IIT ccee ¢ccce SSSS PPPP 000 RRERR TTTTT
I C C K P P 0 0 R R T
I C C S P g 0 0 R R T
I C C SS8S PPPP 0 00 RRRE T
1 C C 5 P 0 0 R R T
1 C C S P] 0 R R T
111 cccce CCCC S8S8ss8 P noo R K T
M M EEEEE M L] 1 1
MM Mk E MM MM 11 11
M MM E MOM oM i i
M M EEEFE M M 1 1
M M E M M 1 1
M ¥ E M M ve 1 1
M M EEEEE M M .s 111 111
¥START* Job HSC=DC Reaq #1101 for DEUFEL,TL Date 9=Apr-82 10:16:56 Monitor: KL210

File PS5:<DUOC=SPECS>ICCSPORT.MEM,.11, created: 16=Jul=79 9:41:33, printeas 9euApr=g82
Job parameters: Request created: 9=Apre=82 10:09:23 Page limit:24¢6 Forms sNORMAL
File prararmeters: Copy: 1 of 1 Spacingis1nNGLE File foraatisAscCIl frint sodeiAsSC

This is a working paper on the KLi0 ICCS port design, 1It is
not intended to pe a complete functional or design
specification but ratner a departure point for {dentifying
the areas of concern and technical interest,

The KL10 ICCS port will provide a VAXecompatible interface
to the ICCS bus, The port has three important interfaces:

1, Software to port control, This interface is
used to request data transmission, post completion,
and transmit status, Tnis interface will be
implemented with the standard PDP=10 170
instructions,

2, The port to link interface, This {interface s

specified by the corporate interconnect
specification and 1is beyond the scope of this
specification,

3, The port to memory interface, This interface
allows the port to reference and to modify the host
memory. This interface has two divisions:

a, The DHMA intertace tor transterring data
to ana from the 1link, Tnis interface will
be via the CepnUs,

be The E=BUS interface for queue
manipulations, and packet fetch and store,
This will be implemented via the E=BUS 10pP
functions,

The principal goal is to implement the VAX port architecture
in TOPS20 and {n the KL10 port and provide a transparent
migration to the 2080 interface.

Since the implementation will bpe compatible with the VAX
port spec, and since that architecture 1is well=documented
[1), this specification will be concerned with differences
between the VAX port spec and the KL10 implementation as
well with KL1O=-specific operations,

1,0 Initialization

The monjtor will intialize the port operation py {ndicating
the port’s PI level and the address of the Port control
block(PCH) (see section & of [1]), 1In order to facilitate
the port’s interface via the E«BUS, the KL10 port controil
block 1s as follows (all words are 36=bit words)

word ottset description

0 physical address of BDT
1 Free queue interlock word

Page 2

Free gqueye forward pointer
Free queye back

Command
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command

queue
queye
gqueye
gueue
queye
queue
queue
gueue
queuye
gueue
gqueuye
queuye

WO WNNN P OO

pointer
interlock word
forwWward pointer
back pointer
interlock word
forward pointer
back pointer
interlock word
forward pointer
back pointer
interlock word
forward pointer
back pointer

Response queue interlock word
Response queue forward pointer
Response queue bhack pointer

The buffer descriptor table indicated py offset 0 of the PCH

is as follows:

word

0
1 to 2¥n

description

count of number of BDT entries
n two=word entries (eacn entry,

if valid,

points to the puttfer

descriptor (BD) for tnis entry
(see section 2,1),

The port control block will be identified to the port via a
DATAQ that specifies the physical address of tne block,

In order to implement the interlock function, the port needs

the following capabilities:

The ability to read a
simultaneously
functions provide this an an atomic
recommended
(function code 3) pe modified to both increment the
location
pack onto the E=pus,
A0S function,

modify it,

The ability to
unavallable and to trv again later.
monopolize the processor,
reasonable
interface is desianed,
interlocked
function is moditied,
interlock
returned

interlock,

detect

time

heen

memory

location and to
none of tne existing IOP
operation, It

the "increment®" IO0OP function

to drive the resulting value

that

delavy,

the

In this way it becomes a true

interlock 1s
Tn order not to
the retry alqorithm should
Unce the monitor

an estimate of thne wmonitor’s
Tf the JOP increment

path can be made,

then the port
achieved by examining the

can

zZero indlicates

detect {f

successful

anytning else indicates a fajilure,

Page 3

The manipulation of the queues is straighteforward and 1in
accordance with the algorithms in [11}.

1.1 Command queues

The port and the monitor maintain four distinct command
queues, Each command qQueue has its own interlock word and
list pointers, Furthermore each command dquelle has an
implicit priority assianment with gueue 0 being tne nighest
priority and queue 3 being the lowest,

The priorities are used to control the execution of
commands, Commands fall Into three general categories:

a, Commands regquested by the local host, These are
commands placed on a command gueue directly by the
local operating systems,

b. Data transfers initiated by the 1local host,
This differs from the previous category in that a
single command causes a block data transfer w«#ith a
DMA=liKe mechanism,

c., Data transfers {nitiated by a remote host,
Again, this is accomplished with a command, but
requires additional resources by way of the DA data
transfers mechanism,

The various priority levels may be used to seguence the
execution of these types of commands in the most expeditious
manner,

2,0 Sending messages and data

The procedure for sending messages and data 1s described 1in
(1], The BDT and packet formats in [1] are not appropriate
for the needs of TOPS20, however, and need to be modified as
follows:

2,1 Bufter descriptor formats

A butfer descriptor (BD) consists of a 1linked 1list of
descriptors each of whicn descrives a region of physical
memorye BDs are descrined by entries in tne puffer
descriptor table, Fach 1individual descriptor has the
following format:

word contents

0 pnyslical aadress of next descriptor

1 mode(3), count(1%), offset in butfer (18)
2 physical address of pase of data buffer

3 port=available storage and final status

The head of the BD chain (i,e., the BDT itself) 1is located

Page 4

in the BDT and 1s as follows:

word contents
0 valid pbit(1), buffer key (16), moditier(2),port
1 physical address of head of BD chain

Each BDT identifer given out by TOPS20 w#will bpe the offset
from the start of the ADT table in the PDR, Therefore the
address of the BDT header is:

BDTB+2%(n=1)
where

BDTB is the base address of the start of the BDTs and n |{is
the descriptor specified in the data request, For n to bpe
valid, it must be less than the number of BDT entries
specified in the PCH,

Note that the BD has bveen designed so that all of the
veritication information s 1in one word. Since tne port
must verify tnat the reaguesting port has tne right to use
the selected bpuffer, this procedure may be performed by
fetching only one word from PDP10 memory,

2.2 Messages

A message, as defined in (11, 1s a fixed=sized packet of
data that is transmitted atomically over the bus. Messages
have the peculiar property of being generated either by the
host software (in this case, TOPS20), by the port itself (to
generate a request for data), or by the remote port (to
signity completion, or to request data). Therefore, there
cannot be a KLiO=gpecific format for messages that conflicts
with messages generated and expected by other ports on the
bus,

Given this restriction, it seems logical to define a message
as being coincident with that defineq [{1l. 1Tnis implies
that messages will contain "pbyte" data but may identify BDs
that aadress wora data.

To simplify tne handling of these message prackets, the first
three words of each packet w»ill be iInterpreted as containing
36=nhit data, and the messace body as contalining bvte data,
That is, tnhe 1link pointers and internal flags and control
information »ill use all 36=bits of eacn word, 1ITne message
body will use the left=most 32 pits of each word (Since the
contents of the tirst tnree words are not transmitted over
tne bus, this presents no conflict «with tnhe intertace
requeirements),

Page 5

3,0 C=BUS interface

shen the port needs to have DMA access to memory, it will
use the (C=-BUS to reference its data. That Is, the port will
appear to pe an RH20 and conseguently needs to manipulate
the appropriate EPT locations ¢to control the {internal
channel 1t is "borrowing", This access 1s via the 1I0P
functions of the E=3US,

4,0 10 instructions

The following 10 instructions are defined for the ports

CONO PRT,

bits definition

33«35 (RW) PSI level

32 (W) enahle PSI

31 (kW) GO

30 (Kkw) Stall

29 (R) memory parity error detected

28 (R) unrecoveraple pus error

27 (R) Free queue empty (message ovverrun)
(W) Clear errors

206 (W) Command queue loaded

25 (RW) Response aueye non=empty

24 Clear cache

GO bit: This bit 1s on whenever the port is active
processing a request, If it 1s set on a CONO, 1t causes the
port to poll the request queues for some work to do.

Stall: This phit is used to shutdown the port. If Stall 1is
set, the port will complete its present operation and then
clear GO and enter the idle state, Any new requests that
arrive should pe rejected, Setting GO clears Stall.

Response qgueue non=enpty: This is asserted by the port when
it inserts an entry on an empty response queue,

Command gueue loaded: The software will assert this bit
whenever it places &an entry on an empty command queue., when
this is asserted, the port should note that the command
gqueue needs to be polled, The monitor may not assert tnis
pit when it places an entry on a8 non=empty command gueue
(Since the port can place a message onh the command gueue
itself, 1t should not relv on this bit reing asserted to
pegin command Jgueue processing, In this case, however, the
port could assert tine bit itself,).,

Clear cache: Since the port needs to make frequent
reference to memory, 1t 1is lixkely it will implement some
form ot memory cache t¢o avoid tne overhead of typical memory
references, The monitor will assert this bit wnenever it

Page o

wishes to invalldate a buffer descriptor and the port should
respond by flushing from its local memory any knowledge of
extant buffer descriptors, Since the monitor never
unilaterally invalidates the aqueues without resetting the
port, any cached queue information may be retained,

The error bhits may need expanding with time,

NOTES The “reset" state of the port should be tnat Stall is
set and GO {is off, This state is entered whenever an IO
reset 1s issued or a DATAO PRT, 1is 1ssyed, This feature
precludes the port’s clobbering memory while BDTS are bheing
established and allows the software to determine if a port
exists without chanaging its state,

4.1 CSRs

The port CSE reajisters are read and written via DATAI and
DATAO instructions. Each CSR nas a distinct function and {is
selected by a DATAO to "select CSR register”,

d4ele1l Loau FCo base adaress anua FCS CSK
CSK 006 (Rw) PCS pbase address

Tnis tunction 1is useag to reset the port and declare the port
descriptor block, The argument is the physical address of
the descriptor bloc¢k, If this function is issued while the
port 1s active, the port should immediately shutdown and
enter the "reset" state,

4,1,2 CSR 0% (RW) Port conflauration register
This CSR contains:

port i.d, (R)

number of busses present (R)
busses enabled (R#)

pus selection mode (Rw)

The bus selection mode indicates whether the busses are
selected explicitly py the software (nigh performance mode)
or are considered as one bus and may be used as the port
desires (hiah availlability mode), The active busses and the
bus selection mode may be modified by the software, The
"reset" state of the bus 1s to enaple all connected bus and
to employ the hianh availability mode for bus selection,

41,3 CoSks 02=1yU (Kw) port performance meters
RS

4,1.4 CSK 11 (R) port error register

Page 7

This CSR contains detalled information on army port, link or
bus detectec errors,

4,1.,4 Other CS8Rs
All unspecified CSR registers are reserved to DEC,
4,2 Issues

An important issue 1is the manner in which diagnostics will
access the port, we may want to include a rich collection
of status and condition flags so that it 1s possible to
exercise the port without having to use the speicifed queue
structures,

4,3 Cachinyg of port data

As mentionec earlier, the port may want to provide a cache
for its data to avold the overhead of consStantly referencinag
main memory, Such & cache can contain BD, BDT and queuye
entry data that the port {s likely to need,

It seems Guite reasonable Lo cache B30 apnd BLT Jdata since
these are the most vperformance sensitive as well as
frequently needed data items, PRBRuffer descriptors, once set
up bpy the sotftware, will not change as long as the pbuffer
descriptor remains valid,

Caching gueue entries is risky and possibly not Jjustifiable
considering the care that must be exercised, However, {f it
is possible to cache any portion of the gueue data pase, the
performance gain is certainly welcomed,

Some careful thought should be given to this feature since
its effectiveness will likley have a significant effect on
the efficiency and rerformance ot the port,

5,0 Data modes and modifiers

The data modes supported by the KL10 port are:

0 byte mode, Data 1is packed as
elgnt=bit bytes occupying the
lett=most 32=bits o©f each memory
word

1 word mode, Data 1s packed using all

36=bits of each memory word, Wwhen
word data is transmitted or received
over the bus, 1t is packaged as a
series of H=bit bytes, If the data
sent 1s not an integral number of
bytes (i.e,, the word count 1is odd),
then the last byte is zero=tilled,
It the data received 1is not an

Page 8

integral number of words, any extra
bits are discarded,

2 Tape mode, This mode regquires that
each word be transmitteda or received
as five bytes of data, The
low=order four bits of the last byte
(the first four received or
transmitted) are zero=filled,

In each BDT is a modlifier field, The defined values are:

1 Read=only

2 Read backwards
3 write~-only

4 Write backwards

The modifier indicates the type of operation that may be
requested on tnis butfer and the direction the data is to bpe
accessed,

Bel Programming considerations

The information up to now has been aimed at understanding
how the KL10 ICCS port will operate, Several important
points must be noted:

1, The addresses that the port uses are all
physical memory addresses, This means that the
queue pointers and headers must contain physical
addresses, This has been done to make the port’s
memory references be independent of the M=B0X, pager
refills, and various types of paqging failures that
may occur, The KL10 port could be bpuilt to deal
with EXEC virtual addresses, but the 2080 appears
not to have that flexipility.

2, The construction of BDTs and BDs 1s complicated,
Processing and verification of these tables will be
costly for both the port and the monitor,

These two points indicate tnat a unique apporach to creating
the monitor’s port driver must be considered, In
particular, it is important that the monitor be able to
enqueue and dequeue command and response messages from the
approrriate gueues quickly, Several tecnniques are
possicle:

1, Ensure tnat tnhe PCB 1s in a page that is rmapped
virtual to physical, 7That is, if the PCh 1is in EXEC
virtual page 100, then it must also pe in physical
page 106, It is also necessary to allocate Bus from

Page 9

pages with the same property, This restriction will
not apply to the 2080 as it will ©provide
instructions that implement physical addressing,

2. S8ince the monitor knows the virtual address of
the PCB, it can always reference it gquickly.
However, since it cannot predict which packet it
needs to dequeue next, 1t needs a quick means of
translating the physical address to a virtual one,
The most straight=forward technigque is for the port
driver to have a virtual address slot it may use for
temporary mapping (the same kind of slot used in
PAGEM e,g, CXBPG), when 1t needs to examine a
packet, it would map the physical page to its page
slot, perform any data modifications or extractlons,
and clear the map slot., Since all aqueue headers and
interlock words are in fixed 1locations they can
always be referenced with virtual addresses.

Despite the ftact that the monitor always processes
agqueves FIFO, it still needs to maintain pboth forward
and backward gqueue pointers since the port
reterences queues ranuoinly. Inertore, enqueuiny ol
dequeueling a packet regquires moditfying another
packet as well as a gqueue header, To make this as
efficlent as rossipnle, two temporary map slots could
te allocated,

3. Bullding in some other Innate Kknowledge about
BDbs that would enable rapid conversion of physical
addresses into virtual ones, An example would be to
allocate all BDs from a single exec virtual page
thereby making the word offset in the physical page
the unique 1identifer of the vpacket’s 1location,
Multiple pages could be used with another level of
translation requireqd, '

| The first technigue seems adequate for the KL10O, The 2089
provides sufficlent flexibility in its addressing modes that
the problem disappears.

I11 ceec ccece 83585 PPPP 0o RRRR TITTTT
1 C C S P B0 0 R R T
I C c S P P 0 0 R R T
I C C 888 PPPP 0 0 RRRR T
I c C S P 0 0 KR T
I C c s P Q 0O R R T
I1I cecec CCCC 58588 P aoo R R T
SS5S5 PPPP cccc RRRR TTTTT RRRR AAA N N 58588 LE-R
S P P C R R T R R A A N N S B8 8
S P P C R R T R R A A NN s S 8 8
585 PPPP C ===== RRKR T RRRR A A N N N 588 888
S P C R R T R R AAAAA N~ Np S B 8
s P C R R T R R A A N N S o 8 8
588S 3 cccce R R T K R A A N N 58588 .o 888
START Job HS5C=DC Req #1101 for DEUFEL,TL Date 9Y«Apr=82 10:10:56 Monitor: KL210.

Flle PS5:<DOC=SPECS>ICCSPORT (SPC=RTRANS,8, created: 16=Jul=79 9:41:06, printed: 9=
Job parameters?! Request created: 9=Apre=82 10:09:23 Page l1limit:246 Forms tNORMAL
File garametersi: Copys:s 1 of 1 opacingiSINGLE File tormatiAalCll Frint moae:sASC

This 1s a werking paper on the KL10 ICCS port design, It
is not intended to be a complete functional or desian
specification but ratner a departure point for
identifying the areas of concern and technical interest,

The KL10O ICCS port will provide a VAXe=compatible interface
to the ICCS bus. The port has three important interfaces:

1. Software to port control, This interface
i1s used to reguest data transmission, post
completion, and transmit status. This
interface will be implemented with the
standard PDP«10 I/0 instructions.

2, The port to link interface, This interface is
specifled by the corporate interconnect sbPecification
and is beyond the scope of this specification.

3, The port to memory interface., Tnis interface
allows the port to reference and to modify the
host memory, This interface has two divisions:

a, The DMA interface for transferring
data to and from the link., This interface
will be via the C=BUS,

be The E=BUS interface for gueue
manipulations, and packet fetch and
store, This will pe implemented vis
the EF=HUS 10P functions,

The principal goal is to implement the VAX port architecture
In TOPS20 and in the KL10 port and provide a transparent
migration to the 20380 intertace.

Since the implementation will be compatinhle with the

VAX port spec, and since that architecture is well=documented
[1], this specification will be concerned with differences
between the VAX port spec and the KL10 implementation as

well with KL1iO=specific operations,

1,0 Initialization

The monitor will intialize the port operation by
indicating tne port’s PI level and the address

of tine Port control block(PCB) (see section 8 of [11),
In order to facllitate the port’s interface via the
E=BlUS, the KL10 port control plock is as follows (all
words are 36=bit words)

osliteral
wora offset agescription

physical address of BOT

Free queue interlock word

Free qgueye forward pointer

Free gueye pack pointer

Command queue O interlock word
Command gueue ¢ forward pointer

(S B FVIR O g

6 Command queue § back pointer

7 Command gueue 1 interlock word
8 Command queue 1 forward pointer
9 Command queue 1 back pointer

10 Command queue 2 interlock word
11 Command queue 2 forward pointer
12 Command gueue 2 back pointer

13 Command queue 3 interlock word
14 Command queue 3 forwara pointer
15 Command queue 3 pack pointer

16 Response queue interlock word
17 Response queue forward pointer
18 Response queue back pointer

.end literal

The buffer descriptor table indicated by offset 0 of
the PCB is as follows:

sliteral

word description

0 count of number of BDT entries
1 to 2%n n two=word entries (each entry,

if valid, points to the buffer
Jeéscriplor (bL) for tnls entry
(see section 2.,1).

«end literal

The port control block will be identified to the
port via a DATAU that specifies the physical address
of the block,

In order to implement the interlock function, the port needs
the following capabllities:

1. The ability to read a memory location

and to simultaneously modify it, None of

the existing I0P functlons provide this

an an atomic operation, It is recommended that
the "increment" IOP function (function code 3)
be modified to both increment the memory
location and to drive the resulting value

rack onto the E=bus, In this way it becomes

a true AUS function,

2., The ability to detect that the interlock

is unavailable and to try again later, In order

not to monopolize the processor, the retry algorithnm
should have a reasonable time delay., Once the monitor
interface is designed, an estimate of the monitor’s
interlockea path can be made, If the TUP increment
function is woaiflea, then the port can detect

if the interlock has been achieved by examining

the returned data, A zero indicates successful
interlock, anything else indicates a fallure,

The manipulation of the gueues is strajignt=forward and
in accordance with the algoritnms in [1]),

1.1 Command queues

The port and the monitor maintain four distinct command queues,
Each command gueue has its own interlock word and)list pointers,
Furthermore each command gueuye has an implicit priority assignment
with queue (0 being the highest oriority and gueue 3 being the
lowest,

The priorities are used to control the execution of commands,
Commands fall into three general categorjes:?

a. Commands requested by the local host, These
are commands placed on a command gueue directly
by the local operating systems,

p. Data transfers injitiated by the local host,
This differs from the previous category in that
a single command causes a8 block data transfer
with a DMA=llke mechanism,

c. Data transfers iInitiated by a remote host,
Again, this is accomplished with a command,
but requires adaoitional resources by way of
the DMA data transfers mechanism,

The various priority levels may pbe used to sequencCe the
execution of these types ot commands in the most expeditious
manner,

2.0 Sending messages and data

The procedure for sending messages and data 1s described

in (1}. The BDT and packet formats in [1]) are not appropriate
for the needs of TOPS20, however, and need to be modified

as follows:

2,1 Buffer descriptor formats

A buffer descriptor (BD) consists of a linked list of descriptors each of
which describes a region ot physical memory. BDs are described

by entries in the buffer descriptor taple. Each individual

descriptor has the following format:

eliteral

word contents

0 physical address of next descriptor

i mode(3), count{(is5), offset in buffer (18)
2 physlical address of pase of Jdata buffer

3 port=avajlable storage and final status

«€nd literal
The nead of the BD chailn (i,e, the RDT itself) is located in tnhe HDT and 1s as foll

sliteral

word contents

0 valid oit(l), buffer key (16), moajtier(2),port
1 physical address of head of BD chain

eend literal

Each BDT identifer given out by TOPS20 will be the
offset from the start of the BDT table in the PDR,
Therefore the address of the BDT header is:

BRTH+2¥(n=1)
where

BDTB 1s the base address of the start of the BDTs and
n is the descriptor svecified in the data request,
For n to be valid, it must be less than the number

of BUT entries specified in tne PCB,

Note that the BD has been designed so that all of tne verification
information 1is in one word, Since tnhe port must verify that

the requesting port nas the right to use the selected

buffer, this procedure may be performed by fetching only

one word from POP10 memory,

2.2 Messages

A message, as detined in (1], 1is a fixedesized packet

of data that 1Is transitted atonlcally oOver the pus.

Messages have the pecullar property of beilng generated either
by the host software (in this case, TUOPS20), by the port
itself (to generate a request for data), or by tne remote

port (to sianify completion, or to request data),

Therefore, there cannot be a KL1O=~specific tormat for messages
that conflicts with messages generated and expected

by other ports on the bus,

Given this restriction, it seems logical to define a message
as being coincident with tnat defined [1). This implies

that messages will contaln "pbyte" data but may identify

BDs that address word data,

To simplify the handling ot these message packets, the first
three words of each packet will be interpreted as containing
36=pit data, and the message body as containing

byte data, That 1is, the 1link pointers and internal

flags and control information will use all 36=bits of

each word. The message body will use the left=most

32 bits of each word (Since the contents of the

first three words are not transmitted over the bus,

this presents no conflict with the i{interface regueirements),

3.0 C=BUS Interface

When the nort needs to have ([MA access to memory,

it will use the (C=RiIS to reference 1ts data, That

is, tnhe port #il] appear to be an RH20 and consequently
needs to manipulate the appropriate EPT locations

to control the internal channel it {is "borrowing®,

This access is via the TUP functions of the E=iiS,

4,0 10 instructions

The following I0 instructions are defined for the port:

CONO PRT,

bpits definition

33=35 (RwW) PSI level

32 (W) enable PS1T

31 (RW) GO

30 (RW) Stall

29 (R) memory parity error detected

28 (R) unrecoverable bus error

27 (R) Free queue empty (message ovverrun)
(w) Clear errors

26 (W) Command gqueue loaded

25 (R¥#) Response gueue non=empty

24 Clear cache

GO bit: This bit is on whenever the port is active
processing a request, If it is set on a COND, it
causes the port to poll the request queues for some
work to do,

Stall: This bit is used to shutdown the port, If Stall

is seil, tne port wiil complete its present operation

and then clear GU and enter the fidle state, Any new reguests
that arrive should be rejected, Setting GO clears

Stall.

Response queuye none=empty: This 1Is asserted by the port
when it inserts an entry on an empty response qgqueue,

Command queue loaded: The software will assert this bit
whenever it places an entry on an empty command queue, When
this is asserted, the port should note that the command gueue
needs to be polled, The monitor may not asSsert this bit when
it places an entry on a non=empty command queue

(Since the port can place a message on the command gueue
itself, it should not rely on this bit being asserted

to heqin command queue processing, In this case, however, the
port could assert the bit itself,),

Clear cache: Since the port needs to make freaquent reference
to memory, it is likely it will implement some form

ot memory cache to avold the overhead of typical

memory references, The monitor will assert tnis

bit whenever it wishes to invalidate a byffer descriptor

and the port should respond by flushing from jits local
memory any knowledye of extant buffer descriptors.

Since the monitor never unilaterally invalidates the

queues witnout resetting tnhe port, any Cached gueue
information may be retained,

The error bits may need expanding with time,

NOTE: The "reset"” state of tne port should pe

that Stall is set and GO 1s off. Thls state is entered
whenever an 10 reset is issued or a DATAQ PRT,

is issued, This feature precludes

the port’s clobbering memory while RDTs are beinqg established
and allows the software to determine if a port exists without
changing its state,

4,1 CSRs

The port CSk registers are read and written via DATAI and DATAQ
instructions, Each CSR has a distinct function and is selected
by a DATAO to "select CSR register",

4,1.,1 Load PCS base arddress and PCS CSR

CSR 00 (Rvw) PCS base address

This function is used to reset the port and declare the

port descriptor block, The argument is the physical

address of the descriptor block, If this function is issued
while the port is active, the port should immediately

shutdown ana enter the "reset" state,

4,1.2 CSR 01 (Rw) Port contiguration register

This CSK contains:

port i,d. (%)

sbreak

number of busses present (R)
«break

husses enabled (RW)
ebreak

pbus selection mode (RW)

The bus selection mode indicates whether the busses are selected
explicitly by the software (high performance mode) or are considered
as one bus and may be used as the port desires (high availability
mode), The active busses and the bus selection mode may

be modified by the software, The "reset" state of the bus

is to enarle all connected bus and to emplovy the

high availability mode for bus selection,

4,1,3 CSRs 02=10 (RW) port performance meters
8BS
4,1,4 CSR 11 (R) port error reaister

This CSR contains detalled information on any port,
l1ink or bus detected errors.

4,1,4 Other CSKs

All unspecified Cok reyisters are reserved to UEC,

4,2 Issues

An important issue 1s tne manner in whicn diagnostics will
access the port, «e may want te include a3 rich collection

of status and condition flaas so that it is possiple to
exercise the port without having to use the speicifed

queue structures,

4,3

Caching of port data

As mentioned earlier, the port may want to provide a cache

for

its data to avoid the overhead of constantly referencing

main memory, Such a cache can contain BD, RDT and aquyeue
entry data that tnhe port is likely to need.,

It seems guite reasonable to cache BD and BDT data since
these are the most performance sensitive as well as
frequently needed data items, Buffer descriptors, once set

up

by the software, will not change as long as the buffer

descriptor remains vaiid,

Caching gueue entries is risky and possibly not Justifiable
considering the care that must be exercised. However, 1if it
is possible to cache any portion of the gqueue data base, the
performance gain {s certainly welcomed,

Some careful thouaht should be given to this feature since

its
the

effectiveness will likley have a significant effect on
efficiency and performance of the port,

Data modes and modifiers
data modes supported by the KL10 port are:

vyte mode, Data is packed as eightebpit
bytes occupvinag rhe leftemast 32«bits
of each memory word

word mode, Data 1is packed using all
36=bits of each memory word. When word
data is transmitted or received over
the bus, it is packaged as a series

of Bebit bytes, If the data sent is not
an inteqgral number of bytes (i.e,, the
word count is odd), then the last byte
is zero=filled, If the data received

is not an integral number of words,

any extra bits are discarded,

Tape mode, This mode requires

that each word bhe transmitted or
received as five bytes of gdata, The
lowe=order four bits of the last pyte
(the first four received or transmitted)
are zero=fjilled,

In each BDT is a modifier field, The defined values are:

1

2

Fead=only
Read nackwards
Write=only

krite backwards

The modifier indicates the type of operation that may
be reguested on this buffer and the direction the data
is to pe accessed,

6,0 Programming considerations

The information up to now has been aimed at understanding
how the KL10 ICCS port will operate, Several important
points must be noted:

1., The addresses that the port uses are all
physical memory addresses, This means that the
queue pointers and headers must contain

physical addresses, This has been donhe

to make the port’s memory references he independent
of the M=BUX, pager refills, and varilous

types of naqging failures that may occur,

The KL10 port could be built to deal

with EXEC virtual addresses, but the 2080

appears not to nave that flexipility.

2., The construction of RDTs and BDs is complicateqd,
Processing and verification of these tables

will be costly for both the port and the

monitor.

These two points indicate that a unique abporach to
creating the monitor’s port driver must be considered,
In particuler, it is important that the monitor be able
to enqueue and dequene command and response messaqes
from the appropriate gueues qguickly. Several techniques
are possible:

1. Ensure that the PCB is in a page that is mapped
virtual to physical, That 1is, if the PCB is in
EXEC virtual page 100, then it muyst also be

in physical page 100, It is also necessary

to allocate BDs from pages with the sanme

property. This restriction will not apply

to the 2080 as it will provide instructions

that implement physical addressing.

2, Since the monitor Knows the virtual address

of the PCB, it can always reference it

aquickly. However, since it cannot predict which

packet it needs to degueue next, It needs a qguick
means of translating the physical address to a virtual
one, The most straight=forward technique is for

the port driver to have a virtual address slot

it ray use for temporary mapping (the same kind

of slot used in PAGEM e,a, CXBPG). when it needs

to examine a packet, It would map the physical page

to its page slot, perform any data modlfications

or extractions, anod clear the map slot, Since

all gueue headers and Iinterlock words are in fixed locatlions
they can always be referenced with virtual sddresses,

lespite the fact that the monitor always Processes
aueues FIFD, {t still needs to maintain
Foth torward and pbackward cgueue pointers since the

port references qgueues randomly, Therfore, engueuinn
or degueueing a packet requires modifving another
packet as well as a aueue header, To make this

as efficient as possible, two temporary map

slots could be allocated,

3. Fuilding in some other innate knowledge about BDs
that would enable rapid conversion of physical
addresses into virtual ones. An example would

be to allocate all BDs from a single exec virtual page
thereby making the word offset in the physical

page the unigue identifer of the packet’s location,
Multiple pages could be used ¥with another level

of translation regquired,

The first technique seems adeauate for the KL10, The 2080
provides sufficlent flexibility in its addressinag modes
that the prohlem disappears,

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

