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Abstract 

This report is a tutorial guide to the concept and use of the MICRO/40 

assembler. It is intended to familiarize new users with the microassembler 

as the fundamental microprogram development aid in the PDP-ll/40E micro­

programming support system. The introduction of the MICRO/40 syntax in BNF 

and a commented list of all error messages make this report also usable as a 

reference for advanced users. Microprogramming techniques that scope with 

the effects of hardware idiosyncrasies on PDP-Il/40E microprogramming are 

presented in the form of a tutorial. The report covers the basics needed 

for the day-to-day use of the microassembler, such as the microprogram 

input formats, the invokation of MICRO/40, and the interpretation of micro­

assembler outputs. The use of MICRO/40 under the UNIX operating system is 

demonstrated by a commented protocol of a complete terminal session. This 

terminal session also illustrates the techniques for error corrections using 

the UNIX text editor. 
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1. Introduction 

The microassembler described in this report is the language facility in 

our microprogramming laboratory that assists the user in writing PDP-ll/40E 

microcode. MICRO/40 was developed at Carnegie-Mellon University, Department 

of Computer Science, to run as cross assembler on a PDP-lO computer [1]. The 

MICRO/40 version we refer to in this report is an improved PDP-II version of 

the original microassembler that was written at the Technical University 

Berlin, Institut fUr Softwaretechnik und Theoretische Informatik, Fachgebiet 

Betriebssysteme. It runs on a PDP-ll/40 under the UNIX operating system 

[2,3] and is written in the "c" programming language [4]. MICRO/40 inter­

faces to a microsimulator [5] and a microprogram test system [6,7] which, 

together with the microassembler, constitute the kernel of our PDP-ll/40E 

microprogramming support system~ 

The PDP-ll/40E is a standard PDP-ll/40 computer that has been extended 

by the following hardware features which were developed at Carnegie-Mellon 

University [1,8]: 

lK 80-bit words of random access (RAM) control store for storing 

user microprograms. 

32 80-bit words of read-only (PRO}!) control store for bootstrapping 

microprograms. 

a l6-word stack for temporary data storage. 

a shift and mask unit and a carry control unit which extend the data 

manipulation capabilities of the basic PDP-ll/40 processor. 

The 3-River Computer Corporation offers these hardware accessories as a 

writable control store option (WCS 11/40) for the PDP-ll/40. The PDP-ll/40E 

has a horizontal microinstruction format that allows user microprograms access 

to all functional hardware units and data paths in the basic PDP-ll/40 processor 

and in the WCS 11/40. The MICRO/40 assembler supports the construction of 

microinstructions from any combination of microoperations in this microinstruc­

tion format. The microprogramming features of the PDP-ll/40E are described in 

[1,9] . 

In a typical microassembler, mnemonics are defined for each legal micro­

operation. Microinstructions are constructed by combining these menmonics in 

assembly code lines. For vertical microinstruction formats, only a single 

(relatively complex) microoperation can generally be defined in each micro-
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instruction. Contrastingly, several (relatively primitive) microoperations can 

be combined into a single horizontal microinstruction. That is, horizontal 

microinstruction formats allow the specification of parallel actions (micro­

operations) to be performed by the machine hardware. In addition to mnemonic 

microoperation definitions, microassembl'ers usually provide for the use of 

mnemonic labels. Furthermore, the placement of microinstructions in the control 

store is usually supported by microassemblers, although microcode is generally 

not relocatable. 

More sophisticated microassemblers may include macro facilities, in 

addition to the above features. Microassemblers for horizontal microinstruction 

formats may also automatically insert default values into microoperation fields 

which have not been filled by the microprogrammer, Furthermore, attempts have 

been made to make microassemblers partly machine-independent. These attempts 

make a single assembly language usable to generate microcode for several different 

microprogrammable machines. To this end, the assembly language syntax is para­

meterized and the hardware of the target machine is described at the assembler 

directive level. Finally, self-documenting assemblers have been developed that 

generate a commentary for each microinstruction written by the microprogrammer 

and thus, support microcode documentation. 

The MICRO/40 assembler described in the following sections includes all 

the standard features of a microassembler for horizontal microinstructions. 

Additionally, a macro definition facility is provided. Furthermore, compound 

statements are included into MICRO/40 to support some of the idiosyncrasies of 

the PDP-Il/40E. Microprogrannning in the MICRO/40 assembly language is fac­

ilitated by the fact that the assembler transforms (register-transfer) assign­

ment statem~nts into appropriate microoperation field specifications, and the 

automatic insertion of default values into unspecified microoperation fields. 

Microcode testing and debugging are integral parts of the microcode 

construction process and should not be delayed until after a microprogram is 

written. Therefore, microprogramming languages must support microcode testing 

and debugging. Analogous to the relationship between high-level programming 

languages and assembly languages for software, high-level microporgramming 

languages have many advantages over microcode assembly languages, with respect 

to microcode construction. For example, program development techniques, such 

as structured programming, become applicable to microprogrannning through the 

use of machine-independent high-level microprogramming languages. Although 

structured, high-level microcode generation also greatly facilitates error 

location and correction, there exists no widely accepted high-level micro­

programming language. This situation is primarily due to the fact that hard-
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ware-dependent timing conditions (especially for asynchronous operations) and 

the inherent parallelism hinder the compiler construction for machines with 

horizontal microinstruction formats. The fundamental problem, in this respect, 

is the generation of optimized microcode, and the lack of realistic models of 

microinstruction and microoperation semantics which, by nature, are considerably 

more complex than corresponding models for software semantics. That is, in 

essence, the provision of high-level microprogramming tools is hindered by the 

necessity to exploit hardware characteristics to produce efficient microcode. 

Unoptimized microcode is generally unacceptable, because of the frequency with 

which microinstructions are executed. 

As a result of the discussed difficulties in developing high-level micro­

programming facilities, typical microprogramming support systems are still 

based on a microassembler and the associated loader and simulator software. 

Microassemblers leave the task of microcode optimization to the microprogrammer, 

as they do not offer any assistance in exploiting the inherent parallelism in 

microinstructions. Generally, a microassembler merely checks the legality of 

the combination of microoperations which the microprogrammer specified within 

a microinstruction. These syntax checks in a microassembler may be considered 

as a type of static microprogram testing and therefore, are usually restricted 

to the detection of static errors. Dynamic microprogram testing via mi.cro­

program execution requires the availability of an off-line (soft) test system, 

SUcl1 as a microcode simulator, or of on-line (hard) test systems, such as 

an interactive debugger or special hardware accessories for the instrumentation 

of microprogram executions. 

The error detection capabilities of the MICRO/40 assembler are enhanced by 

the WCS 11/40 microinstruction format [1,9] which makes certain conflicts 

detectable through microcode examination. The typical conflicts that are 

detected by the MICRO/40 assembler are the illegal use of data paths, registers, 

and functional hardware units. With respect to timing errors, the micro­

assembler checks the specified microoperations against the length of the 

specified processor clock cycle, and attempts to enforce the proper timing 

for each microinstruction. Nevertheless, the detection of timing conflicts by 

the MICRO/40 assembler is restricted to static errors. 

MICRO/40 supports microcode testing and debugging by generating files 

to be used by a microcode simulator [5]. The microsimulator allows the inves­

tigation of effects of simulated microinstruction executions. The facilities 

for detecting and locating of errors are basically restricted to static errors 

which can be observed by investigating processor registers, including the 

microprogram pointer. For the detection of dynamic, hardware-dependent micro-
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program errors, an on~line test system, SMILE [6,7], for microprogram load and 

examination is available in our microprogramming support system. The SMILE 

system loads the binary object microcode as supplied by MICRO/40 into the 

writable control store, and allows microprogram testing at the microprogram 

level by execut~ng PDP-II/40 machine language instructions. which call upon the 

execution of the loaded microcode. However, using the SMILE system, erroneous 

microoperations usually cannot be located by tests at the microprogram level. 

Therefore, the microprogramming support system has been complemented with a 

logic state analyzer whose use as an on-line test facility at the microinstruc­

tion and microoperation level is documented in [10]. 

This report is intended to provide a tutorial guide to the concept 

and use of MICRO/40that expands and complements the available documentation 

[1,8]. To this end, we first introduce the MICRO/40 syntax in section 2. 

Based on the content of section 2" we proceed, in section 3,. with a discussion 

of the conceptual features of MICRO/40 and associated progrannning techniques. 

Guidelines for the use of MICRO/40 and the interpretation of assembler output 

are presented in section 4. Finally, in section 5, we demonstrate a complete 

example of the microassembler operation in the form of a terminal session. 

2. MICRO/40 Syntax 

MICRO/40 has many of the limitations of a software assembler. Further­

more, being a microassembler for a specific machine (PDP~11/40E), register 

and microoperation field names as well as operator symbols are pred~clared and 

cannot be redefined. The nature of register-transfer operations in the PDP-ll/40E 

processor as described by MICRO/40 assembly language lines implies that all 

names and operator symbols are global. 

2.1 Input Format 

Each line of MICRO/40 input is assembled into a single 80-bit microinstruc­

tion (for exceptions to this rule, cf. subsection 2.5). A line of MICRO/40 

input is defined as all the characters between two consecutive line-feeds. 

Any line ending with a hyphen(-) has the next line concatenated to it, i.e., 

the hyphen is the line continuation symbol. Each line is read and processed 

individually, and no distinction is made between lower case and upper case 

letters. The MICRO/40 assembly language is a free-format language in which 

statements can be placed anywhere on the line with as many blanks as needed 

to make the described microinstruction legible. Anything. following an 

exclamation point(!) on a line is considered a comment and is ignored. 
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2.1.1 Identifiers 

A MICRO/40 identifier is a character string starting with an alphabetic 

(A - Z, a-z) and followed by an arbitrary number of alphabetics (A - Z, a-z) t 

digits (0-9), a dot(.), a slash(/), or an underline(_). The number of 

significant identifier characters is limited to 20. 

2.1.2 Numbers ------
A numeric constant is a sequence of one or more digits. All numeric 

constants are considered to be octal, unless the number contains the digits 8 

or 9, or a decimal point in which case, it is interpreted as a decimal number. 

The syntax of a negative number is, -<number>. Negative numbers may be 

parenthesized. The above rules define the following equivalences, e.g., 

137 is equivalent to 95. 

102 is equivalent to 66. 

-32 is equivalent to (-32). 

2.1.3 Labels 

A label declaration is an identifier followed by a colon(:), i.e., 

< label declaration>: :=<label>: 

< label>: : =<identifier> 

A line may contain an arbitrary number of labels which may be placed anywhere 

on the line. 

2.2 Microoperation Field Assignments 

The generic use of the MICRO/40 assembler is to assign specific values 

to each microoperation field in the horizontal microinstruction. The syntax l ) 

for a field assignment is: 

<field name> = <value> {;} 

The semi-colon (;) separates multiple field assignments on a single MICRO/40 

input line. The semi-colon following the last field assignment on a line may 

be omitted. 

1) 
Throughout this text, we use the meta symbol {}to enclose optional objects 

in syntax definitions (i.e., 0 or 1 repetitions of the enclosed object are 

allowed). 
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2.2.1 MicrooperationFields 

The format of the 80-bit PDP-11/40E microinstruction (XU) and the bit 

position assignment of the microoperation fields are shown in Fig. 1. The 

36 microoperation field in XU may be divided into 14 groups [9]. The 

EMIT 

SCOM PPE CP CS RML LML . DEsr MSC XUPF UPF I 
79 78 77 76 75 72 71 68 67 64 63 62 61 59 58 56 55 48 

47 46 45 44 43 42 41 40 39 38 37 36 35 32 31 29 

28 27 24 23 20 19 18 17 16 15 14 13 12 8 7 6 5 4 3 o 

Figure 1: XU Format 

PDP-ll/40E registers, data paths and functional units associated with the 

microoperations are depicted in the register-transfer block diagrams of the 

PDP-ll/40 processor, the WCS 11/40, and their mutual interfaces as given in the 

appendix. 

Clock Control 

CLKL (XU<47:46»: Processor Cloc~ length Control 

Allows a selection from three basic PDP-1l/40 processor cycle 

times. 

CLKOFF (XU<45»: Processor Clock Off - ---
When set, turns processor clock off. 

Register Load Control 

CLKIR (XU<44»: Clock Instruction Register - -~ -
Allows clocking the D l1UX output into the instruction register. 

WRH (XU<43»: Write ~igh Order Byte of D~ruX BUS 

Allows writing the high order byte of the D MUX output into a 

selected general purpose register. 

WRL (XU<42»: Write 1.0w Order Byte of DMUX BUS' 

Allows writing the low order byte of the D MUX output into a 

selected general purpose register. 
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CLKB (XU<41»: C1oc~ ~ Register 

Allows clocking the D MUX output into the B Register. 

CLKD (XU<40»: C1oc~ Q Register 

Allows clocking the ALU output into the D Register. 

CLKBA (XU<39»: C1oc~ BA Register 

Allows clocking the BA MUX output into the BA Register 

UNIBUS Control 

CBUS (XU<38:37»: Control of UNIBUS 

Allows the specification of UNIBUS data transfers. 

BGBUS (XU<36»: ~e£in a UNIBUS Transfer 

Allows the initiation of a UNIBUS data transfer specified in CBUS. 

Instruction Processor Logic Control 

DAD (XU<35:32»: Discrete Alteration of Data 

Directs the ALU control logic (which is associated with the 

instruction decoding logic) as to alterations of operations 

to be performed by functional hardware units in the data pro-

cessor. 

Processor Status Control 

SPS (XU<31:29»: Select Processor Status 

ALU Control 

Determines loading of the PS Register from the DMUX BUS, 

clocking of condition codes into the PS Register, and gating of 

the PS Register onto the RD BUS. 

SALUM (XU<28»: Select ALU Mode 

Selects ALU mode of operation (arithmetic or logic) 

SALU (XU<27:24»: Select ALU Function 

Multiplexor Control 

Allows the selection of up to 16 arithmetic or 16 logic ALU 

functions. 

SBC (XU<23:20»: Select Input to ! MUX from B Constants 

Allows the selection of a constant to be gated to the ALU B-input. 

SBMH (XU<19:l8»: Select Input to ~ ~X's ~igh Order' Byte 

Allows the selection of bytes from the B Register and the B 

Constants to be gated to the high order byte of the ALU B-input. 
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SBML (XU<l7:l6»: Select Input to !!:!UX's :how Order Byte 

Allows the selection of bytes from the B Register and the B 

Constants to be gated to the low order byte of the ALU B-input. 

SDM (XU<l5:l4»: Select Input to Q!:!UX 

Select the RD BUS, the UNIBUS data lines, the D Register, or th~ 

right-shifted D Register as the input to D MUX, 

SBAM (XU<l3»: ~elect Input to BA ~X 

Selects the output of the ALU or the RD BUS as the input to 

BA MUX. 

General Purpose Register Addressing Cont~ 

SRS (XU<7»: Select General Purpose !egister Address from IR Source Field 

Allows IR <8:6> to be used as a source of a general purpose register 

address. 

SRD (XU<6»: Select General 'Purpose !egister Address from IR Destination Field 

Allows IR <2 :,0> to be used as a source of a general purpose register 

address. 

SRBA (XU<5»: Select General Purpose !egister Address from the BA Register 

Allows BA <3:0> to be used as a source of a general purpose register 

address. 

SRI (XU<4»: Select General Purpose !egister Address from RIF 

Allows XU <3:0> = RIF to be used as a source of a general purpose 

register address. 

RIF (XU<3:0»: !egister Immediate Field 

Used as source of a general purpose register address when enabled 

by SRI. 

Microinstruction Sequencing Control 

UBF (XU<l2:8»: Micro !ranch Field 

Specifies the branch micro test (BUT) to be performed, in order 

to generate the address of the successor microinstruction by 

ORing the determined basic microbranch code (BUBC) into UPP<5:0>. 

UPF (XU<55:48»: Microprogram !ointer !iel~ 

Used to specify the address of the next microinstruction to be 

executed. The specified address may be modified as a result of a 

branch micro test (BUT) specfie,d in UBF. 

XUPF (XU<58:56»: Extended Microprogram !ointer !ield 
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Concatenated with UPF (XU<55:48». this field froms an II-bit 

microinstruction address in the extended control store address 

space (addition of the RAM and PROM control stores to the ROM 

control store). 

WCS 11/40 Data Paths Control 

MSC (XU<61:59»: ~ask/~hift Control 

DEST (XU<63:62»: Destination 

The DEST and MSC fields are combined into a 5-bit field that 

specifies how the bits XU<79:64> are to be interpreted (as 

function fields or EMIT field) and how the WCS 11/40 data paths 

are set up for the interpretation of the current microinstruction. 

Mask/Shift Control 

LML (XU<67:64»: Left Mask Limit 

Specifies the number of bits of the S MUX output that are to 

be masked off from the left. 

RML (XU<71:68»: ~ight ~ask 1imit 

Specifies the number of bits of the S MUX output that are to be 

masked off from the right. 

SC (XU<75:72»: Shift Count 

Carry Control 

CP (XU<76»: 

Specifies the number of bit positions (between 0 and 15) for a 

right rotate of the S MUX output 

Depending on the specification of DEST/HSC, this field might also 

be used to specify a 4-bit value to be transferred into the stack 

pointer SP. 

Carry ~ropagate Control 

Specifies the application of the content of CPFF (Carry Propagate 

Flip-Flop) to the carry input of the ALU and the storage of a new 

carry bit (as determined by SCaM) into CPFF. 

SCaM (XU<79: 78»: .§..elect Qarry Qut ~ultiplexer 

Specifies the selection of a carry bit from the ALU carry-out 

bits (ALU15. word carry, byte carry) or the condition code bit 

PS(C) of the processor status word to be stored into the high­

order bit extension of the D Register (D(C)) and into CPFF. 
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Stack Control 

PPE (XU<77»: ~ush/~op !nab1e 

Specifies. if stack read/write operations are combined with pop/ 

push operations, respectively. 

Arithmetic and Addressing Constants 

EMIT (XU<79:64»: Micro1itera1 Field 

Used to specify 16-bit arithmetic or addressing constants. The 

use of XU<79:64> for micro1itera1s is determined by the speci­

fication in DEST/MSC. If XU<79:64> is used as a micro1iteral 

field, the fields LML, RML, SC t CP, PPE, SCOM of the XU WORD 

serve as a data register whose content is transferred to the 

input of S MUX. 

2.2.2 Use of Field Assignments 

With each field assignment in a MICRO/40 assembly language program, the 

appropriate microoperation field is cleared and the assigned value is stored 

in it. If a single MICRO/40 input line contains two different assignments 

to the same field, only the last (right-most in the lint) value is considered 

and a warning is issued. That is, the microassemb1er does· not prevent double 

field assignment on the same line. All values assigned to microoperation 

fields are expected to be assembly time constants (numbers), except for values 

assigned to the EMIT and XUPF fields. 

The EMIT field may store a ll-bit control store address that is associated 

with a mnemonic label in the assembly microprogram, or the 16-bit address of a 

16-bit field in the writable control store. The latter option allows the 

writable control 'store (Rk~) to be accessed as a data scratch pad (cf. sub­

sections 2.5.7 and 2.5.8). 

MICRO/40 uses the name XUPF to denote the extended microprogram pointer 

field, XU<S8: 48> = XUPF, UPF (cf. subsec,tion 2.2.1). This field always holds 

the base address of the next microinstruction, as there is no microinstruction 

counter in the PDP-!1/40E. If no assignment is made to the XUPF field, the 

increment of the current microinstruction (control store) address is automatically 

assigned as a default. This assignment corresponds to a'goto next consec-

utive microinstruction' •. Assigning a constant to XUPF causes a 'goto' to that· 

absolute control store location. However, mnemonic labels may also be assigned 



11 

to XUPF, in which case, the associated II-bit microinstruction address is in­

serted into XU<58:48>. 

For MICRO/40 field assignments, some of the microoperation fields dis­

cussed in the preceding subsection are concatenated into compound fields: 

ALU = SALUM,SALU 

BUS CBUS,BGBUS 

CLK CLKL,CLKOFF 

SBM SBMH,SBML 

SRX SRS, SRD, SRBA, SRI 

WR WRH,WRL 

XUPF XUPF,UPF 

The microinstruction generated by the following field assignments trans­

fers the constant 10 into the B Register. 

emit = 10; msc = 1; clk = 6; clkb = 1 

The assembler sets all other microoperation fields to 0, except for the XUPF 

field which is assigned the control store address of the next consecutive 

microinstruction, if there exists one. The assignment of the binary value, 

00 001, to the DEST/MSC fields specifies the data transfer, RD + EMIT. 

The assignment clkb=l opens the data path, B + DMUX, while the implicit setting 

sdm=O defines the transfer DMUX + RD BUS. Hence, we have the compound transfer: 

B + DHUX + RD BUS + EMIT = 10 

The assignment clk=6, i.e., CLKL=3, selects a P3 processor clock cycle for 

this data transfer (cf. [9]). Generally, r1ICRO/40 automatically assigns an 

appropriate clock cycle length for each microinstruction. Thus, the field 

assignment, clk=6, is redundant. 

To further illustrate the use of field assignments in the l1ICRO/40 

assembly language we give the following example microprogram for adding the 

numbers from 1 to 10 that stores the result in the general purpose register 

R[O]. The verification of this microprogram is left to the reader (cf.[1],[9]). 

wr=3; clkd=l; alu=23; sdm=2; srx=l 

R[ 0]=0 

emit=lO; msc=l; clkb=l 

! B+ 10 

loop:emit=177777;msc=1;clkb=1;clkd=1;alu=11;sdm=2;ubf=l2;xupf=n 

!D+B-l;B+D;goto n;skip the microinstruction following -

!the microinstruction with label n, if D=O 

xupf = next 

!goto next 



n:wr=3;clkd=1;alu=11;sdm=2;srx=1;xupf=loop 

R[o] +R[o] +B; goto loop 

next: <whatever comes next> 

2.3 Assignment Statements 

As discussed in the preceding subsection, microprograms may be written 

in the form of field assignments. However, the exclusive use of field 

assignments makes microprogramming a tedious task. Therefore, MICRO/40 
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provides for the specification of carrier-to-carrier transfers in the form of 

assignment statements. A carrier is a facility for accommodating bit strings which 

represent the information in a computer. A carrier may be .. ~ register, a 

memory, or a data paths. The microoperation fields associated with a carrier~ 

to-carrier transfer are automatically set to appropriate values, when an assign­

ment statement is assembled. 

2.3.1 Carrier Identification 

R: General Purpose Registers 

The PDP-ll/40 has 16 l6-bit general purpose registers which are imple­

mented as a data scratch pad. They are loaded from the DMUX BUX, supply out­

put to the RD BUS, and are addressed by 4-bit addresses. In each microinstruc­

tion, only a single general purpose register can be addressed, i.e., s~multa­

neous register read and write operations are not permissible. 

The syntax for general purpose registers is: 

<general purpose register>::=R[<index>]{«selector»} 

<index>: : = 0 111213141516/7110111112113\1411511611718. 19. 110. I 
ll·112·113·114·115·IBAIDFlsF 

<selector>::= llh 

A number directly specifies one of the 16 general purpose registers. Registers 

are specified·indirectly by using the specifiers BA, DF, or SF. Using the 

specifier BA, BA<3:0> is taken as the source of the register address, whereas 

the specifiers DF and SF specify the destination field, IR<2:0>, and the source 

field, IR<8:6>, of the instruction register as the source of the register address, 

respectively. Furthermore, the optional selector allows the selection of 

either the low-order byte (1) , R<7: 0>, or the high~order byte (h), R<15: 8>, 

of a general purpose register R. 



D: Data Register 

The D Register is a 16-bit register for the temporary storage of ALU 

output data. 

Syntax: <D Register>::=d 

DSHIFT: Right-Shifted D Register 

13 

The D Register is right-shifted at D MUX, such that DSHIFT = D(C), 

D<15:1>. D(C) is a I-bit extension of the D Register that may be loaded with 

ALU carry outputs (ALU15, word carry, byte carry) or the condition code bit, 

PS(C), of the processor status word. DSHIFT can only appear on the right hand 

side of an assignment statement. 

Syntax: <Right-Shif ted D Register>::=dshiftld/2 

B: ALU B-input Register 

The B Register is a 16-bit register for the temporary storage of ALU 

B-input data. The syntax for the B Register is: 

<B Register>::= b{«B modifier»} 

<B modifier>::= <high selector><low selector> 

<high selector>::= HIE[Llc 

<low selector>::= HlzlLlc 

The optional B modifier can only be used, if the B Register appears on the 

right hand side of an assignment statement. The high selectors select the 

following gating mechanisms: 

H: BMUX<15: 8> + B<15: 8> 

E: BMUX<15 :8> + B<7> 

L: BMUX<15: 8> + B<7: 0> 

c: BMUX<15: 8> + B CONSTANT<15 :8> 

The low selectors select the following gating mechanisms: 

H: BMUX<7: 0> + B<15: 8> 

Z: BMUX<7:0>+B<7:0> 

L: BMUX<7:0>+B<7:0> 

C BMUX<7: 0> + B CONSTANT<7: 0> 

If no B modifier is specified, the default b<HZ> is assumed. 

C: ALU B-input Constants 

The C Register is a combinatorial network that provides basic constants to 

be used in processor operations (cf. [1,9].). The syntax for the Constant 

Register is: 



<Constant Register>::=c[<number>] 

<number>::= 0111213141516171101111121131141151161171 

8.19.110.1 11.112.113.1 14.115. 

BA: UNIBUS Address Register 
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The BA Register is a 16-bit register for the temporary storage of UNIBUS 

addresses. It is decoded to detect processor register addresses in the UNIBUS 

addressing scheme. The BA Register can only occur on the left hand side of an 

assignment statement. 

Syntax:<BA Register>::= ba 

IR: Instrustion Register 

The instruction register is a 16-bit register that holds PDP-11/40 machine 

language instructions. Its output is applied to the instruction decoding logic, 

is used to control microbranching, and specifies general purpose register 

addresses. The instruction register can only appear. on the left hand side of 

an assignment statement. 

Syntax: <Instruction Register>::= ir 

PS: Processor Status Register 

The processor status register is a 16-bit register which holds the pro­

cessor status word that specifies condition codes, processor priority, trap 

condition, and operational modes. 

Syntax: <Processor Status Register>::= ps 

S: Stack 

The WCS 11/40 stack is a 16 16-bit word register-memory that can be used 

as a data or address push-pop stack. It is addressed from the stack pointer 

(SP), receives input from E MU~and can supply output to S MUX and UPP MUX. 

Syntax: <stack>::= s 

The use of the identifier s in a MICRO/40 line implies that the '-lCS 11/40 

stack is used as a push-pop stack. 

TOS: Top of Stack 

TOS refers to the current top of the WCS 11/40 stack. However, references 

to TOS do not push/pop the stack. 

Syntax: <Top of Stack>::= tos 
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SP: Stack Pointer 

The stack pointer is a 4-bit register that holds the stack address. It 

can be set from XU<75:72> SC<3:0>, and is incremented or decremented for pop 

or push operations, respectively. 

Syntax: <Stack Pointer>::= sp 

UNIBUS 

In MICRO/40, the UNIBUS data lines can only be used as a source (right 

hand side of an assignment statement) that provides input data to registers on 

the DMUX BUS. 

Syntax: <UNIBUS>::= unibus 

EUBC: Extended Microbranch Condition BUS 

The EUBC BUS supplies II-bit microinstruction control store addresses 

to the XUPP section of the microinstruction buffer. The EUBC BUS can only 

occur on the left hand side of an assignment statement. Input to the EUBC 

BUS may be supplied from the stack and from the EMIT field in the microinstruc­

tion. 

Syntax: <EUBC BUS>::= eubc 

RAM: Writable Control Store 

The writable control store has a capacity of 5K 16-bit words. It 

receives 16-bit data inputs and supplies BO-bit words at the output. It 

can be used to store IK of BO-bit microinstructions, to store 5K of 16-bit 

data words, or as a combination of control store and data scratch pad. The 

syntax for RM1 references is: 

<RAM reference>::= RAM[<specifier>] 

<specifier>::= sitos 

2.3.2 Syntax of Assignment Statements 

The basic form of an assignment statement is: 

<assignment>::= <carrier list>_<expression> 

<carrier list>::=<left carrier>l<carrier list>,<left carrier> 

<left carrier>::= <general purpose register>ldls\toslsplb\ 

balirleubcl<RAM reference>\ps 

<expression>::= <simple expression> I <compound expression> 

A <left carrier> is any of the carriers that can occur on the left hand side of 
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an assignment statement. The assignment operator is the underline (_). 

Assignment statements within a single line are separated by a semi-colon(;). 

The semi-colon following the last statement in a line is optional. 

A simple expression is a right hand side of an assignment statement in 

which only a single carrier is specified, i.e., 

<simple expression>::= <general purpose register> Ips I unibus I 

dldshiftld/21<B Register> I <Constant 

Register>l<extension operand> 

<extension operand>::= <extension carrier>{«field selection»} 

{<shift><number>} 

<extension carrier>::= sltoslspl<RAM reference>l<emit field> 

<emit field>::= <number> I <label> I <table reference> 

<shift>::= shiftl A 

(for the definition of <table reference>,cf. subsection 2.5.7). All numbers 

given in an extension operand specification are interpreted as decimal numbers, 

despite of their representation. The field selection defines a masking by 

specifying the right-most and the left-most bit position to be masked out of 

the specified extension carrier. The result of a mask operation is always 

right-adjusted at the output of the shift/mask unit in the WCS 11/40. The 

shift is a left shift by the specified number of bit positions. The combi­

nation of the shift and the right/left mask allows the extraction of any 

contiguous n-bit field (1~n~l6) from an extension carrier. 

A compound expression includes an ALU operation. The syntax for the ALU 

operators is: 

<negation>::= notl~I\51\32 

<disjunction>::= or\ t 1\37 

<conjunction>::= and\&1\4 

<exclusive-or>: : =xor 1\ 26 

<addition>::= plus\+ 

<subtraction>::= minus\-

To define an operator by a code number requires that a backslash (\) is typed 

before the code number. The syntax of a compound expression is defined: 

<compoundexpression>::= <A-op> or <B-op>I<A-op> or not <B-op>\minus 11 

<A-op>lplus <A-op> and not <B-op> I 
«A-op> or <B-op» plus <A-op> and not <B-op>\ 

<A-op> minus <B-op> minus 11<A-op> and not <B-op> minus 1 I 



<A-op> plus <A-op> an~ <B-op>!<A-op> plus <B-op> I 
«A-op> or not <B-op» plus <A-op> and <B-oP>! 

<A-op> and <B-op> minus 11 

<A-op> plus <A-op> I «A-op> or <B-op» plus <A-op> I 

«A-op> or not <B-op» plus <A-op>! 
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<A-op> minus 11<A-op> plus 11 «A-op> or <B-op» plus 1101 

<A-op> plus <A-op> and not <B-op> plus 11 

«A-op> or <B-op» plus <A-op> and not <B-op> plus 11 

<A-op> minus <B-op>I<A-op> and not <B-oP>! 

<A-op> plus <A-op> and <B-op> plus 11 

«A-op> or not <B-op» plus <A-op> and <B-op> plus 11 

<A-op> and <B-op>!<A-op> plus <A-op> plus 11 

«A-op> or <B-op» plus <A-op> plus I! 

«A-op> or not <B-op» plus <A-op> plus llnot <A-op>! 

not «A-op> or <B-op» I 
not <A-op> and <B-op>!not «A-op> and <B-op»! 

not <B-op>\<A-op> xor <B-op>I 

<A-op> and not <B-op>lnot <A-op> or <B-op>I 

not «A-op> xor <B-op»I 

<A-op> and <B-op>!<A-op> or not <B-op>I 

<A-op> or <B-op> 

<A-op> may be anything that can be placed on the RD BUS, i.e., 

<A-op>::=<general purpose register>lps!<extension operand> 

(for the definition of an extension operand, cf.<simple expression». If mul­

tiple occurrences of <A-op> are needed, they should all be identically specified 

in the compound expression. The syntax for <B-op> is defined: 

<B-op>::=<B Register>! <Constant Register> 

To demonstrate the use of MICRO/40 assignment statements, we rewrite the 

microprogram for adding the numbers from 1 to 10 (cf. subsection 2.2.2). 

d_O; R[O] d 

!clear our accumulator R[O] 

b 10 

!clock the value 10 from the EMIT field into the B Register 

loop: d_177777+b; b_d; ubf=12; xupf=n 

!decrement the B Register using the constant -1 from the 

!EMIT field, break the loop if D=O. 



xupf=next 

!goto next 

n: d_R[O] +b; R[0l.....:d; xupf=loop 

!add the content of the B Register to R[O]. 

next: <whatever comes next> 
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Note that the use of assignment statements does not reduce the number of code 

lines, as each MICRO/40 line is assembled into a single microinstrucion. 

2.3.3 Semantics of Assignment Statements 

When writing assignment statements, it must be remembered that MICRO/40 

assignments represent carrier-to-carrier transfers. That is, each transfer 

must be described explicitly. Hence, an assignment statement 

b 177777 + b 

is not permissible. To decrement (add -1) the content of the B Register requires 

that the constant 177777 from the EMIT field is gated to the A-input of the ALU, 

the B Register is gated to the ALU B-input, and the ALU performs an addition. 

The result of this addition is transferred into the D Register. Then, the 

content of the D Register can be transferred, via D MUX, into the B Register. 

Therefore, it is necessary to write the assignment statements, 

d_177777+b; b d 

to affect the two transfer operations. The assignment statements, 

b d; d-177777 

are identical in their effect to writing them in reversed order, as both trans­

fers are performed quasi parallel, i.e., within the same microinstruction 

execution cycle. 

To further stress the point that MICRO/40 assignment statements correspond 

to carrier-to-carrier transfers, we consider the following example: 

d_400; R[6] d 

The microprogrammer might hope that these assignment statements would set 

R[6] to 000400
8

, MICRO/40 permits these assignment statements, however, their 

semantics deviate from the microprogrammers intention. As R[6] is referenced, 

its content is clocked onto the RD BUS. At the same time, the constant 400 in 

the EMIT field is clocked onto the RD BUS, and the contents of R[6] and EMIT 

are ORED. Hence, the new value of R[6] is its old value with bit 8 

set ot 1. To perform the intended task, the assignment statments given above 

have to be executed in two consecutive microinstructions, i.e., 
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Note that, in general, gating two sources onto the same carrier causes an error. 

However, in the case of the RD BU8, any of the three potential sources (general 

purpose registers, processor status register, and extension) can idenpendently 

gate (OR) a word onto the bus. 

Whenever the identifier, s, is used on the left hand side of an assignment 

statement, the stack is pushed before the value is stored. When tos is used, 

the new value is written over the current top of stack. On the right hand 

side of an assignment statement, s results in the value being read out of 

the stack and the stack being popped. Contrastingly, tos results in the 

value on the current top of stack being read out. 

The semantics of WC8 11/40 shift/mask operations, which may be combined 

with any extension operand, are illustrated by the following example: 

d s<11:3>A2 

The assignment statement places 9 bits (8<11:3» of the l6-bit value 

popped off the stack into D<10:2>. That is, after bits 11 to 3 of 8 have been 

masked out, they are right-adjusted. Then, the resulting l6-bit word is rotated 

two positions to the left. The net effect is a I-bit right shift of S<11:3> 

800 001 1 1 1 1 III 1 000 

8<11:3> 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

S<11:3>A2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 

2.4 Comments and Continuation Lines 

(Mask) 

(Shift) 

Anything following an exclamation point (!) on a line is considered a 

comment and is ignored by the assembler. Any line that ends with a hyphen (-) 

has the next line concatenated to it. That is, two or more MICRO/40 lines 

may be concatenated into a single logical line to produce a single microinstruc­

tion after assembly. Lines may also be continued within a comment. Hence, the 

following six examples are equivalent. 

1. R[7] d 

2. clk=2; rif=7; wr=3; srx=l; sdm=2 

3. clk=2; rif=7; wr=3; srx=l; sdm=2 D Register to R[7] 

4. rif=7; wr=3; -

clk=2; srx=l; sdm=2 D Register to R[7] 

5. sdm=2; srx=l; clk=2;! PI is a sufficient clock cycle time -

rif=7; wr=3; 

6. rif=7; wr=3; srx=1;sdm=2 ! no need to specify clock cycle time 

A microinstruction may be described by any number of concatenated lines, provided 

that the so constructed logical line does not exceed 300 characters. 
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2.5 Pseudo Operators 

A number of pseudo operators are provided by MICRO/40 to make some of the 

idiosyncrasies of PDP-11/40E microprogramming transparent to the user and to 

further relieve the microprogrammer of the tedious task of constructing micro­

programs through explicit microoperation field assignments. Pseudo operators 

range from field assignments to compound statements that comprise several 

microinstructions. They facilitate processor clock control, structuring of 

microcode in the control store, microinstruction sequencing, and the use of 

the writable control store as a data scratch pad. 

2.5.1 CLKOFF 

MICRO/40 concatenates the clock length field and the c1ockoff field in-

to a single 3-bit clock field, i.e., CLK=CLKL,CLKOFF. Hence,the CLKOFF bit can 

only be set, if, at the same time, a processor clock cycle length is specified 

by the microprogrannner. This restriction is due to the fact that all bits in 

a microoperation field are cleared, before a field value is stored. Further­

more, it is generally not possible to exploit the microassemb1ers capability 

to determine an appropriate clock cycle length and to automatically set the 

CLKL field, in microinstructions in which the CLKOFF bit is to be set. There­

fore, the c1koff pseudo operator was implemented to overcome these difficulties. 

The c1koff pseudo operator has the effect of turning on the CLKOFF bit 

in the eLK field. When the CLKOFF bit is set, the processor clock will be 

turned off at the end of the execution of the current microinstruction. The 

c1koff pseudo operator is independent of field assignments to the CLK field and 

may occur anywhere on a MICRO/40 line. That is, the microassemb1er imp1icity 

combines the c1koff pseudo operator with the specification of the processor 

clock cycle length. 

2.5.2 NOOP 

The noop pseudo operator is implemented to provide a means for generating 

a null (all microoperation fields set to 0) microinstruction. This operator is 

needed, as a blank line is skipped by the microassemb1er and does not generate 

a microinstruction. The noop pseudo operator is to be used on a line by it­

self. It is ignored, if it occurs together with other MICRO/40 statements, such 

as field assignments or assignment statements. 
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2.5.3 FINIS 

The finis pseudo operator indicates the end of the microcode source file. 

Any text following finis is ignored by MICRO/40. The finis pseudo operator is 

to be used on a line by itself. It does not generate an object microinstruction. 

If the microcode source file does not contain finis, the microassembler issues 

a warning and automatically inserts the finis pseudo operator into the source 

microcode (as the last line of the source file). 

2.5.4 Dot(.} 

The pseudo operator, dot(.}, generally stands for the control store 

address of the microinstruction in which it occurs. There are two alternative 

applications of '.'. 

The dot (.) may be used in field assignments (cf. subsection 2.2.2) to 

assign the control store address of the current microinstruction to the XUPF 

or EMIT fields. In these field assignments, the dot is used as follows: 

emit 

or xupf 

Note that the address of the current microinstruction need not explicity be 

stated in the microinstruction, but is determined during assembling. MICRO/40 

automatically assigns values to the xupf field, and thereby, may even re­

arrange the microinstructions as given in the source microcode into a different 

ordering in the object code, in order to guarantee that the xupf field of a 

microinstruction that must proceed any particular microinstruction points to the 

correct control store location. 

The second application of '.' is to force MICRO/40 to locate a micro­

instruction at a particular control ;store location. To this end, an octal 

control store address is explicity assigned to the dot. The syntax for 

assignments to the dot is: 

. = <value> 

where <value> must be in the range [2000
8

: 3777
8

] (RAM address space). The 

'dot' assignment may occur anywhere on a MICRO/40 line. 

2.5.5 LOWLIM 

This pseudo operator provides a means to set the lowest control store 

address into which object microcode will be stored. The lowlim pseudo operator 

is used as follows: 

lowlim <value> 
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where <value> must be in the range[2000
S

! 3777
S
]' If this pseudo operator does 

not occur in a microcode source file, lowlim is automatically set to the 

default value 2000. If used, lowlim <value> should be the first MICRO/40 

line in the microcode source file. 

2.5.6 C.,N.Z.V.,N.Z.V.C. 

These pseudo operators set the SPS (Select Processor Status) field in 

the microinstruction" and enforce an appropriate processor clock cycle length 

in the CLK field. The condition codes N,Z,V, and C in the processor status 

word are defined as follows: 

N=l, if the result of the last ALU operation was negative, 

Z=l, if the result of the last ALU operation was zero, 

V=l, if the last ALUoperation .resulted in an arithmetic overflow, 

C=l, if the last ALU operation resulted in a carry from the mos"t 

significant bit. 

The pseudo operators c.,n.z.v., and n.z.v.c. set the SPS field to the values 

1, 2, and 3, respectively, to cause the associated condition code bits in the pro­

cessor status word to be set to the current conditions. Microinstructions which 

contain one of these pseudo operators must have a PI or P3processor clock 

cycle (cf. [1,9]). The pseudo operators c., n.z.v., and n.z".v.c. are mutually 

exclusive and may occur anywhere on a MICRO/40 line. 

2.5.7 TABLE 

The table pseudo operator facilitates the use of parts of the writable 

control store as a data scratch pad. Using explicit field assignments (cf. 

RAM references, subsection 2.2.2) the RAM may also be utilized as data scratch 

pad. However, it is difficult to explicity generate addresses of l6-bit RM1 

fields at run time. The table pseudo operator greatly supports the micro­

programmer in this address generation by allowing for relative addressing 

within a declared data scratch pad. It allocates four 16-bit data words in an 

SO-bit control store location and treats a table as a zero origin array. Note 

that five l6-bit entries are actually available in an SO-bit control store 

location, but that it is difficult to generate the address of the fifth entry 

(cf. [1,9]). 

The syntax for table declarations and references is: 

<table declaration>::= table <table name> <size> 

<table name>::= <identifier> 



<size>::= <number> 

<table reference>::= <table name>[<table index>], 

where <table index>·is a number in the range [O:<size>]. The following 

example illustrates the above syntax definition. 

table INFO 15 

INFO [0] refers to the first table entry. 

INFO [1] refers to the second table entry. 

INFO [14] refers to the fifteenth table entry. 

The pseudo operator, table, would reserve 4 control store locations for the 

table, INFO, as 15
8 

corresponds to 13
10

, The table reference INFO[14] is 

equivalent to INFO[12.]. 
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A table declaration should be placed on a line by itself, and may appear 

anywhere in the microprogram. The legal occurrences of table references in 

MICRO/40 assignment statements are defined in subsection 2.3.2. However, table 

references can only be made following table declarations. The number of table 

declarations is limited to 20 tables. The size of tables is limited by the number 

of RAM locations that are not utilized by the code of the microprogram that 

contains the table declarations. 

2.5.8 PRELOAD 

The preload pseudo operator is similar to a table declaration, except 

that instead of a size specification, a list of values that are preloaded 

into the table is specified. The table size corresponds to the number of 

elements in the list. The syntax of preload is: 

<table preload>::= preload <table name><value list> 

<table name>::= <identifier> 

<value list>::= <number> I <table reference> \ <value 

list>{,}<number>l<value list>{,}<table reference> 

The elements of the value list are considered to be assembly time constants. 

Hence, references to declared tables may occur in the value list. 

The use of the preload pseudo operator is demonstrated by the following 

example: 

preload DATASET 5,2,3,4,INFO[2] 



This statement causes the reservation of two control store locations to store 

the following five table entries: 

DATASET [0] contains the value 5, 

DATASBT[l] contains the value 2, 

DATASET [2] contains the value 3, 

DATASET [3] contains the value 4, 

DATASET [4] contains the control store field add.ress 

allocated for the storage of INFO[2]. 

The preload pseudo operator must be placed on a line by itself. The 

violation of this rule causes an error. 

2 . 5 • 9 SET ••• TES 

This compound pseudo operator supports microinstruction sequencing and 

conditional branching. As the PDP-ll/40E has no microinstruction counter, 

each microinstruction contains the control store location of the 

microinstruction to be executed next in its xupf field. Conditional 

branches are specified in the ubf field and cause basic microbranch 

conditions (BUBCs) to be ORed into the low-order bits of the 

XUPP segment (xupf field) of the microinstruction buffer. Furthermore, the 

EMIT field or values from the WCS 11/40 stack may be gated onto the II-bit 
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EUBC BUS, in order to be ORed into the XUPP segment of the microinstruction buffer. 

The timing of microbranches in the PDP-ll/40E is such that BUBC and EUBC 

address bits alter the xupf field of the microinstruction whose execution 

succeeds the execution of the microinstruction that contains the microbranch 

specification. Additionally, ORing of address bits allows only for forward 

conditional branches. Therefore, it is necessary that the control store locations 

of the expected branch destinations have identical address bits, except for 

those bits which may be turned on by the BUBC or EUBC address bits. 

The PDP-ll/40E microbranch mechanism may be enforced by using the dot 

pseudo operator (. = <value» to put the microinstructions to be reached as 

branch destinations into the appropriate control store locations. The set ••• 

tes pseudo operator is implemented to obviate this need for explicit control 

store address allocation. That is, it makes the PDP-ll/40E microbranch 

mechanism transparent for the microprogrammer. The set ... tes pseudo operator 

is used as follows: 



("controlled" 

microinstructions) 

set 

{

<microinstructions to be reached as 

branch destinations> 

tes 

The keywords, set and tes, must each appear on separate lines by themselves. 

The number of set •.• tes groups in a microprogram must not exceed 150. 
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In the assembly process, MICRO/40 counts the "controlled" microinstructions, 

finds an appropriate number of contiguous control store locations with. 2
n 

address 

boundaries, and stores the "controlled" microinstructions into these locations. 

Therefore, it is illegal to assign a microinstruction that is controlled by 

a set •.. tes pseudo operator to a specific control store location (by using 

. = <values». The xupf field of all microinstructions that are affected by BUBC or 

EUBC address bits that provide an entry into a group of "controlled" micro­

instructions are set to the control store address of the first microinstruction 

of that set ... tes group. The default value of the xupf fields of all "controlled" 

microinstructions (which is automatically set by HICRO/40, if no field assign­

ment is made to xupf) is the control store location of ·the microinstruc-

tion following the set •.. tes group. Note that the assembly of the set ... tes 

pseudo operator may rearrange the microinstructions as given in the source 

microcode into a different ordering in the object microcode. 

We may now rewrite the microprogram for adding the numbers from 1 to 10 

using the set ••. tes pseudo operator (cf. subsection 2.3.2). 

set 

loop: d-177777+b; b_d; ubf=12 

xupf=next;<first microinstruction of whatever 

comes next> 

tes 

next: <whatever comes next> 

Note that the field assignment, xupf=n, in the microinstruction with label, 

loop, can be omitted, as the appropriate microinstruction is reached by the 

default xupf field assignment in the set ... tes group. Furthermore, the 

first microinstruction of <whatever comes next> may be concatenated 

to the microinstruction, xupf=next, in the set ... tes group. 



2.5.10 START ••• END 

The basic set .•. tes mechanism does not lend itself to the execution of 

more than a single microinstruction at each branch destination. To overcome 

this difficulty, the start .•• end pseudo operator has been implemented. It 

can only be used within a set .•. tes group, i.e., 

set 

<"controlled" microinstructions> 

. start 
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<microinstructions to be executed at a single branch destination> 

end 

<"controlled" microinstructions> 

tes 

The keywords, start and end, must each appear on separate lines by themselves. 

A compound set ..• tes - start •.• end construct is assembled, such that the 

first microinstruction of each start ... end .group and all single "controlled" micro­

instructions are placed into the block of microinstructions associated. with the 

set ... tes pseudo operator. The remaining microinstructions in the start ... end 

groups are linked to the set ••. tes group b.y setting the xupf field of the first 

instructions in the set •.• tes group to the control store address of its 

start ••• end group successor. The xupf default· value of the last microinstruc­

tion in each start.~.end group is the control store address of the micro­

instruction following the set •.. tes group. 

<microinstruction 0> 

set 

<microinstruction 1> 

<microinstruction 2> 

start 

end 

<microinstruction 3> 

<microinstruction 4> 

<microinstruction 5> 

set 

<microinstruction 6> 

<microinstruction 7> 

tes 

<microinstruction 8> 

(Figure 2 continued) 



<microinstruction 9> 

tes 

<microinstruction 10> 

Figure 2: A Compound set ..• tes - start ..• end Construct 
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FJgure 3: Control Store Allocation for a Compound set ... tes - start •.• end Construct 

The nesting of set ... tes groups is generally permissible. However, they 

can only be nested within start .•. end groups, as the delay effect of conditional 

microbranches in the PDP-ll/40E prohibits the placement of the first 

"controlled" microinstruction of an inner set .•• tes block within the outer 

set ... tes group. That is, the pseudo operator, set, may appear anytime 

after the first microinstruction in a start •.. end group. There is no 

limit on the depth of set .•• tes group nestings, as long as the internal stack 

9f MICRO/40 does not overflow. The control store allocation mechanism for 

a compound set ..• tes - start ... end construct is illustrated in Fig.2 and 

Fig.3. 
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2.6 Macros 

MICRO/40 has a macro definition facility which allows the microprogrammer 

to identify sequences of assembly language statements by mnemonics. The primary 

use of macros is to make hardware dependencies of the MICRO/40 assembly language 

transparent for the user by generating macro libraries in the form of connnon 

source files. Appropriate macro name selections may gr~at1y enhance the legi­

bility of microprograms. 

2.6.1 Macro Definition 

A macro definition consists of a header, a body, and a terminator. The 

macro header is composed of a macro name and a declaration symbol (:=). Note 

that macros take no parameters. The macro body is a sequence of MICRO/40 

statements that does not contain a dollar sign ($) or an exclamation point(!). 

Any legal MICRO/40 statement is allowed in the macro body, except for macro 

definitions and set ... tes pseudo operators. Note that macro definitions may 

contain other macros. The dollar sign is the macro definition terminator. 

The syntax of a macro definition is: 

<macro definition>::= <head>:= <body>$ 

<head>::= <identifier> 

<body>::= <any sequence of MICRO/40 statements with the exceptions 

given above> 

Fig.4 shows a listing of the MICRO/40 source file, defs. mic, which 

includes macro definitions which have been found to be of general use. 

I standard , definitions for Rticro -- 11 October 1974 

, , 
rev: 19 November 1974 
rev: Z December 1974 
rev: 11 June 1975 

I 
rO := r[O]$;' rl:= r[lJ$; r2:= r[2J$; 
r4 := r[4J$; r5:= r[5]$; r6:= r(6)$; 
r10 := r[10]$; rl1!= r[11J$; r12:= r[12J$; 
r14 := r[14J$; r15:= rt15J$; r16:= r[16J$; 
rsp := r[6J$; rpc:= r(7)$; rdf:= r[df]$; 
t,eIT,p- := r(10J$; rsrc := r[l1J$; rdst := r[12J$ 
~ir := 1'[13)$; vect := r[14J$; temc := r(15)$ 

r3 := rt3]$ 
r7 := r(7)$ 
r13 := r(13)$ 
r17 := r[17J$ 
rsf := r[sf). 

SPus := 1'[16)$; adrsc := r[17]$; rba := r[ba]$ 
dati := bus=l$; dato := bus=S$ 
datip := bus=3$; datob := bus=7$ 
pl :=clk =2$; p2 :=clk =4$; p3 :=clk =6$ 
exit := xupf = 16$ ! return to rom 
be~in := be~: .=2000;$ 
seta := xupf =$; case := eubc_$; popst := d_s$ 
but := ubf =$; skipzero := ubf = 12$ , skip on d = 0 
retlJrn ':= eubc_s$; endproc : = xupf=O$ 
smod := 11:9$; dmed:= 5:3$; prop:= cp=l$ 
! end of macros 
I ADDITIONAL MACROS 
POPt=DEST=1;MSC=4$ 
PUSH:=DEST=1;MSC=3$ 

Figure 4: defs.mic 



2.6.2 Macro References 

Macros are referenced by their names. They may be referenced any­

where in a microprogram, as long as they are preceded by their definit.ion in 

the MICRO/40 source file. Upon reference, the macro name is substituted by 

its macro body. This substitution is a strict text substitution. After 

a macro is expanded, the macro text is checke.d again for macro references. 

If further macro references are encountered, they are substituted, before 

the assembler proceeds processing of the actual source microcode. 

All macros that are referenced within a macro must be defined outside 

that macro, aS,macro definitions are not allowed within macros. Further-

more, recursive macro expansion is not permissible. 

place a delimiter at the end of the expanded text. 

Macro expansions do not 

Hence, it is possible 

to concatenate MICRO/40 statements across the macro expansion. That is, 

a single microinstruction may be generated from a combination of macros 

and NICRO/40 statements, or macros may be referenced within MICRO/40 

statements. Obviously, the control store allocation mechanism of the set ..• 

tes pseudo operator (cf. subsection 2.5.9) is not supported by this macro 

expansion technique, and thus, the Use of set ••. tes groups ~n macros is 

not permissible. 

2.6.3 Common Source Files 

It is often desirable to include the same source microcode into several 

assemblies. This is especially true for macro files of. a macro library. 

For example, the file, defs.mic, should be included into every source file to 

make microprograms more legible. To this end, the 'require' statments has 

been implemented. 

The syntax for the use of common source files in a microprogram is: 

<common source file>::= require <file name> 

where <file name> is the name of a'HICRO/40 source file. The require state­

ment may occur at any point in a source microprogram, if it is placed on a 
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line by itself. However, it is not permissible to use require statements with­

in set •.. tes or start ••. end groups. When a require atatement is encountered, 

the microassembler replaces it by the specified MICRO/40 source file. After 

the substitution of the require statement, the input to the microassembler from 

the original file is resumed. The 'require' file may contain further require 

statements. That is, the strict text substitution for require statements 

allows their nesting to an arbitrary level. However, this substitution 

mechanism prohibits set •.• tes or start ••• end groups to be open across 



'require' files. 

To illustrate the use of macros and common source files we revisit the 

microprogram for adding the numbers from 1 to 10 (cf. subsection 2.5.9). 

require defs.mic 

d_O; rO d 

b 10 

set 

loop? d_177777 +b; b_d; skipzero 
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goto next.; <first microinstruction of whatever comes next> 

tes 

d_rO+b; rO_d; goto loop 

next: <whatever comes next> 

3'~ Features of MICRO/40 

In this section, some of the more subtle features of the PDP-ll/40E are 

outlined, that should be remembered when microcoding. Some microprogramming tech­

niques that proved to be of general use [1] are described. However, as mentioned 

in the introduction, microprogramming requires careful algorithm design and 

coding on the basis of a solid understanding of both the algorithm and the 

machine. This is especially true for machines with horizontal microinstruc­

tions, where any arbitrary bit pattern may be assigned toa microinstruction, 

and the machine tries to execute any of these bit patterns. The microprogram 

testing and debugging facilities in our microprogramming support system are 

not comprehensive, and may not be sufficient to scope with unpredictable and 

hardware-dependent microprogram errors. 

3.1 Microinstruction Timing 

One of the major objectives in the development of the WCS 11/40 was to 

retain the processor cycle times of the basic PDP-ll/40 processor. There­

fore, the three processor clock cycles length, CLKL 1, CLKL 2, and CLKL 3, 

as provided by the PDP-ll/40 timing control logic have been adopted for 

the execution of microinstructions from the WCS 11/40 control stores. The 

processor clock cycles are defined as follows: 

CLKL 1 generates a PI pulse 140 ns after the start of the micro­

instruction execution, 

CLKL 2 generates a P2 pulse 200 ns after the start of the micro­

instruction execution, 

CLKL 3 generates a P2 pulse and a P3 pulse 200 n sand 300 ns' after 

the start of the microinstruction execution, respectively. 



A detailed description of PDP-ll/40E timing characteristics is given in [9]. 

Table 1 associates permissible processor clock cycle times with the basic 

carrier-to-carrier transfer in the PDP-ll/40E. 

Carrier-to-Carrier Permissible 

Transfer Clock Cycles 

B +DHUX BUS PI, P3 

B + SMUX P3 

PS + DMUX BUS PI, P3 

PS + SMUX P3 

R[i] + DMUX BUS PI, P3 

R[i] SMUX P3 

IR+DMUX BUS PI, P3 

IR+ SMUX P3 

CLK PS(C) PI, P3 

CLK PS(N,Z,V) PI, P3 

CLK PS(N,Z,V,C) PI, P3 

BA+ BA MUX PI, P2 

D+ALU P2 

D(C) + COUT MUX P2 

D +ALU; DMUX BUS + D P3 

ALU CIN + CPFF P3 

CPFF+ COUT MUX[SCOM] P3 

TOS + EMUX PI, P2, P3 

TOS + RD BUS P2, PJ 

SP + SP+l PI, P2, PJ 

SP +. SP-l PI, P2, P3 

SP+XU<75:72> PI, P2, P3 

SP + SP.-I; S +EMUX P2, P3 

SP + SP+l; SMUX+ S PI, P2, P3 

EUBC + SHUX P2, PJ 

RAl1+ DMUX PJ 

SMUX+RAM P3 

Table 1: Carrier-to-Carrier Transfer Timing 
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The microassembler analyzes the microoperations (carrier-to-carrier 

transfers) specified in an input line and assigns a proper processor clock 

cycle for the execution of that microinstruction. If the processor cycle 

time is set by the microprogrammer, the microassembler check is skipped. 

Thus, an incorrect.processor cycle time setting is not detected by MICRO/40, 

and no error message is given. This feature of the microassembler is due to 

the fact that microinstructions are assembled individually, but the 

appropriate processor cycle times may depend on preceeding microinstruc­

tions. For example, the microinstruction following a microinstruc-

tion that contains the clkoff pseudo. operator must have a CLKL 1 or 

CLKL 3 processor clock cycle. Although it is advisable (and conve­

nient) to let themicroassembler assign appropriate processor 

Glock cycle lengths, .the microprogrammer should know the execution 

time requirements for each microinstruction to be able to determine the rel­

ative performance of alternative microinstruction sequences. 

3.2 UNIBUS Control 

The PDP-ll/40 processor control is a.combination of synchronous and 

asynchronous operations. Carrier-to-carrier transfers as discussed in the 

preceeding subsection are synchronous operations. Asynchronous timing 

conditions evolve in UNIBUS operations and are controlled by the UNIBUS 

timing and control logic. To synchronize UNIBUS operations with 

synchronous precessor operations, the processor clock may be turned off upon 

microinstruction execution and restarted by the UNIBUS timing and control 

logic (for more detail, cf. [1], [8], [9]). 

The microprogrammer must explicity control UNIBUS operations, which 

allow uniform access to main memory and peripheral registers. On the one 
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hand, explicit UNIBUS control provides an opportunity to optimize the 

implementation of machine language instructions which involve UNIBUS transfers. 

On the other hand, it represents a source of timing errors. 

UNIBUS operations are controlled by the microoperation field, BUS=CBUS, 

BGBUS, with CBUS= Cl,CO (cf. subsection 2.2.1). The BUS field definitions 

are given below. 
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BUS Cl CO BG Operation 

0 0 0 0 not defined 

1 0 0 1 DATI (word operation) 

2 0 1 0 await BUS BUSY 

3 0 1 1 DATIP (read-modify-write) 

4 1 0 0 not defined 

5 1 0 1 DATO (word operation) 

6 1 1 0 restart on peripheral release 

7 1 1 1 DATOB (byte operation) 

Cl and CO determine which of the four possible read/write operations will occur 

and BGBUS initiates the action. During UNIBUS operations, the UNIBUS address 

is held in the BA Register. Output data are stored in the D Register, and 

input data are received at D MUX. 

3.2.1 UNIBUS READ Operations 

For a READ operation (data input), the UNIBUS address must be available 

in the BA Register, when the DATI UNIBUS control code is asserted. Succeeding 

microinstructions may be executed while the UNIBUS READ is carried out, as 

long as they do not modify the BA Register or assert another UNIBUS control 

code. However, it is necessary to set clkoff, before the input data are 

accepted. Upon completion of the READ operation, the data will be present 

on the UNIBUS and the processor clock is restarted. If the UNIBUS completes 

its read cycle before a clkoff is asserted, the processor clock does not stop. 

The microinstruction following the microinstruction containing the pseudo 

operator clkoff must have a CLKL 1 or CLKL 3 processor clock cycle, and must 

pull the input data off the UNIBUS immediately. 

A typical UNIBUS READ cycle has the following form (cf. Fig. 4). 

ba_R[i]; dati !BUS=l, put UNIBUS address into BA 

{any number of microinstructions that do not modify BA or 

assign a value to the BUS field} 

<last microinstruction>; clkoff 

R[j] unibus; <other statements> !CLKL 1 or CLKL 3 clock cycle 

As a more specific example, we may consider the following microinstruction 

sequence for popping the PDP-ll/40 main memory stack. 



ba_R[6]; dati ! read top of stack 

d_R[6] + 2; R[6]_d; clkoff ! increment -stack pointer 

R[2]_unibus 

The DATI UNIBUS control code is used for both word and byte operations. 

It always returns a 16-bit word to D MUX. To select a byte the main memory 

address must be tested. If this address is even (BA<O>= 0), the byte is in 

the lower half of the word. If this address is odd (BA<O>=I), the byte is 

in the upper half of the word. BUT 35 (ubf=35) may be used to perform the 

address test. Alternatively, the assignment statement,EUBC + TOS<O>, may be 

used, if the UNIBUS address is stored in TOS. The B Register, together with 

B MUX, may be used to align the appropriate byte. 

3.2.2 UNIBUS WRITE Operations 

UNIBUS WRITE operations are similar to READ operations. The following 

differences should be observed. For a WRITE operation (data output), the 

UNIBUS address must be available in the BA Register and the output datu~ 

must be clocked to the D Register, when the DATa UNIBUS control code is 

asserted. Succeedingly executed microinstructions must keep the BA Register 

and the D Register constant. 

A typical UNIBUS write cycle has the following form (cf. Fig. 4). 

ba_R[i] ! put UNIBUS address into BA 

d_R[j]; dato ! BUS=5, put datum into D 

{any number of microinstructions that do not modify BA 

and D, or assign a value to the BUS field} 

<last microinstruction>; clkoff 

<any microinstruction with a CLKL I or CLKL 3 clock cycle> 
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As a specific example, we consider the following microinstruction sequence for 

pushing the PDP-II/40 main memory stack. 

d,ba_R[6]-2; R[6]_d ! decrement stack pointer 

d_R[2]; dato; clkoff ! write to top of stack 

The DATOB UNIBUS control code specifies a byte WRITE operation. The 

microinstruction for the implementation of a byte WRITE operation is similar 

to that for DATa. It is the microprogrammer's responsibility to place the 

byte to be written into the proper byte of the D Register. As a safeguard for 

the case that the main memory address may either be even (low-order byte) or 

odd (high-order byte), the byte to be written should be duplicated in both 

bytes of the D Register. The B Register, together with B MUX, may be used for 

this purpose. 
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3.2.3 UNIBUS READ - MODIFY - WRITE Cycle 

The DATIP UNIBUS control code specifies a READ - MODIFY - WRITE cycle. 

It uses the address in the BA Register both for the READ and ,the WRITE operation. 

A microinstruction sequence for a UNIBUS read-modify-write cycle is given below. 

This microinstruction sequence implements a modification of the top of the 

PDP-ll/40 main memory stack. 

ba_R[6]; datip; clkoff put UNIBUS address into BA 

BUS=3 

R[lO]_unibus read top of stack 

d_R[lO]+l; dato; clkoff modify top of stack, BUS=5 

<any microinstruction with a CLKL 1 or CLKL 3 cycle> 

3.2.4 Exceptional Conditions 

The ability to perform UNIBUS operations and execute microinstructions 

in parallel provides the microprogrammer with the opportunity to keep the 

processor totally UNIBUS-bound, while doing processing in addition to UNIBUS 

control. Care must be taken that all initiations of UNIBUS operations are 

followed by a clkoff. Otherwise, the UNIBUS becomes locked. On the other 

hand, setting clkoff, without setting BGBUS halts the processor and requires 

a restart from the processor console, except for interrupt sequences. 

Whenever an odd address is clocked into the BA Register, or the DATOB 

UNIBUS control code is asserted, the following two conditions must be met. 

First, the instruction register must contain a valid machine language byte 

instruction. Second, bit 0 of the DAD field must be set (allow odd address 

and DATO for byte instruction). If these conditions are not met, a jam 

into the 8 low-order bits of XUPP (segment of the microinstruction buffer) 

occurs and the flow of control in the user microcode will be distorted. 

This effect is due to the fact that the jam addresses are associated with the 

standard PDP-ll/40 emulator microinstructions, not with the user microporgram. 

3.3 Data Flow 

The following idiosyncrasies which are caused by the PDP-ll/40E data 

paths and functional hardware units should be remembered when writing micro­

code. 

3.3.1 RD BUS 

As discussed in section 2.3.3, the result of gating several independent 

sources onto the RDBUS is the DRing of the source contents. This feature of 
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the RD BUS .may be exploited to produce a positive effect, when a table lookup 

is to be performed into a table of fixed main memory locations that is indexed 

by a general purpose register. 

For example, let R[O] be assumed to hold the table index, which must be 

even for word addressing. Let BASE be the base address of the table in main 

memory. Then, the following microinstruction implements a table access, 

ba_R[O]; dest=O; fisc=l; emit=BASE; dati 

The field assignments, dest=O, msc=l, specify the transfer RD BUS + EMIT. Hence, 

the content of R[O] and the EMIT field are ORed on the RD BUS, i.e., RD BUS ~ 

R[O] or BASE. BASE should be chosen such that it has at least as many zeros 

in its low-order bits as there are non-zero low-order bits in the binary repre­

sentation of the largest table index, i.e., such that R[O] + BASE = R[O] or BASE. 

Then, the value clocked into the BA Register is the effective word address of 

a table entry, R[O] + BASE = <index> + <base address>. 

To obtain the same result, without using the ORing feature of the RD BUS, 

requires the following two microinstruction 

d_R[O]; b_d 

ba BASE + B; DATI 

3.3.2 CONSTANTS 

The WCS 11/40 provides the microprogranuner with arbitrary arithmetic 

and addressing constants via the EMIT field. However, EMIT field constants 

must be A-inputs to the ALU or must temporarily be stored in the B Regist,er 

to be usable as ALU B-inputs. The latter mechanism requires the execution 

of two consecutive microinstructions for the use of an EMIT field constant 

at the ALU. This difficulty can often be overcome by using one of the 

B CONSTANTS as provided by the basic PDP-ll/40E processor. The use of B 

CONSTANTS instead of EMIT field constants at the ALU B-input may save up to 

300nsin the execution of the associated microinstruction sequence. 

3.3.3 Instruction Register 

The PDP-ll/40 processor is implemented for the specific PDf-ll/40 machine 

instruction set and, as a consequence, is not of general-purpose nature. The 

basic machine instruction decoding generates basic microbranch codes (BUBCs) 

for several branch microtests (BUTs), signals required by the microbranch 

control logic, the condition code control logic, and the ALU control logic. 

Hence, the contents of the instruction register (IR) may affect the data 

paths and the ALU, as they are not exclusively controlled by the micro-



instruction. Some PDP-l1/40 machine language instructions (e.g., SBC, RESET, 

MFPI,MTPI) may even have an effect on the data paths, when the instruction 

register is clocked the next time [8]. Therefore, great care must be taken, 
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if IR is used by user microprograms. In user microprograms, it is advisable to 

decode machine instruction from TOS by using the WCS 11/40 shift/mask unit to 

pull various instruction fields from TOS onto the EUBC BUS(for conditional 

branching). 

3.4 Control Flow 

In this section, we discuss basic mechanisms for the sequencing of micro­

instruction executions. 

3.4.1 Microinstruciton Execution 

With the last pulse edge of each processor cycle, a microinstruction is 

gated into the microinstruction buffer. Thus, the interval between the loading 

of two seccessive microinstructions into the microinstruction buffer is a 

function of the processor cycle length of the first microinstruction. This 

organization requires that the execution (E) of the current microinstruction 

and the fetch (F) of the successor microinstructton are overlapped in time. 

This overlap is illustrated in Fig. 5. 

execution 
sequence 

~----------------------------------~ time 

F 

F E 

F E 

F E 

Figure 5: Microinstruction Fetch/Execute Overlap 

3.4.2 Unconditioned Microinstruction Sequences 

MICRO/40 handles unconditioned microinstruction sequences by assigning 

control store addresses to the xupf fields in microinstructions. The basic rule 

is to assign consecutive addresses to successive microinstructions, unless 

a 'goto' (xupf field assignment) is assembled. In the latter case, the control 

store address specifi.ed in the 'goto' is assigned to the xupf field. Hence, at 

the beginning of the execution of a microinstruction with an unconditioned 



successor., the address of the next microinstruction is available in the XUPP 

segment of the microinstruction buffer. 

3.4.3 Conditioned Microinstruction Sequences 

Whenever a microinstruction is clocked into the microinstruction buffer, 

XUpp is modified by ORing the 11 bits of the EUBC 'BUS and the six BUBC bits 

(into the six low-order bits of XUPP). The modifiedXUPP is immediately used 

to address the successor microinstruction. At this point, an alteration of 

the address of the successor microinstruction as specified in the current 

microinstruction has not occurred. Hence, it is impossible for a micro­

instruction to influence the address of its successor. Instead, conditional 

branching is performed by setting the EUBC/BUBC lines such that the address 

in the xupf field of the successor microinstruction are altered. This organ­

ization of conditional microbranches is illustrated in Fig. 6. 

conditional 
branch 
micro­
instruction 

uncondi­
tional micr -
instruction 

Micro Branc 
Destination 

F CD I 
lresult If branc~ 
Imicro tEbst 
I (BUBC 0t EUBC) 

"-.........-........ ___ .... 0 
I 
I 
I 
I 

time 

One of these micro instructions 
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Micro Branc 
Destination 

is selected by the microbranch 
specified in CD and the successor 
address specified in the xupf 
field of @ . 

Micro Branc 
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execution 
sequence 

cycle 

o 
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1 
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2 

Figure 6: Conditional Microbranching 
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The delayed microbranching in the PDP-ll/40E is unnatural to most pro­

grammers and requires great care, as it makes microprograms difficult to 

39 

modify, because of the interdependence of microinstructions in a branching sequence. 

Furthermore, since conditional branching is due to ~Ring into KUPP, the proper bits 

in XUPP must be 0 for the ~Ring to have the right effect. MICRO/40 supports the micro­

programmer in satisfying this requirement by the provision of the set ... tes pseudo 

operator. A set .•• tes constr.uct is assembled by allocating a block of RAM locations 

with 2
n 

address boundaries for the storage of the microinstructions at the branch 

destinations. As MICRO/40 allocates control store blocks for all set .•. tes 

groups, before it assigns RAM locations to the rest of the microinstructions, 

the base addresses of set .•. tes blocks can be chosen to include an appropriate 

number of O's. 

The PDP-ll/40E provides the following two mechanisms for setting the bits 

to be ORed into XUPP. Examples for the application of these mechanisms are 

discussed in the next two subsections. 

BUT 

The branch micro test (BUT) is a feature of the basic PDP-ll/40. It con­

sists of about thirty different tests which are invoked by field assignments 

to ubf (cf. [1], [8]). Branch micro tests detect particular processor states 

and, in response, set appropriate values on the BUBC lines. The generally 

useful BUTs are: 

EUBC 

ubf 

12 

16 

BUT 

D=O 

interrupt 

BUBC 

000001 

000001 

The extended micro branch control (EUBC) is based on the shift/mask unit 

in the WCS 11/40. Using this field extraction unit, arbitrary contiguous 

fields of the word at the top of the stack, the EMIT field, or any l6-bit 

RAM field can be gated onto the II-bit EUBC BUS . 

. 3.4.4 IF Statement 

A simple IF statment, 

IF<condition>THEN<microinstructionsl>ELSE<microinstructions2>, 

may be implemented using the BUT mechanism or the EUBC mechanism. 

The following timing characteristics must be taken into account, when a 

BUT 12 is used. If the microiristruction containing BUT 12 has a CLKL 1 or 
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CLKL 2 processor clock cycle, then the value of the D Register at the beginning 

of the microinstruction execution is tested. If the microinstruction has a CLKL 3 

clock cycle, the value clocked into the D Register with the P2 pulse is tested. 

The effect of this timing condition is demonstrated by the following two imple­

mentations of an IF statement with BUT 12. 

CD d_R[O] 

d_R[l]; but 12 

b d 

set 

{start} !R[O]1=O 

<microinstructions 

{end} 

{start} !R[O]=O 

<microinstruction 

{end} 

tes 

1> 

2> 

The use of the start ... end pseudo operator is optional, as indicated by 

the meta symbol, {}. The microinstruction, d_R[l]; 'but 12, is executed in 

a CLKL2 processor clock cycle (cf. Table 1), and hence, but 12 tests the 

content of the D Register at the beginning of microinstruction execution. 

At this point, D contains the value of R[O]. Thus, CD implements the IF 

statement, 

IF R[O]=O THEN<microinstructions 2>ELSE<microinstructions 1>. 

If D=O, BUT 12 causes a 1 to be ORed into xupf<O> of the microinstruction 

b_d, control is transferred to the second element in the set •.. tes group. Other­

wise, BUT12 generates BUBC=Q and control is transferred to the first element in 

the set ... tes group (cf. Fig.3). 

CD d_R[O] 

d_R[l] ; b_d; but 12 

hoop 

set 

{start} ! R[l]1=O 

<microinstructions 1> 

{end} 

{start} ! R[l]=O 

<microinstructions 2> 

{end} 

tes 



The noop is required to account for the delayed conditional branching in the 

PDP-ll/40E. The microinstruction, d_R[l]; b_d; but 12, is executed in a 

CLKL 3 processor clock cycle (cf. Table 1). As a consequence, the content 

of D is tested at P2 time. At this point, R[l] is clocked into D. Thus, 

~ implements the IF statement, 

IF R[l]=O THEN <microinstructions 2>ELSE <microinstructions 1>. 
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The following implementation of the IF statement uses the EUBC mechanism. 

G) tos_R[O] 

eubc tos<15> 

noop 

set 

{start} ! R[O]~O 

<microinstructions 1> 

{end} 

{start} ! R[O]<O 

<microinstructions 2> 

{end} 

tes 

In this implementation R[O] is written onto the WCS 11/40 stack. From there, 

the sign bit (TOS<15» is extracted using the shift/mask unit and gated onto 

the EUBC BUS<O>. Hence, if R[O]~O, EUBC BUS<O>=O, and the first element in 

the set ... tes group is reached, as the xupf field of the microinstruction, 

noop, is not modified. Otherwise, EUBC BUS<O>=l and control is transferred 

to the second element in the set .•. tes group. Thus, G) implements the IF 

statement, 

IF R[O]~O·THEN<microinstructions l>ELSE<microinstructions 2>. 

3.4.5 CASE Statement 

The CASE statement extends the IF statement as to multiple branch destina­

tions. The importance of CASE statements in microprogramming stems from 

the fact that multi-way branches are vital to machine language instruction 

decoding. The general form of a CASE statement is: 

CASE<expression>DO 

<microinstructions 1> 

<microinstructions 2> 

<microinstructions n> 



The expression in the CASE statement specifies an index, i, that selects 

<microinstructions i> to be executed. For the implementation of CASE state­

ments, the BUT mechanism, the EUBC mechanism,or a combination of both may be 

used. 

The following example illustrates the use of the EUBC mechanism for 

the implementation of a CASE statement.· Assume an 8-way branch is to be 

implemented to decode the op-code bits R[13]<15:l3> of machine instructions 

stored in R[13]. To this end, the op-code bits R[13]<15:l3> can directly 

be used as the expression in an appropriate CASE statement. 

tos_R[13] 

eubc TOS<15:l3> 

noop 

set 

start 

end 

start 

end 

start 

end 

tes 

! op-code 000 

<microinstructions 0> 

! op-code 001 

<microinstructions 1> 

! op-code 111 

<microinstruction 7> 

The following microinstruction sequence implements a 4~way branch using 

a combination of the BUT mechanism and the EUBC mechanism. Here, the cases 

R[O]>O, R[O]-O, and R[O]<O are distinguished, whereas the forth case, R[O]=O 

and R[O]<O, is impossible in the 2's-complement number representation of the 

PDP-ll/40E. 

! CLKL 3 clock cycle 

eubc_tos<15>Al; but 12 

noop 

set 

start ! R[O]>O, EUBC BUS<l>= 0, BUBC=O 

<microinstructions 1> 

end 

start ! R[O]=O, EUBC BUS<l>=O, BUBC=l 

<microinstructions 2> 
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end 

start ! R[O]<O, EUBC BUS<l>=l, BUBC=O 

<microinstructions 3> 

end 

start ! impossible, EUBC BUS<l>=l, BUBC=l 

noop 

end 

tes 

Note that the sign bit, TOS<15>, is gated onto EUBC BUS<l>, such that EUBC BUS<l> 

and BUBC<O>are independently ORed into XUPP<l:O>. 

3.4.6 Micro Subroutines 

Analogous to software programming, subroutines are crucial to micropro­

gramming. Normal, nested, and recursive micro subroutines are easily implemented 

using the WCS 11/40 stack and the EUBC branch mechanism. A subroutine call 

pushes the return address, retadd, on the WCS 11/40 stack and sets the xupf field 

of the calling microinstruction to the subroutine address, subr. The return 

from subroutine is implemented by poping the WCS 11/40 stack in the second­

to-last microinstruction in the subroutine and gating the return address, retadd, 

onto the EUBC BUS. The xupf field of the microinstruction executed last in the 

subroutine must be set to 0 so that the return address can be ORed into XUPP, 

to form the effective address of the next microinstruction. 

call: s+retadd; goto subr ! subroutine call 

retadd: <whatever follows next> 

subr: <first microinstruction of the subroutine> 

<second-to-last microinstruction>; eubc S] t f re urn rom 
<last microinstruction>; xupf=O subroutine 

For the implementation of a recursive subroutine, it is important that 

the recursive subroutine call occurs in a set ... tes group (conditional bran­

ching) in order to prevent an infinite recursion. Furthermore, it is the micro­

programmer's responsibility to prevent stack overflow or underflow, as stack 

control is not supported by the WCS 11/40 hardware. An example of a schema 

for the implementation of recursive subroutines is given below. 

call: s_retadd 1; goto recurs ! subroutine call 

retadd: <whatever follows next> 



reurs: <first microinstruction in the recursive subroutine> 

<conditional branch microinstruction> 

set 

s_retadd 2; goto recurs recursive subroutine call 

<microinstruction reached at the end of the recursion> 

tes 

retadd 2: <whatever comes next> 

<second-to-last microinstruction>; eubc s 1-
<last microinstruction>; xupf=O 

return from 
subroutine 

The data objects of microprograms are the contents of registers or main 

memory locations. All these carriers are by nature global to the hardware 

of the P.DP-ll/40E and can be accessed by any microinstruction. Therefore, 
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the PDP-ll/40E does not provide a micro subroutine parameter' passing mechanism. 

Various parameter passing mechanisms may be implemented using, for example, 

the general purpose registers, the WCS 11/40 stack, the table or preload 

pseudo operators, the EMIT field, or the main memory table look-up described 

in subsection 3.3.1. 

3.5.7 Exit fromWCS 11/40 Control Store 

The interface between the basic PDP-ll/40 processor and the WCS 11/40 

is organized such that the extension is turned oft whenever the XUPP (xupf 

field) segment of the microinstruction buffer is assigned a value less than 

400
8

. At this point, control is automatically transferred to the standard 

PDP-ll/40 emulator ROM. Consequently, the last microinstruction executed 

in the RAM, which exits to the ROM, must not use the ext.ension hardware. 

The execution of microcode from the WCS 11/40 control stores is usually 

independent of external PDP-ll/40 processor conditions. Therefore, special 

provision should be taken, when control is returned to the 

standard PDP-1l/40 emulator. It is recommended to check for conditions that 

could have caused a PDP-1l/40 interrupt, while the PDP-ll/40E was controlled 

from the WCS1l/40. BUT 16 detects any condition that would cause an interrupt 

at the next PDP-11/40 machine instruction fetch. Thus, the following micro­

instruction sequence is appropriate for transferring control from the WCS 11/40 

control stores to the standard PDP-ll/40 emulator ROM: 



<second-to-1ast microinstruction>; but 16 

<last microinstruction>; goto 16 

If no interrupt occurred, control is transferred to ROM location 16 for the 

next PDP-11/40 machine instruction fetch. Otherwise, control is transferred 

to ROM location 17, where an interrupt service routine is initiated. 

4. Operating MICRO/40 

MICRO/40 runs under the UNIX operating system and is invoked by a 

UNIX command. The UNIX editor [2] is used to generate MICRO/40 source files. 

MICRO/40 source files must be stored in UNIX text files so that they can be 

used as arguments in the UNIX command that invokes the ~1ICRO/40 assembler. 

4.1 Invoking MICRO/40 

HICRO/40 is invoked by the UNIX command, 

mic{<opt>}<name>.mic 

The name of a MICRO/40 source file must be of the form, 

<name>.mic 
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where <name> is any legal UNIX text file name. The suffix, mic, indicates that 

the source is written in MICRO/40. 

In this section, we refer to the example microprogram2), called fastc.mic. 

This microporgram implements two PDP-l1/40 machine language subroutines that 

handle the environment switch for subroutine calls in the "c" programming 

language of UNIX [4]. It saves and restores registers that are used for 

parameter passing in subroutine calls/returns. Further details of fastc.mic 

will be introduced as needed. A listing of the source file of the microprogram, 

fastc.mic, is shown in Fig. 7. 

2) 

This microprogram was developed by K. Bullis, J. Bjoin, and T. Lunzer 

as a course project for (H. K. Berg) CSci 5299, Microprogramming, Winter 

Quarter 1978. 



reoui~e dets.mic 

be~in noo? 
.=2001; d_210; b_d 
d_rir-b !compare instruction 
skipzero 
d_211; b--.d 

set. 

start 
d_rir-b 
s"~ipzeTo 
noop 

!eheck for other instr 

set 

soto 150 

start t21.1 inst.r 
d_r5 '1'1<-1'5 
rl_d 
d,ba_rl~2; r1_d !pop r4 
dati; eH .. off 
r4_unibus 
ba,d_r1-2; r1_d !poP 1'3 
dati.; elkoff 
r3_unibus 
ba,d_rl-2; rl_d !pop r2 
dati; clkoff. 
r2_IJnibus 
ba,d_r5 !sp<-r5 
r6_d; dati; clkoff 
rS_unibus !rS<-(sp)t 
d_r6+2; r6_d 
ba_c6; dati !rts PC 

d_1"6+2; r6_d; clkoff 
r7_unibus; but_~6 
soto 16 

end 

tes 
end 

start _ !210 instr 

end 

tes. 

finis 

d,ba_r6-2; r6_d !push 1'5 
d_r5; dato; clkoff 
d_r7; p3 !r5<-r7 
r5_d 
rO_d ! rO{-r5 
d_r6 11'5<-1"6 
r5_d 
d,ba_r6-2; r6_d !push 1'4 
d_1"4; dato; elkoff 
d,ba~r6-2; r6_d !push 1'3 
d_r3; dato; elkoff 
d,ba_r6-2; r6_d !push r2 
d_r2; data; clkoff 
d_r6-2; r6_d !r6<-r6-2 
d_rO ! 1"7-(-rO 
r7_d; but 16 
so to 16. 

Figure 7: fastc.mic 

In the command, mic{<opt>}<name>.mic, <opt> denotes one of the three 

optional assembly flags, -a, -s, and -d. These optional assembly flags are 

directives to the microassembler which affect the assembly process in the 

following way 

-a The microprogram source is assembled and a pseudo-readable 

form of the object microcode is stored in a file called 

<name>.ass. This file is in UNIX assembler format. 

From this file, the binary version of the assembled 

microcode can be generated using the UNIX assembler as 

a post-processor of MICRO/40. 
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-d 

-s 

The microprogram source is assembled and. a pseudo­

readable form of the object microcode is stored in 

a file called <name>.dec. This file is in DEC assembler 

format, so that the binary version of the assembled 

microcode can be generated using the PDP-II/40 DEC as­

sembler as a post-processor of HICRO/40. 

The microprogram source is assembled and the micro­

simulator [5] is called, if no assembly errors occured. 

If the microassembler detects an assembly flag other than -a, -d, or -s, 

a warning is issued and the assembly flag is ignored. If both flags, -a 
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and -d, are given in the microassembler invokation, only the last (right-most) 

flag is accepted. If the assembly flag, -s, is specified, all other flags 

are ignored. 

4.2 MICRO/40 Output 

When an assembly is terminated and no assembly errors occurred, MICRO/40 

generates three files, namely, <name>.lst, <name>.bin, and <name>.tab. 

<name>.lst 

This file is a listing of the microprogram object code in the SO-bit PDP-ll/40E 

microinstruction format, followed by a list of mnemonic labels and their 

associated control store addresses. The listing contains the first IS char­

acters of each source code line and the assigned control store addresses of 

the corresponding microinstruction. In the representation of the object code, 

the content of the individual microoperations fields is given by octal numbers 

(cf. subsection 2.2). Due to space limitations, abbreviations are used for 

some of the microoperation field names: 

rm ~ rml, ba M clkba, 

1m ~ lml, bc (--) sbc 

ir H clkir, bm ~ sbm 

b ~ clkb, dm ~ sdm 

d ~ clkd, barn ~ sbam 

The file, fastc.lst, is 1 isted in Fig. S. Note that the order of the micro-

instructions in fastc.lst deviates from the order of the microinstructions in 

fastc.mic (cf.Fig.7). This reordering is due to the fact that MICRO/40 allocates 

control store locations for the set ... tes groups (cf. subsection 2.5.10) 



~ 
irlst aely' emit seOlY1 pope ep se r.lI 1m dest mse .)(upf c.lk. ir wr b d ba .bus dad. sps a1u be bill dm bam ubf .srx rit: 

be~jinnoop 2000 0 0 0 0 0 0 0 0 0 2001 2 0 0 0 0 0 0 O. 0 0 0 0 0 0 0 .0 0 
.=2001jd_210jb_d 2001 210 0 0 0 0 10 10 0 1 2006 6 0 0 1 .. 1 O. 0 .. 0 0 0 0 0 2 O. 0 O. 0 

I~ d_ri T'-b 2002 0 8 8 8 8 8 8 8 0 2011 4 0 ~ 0 .1 0 0 10 0 6 0 0 0 .... 0 0 1 13 
d,ba_r6-2;r6_d!pu 2003 0 0 20~35 6 o. 0 ·1 .. 1 0 10 0 6 2 17 2 0 0 .1 6 

H'l soto150 2004 0 0 0 0 0 0 0 0 0 150 2 o. o. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
III eLl'S! r1<-T'5 2005 . 0 0 0 0 0 0 0 0 0 2013 4. o. o. o. .1 0 0 0 0 0 0 0 0 0 0 1 5 en 
rt d_rir-b!comp~rein 2006 0 0 0 0 0 0 0 0 0 20()7 4 0 0 0 1. 0 0 10 0 6 0 0 0 0 0 1 13 
(') skipzero 2007 0 0 0 0 0 0 0 0 0 2010 .2 .. 0 . 0 0 0 0 0 0 0 0 0 0 0 0 12 .0 0 
I--' d_211.vb_d 2010 211 0 0 0 0 10 11 0 1 20()2 6 O. 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0 
en skipz£H'O 2011 0 0 0 0 0 0 0 0 0 2012 2 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 rt 

noop 2012 0 O. 0 0 0 O· 0 0 0 .. 2004 .2 .. 0 0 0 0 0 O. 0 0 0 0 0 0 0 0 0 <> 
rl_d 2013 0 0 0 0 0 0 0 0 0.2014 2. 0 3 0 0 0 0 0 0 0 0 0 2 0 0 1 .1. 
d,ba_rl-2;r1_d!po 2014 0 0 0 0 0 0 0 0 0 2015 6 0 3 0 1 1 0 1.0 0 IJ ;:t ;t.7 .~ Q 0 1 1 
dati; cll~off 2015 0 0 0 0 0 0 () 0 ().~~g;j.l'f, ~ 0 0 Q 0 () 1 0 (1 0 0 0 0 0 0 9 0 
r4_unibus 2(>16 0 0 0 0 0 0 O. O. 0 2017 2 0 3 0 0 0 0 0 0 0 0 0 1 O. 0 1 4 
bard_rl-2'rl_d!po 201.7 0 0 0 0 0 0 O. 0 0 2020 6 0 3 0 1 1 0 10 0 6 2 17 2 O. 0 1 1 
dati;clkClff 2020 0 0 0 0 0 0 0 .. 0. 0 20:·?1. 3 0 0 0 0 0 1 O. 0 0 0 0 0 0 0 0 0 
r3_unitHJS 2021 0 0 0 0 0 0 0 0 0 2022 2 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 3 
ba,d_rl-2;r1_d!po 2022 0 0 0 0 o. 0 0 0 0 20:~3 6 0 3 0 1 1 0 10 0 6 2. 17 2 0 0 .. 1 1 
dati,clkoff 2023 0 0 0 0 0 0 .0 0 0 2024 3 0 0 0 0 0 1. 0 0 0 0 0 0 0 0 0 0 
r2_unibus 2024 0 0 0 0 o. 0 0 0 0 2025 2 0 3 0 0 0 0 0 0 0 0 O. 1 0 0 1 2. 
ba, d_ r~'j! SP<- r5 2025 0 0 0 0 0 0 0 0 0 20:26 4 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 5 
r6_d;dati;clkoff 2026 0 0 o. 0 0 0 0 0 0 2027 3 o. 3 0 0 0 1 0 0 0 o. 0 2 0 0 1 6 
rS_unibus!r5(-(sp 2027 0 0 0 0 o. 0 0 0 0 2030 . 2. 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 5 
d_r6+2;r6_d 2030 0 0 .0 0 0 0 0 0 0 20~1 6 0 3 0 1 0 0 0 0 11 2 17 2 0 0 1 6 
b~_r6;diJt.i!rt5Pc 2031 0 0 0 0 0 0 0 0 0 2032 ~ ..... 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 6 
d_r6+2;r6_d~clkof 2032 0 0 O. 0 0 0 0 0 0 20~~3 7 0 3 0 1 0 0 0 0 11 '"l 17 2 0 0 1 6 .r. 

r7 _unibIJ5; but16 203:3 0 0 0 0 0 0 0 0 0 2034 2 0 3 0 0 0 0 0 0 0 0 0 1 0 16 1 7 
90to16 ~~O34 0 0 0 0 0 0 0 0 0 :t6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
d_rS;datoyclkoff 20~~5 0 0 0 0 0 0 0 0 0 2036 5 0 0 0 1 0 5 0 0 0 0 0 0 0 0 1 5 
d _ r 7 ; 1-" 3 ! J' 5 < - T' 7 2031.) 0 0 0 0 0 0 0 0 0 20~~7 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 7 
r5_d 2()~57 0 0 0 0 0 0 0 0 0 2040 2 0 3 0 0 0 0 .0 0 0 0 0 2 0 0 1 5 
J'O_d! J'O<-T'5 2040 0 0 0 0 0 0 0 0 0 20 JH 2 0 3 0 0 0 0 0 0 0 0 0 2 0 0 1 0 
d_ 1'6' T'5(-T'6 20 Jll 0 0 0 0 0 0 0 0 0 2042 4 0 0 0 1 .0 0 0 0 0 0 0 0 0 0 1 6 
J'5_d 2042 0 0 0 0 0 0 0 .0 0 2043 2 0 3 0 0 0 0 0 0 0 0 0 2 0 6 1 5 
d,ba_r6-2;r6_d!pu 2043 0 0 0 0 0 0 0 0 0 20·44 6 0 3 0 1 1 0 10 0 6 2 17 ~ 0 0 1 6 .:.. 

d_ r4; delta vC 1 ",01'1' 2044 0 0 0 0 0 0 0 0 0 2045 5 0 .. 0 0 1. 0 5 0 0 0 0 0 0 0 0 1 4 
d,ba_r6-2Pr6_d!pu 2045 0 0 0 0 O. 0 0 0 0 2046 6 0 3.0 1 1 0 10 0 6 2 17 2 0 0 1 6 
d~r3;dato;clkoff 2046 0 0 0 0 0 0 0 0 0 2047 5. O. 0 0 1 0 5 0 0 0 0 0 0 0 0 1 3 
d,ba_r6-2;r6_d!pu 2047 0 0 0 0 O. 0 0 0 0 20~)O 6 0 3 0 .1- 1 0 10 0 6 2 17 2 0 0 1 6 
fj_ 1'2; dc:l'i~o; c lkoff 20:=;0 0 0 0 0 0 0 0 0 0 20!)1 .. :3 \) C- O 1 0 5 0 0 0 0 0 0 0 0 1 2 
d_r6-2;r6_d!r6<-r 2051 0 0 0 0 0 0 0 0 0 20~:;2. 6 0 3 0 1 0 0 10 0 6 '") 

.:.. 17 . 2 0 0 1 6 
d..,.rO!r7<-rO 2052 0 0 0 0 0 0 0 0 0 2053. 4. o. 0 0 1 0 0 0 0 0 0 0 0 0 0 1 .0 
1'7_dibut16 2053 0 0 0 0 0 0 0 0 0 2054 2. 0 3 0 0 0 0 0 0 0 0 0 2 0 16 1 7 
:-.3ota16 2054 0 0 0 0 0 0 0 0 0 16 2 0 0 0 0 0 0 O. () 0 0 0 0 0 0 .0 0 

label~ ,"md addres$es .p.-
00 

===~=z=====;~==;=~== 

be!: 2000 



49 

and user-defined RAM tables (cf.subsection 2.5.7), before RAM locations are 

assigned to the rest of the microinstructions. 

<name>.bin 

This file is the binary version of the assembled microcode which is 

leaded into the writable control store. Fig. 9 depicts the file fastc.bin. 

0000000 000407 001662 000000 000000 000154 000000 000000 000000 
0000020 134000 134670 000000 000000 000000 000000 000000 000000 
0000040 000000 
0000760 000000 000000 000000 000000 000000 020000 020540 060615 
0001000 000000 000000 040000 0023"76 000000 100000 000000 141400 
0001020 006371 000210 000033 003000 100410 002366 000000 100026 
0001040 003057 146610 002342 000000 000000 000000 040000 000227 
0001060 000000 000025 000000 100400 002364 000000 000033 003000 
0001100 100410 002370 000000 005000 000000 040000 002367 000000 
0001120 100000 000000 141400 006375 000211 005000 000000 040000 
0001140 002365 000000 000000 000000 040000 002373 000000 100021 
0001160 000000 046000 002363 000000 100021 003057 146610 002362 
0001200 000000 000000 000000 060020 002361 000000 040024 000000 
0001220 046000 002360 000000 100021 003057 146610 002357 000000 
0001240 000000 000000 060020 002356 000000 040023 000000 046000 
0001260 002355 000000 100021 003057 146610 002354 000000 000000 
0001300 000000 060020 002353 000000 040022 000000 046000 002352 
0001320 000000 020025 000000 100600 002351 000000 100026 000000 
0001340 066020 002:350 000000 040025 000000 046000 002347 000000 
0001360 100026 004457 146400 002346 000000 020026 000000 040220 
0001400 002345 000000 100026 004457 166400 002344 000000 047027 
0001420 000000 046000 002343 000000 000000 000000 040000 000361 
0001440 000000 000025 000000 120520 002341 000000 000027 000000 
0001460 140400 002340 000000 100025 000000 046000 002337 000000 
0001500 100020 000000 046000 002336 000000 000026 000000 100400 
0001520 002335 000000 100025 000000 046000 002334 000000 100026 
0001540 003057 146610 002333 000000 000024 000000 120520 002332 
0001560 000000 100026 003057·146610 002331 000000 000023 000000 
0001600 120520 002330 000000 100026 003057 146610 002327 000000 
0001620 000022 000000 120520 002326 000000 100026 003057 146410 
0001640 002325 000000 000020 000000 100400 002324 000000 107027 
0001660 000000 046000 002323 000000 000000 000000 040000 000361 
0001700 000000 
0003560 000000 000000 060562 046155 051501 000124 000001 020540 
0003600 060562 043155 051522 000124 000001 020000 060562 057555 
0003620 000143 000000 000001 134000 057557 071146 072163 000000 
0003640 000001 000000 057557 060554 072163 000000 000001 000540 
0003660 062555 063155 071562 000164 000001 134000 062555 066155 
0003700 071541 000164 000001 134670 06-4143 061545 0"71553 066565 
0003720 000001 060615 041525 052123 052122 000000 000002 000760 
0003740 

Figure 9: fastc.bin 

<name>. tab 

This file is generated specifically for the microsimulator [5]. It 

contains information used by the simulator for interperting simulator commands. 

This information includes field names, field bounds, lower and upper limits 

(control store addresses) of the microcode generated, register names, macro 

names, labels, etc. From this file, the simulator generates a symbol table 

which is used to interpret simulator commands. As a result, simulator commands 

can contain any symbol string that is recognized by the microassembler, including 

names of user-defined macros. 
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4.3 MICRO/40 Error Messages 

The errors detected by MICRO/40 may be grouped into three classes. 

Non-continuable errors terminate the assembly process.: When a non..;.continuab1e 

error is encountered, control is transferred to the UNIX operating system, 

without generating any object microcode. 

Continuable errors cause the microassemb1er to skip (i.e., no object micro­

code is generated) the erroneous input line and to continue assembly with the 

next input line. No object microcode file is generated. 

Recoverable errors cause the microassemb1er to issue a warning. MICRO/40 can 

by itself recover from these errors and may either skip (i.e., no object micro­

code is generated) the erroneous input line or assemble it·, after the erroneous 

line has been modified according to internal default mechanisms. 

For errors of each class, MICRO/40 issues error message which generally 

have the following format: 

where 

<file name> line <line number> 

<source code line> 

<message> , 

<filename> is the name of the source file being assembled, 

<line number> is the line nmnber of the erroneous line in the source file, 

<source code line> is the erroneous source code line, 

<message> is the error message (the different error messages are disucssed in 

the following subsections). 

Example: /uprog/rt11/vector.mic line 96 

d_b; n.z.v.c; skipzero; goto vecS 

undefined symbol goto 

4.3.1 Non-continuable Errors 

For non-continuable errors we may distinguish between internal errors, 

user errors, system errors, and resource errors. 

Internal Errors 

Internal errors are fatal errors that are caused by the execution of the 

microassemb1er program. 



51 

1. "internal error -- duplicate symbol <token>" 

A symbol, <token>, occurs twice in the symbol table. 

2. "pop:stack underflow" 

The microassembler attempts to pop an empty stack. 

3. Itduplicate entry: <token>" 

The microassembler attempts to enter the same symbol, <token>, twice into 

the symbol table (this message is print.ed without a header). 

4. "internal error -- default case index to pick type <symbol>" 

A non-existing symbol type is found for the symbol, <symbol>. 

5. "internal error -- compiling a macrotype" 

A macro name is found after completion of the macro expansion. 

6. "internal error -- illegal reference type" 

A symbol of type reference «emit field>, cf. subsection 2.3.2) is found 

before symbols of this type were entered into the symbol table. 

7. "internal error -- default pseudo type <symbol>" 

The symbol, <symbol~ that is recognized as type pseudo is not a reserved 

pseudo operator (cf. subsection 2.5). 

8. "internal error -- default operand type left <symbol>" 

The symbol, <symbol~ that is found on the left hand side of an assignment 

statement is not a defined operand (cf. subsection 2.3.1). 

9. "internal error -- default type operand right <symbol>" 

The symbol, <symbol~ that is found on the right hand side of an assignment 

statement is not a defined operand (cf. subsection 2.3.1). 

10. "internal error -- default type operator <token>" 

11. 

The symbol, <token>, ,that is recognized as an operator is not a defined 

operator (cf. subsection 2.3.2). 

"internal error -- double not detected" 

A double occurrence of the assignment operator, ,has not been detected 

in the first syntax check. 

12. '.'internal error -- bad type in label resolution" 

A symbol of a type other than label or table is found in the control 

store address resolution. 

13. "internal error - bad reference type" 

When relocating microcode, a symbol is found among the control store refer-



ence that is not of type label or table (this message is printed without 

a header). 

User Errors 

The following error messages refer to fatal syntax or microprogramming 

errors. 

14. "sourcefile??" 

No source file was specified in the command, mic{<opt>}<name>.mic (this 

message is printed without a header). 

15. "illegal file name <name>" 

The file name in the command, mic{ <opt> }<name>'.mic, is not accepted. 

For example, the suffix, mic, is missing (this message is printed with­

out a header). 

16. "rekursive macro call for <macro name>" 

Recursive macro calls are not allowed (cf. subsection 2.5). 

17. "starting file with open compound" 
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The require statement (cf. subsection 2.6.3) occurs in a set •.• tes group. 

group. 

18. "starting file with open set" 

The require statement (cf. subsection 2.6.3) occurs in a set ••• tes group. 

19. "ending tile with open compound" 

The end-of-file mark of the text file being processed is found before 

the closing 'end' of a start ••• end group. 

20. "ending file with open set" 

The end-of-file mark of the text file being processed is found before the 

closing 'test of a set ..• tes group. 

21. "start within an open compound" 

The pseudo operator, start, is found outside a set ... tes group or 

inside another start •.• end group. 

22. "end doesn't balance set" 

The pseudo operator, end, is found inside a set •.. tes group and has no 

associated 'start'. 

23. "set within an open case" 

The pseudo operator, set, is found inside a set ••• tes group and is not inside 



24. "tes doesn't balance start" 

The pseudo operator, tes, is found in a start •.• end group and has no 

associated 'set'. 

25. "set 1 1 1 in a macro body" 

set .•. tes groups are not allowed inside macro bodies. 

26. "tes II! in macrobody" 

set .•. tes groups are not allowed inside macro bodies. 

27. "macro declaration in macrobody not allowed" 

A macro declaration is found during macro expansion. 
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28. "impossible assignment to lowlim you have <number of statements> statements" 

The microprogram cannot be stored in the specified control store address 

space (this message is printed without a header). 

System Errors 

System errors are caused by the inability of the system to execute a 

given command. The following error messages are printed without a header. 

29. "move error -- <file name>" 

An error occured in the generation and storage of the object microcode 

file, <name>.bin. 

30. "cannot find <file name>" 

A microassembler or microsimulator file, <file name>, cannot be found. 

31. "sorry! try again" 

The system is unable to create a new UNIX process. 

32. "fatal error in <file name>" 

The file,<file name>, being executed contains a fatal error. 

33. "cannot create file: <file name>" 

34. "cannot open file: <file name>" 

35. "read error on file: <file name>" 

36. "write error on file: <file name>" 

37. "cannot close file: <file name>" 

38. "cannot remove file: <file name>" 

39. "error on file: <file name>" 



40. "seek error on file:' <file name>" 

Resource Errors 

Resource errors are caused by overflow of MICRO/40 information re-

sources. 

41. "symbol table full <symbol>" 

The attempt to put the symbol, <symbol>, into the symbol table causes a 

symbol table overflow. The size of the symbol table is 1024 words. 

42. "string table overflow" 

The size of the string table is 10,240 characters. 

43. "push: stack overflow" 

The size of the stack is 100 words. 

44. "reference table overflow" 

The size of the reference table is 200 words. 

45. "all 1024 ram locations are used" 
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The user microprogram exceeds the capacity of the writable control store. 

46. "too much sets" 

The maximum number of tes ... set groups is 150. 

47. "too much tables" 

The maximum number of tables is 20(cf. subsection 2.5.7). 

48. "no free locations remaining for sets" 

It is impossible to allocate control store locations with 2n address 

boundaries for the allocation of set ... tes groups. 

49. "no free location remaining for tables" 

It is impossible to allocate control store locations for table declarations. 

4.3.2 Continuable Errors 

50. "illegal symbol where number expected <number>" 

A number, <number>, includes an illegal character. 

51. "no )following «number>" 

A negative number, <number>=-XXX, of the form, (-XXX, is found. 

52. "redefining a symbol <symbol>" 

Macro name or label, <symbol>, is used twice. 
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53. "illegal use of label <label>" 

A label reference, <label>, occurs on the left hand side of an assignment. 

54. "illegal use of table <tC3:ble>" 

A table name, <table>, cannot occur on the left hand side of an assignment 

statement. 

55. "<op> operator with no operand" 

An operater, <op>, is used without operand. 

56. "illegal symbol <symbol>" 

An undefined identifier, <symbol>, is used. 

57. "undefined symbol <token> " 

The symbol, token, following a label definition or a macro definition 

is unequal ':' or ':='. respectively. 

58. "inconsistent use of emit-field" 

Assignments to the EHIT field and other microoperation fields in XU<79:64> 

are made in a single microinstruction. 

59. "<field> not followed by =" 
'=' is missing in an assignment to the microoperation field, <field>. 

60. "illegal field assignment <field>" 

An identifier is assigned to a microoperation field, <field>, other than 

EMIT or xupf. 

61. "missing] in table reference" 

Syntax: <table name>[<table index>] 

62. "code on same line as finis" 

63. "code on same line as start" 

64. "code on same line as end" 

65. "no code between start - end" 

66. "code on same line as set" 

67. "code on same line as tes" 

68. "set following a start not allowed" 

The pseudo operator, set, must not immediately follow the pseudo operator, 

start (cf. subsection 2.5.10). 

69. "set size less than 2 not allowed" 

(cf. subsection 2.5.9) 



70. "code on same line as lowlim" 

71. "lowlim must be first statement" 

The pseudo operator, lowlim, must be the first statement in a source 

file (if used). 

72. "missing = in lowlim" 

Syntax: lowlim = <value> 

73. "illegal address to lowlim" 

<value> in,<lowlim>= <value>, must be in the range [2000:3777]. 

74. "illegal operation to'. '" 

Syntax: • = <value> (cf. subsection 2.5.4). 

75. "illegal absolute address assignment" 

<value> in,. = <value>, must be in the range [2000:3777]. 

76. "cannot assign absolute address to controlled words in a set" 

The micorassembler allocates control store locations for all micro­

instructions in a set .... tes group. 

77. "absolute location assigned twice" 

The same absolute control store address is assigned to two different 

microinstructions. 

78. "code on same line as <table>" 

Table declarations and preloads must occur on a line by themselves 

(cf. subsections 2.5.7 and 2.5.8). 

79. "illegal table name <table>" 

An illegal idenfier is used as name for the table, <table>. 

80. "duplicate use of <table>" 

The identifier used as name of the table, <table>, is used twice. 

81. "no go to before table declaration" 

Table declarations must be preceeded by an explicit assignment to the 

xupf field. 

82. "arithmetic expression too long" 

An expression can in maximum contain 15 operands and operators. 

83. "registers can only be read as full words" 
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The selectors, 1 and h, cannot be used in occurrences of general purpose 

registers on the right hand side of assignment statements (cf. subsection 2.3.1). 



57 

84. "multiple in assignment statement" 

85. "illegal assignment to eubc" 

Only data at the output of the shift/mask unit can be assigned to eubc. 

Simultaneous gating of the shift/mask unit output onto the EUBC BUS and 

the RD BUS are not allowed. 

86. "impossible assignment on dmux or to stack" 

(cf. subsection 2.3) 

87. "impossible assignment to ba or d register" 

(cf. subsection 2.3) 

88. "two different a1u functions chosen" 

Only a single ALU function can be specified per microinstruction. 

89. "no such a1u function <function>" 

(cf. subsection 2.3.2) 

90. "unrecognizable statement" 

For example, two consective 

91. "undefined symbol <symbol>" 

, . , , . 

For example, undefined carrier on the left hand side of an assignment 

statement. 

92. "illegal element in this context <token>" 

For example, an identifier occurs, where an operator is expected. 

93. "illegal assignment to stackpointer" 

Stack pointer values must be in the range [0:15]. 

94. "missing; after sp assignment" 

95. "illegal assignment to <operand>" 

(cf. subsection 2.3.2) 

96. "impossible assignment statement" 

For example, operand missing (cf. subsection 2.3.2). 

97. "illegal use of ba, ir, sf, df or eubc" 

These identifiers cannot occur on the right hand side of an assignment 

statement. 

98. "illegal type in assignment statement" 

An assignment statement contains a token of illegal type (cf. subsection 

2.3.2). 



99. "illegal use of A" 

,~, can only be used with extension operands (cf. subsection 2.3.2). 

100. "illegal use of I" 
'I' can only be used in the identifier d/2. 

101. "d,dshift,ba,ir,sf,df,eubc, or unibus are not allowed as source to 

expression" 

The specified carriers must not occur in a compo~nd expression (cf. 

subsection 2.3.2). 

102. "illegal type in arithmetic expression" 
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An arithmetic expression contains a token of illegal type (cf. subsection 

2.3.2). 

103. "register specification with no [It 

Syntax: R[<index>] 

104. "illegal general register specification <token>" 

<index>::= 011121314151617110 11111211311411511611718·19·110·111·112. I 
13·114·115·lbaldflsf l 

105. "no] after register specification" 

syntax :R[<index>] 

106. "illegal register modifier <modifier>" 

A register selector other than '1' or 'h' is used (cf. subsection 2.3.1). 

107. "no> after register modifier" 

Syntax: R[<index>] {«selector»} 

108. "inconsistant general register specification" 

Two different general purpose registers are used in the same microinstruction. 

109. "illegal sbmh modification" 

A <high selector> other than h, e, 1, or c is used for ,the B Register~ 

(cf. subsection 2.3.1) 

110. "illegal sbm1 modification" 

A -::low selector> other than h, z, 1, or c is used for the B Register 

(cf. subsection 2.3.1). 

111. "no> after sbm modification" 

Syntax: b{«B modifier»} 

112. "b - constant with no [If 

Syntax: cr<number>] 



113. "illegal b - constant" 

<number> in, c[<number>] must be in the range [0:15]. 

114. "no] after b - constant" 

Syntax: c[<number>] 

115. "ram with no [" 

Syntax: Rfu~ [<specifier>] 

116. "illegal ram address field <specifier> 

<specifier>in, RAM [<specifier>] must be s or tos. 

117. "no] after ram" 

Syntax: RAM[<specifier>] 

118. "field selection with no >" 

Syntax: <extension carrier>{«field selection»}{<~hift><number} 

119. "impossible field selection" 

(cf. subsection 2.3.2) 

120. "no code to continue after last set of program" 
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Every set .•. tes group must be succeeded by at least one microinstruction 

in the source microcode (cf. subsection 2.5.9). 

121. "undefined label" 

4.3.3 Recoverable Errors 

122. "flag <opt>?? 

The assembly flag, <opt>, in the microassembler call, mic{<opt>}<name>.mic, 

is not recognized (cf. subsection 4.1). 

123. "only one filename allowed <file name> will be ignored" 

The second file, <file name>, specified in the microassemb1er call, mic 

{opt}<name>.mic, is ignored. 

124. "truncated from line <line number>" 

The input line contains too many characters and is truncated after line 

<line number>. The maximum number of characters in a MICRO/40 input line 

is 300. 

The error messages for the following recoverable errors are preceeded by the 

word, warning, on a separate line. 

125. "no $ following macro <macro>" 

The definition of macro, <macro>, is not terminated by '$'. 
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126. "no finis found" 

(cf. subsection 2.5.3) 

127. "illegal dest/msc function ~- s assumed" 

The PPE field is not set and the DEST/MSC fields specify a push or pop 

operation. One of the following DEST/MSC functions is assumed, according 

to the context of the given microinstruction: 

push; RD + emit; s + DMUX, 

push; eubc + emit; stack + DHUX, 

RD + emit; RM1[s] + DMUX; pop, 

eubc + emit; RAM[s] + DMUX; pop. 

128. "This line generates dest/msc function 'off'" 

The data paths and functional units in the WCS 11/40 are not used. 

129. "you are changing the value of field <field name>" 

The input line contains two assignments to the microoperation field, 

<field name>. The right most field assignment is used. 

130. "field value too large, for <field name>" 

The value assigned to <field name> is not in the range of legal field 

values. The value is truncated. 

131. "less than 2 exp(n) statements in this set" 

Control store locations with 2n address boundaries are allocated for the 

microinstruction in a set ••• tes group. 

5. Terminal Session 

In this section, we demonstrate the operation of the MICRO/40 assembler 

by a commented protocol of a terminal session. To this end, several errors 

have artificially been introduced into the example microprogram, fastc.mic 

(cf. Fig.7). These errors are corrected using the UNIX text editor [2], and 

the corrected microprogram is assembled. System commands and responses 

start at the left margin of the page. Comments are indented. Responses from 

the UNIX operating system end with the prompt '%'. 

% mic -a fastc 

An attempt is made to assemble a file whose name does not have the 

suffic, mic. 

illegal filename fastc 

Non-continuable error. 

% mic -a fastc.mic 



MICRO/40 is called with a correct filename. 

fastc.mic 

defs.mic 

26 lines read. 

The microassembler acknowledges the acceptance of the 'required' file, 

defs.mic, which contains 26 lines. 

fastc.mic line 4 

.=2001; d_2l0; b d 

illegal symbol where number expected 210 

Continuable error. 

fastc.mic line 11 

set 

set within an open case 

Non-continuable error. Control is returned to UNIX. 

% ed fastc.mic 

905 

11 

The UNIX test editor is called with the file, 

fastc.mic, as an argument. 

The editor lists the number of characters in tve file fastc.mic. 

Line 11 of fastc.mic is requested. 

set ! check for other instr 

Line 11 of fastc.mic is listed. 

s/set/start/p 

Line 11 of fastc.mic is edited. 

start check for other instr. 

The corrected line 11 of fastc.mic is listed. 

4 

.=2001; d_2lo; b d 

s/o/O/p 

.=2001; d_2l0; b d 

Line 4 of fastc.mic is corrected. 

w 

The corrected lines are written back into fastc.mic. 

907 

The new number of characters in fastc.mic is listed. 

q 

Editing is terminated. Control is returned to the operating system. 

% mic -a fastc.mic 

MICRO/40 is called again. 
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fast.mic 

defs.mic 

26 lines read 

The acceptance of the file, defs.mic, is acknowledged. 

fastc.mic line 24 

doti; clkoff 

undefined symbol doti 

Continuable error. 

fastc.mic line 25 

r4 unibus 

multiple _ in assignment statement 

Continuable error. 

warning 

fastc.mic line 28 

r7 _ unibus; but 16; ubf=12 

you are changing the value of field ubf 

Recoverable error. 

66 lines read 
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MICRO/40 acknowledges the acceptance of the file fastc.mic. Control is 

returned to UNIX. 

% Is 

A listing of the names of the existing files is requested. 

defs.mic 

fastc.mic 

No object microcode has been generated. 

% ed fastc.mic 

907 

24 

doti; clkoff 

slolalp 

dati; ckoff 

+ 
Request for ne~t (25) line of fastc.mic. 

r4 unibus 

sl --1/1/ __ I _ I p 

r4 unibus 

38 

r7 _ unibus; but 16; ubf=12 



s/ubf=12//p 

? 

The editor asks for an acknowledgement of the deletion. 

s/ubf=12//p 

r7 unibus; but 16; 

s/6;/6/p 

r7 unibus; but 16 

w 

899 

q 

Correction of lines 24, 25, and 38 of fastc.mic. 

% mic -a fastc.mic 

MICRO/40 is called again. 

fastc.mic 

defs.mic 

26 lines read 

66 lines read 
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No errors are detected and the file, fastc.mic is assembled. Control is 

returned to UNIX. 

% Is 

A listing of the names of the existing files is requested. 

defs.mic 

fastc.ass 

fastc.lst 

fastc.mic 

fastc.tab 

The files, fastc.ass, fast.lst, and fastc.tab, have been generated, 

as MICRO/40 was called with the assembly flag, -a. 

% as fastc. ass 

The UNIX assembler is called to generate the object microcode. 

% mv a. out fastc. bin 

The generated file is stored in the file names fastc.bin. Note that 

fastc.bin is directly generated by MICRO/40, if no assembly flag or the 

assembly flag, -s, is used in the microassembler call. 
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Appendix 

PDP-ll/40E Register-Transfer Block Diagrams 
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