EK-KE44A-TM-001

KE44-A CISP
Technical Manual

Prepared by Educational Services
of
Digital Equipment Corporation

Copyright © 1981 by Digital Equipment Corporation
All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsnblhty for any
errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000 computerized
typesetting system.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

CHAPTER 1

S Jmd oo prvh pusned i e
wivivivivi =
H W -

CHAPTER 2
2.1
2.2
2.3

CHAPTER 3

W -

W W W W W W W W W W W
NN s
AW AW —

CHAPTER 4

ot ot s
Do h oo —
N -

N et ot s ot ot bt b e oot bt

CONTENTS

INTRODUCTION Page
PURPOSE AND SCOPE ...ttt 1-1
GENERAL DESCRIPTION ..ottt sieniesensacstae e s seae s 1-1
Commercial Instruction Set..........cceviiiieniinieniniee et 1-1
Suspension (INLETTUPL)coiiiiiiiieiieiceie et eee e srs et et ae e eae e eenas 1-1
The MICTOCOME........ccciiiieieiiriiiecereniterce et et e aesaesaeeera e s e e aensaesseens 1-1
Hardware DesCription...........ccueviiieiiiiniicciccceeeeesteeesteesre e aneesne e 1-2
RELATED HARDWARE MANUALS ..ottt 1-2
INTERFACING
GENERAL ..ottt be et st saestesae bt senesasesbasssesenensannsans 2-1
INITIAL OPERATION ..ottt sttt sae st e sbae e sa s 2-3
MICROCODE GENERATIONooiiiiiiiiinirtnteie ettt senesae s 2-3
EXTENDED INSTRUCTION DATA TYPES
CHARACTER DATA TYPES.. .ottt et 3-1
CRATACTET ... eeiieitericeiec ettt ettt eae e s be s saesaaesbeabaesbeessbeaenseesaaansnaanes 3-1
CharacCter SIINEcooceiviirieierrneenierrereeeseere st e siesraaereessesresaeaesanesssesssessnsesasaans 3-1
CRAracter Set.......ccuivieieneriritenireseeiesritestessesse e se s s essesaessbesanassassnassnenssansens 32
DECIMAL STRING DATA TYPES ...ttt 3-3
CommOn Propertiesc.oovuiviivereneneniniiienreeeestesenie e sresaressessresseaseees 33
Decimal String Descriptorsccooviiinieniiiniiinincrcnceiee v 3-5
Packed Stringsccciviiieriiiiiicini ettt see b s e be e ne s 3-6
ZONEA SEIINES...ccviiviiieieririeitereitietsee et stsstseesasesteaesaessessaessasssesnsesssensenssens 3-8
Overpunch Strings ..o 39
Separate SriNES.......c.cccivirieiiriiiiiereren ettt sa e es 3-11
LONG INTEGER.......o oottt ss e et se e ss e be s saesaa s 3-14
THEORY OF OPERATION
2901 A MICROPROCESSOR SLICER....cccoctvctiirteeericeeeereereeeseeereeeeneessneennes 4-1
20001 A RAM Lot retes ettt sae st be st e st b et et ba e sr e e banna s 4-1
Arithmetic Logic Unit (ALU)..coccoiiriiiicreereeeereeee e 4-4
Logical and Arithmetic Functions..........cccccooeevienieereeecienienneecne e 4-5
Logical Functions for G, P, Cny4,and OVR ..o 4-6
QR EGISTET ...t ettt a e ae e v e e e e e anenraean 4-6
Bit SHifting ..c.cooveiiiiiieieieerte ettt ettt s b s ena e 4-8
SHALUS BitS...eeeiriiiiiiiieiirierite ettt see e e s s s b e e sea e e seaanen 4-8
Carry Lookahead LOZIC......ccceeviririeieniiiiiiicic sttt ee e e sanens 4-8
2901 A Pin Definitionsc.ccooiiiiiiiiniiniiinenienitneiiniestsseesie e sesseesnessneessnanns 4-8
INSTRUCTION SUSPENSION (INTERRUPT).....ccociiiiiniriniencncceeeeeane 4-9
Steps Leading to SUSPENSIONc.cecviviiiiiiiiieiciecrcnesreeeeesie et seessseenns 4-9
Returning from SUSPENSIONcccceuiierininieirrinieenee et aeene 4-9
DETAILED LOGIC DESCRIPTION.......cocotiiiiinireiecsciee e 4-9
TR DECOME...... ettt se e srt s seeas s e s nessnesnaeen 4-9
CPC BranChing...c.c.ooceiieiiieieeieeecee ettt eeaesseass e sne s st essseesseeennenns 4-11
MPC AAIESSING ...coeveeiiiiiiicrieie e ccreesre et ee et e raearasarese st e sassesnesanseas 4-12
Maintenance SWItChoooiiiiiiiiereerreree et e e s e e sae e asaneans 4-12
BCD Operation PROM ...ttt sere e seeaesenens 4-12

iii

44
44.1
44.2
443
44.4
445
4.4.6
447
4.5
4.5.1
452
4.5.3
454
4.5.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11

CHAPTER S

O -

LULUNLUNUUNLLOULULOULUL L L LWL
PRRPRDRNNNNNDDDD DD ===

AN P WN—O

DETAILED BINARY DATA PATH ...ttt 4-13
Direct Data (ALU-In) Multiplexer........cocooieoieeiiieniiecieeereece e 4-13
Constants Generation for 2901 Acociiieirierrinnennrenenee et n s 4-13
Saving Constants Before Suspension (Interrupt)......ccccceeveveveeriivercenreecnenne. 4-13
Restoring Constants After Suspension (Interrupt).........cccceeevenenviccreriennennnnn. 4-13
2901 A Write OPErations.........coccocerievenrerinreeresisresersnssnerersssessnssessessessessessensonn 4-14
2901 A Shift Operations........ccoccoveviirrcrsceiiniienienteseeeceeeseseeseessesreesenssesseenne 4-14
INput MUltIPIEXErS.....coiiiiiriiiiieiteicr ettt st e sae s eas 4-14

DETAILED BCD ALU DESCRIPTIONcccoociiiieteeireeerererenenesesneenas 4-15
BCD “A” Register/BCD “B” RegiSter........ccccocveirriiriecrienenenieneeeneencnne 4-16
BOD CaITY .couiieeeriiiiiieetintreeseecresieeseeseestaseessesssesasssessesaessesssensensesssassnensenseens 4-16
BOD MULIPLY ..ottt ettt steaesaes e se st s e estessessnasaassseans 4-16
BCD ASCII ENCOAING.....cccviiiiiireeeeeciecececeeerseeste e seesaesiaesaeesvesssnenns 4-16
BCD Sign Translation.........ccccevievierienieeninniiencnecncrieseisssteseesseessasessessseesnenes 4-16

DETAILED LOGIC DESCRIPTION OF STATUS BITS ..o 4-17
SHALUS BitS...c.ueiiiiiiiiiiieeeeriee e eecrre e e steerre e s rte st e tae s steee e s e beassba e e aseeenanannnee 4-17
INONZETO CONAILIONSoeeriirerreeieeiieiererre e seeeste st esee e s st esraessnassnessnneas 4-17
CarTY /BOITOWceiiiiceririeteeec ettt sa e ese e e s sas st et sessee e sneens 4-18
SEN BIES ettt e e a e e 4-18
Address Odd Conditions...........cocveerererienrerieenienrenicrntresstetesesesresseessssssesseenne 4-19
Status Bit Operation with BR Interrupt Pending.......ccccoveeeiininvcinvnniinnnnnnn. 4-19
Return from INterrupt ..o cerereereenes 419
Categorizing Instructions to Form N,Z,V,C Bitscccoceeverviinriiniienveencenenn. 4-20
Arithmetic Condition Codes.........ccueerenuerirririeneeeenntrererreeteesressessessessenne 4-21
Condition Code OQULPUL.....c.cceuiiireeireeert et eeneeveseeens 4-21
Character String Condition Codesccccooviviiiiinniiniiiiniiiniinee. 4-21

MICROCODE

INTRODUCTION ..ottt rteseestseesesesesee e e e sae s et se e see 5-1
DesSign GUIAEIINEooevieeieeeeceeteeccteeie et e estr e s e vt e te e e rvesesraesesnaeeenn 5-1
Microcode LiStING.......coceeviiienreniiieeeieeniee et sree st e saee s 5-1

THE MICROWORD ..ottt ettt et s ae e e 5-1
CPC Field (87:76) ...cveonireeeieeetrierieerentet sttt etssassse st s senssneenee 5-3
APORT Field (T5:72) vttt sreresie vt e senbees 5-3
CISSPW Field (T1:T0) ovieiiieeeeieteciestretesreseseeseesiasesveseesasssesseasssssnasanenns 5-3
ALUCB Bit {69) ...cooiiiireincrienenereecicctcntnenreeercecsee st st ssses e e e s saens 5-3
BPORT Field (68:65) ..cvoueeeiereiriceieieiieienieieieeeeeeceest s et esee e e sne e 5-3
SHFETIN Bit (64)ceioiiiiiieieteicencertereencete et esecseessae s seesnae e asnees 53
SHFTC Field (63:62) ..ccocveveiiieeeieeenieieeeceeece et e e e e sessesensassansesses 5-3
ALUDST Field {61:59) .ooveiriiieirireiereenere ettt eteessieveece s st ae e e 5-3
ALUFTN Field (58:56) ...cccvveviieiiieeereieiene ettt snsnsnesesaesaesveessassaesaes 5-3
ALUSRC Field (55:53) cieiiiiereeiieienerceeeesinieseeseessestessesssenesseessesncessasnes 5-3
SALUIBIt (52) coueiieeieicteesresee s cseesese s e et et e s se e e pee e eenes 5-3
INEN Bit (S1) oottt ae s 5-4
SWAP Field (50:49) ..ottt et ssueae s eseesae s s essesaese e 5-4
ENIB Bit (48) ..oooviiiiiiciiieeceirinetetereie st et e eeeste e sse s essesae s e s se s e sssesanesnnee 5-4
ENOB Bit (47) coovieieieietreereersnrentete et ceees et et esesaesas e et e e e sessnenee 5-4
LBYTE Bit {46)ccioteieeeieieieieinenaeteieeeeere s et et saeseesee s sses e seenne 5-4

G
NI
NS+t ot s
O O 00

5.2.21
5.2.22
5.2.23
5.2.24
5.2.25
5.2.26
5.2.27
5.2.28
5.2.29
5.2.30
5.2.31
5.2.32

U La
PLwibw
W N =

CHAPTER 6

6.1
6.2

CHAPTER 7

BN PN
[SESENE

2.1
2.2
7.2.2.1
7222
7.2.2.3
7.23
7.2.4
7.2.5
7.3

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

CONI Field (45:41) oot 5-4

CONST Field (40:38)...ccvceeieriicrrecrreerneesieirneessneernsessasiessresssessasessssessssssnses 5-4
ENSNIN Bit (37} .ceecticeeeierereeneerereeseesesessesssssssessssessesssasssssssesssessssesnsenes 5-4
ENSNOU Bit (36) .occoeeeeeeiieeireeieieeeeseressersssessssessssassssssssssesensessssessssssesaness 5-4
BMUX FIEld (35:34) ...oooeieirieecreentieireeeineessnesaresssssssssesssnesssesessesssssessresens 5-4
BCDOP Field (33:32) c.uovviiiriieieenieneenrecinreerssessessessesesssesssssssesssnsassessasssanas 5-4
BCDMX3 Field (31:30) .oooiiiveeeerieneerreertennecnesssessnesssessmesasessessssssssesssessasens 5-5
BCDMX Field (29:28) ...ooocvrereerireirnreniircnrenssecsseneasssesssnessasessssessssessssessnses 5-5
CON2 FIeld (27:25) uureeieeceeecrenreenseeertnesarenseeessssarsssssssesesssassassessasessssessssssnnns 5-5
CONB FIEld {24:21) oneeeeereeereirenninniesssesnsecssassssesssssesssesssassssssssssssossssssnnne 5-5
CONYE Field (20:16) .ooeervcererreerennsrieesresssnessseessssessaesssasessssassansesssossssssssssssnses 5-5
MPC Field (I15:10) ... ciiieieceiiiieceecreniesnesseesesarecsseressanesssserssssesssesssesssnsassnsae 5-5
CONBR2 FIeld (9:6) ccvvvieeeenreeeiietiecseinriersneesssesssessssecsssesssssessrssssssssssesssnes 5-5
CONBRI FIeld (5:2) cocvveiierreiecrirrnrereressiesssnsessressssessanessssnsssssssssaesssacsssassnnes 5-5
ENCIS Bit (1) ceootiieeereecnennicrisesisessesssessessssesssessassssssssessssssssesasssesssessanss 5-5
ENCB Bit (0)..ccveiieeciiriecnriseienirennressienssseeessessssessssessssessssssssssesssasosessssnsas 5-5
READING THE MICROCODEciotiieicirteinirenreinnesesressseessssiosssesssssesseees 5-5
The Field Definitions........c.cvcoveeirnnieiiinesireessiesrnersnneeessnessnessssssesseessreessasesnne 5-6
The MICTOINSEIUCHIONcccceeeeirerercrieereriieeeeeeseriereeeeessssserasesssesersrsssessesessannes 5-7
Reading the Macrodefinitionsc.ccccecieeeirinecnicnienenenrnnneniennseiensnessensnennens 5-7
THE CIS MICROCODE INSTRUCTIONSuoroertreetrecnrirsreenreesseeeraneenns 5-10

INSTALLATION AND CHECKOUT

INSTALLATION ...ttt st eesas st et sas st sn s ne s ne 6-1
CHECKOUTcoictttriecesctnacestresstestessessessnesssssnssssseasssssasssessassesassesnsansessees 6-2
MAINTENANCE
GENERAL ...ttt nreseseseestssa e st st e st ssaessessasssassssntessnsuaensen 7-1
KE44-A DIAGNOSTICSooiiitecnenteetsesieteteseseesessesteseesassesssesasnessenes 7-1
CZKEEA Program ADBSIract.......cccceevemiereecrieeccccenirecnsenescrnsreeesensessenesssnenenne 7-1
Program Starting Procedure...........coevivecvrcnnenienseesennecnienesenentesesreesessennens 7-1
Starting Address 200..........cccovieriivierenrenreenecrersnsssesressiesrsesesesssessesssanes 7-1
Starting Address 204..........coocovieieneiirnienncetnereeerenae e st e esaesaesssanns 7-3
Starting Address 210.........ccvivirrnerrrcreennnrenieeneeenrresseesasscsssesessassenes 7-3
Error InfOrmationccocecueeirviiniinienineeceeneeeeceentnsesneesaessesaesnnestessasssesnas 7-4
Program OPtions.........ccevuiviiiiniinnincinicniencre sttt ssesbese s senees 7-4
Program ExXecution Timesccccovveeriiiiieneeninniennennenireenreesenesesssasseaseseenne 7-4
ASCII PROGRAMMER CONSOLE.........cooiririneeenineneereeeeneceaesaeeenae 7-5

EXTENDED-INSTRUCTION DEFINITIONS
CIS MPC FUNCTIONS

CIS ABBREVIATIONS

CISP MNEMONICS

Figure No.

2-1
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
5-3
5-4
6-1
6-2

Table No.

2-1
4-1
42
43
4-4
4-5
4-6
4-7
4-8
49

FIGURES

Title Page

KE44-A /CPU Interface Lines........ccccoveeviicninrenincnieerenreteeesrennreeniessevensssessnenns 2-1
KE44-A Block Diagram.........c.cooeeeveeienennicieiceieeeiscneresesresseseeeeseessesesanesessessenes 4-2
2901 A Detailed Block Diagram...........cccocuevieeerernenreecrenrenneeenseesseesreeereseseessesnennes 4-3
AM2901A Pin CONNECLIONScceeeurrereirererertieenesieesrestesaassessesesessensesessassensessenees 4-8
MPC TIMUNE ...ttt sseetreereste et esaesssessesessessesessesessesassenessaneons 4-10
2901 A Shift OPErationsc.ccoceevereireiieesesieressessssesssssesessessassassesssessssessessessssesenne 4-15
CIS Status Word........occviiiviiriienteeecnenirereteeseessesessssnesssssesssesessessssesstssassssesses 4-17
CIS Microword Field Mapc.cocvrieerineeieccninenenicecnecsis e eaeeassee s sssesaesessons 5-2
Sample Page of Microcode Field Definitionsccccceveveeveeineecerenencncnencnencnnenn. 5-6
Sample Page of MicroinStructions..........coceverereeruenisenintinceene e csee e eeeseeseneenens 5-8
Sample Page of Macrodefinitions..........cc.coeveerieerieercneneneenirtncesesesieseecsaeessesenens 5-9
Module Placement in Processor Backplanec..cooovveeneicvcicniinicinccnnnnnccnninne 6-1
KE44-A Data Path/Logic Module, M7092..........cccooiiiiiineieeenieercneeneeseseenene 6-2

TABLES

Title Page

KE44-A/CPU Interface Line Definitionscocovvveiiniricnninciciniciccenne 22
Microcode Matrix for Source Operands and ALU Functions..........occecevrevenennee. 4-4
ALU Logic M0de FUNCHIONS......c.ceoreueerereenieriresenieeeensesiessenssesssessesssessessesssssassens 4-5
ALU Arithmetic Mode FUncCtionscoccoevienvencnienninicnscneccennisncicncncnecneenes 4-6
P, G, CN44,and OVR FUnCtions ...ttt 4-7
CPC Bits Affected by Branching Conditions..............ccccoeviuinncrnrnncinicccennenns 4-11
BCD ALU OPErationsc.cccieevievienieivinirenreniissessensessessssenessesssssssseessessssssssessessens 4-12
SIBN COQING.....creererreerereiieereeterte e seereesaeses e esesatssassassessesaensasssnsssessessonsonssaenes 4-19
INStruction CateBOTIes. ... cccverruereenirrerinrentisrnnisrensesstensessescsesssesesssessesasessensssasssens 4-20
Condition Code SEttingsccvveerrvrererreernerrnrrnieriestenesienresaestsessessesessessessereeses 4-22

vi

CHAPTER 1
INTRODUCTION

1.1 PURPOSE AND SCOPE

This manual provides the data necessary for the installation and operation of the KE44-A Commercial
Instruction Set Processor (CISP) option to the KD11-Z Central Processing Unit (CPU). The KE44-A
option significantly extends the capability of the PDP-11/44 computer in the area of commercial data
processing. The KE44-A option is installed in the PDP-11/44 cabinet.

CIS-specific abbreviations used in this manual are listed in Appendix C. Appendix D lists the CIS
microword mnemonics.

1.2 GENERAL DESCRIPTION

1.2.1 Commercial Instruction Set

The CIS is a series of instructions for manipulating byte strings in order to provide improved COBOL
performance, text editing and word processing capability. The instruction set includes instructions for
character handling and decimal string operations. Each of these instructions has two forms: register and
in-line.

In the register form descriptors are loaded into the general registers before the instruction is performed.
With the in-line form, descriptors are accessed by descriptor address pointers. The CIS also includes
“load two” and “load three” descriptor instructions that augment the register form. The op code for all
CIS instruction is 076 nnn.

1.2.2 Suspension (Interrupt)

Since CIS instruction times may be long (due to largc operands), a method is provnded for giving sys-
tem devices interrupt access to the processor. Thus, during CIS instructions, a test is made at specific
points in the microcode for Bus Request (BR) interrupts. If an interrupt is detected, the CIS instruction
is automatically interrupted, “suspended”, on a BR priority basis. During suspension, the CIS instruc-
tion is stopped and control is returned to the KD11-Z. The interrupt routine will then run, executing one
or more new CIS instructions during the period of suspension. At the end of this interrupt routine, con-
trol is returned to the KE44-A for completion of the suspended instructions. The entry point (micro-
word address) for the suspended instruction is the same as the initial entry point. The control store
contains a service interrupt save-state routine and a restore-from-service- interrupt routine.

1.2.3 The Microcode

The CIS instructions are implemented in microcode. The KE44-A microstore comprises 1,000 88-bit
words. When a valid op code is received, the starting microstore address is entered and the instruction is
performed. All of the microwords necessary to perform the op code specified operation are sequenced
through. Each 88-bit microword is subdivided into 32 fields. The CIS program counter (CPC) field
{87:76) of each microword is coded with the address of the next microword.

1-1

1.2.4 Hardware Description

The main hardware elements of the KE44-A are a control store module and a data path module. The
control store is a quad-height (M7091) board that contains the microcode in ROM form. The oper-
ational logic is on a hex-height (M7092) board that contains four basic sections.

1. Instruction Register (IR) Decode, CIS Program Counter (PC) and Microprocessor Code
(MPC) Addressing logic

2. Binary data path logic

3. Decimal data path logic

4. Status Information and Condition Code Generation logic
These sections are described in detail in Chapter 4.
1.3 RELATED HARDWARE MANUALS

The following hardware manuals are related to the KE44-A and may be purchased from Digital Equip-
ment Corporation.

Document
Title ~ Number Availability
PDP-11/44 CP Subsystem EK-KD11Z-TM Hardcopy and
Technical Manual) Microfiche
PDP-11/44 System User’s EK-11044-UG Hardcopy
Guide
FP11-F Floating-Point EK-FP11F-TM Hardcopy and
Technical Manual Microfiche

All purchase orders for hardware manuals should be forwarded to:

Digital Equipment Corporation
Accessory and Supplies Group (P086)
Cotton Road

Nashua, NH 03060

Purchase orders must show shipping and billing addresses and state whether a partial shipment will be
accepted.

All correspondence and invoicing inquiries should be directed to the above address.
For information concerning microfiche libraries, contact:

Digital Equipment Corporation

Micropublishing Group BU/D2

12 Crosby Drive
Bedford, MA 01730

CHAPTER 2
INTERFACING

2.1 GENERAL

The KD11-Z CPU loads commercial instructions and operands into the CISP KE44-A. After the CISP
executes the requested operation, the CPU reads the results and stores them in memory. Figure 2-1
shows the KE44-A/CPU interface lines; Table 2-1 describes the interface signals.

NOTE
The KE44-A does not directly interface with the
UNIBUS, but is connected to the KD11-Z via a bus
that is separate from the UNIBUS and uses the
KD11-Z microcode for data transfers to and from
memory.

PROC INIT L
EXTCLKAL

F MPCO-8BL
PAGE FAULTH

LOAD IR L

CcPU < AMUX 0- 15 H

e BISTATE AMUX L

—

FORCE CPC L
FORCE CIS DATA L
FREE BUS H
PFAIL BR PEND H
ENABCIS L
CIS ABORT H

A\VAR!

KE44-A

V4

>
—

|

TK-7232

Figure 2-1 KE44-A/CPU Interface Lines

2-1

Table 2-1 KE44-A /CPU Interface Line Definitions

Mnemonic

Signal Flow

Function

MPC (00:08) L

AMUX (00:15) L

ENAB CIS L

CIS ABORT H

PROC INIT L

LOADIRL

TRI-STATE AMUX L

PFAIL BR PEND H

PAGE FAULT H

FORCE CIS DATA L

FREE BUS H

EXTCLKAL

FORCE CPC L

Bidirectional

Bidirectional

KE44-A to CPU

CPU to KE44-A
CPU to KE44-A
CPU TO KE44-A

KE44-A to CPU
CPU to KE44-A
CPU TO KE44-A

CPU to KE44-A
CPU to KE44-A
CPU to KE44-A

CPU to KE44-A

Microprogram address lines. Used to sequence
the CPU through the microprogram. Derived
from KE44-A microcode. Cannot be altered by
CPU.

Data lines used to transfer instructions and oper-
ands between CPU and KE44-A.

Forces CPU to a service state after the com-
pletion of a CIS instruction; i.e., when a low-to-
high signal transition occurs.

Clears CIS CPC line when an abort condition ex-
ists in CPU.
CPU initialize. Used to initialize status registers
in KE44-A.

Cause KE44-A to load its instruction register
(IR) from AMUX lines.

Causes CPU to remove data from AMUX lines.
Turns off the KD11-Z drivers, thus enabling
KE44-A access to the AMUX lines.

When high, indicates that an interrupt needs ser-
vicing. Used by the KE44-A to suspend instruc-
tions in the middle of execution.

If high, indicates that a page of memory cannot
be written into. This signal is generated by prob-
ing, rather than writing to the page.

Console-generated signal for monitoring MBUS
data via the AMUX lines.

Console-generated signal that tri-states all main-
tenance that drive the AMUX lines.

CPU signal that clocks the control word through
the control logic.

Console-generated signal for monitoring the CPC
lines via the AMUX lines.

2.2 INITIAL OPERATION

Initially, the CPU fetches an instruction from memory and decodes it in the CPU and CIS. During this
fetch, LOAD IR L is asserted to load the CIS IR. Any instruction with an op code of 0760xx or 0761xx
is a commercial instruction and requires the use of the KE44-A to process. The CIS next asserts 740 on
the MPC 0-8 microprocessor code bus (MPC bus). Since CIS instructions are only recognized by the
KE44-A option, the assertion of MPC 740 is required to prevent the CPU from trapping on an illegal
instruction. MPC 740 is decoded by the KD11-Z to set up the CIS processor for an operation in the
next CPU cycle. Concurrently with this decoding, a CPC (CIS program counter) address is asserted to
the 88-bit control store of the KE44-A. This control word is clocked by EXT CLK A L from the CPU.

2.3 MICROCODE GENERATION

A series of microcodes is generated in the KE44-A to control microprocessor operation during each
instruction. During CIS operation, the KE44-A informs the CPU (via a microcode asserted on the
MPC 0-8 lines) whenever data can be read from the AMUX 0-15 lines. The KE44-A also sends the
CPU a TRI STATE AMUX L signal that enables it to read data from the AMUX lines. The CPU then
stores this data and continues operation.

NOTE
Chapter 3 has been duplicated directly from
DECSTD168-PDP-11 Extended Instructions.

CHAPTER 3
EXTENDED-INSTRUCTION DATA TYPES

3.1 CHARACTER DATA TYPES

There are three different character data types. The ‘'character' is a
single byte, and is an abbreviated string of 1length one. The
‘character string' is a contiguous group of bytes in memory. The
third is a 'character set'.

3.1.1 Character

The character is an 8 bit byte:

7 2

A | char |

The character is used 'as an operand by CIS1ll instructions. When it
appears in a general register, the character is in the low order half;

the high order half of the register must be zero. When it appears in
the instruction-stream, the character is in the low order half of a

word; the high order half of the word must be zero. If the high order
half of a word which contains a character is non-zero, the effect of
the instruction which uses it will be unpredictable.

3.1.2 Character String

A character string is a contiguous sequence of bytes in memory that

begins and ends on a byte boundary. It is addressed by its most
significant character (lowest address). The highest address is the

least significant character. It is specified by a two word descriptor
with the attributes of length and lowest address. The length is an

unsigned binary integer which represents the number of characters in
the string and may range from @ to $5,535. A cheracter string with

zero length is said to be vacant; its address is ignored. A character
string with non-zero length is said to be occupied.

The character string descriptor is used as an operand by CIS1l
instructions. It appears in two consecutive general registers, or in
two consecutive words in memory pointed to by a word in the
instruction stream. The following fiqure shows the descriptor for a
character string of length 'n' starting at address 'A' in memory:

15 0

Rx ptr | n |
or -
Rx+1 ptr+2 | A 1

3-1

The following figure shows the character string in memory:

o e v e o o

A |most sig char|

A+l | |

A+n-1 |least sig chr]

3.1.3 Character Set

A 'character set' is a subset of the 256 possible characters that can
be encoded in a byte. It is specified by a descriptor which consists
of the address of a 256 byte table and an 8 bit mask. The address is
of the zeroeth byte in the table. Each byte in the table specifies up
to eight orthogonal character subsets of which the corresponding
character is a member. The mask selects which combinations ogothese
orthogonal subsets comprise the entire character set. 1In effect, each
bit in the mask corresponds to one of eight orthogonal subsets that

may be encoded by the table. The mask specifies the union of the
selected subsets into the character set. Typical sets would be:

upper case, lower case, non-zero digits, end of line, etc.

Operationally, a character (char) is considered to be in the character
set if the evaluation of (M[table.adr+char] AND mask) is not equal to
zero. The character is not in the character set if the evaluation is
zero, Each byte in the table indicates which combination of up to
eight orthogonal character subsets (i.e. one for each of the eight
bit vectors 000060001(2), 00000010 (2), 00000100(2), 69041000 (2),
00010000 (2), 00100080(2), 0l000000(2) and 10000600(2)) the
corresponding character is a member. The mask specifies which union
of the eight orthogonal character subsets comprise the total character
set. For example, if the eight bit vector 00000001(2) appearing ir
the table corresponds to the character subset of all upper case

alphabetic characters, 00000010(2) appearing in the table corresponds
to the character subset of all lower case alphabetic characters, and

20000100 (2) appearing in the table corresponds to the decimal digits,
then using the mask @#0000011(2) with this table specifies the

character set of all alphabetic characters, and usin? the mask
00000111 (2) specifies the character set of all alphanumeric

characters.

The character set descriptor is used as an operand by CISll
instructions. It appears in two consecutive general registers, or in

two consecutive words in memory pointed to by a word in the
instruction stream. If the high order half of the first descriptor

word ;s non-zero, the effect of an instruction which uses a character
set will be unpredictable.

15 8 7)

Rx ptr | @] mask |
or
Rx+1 ptr+2 | table address

3.2 DECIMAL STRING DATA TYPES

Two classes of decimal string data types -- numeric strings and packed

strings -- are defined. Both have similar arithmetic and operational
properties; they primarily differ in the representation of signs and

the placement of digits in memory.

The numeric string data types are signed zoned, unsigned zoned,
trailing overpunch, leading overpunch, trailing separate and leading

separate. The packed string data types are signed packed and unsigned
packed. Instructions which operate on numeric strings permit each
numeric string operand to be separately specified; similarly, packed
string instructions permit each packed string operand to be separately
specified. Thus, within each of the two classes of decimal strings,
the operands of an instructions may be of any data type within the
appropriate class.

3.2.1 Common Properties

Decimal strings exist in memory as contiguous bytes which begin and

end on a byte boundary. They represent numbers consisting of @ to
31(19) digits in either sign-magnitude or absolute-value form.

Sign-magnitude strings (SIGNED) may be positive or negative;
absolute-value strings (UNSIGNED) represent the absolute value of the

magnitude. Decimal numbers are whole integer values with an implied
decimal radix point immediately beyond the least significant digit;

they may be conceptually extended with zero digits beyond the most
significant digit.

A 4-bit binary coded decimal representation is used for most digits in
decimal strings. A four bit half byte is called a 'nibble' and may be

used to contain a binary bit pattern which represents the value of a
decimal digit. The following table shows the binary nibble contents

associated with each decimal digit:

33

digit nibble

0009
8001
ool0
o1l
0100
2101
o110
2111
1000
9 1001

WO WN S

Each decimal string data type may have several representations. These
representations permit certain latitude when accepting source

operands. Decimal String data types have a PREFERRED representation
which is a valid source representation and which is used to construct

the destination string. Additional ALTERNATE representations are
provided for some decimal data types when accepting source operands.

Decimal strings used as source operands will not be checked for
validity. Instructions will produce upredictable results

if a decimal string used as a source operand contains an
invalid digit encoding, invalid sign designator, or in the case of
overpunched numbers, an invalid sign/digit encoding.

When used as a source, decimal strings with zero magnitude are unique,
regardless of sign. Thus, both positive and negative =zero have

identical interpretations.

Conceptuallg, decimal string instructions first determine the correct
result, and then store the decimal string representation of the

correct result in the destination string. A result of zero magnitude
is considered to be positively signed. If the destination string can
contain more digits than are significant in the result, the excess
most significant destination string digits have zero digits stored in
them. If the destination string can not contain all significant
digits of the result, the excess most significant result digits are
not stored; the instruction will indicate decimal overflow. Note that
negative zero is stored in the destination string as a side effect of
decimal overflow where the sign of the result is negative and the

destination is not large enough to contain any non-zero digits of the
result,

If the destination string has zero length, no result digits will be

stored. The sign of the result will be stored in separate and packed
strings, but not in zoned and overpunched strings. Decimal overflow

will indicate a non-zero result.

3-4

3.2.2 Decimal String Descriptors

Decimal strings are represented by a two word descriptor. The
descriptor contains the length, data type, and address of the string.
It appears in two consecutive general registers (register form of
instructions), or in two consecutive words in memory pointed to by a
word in the instruction stream (in-line form of instructions). The

unused bits are reserved by the architecture and must be 8. The
effect of an instruction using a descriptor will be unpredictable if
any non-zero reserved fields in the descriptor contain non-zero values
or a reserved data type encoding is used.

The design of the numeric and packed string descriptors are

identical:
First word:

length <4:0> - Number of digits specified as an unsigned binary
integer.

data type <14:12> - Specifies which decimal data type representation
is used.

Second Word:

address <15:08> - Specifies the address of the byte which contains
the most significant digit of the decimal string.

The following figure shows the descriptor for a decimal string of data
type 'T' whose length is 'L' digits and whose most significant digit
is at address 'aA°’:

15.14 12 11 5 4 g

Rx ptr 1of T | 0 | L |
or

Rx+1 ptr+2 | A |

The encodings (in binary) for the NUMERIC string data type field are:

008 signed zoned
281 unsigned zoned
§l8 trailing overpunch

811 leading overpunch
108 trailing separate
181 1leading separate
114 -- reserved by the architecture
111 -- reserved by the architecture

3-5

The encodings (in binary) for the PACKED string data type field are:

908 -- reserved by the architecture
901 -- reserved by the architecture
810 -- reserved by the architecture

011 -- reserved by the architecture
108 -- reserved by the architecture

101 -- reserved by the architecture
116 signed packed
111 unsigned packed

3.2.3 Packed Strings

Packed strings can store two decimal digits in each byte. The least

significant (highest addressed) byte contains the the sign of the
number in bits <3:0> and the least significant digit in bits <7:4>.

Signed Packed Strings -

The preferred positive sign designator is 1188(2); alternate
positive sign designators are 1016(2), 1110(2) and 1111(2). The
preferred negative sign designator is 1181(2); the alternate

negative sign designator is 1011(2). Source strings will
properly accept both <%he preferred and alternate designators;

destination strings will be stored with the preferred designator.

Unsigned Packed Strings -

PACKED SIGN NIBBLE:

Sign Preferred Alternate

Nibble Designator Designators

positive 1198 (2) 18018(2) 1114(2) 1111(2)
negative 1101(2) 1011(2)

unsigned 1111(2)

For other than the least significant byte, bytes contain two
consecutive digits -- the one of lower significance in bits <3:8> and
the one of higher significance in bits <7:4>. For numbers whose
length is odd, the most significant digit is in bits <7:4> of the
lowest addressed byte. Numbers with an even length have their most
significant digit in bits <3:8> of the lowest addressed byte; bits
<7:4> of this byte must be zero for source strings, and are cleared to
0000 (2) for destination strings. Numbers with a length of one occupy
a single byte and contain their digit in bits <7:4>. The number of
bytes which represent a packed string is (length/2}+1 (integer
division where the fractional portion of the quotient is discarded).

3-6

The following is a packed string with an odd number of digits:

7 4 3 0

A+l | I |

A+[length/2] | 1lsd | sign |

The following is a packed string with an even number of digits:

7 4 3 2

Al @ | msd |

A+l |] |

A+[length/2] | 1sd | sign |

A zero length packed string occupies a single byte of storage; bits
<7:4> of this byte must be zero for source strings, and are cleared to
0000(2) for destination strings. Bits <3:8> must be a valid sign for
source strings, and are used to store the sign of the result for
destination strings. When used as a source, zero length strings
represent operands with zero magnitude. When used as a destination,

they can only reflect a result of 2zero magnitude without indicating
overflow. The following is a zero length packed string:

7 4 3 0

A | p | sign |

A valid packed string is characterized by:

1. A length from & to 31(108) digits.

3-7

2. Every digit nibble is in the range 0800(2) to 1801(2).

3. For even length sources, bits <7:4> of the lowest addressed
byte are @008(2).

4. Signed Packed Strings - sign nibble is either 1816(2),
1011(2), 1108(2), 1101(2), 1118(2) or 1111(2).

5. Unsigned Packed Strings - sign nibble is 1111(2).

3.2.4 Zoned Strings

Zoned strings represent one decimal digit in each byte. Each
byte is divided into two portions -- the high order nibble (bits

<7:4>) and the low order nibble (bits <3:8>). The low order nibble
contains the value of the corresponding decimal digit.

Signed Zoned Strings -

When used as a source string, the high order nibble of the least
significant byte contains the sign of the number; the high order

nibbles of all other bytes are ignored. Destination strings are
stored with the sign in the high order nibble of the least

significant byte, and 0011(2) in the high order nibble of all
other bytes. 00811(2) in the high order nibble corresponds to the

ASCII encoding for numeric digits. The positive sign designator
is 0611(2); the negative sign designator is 6111(2).

Unsigned Zoned Strings -

When used as a source string, the high order nibbles of all bytes
are ignored. Destination strings are stored with #811(2) in the
high order nibble of all bytes.

The number of bytes needed to contain a zoned string is identical to
the length of the decimal number.

7 4 3 a

A | | msd |
A+l | | |
A+n-1 | sign | 1lsd | 'sign' is present only

signed zoned strings

3-8

A zero length zoned string does not occupy memory; the address portion
of its descriptor is ignored. When used as a source, zero length

strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of =zero

magnitude (the sign of the operation is lost). An attempt to store a
non-zero result will be indicated by setting overflow.

A valid zoned string is characterized by:

1. A length from @ to 31(10) digits.

2. The low order nibble of each byte is in the range 80600(2) to
1901(2).

3. Signed Zoned Strings - The high order nibble of the least
significant byte is either 0611(2) or #111(2).

3.2.5 Overpunch Strings

Overpunch strings represent one decimal digit in each byte. Trailing
overpunch strings combine the encoding of the sign and the least
significant digit; leading overpunch strings combine the encoding of
the sign and the most significant digit. Bytes other than the byte in
which the sign is encoded are divided into two portions -- the high
order nibble (bits <7:4>) and the low order nibble (bits <3:8>). The
low order nibble contains the value of the corresponding decimal
digit. When used as a source string, the high order nibble of all
bytes which do not contain the sign are ignored. Destination strings
are stored with 9611(2) in the high order nibble of all bytes which do
not contain the sign. ©011(2) in the high order nibble corresponds to
the ASCII encoding for numeric digits.

The following table shows the sign of the decimal string and the value
of the digit which is encoded in the sign byte. Source strings will
properly accept both the preferred and alternate designators;
destination strings will store the preferred designator. The
preferred designators correspond to the ASCII graphics 'A' to 'R', '{°

and '}'. The alternate designators correspond to the ASCII graphics
|Bl to |90'|{"!?l' l]l' l!l andl:l.

39

OVERPUNCH SIGN/DIGIT BYTE:

Overpunch Preferred Alternate

Sign/Digit Designator Designators
+0 91111011 (2)
+1 01000001 (2) 00110001 (2)
+2 01000010(2) 00110010(2)
+3 01000011(2) 00110011(2)
+4 1000100 (2) 00110100(2)
+5 01000101 (2) 00110101(2)
+6 01000116(2) ©01101106(2)
+7 91000111(2) 0@06110111(2)
+8 01001006(2) 00111000(2)
+9 01001001(2) 00111001(2)
-0 01111101(2)
-1 01001010 (2)
-2 21001011 (2)
-3 010011006 (2)
-4 91001101 (2)
-5 01001110 (2)
-6 01001111 (2)
=7 01010000 (2)
-8 01010001 (2)
-9 01010010 (2)

The number of bytes needed to
to the length of the decimal number.

The following is a trailing overpunch string:

00110000(2) , 01411011(2), 006111111(2)

01011101(2), 00100061 (2), 00111616(2)

contain an overpunch string is identical

7 4 3 2

A | | msd |
A+l | i !
A+n-1 | sign and 1lsd|

3-10

The following is a leading overpunch string:

7 43]

A | sign and msd|

A+l | | |

A+n-1 | | 1sd |

A zero length overpunch string does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero
length strings provide operands with zero magnitude; when used as a

destination, they can only accurately reflect a result of zero
magnitude (the sign of the operation is lost). An attempt to store a

non-zero result will be indicated by setting overflow.
A valid overpunch string is characterized by:
1. A length from @ to 31(19) digits.

2. The low order nibble of each digit byte is in the range
0900 (2) to 1081(2).

3. The encoded sign/digit byte contains values from the above
table of preferred and alternate overpunch sign/digit values.

3.2.6 Separate Strings

Separate strings represent one decimal digit in each byte. Trailing
separate strings encode the sign in a byte immediately beyond the
least significant digit; leading separate strings encode the sign in a
byte immediately beyond the most significant digit. Bytes other than
the byte in which the sign is encoded are divided into two portions --
the high order nibble (bits <7:4>) and the low order nibble (bits
<3:8>). The low order nibble contains the value of the corresponding

decimal digit.

3-11

wWhen used as a source string the high order nibbles of all digit bytes
are ignored. Destination strings are stored with 8011(2) in the high
order nibble of all digit bytes. @811(2) in the high order nibble

corresponds to the ASCII encoding for numeric digits. The preferred
positive sign designator is @06101011(2) and the alternate positive

sign designator is 00160006(2). The negative sign designator is

00101101(2). These designators correspond to the ASCII encoding for
'‘+', 'space' and '-'.

SEPARATE SIGN BYTE:

Sign Preferred Alternate
Byte Designator Designators

v

positive 00101011(2) ¢6100000 (2)
negative 041811081 (2)

The number of bytes needed to contain a leading or trailing separate
string is identical to length+l.

The following is a trailing separate string:

7 4 3 g

-

A | | msd |

A+l | | !
A+n-1 | I 1lsd |
aA+n | sign]

The following is a leading separate string:

7 43 2

A-1 | sign j
A | | msd |

A+l |] |
A+n-1 | | 1sd |

A zero length separate string occupies a single byte of memory which
contains the sign. When used as a source, zero length strings provide

operands with zero magnitude; when used as a destination, they can
only reflect a result of zero magnitude without indicating overflow;

the sign of the result is stored.
The following is a zero length trailing separate string:

7 2

A sign |

The following is a zero length leading separate string:

7 2

A-1 | sign |

A
A valid separate string is characterized by:
1. A length from @ to 31(149) digits.

2. The low order nibble of each digit byte is in the range
9000 (2) to 1601(2).

3. The sign byte is either 00100000(2), 00161611(2) or
001611061 (2) .

3-13

3.3 LONG INTEGER

Long integers are 32 bit binary two's complement numbers organized as
two words in consecutive registers or in memory -- no descriptor is
used. One word contains the high order 15 bits. The sign is in
bit<15>; bit<l4> is the most significant. The other word contains the

low order 16 bits with bit<®> the least significant. The range of
numbers that can be represented is -2,147,483,648 to +2,147,483,647.

The register form of decimal convert instructions use a restricted
form of long integer with the number in the general register pair
R2-R3:

15 14 @

R2 Is | high !

R3 | low {

The in-line form of decimal convert instructions reference the long
integer by a word address pointer which is part of the instruction
stream:

- it . i e A e o e i < il D i i D o —— " > - o

o o o s o o o

ptr+2 |s | high |

Note that these two representations of long integers differ. There is

no single representation of long integer among EAE, EIS, FPP and
software. The "register form" was selected to be compatible with EIS;

the "in-line form" was selected to be compatible with current standard
software usage.

3-14

CHAPTER 4
THEORY OF OPERATION

4.1 2901A MICROPROCESSOR SLICER

A functional block diagram of the KE44-A (Figure 4-1) shows the use of 2901A in the binary data path.
The 2901 A has four 4-bit microprocessor slices that are configured for carry lookahead and external
shift control in the 16-bit data path (Figure 4-2). The principal elements in each of the identical 2901 As
are: 1) a 16-location RAM, 2) a high-speed ALU, and 3) a separate, shiftable holding register called the
Q-register. The RAM locations are used as KE44 working registers. The ALU, in conjunction with the
working registers and the Q-register, performs the arithmetic and logical functions necessary to imple-
ment the macroinstruction set. Data enters the 2901As from the 2901A D bus; 2901 A output data is
transmitted on the 2901A Y bus. The output data is from either the 2901A ALU or the contents of a
2901A RAM (working register) location.

4.1.1 2901A RAM
In the KE44-A, the RAM of the 2901 As is the scratch pad area where the results of the arithmetic and
logical operations can be temporarily stored. RAM contents are read into the ALU in response to mi-
crocode control signals received from the control store logic. Since each of the four 2901 A micro-
processors comprising this RAM has a 16 X 4-bit slice, the combination yields a total RAM capacity of
sixteen 16-bit words.

The data in any of these words can be read from the A port via the 4-bit RAM APORT 0-3 H address
line inputs. If the same address is applied to both A and B address lines, identical data appears at both
RAM output ports. The RAM A and B outputs are applied to latches. When the RAM is write-enabled,
new data is written into the RAM word selected by the RAM B input PORT 0-3 H. The RAM input
data is received from a 3-input multiplexer (Figure 4-2). Multiplexer DO-D3 inputs from the ALU out-
put permit the ALU result to be loaded into the RAM directly, or to be left- or right-shifted by one
place.

4-1

(487

IR DECODE,

STATUS INFORMATION AND CON- BINARY DATA CPC, AND MPC
O O O e e PATM o RODRESSNGLOGIC__ Bﬁ".%'."ﬂ‘.'l___.____._.___._.__._._..l
]]
l . MBUS < 1500 > - J '
| IR DECODE ; l— - mg;\ (/ 15:00 >= ﬁ;] tom is I
! e { o e | e e]|
| CATEGORIZE l CONSTANTS | CONST ~d o> BREG REG 2o | ARes |
8CD ALU ROM IJT Rom - SEL i — g
l cc oc 8 <s2.50> | |} IR "'|l-——‘ l —° l
1 | As <40.38> ' ENAB REG le—10AD IR 1
| 1 I 1 SEL ore = | BCD || BMUX <s1:50> '
| PACKED STRING e CONSTANTS [= CONST] ® ol SHIFT MuX <IwU>
DECIMAL CC DECODE MUX/LATCH I
l ROM | _23331 l I —1 N r BLEG <07 00> l e
| As <a1> l IR g;‘imn i ' ' ! i I
' 12005 S | _< | DECODE ROM| {onTRi FRLA j| oureur INPUT BCD |
] SIGN SIGN ALY
' [rL g 1 1— H enas 1s 1 l e J 8 | |
| 8 T l i - I
| DECODE <a»| | oecooE Sy [L] '
Mux 1 Mux I sec ALUIN | q T son seu | er 8CD BCD MUX |
l ' AL —{ MuX l | MUX —TRAN MUX L <s3:50>
I IN<52 > I | /CPCXXL <36> <3128>
' ¢ SEL : \BUF ' Wogl—- _-! : ’
ss
| l l l oss ' L 2901A BIT SLICE | l | | ENAB {
| ciss c/B NZV.C | Aéu""] 1e | ! ! c | 5
l STATUS X Laton ¢ l ‘ l CODES l
l LATCH —‘ l SWAP SEL—] SWAPBYTE I H g?g;:o" H l '
[C/e LATCH | LOADy 1INPUTSEL_| INPUT 1 ' 1K X 88
n Gl] mew om l
I | | | fere | [wec [EONO] [|
l ENAB CISS ' IE':JTJ | ' L l l |
<2725 > <51> l ' L —
| MBUS < 1500 >] | ' I - T _
L RS N l 7 e I
| ENAB OBUF_| | -:’ |
| s <41> ouTPUT l LOADIR (1)
| O s> FORCE CPC—} |
! T B e ase
| ' | Loapcec 1 (laten '
l <47> MPC '
l 1 J <08:00>
I R | Tras0

Figure 4-1

KE44-A Block Diagram

DATA QUTPUTS (18 LINES TO SWAP BYTE CKTS;
FROM RAM PORT "A” OR ALU, DEPENDING UPON

2:1 MUX)
DEST = ALU DESTINATION SELECT
FUNC = ALU FUNCTION ‘ =
SRC = ALU SOUBCE OPERANDS Yo Y1 v2 v3
out
>
GEN
71_.1 PROP
OVERFLOW
ALY
10 cpu <CARRY OUT F SIGN
1 1 LY
DEST / Cn4 FZ 3] FO G P OVI
. ALU ALU F (3:0) OUTPUT
ALU DST { YA A2 RO s3 52 st SO__Cn
<B1-59>
| { T 1 CARRY IN
o271 WX MX M} 1
FUNC

<58

ALU SRC
<55:53>

ALUFTN :f
56> | 17

SRC

{.:

G -+0 03 Q2 at a0
wxlop IEN Q REGISTER
QREGISTERS [ATAZ AT 1 r o} D2 D1 DO
SHIFT LEFT € A LATCH E 8 LATCH
cLocK P . X
AWATAZ A WE X
:7’:7“;) AQ A3) PORT “A” OUT g%';" 8" .
war woRp{ 2 a2 |(READ ONLY) vk
ADDRESS | 2% Al RAM »
A3 A0 | ADDRESS 18x4 2 PORT
g~ woRp | 80 INPUTS Ay
ADDRESS } 81 82
BPORT | B2 B1
<s8:85> | B3 80 J INPUT DATA
2 1 [}
" \
e
L_ 1 |

i Q REG SHIFT RIGHT

RAM
£L__ SHIFT LEFT? (%)

Al

Figure 4-2 2901A Detailed Block Diagram

FR pAM
SHIFT RIGHT? (+)

TRANS

4.1.2 Arithmetic Logic Unit (ALU)
The ALU is the data path component that performs the arithmetic/logical operation under command
of the microcode control word (Table 4-1) contained in the control store logic PROMs. ALU R inputs
are from four 2-input multiplexers whose inputs are the direct data inputs D3-DO0 and the A port out-
puts A3-A0 of the RAM. The S inputs, received via four 3-input multiplexers, include the A and B
ports of the RAM and the Q-register outputs.

Decode of the ALU function (FUNC) lines I3-15 determines the arithmetic or logical function to be
performed. Decode of the ALU destination (DEST) lines 18-16 determines which of the indicated reg-
isters the data is routed to or whether it will be a data output of the device itself. ALU output data
F3-F0 can be routed to the Q-register or RAM, or placed on lines as Y3-YO0.

Table 4-1 Microcode Matrix for Source Operands
and ALU Functions

I,,0Octal |0 1 2 3 4 5 6 7
ALU
Source
1,4 ,Octal A.Q AB 0Q |0B |0A |DA D.Q D.O
ALU
Function
C,=L A+Q A+B Q B A D+A D+Q D
0 R Plus §
o =H A+Q+1 | A+B+1 | Q+1 B+1 A+l D+A+1 | D+Q+1 | D+1
C,=L Q-A-1 B-A-1 Q-1 B 1 Al A-D-1 Q-D-1 -D-1
i S Minus R
C,=H Q-A B-A Q B A A-D Q-D -D
C,=L A-Q-1 A-B-1 -Q-1 | -B-1 | -A-1 | D-A-1] D-Q-1 D-1
2 R Minus S
C,=H A-Q A-B -Q B -A D-A D-Q D
3 RORS AvQ AV B Q B A D-A DVQ D
4 R ANDS ANQ ANB 0 0 0 DAA DAQ 0
5 R AND S ANQ | ANB Q B A DvA | DwQ 0
6 REX-OR S AY¥Q A¥B Q B A D¥A D¥Q ‘D
7 REX-NORS |A¥Q |avB |Q B A DvA |D¥Q | D

+ = Plus: - = Minus; V=0R, A= AND: ¥=EX OR

The ALU source operand decode performs the actual register selection. All three of these functions are
controlled by ALU instructions 18-10 from the control store logic.

The ALU can perform three binary arithmetic and five logical operations on the two input words re-
ceived via the R and S inputs. Each R input is driven by a separate 2 input multiplexer and each S
input from a separate 3 input multiplexer. In the KE44-A CIS, the R input multiplexer can be used to
select either the RAM A port data or a direct data input consisting of constants or MBUS data. The S
input multiplexer selects the Q-register output or the RAM output of port A or B. Both multiplexers
have an inhibit output capability that produces a source operand of zero.

4.1.2.1 Logical and Arithmetic Functions - The ALU performs five logical and three arithmetic func-
tions on eight source operand pairs. ALU logic functions and appropriate control bit values (source
select 12-10, and function select 15-13) are described in Table 4-2. The carry input (C,) has no effect
on operations in logic mode but does affect operations in arithmetic mode (Table 4-3), which defines
carry-in high (Cp=1) and carry-in low (C,=1) for this mode.

Table 4-2 ALU Logic Mode Functions

Octal Octal
Isa3. 0,0 Group Function FUS PR Group Function

40 ANQ 74 Invert A

41 ‘I AAB 77 D

45 AND DAA

46 DAQ 62 Q
63 B

30 AVQ 64 Pass A

31 AVB 67 D

35 OR DVA

36 DVQ 32 Q
33 B

60 AYQ 34 Pass A

61 AVB 37 D

65 EX OR D¥A

66 D¥Q 42 0
43 0

70 AvQ 44 “Zero™ 0

71 AVB 47 0

75 EX NOR DVA

76 DVQ 50 ANQ

_ 51 ANB
72 Q 5S Mask DAA
73 B 56 DAQ

Table 4-3 ALU Arithmetic Mode Functions

Octal C, =0 (Low) C,, =1 (High)
Iss3.15,0 Group Function Group Function
00 A+Q A+Q+1
0l ADD A+B ADD plus A+B+1
05 D+A one D+A+]
06 D+Q D+Q+1
02 Q Q+l
03 PASS B Increment B+1
04 A A+l
07 D D+1
12 Q-1 Q
13 Decrement B-1 Pass B
14 A-l A
27 D-1 D
22 Q-1 -Q
23 1's Comp. -B-1 2’s Comp. -B
24 -A-1 {Negate) -A
17 ~-D-1 -D
10 Q-A-1 Q-A
11 Subtract B-A-1 Subtract B-A
15 (1’s Comp.) A-D-1 (2’s Comp.) A-D
16 Q-D-! Q-D
20 A-Q-1 AQ
21 A-B-1 A-B
25 D-A-1 D-A
26 D-Q-1 D-Q

4.1.2.2 Logical Functions for G, P, CN 44, and OVR - When the microprocessor is in the add or sub-
tract mode, signals G and P indicate carry lookahead, C; 44 indicates carry, and OVR indicates over-
flow conditions. However, OVR is not used in the CIS implementation. Table 4-4 gives the logic equa-
tions for the G, P and C,, 4 4 signals for each of the eight ALU functions. The R and S inputs are the
two inputs selected in accordance with Table 4-4.

4.1.3 Q-Register
The Q-register, a file loaded from the ALU, functions as a temporary storage register. Q-register out-

put can be loaded back into itself, or shifted right or left (e.g., during convert, multiply, divide or arith-
metic shift operations).

Table 4-4 P, G, Cy, , and OVR Functions

Isy Function | P G Cass OVR
0 R+S | PP,PP, G, + PG, + P,P,G, + P,P,P.G, C, C, ¥ C,
1 S-R Same as R + S cquations, but substitute R, for R, in definitions
2 R-S Sameas R + S equations,. but substitute S, for S, in definitions
3 RVS | Low P,P,P,P, P,P,P.P, + C, P,P,P,P, + C,
4 RAS | Low G, + G, + G, + Gy G, + G, + G, + G+ C, G, +G,+G,+Gy+C,
5 RAS | Low Same as R A S equations, but substitute R, for R, in definitions
6 R¥S Same as R S, but substitute R, for R, in definitions
7 R¥S | Gy+G,+ G, + Gy | Gy + PG, + P,P,G, + P,P,P,P, m + [fz + §,§. + §z§.i>'., + G,G,G,C.) ¥
P,P,P,Po (Go + C.) [P, + G,P, + G,G,P, + G,G,GP, + G;G,G,G,C,l
+ =0R Po=Ro+ S, Gy = RS, C, = G, + PG, + P,P,G, + P,P,P,G, + P,P,P,P,C,
V = OR Pi=R,+ S5 G, =RS, C, =G, + P,G, + P,P,G, + P,P,P,C,
A = AND P,=R,+S; G, = RS,
¥ = EX OR Py=R;+ S, G; =R,S,

4.1.4 Bit Shifting

After data has been parallel-loaded into the microprocessor, both the Q-register and any RAM data,
addressed by either A or B port, may be shifted left or right. To accomplish these shifts, the most signif-
icant bit (MSB) of each 4-bit microprocessor is connected to the least significant bit (LSB) of the adja-
cent, more significant, 4-bit microprocessor via a bidirectional transfer line. During a shift operation,
the bit transferred out of the last 2901 A (E47) is used as the final shifted-out bit.

4.1.5 Status Bits
Each 4-bit microprocessor generates two status bits, F=0 and F sign.

The F=0 status bit provides zero detection by indicating when the data equals zero. It is an open-
collector output which “wire ORs” the two 2901 As associated with each byte. Each byte, therefore, has
a signal that indicates zero. These signals are CIS ALU 0-7=0 H and CIS ALU 8-15=0 H.

The F sign output is used to monitor the MSB of each 4-bit microprocessor. Only the highest nibble in
each byte is monitored. The signal names are CIS ALU 07 H and CIS ALU 15 H. The F3 outputs of
the low nibbles for the two remaining 4-bit microprocessors are not used.

Both status bits (CIS ALU 15 H and CIS ALU 07 H) can be monitored without enabling the output
driver in the 4-bit microprocessor. Either bit can be used as a sign bit during CIS operations.

4.1.6 Carry Lookahead Logic

The 2901As use full lookahead carry logic that speeds instruction execution. Each of the four 4-bit
microprocessors generates both a carry generate (G) and a carry propagate (P) output. The four pairs
of G and P signals are combined in a single 745182 lookahead carry generator.

4.1.7 2901A Pin Definitions
Pin assignments for the AM2901A, 40 pin dual in-line package are shown in Figure 4-3.

Yy Yo

IOAA00T

> Am2901 A

0 11 12 4 15 16

CC F=0 '0 |‘

&
Ly
-3
EJ
>
F4
%
Fd
>
F4
o
<

NOTE: PIN 11S MARKED FOR ORIENTATION.

TK7231

Figure 4-3 AM2901A Pin Connections

4-8

4.2 INSTRUCTION SUSPENSION (INTERRUPT)

The execution time for some CIS instructions will use more CPU time if longer than normal string
lengths are involved. Therefore, to keep BR latencies below 35 microseconds, the CIS permits interrupt
of all CIS instructions except two (L2Dr and L3Dr). The interrupt routine, called “CIS instruction
suspension,” allows an interrupted instruction to be restarted from the point of breakoff. This feature is
important because to run an entire instruction again from its beginning would mean very long execution
times. Suspension allows high priority devices to interrupt the processing sequence so that the CPU can
service the interrupting device.

Any number of interrupts can be made during a CIS instruction. Also any CIS instruction can be inter-
rupted by another CIS instruction since all the necessary information is stored on the stack and not in
the CIS.

4.2.1 Steps Leading To Suspension

The CIS microcode checks for BRs at specific points in the microinstructions. Macroinstructions, a
collection of microinstructions that read like English, are used to test for service. The macroinstruction
used is either a “service?” or a previously defined macro which adds “service?” to it. This macro sets
the CONBR?2 field to a value of 07, to address a conditional branch PROM (programmabie read-only
memory) whose output enables E78 (74S03).

Upon receipt of a BR, the CPU asserts PFAIL BR PEND. This signal is “ANDed” with the CONBR2
field (referred to above) to assert CPC00. The CIS microcode then branches to a location correspond-
ing to the existing CPC “ORed” with a 1. This routine is the start of a CIS *“‘save state” operation that
pushes all necessary information onto the processor stack.

In a series of instructions, the microcode also pushes the CIS status, the contents of some of the 2901 A
registers, and the returning CPC address onto the stack. The CIS then moves the PC address back to
the beginning of the CIS instruction; PSW bit 8 is set (indicating a suspended CIS instruction), and the
device interrupt service routine is entered.

4.2.2 Returning from Suspension

After the interrupt is serviced, the stack is popped, thereby returning the processor to the previous PC
and processor status word (PSW). The PC used is the backed-up PC. The PSW has bit 8 set, indicating
a suspended instruction.

The CIS instruction begins execution as if a suspension had not occurred. The CIS microcode tests for
PSW bit 8 which, if set, causes branching to the “restore” subroutine. This subroutine restores the CIS
status bits, the contents of the 2901A registers, and the returning CPC address from the stack. After
the CIS has been restored, it returns to the CPC address from which exit was made and continues
processing the interrupted microcode.

4.3 DETAILED LOGIC DESCRIPTION
(Reference: CS-M7092, page 6 of 10)

4.3.1 IR Decode

The clock signal for CIS (CIS CLK L) is derived from the processor signal EXT CLK A L. EXT CLK
A L is inverted to become CIS CLK H, and this signal is inverted to become CIS CLK L. Cycle time is
180 nsec short cycle and 240 nsec long cycle with 30 nsec off time.

4-9

The fetch cycle for the CIS is like the cycle of any other instruction. MPC 10 is latched into the proces-
sor instruction register by the deassertion of PROC CLK L, which also asserts LOAD IR L (Figure 4-
4). The instruction is fetched at MPC 10 and then decoded in the KD11-Z and the M7092 module of
the CISP. The instruction is present on the AMUX lines and since CIS DIS IBUF H (bit 48) is unas-
serted, the CIS instruction register also has the instruction. The instruction is latched by E69-11

(LOAD IR L) being asserted and E69-12 (CIS CLK L) becoming asserted. CIS INST H (E80-9) is
also asserted at this time.

This sequence occurs for all instructions. If a CIS instruction is present, E80-8 (CIS INST L) is as-
serted, partially enabling E89, the starting address PROM. E89 is completely enabled when CIS CLK
L becomes unasserted. At this time, the next CPC address is asserted from the starting address PROM.
This CPC address is applied to the control store (M7091) which outputs the starting microinstruction
(See Chapter S for bit descriptions). This microinstruction contains the 88 bits of information used to
direct CIS logic operations. Bits (87:76) contain the next, CPC address to execute.

PROC CLK L
EXTCLKAL
(CIsCLK L)

L

MPC 10 LATCHED INTO STARTING CPC BEGINS
PROCESSOR IR AND EXECUTION
EXECUTED CIS ENAB ASSERTED
SIGNAL LOAD IR L
ASSERTED

CIS IR LATCHED BY
ASSERTION OF LOAD
IRLANDCISCLK L

CIS INST H ASSERTED

E82-8 ASSERTED HIGH
MPC 740g GENERATED
BY E94-11 ASSERTING
LOW

STARTING CPC ROM
(E89) ENABLED. START-
ING CPC ADDRESS
ASSERTED.

TK-7233

Figure 4-4 MPC Timing

4-10

4.3.2 CPC Branching

The next CPC can be modified to branch to a different location if certain conditions exist. For example,
a 2901 A subtract operation could be executing and a test for carry may be needed. The C-bit would
then determine whether the initial CPC, or the CPC “ORed” with bit 01, should be executed next.

Table 4-5 shows which signals can cause branches and the affected CPC bit(s). Branching is caused by
“ORing” bits 0, 1 or 2 of the CPC lines.

Table 4-5 CPC Bits Affected by Branching Conditions

Signal Name CPC Bits Affected

CIS PAGE FAULTH
CISCCZH

CIS SHFT OUT H

PFAIL BR PEND H
CISNONZERO A H

CIS NONZEROCH
CISIRO! H

CIS IR06 H

CIS NONZERO A and not
CIS NONZEROB

COO0OO0COOO00OO0O

CISCCCH
CISSUBOPH
CISSIGN2H

CIS DSTADR ODDH
CISSIGN 1 H
CISIROSH

CISIR04 H

CIS NONZEROB
CISIRO00H

CIS DST ADR ODD and not
CIS SRC1 ADR ODD
CIS NONZERO B and not
CIS NONZERO A

bt et fud pmed fomd pued et poed et b

[—y

CISCCNH

CISC/BH

CIS SRC 1 ADR ODD H

CIS SRC 1 ADR ODD and not
DST ADR ODD

NN

CIS NONZERO A and CIS NONZERO B 0,1
CIS DST ADR ODD and CIS SRC1 ADR ODD 1,2

4-11

4.3.3 MPC Addressing

At the same time the starting CPC address is asserted, an MPC of 740g is also asserted. This is a result
of both E94-13 (CIS INST H) and E94-12 (output of E82-8) being high. The components used to
generate the MPC are E110, E111, and E122. Asserting the MPC 740 prevents the base machine from
trapping to ten. The base machine itself does not recognize CIS instructions.

4.3.4 Maintenance Switch
Switch S1 selects either the upper or lower part of the starting address PROM (E89). This switch
should be off for field use (e.g., when viewing the board from side 1 with the switch at the upper right

side of the board, the switch lever should be to the left). The other switch position is used during the
manufacturing test.

4.3.5 BCD Operation PROM

[R06 — IR0O connects to the input of the BCD OP PROM (E91) which, during binary coded decimal
(BCD) operation, sets up the initial operation of the BCD ALU PROMs (E41, E43). The BCD ALU
control signals, called DEC 01 H and DEC 00 H, are obtained from the OP MUX (E73). E73 selects
either the initial operation from the BCD OP PROM or a different operation by using OPO1H and
OPOOH (bits 33 and 32 of microword). DEC 01 H and DEC 00 H direct the BCD ALU to one of the
operations shown in Table 4-6.

The need for changing operations after the instruction has already been defined, is used, for example, in
the divide packed (DIVP) instructions. A DIVP uses successive shift rights and subtracts. The end of
the digit string may not be known until one too many subtracts have been completed. In this case an

add is needed to restore the string by one digit and will be done by setting DEC 01 and 00 to a value of
00.

Table 4-6 BCD ALU Operations

BCD ALU

Control Lines
DEC DEC ALU
01 00 Function
0 0 A+B
0 1 A-B
1 0 B—-—A
1 1 AXB

4-12

4.4 DETAILED BINARY DATA PATH

(Reference: CS-M7092, pages 1, 2, 3, 4 of 10)
The binary data path, as mentioned earlier, centers around the four 2901 A bit slices, E44, E45, E46,
and E47. (Refer to the 2901A description in Paragraph 4.1 for operational details.)

4.4.1 Direct Data (ALU-In) Multiplexer

The four 2901 As, when combined, form seventeen 16-bit registers that are addressed by either the A
port (read-only) or the B port (read/write). Data is supplied to the register by the “direct-data-in” lines,
or internally from a resulting operation. If the direct data input is used, data can be selected by the
ALU-in (direct data) multiplexer from either the internal CIS bus (MBUS) or from the constants cir-
cuitry. The ALU-in multiplexer is made up of E24, E14, E39, E40. The signal SELECT ALU IN H
(bit 52) to the multiplexer makes the selection.

4.4.2 Constants Generation for 2901A

During CIS instruction, a constant may be needed to count up (or down) the number of bits in a charac-
ter string, to add two to the PC, or other such operations. The constants PROM (E4) generates these
constants by addressing the PROM with CONST SEL S2H - SOH of the control store bits 40—-38. The
outputs of E4 are applied to E3/E2 (a 74LS298 2:1 multiplexer/latch) which selects either the con-
stants PROM or the MBUS. The output of E3/E2 drives the ALU-in multiplexer or, if ENAB CONST
L (bits 27-25) is asserted, also drives the MBUS.

4.4.3 Saving Constants Before Suspension (Interrupt)

A BR request will suspend the CIS instruction. Before the actual suspension occurs, the CIS must clean
up and save information on the stack. Constants previously generated must also be saved on the stack.
Storing the constants is a two step process.

1. The constant must be enabled to the MBUS by asserting CIS ENAB CONST L. This signal
is derived from the CON2 field of the control store, bits (27:25). E13, an octal buffer, then
enables the constants to the MBUS.

2. By this time, the CPU will have addressed a stack location. The data on the MBUS must
then be pushed onto the stack of the CPU after transmission via the output multiplexer and
the AMUX lines. (Paragraph 4.2 gives a more detailed description of suspension protocol.)

4.4.4 Restoring Constants After Suspension (Interrupt)

After completion of a CIS instruction suspension, instruction execution is resumed (from the point of
exit) by popping the stack and retrieving the information stored there before suspension. One of these
stored pieces of data is the constant.

At this point in the restoration of constants after suspension, the MPC directs the CPU to obtain the
information from the stack for transmission to the MBUS via the AMUX lines. The CIS control store
then deasserts SEL CONST H and asserts LOAD CONST H. SEL CONST H, being unasserted, se-
lects the 0 input of E3/E2 (the 2:1 multiplexer latch previously referred to), which accepts the MBUS
data. LOAD CONST H enables E59 (a 74S00) to latch the MBUS data at the end of the cycle.

4-13

4.4.5 2901A Write Operations

The 2901 A registers are written to on the trailing edge of the clock only. The upper and lower bytes can
be written independently of one another by asserting either CIS SP HIGH WRITE H (Bit 70) and/or
CIS SP WRITE H (bit 71) with the trailing edge of the clock. (Figure 5-1 shows the bit fields of the
CIS microword and Appendix D gives the meanings of the mnemonics involved.)

The result of the 2901A operation, if selected, can be taken from the 2901A at the Y output (pins
39-36) or can be circulated to another internal register. The output of the 2901 A can be enabled by pin

40 (OUT EN) going low if qualified by one of three inputs: FORCE CIS DATA, FREE BUS or DIS-
AB IBUF H (bit 48).

FORCE CIS DATA and FREE BUS, which are generated by the KD11-Z MFM (multifunction)

M7096 module, are used to look at the MBUS data. If the 2901A is enabled to the MBUS, the data
viewed by the MFM is the 2901 A data.

DISAB IBUF H (bit 48) determines whether the 2901 A data or the AMUX data is selected as the
input to the input multiplexer (E16, ES, E8, E17, E6, E7, E9, and E18).

4.4.6 2901A Shift Operations
The 2901 A internal Q-Register and RAM can be connected together to form a 32-bit word that can be
shifted left or right. Shift-function electrical connections are shown on page 6 of 10 in the M7092 Print

Set; Figure 4-5 shows the results of these connections. SHFT S1 and SHFT SO are bits 63 and 62,
respectively.

4.4.7 Input Multiplexers
The input multiplexer receives:

The direct output of the 2901 A or the direct input AMUX data

The swapped bytes of the 2901 A output or swapped bytes of the AMUX data input
BCD data in the low byte

BCD data in the high byte

Swapping is performed in the INPUT MUX (ES, E16, E17, E8, E6, E7, E9 and E18) by asserting the
signal SWAP SEL H. That is, while the CIS is fetching data over the AMUX lines, the received high-
byte data is swapped,; i.e., it appears in the low-byte of the word used by CIS. SWAP SEL H is gener-

ated by E71, which selects one of four inputs to determine whether or not to swap. The input signals to
E71 are:

Signal Function

0 No swap

1 Swap

CISSRCi1 ADDODD H Swap if SRC 1 ADR was ODD
CISSRC2 ADD ODD H Swap if SRC 2 ADR was ODD

These signals are selected by SWAP S1H and SWAP 00H of the control store (bits 50-49).
The output from the INPUT MUX is enabled to the MBUS by asserting INPUT ENAB H (bit 51).

The outputting of data from the MBUS to the AMUX is donée by enabling ENAB OBUF H (bit 47)
which enables TRI STATE AMUX L and the output multiplexer (E34, E26, E25, E27).

The CPC lines can be enabled onto the AMUX line for viewing on the console terminal by the E/M 1

command. This is accomplished by asserting FORCE CPC L and FREE BUS H from the M7096 mul-
tifunction module (MFM) in the CPU.

4-14

15 0 15 0

A) SHFTS1-0
R
sHFTs0.0 | "AM Q REG
SHIFT OUT H =) I—(SERIAL SHIFT H
15 0 15 0
B} SHFTS1-0
RAM
SHFT SO0-1 QREG
SHIFT OUT H - le | SERIAL
SHIFT H
15 0 15 0
C) SHFTS1-1
RAM Q REG
SHFTS0-0
SERIAL SHIFT H>—-| Le suieT out H
0 15 0
D) SHFTS1-1
RAM QRE
SHFT S0- 1 G

SERIAL SHIFT H >—] L J -

OUTH

TK.7234

Figure 4-5 2901A Shift Operations

4.5 DETAILED BCD ALU DESCRIPTION

(Reference: CS-M7092, pages 5 and 9 of 10)
The BCD ALU performs its arithmetic by table lookup. A 2-operand add (A + B) applies the two least
significant nibbles to a ROM E43 as an address; the output data is an arithmetic result and a carry. If a
carry is generated by the addition, it will ripple through to the next arithmetic unit (E41). The arith-
metic performed by E41 is identical to that of E43. However, E41 operates on the two most significant
nibbles and, if present, a carry from E43. E41 generates the final carry for addition and subtraction.

The ALU can do four operations which are controlled by the DEC 00 and DEC 01 bits (Table 4-6,
BCD ALU Operations).

4-15

4.5.1 BCD “A” Register/BCD “B” Register

The input operands are obtained by loading the A register (E29, E20) and the B register (E10, E21)
with one or two nibbles. The registers are loaded by asserting either LOAD AREG H or LOAD BREG
H. The outputs of the registers are latched up at the end of the cycle during the low to high transition of
the clock. The output data remains the same until the registers are loaded again or PROC INIT is
asserted.

“A” register output is applied directly to the BCD ALU. “B” register output, however, can be shifted
left or right, or sent straight through to the BCD ALU. These functions are accomplished in the BCD
shift multiplexer (E11, E22, E54, E31, E32) and are selected by BMUX S0 and BMUX S1 (bits 34
and 35). The BCD shift multiplexer can also generate a zero for the BCD ALU.

The shift nibble (E64) stores the “shifted-out” nibble from E11 when BMUX SO0 (bit 34) is high. This
shifted-out nibble is usually used to hold the sign nibble for the BCD multiplexer before going to the
2901 A or MBUS.

4.5.2 BCD Carry

A carry (C/B 3 H) generated from E43 during an add or subtract operation may or may not propogate,
depending on the selection made by the 2:1 multiplexer E83. E83 selects either the C/B generated by
E43 or, if latched by E102 (a 74S74) in a preceding operation, selects C/BH.

4.5.3 BCD Multiply
The largest addition of two BCD nibbles is 9 + 9. Therefore, an add or subtract operation can only
generate a carry of one bit. The answer is 18, where 8 is the low-nibble answer with a carry of one.

A multiply operation can generate a larger carry. That is, the largest multiply can be 9 X 9. The an-
swer is 81, where 1 is the answer with a carry of 8. To obtain the answer, the two operands are still
applied to E43 to obtain the low-nibble answer, but the carry is generated by table lookup ina 1K X 4
ROM (E42).

4.54 BCD ASCII Encoding
The BCD multiplexer (ES1, E49, E76, ES3) selects one of the following for input.

The output of the BCD ALU

The output of the multiply PROM
The BLEG output

A value of 60

These inputs are selected by the signals BCD MUX S3, S2, S1 and SO (bits 31-28).

The BLEG output, if selected, bypasses the BCD ALU. The value 60 can be tacked onto a nibble used
for output in order to produce an ASCII number in the numeric format. The output of the BCD muiti-
plexer is enabled to the input multiplexer (E16, ES, E8, E17, E6, E9, E18) by asserting ENAB SIGN
TRAN H (bit 37).

4.5.5 BCD Sign Translation
To effect a necessary translation of the sign nibble in a source or a destination string, the sign nibble is
extracted from a source string or is added to a destination string.

Input sign translation is accomplished by the input sign translator (E50). Inputs 14 and 13 to ES0 are
used to distinguish between packed and zoned formats. BLEG 07 H — BLEG 00 H (which contain the
BCD digit and sign) are the other inputs to the translation ROM. The output of the PROM is a BCD
number with bit 7 OFF for a positive number or ON for a negative number.

4-16

The output sign translator PROM (E74) outputs a BCD number with a sign. This output depends on
CIS SIGN H and the numeric or packed format of the instruction. CIS INPUT 12, CIS INPUT 13,
and CIS INPUT 14 are used to determine the format of instruction. The BLEG inputs are used if data
is to be encoded with the sign.

The output of each sign translator is applied to the sign select muitiplexer (E65, ES5). One of these
signals is selected and then enabled to the BCD lines by the signal CIS ENAB SIGN TRAN H.

4.6 DETAILED LOGIC DESCRIPTION OF STATUS BITS

(Reference: CS-M7092, pages 8, 9, 10 of 10)
The format of the 16-bit CIS status word is shown in Figure 4-6. Bits (3:0) are the condition codes (N,
Z, V and C) used by the PDP-11 for branch testing. The status bits (12:04) are used by the CIS for
internal branching.

The CIS uses this status word internally and stores it on the stack during suspension. CIS status infor-
mation other than the condition codes is not available to the user through a register.

BIT BIT
%5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ole o ole
l‘—UNUSEC e STATUS BITS »re—CONDITION CODES-—O'

TK-7235

‘Figure 4-6 CIS Status Word

4.6.1 Status Bits
The status bits (12:04) are set by the result of CIS operations or by conditions of the data string. A CIS
operation could set the following bits.

Address odd conditions (bits 12:10)
Sign (status bits 9, 8)

Zero condition (status bits 7:5)
Carry/borrow (status bit 4)

4.6.2 Nonzero Conditions

(Reference: CS-M7092, page S of 10)
The zero conditions are set or cleared after a BCD ALU operation. Two signals, CIS BCD 3:0=0H
and CIS BCD 7:4=0 H, are used to generate the three zero condition bits. These signals monitor the
low- and high-nibble respectively, of the BCD arithmetic ROMs. The negated state of the zero condi-
tion bits is used for the status indication. The signal names are therefore referred to as NONZERO and
have three versions:

1. NONZERO A (bit 7)
2. NONZERO B (bit 6)
3. NONZERO C (bit 5)

All three status bits may be used, if the status of the source 1, the source 2, and the destination need to
be known. This can occur in three address arithmetic when using an ADD, SUB, MULP or DIVP.

4-17

Each of the NONZERO flip-flops is independently enabled. These signals originate from the M7091
control store and enable the signal CIS CLK H, which latches the NONZERO flip-flops 30 nsec before
the end of the CIS cycle. The enabling signal names are:

1. ENAB NONZERO A H
2. ENAB NONZERO B H
3. ENAB NONZEROCH

These signals are derived from the CON4 field of the control store, bits (20:16).

The nonzero signals, which are latched by 74874 flip-flops, stay set until a CLEAR NONZERO H
signal is received from the control store or a zero condition is latched. A CLR NONZERO or PROC
INIT signal clears all NONZERO flip-flops.

4.6.3 Carry/Borrow

The carry/borrow (C/B) status bit (bit 4) is set or cleared by a carry-out during a BCD operation. The
carry bit is latched up by E102 (a 74S74) if the enable signal ENAB C/B H is present. ENAB C/B H
is the ENCB field (bit 0) of the control store. A C/B may also be forced by the control store if CIS
FORCE C/B H is asserted. This signal is derived from the CON4 field of the control store (bits 20:16).

The carry/borrow status bit can be selected from either the high or low nibble. That is C/B OUT H or
C/B 3 H from the BCD ALU will be inputted to the C/B latch. CIS LNIB SEL H (low-nibble select)
selects either C/B H or C/B 3 H and is derived from the CON4 field (bits 20:16). The selection is done
by 4:1 multiplexer E96.

4.6.4 Sign Bits :
Two sign bits are available to store the sign for two source operands. These bits are latched for use in
setting the condition codes during character string instructions, or for CPC address branching.

The two sign bits, CIS SIGN 1 H (status bit 8) and CIS SIGN 2 H (status bit 9), are derived from the
signal CIS DAT SIGN H at E70 pin 9. CIS DAT SIGN H is produced from one of the following
signals, depending upon the data type of the instruction.

CIS DAT SIGN H is set during character instructions, if data bit 15 or 7 on the MBUS is set. This is
the sign bit of either the high byte or the low byte.

CIS DAT SIGN H is set during long integer instructions, if bit 15 (the sign bit) of the MBUS is set.

CIS DAT SIGN H is set during zoned string instructions if bit 6 of the MBUS data is set. The state of
bit 6 represents the difference between a positive or negative number in the zoned format. A byte with
a positive signed number is represented as 0011 xxxx and a byte with a negative signed number is repre-
sented as 0111 xxxx, where xxxx is a valid BCD number.

CIS DAT SIGN H is set during packed data instructions if bit 0 of the MBUS data is set. The state of
bit O represents the difference between a positive or negative signed number in the packed format. A
positive number with sign is represented as xxxx 1100 while a negative number with sign is xxxx 1101,
where xxxx is a valid BCD number. Notice that the state of bit O in the nibble differentiates the positive
from the negative numbers.

DAT TYPE 01 H and DAT TYPE 00 H are the signals that select the correct bit for CIS DAT SIGN
H. Table 4-7 shows their functions.

The SIGN 1 and SIGN 2 flip-flops (enabled by ENAB SIGN 1 H and ENAB SIGN 2 H respectively)
are derived from the CON4 field of the control store (bits 20:16). The SIGN 1 and SIGN 2 latches are
cleared by PROC INIT or by loading a positive sign bit.

4-18

Table 4-7 Sign Coding

Data Type Sign Bit DAT Type 01 Dat Type 00
Character String MBUS 15 or 0 0

MBUS 07
Long Integer MBUS 15 0 1
Arithmetic Zoned MBUS 06 1 0
Arithmetic Packed MBUS 00 1 1

4.6.5 Address Odd Conditions

Since CIS data strings can start or stop on odd address boundaries, the determination of whether writ-
ing is to a word or byte, is made by the CIS. Three signals are available for determining whether the
sources and/or the destination addresses are odd:

CISSRC 1 ADRODD H
CISSRC2ADRODDH
CISDST ADRODDH

Each of these signals monitors the MBUS 00 signal. An odd address condition is set if the address
loaded to the MBUS has bit 0 set. The microcode will test these three signals and branch if at least one
of the indicated conditions is set.

4.6.6 Status Bit Operation With BR Interrupt Pending

A test is made at specific points in the microcode for the presence of a BR interrupt request. A success-
ful test (i.e., a BR interrupt is detected) will branch the microcode to a “save state subroutine” that
stores essential information on the stack. One such piece of information is the CIS status word.

The status word is first enabled to the MBUS, then to the AMUX, and finally to the stack. The MBUS
receives the status bits via buffers E12 (status bits 7:0), and E92 (status bits 15:8). The signal CIS
ENAB CISS L, which enables the status information to the MBUS, is derived from the CON2 field
(bits 27:25) of the control store.

4.6.7 Return From Interrupt

After an interrupt has been serviced and control is returned to the CIS, the CIS must continue from
where it left off. The stack is popped twice after returning from the interrupt, first to load the PC and
then to load the PSW. The instruction then continues as though suspension had not occurred. The PSW
is examined by the CIS mirocode and, if PSW bit 8 is set (indicating that a CIS instruction was sus-
pended), a restore subroutine is called to pop previous information off the stack.

One of the items popped from the stack is the status word, which is placed on the AMUX lines and
enabled to the MBUS via the input multiplexer (E16, E5, E8, E17, E6, E7, E9, E12). The MBUS
connects to the multiplexers which drive the status latches. The multiplexers used to restore status in-
formation are E62, E30 (74S153), E93 (74S157), and E96 (74S153). The MBUS signals (status bits)
are enabled to the latches by CIS SEL CISS L which is derived from the CON2 field of the control
store (bits 27:25). The status word and all pertinent information is restored from the stack thus allowing
continuation of the interrupted instruction.

4-19

4.6.8 Categorizing Instructions To Form N, Z, V, C Bits
(Reference drawing: CS-M7092, page 8 of 10)

The condition codes are formed by first categorizing similar instruction (Table 4-8). Two general cate-
gorizing groups exist: character string instructions and arithmetic instructions. Within each group are
subgroups. Specifically, character string instructions are divided into two groups and arithmetic in-
structions into eight groups. Each subgroup comprises all instructions that output similar condition
codes. Functionally, this grouping takes place in E100 which is a 256 X 8 PROM. This PROM also
outputs two signals indicating the format of the data type. These signals (DAT TYPE 00 and DAT
TYPE 01) are only used to form the output sign for character instructions.

The categorizing logic is divided into two sections: character string condition codes and arithmetic con-
dition codes. Condition codes for arithmetic instructions are formed by using the four categorizing sig-
nals from E100 and some status bits. The character string condition codes are derived from the 2901A
status bits.

Table 4-8 Instruction Categories

Categorizing High CC Code
Instruction CCSELL 02H OIH OOH
MOVCMOVRCMOVTC,CMPC 0 0 0 1
MATC,LOCC,SKPC,SCANC,SPANC,L3Dx,L2Dx 0 0 0 0
ADDy 1 0 0 1
SUBYy 1 0 1 0
DIVP 1 0 1 1
MULP 1 1 0 0
CMPy 1 1 0 1
ASHy 1 1 1 0
CVTLy 1 1 1 1
CVTyL 1 0 0 0
CVTLy Data type is long integer.

CVTNP Data type is ZONED.
CVTPN Data type is PACKED.
CVTyL Data type is ZONED or PACKED.

where x = any number in the range 0-7
y=PorN

4-20

4.6.9 Arithmetic Condition Codes
The status bits and the categorized group of the instructions, set the arithmetic condition codes (N, Z,
V, C bits). The status bits are formed by the results of the BCD ALU and are as follows:

CISC/BH
CIS NONZERO A H
CIS NONZERO B H
CIS NONZERO C H
CIS SIGN 2
CISSIGN 1

These signals, together with the categorizing ROM (E100) output, address the decimal condition code
ROM (E79), which then outputs the N, Z, V, C bits and a sign bit. The sign bit will be set under the
following sign 1 and sign 2 settings:

Instruction Condition

ADDx, SUBx Sign 2

DIVP, MULP Sign 1 XOR Sign 2
CPMx _ Sign not set

ASHx, CVTxx Sign 1

The condition code settings for each instruction are given in Table 4-9.

4.6.10 Condition Code Output
The condition codes are selected by two dual 4:1 multiplexers (E62, E30). The inputs to these multi-
plexers are either the decimal CC decode ROM, character condition codes, or the MBUS.

After the correct input is selected, the output of the multiplexer is stored in the condition code latch
(E19). The data can then be fed to the PSW via the MBUS and AMUX lines of the CIS.

4.6.11 _Character String Condition Codes
The character string condition codes are set by monitoring the status information on the 2901A ALU:s.

The 2901As F = 0 output of either high byte or low byte can set the Z bit. The signal names are CIS
ALU 15:8=0 H, and CIS ALU 7:0=0 H. CIS ALU 15:8=0 H indicates that the high byte is zero;
CIS ALU 7:0=0 H indicates that the low byte is zero.

The carry bit (C) indicates a carry-out of the 2901A, and either the high byte (CIS ALU COUT H) or
low byte (CIS ALU COUT 7) can be selected to obtain the signal. CIS ALU COUT 7 H is generated
by the carry-lookahead chip, E48. CIS ALU COUT 7 H is generated as a separate output by the most
significant nibble of the 2901A, E47.

The negative bit (N) is set if the sign bit of either the low or high byte is set. Two signals (ALU 15 H
and ALU 07 H) from the 2901A can set the N-bit.

The overflow bit (V) is used only during a MOVC, MOVRC, MOVTC or CMPC instruction. During

other character string instructions the V-bit is zero. The V-bit is set by the simple Boolean expression
found in the Condition Code Setting Table 4-9, V column.

4-21

Table 4-9 Condition Code Settings

Instruction

N

MOVC, MOVRC
MOVTC, CMPC

LOCC, SKPC, SCANC,
SPANC, MATCHC

ADDN, ADDP
SUBN, SUBP
Dive

MULP
CMPN, CMPP

ASHN, ASHP

CVTLN, CVTLP
CVTPN, CVTNP

CVTNL, CVTPL

ALU7 or ALULS
ALULS

SIGN2:-NONZEROA
SIGN2-NONZEROA
(SIGN1 ¥ SIGN2)- NONZEROA
(SIGN1 ¥ SIGN2)-NONZEROA

SIGN1 - STGN? [C/B - (NONZEROB- C/B) - NONZEROA] +
(C/B-SIGNT) + (SIGN1 - SIGN2 - NONZEROA - C/B)

SIGN1-NONZEROA
SIGN1-NONZEROA

SIGN| - NONZEROA

¥ = XOR

4-22

Z

v

C

ALU<T7:0>=00or ALU<15:0> =0

ALU<15:0> =0

NONZEROA
NONZEROCA
NONZEROA
NONZEROA

<[(SIGN1 ¥ SIGN2)- NONZEROA. NONZEROB - C/B} +
{(SIGNT % SIGN2) - (NONZEROA + C/B)]>

NONZEROA
NONZEROA

NONZEROA

(SIGN1 ¥ SIGN2)-
[SIGN2 ¥ (ALUI5S+ALU07)]

0

C/B + NONZEROB

C/B + NONZEROB

C/B + NONZEROB + NONZEROC
C/B + NONZEROB

0

C/B + NONZEROB
C/B + NONZEROB

C/B + NONZEROB

ALUCOUT

0
]
NONZEROC
0
0

SIGN2-NONZEROC

¥ = XOR

4-23

CHAPTER 5
MICROCODE

5.1 INTRODUCTION

The KE44-A microcode (control store) consists of 1,000 88-bit words. Each word of the microcode con-
trols an operation or a set of operations within the KE44-A, as well as the selection of the next micro-
word. Initial microword selection, however, is controlled by the op code of the CIS instruction to be
performed. (Refer to Appendix A for a description of these instructions.) When a valid CIS op code
(076 nnn) is received, a microword (specified by the decode of the op code) is addressed, and control of
KD11-Z operation transfers to the KE44-A. The series of operations specified by the microwords con-
tained in the addressed op code routine is then performed. This sequence also includes subroutines
called for by the addressed routine. Upon completion of the tasks called for by the instructions, the
KE44-A is returned to the idle state address (0000) and control of system operation is returned to the
KD11-Z. In this idle state, the KE44-A monitors KD11-Z operation in order to detect any valid CIS op
code transmitted on the AMUX (15:00) lines.

5.1.1 Design Guideline
DEC STD 168, PDP-11 Extended Instructions is the design guideline for the CIS microcode.

5.1.2 Microcode Listing

The contents of the control store are described in a computer listing of definitions used in the instruc-
tions. These definitions include a detailed description of each microword broken down by operational
areas (fields), and a definition of the macros (Appendix A) used in the microword instructions.

The microword instructions are listed by routine or subroutine and, in general, appear in their sequence
of occurrence within that category. The listing begins with general (nonroutine-related) microwords, for
example, “CIS idle state”.

Each microword address is accompanied in the microcode listing by a description of the operations to
be performed when the microword is implemented. Each description is followed by a listing of the val-
ues for each field (given under the number representing the location of the least significant digit (LSD)
for that field). Each entry ends with a to/from listing showing the words that can be entered from a
given word as well as the words from which the given word stemmed.

5.2 THE MICROWORD

The microword contains 88 bits (87:00). These bits are divided into groups called fields and subfields,
which control operations internal to the KE44-A and addresses to the KD11-Z microstore. Figure 5-1
shows the microword field map.

s

8786 85 84 838281807978 777675 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

DEFAULT—#X X X X X X X X X X X x{1 1 1 1]o ofof1 1 1 1|lo]Jo ofo 1+ 1]Jo 1 1|1 1 1]{o|1]o of1{ojofjo 0 00 O
CPC APORT CISS PW l BPORT | SHFTC ALUDST ALUFTN ALUSRC IIN Nowar | B [LBYTEICON 1] |
A3 A2 A1 A0 | 83 B2 B1 BO 18 17 16 1514 13 12 11 10 ENDB] 1 oap|LoAD
cis sp[ALY CB s1 s‘;‘gt’ ' SwarDisag BYTE |AREGICPCH
WRITE H
CNH SHFIT"\éHFTSO ALU':PUT H e LoAD CONST H
oo wAIe - SEAlaL)
SWAP 00 H
40 39 38 37 36 3534 33 32 3130 2928 272625 24 23 2221 201918 1716 1514 13 121110 9 8 7 6 5 4 3 2 1 0
0 0 ofolofo ofo ofo ofo olo o 0j/o 0 0o 0o o000 ofo oo 00 1]o oo ofoo o0ofifo
JCONST B MUX | CON2 CON3 CON4 MPG CONBR? CONBR1 ENCB
CONST SEL §2 H BCDMF 3708 [T2xs] ENAB C/B H
ENCIS
CONST SEL ST H 8cDOP | [BCDMX1 “——ENABCISH
CONST SEL SO H COND BR 00 H
ENAB SIGN TRAN—ENSNIN COND BR 01 H
DST TRAN H——EnoNOU | COND BR 02 H
BMUX S1 H COND BR O3 H
BMUX SO H COND BR 04
OPO1 H COND BR 05
OPOO H COND BR 06
BCD MUX S3 H COND BR 07
BCD MUX S2 H BTOOH
BCD MUX S1.H BT O1H
BCD MUX SO H BTO2H
INPUT SEL L B8TO3H
ENAB CPC L BTO4H
SEL CPC L NOT USED
ENABL CISS L ENAB SIGN1 H
SEL CISS L ENAB SIGN2 H
ENAB CONST L ENAB NON ZERO A H
SEL CONST L ENAB NON ZERO B H
ENAB SRC1 ADR H ENAB NON ZERO C H
ENAB SRC2 ADR H FORCE C/B H
ENAB DST ADR H LNIBSELH
CLR NONZERO H
TKe7236
Figure 5-1 CIS Microword Field Map

5.2.1 CPC Field (87:76)

The CISP program counter (CPC) field is the next microword address pointer (0000g through 17773).
The CPC field output can be modified during KE44-A operation by the results of tests called for by the
CONBRI1 and CONBR? fields and/or condition codes.

5.2.2 APORT Field (75:72)

The APORT field determines which of the 16 working registers in the 2901 A data processor of the
binary data path are to be read by the APORT. The default for this field (APORT = 17) is “register
17”.

5.2.3 CISSPW Field (71:70)

The CISP scratch pad write field (CISSPW) enables the writing of a data byte or word to the 2901A
ALU registers via the BPORT. The default for this field (CISSPW = 0) is “disable writing to the
registers”.

5.2.4 ALUCB Bit (69)
The ALU carry/borrow bit (ALUCB) controls the carry/borrow operation for the binary path ALU.
The default for this bit (ALUCB = 1) is “no carry/borrow input”.

5.2.5 BPORT Field (68:65)
The BPORT field determines which of the 16 registers in the 2901 A binary data path are to be written
to and/or read from. The default for this field (BPORT = 17) is “register 17",

5.2.6 SHFTIN Bit (64)
The shifted-in bit (SHFTIN) controls the value (1 or 0) of data shifted in. The default for this field
(SHFTIN = 0) is “shift in zero”.

§.2.7 SHFTC Field (63:62)

The shift control field (SHFTC) controls the direction of shift for data being loaded into the binary
path RAM and/or Q-register. The default for this field (SHFTC = 0) is “left shift one bit in RAM
register if enabled by ALUDST (61:59)™.

5.2.8 ALUDST Field (61:59)

The ALU destination field (ALUDST) controls the form of the 2901A ALU output in the binary data
path (i.c., whether the output is RAM data or calculated output) and the data input to the BPORT and
the Q-register. The default for this field (ALUDST = 3) is “read the calculated output to the Y output
and back to the BPORT".

5.2.9 ALUFTN Field (58:56)

The ALU function field (ALUFTN) controls the arithmetic/logical operation to be performed by the
ALU of the 2901A data processor in the binary data path. The default for this field (ALUFTN = 3)is
“selects a logical OR operation of the ALU input”. ALU inputs are selected by the ALU SRC field.

5.2.10 ALUSRC Field (55:53)

The ALU source field (ALUSRC) controls the selection of data sources as inputs to the binary path
ALU. The default for this field (ALUSRC = 7) is “selects the direct data for the R input and zero for
the S input to the ALU”.

5.2.11 SALUI Bit (52)
The select ALU input bit (SALUI) controls the input multiplexer selection for the binary path ALU
(2901 A) direct path (D) input. The default for this bit (SALUI = 0) is “transfer the contents of the
MBUS to the D input”.

5-3

5.2.12 INEN Bit (51)

The input enable bit (INEN) is the enable/inhibit control for the tri-state output of the eight input
multiplexers. The default for this bit (INEN = 0) is “inhibit output”. When the input multiplexer is
enabled, data is put onto the MBUS.

5.2.13 SWAP Field (50:49)

The SWAP field controls the swapping of bytes in a word or in a data string. The swapping operation is
performed in the reading of data from the input multiplexer. The default for this field (SWAP = 0) is
“inhibit the swap of byte data”.

5.2.14 ENIB Bit (48)

The enable input buffer bit (ENIB) is the enable/inhibit control for the tri-state buffers, the AMUX
input line and the ALU Y output lines. The default for this field (ENIB = 1) is “enable ALU Y out-
puts” (AMUX inputs inhibited).

5.2.15 ENOB Bit (47)

The enable output buffer bit (ENOB) is the enable/inhibit control for the tri-state output of the output
multiplexer. When set, this bit enables data from the MBUS to the AMUX lines. The default for this
bit (ENOB = 0) is “inhibit output multiplexer output”.

5.2.16 LBYTE BIT (46) .
The low byte enable bit (LBYTE) controls the location (high or low byte) of the condition codes. The
default for this bit (LBYTE = 0) is “load the condition codes into the high byte”.

5.2.17 CON1 Field (45:41)
The control 1 field (CON1) controls the selection of internal CIS data for loading onto the MBUS. The
default for this field (CON1 = 0) is “inhibit loading data to MBUS”.

5.2.18 CONST Field (40:38)

The constant field (CONST) selects which of the eight constants from the constants ROM is enabled as
the input to the constant multiplexer. The default for this field (CONST = 0) is “enable the constant
7.

5.2.19 ENSNIN Bit (37)
The enable sign input bit (ENSNIN) enables/inhibits the translation of the input sign data. The
default for this bit (ENSNIN = 0) is “inhibit sign translation”.

5.2.20 ENSNOU Bit (36)
The enable sign output bit (ENSNOU) enables/inhibits the translation of the output sign data. The
default for this bit (ENSNOU = 0) is “inhibit sign translation”.

5.2.21 BMUX Field (35:34)

The B multiplexer field (BMUX) controls the selection of data to be read from the BCD shift multi-
plexer and from the shift nibble register. The default for this field (BMUX = 0) is “read the contents
of the B register to the BCD shift multiplexer unshifted”.

5.2.22 BCDOP Field (33:32)

The BCD operation field (BCDOP) controls the operations to be performed by the BCD ALU. The
default for this field (BCDOP) is “use the decode of the BCD operation PROM to control the BCD
ALU”.

5.2.23 BCDMX3 Field (31:30)

The BCD multiplexer 3 field (BCDMX3) controls the selection of the output of the high-nibble multi-
plexer data to the input multiplexer. The default for this field (BCDMX3 = 0) is “‘read the output of
the BCD ALU unchanged”.

5.2.24 BCDMXI1 Field (29:28)

The BCD multiplexer 1 field (BCDMX1) controls the selection of the low-nibble multiplexer data to
the input multiplexer. The default for this field (BCDMX = 0) is “read the BCD ALU output un-
changed”.

§.2.25 CON2 Field (27:25)

The control 2 field (CON2) comprises the enabling signals for control of the data input to the MBUS.
This field works in conjunction with CON1. The default for this field (CON2 = 0) is “inhibit all en-
abling signals (no data to the MBUS)”. The three bits of this field are converted to eight signal lines on
the M7091 control store module.

§.2.26 CON3 Field (24:21)
The control 3 field (CON3) comprises the enabling signals for the latching of odd address conditions in
the source and destination. The default for this field (CON3 = 0) is “disable all enabling”.

5.2.27 CON4 Field (20:16)

The control 4 field (CON4) is a series of enabling signals for CIS operations. The five bits of this field
are decoded by the M7091 control store module into seven control signals. The default for this field
(CON4 = 0) is “disable all enabling”.

5.2.28 MPC Field (15:10)

The microprogram counter field (MPC) comprises control signals that go to the KD11-Z. These signals
are read from MPC decode to the- MPC line (8:0). The resulting decode of the MPC field is in the
range from 740g to 776g. The default for this field (MPC = 1) is 741.

5.2.29 CONBR?2 Field (9:6)

The conditional branch 2 field (CONBR?2) is used in conjunction with the condition codes, to generate
branch conditions in the CPC\2:0+ field. The default for this field (CONBR2 = 0) is “inhibit all
conditioned branches”.

5§.2.30 CONBR1 Field (5:2)
The conditional branch 1 field (CONBR1) is used by the FPLA to generate branch signals for CPC
(7:0). The default for this field (CONBR1 = 0) is “inhibit all branch conditions™.

5.2.31 ENCIS Bit (1)

The enable CIS bit (ENCIS) controls the CIS operational mode. When ENCIS = 0, the KD11-Z is in
control. When ENCIS = 1, the KE44-A controls the operation; i.e., a CIS instruction has been de-
coded.

5.2.32 ENCB Bit (0)
This bit controls the loading of the carry/borrow bit to the MBUS and is used in BCD operations.

5.3 READING THE MICROCODE

Reading the microcode listing involves a series of steps. These steps vary according to the contents of
the microword and the familiarity of the user with the appropriate tools. The tools available include the
field definitions, the sets of macro-definitions, the KD11-Z operations, and the microword listing with
its descriptions.

5-5

5.3.1 The Field Definitions
Figure 5-2 is a sample page of microcode field definitions. Note that each field is defined by: 1) a
symbol, 2) its position and range in the microword, and 3) its default value:

SYMBOL/= (n:nw), default = m

Microflow AA(09) 312141308 26-Mar=1981 CISJIO4.FLW 44«CIS

CISi MNCR
1 »RTOL $THE DEFINITION OF THE WORD 1S nIGHT TO LEFT
2 +TO0C "44 C18 MICROWORD DEFINITIONH®
3
4
5
6 CPC/8<87176>, ,NEXTADDRESS sCONTAINS ADDR OF NEXT MICROWORD
7 BK2s@ sFIRST 2K OF ROMS
8 BKés} $SECOND 2K OF ROMS
9 APORT/®<75172>, ,DEFAULTS17 tWHICH REG TO BE READ BY APORT
10 Kouoo
11 Kimgg
12 K2s02
13 K3se3
14 K4mJé4
19 K5m08
16 K6m06
17 K7=0?
i8 X10s10
19 Kiisiy
20 Xi2s12
21 K13=t1)
22 Kid4si4
23 X15s15%
24 K16s16
23 K17s17
26 CI8SPW/8<71370>, ,DEFAULTRD SENABLES 2901 WRITE OPTION
27 SPNwWuQ $DISABLE WRITE INTO RAM
28 HBYTEs sWRITE HIGH BYTE AND LOW BYTE
29 LBYTE=2 SWRITE ONLY LOW BYTE
30 SpPws)d IWRITE INTO RAM
31 ALUCB/8<69>, .DEFAULTS] sCARRY BIT IF CONTROL STORE
32 NOCARs®1 1NO CARRY/BORROW IN
33 YESCAR=Q $CARRY IN OF
kY3 BRPORT/8C68168>, ,DEFAULTSY? $CONTROLS REG FOR BPORT READ/WRITE
s KpsQo
36 Kisp1
3 K2u02
k1 K3=Q)
39 K4sp4é
40 KSupS
41 Kéup6
42 K7=¢7
4) | $Y-1 3V
44 Kiisiy
43 Ki{2812
46 [$%1 FK)
47 Kidsid
48 1 33138)
49 K16816
So K17s17
S8 SHFTIN/u<64>, ,DEFAULT=O $8IT TO BRE SHIFTED IN BY SHIFT COMMANDS
$2 ZEROsQ s SHIPT IN A LERO
53 ONEsy sSHIPT IN A
54 SHFTC/8<63162>, LDEFAULTER sCONTROLS SHIFTS IF A SHIFT OCCURS
1) LFTi680 sLEFT SHIFT OF ONE BIT USING {6 BIT REG

Figure 5-2 Sample Page of Microcode Field Definitions

5-6

The symbol is a signal name or mnemonic followed by a slash (/) followed by an equal sign (=).

The bracketed numbers(s) ({n:nw)) show the location and range of the field in the 88-bit microword. N
is the MSD and NW is the LSD of the field with the microword. The default is the value (m) to which
the field is set if no value is given for that field in a given microword. This entry is followed by a de-
scriptive statement of the field.

The field definition entry is followed by a series of entries defining the resulting action or value for the
bit combinations within the field.

5.3.2 The Microinstruction

Figure 5-3 is a sample page of microinstructions. Each microinstruction in the listing is an entry in the
control store. The microwords are grouped by routine or subroutine, and each group is identified by a
table of content (TOC) entry. The comment is repeated at the top of each page containing a given
routine or subroutine.

Each microword entry begins with an identifying label. The label, an identifying symbol for the micro-
word, is used by the other microwords to call (go to) that address. If more than one label is given, any of
these can be used as a call. Each label is followed by a colon, e.g., 0000: and SERV: (Figure 5-3).

A label may be followed by a descriptive statement appearing on the same line. The statement identi-
fies a specific detail (i.e., why it was called or what it will do) related to that word. The descriptive
statement is separated from the label by two semicolons.

The line following the label contains macrostatements identifying the operations performed as a result
of asserting the microword. Each macrostatement line may also contain a short descriptive statement
about macrooperation. The descriptive statement is separated from the macro by a semicolon. Macro
entries are followed by the address of the microword, a six digit octal number in brackets, e.g.,
[000000] (Figure 5-3).

The microword address is followed by two sets of 3 lines; each set gives, for example, the field name
(CPC), the LSD of the field (76), and the bit value for that field (0000).

For the idle state (address 0000) the next address is 0000. The KE44-A repeats this operation until a
valid CIS op code (076 nnn) is received.

The contents of the microword entry is followed by a list of to/from entries (e.g., from: — U {00035]).
The value 892, which follows this number, is the cross-reference (CREF) number for microword
000351. The “from” entries show the origin of this microword. The “jump” form (not shown in Figure
5-3), is for the next address only. When a branch condition exists, all possible addresses and the condi-
tion for selection are given. In the idle state the next word address is determined by the decode of the
nnn part of the 076 nnn op code.

5.3.3 Reading the Macrodefinitions

Figure 5-4 is a sample page of macrodefinitions. The macrodefinitions are grouped by functions and
each group is identified by a table of contents (TOC) entry which defines the function of the macros.
Under each TOC entry are two columns. The first column is the macrocode listing; the second column
is a definition of the macro. In some cases, a macro may have already been defined at a previous point
in the listing, e.g., TEMP-2901 (Figure 5-4).

5-7

8-¢

Microtlow BA(00) 12141108 26eMare1981 CISOP4,FLW 44CIS

CIS1,NCR BRANCH MACRO
606 P8UBR,CALL? "LOAD.CPC"
687 NOLWRITE? "CONBR?/NOWRITE"
608 IROS? "CONRRL/IROS"
609 TRG6? "CON®WR1/IROG6® i
619 NEG,AND ,OR,SERVICE? "CONBR2/PFCCN,CONE/LDCPCY
:1; 8UBLOP? *CONBR2/TENCOM®
1

::2 «T0C "SERVICE TRAP IDLE LOOP AND Mgl DIAG TEST®
1 f000s
615 SERVES) SERVICE LOOP, WAITING TO EXECUTE CIS INSTR

616 ENC18/,34, $ALLOW 44 TO CONTROL THTNGS
617 l“"x-ro.nﬂugg 1)
618 C188PW/8Pw, '
619 MPC/SERV, s
620 CPC/BERY '
u (e020008) .
CPC APORT CISSPW ALUCB BPORT SHFTIN RHFTC ALUDST ALUFTN ALUSRC SALUI INEN SWAP ENIB ENOB LBYTE CONi CONST ENSNIN ENSNOU
76 72 70 69 65 64 62 39 6 53 82 S1 49 a8 47 46 41 3 37 36
2000 17 3 1 17 a [3 3 7] 1 [Q] ‘] 00 [0 (]
BMUX BCDOP BCDMX3I BCOMX1 CON2 CON3 CON4 MPC CONRR2 CONRRL ENCIS ENCB
34 32 o 29 25 21 16 1o 6 3 1]
[] [[]] (L] T2 ') L (L]] L]
FROME <Ce=e | (0902331) 892 RSTOIYy CcNm@, RETURN ADR LARGER THAN 77, INVALID, EXIT
FRONS <eo= U (a00017) 1307 ENTR202
FROMS <eoe U (eoe016] 14048 ENTRIY
FRONE C=e U [A01240) 1450 EXTTi1; RETURN TO CALLER FORM EXIT SUBR OR RESTORE FROM BERVICE TRAP
FROME <we U (60€106) 2217 LDDEI2) CrNmIpOE™L,CC2Z80, EXIT FROM COMMAND
32 SERVICE/IRDECODS ee> U (Pr00156] 2774 MVCAO1s MOVC, MOVTC, MOVRC COMMANDS
32 SERVICE/IRDECOD: e=> U (000187) 2227 SCN@PQ; THF SCAN/SPAN/SKIP/ LOCATE CHARACTER COMMAND
312 SERVICE/IRDECODT e=> U (000160) 24316 CPCAGLy THE CONPARE AND MATCH CHARACTER COMMAND
32 SERVICE/IRDECOD: e=> U {#00161) 2024 1LODWALy LOAD 2 DESCRIPTOR OR LOAD 3 DESCRIPTOR COMMAND
32 SERVICE/IRDECOD: e=> U (000162) 29032 1DD2@2s LOAD 2 DESCRIPTOR OR LOAD 3 DESR COMMAND BASED ON RY
32 SERVICE/IRDECODS wee=> U [(#00163) 204¢ LD0GA3s LOAD 2 DESCR OR LOAD 3 DESCR COMMAND BASED ON R2
32 SERVICE/IRDECODS e=> U (006164) 2048 LODE04) LOAD 2 DESCR OR LOAD 3 DESCR COMMAND BASED ON RJ
32 SERVICE/IRDECOD; we=> U (P00 16S] 2056 LOD@ASy LOAD 2 DESCR OF LOMD 3 DESCR COMMAND BASED ON R4
32 SERVICE/IRDECODS o> (000166) 2064 LDDQ@6: LOAD 2 DESCR OR LOAD 3 DESCR COMMAND BASED ON RS
3 SERVICE/IRDECODS ee> U (000167] 2078 LDDQO73 LOAD 2 DESCR OR LOAD 3 DESCR COMMAND BASED ON Ré
32 SERVICE/IRDECOD} ee> U [{r00170) 2101 LDDA12s LOAD 2 DESCR OR LOAD 3 DESCR COMMAND BASED ON PC
32 SERVICE/IRDECODS e=> y (ege171) 3220 ASCQ813 THE ADDP., ADDN, SUBP, SUBN, CMPN, AND CMPP COMMANDS
32 SERVICE/IRDECODS eo=> U [00r172) 4698 PNLo®1j; CANVERT PACKED, NUMERIC TO LONG COMMAND
32 SERVICE/IRDECOD) weo> U (00e173) 5279 VPNXX@y THME CONVFRT PACKED TO NUMERIC COMMAND
32 SERVICE/IRDECOD: e=> U (000174] $495 VNPXX@) THE CONVERT NUMFRIC TO PACKED COMMAND
32 SERVICE/IRDECODS ==> U {#00173) 4197 ASHOO1s THE PRITHMETIC SHIFT COMMAND, PACKED AND NUMERIC
32 SERVICE/IRDECODY «=> U (eoni76] §733 LNP@O1s CONVERT LONG TO NUMERIC, PACKED COMMANDS
u

32 SERVICE/IRDECOD: e=> (%00177) 6020 DVP@@1y THE MULTIPLY PACKED, AND DIVIDE PACKED COMMANDS

Figure 5-3 Sample Page of Microinstructions

6-S

316
I
318
N9
320
321
322
323
324
325
326
327
328
329
330

.TOC

"MACROS FOR TEMPORARY RESULTS IN 2901«N0 WRITE TO SCRATCH PAD(BPORT) NOR T0 THE MBUS®

TEMP_2901
TOP[).RSLALIBI)
T<OP[),RS_A(10Q
T.0P(},R8.00Q
T<OP[) .RSBBT)
T.OP[),RS_GAT)
TOP{],RE.D(1AL)
TeOP [} RS.DI1Q
TeAl)

T<A (] MINUS,1
ToA() MINUS,B[)
TeA () MINUS B[], MINUS,1
TaB (] MINUB,.A()

“ALUDST/LOADB2,CT88PW/SPNW/,ENIR/ENIBN®)
"TEMP_2931,ALUSRC/AB,ALUFTN/01,APORT/02,BPORT/03"
"TEMP.2901,ALUSRC/AQ,ALUFTN/01,APORT/$2"
"TEMP.2901,ALUSRC/,00,ALUFTIN/04"
'TENP-’901:ALUGICI 08, ALUFTN/91,BPORT/ 02"
'1EHP-2901.ALU&RC/ OA,ALUFTN/01,APORT/02"

"TEMP 2901-ALUBFC/DA01LUPTN/.loBlbU!/.ﬁalPOR!l.l'
"TEMPL2901,ALUSRC/DQ, ALUFTN/0L,SALUL/82"
"TeOP{R,OR,5) , R OA[OL]"

"T,0P{S,MINUS R . R8,2AL01]"

"T.0P (R, "l""!.!l Rl.ltlllst.ll.ALUCB/Y"C!R'
"T.OPIR, MINUS, 8).!8—&[01]5l02)'
"T_OP[S8,MINUS,R) . RS_A[#2)B[01),ALUCB/YESCAR®

Figure 5-4 Sample Page of Macrodefinitions

5.4 THE CIS MICROCODE INSTRUCTIONS

Each CIS instruction uses a group of words in the microstore. The number of words may be as few as in
the L2Dn instruction or as many as in the DIVP instruction. This group of words (routine) may be
completely self-contained or, when necessary, may call other routines or subroutines.

All instructions other than those for the L2Dn and L3Dn have a register and an in-line form. A large
percentage of the microwords in the register form of the instruction are used by the in-line form.

Since all instructions except L2Dn and L3Dn (Appendix A) are suspendable, they have multiple start
and resume or restart microword entry points. After suspension a “restore from interrupt” subroutine is
executed to restore the instruction data so that the instruction can be completed.

Each microword in the KE44-A instruction set addresses a word in the KD11-Z microstore. To fully
interpret the action of the KE44-A microword requires reading the word addressed in the KD11-Z.

At the end of each CIS instruction the KE44-A is returned to the idle loop.

5-10

CHAPTER 6
INSTALLATION AND CHECKOUT

6.1 INSTALLATION
The two KE44-A modules plug into a dedicated 14-slot processor backplane. The M7091 control store
module plugs into sections C~F of slot 1; the M7092 data path module plugs into slot 2 (Figure 6-1).
The M7091 module has no jumpers or switches for use in the field. The M7092 module, however, has
one toggle switch (S1) whose lever is set toward the left (toward the center of the module) for normal
operation (Figure 6-2).

NOTE
The lever of switch S1 is set to the right during man-
ufacturing test only.

ROWS
A B c D E F
1| w7090 (KD11-2Z/CIM) | M7081 (KE44-A)
2 M7092 (KE44-A)
3 M7093 (FP11—F)
4 M7094 (KD11—-2/DATA PATH)
5 M7095 (KD11~Z/CONTROL)
stots © M7086 (KD11-Z/MFM) FRONT
7 M7087 (CACHE)
8 M7098 (KD11-2/UB1)
9 M8722 (MS11-M)
10 MB722 _ (MS11-M)
1 M8722 (MS11-M)
12 MB722 (MS11-M)
13 SPC
14 | M9302, M9202, BC11-A | SPC

NOTES:

1. A G 727, G7270 CARD IS REQUIRED IN ROW D OF ANY UNUSED SPC SLOT TO
PROVIDE BUS GRANT CONTINUITY.

2. AG7273 CARD IS REQUIRED IN ROW C AND D OF ANY UNUSED SPC SLOT TO
PROVIDE BUS GRANT CONTINUITY.

3. MODULES ARE INSERTED WITH COMPONENT SIDE TOWARD RIGHT SIDE OF
BACKPLANE.
TK 4380

Figure 6-1 Module Placement in Processor Backplane

6-1

F~=__n)yt N . e

SWITCH HANDLE
MUST BE TO THE S1
LEFT FOR NORMAL
OPERATION

M7092

Le fle e el 71~

TK-4254

Figure 6-2 KE44-A Data Path/Logic Module, M7092

6.2 CHECKOUT

After installation, the KE44-A is checked out by running diagnostic CZKEEA (PDP-11 CIS Instruc-
tion Exerciser). It tests all CIS instructions in both register and in-line modes. Each instruction is tested
under the following conditions.

Using all combinations of operand data types

In each of three processor modes (user, supervisor and kernel)
With memory management enabled/disabled

With D-space enabled/disabled

In an interrupt environment

For many cases of string length, string address, and string data

6-2

CHAPTER 7
MAINTENANCE

7.1 GENERAL
This chapter describes the use of the CZKEEA diagnostic program and the ASCII programmer’s con-
sole in the maintenance of the KE44-A commercial instruction set option.

7.2 KE44-A DIAGNOSTICS

The CZKEEA is the only field diagnostic program available for the validation and diagnosis of the
KE44-A. However, since the KD11-Z data path is used extensively in executing CIS instructions, CPU
tests should be run prior to running CIS diagnostics if there is any doubt about the operational status of
the CPU. However, successful running of the CPU tests does not rule out the possibility that a KD11-Z
failure may cause only the CIS instructions to fail.

7.2.1 CZKEEA Program Abstract
The CIS instruction exerciser tests all CIS instructions in both register and in-line modes. Each instruc-
tion is tested:

Using all combinations of operand data types

In each of the three possible processor modes (user, supervisor, and kernel)
With memory management enabled/disabled

With D-space enabled/disabled

In an interrupt environment

For many cases of string length, string address and string data.

7.2.2 Program Starting Procedure

The normal program starting address is 200. An optional starting address (204) provides for user selec-
tion of test instructions and control over the test environment. Another optional starting address (210)
provides a quick-verify mode tailored to the type of processor under test. This mode has a run time of
less than five minutes per pass and provides a fair level of microcode coverage (>80%).

7.2.2.1 Starting Address 200 - When the diagnostic CZKEEA is started at its normal starting address
of 200, the execution (approximately 30 minutes on the PDP-11/44) of all tabled test cases for all in-
structions is followed by an “end-of-pass” indication. Testing then proceeds in a random mode until the
operator terminates program execution.

CIS instruction interruptability will automatically be exercised if the system under test has either a
line-time clock (KW11-L type) or a programmable real-time clock (KW11-P). The program uses the
KW11-P at a frequency of 100 kHz if both clocks exist.

Processor mode (kernel, supervisor, user) is selected randomly prior to the execution of each test case in
the CIS instructions. Memory management is enabled with the D-space enable/disable state selected
randomly prior to each test case. Mode is switched to the test mode and memory management is turned
on just prior to execution of the CIS instruction under test. During interrupt service, and immediately
following the completion of the CIS instruction execution, the mode is switched back to kernel and
memory management is shut off.

7-1

Tabled test cases are exhausted for any given instruction before proceeding to test the next CIS instruc-
tion. At the start of each new instruction in nonrandom mode, a message identifying the CIS instruction
under test is displayed as a progress indicator. The following list gives the order in which instructions
are tested in nonrandom mode, and the approximate number of tests executed for each instruction.

Instruction Number of Tests
L2D 8
L3D 8
MOVC 354
LOCC 36
CMPC 362
MOVRC 354
MOVTC 354
SKPC 30
MATC 904
SCANC 126
SPANC 126
CVTPN 226
CVTNP 568
CVTLP 170
CVTLN 323
CVTPL 53
CVTNL 99
ADDP 1970
ADDN 3872
SUBP 1970
SUBN 3746
CMPP 502
CMPN 1089
ASHP 1972
ASHN 3872
MULP 1993
DIVP 1973

After being started at location 200, the program should respond as follows:

CZKEEAO PDP-11 CIS instruction exerciser
Inst under test will be displayed.......

Pass time: 11/XX approx. XX min

L2DO Inst Ct: XX XXXXX

DIVP Inst Ct: XX XXXXX
End of pass (execution of tabled test cases complete)
Entering random test mode
No further end of pass messages will be issued
Random # generator seed constants will be printed
Every 2000 CIS instruction tests
Random # generator seed XXXXXX XXXXXX XXXXXX

(Until program execution is terminated by user)

7-2

A Control (AT) command entered at any time will cause the program to display the instruction under
test and the current instruction count.

The instruction count displayed at the start of testing for each instruction is cumulative from the first
L2DO0 CIS instruction tested. The lower five digit count gets incremented once per executed CIS in-
struction test and counts from 0 to 65,535 (decimal). The upper two digit count gets incremented once
per 65,535 tests. The instruction count is zeroed at the start of random mode testing. Control T must be
used to display the instruction count in random mode.

7.2.2.2 Starting Address 204 - If the CZEEKA program is at address 204, the operator is required to
respond to questions relating to the selection of instructions for test, test mode, and test environment.

After being started at location 204, the program should respond as follows:

CZKEEAOQ PDP-11 CIS instruction exerciser
Test interruptability of CIS instructions (Y or N)?
Random exercise mode (Y or N)?

Enter instruction to test (All)

If the user answers yes (Y) to the interruptability question, the program will prompt for the selection of
an interrupt source (e.g., the line-time clock (LTC); KW11-P at 100 kHz; KW11-P at 10 kHz; or
KW11-P with external 1-MHz oscillator). If the LTC is selected, the program controls interrupt timing
to assure that most CIS instructions are interrupted once. If the KW11-P with a 1-MHz external os-
cillator is selected, each CIS instruction will be interrupted and forced to suspend execution at all pos-
sible service exit points.

If either the KW11-P at 100 kHz or the KW11-P with external 1-MHz oscillator is selected, the pro-
gram will ask whether or not to allow an interrupt during the CIS instruction DIVP (state disturbing
instruction) normally executed within the KW11-P interrupt service routine.

If the user answers yes (Y) to the random exercise mode question, then the memory management test
state, the processor test mode, test operands and string data for each CIS instruction test will be de-
rived using a random number generator. A no (N) answer will cause execution of CIS instruction tests
with all test operands and string data provided from program input and parameter tables. Following a
(N) response, the program will prompt for processor test mode (kernel, supervisor, user) and memory
management test state (off when D space is enabled, or on when D space is disabled).

The last question enables the user to select one or all CIS instructions for test. To select a single instruc-
tion for test, the mnemonic for the desired instruction is entered from the instruction list. The same
question is repeated if the instruction is incorrectly entered. To select all CIS instructions for test (the
default case) the operator simply responds with a carriage return.

If the random mode question is answered yes (Y) and the instruction(s) for test is/are answered by a
(CR) indicating all, the actual instruction under test at any given point on the procedure is selected at
random.

7.2.2.3 Starting Address 210 - If the diagnostic run is started at address 210, a quick verify (QV) pass
provides a fair (more than 80 percent) level of microcode coverage in less than five minutes per pass.

This QV mode results in execution of a subset of the tabled test cases. The subset has been verified to
provide at least the desired 80 percent level of coverage. Note that some CIS instructions may not be
executed at all in QV mode, because it has been determined that, due to common routines within the
microcode implementation, it is possible to get the desired 80 percent coverage without exercising all
instructions.

7-3

The instruction counts listed above under the normal run mode (starting address 200) do not apply in
QV mode.

CIS instruction interruptability is exercised provided that the system under test has either a line-time
clock or a KW11-P programmable real-time clock.

Processor test mode (kernel, supervisor, user) and memory management test state are selected ran-
domly as in the “starting address = 200" section above.

After being started at location 210, the program should respond as follows:

CZKEEAOQ PDP-11 CIS instruction exerciser
Quick verify pass time: less than 5 minutes
L2DO0 Inst CT: XX XXXXX

DIVP Inst CT: XX XXXXX
End of quick verify pass

Random mode exercising is not invoked during a quick verify pass.

7.2.3 Error Information
If the computer halts without an error display, the following locations should be examined to determine
information about the failing test.

TINST - CIS instruction under test
TRO - TR6 — CIS instruction operands (lengths, addresses, etc.)

The information displayed upon detection of an error describes the complete environment of the failure.
All instruction errors are displayed in one format. The format has slight variations to account for differ-
ences between character and decimal string instruction. Continuing the program from a trap will pro-
vide the user with a complete error printout.

7.2.4 Program Options
The following control characters are recognized by the exerciser during test execution:

CNTL T - Display instruction under test and test number.

CNTL C - Restart exerciser (recognized only if program was started at 204.)

CNTL D - Display all test case operands and results prior to each CIS instruction test.

CNTL E - Display all test case operands and results prior to each CIS instruction test. Query for
continue.

CNTL N -Cancel prior CNTL D or CNTL E request.

CNTL O -Control over progress indication printout (i.e. INST and instruction CNT; random
number generator seed; ON — OFF toggle).

7.2.5 Program Execution Times
For the PDP-11/44, first pass run time (tabled test cases only) is approximately 30 minutes.

After the first pass, the program enters random test mode and executes randomly generated test cases
indefinitely.

In quick verify (QV) mode, pass time is less than five minutes.

7.3 ASC11 PROGRAMMER CONSOLE
The normal maintenance features provided by the programmer console for use in debugging and diag-
nosing the KD11-Z processor are directly extendable to the KE44-A CIS option. These features in-

clude:
®
[]

L]
[J

The console functions of examining and depositing data into the memory and general regis-
ters

Single-instruction stepping

Console maintenance features of single microinstruction stepping

The displaying of MPC lines, UNIBUS data, CIS data and the contents of the machine de-
pendent register.

The console displays MPC 0-10 L if the proper command is selected at the programmer console. Thus,
single microstepping of the machine through the CIS microcode is possible.

A change in the KD11-Z processor (from its KD11-E predecessor) enables the AMUX lines onto the
UNIBUS data lines.

NOTE
Refer to the PDP-11/44 Serial Console Specifica-
tion for other details of console use.

7-5

NOTE
Appendix A has been duplicated directly from
DECSTD168-PDP-11 Extended Instructions.
Paragraphs 5.13 through 5.15 have been removed as
they do not pertain to the KE44.

APPENDIX A
EXTENDED-INSTRUCTION DEFINITIONS

5.1 ADDN / ADDP / ADDNI / ADDPI - Add Decimal

Format:

15 98 32 o
ADDN | 2876 | 8s | 8 |
ADDP | g76 i 07 | 8 |
ADDNI | 876 | 15 | 28 |
| srcl.dscr.ptr |
| src2.dscr.ptr |
| dst.dscr.ptr |
ADDPI | 876 | 17 I
| srcl.dscr.ptr |
| src2.dscr.ptr |
| dst.dscr.ptr |

Operation:

dst <- src2 + srcl

Condition Codes:

N: set if dst<@; cleared otherwise
Z: set if dst=@; cleared otherwise
V: set if dst can not contain all significant digits of the

result; cleared otherwise
C: cleared
Suspendability:

This instruction is potentially suspendable.

A-1

Description:

Srcl is added to src2, and the result is stored in the destination
string. The condition codes reflect the value stored in the

destination string, and whether all significant digits were
stored.

Register Form - ADDN and ADDP

- - ————

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
RO-R1, the second source descriptor is placed in R2-R3, and the

destination descriptor is placed in R4-R5:

15 8
RE | !
- srcl.dscr -—-
R1 | |
R2 | |
--- src2.dscr -—
R3 | !
R4 | I
-— dst.dscr -—-

RS | !

wWhen the instruction is completed, the source descriptor registers
are cleared:

15)]

R | 2 |
R1 | 0 |
R2 | 2 !
R3 |) |
R4 | |
-— dst.dscr -

RS | |

In~line Form -~ ADDNI and ADDPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
RP-R6 are unchanged when the instruction is completed.

Formal Description:
TBS;
Examples:

1. Three Address Add - Register Form

MOV SRC1.DSCR,R@ ; 1lst source descriptor
MOV SRC1.DSCR+2,R1

MOV SRC2.DSCR, R2 ; 2nd source descriptor
MOV SRC2.DSCR+2,R3

MOV DST.DSCR, R4 ; destination descriptor
MOV DST.DSCR+2,R5

ADDN / ADDP : add

BVS OVERFLOW ; check for error

BLT NEGATIVE ; negative destination
BEQ EQUAL ; zero destination

BGT GREATER ; positive destination

2. Three Address Add - In-line Form

ADDNI / ADDPI

.WORD SRC1.DSCR.PTR
.WORD SRC2.DSCR.PTR

.WORD DST.DSCR.PTR

add
ptr to srcl descriptor
ptr to src2 descriptor

ptr to dst descriptor

.6 we %o we we we we wo

BVS OVERFLOW check for error

BLT NEGATIVE negative destination
BEQ EQUAL zero destination

BGT GREATER positive destination

3. Two Address Add - Register Form

MOV SRC.DSCR, RE ; source descriptor

MOV SRC.DSCR+2,R1

MoV DST.DSCR,R2 ; destination descriptor
MOV DST.DSCR+2,R3

MOV R2,R4 ; duplicate destination
MOV R3,RS

ADDN / ADDP add

BVS QVERFLOW check for error

~e wo wa we we

BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

A-3

4.

Notes:

1.

Two Address Add - In-Line Form

ADDNI / ADDPI

.WORD
.WORD
.mRD
BVS
BLT
BEQ
BGT

The operation of these

Source strings may overlap the destination string only if all
corresponding digits of the strings are in coincident bytes in

memory .

SRC.DSCR.PTR
DST.DSCR.PTR

DST.DSCR.PTR
OVERFLOW

NEGATIVE
EQUAL
GREATER

w8 We We we We w4 we wo

A-4

add

ptr to src descriptor
ptr to dst descriptor
ptr to dst descriptor
check for error
negative destination
zero destination
positive destination

instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified data type.

5.2 ASHN / ASHP / ASHNI / ASHPI - Arithmetic Shift Decimal

Format:

15 9 8 32 @
ASHN | 876 | as I 6 |
ASHP | 276 | 87 i 6 |
ASHNI | 876 I 15 | 6 |
! src.dscr.ptr |
| dst.dscr.ptr |
| shift.dscr |
ASHPI | 876 | 17 | 6 |
| src.dscr.ptr |
| " dst.dscr.ptr |
| shift.dscr i

Operation:

dst <~ src * (18 ** shift count)

Condition Codes:

N: set if dst<B; cleared otherwise
%2: set if dst=0; cleared otherwise
V: set if dst can not contain all significant digits of the

result; cleared otherwise
C: cleared
Suspendability:

This instruction is potentially suspendable.

Description:

The decimal number specified by the source descriptor is
arithmeticly shifted, and stored in the area specified by the
destination descriptor. The shifted result is aligned with the
least significant digit position in the destination string. The
shift count is a two's complement byte whose value ranges from
-128(19) to +127(1@). If the shift count is positive, a shift in
the direction of least to most significant digits is performed. A
negative shift count performs a shift from most to least
significant digit. Thus, the shift count is the power of ten by
which the source is multiplied; negative powers of ten effectively
divide. Zero digits are supplied for vacated digit positions. A
zero shift count will move the source to the destination. The
condition codes reflect the value stored in the destination
string, and whether all significant digits were stored.

A negative shift count invokes a rounding operation. The result
is constructed by shifting the source the specified number of
digit positions. The rounding digit is then added to the most
significant digit which was shifted out. If this sum is less than
16(19), the shifted result is stored in the destination string.
If the sum is 18(10) or greater, the magnitude of the shifted

result is increased by 1 and then stored in the destination
string. If no rounding is desired, the rounding digit should be
zero.

The shift count and rounding digit are represented in a single
word referred to as the shift descriptor. Bits <15:12> of this
word must be zero:

15 12 11 8 7)

| # lrnd.dgt|! shift.cnt |

Register Form - ASHN and ASHP

When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in R#-R1,

the destination descriptor is placed in R2-R3, and the shift
descriptor is placed in R4:

RO | |

—— src.dscr ——
R1 | |
R2 | |

—— dst.dscr —
R3 | |
R4 | shift.dscr |

When the instruction is completed, the source descriptor registers
and shift descriptor register are cleared:

15 0

RO | 0 |
Rl | 8 |
R2 | |
-—- dst.dscr -

R3 | |
R4 |] |

In-line Form - ASHNI and ASHPI

The words which foilow'the opcode word in the instruction stream
are a word address pointer to a two word decimal string source

descriptor, a word address pointer to a two word decimal string
destination descriptor, and a shift descriptor word. R@#-R6 are
unchanged when the instruction is completed.

Formal Description:
TBS;

Examples:

1. Multipling by 1866 - Register Form

MOV SRC.DSCR, R0 : source descriptor

MOV SRC.DSCR+2,R1

MOV DST.DSCR, R2 ; destination descriptor
MOV DST.DSCR+2,R3

MOV #2,R4 : shift descriptor word
ASHN / ASHP ; shift

BVS OVERFLOW ; check for error
BLT NEGATIVE ; negative destination

BEQ EQUAL zero destination
BGT GREATER positive destination

2. Multipling by 1686 - In-line Form

ASHNI / ASHPI
.WORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR

shift

ptr to src descriptor
ptr to dst descriptor

.WORD 2 ; shift descriptor word
BVS OVERFLOW : check for error

BLT NEGATIVE ; negative destination
BEQ EQUAL ; zero destination

BGT GREATER ; positive destination

3. Move decimal number - Register Form

MOV SRC.DSCR, R8 ; source descriptor

MoV SRC.DSCR+2,R1

MOV DST.DSCR,R2 ; destination descriptor
MOV DST.DSCR+2,R3

CLR R4 ; shift descriptor word
ASHN / ASHP ; shift

BVS OVERFLOW ; check for error

BLT NEGATIVE ; negative destination
BEQ EQUAL ; zero destination

BGT GREATER ; positive destination

4. Move decimal number -~ In-~line Form

shift
ptr to src descriptor
ptr to dst descriptor

ASHNI / ASHPI
JWORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR

e %o s wp “p ws W

.WORD @ shift descriptor word
BVS OVERFLOW check for error

BLT NEGATIVE negative destination
BEQ EQUAL zero destination

BGT GREATER ; positive destination

Notes:

1. 1If bits <15:12> of the shift descriptor word are not zero, the
effect of the instruction is unpredictable.

2. If bits <11:8> of the shift descriptor are not a valid decimal
digit, the results of the instruction are unpredictable.

3. Any overlap of the source and destination strings will produce
unpredictable results.

A-8

5.3 CMPC / CMPCI - Compare Character

Format:
15 9 8 7 32]
CMPC | 876 | P4 I 4 |
CMPCI | 876 | 14 | 4 |
| srcl.dscr.ptr |
| src2.dscr.ptr |
| 2 | £ill |
Operation:

Srcl is compared with src2 (srcl-src2).
Condition Codes:

The condition codes are based on the arithmetic comparison of the
most significant pair of unequal srcl and src2 characters
(srcl.byte-src2.byte).

N: set if result<@; cleared otherwise
Z: set if result=0; cleared otherwise

V: set if there was arithmetic overflow, that is, srcl.byte<7>
and src2.byte<7> were different, and src2.byte<7> was the same

as bit <7> of (srcl.byte-src2.byte): cleared otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:
This instruction is potentially suspendable.

Description:

Bach character of srcl is compared with the corresponding
character of src2 by examining the character strings from most
significant to least significant characters. If the character
strings are of unequal length, the shorter character string is
conceptually extended to the length of the longer character string
with fill characters beyond its least significant character. The

instruction terminates when the first corresponding unequal
characters are found or when both character strings are exhausted.

A9

The condition codes reflect the last comparison, permitting the
unsigned branch instructions to test the resuit.

Register Form - CMPC

When the instruction starts, the operands must have been placed in
the general registers. The first source character string
descriptor is placed in R@B-Rl, the second source character string
descriptor is placed in R2-R3, the fill character is placed in
R4<7:8>, and R4<15:8> must be zero:)

15 8 7 8
RO | |
-—— srcl.dscr -——
R1 | |
R2 | !
- src2.dscr -
R3 | i
R4 | 8 | £fill i

The instruction terminates with sub-string descriptors in R8-Rl
and R2-R3 which represent the portion of each source character
string beginning with the most significant corresponding
unequal characters. RO-R1 contain a descriptor for the unequal

;f:o:tion of the original srcl string; R2-R3 contain a descriptor
or the unequal portion of the original src2 string. A vacant

character string descriptor indicates that the entire source
character string was equal to the corresponding portion of the

other source character string, including extension by the fill
character; its address is one greater than that of the least

significant character of the character string.

15 8 7 a
RG | |
—— sub.srcl.dscr -——
R1 | |
R2 | |
— sub.src2.dscr -—
R3 | |
R4 | "} | fill |

A-10

In-line Form - CMPCI

-

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string srcl
descriptor, a word address pointer to a two word character strin
src2 descriptor, and a-word whose low order half contains the fil
character and whose high order half must be zero. RO-R6 are
unchanged when the instruction is completed.

Formal Description:

srcl.len = RO;
srcl.adr = Rl;

! CMPC only
1
src2.len = R2; !
1
]

src2.adr = R3; .
£ill = R4<T:8>; .
temp = M[R7]; ! CMPCI only
srcl.len = M{temp]; !

srcl.adr = M{temp+2];!

R7 = R7+2; !
temp = M[R7]; !
src2.len = M[temp]; !
src2.adr = M[{temp+2};!
R7 = R7+2; !
fill = M[R7]<7:8>; !
R7 = R7+2; !

e o o o o o o o o

found = 1;
while (srcl.len nequ @) and (src2.len nequ @)
and (found nequ #) do
if (Mlsrcl.adr] eqlu M{src2.adr]) then
begin
srcl.len = srcl.len-1;
srcl.adr = srcl.adr+l;
src2.len = src2.len-1;
src2.adr = src2.adr+l
end
else found = 6;
while (srcl.len nequ @) and (found nequ #) do
if M{srcl.adr] eqlu fill then
begin
srcl.len = srcl.len-1;
srcl.adr = srcl.adr+l
end
else found = @;
while (src2.len nequ @) and (found nequ @) do
if M{src2.adr] eqlu fill then
begin

src2.len = src2.len-1;

A-11

src2.adr = src2.adr+l
end
else found = 0@;

if (srcl.len eqlu @) then btmpl = fill
else btmpl = M[srcl.adr];

if (src2.len eqlu @) then btmp2 = fill
else btmp2 = M(src2.adr];

carryébtmp = btmpl-btmp2;

N = btmp<15>;

if btmp eql @ then 2 = 1 else 2 = 6;

if (btmpl<7> neq btmp2<7>) and (btmp2<7> eql btmp<7>) then
V=1elseV=290;

C = carry;

RO = srcl.len; ! CMPC only

Rl = srcl.adr; ! .

R2 = src2.len; ! .

R3 = src2.adr; ! .

R4 = B<15:8>@fill; ! .
Examples:

1. Compare Strings - Register Form

MOV SRC1.DSCR,R8 ; lst source descriptor
MOV SRC1.DSCR+2,R1

MOV SRC2.DSCR,R2 ; 2nd source descriptor
MOV SRC2.DSCR+2,R3 ’

MOV #' ,R4 ; extend with spaces
CMPC ; compare

BLO LESS ; srcl<src2

BEQ EQUAL : srcl=ssrc2

BHI GREATER ; srcl>src2

2. Compare Strings - In-line Form

CMPCI

.WORD SRC1.DSCR.PTR

.WORD SRC2.DSCR.PTR
]

compare
ptr to srcl descriptor
ptr to src2 descriptor

N8 Ne Se we we we we

.WORD extend with spaces
BLO LESS srcl<src2
BEQ EQUAL srcl=src2
BHI GREATER srcl>src2

3. Compare as far as the length of shorter of two strings -
Register Form

MOV SRC1.DSCR,R8 ; lst source descriptor
MOV SRC1.DSCR+2,R1
MOV SRC2.DSCR,R2 ; 2nd source descriptor
MOV SRC2.DSCR+2,R3

A-12

Notes:

1.

2'

CMP R@,R2

BHI 18

MOV RO,R2
1s: MOV R2,R0

length of shorter

~e

? no f£fill is used

CMPC ; compare strings

BEQ EQUAL : use unsigned branches
BNE NOTEQL

The operation of this instruction is unaffected by any overlap
of the source character strings.

If the srcl character string is vacant, the fill character
will be compared with src2. If the src2 character string is
vacant, the fill character will be compared with srcl. If
both character strings are vacant, the condition codes will
indicate equality.

CMPC -~ If an initial source character string descriptor is
vacant, the resulting sub~-string descriptor is the same as the
original character string descriptor.

A test for success is BEQ; a test for failure is BNE.

When the instruction terminates, the condition codes will be
set as if a CMPB instruction operated on the most significant
unequal characters. If both strings are initially vacant or
are identical, the condition codes will be set as if the last
characters to be compared were identical. This results in
equality with N cleared, Z set, V cleared, and C cleared.

Both CMPC and CMPCI update the condition codes. CMPC returns
sub-string descriptors.

A-13

5.4 CMPN / CMPP / CMPNI / CMPPI - Compare Decimal

Format:
15 9 8 32 0
CMPN | 876 | g5 P2 |
CMPP | 276 i a7 b2 |
CMPNI | 876 { 15 i 2 1
| srcl.dscr.ptr]
| src2.dscr.ptr |
CMPPI | 876 | 17 I 2 |
| srcl.dscr.ptr |
| src2.dscr.ptr 1
Operation:

Srcl is compared with src2 (srcl-src2).
Condition Codes:

N: set if srcl<src2; cleared otherwise
Z: set if srcl=src2; cleared otherwise
V: cleared
C: cleared
Suspendability:
This instruction is potentially suspendable.
Description:
Srcl is arithmetically compared with src2. The condition codes

reflect the comparison. The signed branch instruction can be used
to test the result.

A-14

Register Form - CMPN and CMPP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
RO-R1l, and the second source descriptor is placed in R2-R3:

15 8

RE | I
——— srcl.dscr -

Rl | |
R2 | |
- src2.dscr -

R3 | I

When the instruction is completed, the source descriptor registers
are cleared:

15 0
R | 0 |
Rl | 0 |
R2 | 2 i
R3 | 2 —T

In-line Form - CMPNI and CMPPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
RO-R6 are unchanged when the instruction is completed.

Formal Description:
TBS;

Examples:

1. Compare Decimal Strings - Register Form

MOV SRC1.DSCR,R@ ; lst source descriptor
MOV SRC1.DSCR+2,R1
MOV SRC2.DSCR,R2 : 2nd source descriptor
MOV SRC2.DSCR+2,R3

A-15

CMPN / CMPP ; compare

BLT LESS ; use signed branches
BEQ EQUAL

BGT GREATER

2. Compare Decimal Strings - In-line Form

CMPNI / CMPPI
.WORD SRC1.DSCR.PTR
.WORD SRC2.DSCR.PTR

compare
ptr to srcl descriptor
ptr to src2 descriptor

we we we ws wo e

BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

Notes:
1. The operation of these instructions is unaffected by any

overlap of the source strings provided that each source string
is a valid representation of the specified data type.

A-16

5.5 CVTLN / CVTLP / CVTLNI / CVTLPI - Convert Long to Decimal

Format:
15 98 32 0
CVTLN | 876 | 85 | 7 |
cvrLp ! @876 | 87 1 7 |
CVTLNI | g76] 15 b7
| dst.dscr.ptr |
| src.long.ptr |
CVTLPI | 876 | 17 P 7 1
| dst.dscr.ptr]
| src.long.ptr |
Operation:

decimal string <- long integer
Condition Codes:
N: set if dst<@; cleared otherwise
2: set if dst=8; cleared otherwise
V: set if dst can not contain all significant digits of the
result; cleared otherwise
C:- cleared
Suspendability:

This instruction is potentially suspendable.

A-17

Description:

The source long integer is converted to a decimal string. The
condition codes reflect the result stored in the destination
decimal string, and whether all significant digits were stored.

Register Form - CVTLN and CVTLP

When the instruction starts, the operands must have been placed in
the general registers. The destination descriptor is placed in
RO-R1, and the source long integer is placed in R2-R3:

15 0
RO | |

-—= dst.dscr ——
R1 | I
R2 | !

-—- src.long -
R3 | I

When the instruction is completed, the source long integer
registers are cleared:

15]

RO | |
— dst.dscr ——

R1 | |
R2 |] |
R3 | 0 |

In-line Form - CVTLNI and CVTLPI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string
destination descriptor, and a word address pointer to a two word
long integer source. RB-R6 are unchanged when the instruction is
completed.

A-18

Formal Description:
TBS;
Examples:
1. Convert Long to Decimal - Register Form

MOV DST.DSCR, RO
MOV DST.DSCR+2,R1
MOV SRC.LONG+2,R2
MOV SRC.LONG,R3
CVTLN / CVTLP

BVS OVERFLOW

BLT NEGATIVE

BEQ EQUAL

BGT GREATER

destination descriptor

-~

source long integer

-

convert

check for error
negative destination
zero destination
positive destination

- we we we we

2. Convert Long to Decimal - In~line Form

CVTLNI / CVTLPI
.WORD DST.DSCR.PTR
JWORD SRC.LONG.PTR

convert
ptr to dst descriptor
ptr to long integer

- We Wme W ws we wO

BVS OVERFLOW check for error

BLT NEGATIVE negative destination
BEQ EQUAL zero destination

BGT GREATER positive destination

Notes:

1. Register forms use a long integer oriented with the sign and
high order portion in R2, and the low order portion in R3.

2. In-line forms use a long integer oriented with the low order
portion in src.long, and the sign and high order portion in
src.long+2.

A-19

5.6 CVINL / CVTPL / CVINLI / CVTPLI - Decimal to Long

Format:
15 9 8 32 '}
CVINL | B76 i 85 I3 1
CVTPL | 876 | 287 3 |
CVINLI | 876 | 15 3
| src.dscr.ptr]
I dst.long.ptr]
CVTPLI | p76 | 17 I3 1
| src.dscr.ptr]
i dst.long.ptr |
Operation:

long integer <- decimal string
Condition Codes:

The condition codes are based on the long integer destination and
on the sign of the source decimal string.

N: set if long.integer<@; cleared otherwise
Z: set if long.integer=0; cleared otherwise
V: set if long.integer dst can not correctly represent the two's
complement form of the result; cleared otherwise
C: set if src<@ and long.integer#@; cleared otherwise
Suspendability:

This instruction is potentially suspendable.

A-20

Description:

The source decimal string is converted to a long integer. The
condition codes reflect the result of the operation, or whether
significant digits were not converted.

Register Form - CVTNL and CVTPL

When the instruction starts, the operands must have been placed in
the general registers. The source decimal string descriptor is
placed in R@-R1:

15 0

—— src.dscr ——
Rl | |

When the instruction is completed, the source decimal string
descriptor registers are cleared, and the destination long integer
is returned in R2-R3:

15 9

RO | g |
Rl |) |
R2 | |
-—- dst.long -

R3 | |

In-line Form - CVINLI and CVTPLI

- ———— - -

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string source
descriptor, and a word address pointer to a two word long integer
destination. RA-R6 are unchanged when the instruction is
completed.

Formal Description:

TBS;

A-21

Examples:

1.

2.

Convert Decimal to Long - Register Form

MOV SRC.DSCR,R@ ; source descriptor
MOV SRC.DSCR+2,R1

CVINL / CVTPL ; convert

BVS OVERFLOW ; check for error

BLT NEGATIVE ; negative destination
BEQ EQUAL : zero destination
BGT GREATER ; positive destination

Convert Decimal to Long - In-line Form

CVINLI / CVTPLI
.WORD SRC.DSCR.PTR

.WORD DST.LONG.PTR

convert
ptr to src descriptor

ptr to dst long int

e me “e e ws wp W

BVS OVERFLOW check for error

BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

Register forms use a long integer oriented with the sign and
high order portion in R2, and the low order portion in R3.

In-line forms use a long integer oriented with the low order

portion in dst.long, and the sign and high order portion in
dst.long+2.

If the V bit is set, the contents of the long integer
destination are the least significant 32 bits of the result.

A source whose value is +2**31 can be represented as a 32 bit
binary integer. However, since the destination is a two's
complement long integer, the resulting condition codes will
be N set, Z cleared, V set, and C cleared.

A-22

5.7 CVINP / CVIPN / CVINPI / CVTPNI - Convert Decimal

Format:
15 98 32 @
CVINP | 876 | 85 I 5 1
CVITPN | 876 { 85 I 4 |
CVINPI | 876 ! 15 I 5 |
| src.dscr.ptr |
| dst.dscr.ptr |
CVTPNI | 876 | 15 | 4 |
! src.dscr.ptr |
! dst.dscr.ptr |
Operation:

CVINP / CVTNPI packed string <- numeric string
CVTPN / CVTPNI numeric string <- packed string

Condition Codes:
N: set if dst<@; cleared otherwise
Z: set if dst=8; cleared otherwise
V: set if dst can not contain all significant digits of the
result; cleared otherwise
C: cleared
Suspendability:

This instruction is potentially suspendable.

A-23

Description:

These instructions convert between numeric and packed decimal
strings. The source decimal string is converted and moved to the

destination string. The condition codes reflect the result of the
operation, or whether all significant digits were stored.

Register Form - CVINP and CVTPN

When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in R8-R1,
and the destination descriptor is placed in R2-R3:

15 9

RO | [
- src.dscr -

Rl | I
R2 | [
- dst.dscr -—-

R3 | |

When the instruction is completed, the source descriptor registers
are cleared:

15)

RG | 2 |
R1 | 0 I
R2 | !
— dst.dscr -

R3 | !

In-line Form - CVTNPI and CVTPNI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
RO-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

A-24

Examples:

l.

2.

Notes:
1 L]

Convert Between Numeric String and Packed String -~ Register
Form

MOV SRC.DSCR, RO s source descriptor
MOV SRC.DSCR+2,R1
MOV DST.DSCR,R2
MOV DST.DSCR+2,R3
CVINP / CVTPN

BVS OVERFLOW

BLT NEGATIVE

BEQ EQUAL

BGT GREATER

destination descriptor

LYY

convert
check for error

negative destination
zero destination

positive destination

. we w0 w0 we

Convert Between Numeric String and Packed String - In-line
Form

convert

ptr to src descriptor
ptr to dst descriptor
check for error
negative destination
zero destination
positive destination

CVINPI / CVTPNI
.WORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR
BVS OVERFLOW
BLT NEGATIVE

BEQ EQUAL

BGT GREATER

e w0 we ®we wo wo wo

The results of the instruction are unpredictable if the source
and destination strings overlap.

These instructions use both a numeric and a packed decimal
string descriptor.

A-25

5.8 DIVP / DIVPI - Divide Decimal

Format:

15 9 8 ‘32 2
DIVP | 876 | 87 I 5 |
DIVPI | 876 | 17 I 5 |
| srcl.dscr.ptr |
] src2.dscr.ptr |
! dst.dscr.ptr {

Operation:

dst <- src2 / srcl
Condition Codes:

N: set if dst<@; cleared otherwise
Z: set if dst=0; cleared otherwise
V: set if dst can not contain all significant digits of the

result or if srcl=@; cleared otherwise
C: set if srcl=8; cleared otherwise

Suspendability:
This instruction is potentially suspendable.

Description:

Src2 is divided by srcl, and the quotient (fraction truncated) is
stored in the destination string. The condition codes reflect the
value stored in the destination string, and whether all
significant digits were stored.

Register Form - DIVP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R@-R1l, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4-RS:

A-26

RO | |
—-— srcl.dscr ——
Rl | |
R2 | |
— src2.dscr —
R3 |]
R4 | |
—— dst.dscr -—
R5 | |

When the instruction is completed, the source descriptor registers
are cleared:

15 8
R | @ |
R1 |) |
R2 | '} {
R3 | 9 |
R4 | |

—— dst.dscr —-——
RS | |

In-line Form - DIVPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
R@-R6 are unchanged when the instruction is completed.

Formal Description:
TBS;

Examples:

1. Divide -~ Register Form

MOV SRC1.DSCR,R9 ; divisor descriptor
MOV SRC1.DSCR+2,R1
MOV SRC2.DSCR,R2 ; dividend descriptor
MOV SRC2.DSCR+2,R3

A-27

2.

Notes:

1.

MOV DST.DSCR, R4 ; quotient descriptor
MOV DST.DSCR+2,R5

DIVP ; divide

BVS OVERFLOW ; check for error

BLT NEGATIVE : negative destination
BEQ EQUAL ; zero destination

BGT GREATER ; positive destination

Divide - In-line Form

DIVPI ; divide

JWORD SRC1.DSCR.PTR ; ptr to divisor dscr
.WORD SRC2.DSCR.PTR ; ptr to dividend dscr
.WORD DST.DSCR.PTR ; ptr to quotient dscr
BVS OVERFLOW ; check for error

BLT NEGATIVE ; negative destination
BEQ EQUAL ; zero destination

BGT GREATER ; positive destination

The operation of these instructions 1is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified data type.

The results of the instruction are unpredictable if the source
and destination strings overlap.

Division by zero will set the V and C bits. The destination
string, and the N and Z condition code bits will be
unpredictable.

No numeric string divide instruction is provided.

A-28

5.9 LOCC / LOCCI - Locate Character

Format:
15 987 32 8
Locc | 876 | 24 |1 8 |
LOCCI | 876 | 14 1 9 |
1 src.dscr.ptr |
| 0 | char]
Operation:

Search source character string for a character.
Condition Codes:
The condition codes are based on the final contents of R@.

N: set if RO<15> set; cleared otherwise
Z2: set if RO=0; cleared otherwise

V: cleared
C: cleared
Suspendability:

This instruction is potentially suspendable.
Description:

The source character string is searched from most significant to
least significant character until the first occurrence of the
search character. A character string descriptor is returned in
RB-R1 which represents the portion of the source character string
beginning with the located character. If the source character
string contains only characters not equal to the search character,
the instructions return a vacant character string descriptor with
an address one greater than that of the least significant
character of the source character string. The condition codes
reflect the resulting value in RO.

A-29

Register Form - LOCC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RO-R1l, the search character is placed in R4<7:8>, and

R4<15:8> must be zero:

15 87 a
RO | !
- src.dscr -
R1 | |
R4 |) | char

When the instruction is completed, R#-Rl contain a character set
descriptor which represents the sub-string of the source character
string beginning with the located character:

15 8 7 2

RG | |
—-— sub.src.dscr —-—

Rl | |
R4 |] | char |

In-line Form - LOCCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word whose low order half contains the search
character and whose high order half must be =zero. When the
instruction is completed, R8-R1 contain a character string
descriptor which represents the sub-string of the source character
string beginning with the located character. R2-R6 are unchanged:

A-30

15 87 2

— sub.src.dscr -——-
R1 | |

Formal Description:

src.len = RO; { LOCC only
src.adr = Rl; ! .
char = R4<7:8>; ! .
temp = M(R7]; LOCCI only

src.len = M[temp]; .
src.adr = M[temp+2];
R7 = R7+2;

char = M[R7])<7:8>;
R7 = R7+2;

S Gam Bun Gun G S

*» o o o

found = 8;
while (src.len nequ 8) and (found eqlu 8) do
if M[src.adr] nequ char then
begin
src.len = src.len-1;
src.adr = src.adr+l
end
else found = 1;

R@ = src.len;
Rl = src.adr;
R4 = @<15:8>8char; ! LOCC only

N = RB<15>;

2 = RO eqlu 8;
V=20
C=¢g

-e weo

Examples:

1. PFind the Beginning of a Comment - Register Form

MOV STR.DSCR,R@ ; string to search
MOV STR.DSCR+2,R1
MOV $#';,R4 ; search for semi-colon
LOCC ;s locate
BNE FOUND ; R@ and Rl are the
’

sub-string descriptor

A-31

Notes:

l.

Find the Beginning of a Comment - In-Line Form

LOCCI
.WORD
«-WORD

BNE

If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating

no match was found. The original source character string

SRC.DSCR.PTR
',
’

FOUND

Ne e %o wo we

locate

ptr to src descriptor
search for semi-colon
R8B and Rl are the
sub-string descriptor

descriptor is returned in R@-R1.

A test for success is BNE;

The condition codes will be set as if this instruction were

followed by TST RO.

‘a

A-32

test for failure is BEQ.

5.18 L2Dr - Load 2 Descriptors
Format:
15 98 32 0
L2br | 876 | f2 Il ¢ |

Operation:

Load word pairs into R#-R1 and R2-R3.
Condition Codes:

The condition codes are not affected.

N: not affected
Z: not affected
V: not affected
C: not affected

Suspendability:
This instruction is non-suspendable.
Description:

This instruction augments the character and decimal string
instructions by efficiently loading string descriptors into the
general tegisters,

A descriptor 'alpha' is loaded into R@-Rl; a second descriptor
‘beta' is loaded into R2-R3. The address of the descriptors are
determined by the addressing mode @(Rr)+ where r is the low order
three bits of the opcode word. The address of the descriptor
‘alpha' is derived by applying this addressing mode once; the
address of the descriptor ‘'beta' is derived by applying this
addressing mode a second time. The addressing mode
auto-increments the indicated register by 2. The addressing mode
computation is not affected by the descriptors which are loaded
into the general registers. The words which contain the addresses
of the descriptors are in consecutive words in memory; the
descriptors themselves may be anywhere in memory. The condition
codes are not affected.

A-33

When the instruction is completed, the ‘'alpha' descriptor is
RO-R1 and the 'beta' descriptor is in R2-R3:

15)

RO | |
—— alpha.dscr -

R1 | |
R2 | |
— beta.dscr -—

R3 | |

Formal Description:

temp = R[r}];

adr.alpha = M[temp]; temp = temp+2;
adr.beta = M[temp?: temp = temp+2;
if (r gequ 4) then Rr] = temp;

R8 = M[adr.alpha]l;

Rl = M[adr.alpha+2};

R2 = M[adr.beta];

R3 = M[adr.beta+2];

Examples:

1. Decimal String Compare

L2D7 ; load descriptors
.WORD SRC1
.WORD SRC2
CMPN ; compare
SRC1l: .WORD SRC1l.LEN ; lst src descriptor

.WORD SRC1l.ADR

SRC2: .WORD SRC2.LEN ; 2nd src descriptor
.WORD SRC2.ADR

Notes:

A-34

in

5.11 L3Dr - Load 3 Descriptors

Format:

15 9 8 32 @

L3Dr | 876 | 06 I |

Operation:

Load word pairs into RA-R1l, R2-R3 and R4-RS.
Condition Codes:

The condition codes are not affected.

N: not affected
Z: not affected
V: not affected
C: not affected

Suspendability:
This instruction is non-suspendable.
Description:

This instruction augments the character and decimal string
instructions by efficiently loading string descriptors into the
general registers.

A descriptor 'alpha' is loaded into R@-Rl; a second descriptor
'beta’ is loaded into R2-R3; a third descriptor 'gamma' is loaded
into R4-R5. The address of the descriptors are determined by the
addressing mode @(Rr)+ where r is the low order three bits of the

- opcode word. The address of the descriptor ‘'alpha' is derived by
applying this addressing mode once; the address of the descriptor
'beta' is derived by applying this addressing mode a second time;
the address of the descriptor 'gamma' is derived by applying this
addressing mode a third time. The address mode auto-increments
the indicated register by 2. The addressing mode computation is
not affected by the descriptors which are loaded into the general
registers. The words which contain the addresses of the
descriptors are in consecutive words in memory; the descriptors
t?gmselges may be anywhere in memory. The condition codes are not
affected.

A-35

When the instruction is completed, the 'alpha' descriptor is in
RB-R1, the ‘'beta' descriptor is in R2-R3 and the ‘gamma’
descriptor is in R4-R5:

15]

RO | |
—— alpha.dscr —-—

Rl | |
R2 | i
-—- beta.dscr -

R3 | I
R4 | I
-— gamma.dscr -—

RS | I

Formal Description:

temp = R(r]};

adr.alpha = M{temp]; temp = temp+2;
adr.beta = M[temp]; temp = temp+2;
adr.gamma = M[temp]; temp = temp+2;
if (r gequ 6) then R[r] = temp;

R = M{adr.alphal;
Rl = M[adr.alpha+2];
R2 = M[adr.betal;

R3 = M[adr.beta+2];
R4 = M[adr.gamma];
RS = M[adr.gamma+2];

A-36

Examples:

1. Three Address Add

L3D7 7 load descriptors
JWORD SRC1
.WORD SRC2
.WORD DST
ADDN : add
SRC1: .WORD SRC1.LEN ; 1lst src descriptor

JWORD SRC1.ADR

SRC2: .WORD SRCZ.LEN
JWORD SRC2.ADR

.

2nd src descriptor

DST: .WORD DST.LEN
JWORD DST.ADR

dst descriptor

-.

Notes:

A-37

5.12 MATC / MATCI - Match Character

Format:
15 9 32 2
MATC | 876 | 24 | 5 |
MATCI | 976 | 14 i 5 |
I src.dscr.ptr |
| obj.dscr.ptr |
Operation:

Search source character string for object character string.

Condition Codes:

The condition codes are based on the final contents of R@.

N: set if R@<15> set; cleared otherwise
Z: set if R@=0; cleared otherwise
V: cleared
C: cleared
Suspendability:

This instruction is potentially suspendable.
Description:

The source character string is searched from most significant to
least significant character for the first occurrence of the entire
object character string. A character string descriptor is
returned in R@-R1 which represents the portion of the original
source character string beginning with the most significant
character to completely match the object character string. If the
object character string did not completely match any portion of
the source character string, the character descriptor returned in
R8-R1 is vacant with an address one greater than the least
significant character in the source string. The condition codes
reflect the resulting value in R8. If the 2 bit is cleared, the
entire object was successfully matched with the source character
string; if the 2 bit is set, the match failed.

A-38

Register Form - MATC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R@-Rl, and the object character string descriptor is
placed in R2-R3:

15]
RE | |

-—- src.dscr -
Rl | |
R2 | !

-—— obj.dscr -
R3 | |

The instruction terminates with a character sub-string descriptor
returned in R@~R1 which represents the portion of the original
source character string beginning with the most significant
character to completely match the object character string.

15 0

RE | I
——- sub.src.dscr ---

Rl | |
R2 | |
-— obj.dscr -—-

R3 | |

In-line Form - MATCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source

descriptor, and a word address pointer to a two word character
string object descriptor. The instruction terminates with a

character sub-string descriptor returned in R@-Rl which represents
the portion of the original source character string beginning with

the most significant character to completely match the object
character string. R2-R6 are unchangedé when the instruction is
completed.

A-39

sub.src.dscr ——

Formal Description:

src.len = R@;
src.adr = Rl;
obj.len = R2;
obj.adr = R3;

temp = M[R7];

src.len = M{temp];
src.adr = M{temp+2];

R7 = R7+2;
temp = M[R7];

obj.len = M(temp];
obj.adr = M[temp+2];

R7 = R7+2;

MATC only

Vo g S pen
.

MATCI only

ome s G smw s s See sem
.

tmp.len = obj.len;

found = 0;

while (src.len gequ obj.len) and (obj.len nequ @)
and (found eqlu @) do

begin
same

=l;

while (obj.len nequ 0) and (same eqlu 1)
if (M[obj.adr] eglu M[src.adr])
then

else

found =
obj.adr
src.len
src.adr
obj.len
end;
if found eql 1
then
begin

begin

obj.len = obj.len-1;

obj.adr = obj.adr+l;
src.len = src.len-1;

src.adr = src.adr+l

end

same = @;

same;

= obj.adr+obj.len-tmp.len;

= src.len+tmp.len-obj.len-1;
= src.adr+obj.len-tmp.len+l;
= tmp.len

RO = src.len+l;
Rl = src.adr-1

end

A-40

do

else

begin
RO = 0;
Rl = src.adr+src.len
end;
R2 = obj.len; ! MATC only
R3 = obj.adr; !
N = RO<1S>;
Z = RO eqlu @;
vV =20;
C =0;
Examples:
l. Find a Keyword - Register Form
MOV SRC.DSCR, R@ ; lst source descriptor
MOV SRC.DSCR+2,R1
MCV OBJ.DSCR,R2 s 2nd source descriptor
MOV OBJ.DSCR+2,R3
MATC ; search for keyword
BNE FOUND ; object was in string
2. Find a Keyword - In-line Form
MATCI ; search for keyword
.WORD SRC.DSCR.PTR ; ptr to src descriptor
.WORD OBJ.DSCR.PTR ;s ptr to obj descriptor
BNE FOUND ; object was in string
Notes:
1. The operation of this instruction is unaffected by any overlap
of the source and object character strings.
2, A vacant object character string matches any non-vacant

source character string. A vacant source character string
will not match any object character string. If the initial
source character string descriptor is vacant, the instruction
terminates with the condition codes indicating no match was
found. The original source character string descriptor is

returned in RO-R1.

A-41

If the length of the object character string is greater than
that of the source character string then no match is found;
RO-R1 and the condition codes will be updated.

A test for success is BNE; a test for failure is BEQ.

The condition codes will be set as if this instruction were
followed by TST R@.

A-42

5.16 MOVC / MOVCI - Move Character

Format:

15 98 7 32 @
MOVC | 876 | 23 | 8 |
MOVCI | 876 | 13 | 8 |
| src.dscr.ptr |
| dst.dscr.ptr |
| 0 | fill |

Operation:

dst <~ src

Condition Codes:

The condition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len).

N: set if result<@; cleared otherwise

set if result=8; cleared otherwise

set if there was arithmetic overflow, that is, src.len<l5> and

dst.len<15> were different, and dst.len<lS5> was the same as

bit <15> of (src.len~dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

ve oo

Z
v

Suspendability:
This instruction is potentially suspendable.
Description:

The character string specified by the source descriptor is moved
into the area specified by the destination descriptor. It is
aligned by the most significant character. The condition codes
reflect an arithmetic comparison of the original source and
destination lengths. If the source string is shorter than the
destination string, the fill character is used to complete the
least significant part of the destination string. This is
indicated by the C bit set.

A-43

If the source string is longer than the destination string, the
least significant characters of the source string are not moved.
This is indicated by the Z and C bits cleared. If the source and
destination strings are of equal length, all characters are moved
with neither truncation nor filling. This is indicated by the 2

bit set. The unsigned branch instructions may test the result of
the instruction.

Register Form - MOVC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R@-R1l, the destination character string descriptor is
placed in R2-R3, the fill character is placed in R4<7:8>, and
R4<15:8> must be zero:

15 . 8 7 2
RO | |
——— src.dscr ——
R1 | |
R2 | }
— dst.dscr —-—
R3 |]
R4 | g | fill |

When the instruction is completed, RO contains the number of
unmoved source string characters, and Rl through R3 are cleared:

15 8 7)
R | max (@,src.len-dst.len) |
Rl | 9 I
R2 | 9 I
R | 0 T
R4 | 8 ! £ill |

A-44

In-line Form - MOVCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word address pointer to a two word character string
destination descriptor, and a word whose low order half contains
the £ill character and whose high order half must be zero. RO-R6

are unchanged when the instruction is completed.
Formal Description:

src.len RO;
src.adr Rl;

!

!
dst.len R2; ! .

!

!

dst.adr R3;
£fill = R4<7:0>;

temp = M{R7];
src.len = M[temp];
src.adr = M{temp+2];
R7 = R7+2;

! MOVCI only

]

!

!
temp = M[R7]; !

1

1

!

!

!

dst.len = M(temp];
dst.adr = M[temp+2];
R7 = R7+2;

£ill = M[R7]<7:8>;
R7 = R7+2;

o o

arry@temp = src.len-dst.len;

temp<15>;

temp eqlu 9; .

(src.len<1l5> neqg dst.len<15>) and (src.len<15> eql
temp<15>)

carry;

c
N
Z
v
C

if src.adr gequ dst.adr then

begin ! most to least significant
characters
while (src.len nequ 8) and (dst.len nequ #8) do
begin

M[dst.adr] = M{src.adr];
src.len = src.len-l;

src.adr = src.adr+l;
dst.len = dst.len-1;
dst.adr = dst.adr+l
end;

while dst.len nequ 8 do
begin

M[dst.adr] = £ill;
dst.len = dst.len-1;
dst.adr = dst.adr+l

A-45

end

end
else
begin ! least to most significant
characters
src.adr = src.len-l-max(8,src.len-dst.len)+src.adr;
dst.adr = dst.len+dst.adr-1;
while src.len l1lssu dst.len do
begin
M[gst.adr] = fill;
dst.len = dst.len-1;
dst.adr = dst.adr-1
end;
while dst.len nequ 8 do
begin
M{dst.adr] = M(src.adr};
src.len = src.len-1;
src.adr = src.adr-1;
dst.len = dst.len-1;
dst.adr = dst.adr-1
end
end;
RO = src.len; ! MOVC only
Rl = 9; ! .
R2 = 0; 1 .
R3 = §; ! .
R4 = P<15:8>efill; ! .
Examples:

1. Moving Data - Register Form

MOV SRC.DSCR,R@ ; source descriptor

MoV SRC.DSCR+2,R1

MOV DST.DSCR, R2 ; destination descriptor
MOV DST.DSCR+2,R3

MOV $#' ,R4 ; £fill with spaces

MOVC ; move

BHI TRUNC ; test for truncation
BLO FILL ; test for fill

BEQ EQUAL ; test for equal length

2, Moving Data - In-line Form

MOVCI

.WORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR

move

ptr to src descriptor
ptr to dst descriptor

we we wme wme we e e

.WORD ! fill is space

BHI TRUNC test for truncation
BLO FILL test for fill

BEQ EQUAL test for equal length

A-46

Notes:

Clearing Storage - Register Form

CLR RO : zero length source
MOV DST.DSCR,R2 + destination descriptor
MOV DST.DSCR+2,R3

CLR R4 ; store null characters
MOVC ; propagate fill

Clearing Storage - In-line Form

MOVCI

+WORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR
.WORD P

propagate fill

ptr to null str dscr
ptr to dst descriptor
fill with nulls

.o we we wo

The operation of this instruction is unaffected by any overlap
of the source and destination strings. The result is

equivalent to having read the entire source string before
storing characters in the destination.

If the source string is vacant, the £fill character will be
propagated through the destination string. If the destination

string is vacant, no characters will be moved. The condition
codes will be updated. MOVC will update the general

registers.

MOVC -- When the instruction terminates, RO is zero only if 2
or C are set.

The condition codes will be set as if this instruction were
preceded by CMP src.len,dst.len.

A-47

5.17 MOVRC / MOVRCI - Move Reverse Justified Character

Format:

15 987 32 2
MOVRC | 876 | 23 b1 |
MOVRCI | 876 | 13 [R
| src.dscr.ptr |
| dst.dscr.ptr |
| 2 | fill |

Operation:

dst <- reverse justified src

Condition Codes:

The condition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len).

N: set if result<@; cleared otherwise
: set if result=0; cleared otherwise
V: set if there was arithmetic overflow, that is, src.len<l5> and
dst.len<l5> were different, and dst.len<l5> was the same as
bit <15> of (src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:
This instruction is potentially suspendable.
Description:

The character string specified by the source descriptor is moved
into the area specified by the destination descriptor. It is

aligned by the least significant character. The condition codes
reflect an arithmetic comparison of the original source and

destination lengths. If the source string is shorter than the
destination string, the fill character is used to complete the

most significant part of the destination string. This 1is
indicated by the C bit set.

A-48

If the source string is longer than the destination string, the
most significant characters of the source string are not moved.
This is indicated by the Z and C bits cleared. If the source 2and
destination strings are of equal length, all characters are moved
with neither truncation nor f£illing. This is indicated by the 2

bit set. The unsigned branch instructions may test the result of
the instruction.

Register Form - MOVRC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RO-Rl, the destination character string descriptor is
placed in R2-R3, the fill character is placed in R4<7:86>, and
R4<15:8> must be zero:

15 8 7 (]
RO | |
-—- src.dscr ——-
Rl | I
R2 | |
-—- dst.dscr -—
R3 | ’ |
R4 |) | £ill I

When the instruction is completed, R# contains the number of
unmoved source string characters, and Rl through R3 are cleared:

15 87 2
RO | max (B,src.len-dst.len) |
R1 | 2 |
R2 |) I
R3 | /] |
R4 |) | fill |

A-49

In-line Form - MOVRCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source

descriptor, a word address pointer to a two word character string
destination descriptor, and a word whose low order half contains

the f£ill character and whose high order half must be zero. RO-R6
are unchanged when the instruction is completed.

Formal Description:

src.len = R@; ! MOVRC only
src.adr = Rl; ! .
dst.len = R2; !
dst.adr = R3; !

1

£i11 = R4<7:0>;)
temp = M[R7);
src.len = M[temp];
src.adr = M[temp+2];
R7 = R7+2;

temp = M[R7];

{ MOVRCI only
! .
!
!
!
dst.len = M[temp]; !
!
!
!
!

* e o o

dst.adr = M{temp+2};
R7 = R7+2;

£ill = M{R7]<7:0>;
R7 = R7+2;

carry@temp = src.len-dst.len;
N temp<15>;

2 = temp eqlu 0;
V = (src.len<l5> neq dst.len<15>) and (src.len<l5> eql temp<1l5>)
,C = carry;
if (src.len+src.adr-1l) gequ (dst.len+dst.adr-1) then
begin ! most to least significant
characters ‘

src.adr = max(9,src.len-dst.len)+src.adr;
while src.len 1lssu dst.len do

begin

M[dst.adr] = fill;

dst.len = dst.len-1;

dst.adr = dst.adr+l

end;

while dst.len nequ @ do
begin
M[dst.adr] = M[src.adr];
src.len = src.len-1;
src.adr = src.adr+l;
dst.len = dst.len-1;
dst.adr = dst.adr+l

A-50

Notes:

The operation of this instruction is unaffected by any overlap
of the source and destination strings. The result is
equivalent to having read the entire source string before

storing characters in the destination.

If the source string is vacant, the fill character will be
propagated through the destination string. If the destination

string is vacant, no characters will be moved. Condition

codes will be updated. MOVRC will update the general
registers.

MOVRC -~ When the instruction terminates, R® is zero only if 2
or C are set.

The condition codes will be set as if this instruction were
preceded by CMP src.len,dst.len.

A-51

end;

end
else
begin ! least to most significant
characters
src.adr = src.len+src.adr-1l;
dst.adr = dst.len+dst.adr-1;
while (src.len nequ #) and (dst.len nequ @) do
begin
M[dst.adr] = M[src.adr);
src.len = src.len-1;
src.adr = src.adr-1;
dst.len = dst.len-1;
dst.adr = dst.adr-1l
end;
while dst.len nequ @ do
begin
M[dst.adr] = £ill;
dst.len = dst.len-1;
dst.adr = dst.adr-1
end
end;
R@ = src.len; ! MOVRC only
Rl = @; ! .
R2 = @; 1 .
R3 = @; ! .
R4 = 9<15:8>Qfill; ! .
Examples:
1. Moving Data - Register Form
MOV SRC.DSCR,R@ ; source descriptor
MOV SRC.DSCR+2,R1
MOV DST.DSCR, R2 ; destination descriptor
MOV DST.DSCR+2,R3
MOV $#' ,R4 ; £ill with spaces
MOVRC ; move
BHI TRUNC ; test for truncation
BLO FILL ; test for £ill
BEQ EQUAL ; test for equal length

2.

Moving Data - In-line Form

MOVRCI

.WORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR

.WORD !

BHI TRUNC
BLO FILL
BEQ EQUAL

e e N6 we we v we

A-52

move

ptr to src descriptor
ptr to dst descriptor
fill is space

test for truncation
test for fill

test for equal length

5.18 MOVIC / MOVTCI - Move Translated Character

Format:

15 987 32 [}
MOovVIC | 876 | 23 P2 1
MOCTCI | @76 { 13 | 2 |
| src.dscr.ptr |
| dst.dscr.ptr |
| 2 | £ill |
| table.adr [

Operation:

dst <~ translated src

Condition Codes:

The condition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len).

N: set if result<@; cleared otherwise
Z: set if result=0; cleared otherwise

V: set if there was arithmetic overflow, that is, src.len<l5> and

dst.len<l5> were different, and dst.len<l5> was the same as
bit <15> of (src.len-dst.len); cleared otherwise

- C: cleared if there was a carry from the most significant bit of
the result; set otherwise
Suspendability:

This instruction is potentially suspendable.

A-53

Description:

The character string specified by the source descriptor is
translated and moved into the area specified by the destination
descriptor. It is aligned by the most significant character.
Translation is accomplished by using each source character as an 8
bit positive integer index into a 256 byte table, the address of
which is an operand of the instruction. The byte at the indexed
location in the table is stored in the destination string. The
condition codes reflect an arithmetic comparison of the original
contents source and destination lengths.

If the source string is shorter than the destination string, the
untranslated £fill character is used to complete the least
significant part of the destination string. This is indicated by
the C bit set. If the source string is 1longer than the
destination string, the least significant characters of the source
string are not moved. This is indicated by the 2 and C bits
cleared. If the source and destination strings are of equal
length, all characters are translated and moved with neither
truncation nor filling. This is indicated by the Z bit set. The
unsigned branch instructions may test the result of the
instruction. -

Register Form - MOVTIC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RA-R1l, the destination character string descriptor is
placed in R2-R3, the fill character is placed in R4<7:8>, R4<15:8>
must be zero, and the translation table address is placed in RS:

15 8 7 9
RO |]
—— src.dscr —
Rl | |
R2 | |
- dst.dscr -—=
R3 | |
R4 | 2 | fill |
RS | table.adr {

When the instruction is completed, R# contains the number of
unmoved source string characters, and Rl through R3 are cleared:

A-54

V = (src.len<l5> neq dst.len<15>) and (src.len<l5> egl temp<1l5>)

C = carry;

if src.adr gequ dst.adr then

begin ! most to least significant

characters

else

while (src.len nequ) and (dst.len nequ @) do
begin
M[dst.adr] = M([table.adr+M|[src.adr]];
src.len = src.len-1;

src.adr = src.adr+l;
dst.len = dst.len~1;
dst.adr = dst.adr+1
end;

while dst.len nequ 8 do
begin

M{dst.adr] = £fill;
dst.len = dst.len-1;
dst.adr = dst.adr+l
end;

end

begin ! least to most significant

characters

RO
Rl
R2

R3
RS

src.adr = src.len-l-max(@,src.len-dst.len)+src.adr;
dst.adr = dst.len+dst.adr-1;
while src.len lssu dst.len do
begin
M([dst.adr] = £ill;
dst.len = dst.len~-1;
dst.adr = dst.adr-1
end;
while dst.len nequ 8 do
begin
M[dst.adr] = M[table.adr+M[src.adr]};
src.len = src.len-1;
src.adr = src.adr-1;
dst.len = dst.len-1;
dst.adr = dst.adr-1l
end
end;

src.len; !
8; !
g; ! .
2; !
B8<15:8>@fill; !
table.adr; ! .

A-55

15 87)

RO | max (8,src.len~dst.len) |
R1 |) i
R2 | 8 |
R3 | 8 |
R4 | g | fill |
RS | table.adr i

In-line Form - MOVTCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word addréss pointer to a two word character string
destination descriptor, a word whose low order half contains the
fill character and whose high order half must be zero, and a word
containing the address of the translation table. RO~-R6 are
unchanged when the instruction is completed.

Formal Description:

src.len
src.adr
dst.len R2;
dst.adr R3;
LJfill = R4<7:0>;
table.adr = RS;

RO;
Rl;

MOVTC only

P S
e & e o o

temp = M{R7];
src.len = M{temp];
src.adr = M[temp+2];
R7 = R7+2;

temp = M{R7];
dst.len = M{temp];
dst.adr = M[temp+2];

MOVTCI only

¢ o o 0

Gem pew Sew Gm G Seaw Sem Gob Pun e Sum Gum

R7 = R7+2;

€11l = M[R7)<7:0>; .
R7 = R7+2; .
table.adr = M[R7]; .
R7 = R7+2; .

carry@temp = src.len-dst.len;
N = temp<l5>;
Z = temp eqlu @;

A-56

Examples:

1.

2.

Notes:

1.

Character Code Conversion - Register Form

MOV SRC.DSCR, R ; EBCDIC source

MOV SRC.DSCR+2,R1

MOV DST.DSCR,R2 ; ASCII destination

MOV DST.DSCR+2,R3

MOV #' ,R4 s+ £ill with ASCII spaces
MOV #TABLE,RS ; translation table
MOVTC ; translate and move

BHI TRUNC : source was truncated
BLO FILL ; test for fill

BEQ EQUAL : test for equal length

Character Code Conversion - In-line Form

MOVTCI translate and move

-e

.WORD SRC.DSCR.PTR
JWORD DST.DSCR.PTR

ptr to src descriptor
ptr to dst descriptor

;
;
.WORD ; £i1l1 is space
BHI TRUNC ; test for truncation
BLO FILL ; test for fill
BEQ EQUAL ; test for equal length

The operation of this instruction is unaffected by any overlap
of the source and destination strings. The result is
equivalent to having read the entire source string before

storing characters in the destination.

If the destination string overlaps the translation table in
any way, the results of the instruction will be unpredictable.

If the source string is vacant, the untranslated £ill
character will be propagated through the destination string.

If the destination string is vacant, no characters will be
moved. Condition codes will be updated. MOVTC will update
the general registers.

MOVIC -- When the instruction terminates, R@ is zero only if 2
or C are set.

The condition codes will be set as if this instruction were
preceded by CMP src.len,dst.len.

The effect of the instruction is unpredictable if the entire
256 byte translation table is not in readable memory.

A-57

5.19 MULP / MULPI - Multiply Decimal

Format:

15 9 8 32 [}
MuLp | 276 | 87 I 4 |
MULPI | 876 | 17 | 4 1
| srcl.dscr.ptr |
| src2.dscr.ptr |
| dst.dscr.ptr |

Operation:

dst <~ src2 * srcl

Condition Codes:

N: set if dst<@; cleared otherwise

Z: set if dst=08; cleared otherwise

V: set if dst can not contain all significant digits of the
result; cleared otherwise

C: cleared
Suspendability:
This instruction is potentially suspendable.
Description:
Srcl and src2 are multiplied, and the result is stored in the
destination string. The condition codes reflect the value stored

in the destination string, and whether all significant digits were
stored.

"Register Form - MULP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in

RB-R1, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4-R5:

A-58

R | !
-—= srcl.dscr -—-
Rl | |
R2 | !
-~ src2.dscr ——-
R3 | !
R4 | |
-— dst.dscr ——
R5 | !

When the instruction is completed, the source descriptor registers
are cleared: °

15 0

RO | g !
R1 | g |
R2 | 8 |
R3 | 8 |
R¢ | |

—— dst.dscr -
RS | !

In-line Form - MULPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
RB-R6 are unchanged when the instruction is completed.

Formal Description:
TBS;

Examples:

1. Multiply - Register Form

MOV SRC1.DSCR, RS ; lst source descriptor
MOV SRC1.DSCR+2,R1
MOV SRC2.DSCR,R2 : 2nd source descriptor

MOV SRC2.DSCR+2,R3

A-59

2.

Notes:

1.

MOV
MOV
MULP
BVS
BLT
BEQ
BGT

DST.DSCR, R4
DST.DSCR+2,R5

OVERFLOW
NEGATIVE
EQUAL
GREATER

Multiply - In-line Form

MJILPI
.WORD
.WORD
.WORD
BVS
BLT
BEQ
BGT

SRC1.DSCR.PTR
SRC2.DSCR.PTR
DST.DSCR.PTR
OVERFLOW
NEGATIVE
EQUAL
GREATER

The operation of these L 3
overlap of the source strings provided that each source string

is a valid representation of the specified data type.

-,

w6 “e we o we

"6 Ne We N N W W e

instructions

multiply

check for error
negative destination
zero destination
positive destination

multiply

ptr to srcl descriptor
ptr to src2 descriptor
ptr to dst descriptor
check for error
negative destination
zero destination
positive destination

destination descriptor

is unaffected by any

The results of the instruction are unpredictable if the source
and destination strings overlap.

No numeric string multiply instruction is provided.

A-60

5.20 SCANC / SCANCI -~ Scan Character

Format:
15 987 32 [}
SCANC | 876 ! 24 I 2 |
SCANCI | 276 | 14 | 2 |
| src.dscr.ptr |
| set.dscr.ptr |
Operation:

Search source character string for a member of the character set.

Condition Codes:
The condition codes are based on the final contents of RO.

N: set if RB<15> set; cleared otherwise
Z: set if RO=0; cleared otherwise

V: cleared

C: cleared

Suspendability:
This instruction is potentially suspendable.
Description:

The source character string is searched from most significant to
least significant character until the first occurrence of a
character which is a member of the character set. A character
string descriptor is returned in R@O-R1 which represents the
portion of the source character string beginning with the located
member of the character set. If the source character string
contains only characters which are not in the character set, the
instructions return a vacant character string descriptor with an
address one greater than that of the least significant character

of the source character string. The condition codes reflect the
resulting value in R@.

A-61

Register Form - SCANC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RO-Rl, and the character set descriptor is placed in
R4-RS:

15 0

RO | |
——= src.dscr -

Rl | |
R4 | |
— set.dscr -

RS | |

When the instruction is completed, R@8-Rl contain a character
string descriptor which represents the sub-string of the source
character string beginning with the character which is a member of
the character set:

15 8

RO | |
- sub.src.dscr -—-

R1 | !
R4 | |
——= set.dscr ———

RS | l

In-line Form - SCANCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word address pointer to a two word character set
descriptor. When the instruction is completed, R8-Rl1 contain a
character string descriptor which represents the sub-string of the
source character string beginning with the character which is a
member of the character set. R2-R6 are unchanged:

A-62

RO | |

- sub.src.dscr ——
R1 | |

Formal Description:

src.len = R@; !
src.adr = Rl; !
mask = R4<7:0>; ! .
table.adr = R5; !

SCANC only

temp = M[R7];
src.len = M[temp];
src.adr = M[temp+2];
R7 = R7+2;

{ SCANCI only
! .
!
!
char = M[R7]<7:8>; !
!
!
!
'

R7 = R7+2;

temp = M[R7];

mask = M[temp]<7:8>;
table.adr = M[temp+2]
R7 = R7+2;

found = 0;
while (src.len nequ #) and (found eqlu 8) do
if (M[table.adr+M[src.adr]] and mask) eglu @ then

begin
src.len = src.len-1;
src.adr = src.adr+l
end .

else found = 1;

RO = src.len;
Rl = src.adr;
R4 = B<15:8>@mask; ! SCANC only
RS = table.adr; 1
N = RO<15>;
Z = RO eqlu 6;
VvV =20;
C = 0;
Examples:

l. Find Next Digit - Register Form

MOV STR.DSCR,R#@ ;s string to scan
MOV STR.DSCR+2,R1
MOV #1,R4 mask for char set

MOV $#TAB, RS ; character set table

A-63

2.

Notes:

30

SCANC scan string for digits

’

BNE DIGIT ; digit found

BEQ NODIGIT ; string had no digits
TAB: .BYTE @ : ASCII 000

.BYTE @ ; ASCII 001

.BYTE g ; ASCII 902

.BYTE 1 ; ASCII 960 = '8°

.BYTE 1 ; ASCII @61 = '1°

.BYTE 1 ; ASCII @862 = '2'

.BYTE 1 ; ASCII 863 = '3

.BYTE 1 ; ASCII 864 = '4°

.BYTE 1 ; ASCII 065 = 'S5'

.BYTE 1 ; ASCII 066 = '6'

.BYTE 1 ; ASCII 967 = '7°

.BYTE 1 ;s ASCII 676 = '8°'

.BYTE 1 ; ASCII 871 = '9'

.BYTE 2 ; ASCII 072

.BYTE @ ; ASCII @73

.BYTE 2 ; ASCII 377

Find Next Digit - In-line Form

SCANCI

.WORD SRC.DSCR.PTR
.WORD SET.DSCR.PTR
BNE DIGIT

BEQ NODIGIT

scan

ptr to src descriptor
ptr to char set dscr
digit found

string had no digits

s we we wp we

If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
that no characters in the set were found. The original source
character string descriptor is returned in R@-R1.

The source character string and character set table may
overlap in any way.

A test for success is BNE; a test for failure is BEQ.

A-64

The condition codes will be set as if this instruction were
followed by TST R@.

The effect of the instruction is unpredictable if the entire
256 byte character set table is not in readable memory.

A-65

5.21 SKPC / SKPCI - Skip Character

Format:
15 98 7 32 2
SKPC | g76 | 04 1 |
SKPCI | 876 | 14 I 1 1
] src.dscr.ptr }
|) | char |
Operation:

Search source character string until a character other than the
search character is found.

Condition Codes:
The condition codes are based on the final contents of R@.

N: set if ROKIS> set; cleared otherwise
Z: set if RP=0B; cleared otherwise

V: cleared

C: cleared

Suspendability:
This instruction is potentially suspendable.

Description:

The source character string is searched from most significant to
least significant character until the first occurrence of a
character which is not the search character. A character string
descriptor is returned in R@-Rl which represents the portion of
the source character string beginning which the most significant
character which was not equal to the search character. If the
source character string contains only characters equal to the
search character, the instructions return a vacant character
string descriptor with an address one greater than that of the
least significant character of the source character string. The
condition codes reflect the resulting value in R@.

A-66

Register Form - SKPC

- ———— — —— ——— -

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is

placed in R8-R1l, the search character is placed in R4<7:8>, and
R4<15:8> must be zero:

15 8 7)

R | I
—— src.dscr -

R1 | |
R4 | 8 | char |

When the instruction is completed, R#-Rl1 contain a character
string descriptor which represents the sub-string of the source
character string beginning with the most significant character
which was not equal to the search character:

15 8 7 [’}
RO | |

——— sub.src.dscr ——
R1 | !
R4 | 9 | char |

In-line Form - SKPCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word whose low order half contains the search
character and whose high order half must be 2ero. When the
instruction is completed, RO-R1 contain a character string
descriptor which represents the sub-string of the source character
string beginning with the most significant character which was not
equal to the search character. R2-R6 are unchanged:

A-67

RO | I

——- sub.src.dscr -
Rl | !

Formal Description:

src.len = R8; ! SKPC only
src.adr = Rl; ! .
char = R4<7:0>; ! .
temp = M[R7}; SKPCI only

src.len = M{temp];
src.adr = M[{temp+2];
R7 = R7+2;

char = M[R7]<7:8>;
R7 = R7+2;

ton Gen Sue Gem Gum Suw

found = 1;
while (src.len nequ 8) and (found eqlu 1) do
if M[src.adr] eqlu char then
begin
src.len = src.len-l;
src.adr = src.adr+l
end
else found = 8;

R@ = src.len;
Rl = src.adr;
R4 = 0<15:8>@char; ! SKPC only

RO<15>;
RO eqlu 6;

.
’

N<aZ

Examples:

1. Skip Leading Spaces - Register Form

MOV STR.DSCR,R@ ; string to search
MOV STR.DSCR+2,R1

MOV $#' ,R4 ; space character
SKPC ; skip

BEQ BLANK ; line was blank

A-68

Notes:

1.

Skip Leading Spaces - In-line Form

SKPCI ; skip

.WORD SRC.DSCR.PTR : ptr to src descriptor
-WORD ! ; space character

BEQ BLANK : line was blank

If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
the character string only contained search characters. The
oaiginal source character string descriptor is returned in
Ré-R1.

The condition codes will be set as if this instruction were
followed by TST RE.

A-69

5.22 SPANC / SPANCI -~ Span Character

Format:
15 987 32 2
SPANC | 876 | 24 I 3 1
SPANCI | 976 | 14 13 |
| src.dscr.ptr |
| set.dscr.ptr |
Operation:

Search source character string for a character which is not a a
member of the character set.

Condition Codes:

The condition codes are based on the final contents of R@.

N: set if RB<15> set; cleared otherwise
2: set if RO=0; cleared otherwise

V: cleared

C: cleared

Suspendability:
This instruction is potentially suspendable.
Description:

The source character string is searched from most significant to
least significant character until the first occurrence of
character which is not a member of the character set. A character
string descriptor is returned in R@-R1 which represents the
portion of the source character string beginning with the
character which is not a member of the character set. If the
source character string contains only characters which are in the
character set, the instructions return a vacant character string
descriptor with an address one greater than that of the least
significant character of the source character string. The
condition codes reflect the resulting value in R@.

A-70

Register Form -~ SPANC

Bt APV —

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R@-Rl, and the character set descriptor is placed in
R4-RS5:

15 g

RG | |
— src.dscr ———

R1 | |
R4 | |
- set.dscr ——-

RS | |

When the instruction is completed, R8-R1 contain a character
string descriptor which represents the sub-string of the source
character string beginning with the character which is not a
member of the character set:

15 9

R | |
- . sub.src.dscr -—

Rl | I
R4 | |
—— set.dscr —-—

RS | |

In-line Form -~ SPANCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word address pointer to a two word character set
descriptor. When the instruction is completed, RB-R1 contain a
character string descriptor which represents the sub~string of the
source character string beginning with the character which is a
member of the character set. R2-R6 are unchanged:

A-71

— sub.src.dscr ——

Formal Description:

src.len = RO; !
src.adr = Rl; !
mask = R4<7:0>; ! .
table.adr = RS; !

SPANC only

temp = M[R7];
src.len = M[temp];
src.adr = M[temp+2];
R7 = R7+2;

! SPANCI only
!
!
!
char = M[R7]<7:0>; !
!
!
!
H
!

e o o o @

R7 = R7+2;

temp = M[R7];

mask = M({temp]<7:8>;
table.adr = M[temp+2]
R7 = R7+2;

found = 1;
while (src.len nequ 6) and (found eglu 1) do
if (M[table+M[src.adr]] and mask) nequ @ then

begin

src.len = src.len-1;
src.adr = src.adr+l
end

else found = 0;

R# = src.len;

Rl = src.adr;

R4 = @<15:8>@mask; ! SPANC only
R5 = table.adr; !

N = RO<15>;

Z = RO eqlu 0;

V=20;

C = 0;

4

A-72

Examples:

l. Pass Tabs and Blanks - Register Form

MOV
MoV
MOV
MOV
SPANC
BNE
BEQ

~e me we wo

TAB:.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE

.BYTE

STR.DSCR, RO
STR.DSCR+2,R1
#2,R4

#TAB,RS

FOUND
EMPTY

[~ 8] (SRS

SN

-

we we we we N we

.. ws we e wo we

.. we wo

-e

string to scan

character set mask
character set table
span

printing char found
string contained only
tabs and spaces

The following table can be combined with the one
in the SCANC example.

ASCII 900
ASCII 041
ASCII @82

ASCII 811 = TAB
ASCII 812
ASCII £13

ASCII 040 = SPACE
ASCII 641
ASCII @42

ASCII 377

2. Pass Tabs and Blanks - In-line Form

SPANCI
.WORD
.WORD
BNE
BEQ

SRC.DSCR.PTR
SET.DSCR.PTR
FOUND
EMPTY

e wo e we w4 we

A-73

scan
ptr to src descriptor
ptr to char set dscr
printing char found
string contained only
tabs and spaces

Notes:

If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating

that only characters in the set were found. The original
source character string descriptor is returned in R8-R1l.

The source character string and character set table may
overlap in any way.

The condition codes will be set as if this instruction were
followed by TST R@.

The effect of the instruction is unpredictable if the entire
256 byte character set table is not in readable memory.

A-74

5.23 SUBN / SUBP / SUBNI / SUBPI - Subtract Decimal
Format:

15 9 8 32 ¢

SUBN | 876 | 25 P 1 |

susp | 876 | a7 b1 |

SUBNI | B76 | 15 1

] srcl.dscr.ptr |

| src2.dscr.ptr]

] dst.dscr.ptr |

SUBPI | 876 | 17 b1 |

| srcl.dscr.ptr i

I "~ src2.dscr.ptr [

| dst.dscr.ptr]

Operation:
dst <- src2 - srcl

Condition Codes:
N: set if dst<#; cleared otherwise
Z: set if dst=0; cleared otherwise

V: set if dst can not contain all significant digits of the

result; cleared otherwise
C: cleared

Suspendability:

This instruction is potentially suspendable.

A-75

Description:

Srcl is subtracted from src2, and the result is stored in the
destination string. The condition codes reflect the value stored
in the destination string, and whether all significant digits were
stored.

Register Form - SUBN and SUBP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R8-R1l, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4-RS5:

15 8
RO | |
—— srcl.dscr -
Rl | I
R2 | |
-—- src2.dscr ——-
R3 | |
R4 | |
-=- dst.dscr -—
RS | “

When the instruction is completed, the source descriptor registers

are cleared:
¥

15 9

RO | 2 |

R1 | 2 |

R2 |) |

R3 | 2 |

i R4 | ’ |
- dst.dscr -—

R5 | |

A-76

In-line Form - SUBNI and SUBPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.

R@-R6 are unchanged when the instruction is completed.

Formal Description:
TBS;

Examples:

1. Three address subtract - Register Form

MOV SRC1.DSCR, RO ; subtrahend descriptor
MOV SRC1.DSCR+2,R1

MOV SRC2.DSCR,R2 ; minuend descriptor
MOV SRC2.DSCR+2,R3

MOV DST.DSCR, R4 ; difference descriptor
MOV DST.DSCR+2,R5

SUBN / SUBP ; subtract

BVS OVERFLOW ; check for error

BLT NEGATIVE : negative destination
BEQ EQUAL ; zero destination

BGT GREATER ; positive destination

2. Three address subtract - In-line Form

SUBNI /
.WORD
.WORD
.WORD
BVS
BLT
BEQ

- BGT

3. Two address

SUBPI ; subtract
SRC1.DSCR.PTR : ptr to sub descriptor
SRC2.DSCR.PTR ; ptr to min descriptor
DST.DSCR.PTR ; ptr to dif descriptor
OVERFLOW s check for error
NEGATIVE ; negative destination
EQUAL ; zero destination
GREATER ; positive destination

subtract - Register Form

MOV SRC.DSCR, RO ; subtrahend descriptor

MOV SRC.DSCR+2,R1

MOV DST.DSCR,R2 ; minuend descriptor

MOV DST.DSCR+2,R3

MOV R2,R4 ; difference descriptor :
MOV R3,R5 ~
SUBN / SUBP ; subtract

BVS OVERFLOW ; check for error

BLT NEGATIVE ; negative destination

BEQ EQUAL : zero destination

BGT GREATER ; positive destination

A-T7

4.

Notes:

Two address subtract - In-Line Form

SUBNI / SUBPI

WORD
.WORD
.WORD
BVS
BLT
BEQ
BGT

The operation of these
overlap of the source strings provided that each source string

SRC.DSCR.PTR
DST.DSCR.PTR
DST.DSCR.PTR
OVERFLOW
NEGATIVE
EQUAL
GREATER

ws e Ne G “e N5 Se N

instructions

subtract

ptr to sub descriptor
ptr to min descriptor
ptr to dif descriptor
check for error
negative destination
zero destination
positive destination

is a valid representation of the specified dat type.

Source strings may overlap the destination string only if all
corresponding digits of the strings are in coincident bytes in

memory .

A-78

is unaffected by any

740
741
742
743
744
745
746
747
750
751
752
753
754
755
756
757
760
761
762
763
764
765
766
767
770
771
772
773
774
775
776

APPENDIX B
CIS MPC FUNCTIONS

R12__R12

ROL-ROL

RIL_RIL

R2L_R2L

R3L_R3L

R4L__R4L

R5L_R5L

R6L__R6L, ENAB STOV

R7L_R7L

BA,R6_R6-2, ENAB STOV

BA, R6—R6+2, ENAB STOV

R14__R14

R10-R10

R6-R6, ENAB STOV

R7R7

RI12L_RI12L

RI3L-RI3L

RI4L__RI14L

RIOL-RI10L

PSW_PSW

BA__R6, DATI (D), B._UDATA

BA_R13, DATI (D), EXTERNAL__UDATA
BA__R14, DATI (D), EXTERNAL__UDATA
BA__R10, DATI (D), EXTERNAL__UDATA
BA__R10, DATI (D), B._.UDATA

- BA._R10, DATI (I), B._.UDATA

BA__R6

BA_R10

DATO(D), UDATA_B

DATOB(D), UDATA_EXTERNAL
BA__RIOL

Abbreviation

ADR
ALU
AREG
B
BR
BREG
-~ C

C/B
CC
CIS
CISP
CISPW
CISS
CNTL
CPC
DESCR
DST
DT
FNCT
FPLA
G
GPR
IBUF
INST
IR
L2dr
L3dr
LS

m
MPC
N
OVR
P
PSW
SRC
v

Z

APPENDIX C
CIS ABBREVIATIONS

Definition

Address

Arithmetic logic unit

“A” register (of BCD path)
Borrow

Bus request

“B” register (of BCD path)
Carry (condition code)
Carry/borrow bit
Condition code
Commercial instruction set
CIS processor

CIS scratch pad write

CIS status

Control

CIS program counter
Descriptor

Destination

Data type

Function

Field programmable logic array
Carry generate

General purpose register
Input buffer

Instruction

Instruction register

Load 2 descriptor

Load 3 descriptor

Local store

Default value
Microprogram counter
Negative (condition code)
Overflow

Carry propagate

Processor status word
Source

Overflow (condition code)
Zero (condition code)

Microword

ALUDST
ALUFTN
ALUSRC
APORT

BCDMX]1
BCDMX3
BCDOP
BMUX
BPORT

CISSPW
CON2
CON3
CON4
CONBRI1
CONBR2
CONST

ENCB
ENCIS
ENIB
ENOB
ENSNIN
ENSNOU

INEN
LBYTE
MPC
SALUI
SHFTC

SHFTIN
SWAP

APPENDIX D
CISP MNEMONICS

Definition

ALU destination field (61:59)
ALU function field (58:56)

ALU source field (55:53)

“A” address field of 2901 A RAM

BCD multiplexer 1 field (29:28)
BCD multiplexer 3 field (31:30)
BCD operation field (33:32)

B multiplexer field (35:34)

“B” address field of 2901A RAM

CIS scratch pad write field (71:70)
Control 2 field (27:25)

Control 3 field (24:21)

Control 4 field (20:16)
Conditional branch 1 field (5:2)
Conditional branch 2 field (9:6)
Constant field (40:38)

Enable carry/borrow bit (0)
Enable CIS bit (1)

Disable input buffer bit (48)
Enable output buffer bit (47)
Enable sign input bit (37)
Enable sign output bit (36)

Input enable bit (51)

Low byte enable bit (46)
Microprogfam counter field (15:1 0)
Select ALU input bit (52)

Shift control field (63:62)

Shifted in bit (64)
Swap bytes in a word or in a data string (50:49)

D-1

KE44-A CISP \ Reader's Comments
TECHNICAL MANUAL
EK-KE44A-TM-001

Your comments and suggestions will help us in our continuous effort to improve the quality and useful-
ness of our publications.

What is your general reaction to this manual? In your judgement is it complete, accurate, well organized,
well written, etc? Is it easy to use? . i ' :

What features-are most useful?.._

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?.

Does it satisfy your needs? Why?

O Please send me the current copy of the Technical Documentation Catalog. which contains information
on the remainder of DIGITAL's technical documentation.

Name Street

Title City

Company State/Country
Department Zip

Additional copies of this document are avallable from
Digital Equipment Corporation l
Accessories and Supplies Group
Cotton Road
Nashua, NH 03060

Attention Documentation Products
Telephone 1-800-258-1710

Order No. _ EK-KE44A-TM

. Do Not Tear — Fold Here and Staple

— w— —— ——— — w— ——mu san s s SRRE mmgm eeemn eGea Sy e Rew swdrw amancm ememew

Engnan I " " l No Postage

. Necessary
it Mailed in the
{ United States

o<y

BUSINESS REPLY. MAIL -
FIRST CLASS - | PERMITNO 33 MAYNARD, MA,
. POSTAGE.WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

"Educational Services’ Development and Publishing
1925 Andover Street

Tewksbury, Massachusetts 01876

¥ .

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	7-05
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	A-71
	A-72
	A-73
	A-74
	A-75
	A-76
	A-77
	A-78
	B-01
	C-01
	D-01
	replyA
	replyB

