EK-0DX20-TM-PRE

DX20 PROGRAMMED DEVICE ADAPTER

CHAPTER 1 INTRODUCTION

1.1 PURPOSE AND USE

2 GENIRAL D=ESCRIPTION
3 FEATURES

L CHARACTERISTICS

5 OP TIONS

6 REFERENCES

CHAPTER 2 SITE PREPARATION AND PLANNING

CHAPTER 3 INSTALLATION

3.1 GENERAL
3.2 UNPACKING AND INSPECTION
3.3 INSTALLATION

-y i : ./{:‘
CHAPTER 4 — oWERATION/ PROSEANHNINT

4.1 FUNCTIONAL TESTING
4.2, OPERATING PROCEDURES)
4. 5./ ﬁvafsfmﬁ,o Z.e»&afmy hogmmin s
a2, Microcode Sperotion 1’*/ + “ & o
4. 2,2,/ M’s’crmrwfra//’/* *""f' Ling trpetion L’:’f‘"-’-":‘:*/»',?;’,ﬁ/}
‘{., ﬂ: 3'..1 Mt/m/wﬂ‘ﬂ dier Aleve Lns Froz ' omy Je "’“w‘f" v
¥, 3 CHANNEL oPERAIICN
4,3.¢ chennel Bus interincs Kegislors
43,2 Information Fugss
Y 3.3 Inbeund Contre! Liass
Y 3.4 . /’rmmf/ Lines Qut”
¥ 3.5 ,Or/ar,fy Lines I
. . %
¢ 3.¢ Bus Exlension
£, 3.7 .S)oeétlaé Lentrels
----- 4. '8 Channel Bus Cperition o
¥, 3.8, Morma/ thufw4pfr3fvvn .
¢.3.2.2 Chonne/~Inity 3hed seguences rvsie Arguest)
¥.3.7.3 Dontrol Unit Initiated Sepacnze “Servies Avgucsty

INTERFACE PROGRAMMABLE REGISTERS
DX20 Host Massbus Interface

MBRAOO:Control Register (DXCTR)
MRRAQ1:Status Register (DXSTR)
MBRAU2:Exrror Register (DXERR)
MBRAO3:Maintenance Register (DXMTR)
MBRAO4:Attention Summary Register (DXASR)
MBRAOQS :Gencral Purpose Register 5 (DXGPE)
MBRAQO6:Drive Type Register (DXDTR)
MBRAO7-MBRA17: not used
MBRA20-MBRA27:General Purpose Reglster 0-7(DXGPO-DXGP7,
MBRA30:Diagnostic Register 0 (DXDRO)
MBRA31:Diagnostic Register 1(DXDR1)

.
.

.
v
.

¢ o
W ONOU D WA -

.
.
.

&&b&éb-&bbbkb&bbbbbb&b-bb&&&bbb&bbbb ww':nv'

.

. . .
ULJUJWUMNNNNNNN!‘JPJ—*“—.—‘—D—‘—-d—.—l-d.o—n_a.o..._c..
. .

.
.
-

.
—
o

.
-
-

. .12 MBRA32:Diagnostic Register 2(DXDR2)

.13 MBRA33:Diagnostic Register 3 (DXDR3)

.4.1.14 MBRA34:Diagnostic Register 4(DXDR4)

.1.15 MBRA35:Diagnostic Register 5 (DXDRS)

.4.1.16 MBRA36:Diagnostic Register 6(DXDRG)
.17

MBRA37:Diagnostic Register 7 (DXDR7)

Microbus Massbus Inteface
UBRAQOO:Status and Control Register 0 (MPSCRO)
UBRAO1:Status and Control Register 1(MPSCR1)
UBRAO2:Error Code Register (MPECR)
UBRAO03:Drive Type Register-Low (MPDTRL)
UBRAO4:Drive Type Register-High (MPDTRH)
UBRAQ5-07:Data Buffer Register 0-2(MPDBRO~MPDBR.)
UBRA10-27:General Purpose Register 00-17 (MPGPGO-Mi .1
UBRA30-UBRA37:not used

Channel Bus Interface
Introduction , :
UBRAOO:Control and Status Register 0 (CSRO)
UBRAO1:Control and Status Register 1(CSR1)
UBRAO2:Tag Out Register O0(TORO)
UBRAO3:Tag Out Register 1(TOR1)

.
.

.
.
.

.

v e
OO d wN =

.
.

.
.
.

.
.

bb&é&&b&bbbbbbAbbbbbbbbhbbbbb&&bhb

.
N & N -

.
.
.

.4.3.6 UBRAO4:Tag In Register O(TAGINO)

-4.3.7 UBRAO5:Tag In Register 1/Scratch Pad Address (TAGi . !
. 8 UBRAO6:Data Register 0 (DRLO)

.4.3.9"° UBRAO7:Bus In Register 0(CBILO)

.4.3.10 "UBRA10:Scratch Pad Data Register 0 (SPDALO)

.
-
—

.
.

UBRA11:Bus Out Register 0 (BORLO)

UBRA12:Data Register 1(DRHI)

UBRA13:Bus In Register 1(CBIHI)
UBRA14:Scratch Pad Data Register 1 (SPDAHI)
UBRA15:Bus Out Register 1(BORHI)
UBRA16:Control Unit Status Register (CUSTAT)

.
.

.
— —d D b
YU D W

.
.
»

Data Path Interface
Introduction
UBRAOO:Register 0 (REGO)
UBRAO1:Register 1(REG1)
UBRAO2:Register 2(REG2)

.

’
.

L] .
LhbbandsbdbbobddbsSoadn DOEDDLLED LS LS
e . s
LoD BHLLDIDLIDDLDLDSD DL NN WWWWwWwwwwwww
.

.
w N =

XL O DO DDA DDELEDLIDDE RS PREELIDELESEDSS
-

. 5 UBRAO3:Register 3 (REG3)
.4.4.6 " UBRAO4:Massbus Counter-Low Byte (MCLO)
.4.4.7 UBRAOS5:Massbus Counter-High Byte (MCHI)
-4.4.8 UBRAO6:Byte Counter-Low Byte (BCLO)
.4.4.9 UBRAO7:Byte Counter-High Byte (BCHI)
.4.4.10 UBRA10:Data Formatter Control ROM Address Regis<c:
.4.4.11 UBRA11:ROM Data Register-Low Byte (RMDALO)
.4.4.12 UBRA12:ROM Data Register-High Byte (RMDAHI)
R S I ""BRA13:Assembly Register-Low Byte (ARLO)
-4.4.14 UBRA14:Assembly Register-High Byte (ARHI)
.4.4.15 UBRA15:Register 15 (REG15) '
.4.4.16 UBRA16:Register 16 (REG16)
.4.4.17 UBRA17:Register 17 (REG17)

¥ VBRA 20-0BRA4 37! Mol tsed

CHAPTER § TECHNICAL DESCRIPTION

i

5.1 INTRODUCT /0N

£/, seneral

5.1.2 Subsystem Description

£./.2.1 Massbus

5.1.2.2 RH 20 Massbus Contrafic:

5,1.2.3 Chonnel B4S

5.2 'INTERFACE DESCRIPTION

5.2.1 Massbus and Diagnostic Link
s.2.1.1 Control Bus Signd) Detinition e
5.2.7.2 Dars Bus Signal Defirition
£.2.7.3 Diagnestic Link Signal Definition
£2.0.4. Control Bus Fead Seguence.
5.2.7.5 Contrel Bus Write Seguence .
5.2.1.4 Diognoatic Link Fedd /ursre Sepuences
5.2.1.7 Dars Bus Aead SEgaeflftl

5.2.1.% Data Bus write 5’8}944'6”‘:7@‘
5-. 2: /. 9 f}*‘wgvy“ ‘f/é)r)dlin?

!

.
ol
o |
LA Y

.
.

.
-
.

B W N -

.
.

A
.

.

.
.
.

.
.

.

- amh b e = a
.

ton b Wi =

»
.
3

.
.

‘Massbus Length and Throughput Considerations

Channel Bus Interfaceé
Introduction
simplified Block Diagram
Data Transfer Rate

pata Path Interface
Introduction
Simplified Block Diagram
bata Formats
Data Transfer Rate

DX20 CONTROLLER DESCRIPTION

Microcontroller Description
Microbus
Program Storage
Instruction Cycles
Instruction Set Summary
Internal Registers

~

-

-
.

.
-
.

.
.

AN d W =

.
. e o
DA DD OEDWWWWWWW BN
e h

.
.
.

.
.
.

13
.

. |
vTuuouuuutunn ottt tf\v‘,w;mmmwmmmwmmmwwwmwm;
.
v b Wwh -

.
LW WL WwWw ‘:”*)‘W wuuuuwuNMNNNNNNN’
st .

CHAPTER 6 PREVENTIVE MAINTZNANCE (to be supplied)

CHAPTER 7

Introductiorn.
Simplified Bloci: L/agrsm
Channel Bus Interface
. Introduction
Microbus Interface
Bus 0 Data Path
Bus 1 Data Path
Channel Bus Control
Control Unit Control

Data Path Interface
Introduction
Microbus Intexrface Control
Master and Slave Bus Control
Formatter Data Path
Formatter Control

SERVICE (to be supplied)

and Control

CHAPTER 1
INTRODUCTION

1.1 PURPOSE AND USE

The DX20 Programmed Device Adapter (PDA) is a high performance I/0
processor with a high data transfer rate used in the DECSYSTEM-20
to transfer data, in one of nine formats, between the host memory
and high speed devices.

1.2 GENERAL DESCRIPTION

Data is transferred between the host and PDA over the system
Massbus independent of the DECSYSTEM-20 central processor (CPU)
and is controlled by a microcontroller located in the PDA. Figure
1-1 shows the DX20 system configuration. Once the PDA is
initialized by an instruction from the CPU, the microcontroller
(microprocessor and microstore) takes over the CPU function;
operating the DX20 as an I/0 processor by executing microcode
instructions retained in its writable control store. The micro-
instructions are loaded from the host computer into the micro-
controller store via the DX20 diagnostic link (bus). This bus is
also used for transferring information, read from the micro-
controller's diagnostic registers, to the host.

Tne follow1ng featurcs are incorporated in the DX20.

1. Microinstruction parity detection
2. Nine data format modes
3. Executes self-diagnostics when idle.

1.4 CHARACTERISTICS
The DX20 PDA is composed of w1re-wrap circuit boards plugged into
logic panels which are mounted in either a standard H950-A 19-inch
equipment rack or a H9502 corporate cabinet. Input/output cable
“connections are provided by pairs of jacks for the Massbus cables,
channel bus cables, and control unit cables. Cables are attached
to the jacks with quick-latch connectors. Power in the DX20 is
supplied by: one 861-C power control; one H7420-A (115 Vac) power
supply; and four power regulators [three H744 (+5 V), and one H745
(=15 V) 1.

The DX20 is constructed in a modular manner consisting of four
major sections; a microcontroller, computer interface, high speed
data path, and a device interface. DX20 circuit boards plug into
a system unit-type backplane connecting the boards together via
the microbus. The microcontroller consists of two hex boards; one
contains the microprocessor, and the other its control store
memory. One hex and one quad board plus bus interface boards
(where required) compose the computer interface section. The high
speed data path, for handling data packing modes, includes a hex
board (formatter) and a quad board (data buffer). A single hex
board is utilized for the channel (or device) interface section.

Physical and operating characteristics of the DX20 are contained

1-1

in Chapter 2.

Data formats supported by DX20 hardware are described in Chapter
5.

1.5 OPTIONS

The DX20 programmed device adapter is packaged in one of two types
of cabinets; the standard 19-inch H950 cabinet, or the H9502
corporate cabinet. The following option designations denote the
various cabinet configurations.

DX20-AA H950 115 vac, 60 Hz
DX20-AB H950 230 vac, 50 Hz
DX20-AC H9502 115 vVac, 60 Hz
DX20-AD H9502 230 VAC, 50 HZ

1.6 REFERENCES
The following documents contain information that supplements the

contents of this manual.
1. RH20 Massbus Controller Unit Description (EK-RH20-UD-001)

2. See Table 3-1 for a list of manuals supplied with the
~guipment.

Figure 1-1 DX20 System Configuration

1-3

CHAPTER 2
SITE PREPARATION AND PLANNING

DESCRIPTION

The DX20 Programmed Device Adapter is used in conjunction with the
TX02 Magnetic Tape Controller and one or more TU70/71/72 tape
drives. This component part of the TX70/71/72 Magnetic Tape
Subsystem will be mounted in the appropriate cabinet dependent on
whether it is used in a 1090 or a 2040/2050. Table 2-1 lists the
DX20 characteristics and Figure 2-1 shows the service area
requirements.

Table 2-1 DX20 Characteristics

Figure 2-1 DX20 Service Area Requirements

2wo

CHAPTER 3
INSTALLATION

3.1 GENERAL

The DX20 Programmed Device Adapter can be a subunit of any
DECsystem utilizing a Massbus controller, therefore the DX20
installation composes only a part of the entire system installa-
tion. This chapter describes the installation procedures related
to the positioning, powering up, and initial checkout of the DX20.
Installation procedures for other units in the system involved are
contained in the appropriate service manuals for those units.

3.2 UNPACKING AND INSPECTION

The DX20 is bolted to a pallet when it is delivered to a DECsystem
site. Prior to removal, the shipping container and skid should be
checked for external damage or abusive handling. After the
shipping container has been removed a thorough visual inspection
of the DX20 should be performed to ensure no physical damage was
incurred during shipment.

Cabinet doors and panels, connectors, the cooling assembly,
pluggable moduie conncctions, and cable connections should be
thoroughly checked for dents, broken fasteners, looseness, broken
connecters, etc. Any damage or excessive looseness should be
carefully recorded and reported on suitable forms to the appro-
priate Field Service Department of Digital Equipment Corporation.

After inspecting the DX20 cabinet, ensure that the additional
equipment 1listed in Table 3-1 has been received and is in good
working condition. Any damage should be similarly recorded and
reported.

The physical layout of the DX20 is shown in Figure 3-1 and module
utilization and busing is shown in Figure 3-2.

3.3 INSTALLATION

If no damage or only minor damage (not serious enough to prevent
installation) is found during unpacking and inspection, proceed as
follows: '

NOTE
The following procedure assumes that the
DX20 is being installed in an operating,
powered-up DECSYSTEM-20 computer install-
ation.

l. For initial positioning, unbolt the DX20 from the pallet
and wheel it (on its casters) into position.

2. Using the leveling legs provided at the bottom of the
unit, adjust the cabinet for proper height and alignment
with the adjacent cabinet. Cabinet dimensions and
clearances required after the cabinet has been positioned
and leveled, are shown in Figure 2-1.

3 =1

Connect the power control input power cable to a 120 Vac,
50-60 Hz or 240 Vac 50-60 Hz power source. Energize the
DX20 cabinet by placing the power control circuit breaker
to ON (Figure 3-3). '

Set the REMOTE ON/OFF LOCAL ON toggle switch to LOCAL ON.

Determine that the cabinet blowers are operating properly
and the +5 V, -5 V, and -15 V operating voltages are
present on the backplane power connection pins.

Install Massbus and IBM channel bus terminator quick-
latch connectors if required (see Figure 3-4).

NOTE
Ensure that the control unit and the
and/or tape drives have been properly
installed and are operating before pro-
ceeding with the next step.

Connect the mMassbus between the DX20 and DECSYSTEM-20

RH20 and connect the channel bus cable between the DX20
snd control unit.

3 =-2

Quantity
Software

1

Prints
1
1

Manuals

Table 3-1 Equipment Supplied

Item

DX20 Programmed Device Adapter
Diagnostic (RH20)
MAINDEC-10-DFDXC

DX20-V100 Magnetic Tape Subsystem
Diagnostic (RH20)
MAINDEC-10-~DFDXD

DX20-V100 Magnetic Tape Subsystem
Reliability Diagnostic (RH20)
MAINDEC-10-DFDXE

SPAR Diagnostic Magnetic Tape
(Note 1)

DX20 ¥.sint Set

TX02 Logic Print Set (Volumes I,
II, and II1) serialized (Note 1)

TU70 Logic Print Set (serialized)
(Notes 1, 2, and 3)

TU72 Logic Print Set (serialized)
(Notes 1, 2, and 3)

DX20 Programmed Device Adapter
Maintenance Manual (Note 5)

TX02 Maintenance Manual (Note 1)
includes:

a. Theory of Operation Manual

b. Field Engineering Maintenance
Manual

c. Illustrated Parts Catalog

d. Installation Manual

TX02 P/N Compatibility Listing
3800 IV (Note 1)

SPAR User's Guide (Volumes I, II)
(Note 1)

O

Document, Type,
or Part No.

50055013

MP00432

EK-0DX20-TM-001

9149
9204

9152
9057

9058

9245

Wirelists

1

Hardware

1

1

TU70 Maintenance Manual (Notes 1, 2)
includes:

a. Field Engineering Maintenance
Manual
b. TIllustrated Parts Catalog

TU70 P/N Compatibility Listing 34CC
(Notes 1, 2)

TU72 Maintenance Manual (Notes 1, 2)
includes:

a. Field Engineering Maintenance
Manual
b. Illustrated Parts Catalog

TU72 P/N Compatibility Listing
36XX EVE (Notes 1, 2)

DX20 Backplane - Section T WRP SORT
DX20 Backplane - Section II WRP SORT
M8601 - WRP SORT
M8602 - WRP SORT
M8603 - WRP SORT
M8604 - WRP SORT
M8605 - WRP SORT
M8606 - WRP SORT

M8607 - WRP SORT

Channel bus cable
Massbus cable

Massbus terminator
Channel bus terminator
Ground cable

Remote turn-on cable

8uzs

9043
9014

9153

9094
9063

9267

K-WL-DX20-0-WL
K-WL-DX20-1-WL
M8601-1-WL
M8602-0-WL
M8603-0-WL
M8604-0-WL
M8605-0-WL
M8606-0-WL

M8607-0-WL

70-10078-XX
BC06-S
7009938
H866-A
1210757

7008288

Accessories

TU7X power cable (Note 3) 17-00040-XX
TU7X signal cable (Note 3) 17-00041-XX
E.P.O plug cable 70—104083—xx
Tag terminator 12-12172
Bus terminator 12-12171

TX02 kick plate assembly kit (Note 1)

TU7X kick plate assembly (Notes 1, 3)

Blank magnetic tape (1 per TU7X drive) 18-9543

Cleaning kit TUCO1
Can tape cileaner 29-15199
Package Q-tips N/A

Spare cab filter

2.
3.
4.

NOTES

Supplied by vendor (STC)

If TU7X is part of subsystem
One per unit

Specify length for part numbers
containing XX

Microfiche only

Figure 3-1 DX20 Physical Layout

3“6

Figure 3-2 Module Utilization and Busing Diagram

3«7

Figure 3-3 861C Power Control Panel

3-8

Figure 3-4 DX20 Cable Connections

3«8

CHAPTER 4
OPERATION/PROGRAMMING

4.1 FUNCTIONAL TESTING

DX20-V100 magtape subsystem fault detection 1is performed
automatically using diagnostic programs. These programs test the
following three major operational areas.

1. DX20 Programmed Device Adapter. This test runs

’ independent of the tape subsystem and consists of two
parts; tests which are run from the host KL10, and tests
which are run from the DX20 microprocessor. The
following functional areas are tested by this diagnostic.

Massbus interface

data path interface

channel bus interface

DX20 mlcroprocessor

DX20 microprocessor instructions

DX20 microprocessor control storage and worklng memory
DX20 microbus interface

2. DX20-V100 Subsystem. This program tests the channel bus
connertions, the DX20/tape control unit interface, and
the DX20-v100 operational microcode. All microcode
operations are tested for proper execution.

3. DECsystem-10(-20)/DX20~V100 Subsystem. This diagnostic
program exercises the DX20-V100 Subsystem under maximum
dynamic 1loading conditions to ensure reliable system
operation.

Use of the diagnostic programs, including the associated loading
procedures, 1is described in the writeups for each diagnostic
program. Identification of these programs is as follows:

1. DX20 Programmed Device Adapter Diagnostic (RH20)
(MAINDEC-10-DFDXC) .

2. DX20-v100 Magnetic Tape Subsystem Diagnostic (RH20)
({MAINDEC-10-DFDXD) .

3. DX20-vV100 Magnetic Tape Subsystem Reliability Diagnostic
(RH20) (MAINDEC-10-DFDXE).

4.2 OPERATING PROCEDURES

4.,2.1 Bootstrap Loading

There are two bootstrap loaders which load the microcode into the
DX20, namely, the exec (mode) bootstrap and the user (mode)
bootstrap. The exec bootstrap loader is called automatically by
KLINIT which is the task that brings up the TOPS20 monitor. More
details about KLINIT can be found in the DECsystem-20 Operator S
Guide.

4-1

The exec bootstrap can reside on either the floppy disk or the
front-end area of the dual-ported system disk pack. After KLINIT
prints out the message on the operator console: '
KLI~--BOOTSTRAP LOADED AND STARTED

The exec bootstrap starts to load the microcode into the DX20,
verifies the microcode just loaded, then starts the DX20. 1If any
error occurs while loading the microcode, the exec bootstrap will
print out an error message which tells what caused the error, and
tries to load the microcode again if possible. When it succeeds
in loading the microcode, the exec bootstrap will print out the
following message on the operator console:

DX20 MICROCODE VERSION 0(52) LOADED, VERIFIED AND STARTED

The user bootstrap loader is used while the monitor is running.
The purpose is to be able to reload the microcode after the DX20
is powered down for maintenance without reloading the monitor.
However, during maintenance of the DX20 no attempt should be made
to use the tape drives connected to this DX20. Otherwise, the
tape drives may not be available for use without reloading the
monitor.

To run the user bootstrap loader, the user must have privileges as
an operator, a wheel, or maintenance. After the user bootstrap
has started, it prints out the message:

FILE:

and waits for the user to type the filename of the microcode to be
loaded into the DX20. The user must specify which DX20 to load if
there is more than one DX20 on the system. To select the DX20 to
load, the user can give the switch, /D:ab right after the
filename, where a, b, are octal digits, and a= the RH20 number and
b= the drive number of the DX20. However, if there is only one
DX20 on the system, the user can simply type (CR) carriage return
after typing in the filename. The user bootstrap will look for
the DX20 and type out the RH20 number and the drive number of the
DX20 selected. Then, the user bootstrap loads the microcode as
specified by the given filename, verifies the microcode loaded,
and prints out the following messages if no error occurred:

FILE; DXMCA.ADX
DX20 SELECTED: RH20-2 DRV=1

MICROCODE LOADED
MICROCODE VERIFIED
MICROCODE VERSION 0 (52)
DX20 STARTED _

The DX20 loaded and started is the first drive connected to the
second RH20 on the system.

4.2.2 Microcode Operational Description
The DX20 hardware functionally consists of four parts:

l. The microprocessor has 2K 16-bit words of writable
control, 1K 8-bit bytes of data storage, and 9 8-bit
bytes of register storage. The control store is not
writable by the microprocessor. During normal operation,
the microprocessor has primary control over operation of
the other three parts.

2. The Massbus interface contains the registers which are
accessible from the host for communication with the
microprocessor. It contains the necessary control logic
to bootstrap and control the microprocessor for
diagnostic purposes. It also contains logic for
transferring data over the Massbus.

3. The channel bus interface contains the logic to control
the IBM bus protocol. Under control of the micro-
processor it performs device selection and deselection.
It also contains 1logic to handle high speed data
transmission over the channel bus.

4. The data path contains logic to transmit data at high
speeds between the Massbus interface and the channel bus
interface. The data rates through the data path are far
,icater than 1is possible through the microprocessor,
although ti.e microprocessor also has the capability of
moving data through the DX20. The data path also
contains logic to pack and unpack data in the various
formats required for magnetic tape handling on the
DECsysteml(0/20.

The only direct control the host system (DECsysteml0/20) has over
the DX20 is through the Massbus registers contained in the Massbus
interface. Some of the information in these registers is
available to the microprocessor. This section describes those
bits that will normally be used by the host for control of the
DX20.

An operation with the Massbus device DX20 is initiated as follows:

Load control information into the appropriate registers of
the Massbus device describing information such as (in the
case of magnetic tape) record length, data mode, error
recovery to be tried, etc.

Load the Massbus controller with channel control information
if a data transfer operation is desired. This is a pointer
to a channel command list containing pointers to data and a
word count for each pointer.

If a data transfer operation is to be performed, a register
in the RH20 is loaded with the appropriate command, which the
RH20 then 1loads into register 0 of the device. If an
immediate operation is to be performed, register 0 of the
device is loaded directly by the program. The controller

4-3

looks at its register 0 to determine that the operation is to
start, and what kind of data transfer is to occur (read,
write, verify, control.)

Note that if the controller is busy with a data transfer
operation, it 1is still possible to initiate a nondata type
operation. The registers of the device can be 1loaded with
information, including the command to be performed, providing the
device is not already busy.

When the controller determines that it is done with a data
transfer, it waits for the device to agree that it is time to
stop, and then interrupts the host indicating that the data
transfer operation is complete. A nondata operation is performed
locally by the device, and the controller is not involved with the
operation except to initiate it.

When the device needs some special handling by the host, it raises
an attention signal to the Massbus controller. This will usually
cause an interrupt in the host. This attention signal can be
caused either by the completion of a nondata transfer type
operation, or by the device deciding that it knows something the
host should be made aware of, like a tape drive just came on-line.
Whe.. the attenticr has been recognized by the host, it can write
the Massbus registers in the device to clear the condition.

4.2.2.1 Microcontroller Jump Instruction Description - The micro-
controller can execute three basic jump instructions. However,
these basic jump instructions are flexible and can accomplish a
wide variety of tasks as follows:

Jump Immediate

conditional jumps - on any one of seven conditions
jump with an offset (indexing)

jump on condition with indexing

In addition to these, the microprogram can return from a
subroutine by popping a PC value previously stored on its stack.

bits 15-13 = 4 octal- jump op code indicating a jump immediate
within a page, Bit 7=0 of this JUMP instruction
specify location. :

bits 15-13 = 6 octal- jump op code indicating an address source
of the working memory. Also indexing and/orx
offsetting can be specified using the AC memory and
an ALU function.

bits 15-13 = 7 octal jump op code indicating an address source of
the BR register. Also indexing and/or offsetting
can be specified using the AC memory and an ALU
function.
condition bits 12-10 = specifies the condition under which the
jump will take place.

condition=0 jump/branch always.

condition=1l = jump/branch if any external interrupt
flag line is true.

condition=2 = jump/branch if BR register bit 0 is set.

condition=3 = jump/branch if BR register bit 3 is set.

condition=4 = jump/branch if BR register bit 7 is set.

condition=5 = jump/branch if the carry bit from ALU io
set.

condition=6 = jump/branch if the zero bit from ALU is
set.

condition=7 = PUSHJ; push the PC onto the stack and
jump/branch. This 1is used to go to a

subroutine.

Bits 9=8: PAGE bits for jumping between 256 location pages
within a 1K section (bank). These bits are JAM
loaded into a P,C, bits 9=8 at the end of the JUMP
instruction cycle. Bit 7 of the JUMP Op codes 6 & 7
enables section or bank switching.

Indexing and Offset - :

By using the JUMP instruction op code 6 & 7, indexing and/or
offsetting can be accomplished within the JUMP cycle. The
contents of an AC memory location specified by bit 6=4 of these
JUMP instructions can be combined with the source by specifying an
ALU function in bit 3=0 of these instructions. For example; using
JUMP Op Code = 6, the program can index into a Page in the
micro-store by adding (ALU function code = 00) the contents of a
working memory location to the contents of AC memory location
specified by bits 6=4 of the instruction.

Section Switching or Bank Switching -

Jumping between 1K section or banks is accomplished with JUMP
instructions op code 6 & 7 with bit 7 in the instruction set to a
one, bit 7 acts as a section enable allowing bits 5 & 4 of these
instructions to be JAM loaded into bits 11-10 respectively of the
PC. These bits remain latched in the PC until another JUMP
instruction with bit 7 set is executed. Note that when bit 7 of
these instructions is set (section enable) bit 6 must always be
zero.

4«5

Miscellaneous Jump Information -

A jump push instruction increments the PC before the PC is pushed
onto the stack.

A move always increments the PC with carry into the page and bank
fields.

A move pop (POPJ) loads the PC from the stack and increments the
PC at the end of cycle.

The stack cannot be used for data storage.
4.2.2.2 Microcontroller Move Instruction Description - The micro-
controller can execute four basic move instructions. From these
four instructions, however, a wide variety of operations/functions
can be accomplished, some of these are as follows:
Move to one of five selectable destinations:

BR

I/0 register

Working memory

AC mewory
BR shifted

Move with one of sixteen ALU functions,
Retﬁrn from subroutine using the move POP instruction,
Manipulate the MA Register:

Load low order bits - 0 through 7

Load extended bits - 8 and 9

Increment (+1)

Move Instruction Breakdown -

bits

i

15-13 = 0 octal - Move OP code indicating a move immediate.

: - Bits 7-0 of the instruction is the data

source which 1is moved to a selected
destination, Note - no ALU function or AC
location can be specified.

15-13 = 2 octal - Move OP code indicating the data source is
the working memory location addressed by the
MA register. Any ALU, destination or MA
control code can be specified.

15-13 = 3 octal - Move OP code indicatnig the data source 1is

the BR. Any ALU, destination or MA control
code can be specified.

4-8

15-13 = 1 or 5 octal- Move OP code indicating the data source is

Destination

Destination
Destination

Destination

Destination

Destination

Destinat:_.a

Bits

6-4

7-4

3-0

L}

an I/0 register on the microbus addressed by
bits 15 and 3-0 of the instruction. Any
ALU, destination, or MA control code can be
specified.

Bits 10, 11, 12 are used in the MOVE
instruction, destination.

NOP - No destination specified.
Data destination is the BR.

Data destinations an I/0 register, Bits 7-4
and 10 specify I/0 register address.

Data destination is the AC memory location
specified by bits 6-4 of the move
instruction.

Data destination is the RR shifted.

‘Move POP instruction. This instruction is

used to return from a subroutine.

Specify an AC memory location if required to
be used in the microinstruction.

Specify an I/0 output register addess.

Specify the ALU function to be used in the
MOVE instruction.

ALU Function Codes Implemented

Wouou
N =D

[T T O DO IO | T I 1|
—
<

ADD: A + B ‘

ADD with CARRY: A + B

1's complement = SUBTRACT with CARRY: 1 = B
+ C -1 '

Increment A

A plus C

A times 2

A times 2 plus Carry
DEcrement A
Select A
Select B

A OR NOT B

A AND B

A OR B

A XOR B

MA Control

MA Control
MA Control

MA Control

2's complement SUBTRACT: A
1's complement SUBTRACT: A

nou
w

Specify the MA register control to be
performed in this instruction.

NOP = NO MA control function specified.

Load MA register extension bits, loads bits
9 and 8 of the MA register.

Load the low order bits of the MA register

Increment the MA register by one at the end
of this instruction.

4.3 CHANNEL OPERATION

The DX20 can be used either as a channel or a control unit. When
used as a channel it provides the interface between the RH20
Massbus controller and peripheral device control units. For
control unit operation it interfaces the Massbus controller and a
second computer system such as another Massbus controller or IBM
360/370 System. 1In the latter configuration the DECsystem which
is normally the master, becomes the device.

The channel bus interface (CBI) contains: registers, controls,
translation circuits, and checking logic, which function as a
control unit or provide sequence controls to provide the operating
interface between the DX20 and a device control unit. It consists
of two 9-bit buses (eight data plus parity) and tag in (interface
control) and tag out lines. Data issued to the device is trans-
ferred on the 9-bit bus out lines, and conversely data from the
device to the DX20 is received on the 9-bit bus in lines. 1Identi-
fication of information on either bus, and control of interface
connect/disconnect sequences is effected on the tag in and tag out
lines.

CBI functions are produced as directed by the miciocontroller via
the microbus. Control, CBI conditions, and parameter information
transfe. . .a to and from the CBI takecs place over the microbus.
The microcontroller initiates data transfers between the CBI and
data path (slave bus). Once the transfer is in progress, the
microcontroller is not required for the CBI to complete the high-
speed data transfer with the data path.

4.3.1 Channel Bus Interface Registers

Device Register - The CBI device register is a 9-bit register
which holds information received from, or to be transmitted to,
the channel bus. This information may be a device address,
status, commands, parameters, or data.

Buffer Register - Information from either the microbus or from the
l6-byte scratch pad buffer is held in this register. This
information may be used internally in the diagnostic mode (loop
enable) or issued to the channel bus.

Scratch Pad - The scratch pad provides storage for 16 bytes of
information received from the microbus. Information stored here
may be transferred out or used in the diagnostic mode (loop
enable).

Addressing of the scratch pad is controlled by a presettable
counter (from the microbus). It is possible to wrap-around within
the scratch pad while the CBI is transferring information to the
channel bus; since underflow or overflow detection is not
provided.

Tag Out Registers - Tag out registers 0 and 1 (addresses 2 and 3)
are 8-bit registers which are loaded and read by the microbus.

4«9

Outbound tag (control) lines are treated as a channel and inbound
tag lines as a control unit; depending on the mode that the CBI is
currently running in.

Tag In Registers - Tag in register 0 and 1 are not actually
registers, but control gates. Microbus access to the channel bus
tag control lines is accomplished via the register select 1lines
(address 4 for 0, and 5 for 1). Tag line operation is possible in
channel or control unit applications or in the diagnostic mode.

Channel Registers - The two channel registers (status and mode)
are used to hold information which defines and controls the state
of the channel bus interface. These registers may be either
written into, or read from, via the microbus. In normal operation
register 0 basically holds error conditions (parity error
information) or internal CBI conditions. Each bit in this
register may be individually set or cleared from the microbus.
This register may be used during diagnostic mode. Register 1 is
used as a control register. Setting and clearing of the specified
bits is performed by the microcode. The microcode uses this
register in both normal diagnostic mode operations.

Address Select -~ Address selection in the channel bus interface is
detormin.l from five microbus address select lines. These lines
are decoded and for.. 15 register select signals which are used for
read operations, or both.

4.3.2 Information Buses

Each bus has nine lines; eight information lines, and one parity
line. Data bits are arranged in ascending order from bit 7
(lowest) to bit 0. If a transmitted byte has less than eight
information bits, the data will occupy contiguous bit positions
from the lowest towards the highest. Unused bus lines will occupy
the remainder of the bit positions up to bit 0. The parity
position (P) must contain the parity bit (odd parity) in all
bytes.

The bus out lines are used to transmit: output data, I/0 commands,
and device selection (address) codes to the device control units.
Timing as well as the type of information on the bus out lines, is
signaled to the control unit by activating one of the outbound tag
lines. ' :

1. ADDRESS OUT is activated during the initial selection
sequence to indicate that a device address is being
transmitted on the bus out lines. This alerts all
on-line control units for an initial selection sequence.

2. COMMAND OUT is issued by the channel to signal a selected
I/0 device in response to the following control signals.
It responds to ADDRESS 1IN during 1initial selection;
indicating the receipt of a device address; and that a
command code is being transmitted to the control unit via
the bus out lines and for the control unit to proceed

4«10

4.3.3

with the operations.

COMMAND OUT in response to SERVICE IN or DATA IN during a
data transfer sequence causes the control unit to
terminate (data transfer stop) and eventually initiate an
interrupt sequence.

In response to STATUS 1IN, COMMAND OUT notifies the
control unit toi stack (retain) its current status.

SERVICE OUT is a tag line issued by the DX200 to the
control unit indicating that the DX20 has accepted status
information on the bus in lines, or has provided data to
the control unit on the bus out lines.

SERVICE OUT in response to STATUS 1IN, acknowledges
receipt of the status byte and allows the control unit to
clear its status. Status conditions accepted in this
manner will not generate another interrupt sequence.

SERVICE OUT in response to SERVICE IN indicates that the
channel has accepted a byte of input data, or has placed
a byte of output data on the output bus.

DATA OUT is generated by the CBI as a response to DATA
IN. This notifies the control unit that the channel
accepted a byte of input data; or that a byte of output
data is on the bus out lines.

Inbound Control Lines

The inbound control lines are used for timing and to identify data
on the input bus. They are activated only by the selected control
unit and only one line may be active at a given time.

l.

SERVICE IN is a tag line issued from the control unit, to
the channel, when it wants to transmit or receive a byte
of information.

A control unit activates STATUS IN to notify the CBI that
a status byte has been placed on the input bus. The
status byte has a fixed format consisting of bits
describing the current status of the control unit.
Depending on whether or not the byte is accepted, the
channel replies with SERVICE OUT or COMMAND OUT. The
control wunit may initiate an additional interrupt
sequence only to signal a change in status, since the
channel had accepted a status byte from that unit.

STATUS IN in response to ADDRESS OUT during the initial
selection sequence indicates that the selected control
unit is unable to supply status, or accept a function
byte due to the following:

4.

a. It is executing a previously initiated operation.

b. A shared control unit is holding status for a device
other than the one being addressed.

ADDRESS IN is activated by a device control unit to
indicate that 1its address has been placed on the CBI
input bus lines. This condition is held until the

channel signals the control unit to proceed by activating
COMMAND OUT.

DATA IN indicates that a control unit is ready to receive
or transmit a byte of data.

4.3.4 Priority Lines Out

1.

SELECT OUT is used to scan control units in sequence,
starting at the highest priority, for the purpose of
connecting the selected one to the channel. The select
line passes through a logic network in each control unit,
reamplified, and transmitted to the next unit, thereby
forming a distributed priority network. The rules for
capturing or passing on the SELECT OUT signal establishes
.ue seqguential scan.

The connection between a control unit and the channel can
only be established, when the 1level of the incoming
SELECT OUT signal switches at the control unit (from
inactive to active). If the control unit does not
require connection at this transition time, it propagates
SELECT OUT to the next control unit in the sequence.
Once a control unit has propagated the select signal, it
may not contact the channel again until the transition
reoccurs.

To capture the interface, the control unit activates
operational in (OPL 1IN) when SELECT OUT 1is received
(leading edge), and inhibits the propagation of SELECT
OUT to the next control unit. When a control unit
conditions OPL 1IN, it places its device address
(identifying code) on the input channel bus and activates
an inbound control line (ADDRESS IN). If ADDRESS OUT is
active and the control unit does not recognize the
address being transmitted on the bus out 1lines, the
control unit must propagate SELECT OUT. The channel must
hold SELECT OUT active until it receives a response on

either the inbound control line or SELECT IN.

- NOTE
The lowest priority control unit
propagates SELECT OUT as SELECT IN to
the channel. The terminator assembly
provides for the turn-around of SELECT
OUuUT.

4-12

SUPPRESS OUT is used alone and with other outgoing
signals to provide the following special functions:

a. Suppresses status from control units when required.

b. 1Indicates command chaining to control units during a
SERVICE OUT response to STATUS IN.

€. Provides a selective reset function by resetting the
control wunit transmitting operational 1in. The
channel executes this function by activating and
maintaining SUPPRESS OUT, and dropping operational
out (OPL OUT).

HOLD OUT is issued by the channel to all control units
and combined with SELECT OUT, provides the synchroniza-
tion for control unit selection. It minimizes the
propagation of SELECT OUT, during selection, by purging
it from the select out path and is active only when OPL
OUT is active. Once HOLD OUT drops it must be held off
for a duration of 1.5 microseconds. During this period
the means for purging, or blocking, SELECT OUT at all
-vntrol units simultaneously rather than waiting for it
to be propagjated serially through all units.

4.3.5 Priority Lines In

l.

REQUEST IN notifies the CBI that one or more control
units requires attention, and will initiate an operation
whenever it can capture the interface. REQUEST 1IN 1is
dropped by the control unit after it gains selection, and
has no further service requirements (no later than 250
nanoseconds after operational in is activated).

REQUEST IN should not be activated until the control unit
is ready to transmit information. It is only required
for control-unit-initiated selection; once the control
unit has control of the interface and is transmitting OPL
IN, it need not be activated for each byte of informa-
tion. o

SELECT IN is a line that extends the SELECT OUT signal
from the lowest priority control unit back to the DX20.
It notifies the channel that all control units have
propagated SELECT OUT during initial selection or a
control requested connection, and did not recognize its
device address on the output bus.

4.3.6 Bus Extension

The addition of a second bus to the existing bus allows two bytes
in parallel to be transmitted or received. The existing, or
current bus is defined as Bus 0 and the extended bus is Bus 1.
Both buses are identical in that they contain eight data and one
parity line.

When the bus extension feature is available and a two byte wide
data transfer is requested by a control unit, the channel
activates the MARK 0 OUT and MARK 1 OUT lines.

MARK 0 IN and MARK 1 IN are activated by the control unit to
notify the channel, that two parallel bytes are required for the
forthcoming function.

0dd parity is provided for the MARK IN and MARK OUT lines.
4.3.7 Special Controls

1. CLOCK OUT is a signal activated by the channel, notifying
the control unit that the central processing unit (CPU)
is not in a wait or stopped state. When this 1line 1is
active; on-line control units must be switched to the
uwiagnestic mode (CE mode).

2. METER OUT transmitted by the channel, allows all control
units to record time on their usage meters.

3. METERING IN issued to the channel, indicates that the
control unit is recording time.

4.3.8 Channel Bus Operation

Channel bus operation is controlled by the microprocessor. For
any data transfer operation three distinct signal sequences are
necessary to initiate, utilize, and terminate the channel bus:;
initial selection, data transfer, and ending. 1In addition to the
microprocessor initiated sequences, two other sequences are used
to activate the channel bus; channel-initiated, and control
unit-initiated service request.

4.3.8.1 Normal Input Operation

Initial Selection Sequence - An operation is initiated by the
microprocessor placing an address byte on the BUS OUT lines and
the raising of the ADR OUT line. The device control unit decodes
the address on the bus which must have the correct parity to be
acceptable (see Figures 4-1 and 4-2).

"HOLD OUT and £2L OUT are then issued to provide synchronization
for control unit selection. The control unit upon receiving SEL
QUT, inhibits its propagation and raises OPL IN which causes the
microprocessor to respond by dropping ADR OUT. After ADR OUT
falls, the control unit places its device code on BUS IN, and ADR
IN may rise. For a byte multiplex operation, HOLD OUT and SEL OUT

4«14

may drop any time after this point. After the microprocessor
checks the address it responds by placing the device command on
BUS OUT and raising the CMD OUT line. The control unit processes
the command and drops ADR IN, allowing CMD OUT to fall. When CMD
OUT drops, the control unit places status information on BUS IN
and raises STA IN (status in). If a START I1/0 instruction had
been selected, sufficient information is available at this point
to complete instruction execution.

When the microprocessor accepts the status condition, it responds
with SRV OUT, which allows the control unit to clear its status
(STA IN falls). A CMD OUT response from the microprocessor also
causes STA IN to fall via the path STA IN-SRV OUT-STA IN. (NOTE: a
response of CMD OUT to STA IN cannot prevent execution of an
immediate command operation).

Data Transfer Sequence - A data transfer may be requested by the
control unit after the initial selection sequence is completed.
To transmit the data to the DX20, the control unit places a data
byte on BUS IN and raises SRV IN; the tag line and validity of BUS
IN must be maintained until an outbound tag is raised in response.

The control unit requests data from the DX20 by raising SRV IN.
The micr~ rocessor responds by placing the data on BUS OUT and
signals with SRV OuT. BUS OUT is maintained until SRV IN falls,
at which time the microprocessor responds by dropping SRV OUT.

After selection, the control unit remains connected to the DX20
for the duration of the transfer of information. This information
can be: a single byte of data; a status report; an initiation of
a new command; a string of data bytes; or a complete operation
from start to finish of the final status report.

The duration of a connection between the DX20 and device control
unit is controlled by both units. HOLD OUT and SEL OUT prevent
the control unit from disconnecting, and allow the DX20 to control
the duration of the connection. However, the control unit can
preserve the 1logical connection after the DX20 permits it to
disconnect (HOLD OUT and SEL OUT drop) by holding OPL IN up. In
this manner the control unit can employ burst mode operation.

Depending on the duration of the connection, one of two modes of
operation is established: byte multiplex or burst. These modes
are established so that the program can schedule concurrent
execution of multiple I/0 operations. Mode selection is deter-
mined by the time duration of OPL IN. When it remains up longer
than required for byte multiplexing, selection is in burst mode.

The byte multiplex mode is the normal mode for low speed I/0
devices, although all I/0 devices are capable of operating in
burst mode when required by the channel. Devices incapable of
byte multiplex operation force burst mode by holding up OPL IN
until channel end status conditions occur. The transfer of one or
more data bytes during a single interface sequence where control

4-15

unit timing is less than 32 microseconds is considered byte
multiplex mode.

Burst mode is the normal mode of operation for high speed 1/0
devices. These devices force burst mode (OPL IN held up) when
attached to a channel capable of byte multiplex operation. Medium
speed or buffered I/0 devices, which may normally operate in
either mode is determined by channel data rate capabilities, are
equipped with a manual or programmable switch to select the mode
of operation. This switch setting is overridden when burst mode
is forced by the channel. An interface disconnect executed by the
channel overrides the force burst mode.

An absence of data transfer; such as when reading a long gap on
tape, during burst mode must not exceed one-~half minute. When an
absence of data exceeds this time, equipment malfunction may be
indicated. '

Ending Procedure and Asynchronous Status - The ending procedure
may be initiated by either the device control unit or the DX20.
If the procedure is initiated by the control unit, the end of
operation is completed with a one signal sequence; assuming that
both channel-end and device-end status conditions occur together.
When the ™%20 initiates the ending procedure, the control unit may
ifequire additional _ime to reach the point where the proper status
information is available. In this case a second signal sequence
is necessary to complete the ending procedure.

Assuming that selection is already obtained, one of three
situations may exist at the initiation of the ending procedure.

1. The DX20 recognizes the end of an operation before the
tape unit reaches its ending point. In this situation
when the control unit requires service, it raises SRV IN.
The microprocessor responds with CMD OUT which indicates
stop, causing the control unit to drop SRV IN and proceed
to its normal ending point without requesting further
service. When the device reaches the point at which it
normally issues channel end, the control unit places the
ending status on BUS IN and raises STA 1IN. The micro-
processor responds with SRV OUT, unless the status
condition 1is to be stacked; in which case it responds
with CMD OUT.

2. The DX20 and device recognize the end of an operation
simultaneously. When this occurs ending status is
available at the control unit and is placed on BUS IN,
and STA IN is raised.

3. The device completes and recognizes the end of an
operation before the DX20 reaches it. This situation is
completed in the same manner as the previous situation.

If device end does not occur with channel end, device end

4«16

will be presented when available, and an additional
status sequence is required.

4.3.8.2 Channel-Initiated Sequences

Immediate Command Operation - Immediate-type commands meet the
following conditions (see Figure 4-3):

1. Execution requires no more information than what is
contained in the command byte (no data or information
bytes are transferred).

2. Channel end time coincides with STA IN, which results in
information (channel end), rather than zero, being in the
initial status byte.

If the device is operating during a channel initiated
sequence, the control unit issues busy status. When the
control unit has status information outstanding from a
previous operation or an externally initiated status
condition, it issues busy status (except to the all-zero
command) in addition to the other status conditions.

Control Lait Rusv Sequence - When a device is addressed and the
control unit is busy; or status pending for another device; the
control wunit responds with a status byte indicating the busy
conditions. The control unit presents this status in one of two
ways: either as in the initial selection sequence, or with a
control unit busy sequence. A control unit busy sequence is not
used in response to an initial selection sequence, addressed to a
device for which chaining (propagation) has been indicated.

The microprocessor begins the control unit busy sequence by
placing the device address on BUS OUT and raising ADR OUT. SEL
OUT is raised and the control unit decodes the information on the
BUS OUT lines. When SEL OUT rises, the control unit blocks the
propagation of SEL IN, places the busy status byte on BUS IN, and
raises STA IN. OPL is not raised. '

After the status byte is accepted, HOLD OUT and SEL OUT are
dropped. The control unit responds by dropping STA IN and dis-
connecting from the interface. ADR OUT is kept up until STA IN

drops, thus completing the control unit busy sequence,

4.3.8.3 Control Unit Initiated Sequence (Service Request) - When
the control unit requires service, it raises REQ IN to the DX20
(see Figure 4-4). When SEL OUT rises at the control unit, and no
selection is being attempted by the DX20 (as indicated by ADR OUT
being down), the control unit places the address of the device on
BUS IN and signals with ADR IN and OPL 1IN. Once the
microprocessor acknowledges the address, it issues CMD OUT to the
control unit, indicating proceed. After ADR IN drops, the
microprocessor responds by dropping CMD OUT.

4-11

4-1 1Initial Selection Sequence

4=-18

4-2 Normal Input Operation

4-19

4-3 Channel Initiated Sequences

4«29

4-4 Control Unit Initiated Sequence

4-21

If the service request is for data, a data transfer sequence is
performed. :

If the service request is for status information, a status cycle
sequence 1is performed.

4.4 INTERFACE PROGRAMMABLE REGISTERS

4.4.1 DX20 Host Massbus Interface

This section describes the registers available in the Massbus
interface as seen from the Massbus. Many of the bits and complete
registers are identical to those as seen from the microbus. For
completeness of this section, the effect of microprocessor access
to these bits and/or registers will be described here rather than
in secton 4.4.2 Microbus Massbus Interface Programmable Registers.
Reference should also be made to section 4.4.2 for more complete
descriptions of microprocessor signals referred to in the
diagnostic registers. Also, in Massbus-to-Massbus configurations,
the slave host system does not have access to the diagnostic
registers. The abbreviations listed below are used in the
following discuvssions.

MBRA : Massbus register address

R : read

W : write

RO : read only
WO : write only
R/W read/write’
NU : not used

4.4.1.1 MBRA 00: Control Register (DXCTR) - The control register
is used by the host system to pass the function (or command) to be
executed to the microprocessor. The GO bit in bit 00 tells the
microprocessor to perform the function described by the function
code field in bits 05-01. When the function has been completed
the microprocessor will clear GO.

Bit(s) Type Description

15-12 NU These bits are reserved by the Massbus controller
and are not used by the DX20 subsystem.

11 NU Not used. Read as logical 0, write is don't care.

10-06 NU These bits are reserved by the Massbus controller

and are not used by the DX20 subsystem.

05-01 R/W CTR F4 - CTR FO (F4-F0) = control function 4 -
control function 0. The five bit function code
field contains the function or command to be
executed by the microprocessor. These bits can be
cleared by the host writing them or by DX RESET.
The DX RESET signal is generated by the host
writing the DXRES bit in the maintenance register,
by Massbus INIT or during power up/down sequences
under the control of CROBAR.

00 R/W CTR GO (GO) = control go. The GO flip-flop is set
: by the controller to signal the microprocessor
that a new function has been loaded and that it

should perform the desired function. The GO

flip-flop can be set by the host, but the host

cannot clear the GO flip-flop. The GO flip-flop

is normally cleared by the microprocessor when it

has completed the operation. This is done by

writing bit 1 (CLRGO) of the MPSCR1 register (see

section 4.4.2.2). The GO bit 1is reset by DX

RESET. Also, if the MP stopped flip-flop (MPSTP)

sets during a synchronous datz transfer, GO will

be cleared on the trailing edge of the EBL pulse.

The GO bit is also cleared if occupied (OCC) has

not been set by the microprocessor and the

microprocessor subsequently stops. In order to
set the GO bit, composite error (CERR) must not be
asserted.

4,4.1.2 MBRA 0l: Status Register (DXSTR) - The status register
contains read only information on the overall condition of the
subsystem. Further information is available from other registers.

Bit(s) Type Description

15 RO ATA (ATA) = attention active. The ATA flip flop
' drives the Massbus attention (ATTN) 1line. It 1is
normally set by the microprocessor to request

service from the controller. The reason for the

request is either to indicate completion of an
operation or to report an error condition. The
hardware will also cause ATA to set on the
trailing edge of the EBL pulse if the micro-
processor has stopped (MPSTP), or if the
microprocessor stops and occupied (OCC) has not

yet been set, or if GO is not set and either an

illegal register (ILR) 1is accessed by the
controller or a control bus parity error occurred
(CBPARE). The ATA flip flop can be cleared by the
microprocessor, by DX RESET, or by the. host

writing the attention summary register with the

control bus data line asserted corresponding to

this interface's device selection number. For
example, to clear unit 3s ATA bit, write the

4-29

14

13

12

11:00

RO

RO

RO

NU

attention summary register with data bit 03
asserted on the control bus.

COMP ERR (CERR) = composite error. This signal is
a level produced by the inclusive - OR of the
eight least significant bits of the Error Register
(DXERR) . The only way to clear the level is to
clear all the error conditions. Composite error
is actually the OR of CLASS A ERR and CLASS B ERR.
CLASS A ERR is the OR of DB PAR ERR, CB PAR ERR,
MP ERR, RMR and ILR. CLASS B ERR is the OR of UB
PAR ERR, MP STOPPED and ILF. See section 4.4.1.3
for complete descriptions of these errors.

MP LINK PRESENT (LNKPRS) = microprocessor 1link
present. This is a level available to the
master host system and when detected by the host
indicates full control of the microprocessor. The
host that detects LNKPRS can load the microcode
into the microstore, start and stop the
microprocessor and access the diagnostic registers
(DXDRO-DXDR7), etc.

M1 RUNNING (MPRUN) = microprocessor running. This
is a 1level indicating the state of the UBUS
RUNNING 1line. It is asserted whenever a
microprocessor timing cycle is in progress,
including single cycle operation. ‘

Not used. Read as logical 0, write is don't care.

4.4.1.3 MBRA 02: Error Register (DXERR) - The error register
can be broken down into two eight bit bytes. The high order 8
bits (15-08) consists of a software defined error code used by the
microprocessor to pass error information to the host system. The
low order 8 bits (07-00) consists of 6 hardware error flags and 2
software error flags. The low order 8 bits must be clear to
negate CERR. The low order eight bits of the error register are
cleared in normal operation by the host system writing them to a
zero. Additionally, the host can write these bits to a one for
purposes of diagnostic checkout.

Bit(s) Type Description

15:08 RO EC7~ECO (EC7-EC0) = error code 07 - error code 0.
The error code register is only writable by the
microprocessor and will contain either an error
code or ending status information for use with
either the operational microcode or diagnostics.
The register is cleared by UBUS INITIALIZE. This
initialize is generated by either DX RESET or by
the microprocessor setting the initialize bit in
its internal status register (bit 7 of UBRA 37).

07 /W MP ERR (MPERR) = microprocessor error. This flip
flop is normally set by the microprocessor to
indicate to the host that a valid error code is
contained in bits 15-08 of the error code register

(EC7-ECO) . It can be cleared by the micro-
processor writing it to a zero and is cleared by
DX RESET.

06 R/W MP STOPPED (MPSTP) = microprocessor stopped. This

flip flop will be set if microprocessor start
(MPSTR) is set and UBUS RUNNING transitions to the

off state. This will occur whenever the
microprocessor hardware detects certain error
conditions, e.g., internal parity errors. The

flip-flop is cleared by DX RESET.

05 R/W UB PAR ERR (UBPARE) = microbus parity error. This
flip flop will set when even parity is detected by
the Massbus interface on microbus writes (DATO) to
the registers in the Massbus interface. This bit
will in turn cause the microprocessor start
(MP START) 1line to turn off, forcing the
microprocessor to stop in order to preserve the
current state of the DX20 for analysis by the
host. The MP START line to the microprocessor is
the AND of the MP START (MPSTR) flip-flop in the
maintenance register (MBRA 03) being set and UB
PAR ERR (UBPARE) being cleared. The UB PAR ERR
flip-flop is cleared by DX RESET.

4-25

04 R/W DB PAR ERR (DBPARE) = data buffer parity error.
This flip-flop will set during synchronous data
transfers whenever even parity is detected from
either the Massbus data bus or the master bus. It
is cleared by UBUS INITIALIZE.

03 R/W CB PAR ERR (CBPARE) = control bus parity error.
This flip-flop will set during control bus write
sequences if the Massbus interface detects even
parity from the Massbus control bus. It 1is
cleared by DX RESET.

02 R/W RMR (RMR) = register modification refused. This
flip flop will set if the host tries to write any
Massbus interface register while the GO bit is set
except for the following registers: the
maintenance register (DXMTR), the attention
summary register (DXASR) or the diagnostic
registers (DXDRO-DXDR7). This bit will also set
if the host tries to write read-only or
nonexistent registers and GO is set. This
flip-flop is cleared by DX RESET.

01 1 &/W TR (ILR) = illegal register. This flip flop will
set if the host tries to read or write a
nonexistent register, namely, MBRA 07-MBRA 17. It
is cleared by DX RESET.

00 R/W ILF (ILF) = illegal function: This flip-flop will
be set by the microprocessor if the microcode
decides it has been given an illegal function to
perform. This can be the result of an invalid
function code, or other parameters such as an
incorrect data mode. The flip-flop can be written
to zero by the microprocessor and is cleared by DX
RESET.

4.4.1.4 MBRA 03: Maintenance Register (DXMTR) - This register
contains a bit to start the microprocessor, single cycle the
microprocessor, force the microprocessor to generate even parity
for the purpose of verifying parity networks, and a bit to
generate a reset (initialize) of the DX20 subsystem. Although the
slave~-host system also contains this register, setting any of
these bits will have no effect except for the reset bit.

Bit(s) Type
15-05 NU

04 R/W

03 R/W

02 R/W

01 R/W

00 NU

Description
Not used. Read as logical 0, write is don't care.

MP SNGL CYC (MPSC) = microprocessor single cycle.
When the host sets this flip-flop and the
microprocessor is then started, the microprocessor
will execute the instruction in the IR and then
stop. It is cleared by DX RESET.

MP WR EV PA (MPWEVP) = microprocessor write even
parity. With this flip-flop set the
microprocessor will generate even parity at the
output of the ALU before clocking the BALU. This
bit is written by the host and cleared by DX
RESET.

MP START (MPSTR) = microprocessor start. The host
sets this flip-flop to start the microprocessor
clock running and allow instruction execution.
During single cycle operation this flip-flop must
be toggled by the host to execute a series of
instructions. This flip-flop is written by the
knst and cleared by DX RESET. It is always set
during normal operation.

DX RESET (DXRES) = DX20 reset, This bit position
can be written by the host to generate a reset to
the DX20. Almost all flip-flops and registers in
the DX20 subsystem will be reset or initialized to
the correct state. 1In the case of the Massbus-to-
Massbus configuration, if the slave host system
writes this bit, it will only initialize the
Massbus interface that is connected to the slave
system. However, if the master host system writes
this bit, it will initialize everything, including
the Massbus interface connected to the slave host
system. When this bit is read, it will reflect
the state of DX RESET, which is also generated by
Massbus INIT or by CROBAR during power up/down
sequences. Therefore, unless the output of the
gate or multiplexer feeding DX RESET to the
Massbus is stuck, this bit will read a logical 0.
In the case of the host writing this bit, the
width of the DX RESET pulse will be approximately
300 ns. In the case of the Massbus INIT it will
be a minimum of 400 ns.

Not Used. Read as logical 0, write is don't care.

4.4.1.5 MBRA 04: Attention Summary Register (DXASR) - This
register is not really a register at all. Rather, it is a decoder
which drives a bit on the control bus data lines corresponding to
its device selection number if its attention active (ATA) flip-

4-27

flop is set. For example, if unit number 3 has its ATA bit set,
when the host reads the attention summary register, bit 03 on the
control bus data lines will be asserted. Furthermore, the host
does not have to address a particular device or unit. All it has
to do is address the attention summary register and each active
device on the Massbus with its ATA flip-flop set will drive a data
line corresponding to its own device number. The host can clear a
particular device's ATA flip-flop by writing a logical 1 into the
corresponding bit position (in our example, bit 03} of the
attention summary register. :

Bits Type Description
15-08 NU Not used. Read as logical 0, write is don't care.
07-00 R/W (ATA7-ATA0) = attention active 7 - attention

active 0. These bits reflect the attention active
(ATA) status of the eight possible devices on the

Massbus. See description of ATA in section
4.4‘1‘2.
4.4.1.6 MBRA 05: General Purpose Register 5 (DXGPS) - This

register is actually in the eight word RAM
rosiding in the Massbus interface and is identical
to MBRA 25. That is, reading or writing MBRA 05
or MBRA 25 are equivalent. Thus, the software
must keep track of how this register is being
accessed.

Bits Type Description

15-00 R/W The definition of this register is determined by
the application software. This location is a RAM
location and as such is not cleared by DX RESET.

4.4.1.7 MBRA 06: Drive Type Register (DXDTR) - This register
is a read-only register formed by 16 SPST switches. The switches
are set up at installation and their setting is dependent on the
application. The setting for magtape (DX20-V100) is 050060. A
logical 1 is read if a switch is OFF (open) and a logical 0 is
read if a switch is ON (closed). The switches are in two DIPs
located in E30 and E39. '

Bit Type Description
15-00 RO DT15-DT00 (DT15-DT00) = drive type 15 - drive type

00. The 16 bits of this register form the binary
representation of the drive type number.

4.4,1.8 MBRA 07~ MBRA 17: not used - These registers are

nonexistent and if accessed by the host will cause an ILR. They
will be read as logical 0 and write is don't care.

4-28

4.4.1.9 MBRA 20 - MBRA 27: General Purpose Register 0 - 7
(DXGP0 - DXGP7) - These registers are actually an 8 word x 16 bit
RAM in the Massbus interface. Their definition and use are
determined by the application software. This memory 1is a dual
ported memory, one port used by the Massbus, the other port used
by the Microbus (microprocessor). The RAM has independent control
logic for everything but the write clock. Therefore, the system
software must assure that the Massbus controller and the
microprocessor do not try to write the same address
simultaneously. If this occurs, the location being addressed will
receive the OR of the data from the Massbus and microbus. While
the microprocessor is running, a write cycle initiated from the
Massbus will be synchronized with the microprocessor's timing
cycle. If the microprocessor is not running, the Massbus
interface will generate the correct timing. Massbus read cycles
are independent of microprocessor timing and both the Massbus and
the microbus can read the same location simultaneously. Table 4-1
shows the bit mapping between the Massbus and the microbus.

4.4.1.10 MBRA 30: Diagnostic Register 0 (DXDRO) - This register
is the first in a group of eight (DXDRO-DXDR7) which provide
access to the microcontroller for the master host system (LNKPRS).
The slave host system in Massbus-to-Massbus will read these
register: as logical zeroes and writec will have no effect (don't
care). In order (o write the instruction register (IR) or the
program counter (PC), microprocessor start (MPSTR) must be
cleared. If these registers are written while MPSTR is set, the
control bus cycle will be completed but it will have no effect on
the IR and PC. Also, no error condition will be asserted: it is
up to the programmer to be aware of this. Diagnostic register 0
provides access to the microcontroller instruction register (IR)
for loading and examining the microstore, (also called CRAM) and
for single cycle instruction execution without wusing the
microstore. ‘

Bit(s) Type Description

15-00 R/W IR 15-IR00 (IR15-IR00) = instruction register
15-00. The microcontroller instruction register
is a 16 bit read/write register accessible from
the Massbus control bus. Its contents contain the
instruction to be performed by the micro-
controller. The result of reading or writing the
IR depends on the current value of IREN, MSEN, and
PCAI (these bits are described in the following
section). The register is cleared by DX RESET.

4-29

Massbus
Address

MBRA

MBRA

MBRA

MBRA

MBRA

MBRA

MBRA

20

21

22

24

25

26

271

Table 4-1

Massbus
Mnemonic
DXGPO
DXGP1
DXGP2
DXGP4
DXGP5

DXGPé

DXGP7

Massbus
Bit #

07-00

15-08

07-00
15-08

07-00
15-08

07-00
15-08

"07-00

15-08

07-00
15-08

07-00
15-08

Microbus

Address

UBRA
UBRA

UBRA

UBRA

UBRA
UBRA

UBRA
UBRA

UBRA
UBRA

UBRA
UBRA

UBRA
UBRA

10
11

12
13

14
15

20
21

22
23

24
25

26
27

Microbus
Mnemonic

MPGPOO
MPGPO1

MPGP02
MPGPO3

MPGPO4
MPGPO5

MPGP10
MPGP11

MPGP12
MPGP13

MPGP14
MPGP15

MPGP16
MPGP17

Massbus-Microbus Bit Mapping

Byte #

00
01

02
03

04
05

10
11

12
13

14

15

16
17

Mirobus
Bit %

~N ~
I I
oo c o

N
|
[)

~NJ
|
oo

~N~g
i
oo

~
-
oo

~ <
[
<o

4.4.1.11 MBRA 31: Diagnostic Register 1 (DXDR1) - This register
allows access to the microcontroller program counter (PC) in
preparation for loading and examining the microstore. This register
also contains four bits for controlling the IR, MS (microstore) and -
PC.

Bit(s) Type Description

15 R/W IR EN (IREN) = instruction register enable. This
flip-flop is set by the host system to allow the
microcontroller to execute or run a microprogram
stored in the microstore. Also, with IR EN set,
reading or writing the IR from the Massbus control
bus will result in the IR being loaded from the
microstore location pointed to by the PC. With IR
EN cleared, reading the IR from the control bus
will not change the current contents of the IR and
writing the IR will load the IR from the control
bus data lines. This bit is cleared by DX RESET.

14 R/W MS EN (MSEN) = microstore enable. This flip flop
is cleared during normal operation and inhibits
writing the microstore. When the flip-flop is set
and IREN is cleared, the microstore location
poinced to by the PC will be loaded from the
Massbus control bus data lines via the IR
multiplexer during a control bus write to the IR.
If IREN is set (and MSEN is set) a control bus
write to the IR will load ones into the microstore,
location pointed to by the PC and then load ones
into the IR also. The flip flop is cleared by DX
RESET.

13 R/W PC EN (PCEN) = program counter enable. When this

flip flop is set it allows loading PCl1-PC00 from

the Massbus C11-C00 data lines during a control
bus write to the PC (DXDR1l). It will be set
during normal microprogram execution because the

Host loads the PC before starting the

Microprocessor and does not bother to clear it.

However, once the Microprocessor 1is started a

write to the PC will have no cffect. The PC EN

bit must be cleared before the Host can modify

IREN, MSEN or PCAI. It is also possible to set

PCEN and 1load the PC in the same control bus

write. Conversely, clearing PCEN will not change

the PC. The bit is cleared by DX RESET.

12 R/W PC AI (PCAI) = program counter auto-increment.
This flip flop is set during normal microprogram
execution to allow automatic incrementing of the
PC. With PCAI and MSEN both set and IREN cleared,
repetitive control bus writes of the IR will load
successive locations of the microstore via the IR,

4-3}

11-00. R/W

without having to load the PC each time. The PC
will be incremented following the read or write of
the current microstore location. This flip-flop
is cleared to allow the microcontroller to repeat
execution of an instruction. It is cleared by [X
RESET.

PC 11-PC ‘0 (PCl1l-PC00) = program counter 11-00.
This 12-bit register contains the microcontroller
program counter used to address the microstore
(CRAM) . It can only be written from the Massbus
when PCEN is set and MP START is cleared. This
register is cleared by DX RESET.

Table 4-2 summarizes the results of reading or writing the IR as a

function IREN,

MSEN, and CTOD. The term CTOD is asserted for a

control bus write and not asserted for a control bus read.

4«32

DXDR1 BIT

NORMAL 15
FUNCTION IREN

Read IR 0

Write IR O

Write MS O

- Read MS 1

14

MSEN CTOD
0 0

0 1

1 0

1 1

0 Q

0 1

1 0

1 1

Table 4-2

WRITTEN

N

zZ 2

zZ2 2 2

Y

MICROSTORE
SOURCE WRITTEN
ov N
ov Y
ov N
MB Y
ov Y
ov Y
ov Y
" Y

IR
SOURCE
ov
MB
ov
MB
MS
MS
MS

"l "

N=No, Y=Yes, MB=Massbus, MS=Microstore, OV=0riginal Value

4-383

4.,4.1.12 MBRA 32: Diagnostic Register 2 (DXDR2) - The high
order 8 bits of this register show the "B" inputs to the ALU,
i.e., the outputs of the source multiplexer (SMUX 7-SMUX 0) and
the low order 8 bits show the "A" inputs to the ALU, i.e., the
output of the ACs (AC 7-AC 0)

Bits Type Description

15-08 RO (ALUB7-ALUBO) = ALU B inputs. The inputs to the
"B" side of the ALU are derived from the source
multiplexer (SMUX7-SMUX0). The outputs of the
source multiplexer are selected by the source ROM.
The available outputs are IR 7-IR 0, IMUX 7 - IMUX
0, MEM7-MEM0O and BR7-BRO. Each of these outputs
are also available directly, i.e., the IR from
DXDRO, the IMUX and BR from DXDR 6 and the MEM
from DXDR5. To determine which of these outputs
are being read requires decoding of source ROM
bits 5 and 6 from DXDR3 (SROM5 and SROM6). The
decode of these bits is as follows:

SROUMbG SROM5 SOURCE

0 0 IK
0 1 IMUX
1 0 MEM
1 1 BR
07-00 RO (ALUA7-ALUAO) = ALU A inputs. The inputs to the

"A" side of the ALU are from one of the eight
accumulator registers. To determine which AC is
being read requires decoding 1IR6-IR4 in a
straightforward octal code.

4.4.1.13 MBRA 33: Diagnostic Register 3 (DXDR3) - The high
order 8 bits of this register show the output of the source ROM
(SROM7-SROM0) and the low order 8 bits show the outputs of the
destination ROM (DROM7-DROMO). Each of these ROMs contains 32
8-bit bytes. To determine which ROM 1location 1is being read
requires decoding certain IR bits (see below). The outputs from
these ROMs have also been assigned names to indicate their
function. See drawing D-FD-M8602-0-7 for the actual ROM bit
patterns.

Bit (s) Type Description

15-08 RO (SROM7-SROM0) = Source ROM outputs. The location
of the SROM being read is determined from the
following IR bits (from MSB to LSB): 1IR15, IR1l4,
IR13, IR09 and 1IR0S8. The 8 outputs have the
following names for a logical 1:

SROM7 -MA EXT BITS EN

SROM6 = SMUX S1

SROMS = SMUX S0

SROM4 = -MOV INST

SROM3 = MOV INST

SROM2 = SEC SEL EN

SROM1 = ALU PAR CHK EN

SROMO = IBUS

07-00 (DROM7-DROM0O) = destination ROM outputs. The

location of the DROM being read is determined from
the following IR bits (from MSB to LSB): IR09,

IR08, 1IR12, IR1ll and 1IR10. The 8 outputs are
defined as follows for a logical 1:

DROM7 = WRITE MEM
DROM6 = WRITE AC
DROMS = MAR INC EN
DROM4 = -MAR LD EN
DROM3 = WRITE OUT
DROM2 = PUSH/POP
DRUML = BR S1
DROM(O = BR S0
4.4.1.14 MBRA 3=: Diagnostic Register 4 (DXDR4) - The high

order 8 bits of this register show the output of the function ROM
(FROM7-FROMO) and the low order 8 bits show the level of the four
internal parity bits and the interrupt status of the microbus.

Bit(s) Type Description

15-08 RO (FROM7-FROMO) = function ROM outputs. Which of
the 32 1locations of the FROM being read 1is
determined from the following IR bits (from MSB to
LSB) : IR14, IR03, IR02, IR0O1 and 1IRO0O. The 8
outputs have the following names for a logical 1:

FROM7 = CLK C

FROM6 = EN C

FROM5 = FORCE C
FROM4 = -~ALU SO

FROM3 = -ALU S1

FROM2 = ~-ALU 52

FROM1 = -ALU S3

FROMO = ALU M

07 RO IR PAR (IRPAR) = instruction register parity.

This flip-flop indicates the IR parity as read
from the microstore or as received from the
Massbus depending on when it is read. This flop
is cleared by "DX RESET".

06 RO BALU PAR GEN (BALUPA) = BALU parity generator
output. This level feeds the BALU PAR flip-flop
and indicates the parity level being generated by
the outputs of ALU. This level is complemented by
having MPWEVP set in the Massbus interface.

05 RO AC PAR (ALUAPA) = accumulator parity. This level
is the parity bit as stored for one of the eight
accumulators. If IR6-IR4 are the same as when

DXDR2 was read, this bit will reflect the correct
parity for ALUA7-ALUAO0 (AC7-ACO). It is called
ALUAPA because the output of the parity checker
this bit feeds goes to the ALU A parity error flag
(ALUAPE) .

04 RO SMUX PAR (ALUBPA) - source mux parity. This level
is the parity bit for the source multiplexer. 1If
the IR has not chanaged since reading DXDR2, this
bit will reflect the <correct parity for
ALUB7-ALUBO (SMUX7-SMUX0) (except for when the IR
is selected by the SROM, in which case this bit
will be read as a logical 1). It is called ALUBPA
because the output of the parity checker this bit
feeds goes to the ALU B parity error flag
(ALUBPE) .

03-00 ROM INT3~-INTO (INT:-INTO) = 1interrupt 3-interruptO.
This register contains the status of the microbus
interrupt lines (UBUS INT 3 - UBUS INT 0). This
register is clocked at microprocessor time state
T60 and is cleared by DX RESET.

4.4.1.15 MBRA 35: Diagnostic Register 5 (DXDR5) - The high
order 8 bits of this register show the outputs of the BALU
register and the low order 8 bits show the output of the working
memory location pointed to by the memory address register (see
section 4.4.1.17).

Bit(s) Type Description

15-08 RO BALU7-BALUQO (BALU7-BALUO) = buffered ALU 7-0.
This register contains the output of the ALU as of
the last microprocessor T180 time state. The

register is cleared by DX RESET.

07-00 RO MEM7-MEMO (MEM7-MEMO) = memory 7 - memory 0O. This
register reflects the output of one of the 1024
working memory locations pointed to by the memory
address register. The data stored in working
memory comes from the BALU.

4.4,1.16 MBRA 36: Diagnostic Register 6 (DXDR6) - The high
order 8 bits of this register show the outputs of the input
multiplexer (IMUX7-IMUX0) and the 1low order 8 bits show the
outputs of the buffer register (BR7-BRO).

Bit(s) Type Description

15-08 RO IMUX7-IMUX0 (IMUX7-IMUX0) = input multiplexer 7-0.
The outputs of the input multiplexer are fed to
the source multiplexer (SMUX). The outputs
available from the input mux are the UBUS data
register, the I/O bank register and the status
register (the status register inputs are also
available as follows: the Z and C bits from DXDR7
(see section 4.4.1.17) and INT3-INTO from DXDR4).
The UBUS data register contains the data strobed
from the microbus data lines on the last DATI
instruction. The I/0 bank register is used for
selecting different microbus interfaces for
input/output operations. The data seen from the
input mux is selected by the following IR bits:
IR15 and IR 3 - IR 0. The decoding of these bits
and the signals available are shown below. All of
these signals are cleared by DX RESET.

7-0 RO BR 7 - BR 0 (BR7-BR0U) = Buffer Register 7-0. The
~ outputs of the buffer register are fed into the
source multiplexer (SMUX). The buffer register is
lraded from the BALU at microprocessor time state
T30. The BR can be used for a "rotate right"
operation under the control of DROM bits 0 & 1.
The BR is cleared by "DX RESET."

IR BITS IMUX

15 3 210 SEL S2 SEL 51 SOURCE

X XX X X 0 0 not possible

All other decodes 0 1 UBUS data

1 1111 1 0 I/0 bank (37)

1 1110 1 1 Status (36)
UBUS I/0 BANK STATUS

IMUX7 DATA 7 INITIALIZE 0

IMUXo DATA 6 SP RESET 0

IMUX5 DATA 5 OUTPUT SEL 2 Z

IMUX4 DATA 4 OUTPUT SEL 1 C

IMUX3 DATA 3 OUPTUT SEL O INT 3

IMUX2 DATA 2 OUTPUT SEL 2 INT 2

IMUX1 DATA 1 INPUT SEL 1 INT 1

IMUXO DATA O INPUT SEL 0 INT O

4.4.1.17

order

MBRA 37: Diagnostic Register 7 (DXDR7) - The high
6 bits of this register contain various microprocessor

status bits and the low order 10 bits show the memory address
register outputs.

15

14

13

11

10

09-00

RO

RO

RO

RO

RO

RO

RO

C (ALUC) = Carry bit from the ALU. This flip-flop
sets to indicate a carry occurred from the most
significant bit of the ALU as a result of the last
MOVE instruction with an arithmetic ALU function.
Cleared by DX RESET.

Z (ALUZ) = ALU Z bit. This flip-flop sets when
the resultant output of the ALU from a MOVE
instruction is equal to all ones. A typical use
of the Z bit is in the comparison of the A and B
inputs of the ALU. By placing the ALU in the ones
complement subtract mode, a magnitude comparison
of the A and B inputs is made. Cleared by DX
RESET.

IR PAR ER (IRPARE) = instruction register parity
error. This flip-flop sets when the input to the
IR has even parity. Cleared by DX RESET.

ST °/U FLW (STKOU) = Stack Over/Under flow. This
flip-flop sets when the hardware detects a stack
overflow (too many PUSHs) or a stack underflow
(too many POPs). Cleared by DX RESET or SP RESET.
The SP RESET is a flip flop in the I/0 bank
register that the microprocessor sets.

ALU A PAR ER (ALUAPE) = ALU A parity error. This
flip-flop sets when the inputs to the A side of
the ALU have even parity. Cleared by DX RESET.

ALU B PAR ER (ALUBPE) = ALU B parity error. This
flip flop sets when the inputs to the B side of
the ALU have even parity. During a microprocessor
DATI cycle, checking the ALU B parity will be
inhibited unless the I/0 interface being accessed
asserts UBUS IPAR ENA. Currently, none of the
interfaces designed can drive this line. Cleared
by DX RESET.

MA 9 - MA 0 (MA9-MAU) = memory address 9-0. This
10 bit register contains the address for selecting
one of 1K (1024 decimal) working memory locations.
This register is loaded in two bytes from the
BALU. It is cleared by DX RESET.

4.,4.2 Microbus Massbus Interface

This section describes the registers available in the Massbus
interface as seen from the Microbus (UBUS). Many of the bits and
complete registers are identical to those as seen from the
Massbus. Where this occurs reference is made to the appropriate
section in 4.4.1 Host Massbus Interface Programmable Registers.
To address the Massbus interface connected to the master host
system the microprocessor must first assert UBUS I/0 SEL 1 and to
address the Massbus interface connected to the slave host system
(Massbus-to-Massbus configuration) the microprocessor must first
assert UBUS I/0O SEL 3. The term microbus register address is
abbreviated UBRA.

4.4.2.1 UBRA 00: Status and Control Register 0 (MPSCR0O) - This
register provides microprocessor access to the function code, GO
bit, Massbus RUN line and a write clock flag.

Bit(s) Type Description

7 RO WCLK (WCLK) = write clock. The WCLK flip flop is
set on receiving WCLK from the Massbus controller
and occupied (OCC) is set. This flag indicates to
the microprocessor that valid data has been
strobed into the data huffer when synchronous data
transfers are done via the microbus. The WCLK
flag 1is cleared by the microprocessor setting
START or by UBUS INITIALIZE. Write is don't care.

6~2 RO CTR F4-CTR F0 (F4~F0) = control function 4 -
control function 0. See section 4.4.1.1.

1 RO CTR GO (GO) = control go. See section 4.4.1.1.

0 ; RO RUN (RUN) = Massbus RUN line. This level reflects
the state of the Massbus RUN signal. It 1is

asserted by the Massbus controller to indicate the
start-up and continuation of synchronous data
transfers. Write is don't care.

4.4.2.2 UBRA 01: Status and Control Register 1 (MPSCRl) - This
register provides microprocessor access to various status and
control signals in the Massbus interface.

Bit Type Description

7 R/W ATA (ATA) = attention active. See section
4.4.1.2. :

6 R/W MP ERR (MPERR) = microprocessor error. See
section 4.4.1.3.

5 R/W ILF (ILF) = 1illegal function. See section

4.4.1.3.

R/W

R/W

OCC (OCC) = occupied. The OCC flip flop is set by
the microprocessor to tell the controller that the
device is ready to begin a synchronous data
transfer. It is cleared by the microprocessor
writing it to zero, by UBUS INITIALIZE or on the
trailing edge of EBL if the microprocessor has
stopped (MPSTP).

‘DATA TO DEV (DTD) = data to device. The DATA TO

DEV flip flop is set by the microprocessor to
indicate a device write operation (master-host
system to slave-host system) or is cleared to
indicate a device read (slave-host system to

‘master-host system). This signal is only used

internal to the subsystem to properly initialize
the data transfer direction. It is cleared by
UBUS INITIALIZE. Note: In Massbus-to-Massbus
configurations, the Massbus interface connected to
slave-host system will complement the use of this
bit. The master and slave DTD flops will be
physically independent, but logically the
complement of each other.

COMP ERR (CERR) = composite error. See section
4.a4.1.2.
START DATA XFER (START) = start data transfer.

The START DATA XFER flip flop is set by the
microprocessor to start synchronous data
transfers. If DTD is set, setting START will
generate an SCLK to request a word from the
controller. If DTD is cleared, setting START will
generate MSTR REQ to request a word from the data
path via the master bus assuming this is a high
speed data transfer. START is cleared once the
SCLK synchronizer circuit is "synched" or by UBUS
INITIALIZE. For high speed transfers, subsequent
SCLKs are automatically generated and START is not
used. For non-high speed transfers, the
microprocessor must set the START flop each time
it is ready to request transfer of data.

REC EXC (EXC) = receive exception. This level
will be asserted whenever the controller drives
the exception line on the Massbus or if any device
on the Massbus is driving the exception line since
the Massbus bidirectional lines form a wired-OR.
The DX20 will assert this line when the TRA EXC
(transmit exception) flip-flop is set. TRA EXC is
set whenever a CLASS A or a CLASS B error occurs
and the microprocessor has previously set occupied
(occ) . TRA EXC 1is normally cleared on the
trailing edge of EBL or by UBUS INITIALIZE.

4«41

1 ' W (CLRGO) = clear go. See section 4.4.1.1.

0 R DONE (DONE) = done. this flip flop is set by the
hardware on the trailing edge of EBL if the
controller has dropped RUN. It indicatets that
the data transfer is completed and that the device
should disconnect from the Massbus. If DONE does
not set after the EBL, then the device should
continue transferring data. DONE 1is cleared by
the microprocessor setting START or by UBUS
INITIALIZE.

0 ' W EBL (EBL) = end of block. The microprocessor
writes this bit with a logical 1 to trigger a 1500
ns (min) one-shot to drive the Massbus EBL line to
tell the controller it has transferred as many
words as requested by the last read/write command.
It will also be triggered if the microprocessor
stops (MPSTP) during a synchronous data transfer
following the setting of TRA EXC.

4.4,2.3 UBRA (2: Error Code Register (MPECR) - This register
forms the 8 most significant bits of the Massbus error register
(DXERR) .

Bit(s) Type Description

70 R/W EC7-EC0O (EC7-EC0) = error code 7 - error code 0.
See section 4.4.1.3.

4.4.2.4 UBRA 03: Drive Type Register-Low (MPDTRL) - This
register is the 8 least significant bits of the Massbus drive type
register (DXDTR).

7-0 RO DT07-DT00 (DT07-DT00) = drive type 07 - drive type
. 00. See section 4.4.1.7.

4.4.2.5 UBRA 04: Drive Type Register-High (MPDTRH) - This
register is the 8 most significant bits of the Massbus drive type
register (DXDTR).

Bit(s) Type Description

7-0 RO DT15-DT08 (DT15-DT08) = drive type 15-=drive type
08. See section 4.4.1.7.

4.4.2.6 UBRA O05-UBRA 07: Data Buffer Register 0-2
(MPDBRO-MPDBR2) - These three registers provide access from the 8
bit microbus to the 18 bit Massbus data bus for purposes of
handling non-high speed data transfers and for diagnostic
checkout. Additionally, an even parity flip flop is provided,
along with the parity error flag and the parity bit itself.

-

4-42

Bit(s)

Type
7-0 R/W
7-0 R/W
7-5 NU
4 R/W
3 RO
2 R/W
1-0 R/W
40402‘.7
(MPGP00~-MPGP17)

Description
UBRA 05: Data Buffer Register 0 (MPDBRO)

DB07-DB00 (DB07-DB00) = data buffer 07-data buffer
00. Provides access to bits 07-00 of the 18 bit
data buffer. This register is not initialized.

UBRA 06: Data Buffer Register 1 (MPDBR1)

DB15-DB(08 (DB15-DB08) = data buffer 08. Provides
access to bits 15-08 of the 18 bit data buffer.
This register is also not initialized.

UBRA 07: Data Buffer Register 2 (MPDBR2)
Not Used. Read as logical 0, write is don't care.

EVEN PAR (DBEVEN) = data buffer even parity. This
flip flop is set by the microprocessor in order to
force the Massbus interface to complement the
Massbus data parity bit (DPA) or the master bus
parity bit (DSPAR) when writing the data into the
data buffer. If this flip-flop is set and the
milroprocessor tries to write the parity bit in
the data buffer it will also be complemented
(provided a logical 1 is maintained in this bit
position). This flip-flop is provided for
diagnostic verification of parity checking
circuits since the controller does not have the
capability of generating even parity on the data
bus. It is cleared by the microprocessor writing
it to a logical 0 or by UBUS INITIALIZE.

DB PAR ERR (DBPARE) = data buffer parity error.
See section 4.4.1.3.

DB PAR (DBPAR) = data buffer parity. This is the
parity bit as stored in the data buffer. This bit
is not initialized.

DB17-DB16 (DB17-DB16) = data buffer 17 - data
buffer 16. Provides access to bits 17-16 of the
18 bit data buffer. These two bits are not
initialized.

UBRA 20 - UBRA 27: General Purpose’Register 00-17

- These regisers are actually a 16 byte x 8 bit

RAM and are identical (except for organization) to Massbus general
purpose register 0-7 (DXGPO-DXGP7). Sece section 4.4.1.9 for the
bit mapping between the Massbus and the microbus.

4.4.2.8 UBRA 30 - UBRA 37: Not used - These registers do not
exist in the Massbus' interface and if accessed by the
microprocessor will be read as logical 0s and writes will have no
affect (don't care).

4.4.3 Channel Bus Interface

4.4.3.1 Introduction - Control, status, sense, and diagnostic
information and data are communicated between the microcontroller
and the channel bus interface over the microbus. The interface is
organized as 15 8-bit registers. The register names and bit
mnemonics are summarized in channel interface diagram UBUS
Registers (I/0 SEL 3). A more complete description of the bits
and their functions appears below. This figure shows several
features associated with the interface, namely the diagnostic
multiplexer, diagnostic tag loop, tag redefinitions for control
unit operation, and the Register 5 Multiplexer, which are also
described below.

The following abbreviations are wused in the following
descriptions: :

UBRA = microbus register address
R = read |
W = write

RO = read only

WO = write only

NU = not used |

TI = tag in line

TIR = tag in register

O = tag out 1line

TOR = tag out register

4.4.3.2 UBRA 00: Control and Status Register 0 (CSRO) - Register
0 allows microcontroller access to 8 hardware controlled
flip-flops which can be cleared by the microcontroller. Writing
UBRA 00 with UBUS DATA O asserted clears UBRA 00 Bit 0 and writing
UBRA 00 with UBUS DATA 1 asserted clears UBRA 00 Bits 5 - 1; UBUS
DATA 7 - 2 are ignored during microcontroller data output (DATO)
cyclese to UBRA 00.

Bit Type Description

7 R END XFER (XFER) = end transfer. The END XFER
flip-flop sets after the last byte has been sent
to the device during high speed transfers (DX HIGH
SPEED = 1) in which the DX20 is acting as a
channel controller (CHAN MODE = 1). The flip-flop
terminates high speed transfers by inhibiting the
assertion of DAT OUT or SRV OUT by the CB CTRL

4=45

logic in response to DAT IN or SRV IN, disabling
the BUS 0 OUT and BUS 1 OUT drivers, and asserting
CMD OUT in response to the next DAT IN or SRV IN
to indicate channel termination per channel bus
protocol requirements. The END XFER flip-flop is
direct cleared when DX HIGH SPEED is low.

TIME OUT FLAG (TIMOUT) = time out flag. Writing
UBRA 02 sets TIMER OUT, the output of a 30
millisecond retriggerable monostable
multivibrator. TIMER EN (UBRA 02 bit 2) is ANDed
with - TIMER OUT to form TIME OUT FLAG which is
only asserted if TIMER EN 1is asserted and the
monostable multivibrator has timed out (TIMER OUT
= 0), UBUS INT 3 is asserted when TIME OUT FLAG is
high. TIME OUT FLAG is cleared by asserting UBUS
INITIALIZE (which clears the TIMER EN flip-flop).

DP PE FLAG (DPPE) = data path parity error flag.
The DP PE FLAG flip-flop is set if a parity error
(even parity) is detected in data transferred over
the sliave bus during device rcad or write
operations. UBUS INT 3 is asserted when DP PE
FLAG is high. The flir-flop is cleared by writing
UBk:,. 00 with UBUS DATA 1 asserted or by asserting
UBUS INITIALIZE.

UB PE FLAG (UBPE) = microbus parity error flag.
If a parity error (even parity) is detected in
data stored in the microbus receiver (UB RCVR)
register during a microcontroller data output
(DATO) cycle, the UB PE FLAG flip-flop is set.
UBUS INT 3 1is asserted when the UB PE FLAG
flip-flop is set. The flip-flop is cleared by
writing UBRA 00 with UBUS DATA 1 asserted or by
asserting UBUS INITIALIZE.

MK PE FLAG (MKPF) = mark parity error flag. The
MK PE FLAG flip-flop is set if a parity error
(even parity) is detected on the MK IN lines (MK 1
IN, MK 0 IN, MK P IN) when data in bus in register
0 (UBRA 07) or bus in register 1 (UBRA 13) is read
by the microcontroller or 1loaded into data
register 0 (UBRA 06) or data register 1 (UBRA 12),
respectively. The MK PE FLAG flip-flop will not
set unless the M38608 Channel Extension Board 1is
present. UBUS INT 3 is asserted when the MK PE
FLAG flip-flop is set. The flip-flop is cleared
by writing UBRA 00 with UBUS DATA 1 asserted or by
asserting UBBUS INITIALIZE.

BUS 1 PE FLAG (BUS1PE) = bus 1 parity error flag.

The BUS 1 PE FLAG flip-flop is set if a parity
error (even parity) is detected in the data in bus

4-46

in register 1 (UBRA 13) when it is read by the
microcontroller or clocked into data register 1
(UBRA 12). The BUS 1 PE FLAG flip-flop will not
set unless the M8608 Channel Extension Board is
present. UBUS INT 3 is asserted when the BUS 1 PE
FLAG flip-flop is set. The flip-flop is cleared
by writing UBRA 00 with UBUS DATA 1 asserted or by
asserting UBUS INITIALIZE.

1 R BUS 0 PE FLAG (BUSOPE) = bus 0 parity error flag.
' The BUS 0 PE FLAG flip-flop is set if a parity
error (even parity) is detected in the data in bus
in register 0 (UBRA 07) when it is read by the
microcontroller or clocked into data register 0
(UBRA 06). UBUS INT 3 is asserted when the BUS 0
PE FLAG flip-flop is set. The flip-flop is
cleared by writing UBRA 00 with UBUS DATA 1
asserted or by asserting UBUS INITIALIZE.

0 R SLVE SEL (SLVSEL) = slave selected. The SLVE SEL
flip-flop is required for control unit operation
t> signal the microcontroller that the select
propagation logic has blocked SEL IN or SEL OUT
for one of two reasons: the channel controller has
inicviated an initial selection sequence to a
control unit address to which the DX20 is set up
to respond; or the DX20 has requested service by
raising REQ IN which causes the channel controller
to assert SEL OUT when it is ready to service the
request. The SLVE SEL flip-flop is cleared by the
next selection sequence for which neither of the
above conditions is true, by writing UBRA 00 with
UBUS DATA 0 asserted, or by asserting UBUS
INITIALIZE. When SLVE SEL 1is <cleared during
control unit operation (CHAN MODE = 0), all BUS 0
IN, all BUS 1 IN, and all TAG IN drivers except
SEL IRA and REQ IN are disabled. '

4.4.3.3 UBRA 0l1l: Control and Status Register 1 (CSR1l) - Register
1 contains 5 read/write control bits (7, 4, 3, 1, 0) and 3
read/write diagnostic bits (6, 5, 2). The register is direct
cleared by asserting UBUS INITIALIZE or dropping UBUS RUNNING.

Bit Type Description

7 : R/W SP EN (SPEN) = scratch pad enable. When the SP FN
flip-flop is set, data in the scratch pad RAM (SP
RAM) location addressed by the scratch pad address
counter (SP ADR CNTR) will be loaded into the bus
out register (BOR) when it is clocked. If SP EN
is high, the SP ADR CNTR will auto-decrement when
the BOR 1is <clocked or an SP RAM 1location is
written from the microcontroller. :

4=47

R/W

R/W

R/W

R/W

R/W

DIAG HSPD (DIHISP = diagnostic high speed. The
DIAG HSPD flip-flop output is ORed with DX HIGH
SPEED from the M8605 Data Storage Board to
facilitate diagnostic testing of the channel bus
interface.

EVEN PAR (EVPAR) = even parity. Normally the EVEN
PAR flip-flop is cleared, allowing the BUS 0 OUT
and BUS 1 OUT parity generators to generate
correct (odd) parity. The EVEN PAR flip-flop is
set by diagnostic programs to cause the above
parity circuits to generate even parity.

EXTENDED BUS (EXTBUS) = extended bus. If the
EXTENDED BUS flip-flop is cleared, the channel bus
interface operates in the single bus mode, using
only BUS 0 IN and BUS 0 OUT to transfer data over
the channel bus. If the EXTENDED BUS flip-flop is
set to enable the extended bus feature, the
interface operates in the dual bus mode, using BUS
0 IN, BUS 1 IN, BUS 0 0OUT, and BUS 1 OUT to
transfe:r data. EXTENDED BUS should not be set if
the M8608 Channel Extension Board is not present.

360 MODE (MOD360) = 360 mode. If the 360 MODE
flip-flop is <cleared, data transfers over the
channel bus are accomplished with the dual
handshake protocol, using SRV IN, SRV OUT, DAT IN,
and DAT OUT. If the 360 MODE flip-flop is set,
data transfers are accomplished with the single
handshake protocol, using only SRV IN and SRV OUT.

LOOP EN (LOOPEN) = 1loop enable. The LOOP EN
flip-flop is used during diagnostic testing and is
cleared during normal operation. When the

flip-flop is cleared, tag in register 0 (UBRA 04),
tag in register 1 (UBRA 05), bus in register 0
(UBRA 07), and bus in register 1 (UBRA 13) are
used to read incoming lines from the channel bus
as shown on the channel interface diagram UBUS
Registers (I/0O SEL 3). When the flip-flop is set,
signals generated within the channel bus interface
are looped back into the above registers to allow
diagnostic tests to be isolated from the channel
bus and, thus, not require activity on the bus to
perform tests involving signals in the above
registers or, in the case of control wunit
operation, not interfere with concurrent activity
on the bus. Setting LOOP EN enables the
diagnostic tag loop feature which loops bits in
tag out register 0 (UBRA 02) into tag in register
0 (UBRA (04) and bits in tag out register 1 (UBRA
03) into tag in register 1 (UBRA 05) as shown in
the figure. Additionally, bus out register 0

4-48

(UBRA 11) is looped back into bus in register 0
(UBRA 07) and bus out register 1 (UBRA 15) 1is
looped back into bus in register 1 (UBRA 13).

1 R/W ON LINE (ONLINE) = on line. ON LINE is ANDed with
CROBAR, a signal which is high when the DX20 is
powered up, to form DX ON LINE which is read back
into UBRA 01 bit 1. When DX ON LINE is high, the
DX20 is allowed to be active on the channel bus,
when DX ON LINE is 1low, all the channel bus
drivers (except SEL TRA) are disabled and the G891
Power Fail and Select Bypass Module bypasses the
incoming select signal to SEL TRA, effectively
disconnecting the DX20 from the bus. There can be
up to 5 milliseconds delay in the response of the

G891 to changes in the logic level of DX ON LINE.

0 R/W CHAN MODE (CHANL) = channel mode. When the CHAN
MODE flip-flop 1is <cleared, the <channel bus
interface is configured for operation as a control
unit. When the flip-flop is set, the interface is
configured for operation as a channel controller.

4.4.3.4 UBRA OA: Tag Out Register 0 (TORO) - Register 2
contains 8 read/wri_e bits used to control the tag lines. Writing
UBRA 02 triggers a retriggerable monostable multivibrator, setting
its output (TIMER OUT) for 30 milliseconds after each
microcontroller data output (DATO) cycle to UBRA 02. The register
is cleared by the assertion of UBUS INITIALIZE. The functions of
some of the bits are dependent on whether the DX20 is acting as a
channel controller or a control unit. Signal names with dual
functionality are named according to their functions as a channel
controller in the block diagrams and print sets for the channel
bus interface. The redefined bit names are shown in channel
interface diagram UBUS Registers (I/O SEL 3). The bits 1in
Register 2 are defined for both channel controller and control
unit operation below. More detailed information on the use of the
tag lines is given in Section 4.3.1.

CHANNEL CONTROLLER OPERATION (TORO)

Bit Type Description ;

7 R/W TOR SRV OUT (SRVOUT) = TOR service out.

6 R/W TOR CLK OUT (CLKOUT) = TOR clock out.

5 R/W TOR MTR OUT (MTROUT) = TOR meter out.

4 R/W TOR ADR OUT (ADROUT) = TOR address out.

3 R/W TOR HLD OUT (HLDOUT) = TOR hold out.

2 R/W TIMER EN (TMREN) = timer enable. When the TIMER

4-49

EN flip-flop 1is set, the output of a 30
millisecond retriggerable monostable multivibrator
(TIMER OUT) is allowed to assert TIME OUT FLAG
when it goes low (timed out). Note that the act
of writing UBRA 02 triggers the monostable.

1 R/W TOR SEL OUT (SELOUT) = TOR select out. TOR SEL
OUT asserts SEL TRA.

0 R/W TOR CMD OUT (CMDOUT) = TOR command out.

CONTROL UNIT OPERATION (TIRO)

Bit - Type Description

7 R/W TIR SRV IN (SRVIN) = TIR service in.

6 R/W TIR DIS IN (DISIN) = TIR disconnect in.

5 R/W TIR MTR IN (MTRIN) = TIR meter in.

4 R/W TIR ADR IN (ADRIN) = TIR address in.

3 TSN Not redefined or used for control unit operation.

The logic 1level of this bit is indeterminate
during control unit operation.

2 R/W TIMER EN (TMREN) = timer enable. Not redefined
for control unit operation. ,

1 R/W Not redefined or used for control unit operation.
TOR SEL OUT should remain cleared during control
unit operation. The CU CTRL logic handles the
propagation of the select signal without the need
for microcontroller action.

0 ’ R/W TIR STA IN (STAIN) = TIR status in.

4.4.3.5 UBRA 03: Tag Out Register 1 (TORl) - Register 3
contains 5 read/write bits (7-3) and 3 read only bits (2-0). Bits
7-4 are used to control tag 1lines or channel bus interface
responses to them and bits 3-0 are used for diagnostic testing of
the interface. Bit 2 is used to read back the output of the
diagnostic multiplexer, and a 16 wide multiplexer addressed by the
scratch pad address counter, which allows diagnostic programs to
sense the logic levels on internal control signals in the channel
bus interface. Bits 7-3 are cleared by the assertion of UBUS
INITIALIZE. The functitons of some of the bits are dependent on
whether the DX20 is acting as a channel controller or a control
unit. By default, signal names with dual funcionality are named
according to their functions as a channel controller in the block
diagrams and print sets for the channel bus interface. The
redefined bit names are shown in channel interface diagram UBUS
Registers (1/0 SEL 3). The bits in register 3 are defined for

4 bl U

both channel controller and control unit operation below. More
detailed information on the use of the tag lines is given in

section 4.3.1

CHANNEL CONTROLLER OPERATION (TOR1)

Bit Type
7 R/W
6 R/W
5 R/W
4 R/W
3 RV
2 RO

Description
TOR OPL OUT (OPLOUT) = TOR operational out.

CU RESET EN (CURSEN) = control unit reset enable.
When the CU RESET EN flip-flop is cleared, the SYS
RST, SEL RST, and HALT IO flip-flops are direct
cleared, preventing the assertion of CU RESET. If
CU RESET EN is high, CHAN MODE is high, and UBUS
INITIALIZE is low, the above flip-flops can be set
by the microcontroller or the appropriate
combinations of tag lines.

TOR SUP OUT (SUPOUT)

TOR suppress out.

TOR DAT OUT (DATOUT) TOR data out.

DTAG SLVE ACK (DISACK) = diagnostic slave
acknowledge. The DIAG SLVE ACK flip-flop output
is ORed with SLVE ACK from the M8605 Data Storage
Board to facilitate diagnostic testing of the
channel bus interface. In addition to being
cleared by the assertion of UBUS INITIALIZE, the
flip-flop is cleared approximately 30 nanoseconds
after DIAG SLVE ACK or SLVE ACK from the M8605 is
set in response to the assertion of SLVE REQ or by

a microcontroller data output (DATO) cycle to UBRA
04.

DIAG MUX OUT (DIMUX) = diagnostic multiplexer
output. DIAG MUX OUT 1is the output of the
diagnostic multiplexer which allows diagnostic
programs to sense the logic levels of 16 internal
control signals in the channel bus interface via a
single bit in the microbus interface. A signal is
selected by the contents of the scratch pad
address counter as specified below.

ADR SIGNAL

[}

00 BOR PO (BORPO) bus out register 0 parity.

01 BOR Pl (BORP1)

H

bus out register 1 parity.

02 BUS 0 ODD PAR (BUSOOP) = bus in register U
odd parity.

03 SLVE END XFER (SEXFER) = slave end transfer.

4-51

04 TRA SEL FF (TRASEL) = transmit select
flip-flop.

05 ALLOW MK 1 OUT (ALLMK1l) = allow mark 1 out.
06 ODD END (ODDEND) = odd end.

07 2ND BYTE (2NDBYT) = second byte.

10 DR READY (DRRDY) = device register ready.
11 SLVE REQ (SLVREQ) = slave request.

12 -DATA REQ DLY (NDRDLY) = not data request
delayed.

13 CU INIT (CUINIT) = control unit initialize.

14 ' EN SRV/DAT OUT (ENSRDA) = enable service
Out/Data Out.

15 ST DATA REQ (STDARQ) = start data request.

1« -DIS SLVE REQ (NDISSR) = not disable slave
request.
17 DP PE (SLDPPE) = data path (slave) parity
error. :
1 RO TO DAT OUT (TODOUT) = TO data out. TO DAT OUT is

asserted by the CB CTRL logic during high speed
transfers to raise the DAT OUT Tag 1line 1in
response to DAT IN.

0 RO TO SRV OUT (TOSOUT) = TO service out. TO SRV OUT
is asserted by the CB CTRL logic during high speed
transfers to raise the SRV OUT tag line 1in
response to SRV IN.

CONTROL UNIT OPERATION (TIR1)

Bit Type Description

7 R/W TIR OPL IN (OPLIN) = TIR operational in.

6 R/W CU RESET EN (CURSEN) = control unit reset enable.
Not redefined for control unit operation.

5 R/W TIR REQ IN (REQIN) = TIR request in.

4 R/W TIR DAT IN (DATIN) = TIR data in.

3 R/W DIAG SLVE ACK (DISACK) = diagnostic slave
acknowledge. Not redefined for control unit
operation.

2 RO DIAG MUX OUT (DIMUX) = idagnostic multiplexer
output. Not redefined for control unit operation.

1 RO TI DAT IN (TIDIN) = TI data in. TI DAT IN is
asserted by the CB CTRL logic during high speed
transfers to raise the DAT IN tag line to initiate
a data transfer.

0 RO TI SRV IN (TISIN) = TI service in. TI SRV IN is
asserted by the CB CTRL logic during high speed
transfers to raise the SRV IN tag line to initiate
a data transfer.

4.4.3.6 UBRA 04: Tag In Register 0 (TAGINO) - Register 4
contains 8 read-only bits through which the tag in lines may be
read by the microcontroller during channel controller operation or
through which the tag out lines may be read during control unit
operation. Writing UBKRA 04 clears the SLVE RFQ and DIAG SLVE ACK
flip-flops (UBUS DATA 7-0 is ignored). By default, signal names
with dual functionality are named accsrding to their functions as
a channel controlle:. in the block diagrams and print sets for the
channel bus interface. The redefined bit names are shown in the
channel interface diagram UBUS Registers (I/0 SEL 3). The bits in
Register 4 are defined for both channel controller and control
unit operation below. More detailed information on the use of the
tag lines is given in section 4.3.1. To facilitate diagnostic
testing of the channel bus interface, a diagnostic tag loop is
enabled when LOOP EN (UBRA (0l Bit 2) is set. This allows bits in
tag out register 0 to be looped into corresponding bits in tag in
register 0 so that logic driven by the tag in lines can be tested
without disturbing the tag out 1lines of the channel bus. The
figure referenced above shows the structure of the ‘tag loop for
channel controller operation.

CHANNEL CONTROLLER OPERATION (TAGINO)
Bit Type Description

7 RO TI OPL IN (OPLIN) = TI operational in. When LOOP
EN. is high, TOR SRV OUT is looped into TI OPL IN.

6 RO TI MK 0 IN (MKOIN) = T1 mark 1 in. When LOOP EN
is high, TOR CLK OUT is looped into TI MK 0 IN.

5 RO TI MK 1 IN (MK1IN) = TI mark 1 in. When LOOP EN
is high, TOR MTR OUT is looped into TI MK 1 IN.
If the M8608 Channel Extension Board is not
present, TI MK 1 IN is always low.

4 RO TI ADR IN (ADRIN) - TI address in. When LOOP EN

4-53

RO

RO

RO

RO

is high, TOR ADR OUT is looped into TI ADR IN.

TO HLD OUT (TOHOUT) = TO hold out. Not used for
channel controller operation. When LOOP EN is
low, TO HLD OUT 1is always 1low for <channel
controller operation. When LOOP EN is high, TOR
HLD OUT is looped into TOC HLD OUT.

TI MTR IN (MTRIN) = TI meter in. When LOOP EN is
high, TI MTR IN is always low.

TI SEL IN (SELIN) = TI select in. When LOOP EN is
low, the logic level of SEL REC is read via TI SEL
IN. When LOOP EN is high, TOR SEL OUT is looped
into TI SEL IN.

TI STA IN (STAIN) = TI status in. When LOOP EN is
high, TOR CMD OUT is looped into TI STA IN.

CONTROL UNIT OPERATION (TGOUTO)

Bit Type Description

7 RO TO OPL OUT (OPLOUT) = TO operational out. When
LOOP EN is high, TIR SRV IN is looped into TO OPL
ourT.

6 RO TO MK 0 OUT (MKOOUT) = TO mark 0 out. When LOOP

EN is high, TIR DIS IN is looped into TO MK 0 OUT.

5 RO - TO MK 1 OUT (MK1OUT) = TO mark 1 out. When LOOP
EN is high, TIR MTR IN is looped into TO MK 1 OUT.
If the M8608 Channel Extension Board is not
present, TO MK 1 OUT is always low.

4 | RO TO ADR OUT (ADROUT) = TO address out. When LOOP
EN is high, TIR ADR IN is looped into TO ADR OUT.

3 ‘ RO TO HLD OUT (TOHOUT) = TO hold out. Not redefined
: for control unit operation. When LOOP EN is high,
TOR HLD OUT (not redefined for control unit

operation) is looped into TO HLD OUT.

Z RO TO «TR OUT (MTROUT) = TO meter out. When LOOP EN
is high, TO MTR OUT is always low.

1 RO TO SEL OUT (SELOUT) = TO select out. When LOOP EN
is low, the logic level of SEL REC is read via TO
SEL OuT. When LOOP EN is high, TOR SEL OUT (not
redefined for control unit operation) is looped
into TO SEL OUT.

0 RO TO CMD OUT (CMDOUT) = TO command out. When LOOP
EN is high, TIR STA IN is looped into TO CMD OUT.

4.4,.3.7 UBRA 05: Tag In Register 1/Scratch Pad Address (TAGIN&)
Register 5 contains 4 read-only bits (7-4) through which the tag
in lines may be read by the microcontroller during channel
controller operation or through which the tag out lines may be
read during control unit operation. By default, signal names with
dual functionality are named according to their functions as a
channel controller in the block diagrams and print sets for the
channel bus interface. The register 5 multiplexer allows dual use
of bits 3 - 0 of the register (REG 5 B3 - REG 5 B0O) as shown in
the channel interface diagram UBUS Registers (I/0 SEL 3).
Microcontroller may read and write the scratch pad address
counter, which is useful only during channel controller operation,
via UBRA 05 Bits 3-0 when CHAN MODE = 1, or it may read the CU
RESET flip-flops (SYS RST, SEL RST, and HALT 10) and the CU RUN
flip-flop, which are used only during control unit operation, via
UBRA 05 Bits 3 - 0 when CHAN MODE = 0. The redefined bit names
are shown 1in the previously referenced figure. The bits in
register 5 are defined for both channel controller and control

4«55

unit operation below. To facilitate diagnostic testing of the
channel bus interface, a diagnostic tag loop is enabled when LOOP
EN (UBRA 01 Bit 2) is set. This allows bits in tag out register 1
to be looped into corresponding bits in tag in register 1 so that
logic driven by the tag in lines can be tested without disturbing
the tag out lines of the channel bus. The figure also shows the
structure of the tag loop for channel controller operation. The
following bit descriptions assume that CHAN MODE = 1 for channel
controller operation and CHAN MODE = 0 for control unit operation.

CHANNEL CONTROLLER OPERATION (TAGIN1/SPADR)
Bit Type Description

7 RO TI SRV IN (SRVIN) = TI service in. When LOOP EN
’ is high, TOR OPL OUT is looped into TI SRV IN.

6 RO TI DIS IN (DISIN) = TI disconnect in. When LOQP
EN is high, CU RESET EN 1is looped into TI DIS IN.
If CHAN MODE is high, UBUS INT 3 will be asserted
when TI DIS IN is high.

5 RO TI REQ IN (REQIN) = TI request in. When LOOP EN
is high, TOR SUP OUT is looped into TI REQ IN.

4 , RO TI DAT IN (DATIN) = TI data in. When LOOP EN is
high, TOR DAT OUT is looped into TI DAT IN.

3-0 | R/W SP ADR 3 - SP ADR 0 (SPA3 - SPAU) = scratch pad
address bits 3 -~ 0. The scratch pad address

counter (SP ADR CNTR) can be read and written by
the microcontroller wvia UBRA 05 Bits 3-0. If SP
EN (UBRA 01 Bit 7) is set, the counter will be
auto-decremented when a scratch pad RAM location
is written by the microcontroller via UBRA 10 or
when scratch pad RAM data addressed by the counter
is clocked into the Bus Out Register (BOR). The
SP ADR CNTR counts modulo 16 and, thus, wraps
around from 00 to 17 octal as it counts down.

CONTROL UNIT OPERATION,(TGOUTI)
Bit Type Description

7 Ro TO SRV OUT (SRVOUT) = TO service out. When LOOP
f EN is high, TIR OPL IN is looped into TO SRV OUT.

6 RO TO CLK OUT (CLKOUT) = TO clock out. When LOOP EN
is high, CU RESET EN (not redefined for control
unit operation) is looped into TO CLK OUT.

5 RO TO SUP OUT (SUPOUT) = TO suppress out. When LOOP
EN is high, TIR REQ IN is looped into TO SUP OUT.

4-56

4 s RO TO DAT OUT (DATOUT) = TO data out, when LOOP EN is
high, TIR DAT IN is looped into TO DAT OUT.

3 RO CU RUN (CURUN) = control unit run. When CHAN MODE
= 0, the microcontroller is allowed to read CU RUN
through UBRA 05 Bit 3 for diagnostic testing of
the channel bus interface.

2 R SYS RST (SYSI'ST) = system reset. The SYS RST
flip-flop is set during control unit operation
(CHAN MODE = 0) if CU RESET EN = 1 and the channel
bus interface detects TO OPL OUT = U and TO SUP
OUT = 0 simultaneously. SYS RST may be written by
the microcontroller as UBRA 16 Bit 2. CU RESET
and UBUS INT 3 are asserted when SYS RST is set.

1 R SEL RST (SELRST) = selective reset. The SEL RST
flip-flop is set during control unit operation
(CHAN MODE = 0) if CU RESET EN = 1 and TIR OPL IN
= 1 and the channel bus interface detects TO OPL
OUT = 0 and TO SUP OUT = 1) simultaneously. SEL
RST may be written by the microcontroller as UBRA
16 Bit 1. CU RESET and UBUS INT 3 are asserted
when SEL RST is set. :

0 R HALT I0 (HALTIO) = halt T1/0. The HALT 1IO
flip-flop is set during control unit operation
(CHAN MODE = Q) if CU RESET EN = 1 and TIR OPL IN
= 1 and the channel bus interface detects TO ADR
OUT = 1 and TO HLD OUT = 0 simultaneously. HALT
IO may be written by the microcontroller as UBRA
16 Bit 0. CU RESET and UBUS INT 3 are asserted
when HALT IO is set.

4.4.3.8 UBRA 06: Data Register 0 (DRLO) - Register 6 provides
microcontroller access to the low byte of the DR (DR 07 - 00).
The DR is used during high speed transfers (DX HIGH SPEED = 1) to
buffer data between the slave device and the data path interface.

During device write operations (DATA TO DEV = 1), data on the
slave bus is loaded into DR 07 - 00, P0, the output of which is
gated onto BUS 0 OoUT 0 - 7, P. During device read operations

(DATA TO DEV = 0), data on the BUS 0 IN lines is loaded into DR

07-00, PO, the output of which is gated onto slave bus data lines
7-0, P. For diagnostic testing, writing UBRA (06 causes DR 07 =
00, PO to be loaded with data on the slave bus if DATA to DEV = 1
or with the contents of bus in register 0 if DATA TO DEV = 0.

Bit Type Description
-0 R DR 07 - DR 00 (DRO7-DR00) = data register bits (7
- 00.

4.4,3.9 UBRA 07: Bus In Register 0 (CBILO) - Register 7 is a
read only register which provides microcontroller access to the

4-57

BUS 0 IN 0 - 7 lines during channel controller operation or the
BUS 0 OUT 0 - 7 lines for control unit operation. If LOOP EN is
set, the contents of bus out register 0 (BOR 07 - 00, PO0) is
complemented and 1looped into CBI 07 - 00, PO to facilitate
diagnostic testing of the channel bus interface. When UBRA 07 is
read, the BUS 0 PE FLAG (UBRA 00 Bit 1) is clocked to check for
correct (odd) parity of the data in bus in register 0, and the MK
PE FLAG (UBRA 00 Bit 3) is clocked to check for correct (odd)
parity of the MK IN lines.

Bit Type Description

7-0 RO CBI 07 - CBI 00 (CBIO7 - CBIOO0) = channel bus in
bits 07 - 00.

4.4.3.10 UBRA 10: Scratch Pad Data Register 0 (SPDALO) -
Register 10 is a write only register through which data is loaded
into the 1low byte of the scratch pad RAM (SP RAM) location
addressed by the scratch pad address counter (SP ADR CNTR). 1If SP
EN is set, writing UBRA 10 also auto-decrements the SP ADR CNTR.

Bit Type Description

7-0 WO SP DATA 07 - 00 (SPD07 - SPD00) = scratch pad data
bits 07 - 00.

4.4.3.11 UBRA 11: Bus Out Register 0 (BORLO) - Register 11 is a
write only register which allows the microcontroller to load data
into the low byte of the BOR (BOR 07-00). 1If SP EN = 0, writing
UBRA 11 loads microbus data stored in the microbus receiver (UB
RCVR) register directly into the low byte of the BOR. If SP EN =
1, writing UBRA 11 loads the lower byte of a scratch pad RAM (SP
RAM) location addressed by the scratch pad address counter (SP ADR
CNTR) into bus out regsiter 0 and then auto-decrements the SP ADR
CNTR. The BOR is also loaded and the SP ADR CNTR is decremented
by the CB CTRL logic during high speed transfers in which SP EN is
set to transmit control information stored in the SP RAM by the
microcontroller to the device over the BUS U OUT lines.

Bit Type Description

7-0 WO BOR 07 - BOR 00 (BOR0O7 - BOR(0O0) = bus out register
Bits 07 - 00.

4.4.3.12 UBRA 12: Data Register 1 (DRHI) ~ Register 12 provides
microcontroller access to the high byte of the DR (DR 15-08). The
DR is used during high speed transfers (DX HIGH SPEED = 1) to
buffer data between the slave device and the data path interface
when the extended bus feature is enabled (EXTENDED BUS = 1).
During device write operations (DATA TO DEV = 1), data on the
slave bus is loaded into DR 15 - 038, PI, the output of which is
gated onto BUS 1 our 0 - 7, P, During device read operations
(DATA TO DEV = (), data on the BUS 1 IN lines is loaded into DR 15
- 08, Pl, the output of which is gated onto slave bus data lines 7

4~58

- 0, P. For diagnostic testing, writing UBRA 12 causes DR 15 -
08, Pl to be loaded with data on the slave bus if DATA to DEV = 1
or with the contents of bus in regsiter 1 if DATA TO DEV = 0.
Data register 1 is implemented on the M8608 Channel Extension
Board; if the M8608 is not present, UBRA 12 will be read as all
zero data.

Bit Type Description
7-0 R DR 15 - DR 08 (DR15 - DRO&) = data register bits
15 - 08.

4.4.3.13 UBRA 13: Bus In Register 1 (CBIHI) - Register 13 is a
read-only register which provides microcontroller access to the
BUS 1 IN 0 - 7 lines during channel controller operation or the
BUS 1 OUT 0 - 7 lines for control unit operation. The BUS 1 IN
lines are only used when the extended bus feature is enabled
(EXTENDED BUS = 1). If LOOP FN is set, the contents of bus out
register 1 (BOR 15 - 08, Pl) is complemented and looped into CBI
07-00, Pl to facilitate diagnostic testing of the channel bus
interface. When UBRA 13 is read, the BUS 1 PE FLAG (UBRA 00 BIT
2) is clocked to check for correct (odd) parity of the data in bus
in register 1, and the MK PE FLAG (UBRA 00 Bit 3) is clocked to
check for correct (odd) parity of the MK IN lines. The circuitry
for bus in register 1 is located on the M8608 Channel Extension
Board; if the M8608 is not present, UBRA 13 will be read as all
zero data.

Bit Type Description

7-0 RO CBI 15 - CBI 08 (CBI15 - CBIO8) = channel bus in

4.4.3.14 UBRA 14: Scratch Pad Data Register 1 (SPDAHI) -
Register 14 is a write-only register through which data is loaded
into the high byte of the scratch pad RAM (SP RAM) location
addressed by the sctrach pad address counter (SP ADR CNTR). The
upper bytes of the SP RAM are only used when the extended bus
feature is enabled (EXTENDED BUS = 1) and they are located on the
M8608 Channel Extension Board. :

Bit Type Description
7-0 WO SP DATA 15 - 08 (SPD15 - SPD08) = scratch pad data
bits 15-08.

4.4.3.15 UBRA 15: Bus Out Register 1 (BORHI) - Register 15 is a
write only register which allows the microcontroller to load data
into the high byte of the BOR (BOR 15 - 08). Bus out register 1
is used only when the extended bus feature is enabled (EXTENDED
BUS = 1). If SP EN = 0, writing UBRA 15 loads microbus data
stored in the microbus receiver (UB RCVB) register directly into
the high byte of the BOR. If SP EN = 1, writing UBRA 15 loads the
upper byte of the sctrach pad RAM (SP RAM) location addressed by

4=-5y

the 'scratch pad address counter (SP ADR CNTR) into bus out
register 1. The BOR is also loaded and the SP ADR CNTR is
decremented by the CB CTRL logic during high speed transfers in
which SP EN is set to transmit control information stored in the
SP RAM by the microcontroller to the device over the Bus 1 ouT
lines. Bus out register 1 is implemented on the M3608 Channel
Extension Board.

Bit Type Description.

7-0 WO BOR 15 - BOR 08 (BOR15 -~ BOR 08) = Bus 0Out
Register Bits 15 - 08,

4.4.3.16 UBRA 16: Control Unit Status Register (CUSTAT) -
Register 16 is a write only register through which the micro-
controller can write the CU RESET flip-flops (SYS RST, SEL RST,
and HALT IO). UBUS DATA 2 - 0 is clocked into the CU RESET flip-
flops when UBRA 16 is written; UBUS DATA 7 - 3 is ignored. The
flip-flops are direct cleared when UBUS INITIALIZE is asserted or
CU RESET EN (UBRA 03 Bit 6) is cleared. The states of the flip-
flops can be sensed via the register 5 multiplexer which allows
SYS RST, SEL RSy, and HALT I0 to be read back as UBRA 05 Bits 2 -
U, respectively, when CHAN MODE = 0. See Section 4.4.3.7 for more
information, '

Bit Type Description

7-3 NU Not used.

2 WO SYS RST (SYSRST) = System Reset.

1 WO SEL RST (SELRST) = Selective Reset.
0 wo HALT IO (HALTIO) - Halt I1/0.

4.4.3.17 UBRA 17 - UBRA 37: Not Used - Registers 17 - 37 are not
implemented in the channel bus interface. If accessed by the
microcontroller, they will be read back as zero data; DATO cycles
to these registers will have no effect on the interface.

4.4.4 Data Path Interface

(4.4.4.1 Introduction - Control, status, and diagnostic

information is communicated between the microcontroller and data
path interface over the microbus and is organized as 16 8-bit
registers. The register names and bit mnemonics are summarized in
the data path diagram UBUS Registers (I/O SEL 3). A more complete
description of the bits and their functions appears below.

The following abbreviations are used:

R = read
W = write
RO read only

NU = not used

4.4.4.2 UBRA 00: Register 0 (REGO) - Register 0 contains 4
flags which are set under hardware control and can only be cleared
by the microcontroller, specifically by writing UBRA 00 (UBUS data
is ignored).

Bit Type Description
7-4 NU Read as logical 0.
3 R MC OF FLAG (MCOVF) = massbus counter overflow

flag. The 1l6-bit Mascbus counter is incremented
ever, time the data path interface issues a MSTR
ACK 1in response to MSTR REQ. When the counter
advances from a maximum count of 177 777 octal to
0, the MC OF FLAG flip-flop is set.

2 R BC OF FLAG (BCOVF) = byte counter overflow flag.
The 16-bit byte counter is incremented every time
the data path interface issues a SLVE ACK in
response to SLVE REQ. When the counter advances
from a maximum count of 177 777 octal to 0, the BC
OF FLAG flip-flop is set.

1 R DP PE FLAG (DPPEFG) = data path parity error flag.
If a parity error (even parity) 1is detected 1in
data stored in the silo buffer (SB) register
during device writes or the channel buffer (CB)
register during device reads, indicating a data
error in the transfer, the DP PE FLAG flip-flop is
set.

0 R UB PE FLAG (UBPEFG) = microbus parity error flag.
If a parity error (even parity) is detected in
data stored in the microbus receiver (UB RCVR)
register during a microcontroller data output
(DATO) cycle, the UB PE FLAG flip-flop is set.

4.4.4.3 UBRA 0l: Register 1 (REG 1) - Register 1 contains

diagnostic bits (7-2) and control bits (1 - 0). Bits 7 - 4 are
recad only and bits 3 - 0 are read/write.

4=-61

Bit Type

7 RO
6 RO
5 RO
4 RO
3 R/W
2 R/W
1 R/W

0 R/W

Description

MSTR REQ (MSTRQ) = master request. MSTR REQ 1is
the logical OR of MSTR REQ from the M8603 Massbus
Data Board and the true output of the DIAG MSTK
REQ flip-flop.

SLVE REQ (SLVRQ) = slave request. SLVE REQ is the
logical OR of SLVE REQ from the M8607 Channel Bus
Board and the true output of the DIAG SLVE REQ
flip~-flop.

MSTR ACK (MSTACK) = master acknowledge. The MSTR
ACK signal goes to the M8603 Massbus Data Board.
It is given in response to MSTR REQ when the data
path interface has accepted data from or presented
data to the Massbus Interface over the master bus
and is cleared when MSTR REQ goes low.

SLVE ACK (SLVACK) = slave acknowledge. The SLVE
ACK signal goes to the M8607 Channel Bus Board.
It is given in response to SLVE REQ when the data
path interface has accepted data from or presented
dota to the channel bus interface over the slave
bus and is cleared when SLVE REQ goes low.

DIAG MSTR REQ (DMSTRQ) = diagnostic master
request. DIAG MSTR REQ 1is 1logically ORed with
MSTR REQ from the M8603 Massbus Data Board to
allow diagnostic programs to exercise the master
bus control logic directly.

DIAG SLVE REQ (DSLVRQ) = diagnostic slave request.
DIAG SLVE REQ is logically ORed with SLVE REQ from
the M8607 Channel Bus Board to allow diagnostic
programs to exercise the slave bus control logic
directly.

BASE CLK EN (BCLKEN) = base clock enable. When
BASE CLK EN is asserted, a 21.84 MHZ clock signal

'is gated to the formatter control logic.

DX HIGH SPEED (DXHISP) = DX high speed. When DX
HIGH SPEED is asserted, the data path interface is
enabled to transfer data in response to MSTR REQ

iand SLVE REQ and in accordance with the program

pointed to in the control ROM. DX HIGH SPEED L is
bussed to the M86(03 Massbus Data Board and the
M8607 Channel Bus Board to indicate when the data
path interface is enabled.

4.4.4.4 UBRA 02: Register 2 (REG2) - Register 2 contains read
only diagnostic bits (7-6) and read/write control bits (5-0).

‘4562

Bit ‘ Type

7 RO

6 RO

5 R/W
& R/W
3 R/W
2 R/W
1 R/W
0 R/W

Description

MSTR REQ HLDOFF (MRHDOF) = master request
holdofff. The MSTR REQ HLDOFF flip-flop inhibits
the data path interface from processing another
MSTR REQ. It is set on the trailing edge of the
MSTR REQ and is not cleared until MSTR RDY DLY 2
drops to prevent a successive MSTR REQ during the
time that MSTR REQ HLDOFF is asserted from
interfering with proper operation of the data path
interface.

SLVE REQ HLDOFF (SRHDOF) = slave request holdoff.
The SLVE REQ HLDOFF flip-flop inhibits the data
path interface from processing another SLVE REQ.
It is set on the trailing edge of SLVE REQ and is
not cleared until SLVE RDY DLY 2 drops to prevent
a successive SLVE REQ during the time that SLVE
REQ HLDOFF is asserted from interfering with
proper operation of the data path interface.

REG 2 85 (REG2B5) = register 2 bit 5. This
read/write bit is not presently used.

REG 2 B4 (REG2B4) = register 2 bit 4. This
read/write bit is not presently used.

MEX ON FEX (MEONFE) = master end transfer on
formatter end transfer enable. If the MEX ON FEX
flip-flop is set, MSTR WOR END XFER will be
asserted when FMTR END XFER is asserted.

MEX ON MC (MEMCOV) = master end transfer on
massbus counter overflow enable. If the MEX ON MC
flip-flop is set, MSTR WOR END XFER will be
asserted when the MC OF FLAG flip-flop is set.

SEX ON BC (SEBCOV) = slave end transfer on byte
counter overflow enable. If the SEX ON BC
flip-flop 1is set, SLVE WOR END XFER will be
asserted when the BC OF FLAG flip-flop is set.

ROM ADR 8 (RMADR8) = ROM address bit 8. ROM ADR 8
is the most significant bit of the data formatter
control ROM address register (see Section 4.4.4,10
for more detail).

4.4.4.5 UBRA 03: Register 3 (REG3) - Register 3 contains 3 read

only bits (3-1).

Bit Type

7-1 NU

Description

Read as logical 0.

4-63

3 . RO -FMTR END XFER (NFEXR) = not formatter end
; transfer. FMTR END XFER is asserted after SLVE
WOR END XFER has been asserted and the formatter
has completed its formatting sequence as described

in Section 5.2.4.3.

2 RO -MSTR WOR END XFER (NMEXFR) = not master end
transfer. MSTR WOR END XFER L is communicated
between the data path interface and the Massbus
interface over a wire-ORed bus which can be pulled
low (asserted) by either interface to signal the
termination of a Massbus transfer. MSTR WOR END
XFER is asserted in the following cases: when the
MC OF FLAG flip-flop is set and MEX ON MC (UBRA
02, BIT 2) 1is set; or when FMTR END XFER is
asserted and MEX ON FEX (UBRA 02 bit 3) is set.
High speed Massbus transfers are usually
terminated in the first case for device write
operations and in the second case for device read
operations. MSTR WOR END XFER is not asserted by
the Massbus interface.

1) RO -SLVE WOR END XFER (NSEXFR) = not slave end
transfer. SLVE WOR END XIER L 1is communicated
bev.2en the data path interface and channel bus
interface over a wire-ORed bus which can be pulled
low (asserted) by either interface to signal
termination of a channel bus transfer. SLVE WOR
END XFER is asserted in the following cases: by
the data path interface when the BC. OF FLAG
flip-flop is set; or by the channel bus interface
when the device signals termination over the
channel bus. During normal operation, high speed
channel transfers are terminated in the first case
for device write operations and in the second for
device read operations.

0 NU Read as logical 0.

4.4.4.6 UBRA 04: Massbus Counter - Low Byte (MCLO) - Register 4
provides microcontroller access to the low byte of the Massbus
counter which is incremented every time a MSTR ACK is issued in
response to a MSTR REQ. The low byte of the counter may be read
and written as UBRA 04.

Bit Type Description
7-0 R/W MC 07 - MC 00 (MC0O7 - MC0O0) = Massbus counter bits
07 - 00.. :

4.4.4.7 UBRA 05: Massbus Counter - High Byte (MCHI) - Register
5 provides microcontroller access to the high byte of the Massbus
counter. The high byte of the counter may be read and written as
UBRA (5.

4«64

Bit . Type Description

7-0 R/W MC 15 - MC08 (MC15-MC08) = Massbus counter bits 15
- 08-

4.4.4.8 UBRA 06: Byte Counter - Low Byte (BCLO) - Register 6
provides microcontroller access to the 1low byte of the byte
counter which is incremented every time a SLVE ACK is issued in
response to a SLVE REQ. The low byte of the counter may be read
and written as UBRA 06.

Bit Type Description
7-0 R/W BC 07 - BC 00 (BCO7 - BCO0O) = byte counter bits 07
- 00.

4.4.4.9 UBRA 07: Byte Counter - High Byte (BCHI) - Register 7
provides microcontroller access to the high byte of the byte
counter. The high byte of the counter may be read and written as
UBRA 07.

Bit Type Description
7-0 R/W BC 15 - BC 08 (BC15-BC08) = byte counter bits 15 -
08.

4.4.4.10 UBRA 10: Data Formatter Control ROM Address Register
(DFRMAD) - Register 10 provides microcontroller access to the data
formatter control ROM address register which points to the next
ROM instruction that will be executed if the data path interface
is enabled (DX HIGH SPEED = 1). Bits 7 - 0 of the ROM address may
be read and written as UBRA 10; bit 8 is read and written as UBRA
02 Bit 0. DX HIGH SPEED (UBRA 01 bit 0) and CLK PH 0 (UBRA 16 bit
4) must be low to write UBUS data into ROM address bits 3-0. If
DX HIGH SPEED = 1 when UBRA 10 is written, the contents of bits 19
- 16 (ROM 19 - ROM 16) of the ROM location addressed by ROM ADR 3
- ROM ADR 0 prior to clocking UBRA 10 will be written into bits 3
- 0 and UBUS data will be written into bits 7 - 4. (See section
4.4.4.11 for more detail). Bits 8 - 4 are manipulated only by the
miciocon..oller; whereas bits 3 - 0 are altered by the formatter
as the ROM instructions are executed. (This is a consequence of
the fact that the ROM programs are confined within 16 word
boundaries.)

Bit Type Description

7-0 R/W ROM ADR 7 - ROM ADR O (RMADR7 - RMADRO) = ROM
address bits 7 - 0.

4.4.4.11 UBRA 11: ROM Data Register - Low Byte (RMDALO) -
Register 11 1is a diagnostic register which allows diagnostic
programs to read the contents of the data formatter control ROM
over the microbus. The contents of the ROM location addressed by
ROM ADR 8 - ROM ADR 0 is loaded into the ROM data register when
UBRA 11 is written (UBUS data is ignored.) provided CLK PH 0
(UBRA 16 bit 4) is low prior to writing UBRA 11, CLK PH 0 may
become permanently set after writing UBRA 11, 1nh1b1t1ng further
clocking of the ROM data register, unless certain precautions are
taken (see step (1) in recommended procedure below). When UBRA 11
is written, ROM output bits 15 - 08 (ROM 15 - ROM 08) are loaded
into UBRA 12.

The recommended procedure for examining the contents of the data
formatter control ROM is given below.

1 Set up the data path interface so that CLK PH 1 (UBRA 16
bit 5) = 0, CLK PH 0 (UBRA 16 bit 4) = 0, -RUN (UBRA 16
bit 3) = 1, -CLR RUN (UBRA 16 bit 2) = U, and BASE CLK EN
(UBRA 01 bit 1) = 0. v

2 With DX HIGH SPEED (UBRA 01 bit 0) = 0, load ROM ADR 8 -
ROM ADR 0 with the address of the ROM location to be
examined by writing UBRA 02 bit 0 and UBRA 10 bits 7 - 0.

3 Write UBRA 11 to load ROM 15 - ROM 00 into UBRA 11 and
UBRA 12. ’

4 With DX HIGH SPEED = 1, write UBRA 10 to load ROM 19 -
ROM 16 into UBRA 10 bits 3 - 0.

.5 Read UBRA 10 - 12 to examine the contents of the ROM
location.

6 Go to step (2) if more locations are to be examined.

The ROM data bits have mnemonic names associated with them which
are indicative of their function. The names are given below for
completeness and will be described in more detail in Section
5.3.4.5.

Bit Type Desription

7-4 RO MASK 3 - MASK 0 (RMDA 07 - RMDA 04) = mask bits 3
- 0 (ROM data 07 - 04}.

3-0 RO CC 3 - CC 0 (RMDA 03 - RMDA 00) = cycle control
bits 3 - 0 (ROM data 03 - 00).

4.4.4.12 UBRA 12: ROM Data Register - High Byte (RMDAHI) -
Register 12 is a diagnostic register which allows diagnostic
programs to read the contents of the data formatter control ROM
over the microbus. See Section 4.4.4.11 for more detail. The
mnemonic names associated with the ROM data bits are given below
and described in more detail in Section 5.3.4.5. Writing UBRA 12
provides the additional diagnostic capability of single stepping
the formatter clock phases. With BASE CLK EN (UBRA 01 BIT 1) = 0,
BASE CLK is held high and is pulsed low once each time UBRA 12 is
written.

Bit Type Description

7-4 RO SHIFT 3 - SHIFT 0 (RMDA 07 - RMDA (04) = shift bits
3 - 0 (ROM data 07 - 04).

3-0 RO MASK 7 - MASK 4 (RMDA 03 -~ RMDA 00) = mask bits 7
- 4 (ROM data 03 - 00).

4.4.4.13 UBRA 13: Assembly Register - Low Byte (ARLO) -~
Register 13 allows diagnostic diagnostic programs to read bits 7 -
0 of the assembly register (AR) over the microbus. The assembly
register is an 18-bit register in which words are disassembled
into bytes for transmission to the channel bus interface during
device write operations or in which bytes are assembled into words
for transmission to the Massbus interface during device read

4-67

operations. Writing UBRA 13 generates a pulse on HSDP INIT which
initializes the data path interface for a new data transfer. The
logic level on the DATA TO DEV line must be established for the
direction of transfer desired before writing UBRA 13 because
flip-flops in the formatter are either set or cleared when HSDP
INIT goes high, depending on the level of DATA TO DEV.

Bit Type Description

7-0 RO AR 07 - AR 00 (AR0O7 - AR0Q) = assembly register
bits 07 - 00.

4.4.4.14 UBRA 14: Assembly Register - High Byte (ARHI) -
Register 14 allows diagnostic programs to read bits 15 - 8 of the
assembly register (AR) over the microbus. The assembly register
is an 18-bit register in which words are disassembled into bytes
for transmission to the channel bus interface during device write
Operations or in which bytes are assembled into words for
transmission to the Massbus interface during device read
operations. Writing UBRA 14 provides the diagnostic capability of
directly setting the RUN flip-flop in the formatter.

Bit Tyep Description

7-0 RO AR 15 - AR 08 (AR 15 - AR 08) = assembly register
bits 15 - 08.

4.4.4.15 UBRA 15: Register 15 (REG15) - Register 15 contains 7
read only diagnostic bits (6-0). Writing UBRA 15 provides the
diagnostic capability of directly setting the MSTR REQ HLDOFF
flip-flop. :

Bit Type Description

7 NU Read as logical 0.

6 RO EXTEND RUN (EXTRUN) = extend run. The EXTEND RUN
flip-flop is used during the execution of the
Industry Compatible - Read Forward program to

insure that all bytes transferred over the slave
~bus will be formatted into words and transferred
to the Massbus interface over the master bus.

5 RO LD SB (LDSB) = load silo buffer. The falling edge
of LD SB clocks the silo buffer (SB) register and
sets the MSTR RDY flip-flop. The silo buffer
register is loaded from the master receiver
register (MRR) for device write operations or from
the assembly register (AR) for device read
operations.

4 , RO LD CB (LDCB) = load channel buffer. The falling

edge of LD CB clocks the channel buffer (CB)
register and sets the SLVE RDY flip~-flop. The

4-6 8

1-0

4.4.4.16

RO

RO

RO

channel buffer register is loaded from the slave
receiver register (SRR) for device read operations
or from the assembly register (AR) for device
write operations.

-EN MUX/DEMUX (NENMDM) = not enable data
multiplexer/demultiplexer. When the EN MUX/DEMUX
flip-flop is set, the data multiplexer in the
formatter is enabled during device write
operations or the data demultiplexer is enabled
during device read operations.

-CLR AR (NCLRAR) = not clear assembly register.
When CLR AR is asserted, all the bits in the
assembly register (AR) are cleared.

AR 17 - AR 16 (AR17-AR1l6) = assembly register bits
17-16.

UBRA 16: Register 16 (REG16) - Register 16 contains 7

read only diagnostic bits (6 - 0). Writing UBRA 16 provides the
diagnostic capability of directly setting the SLVE REQ HLDOFF

Type

flip-flop.
Bit

7 NU
6 RO
5 RO
4 RO
3 RO
2

RO

Description
Read as logical 0.

-RUN DATA (NRNDAT) = not run data. RUN DATA
represents the logic level which will be clocked
into the RUN flip-flop on the rising edge of BASE
CLK, provided CLR RUN = 0.

CLK PH 1 (DFCPHl) = clock phase 1, CLK PH 1 is the
second phase of the clock derived in the formatter
time base from the BASE CLK signal. It is
asserted during timing states 2 and 3.

CLK RH 0 (DFCPHO) = clock phase 0. CLK PH 0 is
the first phase of the clock derived in the
formatter time base from the BASE CLK signal. It
is asserted during timing states 1 and 2. o

~RUN (NOTRUN) = not run. When the RUN flip-flop
is set, the formatter time base is allowed to
advance its clock phases from state 0 (CLK PH 1 =
0, CLK PH 0 = 0) to state 1l (CLK PH 1 = 0, CLK PH
0 = 1) if BASE CLK EN = 1. The time base will
cycle through states 2 and 3 back to state 0, in
which it will remain unless the RUN flip-flop is
still set. One cycle through the 4 clock states
executes one ROM instruction.

-CLR RUN (NCLRRN) = not clear run. When the CLR

4«69

1 RO
0 RO
4.4.4.17

RUN flip-flop is set, the RUN flip-flop is cleared
and held cleared.

MSTR PE (MSTRPE) = master parity error. MSTR PE
is asserted when incorrect (even) parity is
detected for data stored in the silo buffer (sSB)
register.

SLVE PE (SLVEPE) = slave parity error. SLVE PE is
asserted when incorrect (even) parity is detected
for data stored in the channel buffer (CB)
register.

UBRA 17: Register 17 (REGl17) - Register 17 contains 6

read only diagnostic bits (5 - 0). Writing UBRA 17 provides the

diagnostic

flip-flop.
Bit Type
7-6 NU

5 RO

4 RO

3 RO

2 RO

capability of directly clearing the EXTEND RUN

Description
Read as logical 0.

MSTR RDY DLY 2 (MSRDY2) = master ready delay 2.
The MSTR RDY DLY 2 rlip-flop is a second stage
synchronizer for the MSTR RDY flip-flop. When
MSTR RDY DLY 2 is set, the data path interface is
reeady to issue a MSTR ACK in response to a
pending or forthcoming MSTR REQ and the formatter
will stop executing instructions when it

-encounters an instruction which services a MSTR

REQ until MSTR RDY DLY 2 goes low. When HSDP INIT
is asserted, MSTR RDY DLY 2 is set if DATA TO DEV
= 1 or cleared if DATA TO DEV = 0.

MSTR RDY DLY 1 (MSRDYl) = master ready delay 1.
The MSTR RDY DLY 1 flip-flop is a first stage
synchronizer for the MSTR RDY flip-flop. When
HSDP INIT is asserted, MSTR RDY DLY 1 is set if
DATA TO DEV = 1 or cleared if DATA TO DEV = 0.

MSTR RDY (MSTRDY) = master ready. The MSTR RDY
flip-flop is set on the falling edge of LD SB and
is cleared when MSTR ACK is issued in response to
MSTR REQ. When HSDP INIT is asserted, MSTR RDY is
set if DATA TO DEV = 1 or cleared if DATA TO DEV =
. -

SLVE RDY DLY 2 (SLRDY2) = slave ready delay 2.
The SLVE RDY DLY 2 flip-flop is a second stage
synchronizer for the SLVE RDY flip-flop. When
SLVE RDY DLY 2 is set, the data path interface is

- ready to issue a SLVE ACK in response to a pending

or forthcoming SLVE REQ and the formatter will
stop executing instructions when it encounters an

4-70

instruction which services a SLVE REQ until SLVE
RDY DLY 2 goes 1low, when HSDP INIT is asserted,
SLVE RDY DLY 2 is set if DATA TO DEV = 0 or
cleared if DATA TO DEV = 1.

SLVE RDY DLY 1 (SLRDY1l) = slave ready delay 1.
The SLVE RDY DLY 1 flip-flop is a first stage
synchronizer for the SLVE RDY flip-flop. When
HSDP INIT is asserted, SLVE RDY DLY 1 is set if
DATA TO DEV = 0 or cleared if DATA TO DEV = 1.

SLVE RDY (SLVRDY) = slave ready. The SLVE RDY
flip-flop is set on the falling edge of LD SB and
is cleared when SLVE ACK is issued in response to
SLVE REQ. When HSDP INIT is asserted, SLVE RDY is
set if DATA TO DEV = 0 or cleared if DATA TO DEV =
1.

4.4.4.18 UBRA 20-UBRA 37: Not Used - Registers 20-37 are not

implemented in

the data path interface. If accessed by the

microcontroller, they will be read back as zero data. DATO cycles
to these registers will have no effect on the interface.

CHAPTER 5
TECHNICAL DESCRIPTION

5.1 INTRODUCTION

5.1.1 General :

The DX20 Programmed Device Adapter (PDA) operates as an inde-
pendent I/0 processor transferring data between high speed
peripheral devices, such as magnetic tape units, and data storage
areas within (or external) to the KL10 system. Communication and
data transfer operations between the PDA and KL10 memory are
performed over the Massbus via the RH20 Massbus controller. Up to
eight peripheral devices, such as the DX20, can be a2ddressed over
the Massbus. Data and control between the DX20 and device control
unit(s) is carried out over the system channel bus. The required
interface between the DX20 internal buses and the channel bus is
implemented through special input/output formatting, transfer
logic, and control logic. Data/control interfacing between the
channel bus and the selected tape drive is accomplished via the
device control unit which contains the 1logic to select,
disconnect, and format data or status.

The microbus within the DX20 provides communication paths between
the micr~_ontroller and: Massbus interface, high speed data path,
and device interfacc. Control, channel bus interface (CBI) condi-
tions, and paramater information transferred to or from the CBI
takes place over the microbus.

Interconnection between the device interface logic and the high
speed data path consists of data and control lines referred to as
the slave bus. The high speed data path and Massbus communicate
over the master bus. A diagnostic bus (link) connects the micro-
controller and Massbus interface. This bus provides a path for
loading the microcode data from the KL10 to the microstore, and
for diagnostic information contained in the microcontroller
registers to be transmitted to the KL10.

5.1.2 Subsystem Description

The DX20 subsystem consists of the: Massbus, RH20 Massbus
controller, channel bus, and device controller. The Massbus
provides a bidirectional communication path between the DX20 and
RH20 controller on which microcode data from the KL10 processor is
transmitted to the DX20 microstore. This data is used to perform
data transfer operations between the DX20 and a storage device.
Data from a device is obtained from the device controller, via the
channel bus, processed in the DX20 and placed on the Massbus then
transmitted to the RH20. Conversely, data is transferred from the
RH20 onto the Massbus to the DX20 data paths, and onto the channel
bus to the device controller.

5.1.2.1 Massbus - The Massbus provides the interface between the
RH20 controller and the DX20 programmed device adapter. It is
composed of two independent buses; a control bus and a data bus,
permitting both synchronous and asynchronous communication.

S5=1

The data bus contains the bidirectional parallel data bits
(including parity) and its associated control 1lines. The
asynchronous control bus contains the parallel control and status
path (16 data and 1 parity) and its associated bus control lines.

5.1.2.2 RH20 Massbus Controller - The RH20 Massbus controller
(MBC) provides a high-speed synchronous/asynchronous data transfer
path between the KL10 memory system and the DX20. Up to eight
Massbus-compatible devices may be connected to the MBC.

5.1.2.3 Channel Bus - Data and control information is transferred
between the DX20 and perlpheral device over the channel bus. Data
issued to the device is transferred on 9-bit bus out llnes, and
data being issued to the DX20 is received on 9-bit bus in lines.
Identification of information on either bus, and control of inter-
face connect/disconnect sequences is performed on tag lines (in or
out depending on the direction).

5.2 INTERFACE DESCRIPTIONS

5.2.1 Massbus and Diagiiostic Link

The Massbus can 1logically be divided into two sections, the
asynchror~us section, referred to as the control bus, and the
synchronous section referred to as the data bus (see Figure 5-1).
Phy31cally, these two sections are combined into a single bus
comprising 56 signals. The Massbus utilizes differential
transmitters and receivers for signaling between the Massbus
controller and a Massbus peripheral device such as the DX20. A
maximum of eight peripheral devices can be addressed over the
Massbus.

The control bus section has a 16-bit wide data path with an odd
parity bit and 14 control lines for a total of 31 lines. It is
used for transmitting status and control information between the
Massbus controller and the device. It is asynchronous in the
sense that each data transfer requires a handshake consisting of a
request signal from the controller (DEM) and a response signal
from the device (TRA). The controller can address up to 32
registers in each device over the control bus.

The data bus section has an 18-bit wide data path with an odd
parity bit and 6 ‘control lines for a total of 25 lines. It is
used for transmitting high-speed data between the controller and
the device. It is synchronous in the sense that no response is
required from the controller once a data transfer has been
initiated. A device read operation occurs with the device
generating a synchronous clock (SCLK) 1ndlcat1ng to the controller
that valid data is on the bus. :

For a device write operation the controller retransmits this
51gnal as a write clock (WCLK) indicating to the device that valid
data is on the bus.

Figure 5-1 DX20 Bus Interface

S=38

The diagnostic link from the Massbus to the microcontroller is
provided to allow the master-host system access to the
microcontroller via the control bus. It comprises a lé6-bit wide
data path with an odd parity bit and 11 control lines for a total
of 28 lines (see Figure 5-2). Most of these signals (23) are
derived from Massbus control bus lines. This link is used for
loading the operational microcode or diagnostics into the
microstore to start and stop the microcontroller, initiate single
cycle instruction, and to examine several points within the
microcontroller or other microbus intefaces. In a
Massbus-to-Massbus configuration, the Massbus interface connected
to the slave-host system will not have access to the
microcontroller via the diagnostic link even though the interface
has the same logic..

The DX20 uses three standard M5903 Massbus transceiver modules for
interfacing to the Massbus. The modules are connected to the
Massbus via 6 flat 40-conductor cables (BCO6R) internal to the
cabinet. These cables connect to the Massbus input/output
transition connectors. The other side of these connectors are
connected to the Massbus controller and/or other devices via a
heavy duty round cable (BC06S) containing 60 twisted pair. If the
DX20 is on the end of the Massbus, the Massbus output connector
must be terminatcd with the standard terminator assembly #7009938.

The M5903 transceiver modules utilize line drivers with TTL-inputs
and tri-state differential-outputs. The differential output
characteristics are Vv = 0.4 volt (max) at 40 mA and V = 2.0
volts (min) at -40 mA. The line receivers are differential
-input, TTL-output, devices with a differential input sensitivity
of 15 millivolts. They have open-collector outputs with a maximum
sink capability of 16 mA at V = 0.4 (max) and a maximum high
state leakage current of 250 microamps at V = 7 volts (max).
Each receiver output has a 3.3K-ohm resistor pullup to +5 V on the
M5903s except for the 16 control bus data lines and the control
bus and data bus parity lines. The pullups for these lines are
provided by the device. In the DX20, these pullups are 2K-ohms
for the control bus lines, located on the M8604 and 3.3K-ohms for
the data bus parity line located on the M8603.

The open-collector output characteristics of the receivers is
utilized by the DX20 to form a wired-OR bus internal to the DX20.
The diagnostic link is part of this internal bus, which has both
tri-state and open-collector devices driving the bus. Logic
levels on the internal bus will be a high for a logic one when
receiving data from the control bus and a low for a logic one when
transmitting to the control bus.

5.2.1.1 Control Bus Signal Definition

D52-DS0: Device or unit select lines (3) for selecting
- one of eight possible devices in the Massbus.

R84-RS0: Register select lines (5) for selecting one of

S5-4

Figure 5-2 DX20 Block Diagram

5=5

DEM:

TRA:

Cl15-C00,CPA:

5.2.1.2

CTOD:

ATTN:

INIT:

FAIL:

Data Bus

RUN:

OCC:

SCLK:

32 possible registers in each device.

Demand line from the controller to the device,
indicating that the controller wants to transfer
control bus data to or from the device.

Transfer line from the device to the controller
acknowledging DEM.

The 16-bit bidirectional control bus data path
with odd parity between the controller and the
device. ‘

Controller to device line when asserted indi-
cates the transfer of control bus data is from
the controller to the device (control bus
write); and when not asserted indicates the
transfer of control bus data is from the device
to the controller (control bus read).

The attention 1line from the device to the
controller when asserted indicates a Massbus
device is requesting service from the
controller. The controller determines which
aw.’ice(s) is driving the attention by reading
the attention summary register.

The initialize line from the controller to the
device when asserted performs a system reset/
initialize function.

The fail line from the controller to the device,
when asserted indicates the controller has a
power failure.

Signal Definition

The run line from the controller to the device;
when first asserted, indicates the controller is
ready to begin a data bus transfer. Thereafter,
the device samples the RUN line at the trailing
edge of each EBL pulse, and if it is still
asserted, the operation normally continues.

The occupied line from the device to the
controller indicating that the device is ready
to begin data bus transfer. The assertion of

occupied is not dependent on receiving RUN.

The sync clock 1line from the device to the
controller. This signal tells the controller
that data is available on the data bus for a
device read or requests data from the controller
for a device write.

o=6

WCLK: The write clock line from the controller to the
device returns the SCLK from the device, telling
the device data is available on the data bus for
a device write.

D17-D00,DPA: The 18-bit bidirectional data bus path with odd
parity between the controller and the device.

EBL: The end of block line from the device to the
controller, when asserted, indicates that the
device has completed transferring as many data
words as it was requested to transfer by the
last read/write command. This line is driven by
a one-shot with a 1500 ns minimum pulse width.

EXC: The bidirectional exception line between the
controller and the device. This 1line is
asserted by the controller, or the device to
indicate that an error condition was detected
during a data bus transfer. It should be noted
that the RH20 does not drive the exception line.

5.2.1.3 viagnestic Link Signal Definition

RS2-RS0: The three low-order register select lines from
the Massbus control bus. These lines are used
in conjunction with DIAG DEM for accessing the
diagnostic registers DXDR0O (MBRA 30) - DXDR7
(MBRA 37).

DIAG DEM: This signal is generated in the Massbus
interface when a unit has been selected; DEM has
been asserted by the controller; and the
register address is from 30 to 37.

DIAG DEM DLY: This is a 100 ns pulse (nom.) generated by the
' Massbus interface when the controller is writing
a register in the DX20 and the microprocessor
has not been started. Thus, the controller will
not be able to write a diagnostic register once
the microprocessor is started.

C15-C00,CPA: The 16-bit bidirectional data path from the
internal control bus to the microcontroller.

CTOD: The controller to device line. See control bus
signal definitions.

MP LINK PRESENT: A level from the microcontroller to the master-
host system, when asserted, indicates that the
diagnostic link is present.

MP START: This is a signal from the Massbus interface to

o=1

the microcontroller to allow the microprocessor
clock to run for single cycle or continuous
instruction execution. This signal is negated
if the Massbus interface detects a microbus
parity error.

MP WR EV PA: The microprocessor write even parity line from
the Massbus interface to the microprocessor.
This flip-flop is set by the host to force even
parity generation within the microprocessor.

MP SNGL CYC: The microprocessor single cycle line from the
Massbus interface to the microprocessor. This
flip-flop is set by the host to allow only one
microprocessor timing cycle to occur.

DX RESET: This signal 1is generated in the Massbus
interface, and is used to reset/initialize the
DX20. It is generated from either a Massbus
INIT; by the Massbus controller writing the
DXRES bit in the maintenance register (DXMTR =
MBRA 03); or by CROBAR during power up/down
sequences. :

5.2.1.4 Control Bus Read Sequence - The control bus read cycle
begins with the controller asserting the appropriate DS and RS
lines and negating the CTOD line. After waiting for the deskew
and set up time, and waiting, if necessary, for the TRA line to be
negated, the controller asserts DEM. Following a cable delay, the
selected device receives the DEM assertion. The controller holds
the DS and RS lines constant until the assertion of TRA is re-
ceived from the device. Not more than 700 ns after receiving DEM
the device gates the contents of the selected register onto the C
lines, generates CPA, and asserts TRA. After a cable delay the
controller receives TRA at which time it can change the DS, RS,
and CTOD lines. The controller waits for deskew time, then
strobes or gates in the C lines and CPA, and checks for correct
parity. It then negates DEM. Following a cable delay the device
receives the DEM negation and disables the C lines and negates
TRA. After a cable delay the controller receives the negation of
TRA, which completes the read cycle.

The control bus read cycle is somewhat modified if the register
being read is the attention summary register (MBRA 04). The dif-
ferences are as follows. If the register address is 04, the
device ignores the DS lines. Therefore, any device with its ATA
bit set will gate this bit out to the appropriate C line, device 0
onto C00, etc. After asserting DEM, the controller waits 1450
ns, before strobing the C lines to be sure that all devices have
nhad a chance to respond. The controller then strobes the C lines
but does not check parity; since it is impossible for any one
device to generate a valid parity bit (each device will have
generated its own parity, and since it is only driving one bit if
ATA is set, the CPA line will always be negated). The controller

5-8

then must wait for all devices to negate TRA before beginning the
next cycle. :

5.2.1.5 Control Bus Write Sequence - The control bus write cycle
begins with the controller asserting the appropriate DS and RS
lines; asserting the CTOD line; and gating a word onto the C
lines. The controller keeps all these lines constant until re-
ceiving the assertion of TRA. Following the deskew and set up
time, and waiting, if necessary, for the TRA line to be negated
from the previous cycle, the controller asserts DEM.

After a cable delay, the selected device receives the DEM asser-
tion and more than 700 ns later the device will have strobed or
gated in the C lines; checked for correct parity; and asserted
TRA. The controller receives TRA (after a cable delay) at which
time it can change DS, RS, CTOD and C lines and negate DEM.
Following the cable delay, the device receives the DEM negation
and negates TRA, after which the controller receives the negation
of TRA, completing the write cycle.

The control bus write cycle is also modified if the register being
written is the attention summary register (MBRA 04). The
essential difference is that the DS 1lines are ignored by the
device rach dcvize will gate the appropriate C line to clear its
ATA bit, device 0 from C00, etc. After asserting DEM the con-
troller keeps the C lines constant for 1450 ns and then negates
DEM, The controller must wait for all devices to negate TRA
before beginning the next cycle.

If an illegal (nonexistent) register is selected for a write; or
if the GO bit is set, the DX20 will check for correct C bus parity
and set the appropriate error bit (ILR or RMR), but otherwise will
ignore the C lines. The controller can write the attention sum-
mary and maintenance registers while GO is set without getting an
RMR.

5.2.1.6 Diagnostic Link Read/Write Sequences - The read/write
cycles over the diagnostic link are essentially the same as the
control bus timing.

5.2.1.7 Data Bus Read Sequence - The ¢'ata bus read cycle is
initiated when the controller 1loads a read command into the
control register of the device via the control bus. If the device
determines the command is valid, it enables the D 1lines and
asserts OCC. Not more than 100 microseconds after 1loading the
command the controller asserts RUN which is issued to the device.
When the device has the first word it gates it onto the D 1lines
and asserts SCLK. After the controller receives the SCLK asser-
tion and following a time that is approximately 60 percent of the
nominal SCLK period, the device negates SCLK. The controller then
receives the SCLK negation at which time it strobes the D lines
and checks for correct parity. If there is more data to be read;
after a time that is not less than the remaining time of the
nominal SCLK period, the device gates the next word onto the D

5-9

lines and asserts SCLK. This sequence continues until the last
word of the transfer. The device then asserts EBL, which is
issued to the controller. At this time the controller must decide
whether or not to have the device continue the read operation,
without disconnecting from the data bus (the controller may have
already negated RUN). If the controller decides it doesn't want
to continue, it negates the RUN line not later than 500 ns after
receiving EBL. After a cable delay the device receives the RUN
negation. Not less than 1500 ns after asserting EBL, the device
negates EBL and samples the RUN line. If RUN has been negated,
the device disables the D lines and negates OCC. After the con-
troller receives the EBL negation another data transfer can be
started.

5.2.1.8 Data Bus Write Sequence - The data bus write cycle is
initiated when the controller loads a write command into the
control register. If the device determines that the command is
valid, it enables the data bus receivers and asserts OCC. Not
more than 100 microseconds after loading the command, the con-
troller has gated the first word onto the D lines and asserted
RUN. After a cable delay, the device receives the RUN assertion.
When the device is ready to accept the first word it asserts SCLK.
The controller receives the SCLK assertion and then asserts WCLK
which 1is issued to -the device. The device receives the WCLK
assertion and strobes the data from the D lines and checks parity.
After a time that is approximately 60 percent of the nominal SCLK
period the device negates SCLK. The controller receives the SCLK
negation, then negates WCLK and gates the next word onto the D
lines. After a delay the device receives the WCLK negation. If
more words are to be written; then after a time that is not 1less
than the remaining time of the nominal SCLK period; the device
again asserts SCLK, and the above sequence is repeated. After the
negation of SCLK for the last word to be transferred, the device
asserts EBL. From this point, the termination of the transfer is
the same as for a data bus read operation.

5.2.1.9 Error Handling - Error handling in the DX20 is normally
performed by the microprocessor, under control of the microcode.
There are several conditions where the hardware provides error
handling. One of these is the setting of ATA which occurs either
on the trailing edge of EBL and the microprocessor has stopped, or
if OCC (occupied) is not set and the microprocessor stops. A
second condition occurs with the setting of ATA on the following:
if GO is not set and a control bus parity error is detected by the
Massbus interface, or, the controller accesses an illegal
register.

In the case of EXC (exception), all error conditions that cause .
composite error to be asserted will cause EXC to be set if OCC is
set. Under the control of the microprocessor, an EBL can be
generated to terminate the transfer. If the microprocessor stops
while OCC is set, this will set EXC, which in turn will generate
an EBL. On the trailing edge of EBL; OCC and EXC will be cleared
(and GO, if it has not been cleared previously) and ATA will be

5«10

set, assuring a proper termination sequence.

5.2.2. Massbus Length and Throughput Considerations

The maximum length of the Massbus is determined by several
factors, including; control bus timing requirements; system
throughput requirements; and any 1limitation imposed by the
particular Massbus controller the DX20 is connected to.

The control bus timing limits the effective length (the sum of
cable lengths used plus loading effects of multiple devices) of
the Massbus to 160 feet, assuming a total propagation delay of 375
ns. The total propagation delay is based on a delay of 2 ns/ft of
cable plus 30 ns max. transmitter delay and 25 ns max. receiver
delay.

Calculating the 1length of the Massbus on the basis of system
throughput requirements is quite difficult. The following
calculations assume a device write operation, and a data path
response of 80 ns (this latter time may be arbitrarily long
depending on the transfer rate of the slave device). A device
write presents the worst case, since an SCLK, issued by the DX20,
propagates along the bus to the controller, and then back along
the bus as WCLK to the DX20. Assuming the 1longest possible
Massbus, this could take 750 ns (2 x 375). Before another SCLK
can be generated, the DX20 issues a MSTR REQ to the data path and
musc receive z MSTR ACK. This sequence, including other internal
delays is as follows: '

WCLK to MSTR REG 60 ns
MSTR REQ to MSTR ACK 80 ns
MSTR ACK to SYNC ENA%* 60 ns
SYNC ENA to SCLK 116 ns (2 x 58)
TOTAL 316 ns

* SYNC ENA is not really a signal, but an intermediate point
between receiving MSTR ACK and generating SCLK. This is done to
separate fixed delays from time base figures.

Thus, the total time between SCLK's would be 750 + 316 = 1066 ns.
This implies that the maximum rate of transfer over the Massbus
would be 0.938 MHz (1066 ns per 18-bit word). However, due to the
discrete SCLK values available, the closest to this rate is 0.823
MHz (1215 ns). Even though the sequence would be completed in
1066 ns, another 149 ns would have to elapse before another SCLK
could be generated. Therefore, for SCLK periods greater than 1066
ns, reducing the length of the Massbus will not improve the
transfer rate. This example is used only for determining the
pocint at which cable 1length becomes a factor in throughput
calculations.

5-12

For . SCLK periods less. than 1066 ns a reduction in the length of
the Massbus is necessary to maintain the maximum rate of transfer
- over the Massbus. The specified maximum rate of transfer is 2 MHz
or 500 ns per 18-bit transfer (see restrictions below) . Again,
because of discrete time rates, the nearest to this value is 1.919
MHz or 521 ns. To find the maximum cable length, the internal
delays discussed above, plus transmitter/receiver delays, must be
subtracted from this figure:

SCLK PERIOD 521 ns
INTERNAL DELAYS -316 ns
TRANS/RECR DELAYS | -110 ns
REMAINING FOR CABLE DELAY 95 ns

Remembering that this is a two-way cable delay and at 2 ns/ft, the
maximum cable length would be 95/4=24 feet. The above calculation
leads to the following formula:

Max. Cable Length = SCLK PERIOD -426 , SCLK PERIOD < 1066 ns
4 .

The restriction is required since SCLK periods greater than 1066
ns would indicate a cable length greater than 160 feet, which is
the limit set by the control bus. The graph in Figure 5-3 shows
Massbus cable length versus SCLK period. The variation in SCLK
period and cable length is shown as being continuous, where in
reality, both have discrete increments.

The maximum rate of transfer over the Massbus is restricted
further, due to current design limitations in the RH20. It is
expected that this 1limitation will be eliminated in the near
future. The current maximum transfer rates are as follows in
Table 5-1.

Table 5-1 Massbus Transfer Rates

System RH20 Port Min. SCLK Nearest SCLK Transfer % Below

Clock Priority Period(ns) Period(ns) Rate(MHz) Max.Rate
(MHz) ’ ‘ :

25 Low 1695 , 1736 ~ 0.576 2.4

25 High 1130 1215 0.823 7.5

29 Low 1483 1563 0.640 5.4

29 High: 989 1042 0.960 5.4
Massbus spec 500 521 1.919 4.2

Figure 5-3 Massbus Length vs. SCLK Periods

5=-14

It is apparent that until the RH20 restriction is overcome, the
Massbus cable length is not a limiting factor, except in the case
of a 29MHz CPU, and a high priority port.

Table 5-2 lists the available SCLK periods. These periods assume
that there is enough time after the negation of SCLK to complete
the data path handshake before the full SCLK period has elapsed.
If this is not the case, the period of the SCLK will be extended,
but not the time that SCLK is asserted. The period of the SCLK is
adjusted by setting four switches on the M8603 Massbus data board.
The times listed assume a 17.28 MHz crystal oscillator.

vTable 5-2 DX 20 SCLK Periods

Switch ' SCLK Transfer Duty
Setting (OCTAL). Period (ns) Rate (MHz) Cycle (%)
0 2951 0.339 64.7
1 ; 2778 U.360 64.6
2 2604 0.384 64.4
3 2431 0.411 64.3
4 2257 0.443 64.1
5 2083 0.480 63.9
6 1910 | 0.524 63.6
7 1736 0.576 63.4
10 1563 0.640 63.0
11 1389 0.720 62.5
12 1215 0.823 61.9
13 1042 0.960 61.1
14 868 1.152 60.0
15 | ~ 694 1.441 58.4
16 521 1.919 55.5

17 00 0 100.0

O~-15

5.2.3 Channel Bus Interface

5.2.3.1 Introduction - The channel bus interface provides a
control and data 1link between the slave device and the DX20.
Logic in the interface handles communication between the micro-
controller and the slave device, and high speed data transfers
between the data path interface and the device. The channel bus
interface provides the hardware necessary to interface to the
IBM~style channel bus and implement the protocols required of a
channel controller or a control unit on the bus. The signal name
conventions used in this document and in the print sets for the
boards in the channel bus interface assume that the DX20 is acting
as a channel controller with one or more devices connected to it
via the channel bus and appropriate control units. When the DX20
is acting as a control unit, some of the signals are redefined and
their names changed; these reassignments will be noted. Physi-
cally, the logic for the channel bus interface is contained on the
M8607 channel bus board, the optional M8608 channel extension
board, and the G891 power fail and select bypass module, which
plug into slots AFl7, AF29, and Cle, respectively, of the section
II backplane. The M8608 is optional and can be added to provide
the extended bus feature.

5.2.3.2 .implified Block Diagram - A simplified block diagram for
the channel bus interface is shown in Figure 5-4. The channel bus
interface communicates with the rest of the system over three
bidirectional buses: the microbus (UBUS), the slave bus (SLVE) ,
and the channel bus (IBCB). Control, status, sense and diagnostic
information and data can be transferred over the microbus to the
M8602 Microprocessor Board under control of the microcontroller.
the microbus interface is organized as fifteen 8-bit registers;
eleven are implemented on the M38607 Channel Bus Board (UBRA 00-11,
16 octal) and the remaining four are implemented on the M8608
Channel Extension Board (UBRA 12-15 octal). Control, status, and
sense information and data are communicated between the device and
the channel bus interface over the channel bus. Channel data is
transferred between the channel bus interface and the data path
interface over the slave bus as 6, 7, or 8 bit bytes, depending on
the data format. The microbus, slave bus, and channel bus are
described in detail in Section 5.2.

The channel bus consists of 61 unidirectional signal lines (20 are
optional with the extended bus feature) which are bussed in
parallel to all control units on the bus, with the exception of
SEL IN and SEL OUT which are run serially through the control
units. In general, the term 'out' in connection with the channel
bus denotes outward signal propagation from the DX20 when it is
acting as a channel controller and 'in' denotes inward signal
propagation to the DX20. Signals are also classified as either
'bus' lines which carry data, commands, addresses, status, and
sense information or 'tag' 1lines which identify and control
information flow on the BUS lines. Normally, the TAG IN and TAG
OUT lines are used with the bus 0 in and bus 0 out lines to
communicate in single bus mode with the control units on the bus.

o-1¢

Figure 5-4 Channel Bus Interface - Simplified Block Diagram

5-17

To increase throughput, however, the width of the bus can be
doubled by adding the M8608 channel extension board which
implements bus 1 in and bus 1 out to permit the dual bus mode of
operation. Most of the data path logic is duplicated on the
M8608.

The bus out lines may be driven by either the output of the device
register (DR) in the slave bus transceiver or the bus out register
(BOR). the DR buffers data transferred to and from the data path
interface over the slave bus and is involved in high speed dats
transfers over the bus lines. The BOR is used to transmit control
information over the channel bus and can be loaded by the micro-
controller via the microbus directly or indirectly through the
l6-word scratch pad. The bus in lines can be read by the micro-
controller over the microbus, or the data can be transferred to
the data path interface over the slave bus for high speed
transfers. The direction of data transfer is established by the
logic level on the DATA TO DEV H line (+3 V = device write, GND =
device read) from the Massbus data board. High speed transfers
are indicated by the assertion of DX HIGH SPEED L (GND = asserted)
by the data path interface. The channel bus control (CB CTRL)
logic provides limited response by the channcl bus interface to
events for which real-time constraints prevent direct micro-
conirolle. control and handles the request-acknowledge handshake
sequences requirea to transfer data between the data path
interface and the slave device. Additional control unit control
(CU CTRL) logic provides features required for operation as a
control unit.

The G891 power fail and select bypass module performs two
functions: it provides a CROBAR H signal which is grounded when
power fails; and electromechanically bypasses the SEL IN or SEL
OUT signal, which is serially propagated by selection logic in the
control units, in the event power fails or the DX20 goes off line.

5.2.3.3 Data Transfer Rate

Introduction - An important characteristic of the DX20 is its high
speed transfer rate. The maximum transfer rate that can be
supported over the channel bus can only be expressed in general
terms due to the many interdependent factors involved in data
transfers between the host and slave device. One significant
aspect of the protocol used to transfer data over the channel bus
is the DC interlocked request-acknowledge sequence of the
associated tag 1lines. The device requests bus transfers as
specified by the requirements of the storage medium and, in the
case of constant motion devices such as magnetic tape and disk
units, failure of the channel controller to respond to a request
in the proper time causes an overrun condition. Consequently, the
maximum inherent transfer rate capability of any subsystem
including the DX20 must exceed the highest transfer rate required
by the device. Factors which influence the maximum possible
transfer rate are discussed in the following sections which are
organized hierarchically to reveal the degree to which system

§~-18

components affect the throughput capability of the system. The
discussion assumes a system configuration in which the DX20 is
acting as a channel controller with one or more TX0l or TX02-type
control units attached to the channel bus.

Inherent Channel Transfer Rate of the Channel Bus Interface - If
there were no time delay in the request-acknowledge response for
data transfers over the slave bus or channel bus, that is, SLVE
ACK is issued immediately in response to SLVE REQ and control unit
responses on the DAT IN and SRV IN lines to activity on the DAT
OUT and SRV OUT lines are instantaneous, the channel bus interface
will transfer data at its inherent speed, limited only by its own
internal delays. The maximum time to cycle through the transfer
of one byte in single bus mode is 400 nanoseconds, which corres-
ponds to a transfer rate greater than 2.5 megahertz (2.5 megabytes
per second). In dual bus mode, two bytes must be obtained
serially from the data path interface for parallel transmission
over BUS 0 and BUS 1 to the device during device write operations
and vice-versa for read operations. The additional slave bus
cycle adds another 185 nanoseconds to the total cycle, raising it
to a maximum of 400 + 185 = 585 nanoseconds, which corresponds to
a transfer rate in the dual bus mode greater than 1.7 megahertz
(3.4 megabytes per second).

Inherent Channel Transfer Rate of the DX20 - The inherent transfer
rate of the DX20 treated as a complete unit is a function of the
Massbus interface, the data path interface, and the channel bus
interface. The calculation will be made assuming immediate
request-acknowledge responses over the channel bus, and the
Massbus interface transfer rate is not a limiting factor. If the
Massbus interface is allowed to transfer data at rates up to 1.2
megahertz by appropriate set up of the interface (See Section
5.2.4.4), the transfer rate will not be Massbus limited for any of
the data formats implemented in hardware (See Section 5.2.4.3).
In single bus mode, a SLVE REQ will be honored within 80 nano-
seconds by a SLVE ACK, thus increasing the maximum cycle time of
the channel bus interface to 400 + 80 = 480 nanoseconds, which
corresponds to a channel transfer rate greater than 2.0 megahertz
(2.0 megabytes per second). In the dual bus mode, however, the
channel bus interface must make two reguests to the data path
interface during each transfer cycle. The second request may
occur in as little as 185 + 30 = 215 nanoseconds after the first,
causing greater latency in servicing the second request because of
the time the data path interface takes to format the second byte.
Assuming all worst-case conditions (including worst data format
with requests made to the data path interface at the worst
possible time), the first request will be honored within 80
nanoseconds and the second within 165 nanoseconds, increasing the
maximum cycle time of the channel bus interface in dual bus mode
to 585 + 80 + 165 = 830 nanoseconds, which corresponds to a
channel transfer rate greater than 1.2 megahertz (2.4 megabytes
per second).

Channel Transfer Rate of the DX20 with a Control Unit - The

maximum channel bus transfer rate that can be supported by the
system is dependent on the Massbus transfer rate, timing in the
DX20 and control unit, and the length of the channel bus cable.
The results of an analysis of the performance of the tape
subsystem with regard to the Massbus transfer rate, the channel
bus transfer rate, and cable length are shown in Figure 5-5 for
TX01 and TX02-type control units. For the case in which the
channel bus transfer rate is Massbus limited, the transfer rate is
averaged over four bytes, so the analysis is applicable for
control units such as the TX01 and TX02 which buffer at least four
bytes of data. :

TX01l Control Unit - The timing diagram for a TX0l-type control
unit shows the DC interlocked handshake of the SRV IN (request)
and SRV OUT (acknowledge) tag lines used to transfer data over the
bus lines. The diagram depicts the limiting case in which the
capacity of the channel bus has been reached. A transfer cycle
can be divided into four time intervals: T1A which represents the
time the channel controller takes to assert SRV OUT after the
rising edge of SRV IN; TI1B which represents the time the channel
controller takes to drop SRV OUT after the falling edge of SRV IN;
T2A which represents the time the control unit takes to drop SRV
IN after *he rising edge of SRV OUT; and T2B which represents the
time tne control un.t takes to assert SRV IN to begin the next
transfer cycle after SRV OUT falls. Tl = T1A + TI1B represents the
total delay introduced by the channel controller during a transfer
cycle and T2 = T2A + T2B represents the total delay introduced by
the control unit. Additionally, TC represents the round trip time
required for a signal to travel the length of the channel bus
cable and back. The timing diagram shows signals as viewed at the
channel controller, so TC is grouped with T2A and T2B.

For the case in which the channel bus transfer rate is not Massbus
limited (SCLK rate not limited to less than 1.2 megahertz) and a
TX01l is transferring data at the maximum rate that the DX20 will
support, TlA will be less than 480 - 50 = 430 nanoseconds for the
single bus mode. Graphs in Figure 5-5 show the maximum guaranteed
data rate as a function of cable length for different values of
TD, where TD = T2, for single bus mode and dual bus mode. The
permissible data rates are bounded by the 200 foot maximum allowed
cable length and the line corresponding toi the maximum value of
T2 for the control unit. '

The case in which the channel bus transfer rate is limited by the
maximum allowable Massbus transfer rate, interdependent factors
which are a function of the data format, are involved in the
transfer rate calculation. It is possible, however, to bound the
maximum channel bus transfer rate with a guaranteed value which is
a simple function of the channel bus cable length, the maximum
allowed Massbus transfer rate, and the inherent delay of the
control unit. If the maximum Massbus transfer rate is not limited
to less than 1.2 megahertz, the channel bus transfer rate will not
be Massbus 1limited and the preceding analysis applies. If

5«2 v

Figure 5-5 Single and Dual Handshake Timing

§-~21

limitations of the Massbus controller, however, necessitate
reducing the transfer rate to less than 1.2 megahertz (830
hanoseconds per transfer) by appropriate setting of switches in
the Massbus interface (See Section 5.2.4.4), the maximum channel
bus transfer rate that can be supported for a given control unit
and channel bus cable length may drop. TM, the minimum period
allowed by the Massbus interface for a Massbus transfer cycle, has
been included in the expression which bounds TD in Figure 5-5,
The additional term RX(TM - 830 NS) in the expression for TD
assumes that the additional time over the 830 nanosecond limiting
value required to complete a Massbus transfer is not hidden and,
therefore, must be added onto the following channel bus transfer
cycle, but since every Massbus word contains at least two bytes,
the added time (TM = 830 NS) can be averaged over a minimum of two
bytes. Consequently, when operating in single bus mode with one
byte transferred per bus cycle, R = 0.5, and when operating in
dual bus mode with two bytes transferred per bus cycle, R = 1.0.
The expression for TD, then includes terms representing delays
caused by the control unit and Massbus transfer rate limitations.

TX02 Control Unit - The timing diagram for TX02-type control units
shows the dual handshako protocol used over the channel bus. The
SRV IN (request) and SRV OUT (acknowledge) tag lines form one pair
of interlccked signals and the DAT 1IN (request) and DAT OUT
{acknuwledge) tag Yines form a second pair. The control unit
alternates SRV IN and DAT IN, each tag line initiating a bus
transfer. The diagram depicts the limiting case in which the
capacity of the channel bus has been reached. A transfer cycle
can be divided into two time intervals: Tl which represents the
time the channel controller takes to assert DAT OUT after SRV IN
falls or to assert SRV OUT after DAT 1IN falls, and T2 which
represents the time the control unit takes to drop DAT IN after
DAT OUT is asserted or to drop SRV IN after SRV OUT is asserted.
Additionally, TC represents the round trip time required for a
signal to travel the length of the channel bus cable and back.
The diagram shows signals as viewed at the channel controller, so
TC is grouped with T2. A fourth pertinent interval, T3, is the
time that elapses between the fall of SRV IN and the rise of DAT
IN or the fall of DAT IN and the rise of SRV IN. A transfer cycle
begins with the fall of SRV IN or DAT IN, but its execution is
suspended 50 nanoseconds after beginning, awaiting the assertion
of DAT IN or SRV IN, respectively, if it has not already occurred.

When control units such as the TX(2 operate at the maximum rate
that the DX20 will support, T3 is less than 50 nanoseconds. For
the case in which the channel bus transfer rate 1is not Massbus
limited (SCLK rate not limited to less than 1.2 megahertz) and T3
is less than 50 nanoseconds, Tl will be less than 480 nanoseconds
for the single bus mode and less than 480 + 350 = 830 nanoseconds
for the dual bus mode. Measurements on a tape subsystem employing
a TX02 which is capable of data rates up to 1.25 megabytes per
second show T2 to be approximately 100 nanoseconds. TC is 3
nanoseconds per linear foot of cable. Graphs in Figure 5-5 show
the maximum gquaranteed data rate as a function of cable length for

5-22

different values of TD, where TD = T2, for single bus mode and
dual bus mode. The permissible data rates are bounded by the 200
foot maximum allowed cable length and the line corresponding to
the maximum value of T2 for the control unit.

The case in which the channel bus transfer rate is limited by the
maximum allowable Massbus transfer rate requires the addition of
another term to the corresponding expression for TD. The added
term is the same as that for TX0l-type control units.

5.2.4 Data Path Interface

5.2.4.1 Introduction - The data path interface provides an
auxiliary data link between the Massbus interface and the channel
bus interface for transferring data at higher rates than is
possible with the microcontroller. It also performs the bit/byte
manipulation required to pack data into or unpack data from the
host memory as it is received or transmitted over the channel bus.
Physically, the logic for the data path interface is contained on
the M8605 data storage board and the M8606 data formatter board
which plug into slots AD10 and AF12, respectively. ‘

5.2.4.2 Simplified Block Diagram - A simplified block diagram for
the dat> rath interface is shown in Fiqure 5-6. The data path
interrace communicces with the rest of the system over three
bidirectional buses: the microbus (UBUS), the master bus (MSTR) ,
and the slave bus (SLVE). Status, control, and diagnostic
information is transferred over the microbus to the M8602
microprocessor board under control of the microcontroller. The
microbus interface is organized as sixteen 8-bit registers; eight
are implemented on the data storage board (UBRA 00 - 07 octal) and
the remaining 8 are implemented on the data formatter board (UBRA
10 - 17 octal). Host data is transferred between the Massbus
interface and the data path interface over the master bus as
l6-bit PDP-11 or 18-bit PDP-10/20 Massbus words. Channel data is
transferred between the channel bus interface and the data path
interface over the slave bus as six, seven, or eight bit bytes,
depending on the data format. ’

The formatter links the master and slave bus transceivers on the
data formatter board and performs the bit/byte manipulation
required to pack and unpack the data as it passes it between the
transceiver registers. Data formatting and the arbitration of
master and slave requests is handled by microprograms which reside
in a 512 20-bit word ROM. There are a total of 27 separate,
closed loop programs which implement the 9 data formats available
in hardware for device write, read forward, and read reverse
operations. The direction and type of transfer is established by
the level of the DATA TO DEV H line (+3 V = device write, GND =
device read) from the Massbus data board and the particular
program which the formatter is directed to execute, both of which
are under control of the microcontroller over the microbus. When
the data path interface is enabled to transfer data, the DX HIGH
SPEED L line is asserted (GND = asserted). The MSTR, SLVE, and

5~23

‘Figure 5-6 Data Path Interface - Simplified Block Diagram

5-24

UBUS éignals are defined in Chapter 4.

Two data counters on the data storage board, a Massbus counter
(MC) which counts 16 or 18-bit words transferred over the master
bus and a byte counter (BC) which counts 6, 7, or 8-bit bytes
transferred over the slave bus, can be used to indicate the total
number of words and bytes involved in a transfer or to terminate
the transfer when a predetermined number of words and/or bytes
have been processed.

5.2.4.3 Data Formats - The following 9 formats are supported by
the hardware:

Industry compatible (9-track)

Core dump (9-track)

High density (9-track)

6-bit ASCII (7-track)

7-bit ASCII - Mod 1 (9-track with bit 35)

7-bit ASCII - Mod 2 (9-track without bit 35)

11 - Mod 1 (9-track with normal byte sequence)
11 - Mod 2 (9-track with reverse byte sequence)
COBOL EBCDIC (3-track)

o e . e . e L]

S dO U W -

The relc'.onship between the 18-bit host words and the 6, 7, or
3-bit channel worcs for the various formats is shown in data
format charts (see drawing package). The diagram shows how bytes
transferred over the slave bus data lines are mapped into the
words transferred over the master bus data lines and vice versa;
no additional manipulation within words or bytes occurs in the
Massbus interface or channel bus interface. Device write forward,
read forward, and read reverse operations are possible for all of
the data formats with the following additional capabilities:

1. For write operations, transfers can be terminated after
any number of bytes have been transferred, irrespective
of word boundaries.

2. For read operations, records of any number of bytes can
be read; zeros are mapped into remaining byte positions
within words before they are sent to the host. The
transfer ends when the formatter has sent the last word
(with the last byte) in the sequence when reading forward
or the first word (with the first byte) in the sequence
when reading reverse.

3. For read reverse operations, byte packing can start with
any byte in the sequence to permit proper formatting of
records of known length with byte counts which do not
correspond to an integral number of 18-bit words for the
11 modes, 36-bit words for the industry compatible, core
dump, 6-bit ASCII, 7-bit ASCII, and COBOL EBCDIC modes,
or 72-bit words for the high density mode.

5.2.4.4 Data Transfer Rate - The data transfer rate is ultimately

5-25

determined by the device attached to the channel bus which drives
the data path by requesting data as it needs it. The Massbus
interface establishes the transfer rate over the Massbus by the
rate at which it issues SCLKs to the host. Circuitry in the
interface limits the maximum SCLK rate to prevent overrunning the
host, and thus sets a limit on the maximum data rate that can be
achieved over the channel bus. The limit on the maximum SCLK rate
is adjustable via DIP switches on the M8603 Massbus data board
from 0.34 to 1.92 megahertz in 14 increments, to allow
optimization of the maximum transfer rate of the DX20 for the I/0
capabilities of the particular host machine and the requirements
of the peripheral device.

The Massbus and channel bus protocols and the handshaking over
internal buses in the high speed data path (including the master
bus, the slave bus, and buses within the data path interface)
prevents the possibility of data overruns within the DX20;
eliminates the need for overrun detection in the high speed data
path; and renders ineffective the use of SILO buffer storage on
the M8605 data storage board to minimize overruns. Overruns occur
in and are detected by either the host or the device.

The data path interface is capable of transferring data over the
slave buv~ at rates up to 2.4 megabytes per second; provided the
Massbus interface s set up to allow a maximum SCLK rate of 1.2
megahertz, the closest higher switch setting being 1.44 megahertz.
The maximum data rate that can be attained over the channel bus is
dependent on timing within the channel bus interface and device
controller and the length of the cable connecting the two.

5-26

5.3 DX20 CONTROLLER DESCRIPTION

5.3.1 Microcontroller Description

The DX20 microcontroller (Figqure 5-7) is a high-speed
microprocessor (MP) which executes a sequence of microinstructions
retained within a writable control store. Microinstructions are
loaded through the MP's diagnostic 1link; a bus containing a
host-MP control interface and a 16-bit (plus parity) bidirectional
data bus. This bus is used for both loading microinstructions and
reading the MP's diagnostic registers.

The MP interfaces with the RH20 Massbus controller and a device
via the Massbus interface and device interface modules. Bidirec-
tional data and parity lines; addressing; handshake; interrupts;
and other control between the MP and interfaces is provided over
the microbus.

Sequencing (addressing) of the stored microinstructions is
controlled by a program counter (PC). A PC multiplexer for user
loading and stack nesting is implemented for use in high-
performance microstore applications. The PC can be loaded from
either the stack, the Massbus for user loading; or from the
arithmetic logic with (ALU) for conditional jumps. PC data is
saved evory cvele and placed in the stack buffer (STB) 1in
anticipation of a stack push operation. If a stack push is
decoded, the contents of STB will be written into the stack.

The stack pointer (SP) is incremented before pushing, and
decremented before popping operations. The SP consists of a 4-bit
synchronous reversible up/down counter. On initialization the
counter is loaded at zero, and then incremented to one prior to
pushing the stack. From that point it is incremented by one;
prior to each successive push operation. Pop operations are
similar with the counter being decremented by one for each
operation. Attempting to perform either operation in the wrong
direction when the counter is at minimum (0) or maximum (15);:
results in the setting of the over/underflow flip~-flop. For
example, a pop (MOV instruction with destination bits = 7) when SP
is equal to zero causes an underflow. A push (JUMP instruction
with condition bits = 7) when SP equals 15 causes an overflow.

Microinstructions are loaded into an instruction register (IR) for
subsequent decoding to define the various MP. operations to be
performed. They are then decoded by a source read-only memory
(SROM) , destination ROM (DROM), and an ALU function ROM (FROM).
The ALU results are clocked into the ALU buffer (BALU) and trans-
mitted to the destination specified by the DROM. Destinations can
be: output data to the microbus (data out); the working memory;
the buffer register (BR); or the general purpose accumulator
registers (AR). Input data can be received from: the microbus
(data in); the working memory; the BR shift-right register; or the
operand (immediate data) of the current microinstruction.

5.3.1.1 Microbus - The microbus is the internal control bus used

5-27

Figure 5-7 Microcontroller - Simplified Block Diagram

- B-28

by the microcontroller to communicate with the other DX20
interfaces. It contains address, data, and control lines which
allow the microbus interface to be accessed and controlled by the
microcontroller. Microbus timing is shown in Figure 5-8. The
following paragraphs contain a description of the microbus signal
lines.

Data Lines -~ Microbus data lines transmit data between the
microbus interfaces. They are bidirectional and perform the
following functions.

l. During a read operation; data is transmitted from the
external microbus interface to the microcontroller.

2. During a write opération; data 1is transmitted to the
) external microbus interface from the microcontroller.

Data Parity - The microbus parity line contains odd parity for the
data being transferred on the microbus lines.

Address Lines - I/0 selection information for addressing a

microbus interface is *transmitted on the microbus address lines.

This address consists of two fields; as follows:

+. Eight 1/0 bank select lines; each 1line generally
specifying a microbus interface.

2. Five register select lines; generally specifying a
register within a microbus interface.

I/0 Strobe (STR) - A control signal issued to the microbus
interfaces indicating the start of an 1/0 operation. Only the
addressed microbus interface is involved in this operation, and
returns a reply to the microcontroller.

Data Transfer Direction - A control signal issued by the micro-
controller to the microbus interfaces to indicate the data
transfer direction for an 1/0 operation. The two signals used for
this purpose are:

1. DATO: data out from the microcontroller
2. DATI: data in to the microcontroller

Interrupt - This signal is issued to the microcontroller by a
microinterface indicating it requires attention or servicing. The
microcontroller scans the interrupt lines periodically and
determines the priority of servicing.

Initialize - This signal is used to reset/initialize 2ll inter-
faces on the microbus. It is generated by one of the following
conditions:

l. INIT: issued by massbus
2. DX RESET: issued by the host

5-29

Figure 5-8 Microbus Timing (2 sheets)

5«30

3. Power OK: received from power supply on power up
4. INIT: issued by microcontroller

MP Running - The microcontroller signal that indicates its clock
has started and is running. This signal notifies interfaces
connected to the microbus when the clock has stopped as a result
of an abnormal condition.

5.3.1.2 Program Storage - The MP control store memory contains 2K
of 16-bit words (Figure 5-9). Each 1000 words is defined as a
section consisting of four pages (page = 256 words). Sequencing
(addressing) of the 16-bit microinstructions is controlled by the
program counter. The microinstruction read from the addressed
location is loaded into the instruction reister to be decoded in
order to define the MP operation required.

5.3.1.3 Instruction Cycles - There are four types of micro-
controller instruction cycles: data in, data out, data in/out, and
non I/0 cycle. The first three types require the MP to utilize
the microbus for execution which causes the MP to wait for a
response from the module accessed by the instruction.

5.3.1.4 Instruction Set Summary - The 16-bit microinstruction
word, dc.oded by the instruction decode logic, determines the
events that are to occur during the remainder of the instruction
cycle. Bits 15, 14, and 13 (OP CODE) determine the source of the
current operation; bits 12, 11, and 10 determine the condition for
a JUMP instruction or the destination of data for a MOVE
instruction. Bits 9 through 0 are used as shown in the following
description.

Move immediate - MOV(I) - This instruction moves the operand to
the destination specified and at the end of execution, alters the
address register of the working memory, as specified by the MA
CONT field.

Move input - MOVE (INP) - This instruction moves information from
the specified register (bits 3 through 0, and bit 15) of a
microbus interface, selected by the input bank register, to the
specified destination. When the destination is to be a microbus
interface, bits 7 through 4, and bit 10 specify the register of
the selected microbus interface. Alteration of the working memory
address register is controlled by the MA CONT field.

Move Memory - MOVE(MEM) - The results contained in the ALU are
transferred to the specified destination. ALU data is formed from
input from the working memory and the accumulator specified by AC
ADDR. The ALUF field (bits 3 through 0) specifies the ALU
function to be used to determine the result. At the conclusion of
execution, the working memory address is altered as specified by
MA CONT.

Move BR - MOVE(BR) - Operation of this move instruction is
identical to the MOVE (MEM), with the exception that the BR

5=31

Fiqure 5-9 Microstore Addressing

>5=32

register control is the source. An end around shift can be
accomplished from BR bit 0 through the source multiplexer, ALU,
and BALU back to the serial input of BR. :

Jump Immediate - JUMP(I) - This instruction performs a jump
immediate operation within a 1K microstore bank. The condition
field, of the instruction, specifies the type of jump operation.
When jumping, the operand and page field are loaded into the PC
denoting the address of the next microinstruction.

Jump memory - JUMP(MEM) - This instruction utilizes the working
memory and an accumulator to form the eight least significant bits
of the branch address. If the condition field requirement is met,
the eight bits plus the page bits (8 and 9) are loaded into the
PC. If the section select enable (bit 7) is a one, bits 4 and 5
of the microinstruction are loaded as the section address (bits 10
and 11) of PC. For proper operation, when section select is
enabled, the ALUF field should contain select B as its function
code.

Jump BR - JUMP(BR) - This instruction is similar to a JUMP(MEM),
except that the contents of BR are used for the source data.

5.3.1.5 Internal Registers - Basic block diagrams of the
following microcontioller registers are shown in Figure 5-10.

Working Memory - The working memory contains 1K x 9-bit (8 data
pPlus parity) read access programmable memory (RAM). Each bit
consists of a 1K x 1 bit RAM, addressable by a 10-bit (9-0) memory
address (MA) counter. Bits 9 and 8 are the most significant bits
of the address and form the MA extension. These two bits are
derived from the contents of the two least significant bits (1 and
0) of the BALU. They are generated during an interrupt operation
when the extension mode operation is specified, as indicated by
the contents of the MA CONT field of the instruction word. The
remaining eight MA bits (7 through 0) are derived from bits 7
through 0 of the BALU. 1Incrementing of the MA occurs at the end
of the instruction cycle.

Accumulator - The microprocessor provides eight 8-bit general
purpose accumulator registers. These registers have read/write
capability when addressed via bits 6-4 (AC ADDR field) of the
instruction word. 0dd parity is maintained in the register and
checked on each access operation. Register outputs are applied to
the A input of the ALU.

BR Register - The BR register is an 8-bit shift-right register
which shifts "end off", providing an end around shift from the BR
through the source mux, ALU, BALU back to the BR. During the
shift, the most significant bit of BR is loaded from the least
significant bit of BALU. JUMP instructions which require branch
operations include a CONDITION field containing either BRO, 4, or
7.

5-383

Figure 5-10 Microcontroller Registers (4 sheets)

5=34

Status Register - The 6-bit status register supplies the microcode
with information concerning internal or external (interrupt)
events.

An ALU carry (C bit) indicates a carry occurred from the most
significant bit position of the ALU as a result of the last move
instruction with an arithmetic ALU function.

The 2 bit set, indicates that the result in the ALU from a MOVE
instruction is equal to all 1's. Typically, the Z bit is utilized
when comparing the A and B inputs of the ALU. A magnitude
comparison is made by placing the ALU in the 1's complement
subtract mode.

Interrupt bits (INT 3-0) are set from four independent lines of
the microbus. Sampling of these lines occurs every T60 time of
each cycle. Activity on the lines is sensed by the microcode
sampling (branching) the interrupt sense line which is generated
by any one of the interrupts. The microcode interrogates the
status register to determine which interrupt occurred and resolves
the action which is to follow.

I/0 Select Logic - The I/0 select logic consists of the; I1/0 bank
register, I,/0 field select register and the I/0 select register.

Outputs from BALU and IR are issued to the bank register to
determine input/output select control.

The input and output select levels are decoded in the I/0 register
select register and form the microbus I/0O select control signals
and microbus address signals.

Bit 6 of the bank register provides control to reset the stack
pointer. This bit must then be reset prior to using the stack
pointer function.

Clearing (initialization) of the nmicrobus interface is
accomplished either from the host through the Massbus or by the
setting of bit 7 in the bank register. Reset is wrapped around
and clears bit 7 when it is generated by bit 7 being written.

Diagnostic Link - The diagnostic link provides the host interface
with auxiliary access to the microcontroller. It allows access to
the internal microprocessor registers and microstore loading.
Diagnostic controls within the microcontroller permit host
diagnostics to interrogate, scan, and diagnose problems. '

Pa¥ity Checking - Parity error detection in the data path 1is
provided by parity logic at the A and B inputs to the ALU. AC
outputs determine the ALU-A input check, and SMUX outputs
determine the ALU-B check. Parity checking on the ALU-B source
input is disabled when a source without parity is decoded.

Parity is generated for the data output of the ALU and is issued .

5~35

to the BALU (ALU buffer) coincidental with the ALU data.

Parity checking of the 16-bit microinstruction word (from the IR
MUX) occurs when a machine cycle is executed, or when a diagnostic
write of the RAM is performed. When an IR parity error is sensed,
the current cycle is inhibited from being executed.

System Error Detection - Various types of error conditions can be
detected by the internal hardware of the microcontroller. When an
error is detected, the microcontroller clocks are stopped.

Stack over/under flow errors occur when a push operation is
attempted on a full stack, or when a pop operation is attempted
from an empty stack.

The detection of even parity in the IR register or at the A or B
input of the ALU causes the microcontroller to stop.

=386

5.3.2 Massbus Interface Description

5.3.2.1 Introductlon - The Massbus interface is composed of two
boards which physically and 1logically divide it into the two
sections that correspond to the functions of the Massbus. The
Massbus control board (M8604) provides interfacing to the control
bus section of the Massbus, the internal microbus of the DX20, the
diagnostic 1link, and communicates with the Massbus data board.
The Massbus data board (M8603) provides interfacing to the data
bus section of the Massbus, the master bus (MSTR) connecting the
Massbus and data path interfaces, and communicates with the
Massbus control board. In addition, the Massbus interface
contains the data buffer input multiplexer, data buffer output
multiplexer, and data buffer control loglc. The M8604 is a hex
board located in slot AF08 and the M8603 is a quad board located
in slot ADOG6. Additionally there are three M5903 Massbus
Transceiver Boards, which are double height boards, located in
slots EF07, EF10, and EFl1l. These boards do not contain control
logic, but convert Massbus differential signals to standard TTL
levels, and vice-versa. Details of the various buses are
contained in Section 5.2.

5.3.2.2 sSimplified Block Diagram - A simplified block diagram of
Massbus interface is shown in Figure 5-11. The figure is divided
into Lwo sections ~howing the control board and data board with
connections to the remainder of the system.

The control bus portion provides device and register selection,
generates timing, and provides access to registers over a 16-bit
bidirectional data path. As viewed from the host, the interface
is organized as 23 lo6-bit reglsters (MBRA 00-06 and 20-37 octal).
These registers are described in Section 4.4.

The microbus portion of the Massbus control board provides device
~and register selection, generates timing, and supplies access to
registers over an 8-bit bidirectional data path. This interface .
is organized as 24 8-bit registers (as viewed from the micro-
controller) denoted as UBRA 00-27 octal. Many of these registers
are common to the host. A complete description of these registers
is contained in Section 4.4.2.

The diagnostic 1link contains a control path and a 16-bit
bidirectional data path to the microcontroller. This link is used
for: loading and verifying microcode into the microstore, starting
and stopping the microcontroller, and providing diagnostic
information to the host for maintenance purposes and system
debugging.

Prior to a checkout, there are three DIP switches located on the
M8604 board that must be set up. A DIP switch located in E48 is
used for device or unit number selection. Only switches 1, 2, and
3 are used in this board, switch 3 being the least significant
(refer to drawing MCOl). DIP packages located in E30 and E31 are
used for setting up the drive type number (refer to drawing MC02).

Figure 5-11 Massbus Interface - Simplified Block Diagram

5«38

The Massbus data board contains the logic which recognizes and
generates signals for transferring data between the host and the
data path interface. It is organized such that data can be
transferred between the data bus and the microbus. This provides
an alternate data path from the host to the device for system
maintenance. The data bus control section includes a circuit for
generating clock signals (SCLK) to the host. In high speed data
transfer mode, the rate at which clocks are generated is deter-
mined by the settings of four switches. For lower speed data
transfers, without the data path, the microcontroller triggers the
clock for each transfer over the Massbus data bus.

5.3.3 Channel Bus Interface

5.3.3.1 Introduction - The channel bus interface 1logic is
contained on three boards in the DX20, the M8607 Channel Bus (CB)
Board, the optional M8608 channel extension (CE) board, and the
G891 power fail and select bypass module. A brief description of
the logic on these boards is given in this section with the aid of
the block dianrams in Figure 5-4. The channel bus interface
circuitry has been partitioned into 35 blocks to permit
identification of the circuit functions implemented in the
intorface. Crawing numbers for tne circuit schematics are
included next to tne blocks to locate the logic circuits which
correspond to each of the blocks.

5.3.3.2 Microbus Interface and Control

Introduction - The microbus interface and control logic provides
communication between the microcontroller and the channel bus
interface by allowing the microcontroller to generate clock
signals and write registers in the channel bus interface via DATO
instructions or sense the logic levels of internal signals and
read registers in the interface via DATI instructions. The
following blocks comprise the microbus interface and control
logic. ‘

Microbus Control (UB CTRL) - The microbus control logic on the
M8608 Channel Bus Board buffers and decodes microbus signals
driven from the microcontroller to generate internal channel bus
interface signals. UB INIT is the buffered equivalent of UBUS
INITIALIZE, UB RUN is the buffered equivalent of UBUS RUNNING, UB
DATI is the buffered equivalent of UBUS DATI, and UB RS 3 - 0 are
the buffered equivalents of UBUS ADRS 3 - (0. The internal UB STB
signal is asserted (I/O SEL 3 asserted) and one of the implemented
lower 15 decimal registers is addressed (UBUS ADRS 4 low). DATO
STB is asserted when UB STB is asserted during DATO cycles (DATI
low). DATI STB is asserted when UB STB is asserted during DATI
cycles (DATI high) which address registers 0 - 7. The microbus
interrupt line assigned to the channel bus interface (UBUS INT 3)
is asserted if one or more of the following conditions are true:
TIME OUT FLAG l, DP PE FLAG = 1, UB PE FLAG = 1, MK PE FLAG = 1,
BUS 1 PE FLAG 1, BUS 0 PE FLAG = 1, CU RESET = 1, or TI DIS IN =

5=39

1 and CHAN MODE = 1.

Microbus Receiver (UB RCVR) - The microbus receiver on the M8608
Channel Bus Board buffers and latches microbus data on the rising
edge of UB STB for use during microcontroller DATO cycles. UBUS
DATA 7 - 0, P is latched as UB DATA 7 - 0, P with both true and
complement data available. All of the bits in the register are
direct set when UB INIT is asserted.

Microbus Parity Checker (UB PAR CHK) - The microbus parity checker
on the M8608 Channel Bus Board checks the parity of the microbus
data latched in the microbus receiver register. UB PE H is
asserted if incorrect (even) parity is detected on the data.

Microbus Address Demultiplexers (UB ADR DEMUX) - There are two
microbus address demultiplexers on the M8607 Channel Bus Board.
One decodes the microbus address lines to generate a pulse on one
of 16 decimal 1lines during microcontroller DATO cycles to the
channel bus interface to load registers, clock or clear flip-
flops, and assert signals in the interface as defined in Section
4.4.3. Fifteer of the lines are identified as LD REG 1 - LD REG
17 and correspond to microbus addresses 01 - 17, respectively; if
a microcontroller DATO cycle to the channel bus interface involves
one of tuese rcgisters, the approprieste LD REG 1 signal will be
asserted while UBUS STROBE is high. The remaining line is
identified as CLR REG 0 and corresponds to microbus address 00. A
50 nanosecond pulse will be generated on CLR REG 0 on the trailing
edge of UBUS STROBE if UBRA 00 is written or on the trailing edge
of UB INIT. Another demultiplexer decodes the microbus address
lines to generate a pulse on one of three lines during micro-
controller DATI cycles to the channel bus interface to read
registers on the M8608 Channel Extension Board and clock the BUS 0
PE FLAG, BUS 1 PE FLAG, and MK PE FLAG flip-flops as described in
Section 4.3.3. The lines are identified as RD REG 7, RD REG 12,
and RD REG 13 and correspond to microbus addresses 07, 12, and 13
octal, respectively.

Register 1 (REG 1) - The eight read/write bits of register 1 (UBRA
01 Bits 7 - 0) are implemented as D-type flip-flops with both true
and complement data available on the M8607 Channel Bus Board. The
trailing edge of LD REG 1 clocks the output of the microbus
receiver register into register 1. . The register is direct cleared
by asserting UB INIT or dropping UB RUN.

Tag Out Registers (TAG OUT REG) - There are two tag out regis-
ters consisting of D-type flip-flops with both true and complement
data available on the M86)7 Channel Bus Board. The trailing edge
of LD REG 2 clocks output bits 7 - 4 of the microbus receiver
register into the corresponding bits of Tag Out Register 0 (UBRA
02 Bits 7 - 4), and the trailing edge of LD REG 3 clocks the
output of the microbus receiver register into Tag Out Register 1
(UBRA 03 Bits 7 - 0). The registers are direct cleared by
asserting UB INIT.

5-40

Microbus Data Multiplexer (UB DATA MUX) - Microbus registers UBRA
00 - 07 in the channel bus interface are multiplexed onto the
microbus data lines (UBUS DATA 7 - 0) via the microbus data
multiplexer on the M8607 Channel Bus Board. The appropriate
multiplexer inputs are selected by UB RS 2 - 0 and DATI STB L from
the microbus control logic enables the tristate drivers which gate
the data onto the microbus data lines.

Channel Extension Data Multiplexer (CE DATA MUX) - Microbus
registers UBRA 12 and UBRA 13 in the channel bus interface are
multiplexed onto the microbus data lines (UBUSDATA 7 - 0) via the
channel extension data multiplexer on the M8608 Channel Extension
Board. When RD REG 12 is asserted, the bits in data register 1

(DR 15 - 08) are gated onto the microbus data lines via tristate
drivers, and when RD REG 13 is asserted, the bits in bus in
register 1 (CBI 15 - 08) are gated onto the microbus data 1lines

via tristate drivers.

Diagnostic Multiplexer (DIAG MUX) - The diagnostic multiplexer
multiplexes one of sixteen signals into UBRA 03 Bit 2 of the
microbus data multiplexer. The output of the scratch pad address
counter is used to select the signal as described in Section
4.4.3.7.

Register 5 Multiplexer (REG 5 MUX) - The register 5 multiplexer

allows either the output of the scratch pad address counter (SP

ADR 3 - 0) when CHAN MODE = 1 or the outputs of the CU RUN, SYS

RST, SEL RST, and HALT 10 flip-flops when CHAN MODE = 0 to be read

by the microcontroller as UBRA 05 Bits 3 - 0 through the UB DATA

MUX. ©Sce channel interface diagram UBUS Registers (I/0 SEL 3) for
the bit assignments.

5.3.3.3 Bus 0 Data Path

Introduction - The Bus 0 data path logic interfaces the BUS 0 IN
and BUS 0 OUT 1lines of the channel bus with the data path
interface and the microcontroller. BUS 0 IN is used to transfer
data to the channel bus interface; data on the bus can be read by
the microcontroller as microbus register 7 (Bus In register 0) or
transferred to data register 0 (DR 7-0) for transmission to the
data path interface over the slave bus during high speed transfers
(DX HIGH SPEED = 1l). BUS 0 OUT is used to transfer data to the
device; it can be driven from either bus out register 0 (BOR 7-0)
when DX HIGH SPEED = 0 or data register 0 (DR 7-0) which contains
data received from the data path interface during device write
operations when DX HIGH SPEED - 1. BOR 7-0 can be loaded directly
from the microcontroller when SP EN = 0 or indirectly through the
scratch pad 0 RAM (SP 7-0 RAM) when SP EN = 1. The blocks
comprising the Bus 0 data path logic are all implemented on the
M8607 Channel Bus Board and are shown in the upper half of Figure
5-4.,

BUS .0 OUT Drivers (BUS 0 OUT DRVR) - The BUS) OUT DRVR logic is
composed of nine drivers which interface DR 7-0 and BOR 7-0 to the

- 6=41

channel bus. For channel controller operation (CHAN MODE = 1 and
CU RESET EN = 0), the open-emitter pull-up outputs drive IBCB BUS
0 OUT 0 = 7, P when enabled (DX ON LINE = 1 and END XFER = 0), and
for control unit operation (CHAN MODE = 0), the outputs drive IBCB
BUS 0 IN 0 - 7, P when enabled (DX ON LINE = 1, CU RESET = 0, and
SLVE SEL = 1). If DX HIGH SPEED = 1 and DATA TO DEV = 1, DR 07 -
00, P is selected to drive IBCB BUS 0 OUT 0O - 7, P, and if DX HIGH
SPEEC = 0, BOR 07 - 00, P is selected (note the reversal of bit
numbering).

BUS 0 IN Receivers (BUS 0 IN RCVR) - The BUS 0 IN RCVR logic is
composed of nine receivers which interface to the channel bus and
provide loop back capability. The outputs of the registers are
denoted CBI 07 - 00, PO and are bused to.the BUS 0 IN PAR CHK, DR
7-0, UB DATA MUX, and CU ADR COMP circuits. When LOOP EN = 0,
IBCB BUS 0 IN 0 - 7, P are gated to CBI 07 - 00, PO, respectively,
for channel controller operation or IBCB BUS 0 OUT O - 7, P are
gated to CBI 07 - 00, PO, respectively, for control unit operation
(note the reversal of bit numbering); when LOOP EN = 1, BOR (07 -
U0, PO are complemented and looped back into CBI 07 - 00, PO by
the BUS 0 IN RCVR logic.

BUS 0 IN Parity Checker (BUS 0 IN PAR CHK) - The BUS 0 IN PAR CHK
circui* asserts CUS 0 ODD PAR while odd (correct) parity is
detected in the data on the CBI 07 - 00, PO lines.

Data Register 0 (DR 7-0) - DR 7-0 is composed of nine strobe-type
latches which are transparent when LD REG 6 is asserted during a
microcontroller DATO cycle to UBRA 06 or when CLK DR BYTE 0 is
asserted by the CB CTRL logic during high speed transfers and
latched with stable data otherwise. The outputs of the register
are denoted DR 07 - 00, PO and drive inputs to the SLVE BUS
MUX/DRVR and BUS 0 OUT DRVR. A multiplexer at the latch inputs
selects data on the slave bus when DATA TO DEV = 1 or data from
Bus In Register 0 when DATA TO DEV = 0. DR 7-0 is used to buffer
data as it is transferred between the data path interface and a
device on the channel bus during high speed transfers. For device
write operations, data received from the data path interface over
the slave bus is latched in DR 7-0 and gated onto BUS 0 OUT by BUS
0 OUT DRVR. For device read operations, data received from the
device over ‘BUS 0 IN is latched in DR 7-0 and gated onto the slave
bus by the SLVE BUS MUX/DRVR logic. If the extended bus feature
is enabled (EXTENDED BUS = 1), the bytes of slave bus data
alternate between DR 7-0 and DR 15-8. :

Bus Out Register 0 Parity Generator (BOR 7-0 PAR GEN) - The BOR
7-0 PAR GEN circuit generates a parity bit for the data latched in
BOR 7-0. The parity of the data including the parity bit is odd
(correct) when EVEN PAR = 0 and is even (bad) when EVEN PAR = 1.
The ability to generate bad parity allows the BUS 0 TN PAR CHK and
BUS 0 PE FLAG logic to be thoroughly tested; when LOOP EN is
asserted, BOR 07 - 00, PO is complemented and looped back into CBI
07 - 00, PO and thus presented to the BUS 0 IN parity detection
circuits. :

S=42

Scratch Pad 0 RAM (SP 7-0 RAM) - A 1l6-byte RAM is implemented in
the 'bus 0 data path logic to allow the microcontroller to pass a
series of parameters to a device over BUS 0 OUT more quickly than
is possible with the microcontroller handling the transfer
directly. The SP 7-0 RAM is addressed by the output of the SP ADR
CNTR (-SP ADR 3 - 0). Data is loaded into the RAM location
addressed by the SP ADR CNTR from the UB RCVR register by writing
UBRA 10. The RAM outputs (SP DATA 07 - 00) drive the inputs of
BOR 7-0 which are selected when SP EN = 1. The microcontroller
initially loads the parameters into sequential locations of the
RAM via UBRA 10, the first parameter being loaded into the highest
address. The SP ADR CNTR 1is then set to point to the first
parameter and SP EN is set. Logic in the channel bus interface
will arbitrate the SRV IN/DAT IN requests and transfer the data in
the RAM to the device using BOR 7-0 and BUS 0 OUT and decrementing
the SP ADR CNTR after each byte is transferred. Devices which use
this feature must request a predetermined number of bytes because
there 1is no mechanism in the channel bus interface by which a
transfer can be terminated or an address underflow condition can
be detected.

Scratch Pad Address Counter (SP ADR CNTR) -~ The SP ADR CNTR is a
loadakle down-cou.ter whose outputs (-SP ADR 3 - () address the
scratch pad RAMs (SP 7-0 RAM and SP 15-8 RAM) and the diagnostic
multiplexer (DIAG MUX). The counter can be loaded by the
microcontroller as UBRA 05 Bits 3 - 0 and can be read back as the
same bits through the register 5 multiplexer (REG 5 MUX) when CHAN
MODE = 1. The counter is enabled to count when SP EN = 1 and will
decrement when the SP 7-0 RAM is written by the microcontroller
(UBRA 10) or immediately after BOR 7-0 is clocked. Note that the
counter is loaded with complemented microbus data and its outputs
form a complemented address that is actually incremented each time
the counter is clocked, which is equivalent to decrementing the
uncomplemented address.

Slave Bus Multiplexer/Driver (SLAVE BUS MUX/DRVR) - The SLVE BUS
MUX/DRVR is used during device read operations to gate data from
DR 7-0 or DR 15-8 onto the slave bus data lines. A multiplexer
selects DR 7-0 when 2ND BYTE = 0 and selects DR 15-8 when 2ND BYTE
= 1, In single bus mode, all transfers are accomplished with DR
7-0 and 2ND BYTE remains low. 1In.dual bus mode, however, both DR
7-0 and DR 15-8 are involved in the parallel two-byte transfers of
data over BUS 0 IN and BUS 1 IN and 2ND BYTE continuously toggles
so that the data transferred to the data path interface over the
slave bus during device read operations will consist of alternate
bytes of BUS 0 IN and BUS 1 IN data. The tristate outputs of the
SLVE BUS MUX/DRVR are enabled to drive the slave bus data lines
during device read operations (DATA TO DEV = 0).

Slave Parity Checker (SLVE PAR CHK) - The SLVE PAR CHK circuit

asserts DP PE (data path parity error) when bad (even) parity is
detected on the slave bus data lines. :

5-43

5.3.3.4 Bus 1 Data Path

Introduction - The bus 1 data path logic interfaces the BUS 1 IN
and BUS 1 OUT lines of the channel bus with the data path inter-
face and the microcontroller. BUS 1 IN is used to transfer data
to the channel bus interface in conjunction with BUS 0 IN when the
extended bus feature is enabled (EXTENDED RBRUS = 1): data on the
bus can be read by the microcontroller as microbus register 13 or
transferred to data register 1 (DR 15-8) for transmission to the.
data path interface over the slave bus during high speed transfers
(DX HIGH SPEED = 1). BUS 1 OUT is used to transfer data to the
device in conjunction with BUS 0 OUT when the extended bus feature
is enabled; it can be driven from either bus out register 1 (BOR
15-8) when DX HIGH SPEED = 0 or Data Register 1 (DR 15-8) which
contains data received from the data path interface during device
write operations when DX HIGH SPEED = 1. BOR 15-8 can be loaded
directly from the microcontroller when SP EN = 0 or indirectly
through the scratch pad 1 RAM (SP 15-8 RAM) when SP EN = 1. The
blocks comprising the bus 1 data path logic are all implemented on
the optional M8608 channel extension board and are shown in Figure
5-4. :

BUS 1 OUT drivers (BUS 1 OUT DRVR) - The BUS 1 OUT DRVR logic ‘is
composed of nine Jrivers which interface DR 15-8 and BOR 15-8 to
the channel bus. For channel controller operation (CHAN MODE = 1
and CU RESET EN = (), the open-emitter pull-up outputs drive IBCB
BUS 1 OUT 0 ~ 7, P when enabled (DX ON LINE = 1, END XFER = U, and
EXTENDED BUS = 1), and for control unit operation (CHAN MODE = 0),
the outputs drive IBCB BUS 1 IN 0 - 7, P when enabled (DX ON LINE
= 1, CU RESET = 0, SLVE SEL = 1, and EXTENDED BUS = 1). If DX
HIGH SPEED = 1 and DATA TO DEV = 1, DR 15 - 08, P is selected to
be driven onto the channel bus, and if DX HIGH SPEED = (0, BOR 15 -
08, P is selected (note the reversal of bit numbering).

BUS 1 IN Receivers (BUS 1 IN RCVR) - The BUS 1 IN RCVR logic is
composed of nine receivers which interface to the channel bus and
provide loop back capability. The outputs of the registers are
denoted CBI 15 - 08, Pl and are bused to the BUS 1 IN PAR CHK, DR
15-8, and UB DATA MUX circuits. When LOOP EN = 0, IBCB BUS 1 IN 0
- 7, P are gated to CBI 15 - 08, Pl, respectively, for channel
controller operation, or IBCB BUS 1 OUT O - 7, P are gated to CBI
15 - -8, P1l, respectively, for control unit operation (note the
reversal of bit numbering); when LOOP EN = 1, BOR 15 - 08, Pl are
complemented and looped back into CBI 15 - 08, Pl by the BUS 1 IN
RCVR logic. The BUS 1 IN RCVR logic participates in channel bus
operations in which the extended bus feature is used.

BUS 1 IN Parity Checker (BUS 1 IN PAR CHK) - The BUS 1 IN PAR CBK
circuit asserts BUS 1 ODD PAR while odd (correct) parity 1is
detected in the data on the CBI 15 - 08, Pl lines.

Data Register 1 (DR 15-8) - DR 15-8 is composed of nine strobe-

type latches which are transparent when LD REG 12 is asserted
during a microcontroller DATO cycle to UBRA 12 or when CLK DR BYTE

5~-44

1l is asserted by the CB CTRL logic during high speed transfers and
latched with stable data otherwise. The outputs of the register
are denoted DR 15 - 08, Pl and drive inputs to the SLVE BUS
MUX/DRVR and BUS 1 OUT DRVR. A multiplexer at the latch inputs
selects data on the slave bus when DATA TO DEV = 1 or data from
bus in register 1 when DATA TO DEV = 0. DR 15-8 is used to buffer
data as it is transferred between the data path interface ané a
device on the channel bus during high speed transfers. For device
write operations in which EXTENDED BUS = 1, alternate bytes
received from the data path interface over the slave bus are
latched in DR 15-8 and gated onto BUS 1 OUT by the BUS 1 OUT DRVR.
For device read operations in which EXTENDED BUS = 1, data
received from the device over BUS 1 IN is latched in DR 15-8 and
gated onto the slave bus by the SLVE BUS MUX/DRVR logic; the bytes
of slave bus data alternate between DR 7-0 and DR 15-8. DR 15-8
is not involved in data transfers when EXTENDED BUS = 0.

Bus Out Register 1 Parity Generator (BOR 15-8 PAR GEN) - The BOR
15-8 PAR GEN circuit generates a parity bit for the data latched
in BOR 15-8. The parity of the data including the parity bit is
odd (correct) when EVEN PAR = 0 and is even (bad) when EVEN PAR =
1. The ability to generate bad parity allows the BUS 1 IN PAR CHK
and BUS 1 PE FLAG logic to be thoroughly tested; when LOOP EN is
asscrtea, BOR 10 - 08, Pl is complemented and looped back into CBI
15 - 08, Pl and thus presented to the BUS 1 IN parity detection
circuits.

Scratch Pad 1 RAM (SP 15-8 RAM) - The SP 15-8 RAM implemented in
the bus 1 data path logic complements its counterpart (SP 7-0 RAM)
in the bus 0 data path logic. It is used in conjunction with the
SP 7-0 RAM to transfer a series of parameters to a device on the
channel bus over BUS 0 OUT and BUS 1 OUT simultaneously when
EXTENDED BUS = 1. The SP 15-8 RAM is addressed by the output of
the SP ADR CNTR (-SP ADR 3 - 0). Data is loaded into the RAM
location addressed by the SP ADR CNTR from the UB RCVR register by
writing UBRA 14. The RAM outputs (SP DATA 15 - 08) drive the
inputs of BOR 15-8 which are selected when SP EN = 1. The
microcontroller initially loads the parameters into sequential
locations of the SP 15-8 RAM via UBRA 14 and the SP 7-0 RAM via
UBRA 10; the first parameter being loaded into the highest address
of the SP 7-0 RAM; the second parameter into the highest address
of the SP 15-8 RAM; the third parameter into the second highest
address of the SP 7-0 RAM, etc. The SP ADR CNTR is then set to
point to the first parameter and SP EN is sect. Logic in the
channel bus interface will arbitrate the SRV IN/DAT IN requests
and transfer the data in the RAM to the device using BOR 7-0, BOR
15-8, BUS 0 OUT, and BUS 1 OUT and decrementing the SP ADR CNTR
after each pair of bytes is transferred. Devices which use this
feature must request a predetermined number of bytes because there
is no mechanism in the channel bus interface by which a transfer
can be terminated or an address underflow condition can be
detected.

-49

tn

5.3.3.5 Channel Bus Control

Introduction - The channel bus control logic performs the
following functions: controls the tag out lines (TAG OUT DRVRS)
and senses the tag in lines (TAG IN RCVRS):; decodes the control
bits "in control and status register 1 (UBRA 0l1) and controls
signals from other interfaces and responds appropriately (BUFFERS
and CB CTRL); provides status bits to the microcontroller via UBRA
00 and interrupts the microcontroller to indicate important
control states or error conditions which require immediate action
(INT FLAGS and CB CTRL); arbitrates high speed transfers without
the aid of the microcontroller for both single and dual bus
operation by generating signals which manipulate the bus 0 data
path and bus 1 data path logic and handle the slave bus and
channel bus request-acknowledge sequences (CB CTRL); and in
general, handles events for which real-time constraints preclude
direct control by the microcontroller (CB CTRL). The blocks which
comprise the channel bus control logic are shown in Figure 5-4.
Most of the logic is implemented on the M8607 Channel Bus Board;
the remaining logic is required for dual bus operation only and is
included on thc optional M8608 Channel Extension Board. :

Buffers (BUFFERS) - The Buffers block is a collection of simple
subcir~uics on thc M8607 Channel Bus Board which buffer and, in
some cases; provide additional conditioning of signals which are
used throughout the channel bus interface. Each of the sub-
circuits is described below.

DATA TO DEV Buffer - DATA TO DEV from the Massbus interface is
buffered by high output current drivers which generate true and
complemented equivalents of DATA TO DEV which drive logic in the
channel bus interface.

LOOP EN Buffer - The LOOP EN flip-flop output is buffered by high
output current drivers which generate true and complemented
equivalents of LOOP EN which drive logic in the channel bus
interface. '

SLVE END XFER Buffer - SLVE WOR END XFER is buffered by drivers
which generate the equivalent signal, SLVE END XFER, and its
complement, -SLVE END XFER, which drive logic in the channel bus
interface.

DX HIGH SPEED Buffer - DX HIGH SPEED from the data path interface
and DIAG HSPD from the REG 1 logic of the channel bus interface
are logically ORed and buffered by high output current drivers to
form the DX HIGH SPEED signal and its complement which are used in
the channel bus interface.

DX ON LINE Buffer - The output of the ON LINE flip-flop and CROBAR
from the G891 power fail and select bypass module are logically
ANDed and buffered to form DX ON LINE and its complement. When DX
ON LINE 1is low, the DX20 is effectively disconnected from the
channel bus. ‘

5=46

EN CB DRVRS Gate - Allow TAG/BUS OUT (the logical OR of CHAN MODE
and SLVE SEL), -CU RESET (the logical OR of SYS RST, SEL RST, and
HALT I0), and DX ON LINE are logically ANDed to form EN CB DRVRS
(enable channel bus drivers) which prevents all the BUS 0 OUT, all
the BUS 1 OUT, and most of the tag out drivers from asserting
channel bus 1lines when it is low. During channel controller
operation in which CHAN MODE = 1 and CU RESET EN = 0, EN CB DRVRS
is asserted whenever DX ON LINE is high. During control unit
operation in which CHAN MODE = 0, EN CB DRVRS is asserted only
when DX ON LINE = 1 (the DX20 is on line), SLVE SEL = 1 (the DX20
has been selected by the channel controller), and CU RESET = 0 (no
special sequences have been issued by the channel controller to
disconnect the DX20 from the channel bus).

ACLO Inverter - ACLO from the H7420 power supply is inverted to
generate the ACLO signal required by the G891 power fail and
select bypass module. When ACLO is asserted, CROBAR is grounded,
indicating a power failure condition, and the channel bus select
signal is bypassed.

Tag Out Drivers (TAG OUT DRVRS) - IBM-compatible channel bus
drivers with open-emitter pull-up outputs are used to drive the
tag out iines vher operating as a channel controller or the tag in
lines when operating as a control unit. Descriptions of the
conditions which assert the tag lines are given below. IBCB is
used as a prefix to denote signals which drive the channel bus
directly. Unless stated otherwise, EN CB DRVRS must be asserted
to enable a driver and channel controller operation is assumed.
The redefinitions of the tag lines for control unit operation are
given in the channel interface diagram UBUS Registers (I/O SEL 3).
All of the tag drivers are implemented in the TAG OUT DRVRS logic
on the M8607 Channel Bus Board, except in the CE CTRL logic on the
18608 Channel Extension Board.

IBCB SRV OUT (Service Out) - IBCB SRV OUT is asserted in two
cases: when TOR SRV OUT is high; or during transfers arbitrated by
the CB CTRL logic.

IBCB CLK OUT (Clock Out) - IBCB CLK OUT is asserted when TOR CLK
OUT is high.

IBCB MTR OUT (Meter Out) - IBCB MTR OUT is asserted when TOR MTR
OUT is high.

IBCB ADR OUT (Address Out) - IBCB ADR OUT is asserted when TOR ADR
OUT is high.

IBCB HLD OUT TRA (Hold Out Transmit) - IBCB HLD OUT TRA is
asserted when TOR HLD OUT is high. It is not used for control
unit operation.

CB04 SEL TRA (Select Transmit) - CB0O4 SEL TRA is asserted in two
cases: when TOR SEL OUT is high; or during control unit operation

5=47

(CHAN MODE = 0) when LOOP EN = (0 (to insure that the driver is
disabled during diagnostic testing with the loop back feature
enabled), DCLO = 0 (DC supply voltages are within regulation), TRA
SEL FF =1 (a flip-flop in the CU SEL logic which is set if the
select signal is to be propagated to the next control unit),
regardless of the 1level of EN CB DRVRS. Case 1 1is used
exclusively when operating as a channel controller; the
microcontroller must handle the channel bus sequences involving
the select signal. Case 2 is used exclusively when operating as a
control unit; TOR SEL OUT should not be asserted. The logic in
the channel bus interface controls the propagation of the select
signal because of timing constraints which preclude the use of the
microcontroller. CB04 SEL TRA goes to the G891 Power Fail and
select bypass module where it is connected to the channel bus via
priority selection switches which connect CB04 SEL TRA to IBCB SEL
1 TRA for the low priority setting or to IBCB SEL 0 TRA for the
high priority setting. See Figure .

IBCB CMD OUT (Command Out) - IBCB CMD OUT is asserted when: TOR
CMD OUT is high; or at the end of a high speed transfer (DX HIGH
SPEED = 1) whon END XFER is raised by the CB CTRL logic as
described in Section 4.4.3.2.

IBCb OPL OUT (Cperotional Out) - IBCB OPL OUT is asserted when TOR
OPL OUT is high. ,

IBCB SUP OUT (Suppress Out) - During channel controller operation
(CHAN MODE = 1 and CU RESET EN = (), IBCB SUP OUT is asserted when
TOR SUP OUT = 1 is high. During control unit operation (CHAN MODE
= 0), TBCB SUP OUT is redefined as REQ IN and is asserted when TIR
REQ IN = 1, TO SUP OUT = 0, CU RESET = 0, and DX ON LINE = 1,
regardless of the level on EN CB DRVRS. :

IBCB DAT OUT (Data Out) - IBCB DAT OUT is asserted when: TOR DAT
OUT is high; or during transfers arbitrated by the CB CTRL logic.

IBCB MK 0 OUT (Mark 0 Out) - IBCB MK 0 OUT is always asserted when
TOR OPL OUT is high to indicate that the bus 0 lines will be used
to transfer data. The IBCB MK 1 OUT and IBCB MK P OUT lines are
driven by circuitry in the CE CTRL logic on the M8608 Channel
Extension Board when ALLOW MK 1 OUT is asserted by the CB CTRL
logic to indicate that the bus 1 lines will be involved in a
transfer.

Tag In Receivers (TAG IN RCVRS) - IBM-compatible channel bus
receivers are used to sense the logic levels on the tag in lines
for channel controller operation or the tag out lines for control
unit operation. The receiver inputs are wired as multiplexers
which allow channel bus 1lines to be received during normal
operation (LOOP EN = () or tag out register bits to be looped back
into tag in register bits during diagnostic testing (LOOP EN = 1)
as specified in the channel interface diagram UBUS Registers (I/O
SEL 3). Descriptions of the conditions under which the outputs of
the tag in receivers, designated TI XXX IN for channel controller

5-,43

operatlon or TO XXX OUT for control unit operation, are asserted
as given below. IBCB denotes a channel bus 51gna1 line. Unless
stated otherwise, channel controller operation is assumed; the
redefinitions of the channel bus lines for control unit operation
are given in the figure . All the tag 1in receivers are
implemented in the TAG IN RCVRS logic on the M8607 Channel Bus
Board, except the IBCB MK 1 IN and IBCB MK P IN receivers which,
are implemented in the CE CTRL 1logic on the M8608 Channel
Extension Board.

TI OPL IN (Operational In) - TI OPL IN is asserted if IBCB OPL IN
is raised when LOOP EN = 0 or if TOR SRV OUT is high when LOOP EN
= 1.

TI MK 0 IN (Mark 0 In) - TI MK 0 IN is asserted if IBCB MK 0 IN is
raised when LOOP EN = 0 or if TOR CLK OUT is high when LOOP EN =
1. -

TI MK 1 IN (Mark 1 In) - TI MK 1 IN is asserted if IBCB MK 1 IN is
raised when LOOP EN = 0 or if TOR MTR OUT is high when LOOP EN = 1
only if the M8608 Channel Extension Board is present; otherwise TI
MK 1 IN is always low. The receivers for the MK 1 IN and MK P IN
signals are implemented in the CE CTRL logic on the M8608 Channel
Extensio. Doard.

TI ADR IN (Address In) - TI ADR IN is asserted if IBCB ADR IN is
raised when LOOP EN = 0 or if TOR ADR OUT is high when LOOP EN =
1 . .

TO HLD OUT (Hold Out) - TO HLD OUT is asserted if IBCB HLD OUT REC
is raised when LOOP EN = 0 or if TOR HLD OUT is high when LOOP EN
= 1, IBCB HLD OUT REC is functional only during control unit
operatlon- it is left open during channel controller operation and
is prone to noise pick-up.

TI MTR IN (Meter In) - TI MTR IN is asserted if IBCB MTR IN is
raised when LOOP EN = 0 or is always low when LOOP EN = 1.

TI SEL IN (Select In) - TI SEL IN is asserted if CB04 SEL REC is
raised when LOOP EN = 0 or if TOR SEL OUT is high when LOOP EN =
1. The CB04 SEL REC signal comes from the G891 Power Fail and
Select Bypass Module. If the DX20 is off line (DX ON LINE = 0 or
CROBAR = 0), CB04 SEL REC is returned to ground through a 95 ohm
terminator and cannot be driven high. If the DX20 is on line (DX
ON LINE = 1 and CROBAR = 1), priority selection switches on the
G891 connect CB04 SEL REC to IBCB SEL 1 REC if set up for low
priority or to IBCB SEL 0 REC if set up for high priority.

TI S TI STA IN (Status In) - TI STA IN is asserted if IBCB STA IN is
raised when LOOP EN = 0 or if TOR CMD OUT is high when LOOP EN =
1.

TI SRV IN (Service In) - TI SRV IN is asserted if IBCB SRV IN is
raised when LOOP EN = 0 or if TOR OPL OUT is high when LOOP EN =

S=49

1.

TI DIS IN (Disconnect In) - TI DIS IN is asserted if IBCB DIS IN
is raised when LOOP EN = 0 or if CU RESET EN is high when LOOP EN
= ll

TI REQ IN (Request In) - TI REQ IN is asserted if IBCB REQ IN is
raised when LOOP EN = 0 or if TOR SUP OUT is high when LOOP EN =
1.

TI DAT IN (Data In) - TI DAT IN is asserted if IBCB DAT IN is
raised when LOOP EN = 0 or if TOR DAT OUT is high when LOOP EN =
l.

Interrupt Flags (INT FLAGS) - The INT FLAGS logic on the M8607
Channel Bus Board consists of six flags which assert UBUS INT 3
when set. DP PE FLAG, UB PE FLAG, MK PE FLAG, BUS 1 PE FLAG, and
BUS 0 PE FLAG signals are the outputs of D-type flip-flops which
are set by hardware when parity error conditiohs in the channel
bus interface are detected and remain set until direct cleared by
either asserting UB INIT or executing a microcontroller DATO cycle
to UBRA 00 of the channel bus interface with UBUS DATA 1 asserted.
The parity detection circuits for the MK 0 - 1, P IN lines and the
BUS 1 IN " - 7, P lines are located on the M8608 Channel Extension
Board; conseqguently, if the M8608 is not present, the MK PE FLAG
is the logical AND of TIMER EN (UBRA 02 Bit 2) and -TIMER OUT (the
output of a 30 millisecond retriggerable monostable multivibrator
which is triggered every time UBRA U2 is written). See Section
for descriptions of the conditions under which these signals are
asserted. ‘

Channel Bus Control (CB CTRL) - Logic in the channel bus control
(CB CTRL) block controls requests and responses and provides
timing and synchronization between the channel bus and the slave
bus. The logic can be divided into the following sub-blocks: (1)
channel request, (2) slave interface, (3) channel response, (4)
control unit initialization, and (5) extended bus control. Each
of these sub-blocks is described below with the aid of Figures
5-12 through 5-17.

Channel Request - The channel request logic senses and remembers a
~request, the activation of either TI SRV IN (service in) or TI DAT
IN (data in), until a response is 'sent (Figures 5-12 and 5-13).
Once a request has been made, the CLK SLVE REQ (clock slave
request) signal is generated and sent to the slave interface
sub-block.

Slave Interface - The slave interface logic generates requests to
the data path interface over the slave bus by using the CLK SLVE
REQ signal to set the SLVE REQ (slave request) flip-flop, which
remains set until a response, the assertion of SLVE ACK (slave
acknowledge), is received from the data path interface. If the
extended bus feature is disabled (EXTENDED BUS = 0), SLVE ACK
resets SLVE REQ and generates the DR READY DATA signal which is

5=50

sent to the channel response logic along with the CLK DR READY
signal. If the extended bus feature is enabled (EXTENDED BUS = 1,
Figure 5-14), SLVE ACK clears SLVE REQ and sets 2nd BYTE. With
2ND BYTE set, SLVE REQ is set again, approximately 130 nanoseconds
after SLVE ACK is received, requesting a transaction for the
second byte of data over the slave bus. The response to this
transaction (SLVE ACK = 1 and 2ND BYTE = 1) causes DR READY DATA
to be asserted.

The slave interface looks for the completion of a data transfer
(Figure 5-15) by sampling the SLVE WOR END XFER (slave end
transfer) line at the end of each channel bus transaction (request
and response cycle). The setting of the END XFER flip-flop
conditions the CB CTRL logic for a termination response to the
next request from the channel bus.

Channel Response - This logic receives the CLK DR READY and DR
READY DATA signals from the slave interface logic. These two
signals cause the DR READY flip-flop to set when the request from
the channel request logic is satisfied. By using the remembered
request in the channel request logic and the DR READY flip-flop
output, the respective response is generated, TO SRV OUT for TI
SRV IN or TO DAT OUT for TI DAT IN.

Contrcl Unit Imitialization - The control unit initialization
logic initiates channel bus interface activity (Figures 5-16 and
5-17). When the DX20 is operating as a control unit (CHAN MODE =
0). When DX HIGH SPEED is asserted and CHAN MODE = 0, the CU INIT
(control wunit initialize) flip-flop is set. The control unit
initialization logic generates a request to the channel controller
over the channel bus by asserting TI DAT IN. After the first
request is serviced, the CU RUN (Control Unit Run) flip-flop is
set and CU INIT is cleared.

Extended Bus Control - The extended bus control logic provides odd
byte termination (ODD END = 1) when the 2ND BYTE flip-flop is set
and SLVE WOR END XFER is asserted when a SLVE ACK is issued to the
channel bus interface. This logic also enables the slave
interface to request two slave bus transfers per channel bus
transfer by allowing the 2ND BYTE flip-flop to toggle.

Channel Extension Control (CE CTRL) - NOTE: The channel extension
control logic is implemented on the optional M8608 Channel
Extension Board which has not yet been implemented. The signals
which this block receives and generates have been defined and are
shown in Figure 5-4,

5.3.3.6 Control Unit Control
Introduction - Some additional logic on the M8607 Channel Bus
Board is used solely for control unit operation. It is described

briefly below. Channel bus signal names will be referenced using
the mnemonics for control unit operation.

5=51

Figure 5-12 High Speed Data Transfer, Channel Mode,
Data to Device

5-52

Figure 5-13 High Speed Data Transfer, Channel Mode,
: Data from Device

5-53

Figure 5-14 High Speed Data Transfer, Channel Mode,
Data to Device, Extended Bus Enabled

5-54

Figure 5-15 High Speed Data Transfer Termination,
Channel Mode, Data to Device

O=55

Figure 5-16 Control Unit Initialization,
Data to Device (Channel)

5«56

Figure 5-17 Control Unit Initialization,
Data from Device (Channel)

S=57

Control Unit Reset (CU RESET) - SYS RST, SEL RST, and HALT I/0 are
the outputs of D-type flip-flops which are individually direct set
when the control unit detects the corresponding command being
issued by the channel controller and which are direct cleared when
UB INIT is high, CU RESET EN is low, or CHAN MODE is high,
regardless of the logic levels at the set inputs. The flip-flops
may also be written by the microcontroller as UBRA 16 Bits 2 - 0,
and they can be read back as UBRA 05 Bits 2 - 0 when CHAN MODE =
0. SYS RST, SEL RST, and HALT I/0 are ORed to form CU RESET which
asserts UBUS INT 3 when high. The conditions under which the
flip-flops are set are described in Section 4.4.3.7.

Control Unit Address Comparator (CU ADR COMP) - Each control unit
on the channel bus is assigned one or more contiguous addresses.
In the DX20 this is accomplished by the appropriate setting of two
8-pole DIP switches in the CU ADR COMP logic on the M8607 Channel
Bus Board. The poles of each switch are numbered 1 through 8,
where 1 represents the most significant bit and 8 represents the
least significant bit of a binary number set up in the switch; an
OPEN or OFF switch represents a one and a CLOSED or ON switch
represents a zero. The switch at E90 determines the range of
addresses to which the DX20 will respond, wherc the binary number
loaded into the switch is one less than the number of contiguous
addrosses assicned to the control unit. The number of contiguous
addresses (n) 1is cestricted to being a power of 2. The
256-location address spaces are partitioned into 256/n blocks of n
locations. The switch at location E108 is loaded with the binary
value of an address (any) within the block to which the DX20 must
respond. The CU ADR COMP circuit looks for a match between the
address placed on the BUS 0 OUT lines by the channel controller
(such as during an initial selection sequence when ADR OUT is
raised) and one of the addresses to which the DX20¢ is set up to
respond. ADR MATCH is asserted when such a match occurs.

Control Unit Selection (CU SEL) - The CU SEL logic controls the
states of the REC SEL FF (receive select flip-flop), TRA SEL FF
(transmit select flip-flop), and SLVE SEL (slave selected)
flip-flops to provide the proper response to the detection of the
serially propagated select signal. SEL REC FF is set if both the
serially propagated TO SEL OUT and the parallel propagated TO HLD
OUT signals are both high simultaneously, indicating that a valid
select signal has been received. SEL REC FF is cleared when TO
HOLD OUT drops, indicating that the select signal is no longer
valid. When REC SEL FF is low, TRA SEL FF is direct cleared,
inhibiting the propagation of the select signal. Either SLVE SEL
will set if the DX20 is selected or TRA SEL FF will set if it is
not selected on the rising edge of REC SEL FF. In other words,
when the select signal is received, ecither the control unit must
block the propagation of the select signal by not setting TRA SEL
FF and signal the microcontroller that it has been selected by
setting the SLVE SEL flip-flop, or the control unit must propagate
the select signal on to the next control unit by setting TRA SEL
FF and clear SLVE SEL, if it was set, since the DX20 was not
selected. There are two events for which a control unit will be

5-58

selected: an initial selection sequence for which the CU ADR COMP
logic detected an address match with good parity on the BUS 0 OUT
lines (TO ADR OUT = l, ADR MATCH = 1, and BUS 0 ODD PAR = 1l); or
the channel controller servicing an interrupt generated by the
control unit (TI REQ IN = 1 and TI ADR IN = 0). SLVE SEL will
normally clear on the next rising edge of REC SEL FF for which
neither of the above conditions is true, or it may be cleared by
the microcontroller (writing UBRA 00 with UBUS DATA 0 = 1). The
CU SEL 1logic generates a signal denoted ALLOW TAG/BUS O0OUT, the
logical OR of CHAN MODE and SLVE SEL, which must be high to assert
EN CB DRVRS.

5.3.4. Data Path Interface

5.3.4.1 Introduction - The data path interface logic is contained
on two boards in the DX20, the M8605 Data Storage (DS) Board and
the M8606 Data Formatter (DF) Board. A brief description of the
logic on these boards is given in this section with the aid of the
block diagrams in Figure 5-6. The data path interface circuitry
has been partitioned into 29 blocks to permit easy identification
of the circuit functions implemented in the interface. Drawing
numbers for the circuit schematics are given next to the blocks to
locate the logic circuits which correspond to each of the blocks.

5.3.4.2 Microbus Interface and Control

Introduction - The microbus interface and control logic provides
communication between the microcontroller and the data path
interface by allowing the microcontroller to generate clock
signals and write registers in the data path interface via DATO
instructions or sense the logic levels of internal signals and
read registers 1in the interface via DATI instructions. The
following blocks comprise the microbus interface and control
logic.

Microbuc Zontrol (UB CTRL) - The microbus control 1logic on the
M8605 Data Storage Board buffers and decodes Microbus signals
driven from the microcontroller to generate internal data path
interface signals. UB INIT is the buffered equivalent of UBUS
INITIALIZE and UB RS 3 - 0 are the buffered equivalents of UBUS
ADRS 3 - 0. The internal UB STB signal is asserted by UBUS STROBE
only when the data path interface is selected (I/0 SEL 2 asserted)
and one of the implemented lower 16 decimal registers is addressed
(UBUS ADRS 4 low). DATO STB is asserted when UB STB is asserted
during DATO cycles (DATI low). DATI STB 0 is asserted when UB STB
is asserted during DATI cycles (DATI high) which address registers
0 - 7, and DATI STB 1 is asserted when UB STB is asserted during
DATI cycles which address registers 10 - 17 octal. The microbus
interrupt line assigned toi the data path interface (UBUS .INT 2)
is asserted if either the UB PE FLAG or the DP PE FLAG 1is
set.

Microbus Receiver (UB RCVR) - The microbus receiver on the M8605
Data Storage Board buffers and latches microbus data on the rising
edge of UB STB for use during microcontroller DATO cycles. UBUS
DATA 7 - 0, P is latched as UB DATA 7 - 0, P with both true and
complement data available. All of the bits in the register are
direct set when UB INIT is asserted.

Microbus Parity Checker (UB PAR CHK) - The microbus parity checker
on “the M860U5 Data Storage Board checks for the correct (odd)
parity of the microbus data latched in the microbus receiver
register on the falling edge of DATO STB, which occurs at the ond
of microcontroller DATO cycles. If incorrect parity is detected,
the UB PE FLAG flip-flop is set and remains set until it is
cleared by either asserting UB INIT or writing register 0.

5«60

o

Microbus Address Demultiplexer (UB ADR DEMUX) - The microbus
address demultiplexer on the M8605 Data Storage Board decodes the
microbus address lines to generate a pulse on one of 16 decimal
lines during microcontroller DATO cycles to the data path
interface. The 16 lines correspond to microbus addresses 00 - 17
octal and are defined below.

Address

00

01
02
03
04

05

06
U7

10

11

Description

CLR REG 0 = clear register 0. When CLR REG 0 is
asserted, the flag flip-flops which comprise UBRA 00 Bits
3 - 0 are direct cleared. CLR REG 0 is also asserted by
UB INIT.

LD REG 1l = load register 1. The trailing edge of LD REG
1 clocks the output of microbus receiver register bits 3
= 0 into UBRA 01 Read/Write bits 3 - (.

LD REG 2 = load register 2. The trailing edge of LD REG
2 clocks the output of microbus receiver register bits 5
- 0 into UBRA (2 Read/Write Bits 5 - 0. »

TN REG 3 = load register 3. UBRA 03 currently has only
read only Lits, so LD REG 3 is not used.

LD MC LB = load Massbus counter 1low byte. LD MC LB
strobes the output of the microbus receiver register into
the least significant byte of the Massbus counter (MC 07
- 00)0

LD MC HB = load Massbus counter high byte. LD MC HB
strobes the output of the microbus receiver register into

~the most significant byte of the Massbus counter (MC 15 -

08).

LD BC LB = load byte counter low byte. LD BC LB strobes
the output of the microbus receiver register into the
least significant byte of the byte counter (BC 07 - 00).

LD BC HB = load byte counter high byte. LD BC HB strobes
the output of the microbus receiver register into the
most significant byte of the byte counter (BC 15 - 08).

LO ROM ADR = load ROM address register bits 7 - 0. The
trailing edge of LD ROM ADR clocks the data formatter
control ROM address register (UBRA 10). Bits in the
register are loaded from cither the microbus receiver
register or the ROM outputs as described in Scction
4.4.4.10.

LD ROM DATA = load ROM data register. LD ROM DATA allows

diagnostic programs to read the contents of the data
formatter control ROM and test the ROM data register by

5-61

12

13

14

providing the means whereby the microcontroller can
directly clock ROM data into the ROM data register. The
basic procedure for examining the contents of a ROM
location is given in Section 4.4.4.11.

SINGLE STEP = single step. When BASE CLK EN (UBRA 01 bit
1) is low, BASE CLK is normally high and is pulsed low
every time a pulse is generated on SINGLE STEP.

HSDP INIT = high speed data path initialize. To set up
the data path interface for the pending operation, a
pulse must be generated on HSDP INIT by executing a
microcontroller DATO to address 13 octal of the data path
interface after the level of DATA TO DEV has been
established and the data formatter control ROM address
register (ROM ADR 8 - 0) has been loaded and prior to
setting DX HIGH SPEED (UBRA 0l bit 0) to set up the data
path interface for the pending operation. HSDP INIT is
also generated by asserting UB INIT. The effects of
asserting HSDP INIT are summarized below.

1. The master request holdoff (MSTR REQ HLDOFF) and
slave request holdoff (SLVE REQ HLDOFF) flip-flops
are direct cleared. -

2. The clear run (CLR RUN) flip-flop is direct set,
which direct clears the Run (RUN) flip-flop; and
extend run (EXTEND RUN) is cleared.

3. The master receiver register (MRR 17 - 00, P), slave
receiver register (SRR 7 - 0, P), and assembly
register (AR 17 - 00) are cleared.

4. The master ready flip-flop and its synchronizers
(MSTR RDY, MSTR RDY DLY 1, and MSTR RDY DLY 2) are
direct set for pending device write operations (DATA
TO DEV = 1) and direct cleared for pending read
operations (DATA TO DEV = Q). The slave ready
flip-flop and its synchronizers are direct set for
pending device read operations and direct cleared for
pending write operations.

5. The silo buffer register (SB 17 - 00) has zeroes
clocked into it on the falling edge of HSDP INIT for
pending device write operations (DATA TO DEV = 1) and
has ones clocked into it for pending read operations
(DATA TO DEV = 0). The channel buffer register (CB 7
- 0) has zeroes clocked into it on the falling edge
of HSDP INIT for pending device read operations and
has ones clocked into it for pending write
operations.

SET RUN = set run. The run (RUN) flip-flop is direct
set.

S~62

15 SET M R HLDOFF = set master request holdoff. The master
request holdoff (MSTR REQ HLDOFF) flip-flop is direct

set.

16 SET S R HLDOFF = set slave request holdoff. The slave
request holdoff (SLVE REQ HLDOFF) flip-flop is direct
set.

17 CLR EXTEND RUN = clear extend run. Extend run (EXTEND

RUN) is cleared.

Load ROM Address (LD ROM ADR) - Further conditioning of the LD ROM
ADR signal from the microbus address demultiplexer is provided by
the load ROM address logic on the M8605 Data Storage Board to
create a 50 nanosecond pulse on the trailing edge of LD ROM ADR
called LD ROM ADR 7-4, which is used by the control ROM circuitry
to clock the data formatter control ROM address register. The use
of this signal is discussed in more detail in Section 5.3.4.5.

Register 1 (REG 1) - The read/write bits of register 1 (UBRA 01l
Bits 3 - 0) are implemented as D-type flip-flops with both true
and complement data available on the M8605 Data Storage Board.
The tra.'.ng edge of LD REG 1 clocks output bits 3 - 0 of the
microbus receiver r.jister into the corresponding bits of register
1. The read/write bits in register 1 are direct cleared by
asserting UB INIT.

Register 2 (REG 2) - The read/write bits of register 2 (UBRA 02
Bits 5 - 0) are implemented as D-type flip-flops on the M8605 Data
Storage Board. The trailing edge of LD REG 2 clocks output bits 5
- 0 of the microbus receiver register into the corresponding bits
of register 2. The combinational logic which drives the MSTR WOR
END XFER and SLVE WOR END XFER wire-ORed lines is also included in
the register 2 logic. The conditions under which these lines are
asserted are described in Section 4.4.4.4.

Microbus Data Multiplexer (UB DATA MUX) - Microbus registers UBRA
00 - 07 in the data path interface are multiplexed onto the
microbus data 1lines (UBUS DATA 7 - 0) wvia the microbus data
multiplexer on the M8605 Data Storage Board. The appropriate
multiplexer inputs are selected by UB RS 2 - 0 and DATI STB 0 L
from the microbus contrcl logic enables the tristate drivers which
gate the data onto the microbus data lines.

Diagnostic Multiplexer (DIAG MUX) - Microbus registers UBRA 10 -
17 in the data path interface are multiplexed onto the microbus.
data lines (UBUS DATA 7 - 0) via the diagnostic multiplexer on the
M8606 Data Formatter Board. The appropriate multiplexer inputs
are selected by UB RS 2 - 0 and DATI STB 1 L from the microbus
control logic enables the tristate drivers which gate the data
onto the microbus data lines.

5.3.4.3 Master and Slave Bus Control

Sw6d

Introduction - The master bus control (MSTR BUS CTRL) and slave
bus control (SLVE BUS CTRL) logic handles the request-acknowledge
handshake sequence required to transfer data over the respective
bus. The logic must arbitrate requests made over the busses with
internal handshake signals between the master/slave bus control
logic and the formatter control logic which controls data flow
through the data path interface. The master bus and slave bus
protocols are identical and have the same timing characteristics
(See Section 5.2), lending symmetry to the design of the data path
interface.

Master Bus Control (MSTR BUS CTRL) - The protocol established for
communication over the master bus is described in Section 3.5. A
master bus transfer is initiated by the assertion of either MSTR
REQ by the Massbus interface or DIAG MSTR REQ (UBRA 0l Bit 3) by
the microcontroller. The data path interface issues MSTR ACK when
it has honored the request to transfer data over the master bus by
latching the data on the master bus data lines into the master
receiver register (MRR) during device write operations or gating
data in the silo buffer register (SB) onto the master bus data
lines during device read operations. The data poth interface is
ready to process a master bus request when MSTR RDY DLY 2 sets.
The MSTP n3Q HLDOFF flip-flop is direct cleared when MSTR RDY DLY
2 goes high, allusing a pending or forthcoming request to be
serviced.

CLR MSTR RDY and SET MSTR ACK are logically equivalent signals
which are true when MSTR REQ = 1, MSTR RDY DLY 2 = 1, and MSTR REQ
HLDOFF = 0. The massbus counter (MC) is incremented and the
massbus counter overflow flag (MC OF FLAG) flip-flop is clocked by
the leading edge of SET MSTR ACK and the MSTR ACK flip-flop is set
typically 35 nanoseconds after the leading edge of SET MSTR ACK.
Simultaneously, the leading edge of CLR MSTR READY clocks master
bus data into the MRR (important for device write operations) and
a high on CLR MSTR RDY direct clears MSTR RDY, signalling the
formatter control «circuitry that a master bus transfer is in
progress., :

The handshake concludes with the Massbus interface clearing MSTR
REQ approximately 75 nanoscconds after receiving MSTR ACK. When
MSTR REQ is cleared, the MSTR REQ HLDOFF flip-flop is clocked high
and the MSTR ACK flip-flop is direct cleared. MSTR REQ HLDOFF
remains asserted, preventing a subsequent MSTR REQ from being
serviced until MSTR RDY DLY 2 sets, signalling the master bus
control that the formatter control is ready to accept, or present,
new data over the master bus data lines.

Slave Bus Control (SLVE BUS CTRL) - The protocol established for
communication over the slave bus is described in Section 3.6. A
slave bus transfer is initiated by the assertion of either SLVE
REQ by the Massbus interface or DIAG SLVE REQ (UBRA 01 Bit 2) by
the microcontroller. The data path interface issues SLVE ACK when
it has honored the request to transfer data over the slave bus by

latching the data on the slave bus data lines into the slave
receiver register (SRR) during device read operations or gating
data in the channel buffer register (CB) onto the slave bus data
lines during device write operations. The data path interface is
ready to process a slave bus request when SLVE RDY DLY 2 sets.
The SLVE REQ HLDOFF flip-flop is direct cleared when SLVE RDY DLY
2 goes high, allowing a pending or forthcoming request to be
serviced.

CLR SLVE RDY and SET SLVE ACK are logically equivalent signals
which are true when SLVE REQ = 1, SLVE RDY DLY 2 = 1, and SLVE REQ
HLDOFF = 0. The byte counter (BC) is incremented and the byte
counter overflow flag (BC OF FLAG) flip-flop is clocked by the
leading edge of SET SLVE ACK and the SLVE ACK flip-flop is set
typically 35 nanoseconds after the leading edge of SET SLVE ACK.
Simultaneously, the leading edge of CLR SLVE READY clocks slave
bus data into the SRR (important for device read operations) and a
high on CLR SLVE RDY direct clears SLVE RDY, signalling the
formatter control circuitry that a slave bus transfer 1is 1in
progress.

The handshake concludez with the channel bus interface clearing
SLVE REQ approximately 40 nanoseconds after receiving SLVE ACK.
When SLV® REQ is cleared, the SLVE RE)Q HLDOFF flip-flop is clocked
high and the SLVE ACK flip-flop is direct cleared. SLVE REQ
HLDOFF remains asserted, preventing a subsequent SLVE REQ from
being serviced until SLVE RDY DLY 2 sets, signalling the slave bus
control that the formatter control is ready to accept, or present,
new data over the slave bus data lines.

f
5.3.4.4 Formatter Data Path
Introduction

Overview - The formatter data path consists of 11 1logic blocks
located on the M8606 Data Formatter Board which provide data paths
between the master bus and slave bus data lines that are capable
of transferring data in either direction and formatting the data
as it 1is passed through the data path interface. The 1logic
comprising the formatter control controls the transfer of data
between registers and provides the signals which pack and unpack
the data according to formatting programs executed by the for-
matter control circuitry. The upper half of Figure 5-7 shows the
logic blocks in the formatter data path. The block diagram shows
the inherent symmetry about the assembly register (AR); with the
exceptions of the data multiplexer (DATA MUX) and the data
demultiplexer (DATA DEMUX),the only major difference between

corresponding blocks in the formatter data path is the width of
the data path, eighteen bits on the master bus side and eight bits
on the slave bus side. The formatter data path is confiqured for
the direction of the data transfer by the level on DATA TO DEV
which is buffered by the direction buffer (DIR BUF) on the M8605
Data Storage Board to form DIR TO MSTR and its complement. DIR TO
MSTR is low for device write operations and high for device read

5-65

operations. The data flow involved in device write and device
read operations is described briefly below, followed by separate
descriptions of each block in the succeeding sections.

Device Write Operations - Referring to the M8606 Data Formatter
Board: block diagram (Figure 5-7), data flow is from left to right
for device write operations. Data requested from the host by the
Massbus interface is placed on the Massbus data lines. The data
is latched in the Massbus interface and gated onto the master bus
data lines. The data path interface latches the data in the
master receiver register (MRR) and transfers it to the silo buffer
(SB) . The parity of the data in the SB is checked by the master
parity (MSTR PAR) logic. The data multiplexer (DATA MUX) formats
the data by setting bits in the assembly register (AR) according
to a mapping function specified by the formatter control logic.
When a byte has been assembled in the AR, it is transferred to the
channel buffer (CB) and gated onto the slave bus data lines by the
slave bus driver (SLVE BUS DRVR). The slave parity (SLVE PAR)
logic generates odd parity on the data. The slave bus data is
latched in the data register (DR) in the channel bus interface.
The data is transmitted to the device over the channel bus data
lines.

Device Read Operations - Referring to Figure 5-7 data flow is from
right Lo left [our Gcvice read operations. Data from the device is
transmitted to the channel bus interface over the channel bus data
lines. The data is latched in the data register (DR) in the
channel bus interface and gated onto the slave bus data lines.
The formatter data path latches the data in the slave receiver
register (SRR) and transfers it to the channel buffer (CB). The
parity of the data in the CB is checked by the slave parity (SLVE
PAR) logic. The data demultiplexer (DATA DEMUX) formats the data
by setting bits in the assembly register (AR) according to a
mapping function provided by the formatter control logic. When a
word has been assembled in the AR, it is transferred to the silo
buffer (SB) and gated onto the master bus data lines by the master
bus driver (MSTR BUS DRVR). The master parity (MSTR PAR) logic is
latched in the Massbus interface and transmitted to the host over
the Massbus data lines.

Master Receiver Register (MRR) - The master receiver register
(MRR) 1is a register composed of nineteen D-type flip-flops which
latch the master bus data and parity lines (MSTR WOR DS17 - MSTR
WOR DS00, MSTR WOR DSPAR) as MRR 17 - MRR 00, MRR P. The register
is used during device write operations to form a two-rank (double)
buffer, the first rank being the MRR and the second rank being the
SB. This allows a word to be fetched from the host via the
Massbus interface while a previously fetched word in the SB is
being processed by the formatting logic, thus improving throughput
by pipelining operations. The MRR is clocked by the leading edge
of CLR MSTR RDY, which occurs when master bus data is stable
during device write operations. The register is direct cleared by
HSDP INIT.

5S-66

Silo Buffer (SB) ~ The silo buffer (SB) is a two-ported register
composed of nineteen D-type flip-flops which latch the output of
the MRR (MRR 17 - MRR 00, MRR P) for device write operations (DIR
TO MSTR = 0) or the complemented output of the AR (-AR 17 - -AR
00) for device read operations (DIR TO MSTR = l) . The output of
the sSB is SB 17 - SB 00, SB P. Thus, during device write
operations the SB contains true MRR data with the odd parity bit,
and during device read operations the SB contains complemented AR
data with SB P always low. The trailing edge of the LD SB pulse
clocks the register. The SB participates in the double buffering
of data for transfers in either direction. For device write
operations, the SB is the second rank and the MRR is the first
rank of a two-rank buffer which provides the capability described
in this section. For device read operations, the SB is the second
rank and the AR is the first rank of s two rank buffer; after an
18-bit word is formed in the AR, it is transferred to the SB and
gated onto the master bus data lines by the MSTR BUS DRVR logic,
improving throughput by allowing master bus transfers to take
place while words are formed in the AR. : :

Master Parity (MSTR PAR) - The master parity (MSTR PAR) logic is
used for checking the parity of data in the SB during device write
operations and for generating correct parity for data stored in
the SB “uring device read operationec. MSTR PE (master parity
error) is asserted .hen bad (even) parity is detected on the data
in the SB; it is sensed by the formatter control logic only during
device write operations. The level on MSTR PAR is significant
only during device read operations when the MSTR BUS DRVR logic is
enabled. :

Master Bus Driver (MSTR BUS DRVR) - The master bus driver (MSTR
BUS DRVR) drives the master bus data and parity lines with
inverting, open-collector gates which are enabled during device
read operations (DIR TO MSTR = 1). The output of the SB, which is
complemented data from the AR, is inverted again by the MSTR BUS
DRVR, presenting true data on the master bus. The master bus
parity line is driven by the complemented MSTR PAR signal. Since
SB 17 - SB 00 combined with MSTR PAR forms a 19-bit word with even
parity, the inversion introduced by the MSTR BUS DRVR produces
data with odd parity on the master bus.

Slave Receiver Register (SRR) - The slave receiver register (SRR)
is a register composed of nine D-type flip-flops which latch the
slave bus data and parity lines (SLVE WOR DF07 - SLVE WOR DFOQ,
SLVE WOR DFPAR) as SRR 7 - SRR 0, SRR P. The register is used
during device read operations to form a two-rank (double) buffer,
the first rank being the SRR and the second rank being the CB.
This allows a word to be accepted from the device via the channel
bus interface while a previously received word in the CB is being
processed by the formatting logic. The SRR is clocked by the
leading edge of CLR SLVE RDY, which occurs when slave bus data is
stable during device read operations. The register is direct
cleared by the assertion of either SLVE END XFER (egquivalent to
SLVE WOR END XFER) or HSDP INIT.

5=67

Channel Buffer (CB) - The channel buffer (CB) is a two-ported
register composed of nine D-type flip-flops which latch the output
of the SRR (SRR 7 - SRR 0, SRR P) for device read operations (DIR
TO MSTR = 1) or the complemented output of the AR (-AR 17 - -AR
00) for device write operations (DIR TO MSTR = 0). The output of
the CB is CB 7 - CB 0, CB P. Thus, during device read operations
the CB contains true SRR data with the odd parity bit, and during
device write operations the CB contains complemented AR data with
CB P always low. The trailing edge of the LD CB pulse clocks the
register. Additionally, the CB P flip-flop is direct set if SLVE
END XFER is asserted during a device read operation. Since the
SRR is cleared by SLVE END XFER, zero data will be loaded into CB
7 - CB 0 if SLVE END XFER is asserted when & LD CB pulse is
generated, but CB P will remain high so that correct (odd) parity
will be presented to the SLVE PAR logic to prevent a parity error
from being detected under these conditions. The CB participates
in the double buffering of data for transfers in either direction.
For device read operations, the CB is the second rank and 'the SRR
is the first rank of a two-rank buffer which provides the
capability described in this section. For device write
operations, the CB is the second rank and the AR is the first rank
of a two-rank buffer; after a byte is formed in the AR, it 1is
transfer-=2d to the CB and gated onto the slave bus data lines by
the SLVE BUS DRVR logic, improving throughput by allowing slave
bus transfers to take place while bytes are formed in the AR.

Slave Parity (SLVE PAR) - The slave parity (SLVE PAR) logic is
used for checking the parity of data in the CB during device read
operations and for generating correct parity for data stored in
the CB during device write operations. SLVE PE (slave parity
error) is asserted when bad (even) parity is detected on the data
in the CB; it is sensed by the formatter control logic only during
device read operations. The level on SLVE PAR is significant only
during device write operations when the SLVE BUS DRVR logic 1is
enabled.

Slave Bus Driver (SLVE BUS DRVR) - The slave bus driver (SLVE BUS
DRVR) drives the slave bus data and parity lines with inverting,
open-collector gates which are enabled during device write
operations (DIR TO MSTR = 0). The output of the CB, which is
complemented data from the AR, is inverted again by the SLVE BUS
DRVR, presenting true data on the ‘'slave bus. The slave bus parity
line is driven by the complemented SLVE PAR signal. Since CB 7 -
CB 0 combined with SLVE PAR forms a 9-bit word with even parity,
the inversion introduced by the SLVE BUS DRVR produces data with
odd parity on the slave bus.

Assembly Register (AR) - The assembly register (AR) 1is a special
register consisting of 18 set-reset type flip-flops which are set
individually by output signals from the DATA MUX and DATA DEMUX
logic and parallel cleared by the assertion of CLR AR from the
formatter control logic. The output of the AR is named AR 17 - AR
00 and both the true and complemented data are available. For

5«68

device write operations, only the DATA MUX outputs (MUX 7 - MUX 0)
are enabled to set bits in the AR. Since the widest byte that
needs to be formatted is 8 bits, only bits AR 08 - AR 01 are
involved in device write operations. -AR 08 ~ -AR 01 are loaded
into the CB when a LD CB pulse is generated during device write
operations. For device read operations, only the DATA DEMUX
outputs (DEMUX 7 Bi - DEMUX 0 Bi where 1i=00:02,04:06,08:15
decimal) are enabled to set bits in the AR. The entire AR is used
for formatting the 18-bit words during device read operations. -
AR 17 - -AR 00 are loaded into the SB when a LD SB pulse is
generated during device read operations.

Data Multiplexer (DATA MUX) - The data multiplexer (DATA MUX)
logic maps are master bus data stored in the SB into AR bits AR 08
- AR 01, which correspond to slave bus data lines SLVE WOR DF07 -
SLVE WOR DF00, according to the mapping function supplled by the
formatter control logic. The DATA MUX outputs (MUX 7 - MUX 0) are
only enabled for device write operations (DIR TO MSTR = 0). The
bit mapping required to implement the data formats is shown in
formatter bit maps (see drawing package). The value of the data
on the SHIFT 3 - SHIFT 0 lines determines which 8 consecutive bits
(including end wrap-around) of the master bus data will be mapped
into slave bus data by the DATA MUX logic as specified in the bit
maps. A-° S$-bit mask (MASK 7 - MASK 0) determines which bits will
be set in the AR. if and only if MASK i is set and the master bus
data bit mapped into SLVE WOR DS0i is asserted, will the
corresponding bit in the AR (AR 0i where i=i+l) be set when EN
MUX/DEMUX is asserted, where i=0:7.

Data Demultiplexer (DATA DEMUX) The data demultiplexer (DATA
DEMUX) logic maps the slave bus data stored in the CB into AR bits
AR 17 - AR 00, which correspond to master bus data lines MSTR WOR
DS17 - MSTR WOR DS00, according to the mapping function supplied
by the formatter control logic. The DATA DEMUX outputs (DEMUX 7
Bi - DEMUX 0 Bi where 1i-00:02,04:06,08:15 decimal) are only
enabled for device read operations (DIR TO MSTR = 1). The bit
mapping required to implement the data formats is shown in the
formatter bit maps. The value of the data on the SHIFT 3 - SHIFT
0 lines determines how the slave bus data will be justified as
master bus data by the DATA DEMUX logic as specified in the bit
map. An 8-bit mask (MASK 7 - MASK 0) determines which slave bus
data bits stored in CB 7 - CB 0 will be enabled to set bits in the
AR. If and only if MASK i is set and the corresponding slave bus
data bit (SLVE WOR DF0i or CB i) is asserted, will the AR bit into
which the slave bus data bit was mapped be set when FN MUX/DEMUX
is asserted, where i=0:7.

5.3.4.5 Formatter Control

Introduction - The formatter control 1logic has the task of
directing the operation of 2ll the elements in the formatter data
path to transfer data through the data path interface. The data
must be properly formatted and internal operations must be
coordinated with extcrnal events involved with the transfer to
insure proper handling of the master bus and slave bus protocols.
At the heart of the formatter control logic is a 512 20-bit word
control ROM (CTRL ROM) which contains 27 independent, closed-lo0p
programs which provide device write, read forward, and read
reverse capabilities for the formatting modes implemented in
hardware (see Section 5.2.4.3).

Each program contains 3 to 15 instructions that are sequenced
through cyclically by the formatter time base (FMTR TB). The
formatter time base is driven by a crystal controlled base clock
(BASE CLK) and generates clock phases (CLK PH 0 and CLK PH 1) used
by the control ROM and formatter control (FMTR CTRL) to time
events that occur during a ROM instruction cycle. The formatter
time base can stop during the execution of ROM instructions to
wait for a required exicrnal response to occur before continuing.

Directicr Zuffer (DIR BUF) - The direction buffer (DIR BUF) on the
8605 Data Storage Board is a simple high output drive buffer
which produces both true and complemented outputs for the DIR TO
MSTR signal. DATA TO DEV is buffered as -DIR TO MSTR.

Control ROM (CTRL ROM)

Hardware - There are three basic elements in the control ROM (CTRL
ROM) 1logic on the M8606 Data Formatter Board: the 512 20-bit word
ROM, the data formatter control ROM address register, and the ROM
data register. The ROM consists of five 512 4-bit word
programmable ROMs which are addressed by ROM ADR 8 - ROM ADR 0 and

whose outputs are identified as ROM 19 - ROM 00. The data
formatter control ROM address register consists of nine D-type
flip-flops identified as ROM ADR 8 - ROM ADR (. ROM ADR 3

(actually part of register 2 on the M3605 Data Storage Board) is
loaded as UBRA 02 Bit 0 by a pulse on LD REG 2; ROM ADR 7 - ROM
ADR 4 are loaded as UBRA 10 bits 7 - 4 by a pulse on LD ROM ADR
7-4 from the LD ROM ADR logic; and a multiplexer selects either UB
DATA 3 - UB DATA 0 (DX HIGH SPEED = () or ROM 19 - ROM 16 (DX HIGH
SPEED = 1) to be loaded on the rising edge of LD ROM ADR 7-4 from
the LD ROM ADR logic or CLK PH 0 from the FMTR TR "logic. See
Section 4.4.4.10 for additional information. Normally, the entry
point of the program to be executed is initially loaded into the
data formatter control ROM address register by the microcode when
DX HIGH SPEED is low. When DX HIGH SPEED is asserted, the lower
four bits of the next ROM address to be executed are obtained from
the ROM program. ROM output bits 15 - 00 are latched in the ROM
data register by the rising edge of CLK PH 0. See Sections
4.4.4.11 and 4.4.4.12 for additional information.

ROM Instruction Organization - Each ROM word is an instruction

S5~70

which contains information that controls the operation of the
formatter data path and the internal operation of the formatter
control. The instruction is divided into four fields as defined
below.

Bit Description

19-16 NXT ROM ADR 3 - 0 = next ROM address bits 3 - 0. Each
_ROM instruction specifies the lower four bits of the next
instruction to be executed. This limitation reduces the
maximum size of individual programs to 16 instructions
and confines them to 16 word boundaries.

15-12 SHIFT 3 - 0 = shift bits 3 - 0. The SHIFT data serves
two purposes in the data path interface. First, it is
part of the mapping function which controls the operation
of the DATA MUX and DATA DEMUX logic in the formatter
data path as specified by the bit maps in the drawing
package (see Section 5.3.4.4). Second, a shift code of 7
decimal 1is not normally used as part of a mapping
function because it performs no useful mapping, but it is
used auring dcvice read operations to sct EXTEND RUN,
which forces the formatter control logic to process all
data in the formatter data path registers and pass it on
to the Mc~sbus interface. This capability allows
instructions to be executed in a non normal sequence to
improve throughput for formats such as the Read Industry
Compatible Forward mode (see Section 5.3.4.5).

11-04 ~ MASK 7 - 0 = mask bits 7 - 0. The MASK data is part of
the mapping function which controls the operation of the
DATA MUX and DATA DEMUX logic in the formatter data path
as specified by the bit maps. '

03 CC 3 = cycle control bit 3. If CC 3 is set, the assembly
register is cleared (CLR AR asserted) prior to formatting
new data into it per the mapping function specified by
the MASK and SHIFT data in the instruction.

02 CC 2 = cycle control bit 2. If CC 2 1is set, the
instruction tags the formatter cycle during which it is
executed as a slave cycle (SLVE CYC). During device

write operations, the data path interface transfers a
word to the channel bus interface over the slave bus
before executing the instruction; and during device read
operations, the data path interface obtains a word from
the channel bus interface over the slave bus before
executing the instruction.

01 CC 1 = cycle control bit 1. If CC 1 is set, the
instruction tags the formatter cycle during which it is
executed as a master cycle (MSTR CYC). During device
write operations, the data path interface obtains a word
from the Massbus interface over the master bus before

5-71

executing the instruction; and during device read
operations, the data path interface transfers a word to
the Massbus interface before executing the instruction.

00 CC 0 = cycle control bit 0. CC 0 is intended to be used
only during device read forward and read reverse opera-
tions to finish executing formatting programs when the
number of bytes read from the device does not correspond
to the number required to complete a full pass through
the program. For device write programs, CC 0 should
always be low. For device read programs, CC 0 should be
asserted for all but the first instruction in a program
loop. When SLVE WOR END XFER is asserted by the channel
bus interface during a read operation, the data path
interface is enabled to continue formatting bytes of zero
data without the normal slave bus handshake until the
beginning of the program loop 1is encountered, as
identified by CC 0 being low.

ROM Programs - The control ROM consists of thirty-two 1l6-word
pages. Programs cannot extend across page boundaries because the
ROM instructions can only alter the least significant four bits of
the data formatter control ROM address register. Several
predram., uowever, may be contained con a single page. There are
no restrictions on .he starting addresses of programs and a single
program may have multiple entry points as in the case of read
reverse programs.

There are twenty-seven programs in the ROM for implementing the
data format modes described in Section 5.2.4.3 plus some
additional diagnostic programs. A listing of all the programs in
the control ROM is given in the ROM program charts (see drawing
package) . ROM addresses and data are specified in hexadecimal
notation because the 4 and 8-bit fields of the ROM instructions
and the 16-word pages lend themselves to this base. Generally,
programs are coded in line to make them more readable. The
columns in the ROM program listing are defined below.

1. Starting byte. The bytes transferred to the device are
identified by their positions in the 18, 36, or 72-bit
words from which they are unpacked during device write
operations and into which they are packed during device
read operations. As shown in the data format chart the
bytes are numbered by the sequence in which they are
written. Valid entry points to the ROM programs have
starting bytes associated with them which specify the
first byte that a2 write program will unpack from the host
data or the first byte that a read program expects to
receive from the device when program execution 1is
initiated at the entry point. Note that write and read
forward programs always begin execution at byte 1, but
read reverse programs have multiple entry points to start
formatting at any byte position to allow proper packing
of bytes into words when reading records of known length

S=72

with byte counts which do not correspond to an integral
number of 18, 36, or 72-bit words, depending on the data
format. »

Entry Point. All of the valid entry points for the ROM
formatting programs are marked with an arrow (-->). The
diagnostic programs are not so marked.

ROM address. The ROM address of each instruction is
specified in hexadecimal.

ROM data. The ROM data consists of the four fields
described above. They are specified in hexadecimal and
dashes (-) indicate don't care fields that are programmed
as zeroes. The NXT ADR field usually specifies the next
sequential ROM address or, in the case of the 1last
instruction in the sequence, points to the address of the
first instruction in the program loop. The SHIFT and
MASK fields determine the mapping function to be
performed. It is important to note ‘that the mapping
function is carried out during every ROM instruction
cycle, althouth it can be rendered ineffective by
specifying a MASK of all zeroes. ‘

CC field erpanded. The cycle control field is expanded

‘to allow easy identification of the type of instruction.

Ones (ls) mark those bits which are asserted in the ROM.
To maintain maximum throughput, all instruction cycles
are either slave cycles (SLVE CYC) or master cycles (MSTR
CYC). The clear assembly register (CLR AR) function is
performed before the mapping function and is usually
specified in instructions which begin formatting new
bytes in write programs or new words in read programs.
The continue (CONT) bit is low for write programs and
asserted for all but the first instructions in the loops
of read forward and read reverse programs.

Cycle type/byte or word. All instruction (with the
exception of some of those in the diagnostic programs)
execute either slave (S) cycles or master (M) cycles
during which bytes or words are transferred over the
respective bus. The actual byte or word involved in the
transfer is given, where ‘the number corresponds to byte
or word. position in the format as shown in the ROM
program charts.

Comment field. Each program name is preceded by an
asterisk (¥*). The basic function of each of the
instructions is specified in the comments that follow it.
Write programs get words from the host during master
cycles and send bytes to the device during slave cycles.
One or two instruction cycles are needed to form a
complete byte as identified by the -P (partial) and -C
(complete) suffixes appended to the format byte comment.

S5-73

Read programs obtain bytes from the device during slave
cycles and send words to the host during master cycles.
Several instruction cycles may be needed to form a
complete word as identified by & -P and -C suffixes
appended to the format word comments.

For the purpose of the following discussion, the diagnostic
programs will be ignored. Without exception, write program
instructions are executed in sequential order of increasing
addresses with the last instruction looping back to the first
instruction in the sequence. In general, read forward programs
are sequential in nature also, with the exception of the program
for the industry compatible mode which 1loops from the last
instruction to the second instruction in the sequence (sece
formatter control). The read reverse programs have multiple entry
points, some of which are to instructions outside the program loop
(at the end of the program). An instruction at a nonsequential
entry point, however, always returns control to the loop with a
jump to an appropriate point in the loop. These nonsequential
instructions are only executed once upon starting a read reverse
operation and invariably send an initial 18-bit word of zecro data
to the host. <vhey are used in the PDP-10/20 modes to send an even
numbered 18-bit word of zero data before an odd numbcred word in
the prcor~n loop to properly justify the first odd numbered 18-bit
word, and all suc~eeding odd words, in the right half of the
36-bit host memory words.

Base Clock (BASE CLK) - The formatter control logic is driven by a
21.84 megahertz oscillator source in the base clock (BASE CLK)
logic on the M8605 Data Storage Board. The BASE CLK logic 1is
controlled by two signals generated by the microbus interface and
control logic. BASE CLK EN (UBRA 01 Bit 1) permits the 21.84
megahertz signal to be gated through to BASE CLK when it is
asserted and holds BASE CLK high when it is low. If SINGLE STEP
is pulsed by writing UBRA 12 when BASE CLK EN is low, BASE CLK
will be pulsed low. These two control signals are useful during
diagnostic testing of the data path interface.

Formatter Time Base (FMTR TB) - The formatter time base (FMTR TB)
on the M8606 Data Formatter Board generates the clock signals
which are decoded by the formatter control logic to time events
that occur during instruction cycles. The FMTR TB logic can be
divided into two basic parts: the clock phase generator, and the
start/stop logic. Reference will be made to the formatter time
base waveforms in Figure 5-18 in the description that follows.

Clock Phase Generator - A two-stage twisted-tail ring counter
(Mobius counter) generates two clock phases (CLK PH 0 and CLK PH
1) from the BASE CLK signal with both the true and complemented
outputs available. As shown in Figure 5-18, the phase changes
occur on the leading edge of BASE CLK with the rising edge of CLK
PH 0 leading the rising edge of CLK PH 1. If RUN (from the start/
stop logic) is held high, the clock phases will run uninterrupted
with a change occurring in one of the phases every BASE CLK

S=-74

Figure 5-18 Formatter Control

S w75

period. - If RUN goes low, the clock phases run uninterrupted until
they both go 1low, at which time clock phases changes stop until
run is asserted again. The four possible time states are labelled
TO - T3 as shown in Figure 5-18 and define an instruction cycle.

Start/Stop Logic - The start/stop logic controls the initial
starting of the FMTR TB and the interruption of clock phase
changes in state TO during normal ROM instruction execution. Two
flip-flops are involved in this activity. The RUN flip-flop
synchronizes external events with the ROM program by stopping the
clock phase generator at the beginning of an instruction cycle
(TO) until an external condition required for that instruction is
satisfied. Data at the input to the RUN flip-flop is clocked into
it on the rising edge of BASE CLK. The logic equation shown for
RUN in Figure 5-18 defines the conditions required to execute an
instruction. ROM 02 - ROM 00 is the data that is clocked into CC
2 - 0 at Tl, when instruction execution resumes. The significance
of each item in the equation is given below.

1. The first term is asserted during master cycles when M3TR
RDY DLY 2 goes low, an event which signals the FMTR TB
that master bus data required for the instruction has
been clocked into the MRR during a device write operation
~r that master bus data for the previous master cycle has
been transizrred to the Massbus interface during a read
operation.

2. The second term is asserted during slave cycles when SLVE
RDY DLY 2 goes low, an event which signals the FMTR TB
that slave bus data required for the instruction has been
clocked into the SRR during a device read operation or
that slave bus data for the previous slave cycle has been
transferred to the channel bus interface during a write
operation,

3. The third term is asserted during slave cycles when SLVE
END XFER (equivalent to SLVE WOR END XFER) is asserted by
the channel bus interface and the continue cycle control
bit 1is asserted. This condition occurs during device
read operations (ROM 00 is not asserted during write
operations.) When the device signals the channel bus
interface that it has finished reading a record, but the
data path interface 1is not at the beginning of 1its
formatting program. During such slave cycles which do
not involve actual slave bus transfers, bytes of =zero
data are processed by the formatter data path logic to
complete an 18, 36, or 72-bit word, depending on the data
format.

4. The fourth term is asserted during slave cycles when SLVE
END XFER 1is asserted by the channel bus interface and
EXTEND RUN is set. This condition also occurs during
device read operations when the device signals the
channel bus interface that it has finished reading a

5-76

record, but the data path interface has not transferred
all the data in its internal registers to the Massbus
interface because of a non-normal instruction sequence in
a read program that set EXTEND RUN. The EXTEND RUN logic
is discussed in this section.

RUN. can be direct set for diagnostic testing by asserting SET RUN
(writing UBRA 14) and 1is direct cleared by setting the CLR RUN
flip-flop. The CLR RUN flip-flop synchronizes DX HIGH SPEED with
the FMTR TB; CLR RUN assumes the level of -DX HIGH SPEED on the
rising edge of BASE CLK, allowing the RUN flip-flop to assume the
level of the data at its input on the next rising edge of BASE CLK
after CLR RUN goes 1low. CLR RUN 1is direct set by HSDP INIT
(writing UBRA 13) to insure proper initialization of the data path
interface and direct cleared by SET RUN (writing UBRA 14) to allow
SET :RUN to direct set RUN.

Formatter Control (FMTR CTRL) - The formatter control (FMTR CTRL)
block consists of control logic on the M8606 Data Formatter Board
which can be partitioned into the following sub-blocks: data path
register control, master synchronizer, slave synchronizer, extend
run, data path parity error flag, and end transfer.

Data Patl. Register Control - The LD SB, LD CB, CLR AR, and EN
MUX/DEMUX signals «re generated by the FMTR CTRL logic. The
effects of these signals have already been described briefly in
Section 4.4.4.15 and in more detail in Section 5.3.4.4. The
instruction cycle timing diagram in Fiqure 5-18 shows the time
states during which they clock, clear, and/or enable the various
elements of the formatter data path. LD SB and LD CB are asserted
during state TO for master cycle (ROM 01 = 1) and slave cycle (ROM
02 = 1) instructions, respectively, if CLR RUN is not asserted.
All register and flip-flop clocking occurs on the trailing edge of
the LD SB and LD CB pulses. CLR AR 1is asserted during timing
state T2 if ROM cycle control bit 3 is asserted (CC 3 = 1). The
EN MUX/DEMUX signal is asserted every instruction cycle during the
last half of timing state T2 and all of T3. '

Master Synchronizer - The MSTR RDY flip-flop and its synchronizers
(MSTR RDY DLY 1 and MSTR RDY DLY 2) comprise the master
synchronizer. The manner in which these flip-flops are controlled
has been described in Section 4.4.4.17, the role they play in
controlling master bus transfers in Section 5.3.4.3, and the means
by which the master synchronizer coordinates master bus transfers
with the execution of the ROM program through the start/stop logic
in the FMTR TB. The two stages of synchronization serve two
purposes. First, the synchronizers reduce the probability of
error within the data path interface in resynchronizing the
clearing of MSTR RDY by CLR MSTR RDY, an asynchronous event, to
less than one error in 10 years. Second, the setting of MSTR RDY
DLY 2, which permits MSTR ACK to be asserted, is declayed
approximately 90 nanoseconds after the trailing edge of LD SB.
This insures that master bus data will be stable before MSTR ACK
is issued during device read operations and allows enough time for

O=77

data to stabilize in the MRR before being clocked into the 3B
register during device write operations.

Slave Synchronizer - The SLVE RDY flip-flop and its synchronizers
(SLVE RDY DLY 1 and SLVE RDY DLY 2) comprise the slave
synchronizer. The manner in which these flip-flops are controlled
has been described in Section 4.3.4.17 and the role they play in
controlling slave bus transfers is explained in Section 5.3.4.3
and the means by which the slave synchronizer coordinates slave
bus transfers with the execution of the ROM program through the
start/stop 1logic in the FMTR TB. The two stages of
synchronization serve two purposes. First, the synchronizers
reduce the probability of error within the data path interface in
resynchronizing the clearing of SLVE RDY by CLR SLVE RDY, an
asynchronous event, to less than one error in 10 years. Second,
the setting of SLVE RDY DLY 2, which permits SLVE ACK to be
asserted, is delayed approximately 90 nanoseconds after the
trailing edge of LD CB. This insures that slave bus data will be
stable before SLVE ACK is issued during device write operations
and allows enough time for data to stabilize in the SRR before
being clocked into the CB register during device read operations.

Extend Run - The extend run logic has been necessitated by the use
of non nurmal instruction sequences, namely in the industry
compatible read-fo.ward program. It is desirable to always
sandwich at least two slave cycles between successive master
‘cycles so that master bus transfers can be overlapped with slave
bus transfers with little or no reduction in throughput due to the
transfer rate limitations of the Massbus interface. In every
formatting program but one, the normal sequence of words and bytes
results in master cycles being separated by at least two slave
cycles. For the industry compatible read-forward mode, however,
it is only necessary to get byte 4 from the device between sending
words 1 and 2 to the host. The problem has been resolved by
getting byte 1 for the next word immediately after byte 4, but not
formatting it until the master cycle instruction which sends word
2 to the host. Then, the program loops back to the instruction
which gets byte 2 instead of the entry point instruction. The
extend run logic is needed to handle the case in which the number
of bytes involved in the transfer is one greater than a multiple
of 4. Were it not for the additional 1logic, the program would
stop after sending the second word containing the second to last
byte (byte 4) and never finish formatting the additional word with
the last byte (byte 1) in it or send it on to the host.

EXTEND RUN is set at the beginning of timing state T2 if SLVE WOR
END XFER is not asserted and the SHIFT code of the instruction
being executed during that cycle is 7. It is cleared as a matter
of course during timing state T1 of an instruction in which the
continue cycle control bit (CC 0) is not set. Asserting HSDP INIT
(writing UBRA 13) or CLR EXTEND RUN (writing UBRA 17) will also
clear EXTEND RUN.

Referring again to the industry compatible read-forward program,

5«78

note that the SHIFT code for the instruction that gets byte 1
(address 00D hexadecimal) is 7, which will cause EXTEND RUN to set
when the instruction is executed. Since byte 1 is the last byte,
the program will stop after sending word 2, waiting for another
byte (byte 2) before proceeding. When the device signals the end
of the transfer, the channel bus interface will assert SLVE WOR
END XFER. If EXTEND RUN were not set, the program would still not
eéxecute another instruction because the continue cycle control bit
is low, but EXTEND RUN overrides CC 0 as described in this section
causing the instruction at address 009 hexadecimal to be executed,
which clears EXTEND RUN. Bytes of zero data are formatted into
two additional 18-bit words which are sent to the host. Note that
when the instruction at address 00D hexadecimal is executed this
time, SLVE WOR END XFER is still asserted, preventing EXTEND RUN
from being set a second time. Consequently, the program stops
after sending word 2.

Data Path Parity Error Flag - The DP PE FLAG flip-flop is clocked
at the beginning of timing state T2 during every instruction
cycle. During slave cycle instructions for device read operations
(DIR TO MSTR = 1), the DP PE FLAG will set if SLVE PE from the
SLVE PAR logic in the formatter data path is asserted at the
beginning of state T2, indicating that bad (even) parity has been
detected in the slave bus data stored in the CB register. During
master cycle instru~tions for device write operations (DIR TO MSTR
= 0), the DP PE FLAG will set if MSTR PE from the MSTR PAR logic
in the formatter data path is asserted at the beginning of state
T2, indicating that bad (even) parity has been detected in the
master bus data stored in the SB register. Once set, the DP PE
FLAG can only be cleared by asserting CLR REG 0 (See Section
5.3.4.2).

End Transfer - The end transfer logic generates SLVE END XFER and
FMTR END XFER. SLVE END XFER is the buffered equivalent of SLVE
WOR END XFER. FMTR END XFER is asserted when SLVE WOR END XFER is
asserted, RUN is low, and the continue cycle control bit (RCM uJ)
is low, indicating that the data path interface has completed
formatting all the data received from the device during device
read operations.

5-79

CHAPTER 6
PREVENTIVE MAINTENANCE

(To Be Supplied)

CHAPTER 7
SERVICE

(TovBe Supplied)

	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	6-01
	7-01

