
Computer Science Department

114 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

PDP-ll/4OE Microcode Simulator

Primer

by

H. K. Berg and B. E. Blasing

Technical Report 78-10

July 1978

Cover design courtesy of Ruth and Jay Leavitt

PDP-II/40E Microcode Simulator Primer

by

Helmut K. Berg and Bradford E. Blasing

Department of Computer Science

University of Minnesota

Abstract

This report is an introductory guide to the use of the PDP-Il/40E

microcode simulator. It is intended to familiarize new users with the

microcode simulator as one of the microprogram development aids in the micro­

programming laboratory, and as a reference for advanced users. The operation

of the microsimulator and its interface with the MICRO/40 assembler and the

UNIX operating system are described. The simulator commands and their use

are presented in the form of a tutorial. Sufficient detail on the PDP-Il/40E

hardware and the inconsistencies of its model in the simulator software is

provided such as to identify the limitiations of the simulator's error de­

tection and location capabilities. A classification of the errors which are

detected by the simulator and guidelines for the interpretation of the assoc­

iated error messages complement the information needed for the day-to-day use

of the microcode simulator. The concept and use of the microcode simulator

is demonstrated by a complete simulator terminal session.

1

1. Introduction

The microcode simulator described in this report allows interactive testing

of PDP-ll/40E user microprograms written in the MICRO/40 assembly language [1].

The microassembler and simulator were developed at Carnegie-Mellon University,

Department of Computer Science, to run as cross assembler/simulator on a PDP-lO

computer. The simulator version we refer to in this report is a PDP-II version

of the original simulator that was written at the Technical University Berlin,

Institut fUr Softwaretechnik und Theoretische Informatik, Fachgebiet Betriebssysteme.

It runs together with the MICRO/40 assembler on a PDP-ll/40 under the UNIX oper­

ating system [2,3]. The simulator is written in the "c" progrannning language [4],

except for some UNIX-assembler procedures.

The PDP-ll/40E was developed at Carnegie-Mellon University [1,5]. It is

a standard PDP-ll/40 computer that has been extended by the following hardware

features:

lK BO-bit words of random access (RAM) control store for storing

user microprograms.

32 BO-bit words of read-only (PROM) control store for bootstrapping

microprograms.

a 16-word stack for temporary data storage.

a shift and mask unit and a carry control unit which extend the

data manipulation capabilities of the basic PDP-ll/40 processor.

The 3-Rivers Computer Corporation offers these hardware accessories as a

writable control store option (WCS 11/40) for the PDP-ll/40. The design of

this extension allows user microprograms access to all functional hardware

units and data paths in the basic PDP-ll/40 processor and in the WCS 11/40.

Register-transfer block diagrams of the PDP-ll/40 processor, WCS 11/40, and

their mutual interfaces are given in the appendix. Introductions to the

microprogrannning of the PDP-Il/40E and the MICRO/40 assembler are given in

[1,6,7].

This report is intended to provide an introductory guide to the use of

the microsimulator as one of several microprogram debugging aids for the

PDP-ll/40E [B, 9]. Therefore, we first discuss (section 2) the position of

microprogram simulation among other microcode validation techniques. The

operation of the PDP-ll/40E microcode simulator and its interface with MICRO/40

are described in section 3. To proceed, in section 4, the simulator connnands

are specified and their use is demonstrated by examples. Then, the simulator

error messages are discribed, and guidelines for their interpretation

are given in section 5. Following comments on the implementation

2

of the simulator in section 6, we show, in section 7, a complete example of the

use of the simulator.

2. Microcode Simulators

The basic approaches to program validation are formal correctness proofs

and testing. Proofs of formal correctness attempt to show the absence of

errors, whereas testing is only capable of showing the presence of errors,

but not their absence. Both methods must be supported by debugging techniques

which aid the location and correction of errors. The lower complexity of

operations and data structures affected by microinstructions and the small

size of microprograms as compared to software programs further formal correct­

ness proofs of microcode. However, the fact that microprograms affect only a

small and well-defined set of resources and data items has also led to micro­

cod~ testing and debugging techniques which are not practical for software.

Microcode simulation is such a testing technique.

A microcode simulator is a software program that simulates the execution

of microoperations in the functional hardware units and data paths of a

processor. Such simulation programs usually allow the tester to interactively

trace the execution of individual microinstructions in a microprogram.

Furthermore, facilities are provided for locating and correcting errors by

examining and changing register contents at specified breakpoints in the

simulation run. The PDP-Il/40E microcode simulator includes all these standard

features.

A microsimulator represents one of a collection of utilities for micro-

program construction, testing, debugging, and maintenance. in a microprogramming

support system. A typical microprogramming support system includes a microassembler,

a microsimulator, and a microprogram loader. More sophisticated support systems

may also include test set generators, external hardware accessories for micro­

program instrumentation,and microprogram verification systems,etc. The loader

in such a system usually transforms the/output from the microassembler such that

it can directly be interpreted by the microsimulator, and loads the binary

version of the assemblef microcode into the control ·store. In our microprogramming

support system for the PDP-II/40E, the MICRO/40 assembler generates files to be

used by the microsimulator and a separate microprogram load and test system,

3

SMILE [10], [8] •

For program testing, in general, we can distinguish between static and

dynamic variants. Static testing, via program analysis, has not been applied

to microprogramming. Dynamic microprogram testing, i.e., testing via micro­

program execution, can be categorized as soft (off-line) testing or hard (on­

line) testing. A microcode simulator is a typical off-line test system.

Generally, only static programming errors can be detected by simulator testing.

The ability to discover dynamic timing errors with a simulator depends on how

closely the simulator implementation reflects the microarchitectural character­

istics of the machine. Debugging of dynamic errors may be supported by micro­

instruction formats which make microoperation timing conflicts detectable

through microcode examination in the microassembler~ However, the detection

of dynamic errors usually requires on-line test procedures. Typical on-line

microprogram testers are interactive debuggers and special hardware accessories

for the instrumentation of microprogram executions. An interactive debugger

essentially allows the standard simulator commands to be performed with respect

to the execution of microprograms in the physical machine. A straightforward

implementation of a PDP-ll/40E debugger is not possible, as important resources

such as the instruction register (IR), the bus address register (BA) , etc.

are not accessible. Therefore, the use of a logic state analyzer as an on-line

microprogram debugging aid for the PDP-ll/40E has been investigated [9].

3. Microcode Simulator Operation

In this section, we discuss the basic operation modes of the micro-­

simulator. For a detailed description of the microassembler operation, the

reader is referred to [7]. Throughout this report, we refer to the example

microprogram,l) called fastc.mic, shown in Fig.l. The microprogram, fastc.mic,

implememts two machine language subroutines that handle the environment switch

for subroutine calls in the "e" programming language of UNIX. It saves and restores

registers that are used for parameter passing in subroutine calls. Further details

of fastc.mic will be introduced as needed.

1)
This microprogram was developed by K.Bullis, J.Bjoin, and T.Lunzer as a

course project for (H.K.Berg) eSci 5299, Microprogramming, Winter Quarter 1978.

reaui~e defs.mic

bestin. noop.
.=2001' d .. 210; b_d
d_rir-b !compare instruction
skipzero
d_211; b_d

set.

start
d_rir-b s" .. ipze.ra
noop

!check for other instr

set

soto 150

start !211 inst.r
d_r5 !r1<-r5
rl_d
d,ba_r1~2; rl_d lpop r4
dati; clkoff
r4_'Joibus
ba,d_rl-2; rl_d !pop 1'3
dati.; clkoff
r3_unibus
ba,d_rl-2; rl_d !pop r2
dati; clJt,off.
r2_'Joibus
ba,d_rS !sp<-r5
r6_d' dati; clkoff
r5_unibus !rS-(-(sp)-t:
d_r6+2; r6_d
ba_r6; dati !rts PC
d_r6+2; r6_d; clkoft
r7_unibus; but .1.6
soto 16

end

tes
end

Figure 1: fastc.mic

4

start .!210 instr

end

tes

finis

d,ba_r6-2. r6_d !push rS
d_r5' dato; clkoff
d_r7' p3 !rS<-r7
r5_d
rO_d !rO(-r5
d_r6 J r5(-r6
r5_d
d,ba_r6-2; r6_d !push r4
d_r4; dato; clkoff
d,ba_r6-2; r6_d !push r3
d_r3; dato; clkoff
d,ba_~6-2; r6_d !push r2
d_r2; dato; clkoff
d_r6-2; r6_d !r6<-r6-2
d_rO tr7<:-rO
r7_d' b'Jt 16
stoto 1.6.

The first line of fastc.mic is a command to the MICRO/40 assembler

that "requires if the microcode source file defs.mic to be bound with. the

actual microcode of this microprogram. The file defs.mic contains stan­

dard macro definitions wbich have been found to be of general use. defs.mic

is listed in Fig. 2. The macros in defs.mic define mnemonic names for

registers, micro operations , and microinstruction addresses which can

subsequently be used in fastc.mic. The primary purpose for including the

given macro difinitions is to make the source microcode of fastc.mic more

comprehensible.

5

User microcode for the PDP-lI/40E is written in the HICRO/40 assembly

language. Microcode source files are generated using the UNIX text editor [2].

The name of a microprogram source file must be of the form

<name>. mic ,

where <name> is any legal name, e.g., fastc. The suffic "mic" indicates that

the source is written in MICRO/40.

f . -- 11 October 1974 ! standard definitions or mlcro rev: 19 November 1974
~ rev: 7 December 1974

!
rev: 11 June 1975

,
rO t= r[OJ$; ~ +- r[:J]$·, r2 t= r[2]$; r.t .• -

rS t= r[S]'; r6 t= r(6]$;
r11 t= r[11J$; r12:= r[12J$;
r15 := r[lSJ'; rlb t= r[16J$;

+- r[7],A, rd .. f t= rCdf]$; rpc +-

rsrc := r[11]$; rdst t= r[12J$

r3 := r[3]$
r7 t= r[7J$
r:t.3 t= r[:1.3]$
r17 := rt:l7]$
rsf := rEsf]$

r4 := r[4J$;
riO t= r[:I.OJ$;
r:t.4 := r[14]~);
rsp := r[6J$;
t,emp- t = r[10J$;
.rir t= rC13J$;
SPIJS := rC16J$;
dati t = bl.ls=1 $;

vect t= rC14JS; temc t= r[lS]'
• [17J$· rba t= reba)' adrsc • = r .,

dat .. :i.p : = bIJs=3$;
.pl :=clk =2$; p2

data t= bus=S$
dat,ob t = bus=7'

t=clk =4$; p3 :=clk =6$
exit := xupf = 16$ I return to rom
be~in := be~t .=2000;$
!:jato : = ~.~I . .lpf =$;
but t= uhf =$; skipzero
return":= eubc_s$;
smod t= 11:9$; dmod:=
! end of macros
! ADDITIONAL MACROS
POPt=DEST=I;MSC=4$
PUSHt=DEST=1;MSC=3$

case := eubc_$; popst t= d_s$
t= uhf = 12$! skip on d = 0
endproc := xupf=O'
5:3$; prop:= cp=1$

Figure 2: defs.mic

2)

To assemble a microprogram source file named, <name>.mic, the command 2)

mic[opt] <name>.mic

Throughout this text we use the following meta symbols:

[] - encloses optional objects in command lines (i.e., 0 or 1 repetition
allowed).

{} denotes multiple occurrences of objects in command lines (i.e., 0 or
more repetitious allowed).

6

is typed, where opt is one of the three legal options -a, -s, or -d. If none

of these options is used in the above microassembler call (i.e., mic <name>.mic),

three files, <name>. 1st, <name>. bin, and <name>.tab are generated. <name>. 1st is

a listing of the microprogram object code in the BO-bit microinstruction format,

followed by a list of mnemonic addresses and associated control store addresses.

Fig. 3 shows this listing for the example microprogram fastc.mic. The file

<name>.bin is the binary version of the assembled microcode which is loaded into

the writable control store. <name>'. tab is discussed below.

The options in the microassembler call instruct MICRO/40 to generate

the following output.

-a

-d

-s

The microprogram source is assembled and a pseudo-readable

form of the object microcode is stroed in a file called

<name>.ass. This file is in UNIX assembler format.

From this file, the binary version of the assembled

microcode, <name>.bin, can be generated using the

UNIX assembler.

The microprogram source is assembl~d and a pseudo­

readable form of the object microcode is stored in

a file called <name>.dec. This file is in DEC assembler

format, so that the binary version of the assembled

microcode can be generated using the DEC PDP-II as­

sembler.

The microprogram source is assembled and the simulator

is called, if no assembly errors occured.

~
inst ad" emit scom ppe CP sc rm 1m dest "!i.C .xupf c~k.. i r wr b d ba .bus. dad sps a1u be bm d .. baa ubf .srx.rit

beginnoop 2000 0 0 0 0 0 0 0 0 0 2001 2 0 0 0 O. 0 0 0 0 0 0 0 0 0 .0 .. 0 0
.=2001;d_210;b..d 2001 210 0 0 0 0 10 10 0 1 2006 6 0 0 1 ... 1. 0 0 0 0 0 0 0 2. O. .0 O. 0

I~ d_ri1'-b 2002 0 8 8 8 8 8 8 .. ~. 8 0 2011 4 0 ~ 0.1 .. 0 0 10 0 6 0 0 o ... 0 0 1 13
d,ba_1'6-2;1'6_d!pu 2003 0 0 2035 6 O. 0 1_ .. 1..._ 0 10 0 6 2 17 2 .0 0 . _1 6

I-t'I !iJot0150 2004 0 0 0 0 0 0 0 0 0 150 2 0 .0.0 0 0 0 0 0 0 0 0 0 0 0 0 0
III d_r5!1'1<-1'5 2005 0 0 0 0 0 0 0 0 0 2013 4. 0 0 .. 0.1 0 0 O. 0 0 0 0 0 0 0 1 5 CIl
rt d_1'i1'-b!com?arein 2006 0 0 0 0 () 0 0 0 0 2007 4 0 0 0 1. 0 0 10 0 6 0 0 0 0 0 1 13 n ski?zero 2007 0 0 0 0 0 0 0 0 0 2010 .. __ .2 .. __ 0 00 0 0 0 0 0 0 0 0 0 0 12 .0 0 .
...... d_211,;b_d 2010 211 0 0 0 0 10 11 0 1 2002. 6 O. 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0 CIl skipzero 2011 0 0 0 0 0 0 0 0 0 2012 . 2. 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 rt

noop 2012 0 O. 0 0 0 0 0 0 0 .2004 . 2. 0 0 0 0 0 o. 0 0 0 0 0 0 0 0 0 0
1'l_d 2013 0 0 0 0 0 0 0 0 O .. 2014. 2. 0 3 0 0 0 0 0 0 0 0 0 2 0 0 1 .. .1.
d,ba_1'l-2;rl_d!po 2014 0 0 0 0 0 0 0 O. .0 2015 6 0 J 0 1 1 0 1.0 0 " ~ 1-7 ~ Q () 1. 1
dat.i;clkoff 2015 0 0 0 0 0 0 () 0 Q.~gt;': ~ Q 0 6. 0 ~ 1 0 a 0 0 0 0 0 0 O. 0
r4~_url i bus 2016 0 0 0 0 0 0 O. 000 ... 0 2017 2 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 4
ba,d_1'1-2;1'1_d!po 2017 0 0 0 0 0 0 00 0 2020 6 0 3 0 1. 1 0 10 0 6 2 17 2 0 .. 0 1 1
dati;clkoff 2020 0 0 0 0 0 0 .0. '" .. 0. '" 0 2021 . 3 0 0 0 0 0 . L ... 0 0 0 0 0 0 0 0 0 0
r3_unibus 2021 0 0 0 0 0 0 O. 0 .0 2022 2 0 3 0 0 0 O. 0 0 0 0 0 1 0 0 L 3
ba,d_rl-2;1'l_d!po 2022 0 0 0 0 o. 0 o. 0 0 2023 6 0 3 0 L .. 1. .. 0 10 0 6 2 17 2 0 0 1 1
dati;clkoff 2023 0 0 0 0 ... 0 0 ... 0. O. 0 2024 3 0 0 0 0 0 1 0 0 0 0 0 0 O. 0 0 0
r2_unibus 2024 0 0 0 0 O. 0 0 0 0 2025 2 0 3 0 0 0 0 0 0 0 O. O. 1 0 0 1 2
ba,d_r5!sp<-1'5 2025 0 0 0 0 0 O. 0 0 0 2026 4 0 0 0 1 L .. 0 0 0 0 0 0 0 1 0 1 5
r6_didatiiclkoff 2026 0 0 o. 0 0 0 0 0 0 2027 3. O. 3 0 0 0 1 0 0 0 o. 0 2. 0 0 1 6
r5_unibus!1'5<-<sp 2027 0 0 0 0 0 0 0 0 0 2030 2 0 3 0 0 0 0 0 0 0 .0 0 1 0 0 1 5
d_1'6+2;r6_d 2030 0 0 .. 0 0 0 .0 0 0 0 20~1 .6 0 3 0 1 0 0 0 O. 11 2 17 2 0 0 1 6
ba_r6;datil1'tspc 2031 0 0 0 0 0 0 0 0 0 2032. .2. 0 0 0 0 1 1 0 0 0 .0 0 0 1 0 1 6
d_1'6+2;r6_d~clkof 2032 0 0 0 0 0 0 0 0 0 20~~3 7 0 3 0 1 0 0 0 0 .11 ... 2 17 2 0 0 1 6
1'7_unibusibut16 2033 0 0 0 0 0 0 0 0 0 2034 2 0 3 0 0 0 0 0 0 0 0 0 1 0 16 1 7
90t016 2034 0 0 0 0 0 0 0 0 0 16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d_rS;datovclkoff 20~~5 0 0 0 0 0 0 0 o. 0 2036. 5 0 0 0 1 0 5 .0 0 0 0 0 0 0 0 1 5
d_r7ip3! 1'5<-1'7 2036 0 0 0 0 0 0 0 0 0 2037 6 0 0 0 1 0 0 ·0 . 0 0 0 0 0 0 0 1 7
1'5_d 2037 0 0 0 0 0 0 0 0 0 2040 2 0 3 0 0 0 O. .. 0 0 0 0 0 2 0 0 1 5
rO_d 11'0<-1'5 2040 0 0 0 0 0 0 0 0 0 2041 2 0 3 0 0 0 0 0 0 0 0 0 2 0 0 1 0
d_1'6! ,'5<-r'6 2041 0 0 0 0 0 0 0 0 0 2042 4 0 0 0 1 ... 0 O. 0 0 0 0 0 0 0 0 1 6
r5_d 2042 0 0 0 0 0 0 0 0 0 20·13 2 0 3 0 O. 0 0 0 0 0 0 0 2 0 0 1 5
d,ba_r6-2;r6_d!pu 2043 0 0 0 0 0 0 0 0 0 20 Al4 6 0 3 0 1 .1 0 10 0 6 2 17 2 0 0 1 6
d~r4;dato'clkoff 2044 0 0 0 0 0 0 0 0 0 2045 5 0 0 0 1. 0 5 0 0 0 0 0 0 0 0 1 4
d,ba_r6-2;r6_d!p~ 2045 0 0 0 0 o. 0 0 0 0 2046 6 0 3 .0 1. 1 0 10 0 6 2 17 2 .0 0 1 6
d_1'3;datoiclkoff 2046 0 0 0 0 0 0 0 0 0 2047 5_ 0 0 0 1 0 5 0 0 0 0 0 0 0 0 1 3
d,ba_1'6-2ir6_d!pu 2047 0 0 0 0 O. 0 0 0 0 2050 6. 0 3 01 1 0 10 0 6 2 17 2 0 0 1 6
d_r2;dato;clkoff 20:::;0 0 0 0 0 0 0 0 0 0 2051 .. :3 \) O. .0 1 0 5 0 0 0 0 0 0 0 0 1 2
d_r6-2Jr6_d!1'6<-1' 2051 0 0 0 0 0 0 0 0 0 2052 .. .6 0 3 0 1 0 0 10 0 6 2 17 . 2 0 0 1 6
d_rO!1'7<-1'O 2052 0 0 0 0 0 0 0 0 0 2053. 4 O. 0 0 1 0 0 0 0 0 0 0 0 0 0 1 .. 0
r7_d;but16 2053 0 0 0 0 0 0 0 0 0 2054 2. 0 3 0 0 0 0 0 0 0 0 0 2 0 16 1 7
!iJoto16 2054 0 0 0 0 0 0 0 0 0 16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0

labels and addresses
===~================

be~ 2000

When the microassembler is called with the "-s" option, it generates

the following two files to be used by the microsimulator.

<name>.bin

8

The binary version of the assembled microcode is generated from <name>.ass,

using the UNIX assembler asa post-processor of MICRO/40.

<name>. tab

This file is generated specifically for the simulator. It contains

information used by the simulator for interperting simulator commands. This

information includes field names, field bounds, lower and upper limits (control

store addresses) of the microcode generated, register names, macro names,

labels, etc. From this file, the simulator generates a symbol table which

is used to· interpret simulator commands. As a result, simulator commands can

contain any symbol string that is recognized by the microassembler, including

names of user-defined macros.

The call of MICRO/40 with the "-s" option invokes the microsimulator

after assembling the microprogram. This invocation is useful, when assembled

microcode is to be tested immediately after assembling. For instance, when

changes are made to a microprogram, the effect of these changes can be observed

by simulating the reassembled microcode. Alternatively, the microsimulator can

be called directly on a pre-assembled microprogram, using the comma.nd

sim <name>.bin <name>.tab

This invocation allows the microprogrammer to simulate his microprogram in

several terminal sessions without reassembling the source microcode.

When the simulator is invoked, it goes into command mode, which is

indicated by its prompting with ">" on the DEC-writer. In this mode, any

of the commands discussed in section 4 are always legal. If a command is

given which conflicts with a previous command, the microsimulator obeys the

more recent command. The simulator leaves the command mode, when a command

is issued that effects the execution of a microprogram in the simulated

PDP-Il/40E hardware (G or S command). It returns to command mode whenever

the execution of a microprogram is halted. A return to command mode may be

caused by setting breakpoints in the microprogram under execution, encountering

certain errors, or an user interrupt generated by pressing the delete key at

the DEC-writer. User interrupts may be generated at any time during microprogram

execution and cause the simulator to enter command mode after the execution of the

current microinstruction. A simulation run is terminated, i.e., control is returned

to the UNIX operating system, by the "exit" command.

9

The control store address space of the microsimulator is limited to the

writable control (RAH) and the bootstrap control store (PROl1) in the WCS 11/40.

That is, any control store address in the range [0
8

:3778] (address space of the

PDP-11/40 emulator ROM) causes an address error in the microcode simulation

run. Thus, for each control transfer from the WCS 11/40 control store to the

standard PDP-ll/40 ROM, the simulator automatically interrupts the simulation

run and returns to command mode.

Besides commands that allow for the location of errors, the microsimulator

provides facilities for microcode correction (modification). To this end,

the binary representation of the microcode as used by the simulator can be

changed by reassigning the content of individual l6-bit main memory words

(cf. SET command). Note, however, that this facility supports only minor

changes in existing microinstructions which may immediately be tested during

microcode simulation. Microcode changes as carried out with the simulator do

not affect the microcode to be loaded into the WCS 11/40 control store, i.e.,

such changes do not modify the object microcode in the file <name>.bin. Hence, to

retain changes made during microcode simulation requires modification and

reassembling of the source microcode in <name>.mic.

4. Simulator Commands

In this section, we discuss the simulator commands and give examples of

their typical application. The simulator commands can be divided into two

groups, namely simulation control commands and input/output control commands.

The first group of commands allows the user to specify control paths and modes

for the simulation of a given microprogram. The second group of commands

provides means to investigate the result of simulation and to initialize the

simulated hardware of the PDP~11/40E.

Simulator commands are written, one per line, at the DEC-writer. The

s¥ntax of the command lines is

<command name>[<identifier>]{<delimiter><identifier>}.

Delimiters are either the symbol "='.' or the symbol ",". Identifiers may repre­

sent <number>, <register>, <label>, or <name>. <number> can be any integer in

the range [-32768:65535]. Numbers greater than 32767 are assumed to be re­

presented in a l6-bit word without sign bit. All numbers are assumed to be

octal, unless they contain the digits 8 or 9, or a trailing decimal point

in which case they are assumed to be decimal. <register>, <label>, and

<name> stand for any string that can be identified via the simulator symbol

table. <register> must represent a register name, including user-defined

10

macros. <label> may represent a mnemonic label or a number identifying a

microinstruction address in the control store. <name> stands for any string

identifying a register, a label (i.e., a microinstruction), a macro, or a UNIX

file. The legitimate identifiers for registers, mnemonic labels, and macro

are defined by the source microcode in <name>.mic and the associated macro

definitions (cf. Fig.l and Fig.2). Numbers identifying microinstruction

correspond with the control store addresses as assigned in the file <name>.lst

(cf. Fig.3).

4.1 Simulation Control Commands

GO

g [<label>]

This command starts or continues execution (simulation) of the

microprogram. The specification of a label is optional. If a G

connnand is given without a label, before any microinstruction has been

executed, execution begins at location 2000 (first word in the writable

control store). If a G command without a label is given, after some

microinstructions have been executed, simulation continues where the

simulation was last interrupted. If a label is specified in a G

connnand, execution starts with the microinstruction stored at the

associated control store location. For example, the command

g begin

starts simulation of the microprogram fastc.mic at location 2000

(cf. Fig.l and Fig. 2) . The command

g 2035

begins execution with the microinstruction

d_r5;dato;clkoff

(cf. Fig.3).

When the simulation is invoked by a G command, the simulator

leaves command mode and executes the microprogram starting from the

defined location. It returns to command mode when an error occurs, a

previously set breakpoint is reached, or an interrupt is generated by

the user. For example, when the command, g begin, is given and a

machine instruction other than 2108 or 2118 executed, the microinstruction,

goto 150, is encountered in fastc.roic and hence, an address error occurs.

At this point the simulator prints the error message

150: address out of bounds

STEP

before returning to command mode (i. e., prompting with ">"). For the

command, g 2035, the exit from the WCS 11/40 control store address

space is taken at control store location 2054 and the error message,

16: address out of bounds

is printed.

s [<label>][,<number>]

11

This command starts or continues execution (simulation) of the

microprogram in a stepping mode. Analogous to the G command, execution

starts at location 2000, if the S command is given without label and no

microinstructions have been executed. If a label is given, the stepping

begins with the microinstruction stored at the associated control store

location; otherwise, the stepping continues from the point where the

simulation was last halted.

The number in the S command specifies the number of microinstructions

to be stepped through. If no number is given, the default '1' is assumed,

and the simulator returns to command mode after the execution of a single

microinstruction. While stepping through the mi.croporgram, the control

store addresses (not the mnemonic labels) of the simulated microinstructions, are

printed out, before the appropriate microinstruction is executed. There-

fore, this command is especially useful for examining branches in a micro­

program, as a trace of all executed control store locations is generated.

For our example microprogram, fastc.mic, the initial invokation of

the simulation with the S command,

s,5

steps through five microinstructions generating the output,

2000

2001

2006

2007

2010

>

if a machine instruction other than 2108 is executed. The S command.

s begin,5

obviously does the same, whenever it is given during the simulation

process. As another example, the S command,

s 2035

TRACE

12

executes the microinstruction,

d_r5; dato; clkoff,

with the output,

2035

>

The S command causes the simulator to leave command mode and to

step through the specified number of microinstructions, before returning

the command mode. If an error occurs, a previously set breakpoint is

reached, or an interrupt is generated by the user, it returns to command

mode, before the specified number of microinstructions has been simu­

lated. For example, the S command,

s 2000, 10

generates an address error at location 2004 of fastc.l~t and generates

the output,

2000

2001

2006

2007

2010

2002

2011

2012

2004

address out of bounds

>

t <name>{,<name>}

This command sets a trace flag on either a register, a mnemonic

label, or a control store address in the microprogram. If a register

is being traced, its new content, and the control store address of

the microinstruction which modified it are printed after each mod­

fication. A microinstruction is traced by printing the label or

control store address as specified in the T command, each time that

microinstruction is executed. Any combination and number of registers

and microinstructions may be traced simultaneously by specifying a list

of register names and labels in the T command.

Registers and microinstruction which are known under more than one

name can be traced under only one name at a time. If an attempt is made

13

to trace a register or microinstruction under more than one name, only

the name specified last will be used (and printed).

In the case of our example microprogram, fastc.mic, we might be

interested in tracing the registers R[2], R[3], and R[4]. These

registers are saved in the second segment of fastc.mic (210
8

instruction)

by pushing them onto the stack, and restored in the first segment of

fastc.mic (211
8

instruction) by popping them off the stack. This trace can

be accomplished by the commands

t r2, r3, r4

> g 2013

If the stack contains the values 10, 11, and 12 for the registers R[2],

R[3], and R[4], respectively, this commands generate the output,

2016: r[4] = 12

2021: r[3] - 11

2024: r[2] - 10

16: address out of bounds

>

In this case, simulation was started at control store location 2013 and

hence, exits at location 2034 with an address error.

To examine whether fastc.mic was invoked by a 210
8

instruction

(jump to location 1.6 at location 2054), a 2118 instruction (jump to

location 16 at location 2034), or an illegal instruction (jump to

location 150 at location 2004), the exits from the~ritable control

store may be traced as follows,

t 2004, 2034, 2054

For different invokations, the simulator generates the following

outputs,

> g 2013

2034

16: address out of bounds

> g 2035

2054

16: address out of bounds

> g 2000

2004

150: address out of bounds

>

BREAK

14

A T connnand may be used in stepping mode. In this case, addresses of

traced microinstructions are printed twice. For example, the following

connnands, in which traces for microinstructions and registers are combined,

t r2, r3, r4, 2015, 2017

> s 2013, 8

generate the following output

2013

2014

2015

2015

2016

2016: r[4]=16

2017

2017

2020

2021

2021: r[3]=10741

2022

>

When tracing, the simulator stops every 16 lines of output and

prints a "*". This measure is included since the simulator was

originally designed to be used with a CRT on which only 16 lines of

output can be displayed at once. The traced execution of a micro­

program is resumed, when a "return" is typed.

b <name>{,<name>}

The B connnand is a variant of the T conunand, with the difference

being that it causes a break whenever a traced register is modified or

a traced micoinstruction is executed. When a breakpoint is reached,

the simulator prints the trace information and returns to conunand mode.

Before the break occurs, the execution of the microinstruction broken

on or in which a register being broken on is modified will be completed.

In the B command, the same restrictions for variable names and

microinstruction labels apply as in the T conunand. Additionally, it

is not possible to break and trace on the same register or microinstruction

at the same time. If an attempt is made to break and trace on the

same name, or more than one name was given for the same register

15

or microinstruction, the name specified last will be used (and printed)

in the last command issued.

The following examples for the use of the B command correspond to

those discussed for the T command. Note the difference in the output

for the B commands and T commands.

b r2, r3, r4

> g 2013

break 2016; r[4] 12

> g

break 2021: r[3] 11

> g

break 2024: r [2] 10

> g

16: address out of bounds

>

b 2004, 2034, 2054

> g 2013

break: 2034

> g

16: address out of bounds

> g 2035

break: 2054

> g

16: address out of bounds

> g 2000

break: 2004

> g

150: address out of bounds

>

The trace contained in a B command is continued when a break occurs

by giving a G command or a S command. However, in contrast to the T

command, the fact that the simulator returns to command mode on a

break allows the examination of registers which are not specified in

the B command (cf. input/output control commands). For the commands,

b r2, r3, r4, 2015, 2017

> s 2013, 8

16

we obtaine the output,

2013

2014

break: 2015

2015

> g

break 2016: r [4] = 16

2016

> g

break: 2017

2017

> g

2020

break 2021: r[3] 10741

2021

> g

2022

>

REMOVE

r[<name>{,<name>}]

This command removes the specified registers or microinstructions

from the break or trace list of the currently active B commands and

T commands. That is, in subsequent invokations of the simulation, the

registers or microinstructions specified in the R command are no longer

traced or broken on. If no names are given in the R command, all tracing

and breaking is stopped.

It is not necessary by specify the same register names and micro­

instruction labels or addresses in the R command that were given in the

B commands or T commands to be removed. Synonyms are allowed, as the

simulator responds to the registers and microinstruction addresses as

defined in the symbol table, not to be the names which provide entries

into the symbol table.

Given the T command,

t 2004, 2034, 2054

and the B command,

b r2, r3, r4, r6.

The command

r 2034, 2054, rsp

17

reduces the T command to a trace of the microinstruction stored at

location 2004 (i.e., goto 150, cf. Fig.2) and restricts the B command to

a break on modifications of registers R[2], R[3], and R[4]. The name

"rsp" is a synonym for r6, and is defined as a macro in the file defs.mic

(cf. Fig.2). Note that although the stack pointer, R[6], was specified

by the name r6 in the B command, it can be removed from the break list

using the macro, rsp, in the R command.

EXECUTE

X <filena~e>

This command allows the user to specify a UNIX file from which

simulator commands are read and executed. Any legal UNIX file name

can be used to name a simulator command file. The commands specified

in a simulator command file must not invoke the simulator to leave

command mode. Furthermore, recursive calls of the X command are not

allowed. Therefore, the simulator commands G, S, E, P (cf. sub­

section 4.2), and X are illegal commands when read from a simulator

command file. Any other legal command can be executed.

The X command is useful to define a standard set of frequently

executed commands. For example, a standard set of T commands and

B commands may be stored in a UNIX file, debug, and may be executed,

whenever the simulator output deviates from the expected result.

In the case of our example microprogram, fastc ... mic, the file, debug,

may contain the simulator commands

t 2004, 2034, 2054 and b r2, r3, r4, r6.

Then the command

X debug

corresponds to is.suing the above T and B commands separately, i. e. ,

for the execution of a 210
8

instruction, we obtain,

EXIT

18

X debug

> g

break 2003: r[6] 177776

> g

break 2043: r[6] 177774

> g

break 2045: r[6] = 177772

> g

break 2047: r[6] 177770

> g

break 2051: r[6] 177766

> g

2054

16: address out of bounds

>

e

The E command returns control to the UNIX operating system. It is

the only simulator command that allows the termination of a simulation run. As

the E command has no argument it is not possible to specify a termination

condition that is tested by the simulator. Hence, a simulation run can

only be terminated, when the simulator returns to command mode. Note

that the occurrence of an error, breakpoint, or user-generated interrupt

are the only means that cause the simulator to return to command mode.

4.2 Input/Output Control Commands

GET

=<name>

This command allows the current content of registers, locations of

the simulated core (cf. LOAD command), or control store locations to be

printed. Registers may be specified by any name that is defined in the

simulator symbol table. Register values are printed as octal numbers.

Locations of the simulated core are specified by octal numbers in the

range 0000
8

to 17768 (IK of memory words). The l6-bit content of core

locations is printed in octal. Control store locations can only be

specified by numbers representing control store addresses. The contents

19

of control store locations, i.e., 80-bit microinstructions, are printed

in the form of five separate l6-bit fields. That is, five separate GET

commands must be given to output the octal representation of a complete

80-bit microinstruction. Therefore, the addresses that identify a l6-bit

field in the writable.control store are specified as l6-bit addresses

with the address format (cf.[6]) discussed below.

Fig.4 illustrates the PDP-ll/40E control store address space.

In the l6-bit control store address representation, A, the 10-bit

79 56 55

ROH

CONTROL STORE

RAM

CONTROL STORE

Figure 4: Extended Control Store Address Space

Octal
o Addresses

0000

0377

0400

0437

0440

1777

2000

3777

RAM· addresses are contained in bits A<12:3>. Bits A<14,2:l> identify

one of the five l6-bit fields in the BO-bit microinstruction. The

remaining bits, A<15,13,0>, are ignored. Hence, the RAlI address map as

shown in Fig.5 is obtained.

A<14,2:1>

100 011 010

60000 20006 20004
60010 20016 20014

77760 37766 37764
77770 37776 37774

Figure 5: RAM Address Map.

001

20002
20012

37762
37772

000

20000
20010

37760
37770

A<12:3>

0000
0001

1776
1777

The field addresses, FA, are constructed as follows:

FA=,A<14>, 1, A<12>", A<11:9>" ,A<8:6>" ,A<5:3>", A<2:1>, 0,.

The five 16-bit fields that compose an 80-bit microinstruction

depicted in Fig.6 (cf. Fig.3).

Field 0: <A 14,2:1> 000

15 14 13 12 8 7 6 5 4 3 0

[SDM I SBAM I UBF I SRS SRD SRBA SRI I RIF
I

Field 1: A<14,2:1> 001

15 13 12 11 8 7 4 3 2 1 0

I SPS I SALUM I SALU I SBC I SBmi I SB~ I
Field 2: A<14,2:1> = 010

15 14 13 12 11 10 9 8 7 6 5 4 3 0

CLKL CLKOFF CLKIR WRH WRL CLKB CLKD CLKBA CBUS BGBUS DAD

Figure 6: continued.

20

are

21

Field 3: A<14,2:l> 011

15 14 13 11 10 a 7 0

15

rl-D-E-S-T--~I---M-S-C---rl----X-UP-F----~I--------U-P-F---------------I

Field 4:
14 13

SCOM PPE

A<14,2:l> = 100
12 11

CP SC

EMIT

8 7 iJ,. .3 o

RML LML

Figure 6: 16-bit Field Assignments in aO-bit Microinstructions.

The GET command is useful to investigate the processor state,

when an error or a user-generated interrupt caused the simulator to

return to command mode. The following examples refer to our example

microprogram, fastc.mic.

To demonstrate the use of the GET command to output RAM contents,

we give give the command sequence for printing the content of RAM location

2000 (cf. Fig.3):

= 20000

20000: 0

>="20002

20002: 0

>= 20004

20004: 40000

>= 20006

20006: 2376

>= 60000

60000: 0

>

Note that field 3 in the microinstruction at location 2000, <DEST,MSC,

XUPF,UPF> 002001, is represented by the value 002376. This is due

to the fact that the content of UPF (cf. Fig.6) is complemented in its

representation. That is, the correspondence between the representation

of field 3 in <name>.lst, aaaxxx, and the representation of field 3 in

the output of the GET command, aaayyy, is established by the relationship,

aaayyy = aaa377 - OOOxxx.

SET

22

An example for the output of the contents of simulated core

locations with the GET command is given below. For this example, core

locations 0, 2, and 4 are set to the values 1000S' 10018 , and 1002S '

respectively:

= 0

0: 1000

>= 2

2: 1001

>= 4

4: 1002

>

The output of register contents is handled as follows. Registers

R[2], R[3], and R[4] are set to the values 10, 11, and 12, respectively.

= r2

r2: 10

>= r3

r3: 11

>= r4

r4: 12

>

<name> = <number>

This command allows the user to set the content of registers,

locations of the simulated core (cf. LOAD command), or control store

locations to the given number. The identification of carries and the

specification of carrier contents is analogous to the GET command.

Changes of register, core location, or control store location

contents as specified in the SET connnand are made immediately, without

the simulator leaving connnand mode. The old carrier contents are lost.

Note that the SET command allows the user to modify (correct) micro­

code during the simulation run (cf. section 3). The following

examples for the use of the SET command correspond to the examples

given for the GET command.

Set control store location.

20000 - 0

> 20002

> 20004

> 20006

o
40000

2376

> 60000 = 0

>

Set core locations.

o = 1000

> 2 1001

> 4 1002

>

Set register contents.

r2 = 10

> r3 = 11

> r4 12

>

OPCODE

23

o<number>

This connnand allows the user to specify an op-code to be interpreted

by the microprogram under investigation. In the real machine, control

is transferred to the WCS 11/40, when an unused PDP-11/40 op-code is

encountered (cf. [6]). At this point, the machine instruction with the

unused PDP-11/40 op-code is placed into register R[13], the instruction

register IR, and the B register. The bootstrap microcode in the WCS 11/40

PROM transfers the machine instruction also to the top of the WCS 11/40

stack (TOS). Therefore, the 0 connnand sets the registers R[13], IR, B,

and TOS to the specified octal number:

o 211

>= 6

b: 211

>= ir

ir: 211

>= tos

tos: 211

>= r [13]

r[13]: 211

>

The 0 command is desirable for the test of user microprograms

24

which implement several machine instructions. In our example microprogram t

fastc.mic, the 2lDs and 211s instructions may be tested by giving the

commands

o 210

and o 211

prior to two separate simulation runs

INITIALIZE

i

This command reinitializes the simulator. Its execution is

equivalent to exiting and re-invoking the simulator. That is, all

PDP-ll/40E registers are set to 0, the simulated core is set to 0,

and the standard bootstrap PROM and the user microcode are reread.

The simulator clock (cf. C command) which records the simulated execution

time is reset. All simulation control tables are reinitialized such

that all trace and break information is lost. Finally, the state of

the simulator is reset such that G or S commands result in an original

entry (location 2000) into the microprogram.

The I command is primarily used, when several simulation runs for

independent microprograms are to be carried out in a single terminal

session. Note, however, that the I command is not applicable to the

initialization of a simulation run for the example microprogram, fastc.mic,

with a 2118 instruction that follows a simulation run of the same micro­

program with a 210
8

instruction. This is due to the fact that the micro­

code segments for the 2l08and 2ll8instructions are related via processor

registers and the locations in the simulated core that constitute the

stack. However, if a separate simulation run is to be carried out to

test the instruction decoding in fastc.mic for an unrelated, illegal

op-code other than 2lCSor 2118, say 2l~,the I command may be used to

reinitialize the simulator.

LOAD

25

1 <filename>

The L command loads the simulated PDP-ll/40 core (not the control

store) with values from the specified file. The file is a UNIX text

file and can have any legal UNIX file name.

The simulated PDP-ll/40 core has a size of lK of l6-bit words. All

core addresses are absolute and in the range 0000
8

to 1776
8

• Each line

of the UNIX text file to be loaded into the simulated core must have

the following format

[<number>:]<number>

The first number, if present, is the word address in core to be loaded.

(This number must be even as it is a word address.) The second 6-digit

octal number is the l6-bit word to be loaded.

If the first line of the file has no address, loading starts at

location OOOOS' If no address is provided for other lines in the file,

the core location loaded is the location loaded last plus 2. Loading ends

at the end of file mark in the UNIX text file.

The L command allows the user to initialize the environment for

microprograms which reference data in main memory or execute a sequence

machine language instructions from main memory. For the example micro­

program, fastc.mic, we may generate the following file, called testcore,

70: 10

11

12

15

which contains the values 10, 11, 12, and 15 for the core locations 70,

72, 74, and 76, respectively,. With the subsequently given initialization:

_rsp = 66

> r5 = 76

>1 testcore

>

we obtain the following results in a simulation run:

= 70

70: 10

>= 72

72: 11

> r2=0

PRON: LOAD

> r3 0

> r4 0

>0 211

> g begin

16: address out of bounds

>= r2

r2; 10

>= r3

r3: 11

>= r4

r4: 12

>= r5

r5: 15

>= rsp

rsp: 102

>= 70

70: 10

>= 72

72: 11

P <filename>

26

The P command provides a means for changing the 3280-bit words of

WCS 11/40 bootstrap PROM control store. Normally, the internal simulator

PROM is loaded with the standard WCS 11/40 bootstrap PROM [1,6], when

the simulator is initiated. The P commands reloads the simulator PROM

(not the physical WCS 11/40 PRO~1) from the specified file. The file

must be the binary version of a microprogram as generated by the MICRO/40

assembler. That is, its name is of the form <name>.bin. The dimension

of PROMS to be loaded with the P command is limited to 32 80-bit micro­

instructions.

The P command allows the user to test alternative microprogram

bootstrap sequences. For the test of a microprogram bootstrap,

boottest.bin, the simulator PROM would be loaded by the command

p boottest.bin

>

27

CLOCK

c

This command allows the user to inquire statistics about the execution

time of the simulated microprogram. It prints two decimal values repre­

senting nanoseconds. The first of these values is the total simulated

time since the simulator was invoked by the MICRO/40 assembler or since

the last I command. The second value is the simulated time since the

last C command.

The simulated time T for each microinstruction [1] is calculated

by

T=T +T +T
e m r

where T = execution time, T = memory access time, and T = regeneration
e m r

time. The execution time T for synchronous operations corresponds to
e

the processor clock length specified in the microinstruction.

(

140 ns for PI

Te = 200 ns for P2

300 ns for P3

The memory access time T and the regeneration time T may only have non-
m r

zero .values, if the microinstruction performs a CLKOFF following a main

memoir'Y access.

T =(sOO-(tCLKOFF-tMA) for (tCLKOFF-tMA) < 500
m 0

tCLKOFF is the time when the CLKOFF is performed

in the microinstruction.

tMA is the time when the memory access began.

T =f900-(tCLKOFF-tTMA) for (tCLKOFF-tTNA) < 900

r (0 otherwise

tCLKOFF is the time when the CLKOFF is performed in the microinstruction.

is the time when the first of the two most recent memory accesses

began.

The C command is useful to take approximate performance measures

of alternative microprograms. Additionally, the second value in the

output of this command allows performance measures for microprogram

segments to be taken in a single simulation run. For our example micro­

program, fastc.mic, the following simulated times were obtained.

r2 = 10

> r3 11

> r4 = 12

> r5 = 16

> rsp = 100

> 0 210

> C

o. o. (simulated time before execution)

> g begin

16: address out of bounds

> C

28

6780. 6780. (simulated time after execution of 210)

> = rsp

rsp: 66

> 0 211

> g begin

16: :address out of bounds

> c

14120. 7340. (simulated time for execution of 210

> and 211 followed by simulated time

for execution of 211)

5. Simulator Error Messages

Errors detected by the simulator may be grouped into execution errors and

internal errors. Additionally, the simulator issues warnings. For these groups

of simulator error messages, the following error types are distinguished.

Type 1:

Type 2:

Type 3:

Type 4:

Type 5:

Type 6:

Occurs during execution (as initiated by a G or S command) and is

fatal to execution, i.e., the simulator returns to command mode.

Occurs in direct response to a command issued and inhibits the

command execution.

May occur at any point in a simulation run and is fatal to simulation,

i.e., control is returned to the UNIX operating system.

Internal error that "should not occur ", i.e., it indicates an

internal failure.

Internal error that may have been caused by the user.

Warning.

5.1. Execution Errors

"illegal symbol where number expected" (Type 2)

An illegal number is encountered in a simulator command. The

syntax for numbers is:

[-]<digit>{<digit>}[.]

29

The number is octal, unless it includes the digits 'a' or '9', or

if it is postfixed with a decimal point ' ,

"recursive macro call for <name>" (Type 3)

Hacros as defined in the source microcode can be interpreted by

the simulator. Recursive macro expansion, however, is illegal.

"register specification without ["

"illegal general register specification for (Type 2)

"no] after register specification"

General register definitions must have the following syntax:

r[<spec>]

where <spec> is either

- a number is the range [0:15] or

- an assembler-defined symbol.

All other names for general registers must be defined by macros.

"don't recognize symbol" (Type 2)

The simulator command interpreter encounters an illegal or undefined

symbol.

"core address out of bounds" (Type 1,2)

The core address specified in a GET or SET command is out of the

range [OOOOa: l776a] of the simulated PDP-II/40 core,(Type 2). This

error message will also be printed when access to a non-existing core

location is attempted during microcode execution (Type 1).

"address out of bounds" (Type 1,2)

The control store address specified in a G or S command is out of

the range [400a- 3777a] of the WCS 11/40 control store (Type 2).

This error message will also be printed when a jump/branch to a

microinstruction out of the range [400a: max] is attempted (Type 1).

max is the RAJ1 control store location that contains the last micro-

instruction of the user microprogram.

"symbol wrong type" (Type 2)

A symbol specified in a simulator command does not comply with

the defined syntax. For example, the G and S command require a

mnemonic label or an octal control store address (and not a

register name).

"illegal command line" (type 2)

The simulator command interpreter cannot recognize a command, or

a SET command was given without a ,-, - .
"too many registers to trace" (Type 2)

30

Too many registers are specified for traces or breaks. The number

of simultaneous register traces or breaks is 16.

"too many labels to trace" (Type 2)

Too many registers are specified for traces or breaks. The number

of simultaneous label traces or breaks is 16.

"filename required" (Type 2)

The simulator cannot open the file associated with aP, L, or

X command, because the file name is misspelled or omitted.

"too long line on this file" (Type 2)

The file specified in a P, L, or X command contains a line with

more than 150 charact.er.

"< > command ignored in command file" (Type 6)

The simulator commands G, S, E, P, and X are illegal in an X

simulator command file and are ignored.

"odd address" (Type 1,6)

Odd addresses are illegal in an L command file (Type 6). When

the bus address register (BA) is set to an odd value (during micro­

program execution) and the controlling microinstruction does not

specify a byte operation (DAD=l), the execution is aborted (Type 1).

"no branch to prom after ramread or ramwrite" (Type 1)

The timing for RAM READ/WRITE operations is such that the micro­

instruction whose execution follows a RAM operation must be located

in the bootstrap PROM (cf. [1,6]). The standard bootstrap PROM

enforces this timing condition. However, when the P command is used,

this error may occur.

31

"illegal ram or table address" (Type 1)

The control store address used in the execution of a RAM READ/tVRITE

operation is out of the range [2000S : 3777
S

]. For addressing

l6-bit fields of SO-bit RM1 words, the (table) addresses must be

in the range defined by the RAM address map given in Fig.5.

"leaving extension with unibus busy" (Type 1)

It is illegal to jump from the WCS 11/40 control store to a location

in the PDP-ll standard emulator ROl1 while a UNIBUS operation is

being performed. This restriction results from the particular

UNIBUS and PDP-ll/40 - WCS 11/40 interface timing conditions [1,6].

"extension switched off already" (Type 1)

The last microinstruction executed from the WCS 11/40 control store,

which exists to the PDP-ll/40 standard emulator ROM, uses the

extension hardware. The extension hardware cannot be used at this

point, as the extension is turned off, whenever the address in the

microinstruction pointer field (XUPF) of the microinstruction

register (U WORD) is less than 400
S

'

"msc - dest illegal combination" (Type 1)

The following combinations of the DEST/MSC fields are illegal

(cf. [1], [6]):

"illegal srx field" (Type 1)

DEST

10

10

11

MSC

000 - all

010 - III

011 - 100

Only one of the I-bit fields, SRI, SRBA, SRD, and SRS, of the 4-bit

SRX field can be set at the time (cf. [1],[6]).

"b constant doesn't exist" (Type 1)

The B constants 4, 5, and 6 are not defined and must not be

specified in the SBC field (cf. [1], [6]).

"changing d register while dato active" (Type 1)

During a DATO operation, the D Register must be kept constant, as

its content is gated onto the UNIBUS data lines.

"changing ba register while bus active" (Type 1)

The BA Register must be kept constant during UNIBUS operations, as

32

its content is gated onto the UNIBUS address lines.

"bus command or c10ckoff ignored" (Type 1)

UNIBUS operations, i.e., DATI and DATa, must always be followed by

a 'c1koff' and a subsequent microinstruction with a P1 or P3

processor clock. Any other sequence of bus-related microoperations

is illegal.

"processor stop: c10ckoff without preceding bus operation" (Type 1)

The execution of a 'c1koff' must be preceeded by a UNIBUS operation. Otherwise,

it halts the processor, as the UNIBUS interface logic will not restart

the processor clock.

"c10ckoff too late" (Type 1)

The execution of a 'c1koff' must follow the initiation of a UNIBUS

operation within less than 500 ns.

"nonexistant ubf" (Type 1)

The microbranch conditions 13, 14, 23, and 32 are not defined and

must not be specified in the UBF field (cf. [1], [6]).

"time too short for push or pop" (Type 1)

Pushing or popping of the WCS 11/40 stack requires a P2 or P3 pro­

cessor clock cycle.

5.2 Internal Errors

"cannot open file: <name>" (Type 5)

"read

"seek

The UNIX file specified in a P, L, or X command cannot be opened,

because it either does not exist or the user has no permission to

read or write it.

error on file: <name>"

error on file: <name>" (Type 4)

"cannot close file: <name>" 1
An error occurred when a UNIX file was read.

"push: stack overflow" (Type 5)

The internal stack overflowed during simulator command parsing.

"pop: stack underflow" (Type 4)

The internal stack underf10wed during simulator command parsing.

33

"microprogram file <name>.bin not compatible with tabfile <name>.tab" (Type 4,5)

The simulator is called with two incompatible files (Type 5).

MICRO/40 transferred two incompatible files to the simulator

(Type 4).

"simulator usage: <name>.bin <name>. tab" (Type 5)

The proper number of arguments (2) is not specified in the

simulator call.

6 . The S imu la t_e.cL .. PDP-ll/4 OE

In this section we briefly discuss the PDP-ll/40E and its extended 80-bit

microinstruction format as modelled by the simulator software. The simulator

implementation does not attempt to model the entire PDP-ll/40E hardware and

all possible assignments to microoperation fields in the WCS 11/40 microinstruction.

Some external hardware units and the processor functions which are only useful

in emulating the standard PDP-ll/40 machine instruction set are omitted.

6.1. PDP-ll/40E Hardware

The simulator models all registers and functional units in the PDP-ll/40E

processor. The simulation of the WCS 11/40 hardware deserves particular atten­

tion. As the WCS 11/40 registers and control stores (RAM and PROM) are not

included in the PDP-ll/40 UNIBUS addressing scheme, they are not accessible

from the processor console or through PDP-ll/40 machine language instructions,

but only through WCS 11/40 microcode. Hence~ using the SMILE system for micro­

program loading and on-line testing [8], it is not directly possible to monitor

the effect of microinstruction executions on WCS 11/40 registers. That is,

the SMILE system and the microsimulator do not only complement each other with

respect to the error types that may be detected. but also with respect to their

capabilities to display effects of microinstruction executions, and therefore,

are both necessary facilities in our microprogramming support system.

Both, the writable control store (RAM), which may also be used as data

scratch pad, and the bootstrap control store (PROM) in the WCS 11/40 are

modelled by the simulator. However, the PDP-ll/40 standard emulator ROM is

omitted from the simulator software. This organization of the simulator results

from the following considerations. First, the ROH cannot be altered by the

user and is considered to work correctly. Second, with the omission of the ROM

from the simulator software, a jump/branch to the ROM causes an address error.

The latter consideration is important, as the "exit" command does not allow

the specification of a simulation termination condition, and can only be

34

issued, when the simulator is in corrnnand mode. Hence, a control transfer from

the user microcode into the ROM automatically establishes a simulator state in

which a simulation run may be terminated.

The simulator implementation does not model the PDP-l1/40 UNIBUS address

space, except for lk of l6-bit main memory locations.withaddresses in the

range [08 : 17768]. This simulator organization is generally sufficient for

two reasons. First, microprograms usually do not extensively refer to main

memory. Second, references to peripherals are standardized in the UNIBUS

addressing scheme and hence, can be modelled in the simulated main memory,

the memory management option is not affected by the HCS 11/40 (although it

may affect the WCS 11/40 [6]), and the processor console is represented by the

simulator connnands discussed in section 4. Note, however, that"the simulator

procedures 'get_adr' and 'usebus' and their calling procedures could be mod­

ified to include the UNIBUS address space, if desired.

6.2. WCS 11/40 Microinstruction

The following assignments to microoperations fields in the WCS 11/40

microinstruction (cf. Fig,6) are not implemented in the simulator software.

BUS

The bus field specifies and initiates UNIBUS data transfers. Theassignments

BUS 2 (await BUS BUSY)

BUS = 6 (restart on peripheral release)

are implemented as NOOPs. These definitions comply with the fact that

peripherals are not modelled by the simulator.

DAD

The DAD field allows the microprogram to alter the operation of the data paths.

The assignments

DAD=lO

DAD=ll

(inhibit DATO (word operation) and CLKOFF for the PDP-ll/40

machine instructions BIT, CMP, or TST)

(inhibit DATOB (byte operation) and CLKOFF for the PDP-ll/40

machine instructions BIT, MP, or TST)

are implemented as NOOPs. These definitions are due to the fact that the

UNIBUS data transfers are not simulated.

35

SBC

The SBC field allows the selection of a B constant to be gated to the ALU B

input. The generation of some of these constants is conditioned by internal

processor states which are particular to the standard PDP-ll/40 machine

instruction set. In the simulator, all SBC assignments which test conditions

always return 0 for the condition. The SBC assignments and the associated

constants as used in the simulator are given below.

SBC B CONSTANT

1 1

2 2

3 1

4-6 not used (cause Type 1 error)

10 177570

11 173374

12 17

13 77

15 250

17 4

all others 0

UBF

The UBF field specifies the branch micro test (BUT) to be performed to

generate the address of the successor microinstruction by DRing the determined

basic microbranch code (BUBC) into the six lQw-order bits of the microprogram

pointer (UPP). The simulator implementation causes all UBF assignments,

except UBF=12 and UBF=17, always to return 0, as the associated BUTs are

particular to the standard PDP-ll/40 machine instruction set. The simulator

implementation of the UBF field is given below.

UBF BUT BUBC

12 D=O 000 001

17 IR03 000 001

all others 000 000

UBF=12 causes a 1 to be gated into the lowest-order bit of UPP, if the

content of the D register is O. UBF=17 causes a 1 to be gated into the

lowest-order bit of UPP, if bit 3 of the instruction register is set to 1 (this

bit distinguishes between direct and indirect addressing).

36

7. Terminal Session

In this section, the microcode simulator operation is demonstrated by

a commented protocol of a terminal session. To this end, some minor errors

have artificially be introduced into the example microprogram, fastc.mic

(cf. Fig. 1 and Fig. 3). System commands and responses start at the left

margin of the page. Comments are indented. Responses from the UNIX operating

system end with the prompt '%'.

% ed

The UNIX text editor [2] is used to generate a simulator command file.

:a

t rl

t r2

t r3

t r4

t r5

t r6

t r7

• w trace. regs

35

:q

% ed

:a

= rl

r2

= r3

r4

= r5

r6

r7

The generated simulator command file is written into the UNIX text file,

trace. regs.

The number of characters in trace. regs is listed.

Editing is terminated. Control is returned to the operating system.

The UNIX text editor is reinvoked to generate another simulator command

file.

:w print. regs

28

:q

% ed

:a

The generated simulator command file contains 28 characters and is

written into the UNIX file, print.regs.

A third simulator command file is generated.

rl=lO

r2=12

r3=14

r4=16

r5=0

r6=1000

43

:q

w set. regs

37

The generated file, set. regs, initializes the general purpose registers

R[l] to R[6].

% mic -s fastc.mic

A version of the microprogram, fastc.mic, with artificially introduced

errors is assembled, and the simulator (-s) is called.

fastc.mic

91 lines read.

>

The MICRO/40 assembler acknowledges the acceptance of the micro­

program, fastc.mic, which contains 91 lines of code. Note that no

error messages are issued.

The simulator enters command mode after being invoked by MICRO/40.

> x set. regs

> x trace. regs

> 0 210

>g

The simulator is set up for the invokation of the microprogram with

a 210
8

instruction.

The simulation is started.

2003: r[6] = 776

2037: r15] 0

2042: r[5] 776

2043: r[6] = 774

The trace information requested in the simulator command file, trace.

regs, is printed.

2045: changing d register while dato active

changing ba register while bus busy

2045: r[6] = 772

38

The simulator reco.gnizes that clkoff is missing in the microinstruction

at control store location 2044. The c1koff has intentionally be deleted.

Note that MICRO/40 did not recognize this error.

>e

As the discovered error is type 1, the simulation is terminated to

correct the error.

% ed fastc.mic

The UNIX text editor is called to correct the file, fastc.mic.

1846

The number of characters in fastc.mic is printed.

? r4?

The microinstruciton, d_r4; dato;, at control store location 2044 is

located in the file, fastc.mic.

d_r4; dato;

:s/$/c1koff/p

d_r4; dato; c1koff

:w

1853

:q

The erroneous microinstruction is corrected.

% mic -s fastc.mic

fastc.mic

91 lines read.

The microprogram, fastc.mic, is reassembled.

> x set. regs

> x trace. regs

> 0 210

> g 2000

The simulator is again setup for the invokation of the microporgram with

a 210
8

instruction.

2003: r[6] 776

2037: r[5] 0

2042: r[5] 776

2043: r[6] = 774

2045: r[6] 772

2047: r[6] 770

2051: r[6] 776

2053: r[7] 0

The trace information

regs, is printed.

16: address out of bounds

39

requested in the simulator connnand file, trace.

The microprogram simulation leaves the WCS 11/40 c.ontrol store address

space with the microinstruction, goto 16, at control store location

2054.

> x print. regs

A listing of the register contents is requested.

rl: 10

r2: 12

r3: 14

r5: 776

r6: 766

r7: 0

The simulator lists the requested register contents.

> r2 0

> r3 = 0

> r4 = 0

> 0 211

The simulator is set up for the vokation of the microprogram with a 2118

instruction.

> g 2000

The simulation

removed.

2013: r[l] 776

2014: r[l] 774

2016: r[4] 16

2017: r[l] 772

2021: r[3] 14

2022: r[l] 770

2024: rr21 12

is started. Remember the trace requests have not been

40

2026: r[6] = 776

2027: r[5] 0

2030: r[6] 1000

The trace information is printed.

2032: bus command or clkoff ignored

2032: r[6] = 1002

The simulator recognizes another error that has not been recognized by

MICRO/40.

>e

The simulation is terminated to correct the error.

% ed fastc.mic

1853

: /rts/ ;+4p

ba_r6; dati; clkoff !rts pc

d_r6+2; r6_d; clkoff

r7_unibus; but 16

·goto 16

end

: ? rts?

ba_r6; dati; clkoff

: s/clkoff//p

ba_r6; dati !rts pc

:w

1847

:q

rts pc

The error is corrected using the UNIX text editor. The error was

artificially inserted into fastc.mic

% mic -s fastc.mic

fastc.mic

91 lines read.

The corrected microprogram is reassembled.

<fastc.mic is simulated after being invoked by a 2108 instruction>

> r2 0

> r3 = 0

> r4 0

>0 211

>g 2000

The simulation is reinvoked with a 2118 instruction

2013: r[l] = 776

2030: r[6] = 1000

2032: r[6] 1002

2033: r[7] = 0

16: address out of bounds

41

The requested trace information is printed, and the microprogram leaves

the WCS 11/40 control store address space with the microinstruction, goto

16, at control store location 2034.

> x print. regs

rl: 770

r2: 12

r3: 14

r4: 16

r5: 0

r6: 1002

r7: 0

The register contents after the execution of the 2~18 instruction are

printed

>i

The simulator is reinitia1ized

> x set. regs

> b r6

> 0 210

> g 2000

A simulation of fastc.mic (210
8

instruction) with a break on r6 is

started.

break 2003: r[6] = 776

>g

break 2043: r[6] = 774

>g

break 2045: r[6] 772

>g

break 2047: r[6] 770

>g

break 2051: r[6] 766

>g

16: address out of bounds

>r

The microprogram leaves the WCS 11/40 control store address space at

location 2054.

All breaks are removed.

> 0 211

> g 2000

A simulation run for a 2118 instruction is started.

16: address out of bounds

>i

The microprogram leaves the WCS 11/40 control store address space at

location 2034.

> x set. regs

> 0 210

> s 2000,30

42

The simulator is reinitialized, and a simulation run for a 210
8

instruction

in stepping mode is started.

2000

2001

2053

2054

address out of bounds

The microprogram leaves the WCS 11/40 control store address space at

location 2054.

> b 2017

> 0 211

> g 2000

A break at control store location 2017 is set for a simulation run with

a 2118 instruction.

break: 2017

> x print. regs

r1: 772

r2: 12

r3: 14

r4: 16

r5: 776

r6: 766

r7: a
After the break at location 2017, the register contents are printed.

>g

16: address out of bounds

The microprogram leaves the WCS 11/40 control store address space at

location 2034.

> = 1000

1000: 0

> = 776

776: 0

> = 774

774: 16

> 772

772: 14

> 770

770: 12

> = 766

766: 0

> = 764

764: a

43

The contents of the simulated core locations 764 to 1000 are investigated.

>e

Exit from the simulator •.

% ed core

core: cannot open

:a

764: 0

o
50

52

54

o
o

:w

21

:q

A core file (locations 764 to 1000) is created

% sim fastc.bin fastc.tab

The simulator is called (not invoked by MICRO/40).

> x set. regs

> r5 = 0776

> r6 == 766

>0 211

>1 core

> g 2000

The simulator is set up for a simulation run with a 2118 instruction.

16: address out of bounds

> x print.regs

rl: 770

r2: 50

r3: 52

r4: 54

r5: 0

r6: 1002

r7: 0

>i

After the execution of the 2118 instruction, the register contents

are tested.

> x set. reg

> 0 210

> g 2000

16: address out of bounds

>c

6680. 6680.

The time for the execution of a 210
8

instruction is measured

> 0 211

> g 2000

16: address out of bounds

>c

14020. 7340.

44

The accumulative execution time for both a 210
8

and a 2118 instruction as

well as the time for a 2118 instruction are printed.

>e

Exit from the simulator.

45

Acknowledgement

The microcode simulator was originally implemented by R. Kallerhoff of

the Technical University Berlin. The authors are indebted to H. Mauersberg,

also with the Technical University Berlin, for providing us with the micro­

code simulator and for many helpful suggestions concerning the development of

a microprogramming laboratory around a PDP-ll/40E. They also wish to express

their gratitude to Professors W. K. Giloi and W. R. Franta for initiating the

microprogramming laboratory project at the University of Minnesota. The micro­

programming laboratory is funded by University Computer Services, University

of Minnesota.

46

Appendix

PDP-ll/40E Register-Transfer Block Diagrams

External ~rocessor Options

to' from

/~
..

t

~ ~ IINSTRUCTION REGISTERJ
Q:I
c::

Q:I CIl
c::
CIl ROM GENERAL-PURPOSE ... ,

REGISTERS
,. ,It

INSTRUCTION CONTROL STORE
L

DECODING
j,. -~- LOGIC and [PS REGISTERJ MICROBRANCH (256 x 56)

--~. CONTROL ..
. ~

lB REGISTERI IB CONSTANTSJ

! ,~ -- ,II 'II
IBU' r MU::I ID MUXj [B MUX I 1,4" j 1'1- I PROGRAMMER'S -"'- 1t

CONSOLE ,\N A7 ~ ALU
,~

CONSOLE U WORD I UPP J
CONTROL 1

~ 11 I -rd~rxl lD REGISTERJ BA MUX MICROINSTRUC":' TIMING DATA ~~ CONTROL CONTROL TION SEQUEN-DISPLAY . SHIFTI" LOGIC SIGNALS CINe;, MONITOR UNIT ,~

~ LOGIC ADDRESS ,If

DISPLAY [., BA REGIS TER I TIMING ,
SIGNALS

SWITCH
REGISTER DATA PROC ~SSOR INSTRUCTION PROCESSOR

\t v \II

IUNIBUSJ UNIBUS J I: UNIBUS lUNIBUS J IUNIBU~1 I UNIBUS .I UNIBUS
DRIVER DRIVER RECEIVE DRIVER DRIVER TIMING and CONTROL INTERFACE I L .4. J .. ~

.~ ..'ll I y \l' ~.

U NIB U S

· ~flt.i' d

DATA PROCESSOR SECTION INSTRUCTION PROCESSOR SECTION

,

IE MUxl

I STACK I
POINTERi

I

STACK

(16 x 16)
-

'I ,II ~!
S MUxl

RAM

CONTROL STORE

(1024 x 80)

i ;" t
----------------------------~

from the KDII-A
Data Processor

SHIFT/
MASK
UNIT

PROM
CONTROL STORE

(32 x 80)

I JEUBC Busl~~~~ __ --~----_
,~ DRIVER I ~II

RD BUst OR
DRIVERJ

to the KD11-A
Data Processor

L

I
~I!

XU WORD /XUPP/

t 1
CONTROL
SIGNALS

to the KDI1-A
Instruction Processor

'.

-" upp IE---
K----1
.... MUX ~

from the KDII-A
Instruction Processor

to Stack

and RAM

I
1 E MUX f

49

from Shift/

Mask Unit

I RD BUS: DRIVER I
~~ t from S MUX

--------------------~~ CPFF ~----------~------------~

WCS 11/40 Data Processor Section
---------~---~-------------------

DMUX
BUS

KD1l-A Data Processor

General Purpose

Registers
...

~--------~-----------------;~9 PS Register~ J-------------------~-;~
PS <O>=PS (C)

I D MUX J
4~ J\ t ~t~ _______ ~---------------~------------~----------------------~__.

from
B MUX

PS(C 1
r--C-ARR-Y---O-U-T....,~15 \ BIN

Multiplexor l£OUT7 \

COUT MUX)tU 15 \ ALU

,It

~~ PS C)
AIN f CARRY-IN1lIT

~-~----~ LOGIC ::::~

JD(C)J 1 D Register I

D<15:0> ~ I

to

RD

BUS

BA t-nJX
from

UNIBUS

Data Processor Interface

from EMUX<lS-O>
E.MUX

I
WCS 11/40 Instruc- I KD11-A

I from
Stack

TOS <IS -0>

'V ~----~------~~TOS<14,2,1>

RAM

CONTROL STORE

(1024x80)

~

tion Processor

Section

CONTROL

Instruction

Processor .

UPP<7:0>

PROM

CONTROL STORE

(32x80)

STORE ~i
~~_UP __ P_<_.4_:_0_> __ ~~ADDRESSING~-~--------~~
, CONTROL ROM

, ..

XUPP<2:0>

i

XU BUS<79:0> i
!

to ... XUBUS< 79: 0> I
S MUX'

XUBUS <79: 59>

from
Shift/
Hask Unit

EUBC BUS <10: 0 >

I

to EMIT< 15 : 0> l
S MUX ~~----------

XUBUS<58:56>

i

EUBcnus<10:8>1 '~i
lOR, I!

,~ J
xu t-lORD J XUPP I

!

WCS 11/40

CONTROLLER

~
WCS 11/40 Control Signals

f

-) CONTOL STORE

(256x56)

xu~US

:<55:0> "
.u BUS<55:0> 1

UBUS
<7 :0>

EUBCBUS< 7 : 0 >1 1I ~
OR I

J"
U WORD I Upp I

,~

KD11-A
Control
Signals

~ICROINSTRUC­
TION SEQUEN­
CING MONITOR

LOGIC

t-f ~ H
::l ::l
en n en ,.,. ti rt
ti 0 t;

'"d c: c:
t; n ~ n
0 rt 11 rt
n r'o III !-l.
CD 0 ::s 0
en ::s n ::l en ::r
0 t:::1 ~
t; CD C") ttl

n 0 QQ
~ 0 ::s !-l.
~ P.- M' en
III !-l. ti t"'t

OQ ::s 0 ttl
en QQ ~ t;

v " V "

I BUT MUX I

BUBC
<5:0 >

51

References

[1] Fuller, S. H., Almes, G. T.; Broadley, W. H.; Forgy, C. L.; Karlton,P~ L.;

Lesser, V. R.; Teter, J. R.,"PDP-ll/40E Microprogramming Reference Manual,"

Department of Computer Science, Carnegie-Mellon University, Tech. Report

l6-Jan-76.

[2] UNIX Documentation Book I, "Introduction to UNIX," Computer Systems

Laboratory, Department of Computer Science, University of Minnesota.

[3] UNIX Documentation Book II, "UNIX Progranuner's Manual Section I - Connnands,"

Computer Systems Laboratory, Department of Computer Science, University

of Minnesota.

[4] UNIX Documentation Book III, "The nC" Programming Language," Computer

Systems Laboratory, Department of Computer Science, University of

Minnesota.

[5] Teter, J. R., "PDP-ll/40E Hardware Maintenance Manual," Department of

Computer Science, Carnegie-Hellon University, September 1976, revised

June 1977.

[6} Berg, R. K., "A PDP-ll/40E Microprogramming Primer," Department of

Computer Science, University of Minnesota, Tech. Report 78-8.

[7] Berg, H. K.; Dekel, E., "MICRO/40 Assembler Primer," Department of

Computer Science, University of Minnesota, Tech. Report 78-9.

[8] Berg, R. K.; Samari Kermani, N., "A Primer on the SMILE Microprogram

Load and Test System," Department of Computer Science, University of

Minnesota, Tech. Report 78-11.

[9] Berg, H. K.; Covey, C. R., "A Primer on the Use of a Logic State Analyzer

as a Microprogram Debugging Aid," Department of Computer Science, Univer­

sity of Minnesota, Tech. Report 78-12.

52

[10] Mueller, J., "SMILE - Manual," Institut fUr Softwaretechnik und Theoretische

Informatik, Fachgebiet Betriebssysteme, Technical University Berlin,

December 1976.

