
Computer Science Department

114 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

MICRO/40 Assembler Primer

by

H. K. Berg and E. Dekel

Technical Report 78-9

July 1978

Cover design courtesy of Ruth and Jay Leavitt

MICRO/40 Assembler Primer

by

Helmut K. Berg and Eliezer Dekel

Department of Computer Science

University of Hinnesota

Abstract

This report is a tutorial guide to the concept and use of the MICRO/40

assembler. It is intended to familiarize new users with the microassembler

as the fundamental microprogram development aid in the PDP-ll/40E micro­

programming support system. The introduction of the MICRO/40 syntax in BNF

and a commented list of all error messages make this report also usable as a

reference for advanced users. Microprogramming techniques that scope with

the effects of hardware idiosyncrasies on PDP-Il/40E microprogramming are

presented in the form of a tutorial. The report covers the basics needed

for the day-to-day use of the microassembler, such as the microprogram

input formats, the invokation of MICRO/40, and the interpretation of micro­

assembler outputs. The use of MICRO/40 under the UNIX operating system is

demonstrated by a commented protocol of a complete terminal session. This

terminal session also illustrates the techniques for error corrections using

the UNIX text editor.

1

1. Introduction

The microassembler described in this report is the language facility in

our microprogramming laboratory that assists the user in writing PDP-ll/40E

microcode. MICRO/40 was developed at Carnegie-Mellon University, Department

of Computer Science, to run as cross assembler on a PDP-lO computer [1]. The

MICRO/40 version we refer to in this report is an improved PDP-II version of

the original microassembler that was written at the Technical University

Berlin, Institut fUr Softwaretechnik und Theoretische Informatik, Fachgebiet

Betriebssysteme. It runs on a PDP-ll/40 under the UNIX operating system

[2,3] and is written in the "c" programming language [4]. MICRO/40 inter­

faces to a microsimulator [5] and a microprogram test system [6,7] which,

together with the microassembler, constitute the kernel of our PDP-ll/40E

microprogramming support system~

The PDP-ll/40E is a standard PDP-ll/40 computer that has been extended

by the following hardware features which were developed at Carnegie-Mellon

University [1,8]:

lK 80-bit words of random access (RAM) control store for storing

user microprograms.

32 80-bit words of read-only (PRO}!) control store for bootstrapping

microprograms.

a l6-word stack for temporary data storage.

a shift and mask unit and a carry control unit which extend the data

manipulation capabilities of the basic PDP-ll/40 processor.

The 3-River Computer Corporation offers these hardware accessories as a

writable control store option (WCS 11/40) for the PDP-ll/40. The PDP-ll/40E

has a horizontal microinstruction format that allows user microprograms access

to all functional hardware units and data paths in the basic PDP-ll/40 processor

and in the WCS 11/40. The MICRO/40 assembler supports the construction of

microinstructions from any combination of microoperations in this microinstruc­

tion format. The microprogramming features of the PDP-ll/40E are described in

[1,9] .

In a typical microassembler, mnemonics are defined for each legal micro­

operation. Microinstructions are constructed by combining these menmonics in

assembly code lines. For vertical microinstruction formats, only a single

(relatively complex) microoperation can generally be defined in each micro-

2

instruction. Contrastingly, several (relatively primitive) microoperations can

be combined into a single horizontal microinstruction. That is, horizontal

microinstruction formats allow the specification of parallel actions (micro­

operations) to be performed by the machine hardware. In addition to mnemonic

microoperation definitions, microassembl'ers usually provide for the use of

mnemonic labels. Furthermore, the placement of microinstructions in the control

store is usually supported by microassemblers, although microcode is generally

not relocatable.

More sophisticated microassemblers may include macro facilities, in

addition to the above features. Microassemblers for horizontal microinstruction

formats may also automatically insert default values into microoperation fields

which have not been filled by the microprogrammer, Furthermore, attempts have

been made to make microassemblers partly machine-independent. These attempts

make a single assembly language usable to generate microcode for several different

microprogrammable machines. To this end, the assembly language syntax is para­

meterized and the hardware of the target machine is described at the assembler

directive level. Finally, self-documenting assemblers have been developed that

generate a commentary for each microinstruction written by the microprogrammer

and thus, support microcode documentation.

The MICRO/40 assembler described in the following sections includes all

the standard features of a microassembler for horizontal microinstructions.

Additionally, a macro definition facility is provided. Furthermore, compound

statements are included into MICRO/40 to support some of the idiosyncrasies of

the PDP-Il/40E. Microprogrannning in the MICRO/40 assembly language is fac­

ilitated by the fact that the assembler transforms (register-transfer) assign­

ment statem~nts into appropriate microoperation field specifications, and the

automatic insertion of default values into unspecified microoperation fields.

Microcode testing and debugging are integral parts of the microcode

construction process and should not be delayed until after a microprogram is

written. Therefore, microprogramming languages must support microcode testing

and debugging. Analogous to the relationship between high-level programming

languages and assembly languages for software, high-level microporgramming

languages have many advantages over microcode assembly languages, with respect

to microcode construction. For example, program development techniques, such

as structured programming, become applicable to microprogrannning through the

use of machine-independent high-level microprogramming languages. Although

structured, high-level microcode generation also greatly facilitates error

location and correction, there exists no widely accepted high-level micro­

programming language. This situation is primarily due to the fact that hard-

3

ware-dependent timing conditions (especially for asynchronous operations) and

the inherent parallelism hinder the compiler construction for machines with

horizontal microinstruction formats. The fundamental problem, in this respect,

is the generation of optimized microcode, and the lack of realistic models of

microinstruction and microoperation semantics which, by nature, are considerably

more complex than corresponding models for software semantics. That is, in

essence, the provision of high-level microprogramming tools is hindered by the

necessity to exploit hardware characteristics to produce efficient microcode.

Unoptimized microcode is generally unacceptable, because of the frequency with

which microinstructions are executed.

As a result of the discussed difficulties in developing high-level micro­

programming facilities, typical microprogramming support systems are still

based on a microassembler and the associated loader and simulator software.

Microassemblers leave the task of microcode optimization to the microprogrammer,

as they do not offer any assistance in exploiting the inherent parallelism in

microinstructions. Generally, a microassembler merely checks the legality of

the combination of microoperations which the microprogrammer specified within

a microinstruction. These syntax checks in a microassembler may be considered

as a type of static microprogram testing and therefore, are usually restricted

to the detection of static errors. Dynamic microprogram testing via mi.cro­

program execution requires the availability of an off-line (soft) test system,

SUcl1 as a microcode simulator, or of on-line (hard) test systems, such as

an interactive debugger or special hardware accessories for the instrumentation

of microprogram executions.

The error detection capabilities of the MICRO/40 assembler are enhanced by

the WCS 11/40 microinstruction format [1,9] which makes certain conflicts

detectable through microcode examination. The typical conflicts that are

detected by the MICRO/40 assembler are the illegal use of data paths, registers,

and functional hardware units. With respect to timing errors, the micro­

assembler checks the specified microoperations against the length of the

specified processor clock cycle, and attempts to enforce the proper timing

for each microinstruction. Nevertheless, the detection of timing conflicts by

the MICRO/40 assembler is restricted to static errors.

MICRO/40 supports microcode testing and debugging by generating files

to be used by a microcode simulator [5]. The microsimulator allows the inves­

tigation of effects of simulated microinstruction executions. The facilities

for detecting and locating of errors are basically restricted to static errors

which can be observed by investigating processor registers, including the

microprogram pointer. For the detection of dynamic, hardware-dependent micro-

4

program errors, an on~line test system, SMILE [6,7], for microprogram load and

examination is available in our microprogramming support system. The SMILE

system loads the binary object microcode as supplied by MICRO/40 into the

writable control store, and allows microprogram testing at the microprogram

level by execut~ng PDP-II/40 machine language instructions. which call upon the

execution of the loaded microcode. However, using the SMILE system, erroneous

microoperations usually cannot be located by tests at the microprogram level.

Therefore, the microprogramming support system has been complemented with a

logic state analyzer whose use as an on-line test facility at the microinstruc­

tion and microoperation level is documented in [10].

This report is intended to provide a tutorial guide to the concept

and use of MICRO/40that expands and complements the available documentation

[1,8]. To this end, we first introduce the MICRO/40 syntax in section 2.

Based on the content of section 2" we proceed, in section 3,. with a discussion

of the conceptual features of MICRO/40 and associated progrannning techniques.

Guidelines for the use of MICRO/40 and the interpretation of assembler output

are presented in section 4. Finally, in section 5, we demonstrate a complete

example of the microassembler operation in the form of a terminal session.

2. MICRO/40 Syntax

MICRO/40 has many of the limitations of a software assembler. Further­

more, being a microassembler for a specific machine (PDP~11/40E), register

and microoperation field names as well as operator symbols are pred~clared and

cannot be redefined. The nature of register-transfer operations in the PDP-ll/40E

processor as described by MICRO/40 assembly language lines implies that all

names and operator symbols are global.

2.1 Input Format

Each line of MICRO/40 input is assembled into a single 80-bit microinstruc­

tion (for exceptions to this rule, cf. subsection 2.5). A line of MICRO/40

input is defined as all the characters between two consecutive line-feeds.

Any line ending with a hyphen(-) has the next line concatenated to it, i.e.,

the hyphen is the line continuation symbol. Each line is read and processed

individually, and no distinction is made between lower case and upper case

letters. The MICRO/40 assembly language is a free-format language in which

statements can be placed anywhere on the line with as many blanks as needed

to make the described microinstruction legible. Anything. following an

exclamation point(!) on a line is considered a comment and is ignored.

5

2.1.1 Identifiers

A MICRO/40 identifier is a character string starting with an alphabetic

(A - Z, a-z) and followed by an arbitrary number of alphabetics (A - Z, a-z) t

digits (0-9), a dot(.), a slash(/), or an underline(_). The number of

significant identifier characters is limited to 20.

2.1.2 Numbers ------
A numeric constant is a sequence of one or more digits. All numeric

constants are considered to be octal, unless the number contains the digits 8

or 9, or a decimal point in which case, it is interpreted as a decimal number.

The syntax of a negative number is, -<number>. Negative numbers may be

parenthesized. The above rules define the following equivalences, e.g.,

137 is equivalent to 95.

102 is equivalent to 66.

-32 is equivalent to (-32).

2.1.3 Labels

A label declaration is an identifier followed by a colon(:), i.e.,

< label declaration>: :=<label>:

< label>: : =<identifier>

A line may contain an arbitrary number of labels which may be placed anywhere

on the line.

2.2 Microoperation Field Assignments

The generic use of the MICRO/40 assembler is to assign specific values

to each microoperation field in the horizontal microinstruction. The syntax l)

for a field assignment is:

<field name> = <value> {;}

The semi-colon (;) separates multiple field assignments on a single MICRO/40

input line. The semi-colon following the last field assignment on a line may

be omitted.

1)
Throughout this text, we use the meta symbol {}to enclose optional objects

in syntax definitions (i.e., 0 or 1 repetitions of the enclosed object are

allowed).

6

2.2.1 MicrooperationFields

The format of the 80-bit PDP-11/40E microinstruction (XU) and the bit

position assignment of the microoperation fields are shown in Fig. 1. The

36 microoperation field in XU may be divided into 14 groups [9]. The

EMIT

SCOM PPE CP CS RML LML . DEsr MSC XUPF UPF I
79 78 77 76 75 72 71 68 67 64 63 62 61 59 58 56 55 48

47 46 45 44 43 42 41 40 39 38 37 36 35 32 31 29

28 27 24 23 20 19 18 17 16 15 14 13 12 8 7 6 5 4 3 o

Figure 1: XU Format

PDP-ll/40E registers, data paths and functional units associated with the

microoperations are depicted in the register-transfer block diagrams of the

PDP-ll/40 processor, the WCS 11/40, and their mutual interfaces as given in the

appendix.

Clock Control

CLKL (XU<47:46»: Processor Cloc~ length Control

Allows a selection from three basic PDP-1l/40 processor cycle

times.

CLKOFF (XU<45»: Processor Clock Off - ---
When set, turns processor clock off.

Register Load Control

CLKIR (XU<44»: Clock Instruction Register - -~ -
Allows clocking the D l1UX output into the instruction register.

WRH (XU<43»: Write ~igh Order Byte of D~ruX BUS

Allows writing the high order byte of the D MUX output into a

selected general purpose register.

WRL (XU<42»: Write 1.0w Order Byte of DMUX BUS'

Allows writing the low order byte of the D MUX output into a

selected general purpose register.

7

CLKB (XU<41»: C1oc~ ~ Register

Allows clocking the D MUX output into the B Register.

CLKD (XU<40»: C1oc~ Q Register

Allows clocking the ALU output into the D Register.

CLKBA (XU<39»: C1oc~ BA Register

Allows clocking the BA MUX output into the BA Register

UNIBUS Control

CBUS (XU<38:37»: Control of UNIBUS

Allows the specification of UNIBUS data transfers.

BGBUS (XU<36»: ~e£in a UNIBUS Transfer

Allows the initiation of a UNIBUS data transfer specified in CBUS.

Instruction Processor Logic Control

DAD (XU<35:32»: Discrete Alteration of Data

Directs the ALU control logic (which is associated with the

instruction decoding logic) as to alterations of operations

to be performed by functional hardware units in the data pro-

cessor.

Processor Status Control

SPS (XU<31:29»: Select Processor Status

ALU Control

Determines loading of the PS Register from the DMUX BUS,

clocking of condition codes into the PS Register, and gating of

the PS Register onto the RD BUS.

SALUM (XU<28»: Select ALU Mode

Selects ALU mode of operation (arithmetic or logic)

SALU (XU<27:24»: Select ALU Function

Multiplexor Control

Allows the selection of up to 16 arithmetic or 16 logic ALU

functions.

SBC (XU<23:20»: Select Input to ! MUX from B Constants

Allows the selection of a constant to be gated to the ALU B-input.

SBMH (XU<19:l8»: Select Input to ~ ~X's ~igh Order' Byte

Allows the selection of bytes from the B Register and the B

Constants to be gated to the high order byte of the ALU B-input.

8

SBML (XU<l7:l6»: Select Input to !!:!UX's :how Order Byte

Allows the selection of bytes from the B Register and the B

Constants to be gated to the low order byte of the ALU B-input.

SDM (XU<l5:l4»: Select Input to Q!:!UX

Select the RD BUS, the UNIBUS data lines, the D Register, or th~

right-shifted D Register as the input to D MUX,

SBAM (XU<l3»: ~elect Input to BA ~X

Selects the output of the ALU or the RD BUS as the input to

BA MUX.

General Purpose Register Addressing Cont~

SRS (XU<7»: Select General Purpose !egister Address from IR Source Field

Allows IR <8:6> to be used as a source of a general purpose register

address.

SRD (XU<6»: Select General 'Purpose !egister Address from IR Destination Field

Allows IR <2 :,0> to be used as a source of a general purpose register

address.

SRBA (XU<5»: Select General Purpose !egister Address from the BA Register

Allows BA <3:0> to be used as a source of a general purpose register

address.

SRI (XU<4»: Select General Purpose !egister Address from RIF

Allows XU <3:0> = RIF to be used as a source of a general purpose

register address.

RIF (XU<3:0»: !egister Immediate Field

Used as source of a general purpose register address when enabled

by SRI.

Microinstruction Sequencing Control

UBF (XU<l2:8»: Micro !ranch Field

Specifies the branch micro test (BUT) to be performed, in order

to generate the address of the successor microinstruction by

ORing the determined basic microbranch code (BUBC) into UPP<5:0>.

UPF (XU<55:48»: Microprogram !ointer !iel~

Used to specify the address of the next microinstruction to be

executed. The specified address may be modified as a result of a

branch micro test (BUT) specfie,d in UBF.

XUPF (XU<58:56»: Extended Microprogram !ointer !ield

9

Concatenated with UPF (XU<55:48». this field froms an II-bit

microinstruction address in the extended control store address

space (addition of the RAM and PROM control stores to the ROM

control store).

WCS 11/40 Data Paths Control

MSC (XU<61:59»: ~ask/~hift Control

DEST (XU<63:62»: Destination

The DEST and MSC fields are combined into a 5-bit field that

specifies how the bits XU<79:64> are to be interpreted (as

function fields or EMIT field) and how the WCS 11/40 data paths

are set up for the interpretation of the current microinstruction.

Mask/Shift Control

LML (XU<67:64»: Left Mask Limit

Specifies the number of bits of the S MUX output that are to

be masked off from the left.

RML (XU<71:68»: ~ight ~ask 1imit

Specifies the number of bits of the S MUX output that are to be

masked off from the right.

SC (XU<75:72»: Shift Count

Carry Control

CP (XU<76»:

Specifies the number of bit positions (between 0 and 15) for a

right rotate of the S MUX output

Depending on the specification of DEST/HSC, this field might also

be used to specify a 4-bit value to be transferred into the stack

pointer SP.

Carry ~ropagate Control

Specifies the application of the content of CPFF (Carry Propagate

Flip-Flop) to the carry input of the ALU and the storage of a new

carry bit (as determined by SCaM) into CPFF.

SCaM (XU<79: 78»: .§..elect Qarry Qut ~ultiplexer

Specifies the selection of a carry bit from the ALU carry-out

bits (ALU15. word carry, byte carry) or the condition code bit

PS(C) of the processor status word to be stored into the high­

order bit extension of the D Register (D(C)) and into CPFF.

10

Stack Control

PPE (XU<77»: ~ush/~op !nab1e

Specifies. if stack read/write operations are combined with pop/

push operations, respectively.

Arithmetic and Addressing Constants

EMIT (XU<79:64»: Micro1itera1 Field

Used to specify 16-bit arithmetic or addressing constants. The

use of XU<79:64> for micro1itera1s is determined by the speci­

fication in DEST/MSC. If XU<79:64> is used as a micro1iteral

field, the fields LML, RML, SC t CP, PPE, SCOM of the XU WORD

serve as a data register whose content is transferred to the

input of S MUX.

2.2.2 Use of Field Assignments

With each field assignment in a MICRO/40 assembly language program, the

appropriate microoperation field is cleared and the assigned value is stored

in it. If a single MICRO/40 input line contains two different assignments

to the same field, only the last (right-most in the lint) value is considered

and a warning is issued. That is, the microassemb1er does· not prevent double

field assignment on the same line. All values assigned to microoperation

fields are expected to be assembly time constants (numbers), except for values

assigned to the EMIT and XUPF fields.

The EMIT field may store a ll-bit control store address that is associated

with a mnemonic label in the assembly microprogram, or the 16-bit address of a

16-bit field in the writable control store. The latter option allows the

writable control 'store (Rk~) to be accessed as a data scratch pad (cf. sub­

sections 2.5.7 and 2.5.8).

MICRO/40 uses the name XUPF to denote the extended microprogram pointer

field, XU<S8: 48> = XUPF, UPF (cf. subsec,tion 2.2.1). This field always holds

the base address of the next microinstruction, as there is no microinstruction

counter in the PDP-!1/40E. If no assignment is made to the XUPF field, the

increment of the current microinstruction (control store) address is automatically

assigned as a default. This assignment corresponds to a'goto next consec-

utive microinstruction' •. Assigning a constant to XUPF causes a 'goto' to that·

absolute control store location. However, mnemonic labels may also be assigned

11

to XUPF, in which case, the associated II-bit microinstruction address is in­

serted into XU<58:48>.

For MICRO/40 field assignments, some of the microoperation fields dis­

cussed in the preceding subsection are concatenated into compound fields:

ALU = SALUM,SALU

BUS CBUS,BGBUS

CLK CLKL,CLKOFF

SBM SBMH,SBML

SRX SRS, SRD, SRBA, SRI

WR WRH,WRL

XUPF XUPF,UPF

The microinstruction generated by the following field assignments trans­

fers the constant 10 into the B Register.

emit = 10; msc = 1; clk = 6; clkb = 1

The assembler sets all other microoperation fields to 0, except for the XUPF

field which is assigned the control store address of the next consecutive

microinstruction, if there exists one. The assignment of the binary value,

00 001, to the DEST/MSC fields specifies the data transfer, RD + EMIT.

The assignment clkb=l opens the data path, B + DMUX, while the implicit setting

sdm=O defines the transfer DMUX + RD BUS. Hence, we have the compound transfer:

B + DHUX + RD BUS + EMIT = 10

The assignment clk=6, i.e., CLKL=3, selects a P3 processor clock cycle for

this data transfer (cf. [9]). Generally, r1ICRO/40 automatically assigns an

appropriate clock cycle length for each microinstruction. Thus, the field

assignment, clk=6, is redundant.

To further illustrate the use of field assignments in the l1ICRO/40

assembly language we give the following example microprogram for adding the

numbers from 1 to 10 that stores the result in the general purpose register

R[O]. The verification of this microprogram is left to the reader (cf.[1],[9]).

wr=3; clkd=l; alu=23; sdm=2; srx=l

R[0]=0

emit=lO; msc=l; clkb=l

! B+ 10

loop:emit=177777;msc=1;clkb=1;clkd=1;alu=11;sdm=2;ubf=l2;xupf=n

!D+B-l;B+D;goto n;skip the microinstruction following -

!the microinstruction with label n, if D=O

xupf = next

!goto next

n:wr=3;clkd=1;alu=11;sdm=2;srx=1;xupf=loop

R[o] +R[o] +B; goto loop

next: <whatever comes next>

2.3 Assignment Statements

As discussed in the preceding subsection, microprograms may be written

in the form of field assignments. However, the exclusive use of field

assignments makes microprogramming a tedious task. Therefore, MICRO/40

12

provides for the specification of carrier-to-carrier transfers in the form of

assignment statements. A carrier is a facility for accommodating bit strings which

represent the information in a computer. A carrier may be .. ~ register, a

memory, or a data paths. The microoperation fields associated with a carrier~

to-carrier transfer are automatically set to appropriate values, when an assign­

ment statement is assembled.

2.3.1 Carrier Identification

R: General Purpose Registers

The PDP-ll/40 has 16 l6-bit general purpose registers which are imple­

mented as a data scratch pad. They are loaded from the DMUX BUX, supply out­

put to the RD BUS, and are addressed by 4-bit addresses. In each microinstruc­

tion, only a single general purpose register can be addressed, i.e., s~multa­

neous register read and write operations are not permissible.

The syntax for general purpose registers is:

<general purpose register>::=R[<index>]{«selector»}

<index>: : = 0 111213141516/7110111112113\1411511611718. 19. 110. I
ll·112·113·114·115·IBAIDFlsF

<selector>::= llh

A number directly specifies one of the 16 general purpose registers. Registers

are specified·indirectly by using the specifiers BA, DF, or SF. Using the

specifier BA, BA<3:0> is taken as the source of the register address, whereas

the specifiers DF and SF specify the destination field, IR<2:0>, and the source

field, IR<8:6>, of the instruction register as the source of the register address,

respectively. Furthermore, the optional selector allows the selection of

either the low-order byte (1) , R<7: 0>, or the high~order byte (h), R<15: 8>,

of a general purpose register R.

D: Data Register

The D Register is a 16-bit register for the temporary storage of ALU

output data.

Syntax: <D Register>::=d

DSHIFT: Right-Shifted D Register

13

The D Register is right-shifted at D MUX, such that DSHIFT = D(C),

D<15:1>. D(C) is a I-bit extension of the D Register that may be loaded with

ALU carry outputs (ALU15, word carry, byte carry) or the condition code bit,

PS(C), of the processor status word. DSHIFT can only appear on the right hand

side of an assignment statement.

Syntax: <Right-Shif ted D Register>::=dshiftld/2

B: ALU B-input Register

The B Register is a 16-bit register for the temporary storage of ALU

B-input data. The syntax for the B Register is:

<B Register>::= b{«B modifier»}

<B modifier>::= <high selector><low selector>

<high selector>::= HIE[Llc

<low selector>::= HlzlLlc

The optional B modifier can only be used, if the B Register appears on the

right hand side of an assignment statement. The high selectors select the

following gating mechanisms:

H: BMUX<15: 8> + B<15: 8>

E: BMUX<15 :8> + B<7>

L: BMUX<15: 8> + B<7: 0>

c: BMUX<15: 8> + B CONSTANT<15 :8>

The low selectors select the following gating mechanisms:

H: BMUX<7: 0> + B<15: 8>

Z: BMUX<7:0>+B<7:0>

L: BMUX<7:0>+B<7:0>

C BMUX<7: 0> + B CONSTANT<7: 0>

If no B modifier is specified, the default b<HZ> is assumed.

C: ALU B-input Constants

The C Register is a combinatorial network that provides basic constants to

be used in processor operations (cf. [1,9].). The syntax for the Constant

Register is:

<Constant Register>::=c[<number>]

<number>::= 0111213141516171101111121131141151161171

8.19.110.1 11.112.113.1 14.115.

BA: UNIBUS Address Register

14

The BA Register is a 16-bit register for the temporary storage of UNIBUS

addresses. It is decoded to detect processor register addresses in the UNIBUS

addressing scheme. The BA Register can only occur on the left hand side of an

assignment statement.

Syntax:<BA Register>::= ba

IR: Instrustion Register

The instruction register is a 16-bit register that holds PDP-11/40 machine

language instructions. Its output is applied to the instruction decoding logic,

is used to control microbranching, and specifies general purpose register

addresses. The instruction register can only appear. on the left hand side of

an assignment statement.

Syntax: <Instruction Register>::= ir

PS: Processor Status Register

The processor status register is a 16-bit register which holds the pro­

cessor status word that specifies condition codes, processor priority, trap

condition, and operational modes.

Syntax: <Processor Status Register>::= ps

S: Stack

The WCS 11/40 stack is a 16 16-bit word register-memory that can be used

as a data or address push-pop stack. It is addressed from the stack pointer

(SP), receives input from E MU~and can supply output to S MUX and UPP MUX.

Syntax: <stack>::= s

The use of the identifier s in a MICRO/40 line implies that the '-lCS 11/40

stack is used as a push-pop stack.

TOS: Top of Stack

TOS refers to the current top of the WCS 11/40 stack. However, references

to TOS do not push/pop the stack.

Syntax: <Top of Stack>::= tos

15

SP: Stack Pointer

The stack pointer is a 4-bit register that holds the stack address. It

can be set from XU<75:72> SC<3:0>, and is incremented or decremented for pop

or push operations, respectively.

Syntax: <Stack Pointer>::= sp

UNIBUS

In MICRO/40, the UNIBUS data lines can only be used as a source (right

hand side of an assignment statement) that provides input data to registers on

the DMUX BUS.

Syntax: <UNIBUS>::= unibus

EUBC: Extended Microbranch Condition BUS

The EUBC BUS supplies II-bit microinstruction control store addresses

to the XUPP section of the microinstruction buffer. The EUBC BUS can only

occur on the left hand side of an assignment statement. Input to the EUBC

BUS may be supplied from the stack and from the EMIT field in the microinstruc­

tion.

Syntax: <EUBC BUS>::= eubc

RAM: Writable Control Store

The writable control store has a capacity of 5K 16-bit words. It

receives 16-bit data inputs and supplies BO-bit words at the output. It

can be used to store IK of BO-bit microinstructions, to store 5K of 16-bit

data words, or as a combination of control store and data scratch pad. The

syntax for RM1 references is:

<RAM reference>::= RAM[<specifier>]

<specifier>::= sitos

2.3.2 Syntax of Assignment Statements

The basic form of an assignment statement is:

<assignment>::= <carrier list>_<expression>

<carrier list>::=<left carrier>l<carrier list>,<left carrier>

<left carrier>::= <general purpose register>ldls\toslsplb\

balirleubcl<RAM reference>\ps

<expression>::= <simple expression> I <compound expression>

A <left carrier> is any of the carriers that can occur on the left hand side of

16

an assignment statement. The assignment operator is the underline (_).

Assignment statements within a single line are separated by a semi-colon(;).

The semi-colon following the last statement in a line is optional.

A simple expression is a right hand side of an assignment statement in

which only a single carrier is specified, i.e.,

<simple expression>::= <general purpose register> Ips I unibus I

dldshiftld/21<B Register> I <Constant

Register>l<extension operand>

<extension operand>::= <extension carrier>{«field selection»}

{<shift><number>}

<extension carrier>::= sltoslspl<RAM reference>l<emit field>

<emit field>::= <number> I <label> I <table reference>

<shift>::= shiftl A

(for the definition of <table reference>,cf. subsection 2.5.7). All numbers

given in an extension operand specification are interpreted as decimal numbers,

despite of their representation. The field selection defines a masking by

specifying the right-most and the left-most bit position to be masked out of

the specified extension carrier. The result of a mask operation is always

right-adjusted at the output of the shift/mask unit in the WCS 11/40. The

shift is a left shift by the specified number of bit positions. The combi­

nation of the shift and the right/left mask allows the extraction of any

contiguous n-bit field (1~n~l6) from an extension carrier.

A compound expression includes an ALU operation. The syntax for the ALU

operators is:

<negation>::= notl~I\51\32

<disjunction>::= or\ t 1\37

<conjunction>::= and\&1\4

<exclusive-or>: : =xor 1\ 26

<addition>::= plus\+

<subtraction>::= minus\-

To define an operator by a code number requires that a backslash (\) is typed

before the code number. The syntax of a compound expression is defined:

<compoundexpression>::= <A-op> or <B-op>I<A-op> or not <B-op>\minus 11

<A-op>lplus <A-op> and not <B-op> I
«A-op> or <B-op» plus <A-op> and not <B-op>\

<A-op> minus <B-op> minus 11<A-op> and not <B-op> minus 1 I

<A-op> plus <A-op> an~ <B-op>!<A-op> plus <B-op> I
«A-op> or not <B-op» plus <A-op> and <B-oP>!

<A-op> and <B-op> minus 11

<A-op> plus <A-op> I «A-op> or <B-op» plus <A-op> I

«A-op> or not <B-op» plus <A-op>!

17

<A-op> minus 11<A-op> plus 11 «A-op> or <B-op» plus 1101

<A-op> plus <A-op> and not <B-op> plus 11

«A-op> or <B-op» plus <A-op> and not <B-op> plus 11

<A-op> minus <B-op>I<A-op> and not <B-oP>!

<A-op> plus <A-op> and <B-op> plus 11

«A-op> or not <B-op» plus <A-op> and <B-op> plus 11

<A-op> and <B-op>!<A-op> plus <A-op> plus 11

«A-op> or <B-op» plus <A-op> plus I!

«A-op> or not <B-op» plus <A-op> plus llnot <A-op>!

not «A-op> or <B-op» I
not <A-op> and <B-op>!not «A-op> and <B-op»!

not <B-op>\<A-op> xor <B-op>I

<A-op> and not <B-op>lnot <A-op> or <B-op>I

not «A-op> xor <B-op»I

<A-op> and <B-op>!<A-op> or not <B-op>I

<A-op> or <B-op>

<A-op> may be anything that can be placed on the RD BUS, i.e.,

<A-op>::=<general purpose register>lps!<extension operand>

(for the definition of an extension operand, cf.<simple expression». If mul­

tiple occurrences of <A-op> are needed, they should all be identically specified

in the compound expression. The syntax for <B-op> is defined:

<B-op>::=<B Register>! <Constant Register>

To demonstrate the use of MICRO/40 assignment statements, we rewrite the

microprogram for adding the numbers from 1 to 10 (cf. subsection 2.2.2).

d_O; R[O] d

!clear our accumulator R[O]

b 10

!clock the value 10 from the EMIT field into the B Register

loop: d_177777+b; b_d; ubf=12; xupf=n

!decrement the B Register using the constant -1 from the

!EMIT field, break the loop if D=O.

xupf=next

!goto next

n: d_R[O] +b; R[0l.....:d; xupf=loop

!add the content of the B Register to R[O].

next: <whatever comes next>

18

Note that the use of assignment statements does not reduce the number of code

lines, as each MICRO/40 line is assembled into a single microinstrucion.

2.3.3 Semantics of Assignment Statements

When writing assignment statements, it must be remembered that MICRO/40

assignments represent carrier-to-carrier transfers. That is, each transfer

must be described explicitly. Hence, an assignment statement

b 177777 + b

is not permissible. To decrement (add -1) the content of the B Register requires

that the constant 177777 from the EMIT field is gated to the A-input of the ALU,

the B Register is gated to the ALU B-input, and the ALU performs an addition.

The result of this addition is transferred into the D Register. Then, the

content of the D Register can be transferred, via D MUX, into the B Register.

Therefore, it is necessary to write the assignment statements,

d_177777+b; b d

to affect the two transfer operations. The assignment statements,

b d; d-177777

are identical in their effect to writing them in reversed order, as both trans­

fers are performed quasi parallel, i.e., within the same microinstruction

execution cycle.

To further stress the point that MICRO/40 assignment statements correspond

to carrier-to-carrier transfers, we consider the following example:

d_400; R[6] d

The microprogrammer might hope that these assignment statements would set

R[6] to 000400
8

, MICRO/40 permits these assignment statements, however, their

semantics deviate from the microprogrammers intention. As R[6] is referenced,

its content is clocked onto the RD BUS. At the same time, the constant 400 in

the EMIT field is clocked onto the RD BUS, and the contents of R[6] and EMIT

are ORED. Hence, the new value of R[6] is its old value with bit 8

set ot 1. To perform the intended task, the assignment statments given above

have to be executed in two consecutive microinstructions, i.e.,

19

Note that, in general, gating two sources onto the same carrier causes an error.

However, in the case of the RD BU8, any of the three potential sources (general

purpose registers, processor status register, and extension) can idenpendently

gate (OR) a word onto the bus.

Whenever the identifier, s, is used on the left hand side of an assignment

statement, the stack is pushed before the value is stored. When tos is used,

the new value is written over the current top of stack. On the right hand

side of an assignment statement, s results in the value being read out of

the stack and the stack being popped. Contrastingly, tos results in the

value on the current top of stack being read out.

The semantics of WC8 11/40 shift/mask operations, which may be combined

with any extension operand, are illustrated by the following example:

d s<11:3>A2

The assignment statement places 9 bits (8<11:3» of the l6-bit value

popped off the stack into D<10:2>. That is, after bits 11 to 3 of 8 have been

masked out, they are right-adjusted. Then, the resulting l6-bit word is rotated

two positions to the left. The net effect is a I-bit right shift of S<11:3>

800 001 1 1 1 1 III 1 000

8<11:3> 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

S<11:3>A2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0

2.4 Comments and Continuation Lines

(Mask)

(Shift)

Anything following an exclamation point (!) on a line is considered a

comment and is ignored by the assembler. Any line that ends with a hyphen (-)

has the next line concatenated to it. That is, two or more MICRO/40 lines

may be concatenated into a single logical line to produce a single microinstruc­

tion after assembly. Lines may also be continued within a comment. Hence, the

following six examples are equivalent.

1. R[7] d

2. clk=2; rif=7; wr=3; srx=l; sdm=2

3. clk=2; rif=7; wr=3; srx=l; sdm=2 D Register to R[7]

4. rif=7; wr=3; -

clk=2; srx=l; sdm=2 D Register to R[7]

5. sdm=2; srx=l; clk=2;! PI is a sufficient clock cycle time -

rif=7; wr=3;

6. rif=7; wr=3; srx=1;sdm=2 ! no need to specify clock cycle time

A microinstruction may be described by any number of concatenated lines, provided

that the so constructed logical line does not exceed 300 characters.

20

2.5 Pseudo Operators

A number of pseudo operators are provided by MICRO/40 to make some of the

idiosyncrasies of PDP-11/40E microprogramming transparent to the user and to

further relieve the microprogrammer of the tedious task of constructing micro­

programs through explicit microoperation field assignments. Pseudo operators

range from field assignments to compound statements that comprise several

microinstructions. They facilitate processor clock control, structuring of

microcode in the control store, microinstruction sequencing, and the use of

the writable control store as a data scratch pad.

2.5.1 CLKOFF

MICRO/40 concatenates the clock length field and the c1ockoff field in-

to a single 3-bit clock field, i.e., CLK=CLKL,CLKOFF. Hence,the CLKOFF bit can

only be set, if, at the same time, a processor clock cycle length is specified

by the microprogrannner. This restriction is due to the fact that all bits in

a microoperation field are cleared, before a field value is stored. Further­

more, it is generally not possible to exploit the microassemb1ers capability

to determine an appropriate clock cycle length and to automatically set the

CLKL field, in microinstructions in which the CLKOFF bit is to be set. There­

fore, the c1koff pseudo operator was implemented to overcome these difficulties.

The c1koff pseudo operator has the effect of turning on the CLKOFF bit

in the eLK field. When the CLKOFF bit is set, the processor clock will be

turned off at the end of the execution of the current microinstruction. The

c1koff pseudo operator is independent of field assignments to the CLK field and

may occur anywhere on a MICRO/40 line. That is, the microassemb1er imp1icity

combines the c1koff pseudo operator with the specification of the processor

clock cycle length.

2.5.2 NOOP

The noop pseudo operator is implemented to provide a means for generating

a null (all microoperation fields set to 0) microinstruction. This operator is

needed, as a blank line is skipped by the microassemb1er and does not generate

a microinstruction. The noop pseudo operator is to be used on a line by it­

self. It is ignored, if it occurs together with other MICRO/40 statements, such

as field assignments or assignment statements.

21

2.5.3 FINIS

The finis pseudo operator indicates the end of the microcode source file.

Any text following finis is ignored by MICRO/40. The finis pseudo operator is

to be used on a line by itself. It does not generate an object microinstruction.

If the microcode source file does not contain finis, the microassembler issues

a warning and automatically inserts the finis pseudo operator into the source

microcode (as the last line of the source file).

2.5.4 Dot(.}

The pseudo operator, dot(.}, generally stands for the control store

address of the microinstruction in which it occurs. There are two alternative

applications of '.'.

The dot (.) may be used in field assignments (cf. subsection 2.2.2) to

assign the control store address of the current microinstruction to the XUPF

or EMIT fields. In these field assignments, the dot is used as follows:

emit

or xupf

Note that the address of the current microinstruction need not explicity be

stated in the microinstruction, but is determined during assembling. MICRO/40

automatically assigns values to the xupf field, and thereby, may even re­

arrange the microinstructions as given in the source microcode into a different

ordering in the object code, in order to guarantee that the xupf field of a

microinstruction that must proceed any particular microinstruction points to the

correct control store location.

The second application of '.' is to force MICRO/40 to locate a micro­

instruction at a particular control ;store location. To this end, an octal

control store address is explicity assigned to the dot. The syntax for

assignments to the dot is:

. = <value>

where <value> must be in the range [2000
8

: 3777
8

] (RAM address space). The

'dot' assignment may occur anywhere on a MICRO/40 line.

2.5.5 LOWLIM

This pseudo operator provides a means to set the lowest control store

address into which object microcode will be stored. The lowlim pseudo operator

is used as follows:

lowlim <value>

22

where <value> must be in the range[2000
S

! 3777
S
]' If this pseudo operator does

not occur in a microcode source file, lowlim is automatically set to the

default value 2000. If used, lowlim <value> should be the first MICRO/40

line in the microcode source file.

2.5.6 C.,N.Z.V.,N.Z.V.C.

These pseudo operators set the SPS (Select Processor Status) field in

the microinstruction" and enforce an appropriate processor clock cycle length

in the CLK field. The condition codes N,Z,V, and C in the processor status

word are defined as follows:

N=l, if the result of the last ALU operation was negative,

Z=l, if the result of the last ALU operation was zero,

V=l, if the last ALUoperation .resulted in an arithmetic overflow,

C=l, if the last ALU operation resulted in a carry from the mos"t

significant bit.

The pseudo operators c.,n.z.v., and n.z.v.c. set the SPS field to the values

1, 2, and 3, respectively, to cause the associated condition code bits in the pro­

cessor status word to be set to the current conditions. Microinstructions which

contain one of these pseudo operators must have a PI or P3processor clock

cycle (cf. [1,9]). The pseudo operators c., n.z.v., and n.z".v.c. are mutually

exclusive and may occur anywhere on a MICRO/40 line.

2.5.7 TABLE

The table pseudo operator facilitates the use of parts of the writable

control store as a data scratch pad. Using explicit field assignments (cf.

RAM references, subsection 2.2.2) the RAM may also be utilized as data scratch

pad. However, it is difficult to explicity generate addresses of l6-bit RM1

fields at run time. The table pseudo operator greatly supports the micro­

programmer in this address generation by allowing for relative addressing

within a declared data scratch pad. It allocates four 16-bit data words in an

SO-bit control store location and treats a table as a zero origin array. Note

that five l6-bit entries are actually available in an SO-bit control store

location, but that it is difficult to generate the address of the fifth entry

(cf. [1,9]).

The syntax for table declarations and references is:

<table declaration>::= table <table name> <size>

<table name>::= <identifier>

<size>::= <number>

<table reference>::= <table name>[<table index>],

where <table index>·is a number in the range [O:<size>]. The following

example illustrates the above syntax definition.

table INFO 15

INFO [0] refers to the first table entry.

INFO [1] refers to the second table entry.

INFO [14] refers to the fifteenth table entry.

The pseudo operator, table, would reserve 4 control store locations for the

table, INFO, as 15
8

corresponds to 13
10

, The table reference INFO[14] is

equivalent to INFO[12.].

23

A table declaration should be placed on a line by itself, and may appear

anywhere in the microprogram. The legal occurrences of table references in

MICRO/40 assignment statements are defined in subsection 2.3.2. However, table

references can only be made following table declarations. The number of table

declarations is limited to 20 tables. The size of tables is limited by the number

of RAM locations that are not utilized by the code of the microprogram that

contains the table declarations.

2.5.8 PRELOAD

The preload pseudo operator is similar to a table declaration, except

that instead of a size specification, a list of values that are preloaded

into the table is specified. The table size corresponds to the number of

elements in the list. The syntax of preload is:

<table preload>::= preload <table name><value list>

<table name>::= <identifier>

<value list>::= <number> I <table reference> \ <value

list>{,}<number>l<value list>{,}<table reference>

The elements of the value list are considered to be assembly time constants.

Hence, references to declared tables may occur in the value list.

The use of the preload pseudo operator is demonstrated by the following

example:

preload DATASET 5,2,3,4,INFO[2]

This statement causes the reservation of two control store locations to store

the following five table entries:

DATASET [0] contains the value 5,

DATASBT[l] contains the value 2,

DATASET [2] contains the value 3,

DATASET [3] contains the value 4,

DATASET [4] contains the control store field add.ress

allocated for the storage of INFO[2].

The preload pseudo operator must be placed on a line by itself. The

violation of this rule causes an error.

2 . 5 • 9 SET ••• TES

This compound pseudo operator supports microinstruction sequencing and

conditional branching. As the PDP-ll/40E has no microinstruction counter,

each microinstruction contains the control store location of the

microinstruction to be executed next in its xupf field. Conditional

branches are specified in the ubf field and cause basic microbranch

conditions (BUBCs) to be ORed into the low-order bits of the

XUPP segment (xupf field) of the microinstruction buffer. Furthermore, the

EMIT field or values from the WCS 11/40 stack may be gated onto the II-bit

24

EUBC BUS, in order to be ORed into the XUPP segment of the microinstruction buffer.

The timing of microbranches in the PDP-ll/40E is such that BUBC and EUBC

address bits alter the xupf field of the microinstruction whose execution

succeeds the execution of the microinstruction that contains the microbranch

specification. Additionally, ORing of address bits allows only for forward

conditional branches. Therefore, it is necessary that the control store locations

of the expected branch destinations have identical address bits, except for

those bits which may be turned on by the BUBC or EUBC address bits.

The PDP-ll/40E microbranch mechanism may be enforced by using the dot

pseudo operator (. = <value» to put the microinstructions to be reached as

branch destinations into the appropriate control store locations. The set •••

tes pseudo operator is implemented to obviate this need for explicit control

store address allocation. That is, it makes the PDP-ll/40E microbranch

mechanism transparent for the microprogrammer. The set ... tes pseudo operator

is used as follows:

("controlled"

microinstructions)

set

{

<microinstructions to be reached as

branch destinations>

tes

The keywords, set and tes, must each appear on separate lines by themselves.

The number of set •.• tes groups in a microprogram must not exceed 150.

25

In the assembly process, MICRO/40 counts the "controlled" microinstructions,

finds an appropriate number of contiguous control store locations with. 2
n

address

boundaries, and stores the "controlled" microinstructions into these locations.

Therefore, it is illegal to assign a microinstruction that is controlled by

a set •.. tes pseudo operator to a specific control store location (by using

. = <values». The xupf field of all microinstructions that are affected by BUBC or

EUBC address bits that provide an entry into a group of "controlled" micro­

instructions are set to the control store address of the first microinstruction

of that set ... tes group. The default value of the xupf fields of all "controlled"

microinstructions (which is automatically set by HICRO/40, if no field assign­

ment is made to xupf) is the control store location of ·the microinstruc-

tion following the set •.. tes group. Note that the assembly of the set ... tes

pseudo operator may rearrange the microinstructions as given in the source

microcode into a different ordering in the object microcode.

We may now rewrite the microprogram for adding the numbers from 1 to 10

using the set ••. tes pseudo operator (cf. subsection 2.3.2).

set

loop: d-177777+b; b_d; ubf=12

xupf=next;<first microinstruction of whatever

comes next>

tes

next: <whatever comes next>

Note that the field assignment, xupf=n, in the microinstruction with label,

loop, can be omitted, as the appropriate microinstruction is reached by the

default xupf field assignment in the set ... tes group. Furthermore, the

first microinstruction of <whatever comes next> may be concatenated

to the microinstruction, xupf=next, in the set ... tes group.

2.5.10 START ••• END

The basic set .•. tes mechanism does not lend itself to the execution of

more than a single microinstruction at each branch destination. To overcome

this difficulty, the start .•• end pseudo operator has been implemented. It

can only be used within a set .•. tes group, i.e.,

set

<"controlled" microinstructions>

. start

26

<microinstructions to be executed at a single branch destination>

end

<"controlled" microinstructions>

tes

The keywords, start and end, must each appear on separate lines by themselves.

A compound set ..• tes - start •.• end construct is assembled, such that the

first microinstruction of each start ... end .group and all single "controlled" micro­

instructions are placed into the block of microinstructions associated. with the

set ... tes pseudo operator. The remaining microinstructions in the start ... end

groups are linked to the set ••. tes group b.y setting the xupf field of the first

instructions in the set •.• tes group to the control store address of its

start ••• end group successor. The xupf default· value of the last microinstruc­

tion in each start.~.end group is the control store address of the micro­

instruction following the set •.. tes group.

<microinstruction 0>

set

<microinstruction 1>

<microinstruction 2>

start

end

<microinstruction 3>

<microinstruction 4>

<microinstruction 5>

set

<microinstruction 6>

<microinstruction 7>

tes

<microinstruction 8>

(Figure 2 continued)

<microinstruction 9>

tes

<microinstruction 10>

Figure 2: A Compound set ..• tes - start ..• end Construct

Outer
set ••. tes

group

Inner
set ••• tes

group

start ••• end
group

I~

'" '\

J/
.

microinstruction

microinstruction

microinstruction

microinstruction

·
~ ·

microinstruction

microinstruction

· ~
~ ·

microinstruction

microinstruction

microinstruction

·
·

microinstruction

· · · J,
microinstruction

xup f

1

2

3

9

6 \. ,

7 .\. ,

i.-

4 -0 5 ..

8
, ..

0

10

27

"-r

"-,

"-
r I

\.
/

, I
'lit

\11

...
/

... , . ..

FJgure 3: Control Store Allocation for a Compound set ... tes - start •.• end Construct

The nesting of set ... tes groups is generally permissible. However, they

can only be nested within start .•. end groups, as the delay effect of conditional

microbranches in the PDP-ll/40E prohibits the placement of the first

"controlled" microinstruction of an inner set .•• tes block within the outer

set ... tes group. That is, the pseudo operator, set, may appear anytime

after the first microinstruction in a start •.. end group. There is no

limit on the depth of set .•• tes group nestings, as long as the internal stack

9f MICRO/40 does not overflow. The control store allocation mechanism for

a compound set ..• tes - start ... end construct is illustrated in Fig.2 and

Fig.3.

28

2.6 Macros

MICRO/40 has a macro definition facility which allows the microprogrammer

to identify sequences of assembly language statements by mnemonics. The primary

use of macros is to make hardware dependencies of the MICRO/40 assembly language

transparent for the user by generating macro libraries in the form of connnon

source files. Appropriate macro name selections may gr~at1y enhance the legi­

bility of microprograms.

2.6.1 Macro Definition

A macro definition consists of a header, a body, and a terminator. The

macro header is composed of a macro name and a declaration symbol (:=). Note

that macros take no parameters. The macro body is a sequence of MICRO/40

statements that does not contain a dollar sign ($) or an exclamation point(!).

Any legal MICRO/40 statement is allowed in the macro body, except for macro

definitions and set ... tes pseudo operators. Note that macro definitions may

contain other macros. The dollar sign is the macro definition terminator.

The syntax of a macro definition is:

<macro definition>::= <head>:= <body>$

<head>::= <identifier>

<body>::= <any sequence of MICRO/40 statements with the exceptions

given above>

Fig.4 shows a listing of the MICRO/40 source file, defs. mic, which

includes macro definitions which have been found to be of general use.

I standard , definitions for Rticro -- 11 October 1974

, ,
rev: 19 November 1974
rev: Z December 1974
rev: 11 June 1975

I
rO := r[O]$;' rl:= r[lJ$; r2:= r[2J$;
r4 := r[4J$; r5:= r[5]$; r6:= r(6)$;
r10 := r[10]$; rl1!= r[11J$; r12:= r[12J$;
r14 := r[14J$; r15:= rt15J$; r16:= r[16J$;
rsp := r[6J$; rpc:= r(7)$; rdf:= r[df]$;
t,eIT,p- := r(10J$; rsrc := r[l1J$; rdst := r[12J$
~ir := 1'[13)$; vect := r[14J$; temc := r(15)$

r3 := rt3]$
r7 := r(7)$
r13 := r(13)$
r17 := r[17J$
rsf := r[sf).

SPus := 1'[16)$; adrsc := r[17]$; rba := r[ba]$
dati := bus=l$; dato := bus=S$
datip := bus=3$; datob := bus=7$
pl :=clk =2$; p2 :=clk =4$; p3 :=clk =6$
exit := xupf = 16$! return to rom
be~in := be~: .=2000;$
seta := xupf =$; case := eubc_$; popst := d_s$
but := ubf =$; skipzero := ubf = 12$, skip on d = 0
retlJrn ':= eubc_s$; endproc : = xupf=O$
smod := 11:9$; dmed:= 5:3$; prop:= cp=l$
! end of macros
I ADDITIONAL MACROS
POPt=DEST=1;MSC=4$
PUSH:=DEST=1;MSC=3$

Figure 4: defs.mic

2.6.2 Macro References

Macros are referenced by their names. They may be referenced any­

where in a microprogram, as long as they are preceded by their definit.ion in

the MICRO/40 source file. Upon reference, the macro name is substituted by

its macro body. This substitution is a strict text substitution. After

a macro is expanded, the macro text is checke.d again for macro references.

If further macro references are encountered, they are substituted, before

the assembler proceeds processing of the actual source microcode.

All macros that are referenced within a macro must be defined outside

that macro, aS,macro definitions are not allowed within macros. Further-

more, recursive macro expansion is not permissible.

place a delimiter at the end of the expanded text.

Macro expansions do not

Hence, it is possible

to concatenate MICRO/40 statements across the macro expansion. That is,

a single microinstruction may be generated from a combination of macros

and NICRO/40 statements, or macros may be referenced within MICRO/40

statements. Obviously, the control store allocation mechanism of the set ..•

tes pseudo operator (cf. subsection 2.5.9) is not supported by this macro

expansion technique, and thus, the Use of set ••. tes groups ~n macros is

not permissible.

2.6.3 Common Source Files

It is often desirable to include the same source microcode into several

assemblies. This is especially true for macro files of. a macro library.

For example, the file, defs.mic, should be included into every source file to

make microprograms more legible. To this end, the 'require' statments has

been implemented.

The syntax for the use of common source files in a microprogram is:

<common source file>::= require <file name>

where <file name> is the name of a'HICRO/40 source file. The require state­

ment may occur at any point in a source microprogram, if it is placed on a

29

line by itself. However, it is not permissible to use require statements with­

in set •.. tes or start ••. end groups. When a require atatement is encountered,

the microassembler replaces it by the specified MICRO/40 source file. After

the substitution of the require statement, the input to the microassembler from

the original file is resumed. The 'require' file may contain further require

statements. That is, the strict text substitution for require statements

allows their nesting to an arbitrary level. However, this substitution

mechanism prohibits set •.• tes or start ••• end groups to be open across

'require' files.

To illustrate the use of macros and common source files we revisit the

microprogram for adding the numbers from 1 to 10 (cf. subsection 2.5.9).

require defs.mic

d_O; rO d

b 10

set

loop? d_177777 +b; b_d; skipzero

30

goto next.; <first microinstruction of whatever comes next>

tes

d_rO+b; rO_d; goto loop

next: <whatever comes next>

3'~ Features of MICRO/40

In this section, some of the more subtle features of the PDP-ll/40E are

outlined, that should be remembered when microcoding. Some microprogramming tech­

niques that proved to be of general use [1] are described. However, as mentioned

in the introduction, microprogramming requires careful algorithm design and

coding on the basis of a solid understanding of both the algorithm and the

machine. This is especially true for machines with horizontal microinstruc­

tions, where any arbitrary bit pattern may be assigned toa microinstruction,

and the machine tries to execute any of these bit patterns. The microprogram

testing and debugging facilities in our microprogramming support system are

not comprehensive, and may not be sufficient to scope with unpredictable and

hardware-dependent microprogram errors.

3.1 Microinstruction Timing

One of the major objectives in the development of the WCS 11/40 was to

retain the processor cycle times of the basic PDP-ll/40 processor. There­

fore, the three processor clock cycles length, CLKL 1, CLKL 2, and CLKL 3,

as provided by the PDP-ll/40 timing control logic have been adopted for

the execution of microinstructions from the WCS 11/40 control stores. The

processor clock cycles are defined as follows:

CLKL 1 generates a PI pulse 140 ns after the start of the micro­

instruction execution,

CLKL 2 generates a P2 pulse 200 ns after the start of the micro­

instruction execution,

CLKL 3 generates a P2 pulse and a P3 pulse 200 n sand 300 ns' after

the start of the microinstruction execution, respectively.

A detailed description of PDP-ll/40E timing characteristics is given in [9].

Table 1 associates permissible processor clock cycle times with the basic

carrier-to-carrier transfer in the PDP-ll/40E.

Carrier-to-Carrier Permissible

Transfer Clock Cycles

B +DHUX BUS PI, P3

B + SMUX P3

PS + DMUX BUS PI, P3

PS + SMUX P3

R[i] + DMUX BUS PI, P3

R[i] SMUX P3

IR+DMUX BUS PI, P3

IR+ SMUX P3

CLK PS(C) PI, P3

CLK PS(N,Z,V) PI, P3

CLK PS(N,Z,V,C) PI, P3

BA+ BA MUX PI, P2

D+ALU P2

D(C) + COUT MUX P2

D +ALU; DMUX BUS + D P3

ALU CIN + CPFF P3

CPFF+ COUT MUX[SCOM] P3

TOS + EMUX PI, P2, P3

TOS + RD BUS P2, PJ

SP + SP+l PI, P2, PJ

SP +. SP-l PI, P2, P3

SP+XU<75:72> PI, P2, P3

SP + SP.-I; S +EMUX P2, P3

SP + SP+l; SMUX+ S PI, P2, P3

EUBC + SHUX P2, PJ

RAl1+ DMUX PJ

SMUX+RAM P3

Table 1: Carrier-to-Carrier Transfer Timing

31

The microassembler analyzes the microoperations (carrier-to-carrier

transfers) specified in an input line and assigns a proper processor clock

cycle for the execution of that microinstruction. If the processor cycle

time is set by the microprogrammer, the microassembler check is skipped.

Thus, an incorrect.processor cycle time setting is not detected by MICRO/40,

and no error message is given. This feature of the microassembler is due to

the fact that microinstructions are assembled individually, but the

appropriate processor cycle times may depend on preceeding microinstruc­

tions. For example, the microinstruction following a microinstruc-

tion that contains the clkoff pseudo. operator must have a CLKL 1 or

CLKL 3 processor clock cycle. Although it is advisable (and conve­

nient) to let themicroassembler assign appropriate processor

Glock cycle lengths, .the microprogrammer should know the execution

time requirements for each microinstruction to be able to determine the rel­

ative performance of alternative microinstruction sequences.

3.2 UNIBUS Control

The PDP-ll/40 processor control is a.combination of synchronous and

asynchronous operations. Carrier-to-carrier transfers as discussed in the

preceeding subsection are synchronous operations. Asynchronous timing

conditions evolve in UNIBUS operations and are controlled by the UNIBUS

timing and control logic. To synchronize UNIBUS operations with

synchronous precessor operations, the processor clock may be turned off upon

microinstruction execution and restarted by the UNIBUS timing and control

logic (for more detail, cf. [1], [8], [9]).

The microprogrammer must explicity control UNIBUS operations, which

allow uniform access to main memory and peripheral registers. On the one

32

hand, explicit UNIBUS control provides an opportunity to optimize the

implementation of machine language instructions which involve UNIBUS transfers.

On the other hand, it represents a source of timing errors.

UNIBUS operations are controlled by the microoperation field, BUS=CBUS,

BGBUS, with CBUS= Cl,CO (cf. subsection 2.2.1). The BUS field definitions

are given below.

33

BUS Cl CO BG Operation

0 0 0 0 not defined

1 0 0 1 DATI (word operation)

2 0 1 0 await BUS BUSY

3 0 1 1 DATIP (read-modify-write)

4 1 0 0 not defined

5 1 0 1 DATO (word operation)

6 1 1 0 restart on peripheral release

7 1 1 1 DATOB (byte operation)

Cl and CO determine which of the four possible read/write operations will occur

and BGBUS initiates the action. During UNIBUS operations, the UNIBUS address

is held in the BA Register. Output data are stored in the D Register, and

input data are received at D MUX.

3.2.1 UNIBUS READ Operations

For a READ operation (data input), the UNIBUS address must be available

in the BA Register, when the DATI UNIBUS control code is asserted. Succeeding

microinstructions may be executed while the UNIBUS READ is carried out, as

long as they do not modify the BA Register or assert another UNIBUS control

code. However, it is necessary to set clkoff, before the input data are

accepted. Upon completion of the READ operation, the data will be present

on the UNIBUS and the processor clock is restarted. If the UNIBUS completes

its read cycle before a clkoff is asserted, the processor clock does not stop.

The microinstruction following the microinstruction containing the pseudo

operator clkoff must have a CLKL 1 or CLKL 3 processor clock cycle, and must

pull the input data off the UNIBUS immediately.

A typical UNIBUS READ cycle has the following form (cf. Fig. 4).

ba_R[i]; dati !BUS=l, put UNIBUS address into BA

{any number of microinstructions that do not modify BA or

assign a value to the BUS field}

<last microinstruction>; clkoff

R[j] unibus; <other statements> !CLKL 1 or CLKL 3 clock cycle

As a more specific example, we may consider the following microinstruction

sequence for popping the PDP-ll/40 main memory stack.

ba_R[6]; dati ! read top of stack

d_R[6] + 2; R[6]_d; clkoff ! increment -stack pointer

R[2]_unibus

The DATI UNIBUS control code is used for both word and byte operations.

It always returns a 16-bit word to D MUX. To select a byte the main memory

address must be tested. If this address is even (BA<O>= 0), the byte is in

the lower half of the word. If this address is odd (BA<O>=I), the byte is

in the upper half of the word. BUT 35 (ubf=35) may be used to perform the

address test. Alternatively, the assignment statement,EUBC + TOS<O>, may be

used, if the UNIBUS address is stored in TOS. The B Register, together with

B MUX, may be used to align the appropriate byte.

3.2.2 UNIBUS WRITE Operations

UNIBUS WRITE operations are similar to READ operations. The following

differences should be observed. For a WRITE operation (data output), the

UNIBUS address must be available in the BA Register and the output datu~

must be clocked to the D Register, when the DATa UNIBUS control code is

asserted. Succeedingly executed microinstructions must keep the BA Register

and the D Register constant.

A typical UNIBUS write cycle has the following form (cf. Fig. 4).

ba_R[i] ! put UNIBUS address into BA

d_R[j]; dato ! BUS=5, put datum into D

{any number of microinstructions that do not modify BA

and D, or assign a value to the BUS field}

<last microinstruction>; clkoff

<any microinstruction with a CLKL I or CLKL 3 clock cycle>

34

As a specific example, we consider the following microinstruction sequence for

pushing the PDP-II/40 main memory stack.

d,ba_R[6]-2; R[6]_d ! decrement stack pointer

d_R[2]; dato; clkoff ! write to top of stack

The DATOB UNIBUS control code specifies a byte WRITE operation. The

microinstruction for the implementation of a byte WRITE operation is similar

to that for DATa. It is the microprogrammer's responsibility to place the

byte to be written into the proper byte of the D Register. As a safeguard for

the case that the main memory address may either be even (low-order byte) or

odd (high-order byte), the byte to be written should be duplicated in both

bytes of the D Register. The B Register, together with B MUX, may be used for

this purpose.

35

3.2.3 UNIBUS READ - MODIFY - WRITE Cycle

The DATIP UNIBUS control code specifies a READ - MODIFY - WRITE cycle.

It uses the address in the BA Register both for the READ and ,the WRITE operation.

A microinstruction sequence for a UNIBUS read-modify-write cycle is given below.

This microinstruction sequence implements a modification of the top of the

PDP-ll/40 main memory stack.

ba_R[6]; datip; clkoff put UNIBUS address into BA

BUS=3

R[lO]_unibus read top of stack

d_R[lO]+l; dato; clkoff modify top of stack, BUS=5

<any microinstruction with a CLKL 1 or CLKL 3 cycle>

3.2.4 Exceptional Conditions

The ability to perform UNIBUS operations and execute microinstructions

in parallel provides the microprogrammer with the opportunity to keep the

processor totally UNIBUS-bound, while doing processing in addition to UNIBUS

control. Care must be taken that all initiations of UNIBUS operations are

followed by a clkoff. Otherwise, the UNIBUS becomes locked. On the other

hand, setting clkoff, without setting BGBUS halts the processor and requires

a restart from the processor console, except for interrupt sequences.

Whenever an odd address is clocked into the BA Register, or the DATOB

UNIBUS control code is asserted, the following two conditions must be met.

First, the instruction register must contain a valid machine language byte

instruction. Second, bit 0 of the DAD field must be set (allow odd address

and DATO for byte instruction). If these conditions are not met, a jam

into the 8 low-order bits of XUPP (segment of the microinstruction buffer)

occurs and the flow of control in the user microcode will be distorted.

This effect is due to the fact that the jam addresses are associated with the

standard PDP-ll/40 emulator microinstructions, not with the user microporgram.

3.3 Data Flow

The following idiosyncrasies which are caused by the PDP-ll/40E data

paths and functional hardware units should be remembered when writing micro­

code.

3.3.1 RD BUS

As discussed in section 2.3.3, the result of gating several independent

sources onto the RDBUS is the DRing of the source contents. This feature of

36

the RD BUS .may be exploited to produce a positive effect, when a table lookup

is to be performed into a table of fixed main memory locations that is indexed

by a general purpose register.

For example, let R[O] be assumed to hold the table index, which must be

even for word addressing. Let BASE be the base address of the table in main

memory. Then, the following microinstruction implements a table access,

ba_R[O]; dest=O; fisc=l; emit=BASE; dati

The field assignments, dest=O, msc=l, specify the transfer RD BUS + EMIT. Hence,

the content of R[O] and the EMIT field are ORed on the RD BUS, i.e., RD BUS ~

R[O] or BASE. BASE should be chosen such that it has at least as many zeros

in its low-order bits as there are non-zero low-order bits in the binary repre­

sentation of the largest table index, i.e., such that R[O] + BASE = R[O] or BASE.

Then, the value clocked into the BA Register is the effective word address of

a table entry, R[O] + BASE = <index> + <base address>.

To obtain the same result, without using the ORing feature of the RD BUS,

requires the following two microinstruction

d_R[O]; b_d

ba BASE + B; DATI

3.3.2 CONSTANTS

The WCS 11/40 provides the microprogranuner with arbitrary arithmetic

and addressing constants via the EMIT field. However, EMIT field constants

must be A-inputs to the ALU or must temporarily be stored in the B Regist,er

to be usable as ALU B-inputs. The latter mechanism requires the execution

of two consecutive microinstructions for the use of an EMIT field constant

at the ALU. This difficulty can often be overcome by using one of the

B CONSTANTS as provided by the basic PDP-ll/40E processor. The use of B

CONSTANTS instead of EMIT field constants at the ALU B-input may save up to

300nsin the execution of the associated microinstruction sequence.

3.3.3 Instruction Register

The PDP-ll/40 processor is implemented for the specific PDf-ll/40 machine

instruction set and, as a consequence, is not of general-purpose nature. The

basic machine instruction decoding generates basic microbranch codes (BUBCs)

for several branch microtests (BUTs), signals required by the microbranch

control logic, the condition code control logic, and the ALU control logic.

Hence, the contents of the instruction register (IR) may affect the data

paths and the ALU, as they are not exclusively controlled by the micro-

instruction. Some PDP-l1/40 machine language instructions (e.g., SBC, RESET,

MFPI,MTPI) may even have an effect on the data paths, when the instruction

register is clocked the next time [8]. Therefore, great care must be taken,

37

if IR is used by user microprograms. In user microprograms, it is advisable to

decode machine instruction from TOS by using the WCS 11/40 shift/mask unit to

pull various instruction fields from TOS onto the EUBC BUS(for conditional

branching).

3.4 Control Flow

In this section, we discuss basic mechanisms for the sequencing of micro­

instruction executions.

3.4.1 Microinstruciton Execution

With the last pulse edge of each processor cycle, a microinstruction is

gated into the microinstruction buffer. Thus, the interval between the loading

of two seccessive microinstructions into the microinstruction buffer is a

function of the processor cycle length of the first microinstruction. This

organization requires that the execution (E) of the current microinstruction

and the fetch (F) of the successor microinstructton are overlapped in time.

This overlap is illustrated in Fig. 5.

execution
sequence

~----------------------------------~ time

F

F E

F E

F E

Figure 5: Microinstruction Fetch/Execute Overlap

3.4.2 Unconditioned Microinstruction Sequences

MICRO/40 handles unconditioned microinstruction sequences by assigning

control store addresses to the xupf fields in microinstructions. The basic rule

is to assign consecutive addresses to successive microinstructions, unless

a 'goto' (xupf field assignment) is assembled. In the latter case, the control

store address specifi.ed in the 'goto' is assigned to the xupf field. Hence, at

the beginning of the execution of a microinstruction with an unconditioned

successor., the address of the next microinstruction is available in the XUPP

segment of the microinstruction buffer.

3.4.3 Conditioned Microinstruction Sequences

Whenever a microinstruction is clocked into the microinstruction buffer,

XUpp is modified by ORing the 11 bits of the EUBC 'BUS and the six BUBC bits

(into the six low-order bits of XUPP). The modifiedXUPP is immediately used

to address the successor microinstruction. At this point, an alteration of

the address of the successor microinstruction as specified in the current

microinstruction has not occurred. Hence, it is impossible for a micro­

instruction to influence the address of its successor. Instead, conditional

branching is performed by setting the EUBC/BUBC lines such that the address

in the xupf field of the successor microinstruction are altered. This organ­

ization of conditional microbranches is illustrated in Fig. 6.

conditional
branch
micro­
instruction

uncondi­
tional micr -
instruction

Micro Branc
Destination

F CD I
lresult If branc~
Imicro tEbst
I (BUBC 0t EUBC)

"-.........-........ ___ 0
I
I
I
I

time

One of these micro instructions

38

Micro Branc
Destination

is selected by the microbranch
specified in CD and the successor
address specified in the xupf
field of @ .

Micro Branc
Destination

execution
sequence

cycle

o
cycle

1

cycle

2

Figure 6: Conditional Microbranching

cycle

3

time

The delayed microbranching in the PDP-ll/40E is unnatural to most pro­

grammers and requires great care, as it makes microprograms difficult to

39

modify, because of the interdependence of microinstructions in a branching sequence.

Furthermore, since conditional branching is due to ~Ring into KUPP, the proper bits

in XUPP must be 0 for the ~Ring to have the right effect. MICRO/40 supports the micro­

programmer in satisfying this requirement by the provision of the set ... tes pseudo

operator. A set .•• tes constr.uct is assembled by allocating a block of RAM locations

with 2
n

address boundaries for the storage of the microinstructions at the branch

destinations. As MICRO/40 allocates control store blocks for all set .•. tes

groups, before it assigns RAM locations to the rest of the microinstructions,

the base addresses of set .•. tes blocks can be chosen to include an appropriate

number of O's.

The PDP-ll/40E provides the following two mechanisms for setting the bits

to be ORed into XUPP. Examples for the application of these mechanisms are

discussed in the next two subsections.

BUT

The branch micro test (BUT) is a feature of the basic PDP-ll/40. It con­

sists of about thirty different tests which are invoked by field assignments

to ubf (cf. [1], [8]). Branch micro tests detect particular processor states

and, in response, set appropriate values on the BUBC lines. The generally

useful BUTs are:

EUBC

ubf

12

16

BUT

D=O

interrupt

BUBC

000001

000001

The extended micro branch control (EUBC) is based on the shift/mask unit

in the WCS 11/40. Using this field extraction unit, arbitrary contiguous

fields of the word at the top of the stack, the EMIT field, or any l6-bit

RAM field can be gated onto the II-bit EUBC BUS .

. 3.4.4 IF Statement

A simple IF statment,

IF<condition>THEN<microinstructionsl>ELSE<microinstructions2>,

may be implemented using the BUT mechanism or the EUBC mechanism.

The following timing characteristics must be taken into account, when a

BUT 12 is used. If the microiristruction containing BUT 12 has a CLKL 1 or

40

CLKL 2 processor clock cycle, then the value of the D Register at the beginning

of the microinstruction execution is tested. If the microinstruction has a CLKL 3

clock cycle, the value clocked into the D Register with the P2 pulse is tested.

The effect of this timing condition is demonstrated by the following two imple­

mentations of an IF statement with BUT 12.

CD d_R[O]

d_R[l]; but 12

b d

set

{start} !R[O]1=O

<microinstructions

{end}

{start} !R[O]=O

<microinstruction

{end}

tes

1>

2>

The use of the start ... end pseudo operator is optional, as indicated by

the meta symbol, {}. The microinstruction, d_R[l]; 'but 12, is executed in

a CLKL2 processor clock cycle (cf. Table 1), and hence, but 12 tests the

content of the D Register at the beginning of microinstruction execution.

At this point, D contains the value of R[O]. Thus, CD implements the IF

statement,

IF R[O]=O THEN<microinstructions 2>ELSE<microinstructions 1>.

If D=O, BUT 12 causes a 1 to be ORed into xupf<O> of the microinstruction

b_d, control is transferred to the second element in the set •.. tes group. Other­

wise, BUT12 generates BUBC=Q and control is transferred to the first element in

the set ... tes group (cf. Fig.3).

CD d_R[O]

d_R[l] ; b_d; but 12

hoop

set

{start} ! R[l]1=O

<microinstructions 1>

{end}

{start} ! R[l]=O

<microinstructions 2>

{end}

tes

The noop is required to account for the delayed conditional branching in the

PDP-ll/40E. The microinstruction, d_R[l]; b_d; but 12, is executed in a

CLKL 3 processor clock cycle (cf. Table 1). As a consequence, the content

of D is tested at P2 time. At this point, R[l] is clocked into D. Thus,

~ implements the IF statement,

IF R[l]=O THEN <microinstructions 2>ELSE <microinstructions 1>.

41

The following implementation of the IF statement uses the EUBC mechanism.

G) tos_R[O]

eubc tos<15>

noop

set

{start} ! R[O]~O

<microinstructions 1>

{end}

{start} ! R[O]<O

<microinstructions 2>

{end}

tes

In this implementation R[O] is written onto the WCS 11/40 stack. From there,

the sign bit (TOS<15» is extracted using the shift/mask unit and gated onto

the EUBC BUS<O>. Hence, if R[O]~O, EUBC BUS<O>=O, and the first element in

the set ... tes group is reached, as the xupf field of the microinstruction,

noop, is not modified. Otherwise, EUBC BUS<O>=l and control is transferred

to the second element in the set .•. tes group. Thus, G) implements the IF

statement,

IF R[O]~O·THEN<microinstructions l>ELSE<microinstructions 2>.

3.4.5 CASE Statement

The CASE statement extends the IF statement as to multiple branch destina­

tions. The importance of CASE statements in microprogramming stems from

the fact that multi-way branches are vital to machine language instruction

decoding. The general form of a CASE statement is:

CASE<expression>DO

<microinstructions 1>

<microinstructions 2>

<microinstructions n>

The expression in the CASE statement specifies an index, i, that selects

<microinstructions i> to be executed. For the implementation of CASE state­

ments, the BUT mechanism, the EUBC mechanism,or a combination of both may be

used.

The following example illustrates the use of the EUBC mechanism for

the implementation of a CASE statement.· Assume an 8-way branch is to be

implemented to decode the op-code bits R[13]<15:l3> of machine instructions

stored in R[13]. To this end, the op-code bits R[13]<15:l3> can directly

be used as the expression in an appropriate CASE statement.

tos_R[13]

eubc TOS<15:l3>

noop

set

start

end

start

end

start

end

tes

! op-code 000

<microinstructions 0>

! op-code 001

<microinstructions 1>

! op-code 111

<microinstruction 7>

The following microinstruction sequence implements a 4~way branch using

a combination of the BUT mechanism and the EUBC mechanism. Here, the cases

R[O]>O, R[O]-O, and R[O]<O are distinguished, whereas the forth case, R[O]=O

and R[O]<O, is impossible in the 2's-complement number representation of the

PDP-ll/40E.

! CLKL 3 clock cycle

eubc_tos<15>Al; but 12

noop

set

start ! R[O]>O, EUBC BUS<l>= 0, BUBC=O

<microinstructions 1>

end

start ! R[O]=O, EUBC BUS<l>=O, BUBC=l

<microinstructions 2>

42

43

end

start ! R[O]<O, EUBC BUS<l>=l, BUBC=O

<microinstructions 3>

end

start ! impossible, EUBC BUS<l>=l, BUBC=l

noop

end

tes

Note that the sign bit, TOS<15>, is gated onto EUBC BUS<l>, such that EUBC BUS<l>

and BUBC<O>are independently ORed into XUPP<l:O>.

3.4.6 Micro Subroutines

Analogous to software programming, subroutines are crucial to micropro­

gramming. Normal, nested, and recursive micro subroutines are easily implemented

using the WCS 11/40 stack and the EUBC branch mechanism. A subroutine call

pushes the return address, retadd, on the WCS 11/40 stack and sets the xupf field

of the calling microinstruction to the subroutine address, subr. The return

from subroutine is implemented by poping the WCS 11/40 stack in the second­

to-last microinstruction in the subroutine and gating the return address, retadd,

onto the EUBC BUS. The xupf field of the microinstruction executed last in the

subroutine must be set to 0 so that the return address can be ORed into XUPP,

to form the effective address of the next microinstruction.

call: s+retadd; goto subr ! subroutine call

retadd: <whatever follows next>

subr: <first microinstruction of the subroutine>

<second-to-last microinstruction>; eubc S] t f re urn rom
<last microinstruction>; xupf=O subroutine

For the implementation of a recursive subroutine, it is important that

the recursive subroutine call occurs in a set ... tes group (conditional bran­

ching) in order to prevent an infinite recursion. Furthermore, it is the micro­

programmer's responsibility to prevent stack overflow or underflow, as stack

control is not supported by the WCS 11/40 hardware. An example of a schema

for the implementation of recursive subroutines is given below.

call: s_retadd 1; goto recurs ! subroutine call

retadd: <whatever follows next>

reurs: <first microinstruction in the recursive subroutine>

<conditional branch microinstruction>

set

s_retadd 2; goto recurs recursive subroutine call

<microinstruction reached at the end of the recursion>

tes

retadd 2: <whatever comes next>

<second-to-last microinstruction>; eubc s 1-
<last microinstruction>; xupf=O

return from
subroutine

The data objects of microprograms are the contents of registers or main

memory locations. All these carriers are by nature global to the hardware

of the P.DP-ll/40E and can be accessed by any microinstruction. Therefore,

44

the PDP-ll/40E does not provide a micro subroutine parameter' passing mechanism.

Various parameter passing mechanisms may be implemented using, for example,

the general purpose registers, the WCS 11/40 stack, the table or preload

pseudo operators, the EMIT field, or the main memory table look-up described

in subsection 3.3.1.

3.5.7 Exit fromWCS 11/40 Control Store

The interface between the basic PDP-ll/40 processor and the WCS 11/40

is organized such that the extension is turned oft whenever the XUPP (xupf

field) segment of the microinstruction buffer is assigned a value less than

400
8

. At this point, control is automatically transferred to the standard

PDP-ll/40 emulator ROM. Consequently, the last microinstruction executed

in the RAM, which exits to the ROM, must not use the ext.ension hardware.

The execution of microcode from the WCS 11/40 control stores is usually

independent of external PDP-ll/40 processor conditions. Therefore, special

provision should be taken, when control is returned to the

standard PDP-1l/40 emulator. It is recommended to check for conditions that

could have caused a PDP-1l/40 interrupt, while the PDP-ll/40E was controlled

from the WCS1l/40. BUT 16 detects any condition that would cause an interrupt

at the next PDP-11/40 machine instruction fetch. Thus, the following micro­

instruction sequence is appropriate for transferring control from the WCS 11/40

control stores to the standard PDP-ll/40 emulator ROM:

<second-to-1ast microinstruction>; but 16

<last microinstruction>; goto 16

If no interrupt occurred, control is transferred to ROM location 16 for the

next PDP-11/40 machine instruction fetch. Otherwise, control is transferred

to ROM location 17, where an interrupt service routine is initiated.

4. Operating MICRO/40

MICRO/40 runs under the UNIX operating system and is invoked by a

UNIX command. The UNIX editor [2] is used to generate MICRO/40 source files.

MICRO/40 source files must be stored in UNIX text files so that they can be

used as arguments in the UNIX command that invokes the ~1ICRO/40 assembler.

4.1 Invoking MICRO/40

HICRO/40 is invoked by the UNIX command,

mic{<opt>}<name>.mic

The name of a MICRO/40 source file must be of the form,

<name>.mic

45

where <name> is any legal UNIX text file name. The suffix, mic, indicates that

the source is written in MICRO/40.

In this section, we refer to the example microprogram2), called fastc.mic.

This microporgram implements two PDP-l1/40 machine language subroutines that

handle the environment switch for subroutine calls in the "c" programming

language of UNIX [4]. It saves and restores registers that are used for

parameter passing in subroutine calls/returns. Further details of fastc.mic

will be introduced as needed. A listing of the source file of the microprogram,

fastc.mic, is shown in Fig. 7.

2)

This microprogram was developed by K. Bullis, J. Bjoin, and T. Lunzer

as a course project for (H. K. Berg) CSci 5299, Microprogramming, Winter

Quarter 1978.

reoui~e dets.mic

be~in noo?
.=2001; d_210; b_d
d_rir-b !compare instruction
skipzero
d_211; b--.d

set.

start
d_rir-b
s"~ipzeTo
noop

!eheck for other instr

set

soto 150

start t21.1 inst.r
d_r5 '1'1<-1'5
rl_d
d,ba_rl~2; r1_d !pop r4
dati; eH .. off
r4_unibus
ba,d_r1-2; r1_d !poP 1'3
dati.; elkoff
r3_unibus
ba,d_rl-2; rl_d !pop r2
dati; clkoff.
r2_IJnibus
ba,d_r5 !sp<-r5
r6_d; dati; clkoff
rS_unibus !rS<-(sp)t
d_r6+2; r6_d
ba_c6; dati !rts PC

d_1"6+2; r6_d; clkoff
r7_unibus; but_~6
soto 16

end

tes
end

start _ !210 instr

end

tes.

finis

d,ba_r6-2; r6_d !push 1'5
d_r5; dato; clkoff
d_r7; p3 !r5<-r7
r5_d
rO_d ! rO{-r5
d_r6 11'5<-1"6
r5_d
d,ba_r6-2; r6_d !push 1'4
d_1"4; dato; elkoff
d,ba~r6-2; r6_d !push 1'3
d_r3; dato; elkoff
d,ba_r6-2; r6_d !push r2
d_r2; data; clkoff
d_r6-2; r6_d !r6<-r6-2
d_rO ! 1"7-(-rO
r7_d; but 16
so to 16.

Figure 7: fastc.mic

In the command, mic{<opt>}<name>.mic, <opt> denotes one of the three

optional assembly flags, -a, -s, and -d. These optional assembly flags are

directives to the microassembler which affect the assembly process in the

following way

-a The microprogram source is assembled and a pseudo-readable

form of the object microcode is stored in a file called

<name>.ass. This file is in UNIX assembler format.

From this file, the binary version of the assembled

microcode can be generated using the UNIX assembler as

a post-processor of MICRO/40.

46

-d

-s

The microprogram source is assembled and. a pseudo­

readable form of the object microcode is stored in

a file called <name>.dec. This file is in DEC assembler

format, so that the binary version of the assembled

microcode can be generated using the PDP-II/40 DEC as­

sembler as a post-processor of HICRO/40.

The microprogram source is assembled and the micro­

simulator [5] is called, if no assembly errors occured.

If the microassembler detects an assembly flag other than -a, -d, or -s,

a warning is issued and the assembly flag is ignored. If both flags, -a

47

and -d, are given in the microassembler invokation, only the last (right-most)

flag is accepted. If the assembly flag, -s, is specified, all other flags

are ignored.

4.2 MICRO/40 Output

When an assembly is terminated and no assembly errors occurred, MICRO/40

generates three files, namely, <name>.lst, <name>.bin, and <name>.tab.

<name>.lst

This file is a listing of the microprogram object code in the SO-bit PDP-ll/40E

microinstruction format, followed by a list of mnemonic labels and their

associated control store addresses. The listing contains the first IS char­

acters of each source code line and the assigned control store addresses of

the corresponding microinstruction. In the representation of the object code,

the content of the individual microoperations fields is given by octal numbers

(cf. subsection 2.2). Due to space limitations, abbreviations are used for

some of the microoperation field names:

rm ~ rml, ba M clkba,

1m ~ lml, bc (--) sbc

ir H clkir, bm ~ sbm

b ~ clkb, dm ~ sdm

d ~ clkd, barn ~ sbam

The file, fastc.lst, is 1 isted in Fig. S. Note that the order of the micro-

instructions in fastc.lst deviates from the order of the microinstructions in

fastc.mic (cf.Fig.7). This reordering is due to the fact that MICRO/40 allocates

control store locations for the set ... tes groups (cf. subsection 2.5.10)

~
irlst aely' emit seOlY1 pope ep se r.lI 1m dest mse .)(upf c.lk. ir wr b d ba .bus dad. sps a1u be bill dm bam ubf .srx rit:

be~jinnoop 2000 0 0 0 0 0 0 0 0 0 2001 2 0 0 0 0 0 0 O. 0 0 0 0 0 0 0 .0 0
.=2001jd_210jb_d 2001 210 0 0 0 0 10 10 0 1 2006 6 0 0 1 .. 1 O. 0 .. 0 0 0 0 0 2 O. 0 O. 0

I~ d_ri T'-b 2002 0 8 8 8 8 8 8 8 0 2011 4 0 ~ 0 .1 0 0 10 0 6 0 0 0 0 0 1 13
d,ba_r6-2;r6_d!pu 2003 0 0 20~35 6 o. 0 ·1 .. 1 0 10 0 6 2 17 2 0 0 .1 6

H'l soto150 2004 0 0 0 0 0 0 0 0 0 150 2 o. o. 0 0 0 0 0 0 0 0 0 0 0 0 0 0
III eLl'S! r1<-T'5 2005 . 0 0 0 0 0 0 0 0 0 2013 4. o. o. o. .1 0 0 0 0 0 0 0 0 0 0 1 5 en
rt d_rir-b!comp~rein 2006 0 0 0 0 0 0 0 0 0 20()7 4 0 0 0 1. 0 0 10 0 6 0 0 0 0 0 1 13
(') skipzero 2007 0 0 0 0 0 0 0 0 0 2010 .2 .. 0 . 0 0 0 0 0 0 0 0 0 0 0 0 12 .0 0
I--' d_211.vb_d 2010 211 0 0 0 0 10 11 0 1 20()2 6 O. 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0
en skipz£H'O 2011 0 0 0 0 0 0 0 0 0 2012 2 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 rt

noop 2012 0 O. 0 0 0 O· 0 0 0 .. 2004 .2 .. 0 0 0 0 0 O. 0 0 0 0 0 0 0 0 0 <>
rl_d 2013 0 0 0 0 0 0 0 0 0.2014 2. 0 3 0 0 0 0 0 0 0 0 0 2 0 0 1 .1.
d,ba_rl-2;r1_d!po 2014 0 0 0 0 0 0 0 0 0 2015 6 0 3 0 1 1 0 1.0 0 IJ ;:t ;t.7 .~ Q 0 1 1
dati; cll~off 2015 0 0 0 0 0 0 () 0 ().~~g;j.l'f, ~ 0 0 Q 0 () 1 0 (1 0 0 0 0 0 0 9 0
r4_unibus 2(>16 0 0 0 0 0 0 O. O. 0 2017 2 0 3 0 0 0 0 0 0 0 0 0 1 O. 0 1 4
bard_rl-2'rl_d!po 201.7 0 0 0 0 0 0 O. 0 0 2020 6 0 3 0 1 1 0 10 0 6 2 17 2 O. 0 1 1
dati;clkClff 2020 0 0 0 0 0 0 0 .. 0. 0 20:·?1. 3 0 0 0 0 0 1 O. 0 0 0 0 0 0 0 0 0
r3_unitHJS 2021 0 0 0 0 0 0 0 0 0 2022 2 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 3
ba,d_rl-2;r1_d!po 2022 0 0 0 0 o. 0 0 0 0 20:~3 6 0 3 0 1 1 0 10 0 6 2. 17 2 0 0 .. 1 1
dati,clkoff 2023 0 0 0 0 0 0 .0 0 0 2024 3 0 0 0 0 0 1. 0 0 0 0 0 0 0 0 0 0
r2_unibus 2024 0 0 0 0 o. 0 0 0 0 2025 2 0 3 0 0 0 0 0 0 0 0 O. 1 0 0 1 2.
ba, d_ r~'j! SP<- r5 2025 0 0 0 0 0 0 0 0 0 20:26 4 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 5
r6_d;dati;clkoff 2026 0 0 o. 0 0 0 0 0 0 2027 3 o. 3 0 0 0 1 0 0 0 o. 0 2 0 0 1 6
rS_unibus!r5(-(sp 2027 0 0 0 0 o. 0 0 0 0 2030 . 2. 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 5
d_r6+2;r6_d 2030 0 0 .0 0 0 0 0 0 0 20~1 6 0 3 0 1 0 0 0 0 11 2 17 2 0 0 1 6
b~_r6;diJt.i!rt5Pc 2031 0 0 0 0 0 0 0 0 0 2032 ~ 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 6
d_r6+2;r6_d~clkof 2032 0 0 O. 0 0 0 0 0 0 20~~3 7 0 3 0 1 0 0 0 0 11 '"l 17 2 0 0 1 6 .r.

r7 _unibIJ5; but16 203:3 0 0 0 0 0 0 0 0 0 2034 2 0 3 0 0 0 0 0 0 0 0 0 1 0 16 1 7
90to16 ~~O34 0 0 0 0 0 0 0 0 0 :t6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d_rS;datoyclkoff 20~~5 0 0 0 0 0 0 0 0 0 2036 5 0 0 0 1 0 5 0 0 0 0 0 0 0 0 1 5
d _ r 7 ; 1-" 3 ! J' 5 < - T' 7 2031.) 0 0 0 0 0 0 0 0 0 20~~7 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 7
r5_d 2()~57 0 0 0 0 0 0 0 0 0 2040 2 0 3 0 0 0 0 .0 0 0 0 0 2 0 0 1 5
J'O_d! J'O<-T'5 2040 0 0 0 0 0 0 0 0 0 20 JH 2 0 3 0 0 0 0 0 0 0 0 0 2 0 0 1 0
d_ 1'6' T'5(-T'6 20 Jll 0 0 0 0 0 0 0 0 0 2042 4 0 0 0 1 .0 0 0 0 0 0 0 0 0 0 1 6
J'5_d 2042 0 0 0 0 0 0 0 .0 0 2043 2 0 3 0 0 0 0 0 0 0 0 0 2 0 6 1 5
d,ba_r6-2;r6_d!pu 2043 0 0 0 0 0 0 0 0 0 20·44 6 0 3 0 1 1 0 10 0 6 2 17 ~ 0 0 1 6 .:..

d_ r4; delta vC 1 ",01'1' 2044 0 0 0 0 0 0 0 0 0 2045 5 0 .. 0 0 1. 0 5 0 0 0 0 0 0 0 0 1 4
d,ba_r6-2Pr6_d!pu 2045 0 0 0 0 O. 0 0 0 0 2046 6 0 3.0 1 1 0 10 0 6 2 17 2 0 0 1 6
d~r3;dato;clkoff 2046 0 0 0 0 0 0 0 0 0 2047 5. O. 0 0 1 0 5 0 0 0 0 0 0 0 0 1 3
d,ba_r6-2;r6_d!pu 2047 0 0 0 0 O. 0 0 0 0 20~)O 6 0 3 0 .1- 1 0 10 0 6 2 17 2 0 0 1 6
fj_ 1'2; dc:l'i~o; c lkoff 20:=;0 0 0 0 0 0 0 0 0 0 20!)1 .. :3 \) C- O 1 0 5 0 0 0 0 0 0 0 0 1 2
d_r6-2;r6_d!r6<-r 2051 0 0 0 0 0 0 0 0 0 20~:;2. 6 0 3 0 1 0 0 10 0 6 '")

.:.. 17 . 2 0 0 1 6
d..,.rO!r7<-rO 2052 0 0 0 0 0 0 0 0 0 2053. 4. o. 0 0 1 0 0 0 0 0 0 0 0 0 0 1 .0
1'7_dibut16 2053 0 0 0 0 0 0 0 0 0 2054 2. 0 3 0 0 0 0 0 0 0 0 0 2 0 16 1 7
:-.3ota16 2054 0 0 0 0 0 0 0 0 0 16 2 0 0 0 0 0 0 O. () 0 0 0 0 0 0 .0 0

label~ ,"md addres$es .p.-
00

===~=z=====;~==;=~==

be!: 2000

49

and user-defined RAM tables (cf.subsection 2.5.7), before RAM locations are

assigned to the rest of the microinstructions.

<name>.bin

This file is the binary version of the assembled microcode which is

leaded into the writable control store. Fig. 9 depicts the file fastc.bin.

0000000 000407 001662 000000 000000 000154 000000 000000 000000
0000020 134000 134670 000000 000000 000000 000000 000000 000000
0000040 000000
0000760 000000 000000 000000 000000 000000 020000 020540 060615
0001000 000000 000000 040000 0023"76 000000 100000 000000 141400
0001020 006371 000210 000033 003000 100410 002366 000000 100026
0001040 003057 146610 002342 000000 000000 000000 040000 000227
0001060 000000 000025 000000 100400 002364 000000 000033 003000
0001100 100410 002370 000000 005000 000000 040000 002367 000000
0001120 100000 000000 141400 006375 000211 005000 000000 040000
0001140 002365 000000 000000 000000 040000 002373 000000 100021
0001160 000000 046000 002363 000000 100021 003057 146610 002362
0001200 000000 000000 000000 060020 002361 000000 040024 000000
0001220 046000 002360 000000 100021 003057 146610 002357 000000
0001240 000000 000000 060020 002356 000000 040023 000000 046000
0001260 002355 000000 100021 003057 146610 002354 000000 000000
0001300 000000 060020 002353 000000 040022 000000 046000 002352
0001320 000000 020025 000000 100600 002351 000000 100026 000000
0001340 066020 002:350 000000 040025 000000 046000 002347 000000
0001360 100026 004457 146400 002346 000000 020026 000000 040220
0001400 002345 000000 100026 004457 166400 002344 000000 047027
0001420 000000 046000 002343 000000 000000 000000 040000 000361
0001440 000000 000025 000000 120520 002341 000000 000027 000000
0001460 140400 002340 000000 100025 000000 046000 002337 000000
0001500 100020 000000 046000 002336 000000 000026 000000 100400
0001520 002335 000000 100025 000000 046000 002334 000000 100026
0001540 003057 146610 002333 000000 000024 000000 120520 002332
0001560 000000 100026 003057·146610 002331 000000 000023 000000
0001600 120520 002330 000000 100026 003057 146610 002327 000000
0001620 000022 000000 120520 002326 000000 100026 003057 146410
0001640 002325 000000 000020 000000 100400 002324 000000 107027
0001660 000000 046000 002323 000000 000000 000000 040000 000361
0001700 000000
0003560 000000 000000 060562 046155 051501 000124 000001 020540
0003600 060562 043155 051522 000124 000001 020000 060562 057555
0003620 000143 000000 000001 134000 057557 071146 072163 000000
0003640 000001 000000 057557 060554 072163 000000 000001 000540
0003660 062555 063155 071562 000164 000001 134000 062555 066155
0003700 071541 000164 000001 134670 06-4143 061545 0"71553 066565
0003720 000001 060615 041525 052123 052122 000000 000002 000760
0003740

Figure 9: fastc.bin

<name>. tab

This file is generated specifically for the microsimulator [5]. It

contains information used by the simulator for interperting simulator commands.

This information includes field names, field bounds, lower and upper limits

(control store addresses) of the microcode generated, register names, macro

names, labels, etc. From this file, the simulator generates a symbol table

which is used to interpret simulator commands. As a result, simulator commands

can contain any symbol string that is recognized by the microassembler, including

names of user-defined macros.

50

4.3 MICRO/40 Error Messages

The errors detected by MICRO/40 may be grouped into three classes.

Non-continuable errors terminate the assembly process.: When a non..;.continuab1e

error is encountered, control is transferred to the UNIX operating system,

without generating any object microcode.

Continuable errors cause the microassemb1er to skip (i.e., no object micro­

code is generated) the erroneous input line and to continue assembly with the

next input line. No object microcode file is generated.

Recoverable errors cause the microassemb1er to issue a warning. MICRO/40 can

by itself recover from these errors and may either skip (i.e., no object micro­

code is generated) the erroneous input line or assemble it·, after the erroneous

line has been modified according to internal default mechanisms.

For errors of each class, MICRO/40 issues error message which generally

have the following format:

where

<file name> line <line number>

<source code line>

<message> ,

<filename> is the name of the source file being assembled,

<line number> is the line nmnber of the erroneous line in the source file,

<source code line> is the erroneous source code line,

<message> is the error message (the different error messages are disucssed in

the following subsections).

Example: /uprog/rt11/vector.mic line 96

d_b; n.z.v.c; skipzero; goto vecS

undefined symbol goto

4.3.1 Non-continuable Errors

For non-continuable errors we may distinguish between internal errors,

user errors, system errors, and resource errors.

Internal Errors

Internal errors are fatal errors that are caused by the execution of the

microassemb1er program.

51

1. "internal error -- duplicate symbol <token>"

A symbol, <token>, occurs twice in the symbol table.

2. "pop:stack underflow"

The microassembler attempts to pop an empty stack.

3. Itduplicate entry: <token>"

The microassembler attempts to enter the same symbol, <token>, twice into

the symbol table (this message is print.ed without a header).

4. "internal error -- default case index to pick type <symbol>"

A non-existing symbol type is found for the symbol, <symbol>.

5. "internal error -- compiling a macrotype"

A macro name is found after completion of the macro expansion.

6. "internal error -- illegal reference type"

A symbol of type reference «emit field>, cf. subsection 2.3.2) is found

before symbols of this type were entered into the symbol table.

7. "internal error -- default pseudo type <symbol>"

The symbol, <symbol~ that is recognized as type pseudo is not a reserved

pseudo operator (cf. subsection 2.5).

8. "internal error -- default operand type left <symbol>"

The symbol, <symbol~ that is found on the left hand side of an assignment

statement is not a defined operand (cf. subsection 2.3.1).

9. "internal error -- default type operand right <symbol>"

The symbol, <symbol~ that is found on the right hand side of an assignment

statement is not a defined operand (cf. subsection 2.3.1).

10. "internal error -- default type operator <token>"

11.

The symbol, <token>, ,that is recognized as an operator is not a defined

operator (cf. subsection 2.3.2).

"internal error -- double not detected"

A double occurrence of the assignment operator, ,has not been detected

in the first syntax check.

12. '.'internal error -- bad type in label resolution"

A symbol of a type other than label or table is found in the control

store address resolution.

13. "internal error - bad reference type"

When relocating microcode, a symbol is found among the control store refer-

ence that is not of type label or table (this message is printed without

a header).

User Errors

The following error messages refer to fatal syntax or microprogramming

errors.

14. "sourcefile??"

No source file was specified in the command, mic{<opt>}<name>.mic (this

message is printed without a header).

15. "illegal file name <name>"

The file name in the command, mic{ <opt> }<name>'.mic, is not accepted.

For example, the suffix, mic, is missing (this message is printed with­

out a header).

16. "rekursive macro call for <macro name>"

Recursive macro calls are not allowed (cf. subsection 2.5).

17. "starting file with open compound"

52

The require statement (cf. subsection 2.6.3) occurs in a set •.• tes group.

group.

18. "starting file with open set"

The require statement (cf. subsection 2.6.3) occurs in a set ••• tes group.

19. "ending tile with open compound"

The end-of-file mark of the text file being processed is found before

the closing 'end' of a start ••• end group.

20. "ending file with open set"

The end-of-file mark of the text file being processed is found before the

closing 'test of a set ..• tes group.

21. "start within an open compound"

The pseudo operator, start, is found outside a set ... tes group or

inside another start •.• end group.

22. "end doesn't balance set"

The pseudo operator, end, is found inside a set •.. tes group and has no

associated 'start'.

23. "set within an open case"

The pseudo operator, set, is found inside a set ••• tes group and is not inside

24. "tes doesn't balance start"

The pseudo operator, tes, is found in a start •.• end group and has no

associated 'set'.

25. "set 1 1 1 in a macro body"

set .•. tes groups are not allowed inside macro bodies.

26. "tes II! in macrobody"

set .•. tes groups are not allowed inside macro bodies.

27. "macro declaration in macrobody not allowed"

A macro declaration is found during macro expansion.

53

28. "impossible assignment to lowlim you have <number of statements> statements"

The microprogram cannot be stored in the specified control store address

space (this message is printed without a header).

System Errors

System errors are caused by the inability of the system to execute a

given command. The following error messages are printed without a header.

29. "move error -- <file name>"

An error occured in the generation and storage of the object microcode

file, <name>.bin.

30. "cannot find <file name>"

A microassembler or microsimulator file, <file name>, cannot be found.

31. "sorry! try again"

The system is unable to create a new UNIX process.

32. "fatal error in <file name>"

The file,<file name>, being executed contains a fatal error.

33. "cannot create file: <file name>"

34. "cannot open file: <file name>"

35. "read error on file: <file name>"

36. "write error on file: <file name>"

37. "cannot close file: <file name>"

38. "cannot remove file: <file name>"

39. "error on file: <file name>"

40. "seek error on file:' <file name>"

Resource Errors

Resource errors are caused by overflow of MICRO/40 information re-

sources.

41. "symbol table full <symbol>"

The attempt to put the symbol, <symbol>, into the symbol table causes a

symbol table overflow. The size of the symbol table is 1024 words.

42. "string table overflow"

The size of the string table is 10,240 characters.

43. "push: stack overflow"

The size of the stack is 100 words.

44. "reference table overflow"

The size of the reference table is 200 words.

45. "all 1024 ram locations are used"

54

The user microprogram exceeds the capacity of the writable control store.

46. "too much sets"

The maximum number of tes ... set groups is 150.

47. "too much tables"

The maximum number of tables is 20(cf. subsection 2.5.7).

48. "no free locations remaining for sets"

It is impossible to allocate control store locations with 2n address

boundaries for the allocation of set ... tes groups.

49. "no free location remaining for tables"

It is impossible to allocate control store locations for table declarations.

4.3.2 Continuable Errors

50. "illegal symbol where number expected <number>"

A number, <number>, includes an illegal character.

51. "no)following «number>"

A negative number, <number>=-XXX, of the form, (-XXX, is found.

52. "redefining a symbol <symbol>"

Macro name or label, <symbol>, is used twice.

55

53. "illegal use of label <label>"

A label reference, <label>, occurs on the left hand side of an assignment.

54. "illegal use of table <tC3:ble>"

A table name, <table>, cannot occur on the left hand side of an assignment

statement.

55. "<op> operator with no operand"

An operater, <op>, is used without operand.

56. "illegal symbol <symbol>"

An undefined identifier, <symbol>, is used.

57. "undefined symbol <token> "

The symbol, token, following a label definition or a macro definition

is unequal ':' or ':='. respectively.

58. "inconsistent use of emit-field"

Assignments to the EHIT field and other microoperation fields in XU<79:64>

are made in a single microinstruction.

59. "<field> not followed by ="
'=' is missing in an assignment to the microoperation field, <field>.

60. "illegal field assignment <field>"

An identifier is assigned to a microoperation field, <field>, other than

EMIT or xupf.

61. "missing] in table reference"

Syntax: <table name>[<table index>]

62. "code on same line as finis"

63. "code on same line as start"

64. "code on same line as end"

65. "no code between start - end"

66. "code on same line as set"

67. "code on same line as tes"

68. "set following a start not allowed"

The pseudo operator, set, must not immediately follow the pseudo operator,

start (cf. subsection 2.5.10).

69. "set size less than 2 not allowed"

(cf. subsection 2.5.9)

70. "code on same line as lowlim"

71. "lowlim must be first statement"

The pseudo operator, lowlim, must be the first statement in a source

file (if used).

72. "missing = in lowlim"

Syntax: lowlim = <value>

73. "illegal address to lowlim"

<value> in,<lowlim>= <value>, must be in the range [2000:3777].

74. "illegal operation to'. '"

Syntax: • = <value> (cf. subsection 2.5.4).

75. "illegal absolute address assignment"

<value> in,. = <value>, must be in the range [2000:3777].

76. "cannot assign absolute address to controlled words in a set"

The micorassembler allocates control store locations for all micro­

instructions in a set tes group.

77. "absolute location assigned twice"

The same absolute control store address is assigned to two different

microinstructions.

78. "code on same line as <table>"

Table declarations and preloads must occur on a line by themselves

(cf. subsections 2.5.7 and 2.5.8).

79. "illegal table name <table>"

An illegal idenfier is used as name for the table, <table>.

80. "duplicate use of <table>"

The identifier used as name of the table, <table>, is used twice.

81. "no go to before table declaration"

Table declarations must be preceeded by an explicit assignment to the

xupf field.

82. "arithmetic expression too long"

An expression can in maximum contain 15 operands and operators.

83. "registers can only be read as full words"

56

The selectors, 1 and h, cannot be used in occurrences of general purpose

registers on the right hand side of assignment statements (cf. subsection 2.3.1).

57

84. "multiple in assignment statement"

85. "illegal assignment to eubc"

Only data at the output of the shift/mask unit can be assigned to eubc.

Simultaneous gating of the shift/mask unit output onto the EUBC BUS and

the RD BUS are not allowed.

86. "impossible assignment on dmux or to stack"

(cf. subsection 2.3)

87. "impossible assignment to ba or d register"

(cf. subsection 2.3)

88. "two different a1u functions chosen"

Only a single ALU function can be specified per microinstruction.

89. "no such a1u function <function>"

(cf. subsection 2.3.2)

90. "unrecognizable statement"

For example, two consective

91. "undefined symbol <symbol>"

, . , , .

For example, undefined carrier on the left hand side of an assignment

statement.

92. "illegal element in this context <token>"

For example, an identifier occurs, where an operator is expected.

93. "illegal assignment to stackpointer"

Stack pointer values must be in the range [0:15].

94. "missing; after sp assignment"

95. "illegal assignment to <operand>"

(cf. subsection 2.3.2)

96. "impossible assignment statement"

For example, operand missing (cf. subsection 2.3.2).

97. "illegal use of ba, ir, sf, df or eubc"

These identifiers cannot occur on the right hand side of an assignment

statement.

98. "illegal type in assignment statement"

An assignment statement contains a token of illegal type (cf. subsection

2.3.2).

99. "illegal use of A"

,~, can only be used with extension operands (cf. subsection 2.3.2).

100. "illegal use of I"
'I' can only be used in the identifier d/2.

101. "d,dshift,ba,ir,sf,df,eubc, or unibus are not allowed as source to

expression"

The specified carriers must not occur in a compo~nd expression (cf.

subsection 2.3.2).

102. "illegal type in arithmetic expression"

58

An arithmetic expression contains a token of illegal type (cf. subsection

2.3.2).

103. "register specification with no [It

Syntax: R[<index>]

104. "illegal general register specification <token>"

<index>::= 011121314151617110 11111211311411511611718·19·110·111·112. I
13·114·115·lbaldflsf l

105. "no] after register specification"

syntax :R[<index>]

106. "illegal register modifier <modifier>"

A register selector other than '1' or 'h' is used (cf. subsection 2.3.1).

107. "no> after register modifier"

Syntax: R[<index>] {«selector»}

108. "inconsistant general register specification"

Two different general purpose registers are used in the same microinstruction.

109. "illegal sbmh modification"

A <high selector> other than h, e, 1, or c is used for ,the B Register~

(cf. subsection 2.3.1)

110. "illegal sbm1 modification"

A -::low selector> other than h, z, 1, or c is used for the B Register

(cf. subsection 2.3.1).

111. "no> after sbm modification"

Syntax: b{«B modifier»}

112. "b - constant with no [If

Syntax: cr<number>]

113. "illegal b - constant"

<number> in, c[<number>] must be in the range [0:15].

114. "no] after b - constant"

Syntax: c[<number>]

115. "ram with no ["

Syntax: Rfu~ [<specifier>]

116. "illegal ram address field <specifier>

<specifier>in, RAM [<specifier>] must be s or tos.

117. "no] after ram"

Syntax: RAM[<specifier>]

118. "field selection with no >"

Syntax: <extension carrier>{«field selection»}{<~hift><number}

119. "impossible field selection"

(cf. subsection 2.3.2)

120. "no code to continue after last set of program"

59

Every set .•. tes group must be succeeded by at least one microinstruction

in the source microcode (cf. subsection 2.5.9).

121. "undefined label"

4.3.3 Recoverable Errors

122. "flag <opt>??

The assembly flag, <opt>, in the microassembler call, mic{<opt>}<name>.mic,

is not recognized (cf. subsection 4.1).

123. "only one filename allowed <file name> will be ignored"

The second file, <file name>, specified in the microassemb1er call, mic

{opt}<name>.mic, is ignored.

124. "truncated from line <line number>"

The input line contains too many characters and is truncated after line

<line number>. The maximum number of characters in a MICRO/40 input line

is 300.

The error messages for the following recoverable errors are preceeded by the

word, warning, on a separate line.

125. "no $ following macro <macro>"

The definition of macro, <macro>, is not terminated by '$'.

60

126. "no finis found"

(cf. subsection 2.5.3)

127. "illegal dest/msc function ~- s assumed"

The PPE field is not set and the DEST/MSC fields specify a push or pop

operation. One of the following DEST/MSC functions is assumed, according

to the context of the given microinstruction:

push; RD + emit; s + DMUX,

push; eubc + emit; stack + DHUX,

RD + emit; RM1[s] + DMUX; pop,

eubc + emit; RAM[s] + DMUX; pop.

128. "This line generates dest/msc function 'off'"

The data paths and functional units in the WCS 11/40 are not used.

129. "you are changing the value of field <field name>"

The input line contains two assignments to the microoperation field,

<field name>. The right most field assignment is used.

130. "field value too large, for <field name>"

The value assigned to <field name> is not in the range of legal field

values. The value is truncated.

131. "less than 2 exp(n) statements in this set"

Control store locations with 2n address boundaries are allocated for the

microinstruction in a set ••• tes group.

5. Terminal Session

In this section, we demonstrate the operation of the MICRO/40 assembler

by a commented protocol of a terminal session. To this end, several errors

have artificially been introduced into the example microprogram, fastc.mic

(cf. Fig.7). These errors are corrected using the UNIX text editor [2], and

the corrected microprogram is assembled. System commands and responses

start at the left margin of the page. Comments are indented. Responses from

the UNIX operating system end with the prompt '%'.

% mic -a fastc

An attempt is made to assemble a file whose name does not have the

suffic, mic.

illegal filename fastc

Non-continuable error.

% mic -a fastc.mic

MICRO/40 is called with a correct filename.

fastc.mic

defs.mic

26 lines read.

The microassembler acknowledges the acceptance of the 'required' file,

defs.mic, which contains 26 lines.

fastc.mic line 4

.=2001; d_2l0; b d

illegal symbol where number expected 210

Continuable error.

fastc.mic line 11

set

set within an open case

Non-continuable error. Control is returned to UNIX.

% ed fastc.mic

905

11

The UNIX test editor is called with the file,

fastc.mic, as an argument.

The editor lists the number of characters in tve file fastc.mic.

Line 11 of fastc.mic is requested.

set ! check for other instr

Line 11 of fastc.mic is listed.

s/set/start/p

Line 11 of fastc.mic is edited.

start check for other instr.

The corrected line 11 of fastc.mic is listed.

4

.=2001; d_2lo; b d

s/o/O/p

.=2001; d_2l0; b d

Line 4 of fastc.mic is corrected.

w

The corrected lines are written back into fastc.mic.

907

The new number of characters in fastc.mic is listed.

q

Editing is terminated. Control is returned to the operating system.

% mic -a fastc.mic

MICRO/40 is called again.

61

fast.mic

defs.mic

26 lines read

The acceptance of the file, defs.mic, is acknowledged.

fastc.mic line 24

doti; clkoff

undefined symbol doti

Continuable error.

fastc.mic line 25

r4 unibus

multiple _ in assignment statement

Continuable error.

warning

fastc.mic line 28

r7 _ unibus; but 16; ubf=12

you are changing the value of field ubf

Recoverable error.

66 lines read

62

MICRO/40 acknowledges the acceptance of the file fastc.mic. Control is

returned to UNIX.

% Is

A listing of the names of the existing files is requested.

defs.mic

fastc.mic

No object microcode has been generated.

% ed fastc.mic

907

24

doti; clkoff

slolalp

dati; ckoff

+
Request for ne~t (25) line of fastc.mic.

r4 unibus

sl --1/1/ __ I _ I p

r4 unibus

38

r7 _ unibus; but 16; ubf=12

s/ubf=12//p

?

The editor asks for an acknowledgement of the deletion.

s/ubf=12//p

r7 unibus; but 16;

s/6;/6/p

r7 unibus; but 16

w

899

q

Correction of lines 24, 25, and 38 of fastc.mic.

% mic -a fastc.mic

MICRO/40 is called again.

fastc.mic

defs.mic

26 lines read

66 lines read

63

No errors are detected and the file, fastc.mic is assembled. Control is

returned to UNIX.

% Is

A listing of the names of the existing files is requested.

defs.mic

fastc.ass

fastc.lst

fastc.mic

fastc.tab

The files, fastc.ass, fast.lst, and fastc.tab, have been generated,

as MICRO/40 was called with the assembly flag, -a.

% as fastc. ass

The UNIX assembler is called to generate the object microcode.

% mv a. out fastc. bin

The generated file is stored in the file names fastc.bin. Note that

fastc.bin is directly generated by MICRO/40, if no assembly flag or the

assembly flag, -s, is used in the microassembler call.

Acknowledgement

The MICRO/40 assembler was originally implemented by R. Kallerhoff of

the Technical University Berlin. The authors are indebted to H. Mauersberg,

also with the Technical University Berlin, for providing us with the micro­

assembler and for many helpful suggestions concerning the development of a

microprogramming laboratory around a PDP-ll/40E. Thanks are also due to

B. E. Blasing who helped with the installment of the microassembler in our

microprogramming laboratory. The authors wish to express their gratitude

b4

to Professors W. K. Giloi and W. R. Franta for initiating the microprogramming

laboratory project at the University of Minnesota, The microprogramming

laboratory is funded by University Computer Services, University of Minnesota.

65

Appendix

PDP-ll/40E Register-Transfer Block Diagrams

Extemal;Pr~~essor Options

to from

J\

t

~ ~ INSTRUCTION REGISTER I
o::t

o::t
c:::
Ul c:::

Ul ROM ... GENERAL-PURPOSE,
REGISTERS

,..
\,IJ

INSTRUCTION CONTROL STORE
L.

DECODING -
J, ~ LOGIC and IPS REGISTERJ MICROBRANCH (256 x 56)
.~ ...

CONTROL

\If

I B REGISTERI IB CONSTANJ:ru

1 J --- ,II III

IBU' I'MUXJ ID MUXj lB MUX I I\j I' j I' 't I -PROGRAMMER'S
-~ j,-

CONSOLE
\N A7

t

~ -g
ALU 'If

CONSOLE U WORD J UFF
CONTROL 1

~ lL--rnt-'rxl EITtGISTERJ BA MUX MICRO INS TRUE~ TIMING DATA ~ 1-. CONTROL CONTROL TION SEQUEN-. DISPLAY : SHIFTJ... LOGIC SIGNALS CING, MONITOR UNIT J
~ LOGIC ~~ ADDRESS ----.

DISPLAY [., BA REGISTER I TIMING
~

SIGNALS
SWITCH

REGISTER DATA PROC ~SSOR INSTRUCTION PROCESSOR

_\t v w \V I UNIBUS I UNIBUSII: UNIBUS I UNIBUS J IUNIBU~1 I UNIBUS .I UNIBUS
DRIVER DRIVER RECEIVE DRIVER DRIVER TIMING and CONTROL INTERFACE I . I -"'- I- _ .,.

\'j 'l' J YI- ~.
-_.

'II.
U NIB U S

DATA PROCESSOR SECTION INSTRUCTION PROCESSOR SECTION

-.,

[
SrACK I

POINTERi
1

STACK

(16 x 16)
-

,~,It It J
S MUxl

-

\1

RAM

CONTROL STORE

(1024 x 80)

r IE MUxl i ~~ t~ __________________________ ~
I

i

.f

~ CPFF 1r---.

,
SHIFT/

MASK
UNIT

PROM
CONTROL. STORE

(32 x 80)

I J EUBC BUS It--l"_-4-+ __ ~ __ _
,~ DRIVER I ¥. R:'

RD Busl
DRIVER!

\V
l XU WORD Ixupp/

-

l ~ l'----+--_-i
J~

from the KDII-A
Data Processor

,
to the KDII-A
Data Processor

CONTROL
SIGNALS

to the KDII-A
Instruction Processor

".

" from the KDII-A
Instruction Processor

to Stack

and RAM

i
IE MUxl

4~ l' from S MUX

------------------~-~~1 CPFF

WCS 11/40 Data Processor Section

68

from Shift/

Mask Unit

1
RD BUS DRIVERJ

---------------------~--- --~------
KD1l-A Data Processor

- General Purpose -r'
,.

Registers
RD

DMUX
BUS J 1

BUS
PS Register

'I r ,

PS<O>=PS(C)

l D MUX I
~I' J~ • "1'

--------+---------------~--------------~--------------------~--.

from

UNIBUS

from
B MUX

.. ~ 1
CARRY-QUT _COUT15'\ BIN

Multiplexor ~OUT7 \

COUT MUX).LU 15 \ ALU

\'

'V PS C)
AIN f CARRY-INI~

JII1i_~. ---4 LOGIC ~~

r D Registerl

D<15:0>

Data Processor Interface

" to

BA MUX

H
::s
en
I"'t
Ii e
(")
I"'t
1-','
o
::s
l"d
Ii
o
(")
(l)
CJ)
CJ)

o
I-(

H
::s
I"'t
(l)
Ii
I-h
Pl
n
(l)

from EMUX <15· 0 >
E.MUX

I
WCS 11/40 Instruc- I KD11-A

t ~s <15:0>
from tion Processor

Section

InstTuction

Processor
Stack

~-----~'~-------~TOS<14~2,1>
RAM

CONTROL STORE

(1024x80)

PROM

CONTROL STORE

(32x80)

"

r"'

~OS<12: 3 >
~ UPP~
~--f

... MUX ~JPP<·l: 0 >, UPP <7 :0>

UPP<7:0 >

CONTROL
STORE I j

~~_UP_P_<_4_:_0_>_ --t ADDRES SING IE_:--------+---...
"' ROM CONTROL

XUPP<2:0>

XU BUS<79:0>
i

i

-) CONTOL STORE

(256x56) .

to XUBUS< 79: 0>1
S MUX'

XUBUS <79 : 59 >
! XUljUS

:<55: 0> ."

I U BUS<55:0> I XUBUS<S8:56>
UBUS

from
Shift/
Mask Unit

EUBC BUS <10: 0 > j <7: 0 >

EUBCBUS<10:8>! '~i EUBCBUS<7:0>J ~ ~
lOR, U L--QR .1

"J . ___ ~~
1~~ __ ~X~U_\~~O~RD~ ______ ~IX~UP~P~~I ____ ~U~WrORD~ ______ I~_rU~PTP~1

to EMIT< 15: 0> I ! 1.1-

S MUX ~~--------~ WCS 11/40 MICROINSTRUC­
TION SEQUEN­
CING MONITOR CONTROLLER

~
WCS 11/40 Control Signals

,~

KD11-A
Control
Signals

LOGIC

H ~ H
::s ::3
CJ) n en
I"'t Ii rt
Ii 0 Ii

"'d e e
Ii n OJ ·n
0 I"'t Ii rt
n l-'e ~ 1-1'
(l) 0 ::s 0
CJ) ::s n ::s en ::r
0 ~ ~
Ii ro C1 ro

n 0 OQ
Io'%j 0 :::s 1-"
...... 0.- n en
~ 1-" Ii rt

OQ :::s 0 (1)
Ul ()Q I--' Ii

" 'll _,~ "

I BUT MUX I

BUBC
<5:0 >

IV

References

[1] Fuller, S. H.; Almes, G. T.; Broadley, W. H.; Forgy, C. L.; Karlton, P. L.;

Lesser, V. R.; Teter, J. R., "PDP-ll/40E Microprogrannning Regerence

Manual," Department of Computer Scienc, Carnegie-Mellon University, Tech.

Report l6-January-76.

[2] UNIX Documentation Book I, "Introduction to UNIX," Computer Systems

Laboratory, Department of Computer Science, University of Minnesota.

[3] UNIX Documentation Book II, "UNIX Progrannner's Manual Section I -

Connnands," 'Computer Systems Laboratory, Department of Computer Science,

University of Minnesota.

[4] UNIX Documentation Book III, "The "c" Progrannning Language," Computer

Systems Laboratory, Department of Computer Science, University of Minn­

esota.

[5] Berg, H. K.; Blasing, B. E., "PDP-ll/40E Microcode Simulator Primer,"

Department of Computer Science, University of Minnesota, Tech. Report

78-10.

[6] Mueller, J., "SMILE - Manual," Institut fUr Softwaretechnik und Theoretische

Informatik, Fachgebiet Betriebssysteme, Technical University Berlin, Dec.

1976.

[7] Berg, H. K.; Samari Kermani, N., "A Primer on the SMILE l1ieroprogram Load

and Test System," Department of Computer Science, .University of Minn­

esota, Tech. Report 78-11.

[8] Teter, J. R., "PDP-ll/40E Hardware Maintenance Manual," Department of

Computer Science, Carnegie-Mellon University, September 1976, revised

June 1977.

[9] Berg, H. K., "A PDP-ll/40E Microprogrannning Primer,H Department of

Computer Science, University of Minnesota, Tech. Report 78-8.

[10] Berg, H. K.; Covey, C. R., "A Primer on the Use of a Logic State Analyzer

as a Microprogram Debugging Aid," Department of Computer Science, University

of Minnesota, Tech. Report 78~12.

