CFS Resources
David Lomartire
7~Nov-84

Files:

File open token..............Page
Frozen writer token..........Page
o File access token............Page

oo

Directory Locks:

o Directory lock token.........Page
o Directory allocation token...Page

Structures:

0o Structure name token.........Page
o Drive serial number token....Page

BAT Blocks:

o BAT Block lock token.........Page
ENQ/DEQ:

0O ENQ Token.....eeeessessecesss.Page
Appendix A

o Flow chart of CFSGET.........Page

&N

14
16

22
22

26

28

29

Page 1

1. Files - An opened file has one or two CFS file resources (file open token
and possibly frozen writer token) and a file access token for each active A?FN
(at least one). The field SPTST of SPTO2 holds the access specified in the .e
access token., While DDMP is performing CFS-directed operations on a file, all
pages of the OFN are inaccessible to any other process. This is achieved by a
bit SPTFO, set in SPTO2 by DDMP. FKSTA2 will contain the resource block address
(when appropriate) of the CFS resource the fork is waiting on.

Below is the table of contents fragment from CFSSRV which illustrates the
various file related routines:

15, File open resource manager
15.1. CFSGFA (Acquire file opening locks) 83
15.2, CFSFFL (Release file locks) 84
15.3. CFSURA (Downgrade to promiscuous) 85
16. Frozen writer resource manager
16.1. CFSGWL (Get write access) . . . ¢« v v v o « 86

16.2. CFSFWL (Free write accesS). . v « & « « o o 87
18. File access token resource manager
18.1. CFSGWT (Get write token value). 91
18.2. CFSAWP/CFSAWT (Acquire write token) 92
18.3. CFSDWT (Write token revoked). . . . « +« « . . 95
18.4. CFSOVT (Approve sharing of OFN resource). . . 95
18.5. CFSGOC (Get count of resource sharers). . . . 96
18.6. CFSDAR (Optional data for access token) . . . 97
18.7. CFSFWT (Free write token) « . . 97
18.8. CFSUWT (Release access token) . . « « o« o o 98
18.9. CFSBOW (Broadcast OFN update) 100
18.10, CFSBEF (Broadcast EOF). . . «. ¢« « & « « « . . 101
18.11. CFSBRD (Main broadcast routine) 102
18.12, CFSFOD (DDMP force out done). . . . « « « . . 103

Page 2
File Open Token

CFS routines: CFSGFA - Acquire file opening locks
CFSFFL - Release file locks
CFSURA - Downgrade to promiscuous (unrestricted, OF%RDU)

When the file is opened via OPENF%, it will have one of the following open
types assigned to it:

Open type (spec) CFS term (code) OPENF$% term OPENF% bits
shared read .HTOSH - read-only shared Frozen not OF%THW
shared read/write .HTOAD - full sharing Thawed OF$THW
exclusive .HTOEX - exclusive Restricted OF%RTD
promiscuous .HTOPM - promiscuous read Unrestricted OF%RDU
local exclusive 1B0! .HTOEX - local exclusive -- OF%DUD

** CFSGFA - Acquire file opening locks **
Called by: GETCFS in PAGUTL

Upon entry to CFSGFA, the access type is converted into one of the access
codes shown above. Next, HSHLOK is called to see if a file open token already
exists for this file. If it does, a call is made to CFSUGD to upgrade the
already existing access to the new access which is requested.

If & file open token does not already exist, CFSSPC is called to get a
short request block. CFSSPC will return a block with HSFLAG, HSHPST, and HSHORV
zeroed as well as HSHRET set to 1,,SHTADD. Then, the following is placed in the
block:

HSHROT six-bit structure name
HSHQAL index block address
HSFLAG HSHTYP=access, HSHLCL set if local exclusive

Finally, CFSGTT is called to get the token (with "try only once" set).
(Note, if the structure is set local exclusive, CFSGTT will discover this and
use CFSGTL. This will mean that HSHVTP will not be updated with the access of
the vote since no vote is required.) If the token is acquired, the following
has been updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

If, upon return from CFSGTT, we do not need the newly created block (Tl is
non-zero), SHTADD will be called to return the extra block to the CFS pool.

Page 3
** CFPSFFL - Release file locks **

Called by: FRECFS in PAGUTL
The routine CFSFFL simply calls CFSNDO to release the file open token. See
the discussion of CFSAWT/CFSAWP for a description of CFSNDO.
** CFSURA - Downgrade to promiscuous (unrestricted, OF%RDU) **

Called by: RELOFN in PAGUTL when OFOPC in SPTO2 is 0
(no more "normal" (non-unrestricted) openings)

The routine CFSURA 1is called by PAGEM to downgrade the access of a file
open token to .HTOPM whenever all open OFNs are closed. It calls CFSUGD with a
new access of .HTOPM and decrements HSHCNT when the new access is obtained.

Page 4
Frozen Writer Token

CFS routines: CFSGWL - Get write access
CFSFWL - Free write access

If a file is opened for frozen write (OF$WR and not OF$THW), then the
frozen writer token is acquired after the file open token is obtained. This is
an exclusive access token that represents the single "frozen write" user of the
file. It is held only by the system which has the file open for frozen write.

** CFSGWL - Get write access **
Called by: CHKACC and GETCFS in PAGUTL
Upon entry to CFSGWL, a short resource block is obtained via a call to

CFSSPC. CFSSPC will return a block with HSFLAG, HSHPST, and HSHOKV zeroed as
well as HSHRET set to 1,,SHTADD. The following is then placed in the block:

HSHROT six-bit structure name
HSHQAL FILEWL+index block address
HSFLAG HSHTYP=,HTOEX

Finally, CFSGTT is called to get the token (with "try only once" set).
(Note, if the structure is set local exclusive, CFSGTT will discover this and
use CFSGTL. This will mean that HSHVTP will not be updated with the access of
the vote since no vote is required.) If the token is acquired, the following
has been updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

If, upon return from CFSGTT, we do not need the newly created block (Tl is
non-zero), SHTADD will be called to return the extra block to the CFS pool.
** CFSFWL - Free write access **
Called by: RELOFN and FRECFS in PAGUTL

The routine CFSFWL simply calls CFSNDO to release the write access token.
See the discussion of CFSAWT/CFSAWP for a description of CFSNDO.

. Page 5
File Access Token (OFN access token)

CFS routines: CFSAWT/CFSAWP - Acquire/Acquire and reserve access token

CFSUWT - Release access token

CFSFWT - Free write token

CFSDWT - Write token revoked (callback)
CFSOVT - Approve sharing of OFN (callback)
CFSDAR - Optional data for access token (callback)
CFSBOW - Broadcast OFN change-

CFSBEF - Broadcast EOF

CFSFOD - DDMP force out done

Each active OFN has an access token. It may be in one of the following
modes:

* place-holder .HTPLH (this value must be zero!)
* full sharing .HTOAD
* exclusive (read or write) - .HTOEX

The location CFSOFN points to a table which is NOFN long and is indexed by
OFN. It contains the address of the resource block which describes that OFN.

** CFSAWT/CFSAWP - Acquire/Acquire and reserve access token **

Called by: NEWLFP in DISC for .HTOEX access (CFSAWP)
UPDLEN in DISC for .HTOEX access
GETLEN in DISC for .HTOAD access
MAPBTB in DSKALC for .HTOEX access (CFSAWP and CFSAWT)
RELMPG in PAGEM for .HTOAD access (CFSAWP)
, NTWRTK in PAGEM for .HTOEX access
! NIC in PAGEM for .HTOEX access
OFNTKN in PAGUTL for .HTOAD access
DDXBI in PAGUTL for .HTOAD access (CFSAWP)
UPDPGS in PAGUTL for .HTOAD access (CFSAWP)
ASGOFN in PAGUTL for .HTOAD access (CFSAWP)
LCKOFN in PAGUTL for .HTOAD access (CFSAWP)
MRKOFN in PAGUTL for .HTOAD access (CFSAWP)

The routines CFSAWT and CFSAWP acquire the access token. The latter leaves
the resource block reserved on the system. The former does not.

Upon entry, the access type 1is checked. If zero, full shared (.HTOAD)
access is acguired. If not egual to =zero, exclusive (.HTOEX) access is
acquired. Next, the SPTFO bit in SPTO2 is checked to see if DDMP is forcing
this OFN to disk. If so, the fork goes into WTFOD wait. Otherwise we proceed to
lookup in the CFS OFN table (pointed to by CFSOFN) the address of the resource
block for this OFN. If none exists (entry is zero), we continue at CFSAWl and
add an entry.

Page 6
At CFSAWl, GNAME 1is called to get the structure name. Then CFSSPC is
called to obtain a short resource block. CFSSPC will return a block with
YSFLAG, HSHPST, and HSHOKV zeroed as well as HSHRET set to 1,,SHTADD. The
following is then placed in the block:

HSHROT six-bit structure name
HSHQAL FILEWT+index block address
HSFLAG HSHTYP=access, HSHKPH set
HSHCOD OFN

HSHPST l,,CFSDWT

HSHORV 1l,,CFSOVT

HSHCDA 1, ,CFSDAR

HSHOP1 0 (transaction number)

Next, a call 1is made to get the resource. CFSGET is called if the
structure is shared. If the structure is set exclusive, CFSGTL is wused. (Note
that if CFSGTL is called, HSHVTP will not be updated with the access of the
vote since no vote is required.) The call is made to "retry until successful"
so, upon the return, we have acquired the resource. The following has been
updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

Now, HSHFCT is set to be TODCLK+WRTTIM. A check is made to see if optional
data was returned during the vote. The optional data will be the most recent
value of OFNLEN in HSHOPT and the transaction number in HSHOPl. This value
‘epresents what the other node believes OFNLEN is for that OFN. If there is
optional data present from the vote (HSHODA is set), this must be the most
current value of the file length and it is stored in OFNLEN. In this case, the
other node had more recent information than us so we must update our copy of
OFNLEN. Otherwise, no other copy exists and we initialize the optional data of
the resource block to contain the current OFNLEN entry for that OFN. HSHOPl is
incremented to initialize the transaction number. In this case, no other node
had more recent information than us so we establish ourselves as the node which
knows the state of OFNLEN. Note that if this access token was for a bit table,
the structure free count must also be maintained or established. The callback
routine CFSDAR will insure that STOFRC is called to update the structure free
count if appropriate.

If CFSAWT was originally called, CFSNDO will be called to undeclare the
resource. CFSNDO will decrement HSHCNT and HSHNBT will be "searched" looking
for previously rejected hosts to notify (via CFNOHN). If CFSAWP was originally
called, the resource will remain owned by the fork. In either case, the
resource block remains in the hash table and HSHKPH will remain set. The only
distinction is whether we own the resource or not.

Finally, the SPTST field in SPTO2 is set to the correct state; .SPSWR (2)
for .HTOEX access tokens or .SPSRD (1) for .HTOAD access tokens.

Page 7
The description above describes what occurs when CFSAWl is entered to add
a new OFN entry. However, there is another option. If CFSOFN already contag-s
the address of a resource block, then this OFN has already been added angt.s
known to this CFS system.

First, the post callback address (HSHPST) is checked and set to 1,,CFSDWT
if it was zero. The block is then locked against removal by either CFSRSE or
CFSUWT by incrementing HSHLKF. Both of these routines can remove resource
blocks from the hash table. So, we are 1locking the resource block against
possible removal from the hash table via the use of HSHLKF. Now, a check is
made to see if there is anyone waiting for this block. This is done by checking
HSHTWF, HSHUGD, and HSHWVT. HSHTWF gets set when the fork is going to go into a
wait state on that block (like CFSRWT). The setting of STKVAR WTFLAG indicates
to CFSUGW (the wait routine) if we set HSHTWF. If WTFLAG is -1, HSHTWF was
already set and if it is zero, we set HSHTWF., HSHTWF is also set when we call
CFSUGD to upgrade access to the token, HSHUGD is set when we are performing an
upgrade vote on the resource. HSHWVT is set when we are voting on a resource,.

So, 1if there is someone waiting on this block, we continue at CFSUGW. We
pass into CFSUGW the address of the wait routine; in this case CFGVOT. 1In
CFSUGW, we place TODCLK+~D500 in HSHTIM and call CFSWUP (the general wait
routine) to wait until the vote has completed. Upon return from CFSWUP, the
block will no longer be in a "wait state". We will clear HSHTWF if we had set
it (WTFLAG=0) and check HSHPST to see if the block has been released (it will
be zero if so). If it has not been released, we unlock it by decrementing
HSHLKF, clear some bits which could be 1left over from voting (HSHRTY and
HSHVRS) and start over again at CFSAWL to try to acquire the access token., If
the block has been released, we get the value of HSHLKF and decrement it.AElf
the resulting value 1is non-zero, we are not the last locker, so we couldhi't
obtain the access token and return without changing the access token we
currently have (current access reflected in SPTO2). If the decremented value of
HSHLKF 1s now zero, then we are the "owner" of the resource block. The block
address in CFSOFN will be cleared and CFSRMV will be called to remove the block
from the hash table. Again, we will return without changing the access of the
OFN. CFSRMV will not post the removal.

] Page 8

If there is no one waiting on the resource, we can proceed to try to
upgrade our access. First, we check STRTAB to see if the structure is mounted
exclusively. If so, we make HSHTYP be exclusive (.HTOEX). This is done
regardless of the access we were asking for because access on an exclusive
structure is always .HTOEX (it needs to be nothing other because this is the
only node which can use this structure). We will never be refused access to an
OFN on an exclusive structure due to setting HSHTYP to .HTOEX (as shown below).

Now, we check HSHTYP to see what kind of access we hold on the resource.
If is is exclusive (.HTOEX), then we are granted access. If CFSAWP was called,
HSHCNT is incremented in order to hold ownership. Finally, the OFN access is
set in SPTO2,.

If HSHTYP is not exclusive, we will have to upgrade our access to the OFN.
First we set HSHTWF to indicate we are processing this resource block. Next we
call CFSUGD to try to upgrade our access. CFSUGD will modify HSHTYP and HSHCNT
to reflect the state of the resource after the upgrade attempt., HSHTYP will
contain the current access and HSHCNT will contain the number of owners of the
resource.,

If CFSUGD successfully allows the upgrade, we will clear HSHTWF and place
TODCLK+WRTTIM in HSHFCT. The block will be unlocked via a decrement of HSHLKF
and, if CFSAWT was originally called, HSHCNT will be decremented so that the
resource will not be held. If HSHCNT is zero, CFNOHS will be called to notify
any nodes which were rejected in the interim. Next, if any optional data was
returned in the upgrade vote, it is placed in OFNLEN. This would be the file
length for that OFN. Finally, the OFN access in SPTO2 is updated to reflect the
new access state.

If CFSUGD does not allow the upgrade, HSHWTM is checked to see if a retry
wait time was given. If so, it is added to TODCLK and placed in HSHTIM.
Otherwise, TODCLK+"D20 1is used. Processing will now continue at CFSUGW, with
the wait address specified as CFSRWT. CFSRWT will awaken under one of the
following conditions:

1. The block can no longer be found in the hash table (it has been
released)

2. The same block is found by HSHLOK (address match) and :
a) HSHVRS or HSHRTY is set in the resource block
b) HSHTIM is less than or equal to TODCLK

3. A different block is found by HSHLOK and:
a) HSHCNT is zero
b) HSHTYP is not .HTOEX but does match the desired access

Page 9
*% CFSUWT - Release access token **

Called by: FRECFS in PAGUTL

When a file is closed, CFSUWT is called to release the access token. The
resource block is found (via HSHLOK) and the OFN is retrieved from HSHCOD. The
SPTO2 entry for this OFN is checked to see if anyone is waiting for this access
-token. This is indicated by the field SPTFR being set which indicates that CFS
has requested a DDMP force out to be done for that access token. (SPTFR is set
in routine CFSDWT and cleared in CFSFOD.)

If SPTFR is set then a force out has been requested for this OFN. At this
point we clear the bit in OFNCFS which indicates which OFN DDMP should force
out and call CFSFDF to signal that the force out is done. (CFSFDF is an
alternate entry point to CFSFOD which will always signal that the force out |is
done regardless of the number of sharers remaining on that OFN. In effect, it
"forces" the force out regardless of the current number of sharers of that OFN.
CFSFOD will only signal that the force out is done when there are 2 or fewer
sharers indicated by HSHCNT.) (OFNCFS is a multi-word bit mask scanned by DDMP
to determine which OFNs need to be forced out.) Finally, CFSUWT is continued at
the beginning to try to release the access token again.

1f SPTFR is zero, then this OFN is not being forced out. We call CFNOHS to
notify any hosts which we rejected for this OFN. Next we check HSHLKF to see if
the resource block is locked. This will be set by CFSAWT/CFSAWP to prevent the
block from being removed from the hash table. If the block is locked, we simply
clear HSHTYP, HSHCNT, HSHKPH, and HSHPST. By clearing HSHKPH, the block is
eligible for removal as stale by routine CFSRSE. If the block is not lockedg€ ‘e
clear the corresponding entry in CFSOFN and remove the block from the Nesh
table via a call to CFSRMV. CFSRMV will not post the removal.

% CFSFWT - Free write token **

Called by: DDXBI in PAGUTL
UPDPGS in PAGUTL
ASGOFN in PAGUTL
ULKOFN in PAGUTL
UMPBTB in DSKALC

The routine CFSFWT simply calls CFSNDS to release the write access token.
CFSNDS is an alternate entry point to CFSNDO which will employ a "fairness
test" when notifying other nodes of the resource release. It will set HSHRFF in
the block just before calling CFNOHS. CFSFWT is the only routine that calls

CFSNDS. See the discussion of CFSAWT/CFSAWP for a description of CFSNDO.

Page 10
** CFSDWT -~ Write token revoked (callback) **

Called by: CFSRTV when we want to release the resource
(Note: CFSRSE has the ability to call a post

routine but it should never be called
for a file access token since HSHKPH
will be set and this will prevent
the block's removal. 1In fact, if
CFSDWT were to be called, incorrect
or needless DDMP action could result.)

This routine is the callback routine placed in HSHPST when the access
token is formed. To post removals, CFSRMX is called. CFSRMX is the alternate
entry point to CFSRMV used to do posting of removals. CFSRMX will insure that
CFSDWT is called to do any cleanup that is needed before the resource block is
removed from the hash table.

CFSDWT simply invokes DDMP to force out the pages of the OFN being
released. If the resource is a place holder, then nothing is done and CFSDWT
just returns. Otherwise, SPTFR is set in SPTO2 for the OFN. Note that SPTFR is
a two bit field (bits 22 and 23) so both bits will be set. Next, if we own the
resource exclusively (HSHTYP) and the vote request is for any access other than
exclusive (HSHVTP), we will clear bit 22, which is named SPTSR. If we do not
own it exclusively (we own it .HTOAD) then SPTSR will remain set.

SPTSR is checked by routine DDOCFS (in PAGUTL) when deciding what to do
with the copy of the pages. If SPTSR is zero, then the vote request was not for
exclusive access (and we had .HTOEX access) so UPDPGY is called to wupdate to
iisk any modified pages and set any in memory pages to “read-only" (via the use
of the CST write bit). (In the access token state transition table in the spec,
this is shown as DDMP**,) This will result in a new access for the OFN of
.HTOAD (full sharing) on the processor which used to own the resource
exclusively. If SPTSR 1is set, then the vote request was for exclusive (or we
only had .HTOAD access) so UPDPGX is called to update to disk any modified
pages and remove all the OFN pages from memory. (In the access token state
transition table in the spec, this is shown as DDMP*,) This will result 1in a
new access for the OFN of .HTPLH (place-holder) on the processor which used to
own the resource exclusively.

Finally, DDCFSF is incremented to wake up DDMP and the appropriate OFN bit
in the OFNCFS bit-mask is set to indicate to DDMP which OFN to force out. Also,
Tl is set to =zero. This is important because, upon return to CFSRMX, Tl is
checked and, if zero, a -1 will be placed in Tl upon return to CFSRTV and the
block will not be removed from the hash table. This value in Tl is taken to be
the vote type which is placed in .CFTYP. So, this is how a -1 (or conditional
yes) 1is generated; namely, a vote comes in which causes an access token to be
released and requires DDMP to run. When this is done, CFSFOD will send a
"condition satisfied" message (.CFTYP = -2) to indicate that the force out is
done. (The appropriate HSHDLY bit for the node is set when the -1 is received
and cleared when the -2 is received. This is done in CFSRVT.)

Page 11
** CFSOVT - Approve sharing of OFN (callback) **

Called by: CFSRTV when vote is to be approved

This routine 1is placed in HSHOKV when the access token is formed. The
routine is called when the vote is to be approved in order to place this node's
optional data in the vote packet.

I1f HSHOPl1 is non-zero, then this node has some copy (it may be old) of the
file length information (OFNLEN for that OFN). Both HSHOPT (the file length)
and HSHOP1 (the transaction number) are placed in CFDAT and CFDT1 of the CFS
send packet. Also, the CFODA flag will be set to indicate that optional data is
present. If HSHOP1 1is 2zero (no transaction number) then this node has no
optional data to contribute concerning the file 1length and CFDT1 (the file
length transaction number) is set to zero. This is done because there is also a
structure free count which can be sent. So, just using CFODA is not enough.
However, sending a transaction number of zero will insure that processing of
the file length data will be ignored.

Finally the HSHBTF flag is checked to see if this is a bit table OFN. If
it is, SNDFRC will be called to set up the send packet with the structure free
count data. SNDFRC will call GETFRC and place the returned value of the free
count in the CFDSTO of the send packet. Next, the current transaction number
for the structure free count is retrieved from the CFSSTR table. This table,
indexed by structure number, contains the transaction number values for each
structure. This transaction value 1is placed in CFDST1 and, if we are the
exclusive owner of the OFN, it is incremented. This will insure that the count
is wupdated on the remote system. Finally, CFODA is set to indicate ther‘;fs
optional data present in the vote packet.

This optional data information will be processed by the CFSDAR callback

routine (described below). l

** CFSDAR - Optional data for access token (callback) **
Called by: CFSRVT when a vote packet arrives with optional data

This routine 1is placed in HSHCDA when the access token is formed. The
routine is called when the vote packet arrives in order to process the optional
data in the packet.

First, HSHBTF 1is checked to see if this a bit table. If it is, then the
structure free count may have to be updated. If structure free count data is
present (CFDST1 non-zero) and if the remote node's structure free count
transaction number is greater than our own (CFDST1 > CFSSTR(str)), then our
copy of CFSSTR is updated and STOFRC is called to update the free count.

Next, we continue at CFADAR and check CFDT1 to see if any file length
optional data is present., If it is and the transaction number is greater than
ours, we return +2 to CFSRVT and store the data and transaction number in
HSHOPT and HSHOP1 and set HSHODA to indicate optional data 1is present. (This
data will be taken out of the resource block and placed in OFNLEN by
CFSAWT/CFSAWP). If the transaction number in the packet 1is not greater & .n
ours, we return to CFSRVT and ignore the optional data.

, Page 12
** CFSFOD - DDMP force out done **

Called by: DDOCFS in PAGUTL

This routine is responsible for signaling that DDMP has completed the
force out of OFN pages. The corresponding entry in CFSOFN is checked to see if
an access token exists for it. If the table entry is empty, then this node no
longer has the resource so SPTST (the OFN access) and SPTFR (the DDMP force out
flag bits) are cleared and CFSFOD returns successfully.

If there is a CFSOFN table entry, it contains the address of the resource
block for the access token. We retrieve the number of sharers of the resource
from HSHCNT and, if greater than 2, we cannot signal success so we return
failure. Next, any optional data that is present in the access token (HSHOPT
and HSHOPl) 1is placed in a newly acquired vote packet (obtained via a call to
GVOTEl). Note that if HSHODA is zero, then there is no optional data in the
token so the file length information is obtained directly from OFNLEN. If we
own exclusive access to the OFN, then the transaction number (HSHOPl) is
incremented to insure that the remote system will use the optional data we are
providing since it is the most current. If this is a bit table OFN, SNDFRC is
called to place structure free count optional data into the vote packet.

Next, we clear HSHRFF and set the new access of the OFN. If SPTSR is set,
then HSHTYP is set to .HTPLH and SPTST is set to 0. If SPTSR is not set, then
HSHTYP becomes .HTOAD and SPTST becomes .SPSRD. Finally, we clear SPTFR,
decrement HSHCNT to "unown" the resource and call SCASND to send the vote
packet. The packet type code is a -2, which is a "condition satisfied" message
which is used to indicate to the remote that the DDMP force out has completed.

Ta s ar 1T .
Je will then return successfully.

Page 13
2. Directory locks and directory allocation - Directory locks are now managed
by CFS and are a CFS resource. The old LOKTAB and associated storage isg "w
gone. Each time a directory is locked or unlocked, a CFS resource is create® or
modified. The remaining directory allocation of each active directory is also a
CFS resource.

Below 1is the table of contents fragment from CFSSRV which illustrates the
various directory related routines:

14, Directory lock resource manager

14.1. CFSLDR (Lock directory) . . « « « o« « o o o & 75
14.2, CFSRDR (Unlock directory) . . « « o« o ¢ o « & 77
14.3. CFSDAU (Acquire allocation entry) e 78
14.4. CFAFND/CFAGET (Find/Get allocation table) .. 78
14.5., CFASTO (Store new allocation value) 80
14.6. CFAULK (Unlock allocation entry). 80
14.7. CFAREM (Remove allocation entry). 80
14.8. CFAUPB (Undo keep here bit) 80
14.9. CFAVOK (Vote to be approved). 81
14,10, CFADAR (Optional data present). 81
14.11. CFARMV (Voter remove entry) . . « « « « « o . 81
14.12. GETDBK (Find resource block). 82

Page 14
Directory Lock Token

CFS routines: CFSLDR - Lock directory
CFSRDR - Unlock directory

Directory 1locks are the only example of 1long resource blocks. Also,
directory locks are always exclusive (.HTOEX) resources. For the duration of
the lock, the process is CSKED.

** CFSLDR - Lock directory **

Called by: LCKDNM in DIRECT (via CALLRET)
First, a check is made to see if the resource already exists. If it does,
and it is in "use" (HSHWVT or HSHCNT are set), then a vote is required.

Otherwise, we can lock the directory and the following is updated in the
resource block:

HSFLAG HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp to indicate when resource acquired

If the resource is not known to this node, or the current resource block
for the directory is in use, then a vote is required. First, CFSSPL 1is called
to obtain a long resource block. CFSSPL will return a block with HSHLOS set in
HSFLAG, HSHPST, and HSHOKV zeroed as well as HSHRET set to 1,,LNGADD. The

€ollowing is then placed in the block:
HSHROT six-bit structure name
HSHQAL DRBASE + directory number
HSFLAG HSHTYP=.HTOEX '
HSHCOD DRBASE
HSHFCT TODCLK+DIRTIM

Finally, CFSGTT is called to get the token with "retry until successful"
set so, upon return, we will have acquired the resource. (Note, if the
structure 1is set 1local exclusive, CFSGTT will discover this and use CFSGTL.
This will mean that HSHVTP will not be updated with the access of the vote
since no vote 1is required.) The following has been updated in the resource
block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

If, upon return from CFSGTT, we do not need the newly created block (Tl is
non-zero), LNGADD will be called to return the extra block to the CFS pool.

Page 15
** CFSRDR - Unlock directory **

Called by: ULKDNM in DIRECT (via CALLRET)

The routine CFSRDR simply calls CFSNDO to release the directory lock
token. For these long blocks, CFSNDO will do something extra before the call to
CFSOHS; it will check the HSHBTT for any waiting forks to wake up. If it finds
one, CFSOHS will not be called to notify remotes of the token release. In this
way, the forks on the local node will have priority over forks on remote nodes
for acquiring directory locks. See the discussion of CFSAWT/CFSAWP for a
description of CFSNDO.

Directory Allocation Token

CFSDAU -
CFAFND/CFAGET -
CFASTO -
CFAULK -
CFAREM =
CFAUPB -
CFAVOK -
CFADAR -
CFARMV -

JFS routines:

The remaining allocation
processing page faults and file

the resource block carries the remaining allocation for this directory.

** CFSDAU -

Called by: Various

Acquire allocation entry
Find/Get allocation table
Store new allocation value
Unlock allocation entry
Remove allocation entry
Undo keep here bit

Vote to be approved (callback)
Optional data present (callback)
Voter remove entry (callback)

of a

Page 16

directory is cached in memory to aid in

page creation. For each active directory, there
is an allocation entry and this entry is a CFS resource. The optional data is

Acquire allocation entry **

routines in PAGEM and PAGUTL.

Each calls provides one of the following function

codes:

.CFAGT

.CFAST
CFARL

* —a A

.CFARM
.CFAUP
.CFAFD

This routine 1is called

Function code

- Store allocation

- Release allocation

Remove entry
- Undo hold bit
- Find it

table

9 00 o0 oo oo oo
NP WO
!

- Get and lock current allocation

and a function code is provided. Then, based on
this code, we dispatch off to the correct routine.

Dispatch routine
CFAGET
CFASTO
CFAULK
CFAREM
CFAUPB
CFAFND

Page 17
** CFAFND/CFAGET - Find/Get allocation table **

Called by: QLOK in PAGEM
ASGALC in PAGUTL (with CF%PRM set)
REMALC in PAGUTL

GETCAL/GETCAH in PAGUTL (with CF$NUL and CF%HLD set)

These routines are used to lock the allocation table. CFAFND differs from
CFAGET only in that it will not create a new resource block; it will only
succeed if the block already exists and can be found via the routine GETDBK.
Currently, CFAFND is never dispatched to. CFAGET will return +1 if a resched
took place during its operation and +2 if one did not.

Upon entry to CFAGET, the access is determined. If CF%HLD was specified in
the flag bits (the 1left half of T3, the Flags,,Operation word), then the
requested access is exclusive (.HTOEX). Otherwise, the access is for full
sharing (.HTOAD). GETDBK is called to obtain the address of the resource block.
If one does not exist, we continue at CFSDAO.

At CFSDAO, we will create a new resource block and vote for access to the
token. CFSSPC is called to get a short request block. CFSSPC will return a
block with HSFLAG, HSHPST, and HSHOKV zeroed as well as HSHRET set to
1l,,SHTADD. Then, the following is placed in the block:

HSHROT six-bit structure name

HSHQAL DRBASO+directory number

HSFLAG HSHTYP=access, HSHKPH set if CF%PRM specified
HSHPST 1, ,CFARMV

HSHOKV 1l,,CFAVOK

HSHCDA 1, ,CFADAR

HSHOPT 0

HSHOP1 0 (transaction number)

Finally, CFSGTT is called to get the token (with "retry until successful"
set). (Note, if the structure is set local exclusive, CFSGTT will discover this
and use CFSGTL. This will mean that HSHVTP will not be updated with the access
of the vote since no vote 1is required.) When the token is acquired, the
following has been updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

upon return from CFSGTT, we do not need the newly created block (Tl is
» SHTADD will be called to return the extra block to the CFS pool.

f

If,
non-zero)

Next, HSHLOK 1is called to retrieve the resource block and the access
desired in the call to CFSDAU is checked. If it is not CF$HLD, then we do not
want write access so we "unown" the resource by decrementing HSHCNT.

Page 18
Finally, HSHOP1 was checked to see if optional data was returned in the
voting process. If it is non-zero, then there was optional data returned (the
current allocation) and it is in HSHOPT. We return +1 from CFAGET (and CFSDAU)
aow with Tl containing the current allocation, T2 the resource block address,
and T3 the transaction number. If HSHOPl was zero, then no optional data was
returned. This means that no other node had more recent information that us to
contribute so we must establish ourselves as the node that holds the latest
information. The value of the allocation (passed into CFSDAU im T3 and held in
ALLC) 1is placed in HSHOPT and HSHOPl (the transaction number) is incremented
only if this is not a temporary entry (CE%NUL was not specified in the flag
bits passed into CFSDAU). We return +1 with the allocation in Tl and resource
block address in T2.

The description above outlines what happens when CFAGET is invoked to
return the allocation for a resource which did not exist before on this node.
However, if one already exists (and is found by GETDBK) then the following
takes place.

First, we check the access bits set in T2 to see if this is a permanent
block (CF%PRM set) and, if so, HSHKPH is set in the HSFLAG word. A check is
then made to see if anyone is using this block by checking HSHTWF, HSHWVT, and
HSHUGD. If any of these bits are set, then we wait a while at routine CFGVOT.
This wait routine will wakeup when HSHTWF, HSHWVT, and HSHUGD are all zero.
Upon wakeup, we try again at the top of the CFAGET routine,.

If no one is waiting for this block, we check to see what kind of access
we have to this resource (in HSHTYP). If it matches the type of access we are
requesting, HSHCNT 1is incremented. Otherwise, our access must be upgraded. We
set HSHTWF to indicate we are waiting for this token, and <call CFSUGD to
upgrade our access, If CFSUGD allows the upgrade, we will have obtained the
desired access to the resource and HSHTWF will be cleared. Otherwise, CFSUGD
has denied our upgrade attempt and we must wait. If HSHWTM is non-zero (the
wait time for when to try again) then this is placed in HSHTIM. If HSHWTM is
zero, then TODCLK+”D500 1is placed in HSHTIM. Then we wait at CFSRWT. Upon
return from CFSRWT (see the discussion of file access token for the conditions
of return for CFSRWT), we try to get the token again by continuing at the top
of CFAGET.

Once we have acquired the desired access to the token, we check to see if
we wanted write access (CF%HLD set). If not, HSHCNT is decremented to "unown"
the resource. Next, our fork number is placed in HSHFRK. Finally, Tl is loaded
with the allocation (HSHOPT), T3 with the transaction number (HSHOPl), and T2
with the resource block address. We will return +1 if we ever had to enter a
wait routine or if we needed to upgrade our access. Otherwise, we will return
+2,

Page 19
** CFASTO - Store new allocation value *%

Called by: QSET in PAGEM
ADJALC in PAGUTL

This routine 1is wused to place a new allocation value into the resource
block for particular directory allocation token. Once the value has been
stored, the resource will be released. So, a store a an allocation entry has an
implied release following.

The block 1is located via a call to GETDBK. Then the allocation value
(which is passed in and resides in ALLC) is placed in HSHOPT. The transaction
number is incremented (HSHOP1l) to insure that this is the most current entry
known. Finally, we fall through into CFAULK to release the resource. A
description of CFAULK follows.

** CFAULK - Unlock allocation entry **

Called by: QOREL in PAGEM
GETCAL/GETCAH in PAGUTL

The routine CFAULK simply calls CFSNDO to release the directory allocation
token. See the discussion of CFSAWT/CFSAWP for a description of CFSNDO.

** CFAREM - Remove allocation entry **

Called by: REMALC in PAGUTL
GETCAL/GETCAH in PAGUTL

This routine removes a resource from the hash table. The resource block is
located via a <call to GETDBK and HSHCNT is decremented. If the number of
sharers goes to zero, then no one is using this resource and CFSRMV is called
to removed it from the hash table. CFSRMV will not post the removal.

** CFAUPB - Undo keep here bit **
Called by: DASALC in PAGUTL

This routine 1is wused to "unlock" a resource from the node. The resource
block is found via a call to GETDBK and the "keep here" bit (HSHKPH) is
cleared. (This will allow the routine CFARMV to signal to CFSRMX that this
resource block should not be held on the node and can be removed from the hash
table. CFSRMX is called from CFSRTV when an incoming vote results in releasing
the resource. If HSHKPH is set when CFARMV is called, the resource becomes a
place-holder since it was desired that the block always remain on this node.)
Finally, CFSNDO is called to undeclare the resource. See the discussion of
CFSAWT/CFSAWP for a description of CFSNDO.

Page 20
** CFAVOK - Vote to be approved (callback) **

Called by: CFSRTV when vote is to be approved

This routine is placed in HSHOKV when the allocation token is formed. The
routine is called when a vote is to be approved for this resource in order to
place this node's optional data (the allocation data held by this node) in the
vote packet. The "optional data present in vote" flag (CFODA) 1is set in the
vote packet so that the optional data will be noticed by CFSRVT when this vote
packet is received.

** CFADAR - Optional data present (callback) **
Called by: CFSRVT when a vote packet arrives with optional data

This routine is placed in HSHCDA when the allocation token is formed. The
routine is called when the vote packet arrives in order to process the optional
data in the packet.

The transaction number present 1in the packet is compared to our own in
HSHOP1., If the packet's value is greater than ours, we return +2 to CFSRVT and
store the data and transaction number in HSHOPT and HSHOP1l and set HSHODA to
indicate optional data is present. (This will be noticed by CFAGET and the
allocation will be returned to the caller.) If the transaction number in the
packet is not greater than ours, we return to CFSRVT and 1ignore the optional
data.

** CFARMV - Voter remove entry (callback) **

Called by: CFSRTV when we want to release the resource
(Note: CFSRSE has the ability to call a post
routine but it should never be called
for an allocation token since HSHKPH
will be set and this will prevent
the block's removal.)

This routine is the callback routine placed in HSHPST when the allocation
token is formed. To post removals, CFSRMX is called. CFSRMX 1is the alternate
entry point to CFSRMV used to do posting of removals. CFSRMX will insure that
CFARMV is called to do any cleanup that is needed before the resource block is
removed from the hash table.

Basically, CFARMV checks HSHKPH to see if the block should be kept on the
node. If not, CFARMV will return +1 and CFSRMX will remove the resource block
from the hash table and return indicating the resource is unconditionally
available, Otherwise, the block is to be kept on the system so HSHTYP is zeroed
(this sets the state to place-holder; .HTPLH) and return +2 to CFSRMX. CFSRMX
will then zero HSHCNT and HSHTYP and return to CFSRTV with 0 in T1l. This value
will be used as the vote type (.CFTYP) to the other node; 0 indicates
unconditional yes. (Note that CFARMV assumes Tl contains the address of the
vote packet and is, therefore, not 0. So, before returning to CFSRMX, Tl is not
changed. This is important because CFSRMX will check Tl and, if it 1is zero,
assumes that this is a delayed yes return for a file access token., So, CFARMV
is depending upon the fact that Tl is non-zero when returning to CFSRMX. This
should never change.)

Page 21
3. Structures - Structure mounting is managed by CFS in order to coordinate
access to the structure by various CFS processors. CFS requires that ~h
mounted structure be mounted with the same access by all accessing processgg,,
and that the structure have the same "alias" name on all the accessing
processors. This is accomplished by providing 2 resources to control
structures: structure name and drive serial number resources.

Below 1is the table of contents fragment from CFSSRV which illustrates the
various structure related routines:

19, Structure resource manager

19.1. CFSSMT (Acquire structure resource) 105
19.2. CFMNAM (Register structure name). 107
19.3. CFMDSN (Register drive serial number) 108
19.4. CFSSUG (Upgrade or downgrade mount) 109
19.5. CFSSDM (Release mount resource) 110
19.6. STRVER (Structure verify) 111

Page 22
Structure Name Token and Drive Serial Number Token

ZFS routines: CFSSMT Acquire structure resource

CFSSUG - Upgrade or downgrade mount
CFSSDM - Release mount resource
CFMNAM - Register structure name
CFMDSN - Register drive serial number

In order to mount a structure, both the structure name token and drive
serial number token must be acquired. The access type (whether the structure is
accessed shared or exclusive) is controlled by the DSN resource only. The
structure name token is always created with full sharing. When a structure's
access type is changed, only the DSN resource needs to be updated. Since CFS
matches a structure with a DSN, it is important that if the structure is moved
to another drive that the CFS resources be renamed. This 1is accomplished by
having PHYSIO call CFS at CFRDSN describing the old and new UDB for the disk

pack.

** CFSSMT - Acquire structure resource **

Called by: MNTPS 1in DSKALC (for exclusive and shared)
MSTMNT in MSTR (access based on user flags)

This routine is called when a structure is first mounted on a system. It,
in turn calls routines CFMNAM to register the structure name and CFMDSN to
register the driver serial number. CFSSMT insures that the alias for the
structure is not already in use for another structure and that the name ¢f th
structure 1is the same as what is in use by any other CFS system. These two
conditions are sufficient to allow the alias to be used as the root name of the

structure.

Upon entry to CFSSMT, a check is made to see if this is a "reduced" CFS
system. This is controlled by defining the switch CFSDUM. If this is defined,
then this is a "reduced" CFS. This system is on the CI and uses SCA to connect
to other CI-based systems., However, this processor will not share structures
with any other system but will insure that the structures it is using are
mutually exclusive from structures used by any other CI-based TOPS-20 system.
This implies that this system will establish connections to other reduced or
full CFS systems and will participate in structure mounting votes.

If this is a reduced system (MYPOR1l is not less than zero), then the
access is forced to be exclusive (.HTOEX). Otherwise, the access is determined
from the call (passed in T2) and it will be set to either full sharing (.HTOAD)
or exclusive (T2 is zero = .HTOAD, otherwise .HTOEX).

Finally, CFMNAM is called to register the name and CFMDSN is called to
register the serial number. If the call to CFMNAM fails, we RETBAD and if
CFMDSN fails, we continue at CFSSDM to undo the mount and then return failure.

: Page 23

At CFMNAM, we will create a new resource block and vote for access to the
structure name token. CFSSPC is called to get a short request block. CFS§E~C
will return a block with HSFLAG, HSHPST, and HSHOKV zeroed as well as HSH& .T
set to 1,,SHTADD. Then, the following is placed in the block:

HSHROT six-bit structure name

HSHQAL STRCTN

HSFLAG HSHTYP=,HTOAD, HSHAVT set, HSVUC set
HSHCOD UDBDSN XOR (STRCTK+UDBDSH)

Finally, CFSGET is called to get the token (with "try only once" set). If
the token is acquired, the following has been updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

1f, upon return from CFSGET, we do not need the newly created block (Tl is
non-zero), SHTADD will be called to return the extra block to the CFS pool.

At CFMDSN, we will create a new resource block and vote for access to the
drive serial number token, CFSSPC is called to get a short request block.
CFSSPC will return a block with HSFLAG, HSHPST, and HSHOKV zeroed as well as
HSHRET set to 1,,SHTADD. Then, the following is placed in the block:

HSHROT UDBDSN

HSHQAL STRCTK+UDBDSH

HSFLAG HSHTYP=access, HSHAVT set, HSVUC set
HSHCOD six-bit alias name

Finally, CFSGET is called to get the token (with "try only once" set). If
the token is acquired, the following has been updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained
I1f, upon return from CFSGET, we do not need the newly created block (Tl is
non-zero), SHTADD will be called to return the extra block to the CFS pool.

If we just got the token exclusively, the STEXL flag is set in the status
bits of the SDB for that structure.

Page 24
** CFSSUG - Upgrade or downgrade mount **

Called by: MNTCSM in MSTR

This routine is used to change the access to a mount resource. It is only
valid for full CFS systems. The new access is passed in T2 (T2 1is zero =
.HTOAD, otherwise .HTOEX). Then the resource is located via a call to HSHLOK ant
CFSUGA is called to upgrade (or downgrade) to the desired access.

** CFSSDM - Release mount resource *%*

Called by: MNTER4 in MSTR
MSTDIS in MSTR

This routine is called to release the mount resource upon a dismount. For
both the resource name token and the drive serial number token, the resource
block 1is found wvia a <call to HSHLOK and then removed via a call to CFSRMV.
CFSRMV will not post the removal.

Page 25
4, BAT Block Lock - The BAT block lock on a structure is now a CFS resource.
It is an exclusive resource. ‘

Below 1is the table of contents fragment from CFSSRV which illustrates the
various BAT block related routines:

17. BAT block resource manager
17.1. CFGBBS (Set BAT block lock) « . « . . 89
17.2. CFFBBS (Release BAT block lock) 90

ﬂ\

. Page 26
BAT Block Lock Token

JFS routines: CFGBBS - Set BAT block lock
CFFBBS - Release BAT block lock
** CFGBBS - Set BAT block lock **
Called by: LKBAT in DSKALC
Upon entry to CFGBBS, CFSSPC is called to obtain a short resource block.

CFSSPC will return a block with HSFLAG, HSHPST, and HSHOKV zeroed as well as
HSHRET set to 1,,SHTADD. The following is then placed in the block:

HSHROT six-bit structure name
HSHQAL -1
HSFLAG HSHTYP=_,HTOEX

Next, a call 1is made to get the resource. CFSGET is called if the
structure is shared. If the structure is set exclusive, CFSGTL is wused. (Note
that if CFSGTL 1is called, HSHVTP will not be updated with the access of the
vote since no vote is required.) The call is made to "retry until successful"
so, wupon the return, we have acquired the resource. The following has been
updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

If, upon return from CFSGET, we do not need the newly created block (Tl is
non-zero), SHTADD will be called to return the extra block to the CFS pool.
** CFFBBS - Release BAT block lock **
Called by: ULKBAT in DSKALC

The routine CFFBBS simply calls CFSNDO to release the BAT block lock
token. See the discussion of CFSAWT/CFSAWP for a description of CFSNDO.

Page 27
5. ENQ/DEQ - In order to allow ENQ/DEQ to operate in a CFS environment, there
is a temporary CFS resource representing the ENQ on a file. Note that thig is
not the same as global ENQ/DEQ across all the systems in a CFS environm® ..
This is always an exclusive resource,.

Below 1is the table of contents fragment from CFSSRV which illustrates the
various ENQ related routines:

20, File enqueue resource manager
20.1. CFSENQ (Get ENQ resource) . . . « « o o o« o« o 112
20.2. CFSDEQ (Release ENQ resource) 113

Page 28
ENQ Token

ZFS routines: CFSENQ - Get ENQ resource
CFSDEQ - Release ENQ resource

Each time an ENQ file resource is first requested (an ENQ lock block is
created), CFS is called to register an exclusive ENQ resource for the file. 1If
the requesting processor succeeds in creating the ENQ resource, then the ENQ
will be allowed. Otherwise, the ENQ is denied.

** CFSENQ - Get ENQ resource **
Called by: CFETST in ENQ
Upon entry to CFSENQ, ENQSET is called to set up Tl and T2 with the proper
root and qualifier. Then CFSSPC is called to obtain a short resource block.

CFSSPC will return a block with HSFLAG, HSHPST, and HSHOKV zeroed as well as
HSHRET set to 1,,SHTADD. The following is then placed in the block:

HSHROT six-bit structure name
HSHQAL FILEEQ+index block address
HSFLAG HSHTYP=.HTOEX, HSHLCL is set

Next, a call 1is made to get the resource. CFSGET is called if the
structure is shared. If the structure is set exclusive, CFSGTL is used. (Note
that if CFSGTL 1is called, HSHVTP will not be updated with the access of the

N 3 5 3] 3 -] - N weon PN - TE .
vote since no vote is required.) The call is made to "try only once". If we

acquire the resource, the following has been updated in the resource block:

HSFLAG HSHVTP=access of vote, HSHCNT incremented (owned)
HSHFRK FORKX of running fork
HSHTIM TODCLK stamp when vote approved and token obtained

If, upon return from CFSGET, we do not need the newly created block (Tl is
non-zero), SHTADD will be called to return the extra block to the CFS pool.
** CFSDEQ - Release ENQ resource *%

Called by: CRELOK in ENQ
LOKREL in ENQ

The routine CFSDEQ simply calls CFSNDO to release the ENQ token. See the
discussion of CFSAWT/CFSAWP for a description of CFSNDO.

Page 29
Appendix A

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

