SCA Design Notes

Judy Hall
Dave Lomartire

This is a collection of notes about the changes that have been made to
SCAMPI. It is not intended to be a complete description of the changes,
nor is it in any way a tutorial description of the design. But it does
document the reasons behind some decisions, and may provide some insight

into the assumptions implicit in the code.

Interactions in SCAMPI
Judy Hall
6/14/84

1. System block's list of connection blocks (pointed to by .SBFCB)
NOTE: We assume that the c.b. lock has prevented setting the "reap”
bit until no other code wants to use the c.b. The concern here is only
with keeping the list intact.
Adding - SC.LCB -- CIOFF
Removing -- SC.RCB -- CIOFF
Traversing -- SC.RAP knows it's the only deleter, and uses no
protection when traversing
-- SC.SCM knows it's at interrupt level, uses no protection when
traversing
-- SC.IDL goes NOSKED when traversing to prevent SC.RAP from
running

Nothing totally eliminates the queue. It may become empty when the
last entry is removed.

2. Don't-care listeners (pointed to by TOPDC)

Adding -- SC.LCB -- CIOFF

Removing -- SC.RCB -- CIOFF
-- SC.SCM -- interrupt level

Traversing -- SC.RAP uses CIOFF. WHen it finds an entry to be reaped, it
goes CION. When it continues, it returns to the top of
the list.

3. System block's work queue (pointed to by .SBTWQ)

adding -- SC.AWQ {(from SC.SCA, SC.SNM, SC.DEF) -- CIOFF, checks v.c. before
returning entry. If closed, doesn't queue the entry
since SC.ERR has destroyed the gqueue

Deleting -- SC.RWQ (from SC.SNM, SC.DEF) -- CIOFF

Traversing -- SC.SNM, SC.DEF -- always remove entry while CIOFF, return

it while CIOFF
Destroying queue -- SC.ERR -- CIOFF when resetting the head and tail

At any time, SC.ERR may destroy the list. Others can't traverse it
CION, or add an entry without verifying that node is still online.

4. System block's address of outbound buffer (pointed to by .SBOBB)

Taking the buffer -- SC.SNM -- uses EXCH with zero; if result is non-zero,
owns the buffer

Returning buffer to s.b. -- SC.SNM -- while CIOFF, makes sure v.c. is open.

If open, stores address in s.b.; if closed, returns buffer
to port queue

-- SC.SAR -- knows it's at interrupt level, stores
address in s.b.

Returning buffer to port or SCa --

SC.ERR -- uses EXCH with zero; if result is non-zero, returns
buffer to SCA's pool

-- if zero, gets a buffer from the port's queue,

SC.RIB -~ knows that v.c. is already closed,
returns buffer to port

SC.SNM -- if PHYKLP refuses to send, returns buffer to port

At any time, SC.ERR may return the buffer to SCA's pool. All code must
test and zero the address in one operation.

5. Connection block
Connection block lock protects against
A. Reaping

Makes c.b. address invalid
Manages buffers according to counts in c.b. i
(Assume reaping can happen as soon as unlock and OKSKED)

B. Protocol violation

Disc_req / application message
Disc_req / disc_req
Disc_req / credit_req

(Even if last is not a violation of protocol, we will have
reaped the block by the time the response arrives. And there
is no reason to change credit if we are disconnecting.)

C. Change in connection state or block state

Protocol is generally synchronous, but

1. SC.DIS at odd times can be interrupted by incoming
protocol message. Both change state,

2. Sysap can do connection management request, interrupt out
of it, and do SC.DIS.

3. Any connection management request can be interrupted by
node offline.

Events that can't tolerate these changes --anything that believes the

c.b.a. is valid, sets the connection state, sets the block state, or sends
a packet, including

Calls from the sysap, including
Connection management requests
Sending messages and datagrams
Queueing or canceling buffers for reception
Sending DMA
1dle chatter
Sending connection management requests

These all lock the connection block lock. In the case of sending a packet,
they unlock it only after the packet has been given to PHYKLP.

It is NOT necessary to leave a c.b. locked while it is waiting to send a
connection management request (that is, the buffer is in use). However,

it must be locked while its request is being sent and its state is being
changed.

Some code needs to honor the lock if it's at interrupt level, and lock the
lock if it's not. So there are three kinds of routines:

A. Lock

1f at interrupt level, do nothing
If not, AOS the count.

B. Honor

Called by code that runs only at interrupt level
If lock is unlocked, proceed.

I1f lock is locked, set a bit to indicate what is deferred,
and don't proceed.

C. Lock and honor

I1f not at interrupt level, do "lock"
I1f at interrupt level, do "honor"

When locking, code goes NOSKED. Therefore, there can be only one locker
at a time,

Events that defer:

SC.ERR - node offline

SC.DIS - sysap requests disconnect

SC.DRQ remote side initiates disconnect

SC.SNM sending a connection management reguest

Unlock routine processes according to the bits it finds set.

6. Existence of connection block

Only SC.RAP deletes a connection block. Code that sets the "reap"

bit must lock the connection block, which makes it NOSKED. The reaper
won't run until the block has been unlocked.

7. Virtual circuit's state (indicated by SBVCST)

SC.ERR -- if no c.b. is locked, calls OPENVC

-- if a c.b. is locked, increments s.b.'s count of locked c.b.'s

SC.ULK -- if node offline had been deferred, decrements s.b.'s count
of locked c.b.'s. If result is zero, calls OPENVC
8. Send credit (indicated by .CBSCD)
Single-instruction AOS or SOS avoids races
Decrement and test -- SC.SMG, SC.SND, SC.REQ -- SOS and load AC

Increase -- SC.DMA increases by 1 -- A0S -- interrupt level
-- SC.CRQ and SC.AMG -- ADDM from packet -- interrupt level

Use -- SC.CRQ compares with minimum send credit -- interrupt level

Store initial value -- SC.ORQ and SC.ARQ -- interrupt level

9. Receive credit

CIOFF protects all changes; multiple kinds of credit must be adjusted
without interruption.

Use of return_credit prevents interaction between cancel receive message
and other events. Avoids cases in which the number of buffers queued
differs from receive credit.

Interlock word, .CBPND, prevents conflicts between two contexts that
want to send a credit_request. Prevents an attempt at queueing the c.b.
a second time, and avoids sending a null credit_request. When the
credit_response arrives, we send another credit request if the need has
arisen since the last one was sent.

SC.CDT (from SC.RMG, SC.CRM, SC.IDL, SC.CRS) -- EXCH of .CBPND with -1.
If result is 0, send credit_request. If not, return.

SC.CRS -- clear .CBPND and call SC.CDT to send again if necessary.

10. Count of buffers gqueued for receiving datagrams

Decrement -- SC.CRD -- SOSL once per buffer; AOS if negative

Change -- SC.RDG -- ADDM
-- SC.ADG -- SOSGE; AOS and drop datagram if negative

Use -- SC.RCB dequeues based on this value; block isn't being used by then

Why SC.DIS is Special
6/21/84

SC.DIS uses CIOFF to lock out SC.DRQ, SC.ORQ, SC.ARQ, SC.ARS. If these
were allowed to run, they would have to honor the lock. SC.DRQ already does
honor it, but the other three do not.

The alternative to CIOFF is to make each of these honor the lock. The race
arises only when the sysap has done a disconnect at an unusual time, as
follows:

SC.ORQ - sysap disconnects a listener, and connect_request arrives. SC.DIS
sets new state to closed, but SC.ORQ has already set it to connect_received,
and sent a connect_rsp Match., Its deferred code would have to manufacture

a reject_request if the state had changed to closed. Today it sends
connect_rsp NM if the state is closed.

SC.ARQ - sysap disconnects after initiating a connection, and an accept_request
arrives, SC.DIS sets new state to closed, but SC.ARQ has already set it to
open, and sent an accept_response Match. Its deferred code would have to
manufacture a disconnect_request if the state had changed to closed. Today it
sends an accept_response NM if the state is closed.

SC.ARS - sysap disconnects after accepting a connection for a listener, and
an accept_response Match arrives. SC.DIS sets new state to closed, but SC.ARS
has already set it to open. Its deferred code would have to send a
disconnect_req, which it does today if the state is closed.

It seems more practical to let SC.DIS be CIOFF until it is ready to send

3 message (if that's necessary), and avoid a lot of special-purpose code.
It already needs to be CIOFF for a large fraction of the execution time
anyway. Also, the speed of disconnect doesn't seem terribly critical to the

overa%l performance of the system.

Since SC.DIS is CIOFF for this purpose, it need not lock the lock. SC.DRQ
and SC.ERR will be held off by CIOFF, so the lock is unnecessary.

Why Reap in Process Context
Judy Hall
6/14/84

1. Allows the return of buffers that the sysap (CFS) has queued for output.
These will be returned at SC.INT, which assumes that the CID is still valid.

That is the only way to identify the sysap to which the buffer is to be
returned.

2. Code that sets the "reap" bit must still unlock the connection block before
the reaper can run. Locking goes NOSKED, which prevents reaping. If we were to
reap immediately, each pass through unlock would have to check for this case.

3. Reaping isn't very urgent, and shouldn't be done at interrupt level.

Why Stock the Message Free Queue
Judy Hall
6/20/84

1. When a node goes offline, the outgoing connection management buffer may be ;
use. If so, we try to get a buffer from the port's queue to give back

to SCAMPI. When PHYKLP queues the buffer to the port, the port will return

it with error. PHYKLP will return the buffer to the free queue. Thus there

is a window where the port will be short one buffer.

2. When a node goes offline, the incoming connection management buffer

may be on the response queue. SCAMPI will try to remove a buffer from the
port's queue at SC.ERR. Eventually the connection management buffer will

be given to SCAMPI, which will return it to the free queue, Meanwhile, there
is a window where the port will be short one buffer.

3. When a node goes offline, a sysap may have queued a buffer to go out,
without asking that the buffer be returned. In this case, the sysap's
receive credit includes this buffer. If the reaper runs before the port sees
the buffer, SC.RCB will try to remove a buffer from the port when it hasn't
been queued there yet. As soon as the port rejects the command, PHYKLP will
give the buffer back to the port.

Incoming Packets on Closed V.C.
Judy Hall
6/22/84

An incoming packet may be on the response queue behind a packet that will
cause the v.c. to be closed. SCAMPI will receive a callback at SC.ERR
for the bad packet, followed by a callback at SC.INT for the good one.

SCAMPI used to process this second packet normally, even though the
v.c. was closed. This led to the following problem:

Suppose the second packet is a connect_request. SCAMPI matched the

request with a waiting listener and set the connection state to "connect
received". However, the attempt at sending a connect_response failed
because the v.c. was closed. The sysap was never notified of the change of
state. It believed it had an outstanding listener.

SCAMPI now checks the state of the v.c. for every incoming packet.
Because connect_ request isn't associated with a particular connection,
it's not sufficient to check the connection state. Also, handling of
the buffer is different if we know that SC.ERR has already run.

This could be via a separate dispatch table at SC.INT, indexed by op
code and handling only the case of incoming packet on a closed v.c.
Presently, the check on the v.c. is made after the op code is known.

The buffer is handled as follows:
1. Connection management request

This is the buffer that SCAMPI queued to the port when the node came
online. Normally, the response goes out in this buffer. If the node

is offline, SCAMPI queues the buffer to the port. SC.ERR has already
taken a buffer from the port and returned it to its pool. THus this
buffer belongs to the port. !

2. Connection management response

This is the buffer that is gqueued to the system block for outgoing
requests. When SC.ERR ran, the pointer was 0, and SCAMPI took a buffer

from the port's gqueue. Thus SCAMPI now returns this buffer to the port
3. Application message

SCAMPI gives the buffer to the port. It was included in the sysap's
receive credit, so if the reaper has run, it has already removed an
extra buffer from the port's queue,

4, Application datagram

SCAMPI gives the buffer to the port. It was included in the sysap's

count of queued datagram buffers, so if the reaper has run, it has
already removed an extra buffer from the port's queue.

The List of Connection Blocks
Judy Hall
6/20/84

It's not clear that linking the connection blocks to the system block
is essential. The list is useful for idle chatter, for the reaper,
and for finding the connections when a node goes offline.

‘Presently, a c.b. remains on the list until the reaper deletes it. This
means that searches through the list will stumble over this block. This

is most likely to be visible after a node goes offline. All its connection
blocks are marked to be reaped, and a whole new set of them is created,
but they are behind the obsolete ones.

One possibility seems to be to remove a c.b. from this list at SC.ERR,

or at SC.PTC, which is reached also when a disconnect sequence completes.,
These blocks could be on a special "reap" linked list, which the reaper
would search instead of searching the list for each system block. Since
the reaper runs periodically, and typically searches these lists without
accomplishing anything, this would seem to offer a performance gain.

Other possibilities:

Set a bit in CIDTAB to indicate that the connection block needs
reaping, and have the reaper scan CIDTAB,

Set a global flag when the reap bit is set in any c.b., and don't
call the reaper unless this flag is set.

Opening a V.C.
Judy Hall
6/20/84

SC.SNM may try to queue a packet after SC.ERR has run. Between getting the
buffer (.SBOBB) and sending, it doesn't check the v.c. We need to be sure
that 1) PHYKLP won't accept the packet if the v.c. is closed, and 2) the
v.c. doesn't get reopened before we gueue the packet.

Sequence in PHYKLP should always be:

1. Mark the state as closed
2. Tell the port to close the v.c.
3, Tell SCAMPI the v.c. is closed

SCaMPI should never allow the v.c. to be opened as long as any connection
block is locked. The locker may try to send a packet (SC.SNM, SC.SMG, etc.),
and we want that to fail.

Closing and Opening V.C.'s (SCAMPI and PHYKLP)
Judy Hall
6/10/84

1. SCA makes the decision to close

SCA calls PHYKLP, which
a. marks the state as "closed"
b. tells the port to close the v.c.
c. calls SC.ERR

2. PHYKLP makes the decision to close
It follows the same sequence as in #1 above.
3. The port informs PHYKLP of an error

PHYKLP either does all of #1 above, or leaves out telling the
port to close the v.c.

If PHYKLP is unable to get a buffer for the SETCKT, it sets a bit in
RIDSTS (or elsewhere) indicating that the v.c. still needs to be closed.
At this point, the system block has the state as closed, and SENDVC is
refusing to queue packets to the node.

The poller checks this bit, and sends the SETCKT whenever it can.

SCA decides it can open a v.c. (PHYKLP never decides that if the v.c. has
=ver been open before).

SCA calls PHYKLP, which sends a start unless the "need to close" bit is
still on. In that case, or if no buffer is available, it sets a bit in
RIDSTS called "need to open". !

The poller always checks "need to close™ before it checks "need to open".
When it wants to open, it sends a start.

Neither routine returns failure. The purpose of SCA's "open" call is to

say "you can open whenever you want to". PHYKLP will notify SCA when the
v.c. has been opened, and SCA is not concerned with the events that prevent
this.

Similarly, when SCA says "close the v.c.", it means "don't gueue any more
of my packets". So PHYKLP should mark its data base and act as if the vV.C.
is closed, even if it hasn't found a way to tell the port yet.

Multiple attempts at closing, either by SCA or because of the arrival of
bad packets, should be filtered. SCAMPI checks for multiple calls to SC.ERR
for the same system block, but there seems to be no reason to perform

the close function more than once.

Ahen queueing a START for "open v.c.", PHYKLP should use the lowest possible
priority. THus, if any message has been queued to the port, the port will rejec:
it before sending the START. Otherwise, stale data might go out on the newly-
opened v.c,.

Handling of Buffers on Error
Judy Hall
6/17/84

I believe that PHYKLP should return both message buffers and datagram
buffers to the port's queues when these buffers are locally-generated,
the "response" bit is not on, and an error has occurred. Here is my
reasoning:

1. Message buffers
A. Those sent by a sysap.

If the sysap doesn't want the buffer back, SCAMPI increments
its receive credit on the assumption that the buffer will be put on
the free queue when the port has finished with it.

Indeed, if there is no error, the port puts the buffer on the
free queue, where it is available for an incoming message. If there is
an error, the count has still been incremented, so the buffer should
ultimately wind up on the free queue.

If the node goes offline after the sysap has sent a message,
in theory the reaper could run before the port decides to refuse to send
the message. In this case, SCAMPI would remove "n" buffers from the port's
queue, where "n" includes the 1 that was added to it when the message was
sent. The buffer, then, belongs to the port.

B. Those sent by SCAMPI

SCAMPI sends its requests in a buffer that has been allocated
especially for the purpose (one buffer per remote node). It assumes that
the remote system will send a response, for which the port will acquire
a buffer from the free queue. Thus it does not set the "response” bit
when it sends a request.

If the node goes offline, and a request is outstanding, the port
will return the packet with error. Meanwhile, SCAMPI will have been called
at SC.ERR, where it will determine that the buffer is in use, and move
a buffer from the free gqueue to SCA's pool. When the original buffer is
finally available, it should replenish the free queue.

2. Datagrams

As with messages, the sysap may queue a datagram buffer without asking

for a response. In that case, SCAMPI counts it as being queued to the port
for an incoming datagram. (This accounting is similar to receive credit for
messages, but it is not communicated to the other host.)

1f no error occurs, the port returns this datagram buffer to the port's
free queue. Therefore, if there is an error, PHYKLP should return
such a buffer to the port's queue.

SCA Buffer Management
David Lomartire
14-Sep-84

o SC.ALC - Allocate message and datagram buffers for SCA pool
Called by: SC.ALM via job 0 when DDCFSF is non-zero

Calls: SC.CMG to create message buffers
SC.CDG to create datagram buffers

This routine 1is responsible for keeping the SCA pool of datagrams and
messages up to the minimum thresholds. Whenever a buffer request is made which
causes the buffer count (FQCNT or DFQCNT) to fall below the minimum, DDCFSF is
set. This will make job 0 call SC.ALM which will call SC.ALC.

For messages -

The number of buffers in FQCNT is checked against the minimun
threshold (MINMSG). If it is below, a call to SC.CMG is made to create more
message buffers to bring us up to the minimum threshold. Upon successful return
from SC.CMG, the buffers are 1linked to BOTFQ, FQCNT is updated, and TOTMGE
(total number of buffers created so far) is updated.

For datagrams -

The number of buffers 1in DFQCNT is checked against the minimunm
threshold (MINDG). If it is below, a call to SC.CDG is made to create more
datagram buffers to bring us up to the minimum threshold. Upon successful
return from SC.CDG, the buffers are linked to BOTDFQ, DFQCNT is updated, and
TOTDGB (total number of buffers created so far) is updated.

0o SC.DEF - Handle buffer deferral
Called by: SC.ALM via job 0 when DDCFSF is non-zero
Calls: SC.BF2 to get (and create if necessary) buffers

This routine handles buffer deferral. When a connect block is stuck on
buffers, the bit corresponding to the node number of its system block is set in
SBSTUK and DDCFSF is set. The connect block is queued to the system block work
queue. When job 0 runs, SC.DEF will run and call SC.BF2 in an attempt to get
the buffers it needs to send the connect_request or accept_request.

When run, SC.DEF "scans" SBSTUK to find the first system block with any
connect blocks which are stuck on buffers. The stuck bit for this system block
is cleared in SBSTUK and all the connect blocks which are stuck are processed.
Any connect block that became unstuck are placed on the end of the work queue.
Once all connect blocks are done, a call is made to SC.SNM in an attempt to
send out the queued connection management requests for that system block.

All system blocks which are stuck are processed until SBSTUK is zero
(indicating that there are no longer any stuck connect blocks).

o SC.BUF (SC.BF1l - Allocate buffers from pool; cannot create buffers)
(SC.BF2 - Allocate buffers from pool; can create buffers)

SC.BF1l called: SC.SNM to get initial buffers for c.b.
SC.BF2 called: SC.DEF when processing stuck connect blocks

Calls: SC.ABF to allocate message buffers
SC.ALD to allocate datagram buffers
SC.CMG to create message buffers
SC.CDG to create datagram buffers
LNKMFQ to link message buffers to port
LNKDFQ to link datagram buffers to port
SC.RBF to return extra message buffers from SC.CMG
SC.RLD to return extra datagram buffers from SC.CDG

These routines are called by SC.SNM (SC.BFl) and SC.DEF (SC.BF2) to allocate
buffers for a connect_request or accept_request from the SCA pool.

For messages -
The number of buffers needed in CBIMB is checked to see if any are
required. If so, a call to SC.ABF is made to obtain them.

If this fails, (and if buffers tannot be created) DMRCNT is
incremented to indicate this and a failure return results. If buffers can be
created a call is made to SC.CMG to create the needed buffers. A failure here
results in a failure return from SC.BUF. On success, the total number of
buffers created is added to TOTMGB., A check is made to see if more were created
than were required and, if so, the extras are returned to the SCA pool ‘a
a call to SCM.RM (which calls SC.RBF once for each extra buffer).

Once the buffers have been obtained, a call is made to SCL.MC to
link each message buffer onto the port message free queue (via call to LNKMFQ).
Pending receive credit (.CBPRC) is updated to reflect these buffers. Finally,
the number of buffers to queue (CBIMB) is set to zero.

For datagrams -

The number of buffers needed in CBIDB is checked to see if any are
required. If so, a call to SC.ALD is made to obtain them.

I1f this fails, (and if buffers cannot be created) DDRCNT is
incremented to indicate this and a failure return results. If buffers can be
created a call is made to SC.CDG to create the needed buffers. A failure here
results in a failure return from SC.BUF. On success, the total number of
buffers created is added to TOTDGB. A check is made to see if more were created
than were required and, 1if so, the extras are returned to the SCA pool via
a call to SCM.RD (which calls SC.RLD once for each extra buffer).

Once the buffers have been obtained, a call is made to SCL.DC to
link each datagram buffer onto the port datagram free queue (via call to
LNKDFQ). The count of datagram buffers queued (.CBDGR) is changed to reflect
these buffers. Finally, the number of buffers to queue (CBIDB) is set to zero.

o SC.SBT - Set buffer thresholds

Called by: SCA upon initialization to establish starting levels
SC.ONL to update levels when node comes online
SC.ERR to update levels when node goes offline

This routine 1is used to set the value for the minimum level of message
(MINMSG) and datagram buffers (MINDG) to be maintained by SCA. This count is
based on the number of systems currently online (SBCNT). Whenever a request for
a buffer forces the count of buffers to fall below the minimum, DDCFSF is set
to signal job 0 to run SC.ALC and allocate more buffers for the SCA pool.

MINMSG = (SBCNT*MBPS)+MGTRSH, where MBPS is the number of message buffers to
maintain per online system and MGTRSH is the base value of buffers which must
be available.

MINDG = (SBCNT*DBPS)+DGTRSH, where DBPS is the number of datagram buffers to
maintain per online system and DGTRSH is the base value of buffers which must
be available.

o SC.ABF - Allocate message buffers from SCA pool

Called by: SCA to acquire a buffer for NOTTAB
SC.SMG to give the port a buffer on send failure
SC.RMG to get the number of buffers to queue
SC.ONL to get 2 buffers; 1 for .SBOBB and 1 for port
SC.ACB to get a buffer to use as the connect block
SC.BF2 to get buffers requested upon connect or accept

This routine 1is used to obtain message buffers from SCA's pool. First, the
number of buffers desired is checked against FQCNT and if greater, the routine
will return an SCSNBA error. Next, the number of buffers left after the reguest
is satisfied (FQCNT-NUMBUF) 1is checked to see if it falls below the minimum
threshold (MGTRSH). [MGTRSH is used because it is the constant lower threshold
below which no requests for buffers will be granted unless they are small (less
than LRGREQ). MINMSG is not used because it is a fluctuating value which depend
upon the number of nodes up at the moment.] If there are enough buffers
remaining (or if not and the request is small), the request is honored. If the
request 1is honored because it is a small request, MBUST is incremented to
record this. To honor the request, the message free queue (top is TOPFQ and
bottom is BOTFQ) 1is traversed to insure that there actually are the required
number of buffers.

If there 1is an inconsistency, a SCAMCR BUGCHK will result and FQCNT will be
recalculated by tracing the free queue again. NMBCNT (the number of times we
ran out of message buffers) and RMRCNT (the number of times allocation was
refused) are incremented. DDCFSF is incremented to force SC.ALC to run. Also,
ASRMR is wupdated to reflect the average size of refused requests. A SCSNBA
error will be returned.

If the scan of the free queue is successful, TOPFQ, BOTFQ, and FQCNT are
updated. If it is found that FQCNT has fallen below MINMSG, DDCFSF is set to
allow SC.ALC to run.

If the request is refused, RMRCNT is incremented and ASRMR is updated to
reflect the average size of refused requests. A SCSNBA error will be returned.
This will occur when there are not enough buffers present to grant the request
or when a large reqguest forces the count below the buffer threshold.

0 SC.ALD - Allocate datagram buffers from SCA pool

Called by: SC.SDG to give the port a buffer on send failure
SC.RDG to acquire the buffers to queue
SC.BF2 to get buffers requested upon connect or accept

This routine 1is used to obtain datagram buffers from SCA's pool. First, the
number of buffers desired is checked against DFQCNT and if greater, the routine
will return an SCSNBA error. Next, the number of buffers left after the request
is satisfied (DFQCNT-NUMBUF) is checked to see if it falls below the minimum
threshold (DGTRSH). [DGTRSH is used because it is the constant lower threshold
below which no requests for buffers will be granted unless they are small (less
than LRGREQ). MINDG is not used because it is a fluctuating value which depends
upon the number of nodes up at the moment.] If there are enough buffers
remaining (or if not and the request is small), the request is honored. If the
request is honored because it is a small request, DBUST is incremented to
record this. To honor the request, the datagram free queue (top is TOPDFQ and
bottom 1is BOTDFQ) is traversed to insure that there actually are the required
number of buffers.

If there is an inconsistency, DFQCNT will be recalculated by tracing the free
gueue again. NDBCNT (the number of times we ran out of datagram buffers) and
RDRCNT (the number of times allocation was refused) are incremented. DDCFSF is
incremented to force SC.ALC to run. Also, ASRDR is updated to reflect the
average size of refused requests. A SCSNBA error will be returned.

If the scan of the free queue is successful, TOPDFQ, BOTDFQ, and DFQCNT are
updated. If it is found that DFQCNT has fallen below MINDG, DDCFSF is set +o
allow SC.ALC to run.

If the request 1is refused, RDRCNT is incremented and ASRDR is updated to
reflect the average size of refused requests. A SCSNBA error will be returned.
This will occur when there are not enough buffers present to grant the request
or when a large request forces the count below the buffer threshold.

o SC.CMG/SC.CDG - Create message/datagram buffers

Called by: SC,ALC to create buffers needed to boost above minimum
SC.BF2 to create buffers needed by connect or accept

Calls: SC.BBF to break memory pages into buffer chain

These routines are used to create message and datagram buffers. It is called
when the SCA buffer pool is exhausted (or below minimum values) and needs to be
restocked., The number of buffers returned is rounded up to £fill an integral
number of pages so extra buffers may be provided.

First the number of pages required to fill the buffer request is calculated.
For each page required, EPGMAP is searched to locate an empty page. If no empty
pages are found, the routine returns with a SCSNEB error. The search starts at
offset LSTEPG (which is initialized to 777) and decrements towards the top of
the map. When a free page is found, the next lower offset is placed in LSTEPG
and a call is made to MLKMA to lock down the page. Finally, a call is madg—o
SC.BBF to break the page into buffers of the appropriate size (C$MGSZ ‘tor
messages and C%DGSZ for datagrams).

o SC.BBF - Break memory page into buffers

Called by: SCA to create the initial chain of buffers
SC.CMG to create chain of message buffers
SC.CDG to create chain of datagram buffers

This routine will take a page of memory and break it into a chain of message
or datagram buffers. The page is broken up into buffers of C$BINV+C%MGSZ size
for messages and C$BINV+C%DGSZ for datagrams. C$%BINV is the size of the
invisible area which is prepended to the top of each buffer for local use (it
is never sent across the CI). The FLINKs of each buffer point to the next
buffer in the chain.

o SC.RBF - Return a message buffer

Called by: SC.ERR to return the two buffers obtained at SC.ONL
SC.INT to return buffer sent by SCa
SC.RCB to return buffers queued by connection
SC.JSY to return buffers gqueued by JSYS
SC.GCB to return buffers in RET_CREDIT field (.CBRTC)
SCM.RM to return one of a chain of message buffers
SC.ABF to return extra buffers from SC.CMG

This routine will return message buffers to the SCA message free queue.
First, the entire buffer (C%BINV+C%MGSZ) is zeroed. Then the buffer 1is linked
to BOTFQ and FQCNT is incremented to reflect the additional buffer. Note tha
this routine is passed back to the caller by SC.ABF as the routine to call to
return the buffer.

0o SC.RLD - Return a datagram buffer

Called by: SC.CRD to return buffer which was canceled
SC.RCB to return buffers queued by connection
SC.JSY to return buffers queued by JSYS
SCM.RD to return one of a chain of datagram buffers
SC.ALD to return extra buffers from SC.CDG

This routine will return datagram buffers to the SCA datagram free queue,
First, the entire buffer (C$BINV+C%DGSZ) is zeroed. Then the buffer is linked
to BOTDFQ and DFQCNT is incremented to reflect the additional buffer. Note tha
this routine is passed back to the caller by SC.ALD as the routine to call to
return the buffer.

;States of a connection. Names in all caps are from corporate spec.

.CSCL ==l
.CSLIS=
CSCSE——U
.CSCRE=
.CSCAK=
.CSACS=
.CSRJS=
.CSOPN==10
.CSDSE==11
.CSDRE==12
.CSDAK==13
.CSDMC==14

:States of a connection block
.BSFRE

.BSALL
.BSCNP

.BSDPN

;Messages

es oo oo oo

\IU\mOPwNH

.BSACP
.BSRPN
.BSCRP

nwownowonon
nn II nn o n

.STORS==

.LNORS=="D16

.STARQ==

.LNARQ=="D64

.STARS==

.LNARS=="D16

.STRRQ==

.LNRRQ=="D16

.STRRS==

.LNRRS=="D12

.STDRQ==

.LNDRQ=="D16

.STDRS==

.LNDRS=="D12

.STCRQ==

.LNCRQ=="D12

.STCRS==11

.LNCRS=="D12

.STAMG==12
.STADG==13

;Closed (CLOSED)

;Listening (LISTENING)

;Connect reguest was sent (CONNECT_SENT)
;Connect request was received (CONNECT_REC)
;Connect response was received (CONNECT_ACK)
’Accept request was sent (ACCEPT_SENT)

;Reject request was sent (REJECT_SENT)
;Connection is open (OPEN)

;Disconnect request was sent (DISCONNECT_SENT)
;Disconnect request received (DISCONNECT_REC)
;Disconnect response received (DISCONNECT ACK)
;Waiting for disconnect response (DISCONNECT MA

:Free

:Allocate

;Connect pending
;Accept pending
;Reject pending
;Credit pending
;Disconnect pending

;Connect reqguest
;Connect response
1Accept request
;sAccept response
;Reject request
;Reject response
;Disconnect request
:Disconnect response
;Credit request
:Credit response

;Application message
;Application datagram

Table X - calls from s

.
g sS4 T LA L= 4 L Wik

;Note: if new connectio
;message has been sent

ysap to SCA.
n st

state is in <>, it isn't set until the pending

Routine State Legal? New block New connection
State State
SC.CON Closed Y CONN_PEND <connect_sent>
Listening

Connect_sent
Connect_rec
Connect_ACK

Open

Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

Routine State Legal? New block New connection
State State
SC.LIS Closed Y - Listen
Listening

Connect_sent
Connect_rec
Connect_ACK

Open

Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

Routine State Legal? New block New connection
State State

SC.ACC Closed
Listening
Connect_sent
Connect_rec Y ACC_PEND <Accept-sent>
Connect_ACK
Cpen
Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

* * 0ld code didn't change state

Routine State

SC.REJ

¥ * *¥ 0ld code left state as

Routine State

SC.DIS

Closed

Listening
Connect_sent
Connect_rec Y
Connect_ACK

Open

Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

Closed
Listening
Connect_sent
Connect_rec
Connect_ACK
Open

Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match Y

o e ke]

Legal?

"listen"

-
o
[te]
o]

[
~J

New block

State

REJ_PEND

New block

State

FREE
FREE
FREE
REJ_PEND
FREE
DIS_PEND
FREE
FREE
FREE
DIS_PEND
FREE
FREE

New connection
State

<reject_sent>

New connection
State

closed

closed

closed
reject_sent
closed
disconnect_sent

~1neaAd
C.lSEQ

closed
closed
disconnect_match
closed
closed

Table ¥ -- processing SCS

3
MR R

Block
State

CONN_PEND
ACC_PEND
REJ_PEND
DIS_PEND
CREDIT_PEND

"""""" =

Op code
to send

CONNECT_REQ
ACCEPT_REQ
REJECT_REQ
DISCON_REQ
CREDIT_REQ

work gueue

New connection
State

connect_sent
accept_sent
reject_sent
-- (already done)

;Table Z - sending an SCS message

Name

CONNECT_REQ
CONNECT_RSP
ACCEPT_REQ
ACCEPT_RSP
REJECT_REQ
REJECT_RSP
DISCONNECT REQ
DISCONNECT_RSP
CREDIT_REQ
CREDIT_RSP

Code
.STORQ==0
.STORS==
.STARQ==2
.STARS==3
.STRRQ==
.STRRS==
.STDRQ==
.STDRS==
.STCRQ==10
.STCRS==11

Length

.LNORQ=="D64
.LNORS=="D16
.LNARQ=="D64
.LNARS=="D16
.LNRRQ=="D16
.LNRRS==/~D12
.LNDRQ=="D16
.LNDRS=="D12
.LNCRQ=="D12
+.LNCRS==7D12

priority

.MPCMM
.MPCMM
.MPCMM
.MPCMM
.MPCMM
.MPCMM
+MPLOW
.MPCMM
.MPFLO
.MPCMM

Response
CONNECT_RSP
ACCEPT RSP
REJECT RSP
DISCONNECT RSP

CREDIT RSP

CONNECT_REQ

Name

CONNECT_RSP

* % * 0]ld code set state to

Code

Current Legal? Response

State

Closed Y CONNECT_RSP NM
Listening Y CONNECT_RSP

Connect_sent
Connect_rec
Connect_ACK

Open

Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

Current
State

Legal? Response

Closed
Listening
Connect_sent
success
failure
Connect_rec
Connect_ACK
Open
Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

"closed no match" if failure

New connection
State

connect_received

New connection
State

Connect_ACK
Closed

Name Code

ACCEPT_REQ 2

¥ * % % 0ld code closed

of connect pend, too

Name Code

ACCEPT_RSP

Current
State

Legal?

Closed Y
Listening
Connect_sent
Connect_rec
Connect_ACK Y
Open

Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

v.c., if state was closed;

Current
State

Legal?

Closed
Listening
Connect_sent
Connect_rec
Connect_ACK
Open
Accept_sent

Match Y

No match Y
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

Response

ACCEPT_RSP NM

ACCEPT RSP

Response

New connection
State

closed

Open

required block state

New connection
State

Open
closed

* % * % 0ld code expected state to be connect_received; set new state

to closed; required block state of accept_pend

REJECT_REQ

Current Legal? Response
State

Closed

Listening
Connect_sent
Connect_rec
Connect_ACK Y REJECT_RSP
Open

Accept_sent
Reject_sent
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

* % % 01d code set new state to closed-rejected
* x * Why not treat "closed" as legal as in accept_request

Name

REJECT RSP

Code

Current Legal? Response
State

Closed

Listening
Connect_sent
Connect_rec
Connect_ACK

Open

Accept_sent
Reject_sent Y -
Disconnect_sent
Disconnect_rec
Disconnect_ACK
Disconnect_match

New connection
State

Closed

New connection
State

closed

* * * 01d code expected state to be "listen"; left it as "listen"

Name

DISCONNECT_REQ

Name

DISCONNECT RSP

Code

Code

Current

Closed

Listening
Connect_sent
Connect_rec
Connect_ACK

Open Y
Accept_sent
Reject_sent
Disconnect_sent Y
Disconnect_rec
Disconnect_ACK Y
Disconnect_match

Current
State

Closed

Listening
Connect_sent
Connect_rec
Connect_ACK

Open

Accept_sent
Reject_sent
Disconnect_sent Y
Disconnect_rec
Disconnect_ACK
Disconnect_match Y

Legal?

Legal?

Response

DISCONNECT_RSP

DISCONNECT_RSP

DISCONNECT_RSP

Response

New connection

disconnect_rece

disconnect_matc

closed

New connection
State

closed

	00
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	03-01
	04-01
	05-01
	06-01
	07-01
	08-01
	09-01
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14

