CFS.DAC

Dave Braithwaite
July 5, R3

This contains two CFS-20 related documents:

CFSPS, 4N --~ 0an Murnhy
CFSDOC. LM === Arnold Miller

The first document is the functional specification and is still
accurate despite its age (geod desiagn). The glossy flier on CFS-20
reflects this document and is a dgood document to read. The second
document is an internals document which is stiil in the process of
heing undated., it orovides gnod insight into the internal mechanisms

of CFS,

Document:

Date: 28 October 1981

Project: TOP520 Common File System
Charge Number: F20-02131

Product ID:

Ffunctional Specification for

TUPS20 COMMON FILE SYSTEM

Jan Murphy {Develoner)
Fred Fnqgel {Sunervisor)

Patar turlev (Pavelormert Yaraner)

Uther SVStems (NetiorKS) e » 8 8 e * ® ® e »

gyata Storage, File Structures, Data Formats

Protocols 4 o 4 o 2 o o o 6 o o o o o o
«ELIABILITY/AVAILABILITY/SERVICEABILITY (RAS)

Failures within The Product e« o o o =

Page 2
TABLE OF CONTEMTS

1.0 PRODUCT DVERVTIEW o 4 2 o o o s o o 5 o o 2 s o
1-1 Prﬁduct Besctiption s & e # e s s % » e a @
1.2 Markets e ® ® s s 8 s s a " 2 ¥ s 8 % 2 » @
1.3 ComﬁetitiVQ §n81YSiS s ® » 8 ® » e ®© 2 8 8
1.4 Product Audience o+« o o o o o o o » » o e »
2.0 PRODUCT GDALS o 4 s s » o o s o o o s o s » =
2.1 Performance s+ o« o o o o s o s o s s o s o o
Pe? gnvironments .« ¢ ¢ o s s o+ @ » % e 8 8 = e =
2.3 Reliability Goals .+ ¢ o o o o o o o o = o »
2.4 Non Goals ® 3 8 8 s ® 3 * e ® =2 & s 2 s & »
245 Future Development o+ o« o o o o o o s o o o »
3.0 FONCTIONAL DEFINITION o 4 o s s s o 2 s s » »
3.1 uperational Descriotion *» e & e & B " =2 » »
3.2 ResSLrictions o o o o o o ¢ o o s s o o o o @
4.0 COMPATIZILITY 4 s+ o 2 2 2 s ® @ B 8 & 8 ° =
4.1 DFRC Producls o o o o » o s o o o 2 s o = s »
4,3 External Standards o « o o « o o s s % s 9 @
5.0 XTERKNAL INTERACTIUNS AND IMPACT o o o« o o o o
.1 JSers . 4w v o s 4 e x a0 s 4 s 4 s s w s s
5.2 Software Products ® % a2 8 & & & e 8 ® e » =
5e3 Products That Use This Product « o o o o o
5.4 Products That This Product Uses . « « o + &
Be5

5.6

5.7

f.D

Ha2 Failures Within The Total &nvironment . . .
7.0 PACKAGING AND SYSTEM GENERATION o o o o o o
7.1 Pistribution Media ® & e e+ » 2 8 8 8 s e & @
7 2 SVSGen Drﬂceaures ® o & 8 ® » ® e ® ® ° 8 »
R0 DOCUMENTATIOHN s % % 8 ®2 e & 8 e » 8 ® » ® & =
g O RSFE:RE{%?C?JS L 2 2 » L] - L d L d - E] * * * » L d » - L] »
10.0 APPENDIX o o o o o o 2 2 s 5 5 5 » o o 5 s » »
.1 Impiementation Detaiis » s = 8 8 2 ® 2 & 8 *

M
Y LIe & o 8 8 * & & ® & o 8 & ® a

L]
L]

L I}
* &

* ® & 5 ¢ o ¢ * & " ¥ "

M wd wd =3 N O U B B WD W

& » & 5 & & s o ¢ 9

¢ & 3 8 & ¢ ® & ¢ b B e W 4 8 ¥ e * s
® & & ¢ w = & » W

¢ & 0 ® ¢ ¥ & @

L]
¥ & & & 4 & ° s v @

L]

Page 3

1.0 PRCRDUCT OVEKRVIEW
1.1 Product Description

This project is to develop a "Common File System” for
TOPS20D. The Common File Systam capabilities are applicahle
to configurations of two or more 36-bit processors, each
with its own main memorv, interconnected by a high speed bus
("cim.

The objective of the Commwon File System ("CFS™) 1is that
disk structures and files within such a system are available
to jobs on all processors, regardless of the physical
connections of the disk devices,

1.2 Markets

The Comwmon File System 1is a general operating system
capability and is aAaoplicable to all present UFCSYSTEM-20
markets.

1.3 Competitive 2nalysis

This project provides more and larger configuration
alternatives. This project 1is not closely related to
"distributed processing®™ in that it is only applicable to
configurations on a CI and therefore within the 100 meter
1imit of the CI.

VYAX/VMS is developing means for multiple processors to
reference files on a single disk system? houwever, the basic
difference in filesystem architecture between TOPSZ0 and VuS
makes the projects somewhat different.,

Pelated capabilities include "Network File Access™ or
other technigues for moving files among nodes of a network.
CFS is a more powerful and transparent form of file access
because it implements all wmonitor file oripitives visible to
the user proaram and operates over a high speed bus.,

"Muyltiple Processors® (impivinag shared memorv as with
TOPS10 SMP) is a related capabilitv. SMP is a more powerful
approach to the wuse of multiple oprocessors in that it
provides greater transparency and hetter dynamic 1lcoad
leveling. Jupiter will not support shared main memorv
however, S0 an 5MP jimplementation is not possible. Toere
are compensating advantages of CFS over 3%P 1n the arena of
failsoft and isolation of failures, and in the maximum size
of configurations which can be supported.

Page 4

1.4 Product Audience

There are twxo primary types of customers that will
require CF3:

1. Existing customers with XL10-based confiqurations who
wish to upgrade to Jupiter and retain their massbus
peripherals. These customers may add a Jupiter to the
existing <configuration, and both processors will be able to
access the massbus disks. If additional disk storage 1is
provided wvia H5C=50, the KL19 as well as the Jupiter
processor will have access to it,

2. Customers who reguire multiple Processors for
capacitvy or reliiability reasons, The CFS allows multiple
processors to operates with a single logical disk file system
such that the jobs may be run on one processor of another as
dictated by load or other considerationse.e Processors may bDe
added to or taken from the confiquration (subject to
hardware restrictions) with the ramaining pProcessors
continuing to use the file system,

2.0 PRODUCT 6OALS
2.1 Performance

1. All unpriviieged wmouitor calls which affect disk
files on present one-processor TOP320 systems will work and
will have the intended effect on anv disk structure within
the configuration,

2. The overhead assoclated with maintaining the common
file data base on multiple processors will cause an increase
of not more than 10% in execution time of fiie primitives
and operations.

3., A processor referencing files on a disk not directly
connected will incur no additional overhead in transferring
data.

We expect to use ¥MSCP (Mass Storage Control Protocol) for
the data transfers to support file onerations. This will
exist on the] alnng with DECYET and bpossibly other
protocols supporting other functions. MSCP should achieve
efficient use of the (I, low-overhead operation of the
monitors, and high~-bandwidth file 1interchange. File
structure information such as directories and index blocks
is passed exactly as treaad from disk. 8v passiiaag TOP320 file
data directly, we avoid the overhead of copving and
conversion incurred with other protocols.

Page §

Obviously, a processor acting as a file server for
another processor will incur overnead for this activitv not
relating to jobs running on it. This overhead will involve
primarilvy instructions executed at interrupt ievel and main
memory space to buffer data beling transferred.

CFS supports shared-writable pages (simultaneous write
file access) on nmultiple processors. This 1is used for
various internal mechanisms (e.qg. directory lookup, disk
allocation tables) as well as user program functions. This
type of access generates I0 activity and overhead not
nresent on single~-processor systems. Recause data cannot
actually be referenced simultaneously by two processors, it
must be moved from one to another by the operating system.
Users will be advised of this and should arrange
applications so as to avoid frequent write references to the
same data from different proncessors.

Since the monitor itself uses this facility, we conducted
a study of monitor reference patterns to ensure that this
activity will not be a significant bottleneck. We recorded
monitor reference patters to directories and disk allocation
tables under actual and simulated loads. This was done by
usina the SHOAP facilitv tn detect and rercard referonres
where the job maxina the reference is different than the job
which made the wmost recent previous reference. This
orovides worst-case data on the frequency of movin monitor
data bDetween processors. we determined that only a few (3
or less) directories were referenced sufficiently often to
be of interest, These were all common system directories
(e.g. <SUBSYS>), and the freguency was not so high as to
suggest a probien. Even so0, a further efficiency 1is
possible by duplicating the directorv on a separate
structure for each processor.

2.2 Fnvironments

Minimum configuration reguires two processors, either
KL10, Jupiter, or mixed, and a CI. Each processor must have
a connection to the CI. (The question has been raised as to
whether CFS might be overable over an NI connection., This
will not be supported in first release. There should be no
logical reason that NI couldn“t be used, but additional
study and experience 1is necessary to understand the
performance impiications. Ldditional impiementation work
would also be needed.)

Tach processor must have its own maln memory, swabping
device, boot device, and console,

Fach processor aust nave direct access to its public disk
structure, In a future release, it may Dbe possible to
eliminate this renuirement if desired, however, there are

Page 6

other requirements for a directly connected disk (e.q.
sWwappring) which will also have to be addressed.

The maximum configuration for first release of CFS 1is
four processors, however there shall be no CFS-specific
software limitation on a larger number. This limit is based
on our current xknowledge of the €I and the 1lack of
experience witn this architecture. The practical 1limit mav
be higher. A maximum of one {(dual rail) CI will be
supported for first release,

2.3 Reliabilitv Goals

1. A customer should be able to improve net system
availability of his configuration by wuse of multiple
processors and tihe CFS.

2. The CF5 should cause no significant decrease in the
reliability of each single processor.

3, Failure 0of one orocessor will have no eifect on other
nrTocessors efvcent for file Aata which ig9 in the memary of
the failing processor.

K{-Juriter configuratiors such as this rrovide some
additional redundancy over single-processor systems. The
fail-soft characteristics are not symmetric nowever. The
Jupiter processor and/or its attached disk can fail without
affecting jobs on the KL processor or files on the KL disks.
However, failures of the XL may have mor2 impact depending on
what veripherals are connected to the Jupiter.

2.4 Non Coals
1. CFS will not support other than disk structures.

2, CFS is not intended to work with operating systems
other than TOPS2D or wmith machine architecturaes other than
36'bitt

3. At first release, CFS will not support opassing file
data through one processor to another except for the case of
a KL10 processor acting as file server for massbus diskse.
That is, a Jupiter oprocessor will never act as a
pass-through for file data. Handling pass through data
increases overheau 4nd raises the possibiiitv of muitioilie
paths between a3 processor and a disk which would require
routing decisions. CFS mav be used in configurations with
multinle CT’s, but such configurations mav have Drocessors
that are unable to communicate with some disks. These
restrictions mav he remaved in a subsequert release.

Page 7

4., CFS does not provide any automatic balancing of dob
load among orocessors in a configuration as does SMP,
However, users should find it convenient to iogin to the
less loaded orocessor and/or to switch processors (by
logging out and back in again) if the load becomes
unbalanced.

2.5 Future Development

In a future release, it may be desirable to allow Jupiter
processors to pass file data so that configurations may be
built in which some processors do not have direct access to
some disks. In general, this will also reguire routing
decisions to be made since multiple paths can easily arise
once there are several C1°s in a configuration. Tt would
still be avisable to minimize the amount of pass-through
traffic 1in order to minimize overhead, but pass-through
offers sizable configuration flexibility and some failsoft
features.

3.0 FUNCTINNAL DEFINITION
3,1 OCperational Dascrintion

TWO OLf @more pProcessors are intercconnected via a
high-speed bus ("CI") having a bandwidth at least comparable
to disk transfer rates. A disk which is to be wused by a
processor must have a direct path to that processor, i.e.
be on the same CI. The only supported exception to this
will be to aliow files to pass through the XL10 to reach
Jupiter so that riles on Massbus devices mav be used by
Jupiter processors.

Page B

- . - -

! HSC 1 ! HSC 1
i DISK { I DISK |
| 1 i 1
N 1"
it i
C{ i o in i imriaooddom e e adio i more il e reelioca ety foesoesire el eedleeedymed
R R "
1 i 1
KL1o 1 ! 1 1
I CPURMEM 1 1 CPU&RMEM | ! CPUAMEM

11

- — - -

t MAS3RUS
1 DI3Xs!

- -

One or more logical structures exist on tie set of diskse.
211 of these structures ars visibla to 30ps on all of the
pProcessors uiniess the system administrator specificalily
declares particular structures as “private” to particular
processors,

In order to provide access to Masshus disks connected to
a KL10, the XL10 will act as a logical disk controller on
the {1 for the Massbus disks. There is no visible
distinction between a disk structure directly connected to a
processor and one Wwhich is accessed via another processor.
The wusuyal monitor calls are wused to access files and
structures, and ali file open modes are aliowed with the
exceptions listed below., Shared file access is permitted,
and programs need not be aware that onther Jjobs sharing a
file are on differant processors; however, it mav 1s
advisable for reasons of efficiesncy to aveoid simultaneous
modification of a file on different pProcessorse.

In future reieases, it may Dbe desirable to support
configurations which include multiple (¢I”s, each with a
subset of the processors connected. 1In such cases, it wmay
be desirable for Juniter CPUs to act 3as pass-through servers
in order to provide access to a disk from another processor.
This will not Le supported at firet release,

File facilities specifically include:

Page 9

1. Fiile naming and lookup conventions (GTJFH) -
File npames on the common file svstem include structure,
directory and subdirectories, file name, extension,
generation number, and attributes. Fuil recognition
and wild-carding is available:; name stepping (GNJFN);
normal access to FDR,

Ze Jsual open and c¢lose modes (OPENF, CLOSF,
CLZF¥).

3. Usual data transfer primitives, both sequential

. A v - ,
and random (BIN, BOUT, SIN, SOUT, SINR, SOUTR, RIN,

rOUT, DUMPI, DUMPO).

4. File-to-process mapping (PMAP) including all
modes {shared read, copy-on-write, shared write,
ufirestricted read).

5. The device type associated with files on the
common file systesm i3 the same as that presently used
for disk.

o ile)

6o Privileged operations M3TR (mount structure) and
NgRND

The above includes all file system vrimitives relating to
accessing files and transferring data but does not include
other primitives wihlich may use certain file system entities
but which are considered separate and distinct facilities
(e.q. ENO/DEQ).

See rppendix 1 for implementation considerations.

3.2 Restrictions

A file open with OF%DUD (don”t wupdate disk) on one
processor may not be opened on anvy other processor.

Qther devices such as magtapes and line printers are not
part of CFS and mav not bhe open simultaneously on multiple
PrOCeSSOrsS.

Use of simultaneous write access with active writing of
file data by Jjobs on different oprocessors requires the
system to move pages among the processors and nence will be
much slower than on a single processor. The write token is
maintained on a per-0OFMN basis. This means that a program
reguiring write access to Anv one or mwore pages must nave
exclusive Access to the entire {Fd, fach 0N¥# represents
256X words of the file, For large files, prodqrams on
different processors could be executing simultaneous write
references with no delay if thev were referencina data in
different 256K sections of the file.

Fage 1€

A structure must be "mounrted” on any processpr which is
to access files on it, To be physically removed from a
drive, a structure must be dismounted by ali Drocessors.
The relevant Galaxy componhents should be modified to provide
mount information from processors other thanr the one on
which thev are runninag, but this in not planned for Juviter
CFS. Hence an operator will have to guery the 0OPR oprogram
on each processor to find out what users have the structure
mounted. FEach processor will %know, however, which other
processors have the structure mounted so tnat the operator
can guickly determine if the structure can be removed.

Dual port operation of a single drive from a single KL10
is not currently supoorted. 1If it is implemented, the fact
that there are two patins to a disk will not be visible to

CFS and will bhave no 1impact on the exclusion of routing
capabilities in the first release.

4,0 COMPATIBILITY
4,1 DEC Products

411 oroaram and wuser interfaces =are compatible with
previcus versions of TOFPS20.

Mountable disxk structures are compatible with previous
versions of TOPSZ0.

4,2 DEC Standards

The CFS will use the corporate SCA protocol on the ICCS
bus, and will use MSCP for disk data transfer operationse.

The CFS will not use DECNET.

4,3 Fxternal Standards

None aoolicabhje,

Page 11

50 EXTERNAL INTERACTIONS AND IMPACT
5.1 Users

All users of the disk file svstem are potential users of
CFS, hoWever most users will not be aware of or affected bv
CFS. Some applications devselopers will rely on CFS to allow
applications to exist on pultiple processors and communicate
through files,

Other projects within the Coexistence ana Distributed

Processing aroup will use CF5 to provide lavered
functionality on multiple homogena20us processors.

5.2 Software Products
5«3 Products That Use This Product

The following may use CFS: RMS, DIF, languace OTS5°s.

5.4 Products That This Product Usas
The following hardware comnonents ara raguired:
KLIPA - Interface between ¥L10 and ILC3 buse.

Jupiter {1 Port - Interface between Jupiter and ICCS
bus.,.

KL10 Microcode -~ modifications to support Ywurite
access in Cs3Tn,

The following software modules are required:
MECP driver and server in TOPS2).

Systems Communications Services {(SCA/SCS).

55 0Other Systems (¥etworks)

The CFS is nont visible to onther network hostsy the files
in the CFS disk structures mav he accessabie by remote nodes
as provided by otner facilities (DAP, NFT, etc.) Each
processor in 4 CF5 configuration is 5 separate networs noge
with its own node name,

The CFS itselt does not use node names tn reference files
and hence is 1ndependent of anv constraints or reguirements
of network node namina.

Page 12

S.h Data Storage, File Structures, Data Formats
and Retrieval Subsystem

The CFS requires an open file data base which is resident
in e3ach processor of a configuration. 2-4 words ver OFN are
required. Other resident storage rsquirements are one page
{512 words) or 1i2ss5. As a side effect of allowing all
processors access to all rounted structures, it may be
desirable to buiid standard monitors with a iarger number of
mountable structures than at present.

The file structure will be identical Wwith previous
releases of TOPSZ20.

Files may be saved and restored with DUMPER without
regard to whican orocessor DUMPER is run on, excent that
DUMPER must be running on the processor whicih has direct
connection to the reguired tape drive.

5.7 #Protocels

CFS Wwill use the cornorate SCA protocol on the JICSS bus
and will use ¥3CP for data transfer.

CFS will use a private protocol for control of file
openings, structure mounts, fiie state transitions, etc.
There is no present corporate protocol which supports these
functions.

he0 RELTABILITY/AVAILABILITY/SERVICEABILITY (RK23)
6.1 Failures githin The Product

Failures within the CFS-specific software will most
likely cause a crash of one processor in a nmulti-processor
environment, Such failures may include 1o0ss of recently
modified file data, Failures which affect inactive files or
file directoriss are possible, but should be no more
frequent than at oresent,

Page 13

A processor may be brought or line without restartinag
other processors in the configuration.

Any disks which are available only via a tailed processor
will be unavaiiable s0 long as that processor is
inoperative, 1If such disks are dual-ported to a different
processor, thev may be mounted via that processor and remain
in use although all ovpen files must be re-opened.

with HSC50, most disk errors will not be seen by the
processor{s). All recovery and logoing will be handled by
the HSCS0D. Any disk errors that are reported to the
proressor will be logaed in the system error file for that
processor. Disk errors occuring on wpages that are being
“"passed through®™ a processor (e.d. a KL10 servicing a
request for a Massbus disk) will be logaed on the processor
to which the disk is Jirectlv connected., If a hard failure
occurs such that the server processor must inform the
requesting OrocCessor that the request <could not De
completed, then the reaguesting processor wili also 1log the
failure,

T.0 PACKAGING AND SYSTEM GENERATION
7.1 Distribution Media

CFS5 will be an integral rvart of TOPS20 and will require
no additional packaaing,

7.2 Sysgen Procedures

CFS code will be in all monitors. No specific monitor
builds are required.

Page 14

8.0 DOCUMENTATIUN

Installation Guide - Describe possible CF¢Q
configurationss describe installation of CFS. See also
"Installation Procedure’™ Functional Spec.

System Administrator”s Guide - Describe characteristics
of CFS; assignment of jobs to processors.

Monitor Calls Reference Manual: JSYsS to control
configuration (small change to MSTR%); error codes.

SYSERR Manual - Specific error cases,

Operator”s Guide - Hringing individual processors up and
down.

9.0 REFFERENCFS

1. Functionai Specification for Lonsely Courled Systems
(LCS)Y - Fred Engel, 30 April 1970

2. Jupiter Confiauration RPecommendation (Memo) - Peter
Hurley, 1 May 1681

3. LCS and tne Common File System (Memo) - Dan Murphyv,
15 Jan 1680

10.0 APPENDIY
10.1 Implementation Details

All transfers will be in page (512-word) units. The
PAGEM-PHYSIO interface will recognize a regquest that must be
handled via the CI and another processor instead of a direct
disk transfer. That 1is, the access to the common file
system disks wili be exclusively through address mapping as
it is now., If the full €I harduare were available, a disk
transfer could always he recuested directly and moved to or
from wmemorv without the involvement of any other processor.
In actual systems (including ¥L10s), a particular oprocessor
may not have direct access to a particular disk and so must
forward a reguest to a processor which does. The processor
makina the request acts in exactly the same wav as if the
request had been made to disk; when the page is ultimatelyv
received from the other oprocessor, the usual transfer
completion action 1is invoked, Spome oprocessors must he
’servers”® 1in such a syvstem. A server must pe prepared to
receive requests for disk transfers from other processors at
any time and resoond to them guicklv. This is reasonably
simple; the server processor places the disk request in its

Page 15

ouwn disk transfer gueues (including allocating some memory)
and when the transfer is complete, starts another transfer
of the data over the processor-to-nrocessor link to the
destination processor.,

We intend to provide this by implementing an MSCP server
module. Thus, a host processor will make disk reguests in
the same way whether the disk is directly connected via the
Cl or indirectlv accessed via another processore.

Open File Data Rase

A major new element of the common file system is the
common open file data base, This is somewhat equivalent to
the present OFN data base in TOPS20 but 1is maintained
jointly on all DTOCesSSOorS. Interlocks and undatinag
mechanisms serve to let each processor make necessary
accesses to 1its own copyv of the data, to keep all copies
updated, and to nandle a processor crashing and coming bpack
on line.

Files that are ooen exclusively on one processor or on
miltiole oracessors for read-anly (including cnnyv-on-write)
can be handled yith no delays except for the data base lock.
Simultaneous write on multiple orocessors requires some
additional alanritnms, »rimarilv the nassinag of the Murite
token"™ tfrom processor to processor. Tiere 1s a separate
Wwrite token for each opern file, Tne write token logically
exists on only one processor at a time and allows processes
running on that processor to read and write data in the file
to which the write tok%en applies. 1If a processor doas not
have the uwrite token for a file, no accesses, read or write,
are allowed. The write token for a file which is
shared-writable and is being actively used by multiple
processors Will be rotated among the processors. If only
one processor 1is demanding 1it, it will move to that
processor after a short time interval to prevent thrashing.
Also, 3 maximum time limit will be used to prevent anv one
processor from hogging in the obpresence of demand from
others.

In order to give up the write tnken, a processor must
make 1inaccessibie all of the naqges of the file to which it
applies, This is done by modifving the index block or SPT
for pages then 1n wuse and writing any modified pages to
their home addresses on disk.

Since all procgessors are running the same operating
systen, we assume a cousistent algyorithm {or reauestiig and
agivinag un the write token will bhe presgent on all. The 37
will be used to detect the first write reference to a page
so that the processor can request the write toker for the
file if it is not alreadv owned.

Page 16

We have considered havina the wWwrite token exist on A
single-page basis, however the data base required to supvort
this seems to be too great. On the other hand, it is
possible to 1leave file pages readable when the file write
token passes to another processor and then only invalidate
pages when the processor with the write token actualily
modifies them. This incurs a delay each time a page is
first accessed for write however, since the writing process
must wait until the invalidate is acknowledged by all other
pProcessors.,

There is a file opening mogde, JOF%RDY, which alwavs is
allowed but does not auarantee that the file will be seen in
a consistent state. A file open in this state on one
processor may continue to be read when another processor has
the write token.

Directories

Jnce we assume the basic file maoping mechanism as above,
most of the vremainder of the TNPS20 file system works
without significant wmodification. Directories are mapped
into the brocess address soace and refaransed by the nrocess
as at present. A common inter-nrocessor lock mechanism must
be implementad to handle directorv locks. The write-token
mechanism wili serve to allow each bprocessor to modify the
directory as necessary. Most directories are referenced
only by a sinagle job and so should present no problem of
excess movement of the write token. Some commor directories
(e.a. <SURSYS>) are referenced frequently by manv jobs but
only for read; 50 again delays for write-token latency
should not he a problenm.

The disk allocation tables are mapped in the same wav as
directories, and the basic page mechanism wiil support this.
There is already a explicit lock on the use of these tables;
making it global will prevent any improper simultaneous
reference by muitiple processors. We are planning a study
of the patterns of use of the allocation tabies to determine
if there will be excessive traffic between nrocessors.

Page 17

Structure Data Base

The structure data base will remain generalily as it 1is

NOoWe 2811 structures which are accessaple (M"spinning") will
be included, whether or not anv users onh the svstem have
mounted them, When the number of users having a structure

mounted on a particular processor changes from ¢ to non-0 or
vice versa, a messaqe is broadcast to all other processors.
Each processor, on receipt of such a message, adjusts its
oun data to reflect which other oprocessors have the
structure mounted, This can be shown as a "funny" user
name, €.9. *KL2102* so that MOUMTR will know whether the
structure can be physically removed from the drive.

The structure data base will also record if a structure

has beer declared “private"™ to one processor and will limit
access accordingly.

MAJOR AREAS OF DEVELOPMFNT - Affected modules

T. File System Initialization (FILINI, MEXRC)

Fxchange configquration informations each noprocessor
knows of ali otherse.

fxchange mounted structure info.

II. YMount Structure (MSTK)

III. Handle disk allocation tables. (DSKALC)
Global (inter-processor) lock set while modifications
in progress. Make present lock global., Allow bit

table routines to run U0KSXKzD.

Write-token mechanism handles concurrent modification
by multiols processors.

IV. O0OFN (DISC, PAGEM)

¥rite-token handled on cer-~0UF¥ basis (equivalent to
per-file for non-long files).

Finite state model ton represent movement of
write-token, upndating of pages, etr.

Support of simultaneocus uwrite for IFEDUD requires extra
WOTKX =~ may be deferred. (l.e., limitation is that all
openers of LF%DIID t1le must be 0on same Drocessor.)

V. Page Manaagement (APRSRV, CISRV, LCS3kV, PAGEM, SCHED)

Detect first w«rite to

requirement).
Force out all pages in 0OFHN,

Detect reference to

available.

page

Transfer page to/from other

Vi. *isc (BUGS, GLOBS, STG)

OFN STATES

1.
10.
2.
20.
21.
3.
30.
4.

Open, any processor read
Fxclusive reauest sent,
OCpen, exclusive not self

Wait before repeat send
Not in use

Status request sent,
fxclusive, self

Request conflict resolution:

Dage

Page 18

{bit in CST - ucode

assuming none modified.

in OFN not currently

systems,

waiting for response.
{i.e. access prohibited)

Share reguest sent, waiting for responsee.

of share regueste.

waiting for response,

while waiting for resnonse to a sert request, a
conflicting request wmay opDe rec=ived. Based on the
types of the two regquests, one of two tnings is done:
1. Denv the received reguest, continue to wait
for response to the sent reguast.
2. Grant the received request, continue to wait
for denial of sent request.
The priority of reguests are:
1. Exclusive
2. Share
Each processor is assigned an arbitrary priority which

is assumed to have no

performance,

The rules are:

significant affect on system

1f received request is higher prioritv than sent
request, then do 23

1f receivad reaauest is loyer nriority, then 40 13
OJtherwise, 1f this orocessor has higher onrioarity,
dn 13 {Otherwilse, do 2.

Page 19

Any received request which is compatible with the <current
state 1is aranted, even if no change of state occurs in the
local OFM. Hence, processors do not have to change states
nf DFNs not beinag actively used.

Note the above is onlv to resolve race conditions. Once the
race 1is resolved, the ™"}losing"” processor will wait for a
small time and then resend the request, Exclusive or shared
access must be given up upon request if the access has been
available for longer thnan a specified period of time. (This
period may be dynamically determined based or number of
pages in use or modified, i.,e. wWork necessary to give up
aACCeSS,.)

CFSSRV is a lock manager. The locks it manages represent resources
in the svstem, but CFSSRV is not aware of the mapping of lock

to resource. The mapping, or meaning, is mpade by the creator of
the resource.

Files are a resource with CFS locks. Fach fiie has the following
CFS locks:

« 0Open type
. Wwrite access
« ENQ/DEG lock

In addition, each of the sections of the file, represented by an OFN,
has an access token. Therefore a file has up to 512 access tokens.

When a file is opaned, the "open type” and "write access™ lock are
acaquired, The "open type" is either™

» shared read (frozen)
o« shared read/write (thawed)
« exclusive {restricted)
. promiscuous (unrestricted)
The word in pare2ntieses represents thne arqument to UPENF3.

If the opensr requests "“frozen write™ access, then if the
"open type™ lock is successfully locked, i.2. 00 one has the
file open in a conflictinag mode, the "write access" lock is
acquired, This is an exclusive lock that represents the
single "frozen write" user of the file. The lock is held by
the system that nas the file opened "frozen write™.

Each of the locks described above apply to a file, that is
somethinag descrined by an FDB. In addition to these, each
file has some number of 0OFXs, one for each file section that
is in use. Theretore, a file mavy have up to 512 UFNs or file
sections.

Each active DOFY has an "access token" lack. The access tnken
represents the abilitv of the system to sccess tha data
described by the 0OFN. The access token mav be held in one
of the following modes:
« Place~pnnlder
. Tean=only
« exclusive {read or write)
A read-only access token wav be held by anv number of systems simultaneously.

An exclusive token is held by onlv one system. 2 "place-hnlder™
access token 15 an artifact that permits the C¥S gystems to adaree

on the end-of-file correctly. It also has some ramifications for

bit table access tokens that will be described later. Place-holder
tokens are also an optimization to avoid reallocating tokens that have
been "lost™ to another systenm.

The file access token is the most fundamental CFS lock in that
it is used not only to control simultaneous access to user files,
but also to manage directories and bit tables.

The access token state transition table is given below, with the
action required to make the designated state change

\\ new read exclusive place-holder
\\
old ©
read nothina vots Coower
exclusive oDMHP X nothing DDMP*
place-holder vote vote nothing
Wheres
vote means that the other AFS gvstems must pe asked for nermisgion

to make the state transition. Voting is a fundamental ovperation
of CFSSEV and is dore bDv a softwWware implemepted broadcast.

DDMp* meaiis thnat DODMP ®must run and remove ali of the OFK°s pages
trom memory and update the disk copy oi any modified pages.

DDMP** means that DDMP must run to update to disk any modified
23ges and any in memory pages must be set to "read only".
This latter operation is performed by clearing the CST write
bit, The CST write bit has been implemented in XL paging explicitly
to support loosely-coupled multi-processors.

While DDMP is performing a CFS-directed operation, all pages of the

OFN are lnaccessible to anv other process. Tnis 1s achieved by

a bitl SPTFQ, set in SPT02 hv DDuP,

Access permission to a file moves among the CF5 systems or demand., Fach svstem
must remember its state of the token s50 it may respond to requests

for the access permission.

The token consists of?

The structure nanme

*

« the OFAN disk address

« 32 flag bit to indicate this is the access token
. State

» end-pf-file pointer

» end=-of~file transaction number

. fairness timer
« the OFW this token is for
and, if this is & token for a bit table:?
. structure free count
« structure free count transaction number

The fairness timer is a CFS service that allows a resource to be held
on a node for a guaranteed interval. Therefore, the owner need not
lock the resource and arrange to unlock it later. Rather it simply
places the gquarantee interval in the resource block and the

CFS protocol takes care of the rest.

Place-holder tokens exist principally to hold the values associated
with the end-of-file pointer and with the structure free count. It is
important that these be held by each svstem, because the owner of

the OFN token may crash and therefore the last known state of these
quantities must be remembered so that the remaining nodes may have

the best possible value for them. The transaction count is intended to
determine whose value is the most recent snoula the owner not

be present to contribute the current value. During the voting

for acquiring a token, these values are passed among the CFS nodes,
and the noade ranductinn the vnte ratairne the valupe ascariatad with

the larqgest transaction numbher,

The file access token represents the rights that a system has to access
a file section. That is, the toxen is associated with the file”s contents.

However, the owner of a file, i.e. the system holding exclusive rights
to access the file, also has the riaght to modifv the file”s index
block., The owning system may 3dd pages to the file or delete pages from
the file.,

OFNs are treated specially in TOPS-20., Unlike the file”s data pages,
an OFN mav not be discarded when the svstem gives up its access

to the file and read from its home on the disk when the access

is reacquired. An active index block, represented by an OFN, contains
pagina information that must be retained while the file is opened.
For this reason, a system needs to be informed if the index block
contents are changed by another system.

This information is dissewminated in CFS by a broadcast message. Each

time a system writes a3 changed index hlock to disk, it informs all

of the other CFS systems hy a broadcast messaqge. Note that this broadcasting
is done onlv when the changed index block is written to disk, and not

each time the index block is modified. A hroadcast message is used

instead of includinag tnis in optional data with the access token

for reasons explained in 2 later section of this document,

Wwhen a3 CFS system receives euch a mageage, it setgs a status bit ir
the aopporpriate (UF)N so that the next time a process attempts to reference
the 0FN the foliowing will happen:

« the disk copv of the index black is examined.

« for each changed entrv, update the local OFN

This reconciliation of the index block with the local OFN is accomplished
by the routine DDXBI.

VOTING IN CFS
When a node needs to "upgrade" its access to a resource, including
acquiring a new resource, it must poll each of the other CFS nodes.
This is so because none of the CF5 nodes is a master and therefore
there is no a priori location for resolving access requests, CFS
is not only a democracy, but somewhat of a cacophonvye.
voting, then, reguires "broadcasting” to each other node the
required resource and access. Fach node must respond with its
permission or denial.
The CI does not support broadcast, and even if it did, it would
not support A reliable broadcast. Therefore, CFS implements broadcasting
by sending a message to each of the other nodes, one-at-a-time.
A vote request contains:

. function code

. Tesourca "name"™ {(seventy-two bits)

. Arceoce desjred

. vote number
A reply contains:

. function code

« resource name {(seventy-two bits)

. teply (ves, no or "qualified yes")

» VvOote number

. Optional data

The message contains a function code because votes and renlies are
only one kind of CFS to CFS communication.

The vote number 1s used to insure that the reply is to the proper
reauest, The reauestor may "restart" a vote at 2ny time., It does
this be "canceling™ the current vote, acquiring a new vote number,
and broadcasting the new reauest. A vote number is a monotonically
increasing, thirty-six bit guantity.

A vote will be restarted for one of the following reasons:
« A configuration change is rennrted by SC}
» 3 DL2V1IOouUs vote "times out'.
The latter shouid rarely occur, and is likely indicative of a

malfunctioning CFS on some other system, In some cases, a node will
not replv if it 1is unable to acquire the apnrooriate space for constructing

A messade. There are a small number of cases where this is }eaal:
and for these cases, the reguestor must revote when appropriate.

Wwhen a reply is received, the vote number must match the number in
the associated resource block.

The replies to a vote are:
. unconditional ves.
» NO
» conditional vyes,
» cancel yes condition

A conditional ves means that the resnondent wiil approve the regquest, but

it needs to perform a local housekeepina operation first. The most common
form of this is voting for an access token where the respondent must first
update the disk copv of the file, and perhans flush all of its local

copies of the file data., When the condition has been satisfied, a "condition
satisfied"” reply is sent,

Each resource nas a "delay mask’. This mask nas a bit for each of the
other CFS nodes, and whenever 3 node renlies with "conditional ves",
its bit is set in the resource”s delav mask. Tnerefore, a process
that is waitinag for the conditinns tn he sat)ctiad, siwmrlv examires
the delay mask periodically and waits far ali of the delav hits

to be cleared. Wnile any delav bits are set, tane vote is considered
to be still in progress, and therafore any confiouration chanage

#will reguire restarting the vote,

Conditional ves votes, and the associated delay mask, are provided
to eliminate the need for nodes to replv "no" when there are
temporary conditions preventing the approval of the request. The
overhead required to process such reolies, and to wait for them,
is offset by the gains in not having to revote in the face of such
conditions.

CFS provides the following basic voting services:

« Acquire a resource. If the resource is known on this
node, but the current state conflicts with the request, the
currently held resource is released and a vote is taken.

This service is called specifying either "“retry urtil
successful™, or return after one trvy,.

« UUpgrade a resource. This service tries only once. It

also guarantees that the currently held resource will not
be released., In fact, the resource may be held and "locked"
locally when "upgrade® is requested.

« Acquire local resource. This is used for resources

not shared by other C¥F3 nodes, but managed by (FS. Examples
are directory locks on exclusive structures.

VOTE MECHANISH

A vote is started by the routine VOTEW. Ordinarily, one does not
call this routine directly, but rather one requests a resource,
and if necessarv, VOTEW will be called to conduct a vote.

VOTEY always waits for the vote results. The results are tallied
at interrupt level by noting the number of revplies received in
the associated resource block. VOTEW periodicalily examines the
resource block testing for:

« all tallies received

a "no" vote recorded
« a confiquration change

The actions taken are as follows:
« confiaguration change: restart the vote
« @ "no"™ vote! return to the called
. all tallies received:
. if no "conditional yes'" votes, return to cailler

« If one or more "conditional yes™ votes, wait for
the "canditior csatisified” ranlies, while waitina,
a configuratior chanae could occur, renuirina the vote
to be restarted,

RESOURCE ACQUISITIUN ARD UPDATING

CFS resources are acagulred and changed in response to requests
from other parts of the wonitor. Rather than describe each one,
it will be instructive to consider how the file related resources
are acquired, maintained, and destroyed,

When a file is opened, and the first OFN is created, ASOFY will
create the static CFS resources: open tvpe and, if appropriate, the
frozen writer token.

Anvtime an OFN is created, ba it in response to opening the file,
or one of the "long file"™ 0OFNs, ASUOFN will create the access token,

The access token state is verified by various of the file svstem
and memory manaagement routines, The most common nlace for this
is in the page fault handler. The tuo excentions to this are

for a bit table access token and a long file "super index
block™. The bit table token is acquired and "locked" when

the bit table lock is locked and released onlv when the bit table
is unlocked, The token for a suver index block is occasionallv
acauired ip DISC ny the routine (NZWLFT) tnat creates new long
file index blocks. Tn theorv, thase exreoptinn cases need not

be exceptions. Taat 1is, the code could simply rely on the

normal management of the token during page fauits ton insure

data integrity. rnowever, in these cases, the code must perform
multiple operations on the file data "atomicaliv™. That is,

it must modifv two or =ore pages, or it must "test and set"

a location with the assurance that no other accesses to the

data occur between the steps. Nn a single system, this is

done by a NOSXED to prevent any other process from runninde.

In an LCS environment, NOS¥XED is not sufficient (although it

is necessaryi). Another form of interlock must be used to prevent
a process on another svstem from examining or modifving the

data, It turns out that the access token satisfies this

need quite well.

The above discussion implies that the page fault hapdler, when it
acquires 2an access token for an JFN, does not “lock™ the token on
the system. That is, the token is acquired but not "held"™. This
may result in the token being preemoted bv another system before
the process is able to reexecute the instruction that caused the
page fault. The ¥Yfairness™ timer in the token resource is one
attempt to minimize such thrashing.

The access token is acquired on the following conditions:
« When an 0OFN is being created
. when the JFH is locxed

« when a page fault occurs because tie current access is
not correct

The current state of the token is kept in the CFS resource block as
well As in the OFM Aata hase, The fisld, QPPS?®, iec the rurrent
NFN state of an UFN, The valuas are:

N =

4
=

0 &CCASS
«3F3SRE => read only
+ SPSUR => read/f/uwrite
SPTST is modified by the routines in CFSS3RV that are called to set
the state of the file. The values are set here, and not in PAGEM,
PAGFIL or PAGUTL because the ([FN state must ve set while the
CFS resource block is interlocked against change.,
The routines to modify the state of an OFN token are}
e« CFSAWT - acquire token but don”t hold it
. CFSAWP -~ acguirte token and hold it
TOKEN MANAGEMENT
Once a token is "owned"™ on a svystem, it will remain in that state until
it is required on another system. That is, if the token is held
for read/write access {(exclusive), thern all references to the

pages of the JFY will succeed without CFSSKRV being invoked.

If a token must be revoked hercauss annther system needs it, CFSSRY
signals DD¥P to process the data pages. This is done by:

» Setting bits in the field STP3R in tne OFN Jdata Dase.

« Satting the OJF&7s bit in the bit mask OFNCFS.

» Waking up DDuHP,

The field STPSR is a two-bit quantityv indicatina the type of access
required by the regquesting system. DDMP"s action is as follows:

read-onlv needad:

Write all modified pages to the disk, Clear all of the (ST
write bits in all in-memoryv paaqes.

read/write needed:

Write all modified pages to disk. Flush all "local" copies

of data including any copies on the swapping space. Swap out
the OFN page if it is in memory (actually, simply place it on
RPLOD).

Once DDMP has performed the necessary operation, it calls CFSFUD.
This routine will set the (FN state and the resource state
appropriately as follows:

read-only reauested:

set DFN state to .SPSRU and set resource state to 'read".
read/write requested:

set OFM state to 0 and set resource state to "place-holder™,

CPSFOD also copies the currant end-of-file information from OFNLEN
into the resource ovlock and tinaliv it sends tie "condition satisfied"®
message to the regquestor.

While DDMP is performing its work on behailf of CFS, it sets the
bit SPTFC in the OFN data base. This bit is examined by the

page fault handler, and by CFSAWP/CFSAKT to see if the

OFN is in a transition state. If SPTFD is set, and the process
reguiring the 0OFN is not DDMP, then the process is biocked until
SPTFO is cleared by DDMP. In order to facilitate identifying

DDMP fromw all other processes, a new word has been added to the
PSB called DDPFRK. If DDPFRK is non-zero, then the current process
is indeed DDMP and SPTFD should be ignored.

UNUSED RESOURCES

Whenever a node replies "no"™ to a request, it remembers ip the
associated resource block the node(s) that have been rejected. The

only reason for unconditionally denving a request is that the

resource is "held"™ locally. If a resource cannot be granted

because of the fairness timer, the "no" response includes

an optional data word of the time the resource is to be held. Therefore,
the reguestor knouws precisely when to request the resource anews

when a held resource is Yreleased” (or undeclared), CFS examines the
rejection mask for the resource. For each node identified in the mask,
a "resource released"™ message is sent indicating that this is

a propitious time to try to acguire the resource. There is no
guarantee the new request will be granted as the resource could

be held again, or another node could have requested, and been

granted, the resource first.

DELETING FILE RESOURCES

el

The access token is deleted whenever the associated OF4 is deassigned.

The static file resources are released when the file is closed. This
is performed in RELOFN.

CHANGES TO EXISTING CONCURRENCY CONTROL SCHEMES

As 3 result of CFS, much of the concurrency control in TOPS-20 has
become distributed. In some cases, this has been done by creating
a companion resource to an already existing one. As example of
this is the file open nmode resource described above.

In other cases, existing locks have been replaced by CF3 resources.

The decision as top which technique to emplov was made on a2 case-by-case
basis, The siagnificant criterion was how easy it was to eliminate

the existing concurrency control and replace it with the CFS
management. The file resources proved difficult to do. However,

there are two important pieces of the monitor”s structure that

were e3asily and efficiently replaced: directory locks and

directory alloncation tables.

Nirectorv lacke are nnuw CFS rosnaurcee, 4 Airertary loark reenyrce
contains:

. the seventy-tuwo bHit identifier
« owning forx

. Aaccess type

. share count

. waiting fork bit table

In fact, a directorv lock resource is the sole instance of a “CFS
long block".

Directory lock%s are always acquired for exclusive use. However, unlike
file access tokens, directory locks are never granted "conditionally®.
This is because directories are files, and the directorv contents

are subject to negotiation by the associated file access token. That is,
acqguirinog exclusive use of the dirertorv 1nck resource is independent

of acquiring permission to read or write the directory contents. v¥hen
some process on the owning system attempts to read or write the
directorv contents, it must first acguire the file access token in the
proper state, Althouah this sounds somewhat inefficient, i.e. requiring
the node to acquire two independent resources, it is in fact a remarkably
efficient adapntation of the CF3 resource scheme, This 1S s0 because

A node need not iknow hnw the directory contents will be used when

it acquires the directory lock. That is the way the lock was handled
before CFS, and preservirg this convention means that the code

to acouire the directory lock under CFS is as efficient as possible.

The state of the file access token, and consequently the dearee of
sharing of the directorvy rontents, is determined bv how the

contents are reference:d and not by how the directorv is locked,

This means that a process may lock the directorvy lock without
Knowing how it wili reference the associated data, and its ‘
reference patterns determine what other negotiations are reguired.

The directory allocation table is a local "cache" for the information
normally stored in the directory. Each active {JFN is assoclated with
a directory allocation entrv. Fach entry is tor exactly one directory.
The entrv, before CFS, contained: structure number, directory number,
share count, and remaining allocation.

Under CFS, an active aliocation entry contains: structure number,
directory number, share count, and pointer to the CFS resource block.

The CFS resource block contains, besides the normal CFS control
information, the remaining allocation for the directory and a transacticn
number. The transaction number serves the same purpose as the transaction
number associated with a file end-of-file pointer.

CFS may have an "unused" resource block for a directory allocation entry.
That is, even though there is no active directory allocation entry,

there mav be a CFS resource block trepresentinag the directory. This is
because [FS attempts to retain knowleddge of resources for as long

as possible to avoid having to vote when some process wishes to

create the resource Anew., However, LFS Wwill destroy any unused resource
allocation entrv tnat is requested bv another svstem.

TRANSACTICN WUMBLR

The optional data items, M"end-of-file pointer® and ®structure free
space", have an associated value called the "transaction number”.

One either uses centralized or decentralized control in a Yloosely-coupled
multiprocessor” system. In a centralized system, control information and
updating is cooruinated by a master. Transactions are "serialized" by
virtue of havinag a single owner for the resoruce and therefore a

single manager of the resource data. In a decentralized syvstem, the
various systems share the ownership of resources and use some

sort of "concurrency control”™ technigue to manage resources.

CFS is a decentralized svstem. A resource is not owned or managed bv
any particular system, but rather the resoonsibility for the resource
is passed from system to system as required. As such, it mavy not always
be possible to uniquelv identifyv a particular svstem as the ownere.
This may cause a problem when a system needs to become the owner, and
therefore must determine the current status of the resource in question.
There are two possibilites that a nascent owner mavy encounter:

. The previous owner is present ard indentifiable,

« There is no system that is the previous owner
and of this latter case:

. the existing control information is accurate

« the existing control information in not Aaccurate.

Clearlv, if the previous owner is bresent, the new owner has all of
the information 1t needs to proceed with its transaction.

If the previous ouxwner cannot be identified, then the new owher must be
able to determine which of the systems has the current control
information about the resource. It may be that none of them has, and
this is a problem that exists even on a sinaie-processor svstem, The
result of such a problem may be Y1ost pages", inconsistent data bases
and other such phenomena. As in a single-processor system, the problem
nccurs because the resource control information is lost as an effect
of a system crashing.

In order to determine the most up-to-date information about 3 resource,

each svstem maintains a transaction count along with the information.
Wwhenever it acquires information with a larger transaction count than its own
value, it knosws that information is more current and it must replace its oun
copv with the new data and count. Whenever a system unilaterally chanaes

its copy of the control information, it must aiso increment the associated
transaction count, Since 3 system may perform such an update only when

it has write or exclusive access to the resource, the svstem need change

the transaction count only when it must downgrade its access.

Due to the nature of the CFS voting and resource management, it is possible
for a systen to acguire a resource but to receive a Jifferent value for

the resource control information from each of the other svstems (this

will happen only if the owner crashed. If the owner didn”t crash, then

at least two of the other systems must nave the same control information
and transaction count). In this case, the transaction counts are used

to identify the most up-to-date value.

The transaction court is really a "clock™ that is used to “"time-stamp®
information. When systems communciate with one-another, they synchronize
the clocks by sending each nther the current counts. Most network
concurrency schemes use clocks for similar ourposes, and most of

the uses and implementations are considerably more exotic than this one.
Hosever, since CFS needs the clock only to determine relative ages,

and not absolute ages, of information, this siaplified clock

is adequate.

An alternative to using transaction counts is to "broadcast"™ changes
to resources. This has the disadvantage that it is costly in both processor
and communications time and resources. However, CFS does use broadcastinag
in a few cases where the lack of up-to-date information could result
in data being destroved. The twWo cases are:

« an OFN being modified and written to disk

. an EOF wvalue being written into the directory copvy on the disk
As both of these renresent changes in the permanent copv of the tresource,
it is essential that all of the other systems have current copies
or knowledage of the update.
CFS MESSARE SUMMARY
Items marked witio @ "*" are sent as broadcsst HeSSaAdeSe.
x1, request resource f{(vote)

2. Teply to reguest:

A. Uncondgitional ves

b. unconditional nuc
Cs No WwWith retry time
d. conditional ves

3. resource availiable

4, condition satisfied

*5. 0OFN updated

*6. EOF changed

In addition, each message tvpe may carry specific coptional data itess,
up to four words of optional data per messade.

	001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12

