TOPS-20
PASCAL Language Manual

AA-L315A-TM

September 1983

This document describes the elements of the PASCAL
language supported by TOPS-20 PASCAL.

OPERATING SYSTEM: TOPS-20 V5.1 (2040,2060)
TOPS-20 V4.1 (2020)

SOFTWARE: PASCAL V1.0
LINK V5.1
RMS V1.2

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, lllinois 60195 Sunnyvale, California 94086
Telephone:(312)640-5612 Telephone:(408)734—-4915

digital equipment corporation e marlboro. massachusetts

First Printing, September 1983

© Digital Equipment Corporation 1983. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

020080

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/:OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing future
documentation.

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION

OVERVIEW OF PASCAL . . . + .« «
Data Types
Structure of a PASCAL Program
Definitions and Declarations .
Executable Statements
Subprograms« ¢ ¢ o .
Compilation Units

LEXICAL ELEMENTS . . ¢ ¢ « « « .
Character Set « « +
Reserved Words . . . « +« « « .
Identifiers

Predeclared Identifiers . .
User Identifiers
Special Symbols

DELIMITERS « . e e e e

DOCUMENTING YOUR PROGRAM e e e e

THE $INCLUDE DIRECTIVE

. e o o & e s s e
e o s e e
YU W N -

o« e
.« .

W wWwwN -
. .
N~

[T S I I S SRy S R PR S = =]
.

T WD NN NNDN
.

CHAPTER

N

PHLSCAL DATA TYPES

2.1 DECLARING DATA TYPES
2.2 SCALAR TYPES . . . « ¢ ¢« + ¢ o« &
2.2.1 Predefined Data Types
2.2.1.1 INTEGER Data Type . « . . .
2.2.1.2 REAL Data Type . « « « « .« .
2.2.1.3 BOOLEAN Data Type
2.2.1.4 CHAR Data Type . . « « o o«
2.2.2 User-Defined Scalar Data Types
2.2.2.1 Enumerated Data Types . . .
2.2.2.2 Subrange Data Types
2.2.2.3 The ORD Function
2.3 STRUCTURED DATA TYPES
2.3.1 Array TYPES =« « o o o o o o
2.3.1.1 Multidimensional Arrays . .
2.3.1.2 String Variables
2.3.1.3 Initializing and Assigning Values to
2.3.1.4 Array Type Compatibility . .
2.3.1.5 Array Examples
2.3.2 Record TYPES .+ v ¢ & o o o o« o«
2.3.2.1 Records with variants . . .
2.3.2.2 Assigning Values to Records
2.3.2.3 Record Type Compatibility .
2.3.2.4 Record Examples
2.3.3 Set TYpPES ¢ ¢ ¢ o o o o o o
2.3.4 File TYPES ¢ v « o « o o o« o &
2.3.4.1 Internal and External Files
2.3.4.2 Text Files . . . + ¢« o o + &
2.4 POINTER TYPES « o o e
2.5 PACKED STRUCTURED TYPES « o e
2.6 TYPE COMPATIBILITY « « =

| MM = = e e
QWO ITINANUUVTUTE D DNN N

—
=

NN

FNNNONNDNNNDNONDNNDNDN
L L L L T L LU
NHWOOOIANU D BWNNN -

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

3

w

.

.
N~

.
(98]

* s e s e .
« e
w N =

(G O U, N, UG, RGN RV IO R Ga RS]
. .
NS DD WWWWN

.

o)

LY
.

. .
.
.

oW N~

. NN
. . .

N
. .

.
O JAUVT D WWWWWWN KR
.

.
.
.

.
N ==
.
w N

¢ s e o o
.

[o) I Ie) Rie) We) W) o) Jie) W) Bie) lie) lo) Bie) ie) Be) Nie) Bife) o) NG
.

EXPRESSTIONS

OPERATORS e e e e e e e e e e e e o o o o
Arithmetic Expressions
Relational Expressions « « « o« «
Logical ExXpressions . . . « « « « « o« « .
Set Expressions o o o e e .
Precedence of Operators

SCOPE OF IDENTIFIERS . . . « . + « o + « «

PROGRAM HEADING AND DECLARATION SECTION

THE PROGRAM HEADING « ¢« « « « .
LABEL DECLARATIONS « ¢« o « ¢ « «
CONSTANT DEFINITIONS . . . « + ¢ « ¢ o o « .
TYPE DEFINITIONS . .« o o .« o +« ¢ o o o o o &
VARIABLE DECLARATIONS « . « . . .
VALUE DECLARATIONS ¢« o ¢ « o o o « &

PASCAL STATEMENTS

THE COMPOUND STATEMENT . . ¢ ¢« ¢ « o « o o =
THE ASSIGNMENT STATEMENT . . . ¢ ¢ o o « « =
CONDITIONAL STATEMENTS . ¢ « ¢ o o o o o o o«
The IF-THEN Statement« . . .« .
The IF-THEN-ELSE Statement
The CASE Statement+ ¢« ¢ ¢« ¢ o « « &
REPETITIVE STATEMENTS e e e e e e e e s e .
The FOR Statement« « « .« .
The REPEAT Statement + « « « « .
The WHILE Statement+ ¢« « « « « .
THE WITH STATEMENT . . ¢ ¢ ¢ ¢ ¢ ¢ o « o« o =
THE GOTO STATEMENT . . . ¢ ¢ ¢ & o« o« o o« o =
THE PROCEDURE CALL . . . « ¢ & o o o o « o =

PROCEDURES AND FUNCTIONS

PREDECLARED SUBPROGRAMS e e s s e o o o o
Predeclared Procedures . . .« « o« o « « o+
Input/Output Procedures « . .« .
Dynamic Allocation Procedures

The MARK and RELEASE Procedures e e e .
Miscellaneous Predeclared Procedures . .
Predeclared Functions ¢« ¢ « « « «
FORMAT OF A SUBPROGRAM+ « ¢ « + o &
PARAMETERS ¢ ¢ v ¢ &« ¢ ¢ o o o o« o o o » o =

Formal Parameters . . . ¢ ¢ « « o o w o =
Value Parameters . . ¢ ¢« v o o o o o o @
Variable Parameters . ¢« « ¢ o o o o o
Formal Procedure and Function Parameters

Conformant ArraysS . .« « « o o o o « u o =

DECLARING A PROCEDURE « . . .
DECLARING A FUNCTION « « ¢« « 4+ « .
FORWARD DECLARATIONS « « ¢« & « =+ « .
EXTERNAL SUBPROGRAMS « « + . .«
MODULES FOR SEPARATE COMPILATION, . .

INPUT AND OUTPUT

FILE CHARACTERISTICS ¢« « & o « & o

iv

.
(IO RGNV, O, NG, O, RO, I |
!

File Names . . ¢ v v ¢ o o o o o o o « o o o &

Logical NamesS . ¢ ¢ v ¢ v o o o o o « o o o &

File Organization « « « ¢ ¢ « o « o &

Record ACCESS &« « &« v o o o o o o o o o o o
RECORD FORMATS . . . e e e e e e e e e e e e

Fixed-Length Records e e e s e e e e e e e

Variable-Length Records e e e e e e e e e e .
THE CLOSE PROCEDURE . . . & + ¢ v ¢ o « o o« o &
THE FIND PROCEDURE . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« o o o &
THE GET PROCEDURE + ¢ ¢ ¢ o o &« o o o =
THE LINELTMIT PROCEDURE e s s e e s e e o o o o
THE OPEN PROCEDURE

.
.

« e e
e o o
W N~

.
N =

NN NN NNNNN G NNNNNN
.
NN NN NN WNNNDN =

7.1 File History -- NEW, OLD, READONLY, or UNKNOWN
7.2 Record Length e e e s e [
.7.3 Record Access Mode —-- %EQUENTIAL or DTRECT . .
.7.4 Record Type -- FIXED or VARIABLE
.7.5 Carriage Control -- LIST, CARRIAGE, or
NOCARRIAGE . .+ ¢ & ¢ o o o o o o o s o o o o =
7.7.6 Examples .« + ¢« o ¢ o o ¢ 4 o o e e e e e o e e
7.8 THE PAGE PROCEDURE . . .+ + &« v o o o o o« o o o o
7.9 THE PUT PROCEDURE . . . ¢ ¢ o o o o o « o o o =
7.10 THE READ PROCEDURE« ¢ + ¢« ¢ o ¢ + o o o =«
7.11 THE READLN PROCEDURE . . ¢ + ¢« ¢ ¢ ¢ o « o o o =
7.12 THE RESET PROCEDURE e s s s s e s s e & o e o
7.13 THE REWRITE PROCEDURE « ¢« ¢ « ¢ « « .
7.14 THE WRITE PROCEDURE . . ¢ & ¢« ¢ ¢ o o « o o o =
7.15 THE WRITELN PROCEDURE« ¢« ¢ « « « .« .
7.16 TERMINAL I/0 ¢ ©¢ v o« o o o o o o o o o o« o o s o
CHAPTER 8 USING PASCAL ON TOPS-20

PROGRAM DEVELOPMENT PROCESS . .« ¢« « ¢ v o o o o
FILE SPECIFICATIONS AND DEFAULTS « « .« =
CREATING A PROGRAM . . . ¢ & o ¢ o o o o o o o &
COMPILING A PROGRAM . . ¢ ¢ ¢ o o o o « o o o =
The PASCAL Command . « « ¢ o « o o o « o o o =
PASCAL Compiler Commands . . « « « « « o o o &
PASCAL Compiler Switches
Specifying Switches in the Source Code
Specifying Output Files . « « ¢« & o « & o« « .
Compiler Listing Format+ +« + ¢ « « o« =

. . * » e e o o o o
* e * o o o

.1 Source-Code Listing . . . « + & & « & & .« .
LA4.6.2 Machine-Code Listing ¢« ¢« ¢« « « « o &
.4.6.3 Cross-Reference Listing +« ¢« « « .«

LOADING A PROGRAM . . ¢ v ¢ o o o o o « o o o =

The LOAD Command . « + « + o o o o o o« o o o =
EXECUTING A PROGRAM e o o e o e s s o e e o o @
EXAMPLES . . ¢« ¢ ¢ o o o o o o o o o o o s o o o

.
[

.

Q0 Q0 00 GO C0 OO 00 00 CO CO CO GO €0 €O OO CO0 QO
L]
LAV DD DSBS DNDNDWN
.
ANV D™ WN

CHAPTER PASDDT: THE PASCAL-20 DEBUGGER

RUNNING PASDDT . . . ¢ o o o o o s s s o o o o =

USING SYMBOLIC VALUES . . ¢ o ¢ ¢ o « o« o o o =

SCOPE . . . e o & o s s s+ e s s e s e e s o .

PASDDT COMMANDS e s e e s s e e o e e e o o s =
ASSIGN . .« &« ¢ ¢ ¢ o o o =«
BREAK . . . ¢ ¢ ¢ ¢ o « &
CLEAR . .« ¢ o ¢ o o o o &
DISPLAY
EXIT « ¢ « « & + &
HELP ¢« ¢« « « &
PROCEED

o o o o o

WOWOWWYWWOWWWOWOOOO O
:&bbb‘b:bnbnbwl\)b—'
SJoaunbwn e
o« o e e
. .
e e o o o o

.

.

.

.

s

.

.

.

.

| I O L I I O

I NN NN N N9
—H OO OWWJIO R b dWwWwWwNN

(I
T |

NN

[L
H= O D WN -

I 000000 ™™

|

[O A AU
CQOWVWIINPDdWWN -

OCWOWOWOYWOVWOWYWOVO

(Ve iXe]
|
-

[

APPENDIX A

APPENDIX B

APPENDIX C

Cc.1

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

« e D T S
T DWW WwWwN

[BESNANINANINANARANA]

INDEX

FIGURE

| T

WO 33D wNNN
|
HERENHFRFWN N

REMOVE ¢ ¢ ¢« o ¢« ¢ o o o « &
SET & v v ¢« ¢ ¢ ¢ ¢« o« o« o o o o o o
SHOW . ¢ v v ¢ ¢ v ¢« o ¢ o o o o o o &
TRACE . . ¢ ¢ o o o ¢ ¢ ¢« o o o o« o o«

PASCAL MESSAGES

ASCII CHARACTER SET

SYNTAX SUMMARY

BACKUS-NAUR FORM « . « « .« &

. . . . 9-11
e e o . 9-11
¢« « + o 9-14

SUMMARY OF PASCAL-20 EXTENSIONS TO PROPOSED ISO

STANDARD

ISO COMPLIANCE

IMPLEMENTATION-DEFINED FEATURES .
TMPLEMENTATION-DEPENDENT FEATURES . ., .
ERROR HANDLING e e e e e e e
EXCEPTIONS AND REGTRTCTIONS « e e e e e

DIFFERENCES BETWEEN PASCAL-20 AND VAX-11

PROCEDURE AND FUNCTION CALLING SEQUENCES

RUN-TIME STACK« + + & ¢ ¢ « o « .
MECHANICS OF A PROCEDURE CALL
PARAMETER PASSING + « « o & + .
Value Parameter Passed By Value . . .
Value Parameter Passed By Address . .
Reference (VAR) Parameter
Procedure Or Function Parameter . . .
Conformant Array Parameter
PARAMETER ACCESSING EXAMPLE e e e e e
CONFORMANT ARRAY EXAMPLE

FIGURES

Structure of a PASCAL Program
$TNCLUDE File Levels + « o o «
Two-Dimensional Array Two D
Three-Dimensional Array Chess3D
Storing Components in an Array
Scope of Identifiers
PASCAL Data Types . . e e e e e e e
File Position After GET e e e e e e e
File Position after RESET
Compiler Listing Format
Scope e e e s+ e s e e e e e e e e o o

vi

PASCAL

OOC)G)CI)GPC)OOC)
QDB D WWWN =

Index-1

1
I £

v e e . . 29
« « « . 2-10
e e e . 2-11

. e e . . 7-6
e« o« . T7-19
e « . 8-12

1 Status of Stack After PUSHT +« « ¢« « . « G-1
2 Stack Frame . . ¢ v 4t ¢ ¢ 4 o o o o o o o o o« « o G=2
-3 External Procedure Declaration G=-5
4 Conformant Array Parameter « . « « « + « o+ G=6

TABLES

TABLE 1-1 Feserved Words . . .+ v ¢ & v ¢ o ¢ o o« o o« o« o « + 1-5
1-2 Predeclared Identifiers « « . 1=7
1-3 Special Symbols + 4 ¢ + 4 + 4 4 4 e o . . 1-8
3-1 Arithmetic Operators « ¢« + ¢« +« o & & « o+ 3=2
3-2 Eesult Types for Arithmetic Expressions 3-3
3-3 Relational Operators . . « . +v ¢ o o o o & « « . . 3-4
3-4 Logical Operators . « . & & « « o o o« o & « o « o 3-5
3-5 Set Operators . . ¢« ¢ & o« o o o o o o o o o o « « 3-5
3-6 Frecedence of Operators « « ¢ « ¢« + « « .« 3-6
6-1 Fredeclared Procedures ¢ v « ¢« &« « « o« « o« b=2
6-2 Fredeclared Functions 6-13
6-3 Library Routines . . . e

7-1 Default Values for TOPS- 20 External File
Specifications . . . e e e e e e e e e e e e e . 179
- Summary of File Attrlbutes e e e e e e e e o. T-12

Default Values for Field W1dth e e e e e e e e . T1-22
Carriage-Control Characters ¢« ¢« ¢ « « . 71-26
File Specification Defaults 8-3
PASCAL Ccmpiler Commands . . . +« « ¢« « « « « « + » 8-5
PASCAL Compiler Switches « + « . . 8=7
Source Switches + + ¢+ ¢ ¢ < + .« « . 8-10
Run-time Errors . . « o « « o o o o o « o« « o« « « A-1
1/0 Errors e e e e s e e e e e e e . . A-2
The ASCII Character Set e+ e s s e o s o e o o o B-1
BNF MetaSymbols O |

F-2

F-4

1

Additional Language Elements e e e e e e e e e e .
Additional Predeclared Functions

MmO WY 0000
|
NN BWN B WN

vii

PREFACE

MANUAL OBJECTIVES

This manual describes the PASCAL language and the PASCAL debugger,
PASDDT, as they are implemented on the TOPS-20 operating system. This
document is designed primarily for reference; it is not a tutorial
document.

INTENDED AUDTIENCE

This manual is intended for readers who know the PASCAL language. The
reader need not have a detailed understanding of the TOPS-20 operating
system, but some familiarity with either is helpful. For information
about the TOPS-20 operating system, refer to the documents listed
below under "Associated Documents." For introductory information about
the wuse of the PASCAL language, refer to the TOPS-20 PASCAL Primer,
Order Number AA-L314A-TM.

STRUCTURE OF THIS DOCUMENT
This manual contains the following chapters and appendixes:

e Chapter 1 provides an introduction to the use of PASCAL and
describes the format of a PASCAL program.

e Chapter 2 introduces basic concepts 1including constants,
variables, data types, expressions, and scope.

e Chapter 3 describes the components of an expression.

e Chapter 4 describes the program heading and declaration
section.

e Chapter 5 describes the statements that perform the actions
of the program.

e Chapter 6 explains the use of functions and procedures, and
summarizes the predeclared functions and procedures supplied
with the PASCAL-20 language.

e Chapter 7 provides detailed information on input and output
procedures.

e Chapter 8 describes the compiling, loading, and executing of
PASCAL programs on the TOPS-20 operating system.

e Chapter 9 describes the PASCAL-20 debugger, PASDDT.

ix

Appendix A lists the various messages you can receive.
Appendix B lists the ASCII character set.

Appendix C presents the PASCAL-20 language in the Backus-Naur
form and includes syntax diagrams.

Appendix D summarizes the extensions 1incorporated 1in the
PASCAL-20 language.

Appendix E describes how PASCAL-20 complies with the standard
proposed by the International Standardization Organization
(IS0).

Appendix F summarizes the differences between TOPS-20 PASCAL
and VAX-11 PASCAL.

Appendix G describes the calling sequences and conventions
used by PASCAL for user-defined procedures and functions.

ASSOCIATED DOCUMENTS

Associated manuals are:

TOPS-20 PASCAL Primer

TOPS-20 User's Guide

TOPS-20 Commands Reference Manual

LINK Reference Manual

EDIT Reference Manual

TV Editor Manual

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions:

Convention

RET

<CTRL/x>

UPPERCASE LETTERS

lowercase letters

Simple Procedure

Contrasting Colors

Meaning

A horizontal ellipsis means that the
preceding item can be repeated one or more
times.

A vertical ellipsis means that not all of the
statements in a figure or example are shown.

Double brackets in statement and declaration
format descriptions enclose optional items,
for example:

WRITE ([OUTPUT,] print-list)

Square brackets show where the syntax
requires square brackets. This notation is
used with arrays, for example:

ARRAY[1..5] OF INTEGER

Braces enclose 1lists from which you must
choose one item, for example:

TO }
DOWNTO

This symbol indicates where vyou press the
RETURN key.

The notation <CTRL/x> indicates that you must
press the key labeled CTRL while
simultaneously pressing another key (x), for
example, <CTRL/Z>.

Uppercase letters in a command line indicate
information that you must enter as shown.

Lowercase letters in a command line indicate
variable information you supply.

In programming examples, all identifiers,
(names created by the programmer), are
printed in lowercase letters with initial
capitals.

Orange - where examples contain both user
input and computer output, the characters you
type are in orange; the characters printed
on the terminal are in black.

CHAPTER 1

INTRODUCTION

PASCAL-20 is an extended implementation of level 1 of the standard
proposed for the PASCAL language by the International Standardization
Organization (IS0O). This manual describes the use of PASCAL under the
TOPS-20 operating system. PASCAL-20 includes all the language
elements as defined in the PASCAL User Manual and Report by Jensen and
Wirth, as well as the following extensions:

e Exponentiation operator

e Hexadecimal, octal, and binary integers

e Double-precision real data type

e Dollar sign ($) and underline (_) characters in identifiers

e External procedure and function declarations

e CARD, CLOCK, EXPO, SNGL, and UNDEFINED functions

e REM operator

e OTHERWISE clause in the CASE statement

® OPEN and CLOSE procedures for file access

e FIND procedure for direct access to sequential files

e Optional carriage control for output files

e DATE, TIME, HALT, and LINELIMIT procedures

e Variable initialization

e Separate compilation

® S$INCLUDE directive for alternate input files during
compilation

e Support for calling externally declared FORTRAN subroutines,
and for declaration of PASCAL subroutines that can be called
by FORTRAN

Refer to Appendix E for more information on ISO compliance.

This chapter presents an overview of the important concepts in PASCAL
and illustrates the structure of a PASCAL program. It also describes
PASCAL's lexical elements -- the character set, reserved words,
identifiers, and special symbols. The final sections explain how to
document your program and how to include existing files.

1-1

INTRODUCTION

1.1 OVERVIEW OF PASCAL

A PASCAL program performs operations on data items known as constants,
variables, and function designators. A constant is a quantity with an
unchanging value. A constant to which you give a name 1is <called a
symbolic constant. A variable is a quantity whose value can change
while the program executes, A function designator causes the
execution of a group of statements that 1is associated with an
identifier and returns a value. The function type 1is determined by
the type of the value it returns.

1.1.1 Data Types

Every PASCAL data item is associated with a data type. A data type,
which is wusually indicated by a type identifier, determines both the
range of values a data item can assume and the operations that can be
performed wupon it. In addition, the type implicitly indicates how
much storage space is required for all possible wvalues of the data
item.

PASCAL provides identifiers for many predefined types. Thus, a
program's operations can involve integers, real numbers, Boolean and
character data, arrays, records, sets, and pointers to dynamic
variables. PASCAL also allows you to create your own types by
defining an identifier of your choice to represent a range of values.

The type of a constant is the type of its corresponding value. You
establish wvariable and function types when vyou declare them. 1In
general, they cannot change. Although variables and functions can
change in wvalue any number of times, all the values they assume must
be within the range established by their type. A wvariable does not
assume a value wuntil the program assigns it one. A function is
assigned a value during its execution.

PASCAL associates types not only with data items, but also with
expressions. An expression 1is the computation of a value resulting
from a combination of variables, constants, function designators, and
operators. In PASCAL, vyou can form expressions using arithmetic,
relational, logical, string, and set operators. Arithmetic
expressions produce integer or real number values. Relational,
logical, string, and most set expressions vyield Boolean results.
Other set expressions form the union, intersection, and differences of
two sets.

1.1.2 Structure of a PASCAL Program

A PASCAL program consists of a heading and a block. The heading
specifies the name of the program and the names of any external files
the program may use. The block 1is divided 1into two ©parts: the
declaration section, which <contains data declarations; and the
executable section, which contains executable statements. Figure 1-1
points out each part of a sample PASCAL program.

INTRODUCTION

PROGRAM Calculator (INFUT»
TYFE Yes.No =
VAR Subtotaly
Ecuation
UOrerator

+

Arswer ¢

(Yesy No)3¥
Orerand @
ROOLEANS
CHAR §
Yes..NoF

I3
.
I3
.

FROCEDURE Inmstructionss
BEGIN

WRITELN
WRITELN
WRITELN
WRITELN
WRITELN
WRITELN
WRITELN
WRITELN
ENNI #

Declaration , .
Section (“This
(‘divides
(’to
'ty =

Crpromst,

Procedure
Biock

(" the

BEGIN

WRITE Do wou need
READLN (Answer)s
If Answer = Yes

REFEAT

1= FALSE
ta 0%

@y’
otal)

Eauation
Suttotal
WRITE

0

WHILE (NOT
EBEGIN

WRITE

Frodram

the Orerands:
Xy

CCuntil gou enter
Orerator?

(“the srogram or
Ckenigd of srocedure Instructionsx)

instructions®

Fauation)

OUTFUT) é

REAL §

subtractsy multirliesy and’)}
Ernter & number in resronse
and enter a8n orerator
resronse to the Oreratord
running subtotal)
(=) in resronse to’)s
then exit from’)s

of calculations.’)y

adidsy
nmbers.
Fromst
Ay oor o= i
The rrodram keers 3
an eeual sign
Fromst. You can
hedin 8 new selb

real

)
R
R

Taure wes or rno. D73

THEN Thnstructionss

’

)3

y

no

(’Dreratort’ D

Executable
Section

END.

Figure 1-1:

UNTIL Answer =

READLN (Orerator)s

IF (Orerator = ‘=) THEN
BEGIN

Eeuation TRUE #
WRITELN (‘The answer is
EXND

EL.SE

[
HES

BREGIN

WRITE (/Orerand?’);

READLN (Orerand) i

CASE Orerator OF

‘+7 t Subtotael
‘-’ 3 Bubtotal
‘%7 1 Subtotal
/7 + Subtotal

END$

WRITELN (‘The subtotal is

END
END§

WRITE (’Ang more

READLN (Answer)i
No ¢

Structure of a PASCAL Program

Subtotal
Subtotal
Subtotal
Subtotal

*e oo e e

ioH

“ySubtotalisi2)

+
X
/

Orerands
Orerands?

Orerands
Orerand

“»Subtotalisi2)

calculations? Ture ves or no.’)s

MR-S-3150-83

INTRODUCTION

Procedure and function declarations have the same structure as
programs. Note, in Figure 1-1, the heading and block of the procedure
instructions. This manual uses the term subprogram to denote a
procedure or function.

1.1.3 Definitions and Declarations

PASCAL requires you to define every constant and user-created type and
to declare every label, variable, procedure, and function used in your
program. The declaration section of the program contains LABEL,
CONST, TYPE, VAR, VALUE, PROCEDURE, and FUNCTION sections, in which
you define and declare all the data your program uses. All of these
except LABEL introduce identifiers and indicate what they represent.
LABEL declares numeric labels that correspond to executable statements
accessed by the GOTO statement. PASCAL allows you to assign initial
values to variables you declare in a VAR section. An initialized
variable assumes the given value when program execution begins.

1.1.4 Executable Statements

The executable section of a PASCAL program contains the statements
that specify the program's actions. The executable section is
delimited by the reserved words BEGIN and END. Between BEGIN and END
are conditional and repetitive statements, statements that assign
values to variables and functions, and statements that control program
execution.

1.1.5 Subprograms

PASCAL provides several ways for you to group together definitions,
declarations, and executable statements. One way is to group them
into procedures and functions, generically called subprograms. Both
kinds of subprograms are groups of statements asscociated with an
identifier. Procedures are usually written to perform a series of
actions, while functions are written to compute a value.

Subprograms constitute a convenient way to isolate the individual
tasks that the main program 1is to accomplish. Subprograms do not
exist independently of the program; they are <called either by an
executable statement known as a procedure call or by a function
designator appearing within an expression. PASCAL supplies many
predeclared subprograms that perform commonly used operations,
including input and output.

A subprogram consists of a heading and a block. The heading provides
the name of the subprogram, usually a list of formal parameters that
declare the input data for the program, and, in the case of functions,
the type of the result. The subprogram block consists of an optional
declaration section and an executable section. When the declaration
section 1is present, it declares data that is local to the routine
(that is, data that is unavailable outside the subprogram).

PASCAL is a block-structured language in that it allows you to nest
subprogram blocks not only within the main program, but also within
other subprograms. Each subprogram can make its own local definitions
and declarations and can even redeclare an identifier that has been
declared in an outer block. A subprogram declared at an inner level
has access to the declarations and definitions made in all blocks that
enclose it.

1-4

INTRODUCTION

1.1.6 Compilation Units

A program is sometimes called a compilation wunit in this manual
because it <can be compiled as a single unit (unlike a subprogram,
which cannot be compiled without the context of a program). A program
consists of a heading and a block, just as a subprogram does. The
heading consists of the name of the program and possibly a 1list of
identifiers to indicate any external files that the program uses. The
declaration section of the program block declares data that |is
available at all program levels, including all nested subprograms.

1.2 LEXICAL ELEMENTS

A PASCAL program is composed entirely of 1lexical elements. These
elements can be individual symbols, such as arithmetic operators; or
they can be words that have special meaning to PASCAL. The basic unit
of any 1lexical element is a character, which must be a member of the
ASCII character set, as described in Section 1.2.1. Some characters
are special symbols that PASCAL uses as statement delimiters,
operators, and elements of the language syntax. Special symbols are
listed in Section 1.2.4.

The words that PASCAL uses are combinations of alphabetic characters
and occasionally a dollar sign ($), an underscore (_), or a percent
sign (%). PASCAL reserves some words for the names of executable
statements, operations, and some of the predefined data types.
Reserved words are listed in Section 1.2.2. Other words in a PASCAL
program are called 1identifiers. Predefined 1identifiers represent
routines and data types provided by PASCAL. Other identifiers can be
created by vyou to name programs, constants, variables, and any other
necessary program segment that is not already named. Section 1.2.3
explains the use of both kinds of identifiers.

1.2.1 Character Set

PASCAL wuses the full American Standard Code for Information
Interchange (ASCII) character set (see Appendix B). The ASCII
character set contains 128 characters in the following categories:

e The uppercase and lowercase letters A through Z and a through
z

e The numbers 0 through 9

e Special characters, such as ampersand (&), question mark (?),
and equal sign (=)

e Nonprinting characters, such as space, tab, 1line feed,
carriage return, and bell

INTRODUCTION

The PASCAL compiler does not distinguish between uppercase and
lowercase characters, except in character and string constants and the
values of character and string variables. For example, the reserved
word PROGRAM has the same meaning when written as any of the
following:

FROGRAM

FRogrAm

FrOHgramn
The constants below, however, represent different characters:

/t\/

/BI
The following two constants represent different strings:

CRREAD AND ROSES”

’

‘Rread and Roses

1.2.2 Reserved Words

PASCAL reserves the words in Table 1-1 as names for statements, data

types, and operators. This manual shows these words in uppercase
characters.

Table 1-1: Reserved Words

AND END NIL SET
ARRAY FILE NOT THEN
BEGIN FOR OF TO
CASE FUNCTION OR TYPE
CONST GOTO PACKED UNTIL
DIV IF PROCEDURE VAR
DO IN PROGRAM WHILE
DOWNTO LABEL RECORD WITH
ELSE MOD REPEAT

You can use reserved words in your program only in the contexts in
which PASCAL defines them. You cannot redefine a reserved word for
use as an identifier.

In PASCAL, the following words are considered semireserved words:

MODULE
OTHERWISE
REM

VALUE

Like the reserved words, PASCAL also predefines these semireserved
words. However, unlike reserved words, you can redefine these words
for your own purposes. If you redefine them, they can no longer be

used for their original purpose within the scope of the block in which
they are redefined.)

INTRODUCTION

1.2.3 1Identifiers

PASCAL uses the term identifier to mean the name of a program, module,
constant, type, variable, procedure, or function. An identifier is a
sequence of characters that can include letters, digits, dollar signs
($), and underline symbols (), with the following restrictions:

e An identifier can begin with any character other than a
digit.

e An identifier must be wunique in its first 31 <characters
within the block in which it is declared.

e An identifier must not contain any blanks.

PASCAL places no restrictions on the length of identifiers, but scans
only the first 31 characters for uniqueness; the rest are ignored.
The following are examples of valid and invalid identifiers:

valid Invalid

For2n8 4awhile (starts with a digit)
Max Words Up&to (contains the ampersand)
Upto

SCREMBX

1.2.3.1 Predeclared Identifiers - PASCAL predeclares some identifiers
as names of functions, procedures, types, values, and files. These
predeclared 1identifiers are 1listed in Table 1-2 and appear in
uppercase characters throughout this manual.

Table 1-2: Predeclared Identifiers

ABS EXP OPEN SINGLE
ARCTAN EXPO ORD SNGL
BOOLEAN FALSE OUTPUT SOR
CARD FIND PACK SQRT
CHAR GET PAGE succ
CHR HALT PRED TEXT
CLOCK INPUT PUT TIME
CLOSE INTEGER READ TRUE
COoSs LINELIMIT READLN TRUNC
DATE LN REAL UNDEFINED
DISPOSE MAXINT RESET UNPACK
DOUBLE NEW REWRITE WRITE
EOF oDD ROUND WRITELN
EOLN SIN

You can redefine a predeclared identifier to denote some other item.
Doing so, however, means that you can no longer use the identifier for
its usual purpose within the scope of the block in which it |is
redefined.

For example, the predeclared 1identifier READ denotes the READ
procedure, which performs input operations. If you use the word READ
to denote something else, such as a variable, you cannot use the READ
procedure. Because you could lose access to useful language features,
you should avoid redefining predeclared identifiers.

INTRODUCTION

The directives FORTRAN, FORWARD, EXTERN, and EXTERNAL are also
predeclared by the PASCAL compiler. However, they retain their
meanings as directives even if you redefine them as identifiers.

1.2.3.2 User 1Identifiers - User identifiers denote the names of
programs, modules, constants, variables, procedures, functions, and
user-defined types. User 1identifiers name all significant data
structures, values, and actions that are not represented by a reserved
word, predeclared identifier, or special symbol.

1.2.4 Special Symbols
Special symbols represent arithmetic, relational, and set operators,

delimiters, and other syntax elements. PASCAL includes the special
symbols listed in Table 1-3.

Table 1-3: Special Symbols

Name Symbol Name Symbol
Plus sign + Period

Equal = Multiplication *

Not equal <> Less than <
Exponentiation * % Colon

Subrange . Comma ’
operator

Parentneses () Square brackets 1 (.)
Comment (* *y { } Division /
Minus sign - Greater than >

Less than or <= Semicolon :
equal

Assignment 1= Pointer e
operator

Greater than or >=
equal

1.3 DELIMITERS

PASCAL uses two special symbols as delimiters: the semicolon (;) and
the period (.). The semicolon separates one PASCAL statement from the
next. One line of your program can contain one or many statements,
but the statements must be separated by semicolons. The period marks
the end of the PASCAL program,

INTRODUCTTION

The semicolon and the period are the only characters that PASCAL
recognizes as delimiters. Spaces, tabs, and carriage-return/line-feed
combinations are separators and cannct appear within an identifier, a
number, or a special symbol. You must use at least one separator
between consecutive identifiers, reserved words, and numbers; but you
can use more thar one if you want. You could, for instance, put each
element of a PASCAL program on a separate line:

FROGERAM

Sim

(

QUTFUT)

H

BEGIN

WRITELN ¢

This is 8 simple Frogram.
)

ENTI,

’

You could also put the entire program on one line:

FROGRAM Sim(OUTFUT)SREGIN WRITELNC(/This is &8 simrle mrogram.’)END,
As long as each complete statement is separated from the next by a
semicolon, PASCAL interprets your input correctly. However, including
spaces, tabs, and carriage-return/line-feed combinations make vyour

program easier to read and understand. For readability, you could
write it as follows:

FROGRAM Sim (OUTFUT) §
REGIN
WRITELNC This is 8 simrle rrodram.’)
ENI .
The reserved words BEGIN and END are also used as delimiters. BEGIN
indicates the start of the executable section or a compound statement,
and need not be followed by a semicolon.
END indicates the end of one of the following:
e A record definition
e An executable section
e A compound statement
e A CASE statement (see Section 5.3.3)
Although PASCAL does not require one, you can use a semicolon
immediately before END. A semicolon in this position results in an

empty statement between the semicolon and the reserved word END. The
empty statement implies no action.

1.4 DOCUMENTING YOUR PROGRAM

In addition to statements and delimiters, you can put comments in your
PASCAL program. Comments are simply words or phrases that describe
what happens in the program.

You can enclose comments in braces { }, as follows:

{ This is a8 comment. X

INTRODUCTION

Also, you can start a comment with the left-parenthesis/asterisk
character pair, and end it with the asterisk/right-parenthesis
character pair, as follows:

(kK This is &lso 8 comment X)
You can also mix the type of comment characters you use. For example,
you can use a left brace with an asterisk/right-parenthesis character
pair:

{ This is another comment X)

You can place a comment anywhere a space is legal. Unlike statements,
comments are not delimited by semicolons.

A comment can contain any ASCII character because PASCAL ignores the
text of the comment.

NOTE

To turn off Dbraces { } as recognized
comment characters, use the /NATIONAL
switch. See Section 8.4.3 for more
information on this switch.

1.5 THE $INCLUDE DIRECTIVE

The $INCLUDE directive allows you to access statements from a PASCAL
file, called the 1included file, during compilation of the current
file. The contents of the included file are inserted in the ©place
where the PASCAL compiler finds the directive. This directive can
appear anywhere in the PASCAL program.

Format

{/LIST } !
$INCLUDE 'file specification /NOLIST

where:

'file specification’ is the name of the file to be included.
The apostrophes are required.

/LIST indicates that the included file 1is to
be printed in the listing. This is the
default.

/NOLIST indicates the included file is not to be

printed in the listing.

When the compiler finds the $INCLUDE directive, it stops reading from
the current file and begins reading from the included file. When the
compiler reaches the end of the included file, it resumes compilation
immediately following the $INCLUDE directive.

This directive can appear wherever a comment can appear. An 1included
file <can contain any PASCAL declarations or statements. However, the
declarations in an included file, when combined with the other
declarations in the compilation, must follow the required order for
declarations.

INTRODUCTION

In the following example, the $INCLUDE directive specifies the file
CONDEF.PAS, which contains constant declarations.

Main PASCAL Program
FROGRAM Student_ Courses (INFUT» OQUTFUTs SCHEXD
CONST ZINCLUDE “CONDEF FPAS

TYFE Schedules = RECORD
Year @ (Fre Soy Jdrye Sr)s
Mame t FACKED ARRAY [1..301 OF CHARS
Farents ! PACKED ARRAY L1..401 OF CHAR;S
Collede ! (Endimeeringy Architecturey Agriculture)
ENI#

®

External File
CONDEF.PAS

MAX..CLASS = 3003
N.PROFS = 1407
FROSH = 30003%

The $INCLUDE directive instructs the compiler to insert the contents
of the file CONDEF.PAS after the reserved word CONST in the main
program. The main program Student Courses 1is compiled as if it
contained the following:

FROGRAM Student.Courses (INFUTy OUTFUTs SCHEID

CONST Mam.Class = 300+
N_.Frofs = 1405
Frosh = 30007+

TYFE Schedules = RECORD
Yaar: (Fry Sor Jry Sr)s
Name! PACKED ARRAY [1..301 OF CHAR?$
Farents § FACKED' ARRAY L[1.,.401 OF CHAR;#
Collede ! (Endineerinds Architectures Adriculture)
END ¢

*

You can use the $INCLUDE directive in another included file; however,
recursive $%INCLUDE directives are not allowed. 1If, for example, the
file OUT.PAS contains an $INCLUDE directive for the file IN.PAS, then
IN.PAS must not contain an $INCLUDE directive for the file OUT.PAS.

INTRODUCTION

An included file at the outermost level of a program is said to be
included at the first level. A file included by a first-level
included file is at the second level, and so on. There is no limit to
the number of 1included files you can nest in a program. Figure 1-2
illustrates some levels of included files.

Main Program A.PAS

Frogram F3 CONST ZINCLUDE “R.FASY
TYFE ZINCLUDE “AFASY VAR ZINCLUDE “C.FAGY

(X level 1 X) (x Roth Level 2 X)

C.PAS D.PAS

VAR ZINCLUDE “D.FPASY FUNCTION ZINCLUDE “E.FAS‘

(x Level 3%
FROCEDURE ZINCLUDE ‘F.FAS”7
(X Both Level 4 X

F.PAS G.PAS

FUNCTITON ZINCLULE “G.FAS’

Figure 1-2: $INCLUDE File Levels

CHAPTER 2

PASCAL DATA TYPES

This chapter describes PASCAL data types and how to define and declare
them in the TYPE and VAR sections of a PASCAL program. This chapter
also provides general information abcut using each data type.

PASCAL uses three categories of data types:
1. Scalar
2. Structured

3. Pointer

Scalar data types represent ordered groups of values. The scalar data
types, which are described in Section 2.2, consist of predefined and
user-defined data types. Predefined data types include integers, real
numbers, and characters. User-defined data types include a range of
explicitly defined values and a subrange of another data type. Scalar
data types are building blocks for the structured data types.

Structured data types are collections of data types organized 1in
specific ways. Structured data types include arrays, record files,
and sets. These are described in Section 2.3.

Pointer data types provide access to dynamic data structures. They
are described in Section 2.4.

2.1 DECLARING DATA TYPES

PASCAL provides two methods of declaring variables of a particular
type. You can define the type in the TYPE section, and then use a
declaration in the VAR section to declare one or more variables of the
newly defined type. The general format is:

TYPE type identifier = type definition;
VAR variable name : type identifier;

Altgrga?ively, you can declare a variable by specifying the type
definition in the VAR section and omitting the type identifier and

type definition from the TYPE section. The general format for this
method is the following:

VAR variable name : type definition;

gf a data type is used only once within the program, it is simpler to
efine it in the VAR section,

PASCAL DATA TYPES

If a data type is used more than once in the program, it 1is more
efficient to define the data type within the TYPE section. This
creates a structure that can be accessed by more than one identifier.
For example, 1if a program uses an array three times, you can define
the array type in the TYPE section, and assign three identifiers to
that array type in the VAR section.

2.2 SCALAR TYPES

Scalar data types consist of ordered sets of values with the <concept

of predecessor and successor. For example, the scalar data type
INTEGER represents whole numbers that follow in a predefined sequence:
5 1is 1less than 300. Scalar data types encompass two subclasses:

predefined and user—-defined. These are described in the following
sections.

2.2.1 Predefined Data Types
PASCAL provides the following predefined scalar data types:

1. INTEGER

2. REAL
3. SINGLE
4. DOUBLE

5. BOOLEAN
6. CHAR

The predefined types SINGLE and DOUBLE provide explicit
single-precision and double-precision real numbers. Throughout this
manual, the term REAL refers to REAL, SINGLE, and DOUBLE types.

The following sections describe each predefined data type.

2.2.1.1 INTEGER Data Type - The type INTEGER denotes positive and
negative whole number values ranging from (-2**35) to (+2**35)-1, or
~-34359738368 to +34359738367. The largest possible value of the
INTEGER data type 1is known by the predefined constant identifier
MAXINT.

You can indicate a decimal 1integer <constant with decimal digits
combined with plus and minus signs. The following are valid decimal
constants in PASCAL:

17
~333
0

+1
89324

A minus sign (-) must precede a negative integer value. A plus sign
(+) may precede a positive integer, but the sign is not required. No
commas or decimal points are allowed.

PASCAL DATA TYPES

In addition to decimal notation, PASCAL allows you to specify integer
constants in binary, octal, and hexadecimal notation. You can use
constants written in these notations anywhere that decimal integer
constants are permitted.

To specify an integer constant 1in binary, octal, or hexadecimal
notation, place a percent sign (%) and a letter in front of a number
enclosed in apostrophes. The appropriate letters, which can be either
uppercase or lowercase, are B for binary notation, 0 for octal
notation, and X for hexadecimal notation. An optional plus or minus
sign <can precede the percent sign to indicate a positive or negative
value., Note that regardless of which notation you use, the value can
not exceed MAXINT, for example:

~AR71110017
A7 10000011
F AR DR
~Hh0O 473
+AX 7 H3AL

- DEC

2.2.1.2 REAL Data Type - The reserved words REAL, SINGLE, and DOUBLE
denote the real number types. In PASCAL, a real number can range from
+-0.14%10%*-38 through +-3.4*10**38, with a typical precision of eight

decimal digits. REAL and SINGLE are synonymous; both have
single-precision real number values. The type DOUBLE allows you to
declare double-precision real variables. You can assign real and

integer values tc a variable of type REAL, SINGLE, or DOUBLE. If vyou
assign an integer value to a variable of type REAL, PASCAL converts
the integer to a real number.

In a PASCAL program, you can write real numbers in two ways; £fixed on
floating point. With fixed point notation, you write the number with
the decimal point exactly where it appears in the value. The first
way is the following form:

2+4
893.2497
=001
8.0
-23.18
0.0

Note that, in this form, at least one digit must appear on each side
of the decimal peoint. That is, a zero must always precede the decimal
point of a number between 1 and -1, and a zero must follow the decimal
point of a whole number.

Some numbers, however, are too large or too small to write
conveniently in the above format. PASCAL provides scientific (also
known as exponential) notation as a second way of writing real
numbers. In scientific notation, you write the number as a positive
or negative value followed by an exponent, for example:

2.3E2
-0.07E4
10.0E~1
-201E+3
~-2+14159E0

PASCAL DATA TYPES

The letter E after the value means that the value is to be multiplied
by a power of 10. Note that you can use an uppercase or lowercase
letter. The integer following the E gives the power of 10; the
integer can be positive or negative. Using scientific notation, you
can write the real number 237.0 in any of the following ways:

2370

23782
0.000237E4+6
2QIVOE-1

0. 0000000237E10

This format is often called floating-point format because the implied
position of the decimal point "floats" depending on the exponent
following the E. At least one digit must appear on each side of the
decimal point, if the decimal point is present.

PASCAL provides single and double-precision representation for real
numbers. Single precision typically provides eight significant
digits, depending on the magnitude of the number. Double precision
extends the number of significant digits to 18.

To indicate a double-precision wvalue, you must use floating-point
notation, replacing the letter E with an uppercase or lowercase D, for
example:

ouo

4.3715286650-3
~812d2

403

The integer following the D is an exponent, as 1in single-precision
floating-point numbers. All the above values have approximately 18
significant digits.

2.2.1.3 BOOLEAN Data Type - BOOLEAN data types can have the value
TRUE or FALSE. Boolean values are the result of testing expressions
for truth or validity. The result of a relational expression (for
example, A < B) is a Boolean value.

PASCAL defines Boolean data types as predefined identifiers and orders
them so that FALSE is less than TRUE. For assignment purposes, the
type BOOLEAN is compatible with those variables and expressions that
yield a BOOLEAN result.

2.2.1.4 CHAR Data Type - The value of data type CHAR 1is a single
value from the ASCII character set, as listed in Appendix B. To
specify a character value, enclose an ASCII character in apostrophes.
The apostrophe character itself must be typed twice within
apostrophes. FEach of the following is a valid character value:

IA/
Izl

Iol

’ ’
.

t 2 27

rp

PASCAL DATA TYPES

You can use strings such as 'HELLO' and '#****' byt you must represent
them as packed arrays of characters (see Section 2,3.1.2). When you
use the ORD function in an expression of type CHAR, the result is the
ordinal wvalue in the ASCII character set of the character value. See
Section 2.2.2.3 for an explanation of the ORD function.

2.2.2 User-Defined Scalar Data Types

User-defined scalar data types are those that you define, as opposed
to those data types that PASCAL predefines for you. PASCAL allows you
to define two kinds of scalar data types: enumerated and subrange.
An enumerated type consists of an ordered list of identifiers. The
subrange type is a continuous range of values of a defined scalar
type, called a base type. The following sections describe these two
user—-defined types.

2.2.2.1 Enumerated Data Types - An enumerated data type is an ordered
list of identifiers. To define an enumerated type, list in some order
all the identifiers denoting its values. With PASCAL, you can define
an enumerated data type in two ways:
Format 1

TYPE identifier = (identifier [,identifier, ...])
Format 2

VAR identifier : (identifier [,identifier, ...])
where:

identifier is the name of the enumerated type.
For example:

TYFE Beveradge = (Milkr Watery Colas» Eeer)s

This TYPE section defines the type Beverage and lists all the values
that Beverage can assume within a program.

PASCAL assigns an order to the items in your list from left to right.
Thus, the values of an enumerated type follow a left-to-right order,
so that the last value in the list is greater than the first, for
example:

TYPE Seasons = (Srringy Summery Fally Winter) 3

The relational expression (Spring < Fali) is TRUE because Spring
precedes Fall in the list of values.

The only restriction on the values of an enumerated type is that you
cannot define the same value in more than one list in the same TYPE
section. For example, the following is illegal:

TYPE Seasons = (Srrings Summery Fally Winter) 3
Schooluear = (Falls Winters Sering)s

PASCAL DATA TYPES

To initialize a variable of an enumerated type, specify a constant
value. For example, you <can assign the variable Quarter of type
Seasons as follows:

VAR Quarter ¢ Seassons = Fallj
The variable Quarter takes on the initial value Fall.
Examples

TYFE Colors = .(Redy Yellows Greensy Furrler Blue)ds

Srort = (Swims Rumsy Hkids

Reverase = (Milky Watery Colay Beer):

VAR Cookie 3 (Oatmealy Choc-Chiry Feanut-Buttery Sudar) = Suydars

+

Exercisey Fun 3 Seort 1= Skid
Irimk 3 Beveradgdes

The TYPE section defines the types Colors and Sport, listing all the
values that variables of each type can assume.

The VAR section declares the wvariable Cookie, which can have the
values Oatmeal, Choc-Chip, Peanut-Butter, and Sugar. The variables

Exercise and Fun are declared as type Sport, and Drink is declared as
type Beverage.

Initial values are established for the identifiers Cookie, Exercise,
and Fun in the VAR section.

2.2.2.2 Subrange Data Types - A subrange specifies a limited portion
of another scalar type (called the base type) for use as a type.

Format 1
TYPE identifier = lower limit..upper limit
Format 2

VAR identifier : 1lower limit..upper limit

where:
identifier is the name of the subrange.
lower limit is the constant value at the Jlow end of the
subrange.
.. separates the limits of the subrange.
upper limit is the constant value at the high end of the

subrange.

The subrange type is defined only for the values between and including
the lower and upper limits. The limits you specify must be constants;
they cannot be expressions. (See Chapter 23 for information on
expressions.) The values in the subrange are in the same order as in
the base type.

PASCAL DATA TYPES

The base type can be any enumerated or predefined scalar type except
REAL. You can use a subrange type anywhere in the program where its
base type is legal. The rules for operations on a subrange are the
same as the rules for operations on its base type. A subrange and its
base type are compatible.

The use of subrange types can make a program clearer. For example,
integer values for the days of the year range from 1 to 365. Any
value outside this range is obviously incorrect. You could specify an
integer subrange for the days of the year as follows:

vak Dawu-0f-Year 3 Lee366

By specifying a subrange, you indicate that the values of the variable
Day-Of-Year are restricted to the integers from 1 to 366.

Example

TYFE Momths = (Jany Felby Mary Arry Mawy Juny
July Ausy Sers Octr Novy Dlec)s

VAR Came. Mos ¢ Mag..0ctls
L.eaf. . Mos 3 Ser, NOVE
First. Half AT M
Word Qs e HHHEG S

This example defines the variables Camp Mos and Leaf Mos as subranges
of the enumerated type Months. A Camp_ﬁos value can be only May, Jun,
Jul, Aug, Sep, or Oct. A Leaf Mos value can be only Sep, Oct, or Nov.
The variable First Half 1is a subrange of the ASCII characters, with
possible values uppercase A through uppercase M. The variable Word is
a subrange of the integers from 0 to 65535.

2.2.2.3 The ORD Function - Each element of a scalar type (except the
REAL type) has a unique ordinal value, which indicates its order in a
list of elements of its type. The ORD function returns the ordinal
value as an integer, for example:

ORDC7Q7)

This expression returns 81, which is the ordinal value of uppercase 0
in the ASCII character set (see Appendix B). Note that the order of
the ASCII character set may not be what you expect. The numeric
characters are in numeric order, and the alphabetic characters are in
alphabetic order. All uppercase characters have lower ordinal values
than all lowercase characters, for example:

ORDC’Q’) is less than ORIN(‘w’) and
ORDC’A’) is less than ORN(’Z’) but
ORDC*Z2’) 1is less than ORD(’3‘)

You can use ORD on a value of an enumerated ‘type. Enumerated types
are ordered starting at zero, for example:

ORI Tuesdaw)
Assuming that Tuesday is a value of type Weekdays (which includes the
values Monday, Tuesday, Wednesday, Thursday, and Friday), this
expression returns the integer 1.
The ordinal value of an integer is the integer itself. For example,
ORD(0) equals 0, ORD(23) equals 23, and ORD(-1984) equals -1984.

2-7

PASCAL DATA TYPES

2.3 STRUCTURED DATA TYPES

A structured data type consists of a collection of related data
components; it is characterized by its method of structuring and its
components. All structured data types consist of a collection of
elements or components that are grouped together in a structure in
which they can collectively be manipulated.

PASCAL provides four structured data types:

e ARRAY
e RECORD
e SET

e FILE

An array is a group of components of a predefined size and of the same
type. A record consists of one or more named fields, each of which
contains one or more data items, Records can include fields of
different data types. A set is a collection of data items of the same
scalar type, the base type. You can access a set as an entity, but
you cannot access the set components as individual components or
variables., A file is a sequence of data components that are of the
same type; each component can be individually accessed. A file can
be of variable length.

Section 2.3.1 describes arrays; Section 2.3.2 describes records;
Section 2.3.3 describes sets; and Section 2.3.4 describes files,

2.3.1 Array Types

An array is a group of components of the same type that share a common
name. You refer to each component of the array by the array name and
an index (or subscript). An array type definition specifies the type
of the indices and the type of the components.

Format

ARRAY [index type [,index type...] 1 OF component type

where:
index type specifies the type of the index. The index
type can be a subrange, CHAR, BOOLEAN, or
enumerated type; but it cannot be a REAL
type.
component type specifies the type of the components of the
array.

The components of an array can be of any type. For example, you can
define an array of integers, an array of records, or an array of real
numbers. You can also define an array of arrays, which is known as a
multidimensional array.

The indices of an array must be of a scalar type, but cannot be real
numbers. Note that you cannot specify the type INTEGER as the index
type. To use integer values as indices, you must specify an integer
subrange, unless you are using conformant-array parameters, If
necessary, PASCAL determines the subrange. For example, if the index

2-8

PASCAL DATA TYPES

is BOOLEAN, then PASCAL converts the subrange to FALSE..TRUE because
the type BOOLEAN has only two legal values. For more information
about conformant-array parameters, refer to Section A.3.2.

The range of the index type establishes the size of the array and the
way it is indexed, for example:

TYPE Letters = ARRAY [1..101 OF CHARS
VAR Letl 3 Letterss

The array variable LET1 has 10 components, referred to as LET1l1],
LET1l2], LET1{31, and so on, through LET1710].

You can use array components in expressions anywhere you can use
variables of the component type. For the array as a whole, however,
you can use only the assignment statement (:=). An exception to this
rule is made for character strings, which PASCAL defines as packed
arrays of type CHAR. See Section 2.3.1.2.

2.3.1.1 Multidimensional Arrays - An array with components of an

array type is a multidimensional array. An array can have any number

of dimensions, and each dimension can have a different index type.

For example, the following declares a two-dimensional array variable:
VAR Two.D ¢ ARRAY L[C..41 OF ARRAY [L7A7.,. 070 OF INTEGERS

PASCAL allows you to abbreviate the definition by specifying all the
index types in one pair of brackets, for example:

VAR Two.Dl ¢ ARRAY [O..45’A%..’0’1 OF INTEGERS

To refer to a component of this array, you specify two indices, one

integer and one character, 1in the order they were declared:
Two D[O,'A'], Two DfO,'B'], and so on. You can also specify
Two DJO]T'A']. The first index indicates the rows of the array, and

the second index indicates the columns. Hence, you can picture the
array Two D as in Figure 2-1.

‘A g od ‘o

TWO_D MR-S-3113-83

Figure 2-1: Two-Dimensional Array Two_D

PASCAL DATA TYPES

When referring to the components of Two D, the first component in the

first row is Two Df0,'A']. The second component in this row is
Two D[0,'B']l. The first component in the second row is Two DIl1,'A'].
The 1last component in the 1last row is Two D[4,'D']. 1In general,

element j of row i

is Two DTi,jl.

You can define arrays of three or more dimensions in a similar
fashion, for example:
TYPE Chessmen (QRYANYQRy Qs Ky KBy RNy KRy FyED) 3 CKE measns emsly souareX)
VAR Chess3D § 7 ARRAY LLeo3y LBy QR GKRIT OF Chessmens
This declaration specifies a three-dimensional chess game. The
indices of the array are the levels, the ranks, and the files of the

chessboard.

For example,

the

first level,

first square

in the upper left corner

the reference Chess3D

r,

1,

OR]

specifies

(bottom level,

first rank, Queen's Rook file). Figure 2-2 1illustrates the three
levels of this array.
Chess3D(1,n, Chess3D(2,n, Chess3D(3,n,
Chessmen) Chessmen) Chessmen)
(bottom) (middle) (top)
, QR ON QB Q K KB KN KR
) CHESS3D[3.n.CHESSMEN]
3
4
5
6
7
8 = & < & =
; JORJON OB Q@ K KB KN KR
5 CHESS3D[2.n.CHESSMEN]
3
4
5
6
7
8
1 JOR[ON @B QK KB KN KR
s CHESS3D[1.n.CHESSMEN]
3
4
5
6
7
8
7K. 098 81
Figure 2-2: Three-Dimensional Array Chess3D
When storing values in an array, PASCAL increments the indices from

right to left. Thus, PASCAL increments the rightmost index until the
maximum value is reached, then moves to the left to the next index,
and so on, until all indices have been incremented to the specified
amount.

PASCAL DATA TYPES

In the three-dimensional array Chess3D, PASCAL starts by holding the
first two indices constant while stepping through the values of
Chessmen. Thus, the first values are assigned to components Chess3D
r,1,0R] through Chess3D [1,1,KR]. Next, the second index 1is
incremented and values are assigned to the components Chess3D [1,2,0QR]
through Chess3Df1,2,KR]. After these eight elements are assigned, the
second index is again incremented, and values are assigned to Chess3D
f1,3,0R] through Chess3D [1,3,KR]. The assignment process continues
with the first index held constant until the second index has been
incremented from 1 to 8. Then, the first index is incremented, and
the process is repeated. Hence, all wvalues for the bottom level
(denoted by Chess3D[1,n,Chessmen]) are stored before any values for
the middle level (denoted by Chess3D {2,n,Chessmen]). The top level
(denoted by Chess3DI3,n,Chessmen]) receives its values last. Figure
2-3 illustrates this order.

QR QN QB Q K KB KN KR QR QN QB Q K KB KN KR QR QN QB Q K KB KN KR

—-

+— | —
CHESS3D[1.n,CHESSMEN] CHESS3D[2.n.CHESSMEN] CHESS3D [3,n,CHESSMEN]
(bottom} {mddle} {top)
MR-S-3115-83
Figure 2-3: Storing Components in an Array

2.3.1.2 String vVariables - A character string variable in PASCAL 1is
defined as a packed array of characters with a lower bound of 1. To
declare a string variable, specify a packed array of the proper
length, for example:

VAR NAME ¢ FPACKED ARRAY [1..201 OF CHARS

This declaration allows ycu to store a string of 20 characters in the
array variable NAME. The 1length of this string must be exactly 20
characters. PASCAL neither adds blanks to extend a shorter string nor
truncates a longer string.

You can assign to a string variable the value of any string constant
or variable of the defined length. You can also compare strings of
the same length with the relational operators <, <=, >, >=, =, and <>.
The result of a string comparison depends on the ordinal value (in the
ASCII character set) of the corresponding characters in the strings,
for example:

‘motherhood’ » ‘arrle ries’
This relational expression is TRUE because lowercase 'm' comes after
lowercase 'a' in the ASCII character set. If the first characters in
the strings are the same, PASCAL looks for differing characters, as in
the following:

‘stringl’ < "strind2”

This expression is also TRUE because the digit 1 precedes the digit 2
in the ASCII character set.

PASCAL DATA TYPES

To assign a string constant to an array in the executable section, use
an assignment statement. The string variable must be of the same size
as the array; otherwise, an error occurs. The following example
shows an assignment statement in the executable section:

TYFE String = PACKED ARFRAYL1..107 OF CHARS
Uak Word Strimss

REGIN
Word = ‘orandge ‘¥
ENIYE
The string constant 'orange ' is padded with spaces to match the size

of the array.

The READ and READLN statements automatically pad the string constant
if necessary. Thus, it is not necessary to pad the string constant
with spaces to match the variable size, when using the predefined file
INPUT or reading from a file defined as TEXT.

2.3.1.3 1Initializing and Assigning Values to Arrays - You should
assign values to an array either in the declarations or the executable
section before using the array within the program. As with all
variables, the value for each component is undetermined, until a value
is specifically assigned.

To assign values to an array in the executable section, a value must
be assigned to each component in the array. One method of doing this
is to use a FOR statement. By wusing the FOR statement control
variable as the array index, it 1is possible to step through all
components of the array, setting them to the same initial value. Each
index for the array is incremented at the same time the counter in the
FOR statement is incremented. An example of this is:

VAR Arrasu_Exsmele | ARRAY [1..101 OF INTEGERS
Index INTEGERS
REGIN
FOR Inmdex (= 1 TO 10 DO
Arrasw.Examsle [Index] (= 03

END

In this example, the array has been defined as being an array of type
INTEGER. As the FOR 1loop executes each time, the counter is
incremented by one. Likewise, the index is incremented by one. On
each execution of the loop, the current component is assigned a value
of 0.

An array can be initialized in the VAR section. The following example
shows each component of the array Array Example being initialized with
the value 0:

VAR Arrau_Examrle § ARRAY [1.,.,101 OF INTEGER t= (10 of 0)#

PASCAL DATA TYPES

To assign values to a two-dimensional array in the executable section,
you can use two nested FOR statements to increment the two indices, as
shown in the following example:

CONST Zero = 0¥
VAR Table 1 ARRAY [1,+109s;
index lyindex. 2 ¢ INT

0OF INTEGERS

BEGIN
FOR inmdex.l = 1 TO 10 DO
FOR index.2 t= 1 TO % O
Tablelindex.lyindex. 21 = Zeros
END

Array Example is defined to be a two-dimensional array of type
INTEGER.

The nested FOR statements assign the value of Zero (which has been

assigned the wvalue of "0" in the CONST section) to each component in
the array.

To initialize a two-dimensional array in the VAR section, specify a
constructor for each row, in parentheses. The following example shows
a two-dimensional array that is initialized in the VAR section:

VAR Table ¢ ARRAY [1.,.10»1..51 OF INTEGER = (10 OF (3 OF 0))3%

To assign values to arrays of three or more dimensions in the
executable section, use three or more nested FOR statements:

CONST Zero = O3
VAR Table ! ARRAY [1,.:391..391,.21 OF INTEGER?Y
index. lyindex. . 2rindex.3 + INTEGER?

REGIN
FOR index.1 (= 1 TO 5 DO
FOR index. .2 (= 1 TO 3 DO
FOR index.3 = 1 TO 2 10O
Tablelindex.lrindem.2] t= Zeros

END#

This example shows the initialization of a three-dimensional array.
The value of' Zero 1is assigned to each element in Table, from
Table(l,1,1] to Tablel5,3,2].

To initialize an array of three or more dimensions in the VAR section,
specify a constructor for each row. The following example shows a
three-dimensional array being initialized in the VAR section:

VAR Table ! ARRAY [1..%5s1,.3,1..,21 OF INTEGER =
(5 OF (3 OF (2 OF * ‘)))}

2-13

PASCAL DATA TYPES

2.3.1.4 Array Type Compatibility - You <can assign one array to
another only if the arrays are either identical or compatible. Arrays
of the same type or equivalent types are identical. The following
example demonstrates identical arrays:

TYFE Sslare = ARRAY [1..501 O0F REALS

Faw = SHalarws

VAR Wadger Income 1 Salarw?
Monew ¢ FPaws

The arrays Wage and Income are identical because both are of type
SALARY. The array Money of type PAY is identical to Wage and Income
because the type PAY 1is declared equivalent to the type SALARY.
Identical arrays are always compatible.

Arrays that are not identical are compatible if they meet all of the
following criteria:

e They have the same number of components.

e Their elements are of compatible types.

e Their indices are of compatible types.

e The upper bounds of their indices are equal.
e The lower bounds of their indices are equal.
e Both are packed or neither is packed.

e For packed arrays of subrange types, the bounds of the
subranges must be the same for both types.

The following two array types, though not identical, are compatible:

TYFE Grades = ARRAY [1.,281 OF 0..45
Feb Temrs = ARRAY [1..281 O0F INTEGER;

Both types define arrays with 28 components, indexed from 1 to 28.
The integer subrange components of type GRADES are compatible with the
integer elements of type Feb Temps. Therefore, you can assign
variables of type GRADES to variables of type Feb Temps, and vice
versa. Note that, if the TYPE definition specified packed arrays, the
types GRADES and Feb Temps would not be compatible.

PASCAL does not check for valid assignments to subranges that are part
of a structured type. If you assign an array of type Feb Temps to one
of type GRADES, you must ensure that the values are in the «correct
range. An out-of-range assignment does not result 1in an error
message, even if the CHECK option is enabled at compile time.

PASCAL DATA TYPES

2.3.1.5 Array Examples -

Example 1

TYFE Times L++103
VAR Raceresults ¢ ARRAYLL., . .3501 OF Timess?
I INTEGERS

REGIN
FOR I = 1 TO S0 IO
RaceresultslI]1 = 0

EINYI$
This example declares the variable Raceresults as a 50-component array
of Times. The FOR statement assigns zero to each component in the
array.
Example 2

TYFE String = PACKED ARRAY [1..101 OF CHARS
VAR Comroserr» Words Emetg @ Strings

REGIN
Word (= ’‘endrossing’s
Comroser (= "C.F.E.Bach’s
Emetw 1= ¢

ENDy

This example declares three string variables. It assigns string
constants to the variables Word and Composer, and assigns a string of
10 spaces to the variable Empty.

Example 3

CONST Daws = 31+
TYFE Weather = (Rainy Snowy Sunnuy Clouduy Foddgd)s
Month = ARRAY [1..DAYS]1 OF Weasthers

This example shows how you can use a constant identifier in the index
type. The indices of arrays of type Month range from 1 to the value
of the constant Days.

2.3.2 Record Types

The record is a convenient way to organize several related data items
of different types. A record consists of one or more fields, each of
which contains one or more data items. Unlike the components of an
array, the fields of a record can be of different types. The record
type definition specifies the name and type of each field.

PAGCAL DATA TYPES

Format
RECORD

{ field id : type [;field id : type...] ; [variant clause] }
{ variant clause }

END;
where:

field id specifies the names of one or more
fields. The names must be identibfiers
and must be separated by commas.

type specifies the type of the corresponding
field(s). A field can be any type.

variant clause specifies the wvariant part of the

record. See Section 2.3.2.1 for the
format of a variant clause.

The names of the fields must be unique within the record, but can be
repeated in different record types. For instance, you could define
the field NAME only once within a particular record type. Other
record types, however, could also have fields called NAME.

The values for the fields are stored in the order in which the fields
are defined, for example:

VAR Team. KRec ¢ RECORD
Wirs 20 INTEGERS
Losses + INTEGER:
Fercent | REAL
ENIS

The values for these fields are stored in the order Wins, Losses,
Percent.

To refer to a field within a record, specify the name of the record
variable and the name of the field, separated by a period. For
example, Team Rec.Wins, Team Rec.Losses, and Team Rec.Percent refer to
the three fields of the record Team Rec declared above. You can
specify a field anywhere in the program that a variable of the field
type is allowed. Thus, you could write:

Team..Rec.Wins = 93
Team.Rec.Losses = 43
Records can include fields that are themselves records, for example:

VAR Order & RECORD

Fart ¢ INTEGER?

Received ¢ RECORD
Month § (Jans Febr Mary Arry Magy Juns

July Ausgty Sery Octy Nove Dec)s

Nawy H 10031;
Year § INTEGER
ENIs

Inventorwy ! INTEGER

ENIs

PASCAL DATA TYPES

The fields in this record are referred to as Order.Part,
Order.Received.Month, Order.Received.Day, Order.Recelived.Year, and
Order.Inventory. The WITH statement provides an abbreviated notation
for specifying the fields of a record (see Section 5.5).

2.3.2.1 Records with Variants - To allow a record to contain
different data types at different times, vyou can define a record
variant. To do this, specify one or more variants in the TYPE

definition. A variant is a field or group of fields that can contain
a different type or amount of data at different times during
execution. Thus, two variables of the same record type can contain

different types of data.

To specify a variant, include a variant <clause in the record type
definition. The variant clause must be the last field in the record.

Format

CASE tag field OF
case-label list : ([field id : type] [;field id : type...])

where:

tag field indicates the current variant of the record.
You can specify the tag field in two ways:

1. tag name : tag type

Tf you use this form, the tag field 1is a
field in the record that is common to all
variants. Tag name and tag type define the
name and type of this field. The tag type
can be any scalar type except a REAL type.
You can wuse the tag field in the same way
that you use any other field in the record;
that 1is, you can use the record.fieldname
format.

2. tag type

If you use this form, you must keep track of
the currently valid variant. The tag type
can be any scalar type except a REAL type.

case-label 1list specifies one or more constants of the tag
field type.

field id specifies the names of one or more fields.
The field names must be identifiers and must
be separated by commas. Note that, instead
of the field 1identifiers, vyou can specify
another wvariant clause, as 1in the last
example in this section.

type specifies the type of the variant field. The
type cannot be a FILE type.

PASCAL DATA TYPES

When you specify the tag field in the first form (tag name : tag
type), vyou should reference only the fields in the currently valid
variant. The following example shows the use of this form:

TYFE Name = FACKED aRRAY L1..201 0OF CHARS
Daw = (Morny Tuey Weds Thuy Frids
Sltoclk = RECORD
Fart ¢ 1,.99995
Stock Quantity ¢ INTEGERS
Surslier | Names
CASE Onorder ¢ BOOLEAN OF
TRUE $(FPromised Daws
Order_Quantitwy ¢ INTEGERS$
Fricet REAL)S ¢
FALSE {{(Last. Shirment § Daw?
Rec. Quantity ¢ INTEGERS
Cost ¢ REAL)
FNT s

In this example, the 1last three fields 1in the record type vary
depending on whether the part is on order. The tag name Onorder is
defined in the variant clause. Records for which the value of Onorder
is TRUE will contain information about the current order. Records for
which this variable is FALSE will contain information about the
previous shipment.

In the second way of specifying the tag field, vyou wuse only a tag
type, as in this example:

TYFE Name = FPACKED ARRAY [1..201 0F CHARS
Iate = INTEGERSY
Seaw = (Femaley Male)s
Hosr = RKECORD
Fatient I Namej
Birthdate ¢ Dates
Age § INTEGERS?
CASE Sex OF
Female ! (Rirths ¢ 1..30)5
Male ¢ (O

ENIIS
In this example, you must keep track of the currently valid variant.

You can define a variant only for the 1Jlast field 1in the record.
Variant fields can, however, be nested, as in the following example:

TYFE Name = FACKED ARRAY [1,.,201 OF CHARS
Nate = INTEGER?
Sex = (Femaley Male)s
Hosy = RECORD
Fatient ! Names
Rirthdate ¢ Lates
Adge ¢ INTEGER?#
CASE Farsex § Sex 0OF

Male ¢ ()%
Female § (CASE Births { ROOLEAN OF
FALSE ¢ ()3
TRUE ¢ (Nokids ! INTEGER))
ENID#

This record type contains the name, birthdate, age, and sex of all
patients. In addition, it includes a variant field for each woman
based on whether she has had any children. A second variant, which
contains the number of children, is defined for women who have given
birth.

2-18

PASCAL DATA TYPES

2.3.2.2 Assigning Values to Records - To assign values to a record
variable, use an assignment statement to specify a value for each
field of the record. The following example shows the declaration of a
record and the assignment of values to two of the fields.

TYFE ROSTER = RECORD
Name: PACKED ARRAYLL1..301 OF CHARS
Number?t INTEGERS:
Grader REALS
ENDS

VAR Student ¢ ROSTERS
TestlsyTest2yTestd | INTEGERS

BREGIN

WRITELN (‘Enter gour name.’)’

READLN (Student.Name) s

Student.Grade 1= (Testl + Test2 + Test3) / 3j
ENIg

If you are initializing a record with a wvariant c¢lause, you must
always specify a value for the tag field, even if it has no tag name.
Specifying a value for the tag field, ensures that PASCAL 1initializes
the correct variant, for example:

TYFE Sex = (Maler Femasle)s
Ferson = RECORD
Birthdate: RECORD
Mornth s 10012;
Dawgl 1..315%
Year: INTEGER;s
ENIDts
Ade! INTEGERS
CASE sex of
Male? (Bearded ! ROOLEAN) §
Female! (N.Childrer!INTEGER)
ENDLs
VAR Dzd! Ferson = ((S5y 15y 1921),» 62y Maler TRUED

2.3.2.3 Record Type Compatibility - Two records are compatible if
their types are identical or equivalent, for example:

TYPE Life = RECORD

Born ¢ INTEGERS$
Died 3 INTEGER
ENIs

Flantlife = Lifes

VAR Momy Dagd ! Lifes
Coleus : FPlantlifey

The record variables Mom, Dad, and Coleus are all compatible. Mom and
Dad are both of type Life, which is equivalent to type Plantlife.

PASCAL DATA TYPES

Records of differing types are compatible if they meet the following
criteria:

e They have the same number of fields.
@ Corresponding field types are compatible.

e Both are packed, or neither is packed. If the types are

packed, <corresponding fields of subrange types must have
equal bounds.

The following type is also compatible with Life and Plantlife:

TYFPE Coords = RECORD

t INTEGERS
P 0..100
I

s

X
Y
EN
The integer subrange 0..100 1is compatible with the type INTEGER.
However, PASCAL does not check for valid assignments to fields of
subrange types. If you assign a record of type Life to a record of
type Coord, you must ensure that the value of the field Died is within

the subrange 0..100. An out-of-range assignment does not result in an
error message.

If the records have variants, these criteria also apply:
e The records must have the same number of variants.
e Corresponding variants must have the same number of fields.

e Corresponding field types within corresponding variants must
be compatible.

e The case labels associated with the variants must agree in
number, but need not agree in value.

e Corresponding variants in structurally compatible records
must have identical tag constant values.

e¢ The tag constant lists in each record must be identical.

PASCAL DATA TYPES

For example, assume the program includes the following TYPE
definition:

TYFE lets = "A7,, D%
Info = i .
ize + INTEGERS?
lories § INTEGERS
Froteirn + 0..40%
Carih ¢ INTEGERS
CASE Vits ¢ Lets OF
AT’ Gy I ()
‘Rt (Nigcinmy Thiamine ! BOOLEAN)

FNTs
Grades = A7, F’3s
School = RECORD
Studerntno ¢ INTEGERS
Class 1 1..599%
Hours §+ 1..305
Incomrletes © Leebd
CASE Averadge | Grades OF
TRy CIyIY (D
‘B 3 (Sendlety Firstsem ¢ ROOLEAN)
END#

The types Info and School are compatible. 1If you assign a variable of
one type to the other, however, you must be sure that both contain the
same variant.

2.3.2.4 Record Examples -~
Example 1

TYFE Taxes = RECORD
Year ! INTEGERS
Gross ¢ REALS
Net ¢ REAL?$
Deductions ¢ INTEGERS
Itemized ¢ ROOLEANY
Interest ¢ ARRAY [1..5] OF REAL
ENDS

VAR Fed ! Taxes = (1981, 285234,12, 18789.00y 4y TRUE>»
(5 of 0.05))5

This example declares and initializes the record Fed of type Taxes.

PASCAL DATA TYPES

Example 2

TYFE String = ARKAY [1..201 OF CHARS
Fersanal = RECORD
Name ¢ Strings
Address ¢ RECORD
Number ¢ INTE

Streety Town ¢ Strings

Zir 3 0..99999
END ¢

Age ¢ 0., 150

NIy

VAR Facultgr Mascoty Student | Fersonals

BEGIN
Faculty«Name = ‘Niklaus Wirth -
Faculty,Address «Number = 57
Facultuy.Address .Street = ‘Clausiusstrasse ‘3
+
»
°

NIy

The type Personal contains the field Address, which is of a record
type. To assign values to each of the fields of the record Address,
you must also specify the record Faculty in the assignment statement.

2.3.3 Set Types

A set is a collection of data items of the same scalar type, which 1is
known as the base type of the set. Unlike arrays and records,
elements in the set cannot be accessed individually. 1In PASCAL, you
use a set as an individual unit. The type definition specifies the

values for each element in the set:

Format

TYPE identifier = SET OF base type

where:
identifier specifies the type identifier for the set.
base type specifies the data type. Each element in the set

must be of this data type. You can use the
identifier or definition of any scalar type except
a real TYPE.

A set can have up to 256 members, and the value of each member must be
between 0 and 255. Therefore, real numbers or integers outside the
range 0 to 255 cannot be set elements.

After defining a base type, you can declare set variables of that
type, for example:

TYFE Srorts_ Eauir = SET OF (Racaeuets Shoesy EBallsy Rootsy
Skiss Folesy Goddlesy Swimsuit)s

VAR Ski.EquirryTernnis.EquirySwim.EquirySleer. . Equir ! Srorts.EQuirs

PASCAL DATA TYPES

Sets are compatible if their base types are identical or equivalent,
for example:

TYPE Viteamins = SET 0OF (A Ely B2y Réy R12y C» Ity Ey K
Nutriernts = Vitamings

VAR Watersolubles Fatsoluble ! Vitaminss
Neficient ¢ Nutrientss

The VAR section specifies three mutually compatible sets. Sets with
compatible base types are also compatible, for example:

VAR ASCII ¢ SET OF CHARS
Srecials ¢ BET OF 71/ ,.7/%%

These two sets are compatible because the base type of Specials is
compatible with the ASCII character set.

Packing has no effect on set compatibility except when passing sets as
VAR parameters. An unpacked set is compatible with a packed set if
both sets meet the criteria above.

You can build set expressions by using the set operators described in
Chapter 3. Set operators allow you to specify set intersection,
difference, union, inclusion, and containment. In addition, you can
assign a set expression to a set variable. The base type of the
variable must include all members of the set to which the expression
evaluates.

Example 1

TYFE Cars = BET OF CHARS
VAR Voawel ¢ Cars 1= L[’A»E’/s 17970y’ U’15%
Consonant ¢ Cars = LB e ’D/yF/os’H 2" J ¢+ Ny
IF"co,T/!’v'ooIZ'];

These declarations specify the set type Caps and two set variables,
Vowel and Consonant. The set Vowel is initialized with the set of
vowel characters as initial values. The set Consonant is initialized
with the set of consonants.

Example 2

VAR Ades ! SET OF 1..70 1= [5510y15520y25,30+535,40,45+50,55,6013%

.
*

3

This example declares and initializes a set with an integer base type.

PASCAL DATA TYPES

2.3.4 File Types

A file is a sequence of data components of the same type. The number
of components in a file is not fixed; a file can be of any length.
The file type definition specifies the type of the file components.

Format
TYPE identifier = FILE OF component type

where:

component type specifies the type of the components of the
file. The component type can be any scalar
or structured type except a file type or an
array or record type containing a file
element or field.

The arithmetic, relational, Boolean, and assignment operators do not
work on file variables or structures containing file components. For
example, you cannot assign one file variable to another file variable,
nor can you initialize a file variable.

Type compatibility for files applies only to file parameters. Two
file parameters are compatible if their components are compatible and
if both are packed or neither is packed. You can pass a file only as
a VAR parameter.

PASCAL automatically creates a buffer variable for each file wvariable
you declare. The type of the buffer variable is the same as the type
of the file components. To denote the buffer wvariable, specify the
name of the associated file variable followed by a circumflex ("), for
example:

TYFE Scores = FILE OF INTEGERS:
VAR Math.Scores @ Scoress

PASCAL creates Math Scores” as an integer buffer variable associated
with the file Math Scores. The buffer variable takes on the value of
the file at the current file position. The predeclared input and
output procedures move the file position, thus changing the value of
the buffer variable.

Example 1
VAR Truthvals ¢ FILE OF BROOLEAN;y

This declaration specifies a file of Boolean values. The buffer
variable for this file is denoted by Truthvals”™.

Example 2

TYFE Nsmes = FACKED ARRAY [1..201 OF CHARS
Iats.File = FILE OF Namess
VAR Accert.l.ists Redect.listy Wait_List ! Data.Files

This example defines the array type Names and the file type DataFile,
which contains a list of names. The VAR section specifies three file
variables of type DataFile, with associated buffer variables
Accept List”™, Reject List™, and Wait List”.

PASCAL DATA TYPES

Example 3
Vak RESULTS ¢ FILE OF RECORD
Trial 3 INTEGERS
Date ¢ RECORD

Month Clany Febe Marey Arry Mawy Juny
July Augty Sery Octs Nove Dec)s
Daw 3 1.,.315%
Year + INTEGER
ENIS
Temss Fressure § INTEGERS
Yields Furity @ REAL
ENII s

The VAR Declaration specifies a file of records. To access the fields
of the record components, you specify Results”.Trial,
Results” .Date.Month, and so on.

2.3.4.1 Internal and External Files - A file that 1is 1local to a
program or subprogram is called an internal file. You can use an
internal file only within the scope of the program or subprogram in
which it is declared. The system retains an internal file only during
execution of the declaring program or subprogram. After execution the
file 1is no longer accessible. The system creates a new file variable

with the same name the next time it executes the declaring unit. The
contents of the o0ld file are not available. 1Internal files are not
specified in the program heading. Only internal files can be

components of structured types.

An external file exists outside the scope of the program in which it
is declared. An external file can be created by the current PASCAL
program, another PASCAL program, or a program written in another
language. The system retains the contents of external file variables
after the execution of the program. You must specify the names of
external file variables in the program heading. External files cannot
be part of a structured type.

2.3.4.2 Text Files - A text file is a file with components of type
CHAR. PASCAL defines a file type called TEXT. To declare a text
file, specify a variable of type TEXT, for example:

VAR Foem ¢ TEXTs

The text file variable POEM is a file of characters. Text files are
divided 1into 1lines. Each line ends with a line-separator character.
You cannot use this character directly, but you can refer to it
indirectly through the predeclared procedures READLN and WRITELN and

the predeclared function EOLN,
The predeclared file variables INPUT and OUTPUT are files of type
TEXT. These files are the defaults for all the predeclared text file
procedures described in Chapter 7. Note that TEXT is not equivalent
to FILE OF CHAR.
Example

VAR Guider Manual § TEXTS

This example declares the Variables Guide and Manual as text files.

PASCAL DATA TYPES

2.4 POINTER TYPES

Normally, variables have the same 1lifetime as the program or
subprogram in which they are declared. Program-level variables are
allocated in static storage, and subprogram-level variables are
allocated on the stack. Some applications, however, require different
lifetimes or an unknown number of variables of a certain type. PASCAL
allows you to use dynamic variables to fill these requirements.

Dynamic variables are dynamically allocated as needed during program
execution. Unlike other variables, dynamic variables are not named by
identifiers. Instead, you must refer to them indirectly with
pointers.

A pointer type thus allows you to declare any number of pointer
variables to refer to dynamic variables of a specified type. Each
pointer variable assumes as its wvalue the address of a dynamic
variable.

The pointer type definition specifies the type of the dynamic variable
to which pointers of the pointer type refer.

Format
TYPE identifier = "base-type identifier
where:

base-type identifier indicates the type of the dynamic
variable to which the pointer type
refers. The base type can be any type.

Note the following example:

TYFE Murec = RECORD
AyRyC 2 INTEGER
ENIN
Ftr.To . Murec = "Murecs
UAR M ¢ FlLr.To.Murecs

Variables of a pointer type point to variables of the base type, and
are said to be bound to that type. To indicate a pointer variable,
specify its name. To indicate the dynamic variable to which a pointer
is bound, specify the pointer name followed by a circumflex(”). For
example, M is a pointer variable bound to records of type Myrec.
Specify M” to denote the record variable to which M points.

PASCAL DATA TYPES

Pointer type definitions are the only place in a PASCAL program where
you can use an identifier before you define it. PASCAL allows you to
use the base type identifier in a pointer type definition before you
define the base type, for example:

TYPE Phr.TooMovie = "Movies
Name = FACKED ARRAY [L..201 OF CHARS

Movie = RECORD
Titley Dire s Names
Year ¢ INTEGERS
Stars ! FILE OF Names
Next 3 Ftr.To.Movie
ENYI§

The TYPE section specifies the type identifier Movie before defining
the type Movie.

The value of a pointer is the storage address of the variable to which
it points. Thus, in the example above, the value of the field Next is
a pointer to (or address of) a dynamic record variable of type Movie.

Pointers assume values at initialization, by assignment, and through
the NEW procedure. The value of a pointer can be any legal storage
address. The value NIL indicates that the pointer does not currently
specify an address. Thus, a NIL pointer does not point to a variable.

PASCAL allows you to define pointers to types containing files, for
example:

TYFE X= "Y3
Y= RECORD
Pt INTEGERS
Q ! ARRAYLL..31 OF TEXT
END§
VAR MIX3

The pointer type X points to record type Y, which contains a file
component in field Q. The files denoted by Q0 are never closed until
execution of the program terminates, unless you use the CLOSE
procedure. For example, to close the files defined in the TYPE
section above, you must call CLOSE with the parameters M~.Ql1],
M®.Qf21, M".QI3].

You can assign the constant NIL to a pointer as follows:
M = NIL?»
As a result of the assignment, the pointer variable M does not point

to a variable. NIL is the only value you can specify to initialize a
pointer.

PASCAL DATA TYPES

Example

TYFE Name = ARRAY L[1..301 OF CHARS
Ftr.To.Hits “Hitas
Hits = ORI
Titley Artiasty Comroser ! Names
O Charty NoSold ¢ INTEGERS
SVersion ¢ BOOLEAN

VAR Tosterr ¢ ARRAY L1..101 OF Ftr.To.Hitss
I ¢ INTEGERS
BEGIN
FOR T = 1 TO 10 DO
Tortenll I = NILS$

3

ENTs

This example defines the record type Hits to which pointers of type
Ptr To Hits refer. The array variable Topten has elements of the
pointer type Ptr To Hits. Each element of the array is assigned the
constant value NIL. The array Topten could be used in creating a list
of ten records of type Hits.

2.5 PACKED STRUCTURED TYPES

You can pack any of the structured types by specifying PACKED in the
type or variable declaration. Packed data items are stored as densely
as possible.

Format

PACKED type definition

where:

type definition defines an array, record, set, or file type.

You can initialize all packed structures in the VALUE or VAR section
in the same way that you initialize an unpacked structure of the same
type. In general, packed data items require less storage space than
unpacked data 1items of the same type. However, execution is usually
slower with packed data items.

In PASCAL, a packed array of characters specifies a string variable.
Example 1

TYFE Randges = FACKED RECORD
Word 3 0..6553%55
Bute { 0.,.32767%
Bit ¢ ROOILEAN
ENIIs

This example defines a record type with three fields, each of which is
packed as densely as possible.

2-28

PASCAL DATA TYPES

Example 2

Vak Citw.Census ¢ FACKED ARRAY L1..25]1 OF 28500..500005
I 3 INTEGERS>

REGIN
FOr o= 1 TO 25 10
Citu. . CensuslI1 1= 03

*

END#

This example declares the variable City Census as a 25-element array
of integer values in the subrange from 2500 through 50000. A value of
0 is assigned to each element of the array.

2.6 TYPE COMPATIBILITY

Type compatibility rules determine the operations and assignments that
you can perform with data items of different types. Two scalar types
are compatible if their type identifiers are declared equivalent in
the TYPE section. 1In addition, a subrange type is compatible with its
base type, and two subranges of the same base type (or equivalent base
types) are compatible.

For structured and pointer types, PASCAL enforces structural
compatibility. Two structured (that is, arrays, records, files, and
sets) or pointer types are compatible if their structures are
identical.

The way PASCAL determines structural compatibility depends on the
types involved. For instance, the requirements for record
compatibility differ from those for array compatibility.

PASCAL uses compatibility rules in the following three contexts:
1. Expression compatibility
2. Assignment compatibility
3. Formal and actual parameter compatibility

Expression compatibility determines the types of operands you can use
in an expression. See Chapter 3 for information on expressions.

Assignment compatibility determines the types of values you can assign
to variables of each type. Assignment compatibility rules apply to
value initializations, assignment statements, and value parameters.
Assignment compatibility is described with the assignment statement in
Section 5.2.

Formal and actual parameter compatibility determines the types of data
you can pass in a parameter list., Value parameters follow the rules
for assignment compatibility. Variable parameters follow somewhat
different rules. Value and variable parameters are described in
Chapter 6.

CHAPTER 3

EXPRESSIONS

An expression is a symbol or group of symbols that PASCAL can
evaluate. These symbols can be constants, variables, or functions, or
any combination c¢f constants, variables, and functions, combined with
operators. The simplest expression is a single variable or constant.

This chapter lists the various operators that PASCAL provides along

with the rules for forming arithmetic, relational, logical, and set
expressions.

3.1 OPERATORS

PASCAL provides the following types of operators:
e Arithmetic operators (such as +, -, /)
® Relational operators (such as <, >, =)
e Logical operators (such as AND, OR, NOT)

e Set operators (such as IN)

3.1.1 Arithmetic Expressions

An arithmetic expression usually provides a formula for calculating a
value. To construct an arithmetic expression, you combine numeric
constants, variakles, and function identifiers with one or more of the
operators from Table 3-1.

EXPRESSIONS

Table 3-1: Arithmetic Operators

Operator Example Meaning

+ A+B Add A and B

- A-B Subtract B from A

* A*B Multiply A by B

* % A**R Raise A to the power of B

/ A/B Divide A by B

DIV A DIV B Divide A by B and truncate the result

MOD A MOD B Produce the remainder after dividing A by

B; B must be greater than 0

The addition, subtraction, multiplication, and exponentiation (+, -,
*, and **) operators work on both integer and real values. They
produce real results when applied to real values and integer results
when applied to integer values. If the expression contains values of
both types, the result is a real number. The only exception to these
rules concerns exponentiation. PASCAL defines the results of an
integer raised to the power of a negative integer as follows:

Base Exponent Result
0 Negative or 0 Error
1 Negative 1
-1 Negative and odd -1
-1 Negative and even 1
Any other Negative 0
integer

For example, the expression 1**(-3) equals 1; (-1)**(-3) equals -1;
(-1)**(-4) equals 1; and 3**(-3) equals 0.

The division (/) operator can be used on both real and integer values,
but always produces a real result. Use of the division (/) operator
can therefore cause errors in precision in expressions involving
integers.

The DIV, MOD, and REM operators apply to integer values only.

DIV divides one integer by another, producing an integer result. DIV
truncates the result; that is, it drops any fraction. It does not
round the result. For example, the expression 23 DIV 12 equals 1, and
(-5) DIV 3 equals ~-1.

The MOD and REM operators return the remainder after dividing one
operand by another. Both operators can be used only with integer
values and always produce integer results.

The MOD operator can be used only when the divisor is greater than 0;
it always returns a positive result. For example, the expression 5
MOD 3 (5 modulo 3) returns a value of 2, and (-5) MOD 3 returns a
value of 1.

3-2

EXPRESSIONS

The REM operator can be used on integers of all sizes and retains the
sign of the dividend. For example, the expression 5 REM 3 returns a
value of 2, the expression (-5) REM 3 returns a value of -2; and the
expression 5 REM (-3) returns a value of 2.

In arithmetic expressions, PASCAL allows you to mix integers, real
numbers (single and double precision), and integer subranges. When
you assign the value of an expression to a variable, you must ensure
that the types of the variable and the expression are compatible. 1In
general , you can assign an integer expression to a real wvariable.
However, you cannot assign a real expression to an integer variable.

Table 3-2 lists the type of the result for all possible combinations
of arithmetic operators and operands.

Table 3-2: Result Types for Arithmetic Expressions

Operator Type of First Type of Second Type of
(Operation) Operand Operand Result
** INTEGER INTEGER INTEGER
(exponentiation) INTEGER, REAL REAL, DOUBLE REAL
DOUBLE INTEGER, REAL, DOUBLE
DOUBLE
* INTEGER INTEGER INTEGER
(multiplication) INTEGER REAL REAL
REAL INTEGER, REAL REAL
DOUBLE INTEGER, REAL, DOUBLE
DOUBLE
REAL, INTEGER DOUBLE DOUBLE
/ REAL, TINTEGER REAL, TINTEGER REAL
(division) DOUBLE INTEGER, REAL, DOUBLE
DOUBLE
REAL, INTEGER DOUBLE DOUBLe
DIV, MOD, REM INTEGER INTEGER INTEGER

EXPRESSIONS

Table 3-2: Result Types for Arithmetic Expressions (Cont.)

Operator Type of First Type of Second Type of
(Operation) Operand Operand Result

(division with
truncation,
modulus,

and remainder)

+,- INTEGER INTEGER INTEGER
(addition, INTEGER REAL REAL
subtraction)
REAL REAL, INTEGER REAL
DOUBLE REAL, DOUBLE, DOUBLE
INTEGER
REAL, INTEGER DOUBLE DOUBLE

3.1.2 Relational Expressions

A relational expression or condition tests the relationship between
two expressions. A relational expression consists of two scalar or
string variables or arithmetic expressions, separated by one of the
relational operators listed in Table 3-3.

Table 3-3: Relational Operators

Operator Example Meaning

= A =B A is equal to B

A
A\
p-
A
\4
o

A is not equal to B

> A > B A is greater than B

>= A >= B A is greater than or equal to B
< A < B A is less than B

<= A <= B A is less than or equal to B

Note that the two characters in each of the <>, >=, and <= operators
must appear in the specified order and cannot be separated by a space.

PASCAL produces a Boolean result when it evaluates a relational
expression. Every relational expression therefore evaluates to TRUE
or FALSE. For example, the condition 2 < 3 1is always TRUE; the
condition 2 > 3 is always FALSE.

EXPRESSIONS

3.1.3 Logical Expressions

Logical expressions test the truth value of combinations of
conditions. A logical expression consists of two or more expressions
that have Boolean results, separated by one of the 1logical operators
in Table 3-4.

Table 3-4: Logical Operators

Operator Example Result

AND A AND B TRUE if both A and B are TRUE

OR A OR B TRUE if either A or B is TRUE, or if both
are TRUE

NOT NOT A TRUE if A is FALSE, and FALSE if A is TRUE

The AND and OR orerators combine two conditions to form a compound
condition. The NOT operator reverses the truth value of a condition,
so that if A is TRUE, then NOT A is FALSE.

As with relational expressions, the result of a logical expression |is
a Boolean value. Note that the entire logical expression is always

evaluated, even if the expression value could be wuniquely determined
from only a part of the expression.

3.1.4 Set Expressions

You can use the operators in Table 3-5 with set variables and
constants.

Table 3-5: Set Cperators

Operator Example Meaning

+ A+B Union of sets A and B

* A*B Intersection of sets A and B

- A-B Set of those elements of A that are not

also in B

= A=B Set A is equal to set B
<> A<>B Set A is not equal to set B
<= A<=B Set A is a subset of set B
>= A>=B Set B is a subset of set A
IN A IN B A is an element of set B

EXPRESSIONS

The set operators (+, *, -, =, <>, <=, and >=) require both operands
to be set values. The IN operator, however, redquires a set expression
as its second operand and a scalar expression of the associated Dbase
type as its first operand, for example:

2%3 IN [1..10]

The value of this expression is TRUE, because 2*3 evaluates to 6,
which is a member of the set [1..10].

3.1.5 Precedence of Operators

The operators in an expression establish the order in which PASCAL
evaluates the expression. Table 3-6 lists the order of precedence of
the operators, from highest to lowest.

Table 3-6: Precedence of Operators
Operators Precedence
NOT Highest
* %

*, /, DIV, MOD, REM, AND

=, <>, <, K=, >, >=, IN Lowest

PASCAL evaluates operators of equal precedence (such as + and -) from
left to right. You must use parentheses for correct evaluation when
you combine relational operators, for example:

A <= X AND R <= Y
Without parentheses, PASCAL attempts to evaluate this expression as
A<=(X AND B)<=Y and generates an error. The expression needs
parentheses, as follows:

(A <= X) AND (B <= Y)

To evaluate the rewritten expression, PASCAL compares the truth values
of the two relational expressions.

EXPRESSIONS

You can use parentheses in any expression to force a particular order
of evaluation, for example:

Expression: Evaluates to:
8 % 5 DIV 2 - 4 16
8 x5 DIV (2 ~ 4) -20
PASCAL evaluates the first expression according to the normal rules
for precedence. First, it multiplies 8 by 5 and divides the result
(40) by 2. Then, it subtracts 4 to get 16. The parentheses 1in the
second expression, however, force PASCAL to subtract before

multiplying or dividing. Hence, it subtracts 4 from 2, getting -2.
Then, it divides -2 into 40, with -20 as the result.

Parentheses can also help to clarify an expression. For instance, you
could write the first example as follows:

(8 % 5 nIrv 2) - 4

The parentheses eliminate any confusion about how the expression is to
be evaluated.

3.2 SCOPE OF IDENRTIFIERS

The scope of an identifier is the part of the program in which you
have access to the identifier. 1In a PASCAL program, the scope of a
constant, type, variable, or subprogram identifier is the block in
which the identifier is declared. Figure 3-1 illustrates the scope of
identifiers declared at various levels.

Declarations in the main program block specify global identifiers,
which can be accessed in the main program and in all nested
subprograms. For example, A and B in Figure 3-1 are global
identifiers. They can be accessed from any level in the program.

Declarations in subprogram blocks specify local identifiers. You can
use a local identifier in the subprogram that contains its declaration
and in all its nested subprograms. For example, the identifiers C and
D are local to procedure LeVel_lA and its nested subprograms Level 2A
and Level 3A. You can use C and D in any of these subprograms, but
not in the main program or in the subprograms Level 1B, Level 2B, and
Level 2C. - -

EXPRESSIONS

FROG

.

END.

RAM Level_ 0 (INFUTy OUTFUT)+
VAR AyEB ! INTEGERS

3

.

FROCEDURE Level_1A (Zs Y)3j
VAR CsD1 ¢! INTEGER}#

.

FUNCTION Level.2A (X) ¢ INTEGERS?
VAR E ! REALS

.

FROCEDURE Level.3A (W);
VAR F ! REAL N

.

END$ (Xend rrocedure lLevel . 3AX)

.

+

END$ (¥end function Level _28%)

.

+

END3 (Xend rrocedure lLevel.lAX)

FROCEDURE Level_ 1E (VUy Uy Ty
VAR G ! INTEGERS

.

.

FROCEDURE Level 2B (§y Ry Q)7+
VAR H ¢! REAL}?

*

.

END? (kend rrocedure Level _2EX%)

FROCEDURE Level_ 2C (Fs O35
VAR B ¢ BOOLEAN;7
J ¢ CHAR?

.

END 3 (Xend rrocedure Level_2C%)

.
.

END3# (Xend rrocedure Level_1Ex)

(Xend rrodram Level_ 0X)

Figure 3-1:

Scope of Identifiers

EXPRESSIONS

Similarly, local identifiers declared in Level 1B are accessible to
Level 1B, Level 2B, and Level 2C, but not to Level 1A, Level 23,
Level 3A, or the main program.

In general, once you define an 1identifier, it retains its meaning
within the block containing 1its declaration. You can, however,
redefine an identifier in a subprogram at a lower level. If you do
so, the identifier assumes its new meaning only within the scope of
the redefining block. Outside this block, the identifier keeps 1its
original meaning, For example, B is declared at program level and
redefined in Level 2C. Within the scope of Level 2C, B denotes a
Boolean variable. -Everywhere else in the program, however, B denotes
an integer.

The identifiers accessible to each routine in Figure 3-1 are 1listed
below.

Routine Variables
Main program Ar B (inteder)
Level.lA Ay B (intederdy Cy N

Level. 24 Ay B (inteser)y Cv Dy E
lLevel .34 Ay B (intedger)y Cy» Ity By F
Level 1R Ar B Cintedger)y G

Level (2R Ay B Cinteger)y Gy H

lLevel .2C Ay B (Boolean)s J

3-9

CHAPTER 4

PRCGRAM HEADING AND DECLARATION SECTION

The first two parts of a PASCAL program are the program heading and
the declaration section. The program heading specifies the program
name and the input and output files.

The declaration section can contain the following sections:

e LABEL declares labels for use by the GOTO
statement
e CONST defines 1identifiers to represent

constant values

e TYPE defines user-defined, structured,
and pointer types

e VAR declares and optionally initializes
variables of all types

e VALUE initializes variables
e PROCEDURE and FUNCTION declare subprograms

Your program need not include all these sections, but the sections
that are present must appear in the order listed above. Although you
can specify many labels, constants, types, variables, and subprograms,
each section can appear only once in each declaration section.

This chapter describes the program heading (Section 4.1), 1label
declarations (Section 4.2), and constant definitions (Section 4.3).
It also outlines type definitions (Section 4.4), variable declarations
(Section 4.5), and value declarations (Section 4.6). Chapter 6
describes the use of procedures and functions in detail.

PROGRAM HEADING AND DECLARATION SECTION

4.1 THE PROGRAM HEADING

The program heading begins the PASCAL program. It gives the program a
name and lists the external file variables the program uses.

Format

[fOovERLAID1] PROGRAM program name [(filename [,%ilename...])]

where:
[OVERLAID] specifies that the program can share global
variables with separately compiled modules. See
Section 6.8.
program name specifies the name of the program; only the first
six characters are significant.
filename specifies the 1identifier associated with an

external file that the program uses.

The program name appears only in the heading and has no other purpose
within the program. The program name cannot be redefined at program
level.

The file names 1listed 1in the program heading correspond to the
external files that the program uses. The heading must include the
names of all the external file variables. The predeclared text file
variables INPUT and OUTPUT, by default, refer to your terminal (in
interactive mode) or the batch input and log files (in batch mode).
You must declare file variables for all other external files in the
main program declaration section, and specify those variables in the
program heading. Refer to Chapter 7 for more information on files.

Example 1

FROGRAM Testls
The program heading names the program Testl, but omits the file
variable list. This program does not use the terminal or any external
file.
Example 2

FROGRAM Sauasres (INFUTy QUTFUT) S

The program heading names the program Squares and specifies the
predeclared file variables INPUT and OUTPUT.

Example 3
FROGRAM Fauwroll (Emrloveey Salargy Outeut)s

The program heading names the program Payroll and specifies the
external file variables Employee, Salary, and Output.

’

PROGRAM HEADING AND DECLARATION SECTION

4.2 LABEL DECLARATIONS

A label makes a statement accessible from a GOTO statement. The label
section must 1list all the 1labels 1in the corresponding executable
section.

Format

LABEL label [,label ...]

where:
label specifies an unsigned integer. When you declare more
than one 1label, you can specify the labels in any
order.

The label is an unsigned integer. Labels can be listed in any order
if more than one label is defined. A label can precede any statement
in the program, but can be accessed only by a GOTO statement. Within
the program, a colon (:) must be placed between the label and the
statement.

The scope of a label is the block in which it is declared. Therefore,
you can transfer control from one program unit to another program unit
in which the former is nested, for example:

FROGRAM Trial (INFUT>OUTFUT)
LAREL 7%%

+

FROCEDURE Maxs
LAREL 503

.

BEGIN
50 3 WRITELN (‘Testing fairness of tosses’)s
*
GOTO 793
ENIIS (kend of rrocedure MaxX)
REGIN

¢ WRITELN (‘Not fair! A weighted coin!)}

N
* o o (il + o

ENIDI.

The GOTO statement in the procedure Max transfers control to the main
program statement that has the label 75. However, you cannot use a
GOTO statement in the main program to transfer control into the
procedure at label 50.
Example

LAREL Os 6656y 778y 43523
The label section specifies four labels: 0, 6656, 778, and 4352.
Note that the labels need not be specified in numeric order.

4-3

PROGRAM HEADING AND DECLARATION SECTION

4.3 CONSTANT DEFINITIONS

The constant section defines identifiers to represent constant values.

Format
CONST constant name = value; [constant name = value; ...]
where:
constant name specifies the identifier to be wused as the
name of the constant.
value specifies an integer, a real number, a

string, a Boolean wvalue, or the name of
another constant that 1is already defined.
Note that the value assigned to a constant
identifier cannot be an expression. String
values must be enclosed in apostrophes.

The use of constant identifiers generally makes a program easier to
read, understand, and modify. Tf you need to change the value of a
constant, you can simply modify the CONST declaration instead of
changing each occurrence of the value in the program. This capability
makes programs simpler to maintain and easier to transport.

Example
CONST Rain = TRUES

Year = 2001%
Fi o= 3,14159273%

Comma = 9’5
Country = “United States’s
Citizenshisr = Counbrwus
This CONST section defines six constants. The identifier Rain is

equal to the Boolean value TRUE. The identifier Year represents an
integer, and Pi represents the real number 3.1415927. The identifier
Comma represents a character, and the identifier Country represents a
string. Characters and strings must be enclosed in apostrophes in the
CONST section. The identifier <Citizenship represents the symbolic
constant Country and thus represents a character string. Note that,
since Citizenship represents a symbolic wvalue and not a string,
apostrophes are not used.

PROGRAM HEADING AND DECLARATION SECTION

4.4 TYPE DEFINITIONS

The type definiticn introduces the name and the set of wvalues for a
type. Chapter 2 describes data types and includes examples of type
definitions.

Format

TYPE type identifier
[type identifier

type definition;
type definition;...]

where:
type identifier specifies the identifier to be used as the
name of the type.
type definition defines a type. The types are shown in

Figure 4-1.

Note that you can use the identifier for a previously defined type in
place of the type definition for a new type. 1In addition, you can
define packed types for arrays, records, sets, and files, as described
in Section 2.5.

scalar structured pointer
y
predefined user-defined
scalar scalar
INTEGER enumerated ARRAY
REAL subrange RECORD
BOOLEAN SET
CHAR FILE
DOUBLE
MR $-3147-83

Figure 4-1: PASCAL Data Types

PROGRAM HEADING AND DECLARATION SECTION

4.5 VARIABLE DECLARATIONS

The wvariable declaration creates a variable and associates an
identifier and a type with the variable. Optionally, the variable
declaration can be used to assign an 1initial wvalue to a wvariable.
Chapter 2 describes data types and shows how to declare and initialize
variables of each type.

Format

VAR variable name [,variable name...] : type [:= value] ;
[variable name [,variable name...] : type [:= value] ;...]

where:

variable name specifies the identifier to be used as the name of
the variable.

type names or defines a type. The type can be one of
the types shown in Figure 4-1.

value specifies the initial value associated with the
identifier. The value must be of the same data
type as the identifier.

You can also declare packed array, record, set, and file variables, as
described in Section 2.5. Note, however, that you cannot initialize
file variables.

PROGRAM HEADING AND DECLARATION SECTION

4.6 VALUE DECLARATIONS

The value section initializes variables that are declared in the main
program declaration section. You can initialize scalar, array,
record, and set variables with constants of the same type as the
variable's type.

The description below presents general information on value
initializations. The exact format of the value initialization depends
on the type of variable being initialized. For detailed formats and
examples, refer to the section in Chapter 2 that describes the type of
variable you need to initialize.

Format

VALUE variable name := value;
[variable name := value; ...]

where:

variable name names the variable to be initialized. You cannot
specify a list of variable names.

value specifies a constant of the same type as the
variable, or specifies a constructor for an array
or record variable.

You must specify a value of the correct type for each variable being
initialized. You must not specify an expression. Scalar variables
require scalar constants, and set variables require set constants.
For arrays and record variables, you specify the value to be assigned
to each element or field in a parenthesized list called a constructor.
An array or record constructor must contain one constant value of the
appropriate type for each component of the structure.

The wvalue initialization can appear only in the main program
declaration section. You cannot use a value section in procedures,
functions, or modules.

CHAPTER 5

PASCAL STATEMENTS

PASCAL provides several statements to perform the actions within the
program. Any of these statements can appear anywhere 1in the
executable part of a PASCAL program, procedure, or function. PASCAL
also includes the compound statement, which allows vyou to group
statements.

This chapter presents reference information on each of the statements,
organized as follows:

e The compound statement
e The assignment statement
e Conditional statements:
IF-THEN
IF-THEN-ELSE
CASE
e Repetitive statements:
FOR
REPEAT
WHILE
e The WITH statement
e The GOTO statement

e The procedure call

PASCAL includes simple and compound statements. A simple statement
can be executed and is complete in itself; that is, it is not made up
of other statements. The simple statements are the assignment

statement, the GOTO statement, and the procedure call.

A compound statement is an arrangement of simple statements that
executes sequentially. You can use a compound statement anywhere in
the program that a simple statement is allowed. This manual uses the
term statement to mean either a simple or a compound statement.

PASCAL STATEMENTS

Simple and compound statements can also be wused in structured
statements. A structured statement is a group of statements that can
be executed either in sequence, conditionally, or repeatedly. The
structured statements are the conditional, repetitive, and WITH
statements. A compound statement can also be considered a type of
structured statement.

5.1 THE COMPOUND STATEMENT

The compound statement allows you to group PASCAL statements for
sequential execution as a single statement.

Format
BEGTN
statementl ;statement2,... statement n;
END;
where:
statement denotes a simple or compound statement.

You can create a compound statement using any combination of PASCAL

statements, including other compound statements. You must use
semicolons to separate the statements that make up the compound
statement; however, no semicolon 1is required between the last

statement and the END delimiter. PASCAL treats the entire compound
statement as a simple statement everywhere in the program. Examples
of compound statements appear throughout this chapter.

5.2 THE ASSIGNMENT STATEMENT
The assignment statement assigns a value to a variable.
Format
variable name := expression;
where:
variable name specifies the name of a variable of any type
(except a file). It could be an array element, a
file buffer variable, a function, or a field of a
record.
expression specifies a value, variable name, function
reference, Boolean expression, set expression, or

arithmetic expression.

Note that the assignment operator is := in PASCAL. Do not confuse
this operator with the equal sign (=) operator.

The expression on the right of the operator establishes the value to
be assigned to the variable on the left of the operator.

PASCAL STATEMENTS

You can use the assignment statement to assign a value to a function
identifier or to a variable of any type except a file. The variable

and the expression must be of compatible types, with the following two
exceptions:

e You can assign an integer expression to a real variable.

e You can assign an integer or single-precision real expression
to a double-precision variable.

For structured types, PASCAL enforces structural compatibility in
assignments.

Example 1
X 3= 13
The variable X is assigned the value 1.
Example 2
Teme (= Celsius(Fahrenneilt)s
The value returned by the function Celsius is assigned to Temp.
Example 3
T 3= A < B

The value of the Boolean expression A < B is assigned to T

Example 4
Vowel..Set = L/A7y ‘E’y "I’y 707y ‘U]

The set Vowel Set is assigned the string constants shown. The Dbase

type of VoweT_Set must include the characters 'a', ‘', '1', '0', and
'‘u’.

Example 5
Mu.Arrawlll = Mwu_.Arrasl73 + Your.Arrawlla4ls

The first element of My Array is assigned the sum of the seventh
element of My Array and the fourteenth element of Your Array.

Example 6
Mu.Arraw = Your.Arraus

The value of each element of the array Your Array is assigned to the
corresponding element of the array My Array.

Example 7
Awardrec 1= New.Winners
Assume that Awardrec and New Winner are record variables of

assignment-compatible types. This example assigns the value of each
field of New Winner to the corresponding field of Awardrec.

PASCAL STATEMENTS

Example 8
Ages = Adges-L10+71s
Assume that the base type of the set wvariable Ages 1is the integer

subrange 0..255. This example assigns the value of the set expression
Ages-[10+47] to the variable Ages.

5.3 CONDITIONAL STATEMENTS
A conditional statement selects a statement for execution depending on
the wvalue of an expression. PASCAL provides three conditional
statements:

e IF-THEN statement

e IF-THEN-ELSE statement

e CASE statement

These are described in the following sections.

5.3.1 The IF-THEN Statement
The IF-THEN statement causes the conditional execution of a statement.
Format

IF expression THEN statement;

where:
expression specifies a Boolean expression.
statement indicates a simple or compound statement.

The statement is executed only if the value of the expression is TRUE.
If the value of the expression is FALSE, program control passes to the
statement following the IF-THEN statement.

The THEN clause can specify a compound statement. However, note that,
if you use the compound statement, you must not place a semicolon
between the words THEN and BEGIN. The example below shows a semicolon
immediately following the word THEN:

IF Daw = Thurs THEN} (X misrlaced semicolon X)
BEGIN
statement

.

ENIDI$

As a result of the misplaced semicolon, the empty statement becomes
the object of the THEN clause. In this example, the compound
statement following the IF-THEN statement is executed regardless of
the value of Day.

PASCAL STATEMENTS

Example 1

IF ((X¥37/Constant) + Factor) = 1000.0 THEN
Answer = Answer - Factors

If the value of the arithmetic expression is greater than 1000.0, a
new value is assigned to the variable Answer.

Example 2

IF (A > RY AND ¢ B = C) THEN
0D oi=a ~ Cs

If both relational expressions are true, D is assigned the value of A
_C.

Example 3
IF (Name = “SMITH’) ANDO C(INITIAL = 7J7) THEN
BEGIN
Count &= Count + 1¥

SmithaddlCountl = Addresss
WRITELN (7J SMITH NO. SyCounty 7 LIVES AT 7y Address)
NI

This example counts the number of J SMITHs, prints each one's street
address, and stores it in an array.

Example 4

IF Daw = Thurs THEN
FOR T = 1 TO MaxEms DO
Faulll = SalarwlIl X (l-Tax.Rate-FICAYS
If the current value of the variable Day is Thurs, the FOR 1loop is
executed, and values for PaylI] are computed. 1If the value of Day is

not Thurs, the FOR loop is not executed; and program control passes
to the statement following the end of the loop.

5.3.2 The IF-THEN-ELSE Statement
The IF-THEN-ELSE statement is an extension of the IF-THEN statement

that 1includes an alternative statement, the ELSE clause. The ELSE
clause is executed if the test condition is false.

Format

IF expression THEN statement] ELSE statement2

where:
expression specifies a Boolean expression.
statementl denotes the statement to be executed 1if the
expression is true.
statement2 denotes the statement to be executed 1if the

expression is false.

PASCAL STATEMENTS

The objects of the THEN and ELSE clauses can be any simple or compound
statement, including another IF-THEN or IF-THEN-ELSE statement. The
ELSE clause always modifies the closest TF-THEN statement.

IF A=1 THEN
IF R<x1 THEN C3=1
ELSE Di=15s

By definition, PASCAL interprets this statement as if it included
BEGIN and END delimiters, as follows:

IF A=1 THEN
REGIN
IF R<x1 THEN (Ci=1
ELSE Di=1
ENIty

The variable D is assigned the value 1 if both A and B are equal to 1.

Example 1

IF Itisease THEN
WRITELN (“This rerson is sick.”)
ELSE WRITELN (/This rerson is heslthue.’)s§

This example prints a different line of text depending on the value of
the Boolean variable Disease. Note that Disease 1is a Boolean
expression, so you need not specify Disease = TRUE.

Example 2

IF Balance < 0,0 THEN

BEGIN
WRITELN (’0Overdrawn by ‘sARS(Ralance)) s
WRITELN (‘Loan of ‘sloansy’ at “rRater

4 sutomatically derosited’)y

Ralance (= Ralance + Loans¢
BILL_AMT != Loan X (1t+Rate)

END

ELSE WRITELN (‘No Loan issued this momth 7))

WRITELN (‘Balance is ‘sHalance)s’

If the value of Balance 1is negative, the compound statement is
executed. The compound statement prints two lines of notification,
adds Loan to Balance, and computes the amount of the bill for the
loan. A zero or positive Balance results in a message stating that no
loan was issued. The WRITELN procedure that prints the final Balance
is independent of the conditional statement and is always executed.

5.3.3 The CASE Statement

The CASE statement causes one of several statements to be executed,
depending on the value of a scalar expression.

Format

CASE case selector OF
case-label list : statement
[;case-1label list : statement...]

[OTHERWISE statement;...]
END;

PASCAL STATEMENTS

where:
case selector specifies an expression that evaluates to any
scalar type except a real type.
case-label list specifies one or more constants of the same
type as the case selector, separated by
commas.

Each case-label 1list is associated with a statement that may be
executed. The list contains the value of the case-selector expression
for which the system executes the associated statement. You can
specify the case labels in any order. However, the difference between
the largest and smallest labels must not exceed 1000. Each case label
can appear only once within a CASE statement, but can appear in other
CASE statements.

At run time, the system evaluates the case-selector expression and
chooses which statement to execute. TIf the value of the case-selector
expression does not appear in any case-label list, the system executes
the statement in the OTHERWISE clause.

If the value of the case-selector expression does not match one of the
case labels and you omit the OTHERWISE clause, the status of the CHECK
run-time option determines the action that the system takes. Refer to
Section 8.4.3 for run-time options. If CHECK is enabled, the system
prints an error message and terminates execution. If CHECK 1is not
enabled, execution continues with the statement following the CASE
statement.

Example 1

CASE Age OF
Sy6 ¢ IF Birth.Momth » Ser THEN Grade (= 1 ELSE Grade 1= OF
7 ¢ BEGIN

Grade = 2y

Readindg.5kill = TRUE

END s

8 ! Grade 1= 3
ENIts

At run time, the system evaluates BAge and executes one of the
statements. If Age is not wequal ¢to 5, 6, 7, or 8, and the CHECK
option is enabled, an error occurs and execution is terminated.

Example 2

CASE Ase OF

Srd 3 IF Rirth.Month » Ser THEN Grade (= 1 ELSE Grade (= 03
7 ¢ BEGIN
Grade = 27
Readind . Skill = TRUE
ENDs

8 ¢ Brade (= 3
OTHERWISE Grade = 0
END3

An OTHERWISE clause is added in this example. If the value of Age is
not 5, 6, 7, or 3, the value 0 is assigned to the variable Grade.

PASCAL STATEMENTS

Example 3

CASE Alrhabetic OF

ATy E T 70y’ L Alehe Flag s Yowels
Y Aleha.Flag = Sometimes
OTHERWISE Alrha.Flag = Consonant

ENIs

This example assigns a value to Alpha Flag depending on the value of
the character variable Alphabetic.

5.4 REPETITIVE STATEMENTS
Repetitive statements specify loops, that is, the repetitive execution
of one or more statements. PASCAL provides three repetitive
statements:

e FOR statement

e REPEAT statement

e WHILE statement

These are described in the following sections.

5.4.1 The FOR Statement

The FOR statement specifies the repetitive execution of a statement
based on the wvalue of an automatically incremented or decremented
control variable.

Format
FOR control variable := initial value {TO } final value DO statement;
DOWNTO
where:
control variable specifies the name of a simple wvariable of
any scalar type except a real type.
initial value specifies an expression of the same type as
the control variable.
final value specifies an expression of the same type as

the control variable.

The control variable, the initial value, and the final value must all
be of the same scalar type, but cannot belong to one of the real
types. The repeated statement cannot change the value of the control
variable. The control variable must be a simple variable; that is,
it cannot be an element of an array, a field of a record, the object
of a pointer reference, or a file buffer variable.

At run time, completion tests are performed before the statement is
executed. In the TO form, if the value of the control variable is
less than or equal to the final value, the loop is executed, and the
control variable 1is incremented. When the wvalue of the control
variable is greater than the final value, execution of the 1loop |is
complete.

PASCAL STATEMENTS

In the DOWNTO form, if the value of the control wvariable 1is greater
than or equal to the final wvalue, the loop is executed, and the
control variable is decremented. When the wvalue of the control
variable 1is 1less than the final value, execution of the loop is
complete.

Because completion tests are performed before the statement is
executed, some loops are never executed, for example:

FOR Control = N TO N + Q 0
Week N1 = WeekN] + Newrswus

If the value of N + Q is less than the value of N (that 1is, if 0 is
negative), the loop is never executed.

When incrementing and decrementing the control variable, PASCAL uses
units of the oappropriate type. For numeric wvalues, it adds or
subtracts one upon each iteration. For values of other types, the
control wvariable takes on each successive value of the type. For
example, a control variable of type 'A'..'2Z' is incremented (or
decremented) by one character each time the loop is executed.

If the FOR loop terminates normally, that is, if the loop exits wupon
completion and not because of a GOTO statement, the value of the
control variable is left undefined. You cannot assume that it retains
a value. Therefore, you must assign a new value to the control
variable if you use it elsewhere in the program. However, if the FOR
loop terminates because of a GOTO statement, it retains the value it
had at termination; and you can use that value elsewhere.

Example 1

FOR N = Lowbound TO Highbound IO
Sum = Sum + IntArrauiN1y

This FOR loop computes the sum of the elements of Int Array with index
values from Lowbound through Highbound.

Example 2
FOR Year (= 1899 DOWNTO 1801 DO
IF (Year MOD 4) = O THEN
WRITELN(Yeartd4y’ 15 A LEAF YEAR?)

The DOWNTO form is used here to print a list of all the leap years 1in
the nineteenth century.

Example 3
FOR I = 1 TO 10 Do
FOR J =1 TO 10 DO
ALT»J1 = 0%
This example shows how you can directly nest FOR loops. For each

value of I, the system steps through all 10 values of J and assigns
the value 0 to the appropriate array element,

PASCAL STATEMENTS

Example 4

FOR Emerlouee (= 1 TO N DO

REGIN

HRS = 4075

FOR Daw = Mon TO Fri O

IF SicklEmsloveeyDaul THEN
HRS 1= HRS-83

FasylEmrloveel = WagelEmeloveel X HRS

ENI

You can combine compound statements as in this example. The inner FOR
statement computes the number of hours each employee worked from

Monday through Friday. The outer FOR statement resets hours to 40 for

each employee and computes each person's pay as the product of wage
and hours worked.

5.4.2 The REPEAT Statement

The REPEAT statement groups one or more statements for execution until
a specified condition is true.

Format

REPEAT statement [;statement ...] UNTIL expression;
where:

expression specifies a Boolean expression.

Note that the format of the REPEAT statement eliminates the need for a
compound statement.

The expression 1is evaluated after the statements are executed.
Therefore, the REPEAT group is always executed at least once.

Example
REFEAT
READ(X) §
IF (X IN £7074+.7971) THEN
BEGIN

Didit_Count (= Didit_Count + 1%
Digit Sum = Digit.Sum + ORD(X) — ORDCO7)
END
ELSE Char..Count (= Char_Count+l
UNTIL EOLNCINFUT)$

Assume that the wvariable X 1is of type Char, and the variables
Digit Count, Digit Sum, and Char Count are integers. The example
reads a character (X) from the terminal. If X is a digit, the count
of digits 1is incremented by one; and the sum of digits is increased
by the value of X. The ORD function is used to compute the value of
X. If X 1is not a digit, the variable Char_Count is incremented by
one. The example continues processing characters from the terminal
until it reaches an end-of-line (EOLN) condition.

PASCAL STATEMENTS

5.4.3 The WHILE Statement

The WHILE statement causes one or more statements to be executed while
a specified condition is true.

Format
WHILE expression DO statement;
where:
expression specifies a Boolean expression.

The WHILE statement causes the statement following the word DO to be
executed while the expression is true. Unlike the REPEAT statement,
the WHILE statement controls the execution of only one statement.
Hence, to execute a group of statements repetitively, you must use a
compound statement. Otherwise, PASCAL repeats only the single
statement immediately following the word DO.

The expression is evaluated before the statement is executed. If the
expression is initially false, the statement is never executed. The
repeated statement must change the value of the expression. If the
value of the expression never changes, the result is an infinite loop.

Example 1

WHILE NOT EOF(Filel) DO
REAILN(Filel)s

This statement reads through to the end of the text file Filel.
Example 2

WHILE NOT EQLNCINFUTY DO
BEGIN
READ(CX) #
IF NOT (X IN LA’ Z7 9278 v+’ 2797°07 ¢47971) THEN
Ere = Errtl
END3

This example reads an input character from the current 1line on the
terminal. If the character is not a digit or letter, the error count
(Err) is incremented by one.

Example 3

Sum = 0Op
Ntests = 13
Avdg = 1005

WHILE (Avg = 920) AND (Ntests <= Maxtests) [0
BEGIN
Sum = Sum + Test [Ntestsls
Avdg = Sum DIV Ntestss
Ntests 1= NTests +1
END§
IF AVUG < 90 THEN
WRITELN (‘Your averade drorred below 920 as of Test ‘» Ntestsid)s

After initializing Sum to zero, this program fragment repeatedly
calculates a student's average test score., When the average score
falls below 90 (or NTESTS > MAXTESTS), the calculations cease. If the
average score 1is 1less than 90, the system prints an informative
message.

5-11

PASCAL STATEMENTS

5.5 THE WITH STATEMENT

The WITH statement provides abbreviated notation for references to
fields of a record.

Format
WITH record variable [,record variable...]] DO statement;

where:

record variable specifies the name of the record variable to
which the statement refers.

The WITH statement allows you to refer to the fields of a record
directly instead of using the record.fieldname format. 1In effect, the
WITH statement opens the scope of the field identifiers so that vyou
can use them as you would use variable identifiers.

Specifying more than one record variable has the same effect as
nesting WITH statements. The names must appear in the order of their
declaration. Thus, the following two statements are equivalent:

WITH Cats DNog DO
Bills = Bills + Catvel + Dogvets

and

WITH Cat DO
WITH Dog DO
Bills = Rills + Catvet + lodvets

Note that if the record Dog is nested within the record Cat, you must
specify Cat before Dog.

Example 1

VAR Tawxes ¢ RECORD
Gross ¢ REAL?
Net ! REAL>s
Eracket ! REAL;}
Itemized BOOLEAN;S
Faid ! REAL
END#

*

WITH Taxes DO
IF Net < 10000.,0 THEN Itemized &= TRUE}

This statement tests the value of the field Taxes.Net, and sets
Taxes.Itemized to TRUE if Taxes.Net is less than 10000.0.

PASCAL STATEMENTS

Example 2

TYFE Name = FACKED ARRAY [1..201 OF CHARS
Nate = RECORD
Momth ¢ Cldany Feby Mary Arry Mawy Juny
July Austy Sery Ooty Nove Dec)ds
[taw ¢ 1..31%
Year + INTEGER
ENIY#

VAR Hose ¢ RECORD
Fatient § Names
Rirthdate ¢ Dates
Age | INTEGER
END

+
+

+

WITH Hossy Rirthdste DO
BEGIN
Fatient = THOMAS JEFFERSON ‘y
Month t= Aprs
Age (= 236
ENIs

The program segment in this example shows how you can wuse the WITH
statement to assign values to the fields of a record. The WITH
statement specifies the names of the record variables Hosp and

Birthdate. The record names must be in order; that is, Hosp must
precede Birthdate. The assignment statements need only specify the
field names, for example: Patient 1instead of Hosp.Patient, Month

instead of Hosp.Birthdate.Month, and so forth.

5.6 THE GOTO STATEMENT

The GOTO statement directs the program to exit from a loop or other
program segment before its normal termination point.

Format
GOTO label;
where:
label specifies a statement label.

Upon execution of the GOTO statement, program control shifts to the
statement with the specified label. The statement can be any PASCAL
statement or an empty statement. The label must be defined in the
declaration section.

The GOTO statement must be within the scope of the label declaration.
In addition, you <cannot wuse a GOTO statement that is outside a
compound statement to jump to a label that is within that compound
statement.

PASCAL STATEMENTS

FOR T 3= 1 TO 10 DO
L

BEGIN
IF Real. .Arvrawlll = 0,0 THEN
REGIN
Result 2= 0.0
GOTO 10
ENIs
Result 1= Result + 1.0/Real._ Arraull]
ENIDs

103 Invertsum!t= Results

+

This example shows how you can use the GOTO statement to exit from a
loop. The 1loop computes the sum (Invertsum) of the inverses of the
elements of Real Array. 1If one of the elements is zero however, the
sum is set to zero; and the GOTO statement forces an exit from the
loop.

5.7 THE PROCEDURE CALL

A procedure call specifies the actual parameters to a procedure and
executes the procedure. (See Chapter 6 for a complete description of
procedures.)

Format

procedure name [(actual parameter [,actual parameter...])] ;

where:
procedure name specifies the name of a procedure.
actual parameter specifies a constant, an expression, the name
of a procedure or function, or a variable of
any type.

The procedure call associates the actual parameters in the 1list with
the formal parameters in the procedure declaration. It then transfers
control to the procedure.

The formal parameter list in the procedure declaration determines the
possible contents of the actual parameter list. The actual parameters
must be compatible with the formal parameters. Depending on the types
of the formal parameters, the actual parameters can be constants,
variables, expressions, procedure names, or function names. An
unindexed array name in a parameter list refers to the entire array.
PASCAL passes actual parameters by the mechanism specified 1in the
procedure declaration.

PASCAL STATEMENTS

Example 1

Tallbooth (Chamngey 0,25y Lanelll)s§
This statement calls the procedure Tollbooth, specifying the wvariable
Change, the real constant 0.25, and the first element of the array
Lane.
Example 2

Taves (RateXIncomey “Faw’)

This statement <calls the procedure Taxes, with the expression
Rate*Income and the string constant 'Pay' as actual parameters.

Example 3
Halts

This statement calls the predeclared procedure Halt, which has no
parameters.

CHAPTER 6

PROCEDURES AND FUNCTTONS

Procedures and functions are program wunits that perform tasks for
other program units. A procedure associates a set of statements with
an identifier; the statements are executed as a group. A function
returns a value. Each function 1is associated with a type and an
identifier.

Procedures and functions have similar structures and restrictions.
This chapter uses the term subprogram in descriptions that apply to
both procedures and functions.

PASCAL allows you to use three kinds of subprograms:

e Predeclared subprograms, described in Section 6.1.

e User-declared subprograms written in PASCAL. Sections 6.2
and 6.3 present the general format of subprograms and
describe how parameters are passed to subprograms. Sections

6.4 through 6.6 describe how to declare PASCAL procedures and
functions.

e External subprograms. This category 1includes subprograms
written in other 1languages. Sections 6.7 and /6.8 describe
external subprograms.

You can include subprograms in the main program compilation wunit, or
you can compile them separately from the main program in modules.
Separately compiled subprograms are considered external to the main
PASCAL program, and special usage rules apply (see Section %.8).

6.1 PREDECLARED SUBPROGRAMS

PASCAL provides predeclared procedures and functions that perform
various commonly used tasks, such as input and output operations and
mathematical functions. These predeclared subprograms are described
in the following sections.

6.1.1 Predeclared Procedures

PASCAL provides procedures that perform input and output, allocate and
destroy dynamic variables, supply the system date and time, pack and
unpack array variables, and halt program execution. Table 6-1
summarizes these procedures.

PROCEDURES AND FUNCTTIONS

Table 6-1: Predeclared Procedures

Procedure

Parameter Type

Action

CLOSE (£)

DATE (string)

DISPOSE (p)

DISPOSE (p,
tl,...,tn)

FIND(f,n)

GET (f)

HALT

LINELIMIT(f,n)

MARK (a)

NEW (p)

= file variable

string = variable of
type PACKED ARRAY
f1..111 OF CHAR]

p = pointer variable
p = pointer variable
t1,...,tn = tag

field constants

f = file variable n
= positive integer
expression

f = file variable

None

f = text file
variable n = integer
expression

a = a variable of
type “INTEGER

p = pointer variable

Closes file f.

Assigns current date
to string.

Deallocates storage
for p®. The pointer
variable p becomes
undefined.

Releases storage
occupied by p”; used
when p~ is a record
with wvariants. Tag

field values are
optional; if
specified, they must
be identical to
those specified when
storage was

allocated by NEW.

Moves the current
file position to
component n of file
f.

Moves the current
file position to the
next component of f.
Then GET(f) assigns
the wvalue of that
component to f", the
file buffer
variable.

Terminates execution
of the program.

Terminates execution
of the program when
output to file b
exceeds n lines. The
value for n is reset
to its default after
each call to REWRITE
for file f.

Places a marker for
use when allocating
memory for dynamic
variables.

Allocates storage
for p° and assigns
its address to p.

PROCEDURES AND FUNCTIONS

Table A-1: Predeclared Procedures (Cont.)

Procedure Parameter Type Action
NEW(p, tl,...,tn) p = pointer variable Allocates storage
tl,...,tn = tag for p”; used when p~
field constants is a record with
variants. The
optional parameters
tl through tn

OPEN(f, attributes) f = file wvariable
attributes (see
Table 7-2)

PACK (a,i,z) a = variable of type
ARRAY [m.,.n] OF T
i = starting index
of array a
z = variable of type
PACKED ARRAY [u..v]

OF T

PAGE (£) £ = text file
variable

PUT(f) f = file variable

specify the values
for the tag fields
of the current
variant. All tag
field values must be
listed in the order
in which they were

declared. They
cannot be changed
during execution.
NEW does not

initialize the tag
fields.

Opens the file £
with the specified
attributes.

Moves (v-u+l)
elements from array
a to array z by

assigning elements
all] through
all+v-u] to z[ul

through zfvl. The
upper bound of a
must be greater than
or equal to (l+v-u).

Skips to the next
page of file f. The
next line written to
f Dbegins on the
second line of a new
page. The default
for £ is OUTPUT.

Writes the value of
f~, the file buffer
variable, 1into the
file f and moves the
current file
position to the next
component of f.

PROCEDURES AND FUNCTIONS

RELEASE (a)

RESET (£)

REWRITE (f)

UNPACK (z,a,1)

a = a variable of
type “TINTEGER

f = file variable

f = file variable

z = variable of type
PACKED ARRAY [u. .V]
OF t

a = variable of type
ARRAY m..n] OF T

i = starting index
in array a

Table 6-1: Predeclared Procedures (Cont.)

Procedure Parameter Type Action

READ(f, v1,...,vn) f = file wvariable For vl through wvn,
vl,...,vn = READ assigns the
variables next wvalue 1in the

input file f to the
variable. You must
specify at least one
variable (vl1). The
default for f is
INPUT.

READLN(f, v1,...,vn) f = text file Performs the READ
variable vl1,...,vn = procedure for vl
variables through vn, then

sets the current

file position to the
beginning of the

next line. The
variable list is
optional. The
default or f is

INPUT.

Deallocates memory
allocated by the NEW
procedure up to the
point set by the
MARK procedure.

Enables reading from
file f. RESET (f)
moves the current
file position to the
beginning of file £

and assigns the
first component of f
to the file buffer
variable, £ ",
EOF(f) 1is set to
FALSE unless the

file is empty.
Enables writing to
file f. REWRITE(f)
sets the file f to
zero length and sets

EOF(f) to TRUE.

Moves (v-u+1l)
elements from array
z to array a by
assigning elements
z[u]l through z[v] to
afli] through
ali+v-ul. The upper
bound of a must be
greater than or

equal to (i+v-u).

PROCEDURES AND FUNCTIONS

Table 6-1: Predeclared Procedures (Cont.)
Procedure Parameter Type Action
TIME (string) string = variable of Assigns the current
type PACKED ARRAY time to string.

f1..11] OF CHAR

WRITE(f,pl,...,pn) f = file wvariable Writes the values of
pl,...,pn = write pl through pn into
parameters the file f. At least

one parameter (pl)
must be specified.
The default for f is
OUTPUT.

WRITELN(f,pl,...,pn) f = text file Performs the WRITE
variable pl,...,pn = procedure, then
write parameters skips to the

beginning of the
next line. The write
parameters are
optional. The
default for £ is
OUTPUT.
6.1.1.1 Input/Output Procedures - The PASCAL input and output
procedures are:

e CLOSE - Section 7.4

e FIND - Section 7.5

e GET - Section 7.6

e LINELIMIT - Section 7.7

e OPEN - Section 7.8

e PAGE - Section 7.9

e PUT - Section 7.10

e READ - Section 7.11

e READLN - Section 7.12

e RESET - Section 7.13

® REWRITE - Section 7.14

e WRITE - Section 7.15

® WRITELN - Section 7.16

PROCEDURES AND FUNCTTIONS

6.1.1.2 Dynamic Allocation Procedures - PASCAL provides the
procedures NEW and DISPOSE for use with variables that are dynamically
allocated.

NEW

The predeclared procedure NEW allocates memory for a dynamic variable.
To refer to the dynamic variable, you must use a pointer variable.

Format
NEW(p);
where:
P specifies a pointer variable,

The NEW procedure sets aside memory for p”~, that is, the variable that
p points to. The value of p~ is undefined. You cannot assume that
the allocated space is initialized.
For example, you declare a pointer variable as follows:
VAR FTR § TINTEGER?
This declares PTR as a pointer to an integer variable. The 1integer
variable and its address, however, do not yet exist. You use the
following procedure call to allocate memory for the dynamic variable:
NEW(FTR) §
This call allocates a variable of type integer. The wvariable is
denoted by PTR”, that is, the pointer variable's name followed by a
circumflex(”). This call also assigns the address of the allocated
integer to PTR.
DISPCSE

The predeclared procedure DISPOSE deallocates memory for a dynamic
variable., As for NEW, you must use a pointer variable to refer to the
dynamic variable.
Format

DISPOSE (p);
where:

P specifies a pointer variable.

For example, to deallocate memory for the dynamic wvariable in the
above example, you can issue the following procedure call:

DISFOSE(FTR) ;

As a result of this procedure call, the memory allocated for PTR™ |is
deallocated; and the variable is destroyed. The value of PTR is now
undefined.

Pointer types and dynamic allocation allow you to create linked data
structures. An example of the use of pointer types and the NEW and
DISPOSE procedures follows.

PROCEDURES AND FUNCTIONS

This program constructs a linked list of records. Each student record
contains data on one student, that is, a name and a student ID number.
Each record also contains a field that 1is a pointer to the next
record. The program reads a number and a name and assigns each of
them to a field of the student record. Then, it 1inserts the new
record on the beginning of the linked list by assigning the "Start"
pointer to that new record.

FROGRAM Linkedlist C(INFUT, OQUTFUT)

TYFE STUDENT..FTR = "STUDENT.DATAS
STRING = FACKED ARRAYIL..201 OF CHARS
NUMEBER = 1..999993%

STUDENT .DATA = RECORD
Name § STRINGS
Stud. Ih ¢ NUMBERS
Next ¢ STUDENT..FTR
END#

VAR Starty Student | STUDENT.FTR:
New.. Il ¢ NUMEBER?$
New. . Name ¢ STRINGS
Count INTEGERS?

FROCEDURE WRITE.DATA(Student 3 STULENT.FTR)$

(XThis rrocedure grints the list of students. Recause the
rrinting starts at the bedgirming of the linked listy the studert
names and I numbers are srinted in reverse of the order in
which thew were entered.x)

VAR TIyJ ¢ INTEGER?¢
Next.Student ¢ STUDNENT_FTRS
BEGIN
WRITELN ('NAME?! y ‘STUDNENT ID#! 12903
REFEAT
WRITELN(Student”™ .Name : 20y Student”™.8tud.ID ¢ 733
Next.Student = Student™.Nemxts
DISFOSE (Student)s
Student != Next.Student
UNTIL Student = NIL
ENDS (XEnd of WRITE.DATAX)

(X MAIN FROGRAM X)
BEGIN
Count = 0%
WRITELN (‘Tuyre g S-digit ID rnumbersy’
‘and a name for each student.’)}
WRITELN('Fress CTRL/Z when finished.’)}s
Start = NIL;:
WHILE NOT EOQOF 1D
BEGIN
READLN (New_.Ily New_.Name)j;
NEW (Student)s
Student”™.Next = Starti
Student”™.Name != New.Namejs
Student™ . .5tud. I (= NEW.ID;
Start = Student;
Count (= Count + 1
ENIDy
IF Count > O THEN
WRITE.DATA(START)

END.,

PROCEDURES AND FUNCTIONS

In the main program, the WHILE loop reads a number and a name for one
student, The following procedure call allocates memory for a new
student record:

NEW(Student) s

The new record is inserted at the beginning of the 1list, that 1is,
Student”.Next points to the previous head of the list. The value of
the new student record is assigned to the Start pointer.

The WRITE_DATA procedure writes the name and student 1ID number for
each student in the linked list. After writing data for one student,
the procedure assigns the address of the next record in the 1list to
Next Student. The following call deallocates memory for one student
record:

DISFOSE (Student) s
After deallocating memory, the procedure assigns the value of
Next Student to Student. When the current student record points to
NIL, the loop stops executing.

NEW AND DISPOSE —-- RECORD-WITH-VARIANTS FORM

You can use the following forms of NEW and DISPOSE when manipulating
dynamic variables of a record type with variants:

NEW(p,tl,...,tn)
DISPOSE(p,tl,...,tn)

The parameter p must be a pointer variable pointing to a record with
variants. The optional ©parameters tl1 through tn must be scalar
constants. They represent nested tag field values where tl1 1is the
outermost variant.

If you create p without specifying the tag field values, the system
allocates enough memory to hold any of the variants in the record.
Sometimes, however, a dynamic variable takes values of only a
particular wvariant. If that variant requires less memory than NEW(p)
allocates, you should use the NEW(p,tl,...,tn) form.

For example, the following record represents a menu selection:

TYFE Mernu.Ftr = "“Menu.Orders
Meat.Ture = (Fishy Fowly Beef)s
Beef_ Fortion = (0z.10y Oz..16y O0z.32)%

Mernu. . Order = RECORD
CASE Entree ! Meat_ Ture 0OF
Fish ¢ (Fish.Ture (Salmony Cods Ferchr Trout)s
Lemon ¢ ROOLEAN)§
Fowl ! (Fowl.Ture { (Chickens Duckr Goose)s
Sauce ! (Orandgey Cherryy Raisinl)s
Reef ! (Reef.Ture | (Steaks Roasty Frime.rib)s
CASE Size ! Reef.Fortion OF
0x.10y 0z.16 ¢ (Beef.ved ! (Artichokery Mixed))}
232 1t (Stomach.Cure ! (Ricarbonatey
AntacidrNone Needed)) s
ENID#

VAR Menu_Selection ! Menu.Ftrs

PROCEDURES AND FUNCTIONS

You can allocate memory for only the Fish variant as follows:
NEW (Menu..Selectiony Fish)s

The example below shows how to call NEW and specify tag field wvalues
for nested variants:

NEW (Menu. Selactiony Beefs 023203

The tag field values must be listed in the order in which they were
declared.

The DISPOSE(p,tl,...,tn) procedure call releases memory occupied by p.
The tag field walues t+1 through tn must be identical to those
specified when memory was allocated with NEW, for example:

NESFOSE (Meru.Selections Reefy 0. 325

This call deallocates the memory allocated by the last NEW procedure
call shown above.

6.1.1.3 The MARK and RELEASE Procedures - The MARK and RELEASE
procedures give you the opportunity to deallocate memory set aside by
several NEW procedures without using several DISPOSE procedures.

If you plan to allocate memory for use by several dynamic wvariables,
you should consider placing a marker at some point. The MARK
procedure places an index so that when you use the corresponding
RELEASE procedure you deallocate the memory allocated after that
marker. This saves you from having to DISPOSE several times, one for
each NEW.

The format for MARK is:

Format
MARK (a)
where:
a is a variable of type INTEGER representing a marker.

The format for RELEASE is:

Format
RELEASE (a)
where:
a is the variable specified with MARK.

PROCEDURES AND FUNCTIONS

Note the following example:

MAKK(A)
NEW (Menu. . SelectionsFish)s
plectionyBeef sz 3205

MARK{R)
NEW(Menu.. SelectionyFowl) s

RELEASE (A)

In this example, all three NEW allocations are deallocated by
RELEASE (A) . If RELEASE(B) had been specified, only the third NEW
allocation, NEW(Menu Selection,Fowl), would have been deallocated.

6.1.1.4 Miscellaneous Predeclared Procedures - PASCAL provides four
miscellaneous predeclared procedures: PACK, UNPACK, DATE, and TIME.

The predeclared procedures PACK and UNPACK pack and unpack arrays.
Packing means that the data items are stored as densely as possible.

PACK

You can declare arrays to be packed by specifying PACKED in the TYPE
or VAR declaration. Sometimes, however, you might want to convert an
array to a packed array within the executable section of the program.
The predeclared procedure PACK copies elements of an unpacked array to
a packed array.

Format

PACK(a,i,z)

where:
a is a variable of type ARRAY [m..n] OF T.
i is the starting index of a.
VA is a variable of type PACKED ARRAY[u..v] OF T.

The number of elements in a must be greater than or equal to the
number of elements in z. PACK(a,i,z) assigns the elements of a,
starting with afi}, to the array z, until all of the elements in z are
filled. When specifying 1i, keep in mind that the upper bound of a
(that is, n) must be greater than or equal to i+v-u.

For example, you can read integers from a file into an unpacked array,
element by element, then pack the whole structure.

VAR A ¢ ARRAYL1..201 OF 0..15%
F ! FACKED ARRAYL1..203 OF 0..155

FOR I ¢= 1 TO 20 IO
READ (ALII1)3
PACK (A»1sF) 5

PROCEDURES AND FUNCTIONS
This program fragment assigns the elements All] through Af20] to PT1]
through P[20]; that is, all the elements in A are packed into P.
You can pack part of the array A as in the following example.
(kDeclarationsXx)

VAR A ¢ ARRAYEL. 251 OF 1.,.15%
ot PACKED ARRAYLL..201 OF 1..1%59%

(kFrocedure call¥)

FACK(As LyF) 3
This procedure call moves elements of the array A into the packed
array P. The parameter 1 specifies that the packing starts with array
element Afl]. Thus, the elements Afll] through Al20] are assigned to
P11 through Prl20]. Packing need not start with the first element;
for example, PACK (A,5,P) packs elements Al5] through Afl24] into
elements P[1] through P[207.
UNPACK

You can convert a packed array to an unpacked array with the
predeclared procedure UNPACK.

Format

UNPACK (z,a,1);

where:
z is a variable of type PACKED ARRAY({u..v] OF T.
a is a variable of type ARRAY[m..n] OF T.
i is the starting index of a.

For UNPACK, the restrictions on the array indices and the value of i
are the same as for PACK.

You cannot pass individual elements of a packed array to a subprogram
as a VAR parameter. Therefore, you must unpack the array before you
can pass its elements as VAR parameters.

(X DNeclarations X)

VAR F ¢ PACKED ARRAYL1..101 OF CHARj
A ! ARRAY[1..101 OF CHARj

FROCEDURE FROCESS_ELEMENTS (VAR CH ¢ CHAR)S
*

*

4

END#
(X Part of main rrogram X)

READ (F)»

UNPACK(FrAr1) s

FOR I (= 1 TO 10 DO
PROCESS_ELEMENTS (ALI1)

PROCEDURES AND FUNCTIONS

This program fragment reads characters into the packed array P. The
procedure call to UNPACK assigns Pl1] through Pl101 to the unpacked
array elements All] through AT10]. Then, for each call to
PROCESS ELEMENTS, one element of A is passed to the procedure.

DATE AND TIME

The predeclared procedures DATE and TIME assign the current date and
time to a string variable.

Format

DATE (string);
TIME(string);

where:

string specifies a variable of type PACKED ARRAYI1..11] OF
CHAR.

The following example demonstrates the use of DATE and TIME:
(x Declarations X)
Todaws. Natey Current.Time ! FACKED ARRAYL1..111 OF CHARS
(X Frocedure calls %)

DATE(Todaus late) s
TIME(Current. Time) s

These two calls return results in the following format:

19-Jan~-1980

143120125

The time is returned in 24-hour format. Thus, the time shown above is
14 hours, 20 minutes, 25 seconds. In the DATE procedure, if the day
of the month is a 1-digit number, the leading zero does not appear in
the result; that is, a space appears before the date string.

6.1.2 Predeclared Functions

PASCAL provides functions that compute arithmetic values, test certain
Boolean conditions, transfer data from one type to another, and
perform other miscellaneous calculations. Predeclared functions
return a value as a result. Table 6-2 summarizes the predeclared
functions.

Arithmetic functions perform mathematical computations. Parameters to
these functions can be integer, real, single-precision, o1
double-precision expressions. The arithmetic functions, except for
the absolute and square root functions, return a real value when the
parameter is an integer, single-precision, or real value. When the
parameter is a double-precision expression, the result 1is a
double-precision value. The absolute and square root functions return
a value of the same type as the parameter.

PROCEDURES AND FUNCTIONS

Boolean functions return Boolean values after testing a condition.
The EOF and EOLN functions operate on files: EOF tests for the
end-of-file condition on a variable of any file type, and EOLN tests
for the end-of-line condition on a text file variable. The ODD
function tests whether an integer parameter 1is odd or even. The
UNDEFINED function, for which you must supply a real value, returns
the value TRUE when the argument is not in normalized floating-point
format. Variables containing a value that is not in a normalized
floating-point format cause a reserved operand fault when wused 1in
arithmetic computations.

Transfer functions take a parameter of one type and return the
representation of that parameter in another type. For example, the
ROUND function rounds a real number to an integer, and TRUNC truncates
a real number to an integer.

The miscellaneous functions include PRED and SUCC. The PRED and SUCC
functions operate on parameters of any ordered scalar type (that is,
all scalar types except one of the real types). SUCC returns the
successor value in the type; PRED returns the predecessor value.

Table 6-2: Predeclared Functions

Category Function Parameter Result Purpose
Type Type
Arithmetic ABS (n) integer, same Computes the
real, as n absolute value of
double n. The type of n
must be either

integer, real, or
double; and the
type of the result
is the type of n.

ARCTAN (n) integer, real Computes the
real, double arctangent of n.
double

C0S (n) integer, real Computes the
real, double cosine of n.
double

EXP (n) integer, real Computes e**n, the
real, double exponential
double function.

LN (n) integer, real Computes the
real, double natural logarithm
double of n. The value of

n must be greater
than 0.

SIN(n) integer, real Computes the sine
real, double of n.
double

PROCEDURES AND FUNCTIONS

Table 6-2: Predeclared Functions (Cont.)

Category Function

Parameter
Type

Result
Type

Purpose

SQR (n)

SQRT (n)

Boolean EOF (f)

EOLN (£)

OoDD(n)

UNDEFINED(r)

integer,
real,
double

integer,
real,
double

file
variable

same
as n

real
double

Boolean

text file Boolean

variable

integer

real,
double

Boolean

Boolean

Computes n**2, the
square of n. The
type of n must be
either integer,
real, or double;
and the type of
the result is the
type of n.

Computes the
square root of n,.
If n is less than
zero, PASCAL
generates an
error.

Indicates whether
the file position
is at the end of
the file f. EOF(f)
becomes TRUE only
when the file
position is after
the 1last element
in the file. The
default for f is
INPUT.

Indicates whether
the position of
file £ is at the
end of a line.
EOLN (£) is TRUE
only when the file
position 1is after
the last character
in a line, in
which case the
valur of f7 is a
space. The default
for £ is INPUT.

Returns TRUE 1if
the integer n is
odd; returns FALSE
if n is even.

Returns TRUE 1if
the value of r is
not in a
normalized
floating-point
format.

Table 6-2: Predeclared Functions

PROCEDURES AND FUNCTIONS

(Cont.)

Category Function Parameter Result Purpose
Type Type
Transfer CARD (s) set integer Returns the number
of elements
currently
belonging to the
set s.

CHR (n) integer char Returns the
character whose
ordinal number is
n (if it exists).

CRD (n) any integer Returns the

scalar ordinal (integer)
type value

except corresponding to
a real the value of n.
type

ROUND (n) real, integer Rounds the real or

double double-precision
value n to the
nearest integer.

SNGL (d) double real Rounds the
double-precision
real number d to a
single-precision
real number,

TRUNC (n) real, integer Truncates the real

double or
double-precision
value n to an
integer.
Miscellaneous CLOCK none integer Returns an integer
value equal to the
central processor
time used by the
current process.
The time 1is not
expressed in
milliseconds.
EXPO(r) real, integer Returns the
double integer-valued
exponent of the
binary

floating-point
representation of
r; for example,
EXPO(8.0) is 4.

PROCEDURES AND FUNCTIONS

Table 6-2: Predeclared Functions (Cont.)

Category Function Parameter Result Purpose

Type Type

PRED (a) any same Returns the

scalar type as predecessor value

type parameter in the type of a

except (if a predecessor

a real exists). But it is

type up to you to make

sure there is

pred/succ. The

compiler will

always return with
the next ordinal
value higher/lower
than a. There 1is
no bounds
checking. Checking
occurs only if the
PRED(a) or SUCC(a)

is in an
assignment
statement, for
example:
(*SCHECK+*)
x:=PRED(a)

SUCC(a) any same Returns the
scalar type as successor value in
type parameter the type of a (if
except a successor
a real exists).
type

PASCAL also provides additional arithmetic routines available with
PASLIB, the PASCAL library. Use the following format to specify a
routine from the Common Math Library:

{result type;}
FUNCTION routine name (VAR parameter list): |FORTRAN

where:
routine name is one of the names listed in Table 6-3.
parameter list are acceptable arguments for this routine. See
the TOPS-10/TOPS-20 Common Math Library Reference
Manual.
result type is the type of the function result.
Table 6-3 1lists these routines and their purpose. For more

information <concerning these routines, refer to the TOPS-10/TOPS-20
Common Math Library Reference Manual.

D-floating-point

PROCEDURES AND FUNCTIONS
Table #-3: Library Routines

Routine Purpose

Name

ARCOS arc cosine

AINT truncation to integer

ALOG natural logarithm

ALOG10 bazse-10 logarithm

AMAXO largest of a series

AMINO smallest of a series

AMIN1 smallest of a series

AMOD remainder

ANINT nearest whole number

ASIN arc sine

ATAN2 arc tangent of two angles

COSD cosine (angle in degrees)

COSH hyperbolic cosine

COTAN contangent

DABS double-precision D-floating-point absolute value

DACOS double-precision D-floating-point arc cosine

DASIN double-precision D-floating-point arc sine

DATAN double-precision D-floating-point arc tangent

DATAN2 double-precision D-floating-point arc tangent of
two angles

DBLE conversion from single-precision to
double-precision D-floating-point format

DCOS double precision D-floating-point cosine

DCOSH double-precision D-floating-point hyperbolic cosine

DCOTAN double-precision D-floating-point cotangent

DDIM double-precision D-floating-point positive
difference

DEXP double-precision D-floating-point exponential

DEAXP2. exponentiation of a double-precision

number to the power of an integer

6-17

Table 6-3:

Library Routines

PROCEDURES AND FUNCTIONS

(Cont.)

Routine
Name

Purpose

DEAXP?3,

DFLOAT

DIM

DJINT
.0G

DLOG10

DMAX1

DMIN1

DMOD

DNINT

DPROD
DSIGN
DSIN
DSINH
DSQRT
DTAN

DTANH

EXP1.

EXP2.

EXP3.

FLOAT
IABS

IDIM

exponentiation
D-floating-point
double-precision

conversion of
D-floating-point

of a
number to the
D-floating-point

an integer to

format

positive difference

double-precision
double-precision
double-precision

double-precision
series

double-precision
series

double-precision

double-precision
number

double-precision
double-precision
double-precision
double-precision
double-precision
double-precision

double-precision
tangent

exponentiation
another integer

exponentiation

of an

D-floating-point
D-floating-point

D-floating-point

D-floating-point

D-floating-point

D-floating—point

D-floating-point

D-floating-point
D-floating-point
D-floating-point
D-floating-point
D-floating—-point

D-floating-point

D-floating-point

integer

power of an integer

exponentiation
power of another

conversion of an
integer absolute

integer positive

single-precision

to the

double-precision
power or another
number.

double-precision

truncation
natural logarithm
base-10 logarithm

largest in a

smallest in a

remainder

nearest whole

product

transfer of sign
sine

hyperbolic sine
square root
tangent

hyperbolic

power of

of a single-precision number to the

of a single-precision number to the

number

integer to single-precision format

value

difference

PROCEDURES AND FUNCTIONS

Table 6-3: Library Routines (Cont.)

Routine Purpose

Name

IDINT conversion of a dobule-precision D-floating-point
number to integer format

IDNINT integer nearest whole number for a double-precision
D-floating-point number

IFIX conversion of a single-precision number to integer
format

INT conversion of a single-precision number to integer
format

ISIGN integer transfer of sign

MAX0 largest of a series

MAX1 largest of a series

MINO smallest of a series

MIN1 smallest of a series

MOD integer remainder

MINT integer nearest whole number for a single-precision
number

RAN random number generator

RANS random number generator with shuffling

REAL conversion of an integer to single-precision format

SAVRAN save teh last random number generated

SETRAN set the seed value for the random number generator

SIGN transfer of sign

SIND sine (angle in degrees)

SINH hyperbolic singe

SNGL conversion of a double-precision D-floting-point
number to single-precision format

TAN tangent

TANH hyperbolic tangent

PROCEDURES AND FUNCTIONS

6.2 FORMAT OF A SUBPROGRAM

Subprograms are similar in format to programs. A subprogram consists
of a heading and a block; the block contains a declaration section
and an executable section.

The heading specifies the name of the subpvogram and lists its formal
parameters. For a function, the heading also indicates the type of
the value returned. The declaration section defines 1labels and
identifiers for constants, types, variables, procedures, and functions
that are used in the subprogram. The executable section contains the
statements that perform the actions of the subprogram.

The labels and identifiers declared in the subprogram are local data
and are unknown outside the scope of the subprogram. The system does
not retain the values of 1local wvariables after exiting from the
subprogram. The following is a sample subprogram:

FROCEDURE FRINT.SYM.ARRAY (VAR A ARRY Side ! INTEGER) S

(X This srocedure rrints arrvag A Lf it is summetric (which is
determined by the Furmction SYMMETRY), The asrraw is srinted
in row ordery one row Fer line., X)

Vak Iy Js Ks L ¢ INTEGERS

FUNCTION SYMMETRY ¢ EBOOLEANS
(k This funcltion returns true i the arraw is summetricy false
otherwise, X)

BEGIN
SYMMETRY = TRUES$
FOR K 3= 1 TO Side IO
FOR L 1= K TO Side DO

IF ACKyLD < ACL KD THEN SYMMETRY (= FALGES
ENIy
(X bedginning of FRINT.SYM.ARRAY X)
BEGIN
IF SYMMETRY THEN
BEGIN
WRITELN (‘Array enteredi)i
FOR I t= 1 TO Side DO
REGIN
FOR J t= 1 T0O Side IO
WRITE (ALLyJ1 3 4)5
WRITELN
ENII#
END
ELSE WRITELN (‘The arrav is rmot summetric.’)i
END#

(k end of FRINT_SYM.ARRAY bodg %)

Subprograms can be nested within other subprograms. In the previous
example, the function SYMMETRY is nested iIn the ©procedure
PRINT SYM _ARRAY. The order of nesting determines the scope of an
identifier.

PROCEDURES AND FUNCTIONS

Data items declared in any particular block of a PASCAL program are
considered global to all 1its nested subprograms. Thus, data items
declared in the main program block are global to all subprograms. A
subprogram can access 1its global identifiers. For example, the
function SYMMETRY above has no local variables. Tt wuses the global
identifiers K and L, and the parameters A and Side, which are declared
in PRINT_SYM ARRAY.

6.3 PARAMETERS

Subprograms communicate data with the main program and with each other
by means of parameters. A subprogram can have any number of
parameters, but need not have any at all.

The subprogram heading lists the formal parameters, which specify the
type of data that will be passed to the subprogram. For example, the
formal parameter 1list for the procedure PRINT SYM ARRAY 1is the
following: -7

(VAR A ¢ ARKRS 8Side ¢ INTEGER)
This list specifies two parameters to be passed to PRINT SYM ARRAY:
the wvariable A of the previously defined type ARR, and the value Side
of type INTEGER.
Each formal parameter corresponds to an actual parameter, specified in
the subprogram call. For example, a wvalid procedure call to
PRINT_SYM ARRAY is the following:

FPRINT.SYM..ARRAY (Current.Arry Current.Side);

This procedure call passes the variable Current Arr and the value of
Current Side to PRINT SYM ARRAY.

The formal parameters are identifiers used in the subprogram; they
represent the actual parameters in each subprogram call. You can call
a subprogram several times with different actual parameters. At

execution, each formal parameter represents the variable or value of
the corresponding actual parameter. The formal-value parameters, and
the actual parameters to which they correspond, must be of identical
types.

6.3.1 Formal Parameters

The formal parameter list specifies the identifier for each parameter
and the type of each parameter to be used within the subprogram.

Format

([mechanism specifier]] identifier list : type;
[[mechanism specifier] identifier list : type ...J);

PROCEDURES AND FUNCTIONS

where:

mechanism specifier indicates how PASCAL passes data to this
parameter. The mechanism specifiers for
PASCAL subprograms are VAR, PROCEDURE,
and FUNCTION.

identifier list specifies one or more identifiers,
separated by commas.

type specifies the type of the parameters in
the list. You can pass values,
variables, procedures, and functions to
a subprogram written in PASCAL, as
described below.

PASCAL provides two methods for passing parameters to PASCAL
subprograms.

1. Value -- the value of the actual parameter expression 1is
passed to the subprogram. The subprogram cannot change the
actual parameters's value during execution. (Value 1is the

default method.)

2. Variable -- the address of the parameter variable 1is passed
to the subprogram. The subprogram can change the parameter's
value. The VAR mechanism specifier indicates that a

parameter is to be passed as a variable parameter.

Value parameters pass the value of the actual parameter expression to
the subprogram. The subprogram does not change the actual parameter's
value during execution. Therefore, after the subprogram executes, the
value of the actual parameter is the same as before the execution of
the subprogram. The following example shows a formal parameter 1list
that includes two value parameters:

FROCEDNURE EXAMPLE (Counter ! INTEGERF NAME @ CHAR);

Variable parameters pass the address of the actual parameter
expression to the subprogram. The subprogram can change the actual
parameter's value. Therefore, after the subprogram executes, the
value of the actual parameter 1is the value assigned to the
corresponding formal parameter within the subprogram. To specify a
variable parameter, use the reserved word VAR before the parameter in
the formal parameter list. The following example shows the same
formal parameter 1list as in the previous example. In this example,
the parameters have been defined to be variable parameters.

FROCEDURE EXAMFLE (VAR Counter ! INTEGER? VAR Name ! CHAR);

6.3.1.1 Value Parameters - By default, PASCAL passes value parameters
to PASCAL subprograms. When you specify a value parameter, the formal
parameter list does not include the reserved word VAR.

The actual parameter corresponding to a formal value parameter must be
a compatible expression. Value parameters follow the rules for
assignment compatibility. For example, the following list passes all
parameters by value:

(Ay B ¢ INTEGER? C ! CHAR)

PROCEDURES AND FUNCTIONS

The actual parameters corresponding to A and B must be integer
expressions. The actual parameter corresponding to <C must be a
character expression.

If the subprogram changes the value of a value parameter, the change
is not reflected 1in the calling program unit. Thus, if you do not
want the value of an actual parameter to change as a result of the
execution of a subprogram, you pass it as a value parameter.

6.3.1.2 vVvVariable Parameters - To pass a variable parameter, wuse the
reserved word VAR. You must wuse the VAR specifier to pass file
parameters and to pass actual parameter variables with wvalues that
change during execution of the subprogram. The corresponding actual
parameter must be a variable; it cannot be a constant or an
expression.

When you pass a variable as a variable parameter, the subprogram has
direct access to the <corresponding actual parameter. Thus, if the
subprogram changes the value of the formal parameter, this change is
reflected in the actual parameter in the calling program unit.

In the example procedure PRINT SYM ARRAY, the actual parameter
corresponding to A is passed using variable semantics. Tt must be a
variable of the previously defined type, ARR. The actual parameter
corresponding to Side is passed by wvalue and must be an integer
expression.

The VAR specifier must precede each identifier 1list that 1is to be
passed using variable semantics. Thus, VAR can appear more than once
in the formal parameter list, for example:

(VAR SEAy BREEZE ¢+ REALs WIND ¢ INTEGER? VAR SICK ¢ MED.FILED
As a result of this formal parameter 1list, the actual parameters
corresponding to SEA, BREEZE, and SICK are passed as variable
parameters; and the actual parameter corresponding to WIND is passed
as a value parameter (the default).

Compatibility

Variables passed to a subprogram as actual variable parameters must be
of the same type as the corresponding formal parameters.

The following restrictions also apply to variable parameters:

® You cannot pass an element of a packed structure with the VAR
specifier, although you can pass the entire structure. You
must unpack the structure or assign its elements to simple
variables before you can pass individual elements.

e You cannot pass a variable of a packed set type to a formal
parameter that is an unpacked set type, and vice versa.

® You cannot pass a tag field of a record with the VAR
specifier (see Section 2.3.,2.1). You can pass the entire
record or assign the tag field to another variable in order
to pass it.

6-23

PROCEDURES AND FUNCTIONS

6.3.1.3 Formal Procedure and Function Parameters - PASCAL allows
procedures and functions to be passed as parameters to other
procedures or functions. To do this, a full procedure or function
heading 1s given as one parameter of the procedure being declared.
For example, the following procedure declaration specifies one value
parameter and one function parameter:

FROCEDURE ACTUAL (VALY INTEGERS
FUNCTION FORMAL (FLIINTEGER) DINTEGER) s

Ce » o

VAL, = FORMAL (VAL + 1)

. o e

The formal function parameter takes one value integer parameter, and
returns an Iinteger value. When procedure ACTUAL is called, you need
to supply it with two parameters: an integer value; and, the name of
a function which takes one integer argument and returns an integer
value. Note that ONLY the function name is passed to the procedure;
do NOT supply the function's parameters in the procedure call. They
are supplied when the procedure calls the function.

The parameter list of the formal procedure or function may consist of
anything that can be defined in a normal procedure or function
declaration, including value parameters, VAR parameters, conformant
arrays, and even other procedures and functions. These procedures and
functions obey the same rules as the formal procedure or function of
which they are a parameter.

The following is an example of a procedure heading with formal
procedures nested to two levels:

FROCEDURE OUTER (FROCEDURE FORMALL(FUNCTION FORMALZIREALSF EBIREAL)) G

Procedure OUTER has one parameter, a procedure. This procedure has

two parameters, a real-typed function (with no parameters) and a real
value parameter.

When a subprogram is called with a procedure or function parameter,
the parameter 1lists of the formal and actual parameters must be
congruous. This means that the parameter lists must have the same
number of parameters; and each corresponding parameter must be of the
same kind (value, VAR, etc.) and of the same type. In the following
example, procedure YOU BET could be passed as a parameter to procedure
OUTER above, because YOU BET and FORMAL1 have congruous parameter
lists.

FROCEDURE YOU_RET(FUNCTION YOU?: REALF RET! REAL)?
In the following example, procedures PRINTHEX and PRINTOCTAL have
congruous parameter lists. Procedure PRINTBINARY's parameter list is
not congruous to either of the others because both of 1its parameters
are value parameters.

FROCEDURE FPRINTHEX (VAL:! INTEGER$F VAR SIZE?! INTEGER)S

FROCEDURE FRINTOCTAL (I INTEGER? VAR Fi INTEGER)SF

FROCEDURE FRINTEBINARY (NUM?! INTEGERS] WIDTH! INTEGER)Sj

PROCEDURES AND FUNCTIONS

An optional syntax for formal procedure and function parameters is to
omit the parameter 1list in the declaration. Tf this is done, no
checking on the number or type of parameters 1is possible, and only
value parameters are allowed when calling the formal procedure or
function. No conformant array, procedure, or function parameters can
be passed to a formal procedure or function unless they are explicitly
declared.

For information on calling sequences for wuser-defined functions and
procedures, refer to Appendix G.

6.3.2 Conformant Arrays

Some programming applications require general subprograms that can
process arrays of varying size. PASCAL allows you to declare such
subprograms using conformant arrays. You can call the subprogram with
arrays of different sizes, as Jlong as their bounds are within those
specified by the formal parameter.

For example, you could write a procedure that sums the components of a
one-dimensional array. Each time you use the procedure, however, you
might want to pass arrays with different bounds. Instead of declaring
multiple procedures using arrays of each possible size, you can use a
conformant-array parameter. The prcoccedure treats the formal parameter
as if its bounds were those of the actual parameter.

The format of a conformant-array parameter is:

array id : ARRAY[idlow..idup : scalar-type id]
OF conformant-array type;

where:
idlow is the lower bound constant identifier
idup is the upper bound constant identifier
array id is one or more identifiers associated with the

array

Idlow and idup are bound identifiers. They define the lower and the
upper limits, vrespectively, of the array. Each id is treated as a
constant value in the subprogram; therefore, you cannot assign values
to the id other than in the definition. You cannot use a subrange to
define the limits.

Scalar type specifies the data type of the index. Note that you must
use a type identifier to specify the range of indices. The type
identifier can be one of the predefined scalar types INTEGER or CHAR.

Conformant—-array type can be either a type 1identifier or another
conformant—-array specification.

PROCEDURES AND FUNCTIONS

Multidimensional arrays can also use conformant array parameters. The
format is:

array-id : ARRAY [idlow .. idup : scalar-type id]
OF ARRAY Tfidlow .. idup : scalar-type id]
OF conformant-array type;

An abbreviated form can also be used to define multidimensional
conformant arrays. The format is:

array-id : ARRAY [idlow .. idup : scalar-type id;
idn.. idn : scalar-type idn; ...] OF
conformant~array type;

When a subprogram with conformant-array parameters is called, the 1IDs
(the bound identifiers) assume the values of the lower and upper bound
values of the actual parameters. These values are those specified in
the definition section of the actual-array parameter.

A conformant-array parameter can have up to one conformant dimension
packed. This means that a one-dimensional conformant-array parameter
can be packed or unpacked. A multidimensional conformant-array
parameter can be unpacked, or its 1last (rightmost) conformant
dimension can be packed. Note that this restriction applies only to
the conformant part of the parameter; the conformant array type can
be of any type, packed or unpacked.

The components and indices of the actual and formal conformant—-array

parameters nust be of compatible types. The rules for
conformant—-array compatibility are the same as those for other arrays
with one exception. That 1is, the range of the index types of the

actual-array parameter must be within the range specified for the
formal parameter.

PROCEDURES AND FUNCTIONS

Example 1

The following program shows how to declare and use conformant-array
parameters.

FROGRAM Durnarr CINFUT OUTFUT) S

(X This rrodgram illustrates the use of conformant-srraw
raramelers.,

The srocedure Sum is called from the main srogram with Lwo
different aclual rarametersd Arrel and Arr2. X)

TYFE Rng = 1..3509%

VAR Arrl ¢ ARRAYLL1, .51 OF INTEGERS
Arr2 ¢ ARRAYLZ7., 201 OF INTEGER?
Kyd ¢ INTEGERS

FROCEDURE Sum (VAR Trarr ¢ ARRAY [Low..High ¢ INTEGERI1 OF
INTEGER)Y ¥

(X This rrocedure asceerts actual-arraw sarameters with inteser
comronents whose indices are within the rande srecified bw
Rrg.s X))

VAR TIrAns ¢ INTEGERS?
BEGIN
Ang t= 03
FOR [3= jlow TO High DO
Ans = Aneg + InsrelI]s
WRITELNC The sum of the comronents isl ‘sAns)
ENIDIs Ckerid Sumk)

(X MAIN FROGRAM X
BEGIN
WRITELN (7TYFE %5 INTEGERS?)j
FOR K= 1 TO % DO
READ (ArrlIK1) ¥
Sum (Arrl)s
WRITELNC/TYFE 14 INTEGERS) ¥
FOR J¢= 7 TO 20 IO
REALDC(Arr2LJ1) 5
Sum (Arr2)
ENID,

This program sums the components of the arrays Arrl and Arr2. The
procedure Sum includes a 1l1-dimensional conformant-array parameter,
Inarr, whose indices are of type Rng. Within the main program, Sum is
called with two different arrays: Arrl with index type [1..5], and
Arr2 with index type [7..20].

The first procedure call, Sum(Arrl), passes Arrl to Sum. Low assumes
the value of 1, and High assumes the wvalue of 5. The FOR loop
processes array components Inarrfl]l to Inarrl5]. When Sum is called
with Arr2, Low assumes the value of 7, and High assumes the value of
20. When Sum 1is called with Arr2, the FOR loop processes the
components Inarr[7] to Inarrl[20].

PROCEDURES AND FUNCTIONS

Example 2

A conformant-array parameter can have more than one dimension, as in
this example:

TYFE Level.Ransge = 1l,.6%
Nelasses = 1.,.8%
Notudents = 1..405
Names = FACKED ARRAY L1..351 OF CHARS

VAR Studernts | ARRAY [le.6v1+.851..401 OF Namess

+
3

+

FROCEDURE Kid.Count (School ¢ ARRAY LlLevel.lLow..Level
Level. . Randes Nceclasses.l.c | 2466
Nelessess Nstudentbl.ow. .Nstudent.
¢ Netudentl OF Names)s

se

+
*

+

This example defines School as a three-dimensional conformant-array
parameter. Each array passed to School might contain the names of all
the students in a particular elementary school. The indices of the
array denote the number of grades in the school, the number of classes
at each grade level, and the number of students in each class,

The actual-array parameters can have from one to six grades, one to
eight <classes at any grade level, and one to forty students in any
particular <class. Furthermore, the indices of the actual-array
parameters must be within the ranges shown in the TYPE section. For
example, a school with six grades must use integer indices from one to
six. Indices of zero to five, for instance, cannot be used.

6.4 DECLARING A PROCEDURE

A procedure is a group of statements that perform a set of actions.
The wuse of procedures allows you to break a complex program into
several units, each of which performs one task. For example, a
program that computes social statistics from survey data might contain
procedures to input and validate the data, select a random sample, and
print results.

To declare a procedure, specify its header and block in the procedure
and function section. The header consists of the word PROCEDURE and
the procedure name along with any parameters you want to include. The
block consists of its own declaration section and the executable
section. You can declare a procedure 1in the main program, 1in a
module, or in another subprogram.

PROCEDURES AND FUNCTIONS

Format 1
PROCEDURE procedure-identifier [(formal parameters)] ;

label section;

constant section;

type section;

variable section;
procedure-and-function section;

BEGIN
statement [[; statement...]
END;

Format 2

iEICLOBAL] }PROCEDURE procedure id [(formal parameters)] ; [FORWARD;]
VL rFORTRAN]

Format 3

PROCEDURE procedure id [(formal parameters)] ;{H:EXTERN [AL] : }
FORTRAN;)

Format 1 shows the format for a procedure that is included within the
program that calls it.

Format 2 shows the format for a procedure that can be called
externally, that 1is, it can be called from another program. The
FORWARD declaration permits the wuse of forward references 1in the
declarations section. Forward declarations are described in Section
6.6. The FORTRAN declaration at the beginning .of the 1line 1indicates
that this procedure can be called externally by a FORTRAN program.

Format 3 shows the format for a procedure that 1is being called
externally. The procedure must be compiled separately from the source
program that calls it., Placing the FORTRAN declaration at the end of
the 1line indicates that the procedure being called by PASCAL is a
procedure written in the FORTRAN language. Refer to Section 6.7,
procedure id

specifies the identifier to be used as the name of the procedure.

formal parameters

contains the names and types of the formal parameters. It
optionally can include the reserved words VAR, PROCEDURE, and
FUNCTION.

label section

declares local labels.
constant section

defines local constant identifiers.
type section

defines local types.

PROCEDURES AND FUNCTIONS

variable section

declares local variables.
procedure-and-function section

declares local procedures and functions.

statement

specifies an action to be performed by the procedure. A
procedure can contain any of the statements described in Chapter
5.

A procedure consists of a heading and a block. The procedure block is
similar in structure and contents to the main program block, with the
following exceptions:

® The declaration section cannot contain VALUE initializations.

e The procedure block ends with END followed by a semicolon
(;), rather than a period (.) as in the main program. The
procedure does not have a block if it 1is a forward
declaration or is defined externally (EXTERNAL or FORTRAN).

You must declare all the variables that are local to the procedure,
but you should not redeclare the formal parameters or the procedure
identifier as variable, type, or constant identifiers.

For the two examples that follow, assume that these declarations have
been made:

CONST NUMEBER = 203
TYFE Range = 0..1005
List = ARRAYL1..NUMEER] OF Randes

VAR ARR ¢ Listy
Mimimumy Maximum ! Randesd
Averade ¢ REAL s

Example 1

FROCEDURE READLWRITE (VAR A § List)s
VAR I ¢ INTEGERS
REGIN
WRITELN (‘/Ture 3 list of 20 inteders’y
‘in the randge of 0 to 100,7)%
FOR I &= 1 TO Number DO
REGIN
READ(ALTII) 5
WRITEC(ALTIIt7) 4
WRITELN
END
ENIs
The procedure READ WRITE reads a list of 20 integers, inserts them
into the array A, and writes the array. READ WRITE uses one variable
parameter, the array A.

Given the declaration of ARR, the following is a valid procedure call:

READ..WRITE(ARR) §

PROCEDURES AND FUNCTIONS

As a result of this call, the list of integers is written in the array
ARR. The value of this array is then returned to the program unit
that called the procedure READ WRITE.

Example 2
FROCEDURE MIN.MAX.AVEG (VAR Miny Max Rarges

VAR Avg ¢ REALS A 1 List)s
VAR Sumy NMaxs NMins J 0 INTEGERS

REGIN
Max = ALLIS Min &= Maxs Sum = Maxy
NMax 3= 17 NMin &= 1%
FOR J = 2 TO NUMRBRER DO
BEGIN

S = Sum + ALJDS
IF ACJY = Max THEN
BEGIN Max t= ALJI15

NMax 1= 1

END
ELSE IF ALJY = Max THEN
NMaw = NMax + 19
IF ACJI < Min THEN
REGIN Min $= ALJI:
NMin = 1
ENI
ELSE IF ACLJD = Minm THEN
NMirm $= NMirm + 1
ENIt#
AVG i= Sum/NUMRERS
WRITELNS?
WRITELN(Maximum =‘yMaxidy’y occurring’ rNMaxid4y 7 times’);s
WRITELNS
WRITELNC/Minimum =‘» Minlds’y occurring’y NMini4y’ times’)i
WRITELNS
WRITELN (’Averase value (truncated) =’y TRUNC(Avg)110)5
WRITELN (‘Averade value =’y Avd { 20)
ENIis

This procedure computes the minimum, maximum, and average values in
array A. It also counts the number of times the minimum and maximum
values occurred, and stores those numbers in NMin and NMax. The
WRITELN statements print the results of each of those computations.

Min, Max, and Avg are formal variable parameters. Their wvalues, as
assigned in the procedure MIN MAX AVG, are returned to the calling
program unit and can be used for further computations in the program.
A 1is specified as a value parameter because its value does not change
in the procedure.

The following is a valid procedure call to the procedure:
Min. Mas_Avd(Minimumr Maximums Averadges ARR)
The values of the formal parameters Min, Max, and Avg are returned to

the actual parameters Minimum, Maximum, and Average, which were
defined in the main block of the program.

6-31

PROCEDURES AND FUNCTIONS

6.5 DECLARING A FUNCTION

A function is a group of statements that compute a scalar or pointer
value. To declare a function, specify its heading and block in the
procedure and function section.

Format 1
FUNCTION function id [(formal parameters)] :result type;

label section;

constant section;

type section;

variable section;
procedure-and-function section;

BEGIN
statement [;statement...]
END;

Format 2

{[[[GLOBAL]]]l FUNCTION function id [(formal parameters)] ; [FORWARD;]
(rorTRAN] 1Y

Format 3

FUNCTION function id [(formal parameters)] ;{ﬂ:EXTERN [aL] ; }
FORTRAN;

Format 1 shows the format for a function that is included within the
program that calls it.

Format 2 shows the format for a function that can be called
externally, that 1is, it can be called from another program. Placing
the FORTRAN declaration at the beginning of the line indicates that a
FORTRAN program can call this procedure. The FORWARD declaration
permits the use of forward references in the declarations section.
Forward declarations are described in Section f.6.

Format 3 shows the format for a function that is defined externally;
the procedure 1is compiled separately from the source program that
calls it. Placing the FORTRAN declaration at the end of the 1line
indicates that the procedure being called by PASCAL is written in the
FORTRAN language. Refer to Section /A.7.

function id

specifies the identifier to be used as the name of the function.

formal parameters

contain the names and types of the formal parameters. They
optionally can include the reserved words VAR, PROCEDURE, and
FUNCTION.

result type

specifies the type of the function's result. The result must be
a scalar or pointer value.

PROCEDURES AND FUNCTIONS

label section
declares local labels.
constant section
defines local constant identifiers.
type section
defines local types.
variable section
declares local variables.
procedure-and-function section
declares local procedures and functions.
statement
specifies an action to be performed by the function., A function
can contain any of the statements described in Chapter 5. A
function must contain a statement that assigns a value to the
function identifier (for every potential path through the code).
If it does not, the value of the function could be undefined.
A function consists of a heading and a block. The formal parameter
list in the function heading is identical in format to the list in the
procedure heading. The function block is similar in structure and
contents to the main program, with the following exceptions:

e The function cannot contain a value initialization section.

e The function block ends with END followed by a semicolon (;),
rather than a period (.) as in the main program. The

function does not have a block 1if it is a forward
declaration, or if it is defined externally (EXTERN(AL) or
FORTRAN) .

You must declare all variables that are local to the function, but you
should not redeclare a variable, type, or constant with the same name
as a formal parameter or the function identifier.

Each function must include a statement or statements that assigns a
value of the result type to the function name. The last value that is
assigned to the function name is returned to the calling program unit.
To use the value, include a function call in the calling unit. Unlike
a procedure call, a function call is not a statement. It simply
represents a value of the function's result type.

PROCEDURES AND FUNCTIONS

Side Effects

A side effect is an assignment to a nonlocal variable, or to a VAR
parameter, within a function block. Side effects can change the
intended action of a program and therefore, should be avoided. The
following program illustrates an example of a side effect.

FROGRAM Examele (OUTFUT) S
VAR XY ¢ INTEGERS
ANSLy ANS2 ¢ ROOLEANS

FUNCTION Fositive (ThisVar ¢ INTEGER) ¢ RBOQLEANS
BEGIN

Fositive = FALSES

IF ThisVar > O THEN

BREGIN
X 1= ThisVar -~ 103 (X Side effect on X X)
Fositive != TRUE
ENT
ENIS (X end FositiveX)
BEGIN (k MAIN FROGRAM X)
Y = 7§ X 1=1%3
ANS1 = Fositive(X) AN Fositivel(Y)s
WRITEILN (7ANSL equals yANSL) 5
Y = 7% X t= 153
ANSZ2 1= Positive(Y) AND Fositive(X)s
WRITELN (7ANS2 ecuals’»ANSD)
ENII,

This example generates the following output:

ANS1 eauals TRUE
ANS2 equals FALSE

Thus, the output depends on which function call 1is evaluated first:
Positive(Y) or Positive(X). PASCAL does not guarantee which part of
an expression is evaluated first. The resulting value of a function
should not depend on when the function is called, as it does in the
example above. Therefore, you should avoid side effects on global
variables.

Example 1

FUNCTION COUFPCNS ¢ REALSs
VAR ANS § (YES» NO)s
AMOUNT y SURT ¢ REALS
REGIN
SURT $= 03
WRITELN (‘Ang courons? Tyre wes Or no.’ds
READINLN (ANS)
IF ANS=YES THEN
BEGIN
WRITELN (‘Tyre value of each courony one rer lines
CTRL/Z wher finished?’)s
REFEAT
READLN (AMOUNT) s
SUET = SUBT + AMOUNT

UNTIL EOF
ENIts
COUFONS 1= SURT
ENDs (X End COUFONSX*)

PROCEDURES AND FUNCTIONS

The function COUPONS computes the total value of a group of coupons.
It uses only the three local variables, ANS, AMOUNT, and SUBT, and
requires no parameters. The result of this function is the real total
of the coupon values. The assignment statement, COUPONS := SUBT,
assigns the result to the function identifier.

To use the function COUPONS, specify its name, as follows:

TOTAL = SUBTOTAL ~ COUFONSS
The function call is treated as a real-valued expression in this
statement. Note that vyou can use the function call in the same way

that you can use a value of its result type.

Example 2

FUNCTION SYMMETRY (VAR A ¢ ARR) ! BOOLEANS?
(kThis furnction returns true if the arraw A is swymmetrics it
returns false otherwise.X)

Vark Is J ? INTEGERS

EEGIN
SYMMETRY &= TRUEy¥
FOR I = 1 TO S8IZE DD
FOR J t= 1 TO SIZE DO
IF ACIsJ] <x ACJ» I THEN SYMMETRY &= FALGE

ENDG Ok SYMMETRY %)

The function SYMMETRY uses one variable parameter, the array A.
SYMMETRY returns a Boolean value; the result is TRUE if A is
symmetric, and FALSE if A is not symmetric.

6.6 FORWARD DECLARATIONS

Normally, you must declare subprograms before you refer to them.
However, a subprogram can reference another subprogram that has not
yet been declared if you use a FORWARD declaration. The forward
declaration provides the compiler with information about the
forward-declared subprogram's formal parameters, and indicates that
the block of the subprogram follows later in the source file.

For example, a complete declaration is impossible if two subprograms
call each other recursively. Omitting the declaration 1is also
impossible because PASCAL needs information about a subprogram's
formal parameters before it can compile a reference to the subprogram.
Therefore, you must forward-declare one of the recursive subprograms.

A forward declaration consists of the subprogram heading (including
the formal parameter 1list, if any, and the result type, if it is a
function) and the FORWARD directive without a subprogram block, for
example:

FROCEDURE CHESTNUT (EBLD !REAL$ NOC § CHAR$ VAR ARC ! REC)iFORWARD?

This example declares the procedure CHESTNUT in a FORWARD declaration.
The FORWARD declaration includes only the information shown in the
example. It could also include FORTRAN or GLOBAL, as in Format 2
above.

PROCEDURES AND FUNCTIONS

When you specify the block of a forward-declared subprogram, you must
not repeat the formal parameter list or the result type of a function.
Except for these omissions, declare the heading and block 1in the
normal way. .

Example
FUNCTION ARDER (OFLy QF2y OF3 1 REAL) ¢ REALSF FORWARDS

FROCEDURE FRINTER (STUDENT ¢ NAME.ARRAY)

.

REGIN
Z t= ADDER (A»EyC)
ENI

FUNCTION ADDER Ok OFls OF2y OF3 ! REAL ¢ REALX)S

*

BEGIN

+

+

FRINTER (‘Leonsrdo da Vinci’)s

EENILy

This example forward-declares the function ADDER. The block of the
function appears after the declaration of the procedure PRINTER. Note
that the heading of the ADDER block specifies 1its formal parameters
and result type within comment delimiters. Although you must omit the
parameter list and result type when you define the function block,
inserting them as a comment is a good documentation practice.

6.7 EXTERNAL SUBPROGRAMS

The FORTRAN and EXTERNAL directives indicate procedures and functions
that are defined external to a PASCAL program. With these directives,
you can declare subprograms written in another 1language (such as
FORTRAN or MACRO) and PASCAL subprograms that are compiled separately.
In PASCAL, the FORTRAN directive should be used only for separately
compiled routines written in FORTRAN or a language using the FORTRAN
subprogram calling conventions. The EXTERNAL directive must be wused
only for separately compiled external routines written in PASCAL.

If you declare separately compiled PASCAL subprograms as EXTERNAL,
their names must be wunique within the first six characters. 1In
addition, an external subprogram cannot have the same name as the main
program,

PROCEDURES AND FUNCTIONS

Example 1
FUNCTION SCORE (RESULT ¢ REALY ¢ REALS EXTERNALS

The function SCORE is a procedure in a library that exists on disk.
This declaration declares SCORE as an external subprogram.

Example 2
FROCEDURE FORSTR(S ¢ PACKED ARRAYLL . JUTINTEGERD OF CHAR)Y FORTRANS

This statement declares the FORTRAN procedure FORSTR. The formal
parameter list specifies S as a conformant-array parameter.

6.8 MODULES FOR SEPARATE COMPILATION

By placing PASCAL procedures and functions in a MODULE, vyou can
compile them separately from the main program. At load time, you
specify the compiled files containing the main program and the modules
to be 1loaded together in the executable image. The executable image
can include any number of modules, and each module can contain any
number of subprograms.

Format
[roverRLAID]] MODULE module name (program parameters);
label section;
constant section;
type section;
variable section;
procedure-and-function section;
END.
[OVERLAID]
Specifies that the module shares global wvalues with the main
program that calls it. If the module is OVERLAID; then the
constant, type, and variable sections must be identical to those
in the main program.
modul e name
specifies the identifier to be used as the name of the module.

program parameters

lists the external files. This 1list must be identical in order
and in content to the list in the main program heading.

label section

declares global labels. PASCAL issues a warning-level message if
a module contains a label section, but ignores the labels.

constant section
declares global constant identifiers as in a main program.
type section

defines global types as in a main program.

PROCEDURES AND FUNCTIONS

variable section

declares global variables as in a main program.
procedure-and-function section

declares the procedures and functions contained in the module.

A module is similar to a main program, except that it has no wvalue
initialization section and no executable section. Modules can contain
the 1label, constant, type, variable, and procedure-and-function
sections. (PASCAL issues a warning-level message if a module contains
label declarations, but ignores the labels.) If the module is
OVERLAID, then the constant, type, and variable sections and the
program parameters must be identical to those 1in the main program.
The procedure-and-function section defines the subprograms contained
in the module.

To ensure that the program parameters and the constant, type, and
variable sections are 1identical in the main program and in all
modules, you can place them in a separate file. Then, vou can use the
%$INCLUDE directive to insert the contents of the file into the main
program and into all modules, instead of repeating all the
declarations and definitions.

If a module shares global variables with a main program, both the
module and the program headings must include the attribute [OVERLAIDI].
If the module heading does not contain [OVERLAID], then all its global
variables are private to the module and cannot be accessed by the main
program or other modules. Subprograms declared at the outermost level
of a module can be declared and called from the main program (or from
another module). You must declare the subprogram with the EXTERNAL
modifier in the calling program unit and with the [GLOBAL] attribute
in the module. Similarly, subprograms declared at the outermost level
of the main program with the [GLOBAL] attribute can be declared as
EXTERNAL in a module.

Each subprogram in the module can access data declared either locally
to itself or by the main program.

Examples

COVERLAIDI MODULE SEF (INFUTs OUTFUT) ¢
VAR I ¢ INTEGER?s
FROCEDURE READER (N ! INTEGER)S$

VAR KyF INTEGER;

REGIN
I ¢= 03
FOR K ¢= 1 TO N DO
BEGIN
READ (F)s
IF F=0 THEN I = I + 15

END
ENDF (X READER X)
END, (XMODULE SEF X)

The MODULE SEP contains one procedure, READER. You can declare READER
as an external subprogram in another module or in the main program.
Because SEP contains the definition of a global data item, I, it |is
declared as an [OVERLAID] module. If you declare READER as an
external subprogram, you must declare READER as [GLOBAL] in the module
so that the main program can call it.

CHAPTER 7

INPUT AND OUTPUT

This chapter describes input and output (I/0) for PASCAL on TOPS-20.

PASCAL

provides predefined procedures to perform input and output to

file variables. These procedures are divided 1into the following
categories:

General

Procedures

OPEN -- associates a file with specified characteristics
CLOSE —-- closes a file

FIND —-- performs direct access to file components

Input Procedures

RESET -- opens a file and prepares it for input

GET -- reads a file component into the file buffer variable
READ ~- reads a file component into a specified variable
READLN -~ reads a line from a text file

Output Procedures

REWRITE -- truncates a file to length zero and prepares it
for output

PUT -- writes the contents of the file buffer wvariable into
the specified file

WRITE -- writes specified values into a file
WRITELN -- writes a line into a text file
LINELIMIT -- terminates program execution after a specified

number of lines have been written into a text file

PAGE -- skips to the next page of a text file

In addition, you can use the predefined functions EOF and EOLN with
text files.

The following sections describe:

PASCAL file characteristics

PASCAL record formats

INPUT AND OUTPUT

e PASCAL input and output procedures
e Terminal T/0

The input and output procedures are presented in alphabetical order.

7.1 FILE CHARACTERISTICS

This section describes the organization of records and methods of
accessing records.

The term file organization applies to the way records are physically
arranged on a storage device. The term record access refers to the
method used to read records from or write records to a file,
regardless of the file's organization. A file's organization is
specified when the file is created and cannot be changed. Record
access is specified each time the file is opened and can vary.

7.1.1 File Names

The file name indicates the system name of a file that is represented
by a PASCAL file variable in an OPEN procedure (Section 7.7). For the
file name, you can specify a character-string expression that contains
a TOPS-20 file specification or a logical name. Apostrophes are
required to delimit a character-string constant or a logical name used
as a file name.

7.1.2 Logical Names

The TOPS-20 operating system provides the logical name mechanism as a
way of making programs device and file independent. If you use
logical names, your PASCAL program need not specify the particular
device on which a file resides or the particular file that contains
data. Specific devices and files can be defined at run time.

A logical name is an alphanumeric string that you specify in place of
a file specification. Logical names provide great flexibility because
they can be associated not only with a complete file specification,
but also with a device, a device and a directory, or even another
logical name.

On TOPS-20 you can create a logical name and associate it with a file
specification by means of the TOPS-20 DEFINE command. Thus, before
program execution, you can associate the logical names in your program
with the file specifications appropriate to your needs, for example:

GUEFINE DATA: FSIBENJAMINGTEST.DAT.2

This command creates the logical names DATA: and associates it with
the file specification PS:<BENJAMIN>TEST.DAT.2. The system uses this
file specification when it encounters the logical name DATA: during

program execution, for example:

OFEN (INDATAy “DATA!‘y OLID;

INPUT AND OUTPUT

In executing this PASCAL statement, the system uses the file
specification PS:<BENJAMIN>TEST.DAT.2 for the logical name DATA:. To
specify a different file when you execute the program again, issue
another DEFINE command, for example:

CUEFINE DATA! POICJENNIFER=REAL . DAT .7

This command associates the logical name DATA: with a different file
specification and replaces the previous logical name assignment. The
OPEN statement above now refers to the file PS:<JENNIFER>REAL.DAT.7.
For more information about the wuse of logical names, refer to the
TOPS-20 User's Guide.

7.1.3 File Organization

PASCAL supports sequential file organization. Sequential files
consist of records arranged in the order in which they are written to
the file. The first record written is the first record in the file;
the second record written is the second record in the file, and so on.
As a result, records can be added only at the end of the file.

7.1.4 Record Access

You specify record access mode as a parameter to the OPEN procedure.
PASCAL provides two ways of accessing records:

e Sequential
e Direct

If you select sequential access mode, records are written to or read
from the file, starting at the beginning and continuing through the
file one record after another.

Having sequential access to a file means that you can read a
particular record only after reading all the records preceding it.
New records can be written only at the end of a file that is open for
sequential access.

If you select direct access mode, you can specify the order in which
records are accessed. Each FIND procedure call must include the
relative record number indicating the record to be read. You can

directly access a file only if it contains fixed-length records,
resides on disk, and is open for input (reading).

7.2 RECORD FORMATS
Records are stored in one of two formats:
e Fixed length
e Variable length
You can access fixed-length records in either sequential or direct

mode. Variable-length records can be accessed only in sequential
mode.

INPUT AND OUTPUT

7.2.1 Fixed-Length Records

When you specify fixed-length records, you are specifying that all
records in the file contain the same number of bytes. A file opened
for direct access must contain fixed-length records to allow the
record location to be computed correctly. All binary files (that is,

all files except TEXT files) must have fixed-length records. PASCAL
does not support binary files with variable-length records.

7.2.2 Variable-Length Records
Variable-length records can contain any number of bytes wup to the
buffer size specified when the file was opened. TEXT files must have

variable-length records. PASCAL does not support TEXT files with
fixed-length records.

7.3 THE CLOSE PROCEDURE
The CLOSE procedure closes an open file.
Format

CLOSE (file variable);
where:

file variable specifies the file to be closed.
Execution of this procedure causes the system to close the file. Each
file 1is automatically closed upon exit from the procedure in which it
is declared, except those which have been dynamically allocated with
the procedure NEW. These files should be explicitly closed; if not,
they are automatically closed when the program ends, or when they are
DISPOSED.
You can close only files that have been opened explicitly with the
OPEN procedure or implicitly by the RESET or REWRITE procedure.
Therefore, you cannot close the predeclared file variables INPUT and
OUTPUT.
Example

CLOSE (Albums)s

This procedure closes the file Albums to further access, and deletes
the file if it is internal to the current program.

7.4 THE FIND PROCEDURE

The FIND procedure positions a file pointer at a specified component
in the file.

Format

FIND (file variable, integer expression);

INPUT AND OUTPUT

where:
file variable specifies a file that is open for direct
access. The file must have fixed-length
records.
integer expression specifies the positive integer
expression indicating the component at
which to position the file. The

component number must not be less than
or equal to zero.

The FIND procedure allows you to directly access the components of a
file. You can use the FIND procedure to move forward or backward in a
file. The file must be open for direct access. That 1is, you must
have specified DIRECT in the OPEN statement for that file. 1In
addition, the file must have fixed-length records.

After execution of the FIND procedure, the file is positioned at the
specified component. The file buffer variable assumes the value of
the component, for example:

FIND (Albumsy 409

As the result of this statement, the file position moves to the fourth
component in the file Albums. The file buffer variable Albums”
assumes the value of the fourth component.

If you specify a component beyond the end of the file, no error
occurs.

You can use the FIND procedure only when reading a file. If the file
is open for output (that is, with REWRITE), a call to FIND results in
a run-time error.

Example 1

BEGIN
FIND (Albumsy Currvent + 205

ENID§
If the value of Current is 6, this statement causes the file position
to move to the eighth component. The file buffer variable Albums”

assumes the value of the component.

Example 2

BEGIN
FIND (Albtumsy Current-—-1)3s

. * 2

ENIVS

If the value of Current is 6, this statement causes the file position
to move backward one component to the fifth component.

INPUT AND OUTPUT

7.5 THE GET PROCEDURE

The GET procedure reads the next component of a file 1into the file
buffer variable.

Format
GET (file variable);

where:
file variable specifies the file to be read.

Before you use the GET procedure to read one or more file components,
you must have <called the RESET procedure to prepare the file for
reading (input). RESET moves the file position to the first component
and assigns its value to the file buffer variable.

As a result of the GET procedure, the file position moves to the next
component of the file. The file buffer variable takes on the value of
that component, for example:

RESET (Bools) s
Neuwrec = Rooka™s
GET (Books)s

After execution of the RESET procedure, the file buffer wvariable
Books”™ is set to the first component of the file. The assignment

statement assigns this wvalue to the wvariable Newrec. The GET
procedure then assigns the value of the second component to Books”,
moving the file position to the second component. The next GET

procedure moves the file position to the third component, as shown in
Figure 7-1.

Beginning
of File s o o [FOF
| T
RESET GET
(BOOKS) (BOOKS)
Beginning . - ° EOF
of File

ot

RESET GET GET

{BOOKS) (BOOKS) (BOOKS) MR.S.3117.83

Figure 7-1: File Position After GET

By repeatedly using GET statements, you can read sequentially through
the file.

INPUT AND OUTPUT

When you reach the end of the file and you request a GET operation,
EOF automatically becomes TRUE, and the file buffer variable becomes
undefined. When EOF is TRUE, you cannot use the GET procedure.
PASCAL signals a run-time error, and program execution is aborted.

Example

BEGIN
GET (Fhones)s

+

ENI 3

This example reads the next component of the file Phones into the file
buffer variable Phones”™. EOF(Phones) must be FALSE; 1if it is TRUE,
an error occurs.

7.6 THE LINELIMIT PROCEDURE

The LINELIMIT procedure terminates execution of the program after a
specified number of lines have been written into a text file.

Format

LINELIMIT (file variable, n);

where:
file variable specifies the text file to which this 1limit
applies.
n represents a positive integer expression
indicating the number of lines that can be
written to the file before execution

terminates.
When PASCAL initializes a text file, it specifies a large default line

limit. You can override this limit by calling LINELIMIT with your
desired value.

After the number of lines output to the file has reached the 1line
limit, program execution terminates.

Example

REGIN
LINELIMIT (Dettsy100)53

ENII

Execution of the program terminates after 100 lines have been written
into the text file Debts.

INPUT AND OUTPUT

7.7 THE OPEN PROCEDURE

The OPEN procedure does not actually open a file but rather allows you
to specify file attributes. You cannot use OPEN on a file that has
had a RESET or REWRITE done, or on the predeclared file INPUT.

Format 1

OPEN (file variable [,file name]| [,history]
[,record length] [,record-access-method]
[rrecord type] [scarriage control]);

Format 2

OPEN (FILE VARIABLE :
[,FILE NAME

file variable
file name]

[,HISTORY := history status]
[,RECORD LENGTH := positive integer]
[,RECORD ACCESS METHOD := record-access—mode]
[,RECORD TYPE := record type |
[CARRIAGE CONTROL := carriage control] Y
where:
file variable specifies the PASCAL file variable associated
with the file. You cannot open the
predeclared file variable INPUT.
(internal files)
This parameter is ignored for internal files.
The system creates a unique name for each
internal file.
(external files)
file name provides information about the file to

TOPS-20. The file name can be a variable or
constant identifier defined as type PACKED
ARRAY [1..n] OF CHAR, or a file specification
enclosed in apostrophes (for example,
'PS:<MASELLA>BOOKS.DAT').

If you omit the file name, PASCAL will first
attempt to use the file variable identifier
as a logical name. If that name 1is not
defined, PASCAL will use the defaults shown
in Table 7-1.

The file variable and the file name parameters designate the file to
be opened. The remaining parameters specify attributes for the file
and are summarized in Table 7-2, in Section 7.7.5. Except for the
file wvariable name, all parameters are optional. Any parameters you
specify, however, must be in the order shown above unless you use
keyword syntax.

You can spaecify either the value of the parameter or the keyword and
the value of the parameter. You can also use a combination.

INPUT AND OUTPUT

To specify only the value without the keyword, place each parameter in
the same order shown in the format. TIf a particular parameter is not
used, then a comma may be inserted. PASCAL generates a warning
message if the position of an unused parameter is not indicated by a
comma. However, the correct default for the missing parameter is used
in either case.

To use a keyword, specify the keyword and its associated value. When
you use a keyword, you have to specify only the parameters that are
used; it is not necessary to insert a comma to indicate wunused
parameters. Keyword parameters can be placed in any order; they do
not have to be in the same order as shown in the format.

You can also use a combination of values and keywords with wvalues.

However, once you use a keyword within the statement, subsequent
values must be associated with a keyword.

Table 7-1: Default Values for TOPS-20 External File Specifications

Element Default

Device Current user device

Directory Current user directory

File name PASCAL file variable name,
truncated to first 39

characters
File type DAT

Generation number OLD: highest current number
NEW: highest current number + 1

Because the RESET and REWRITE procedures actually open files, you need
not always wuse the OPEN procedure. RESET and REWRITE impose the
defaults for the TOPS-20 file specification, file status, record
length, record access mode, record type, and carriage control shown in
Table 7-1 and Table 7-2. For the file status attribute, RESET uses a
default of OLD, and REWRITE uses a default of NEW. You must use the
OPEN procedure for the following:

e To open a file for DIRECT access by the FIND procedure
e To specify a buffer size other than 133 for a text file

e To open any file with other than the default file name

INPUT AND OUTPUT

7.7.1 File History —-- NEW, OLD, READONLY, or UNEKNOWN

The file status indicates whether the specified file exists or must be
created. The possible values are:

NEW

OLD
READONLY
UNKNOWN

A file status of NEW indicates that a new file must be created with
the specified attributes. NEW is the default value.

If you specify OLD, the system tries to open an existing file. An
error occurs if the file cannot be found. OLD is invalid for internal
files, which are newly created each time the declaring program or
subprogram is executed.

A file status of READONLY indicates that an existing file 1is being
opened only for reading. An error occurs if you try to write to a
file that has been opened with READONLY.

If you specify UNKNOWN, the system first tries to open an existing

file. 1If an existing file cannot be found, a new file is created with
the specified attributes.

If you specify READONLY, the system generates an error if a REWRITE is
performed on the file. READONLY implies OLD.

7.7.2 Record Length

The record length parameter specifies the record length used 1in the
file. Any positive integer can be used.

7.7.3 Record Access Mode —-- SEQUENTIAL or DIRECT

The record access mode specifies the access to the components of the
file. The modes are:

DIRECT
SEQUENTIAL

In SEQUENTIAL mode, you can access files with fixed- or
variable-length records. The default access mode is SEQUENTIAL.

DIRECT mode allows you to use the FIND procedure to access files with
fixed-length records. You cannot access a file with variable-length
records in DIRECT mode.

INPUT AND OUTPUT

7.7.4 Record Type —- FIXED or VARIABLE

The record type specifies the structure of the records in a file. The
record types are:

FIXED
VARIABLE

A value of FIXED indicates that all records in the file have the same
length. A value of VARIABLE indicates that the records in the file
can vary in length. FIXED is the default for non-TEXT files;
VARIABLE is the default for TEXT files.

7.7.5 cCarriage Control —-- LIST, CARRIAGE, or NOCARRIAGE

The carriage control option specifies the carriage control format for
a text file. The options are:

LIST
CARRIAGE
FORTRAN
NOCARRIAGE
NONE

A value of LIST indicates single spacing between components. LIST 1is
the default for all text files, including the predefined file OUTPUT.

The CARRIAGE optieon indicates that the first character of every output
line 1is a carriage control character. These characters and their
effects are summarized in Table 7-4.

FORTRAN is equivalent to CARRIAGE.

NOCARRIAGE means that no carriage control applies to the file. In
particular, WRITELN will not output an EOLN to a NOCARRIAGE file, and
the PAGE procedure will cause a run-time error.

NONE is equivalent to NOCARRIAGE.

INPUT AND OUTPUT

Table 7-2 summarizes the file attributes.

Table 7-2: Summary of File Attributes

Parameter Possible Values Default
File status OLD, NEW, READONLY or NEW
UNKNOWN
Record length any positive integer 133
Record-access DIRECT or SEQUENTIAL SEQUENTIAL
mode
Record type FIXED or VARIABLE VARIABLE for text
files; FIXED for
non-text files.
Carriage control LIST, CARRIAGE, LIST for all text
FORTRAN, NOCARRIAGE, files; NOCARRIAGE for
or NONE all other files

7.7.6 Examples
Example 1
VAR Userdguide & TEXTs

BEGIN
OFEN (Userdguide)s

+

ENID#

In this example, the OPEN procedure specifies only the file variable
so no defaults for the file will be changed. This usage of OPEN
essentially causes no action.

Example 2

BREGIN
OFEN (Userguidesyy80);

+

END#

The OPEN statement sets the record 1length for USERGUIDE to 80
characters.

Example 3

BEGIN
OFEN (OUTFUTs»sy»»yCARRIAGE) 5

*
*

+

ENDj

INPUT AND OUTPUT

This example causes the system to interpret the first character of
each line written to the predeclared file OUTPUT as a carriage control
character. When you call OPEN for the predeclared file OUTPUT, vyou
can specify only a carriage control option. If you include any other
parameters, an error occurs.

Example 4
BEGIN
OFEN (Albumsy "FPOSTOJENNIFER>INVENT 7y OLDy sDIIRECT)Y S
NI
The file wvariable albums will be associated with the file

specification PS:<JENNIFER>INVENT. A RESET will initiate reading of
the existing (OLD) file, or cause an error if the file does not exist.
The file will be opened for direct access; that is you can use the
FIND procedure with this file. A REWRITE will ignore the OLD
parameter.

Example 5

REGIN
OFEN (Solary ‘Energwd’y NEWy » » FIXEXD)§

»e o &

ENTs

Assuming that Energy is defined as a 1logical name, this statement
causes a RESET or REWRITE to create a file with the specification
designated by the logical name Energy. The identifier Solar is wused
within the program to refer to the TOPS-20 logical name. The file is
created with fixed-length records. Default values are wused for the
record length and the record access parameters.

Example 6

REGIN
OFEN (File.Name = "PSIZGMITHEFLANLDAT yRECORDLTYPE = VARIABLE »
File.Variagblel=Flans)

The file variable plans is associated with the file PLAN.DAT on PS:
with a directory of <SMITH>. The file name and record type parameters
use keywords. Because the file name keyword is used, each subsequent
parameter must use a keyword. It is not necessary to indicate each
unused parameter with a comma when keywords are used.

INPUT AND OUTPUT

7.8 THE PAGE PROCEDURE

The PAGE procedure skips to the next page of a text file.

Format
PAGE (file variable);
where:
file variable specifies a text file.

Execution of the PAGE procedure causes the system to flush the
contents of the record buffer, then skip to the next page of the
specified text file. The next line written to the file begins on the
first 1line of a new page. You can use this procedure only on text
files. TIf you specify a file of any other type, PASCAL 1issues an
error message.

The value of the page eject record that is output to the file depends
on the carriage control format for that file. When CARRIAGE is
enabled, the page eject record is equivalent to the <carriage control
character '1'. When LIST is enabled, the page eject record is a form
feed character. When NOCARRIAGE 1is enabled, the PAGE procedure
generates an error,

Example 1

BEGIN
FAGE (Userduide)ds

e o ¢

ENI#

This example causes a page eject record to be written in the text file
Userguide.

Example 2
REGIN
FAGE C(OUTFPUT) §

*

ENIi s

This example calls the PAGE procedure for the predeclared file OUTPUT.
As a result of this procedure, a page eject record is output at the
terminal (in interactive mode) or in the batch 1log file (in batch
mode) .

INPUT AND OUTPUT

7.9 THE PUT PROCEDURE
The PUT procedure appends a new component to the end of a file.
Format
PUT (file variable);
where:

file variable specifies the file to which one or more
components will be written.

Before executing the PUT procedure, you must have executed the REWRITE
procedure. REWRITE <clears the file and sets EOF to TRUE, preparing
the file for output. If EOF is FALSE, the PUT procedure fails; a
run—-time error occurs; and program execution is terminated.

The PUT procedure writes the value of the file buffer variable at the
end of the specified file. After execution of the PUT procedure, the
value of the file buffer variable becomes undefined. EOF remains
TRUE.

Example
FROGRAM Bookfile (INFUTyOQUTFUTyBooks) s

TYFE String = FACKED ARRAYL1..401 0OF CHARS
Bookrec = RECORD
Author ¢ Strings
Title ¢ String
ENI
VAR Newbook § Bookrec?
Books + FILE OF Bookrecs
N § INTEGER?

BEGIN
REWRITE (Rooks)s
FOR N = 1 T0 10 D REGIN
WITH Newbook IO REGIN
WRITE (‘Titlet’)s
READ (Title)s
WRITE (‘Authori’)i
REAL (Author)s
ENIDS
Rooks™ = Newbooks
FUT (Rooks)
END
END,

This program writes the first 10 records into the file Books. The
records are input from the terminal to the record variable Newbook.
They consist of two 40-character strings denoting a book's author and
title. The FOR loop accepts 10 values for Newbook, assigning each new
record to the file buffer variable Books”. The PUT statement writes
the value of Books”™ into the file for each of the 10 records input.

INPUT AND OUTPUT

7.10 THE READ PROCEDURE

The READ procedure reads one or more file components into a variable
of the component type.

Format

READ ([file variable,] variable name [,variable name... [);:

where:
file variable specifies the input file. If you omit the
file variable, PASCAL uses INPUT by default.
variable name specifies the variable into which the file
component(s) are read. For a text file, many
file components can be read into one

variable.

By definition, the READ procedure for a nontext file performs an
assignment statement and a GET procedure for each variable name.
Thus, the procedure call

READ (file variable, variable name);
is equivalent to

variable name := file variable”;
GET (file variable);

The READ procedure reads from the file until it has found a value for
each wvariable 1in the list. The first value read is assigned to the
first variable in the list; the second value 1is assigned to the
second variable, and so on. The values and the variables must be of
compatible types.

For a text file, more than one file component (that is, more than one
character) can be read into a single variable. For example, many text
file components can be read into a string or numeric variable. The
READ procedure repeats the assignment and GET process until it has
read a sequence of characters that represent a value for the next
variable in the parameter list. It continues to read components from
the file until it has assigned a value to each variable in the 1list.

Values from a text file can be read into variables of integer, real,
character, string, and enumerated types. 1In the file, values to be
read into integer and real variables must be separated by spaces or
must be put on new lines. Values to be read into character variables,
however, must not be separated because they are read 1literally,
character-by-character. Constants of enumerated types must be
separated by at least one space. Any other character that is invalid
in an identifier terminates the constant. Only the first 31
characters of the constant are significant; PASCAL ignores any
remaining characters.

You can use READ to read a sequence of characters from a text file
into a string (that is,a variable of type PACKED ARRAY[l..n] OF CHAR).
PASCAL assigns successive characters from the file to elements of the
array, in order, until each element has been assigned a value. If any
characters remain on the line after the array is full, the next READ
begins with the next character on that line. If the end of the line
is encountered before the array is full, the remaining elements are
assigned spaces.

INPUT AND OUTPUT

READ does not read past EOLN if it is reading 1into a string type.
Instead, READ continues to return blanks until the EOLN is explicitly
passed by using READLN.

If you call READ when the file is positioned at the end of a line, the
file position moves to the beginning of the next line, unless it is a
string variable. Characters are then read into the specified starting
variable. TIf this line is empty, the string is filled with spaces.

Every text file ends with an end-of-1ine mark and an end-of-file mark.
Therefore, the function EOF never becomes TRUE when you are reading
strings with the READ procedure. To test EOF when reading strings,
use the READLN procedure.

Example 1

BEGIN
REAT (Temsy Ader Weight)s

°

EXNTI$

Assume that Temp, Age, and Weight are real variables, and you type in
the following values:

8.6 11.0 75.0

The variable Temp takes on the value 98.6; BAge takes on the wvalue
11.0; and Weight takes on the value 75.0. ©Note that you need not
type all three values on the same line.

Example 2

TYFE String = PACKED ARRAY [1.,.201 OF CHAR3S
VAR Names $ TEXT3
Fresy Veer ¢ Strings

BREGIN
READIN{Namesy Fresy Veer)s

.

ENDs

This program fragment declares and reads the file Names, which
contains the following characters:

John F. Kennedy Lyndon B. Johnson Lyndon B. Johnson <EOLN>

Hubert H. Humphrey <EOLN>

Richard M. Nixon Spiro T. Agnew <EOLN>
The first <call to the READ procedure sets Pres equal to the
20-character string 'John F. Kennedy ' and Veep equal to 'Lyndon
B. Johnson '. The second call to the procedure assigns 'Lyndon B.

Johnson ' to Pres and spaces to Veep. Unless READLN is used to read
past the EOLN, READ continues to assign spaces.

7-17

INPUT AND OUTPUT

7.11 THE READLN PROCEDURE
The READLN procedure reads lines of data from a text file.

Format

READLN [([file variable,] variable name [,variable name...])] :

where:
file variable specifies the name of the text file to be
read. If you do not specify a file variable,
PASCAL uses INPUT by default.
variable name specifies the variable 1into which a wvalue
will be read. I1f you do not specify any
variable names, READLN skips a 1line in the
specified file.
The READLN procedure reads values from a text file. After reading

values for all the listed variables, the READLN procedure skips over
any characters remaining on the current line and positions the file at
the beginning of the next 1line. All the values need not be on a
single line; READLN continues until values have been assigned to all
the specified wvariables, even if this process results in the reading
of several lines of the input file. READLN performs the following
sequence:

READ (file variable, variable name...);
READLN (file variable);

EOLN(file variable) is TRUE only if the new line is empty.

You can use the READLN procedure to read integers, real numbers,
characters, strings, and constants of enumerated types. The values in
the file must be separated as they are for the READ procedure.

The READLN statement automatically pads strings. Thus, it 1is not
necessary to pad strings with spaces to match the variable size if you
are using the predefined file INPUT or reading from a file defined as
TEXT.

If EOLN() is TRUE when you call READLN, the first value read 1is the
first wvalue in the next line, unless you are reading a character. If
you are reading a character, the first value read is a space.

Example

TYFE String = PACKED ARRAY [1..201 OF CHARj$
VAR Names ¢ TEXTy
Fress Veer ! Strings

*

WHILE NOT EOF (Names) DOs
BEGIN
READIN.N (Namesy Fress VUeer)s

+

ENII 3

INPUT AND OUTPUT

This program fragment declares and reads the file Names, which
contains the following characters:

John F. Kennedy Lyndon B. Johnson Lyndon B. Johnson <EOLN>
Hubert H. Humphrey <EOLN>
Richard M. Nixon Spiro T. Agnew <EOLN>
<EOLN>
<EOF>
The READLN procedure reads the values 'John F. Kennedy ' for
Pres and 'Lyndon B. Johnson ' for Veep. It then skips to the next

line, ignoring the remaining characters on the first line. Subsequent
execution of the procedure assigns the value 'Hubert H. Humphrey '
to Pres and sets Veep to all blanks, because READ of a string will not
go past EOLN. The next execution of the procedure assigns the value
'Richard M. Nixon ' to Pres and 'Spiro T. Agnew ' to Veep, then
skips to the next line. The last execution of READLN sets both Pres
and Veep to all blanks, and skips the EOLN, which causes EOF to become
TRUE, so the loop exits.

7.12 THE RESET PROCEDURE

The RESET procedure readies a file for reading by setting the file
pointer to the first component in the input file.

Format
RESET (file wvariable);
where:
file variable specifies the file to be read.

If the file is not already open, RESET opens it wusing the defaults
listed in Table 7-1 and Table 7-2. To open a file that does not use
default values, use the OPEN statement.

After execution of RESET, the file 1is positioned at the first
component; and the file buffer variable contains the value of this
component. The arrow in Figure 7-2 shows the file position after
RESET. If the file is empty, EOF is TRUE; otherwise, EOF is FALSE.
If the file does not exist, RESET returns an error at run time; RESET
does not create the file.

Beginning

e o o EOF
of File

f MR-5-3116-83

Figure 7-2: File Position after RESET

INPUT AND OUTPUT

You must call RESET before reading any file except the predeclared
file INPUT. If you call RESET for the predeclared file INPUT or
OUTPUT, a run-time error occurs.

Examples
Example 1
REGIN
OFEN (Fhonesy “Fhones.Dat s yDIRECT) 5
RESET (Fhones)s
ENIDy
These statements open the file variable Phones for direct access on
input. After execution of the OPEN and RESET procedures, you can use
the FIND procedure for direct access to the components of the file
Phones.

Example 2

BEGIN
RESET (Weights)s

+ o

ENDs

If the file variable Weights is already open, this statement enables
reading and sets Weights”™ to the first file component. If the file is
not open, this statement causes the system to search for the file
designated by the 1logical name Weights: If no such logical name is
assigned, the system searches for the file WEIGHTS.DAT on the user's
default device and directory. If the file exists it is opened for
sequential read access. If the file does not exist, a run-time error
occurs.

7.13 THE REWRITE PROCEDURE

The REWRITE procedure readies a file for output by setting the file
pointer to the first component of the output file.

Format

REWRITE (file variable);
where:

file variable specifies the file to be enabled for output.
If the file does not exist, REWRITE creates and opens it using the
defaults 1listed in Table 7-1 and Table 7-2. If the file exists,
REWRITE supersedes it using the defaults listed in Table 7-1 and Table

7-2. To open a file that does not use default values, use the OPEN
statement.

7-20

INPUT AND OUTPUT

You must call REWRITE before writing any file except the predeclared
file OUTPUT. If vyou call REWRITE for the predeclared file INPUT or
OUTPUT, a run-time error occurs.

The REWRITE procedure sets the file to length zero and sets EOF to
TRUE. You can then write new components into the file with the PUT,
WRITE, or WRITELN procedure (WRITELN is defined only for text files).
After the file 1is open, successive calls to REWRITE close and

supersede the existing file; that is, they create new versions of the
file.

To update an existing file, you must copy 1its contents to another
file, specifying new wvalues for the components that you need to
update.

Example 1

REGIN
REWRITE (Storms)s

+
¢
*
.
’

ENT

If the file variable Storms is already open, this statement enables
writing and sets the file position to the beginning of the file. If
Storms is not open, a new version is created with the same defaults as
for the OPEN procedure.

Example 2

REGIN
OFEN (Resultss “FSIICHEN>ISSUES DAT »OLDy y FIXEDD §
REWRITE (Results)s
ENI$
The OPEN procedure sets defaults for the file variable Results, which
is associated with the file ISSUES.DAT in directory PS:<CHEN>. The
REWRITE procedure discards the current contents of the file Results

and sets the file position at the beginning of the file. After
execution of this statement, EOF(Results) is TRUE.

7.14 THE WRITE PROCEDURE
The WRITE procedure writes data into a file.

Format

WRITE ([file variable,] print list);

INPUT AND OUTPUT

where:
file variable specifies the file to be written. If vyou
omit the file variable, PASCAL uses OUTPUT by
default.
print list specifies the values to be output, separated
by commas. The print 1list can contain
constants, variables, and expressions. For

nontext files, the items in the print list
must be compatible with the file component
type.

By definition, the WRITE procedure for a nontext file performs an
assignment statement and a PUT procedure for each variable name.
Thus, the following procedure calls are equivalent:

1. WRITE (file variable, variable name);

2. file variable”™ := variable name;
PUT (file variable)

For text files, the WRITE procedure converts each item in the print
list to a sequence of characters. The WRITE procedure repeats the
assignment and PUT process until all the items in the list have been
written in the file.

The print list can specify constants, variable names, array elements,

and record fields, with wvalues of any scalar type. Each value is
output with a minimum field width, as specified in Table 7-3.

Table 7-3: Default Values for Field Width

Type of Variable Number of Characters Printed
Integer 12

Real 16

Double 24

Boolean 16

Character 1

Enumerated 31

String Length of string

You can override these defaults for a particular value by specifying a
field width in the print list. The field width specifies the minimum
number of characters to be output for the value. The following is the
format of the field-width specification:

variable name : minimum : fraction
Both minimum and fraction represent positive integer expressions. The
minimum indicates the minimum number of characters to be output for

the value. The fraction, which is permitted only for real numbers,
indicates the number of digits to the right of the decimal point.

7-22

INPUT AND OUTPUT

The following rules apply to designating field-width parameters 1in
output procedures:

1. Tf a real value does not have the function parameter, PASCAL
prints the value in floating-point format.

2. If the print field is wider than necessary, PASCAL prints the
value with the appropriate number of leading blanks.

3. 1If the print field is too narrow, PASCAL treats the different
kinds of write parameters as follows:

e Strings and nonnumeric scalar values are truncated on the
right to the specified field width.

e Integers and real numbers in decimal format are printed
using the full number of characters needed for the value,
thus overriding the field-width specification.

e Real and double wvalues 1in floating-point format are
printed in a field of at least eight characters (for
example, -1.0E+00). All real values in either format are
printed with a leading blank if they are positive and a
leading minus sign if they are negative.

By default, PASCAL prints real numbers in floating-point format. Each
real number is preceded by at least one blank, for example:

WRITE (Shoesize)?d

If the wvalue of Shoesize 1is 12.5, this statement produces the
following output:

1.25000000E+01

To print the value in decimal format, you must specify a field width
as in this example:

WRITE (ShoesizelStl)

->

The first integer indicates that a minimum of five characters will be
output. The minimum includes the leading blank, the sign (if any),
and the decimal point. The second integer specifies one digit to the
right of the decimal point. This statement results in the following
output:

12.5

If the print field is wider than necessary, PASCAL prints the wvalue
with leading blanks.

If you try to print a nonnumeric value in a field that is too narrow,
PASCAL truncates the value on the right to fit into the field. For
integers, however, it prints the entire value without truncation.
PASCAL widens the field to eight characters for real and
double-precision numbers in exponential notation. It does not
truncate real and double-precision numbers in decimal notation.

INPUT AND OUTPUT

For a variable of an enumerated type, PASCAL prints the constant
identifier denoting the variable's value. Because PASCAL ignores any
characters beyond the thirty-first in an identifier, only the first 31
characters of a long identifier appear, for example:

VAR Color § (BluesYellowsrRBlackySlightlu . Fale. . Feach.Summer. Sunset)s
BEGIN
WRITE ('Mw Tavorite color is ‘yColori3d)s

.

ENI S
When the value of Color is Yellow, the following is printed:
Mu favorite color is YELLOW

When the value of Color is Slightly Pale Peach Summer_Sunset, however,
the following appears:

Mu favorite color is SLIGHTLY. .FALE _PEACH_SUMMER_SUNS

Although the field width specified 1is wide enough for all 33
characters 1in the identifier, PASCAL ignores the last two characters
and prints two leading blanks. Note that constants of enumerated
types are printed in all uppercase characters.

If you open the predeclared file OUTPUT with the carriage control
option LIST, PASCAL allows you to use the WRITE procedure to prompt
for input at the terminal. Each time you read from INPUT, the system
checks for any output in the terminal record buffer. TIf the buffer
contains any characters, the system prints them at the terminal, but
suppresses the carriage return at the end of the line. The output
text appears as a prompt, and you can type your input on the same
line, for example:

WRITE (‘Name three rresidentsi’)s
READ (Fresly Fres2y Fres3)s

When PASCAL executes the READ procedure, it finds the output string
waiting to be printed. PASCAL prints the prompt at the terminal,
leaving the carriage just after the colon (:). You can then begin
typing input on the same line as the prompt.

Prompting works only for the predeclared files INPUT and OUTPUT. For
any other files, no output is written until you fill the record buffer
or start a new line.

Example 1

TYFE Strimg = FACKED ARRAY [1..203 OF CHARS
VAR Names ¢+ FILE OF Strings
Fres ¢ Strings
REGIN
WRITE (Namesy ‘Millard Fillmore ‘y Pres)s

*

END§

INPUT AND OUTPUT

This example writes two components in the file Names. The first is
the 20-character string constant 'Millard Fillmore ', The second
is the string variable Pres.

Example 2

BEGIN
WRITE (NumliSidy’ ancd eNum2iStily’ sum Lo’y (Numl+Num2) 161105

+

ENII$

If you specify an expression, PASCAL prints its value. For example,
if Numl equals 71.1 and Num2 equals 29.9, this statement prints:

7i+1 arndg 29.9 sum to 101.0
Note that each of the real numbers is preceded by a space.
Example 3

VAR Raimamts ¢ FILE OF REALS$
AvgrainsMaxrainyMinrain ¢ REALS

REGIN
WRITE (RainamtsrAvEraineMinrains0.312yMaxrain) s

¢

ENI e
The file Rainamts contains real numbers indicating amounts of
rainfall. The WRITE procedure writes the values of the variables

Avgrain and Minrain into the file, followed by the real constant 0.312
and the value of the variable Maxrain.

7.15 THE WRITELN PROCEDURE
The WRITELN procedure writes a line of data in a text file.
Format

WRITELN ([file variable,] print list);

where:
file variable specifies the text file to be written. If
you omit the file wvariable, PASCAL uses
OUTPUT by default.
print list specifies the values to be output, separated

by commas. The print 1list can specify
constants, variable names, array elements,
and record fields, with values of any scalar
type. Output of strings is also permitted.
Each value 1is output with a minimum field
width.

INPUT AND OUTPUT

The WRITELN procedure writes the specified values into the text file,
then starts a new line, for example:

WRITELN (Userdguidey ‘This marnual describes how wou interact’)s

As a result of this statement, the system writes the string in the
text file Userguide and skips to the next line.

When you open a text file, you can specify the CARRIAGE option for
carriage-control format. If you select CARRIAGE format, the first
character of each output 1line 1is treated as a carriage-control
character when output is directed to carriage-control devices such as
the terminal and the line printer. TIf output is not directed to a
carriage-control device, the carriage-control character is written
into the file and will be read when vyou open the file for input.
Table 7-4 summarizes the <carriage-control <characters and their
effects.

For carriage-control purposes, any characters other than those listed
in the table are ignored.

The carriage-control character must be the first item in the WRITELN
print 1list. For example, 1if the text file Tree is open with the
CARRIAGE option, you can use the following statement:

WRITELN (Trees’ “»StringlsString);

The first item in the print list is a space character. The space
indicates that the values of Stringl and String2 are printed beginning
on a new line when the file is output to a terminal, line printer, or
similar carriage-control device.

Table 7-4: Carriage-Control Characters
Character Meaning
'+ Overprinting: starts output at the beginning of the

current line

space Single spacing: starts output at the beginning of
the next line

'0’ Double spacing: skips a line before starting output

1! Paging: starts output at the top of a new page

If you specify CARRIAGE but use an invalid carriage-control character,
the first character in the line is ignored. The output appears with
the first character truncated.

INPUT AND OUTPUT

Example 1

REGIN
WRITELN (Classll1i2y’ is the grade for this student.’)s

- + @

ENI s

This example writes an element of the character array Class to the
file OUTPUT. The value is written with a minimum field width of 2.

Example 2

BEGIN
WRITELNS

¢

END 3

If you specify WRITELN without a file variable or print 1list, PASCAL
ends the printing of the current line on the standard output device
(usually the terminal).

Example 3

TYFE String ¢ PACKED ARRAY [1.,.401 OF CHARsS
VAR Newhires ¢ TEXTs
N ¢ INTEGER?
Newrec § RECORD
IO ¢ INTEGERS
Name ¢ Strindgs
Address ¢ Strings
Salary ! String
ENI¢
BEGIN
OFEN (Newhiresy CARRIAGE) S
WITH Newrec DO BEGIN
WRITELN (Newhiresy ‘INew hire ¥7,ID,’I8 ‘sName)d;
WRITELN (Newhiresy ' ‘»y Namer ‘¥ Lives ati’)y
WRITELN (Newhires)s
WRITELN (Newhiressy ’ ‘v Address)
END§

*

END#

This example writes four lines in the text file Newhires. The output
starts at the top of a new page, and fits the following format:

New hire # 73 is Irving Washington
Irving Washington lives at!

22 Chestnut Sty Sesattley Wash,

INPUT AND OUTPUT

7.16 TERMINAL I/O

The PASCAL language requires that the file buffer always contain the
next file component that will be processed by the program. This
requirement can cause problems when the input to the program depends
on the output most recently generated. To alleviate such problems in
the processing of the predeclared text files INPUT and OUTPUT, PASCAL
uses a technique called delayed device access, also know as lazy
lookahead.

As a result of delayed device access, an item of data is not retrieved
from a physical file device and inserted in the file buffer until the
program is ready to process it. The file buffer is filled when the
program makes the next reference to the file. A reference to the file
consists of any use of the file buffer wvariable, including 1its
implicit wuse in the GET, READ, and READLN procedures, or any test for
the status of the file, namely, the EOF and EOLN functions.

The RESET procedure initiates the process of delayed device access.
RESET is done automatically on the predeclared file INPUT. RESET
expects to f£ill the file buffer with the first component of the file.
However, because of delayed device access, an item of data is not
supplied from the input device to fill the file buffer until the next
reference to the file.

When writing a program for which the input will be supplied by the
predeclared text file INPUT, you should be aware that delayed device
access occurs. Because RESET initiates delated device access, and
because EOF and EOLN cause the buffer to be filled, you should place
the first prompt for input before any tests for EOF or EOLN. The
information you enter in response to the prompt supplies the data that
is retained by the file device until you make another reference to the
input file.

Example

VAR
I ¢ INTEGERS

BEGIN
WRITE (‘Enter an inteder or anm emrty line! ‘);
WHILE NOT EOLN DO

BEGIN

READLN (I)s

WRITELN (‘The inteder wast! 7 y I11)5

WRITE (‘Enter amn inteder or an emrty lime! ‘);
END3

WRITELN (‘Done’)s
END.

INPUT AND OUTPUT

The first reference to the file INPUT is the EOLN test in the WHILE
statement. When the test is performed, the system attempts to read a
line of input from the text file. Therefore, it is very important to
prompt for the integer or empty line before testing for EOLN.

Suppose you respond to the first prompt by supplying an integer as
input. Access to the input device is delayed until the EOLN function
makes the first reference to the file INPUT. The EOLN function causes
a line of text to be read 1into the internal line buffer. The
subsequent READLN procedure reads the input value from the 1line of
text and assigns it to the variable I. The WRITELN procedure writes
the input value to the text file OUTPUT. The final statement 1in the
WHILE loop 1is the request for another input wvalue. The 1loop
terminates when the EOLN detects the end-of-line marker.

CHAPTER 8

USING PASCAL ON TOPS-20

This chapter describes how you use PASCAL with the TOPS-20 operating
system. The steps in the program development process include:

e Creating the source program
e Compiling the program

e Loading the program

e Executing the program

This chapter describes the standard TOPS-20 file specifications and
defaults, and contains instructions for creating, compiling, loading,
and executing a PASCAL program.

8.1 PROGRAM DEVELOPMENT PROCESS

The TOPS-20 operating system provides a variety of methods to produce
an executahle program.

The first step is to create a program using an editor. This 1is
described in Section 8.3.

The second step is to compile the program using the PASCAL command.
This is described in Section 8.4.

The third step is to load the program into memory wusing either the
LOAD command or the LINK program, The LOAD command is described in
Section 8.5. For more information about LINK, refer to the LINK
Reference Manual.

At this point you can use the START or the SAVE command. START runs
the program that 1is currently loaded in memory. SAVE creates an
executable image, an EXE file, and stores it in your disk area. 1f
you use the SAVE command, you can then use the RUN command to execute
the program now or at a later date.

If you do not SAVE the EXE file, you must load the file 1into memory
before you can run it.

To save time, you can use the EXECUTE command. (See Section 8.6.)
With EXECUTE, you can compile, load, and start a program all at once.
EXECUTE does not create an EXE file.

USING PASCAL ON TOPS-20

8.2 FILE SPECIFICATIONS AND DEFAULTS

A file specification indicates the input file to be processed or the
output file to be produced. File specifications have the following
form:

device:<directory>filename.filetype.gen

The punctuation marks (colons, angle brackets, and periods) are
required syntax that separate the various components of the file
specification.

device

identifies the device or file structure on which the file |is
stored or is to be written.

directory

identifies the name of the directory under which the file |is
catalogued, on the device specified. You can delimit the
directory name with angle brackets, as shown above.

filename

identifies the file by its name. The source file name can be up
to 39 alphanumeric characters. REL file names can be up to six
characters.

filetype

describes the kind of data in the file. The source file type can
be up to 39 alphanumeric characters. REL file types can be up to
three characters.

gen

specifies the generation of the TOPS-20 file desired.
Generations are identified by a decimal number, which is
incremented by 1 each time a new generation of a file is created.
A period is used to separate file type and generation.

You need not explicitly state all elements of a file specification
each time you compile, load, or execute a program. Only the file name
is required, as long as you use the default file type. Table 8-1
summarizes the default values.

USING PASCAL ON TOPS-20

Table 8-1: File Specification Defaults

Optional Default Value

Element

device User's current default device (DSK:)
directory User's current default directory
file type Depends on usage:

Input to PASCAL compiler - PAS
Output from PASCAL compiler - REL
Input to LINK - REL

Output from SAVE command - EXE
Input to RUN command - EXE

Compiler source listing - LST

LINK map listing - MAP

Input to executing program - DAT
Output from executing program - DAT

gen Input: highest existing generation
Output: highest existing generation plus 1

When compiling a PASCAL program, you need specify only the file name
if the file is:

e Stored on the default device
® Catalogued under the default directory name
e A file type of PAS

If more than one file meets these conditions, the compiler chooses the
one with the highest generation number.

For example, assume that your default device 1is PS:; your default
directory 1is <CHEN>; and you supply the following file specification
to the compiler:

RFASCAL
FASCAL>CIRCLE

The compiler searches device PS: 1in directory <CHEN>, seeking the
highest generation of CIRCLE.PAS. The compiler then generates the
file CIRCLE.REL, stores it on device PS: in directory <CHEN>, and
assigns it a generation number that 1is one higher than any other
generation of CIRCLE.REL currently in PS:<CHEN>,

8.3 CREATING A PROGRAM

The first step in creating a program is to design and plan it. The
TOPS-20 PASCAL Primer describes the wuse of PASCAL for the novice
PASCAL programmer who is already familiar with higher—-1level
programming language concepts. Many books exist that describe
programming techniques, methods, and algorithms.

USING PASCAL ON TOPS-20

After planning the program, you use an editor to create a file that
contains the source statements. You use a text editor to create a
source file. You can use EDIT, TV, or any other text editor to create
the source file.

For example, to create a PASCAL program that has the file name EXAMPL
and a file type of PAS, you can issue the EDIT command as follows:

REDIT EXAMFL.FAS (D
Ireut! EXAMFL L FAS
00100

If this is a new file, an additional message is displayed indicating
that a new file is being created. Because the EDIT command does not
assume a file type, you must include the file type as part of the file
name. The EDIT command runs the TOPS-20 default editor EDIT. The
line number (00100) prompt indicates that EDIT 1is ready to accept
input. For information on how to use EDIT, see the TOPS-20 EDIT
User's Guide.

You can also use any other editor to which you have access, for
example, the TV editor. To use TV, you can either type TV to TOPS-20,
or you can define the logical name EDITOR: to be SYS:TV.EXE. For
more information about the use of TV, refer to the TOPS-20 TV Editor
Manual.

After the program is created and edited, it is ready to be compiled.

8.4 COMPILING A PROGRAM

After creating a PASCAL source program, you compile it, At compile
time, vyou specify the source file(s) and indicate any qualifiers you
wish to use.

Optionally, the compiler produces one or more object files, which are
input to LINK, and one or more listing files. The listing files
contain source-code listings, information about compilation errors,
and optional items such as cross-reference listings.

8.4.1 The PASCAL Command

To compile a source program, specify the PASCAL command and press the
RETURN key. TOPS-20 then returns the PASCAL prompt, at which point
you specify the file name and any switches.

@PASCAL (3e1)
PASCAL>source-filename [/switch(es)] (D)

USING PASCAL ON TOPS-20

where:

source—-filename specifies the source file(s) containing the
program or module to be compiled. TIf you
have one program split into several source
files, you can specify these source files at
the same time by separating the file names
with a plus sign (+). If you specify more
than one source file, the files are
concatenated and compiled as one program.

/switch(es) indicates special processing to be performed
by the compiler.

In many cases, the simplest form of the PASCAL command 1is sufficient
for compilation. For other situations, however, PASCAL provides
compiler commands and switches to specify special processing. PASCAL
compiler commands give special instructions to the compiler. PASCAL
compiler switches modify the compilation of the program.

Section 8.4.2 describes the PASCAL compiler commands, and Sections
8.4.3 and 8.4.4 describe the PASCAL compiler switches.

8.4.2 PASCAL Compiler Commands

Table 8-2 lists the commands to the compiler.

Table 8-2: PASCAL Compiler Commands

Command Purpose

/EXIT Exits from the PASCAL compiler

/HELP Displays a help message

/RUN: Begins execution of the specified program

/TAKE : Takes commands from the specified command file
/EXIT

The /EXIT command exits you from the compiler and closes all files
that were opened by the compiler.

/HELP

The /HELP command displays a help message.

/RUN:filespec

The /RUN: command exits you from the compiler and begins execution of
the specified program. Using the /RUN: command 1is the same as

specifying the /EXIT command to the compiler and then using the
operating system command RUN to execute the specified program.

USING PASCAL ON TOPS-20

/TAKE

The /TAKE command takes commands from the specified command file. The
/TAKE command recognizes the default file type CMD.

Example 1

BFASCAL
FasCAL=/TAKE: FLAN
FASCAL

Assume that the command file PLAN.CMD contains the following:
FLANGFAS /NOFLAG-NON-STANDARD /LISTING

The /TAKE: command causes the contents of PLAN.CMD to be executed.
In this example, the source file PLAN.PAS is compiled; display of
warning messages for nonstandard features 1is suppressed; and a
listing file 1is generated. Make sure the command file ends with a
carriage-return/line-feed. After execution of the command file, vyou
can give another command to the compiler.

Example 2

FASCAL=SORTER .FAS
FASCAL=/RUNT LINK
X

The compiler compiles the source file SORTER.PAS, and the /RUN:
command is then wused to run the LINK program. The /RUN: command
exits you from the compiler and causes the LINK program to begin
executing. The asterisk (*) is the prompt displayed by LINK.

Example 3

eFASCAL.

FASCAL *AVER.FAS
FASCAL>/EXIT

@

The EXIT command exits you from the compiler and puts you at TOPS-20
command level.

8.4.3 PASCAL Compiler Switches

Table 8-3 lists the switches you can use with the PASCAL compiler.
You can specify the switches following the file name or in source code
comments. This section describes the effect of each switch on a
PASCAL program.

USTING PASCAL ON TOPS-20

Table 8-3: PASCAL Compiler Switches

Switch Purpose In Default
Source

/ABORT Causes the compiler to No Of £
exist at the end of a
compilation that contains
errors

/BINARY[[:filespec]] Produces a binary object No On
file.

/CHECK Generates code to check Yes On
for various error
conditions

/CREF or Produces a cross—-reference Yes Ooff

/CROSS-REFERENCE listing of identifiers

/DEBUG Produces information 1in No off
the object file to be used
with PASDDT

/ERROR-LIMIT:n Stops compilation after No 30
the specified number of
errors

/FLAG-NON-STANDARD Issues warning messages Yes On
for nonstandard features

/LISTING[[:filespec]] Produces a source 1listing Yes off
during compilation

/MACHINE-CODE Lists generated assembly Yes Of £
language in source listing

/NATIONAL Turns off braces as Yes Of f
comment characters

/WARNINGS Prints diagnostics for Yes On
warning—-level errors

/ABORT
The /ABORT switch causes the compiler to exit at the of a

compilation that contains errors. This is useful when used with the
/TAKE: command. The default is /NOABORT.

/BINARY [:filespec]

The /BINARY switch can be used when you want

the object file. The /BINARY switch has the form:

/BINARY [:filespec]

to specify the

name of

USING PASCAL ON TOPS-20

If you omit the file specification, the object file defaults to the
name of the last source file, the default directory, and a file type
of REL. You cannot specify this switch in the source code.

You can disable this switch to suppress object code, for example, when
you want to test only the source program for compilation errors.

The default is /BINARY.

/CHECK

The /CHECK switch directs the compiler to generate code to perform
run—-time checks. This code checks for illegal assignments to sets and
subranges, out-of-range array indices and case labels, and references
to NIL pointers. The system issues an error message and terminates

execution if any of these conditions occur.

When this switch is disabled, the compiler does not generate code for
run-time checks. The default is /CHECK.

/CROSS-REFERENCE or /CREF

The /CROSS-REFERENCE switch produces a cross-reference listing of all
identifiers. The compiler generates separate cross-references for
each procedure and function. To get complete cross-reference listings
for a program, the switch must be in effect for all modules of the
program. This switch 1is 1ignored if no 1listing file 1is being
generated.

The default is /NOCROSS-REFERENCE.

You can specify this switch in the source code. Note, however, that
the <cross-reference 1listing for a portion of a procedure or function
may be incomplete.

/DEBUG

The /DEBUG switch specifies that the compiler 1is to generate
information that can be used with run-time debugging.

The default is /NODEBUG.

/ERROR-LIMIT:n

The /ERROR-LIMIT switch terminates compilation after the specified
number of errors, excluding warning-level errors, have been detected.
The default 1limit is 30 errors. If this switch 1is disabled,
compilation continues through the entire unit. You cannot specify
this switch in the source code.

The default is /ERROR-LIMIT:30.

Note that, after finding 20 errors (including warning messages) on any
one source line, the compiler generates error 255, Too Many Errors On
This Source Line. Compilation of the line continues, but no further
error messages are printed for that line.

/FLAG-NON-STANDARD

The /FLAG-NON-STANDARD switch tells the compiler to print
warning-level messages at each place where the program uses
nonstandard PASCAL features,

USING PASCAL ON TOPS-20

Nonstandard PASCAL features are the extensions to the proposed IS0
standard for the PASCAL language that are incorporated in PASCAL-20.
Nonstandard features include VALUE declarations and the exponentiation
operator. Appendix D lists all the extensions.

By default, /FLAG-NON-STANDARD is enabled.

/LISTING

The /LISTING switch produces a source listing file. It has the form:
/LISTING [:filespec]

You can include a file specification for the 1listing file. The

default file specification designates the name of the first source

file, your default directory, and a file type of LST.

The compiler does not produce a Jisting file in interactive mode

unless you specify the /LISTING switch. 1In batch mode, the compiler

produces a listing file by default. 1In either case, the listing file

is not automatically printed.

/MACHINE-CODE

The /MACHINE-CODE switch places in the listing file a representation
of the object code generated by the compiler.

The compiler ignores this switch if the /LISTING switch 1is not
enabled.

The default is /NOMACHINE-CODE.

/NATIONAL

The /NATIONAL switch causes the braces to have no special meaning.
Therefore, 1if you specify the /NATIONAL switch, you cannot use braces
as comment characters. Instead, you must use (* *),

The default is /NONATIONAL.

/WARNINGS

The /WARNINGS switch directs the compiler to generate diagnostic
messages in response to warning-level errors.

By default, /WARNINGS 1is enabled. A warning diagnostic message
indicates that the compiler has detected acceptable but unorthodox
syntax, or has performed some corrective action. In either case,
unexpected results may occur, To suppress warning diagnostic
messages, disable this switch. Note that messages generated when the
/STANDARD switch is enabled appear even if /WARNINGS is disabled.

8.4.4 Specifying Switches in the Source Code

You can use switches in the source code to enable and disable special
processing during compilation. When specified in the source code,
switches have the form:

(*$switch + ,switch + ,... ;comment *)

USING PASCAL ON TOPS-20

The first character after the comment delimiter must be a dollar sign
($); the dollar sign cannot be preceded by a space. Table 8-4 lists
the switches you can specify in your source program. Note that you
can optionally wuse a l-character abbreviation for each switch. The
abbreviation is simply the first character of the switch name, except
for CROSS-REFERENCE, which has X for an abbreviation.

Table 8-4: Source Switches

Abbreviation Full Command-Line Switch
C CHECK CHECK
L LTIST LIST
M MACHINE-CODE MACHINE-CODE
N NATIONAL NATIONAL
S STANDARD FLAG-NON-STANDARD
W WARNINGS WARNINGS
X CROSS—-REFERENCE CREF

To enable a switch, specify a plus sign (+) after its name or
abbreviation. To disable a switch, specify a minus sign (-) after its
name or abbreviation. You can specify any number of switches. You
can also include a text comment after the switches, separated from the
list of switches by a semicolon.

When specified in the source code, the LIST switch cannot contain a
file specification. The listing file has the default specification
described above.

For example, to generate check <code for only one procedure in a
program, enable the CHECK switch before the procedure declaration, and
disable it at the end of the procedure, as follows:

(X¢C+ ¢ enable CHECK for TEST1 onls X)
FROCEDURE TEST1s

*

END 5
(X$C~3disable CHECK X)

Command line switches override source-code switches. 1If, for example,
the source code specifies NOWARNINGS, but you type /WARN on the
command line, warning messages will be generated.

NOTE

When specifying the NATIONAL switch in
the source code, always use the
parentheses/asterisks combination (* #*)
and not braces { }.

USING PASCAL ON TOPS-20

8.4.5 Specifying Output Files

The PASCAL compiler can produce object files and 1listing files, as
well as compile the source code. You can control the production of
these files with the addition of various file names and switches on
the PASCAL command Jline.

PASCAL produces an object file automatically, taking the name from the
source file and assigning it the file type REL. To change the name of
the object file, specify the /BINARY switch with a file name.

To produce a listing file, you must specify the /LISTING switch on the
PASCAL command 1line. You have the option of giving a file name with
the /LISTING switch or taking the default, which is the name of the
source file and the file type LST. Note, however, if you run PASCAL
from a batch control file, you automatically receive a 1listing file.
In this case, to suppress the creation of a listing file, specify the
/NOLISTING switch in the batch control file.

During the early stages of program development, it is often useful to
suppress the production of object files until your source program
compiles without error. To suppress the production of an object file,
specify the /NOBINARY switch along with the source file.

You can specify more than one source file at a time, to be
concatenated and compiled. When specifying multiple source files,
separate each one with a plus sign (+). Although you may specify more
than one source file, you still receive one object file to load for
execution. By default, the object file produced from concatenated
source files has the name of the last source file on the command line.

All other file specification attributes (device, directory, and so
forth) assume the default attributes.

Example 1

eFASCAL
FASCAL = XXX+YYY+ZZZ

Source files XXX.PAS, YYY.PAS, and 2ZZZ.PAS are concatenated and
compiled as one file, producing an object file named ZZZ.REL. 1In
batch mode, this command also produces the listing file 7ZZZ.LST.

Example 2

CFASCAL
FASCAL><8 . GRAVES=MNFP/LISTING

The source file MNP.PAS in directory <S.GRAVES> is compiled, producing
an object file named MNP.REL and a listing file named MNP.LST. The
compiler places the object and listing files in the default directory.

8.4.6 Compiler Listing Format

When you request a listing file (by specifying the /LIST switch,
PASCAL produces a compiler listing. This section explains the format
of the compiler listing illustrated in Figure 8-1.

Z1-8

o (2 () o

AVERAGE_SCORE o 17-Aug-1983 11:23:32 PASCAL-20 1(611) Page 1
SOURCE LISTING CBL20:<MASELLA>AVER.PAS (1)
LINE ADDRESS PROC LEVEL
NUMBERS DATA INST NO PROC STMT STATEMENT.
100 1 000041 0 1 0 PROGRAM Average Score_(INPUT,QUTPUT);
456~
% PAS456 Nonstandard Pascal: "$" OR " " in identifier in AVERAGEisCOREO
200 2 000215 0 1 0 VAR
300 3 000215 °0 1 0 Score, Total, Count : INTEGER;
400 °4 000220 0 1 °0 AverageScore : REAL;
500 5 000221 0 1 0
600 6 @ 400000 © 1 0 BEGIN
700 7 400012 0 1 1 Total := 0;
800 8 400033 0 1 1 Count := 0;
900 9 400034 0 1 1 WRITELN ('Enter your scores. When done, type CTRL/Z.');
1000 10 400052 0 1 1 WHILE NOT EOF DO
1100 11 400061 0 1 1 BEGIN
1200 12 400061 0 1 2 READLN (SCORE);
1300 13 400076 0 1 2 Total := Score + Total;
1400 14 400101 0 1 2 Count := Count + 1;
1500 15 400104 0 1 2 End;
1600 16 400105 0 1 1 AverageScore := Total / Count; (*to produce real results*)
1700 17 400113 0 1 1 WRITELN ('The average score is: ', AverageScore:4:1);
1800 18 400142 0 1 1 END.
1800 19 400172 Q 1 0
1 Nonstandard feature
Last error (warning) on line l.o

Active options at end of compilation:
NODEBUG , STANDARD, LIST, CHECK , WARNINGS , CROSS_REFERENCE , @)

MACHINE_CODE, OBJECT, ERROR_LIMIT = 30
Compilation time: 1.51 seconds (755 lines per minute) .0
AVERAGE_SCORE 17-Aug-1983 11:23:32 PASCAL-20 1(A11)
GENERATED CODE CBL20:<MASELLA>AVER.PAS (1)
LINE INSTRUCTION ADDRESS OPCODE OPERAND(S)
@7 255 00 0 50 000000 400012 JFCL o
265 16 0 00 000000* 400013 Jsp AC16,00 PASLD%
202 17 0 00 000002' _ 400014 MOVEM AC17,02
400 16 0 00 000000 €400015 @serz @nacie,
201 05 0 00 000041' 400016 MOVET AC05,000041
261 17 0 00 000005 400017 PUSH AC17,05
260 17 0 00 000000* 400020 PUSHJ AC17,00 INPSIN
105 17 0 00 777777 400021 ADJSP AC17,777777
200 00 0 00 000017 400022 MOVE AC00,17
201 05 0 00 000041' 400023 MOVET AC05,000041

02-Sd0L NO 1vOSV¥d ONISsSN

€1-8

AVERAGE SCORE

CROSS REFERENCE

AVERAGESCORE
AVERAGE SCORE

COUNT
INPUT
OUTPUT
SCORE
TOTAL

AVERAGE SCORE

GENERATED CODE

LINE

INSTRUCTION

523214520302
733136260716
625016361736
713124064746
351000000000

@ 27356462744

Figure 8-1:

203635772744
203474367744
627465620256
643135620310
677354526100
723636062500
416512246136
551340000000
000000000000

17-Aug-1983

CBL20:<MASELLA>AVER.PAS

W ke 0 e

17-Aug-1983

CBL20:<MASELLA>AVER.PAS

ADDRESS

400153
400154
400155
400156
400157 @)
400160
400151
400162
400143
400164
400165
400165
400167
400170
400171

11:23:32

8 14

12 13

11:23:32

OPCODE

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

Compiler Listing Format

PASCAL-20 1(6h11) Page 2
14 16
13 16

PASCAL-20 1(511

OPERAND (S)

(1)

MR-S-3122-83

0¢-SdGL NO TV¥OSV¥d ONISN

USING PASCAL ON TOPS-20

The compiler listing in Figure 8-1 contains the following three
sections:

® Source-code listing - When you request a 1listing file, the
source code is listed by default.

e Machine-code listing - To generate the machine-code 1listing,
you must specify the /MACHINE-CODE switch, or the
MACHINE~-CODE + source switch.

e Cross-reference listing - To generate cross-references for
all 1identifiers wused in the program, you must specify the
/CREF switch.

The numbers throughout this section are keyed to the numbers in Figure
8-1.

TITLE LINE - Each page of the listing contains a title 1line. The
title 1line 1lists the module name ", the date and time of the
compilation ", the PASCAL compiler name and version number " , the
listing page number ", and the file specification of the source file

8.4.6.1 Source~-Code Listing - The 1lines of the source code are
printed in the source-code listing. 1In addition, the listing contains
the following information pertaining to the source code:

e Editor line numbers ‘, - If you created or edited the source
file with an editor that automatically inserts line numbers,
these line numbers appear in the leftmost <c¢olumn of the
source~code listing. Editor line numbers are irrelevant to
the PASCAL compiler. Note these are not the line numbers you
specify to PASDDT for debugging purposes.

e Line numbers " — The compiler assigns unique 1line numbers
to the source 1lines in a PASCAL module. The symbolic
traceback that is printed if vyour program encounters an
exception at run time refers to these line numbers. Note
these are the line numbers you use when working with PASDDT.
Refer to Chapter 9 for information concerning the debugger.

e Address " - The listing includes the octal address of the
instruction on that line of source code.

® Procedure number ‘, — PASCAL numbers each procedure in the
listing file as it progresses down the source code, starting
with 0 for the main program.

e Procedure level d) - Bach line that contains a declaration
lists theé procedure 1level of that declaration. Procedure
level 1 indicates declarations in the outermost block. The

procedure-level number increases by one for each nesting
level of functions or procedures.

USING PASCAL ON TOPS-20

e Statement level ‘D - The 1listing specifies a statement
level for weach 1line of source code after the first BEGIN
delimiter. The statement level starts at 0 and increases by
1 for each nesting Jevel of PASCAL structured statements.
Specifically, the CASE statement, the REPEAT statement, and
the BEGIN/END block increase the statement 1level. The
statement level of a comment is the same as that of the
statement that follows it.

ERRORS and WARNINGS —-- The source-code listing includes information on
any errors or warnings detected by the compiler. The actual message
is printed beneath the error in the source code. In addition, the

following items appear in the listing:

e A circumflex (") that points to the character position in the
line where the error was detected qa .

e A numeric code, following the circumflex, that specifies the
particular error qa . On the following lines of the source
listing, the compiler prints the text that corresponds to
each numeric code @ .

e The line number where the error was detected d’ and the
line number of the previous line containing an error q, .
You can use these error 1line numbers to trace the error
diagnostics back through the source listing.

SUMMARY —-- At the end of the source listing, the compiler tells you
how many errors or warnings were generated (if any), with the source
line number where the last one occurred ‘D . The compiler prints the
status of all the compilation options q, and how much time was
required for the compilation () .

8.4.6.2 Machine-Code Listing - The machine-code listing (if requested
with the /MACHINE-CODE switch) follows the source-code listing. The
machine-code listing contains:

e Source line number e’ - A source line number marks the
first object instruction that the compiler generated for the
first PASCAL statement on that source line.

e Octal representation of instruction Q - This is the octal
representation of the object instruction.

e Address e’ - This 1is the relocatable address of the
instruction.

e Opcode Q@ - This is the mnemonic operation code for the
instruction.

e Operand Qb - This contains the mnemonic accumulator field
and address field for the operation.

For more information on machine-code instructions, refer to the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual.

USING PASCAL ON TOPS-20

8.4.6.3 Cross—Reference Listing - The cross-reference 1listing (if
requested with the /CREF switch) appears after the machine-code
listing. It contains two sections:

e User-specified identifiers GB - This section lists all the
identifiers you declared.

@ Globally-defined identifiers e’ - This section 1lists the
PASCAL predefined identifiers that the program uses.

Each line of the cross-reference listing contains an identifier and a
list of the source lines where the identifier is used @b . The first
line number indicates where the identifier 1is declared. Predefined
identifiers are 1listed as if they were declared on line 0 e’ . The
cross-reference listing does not specify pointer type identifiers that
are used before they are declared.

8.5 LOADING A PROGRAM

After compiling your PASCAL program, you Jload the object module(s)
with the LINK program to produce an executable image file. Loading
resolves all references in the object code and establishes absolute
addresses for symbolic locations. This section describes the use of
the LOAD command.

8.5.1 The LOAD Command

To load an object module, specify the LOAD command in the following
general form:

LOAD filename [/switch(es)...]

where:
filename specifies the input object file to be loaded. The
file must be a REL file, created with the PASCAL
compiler (or some other translator).
/switch(es) specify input file options.

The file specification must be typed on the same 1line as the LOAD
command. If the file specification does not fit on one line, you can
continue typing without pressing the RETURN key.

The LOAD command runs the LINK program, which reads the REL file
specified on the command 1line and loads it into memory. When LINK
exits, it leaves your program in memory, ready to be SAVEd as an EXE
file or to be STARTed.

The LOAD command can do a COMPILE command before running LINK. If you
specify a file name to the LOAD command for which there is a source
file but no REL file, the LOAD command automatically performs a
COMPILE command first.

See the TOPS-20 Commands Reference Manual for more information on the
LOAD command.

USING PASCAL ON TOPS-20

8.6 EXECUTING A PROGRAM

After you have compiled and linked your program, you can execute the
object file with the START command; or you can save the file with the
SAVE command, and then execute it with the RUN command.

You can save time by using the EXECUTE command. The EXECUTE command
acts by performing a LOAD command (which may start with a COMPILE
command) followed immediately by a START command. So, 1instead of
performing several separate steps of running the compiler, compiling
your program, loading your program, and starting your program, you can
compile, load, and start your program with a single command:

PEXECUTE filename (®1)

Using the EXECUTE command does not save the executable image of the
object file. The SAVE command stores a copy of the executable image
in an executable file. The default file type that is created is EXE.
After an executable 1image is saved, you can execute it with the RUN
command. The SAVE and RUN commands have the form:

@ESAVE filename (xn
@RUN filename (Ri1)

You must specify the file name; default values are applied 1if vyou
omit optional elements of the file specification. The default file
type is EXE.

8.7 EXAMPLES

Example 1
EFASCAL
FASCALSORTER /NOFLAG/LISTING
FAGSCAL = /EXTT
REXE SORTER

This example uses the PASCAL command to compile the source file
SORTER. The /NOFLAG switch prevents display of messages about
nonstandard PASCAL statements in the program; the /LISTING switch
generates a .LST file of the compilation in your disk area.

Example 2

RFASCAL
FASCAL-MERGER/DERUG
FASCAL = /7EXTT

@L.0AD MERGER/DEERUG
ELERUG MERGER

The PASCAL command is used to compile the program with the debugger,
PASDDT. The DEBUG command is used to load the compiled program and
the PASCAL debugger automatically. The DEBUG command executes the
program with PASDDT.

USTNG PASCAL ON TOPS-20

Example 3

RL.OAL PLAN /COMFILE ZCREF
RFRINT FLANJLST
BSTART

The LOAD command first compiles the program because of the /COMPILE
switch, then, if compilation is successful, loads the program. The
/CREF switch generates a listing file with cross-reference
information. The PRINT command prints the listing. The program is
then executed with the START command.

CHAPTER 9

PASDDT: THE PASCAL-20 DEBUGGER

The PASCAL-20 debugger, PASDDT, provides the means to monitor and
modify the execution of a PASCAL program. PASDDT provides symbolic
debugging capabilities that allow you to read and modify the wvalues
associated with wvariables by referring to the PASCAL identifiers
within your program.

9.1 RUNNING PASDDT

To use the debugger, you must compile and 1load PASDDT with the
program. First, compile the source program and include the /DEBUG
switch in the command string:

EFASCAL
FASCAL>Tilename/DERUG
FASCAL>/EXIT

@

Then, load the program along with PASDDT by specifying the DEBUG
command :

EIERUG filename

The DEBUG command loads and starts the program currently in memory,
with the debugger, PASDDT.

If you want more control over where the debugger is placed, or you
have the need for more options, you can use the TOPS-20 LINK program
directly. Refer to the LINK Reference Manual for TOPS-20 information.

When running PASDDT, the source file with the extension PAS should be
located in the same directory as the EXE version of the file. This
should also be the directory to which you are connected when running
PASDDT. If you have specified a file with the RINCLUDE directive,
PASDDT looks for a file with the same name.

9.2 USING SYMBOLIC VALUES

Symbolic values are the identifiers defined within the source program.
PASDDT allows access to identifiers available only in the current
scope, and performs recognition on these identifiers.

You can specify a location in the source code by using the line number
shown in the listing file created when the program is compiled. See
Section 8.4.7.

PASDDT: THE PASCAL-20 DEBUGGER

9.3 SCOPE

Scope 1is the range within the progream in which a specific definition
of an identifier exists. The scope corresponds to the part of the
program in which the identifier can be used. Figure 9-1 shows the
scope of three wvariables 1in program Modules. The scope of the
identifier A (a global variable) is the entire program. The scope of
variable B, declared in procedure OQuter, is the entire procedure,
including procedure Inner. The scope of variable C is 1limited to
procedure Inner.

SCOPE

FROGRAM Modules C(INFUT, QUTFUT) S
VAR A ¢ INTEGER $= 03¢

FROCEDURE Outers
VAR B ¢ INTEGERS c
FROCEDURE Irners

VAR ¢ INTEGERS
REGIN (kbedgin Inner¥)

.

ENINy (Xend Innerx)
BEGIN (kbedgin Outerx)

*

ENII$ (Xend Outerx) s

BEGIN (kmain srodramk)

+

EN, (Xend main srosramk)

Figure 9-1: Scope

PASDDT uses the concept of dynamic scope when accessing identifiers
and their values. Dynamic scope is the scope in relation to the use
of the program; the dynamic scope refers to the 1level at which a
particular 1identifier 1is being used. For example, a recursive
procedure (a procedure that calls itself) has multiple scopes for the
same identifier.

PASDDT represents the scope of an identifier with a positive integer.
Global data has a scope of 1. Each nested level from that has a scope
of one greater than that of the level from which it 1is called. The
following example is a recursive function that calculates factorials.

PASDDT: THE PASCAL-20 DEBUGGER

FROGRAM Calculate CINPUT»QUTFUT)
VAR Answery Num ¢ INTEGERS

FUNCTION Factorial (Number ¢ INTEGER) ¢ INTEGERS
REGIN
WHILE Number = O [0
Factorial {= Number X Factorial (Number - 1)3%
ENID#

BEGIN
Answer = Factorial(Num)?§

*

ENT .

When Factorial is called from the main program, the value of Num is
passed to Number. Until Number is equal to 0, the function Factorial
continues to call itself; the value of Number 1is decremented by 1
each time the function calls itself. Assume that the value 3 is
passed to Number. Number then has the value of 3, then of 2, then of
1, then of 0. Each call to itself represents another level of dynamic
scope. Number has a scope of 1 the first time it is called; a scope
of 2 the second time it is called, and so on.

9.4 PASDDT COMMANDS

The following sections describe each of the PASDDT commands. The
default radix for all purposes is decimal.

PASDDT uses the facility of recognition and guidewords. Recognition
permits vyou to type enough of the word or identifier to be unique.
For example, you can type CL to specify the CLEAR command. You can
also use recognition with identifiers you have used in the program.
For example, if you have defined the identifiers NewList and NewTABLE,
you could use NewL and NewT, respectively, to specify these
identifiers.

PASDDT also provides guidewords when you press the ESC key. The guide
words indicate what you should enter next. In the following sections,
guidewords are displayed in parentheses. You do not need to type the
guidewords or the surrounding parentheses in the syntax. In addition,
PASDDT displays the options that vyou can enter when you type a
question mark (7). For more information about recognition and
guidewords, refer to the TOPS-20 User's Guide.

9.4.1 ASSIGN

ASSIGN assigns a value or virtual address to the specified identifier.
The format is:

ASSIGN (VARIABLE or ADDRESS) user identifier (=) constant
octal address octal value

where:
user identifier is a variable name in the active scope.

octal address is a virtual address in the user program.

9-3

PASDDT: THE PASCAL-20 DEBUGGER

constant is a wvalue with a simple data type of
INTEGER, REAL, CHAR, BOOLEAN, DOUBLE, or
user—-defined enumerated type.

octal value is the wvalue to be placed 1in the octal
address,

Example
FASDOT>ASSIGN New.lnt ($=) 20

This example assigns the value of 20 to user identifier New Int.

9.4.2 BREAK

BREAK sets a new breakpoint at a specified location or resets an

existing breakpoint. During a debugging session, when the program
reaches the location specified, it stops execution, thus allowing you
to perform debugging operations. You can set a maximum of 20

breakpoints.

To set a new breakpoint, use the following format of the BREAK
command :

BREAK (AT) line number [(NAME) break identifier]

where:
line number is a line number corresponding to a 1line 1in
the source code. These 1line numbers are
found in the listing file generated when you
compile the program.
break identifier is the name you associate with the

breakpoint. Each breakpoint identifier can
contain any number of characters, but the
first nine <characters must be unique. The
break identifier can contain all characters
except an underscore (_) or dollar sign ($).

Note that you cannot set a breakpoint in the declaraticn section of a
program. If you do, PASDDT sends you an error message and does not
set the breakpoint.

To change the status of a breakpoint from CLEAR (Section 9.4.3), use
the following format of the BREAK command:

BREAK (AT) {line number }
break identifier
where:
line number is the line number of the breakpoint that you
want to reactivate.
break identifier is the name of the breakpoint you want to

reactivate.

Note that you can find out the status of breakpoints by displaying
them with the DISPLAY command. See Section 9.4.4 for information on
the DISPLAY command.

PASDDT: THE PASCAL-20 DEBUGGER

The following rules apply to the use of BREAK:

If you specify a break identifier, but not a 1line number, the
following happens:

e TIf there is already a breakpoint with this identifier, this
breakpoint is used.

e If there is no breakpoint with this 1identifier, an error
occurs.

If you specify a 1line number, but not a break identifier, the
following happens:

e If a breakpoint is assigned for this location, that
breakpoint is used.

e If a breakpoint has not been assigned, a new breakpoint 1is
established with the identifier NO NAME.

If the command specifies both a line number and a break identifier,
the following happens:

e If a breakpoint has already been assigned for this 1location
with this identifier, the previously defined breakpoint is
used.

e If a breakpoint has already been assigned for this location
with a different identifier, an error occurs.

e If a breakpoint has already been assigned at another location
with this identifier, and no breakpoint has been set at this
location, PASDDT prints a warning message. PASDDT then asks
if you want to override the address associated with that
breakpoint. If so, the previous breakpoint is discarded, and
a new breakpoint 1s declared with the given identifier and
location.

Note that you must use the PROCEED command after each break for the
program to continue. PROCEED is described in Section 9.4.7.

Note the following example:
FASDIDT breask 10 first

FASDOT disrlay break
BREAK FOINT(S)?

Name = FIRST

Break Address = 000000400044
Line Number B 10
Status = BREAK

FASIOT > e roceed
EBREAKIFIRST

FC AT VIRTUAL ADIDNRESS 00000040044

FASCAL LINE NUMBER = 10

LINE 93 Count = Qs

LINE 102 WRITELN (‘Enter wour scores. When doner ture CTRL/ZZ.D) G
LINE 113 WHILE NOT EOQF IO

FASDDT =

PASDDT: THE PASCAL-20 DEBUGGER

As shown in the previous example, PASDDT automatically displays three
lines of source <code at a breakpoint. See the SET command, Section
9.4.9, for details of controlling the display of source code when a
breakpoint is reached.

9.4.3 CLEAR

CLEAR turns off breakpoints and tracepoints set with the BREAK and
TRACE commands. The format is:

CLEAR (AT) }1ine number } [(NAME) break identifier]
I\break identifier
where:
line number is the line number in the source code where
the breakpoint or tracepoint is set.
break identifier is the name of the breakpoint or tracepoint

associated with the line number.

You can specify either both the 1line number and associated break
identifier, just the line number, or just the break identifier.

The CLEAR command does not delete the breakpoint or tracepoint; the
CLEAR command merely turns it off. Also, although you have cleared a
breakpoint or tracepoint, it is still counted in the total 20 allowed.
To delete a breakpoint or tracepoint, use the REMOVE command, Section
9.4.8. If you want to <check the status of breakpoints and
tracepoints, use the DISPLAY command, Section 9.4.4.

Note the following example:

FASDDT Hreak 11 one
FasSHnThreak 12 two
Fasnny=iisrlag break
BREAK FOINT(S)

Namea = (NI

Ereak Address = 000000400062
l.ime Number i i1
Status = RBREAK
Name = TWO

EBreak Address = 000000400071
lLine Number = 12
Status = BREAK

FASIDT=clear 11
FASIDT:disrlaw break
EREAK FOINT(S)

Name = (NE

EBrealk Address = 000000400062
Line Number = 11
Status = QFF
Name = TWO

Break Address = 000000400071
Lirne Number = 12
Status = BREAK

FASODOT>clear two
FASITOT = o s
BREAK FOINT(S5):

Name = (INE
Break Address
lire Number
Status

Name = TWO
Break Address
Lime Number
Status

FASIDT =trealk 12

PASDDT: THE PASCAL-20 DEBUGGER

Law Dhreak

FASDOLOT - diss law bhreak

BREAK FOINT(S)

Name = (INE
Break Address
Lirme Number
Status

Name = TWO

Brealk Address

l.ire Number

Status
FASTHIT = e

9.4.4 DISPLAY

000000400062
11
= OFF
000000400071
12
QOFF
000000400062
11
= OF
000000400071
12
= BREAK

The DISPLAY

command has three functions:

1. To show the status of breakpoints and tracepoints

2. To show the calling sequence of procedures and functions

3. To show a line (or range of lines) of the source code

To DISPLAY information about

following format:

breakpoints and tracepoints, use the

DISPLAY B [REAK-IDENTIFIER] [break identifier]

where:

B [REAK-IDENTIFIER]

break identifier

indicates that you want to display
breakpoints and tracepoints,

is the name of a particular breakpoint or
tracepoint. If you do not specify a break
identifier, PASDDT displays information
about all of them.

The information you receive includes the name of the breakpoint, the
line number of the breakpoint, and the status of the breakpoint (ON or

OFF) .

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

annTedisrlay bhreak
AR FOINTS) ¢

Name = FERST

Break Address = 000000000370

Lire Number B L9
Ll = BREAK

Hame SECOND

Breask Adore

; 000000000452
Lime Mumber = 23
Staltus = TRACE
N e = THIRD
Break Address = 000000000617
L.ine Number i 37

FASIOT »disrlaw break second
RREAK FOINT(S)

Name = GECOND

Ereak Address = 000000000452
l.irme Number a 23
Status = TRACE

To DISPLAY the calling sequence of procedures and functions, use the
following format:

DISPLAY (OPTION) 1 [NVOCATION-STACK] {integer} ﬂ{/STATIC }]]
*

/DYNAMIC
where:

I [NVOCATION-STACK] indicates that you want to display the
calling sequence of your routines.

integer is a decimal number representing how
many routine calls to display.

* indicates that vyou want all routine
calls displayed back to the main
program.

/STATIC causes the static level of the routines
to be displayed as they were defined in
the user program.

/DYNAMIC causes every invocation of a routine to

be displayed. This is the default.

The information you receive includes the calling sequence, the static
level of the procedure or function, and the address at the time of the
display.

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

FAasSOnT-disslay invocation-staclk X/static

CEXUURE NAME STATIC LEVEL ALIRESS
Y..RILL 1 Q00140
FASIDT »disrlaw invoe X/Zdunamic

DURES NAME STATIC LEVEL ATMRESS
Y. BTLL 1 000140
AT -

To DISPLAY lines of source <code in the current scope, use the
following format:

DISPLAY (OPTTON) S [OURCE-LINE]] line number [[/RANGE:integer]

where:

S [OURCE-LINE] indicates that you want to display a line of
the source code.

line number is an integer representing a 1line in the
source code. You will find these numbers in
the listing file.

/RANGE : is an optional value indicating that you want
to display more than one line of source code.

integer is a decimal number indicating how many lines

of source code to display.

DISPLAY prints the source code of the line number you specify and any
other lines included in the range.

Note the following example:

FASINT »disrlay source S/randetl0

LINE &3 Yes.No = (Yes » No)ds (x Nefines data ture Yes.No
LINE &3 with values Yes and No X)
LINE 7%

LINE &t VAR

LLINE 93 ITtem.Frice » Totals

LINE 101t Couron.Amount ! Reals (XDeclares three real variablesx)
LINE 113 Ars ¢ Yes..Nov (¥ lleclares a variabler Ansy of ture
LINE 123 Yes..No X)

LINE 133 Subrtotal » Couronst REAL = 0.0%

LLINE 1432

FASHDY =

9.4.5 EXIT
EXIT halts execution of the program. The format is:

EXIT

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:
FASIOT-EXTT

CH times 0016 Elarased Lime: 03,37
[t

This exits you from PASDDT and puts you at TOPS-20 command level. The
CPU time and elapsed time are also displayed.

9.4.6 HELP
HELP displays a help message. The format is:
HELP (with PASDDT) [command name]
Note the following example:
FAGIDT = hel
LHELF HELF Leommarnd mname or veturnl
This command allows the user to Het helr with FASDHDT,
Ture ‘HELF - followed bw the command You want hels
wibtihe Ture 8 cuestion mark (7?7) to see the commands
that are available.

FASODT > e

This displays help messages about all of the PASDDT commands.

9.4.7 PROCEED

PROCEED initiates or continues execution of the program until a
breakpoint is reached or the user program terminates. The format is:

PROCEED (with USER Program)
Example 1

BFASCAL
FASCAL > TEST .FAS/DERUG
FASCAL: /EXTT

GDERUG TEST
FASDOT>FROCEED

This example shows source program TEST.PAS being compiled, loaded, and
started. PROCEED initiates the execution of the program,

Example 2

eFASCAL

BCFASCAL > EXAMFL /DERUG

FASCALF /7EXIT

@LOAD EXAMFL.RELySYSIFASDIDT.REL
@ SAVE EXAMFL

P RUN EXAMFL

FASDOT > FROCEED

PASDDT: THE PASCAL-20 DEBUGGER

This example compiles and 1loads the program EXAMPL. Loading
PASDDT.REL with the program EXAMPL causes a copy of PASDDT to become a
part of the executable file EXAMPL.EXE. PROCEED initiates the
execution of the program.
Example 3

FASDDOTHRREAK 3% Breakl

FAGOOTHROCEED

This example causes the program to resume execution after stopping at
a breakpoint.

9.4.8 REMOVE

REMOVE deletes breakpoints and tracepoints completely. The format is:

REMOVE (AT) {]ine number } [(NAME) break identifier]
break identifier
where:
line number is the line number in the source code where
you set the breakpoint or tracepoint.
break identifier is the name of the breakpoint or tracepoint.

You can specify either a line number followed by the break identifier
associated with that 1line number, just the line number, or just the
break identifier.

Note the following example:
FASIOT Hhreak 10

FASINT i arlay break
BREAK FOINT(S):

Name = S NONAME =

EBreak Address = 000000400044
Line Number = 10
Status = RREAK

FASDODT *remove 10
FASIDT disrlaw break
NO EREAKFOINTS SET
FASDIT rex

9.4.9 SET
The SET command has four functions:

1. Turning on automatic displaying of source code when a
breakpoint is executed. This is the default.

2. Telling PASDDT how many lines to display when a breakpoint is
executed. The default is three.

PASDDT: THE PASCAL-20 DEBUGGER

3. Telling PASDDT which separately compiled module to use in
terms of setting breakpoints and gaining information about
the user program. When PASDDT starts up, the default is the
main program.

4. Setting the level of information displayed by PASDDT. The
default is VERBOSE.

To SET the automatic displaying of source code on or off, wuse the
following format:

SET (OPTION) {A [uTto-pDIspPLAY] \
No-A [uro-ptsprav]
where:
AUTO-DISPLAY turns on the automatic displaying of source
code at a breakpoint. This is the default.
NO-AUTO-DISPLAY turns off the automatic displaying of source

code at a breakpoint.

When AUTO-DISPLAY is set, PASDDT displays the line of source code at
the breakpoint. If your terminal is slow or you are using a dial-up
line, you may want to turn off displaying the source code with
NO-AUTO-DISPLAY.

Note the following example:

FASIDT *break 10

FASIIT »gset no—-auto

FASTIDT *rroceed

) REAK S

FC AT VIRTUAL ADDRESS 000000000416
FASCAL LINE NUMRER 10
FASIHOT *hreak 12

FASINT »set auto

FASIIT *rroc

Enter wour scores, When dorey ture CTRL/Z,

it

23

=RREAK S

FC AT VIRTUAL AIDRESS 000000000443
FASCAL LINE NUMERER = 12
LINE 113 WHILE NOT EOF DO

LINE 123 BEGIN

LINE 13: READLN (Score)s

To SET the number of lines to automatically display, use the following
format of the SET command:

SET (OPTION) W [INDOW] n

where:

WINDOW indicates that you want to set the number of
lines of source code to display at a
breakpoint.

n is a decimal integer specifying how many

lines of source code to display. The default
is three.

The window is centered around the line on which the breakpoint is set.

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

FASLTINT »set window 10
EGDDT e ro

REAK?

DOAT VIRTUAL ADDRESS 000000000443
FasSCal. LINE NUMBER i 12
LINE 78 BEGIN
LINE &¢ Total = 03
LINE 18 Count = Q3
LENE 102 Wi LN C7Enter wour scores. Whern domes ture CTRL/ZZ.)5
LINE J1¢ WHILLE NOT EOF DO
LINE 123 BEGIN
LINE 133 READLN (Score)d
LINE 143 Total = Score + Totals
LINE 182 Count = Count + 13
LINE 163 Ereds

To SET the name of the module where PASDDT can find information
relevent for debugging purposes, use the following format of the SET
command :

SET (OPTION) M [ODULE] module name

where:
MODULE indicates that you want to specify the name
of a separately compiled module.
module name is the identifier after the word PROGRAM or

MODULE 1in the source file. At start-up, the
default is the main program.

Note the following example:
FASTIIT

FASIDT
FASIHIT =

sel module T MODULE NAME AVERAGE..SCORE
set module averade_score

To SET the level of information displayed by PASDDT, use the following
format of the SET command:

SET (OPTION) V [ERBOSITY] (OF TYPEOUT) {V[[ERBOSE]]}

BLWRTIEF
where:
VERBOSITY indicates that you want to change the level
of information displayed.
VERBOSE displays the most information. This 1is the
default.
BRIEF displays a minimal amount of information.

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

Fasnn
FASTONT =

2l vernos ITY COF TYFEQUT) brief
PO

FrRREAKS
FABCAL LINE NUMRBER s 12

LINE 7% BEGIN
LLINE 8¢ Toltal 1= 03
LINE 93 Count = O
LINE 103 WRITELN (7Erter wour scores. When doney ture CTRLZZ7)S
LINE 113 WHTLE NOT EOF DO
LEINE 123 REGIN
LINE 133 READLN (Scove)s
LINE 143 Total = Score + Totals
LINE 1493 Courst. ¢= Count + 13
LINE 163 Ervis
e 5
FASCAL LINE NUMBER = 12

LLINE 102 WRITELN (‘Enter vour scores. When donesy ture CTRL/ZZ.7)S
LINE 112 WHILE NOT EOQOF DO

LINE 123 BREGIN

LINE 133 READLN (Score)s

LLINE 14: Total = Score + Totals

FASTDT #emit

9.4.10 SHOW

The SHOW command prints the current wvalue of an identifier. The

format of the SHOW command is:

SHOW (VARIABLE OR ADDRESS) {user identifier}
octal address

where:
user identifier is the name of a wvariable 1in the current
scope.
octal address is a virtual address 1in the user program.
(This is not the address shown in the listing
file.)

Note that, when you set a breakpoint, PASDDT automatically displays
three 1lines of source code, unless you specified SET NO-AUTO-DISPLAY.
You can then see any identifiers that are declared for the current
scope of the user program with the SHOW command. You can also type a
question mark (?) to the SHOW command to see what identifiers are
available.

9-14

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

FASHUT =hreak 10
ST = rroceeed
SREAK S

FCOAT VIRTUAL ADDRESSH 000000400044
FASCAL LINE NUMRER S 10
S92 Count = 0F
LINE 103 WRITELN (‘Enter wour scores. When doney twure CTRL/ZZ.)5
LINE 113 WHILE NOT EOF DO
FASTDT = show T VIRTUAL ATDRESS

or FASCAL VARIARBLE omne of the followins?
GESCORE AVERAGE .SCORE COUNT INFUT

QuUTEFUT SCORE TOTAL
FALGINT > show score
VAL UE = [¢]

= INTEGER
ALDRESS = QE7060
FASIINT »show count
VAL UE = 0

S INTEGER

WSS S 037062
FASTINT > show insut

File is QFEN for resding

File is & TEXT file

File is TTY?

File is the standard INFUT file

File name = TTY3
FASDIOT e

9.4.11 TRACE

TRACE sets a new tracepoint at a specified 1location or resets an
existing tracepoint. When the program reaches the location specified,
PASDDT prints a message indicating that a trace was placed on this
line. Unlike the BREAK command, TRACE does not halt program execution
or print source ccde. You can set a total of 20 tracepoints and
breakpoints. Clearing them does not delete them from the count.

To set a new tracepoint, use the following format of the TRACE
command :

TRACE (AT) line number [(NAME) trace identifier]

where:
line number is the line number associated with the 1line
of source code that you want to trace. This
line number can be found in the listing file.
trace identifier is the name you want to associate with the

tracepoint. Each identifier can contain any
number of characters, but the first nine
characters must be wunique. The identifier
can contain all characters except underscore
(_) and dollar sign ($).

9-15

PASDDT: THE PASCAL-20 DEBUGGER

To reset a tracepoint that you have turned off with CLEAR (Section
9.4.3), use the following format of the TRACE command:

TRACE (AT) {]ine number }
break identifier
where:
line number is the line number of an existing tracepoint
that you want to reset.
break identifier is the name of an existing tracepoint that

you want to reset.
The following rules apply to the use of TRACE:

If you specify a trace 1identifier, but not a 1line number, the
following happens:

e If there is already a tracepoint with this 1identifier, this
tracepoint is used.

e If there is no tracepoint with this 1identifier, an error
occurs.

If you specify a 1line number, but not a trace 1identifier, the
following happens:

e If a tracepoint 1is assigned for this location, that
tracepoint is used.

e If a tracepoint has not been assigned, a new tracepoint is
established with the identifier NO NAME. You can have more
than one tracepoint with the name NO NAME.

If you specify both a 1line number and a trace identifier, the
following happens:

e If a tracepoint has already been assigned for this 1location
with this 1identifier, the previously defined tracepoint is
used.

e If a tracepoint has already been assigned for this 1location
with a different identifier, an error occurs.

e If a tracepoint has already been assigned at another location
with this identifier, and no tracepoint has been set at this
location, PASDDT prints a warning message. PASDDT then
asks if you want to override the address associated with the
previous tracepoint. If so, the previous tracepoint is
discarded, and a new tracepoint is declared with the given
identifier and location.

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

FASTIDT >trace 10 one
FASIT >rroceed

o CACE S ONE

FCAT VIRTUAL ADDRESSH 000000400044
FASCAL LINE NUMBER £ 10
Ernter wour scores. When domey ture CTRL/ZZ.
7%

44

89

“ZThe averase score isi 69.3

APPENDIX A

PASCAL MESSAGES

Table A-1: Run-time Errors

? PRTO0O01 Value not within subrange of variable in assignment.

? PRT002 Case selector out of range.

? PRT003 Array index out of bounds.

? PRTO004 Conformant array index out of bounds.

? PRT005 Size of conformant arrays incompatible.

? PRT0O0A NIL pointer value at runtime.

? PRT007 Attempt to divide by 0.

? PRTO008 Mod with 0 or negative value.

? PRT009 Set value out of range in assignment.

? PRTO10 Set element out of range in assignment.

? PRTO1l1 Stack expansion failed - No more memory available
for stack space.

? PRTO12 Memory expansion failed - No more memory available.

? PRTO13 DISPOSE called with NIL pointer.

? PRTO14 Page creation failed, error code = number.

? PRTO15 Page destroy failed, error code = number.

? PRTO16 Insufficient initial memory - cannot start program.

? PRTO17 Fatal error - illegal instruction detected at user
PC number.

? PRT018 Fatal error - illegal memory reference detected at
user PC number.

? PRTO19 Fatal error - illegal memory read detected at user
PC number.

? PRT020 Fatal error - illegal memory write detected at user
PC number.

? PRTO021 Fatal error - non-existent page detected at user PC
number.

A-1

PASCAL MESSAGES

Note that errors PRTO17 through PRT021 are probably caused by improper

use of an

array or pointer variable. 1If you receive one of these

errors, try compiling the program with the /CHECK switch.

Table A~2: 1I/0 Errors

? PIOOO1 User buffer overflow. File in error: filespec

? PIO002 Line 1limit exceeded. File in error: filespec

? PIO003 File not open for reading. File in error: filespec

? PTION04 File not open for writing. File in error: filespec

? PIO0OS Field width <= zero. File in error: filespec

? P10006 String write error. File in error: filespec

? PI0007 Integer write error. File in error: filespec

? PIO0OOS Field width < zero. File in error: filespec

? PIO009 Attempt to read past EOF. File in error: filespec

? PIOO10 Integer read error. File in error: filespec

? PIOOLL String read error. File in error: filespec

? PIOO12 Illegal character in number I/0. File 1in error:
filespec

2 PIOO13 Attempt fto RESET(output). File in error: filespec

? PIOOl4 Attempt to RESET(input). File in error: filespec

? PIOO1S Integer overflow. File in error: filespec

? PTI0O016A Attempt to reset/rewrite uninitialized file. File in
error: filespec

? PIOO17 Error in opening binary file. File in error:
filespec

? PIOO18 Error in writing to object file. File in error:
filespec

? PIOO19 Error in closing binary file. File 1in error:
filespec

? PIO020 Delete file error. File in error: filespec

2 PIOO21 Include/Exclude file error. File in error: filespec

? PT0O022 Attempt to use FIND on text file. File 1in error:
filespec

? PIOO023 Attempt to FIND a negative record. File in error:
filespec

? PI0O024 Field width too small for number output. File in

error: filespec

PASCAL MESSAGES

Table A-2: I/0 Errors (Cont.)

? PIO02S Scalar out of range. File in error: filespec

? PTO026 Attempt to open/close INPUT file. File in error:
filespec

2 PI0027 Attempt to close OUTPUT file., File in error:
filespec

? PIO028 Attempt to write to READONLY file. File in error:
filespec

? PIO029 Attempt to open already opened file. File in error:
filespec

? PIOO30 Attempt to REWRITE (output). File in error: filespec

? PTIO031 Attempt to REWRITE(input). File in error: filespec

? PI0032 Exponent too large. File in error: filespec

2 PIO033 Exponent too small. File in error: filespec

? PION34 Reset error -- File not found. File 1in error:
filespec

? PIO0O35 Scalar is all blanks. File in error: filespec

? PIO036 Attempt to read past end of 1line. File 1in error:
filespec

? PI0037 Attempt to readln/writeln to a binary file. File in
error: filespec

? PTI0040 PAGE called with file opened NOCARRIAGE. File in
error: filespec

? PI0042 EOLN called when EOF true. File in error: filespec

? PIO0A3 Testing EOF on unopened file. File in error:
filespec

? PI0044 Too many open files.

? PI0045 Attempt to RESET new internal file. File in error:
filespec

Compile-Time Errors

? PASO001l Error in simple type

The declaration for a base type of a set or the index type of an
array contains a syntax error.

? PAS002 Identifier expected

The statement syntax requires an identifier, but none can be
found.

«J

PASCAL MESSAGES

PAS003 "PROGRAM" or "MODULE" expected
The statement syntax requires the reserved word PROGRAM or
MODULE.

PASO04 ")" expected

The statement syntax requires the right-parenthesis character.
PASCO5 ":" expected

The statement syntax requires a colon character.
PAS006 TIllegal symbol

The statement contains an illegal symbol, such as a misspelled
reserved word or illegal character.

PAS007 Error in parameter list

The parameter list contains a syntax error, such as a missing
comma, colon, or semicolon character.

PAS008 "OF" expected

The statement syntax requires the reserved word OF.

PAS009 " (" expected
The statement syntax requires the left-parenthesis character.
PAS010 Error in type

The statement syntax requires a data type, but no type identifier
is present.

PASOll "[" expected

The statement syntax requires the left square bracket character.
PAS012 "]1" expected

The statement syntax requires the right square bracket character.
PASO13 “END" expected

The compiler cannot find the delimiter END, which marks the end
of a compound statement, subprogram, or program.

PAS014 ";" expected
The statement syntax requires the semicolon character.
PASO1lS5 Integer expected
The statement syntax requires an integer.
PASO16 "=" expected
The statement syntax requires the equal sign to separate a

constant identifier from a constant value or to separate a type
identifier from a type definition.

-

V]

~J

-

PASCAL MESSAGES

PASO17 "BEGIN" expected

The compiler cannot find the delimiter BEGIN, which marks the

beginning of an executable section.
PAS018 ".." expected

The compiler cannot find the .. symbol, which 1is
between the endpoints of a subrange.

PAS019 Error in field list

The field list in a record declaration contains a syntax
PAS020 "," expected

The statement syntax requires a comma.
PAS021 Empty parameter (successive ",") not allowed

The parameter 1list attempts to specify a null or
parameter, or contains an extra comma.

PAS022 1Illegal (nonprintable) ASCII character

required

error.

missing

The program contains an illegal character that is not a printable

ASCII character.
PAS023 "," or ")" expected

The statement syntax requires either a comma
right-parenthesis character.

PAS024 "''" expected
The statement syntax requires two quotation marks.

PAS050 Error in constant

or a

A constant contains an illegal character or is improperly formed.

PASO51 ":=" expected
The statement syntax requires the assignment operator.

PAS052 "THEN" expected

The compiler cannot find the reserved word THEN to complete the

IF-THEN statement.

PAS053 "UNTIL" expected

The compiler cannot find the reserved word UNTIL to complete the

REPEAT statement.

PAS054 "DO" expected

The compiler cannot find the reserved word DO to complete the FOR

statement or the WHILE statement.
PAS0S55 "TO" or "DOWNTO" expected

The compiler cannot find the reserved word TO or DOWNTO
FOR statement.

in the

V]

PASCAL MESSAGES

PAS058 1Invalid expression

The statement syntax requires an expression, but the first symbol
the compiler finds is not legal in the expression.

PAS059 Error in variable

A reference to an array element or record field contains a syntax
error.

PAS060 "ARRAY" expected

The compiler cannot find the reserved word ARRAY in the type
definition.

PASOA1 "PROCEDURE" or "FUNCTION" expected

The statement syntax requires the reserved word PROCEDURE or
FUNCTION.

PAS062 Internal compiler error
An internal error has been detected.
PAS095 Functions "BIN", "OCT", or "HEX" not allowed in this context
The context does not allow the functions BIN, OCT, or HEX.
PAS096 File component may not exceed A5535 words
The file component is larger than 65535 words.
PAS097 Error count exceeds error limit. Compilation aborted.
The number of errors exceeded the limit you specified.

PAS099 End of input encountered before end of program. Compilation
aborted.

PAS100 Array size too large

A declared array 1is larger than 2,147,483,647 bytes or
2,147,483,647 bits for a packed array.

PAS101 TIdentifier declared twice
An identifier is declared twice within a declaration section.
You can redeclare 1identifiers only 1in different declaration
sections.

PAS102 Lowbound exceeds highbound

The lower limit of a subrange is greater than the upper limit of
the subrange, based on their ordinal values in their base type.

PAS103 Identifier is not of appropriate class
The identifier names the wrong class of data. For example, it
names a constant where the syntax of the statement requires a
procedure.

PAS104 1Identifier not declared

The program uses an identifier that has not been declared.

A-6

V]

V]

PASCAL MESSAGES

PAS105 Sign not allowed

A plus or minus sign was found in front of an expression of
nonnumeric type.

PAS106 Identifier previously used in this block.
You gave two items the same identifier within the same block.
PAS107 Incompatible subrange types

The subrange types are not compatible according to the rules of
type compatibility.

PAS108 File not allowed in variant part
A file type cannot appear in the variant part of a record.

PAS109 Type must not be real or double
You cannot specify a real value here. Real values cannot be used
as array subscripts, control values for FOR loops, tag fields of
variant records, elements of set expressions, or boundaries of
subrange types.

PAS110 Tagfield type must be scalar or subrange

The tag field for a variant record must be a scalar or subrange
type.

PAS111 Incompatible with tagfield type
The case label and the tag field are of incompatible types.
These two items must be compatible according to the general
compatibility rules.

PAS112 1Index type must not be real or double

Array subscripts cannot be real values; if numeric, they must be
integer or integer subrange values.

PAS113 TIndex type must be scalar or subrange

Array subscripts must be scalar or subrange values, and cannot be
of a structured type.

PAS114 Base type must not be real or double

The base type of this set or subrange cannot be one of the real
types.

PAS115 Base type must be scalar or subrange

The base type of this set or subrange must be scalar or subrange
values, and cannot be of structured type.

PAS116 Actual parameter must be a set of correct size

The actual parameter must be of correct size when passed as a VAR
parameter.

PAS117 Undefined forward reference in type declaration: name

Compilation aborted.

PASCAL MESSAGES

PAS118 Value initialization must be in main program
A VALUE initialization must be in the main program.
PAS119 Forward declared: repetition of parameter list not allowed

You cannot repeat the parameter 1list after the forward
declaration of a subprogram.

PAS120 Function result type must be scalar, subrange, or pointer

The function specifies a result that is not a scalar, subrange,
or pointer type. Function results cannot be structured types.

PAS121 File value parameter not allowed
2 file cannot be passed as a value parameter.

PAS122 Forward declared function: repetition of result type not
allowed

The result of the function appears 1in both the forward
declaration and 1in the later complete declaration. The result
can appear only in the forward declaration.

PAS123 Missing result type in function declaration

The function heading does not declare the type of the result of
the function.,

PAS124 Fraction format for real and double only

You can specify two integers in the field width (such as R:3:2)
for real, single, and double values only.

PAS125 Error in type of predefined function parameter

A parameter passed to a predefined function is not of the correct
type.

PAS126 Number of parameters does not agree with declaration
The number of actual parameters passed to the subprogram is
different from the number of formal parameters declared for that

subprogram. You cannot add or omit parameters.

PAS127 Parameter cannot be element of a packed structure

You cannot pass one element of & packed structure to a
subprogram; you must pass the entire structure if you want to
use it.

PAS128 Result type of actual function parameter does not agree with
declaration

The result of an actual function parameter is not of the type
specified in the formal parameter list.

PAS129 Operands are of incompatible types
Two or more of the operands in an expression are of 1incompatible

types. For example, the program attempted to compare a numeric
and a character variable.

"

V]

PASCAL MESSAGES

PAS130 Expression is not of set type
The operators you specified are valid only for set expressions.
PAS131 Type of variable is not set
The statement syntax requires a set variable.
PAS132 Strict inclusion not allowed
You must use the <= and >= operators to test set inclusion.
PASCAL does not allow you to use the less than (<) and greater
than (>) signs for this purpose.
PAS133 File comparison not allowed
Relational operators cannot be applied to file variables.

PAS134 1Illegal type of operand(s)

You cannot perform the specified operation on data items of the
specified types.

PAS135 Type of operand must be Boolean
This operation requires a Boolean operand.
PAS136 Set element must be scalar or subrange

The elements of a set must be scalar or subrange types. Sets
cannot have elements of structured types.

PAS137 Set element types not compatible
The elements of this set are not all of the same type.
PAS138 Type of variable is not an array

A variable that is not an array type is followed by a left square
bracket or a comma inside square brackets.

PAS139 1Index type is not compatible with declaration

The specified array subscript is not compatible with the type
specified in the array definition.

PAS140 Type of variable is not record
A period appears following a variable that is not a record type.
PAS141 Type of variable must be file or pointer

A circumflex character appears after the name of a variable that
is not a file pointer.

PAS142 1Illegal parameter substitution

The type of an actual parameter is not compatible with the type
of the corresponding formal parameter.

)

-~

PASCAL MESSAGES
PAS143 Loop control variable must be an unstructured non-floating
point scalar
The control variable in a FOR loop must be an integer, integer
subrange, or user-defined scalar type; it cannot be a real
variable.

PAS145 Type conflict between control variable and loop bounds

The type of the control variable in a FOR loop 1is 1incompatible
with the type of the bounds you specified.

PAS146 Assignment of files not allowed

You cannot assign one file to another. Output procedures must be
used to give values to files.

PAS147 Label type incompatible with selecting expression
The type of case label is incompatible with the type to which the
selecting expression evaluates. Case labels and selecting
expressions must be of compatible types.

PAS148 Subrange bounds must be scalar

You can specify subranges of scalar types only. You cannot
specify a real or string subrange.

PAS149 1Index type must not be integer

The index type of a nonconformant array cannot be integer,
although it can be an integer subrange.

PAS150 Assignment to this function is not allowed

You cannot assign a value to an external or predeclared function
identifier.

PAS151 Assignment to formal function parameter not allowed

You cannot assign a value to the name of a formal function
parameter.

PAS152 No such field in this record

You attempted to access a record by an incorrect or nonexistent
field name.

PAS153 Type of parameter must be character string (array of char)

The actual parameter passed to this function or procedure must be
a character string.

PAS154 Type of parameter must be integer

The actual parameter passed to this function or procedure must be
an integer.

PAS155 Recursive $INCLUDE not allowed. Compilation aborted.
PAS156 Multidefined case label
The same case label refers to more than one statement. Each case

label can be used only once within the CASE statement.

A-10

PASCAL MESSAGES

PAS157 Case label range exceeds 1000

The range of ordinal values between the largest and smallest case
labels must not exceed 1000.

PAS158 Missing corresponding variant declaration
In a call to NEW or DISPOSE, more tagfield constants were
specified than the number of nested variants in the record type
to which the pointer refers.

PAS159 Double, real or string tagfields not allowed

Tag fields cannot be real or string wvariables, but must be
scalar.

PAS160 Previous declaration was not forward

The reiteration of a procedure or function that was not forward
declared is illegal.

PAS161 Procedure/function has already been forward declared
The subprogram has already been forward declared.
PAS162 Undeclared procedure or function: name Compilation aborted.

You specified a procedure or function without declaring it in the
declaration section.

PAS163 Type of parameter must be real or integer

The subprogram requires a real or integer expression as a
parameter.

PAS164 This procedure/function cannot be actual parameter
The specified predeclared procedure or function cannot be an
actual parameter. If you must use it in the subprogram, call it
directly.

PAS165 Multiply defined label

A label appears in front of more than one statement in a single
executable section.

PAS166 Multiply declared label

The program declares the same label more than once.
PAS167 Undeclared label

The program contains a label that has not been declared.
PAS168 Undefined label: 1label number Compilation aborted.

You specified a label as an argument to the GOTO statement, but
the label is not defined.

PAS169 Set element value must not exceed 255

The ordinal value of an element of a set must be between 0 and
255.

PASCAL MESSAGES

PAS170 Value parameter expected

A subprogram that is passed as an actual parameter can have only
value parameters.

PAS171 Type of variable must be textfile (file of char)

The specified operation or subprogram requires a text file
variable as an operand or parameter.

PAS172 Undeclared external file: name Compilation aborted.

You specified an external file that was not declared 1in the
declaration section.

PAS173 Negative set elements not allowed
The value of an integer set element must be between 0 and 255.
PAS174 Parameter must be a file type
The specified subprogram requires a file as a parameter.
PAS175 "INPUT" not declared as an external file
The program makes an implicit reference to the file wvariable
INPUT, but INPUT is either not declared or has been redeclared at
an inner level.
PAS176 "OUTPUT" not declared as an external file
The program makes an implicit reference to the file wvariable
OUTPUT, but OUTPUT is either not declared or has been redeclared
at an inner level.

PAS177 Assignment to function identifier not allowed here

Assignment to a function identifier is allowed only within the
function block.

PAS178 Multidefined record variant

A constant tag field wvalue appears more than once in the
definition of a record variant.

PAS179 File of file type not allowed
You cannot declare a file that has components of a file type.
PAS181 Array bounds too large

The bounds of an array are too large to allow the elements of the
array to be accessed correctly.

PAS182 Expression must be scalar

The expression must specify a scalar value; structured variables
are not legal.

PAS183 "[GLOBALI" or "[FORTRAN]" may only precede declarations at
level 1

The words [GLOBAL] or [FORTRAN] can be placed only in a function
or procedure heading.

~J

~J

PASCAL MESSAGES

PAS184 External procedure has same name as main program
Program and procedure names must be unique.
PAS186 Formal procedures may not have conformant array parameters

You cannot pass a conformant array as a parameter to a procedure
that is itself passed as a parameter.

PAS187 1llegal conformant array assignment

The program attempts to perform an illegal assignment 1involving
conformant arrays.

PAS188 Parameter must be scalar and not real or double

The parameters to the predeclared functions SUCC and PRED must be
scalar types, and cannot be one of the real types.

PAS189 Actual parameter must be a variable

When you use VAR with a formal parameter, the corresponding
actual parameter must be a variable and not a general expression.

PAS190 "READLN", "WRITELN" and "PAGE" are defined only for
textfiles

The predeclared procedures READLN, WRITELN, and PAGE operate only
on text files.

PAS191 "READ" and "WRITE" require input/output parameter list

The READ and WRITE procedures require at 1least one parameter;
you cannot omit the parameter list.

PAS192 Tllegal type of input/output parameter

Arrays, sets, records, and pointers cannot be parameters to the
READ and WRITE procedures.

PAS193 Field width parameter must be of type integer
The field width you specify must be an integer.
PAS194 Variable must be of type PACKED ARRAY[1l..11] OF CHAR

The DATE and TIME procedures require a parameter of PACKED ARRAY
[1..11]1 OF CHAR.

PAS195 Type of variable must be pcinter
The statement syntax requires a variable of pointer type.
PAS196 Type of constant does not agree with tagfield type

The type of a constant in a tag value list is incompatible with
the tag field type.

PAS197 Type of parameter must be real or double

The statement syntax requires a real (single- or double-
precision) value.

A-13

PASCAL MESSAGES

PAS198 Type of parameter nust be double
The statement syntax requires a double-precision value.
PAS199 Parameter must be of numeric type

The procedure or function requires an integer or real number
value.

PAS200 Parameter must be scalar or pointer and not real
The procedure or function requires an integer, user-defined
scalar, Boolean, integer subrange, user-defined scalar subrange,
or pointer parameter.

PAS201 Error in real constant: digit expected

A real constant contains a nonnumeric character where a numeral
is required.

PAS202 String constant must not exceed source line
The end of the line occurs before the apostrophe that closes a
string. Make sure that the second apostrophe has not been left
out.

PAS203 Integer constant exceeds range

An integer constant is outside the permitted range of integers
(that is, 2**31 to 2%*31),

PAS204 Actual parameter is not correct type

The actual parameter is not compatible in type with the
corresponding formal parameter.

PAS205 Zero length string not allowed
You cannot specify a string that has no characters.
PAS206 1Illegal digit in binary, octal or hexdecimal constant

A binary, octal, or hexadecimal constant contains an illegal
digit.

PAS207 Real or double constant out of range

A single- or double-precision real number 1is outside the

permitted range -- 0.29*%10**(-38) to 1.7*(10**38) for positive
numbers and -0.29*%10**(-38) to -1.7*%(10*%*38) for negative
numbers.

PAS208 Data type cannot be initialized

This variable contains a type, such as a file, that cannot be
initialized.

PAS209 Variable has been previously initialized
You can specify only one VALUE declaration for a variable.
PAS210 Variable is not array or record type

The VALUE initialization for a variable that is not a record or
an array contains a constructor.

A-14

-

)

PASCAL MESSAGES

PAS211 Incorrect number of values for this variable

The VALUE declaration contains too many or too few values for the
variable being initialized.

PAS212 Repetition factor must be positive integer constant

The repetition factor in an array 1initialization must be a
positive integer constant.

PAS213 Type identifier does not match type of variable

The optional type identifier must be compatible with the t:pe of
variable to be initialized.

PAS214 Incorrect type of value element
A constant appearing in a VALUE initialization has a type other
than that of the variable, record field, or array element to be
initialized.

PAS215 RMS record size must be a positive integer constant

The record size specified in the OPEN procedure call was not a
positive integer constant.

PAS216 "OLD" is not allowed for this file

You cannot specify OLD for an internal file.
PAS217 Assignment to Conformant Array Index is not allowed

You cannot make this assignment to a conformant array index.
PAS218 Array must be unpacked

An array parameter to PACK or UNPACK is not unpacked correctly.
PAS219 Array must be packed

An array parameter to PACK or UNPACK is not packed correctly.
PAS220 Packed bounds must not exceed unpacked bounds

The bounds of the packed array exceed the unpacked bounds.
PAS224 "[OVERLAID]" expected

The statement syntax requires the keyword [OVERLAID].
PAS225 TIllegal file attribute specification

You specified an attribute in the OPEN statement that is not
recognized by the compiler.

PAS226 Positional parameter not allowed after first non-positional
parameter

PAS227 "OLD", "NEW", "READONLY", or "UNKNOWN" expected

The statement syntax requires either the keyword OLD or NEW.

PASCAL MESSAGES

PAS228 "SEQUENTIAL" or "DIRECT" expected

The statement syntax requires either the keyword SEQUENTIAL or
DIRECT.

PAS229 “FIXED or "VARIABLE" expected

The statement syntax requires either the keyword FIXED or
VARIABLE.

PAS230 "NOCARRIAGE", "NONE", "CARRIAGE", "FORTRAN", or "LIST"
expected

The statement syntax requires one of the following keywords:
NOCARRIAGE, NONE, CARRIAGE, FORTRAN, or LIST.

PAS231 TIllegal keyword

This keyword cannot be specified in this context.
PAS232 Parameter has already been specified

You have specified the same parameter twice.
PAS233 File variable must be specified

You forgot to specify the file variable.
PAS234 Identifier or character string literal expected

You need to specify a identifier or character string literal.
PAS235 Parameter cannot be specified in this position

You specified a parameter that did not belong in this place.
PAS237 A "NEW" and "DIRECT" file must have fixed-length records

You specified variable-length records for a file that must have
fixed-length records.

PAS238 Record type may not be "VARIABLE" for "DIRECT" files
You cannot have variable length records for a DIRECT file.

PAS239 S$INCLUDE file not found. Compilation aborted.

PAS240 1Include/Exclude file error. Compilation aborted.

PAS250 Too many nested scopes of identifiers

You can have only 20 levels of nesting. A new nesting level
occurs with each block or WITH statement.

PAS251 Too many nested procedures and/or functions
Subprograms can be nested no more that 20 levels deep.

PAS252 Assignment to function not allowed here. Probable name
scope conflict

A function is nested within a function with the same name.

)

-~

«J

-

PASCAL MESSAGES

PAS253 Too many arguments in an "OPEN" statement
You specified too many arguments.
PAS255 Too many errors on this source line

The PASCAL compiler diagnoses only the first 20 errors on each
source line.

PAS259 Expression too complicated

The expression is too deeply nested. To correct this error, you
should separately evaluate some parts of the expression.

PAS261 Declarations out of order or repeated declaration sections
The declarations must be in the following order: labels,
constants, types, wvariables, values, and subprograms. Only the

main program can contain value declarations.

PAS264 Only "VAR" parameters allowed for "[FORTRANI" declared
routines

You cannot specify value parameters for [FORTRAN] declared
routines.

PAS265 Parameter not allowed for "[FORTRAN]" declared routines

This type of parameter is not allowed for [FORTRAN] declared
routines.

PAS266 Conformant part of Conformant arrays can have only one
dimension packed

You packed more than one dimension in a conformant array part.
PAS267 Conformant arrays must be of the same type

When using relational operators with conformant arrays, the array
types must be equivalent.

PAS300 Division by zero
The program attempts to divide by zero.
PAS302 1Index expression out of bounds

The value of the expression is out of range for the array element
to which you are assi¢ning it.

PAS303 Value to be assigned is out of bounds

The value to the right of the assignment operator is out of range
for the variable to which it is being assigned.

PAS304 Set element expression out of range

The value of the expression is out of range for the set element
to which you are assigning it.

PAS305 Field width must be greater than zero.

A-17

PASCAL MESSAGES
PAS306 Index type of conformant array parameter exceeds range of
declaration

The index type of the actual conformant array parameter extends
beyond the range declared in the formal parameter list.

PAS307 Modulus with zero or negative value
The program tried to take the mod of zero.

PAS309 Variable space exceeds 1low segment memory size, 377777
(octal)

PAS310 Code space exceeds available address space, 777777 (octal)

Compile-Time Warnings

9P O P OP 0P OP o

PAS401 Identifier exceeds, 31, characters

Identifiers can be any length, but PASCAL scans only the first 31
characters for uniqueness.

PAS402 Error in option specification
A compiler option is incorrectly specified in the source code.
PAS403 Source input after "END." ignored

The compiler ignores any characters after the END that terminates
the program.

PAS404 Duplicate external procedure name
Two external procedures or functions have been declared with the
same name. They refer to the same externally compiled
subprogram.

PAS405 LABEL declaration in MODULE ignored

The compiler ignores label declarations at the outermost level in
a module.

PAS407 Illegal option on include file specification; LIST assumed
You specified an option that is not available.

PAS408 One or more parameter values assumed before "param"

PAS409 Alternative ordering of HISTORY and RECORDLENGTH parameters

PAS410 Parameter type is not known by FORTRAN.

PAS413 Case label out of range

PAS450 Nonstandard PASCAL: Exponentiation
PAS451 Nonstandard PASCAL: VALUE declaration
PAS452 Nonstandard PASCAL: OTHERWISE clause

PAS453 Nonstandard PASCAL: $INCLUDE directive
PAS454 Nonstandard PASCAL: MODULE declaration
PAS455 Nonstandard PASCAL: Label exceeds 9999
PAS456 Nonstandard PASCAL: "$" or "" in identifier

A-18

o 00 of o o0 0P o I0 o

o0 o9

o

PAS457

PAS458
PAS459
PAS460
PAS461
PAS462

PAS463
PAS464
PAS465
PAS466

PAS467
PAS468

PAS469
PAS470

PAS471
PAS472

PAS473
PAS474

PAS475
PAS476

PAS477

PAS478
PAS479

PAS480
PAS481

Nonstandard

Nonstandard
Nonstandard
Nonstandard
Nonstandard
Nonstandard

Nonstandard
Nonstandard
Nonstandard
Nonstandard

Nonstandard
Nonstandard

Nonstandard
Nonstandard

Nonstandard
Nonstandard

Nonstandard
Nonstandard

Nonstandard
Nonstandard

Nonstandard

Nonstandard
Nonstandard

Nonstandard
Nonstandard

PASCAL MESSAGES

PASCAL:

PASCAL:
PASCAL:
PASCAL:
PASCAL:
PASCAL:

PASCAL:
PASCAL:
PASCAL:
PASCAL:

PASCAL:
PASCAL:

PASCAL:
PASCAL:

PASCAL:

PASCAL:

PASCAL:
PASCAL:

PASCAL:
PASCAL:

PASCAL:

PASCAL:
PASCAL:

PASCAL:
PASCAL:

Conformant passed to value conformant
array

Directive "[IGLOBAL]" or "[FORTRAN]"
Binary, octal or hexadecimal constant
Double precision constant
External procedure declaration
Binary, octal or hexadecimal
output

Output of user-defined scalar
Input of string or user-defined scalar
Input/output of double precision data
Implementation-defined type, function,
or procedure

Directive "[OVERLAID]"

Formal and actual parameters
identical type

Control variable is not local

data

not of

Formal and actual parameters not both
packed or unpacked

No parameter list declared for this
call

No parameter list declared for this
format

Nonstandard parameter declaration
Array or record types not identical in
assignment

Types not identical
VAR parameter is selector of
record

Parameter is pre-defined procedure or
function

NIL used as constant identifier

Case constants do not cover range of
tag-type

Input/output of conformant string
Comparison of conformant strings

in comparison
variant

APPENDIX B

ASCII CHARACTER SET

Table B-1: The ASCIT Character Set
ASCII Character Meaning
Decimal
Number
0 NUL Null
1 SOH Start of heading
2 STX End of text
3 ETX End of text
4 EOT End of transmission
5 ENQ Enquiry
6 ACK Acknowledgement
7 BEL Bell
8 s Backspace
9 HT Horizontal tab
10 LF Line feed
11 VT Vertical tab
12 FF Form feed
13 CR Carriage return
14 SO Shift out
15 ST Shift in
16 DLE Data link escape
17 DC1 Device control 1
18 DC2 Device control 2
19 DC3 Device control 3
20 nca Device control 4
21 NAK Negative acknowledgement
22 SYN Synchronous idle
23 ETB End of transmission block
24 CAN Cancel
25 EM End of medium
26 SUB Substitute
27 ESC Escape
28 FS File separator
29 GS Group separator
30 RS Record separator
31 us Unit separator
32 Sp Space or blank
33 ! Exclamation mark
34 " Quotation mark
35 # Number sign
36 $ Dollar sign
37 % Percent sign
38 % Ampersand
39 ' Apostrophe
40 (Left parenthesis

B-1

ASCII CHARACTER SET

Table B-1: The ASCII Character Set (Cont.)

ASCII Character Meaning

Decimal

Number

41) Right parenthesis
42 * Asterisk

43 + Plus sign

44 R Comma

45 - Minus sign or hyphen
446 . Period or decimal point
47 / Slash

48 0 Zero

49 1 One

50 2 Two

51 3 Three

52 4 Four

53 5 Five

54 6 Six

55 7 Seven

56 8 Eight

57 9 Nine

58 : Colon

59 H Semicolon

60 < Left angle bracket
61 = Equal sign

62 > Right angle bracket
63 ? Question mark

64 @ At sign

65 A Upper case A

66 B Upper case B

67 C Upper case C

68 D Upper case D

69 E Upper case E

70 F Upper case F

71 G upper case G

72 H upper case H

73 I Upper case I

74 J Upper case J

75 K Upper case K

76 L Upper case L

77 M Upper case M

78 N Upper case N

79 0 Upper case O

80 P Upper case P

81 Q Upper case QO

82 R Upper case R

83 S Upper case S

84 T upper case T

85 u Upper case U

86 v Upper case V

87 W Upper case W

88 X Upper case X

89 Y Upper case Y

90 Z Upper case 2

91 [Left square bracket
92 Back slash

93] Right square bracket
94 ~ or Circumflex or up arrow
95 or Back arrow or underscore

ASCIT CHARACTER SET

Table B-1: The ASCII Character Set (Cont.)

ASCIIT Character Meaning
Decimal

Number

96 ' Grave accent
97 a Lower case a
98 b Lower case b
99 C Lower case ¢
100 d Lower case d
101 e Lower case e
102 f Lower case f
103 g Lower case g
104 h Lower case h
105 i Lower case i
106 j Lower case J
107 k Lower case k
108 1 Lower case 1
109 m Lower case m
110 n Lower case n
111 o Lower case o
112 p Lower case p
113 q Lower case q
114 r Lower case r
115 s Lower case s
116 t Lower.case t
117 u Lower case u
118 v Lower case v
119 W Lower case w
120 X Lower case X
121 Yy Lower case y
122 z Lower case z
123 { Left brace
124 | Vertical line
125 } Right brace
126 ~ Tilde

127 DEL Delete

APPENDIX C

SYNTAX SUMMARY

This appendix summarizes the syntax of the PASCAL-20 language in the
Backus—-Naur Form (BNF):

C.1 BACKUS-NAUR FORM

In the BNF, each element of the language is defined recursively 1in
terms of simpler elements. The element being defined is written to
the left of the symbol ::= and its definition is written to the right
of that symbol.

The BNF uses a group of metasymbols that differ from the conventions

used in the rest of this manual and are not part of the PASCAL
language. Table C-1 1ists the meta-symbols used in the BNF.

Table C-1: BNF MetaSymbols

Symbol Meaning

Separates the element being defined from its
definition.

< > Encloses a definable lanquage element.

(1 Encloses an optional element.

| Means "or"; separates possible elements.

{1 Encloses elements that may be repeated one or more

times, but need not be present

The remainder of this section lists PASCAL in BNF.
<compilation unit> ::= <program> | <module>

<module> : <module heading> <global declaration part>

<procedure and function declaration part> END .
<program> ::= <program heading> <block> .

<module heading> ::= <module word> <identifier> ; |
<module word> <identifier> (<program parameters>) ;

SYNTAX SUMMARY

<global declaration part> ::= <label declaration part>
<constant definition part>
<type definition part>
<variable declaration part>
<module word> ::= MODULE | [TOVERLAID]1 MODULE
<program heading> ::= <program word> <identifier> ; |
<program word> <identifier> (<program parameters>) ;
{program parameters> ::=

.

<external file identifier> ::=

<external file identifier>
<external file identifier> }

<identifier>

<program word> ::= PROGRAM | [[TOVERLAID]] PROGRAM

<identifier> ::= <identifier head> {<letter or digit> | | $}

<identifier head> ::= <letter> | | §

{letter> ::=A { Bl CI|IDIEJFIGIHI|III|JIIKILIMI/
NlJlolPIlQIlRISITIUIVIWIX]Y !l 2]
alblcldlel flglh!l il il k! 11! ml]
ntolplaglrltsttlulvI]iwlzx]lylz

<digit> ::=s0 | 2 | 2 1 3 14 | 5161718129

<special symbol> ::= <operator symbol> | <reserved word> |
<semireserved word> | <include symbol>

<operator symbol> ::= + | - [* | / | = | <> | <] > | <= | >=

ety rrrry by e o b, s e bt
Pol* oo bel (x 1 * 1 (o100
{reserved word> ::= DIV | MOD | NIL | IN | OR | AND | NOT | IF
| THEN | ELSE | CASE | OF | REPEAT | UNTIL | WHILE
I DO | FOR | TO | DOWNTO | BEGIN | END | WITH | GOTO
| CONST | VAR | TYPE | ARRAY | RECORD | SET | FILE
| FUNCTION | PROCEDURE | LABEL | PACKED | PROGRAM
{semireserved word> ::= REM | OTHERWISE | MODULE | VALUE
<include symbol> ::= $INCLUDE

<blank> ::= <single blank> { <single blank> }

<single blank> ::= <space character> | <tab character>

<block> ::= <declaration part> <value initialization part>

<procedure

<declaration part> ::=
part> <type

and function declaration part> <statement part>

<label declaration part> <constant declaration
declaration part> <variable declaration part>

<label declaration part> ::= <empty> | LABEL <label> { , <label> } ;
<label> ::= <unsigned integer>
<constant definition part> ::= <empty> |

CONST <constant definition> {

<constant definition> :

; <constant definition> } ;

:= <identifier> = <constant>

SYNTAX SUMMARY

<constant> ::= <unsigned number> | <sign> <unsigned number> |
<constant identifier> | <sign> <constant identifier> |
<string> | NIL

<unsigned number> ::= <unsigned integer> | <unsigned real>

<unsigned integer> ::= <digit sequence> | <radix integer>

<radix integer> ::= % <octal integer> | % <hex integer> |

% <binary integer>

1

<octal integer> ::= <letter o> ' <octal digit sequence> '
<letter o> ::= 0 | o

<octal digit sequence> ::= <octal digit> { <octal digit> }
<octal digit> ::=0 | 1 | 21 3 [4151617

<hex integer> ::= <letter x> ' <hex digit sequence> '
<letter x> ::= X | x

<hex digit sequence> ::= <hex digit> { <hex digit> }

<hex digit> ::= <digit> { A | Bl C | DI EJF| alblcldd
l e | £

<binary integer> ::= <letter b> ' <binary digit sequence> '
<letter b> ::= B | b
<binary digit sequence> ::= <binary digit> { <binary digit> }
<binary digit> ::= 0 | 1
<unsigned real> ::= <unsigned single> | <unsigned double>
<unsigned single> ::= <digit sequence> . <digit sequence> |
<digit sequence> . <digit sequence> E <scale factor> |
<digit sequence> . <digit sequence> e <scale factor> |
<digit sequence> E <scale factor> |
<digit sequence> e <scale factor>
<unsigned double> ::= <digit sequence> . <digit sequence> D <scale
factor> | <digit sequence> . <digit sequence> d <scale
factor> | <digit sequence> D <scale factor> |
<digit sequence> d <scale factor>
<digit .sequence> ::= <digit> { <digit> }
<scale factor> ::= <digit sequence> | <sign> <digit sequence>
<sign> ::= + | -
<constant identifier> ::= <identifier>
<string> ::= ' <character> { <character> } '
<character> ::= <any ASCII character except '> | ''
<type definition part> ::= <empty> |
TYPE <type definition> { ; <type definition> } ;

c-3

SYNTAX SUMMARY

<type definition> ::= <identifier> = <type>

<type> ::= <simple type> | <structured type> | <pointer type>

<simple type> ::= <scalar type> | <subrange type> | <type identifier>
<scalar type> ::= (<identifier> { , <identifier> })

<subrange type> ::= <constant> .. <constant>

<type identifier> ::= <identifier>

<structured type> ::= <unpacked structured type> |
PACKED <unpacked structured type>

<unpacked structured type> ::= <array type> | <record type> |
<set type> | <file type>

<array type> ::= ARRAY [<index type> { , <index type> } 1 OF
{component type>

<index type> ::= <simple type>

<component type> ::= <type>

<record type> ::= RECORD <field list> END

<field 1list> ::= <fixed part> | <fixed part> ; <variant part> |
<variant part>

<fixed part> ::= <record section>{ ; <record section> }

<record section> ::= <empty> |
<field identifier> { , <field identifier> } : <type>

<variant part> ::= CASE <tag field> <type identifier> OF
<variant> { ; <variant> }

<tag field> ::= <field identifier> : | <empty>

<variant> ::= <case label list> : (<field list>) | <empty>
<case label 1list> ::= <case label> { , <case label> }

<case label> ::= <constant>

<set type> ::= SET OF <base type>

<base type> ::= <simple type>

<file type> ::= FILE OF <type>

<pointer type> ::= " <type identifier>

<variable declaration part> ::= <empty> |
VAR <variable declaration> { ; <variable declaration> } ;

<variable declaration> ::= <identifier 1list> : <type>
| <identifier list> : <type> := <valued>

<identifier list> ::= <identifier> { , <identifier> }

= VALUE <value initialization>

<value initialization part> ::
{ ; <value initialization> } ; | <empty>

Cc-4

SYNTAX SUMMARY

<value initialization> ::= <identifier> := <value>
<value> ::= <constant> | <set constant> | <constructor>
<{set constant> ::= [<constant element list> 1

<constant element list> ::= <empty> !
<constant element> { , <constant element> }

<constant element> ::= <constant> | <constant> .. <constant>

<constructor>

<optional type> (<value element>
{ , <value element> })

<optional type> ::= <empty> | <type identifier>
<value element> ::= <value> | <repetition factor> OF <value>
<repetition factor> ::= <unsigned integer> | <constant identifier>

<procedure or function declaration part> ::=
{ <procedure or function declaration> ; }

<procedure or function declaration> ::= <procedure declaration> |
<function declaration>

<procedure declaration> ::= <internal procedure declaration> |
<external procedure declaration> |
<forward procedure declaration>

<internal procedure declaration> ::= <procedure heading> <block> |
[TGLOBAL]] <procedure heading> <block> |
[TFORTRAN]] <procedure heading> <block>

<external procedure declaration> ::= <procedure heading> EXTERN |
<procedure heading> EXTERNAL | <procedure heading> FORTRAN

<forward procedure declaration> ::= <procedure heading> FORWARD
[TGLOBAL]] <procedure heading> FORWARD |
[[FORTRAN]] <procedure heading> FORWARD

<procedure heading> ::= PROCEDURE <identifier> ; |
PROCEDURE <identifier> (<formal parameter section>
{ ; <formal parameter section> }) ;

<formal parameter section> ::= <extended parameter group> |
VAR <extended parameter group> |
FUNCTION <parameter group> |
PROCEDURE <identifier> { , <identifier> } |
<procedure heading> | <function heading>

<extended parameter group> ::= <parameter group> |
<identifier> { , <identifier> } : <conformant array schema>

<conformant array schema> ::= ARRAY [<index type specification>
{ ; <index type specification> }] OF <type identifier> |
ARRAY [<index type specification>
{ , <index type specification> } 1 OF <conformant array
schema> PACKED ARRAY [<index type specification> 1
OF <type identifier>

<index type specification> ::= <identifier> .. <identifier> :
<scalar type identifier>

Cc-5

SYNTAX SUMMARY

<scalar type identifier> ::= <identifier>

<parameter group> ::= <identifier> { , <identifier> } :
<type identifier>

<function declaration> ::= <internal function declaration> |
<external function declaration> |
<forward function declaration>

<internal function declaration> ::= <function heading> <block> |
[GLOBAL] <function heading> <block> |
TFORTRAN] <function heading> <block>

<external function declaration> ::= <function heading> EXTERN |
<function heading> EXTERNAL | <function heading> FORTRAN

<forward function declaration> ::= <function heading> FORWARD |
[GLOBAL] <function heading> FORWARD |
[FORTRAN] <function heading> FORWARD

<function heading> ::= FUNCTION <identifier> : <result type> ; |
FUNCTION <identifier> (formal parameter section>

{ ; <formal parameter section> }) : <result type> ;
<result type> ::= <type identifier>
<statement part> ::= <compound statement>
<statement> ::= <unlabeled statement> | <label> : <unlabeled statement>
<unlabeled statement> ::= <simple statement> | <structured statement>
<simple statement> ::= <assignment statement> | <procedure statement> |

<go to statement> | <empty statement>

<assignment statement> ::= <variable> := <expression> |
<function identifier> := <expression>

<variable> ::= <entire variable> | <component variable> |
<referenced variable>

<entire variable> ::= <variable identifier>
<variable identifier> ::= <identifier>

<component variable> ::= <indexed variable> | <field designator> |
<file buffer>

<indexed variable> ::= <array variable> [<expression>
{ , <expression> }]

<array variable> ::= <variable>

<field designator> ::= <record variable> . <field identifier>
<record variable> ::= <variable>

<field identifier> ::= <identifier>

<file buffer> ::= <file variable> ~

<file variable> ::= <variable>

SYNTAX SUMMARY
<referenced variable> ::= <pointer variable> ~
<pointer variable> ::= <variable>

<expression> ::= <simple expression> | <simple expression>
<relational operator> <simple expression>

<relational operator> ::= = | <> | < | <= | >= 1] > | 1IN

<simple expression> ::= <term> | <sign> <term> |
<simple expression> <adding operator> <term>

<adding operator> ::= + | - | OR

<term> ::= <primary> | <term> <multiplying operator> <primary>
<multiplying operator> ::= * | / | DIV | MOD | AND | REM
<primary> ::= <factor> | <primary> ** <factor>

<factor> ::= <variable> | <unsigned constant> | (<expression>) |
<function designator> | <set> | NOT <factor>

<unsigned constant> ::= <unsigned number> | <string> |
<constant identifier> | NIL

= <function identifier> |
<function identifier> (<actual parameter>
{ , <actual parameter> })

<function designator> ::

<function identifier> ::= <identifier>

<set> ::= [<element list>]

<element list> ::= <element> { , <element> } | <empty>
<element> ::= <expression> | <expression> .. <expression>
<procedure statement> ::= <procedure identifier> |

<procedure identifier> (<actual parameter>
{ , <actual parameter> })

<procedure identifier> ::= <identifier>
<actual parameter>» ::= <expression> |
<procedure identifier> | <function identifier>

<go to statement> ::= GOTO <label>
<empty statement> ::= <empty>
<empty> ::=
<{structured statement> ::= <{compound statement> |
<conditional statement> | <repetitive statement> |
<with statement>
<compound statement> ::= BEGIN <statement> { ; <statement> } END
<conditional statement> ::= <if statement> | <case statement>
<if statement> ::= IF <expression> THEN <statement> |
IF <expression> THEN <statement> ELSE <statement>

c-7

SYNTAX SUMMARY

<case statement> ::= CASE <expression> OF <case list element>
{f ; <case list element> } <otherwise part> <end case>

<case list element> ::= <case label list> : <statement> | <empty>

<otherwise part> ::= <empty> |
OTHERWISE <statement> {

; <statement> } |
; OTHERWISE <statement> { ;

{statement> }

<end case> ::= END | ; END

<{repetitive statement> ::= <while statement> | <repeat statement> |
<for statement>

<while statement> ::= WHILE <expression> DO <statement>

<repeat statement> ::= REPEAT <statement> { ; <statement> }
UNTIL <expression>

<for statement> ::= FOR <control variable> := <for list> DO <statement>

<for list> ::= <initial value> TO <final value> |

<initial value> DOWNTO <final value>
<control variable> ::= <identifier>
<initial value> ::= <expression>
<final value> ::= <expression>
<with statement> ::= WITH <record variable list> DO <statement>
<record variable list> ::= <record variable> { , <record variable> }
<open statement> ::= OPEN (<open parameters>)

<open parameters> ::= <file parameters>

| <keyword parameters> { , <keyword parameters> }
<keyword parameters> ::= FILE VARIABLE := <file variable>
T FILE NAME := <file name>

| HISTORY := <file status>

| RECORD LENGTH := <record length>

| ACCESS METHOD := <record access mode>

| RECORD TYPE := <record type>

| CARRIAGE CONTROL := <carriage control>

<file name> ::= <variable> | <constant identifier>
| ' <file specification> '

<file status> ::= OLD | NEW | UNKNOWN | READONLY
<record length> ::= <unsigned integer>

<record access mode> ::= SEQUENTIAL | DIRECT
<record type> ::= VARIABLE | FIXED

<carriage control> ::= CARRIAGE | NOCARRIAGE | LIST

SYNTAX SUMMARY

<file parameters> ::= <file variable> <RMS file specification>

<RMS

<RMS

<RMS

<RMS

<RMS

<RMS file history> <RMS record length>
<RMS record access mode>

<RMS record type>

<RMS carriage control>

file specification> ::= , ' <file specification> ' | <empty>
record length> ::= , <record length> | <empty>

file history> ::= , <file status> | <empty>

record access mode> ::= , <record access mode> | <empty>
record type> ::= , <record type> | <empty>

APPENDIX D

SUMMARY OF PASCAL-20 EXTENSIONS TO PROPOSED ISO STANDARD

Category

Lexical and
syntactical

Predefined types

Predeclared Procedures

READ, READLN, WRITE,
and WRITELN extensions

READ, READLN, WRITE,
and WRITELN extensions

Declarations
Statements

Procedures and Functions

Compilation

Extension

Semireserved words:
REM

MODULE, OTHERWISE,

Exponentiation operator (**)
REM operator

Binary, hexadecimal, and octal notation
for integers

Double-precision real data type

Dollar sign ($) and underscore ()
characters in identifiers

Identifiers of up to 31 characters
SINGLE, DOUBLE

CLOSE, DATE, FIND, HALT, LINELIMIT,

OPEN, TIME, MARK, RELEASE

Parameters of character string and
enumerated types for READ and READLN

Parameters of enumerated types for WRITE
and WRITELN

Optional carriage-control specification
for text files with WRITE and WRITELN

Variable initialization
OTHERWISE clause in CASE statement

External function

declaration

procedure and

Support for calling externally declared
FORTRAN subroutines and for declaration
of PASCAL subroutines that can be called
by FORTRAN

MODULE capability for combining
declarations and definitions to be
compiled independently from the main
program

D-1

APPENDIX E

ISO COMPLIANCE

This appendix is a statement of the compliance of PASCAL-20 with the
PASCAL standard ISO 7185. It is divided into four .sections:

1. Implementation-defined features. This is a 1list of the
features of PASCAL that must be defined by each
implementation, but which may vary between implementations.

2. Implementation-dependent features. This is a 1list of the
features of PASCAL which may or may not be defined by an
implementation.

3. Errors. This is an explanation of how PASCAL-20 handles each
of the errors defined by ISO 7185.

4., Exceptions and restrictions. This is a list of violations of
the standard which PASCAL-20 does not detect, and
restrictions imposed by PASCAL-20.

This appendix does not 1list extensions to the IS0 7185 standard
implemented by PASCAL-20. These extensions are listed in Appendix D.

E.1 IMPLEMENTATION-DEFINED FEATURES

The ISO 7185 standard leaves the exact definition of a number of
language elements wup to the implementation. Following is a list of
those features, and the definition given them by PASCAL-20.

1. The predefined type CHAR corresponds to the 7-bit ASCII
character set.

2. The identifier MAXINT denotes a value of 2**35-1, which is
the maximum integer value of a PDP-10 word.

3. In a WRITE or WRITELN statement, the default field-width for
integers is 10, for real numbers is 16, and for Booleans is
16. The number of digits written 1in the exponent of a
floating-point format real is 2. On output to a text file,
the Boolean values TRUE and FALSE are translated to the
uppercase character strings "TRUE" and "FALSE" respectively.

ISO COMPLIANCE

4. A program parameter that is a file variable 1is bound at
runtime to an external (operating system) file. An external
file may exist prior to execution of the program and 1is not
deleted when the program exits. PASCAL-20 determines which
file specification to use when opening the file 1in the
following manner:

e If an OPEN statement is executed prior to a RESET or
REWRITE of the file, the file specification given in the
OPEN statement is used.

e If no OPEN statement is executed, the RESET or REWRITE
looks for a Jlogical name with the same name as the file
variable. 1If it finds the logical name, that name |is
used as the file specification.

e Otherwise, the variable name is used as the file name,
and an extension of .DAT is assumed.

The ISO 7185 standard also states that the precise actions of the 1I/0
procedures REWRITE, PUT, RESET, GET, and PAGE are implementation
defined. 1In the following items, F is assumed to be a file wvariable,
and the wvarious pre- and post assertions for each operation are
assumed to be true,

1. REWRITE(F) creates or supersedes an operating system file,
and opens the file for writing.

2. PUT(F), where F is a text file, writes the contents of the
file buffer wvariable to the output buffer, and advances the
buffer pointer; no file operation is performed.

3. PUT(F), where F is not a text file, writes the contents of
the file buffer variable to the file.

4. RESET(F) opens an existing operating system file for reading,
reads the first record, and assigns a value to the file
buffer variable.

5. GET(F), where F is a text file, advances the file input
buffer pointer. TIf EOLN(F) is true, the next record is read
from the file, and the buffer pointer 1is reset to the
beginning of the buffer.

6. GET(F), where F is not a text file, reads the next record
from the file.

7. PAGE(F) first flushes the output buffer to the file. Then,
it causes the file to skip to the top of the next page; the
mechanics of this depend on the setting of the file's
carriage-control attribute. If this attribute is LIST (the
default), a form feed character (control-L) is written to the
file. If the attribute 1is CARRIAGE or FORTRAN, a 'l' is
written to the file. 1If the attribute is NOCARRIAGE or NONE,
an error is generated.

ISO COMPLIANCE

E.2 IMPLEMENTATION-DEPENDENT FEATURES

These language elements are defined by the 1ISO 7185 standard as
"possibly differing between processors and not necessarily defined for
any particular processor." Following is a description of how PASCAL-20
treats each of these elements,

1. The order of evaluation of array 1indices 1is their 1lexical
order (that is, left to right).

2. The order of evaluation of members of a set constructor is
their lexical order (that is, left to right).

3. The order of evaluation of the operands of a dyadic operator
(for example, '+') depends on the complexity of each operand.
Both operands are always evaluated (even in Boolean
expressions which could be "short-circuited").

4., The order of evaluation, accessing, and binding of actual
parameters to formal parameters in a procedure or function
call is their lexical order (that is, left to right).

5. The variable in an assignment statement is accessed after the
evaluation of the expression.

6. The effect of reading a file at the point where a PAGE was
executed when writing the file 1is to return either a
form-feed character (control-L) or the digit 'l', depending
on the status of the file when the PAGE was executed. (See
above for a description of PAGE's actions.)

7. Program parameters which are not file variables have no
defined meaning in PASCAL-20, and cause an error.

E.3 ERROR HANDLING

This section describes how the PASCAL-20 compiler and run-time system
detect violations of level 1 of the standard proposed by the ISO for
the PASCAL language. Errors detected at run time cause a program to
terminate and return appropriate error messages. Errors described
here as "not detected" cause a program to produce unexpected results.

The type of an index value is not assignment compatible with the index
type of an array.

Explanation: Detected at run time if checking was enabled during
compilation.

The current variant changes while a reference to it exists.
Explanation: Not detected. An example of a reference to a
variant 1is the passing of the variant to a formal
VAR parameter.
The value of a variable to which a pointer refers (p) is NIL.
Explanation: Detected if checking was enabled at run time.

The value of a variable to which a pointer refers (p) is undefined.

Explanation: Not detected.

IS0 COMPLIANCE
The DISPNSE procedure 1is «called to dispose of a heap-allocated
variable while a reference to the variable exists.
Explanation: Not detected. Examples of such references are:
passing the wvariable or a component of it to a
formal VAR parameter, or using the wvariable in a
WITH statement (if the variable is a record).
The value of file f changes while a reference to f~ exists.
Explanation: ©Not detected. An example of a reference to f° is
the passing of f~ by reference to a routine; until
the routine has ceased -execution, you may not

perform any operation on file f.

The ordinal type of an actual parameter is not assignment compatible
with the type of the corresponding formal parameter.

Explanation: Detected at run time if checking was enabled during
compilation of the called routine.

The set type of an actual parameter is not assignment compatible with
the type of the corresponding formal parameter,.

Explanation: Detected at run time if checking was enabled during
compilation of the called routine.

A file is not in Generation mode when a PUT, WRITE, WRITELN, or PAGE
procedure is attempted.

Explanation: Detected at run time.

A file is in Undefined mode when a PUT, WRITE, WRITELN, or PAGE
procedure is attempted.

Explanation: Detected at run time.

The result of an EOF function is not TRUE when a PUT, WRITE, WRITELN,
or PAGE procedure is attempted.

Explanation: Detected at run time.

The value of the file buffer wvariable 1is undefined when a PUT
procedure is attempted.

Explanation: Not detected.
A file is in Undefined mode when a RESET procedure is attempted.
Explanation: Not detected.

A file is not in Inspection mode when a GET, READ, or READLN procedure
is attempted.

Explanation: Detected at run time.

A file is in Undefined mode when a GET, READ, or READLN procedure is
attempted.

Explanation: Detected at run time.

The result of an EOF function is TRUE when a GET, READ, or READLN
procedure is attempted.

Explanation: Detected at run time.

E-4

ISO COMPLIANCE
The type of the file buffer is not assignment compatible with the type
of the variable that is a parameter to a READ or READLN procedure.

Explanation: Detected at run time if checking is enabled during
compilation at the READ or READLN.

The type of the expression being written by a WRITE or WRITELN
procedure is nct assignment compatible with the type of the file
buffer variable.

Explanation: Detected at run time if checking is enabled during
compilation of the WRITE or WRITELN.

The current variant does not exist in the list of wvariants specified
with the NEW procedure.

Explanation: Not detected.

The DISPOSE(p) procedure is called to deallocate a pointer wvariable
that was created using the variant form of the NEW procedure.

Explanation: Not detected.
The variant form of the DISPOSE procedure does not specify the
disposal of the same number of wvariants that were created by the
variant form of the NEW procedure.
Explanation: Not detected.
The variant form of the DISPOSE procedure does not specify the
disposal of the same variants that were created by the variant form of
the NEW procedure.
Explanation: Not detected.
The value of the parameter to the DISPOSE procedure is NIL.
Explanation: Detected at run time.
The value of the parameter to the DISPOSE procedure is undefined.

Explanation: Usually detected at run time.

A variant record created by the NEW procedure is accessed as a whole,
rather than one component at a time.

Explanation: Not detected.

In the PACK(a,i,z) procedure, the type of the index wvalue i 1is not
assignment compatible with the index of a.

Explanation: Not detected.

The PACK procedure is attempted when the wvalue of at 1least one
component of a is undefined.

Explanation: ©Not detected.

The index value i in the PACK procedure is greater than the upper
bound of the index of a.

Explanation: Not detected.

ISO COMPLIANCE
In the UNPACK(z,1,a) procedure, the type of the index value i is not
assignment compatible with the index type of a.
Explanation: Not detected.

The index value i in the UNPACK procedure is greater than the upper
bound of the index type of a.

Explanation: ©Not detected.

The UNPACK procedure is attempted when the wvalue of at least one
component of z is undefined.

Explanation: ©Not detected.
The resulting value of SQR(X) does not exist.

Explanation: Detected at run time.
In the expression LN(X), the value of X is negative.

Explanation: Detected at run time.
In the expression, SQRT(X), the value of X is negative.

Explanation: Detected at run time.
The resulting value of TRUNC(X) does not exist after the following
calculations have been done: if the value of X is positive or zero,
then 0 <= X-TRUNC (X) <1; otherwise, -1 < X-TRUNC (X) <= 0.

Explanation: Detected at run time.
The resulting value of ROUND(X) does not exist after the following
calculations have been done: if the value of X is positive or zero,
ROUND (X) is equivalent to TRUNC(X+0.5); otherwise, ROUND(X) is
equivalent to TRUNC(X-0.5).

Explanation: Detected at run time.
The resulting value of CHR(X) does not exist.

Explanation: Not detected.

The resulting value of SUCC(X) does not exist,

Explanation: Detected at run time if checking was enabled during
compilation.

The resulting value of PRED(X) does not exist.

Explanation: Detected at run time if checking was enabled during
compilation.

The function EOF(f) is called when the file f is undefined.
Explanation: Detected at run time.
The function EOLN(f) is called when the file f is undefined.

Explanation: Detected at run time.

TS0 COMPLTANCE

The function EQLN(f) is called when the result of EOF(f) is TRUE.
Explanation: Detected at run time.

A variable is not initialized before it is first used.
Explanation: Not detected.

In the expression X/Y, the value of Y is zero.
Explanation: Detected at run time.

In the expression I DIV J, the value of J is zero.
Explanation: Detected at run time.

In the expression T MOD J, the value of J is zero or negative.

Explanation: Detected at run time if J is zero; not detected if
J is negative.

An operation or function involving integers does not conform to the
mathematical rules for integer arithmetic.

Explanation: Detected at run time.

A function result is undefined when the function returns control to
the calling block.

Explanation: Not detected.

The ordinal type of an expression is not assignment compatible with
the type of the wvariable or function identifier to which it is
assigned.

Explanation: Detected at run time if checking was enabled during
compilation.

The set type of an expression is not assignment compatible with the
type of the variable or function identifier to which it is assigned.

Explanation: Detected at run time if checking was enabled during
compilation.

None of the case labels is equal in value to the case selector 1in a
CASE statement.

Explanation: Not detected.

In a FOR statement, the type of the initial value 1is not assignment
compatible with the type of the control variable, and the statement in
the loop body is executed.

Explanation: Detected at run time if checking was enabled during
compilation. Assignment compatibility 1is not
enforced if the statement in the 1loop body can
never be executed.

IS0 COMPLIANCE

In a FOR statement, the type of the final wvalue is not assignment
compatible with the type of the control variable and the statement in
the loop body is executed.

Explanation: Detected at run time if checking was enabled during
compilation. Assignment compatibility 1is not
enforced if the statement in the loop body can
never be executed.

When an integer is being read from a text file, the digits read do not
constitute a wvalid 1integer wvalue. (Initial spaces and end-of-line
markers are skipped.)

Explanation: Detected at run time.

When an integer is being read from a text file, the type of the wvalue
read is not assignment compatible with the type of the variable.

Explanation: Detected at run time.
When a real number is read from a text file, the digits read do not
constitute a wvalid real number. (Initial spaces and end-of-1line
markers are skipped.)

Explanation: Detected at run time.

The value of the file buffer variable is undefined when a READ or
READLN procedure is performed.

Explanation: Not detected.
A WRITE or WRITELN procedure specifies a field width in which the
integers representing the total width and the number of fractional
digits are less than 1.

Explanation: Detected at run time.

The bounds of an array passed toc a conformant array parameter are
outside the range specified by the conformant array's index type.

Explanation: ©Not detected.

E.4 EXCEPTIONS AND RESTRICTIONS

PASCAL-20 is not able to detect a number of violations of the ISO 7185
standard. Violations that are not defined as errors are listed below.

1. Statements threatening a FOR-loop control wvariable are not
detected. A statement "threatens" a variable if it occurs
within the FOR-loop or within a prior procedure, and if it is
one of the following kinds of statements:

e A READ or READLN statement containing the variable

e An assignment statement with the variable to the left of
the ':="

e A procedure or function call with the wvariable as a
formal VAR parameter

ISO COMPLIANCE

The concept of a "totally-undefined" variable has no meaning
in PASCAL-20. Any violation of the standard which requires
"totallv-undefined" to be meaningful is not detected.

Variant records in PASCAL-20 are implemented by overlaying
the fields of the variants in the same memory. Changing the
active variant does not alter the contents of that memory,
and the fields of the newly-active variant are not undefined.
Also, note that variant parts of records cannot be of the
type FILE.

The DISPOSE procedure does not cause its argument to become
undefined, but rather the argument is set to NIL.

No restrictions on the relative placement of labels and GOTO
statements are enforced.

Packed and unpacked sets are implemented in similar ways in
PASCAL-20. Therefore, the compiler 1is very "loose" about
interchanging packed and unpacked sets; the only requirement
imposed on compatibility of set types is that their base
types must be ccompatible.

Under certain conditions, a procedure call may be bound to
the wrong procedure definition. This can only happen when
two procedures are declared with the same name at different
levels, and the inner procedure 1is called before it is
declared. The following example illustrates this situation.

FROCETURE B3

REGIN (x level 1 %)
EXNTD$

FROCEDURE 3

FROCEDURE iy

BEGIN

B (¥ call bound to level 1 rrocedure X
ENINs

FROCEDURE R#

BEGIN (X level 2 X)

ENIy
REGIN
END3
PASCAL-20 also imposes a number of restrictions on programs. These
are:

1. 1Identifiers may be of any 1length, but only the first 31
characters are stored. Therefore identifiers in PASCAL-20
must be unique in the first 31 characters.

2., The ordinal values of the base type of a set type are limited
to the range 0..255. This means that no set may have more
than 256 elements.

3. File variables are not permitted as fields 1in the wvariant
part of a record.

4. The range of ordinal values of <case <constants in a CASE

statement must be less than 1000.

APPENDIX F

DIFFERENCES BETWEEN PASCAL-20 AND VAX-11 PASCAL

PASCAL-20 V) and VAX-11 PASCAL V2 are compatible languages; that 1is,
you can compile and run a PASCAL-20 program on a VAX/VMS operating
system, and you can compile and run a VAX-11 PASCAL program oh a

TOPS-20 operating system. However, there are differences between the
languages.

The VAX-11 PASCAL language (V2) contains features that the PASCAL-20
language does not. Therefore, if you plan to transport PASCAL
programs from the VAX/VMS operating system to the TOPS-20 operating
system, vyou should avoid using these additional features. This
appendix lists the additional features that VAX-11 PASCAL (V2) has
over PASCAL-20 (V1).

DIFFERENCES BETWEEN PASCAL-20 AND VAX-11 PASCAL

Table F-1 lists the language elements that VAX-11 PASCAL V2 has that
PASCAL-20 does not:

Table F-1: Additional Language Elements

Category

Language Element

Special Symbol

Nonstandard

Type cast operator

Reserved words $DESCR
$IMMED
$STDESCR
FREF
VARYING

Predeclared Identifiers ADD INTERLOCKED REVERT
ADDRESS SETﬂINTERLOCKED
BITNEXT SIZE
BITSIZE STATUS
CLEAR _INTERLOCKED SUBSTR
DBLE TRUNCATE
DELETE UAND
ESTABLISH UFB
FINDK UINT
INDEX UNLOCK
INT UNOT
LENGTH UNSIGNED
LOCATE UOR
LOWER UPDATE
NEXT UPPER
PAD GROUND
QUAD UNTRUNC
QUADTRUPLE UXOR
READY WRITEV
RESETK

Data Types

Formal Parameter List
Structured Type

Real Types

String Operators

Predeclared Procedures

UNSIGNED: 0 through 2**32 - 1

0 through 4294967295

foreign section
VARYING OF CHAR

G floating
QUADRUPLE

Plus sign (+)

DELETE(f,e)
ESTABLISH(id)
FINDK(f,kn,kv,m,e)
LOCATE (f,n,e)
READV(s,vl,...,vn)
RESTK (f ,kn,e)
REVERT

TRUNCATE (f,e)
UNLOCK (f ,e)

UPDATE (f,e)

WRITEV(s,pl,...,pn)

DIFFERENCES BETWEEN PASCAL-20 AND VAX-11 PASCAL

Table F-1: Additional Language Elements (Cont.)

Category Language Element
Predeclared Functions See Table F-2
OPEN Procedure DISPOSITION
Parameters SHARTING
USER_ACTION
ERROR
KEYED
CLOSE Procedure DISPOSITION
Parameters USER_ACTION
ERROR

The following predeclared procedures are contained in both PASCAL
languages, however, VAX-11 PASCAL offers an additional argument:

e = error parameter
These predeclared procedures are:

FIND(f,n,e)

OPEN (f ,parameters,e)
PAGE (f ,e)

PUT (f,e)
READ(f,vl,...,vn,e)
READLN (f,vl,...,vn,e)
RESET (f,e)

REWRITE (f,e)
WRITE(f,pl,...,pn,e)

Whenever you see [lTattribute-1ist]] in a syntax description in the
vaX-11 PASCAL language, it signifies that you <can add certain
arguments to the syntax depending on the type of circumstances. Note
the following syntax and attribute descriptions:

Attribute-list
[{identifier [({ constant-expression },...) § },...]

In the PASCAL-20 language, only a PROGRAM, MODULE, PROCEDURE, or
FUNCTION can have an attribute-list. The only attribute for a PROGRAM
or MODULE is OVERLAID. The only attributes for a PROCEDURE or
FUNCTION are GLOBAL and FORTRAN. Note that in PASCAL-20 the GLOBAL
attribute can not be followed by an identifier.

DIFFERENCES BETWEEN PASCAL-20 AND VAX-11 PASCAL

Table F-2 lists additional predeclared functions that VAX-11 PASCAL
provides but PASCAL-20 does not:
Table F-2: Additional Predeclared Functions
Category Function
Boolean UFB ()
Transfer DBLE (x)
QUAD (x)
UINT (x)
UROUND (r)
UTRUNC (1)
Dynamic Allocation ADDRESS {x)
Character String INDEX (s1,s2)
LENGTH (s)
PAD(s,fil1,1)
SUBSTR(s,b,1)
Unsigned UNAD (ul,u?)
UNOT (u)
UOR (ul,u?2)
UXOR (ul ,u2)
Allocation Size SIZE(x,cl,...,cn)
NEXT (x)
BITSIZE (x)
BITNEXT (x)
Low_Level ADD INTERLOCKED(e,v)
Interlocked SET INTERLOCKED(b)
CLEAR_INTERLOCKED(b)
Miscellaneous STATUS (£)
If you plan to transport VAX-11 PASCAL programs to TOPS-20, or

PASCAL-20 programs to VAX/VMS, note the following:

e The precision for INTEGER data type:

TOPS-20

VAX/VMS

(-2**35) through (+2**35)-1
-34359738368 through +34359738367

(-2**21)+1 through (+2%**31)-1
-2147483647 through +2147483647

e The maximum number of items in an enumerated type:

TOPS-20

VAX/VMS

Depends on amount of memory available

65,535

e PASCAL-20 has two procedures MARK and RELEASE that are

in conjunction with NEW and DISPOSE.

have MARK and RELEASE.

If you have any further questions concerning VAX-11 PASCAL,

refer

the VAX-11 PASCAL documentation set.

F-4

used
VAX-11 PASCAL does not

to

APPENDIX G

PROCEDURE AND FUNCTION CALLING SEQUENCES

This appendix! describes the calling sequences and conventions used
by PASCAL for user-defined procedures and functions. This information
is particularly useful in writing MACRO routines that interface with
PASCAL programs.

Note that, in this appendix, the word "procedure" refers to both
procedures and functions. Exceptions in the case of functions are
explicitly noted.

G.1 RUN-TIME STACK

The majority of run-time information 1is kept on the stack; in
particular, the stack contains all local variables, parameters, static
and dynamic links, and return addresses for procedure calls. The
stack pointer is kept in AC 17. A frame pointer, used for most
variable accessing, is kept in AC 16. The frame pointer is fixed over
the course of a procedure, while the stack pointer can change. Figure
G-1 shows the status of the stack just after a PUSHJ to a procedure.

V/7777770777777777777777771

AC 0 -> | previous stack frame |

V1777777777777 7777777777) <—-

| parameter values, ! |
| addresses, descriptors | |

ACl7 -> | caller's return address]|

Figure G-1: Status of Stack After PUSHJ

! The information in this appendix is copyrighted by Scott Arthur
Moody @ 1982.

PROCEDURE AND FUNCTION CALLING SEQUENCES

Figure G-2 shows the stack frame in
first executable statement in a procedure.

ACl6 ->

VLI 777777777777777777777)

previous stack frame

|
V/77777777777777777777777)

| parameter values, |
| addresses, descriptors |

| function value (if a |
| function) 2 words |

| oversized value !
| parameters I

| size of conformant |
| value parameter space

| conformant array value |
| parameters |

| next available stack |
| space |

Figure G-2: Stack Frame

G.2 MECHANICS OF A PROCEDURE CALL

When PASCAL generates a call to
following general sequence is followed:

its entirety,

a

Save the current stack pointer

Push the parameters onto the
Passing").

user-defined

in AC 0.

stack

(see

just prior to the

below,

Push the saved stack pointer onto the stack.

procedure, the

"Parameter

PROCEDURE AND FUNCTTON CALLING SEQUENCES
4. Copy the current frame pointer into AC 0. This 1is the
dynamic link.

5. Determine the frame pointer of the block lexically enclosing
the called procedure, and copy it into AC

o This is the static 1link.
6. Call the procedure by means of a PUSHJ.
After the called procedure returns, the stack 1is restored to its
previous state. PASCAL expects the called procedure to preserve all
accumulators except ACs 0 and 1. (Note particularly that AC 16, the
frame pointer, must be restored.) In the case of a function, the

function value is returned in AC 0 (ACs 0 and 1 if the function is of
type DOUBLE).

G.3 PARAMETER PASSING
How a parameter is passed depends on what kind of parameter it is and,
for a wvalue parameter, how large it is. The five different methods
used to pass parameters are:

1. Value parameter by value

2. Value parameter by address

3. Reference (VAR) parameter

4, Procedure/functicn parameter

5. Conformant array parameter

Each of these methods is described below.

G.3.1 Value Parameter Passed By Value

A value parameter passed by value is simply pushed onto the stack.
This method 1is wused for sets, DOUBLE, and any type that fits into a
single word, including integer, real, char, pointers, scalars, and
small packed arrays and records.

G.3.2 Value Parameter Passed By Address

Any value parameter larger than one word, other than a DOUBLE or set
parameter, 1is passed by address. The address of the parameter,
without indirection or indexing, is pushed onto the stack. It is the
responsibility of the called procedure to copy the parameter into its
own local storage,

PROCEDURE AND FUNCTION CALLING SEQUENCES

G.3.3 Reference (VAR) Parameter

All VAR parameters are passed by address. The address of the
parameter, without indirection or indexing, is pushed onto the stack.
Thus, it is perfectly safe (and recommended) to access the contents of
a VAR parameter using indirection.

G.3.4 Procedure Or Function Parameter

Procedures and functions, as parameters, are passed as two-word
descriptors. The first word of the descriptor is the address of the
procedure's entry point; the second is its static link. The static

link 1is needed when the procedure is actually called (see above under
"Mechanics of a Procedure Call").

G.3.5 Conformant Array Parameter

A conformant array can be of any size; however, in order for
parameters to have fixed offsets from the frame pointer, a fixed-size
descriptor must be passed. This descriptor contains a fixed part of
two words, and a variable part of three words for each conformant
dimension.

The fixed part contains the base address of the array in the first
word. The second word contains the overall size of the passed array
in words.

Each three words of the variable part contain information on one
conformant dimension. The second and third words contain the lower
and upper bounds, respectively, on the index of the dimension. The
first word contains the size of the dimension, which is the upper
bound minus the lower bound plus one.

The conformant array descriptor is the same for both wvalue and VAR
parameters. It is the responsibility of the called procedure to copy
value conformant parameters into its own local storage.

PROCEDURE AND FUNCTION CALLING SEQUENCES

G.4 PARAMETER ACCESSING EXAMPLE

Figure G-3 gives an example of a typical external procedure
declaration, followed by MACRO code showing how the various parameters
can be accessed.

FROCEDURE Test(first: DOURLES VAR second?! INTEGERS third?! INTEGER) S EXTERNALS

ENTRY TEST sllefine as dlobal swmbol
TESTS P sSave ACs in local storadge
MOVE Ly=2CL7) sGet value of THIRD
MOVET 2e@-3C17) yGet sddress of SECOND
MOVE 23017 sGet address of SECOND (altermnate method)
MOVE 3y @317 sGet value of SECOND
OMOVE Ay -5CL7) sGet (2-word) value of FIRST
oo iFerform comrputations
MOVEM Fe@-3(CL7) sReturn new value of SECOND
PR iRestore Als
PO 17 sReturn to caller
Figure G-3: External Procedure Declaration

Saving the ACs is not shown; they are assumed to be preserved in some
static locations, not on the stack. The stack pointer is used for
accessing the parameters. (If the ACs are saved on the stack, or if
the stack is used for other purposes, then another AC should be set up
for accessing parameters.)

Offset 0 (from AC 17) is the return address; offset -1 is the saved
stack pointer. Therefore, offset -2 is the last parameter location.
Since THIRD is an integer, it takes up only one word, and is accessed
with an offset of -2. The next previous parameter, SECOND, is a VAR
parameter, passed by address. The address is in the next previous
word, at offset -3. FIRST is a double-precision real, taking up two
words. Therefore, offset -4 is the second word of the parameter, and
offset -5 is the first word.

G.5 CONFORMANT ARRAY EXAMPLE

Figure G-4 shows an example of an external procedure declaration with
a conformant array parameter, and a picture of the stack after the
call. The base address of the array is at offset -6; the 1length in
words is at offset -5. The lower and upper bounds on the index are at
offsets -3 and -2, respectively. The number of elements is at offset
-4,

PROCEDURE AND FUNCTION CALLING SEQUENCES

PROCEDURE Confar (VAR a: ARRAYTJ]a..ha:INTEGER] OF INTEGER); EXTERNAL;

-6(17) | array base address | fixed
“5(17) | size of array (words) | part
~4(17) | ¥ elements (ha-latl) | variable
-3(17) T=§Z;::=;Z§:;==T;:T======T (per dimension)
2(17) | upper bound (ha) | part
1(17) | saved stack pointer |
0(17) | return address |
Figure G-4: Conformant Array Parameter

-A-

/ABORT switch, 8-7
ABS function, 1-7, 6-13
Actual parameter, 5-14
AND operator, 1-6, 3-5
ARCTAN function, 1-7, 6-13
Arithmetic expression, 3-1
Arithmetic functions, 6-13
Arithmetic operator, 1-8, 3-1
ARRAY, 1-6
ARRAY data type, 2-8
Array examples, 2-15
Array type compatibility, 2-14
ASCII character set, 2-7, B-3
ASSIGN command, 9--3
Assigning
a string constant, 2-12
a string variable, 2-11
values to an array, 2-12
values to records, 2-19
Assignment operator, 1-8
Assignment statement, 2-12, 5-2
Asterisk, 1-8

-B-

BACKUS-NAUR form, C-1
Base type, 2-6, 2-22
BEGIN, 1-6, 1-9

Binary notation, 2-2
/BINARY switch, 8-7
Block, 1-2, 1-4

BNF syntax, C-1
BOOLEAN data type, 1-7
Boolean functions, 6-1
BOOLEAN results, 3-5
BREAK command, 9-4

, 22, 2-4
4

-C—-

Calling sequences
function, G-1
procedure, G-1

CARD function, 1-7, 6-15

Caret, 1-8

CARRIAGE, 7-11

INDEX

Carriage control, 7-11

Carriage control characters, 7-26

Case selector, 5-6
CASE statement, 1-6, 2-17, 5-4,
5-6
Case-label 1list, 2-17, 5-6
CHAR data type, 1-7, 2-2, 2-4
Character set, 1-5
/CHECK switch, 8-7, 8-8
CHR function, 1-7, 6-15
CLEAR command, 9-6
CLOCK function, 1-7, 6-15
CLOSE procedure, 1-7, 6-5, 7-4
Collection of elements, 2-8
Colon, 1-8
Comma, 1-8
Command
ASSTGN, 9-3
BREAK, 9-
CLEAR, 9
DISPLAY,
EXECUTE,
/EXIT, 8
EXIT, 9-9
/HELP, 8-5
HELP, 9-10
LOAD, 8-16, 9-1
PROCEED, 9-10
REMOVE, 9-11
/RUN, 8-5
RUN, 8-17
SAVE, 8-17
SET, 1-6, 9-11, 9-12, 9-13
SHOW, 9-14
START, 8-17, 9-1
/TAKE, 8-5, 8-6
TRACE, 9-15
Comment, 1-8, 1-9
Compilation unit, 1-5
Compile-time errors, A-3
Compile-time warnings, A-18
Compiler listing format, 8-16
Compiling a program, 8-4
Component type, 2-24
Components, 2-8
Compound statement, 5-1, 5-2
Conditional statement, 5-4

4
6
9-7
8-17, 9-1
5

Index-1

Conformant array, 6-25 Equal, 1-8
CONST, 1-6, 4-1, 4-4 /ERROR-LIMIT switch, 8-7,
Constant definition, 4-4 Examples, 8-17
Constant identifier, 4-4 EXE file, 8-17
Constant name, 4-4 Executable statement, 1-4
Control variable, 5-8 EXECUTE command, 8-17, 9-1
cos function, 1-7, 6-13 Executing a program, 8-17
Creating a program, 8-3 /EXIT command, 8-5
/CREF switch, 8-7, 8-8 EXIT command, 9-9
/CROSS-REFERENCE switch, 8-7, 8-8 EXP function, 1-7, 6-13
EXPO function, 1-7, 6-16
-D- Exponentiation, 1-8, 3-2
Expression, 3-1
Data type, 2-1, 4-5, 4-6 arithmetic, 3-1
ARRAY, 2- logical, 3-5
BOOLEAN, 1-7, 2-2, 2-4 relational, 3-4
CHAR, 1-7, 2-2, 2-4 set, 3-5
DOUBLE, 1-7, 2-2 Expression compatibility,
enumerated, 2-4 Extensions, D-1
FILE, 2-8, 2-24 EXTERNAL, 6-36
INTEGER, 1-7, 2-2 External file, 2-25, 4-2
pointer, 2-1, 2-26 External subprogram, 6-1,
predefined, 2-2
REAL, 1-7, 2-2, 2-3 -F-
RECORD, 1-6, 2-8, 2-15
scalar, 2-1, 2-2, 2-4 FALSE, 1-7
SET, 2-8, 2-22 Field identifier, 2-15
SINGLE, 1-7, 2-2 FILE, 1-6
structured, 2-1, 2-8 File
subrange, 2-6 TEXT, 1-7
Data types, 1-2 File characteristics, 7-2
DATE procedure, 1-7, 6-5, 6-12 FILE data type, 2-8, 2-24
Deallocating memory, 6-6 File examples, 7-12
/DEBUG switch, 8-7, 8-8, 9-1 File history, 7-10
Debugger, 9-1 File organization, 7-3
Debugging a program, 9-1 File specification defaults,
Decimal notation, 2-2 File specifications, 8-2
Declaration, 1-4 File status, 7-10
Declaration section, 4-1 File variable, 7-16
Declaring a data type, 2-1 Final value, 5-8
Definition, 1-4 FIND procedure, 1-7, 6-5,
Delimiter, 1-8 FIXED, 7-11
Direct access, 7-3, 7-10 Fixed length, 7-3
DISPLAY command, 9-7 Fixed-length record, 7-3
DISPOSE procedure, 1-7, 6-5, 6-6 /FLAG-NON-STANDARD switch,
DIV operator, 1-6 8-8
Division, 1-8 Floating-point format, 2-4
po, 1-6, 5-8, 5-11, 5-12 FOR statement, 1-6, 5-8

Documenting your program, 1-9
Dollar sign, 1-7

Formal and actual parameter
compatibility, 2-29

DOUBLE data type, 1-7, 2-2 Formal parameter, 6-20, 6-29,
Double precision, 2-4 6-32
DOWNTO, 1-6, 5-8 FORTRAN, 6-29, 6-32, 6-36
Dynamic allocation procedure, 6-6 FORWARD, 6-29, 6-32
Dynamic variable, 2-26, 6-6 FORWARD declaration, 6-35
FUNCTION, 1-6, 4-1
-E- Function, 6-1
ABS, 1-7, 6-13
ELSE clause, 1-6, 5-5 ARCTAN, 1-7, 6-13
END, 1-6, 1-9 CARD, 1-7, 6-15
Enumerated data type, 2-5 CHR, 1-7, 6-15
EOF function, 1-7, 6-14 CLOCK, 1-7, 6-15
EOLN function, 1-7, 6-14 cos, 1-7, 6-13

Index-2

8-8

2-29

=36

7-4

8-7,

Function (Cont.) -L-
EOF, 1-7, 5-14

EOLN, 1-7, 6-14 LABEL, 1-6, 4-1, 4-3

EXP, 1-7, 6-13 Label, 5-13

EXPO, 1-7, 6-16 Label declaration, 4-3

LN, 1-7, 6-13 Less than, 1-8

oDD, 1-7, 6-14 Less than or equal, 1-8

ORD, 1-7, 2-7, 6-15 Lexical elements, 1-5

PRED, 1-7, 6-16 LINELIMIT procedure, 1-7, 6-5,

ROUND, 1-7, 6-15 7-7

SIN, 1-7, 6-14 LIST, 7-11

SNGL, 1-7, 6-15 /LISTING switch, 8-7, 8-9, 8-11

SQR, 1-7, 6-14 LN function, 1-7, 6-13

SQRT, 1-7, 6-14 LOAD command, 8-16, 9-1

succ, 1-7, 6-16 Loading a program, 8-16

TRUNC, 1-7, 6-15 Local file, 2-25

UNDEFINED, 1-7, 6-15 Logical expression, 3-5
Function calling sequences, G-1 Logical operator, 3-1, 3-5
Function declaration, 6-32 Loops, 5-8
Functions Lower limit, 2-6

arithmetic, 6-13

Boolean, 6-14 -M-

transfer, 6-15
/MACHINE-CODE switch, 8-7, 8-9

-G—- Mark procedure, 6-5
MAXINT, 1-7, 2-3
GET procedure, 1-7, 6-5, 7-5 Mechanism specifier, 6-21
GLOBAL, 6-29, 6-32 Minus sign, 1-8
Global file, 2-25 MOD operator, 1-6
GOTO statement, 1-6, 4-3, 5-13 MODULE, 1-6, 6-37
Greater than, 1-8 Modules, 5-37
Greater than or equal, 1-8 Multidimensional array, 2-9
Multiplication, 1-8
H
_N..
HALT procedure, 1-7, 6-5
Heading, 1-2, 1-4 /NATIONAL switch, 8-7, 8-9
/HELP command, 8-5 NEW procedure, 1-7, 6-5, 6-6
HELP command, 9-10 NIL, 1-6
Hexadecimal notation, 2-2 NOCARRIAGE, 7-11
Not equal, 1-8
NOT operator, 1-6, 3-5
I
o
I/0 errors, A-2
Identifier, 1-2, 1-7 NDctal notation, 2-2
IF statement, 1-6 ODD function, 1-7, 6-14
IF-THEN statement, 5-4 OF, 1-6
IF-THEN-ELSE statement, 5-4, 5-5 OPEN procedure, 1-7, 6-5, 7-8
IN, 1-6 Operator, 3-1
$INCLUDE directive, 1-10 AND, 1-6, 3-5
Included file, 1-10 arithmetic, 1-8, 3-1
Index, 2-8 assignment, 1-8
Initial value, 5-8 D1V, 1-6
Initializing logical, 3-1
a variable, 4-6 MOD, 1-6
an array, 2-12 NOT, -6, 3-5
Initializing a variable, 4-7 OR, 1-6, 3-5
INPUT, 1-7, 4-2 relational, 1-8, 2-11, 3-1, 3-4
Input, 7-1 REM, 1-6
Input procedure, 6-5 set, 1-8, 3-1, 3-5
INTEGER data type, 1-7, 2-2 subrange, 1-8
Internal file, 2-25 OR operator., 1-6, 3-5

Index-3

INDEX (Cont.)
ORD function, 1-7, 2-7, 6-15 Procedure call, 5-14
Ordered set, 2-5 Procedure calling sequences, G-1
Ordinal value, 2-7, 2-11 Procedure declaration, A-28
OTHERWISE clause, 1-6, 5-6 Procedure identifier, 6-29
ouTtpuT, 1-7, 4-2 Procedure name, 5-14
Output, 7-1 PROCEED command, 9-10
Output procedure, /-5 PROGRAM, 1-6, 4-2
OVERLAID, 6-37 Program development, 8-1
Program heading, 4-1, 4-2
-pP- Program name, 4-2
Program structure, 1-2
PACK procedure, 1-7, 6A-5, A-10 PUT procedure, 1-7, 6-5, 7-15
PACKED, 1-6, 2-28
Packed array, 2-11, 2-28 -R-
Packed file, 2-28
Packed record, 2-28 Random access, 7-3
Packed set, 2-28 READ procedure, 1-7, 6-5, 7-16
PAGE procedure, 1-7, 5-5, 7-14 READ statement, 2-12
Parameter, 6-21 READLN procedure, 1-7, 6-5,
actual, 5-14 READLN statement, 2-12
formal, 6-20, 6-29, 6-32 REAL data type, 1-7, 2-2, 2-3
Parentheses, 1-8 Record access, 7-3
PASDDT, 9-1 Record access mode, 7-10
PASDDT command, 9-3 RECORD data type, 1-6, 2-8,
Passing parameters, 6-22 Record examples, 2-21
Period, 1-8 Record format, 7-3
Plus sign, 1-8 Record length, 7-10
Pointer, 1-8 Record type, 7-11
Pointer data type, 2-1, 2-26 Record type compatibility, 2-19
Pointer variable, 6-6 Record variable, 5-12
Precedence of operators, 3-6 Records with variants, 2-17
PRED function, 1-7, 6-16 Relational expression, 3-4
Predecessor, 2-2 Relational operator, 1-8, 2-11,
Predeclared 3-1, 3-4
function, 6-12 RELEASE procedure, 6-5
identifier, 1-7 REM operator, 1-6
procedure, 6-1 REMOVE command, 9-11
subprogram, 6-1 REPEAT statement, 1-6, 5-8,
Predefined data type, 2-2 Repetitive statement, 5-8
PROCEDURE, 1-6, 4-1 Reserved words, 1-6
Procedure, 6-1 RESET procedure, 1-7, 6-5, 7-19
CLOSE, 1-7, 6-5, 7-4 Result type, 6-32
DATE, 1-7, 6-5, fA-12 REWRITE procedure, 1-7, 6-5,
DISPOSE, 1-7, 6-5, 6-6 ROUND function, 1-7, 6-15
FIND, 1-7, 6-5, 7-4 /RUN command, 8-5
GET, 1-7, 6-5, 7-6 RUN command, 8-17
HALT, 1-7, 6-5 Run-time errors, A-1
LINELIMIT, 1-7, 6-5, 7-7
MARK, 6-5 -S-
NEW, 1-7, 6-5, 6-6
OPEN, 6-5, 7-8 SAVE command, 8-17
PACK, 1-7, 6-5, 6-10 Scalar data type, 2-1, 2-2
PAGE, 1-7, 6-5, 7-14 Scientific notation, 2-4
puT, 1-7, 6-5, 7-15 Scope of identifiers, 3-7
READ, 1-7, 6-5, 7-16 Semicolon, 1-8
READLN, 1-7, 6-5, 7-18 Semireserved words, 1-6
RELEASE, 6-5 Separate compilation, 6-37
RESET, 1-7, 6-5, 7-19 Separator, 1-8
REWRITE, 1-7, 6-5, 7-20 Sequential access, 7-3, 7-10
TIME, 1-7, 6-5, 6-12 SET command, 1-6, 9-11, 9-12,
UNPACK, 1-7, 6-5, 6-11 9-13
WRITE, 1-7, 6-5, 7-21 SET data type, 2-8, 2-22
WRITELN, 1-7, 6-5, 7-25 Set expression, 3-5

Index-4

INDEX (Cont.)

Set operator, 1-8, 3-1, 3-5
Setting a breakpoint, 9-4
Shifting program control,
SHOW command, 9-14
Simple statement,
SIN function, 1-7,
SINGLE data type,
Slash, 1-8
SNGL function, 1-7,
Special symbols, 1-8
Specifying output files, 8-11
Specifying switches in source
code, 8-9
SQOR function,
SQRT function, 1-7,
Square brackets, 1-8
START command, 8-17,
Statement
assignment,
CASE, 1-6,
compound,
conditional,
FOR, 1-5, 5-8
GOTO, 1-6, 4-3,
IF, 1-6
IF-THEN, 5-4
IF-THEN-ELSE,
READ, 2-12
READLN, 2-12
REPEAT, 1-6,
repetitive,
simple, 5-1
WHILE, 1-6, 5-8,
WITH, 1-6, 5-12
String comparison, 2-11
String variable, 2-11
Structured data type,
Subprogram, 1-4
Subprogram format,
Subprogram heading,
Subrange data type,
Subrange operator,
succC function, 1-7,
Successor, 2-2
Switch
/ABORT,
/BINARY,
/CHECK, 8-7, 8-8
/CREF, 8-7, 8-8
/CROSS-REFERENCE, 7
/DEBUG, 8-7, 8-3, 1
/ERROR-LIMIT, 8-7, 8-
/FLAG-NON-STANDARD, 8
8
8

5-4

5-1
6-14
1-7, 2-2

6-15

6-14
6-14

1-7,

9-1

2-12,
2-17, 5-4,
5-1, 5-2
5-4

5-2
5-6

5-13
5-4, 5-5

5-8,
5-8

5-10

5-11

2-1, 2-8
6-20

6-20

2-6

1-8

6-16

8-7
8-7

8-7, 8-8
9-

8

- 8-8
/LISTING, 8-7, 8-9,
/MACHINE-CODE, 8-7,
/NATIONAL, 8-9
NATIONAL, 8-7
/WARNINGS, 8-9
/WARNINGs, 8-7

Symbolic values,

74
-11
-9

9-1

Syntax summary, C-1

I

Tag field, 2-17
Tag name, 2-17
Tag type, 2-17
/TAKE command,
Test condition,
TEXT file, 1-7,
Text file, 2-25
THEN, 1-4

TIME procedure,
TO, 1-6, 5-8
TRACE command, 9-15
Transfer functions,
TRUE, 1-7

TRUNC function,
Truth value, 3-5
TYPE, 1-6, 4-1, 4-5
Type compatibility,
Type definition, 4-5
Type identifier, 4-5
TYPE section, 2-1

8-5, 8-6
5-5

2-12, 2-25

1-7,

f-15

1-7, 6-15

2-29

-U-

UNDEFINED function,
Underscore, 1-7

UNPACK procedure,
UNTIL, 1-6, 5-10
Upper limit, 2-6
User identifier,

1-7,

1-7, 6-5,

1-8

User-defined scalar data type,

2-5
-V-

VALUE, 1-6, 4-1, 4-7
Value declaration, 4-7
Value initialization,
Value parameter, 6-22
VAR, 1-6, 4-1, 4-6, 6-23
VAR section, 2-1
VARIABLE, 7-11
Variable declaration,
Variable length, 7-3
Variable name, 4-6
Variable parameter, 6-23
vVariant clause, 2-15

4-7

4-4

-W-

/WARNINGS switch, 8
WARNINGS switch, 8-
WHILE statement, 1

WITH statement, 1-
WRITE procedure, 1
WRITELN procedure,

Index—-5

6-15

TOPS-20
PASCAL Language Manual
AA-L315A-TM

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company’s discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[1 Assembly language programmer

[] Higher-level language programmer

(] Occasional programmer (experienced)
[] User with little programming experience
(] Student programmer
[J Other (please specify)

Name Date

Organization Telephone

Street

City State — Zip Code

or Country

- Do Not Tear — Fold Hereand Tape - — - — =~ — - — - ———— — — — —

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MRO1-2/L12
MARLBOROUGH, MA 01752

Do Not Tear — Fold Hereand Tape - - - - - —-—- - - - ——— - —— - - — — = — — - — — = —

Cut Along Dotted Line

