Computer Science Department
114 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

PDP-11/40E Microcode Simulator
Primer
by
H. K. Berg and B. E. Blasing

Technical Report 78-10
' July 1978

Cover desigﬁ courtesy of Ruth and Jay Leavitt

PDP-11/40E Microcode Simulator Primer

by

Helmut K. Berg and Bradford E. Blasing
Department of Computer Science

University of Minnesota

Abstract

This report is an introductory guide to the use of the PDP-11/40E
microcode simulator. It is intended to familiarize new users with the
microcode simulator as one of the microprogram development aids in the micro-
programming laboratory, and as a reference for advanced users. The operation
of the microsimulator and its interface with the MICRO/40 assembler and the
UNIX operating system are described. The simulator commands and their use
are presented in the form of a tutorial. Suffiéient detail on‘the PDP-11/40E
hardware and the inconsistencies of its model inbthe simulator software is
provided such as to identify the limitiations of the simulator's error de-
tection and location capabilities. A classification of the errors which are
detected by the simulator and guidelines for the interpretation of the assoc-
iated error messages complement the information needed for the day-to-day use
of the microcode simulator. The concept and use of the microcode simulator

is demonstrated by a complete simulator terminal session.

1. Introduction

The microcode simulator described in this report allows interactive testing
of PDP-11/40E user microprograms written in the MICRO/40 assembly language [1].
The microassembler and simulator were developed at Carnegie-Mellon University,
Department of Computer Science, to run as cross assembler/simulator on a PDP-10
computer. The simﬁlator version we refer to in this report is a PDP-11 version
of the original simulator that was written at/the Technical University Berlin,
Institut fiilr Softwaretechnik und Theoretische Informatik, Fachgebiet Betriebssysteme.
It runs together with the MICRO/40 assembler on a PDP-11/40 under the UNIX oper-
ating system [2,3]. The simulator is written in the "C" programming language [4],

except for some UNIX-assembler procedures.

The PDP-11/40E was developed at Carnegie-Mellon University [1,5]. It is
a standard PDP-11/40 computer that has been extended by the following hardware
features: » |
- 1K 80-bit words of random access (RAM) control store for storing
user microprograms.
- 32 80-bit words of read-only (PROM) control store for bootstrapping
microprograms.
- a 1l6-word stack for temporary data storage.
- a shift and mask unit and a carry control unit which extend the
data manipulation capabilities of the basic PDP-11/40 processor.
The 3-Rivers Computer Corporation offers these hardware accessories as a
writable control store option (WCS 11/40) for the PDP-11/40. The design of
this extension allows user microprograms access to all functional hardware
units and data paths in the basic PDP-11/40 processor and in the WCS 11/40.
Register-transfer block diagrams of the PDP-11/40 processor, WCS 11/40, and
their mutual interfaces are given in the appendix. Introductions to the
microprogramming of the PDP-11/40E and the MICRO/40 assembler are given in
[1, 6, 7].

This report is intended to provide an introductory guide to the use of
the microsimulator as one of several microprogram debugging aids for the
PDP-11/40E [8, 9]. Therefore, we first discuss (section 2) the position of
microprogram simulation among other microcode validation techniques. The
operation of the PDP-11/40E microcode simulator and its interface with MICRO/40
are described in section 3. To proceed, in section 4, the simulator commands

are specified and their use is demonstrated by examples. Then, the simulator

error messages are discribed, and guidelines for their interpretation
are given in section 5. Following comments on the implementation
of the simulator in section 6, we show, in section 7, a complete example of the

use of the simulator.

2. Microcode Simulators

The basic approaches to program validation are formal correctness proofs
and testing. Proofs of formal correctness attempt to show the absence of
- errors, whereas testing is only capable of showing the presence of errors,
but not their absence. Both methods must be supported by debugging techniques
which aid the location and correction of errors. The lower complexity of
operations and data structures affected by microinstructions and the small
size of microprograms as compared to software programs further formal correct-
ness proofs of microcode. However, the fact that microprograms affect only a
small and well-defined set of resources and data items has also led to micro-
codg testing and debugging techniques which are not practical for software.

Microcode simulation is such a testing technique.

A microcode simulator is a software program that simulates the execution
of microoperations in the functional hardware units and data paths of a
processor. Such simulation programs usually allow the tester to interactively
trace the execution of individual microinstructions in a microprogram. '
Furthermore, facilities are provided for locating and corrécting errors by
examining and changing register contents at spec1f1ed breakp01nts in the
simulation run. The PDP-11/40E microcode simulator includes all these standard

features.

A microsimulator represents one of a collection of utilities for micro-

program construction, testing, debugging, and maintenance in a microprogramming
support system. A typical microprogramming support system includes a microassembler,
a microsimulator, and a microprogram loader. More sophisticated support systems

may also include test set generators, external hardware accessories for micro-
program instrumentation,and microprogram verification systems, etc. The loader

in such a system usually transforms the routput ffom the microassembler such that

it can directly be interpreted by the micrdsimulator, and loads the binary
- version of the assembleé microcode into the control store. In our microprogramming
support system for the PDP-11/40E, the MICRO/40 assembler generates files to be

used by the microsimulator and a separate microprogram load and test system,

SMILE [10], [8].

For program testing, in general, we can distinguish between static and
dynamic variants. Static testing, via program analysis, has not been applied
to microprogramming. Dynamic microprogram testing, i.e., testing via micro-
program execution, can be categorized as soft (off-line) testing or hard (on-
line) testing. A microcode simulator is a typical off-line test system.
Generally, only static programming errors can be detected by simulator testing.
The ability to discover dynamic timing errors with a simulator depends on how
closely the simulator implementation reflects the microarchitectural character-
istics of the machine. Debugging of dynamic errors may be supported by micro-
instruction formats which make microoperation timing conflicts detectable
through microcode examination in the microassembler. However, the detection
of dynamic errors usually requires on-line test procedures. Typical on-line
microprogram testers are interactive debuggers and speciél hardware accessories
for the instrumentation of microprogram executions. An interactive debugger
essentially allows the standard simulator commands to be performed with respect
to the execution of microprograms in the physical machine. A straightforward
implementation of a PDP-11/40E debugger is not possible, as important resources
such as the instruction register (IR), the bus address register (BA), etc.
are not accessible. Therefore, the use of a logic state analyzer as an on-line

microprogram debugging aid for the PDP-11/40E has been investigated [9].

3. Microcode Simulator Operation

In this section, we discuss the basic operation modes of the micro-
simulator. For a detailed description of the microassembler operation, the
reader is referred to [7]. Throughout this report, we refer to the example

1)

microprogram, called fastc.mic, shown in Fig.l. The microprogram, fastc.mic, -
implememts two machine language subroutines that handle the environment switch

for subroutine calls in the "C" programming language of UNIX. It saves and restores
registers that are used for parameter passing in subroutine calls. Further details

of fastc.mic will be introduced as needed.

1) This microprogramvwas developed by K.Bullis, J.Bjoin, and T.Lunzer as a

course project for (H.K.Berg) CSci 5299, Microprogramming, Winter Quarter 1978.

réauige defs.mic

bedin. noog

«=2001F 4..2105 b.d
d_rir-b !comrare instruction
skirzero
d.2115 b_d
set
start leheck for other instre
d_rir-h
skirzera
nooP
set
goto 150
start 1211 instr start . 1210 instr
d_rS lel<d~r3 drba.ré6-25 ré.d !sush r5
rli d d-r55 dato’ clhkoff
dryba_ri-25 rl.d lror r4 d-r7§ P3 . 1 pSel—-r2
dati$ clkoff rS_d
r4_unibus ro_d 'r0<-rS
basd_ri-2% ri_d !ror r3 d_.ré I r5<-vré&
datis clhkoff rS.d . i
r3_unibus deba_ré6-25 ré.d lrush r4
bard_r1-25 ri.d !ror r2 d_r4j datoi clkoff
datij clhkoff dyba_ré6-2% ré_d lrush r3
r2_unibus d.r3i datoi clkoff
bard_rS lspi-r3 dyba_ré-23 ré_d trusn r2
ré-di datis clkoff d.r23 datos clkoff
rS_unibus Ir5<~-(sr)t d_ré~2;5 ré_d Ipbi~ré6=-2
d_ré+2i ré.d d_r0 tr7<~p0
ba_réi dati .. Irts pe r7-dj but 14
d_ré423 ré_ds clhoff saoto 14
r7.unibusié but 14 end
doto 14
end tes
tes finis
end

Figure 1: fastc.mic

The first line of fastc.mic is a command to the MICRO/40 assembler
that "requires” the microcode source file defs.mic to be bound with the
actual microcode of this microprogram. The file defs.mic contains stan-
dard macro definitions which have been found to be of general uée. defs.mic
is listed in Fig. 2. The macros in defs.mic define mnemonic names for
registers, microoperations, and microinstruction addresses which can
subsequently be used in fastc.mic. The primary purpose for including the
given macro difinitions is to make the source microcode of fastc.mic more

comprehensible.

User microcode for the PDP-11/40E is written in the MICRO/40 assembly

language. Microcode source files are generated using the UNIX text editor [2]

The name of a microprogram source file must be of the form
<name>.mic,

where <name> is £Fi i
any legal name, e.g., fastc. The suffic "mic" indicates that

the source is written in MICRO/40.

Figure 2:

| standard definitions for micro —-- 11 October 1974

1 ' revt 19 Novembher 1974
! rev! 7 December 1974
! rev! 11 June 1975

! .

r0 = r[01%3 rl = rL1]%5 r2 t= L2045 r3 = rL314%
r4 = r[41%5 rS = rL504S réd 3= rLALSS r7 t= v[71%
r10 $= rL103%5 vll 3= rC111%5 vi2 3= vLI2T65 ri3 $= rl131%
ri4 = r[14345 1S = rC157%5 r1é6 = rL161%65 r17 $= rL171%
ror 1= rlé6l$s ree $= rL71%5 redf t= rLdfl1$s rsf = rLsfls
teme $= rL101$3 vsrce 3= rL110%5 rdst = rL123%

rir = rL133%3 vect = rL[141%7 temc = rL153%

spus t= rL161%F adrse = rL173%5 - rha $= rLlbals

dati = bus=1%3 dato {= bus=0%

datir = bus=3%7 datob (= bus=7%

el t=clk =2%% e t=0lk =4%5 3 1=clk =6%

exit $= musf = 16% | return to rom

bedin $= bed! +=20003% »

dgoto = xurf =%j case != eubc.$; rorst = d_s$

but = ubf =%$5 skirzero I= ubhf = 12¢ ! skir on d = 0O
return = eubc.sh? enderroc = xurf=0%

emod = 11:9%5 dmod = 5¢3%F sror 1= cp=l% -

1 end of macros
I ADDITIONAL MACROS
POFP$=NEST=13MSC=4%

FUSH!=NEST=1MGC=3%

defs.mic

To assemble a microprogram source file named, <name>.mic, the command 2)

mic[opt]<name>.mic

2)

Throughout this text we use the following meta symbdls:

[]

- encloses optional objects in command 1i .
ines (i.e. itid
allowed). (i.e., 0 or 1 repetition

{}

- denotes multiple occurrences of objects in command lines (i.e., O or
more repetitious allowed).

isvtyped, where opt is one of the three legal options -a, -s, or -d. If none

of these options is used in the above microassembler call (i.e., mic <name>.mic),
three fiies, <name>.lst, <name>.bin, and <name>.tab are generated. <name>. lst is
a listing of the microprogram object code in the 80-bit microinstruction format,
followed by a list of mnemonic addresses and associated control store addresses.
Fig. 3 shows this listing for the example microprogram fastc.mic. The file
<name>.bin is the binary version of the assembled microcode which is loaded into

the writable control store. <name>.tab is discussed below.

The options in the microassembler call instruct MICRO/4O to generate

the following output.

-a The microprogram source is assembled and a pseudo-readable
form of the object microcode is stroed in a file called
<name>.ass. This file is in UNIX assembler format.

From this file, the binary version of the assembled
microcode, <name>.bin, can be generated using the

UNIX assembler.

-d The microprogram source is assembled and a pseudo-
readable form of the object microcode is stored in
a file called <name>.dec. This file is in DEC assembler
format, so that the binary version of the assembled
microcode can be generated using the DEC PDP-11 as-

sembler.

-s The microprogram source is assembled and the simulator

is called, if no assembly errors occured.

€ eIndig

18T *03se]

inst

besinnoor
«=20013d_2103b..d
d_rir-b
dyba_ré6-2iré_ diru
40t0150
dorSirld-rH
d-rir-blcomrarein
skirzero
3.211b._d
skirzero

noor

ri_d
dyba_ri-25ri_dliro
datirclhoff
ra.unibus
basd_ri-25ri_d!ro
datisclhoff
r3_.unibus
bard.ri-2iri_diro
datisclkoff
r2_.unibus
bard_rSlep{-rS
ré_didatisclhkoff
rS.unibus i rS4-(sp
d_ré+23rb.d
ba_résdatilirtsere
doré6+2iré6 diclhkof
r7_unibusibutlé
d$o0tolé
d_rSidatosclhoff
S.r73r3rSi-17
rS.d

rO_d! rO4-p5
d_rélrS<-ré

rS5.d
drba_rb~2iré.disu
d_r4sdatoscikoff
deba_ré-2iré.dlruy
d.r3idatosclkoff
drba_rb-2iré6dipry
d_r2sdatosclkoff
doré6-25rb.dl rb<~p
d_r0lr7<-r0
r7_dsbutlé

dotolé

adr

2000

2001

2002
2003
2004

2005 .

2006
2007
2010
2011
2012
2013
2014
2019
2016
2017

2020

2021 ...

2022
2023
2024
2025
2026
2027
2030
2031
2032
2033
2034

2035 .

2036

2037 .

2040

2041 .
2042 .

2043
2044

2045

2046
2047
2050
2051

2052

2053
2054

labels and addresses

===

bes

2000

emit scom pPe cr sc rm 1lm dest msc

N
-
o0

OOOOOOOOOO‘OOOOOOOOOOOOOOOOOOOOGOOOOO)‘-OOOOOO

COCOOCOTCTCOOOOOOCOLOTCCOCCOOCOODOTVOOCOCOOOOCC ©CO

CCOO0OO0O00O0OTONOOCOCOOOO0OVLCOCOLOOCOO0COCOOCOTOCCO ©O

OOOOOOOOOOOOOOOOOOOOOO_OOO'_OOOOOOOOOOOOOOOOOO (o]

0

<

OOObOOOObO'OOOOOOOOOOOOOOOCOOOOOOOOOOOOO’OOOO

0
10

[e =]

OOOOOOOOOO‘OOOOOOOOOObOOOOOOOOOOOOOOO‘OOOOO

0
10

<O

-

00 000000000000 0000000000000000O00OOCOOROO0O

OOOOOOOOOOOOOQOOOOOOOOOOOOOObeQQOOOOOOOOOO (e~

i

¢

CO0O000O0O00CO0000O0O00O00000C00OCOVOOOCOROOOOOO RO

L2004 .
2014

-G

xuprf clk ir wr

2001
2006
2011
2035
150
2013
2007
2010... .
2002
2012 .

2015

2017
2020
2021 .
2022
2023
2024
2025
2026
2027
2030
2031 .
2032 ..
2033
2034
16
20346 -
2037
2040
2041
2042
2043
2044
2045
2046
2047
2050
2051
2052 ..
2053 .
2054
16

NRAPUOCUDUGRNINNAUNKNNONGWANWUONHNORUWINNNONIINOION
00000V OCO00O0000O0000O00000O0OO0OODBOOOOCOOOOO OO OO

CLIOLOLOWOUUNOUNOOOHUHOWUHUOWOUHWOLUDBHNHUO OO OO KO ©O

0O0COOCO0000OO0O0CO0O0O00VO0OCOOOO0OOVOOOOHOOOOO0O »O T
CORMPHPERINRNHNOHOOMRHOOHOHROOROONROOHODHOOORMORMHO KK RO

d ba.bus. dad srs a3lu bec

0
)

10
10

(= =]

oy

a

[y

s

COCOHOOOROROO0COOQCOOHOHOOOOCOROORORRCOCOOROO OO

=

= S) ’
COCOOCOCCOOOOOCVCOCOCOTTCOOOLCOOOCVCOROOOTOOOCOC

[
OOO SO

COCOOHOHROHOOOOO0OOOCHOOOHROOHROOHODHOOOOOOCOO RO
COOCOUOUIOUNOOOOOOUNOOOHOOROOMOOHKOOKDOODOOOO0O0 00 OO0

"

OOOF‘JONO?~JOMOOOOOOOOFJCFJOOOCONOOMOOMOOOOOOOOMOOO

bm dm bam ubf srx_rif

- e

-

[y

[y

T T .
OOONONONONOOSCOOCCOCOONONOOOODOONOONOONOCTCOOOOONOOD O

[y

CNONONOMNONNONNOOCOHNONRNORONHRONHOKNOONOOOCONONO
CO0VOO0V0O0COOCOCOO0OOVOOOOOHOOOHOOOOCOODOOCDOVOOTCOCOOOOO0O0C O

.0

‘
t

Fey
6&Ah‘ﬂlub*th MR RE R RO RREBERMEEORAORMRORMOOOORKMO KO

-

: ' - : .
CROCOOOCOOCOCOOOOCOCOCOROCOCOTCOOOCOCOCOOTOONONOCOCOOO0C O

[

o

ONOORNOUWUGDIDONOCOUNUONDGORDPUORUNORWOMDLDOMHOOOOLUNO LC ©

-

When the microassembler is called with the "-s" optioh, it generates

the following two files to be used by the microsimulator.

<name>.bin
The binary version of the assembled microcode is generated from <name>.ass,

using the UNIX assembler as a post-processor of MICRO/40..

<name>.tab

This file is generated specifically for the simulator. It contains
~information used by the simulator for interperting simulator commands. This
information includes field names, field bounds, lower and upper limits (control
store addresses) of the microcode generated, register names, macro names,
labels, etc. From this file, the simulator generates a symbol table which
is used to- interpret simulator commands. As a result, simulator commands can
contain any symbol string that is recognized by the microassembler, including

names of user-defined macros.

The call of MICRO/40 with the "—s" option invokes the microsimulator
after assembling the microprogram. This invocation is useful, when assembled
microcode is to be tested immediately after assembling. For instance, when
changes are made to a microprogram, the effect of these changes can be observed
by simulating the reassembled microcode. Alternatively, the microsimulator can
be called directly on a pre-assembled microprogram, using the command

sim <name>.bin <name>.tab . ;

This invocation allows the microprogrammer to simulate his microprogram in

several terminal sessions without reassembling the source microcode.

When the4simu1ator is invoked, it goes into command mode, which is
indicated by its prompting with ">" on the DEC-writer. In this mode, any
of the commands discussed in section 4 are always legal. If a command is
given which conflicts with a previous command, the microsimulator obeys the
more recent command. The simulator leaves the command mode, when a command
is issued that effects the execution of a microprogram in the simulated
PDP-11/40E hardware (G or S command). It returns to command mode whenever
the execution of a microprogram is halted. A return to command mode may be
caused by setting breakpoints in the microprogram under execution; encountering
~certain errors, or an user interrupt generated by pressing the delete key at
the DEC-writer. User interrupts may be generated at any time during microprogram
execution and cause the simulator to enter command mode after the execution of the
current microinstruction. A simulation run is terminated, i.e., control is returned

to the UNIX operating system, by the "exit' command.

The control store address space of the microsimulator is limited to the
writable control (RAM) and the bootstrap control store (PROM) in the WCS 11/40.
That is, any control store address in the range [08:3778](add:ess space of the
PDP-11/40 emulator ROM) causes an address error in the microcode simulation
run. Thus, for each control transfer from the WCS 11/40 control store to the
standard PDP-11/40 ROM, the simulator automatically interrupts the simulation
run and returns to command mode.

Besides commands that allow for the location of errors, the microsimulator
provides facilities for microcode correction (modification). To this end,
the binary representation of the microcode as used by the simulator can be
changed by reassigning the content of individual 16-bit main memory words
(cf. SET command). Note, however, that this facility supports only minor
changes in existing microinstructions which may immediately be tested during
microcode simulation. Microcode changes as carried out with the simulator do
not affect the microcode to be loaded into the WCS 11/40 control store, i.e.,
such changes do not modify the object microcode in the file <name>.bin. Hence, to
retain changes made during microcode simulation requires modification and

reassembling of the source microcode in <name>.mic.

4. Simulator Commands

In this section, we discuss the simulator commands and give examples of
their typical application. The simulator commands can be divided into two
groups, namely simulation control commands and input/output control commands.
The first group of commands allows the user to specify control paths and modes
for the simulation of a given microprogram. The second group of commands
provides means to investigate the result of simulation and to initialize the
simulated hardware of the PDP-11/40E. »

Simulator commands are written, one per line, at the DEC-writer. The
syntax of the command lines is

<command name>[<identifier>]{<delimiter><identifier>}.
Delimiters are either the symbol "= or the symbol ”,".‘ Identifiers may repre-
sent <number>, <register>, <label>, or <name>. <number> can be any integer in
the range [-32768:65535]. Numbers greater than 32767 are assumed to be re-
presented in a 16-bit word without sign bit. All numbers are assumed to be
octal, unless they contain the digits 8 or 9, or a trailing decimal point
in which case they are assumed to be decimal. <register>, <label>, and
<name> stand for any string that can be identified via the simulator symbol

table. <register> must represent a register name, including user-defined

10

macros. <label> may represent a mnemonic label or a number identifying a
microinstruction address in the control store. <name> stands for any string
identifying a register, a label (i.e., a microinstruction), a macro, or a UNIX
file. The legitimate identifiers for registers, mnemonic labels, and macro
are defined by the source microcode in <name>.mic and the associated macro
definitions (cf. Fig.l and Fig.2). Numbers identifying microinstruction'
correspond with the control store addresses as assigned in the file <name>.lst

(cf. Fig.3).

4.1 Simulation Control Commands

g [<label>]

This command starts or continues execution (simulation) of the
microprogram. The specification of a label is optional. 1If a G
command is given without a label, before any microinstruction has been
executed, execution begins at location 2000 (first word in the writable
control store). If a G comménd without a label is given, after some
microinstructions have been executed, simulation continues where the
simulation was last interrupted. If a label is specified in a G
command, execution starts with the microinstruction stored at the
associated control store location. For example, the command

g begin
starts simulation of the microprogram fastc.mic at location 2000
(cf. Fig.l and Fig.2). The command
g 2035
begins execution with the microinstruction
d r5;datojclkoff
(cf. Fig.3).

When the simulation is invoked by a G command, the simulator
leaves command mode and executes the microprogram starting from the
defined location. It returns to command mode when an érror occurs, a
previously set breakpoint is reached, or an interrupt is generated by
the user. For example, when the command, g begin, is given and a
machine instruction other than 2108 or 2118 executed, the microinstruction,
goto 150, is encountered in fastc.mic and hence, an address error occurs.

At this point the simulator prints the error message

150: address out of bounds

11

before returning to command mode (i.e., prompting with ">"). For the

command, g 2035, the exit from the WCS 11/40 control store address

space is taken at control store location 2054 and the error message,
16: address out of bounds ’

is printed.

STEP
s [<label>][,<number>]

This command starts or continues execution (simulation) of the
microprogram in a stepping mode. Analogous to the G command, execution
starts at location 2000, if the S command is given without label and no
microinstructions have been executed. If a label is given, the stepping
begins with the microinstruction stored at the associated control store
location; otherwise, the stepping continues from the point where the
simulation was last halted. "

The number in the S command specifies the number of microinstructions
to be stepped through. If no number is given, thé default '1' is assumed,
and the simulator returns to command mode after the'execution of a single
microinstruction. While stepping through the microporgram, the control
store addresses (not the mnemonic labels) of the simulated microinstructions, are
printed out, before the appropriate microinstruction is executed. There-
fore, this command is especially useful for examining branches in a micro-
program, as a trace of all executed control store locations is generated.

For our example microprogram, fastc.mic, the initial invokation of
the simulation with the S command,

S,5 ,
steps through five microinstructions generating the output,
2000
2001
2006
2007
2010

> ’

if a machine instruction other than 2108 is executed. The S cbmmand,
s begin,5 , v
obviously does the same, whenever it is given during the simulation
process. As another example, the S command,
" s 2035 ’

12

executes the microinstruction,
d_r5; dato; clkoff,
with the output,
| 2035
> .

The S command causes the simulator to leave command mode and to
step through the specified number of microinstructions, before returning
the command mode. If an error occurs, a previously set breakpoint is
reached, or an interrupt is generated by the user, it‘feturns to command
mode, before the specified number of microinstructions has been simu-
lated. For example, the S command,

' s 2000, 10
generates an address error at location 2004 of fastc.lst and geneiateé
the output,
12000
2001
2006
2007
2010
2002
2011
2012
2004
address out of bounds

> .

TRACE
t <name>{,<néme>}

This command sets a trace flag on either a register, a mnemonic
label, or a control store address in the microprogram. If a register
is being traced, its new content, and the control store address of
the microinstruction which modified it are printed after each mod-

fication. A microinstruction is traced by printing the label or

control store address as specified in the T command, each time that
microinstruction is executed. Any combination and number of registers
and microinstructions may be tfacedsimultaneouslyby specifying a list
of register names and labels in the T command. |

Registers and microinstruction which are known under more than one

name can be traced under only one name at a time. If an attempt is made

13

to trace a register or microinstruction under more than one name, only
the name specified last will be used (and printed).

In the case of our example microprogram, fastc.mic, we might be
interested in tracing the registers R[2], R[3], and R[4]. These
registers are saved in the second segment of fastc.mic (2108 instruction)
by pushing them onto the stack, and restored in the first segment of

fastc.mic (211, instruction) by popping them off the stack. This trace can

be accomplisheg by the commands
t r2, r3, ré4
> g 2013 ' ‘
If the stack contains the values 10, 11, and 12 for the registers R[2],

R[3], and R[4], respectively, this commands generate the output,

2016: r[4] = 12
2021: r[3] = 11
2024: r[2] = 10

16: address out of bounds

> .
In this case, simulation was started at control store location 2013 and
hence, exits at location 2034 with an address error.

To examine whether fastc.mic was invoked by a 2108 instruction
(jump to location 16 at location 2054), a 2118 instruction (jump to
location 16 at location 2034), or an illegal instruction (jump to
location 150 at location 2004), the exits from the writable control
store may be traced as follows, |

t 2004, 2034, 2054
For different invokations, the simulator generates the following
outputs,

> g 2013

2034

16: address out of bounds

> g 2035

2054

16: address out of bounds

> g 2000

2004

150: address out of bounds

> .

14

A T command may be used in stepping mode. 1In this case, addresses of
traced microinstructions are printed twice. For exaﬁple, the following
commands, inkwhich traces for microinstructions and registers are combined,

t r2, r3, r4, 2015, 2017
> s 2013, 8 s
generate the following output

2013

2014

2015

2015

2016

2016: r[4]1=16

2017

2017

2020

2021

2021: r{3]}=10741

2022

> .

When tracing, the simulator stops every 16 lines of output and
prints a "#"., This measure is included since the simulator ﬁas
originally designed to be used with a CRT on which only 16 lines of
output can be displayed at once. The traced execution of a micro-

program is resumed, when a "return’ is typed.

BREAK

b <name>{,<name>}

The B command is a variant of the T command, with the difference
being that it causes a break whenever a traced register is modified or
a traced micoinstruction is executed. When a breakpoint is reached,
the simulator prints the trace information and returns to command mode.
Before the break occurs, the exécution of the microinstruction broken
on or in which a register being brbken on is modified will be completed.

In the B command, the same restrictions for variable hames and
microinstruction labels apply as in the T command. Additionally, it
is not possible to break and trace on the same registér or microinstruction
‘at the same time. If én attempt is made to break and trace on the

‘same name, or more than one name was given for the same register

15

or microinstruction, the name specified last will be used (and printed)
in the last command issued.

The following examples for the use of the B coﬁmand correspond to
those discussed for the T command. Note the difference in the output
for the B commands and T commands.

b r2, r3, r4

> g 2013

break 2016; r[4]
> 8

break 2021: r[3]
> 8

break 2024: r[2]
> 8

16: address out of bounds

12

11

10

>

b 2004, 2034, 2054

> g 2013

break: 2034

> 8

16: address out of bounds

> g 2035

break: 2054

> 8

16: address out of bounds

> g 2000

break: 2004

> 8

150: address out of bounds

>

The trace contained in a B command is continued when a break occurs
by giving a G command or a S command. However, in contrast to the T
command, the fact that the simulator retufns to command mode on a
break allows the examination of registers which are not specified in
the B command (cf. input/output control commands). For the commands,
b r2, r3, r4, 2015, 2017
> s 2013, 8 s

16

we obtaine the output,
2013
2014
break: 2015
2015
> 8
break 2016: r[4] = 16
2016
> 8
break: 2017
2017
> g
2020
break 2021: r[3] = 10741
2021
> 8
2022

o> .

REMOVE
r [<name>{,<name>}]

This command removes the specified registers or microinstructions
from the break or trace list of the currently active B commands and
T commands. That is, in subsequent invokations of the simulation, the
registers or microinstructions specified in the R command are no longer
traced or broken on. If no names are given in the R command, all tracing
and breaking is stopped. »

It is not necessary by specify the same register names and micro-
instruction labels or addresses in the R command that were given in the
B commands or T commands to be removed. Synonyms are allowed, as the
simulator responds to the registers and microinstruction addresses as
defined in the symbol table, not to be the names which provide entries

into the symbol table.

17

Given the T command,
t 2004, 2034, 2054
and the B command,
b r2, r3, r4, ré6.
The command
r 2034, 2054, rsp
reduces the T command to a trace of the microinstruction stored at
location 2004 (i.e., goto 150, cf. Fig.2) and restricts the B command to
a break on modifications of registers R[2], R[3], and R[4]. The name
"rsp" is a synonym for r6, and is defined as a macro in the file defs.mic
(cf. Fig.2). Note that although the stack pointer, R[6], was specified
by the name r6 in the B command, it can be removed from the break list

using the macro, rsp, in the R command.

EXECUTE
X <filename>

This command allows the user to specify a UNIX file from which
simulator commands are read and executed. Any legal UNIX file name
can be used to name a simulator command file. The commands specified
in a simulator command file must not invoke the simulator to leave
command mode. Furthermore, recursive calls of the‘X command are not
allowed. Therefore, the simulator commands G, S, E, P'(cf; sub-
section 4.2), and X are illegal commands when read from a simulator
command file. Any other legal command can be executed.

The X command is useful to define a standard set of frequently
executed commands. For example, a standard set of T commands and
B commands may be stored in a UNIX file, debug, and may be executed,
whenever the simulator output deviates from the expected result.
In the case of our example microprogram, fastc.mic, the file; debug,
may contain the simulator commands

‘ t 2004, 2034, 2054 and b r2, r3, r4, ré6.
Then the command

X debug

corresponds to issuing the above T and B commands separately, i.e.,

for the execution of a 2108 instruction, we obtain,

18

X debug
>g'
break 2003: r[6]

177776
> 8

break 2043: r[6] 177774

> g
break 2045: r[6]
> g
break 2047: r[6]
> 8
break 2051: r[6]
> 8
2054

16: address out of bounds

177772

177770

177766

> .

EXIT .

4.2

e

, The E command réturns control to the UNIX operating system. It is

the only simulator command that allows the termination of a simulation run. As
the E command has no argument it is not possible to specify a termination
condition that is tested by the simulator. Hence, a simulation run can

only be terminated, when the simulator returns to command que. Note

that the occurrence of an error, breakpoint; or user—generated interrupt

are the only means that cause the simulator to return to command mode.

Input/Output Control Commands

GET

=<name>
This command allows the current content of registers, locations of
the simulated core (cf. LOAD command), or control store locations to be
printed. Registers may be specified by any name that is defined in the
simulator symbol table. Register values are printed as octal numbers.
Locations of the simulated core are specified by octal numbers in the‘

range 0000, to 17768 (1K of memory words). The l6-bit content of core

8
locations is printed in octal. Control store locations can only be

specified by numbers representing control store addresses. The contents

19

of control store locations, i.e., 80-bit microinstructions, are printed
in the form of five separate 16-bit fields. That is, five separate GET
commands must be given to output the octal representation of a complete
80-bit microinstruction. Therefore, the addresses that identify a 16-bit
field in the writable control store are specified as 16-bit addresses

- with the address format (cf.[6]) discussed below.

Fig.4 illustrates the PDP-11/40E control store address space.

In the 16-bit control store address representation, A, the 10-bit

Octal
- 56 55 0 Addresses

9
— 0000
;55?, ROM

CONTROL STORE

7

0377

Z
PROM | 0400
CONTROL STORE 0437

2000

RAM
CONTROL STORE

3777

Figure 4: Extended Control Store Address Space

RAM addresses are contained in bits A<12:3>. Bits A<14,2:1> identify
one of the five 16-bit fields in the 80-bit microinstruction. The
remaining bits, A<15,13,0>, are ignored. Hence, the RAM address map as

shown in Fig.5 is obtained.

A<14,2:1>

100 011 010 001 000 A<12:3>

60000 { 20006 { 20004 | 20002 | 20000 0000
60010 | 20016 | 20014 | 20012 | 20010 0001

1776

77760 | 37766 | 37764 | 37762 | 37760 1777

77770 | 37776 | 37774 | 37772 | 37770

Figure 5: RAM Address Map.

The field addresses, FA, are constructed as follows:
FA= A<14>, 1, A<12>, A<11:9>, A<8:6>, A<5:3>, A<2:1>, 0.

N t AN, Itd]

The five 16-bit fields that compose an 80-bit microinstruction are
depicted in Fig.6 (cf. Fig.3).
Field 0: <A 14,2:1> = 000

15 14 13 12] 7 6 5 4 3 0
SDM | SBAM UBF SRS SRD SRBA SRI RIF
Field 1: A<14,2:1> = 001
15 13 12 11 8 7 4 3 21 0
SPS SALUM SALU SBC | SBMH | SBML

Field 2: A<14,2:1> = 010 ,
15 14 13 12 11 10 9 8 7 6 5 4 3 0

CLKL | CLKOFF | CLKIR |WRH WRL | CLKB | CLKD {CLKBA | CBUS | BGBUS | DAD

Figure 6: continued.

15

15

21

Field 3: A<14,2:1> = 011

© 14 13 11 10 8 7 0

DEST MSC XUPF UPF

Field 4: A<14,2:1> = 100
14 13 12 11 8 7 4 3 0

SCoM PPE Ccp SC RML LML

EMIT

Figure 6: 16-bit Field Assignments in 80-bit Microinstructions.

The GET command is useful to investigate the processor state,
when an error or a user-generated interrupt caused the simulator to
return to command mode. The following examples fefer to our example
microprogram, fastc,mic. »

To demonstrate the use of the GET command to output RAM contents;
we give give the command sequence for printing the content of RAM location
2000 (cf. Fig.3):

= 20000
20000: O
>="20002
20002: O
>= 20004
20004: 40000
>= 20006
20006: 2376
>= 60000
60000: O

> .

Note that field 3 in the microinstruction at location 2000, <DEST,MSC,
XUPF,UPF> = 002001, is represented by the value 002376. This is due

to the fact that the content of UPF (cf. Fig.6) is complemented in its
representation. That is, thekcorrespondence between the representation
of field 3 in <name>.lst, aaaxxx, and the representation of field 3 in
the output of the GET command, aaayyy, is established by the relationship,

aaayyy = aaa377 - 000xxx.

SET

22

; An example for the output of the contents of simulated core
locations with the GET command is given below. For this example, core
locations 0, 2, and 4 are set to the values'10008,,10018, aﬁd110028,
respectively:

0
0: 1000
>= 2
2: 1001
>= 4
4: 1002

>

The output of register contents is handled as follows. ,Regisﬁers
R[2], R[3], and R[4] are set to the values 10, 11, and 12, respectively.
’ | = r2 |

r2: 10
>= r3
r3: 11
>= r4
rh: 12

> .

_<name> = <number>

This command allows the user to set the content of registers,.
locations of the simulated core (cf. LOAD command), or control store
locations to the given number. The identification of carries and the
specification of carrier contents is analogous to the GET command.

Changes of register, core location, or control store location
contents as specified in the SET commandvére made immediately, without
the simulator leaving command mode. The old carrier contents are lost.
Note that the SET command allows the user to modify (correct) micro-
code during the simulation run (cf. section 3). The following
examples for the use of the SET command correspond to the examples

given for the GET command.

23

Set control store location.

20000 = 0
> 20002 = 0
> 20004 = 40000
> 20006 = 2376
> 60000 = 0

>

Set core locations.
0 = 1000

1001

1002

v o
[}

v
~
1]

Set register contents.

_r2 =10
> r3 =11
> r4 =12

>

OPCODE
o<number>
This command allows the user to specify an op-code to be interpreted

by the microprogram under investigation. 1In the real machine, control
is transferred to the WCS 11/40, when an unused PDP-11/40 op-code is
encountered (cf. [6]). At this point, the machine instruction with the
unused PDP-11/40 op-code is placed into register R[13], the instruction
register IR, and the B register. The bootstrap microcode in the WCS 11/40
PROM transfers the machine instruction also to the top of the WCS 11/40
stack (TOS). Therefore, the 0 command sets the registers R[13], IR, B,
and TOS to the specified octal number: '

o 211

>= 6

b: 211

>= ir

ir: 211

>= tos

24

tos: 211
>= r[13]
r{13]: 211

>) B

'The 0 command is desirable for the test of user microprograms
which implement several machine instructions. In our example microprogram,
fastc.mic, the 2108and 21lginstructions may be tested by giving the
commands
o 210
and 0 211

prior to two separate simulation runs

INITIALIZE
i

This command reinitializes the simulator. Its execution is
equivalent to exiting and re-invoking the simulator. That is, all
PDP-11/40E registers are set to 0, the simulated cofe is set to 0,
and the standard bootstrap PROM and the user microcode are reread.

The simulator clock (cf. C command) which records the simulated execution
time is reset. All simulation’control tébles areyreinitialized such

that- all trace and break information is lost. Finally, the state of

the simulator is reset such that G or S commands result in an original
entry (location 2000) into the microprogram.

The I command is primarily used, when several simulation runs for
independent microprograms are to be carried out in a single terminal
session. Note, however, that the I command is not applicable to the
initialization of a simulation run for the example microprogram, fastc.mic,
with a 2118 instruction that follows a simulation run’of‘the same micro-
program with a 2108 instruction. This is due to the fact that the micro-
code segments for the 2108and lesinstructionsvare related via processor
registers and the locations in the simulated core that constitute the
stack. However, if a separate simulation run is to be carried out to
test the instruction decoding in'fastc.mic for anvunrelated; illegal
op-code other than 210gor 21lg, say 212> the I command may be used to

reinitialize the simulator.

25

LOAD
1 <filename>

The L command loads the simulated PDP-11/40 core (not the control
store) with values from the specified file. The file is a UNIX text
file and can have any legal UNIX file name.

The simulated PDP-11/40 core has a size of 1K of 16-bit words. All
core addresses are absolute and in the range OOOO8 to 17768. Each line
of the UNIX text file to be loaded into the simulated core must have
the following format

; [<number>:]<number> .
The first number, if present, is the word address in core to be loaded.
(This number must be even as it is a word address.) The second 6-digit
octal number is the 16-bit word to be loaded.

If the first line of the file has no address, loading starts at
location 00008. If no address is provided for other lines in the file,
the core location loaded is the location loaded last plus 2. Loading ends
at the end of file mark in the UNIX text file.

The L command allows the user to initialize the environment for
microprograms which reference data in main memory or execute a sequence
machine language instructions from main memory. FOr the example micro-
program, fasté;mic, we may generate the following file, called testcore,

70: 10 |
11
12
15
which contains the values 10, 11, 12, and 15 for the core locations 70,
72, 74, and 76, respectively. With the subsequently‘given initialization:
_rsp = 66
> 15 =176
>1 testcore
>]
we obtain the following results in a simulation run:
= 70
70: 10
>= 72
72: 11
> r2=0

26

>r3=0

>rh =0
>0 211

> g begin
16: address out of bounds
>= r2

r2; 10

>= r3

r3: 11

>= r4

r4: 12

>= r5

r5: 15

>= rsp
rsp: 102
>= 70

72: 11

PROM LOAD

; P <filename>
The P command provides a means for changing the 32 80-bit words of
~ WCS 11/40 bootstrap PROM control store. Normally, the internal simulator

PROM is loaded with the standard WCS 11/40 bootstrapbPROM [1,6], when -
the simulator is initiated. . The P commands reloads the simulator PROM
(not the physical WCS 11/40 PROM) from the specified file. The file
must be the binary version of a microprogram as generated by the MICRO/40
assembler. That is, its name is of/the form <name>.bin. The dimension
of PROMs to be loaded with the P command is limited to 32 80-bit micro-
instructions.

The P command allows the user to test alternative microprogram
bootstrap sequences. For the test of a microprogram bootstrap,
boottest.bin, the simulator PROM would be loaded by the command

v p boottest.bin |

> .

27

CLOCK
c
This command allows the user to inquire statistics about the execution

time of the simulated microprogram. It prints two decimal values repre-
senting nanoseconds. The first of these values is the total simulated

time since the simulator was invoked by the MICRO/40 assembler or since

the last I command. The second value is the simulated time since the

last C command.

The simulated time T for each microinstruction [1] is calculated

by

T Te + Tm + Tr s
where Te= execution time, Tm= memory access time, and Tr= regeneration
time. - The execution time Te for synchronous operations corresponds to
the processor clock length specified in the microinstruction.

140 ns for Pl

T, =) 200 ns for P2

300 ns for P3
The memory access time Tm and the regeneration time Tr may only have non-
zero values, if the microinstruction performs a CLKOFF following a main
memory access.
_1500-(t

0

) for (t) < 500

T CLKOFF_ "MA CLKOFF "MA

m

tCLKOFF is the time when the CLKOFF is performed
in the microinstruction.
t is the time when the memory access began.

MA
) for (t) <900

T ={900’ (t cLxoFF Smia CLKOFF "TMA
r

0 otherwise

tCLKOFF is the time when the CLKOFF is performed in the microinstruction.
toma is the time when the first of the two most recent memory accesses
began.
The C command is useful to take approximate perfofmance measures
of alternative microprograms. Additionally, the second value in the
output of this command allows performance measures for microprogram

segments to be taken in a single simulation run. For our example micro-

program, fastc.mic, the following simulated times were obtained.

28

_r2 =10

> r3 =11

> rh =12

> r5 =16

> rsp = 100

> o 210

> c

0. 0. (simulated time béfére execution)
> g begin

16: address out of bouhds

> C v . »

6780. 6780. (simulated time after execution of 210)
> = rsp

rsp: 66

> 0 211

> g begin

16: -address out of bounds

> c |

14120. 7340. (simulated time for execution of 210
> ‘and 211 followed by simulated time

for execution of 211)

5. Simulator Error Messages

Errors detected by the simulator may be grouped into execution errors and
internal errors. Additionally, the simulator issues warnings. For these groups

of simulator error messages, the following error types are distinguished.

Type 1: Occurs during execution (as initiated by a G or S command) and is

fatal to execution, i.e., the simulator returns to command mode.

Type 2: Occurs in direct response to a command issued and inhibits the

command execution.
Type 3: May occur at any point in a simulation run and is fatal to simulation,

i.e., control is returned to the UNIX operating sYstem.

"

Type 4: Internal error that "should not occur ", i.e., it indicates an

internal failure.
Type 5: Internal error that may have been caused by the user.

Type 6: Warning.

29

5.1. Execution Errors

"illegal symbol where number expected" (Type 2)
An illegal number is encountered in a simulator command. The
syntax for numbers is:
[-1<digit>{<digit>}[.] .
The number is octal, unless it includes the digits '8' or '9', or

if it is postfixed with a decimal point '.'.

"recursive macro call for <name>" (Type 3)

Macros as defined in the source microcode can be interpreted by

the simulator. Recursive macro expansion, however, is illegal.

"register specification without ["
"illegal general register specification for <name>" (Type 2)
"no] after register specification"
General register definitions must have the following syntax:
r[<spec>]
where <spec> is either
- a number is the range [0:15] or
- an assembler-defined symbol.

All other names for general registers must be defined by macros.

"don't recognize symbol" (Type 2)

The simulator command interpreter encounters an illegal or undefined

symbol.

"core address out of bounds" (Type 1,2)
The core address specified in a GET or SET command is out of the
range [00008: 17768] of the simulated PDP-11/40 core- (Type 2). This
error message will also be printed when access to a non-existing core

location is attempted during microcode execution (Type 1).

"address out of bounds" (Type 1,2)
The control store address specified in a G or S command is out of
the range [4008— 37778] of the WCS 11/40 control store (Type 2).
This error message will also be printed when a jump/branch to a
microinstruction out of the range [4008: max] is attempted (Type 1).
max is the RAM control store location that contains the last micro-

instruction of the user microprogram.

30

 "symbol wrong type" (Type 2) _ ‘_

A symbol specified in a simulator command does not comply with
the defined syntax. For example, the G and S command require a
mnemonic label or an octal control store address (and not a

register name).

"illegal command line" (type 2) ;
’ The simulator command interpreter cannot recognize a command, or

a SET command was given without a '='.

"too many registers to trace'" (Type 2)
Too many registers are specified for traces or breaks. The number

of simultaneous register traces or breaks is 16.

"too many labels to trace" (Type 2)
Too many registers are specified for traces or breaks. The number

of simultaneous label traces or breaks is 16.

"filename required" (Type 2)
The simulator cannot open the file associated with aP, L, or

X command, because the file name is misspelled or omitted.

"too long line on this file" (Type 2)
The file specified in a P, L, or X command contains a line with

more than 150 character.

"< > command ignored in command file" (Type 6)
The simulator commands G, S, E, P, and X are illegal in an X

simulator command file and are ignored.

"odd address" (Type 1,6)
0dd addreéses are illegal in an L command file (Type 6). When
the bds address register (BA) is set to an odd yalue (during micro-
program execution) and the controlling microinstrucﬁion‘does not

specify a byte operation (DAD=1), the execution is aborted (Type 1).

"no branch to prom after ramread or ramwrite" (Type 1)
The timing for RAM READ/WRITE operations is such that the micro-
instruction whose execution follows a RAM operation must be located
in the bootstrap PROM (cf. [1,6]). The standard bootstrap PROM
enforces this timing condition. However, when the P command is used,

this error may occur.

31

"illegal ram or table address" (Type 1)
The control store address used in the execution of a RAM READ/WRITE
operation is out of the range [20008: 37778]. For addressing
16~bit fields of 80-bit RAM words, the (table) addresses must be
in the range defined by the RAM address map given in Fig.5.

"leaving extension with unibus busy" (Type 1) ’
It is illegal to jump from the WCS 11/40 control store to a location
in the PDP-11 standard emulator ROM while a UNIBUS operation is
being performed. This restriction results from the particular

UNIBUS and PDP-11/40 - WCS 11/40 interface timing conditioms [1,6].

"extension switched off already" (Type 1)
The last microinstruction executed from the WCS 11/40 control store,
which exists to the PDP-11/40 standard emulator ROM, uses the
extension hardware. The extension hardware cannot be used at this
point, as the extension is turned off, whenever the address in the
microinstruction pointer field (XUPF) of the microinstruction
register (U WORD) is less than 4008.

"msc - dest illegal combination" (Type 1)

The following combinations of the DEST/MSC fields are illegal
(cf£. [1], [6]):

DEST MSC

10 000 - 011

10 010 - 111

11 011 - 100 .

"illegal srx field" (Type 1)
Only one of the 1-bit fields, SRI, SRBA, SRD, and SRS, of the 4-bit
SRX field can be set at the time (ecf. [1],[6]).

"b constant doesn't exist" (Type 1)
The B constants 4, 5, and 6 are not defined and must not be

specified in the SBC field (cf. [1], [6]).

"changing d register while dato active" (Type 1)
During a DATO operation, the D Register must be kept constant, as

its content is gated onto the UNIBUS data lines.

"changing ba register while bus active" (Type 1)

The BA Register must be kept constant during UNIBUS operations, as

32

its content is gated onto the UNIBUS address lines.

"bus command or clockoff ignored" (Type 1) ; .
' UNIBUS operations, i.e., DATI and DATO, must alWays be followed by

a 'clkoff' and a subsequent microinstruction with a P1 or P3
processor clock. Any other sequence of bus-related microoperations
is illegal.

"processor stop: clockoff without preceding bus operation'" (Type 1)
The execution of a 'clkoff' must be precéeded by a UNIBUS operation. Otherwise,
it halts the processor, as the UNIBUS interface logic will not restart |
the processor clock.

"clockoff too late" (Type 1)

The execution of a 'clkoff' must follow the initiation of a UNIBUS

operation within less than 500 ns.

"nonexistant ubf" (Type 1)
The microbranch conditions 13, 14, 23, and 32 are not defined and

must not be specified in the UBF field (ef. [1], [6]).

"time too short for push or pop" (Type 1)
Pushing or popping of the WCS 11/40 stack requires a P2 or P3 pro-

cessor clock cycle.

5.2 Internal Errors

"cannot open file: <name>" (Type S)Y
The UNIX file specified in a P, L, or X command cannot be opened,
because it either does not exist or the user has no permission to

read or write it.

"read error on file: <name>"
"seek error on file: <name>" (Type 4)
"cannot close file: <name>"

An error occurred when a UNIX file was read.

"push: stack overflow" (Type 5)
The internal stack overflowed during simulator command parsing.

"

pop: stack underflow'" (Type 4)

The internal stack underflowed during simulator command parsing.

33

"microprogram file <name>.bin not compatible with tabfile <name>.tab" (Type 4,5)
The simulator is called with two incompatible files (Type 5).

MICRO/40 transferred two incompatible files to the simulator
(Type 4).
"simulator usage: <name>.bin <name>.tab" (Type 5)

The proper number of arguments (2) is not specified in the

simulator call.

6. The Simulated PDP-11/40E
In this section we briefly discuss the PDP-11/40FE and its extended 80-bit

microinstruction format as modelled by the simulator software. The simulator
implementation does not attempt to model the entire PDP—11/4OE hardware and

all possible assignments to microoperation fields in the WCS 11/40 microinstruction.
Some external hardware units and the processor functions which are only useful

in emulating the standard PDP-11/40 machine instruction set are omitted.

6.1. PDP-11/40E Hardware

The simulator models all registers and functional units in the PDP-11/40E

processor. The simulation of the WCS 11/40 hardware deserves particular atten-
tion. As the WCS 11/40 registers and control stores (RAM and PROM) are not
included in the PDP-11/40 UNIBUS addressing scheme, they are not accessible
from the processor console or through PDP-11/40 machine language ihstructions,
but only through WCS 11/40 microcode. Hence, using the SMILE system for micro-
program loading and on-line testing [8], it is not directly possible to monitor
the effect of microinstruction executions on WCS 11/40 registers. That is,

the SMILE system and the microsimulator do not only complement each other with
respect to the error types that may be detected, but also with respect to their
capabilities to display effects of microinstruction executions, and therefore,
are both necessary facilities in our microprogramming support system,

Both, the writable control store (RAM), which may also be used as data
scratch pad, and the bootstrap control store (PROM) in the WCS 11/40 are
modelled by the simulator. However, the PDP—11/40 standard emulator ROM is
omitted from the simulator software. This organization of the simulator results
from the following considerations. First, the ROM cannot be altered by the
user and is considered to work correctly. Second, with the omission of the ROM
from the simulator software, a jump/branch to the ROM causes an address error.
The latter consideration is important, as the 'exit" command does not allow

the specification of a simulation termination condition, and can only be

34

issued, when the'simulator is in command mode. Hence; a control transfer from
the user microcode into the ROM automatically establishes a simulator state in_
which a simulation run may be terminated. A

The simulator implementation does not model the PDP—11/40 UNIBUS address
space, except for 1k of 16-bit main memory locations with addresses in the
range [08: 17768]. This simulator organization is generélly sufficient for
two reasons. First, microprograms usually do not extensively refer to main
memory. Second, references to peripherals are standardized in the UNIBUS
addressingischeme and hence, can be modelled in the simulated main memory,
" the memory management option is not affected by the WCS 11/40 (although it
may affect the WS 11/40 [6]), and the processor console is represented by the
simulator commands discussed in section 4., Note, however, that the simulator
procedures 'get adr' and 'usebus' and their calling procedures could be mod-

ified to include the UNIBUS address space, if desired.

6.2. WCS 11/40 Microinstruction

The following assignments to microoperations fields in the WCS 11/40

microinstruction (cf. Fig.6) are not implemented in the simulator software.

BUS

The bus fieid speeifies and initiates UNIBUS data transfers, The assignments
BUS = 2 (await BUS BUSY) '
BUS 6 (restart on peripheral release)

are implemented as NOOPs. These definitions comply with the fact that

peripherals are not modelled by the simulator.

DAD
The DAD field allows the microprogram to alter the operation of the data paths.

The assignments v
DAD=10 (inhibit DATO (word operation) and CLKOFF for the PDP-11/40
| machine instructions BIT, CMP, or TST)
DAD=11 (inhibit DATOB (byte operation) and CLKOFF for the PDP-11/40
machine instructions. BIT, MP, or TST)
are implemented as NOOPs. These definitions are due to the fact that the

UNIBUS data transfers are not simulated,

35

SBC

The SBC field allows the selection of a B constant to be gated to the ALU B
input. The generation of some of these constants is conditioned by internal
processor states which are particular to the standard PDP-11/40 machine
instruction set. In the simulator, all SBC assignments which test conditions
always return O for the condition. The SBC assignments and the associated

constants as used in the simulator are given below,

SBC B_CONSTANT
1 1

2 2

3 1
4-6 not used (cause Type 1 error)
10 177570
11 173374
12 17
13 | 77
15 250
17 4
all others 0

UBF

The UBF field specifies the branch micro test (BUT) to be performed to
generate the address of the successor microinstruction. by ORing the determined
basic microbranch code (BUBC) into the six low-order bits of the microprogram
pointer (UPP). The simulator implementation causes all UBF assignments,
except UBF=12 and UBF=17, always to return 0, as the associated BUTs are
particular to the standard PDP-11/40 machine instruction set. The simulator

implementation of the UBF field is given below.

UBF BUT BUBC
12 D=0 000 001
17 IR03 000 001
all others _ - 000 000

UBF=12 causes a 1 to be gated into the lowest—-order bit of UPP, if the
content of the D register is 0, UBF=17 causes a 1 to be gated into the
lowest-order bit of UPP, if bit 3 of the instruction register is set to 1 (this

bit distinguishes between direct and indirect addressing).

36

7. Terminal Session

In this section, the microcode simulator operation is demonstratéd by
a commented protocol of a terminal session. To this end, some minor errors
have artificially be introduced into the example microprogiém, fastc.mic
(cf. Fig. 1 and Fig. 3). System commands and responses start at the left
margin of the page. Comments are indented. Responses from the UNIX operating

system end with the prompt '%'.

% ed

The UNIX text editor [2] is used to generate a Simulator command file.

Cw trace.regs ‘
The generated simulator command file is written into the UNIX text'file,
trace.regs.

35

The number of characters in trace.regs is listed.
Editing is terminated. Control is returned to the operating system.

The UNIX text editor is reinvoked to generate another simulator command

file.

=rl
= r2
= r3
= r4
= r5
= rb

= ri

37

:w print.regs

28

q
The generated simulator command file contains 28 characters and is
written into the UNIX file, print.regs.

% ed
A third simulator command file is generated.

ta

_rl=10

_r2=12

_r3=14

_r4=16

_r5=0

_r6=1000

: w set.regs

43

:q
The generated file, set.regs, initializes the generalvpurpose registers
R[1] to R[6].

% mic -s fastc.mic
A version of the microprogram, fastc.mic, with artificially introduced
errors is assembled, and the simulator (-s) is called.

fastc.mic

91 lines read.
The MICRO/40 assembler acknowledges the acceptance of the micro-~
program, fastc.mic, which contains 91 lines of code. Note that no

error messages are issued.

The simulator enters command mode after being invoked by MICRO/40.
> x set.regs
> X trace.regs
> 0210

The simulator is set up for the invokation of the microprogram with

a 2108 instruction.

>g

The simulation is started.

38

2003: r[6] = 776
2037: r[5] = 0

2042: ¢[5] = 776
2043: r[6] = 774

The trace information requested in thevsimulator_command file, trace.’
regs, is printed. |
2045: changing d register while dato active
changing ba register while bus busy
2045: r[6] = 772 ‘ |
The simulator recognizes that clkoff is missing in the microinstfuction
at control store location 2044. The clkoff has ihtentionélly be deleted.
Note that MICRO/40 did not recognize this error. |
>e .
As the discovered error is type 1, the simulation is terminated to
correct the error.
% ed fastc.mic
The UNIX text editor is called to correct the file, fastc.mic.
1846 | |
The number of characters in fastc.mic is printed.
7 Th? | |
The microinstruciton, d_r4; dato;, at control store location 2044 is
located in the file, fastc.mic.
d_r4; dato;
1s/$/clkoff/p
d r4; dato; clkoff
W
1853
:q :
| The efroneous microinstruction is corrected.
% mic -s fastc.mic
fastc.mic
91 lines read.

The microprogram, fastc.mic, is reassembled.

> X set.regs
> X trace.regs
> 0210
> g 2000
The simulator is again set up for the invokation of the microporgram with

a 2108 instruction.

39

2003: r[6] = 776
2037: r[5] =0

2042: r[5] = 776
2043: r[6] = 774
2045: r[6] 772
2047: r[6] = 770
2051: r[6] = 776
2053: r[7] 0

The trace information requested in the simulator command file, trace.

regs, is printed.

16: address out of bounds
The microprogram simulation leaves the WCS 11/40 control store address
space with the microinstruction, goto 16, at control store location
2054.

> x print.regs
A listing of the register contents is requested.

rl: 10

r2: 12

r3: 14

r5: 776

r6: 766

r7: O
The simulator lists the requested register contents.

>r2 =0

>r3 =20

>r4 =0

> o0 211
The simulator is set up for the vokation of the microprogram with a 2118
instruction. -

> g 2000
The simulation is started. Remember the trace requests have not been
removed. ’

2013: r[1] 776

2014: r[1] = 774

2016: r[4] = 16

2017: r{1] = 772

2021: r[3] = 14

2022: r[1] = 770
2024: rl21 = 12

2026: r[6] = 776
2027: r[5] =0
2030: r[6] = 1000

The trace information is printed.

2032: bus command or clkoff ignored

2032: r[6] = 1002

40

The simulator recognizes another error that has not been recognized by

MICRO/40.

>e

The simulation is terminated to correct the error.

% ed fastc.mic

1853

t/rts/s+a4p

ba r6; dati; clkoff !rts pc
d r6+2; r6_d; clkoff
r7_unibus; but 16

"goto 16
end
: ? rts?

ba r6; dati; clkoff ! rts pc

: s/clkoff//p

ba _r6; dati !rts pc
A

1847

‘q

The error is corrected using the UNIX text editor. -The error was

artificially inserted into fastc.mic

% mic -s fastc.mic
fastc.mic

91 lines_read.

The corrected microprogram is reassembled.

<fastc.mic is simulated after being invoked by a 2108 instruction>

> r2

> r3

> rh
>0 211
>g 2000

41

The simulation is reinvoked with a 211_ instruction

8
2013: r[l] = 776
2030: r[6] = 1000
2032: r[6] = 1002
2033: r{7]1 =0
16: address out of bounds

> X
rl:
r2:
r3:
rh:
r5:
rb6:
r7:

>i

break 2003: r[6]

>8

‘break 2043: r[6]

>8

break 2045: r[6]

>8

break 2047: r[6]

>8

break 2051: r[6]

The requested trace information is printed, and the microprbgram leaves
the WCS 11/40 control store address space with the microinstruction, goto
16, at control store location 2034.
print.regs
770
12
14
16
0
1002
0
The register contents after the execution of the 2118 instruction are

printed

The simulator is reinitialized

x set.regs

r6
210
2000

A simulation of fastc.mic (210, instruction) with a break on r6 is

8
started.

n

776

774

772

770

766

42

>8 0
16: address out éf bounds
The microprogram leaves the WCS 11/40 control store address space at
location 2054.
>t ‘v
All breaks are removed.
> o0 211
> g 2000 ,
A simulation run for a 2118 instruction is started.
16: address out of bounds
The microprogram leaves the WCS 11/40 control store address space at

location 2034.

> x set.regs

>.0 210v

> s 2000,30
The simulaior is reinitialized, and a simulation run for a 2108 instruction
in stepping mode is started.

2000 '

2001

.
.
-

2053

2054

address out. of bdunds
The microprogram leaves the WCS 11/40 control store address space at
location 2054. | ‘

> b 2017

> o0 211

> g 2000 ‘ v
A break at control store location 2017 is set for a simulation rum with
a 2118 instruction.

break: 2017

> x print.regs

rl: 772

r2: 12

r3: 14

r4: 16

r5; 776

43

r6: 766
r7: O
After the break at location 2017, the register contents are printed.
>g
16: address out of bounds
The microprogram leaves the WCS 11/40 control store address space at
location 2034.
> = 1000
1000: O
>= 776
776: O
> =774
774: 16
> 772
772: 14
> 770
770: 12
> = 766
766: 0
> = 764
764: 0
The contents of the simulated core locations 764 to 1000 are investigated.
>e
Exit from the simulator. .
%Z ed core
core: cannot open
ta
764: 0
0
50
52
54

21

44

A core file (locations 764 to 1000) is created
% sim fastc.bin fastc.tab '
The simulator is called (not invoked by MICRO/40).
> X set.regs ‘ '
> r5 = 0776
> r6 = 766
>0 211
>1 core
> g 2000 ‘
The simulator is set up for a simulatiqn’run with a 2118 instruction.
16: address out of bounds
> X print.regs '
rl: 770
r2: 50
r3: 52
rh: 54
r5: O
r6: 1002
r7: 0 v
After the execution of the 211, instruction, the register contents

8
are tested.

> x set.reg

> 0 210

> g 2000

16: address. out of bounds

>c

6680. 6680.
The time for the execution of a 2108 instruction is measured

> o 211

> g 2000

16: address out of>bounds

>c

14020. 7340. ‘ ‘
The accumulative execution time for both a 2108 and a 2118 instruction as
well as the time for a 2118 instruction are printed.

>e

Exit from the simulator.

45

Acknowledgement

The microcode simulator was originally implemented by R. Kallerhoff of
the Technical University Berlin. The authors are indebted to H. Mauersberg,
also with the Technical University Berlin, for providing us with the micro-
code simulator and for many helpful suggestions concerning the development of
a microprogramming laboratory around a PDP-11/40E. They also wish to express
their gratitude to Professors W. K. Giloi and W. R. Franta for initiating the
microprogramming laboratory project at the University of Minnesota. The micro-
programming laboratory is funded by University Computer Services, University

of Minnesota.

Appendix

PDP-11/40E Register—Transfer Block Diagrams

46

weadeIq I9JSUBRIL-193ST39Y 10SS9001g V-TIAN

External Processor Options

to’ from
A
e
2 &1 [INSTRUCTION REGISTER]
g g .
=] 17}
o]
[77]

GENERAL-PURPOSE

ROM

REGISTERS A
INSTRUCTION CONTROL STORE
1 { DECODING ~
LOGIC and
[PS REEISTEBJ MTCROBRANCH (256 x 56)
. > CONTROL
——
[B_REGISTER| [B_CONSTANTS]
v . y
[0 30%] B 10X) (3 ux]
PROGRAMMER' S " :
CONSOLE BIN V AIN
—
CONSOLE ALD r U WORD] UPP |
CONTROL ‘_————F:L'\L \ | (|
— [D_REGISTER| [BA MUX] [TIMING \ MICROINS TRUC—
DISPLAY SHTFT] ‘ CONTROL CONTROL TION SEQUEN-
uNIT 1 Locjc SIGNALS cmlc:,,orécl)gmon
ADDRESS [BA REGISTER |}
DISPLAY | TIMING
1 SIGNALS
SWITCH
REGISTER DATA PROCESSOR INSTRUCTION PROCESSOR
\
UNIBUS UNIBUS| [UNIBUS UNIBUS UNIBUS UNIBUS UNIBUS
DRIVER DRIVER| |RECEIVE DRIVER DRIVER| = |TIMING and CONTROL|
‘ 4 % % ; x —! | INTERFACE
[: Y
UNIBUS

Ly

wei8eT(q i1dFsuei] 13331333‘07/11 SOM

DATA PROCESSOR SECTION

INSTRUCTION PROCESSOR SECTION

STACK
POINTER
RAM
STACK _ CONTROL STORE gﬂi
(16 x 16) (1024 x 80)
‘
L5 Mux]
E MUX
[£]
, \ PROM
SHIFT/ CONTROL STORE
~——{ CPFF }— MASK (32 x 80)
UNIT
| _[Eusc Bus|
\ DRIVER |
RD BUS OR
DRIVER
XU WORD [XUPP]
CONTROL A

SIGNALS

from the KD11l-A
Data Processor

1'%
to the KD1l1l-A
Data Processor

to the KD11-A
Instruction Processor

from the KD1ll-A
Instruction Processor

8%

49

to Stack from Shift/

and RAM Mask Unit

E MUX [RD BUS DRIVER|

p ll: from S MUX
CPFF
WCS 11/40 Data Processor Section L
KD11-A Data Processor
General Purpose
Registers
DMUX RD
BUS BUS
. > PS Register —
PS <0>=PS(C)
l D MUX
C)
CARRY-QUT CARRY-INCPFF]
. I
Multiplexor LOGIC ¢ 1
COUT MUX
[ﬁféﬂ D Register
D<15:0> v
to
BA MUX

from
UNIBUS

Data Processor Interface

90BJADIU] I0SSVD0Ig UOTIONIISUT

from _EMUX<15:0>
E.MUX , WCS 11/40 Instruc- ! KD11l-A
TOS<15:0>
from ; - tion Processor Instruction
Stack
T0S<14,2,1> Section Processor . HoE o
=} . 3
RAM 0w 0 @
[0s<12:3 > coR o
CONTROL STORE UPP woE
(1024x80) ‘ | Mux |&PPP<1:0>,UPP<7:0> § g. g z
— UPP<7:0> h ° 5 °
o o =
) X ©®© O ®
CONTROL - 8 9 ®
. STORE - o 0
| UPP<4:0> ADDRESSING [< ® 5 5 @
0w 0 [l |
PROM CONTROL. ROM
CONTROL STORE —>| CONTOL STORE
(32x80) (256x56)
XUPP<2:0>
y \
r XU BUS<79:0>] L BUT MUX
[XOBUS
R a i Ll XUBUS <79:59> l__‘|,<55:0>
XUBUS <58156> U BUS<55:0> | BUBC
from UBUS <5:0 >
shify) FUBC BUS<10:0> <7:0>
Mask Unit EUBCBUS<10:8> EUBCBUS<7:0>} |
o OR. - L_or |
{ XU WORD [XupP U WORD | UPP |
| -
to EMIT<15:0>
S MUX = WCS 11/40 ICROINSTRUC-
TION SEQUEN~
CONTROLLER KD11-A CING MONITOR
P J' Control LOGIC
WCS 11/40 Control Signals Signals

0¢S

51

References

[1] Fuller, S. H., Almes, G. T.; Broadley, W. H.; Forgy, C. L.; Karlton,P. L.;
Lesser, V. R.; Teter, J. R.,"PDP-11/40E Microprogramming Reference Manual,"
Department of Computer Science, Carnegie-Mellon University, Tech. Report

16-Jan-76.

[2] UNIX Documentation Book I, "Introduction to UNIX," Computer Systems
Laboratory, Department of Computer Science, University of Minnesota.

[3] UNIX Documentation Book II, "UNIX Programmer's Manual Section I - Commands,"

Computer Systems Laboratory, Department of Computer Science, University

of Minnesota.

[4] UNIX Documentation Book III, "The “'C" Programming Language,' Computer
Systems Laboratory, Department of Computer Science, University of

Minnesota.

[5] Teter, J. R., "PDP-11/40E Hardware Maintenance Manual,'" Department of
Computer Science, Carnegie-Mellon University, September 1976, revised
June 1977.

[6] Berg, H. K., "A PDP-11/40E Microprogramming Primer," Department of

Computer Science, University of Minnesota, Tech. Report 78-8.

[71 Berg, H. K.; Dekel, E., "MICRO/40 Assembler Primer," Department of

Computer Science, University of Minnesota, Tech. Report 78-9.

[8] Berg, H. K.; Samari Kermani, N., "A Primer on the SMILE Microprogram
Load and Test System," Department of Computer Science, University of

Minnesota, Tech. Report 78-11.

[9] Berg, H. K.; Covey, C. R., "A Primer on the Use of a Logic State Analyzer
as a Microprogram Debugging Aid," Department of Computer Science, Univer-

sity of Minnesota, Tech. Report 78-12.

52

[10] Mueller, J., "SMILE - Manual," Institut fUr Softwaretechnik und Theoretische
Informatik, Fachgebiet Betriebssysteme, Technical University Berlin,

December 1976.

