Functional description of the
Systems Communications Architecture

21-Nov-83

Version 1, Revision 5

1.0 Revision history

Revision 1l:

1. Change user interface for packet sends to reflect data being copyed

rather than mapped into monitor space.
2. Add set port counters function (.SSSPC)
3. Add configuration change PSI channel to .SSAIC JSYS function.

Note: There are no change bars for this revision. Change bars
will begin with the next revision of the specification.

Revision 2:

Update path specification handling in .SSSDG and .SSSMG functions
SCS%.

Revision 3:

Make maintainance data send and receive work correctly.

Revision 4:

Fix additional problems with maintainance data send and receive.

Revision 5:

of

Add user level maintainance functions for reset/start a remote system.

Also add "monotonic counter" to set/read port counter calls.

SCA Functional specification Page 3

2.0 mTable of Contents

1.0 Revision history 2
2.0 Table of Contents 3
3.0 Definitions « .+ . . ¢ 5
4.0 Introduction . . . T
4.1 Related documents ¢ o+ s+ o o o e s s e o o & . 6
4,2 Scope . . .« . e s e e e e o e . . . 6
4.3 Module 1nteract10ns e e e e e e e o o o o o 17
4.4 SCA overview . . e e e s e s . .« .« 9
4.5 General dlfferences . . . e e . . .« .9
4,5.1 TOPS-20 only funct10na11ty . .« 9
4.6 Service required of PHYKLP . . . 11
4.7 PHYKLP interface N
4.8 Data structures 17
4.8.1 System block e e e e e e e e e e 17
4,8.2 Connect block « ¢« o o o o . 20
4.8.3 Connect ID e e e e e e e e e 23
5.0 Writing a monitor SYSAP e s e e e e e v e . 24
5.1 General rules e e 24
5.1.1 Buffer allocation and management o o e 24
5.1.2 Starting a connectien 26
5.1.3 Global interlocks 28
5.2 Messages 29
5.2.1 Receiving messages 29
5.2.2 Sending messages 29
5.3 Datagrams . . e e e 23
5.3.1 Receiving datagrams o e e 29
5.3.2 Sending datagrams 30
5.4 Named buffers . 30
5.5 Monitor SYSAP 1nterface . 31
5.5.1 SYSAP to SCA interface e e e e e e 31
5.5.1.1 Connect (SC.,CON)« + v v « « . . 31
5.5.1.2 Listen (SC.LIS) 32
5.5.1.3 Accept (SC.ACC) 35
5.5.1.4 Reject (SC.REJ) 36
5.5.1.5 Disconnect (SC.DIS) e e e e e 37
5.5.1.6 Abort (SC.ABT) . . e e e e e e 38
5.5.1.7 Send datagram (SC. SDG) . . 38
5.5.1.8 Queue datagram receive buffers (SC RDG) 40
5.5.1.9 Send a message (SC.SMG) . . 41
5.5.1.10 Queue message receive buffers (SC RMG) 42
5.5.1.11 Cancel datagram receive buffer (SC.CRD) 43
5.5.1.12 Cancel message receive buffers (SC.CRM) 43
5.5.1.13 Map a named buffer (SC.MAP) e 44
5.5.1.14 Unmap a buffer (SC.UMP) . . e . 46
5.5.1.15 Send named buffer data (SC. SND) e 47
5.5.1.16 Request remote named buffer transfer (SC REQ) 48
5.5.1.17 Connect state poll (SC.CSP) . . . 49
5.5.1.18 Return destination connect ID (SC. DCI) . . . 50
5.5.1.19 Return system configuration data (SC.RCD) . 51
5.5.1.20 Reset a remote system (SC.RST) « « .+ . 52
5.5.1.21 Start a node (SC.STA) 53
5.5.1.22 Set port counters (SC.SPC) 54
5.5.1.23 Read port counters (SC.RPC) 55

L] . . L] L]
NN NN
(8]

oo oo oot

oottt gl
L] L) .

w W N

= O 00}

. . e o o e o ® o & e o
w N
N 0

P Y T R S S
w ww
)

.
| e

WNHNDN -
. .
N =

. e ¢ o e o

e« ® o © e e e e & e o o s o » o e o * o o o o

» e e ® e o o o o+ o

HHHERFERFRFREWYOJoOOIE WD -

OOV OOy OO T ot
=W+ O

NNNNNNNONDNNNOVNNNNNODMNOMNDNNORERERERRFFFO

.....
PR
g oo

e & e o o o o o o
e« o o .

=W N

NN NDNDNDNDNDNNNDNDNDN
. L] .

* o ¢« o e . o o . . .

OGO O OYOONOYOY OOV O
. L] . . L] L] . . L] L]

DO ONDNNDNDNDNND
OO WRNHFOWO I

Writing a JSYS SYSAP . . .
General rules

JSYS SYSAP interface

Maintainance data send (SC.MDS) .
Maintainance data read (SC.MDR) .
Set online address (SC.SOA) . .

.

Swap bytes from 11 to 10 format (SC ISW)

SC.0OSW (Swap word from 10 to 11 forma
Return node number given CID (SC.SBI)

Return credit info (SC.RAC) . . .
Return local port number (SC.PRT)
Allocate a datagram buffer (SC.ALD)
Allocate a message buffer (SC.ABF)
Return a message buffer (SC.RBF) .
Return a datagram buffer (SC.RLD)
SCA to SYSAP interface . ..

Communicating with SCA
Using the SCS% with the PSI s
Buffer management . . .
Incoming buffers . .
Outgoing buffers
The race condition

ste

. e e o B . o o .

. e o e o

Connect (.SSCON) .
Listen (.SSLIS)
Accept (.SSACC) . .
Reject (.SSREJ) . . .
Disconnect (.SSDIS) .
Send a DG (.SSSDG)
Queue a DG buffer (. SSQRD) e e e .
Send message (.SSSMG) . . .
Queue message receive buffers (SSQ
Cancel DG receive (.SSCRD)
Cancel receive message (.SSCRM) .
Connect state poll (.SSCSP)
Return local node number (.SSGLN)
Return configuration data (.SSRCD
Return buffer sizes (. SSRBS)
Return status information (.)
Get a queue entry . . .
Receive a message (. SSRMG)
Receive a datagram (.SSRDG) .
Get entry from data queue (.SSGDE
Get an entry off the event gqueue
Named buffer .
Map a buffer (.SSMAP) .
Unmap a buffer (.SSUMP)
Send data (.SSSND) . . .
Request data (.SSREQ) .
Maintainance data send (.

e @ o e o o » o

e o e o o o e o o o KRG e o o o

.

. e o o e o s o .

e e & o o e o o o o
e e+ e % e e e e s e

. . ¢ ¢ o

:U°'--

)

.
AvAare X
overviewv . . .

e e o o

e o o o

SSMDS) .
Maintainace data read (.SSMDR) . .
Start a remote system (.SSSRS) . .
Reset a remote system (.SSRRS) . .
Set port counters (.SSSPC) . . .
Read port counters (.SSRPC) . .
Add interrupt channels (.SSAIC) .

¢ o e o = @ . o e e e 8 e e e o s o .

.

e e o e e o o o o

¢ o \./0 o o o e o o o o e

o« o e o o e o

. e o e e ° 8 ¢ & o * e e e e s e e .

« e e+ e ¢ o . .

e o ¢ o o

.SSEV

. e . .) e .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

e o ® o o o e e & o «

e o o e e ¢ o e o o o e e ® o e o ® e o e o o

. e o e o e o o

. e o o o e o

. o o o o o

Page 4

s e ¢ e e o . . e e o . e o e e o

« o e e o ¢ o s e .

56
57
58
59
60
61
62
63
64
65
66
66
67
72
72
72
72
72
72
73
73
74
75
77
78
79
80
81
82

83
84

v

85
86
87
88
89
91
92
93
93
94

96

o8

99
101
102
103
104
105
106
107
108
109
110

SCA Functional specification Page 5

3.0 Definitions

There are a number of terms and concepts vital to an understanding

of SCA. They are:

9
- .

Credit - Credit refers to buffers queued for message (only messages,
there 1is no credit system for datagrams) reception or transmission.
Receive credit is the number of buffers you have gqueued to get
messages from a remote node. Send credit is the number of buffers
the remote has queued to receive messages from you,.

Callback - The callback is the mechanism through which SCA interrupts
a SYSAP. For example, when a message or datagram has arrived for
your connection, SCA will PUSHJ to the address given in the CONNECT,
LISTEN, or set online notification address call, with T1-T4 setup to
point to the new packet.

Port gueues - This refers to the set of queues used by the monitor to
communicate with the KLIPA. These queues include the message and
datagram free gueues, into which all inbound packets are placed.

Packet - Term used to denote any CI packet, 1I.E. a message Or a
datagram.

Circuit - Virtual communications path layered on top of the CI wire
(I1.E. hardware path) maintained by the port driver.

Connection - Virtual communications path layered on top of circuits
and maintained by SCA.

onal specification Page 6

4,0 Introduction
4.1 Related documents

The reader should at least be familiar with the following documents
before proceeding with this specification. The corporate SCA spec is
particularly important as all terminology used in this document follows
standards set in the corporate spec.
1. Systems Communications Architecture, Rev 4, 20-July-82 (Strecker)

2. LCG CI Port Architecture Specification, 11-July-83 (Dossa/Keenan)

3. TOPS-20 KLIPA Driver Functional Specification, 19-Aug-83
(Grant/Miller)

4, TOPS-20 Coding Standard, 23-Mar-83 (Murphy)

4,2 Scope

This document will describe the interfaces in and out of the Systems
Communications Architecture (SCa). This 1includes the user interface
through the SCS% JSYS. Some of the functions invisible to the rest
the monitor, yet important to the overall scheme of the CI software a%e
also covered. Implementation details are left to the design
specification however.

SCA Functional specification Page 7
Introduction

4,3 Module interactions

The following diagram illustrates the layout of the CI software and
hardware.

! SCS% ! ! DIAGY !
————————————————— User mode
! /
- - - - 1 - - - / - - -
_______________________ /
! MSCP ! 1SCSJSY! ! CFS ! // Monitor mod
\ ! // /
\ ! / /
\ ! / /
_________________ /
! SCA l————

! Software

! Hardware

Briefly, these are the functions performed by each of the software
modules listed above.

The port driver 1is the hardware controller for the KLIPA. It
communicates with the device through a queued protocol using KL main
memory.

SCA is the CI gateway for the rest of the monitor. The only exception is
the DIAG JSYS which has the capability of disabling the port driver and
taking direct control of the hardware. 1In general however all monitor
components access the CI through SCA.

System applications (SYSAP) are the end wusers of the CI. The Mass
Storage Control Protocol (MSCP) 1is a CI disk controller. Common File
System (CFS) is the global file lock manager for implementing distributed

access to CI disks and dual ported massbus disks.

SCA Functional specification Page 9
Introduction

4.4 SCA overview

The overall function of SCA can best be described as software
multiplexer, demultiplexer for the CI. SCA is the module that creates
the illusion of virtual connections over the circuits established by the
port driver. A detailed description of how SCA performs this function
can be found in [1]. What needs to be detailed here is exactly what has
been done that is specific to TOPS-20 and hence could never be outlined
in the corporate specification.

4,5 General differences

In general, the corporate specification is considered to be a model
in which the seeds of the TOPS-20 implementation may be found. There are
a number of global differences that need to be outlined.

1. The corporate specification uses polling to determine the completion
of a request. The TOPS-20 implementation is interrupt driven.

2. TOPS-20 does not use the suggested format for connection and system
blocks. Additional words were required and all support locations for
path blocks were removed.

P A f€nvwarim~n Tar~l ~F T Wemm 1 ¥ AT
concepc

3. The most important difference is the lack of the path in
TOPS-20. The corporate specification calls for the use of multiple
paths to a single node. (Note that this 1is not the dual rail
concept, I.E. Path A and Path B) The entire concept of multiple
paths to a single node is dissallowed in TOPS-20. All nodes are
directly connected to all other nodes by exactly one logical path. A
logical path is a port onto a CI, even though the port may have more
than one cable on it.

TOPS-20 does not support paths because the KL-10 processor can
currently support only one KLIPA. Since there is one KLIPA there can
by definition only be one path to a node. When more than one KLIPA
is supported the issue of paths will be addressed.

4,5,1 TOPS-20 only functionality

At present, there is only one function of SCA that is seen by the
outside world and not covered by the corporate specification. This
function is the periodic polling of nodes with open connections. The
need for this service arises from the fact that the KLIPA answers REQID
packets without software intervention. Since port level pollers for most
machines use REQID packets to test the rails to the other nodes on the
net, a system could suffer a complete software failure and no one would
detect it until the port were reset during the BOOT process. There are
SYSAPs that need to see remote software failures much sooner than this.
Hence SCA will send credit requests for zero credit to nodes that have

L 2]

A Functional specification Page 10
troduction
not sent the local node a message for a certain time period. If t‘

response comes back within a certain time then the node is up and SCA
simply marks the fact the the credit request received a response. 1If the
response does not come back within the defined time period, the node is
declared offline, SCA regquests that the port to port virtual circuit be
broken, and all SYSAP's are notified of the remote node failure.

SCA Functional specification Page 11
Introduction

4.6

1.

15.
16.
17.
18.
19,
20.
21.

22.

Service required of PHYKLP

Since PHYKLP maintains direct control over the hardware, there
services required of PHYKLP by SCA. These services are:

ULNKDG --

ULNKMG --

Remove a buffer from the datagram free queue.

Remove a buffer from the message free queue.

SNDDG -- Send a datagram

SNDMSG -- Send a message

LNKMFQ -- Link a buffer chain onto the message free gueue
LNKDFQ -- Link a buffer chain onto the datagram free gqueue
CLOSVC -- Close a virtual circuit

MAPBUF -- Map a named buffer

UMAP -- Unmap a named buffer

SNDDAT -- Start a named buffer data send

REQDAT -- Start a named buffer data receive

LOCPRT -- Return the local node number

KLPOPN -- Open a circuit

PPDSRS -- Send a reset or start maintainance packet
PPDSMD -- DO a maintainance data send

PPDRMD -- Do a maintainace data read

PPDRPT -- Read port counters

PPDSPT -- Set port counters

STRPOL -- Start the poller

STPPOL -- Stop the poller

STRKLP -~ Start the KLIPA

STPKLP -- Stop the KLIPA

are

pecification Page 12

4.7 PHYKLP interface

Direct control over the CI is done by the port driver (PHYKLP) .
Hence SCA must interface to the port driver to perform its function. The
following is the set of SCA entry points understood by the port driver.

- SC.INT -

This routine is called when the port driver has received a packet

bound for SCA. ‘
Call

BLCAL. (SC.INT,<SS.PKA,SS.SBA,SS.FLG,SS.LEN>)

Where:
SS.PKA - Address of message/datagram/SCA buffer
SS.SBA - Address system block
SS.FLG - Flags
F.SPM - Packet data mode 0 - Industry compatable mod
1 - High density mode
F.RSP - Local or remote packet 0 - Remote packet
1 - Localy generated p‘E:et
SS.LEN - Length of packet in bytes (for industry compatible packets

- Length in words for high density packets

Return (+1)
T1l/ Error code

Return (+2)
No data returned, all went well

SCA Functional specification Page 13
Introduction
- SC.MDC -

This routine is called by the port driver when a maintainance data
transfer has completed.

Call

BLCAL. (SC.MDC,<SS.ADR,SS.NAM>)

Where:

SS.ADR -- Address passed to PHYKLP on SC.MDS/SC.MDR call
SS.NAM -- Local name for transfer which has completed

Return (+1)
T1/ Error code

Return (+2)
No data returned

SCA Functional specification Page 14
Introduction

- SC.DMA -
This routine handles the completion of a named buffer transfer.

Call
BLCAL. (SC.DMA,<SS.CID,SS.SBA,SS.NAM>)

Where:

§S.CID -- CID of connection we did this for
SS.SBA -- Address of system block

SS.NAM -- Buffer name for transfer that completed

Return (+1)
T1/ Error code

Return (+2)
No data returned

SCA Functional specification Page 15
Introduction
- SC.ERR -

This routine is called to notify SCA of a virtual <circuit closure,
This includes closures reguested by SCA.

Call
BLCAL. (SC.ERR,<SS.NOD>)

Where:
SS.NOD --> Node number of the system who's VC just went away.

Return (+1)
T1/ Error code

Return (+2)
No data returned

- SC.ONL -

This routine is called when a node has come online.

Call

BLCAL. (SC.ONL,<SS.NOD>)

Where:

SS.NOD -- Node number of system that has come online

Return (+1)
T1/ Error code

Return (+2)
No data returned
- SC.OFL -
This routine is called when a system has gone offline. Note that
SCA assumes the data for this node has not been cleaned up by the port

driver.

Call
BLCAL. (SC.OFL,<SS.NOD>)

Where:
SS.NOD -- Node number of the system that has gone offline

Return (+1)
T1/ Error code

Return (+2)
No data returned

- SC.PRC -

This routine is called when the port detects
READ-PORT-COUNTERS command has completed.

Call

BLCAL. (SC.PRC,<SS.CID,SS.ADR>)

Where:
SS.CID -- CID for whom the register read was done
SS.ADR -- Address of counter data packet

Return (+1)
T1/ Error code

Return (+2)
No data returned

ional specification Page 16

that

a

SCA Functional specification Page 17
Introduction

4.8 Data structures
To perform its function as multiplexer/demultiplexer SCA maintains a
set of connections over the wvirtual circuits maintained by the port

driver. There are two blocks basic to the maintenance of these
connections, the system block and the connect block.

4,8.1 System block

The system block is a data structure shared with the port driver.
In fact the port driver owns most of the block.

SBANB | ddress of nent system block |
smaps | Address of associated port control block i
.SBACD ; """" Address of associated channel data block i
.SBVCS 5'""5525'5;12522;'2525"‘"?""5;;2'522'22Z';E;E; """" i
.seDsp t Destination port §
.SBDRQ g """""""" Datagram return queve header i
.SBLMB ! Local message buffer header Lo
ssrcs 1 Pointer to first connection block Lo
.SBLCB ; """""" Pointer to last connection block Lo
w1 FLINK for SCA work queve Lo
somwo 1 BLINK for SCA work queve ;o
SBOOR | Pointer to queue of outstanding requests ;
.seDSS \ \

\ Destination system \

\ \

| it e e S g P 1
(SBMMS | Max mess size (bytes) ! __Max DG size (Bytes) !
.SBDST % Destination software type %
.seDsv 1 Destination software version i

.SBDSE ! Destination software edit level E

SCA Functional specification Page 18
ntroduction
sttt !
.SBDHT ! Destination hardware type !
} om o o e = - o — — = e !
.SBDHV ! Destination hardware version !
1 o e e e e ———— o o 1
.SBDPC \
\ Destination port characteristics \
\
T ettt e !
.SBTIM ! TODCLK at last message from this remote ! X
b o o e o o o e o o o S e e e e |
.SBFLG ! Flags r
] e e e e = - - = e e = T e e e e e e e 1
.SBTBQ ! Address of first buffer on buffer defer queue !
o o e e o - = ———— o e = o - e]
.SBBBQ ! Address of last buffer on buffer defer queue v %

FT Y I T T 113 21 1 1 2 i 3 1 R R

Most of the cells in this structure are maintained by the port
driver. There are a few however that are the exclusive domain of SCA.
These are described below.

. SBLMB

The local message buffer header is an interlock location for this remote.
Since all SCA messages are flow controled, some method had to be arri

at for flow control of SCA overhead messages. This 1is done by always
having just one receive credit available for each remote node. Hence we
cannot send more than one overhead message at a time to a particular
node. Hence this 1location is used to flag the fact that a request has
been sent to the host. Note that when non-zero, this 1location contains
the message type that is expected in response to the reguest we believe
is outstanding.

.SBFCB/.SBLCB

The pointer to the first and last connect blocks are the FLINK and BLINK
for one set of threads to the connect blocks. Each connect block is a
member of two doubly linked lists. One is the list of connections to a
system, the other 1is the list of connects owned by a fork. Note that
unless the fork has done an SCS% JSYS, this second list is empty.

.SBTWQ/.SBBWQ

Something must be done with the reguests that need to be sent to a system
which already has a reqguest outstanding. These requests are placed on
the work gueue for that system. The work queue FLINK and BLINK are

stored in the system block.

.SBTIM

A function performed by SCA is the polling of remote systems that have
connections open to them. This polling 1is done to detect a remote
software stoppage. .SBTIM is TODCLK the last time the node talked to yg.
For further details on this process, see the section on SC.CLK.

.SBFLG

SCA Functional specification Page 19
Introduction

Currently, the only defined flags are the timed message flag, and the
circuit requires opening flag. When the timed message flag is lit in
.SBFLG, a timed message is outstanding for this node. SCA uses this flag
to help determine if a node should be declared dead. The circuit
requires opening flag indicates that the circuit has been closed and just
as soon as databases have been cleaned up, SCA should call the port
driver to open the circuit again.

.SBTBQ/.SBBBQ
These words are the head and tail pointers for the queue of buffer defer
requests. This queue 1is wused by SCA to handle the allocation of more

buffers than it has on hand.

SCA Functional specification

&3 & ALl

Introduction

LA N S S

4,8.2 Connect block

Page 20

The other data structure used by SCA is the connect block. As

name implies

.CBANB
.CBAPB
.CBJNB
.CBJPB
.CBSTS
.CBFLG
.CBSCI
.CBDCI

.CBSPN

.CBDPN

.CBDTA

the

this block 1is the complete set of information maintained
about an SCA connection.

! Address of next connection block for this SB

| oo e o o m m m m m m — — — — —— —
! Address of previous connection block for this SB

| e e o e e e = = e e e o - o ——
! Address of next connection block for this fork

| e e o e o - ——— - — - ———— - ——— = — = o~ —— —
! Address of previous connection block for this fork

| e o e e e = = ——— - = = - = = = - = o —
! Block state ! Connect state

b e e e o e o e e o e e e = o — —— ——— — —
! Flags

b e e e o e e = - —— — — ———
! Source connect ID

e e e e e - = = = - e =
! Destination connect ID

| e e e e e —— e ————_———_—— — i —————————— — —— — —
\

\ Source process name

\

! ___
\ . .

\ Destination process name

\

! ___
N .

\ User supplied connect data

\

! ___
i Dest reason ! Source reason

f oo om e e e o o ——_—————— = = = = = - o o o e 1
! Min send Credit ! Min Receive credit

} o o o e e o o - — — — —— — — — — ——————— — ———— i —— = = = — = = = — t
! Receive Credit

SCA Functional specification Page 21
Introduction

LR i e e e

.CBCDD ! Number of dropped datagrams !
ceoer 1 Nunber of real DG butfers quesed ;
.cBDGJ ! QL;Q;;'52’3;5;'5&'5522;;;';;;;;; ____________ |
cessr 1T Destination mode momber T :
.CBFRK | Job mumber of owner job ! Fork number of owner fork !

.CBBDQ % Pointer to bot of datagram available queue (for JSYS)!
.CBTHQ | Pointer to top of the DMA xfer complete queve 1
.CBBXQ | Pointer to bot of the DMA xfer complete queue I
omso | ointer o top ot i event awen |
B
.CBTBQ f """"" Pointer to first buffer descriptor block i
.ceem0 | Pointer to last buffer descriptor block I
.CBPSO g'_;EI'ZQQS;;I"E;Z';;;;;;;;'T'BQI'ZQQBSQZ'ESZ'QQZ;;;;;;'I
.CBPS1 | BSI channel for DMA 1 PSI channel for events !

Of the above cells, a few are returned by SCA on certain routine
calls. The following is a description of the cells that are of
importance to a SYSAP.

.CBSTS

If non-zero, the block state indicates the connection is waiting for a
response to a request. The block state also indicates what the response
will be. These are the currently defined block states:

.BSCNP --> Connect pending
.BSACP --> Accept pending
.BSCRP --> Credit pending
.BSRPN --> Reject pending
.BSDPN --> Disconnect pending

As the name may indicate, the connection state indicates the current
state of the connect. The following are the currently defined connection

SCA Functional specification Page 22
Introduction

states.
.CSDRE --> Disconnect received
.CSDSE --> Disconnect sent
.CSDAK --> Disconnect acknowledge
.CSDMC --> Disconnect match

.CSCLO --> Closed
.CSCNM --> Closed
.CSCRJ --> Closed
.CSCNR --> Closed
.CSCVC =--> Closed

by command

no match

rejection

no resources

Port virtual circuit error

.CSLIS --> Listening

.CSCSE --> Connect sent
.CSCAK --> Connect acknowledge
.CSCRE --> Connect received

.CSOPN --> Connection open

.CBFLG
The flags word supports flags for both SCA and the SCS% JSYS. These are
the currently defined flags:

CBFNNC --> Credit has come available since ntofication of credigﬁlox
CBFJSY --> This is a JSYS initiated connect block -
CBFABT --> CB has been aborted

CBFRAP --> CB is to be reaped

CBFDCL --> This was don't care listener

CBFKIL --> Owning fork has gone away (JSYS connect only)

.CBSCI

This 1is the source connect ID. This is the 1local name for this
connection.

P~

This is the remote connect ID. This name is what the remote calls the
connection.

.CBSPN/.CBDPN
These are the local and remote process names in 8 bit ASCII.

.CBDTA
This is the initial connection data sent during the handshake for opening
the connection. It is always the data sent to us by the remote.

.CBREA

These are the remote and local disconnect reasons. When a disconnect 1is
started, the local code is transmitted as the cause for the disconnect.
When the disconnected is initiated remotely, the destination reason is
stored from the disconnect request packet.

.CBRCD/.CBSCD

SCA Functional specification Page 23
Introduction

These cells contain the current credit levels for this connection. The
receive credit reflects the number of buffer queued on this system for
the reception of message from the remote. The send credit is the number
of buffers the remote has queued for receiving localy generated messages.

4,8.3 Connect ID

The connect ID is the one word unique identifier for any connection.
It 1is mentioned here because the SYSAP needs to understand the fprmat of
the connect ID, The ID is made up of two fields, the SYSAP field and the
SCA field. The SYSAP field contains bits defined by the SYSAP and passed
to SCA when connection blocks area being created (the connect and 1listen
calls). The SCA field is broken down into fields for use by SCA, but the
SYSAP only needs to know that the entire field is for the wuse of SCA.
The following is the format of the connect ID:

'==!

!SYSAP bits ! SCA bits !
! 23 3 It 2 2 2 i - E 2 s s T P - - R 2 E E F - ¥ 3 5 -5 2 5 5 5 5 5 !

When the SYSAP field is passed to SCA it is passed in bits thirty
(30) through thirty-five (35) of the BLCAL. argument. SCA will move the
bits into the correct position for placement into the connect ID.

5w

n

unct a
ting a mon

O

specification Page 24
tor SYSAP

1
S

e >

1
i

5.0 Writing a monitor SYSAP
5.1 General rules

To talk to other processes on remote systems, SYSAPs request
services of SCA. There are some rules that must be followed if the
conversation is to go smoothly.

5.1.1 Buffer allocation and management

There are four buffer types that monitor SYSAPs may have to deal
with, messages and datagrams, both of which can be inbound or outbound.

Rule one, ALL inbound buffers are allocated and controlled by SCA.
When a SYSAP desires to gueue buffers for message or datagram reception,
call SCA (see calling sequence for SC.RMG and SC.RDG) and indicate how
many you desire, or specify the address of a buffer already allocated by
SCA. 1In the normal case, start up by asking for a number of buffers, and
after they have been returned with text in them, return them to SCA as
fresh buffers for the port queues. SYSAPs MUST NOT specify a buffer not
allocated by SCA when queueing inbound buffers.

Rule two deals with outbound buffers. SYSAPs may ask SCA for a
packet buffer (see calling sequence for SC.ABF and SC.ALD), fill it with
data, and ask SCA to send it (see SC.SMG and SC.SDG). If the SYSAP wuses
SCA buffers for sending packets, the SYSAP may request the buffer go g~
the port free queue on packet send completion. Hence the SYSAP may do ®.
packet send and queue a buffer for reception all at the same time. Note
that only SCA buffers may end up on the port free queues. Hence SYSAPs
may not allocate their own space and ask for these buffers to end up on
the port free gueue.

1f the SYSAP desires to allocate its own send buffers, it may do so
but the space allocated must meet rigid standards. First, the buffer
must be contiguous in physical memory. Hence if a page boundry 1is
crossed, the two virtual pages must be physically contiguous. Second,
the start of the SYSAP text must be at least .MHUDA words into the page.
This is used by SCA for header space. Third, when the packet send is
done the SYSAP must ask for the buffer back. It MUST NOT end up on the
port free gqueues.

SCA Functional specification Page 25
Writing a monitor SYSAP

SYSAPs must understand the format of SCA buffers if they are to be
used correctly. The following is the general format of an SCA buffer:

"
"
"
1
"
]
1]
"
0
1}
0
"
]
]
[}
]
]
i}
i}
1}
i}
"
1]
I}
1}
[}
"
]
1]
"
]
1
[}
]
]
"
"

MHISH \ B
\ Invisible SYSAP header \ \ SYSAP header area
\ N
\ \ /
e e !
0 ---> \ N\
\ SCA header ANEERN
\ N\
\ \ / SCA header area
| e !) mmmmmm e
.MHPKL ! Packet length v/
IR T g g L g S S v S !
.MHUDA \ NN\
\ SYSAP text \ \ SYSAP text area
\ \ /e
\ \ /
! !

e o R R e ——
B2 2 P P 2 2 F S A 5 5 5

.MHISH - This symbol defines the offset to the base of the invisible
SYSAP header. It is important to note that this is a negative offset.
This header 1s for the exclusive use of the SYSAP., SCA will zero it
when the SYSAP requests the buffer but otherwise will not touch it. This
means the SYSAP can write data to this area and have it survive across

port packet transmission.

0 - This is word zero of the buffer. It is the base address which is
passed between SCA and te SYSAP when talking about this buffer. All
offsets within the buffer are defined as offsets from this word.

.MHPRKL - This word is used by SCA to describe the length of an incoming
packet. It 1is always filled in by SCA when it is called by the port
driver for an incoming packet. This word is not filled in by the SYSAP
on a message send.

This word is always the length of the SYSAP text, 1I.E. it never
includes the length of any overhead data. 1If the packet was transmitted
in high density mode, then the length is in words. If the transmission
mode was industry compatable, then the length is in bytes.

.MHUDA - This offset defines the first word of the SYSAP text area. SCa
will never touch this area except to zero it on buffer allocation.

SCA Functional specification Page 26

Writing a monitor SYSAP

5.1.2 Starting a connection

Before application packets can be exchanged between processes on two
systems, SCA must mediate the opening of a connection. The following is
a graphic description of this process.

SCA Functional specification
Writing a monitor SYSAP

System A

Active side

Page 27

System B

Passive side

| SYSAP does CONNECT |

|SCA gets ACCP_REQ,sends| <
| ACCP_RSP, and issues |
| .SSCRA callback. |
| Connect is now open, |
|

| SYSAP does LISTEN |

| SCA gets CONN_REQ and find
| listener. SCA sends CONN_
| and gives .SSCTL callback

-------- | to listening SYSAP

packets may be sent | === > |SCA receives ACCP_RSP, 1iss

| SYSAP gets .SSCRA|
callback, SYSAP |
knows connect is]|
open |

The diagram above is a typical
thing to watch is the set of callbacks from SCA.

direct indicator of what state the connect is in. Note that
indicated by

important

other options than the set

connection

| .SSOSD callback. Connect
| now open, packets may be

| SYSAP gets ,SSOSD cs
| back, SYSAP knowns
| connect is open

opening sequence. The
They are the
there are

the diagram. The detailed

SCA/SYSAP interface details these options.

A Functional specification Page 28
iting a monitor SYSAP

5.1.3 Global interlocks

There are times when a SYSAP desires to insure that no further CI
traffic will be processed until it has completed some piece of code.
Using PIOFF to accomplish this is undesirable since it does not allow for
nesting and it turns off more channels than are necessary. Instead of
PIOFF/PION, CIOFF/CION should be used. These macros call routines in
SCAMPI which will do nesting and interrupt level checks. At present,
there are 36 bits of nesting counter, and code executed at KLIPA
interrupt level will not turn off the channel. Since these nesting
checks are done, the SYSAP is guaranteed that the channel will stay off
until it does a CION. Note that one side effect of going CIOFF is being
NOSKED as well.

SCA Functional specification Page 29
Writing a monitor SYSAP

5.2 Messages
5.2.1 Receiving messages

To receive messages from a remote node a SYSAP must do the
following:

1. Open a connection to the desired remote.

2. Queue message buffers.

The SYSAP will now receive a .SSMGR callback for each message that
arrives for it.

5.2.2 Sending messages
To send messages the SYSAP must have the following:
1. An open connection with the desired remote.

2. Send credit.

3. A buffer which meets the requirements for placement on the port

command queues,

If the connection has no send credits the remote node has not gqueued
any buffers for receiving messages from you. Hence you cannot send any
and will get the fail return from SC.SMG until the remote gqueues some
buffers,

5.3 Datagrams
5.3.1 Receiving datagrams

Much like messages, datagrams reguire an open connection to the
remote and buffers gueued for datagram reception. The major difference
is that when the remote does a send, if it fails because there are no
buffers available for your connection, you will get the .SSDDG callback.
This is mearly an indication that the software has detected a dropped
datagram for your connection and you should queue some buffers for it.
If the hardware drops the datagram because there are no buffers on the
entire hardware gqueue, you will never hear about it. Hence the SYSAP
cannot count on being told about dropped datagrams. Note that SCA never
notifies the sender that the datagram was dropped.

ication Page 30

5.3.2 Sending datagrams
Sending datagrams requires an open connection to the remote and a

packet buffer that meets the requirements for placement on the port
command gueues. (See the section on buffers for more details)

5.4 Named buffers

The general procedure for the transfer of data with named buffers is
as follows:

1. Both sides of an open connection do a map call to set up a buffer.
2. SYSAP A gives its name for the buffer to SYSAP B.

3. The SYSAP B does a request or send data function which starts the
data in the desired direction.

4. The SYSAP B gets a callback indicating the completion of the named
buffer transfer.

5. Lastly, and optionally, SYSAP B tells the SYSAP A that the transfer
is complete.

This method implies that each SYSAP has message buffers queued. The
data transfer functions require a buffer from the message free queue.
The exchange of names should be done with messages or datagrams.

SCA Functional specification Page 31
Writing a monitor SYSAP

5.5 Monitor SYSAP interface

5.5.1 SYSAP to SCA interface

SCA provides many services to the SYSAP though the use of these
calling sequences:

5.5.1.1 Connect (SC.CON)
- Connect (SC.CON) -
This routine requests a connect with a remote process.
Call

BLCAL. (SC.CON,<SS.SPN,SS.DPN,SS.NOD,SS.MSC,SS.MRC,SS.ADR, " _
$S.S1D,SS.DTA,SS.BFR,SS.DGB>)

Where:

SS.SPN -- Byte pointer to source process name

SS.DPN -- Byte pointer to destination process name

SS.NOD -- Node number of destination system

SS.MSC -- Minimum send credit (Min for remote receive
credit)

SS.MRC -- Minimum receive credit, point at which
destination must give more

SS.ADR -- Address to call on condition changes for

this connection
SS.SID -- Value to be placed in SYSAP field in CID (right justifie
SS.DTA -- Address of SYSAP connection data or zero
SS.BFR -- Number of buffers to queue for message reception
SS.DGB -- Number of datagram buffers to queue

Return (+1)
T1/ Error code

Return (+2)
T1l/ Connect ID

The returned connect ID is the unique 1identifier for this
connection, All further interaction with SCA will include this connect
ID (CID).

ation Page 32

5.5.1.2 Listen (SC.LIS)

- Listen (SC.LIS) -

This routine enables the process to 1listen for connections from
remote processes.

Call

BLCAL. (SC.LIS,

Where:
SS.SPN
SS.DPN
SS.NOD
SS.ADR
§S.SID
SS.MSC
SS.MRC

Return
T1/

Return
T1/

When SCa

<SS .SPN,SS.DPN,SS.NOD,SS.ADR,SS.SID,SS.DTA,"_
SS.MSC,SS.MRC>)

-~ Byte pointer to source process name

-- Byte pointer to destination process name or 0

-- Node number or -1

-- Address to call on connection condition changes

-- Value to be placed in SYSAP field of CID (Right justified
-- Minimum send credit

-- Minimum receive credit

(+1)
Error code

(+2)
Connect ID

receives a connect request from a remote node, the

following algorithm is wused when doing name matching with 1local

listeners:

SCA Functional specification Page 33
Writing a monitor SYSAP

Figure 1

on Page 34

A successful return from this call means SCA has a held a connecti‘.
for you waiting for connects from remote nodes. If a remote requests a
connection with a process, that process will receive the .SSCTL callback.

SCA Functional specification Page 35
Writing a monitor SYSAP

5.5.1.3 Accept (SC.ACC)

- Accept (SC.ACC) -

This routine is used to accept a connect request from a remote node.

Call
BLCAL.

Where:
SS.CID
SS.DTA
SS.BFR
SS.DGB

Return
T1/

Return
T1l/

(SC.ACC,<SS8.CID,SS.DTA,SS.BFR,SS.DGB>)

-- Connect 1D

-- Address of initial connection data or zero

-- Number of buffers to be queued for message reception
-- Number of buffers to queue for datagram reception

(+1)
Failure code

(+2)
Address of initial connect data

The returned address of connect data is a pointer to the connection
data sent by the remote on the connect request. Note that the connection
is not open until the .SSOSD callback is given.

nal specification Page 36

L—A GO RPN - R e)

ot
8
o
oo I ¢
-
o
O
ia}
[72]
]
wn
>
o)

5.5.1.4 Reject (SC.REJ)
- Reject (SC.REJ) -
This routine rejects the connect reguest of a remote process.
Call
BLCAL. (SC.REJ,<SS.CID,SS.RJR>)

Where:
SS.CID -- Connect ID
SS.RJR -- Reject reason code

Return (+1)
T1/ Failure code

Return (+2)
No data is returned by this routine

The reject reason may be any value the caller desires with the
exception of those reserved to SCA (in the range /TBD/). The idea is
that the SYSAP protocol should invent and use its own reject reasons.
After the reject call has been issued, the connection goes back into the
listen state.

SCA Functional specification Page 37
Writing a monitor SYSAP

5.5.1.5 Disconnect (SC.DIS)
- Disconnect (SC.DIS) -

This routine closes an open connection., Note that it may only be
called if the connection is open. No other connection state is allowed
for a connection that is to be disconnected.

Call
BLCAL. (SC.DIS,<S8S.CID,SS.DIR>)
Where:

SS.CID -- Connect ID
SS.DIR -- Disconnect reason

Return (+1)
T1/ Failure code

Return (+2)
No data is returned by this routine

The disconnect reason may be any value the caller desires with the
exception of those reserved to SCA (in the range /TBD/). The idea is
that the SYSAP protocol should invent and use its own disconnect reasons.

ication Page 38

5.5.1.6 Abort (SC.ABT)
- Abort (SC.ABT) -

This routine is called to abort, or cancel, a connection. It
differs from disconnect in that it may be issued for a connection in any
state. Whereas disconnect may only be issued for an open connection.

Call
BLCAL. (SC.ABT,<SS.CID>)

Where:
SS.CID -- Connect ID of the connection to be aborted

Return (+1)
T1/ Error code

Return (+2)

No data returned, CID is no longer valid, and the connection has bee
aborted.

5.5.1.7 Send datagram (SC.SDG)
- Send datagram (SC.SDG) -
This routine is called to send a datagram over an open connection.

Call
BLCAL. (SC.SDG,<SS.CID,SS.FLG,SS.LDG,SS.ADG>)

Where:
SS.CID -- Connect ID
SS.FLG -- Flag word
SS.LDG -- Len of datagram (in bytes)
SS.ADG -- Address of datagram buffer

Return (+1)
T1/ Failure code

Return (+2)
No data is returned by this routine, datagram
placed on port queue

The flags word is used to indicate the transmission mode of the
packet, and hence the units on the packet size. It also indicates w
should be done with the buffer after the message send is complete. See
the section on buffer management for more details. These are the defined

SCA Functional specification Page 39

Writing a monitor SYSAP

flags for this word:

F.RTB -- 1
0
F.SPM -- 1
0

return message send buffer to SCA
return message send buffer to free Q

Send mess/datagram in high den mode
Send mess/datagram in industry compat mode

1al specification Page 40
itor SYSAP

5.5.1.8 Queue datagram receive buffers (SC.RDG)
- Queue datagram receive buffers (SC.RDG) -

This routine puts buffers onto the port datagram free queue for you.

Call

BLCAL. (SC.RDG,<SS.CID,SS.NUM,SS.ADR>)

Where:
S§SS.CID -- Connect ID

If SS.ADR is zero then:
SS.NUM -- Number of buffers to queue

If SS.ADR is non-zero, then:

SS.NUM is ignored, and

SS.ADR -- Address of the buffer to queue. Note that this
buffer must be a buffer procured from SCA. This means it hat
been used as a datagram buffer before. This is handy for th«
time you are done with an SCA datagram buffer and wish to
requeue it. It eliminated the need for two calls to SCA.

Return (+1)
T1/ Error code

Return (+2)
Buffer(s) have been gueued to receive datagrams.

SCA Functional specification Page 41
Writing a monitor SYSAP

5.5.1.9 Send a message (SC.SMG)

Thi

Where:

- Send a message (SC.SMG) -

9

routine sends a message if there are sends credits available
and the circuit is open.

Call

BLCAL.

SS.CID
SS.FLG
SS.LMG
SS.AMG
SS.PRI
SS.TSH

Return
T1/

Return

(SC.SMG,<S85.CID,SS.FLG,SS.LMG,SS.AMG,SS.PRI,SS.TSH>)

Connect ID

Flag word, see SC.SDG for a definition

Length of message in bytes

Address of message buffer

Priority to give message

Allow send only if more than this many send credits exis

(+1)
Error code

(+2)
No data returned

5.5.1.10

Queu

ation Page 42

e message receive buffers (SC.RMG)

- Queue message receive buffers (SC.RMG) -

This routine places buffers onto the port message free queue and
reflects these buffers as receive credit for the given connection.

Where:

Call

BLCAL.

SS.CID

SS.NRB

SS.AMB

Return
T1/

Return
Buffer

(SC.RMG,<SS.CID,SS.NRB,SS.AMB>)

-- Connect 1ID

-— If SS.AMB is zero then this is the number of buffers
to be queued for message reception.

-- Address of message buffer
1f SS.AMB is zero then a buffer is taken from the SCA

message buffer free queue. If it is non-zero, then it
is assumed that no problems will arise if the buffer

is returned to the SCA pool. Since it may end up in

the SCA pool it must be the length of all other buffers
in the pool, must have come from the general free
pool,and must be resident.

(+1)
Error code

(+2)
has been queued.

SCA Functional specification Page 43
Writing a monitor SYSAP

5.5.1.11 Cancel datagram receive buffer (SC.CRD)
- Cancel datagram receive buffer (SC.CRD) -

This routine will take buffers off the port datagram free queue. It
will not allow the caller to take more buffers than were queued for the
given connection. The buffers are returned to the SCA free pool and not
to the caller,

Call

BLCAL. (SC.CRD,<SS.CID,SS.NBF>)
Where:

SS.CID -- Connect ID

SS.NBF -- Number of buffers to dequeue

Return (+1)
T1/ Error code

Return (+2)
No data returned, buffer dequeued.

5.5.1.12 Cancel message receive buffers (SC.CRM)
- Cancel message receive buffers (SC.CRM) -

This routine will dequeue buffers from the message free gueue. Note
that it will not allow the <caller to dequeue more buffers than were
gueued for the given connection. The buffers are returned to the SCA
free pool and not to the caller.

Call

BLCAL. (SC.CRM,<SS.CID>)

Where:

SS.CID - The connection ID of connection who's buffer we are cance

SS.NBD - The number of buffers to dequeue

Return (+1)
T1/ Error code

Return (+2)
No data returned, buffer(s) have been returned to the free pool

5.5.1.13 Map a named buffer (SC.MAP)

- Map a named buffer (SC.MAP) -

ation Page 44

This routine associates memory with a named buffer. Provided a
descriptor block (shown below) it will get the port driver to give the
buffer to the port.

Call

BLCAL. (SC.MAP,<SS.BLK>)

Where:

.MDNXT ! Address of next buffer descriptor (zero if none)

| o e e e - = e e e e e e e
.MDFLG Flags
.MDLEN Length of segment #0

.MDADR

SS.BLK -- Address of the first entry in a chain of buffer

descriptor blocks.

Return (+1)
T1/ Error code

Return (+2)
T1/ Buffer name

Buffer descriptor blocks have the following format:

e e e e e - —— —— ——————— e = o e = - . - e e e e e e e e e e e e e

e ==

The flags word has the following set of flags defined:

MD$DMD -- Two bit field 1indicating buffer mode. The
settings are defined:

MD%DIC -- Industry compatable

MD%DCD -- Core dump

MD%DHD -- High density

following

SCA Functional specification Page 45
Writing a monitor SYSAP

All other values are illegal.
Note that .MDNXT and .MDFLG are offsets from the start of the block

to the address of the next entry in the chain, but .MDLEN and .MDADR are
offsets within the words describing a single buffer segment.

s W0n

C
r

A Functional specification Page 46

iting a monitor SYSAP

5.5.1.14 Unmap a buffer (SC.UMP)
- Unmap a buffer (SC.UMP) -

This routine is called to unmap a buffer. Note that this routine
must be called before the buffer will go away. Hence if the routine is
not called after all named buffer transfers are completed the buffer will
stay around forever. This enables the SYSAP to do multiple operations
with the same buffer, without having to map the buffer every time.

Call
BLCAL. (SS.UMP,<SS.NAM>)

Where:
SS.NAM -- Name of buffer to be unmapped

Return (+1)
T1/ Error code

Return (+2)
No data, buffer name is no longer valid

SCA Functional specification Page 47
Writing a monitor SYSAP

5.5.1.15 Send named buffer data (SC.SND)

- Send named buffer data (SC.SND) -

This routine sends block data from a named buffer.

Note:

One receive credit is required to do any named buffer transfer.

Where:

Call
BLCAL.

SS.CID
SS.SNM
SS.RNM
SS.SOF
SS.ROF

Return
T1/

Return

(SC.SND,<SS.CID,SS.SNM,SS.RNM, SS.SOF, SS.ROF>)

-- Connection on which this transfer is being done
-- Name of the buffer to get data from

-- Name of buffer to put data into

-- Byte offset into transmission buffer

-~ Byte offset into reception buffer

(+1)
Error code

(+2)

No data returned.

5.5.1.16

ication Page 48

Request remote named buffer transfer (SC.REQ)

- Request remote named buffer transfer (SC.REQ) -

This routine requests the transfer of data from a remote data buffer

to a

local one.

Note that do perform this function the SYSAP must have

at least one receive credit. This is due to the ports use of a message
buffer from the message free queue on a named buffer operation.

Where:

Call

BLCAL.

SS.CID
SS.NOD
SS.SNM
SS.RNM
SS.SOF
SS.ROF

Return
Tl/

Return

(SS.REQ,<SS.CID,SS.NOD,SS.SNM,SS .RNM, SS,SOF,SS.ROF>)

-- Connection on which this transfer is being done

-~ Node
-- Name
-- Name
-- Byte
-- Byte

(+1)

number of remote host

of remote buffer to get data from
of local buffer to put data into
offset into transmission buffer
offset into reception buffer

Error code

(+2)

No data returned.

SCA Functional specification Page 49
Writing a monitor SYSAP
5.5.1.17 Connect state poll (SC.CSP)
- Connect state poll (SC.CSP) -

This routine returns information about the state of a connection.

Call

BLCAL. (SC.CSP,<SS.CID,SS.FRE>)

Where:

SS.CID -- Connect ID of target connect

SS.FRE -- Address of a free space block for returned info

Return (+1)
T/ Failure code

Return (+2)
Tl/ Address of returned data

Note that it is the SYSAP that provides the free space for the
return of data. This free space may be from an extended section or
section zero. The format of the retutned data is as follows:

.CDCST g Connection state i
copcx 1 Destination Conmect 1D i
.cooen 1 Byte pointer to destination process name ¥
cepser i Node number i
.coaca © Address of connection block i
.CDREA | Source discomnect reasons ! Dest disconnect reasons I

The byte pointer to destination process name points to a string in
an SCA database. This is important to realize since the SYSAP must not
change the indicated string.

ication Page 50

5.5.1.18 Return destination connect ID (SC.DCI)

- Return destination connect ID (SC.DCI) -

This routine returns the remotes identifier for the given

connection.

Call
BLCAL.,

Where:
SS.CID
SS.FRE

Return
T1/

Return
T1/

(sc.pC1,<SS.CID,SS.FRE>)

-- Connect ID for target connection
-- Address of free space into which data is to be returned

(+1)
Error code

(+2)
Destination connect ID for given connection

SCA Functional specification Page 51
Writing a monitor SYSAP

5.5.1.19 Return system configuration data (SC.RCD)
- Return system configuration data (SC.RCD) -
This routine returns information about a system. To discover who is
available on the net simply call this routine for each possible node

number. Node numbers are guarenteed to start at zero and and at

Call
BLCAL. (SC.RCD,<SS.NOD>)

Where:
SS.NOD -- Target node number

Return (+1)
Tl/ Failure code

Return (+2)
T1l/ Address of configuration data block

The free space into which data is retuedn may be 1in an extended
section or section zero, and has the following format:

.RDSTS ! Virtual circuit state ! Port number !
IR i e N S SR S |
.RDSYS \ \
\ System address (6 8-bit bytes, word aligned) \
\ \
o e e e - !
.RDMDG ! Maximum destination datagram size !
e e e e e e e e e - ——— e ————— - — - — |
.RDMMS ! Maximum destination message size !
o e e !
.RDDST ! Destination software type !
e e e e !
.RDDSV ! Destination software version !
| e e e e e e - ——— — — — —— — — !
.RDDSI ! Destination software incarnation !
I e e T T T rp—— !
.RDDHT ! Destination hardware type !
e e - ——— - !
.RDDHV ! Destination hardware version !
o e e e !
.RDPRT \ \
\ Port characteristics (6 8-bit bytes, word aligned) \
\

The format of the system name and port characteristics fields are
/TBD/.

SCA Functional specification Page 52
Writing a monitor SYSAP

5.5.1.20 Reset a remote system (SC.RST)
- Reset a remote system (SC.RST) -

This routine sends a maintenance reset to a remote node. No
checking is done as to the node type. If the remote does not honor such
packets then the remote will simply ignore the packet. There is no
direct indication to the local SYSAP as to whether the packet was taken
or ignored.

Call
BLCAL. (SC.RST,<SS.NOD,SS.FRB>)

Where:
SS.NOD -- Node number of node to be reset
SS.FRB -- Force reset bit, if one, reset is forced, if zero,
reset will only be done if we are the last node to do
a reset for this remote

Return (+1)
T1/ Error code

Return (+2)
No data returned, reset packet sent

SCA Functional specification Page 53
Writing a monitor SYSAP

5.5.1.21 Start a node (SC.STa)
- Start a node (SC.STA) -

This routine sends a maintainance start a remote node. No check of
remote node type is done. If the remote node does not honor this packet
type then the remote will simply ignore the packet. No direct indication
of success or failure of the packet at the remote is provided.

Call
BLCAL. (SC.STA,<SS.NOD,SS.DSA,SS.STA>)

Where:
SS.NOD -- Node number of target remote
SS.DSA -- Flag for use of SS.STA, if zero, SS.STA is ignored and
the default start address is used. If non-zero, SS
is used as the start address of the remote.
SS.STA -- Start address for the remote node. Only used if SS.DSA i
non-zero.

Return (+1)

T1/ Error code
Return (+2)
No data returned

20N

LaIN®)

A

Funct
unct
a

ting

i monitor SYSAP

5.5.1.22

Page 54

Set port counters (SC.SPC)

- Set port counters (SC.SPC) -

This function sets the port counters for a desired function.

Call
BLCAL. (SC.SPC,<SS.NOD,SS.CTL>)
Where:
SS.NOD -- Node number or 377 for all nodes
SS.CTL -- Control word for port counters, bits as follows:
BO I1f on, count ACKs received on Path A.
Bl If on, clear the counter.
B2 I1f on, count NAKs received on Path A.
B3 1f on, clear the counter.
B4 If on, count NO_RSPs received on Path A.
B5 I1f on, clear the counter.
B6 I1f on, count ACKs received on Path B.
B7 1f on, clear the counter.
B8 I1f on, count NAKs received on Path B.
B9 1f on, clear the counter.
B10 If on, count NO RSPs received on Path B.
Bll If on, clear the counter.
B12 The count of discarded datagrams because
of no DGFree Queue entries.
B13 1If on, clear the counter.
Bl4 Count the packets transmitted to the
designated port.
B15 1If on, clear the counter.
Bl16 Count the packets received from the
designated port.
B17 1I1f on, clear the counter.
Return (+1)
T1/ Error code
Return (+2)

No data retutned, port counters set

SCA Functional specification , Page 55
Writing a monitor SYSAP

5.5.1.23 Read port counters (SC.RPC)
- Read port counters (SC.RPC) -

This routine returns the values of the port counters. It 1is an
asynchronous event. The routine will return immediatly but the answer
will occur as the .SSRPC callback.

Call
BLCAL. (SC.RPC,<SS.ADR>)

Where:
SS.ADR -- Address of SCA allocated buffer into
which data is to be returned

Return (+1)
T1/ Error code

Return (+2)
No data returned, .SSRPC callback will happen
when data is ready

SCa Functional specification Page 56
r

ific
Writing a monitor SYSAP
5.5.1.24 Maintainance data send (SC.MDS)
- Maintainance data send (SC.MDS) -
This routine requests a block tranfser write, in maintainance mode. No

SCA connection or port circuit are required for this function. The
buffer must have been mapped with the SC.MAP call however.

Call

BLCAL. (SC.MDS,<SS.NOD,SS.SNM,SS.RNM,SS.XOF,SS.ROF,SS.ADR>)
Where:

SS.NOD -- Node number of target system

SS.SNM -- Local buffer name for transfer

SS.RNM -- Remote buffer name for transfer

SS.XOF -- Transmit offset (in words)

SS.ROF -- Receive offset (in words)

SS.ADR -- Address to call when transfer is compelte

Return (+1)
T1/ Error code

Return (+2)
No data returned, notification by .SSMNT callback when completed

SCA Functional specification Page 57
Writing a monitor SYSAP
5.5.1.25 Maintainance data read (SC.MDR)
- Maintainance data read (SC.MDR) -
This routine requests a block tranfser read, in maintainance mode.

No SCA connection or port circuit are required for this function. The
buffer must have been mapped with the SC.MAP call however.

Call

BLCAL. (SC.MDR,<SS,NOD,SS.SNM,SS.RNM,SS.XOF,SS.ROF,SS.ADR>)
Where:

SS.NOD -- Node number of target node

SS.SNM -- Remote buffer name for transfer

SS.RNM -- Local buffer name for transfer

SS.XOF -- Transmit offset (in words)

SS.ROF -- Receiver offset (in words)

SS.ADR -- Address to call when transfer is complete

Return (+1)
T1/ Error code

Return (+2)
No data returned, .SSMNT callback when complete

SCA Funct a
Writing a mon

pe
r

[

o 0

:n ~r
1V

cification Page 58
it SYSAP

[

5.5.1.26 Set online address (SC.SOA)
- Set online address (SC.SOA) -

Notification of a node coming online happens on a per SYSAP basis
rather than on a per connection basis. Hence SCA must have an address
for each SYSAP that wishes to be called when a new VC has been opened.
This routine sets the online address for the SYSAP. Note that this
routine does not know who calls it and will simply add this address to
the 1list of notification addresses. It does not try to delete old
entries if called twice by the same SYSAP.

Note that this call will only allow .SSNCO callbacks to occur. All
other callbacks are done through the address specified at connect or
listen time.

Call
BLCAL. (SC.SOA,<SS.ADR>)

Return (+1)
T1/ Error code

Return (+2)
No data, address saved

SCA Functional specification Page 59
Writing a monitor SYSAP

5.5.1.27 Swap bytes from 11 to 10 format (SC.ISW)
- Swap bytes from 11 to 10 format (SC.ISW) -

This support routine swaps a single PDP-11 format word into a PDP-10
format word. Since this is a popular thing to do when talking to the HSC
and friends this routine is global for access by the rest of the monitor.

Call
T/ Word to be swapped

Return (+1) Always
T1/ Byte swapped word

Input format:
2 16 bit half words, left justified

! 3t 2 11 1t 3ttt ittt it T !
! B (lsb) ! B (msb) ! A (1lsb) ! A (msb) ! IGN !

Where A and B are the half words, and (lsb) are the least significant bit
and (msb) are the most significant bits.

The contents of bits 32 thru 35 are ignored.

Output format:
2 18 bit half words,

!===!
1X! Byte A (msb+lsb) 1X! Byte B (msb +1lsb) !
!===!

0 2 17 20 35

X denotes the 2 bit field within each halfword that
will always be zero.

SCA Functional specification Page 60

L e

Writing a monitor SYSAP

5.5.1.28 SC.OSW (Swap word from 10 to 11 forma
- SC.OSW (Swap word from 10 to 11 format)

This routine swaps a single word from PDP-10 format to PDP-11
format. Rather than be yet another in the long list of byte swappers,
this routine is globally available to the rest of the monitor (in

particular SYSAPs).
Call
T/ Word to swap

Return (+1) Always
T1/ Byte swapped word

Input format:
2 18 bit half words,

Output format:
2 16 bit half words, left justified

Where A and B are the half words

nd (1lsb) are the least significant bits
and (msb) are the most significan t

1TSS
4L

SCA Functional specification Page 61
Writing a monitor SYSAP
5.5.1.29 Return node number given CID (SC.SBI)
- Return node number given CID (SC.SBI) -

This routine returns the node number of the remote end of the given

CID.
Call
BLCAL. (SC.SBI,<SS.CID>)
Where:
SS.CID -- Connect ID of target connection

Return (+1) Always
T1/ Local connect ID
T2/ Node number of the remote end of the connection specified

1 specification Page 62

5.5.1.30 Return credit info (SC.RAC)
- Return credit info (SC.RAC) -

This routine returns the current credit levels for a particular
connection. This routine is not interlocked, hence the credit counts may
be incorrect by the time SCAMPI returns from the PUSHJ. The usual case
is SCAMPI is interrupted in the middle of this routine by a message
arriving for this connection. This means the receive credits will Dbe
wrong. 1f the SYSAP sends a reply at interrupt level the send credits
will be wrong as well. Since most connections maintain a large number of
credits this routine will at least give a ballpark figure. If the SYSAP
knows that it will not be getting any messages or if it «calls this
routine CIOFF then the counts will be correct.

Call

BLCAL. (SC.RAC,<SS.CID>)

Where:

SS.CID -- Connect ID of connection whose credits

are desired

Return (+1)

T1/ Error code
Return (+2)

T1/ Send credit
T2/ Receive credit

T3/ Number of datagram buffers queued

SCA Functional specification Page 63
Writing a monitor SYSAP

5.5.1.31 Return local port number (SC.PRT)

- Return local port number (SC.PRT) -

This routine returns the node number of the 1local node. The
assumption is made that this is a KL with only one KLIPA,.

Call
No argquments

Return (+1)
Error code

Return (+2)

T1l/ Local node number
T2/ Reserved
T3/ Reserved

T4/ Reserved

pecification Page 64
r SYSAP

ion
ion

=

SCA Funct a
Writing a mon

owm

t

[}

5.5.1.32 Allocate a datagram buffer (SC.ALD)
- Allocate a datagram buffer (SC.ALD) -

This routine will allocate datagram buffers from the SCA free pool.
It is from this pool that all buffers on the port free queues originated.
1f desired the SYSAP can use buffers from this pool for outgoing
datagrams and have the buffer placed on the port free dgueue on
transmission completion.

When more than one buffer has been requested, the buffers are
chained together with the link in the zeroth word of each buffer. The
link word always points to word zero of the next buffer. The last buffer
has a link word of zero.

Call

T1/ Number of buffers desired

Return (+1)

T1/ Error code

Return (+2)

T1/ Address of first buffer on chain
T2/ Number of buffers returned

T3/ Address of routine to return buffers

SCA Functional specification Page 65
Writing a monitor SYSAP

5.5.1.33 Allocate a message buffer (SC.ABF)
- Allocate a message buffer (SC.ABF) -

This routine allocates message buffers from the SCA free pool. If
desired the SYSAP may use these buffers for message transmission and have
the buffer placed on the port free gqueue on send completion. Also note
that these buffers have the invisible area described in the section on
SCA buffers.

When more than one buffer has been requested, the buffers are
chained together with the link in the zeroth word of each buffer. The
link word always points to the zeroth word of the next buffer. The last
buffer has a link word of zero.

Call
T1/ Number of buffers desired

Return (+1)
T1/ Error code (No buffers returned)

Return (+2)

T1/ Address of first buffer on chain

T2/ Number of buffers returned

T3/ Address of routine to return buffers

specification Page 66

ot
oW
i
n
<
%2
>
o

5.5.1.34 Return a message buffer (SC.RBF)
- Return a message buffer (SC.RBF) -

This routine is wused to return buffers to the SCA free pool
allocated with SC.ABF. Although buffers can be allocated in chains, they
may not be returned that way. A buffer is returned one at a time. Hence
the link word of the buffer is ignored.

Call
T1/ Address of buffer to be returned

Return (+1) Always
No data returned, buffer returned OK

5.5.1.35 Return a datagram buffer (SC.RLD)
- Return a datagram buffer (SC.RLD) -

Datagram buffer allocated with SC.ALD must be returned to the i;;
free pool with this routine. Although buffers may be allocated %u
chains, they must be returned one at a time. Hence the link word in each
buffer is ignored.

Call
T/ Address of buffer to be returned

Return (+1) Always
No data returned, buffer has been returned
to SCA free pool

SCA Functional specification Page 67
Writing a monitor SYSAP

5.5.2 SCA to SYSAP interface

The following is the complete set of callbacks that the SYSAP can
expect to see from SCA.

General format of returned information:
T1/ Function code
T2-T4/ Function code dependant additional data

Context: List of possible contexts for this callback. I.E.
the contexts the SYSAP may see during this callbac

. SSDGR
Datagram received. SCA is indicating that the CI has filled one of the buf
queued for datagram reception with a datagram.

T1/ .SSDGR

T2/ Connect ID

T3/ Address of datagram buffer

T4/ <FLAGS>B5 ! <Addr of routine to return buffer>B35

(See SC.SDG for flag definitions)

.MHPKL word of datagram buffer/
Length of the packet (Bytes for industry compatable, words
for high density)

Context: Interrupt

. SSMGR
Message received. SCA is indicateing that you have received a message from
CI.

T1/ . SSMGR

T2/ Connect ID

T3/ Address of message buffer

T4/ <FLAGS>B5 ! <Addr of routine to return buffer>B35

(See SC.SDG for flag definitions)

.MHPKL word of msg buffer/
Length of the packet (Bytes for industry compatable, words
for high density)

Context: Interrupt

.SSPBC
Port broke connection. The port hardware detected a fatal error for the
port virtual circuit on which you had a connection. Thus it broke your
connection.

T1/ .SSPBC

T2/ Connect ID

T3/ Unused

A Functional specification Page 68
iting a monitor SYSAP

T4/ Unused

Context: Interrupt, scheduler
.SSCTL

Connection to listen. The listen done for you has been matched to a remote
connect request.

T1/ .SSCTL

T2/ Connect ID

T3/ Address to connection data from remote system
T4/ Unsued

Context: Interrupt

. SSCRA

Connection response available. The system to which you sent a connect messac
has responded.

T1/ .SSCRA

T2/ Connect ID

T3/ -1 for accepted, 0 for rejected connection

T4/ Reject code (If rejected), pointer to connect data if accep’
Context: Interrupt

. SSMSC

Message/datagram Send complete.

The message/datagram which you requested be

sent, has been. The "buffer address" is the address of the buffer you gave
SCA to send.
T1/ . SSMSC
T2/ Connect ID
T3/ Address of buffer
T4/ Length of buffer in bytes for ind. compat/words for high de
This is the length of the text portion, and does no
include SCA headers.
Context :Interrupt
.SSLCL

Little credit left. You have just received a message that put you under
receive credit threshold. It is suggested that you queue at least some buff

if you expect to get more messages.

calls every
T1/
T2/
T3/
T4/

Note that you will receive one of these
time you receive a message after which you are under threshold.
.SSLCL
Connect ID
Number of credits needed to get you over threshold
Unused

SCA Functional specification Page 69
Writing a monitor SYSAP

Context: Interrupt

.SSNCO
Node came online. You requested to be told of nodes coming online.
It happened and now you're being told.

T1/ .SSNCO
T2/ Node number of system that has come online
T3/ Unused
T4/ Unused

Context: Interrupt, scheduler

.SS0OSD '
OK to send data. The connection has been completed to a remote system and
now in the OPEN state. Messages and datagram may be sent.

T1/ .SSOSD
T2/ Connect ID
T3/ Unused
T4/ Unused

Context: Interrupt

.SSRID

Remote initiated disconnect. The host at the other end of your connection
doesn't want to talk to you anymore and has completed an orderly shutdown
your connection.

T1/ .SSRID
T2/ Connect 1D
T3/ Unused
T4/ Unused

Context: Interrupt

.SSCIA
Credit is available. Your message send failed for lack of credit. There is
now more credit available for your send.

T1/ .SSCIA

T2/ Connect 1D

T3/ Current send credit
T4/ Current receive credit

Context: Interrupt

2wn

A Functional specification Page 70
iting a monitor SYSAP
. SSNWO

Node went offline. The remote end of your connection has just dropped
offline. After this callback, all data about the connection will be deleted.

T1/ .SSNWO
T2/ CID for connect you had on offline node
T3/ Unused
T4/ Unused

Context: Interrupt, scheduler

. SSDMA

Named buffer operation complete. The named buffer operation you requested
has been completed. Note that you will NOT be told about the completion of
passive requests. I.E. you will not be notified when a request/send data
done by a remote completes.

T1/ .SSDMA

T2/ Connect ID of connection tranfers was done for
T3/ Buffer name of named buffer

T4/ Unused

Context: Interrupt

. SSDDG

Dropped datagram. SCA received a datagram for this connection and dropped
since you had no buffers left. The buffer was returned to the port free que
Note that this is a software detected datagram drop. If the port drops the
datagram because there are no buffers on the port queue, this call back wil
not happen.

T/ .SSDDG
T2/ Connect 1D
T3/ Unused
T4/ Unused

Context: Interrupt

. SSMNT

Maintainance data send/receive complete.
T1/ .SSMNT
T2/ Buffer name of completed transfer
T3/ Unused

T4/ Unused

SCA Functional specification Page 71
Writing a monitor SYSAP

Context: Interrupt

.SSRPC
Read port counters response. The request for reading the port counters has
completed and here is your answer,

T1/ .SSRPC

T2/ Connect ID of requesting connect

T3/ Address of packet containing counter data
T4/ Unused

The following is the format of the counter data:

1 {
\ \
\ Port header \
\ \
| e e e - e ————— . ——_—— - ————]
.PCMCV ! Microcode version !
| o o o = e e - e o = - — — — — — — — — —— — i ———— — — ——— 1
.PCAAC ! Path A ACK count !
) e e = e — 1
.PCANC ! Path A NAK count !
| o o e o e o e e e e e e — ——— 1
.PCANR ! Path A no response count !
L S SRR SR RSy]
.PCBAC ! Path B ACK count !
| o an o o e e e = = o - —— — —— — —— —————————————————_—— |
.PCBNC ! Path B NAK count !
b o e e e e e e e e s o e - e = = - —— — ————— - —— t
.PCBNR ! Path B no response count !
| e e e e e e e e e e = - - - - — - — !
.PCDGD ! Datagrams discarded !
| oo e e e e e e e i — — — — — — — — — — — — — — — — ———— — —— — — —————— — — t
.PCPTX ! Packets transmitted !
o e e e e e e e e - ———————_—— 1
.PCPRX ! Packets received !
| e m e e e e e e e - - — — —————— ———— = —— !
.PCDPT ! Designated port !

A Functional specification Page 72
iting a JSYS SYSAP

6.0 Writing a JSYS SYSAP

This section is a detailed review of the differences between writing
monitor level SYSAPs and user level SYSAPs. The concepts are identical
for the two SYSAP types, but the implementation details are very
different. In the reading of the following sections it is assumed that
the sections on monitor level SYSAPs has been read.

6.1 General rules
6.1.1 Communicating with SCA

When writing monitor level code SYSAPs communicate with SCA through
subroutine calls. The SYSAP obtains services from SCA by calling
routines in SCA, and SCA returns event information by calling routine
addresses specified by the SYSAP., When writing JSYS code, services are
obtained by executing the JSYS, and SCA communicates event information
through a series of PSIs. 1In all there are four PSIs that the JSYS level
SYSAP may have to handle. One each for incoming messages, datagrams,
named buffer completions and all other events. 1If the SYSAP does not
require some of these services then the PSI need not be enabled.

6.1.1.1 Using the SCS% with the PSI system

When using the PSI system with SCA keep in mind that the SCS% call
to add channel must be done in addition to the usual set of JSYS calls.
The SCS% call simply lets SCA know which channels are to be wused for
which event types. The SIR%, AIC%, EIR% (and their extended third
cousins) etc. must still be used to specify and enable the PSI system.

fox
'
[N
to
b
Hh
[
0
Lo

management

Buffer management for the JSYS SYSAP is very different than that
done for monitor SYSAPs. There are still four basic buffer types,
messages and datagrams, both of which can be incoming or outgoing.

6.1.2.1 Incoming buffers

Buffers queued for reception of messages and datagrams must be large
enough to handle the largest packet possible. The correct buffer size
for messages is thirty eight (38) words, for datagrams this size 1is one
hundred fifty two (152) words. These buffers are queued in chains much
the way they are in the monitor. These buffers are not placed on the
port gqueues however. Monitor internal buffers are placed on the p
queues and data is BLTed to user space when it arrives., When data s
moved the 1length to be BLTed is obtained from the packet. Hence if the

SCA Functional specification Page 73
Writing a JSYS SYSAP

buffer is to short the end of the buffer will be BLTed over. This is why
the buffer must be at least as long as the longest packet possible.

6.1.2.2 Outgoing buffers

Buffers used for packets transmission need only be as 1long as the
packet text. There are no other restrictions on these buffers,

6.1.3 The race condition

Something which comes up when coding a monitor SYSAP 1is that
interlocking further CI traffic is easy. JSYS SYSAPs do not have things
quite so simple., 1In particular there 1is a race that a JSYS SYSAP
designer should be aware of. When a JSYS SYSAP does a listen, he is told
about a connection to that listen with a PSI. As soon as the connection
comes 1in and the match is found, the monitor changes the state of the
connect to connectreceived rather than listen. Hence if another connect
request comes 1n for that SYSAP before it has been told about the first
connect request, then the second one will fail at the SCA level since no
match can be found even though the SYSAP would likely want to see that
connect,

One reasonable solution to this problem is based on an understanding
of the problem by both the active and passive sides of the connect
mechanism. The listener should open more than one 1listen (keeping in
mind that they do use system resources), and the connector should retry
connect attempts if they fail.

SCA Functional specification Page 74
Writing a JSYS SYSAP

6.2 JSYS SYSAP interface

The following is the general format of a call to the SCS% JSYS.

Call
T1/ Function code
T2/ Address of arg block

Return (+1) Always
T1/ Function code
T2/ address of arg block

An error generates an illegal instruction trap.

General format of the argument block:

P T T T 1 1 L 1 1 2 e e et

Where the "words processed" is the number of words in the argumégi
block that the monitor actually looked at and used. Hence this field is
returned by the monitor, not supplied by the user. The "length of block"
is the total length of the supplied block including the header word.

Note that this JSYS reguires one or any combination of wheel,
maintenance, or network wizard.

SCA Functional specification Page 75
Writing a JSYS SYSAP
6.2.1 Connect {.SSCON)

Connect (.SSCON)

This function requests a connection with another process on the CI.
The JSYS will return as soon as the connection request has been sent.
You are notified that your connection request was granted or failed via a
PSI interrupt.

The argument block has the following format:

. SQLEN 5 Words processed ! Length of block !
sosen 1 Byte pointer to source process name f
sopen 1 Byte pointer to destination process name i
SOSYS | Node # of destination 1 S¥SAP fieid for cip i
socor 1T Pointer to connection data i
[SOAMC 1| Address of Eirst buffer on message buifer crain I
. SOADC §"";552;;;’52'2I;;E”;;EE;;';;'5;2;;;;;'552E;;'EL;E;"';
sorcr 1T Returned comnect 1p ;

The byte pointer to the source process name is a byte pointer to the
ASCII string which 1is the name of your process. Note that this string
must end on a null byte and may be a maximum of 16 bytes long, not
including the null byte.

The byte pointer to destination process name is the byte pointer to the
name of the process you wish to connect to. This name must also end in a
null byte and may be a maximum of 16 bytes, not including the null byte.

The node number is the unique identifier of the system you wish to
connect to.

Note that the specified strings may be any valid ASCII byte size (I.E.
any byte size equal to or larger than 7 bits). These strings may also be
generic byte pointers (-1,,STRNG). If generic byte pointers are given, 7
bit ASCII terminated by a null byte is assumed.

The "SYSAP field for CID" is the right justified value to be placed into
the SYSAP field of the connect ID created for the connection. These bits
are generally used for connection management by the user program.

ification Page 76

The pointer to connection data is the address of a block of data SQ%&
words 1long to be sent as connection data. Note that the monitor will
copy SQ%CDT words of data from the users address space. Hence a full
block SO%CDT words long should be allocated for the data.

- Error codes -
SCSNEP,SCSBTS,SCSISB,SCSNSN,SCSENB,SCSIAB,SCSIBP,SCSNBA

SCA Functional specification Page 77
Writing a JSYS SYSAP

6.2.2 Listen (.SSLIS)

Listen (.SSLIS)

This function listens for a connection. Note that the JSYS does not
block. You will be notified of a connect to your listen via a PSI
interrupt.

There are a number of options that may be used when doing a 1listen
for a connection. You may 1listen for a particular process from any
system by making the node number -1. You may listen for any process from
a particular system by making the byte pointer to the destination process
name -1. If the node number and the byte pointer to the destination
process name are both -1, then any connect request that is not for a
particular process name will match your 1listen, Naturally you may
specify both a node number and a process name and then only that process
from the named system will be allowed to connect to your listen.

. SQLEN ! Processed words ! Length of block i
sosew 1 Byte pointer to source process name
.SQDEN 1 Byte pointer to destination process name
[SOSYS 1| Node # of estination ! SYSAP field for cip 1
sover 1T Returned comnect 10 i

The fields defined here are identical to those used by the connect
call., The only difference is the absence of some of the fields used in
the connect call.

- Error codes -
SCSNBA,SCSNEP,SCSBTS,SCSISB, SCSNSN, SCSENB

nal specification Page 78

6.2.3 Accept (.SSACC)

Accept a connection (.SSACC)

This function tells a remote process that you are granting his
request for a connection.

.SQLEN ! Processed words ! Length of block !
| e e e o e e = e e e e 1
.SQCID ! Connect 1D !
b o e e e e e e e e e 1
.SQCDA !} Pointer to connection data !

The pointer to connection data is the address of the block of
connection data to be sent to the remote system. The monitor will copy
SO%CDT words of data from the users address space as data. Note that
this data will be sent directly over the CI and hence the low order four
bits are not sent.

- Brror codes -
SCSNEP,SCSBTS,SCSIID,SCSCWS,SCSNBA

SCA Functional specification Page 79
Writing a JSYS SYSAP

6.2.4 Reject (.SSREJ)

Reject a connection (.SSREJ)

This function code tells a remote process that you are not allowing
a connection to your process.

The argument block for this function has this format:

.SQLEN ! Processed words ! Length of block !
e ——— e |
.SQCID ! Connect ID !
e i g S S S SR |
.SQREJ ! Rejection reason !

! EE 2SI i i i 2 2 2 T 2 - 5 3 2 4 F 3 F 3 F I FF > & ¥ ¥ 25 F Y !

The rejection reason is a code, invented by the SYSAP, (outside the
revserved range /TBD/ codes) which indicates why the connection was
rejected,.

- BError codes -
SCSBTS,SCSIID,SCSNBA,SCSCWS,SCSNEP

onal specification Page 80
JSYS SYSAP

6.2.5 Disconnect (.SSDIS)

Disconnect (.SSDIS)

This function closes a connection. Note that the connection must be
open to use disconnect. The disconnect function code requires the
following arguments:

|==:============ !
. .

.SQLEN ! Processed words ! Length of block !
| o o e e e e e — = I
.SQCID ! Connect 1ID !
| o o e o e e e = e o S e e e]
.SQDIS ! Disconnect reason !

The disconnect reason is a SYSAP invented code (outside the reserved
range /TBD/) which indicates why the connection was disconnected.

- Error codes -
SCSNEP,SCSBTS,SCSIID,SCSCWS, SCSNBA

SCA Functional specification Page 81
Writing a JSYS SYSAP

6.2.6 Send a DG {.SSSDG)

Send a datagram (.SSSDG)

This function code sends a datagram.

The following arguments are required:

.SQLEN ! Processed words ! Length of block !
| e e e e e e = —— ——— —————— — ————— — —_———— |
.SQCID ! Connect ID !
e e !
.SQAPT ! Address of datagram text !

.SQLPT ! Len of message,high density (words), industry (bytes) !

.SQFLG ! ' Flags ! OPS I

OPS is the path selection field. OPS allows the JSYS user to select
the path over which the packet is to be sent. The f{ollowing setting are

allowed for OPS:
0 --> Automatic path selection
1 --> Use path A
2 --> Use path B
If automatic path selection is chosen, the port hardware selects the
path to use.

The currently defined flags are:

SC%MOD ~--> Packet transmission mode: 0
1

industry compatable
high density

*** Restrictions **%*

1. If the datagram is to be sent in industry compatable mode, the text
must be packed in left justified, word aligned, eight bit bytes.

2. The datagram text may not be 1longer than 152 (decimal) words/608
bytes 1long. The byte count is for industry compatable packets and
the word count for high density packets.

- Error codes -
SCSNEP,SCSBTS,SCSIID,SCSDCB,SCSIAA,SCSNBA,SCSCWS, SCAMTL

Ca Functional specification Page 82
riting a JSYS SYSAP

s wn

6.2.7 Queue a DG buffer (.SSQRD)

Queue a buffer for datagram reception (.SSQRD)

This function code queues buffers for datagram reception.

Note that in each buffer the first word is the address of the next
buffer. The last buffer has zero as the address of the next buffer.
This function requires these arguments:

.SQLEN ! Processed words ! Length of block !
1 e e e e e e e = e e e e e e e !
.SQCID ! Connect 1ID !
| e ———— 1

.SQOAFB i Address of first buffer on buffer chain i

*%% Restrictions ***

1. Datagram buffers must be 152 words in length.

- Error codes -
SCSNEP,SCSIID,SCSNBA,SCSBTS

SCA Functional specification Page 83
Writing a JSYS SYSAP

6.2.8 Send message (.SSSMG)

Send a message (.SSSMG)

This function code sends a message to a remote node.

e |
lcz==z=zz=zcxzrxsxzc=T=S=S=SS=CSCCSECSSSCSTSSSSTSSSSCSTESSS=S====== !

.SQLEN ! Processed words ! Length of block !
L ki e TR |
.SQCID ! Connect 1D !
e e e —————— |
. SQAPT ! Address of message text !

.SQLPT ! Len of message,high density (words), industry (bytes)i

.SQFLG E Flags { OPS i

OPS is the path selection field. OPS allows the JSYS user to select
the path over which the packet is to be sent. The following setting are
allowed for OPS:

0 --> Automatic path selection
1 --> Use path A
2 --> Use path B

If automatic path selection is chosen, the port hardware selects the
path to use,

The flags definitions may be found in the section for .SSSDG.

*** Restrictions **x*

1. If this is an industry compatable message then the text must be
packed in left justified 8 bit bytes.

2. Message text may not be longer than 38 36 bit words (152 bytes).

- Error codes -
SCSI1ID,SCSNEP,SCSNBA,SCSBTS,SCSNSH,SCSDCB, SCSI1AA

ification Page 84

6.2.9 Queue message receive buffers (.SSQRM)

Queue message receive buffers (.SSQRM)

This function code queues buffers to receive messages. Note

that

the buffer size is fixed at 38, 36 bit words. It requires the following

arguments:

.SQLEN ! Processed words ! Length of block !
R ettt it b !
.SQCID ! Connect ID !
I ittt et !
.SQAFB ! Address of buffer chain to queue !

- Error codes -
SCSNEP,SCSIID,SCSNBA,SCSBTS

SCA Functional specification Page 85
Writing a JSYS SYSAP

6.2.10 Cancel DG receive (.SSCRD)

Cancel datagram receive (.SSCRD)

This function code removes a buffer queued for datagram reception.
The address that you specify must be the address of a buffer that was
previously queued for receiving datagrams (with .SSQRD). If this address
is not found by the monitor when it goes to take the buffer out of its
queue, the JSYS fails with an illegal instruction trap. This function
requires these arguments:

.SQLEN ! Processed words ! Length of block !
g |
.SQCID ! Connect 1D !
s e e e e e e - !
.SQADB ! Address of buffer to dequeue !

- Brror codes -
SCSNSC,SCSNEP,SCSBTS, SCSNSB, SCSNEB

SCa Func

s - L2 1

0 ification Page 86
Writing

6.2.11 Cancel receive message (.SSCRM)

Cancel receive message (.SSCRM)

The function dequeues a buffer that was queued for message
reception. The buffer address that is specified must be of a buffer that
you asked to be gqueued for message reception (with .SSQRM). If the
monitor does not find the address specified in the argument block amongst
the buffers you queued, the JSYS will fail. This function requires the
following arguments:

.SQLEN ! Processed words ! Length of block !
| o e o e e = e = ———— = e o e o |
.SQCID ! Connect ID !
| o e e o e e e | - e e e !
.SQADB ! Address of buffer to dequeue !

- Error codes -
SCSNSC,SCSNEP,SCSBTS,SCSNSB, SCSNEB

SCA Functional specification Page 87
Writing a JSYS SYSAP

6.2.12 Connect state poll (.SSCSP)

Connect state poll (.SSCSP)

This fuhction returns information about the state of a connection.
The argument block to this function includes space for the returned data.
The following is the format or the argument block:

eSS ==================!
H H

.SQLEN ! Processed words ! Length of block !
| o e e e e e e e - = = ————— - ——— o ——— — ——— !
.SQCID ! Connect ID !
o e e e e e e - — | cmmm———.
.SQCST ! Connection state ! A
| e e | 1
.SQDCI ! Destination connect ID ! !
et ittt ! Returr
. SQOBDN ! Byte pointer to destination process name ! date
g ! 1
.SQOSBI ! Node number of destination ! !
g S 1 1
.SQREA ! Source disconnect reasons ! Dest disconnect reasons | v

Note that the byte pointer to destination process name must be
provided by the caller and may be either a real byte pointer or minus one
in the left half and the base address of the string in the right half.
1f the generic byte pointer is used the monitor assumes the string is 7
bit ASCII terminted with a null byte, or the 16th chatacter, whichever
comes first.

- Error codes -
SCSNEP,SCSBTS,SCSIID

s n
[a WD

ting a JSYS SYSAP

6.2.13 Return local node number (.SSGLN)

Return local node number (.SSGLN)

A Functional specification Page 88
i

This function returns the local node number. If the machine does
not have a KLIPA, then an 1illegal instruction 1is generated. The

following is the argument block format:
.SQLEN ! Processed words ! Length of block i

.SQLNN ! Local CI node number !

- Error codes -
SCSBTS , SCSNKP

Returned ¢

SCA Functional specification Page 89
Writing a JSYS SYSAP
6.2.14 Return configuration data (.SSRCD)

Return configuration data (.SSRCD)

This function returns data about another system. Given the node
number the monitor will return data about that system. The data is
returned in the block pointed to by Tl which looks like this:

.SQLEN ! Processed words ! Length of block !
e e e e e |
.SQCID ! Optional connect ID !
e e e e e e e e !
.SQOSB ! Optional node number !
D T S
.SQVCS ! Virtual circuit state ! Port number ! A
T ey U i |
.SQSAD \ \ 1
\ System address (6 8-bit bytes, word aligned) \ !
\ \ !
] e e e ! '
. SQMDD ! Maximum destination datagram size ! !
b e e s ! !
.SOMDM ! Maximum destination message size ! Retur
b e e e e - ! dat
.SQODST ! Destination software type ! !
| o e e e e e e e | |
.SQDSV ! Destination software version ! !
e e e e e e | |
.SQDSE ! Destination software edit level ! !
e ! !
.SQDHT ! Destination hardware type ! !
T ! !
.SQDHV ! Destination hardware version ! !
R e Tt e sy L SN ! 1
.SQPCW \ Port characteristics bytes \ !
\ 6, 8 bit bytes, word aligned in leftmost 32 bits \ !
e e e e e ! !
.SQLPN ! Local port number ! v

The connect ID and node number are optional in that one or the other
must be specified, but not both. If the connect ID field is non-zero
then the node number is ignored and the information returned is for the
system implied by the connect ID. If the connect ID field is zero then
the node number is used. Note that this allows the use of node zero.

If the local port number is not available, -1 will be returned to
the user in offset .SQLPN.

- Error codes -
SCSNEP,SCSBTS,SCSIID,SCSISB

Page 90

SCA Functional specification

Writing a J

SYS SYSAP

6.2.15 Return buffer sizes (.SSRBS)

This
to see,
buffers.
.SQLEN !
.SQLMG !

.SQLDG !

Return buffer sizes (.SSRBS)

function returns the sizes of the various buffers SCA

Page 91

expects

In particular it returns the size of message and datagram

It requires the following arguments:

Process words ! Block length

data

CA Functional specification Page 92
riting a JSYS SYSAP

6.2.16 Return status information (.SSSTS)

Return status information (.SSSTS)

This function returns status information about a connection. It 1is
intended as a fast form of the .SSCSP function code which returns
detailed information about a connection. This function requires the
following arguments:

.SQLEN ! Processed words ! Length of block !
| e o e e e !

.SQCID ! Connect ID !
ettt !

+SQFST ! Flags ! Connect state] ===
e e b ! Return

.SQSBR ! Reserved ! Node # of remote ! data

The flags which appear in the flags field are:

1. Message available (SQ%MGA)- There is at least one message available
for this connection.

2. Datagram available (SQ%DGA) - There 1is at least one datagram
available for this connection.

3. Named buffer transfer complete (SQ%DMA) - At least one named buffer
transfer has completed since the last time the SCS% JSYS was
performed with this function code. The bit is cleared in the monitor
data base when this function code is performed.

- Error codes -
SCSBTS,SCSNEP,SCSIID

SCA Functional specification Page 93
Writing a JSYS SYSAP

6.2.17 Get a gueue entry

There are four functions for removing things from queues. One each
for messages, datagrams, named buffer transfer competions, and "all other
events". In each case the monitor will issure a PSI for the appropriate
fork when when of these queues goes non-empty. The monitor will not

issue a PSI for each entry. It is the responsibility of the SYSAP to
empty the gueue once it has seen the PSI.

6.2.17.1 Receive a message (.SSRMG)

Receive a message (.SSRMG)

This function code returns message text for either the calling fork

or the specified connection. If the connect ID field in the argument
block is minus one, then the first message found for the calling fork is
returned. If the connect ID is anything but minus one (-1), the monitor

will use this as a connect ID and return the first message found for that
connection. Note that if there 1is no message available an illegal
instruction is generated. The following argument block is required for
this function code.

.SQLEN ! Processed words ! Length of block i

R it ko g L L S S S U] e
.SQCID ! "Connect ID or -1 ! A

| e e gy Sy S S U, | !
.SQARB ! Address of returned buffer ! !

s ! Returned
.SQDFL ! Flags ! Node # of remote ! !

l-————————— e ————_—————— - ! !
«SQLRP ! Length of returned packet ! \4

The address of returned buffer is the address at which the monitor
has placed your data., This address is one of the addresses previously
specifed by a .SSQORM call. If no .SSQRM <call was done, then this
function code will fail with an illegal instruction trap. If the address
is not writable you will also get an illegal instruction trap.

The flag definitions may be found in the section on SC.SDG.

The length of the returned packet 1is in bytes for an industry
compatible mode message, and words for a high density mode packet. It is
always the length of the packet text, and does not 1include the SCA
headers.

- Error codes -
SCSNEP,SCSBTS,SCSIID,SCSQIE, SCSNUB

ification Page 94

6.2.17.2 Receive a datagram (.SSRDG)

Receive a datagram (.SSRDG)

This function code returns datagram text for either the calling fork or
the specified connection. If the connect ID field in the argument block
is minus one, then the first datagram found for the calling fork is
returned. If the connect ID is anything but minus one (-1), the monitor
will use this as a connect ID and return the first datagram found for
that connection. This is the argument block for this function code:

.SQLEN ! Processed words ! Length of block i
1 m o e e = = o - = T e S Sm = em e e | mmmmmm =
.SQCID ! Connect ID or -1 ! A
IRttt e ! !
.SQARB ! Address of returned buffer ! !
o m e e — oSS S S S e msommee s ! Returned ¢
.SQDFL ! Flags ! Node # of remote ! !
Rttt ! !
.SQLRP ! Length of returned packet ! v

The address of returned data is one of the addresses provided to the
monitor on a .SSORD call. If no .SSQRD was done or if the address is not
writable, the JSYS will fail with an illegal instruction trap. If there
are no datagrams available, an illegal instruction is generated.

The flags are returned by the monitor and currently only 1indicate
the data packing mode.

The length of the returned packet is in words if this 1is a high
density datagram, and bytes if an industry compatible datagram.

- Error codes -
SCSNEP,SCSBTS,SCSIID,SCSQIE, SCSNDQ,SCSNBA

SCA Functional specification Page 95
Writing a JSYS SYSAP
6.2.17.3 Get entry from data gueue (.SSGDE)

Get entry from data queue (.SSGDE)

This function code returns the first entry from the data request
complete queue. The argument block follows:

CmmEErE—EEmEEmEEsSssmSS—Sssss—=——s—s=ss=——==ss=============
|=====z==z==z==z=z==z=z=========================s=============|

.SQLEN ! Words processed ! Length of block !
e i !
.SQCID ! Connect ID or -1 !
| o e e o o e e !
.SOBID ! Name of buffer whos transfer completed !

! 4 - 3 1 2 X 1t 1t it ittt 2t b R AR - R R R R R R R F &g !

The buffer name indicates which transfer has completed.

- BError codes -
SCSNEP,SCSIID,SCSBTS,SCSIAB

'A Functional specification Page 96
iting a JSYS SYSAP

6.2.17.4 Get an entry off the event queue (.SSEVT)

Get an entry off the event queue (.SSEVT)

This function code retrieves the first entry off the event queue.
This queue 1is a record of events that the JSYS user is to be notified
about. The user receives an interrupt on the first event. After this
events will be added to the end of the gueue with no further interrupts
generated. It is the responsibility of the user to empty this queue upon
receiving an event interrupt.

1f a connect ID 1is specified, then the next event for that
connection will be returned. If however the connect ID field is minus
one, then the next event for the fork is returned.

.SQLEN ! Words processed ! Length of block !
| o o e e e e e - - o o ———_——— = e - o e - e | e =
.SQCID ! Connect ID or -1 ! A
b oo o e e o o e e e e o = = - = = = — | t
.SQESB ! Reserved ! Node # of remote ! !
ettt ! Returni
LSQEVT ! Returned event code ! data
| o o e e e i ————— = = - - - = —— e e o - - —— 1 .
.SODTA \ \ .
\ Returned event data \ !
\ \ v
g==============:=;;;=;==============================:==:! ————————
The event code describes what event has occured. It 1s a small

integer ranging from =zero to a maximum value. Hence it can easily be
used as an index into an event dispatch table. The connect ID tells you
what connection this event is relevant to. The event data is a block of
data returned for each event type.

The general format of the event code descriptions is as follows:
.SExxx —-- Text

The .SExxx is the event code and text desribes the code

.SODTA -- Text

This second line describes the format of the data provided for this event
code, starting at word .SQDTA of the argument block.

.SEVCC -- Virtual circuit closure

.SQDTA -- Contains the pertinant node number

.SECTL -- Connect to listen

.SODTA -- Four words of initial connection data from the remote.

.SECRA -- Connection was accepted

SCA Functional specification Page 97
Writing a JSYS SYSAP

. SQDTA

. SECRR
.SQDTA

. SEMSC
. SQDTA

.SELCL
.SQODTA

. SENWO
.SODTA

.SENCO
. SQDTA

.SEOSD
. SQDTA

.SERID
.SQDTA

.SEPBC
. SODTA

.SECIA
.SODTA

. SEMAX

is

Four words of initial connection data from the remote.

Connection was rejected
The reason code

Message/datagram send complete
address of sent buffer

Little credit left
number of credits required to get you back over threshold

Node went offline
Node number of system which went offline

Node came online
Node number of system which came online

OK to send data
not used here

Remote initiated disconnect
not used here

Port broke connection
not used here

Credit is available
unsed here

defined to be equal to the largest event code possible.

- Error codes -

SCSNEP,SCSIID,SCSBTS,SCSIAB

ification Page 98

6.2.18 Named buffer overview

Named buffer overview

To send data to a remote system, the SYSAP must first declare memory
to be part of a buffer. A buffer is made of segments. Each segment is a
contiguous set of 36 bit words that DO NOT CROSS A PAGE BOUNDARY and are
not more than one page long. Once the buffer has been established, the
SYSAP must give the remote system the buffer name obtained. N.B. SCA
does not give the remote the buffer name, it is the responsibility of the
SYSAP to transmit this information.

SCA Functional specification Page 99
Writing a JSYS SYSAP

6.2.19 Map a buffer (.SSMAaP)
Map a buffer (.SSMAP)

This function code associates a portion of memory with an SCA buffer
name to be wused in named buffer transfers. This function takes the

following arguments:

.SQLEN ! Processed words ! Length of block i
Lt e e gy St g S S g S !
.SQXFL ! Flags !
R R T ey Uy U U S !
.SOBNA ! Returned buffer name ! (Returne
B e R bt ¥ e S g g iy Sy U |
/ /
/ Buffer length and address pairs /
/ /
| [}

=2t s 2 2 2 2+ 2 St - F + 2 - 3 5 F X S F F ¥ 3 FF ¥ F ¥ 5

The current set of flags are as follows:

l. SQ%DMD -- Named buffer mode,. This two bit field 1indicates the
desired setting of the mode bits for the buffer. The following
settings are defined:

SQ%DIC -- Industry compatable mode
SQ%DCD -- Core dump

SQ%DHD -- High density

Any other value is illegal.

Buffer length and address pairs have the following format:

.SQOBLN ! Length of memory block !

The length word in this block has one of two possible values based
on the setting of the mode bits. If the buffer mode is core dump or
industry compatable the length is in 8 bit bytes. If the mode 1is high

density, the length is in 36 bit words.
The address for data transfer is the address where you expect data

from a data transfer to be placed by the CI port microcode.

The buffer name is the descriptor by which all other references to
this memory is made.

SCA Functicnal specification Page
Writing a JSYS SYSAP
**% Restrictions **%*
1. No buffer segment may cross a page boundary. Hence the

possible buffer segment is one page.

- Error codes -
SCSNEP, SCSBTS,SCSNBA,SCSIAB

100

longest

SCA Functional specification Page 101
Writing a JSYS SYSAP
6.2.20 Unmap a buffer (.SSUMP)

Unmap a buffer (.SSUMP)

This function will remove from the monitor data base (unmap) a
memory block assigned for named buffer transfers. It requires these
arguments:

. SONAM i Buffer name !
' ===============================:======================= !

- Error codes -
SCSNEP, SCSBTS

SCA Functiconal
Writing a JSYS

6.2.21 Send

S as s Lot

data (.SSSND)

Send data (.SSSND)

This function transfers

responsibility

remote host.

Page 102

It 1is the

of a higher level protocol to arrange the setup of buffer
names. The call requires the following arguments:

!===‘

.SQLEN !
.SQCID !
.SQSNM !
.SQORNM !

.SQOFS !

Processed words

- Error codes -

SCSNEP,SCSBTS,SCSIID

Length of block

SCA Functional specification Page 103
Writing a JSYS SYSAP
6.2.22 Reguest data (.SSREQ)

Request data (.SSREQ)

This function tells SCA and the port to get data for the given
buffer name. The following arguments are required:

I L U S S |
SESCS= =SS SES S S S S S NS S SSsSSs=SE=s=====z=====c======x)

.SQLEN ! Processed words ! Length of block !
secro 1 Connect ID for which transfer is to be dome i
soswa T buiter mame of send butfer :
sorww 1 Buffer name of receive buifer |
sqors 1 xmit offset 1 Receive offset i

The "xmit offset" is the number of bytes/words the sending port
should skip before sending data. This count is in bytes for industry
compatable/core dump mode sends and words for high density sends
The "receive offset"” is the number of bytes/words that the receiver

L

should skip before writing data from the wire. The count is in bytes for
industry comapatable/core dump and words for high density mode.

- Error codes -
SCSNEP,SCSIID,SCSBTS

ification Page 104

6.2.23 Maintainance data send (.SSMDS)

Maintainance data read (.SSMDS)

This function requests a maintainance data send. It works much the
way named buffer transfers do in that the .SSMAP call must be done first
to set up a buffer. The buffer name returned by .SSMAP is used in this
call. Note that the remote must provide the buffer name it has allocated
for sending the data as well.

.SQLEN ! Processed words ! Length of block !
sowss i butier mame of send butter |
sow 1 Butfer name of receive buffer !
sawor 1 xmit offset ! Receive offset i
somr i omamed U Target node number !

The xmit offset and receive offset are identical to those wused for
named buffer transfers.

SCA Functional specification Page 105
Writing a JSYS SYSAP

6.2.24 Maintainace data read (.SSMDR)

Maintainance data read (.SSMDR)

This function requests a maintainance data read. It works much the
way named buffer transfers do in that the .SSMAP call must be done first
to set up a buffer. The buffer name returned by .SSMAP is used 1in this
call. Note that the remote must provide the buffer name it has allocated
for sending the data as well.

.SQLEN ! Processed words ! Length of block i
sawss 1 butfer mame of sema puifer T |
sousr | hutter mame of receive butter 5
sowor 1 Emit offset | Receive offset i
sowor 1 Gnused 1 Target node number i

£ r .-

The xmit offse
named buffer transf

Hh
O
e

o

r

SCA Functional specification
Writing a JSYS SYSAP

6.2.25 Start a remote system (.SSSRS)

Start a remote system (.SSSRS)

This function will start a remote node. A start
specified or the default can be used.

Page 106

address may be

.SQLEN ! Words processed ! Length of block !
sosm Node number of target node i
R T Flags i
soast L Address for starting remote system i

The currently defined flags are:

1. SQ%DSA -- Use the default start address. If this
default address is used to start the target node.

bit is 1it, the
If the bit is off,

the the address specified in word .SQAST of the argument block.

SCA Functional specification
Writing a JSYS SYSAP

Page 107

6.2.26 Reset a remote system (.SSRRS)

Reset a

This function resets

remote system (.SSRRS)

a remote node.

.SQLEN ! Words processed ! Length of block !
e e e ettt !
.SONTN ! Node number of target node !
IR e it !
.SQRFL ! Flags !

The currently defined flags are:

SQ%FRB -- Force reset.
done 1if the 1local

If this bit is not set, the reset is

only

host was the last host to send a reset to the

target node. If the bit is on, the reset is done no matter who

reset the target node.

last

A Functional specification
iting a JSYS SYSAP
6.2.27 Set port counters (.SSSPC)

Page 108

Set port counters (.SSSPC)

This function sets the
arguments are required:

port's

performance

counters., The following

====================='
.

.SQLEN ! Number of words processed ! Length of block !
| e e e - ———————— e ——————— — —— — — —— —— — — — — |
.SQNOD ! Node number !
| e e e e i — — — —— ————— — —————— — — — — — !
.SQPCW ! Port counter control word !
e e R !
.SQCPC ! Number of times the counters have been set/cleared ! (Returne«
l===!
Node number: Node number or 377 for all nodes
Port counter control word, bits as follows:
BO I1f on, count ACKs received on Path A,
Bl If on, clear the counter.
B2 1f on, count NAKs received on Path A.
B3 I1f on, clear the counter.
B4 If on, count NO_RSPs received on Path A.
BS If on, clear the counter.
B6 I1f on, count ACKs received on Path B.
B7 If on, clear the counter,
B8 I1f on, count NAKs received on Path B.
BS I1f on, clear the counter.
Bl10 If on, count NO_RSPs received on Path B.
Bll 1If on, clear the counter.
B12 The count of discarded datagrams because
of no DGFree Queue entries.
B13 1If on, clear the counter.
Bl4 Count the packets transmitted to the
designated port.
B15 1f on, clear the counter.
B16 Count the npackets received from the
designated port.
Bl17 1If on, clear the counter.
The count of times the counters have been set/cleared reflects the

number of

not including the current one.

included in the returned count.

SCS% JSYS that have been

I1.E.

done to set/clear the port counters,

the <call

just

executed 1is not

SCA Functional specification Page 109
Writing a JSYS SYSAP

6.2.28 Read port counters (.SSRPC)

Read port counter (.SSRPC)

This function reads the maintenance counters out of the port
hardware. The following argument block is used:

.SQLEN ! Processed words ! Length of block !
e e e e —-———— | -
SOMCV ! Microcode version ! A
[ettt ! i
.SQPAA ! Path A ACK count ! !
i R ittt il e 1 !
.SQPAN ! Path A NAK count ! !
e e ——————— — ———— - !]
SQPAR ! Path A no response count ! !
| e e e e e ———— e [f
SQPBA ! Path B ACK count ! !
e ittt ! Retur
SQPBN ! Path B NAK count ! dat
| e e e e e i 1
.SQPBR ! Path B no response count ! !
e e e ittt ! !
.SONDD ! Number of dropped datagrams ! !
| e e, ————— ! 1
.SONPT ! Number of packets transmitted ! !
e, —————— ! |
.SONPR ! Number of packets received ! !
e . f |
.SQPOR ! Designated port ! !
g ! 1
.SQNCC ! Number of times counters have been set/cleared ! v

Only the function code is passed to the monitor. The rest of this
block is information returned by the monitor.

- Error codes -
SCSNEP,SCSBTS, SCSNBA

ification Page 110

6.2.29 Add interrupt channels (.SSAIC)

Add interrupt channels (.SSAIC)

All notifications from SCA happen on five PSI channels. These
channels are set for: datagram available, message available, named
buffer transfer complete, events, and configuration change. The events
are detailed in the section on the .SSEVT funtion code. The only
function performed by the .SSAIC code, is to inform SCA of which channels
you wish to use for the variuos interrupts. It does not activate any of
the channels, enable the PSI system, or set LEVTAB and CHNTAB for you.

The argument block used to associate events with PSI channels has
this format:

.SQLEN ! Words processed ! Length of block !
| om o e e e = e = e e e |
\ \
\ Up to four channel descriptor words \
\ \
'===!

The interrupt type code is a small integer that indicates an event type.
The channel number field allows you to enable and disable interrupts for
the given event type. If the channel number is -1 then interrupts are
disabled. 1f it 1is an integer between zero and thirty five, then that
channel will interrupt on the given event type. The next box 1is an
example of what the maximum size block would look like.

.SQLEN ! Words processed ! Length of block !
T T stoea 0 Channel number 1
T s 0 Channel number Z
T T eome 5
C T s 0 Channel number 1
T sters 0 Channel number :

In this example interrupts for message available, datagram available,
all other events are being enabled. Interrupts on DMA transfer complete
are being disabled. Note that only the first word of this block need

SCA Functional specification Page 111
Writing a JSYS SYSAP

appear in this position. The channel descriptor words may appear in any
order. There must be at least one but not more than four descriptor
words in a block.

To set up the PSI system for use with SCA, the following JSY¥S's must be
done:

1. SIR%/XSIR%
2. AIC%
3. EIR%

4, SCS% with the .SSAIC function code

- Error codes -
SCSBTS, SCSNEP, SCSNSP .

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111

