CI20 HARDWARE PORT SPECIFICATION

(REV 03 - MAY 19, 1983)
BY: ELBERT BLOOM

PAGE

1

OF

98

2.0

1.5
1.6
1.7
1.8

INDEX

GENERAL OVERVIEW

REFERENCE DOCUMENTS

SPECIFIC GOALS

SPECIFIC NON-GOALS

BLOCK DIAGRAM

MECHANICAL DESCRIPTION

GENERAL LOGICAL OVERVIEW
MICROCODE DESCRIPTION

COOLING REQUIREMENTS

MTBF

RAMP FEATURES

PERFORMANCE

SUBSYSTEM DOCUMENTATION

SYSTEM SOFTWARE

STANDARDS COMPLIANCE

EBUS INTFC/PORT ALU MODULE

EBUS CONTROL LOGIC

PI LEVEL 00 INTERRUPTS

PI LEVEL 01 THROUGH 07 INTERRUPTS
MICROPROC TO EBUS REGISTER (EBUF)
EBUS CONTROL AND STATUS REGISTER (CSR)

DEFINITION OF THE CONTROL AND STATUS (CSR)
REGISTER BITS FOR THE EBUS INTERFACE MODULE

PAGE 2

OF

98

3.0

w w w w
L] L] L] L]
o> w N [

w
N

3.10
3.11
3.12
3.13
3.14
3.15
3.16

EBUS
MICR
EBUS
EBUS
EBUS
ARIT
2.9.1 CONST
CBUS
CBUS
CMVR
MICR
DATA
CBUS
CBUS
CBUS
CBUS
CBUS
DATA
PLI
PLI
PLI
PLI
PLI

PLI

TO MICROPROC MUX (EMUX)

OPROC TO EBUS MUX (KMUX)
PARITY GENERATOR
PARITY CHECKER
TRANSCEIVERS

HMETIC LOGIC UNIT

ANT MUX

-PLI INTERFACE MODULE (CqVR)
TIMING DESKEW PROCEDURE
CONTROL LOGIC

OPROC TO CMVR REGISTER (CBUF)

FORMATTER and MOVER (MVR/FMTR)
INPUT BUFFER

OUTPUT BUFFER
CONTROL LOGIC

OUT PARITY GENERATOR
IN PARITY CHECKER
INPUT MUX (DMUX)
OUTPUT BUFFER

INPUT BUFFER

PARITY OUT GENERATOR
PARITY IN CHECKER
CONTROL LOGIC

SERIAL UP MUX (SUMUX)

PAGE

OF

98

3.17
3.18
3.19
3.20

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

APPENDIX

NA"

PLI SERIAL DOWN MUX (SDMUX)
PLI OUTOUT MUX (PMUX)

CMVR TO MICROPROC MUX (CMUX)
PARITY PREDICTOR

PORT MICROPROCESSOR
CONDITION CODE MUX
CONDITION CODE DEFINITIONS
MICROSEQUENCER

RAM ADDRESS REGISTER
ADDRESS MUX

LATCH ADDRESS REGISTER (LAR)
CONTROL STORE RAM

CONTROL STORE REGISTER
MICROWORD FIELD DEFINITIONS
JMP MUX

MICROWORD OUTPUT MUX

CRAM LOAD BUFFERS

CRAM PARITY CHECKER

LOCAL STORAGE RAM

LOCAL STORAGE ADDRESS REGISTER
RAM MODE MUX

COND/SKIP FIELD DECODER
MICROPROC CONTROL LOGIC

DETAILED BLOCK DIAGRAMS

PAGE

4

OF

98

1.0 GENERAL OVERVIEW

The KL10 CI PORT ADAPTER (CI120) is the unigue HARDWARE/FIRMWARE option
required in order to interface a KL10 based operating system to the
Corporate high speed serial line CI Bus.

With a CI120 installed, and with the necessary software drivers and
Port Microcode implemented the KL10 will be capable of communications,
through a STAR COUPLER, over the Corporate CI Bus.

The primary functions of the CI20 are:

a) To enable multiple KL10s to be configured in a loosely coupled
environment via the CI.

b) To enable KL10s to be configured to HSC50s via the CI.

1.1 REFERENCE DOCUMENTS

The below documents contain details of all the topics necessary for a
thorough understanding of the CI20 and may be referenced, should
additional information be required:

a) CBUS and EBUS INTERFACES - "RH20 MASSBUS CONTROLLER UNIT
DESCRIPTION" (EK-RH20-UD-001).

b) PLI INTERFACE - "PILA HARDWARE SPECIFICATION" by: Shu-Shia Chow
c) AM2901, AM2902, AM2910 - "THE AM2900 FAMILY DATA BOOK".

d) CI MICROCODE ARCHITECTURE - "COMPUTER INTERCONNECT SPECIFICATION"
By: D. THOMPSON / J. BUZYNSKI / J. HUTCHISON

e) UNIQUE CI20 MICROCODE ARCHITECTURE - "LCG CI PORT ARCHITECTURE
SPECIFICATION" By: Don Dossa

Appendix "A" consists of three detailed block diagrams, one for each

of the three PORT modules (EBUS.DRW, PROC.DRW and CBUS.DRW).

DEFINITION OF THE CONTROL AND STATUS (CSR) REGISTER BITS FOR THE EBUS

INTERFACE MODULE (section 2.3.1) contains detailed descriptions of the

CONTROL and STATUS REGISTER bits.

CONDITION CODE DEFINITIONS (section 4¢.1.1) contains detailed
descriptions of the microprocessor's CONDITION CODE sense inputs.

PAGE 5 OF 98

MICROWORD FIELD DEFINITIONS (section 4.7.1) contains detailed
descriptions of the microprocessor's CRAM CONTROL WORD decodes.

Reference should be made to these sections throughout this
specification whenever further explanation is required.

1.2 SPECIFIC GOALS

1) FIELD UPGRADABILITY - The CI20 1is designed as a FIELD INSTALLABLE
upgrade kit for KL10 model Bs.

2) DATA FORMAT MODES - The CI20 supports three data format modes; HIGH
DENSITY, CORE DUMP and INDUSTRY COMPATIBLE.

3) CI COMPATIBILITY- The CI20 is designed to meet the corporate CI
specification. Therefore, it is able to interface with other CI
devices that also meet the corporate CI specification.

4) SMP COMPATIBILITY - CI20s may be 1installed on SMP systems.
However, external memory must be configured in FOUR BUS MODE only.
Data Over-runs will frequently occur in a TWO BUS MODE
configuration.

1.3 SPECIFIC NON-GOALS

1) No KL10 based device diagnostics are required other than those
uniquely required to test the CI20.

N
-

The CI20 1is not suppertable by KL1C model "A"s. This is due to
additional microcode requirements for the KL10 which may only be
implemented on model "B" versions.

3) The C120 does not support SEVEN BIT ASCII data format mode.

4) Two or more CI20s installed on one KL10 is not supported as a valid
configuration.

5) Parity generation/checking is not implemented on the internal data
path of the PORT. 1Instead, parity is checked and re-generated at
all external busses to the PORT.

6) The CI20 does not have the ability to be powered down and wup
separately from the KL10.

PAGE 6 OF 98

1.4 BLOCK DIAGRAM

The CI20 interfaces the KL10 to the CI BUS via the KL10'S DATA CHANNEL
and EBUS. The following block diagram illustrates the basic
architecture of the CI20.

o - Fm +
+--——t ! o + ! Fm————— + S et LT + 1
!KL10! LI ! ! ! ! ! !====> CI
IDATA! <--CBUS-->CBUS INTFC!<--PLI-->PACKET!<->!LINK/FRONT!<---- BUS
! CHAN! LI AND ! ! ! BUFFER! !END INTFC! ! A & B
to-——t ! ! DATA MVR ! ! !MODULE! ! MODULE ! !
! ' MODULE ! ! ! ! ! . >+
!t ! ! ! ! ! I<m===- +
! (A15) ! ! o + o ———— + !
I Aot ! ! U
! ! ! CI CARD CAGE & BACKPLANE ! Vot
! ! Fomm e - Fmmmm + (|
! ! - + ! !
! ! !] ! U
! ! ! PORT ! ! !
! <--MBUS--> MICROPROC ! ! U
! ! ! CONTROL ! ! ! !
! ! ! MODULE ! ! !
! ! ! ! ! ! !
! ! ! (Al4) ! ! L
! ! tommmem e + ! !
! 4o Vomm——- + ! U
o=t ! L ! ! !
! ! ! ! EBUS INTFC ! ! !
!KL10! L AND ! KL10 I/0 BAY ! L
!EBOX!<--EBUS--> PORT ALU ! ! ! !
! ! ! ! MODULE ! ! U
Fom——t ! ! ! L
! (A13) ! ! L
I e - + ! Pt
B bl e it + ! !
!
kkkkkhkhkkkhhhkhhhhhhkdkkk [
< * STAR oo >+ |
! Fomm - >* COUPLER <o +
1 A Kkkkhkkhkkhkhkhhkhkdkkk
v ! S
Fomm————— + v v Fomm————— +
! CI NODE ! ! oA >! CI NODE !
! "A" ! Pl m e e ! "B" !
Fomm—————— + Fmm————— - +

SIMPLIFIED CI20 PORT/LINK INTERFACE BLOCK DIAGRAM

PAGE 7 OF S8

1.5

MECHANICAL DESCRIPTION

The CI20 consists of an upgrade kit for KL10s. The kit includes:

A)

B)

K)
L)
M)

N)

R)

3 STANDARD HEX MODULES AS FOLLOWS:

1) M3001 EBUS INTFC MODULE
2) M3002 MPROC CONT MODULE
3) M3003 CBUS INTFC MODULE

2 EXTENDED TRI-BOARDS AS FOLLOWS:

1) L0109 PACKET BUFFER MODULE

2) L0100 LINK INTERFACE MODULE

1 +5.,0V POWER REGULATOR (H7440)

1 POWER HARNESS

1 FLAT RIBBON CABLE FOR PLI INTFC (BCO6R-08)
1 CI CARD CAGE & BACKPLANE

4 INTERNAL CI CABLES

2 BULKHEAD CONNECTORS
1 FLAT RIBBON CABLE FOR MBUS CONNECTOR

1 DUMMY MODULE WHICH PLUGS INTO RH20 POSITION #6
AND ACTS AS A CABLE STRAIN RELIEF

30 AWG WIRE (GREEN)
ASSORTED MTG HDWR
INSTALLATION PROCEDURES
PRINT SET AND MANUALS
STANDARD MICROCODE PACKAGE

CI20 DIAGNOSTICS

PAGE

8

OF

o8

Extender cables for the MBUS are not included as part of the CI20
UPGRADE KIT. however, they are available separately in order to
enable manufacturing and field service to troubleshoot the CI20 PORT
modules on an extender board.

The EXTERNAL CI CABLES and STAR COUPLERS, which are also required to
configure a CI20, are not included in the CI20 kit. They must be
ordered separately according to the desired confiquration. The
following list identifies these components.

SC008-aA STAR COUPLER control hub which connects CI nodes
(single path). Provides electrical isolation between
nodes. Consists of: 1 8 node STAR COUPLER

1 H9642-CA/CB CABINET

SC008-AB Same as SC008-AA except without cabinet. Used as the
control hub of the second path in a redundant path
configuration.

BNCI-10 EXTERNAL CI CABLE PAIR for single path connection.
Consists of 1 pair of 10 meter coaxial cables.

BCNI-20 Same as BCNI-10 except 20 meter length.

BCNI-45 Same as BCNI-10 except 45 meter length.

The three STANDARD HEX modules (M3001, M3002 & M3003) comprise the
PORT section of the CI20. They are uniquely designed for the CI20.
The modules are housed in RH20 position # 7 of the KL10's RH20-DTE20
backplane. RH20 position # 6 must have only the dummy cable strain
relief module installed. No RH20 is permitted in slot # 6 when a CI20
is installed. Any KL10 which houses a CI20 will be restricted to a
maximum of 6 RH20s and one CI20. Reference the below diagram:

RH20-DTE20 I/0 BACK-PLANE SLOTS

13 14 15 16 18 19 21 22 24 25 27 28 30 31 33 34 36

B s T T ST S R - tm————— rm————— Fmm———— Fm————— Frm———— +
' E ' M t C ! ! ! ! ! ! ! !
!B P |} B! D ! RH20 ! RH20 ! RH20 ! RH20 ! RH20 ! RH20 !
tf o tR !} U U ! ! ! ! ! ! !
!1sS to 1t st M ! ! ! ! ! ! !
! ! C ! M ! ! ! ! ! ! !
o —m -4 Y ! NOS5 ! NO4 ! NO3 ! NO2 ! NO1 ! NO 0!
! C120 ! ! ! ! ! ! ! !
Fomm e fm——— Fm————— Fm————— Fm—————— tmm———— tm————— +

PAGE 9 OF o8

The "DUMMY" position is required due to the high current requirements
of the CI20. It requires nearly as much current as two RH20s.

Control signals between modules utilize existing backplane wiring for
the RH20s which normally occupy these slots. 12 wires must be added to
the backplane, however, 1in order to obtain sufficient interconnects
between modules and to bus across five EBUS INTERFACE signals which
are are not used by RH20s. 30 AWG wire (green) 1is used to add these
wires to the BACK-PLANE.

The following chart lists the the RH20 BACK-PLANE point to point wire
adds:

SIGNAL NAME FROM TO

EBUS D11 L Cl2F1 B13Bl
EBUS Dl2 L Cl2D1 B13B2
EBUS D13 L Cl2F2 B13Ul
EBUS PIOO L Cl2H2 C13N1
EBUS PARITY L Cl2E2 C13B1
EBUS PARITY ACTIVE L Cla2L1 Cl3B2
MPR7 MWBUSCTLFLDO1l H Cl4H2 A15R2
MPR7 MWMGCFLDO8 H Cl4F1 F15A1
MPR7 MWTIMEFLD H Al4g2 Al5El
CBI1 CLK2 L Cl4P1 Al5D2
CBI1 CLK4 L Cl4K2 Al15S2
CBI2 CCCHANERR L B14J1 B15Al1

Once the back-plane for RH20 position # 7 has been modified to house a
C120 an RH20 should never be re-inserted in the position. The RH20
will no longer work properly.

the CI CARD CAGE and BACKPLANE are required for housing the two
EXTENDED TRI-BOARDS. For DECsystem-20 style cabinets they are mounted
in the CPU BAY of the KL10 next to the memory unit. For DECsystem-10
style cabinets they are mounted in the I/0 BAY. Both are uniquely
designed for the CI20.

The two EXTENDED TRI-BOARDS (L0100 & L0109) comprise the LINK/FE and
PACKET BUFFERS respectively. They are designed by other engineering
groups within DEC and are integrated into the CI20 as standard
off-the-shelf items.

The BCO6R-08 CABLE 1is used as the PLI INTERFACE CABLE. It connects
from a BERG connector on the CBUS INTFC MODULE (M3003) to a BERG
connector mounted on the CI CARD CAGE BACK-PLANE. This cable is a
standard off-the-shelf item.

PAGE 10 OF 98

The four internal CI CABLES route from the CI CARD CAGE BACK-PLANE to
the internal BULKHEAD CONNECTORS.

The two BULKHEAD CONNECTORS are also off-the-shelf items, but require
a special mounting plate for installation into the KL1O.

The H7440 REGULATOR is inserted in slot 5 of power supply # 2 in the
KL10's I/0 BAY. It 1is used to supply +5.0V to the CI CARD CAGE and
BACK-PLANE.

The POWER HARNESS is used to route +5.0 volts from the H7440 REGULATOR
and -5.,2 volts from the KL10's CPU POWER SUPPLY to the CI CARD CAGE
and BACK-PLANE.

The flat ribbon cable used as the MBUS CONNECTOR consists of a 50 wire
18 inch long conductor with three 50 pin BERG connectors mounted to
it, one at each end and one in the center. It is uniquely designed
for the CI20.

Mostly OFF-THE-SHELF technology is used for the portion of the KL10 CI
PORT uniquely designed for the CI20, The three PORT modules use a
combination of SHOTTKY and LOW POWER SHOTTKY logic.

1.6 GENERAL LOGICAL OVERVIEW

The CI20 consists of three 1logical sub-groups; a) LINK/FRONT END
INTERFACE; b) PACKET BUFFER; c) PORT

This document is intended to describe the PORT hardware function. The
LINK/FE and PACKET BUFFER functions are described in their associated
specifications., therefore, only a brief description of them will be
included here.

Detailed block diagrams of each of the three PORT modules are included
in appendix "A" of this specification. They should be continuously
referenced as this specification is reviewed.

a) LINK/FRONT END INTERFACE MODULE (L0100) - This module 1is the
standard corporate LINK/FE module. Physically it consists of an
EXTENDED TRI PRESS-PIN type module. Its primary function is to

interface the PACKET BUFFER MODULE to the serial CI BUS. It is
responsible for such functions as:

PAGE 11 OF 98

b)

c)

CRC generation/checking

Arbitration for information tramsmission

Moving information between the buffers and the CI BUS
Encoding/decoding of the bit stream

Header decoding and recognition

. Acknowledge generation and transmission

g. the PARALLEL/SERIAL bit stream conversion.

O QO DR

This module uses a combination of Shottky TTL and ECL logic. 1Its
power requirements are as follows:

+5.0 Volts at 8.5 Amps

-5.2 Volts at 8.2 Amps

PACKET BUFFER MODULE (L0109) - This module is the standard PACKET
BUFFER module used by the HSC50 system. Physically it consists of
an EXTENDED TRI PRESS-PIN type module. Logically it consists of
four 1K deep by 8-bit wide RAM buffers, along with the necessary
control logic for 1loading and reading the buffers. 1Its primary
function is to act as a temporary storage interface between the
LINK/FE and the PORT.

Its power requirements are as follows:

+5.0 Volts at 10.5 Amps

PORT - The port functions as an AM2901 based microprocessor which
handles the CI PORT protocol in much the same manner as other CI
PORTS. Control and status information 1is passed between the PORT
and the KL10 via the KL10's EBUS INTERFACE. DMA data transfers are
passed between the PORT and the KL10 via the KL10's CBUS INTERFACE.

The PORT consists of three STANDARD HEX FINE LINE ETCH modules
which are inserted into a dedicated 1low priority RH20 slot in the
KL10 RH20-DTE20 BACKPLANE.

They are linked together by a 36-bit tri-state data path called the
MBUS. All data is passed between modules via this bus.

The functions of the three modules may be further divided into

three logical subgroups as follows: (reference attached block
diagrams in appendix "A" of this specification)

PAGE 12 OF 98

1) EBUS INTERFACE/PORT ALU MODULE (M3001)

2)

3)

The EBUS INTERFACE/PORT ALU MODULE acts as a low-speed
asynchronous control interface between the KL10 EBOX and the
PORT MICROPROCESSOR. It performs all of the functions required
for passing-data between the EBUS and the MICROPROCESSOR. It
also contains a 36 bit CONTROL AND STATUS register which enables
the PORT to control and monitor the EBUS operations. Most of
the PORT PROTOCOL is processed over the EBUS through this
interface.

In addition, this module houses the PORT MICROPROCESSOR ALU.
The ALU consists of nine AM2901 bit slice ICs (36 bit data path)
and four AM2902 high speed look-ahead carry generators. A
CONSTANT MUX is also included, which allows the PORT
MICROPROCESSOR to pass pre-assigned constants from the CRAM
(CONTROL STORE RAM) to the ALU.

The module's power requirements are as follows:
+5.0 Volts at 8.5 Amps

PORT MICROPROCESSOR CONTROL MODULE (M3002)

The PORT MICROPRCCESSOR consists of a horizontally programmed
bit slice microprocessor controller. It 1is responsible for
control of the CBUS/MOVER and the EBUS/PORT ALU INTERFACES. It
performs such functions as data mapping, CI PACKET
interpretation and some PACKET BUFFER manipulations. It
consists of a 2910 type MICROSEQUENCER, a 4K deep by 60 bit wide
CONTROL RAM (CRAM), a 1K deep by 36 bit wide SCRATCH PAD RAM, a
CRAM CONTROL REGISTER and other associated control logics.

Once the CRAM is loaded and the MICROPROCESSOR is started the
PORT is entirely under control of the microwords which are
strobed from the CRAM into the CRAM CONTROL REGISTER at the
beginning of each clock cycle.

The module's power requirements are as follows:

+5.0 Volts at 10.0 Amps

CBUS-PLI INTERFACE MODULE (M3003)
The CBUS-PLI INTERFACE (CMVR) module acts as a high-speed

synchronous DMA data transfer path and data formatter between
the PACKET BUFFER and the KL10 CBUS CHANNEL. It uses a 4-bit

PAGE 13 OF 98

parallel by 12-bit serial shift register for the data formatter,
which is capable of mapping 8-bit bytes into 36-bit words, and
vice versa. It also contains the necessary control logic for
performing data transfers between the shift register, the CBUS
and the PLI interfaces.

In addition, the module supports a 36-bit read/write data path
between the PORT MICROPROCESSOR and the data formatter, and an
8-bit read/write data path between the PORT MICROPROCESSOR and
the PLI INTERFACE. This enables the PORT MICROPROCESSOR to
directly transfer data to/from the CBUS or the PLI INTERFACES.

The module's power requirements are as follows:

+5.0 Volts at 8.0 Amps

The PORT is controlled by a four phase master clock generator which is
located on the CBUS/DATA MOVER MODULE. One microcycle normally
requires 270ns (see CMVR CONTROL LOGIC for details).

1.7 MICROCODE DESCRIPTION

The hardware of the three CI20 PORT modules (EBUS, MICROPROC & CBUS
INTFCS) supply all of the necessary data paths to enable the PORT to
efficiently communicate between the KL10 and the CI. They also supply
a uniguely designed, horizontally programmed microprocessor to enable
the PORT to control and process the data which passes across these
data paths.

The port hardware is incapable of functioning as a CI20 without the
PORT MICROCODE. Therefore, the PORT MICROCODE must be considered an
integral part of the CI20.

The KL10 must 1load the PORT MICROCODE into the microprocessor's
CONTROL RAM (CRAM) before it starts the PORT. Once the KL10 has
loaded the MICROCODE and started the PORT it will be capable of
functioning as a CI20.

The primary functions of the PORT MICROCODE are to:

a) Control all data transfers between the PLI INTERFACE and the KL10

b) Process all CI PROTOCOL PACKETS in conformance with the CI
ARCHITECTURE SPECIFICATION

PAGE 14 OF o8

c) Provide a FIRMWARE INTERFACE between the CI20 and the KL10's
microcode and software operating systems.

d) Provide an adegquate ERROR MONITORING/REPORTING interface between
the C120 and the KL10's operating system.

The PORT MICROCODE enables the CI20 to conform to the CI ARCHITECTURE
SPECIFICATION.
Recovery of errors that do not compromise the 1integrity of the CI20
also conforms to the CI ARCHITECTURE SPECIFICATION. The operating
system is informed of all errors, either through the RESPONSE QUEUE or
the INTERRUPT mechanisms.
The CI20 microcode resides in the following areas:

a) System area of the MONITOR DISK PACK

b) KLAD DISK PACK
Reference the "LCG CI PORT ARCHITECTURE SPECIFICATION" By: Don Dossa

‘or detailed explanations of the microcode functionality.

1.8 COOLING REQUIREMENTS

The present cooling system in the RH20-DTE20 CARD CAGE is adequate for
cooling the three PORT MODULES (EBUS, MPROC and CBUS).

Fans are installed in the CI CARD CAGE to assure adequate cooling for
the PACKET BUFFER and LINK/FE MODULES.

1.9 MTBF

The CI20 is designed to conform to the following failure rates and
repair times.

MTBF = 10,000 Hrs
MTTR = 3/4 Hrs.
MTTD = 1/4 Hrs.

PAGE 15 OF 98

1.10 RAMP FEATURES

Some of the CI20's RAMP FEATURES include:
a) Parity Generation/Checking on all external busses to the PORT
b) CRAM Parity Checking ’

c) The ability to recover from CRAM PARITY errors with minimal user
interruption.

d) A microcode test routine which periodically verifies the data
path and control logic.

e) Diagnostic loop-back capability at major data path boundries.
f) Diagnostic ability to generate incorrect parity
g) A SINGLE-CYCLE mode for test and debug

h) Ability to latch the CRAM ADDRESS for diagnosability of
failures.

i) A microcode routine which will periodically verify the data
integrity of the Local Storage Rams

j) Ability to predict correct parity across the DMA data path
between th§ PLI INTERFACE and the CBUS.

1.11 PERFORMANCE

BANDWIDTH - The CI20, excluding monitor software overhead, provides a
realizable data transfer rate capability of approximately 300
pages/sec. This figure, for convenience, may also be translated into
other bases such as 0.7 megabytes/sec, 154 kilowords/sec, 3.2 ms/page,
etc.

The CI20's realizable bandwidth, excluding monitor software overhead,
depends on two factors:

a) THE ACTUAL HARDWARE DMA DATA TRANSFER RATE

The CI20 hardware provides the capability of DMA data transfer
rates of 1.6 ms/page (1.4 megabytes/sec)

PAGE 16 OF 98

This bandwidth is highly dependent on the microcode's ability to
move the data through the DMA DATA TRANSFER PATH.

The calculation is derived from the following considerations:

1) On the average 11.5 microcycles are required per DMA WORD
TRANSFER.

2) Each microcycle requires 270ns execution time

3) One 36 bit KL10 word consists of 4.5 bytes

THEREFORE :
BYTES/WORD 4.5

BW = ———————— - = —emmmmm—— = 1.4 MEGABYTES/SEC
TIME X MICROCYCLES 270ns X 11.5 (1.6 MS/PAGE)

b) THE MICROCODE PROTOCOL PROCESSING OVERHEAD

The CI20 protocol processing overhead also takes approximately 1.6

mwama [amamiiea ~ \

mS/pagc {measured value).
Therefore, the aggregate realizable bandwidth is simply the sum of the

two values derived from (a) and (b) above, or 3.2 ms/page (300
pages/sec).

1.12 SUBSYSTEM DOCUMENTATION
Documentation for the CI20 includes:

a) CI20 HARDWARE MAINTENANCE MANUAL - supplies all information
required to enable an CI20 to be easily installed and repaired.

b) KL10 MAINTENANCE GUIDE - updates to reflect necessary information
about the CI20.

c) SITE PREPARATION GUIDES
d) ILLUSTRATED PARTS BULLETIN

e) CI20 FIELD PRINT SET

PAGE 17 OF 98

f) MANUFACTURING TEST SPECIFICATIONS
g) TEST & ACCEPTANCE PROCEDURE
h) All KL10 PRINT SET ECO's - if any are required

i) Revision control for KL10 systems will be inclusive of CI20s for
any future KL10 ECOs which may be required.

1.13 SYSTEM SOFTWARE

TOPS-20 includes all necessary drivers to support a CI20. These
drivers include, but are not necessarily limited to:

a) An MSCP DRIVER
b) An SCA DRIVER

¢) A CI20 PORT DRIVER

A software microcode loader for loading the PORT MICROCODE.

Software hooks for accurately reporting CI20 error conditions to
SPEAR.

1.14 STANDARDS COMPLIANCE
The CI20 meets DEC-102 TEMP/HUMIDITY standards.

The increase in the current EMI-RFI profile of the KL10 is less than 6
DB average above its current level with a CI20 installed.

2.0 EBUS INTFC/PORT ALU MODULE

The EBUS INTERFACE occupies about 2/3rds of this module and consists
primarily of:

a) A CONTROL and STATUS REGISTER (CSR) which is used for passing

control and status parameters between the PORT MICROPROCESSOR and
the HOST.

PAGE 18 OF 98

b) A data path, via the MBUS, between the PORT MICROPROCESSOR and the
EBUS

c) Control logic for loading and starting the PORT'S MICROCODE
d) An EBUS parity generator/checker

e) All necessary control logic for interfacing to and executing the
KL10's EBUS protocol, including the "EBUS INTERRUPT" sequence.

f) Diagnostic logic for executing various loop-back and other test
functions.

The KL10 accesses the EBUS INTFC by executing DATAO, DATAI, CONO and
CONI commands.

The PORT MICROPROCESSOR accesses the EBUS INTFC by executing
microprocessor commands. These commands are decoded functions of the
MWBUSCTLFLD field and the MWMGCFLD field of the CRAM CONTROL WORD.

The PORT MICROPROCESSOR monitors the EBUS INTFC LOGIC status by
sensing CONDITION CODES (see section CONDITION CODE DEFINITIONS for
details).

) NP
1uc

T MI
It con

CROPROCESSOR ALU is also located on the EBUS INTERFACE MODULE.
sists of:

a) Nine AM2901 type FOUR-BIT BIPOLAR MICROPROCESSOR SLICES (36-bit
wide data path) which interfaces to the MBUS.

b) Four AM2902 type HIGH-SPEED LOOK-AHEAD CARRY GENERATORS

c) Five 74LS157 type MULTIPLEXERS (CNST MUX) used by the
MICROPROCESSOR CONTROL to input a CONSTANT NUMBER FIELD from the
CRAM CONTROL REGISTER into data bits 00 thru 09 and data bits 26
thru 35 of the ALU.

2.1 EBUS CONTROL LOGIC

The EBUS CONTROL LOGIC arbitrates the EBUS protocol, the PORT
MICROPROCESSOR protocol for interfacing to the EBUS and the
synchronization functions between the two.

The KL10 has full control of the PORT only when the PORT is not in the

"MPROC RUN" state (CSR32 reset). In this state the PORT MICROPROCESSOR
is not running. The KL10's primary functions are to:

PAGE 19 OF 98

a) load and read verify the PORT'S MICROCODE
b) initially set up the correct CSR REGISTER functions
c) check for error conditions should the PORT halt unexpectedly

Secondary diagnostic functions also exist in this state which enables
the KL10 to perform such functions as writing and read/verifying the
EBUF, generating bad parity, single cycling, etc.

The KL10 performs these functions by executing CONOs, CONIs, DATAOs,
and DATAIs. The PORT's EBUS INTERFACE processes these functions via
the normal EBUS protocol.

A brief description of these sequences follows:

a) DATOLOADRAR - If the KL10 executes a DATAO with bit 00 equal to "1"
a DATOLOADRAR signal will be generated. This will cause bits EBUS
D01-13 to be 1loaded, via the MBUS, into the PORT'S "RAM ADDRESS
REGISTER" located on THE MICROPROCESSOR CONTROL MODULE.

b) DATOLOADMW - If the KL10 executes a DATAO with bit 00 egual to zero
a DATOLOADMW signal will be generated. This will cause the 30
least significant bits on the EBUS to be loaded, via the MBUS, into
the selected half of the PORT'S "CRAM" location as specified by the
"RAM ADDRESS REGISTER".

c) DATIREADMW - If the KL10 executes a DATAI with CSR21=0 a DATIREADMW
signal will be generated. This will cause the contents of the
selected half of the PORT'S CRAM location, as specified by the
contents of the "RAM ADDRESS REGISTER", to be placed on the EBUS.

d) DATIREADLAR - 1If the KL10 executes a DATAI with CSR21=1 a
DATIREADLAR signal will be generated. This will cause the contents
of the LAR REGISTER to be placed on EBUS D01-12

e) CONOLOADCSR - If the KL10 executes a CONO a CONOLOADCSR signal will
be generated. This will cause the contents of the EBUS to be
loaded into all CSR REGISTER bits which are writeable by the KL10.

f) CONIREADCSR - If the KL10 executes a CONI a CONIREADCSR signal will
be generated. This will cause the contents of all CSR REGISTER
bits which are readable by the KL10 to be placed on the EBUS.

g) TESTLOADEBUF - If the KL10 executes a DATAO with CSR19=1 a

TESTLOADEBUF signal will be generated. This will cause EBUS DO00-35
to be loaded, via the MBUS, into the EBUF,.

PAGE 20 OF 98

h) TESTREADEBUF - If the KL10 executes a DATAI with CSR19=1] a
TESTREADEBUF signal will be generated. This will cause the
contents of the EBUF to be placed on the EBUS.

When the PORT 1is in the "MPROC RUN" state (CSR32 set) the KL10 is
permitted only to access the CSR REGISTER by executing CONO or CONI
commands.

In the "MPROC RUN" state CONO and CONI commands operate in the same
manner as described above.

DATAO and DATAI commands executed by the KL10's software when the PORT
is RUNNING (CSR32 set) will cause the condition code CCEBUSRQST to be
asserted. Since this is an unexpected illegal function the condition
will usually be ignored by the PORT. Thus, an EBUS TIMEOUT will
occur since "TRANSFER" will never be returned over the EBUS.

When the PORT is RUNNING the PORT MICROPROCESSOR controls the EBUS by
generating EBUS INTERRUPTS. There are two types of interrupts
generated by the port:

a) Non-Vectored (40 + 2n) software interrupts (IOP WORD = 0)

b) Microcode interrupts in which a non-zero IOP WORD is passed to the
L10's microcode for ecode and execution of specific RL10

microcode functions.

A list of the types of interrupts which may be generated by the port
are listed below. All of them may be generated by the hardware, even
though the PORT MICROCODE does not currently use many of them. Those
which are currently used by the PORT are marked by an "*":

* FUNCTION O STANDARD (40 + 2N) INTERRUPT (IOP WORD = 0)

FUNCTION INCREMENT OR DECREMENT

FUNCTION DATAO (EXAMINE AND INCREMENT)

DATAO (EXAMINE)

* FUNCTION DATAI (DEPOSIT)

2
3
* FUNCTION 4
5
6

FUNCTION BYTE TRANSFER (DEPOSIT)

* FUNCTION 7 = DATAO (EXAMINE AND INCREMENT). This is a new
function which is being added specifically for
the CI20.

PAGE 21 OF o8

2.1.1 PI LEVEL 00 INTERRUPTS

If the EBUS INTERRUPT is a function 2 through 7 interrupt, the PORT

MICROPROCESSOR requests the INTERRUPT on PI LEVEL 00 by executing the

command "MPEXORDEP" (EXAMINE OR DEPOSIT).

PI LEVEL 00 type INTERRUPTS are always processed by the KL10 as first

priority, even when the KL10 has its interrupt enable system turned

off. Therefore, the CI20 is capable of executing these interrupts
regardless of the state of the KL10's interrupt enable system.

This sequence is executed as follows:

a) The PORT's microcode builds an IOP FUNCTION CONTROL WORD and loads
it into the EBUF, via an MPLOADEBUF (LOAD EBUF) command. With the
same microword it executes an "MPEXORDEP" (REQUEST EXAMINE OR
DEPOSIT) command.

b) The MPEXORDEP command will cause RQST EXAM OR DEP (CSR04) to be
set. This will cause the PORT's EBUS INTERFACE to assert the PI
REQUEST line PI00 on the EBUS.

c) When the KL10's EBOX recognizes the PI00 REQUEST it responds by
asserting

1) the PORT's channel number on CS04-06 of the EBUS
2) PI SERVED (4 octal) on the "F" lines of the EBUS
3) DEMAND, after a sufficient delay

d) The PORT's EBUS INTERFACE responds by asserting the EBUS DATA line
which corresponds to its physical device number.

e) The KL10's EBOX, after a sufficient delay, reads the EBUS DATA
lines and negates DEMAND

f) The KL10's EBOX then asserts
1) the PORT's channel number on CS04-06
2) the PORT's physical number on CS00-03
3) PI ADR IN (5 octal) on the "F" lines of the EBUS

4) DEMAND, after a sufficient delay

PAGE 22 OF 98

g) The PORT's EBUS INTERFACE responds by asserting on the EBUS

1) ACKN
2) The IOP FUNCTION CONTROL WORD which was previously loaded in the
EBUF by the PORT MICROPROCESSOR.

3) XFER, after a sufficient delay

h) When the KL10's EBOX detects XFER it strobes the data from the EBUS
DATA lines and negates DEMAND

i) The trailing edge of DEMAND causes the PORT's EBUS INTERFACE to
negate ACKN, XFER and the DATA lines, thus ending the interrupt
sequence

The KL10 microcode in turn decodes the IOP FUNCTION CONTROL WORD and
executes the appropriate function. If the "IOP FUNCTION CONTROL WORD"
specifies that an EBUS CYCLE is required (I.E. EXAMINE or DEPOSIT) the
very next EBUS CYCLE following the "IOP FUNCTION CONTROL WORD" read
will be addressed to the PORT. This sequence occurs as follows:

a) The KL10's EBOX asserts

" R —— e o~

1) a device code of "ZERO"™ on CS00-06 of the EBUS

2) DATAO or DATAI (2 or 3 octal) on the "F" lines of the EBUS
3) Data on the EBUS DATA lines, if the function is a DATAD.
4) DEMAND, after a sufficient delay

b) The PORT's EBUS INTERFACE responds by asserting ACKN on the EBUS.
It also flags the PORT MICROPROCESSOR by asserting the CONDITION
CODE, CCEBUSRQST.

Since the device code on CS00-06 returned by the KL10 is "ZERO",
not the PORT'S device code, the PORT does not examine the device
code. Instead the PORT assumes that the very next EBUS CYCLE is
intended for it and, therefore, takes the appropriate action as
soon as it senses DEMAND asserted on the EBUS.

c) When the PORT's microcode detects CCEBUSRQST it responds by
executing an MPLOADEBUS or MPREADEBUS command, whichever is
applicable.

If the PORT's microcode executes an MPLOADEBUS it must have

previously loaded the EBUF, via an MPLOADEBUF command, with wvalid
data to be transferred to the KL1O.

PAGE 23 OF 98

If the PORT's microcode executes an MPREADEBUS the EBUS DATA will
be placed on the MBUS. The PORT's microcode must also execute
another command on the same microcycle to strobe the data from the
MBUS into one of its internal storage media.

d) After a sufficient delay the PORT's EBUS INTERFACE asserts XFER on
the EBUS

e) When the KL10's EBOX detects XFER it negates DEMAND

If the function was an EXAMINE (DATAI) it strobes the data from the
EBUS DATA lines

If the function was a DEPOSIT (DATAO) it de-asserts the data from
the EBUS DATA lines

f) The trailing edge of DEMAND causes the PORT's EBUS INTERFACE to
negate ACKN, XFER, CCEBUSRQST and the DATA lines (if applicable),
thus ending the interrupt sequence.

g) The PORT's MICROCODE must be prepared to respond promptly to the
CONDITION CODE, CCEBUSRQST, in order to prevent EBUS TIMEOUTS. The
PORT MICROPROCESSOR should not attempt to execute any additional
EBUS transfers until it detects the negation of CCEBUSRQST.

2.1.2 "PI LEVEL 01 THROUGH 07 INTERRUPTS

If the EBUS INTERRUPT is a function 0 interrupt, the PORT
MICROPROCESSOR requests the INTERRUPT on PI LEVEL 01 through 7,
depending on the assigned PI LEVEL in CSR33-35, by executing the
command "MPRQSTINTR" (REQUEST INTERRUPT). This sequence is executed as
follows:

a) The PORT's microcode first checks the CONDITION CODE,
"CCINTRACTIVE". If it is asserted the microcode must wait until it
is de-asserted before continuing the below sequence.

b) The PORT's microcode then executes an "MPRQSTINTR" command. The
MPRQSTINTR command will cause RQST INTERRUPT (CSR05) to be set.
This will cause the PORT's EBUS INTERFACE to assert the PI REQUEST
line (PI01-07) as specified by PIA00-02 (CSR33-35) on the EBUS.

c) When the KL10's EBOX recognizes the PI01 through 7 REQUEST it
responds by asserting

PAGE 24 OF 98

1) the PORT's channel number on CS04-06 of the EBUS
2) PI SERVED (4 octal) on the "F" lines of the EBUS
3) DEMAND, after a sufficient delay

d) The PORT's EBUS INTERFACE responds by asserting the EBUS DATA 1line
which corresponds to its physical device number.

e) The KL10's EBOX, after a sufficient delay, reads the EBUS DATA
lines and negates DEMAND

f) The KL10's EBOX then asserts
1) the PORT's channel number on CS04-06
2) the PORT's physical number on CS00-03
3) PI ADR IN (5 octal) on the "F" lines of the EBUS
4) DEMAND, after a sufficient delay
g) The PORT's EBUS INTERFACE responds by asserting on the EBUS

) ACRN

[

2) A hardware generated IOP FUNCTION CONTROL WORD of all zeros
3) XFER, after a sufficient delay

h) When the KL10's EBOX detects XFER it strobes the data from the EBUS
DATA lines and negates DEMAND

i) The trailing edge of DEMAND causes the PORT's EBUS INTERFACE to
negate ACKN, XFER and the DATA lines.

j) When the KL10 microcode decodes the IOP WORD of all zeros it will
generated a standard Non-Vectored (40 + 2n) interrupt to the KL10's
software, .

2.2 MICROPROC TO EBUS REGISTER (EBUF)

The "MICROPROCESSOR TO EBUS REGISTER" (EBUF) is a 36-bit register
normally used by the PORT MICROPROCESSOR to pass data from the MBUS
(Internal tri-state MICROPROCESSOR BUS) to the EBUS, or to the CSR
REGISTER. The PORT MICROPROCESSOR generally loads data into this

PAGE 25 OF 98

register from the MBUS. This data may then be strobed by the next
microcycle of the PORT MICROPROCESSOR to either the CSR REGISTER or to
the EBUS.

The PORT MICROCODE uses the EBUF for the following two functions:

1) To load the CSR REGISTER. Data is first strobed into the EBUF, then
to the CSR REGISTER.

2) To transmit an IOP FUNCTION CONTROL WORD over the EBUS for
execution of EXAMINE or DEPOSIT functions on PI LEVEL 00.

The command, MPLOADEBUF (LOAD EBUF), causes the data currently on the
MBUS to be loaded into the EBUF at CLK3 time.

A diagnostic loop-back path exists, however, which enaBles the KL10 to
load and read this buffer. This loop-back path is controlled by DIAG
TEST EBUF (CSR19). If CSR19 is set and the PORT is not in the "MPROC
RUN" state (CSR32 re-set):

a) A DATAO executed by the KL10 will cause the date asserted on the
EBUS to be loaded, via the MBUS, into the EBUF

b) A DATAI executed by the KL10 will cause the data in the EBUF to be
asserted on the EBUS.

2.3 EBUS CONTROL AND STATUS REGISTER (CSR)

The "EBUS CONTROL and STATUS REGISTER" (CSR) 1is a 36 bit register
which resides in the EBUS INTERFACE.

The KL10 accesses the CSR REGISTER by executing CONO and CONI
commands.

The PORT MICROPROCESSOR, when in the "MPROC RUN" state, accesses the
CSR REGISTER by executing the following sequence.

a) The PORT MICROPROC loads the EBUF with the desired CSR data, if it
is writing to the CSR, by executing an MPLOADEBUF command. On the
same microcycle it executes an MPRQSTCSR (Request CSR) command.

b) The PORT MICROPROC then senses for the CONDITION CODE, CCGRNTCSR
(CSR GRANTED)

PAGE 26 OF 98

c) Once CCGRNTCSR is valid the PORT MICROPROC may execute either an
MPLOADCSR (LOAD CSR) or MPREADCSR (READ CSR) command. If an
MPLOADCSR command 1is executed the contents of the EBUF will be
strobed into the CSR REGISTER at CLK3 time.

If an MPREADCSR command is executed the contents of the CSR
REGISTER will be asserted on the MBUS. The PORT MICROPROC must then
strobe the MBUS data into one of its internal storage media on the
same microcycle.

The CSR REGISTER is read/write interlocked to prevent the PORT and the
KL10 from accessing it simultaneously. This 1is accomplished by the
CONDITION CODE, CCGRNTCSR. When the PORT wishes to access the register
it executes an MPRQSTCSR command. If the register is available
CCGRNTCSR will be asserted by the EBUS INTERFACE LOGIC. If the KL10 is
accessing the register at the time wvia a CONI or a CONO, CCGRNTCSR
will not be asserted until the CONI or CONO function is complete.

The PORT MICROPROCESSOR must wait until it senses the asserted state
of CCGRNTCSR before it attempts to access the CSR REGISTER.

Likewise, if the PORT MICROPROC is accessing the register when a CONI
or a CONO is executed by the KL10 the EBUS INTERFACE LOGIC will cause
the command to wait until the PORT has completed its access.

Race conditions between the PORT and the KL10 are prevented by
granting access to the KL10 at CLKl time and granting access to the
PORT (asserting CCGRNTCSR) at CLK3 time.

The below chart briefly describes the CRS REGISTER bits. A more
thorough description follows:

PAGE 27 OF 98

"x" indicates that the bit

"R" indicates that the bit

"W" indicates that the bit

"C" indicates that the bit

"S" indicates that the bit

"H" indicates that the bit
B T o ————— +
!BIT! BIT DEFINITION ! RD/WR !
! ! o ——— o ———— +
INO.! {KL10 ! PORT!
tommm b tm———— tm———— +
100 !PORT PRESENT t{ R ! H !
tommm e ———————— tm——— tm———— +
101 !DIAG RQST CSR ! R ' H !
e ——————————— tm———— e —— +
102 !'DIAG CSR CHNG ! R/H ! H !
e Fm———— tm———— +
103 ! | | LI |
B i b tm——— tm———— +
104 !RQST EXAM OR DEP! R/H ! R/S !
ek e bt F——— tm——— +
105 !RQST INTERRUPT ! R/H ! R/S !
i e o ———— Fm————— +
106 !CRAM PARITY ERR ! R/C ! H !
tomrm e ———— Fm———— Fm———— +
107 !MBUS ERROR ! R ' H !
B T Fm———— Fm———— +
108 ! A R T I |
e —————— fm———— o ——— +
109 ! I N
e Fm———— T pp— +
110 ! o 1 x
e —— m———— m———— +
111 !IDLE ! R ! R/W !
e o o +
112 !DISABLE COMPLETE! R ! R/W !
Fomm Fm——— e +
113 !ENABLE COMPLETE! R ! R/W !
trmmm b ——— e —————— Fom———— tmm——— +
114 ! ! * ! * !
o ————————— tm——— tm———— +
115 !PORT ID CODE 00! R ! H !
e - e +——— +
!16 'PORT IDCODE 01 ! R ! H !
et ———— Fom———— tFm———— +
!17 'PORT ID CODE 02 ¢ R ' H !
il it T Fm———— tm——— +

is not defined
is readable

is writeable
may be cleared
may be set only
is hardware controlled

B TSy
!BIT! BIT DEFINITION
1 1

INO.!
gy g
118 !CLEAR PORT

B T T Py S ———

134 !PIA 01
i T TP NP

135 IPIA 02

only as a single bit

Fmm———————— +
! RD/WR !
tm———— tm——— +
1KL10 ! PORT!
Fm———— tm——— +
! W
- +———— +
! R/ W ! * 1
o to———— +
! R/W ! * |
tm———— Fm———— +
! R/W ! *
Fm———— tm———— +
! R/W I *
tm———— Fm———— +
! R/W ! * |
tm——— tm———— +
{H/R/C! R !
tm———— tm———— +
t R/C ! R/S !
tm———— o ——— +
! R/C ! R/S !
e +———— +
! R/S ! R/C !
+———— ———— +
! R/C ! R/S !
t———— o——— +
(I N
o ———— e ——— +
! R/S ! R/C !
e tm———— +
! R/S ! R/C !
to——— tm———— +
! R/W ! R/H !
Fm———— t———— +
! R/W! R !}
tmm——— - +
! R/W! R !
tF————— F———— +
! R/W! R !
fm———— tm———— +
28 OF 98

2.3.1 DEFINITION OF THE CONTROL AND STATUS (CSR) REGISTER BITS

BIT # NAME

CSRO0 PORT PRESENT

CSRO1 DIAG RQST CSR

DEFINITION

INDICATES THAT THE PORT IS PRESENT.

READ/WRITE STATUS: KL10
PORT

"R"
"H"

THE KL10 ALWAYS READS THIS BIT AS "1"
IF THE PORT IS PRESENT (INSTALLED
AND POWERED UP).

THE PORT ALWAYS READS THIS BIT AS "0O"

DIAGNOSTIC BIT WHICH INDICATES THE
STATUS OF "CCRQSTCSR".

"R"
"H"

READ/WRITE STATUS: KL10
PORT

SET BY:

1) THE PORT MICROPROC REQUESTING
ACCESS TO THE CSR (ASSERTING
MPRQSTCSR) .

CLEARED BY:

1) THE PORT MICROPROC READING THE CSR
(ASSERTING MPREADCSR).

2) THE PORT MICROPROC WRITING THE CSR
(ASSERTING MPLOADCSR).

3) THE KL10 SETTING CLEAR (CSR18)

4) A GENERAL EBUS RESET.

PAGE 29 OF 98

CSR02

CSRO3

CSR0O4

DIAG CSR CHNG

UNUSED

RQST EXAM OR DEP

DIAGNOSTIC BIT WHICH INDICATES THAT
THE CONTENTS OF THE CSR REGISTER HAS
CHANGED SINCE THE LAST TIME IT WAS
READ BY THE PORT MICROPROCESSOR.

READ/WRITE STATUS: KL10
PORT

HR/HH
"H“

SET BY:

1) THE KL10 WRITING THE CSR (EXECUTING
A CONO FUNCTION)

2) DETECTION OF AN "EBUS PARITY ERROR"
(CSR24 SETTING).

CLEARED BY:

1) THE PORT MICROPROC READING THE CSR
(ASSERTING MPREADCSR)

2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

THIS BIT IS NOT USED BY EITHER THE PORT
MICROPROC OR THE KL10.

ngn
L%

READ/WRITE STATUS: KL10
PORT

USED BY THE PORT MICROPROCESSOR TO
REQUEST AN EBUS INTERRUPT FUNCTION ON
PI LEVEL 00 (EXAMINE OR DEPOSIT
FUNCTION). A "PI LEVEL 00 INTERRUPT"
WILL BE IMMEDIATELY GENERATED WHEN
THIS BIT IS SET.

READ/WRITE STATUS: KL10
PORT

"R/H"
"R/sﬂ

PAGE 30 OF 98

CSRO5

RQST INTERRUPT

SET BY:

1) THE PORT MICROPROC REQUESTING AN
EBUS EXAMINE OR DEPOSIT INTERRUPT
ON PI LEVEL 00 (ASSERTING
MPEXORDEP)

CLEARED BY:

1) SUCCESSFUL COMPLETION OF THE
EXAMINE OR DEPOSIT SEQUENCE.

2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

USED BY THE PORT MICROPROCESSOR TO
REQUEST AN EBUS NON-VECTORED (40 + 2n)
INTERRUPT ON PI LEVELS 01 THRU 07. A
"PI LEVEL 01 THRU 07 INTERRUPT" ILL
BE IMMEDIATELY GENERATED WHEN THIS BIT
IS SET.

READ/WRITE STATUS: KL10
PORT

"R/H"
"R/S"

SET BY:

1) THE PORT MICROPROC REQUESTING AN
EBUS INTERRUPT ON PI LEVELS 01
THRU 07 (ASSERTING MPRQSTINTR)

2) CRAM PAR ERR (CSR06) SETTING

3) MBUS ERR (CSR07) SETTING

CLEARED BY:

1) SUCCESSFUL COMPLETION OF THE
INTERRUPT SEQUENCE.

2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

PAGE 31 OF 98

CSRO6

CSRO7

CRAM PAR ERR

MBUS ERR

INDICATES THAT A CONTROL RAM PARITY
ERROR HAS BEEN DETECTED.

IF THIS BIT IS SET THE PORT MICROPROC
WILL BE HALTED IMMEDIATELY AND RQST
INTERRUPT (CSRO05) WILL BE SET. A
HARDWARE NON-VECTORED (40 + 2n)
INTERRUPT WILL BE FORCE GENERATED.

THE PORT MICROPROCESSOR CANNOT BE RE-
STARTED (CSR32 SET) UNTIL THIS BIT IS
CLEARED.

OCCASIONALLY A "CRAM PARITY ERROR" MAY
BE INTENTIONALLY FORCED IN ORDER TO
HALT THE PORT MICROPROC AT A SPECIFIC
LOCATION (BREAK POINT).

READ/WRITE STATUS: KL10 = "R/C"
PORT = "H"
SET BY:
1) THE DETECTION OF A CONTROL RAM PAR-
ITY ERROR
CLEARED BY:

1) THE KL10 STORING A "1" IN CSR24
(EBUS PARITY ERR)

2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

INDICATES THAT MORE THAN ONE MBUS
DRIVER HAS BEEN TURNED ON AT THE SAME
TIME.

IF THIS BIT IS SET THE PORT MICROPROC
WILL BE HALTED IMMEDIATELY AND RQST
INTERRUPT (CSRO05) WILL BE SET. A
HARDWARE NON-VECTORED (40 + 2n)
INTERRUPT WILL BE FORCE GENERATED.

PAGE 32 OF 98

THE PORT MICROPROCESSOR CANNOT BE RE-
STARTED (CSR32 SET) UNTIL THIS BIT IS
CLEARED.,

READ/WRITE STATUS: KL10
PORT

HR"
"H"

SET BY:
1) THE DETECTION OF MORE THAN ONE
MBUS DRIVER BEING TURNED ON AT
THE SAME TIME
CLEARED BY:
1) THE KL10 SETTING CLEAR (CSR18)
2) A GENERAL EBUS RESET.

CSRO8 UNUSED THIS BIT IS NOT USED BY EITHER THE PORT
MICROPROC OR THE KL10.

nan

READ/WRITE STATUS: KL10
PORT

nan

CSR09 UNUSED THIS BIT IS NOT USED BY EITHER THE PORT
MICROPROC OR THE KL10.
READ/WRITE STATUS: KL10 nkmn

PORT

LE L]

CSR10 UNUSED THIS BIT IS NOT USED BY EITHER THE PORT
MICROPROC OR THE KL10.
READ/WRITE STATUS: KL10 Nk

PORT

Ngn

PAGE 33 OF 98

CSR11 IDLE THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE PORT TO INFORM THE
KL10 OPERATING SYSTEM THAT THE PORT
MICROPROC IS IN THE MICROCODE "IDLE"
LOOP. THE PORT MICROCODE SETS THIS BIT
EACH TIME IT ENTERS THE "IDLE" LOOP
AND CLEARS THE BIT EACH TIME IT LEAVES
THE "IDLE" LOOP.

READ/WRITE STATUS: KL10
PORT

"R"
"R/W"

nn

SET BY:
1) THE PORT STORING A "1" IN THE BIT.
CLEARED BY:
1) THE PORT STORING A "O0" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)
3) A GENERAL EBUS RESET.
CSR12 DISABLE COMPLETE THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE PORT TO INFORM THE
KL10 OPERATING SYSTEM THAT THE PORT
MICROPROC HAS PLACED ITSELF 1IN THE
"DISABLED" STATE.

READ/WRITE STATUS: KL10
PORT

n"R"
"R/W"

Hon

SET BY:
1) THE PORT STORING A "1" IN THE BIT.
CLEARED BY:

1) THE PORT STORING A "O" IN THE BI

-3

2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

PAGE 34 OF 98

CSR13

CSR14

CSR15

CSR16

ENABLE COMPLETE

UNUSED

PORT ID CODE 00

PORT ID CODE 01

THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE PORT TO INFORM THE
KL10 OPERATING SYSTEM THAT THE PORT
MICROPROC HAS PLACED ITSELF 1IN THE
"ENABLED" STATE.

READ/WRITE STATUS: KL10
PORT

"R"
"R/wn

SET BY:
1) THE PORT STORING A "1" IN THE BIT.
CLEARED BY:
1) THE PORT STORING A "0" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)
3) A GENERAL EBUS RESET.

THIS BIT IS NOT USED BY EITHER THE PORT
MICROPROC OR THE KL10.

ngn

READ/WRITE STATUS: KL10
PORT

ngw

THIS BIT REPRESENTS BIT "00" OF THE
THREE BIT "PORT IDENT CODE" FIELD.

READ/WRITE STATUS: KL10
PORT

"R"
WHH

THE KL10 ALWAYS READS THIS BIT AS "O"
IF THE PORT IS PRESENT (INSTALLED
AND POWERED UP).

THE PORT ALWAYS READS THIS BIT AS "0"
THIS BIT REPRESENTS BIT "01" OF THE
THREE BIT "PORT IDENT CODE" FIELD.

READ/WRITE STATUS: KL10
PORT

"R"
"H"

PAGE 35 OF 98

CSR17

CSR18

CSR19

PORT ID CODE 02

CLEAR PORT

DIAG TEST EBUF

THE KL10 ALWAYS READS THIS BIT AS "1"
IF THE PORT IS PRESENT (INSTALLED
AND POWERED UP).

THE PORT ALWAYS READS THIS BIT AS "O"

THIS BIT REPRESENTS BIT "02" OF THE
THREE BIT "PORT IDENT CODE" FIELD.

READ/WRITE STATUS: KL10
PORT

"R"
"H"

THE KL10 ALWAYS READS THIS BIT AS "1"
IF THE PORT IS PRESENT (INSTALLED
AND POWERED UP).

THE PORT ALWAYS READS THIS BIT AS "O"

THIS BIT, WHEN SET BY THE KL10, CAUSES
THE PORT TO BE RESET. THE MICROPROC IS
HALTED AND ALL PERTINENT REGISTERS AND
CONTROL LOGIC IS PLACED IN A RESET
STATE.

READ/WRITE STATUS: KL10
PORT

"wﬂ

ngmn

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:

1) CLEARS ITSELF AFTER IT HAS COMP-
LETED ITS RESET FUNCTION

DIAGNOSTIC BIT WHICH ENABLES THE KL10
TO PERFORM A LOOPBACK FUNCTION OF THE
EBUS INTERFACE BY LOADING AND READING
THE EBUF.

PAGE 36 OF 98

CSR20

DIAG GEN EBUS PE

IF THE PORT IS NOT RUNNING (CSR32 IS
RESET) AND CSR19 IS SET:

1) A "DATAO" FROM THE KL10 WILL CAUSE
THE DATA ON THE EBUS TO BE LOADED
INTO THE EBUF.

2) A "DATAI" FROM THE KL10 WILL CAUSE
THE DATA IN THE EBUF TO BE PLACED
ON THE EBUS.

"R/w"

ngn

READ/WRITE STATUS: KL10
PORT

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "0" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET,

DIAGNOSTIC BIT WHICH ENABLES THE KL10
TO TEST THE EBUS PARITY CHECKER BY
FORCING IT TO DECODE AN EBUS PARITY
ERROR.

When this bit 1is set EBUS PAR ERR
(CSR24) will be set on the same CONO,
assuming that EBUS PARITY was actually
correct.

READ/WRITE STATUS: KL10
PORT

NR/wﬂ

ngn

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.

CLEARED BY:

PAGE 37 OF 98

CSR21

CSR22

DIAG SEL LAR

DIAG SINGLE CYC

1) THE KL10 STORING A "O" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

DIAGNOSTIC BIT WHICH ENABLES THE KL10
TO READ THE "LAR" REGISTER.

IF THIS BIT 1IS SET, THE PORT 1IS
NOT RUNNING (CSR32 RESET) AND "DIAG
TEST EBUF" (CSR19) IS RESET A DATAI
EXECUTED BY THE KL10 WILL CAUSE THE
LATCH ADDRESS REG (LAR) TO BE ASSERTED
ON EBUS BITS D01-Dl12. ALL OTHER EBUS
BITS ARE UNDEFINED.

READ/WRITE STATUS: KL10
PORT

"R/Wﬂ
W N

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "0" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

DIAGNOSTIC BIT WHICH ENABLES THE PORT
MICROPROC TO BE SINGLE CYCLED.

IF THIS BIT IS SET AND THE KL10 SETS
MPROC RUN (CSR32) THE PORT MICROPROC
WILL EXECUTE ONE MICROCYCLE AND HALT.
MPROC RUN WILL BE CLEARED WHEN THE
MICROPROC HALTS.

THE CURRENT ADDRESS TO BE EXECUTED 1IS
FETCHED FROM THE "RAR" REGISTER.

PAGE 38 OF o8

CSR23

SPARE

THE NEXT MICROPROC ADDRESS TO BE
EXECUTED IS STORED IN THE "LAR"
REGISTER AT THE COMPLETION OF THE
MICROCYCLE. THE KL10 MUST READ THIS
ADDRESS AND LOAD IT INTO THE "RAR"
REGISTER BEFORE EXECUTING THE NEXT
SINGLE CYCLE.
NOTE: THIS BIT MUST BE RESET IN ORDER
FOR THE KL10 TO CORRECTLY READ
AND WRITE THE CRAM

READ/WRITE STATUS: KL10 = "R/W"
PORT = "%n"

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "0" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)
3) A GENERAL EBUS RESET.

RESERVED FOR FUTURE SOFTWARE USE.

READ/WRITE STATUS: KL10 = "R/W"
PORT = "*"

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "0" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

PAGE 39 OF 98

CSR24

CSR25

EBUS PARITY ERR

FREE QUEUE ERR

WHEN READ BY THE KL10 THIS BIT
INDICATES THAT AN EBUS PARITY ERROR
HAS BEEN DETECTED.

WHEN WRITTEN AS A "1" BY THE KL10 THIS
BIT WILL CLEAR ITSELF AND "CRAM PARITY
ERR" (CSR06).

READ/WRITE STATUS: KL10
PORT

"H/R/C"
"R"

SET BY:

THE DETECTION OF AN EBUS PARITY ERROR
WHILE THE PORT IS READING DATA FROM
THE EBUS.

CLEARED BY:
1) THE KL10 STORING A "1" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE PORT TO INFORM THE KL10
OPERATING SYSTEM THAT THERE ARE NO FREE
QUEUE ENTRIES AVAILABLE ON THE FREE
QUEUE. THE STATE OF THE BIT HAS NO
HARDWARE FUNCTION,

READ/WRITE STATUS: KL1

0 = "R/C"
PORT

"R/Sn

SET BY:
1) THE PORT STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "1" IN THE BIT,.
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

PAGE 40 OF 98

CSR26

CSR27

DATA PATH ERR

CMD QUEUE AVAIL

THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE PORT TO REPORT TO THE
KL10 OPERATING SYSTEM THAT IT HAS
DETECTED AN ERROR 1IN THE "DMA DATA
PATH", INCLUDING THE MOVER/FORMATTER.
THE STATE OF THE BIT HAS NO HARDWARE
FUNCTION.

READ/WRITE STATUS: KL10
PORT

"R/Cn
NR/S"

SET BY:
1) THE PORT STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "1" IN THE BIT.
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE KL10 OPERATING SYSTEM
TO INFORM THE PORT THAT IT HAS PLACED A
COMMAND QUEUE ENTRY ON A PREVIOUSLY
EMPTY COMMAND QUEUE. THE STATE OF THE
BIT HAS NO HARDWARE FUNCTION.

READ/WRITE STATUS: KL10
PORT

nR/sn
"R/C"

SET BY:

1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:

1) THE PORT STORING A "1" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

PAGE 41 OF o8

CSR28

CSR29

CSR30

RESP QUEUE AVAIL

UNUSED

DISABLE

THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE PORT TO INFORM THE KL10
OPERATING SYSTEM THAT IT HAS PLACED A
RESPONSE QUEUE ENTRY ON A PREVIOUSLY
EMPTY RESPONSE QUEUE. THE STATE OF THE
BIT HAS NO HARDWARE FUNCTION.

READ/WRITE STATUS: KL10
PORT

ﬂR/C"
"R/S"

SET BY:
1) THE PORT STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "1" IN THE BIT.
2) THE KL10 SETTING CLEAR (CSR18)
3) A GENERAL EBUS RESET.

THIS BIT IS NOT USED BY EITHER THE PORT

MICROPROC OR THE KL10.

READ/WRITE STATUS: KL10 nEkn
- PORT

ngn

!

THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE KL10 OPERATING SYSTEM
TO INFORM THE PORT TO PLACE ITSELF 1IN
THE "DISABLED" STATE (SET CSR12). THE
STATE OF THE BIT HAS NO HARDWARE
FUNCTION.

READ/WRITE STATUS: KL10
PORT

"R/S"
"R/C"

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.

CLEARED BY:

PAGE 42 OF 98

CSR31

CSR32

ENABLE

MPROC RUN

1) THE PORT STORING A "1" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

THIS IS A MICROCODE-SOFTWARE DEFINED
BIT USED BY THE KL10 OPERATING SYSTEM
TO INFORM THE PORT TO PLACE ITSELF 1IN
THE T"ENABLED" STATE (SET CSR13). THE
STATE OF THE BIT HAS NO HARDWARE
FUNCTION.

READ/WRITE STATUS: KL10 = "R/S"
PORT = "R/C"

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:
1) THE PORT STORING A "1" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

THIS BIT, WHEN SET BY THE KL10,
ENABLES THE PORT MICROPROCESSOR
CLOCKS. THE PORT WILL START CYCLING
AT THE ADDRESS CONTAINED IN THE "RAM
ADDRESS REGISTER" (RAR). THE NEXT AND
SUBSEQUENT ADDRESSES WILL BE FETCHED
FROM THE "Y" OUTPUTS OF THE AM2910
SEQUENCER.

WHEN RESET FOR ANY REASON THE BIT
CAUSES THE CRAM CONTROL REGISTER TO BE
RESET, THUS PREVENTING ANY FURTHER
PORT ACTIVITY AS A RESULT OF THE LAST
MICROWORD.

PAGE 43 OF 98

CSR33

PIAOO

READ/WRITE STATUS: KL10
PORT

"R/W"
"R/H"

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "O" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)

3) AFTER EACH MICROWORD CYCLE 1IF
"DIAG SINGLE CYC" (CSR22) IS SET.

4) CRAM PAR ERR (CSR06) OR MBUS ERR
(CSR07) SETTING. :

5) A GENERAL EBUS RESET.

THIS BIT REPRESENTS BIT "O" OF THE
THREE BIT PHYSICAL INTERRUPT ASSIGNMENT

FIELD (PI LEVEL 01 THRU 07) OF THE
KL10'S EBUS.

READ/WRITE STATUS: KL10
PORT

"R,/W"
"R"

SET BY:

1) THE KL10 STORING A "1" IN THE BIT.

CLEARED BY:
1) THE KL10 STORING A "O0" IN THE BIT

2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

PAGE 44 OF o8

CSR34

CSR35

PIAQO1l

PIAQO2

THIS BIT REPRESENTS BIT "1" OF THE
THREE BIT PHYSICAL INTERRUPT ASSIGNMENT
FIELD (PI LEVEL 01 THRU 07) OF THE
KL10'S EBUS.

READ/WRITE STATUS: KL10
PORT

"R/W"
"R"

SET BY:
1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:
1) THE KL10 STORING A "0" IN THE BIT
2) THE KL10 SETTING CLEAR (CSR18)
3) A GENERAL EBUS RESET.
THIS BIT REPRESENTS BIT "2" OF THE
THREE BIT PHYSICAL INTERRUPT ASSIGNMENT
FIELD (PI LEVEL 01 THRU 07) OF THE
KL10'S EBUS.

READ/WRITE STATUS: KL10 = "R/W"
- PORT = "R"

\
SET BY: |

1) THE KL10 STORING A "1" IN THE BIT.
CLEARED BY:

1) THE KL10 STORING A "0" IN THE BIT

2) THE KL10 SETTING CLEAR (CSR18)

3) A GENERAL EBUS RESET.

PAGE 45 OF 98

2.4 EBUS TO MICROPROC MUX (EMUX)

The EMUX is a two input by 36-bit wide multiplexer which takes data
from either the EBUS, or the-CSR REGISTER and passes it to the MBUS.
The PORT MICROPROCESSOR may then strobe the data into one of its own
storage medias.

When the PORT 1is in the "MPROC RUN" state (CSR32 set) this mux |is
normally enabled by the microprocessor commands, MPREADEBUS (READ
EBUS) or MPREADCSR (READ CSR).

MPREADEBUS causes the contents of the EBUS to be passed to the MBUS.
The PORT MICROPROC may strobe this data to one of its internal storage
media.

MPREADCSR causes the contents of the CSR REGISTER to be passed to the
MBUS. The PORT MICROPROC may strobe this data to one of its internal
storage media.

When the PORT is not in the "MPROC RUN" state the KL10 may enable the
MUX by executing DATAO commands in order to:

a) write the CRAM
b) write the RAR
c) write the EBUF via the diagnostic loop-back path.

The below diagram illustrates the bit mapping of the EMUX.

e e +
100 EBUS D00-D35 351
! OR !
100 CSR00-35 351
e +
100 MBUS D00-35 351
e e e e ———————————— — — +
2.5 MICROPROC TO EBUS MUX (KMUX)

The KMUX is a two input by 36-bit wide multiplexer which takes data
from either the EBUF, or the CSR REGISTER and passes it to the EBUS.
The KL10 may then read the data from the EBUS.

PAGE 46 OF o8

When the PORT is not in the "MPROC RUN" state (CSR32 reset) the KL10
may enable the MUX by executing DATAI or CONI COMMANDS in order to (a)
read the CRAM, (b) read the LAR, (c) read the EBUF, or (d) read the
CSR.

When the PORT is in the "MPROC RUN" state (CSR32 set) the KL10 may
enable the MUX by executing CONI COMMANDS in order to read the CSR, or
by executing a "PI ADR IN" command during an interrupt sequence in
order to read the IOP word.

The PORT MICROPROCESSOR may enable the MUX by executing the
microprocessor command, MPLOADEBUS (LOAD EBUS). This command will
cause the data currently asserted on the MBUS to be passed to the
EBUS.

The below diagram illustrates the bit mapping of the KMUX.

o e +
100 EBUF00-35 351
! OR !
100 CSR00-35 351
o e +
100 KMUX00-35 351
o +

2.6 EBUS PARITY GENERATOR

The EBUS PARITY GENERATOR generates odd parity for every 36-bit data
word which the PORT passes to the EBUS.

The signals EBUS PARITY and EBUS PARITY ACTIVE are inhibited from
being asserted on the EBUS during the transmission of an IOP FUNCTION
CONTROL WORD. This is because the KL10 architecture does not permit
parity checking on an IOP WORD.

2.7 EBUS PARITY CHECKER

The EBUS PARITY CHECKER normally checks every 36-bit data word which
the PORT reads from the EBUS for odd parity. If parity is incorrect
the EBUS PARITY ERROR bit (CSR24) in the CSR REGISTER will be set.

If CSR20 (DIAG GEN EBUS PE) is set, however, the EBUS PARITY CHECKER
will check for even parity. This will cause EBUS PARITY ERROR (CSR24)
to be set on the same CONO command. This feature is wuseful for
diagnostic purposes.

PAGE 47 OF 98

2.8 EBUS TRANSCEIVERS
The EBUS Transceivers consist of OPEN-COLLECTOR 8838 type

transceivers, as are currently used by other devices which interface
to the EBUS.

2.9 ARITHMETIC LOGIC UNIT
The PORT MICROPROCESSOR ALU is also located on the EBUS INTFC/PORT ALU
module. Therefore, even though it 1is 1logically part of the PORT
MICROPROCESSOR, it will be discussed here.
The ALU may be sub-divided into:

1) Nine AM2901 type FOUR-BIT BIPOLAR MICROPROCESSOR SLICES

2) Four AM2902 type HIGH-SPEED LOOK-AHEAD CARRY GENERATORS

3) Five 74LS157 type MULTIPLEXERS used by the MICROPROCESSOR CONTROL

to input a CONSTANT NUMBER FIELD into the ALU

The nine AM2901s and four AM2902s are configured in a standard
parallel manner so as to form a 36-bit wide word with high speed carry
look-ahead capability.

The "Y" outputs and "D" inputs of the ALU are connected directly to
the MBUS, except for bits 00-09 and 26-35 of the "D" inputs. These 20
bits are connected through a two input multiplexer, the CNST MUX, to
the 2901s' "D" inputs (see CONSTANT MUX for details).

The clock input to the ALU is the CPUCLOCK (CLK4 gated by MPROC RUN),.

For shift operations the ALU will always shift Os into either the MSB
or the LSB, depending on the direction of the shift.

The PORT MICROPROCESSOR controls the ALU by executing the following
microprocessor commands:

PAGE 48 OF 98

1) MWSORCEFLD<00-02> (ALU SOURCE INPUT FIELD (I2-10)) - This field is
the SOURCE INPUT FIELD (I2-I0) of the AM2901 ALU. 1Its function is
defined by "THE AM2900 FAMILY DATA BOOK" as follows:

OCTAL CODE R S
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>

L T T T T | N TR 1
DOUONNN Y
NOP»PHO O

2) MWFUNCTFLD<00-02> (ALU FUNCTION FIELD (I5-I3)) - This field is the
FUNCTION INPUT FIELD (I5-13) of the AM2901 ALU. 1Its function is
defined by "THE AM2900 FAMILY DATA BOOK" as follows:

OCTAL CODE SYMBOL
MWFUNCTFLD<00:02> = 0 R + S
MWFUNCTFLD<00:02> = 1 S - R
MWFUNCTFLD<00:02> = 2 R - S
MWFUNCTFLD<00:02> = 3 Ror S
MWFUNCTFLD<00:02> = 4 R and S
MWFUNCTFLD<00:02> = 5§ R and S
MWFUNCTFLD<00:02> = 6 R xor S
MWFUNCTFLD<00:02> = 7 R xor S
3) MWDESTFLD<00-02> (ALU DESTINATION OUTPUT FIELD (I8-16)) - This

field is the DESTINATION FIELD (I8-I6) inputs to the AM2901 ALU.
Its function is defined by "THE AM2900 FAMILY DATA BOOK" as follows:

OCTAL CODE MNEMONIC
MWDESTFLD<00:02> = 0 QOREG
MWDESTFLD<00:02> = 1 NOP
MWDESTFLD<00:02> = 2 RAMA
MWDESTFLD<00:02> = 3 RAMF
MWDESTFLD<00:02> = 4 RAMQD
MWDESTFLD<00:02> = § RAMD
MWDESTFLD<00:02> = 6 RAMQU
MWDESTFLD<00:02> = 7 RAMU

PAGE 49 OF 98

4) MWPORTAFLD<00-03> (ALU PORT "A" (A3-A0) ADDRESS FIELD) - This field
is the PORT "A" (A3-A0) ADDRESS FIELD inputs to the AM2901 ALU (see
"THE AM2900 FAMILY DATA BOOK")

5) MWPORTBFLD<00-03> (ALU PORT "B" (B3-B0O) ADDRESS FIELD) - This field
is the PORT "B" (B3-B0) ADDRESS FIELD inputs to the AM2901 ALU (see
"THE AM2900 FAMILY DATA BOOK")

6) MWCARRY (MICROWORD CARRY INPUT BIT TO ALU) - This bit is the carry
input to the least significant bit of the AM2901 ALU.

MWCARRY
MWCARRY

0 Carry "ZERO" into the LSB of the ALU
1 Carry "ONE" into the LSB of the ALU

The PORT MICROPROCESSOR monitors the ALU status by sensing the
following CONDITION CODES:

1) CCFEQLO - This CONDITION CODE indicates that the result of the last
ALU operation produced all "ZEROS".

2) CCMBSIGN - This CONDITION CODE indicates that the SIGN (MSB or bit
00) was set as the result of the last ALU operation.

2.9.1 CONSTANT MUX

The CNST MUX is a two input multiplexer which allows either MBUS
D00-D09 and D26-D35, or MWMGCFLD00-09 of the MICROWORD to be 1loaded
into the ten MSBs and the ten LSBs of the "D" inputs to the MICROPROC
ALU (AM2901s). This enables the MICROPROCESSOR to 1load a CONSTANT
NUMBER VALUE into the ALU's 10 most significant and 10 least
significant bits. MBUS D10-D25 are always loaded into the
corresponding "D" inputs.

The PORT loads the MWMGCFLD field of the CRAM CONTROL WORD, instead of
the MBUS DATA bits, into the ALU's "D" inputs by executing the
microprocessor command, SELCNSTFLD (SELECT CONSTANT FIELD) (setting
the MWSKIPFLD to 24 or 34).

The below diagram illustrates the bit mapping of this MUZX.

e o e +
100 MBUS D00-DO9 09! 126 MBUS D26-D35 35!
! OR 110 MBUS D10-D25 25! OR !
100 MWMGCFLD00-09 09! 100 MWMGCFLD00-09 09!
o —————————— e e o e et +
100 "D" INPUTS 09!10 "D" INPUTS 25!26 "D" INPUTS 35!
e e T i LT T +

PAGE 50 OF 98

3.0 CBUS/DATA MOVER INTFC MODULE (CMVR)
The CBUS/DATA MOVER INTFC MODULE (CMVR) consists primarily of:

a) A data path between the KL10's CBUS and the PACKET BUFFER'S PLI
INTERFACE, which may be further sub-divided into:

1) CBUS INTERFACE BUFFERS, CBUS PARITY GEN/CHKRS and
associated CBUS CONTROL LOGIC

2) PLI INTERFACE BUFFERS, PLI PAR GEN/CHKR and associated PLI
CONTROL LOGIC

3) A DATA FORMATTER and MOVER which resides between the CBUS

and the PLI INTERFACE, and has the function of mapping
8-bit PLI bytes into 36-bit KL10 words, and vice versa.

b) A data path between the CBUS/DATA MOVER INTFC MODULE (CMVR) and the
PORT MICROPROCESSOR which enables the MICROPROCESSOR to:
1) Load or read the DATA FORMATTER and MOVER (MVR/FMTR)
2) Load or read the PACKET BUFFERS via the PLI INTERFACE
C) CMVR CONTROL LOGIC which decodes and executes the commands
specified by the MICRPPROCESSOR CONTROLLER'S microword.
The PORT MICROPROCESSOR accesses the CMVR MODULE by executing
microprocessor commands. These commands are decoded functions of the

MWBUSCTLFLD field and the MWMGCFLD field of the CRAM CONTROL WORD.

The PORT MICROPROCESSOR monitors the CMVR CONTROL LOGICS status by
sensing CONDITION CODES.

3.1 CBUS TIMING DESKEW PROCEDURE

The following deskew procedure should be performed before CBUS
TRANSFERS are attempted.

a) Equipment required - Tektronics 475 or equivalent (100 MHz) scope
with identical probes and short ground clips.

b) Objectives - To deskew the CI20 to the MBOX clock that produces
channel time zero, CHTO.

PAGE 51 OF 98

c) Notes - Recheck skew whenever the CBUS cable is replaced.

d) Adjustment procedure -
1) Attach a probe (either ext, sync or channel 3) to CHTO H, 4B09K1l
2) Sync positive external
3) Attach channel 1 probe to MTR MBOX CLK H, 4D33P1

4) Push TRIGGER VIEW and verify that the MBOX CLK that occurs just
prior to CHTO can be seen on the scope. See diagram below:

CHTO o +

(EXT SYNC) l |
________________________ + o ————— -
MTR MBOX CLK H #---===—————mm + tommmm e +

(CHANNEL 1) | I
——————————————— + e e
_______________ + e, —————— e —————
CDS1 EBUS CLK L|

(CHANNEL 2) Fommm o +

5) Attach channel 2 probe to CDS1 EBUS CLK L, 2Al5F1

6) Align clock pulse on channel 2 with the MBOX clock that occurs
approximately 10 nanoseconds before CHTO.

3.2 CMVR CONTROL LOGIC

The CMVR CONTROL LOGIC decodes and executes the commands specified by
the MICRPPROCESSOR CONTROLLER'S microword.

It also generates and distributes the PORT clocks (CLKl, CLK2, CLK3
and CLK4) to all three PORT modules.

The timing for the clocks is derived from the KL10's EBUS CLOCK. The

below diagram illustrates the timing relationship of the clocks when
the KL10's EBUS CLOCK is operating at the normal 160ns cycle time.

PAGE 52 OF 98

e e + Fommm————— + +
EBUS ! ! ! ! !
CLOCK ! L + e +
e + +
CLK1 ! ! !
! o - +
o ——— +
CLK2 ! !
____________________ + o —————————————————
o +
CLK3 ! !
—————————————————————— | |-+ e e
i +
CLK4 ! !
—————————————————————— | |-———————=———=+ +
A
I
ADD 160ns HERE IF ------- +

MWTIMEFLD IS SET

CLKl1l normally strobes the next MICROWORD into the PORT'S MICROWORD
CONTROL REGISTER. It also has several other timing functions,
depending on the specific operation being executed.

CLK2,CLK3 & CLK4 are generally used by the various control logics to
execute the function which is specified by the MICROWORD.

All four clocks are gated by control logic on the PORT MICROPROC
CONTROL module. The gated clocks are known as RUNCLK1l, RUNCLK2,
RUNCLK3 and RUNCLK4 respectively. CLK4 also generates CPUCLOCK, which
is used as the clock input to the AM2901 ALU. The gating of these
clocks allows the PORT to be started, stopped and single cycled in an
orderly manner.

PAGE 53 OF 98

A microword bit, MWTIMEFLD (TIME EXTENTION FIELD), may be set on any
specific microcycle., Setting this bit will cause CLK3 and CLK4 to
occur 135ns later than normal for that microcycle, thus 1lengthening
the microcycle from 270ns to 405ns. This feature allows more execution
time for the microcycle, thus offering an easy solution for timing
problems which may arise due to insufficient microcycle execution time
on any specific micro-instruction.

3.3 MICROPROC TO CMVR REGISTER (CBUF)

The "MICROPROCESSOR TO CMVR BUFFER" (CBUF) is a 36-bit buffer normally
used by the PORT MICROPROCESSOR to pass data from the MBUS (Internal
tri-state MICROPROCESSOR BUS) to the CBUS/DATA MOVER INTFC MODULE
(CMVR) .

The CBUF acts only as an isolation buffer to the tri-state MBUS and is
logically transparent to the PORT MICROPROCESSOR,

3.4 DATA FORMATTER and MOVER (MVR/FMTR)

The MVR/FMTR consists of a series of parallel/serial shift registers
and their associated control. It may be:

a) Parallel loaded and read as a 36-bit register from the PORT
MICROPROCESSOR.

o

Parallel loaded and read as a 36-bit register from the CBUS.

[p]
—

Parallel read as an 8-bit register by the PLI INTERFACE,

o7

Serially loaded and left shifted (from LSB to MSB), four or eight
bits at a time, from the PLI INTERFACE. In this mode data is not
wrapped around, but is shifted out of and lost from the MSB.

e) Serially loaded and right shifted (from MSB to LSB), four or eight
bits at a time, from the PLI INTERFACE. In this mode the data may
be wrapped around from LSB to MSB, Additional shifts may be used to
re-align the data in the desired format.

PAGE 54 OF 98

Four bit nibbles from the PLI INTERFACE are shifted up from the bottom
or down from the top of the MVR/FMTR. Two shifts load one 8-bit byte.
Logic hardware enables the PORT MICROPROCESSOR to execute one shift or
two shifts on a single microcycle. By loading four bit nibbles from
the PLI INTFC and shifting either up or down 36-bit KL10 words may be
formed and parallel transferred to the CBUS.

I1f the PLI INTERFACE is loaded from the bottom of the MVR/FMTR and
shifted up the data is not wrapped around, but is shifted out and lost
from the 4 MSBs of the MVR/FMTR.

If the PLI INTERFACE is loaded from the top and shifted down the data
may be wrapped around such that the 4 LSBs of the MVR/FMTR feed back
into the 4 MSBs of the MVR/FMTR. In this manner data may be shifted
indefinitely around the MVR/FMTR and re-aligned in the desired manner.

The PORT MICROPROCESSOR has the ability to select either the four MSBs
or the four LSBs of the PLI byte to input first to the MVR/FMTR.

36-bit KL10 words may be loaded into the MVR/FMTR from the CBUS. Once
a word is loaded the PORT MICROPROC can shift it, either up or down,
into the PLI OUT REG for transfer to the PLI INTERFACE.

The associated commands which are used to control the MVR/FMTR are as
follows:

1) MPSHFTFMTR8 (SHIFT FORMATTER BY 8 BITS) causes the contents of the
MVR/FMTR to be shifted eight bits to the left or right, depending
on the state of the command "MPSHIFTRIGHT".

2) MPSHFTFMTR4A (SHIFT FORMATTER BY 4 BITS) causes the contents of the
MVR/FMTR to be shifted four bits to the left or right, depending on
the state of the command "MPSHIFTRIGHT".

3) MPSHFTFMTR4B (SHIFT FORMATTER BY 4 BITS) causes the contents of the
MVR/FMTR to be shifted four bits to the left or right, depending on
the state of the command "MPSHIFTRIGHT".

4) MPCBUFTOFMTR (CBUF TO FORMATTER) causes the data which has been
previously stored in the CBUF to be loaded into the MVR/FMTR
REGISTER

5) MPPLINTOFMTR (PLI INPUT BUFFER TO FORMATTER) causes the 8-bit data
byte which 1is currently stored in the PLI INPUT BUFFER to be
shifted into the serial input lines of the MVR/FMTR, four bits at a
time. This command must be executed in conjunction with
MPSHFTFMTR4A or MPSHFTFMTR8. If MPSHFTFMTR4A is executed, then
only four bits from the PLI INPUT BUFFER will be shifted into the

PAGE 55 OF 98

6)

7)

8)

9)

serial input lines of the MVR/FMTR. If MPSHFTFMTR8 is executed,
then all 8 bits from the PLI INPUT BUFFER will be shifted into the
serial input lines. Either the four MSBs or the four LSBs are
shifted in first, depending on the state of the command,
MPRHTNIBFIRST. If an MPSHFTFMTR4A is executed, then only the first
four bits specified by the state of MPRHTNIBFIRST will be shifted
into the serial input lines. If MPSHIFTRIGHT is asserted the 4-bit
nibbles will be shifted into the four MSBs of the MVR/FMTR and
shifted right. Otherwise, they will be shifted into the four LSBs
of the MVR/FMTR and shifted left.

MPFMTRTOPLOUT (FORMATTER TO PLI OUTPUT BUFFER) causes the 8-bit
data byte which is currently stored in the PLI OUTPUT REG of the
MVR/FMTR to be loaded into the PLI OUTPUT BUFFER.

MPSHIFTRIGHT (SHIFT RIGHT) when asserted, either the currently
selected nibble in the PLI INPUT BUFFER, or the four LSBs
(MVROUT36-39) are shifted into the four MSB serial input lines of
the MVR/FMTR and shifted right. The actual data shifted into the
MVR/FMTR depends on the state of MPPLINTOFMTR. If MPPLINTOFMTR is
asserted, then the currently selected 4-bit nibble in the PLI INPUT
BUFFER will be shifted into the four MSBs of the MVR/FMTR and
shifted right. If MPPLINTOFMTR is de-asserted, then MVROUT36-39
will be shifted into the four MSBs of the MVR/FMTR and shifted
right. Two 4-bit shifts may be executed during one microcycle,
thus enabling an 8-bit byte to be right shifted during the same
microcycle (see MPPLINTOFMTR for more details).

MPRHTNIBFIRST (RIGHT NIBBLE FIRST) when asserted, the four LSBs of
the PLI INPUT BUFFER are shifted into the serial input lines of the
MVR/FMTR first. When de-aserted, the four MSBs of the PLI INPUT
BUFFER are shifted into the serial input lines of the MVR/FMTR
first.

MPZEROLFTNIB (ZEROLEFTNIBBLE) when asserted, causes the four MSBs

from the PLI OUTPUT REG of the MVR/FMTR to be forced to "zeros"
before they are loaded into the PLI OUTPUT BUFFER.

PAGE 56 OF o8

of

represents the the MVR/FMTR's basic principle

The below diagram

operation.

SHIFT DOWN

T T LT LT e T

OR

- B
oadD A
O |
A = O "CBUS
> +—_t —+ p—————— o ————— e < ——
| 1 |
[1 1
A A A A A A A A A A A A
| ! 1 | | I | i I | | |
!]|++|+|+|+|+|+|+i+l+|+|+|+|+|+]ilﬁ
[|)
oM | O <t 1 ™ ~ — n o ™ ~ —~ n o oM<y |
ool o o 1 O o ~A ~ 4 N N ™ ™M ™ toQo 1l
{ | I |
—_—pN\—t ——————f — A =— A —A—A—=A—A—A—A—A—A—+—AN—+
| | | 1 | | i) | 1 1 |
+||I
A A A A A A A A A A A A
| | 1 I I | | 1 | | 1 1
..lllnl.”. + —+ .|¢_. —_—t —t —F —+ —+ —F —F —F —F —+ —+ Illll".
|
~ W~ wn | o~ O o <t (o] N 0 o < [+ 0] | AW |
oo l1lo o I o o ~ — N N ™m ™M ™ NeYoX=N|
| 1 t |
—_—A—F ————e—t = A=A —A— A=A —A—A—A—A AN—+ —A—+
1 | | 1] | 1 1) | 1 1
+ ———
A A A A A A A A A A A A
| | | | 1 | 1 1 I | | |
—_—— et -ttt —+ —+ —+ - — —+ — —+ —+ I.". |I|..|».“..
| 1
NXMWOW I N Vel | — n (o)) ™ r~ — n o ™ o~ I NI
oo 1o o 1 o O o ~ N N N ™ ™ oo |
1 1 1)
_AN—F—————t —A—A—A—A—=A—A—A—A—A A==+ —A—+
1 1 [) | | 1 [1 | 1 I
+ + ———
A A A A A A A A A A A A
| \ | I 1 | 1 | | I | |
|||++|+|+|+]+|+|+i+|+|+|+|+|+|+||'4
| 1]
e~ 1o, r~ | o <M @ o~ (Vo) o <P [o] N Vo) e~ |
ool o o | o O O A 9~ N N N ™ ™M oo |
1 | I |
—_A—F ————t — A —A—A—A—A—A—A—A—A A—+ —A—+
I | 1 [] l | 1 | 1 | 1
+ ———
1
-4 i
— + —_—— AN————————
1 z
(Ve 1)
™ LAEOE I UMDW
|] ()
(e)) [
™ (a1

SHIFT UP

e e e — ¢

as

The MVR/FMTR is capable of supporting three different data formats

follows:

98

OF

PAGE 57

a) HIGH DENSITY - 4 1/2 8-bit bytes per 36-bit word as follows:
KL10 WORD PAIR

FIRST WORD OF PAIR

WORD 0 7 8 15 16 23 24 31 32 35
Fmm e ——— fmmm———————— Fomm . o +
! ! ! ! ! BYTE !
! BYTE=9n+1l ! BYTE=9n+2 ! BYTE=9n+3 ! BYTE=9n+4 ! = 1
! ! ! ! ! 9n+5 |
e T T e —— T T fm————— +

BYTE 7 0 7 0 7 0 7 0 7 4

SECOND WORD OF PAIR

WORD 0 3 4 11 12 19 20 27 28 35
o ———— o e —————— o e +
! BYTE ! ! ! ! !
! = | BYTE=9n+6 ! BYTE=9n+7 ! BYTE=9n+8 ! BYTE=9n+9 !
! 9n+5 ! ! ! ! !
dmmm——— Fomm Fmm e ———— o LT T —— +

BYTE 3 0 7 0 7 0 7 07 0

n = Number of complete 36-bit KL10 word pairs processed
since the start of byte transfers.

b) INDUSTRY COMPATIBLE - 4 8-bit bytes per 36-bit word (bits 32-35 of
the word are ZERO stuffed as follows:

KL10 WORD
WORD 0 7 8 15 16 23 24 31 32 35
et Fomm D ettt e Fmmm +
! 1 1 1 ! 1
! BYTE=4n+1l ! BYTE=4n+2 ! BYTE=4n+3 ! BYTE=4n+4 ! ZERO !
1 1] 1 1 !
pomm it Fmmm Fmmmm e tm———— +
BYTE 7 07 07 07 07 4

3
"

Number of complete 36-bit KL10 words processed since
the start of byte transfers.,

PAGE 58 OF o8

c) CORE DUMP - 5 8-bit bytes per 36-bit word (four bits of every 5th
byte are discarded as follows:

KL10 WORD
WORD 0 7 8 15 16 23 24 31 32 35
o ———— tomm e ———— tmm————————— o ———— tmm———— +
! ! ! ! ! BYTE !
! BYTE=5n+1 ! BYTE=5n+2 ! BYTE=5n+3 ! BYTE=5n+4 ! = |
! ! ! ! ! 5n+5 !
e Fmm e ——— Fmm————————— D . tm————— +
BYTE 7 0 7 07 0 7 0 3 0

n = Number of complete 36-bit KL10 words processed since
the start of byte transfers.

These data formats are implemented via different microcode subroutines
which reside in the MICROPROCESSOR CONTROLLER's CRAM.

3.5 CBUS INPUT BUFFER

The CBUS INPUT BUFFER is a latched 38-bit (36 data bits + 2 parity
“its) register which 1is used to pass data from the CBUS to the
MVR/FMTR.

The CBUS may load the register whenever the MVR/FMTR is not reading
it. Likewise, the MVR/FMTR may read the register whenever the CBUS is
not loading it.

The contents of the CBUS INPUT BUFFER is normally strobed into the
MVR/FMTR by the microprocessor command, MPCBINTOFMTR (CBUS INPUT
BUFFER TO FORMATTER), at CLK2 time if the CONDITION CODE, CCCBUSAVAIL
(CBUS AVAILABLE) was asserted on the previous microcycle.

3.6 CBUS OUTPUT BUFFER

The CBUS OUTPUT BUFFER is a latched 38-bit (36 data bits + two parity
bits) register which 1is used to pass data from the MVR/FMTR to the
CBUS.

The CBUS may read the register whenever the MVR/FMTR is not loading

it. Likewise, the MVR/FMTR may load the register whenever the CBUS is
not reading it.

PAGE 59 OF 98

Odd parity for each half of the word is generated and loaded into the
register whenever data is passed to it.

The CBUS OUTPUT BUFFER is normally loaded from the MVR/FMTR by the
microprocessor command, MPFMTRTOCBOUT (FORMATTER TO CBUS OUTPUT
BUFFER), at CLK2 time if the CONDITION CODE, CCCBUSAVAIL was asserted
on the previous microcycle.

3.7 CBUS CONTROL LOGIC

The CBUS CONTROL LOGIC arbitrates the CBUS protocol, the PORT
MICROPROCESSOR protocol for starting and stopping the CBUS, and the
synchronization functions between the CBUS and the MVR/FMTR. The clock
timing for the PORT is also generated by this logic.

The CBUS is a synchronous high speed time division multiplexed
tri-state data bus. Each device on the CBUS has its own unique time
slot.

There are four cycles to a CBUS data transfer as shown by the below
diagram.

o +
SELECT ! !
___________ + gy My g ey g g g U S S L U S U Sy Sy S Sy S
o +
REQUEST ! !
____________________ + o e e
tmmm————— +
WAIT ! !
_____________________________ + e ————
Frmmm————— +
DATA ! !
______________________________________ + e ——————————

a) SELECT - The CBUS SELECT line for the PORT is asserted by the
KL10's DATA CHANNEL when the PORT's time slot occurs. The CBUS
CONTROL LOGIC senses when its SELECT line is active.

PAGE 60 OF 98

b) REQUEST - The CBUS REQUEST line is asserted by the PORT during this
cycle if it has detected its SELECT line and is ready to make a
data transfer. Otherwise, this CBUS data transfer cycle is ignored
by the PORT.

c) WAIT - This 1is a dummy cycle for the PORT. No CBUS function is
executed.

d) DATA - Data is placed on the CBUS data lines by either the KL10 or
the PORT (depending on the direction of transfer) during this
cycle. Otherwise, it is ignored by the PORT.

The PORT microcode starts the CBUS DATA CHANNEL by executing the
command, MPSTARTCBUS (START CBUS). If the transfer is to the KL10's
memory the PORT microcode also executes the command MPWRITEMEM (WRITE
TO KL10 MEMORY). These commands are latched by the CMVR MODULE for
execution by the PORT CBUS CONTROL when its CBUS slot is detected.

When the PORT's CBUS CONTROL LOGIC detects its CBUS SELECT line is
asserted and the CBUS READY line is negated it starts the CHANNEL by
asserting CBUS START and CBUS RESET during the subsequent DATA cycle,
It then clears the corresponding latches previously set by the PORT's
microcode., It also asserts CBUS CTOM at this time if the transfer is
to KL10 memory (the PORT MICROPROC executed an MPWRITEMEM command). It
does not clear this 1latch, however, until the data transfer is
complete.

When the CHANNEL is ready to transfer data over the CBUS, it asserts
CBUS READY during the PORT's DATA cycle.

After receiving CBUS READY, the PORT CBUS CONTROL asserts CBUS REQUEST
during its REQUEST cycle whenever it requires a data word from the
CHANNEL (device write), or whenever it requires that the CHANNEL
accept a data word (device read). The words are asserted on the CBUS
DATA lines during the PORT's DATA cycle following it corresponding
REQUEST cycle.

The PORT will be READY to transfer data across the CBUS whenever its
CBUS INPUT BUFFER 1is empty, or whenever 1its CBUS OUTPUT BUFFER is
full.

The CBUS INPUT BUFFER is emptied (transferred to the MVR/FMTR) by the
PORT microcode executing an MPCBINTOFMTR command when it senses the
CONDITION CODE, CCCBUSAVAIL and 1is prepared to accept data from the
CBUS.

PAGE 61 OF 98

The CBUS OUTPUT BUFFER is loaded (the MVR/FMTR contents transferred to
it) by the PORT microcode executing an MPFMTRTOCBOUT command when it
senses the CONDITION CODE, CCCBUSAVAIL and has data available for
transfer to the CBUS.

When the CHANNEL places the 1last word on the CBUS during a device
write operation, it asserts CBUS LAST WORD. In response, the PORT
CBUS CONTROL asserts CONDITION CODE, CCCBLSTWD.

When CCCBLSTWD is detected by the PORT's microcode. The microcode
responds by executing the command MPSTOPCBUS (STOP CBUS). This will
cause the PORT CBUS CONTROL to assert CBUS DONE during its next DATA

cycle. No more data requests will be made during subsequent REQUEST
cycles.

CBUS DONE causes the CHANNEL to terminate the operation. CBUS READY
is negated when the CHANNEL 1is prepared to begin another data
transfer.

The microcode may also execute the command MPSTORECBUS (STORE CBUS
STATUS INFORMATION) on the same microcycle that it executes an
MPSTOPCBUS command. This will cause the PORT CBUS CONTROL to also
assert CBUS STORE on the next DATA cycle. This forces the channel
status to be stored in the channel's assigned reset and status logout
area.

NOTE: The command MPSTORECBUS should never be asserted unless
MPSTOPCBUS is also asserted during the same microcycle.

Also, the microcode may execute the command MPSTOPCBUS and MPSTORECBUS
when it has transferred all data over the CBUS during a device read
operation, or when it detects a transfer error (CONDITION CODES
CCCBUSPARERR, CCCMVRPARCHK, CCCHANERR or CCPLIPARERR set) during a
read or write. This will also cause the PORT CBUS CONTROL to assert
CBUS DONE and CBUS STORE. Nc¢ meore data requests will be made during
subsequent REQUEST cycles.

3.8 CBUS OUT PARITY GENERATOR

The CBUS OUT PARITY GENERATOR generates odd parity for each 18-bit
half word which the MVR/FMTR passes to the CBUS OUTPUT BUFFER. The two
PARITY bits for a complete 36-bit word are latched into the buffer for
output to the CBUS.

PAGE 62 OF 98

3.9 CBUS IN PARITY CHECKER

The CBUS IN PARITY CHECKER checks each 18-bit half word which the
MVR/FMTR reads from the 36-bit CBUS INPUT BUFFER for odd parity. If
parity is incorrect CCCBUSPARRERR (CBUS PARITY ERROR) is generated and
passed to the MICROPROCESSOR CONTROLLER's CC MUX. This CONDITION CODE
remains latched until the MICROPROCESSOR CONTROLLER clears it.

When the PORT MICROPROCCESSOR senses that the condition code,
CCCBUSPARERR (CBUS PARITY ERROR), is set it should set CSR26 (DATA
PATH ERR) in the CSR REGISTER.

3.10 DATA INPUT MUX (DMUX)

The DMUX is a two input by 36-bit wide multiplexer which takes data
from either the CBUS INPUT BUFFER, or the CBUF and passes it to the
MVR/FMTR as a 36-bit word.

Its select path 1is controlled by the PORT MICROPROC's command,
MPCBUFTOFMTR (CBUF TO FORMATTER). When this command is executed the
CBUF path will be enabled. For all other conditions the CBIN path is

—ialaasa

F o e e +
100 CBIN00-35 351
! OR !
100 CBUF00-35 351
e +
100 MVRINOO-35 351
o e e +

3.11 PLI OUTPUT BUFFER

The PLI OUTPUT BUFFER is a latched 9-bit (8 data bits + one parity
bit) register which is used to pass data from the MVR/FMTR to the PLI
BUS.

PAGE 63 OF o8

The register is loaded by the PORT, either from the PLI OUTPUT BYTE of
the MVR/FMTR or the 8 least significant bits of the MBUS whenever it
has an 8-bit byte assembled and ready for transfer to the PLI BUS.
0Odd parity is generated and loaded into a holding flip flop when the
register is loaded.

The commands used to load this register by the PORT MICROPROC are
" MPCBUFTOPLOUT (CBUF TO PLI OUTPUT BUFFER) and MPFMTRTOPLOUT (FORMATTER
TO PLI OUTPUT BUFFER) . The register is loaded at CLK4 and CLK2 times
respectively of these commands.

Once the register is loaded the PORT may enable the tri-state outputs
of the register via an MPXMITPLI (TRANSMIT PLI) command, thus placing
the data on the PLI BUS.

3.12 PLI INPUT BUFFER

The PLI INPUT BUFFER is a latched 9-bit (8 data bits + one parity bit)
register which is used to pass data from the PLI BUS to the MVR/FMTR.

The register is 1loaded from the PLI BUS by CLK4, via an MPRECVPLI
(RECEIVE PLI) command, whenever an 8-bit byte is present for input
from the PLI BUS. Parity from the PLI BUS is loaded into a holding
flip flop each time the register is loaded.

Once the register 1is loaded the PORT may transfer the data to the
MVR/FMTR (four bits at a time) with the commands "MPPLINTOFMTR",
"MPLFTNIBFIRST", "MPSHIFTRIGHT", etc.

The PORT MICROPROCESSOR may also transfer the data as an 8-bit byte to
the 8 least significant bits of the MBUS for transfer to one of the
MICROPROCESSOR CONTROLLER'Ss internal storage media. This is
accomplished by the command, MPPLINTOCBUF (PLI INPUT BUFFER TO CBUF).

3.13 PLI PARITY OUT GENERATOR

The PLI PARITY OUT GENERATOR normally generates odd parity for every
8-bit data byte which the PORT passes to the PLI OUTPUT BUFFER. The
PARITY bit is latched into a holding flip flop for output to the PLI
BUS.

For diagnostic purposes the command, MPTESTPLIPAR (TEST PLI PARITY
GENERATOR), will force the PLI PARITY GENERATOR to generate even
parity.

PAGE 64 OF o8

3.14 PLI PARITY IN CHECKER

The PLI PARITY IN CHECKER checks every 8-bit data byte which the PORT
reads from the PLI INPUT BUFFER for odd parity. If parity is incorrect
CCPLIPARERR (PLI PARITY ERROR) is generated and passed to the
MICROPROCESSOR CONTROLLER's CC MUX. CCPLIPARERR remains latched until
the MOCROPROCESSOR CONTROLLER clears it.

When the PORT MICROPROCCESSOR senses that the condition code,

CCPLIPARERR, is set it should set CSR26 (DATA PATH ERR) in the CSR
REGISTER.

3.15 PLI CONTROL LOGIC

The PLI CONTROL LOGIC arbitrates the PLI INTERFACE protocol, the PORT
MICROPROCESSOR protocol for accessing the PLI INTERFACE, and the
synchronization functions between the PLI INTERFACE and the CMVR.

The PLI LINK CONTROL LINES, PLI SELECT and PLI CLOCK are also
generated by this logic.

PLI CLOCK is always generated at CLK3 time on every microcycle. The

remaining commands which are used to control the PLI CONTROL LOGIC are
generated by the PORT MICROPROCESSOR as follows:

1) PLIXLINK CONTROL 0 passes PLI LINK CONTROL 0 to the PLI BUS
2) PLIELINK CONTROL 1 passes PLI LINK CONTROL 1 to the PLI BUS
3) PLI LINK CONTROL 2 passes PLI LINK CONTROL 2 to the PLI BUS
4) PLI LINK CONTROL 3 passes PLI LINK CONTROL 3 to the PLI BUS

5) MPSELECTPLI (SELECT PLI) asserts the PLI SELECT line.

The PLI INTERFACE signals which are supported are as follows:

a) PLI DATA <7:0> f) PLI LINK CONTROL <3:0>
b) PLI SELECT g) PLI TRAN DATA PAR

c) PLI RCVR BUF A FULL h) PLI RECV DATA PAR

d) PLI RCVR BUF B FULL i) PLI CLOCK

e) PLI XMTR ATTN j) PLI INITIALIZE

PAGE 65 OF 98

The following PLI INTERFACE signals are not supported. The same
status information which is normally passed by these 1lines may be
obtained via the PLI DATA <7:0> lines when the PLI LINK CONTROL lines
are set to the corresponding selection code:

a) PLI RECEIVER STATUS
b) PLI TRANSMIT STATUS

A detailed description of the PLI INTERFACE protocol will not be
included in this specification. This information may be obtained from
the "PILA HARDWARE SPECIFICATION".

3.16 PLI SERIAL UP MUX (SUMUX)

The SUMUX is a two input multiplexer which takes 4-bit nibbles from
either the four LSBs, or the four MSBs of the B8-bit bytes stored in
the PLI INPUT BUFFER and passes them to the four LSB serial input
lines of the MVR/FMTR. The nibbles can then be left shifted to form
36-bit words.

The 4-bit nibbles from the SUMUX are also passed to the SDMUX (see
section PLI SERIAL DOWN MUX for details).

The four MSBs of the MVR/FMTR are shifted out and lost on each left
shift command.

Two 4-bit nibbles may be processed per microcycle, thus enabling one
byte from the PLI INPUT BUFFER to be input to the MVR/FMTR on one
microcycle.

The associated commands which control the SUMUX are MPPLINTOFMTR
(enables the SUMUX) and MPRHTNIBFIRST (selects the four LSBs of the
PLI INPUT BUFFER as the SUMUX inputs). The functions of these commands
are described in detail elsewhere in this specification,

The below diagram illustrates the bit mapping of this MUX.

e e +
13 PLIN3-0 0!
! OR !
17 PLIN7-4 4!
e +
13 or 0 PL3-0UP OR PL7-4UP 7 or 4!
e — +

PAGE 66 OF 98

3.17 PLI SERIAL DOWN MUX (SDMUX)

The SDMUX is a two input multiplexer which takes 4-bit nibbles from
either the SUMUX or the four LSBs of the MVR/FMTR parallel outputs
(MVROUT36-39) and passes them to the four MSB serial input lines of
the MVR/FMTR. The nibbles can then be right shifted to form 36-bit
words.

By shifting MVROUT36-39 back into the four MSBs of the MVR/FMTR data
may be wrapped around indefinitely on right shift commands. This
feature enables repetitive information to be retained and shifted to
any desired position within the MVR/FMTR.

Two 4-bit nibbles may be processed per microcycle, thus enabling one
byte from the PLI INPUT BUFFER to be input to the MVR/FMTR on one
microcycle.

The associated commands which control the SDMUX are MPPLINTOFMTR
(selects the output of the SUMUX for 1input to the SDMUX) and
MPSHIFTRIGHT (enables the SDMUX). The functions of these commands are
described 1n detail elsewhere in this specification.

The below diagram illustrates the bit mapping of this MUX.

ey
13 OR 7 PL3-0UP OR PL7-4UP 0 OR 4!
! OR !
136 MVROUT36-39 391
o e e e +
13 OR 7 PL3-0DN OR PL7-4DN 0 OR 4!
o e +
3.18 PLI OUTOUT MUX (PMUX)

The PLI OUTPUT MUX (PMUX) is a two input by 8-bit wide multiplexer
which takes data from either the MVR/FMTR's 8-bit PLI OUTPUT path, or
the eight least significant bits of the CBUF and passes it to the PLI
OUTPUT BUFFER as 8-bit bytes.

The the CBUF input leg of the PMUX 1is selected by the command,
MPCBUFTOPLOUT (CBUF TO PLI OUTPUT BUFFER). When this command is
executed by the PORT MICROPROCESSOR, MBUS D28-D35 are passed to the
PLI OUTPUT BUFFER, via the CBUF,. For all other conditions the PLOUT
OUTPUT BUFFER of the MVR/FMTR is passed to the PLI OUTPUT BUFFER.

PAGE 67 OF o8

The output of the four MSBs of the PMUX may be forced to "zeros",
regardless of the contents of the MVR/FMTR's PLI OUTPUT path. This
function is executed by the command, MPZEROLFTNIB (ZERO LEFT NIBBLE).
This feature is useful for CORE DUMP mode, where the four MSBs of each
fifth byte must be "zero".

The below diagram illustrates the bit mapping of this MUX.

F o e e ——————————— +
17 MVRPLOUT7-0 0!
! OR !
128 CBUF28-35 351
o e e ——— +
17 PLOUT7-0 0!
o e e —————————— o +

3.19 CMVR TO MICROPROC MUX (CMUX)

The CMVR TO MICROPROC MUX (CMUX) 1is a two input by 36-bit wide
multiplexer which interfaces to the PORT'S internal MBUS., It enables
the PORT MICROPROCESSOR to read the following registers.

1) MVR/FMTR - as a 36-bit word register. The respective MICROPROC
command is MPENACMUX (enables the CMUX). -

2) PACKET BUFFERS, via the PLI INPUT BUFFER, as 8-bit bytes. The
PLI INPUT BUFFER is input to the 8 least significant bits of the
CMUX. The 28 most significant bits are forced to "0O",. The
respective MICROPROC commands are MPENACMUX (enables the CMUX)
and MPPLINTOCMUX (selects the PLI INPUT BUFFER as input to the 8
LSBs of the CMUX).

The below diagram illustrates the bit mapping of this MUX.

e e bt +
100 MVROUT00-27 27128 MVROUT28-35 35!
! OR ! OR !
100 FORCE ALL "O0"S 271417 PLIN7-0 0!
T T P ——— R +
100 MBUS D00-27 27128 MBUS D28-35 35!
o el LT TP R —— +

PAGE 68 OF 98

3.20 PARITY PREDICTOR

It is not possible to propagate correct parity through the MVR/FMTR
gince it consists of a series of serial shift registers which may
change the data format in several different ways.

The PARITY PREDICTOR is a circuit which enables the PORT
MICROPROCESSOR to verify data integrity through the MVR/FMTR by a
combination of hardware and microcode functions which predict correct
parity.

The hardware portion of the PARITY PREDICTOR consists of a J-K FLIP
FLOP, two 4-bit parity checkers and some related control logic. The
J-K FLIP FLOP is toggled each time a parity bit (1) is detected at
either the CBUS or the PLI INTERFACE, regardless of the direction of
data transfer.

The output of the J-K FLIP FLOP is monitored by the MICROPROCESSOR as
the condition code, CCMVRPARCHK.

Several MICROPROCESSOR COMMANDS are wused to control the PARITY
PREDICTOR. Most of them are also simultaneously used for other
functions and, therefore, are transparent to the microcode. Two

unique COMMANDS are required, however, in order to properly control
the PARITY PREDICTOR. They are as follows:

v édw a b - & bt b b AN S & bav - -~

1) MPINDSTCOMP (INDUSTRY COMPATIBLE MODE) sets the PARITY PREDICTOR to
operate correctly in the INDUSTRY COMPATIBLE MODE. It enables the
PARITY PREDICTOR to calculate correct parity for CBUS D32-D35,
which are not passed through the MVR/FMTR in INDUSTRY COMPATIBLE
MODE. The value of this parity 1is then subtracted from the value
of the parity for the entire CBUS WORD. This command must be
executed in INDUSTRY COMPATIBLE MODE when transferring data from
the CBUS to the PLI INTERFACE. Otherwise, the results of the
PARITY PREDICTOR will not be correct.

2) MPCLRPARCHK (CLEAR PARITY CHECK) clears CCMVRPARCHK

It is possible to develop different microcode algorithms which can
accurately predict what CCMVRPARCHK should equal, based on the number
of parity bits detected at the CBUS and PLI INTERFACES during data
transfers. These microcode algorithms are slightly different for each
of the three data format modes.

If CCMVRPARCHK does not equal the correct state whenever it is checked

by the microcode, then an error has most likely occurred during a data
transfer across the MVR/FMTR.,

PAGE 69 OF 98

When the PORT MICROPROCCESSOR senses that the condition code,
CCMVRPARCHK (DATA MOVER PARITY CHECK), does not equal the correct
state it should set CSR26 (DATA PATH ERR) in the CSR REGISTER.

There are six different microcode algorithms required to accurately

predict correct parity for all three data format modes. They sense for
the following conditions:

a) HIGH DENSITY (CBUS to PLI INTERFACE) - CCMVRPARCHK will always be
toggled an odd number of times for every two word transfer from the
CBUS to the PLI INTERFACE

b) HIGH DENSITY (PLI INTERFACE to CBUS) - CCMVRPARCHK will always be

toggled an odd number of times for every two word transfer from the
PLI INTERFACE to the CBUS,

c) INDUSTRY COMPATIBLE (CBUS to PLI INTERFACE) - CCMVRPARCHK will
always be toggled an even number of times for every one word
transfer from the CBUS to the PLI INTERFACE. The command,
MPINDSTCOMP, must be executed for every transfer in order to
guarantee correct results.

d) INDUSTRY COMPATIBLE (PLI INTERFACE to CBUS) - CCMVRPARCHK will
always be toggled an even number of times for every one word
transfer from the PLI INTERFACE to the CBUS.)

e) CORE DUMP (CBUS to PLI INTERFACE) - CCMVRPARCHK will always be

toggled an even number of times for every two word transfer from
the CBUS to the PLI INTERFACE.

f) CORE DUMP (PLI INTERFACE to CBUS) - CCMVRPARCHK will always be

toggled an even number of times for every two word transfer from
the PLI INTERFACE to the CBUS.

4.0 PORT MICROPROCESSOR
The PORT MICROPROCESSOR consists of:

a) The MICROPROCESSOR ALU which is physically located on the EBUS
INTERFACE MODULE.

The ALU is discussed in detail in sections "ARITHMETIC LOGIC UNIT"
and "CONSTANT MUX". Therefore, it will not be further discussed
here.

PAGE 70 OF 98

b) A MICROPROCESSOR-CONTROLLER which may be sub-divided into:

1) One AM2910 MICROSEQUENCER, along with the necessary control
input and output functions.

2) A 4K bit deep by 60 bit wide CONTROL STORE RAM, along with a
load and read/verify path from the MBUS.

3) A 60 bit wide MICROCODE CONTROL REGISTER which is used to latch
the current microword being executed. ~

c) A local storage memory 1lK-word deep by 36-bits wide which
interfaces to the MBUS and may be read or written by the
MICROPROCESSOR.,,

d) MICROPROC CONTROL LOGIC which is used to control all of the various
timing functions of the PORT MICROPROCESSOR.

4.1 CONDITION CODE MUX

The CC MUX is a 16 input by one-bit wide multiplexer which inputs the
16 CONDITION CODES from the various control logics of the PORT into
the CC input line of the AM2910 MICROSEQUENCER.

The PORT MICROPROCESSOR selects one of the sixteen possible CONDITION
CODES by executing the specific code in the MWSKIPFLD<01-04> field
which causes the desired CONDITION CODE to be passed through the CC
MUX to the input of the AM2910 SEQUENCER's CC line. On the same
microcycle it enables the CC input 1line by executing the command,
MWCCENA,

The CC MUX decodes only MWSKIPFLD <01-04>, MWSKIPFLDOO is not decoded
and may be equal to either "O0" or "1". The decoded function selects

one of the 16 CONDITION CODES from the CC MUX for input to the AM2910.
See the following section for details.

4.1.1 CONDITION CODE DEFINITIONS

The following table describes the function of each of the CONDITION
CODES which are input into the AM2910 MICROSEQUENCER from the CC MUX.

PAGE 71 OF 98

There are five CONDITION CODES which originate from the EBUS CONTROL
LOGIC and are used by the PORT MICROPROCESSOR to determine the state
of the EBUS. They are as follows:

1) MWSKIPFLD = 01 Or 21 - Select CCGRNTCSR (CSR REGISTER GRANTED).
informs the PORT MICROPROC that it may access the CSR REGISTER. It
will be asserted whenever the MICROPROC CONTROLLER requests access
of the CSR and the KL10 is not simultaneously accessing it.

2) MWSKIPFLD = 10 or 30 - Select CCEBUSRQST (EBUS REQUEST). If the
PORT is in the "MPROC RUN" state (CSR32 set) this CONDITION CODE
will be asserted whenever the EBUS executes a DATAO or DATAI. The
PORT MICROPROCESSOR examines the CONDITION CODE and determines the
correct action to implement.

3) MWSKIPFLD = 03 or 23 - Select CCCSRCHNG (CSR REGISTER CHANGED).
This CONDITION CODE will be asserted whenever the KL10 writes the
CSR via a CONO, or an EBUS PARITY ERROR is detected. It will be
de-asserted whenever the PORT MICROPROC reads the CSR (MPREADCSR
asserted). The function of the CONDITION CODE is to inform the
PORT MICROPROC whenever the KL10 has changed the contents of the
CSR.

4) MWSKIPFLD = 04 or 24 - Select CCEBPARERR (EBUS PARITY ERROR). This
CONDITION CODE will be asserted whenever an EBUS PARITY ERROR is
detected.

5) MWSKIPFLD = 11 or 31 - Select CCINTRACTIVE (INTERRUPT ACTIVE).
This CONDITION CODE indicates that an interrupt request on PI LEVEL
01 thru 07 which was previously executed by the PORT MICROCODE 1is
still pending process by the KL1O0.

There are nine CONDITION CODES which originate on the CBUS/DATA MOVER
INTFC MODULE (CMVR) and are used by the PORT MICROPROCESSOR to
determine the state of the CMVR. They are as follows:

1) MWWSKIPFLD = 06 or 26 - Select CCRCVRBUFBFUL (RECEIVER BUFFER "B"
FULL). This CONDITION CODE originates from the PLI INTERFACE and
will be asserted whenever RECEIVE BUFFER "B" from the PACKET BUFFER
MODULE is loaded with a CI PACKET.

2) MWSKIPFLD = 05 or 25 - Select CCRCVRBUFAFUL (RECEIVER BUFFER "A"
FULL). This CONDITION CODE originates from the PLI INTERFACE and
will be asserted whenever RECEIVE BUFFER "A" from the PACKET BUFFER
MODULE is loaded with a CI PACKET.

PAGE 72 OF 98

3) MWSKIPFLD = 07 or 27 - Select CCXMTRATTN (TRANSMITTER ATTENTION).
This CONDITION CODE originates from the PLI INTERFACE and will be
asserted whenever the TRANSMIT BUFFER of the PACKET BUFFER MODULE
requires attention (see the PLI SPEC for details).

4) MWSKIPFLD = 14 or 34 - Select CCCBUSPARERR (CBUS PARITY ERROR).
This CONDITION CODE will be asserted whenever a parity error is
detected in a word read from the CBUS. The CONDITION CODE is
latched until it 1is cleared by a command from the MICROPROC
CONTROLLER.

5) MWSKIPFLD = 13 or 33 - Select CCMVRPARCHK (MOVER PARITY CHECK).
This CONDITION CODE will be toggled whenever a "1" parity bit is
sensed from either the CBUS, or the PLI INTERFACE during DMA DATA
TRANSFERS between these busses. By comparing the actual value of
this CONDITION CODE with a predicted value it is possible for the
MICROPROCESSOR to determine whether or not a parity error occurred
during data transfers through the MVR/FMTR.

6) MWSKIPFLD = 15 or 35 - Select CCPLIPARERR (PLI PARITY ERROR). This
CONDITION CODE will be asserted whenever a parity error is detected
in a word read from the PLI INTFC. The CONDITION CODE is latched
until it is cleared by a command from the MICROPROC CONTROLLER.

~J
L

MWSKIPFLD = 16 or 36 - Select CCCHANERR {(CBUS CHANNEL ERROR). This
CONDITION CODE will be asserted whenever the CBUS ERROR signal is
asserted on the CBUS INTERFACE. The CONDITION CODE is latched
until it is cleared by a command from the MICROPROC CONTROLLER.

8) MWSKIPFLD = 17 or 37 - Select CCCBLSTWD (CBUS LAST WORD). This
CONDITION CODE will be asserted whenever the CBUS LAST WORD signal
is asserted on the CBUS INTERFACE. The CONDITION CODE is latched
until it is cleared by a command from the MICROPROC CONTROLLER.

9) MWSKIPFLD = 00 or 20 - Select CCCBUSAVAIL (CBUS AVAILABLE). This
CONDITION CODE will be asserted whenever:

a) the CBUS INPUT BUFFER is available to receive a word from the
CBUS

b) the CBUS OUTPUT BUFFER is available to be loaded with a word for
transfer to the CBUS

c) the CBUS is not currently active (no data transfers occurring)
There are two CONDITION CODES which originate from the MICROPROCESSOR

ALU and are used by the PORT MICROPROCESSOR to determine the state of
the last arithmetic operation which transpired. They are as follows:

PAGE 73 OF 98

1) MWSKIPFLD = 02 or 22 - Select CCFEQO (ALU FUNCTION = 0). This
CONDITION CODE indicates that the result of the last ALU operation
produced all "ZEROS".

2) MWSKIPFLD = 12 or 32 - Select CCMBSIGN (ALU SIGN BIT SET). This
CONDITION CODE indicates that the SIGN (MSB or bit 00) was set as
the result of the last ALU operation.

4.2 MICROSEQUENCER

The MICROSEQUENCER 1is an AM2910 MICROPROCESSOR SEQUENCE CONTROLLER
which is wused to select the address of the next MICROWORD to be
executed., The PORT MICROPROCESSOR controls the AM2910 from its CRAM
CONTROL WORD by executing the following commands via the
MWCTRLFLD<00-03> (MICROSEQR CONTROL INPUT FIELD <I0-I3>) - This field
is the INSTRUCTION INPUT FIELD (I0-I13) for the AM2910 MICROSEQUENCER.
Its function is defined by "THE AM2900 FAMILY DATA BOOK" as follows:

OCTAL CODE MNEMONIC
MWCTRLFLD<00:03> = 0 JZ
MWCTRLFLD<00:03> = 1 CJs
MWCTRLFLD<00:03> = 2 JMAP
MWCTRLFLD<00:03> = 3 CJp
MWCTRLFLD<00:03> = 4 PUSH
MWCTRLFLD<00:03> = § JSRP
MWCTRLFLD<00:03> = 6 CJav
MWCTRLFLD<00:03> = 7 JRP
MWCTRLFLD<00:03> = 10 RFCT
MWCTRLFLD<00:03> = 11 RPCT
MWCTRLFLD<00:03> = 12 CRTN
MWCTRLFLD<00:03> = 13 CJpP
MWCTRLFLD<00:03> = 14 LDCT
MWCTRLFLD<00:03> = 15 LOOP
MWCTRLFLD<00:03> = 16 CONT
MWCTRLFLD<00:03> = 17 TWB

The MWCCENA (CONDITION CODE ENABLE) field is also used to control the
CONDITION CODE ENABLE bit to the AM2910 MICROSEQUENCER (see "THE
AM2900 FAMILY DATA BOOK"). It is decoded as follows:

MWCCENA
MWCCENA

0 - Condition always met
1 - Condition met only if input from CC MUX is true

PAGE 74 OF 98

The SEQUENCER's implementation in this design 1is standard and is
clearly illustrated by the detailed block diagram. Therefore, its
operation will not be discussed in detail (see "THE AM2900 FAMILY DATA
BOOK" for specific details). .

NOTE: The first microword executed by the PORT MICROCODE upon initial
start-up (the KL10 setting CSR32) must be a non conditional
jump. This guarantees that the AM2910's MICROPROGRAM COUNTER
REGISTER is correctly loaded on the first executed instruction.

4.3 RAM ADDRESS REGISTER

The RAM ADDRESS REGISTER is used to load and 'read/verify the contents
of the CONTROL STORE RAM (CRAM) when the PORT is not running (CSR32
reset).

It selects the next address to be loaded into, or read from the CRAM.
It is a 13-bit register which is loaded from MBUS D01-D13 whenever a
DATOLOADRAR is executed from the EBUS INTERFACE (DATAO with EBUS
D00 equal to 1).

The CRAM is a 60-bit wide word which must be loaded and read/verified
across the 36-bit wide MBUS. Therefore, it is loaded and read as
30-bit half words at a time. The LSB of the RAM ADDRESS REGISTER
selects the half word to be accessed. The half word selection is made
as follows:

RAR12 0 - Access the least significant half

RAR12 1l - Access the most significant half

The register cannot function as an up/down counter. Therefore, it must
be re-loaded each time the HOST (KL10) wants to access another
location in the CONTROL STORE RAM.

In order to load each 30-bit half word of the CRAM the KL10 must
execute two commands; DATOLOADRAR and DATOLOADMW respectively

In order to read each 30-bit half word of the CRAM the KL10 must also
execute two commands; DATOLOADRAR and DATIREADMW respectively.

The RAR is also used to hold the starting CRAM address. The first

CRAM address is always fetched from this register when the PORT
MICROPROCESSOR is initially started (CSR32 set).

PAGE 75 OF 98

When the PORT is being operated in SINGLE CYCLE mode (CSR22 set) the
KL10 must re-load the RAR with the next address to be executed at the
end of each single cycle. The next address is contained in the LAR
(see section LATCH ADDRESS REGISTER).

See section "EBUS CONTROL LOGIC" of this specification for details of
the above commands.

The register can only be 1loaded by the HOST (KL10). It cannot be
read.

The below diagram illustrates the bit mapping of the RAR REGISTER.

01 MBUS DO01-13 13
o e ——————————— +
100 RAR00-12 12!
e e +
4.4 ADDRESS MUX

The ADDR MUX is a two input by 12-bit wide multiplexer which allows
either the AM2910 MICROSEQUENCER, or the 12 most significant bits of
the RAM ADDRESS REGISTER to select the next CRAM address.

In the "MPROC RUN" state (CSR32 set) the next address is normally
fetched from the AM2910's "Y" outputs. '

The one exception to the above rule is for the first address. The
first address to be executed when "MPROC RUN" (CSR32) is initially set
is always fetched from the RAR.

When the PORT 1is not running (CSR32 reset) the starting address is
always fetched from the 12 most significant bits of the RAM ADDRESS
REGISTER.

The below diagram illustrates the bit mapping of THE ADDR MUX.

e e +
100 NEXT MICROWORD ADDRESS 11!
! OR !
100 RARO00-11 11!
o e e +
100 RAM ADDRESS 00-11 11!
e +

PAGE 76 OF o8

Note that RAR12 is not passed through the MUX, but instead is directly
routed to the MICROPROC CONTROL LOGIC for half word selection
decoding.

4.5 LATCH ADDRESS REGISTER

The LATCH ADDRESS REGISTER (LAR) is a diagnostic tool. Its function is
to latch the address of the MICROWORD CRAM location on every
microcycle.

The KL10 may read the LAR over the EBUS by setting "DIAG SEL LAR"
(CSR21) and executing a DATAI when the PORT is not running.

If the PORT MICROPROCESSOR halts the LAR may contain either the last
CRAM address executed, or the next CRAM address to be executed,
depending on the reason for the halt. The actual address which is
latched into the LAR is determined by the state of "DIAG SINGLE CYCLE"
(CSR22) as follows:

a) If the PORT MICROPROCESSOR is running (CSR32 set) and is not being
single cycled ("DIAG SINGLE CYCLE" not set) the LAR will contain
the address of the 1last MICROWORD which was executed, should the
PORT MICROPROCESSOR halt for any reason.

b) If the PORT MICROPROCESSOR is being run in the "SINGLE CYCLE" state
("DIAG SINGLE CYCLE set) it will automatically halt at the
completion of each microcycle. The LAR will contain the address of
the next MICROWORD which is to be executed. The KL10 must read
this address and load it back into the "RAM ADDRESS REGISTER" (RAR)
before executing the next single cycle (setting CSR32 again). This
will enable the PORT MICROPROCESSOR to execute the next microcycle
when it is re-started.

Reading the LAR will cause the current data in the EBUF to be
destroyed. Therefore, the KL10 should take the precaution to read the
EBUF before it reads the LAR in order to preserve any valid data which
may be stored there. Once it reads the LAR it should then restore the
preserved data to the EBUF.

The LAR is a 13-bit register. The 12 MSBs are loaded from CRAM ADDR
00-11. The LSB is directly loaded with the value of RAR12. The load
function occurs at CLK1 time of every microcycle when the PORT is not
in the "SINGLE CYCLE" state, or CLK 4 time of every microcycle when
the PORT is in the "SINGLE CYCLE" state.

PAGE 77 OF 98

The LAR's outputs are mapped to MBUS DO01-13 respectively. All other
MBUS bits are undefined during a read LAR function.

The below diagram illustrates the bit mapping of the LAR

00 CRAM ADDR 00-11 (RAR12) 11 (RAR12)
e — - = — +
100 LAR00-12 (MBUS D01-13) 12!
B et bt it +

4.6 CONTROL STORE RAM

The CONTROL STORE RAM (CRAM) IS A 4K-word deep by 60-bit wide

tri-stated input/output 55 ns access time ram memory. Its function is
to store the PORT MICROPROCESSOR'S microcode.

The CRAM is initially 1loaded and read/verified, 1/2 word at a time,
from the 30 least significant bits of the MBUS when the PORT is not
running (CSR32 not set).

It requires four EBUS transfers to load one CRAM location. The
sequence of these transfers is as follows:

a) Load the RAM ADDRESS REGISTER (RAR) with the right half address of
the desired CRAM location. This is done by executing a DATAO with
EBUS D00 equal to 1 and EBUS DOl - EBUS D13 equal to the desired
right half address (DATOLOADRAR). The remaining EBUS bits are
undefined.

b) Load the right half of the CRAM with the desired CRAM data. This
is done by executing a DATAO with EBUS D00 equal to 0 and EBUS D06
- EBUS D36 equal to the desired right half data (DATOLOADMW). The
remaining EBUS bits are undefined.

c) Load the RAM ADDRESS REGISTER (RAR) with the left half address of
the desired CRAM location. This is done by executing a DATAO with
EBUS D00 equal to 1 and EBUS DOl - EBUS D12 equal to the desired
left half address (DATOLOADRAR). The remaining EBUS bits are
undefined.

d) Load the left half of the CRAM with the desired CRAM data. This
is done by executing a DATAO with EBUS D00 equal to 0 and EBUS D06
- EBUS D36 equal to the desired left half data (DATOLOADMW). The
remaining EBUS bits are undefined.

PAGE 78 OF o8

At RUNCLK1 (CLK1) time of every microcycle, when the PORT
MICROPROCESSOR is running, the 1location currently being addressed by
the AM2910 is normally strobed into the 60-bit wide CONTROL STORE
REGISTER for execution.

During initial MICROPROCESSOR start-up, or during "SINGLE CYCLE" mode,
however, the first CRAM address is always fetched from the RAM ADDRESS
REGISTER instead of the AM2910,

NOTE: If a CRAM PARITY or an MBUS ERROR occurs while the
microprocessor 1is running data integrity is no longer
guaranteed for any CRAM location. The entire microcode should
be re-loaded before the PORT MICROPROCESSOR is re-started.

4.7 CONTROL STORE REGISTER

The CONTROL STORE REGISTER is a 60-bit wide register which is 1loaded
with the current MICROWORD being addressed from the CONTROL RAM at
RUNCLK1 (CLKl) time of every PORT MICROPROCESSOR cycle. RUNCLK2
(CLK2), RUNCLK3 (CLK3) and RUNCLK4 (CLK4) then execute the functions
specified by the MICROWORD (see the following section for individual
bit definitions).

NOTE: RUNCLK1l, RUNCLK2, RUNCLK3 and RUNCLK4 are gated outputs of CLKI1,
CLK2, CLK3 and CLK4 respectively. They are active only when the
MICROPROCESSOR is in the "MPROC RUN" state (CSR32 set).

4.7.1 MICROWORD FIELD DEFINITIONS

The following table defines the individual field definitions of the
PORT MICROPROCESSOR'S MICROWORD:

a) CRAM00:11 = MWJMPFLD<00-11> (MICROSEQR JUMP ADDRESS) - Bits 00-03
of this field are directly input to bits DO0-D0O3 of the AM2910
SEQUENCER. Bits 04-11 of this field are indirectly input, through
the JMP MUX, to bits D04-D11 of the AM2910 SEQUENCER., When the
MWSKIPFLD is not equal to 05 (SELMBUSFLD) the MWJMPFLD field will
be used as the 12-bit JUMP ADDRESS by the "D" inputs of the AM2910.
When the MWSKIPFLD is equal to 05 (SELMBUSFLD), then bits 00-03 of
the MWIMPFLD field will constitute the four MSBs and bits MBUS
D16-D23 will constitute the eight LSBs of the AM2910s JUMP ADDRESS.

PAGE 79 OF 98

b)

c)

d)

e)

£)

CRAM12 = MWPAR (MICROWORD PARITY BIT) - This is the parity bit of
the MICROWORD. The value of this bit should be chosen for each
MICROWORD such that the word contains odd parity. MICROWORDS with
even parity will cause a CRAM PARITY ERROR to be generated. Parity
is not automatically assigned by the hardware. Correct parity must
be loaded into each CRAM location by the KL10 when the CRAM is
initially loaded.

CRAM13 = MWOUTPUTENA (ALU DATA OUTPUT ENABLE BIT) - This bit is the
OUTPUT ENABLE bit to the AM2901 ALU tri-state "Y" outputs. When
this bit equals "1" the "Y" outputs of the AM2901 ALU will be
asserted on the MBUS (see "THE AM2900 FAMILY DATA BOOK").

CRAM14:23 = MWMGCFLD<00-09> (MAGIC NUMBER FIELD) - This FIELD is
used, in conjunction with other MICROWORD CONTROL FIELDS, to
control the EBUS and the CMVR INTERFACES, to input constants into
the internal AM2901 ALU RAM, and to select the address of the LOCAL
RAM STORAGE MEMORY (see MWBUSCTLFLD, MWSKIPFLD and MWRAMODE for
more details):

CRAM24:26 = MWSORCEFLD<00-02> (ALU SOURCE INPUT FIELD (I12-10)) -
This field is the SOURCE INPUT FIELD (I2-I0) of the AM2901 ALU.
Its function is defined by "THE AM2900 FAMILY DATA BOOK" as
follows:

OCTAL COD
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<00:02>
MWSORCEFLD<Q0:02>

o
n

DOUNNN Y)Y
NO P P WO WO

CRAM27:29 = MWFUNCTFLD<00-02> (ALU FUNCTION FIELD (I5-I3)) - This
field is the FUNCTION INPUT FIELD (15-13) of the AM2901 ALU. Its
function is defined by "THE AM2900 FAMILY DATA BOOK" as follows:

OCTAL CODE SYMBOL
MWFUNCTFLD<00:02> = 0 R+ §
MWFUNCTFLD<00:02> = 1 S - R
MWFUNCTFLD<00:02> = 2 R - S
MWFUNCTFLD<00:02> = 3 R or S
MWFUNCTFLD<00:02> = 4 R or S

PAGE 80 OF 98

g)

h)

i)

i)

k)

MWFUNCTFLD<00:02> = 5 R or S
MWFUNCTFLD<00:02> = 6 R xor S
MWFUNCTFLD<00:02> = 7 R xor S

CRAM30:32 = MWDESTFLD<00-02> (ALU DESTINATION OUTPUT FIELD (I18-16))
- This field is the DESTINATION FIELD (I8-16) inputs to the AM2901
ALU., 1Its function is defined by "THE AM2900 FAMILY DATA BOOK" as
follows:

OCTAL CODE MNEMONIC
MWDESTFLD<00:02> = 0 OREG
MWDESTFLD<00:02> = 1 NOP
MWDESTFLD<00:02> = 2 RAMA
MWDESTFLD<00:02> = 3 RAMF
MWDESTFLD<00:02> = 4 RAMQD
MWDESTFLD<00:02> = 5 RAMD
MWDESTFLD<00:02> = 6 RAMQU
MWDESTFLD<00:02> = 7 RAMU
CRAM33 = MWCCENA (CONDITION CODE ENABLE BIT) - This bit is the

CONDITION CODE ENABLE bit to the AM2910 MICROSEQUENCER (see "THE

AM2S00 FAMILY DATA BOOR").

MWCCENA = 0 - Condition always met
MWCCENA = 1 - Condition met only if input from CC MUX is true

CRAM34 = MWRAMODE (MICROWORD LOCAL STORAGE RAM MODE BIT) - This bit
controls whether LOCAL or GLOBAL addressing will be used to address
the LOCAL STORAGE RAM.,

When MWRAMODE = 0 (GLOBAL ADDRESSING) MWMGCFLD<00:09> are used as
the full address selection value for the LOCAL RAM STORAGE MEMORY.

When MWRAMODE = 1 (LOCAL ADDRESSING) MWMGCFLD<05:09> are used as
the 5 low order address selection bits for the LOCAL RAM STORAGE
MEMORY. SADREG<00:04> are wused as the 5 high order address
selection bits for the LOCAL RAM STORAGE MEMORY.

CRAM35:38 = MWPORTAFLD<00-03> (ALU PORT "A" (A3-A0) ADDRESS FIELD)
- This field is the PORT "A" (A3-A0) ADDRESS FIELD inputs to the
AM2901 ALU (see "THE AM2900 FAMILY DATA BOOK")

CRAM39:42 = MWPORTBFLD<00-03> (ALU PORT "B" (B3-B0) ADDRESS FIELD)

- This field is the PORT "B" (B3-BO) ADDRESS FIELD inputs to the
AM2901 ALU (see "THE AM2900 FAMILY DATA BOOK")

PAGE 81 OF 98

1) CRAM43:47 = MWSKIPFLD<00-04> (MICROWORD SKIP FIELD) - This field is

decoded by the MICROPROC COND SKIP FIELD DECODER and the CONDITION
CODE MUX (CC MUX)

The CC MUX decodes only MWSKIPFLD <01-04>, MWSKIPFLDOO is not
decoded and may be equal to either "0" or "1". The decoded
function selects one of the 16 CONDITION CODES from the CC MUX for
input to the AM2910 as follows:

MWSKIPFLD = 00 or 20 - Select CCCBUSAVAIL

MWSKIPFLD = 01 Or 21 - Select CCGRNTCSR

MWSKIPFLD = 02 or 22 - Select CCFEQLO

MWSKIPFLD = 03 or 23 - Select CCCSRCHNG

MWSKIPFLD = 04 or 24 - Select CCEBPARERR

MWSKIPFLD = 05 or 25 - Select CCRCVRBUFAFUL

MWSKIPFLD = 06 or 26 - Select CCRCVRBUFBFUL

MWSKIPFLD = 07 or 27 - Select CCXMTRATTN

MWSKIPFLD = 10 or 30 - Select CCEBUSRQST

MWSKIPFLD = 11 or 31 - Select CCINTRACTIVE

MWSKIPFLD = 12 or 32 - Select CCMBSIGN

MWSKIPFLD = 13 or 33 - Select CCMVRPARCHK

MWSKIPFLD = 14 or 34 - Select CCCBUSPARERR

MWSKIPFLD = 15 or 35 - Select CCPLIPARERR

MWSKIPFLD = 16 or 36 - Select CCCHANERR

MWSKIPFLD = 17 or 37 - Select CCCBLSTWD

PAGE 82 OF 98

The MICROPROC COND SKIP FIELD DECODER decodes only MWSKIPFLD <00,
02, 03, 04>. MWSKIPFLDOl is not decoded and may be equal to either
"0" or "1". These functions will be executed whenever the
MWSKIPFLD is equal to the following values:

MWSKIPFLD = 20 or 30 (LOADSADREG). Causes the LOCAL STORAGE
ADDRESS REGISTER to be loaded by the contents of the MWMGCFLD
<05-09>,

MWSKIPFLD = 21 or 31 (SELMBUSFLD). Causes the JMP MUX to pass
the contents of MBUS D16-D23 to the corresponding "D" inputs
of the AM2910 MICROSEQUENCER. MWJMPFLD00-03 are still passed
to the four most significant bits of the "D" inputs.

MWSKIPFLD = 22 or 32 (RDLOCALMEM). Causes the contents of the
LOCAL RAM STORAGE MEMORY location currently being addressed to
be placed on the MBUS.

MWSKIPFLD = 23 or 33 (LDLOCALMEM). Causes the contents of the
MBUS to be loaded into the LOCAL RAM STORAGE MEMORY location
currently being addressed,

MWSKIPFLD = 24 or 34 (SELCNSTFLD). Causes the CNST MUX to
pass the contents of MWMGCFLD00-09 to the 10 least significant
and the 10 most significant bits of the AM2901 ALU "D" inputs,

m) CRAM48:50 = MWBUSCTLFLD<00-02> (MICROPROCESSOR BUS CONTROL FIELD) -

This field is used by the MICROPROCESSOR, in conjunction with the
MWMGCFLD field, to control the various functions of the EBUS and
the CMVR INTERFACES. The field is decoded as follows:

When MWBUSCTLFLD 0 (no function)

When MWBUSCTLFLD 1 (SELECT PLI FIELD)

MWMGCFLDO00-01 = No function

MWMGCFLD02 = PLI LINK CONTROL 0. Passes PLI LINK CONTROL 0 to
the PLI BUS

MWMGCFLDO3 = PLI LINK CONTROL 1. Passes PLI LINK CONTROL 1 to
the PLI BUS

MWMGCFLD0O4 = PLI LINK CONTROL 2. Passes PLI LINK CONTROL 2 to
the PLI BUS

PAGE 83 OF o8

When

When

MWMGCFLD05 = PLI LINK CONTROL 3. Passes PLI LINK CONTROL 3 to
the PLI BUS

MWMGCFLDO06

MPSELECTPLI. Asserts the PLI SELECT line.

MWMGCFLDO7 MPXMITPLI. Enables the tri-state outputs of the
PLI OUTPUT BUFFER onto the PLI BUS.

MWMGCFLDO8 MPRECVPLI . Loads the contents of the PLI BUS
into the PLI INPUT BUFFER.

MWMGCFLD0O9 = No function

MWBUSCTLFLD=2 (SELECT MBUS FIELD)
MWMGCFLDO00-01 = No function

MWMGCFLD02 = MPENACMUX. Causes the tri-state outputs of the
CMUX to be enabled onto the MBUS.

MWMGCFLD03 = MPPLINTOCMUX. Enables the PLI input path to the
CMUX, which allows the PLI INPUT BUFFER to be asserted on the
8 LSBs of the MBUS.

MWMGCFLD04 = MPCBUFTOPLOUT. Loads the PLI OUTPUT BUFFER with
the contents of the 8 least significant bits of the CBUF

MWMGCFLD05 = MPCLRCCCODE. Causes all of the CONDITION CODE
status bits on the CMVR to be cleared, except CCMVRPARCHK.

MWMGCFLD06 = MPCLRPARCHK. Causes the condition code,
CCMVRPARCHK to be cleared.

MWMGCFLD0O7-08 = No function

MWMGCFLD0S = MPTESTPLIPAR. Causes the "PLI PAR OUT GENERATOR"
to generate even (bad) parity.

MWBUSCTLFLD=3 (SELECT FMTR FIELD)

MWMGCFLD00-01 = No function

MWMGCFLD02 = MPSHFTFMTR8. Causes the contents of the MVR/FMTR

to be shifted eight bits to the left or right, depending on
the state of the command "MPSHIFTRIGHT".

PAGE 84 OF 98

MWMGCFLD03 = MPSHFTFMTR4A. Causes the contents of the MVR/FMTR
to be shifted four bits to the left or right, depending on the
state of the command "MPSHIFTRIGHT".

MWMGCFLD0O4 = MPCBUFTOFMTR. Causes the data which has been
previously stored in the CBUF to be loaded into the MVR/FMTR
REGISTER

MWMGCFLD05 = MPPLINTOFMTR. Causes the 8-bit data byte which
is currently stored in the PLI INPUT BUFFER to be shifted into
the serial input lines of the MVR/FMTR, four bits at a time.
This command must be executed in conjunction with MPSHFTFMTR4A
or MPSHFTFMTR8. If MPSHFTFMTR4A is executed, then only four
bits from the PLI INPUT BUFFER will be shifted into the serial
input lines of the MVR/FMTR. If MPSHFTFMTR8 is executed, then
all 8 bits from the PLI INPUT BUFFER will be shifted into the
serial input lines. Either the four MSBs or the four LSBs are
shifted in first, depending on the state of the command,
MPRHTNIBFIRST. If an MPSHFTFMTR4A is executed, then only the
first four bits specified by the state of MPRHTNIBFIRST will
be shifted into the serial input lines. If MPSHIFTRIGHT is
asserted the 4-bit nibbles will be shifted into the four MSBs
of the MVR/FMTR and shifted right. Otherwise, they will be
shifted into the four LSBs of the MVR/FMTR and shifted left.

MWMGCFLD06 = MPFMTRTOPLOUT. Causes the 8-bit data byte which
is currently stored in the PLI OUTPUT REG of the MVR/FMTR to
be loaded into the PLI OUTPUT BUFFER.

MWMGCFLDO07 = MPSHIFTRIGHT. When asserted, either the
currently selected nibble in the PLI INPUT BUFFER, or the four
LSBs (MVROUT36-39) are shifted into the four MSB serial input
lines of the MVR/FMTR and shifted right. The actual data
shifted into the MVR/FMTR depends on the state of
MPPLINTOFMTR. If MPPLINTOFMTR is asserted, then the currently
selected 4-bit nibble in the PLI INPUT BUFFER will be shifted
into the four MSBS of the MVR/FMTR and shifted right. 1f
MPPLINTOFMTR is de-asserted, then MVROUT36-39 will be shifted
into the four MSBS of the MVR/FMTR and shifted right. Two
4-bit shifts may be executed during one microcycle, thus
enabling an 8-bit byte to be right shifted during one
microcycle (see MPPLINTOFMTR for more details).

MWMGCFLD0O8 - MPRHTNIBFIRST. When asserted, the four LSBs of
the PLI INPUT BUFFER are shifted into the serial input 1lines
of the MVR/FMTR first. When de-aserted, the four MSBs of the
PLI INPUT BUFFER are shifted into the serial input lines of
the MVR/FMTR first.

PAGE 85 OF 98

When

When

MWMGCFLD0S = MPZEROLFTNIB. When asserted, causes the four
MSBs from the PLI OUTPUT REG of the MVR/FMTR to be forced to
"zeros" before they are loaded into the PLI OUTPUT BUFFER.

MWBUSCTLFLD=4 (SELECT CBUS FIELD)
MWMGCFLD00-01 = No function

MWMGCFLD02 = MPSTARTCBUS. When executed causes CBUS START and
CBUS RESET to be asserted on the CBUS at the proper time
during the next CBUS SELECT cycle.

MWMGCFLD03 = MPSTOPCBUS. When executed causes CBUS DONE to
be asserted on the CBUS at the proper time during the next
CBUS SELECT cycle.

MWMGCFLD04 = MPSTORECBUS. When executed causes CBUS STORE to
be asserted on the CBUS at the proper time during the next
CBUS SELECT cycle. This command should only be executed
simutaneously with MPSTOPCBUS.

MWMGCFLD0O5 = MPWRITEMEM. When executed causes CBUS CTOM to be
asserted on the CBUS at the proper time during the next CBUS
SELECT cycle. This command should only be executed
simutaneously with MPSTARTCBUS when a transfer to KL10 memory
is to be implemented.

MWMGCFLDO6 = MPINDSTCOMP. Enables the PARITY PREDICTOR to
predict correct parity in INDUSTRY COMPATIBLE MODE. This
command must be executed in INDUSTRY COMPATIBLE MODE when
transferring data from the CBUS to the PLI INTERFACE.
Otherwise, the results of the PARITY PREDICTOR will not be
correct.

MWMGCFLD0O7 = MPCBINTOFMTR, Causes the contents of the CBUS
INPUT to be loaded into the MVR/FMTR.

MWMGCFLD08 = MPFMTRTOCBOUT. Causes the contents of the
MVR/FMTR to be loaded into the CBUS OUTPUT BUFFER.

MWMGCFLD09 = MPSHFTFMTR4B. Causes the contents of the MVR/FMTR
to be shifted four bits to the left.

MWBUSCTLFLD=5 (SELECT EBUS FIELD)

MWMGCFLD0O0-01 = No function.

PAGE 86 OF o8

n)

o)

MWMGCFLD02 = MPLOADCSR. Loads CSRO0-CSR17 with the contents
of the EBUF (EBUF00-EBUF17)

MWMGCFLD03 = MPREADCSR. Places the contents of the CSR
REGISTER (CSR00- CSR35) on the MBUS

MWMGCFLD04 = MPRQSTCSR. Requests access to the CSR. Access
will be granted if the KL10 is not currently accessing the
register

MWMGCFLDO5 = MPLOADEBUS. Causes the contents of the EBUF to be
asserted on the EBUS

MWMGCFLDO6 = MPREADEBUS. Causes the contents of the EBUS to be
asserted on the MBUS

MWMGCFLDO7 = MPLOADEBUF. Causes the data which the PORT
MICROPROC places on the MBUS to be loaded into the EBUF.

MWMGCFLD08 = MPRQSTINTR. Causes the PORT to request an EBUS
INTERRUPT (function 00 - 03) on PI LEVEL 01 THRU 07. The
interrupt function is determined by an "IOPF FUNCTION CONTROL
WORD" which has been previously built and loaded into the EBUF
by the PORT MICROPROC. The IOP WORD is passed to the EBUS by
the MICROPROC when requested (CCEBUSRQST being asserted)

MWMGCFLD0O9 = MPEXORDEP. Causes the PORT to request an EBUS
EXAMINE or DEPOSIT INTERRUPT (function 04 - 07) on PI LEVEL
00. The interrupt function is determined by an "IOPF FUNCTION
CONTROL WORD" which has been previously built and loaded into
the EBUF by the PORT MICROPROC. The IOP WORD is passed to the
EBUS by the MICROPROC when requested (CCEBUSRQST being
asserted)

When MWBUSCTLFLD = 6-7 (no function)

CRAM51 = MWCARRY (MICROWORD CARRY INPUT BIT TO ALU) - This bit is
the carry input to the least significant bit of the AM2901 ALU.

MWCARRY = 0 Carry "ZERO" into the LSB of the ALU
MWCARRY = 1 Carry "ONE" into the LSB of the ALU
CRAM52:55 = MWCTRLFLD<00-03> (MICROSEQR CONTROL INPUT FIELD

(I0-I13)) - This field 1is the INSTRUCTION INPUT FIELD (10-13) for
the AM2910 MICROSEQUENCER. 1Its function is defined by "THE AM2900
FAMILY DATA BOOK" as follows:

PAGE 87 OF o8

p)

q)
r)

s)

OCTAL CODE MNEMONIC

MWCTRLFLD<00:03> = 0 JZ
MWCTRLFLD<00:03> = 1 CJs
MWCTRLFLD<00:03> = 2 JMAP
MWCTRLFLD<00:03> = 3 CJdp
MWCTRLFLD<00:03> = 4 PUSH
MWCTRLFLD<00:03> = 5 JSRP
MWCTRLFLD<00:03> = 6 Cav
MWCTRLFLD<00:03> = 7 JRP
MWCTRLFLD<00:03> = 10 RFCT
MWCTRLFLD<00:03> = 11 RPCT
MWCTRLFLD<00:03> = 12 CRTN
MWCTRLFLD<00:03> = 13 CcJpp
MWCTRLFLD<00:03> = 14 LDCT
MWCTRLFLD<00:03> = 15 LOOP
MWCTRLFLD<00:03> = 16 CONT
MWCTRLFLD<00:03> = 17 TWB
CRAM56 = MWTIMEFLD (MICROWORD TIME FIELD BIT) - When this bit 1is

asserted the current micro-instruction will be allowed 1 1/2 times
the normal execution time to complete. This feature 1is useful
where insufficient time may exist for a specific micro-sequence to
successfully complete during the normal microcycle execution time.

NOTE: Currently, the only known condition for which the "TIME
FIELD" bit must be set is when executing an arithmetic
operation on a location from LOCAL STORAGE and simultaneously
testing for CCFEQLO (see below example).

MWCCENA = 1, MWSKIPFLD = 02 or 22 (Testing for CCFEQLO)
MWSORCEFLD<00:02> = 5, 6, or 7 ("D" input selected)
MWFUNCTFLD<00:02> = 0, 1, or 2 (Arithmetic function)

CRAM57 = MWSPAREQOO (MICROWORD SPARE BIT 00) - No function
CRAM58 = MWSPAREO1l (MICROWORD SPARE BIT 01) - No function
CRAM59 = MWMARKBIT (MICROWORD MARK BIT) - This bit has no microcode

function. It is used for hardware/microcode debug purposes only.
The operator may set the bit in any specific microword and then use
it as a sync point for an oscilloscope, thus enabling him to sync
on the execution of a specific microword. The bit is not checked
for CRAM PARITY. Therefore, it may be set to any value without
affecting the contents of the remaining microword.

PAGE 88 OF 98

4.8 ' JMP MUX

The JMP MUX 1is a two input by 8-bit wide multiplexer which allows
either the 8 least significant bits of the microword's MWJMPFLD field,
or MBUS D16-D23 to be loaded into the AM2910's corresponding 8 1least
significant "D" input bits. The 4 most significant bits of the
MWIMPFLD field are always passed to the corresponding four most
significant bits of the "D" inputs.

The MBUS is selected when MWSKIPFLD = 21 or 31. For all other
conditions the MWIMPFLD field is selected.

The below diagram illustrates the bit mapping of this MUX.

et D T —— +
100 MWJMPFLDO00-03 0304 MWJMPFLDO04-11 11!
! ! OR !
! 116 MBUS D16-23 23!
R e e o +
100 03!04 AM2910'S "D" INPUTS 11!
R T T o e +
1.9 MICROWORD OUTPUT MUX

The MW OUT MUX is a two input by 30-bit wide multiplexer which enables

either the right half, or the left half of the MICROWORD which is

addressed by the RAM ADDRESS REGISTER onto the 30 least significant

bits of the MBUS during a CRAM read/verify function. The 6 most

significant bits of the MBUS are undefined.

RAR12 selects which half of the MICROWORD is to be read as follows:
RAR12=0 - Read right half of MICROWORD

RAR12=]1 - Read left half of MICROWORD

The below diagram illustrates the bit mapping of the MW OUT MUX.

o e +
100 CRAM00-29 29!
! OR !
130 CRAM30-59 591
o e +
106 MBUS D06-35 35!
o e e e e +

PAGE 89 OF 98

4,10 CRAM LOAD BUFFERS

There are two CRAM LOAD BUFFERS, LEFT CRAM LOAD BUFF and RIGHT CRAM
LOAD BUFF, which are wused to 1load the CRAM when the PORT 1is not
running (CSR32 reset).

Each buffer is a 30-bits wide tri-state buffer which inputs the 30
least significant bits from the EBUS, via the MBUS, to the "DATA"
lines of the CRAM,

EBUS D00 must be equal to "ZERO" whenever the CRAM is being written.
EBUS D01 - EBUS D05 are undefined.

LEFT CRAM LOAD BUFF interfaces to the 30 least significant bits of the
CRAM.

RIGHT CRAM LOAD BUFF interfaces to the 30 most significant bits of the
CRAM.

The tri-state outputs of one of the buffers are enabled by the state
of RAR12 from the RAM ADDRESS REGISTER as follows:

RAR12=0 - Enable RIGHT CRAM LOAD BUFF
RAR12=1 - Enable LEFT CRAM LOAD BUFF

The CRAM LOAD BUFFERS are pass through buffers only. The data is not
latched.

These BUFFERS may only be enabled when the PORT is not running (CSR32
reset).

The below diagram illustrates the bit mapping of these BUFFERS.
LEFT CRAM LOAD BUFF

06 MBUS D06-35 35

06 MBUS D06-35 35
o e +
130 CRAM 30-59 591
o e e e +

PAGE 90 OF 98

4.11 CRAM PARITY CHECKER

The CRAM PARITY CHECKER checks the 59 most significant bits of the 60
bit wide MICROWORD which the PORT MICROPROCESSOR strobes into the
MICROWORD CONTROL REGISTER for odd parity. If parity is incorrect the
CRAM PARITY ERROR and the RQST INTERRUPT bits are set in the CSR -
REGISTER of the EBUS MODULE, and the PORT MICROPROCESSOR is halted.
The least significant bit (MWMARKBIT) is not checked for CRAM PARTIY.

The PARITY bit is not automatically generated when the CRAM is loaded.
Therefore, it is the responsibility of the microcoder to assign
correct parity to each microword.

Occasionally a "CRAM PARITY ERROR" may be intentionally forced in
order to halt the PORT MICROPROCESSOR at a specific location (Break
Point)., For this case it may be cleared by executing a CONO with EBUS
D24 equal to "ONE". The PORT MICROPROCESSOR may then be re-started by
setting "MPROC RUN" (CSR32).

4.12 LOCAL STORAGE RAM

The LOCAL STORAGE RAM is a 1lK-word deep by 36-bit wide tri-state ram
nemory with a &85 ns access time. Its "DATA PATH" is directly
connected to the MBUS. The PORT MICROPROCESSOR may either load or
read this RAM memory as a local data storage memory.

The PORT MICROPROCESSOR 'loads the LOCAL STORAGE RAM by setting the
MWSKIPFLD field of the MICROWORD to either 23 or 33 and asserting the
desired data on the MBUS. The data will be strobed into the RAM at
the address specified by the RAM MODE MUX at CLK4 time.

The PORT MICROPROCESSOR reads the LOCAL STORAGE RAM by setting the
MWSKIPFLD field of the MICROWORD to either 22 or 32 and strobing the
data from the MBUS into another storage media. The data will be read
from the RAM at the address specified by the RAM MODE MUX.

The LOCAL STORAGE RAM may be addressed in either a GLOBAL or a PAGE
addressing mode, depending on the state of the MWRAMODE bit of the
MICROWORD (see LOCAL STORAGE ADDRESS REGISTER, RAM MODE MUX and
MICROWORD bit definitions for more details).

PAGE 091 OF 98

4,13 LOCAL STORAGE ADDRESS REGISTER

The LOCAL STORAGE ADDRESS REGISTER (SADREG) is a 5-bit wide register
which is used to address the five MSBs of the LOCAL STORAGE RAM in the
PAGE addressing mode. It is initially 1loaded by MWMGCFLD<00-04> of
the MICROWORD.

The PORT MICROPROCESSOR loads the SADREG by setting the MWSKIPFLD
field of the MICROWORD to either 20 or 30 and setting MWMGCFLD<00-04>
of the MICROWORD to the desired address. The value of MWMGCFLD<00-04>
will be strobed into the SADREG at RUNCLK4 (CLK4) time.

The primary function of the SADREG is to enable the LOCAL STORAGE RAM
to be indexed into 32 separate PAGES, each consisting of 32 words. By
re-loading the SADREG different PAGES may be accessed. The 5 low order
‘address line for the LOCAL STORAGE RAM are always directly selected by
MWMGCFLD<05-09> of the MICROWORD. Therefore, any word within a PAGE
may be accessed without re-loading the SADREG.

4.14 RAM MODE MUX

The RAM MODE MUX is a two input by 5-bit wide multiplexer which allows
either MWMGCFLD<00-04> of the MICROWORD, or the contents of the LOCAL
STORAGE ADDRESS REGISTER (SADREG) to select the five MSBs of the next
LOCAL STORAGE RAM address. The input chosen depends on the state of
the MWRAMODE bit of the MICROWORD.

When MWRAMODE equals "ZERO" the contents of MWMGCFLD<00-04> is passed
as the five MSBs of the next LOCAL STORAGE RAM address. This mode
functions as a GLOBAL addressing mode. Any location in the LOCAL
STORAGE RAM may be directly addressed by the MWMGCFLD field of the
MICROWORD.

When MWRAMODE equals "ONE" the contents of the SADREG will be passed
as the fIVE MSBs (current PAGE) of the next LOCAL STORAGE RAM address.
This mode functions as a PAGE addressing mode. Only one of 32
locations may be directly accessed by the MWMGCFLD field. 1In order to
address locations in a different PAGE the contents of the SADREG must
be changed.

The five LSBs of the LOCAL STORAGE RAM address are always selected by
MWMGCFLD<05-09>, regardless of the state of MWRAMODE.

PAGE 92 OF 98

The below diagram illustrates the bit mapping of the RAM MODE MUX

Fom +
100 MWMGCFLDO0O0-04 04!
! OR i il Tt T e +
100 STORADDRO00-04 04105 MWMGCFLD05-09 09!
o P e e +
100 LOCAL STORAGE ADDRESS 00-09 09!
e e e e e e +

4.15 COND/SKIP FIELD DECODER

The COND/SKIP FIELD DECODER decodes the MWSKIPFLD field of the
MICROWORD to determine which one of the functions controlled by this
field is to be executed. All of these functions are used by the PORT
MICROPROCESSOR to execute some function internal to the
MICROPROCESSOR'S operation. A list of these functions follows (see
section MICROWORD FIELD DEFINITIONS for additional details):

MWSKIPFLD = 00 or 20 - Select CCCBUSAVAIL
01 Or 21 - Select CCGRNTCSR
02 or 22 - Select CCFEQO
03 or 23 - Select CCCSRCHNG
04 or 24 - Select CCEBPARERR
05 or 25 - Select CCRCVRBUFAFUL
06 or 26 - Select CCRCVRBUFBFUL
07 or 27 - Select CCXMTRATTN
10 or 30 - Select CCEBUSRQST
11 or 31 - Select CCINTRACTIVE
12 or 32 - Select CCMBSIGN
13 or 33 - Select CCMVRPARCHK
14 or 34 - Select CCCBUSPARERR
15 or 35 - Select CCPLIPARERR
16 or 36 - Select CCCHANERR
17 or 37 - Select CCCBLSTWD
20 or 30 - LOADSADREG
21 or 31 - SELMBUSFLD
22 or 32 - RDLOCALMEM
23 or 33 - LDLOCALMEM
24 or 34 - SELCNSTFLD

PAGE 93 OF o8

4.16 MICROPROC CONTROL LOGIC

The MICROPROCESSOR CONTROL LOGIC controls all of the timing functions
:gzthe PORT MICROPROCESSOR. It contains the necessary control 1logic
a) write the RAM ADDRESS REGISTER (RAR)

b) write and read/verify the CONTROL STORE RAM (CRAM)

c) read the LATCH ADDRESS REGISTER (LAR)

d) Generate RUNCLK1l, RUNCLK2, RUNCLK3 and RUNCLK4 from CLK1l, CLK2,
CLK3 and CLK4 respectively

e) start and stop the PORT MICROPROCESSOR in an orderly manner

PAGE 94 OF 98

APPENDIX "A"

PAGE 95 OF 98

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95

