file pages to pages in a process section that
does not exist in the the process map. If you use PMAP% to input file
pages to pages in a nonexistent section of a process, the monitor
generates an illegal instruction trap.

In addition, you can map one or more file sections (of 512 pages each)
into a process. See Section 8.3.1 for details.

The PMAP% call accepts three words of arguments in ACl1 through AC3.

AC1: JFN of the file in the left half, and the page number in
the file in the right half

AC2: process identifier (refer to Section 5.3) in the left
half, and page number in the process in the right half

AC3: repetition count and access

The repetition count and access bits that can be specified in AC3 are
described in Table 3-6.

3-28

USING FILES

Table 3-6: PMAP% Access Bits

Meaning

Bit Symbol
0 PM%CNT
2 PMZRD
3 PMIWR
I PMZEX
5 PM%PLD
9 PM%CPY
10 PM%EPN
11 PMXABT

18-35 PMYRPT

Repeat the mapping operation the number of
times specified by the right half of AC3. The
file page number and the process page number
are incremented by 1 each time the operation
is performed.

Allow read access to the page.
Allow write access to the page.

Reserved.
The symbol PM¥RWX can be used to set B2-4.

Preload page being mapped (move the page
immediately instead of waiting until it is
referenced) .

Create a private copy of the page if the
process writes into the page. This is called
copy-on-write and causes the map to be changed
so that it identifies the copy instead of the
original. Write access is allowed to the copy
even if it was not allowed to the original.
This allows a process to change a page of data
without changing the data for other processes
that have also mapped the page.

Bits 18-35 of AC2 contain extended (18-bit)
process page number . I f the section
containing the page does not exist, a private
section is created.

Unmap page and discard (abort) changed
contents.

The number of times to repeat the mapping
operation if bit O(PM¥CNT) is set.

3-29

USING FILES

With this use of the PMAP% call, the present contents of the page in
the process are removed. If the page in the file is currently
nonexistent, it will be created when it is written.

This use of the PMAPX call is valid only if the file is opened for at
least read access. |f write access is requested in the PMAP% call, it
is not granted unless it was also specified in the OPENF% call when
the file was opened.

A file cannot be closed while any of its pages are mapped into any
process. Thus, before a file is closed, its pages must be unmapped
(refer to Section 3.5.6.3).

After execution of the PMAP%¥ call, control returns to the user's
program at the instruction following the call. |f an error occurs, an
illegal instruction trap is generated.

3.5.6.2 Mapping Process Pages To A File - This use of the PMAP% call
actually transfers data by moving the specified page in the process to
the specified page in the file. The process map for the page is now
empty. Both the page in the process and the page in the file must be
private; that is, no other process can have the page mapped into its
address space. The ownership of the process page is transferred to
the file page. The previous contents of the page in the file are
deleted.

The three words of arguments are as follows:

AC1: process identifier (refer to Section 5.3) in the left
half, and page number in the process in the right half

AC2: JFN of the file in the left half, and the page number in
the file in the right half

AC3: repetition count and access (refer to Section 3.5.6.1)

The access requested in the PMAP% call is granted only if it does not
conflict with the access specified in the OPENF% call when the file
was opened.

This use of the PMAP% call does not automatically update the files
byte count and the byte size. To allow the file to be read later with
sequential I/0 monitor calls, the program should update the file's
byte count and the byte size. (Refer to the CHFDB% monitor call in
the TOPS-20 Monitor Calls Reference Manual).

3-30

USING FILES

3.5.6.3 Unmapping Pages In A Process - As stated previously, a file
cannot be closed if any of its pages are mapped in any process. To
unmap a file's pages from a process, the program must execute the
SMAP% call, or the following form of the PMAP% call:

AC1: -1

AC2: process identifier in the left half, and page number in
the process in the right half.

AC3: the repeat count for the number of pages to remove from
the process (refer to Section 3.5.6.1).

3.5.7 Mapping File Sections to a Process

A section of memory is a unit of 512 pages of process address space.
File sections also contain 512 pages. The first page of each file
section has a page number that is an integral multiple of 512. Like
memory pages, sections can be mapped from one process to another, from
a process to itself, or from a file to a process. Chapter 8 describes
the SMAP% call completely.

The SMAP% (Section Mapping) monitor call is similar to the PMAP% call.
The SMAP% call maps one or more sections from a file to a process (for
input), or from one process to another process. To map a process
section to a file, you must use the PMAP% call as described in Chapter
5 to map each page.

Mapping a file section to a process section with SMAP% does not cause
data to move from the disk to memory. Instead, SMAP% changes the
contents of the process memory map so that the process section pointer
points to a file section. The monitor transfers data only when your
program references a memory page to which a file page is mapped.

3-31

USING FILES

To map a file section to a process section, SMAPY requires three

arguments:

AC1:

AC2:

AC3:

The flags

Table 3-7:

source identifier: a JFN in the left half, and a file
section number in the right half. |f several contiguous
sections are to be mapped, the number in the right half is
that of the first section in the group of contiguous
sections.

destination identifier: process identifier in the left
half, and a process section number in the right half. |f
several contiguous sections are to be mapped, the number
in the right half is the number of the first section into
which SMAP% maps a file section.

flags that control access to the process section in the
left half, and, in the right half, the number of sections
to map into the process. The number of sections to map
cannot be less than 1 nor more than 32 (decimal).

in the left half of AC3 are described in Table 3-7.

SMAP% Access Bits

Bit

Symbol Meaning

SM%RD Allow read access.
SMIWR Allow write access.
SMXEX Allow execute access.

SMZIND Map the destination section using an indirect
section pointer.

3-32

USING FILES

3.6 CLOSING A FILE

Once data has been transferred to or from a file, the user's program
must close the file. When a file is closed, the system automatically
performs the following:

1. Updates the directory information for the file. For example,
for a file to which sequential bytes had been written, the
byte size and byte count are updated when the file is closed.

2. Releases the JFN associated with the file. However, the
user's program can request to close the file, but retain the
JFN assignment. This is useful if the program plans to
reopen the same file later, but does not want to execute
another GTJFN% call,

3.6.1 CLOSF% Monitor Call

The CLOSF% (Close File) monitor call closes either the specified file
or all files that are opened for the process executing the call. The
CLOSF% call accepts one word of arguments in AC1 - flag bits in the
left half and the JFN of the file to be closed in the right half. The
flag bits are described in Table 3-8.

Table 3-8: CLOSF% Flag Bits

Bit Symbol Meaning
o) CO%NRJ Do not release the JFN from the file.
6 CZ%ABT Abort any output operations currently being

done. That 1is, close the file but do not
perform normal cleanup operations (for example,
do not output any data remaining in the
buffers). |f output to a new disk file that has
not been closed is aborted, the file is closed
and then deleted.

7 CSENUD Do not update the copy of the directory on the
disk (refer to the CHFDB% description in the
TOPS-20 Monitor Calls Reference Manual for more
information) .

3-33

USING FILES

If the contents of ACl is -1, all files that are opened for this
process are closed.

If the execution of the CLOSF% call is successful, the specified
file is closed, and the JFN associated with the file is released if
CO%ZNRJ was not set in the call. The execution of the user's program
continues at the second location after the CLOSF% call.

If the execution of the CLOSF% call is not successful, the file s
not closed and an error code is returned in the right half of ACl.
The execution of the user's program continues at the instruction
following the CLOSF% call.

The following sequence illustrates the closing of two files.

CLOSIF: HRRZ 1,INJFN sobtain input JFN
CLOSF% ;close input file
ERJMP FATAL ;if error, print message and stop
CLOSOF: HRRZ 1,0UTJFN sobtain output JFN
CLOSF% ;close output file
ERJMP FATAL ;if error, print message and stop

3.7 ADDITIONAL FILE 1/0 MONITOR CALLS

3.7.1 GTSTS% Monitor Call

The GTSTS% (Get Status) monitor call obtains the status of a file.
This call accepts one argument word - the JFN of the file in the
right half of the ACl. The left half of ACl1 is zero.

Control always returns to the user's program at the instruction
following the GTSTS% call. Upon return, appropriate bits reflecting
the status of the specified JFN are set in AC2. These bits, and
their meanings, are described in Table 3-9. Note that if the JFN is
illegal or unassigned, bit 10 (GSXNAM) will not be set.

3-34

USING FILES

Table 3-9: Bits Returned on GTSTS% Call
Bit Symbol Meaning

0 GS%OPN The file is open. |If this bit is not
set, the file is not open.

] GS%RDF If the file is open (for example,
GSBOPN is set), it is open for read
access.

2 GSYWRF If the file is open, it is open for
write access.

3 GS%XCF File is open for execute access.

4 GS%RND If the file is open, it is open for
non-append access (that is, its
pointer can be reset).

5-6 Reserved for Digital.

7 GS%LNG File has pages in existence beyond
page number 511.

8 GS%EOF The last read operation to the file
was at the end of the file.

9 GS%ERR The file may be in error (for example,
the bytes read may be erroneous).

10 GSINAM A file specification is associated
with this JFN. This bit will not be
set if the JFN is in any way illegal.

11 GS%AST One or more fields of the file

' specification associated with this JFN
contain a wildcard character.

12 GSIASG The JFN is currently being assigned
(that is, a process other than the one
executing the GTSTS call is assigning
this JFN) .

13 GSZHLT An 1/0 error is considered to be a

terminating condition for this JFN.
That is, the OPENF% call for this JFN
had bit OF%HER set.

3-35

USING FILES

Table 3-9: Bits Returned on GTSTS% Call (Cont.)

Bit Symbol Meaning
14-16 Reserved for Digital.
17 GS%FRK Access to the file is restricted to

only one process.

18 GS%PLN If on, file line numbers are passed
during input; if 2zero, line numbers
are stripped before input.

19-31 Reserved for Digital.

32-35 GS%MOD The data mode of the file (refer to
the OPENF% call).

Value Symbol Meaning
0 .GSNRM Normal (sequential) 1/0
1 .GSSMB Small buffer mode
10 .GSIMG Image (binary) 1/0
17 «GSDMP Dump 1/0

An example of the GTSTS% call is shown in the first program in Section
3.9.

3.7.2 JFNS% Monitor Call
The JFNS% (JFN to String) monitor call returns the file specification
currently associated with the specified JFN. The call accepts three
words of arguments in AC1 through AC3.
AC1: destination designator where the file specification
associated with the JFN is to be written. This
specification is an ASCIZ string.

AC2: JFN or pointer to string (see below)

AC3: format to be used when returning the specification (see
below)

3-36

USING FILES

The contents of AC1 can be any valid destination designator (refer to
Section 3.5.2).

The contents of AC2 can be one of two formats. The first format is a
word with either flag bits or O in the left half and the JFN in the
right half. The bits that can be given in the left half of AC2 are
the ones returned from the GTJFN% call (refer to Table 3-3). When the
left half of AC2 is nonzero (that is, contains the bits returned from
the GTJFN% call), the string returned will contain wildcard characters
for appropriate fields and 0, -1, or -2 as a generation number if the
corresponding bit is on in the JFNS% call. When the left half of AC2
is 0, the string returned is the exact specification for the file (for
example, wildcard characters are not returned for any fields). If the
JFN is associated only with a file specification and not with an
actual file (that is, bit GJ¥0OFG was set in the GTJFN% call), the
string returned will contain null fields for unspecified fields and
the actual values for specified fields. The second format allowed for
AC2 is a pointer to the string in the program's address space that is
to be returned upon execution of the call. Refer to the TOPS-20
Monitor Calls Reference Manual for the explanation of this format.

The contents of AC3 specify the format in which the specification is
written to the destination. Bits O through 20 are divided into 3-bit
bytes, each byte representing a field in the file specification. The
value of the byte indicates the format for that field. The possible
values are:

Value Symbol Meaning

0 .JSNOF Do not return this field when returning the
file specification.

1 +.JSAOF Always return this field when returning the
file specification.

2 .J58SSD Suppress this field if it is the standard
system value for this field (refer to Table
3-1).

If the contents of AC3 is zero, the file specification is written in
the format

dev:<directory>name.typ.gen;T
with fields the same as the standard system value (see Table 3-1) not
returned and protection and account fields returned only if bit 9 and

bit 10 in AC2 are on, respectively. The temporary attribute (;T) is
returned only if the file is temporary.

3-37

USING FILES

Table 3-10 describes the bits that can be set in AC3.

Table 3-10:

JFNS% Format Options

Bit Symbol Meaning

0 JSINOD Print node name if node name is
present.

1-2 JSEDEV Format for device field.

3-5 JSXDIR Format for directory field.

6-8 JSINAM Format for filename field. A value of
2 (that is, bit 7 set) for this field
is illegal.

9-11 JSETYP Format for file type field. A value
of 2 (that is, bit 10 set) for this
field is illegal.

12-1L JSXGEN Format for generation number field.

0-14 JS%SPC Output for all file specification
fields named above. This field should
have the same bits set as would be set
in the fields above. (See B35
(JSZPAF) below.)

15-17 JS%PRO Format for protection field.

18-20 JS%ACT Format for account field.

21 JSETMP Return temporary file indication ;T if
the file specification is for a
temporary file.

22 JS%S1Z Return size of file in pages (see
below) .

23 JS%CDR Return creation date of file (see
below) .

24 JSZLWR Return date of last write operation to

file (see below).

3-38

USING FILES

JFNS% Format Options (Cont.)

Meaning

Table 3-10:

Bit Symbol
25 JSSLRD
26 JS%PTR
27 JSXATR
28 JSEATI
29 JS%OFL
30-31

32 JS%PSD
33 JSXTBR
34 JS¥TBP
35 JSYPAF

Return date of last read operation
from file (see below).

AC2 contains a pointer to the string
containing the field to be returned
(refer to the TOPS-20 Monitor Calls
Reference Manual for a description of
this use of the JFNS% call).

Return file specification attributes
if appropriate.

Return specification attribute
referenced in ACL.

Return the "OFF-LINE" attribute.
Reserved for Digital.

Punctuate the size and date fields
(see below) in the file specification
returned.

Place a tab before all fields returned
(that is, fields whose value is given
as 1 in the 3-bit field) in the file
specification, except for the first
field.

Place a tab before all fields that may
be returned (that s, fields whose
value is given as 1 or 2 in the 3-bit
field) in the file specification,
except for the first field.

Punctuate all fields (see below)
returned in the file specification
from the device field through the ;T
field.

If bits 32 through 35 are not set, no
punctuation is used between the
fields.

3-39

USING FILES

The punctuation used on each field is shown below.

dev:<directory>name.typ.gen;A(account);P(protection);T(temporary)
,size,creation date,write date,read date

Refer to Section 1.2.2 for information on error returns.

3.7.3 GNJFN% Monitor Call

Occasionally a program may be written to perform similar operations on
a group of files instead of only on one file. However, the program
should not require the user to give a file specification for each
file. Because the GTJFN% call associates a JFN with only one file at
a time, the program needs a method of assigning a JFN to all the files
in the group. By using the GTJFN% call to initially obtain the JFN
and the GNJFN% call to assign the same JFN to each subsequent file in
the group, a program can accept a specification for a group of files
and process each file in the group individually. After the user gives
the initial file specification, the program requires no additional
input.

Before an example showing the interaction of these two calls is given,
a description of the GNJFN%¥ (Get Next JFN) monitor call s
appropriate.

The GNJFN% monitor call assigns a JFN to the next file in a group of
files that have been specified with wildcard characters. The next
file is determined by searching the directory in the order described
in Section 3.3.1.1 wusing the current file as the first item. This
call accepts one argument word in AC1 - the flags returned from the
GTJFN¥ call in the left half and the JFN of the current file in the
right half. |In other words, the information returned in ACl1 from the
GTJFN% call is given as an argument to the GNJFN% call. Therefore,
the program must save this information for use with the GNJFN% call.

If execution of the GNJFN%¥ call 1is successful, the same JFN s
assigned to the next file in the group. The left half of AC1 contains
various flags and the right half contains the JFN. The execution of
the program continues at the second instruction after the GNJFN% call.

Table 3-11 describes the bits that can be returned in ACl on a
successful GNJFN% call.

3-40

USING FILES

Table 3-11: GNJFN% Return Bits

Bit Symbol Meaning

13 GN%STR ~ A change in structure occurred between
the previous file and this file.

14 GN%DIR A change in directory occurred between
the previous file and this file.

15 GNINAM A change in filename occurred between
the previous file and this file.

16 GNIEXT A change in file type occurred between

the previous file and this file. |If
GNENAM is on, this bit will also be on
because the system considers two files
with different filenames but with the
same file type as a change in both the
name and type.

I f execution of the GNJFN% call is not successful, an error code is
returned in the right half of ACl1. Conditions that can cause an error
return are:

1.

The file currently associated with the JFN must be c¢losed,
and it is not. This means that the program must execute a
CLOSF% call (with CO%NRJ set to retain the JFN) before
executing a GNJFN% call.

There are no more files in this group. This return occurs on
the first GNJFN% call after all files in the group have been
stepped through. The JFN is released when there are no more
files. (Note: This error may occur if the file currently
associated with the JFN is deleted or renamed.)

The execution of the program continues at the next instruction after
the GNJFN% call.

3-41

USING FILES

Consider the following situation. The user wants to write a program
that will accept from his terminal a specification for a group of
files and then perform an operation on each file individually without
requiring additional input. Assume the wuser's directory <TRAIN>
contains the following files:

FIRST.MAC.
FIRST.REL.1
SECOND.REL.1
THIRD.EXE.1

As discussed in Section 3.3.1.1, a group of files can be given to the
GTJFN call by supplying a specification that contains wildcard
characters in one or more of its fields. Thus, the specification

<TRAIN>% %
would refer to all four files in the user's directory <TRAIN>.

In his program, the user includes a GTJFN% call that will accept the
above specification.

The call is

MOVX AC1,GJ%OLD+GJ% | FG+GJEFLG+GJXFNS+GJXSHT
MOVE AC2,[.PRIIN,,.PRIOU]
GTJFN%

and indicates that

1. The file specification given must refer to an existing file
(GJ%0LD) .

2. The file specification given is allowed to contain wildcard
characters (GJ%IFG).

3. Flags will be returned in AC1 on a successful call (GJRFLG).
The flags must be returned because they will be given to the
GNJFN% call as arguments.

L, The contents of AC2 will be interpreted as containing an
input and output JFN (GJRFNS) .

5. The short form of the GTJFN% call is being used (GJYSHT).

6. The file specification is to be read from the user's terminal
(.PRIIN,,.PRIOU) .

When the user types the specification <TRAIN>%.* as input, the system
associates the JFN with one file only. This file is the first one
found when searching the directory in the order specified in Section
3.3.1.1. Thus the JFN returned is associated with the file
FIRST.MAC.1.

3-42

USING FILES

After the GTJFN¥ call is successfully executed, AC1 contains
appropriate flags in the left half and the JFN assigned in the right
haif. The flags that will be returned in this particular situation
are:

GJEINAM (bit 3) A wildcard character appeared in the name
field of the file specification given.

GJREXT (bit L) A wildcard character appeared in the type
field of the file specification given.

GJZGND (bit 12) Any files marked for deletion will not be
considered.

These flags inform the program of the fields that contained wildcard
characters. The wuser's program must now save the contents of ACI
because this word will be used as the argument to the GNJFN% call.
The program then performs its desired operation on the first file.
Once its processing is completed, the program is ready for the
specification of the next file. But instead of requesting the
specification from the user, the program executes the GNJFN% call to
obtain it. The argument to the GNJFN% call is the contents of ACI1
returned from the previous GTJFN% call. Thus, the call in this case
is equivalent to:

MOVE AC1, [GJENAM+GIZEXT+GJEGND, , JFN]
GNJFN%

Upon successful execution of the GNJFN% call, the JFN is now
associated with the next file in the group (that is, FIRST.REL.1).
AC1 contains appropriate flags in the left half and the same JFN in
the right half. In this example, the flag returned is GN¥EXT (bit 16)
to indicate that the file type changed between the two files.

 After processing the second file, the user's program executes another
GNJFN¥ call wusing the original contents of ACl returned from the
GTJFN% call. The original contents must be used because this word
indicates the fields containing wildcard characters. |f the current
contents of AC1 (that is, the flags returned from the GNJFN% call) are
used, a subsequent GNJFN%¥ call would fail because there are no flags
set indicating fields containing wildcard characters. This second
GNJFN% call associates the JFN with the file SECOND.REL.1. The flags
returned in AC1 are GNZNAM (bit 15) and GNZEXT (bit 16) indicating
that the filename and file type changed between the two files.
(Remember that a change in filename implies a change in file type even
if the two file types are the same.)

3-43

USING FILES

After processing this third file, the user's program executes another
GNJFN% call using the original contents of AC1. Upon execution of the
call, the JFN is now associated with THIRD.EXE.1, and the flags
returned are GN%NAM and GN3EXT, indicating a change in the filename
and file type.

After processing the file THIRD.EXE.1, the user's program executes a
final GNJFN% call. Since there are no more files in the group, the

call returns an error code and releases the JFN. Execution of the
user's program continues at the instruction following the GNJFN% call.

3.8 SUMMARY
To read from or write to a file, the user's program must:

1. Obtain a JFN on the file with the GTJFN% monitor call (refer
to Section 3.3.1).

2. Open the file with the OPENF% monitor call (refer to Section
3.4.1).

3. Transfer the data with byte, string, or page 1/0 monitor
calls (refer to Section 3.5).

L., Close the file with the CLOSF% monitor call (refer to Section
3.6.1).

3-hi

USING FILES

3.9 FILE EXAMPLES

Example 1 - This program assigns JFNs, opens an input file and an
output file, and copies data from the input file to the output file.
Data is copied until the end of the input file is reached. Refer to
the TOPS-20 Monitor Calls Reference Manual for explanation of the
ERSTR% monitor call.

PRk FROGRAM TO COFY INFUT FILE TO QUTFUT FILE. %KX

H (USING RINZ/ROUTZ AND IGNORING NULLS)
TITLE FILEIO STITLE OF PROGRAM
SEARCH MONSYM FBEARCH SYSTEM JSYS~-SYMROL LIBRARY

HEARCH MACSYM
+REQUIRE SYSIMACREL

PRk IMPURE DATA STORAGE AND DEFINITIONS X%%

INJFN? RLOCK 1 PETORAGE FOR INFUT JFN

DUTJFNG BLOCK 1 FETORAGE FOR OUTFUT JFN
FOLEN=3 FETACK HAS LENGTH 3

FOLSTS RBLOCK FOLEN FGET ASIDE STORAGE FOR STACK
STHAC . SDEFINE STANIARD ACs. SEE MACSYM.

PRKK FROGRAM INITILIZATION Xk

STARTS: REBETY SCLOSE FILESy ETC.
MOVE FyLTOWD POLENyFDLSTI] SESTARLISH STACK

Pkkk GET INFUT FILE %Xk

INFTL FFROMPT FOR CINPUT FILE
TMEG -
INFUT FILE? = FON CONTROLLING TERMINAL

MOUX TiyGJIXOLIHGIZFNSHGIZEHT §SEARCH MODES FOR GYJFN
FEXTSTING FILE ONLY» FILE-NRs IN R
FSHORT CALL
MOVE T2y LoFRIINy » o FRIOUT SGTJUFN/S T/0 WITH CONTROLLLING TERM
GTJFNZ FGET JOB FILE NUMBER C(JFN)
ERJMFS [FUSHJ FyWARN 5TF ERRORy GIVE WARNING
JRET O INF L FAND LET HIM TRY AGAIN
MOVEM T1» INJFN FHUCCESSy SAVE THE JFN

AKX GET OUTFUT FILE %okxX

OUTFIL.¢ SPRINT PROMPT FOR
TMSG {
QUTFUT FILE? FOUTHFUT FILE

MOVX T]vbJ/PUU+GJ/MWh+QJ/LIM+bJ7FNQPGJ49HT SGTUFN SEARCH MODES
FAULT TO NEW GENERATIONy FRINT

V GEAGEy REQUIRE CONFIRMATION

POFTLE-NR‘G IN T2e SHORT CaAld. 1
MOVE T2y LoFRIINy s (PRIOUD 5170 WITH CONTROLLING TERMINAL
GTJFNZ FGET JOB FILE NUMRER

ERJMFS [FUSHJ FyWARN 3 TF ERRORy GIVE WARNING
JRET QUTF L SAND LET HIM TRY AGAIN
MOVEM T1s0UTJFN FHAVE THE JFN

3-45

USING FILES

FNOWs OFEN THE FILES WE JUST GOT
¥ INFUT
MOVE T1yINJFN SRETRIEVE THE INFUT JFN
MOUX T2yFLOC7yOFZRSZ)+OF%RD $MODES FOR OPENF L7-RIT RYTES + INFUTI
OFENFZ% $OFEN THE FILE
ERJMFS FATAL $IF FERRORs GIVE MESSAGE AND STOF

} OUTFUT

MOVE Ti1,»0UTJFN FGET THE QUTFUT JFN

MOUX T2yFLIC7yOFZESZ) +OF%WR sMOLES FOR OFENF C7-BIT BYTES + OUTFUT]
OFENFZ $OPEN THE FILE

ERJMFS FATAL FIF ERROR, GIVE MESSAGE AND STOF

kKX MAIN LOOFS CORY RYTES FROM INFUT TO QUTFUT XXX

LOOF? MOVE T1sINJFN $GET THE INFUT JFN
EINZ FTARE A BYTE FROM THE SOURCE
JUMFE T2y DONE IF Oy CHECK FOR END OF FILE
MOVE Ti1sQUTJFN FGEYT THE OUTFUT JFN
ROUT SOUTFUT THE BYTE TO DESTINATION
ERCALS ERROR
JRET L.OOF SLO0OFs STOF ONLY ON A O BYTE
§ CFOUND AT LOOF+2)

$kXk% TEST FOR END OF FILEy ON SUCCESS FINISH UF XxX

DONE? GT8TSZ FGET THE STATUS OF INFUT FILE
TXNN T2yG8ZEQF AT END OF FILE®
JRST 1.OOF FNOy FLUSH NULL ANIN CONTINUE COFY

CLOSIF?! MOVE T1»INJFN FYESy RETRIEVE INFUT JFN
CLOSF% sCLOSE INFUT FILE
ERJIMFS FATAL PIF ERRORy OTVE MESSAGE AND SYTOF

CLOSOF?: MOVE T1yOUTUJFN FRETRIEVE QUTFUT JFN
CL.OGFZ FCLOSE QUTEFUT FILE
ERJMFS FATAL $IF ERRORs GIVE MESSAGE AND STOF
THSG -«

CDONED SUCCESSFULLY DONE

H
JRET ZAF FSTOF

$XkX ERROR HANDLING XXX

FATAL S TM8G -

T FFATAL ERRORS PRINT ? FIRST
FUSHJ Py ERROR FTHEN FRINT ERROR MESSAGE
JRET ZaF $ANIL STOM

WARN? TMSG <
A SWARNINGS FRINT 7% FIRST
SAND FALL THRU “ERROR’ BACK TO CALLER

ERRORE MOVETL Tle FRIOU

FRINCIFAL OUTFUT DEVICE
ROR MESSAGE

MOVE T2 L FHSLFy v -1 FCURRENT FORK»» LAST ERROR
GETZ T3 FNO LIMITsy FULL MESSAGE
ERSTRYZ FFRINT THE SAGE

JECL. S OUNGEFINED ERROR NUMBER
- (ERROR DURING EXE OF ERSTR
RETURN TO CALLER

FOFJ Fo

Ak HALTF% i
JRET SYART i
END STORT H

STOF
- ARE RES .
TELL LINKING LOARER START ADNDRESS

3-46

USING FILES

Example 2 - This program accepts input from a user at the terminal and
then outputs the data to the line printer. Refer to Section 2.9 for
explanation of the RDTTY% call.

TITLE LFTRNT $
SEARCH MONSYM § 8
SEARCH MACHSYM

UTRE SYSIMACREL

DGRAM TO PRINT TERMINAL INPUT ON PRINTER
CARCH SYSTEM JBYS-SYMBOL LIBRARY

HTNAC . FNEFINE STANDARIY ACs

1
1
' BUTGII

T4 5 R

170y ETEC,
L STACK

1 0OCEND WITH "Z) ¢
l.JT FROMPTING T
) INTER TO BUFFE
AX # OF CHARS TO READ
R

TERMINAL

3 CENTER TEXT TC

RS REMATINING IN BUFFER

I TJvBUI 5 12K § TE NUMR OF CHARS R
SUR T1,72 5 MINUS CHARS REMAINING
$08 Ti1 SHONT INCLUDE "Z
MOVEM T1yCOUNT SHAVE & OF CHARS INFUT

FGET A JFN FOR THE FRINTER ANI OFEN THE FRINTER

MOUX TLyGURSHTIGIZFOU SOUTFUT FILEy SHORT CALL
HRROT T2y LAGCLZ ZLFPTIZL SGET POINTER TO NAME OF FILE
GTJFNZ] JFN FOR THE FRINTER
ERJIMPES JFNERR k1% OR MESSAGE
MUUEM T1y T JFN JEN
MOVX 7![“(/70%/“%1)+UP4NI : WRITE ACCESS WANTED
(1FENT/ :' i} FOR QUTHEUT
ERJMFS OFNERR lH|NT ERROR MESSAGE

SNOW QUTFUT THE TEXT THAT WAS INFUT FROM THE TERMINAL

HRROL T3y RUFFER COTOTEXT (PRINTER JFN STILL IN T1)

MOUN T3 COUNT SET NUMBER OF CHARS TO OQUTFUT

GOUTX sOUTPUT STRING OF CHARS TO THE FRINTER

ERJMPS DATERR FERRORy FRINT ERROR MESSAGE

TMEG <
OUTFUT HAS BEEN SENT TO THE FRINTER...
= vUUTFUl CONFIRMATION MESSAGE
MOVE T1yLFTJFN | JE
CLOSFX
ERJMPS DATERR L X 1)
HALTEZ vF1N]hHIH
JRET START PIF CONTINUEDY GO RACK TO START

ERRORy FRINT ERROR MESSAGE

3-47

CHAPTER 4

USING THE SOFTWARE INTERRUPT SYSTEM

L.1 OVERVIEW

Program execution wusually occurs in a sequential manner, where
instructions are executed one after another. But sometimes a program
must be able to receive asynchronous signals from terminals, the
monitor, or other programs, or as a result of its own execution. By
using the software interrupt system, the user can specify conditions
that will cause his program to deviate from its sequential method of
execution,

An interrupt is defined as a break in the normal flow of control
during a program's execution. The break, or interrupt, is caused by
the occurrence of a prespecified condition. By specifying the
conditions that can cause an interrupt, the program has the capability
of dynamically responding to external events and error conditions and
of generating requests for services. Because the program can respond
to special conditions as they occur, it does not have to explicitly
and repeatedly test for them. In addition, the program's execution is
faster because the program does not have to include a special test
after the possible occurrence of the condition.

When an interrupt occurs, the system transfers control from the main
program sequence to a previously-specified routine that will process
the interrupt. After the routine has completed its processing of the
interrupt, the system can transfer control back to the program at the
point it was interrupted, and execution can continue. See Figure L-1.

USING THE SOFTWARE INTERRUPT SYSTEM

User
Program
I

S
Executing

Interrupt
Condition
Occurs

Is an
Interrupt of Execute
Enabled for Higher Priority _ | Users
Condition on This, Being Interrupt
Channel? Processed? Routine
Wait Until
Higher Priority
Interrupt
Finishes
Perform System
Default Action
(e.g., stop Job,
print message)
User Program
Continues if Job
Has Not Been
Terminated
MR-S-2027-82

Figure L-1: Basic Operational Sequence of the Software Interrupt
System

4-2

USING THE SOFTWARE INTERRUPT SYSTEM

L.2 INTERRUPT CONDITIONS

Conditions that cause the program to be interrupted when the interrupt
system is enabled are:

].

Conditions generated when specific terminal keys are typed.
There are 36 possible codes; each one specifies the
particular terminal character or condition on which an
interrupt is to be initiated. Refer to Table 4-2 for the
possible codes.

tnvalid instructions (for example, /0 instructions given in
user mode) or privileged monitor calls issued by a non
privileged user.

Memory conditions, such as illegal memory references.

Arithmetic processor conditions, such as arithmetic overflow
or underflow.

Certain file or device conditions, such as end of file.
Program-generated software interrupts.

Termination of an inferior process.

System resource unavailability.

Interprocess communication (1PCF) and Enqueue/Dequeue
interrupts.

4-3

USING THE SOFTWARE INTERRUPT SYSTEM

L.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES

Each condition is associated with one of 36 software interrupt
channels. Most conditions are permanently assigned to specific
channels; however, the user's program can associate some conditions
(for example, conditions generated by specific terminal keys) to any
one of the assignable channels. (Refer to Table L-1 for the channel
assignments.) When the condition associated with a channel occurs, and
that channel has been activated, an interrupt is generated. Control
can then be transferred to the routine responsible for processing
interrupts on that channel.

The user program assigns each channel to one of three priority levels.
Priority levels allow the occurrence of some conditions to suspend the
processing of other conditions. The levels are referred to as level
1, 2, or 3 with level 1 having the highest priority. Level O is not a
legal priority level.!

! If an interrupt is generated in a process where the priority
level is 0, the system considers that the process is not
prepared to handle the interrupt. The process is then suspended
or terminated according to the setting of bit 17 (SC%ZFRZ) in its
capability word.

L-4

USING THE SOFTWARE INTERRUPT SYSTEM

Table L-1: Software Interrupt Channel Assignments

Channel Symbol Meaning

0-5 Assignable by user program

6 . 1CAOV Arithmetic overflow

7 .ICFOV Arithmetic floating point overflow
8 Reserved for Digital

9 .1CPOV Pushdown list (PDL) overflow!
10 . 1CEOF End of file condition

11 . |CDAE Data error file condition'!

12 . 1CQTA Disk quota exceeded

13-14 Reserved for Digital

15 LACILI I1legal instruction!?

16 .ICIRD I1legal memory read !

17 .1CIWR Il1legal memory write!

18 Reserved for Digital

19 JACIFT Inferior process termination
20 . ICMSE System resources exhausted!
21 Reserved for Digital

22 . |CNXP Nonexistent page reference
23-35 Assignable by user program

1

These channels (called panic

deactivated.

An

interrupt

channels) cannot be completely
generated on one of these channels

terminates the process if the channel is not activated.

4-5

USING THE SOFTWARE INTERRUPT SYSTEM

The software interrupt system processes interrupts on activated
channels only, and each channel can be activated and deactivated
independently of other channels. When activated, the <channel can
generate an interrupt for its associated priority level. An interrupt
for any priority level is initiated only if there are no interrupts in
progress for the same or higher priority levels. |f there are, the
system remembers the interrupt request and initiates it after all
equal or higher priority level interrupts finish. This means that a
higher priority level request can suspend a routine processing a lower
level interrupt. Thus, the user must be concerned with several items
when he assigns his priority levels. He must consider 1) when one
interrupt request can suspend the processing of another and 2) when
the processing of a second interrupt cannot be deferred until the
completion of the first., See Figure L-2,

Level 1
Channel 4
Interrupt
Routine
Level2 [~ — — — -=
Channel 6 Waiting Channel 6 Interrupt
Interrupt Routine Continues
Routine
Level3 |= = = = —
Waiting Channel 35
Interrupt
Routine
Waiting
e ETE NI o Rl B I M e —— e e ———————————ee
User Program User Program
Execution Continues
Interrupt on
Channel 4
Interrupt on that Has a Interrupt on Channel 6 Channel 35
Channel 6 Priority Level Channel 35 Interrupt Interrupt
that Has a of 1 Channel 4 that Has a Completes Completes
Priority Level Interrupt Priority Level
of 2 Completes of3 MR-§-2030-82

Figure k-2: Channels and Priority Levels

4-6

USING THE SOFTWARE INTERRUPT SYSTEM

L. SOFTWARE INTERRUPT TABLES

To process interrupts, the user includes, as part of his program,
special service routines for the channels he will be using. He must
then specify the addresses of these routines to the system by setting
up a channel table. In addition, the wuser must also include a
priority level table as part of his program. Finally, he must declare
the addresses of these tables to the system.

L.4.1 Specifying the Software Interrupt Tables

Before using the software interrupt system, the wuser's program must
set up the contents of the channel table and the priority level table.
The program must then specify their addresses with either the SIR% or
XSIR% monitor calls.

These calls are similar, but their differences are important. The
SIR¥ call can be used in single-section programs, but the XSIR% call
must be used in programs that use more than one section of memory.
The SIR% call works in non-zero sections only if the tables are in the
same section as the code that makes the call. The code that causes
the interrupt must also be in that section, as must the code that
processes the interrupt. Because of the limitations of the SIR% call,
you should use the XSIR% call.

The SIR% monitor call accepts two words of arguments: the identifier
for the program (or process) in ACl, and the table addresses in AC2.
Refer to Section 5.3 for the description of process identifiers.

The following example shows the use of the SIR% call.

MOVE! 1, .FHSLF sidentifier of current process
MOVE 2, [LEVTAB,,CHNTAB] ;addresses of the tables
SIR%
The XSIR¥ call accepts the following arguments: in AC1, the

identifier of the process for which the interrupt channel tables are
to be set; in AC2, the address of the argument block.

The argument block is a three-word block that has the following
format:

! Length of the argument block, including this word !

! Address of the channel table !

USING THE SOFTWARE INTERRUPT SYSTEM

Control always returns to the wuser's program at the instruction
following the SIR¥ and XSIR% calls. |If the call is successful, the
table addresses are stored in the moni tor. If the call is not
successful, an illegal instruction trap is generated.

Any changes made to the contents of the tables after the XSIR% or SIR%

calls have been executed will be in effect at the time of the next
interrupt.

4L.4.2 Channel Table

The channel table, CHNTAB, 2 contains a one-word entry for each
channel; thus, the table has 36 entries. Each entry corresponds to a
particular channel, and each channel is associated at any given time
with only one interrupt condition. (Refer to Table L-1 for the
interrupt conditions associated with each channel.)

The CHNTAB table is indexed by the channel number (0 through 35). The
general format, for use with the XSIR%¥ and XRIR% monitor calls, can be
used in any section of memory. The left half of each entry contains
the priority level (1, 2, or 3) in bits 0-5 (SI%LEV) to which the
channel is assigned. Bits 6-35 (SI¥ADR) of each entry contain the
starting address of the routine to process interrupts generated on
that channel. |f a particular channel is not used, the corresponding
entry in the channel table should be zero.

In the older format, for use with the SIR%¥ and RIR% calls by any
single-section program, the left half of each word contains the
priority level (1, 2, or 3) for that channel. The right half contains

the address of the interrupt routine that will handle interrupts on
that channel.

2 The user can call his priority channel table any name he
desires; however, it is good practice to call it CHNTAB.

L-8

|
|
I
|
I
I
|
I
I
I
|
I
I
|
I
|
I
|
I
I
|
I
|
|
|
|
I
I
|
|
|
I
I
I
I
I
|
I
|
I
I
I

USING THE SOFTWARE INTERRUPT SYSTEM

The following example is for use with the XSIR% monitor call.

CHNTAB: FLD(2,SI%LEV)+FLD (CHNOSV,S|%ADR) ;channel 0
FLD (2,SI%LEV)+FLD (CHN1SV,SI%ADR) schannel 1
FLD (2,S1%LEV)+FLD (CHN2SV, S1%ADR) ;channel 2
FLD(2,SI%LEV)+FLD (CHN3SV,S1%ADR) schannel 3
0 schannel 4
0 schannel 5
FLD(I,SI%LEV)+FLD(APRSRV,SI%ADR) schannel 6
0 schannel 7
0 ;channel 8
FLD (1,SI%LEV)+FLD (STKSRV, SI1%ADR) schannel §
0 ;channel 10
0 schannel 35

In this example, channels O through 3 are assigned to priority level
2, with the interrupt routine at CHNOSV servicing channel 0, the
routine at CHNISV servicing channel 1, the routine at CHN2SV servicing
channel 2, and the routine at CHN3SV servicing channel 3. Channels 6
and 9 are assigned to priority level 1, with the routine at APRSRV
servicing channel 6 and the routine at STKSRV servicing channel 9.
All remaining channels are not assigned.

L.,4L.3 Priority Level Table

The priority level table, LEVTAB, 8 is a three-word table, containing
a one-word entry for each of the three priority levels. In the
general form, each word contains the 30-bit address of the first word
of the two-word block in the process address space. The block
addressed by word n of LEVTAB is used to store the global PC flags and
address when an interrupt of level n+l] occurs.

The PC flags are stored in the first word of the PC block, and the PC
address is stored in the second. This form of the table must be used

with the XSIR¥ and XRIR%¥ monitor calls, and can be used in any
section.

The user can call his priority level table any name he desires;
however, it is good practice to call it LEVTAB.

4-9

USING THE SOFTWARE INTERRUPT SYSTEM

The older form of the interrupt level table can be wused in any
single-section program, and must be used with the SIR% and RIR% calls.
This table also contains three words, indexed by the priority level
minus 1. Each word contains zero in the left half, and the 18-bit
address of the word in which to store the one-word section-relative PC
in the right half. This address is assumed to be in the same program
section that contained the SIR% monitor call. (For more information
see Chapter 8.) The system must save the value of the program counter
so that it can return control at the appropriate point in the program
once the interrupt routine has completed processing an interrupt. |If
a particular priority level is not used, its corresponding entry in
the level table should be zero.

The following is a samplie of a level table.

LEVTAB: 0,,PCLEV] ;Addresses to save PC for interrupts
0,,PCLEV2 joccurring on priority levels 1 and 2.
0,,0 tNo priority level 3 interrupts are
splanned

L.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM

Once the interrupt tables have been set up and their addresses defined
with the XSIR¥ monitor «call, the user's program must enable the
interrupt system. When the interrupt system is enabled, interrupts
that occur on activated channels are processed by the user's interrupt
routines. When the interrupt system is disabled, the monitor
processes interrupts as if the channels for these interrupts were not
activated.

The EIR%¥ monitor <call, used to enable the system, accepts one
argument: the identifier for the process in ACl.

MOVEI 1, .FHSLF jidentifier of current process
EIR%

Control always returns to the instruction following the EIR call.

L.6 ACTIVATING INTERRUPT CHANNELS

Once the software interrupt system is enabled, the channels on which
interrupts can occur must be activated (refer to Table L-1 for the
channel assignments). The channels to be activated have a nonzero
entry in the appropriate word in the channel table.

The AIC% monitor call activates one or more of the 36 interrupt

channels. This call accepts two words of arguments - the identifier
for the process in ACl, and the channels to be activated in AC2.

L-10

USING THE SOFTWARE INTERRUPT SYSTEM

The channels are indicated by setting bits in AC2. Setting bit n
indicates that channel n is to be activated. The AIC% call activates
only those channels for which bits are set.

MOVE! 1, .FHSLF sidentifier of current process
MOVE 2, [1B<.!CAOV>+1B<.|CPOV>] ;activate channels 6 and 9
AIC%

Control always returns to the instruction following the AIC% call.

Some channels, called panic channels, cannot be deactivated by
disabling the channel or the entire interrupt system. (Refer to Table
L-1 for these channels.) This is because the occurrence of the
conditions associated with these channels cannot be completely ignored
by the monitor.

If one of these conditions occurs, an interrupt is generated whether
the channel is activated or not. |[|f the channel is not activated, the
process is terminated, and usually a message is output before control
returns to the monitor. |If the channel is activated, control is given
to the user's interrupt routine for that channel.

L.7 GENERATING AN INTERRUPT

A process generates an interrupt by producing a condition for which an
interrupt channel is enabled, such as arithmetic overflow, or by using
the |1C% monitor call. This call can generate an interrupt on any of
the 36 interrupt channels of the process the calling process
specifies. See Section 5.10 for a description of the II1C% call.

4,8 PROCESSING AN INTERRUPT

When a software interrupt occurs on a given priority level, the
monitor stores the current program counter (PC) word in the address
indicated in the priority level table (refer to Section L.L.3). The
monitor then transfers control to the interrupt routine associated
with the channel on which the interrupt occurred. The address of this
routine is specified in the channel table (refer to Section L.L.2).

Since the user's program cannot determine when an interrupt will
occur, the interrupt routine must preserve the state of the program so
the program can be resumed properly. First, the routine stores the
contents of any wuser accumulators for wuse while processing the
interrupt. After the accumulators are saved, the interrupt routine
processes the interrupt.

USING THE SOFTWARE INTERRUPT SYSTEM

Occasionally, an interrupt routine may need to alter locations in the
main section of the program. For example, a routine may change the
stored PC word to resume execution at a location different from where

the interrupt occurred. Or it may alter a value that caused the
interrupt. It is important that care be used when writing routines
that alter data because any changes will remain when control is

returned to the main program. For example, if data is inadvertently
stored in the PC word, return to the main section of the program would
be incorrect when the system attempted to use the word as the value of
the program counter.

If a higher-priority interrupt occurs during the execution of an
interrupt routine, the execution of the lower-priority routine is
suspended. The value of its program counter is stored at the location
indicated in the priority level table for the new interrupt. When the
routine for this new interrupt is completed, the suspended routine
resumes.

If an interrupt of the same or lower priority occurs. during the
execution of a routine, the monitor holds the interrupt until all
higher or equal level interrupts have been processed.

The system considers the user's program unable to process an interrupt
on an activated channel if any of the following is true:

1. The priority level associated with the channel is O.

2. The program has not defined its interrupt tables by executing
an XSIR% or SIR% monitor call.

3. The process has not enabled the interrupt system by executing
an EIR% monitor call, and the channel on which the interrupt
occurs is a panic channel.

In any of these cases, an interrupt on a panic channel terminates the
user's program. All other interrupts are ignored.

L.8.1 Dismissing An Interrupt

Once the processing of an interrupt is complete, the interrupt routine
should restore the user accumulators to their initial values. Then it
should return control to the interrupted code by using the DEBRK%
monitor call. This call restores the PC word and resumes the program.
The call has no arguments, and must be the last statement in the
interrupt routine.

USING THE SOFTWARE INTERRUPT SYSTEM

If the interrupt-processing routine has not changed the PC of the
user's program, the DEBRK% call restores the program to the same state
the program was in just before the interrupt occurred. If the program
was interrupted while waiting for |/0 to complete, for example, the

program will again be waiting for 1/0 to complete when it resumes
execution after the DEBRK% call.

If the PC word was changed, the program resumes execution at the new
PC location. The state of the program is unchanged.

4.9 TERMINAL INTERRUPTS

The user's program can associate channels O through 5 and channels 24
through 35 with occurrences of various conditions, such as the
occurrence of a particular character typed at the terminal or the
receipt of an |PCF message. This section discusses terminal
interrupts; refer to Chapters 6 and 7 for other types of assignable
interrupts.

There are 36 codes used to specify terminal characters or conditions
on which interrupts can be initiated. These codes, along with their
associated conditions, are shown in Table L-2.

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-2: Terminal Codes and Conditions

Code Symbol Character or Condition
0] .TICBK CTRL/@ or break
] .TICCA CTRL/A
2 .TICCB CTRL/B
3 .TiICcCC CTRL/C
L .TICCD CTRL/D
5 .TICCE CTRL/E
6 .TICCF CTRL/F
7 .TICCG CTRL/G
8 .TICCH CTRL/H
9 .TiCcCl CTRL/|

10 .TICCY CTRL/J

1 .TICCK CTRL/K

12 .TICCL CTRL/L

13 .TICCM CTRL/M
14 .TICCN CTRL/N
15 .Ticco CTRL/O
16 .TICCP CTRL/P
17 .TiICCQ . CTRL/Q
18 .TICCR CTRL/R

19 .TICCS CTRL/S

USING THE SOFTWARE INTERRUPT SYSTEM

Table L4-2: Terminal Codes and Conditions (Cont.)

Code Symbol Character or Condition
20 .TICCT CTRL/T

21 .TICCU CTRL/U

22 .TICCV CTRL/V

23 .TICCW CTRL/W

24 .TICCX CTRL/X

25 .TICCY CTRL/Y

26 .TICCZ CTRL/Z

27 .TICES ESC key

28 .TICRB Delete (or rubout) key
29 .TICSP Space

30 .TICRF Dataset carrier off

31 LTICTI Typein

32 .TICTO Typeout

33 .TITCE Two-character escape sequence
3L-35 Reserved

USING THE SOFTWARE INTERRUPT SYSTEM

To cause terminal interrupts to be generated, the user's program must
assign the desired terminal code to one of the assignable channels.
The AT1% monitor call is used to assign this code. This call accepts
one word of arguments: the terminal code in the left half of ACl1 and
the channel number in the right half.

MOVE 1,[.TICCE,, INTCH1] sassign CTRL/E to channel [NTCHI
ATI%

Control always returns to the instruction following the ATI% call. |If
the current job is not attached to a terminal (there is no terminal
controlling the job), the terminal code assignments are remembered;
they will be in effect when a terminal is attached.

The monitor handles the receipt of a terminal interrupt character in
either immediate mode or deferred mode. In immediate mode, the
terminal character causes the system to initiate an interrupt as soon
as the wuser types the character (that is, as soon as the system
receives it). |In deferred mode, the terminal character is placed in
either immediate mode or deferred mode. In immediate mode, the
terminal character causes the system to initiate an interrupt as soon
as the wuser types the character (as soon as the system receives it).
In deferred mode, the terminal character is placed in the input stream
in sequence with other characters of the input, unless two of the same
character are typed in succession. In this case, an interrupt occurs
at the time the second one is typed. If only one character enabled in
deferred mode is typed, the system initiates an interrupt only when
the program attempts to read the character. Deferred mode allows
interrupt actions to occur in sequence with other actions specified in
the input (for example, when characters are typed ahead of the time
that the program actually requests them). In either mode, the
character is not passed to the program as data. The system assumes
that interrupts are to be handled immediately unless a program has
issued the STIW¥ (Set Terminal Interrupt Word) monitor call. (Refer

to TOPS-20 Monitor Calls Reference Manual for a description of this
call.)

USING THE SOFTWARE INTERRUPT SYSTEM

L.10 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Additional monitor calls are available that allow the user's program
to check and to clear various parts of the software interrupt system.

Also, there is a call useful for interprocess communication (refer to
the 11C% call in Section 5.10).

L.10.1 Testing for Enablement

The SKPIR% monitor call tests the software interrupt system to see if
it is enabled. The call accepts in AC1 the identifier of the process.
After execution of the call, control returns to the next instruction

if the system is off, and to the second instruction if the system is
on.

MOVE! 1, .FHSLF ;identifier of current process
SKPIR% ;jtest interrupt system

return ;system is off

return ;system is on

4L.10.2 Obtaining Interrupt Table Addresses

The RIR% and XRIR% monitor calls obtain the channel and priority level
table addresses for a process. These calls are useful when several
routines in one process want to share the interrupt tables.

L.10.2.1 The RIR% Monitor Call - The RIR% monitor call can be used in
any section of memory, but is only useful for obtaining tabtle
addresses if those tables are in the same section of memory as the
code that makes the «call. Furthermore, it can only obtain table
addresses that have been set by the SIR call.

The call accepts the identifier of the process in ACl. It returns the
table addresses in AC2. The left half of AC2 contains the
section-relative address of the priority level table, and the right
half contains the section-relative address of the channel table. If
the process has not set the table addresses with the SIRY monitor
call, AC2 contains zero.

Control always returns to the instruction following the RIR% call.
The following example shows the use of the RIRY call.

MOVEL 1, .FHSLF ;identifier of current process
RIR% sreturn the table addresses

L-17

USING THE SOFTWARE INTERRUPT SYSTEM

4,10.2.2 The XRIR% Monitor Call - This call obtains the addresses of
the interrupt tables defined for a process. The tables can be in any
section of memory. The code that makes the call can also be in any
section. This call can only obtain addresses that have been set by
the XSIR% call.

The call accepts the identifier of the process in ACl, and the address
of the argument block in AC2. The argument block is three words long,
word zero must contain the number 3. The call returns the addresses
into words one and two. The block has the following format:

] !
! Length of the argument block, including this word !

! Address of the interrupt level table !

! Address of the channel table !

Control always returns to the instruction following the XRIR% call.
If the process has not set the table addresses with the XSIR% monitor
call, words one and two of the argument block contain zero.

4L.,10.3 Disabling the Interrupt System

The DIR% monitor call disables the software interrupt system for the
process. |t accepts the identifier of the process in AC1.

MOVE! 1, .FHSLF sidentifier of current process
DIR% ;disable system

Control always returns to the instruction following the DIR% call.

If interrupts occur while the interrupt system is disabled, they are
remembered until the system is reenabled. At that time, the
interrupts take effect unless an intervening CIS$% monitor call (refer
to Section L4.10.6) has been issued.

Software interrupts assigned to panic channels are not completely
disabled by the DIR% call. These interrupts terminate the process,
and the superior process is notified if it has enabled channel .ICIFT.
In addition, if the terminal code for CTRL/C (.TICCC) is assigned to a
channel, it causes an interrupt that cannot be disabled by the DIR%
call. However, the CTRL/C interrupt can be disabled by deactivating
the channel assigned to the CTRL/C terminal code.

USING THE SOFTWARE INTERRUPT SYSTEM

L.10.4 Deactivating a Channel

The DIC% monitor call is used to deactivate interrupt channels. The
call accepts two words of arguments: the process identifier in ACI,
and the channels to be deactivated in AC2. Setting bit n in AC2
indicates that channel n is to be deactivated.

MOVEI 1, .FHSLF sidentifier of current process
MOVE 2, [1B<.ICAOV>+1B<.|CPOV>] ;deactivate channels 6 and 9
DIC%

Control always returns to the instruction following the DIC% call.
When a channel is deactivated, interrupt requests for that channel are

ignored except for interrupts generated on panic channels (refer to
Section L4.6).

L.10.5 Deassigning Terminal Codes

The DTI1% monitor call deassigns a terminal code. This call accepts
one argument word: the terminal code in ACI.

MOVEI 1,.TICCE ;deassign CTRL/E
DTI1%

Control always returns to the instruction following the DTI% call.

This monitor call s ignored if the specified terminal code has not
been defined by the current job.

L.10.6 Clearing the Interrupt System

The CIS% monitor call clears the interrupt system for the current

process. This call clears interrupts in progress and all waiting
interrupts. This call requires no arguments, and control always
returns to the instruction following the CIS call. The RESET% monitor

call (refer to Section 2.6.1) performs these same actions as part of
its initializing procedures.

USING THE SOFTWARE INTERRUPT SYSTEM

L.11 SUMMARY
To use the software interrupt system, the user's program must:
1. Supply routines that will process the interrupts.

2. Set up a channel table containing the addresses

routines (refer to Section L.L4.2) and a priority level table
containing the addresses for storing the program counter (PC)

values (refer to Section 4.4.3).

3. Specify the addresses of the tables with the XSIR%¥ monitor

call (refer to Section 4.4.3).

L, Enable the software interrupt system with the EIR%¥ monitor

call (refer to Section 4.5).

5. Activate the desired channels with the AIC% monitor

(refer to Section 4.6).

L-20

USING THE SOFTWARE INTERRUPT SYSTEM

L.,12 SOFTWARE INTERRUPT EXAMPLE

This program copies one file to another. It accepts the input and
output filenames from the user. The end of file is detected by a
software interrupt, and CTRL/E is enabled as an escape character.

TITLE SOFTWARE INTERRUFT EXAMPLE
SEARCH MONSYM

SEARCH MACSYM

+REQUIRE SYS3IMACREL

STNAC. SDEFINE STANDARD ACs
INTOHL =1

START?: RE]
XHLLT T1sEOFINT §

HLLZS T H
H

;

§

T% RELEASE FILESy ETC.
GET CURRENT FROCESS SEC
TSOLATE SECTIC

AN Al IT T ERVICE ROUTINE ADNRESSES

CTEON NUMBER

TORM T1sCHNTARHINTCHL
TORM T1yCHNTAR®. TCEQF FOR QUR ROUTINES

YORM TLyLEVTARYL AND LEVTAR

MOVET Tl FHSLF F CURRENT FROCESS

MOVET T2.3 FNUMBER OF WORDS IN ARG RLOCK
MOVEM T2y ARGELK FPUT NUMBER IN WORD ZERD
XMOVET T2yLEVTAR LSS OF LEVEL TABLE
MOVEM T2y ARGRLK+L LN WORD ONE
XMOVET T2yCHNTAR OF CHANNEL TABLE
MOVEM T2y ARGELK42 LK WORI TWO
XMOVEL T2y ARGEILK ALNRESS OF ARGUMENT RLOCK
XSIRZ
E TR $
MOVE T2y DARBCINTOHL =181, LCE

\

SYSTEM
FACTIVATE CHANNELS

MOVE T1yL.TICCEs y INTCHLT 5ASSIGN CTRL/ZE TO CHANNEL 1
ATI%
GETIF: TMBG <INPUT FILES -
MOUX T1yGJZOLDHEIAMEGHGILCFMAGIAFNSHGIASHT
MOVE T2y L PRITNy » FRIOUD
GTUFNZ FOET FILENAME FROM USER
ERJMF ERRORL
MOVEM Tl INJFN
GETOF: TMSG <OUTPUT FILES
MOUX T1yGJZFQUAGIZMSGHOILCFMAGIAFNSHBILSHT
MOVE T2s L FRITINy y s FRIOUD
GTJUFNZ FGET FILENAME FROM USER
ERJMF ERROR2
MOVEM T1:0UTJFN
OFNIF? MOVE T1sINJFN
MOVUX T2y FLINZ s OFZRSZ) +OF ZRD
OFENFZ FOFEN INFUT FILE
ERJMF ERRORS
OFNOF ! MOVE T1s0UTJFN
MOVX T2yFLIOC7 » OF ZRSZ) +OF LW
OFENFZ § OF
ERJMF ERRORS
CRYBYTS MOVE Ti1sINJFN
BRINX sREAD INFUT RYTE
MOVE T1sDUTJFN
BROUTZ FWRITE QUTFUT RBRYTE
JRET CPYRYT FLOOF UNTIL EOF
DONE 2 MOVE T1yINJFN
CLOSFX% FCLOSE INFUT FTLE
JECL
MOVE T1,0UTJFN
CLOSBFZ sCLOSE QUTPUT FILE
JFCL
HALTFZ%

EN OUTFUT FILE

h=-21

SROUTENE

CTRLES

$ROUTINE

EOQFINT?

JLEVEL T
LEVTARS

FC23
CHANNEL
CHNTAR?

ARGELK?
INJFNS
DUTJFEN?
INTACLS
ERRORL
TINVALID

ERROR23
TINVALID

ERRORSS
FTUANNGT

USING THE SOFTWARE INTERRUPT SYSTEM

TO HANDLE "E -~ ARORTS OFERATION

Tie e PRIOU

% UT RUFFER

A SCLEAR OQUTE
SARORTEX . =

§ INFORM UE
SCLEAR SYSTEM

TMSG
CI8%
JRST

START

TO HANDLE EOF - COMPLETES OFERATION NORMALLY
FHAVE ACy
§ CHANGE PG
FTO TONE
FREGTORE
SNIBMISH

MOVEM T1»INTACK
XMOVET Ty DONE
MOVEM T1sPFC2+1
MOVE T1LyINTACI
NEBRKY

ACs
INTERRUFT

-

ARLE
0
FC2
0
RLOCK 2
TARLE
Q
FLIOCRy STALEV) TFLDCCTRLE » SLZALIR)
AT .
FLUC2» STALE 1LOCEOFINT » STZATIRD
REFEAT “N2%<0x
RLOCK 3
ELOCK 1
RL.OCK 1
BLOCK 1
TMEG =
FILE SPECIFICATION:

HALTFZ%
TMSG <
FILE

GFRECIFICATION:

LIT
END START

L-22

CHAPTER 5

PROCESS STRUCTURE

As stated in Chapter 1, the TOPS-20 operating system allows each job
to have multiple processes that can run simultaneously. Each process
has its own environment called its address space. Associated with the
environment . is the program counter (PC) of the process and a
well-defined relationship with other processes in the Jjob. In
TOPS-20, the term fork is synonymous with the term process.

The TOPS-20 operating system schedules the running of processes, not
entire jobs. A process can be scheduled independent of other
processes because it has a definite existence: its beginning is the
time at which it is created, and its end is the time at which it is
killed. At any point in its existence, a process can be described by
its state, which is represented by a status word and a PC word (refer
to Section 5.9).

PROCESS STRUCTURE

The relationships among processes in a job are shown in the diagram
below. Each process has one immediate superior process (except for
the top-level process) and can have one or more inferior processes.
Two processes are parallel if they have the same immediate superior.
A process can create an inferijor process but not a parallel or
superior process.

Top-Level

Process
Process Process Process
1 2 3
Process Process
4 5

MR-5-2036-82

Process 1 is the superior process of process 4, and process 3 is the
superior of process 5. Processes 4 and 5 are the inferiors of
processes 1 and 3, respectively. Process 2 has no inferior process.
Processes 1, 2 and 3 are parallel because they have the same superior
process (the top-level process). Processes L4 and 5, although at the
same depth in the structure, are not parallel because they do not have
the same superior process. Process 1 created process 4 but could not
have created any other process shown in the structure above.

5.1 USES FOR MULTIPLE PROCESSES
A multiple-process job structure allows:

1. One job to have more than one program runnable at the same
time. These programs can be independent programs, each one
compiled, debugged, and loaded separately. Each program can
then be placed in a separate process. These processes can be
parallel to each other, but are inferior to the main process
that created them. This use allows parallel execution of the
individual programs.

2. One process to wait for an event to occur (for example, the
completion of an 1/0 operation) while another process
continues its computations. Communication between the two
processes is such that when the event occurs, the process
that is computing can be notified via the software interrupt
system. This use allows two processes within a job to
overlap |1/0 with computations.

5-2

PROCESS STRUCTURE

One application of a multiple-process job structure is the following
situation: a superior process is responsible for accepting input from
various terminals. After receiving this input, the process sends it
to various inferior processes as data. These inferior processes can
then initiate other processes, for example, to write reports on the
data that was received,.

Process that
TTY Accepts Input TTY
from Terminals

Processes that
Receive the
input as Data

Processes that
Write Reports
on the Data

MR-$-2035-82

Another application is that used for the user interface on the
DECSYSTEM-20. On the DECSYSTEM-20, the top-level process in the job
structure is the Command Language. This process services the user at
the terminal by accepting input. When the user runs a program (for
example, MACRO, FORTRAN), the Command Language process creates an
inferior process, places the requested program in it, and executes it.
The Command Language can then wait for an event to occur, either from
the program or from the user. An event from the program can be its
completion, and an event from the user can be the typing of a certain
terminal key (CTRL/C, for example).

5.2 PROCESS COMMUNICATION

A process can communicate with or control other processes in the
system in several ways:

® direct process control
e software interrupts
e |PCF and ENQ/DEQ facilities

® memory sharing

5-3

PROCESS STRUCTURE

5.2.1 Direct Process Control

A process can create and control other processes inferior to it within

the job structure. The superior process can cause the inferior
process to begin execution and then to suspend and later resume
execution. After the inferior process has completed its tasks, the

superior process can delete the inferior from the job structure.

Some of the monitor calls used for direct process control are:
CFORK%, to create a process; SFORK%, to start a process; WFORK%, to
wait for a process to terminate; RFSTS%, to obtain the status of a
process; and KFORK¥, to delete a process. Refer to the TOPS-20
Monitor Calls Reference Manual for descriptions of additional monitor
calls dealing with process control.

5.2.2 Software Interrupts

The software interrupt facility enables a process to receive
asynchronous signals from other processes, the system, or the terminal
user or to receive signals as a result of its own execution. For
example, a superior process can enable the interrupt system so that it
receives an interrupt when one of its inferiors terminates, In
addition, processes within a job structure can explicitly generate
interrupts to each other for communication purposes.

Some of the monitor calls wused when communication occurs via the
software interrupt system are: SIR%, to specify the interrupt tables;
EIR%, to enable the interrupt system; AIC%, to activate the interrupt
channels; and |iC%, to initiate an interrupt on a channel. Refer to
Chapter L and Section 5.10 for more information.

5.2.3 IPCF and ENQ/DEQ Facilities

The Inter-Process Communication Facility (IPCF) enables processes and
jobs to communicate by sending and receiving informational messages.
The MSEND% call is used to send a message, the MRECVX call is used to
receive a message, and the MUTIL% call is used to perform utility
functions. Refer to Chapter 7 for descriptions of these calls.

The ENQ/DEQ facility allows cooperating processes to share resources

and facilitates dynamic resource allocation. The ENQ% call is used to
obtain a resource, the DEQ% call is used to release a resource, and
the ENQC% <call is used to obtain status about a resource. Refer to

Chapter 6 for descriptions of these calls.

5L

PROCESS STRUCTURE

5.2.h Memory Sharing

Each page or section in a process' address space is either private to
the process or shared with other processes. Pages are shared among
processes when the same page is represented in more than one process'
address space. This means that two or more processes can identify and
use the same page of physical storage. Even when several processes
have identified the same page, each process can have a different
access to that page, such as access to read or write that page.

A type of page access that facilitates sharing is the copy-on-write
access. A page with this access remains shared as long as all
processes read the page. As soon as a process writes to the page, the
system makes a private copy of the page for the process doing the
writing. Other processes continue to read and execute the original
page. This access provides the capability of sharing as much as
possible but still allows the process to <change its data without
changing the data of other processes. A monitor call used when
sharing memory is PMAP%. Refer to Section 5.6.2 for more information.

5.3 PROCESS IDENTIFIERS

in order for processes to communicate with each other, a process must
have an identifier, or handle, for referencing another process. When
a process creates an inferior process, it is given a handle on that
inferior. This handle is a number in the range 400001 to 400777 and
is meaningful only to the process to which it is given (that is, to
the superior process). For example, if process A creates process B,
process A is given a handle (for example, 400003) on process B.
Process A then specifies this handle when it uses monitor calls that
refer to process B. However, process B is not known by this handle to
any other process in the structure, including itself. The handle
400003 may in fact be known to process B, but it would describe a
process inferior to process B. For this reason, process handles are
sometimes called ''relative fork handles' because they are relative to
the process that created them.

There are several standard process handies that are never assigned by
the system but have a specific meaning when used by any process in the
structure. These handles are used when a process needs to communicate
with a process other than its immediate inferior or with multiple
processes at once. These handles are described in Table 5-1.

5-5

PROCESS STRUCTURE

Table 5-1: Process Handles

Number Symbol Meaning

400000 .FHSLF The current process (or self).

L00000+n Process n, relative to the current
process.

200000 FHZEPN Extended page number (see PMYEPN in
PMAP%) . When used in conjunction with
the above two forms, this bit
indicates that addresses and/or page
numbers are interpreted as absolute,
not relative to the PC section of the
program executing the JSYS. This bit
has no meaning for programs that do
not use extended addressing.

-1 .FHSUP The immediate superior of the current
process.

-2 .FHTOP The top-level process in the job
structure.

-3 .FHSAL The current process and all of its
inferiors.

-4 +FHINF All of the inferiors of the current
process.

-5 .FHJOB All processes in the job structure.

5-6

PROCESS STRUCTURE

Consider the job structure below.

A
B c D
I
| l
E F
l
I
G H

MR-S5-2031-82

The following indicates the specific process or processes being
referenced if process E gives the handle:

FHSLF refers to process E

.FHSUP refers to process D

.FHTOP refers to process A

.FHSAI refers to processes E, G, and H
JFHINF refers to processes G and H
.FHJOB refers to processes A through H

The process must have the appropriate capability enabled in its
capability word to use the handles .FHSUP, .FHTOP, and .FHJOB (refer
to Section 5.5.1).

Process E can reference one of its inferiors (for example, G) with the
handle it was given when it created the inferior. Process E can
reference other processes in the structure (for example, F) by
executing the GFRKS%¥ monitor call to obtain a handle on the desired
process. Refer to the TOPS-20 Monitor Calls Reference Manual for a
description of the GFRKS% call.

5-1

PROCESS STRUCTURE

5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES

Monitor calls exist for creating, loading, starting, suspending,
resuming, interrupting, and deleting processes. When a process is
created, its address space is assigned, and the process is added to
the job structure of the creating process. The contents of its
address space can be specified at the time the process is created or
at a later time. The process can also be started at the time it is
created. A process remains potentially runnable until it is
explicitly deleted or its superior is deleted.

A process may be suspended if one of the following conditions occurs:
1. The process executes an instruction that causes a software
interrupt to occur, and it is not prepared to process the
interrupt.
2. The process executes the HALTF% monitor call.

3. The superior process requests suspension of its inferior.

L. The superior process is suspended. When a process s
suspended, all of its inferior processes are also suspended.

5. A monitor call is trapped. (Refer to TFORK%Z monitor call in
the TOPS-20 Monitor Calls Reference Manual).

5.5 CREATING A PROCESS

A process creates an inferior process by executing the CFORKZ (Create
Process) monitor call. This monitor call allows the caller to specify
the address space, capabilities, initial contents of the ACs, and PC
for the inferior process and to start the execution of the inferior.

The CFORK% call accepts two words of arguments in AC1 and AC2.

AC1: characteristics for the inferior in the left half, and PC
address for the inferior in the right half.

AC2: address of a 20 (octal) word block containing the AC
values for the inferior.

The characteristics for the inferior process are described in Table

5-2.

5-8

PROCESS STRUCTURE

Table 5-2: Inferior Process Characteristic Bits
Bit Symbol Meaning

0 CREMAP Set the map of the inferior process to the

same as the map of the superior (creating)
process. This means that the superior and
the inferior will share the same address
space. Changes made by one process will be
seen by the other process.
If this bit is not on in the call, the
inferior's map will contain all zeros. |If
desired, the creating process can then use
PMAP or GET to add pages to the inferior's
map.

1 CR%CAP Set the capability word of the inferior
process to the same as the capability word of
the superior process. (Refer to Section
5.5.1 for the description of the capability
word.)

If this bit is not on in the call, the
inferior will have no special capabilities.

2 Reserved for Digital (must be O).

3 CR%ACS Set the ACs of the inferior process to the
values beginning at the address given in AC2.
If this bit is not on in the <call, the
inferior's ACs will be set to zero, and the
contents of AC2 is ignored.

L CR%ST Set the PC for the inferior process to the

address given in the right half of ACl1 and
start execution of the inferior.
If this bit is not on in the call, the right
half of ACl is ignored, and the inferior is
not started. If desired, the creating
process can then use SFORKZ or XSFRK% to
start the newly created process.

18-35 CR%PCV PC value for inferior process if CR%ST is on.

5-9

PROCESS STRUCTURE

If execution of the CFORK%¥ call is not successful, the inferior

process is not created and an error code is returned, as described in
Section 1.2.2.

If execution of the CFORK¥ call is successful, the inferior process is
created and its process handle is returned in the right half of AC1.
This handle is then used by the superior process when communicating
with its inferior process. The execution of the program in the
superior process continues at the second instruction following the
CFORK% call. The inferior begins execution at the location contained
in bits 18-35 (CR¥PCV) if CR%ST is specified.

Assume that process A executes the CFORK% monitor call twice to create

two parallel inferior processes. This is represented pictorially
below.

Process A
Creates Process B
by Executing a CFORK

Process B Is Created
and Its Handle Is
Given to Process A

Process A Executes
Another CFORK to
Create Process C

—

Process C Is Created
Process B and Its Handle
Given to Process A

MR-S-2034-82

Note that process A has been given two handies, one for process B and
one for process C. Process A can refer to either of its inferiors by

giving the appropriate handle or to both of its inferiors by giving a
handle of -4 (.FHINF).

PROCESS STRUCTURE

5.5.1 Process Capabilities

When a new process is created, it is given the same capabilities as
its superior, or it is given no special capabilities. This is
indicated by the setting of the CR¥CAP bit in the CFORK%¥ call. The
capabilities for a process are indicated by two capability words. The
first word indicates if the capability is available to the process,
and the second word indicates if the capability is enabled for the
process. This second word is the one being set by the CR¥CAP bit in
the CFORK% call.

Types of capabilities represented in the capability words are job,
process, and user capabilities. Each capability corresponds to a
particular bit in the capability words and thus can be activated and
protected independently of the other capabilities. Refer to the
TOPS-20 Monitor Calls Reference Manual for more information on the
capability words.

5.6 SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A PROCESS

Once a process is created, the contents of its address space can be
specified, This can be accomplished in one of three ways. As
mentioned in Section 5.5, bit CR¥MAP can be set in the CFORKY call to
indicate that the address space of the inferior process is to be the
same as the address space of the creating process. In addition, the
creating process can execute the GET¥ monitor call to map specified
pages from a file into the address space of the inferior process.
Finally, the creating process can execute the PMAP% monitor call to
map specified pages from another process into the address space of the
inferior process.

If the creating process does not specify the contents of the
inferior's address space, the address space will be filled with zeros.

5.6.1 GET% Monitor Call

The GET% monitor call gets a save file, copying or mapping it into the
process as appropriate. It updates the monitor's data base for the
process by copying the entry vector and the 1list of program data
vector addresses (PDVAs) from the save file. (See the .POADD function
of the PDVOP% monitor call.)

This call can be executed for either sharable or nonsharable save
files that were created with the SSAVE% or SAVE% monitor call,
respectively. The file must not be open by any process in the user's
+ job. (Refer to the TOPS-20 Monitor Calls Reference Manual for more
information regarding the PDVOP%, SSAVE%, and SAVE% monitor calls.)

PROCESS STRUCTURE

The GET% monitor call accepts two words of arguments in AC1 and AC2.
The first word specifies the handle of the desired process, flag bits,
and the JFN of the desired file. The second word specifies where the
pages from the file are to be placed in the address space of the
process. Thus,

AC1: process handle,,flag bits and a JFN

AC2: lowest process page number in left half, and highest
process page number in right half; or the address of an
argument block. f this AC contains page numbers, those
page numbers control the parts of memory that are loaded
when GT%ZADR is on in ACI.

Table 5-3 describes the bits that can be set in ACI.

Table 5-3: GET% Flag Bits

Bit Symbol Meaning

19 GT%ADR Use the memory address limits given in AC2,
If this bit is off, all existing pages of
the file (according to its directory) are
mapped.

20 GT%PRL Preload the pages being mapped (move the
pages immediately.) If this bit is off, the
pages are read in from the disk when they
are referenced.

21 GTENOV Do not overlay existing pages and do return
an error. If this bit is off, existing
pages will be overlaid.

22 GT%ARG If this bit is on, AC2 contains the address
of an argument block.

24-25 GT%JFN JFEN of the save file.

5-12

|
I
l
|
l
I

PROCESS STRUCTURE

The format of the argument block is described in Table 5-4,

Table 5-4: GET% Argument Block
Word Symbol Meaning

0 .GFLAG fFlags that indicate how the rest of the
argument block is to be used.

1 .GLOW Number of the lowest page in the process
into which a file page gets loaded. This
page must be within the section specified
by .GBASE.

2 .GHIGH Number of the highest page in the process
into which a file page gets loaded. This
page must be within the section specified
by .GBASE.

3 .GBASE Number of the section into which the file

pages are loaded. You can specify the
section for single-section save files only;
use of this word with a multiple-section
save file causes an error. The file pages
are loaded into this section of memory
regardless of the section specified in the
save file.

PROCESS STRUCTURE

Table 5-5 describes the flag bits defined for use in .GFLAG.

Table 5-5: GET% Argument Block Flags

Meaning

Bit Symbo]
0 GT3LOW
1 GT%HGH
2 GT%BAS

.GLOW contains the number
page within the process to

.GHIGH contains the number
page within the process to

.GBASE contains the number
to use.

of the lowest
use.

of the highest
use.

of the section

PROCESS STRUCTURE

When the pages of the file are mapped into pages in the process's
address space, the previous contents of the process pages are
overwritten. Any full pages in the process that are not overwritten

are unchanged. Any portions of process pages for which there is no
data in the file are filled with zeros.

For example, a GET% call executed for a file that contains 2 1/2 pages
sets up the process' address space as shown in the following diagram.

Process _ _ File
Page 1 | Data Data Page 1
GET
< Call
Page 2 | Data : Data Page 2
Page 3 | Data Data Page 3
N T3
0
gggg g{z Unchanged
MR-5-2032-82

After execution of the GET% call, control returns to the user's
program at the instruction following the call. If an error occurs, a

software interrupt is generated, which the program can process via the
software interrupt system.

5-15

PROCESS STRUCTURE

5.6.2 PMAP% Monitor Call

The PMAP% monitor call is used to map pages from one process to the
address space of a second process. Data is not actually transferred;
only the contents of the page map of the second (that is, destination)
process are changed.

The PMAP% monitor call accepts three words of arguments in ACl through
AC3. The first word contains the handle and page number of the first
page to be mapped in the source process (that is, the process whose
pages are being mapped) . The second word contains the handle and page
number of the first page to be mapped in the destination process (that
is, the process into which the pages are being mapped) . The third
word contains a count of the number of pages to map and bits
indicating the access that the destination process will have to the
pages mapped. Thus,

ACl: source process handle in the left half, and page number in
the process in the right half.

AC2: destination process handle in the left half, and page
number in the process in the right half.

AC3: count of number of pages to map and the access bits.

The count and access bits that can be specified in AC3 are described
in Section 3.5.6.1.

Upon successful execution of the PMAPY¥ call, addresses in the
destination process actually refer to addresses in the source process.
The contents of the destination page previous to the execution of the
call have been deleted. The access requested in the PMAP% call is
granted if it does not conflict with the current access of the
destination page (that is, an AND operation is performed between the
specified access and the current access). Control returns to the
user's program at the instruction following the PMAP% call. |If an
error occurs, an illegal instruction trap 1is generated, which the
program can process via the software interrupt system or with an ERJMP
or ERCAL instruction.

5.7 STARTING AN INFERIOR PROCESS

A program in an inferior process can be started in one of two ways.
As mentioned in Section 5.5, the superior process can specify in the
CFORK% call the PC for the inferior process and start its execution.
Alternatively, the superior process, after executing the CFORK% call
to create an inferior process, can execute the SFORK% (Start Process)
monitor call to start it.

PROCESS STRUCTURE

The SFORK% monitor call accepts two words of arguments in AC1 and AC2.
ACl: flags,,process handle
Flags:

SF%CON (1BO) .~ Used to continue a process that has
previously halted. If SF%CON is set, the
address in AC2 is ignored, and the process
continues from where it was halted.

AC2: the PC of the process being started. The PC contains flags
in the left half and the process starting address in the
right half. This call obtains the section number of the
PC from the entry vector of the process.

There are two alternative ways to start processes: XSFRK%Z (see
Section 8.3.2) or SFRKV% (see the TOPS-20 Monitor Calls Reference
Manual) .

The process handle given in ACl cannot refer to a superior process, to
more than one process (for example, .FHINF), or to a process that has
already been started.

After execution of the SFORK% call, control returns to the wuser's
program at the instruction following the call. |If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

5.8 INFERIOR PROCESS TERMINATION

The superior process has one of two ways in which it can be notified
when one or more of its inferiors terminate execution: via the
software interrupt system or by executing the WFORK% monitor call. An

inferior process will terminate normally when it executes a HALTF%
monitor call. Alternatively, the process will terminate abnormally
when it executes an instruction that generates a software interrupt,
such as an illegal instruction, and it has not activated the

appropriate channel.

By activating channel .ICIFT (channel 19) for inferior process
termination and enabling the software interrupt system, the superior
process will receive an interrupt when one of its inferiors
terminates. (Refer to Section L.6 for information on activating
channel .ICIFT.) The interrupt occurs when any inferior process
terminates. Use of the interrupt system allows the superior to do
other processing until an interrupt occurs, indicating that an
inferior process has terminated.

5-17

PROCESS STRUCTURE

In some cases, however, the superior cannot do additional processing
until either a specific process or all of its inferior processes have
completed execution. |If this is the case, the superior process can
execute the WFORK%Z (Wait Process) monitor call. This call blocks the
superior until one or all of its inferiors have terminated.

The WFORK% monitor call accepts one argument in ACl, the handle of the
desired process. This handle can be .FHINF (-4) to block the superior
until all inferiors terminate, but cannot be a handle on a superior
process.

After execution of the WFORK%¥ monitor call, control returns to the
user's program at the instruction following the call, when the
specified process or all of the inferior processes terminate. If an
error occurs, it generates a software interrupt, which the program can
process via the software interrupt system.

5.9 INFERIOR PROCESS STATUS

The superior process can obtain the status of one of its inferiors by
executing the RFSTS% (Read Process Status) monitor call. This call
returns the status and PC words of the given inferior process.

The short form of the RFSTS% monitor call accepts one argument in ACI,
the handle of the desired process. This handle cannot refer to a
superior process or to more than one process. The long form accepts
two argument words: flags,, process handle in ACl1 and the address of
the status return block in AC2. In the long form, RFYLNG (bit 0) s
set in AC1 and bits 1-17 are unused (must be zero).

After execution of the short form of the RFSTS% call, control returns
to the wuser's program at the instruction following the call. |If the
RFSTS% call is successful, ACl contains the status word of the given
process and AC2 contains the PC word. The status word is shown in
Table 5-6.

PROCESS STRUCTURE

Table 5-6: Process Status Word

Bit Symbol Meaning

0 RF¥FRZ The process is suspended (that is, frozen).
If this bit is not on, the process is not
suspended.

1-17 RF%STS The status of the process.
Value Symbol Meaning
0 -RFRUN The process is
runnable.
1 .RF10 The process is halted

waiting for 1/0

| 2 -RFHLT The process is halted

| by a HFORK¥ or HALTF%
monitor call or was
never started.

3 .RFFPT The process is halted
by the occurrence of a
sof tware interrupt for
which it was not
prepared to handle.
The right half of the
status word contains
the number of the
channel on which the
interrupt occurred.

L RFWAT The process is halted
waiting for another
process to terminate.

| 5 .RFSLP The process is halted
| for a specified amount
| _ of time.

PROCESS STRUCTURE

Table 5-6: Process Status Word (Cont.)

Bit Symbol Meaning
Value Symbol Meaning

6 .RFTRP The process is
dismissed because it
was intercepted by its
superior.

7 .RFABK The process is
dismissed because
address break was
encountered.

18-35 RF%SIC The channel number on which an interrupt

occurred, which the process was not
prepared to handle (see process status code
.RFFPT above) .

The RFSTS% call returns with -1 (fullword) in AC3 if the specified
handle is assigned but refers to a deleted process. The call
generates an illegal instruction interrupt if the handle is
unassigned.

In the long form of the RFSTS% monitor call, RFYLNG is set in ACl and
AC2 contains the address of a status-return block. On the return, ACI
and AC2 are not modified. The status-return block is described in
Table 5-7.

5-20

PROCESS STRUCTURE

Table 5-7: RFSTS% Status-Return Block

Meaning

Word Symbol
0 <RFCNT
1 .RFPSW
2 .RFPFL
3 .RFPPC
L .RFSFL

Count of words returned in this block in the
left half, and count of maximum number of
words to return in right half (including this
word). The right half of this word is
specified by the user.

Process status word. This word has the same
format as AC1 on a return from a short call.
If a valid, but unassigned, process bhandle
was specified in AC1, then this word contains
-1 and no other words are returned.

Process PC flags. These are the same flags
returned in AC2 on a short call.

Process PC. This is the address; no flags
are returned in this word.

Status flag word.
Flags:
Bit Symbol Meaning

BO RFZEXO0 Process is execute-only.

If an error occurs during execution of the RFSTS% call, a software
interrupt is generated which the program can process via the software

interrupt system,

5-21

PROCESS STRUCTURE

5.10 PROCESS COMMUNICATION

A superior process can communicate with its inferiors by sharing the
same pages of memory. This sharing is accomplished with the CFORK%
(bit CRZMAP) or the PMAP% monitor call. When the superior executes
either of these «calls, both the superior and the inferior share the
same pages. Changes made to the shared pages by either process will
be seen by the other process.

Alternatively, processes can communicate via the software interrupt
system. The superior process can cause a software interrupt to be
generated in an inferior process by executing the 1IC¥ (Initiate
Interrupt on Channel) monitor call. For this type of communication to
occur, the inferior's interrupt channels must be activated and its
interrupt system enabled.

The 11C% monitor call accepts two words of arguments in AC1 and AC2.
The handle of the process to receive the interrupt is given in the
right half of AC1. AC2 contains a 36-bit word, with each bit
representing one of the 36 software channels. If a bit is on in AC2,
a software interrupt is initiated on the corresponding channel. For
example, if bit 5 is on in AC2, an interrupt is initiated on channel
5. Thus,

AC1: process handle in the right half

AC2: 36-bit word, with bit n on to initiate a software interrupt
on channel n

The process handle given cannot refer to a superior process or to more
than one process.

After execution of the 11C% call, control returns to the user's
program at the instruction following the call. |If an error occurs, it
generates a software interrupt which the program can process via the
software interrupt system.

5-22

PROCESS STRUCTURE

5.11 DELETING AN INFERIOR PROCESS

A process is deleted from the job structure when the superior process
executes the KFORK¥ (Kill Process) monitor call. When a process is
deleted, its address space, its handle, and any JFNs acquired by the
process are released. If the process being deleted has processes
inferior to it, the inferiors are also deleted. For example, in the
structure:

Process A

Process B

Process C

MR-5-2028-82

if process A deletes process B by executing a KFORK® call, process ¢C
is also deleted.

The KFORK%Z monitor call accepts one argument in the right half of ACI,
the handle of the process to be deleted. This handle cannot refer to
@ superior process, to more than one process (for example, .FHINF), or
to the process executing the call (that is, .FHSLF). The RESETY
monitor call is used to reinitialize the current process; refer to
Section 2.6.1.

After execution of the KFORK%¥ call, control returns to the user's
program at the instruction following the call. |If an error occurs, a

software interrupt is generated, which the program can process via the
software interrupt system.

5-23

PROCESS STRUCTURE

5.12 PROCESS EXAMPLES

Example 1 - This program creates an inferior process to provide timing
interrupts.

TITLE TIMINT ~ AN INFERIOR FROCESS PROVIDING TIMING INTVERRUFTS
SEARCH MONSYM
ARCH MACSYM
SREQUIRE SYS53MACREL

ST0a0. SNEFINE STANDARD ACH

HBTART §
"MJ
THIE FROCESS S MEMORY

MOUEM T4 s HANDILE

SHERE TO START THE TNFERTOR

STFROCS SETZR 14 Fl.a06 S COUNTER AND FLAG

CFROCESS

GFORKZL
ELJEHLT

8 MALN FROCE

SING LOOF

[ATRIER
SHAG TIME EL
SNOy GO DO MORE

v HE

- WHEN LOWER FROCESS HAS INTERRURTED

T
Counter ha "
MUUK TI

y(HJIPlJl FLIRST FART
CITMARY QUTEUT &
LOOF COUNTER
RALEX

ENT COUNTER VALUE
MESSAGE AND CONTINUE

: i " ERROR
TMSH k)

SMOVE TO 6 NEW LINE
JERET STHFROC SCONTINUE COUNTING

§ FROGRAM PERFORMED RY INF

MOVX Ty " DEOKT D100

i CONSETANTS AND STORAGE

(5 KT
FRLs Bl

PHIZE OF THE STACK
e PETACK

HANDLE S BLOCK 1L i IN
FlL.oge BLOCK 1 §INTE

68 HANILE

ENDT START

5-24

PROCESS STRUCTURE

Example 2 - This program illustrates how an inferior process may be
used as a source of timer interrupts. The main program increments a
counter. |t has an inferior process running for the sole purpose of
timing 10 second intervals., Each time the inferior process has timed
10 seconds, it stops and interrupts the main program. The main
program then reports how many more times it has incremented the
counter since the last 10 second interrupt.

TITLE TEMINT = FORK TERMINATION INTE
RCH MONSYM

ARCH NAPSYM

CQRUITRE SYSIMACKEL

RUFTS

STOAC . FREFINE STANDARD ACS

START RESETX SRELEASE F
MOVE FyETOWD FOLSYZyFOLY §INITIALLZE

Ge ETC.
STACK

§OSET UP THE INTERRUFT SYSTEM

MOUX Ty o FHSLF
MOVE Y?v[lFUthvyLHN1ABO
SIRA
EJSHLT
MOVX T2y 1R TCIFT:
ALCx
EJ%HIY

L FOR THIS FORK

'menl
5 CREATE AND START THE INFERIOR FROCESS

MOUX T1yCRAMAPHCRZST+SLE
CFORKZ

EJGHLT
MOVEM Tl s HANDLE §8AVE

START TI
TEX FATAL.

FINITIALIZE THE COUNTER

STEROCS SETZR T4y0L0UT4 $CLEAR COUNTER

FMAIN LOOF OF THE FROGRAM WHICH JUST KE
FAFFLICATION WOULD PRESUMARLY HAVE A MOR

*G COUNTING. (REAL
USEFUL. MAIN FROGRAM.)

LOOF AdJA T4yL.OOF FJUST KEEF INCREMENTING
HERE WHEN LOWER FROCESS HAS INTERRUPTED

FROINTS MOVEM F»IACSHF
MOVET Py TACS
BLT FyIACSHCX
MOVE Fov IACSHE
THMEEH “NUMHK
MOUX Tl
EXCH T4y0L0T4
%UU T4y QLIT4

ilA(h FOINTER
] ROFOR REST OF ACH
COF ACS

OF COUNTS
u

 LABT TIME

§THE 0L
T

TMING .

SLEER

LOWING T8 EXECUTEDR

N

PROCESS STRUCTURE

A LOWER FROC

ESS TO 00 THE

IT SLEEFS #UH 10 SECONDS AND THEN éTOPQe

MOUX TLe 010%™ ULO0O
NISMEH
HALTFZ

i CONSTANTSG ANDY STORAGE

.2
CHNTAR?

LEVTARS

HANILE S
RETFCLS
OLDTA4S
IACH:

FOLS L Z=sl0
BLOCK POLSTZ
REFEAT 019y EXF O

BLOCK 1
BLOCK 1
BLOCK 1
RLOCK 20

END §TART

JONT

AN

ZE OF T

1o¥
INTNG
URN G

5-26

G TN MILI AW

INTERRURPT THE

HE STAHCK

WOCESS
CHANN
510

LUE AT L.
ACH TURTNG

ONDS

METN FROGRAM

ON
AST
INTERRUFTS

PROCESS STRUCTURE

Example 3 - This program creates an inferior process which waits until
a line has been typed on the terminal.

TITLE FRKDOC - AN INFERIOR FROCESS WAITS UNTIL A LINE IS TYPED

SEARCH MONSYM

SEARCH MACSYM

JREQUIRE SYSIMACREL

STHAC. FOEFINE STANUDARD ACS

START S RESETX FRELEASE
MOVE FyLIOWD FOLSTIZyFDLY
MOUX T1sCRZMAF
bFUhh/

ﬁlNlTTﬁl[

THIS PROCESS’S MEMORY

i FL.AG
T ESE TO SfﬁhT FROCESS
M\T YHL NEW FROCESS

MOVET Tu(;hr(M [
T
NEXFECTED FaATAL ERROR

§
SFORKZ § &
EJSHLY il

i MAIN PROCESSING LOOF
L.OOF ¢ ADS T4 #INCREMENT COUNTER

SKIFN FLAG FHAG TIME ELAFSG
JRET LOOF PNOy GO DO MORE

W

YET
FROCESSING

FOHERE WHEN INFERIOR FROCESS HAS INFUT A LINE OF TEXT

TMSEG -
Counter has reached = FOUTFUT FIRST FART OF MESSAGE
MOUX TleFRIOU FRIMARY OUTFUT DESTGNATOR
MOVE T2sT4 L OF COUNTER
MOVET T3s™010 PUSE DECIMAL RADIX
NOUTZ yourrur CURRENT COUNTER VALUE
EJSERR SFRINT ERROR MESSAGE AND CONTINUE
M&EG <
Eeho Checkt = SOUTPUT FIRST FART OF MESSAGE
HRROL T1sBUFFER JGET FOINTER TO RUF
FSOUTZ JOUTFUT TEXT JUST
HALTFZ FETOR
JRET START FIN CASE FROGRAM CONTINUED

¢ FROGRAM FERFORMED BY INFERIOR PROCESS TOQ INFUT & LINE OF TEXT

GETCOM: HRROI T1sBUF CFOINTER TO TEXT RUFFER
MOVET T2y RUFSIZXYS § COUNT OF MAX 4 OF CHARACTERS
BETZM T3 FNO RETYFE BUF $
RIOTTYX FREAD A LINE
EJSERR ¥
SETOM FLAG
HALTF%

FODONSTANTS AND STORAGE

DM THE TERMINAL
ROR
IR TIME HAS ELAFSED

THE STACK
F 1. &

SITEE

BRUFFERS UF &1
FLAGS BLULh 1 FINTERRUPT FLAG

ENQ START

5-27

CHAPTER 6

ENQUEUE/DEQUEUE FACILITY

6.1 OVERVIEW

Many times users are placed in situations where they must share files
with other users. Each user wants to be guaranteed that while reading
a file, other users are reading the same data and while writing a
file, no users are also writing, or even reading, the same portion of
the file.

Consider a data file used by members of an insurance company. When
many agents are reading individual accounts from the data file, they
can all access the file simultaneously because no one is changing any
portion of the data. However, when an agent desires to modify or
replace an individual account, that portion of the file should be
accessed exclusively by that agent. None of the other agents wants to
access accounts that are being changed until after the changes are
made.

By using the ENQ/DEQ facility, cooperating users can insure that
resources are shared correctly and that one user's modifications do
not interfere with another user's. Examples of resources that can be
controlled by this facility are devices, files, operations on files
(for example, READ, WRITE), records, and memory pages. This facility
can be wused for dynamic resource allocation, computer networks, and
internal monitor queueing. However, control of simultaneous updating
of files by multiple users is its most common application.

The ENQ/DEQ facility insures data integrity among processes only when
the processes cooperate in their use of both the facility and the
physical resource. Use of the facility does not prevent
non-cooperating processes from accessing a resource without first
enqueueing it. Nor does the facility provide protection from
processes using it in an incorrect manner.

ENQUEUE/DEQUEUE FACILITY

A resource is defined by the processes using it and not by the system.
Because there is competition among processes for use of a resource,
each resource is associated with a queue. This queue is the ordering
of the requests for the resource. When a request for the resource is
granted, a lock occurs between the process that made the request and
the resource. For the duration of the lock, that process is the owner
of the resource. Other processes requesting access to the resource
are placed in the queue until the owner relinquishes the lock.
However, there can be more than one owner of a resource at a time;
this is called shared ownership (refer to Section 6.2). Processes
obtain access to a specific resource by placing a request in the queue
for the resource. This request is generated by the ENQ% monitor call.
When finished with the resource, the process then issues the DEQ%
monitor «call. This call releases the lock by removing the request
from the queue and makes the resource available to the next waiting
process. This cycle continues until all requests in the queue have
been satisfied.

6.2 RESOURCE OWNERSHIP

Ownership for a resource can be requested as either exclusive or
shared. Exclusive ownership occurs when a process requests sole use
of the resource. When a process is granted exclusive ownership, no
other process will be allowed to use the resource until the owner
relinquishes it. This type of ownership should be requested if the
process plans on modifying the resource (for example, the process is
updating a record in a data file). Shared ownership occurs when a
process requests a resource, specifying that it will share the use of
the resource with other processes. When a process is given shared
ownership, other processes also specifying shared ownership are
allowed to simultaneously use the resource. Access to a resource

should be shared as 1long as any one process is not modifying the
resource.

Two conditions determine when a lock to a resource is given to a
process:

1. The position of the process's request in the queue for the
resource.

2. The type of ownership specified by the process's request.

Because each resource has only one queue associated with it, requests
for both exclusive and shared ownership of the resource are placed in
the same queue. Requests are placed in the queue in the order in
which the ENQ facility receives them, and the first request in the
queue will be the first one serviced (except in the case of single
requests for multiple resources; refer to Section 6.4.1). In other
words, the ENQ facility processes requests on a first in, first out
basis. If this first request is for shared ownership, that request

6-2

ENQUEUE/DEQUEUE FACILITY

will be serviced along with all following shared ownership requests up
to but not including the first exclusive ownership request. |f the
first request is for exclusive ownership, no other processes are
allowed use of the resource until the first process has released the
lock.

Consider the following queue for a particular resource.

! request 1 (shared) !

! request 5 (shared) !

Request 1 will be serviced first because it is the first request in
the queue. However, since this request is for shared ownership,
request 2 can also be serviced. Request 3 cannot be serviced until
the processes with request 1 and request 2 release the lock on the
resource. Eventually the lock is released by the two processes, and
the first two requests are removed from the queue. The queue now has
the following entries:

! request 4 (shared) !

Request 3 is now first in the queue and is given a lock on the
resource. Because the request is for exclusive ownership, no other
requests will be serviced. Once the process associated with reguest 3
releases the lock, both request L4 and request 5 can be serviced
because they both are for shared ownership.

6-3

ENQUEUE/DEQUEUE FACILITY

6.3 PREPARING FOR THE ENQ/DEQ FACILITY

Before using the ENQ/DEQ facility, the user must obtain an ENQ quota
from the system administrator and must obtain the name of the resource
desired, the type of protection required, and the level number
associated with the resource.

The ENQ quota indicates the total number of requests that can be
outstanding for the wuser at any given time. Any request that would
cause the quota to be exceeded results in an error. The user cannot
use the ENQ facility if the quota is set to zero.

The resource name has a meaning agreed wupon by all wusers of the
specific resource and serves as an identifier of the resource. The
system makes no association between the resource name and the physical
resource itself; it 1is the responsibility of the user's process to
make that association. The system merely uses the resource name to
process requests and handles different resource names as requests for
different resources.

The resource name has two parts. In most cases, the first part is the
JFN of the file being accessed. Before using the ENQ facility, the
user must initialize the file wusing the appropriate monitor calls
{refer to Section 3.1). The second part of the name is a modifier,
which is either a pointer to a string or a 33-bit wuser code. The
string uniquely identifies the resource to all users. The pointer can
either be a standard byte pointer or be in the form

-1,,ADR

where ADR is the location of the left-justified ASCIZ text string.
The 33-bit user code similarly identifies the resource by representing
an item such as a record number or block number. The ENQ facility
considers these modifiers as logical strings and does not check for
cooperation among the users. Thus, wusers must be careful when
assigning these modifiers to prevent the occurrence of two different
modifiers referring to the same resource.

The type of protection desired for the resource is indicated by the
first part of the resource name. This part of the name can be one of
four values. When the user specifies the JFN of the desired file, the
file is subject to the standard access protection of the system. This
is the most typical case. When the user specifies -1 instead of a
JFN, it means that resources defined within a job are to be accessed
only by processes of that job. Other jobs requesting resources of the
same name are queued to a different resource. When the user specifies
-2 instead of a JFN, it means that the resource can be accessed by any
job on the system. A process must have bit SC¥ENQ enabled in its
capability word to specify this type of protection. If the user
specifies -3 instead of a JFN, it means the same type of protection as
that given when -2 is specified. However, this is reserved for the
moni tor and requires that the process have WHEEL or OPERATOR
capability enabled. Quotas are not checked when -3 is given instead
of a JFN. '
6-4

ENQUEUE/DEQUEUE FACILITY

in addition to specifying the resource name and type of protection,
the user also assigns a level number to each resource. The use of
level numbers prevents the occurrence of a deadly embrace situation:
the situation where two or more processes are waiting for each to
complete, but none of the processes can obtain a lock on the resource
it needs for completion. This situation is represented by Figure 6-1.

Process A Is

Waiting for a

Resource Process

B Has.

1
A

Process B Is
Waiting for a
Resource Process
C Has.

Process C Is
Waiting for a
Resource Process
A Has.

MR-5-2029-82

Figure 6-1: Deadly Embrace Situation

Each process is in the queue waiting for the resource it needs, but no
request is being serviced because the desired resources are
unavailable,

The use of level numbers forces cooperating processes to order their
use of resources by requiring that processes request resources in an
ascending numerical order and that all processes assign the same level
number to a specific resource. This means that the order in which
resources are requested is the same for all processes and therefore,
requests for the first resource will always precede requests for the
second one.

If both of the above requirements are not met, the process requesting
the resource receives an error, unless the appropriate flag bit is set
(refer to Section 6.4.1.2), and the request is not placed in the
gueue. Thus, instead of waiting for a resource it will never get, the
process is informed immediately that the resource is not available.

ENQUEUE/DEQUEUE FACILITY

6.4 USING THE ENQ/DEQ FACILITY

There are three monitor calls available for the ENQ/DEQ facility:
ENQ%, to request use of a resource; DEQ%, to release a lock on a
resource; and ENQC%, to obtain information about the queues and to
specify access to these queues.

6.4.1 Requesting Use of a Resource

The user issues the ENQ% monitor call to place a request in the queue
associated with the desired resource. This call is used to specify
the resource name, level number, and type of protection required.

A single ENQ% monitor call can be used to request any number of
resources. |In fact, when desiring multiple resources, the user should
request all of them in one call. This method of requesting resources
guarantees that the user gets either none or all of the resources
requested because the ENQ/DEQ facility never allocates only some of
the resources specified in one call. Because all resources in a
single call must be available at the same time, the first user
requesting a resource (that is, the first user in the queue for the
resource) may not be the first user obtaining it if other resources in
the request are currently not available.

A single call for multiple resources is not functionally the same as a
series of single calls of those resources. In a single call, the
entire request is rejected if an error is returned for one of the
resources specified. In a series of single calls, each request that
did not return an error will be queued.

The ENQ% monitor call accepts two words of arguments in AC1 and AC2.
The first word contains the code of the desired function, and the
second contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6.L.1.1 ENQ% Functions - The functions that can be requested in the
ENQ¥ call are described in Table 6-1.

6-6

Table 6-1:

ENQUEUE/DEQUEUE FACILITY

ENQ% Functions

Code

Symbol

Meaning

0

.ENQBL

.ENQAA

.ENQS!

Queue the requests and block the
process until all requested locks are
acquired. This function returns an
error code only if the ENQ% call is
not correctly specified.

Queue the requests and acquire the
locks only if all requested resources
are immediately available. If the
resources are available, all will be
allocated to the process. |If any one
of the resources is not available, no
requests are queued, no locks are
acquired, and an error code is
returned in ACI.

Queue the requests for all specified
resources. I f all resources are
available, this function is identical
to the .ENQBL function. If all
resources are not immediately
available, the requests are queued,
and a software interrupt is generated
when all requested resources have been
given to the process.

6-7

ENQUEUE/DEQUEUE FACILITY

Table 6-1: ENQ% Functions (Cont.)
Code Symbol Meaning
3 .ENQMA Change the ownership access of a

previously-queued request (refer to
bit EN¥SHR below). The access for
each lock in this request is compared
with the access for each lock in the
request already queued. No action is
taken if the two accesses are the
same. If the access in this request
is shared and the access in the
previous request is exclusive, the
ownership access is changed to shared
access. Otherwise, an error is
returned if:

1. The process tries to change
the ownership access from
shared to exclusive. [|f this
is desired, the process should
issue a DEQ% monitor call for
the shared request and then
issue another ENQ% monitor
call for exclusive ownership.

2. Any one of the specified locks
does not have a pending
request.

3. Any one of the specified locks
is a pooled resource (refer to
Section 6.4.1.2).

Each lock specified is checked, and
the access is changed for all locks
that were correctly given. On
receiving an error, the process
should issue the ENQC¥ monitor call
to determine the current state of
each lock (refer to Section 6.4.3).

6-8

I
|
|
|
I
|

ENQUEUE/DEQUEUE FACILITY

6.4.1.2 ENQ% Argument Block - The format of the argument block is
described in Table 6-2.

Table 6-2: ENQ% Argument Block

Word Symbol Meaning

0 +ENQLN Number of locks being requested in the left
half, and length of argument block (including
this word) in the right half.

1 LENQID Number of software interrupt channel in the
left half, and request |ID in the right half.

2 +ENQLV Flags and level number in the left half, and
JFN, -1, =2 or -3 (refer to Section 6.3) in
the right half,

3 .ENQUC Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

4 .ENQRS Number of resources in the pool in the left
half, and number of resources requested in
the right half.

5 .ENQM5 Address of a resource mask block.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through L) are repeated for
each lock being requested. These three words are called the lock
specification.

Software Interrupts

The software interrupt system is used in conjunction with the .ENQSI
function (refer to Section 6.4.1.1). |If all locks are not available
when the user requests them, the .ENQS| function causes a software
interrupt to be generated when the locks become available. The user
specifies the software channel on which to receive the interrupt by
placing the channel number in the left half of word .ENQID in the
argument block.

ENQUEUE/DEQUEUE FACILITY

When the user is waiting for more than one lock to become available,
he will receive an interrupt when the last lock is available. |If he
desires to be informed as each lock becomes available, he can assign
the locks to separate channels by issuing multiple ENQ% calls. The
availability of each lock will then be indicated by the occurrence of
an interrupt on each channel.

When the user requests the .ENQS| function, he must initialize the

interrupt system first or else an interrupt will not be generated when
the locks become available (refer to Chapter k).

Request 1D

The 18-bit request ID is currently not used by the system, but is
stored for use by the process. Thus, the process can supply an ID to
use as identification for the request. This 1D is wuseful on the
.DEQID function of the DEQ% monitor call (refer to Section 6.4.2.1).

Flags and Level Numbers

Table 6-3 describes the flags that can be used in the left half of the
first word of each lock specification (.ENQLV).

ENQUEUE/DEQUEUE FACILITY

Table 6-3: Lock Specification Flags

Bit Symbol Meaning

0 EN%SHR Ownership for this resource is to be
shared. If this bit is not on,
ownership for this resource is to be
exclusive.

1 ENZBLN lgnore the level number associated
with this resource. If this bit is
set, sequencing errors in level
numbers are not considered fatal, and
execution of the call continues.

On successful completion of the call,
AC1 contains either an error code if a
sequencing error occurred, or zero if
a sequencing error did not occur.
WARNING
A deadly embrace situation may
occur when level numbers are
not wused. Use of these
numbers guarantees that such a
situation cannot arise; for
this reason bit EN¥BLN should
not be set.

2 ENINST Allow ownership of this 1lock to be
nested.

3 EN%LTL Allow a long-term lock on this
resource.

L-8 Reserved for Digital.

9-17 ENBLVL Level number associated with this

resource. This number is specified by
the user and must be agreed upon by

all wusers of the resource. In order
to eliminate a deadly embrace
situation, users must request

resources in numerically increasing
order.

ENQUEUE/DEQUEUE FACILITY

The request is not queued, and an error is given, if EN¥BLN is not set
and

1. The user requests a resource with a level number less than or
equal to the highest numbered resource he has requested so
far.

2. The level number of this request does not match the level
number supplied in previous requests for this resource.

Pooled Resources

Word .ENQRS of each lock specification is used to allocate mulitiple
copies from a pool of identical resources. Bit EN%SHR, indicating
shared ownership, is meaningless for pooled resources because each
resource in the pool can be owned by only one process at a time. A
process can own one or more resources in the pool; however, it cannot
own more than there are in the pool or more than there are unowned in
the pool.

The left half of word .ENQRS contains the total number of resources
existing in the pool. This number is previously agreed upon by all
users of the pooled resource. The first user who requests the
resource sets this number, and all subsequent requests must specify
the same number or an error is given.

The right half of word .ENQRS contains the number of resources being
requested by this process. This number must be greater than zero if a
pool of resources exists and cannot be greater than the number in the
left half. This means that if a pool of resources exists, the user
must request at least one resource, but cannot request more than are
in the pool.

Once the number of pooled resources is determined, the resources are
allocated until the pool is depleted or until a request specifies more
resources than are currently available. |In the latter case, the user
making the request is not given any resources until his entire request
can be satisfied. Subsequent requests from other wusers are not
granted wuntil this request is satisfied even though there may be
enough resources to satisfy these subsequent requests. As users
release their resources, the resources are returned to the pool. When
all resources have been returned, they cease to exist, and the next
request complietely redefines the number of resources in the new pool.

ENQUEUE/DEQUEUE FACILITY

The system assumes that the resource is in a pool if the left half of
word .ENQRS of the lock specification is nonzero. Thus the user
should set the left half to zero if only one resource of a specific
type exists. |If this is the case, then the right half of this word is
a number defining the group of users who can simultaneously share the
resource, This means that when the resource is allocated to a user
for shared ownership, only other users in the same group will be
allowed access to the resource. The use of sharer groups restricts
access to a resource to a set of processes smaller than the set for
shared ownership (which is sharer group 0) but larger than the set for
exclusive ownership. (Refer to Section 6.5 for more information on
sharer groups) .

6.4.2 Releasing a Resource

The user issues the DEQ% monitor call to remove a request from the
gueue associated with a resource. The request is removed whether or
not the user actually owns a lock on the resource or is only waiting
in the queue for the resource.

The DEQ¥ monitor call can be used to remove any number of requests
from the queues. If one of the requests cannot be removed, the
dequeueing procedure continues until all lock specifications have been
processed. An error code is then returned for the last request found
that could not be dequeued. The process can then execute the ENQC%
call (refer to Section 6.4.3) to determine the status of each lock.
Thus, unlike the operation of the ENQ% call, the DEQ¥ call will
dequeue as many resources as it can, even if an error is returned for
one of the lock specifications in the argument block. However, when a
user attempts to dequeue more pooled resources than he originally
allocated, an error code is returned and none of the resources are
dequeued,

The DEQ% monitor call accepts two words of arguments in AC1 and AC2.
The first word contains the code for the desired function, and the
second word contains the address of the argument block. Thus,

AC1: function code

AC2: address of argument block

ENQUEUE/DEQUEUE FACILITY

6.4.2.1 DEQ% Functions - The DEQ%¥ functions are described in Table
6-4

Table 6-4: DEQ% Functions

Code Symbol Meaning

0 .DEQDR Remove the specified requests from the queues.
This function is the only one that requires an
argument block.

1 .DEQDA Remove all requests for this process from the
queues. This action is taken on a RESET
monitor call. An error code is returned if
this process has not requested any resources
(that is, if this process has not issued an

ENQR) .
2 .DEQID Remove all requests that correspond to the
specified request identifier. When this

function is specified, the user must place the
18-bit request ID in AC2 on the DEQ¥ call.
This function allows the user to release a
class of locks in one call without itemizing
each lock in an argument block. The function
should be used when dequeueing in one call the
same locks that were enqueued in one call.
For example, with this function the user can
specify the ID to be the same as the JFN used
in the ENQ%¥ call and thus remove all locks to
that file at once.

ENQUEUE/DEQUEUE FACILITY

6.4L.2.2 DEQ% Argument Block - The format of the argument block for
function .DEQDR is described in Table 6-5.

Table 6-5: DEQ% Argument Block

Word Symbol Meaning
0 .ENQLN Number of locks being requested in the left
half, and length of argument block

(including this word) in the right half.

1 .ENQID Number of software interrupt channel in the
left half, and request ID in the right
half,

2 .ENQLV Flags and level number in the left half,

and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half.

3 .ENQUC Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

4 .ENQRS Number of resources in the pool in the left
half, and number of resources requested in
the right half.

5 .ENQMS Address of a resource mask block.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each request being dequeued. These three words are called the lock
specification.

6-15

ENQUEUE/DEQUEUE FACILITY

6.4.3 Obtaining Information About Resources

The user issues the ENQC% monitor call to obtain information about the
current status of the given resources. This call can also be used by
privileged users to perform various utility functions on the queue
structure. The format of the ENQC% call is different for these two
uses. (Refer to the TOPS-20 Monitor Calls Reference Manual for the
. explanation of the privileged use of the ENQC% call.)

The ENQC% monitor call accepts three words of arguments in AC1 through
AC3:

AC1: function code (.ENQCS)

AC2: address of argument block

AC3: address of area to receive status information
The format of the argument block is identical to the format of the
ENQ%¥ and DEQ% argument blocks. The area in which the status is to be
returned should be three times as long as the number of locks
specified in the argument block.
On successful execution of the ENQC% call, the current status of each

lock specified is returned as a three-word entry. This three-word
entry has the following format.

! Flag bits indicating status of lock !

! Reserved ! Request ID !

ENQUEUE/DEQUEUE FACILITY

Table 6-6 describes the flag bits that can be used in a ENQC% call.

Table 6-6: ENQC% Flag Bits
Bit Symbol Meaning

0 EN%QCE An error has occurred in the
corresponding lock request. Bits
18-35 contain the appropriate error
code.

1 EN%QCO The process issuing the ENQC% call is
the owner of this lock.

2 EN%QCQ The process issuing the ENQC% call s
in the queue waiting for this
resource. This bit will be on when
EN%QCO is on because a request remains
in the queue until a DEQ¥ call s
given.

3 EN%QCX The 1lock has been allocated for
exclusive ownership. When this bit is
off, there is no way of determining
the number of sharers of the resource.

L EN%QCB The process issuing the ENQC% call s
in the queue waiting for exclusive
ownership to the resource. This bit
will be off if EN%QCQ is off.

5-8 Reserved for Digital.
9-17 ENELVL The level number of the resource.
18-35 EN%JOB The number of the job that owns the

lock. For locks with shared
ownership, this value will be the job
number of one of the owners. However,
this value will be the current job's
number if the current job is one of
the owners. If this lock is not
owned, the value is -1.

If EN%¥QCE is on, this field contains
the appropriate error code.

6-17

ENQUEUE/DEQUEUE FACILITY

The 36-bit time stamp indicates the last time a process locked the
resource. The time is in the universal date-time standard. |f no one
currently has a lock on the resource, this word is zero.

The request 1D returned in the right half of the third word is either
the request ID of the current process if that process is in the queue
or the request ID of the owner of the lock.

6.5 SHARER GROUPS

Processes can specify the sharing of resources by using sharer group
numbers (refer to Section 6.4.1.2). The use of sharer groups
restricts the ownership for a resource to a set of processes smaller
than the set for shared ownership but larger than the set for
exclusive ownership.

Sharer group number O is used to indicate the group of all cooperating
processes of the resource. This group number is assumed when no group
is specified in the ENQ¥ call. To restrict use of the resource, a
group number other than O must be explicitly specified in the call.

Consider the following example. The resource is the WRITE operation
on a file. There are four types of uses of this resource as shown in
Figure 6-2.

Process’ Own Use of
the Resource
Not Allowed
Write to Write
Other
Process’ Use
of the Resource
Wrlt 1 2
rite
Shared, Group 0 Eﬁ&%eé’ oto Use
Not Allowed 3 4
to Write Exclusive Shared, Group 1

MR-5-2038-82

Figure 6-2: Use of Sharer Groups

ENQUEUE/DEQUEUE FACILITY

In block 1 of the figure, the process owning the lock wishes to allow
all cooperating processes to also lock the resource (that is, to
perform the WRITE operation). Therefore, in the ENQ%¥ call, the
process specifies the resource can be locked by all cooperating
processes. In block 2 of the figure, the process does not plan on
locking the resource and does not care if other processes lock it.
Thus, there is no need for the process to use the ENQ/DEQ facility.
In block 3 of the figure, the process desires to lock the resource
exclusively and does not want other processes to lock it. Thus, the
process obtains exclusive ownership for the resource. In block 4 of
the figure, the process does not want to lock the resource immediately
but also does not want other processes to lock it because it soon
plans to request a lock on the resource. |f the process were the only
one requesting this type of use, exclusive ownership would be
sufficient, because the resource would be wunavailable to others as
long as the process owned the lock. However, if other processes
desire this same type of use, exclusive ownership is not sufficient,
because once one process releases the lock, another process with a
different type of use could obtain its own lock. Thus, in this
example, sharer group 1 is defined to include all processes with the
same type of use (that is, all processes who do not want to lock the
resource immediately but also do not want other processes to lock it).
This elimates the problem of another user obtaining the resource for a
different type of use.

Sharer group O should be sufficient for most uses of the ENQ/DEQ
facility. Additional groups should only be needed in those situations
where a subset of the cooperating processes must have a specific use
of a resource, as in the above example.

6.6 AVOIDING DEADLY EMBRACES

Processes can interact in many undesirable ways if improper
communication occurs among the processes or if resources are
incorrectly shared. An example of one undesirable situation is the
occurrence of a deadly embrace: when two processes are waiting for
each other to complete but neither one can gain access to the resource
it needs for completion. This situation can be avoided when processes
censider the following guidelines.

1. Processes should request resources at the time they need

them. |If possible, processes should request resources one at
a time and release each resource before requesting the next
one.

2. Processes should request shared ownership whenever possible.
However, the process should not request shared ownership if
it plans on modifying the resource.

6-19

ENQUEUE/DEQUEUE FACILITY

wWhen a process needs more than one resource, it should
request these resources in one ENQ% call instead of multiple
calls for each resource. The process should also release the
entire set of resources at once with a single DEQ% call.

When the use of one resource depends on the use of a second
one, the process should define the two resources as one in
the ENQ%¥ and DEQ%¥ calls. However, there is no protection of
the resources if they are also requested separately.

Occasionally processes use a set of resources and require a
lock on the second resource while retaining the lock on the
first. In this case, the order in which the locks are
obtained should be the same for all users of the set of
resources. The same ordering of locks is accomplished by the
processes assigning level numbers to each resource. The
requirements that processes request resources in ascending
numerical order and that all processes use the same level
number for a specific resource ensure that a deadly embrace
situation will not occur.

6-20

CHAPTER 7

INTER-PROCESS COMMUNICATION FACILITY

7.1 OVERVIEW

The Inter-Process Communication Facility (IPCF) allows communication
among jobs and system processes. This communication occurs when
processes send and receive information in the form of packets. Each
sender and receiver has a Process ID (PID) assigned to it for
identification purposes.

When the sender sends a packet of information to another process, the
packet is placed into the receiver's input queue. The packet remains
in the queue until the receiver checks the queue and retrieves the
packet. Instead of periodically checking its input gqueue, the
receiver can enable the software interrupt system (refer to Chapter &)
to generate an interrupt when a packet is placed in its input queue.

The <SYSTEM>INFO process is the information center for the
Inter-Process Communication Facility. This process performs system
functions related to PIDs and names, and any process can request these
functions by sending <SYSTEM>INFO a packet.

7.2 QUOTAS

Before using IPCF, the user must acquire the ability to use IPCF
privileges from the system administrator: a send packet quota and a
receive packet quota. These quotas designate, on a per process basis,
the number of sends and receives that can be outstanding at any one
time. For example, if the process has a send quota of two and it has
sent two packets, it cannot send any more until at least one packet
has been retrieved by its receiver. A send packet quota of two and a
receive packet quota of five are assumed as the standard quotas. |If
these quotas are zero, the process cannot use [PCF.

INTER-PROCESS COMMUNICATION FACILITY

7.3 PACKETS

Information is transferred in the form of packets. Each packet is
divided into two portions: a packet descriptor block of four to six
words and a packet data block the length of the message. The format
of the packet is shown in Figure 7-1.

Packet Descriptor Block

LAPCFL ! flags !

o e o !
.IPCFS | PID of sender !
o e e e el |
.IPCFR | ‘ PiD of receiver |
f e e e e e !
.IPCFP ! length of message ! address of message !
! n 1 ADR !
| e e e e e !
JAPCFD ! sender's connected ! sender's logged in !
! directory ! directory]
ety !
.IPCFC ! enabled capabilities of sender !
o e e e !
.IPCSD | connected directory of sender |
e el !
.IPCAS | account string of sender !
o e e el !
<IPCLL] logical location of sender !

Packet Data Block

ADR ! message word 1 !

! message word n !

Figure 7-1: |IPCF Packet

7-2

INTER-PROCESS COMMUNICATION FACILITY

7.3.1 Flags

There are two types of flags that can be set in word .IPCFL of the
- packet descriptor block. The flags in the left half of the word are
instructions to IPCF for packet communication, and the flags in the
right half are descriptions of the data message. The flags in the
"right half are returned as part of the associated variable (refer to
Section 7.4.2). The packet descriptor block flags are described in
Table 7-1.

Table 7-1: Packet Descriptor Block Flags

Bit Symbol Meaning

0 IP%CFB Do not block the process if there are no
messages in the queue. |[f this bit is on, the
process receives an error if there are no
messages.

1 | PECFS Use the PID obtained from the address in word
.IPCFS of the packet descriptor block as the
sender's PID.

2 IPZCFR Use the PID obtained from the address in word
.IPCFR of the packet descriptor block as the
receiver's PID.

3 IPECFO Allow the process one send above the send quota.
(The standard send quota is two.)

[IPETTL Truncate the message if it is longer than the
area reserved for it in the packet data block.
If this bit is not on, the process receives an
error if the message is too long.

i 1P%CPD Create a PID to use as the sender's PiID. The
PID created 1is returned in word .IPCFS of the
packet descriptor block.

6 I PEJWP Make the PID created be permanent until the job
logs out (if both bits IP¥CPD and IP%JWP are
on) . Make the PID created be temporary until
the process executes a RESETX monitor call (if
bit IPCPD is on and bit IP¥JWP is not on). | f
bit IP¥CPD is not on, bit IP¥JWP is ignored.

7-3

INTER-PROCESS COMMUNICATION FACILITY

Table 7-1: Packet Descriptor Block Flags (Cont.)

Bit Symbol Meaning

7 I PZNOA Do not allow other processes to usé the PID
created when bit IP%CPD is on. |If bit IPY¥CPD is
not on, bit IPENOA is ignored.

8-17 Reserved for Digital.

18 | PSCFP The packet is privileged. This bit can be set
only by a process with WHEEL capability enabled.
Refer to the TOPS-20 Monitor Calls Reference
Manual for a description of this bit.

19 IP%CFV The packet is a page of 512 (decimal) words of
data.

20 IP¥CFZ A zero-length message was sent.

21 Reserved for Digital.

22 | PXEPN Page number in word .IPCFP of the packet
descriptor block is 18 bits long

23 Reserved for Digital.

24-29 IP%CFE Field for error code returned from <SYSTEM>

INFO.

Code Symbol Meaning

15 .IPCPI insufficient privileges

16 .IPCUF invalid function

66 .IPCKM PID has been deleted

67 .IPCSN <SYSTEM>INFO needs name

72 .IPCFF <SYSTEM>INFO free space exhausted
7h .IPCBP PID has no name or is invalid

75 .IPCDN duplicate name has been specified
76 .IPCNN unknown name has been specified

77 .IPCEN invalid name has been specified

7-4

INTER-PROCESS COMMUNICATION FACILITY

Table 7-1: Packet Descriptor Block Flags (Cont.)

Bit Symbol Meaning

30-32 I P%CFC System and sender code. This code can be set
only by a process with WHEEL capability enabled,
but the monitor will return the code so a
nonprivileged process can examine it.
Code Symbol Meaning
1 .IPCCC Sent by <SYSTEM>IPCF
2 .IPCCF Sent by system-wide <SYSTEM>INFO
3 .IPCCP Sent by receiver's <SYSTEM>INFO
L .IPCCG Sent by monitor for QUEUE% JSYS

33-35 IPXCFM Field for special messages. This code can be

set only by a process with WHEEL capability
enabled, but the monitor will return the code so
that a nonprivileged process can examine it.

Code Symbol Meaning
1 .IPCFN Process' input queue contains a

packet that could not be delivered
to intended PID.

INTER-PROCESS COMMUNICATION FACILITY

7.3.2 PIDs

Any process that wants to send or receive a packet must obtain a PID.
The process can obtain a PI!D by sending a packet to <SYSTEM>INFO
requesting that a PID be assigned. The process must also include a
symbolic name that is to be associated with the assigned PID.

The symbolic name can be a maximum of 29 characters and can contain
any characters as long as it is terminated by a zero word. There
should be mutual understanding among processes as to the symbolic
names used in order to initiate communication. Once the name is
defined, any process referring to that name must specify it exactly
character for character.

Before a process can send a packet, it must know the receiver's
symbolic name or PID. If only the receiver's name is known, the
sender must ask <SYSTEM>INFO for the P!D associated with the name,
since all communication is via PIDs.
The association between a PID and a name is broken:

1. On a RESET% monitor call.

2. When the process is killed or the job logs off the system.

3. When a request to disassociate the PID from the name is made
to <SYSTEM>INFO.

<SYSTEM>INFO will not allow a name already associated with a PID to be
assigned again unless the owner of the name makes the request. Nor
will <SYSTEM>INFO assign a PID once it has been used. This action

protects against messages being sent to the wrong receiver by
accident.

The PIDs of the sender and the receiver are indicated by words .IPCFS
and .IPCFR, respectively, of the packet descriptor block.

7.-3.3 Length And Address Of Packet Data Block

Word .IPCFP of the packet descriptor block contains the length and the
beginning address of the message. The length specified is one of two
types, depending on the type of message (refer to Section 7.3.5). | f
the message is a short-form message, the length is the actual word
length of the message. If the message is a long-form message, the
length is 1000 (octal) words, that is, one page.

The address specified is either an address or a page number, depending
on the type of message (refer to Section 7.3.5). When a message is
sent, it is taken from this address. When a message is received, it
is placed in this address.

7-6

INTER-PROCESS COMMUNICATION FACILITY

7.3.4 Directories and Capabilities

Words .IPCFD and .IPCFC describe the sender at the time the message
was sent and are used by the receiver to validate messages sent to it.
These two words are not used when a message is sent, and if the sender
of the packet supplies them, they are ignored. However, when a
message is received, if the receiver of the packet has reserved space
for these words in the packet descriptor block, the system supplies
the appropriate values of the sender of the packet. The receiver of
the packet does not have to reserve these words if it is not
interested in knowing the sender's directories and capabilities.

7.3.5 Packet Data Block

The packet data block contains the message being sent or received.
The message can be either a short-form message or a long-form message.

A short-form message is one to n words long, where n is defined by the
installation. (Usually, n is assumed to be 10 words.) When a
short-form message is sent or received, word .IPCFP of the packet
descriptor block contains the actual word length of the message in the
left half and the address of the first word of the message in the
right half. A process always uses the short form when sending
messages to <SYSTEM>INFO.

A long-form message is one page in length (1000 octal words). When a
long-form message 1is sent or vreceived, word .IPCFP of the packet
descriptor block contains 1000 (octal) in the left half and the page
number of the message in the right half. To send and receive a
long-form message, both the sender and receiver must have bit [P%CFV
(bit 19) set in the first word of the packet descriptor block, or else
an error code is returned.

7.4 SENDING AND RECEIVING MESSAGES

To send a message, the sending process must set up the first four
words of the packet descriptor block. The process then executes the
MSEND% monitor call. After execution of this call, the packet is sent
to the intended receiver's input queue.

To receive a message, the receiving process must also set up the first
four words of the packet descriptor block. The last two words for the
directories and capabilities of the sender can be supplied, and the
system will fill in the appropriate values. The process then executes
the MRECV% monitor call. After execution of this call, a packet is
retrieved from the receiver's input queue. The input queue is emptied
on a first-message-in, first-message-out basis.

1-7

INTER-PROCESS COMMUNICATION FACILITY

7.4L.1 Sending a Packet

The MSEND% monitor call is used to send a message via IPCF. Messages
are in the form of packets of information and can be sent to a
specified PID or to the system process <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

The MSEND% call accepts two words of arguments. The 1length of the
packet descriptor block is given in ACl1, and the beginning address of
the packet descriptor block is given in AC2. Thus,

ACl: 1length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

The packet descriptor block consists of the following four words:

.IPCFL Flags

.IPCFS Sender's PID

. IPCFR Receiver's PID

.IPCFP Pointer to packet data block containing the

message being sent.

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when sending a packet are described in
Table 7-2. Refer to Table 7-1 for the complete list of flag bits.

7-8

INTER-PROCESS COMMUNICATION FACILITY

Table 7-2: Flags Meaningful on a MSEND% Call

Bit Symbol Meaning

0 IP%CFB Do not block process if no messages in queue;
if set, error return if no messages.

1 IPECFS The sender's PID is given in word .IPCFS of
the packet descriptor block.

2 | PRCFR The receiver's PID is given in word .IPCFR of
the packet descriptor block.

3 IP%CFO Allow the sender to send one message above its
send quota.

L IPETTL Truncate message if larger than space
reserved.

5 IP¥CPD Create a PID for the sender and return it in
word .IPCFS of the packet Qescriptor block.
The PID created is to be permanent and useable
by other processes according to the setting of
bits IP¥JWP and IPINOA.

6 | PZJWP The PID created is to be job wide and
permanent until the job logs out. [f this bit
is not on, the PID created is to be temporary
until the process executes the RESET monitor
call.

7 I PZNOA The PID created is not to be used by other
processes.

18 IP%CFP The message being sent is privileged (refer to
the TOPS-20 Monitor Calls Reference Manual).

19 I PXCFV The message being sent is a long-form message
(that is, a page). The page the message is
being sent to cannot be a shared page; it must
be a private page.

22 I PZEPN Page number in word .IPCFP of the packet

descriptor block is 18 bits long.

INTER-PROCESS COMMUNICATION FACILITY

When bit IP%CFS is on in the flag word, the sender's PID is taken from
word L.IPCFS of the packet descriptor block. This word is zero if bit
IP%CPD is on in the flag word, indicating that a PID is to be created
for the sender. In this case, the PID created is returned in word
. |PCFS.

When bit IPECFR is on in the flag word, the receiver's PID is taken
from word .IPCFR of the packet descriptor block. If this word is O,
then the receiver of the message is <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

On successful execution of the MSEND% monitor call, the packet is sent
to the receiver's input queue. Word .IPCFS of the packet descriptor
block is updated with the sender's PID. Execution of the wuser's
program continues at the second location after the MSEND% call.
(MSEND%)

If execution of the MSEND% call is not successful, the message is not
sent, and an error code is returned in ACl. The execution of the
user's program continues at the instruction following the MSEND% call.

7.4.2 Receiving a Packet

The MRECVZ monitor call is used to retrieve a message from the
process' input queue. Before a process can retrieve a message, it
must know if the message is a long-form message and also must set up a
packet descriptor block.

The MRECVX monitor call accepts two words of arguments. The length of
the packet descriptor block is given in ACl, and the beginning address
of the packet descriptor block is given in AC2. Thus,

ACl1: length of packet descriptor block. The length cannot be
less than L,

AC2: address of packet descriptor block

7-10

INTER-PROCESS COMMUNICATION FACILITY

The packet descriptor block can consist of the following nine words.
The last five words are optional, and if supplied by the receiver, the
values of the sender will be filled in by the system.

.IPCFL Flags

. IPCFS Sender's PID

. IPCFR Receiver's PID

.IPCFP Pointer to packet data block where the message is
to be placed.

.IPCFD Connected and logged-in directories of the sender.

.IPCFC Enabled capabilities of the sender.

.IPCSD Number of sender's connected directory.

.1PCAS Account string of sender.

.IPCLL Byte pointer for destination of sender's node.

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when receiving a packet are described in
Table 7-3. Refer to Table 7-1 for the complete list of flag bits.

7-11

INTER-PROCESS COMMUNICATION FACILITY

Table 7-3: Flags Meaningful on a MRECV% Call

Bit Symbol Meaning

0 IP%CFB If there are no packets in the receiver's
input queue, do not block the process and
return an error code if the queue is empty.
If this bit is not on, the process waits until
a packet arrives, if the queue is empty.

i IPXCFS Use PID referenced in word .IPCFS as sender's
PID.

2 IP%CFR The receiver's PID is given in word .IPCFR of
the packet descriptor block.

3 IP%CFO Allow one send request above quota. (Default
send quota is 2.)

4L IPETTL Truncate the message if it is larger than the
space reserved for it in the packet data
block. If this bit is not on and the message
is too large, an error code is returned and no
message is received.

5 IP3CPD Create PID for sender and return in word
.IPCFS.

6 IPZJWP Make created PID job wide (ignored unless
IP¥CPD set).

7 IPENOA Do not allow other processes to use created
PID (ignored unless |P%CPD set).

18 IPSCFP Packet is privileged (requires IPCF capability
enabled) .

19 IPECFV The message is expected to be a long-form
message (that is, a page). The page the
message is being stored into cannot be a
shared page; it must be a private page.

22 | PZEPN Page number in word .IPCFP of the packet

descriptor block is 18 bits long.

INTER-PROCESS COMMUNICATION FACILITY

The information in word .IPCFS is not supplied by the receiver when
the MRECVZ call is executed. The system fills in the PID of the
sender of the packet when the packet is retrieved.

Word .IPCFR is supplied by the receiver. If bit IP¥CFR is on in the
flag word, then the PID receiving the packet is taken from word .IPCFR
of the packet descriptor block. If bit IP¥CFR is not on in the flag
word, then word .|PCFR contains either -1, to receive a packet for any
PID belonging to this process, or -2, to receive a packet for any PID
belonging to this job. wWhen -1 or -2 is given, packets are not
received in any particular order except that packets from a specific
PID are received in the order in which they were sent. Any other
values in this word cause an error code to be returned.

The information in words .IPCFD and .IPCFC is also not supplied by the
receiver. |f these two words have been specified by the receiver, the
system fills in the information when the packet is retrieved. Word
.IPCFD contains the sender's connected directory in the left half and
the sender's logged-in directory in the right half. Word .IPCFC
contains the enabled capabilities of the sender. These words describe
the sender at the time the message was sent.

On successful execution of the MRECVE monitor call, the packet s
retrieved and placed into the packet data block as indicated by word
.IPCFP of the packet descriptor block. AC1 contains the length of the
next packet in the queue in the left half and flags from the next
packet in the right half (see below). This word returned in ACl s
called the associated variable of the next packet in the queue. |If
there is not another packet in the queue, ACl1 contains zero.
Execution of the wuser's program continues at the second instruction
after the MRECV% call.

The flags returned in the right half of AC1 on successful execution of
the MRECVX monitor call are described in Table 7-4.

INTER-PROCESS COMMUNICATION FACILITY

Table 7-4: MRECV% Return Bits

Bit Symbol Meaning

30-32 I PECFC System and sender code, set only by a
privileged process. The packet was sent by
<SYSTEM>IPCF if the code is 1(.IPCCC). The
packet was sent by the system-wide
<SYSTEM>INFO if the code is 2(.IPCCF). The
packet was sent by the receiver's
<SYSTEM>INFO if the code is 3(.IPCCP).

33-35 IPECFM Field for return of special messages. | f
the field contains 1(.IPCFN), then the
process' input queue contains a packet that
was sent to another PID, but was returned
to the sender because it could not be
delivered.

If execution of the MRECVX call is not successful, a packet is not
retrieved, and an error code is returned in ACl. The execution of the
user's program continues at the instruction following the MRECV% call.

7.5 SENDING MESSAGES TO <SYSTEM>INFO

The <SYSTEM>INFO process is the central information utility for [IPCF.
It performs functions associated with names and PIDs, such as,
assigning a PID or a name or returning a name associated with a PID.

R process can request functions to be performed by <SYSTEM>INFO by
executing the MSEND¥ monitor call (refer to Section 7.4.1). The
message portion of the packet (that is, the packet data block) sent to
<SYSTEM>INFO contains the request being made. In other words, the
total request to <SYSTEM>INFO is a packet consisting of a packet
descriptor block and a packet data block containing the request.

INTER-PROCESS COMMUNICATION FACILITY

Packet Descriptor Block

! flag word !

| pointer to request !

Packet Data Block

!
! code ! function !
1

! function argument]

Refer to Section 7.4.1 for the descriptions of the words in the packet
descriptor block. The receiver's PID (word .IPCFR) is O when sending
a packet to <SYSTEM>INFO.

7.5.1 Format of <SYSTEM>INFO Requests

As mentioned previously, the packet data block (that is, the message
portion) of the packet contains the request to <SYSTEM>INFO,

The first word {word .IPCIQO) contains a user-defined code in the left
half and the function being requested in the right half. The
user-defined code is used to associate the response from <SYSTEM>INFO
with the correct request. The functions that the process can request
of <SYSTEM>INFO are described in Table 7-5.

7-15

INTER-PROCESS COMMUNICATION FACILITY

The second word (word .IPClI1) contains a PID associated with a process
that is to receive a duplicate of any response from <SYSTEM>INFO. |If
this word is zero, the response from <SYSTEM>INFO is sent only to the
process making the request.

The third word (word .IPCl2) contains the argument for the function
specified in the right half of word .IPCIO. The argument is different
depending on the function being requested. The arguments for the
functions are described in Table 7-5.

Table 7-5: <SYSTEM>INFO Functions and Arguments

Function Argument Meaning

+IPCIW name Return the PID associated with the
given name (refer to Section 7.3.2 for
the description of the name) .

.APCIG PID Return the name associated with the
given PID.
.AIPCHI name in Assign the given name to the PID
ASCIZ associated with the process making the

request. The PID is permanent if
IP¥JWP was set in the flag word when
the PID was originally created (refer
to Table 7-1).

JAPCHJ name in Identical to .IPClI function.
ASCi1Z

INTER-PROCESS COMMUNICATION FACILITY

7.5.2 Format of <SYSTEM>INFO Responses

Responses from <SYSTEM>INFO are in the form of a packet sent to the
process that made the request. A copy of the response is sent to the
PID given in word .{PCIT, if any.

The message portion (that is, the packet data block) of the packet
contains the response from <SYSTEM>INFO. The format of this response
is

! code ! function !

! response |

The first word (word .IPCIO) contains the user-defined code in the
left half and the function that was requested in the right half.
These values are copied from the values given in the request.

The second and third words (words .IPCI1 and .IPCI2) contain the
response from the function requested of <SYSTEM>INFO. The response is
different depending on the function requested. The responses from the
functions are described in Table 7-6.

Table 7-6: <SYSTEM>INFO Responses

Function Requested Response

LAPCIW The PID associated with the name given in
the request is returned in word .IPCI1,

LAPCIG The name associated with the PID given in
the request is returned in word .IPCI1.

LAPCHI No response is returned.

INTER-PROCESS COMMUNICATION FACILITY

7.6 PERFORMING IPCF UTILITY FUNCTIONS

A process can request various functions to be performed by executing
the MUTIL®¥ monitor call. Some of these functions are enabling and
disabling PIDs, creating and deleting PIDs, and returning quotas.
Several of the functions that can be requested are privileged
functions. These are described in the TOPS-20 Monitor Calls Reference
Manual.

The MUTIL® monitor call accepts two words of argument. The length of
the argument block is given in ACl, and the beginning address of the
argument block is given in AC2.

The argument block has the following format:

! function code !

! argument for function !

The arguments are different, depending on the function being
requested. Any values resulting from the function requested are
returned in the argument block, starting at the second word.

Table 7-7 describes the functions that can be requested, the arguments
for the functions, and the values returned from the functions.

7-18

INTER-PROCESS COMMUNICATION FACILITY

Table 7-7: MUTIL% Functions

Function Meaning

.MUENB Ailow the PID given to receive packets. |f the
process executing the call is not the owner of
the PID, the process must be privileged.

Argument
PID

Value Returned
None

.MUDIS Disable the PID given from receiving packets.
If the process executing the call is not the
owner of the PID, the process must be
privileged.

Argument
PID

Value Returned
None

.MUGTI Return the PID associated with <SYSTEM>INFO.

Argument
PID or job number

Value Returned
PID of <SYSTEM>INFO

.MUCPI Create a private copy of <SYSTEM>INFO for the
specified job. The caller must have |IPCF
capability enabled.

Argument
PID to be assigned to <SYSTEM>INFO
PID or number of job creating private copy

Table 7-7:

INTER-PROCESS COMMUNICATION FACILITY

MUTIL% Functions (Cont.)

Function Meaning
.MUDES Delete the PID given. The process executing the
call must own the PiD being deleted.
Argument
PiD to be deleted
Value Returned
None
.MUCRE Create a PID for the process or job given. I f
the job number given is not that of the process
executing the call, the process must be
privileged. The flag bits that can be specified
are IP%JWP and IP¥NOA (refer to Table 7-1 for
their descriptions).
Argument
flag bits in the 1left half, and process
handle or job number in the right half
Value Returned
PiD that was created
.MUSSQ Set send and receive quotas for the specified
PID. The caller must have IPCF capability
enabled. The new send quota is given in bits
18-26, and the new receive quota is given in
bits 27-35. The receive quota applies to the
specified PID, but the send quota applies to the
Jjob to which that PID belongs.
Argumemts
PID
new quotas
+MUFOJ Return the number of the job associated with the

PID given.

Argument
PID

Value Returned
Job number associated with PID given

7-20

Table 7-7:

INTER-PROCESS COMMUNICATION ra...

MUTIL% Functions (Cont.)

Function

Meaning

MUFJP

.MUFSQ

-MUFFP

.MUSPQ

Return all PIDs associated with the job given.

Argument
job number or PID belonging to the job

Values Returned

Two-word entries for each PID belonging to
the job. The first word of the entry is the
PID, and the second word has bits IP%JWP and
IPZNOA set if appropriate (refer to Table
7-1 for the descriptions of these bits).
The 1list of entries returned is terminated
by a zero word.

Return the send gquota and the receive quota for
the PID given.

Argument
PID

Values Returned

Send quota in bits 18-26 and receive quota
in bits 27-35.

Return all PIDs associated with the process of
the PID given.

Argument
PID

Values Returned

Two-word entries for each PID belonging to
the process. The first word of the entry is
the PID, and the second word has bits |PZJWP
and |IP¥NOA set if appropriate (refer to
Table 7-1 for the descriptions of these
bits). The 1list of entries returned is
terminated by a zero word.

Set the maximum number of PIDs allowed for the
specified job. The caller must have |IPCF
capability enabled.

Argument
job number or PID
PID quota

7-21

Table 7-7:

INTER-PROCESS COMMUNICATION FACILITY

MUTIL% Functions (Cont.)

Function

Meaning

-MUPIC

Place the specified PID on a software interrupt
channel. An interrupt is then generated when:

1. The MUPIC function is issued while the PID
has one or more messages in its receive
queue. :

2. The PID's receive queue changes its state
from empty to containing a message.
Subsequent entries to a queue that 1is not
empty do not cause an interrupt.

If the channel number is given as -1, the PID is
removed from its current channel.

The calling process and the process that owns
the specified PID must belong to the same job.

Arguments
PID
channel number

Set the PID of <SYSTEM>INFO. An error is given
if <SYSTEM>INFO already has a PID. The caller
must have |PCF capability enabled.

Arguments
PID of <SYSTEM>INFO

Return a PID from the system PID table. The PID
is returned in word 2 of the argument block.
The system PID table currently has the following
entries:

0 .SPIPC Reserved for Digital

1 .SPINF PID of <SYSTEM>INFO

2 .SPQSR PID of QUASAR

3 .SPMDA PID of QSRMDA

L _SPOPR PID of ORION
Argument

index into system PID table

7-23

INTER-PROCESS COMMUNICATION FACILITY

Table 7-7: MUTIL% Functions (Cont.)

Function Meaning
.MUMPS Return the maximum packet size for the PID
given.
Argument
PID

Value Returned
Maximum packet size for PID

.MUSKP Set PID to receive deleted PID messages. Allows
a controller task to be notified if one of its
subordinate tasks crashes. After this function
is performed, if the subordinate PID is ever
deleted (via RESET or the .MUDES MUTIL
function), the monitor will send an IPCF message
to the controlling PID notifying it that the
subordinate PID has been deleted. This message
contains .{PCKP in word O and the deleted PID in
word 1.

Argument
Source (subordinate) PID
Object (controller) PID

.MURKP Return controlling PID for this subordinate PID.
Argument

Source (subordinate) PID
Object (controller) PID (returned)

On successful completion of the MUTIL¥ monitor call, the function
requested is performed, and any value is returned are in the argument
block. Execution of the wuser's program continues at the second
location following the MUTIL% call.

If execution of the MUTIL% monitor call is not successful, no
requested function is performed and an error code is returned in ACI.
Execution of the user's program continues at the location following
the MUTIL% call.

7-24

CHAPTER 8

USING EXTENDED ADDRESSING

The term "extended addressing'' refers to the size of the addresses
that TOPS-20 uses on the DECSYSTEM-20 Extended KL10 processor. Older
versions of TOPS-20 (Release 4.1 and before) used 18-bit addresses;
newer versions (Release 5 and after) use 30-bit addresses.

This chapter discusses the two main activities associated with wusing
TOPS-20 monitor calls with extended addressing:

1. Writing new programs for execution in sections of memory
other than section 0O

2. Converting existing programs so that they can be executed in
sections other than section O

This chapter also contains information on hardware instructions and
macros useful to MACRO programmers who use extended addressing.

The discussion in this chapter depends heavily on the material in the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual. Refer to that
manual for a description of the format of 30-bit addresses, the
algorithm the processor uses to calculate effective addresses, and the
way that individual machine instructions work.

8.1 OVERVIEW

The TOPS-20 extended address space contains 32 (decimal) sections.
Each section contains 512 pages of 512 words each (256K words). An
18-bit address, called a local address, can reference any word in a
given section. A 30-bit, or global, address can reference any word in
any section of memory.

USING EXTENDED ADDRESSING

in contrast, TOPS-20 Vk.l1 and earlier provided an 18-bit, 256K-word
address space. The Program Counter (PC) register was 18 bits. For
each instruction executed, the first action taken was the computation
of an 18-bit effective address. The algorithm for calculating the
effective address (including indexing and indirecting rules) was the
same for all instructions.

Because the TOPS-20 virtual address space is limited to 32 sections,
and section numbers longer than 5 bits are illegal, legal addresses
are effectively limited to 23 bits. When addressing data, you can
view this 32-section address space as one large memory area.

From the point of view of program execution, however, memory is
divided into 32 discrete sections. A program can have code in more
than one section of memory, and it can execute that code (assuming the
constraints discussed below), but it must change sections explicitly,
as discussed below.

Compatibility for existing programs is provided by section O. A
program running in section O behaves as though it were being executed
on a system without extended addressing, except for certain
instructions such as XJRSTF. For more information on the actions of
specific instructions, see the DECsystem-10/DECSYSTEM-20 Processor
Reference Manual.

8.2 ADDRESSING MEMORY AND ACS

The extended format PC contains a section field and a
word-within-section field. When an instruction is executed, only the
word field is incremented. Column overflow is never carried from the
word field to the section field. |If the last word of a section is
executed, and it is not a jump instruction, then the next instruction
is fetched from word 0 of the same section. Thus a program can only
change sections explicitly, by means of a PUSHJ, JRST, XJRST or XJRSTF
instruction, and only an XJRST or an XJRSTF can change control from
section O to another section.

8-2

USING EXTENDED ADDRESSING

Because a whole word cannot contain a 30-bit address and the program
flags, the PC and flags are a two-word entity. The flag bits are in
the first word, and the figure below represents the second word.
Figure 8-1 shows the format of the address fields of the PC.

! un- ! section ! word-within- !
! used ! number ! section !

Figure 8-1: Program Counter Address Fields

The word (word-within-section) field consists of 18 bits and thus
represents a 256K-word address space similar to the single-section
address space of release 4 and earlier. The section number field is
12 bits, of which only the right-hand five bits can be nonzero because
section numbers greater than 31 are illegal. The leftmost seven bits
of the section number field must be zero. This provides room to
address 32 separate sections, each of 256K words.

Each section is further divided into pages of 512 words, just as in
earlier releases. The paging facilities allow the monitor to
determine the existence and protection of each section.

The PC section field determines what section a program is running in.
If the section field contains zero, the program is running in section
0. Most extended addressing features are not available to a program
running in section O. A1l quantities (including addresses), when
calculated from section O, are considered to be local (18 bits).

1. A program executing in section 0 cannot address memory in any
other section. (One-word global byte pointers are an
exception to this rule. Refer to Chapter 1 of the TOPS-20
Monitor Calls Reference Manual for more information.)

2. The program cannot jump from section O to another section
unless it wuses a monitor call or the XJRST or XJRSTF
instruction.

3. The program runs exactly as it would run on a machine without
extended addressing.

If the section field contains a number from 1 to 31 (decimal)
inclusive, the program is executing in a nonzero section (a section
other than section 0). The hardware considers addresses to be 30
bits, and the program can use extended addressing features.

8-3

USING EXTENDED ADDRESSING

A local address is defined as an 18-bit address in the same section as
the program counter (PC) of the instruction. Local addresses are
relative to the PC section. - A global address is a 30-bit address,
which therefore supplies its own section number.

The following paragraphs explain the way effective addresses are
calculated in nonzero sections. In addition, see the description in
the DECsystem-10/DECSYSTEM-20 Processor Reference Manual.

8.2.1 Instruction Format

The format of a machine instruction is the same as on an unextended
machine. The effective address calculation depends on the address
field (Y, 18 bits), the index field (X, 4 bits), and the indirect
field (I, 1 bit). Figure 8-2 shows these fields.

0 89 12 1314 17 18 35

Figure 8-2: Instruction Word Address Fields

If | and X are O, the instruction uses neither indexing nor
indirection, so the effective address is Y (18 bits). The section
number, since it is not specified in the address, is taken from the
section field of the PC. The PC section field contains the number of
the section from which the instruction was fetched. Such an 18-bit
address is called a local address.

The following is an example of an instruction whose |, X and Y fields
evaluate to an 18-bit effective address.

3,,L400/ MOVEM T, 1000
The effective address is word 1000 of the current section. The

section from which the instruction is fetched is section 3, so the
instruction moves the contents of register T into memory word 3,,1000.

8-4

USING EXTENDED ADDRESSING

8.2.2 Indexing

The first step in the effective address calculation is indexing. I f
the X field is nonzero, indexing is used. The calculation of the
effective address then depends on the contents of the specified index
register. Indexing may be local or global as follows:

e |If the left half of the index register contains a negative
number or 2zero, the contents of the right half (bits 18-35)
are added to Y (from the instruction word) to yield an 18-bit
local address.

This is the way indexing is done on an unextended machine.
It allows a program to use the usual AOBJN pointer and stack
pointer formats for tables and stacks that are in the same
section as the program. Note, however, that if the left half
of the index register contains a positive number, the results
are not the same.

e |If the left half of the index register contains a positive
number, the contents of bits 6-35 of the register are added
to Y to yield a 30-bit global address.

This means that instructions can reference 30-bit (global)
addresses by means of an index register. If the Y field is
0, the instruction refers to the address contained in X. The
Y field can contain a positive or negative offset of
magnitude less than 2A17.

8.2.3 Indirection

If the | field contains 1, the instruction specifies indirection. An
indirect word is fetched from the address determined by Y and X. Two
types of indirect word exist, Instruction Format Indirect Word (IFIW)
and Extended Format Indirect Word (EFIW). They are described in the
following section.

8-5

USING EXTENDED ADDRESSING

8.2.3.1 Instruction Format Indirect Word (IFIW) - This word contains
Y, X, and | fields of the same size and in the same position as
instructions (in bits 13-35). Bit O must be 1, and bit 1 must be O0;
bits 2-12 are not used.

Figure 8-3 shows an instruction format indirect word.

012 12 13 14 17 18 35

11y P ! !
1110! (hot used) !1 ! X ! Y !
LIS (I ! !

Figure 8-3: Instruction Format Indirect Word

The effective address calculation continues with the quantities in
this word just as for the original instruction. Indexing can be
specified and can be local or global depending on the left half of the
index. Further indirection can also be specified.

Note that the default section for any local addresses produced from
this indirect word is the section from which the word ijtself was
fetched. This means that the default section can change during the
course of an effective address calculation that uses indirection. The
default section is always the section from which the last address word
was fetched.

8.2.3.2 Extended Format Indirect Word (EFIW) - This word also
contains Y, X, and | fields, but in a different format. Figure 8-k
shows an extended format indirect word.

Figure 8-4: Extended Format Indirect Word

8-6

USING EXTENDED ADDRESSING

if indexing is specified in this indirect word (bits 2-5 nonzero), the
contents of the entire index register are added to the 30-bit Y to
produce a global address. This type of indirect word never produces a
local address. The type of address calculation used does not depend
on the contents of the index register specified in the X field.

Hence either Y or Y(X) can be used as an address or an offset within
the extended address space, just as is done in the 18-bit address
space. |If further indirection is specified (bit 1 set), the next
indirect word is fetched from Y as modified by indexing (if any). The
next indirect word can be in instruction format or extended format,
and its interpretation does not depend on the format of the previous
indirect word.

8.2.3.3 Macros for Indirection - The system file MACSYM.MAC contains
several convenient macros for constructing indirect words. Macro
LFIWM generates local (instruction format) indirect words. Both the
macros EP. and GFIWM may be used to generate global (extended format)
indirect words.

8.2.4 AC References

A local address in the range 0-17 (octal) references the hardware ACs
as memory. This is true in every section of memory.

A global address in section 1 in the range 1,,0 to 1,,17 (octal) also
refers to the hardware ACs. A global address in any other section
refers to memory. This means that the following behavior occurs.

1. Addresses in the range 0-17 reference ACs as expected. The
instruction
MOVE 2,3

fetches the contents of hardware register 3 regardless of
what section the instruction executes in.

2. To make a global reference to an AC, the global address must
contain a section number of 0 or 1.

3. Arrays <can cross section boundaries. Global addresses
specifying any section except section 1 always refer to
memory, never to the hardware ACs. For this reason,
incrementing the address 6,,777777, for example, yields
address 7,,000000, which is a memory location.

L. The ACs are regarded as local to any section; a local address
(0-17) references the ACs from any section. Hence, a jump
instruction which yields a local effective address of 0-17 in
any section will cause code to be executed from the ACs.

8-7

USING EXTENDED ADDRESSING

8.2.5 Extended Addressing Examples

These instructions make local references within the current PC
section:

3,,400/ MOVE T,1000 ; fetches from 3,,1000
JRST 2000 3 jumps to 3,,2000

The following instructions scan table TABL, which is in the current
section:

MOVSI1 X,-S1Z

LP: CAMN T,TABL (X) ; TABL in current section
JRST FOUND
AOBJN X,LP

The following instructions scan table TABL, which is in section TSEC,
by using a gliobal address:

MOVEI X,0

LP: CAMN T,@[GFIWM TSEC,TABL(X)] ; extended format
JRST FOUND
CAIGE X,S1Z-1
AOJA X,LP

Similarly, the EP. macro can be used for the same purpose:

MOVEI X,0

LP: CAMN T,@[EP.<TSEC>B17!TABL (X)]
JRST FOUND
CAIGE X,SI1Z-1
AOJA X,LP

8-8

USING EXTENDED ADDRESSING
The following examples illustrate various aspects of indexing and
indirection in effective address calculation:
L/100
6,,1000/MOVE 1,@2000
6,,2000/LFIWM @4000
6,,4000/LF IWM 200 (4)

Effective address = 300 in section 6

6,,SUB/ MOVE 1,@[LFIWM @22Z]

6,,Z2Z: LFIWM @XXX
XXX: LF IWM ARRAY (4)

Effective address = ARRAY+100 in section 6
6/14, , ADDRX

11, ,ROU/MOVE 1,@L[LFIWM (6)]

14, ,ADDRX: LFIWM 100

Effective address = 14,,100

8.2.6 Immediate Instructions

Each effective address calculation yields a 30-bit address, defaulting
the section if necessary. Immediate instructions use only the
low-order 18 bits of this as their operand, however, and set the
high-order 18 bits to 0. Hence instructions such as MOVEI and CAl
produce identical results regardless of the section in which they are
executed.

Two immediate instructions retain the section field of their effective
addresses. These are:

® XMOVE! (opcode L15) Extended Move Immediate

e XHLL! (opcode 501) Extended Half Word Left to Left Immediate

8-9

USING EXTENDED ADDRESSING

8.2.6.1 XMOVE! - The XMOVE| instruction loads the 30-bit effective
address into the AC, and sets bits 0-5 to 0. 1{f no indexing or
indirection is used, the number of the current section is copied from
the PC to the AC. This instruction can replace MOVE|I when a global
address is needed.

The following example shows the use of the XMOVEl instruction in a
subroutine call. The subroutine is in section XSEC, but the argument
list is in the same section as the calling program.

XMOVE| AP,ARGLIST
PUSHJ P,@[GFIWM XSEC,SUBR]

The subroutine can reference the arguments with the following
instruction.

MOVE T,@1 (AP)

To construct the addresses of arguments, the subroutine can use the
following instruction.

XMOVE | T,@2 (AP)

The last two instructions assume that register AP contains the
argument list pointer. |If the address the calling program placed in
AP is an I[FIW, the section number in the effective address is that of
the calling program. |If the address the calling program placed in AP
is an EFIW, the section number in the effective address of the

argument block is determined by the section number the calling program
placed in AP.

The argument list would be found in the caller's section because of
the global address in AP. The section of the effective address is
determined by the caller, and is implicitly the same as the caller if

an |IFIW is used as the arglist pointer, or is explicitly given if an
EFIW is used.

8.2.6.2 XHLLI - The XHLL! instruction replaces the left half of the
accumulator with the section number of the PC, and places zero in the

right half of the AC. This instruction is useful for constructing
global addresses. '

8.2.7 Other Instructions

The instructions discussed here are affected by extended addressing,
but not necessarily in the way that their effective addresses are
calculated. In addition to the material presented here, see the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual regarding the

following instructions: LUUOs, BLT, XBLT, XCT, XJRSTF, XJEN, XPCW,
SFM.

8-10

USING EXTENDED ADDRESSING

8.2.7.1 Instrdctions that Affect the PC - These instructions are
PUSHJ, POPJ, JRST. PUSHJ stores a 30-bit PC address, but stores no
flags. It sets bits 0-5 of the destination word to O.

POPJ restores a 30-bit PC address from the stack, but does not restore
the flags. It also sets bits 0-5 of the destination word to O.

The JSA and JRA instructions can be used only within a section. In
section O the JSP and JSR instructions can store flags,,PC but then
cannot transfer out of section 0. The JSP and JSR instructions can
store flags,,PC in nonzero sections and then can transfer into any
other section (if the address is specified with indexing or
indirection) .

8.2.7.2 Stack Instructions - PUSHJ, POPJ, PUSH, POP, and ADJSP.
These instructions use a local or global address for the stack
according to the contents of the stack pointer. Whether the stack
address is Jlocal or global depends on the same rules as those that
govern indexing in effective address calculation. (See section
8.2.2.) It is always best to use the ADJSP instruction when working
with stacks. This instruction works in any section and will indicate
when a pushdown overflow error occurs.

In brief, if the left half of the stack pointer is 2zero or negative
(prior to incrementing or decrementing), the pointer references a
local address and the address in its right half is the address of the
current item in the stack. The stack pointer is incremented or
decremented by adding or subtracting one from both sides,
respectively.

If the left half of the stack pointer is positive, the entire word is
taken as a global address. The stack pointer is incremented by adding
1, and decremented by subtracting 1.

A stack that contains global addresses can be used the same way a
local stack is used. The global stack, however, can contain pointers
to routines in other sections.

To protect against stack overflow and underflow, make the pages before
and after the stack inaccessible. This method must be used because a
global stack has no room for a count in the left half of the pointer.

8.2.7.3 Byte Instructions - To reference a byte in another section,
you must use either a one-word, or a two-word, global byte pointer.
Both global and local byte pointers are legal arguments to monitor
calls from nonzero sections but there are some restrictions on the use
of one-word global byte pointers from section 0. See Section 8.3 for
further information.

USING EXTENDED ADDRESSING

Chapter 1 of the TOPS-20 Monitor Calls Reference Manual describes
one-word global byte pointers. The DECsystem-10/DECSYSTEM-20
Processor Reference Manual describes two-word global byte pointers.

8.3 USING MONITOR CALLS

If a program runs in a single section, even though that section is not
section 0, most monitor calls execute exactly the way they do in
section 0. This is because when no section number is specified, the
current section is the default.

The GTFDB% call, for example, requires that AC3 contain the address of
the block in which to store the data it obtains from the file data
block. This address can be an 18-bit address regardless of what
section the monitor call is made from. When the monitor sees that the
address is local, it obtains the section number from the PC of the
process that makes the call.

The same is true of calls that accept page numbers. If a 9-bit page
number is passed as an argument, the monitor obtains the section
number from the PC of the process that made the call. Monitor «calls
arguments are discussed in Chapter 1 of the TOPS-20 Monitor Calls
Reference Manual.

It is sometimes desirable to specify addresses in section O when
executing a JSYS from a nonzero section. The bit PMY¥EPN for PMAP%,
and FHXEPN for JSYSs that accept fork handles, prevent the current
section (the section in which a program is running) from being the
target section for the monitor call's arguments.

Another restriction on arguments passed to monitor calls executed in
sections other than section O concerns universal device desighators,
which have the format B5XXXXX,,XXXXXX OF B6XXXXX,,xxxxxx (.DVDES).
Universal device designators are not legal except in section 0. This
is because of the existence of one-word global byte pointers, which
can have the same format.

Thus monitor calls that accept either a device designator or a byte
pointer when called from section 0 do not accept universal device
designators in any other section. Other device designators, such as
.TTDES (0,,kxxxxx), can be wused in any section. Conversely, these
monitor calls that can accept either universal device designators or
byte pointers do not accept one-word global byte pointers in section
0.

The calls SIR% and RIR% should not be used in sections other than
section O, These calls work in other sections only if all the code
associated with these calls exists in the same section as the code
that makes the call.

USING EXTENDED ADDRESSING

For example, if an SIR% call is executed in section 4, it executes
correctly if and only if the code that generates the interrupts, the
interrupt-processing routines, and all associated tables are also
located in section 4. Thus, in programs intended to run in a section
other than section 0, the XSIR% and XRIR% calls, described in Chapter
L, should be wused in place of SIR%¥ and RIR%Z. |In general, it is
recommended that the extended form of monitor calls be used since this
form works in any section, including section O.

8.3.1 Mapping Memory

The PMAP% monitor call accepts an 18-bit page number, half of which is
a section number. Thus PMAP% can be used to map a page from one
section to another. |If the destination section does not exist, that
section will be created.

The SMAP% monitor call maps one or more sections of memory. |t works
like the PMAP call, but maps sections instead of pages. |f the
destination section does not exist, SMAP% creates the section.

Access to the sections in a process map is determined by the same
algorithm that determines access to a page within a given section. |If
a process section and a page in that section have different accesses,
the access privileges are ANDed together. The process requesting
access to the page gains access only if it has access rights at least
equal to the ANDed protections.

For example, if a process has read access to a section and maps a page
into that section for which the process has read and write access, the
page is mapped, but the process gets only read access to the mapped
page.

The following sections describe the SMAP% functions.

8.3.1.1 Mapping File Sections to a Process - This function maps one
or more sections of a file to a process. All pages that exist in the
source sections are mapped to the destination sections. Access to the
mapped pages is determined by ANDing the access allowed to the file
and the access specified in the SMAP% call.

Although files do not actually have section boundaries, this monitor
call views them as having sections that consist of 512 contiguous
pages. Each file section starts with a page number that is an integer
multiple of 512.

8-13

USING EXTENDED ADDRESSING

This call cannot map a process memory section to a file. To map a
process section to a file, use the PMAP% monitor call to map the
section page-by-page.

This function of the SMAPX call requires three words of arguments, as
follows:

ACl: source identifier: JFN,,file section number
AC2: destination identifier: fork handle,,process section number
AC3: flags,,count
The flags determine access to the destination section, and the count
is the number of contiguous sections to be mapped. The count must be
between 0 and 37 (octal). The flags are as follows.,
B2 (SM¥RD) Allow read access
B3 (SMZWR) Allow write access

Bk (SMZEX) Allow execute access

B18-35 The number of sections to map. This
number must be between 1 and 37 (octal).

8.3.1.2 Mapping Process Sections to a Process - The SMAPZ monitor
call also maps sections from one process to another process. In
addition, you can map one section of a process to another section of
the same process. The SMAP% call maps all pages that exist in the
source section to corresponding pages in the destination section.

If you map a source section into a destination section with SMZIND
set, SMAP% creates the destination section using an indirect pointer.

This means that the destination section will contain all pages that
exist in the source section, and the contents of the destination pages
will be identical to the contents of the source pages.

Furthermore, after SMAP% has mapped the destination section, changes
that occur in the source section map cause the same changes to be made
in the destination section map. This ensures that both the source
section and the destination section contain the same data.

If SMZIND is not set, SMAP% creates the new section using a shared
pointer. After SMAP% maps the destination section, changes that occur
in the source section's map do not cause any change in the destination
section's map. Thus after a short time the source and destination
sections might contain different data.

USING EXTENDED ADDRESSING

If you request a shared pointer (SM¥IND not set) to the destination
section, what happens depends on the contents of the source section
when the SMAP% call executes. The outcome is one of the following.

1. If the source section does not exist, the SMAPY call creates
the section.

2. If the source is a private section, a mapping to the private
section is established, and the destination process is
co-owner of the private section.

3. If the source section contains a file section, the source
section is mapped to the destination section.

L. If the source section map is made by means of an indirect
section pointer, SMAPY follows that pointer until the source
section is found to be nonexistent, a private section, or a
section of a file.

This SMAP¥ function requires three words of arguments in AC1 through
AC3.

AC1: Source identifier: fork handle,,section number
AC2: Destination identifier: fork handie,,section number
AC3: access flags,,the number of contiguous sections to map.

The number of sections mapped, the number in the right
half of AC3, must be between 1 and 37.

The flags determine access to the destination section.
The flags are as follows:

B2 (SM%RD) Allow read access

B3 (SM%WR) Allow write access

BL (SMYEX) Allow execute access

B6 (SMXIND) Map the destination section using an indirect
section pointer. Once the destination section map
is created, the indirect section pointer causes
the destination section map to change in exactly

the same way that the source section map changes.

B18-35 Count of the number of contiguous sections to be
mapped.

8-15

USING EXTENDED ADDRESSING

8.3.1.3 Creating Sections - Before you can use a nonzero section of
memory, you must create it. If your program references a nonzero
section of memory that does not exist (that is not mapped), the
instruction that makes the reference fails.

This SMAP% function requires three words of arguments in AC] through
AC3, as follows:

ACT: 0
AC2: destination identifier: fork handle,,section number
AC3: flags,,count
The flags determine access to the destination section, and the count
is the number of contiguous private sections to be created. This
count must be between 1 and 37.
The flags in the left half of AC3 are as follows:
B2 (SM%RD) Allow read access
B3 (SMZWR) Allow write access
B4 (SMYEX) Allow execute access
B6 (SM%IND) Create the section using an indirect pointer
B18-35 The number of sections to create. This number

must be between 1 and 37. All created sections
are contiguous.

8.3.1.4 Unmapping a Process Section - You can use the SMAP% monitor
call to unmap one or more sections of memory in a process. The
contents of the section are lost.

If the section contains pages mapped from a file, this function does
not cause the unmapped sections to be written back to the file from
which they were mapped. Such pages must be mapped to the file by
means of the PMAP% call.

USING EXTENDED ADDRESSING

This function requires three words of arguments in AC1 through AC3, as
follows.

AC1: -1
AC2: Destination identifier: fork handle,,section number

AC3: 0,,count
The count is the number of contiguous sections to be
unmapped. This number must be between 1 and 37.

8.3.2 Starting A Process In Any Section

You can use most of the <calls described in Chapter 5 to control
programs that run in a nonzero section. The SFORK% monitor call is an
exception, and will not start a program in a nonzero section.

The XSFRK% monitor call starts a process in any section of memory. If
the process is frozen (by means of the FFORK% call), XSFRK% changes
the double-word PC, but does not resume execution of the process. To
resume the execution of any frozen fork, use the RFORK% call.

The XSFRK% call requires three words of arguments in AC] through AC3.
ACl: flags, ,process handle
Flags:
SF%CON (1BO) continue a process that has halted.
If SFXCON is set, the address in AC3
is ignored and the process continues
from where it was halted.
AC2: PC flags,,0
AC3:" address to which this call is to set the PC
The XSFRK% call also starts a process in section 0. To do so, set the
left half of AC3 to zero and the right half of AC3 to the address in
section O at which you want the process to start.
Most other calls consider an address with a zero in the left half to
be a local address. The XSFRK% call, however, uses the contents of

AC3 to set the PC. A PC with zero in the left half indicates an
adcdress in section O.

8-17

USING EXTENDED ADDRESSING

8.3.3 Setting the Entry Vector In Any Section

The SEVEC¥ monitor call has room in its argument ACs for only a
half-word address, so it cannot be used to set a process entry vector
to an address in a nonzero section. The XSVEC¥ call, on the other
hand, uses an AC for the address of the entry vector, and another AC
for the length of the entry vector, and can specify an entry vector in
any section of memory.

The XSVEC% call requires three words of arguments in ACl1 through AC3.
ACi: process handle
AC2: length of the entry vector, or 0
AC3: address of the beginning of the entry vector

The length of the entry vector specified in AC2 must be less than 1000
words. If AC2 contains O, TOPS-20 assumes a default length of two
words.

8.3.4 Obtaining Information About a Process

Although the monitor calls described in Chapter 5 work in any section
of memory, several of them can only return information about the
section in which they are executed. The following paragraphs describe
the monitor calls you can use to obtain information about any section
of memory.

8.3.4.1 Memory Access Information - Several kinds of information
about memory are important. Among them are whether a page or section
exists (is mapped), and, if so, what the access to a page or section
is. The RSMAP¥ and XRMAP% calls provide this information.

The RSMAP% monitor call reads a section map, and provides information
about the mapping of one section of the address space of a process.
RSMAP% requires one word of arguments in ACl: a fork handle in the
left half, and a section number in the right half. It returns the
access information in AC2.

USING EXTENDED ADDRESSING

| The map information that RSMAP% returns in AC1 can be the following:

-1

n,,m

no current mapping present (the section does not

exist)

the mapping is a private section

where n is a fork handle or a JFN, and m is a

section number. If n is a fork handle,
the mapping is an indirect or shared
mapping to another fork's section. If n
is a JFN, the mapping is a shared
mapping to a file section.

| The access information bits returned in AC2 are the following:

B2 (SM%RD)

B3 (SM%WR)

BL (SMYEX)
| B5 (PA%PEX)

B6 (SM%IND)

Write access

Read access is allowed

is allowed
Execute access is allowed
The section exists

The section was created using an indirect pointer.

Although the RSMAP% call does not return information on individual

pages, the

data it does return is useful in preventing error returns
from the XRMAP% monitor call.

8-19

USING EXTENDED ADDRESSING

The XRMAP% call returns access information on a page or group of pages
in any section of memory. Although the RMAP% call returns access data
about a page in the current section, and you can use the RSMAP¥ call
in any section of memory, you must use the XRMAP¥ call to obtain
information about pages in any section other than the current section.
The XRMAP% call requires two words of arguments in AC1 and AC2.

ACl: process handie,,0

AC2: address of the argument block

The argument block addressed by AC2 has the following format:

Length of the argument block, including this word

- e o= s
o cmmm semm s

number of pages in this group on which to return data

address at which to return the data block

! address at which to return the data block !

The number of words in the argument block is three times the number of
groups of pages for which you want access data, plus one. Each group
of pages requires three arguments: the number of pages in the group,
the number of the first page in the group, and the address at which
the monitor is to return the access data.

Note that the address to which the monitor returns data should be in a

section of memory that already exists. |If it does not exist, the call
will fail with an illegal memory reference.

8-20

USING EXTENDED ADDRESSING

The access information returned for each group of pages specified in
the argument block is the following:

B2 (RM¥RD) read access allowed

B3 (RM%ZWR) write access allowed
B4 (RM¥EX) execute access allowed
B5 (RM¥PEX) page exists

B9 (RM¥CPY) copy-on-write access

For each page specified in the argument block that does not exist,
XRMAP% returns a -1. It also returns a zero flag word for each such
page. The data block to which XRMAP% returns the access information
should therefore contain twice as many words as the number of groups
of pages about which you want information.

If you execute an XRMAP% call to obtain information about a page in a
nonexistent section, the XRMAP%¥ call fails with an illegal memory
reference. For this reason it is recommended to execute an RSMAP%
call to determine that the section exists before you use XRMAP% to
obtain information about any page within that section.

8.3.4.2 Entry Vector Information - To obtain the entry vector of a
process in any section of memory, use the XGVEC% call. This call
returns the length of the entry vector in AC2 and the address of the
entry vector in AC3.

The XGVEC% call requires one word of argument: in ACl, the handle of
the fork for which you want the entry vector.

8.3.4.3 Page-Failure Information - A page-fail word, described in the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual, contains
information that allows a program to determine the cause of a page
trap and the address of the instruction that caused the trap. This
information allows a program to correct the cause of the page-fail
trap. Once the program has corrected the cause of the page-fail trap,
the program can continue execution.

The XGTPW% call obtains the page-fail word from the monitor's data
base, and returns it to the calling program's address space. The
XGTRP% call requires two words of arguments in ACl and AC2.

AC1: process handle

AC2: address of the block in which to return data

8-21

USING EXTENDED ADDRESSING

8.3.5 Program Data Vectors

Program Data Vectors (PDVs) are data structures in a process that are
known to the monitor by name and location. They contain information
about the program segments within a process. The PDV is a block of
data that LINK writes into memory when loading and linking a program.
The PDV resides in memory as a part of the program, and starts at a
program data vector address {(PDVA). PDVs are used to allow user
programs to obtain information about other programs that can be mapped
into a process. PDVs and PDVAs are manipulated by using the PDVOP%
monitor call. (Refer to the TOPS-20 Monitor Calls Reference Manual
for a complete description of the PDVOP% monitor call.) The PDVOP%
monitor call can be used to obtain information about an execute-only
process.

Certain words in the PDV (for example, .PVNAM) point to blocks of
information. These words are in either |IFIW or EFIW format (see
Sections 8.2.3.1 and 8.2.3.2) except that they cannot use indexing,
and any indirect chain pointed to by the word cannot go through an
accumulator. This allows a program to find the address of a block
pointed to by a PDV word by simply using an XMOVE! instruction. For
example,

XMOVEI AC1,@.PVNAM(AC2)

puts into ACl1 the global address of the name of the PDV whose PDVA s
in AC2.

8.3.5.1 Manipulating PDV Addresses - For the process specified in
word .POPHD of the argument block, the .POGET function of the PDVOP%
monitor call returns all PDVAs within the range of addresses specified
in words .POADR and .POADE of the argument block. (See the
description of the PDVOP% monitor call in the TOPS-20 Monitor Calls
Reference Manual for the format of the argument block.) The address
range supplied by words .POADR and .POADE determines which PDVAs are
affected by any given call.

The .POADD function of the PDVOP%¥ monitor call adds the PDVAs
specified in the data block to the system's data base for the
specified process. The PDVAs must be in ascending order within the
data block.

The .POREM function of the PDVOP% monitor call removes a set of PDVAs
from the system's data base for the specified process. Those removed
are the ones within the range specified by words .POADR and .POADE of
the argument block.

8-22

e e e — — . S— ———— T — ——— ——— ——) — — — w—

USING EXTENDED ADDRESSING

8.3.5.2 PDV Names - The .PONAM function of the PDVOP%¥ monitor call
returns the ASCIZ name of a PDV in memory. Word .POADR of the
argument block must contain a valid PDVA for the specified process.
The name returned is the one to which word .PVNAM of the PDV points.
The string returned by .PONAM is placed into the data block.

For the specified process, the .POLOC function returns in the data
block all the PDVAs of PDVs with the specified name. The byte pointer
in AC3 points to the PDV name. Function .POLOC is affected by
.POADR/.POADE words.

The following rules apply to the assignment of PDV names. if these
rules are followed, it is quite unlikely that two packages that want
to run in the same process will discover a conflict in PDV names.

1. PDV names assigned by DIGITAL will contain the character "%"
at the end (or elsewhere). No PDV names assigned by users
should contain the "%'" character.

2. All PDV names containing the character "." are reserved to
DIGITAL for future use.

3. The character "$" is reserved for a special use: PDV names
of the form stringlSstring2 are reserved for the special
class of use named by stringl. Rules 1 and 2 still apply in
this case.

As a general principle, avoid using PDV names that are insufficiently
specific; use of such names invites conflicts with other packages.

8.3.5.3 Version Number - The .POVER function of the PDVOP%¥ monitor
call returns in the data block the version of a program in memory.
Word .POADR must contain a valid PDVA for the specified process. The
version returned is the one that word .PVVER of the PDV contains.

For more information on program data vectors, including explanations
of the static memory map (pointed to by word .PVMEM) and the symbol
table vector (pointed to by word .PVSYM), refer to the TOPS-20 LINK
Reference Manual.

8.4 MODIFYING EXISTING PROGRAMS

Existing programs can be modified to run in any section of memory,
including both section O and all other sections. The sections that
follow discuss the changes that must be made to an existing program so
that it runs in a single nonzero section.

8-23

USING EXTENDED ADDRESSING

8.4.1 Data Structures

Stacks, tables, and other data structures used in the past have often
contained words with an address in the right half and a count in the
left half. The count could be positive or negative because all
programs ran only in section 0, and when the contents of a word were
evaluated for Effective Address calculation or address use in section
0, only the right half was considered.

In all other sections, the entire word is considered to be an address.
If the left half of the word is negative, the left half is ignored
when the address is evaluated, and the address is local. Thus for a
word to contain an address in the right half and a count in the left
half, the count must be negative.

8.4.1.1 Index Words - Be sure the left halves of index words contain
a nonpositive quantity. To use the left half of an index register to
hold a count, the count must be negative. |If the left half is unused,
it must be zero so that the effective address is a local address. |If
the left half contains a positive number, the indexed address will be
global.

8.4.1.2 Indirect Words - To be sure that an indirect word in a
nonzero section is evaluated as a local address, always set bit 0 of
the indirect word. Argument lists that produce local addresses in
section 0, for example, will produce local addresses in any section if
bit 0 is set.

8.4.1.3 Stack Pointers - As mentioned above, the left halves of stack
pointers must contain zero or a negative number to produce local
addresses. A negative number in the left half is considered to be a
count. A positive number in the left half is considered to be a
section number.

8.5 WRITING MULTISECTION PROGRAMS

Multisection programs, programs that use more than one section of
memory, are similar to single-section programs that run in nonzero
sections. They allow you to place tables needed for processing
interrupts in any section of memory (See Chapter L), to use very large
arrays, and to write modules of code that can be dynamically mapped
into a section of memory and executed.

8-24

USING EXTENDED ADDRESSING

In a single-section program, local addresses and byte pointers are
sufficient to specify any word or byte in the program's address space.
in a multisection program, local addresses and byte pointers cannot
specify any word or byte in the program's address space. Most monitor
calls use only one AC per argument, so passing two-word global byte
pointers is not possible. Thus, it is necessary to:

e keep monitor call arguments in the same section of memory as
the code making the call, or

e use global arguments, or
e use the global form of the monitor call.

In many multisection programs it is not necessary to keep all the
arguments required by a call in the same section as the code that
makes the call. Global arguments are required, and they take several
forms. Chapter 1 of the TOPS-20 Monitor Calls Reference Manual gives
details on the use of these arguments.

The following program computes a file checksum by XORing the words in
all file pages. The program is loaded into section O and maps itself
into section 1. |t then jumps into section 1 to access the file data
loaded into section 15,

E CHRSUM - COMPUTE A FILE
YROH MONSYM $HTA
RCH MACSYM

UIRE SYSIMACREL FGET JSERR SUPPORT ROUTINES

.UNIUERSAL FILES

STUAC . FLEFINE STANDARD ACH
i PROGRAM CONSTANTS

OF STACK

CTTON TO Maf CODE
CTION YO MAF FI
WEITHEN DAT
OF A FAGE

INTO
DATA INTO
EC FOR FILE DATA

CHKSUMS FRESET THE WORLDG
FMaF THIS FORKS &

T 5T EXTEN CORE SECTION

FINDIRECT POINTER RDyWRyEX 1 SECTION

§ LUINEX
$5AY NC

AL, ERROR

1 FAT

LE S

GETF L2

ENTER FILI ; DHECKSUMS > sPROMFT
MOUX Ty GURSHTTGJZOLI GUAFNG $ 0L
MOVE Ty LoPRIINy v FRIQUT SRE F I
GTJFN SGET FI

o $CANNOT
$8AVE F

EC FROM TERMINAL

MOVE s FILJFN

MOUX T2y FLOCNESy OF ZREZD
QFENFY

JMER BADF T

3 OAND 34 RIT RYTES
GCﬁ&NOT OFEN FILE TELL USER

XJRET LCODSECy yDOCHKSED FENTER EXTENDEDR SECTION AN 00 CHECKSUM

8-25

USING EXTENDED ADDRESSING

SFRINT ERROR MESSAGE

B TLeFILJFN 18 THERE A JFN

FYES. RELEASE 1T

EJSERR FRRINT ERROR IF ANY

JRET GETFIL FAND TRY TO GET FILE AGAIN

RANF LS

i THE FOLLOWING CODE RUNS IN A NONZERD SECTION AND NOES A CHECKSUM OF THE FILE
i BTORED IN FILJFN

DNOCHKS?: SETZR Q1sQR2 QL HOLDOS THE CHECKSUM. INITIALLY ZEROD
A2 I8 THE CURRENT FILE FAGE NUMRER

CHRKLOF$ MOVE Ti.02 VGET FILE FPAGE NUMBER

HRL T1yFILJFN POND FILE JFN

FFUFF% SFINDD FIRST USED FAGE

ERJMFR NOFAGE SCAN'T GO ANALYZE ERROR

HRRZ Q2»T1 SREMEMEER CURRENT FAGE NUMRER

A0S Q2 sUSE NEXT HIGHER FAGE NEXT TIME THROUGH L.OOF

MOVE T2y L[<DATSECHBR6+DATFAGT $T0 DATA FAGE IN DATA SECTION

HRLI T2y .FHSLF $0F THIS FORK

MOVUX T3»FMZRD FREAD ALCESS

FMAFZ iMAF THE FILE FAGE

EJSHLT FUNEXFECTED FATAL ERROR

HRLI T1,DATSEC FTL T8 INDEX INTO DATA FAGE. SETUF SECTION

HRRI T1sDATFAGXFAGSITZ SAND FAGE ADDRESS

MOVEI T2sFAGSIZ FT2 COUNTS THE WORDS IN A FAGE

THE FOLLOWING LOOF DOES THE CHECKSUM FOR A FAGE

XORLOF?: XOR Q1y(T1) $ CHECKSUM THIS WORD
A0S T1 iSTEF TO NEXT WORID
S0JG T2y XORIL.OF N0 THE WHOLE FAGE

SETO T1, sUNMAF THE FTILE FAGE

MOVE T2y [<DATSECHR264DATFAGT $TO DATA FAGE IN DATA SECTION
HRLI T2y FHELF F0F THIS FORK

MOUX T3 sFMZRI

FMAFY

EJSHLT SUNEXFECTED FATAL ERROR

JRST CHRLOF FLOOF FOR MORE FAGES

HERE WHEN FFUFFZ FATLS

NOFAGE? CATE T1sFFUFX3 FNO USED FAGE FOUND?
JEHLT PNOs UNEXFECTED FATAL ERROR

FRINT THE CHECKSUM ANI QUIT

THSG -
THE FILE CHECKSUM IS%
MOVX Tis.FRIOU SFRINT IT ON THE TERMINAL
MOVE T2,01 FGET THE CHECKSUM
MOUX T3, NOZMAG I FLINCD8y NOZRIIX) SUNSIGNEL OCTAL NUMBER
NOUTZ
EJSHLT SUNEXFECTED FATAL ERROR

MOVE TL1yFILJFN FGET FILE AGAIN
CLOSFZ CLOSE IT
EJSHLT FUNEXFECTED FATAL ERROR

HALTF% VETOF FROGRAM
XJRET CCHRSUMI FJUME RACK TO SECTION O AND START OQVER
F1F USER CONTINUES
i STORAGE

POLS ELOCK FDLSIZ SHTACK
FILJFN? ERLOCK 1 SFILE JFN

ENI' CHKSUM

8-26

AC, 1-2
global reference, 8-7
references, 8-7
Access
copy-on-write, 5-5
file, 3-2, 3-17
file append, 3~18
file frozen, 3-18
file read, 3-18
file restricted, 3-18
file thawed, 3-18
file unrestricted, 3-18
file write, 3-18
page, 5-5
Access bits
OPENF%, 3-19
PMAP%, 3-28
Accumulator (AC),
Accumulators, 1-3
global reference, 8-7
hardware, 8-7
references, 8-7
Address
giobal, 8-1, 8-7
local, 8-k4, 8-7
Address space, 8-1, 8-3
process, 1-6, 5-1, 5-11
Addressing
extended, 8-1
Addressing ACs, 8-2
Addressing memory, 8-2
ADJSP instruction, 2-2, 8-11
AIC% JSYS, L-10, L4-20, 5-4
AOBJN pointer, 8-5
Argument block
DEQ%, 6-15
ENQ%, 6-9
ENQC%, 6-16
GTJFN% long form, 3-1k4
Arguments
CFORK%, 5-8
DEQ%, 6-13
DiIC%, L-19
ENQ% JSYS, 6-6
ENQC%, 6-16
GET%, 5-12
GTJFN% long form, 3-14

1-2

INDEX

Ar

AS
AS

guments (Cont.)
GTJFN% short form,
11C%, 5-22
JFNS%, 3-36
JSYS, 1-2,
moni tor
MRECV%,
MSEND%,
MUTIL%, 7-18
OPENF%, 3-18
PMAP%, 3-28, 3-30,
PMAP% JSYS, 8-16
RDTTY%, 2-10
SFORK%, 5-16

SlN%g 3‘2h

SIR%, L4-7

SMAP%, 3-32, 8-14,
SOUT%, 3-25
XGTPW%, 8-21
XRiR%, L-18

XRMAP% JSYS, 8-20
XSFRK%, 8-17
XSiR%, L-7

XSVEC% JSYS, 8-18
Cl! strings, 2-1,
ClZ pseudo-op, 1-6

1-3
calls,
7-10
7-8

1-3

3-5

5-16

8‘]51 8']6

3-23

ASCIZ strings, 2-1, 3-23

AT

Bl

Bl

BL

1% JSYS, L-16

N% JSYS, 1-6, 3-23
example, 1-6

ock

packet data, 7-2
packet descriptor,
T instruction, 8-1

BOUT% JSYS, 3-23
Byte, 2-1, 3-1

reading a, 2-9
transferring, 3-24
writing a, 2-9

Byte instructions, 8

Byte manipulation instructions,

Index-1

2-2
ADJSP, 2-2
IBP, 2-2
ILDB, 2-2

7-2
0

-11

Byte pointer, 8-11
global, 8-11
local, 8-11
one-word global, 2-2, 8-11
system standard for JSYS, 2-2
two-word global, 2-2, B8-11

Calling sequence
monitor calls, 1-3
Capability words, 5-11
CFORK% JSYS, 5-k, 5-8, 5-16, 5-22
arguments, 5-8
execution, 5-10
Changing sections, 8-2
Channel
deactivating, L-19
panic, 4=5, L-11, 4-12
Channel assignments
software interrupt, L4-5
Channel table (CHNTAB), 4-8
CHNTAB, L-8
CIS% JSYS, 4-19
Clearing interrupt system, 4-19
CLOSF% JSYS, 3-33
example, 3-34
execution, 3-34
flag bits, 3-33
Closing a file, 3-33
Communication
process, 1-6
Communication facility
inter-process, 7-1
Control bits
RDTTY%, 2-11
Control process, 1-7
Copy-on-write access, 5-5
Counter
program, 8-1
Creating sections, 8-16

Data block

packet, 7-2
Data transfer, 2-1
Data transfers, 3-21
Deactivating a channel, 4-19
Deadly embrace, 6-5, 6-19
Deassigning terminal codes, 4-19
DEBRK% JSYS, 4-12, L4-13
Deferred mode

terminal interrupt, 4-16
Deleting inferior process, 5-23

DEQ% JSYS, 6-2, 6-6, 6-13
argument block, 6-15
arguments, 6-13
functions, 6-1k

Descriptor block
packet, 7-2

Designator
destination, 3-22
primary input, 2-3, 3-22
primary output, 2-3, 3-22
source, 3-22
universal device, 8-12

Destination designator, 3-22

Device designator
universal, 8-12

DIC% JSYS, 4-19
arguments, L-19

DIR% JSYS, L4-18

Direct process control, 5-4

Disabling interrupt system, 4-18

DTI% JSYS, L-19

Editing functions, 2-10
Effective address, 8-1
Effective address calculation,
8-3! 8_9
example, 8-9
indexing, 8-9
indirection, 8-9
extended, 8-k
immediate instructions, 8-9
indexing, 8-6
indirection, 8-6
nonzero sections, 8-4
EFIW, 8-6, 8-22
EIR% JSYS, L-10, L-12, 4=-20, 5-4
EJSERR macro, 1-5
EJSHLT macro, 1-5
ENQ quota, 6-L
ENQ% JSYS, 5-L, 6-2, 6-6, 6-18
argument block, 6-9
arguments, 6-6
functions, 6-7
ENQC% JSYS, 5-4, 6-6, 6-16
argument block, 6-16
arguments, 6-16
flag bits, 6-17
ENQUEUE/DEQUEUE (ENQ/DEQ)
facility, 5-L, 6-1
use of, 6-6

Index-2

Entry vector, 8-18
information, 8-21
EP. macro, 8-7, 8-8
ERCAL symbol, 1-L, 5-16
ERCALR symbol, 1-4
ERCALS symbol, 1-4, 1-6
ERJMP symbol, 1-4, 5-16
ERJMPR symbol, 1-4, 2-1L
ERJMPS symbol, 1-k
Error returns
monitor calls, 1-h
ER5TR% JSYS, 1-5
Execute-only process, 8-22
Extended addressing, 8-1, 8-3
examples, 8-8

using monitor calls with, 8-12

Extended format indirect word

(EFiw), 8-6

Extended instruction format, 8-4

Extended page number, 8-12

FHYEPN, 8-12
File
closing a, 3-33
examples, 3-45
opening a, 3-17
pointer, 3-22
reading from
summary, 3-Li
referencing, 3-3
sharing, 3-2, 6-1
writing to
summary, 3-hLk
File access, 3-2, 3-17
codes, 3-2
File append access, 3-18
File frozen access, 3-18
File identifier, 3-3
File page mapping, 3-28
File pointer, 3-22
File read access, 3-18
File restricted access, 3-18
File section
mapping, 8-13
File section mapping, 3-31
File specification, 3-3
standard, 3-3
File thawed access, 3-18
File unrestricted access, 3-18
File write access, 3-18
Files, 3-1

Flag bits
CLOSF%, 3-33
ENQC%, 6-17

GTJFN% long form, 3-16
GTJFN% short form, 3-5
MRECV%, 7-12
MSEND%, 7-9
SMAP%, 3-32
Flags
packet descriptor block, 7-3
Format
extended instruction, 8-k
|PCF packet, 7-2
<SYSTEM>INFO requests, 7-15
<SYSTEM>INFO responses, 7-17
Format options
JFNS%, 3-38
NOUT%, 2-7
Functions
DEQ%, 6-1h
ENO%, 6-7
MUTILE, 7-19
PDVOP%, 8-22
RDTTY%, 2-10

GET% JSYS, 5-11, 5-15
arguments, 5-12
GETER% JSYS, 1-5
GF IWM macro, 8-7
GFRKS% JSYS, 5-7
Global address, 8-1, 8-5, 8-7
Global byte pointer, 8-11
Global stack, 8-11
GNJFN% JSYS, 3-10, 3-L4O
bits returned, 3-40

 GTJFN% JSYS, 3-3, 3-4, 3-5

arguments
long form, 3-14
short form, 3-5
bits returned, 3-11
execution, 3-10, 3-16
flag bits
long form, 3-16
short form, 3-5
long form, 3-4, 3-1k4
argument block, 3-14
short form, 3-4, 3-5
examples, 3-12
summary, 3-17
GTSTS% JSYS, 3-34
bits returned, 3-35

i ndex-3

HALTF% JSYS, 2-9, 5-19
example, 2-8

Handle section, 8-19

HFORK% JSYS, 5-19

{/0 monitor calls, 2-2
IBP instruction, 2-2
Identifier
file, 3-3
IFIW, 8-5, 8-22
b1C% JSYS, L-11, 5-4, 5-22
arguments, 5-22
ILDB instruction, 2-2
I11egal instruction trap, 1-4
Immediate instructions, 8-9
immediate mode
terminal interrupt, 4-16
Indexing, 8-5, 8-22
example, 8-9
Indirection, 8-5, 8-22
example, 8-9
extended format indirect word
(EFIW), 8-6
instruction format indirect
word (IFIW), 8-5
inferior process, 1-7, 5-2
characteristics, 5-8
communicating with superior,
5-10
creating, 5-8, 5-10
deleting, 5-23
parallel, 5-10
starting, 5-16
status, 5-18
termination, 5-17
Information
about process, §-18
entry vector, 8-21
page-failure, 8-21
Initialization
process, 2-9
Input
terminal, 2-1
Input designator
primary, 2-3
Instruction format
extended, 8-4
Instruction format indirect word
- (IF1W), 8-5
Instructions
byte, 8-11

Instructions (Cont.)
stack, 8-11
Inter-process communication
facility
receive quota, 7-1
send quota, 7-1
utility functions, 7-18
Inter-process communication
facility (IPCF), 1-6, 5-L,
7-1
Interrupt, A4-1
generating, b4-11
Interrupt channel assignments,
L-5
Interrupt channels
activating, 4-10
Interrupt conditions, 4-3
Interrupt deferred mode
terminal, L-16
Interrupt dismissing, 4-12
Interrupt immediate mode
terminal, L4-16
interrupt priority levels, L-6
Interrupt processing, 4-11
Interrupt service routines, L4-7
Interrupt system
clearing, 4-19
disabling, 4-18
Interrupts
terminal, L4-13
IPCF, 1-6, 5-4, 7-1
packet data block, 7-2, 7-7,
7-15
address, 7-6
length, 7-6
packet descriptor block, 7-2,
7-15
flags, 7-3
receive quota, 7-1
send quota, 7-1
utility functions, 7-18
IPCF packet format, 7-2

JFN, 3']’ 3'2’ 3'3

JFNS% JSYS, 3-36
arguments, 3-36
format options, 3-38

Job, 1-7

Job file number, 3-1, 3-3

Job structure, 1-6
exapmle, 1-7

[ndex-4

JRA instruction, 8-11 JSYS (Cont.)

JRST instruction, 8-2, 8-11 RESET%, 2-9, 5-23, 7-6
JSA instruction, 8-11 RFSTS%, 5-4, 5-18
JSP instruction, 8-11 RFSTS% long form, 5-18, 5-20
JSR instruction, 8-11 RFSTS% short form, 5-18
JSsYs, 1-2 RIN%, 3-26
AlC%, L-10, 4-20, 5-L RIR%, L-17, 8-12
arguments, 1-2, 1-3 ROUT%, 3-26
ATI1%, L-16 RSMAP%, 8-18
BIN%, 1-6, 3-23 SAVE%, 5-11
BOUT%, 3-23 SEVEC%, 8-18
CFORK%, 5-4, 5-8, 5-10, 5-16, SFORK%, 5-4, 5-16
5-22 SFRKV%, 5-17
CI1S%, L-19 SIN%, 3-24, 3-25
CLOSF%, 3-33 SIR%, 4-7, 4-12, 5-4, 8-12
DEBRK%, 4-12, 4-13 SKPIR%, L-17
DEQ%, 6-2, 6-6, 6-13 SMAP%, 3-31, 8-13
DIC%, L-19 SOUT%, 3-24, 3-25
DIR%, L4-18 SPJFN%, 2-3
DTI%, 4-19 SSAVE%, 5-11
EIR%, L-10, L-12, 4-20, 5-4 STIW%, L-16
ENQ%, 5-L, 6-2, 6-6, 6-18 WFORK%, 5-4, 5-17, 5-18
ENQC%, 5-L, 6-6, 6-16 XGTPW%, 8-21
error returns, 1-4 XGVEC%, 8-21
ERSTR%, 1-5 XRIR%, L-18, 8-13
GET%, 5-11, 5-15 XRMAP%, 8-20
GETER%, 1-5 XSFRK%, 5-17, 8-17
GFRKS%, 5-7 XSIR%, L-7, 4-12, L-20, 8-13
GNJFN%, 3-10, 3-40 XSVEC%, 8-18
GTJFN%, 3-3, 3-4, 3-5, 3-10 JUMP instruction symbols, 1-4
GTSTS%, 3-34 ERCAL, 1-L4, 5-16
HALTF%, 2-9, 5-19 ERCALR, 1-4
HFORK%, 5-19 ERCALS, 1-L4, 1-6
1/0, 2-2 ERJMP, 1-4, 5-16
I1c%, k-11, 5-4, 5-22 ERJMPR, 1-L, 2-14
JFNS%, 3-36 ERJMPS, 1-4
KFORK%, 5-L, 5-23 JUMP instructions, 1-bL
MRECV%, 5-L4, 7-7, 7-10
MSEND%, 5-4, 7-7, 7-8, 7-1k KFORK% JSYS, 5-k, 5-23
MUTIL%, 5-k, 7-18
NIN%, 2-L, 2-5, 2-14, 2-16
NOUT%, 2-6, 2-16 Level number
OPENF%, 3-2, 3-18 resource, 6-5
PBIN%, 2-9, 2-16 LEVTAB, L4-9
PBOUT%, 2-9, 2-16 LFIWM macro, 8-7
PDVOP%, 5-11, 8-22 LINK, 8-22
PMAP%, 3-27, 3-28, 3-30, 3-31, Literals, 2-2
5-11, 5-16, 5-22, 8-13, Local
8-16 byte pointer, 8-11
PSOUT%, 2-3, 2-16 Local address, 8-L4, 8-5, 8-7
RDTTY%, 2-5, 2-10, 2-1k4, 2-16 Local byte pointer, 8-11

Index-5

Lock MUTIL% JSYS (Cont.)
resource, 6-2 execution, 7-2b4
Long form GTJFN%, 3-1k4 functions, 7-19
LUUO instructions, 8-10
NIN% JSYS, 2-4, 2-5, 2-1k4, 2-16

MACSYM, 1-2 example, 2-8
MACSYM macros, 1-2 NOUT% JSYS, 2-6, 2-16
EJSERR, 1-5 example, 2-8
EJSHLT, 1-5 format options, 2-7
EP., 8-8 Number
indirection, 8-7 reading a, 2-k
EP., 8-7 writing a, 2-6
GF IWM, 8-7
LFIWM, 8-7 One-word global byte pointer, 2-2,
TMSG, 2-b 8-11, 8-12
Mapping, 8-13 OPENF% JSYS, 3-2, 3-18, 3-30
file page, 3-28 access bits, 3-19
file section, 3-31 arguments, 3-18
file sections to a process, examples, 3-21
8-13 Opening a file, 3-17
memory, 8-13 Operation code
page, 3-27, 5-15 monitor calls, 1-2
process page, 3-30 Qutput
process section, 8-14 terminal, 2-1
sections, 8-13 Output designhator
Memory, 8-2 primary, 2-3
Memory sharing, 5-5 Ownership, 6-2, 6-18
Messages exclusive, 6-2, 6-18
receiving process, 7-7 shared, 6-2, 6-18
sending process, 7-7
Monitor calls, 1-2 Packet, 7-1, 7-2
arguments, 1-2, 1-3 receiving a, 7-10
calling sequence, 1-3 sending a, 7-8
error returns, 1-4 Packet data block, 7-2, 7-7, 7-15
for processes, 5-8 address, 7-6
1/0, 2-2 length, 7-6
operation code, 1-2 Packet descriptor block, 7-2,
MONSYM, 1-2, 2-3 7-15
MRECV% JSYS, 5-L4, 7-7, 7-10 flags, 7-3
arguments, 7-10 Packet format
execution, 7-13 |PCF, 7-2
flagbits, 7-12 Page, 3-1
flags returned, 7-13 Page access, 5-5
MSEND% JSYS, 5-L, 7-7, 7-8, 7-14 Page mapping, 5-15
arguments, 7-8 file, 3-27
execution, 7-10 Page sharing, 5-5
flag bits, 7-9 Page-failure information, 8-21
Multiple processes, 5-2 Panic channel, L-5, L4-11, L-12
Multisection programs, 8-24 Parallel inferior processes, 5-10
MUTIL% JSYS, 5-4, 7-18 PBIN% JSYS, 2-9, 2-16
arguments, 7-18 PBOUT% JSYS, 2-9, 2-16

Index=-6

PC, 5-1, 8-1, 8-2, 8-
address, 8-11
address fields, 8-2
PDV, 8-22
names, 8-23
rules, 8-23
PDVA, 8-22
manipulating, 8-22
PDVOP% JSYS, 5-11, 8-22
functions, 8-22
PID, 7-1, 7-6, 7-13
PMYEPN, 8-12
PMAP% JSYS, 3-27, 3-30, 3-31,
5-11, 5-16, 5-22, 8-13, 8-16
access bits, 3-28
arguments, 3-28, 3-30, 5-16,
8-16
POINT pseudo-op, 2-1
Pointer
file, 3-22
Pooled resources, 6-12
POP instruction, 8-11
POPJ instruction, 8-11
.PRIIN symbol, 2-3, 2-10, 2-16,
3-22
Primary input designator (.PRIIN),
2-3, 3-22
Primary output designator
(.PRIOU), 2-3, 3-22
Printing a string, 2-3
Priority level
interrupt, 4-12
software interrupt, L-4
Priority level table (LEVTAB),
L-9
.PRIOU symbol, 2-3, 2-10, 2-16,
3-22
Process, 1-6, 1-7
address space, 1-6, 5-11
capabilities, 5-11
communication, 1-6, 5-3, 5-22
control, 1-7, 5-k
deleting inferior, 5-23
examples, 5-24
execute-only, 8-22
handle, 5-5, 5-6, 5-10
identifiers, 5-5
inferior, 1-7, 5-2
information about,
JSYSs for, 5-8
multiple, 5-2

8-18

Process (Cont.)
paraliel, 5-2
starting in any section, 8-17
starting inferior, 5-16
status word, 5-19
structure, 1-6, 5-1
superior, 1-7, 5-2
terminating inferior, 5-17
use of resources, 6-5
Process communication,
5-5, 5-22
sharing pages, 5-22
software interrupt, 5-4, 5-22

]'69 5-3,

Process control, 5-4

Process handle, 5-5, 5-6

Process !D (PID), 7-1, 7-6, 7-13
Process identifiers, 5-5

Process initialization, 2-9

Process mapping, 3-30
Process messages
receiving, 7-7
sending, 7-7
Process relationships, 5-2
Process section, 3-31
unmapping, 8-16
Process status word, 5-19
Process structure, 1-6, 5-1
Process unmapping, 3-31
Program counter, 8-2
address fields, 8-2
Program counter (PC), 5-1, 8-1,
8-1
address, 8-11
Program data vector (PDV), 8-22
address (PDVA), 8-22
manipulating PDVAs, 8-22
names, 8-23
rules, 8-23
program version number, 8-23
Programs
multisection,
Protection
resource,
Pseudo-ops
ASCIZ, 1-6
POINT, 2-1
PSOUT% JSYS, 2-3,
example, 2-8
PUSH instruction,
PUSHJ instruction,

8-24
6-14

2-16

8-11
8_29 8_]]

Index-7

Queue, 6-2

Quota, 7-1
receive, 7-1
send, 7-1

RDTTY% JSYS, 2-5, 2-10, 2-14,
2-16
arguments, 2-10
control bits, 2-11
editing functions, 2-10
example, 2-14
Reading a byte, 2-9
Reading a number, 2-4
Reading a string, 2-10
Reading from a file
summary, 3-hbb
Receive quota, 7-1
Receiving a packet, 7-10
Referencing a file, 3-3
Releasing a resource, 6-13
RESET% JSYS, 2-9, 5-23, 7-6
example, 2-8
Resource, 6-2
level number, 6-5
obtaining information about,
6-16
ownership, 6-2, 6-18
pooled, 6-12
protection, 6-4
releasing a, 6-13
requesting use of, 6-6
sharing, 6-1, 6-18
use by process, 6-5
Resource lock, 6-2
Resource name, 6-4
Resource ownership, 6-2
RFSTS% JSYS, 5-4, 5-18
long form, 5-18, 5-20
status-return block, 5-20
process status word, 5-19
short form, 5-18
RIN% JSYS, 3-26
RIR% JSYS, L4-17, 8-12
example, L4-17
ROUT% JSYS, 3-26
RSMAP% JSYS, 8-18
information returned, 8-19

SAVE% JSYS, 5-11
Section
changing, 8-2

Section (Cont.)
creating, 8-16
nonzero, 8-16, 8-17
zero, 8-3, 8-12

Section handle, 8-19

Section mapping, 8-13
file, 3-31
file to process, 8-13
process, 8-14

Sections, 8-2

Send quota, 7-1

Sending a packet, 7-8

SEVEC% JSYS, 8-18

SFM instruction, 8-10

SFORK% JSYS, 5-4, 5-16
arguments, 5-16

SFRKV% JSYS, 5-17

Sharer groups, 6-18
use of, 6-18

Sharing files, 3-2, 6-1

Sharing pages, 5-22

Sharing resources, 6-1, 6-18

Short form GTJFN%, 3-5
examples, 3-12

SIN% JSYS, 3-24, 3-25
arguments, 3-24

SIR% JSYS, 4-7, 4-12, 5-4, 8-12
arguments, L-7

SKPIR% JSYS, L-17

SMAP% JSYS, 3-31, 8-13
arguments, 3-32, 8-14, 8-15,

8-16

flag bits, 3-32

Software interrupt, 1-6, L4-11,

£-22
channel assignments, L4-5
channels and priorities, L-k,
L-6

disabling, 4-18
dismissing, L4-12
example, 4-21
panic channel, L4-5, L-11, 4-12
priority level, hL-12
priority levels, hL-4
process communication, 5-4
processing, 4-11
service routines, L-7
tables, L-7

Software interrupt system, 1-6,

L-1, 5-17

enabling, L4-10

Index-8

Software interrupt system (Cont.) Table (Cont.)

operational sequence, 4-2 software interrupt, h4-7
summary, 4-20 Terminal
Source designator, 3-22 input, 2-1
-S0UT% JSYS, 3-24, 3-25 output, 2-1
arguments, 3-25 Terminal codes
SPJFN% JSYS, 2-3 deassigning, 4-19
SSAVE% JSYS, 5-11 Terminal interrupts, 4-13
Stack codes, bL-14
address, 8-11 deferred mode, L-16
global, 8-11 generating, L4-16
pointer, 8-11 immediate mode, L-16
register, 8-11 Terminating inferior process,
Stack instructions, 8-11 5-17
ADJSP, 8-11 Text strings, 2-1
POP, 8-11 TMSG macro, 2-h
POPJ, 8-11 example, 2-8
PUSH, 8- Transferring bytes, 3-24
PUSHJ, 8-11 Transferring data, 3-21
Standard file specification, 3-3 Transferring strings, 3-24
Starting a process, 8-17 example, 3-26
Starting inferior process, 5-16 Trap
Status word ' illegal instruction, 1-4
" process, 5-19 Two-word global byte pointer, 2-2,
Status-return block, 5-20 8-11
STIW% JSYS, L-16 :
String Universal device designator, 8-12
printing a, 2-3 Unmapping
reading a, 2-10 process page, 3-31
Strings process section, 8-16
ASCHI, 2-1, 3-23
AsClz, 2-1, 3-23 Vector
text, 2-1 entry, 8-18
transferring, 3-2h Virtual address space, 8-1
example, 3-26 Virtual space, 1-6
Structure
process, 1-6 WFORK% JSYS, 5-4, 5-17, 5-18
Superior process, 1-7, 5-2 Writing a byte, 2-9
communicating with inferior, Writing a number, 2-6
5-10 Writing to a file
<SYSTEM>INFO, 7-1, 7-6, 7-7, 7-8, summary, 3-Li
7-10, 7-14
-functions and arguments, 7-16 XBLT instruction, 8-10
requests, 7-14 XCT instruction, 8-10
format, 7-15 XGTPW% JSYS, 8-21
responses, 7-17 arguments, 8-21
<SYSTEM>INFO responses, 7-17 XGVEC% JSYS, 8-21
XHLL! instruction, 8-9, 8-10
Table XJEN instruction, 8-10
channel (CHNTAB), 4-8 XJRST instruction, 8-2
priority level (LEVTAB), 4-9 XJRSTF instruction, 8-2, 8-10

Index-9

XMOVE! instruction, 8-9, 8-22 XSFRK% JSYS, 5-17, 8-17

XPCW instruction, 8-10 arguments, 8-17

XRIR% JSYS, L4-18, B-13 XSIR% JSYS, 4-7, L-12, L-20, 8-13
arguments, L4-18 arguments, L-7

XRMAP% JSYS, 8-20 XSVEC% JSYS, 8-18
arguments, 8-20 arguments, 8-18

Index-10

NOTE:

TOPS-20
Monitor Calls User's Guide
AA-D859C-TM

READER’S COMMENTS

This form is for document comments only. DIGITAL will use comments submitted on
this form at the company’s discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

(L] Higher-level language programmer

(L] Occasional programmer (experienced)
(] User with little programming experience
[Student programmer

[Other (please specify)

Name Date

Organization Telephone

Street

City State —____ Zip Code

or Country

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MRO1-2/L12
MARLBOROUGH, MA 01752

Cut Along Dotted Line

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	replyA
	replyB

