1.0 OVERVIEW

The KLIPA driver is the lowest 1level of support for the
C1-20. The driver 1is responsible for coordinating all
access to the device and for implementing the queued
interface between the device and the operating system. It
also must provide services for diagnostic functions as well
as for "DMA" functions specified in the SCA layer.

The driver is part of the PHYSIO system. The decision to
place the KLIPA within the bounds of PHYSIO was made in
order to minimize the effort within TOPS-20 to interface to
the KLIPA. The KLIPA 1is the first device in the PHYSIO
system that is not an RH20 and therefore we will have to
"teach" PHYSIO how to manage such devices, It seemed
appropriate to make this alteration to PHYSIO so that any
other additions to the KL device repertoire will be easily
integrated into the monitor.

This document describes the structure of the KLIPA driver,
the specific services it performs and its relationship to
the other CI-related services and to the monitor in general.

1.1 References

1. PHYKRKLP functional specification (R60SPC:KLPFUN). '
10-AUG-83 (Grant/Miller)

2. LCG CI Port Architecture Specification, 11-July-83
(Keenan)

3. IPA20-L Error Spec, 30-Sept-82 (Holewa)

4. Systems Communication Architecture, 20-July-82
(Strecker)

1.2 Purpose Of This Document

This document describes how PHYKLP implements the services
described in the functional specification [1]. 1Ideally,
this document is a template for the implementor to follow
and therefore will serve as a "road map" to the code.
fortions of this document will appear as commentary in the
source module so that maintainers will benefit from this
design plan.

Page 2

1.3 Driver Functions

The KLIPA driver 1is a TOPS-20 device driver, It is
generally a passive service that responds to requests from
higher level components and simply performs the
device-specific operations required by the requests.
Because the KLIPA 1is a smart and somewhat independent
device, the driver must perform some actions on its own
without being directed by higher-level services. However,
these operations are transparent to the rest of the monitor.

The driver is responsible for maintaining the port-to-port
virtual circuits to other CI drops. That is, the driver
must locate the other CI drops, and negotiate a "three-way
handshake" initialization in order to establish a "reliable
communication path" between the nodes. 1In support of this
operation, the driver polls the CI drops from time-to-time
to detect any changes to the CI configuration. It turns out
that the other nodes are also polling the CI, and therefore
nodes may recognize one another during either of the polling
actions. Whereas some nodes will only allow the
port-to-port circuit when its poller detects another node (a
la the HSC-50), the TOPS-20 KLIPA driver will cooperate with
any node that wishes to establish a port-to-port circuit.

The only active part of the driver is the polling operation
and the concomitant "virtual circuit initialization"
operation. All other data transfers, including datagrams,
messages and DMA transfers are requested explicitly by SCA.
The interfaces to PHYKLP and SCA are diagrammed below:

e + o +
! SCa ! ! PHYSIO !
Fmmm——————— ! Fommm e —————— +

\ 7 config change / poll
\ \ data received / interrupt

DMA N /

messages \ \ /

datagrams \ \--#---------------- +</

-——=> ! PHYKLP !
e ———— e —— +

! device interface
- o +
! IPA20 !
e ——————— +

As can be seen, the PHYSIO interface is used only to drive
the interrupts and as a source of polling calls. Unlike
other PHYSIO drivers, PHYKLP is not called by PHYSIO to
perform register reads, register writes and other
"housekeeping"” functions. PHYKLP appears to PHYSIO as a
device other than an RH20 and one that 1is relatively

Page 3

self-contained.

1.4 Driver Components And Data Structures

The driver, PHYKLP, maintains the following structures

. The port control block (PCB). This is a
"communication" area between the KLIPA and the

driver. The PCB contains interlock words, queue

headers and control information necessary for the

?L%PA to monitor protocol. It is described fully in
2],

. System blocks. A system block is a data structure
describing a node on the CI. Each system block
contains information about the node as well as the
state of the connection between this node and the
remote node. The system block is the fundamental
data structure for maintaining the virtual circuit
between two nodes. There is a unique system block
for each of the nodes on the CI.

The fundamental pieces of the driver are:

. Poller. This 1is the code that attempts to
recognize new nodes appearing on the CI and to
detect and report path failures in the CI. It is
called as part of the scheduler.

. Interrupt service. This code is called by PHYSIO
when the KLIPA interrupts the monitor. Most of the
real work in the driver happens in the interrupt
service routine, including the crux of the
port-to-port VC initialization. The interrupt
service routine is responsible for detecting device
errors, protocol violations and system errors that
affect the KLIPA.

. Message and datagram transmission, This service
is used by SCA to send messages and datagrams.

. DMA services. These routines are used to create
and validate CI buffers and to provide the software
required portions of the DMA message service,

. diagnostic services. These routines support the
DIAG% and SCS% functions specified for the KLIPA,

'he remaining sections of this document will explore each of
the pieces described in the overview as well as provide an
operational description of PHYKLP.

Page 4

2.0 DATA DESCRIPTIONS

2.1 PCB

The PCB, port control block, is the interface communications
region between PHYKLP and the KLIPA. PHYKLP initializes the
PCB and then identifies its physical address to the KLIPA.
The PCB is as follows:

BBBDT | batter bescriptor Tabie Stariing nsdress |
emom | cores By pemen T
e S :
S o oemn 3 eI :
S o e T :
w2 o P — :
S oy ey mo T T
eszm | Command Goews 2 mizme T :
e | b S T
R commena avene 1 i :
esoim o v T T
es0r Command ovene o Tnteriean T :
N Command Gueve 0 FLIN T :
N o avene o T :
A cesponas ovese tareciost T :

T Recponse guewe Interlock
. PBRQF i Response Queue FLINK T
een | e eene T T
emer | veimaee Pres casae Tnertesn T ;
- PRMER T Message Free Queue FLINK :
S werangs Fres guene v T ;
eeer | Datagram Free Queve Interlock :

+PEDEF | Datagram Free Queue FLINK |
emrs | eiasran Fres gwene mw T T
ewmsy neseresa 1o pan T T
R ey T
e T rrr wera T :
N n mane nasray T :
S e T 7

o e e e e e e !
$PRIVA | Interrupt Vector Assignment |
emecw Crammel command word T 7
emmse cemerena o pern T :

st R |

As can be seen, each of the queues requires three words: an
interlock word, a forward pointer (FLINK) and a back pointer
(BLINK).

All addresses in the PCB, and all addresses given to the
ILIPA are physical memory addresses. This is so because the
KLIPA accesses memory directly over either the E-bus or the
C-bus. If it uses the C-bus, it has no way of performing a
virtual to physical address translation. Consequently, the
monitor must perform this translation in advance of
specifying the address, and it must insure that the
association remains valid until the KLIPA is finished with
the data.

Queue interlock words are conventional "spin locks". That
is, to lock a queue, one simply performs an

AOSE ADD
{lock previously locked, test for timeout}
{lock successfully locked}
and one unlocks a queue by

SETOM ADD

This is easy for the processor, but not so easy for the
KLIPA, In order to assist the KLIPA, a new microcode IOP
function has been added that performs the equivalent of:

AOS EBUS,ADD
‘hat is, the function directs the microcode to increment the

value at ADD and to send the resulting value over the E-bus
to the requesting device. It is then up to the KLIPA to

Page 6

determine if it owns the interlock by examining the result.

PHYKLP's lock procedure includes a "time out" if the lock is
unavailable for a long time. If the spin lock does not
succeed within one second, PHYKLP will consider the KLIPA to
be malfunctioning and reload its microcode.

The PCB is essential to all interactions with the KLIPA.
Therefore, anytime PHYKLP wishes to send a message or
process an interrupt, it must determine the PCB address so
that it can access the appropriate gqueue or status
information.

In general, the PCB address is passed as an argument to the
inner routines of PHYKLP. This is to allow additional
KLIPAs someday without changing the bulk of PHYKLP. As can
be seen in the next section, the system block associated
with other node points to the appropriate PCB.

2.2 System Blocks

A system block describes the status of another node on the
CI. PHYKLP builds a system block whenever it first
encounters a node. In general, this will be when the poller
receives a valid reply to a "request ID message”, but it may
also occur when the other node attempts to begin the
initialization protocol and PHYKLP has not yet noticed the
node. The system block is as follows:

-SBANB ! Address of next system block

seapB | Address of associated port control block
seaco | Address of associated channel data block
.SBVCS | Path validity info ! Dest vir cir state
swose bestination port
s i rasran reran vens s T
o i Local message butfer header
.SBSBI ; """"""" Reserved ! SBI of this SB
serca ! boimter to tirst sommection Bloak

.SBLCB ! Pointer to last connection block

.SBTWQ ! FLINK for SCA work queue

e o e e e
.SQBWQ ! BLINK for SCA work queue

| e e e e e e e e e e
.SBQOR ! Pointer to queue of outstanding requests

| e e e e e e e e e e
.SBDSS \

\ Destination system

\

! ___
.SBMMS ! Max mess size (bytes) ! Max DG size (Bytes)

] e e e e e e e e e e e
.SBDST ! Destination software type

| e o e e e e e e e e e e e
.SBDSV ! Destination software version

| e e e e e e e e e e e e e e e e e e e
.SBDSE ! Destination software edit level

e e e e e ———————— e e e
«SBDHT ! Destination hardware type

Ry
.SBDHV ! Destination hardware version

| e
.SBDPC \

\ Destination port characteristics

\

! ___
.SBTIM ! TODCLK at last message from this remote

| e e, ——————
.SBFLG ! Flags

As can be seen, the system block contains some fields and
information maintained by SCA alone. That is, this data

struc

ture, although created by PHYKLP, is shared by SCA and

PHYKLP. In effect, this is much like the other PHYSIO data

struc
sever

The £
from

tures, UDB and CDB, that contain information for
al of the layers.

ields describing the destination system are acquired
the "ID request" message exchanged by the ports.

A system block contains all of the information needed for
PHYKLP to correctly process a request from a higher level

servi
conta
port-
local
the s
the

for 1

Inter

(LIPA

ce (viz. SCa). In particular, the system block
ins the PCB to be wused and the state of the
to-port virtual circuit between that system and the

port., Therefore, each request made by SCA will use
ystem block to validate that the operation is legal for
current wvirtual circuit state (see section 3.1.2) and
ocating the PCB and its data structures.

rupt requests begin with the PCB of the interrupting
and then determine the appropriate system block from

the source node address in the received message (see section

3.3).

Once the system block is determined, then PHYKLP can

Page 8

validate tha the operation is valid for the current virtual
circuit state.

3.0 PHYKLP DESCRIPTION
3.1 State Representation Of The Driver

3.1.1 1Initialization -

The port-to-port VC is opened by means of a "three way
handshake” protocol. Diagrammatically, the protocol looks
like:

(Figure 1)
Notes to figure 1:

The messages, START, STACK and ACK are always to be

sent from the lowest priority command queue (see
6.2.2).

INIT is a holding state. In the case of a
previously known system, INIT will "latch"™ until SCA
releases it (see KLPOPN call). In the case of a
newly located node, INIT releases immediately.

Although error detection is not mandatory, it is
recommended in order to avoid unnecessary
interactions with higher-level services.

This protocol insures that the two systems reach the "open"
state at the same time and that they maintain this state
together.

The initialization sequence is begun once PHYKLP recognizes
another node.

3.1.2 Other States -

PHYKLP operates as a state machine. Anytime the 1local
system wishes to communicate with any system, or the local
system receives data from another system, the state machine
is wused to validate the operation and to perform state
transitions and notifications.

In particular, the system block describes the state of the
connection between the local system and the remote system.

Page 9

Any operation has a unique definition for the state in the
system block. Data handling, error handling and calls to
other services are all defined by the current state.

The initialization sequence states and transitions are
defined in figure 1. Table 1 shows the additional
transitions and operations.

Table 1
\
\ EVENT msg datagram send err send err VC closed
S \ rec rec datagram message
T \
A\
T \
E \
ISTRT KLIPA | drop | ignore| NA | NA
error | it | | |
ASTRT nn = nn { nn : "o } nn
I | | |
RUN tell SCA| tell SCA| " | Close VC | tell SCa
| | | goto INIT | goto INIT

The entrieg containinag "tell QCA" indicate

- asm Sl L s e LRALLEC il niy (R N e e) -k wiE v

tha
call the appropriate routine 1in SCA; each o
makes use of a unique entry point in SCA.

3.2 Message Handling

The CI supports various types of port-to-port packets.
There 1is a <class of packets directed to SCA defined as
messagess and datagrams. In addition, there are other types
of packets, used for CI housekeeping functions and for
maintenance, that are exchanged by the ports. 1In fact, the
three initialization messages, START, STACK and ACK are of
this latter class.

All of the housekeeping and maintenance packets are
datagrams. That 1is, they are handled on a "best effort
delivery" basis. The protocol that uses these packets must
either be tolerant of 1lost packets or must provide some
other means of guaranteeing no data 1is lost. The timers
used in the initialization protocol are one example of how a
datagram-based protocol tolerates and recovers from lost
data.

Packets intended for SCA are sent only when a port-to-port
virtual circuit has been established. Until the

|
I
|
|
I
|
I

VC open

tell SCa

tell Sca

NA

Page 10

port-to-port circuit is RUNning, the only data exchanges are
port housekeeping datagrams.

SCA message delivery is guaranteed by the KLIPA. That is,
any SCA message is either correctly delivered, or the
port-to-port circuit 1is closed. This 1low-level service
off-loads considerable responsibility from the software
thereby freeing it to provide other, more sophisticated
services.

SCA datagram delivery 1is not guaranteed (as one might
imagine).

3.2.1 Buffers -

All buffers, datagram and message, are provided by SCa.
PHYKLP has no local buffer pool and takes no responsibility
for acquiring or maintaining buffers.

PHYKLP will enqueue and dequeue buffers, datagram or message

buffers, on request. Only SCA should use these routines as
only SCA should be concerned with CI buffer management.

3.3 Message Formats

The CI portion of a packet looks like:

o +
.PKFLI i FLINK i
tm +
.PKBLI ! BLINK !
o e +
.PKRSV ! Reserved for software !
e ————— e o ————— tmm—————— o ——— +
.PKSTS $100<--->07!08<--->15!116<--->23124<--->31132<->351
! Status ! Flags ! Opcode ! Port ! MBZ !
e ————— e —————— o ———— e —— Fom————— +
. PKLEN 100<——-—=m——m o >15116<———-mmmm - >35!
! PPD byte ! Length of text data !
D bttt P e e T —— +

! !
! !
! !
! Text !
1 !
! !
!]

Queue
Length

The opcode field describes the type of CI message. Packets
intended for SCA are distinguishable from packets used by
the ports.

The information above is called the "PPD header" and is
meant for use by the port and its software driver. SCA has
its own header information that 1is part of the "text"
carried by the PPD packet.

3.4 Polling

The poller, which is part of the scheduler's context, |is
responsible for testing the validity of the port-to-port VC
for each of the known nodes. Part of this testing function
is to implement the "timer" noted in figure 1.

In addition, the poller attempts to "locate" newly "on line"
nodes by periodically sending "request id" messages to any
node not yet identified. This 1is necessary because the
'request id" message is a datagram, as are all port-to-port
overhead messages, and therefore there is no guarantee when
and if one such message and its repsonse will be
successfully delivered. Therefore, each node on the CI must
continually poll the other nodes in the fervent hope that
one of them will succeed. Although this may sound
hopelessly frustrating, the chances of not succeeding are
actually quite small, and therefore the polling activity 1is
infrequent. Were it not for the likelihood of losing a
request id or its response, the polling of wunknown nodes
could be replaced by the requirement that each newly
activated port simply send each other CI drop a "request
id". This would be sufficient to guarantee complete
connectivity of all CI ports. So much for the ideal world.

The poller's chief testing function 1is to implement the
timers for the ISTRT and the ASTRT states. 1In addition to
this, the poller could test the connectivity of the RUN
connections by periodically sending "request id" messages to
these ports as well. However, the SCA 1idle chatter 1is a
more inclusive test of port-to-port connectivity and
therefore will be used instead of this more primitive
testing facility.

Page 12
4.0 PHYKLP OPERATION
4,1 Major Interfaces

4.,1.1 PHYSIO Interface -

PHYKLP is a device driver. As such, it is called by PHYSIO
to perform device polling and to process interrupts.

The KLIPA does not support "vectored interrupts". PHYSIO
expects its drivers to behave 1like RH20 channels, and
therefore to request "vectored interrupts". In order to
make all of this balance, the interrupt skip chain for
channel 5 calls directly into PHYKLP when the KLIPA requests
service. PHYKLP then fills in the CDB locations for its
channel (RH slot 7) and calls PHYSIO as if a normal
RH20-style vectored interrupt had occurred. PHYSIO is then
in control of the rest of the interrupt processing.

PHYKLP is defined as a new type of channel controller. As a
result, PHYSIO will acquire some new conventions for
managing controllers other than RH20-style controllers.

The poller is called from PHYSIO's once-a-second routine.
The action of the poller has already been described.

4.1.2 SCA Interface -

SCA relies on PHYKLP to send messages and datagrams. Also,
it requires that PHYKLP be able to establish "named buffers"
for DMA transfers and for PHYKLP to manage the DMA transfer
including notifying SCA of the completion status. Finally,
SCA relies on PHYKLP to inform it of nodes coming on-line or
going off-line.

SCA is responsible for providing message and datagram
buffers sufficient for all of the SCA traffic on the CI. 1In
particular, SCA <cannot rely on the meager number of
datagrams that PHYKLP owns for all of the datagram traffic.

4.2 PHYKLP Structure

Page 13

4,2.1 1Initialization -

PHYKLP is initialized by a call to PPDINX, On this call,
PHYKLP constructs the PCB, calls SCA so it may initialize
and create the buffers that PHYKLP needs.

Once SCA has been called, PHYKLP will enable the KLIPA.

4,2,2 CI Configuration -

The CI is "configured" by a combination of interrupt level
and polling activity. The poller continually sends request
ID messages to other CI drops in an effort to 1locate
previously unknown or not operating nodes.

The result of the polling activity, the ID message, is
received at interrupt level. Once a node is recognized, or
reintialized, the intialization sequence is carried out at
interrupt level.

SC.ONL is called whenever the interrupt level code manages
to create a port-to-port virtual circuit.

mh ~Aan
Ldi il

£i
configurat

. . .
guration ctiv is ongoing as the CI
:
i

U io vity
on may change at any time.

PHYKLP will establish a VC with another node that it "sees"
for the first time. However, if any existing port-to-port
VC is closed, SCA must call KLPOPN before PHYKLP will
attempt to open, or allow the other node to open, the VC
again. This is provided to allow SCA to clean up 1its own
data base and to prevent races between incarnations of the
port-to-port VC. The system block for the remote node
indicates whether a VC may be established.

4,2,3 Other Interrupt Activity -

Fig. 2 is a flow chart describing the general flow of the
KLIPA interrupt service.

The interrupt code processes the KLIPA's response queue as
well as detects changes in the device's state. The chief
source of response queue entries is received messages and
datagrams. Any received message must be given to SCA as
PHYKLP has no interest in CI messages.

Jatagrams are divided into two classes: CI housekeeping
datagrams and SCA datagrams. PHYKLP distinguishes these
classes by the PPD opcode byte in the received datagram. CI

Page 14

housekeeping datagrams are either intialization datagrams or
maintenance datagrams.

All KLIPA interrupts are processed in the routine KLPINT.
The KLIPA 1is a standard device in that it has a CONI word
describing the events that promoted the interrupt.

A KLIPA interrupt occurs for one of the following reasons:
1. free queue error
2. response gueue available
3. E-bus or M-bus error
4, CRAM parity error

The "normal" case is "response queue available" meaning that
some data has arrived that needs the attention of the
monitor. The other cases are all abnormal conditions that
require special handling.

In all cases, the interrupt entry routine determines the PCB
address for the interrupting device, and loads it into one
of the permanent ACs.

A response is one of the following:
1. A received message or datagram

2. A sent message or datagram that PHYKLP specified
the reponse bit for

3. A sent message or datagram that encountered an
error

4, DMA transfer done

Messsages or datagrams meant for SCA are given directly to
SCA from the KLPINT code. Of course, it is important that
PHYKLP first determine if the port-to-port circuit is
RUNning. If it isn't, then either the KLIPA or the monitor
has made a disasterous error. The port to port «curcuit is
validated by finding the system block for the other node and
then checking the virtual circuit state in the system block.

A datagram meant for PHYKLP is one of the "port housekeeping
messages”. In general, these will be initialization
messages, but they could be messages generated by PHYKLP
itself to read information from the KLIPA. If the datagram
is an initialization message, then the state description in
Figure 1 applies.

In all cases, table 1 defines the legal operations for data
transmission.

Page 15

All port messages must be sent using the lowest priority
nessage queue. This is to allow any messages still enqueued
to be processed before any of the VC establishing messages.
If this is not done, then it 1is possible for the
port-to-port VC to be reestablished before the o0ld message
is processed and therefore the old message will be
erroneously sent. For example, consider the case where SCA
has requested that a message be sent to node A, but the
request is still on the command queue. If node A sends a
START, then the port-to-port VC will be closed. 1If the
STACK sent in reply is sent at a higher priority than the
queued message, and the ACK in reply is received promptly,
the port-to-port VC could be reestablished before the SCA
message is processed. If this happens, then the KLIPA will
send the message and node A will declare a protocol error
when it receives thereby closing the port-to-port VC.
Although this situation should eventually reach a quiescent
state, much time could pass before the nodes can once again
communicate.

Sending the START, STACK and ACK datagrams at the lowest
priority avoids this unfortunate condition.

4.2.4 Data Services -

The other major portion of PHYKLP is the interfaces for
sending messages and datagrams used by SCA. These are
simply a collection of interfaces that manages the PPD layer
of the packets.

In general, there are buffers owned by SYSAPs that the SYSAP
wants returned when the contents have been transmitted.
This is accomplished by setting the "response bit" in the
packet flag byte. When the data has been sent, the pakcet
will be placed on the response queue and a repsonse queue
available interrupt produced. KLPINT simply informs SCA
that the transmission is complete, and SCA must inform the
appropriate SYSAP. The following cases are known to set the
response bit:

. SCA control messages

. CFS messages

Page 16

4.2.5 Packet Conventions -

As was mentioned earlier, the driver must provide physical
addresses to the KLIPA. Consequently, the link words of
linked structures are physical addresses, not virtual
addresses.

In order to make accessing these structures as simple as
possible, many of the structures contain a word reserved for
use by software. PHYKLP stores the virtual address of the
datum in this word and uses the routines PMOVE and PMOVEM to
reference the physical location.

5.0 ERRORS

Errors are detected at interrupt level. They fall into two
broad categories: transmission errors and device errors.
Each time PHYKLP detects an error, it will either execute a
BUG. or it will explicitly make a SPEAR entry.

5.1 Transmission Errors

Transmission errors occur for following reasons:
1. The port-to-port curcuit is in the wrong state
2. The CI itself is defective
3. The destination port does not ACK the message

It turns out there are other conditions, namely bugs in the
ports, that can appear to be one of these conditions. For
example, a defective collisions avoidance algorithm can
appear to be a defective CI.

A transmission error on a message is a fatal error. That
is, the SCA virtual circuit carrying the message ceases to
be usable. PHYKLP must inform SCA of this condition.

A transmission error on a datagram is not a fatal error. If
the datagram is one of SCA's, then PHYKLP can simply log the
error and not bother notifying SCA, This 1is acceptable
because datagrams may be lost for many reasons,
transmissions errors being only one of the possible
failures.

A transmission error on an intialization message is of

Page 17

concern to PHYKLP. As noted in Figure 1, errors during
initialization may be ignored and caught as "time out"
conditions, However, to expedite establishing the
port-to-port VC, PHYKLP will detect transmission errors
during initialization and attempt to recover immediately.

In general, a transmission error happens either because the
destination port 1is not operational (no ACK), or the CI is
defective., The former case is an acceptable failure and
does not require logging or any other special action. The
latter case must be logged and, in addition, PHYKLP will
declare the port-to-port VC down and attempt to initialize
the circuit again. This implies that SCA must be notified
of a "node offline" condition.

5.2 Device Errors

These errors correspond to bits in the device's CONI status
word, Each 1i1s detected at interrupt level and handled
immediately.

5.2.1 Free Queue Error -

A free queue error implies that SCA has not provided
sufficient buffering for the KLIPA. Of course a flurry of
activity, such as many nodes coming online at once, can
provoke this error as well.

A free queue error is simply an "data overrun" condition.
It may not indicate a problem with the software or with the
CI, and therefore PHYKLP will simply log the event. If, in
fact, the error resulted in the loss of important data, the
sending system will execute the appropriate recovery (e.g.
close the VC).

5.2.2 CRAM Parity Error -

This means that the KLIPA has halted. Most likely the error
is a result of the UCODE executing a predefined location
that contains a parity error; in other words, it's a
BUGHLT!

PHYKLP will log the error, including the LAR and will
request that the KLIPA microcode be reloaded.

Page 18

5.2.3 Bus Errors -

These are errors that may or may not result in a protocol
error. That is, the data that is lost might be unimportant
(i.e. a datagram).

Since PHYKLP has no way of knowing if any informationw as
lost, it must assume that a bus error is a fatal error and
shut all of the port-to-port VCs.

6.0 OPEN ISSUES

PHYKLP is being written to be initialized during PHYINI as
well as later on the monitor start-up procedure. Once
PHYSIO 1is modified to allow interrupt handling during
initialization, this feature of PHYKLP will have to be
thoroughly tested.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

