
EK-KE44A-UG-002

KE44-ACISP
User's Guide

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright ~ 1981 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000 computerized
typesetting system.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DECUS
UNIBUS

DECsystem-IO
DECSYSTEM-20
DIBOL
EDUSYSTEM
VAX
VMS

MASS BUS
OMNIBUS
OSj8
RSTS
RSX
lAS

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3

CHAPTER 2

2.1
2.2

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.1.3
3.4.2
3.5
3.5.1
3.5.2
3.5.3
3.5.4

CONTENTS

INTRODUCTION

PURPOSE AND SCOPE ... :................................ 1-1
GENERAL DESCRIPTION .. 1-1

Commercial Instruction Set (CIS) ... 1-1
The Microcode .. 1-1
Hardware Description ... ~................ 1-1
Suspension (Interrupts) .. 1-2

RELATED HARDWARE MANUALS ... 1-2

INSTALLATION AND CHECKOUT

INSTALLATION .. 2-1
CHECKOUT.. 2-1

BLOCK DIAGRAM DESCRIPTION

IR DECODE, CPC, AND MPC ADDRESSING .. 3-3
IR Register and IR Decode ROM.. 3-3
Control Store Module (M7091) .. 3-3
Field Programmable Logic Array (FPLA) for CPC Branch Control............. 3-3
CIS Program Counter (CPC) Latch... 3-4
M PC Decode .. 3-4

BINARY DATA PATH... 3-4
Input Multiplexer and Swap Byte Logic .. 3-4
ALU Input Multiplexer .. 3-4
2901ABitSlice ... 3-4
Output Multiplexer and Maintenance Register ... 3-4
Constants ROM and Constants Multiplexer Latch .. 3-5

BCD DECIMAL DATA PATH .. 3-5
BCD ""A" and '''B'' Registers .. 3-5
BCD Shift Nibble Register and Shift Multiplexer... 3-5
BCD ALU and Multiplier ROM .. 3-5
BCD Output Multiplexer ... 3-5
Input/Output Sign Translators and Sign-Select Multiplexer 3-5

STATUS INFORMATION .. 3-6
CIS Status Latch 3-6

Address Odd Bits.. 3-6
Sign Bits 3-6
Non-Zero Bits 3-7

Carry/Borrow Multiplexer and Latch ~.. 3-7
CONDITION CODE GE~ERATION... 3-7

Categorize RO:\1 3-7
String Character Condition Decode Logic.. 3-7
Decimal Character Condition Decode Logic........... 3-7
N.Z,V,CLatch .. 3-8

iii

Figure ~o.

2-\
2-2
3-\

FIGURES

Title Page

Module Placement in Processor Backplane .. 2-2
KE44-A Data Path/Logic Module, M7092.. 2-2
KE44-A Block Diagram.. 3-2

IV

1.1 PURPOSE AND SCOPE

CHAPTER 1
INTRODUCTION

This manual provides the data necessary for the installation and operation of the KE44-A Commercial
Instruction Set Processor (CISP) option to the KDII-Z Central Processing Unit (CPU). The KE44-A
option, which significantly extends the capability of the PDP-II /44 computer in the area of com­
mercial data processing, is installed in the PDP-II /44 cabinet.

1.2 GENERAL DESCRIPTION

1.2.1 Commercial Instruction Set (CIS)
The commercial instruction set (CIS) is a series of instructions for manipulating byte stnngs to provide
improved COBOL performance, text editing and word processing capability. The instruction set includ­
es instructions for character handling and decimal string operations. Each of these instructions has two
forms: register and in-line.

In the register form, descriptors are loaded into the general registers before the instruction is per­
formed. With the in-line form, descriptors are accessed by descriptor address pointers. The CIS also
includes "load-two" and ""load-three" descriptor instructions that augment the register form. The op
code for all CIS instruction is 076nnn.

1.2.2 The Microcode
The CIS instructions are implemented in microcode. The KE44-A microstore comprises 1,000 88-bit
words. When a valid op code is received, the starting microstore address is entered and the instruction is
performed; all of the microwords necessary to perform the op code specified operation are sequenced
through. Each 88-bit microword is subdivided into 32 fields. The CPC field < 87:76) of each microword
is coded with the address of the next microword.

1.2.3 Hardware Description
The main hardware elements of the KE44-A are:

1. a Control Store board, and
2. a Data Path board.

The Control Store is a quad height M709I board that contains the microcode in ROM form. The oper­
ational logic is on a hex-height M7092 board that contains four basic sections:

1. I nstruction Register (I R) Decode, C IS Program Counter (CPC) and Microprocessor Counter
(MPC) Addressing logic

2. Binar) data path logic

1-1

3. Decimal data path logic

4. Status information and condition code generation logic

Chapter 3 is a block diagram description of these sections.

1.2.4 Suspension (Interrupts)
Since CIS instruction times may be long (due to large operands), a method is provided for giving sys­
tem devices interrupt access to the processor. Thus, during CIS instructions a test is made at specific
points in the microcode for Bus Request (BR) interrupts. If an interrupt is detected, the CIS instruction
is automatically interrupted, i.e., "suspended", on a BR priority basis. During suspension, the CIS in­
struction is stopped and control is returned to the KD 11-Z. The interrupt routine will then run, and one
or more new C IS instructions can be executed during the period of suspension. At the end of this inter­
rupt routine. control is returned to the KE44-A for completion of the suspended instruction. The entry
point (microword address) for the suspended instruction is the same as the initial entry point. The con­
trol store contains a service interrupt save-state routine and a restore-from-service-interrupt routine.

1.3 RELATED HARDWARE MANUALS
The following hardware manuals are related to the KE44-A and may be purchased from Digital Equip­
ment Corporation.

Title

PDP-l1/44 CP Subsystem
Technical Manual

PDP-l 1/44 System User's
Guide

FPII-F Float\ng-Point
Technical Manual

Document
Number

EK-KDIIZ-TM

EK-II044-UG

EK-FPll F-TM

All purchase orders for hardware manuals should be forwarded to:

Digital Equipment Corporation
Accessory and Supplies Group (P086)
Cotton Road
Nashua, NH 03060

Availability

Hardcopy and
Microfiche

Hardcopy

Hardcopy and
Microfiche

Purchase orders must show shipping and billing addresses and state whether a partial shipment will be
accepted.

All correspondence and invoicing inquiries should be directed to the above address.

For information concerning microfiche libraries, contact:

Digital Equipment Corporation
Micropublishing Group BU /D2
12 Crosby Drive
Bedford, MA 01730

1-2

2.1 INSTALLATION

CHAPTER 2
INSTALLATION AND CHECKOUT

The two KE44-A modules plug into a dedicated 14-slot processor backplane. The M709l- control store
module plugs into Sections C-F of slot 1; the M7092 data path module plugs into slot 2 (Figure 2-1).
The M7091 module has no jumpers or switches for use in the field. The M7092 module, however, has
one toggle switch (S 1) whose lever is set toward the left (i.e., toward the center of the module) for
normal operation (Figure 2-2).

NOTE
The lever of switch S 1 is set to the right during man­
ufacturing test only.

2.2 CHECKOUT
After installation, the KE44-A is checked out by running diagnostic CZKEEA (PDP-II CIS Instruc­
tion Exerciser), which tests all CIS instructions in both register and in-line modes. Each instruction is
tested under the following conditio~s:

1. Using all combinations of operand data types

2. In each of three processor modes (user, supervisor and kernel)

3. With memory management enabled and disabled

4. With D-space enabled and disabled

5. In an interrupt environment

6. For many cases of string length, string address, and string data.

2-1

SLOTS

2

3

4

5

6

7

8

9

10

11

12

13

14

ROWS

A B C D E F

M7090 (KD11·Z 'CIM) I M7091 (KE44-A)

M7092 (KE44-A)

M7093 (FP11-F)

M7094 (KD11-Z/DATA PATH)

M7095 (KD11-Z/CONTROL)

M7096 (KD11-Z/MFM)

M7097 (CACHE)

M7098 (KD11-Z/UBI)

M8722 (MSll-M)

M8722 (MS11-M)

M8722 (MS11-M)

M8722 (MS11-M)

SPC

M9302, M9202, BC11-A I SPC

NOTES

1. A G 727, G7270 CARD IS REGUI RED IN ROW D OF ANY UNUSED SPC SLOT TO
PROVIDE BUS GRANT CONTINUITY

2. A G7273 CARD IS REGUI RED IN ROW C AND D OF ANY UNUSED SPC SLOT TO
PROVIDE BUS GRANT CONTINUITY.

3. MODULES ARE INSERTED WITH COMPONENT SIDE TOWARD RIGHT SIDE OF
BACKPLANE.

Figure 2-1 Module Placement in Processor Backplane

SWITCH HANDLE
MUST BE TO THE
LEFT FOR NORMAL
OPERATION

M7092

Figure 2-2 KE44-A Data Path/Logic Module, M7092

2-2

FRONT

TK·43S0

TK·4254

CHAPTER 3
BLOCK DIAGRAM DESCRIPTION

The KE44-A Commercial Instruction Set (CIS) comprises two modules. The M7091 is a quad module
that contains the control store (microcode). The M7092 is a hex module that contains the operational
logic. Refer to Figure 3-1.

Figure 3-1 is a block diagram of the KE44-A CIS, which has two basic operational modes: slave and
master. The KE44-A is in a slave mode (idle state) until a valid CIS instruction is received. In this
state, a given set of operations defined by the contents of the microword at control store address loca­
tion 0000 is continually repeated. The mode of operation automatically transfers from slave to master
when an op code in one of the following ranges is received:

076020 - 076077,
076120 - 076157, or
076170-076177

NOTE
In this manual, values shown in angle brackets (e.g.,
(87:76) indicate which bits of the control store word
are being referenced.

When switched to master mode, the CIS takes control of the PDP-II /44 processor and begins to exe­
cute the CIS microcode.

The KE44-A outputs and inputs data to the KDII-Z via interconnecting AMUX lines. All memory
references, whether input or output, are requested by the KE44-A, but are actually executed by the
KDll-Z. The KE44-A controls the KDII-Z by setting appropriate bits in the control store, which then
drive the KDII-Z microprocessor counter (MPC) lines. Data put on the AMUX lines by the KDII-Z is
received by the CIS through its buffers, and distributed throughout the CIS by its internal MBLJS.

When the operations specified by the CIS instruction are complete, the KE44-A returns to control store
address 0000, (idle state), and control is returned to the KDII-Z.

As mentioned in the Introduction, there are four major functional areas within the KE44-A.

1. Instruction Register (lR) Decode, CIS Program Counter (CPC). and Microprocessor
Counter (MPC) Addressing Logic.

2. Binary data path logic

3. Decimal data path logic

4. Status information and condition code generation logic

These functional areas are discussed in the [o1lowing paragraphs.

3-1

VJ
I
tv

IR DECODE,
STATUS INFORMATION AND CON· BINARY DATA CPC, AND MPC
DITION CODE GENERATION PATH ADDRESSING LOGIC BCD DATA PATH ,----------,-----'-------,-----------------,
I
I
I
f

BCD

"60"

BCD MUX
S3 SO

. 31 78.-'

J

I
I
J

I
I I

I L--T -----------'
I

r---~~_r~~LOADIR(1) I
I
I
I <47 ">

<0800> I - _____________ J

Figure 3-1 KE44-A Block Diagram

3.1 IR DECODE, CPC, AND MPC ADDRESSING
During the execution of non-CIS instructions, the KE44-A remains in its idle state, merely reading data
from the AMUX lines. The AMUX lines are connected to the KE44-A via a set of line receivers that
are inhibited when the IBUF H signal is zero (a one in ENI B \ 48»). *

When the line receivers are enabled, the AMUX data is read to the 44076" decode logic and the CIS
instruction register. The instruction register is loaded by the KD11-Z signal LOAD IR L.

3.1.1 IR Register and IR Decode ROM
A CIS instruction is detected if a 0760xx or a 0761 xx is present on the AMUX lines. The seven LSDs
of the AMUX signal are inputs to the IR. IR output is applied to the starting CPC ROM, which out­
puts the starting CPC address. The starting CPC field < 87:76) is the same for some instructions, e.g.,
the load word pair L2Dr and L3Dr, both of which result in a starting epc of 16] 8.

3.1.2 Control Store Module (M7091)
The starting CPC addresses the control store on the M7091, which outputs an 88-bit control word. At
the beginning of the next clock cycle, this word is latched on the M7091 board and then used to direct
and manipulate data on the M7092 data path board.

3.1.3 Field Programmable Logic Array (FPLA) for CPC Branch Control
A "'next" cpe address can be modified if certain specific conditions are present. For example, if an
overflow occurs, the CIS executes a set of microinstructions that differ from the normal set. The CIS
address lines that can be modified to effect this change are epe 02, CPC 01 and CPC 00.

Two enabling fields are provided to allow cpe address modification, i.e., branching. The eONBR 1 **
field < 5:2), if set, enables the FPLA **, thereby permitting CPC address modification to occur if specif­
ic conditions are set. The eONBR2 field <9:6), if set, enables a set of NAND gates that can also cause
epc addressing if another set of specific conditions exists.

One or more of the following conditions must exist if branching by the FPLA is to occur:

CIS IR 06 H
CIS IR 00 H
CIS IR 01 H
CIS NONZEROA H
CIS NONZEROB H
CIS NONZEROC H
CIS SRCI ADR ODD H
CIS IR 04 H
CIS IR 05 H
CIS SIGN 1 H
CIS DST ADR ODD H
CIS SIGN 2 H

One or more of the following conditions must exist if branching by the NAND gates is to occur:

CIS PAGE FAULT H
CIS SUB OPH
CIS CCZ H
CIS CCC H
CIS SHFT OUT H
CIS CNN H
CIS C/B H
PFAIl BR PEND H

*Scc Appendix C for definition.

** See Appendix A for defInition.
3-3

3.1.4 CIS Program Counter (CPC) Latch
The epe latch is used for temporary storage of the epe address. A return cpe address is usually
stored in the CPC latch if a subroutine is called within the microcode.

The "'next"' epe address is latched during a subroutine call by setting LOAD CPC (42). The latched
address is used as a return address (at the end of the subroutine) by asserting eIS SEL CPC L (27:25).

3.1.5 MPC Decode
The MPC lines of the e IS are the same as the MPe lines of the KD ll-Z processor. These lines are
asserted by the e IS during a CIS instruction.

An M PC of 7408 is asserted as soon as a 0760xx or 0761 xx op code has been decoded. This prevents the
KDII-Z processor from trapping to 10, since the processor itself does not recognize CIS instructions.
The next MPC values are obtained from the microword MPC field (bits (15: 10) "ORed" with 7408).
Therefore, during e IS operation. the MPC field reads 7408 plus the value of MPC (15: 1 0).

3.2 BINARY DATA PATH

3.2.1 Input Multiplexer and Swap Byte Logic
The binary data path operates on 16-bit data. The binary data path 2901 A bit slice operates on the data
selected from the MBUS or the constant ROM. MBUS data is received from the AMUX lines, read to
the input multiplexer. and then passed straight through or swapped to the MBUS. The swap is con­
trolled by bits (50:49) of the control store.

3.2.2 ALU Input Multiplexer
The ALU input multiplexer selects either the MBUS data or constants data. The ALU input multi­
plexer output is placed on the direct data input lines of the 2901 A bit slice and stored in one of its 17
registers. MBUS data or constants data is selected by SALUI (52) of the control store.

3.2.3 2901/\ Bit Slice
The ALU, 'under the control of fields APORT (75:72), BPORT (68:65), ALUDST (61:59),
ALUFTN (58:56). and ALUSRC (55:53), can perform three arithmetic and five logical operations.*
The 2901 A can also pass data between registers, and perform 16- or 32-bit left/right shifts. These shifts
are accomplished by the 2901 A and some additional circuitry. The results of these operations, if en­
abled, can output data to the input multiplexer and then to the MBUS.

3.2.4 Output Multiplexer and Maintenance Register
If data is needed by the KDII-Z, the MBUS data can be placed on the AMUX lines by setting ENAB
OBUF (47). TRI-STATE AMUX L is also asserted by ENAB OBUF (47) and tri-states the KDII-Z
lines, enabling CIS AMUX data to the KDII-Z.

The KD 11-Z maintenance registers are used to view internal data. Three of these registers are used by
CIS. They are:

ElM 1
ElM 2
ElM 4

CIS CPC address
CIS MBUS data
MPC address

Maintenance register I is enabled by having FREE BUS H and FORCE CPC L asserted from the
M7096 module of the KD Il-Z. These signals enable the output multiplexer and select the MBUS data
for output.

:ts~~ Arr~ndix C fur rnlll:mnllic mcanlllg".

3-4

Maintenance register 2 is enabled by having FREE BuS H and FORCE CIS DATA L as~erted. Thc~c
signals enable the output multiplexer and select the MBUS data for output.

Maintenance register 4 is enabled on the KD ll-Z. It monitors the next MPC data and should be be­
tween 740l') and 7768 during a CIS instruction.

3.2.5 Constants ROl\1 and Constants Multiplexer Latch
The binary data path contains a constants ROM. Constant selection is controlled by the CONST SEL
field <40:38). The selected constant is fed to the constants multiplexer latch that outputs to the direct­
data-in multiplexer of the 2901 A.

3.3 BCD DECIMAL DATA PATH
The decimal data path operates on nibble data from the MBUS. Since a nibble is four bits (half a byte),
there are two nibbles per byte. One nibble can easily represent the required range of binary coded deci­
mal (BCD) numbers from zero to nine. The decimal operation is controlled by decode of a CIS instruc­
tion and the contents of the associated microword.

3.3.1 BCD "A" and "B" Registers
Two operands are needed in performing BCD nibble arithmetic. The two operands are transferred from
the MBUS to the ""A" register (BCD AREG) and the ""B" register (BCD BREG), and then applied to
the BCD AL U for calculation. The BCD AREG is loaded by asserting bit (44) and the BCD BREG by
asserting bit < 43) of the control store. The AREG data is applied directly to the BCD AL U, while the
BREG data can be shifted before application to the BLD ALU.

3.3.2 BCD Shift Nibble Register and Shift Multiplexer
BREG data can be multiplied (left shift) or divided (right shift) by 10, or sent straight through to the
BCD ALU.

The shift nibble register can be loaded with data during either a left or right shift. Ordinarily, this
register is used to hold the sign data of an arithmetic string. These operations are controlled by the
signals BMUX (35:34).

3.3.3 BCD ALU and Multiplier ROM
The BCD ALU is divided into two identical ROMs: high-nibble and low-nibble. BCD arithmetic is of a
table look-up type~ and the arithmetic operations performed by the ROMs are add, subtract, and multi­
ply. Arithmetic operations are controlled by signals DEC 01 and DEC 00 that are derived from the IR,
OP 01 (33), and OP 00 (32). The BCD arithmetic uses the AREG, BREG and control signals DEC 01
and DEC 00 as addresses to the BCD ALU ROM. The ROM output comprises 1) a result, 2) a carry,
and 3) a status bit indicating whether or not the result is zero. The outputs of the arithmetic ROMs
connect to the BCD MUX.

The largest result of a multiplication can be 9 * 9 = 81 which generates an answer of 1 and a carry of
8. All multiplication carries are generated by a separate multiply ROM.

3.3.4 BCD Output Multiplexer
The BCD MCX uses signals BCD MUX S3 through BCD MUX SO, (31:28). to select as an input
either the BCD ALl) ROM data, BREG data, a constant of 60, or a zero.

The BCD ~1LX output data is applied to the Input Multiplexer, whose output data goes on the MBLJS.

3.3.5 Input/Output Sign Translators and Sign-Select l\'1ultiplexer
A second major operation performed in the decimal data path is sign translation. The input sign trans­
lator uses the sign of a packed or numeric format byte and. if ncccssar). changes it to the preferred sign
format and e\.tracts a BCD digit. (Sec Appendix A for sign values and location in the packed or numer­
ic format.)

3-5

The output sign translator takes the sign bit of the result. outputs the preferred sign for the type of
instruction involved and, if necessary, encodes a BCD digit with the sign.

Sign translation is enabled by asserting bit (37), whereas the input and output sign translators are en­
abled by deasserting bit (36).

3.4 ST A TUS INFORMATION
The CIS status word contains the condition codes (N, Z, V, and C) and the status bits for operations
being performed by the KE44-A. The status bits are used to branch the CPC address to a diff,erent code
sequence.

The status word, except for the condition code bits, is not available to the programmer by register ac­
cess.

3.4.1 CIS Status Latch
The contents of the C IS status word are as follows:

Bit Function

0- Carry (C)
1 - Overflow (V)
2 - Zero (Z)
3 - Negative (N)
4 - Carry/Borrow (C/B)
5 - NONZERO C
6- NONZERO B
7 - NONZERO A
8-SIGN2
9-SIGN 1

10 - DST ADR ODD
11 - SRC 2 ADR ODD
12 - S~C 1 ADR ODD
13 through 15 - No data, always zero.

3.4.1.1 Address Odd Bits - The three Haddress odd" bits indicate if either the source address (SRC 1
or SRC 2) and/or the destination address (DST ADR) are/is odd. These signals are enabled by the
control store (24:22) and are latched to save the condition indicated.

The Haddress odd" bits can be tested at a later part of the microcode, and a CPC branch taken if these
bits are set.

3.4.1.2 Sign Bits - Sign 1 and Sign 2 are the bits that indicate if the source address (SRC 1 or SRC2)
is negative. Both bits monitor the MBUS data via a multiplexer that selects certain bits depending on
the data type of the CIS instruction being executed. Two signals (DA T TYPE 00 and DA T TYPE 01)
are used to select data types. The following table shows the correspondence between data type, sign
bits, and data select coding.

3-6

Data Type Sign Bit DATTYPEOI DATTVPEOO

Character String MBUS 15 or 0 0
MBUS 07

Long Integer MBUS 15 0

Arithmetic Zoned MBUS 06 0

Arithmetic Packed MBUS 00

These bits, enabled by control store bits (20: 16), are latched to save the condition indicated by their
respective states.

3.4.1.3 Non-Zero Bits - NONZERO A, NONZERO B and NONZERO C are individually latched
to indicate the non-zero status of the BCD ALU. Each bit monitors either the high-nibble or low-nibble
zero-status bit of the BCD AL U. These bits, each of which indicates a zero condition, are inverted to
yield the NONZERO status bit. Each of the three latches holds one of the three zero conditions and is
independently enabled by one of the control store bits (20: 16).

3.4.2 Carry /Borrow Multiplexer and Latch
The Carry/Borrow (C/B) status bit indicates a Carry/Borrow in either the high-nibble or low-nibble of
the BCD ALU. A multiplexer selects either the high- or low-nibble carry bit of the BCD ALU for
storage in the C/B latch. The C/B latch is enabled by control store bit (0) and can also be forced by
asserting FORCE C/B via control store bits (20: 16).

3.5 CONDITION CODE GENERATION

3.5.1 Categorize ROM
The categorizing ROM that groups together instructions having similar condition codes, uses the seven
least significant digits of the IR for its inputs. ROM outputs are used by the decimal CC decode ROM,
the sign select multiplexer, and in the selection of either arithmetic or character condition codes.

3.5.2 String Character Condition Decode Logic
As indicated above, the character condition codes are selected by the categorize ROM. The settings of
these codes are determined by the status signals from the 2901 A bit slices. Low byte status is selected if
the control store signal LOW BYTE H (46) is asserted. The condition codes and their associated
2901 A signals are shown below.

High Byte
Low-Byte

CCN

MBUS 15
MBUS 07

CCZ

ALU 8-15 = 0
ALU 0-7 = 0

3.5.3 Decimal Character Condition Decode Logic

CCC

ALUCOUT
ALU COUT 7

CCy*

See
below

Four outputs of the categorize ROM are used to partially address the decimal condition ROM. The
status bits, NONZERO, SIGN and C/B are the remaining address bits. The addressed location, there­
fore, is based on the I R decode and the status bits of a decimal operation.

The decimal condition code ROM outputs the N, Z, Y, C bits and a sign bit.

*CCY = (CCN (XOR) SIG~ 2) . (SIG~ I (XOR) SIG~ 2)

3-7

3.5.4 N, Z, V, C Latch
The condition code bits are applied to the decode multiplexer which selects either character or decimal
condition codes. The multiplexer output is applied to the N, Z, V, C latch that holds the condition code
bits before their output to the MBUS. The data from the MBUS becomes an output to the AMUX and
eventually to the PSW.

The :\l, Z, V, C latch is loaded by asserting bit (45).

3-8

NOTE
These Appendices have been duplicated directly
from DECSTD 168-PDP-l1 Extended Instructions.
Paragraphs 5.13 through 5.15 have been removed
as they do not pertain to the KE44.

APPENDIX A
EXTENDED-INSTRUCTION DATA TYPES

3.1 CHARACTER DATA TYPES

There are three di fferent character data types. The' character~ is a
single byte, and is an abbreviated string of length one. The
'character string' is a contiguous group of bytes in memory. The
third is a 'character set'.

3.1.1 Character

The character is an 8 bit byte:

7

A char

The character is used as an operand by CISll instructions. When it
appears in a general register, the character is in the low order half;
the high order half of the register must be zero. When it appears in
the instruction-stream, the character is in the low order half of a
word; the high order half of the word must be zero. If the high order
half of a word which contains a character is non-zero, the effect of
the instruction which uses it will be unpredictable.

3.1.2 Character String

A character string is a contiguous sequence of bytes in memory that
begins and ends on a byte boundary. It is addressed by its most
significant character (lowest address). The highest address is the
least significant character. It is specified by a two word descriptor
with the attributes of length and lowest address. The length is an
unsigned binary integer which represents the number of characters in
the string and may range from 0 to 55,535. A character string with
zero length is said to be vacant; its address is ignored. A character
string with non-zero length is said to be occupied.

The character string descriptor is used as an operand by CISll
instructions. It appears in two consecutive general registers, or in
two consecutive words in memory pointed to by a word in the
instruction stream. The following figure shows the descriptor for a
character string of length 'n' starting at address 'A' in memory:

15

Rx ptr n

or -----------------------------------
Rx+l ptr+2 A

A-I

The following figure shows the character string in memory:

7

Almost sig chari

A+l

A+n-l Ileast sig chrl

3.1.3 Character Set

A 'character set' is a subset of the 256 possible characters that can
be encoded in a byte. It is specified by a descriptor which consists
of the address of a 256 byte table and an 8 bit mask. The address is
of the zeroeth byte in the table. Each byte in the table specifies up
to eight orthogonal character subsets of which the corresponding
character is a member. The mask selects which combinations of these
orthogonal subsets comprise the entire character set. In effect, each
bit in the mask corresponds to one of eight orthogonal subsets that
may be encoded by the tabl e. The mask spec ~ f i es the un ion 0 f the
selected subsets into the character set. Typical sets would be:
upper case, lower case, non-zero digits, end of line, etc.

Operationally, a character (char) is considered to be in the character
set if the evaluation of (M[table.adr+char] AND mask) is not equal to
zer~. The character is not in the character set if the evaluation is
zero. Each byte in the table indicates which combination of up to
eight orthogonal character subsets (i.e. one for each of the eight
bit vectors ~0000001(2), 00000010(2), 00000100(2), 00001000(2),
000HHHJ0 (2), 00100000 (2), 01000000 (2) and 1000~~00 (2» the
corresponding character is a member. The mask specifies which union
of the eight orthogonal character subsets comprise the total character
set. For example, if the eight bit vector 00000001 (2) appearing if'.
the table corresponds to the character subset of all upper case
alphabetic characters, ~0~~~010(2) appearing in the table corresponds
to -the character subset of all lower case alphabetic characters, and
00000100(2) appearing in the table corresponds to the decimal digits,
then using the mask 00000011(2) with this table specifies the
character set of all alphabetic characters, and using the mask
00000111(2) specifies the character set of all alphanumeric
characters.

A-2

The character set descriptor is used as an operand by CISll
instructions. It appears in two consecutive general registers, or in
two consecutive words in memory pointed to by a word in the
instruction stream. If the high order hal f of the first descr i pta r
word is non-zero, the effect of an instruction which uses a character
set will be unpredictable.

15 8 7

Rx ptr mask
or -----------------------------------

Rx+l ptr+2 table address

3.2 DECIMAL STRING DATA TYPES

Two classes of decimal string data types -- numeric strings and packed
strings -- are defined. Both have similar arithmetic and operational
properties; they primarily differ in the representation of signs and
the placement of digits in memory.

The numeric string data types are signed zoned, unsigned zoned,
trailing overpunch, leading overpunch, trailing separate and leading
separate. The packed string data types are signed packed and unsigned
packed. Instructions which operate on numeric strings permit each
numeric string operand to be separately specified; similarly, packed
string instructions permit each packed string operand to be separately
specified. Thus, within each of the two classes of decimal strings,
the operands of an instructions may be of any data type wi thin the
appropriate class.

3.2.1 Common properties

Decimal strings exist in memory as contiguous bytes which begin and
end on a b~te boundary. They represent numbers consisting of 0 to
31 (10) diglts in eitner sign-magnitude or absolute-value form.
Sign-magnitude strings (SIGNED) may be positive or negative;
absolute-value strings (UNSIGNED) represent the absolute value of the
magni tude. Decimal numbers are whole integer values wi th an impl ied
decimal radix point immediately beyond the least significant digit;
they may be conceptually extended wi th zero digi ts beyond the most
significant digit.

A 4-bit binary coded decimal representation is used for most digits in
decimal strings. A four bit half byte is called a Inibble l and may be
used to contain a binary bit pattern which represents the value of a
decimal digit. The following table shows the binary nibble contents
associated with each decimal digit:

A-3

digi t nibble

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Each decimal string data type may have several representations. These
representations permit certain latitude when accepting source
operands. Decimal String data types have a PREFERRED representation
which is a valid source representation and which is used to construct
the destination string. Additional ALTERNATE representations are
provided for some decimal data types when accepting source operands.

Decimal strings used as source operands will not be checked for
validity. Instructions will produce upredictable results

if a decimal string used as a soutce operand contains an
invalid digit encoding, invalid sign designator, or in the case of
overpunched numbers, an invalid sign/digit encoding.

When used as a source, decimal strings with zero magnitude are unique,
regardless of sign. Thus, both positive and negative zero have
identical interpretations.

Conceptually, decimal string instructions first determine the correct
result, and then store the decimal string representation of the
correct result in the destination string. A result of zero magnitude
is c~nsidered to be positively signed. If the destination string can
contain more digits than are significant in the result, the excess
most significant destination string digits have zero digits stored in
them. If the destination string can not contain all significant
digits of the result, the excess most significant result digits are
not stored; the instruction will indicate decimal overflow. Note that
negative zero is stored in the destination string as a side effect of
decimal overflow where the sign of the result is negative and the
destination is not large enough to contain any non-zero digits of the
result.

If ehe destination string has zero length, no result digits will be
stored. The sign of the result will be stored in separate and packed
strings, but not in zoned &nd overpunched strings. Decimal overflow
will indicate a non-zero result.

A-4

3.2.2 Decimal String Descriptors

Decimal strings are represented by a two word descriptor. The
descriptor contains the length, data type, and address of the string.
It appears in two consecutive general registers (register form of
instructions), or in two consecutive words in memory pointed to by a
word in the instruction stream (in-line form of instructions). The
unused bi ts are reserved by the archi tecture and must be 0. The
effect of an instruction uSlng a descriptor will be unpredictable if
any non-zero reserved fields in the descriptor contain non-zero values
or a reserved data type encoding is used.

The design of the numeric and packed string descriptors are
identical:

First Word:

length <4:0> - Number of digits specified as an unsigned .binary
integer.

data type <14: 12> - Specifies which decimal data type representation
is used.

Second Word:

address <15:0> - Specifies the address of the byte which contains
the most significant digit of the decimal string.

The following figure shows the descriptor for a decimal string ot data
type 'T' whose length is 'L' digits and whose most significant- digit
is at address 'AI:

15 14 12 11 5 4

Rx ptr I 01 T L
or -----------------------------------

Rx+l ptr+2 A

The encodings (in binary) for the NUMERIC string data type field are:

000
001
010
011
100
101
110
III

signed zoned
unsigned zoned
trailing overpunch
leading overpunch
trailing separate
leading separate

reserved by the architecture
-- reserved by the architecture

A-5

The encodings (in binary) for the PACKED string data type field are:

000 reserved by the architecture
001 reser'Jed by the architecture
010 reserved by the architecture
011 reserved by the architecture
100 reserved by the architecture
101 rese,rved by the architecture
110 signed packed
III unsigned packed

3.2.3 Packed Strings

Packed strings can store two decimal digits in each byte. The least
signi ficant (highest addressed) byte contains the the sign of the
number in bits <3:0> and the least significant digit in bits <7:4>.

Signed Packed Strings -

The preferred positive sign designator is 1100(2); alternate
positive sign designators are 1010 (2), 1110 (2) and 1111 (2). The
preferred negative sign designator is 1101(2}; the alternate
neg a t i v e s i 9 n des i g n a to r i s 1 0 11 (2) • So u r c est r i n g s wi 11
properly accept both :'he preferred and alternate designators;
destination strings will be stored with the preferred designator.

Unsigned Packed Strings -

PACKED SIGN NIBBLE:

Sign Preferred Alternate
Nibble Designator Designators
------ ---------- -----------
positive 1100 (2) 1010 (2) 1110(2) 1111 (2)
negative 1101(2) Hnl (2)
unsigned 1111 (2)

For other than the least significant byte, bytes contain two
consecutive digits -- the one of lower significance in bits <3:0> and
the one of higher significance in bits <7:4>. For numbers whose
length is odd, the most significant digit is in bits <7:4> of the
lowest addressed byte. Numbers wi th an even length have thei r most
signi""ficant digit in bits <3:0> of the lowest addressed byte; bits
<7:4> of this byte must be zero for source strings, and are cleared to
0000(2) for destination strings. Numbers with a length of one occupy
a single byte and contain their digit in bits <7:4>. The number of
bytes which represent a packed string is [length/21+1 (integer
division where the fractional portion of the quotient is discarded) •

A-6

The following is a packed string with an odd number of digits:

7 4 3

A msd I

A+l

A+[length/2] I lsd I sign I

The following is a packed string with an even number of digits:

7 4 3 o

A msd I

A+l

A+ [length/2] I lsd I sign I

A zero length packed string occupies a single byte of storage; bi ts
<7:4> of this byte must be zero for source strings, and are cleared to
0000(2) for destination strings. Bits <3:0> must be a valid sign for
source strings, and are used to store the sign of the resul t for
destination strings. When used as a source, zero length strings
represent operands with zero magnitude. When used as a destination,
they can only reflect a resul t of zero magni tude wi thout ind icating
overflow. The following is a zero length packed string:

7 4 3

A 0 I sign I

A valid packed string is characterized by:

1. A length from" to 3l(10} digits.

A-7

2. Every digit nibble is in the range 0000(2) to 1001(2).

3. For even length sources, bi ts <7: 4> of the lowest addressed
byte are 0000(2).

4. Signed Packed Strings - sign nibble is either 1010(2),
1011 (2), 1100 (2), 1101 (2), 1110 (2) or 1111 (2) •

5. Unsigned Packed Strings - sign nibble is 1111(2).

3.2.4 Zoned Strings

Zoned strings represent one decimal digit in each byte. Each
byte is divided into two portions -- the high order nibble (bits

<7:4» and the low order nibble (bits <3:0». The low order nibble
contains the value of the corresponding decimal digit.

Signed Zoned Strings -

When used as a source string, the high order nibble of the least
significant byte contains the sign of the number; the high order
nibbles of all other bytes are ignored. Destination strings are
stored wi th the sign in the high order nibble of the least
significant byte, and 0011(2) in the hi9h order nibble of all
other bytes. 0011(2) in the high order nlbble corresponds to the
ASCII encoding for numeric digits. The positive sign designator
is 0011(2); the negative sign designator is 0111(2).

Unsigned Zoned Strings -

When used as a source string, the high order nibbles of all bytes
are ignored. Destination strings are stored with 0011 (2) in the

_high order nibble of all bytes.

The number of bytes needed to contain a zoned string is identical to
the length of tne decimal number.

7 4 3

A I msd

A+1

A+n-l I sign I lsd

A-8

'sign' is present only
signed zoned strings

A zero length zoned string does not occupy memory; the address portion
of its descriptor is ignored. When used as a source, zero length
strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero
magnitude (the sign of the operation is lost). An attempt to store a
non-zero result will be indicated by setting overflow.

A valid zoned string is characterized by:

1. A length from 0 to 31(10} digits.

2. The low order nibble of each byte is in the range 0~00(2) to
1001 (2) •

3. Signed Zoned Strings - The high order nibble of the least
significant byte is either 0011(2) or 0111(2).

3.2.5 Overpunch Strings

Overpunch strings represent one decimal digit in each byte. Trailing
overpunch strings combine the encoding of the sign and the least
significant digit; leading overpunch strings combine the encoding of
the sign and the most significant digit. Bytes other than the byte in
which the sign is encoded are divided into two portions -- the high
order nibble (bits <7:4» and the low order nibble (bits <3:0».~ The
low order nibble contains the value of the corresponding decimal
digit. When used as a source string, the high order nibble of all
bytes which do not contain the sign are ignored. Destination strings
are stored with 0011(2) in the high order nibble of all bytes which do
not contain the sign. 00l1{2) in the high order nibble corresponds to
the ASCII encoding for numeric digits.

The following table shows the sign of the decimal string and the value
of the digit which is encoded in the sign byte. Source strings will
properly accept both the preferred and alternate designators;
destination strings will store the preferred designator. The
preferred designators correspond to the ASCII graphics 'A' to 'R', '{I
and'}'. The alternate designators correspond to the ASCII graphics
, 0' to '9', '[' I '?', '1 I, I! I and I: I •

A-9

OVERPUNCH SIGN/DIGIT BYTE:

Over punch Preferred Alternate
Sign/Dig i t Designator Designators
---------- ---------- -----------

+0 01111011(2) 00110000 (2) , 01011011(2), 00111111(2)
+1 01000001(2) 00110001(2)
+2 01000010(2) 00110010(2)
+3 01000011(2) 00110011(2)
+4 1310001130(2) 00110100 (2)
+5 131000101(2) 00110101(2)
+6 131000110(2) 00110110(2)
+7 131000111(2) 00110111(2)
+8 131001000(2) 00111000(2)
+9 CJ1001001{2) 001111301(2)
-0 01111101(2) 01011101 (2) , 00100001 (2), 00111010 (2)
-1 01001010(2}
-2 131001011(2)
-3 01001100(2)
-4 CJ1001101(2)
-5 010011113(2)
-6 01001111(2)
-7 01010000(2)
-8 O1010001(2)
-9 01010010(2)

The number of bytes needed to contain an overpunch string is identical
to the length of the decimal number.

The following is a trailing overpunch string:

7 4 3

A I msd

A+1

A+n-1 I sign and 1sdl

A-tO

The following is a leading overpunch string:

7 4 3

A I sign and msdl

A+l

A+n-l lsd I

A zero length overpunch str ing does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero
magnitude (the sign of the operation is lost). An attempt to store a
non-zero result will be indicated by setting overflow.

A valid overpunch string is characterized by:

1. A length from 0 to 31(10) digits.

2. The low order nibble of each digit byte is in the -range
0000 (2) to 1001 (2) •

3. The encoded sign/digit byte contains values from the above
table of preferred and alternate overpunch sign/digit values.

3.2.6 Separate Strings

Separate strings represent one decimal digit in each byte. Trailing
separate strings encode the sign in a byte immediately beyond the
least significant digit; leading separate strings encode the sign in a
byte immediately beyond the most significant digit. Bytes other than
the byte in which the sign is encoded are divided into two portions -­
the high order nibble (bits <7:4» and the low order nibble (bits
<3:0». The low order nibble contains the value of the corresponding
decimal digit.

A-II

When used as a source string the high order nibbles of all digit bytes
are ignored. Destination strings are stored with 0011 (2) in the high
order nibble of all digit bytes. 0011 (2) in the high order nibble
corresponds to the ASCII encoding for numeric digits. The preferred
positive sign designator is 0010HJl1(2) and the alternate positive
sign designator is 00100000 (2) • The negative sign designator is
00101101 (2). These designators correspond to the ASCII encoding for
'+', 'space' and '-'.

SEPARATE SIGN BYTE:

Sign Preferred .a.l ternate
Byte Designator Designators

---------- -----------
posi tive 00101011(2) 00100000(2)
negative 00101101(2)

The number of bytes needed to contain a leading or trailing separate
string is identical to length+l.

The following is a trailing separate string:

7 4 3

A msd I

A+1

A+n-1 1sd I

A+n sign

A-12

The following is a leading separate string:

7 4 3

A-I sign

A msd I

A+l

A+n-l lsd I

A zero length separate string occupies a single byte of memory which
contains the sign. When used as a source, zero length strings provide
operands wi th zero magni tude; when used as a destination, they can
only reflect a result of zero magnitude without indicating overflow;
the sign of the result is stored.

The following is a zero length trailing separate string:

7

A sign

The following is a zero length leading separate string:

7

A-I sign

A

A valid separate string is characterized by:

1. A length from 0 to 31(10) digits.

2. The low order nibble of each digit byte is in the range,
00013 (2) to 1001 (2) •

3. The sign byte is either 013100000(2), 00101011(2) or
00101101 (2) •

A-I3

3.3 LONG INTEGER

Long integers are 32 bit binary two's complement numbers organized as
two words in consecutive registers or in memory -- no descriptor is
used. One word contains the high order 15 bits. The sign is in
bit<lS>; bit<14> is the most significant. The other word contains the
low order 16 bi ts wi th bi t<0> the least signi ficant. The range of
numbers that can be represented is -2,147,483,648 to +2,147,483,647.

The reg ister form of decimal convert instructions use a restricted
form of long inteqer with the number in the general register pair
R2-R3:

15 14

R2 Is I high

R3 low

The in-line form of decimal convert instructions reference the long
integer by a word address pointer which is part of the instruction
stream:

15 14

ptr low

ptr+2 Is I high

Note that these two representations of long integers differ. There is
no single representation of long integer among EAE, EIS, FPP and
software. The "register form" was selected to be compatible with EIS;
the -in-line form" was selected to be compatible with current standard
so ftioola re usag e.

A-14

APPENDIX B
EXTENDED-INSTRUCTION DEFINITIONS

5.1 ADDN / ADDP / ADDNI / ADDPI - Add Decimal

Format:

15 9 8

ADDN 076 05 .

ADDP 076 07

ADDNI 076 15

srcl.dscr.ptr

src2.dscr.ptr

dst.dscr.ptr

ADDPI 076 17

srcl.dscr.ptr

src2.dscr.ptr

dst.dscr.ptr

Operation:

dst <- src2 + srcl

Condition Codes:

N: set if dst<0; cleared otherwise
Z; set if dst=0; cleared otherwise

320

V: set if dst can not contain all significant digits of the
result; cleared otherwise

C: cleared

Suspendability:

This instruction is potentially suspendable.

8-1

Description:

Srcl is added to src2, and the result is stored in the destination
string. The condition codes reflect the value stored in the
destination string, and whether all significant digits were
stored.

Register Form - ADDN and ADDP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R0-Rl, the second source descr iptor is placed in R2-R3, and the
destination descriptor is placed in R4-R5:

15

R0
srcl.dscr

Rl

R2
src2.dscr

R3

R4
dst.dscr

R5

When the instruction is completed, the source descriptor registers
are cleared:

R0

Rl

R2

R3

R4

R5

15

dst.dscr

B-2

In-line Form - ADDNI and ADDPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
R0-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

Examples:

1. Three Address Add - Register Form

MOV SRCl.DSCR,R0 1st source descriptor
MOV SRCI. DSCR+2, Rl
MOV SRC2.DSCR;R2 2nd source descriptor
MOV SRC2.DSCR+2,R3
MOV DST.DSCR,R4 destination descriptor
MOV DST.DSCR+2,R5
ADDN / ADDP add
BVS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

2. Three Address Add - In-line Form

ADDNI / ADDPI add
. WORD SRC 1. DSCR. PTR ptr to srcl descriptor
• WORD SRC 2. DSCR. PTR ptr to src2 descriptor
• WORD DST.DSCR.PTR ptr to dst descriptor
BVS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

3. Two Address Add - Register Form

MOV SRC.DSCR,R0 source descriptor
MOV SRC. DSCR+2, Rl
MOV DST.DSCR,R2 destination descriptor
MOV DST.DSCR+2,R3
MOV R2,R4 duplicate destination
MOV R3,R5
ADDN / ADDP add
BVS OVERFLOW check for error
BLT' NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

B-3

4. Two Address Add - In-Line Form

ADDNI / ADDPI add
. WORD SRC.DSCR.PTR ptr to src descriptor
• WORD DST. DSCR. PTR ptr to dst descriptor
. WORD DST.DSCR.PTR ptr to dst descriptor
BVS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

Notes:

1. The operation of these instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified data type.

2. Source strings may overlap the destination string only if all
corresponding digits of the strings are in coincident bytes in
memory.

8-4

5.2 ASHN / ASHP / ASHNI / ASHPI - Arithmetic Shift Decimal

Format:

15 9 8

ASHN 076 05

ASHP 076 07

ASHNI 076 15

src.dscr.ptr

ast.dscr.ptr

shift.dscr

ASHPI 076 17

src.dscr.ptr

dst.dscr.ptr

shift.dscr

Operation:

dst <- src * (10 ** shift count)

Condition Codes:

N: set if dst<0; cleared otherwise
Z: set if dst=0; cleared otherwise

3 2

6

6

6

6

V: set if dst can not contain all significant digits of the
result; cleared otherwise

c: cleared

Suspendability:

This instruction is potentially suspendable.

B-5

Description:

The decimal number specified by the source descriptor is
ar ithmeticly shifted, and stored in the area specified by the
destination descriptor. The shifted result is aligned with the
least significant digit position in the destination string. The
shift count is a two I s complement byte whose value ranges from
-128(10} to +127(10). If the shift count is positive, a shift in
the direction of least to most significant digits is performed. A
negative shift count performs a shift from most to least
significant digit. Thus, the shift count is the power of ten by
which the source is multiplied; negative powers of ten effectively
divide. Zero digits are supplied for vacated digit positions. A
zero shift count will move the source to the destination. The
condition codes reflect the value stored in the destination
string, and whether all significant digits were stored.

A negative shift count invokes a rounding operation. The result
is constructed by shifting the source the specified number of
digit positions. The rounding digit is then added to the most
significant digit which was shifted out. If this sum is less than
10 (10), the shifted result is stored in the destination string.
If the sum is 10 (10) or greater, the magnitude of the shifted
result is increased by 1 and then stored in the destination
string. If no rounding is desired, the rounding digit should be
zero.

The shift count and rounding digit are represented in a single
word referred to as the shift descr iptor. Bits <15: 12> of this
word must be zero:

15 12 11 8 7

Irnd.dgtl shift.cnt

Register Form - ASHN and ASHP

When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in R0-Rl,
the destination descr iptor is placed in R2-R3, and the shift
descriptor is placed in R4:

8-6

15

R0
src.dscr

Rl

R2
dst.dscr

R3

R4 shift.dscr

When the instruction is completed, the source descriptor registers
and shift descriptor register are cleared:

R0

Rl

R2

R3

R4

15

dst.dscr

In-line Form - ASHNI and ASHPI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string source
descr iptor, a word address pointer to a two word decimal str ing
destination deser iptor, and a shift descr iptor word. R0-R6 are
unchanged when the instruction is completed.

Formal Description:

TBS;

Examples:

1. Multipling by 100 - Register Form

MOV SRC . DSCR, R0 source descriptor
MOV SRC.DSCR+2,Rl
MOV DST.DSCR,R2 destination descriptor
MOV DST.DSCR+2,R3
MOV #2,R4 shift descriptor word
ASHN / ASHP shift

B-7

BVS
BLT
BEQ
BGT

OVERFLOW
NEGATIVE
EQUAL
GREATER

check for error
negative destination
zero destination
positive destination

2. Mu1tipling by 100 - In-line Form

3.

4.

Notes:

ASHNI /
. WORD
• WORD
• WORD
BVS
BLT
BEQ
BGT

ASHPI
SRC.DSCR.PTR
DST.DSCR.PTR
2
OVERFLOW
NEGATIVE
EQUAL
GREATER

shift
ptr to src descriptor
ptr to dst descriptor
shift descriptor word
check for error
negative destination
zero destination
positive destination

Move decimal number - Register Form

MOV SRC.DSCR,R0
MOV SRC.DSCR+2,Rl
MOV DST.DSCR,R2
MOV DST. DSCR+2, R3
CLR R4
ASHN / ASHP
BVS OVERFLOW
BLT NEGATIVE
BEQ EQUAL
BGT GREATER

Move decimal number - In-line

ASHNI
• WORD
. WORD
. WORD
BVS
BLT
BEQ
BGT

/ ASHPI
SRC.DSCR.PTR
DST.DSCR.PTR
o
OVERFLOW
NEGATIVE
EQUAL
GREATER

source descriptor

destination descriptor

shift descriptor word
shift
check for error
negative destination
zero destination
positive destination

Form

shift
ptr to src descriptor
ptr to dst descriptor
shift descriptor word
check for error
negative destination
zero destination
positive destination

1. If bits <15:12> of the shift descriptor word are not zero, the
effect of the instruction is unpredictable.

2. If bits <11:8> of the shift descriptor are not a valid decimal
digit, the results of the instruction are unpredictable.

3. Any overlap of the source and destination strings will produce
unpredictable results.

B-8

5.3 CMPC / CMPCI - Compare Character

Format:

15 987 3 2 o

CMPC 076 04 4

CMPCI 076 14 4

srcl.dscr.ptr

src2.dscr.ptr

o fill

Operation:

Srcl is compared with src2 (srcl-src2).

Condition Codes:

The condition codes are based on the arithmetic comparison of the
most significant pair of unequal srcl and src2 chara-.;:ters
(srcl.byte-src2.byte) .

N: set if result<0i cleared otherwise
Z: set if result=0; cleared otherwise
V: set if there· was arithmetic overflow, that is, srcl.byte<7>

and src2.byte<7> were different, and src2.byte<7> was the same
as bit <7> of (srcl.byte-src2.byte); cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:

This instruction is potentially suspendable.

Description:

Each character of srcl is compared with the corresponding
character of src2 by examining the character strings from most
significant to least significant characters. If the character
str ings are of unequal length, the shorter character str ing is
conceptually extended to the length of the longer character string
with fill characters beyond its least significant character. The
instruction terminates when the first corresponding unequal
characters are found or when both character strings are exhausted.

B-9

The condition codes reflect the last comparison, permitting the
unsigned branch instructions to test the result.

Register Form - CMPC

When the instruction starts, the operands must have been placed in
the general registers. The first source character string
descriptor is placed in R0-Rl, the second source character string
descr iptor is placed in R2-R3, the fill character is placed in
R4<7:0>, and R4<15:8> must be zero:

R0

Rl

R2

R3

R4

15 8 7

srcl.dscr

src2.dscr

fill

The instruction terminates with sub-string descriptors in R0-Rl
and R2-R3 which represent the portion of each source character
string beginning with the most significant corresponding
unequal characters. R0-Rl contain a descr iptor for the unequal
portion of the original srcl string; R2-R3 contain a descriptor
for the unequal portion of the or ig ina 1 src2 str ing. A vacant
character string descriptor indicates that the entire source
character string was equal to the corresponding portion of the
other source character string, including extension by the fill
character; its address is one greater than that of the least
significant character of the character string.

15 8 7

R0
sub.srcl.dscr

Rl

R2
sub.src2.dscr

R3

R4 fill

B-IO

In-line Form - CMPCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character str ing srcl
descriptor, a word address pointer to a two word character string
src2 descriptor, and a word whose low order half contains the fill
character and whose high order half must be zero. R0-R6 are
unchanged when the instruction is completed.

Formal Description:

srcl.len = R0; CMPC only
srcl.adr = Rl;
src2.1en = R2;
src2.adr R3;
fill = R4<7:0>;

temp = M[R7]; CMPClonly
srcl.len = M[temp] i
srcl.adr = M[temp+2];!
R7 = R7+2; I

temp = M [R7] ;
src2.len = M[temp];
src2.adr = M[temp+2];
R7 = R7+2;
fill = M[R7]<7:0>;
R7 = R7+2;

found = 1;
while (srcl.len nequ 0) and (src2.len nequ

and (found nequ 0) do
if (M[srcl.adr] eqlu M[src2.adr])

begin
srcl.len = srcl.len-l;
srcl.adr = srcl.adr+li
src2.len src2.1en-I;
src2.adr = src2.adr+l
end

else found = 0;
while (srcl.len nequ 0) and (found nequ 0)

if M[srcl.adr] eqlu fill then
begin
srcl.len = srcl.len-li
srcl.adr = srcl.adr+l
end

else found = 0;
while (src2.len nequ 0) and (found nequ 0)

if M[src2.adr] eqlu fill then
begin
src2.len = src2.1en-l;

B-ll

0)

then

do

do

src2.adr = src2.adr+l
end

else found = 0;

if (srcl.len eqlu 0) then btmpl = fill
else btmpl = M[srcl.adr];

if (src2.1en eqlu 0) then btmp2 = fill
else btmp2 = M[src2.adr];

carry@btmp = btmpl-btmp2;
N = btmp<IS>;
if btmp eql 0 then Z = 1 else Z = 0;
if (btmpl<7> neq btmp2<7» and (btmp2<7> eql btmp<7» then

V = 1 else V = 0;
C = carry;

R0 = srcl.len;
Rl = srcl.adr;
R2 = src2.1en;
R3 = src2.adr;
R4 = 0<lS:8>@fill;

Examples:

CMPC only

1. Compare Strings - Register Form

MOV SRCI. DSCR, R0 1st source descriptor
MOV SRCl.DSCR+2,Rl
MOV SRC2.DSCR,R2 2nd source descriptor
MOV SRC2 .DSCR+2, R3
MOV # ' ,R4 extend with spaces
CMPC compare
BLO LESS srcl<src2
BEQ EQUAL srcl=src2
BHI GREATER srcl>src2

i. Compare Strings - In-line Form

CMPCI compare
. WORD SRC1. DSCR. PTR ptr to srcl descriptor
. WORD SRC 2. DSCR. PTR ptr to src2 descriptor
. WORD extend with spaces
BLO LESS srcl<src2
BEQ EQUAL srcl=src2
BHI GREATER srcl>src2

J. Compare as far as the length of shorter of two str ings -
Register Form

MOV
MOV
MOV
MOV

SRCI. DSCR, R0
SRCl.DSCR+2,Rl
SRC2. DSCR, R2
SRC2. DSCR+2, R3

8-12

1st source descriptor

2nd source descriptor

CMP
BHI
MOV

1$: MOV

CMPC
BEQ
BNE

Notes:

R0,R2
1$
R0,R2
R2,R0

EQUAL
NOTEQL

length of shorter

no fill is used
compare strings
use unsigned branches

1. The operation of this instruction is unaffected by any overlap
of the SOurce character strings.

2. If the srcl character str ing is vacant, the fill character
will be compared with src2. If the src2 character string is
vacant, the fill character will be compared with srcl: If
both character strings are vacant, the condition codes will
indicate equality.

3. CMPC -- If an initial source character string descriptor is
vacant, the resulting sub-string descriptor is the same as the
original character string descriptor.

4. A test for success is SEQ; a test for failure is BNE.

5. When the instruction terminates, the condition codes willI be
set as if a CMPS instruction operated on the most significant
unequal characters. If both strings are initially vacant or
are identical, the condition codes will be set as if the last
characters to be compared were identical. This results in
equality with N cleared, Z set, V cleared, and C cleared.

6. Both CMPC and CMPCI update the condition codes. CMPC returns
sub-string descriptors.

B-13

5.4 CMPN / CMPP / CMPNI / CMPPI - Compare Decimal

Format:

15 9 8 3 2

CMPN 076 05

CMPP 076 07

CMPNI 076 15

srcl.dscr.ptr

src2.dscr.ptr

CMPPI 076 17

srcl.dscr.ptr

src2.dscr.ptr

Operation:

Srcl is compared with src2 (srcl-src2).

Condition Codes:

N: set if srcl<src2; cleared otherwise
Z: set if srcl=src2; cleared otherwise
V: cleared
C: cleared

Suspendability:

2

2

2

2

~his instruction is potentially suspendable.

Description:

Srcl is ar ithmetically compared with src2. The condition codes
reflect the comparison. The signed branch instruction can be used
to test the result.

B-14

Register Form - CMPN and CMPP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R0-Rl, and the second source descriptor is placed in R2-R3:

15

R0
srcl.dscr

Rl

R2
src2.dscr

R3

When the instruction is completed, the source descriptor registers
are cleared:

R0

Rl

R2

R3

15

In-line Form - CMPNI and CMPPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
R0-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

Examples:

1. Compare Decimal Strings - Register Form

MOV
MOV
MOV
MOV

SRCl.DSCR,R0
SRCl.DSCR+2,Rl
SRC2. DSCR, R2
SRC2.DSCR+2,R3

1st source descriptor

2nd source descriptor

B-15

CMPN / CMPP compare
BLT LESS use signed branches
BEQ EQUAL
BGT GREATER

2. Compare Decimal Strings - In-line Form

Notes:

CMPNI
• WORD
• WORD
BLT
BEQ
BGT

/ CMPPI
SRCI. DSCR. PTR
SRC2. DSCR. PTR
NEGATIVE
EQUAL
GREATER

compare
ptr to srcl descriptor
ptr to src2 descriptor
negative destination
zero destination
positive destination

1. The operation of these instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified data type.

B-16

5.5 CVTLN / CVTLP / CVTLNI / CVTLPI - Convert Long to Decimal

Format:

15 9 8

CVTLN 076 05

CVTLP 076 07

-CVTLNI 076 15

dst.dscr.ptr

src.long.ptr

CVTLPI 076 17

dst.dscr.ptr

src.long.ptr

Operation:

decimal string <- long integer

Condition Codes:

N: set if dst<0; cleared otherwise
Z: set if dst=0; cleared otherwise

3 2

7

7

7

7

V: set if dst can not contain all significant digits of the
result; cleared otherwise

c: cleared

Suspendability:

This instruction is potentially suspendable.

B-17

Description:

The source long integer is converted to a decimal str ing. The
condition codes reflect the result stored in the destination
decimal string, and whether all significant digits were stored.

Register Form - CVTLN and CVTLP

When the instruction starts, the operands must have been placed in
the general registers. The destination descr iptor is placed in
R0-Rl, and the source long integer is placed in R2-R3:

15

R0
dst.dscr

Rl

R2
src.long

R3

When the instruction is completed, the source long integer
registers are cleared:

15

R0
dst.dscr

Rl

R2

R3

In-line Form - CVTLNI and CVTLPI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string
~estination descriptor, and a word address pointer to a two word
long integer source. R0-R6 are unchanged when the instruction is
completed.

B-18

Formal Description:

TBSi

Examples:

1. Convert Long to Decimal - Register Form

2.

Notes:

MOV DST.DSCR,R0 destination descriptor
MOV DST.DSCR+2,Rl
MOV SRC.LONG+2,R2 source long integer
MOV SRC.LONG,R3
CVTLN / CVTLP convert
BVS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

Convert Long to Decimal - In-line Form

CVTLNI / CVTLPI
.WORD DST.DSCR.PTR
.WORD SRC.LONG.PTR
BVS OVERFLOW
BLT NEGATIVE
BEQ EQUAL
BGT GREATER

convert
ptr to dst descriptor
ptr to long integer
check for error
negative destination
zero destination
positive destination

1. Register forms use a long integer oriented with the sign and
high order portion in R2, and the low order portion in R3.

2. In-line forms use a long integer oriented with the low order
portion in src . long , and the sign and high order portion in
src.long+2.

B-19

5.6 CVTNL / CVTPL / CVTNLI / CVTPLI - Decimal to Long

Format:

15 9 8 3 2

CVTNL 076 05 3

CVTPL 076 07 3

CVTNLI 076 15 3

src.dscr.ptr

dst.long.ptr

CVTPLI 076 17 3

src.dscr.ptr

dst.long.ptr .1

Operation:

long integer <- decimal string

Condition Codes:

The condition codes are based on the long integer destination and
on the sign of the source decimal string.

N: set if long.integer<0; cleared otherwise
Z: set if long.integer=0; cleared otherwise
V: set if long. integer dst can not correctly represent the two's

complement form of the result; cleared otherwise
€: set if src<0 and long.integer#0i cleared otherwise

Suspendability:

This instruction is potentially suspendable.

8-20

Description:

The source decimal str ing is converted to a long integer. The
condition codes reflect the result of the operation, or whether
significant digits were not converted.

Register Form - CVTNL and CVTPL

When the instruction starts, the operands must have been placed in
the gener al registers. The source dec imal str ing descr iptor is
placed in R0-Rl:

15 o

R0
src.dscr

Rl

When the instruction is completed, the source decimal string
descriptor registers are cleared, and the destination long integer
is returned in R2-R3:

15 o

R0

Rl o

R2
dst.long

R3

In-line Form - CVTNLI and CVTPLI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string source
descriptor, and a word address pointer to a two word long integer
destination. R0-R6 are unchanged when the instruct ion is
completed.

Formal Description:

TBS;

B-21

Examples:

1. Convert Decimal to Long - Register Form

MOV
MOV
CVTNL /
BVS
BLT
BEQ
BGT

SRC. DSCR, R0
SRC. DSCR+2, Rl
CVTPL
OVERFLOW
NEGATIVE
EQUAL
GREATER

source descriptor

convert
check for error
negative destination
zero destination
positive destination

2. Convert Decimal to Long - In-line Form

Notes:

CVTNLI
• WORD
• WORD
BVS
BLT
BEQ
BGT

/ CVTPLI
SRC.DSCR.PTR
DST.LONG.PTR
OVERFLOW
NEGATIVE
EQUAL
GREATER

convert
ptr to src descriptor
ptr to dst long int
check for error
negative destination
zero destination
positive destination

1. Register forms use a long integer oriented with the sign and
high order portion in R2, and the low order portion in R3.

2. In-line forms use a long integer oriented with the low order
portion in dst.long, and the sign and high order portion in
dst.long+2.

3. If the V bit is set, the contents of the long integer
destination are the least significant 32 bits of the result.

4. A source whose value is +2**31 can be represented as a 32 bit
binary integer. However, since the destination is a two I s
complement long integer, the resulting condition codes will
be N set, Z cleared, V set, and C cleared.

B-22

5.7 CVTNP / CVTPN / CVTNPI / CVTPNI - Convert Decimal

Format:

15

CVTNP

CVTPN

CVTNPI

CVTPNI

Operation:

CVTNP / CVTNPI
CVTPN / CVTPNI

Condition Codes:

9 8 3 2

076 05 5

076 05 4

076 15 5

src.dscr.ptr

dst.dscr.ptr

15 4

src.dscr.ptr

dst.dscr.ptr

packed string <- numeric string
numeric string <- packed string

N: set if dst<0; cleared otherwise
Z: set if dst=0; cleared otherwise
V: set if dst can not contain all significant digits of the

result; cleared otherwise
C: cleared

Suspendability:

This instruction is potentially suspendable.

B-23

Description:

These instructions convert between numeric and packed decimal
strings. The source decimal string is converted and moved to the
destination string. The condition codes reflect the result of the
operation, or whether all significant digits were stored.

Register Form - CVTNP and CVTPN

When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in R9-RI,
and the destination descriptor is placed in R2-R3:

15

R9
src.dscr

Rl

R2
dst.dscr

R3

When the instruction is completed, the source descriptor registers
are cleared:

R0

Rl

R2

R3

15

dst.dscr

In-line Form - CVTNPI and CVTPNI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
R0-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

B-24

Examples:

1. Convert Between Numer ic Str ing and Packed Str ing - Reg ister
Form

MOV
MOV
MOV
MOV
CVTNP
BVS
BLT
BEQ
BGT

SRC.DSCR,R0
SRC.DSCR+2,Rl
DST.DSCR,R2
DST.DSCR+2,R3

/ CVTPN
OVERFLOW
NEGATIVE
EQUAL
GREATER

source descriptor

destination descriptor

convert
check for error
negative destination
zero destination
positive destination

2. Convert Between Numeric String and Packed String - In-line
Form

Notes:

CVTNPI
• WORD
• WORD
BVS
BLT
BEQ
BGT

/ CVTPNI
SRC.DSCR.PTR
DST.DSCR.PTR
OVERFLOW
NEGATIVE
EQUAL
GREATER

convert
ptr to src descriptor
ptr to dst descriptor
check for error
negative destination
zero destination
positive destination

1. The results of the instruction are unpredictable if the source
and destination strings overlap.

2. These instructions use both a numeric and a packed decimal
string descriptor.

B-25

5.8 DIVP / DIVPI - Divide Decimal

Format:

15 9 8

DIVP 076 07

DIVPI 076 17

srcl.dscr.ptr

src2.dscr.ptr

dst.dscr.ptr

Operation:

dst <- src2 / srcl

Condition Codes:

N: set if dst<0; cleared otherwise
Z: set if dst=0; cleared otherwise

3 2

5

5

V: set if dst can not contain all significant digits of the
result or if srcl=0; cleared otherwise

C: set if srcl=0; cleared otherwise

Suspendability:

This instruction is potentially suspendable.

Description:

Src2 is divided by srcl, and the quotient (fraction truncated) is
stored in the destination string. The condition codes reflect the
value stored in the destination string, and whether all
significant digits were stored.

Register Form - DIVP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R0-Rl, the second source descr iptor is placed in R2-R3, and the
destination descriptor is placed in R4-R5:

B-26

R0

Rl

R2

R3

R4

R5

15

srcl.dscr

src2.dscr

dst.dscr

When the instruction is completed, the source descriptor registers
are cleared:

15

R0

Rl

R2

R3

R4
dst.dscr

R5

In-line Form - DIVPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
R0-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

Examples:

1. Divide - Register Form

MOV
MOV
MOV
MOV

SRCl.DSCR,R0
SRCl.DSCR+2,Rl
SRC2. DSCR, R2
SRC2. DSCR+2, R3

B-27

divisor descriptor

dividend descriptor

MOV
MOV
DIVP
BVS
BLT
BEQ
BGT

2. Divide -

DIVPI
. WORD
• WORD
• WORD
BVS
BLT
BEQ
BGT

DST.DSCR,R4
DST.DSCR+2,R5

OVERFLOW
NEGATIVE
EQUAL
GREATER

In-line Form

SRCI. DSCR. PTR
SRC2. DSCR. PTR
DST.DSCR.PTR
OVERFLOW
NEGATIVE
EQUAL
GREATER

quotient descriptor

divide
check for error
negative destination
zero destination
positive destination

divide
ptr to divisor dscr
ptr to dividend dscr
ptr to quotient dscr
check for error
negative destination
zero destination
positive destination

Notes:

,

1. The operation of these instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified data type.

2. The results of the instruction are unpredictable if the source
and destination strings overlap.

3. Division by zero will set the V and C bits. The destination
string, and the Nand Z condition code bits will be
unpredictable.

4. No numeric string divide instruction is provided.

8-28

5.9 LOCC / LOCCI - Locate Character

Format:

15 987 3 2 o

LOCC 076 04

LOCCI 076 14

src.dscr.ptr

char

Operation:

Search source character string for a character.

Condition Codes:

The condition codes are based on the final contents of R0.

N: set if R0<lS> set; cleared otherwise
Z: set if R0=0; cleared otherwise
V: cleared
C: cleared

Suspendability:

This instruction is potentially suspendable.

Description:

The source character str ing is searched from most significant to
least significant character until the first occurrence of the
search character. A character str ing descr iptor is returned in
R0-Rl which represents the portion of the source character string
beginning with the located character. If the source character
string contains only characters not equal to the search character,
the instructions return a vacant character string descriptor with
an address one greater than that of the least significant
character of the source character str ing. The condi tion codes
reflect the resulting value in R0.

B-29

Register Form - LOCC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-Rl, the search character is placed in R4<7:0>, and
R4<15:8> must be zero:

R0

Rl

R4

15 8 7

src.dscr

char

When the instruction is completed, R0-Rl contain a character set
descriptor which represents the sub-string of the source character
string beginning with the located character:

15 8 7

R0
sub.src.dscr

Rl

R4 char

In-line Form - LOCCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descr iptor, and a word whose low order half contains the search
character and whose high order half must be zero. When the
instruction is completed, R0-Rl contain a character string
~escriptor which represents the sub-string of the source character
string beginning with the located character. R2-R6 are unchanged:

8-30

15

R0

Rl

Formal Description:

src.len = R0;
src.adr = Rl;
char = R4<7:0>;

temp = M [R7] ;
src.len = M[temp];
src.adr = M[temp+2]i
R7 = R7+2;
char = M[R7]<7:0>i
R7 = R7+2i

found = 0;

8 7

sub.src.dscr

Lace only

Lacer only

while (src.len nequ 0) and (found eqlu 0) do
if M[src.adr) nequ char then

begin
src.len = src.len-li
src.adr = src.adr+l
end

else found = Ii

R0
Rl
R4

src.len;
src.adr;
0<15:8>@chari

N R0<IS>i
Z = R0 eqlu 0;
V = 0;
e = 0;

Examples:

LacC only

1. Find the Beginning of a Comment - Register Form

MOV
MOV
MOV
Loee
BNE

STR.DSCR,R0
STR.DSCR+2,Rl
' ; , R4

FOUND

B-31

string to search

search for semi-colon
locate
R0 and RI are the
sub-string descriptor

2. Find the Beginning of a Comment - In-Line Form

LOCCI
• WORD
• WORD
BNE

Notes:

SRC.DSCR.PTR
I • ,
FOUND

locate
ptr to src descriptor
search for semi-colon
R0 and Rl are the
sub-string descriptor

1. If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
no match was found. The or ig ina 1 source character str ing
descriptor is returned in R0-Rl.

2. A test for success is BNE; a test for failure is BEQ.

3. The condition codes will be set as if this instruction were
followed by TST R0.

8-32

5.10 L2Dr - Load 2 Descriptors

Format:

15 9 8

L2Dr 076 02

Operation:

Load word pairs into R~-Rl and R2-R3.

Condition Codes:

The condition codes are not affected.

N: not affected
Z: not affected
V: not affected
C: not affected

Suspendability:

This instruction is non-suspendable.

Description:

3 2

r

This instruction augments the character and decimal str ing
instructions by efficiently loading string descriptors into the
general registers.

A descr iptor 'alpha' is loaded into R0-Rl; a second descr iptor
'beta' is loaded into R2-R3. The address of the descriptors are
determined by the addressing mode @(Rr)+ where r is the low order
three bits of the opcode word. The address of the descr iptor
'alpha' is der ived by applying this addressing mode once; the
address of the descr iptor 'beta' is der ived by applying this
addressing mode a second time. The addressing mode
auto-increments the indicated register by 2. The addressing mode
computation is not affected by the descr iptors which are loaded
into the general re9isters. The words which contain the addresses
of the descriptors are in consecutive words in memory; the
descriptors themselves may be anywhere in memory. The condition
codes are not affected.

B-33

When the instruction is completed, the 'alpha' descr iptor is in
R0-Rl and the 'beta' descriptor is in R2-R3:

15

R0
alpha.dscr

Rl

R2
beta.dscr

R3

Formal Description:

temp = R [r] i
adr.alpha = M[temp]; temp = temp+2;
adr.beta = M(temp]; temp = temp+2;
if (r gequ 4) then R(r] = temp;
R0 = M(adr.alpha] ;
Rl = M(adr.alpha+2]i
R2 = M(adr.beta];
R3 = M[adr.beta+2];

Examples:

1. Decimal String Compare

Note,s:

L2D7
. WORD SRCl
.WORD SRC2
CMPN

SRC1:.WORD SRCl.LEN
. WORD SRC 1. ADR

SRC2:.WORD SRC2.LEN
.WORD SRC2.ADR

load descriptors

compare

1st src descriptor

2nd src descriptor

8-34

5.11 L3Dr - Load 3 Descriptors

Format:

15 9 8 3 2

L3Dr 076 06 r

Operation:

Load word pairs into R0-Rl, R2-R3 and R4-R5.

Condition Codes:

The condition codes are not affected.

N: not affected
Z: not affected
V: not affected
C: not affected

Suspendability:

This instruction is non-suspendable.

Description:

Th is instr uct ion augmen ts the char acte r and dec imal s-t ring
instructions by efficiently load ing str ing descr iptor s into the
general registers.

A descr iptor 'alpha' is loaded into R0-Rl i a second descr iptor
'beta' is loaded into R2-R3; a third descriptor 'gamma' is loaded
into R4-R5. The address of the descriptors are determined by the
addressing mode @(Rr)+ where r is the low order three bits of the
opcode word. The address of the descriptor 'alpha' is derived by
applying this addressing mode once; the address of the descriptor
'beta' is derived by applying this addressing mode a second time;
the address of the descriptor 'gamma' is derived by applying this
addressing mode a third time. The address mode auto- increments
the indicated register by 2. The addressing mode computation is
not affected by the descriptors which are loaded into the general
registers. The words which contain the addresses of the
descriptors are in consecutive words in memory; the descriptors
themselves may be anywhere in memory. The condition codes are not
affected.

B-35

When the instruction is completed, the 'alpha' descriptor is in
R0-Rl, the 'beta 1 descr iptor is in R2-R3 and the 'gamma'
descriptor is in R4-R5:

15

R0
alpha.dscr

Rl

R2
beta.dscr

R3

R4
gamma.dscr

R5

Formal Description:

temp = R[r]i
adr.alpha = M[temp]i temp = temp+2i
adr.beta = M[temp] i temp = temp+2;
adr.gamma = M[temp]; temp = temp+2i
if (r gequ 6) then R[r] = tempi
R0 = M[adr.alpha];
Rl = M[adr.alpha+2];
R2 M[adr.beta];
R3 M[adr.beta+2];
R4 M[adr.gamma] i
RS M[adr.gamma+2];

B-36

Examples:

1. Three Address Add

Notes:

L3D7
• WORD
• WORD
• WORD
ADDN

SRCl: .WORD
• WORD

SRC2: .WORD
• WORD

DST: .WORD
• WORD

SRCI
SRC2
DST

SRCl.LEN
SRC1.ADR

SRC2. LEN
SRC2.ADR

DST.LEN
DST.ADR

load descriptors

add

1st src descriptor

2nd src descriptor

dst descriptor

B-37

5.12 MATC / MATcr - Match Character

Format:

15 9 3 2

MATC 076 04 5

MATcr 076 14 5

src.dscr.ptr

obj.dscr.ptr

Operation:

Search source character string for object character string.

Condition Codes:

The condition codes are based on the final contents of R0.

N: set if R0<15> set; cleared otherwise
Z: set if R0=0; cleared otherwise
V: cleared
c: cleared

Suspendability:

-This instruction is potentially suspendable.
,

Description:

The source character string is searched from most significant to
least significant character for the first occurrence of the entire
object character str ing. A character str ing descr iptor is
returned in R0-Rl which represents the portion of the or ig inal
source character string beginning with the most significant
character to completely match the object character string. If the
object character str ing did not completely match any portion of
the source character string, the character descriptor returned in

1R0-Rl is vacant with an address one greater than the least
significant character in the source string. The condition codes
reflect the resulting value in R0. rf the Z bit is cleared, the
entire object was successfully matched with the source character
string; if the Z bit is set, the match failed.

B-38

Register Form - MATe

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-Rl, and the object: char aeter str ing oeser iptor is
placed in R2-R3:

R0

Rl

R2

R3

15

src.dscr

obj.dscr

The instruction terminates with a character sub-string descriptor
returned in R0-Rl which represents the portion of the or ig inal
source character string beginning with the most significant
character to completely match the object character string.

15

R0
sub.src.dscr

Rl

R2
obj.dscr

R3

In-line Form - ~ATCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descr iptor, and a word address pointer to a two word char acter
string object descriptor. The instruction terminates with a
character sub-string descriptor returned in R0-Rl which reoresents
the portion of the original source character string beginnlng with
the most significant character to completely match the object
character str ing. R2-R6 are unchanged when the instruction is
completed.

B-39

15

R0
sub.src.dscr

Rl

Formal Description:

src.len R0; MATC only
src.adr = Rl;
obj.len R2;
obj.adr = R3;

temp = M [R7];
src.len = M[temp);
src.adr = M[temp+2];
R7 = R7+2;

MATcr only

temp = M [R7] ;
obj.len = M[temp];
obj.adr = M[temp+2];
R7 = R7+2;

tmp.len = obj.len;
found = 0;
while (src.len gequ obj.len) and (obj.len nequ 0)

and (found eqlu 0) do
begin
same = 1;
while (obj.len nequ 0) and (same eqlu 1) do

if (M[obj.adr] eqlu M[src.adr])
then

else

found =
obj.adr
src.len
src.adr
obj .len
end;

i-:f found eql 1
then

begin

begin
obj.len
obJ.adr
src.len
src.adr
end

same = 0;

obj.len-li
obJ.adr+l;
src.len-l;
src.adr+l

same;
obj.adr+obj.len-tmp.len;
src.len+tmp.len-obj.len-l;

= src.adr+obj.len-tmp.len+l;
trnp.len

R0 = src.len+l;
Rl = src.adr-l
end

B-40

else

R2 =
R3 =
N =
Z =
V =
C =

begin
R0 = 0;
Rl = src.adr+src.len
end;

obj.len; MATC only
obj.adr;

R0<lS>;
R0 eqlu 0;
0;
0;

Examples:

1. Find a Keyword - Register Form

MOV SRC.DSCR,R0
MOV SRC.DSCR+2,Rl
Mev OBJ.DSCR,R2
MOV OBJ.DSCR+2,R3
MATC
BNE FOUND

2. Find a Keyword - In-line Form

MATe I
. WORD SRC.DSCR.PTR
. WORD OBJ.DSCR.PTR
BNE FOUND

Notes:

1st source descriptor

2nd source descriptor

search for keyword
object was in string

search for keyword
ptr to src descriptor
ptr to obj descriptor
object was in string

1. The operation of this instruction is unaffected by any overlap
of the source and object character strings.

2. A vacant object character string matches any non-vacant
source character str ing. A vacant source character str ing
will not match any object character string. If the initial
source character string descriptor is vacant, the instruction
terminates with the condition codes indicating no match was
found. The or ig inal source character str ing descr iptor is
returned in R0-Rl.

B-41

3. If the length of the object character string is greater than
t;;at of the source character string then no mat..:::h is found;
RC-Rl end the condition codes will be updated.

4. A test for SGccess is BNE; a test for failure is BEQ.

'"' The condition codes will be set as if this instruction were
followed by TST R0.

8-42

5.16 Move / MOVCI - Move Character

Format:

15 987 3 2

Move 076 03

MOVCl 076 13

src.dscr.ptr

dst.dscr.ptr

fill

Operation:

dst <- src

Condition Codes:

The condition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len).

N: set if result<0~ cleared otherwise
Z: set if result=0~ cleared otherwise
v: set if there was arithmetic overflow, that is, src.len<lS> and

dst.len<lS> were different, and dst.len<lS> was the same as
bit <15> of (src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:

This instruction is potentially suspendable.

Description:

The character string specified by the source descriptor is moved
into the area specified by the destination descr iptor. It is
aligned by the most significant character. The condition codes
reflect an arithmetic comparison of the original source and
destination lengths. If the source str ing is shorter than the
destination str ing, the fill char acter is used to complete the
least significant part of the destination string. This is
indicated by the C bit set.

B-43

If the source str ing is longer than the dest ination str ing, the
least si9nificant characters of the source string are not moved.
This is lndicated by the Z and e bits cleared. If the source and
destination strings are of equal length, all characters are moved
with neither truncation nor filling. This is indicated by the Z
bit set. The unsigned branch instructions may test the result of
the instruction.

Register Form - MOVe

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-Rl, the destination character str ing descr iptor is
placed in R2-R3, the fill character is placed in R4<7:0>, and
R4<15:8> must be zero:

15 8 7

R0
src.dscr

Rl

R2
dst.dscr

R3

R4 fill

When the instruction is completed, R0 contains the number of
unmoved source string characters, and Rl through R3 are cleared:

R0

Rl

R2

R3

R4

15 8 7

max(0,src.len-dst.len)

fill

B-44

In-line Form - MOVCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word address pointer to a two word character string
destination descriptor, and a word whose low order half contains
the fill character and whose high order half must be zero. R0-R6
are unchanged when the instruction is completed.

Formal Description:

src.len = R0;
src.adr Rli
dst.len R2;
dst.adr = R3i

MOVC only

fill R4<7:0>;

temp M[R7];
src.len = M[temp)i
src.adr = M[temp+2];
R7 = R7+2;

MOVCI only

temp = M[R7];
dst.len = M[temp];
dst.adr = M[temp+2]i
R7 = R7+2;
fill = M[R7]<7:0>i
R7 = R7+2;

carry@temp src.len-dst.lenj
N = temp<lS>i
Z = temp eqlu 0;
V = (src.len<15> n~q dst.len<l5» and (src.len<15> egl

temp<lS»
C = carrYi

if src.adr gequ dst.adr then
begin ! most to least significant

characters
while (src.len nequ 0) and (dst.len nequ 0) do

begin
M[dst.adr] = M[src.adr] i
src.len = src.len-l;
src.adr = src.adr+l;
dst.len dst.len-lj
dst.adr = dst.adr+l
end;

while dst.len nequ 0 do
begin
M[dst.adr] = fill;
dst.len = dst.len-l;
dst.adr = dst.adr+l

B45

end
end

else
begin ! least to most significant

characters

R0 =
Rl =
R2 =
R3 =
R4

src.adr = src.len-l-max(0,src.len-dst.len)+src.adr;
dst.adr dst.len+dst.adr-l;
while src.len Issu dst.len do

begin
M[dst.adr] = fill;
dst.len dst.len-l;
dst.adr = dst.adr-l
end;

while dst.len nequ 0 do
begin

end;

M[dst.adr] = M(src.adr];
src.len src.len-l;
src.adr = src.adr-l;
dst.len = dst.len-l;
dst.adr dst.adr-l
end

src.len; MOVC only
0:
0;
0;
0<l5:8>@fill;

Examples:

1. Moving Data - Register Form

MOV SRC. DSCR, R0
MOV SRC.DSCR+2,Rl
MOV DST.DSCR,R2
MOV DST.DSCR+2,R3
MOV #' ,R4
MOVC
BHI TRUNC
BLO FILL
BEQ EQUAL

2. Moving Data - In-line Form

MOVCI
. WORD SRC. DSCR. PTR
• WORD DST.DSCR.PTR
• WORD
BHI TRONC
BLO FILL
BEQ EQUAL

8-46

source descriptor

destination descriptor

fill with spaces
move
test for truncation
test for fill
test for equal length

move
ptr to src descriptor
ptr to dst descriptor
fill is space
test for truncation
test for fill
test for equal length

3. Clearing Storage - Register Form

CLR R0 zero length source
MOV DST.DSCR,R2 destination descriptor
MOV DST.DSCR+2,R3
CLR R4 store null characters
MOVC propagate fill

4. Clearing Storage - In-line Form

MOVCI propagate fill
. WORD SRC.DSCR.PTR ptr to null str dscr
• WORD DST.DSCR.PTR ptr to dst descriptor
. WORD 0 fill with nulls

Notes~

1. The operation of this instruction is unaffected by any overlap
of the source and dest ination str ings. The resul tis
equivalent to having read the entire source string before
storing characters in the destination.

2. If the source string is vacant, the fill character will be
propagated through the destination string. If the destination
string is vacant, no characters will be moved. The condition
codes will be updated. MOVC will update the general
registers.

3. Move -- When the instruction terminates, R0 is zero only if Z
or C are set.

4. The condition' codes will be set as if this instruction were
preceded by CMP src.len,dst.len.

B-47

5.17 HOVRC / HOVRCI - Hove Reverse Justified Character

Format:

15 987

MOVRC 076 03

HOVRCI 076 13

src.dscr.ptr

dst.dscr.ptr

Operation:

dst <- reverse justified src

Condition Codes:

3 2

1

1

fill

The condition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len).

N: set if result<0; cleared otherwise
Z: set if result=0; cleared otherwise
V: set if there was arithmetic overflow, that is, src.len<15> and

dst .len<15> were different, and dst .len<15> was the same as
bit <IS> of (src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:

This instruction is potentially suspendable.

Description:

The character string specified by the source descriptor is moved
into the area specified by the destination descr iptor. It is

-aligned by the least significant character. The condition codes
reflect an arithmetic comparison of the original source and
destination lengths. If the source str ing is shorter than the
destination str ing, the fill character is used to complete the
most significant part of the destination string. This is
indicated by the C bit set.

B48

If the source str ing is longer than the destination str ing, the
most significant characters of the source string are not moved.
This is indicated by the Z and C bits cleared. If the source and
destination strings are of equal length, all characters are moved
with neither truncation nor filling. This is indicated by the Z
bit set. The unsigned branch instructions may test the result of
the instruction.

Register Form - HOVRe

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-RI, the destination char acter str ing descr iptor is
placed in R2-R3, the fill character is placed in R4<7:0>, and
R4<15:8> must be zero:

R0

RI

R2

R3

R4

15 8 7

src.dscr

dst.dscr

fill

When the instruction is completed, R0 contains the number of
unmoved source string characters, and Rl through R3 are cleared:

R0

Rl

R2

R3

R4

15 8 7

max{0,src.len-dst.len)

o

fill

B-49

In-line Form - MOVRCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word address pointer to a two word character string
destination descriptor, and a word whose low order half contains
the fill character and whose high order half must be zero. R0-R6
are unchanged when the instruction is completed.

Formal Description:

src.len R0;
src.adr RI;
dst.len R2;
dst.adr = R3;
fill R4<7:0>;

temp = M [R7] ;
src.len = M[temp];
src.adr = M[temp+2];
R7 = R7+2;
temp = M[R7];
dst.len = M[temp];
dst.adr = M[temp+2];
R7 = R7+2;
fill = M[R7]<7:0>;
R7 = R7+2;

MOVRC only

MOVRCI only

carry@temp src.len-dst.len;
N = temp<IS>;
Z temp eqlu 0;
V (src.len<IS> neq dst.len<IS» and (src.len<15> eql temp<15»
C = carry;

if (src.len+src.adr-l) gequ (dst.len+dst.adr-l) then
begin 1 most to least significant

characters
src.adr = max(0,src.len-dst.len)+src.adri
while src.len lssu dst.len do

begin
M[dst.adr] = fill:
dst.len dst.len-l;
dst.adr = dst.adr+l
end:

while dst.len nequ 0 do
begin
M[dst.adr] = M[src.adr] i
src.len = src.len-l:
src.adr = src.adr+li
dst.len = dst.len-l:
dst.adr = dst.adr+l

B-50

end;
end

else
begin ! least to most significant

characters

R0 =
Rl
R2 =
R3 =
R4

Examples:

src.adr = src.len+src.adr-l;
dst.adr dst.len+dst.adr-l;
while (src.len nequ 0) and (dst.len nequ 0) do

begin
M[dst.adr] = M[src.adr] i
src.len src.len-l;
src.adr
dst.len
dst.adr
end;

src.adr-li
dst.len-li
dst.adr-l

while dst.len nequ 0 do
begin

end;

M[dst.adr] = fill;
dst.len = dst.len-li
dst.adr = dst.adr-l
end

src.len; MOVRC only
0;
0;
0;
0<15:8>@fill;

1. Moving Data - Register Form

MOV
MOV
MOV
MOV
MOV
HOVRC
BHI
BLO
BEQ

SRC.DSCR,R0
SRC. DSCR+2, Rl
DST.DSCR,R2
DST.DSCR+2,R3
I , R4

TRUNe
FILL
EQUAL

2. Moving Data - In-line Form

MOVRCI
• WORD
• WORD
• WORD
BHI
BLO
BEQ

SRC • DSCR. PTR
DST.DSCR.PTR

TRUNC
FILL
EQUAL

B-Sl

source descriptor

destination descriptor

fill with spaces
move
test for truncation
test for fill
test for equal length

move
ptr to src descriptor
ptr to dst descriptor
fill is space
test for truncation
test for fill
test for equal length

Notes:

1. The operation of this instruction is unaffected by any overlap
of the source and destination str ings. The resul t is
equivalent to having read the entire source str ing before
storing characters in the destination.

2. If the source str ing is vacant, the fill character will be
propagated through the destination string. If the destination
str ing is vacant, no characters will be moved. Condi tion
codes will be updated. MOVRC will update the general
registers.

3. MOVRC -- When the instruction terminates, R0 is zero only if Z
or C are set.

4. The condition codes will be set as if this instruction were
preceded by CMP src.len,dst.len.

B-52

5.18 MOVTC / MOVTCI - Move Translated Character

Format:

15 987 3 2

MOVTC 076 03 2

MOCTCI 076 13 2

src.dscr.ptr

dst.dscr.ptr

o fill

table.adr

Operation:

dst <- translated src

Condition Codes:

The condition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len).

N: set if result<0; cleared otherwise
Z: set if result=0; cleared otherwise
V: set if there was arithmetic overflow, that is, src.len<lS> and

dst .1en<lS> were different, and dst .1en<lS> was the same as
bit <15> of (src.len-dst.len); cleared otherwise

c: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:

This instruction is potentially suspendable.

B-53

Description:

The character string specified by the source descriptor is
translated and moved into the area specified by the destination
descr iptor. It is aligned by the most significant character.
Translation is accomplished by using each source character as an 8
bit positive integer index into a 256 byte table, the address of
which is an operand of the instruction. The byte at the indexed
location in the table is stored in the destination str ing. The
condition codes reflect an arithmetic comparison of the original
contents source and destination lengths.

If the source string is shorter than the destination string, the
untranslated fill character is used to complete the least
significant part of the destination string. This is indicated by
the C bit set. If the source string is longer than the
destination string, the least significant characters of the source
string are not moved. This is indicated by the Z and C bits
cleared. If the source and destination str ings are of equal
length, all characters are translated and moved with neither
truncation nor filling. This is indicated by the Z bit set. The
unsigned branch instructions may test the result of the
instruction.

Register Form - MOVTC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-Rl, the destination character string descriptor is
placed in R2-R3, the fill character is placed in R4<7:0>, R4<15:8>
must be zero, and the translation table address is placed in R5:

R0

Rl

R2

R3

R4

R5

15 8 7

src.dscr

dst.dscr

fill

table.adr

When the instruction is completed, R0 contains the number of
unmoved source string characters, and RI through R3 are cleared:

8-54

lS 8 7

R0 max(0,src.len-dst.len)

Rl

R2

R3

R4 fill

RS table.adr

In-line Form - MOVTCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word address pointer to a two word character string
destination descriptor, a word whose low order half contains the
fill character and whose high order half must be zero, and a word
containing the address of the translation table. R0-R6 are
unchanged when the instruction is completed.

Formal Description:

src.len = R0;
src.adr = Rl;
dst.len R2;
dst.adr R3;
fill = R4<7:0>;
table.adr = RS;

temp = M[R7];
src.len = M[temp)i
src.adr = M[temp+2];
R7 = R7+2;
temp = M [R7] ;
dst.len = M[temp];
dst.adr = M[temp+2]i
R7 = R7+2;
fill = M[R7]<7:0>;
R7 = R7+2;
table.adr = M[R7]i
R7 = R7+2;

MOVTC only

MOVTCI only

carry@temp src.len-dst.len;
N = temp<lS>;
Z = temp eqlu 0;

B-55

v = (src.len<IS> neq dst.len<IS» and (src.len<lS> eql temp<lS»
C = carry;

if src.adr gequ dst.adr then
begin ! most to least significant

characters

else

while (src.len nequ 0) and (dst.len nequ 0) do
begin
M[dst.adr] = M[table.adr+M[src.adr]]i
src.len src.len-l;
src.adr = src.adr+l;
dst.len dst.len-l;
dst.adr dst.adr+l
end;

while dst.len nequ 0 do
begin

end

M[dst.adr] = fill;
dst.len = dst.len-l;
dst.adr = dst.adr+l
end;

begin ! least to most significant
characters

R0
RI
R2 =
R3 =
R4
RS =

src.adr = src.len-l-max(B,src.len-dst.len)+src.adr;
dst.adr dst.len+dst.adr-li
while src.len lssu dst.len do

begin
M[dst.adr] = fill;
dst.len dst.len-li
dst.adr = dst.adr-l
end;

while dst.len nequ 0 do
begin

end;

M[dst.adr] = M[table.adr+M[src.adr]];
src.len src.len-l;
src.adr = src.adr-li
dst.len dst.len-l;
dst.adr dst.adr-l
end

src.len; MOVTC only
0;
0;
0;
0<lS:8>@fill;
table.adr;

B-56

Examples:

1.

2.

Notes:

Character

MOV
MOV
MOV
MOV
MOV
MOV
MOVTC
BHI
BLO
BEQ

Character

MOVTCI

• WORD
• WORD
• WORD
BHI
BLO
BEQ

Code Conversion -

SRC.DSCR,R0
SRC.DSCR+2,Rl
DST.DSCR,R2
DST.DSCR+2,R3
' ,R4
#TABLE,R5

TRUNC
FILL
EQUAL

Code Conversion -

SRC.DSCR.PTR
DST.DSCR.PTR

TRUNC
FILL
EQUAL

Register Form

EBCDIC source

ASCII destination

fill with ASCII spaces
translation table
translate and move
source was truncated
test for fill
test for equal length

In-line Form

translate and move

ptr to src descriptor
ptr to dst descriptor
fill is space
test for truncation
test for fill
test for equal length

1. The operation of this instruction is unaffected by any o~erlap
of the source and destination strings. The result is
equivalent to having read the entire source str ing before
storing characters in the destination.

2. If the destination string overlaps the translation table in
any way, the results of the instruction will be unpredictable.

3. If the source str ing is vacant, the
char acter will be propagated through the
If the destination str ing is vacant, no
moved. Condition codes will be updated.
the general registers.

untranslated fill
destination string.
characters will be

MOVTC will update

4. MOVTC -- When the instruction terminates, R0 is zero only if Z
or C are set.

5. The condition codes will be set as if this instruction were
preceded by eMP src.len,dst.len.

6. The effect of the instruction is unpredictable if the entire
256 byte translation table is not in readable memory.

B-S7

5.19 MULP / MULPI - Multiply Decimal

Format:

15 9 8

MULP 076 07

MULPI 076 17

srcl.dscr.ptr

src2.dscr.ptr

dst.dscr.ptr

Operation:

dst <- src2 * srcl

Condition Codes:

N: set if dst<0; cleared otherwise
Z: set if dst=0; cleared otherwise

3 2

4

4

V: set if dst can not contain all significant digits of the
result; cleared otherwise

C: cleared

Suspendability:

This instruction is potentially suspendable.

Description:

Srcl and src2 are mul tipl ied, and the resul t is stored in the
destination string. The condition codes reflect the value stored
in the destination string, and whether all significant digits were
stored.

Register Form - MULP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R0-Rl, the second source descr iptor is placed in R2-R3, and the
destination descriptor is placed in R4-R5:

8-58

R0

Rl

R2

R3

R4

RS

15

srcl.dscr

src2.dscr

dst.dscr

When the instruction is completed, the source descriptor registers
are cleared:

15

R0

Rl

R2

R3

R4
dst.dscr

R5

In-line Form - MULPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
R0-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

Examples:

1. Multiply - Register Form

MOV
MOV
MOV
MOV

SRCl.DSCR,R0
SRC1. DSCR+2,Rl
SRC2. DSeR, R2
SRC2. DSCR+ 2, R3

B-59

1st source descriptor

2nd source descriptor

MOV
MOV
MULP
BVS
BLT
BEQ
BGT

2. Multiply -

MULPI
. WORD
• WORD
• WORD
BVS
BLT
BEQ
BGT

Notes:

DST. DSCR, R4
DST.DSCR+2,R5

OVERFLOW
NEGATIVE
EQUAL
GREATER

In-line Form

SRCI. DSCR. PTR
SRC2. DSCR. PTR
DST.DSCR.PTR
OVERFLOW
NEGATIVE
EQUAL
GREATER

destination descriptor

multiply
check for error
negative destination
zero destination
positive destination

multiply
ptr to srcl descriptor
ptr to src2 descriptor
ptr to dst descriptor
check for error
negative destination
zero destination
positive destination

1. The operation of these instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified data type.

2. The results of the instruction are unpredictable if the source
and destination strings overlap.

3. No numeric string multiply instruction is provided.

8-60

5.20 SCANC / SCANCI - Scan Character

Format:

15 987 3 2

SCANC 076 04 2

SCANCI 076 14 2

src.dscr.ptr

set.dscr.ptr

Operation:

Search source character string for a member of the character set.

Condition Codes:

The condition codes are based on the final contents of R0.

N: set if R0<lS> set; cleared otherwise
Z: set if R0=0; cleared otherwise
V: cleared
C: cleared

Suspendability:

This instruction is potentially suspendable.

Description:

The source character string is searched from most significant to
least significant character until the first occurrence of a
character which is a member of the character set. A character
string descriptor is returned in R~-Rl which represents the
portion of the source character string beginning with the located
member of the character set. If the source character str ing
contains only characters which are not in the character set, the
instructions return a vacant character string descriptor with an
address one greater than that of the least significant character
of the source character string. The condition codes reflect the
resulting value in R0.

B-61

Register Form - SCANC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-Rl, and the char acter set descr iptor is placed in
R4-R5:

15 o

R0
src.dscr

Rl

R4
set.dscr

R5

When the instruction is completed, R0-Rl contain a character
str ing descr iptor which represents the sub-str ing of the source
character string beginning with the character which is a member of
the character set:

15

R0
sub.src.dscr

Rl

R4
set.dscr

R5

In-line Form - SCANCI

_The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word address pointer to a two word character set
descr iptor. When the instruction is completed, R0-Rl contain a
character string descriptor which represer.ts the sub-string of the
source character str ing beg inning with the character which is a
member of the character set. R2-R6 are unchanged:

13-62

15

R0
sub.src.dscr

Rl

Formal Description:

src.len = R0i SCANC only
src.adr = Rl;
mask = R4<7:0>;
table.adr = R5;

temp = M[R7]: SCANCIonly
sre.len = M[temp];
sre.adr = M[temp+2];
R7 = R7+2;
char = M[R7)<7:0>;
R7 = R7+2;
temp = M (R7] ;
mask = M(temp]<7:0>;
table.adr = M[temp+2];!
R7 = R7+2;

found = 0;
while (sre.len nequ 0) and (found eqlu 0) do

if (M[table.adr+M[sre.adr]] and mask) eqlu " then
begin

R0
Rl =
R4 =
RS =

N =
Z
V
C

sre.len = src.len-l;
src.adr = sre.adr+l
end

else found = 1;

sre.len;
sre.adr;
0<15:8>@rnaski SCANC only
table.adr;

R0<l5>;
R0 eqlu 0;
0;

" ;
Examples:

1. Find Next Digit - Register Form

MOV STR.DSCR,R0 string to scan
MOV STR.DSCR+2,Rl
MOV #1,R4 mask for char
MOV #TAB,R5 character set

B-63

set
table

2.

Notes:

SCANC
BNE
BEQ

TAB: . BYTE
. BYTE
. BYTE

.BYTE

. BYTE
• BYTE
• BYTE
. BYTE
• BYTE
.BYTE
. BYTE
. BYTE
• BYTE
. BYTE
. BYTE

.BYTE

Find Next

SCANCI
. WORD
. WORD
BNE
BEQ

DIGIT
NODIGIT

o
o
o

1
1
1
1
1
1
1
1
1
1
0
0

0

Digit - In-line

SRC.DSCR.PTR
SET.DSCR.PTR
DIGIT
NODIGIT

scan string for digits
digit found
string had no digits

ASCII 000
ASCII 001
ASCII 002

ASCII 060
ASCII 061
ASCII 062
ASCII 063
ASCII 064
ASCII 065
ASCII 066
ASCII 067
ASCII 070
ASCII 071
ASCII 072
ASCII 073

ASCII 377

Form

scan
ptr to src

= '0'
= '1 '
= '2 '

'3 '
= '4'

'5 '
= '6 '
= '7 '
= '8 '
= '9 '

descriptor
ptr to char set dscr
digit found
string had no digits

1. If the initial source character str ing descr iptor is vacant,
the instruction terminates with the condition codes indicating
that no characters in the set were found. The original source
character string descriptor is returned in R0-R1.

2. The source character string and character set table may
overlap in any way.

3. A test for success is BNE; a test for failure is BEQ.

B-64

4. The condition codes will be set as if this instruction were
followed by TST R0.

5. The effect of the instruction is unpredictable if the entire
256 byte character set table is not in readable memory.

B~5

5.21 SKPC / SKPCI - Skip Character

Format:

15 987 3 2

SKPC 076 04 1

SKPCI 076 14 1

src.dscr.ptr

char

Operation:

Search source character str ing un til a char acter other than the
search character is found.

Condition Codes:

The condition codes are based on the final contents of R0.

N: set if R~<15> set; cleared otherwise
Z: set if R~=0; cleared otherwise
V: cleared
C: cleared

Suspendability:

This instruction is potentially suspendable.

Description:

The source character string is searched from most significant to
least significant character until the first occurrence of a
character which is not the search character. A character string
descr iptor is returned in R~-Rl which represents the portion of
the source character string beginning which the most significant
character which was not equal to the search character. If the
source character string contains only characters equal to the
~earch character, the instructions return a vacant character
str ing descr iptor wi th an address one greater than that of the
least significant character of the source character string. The
condition codes reflect the resulting value in R0.

8-66

Register Form - SKPC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-Rl, the search character is placed in R4<7: 0>, and
R4<15:8> must be zero:

15 8 7

R0
src.dscr

Rl

R4 char

When the instruction is completed, R0-Rl contain a character
str ing descr iptor which represents the sub-str ing of the source
character string beginning with the most significant character
which was not equal to the search character:

15 8 7

R0
sub.src.dscr

Rl

R4 char

In-line Form - SKPCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word whose low order half contains the search
character and whose high order half must be zero. When the
instruction is completed, R0-Rl contain a character string
descriptor which represents the sub-string of the source character
string beginning with the most significant character which was not
equal to the search character. R2-R6 are unchanged:

B-67

IS

R0

Rl

Formal Description:

src.len = R0;
src.adr = Rl;
char = R4<7:0>;

temp = M [R7] ;
src.len = M[temp];
src.adr = M[temp+2];
R7 = R7+2;
char = M[R7]<7:9>;
R7 = R7+2;

found = Ii

sub.src.dscr

SKPC only

SKPCI only

while (src.len nequ 0) and (found eqlu 1) do

R0
Rl =
R4

N
Z =
V =
C =

if M[src.adr] eqlu char then
begin
src.len = src.len-l;
src.adr = src.adr+l
end

else found = 0;

src.len;
src.adr;
0<lS:8>@char; SKPC only

R0<lS>;
R0 eqlu 0;
0;
0;

Examples:

1. Skip Leading Spaces - Register Form

MOV STR.DSCR,R0 string to search
MOV STR.DSCR+2,Rl
MOV # ' ,R4 space character
SKPC skip
BEQ BLANK line was blank

8-68

2. Skip Leading Spaces - In-line Form

Notes:

SKPCI
• WORD
• WORD
BEQ

SRC.DSCR.PTR

BLANK

skip
ptr to src descriptor
space character
line was blank

1. If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
the character str ing only contained search characters. The
original source character string descriptor is returned in
R0-Rl.

2. The condition codes will be set as if this instruction_were
followed by TST R0.

B-69

5.22 SPANC / SPANCI - Span Character

Format:

15 987 3 2

SPANC 076 04 3

SPANCI 076 14 3

src.dscr.ptr

set.dscr.ptr

Operation:

Search source character string for a character which is not a a
member of the character set.

Condition Codes:

The condition codes are based on the final contents of R0.

N: set if R0<lS> set; cleared otherwise
Z: set if R0=0; cleared otherwise
V: cleared
C: cleared

Suspendability:

This instruction is potentially suspendable. ,
Description:

The source character string is searched from most significant to
least significant character until the first occurrence of
character which is not a member of the character set. A character
string descriptor is returned in R0-Rl which represents the
portion of the source character string beginning with the
character which is not a member of the character set. If the
source character string contains only characters which are in the

-character set, the instructions return a vacant character string
descr iptor wi th an address one greater than that of the least
s igni f ican t character of the source character str ing. The
condition codes reflect the resulting value in R0.

8-70

Register Form - SPANC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R0-Rl, anc the char acter set descr iptor is placed in
R4-R5:

15

R0
src.dscr

Rl

R4
set.dscr

R5

When the instruction is completed, R0-Rl contain a character
string descriptor which represents the sub-string of the source
character string beginning with the character which is not a
member of the character set:

15

R0
sub.src.dscr

Rl

R4
set.dscr

R5

In-line Form - SPANCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word address pointer to a two word character set
descr iptor. When the instruction is completed, R0-Rl contain a
character string descriptor which represents the sub-string of the
source character string beginning with the character which is a
member of the character set. R2-R6 are unchanged:

B-71

IS

R0
sub.src.dscr

Rl

Formal Description:

src.len = R0; SPANC only
src.adr = Rl;
mask = R4<7:0>i
table.adr = RS;

temp = M[R7]; SPANClonly
src.len = M[temp];
src.adr = M[temp+2];
R7 = R7+2;
char = M[R7]<7:0>;
R7 = R7+2;
temp = M[R7];
mask = M[temp]<7:B>;
table.adr = M[temp+2];!
R7 = R7+2; !

found = li

o

while (src.len nequ 0) and (found eqlu 1) do

R0 =
Rl =
R4 =
RS

N
Z =
V
C

if (M[table+M[src.adr]] and mask) nequ 0 then
begin
src.len = src.len-l;
src.adr = src.adr+l
end

else found = 0;

src.len;
src.adr;
0<lS:8>@mask: SPANC only
table.adr;

R0<lS>;
R0 eqlu 0;
0;
0;

B-72

Examples:

1. Pass Tabs and Blanks - Register Form

MOV STR.DSCR,R0 string to scan
MOV STR.DSCR+2,Rl
MOV #2,R4 character set mask
MOV #TAB,R5 character set table
SPANC span
BNE FOUND printing char found
BEQ EMPTY string contained only

tabs and spaces

The following table can be combined with the one
in the SCANC example.

TAB: • BYTE 0
. BYTE 0
• BYTE 0

• BYTE 2
• BYTE 0
• BYTE 0

• BYTE 2
• BYTE 0
• BYTE ·0

• BYTE 0

ASCII 000
ASCII 001
ASCII 002

.
ASCII 011 = TAB
ASCII 012
ASCII 013

ASCII 040 = SPACE
ASCII 041
ASCII 042

ASCII 377

2. Pass Tabs and Blanks - In-line Form

SPANCI
• WORD
• WORD
BNE
BEQ

sRC.DSCR.PTR
SET. DsCR.PTR
FOUND
EMPTY

B-73

scan
ptr to src descriptor
ptr to char set dscr
printing char found
string contained only
tabs and spaces

Notes:

1. If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
that only characters in the set were found. The original
source character string descriptor is returned in R0-Rl.

2. The source character string and character set table may
overlap in any way.

3. The condition codes will be set as if this instruction were
followed by TST R0.

4. The effect of the instruction is unpredictable if the entire
256 byte character set table is not in readable memory.

8-74

5.23 SUBN / SUBP / SUBNI / SUBPI - Subtract Decimal

Format:

15 9 8

SOON 076 05

SOOP 07

SUBNI 076 15

srcl.dscr.ptr

src2.dscr.ptr

dst.dscr.ptr

SUBPI 076 17

srcl.dscr.ptr

src2.dscr.ptr

dst.dscr.ptr

Operation:

dst <- src2 - srcl

Condition Codes:

N: set if dst<0; clear~d otherwise
Z: set if dst=0; cleared otherwise

3 2

1

1

1

1

V: set if dst can not contain all significant digits of the
result; cleared otherwise

c: cleared

Suspendability:

This instruction is potentially suspendable.

B-75

Description:

Srcl is subtracted from src2, and the resul t is stored in the
destination string. The condition codes reflect the value stored
in the destination string, and whether all significant digits were
stored.

Register Form - SUBN and SUBP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R0-Rl, the second source descr iptor is placed in R2-R3, and the
destination descriptor is placed in R4-R5:

15

R0
srcl.dscr

Rl

R2
src2.dscr

R3

R4
dst.dscr

R5

When the instruction is completed, the source descriptor registers
are cleared:

R0

Rl

R2

R3

R4

R5

15

dst.dscr

8-76

In-line Form - SUBNI and SUBPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
R0-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

Examples:

1. Three address subtract - Register Form

MOV SRCl.DSCR,R0 subtrahend descriptor
MOV SRCl.DSCR+2,Rl
MOV SRC2. DSCR, R2 minuend descriptor
MOV SRC2. DSCR+ 2, R3
MOV DST.DSCR,R4 difference descriptor
MOV DST. DSCR+2, RS
SUBN / SUBP subtract
BVS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

2. Three address subtract - In-line Form

SUBNI / SUBPI subtract
• WORD SRCl.DSCR.PTR ptr to sub descriptor
• WORD SRC2.DSCR.PTR ptr to min descriptor
• WORD DST. DSCR. PTR ptr to dif descriptor
BVS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

3. Two address subtract - Register Form

MOV SRC • DSCR, R0 subtrahend descriptor
MOV SRC.DSCR+2,Rl
MOV DST.DSCR,R2 minuend descriptor
MOV DST.DSCR+2,R3
MOV R2,R4 difference descriptor
MOV R3,RS
SUBN / SUBP subtract
BVS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

B-77

4. Two address subtract - In-Line Form

Notes:

SUBNI / SUBPI
. WORD
• WORD
• WORD
BVS
BLT
BEQ
BGT

SRC. DSCR. PTR
DST.DSCR.PTR
DST.DSCR.PTR
OVERFLOW
NEGATIVE
EQUAL
GREATER

subtract
ptr to sub descriptor
ptr to min descriptor
ptr to dif descriptor
check for error
negative destination
zero destination
positive destination

1. The operation of these instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified dat type.

2. Source strings may overlap the destination string only if all
corresponding digits of the strings are in coincident bytes in
memory.

8-78

Abbreviation

ADR
ALU
AREG
B
BR
BREG
C
C/B
CC
CIS
CISP
CISPW
CISS
CNTL
CPC
DESCR
DST
DT
FNCT
FPLA
G
GPR
IBUF
I~JST
IR
L2dr
L3dr
LS
m
MPC
N
OVR
P
PSW
SRC
V
Z

C-l

Definition

Address

APPENDIX C
CIS ABBREVIATIONS

Arithmetic logic unit
HA" register (of BCD path)
Borrow
Bus request
HB" register (of BCD path)
Carry (condition code)
Carry Iborrow bit
Condition code
Commercial instruction set
CIS processor
CIS scratch pad write
CIS status
Control
CIS program counter
Descriptor
Destination
Data type
Function
Field programmable logic array
Carry generate
General purpose register
Input buffer
Instruction
I nstruction register
Load 2 descriptor
Load 3 descriptor
Local store
Default value
Microprogram counter
Negative (condition code)
Overflow
Carry propagate
Processor status word
Source
Overflow (condition code)
Zero (condition code)

Microword

ALUDST
ALUFTN
ALUSRC
APORT

BCDMXl
BCDMX3
BCDOP
BMUX
BPORT

CISSPW
CON2
CON3
CON4
CONBRI
CONBR2
CONST

ENCB
ENCIS
ENIB
ENOB
ENSNIN
ENSNOU

INEN

LBYTE

MPC

SALUI
SHFTC
SHFTIN
SWAP

Definition

ALU destination field (61:59)
ALU function field (58:56)
AL U source field (55:53)

APPENDIX D
CISP MNEMONICS

"A" address field of 2901 A RAM

BCD multiplexer 1 field (29:28)
BCD multiplexer 3 field (31 :30)
BCD operation field (33:32)
B multiplexer field (35:34)
"B" address field of 2901 A RAM

CIS scratch pad write field (71 :70)
Control 2 field (27:25)
Control 3 field (24:21)
Control 4 field (20: 16)
Conditional branch 1 field (5:2)
Conditional branch 2 field (9:6)
Constant field (40:38)

Enable carry/borrow bit (0)
Enable CIS bit (1)
Disable input buffer bit (48)
Enable output buffer bit (47)
Enable sign input bit (37)
Enable sign output bit (36)

Input enable bit (51)

Low byte enable bit (46)

Microprogram counter field (15:10)

Select ALU input bit (52)
Shift control field (63 :62)
Shifted in bit (64)
Swap bytes in a word or in a data string (50:49)

0-1

KE44-A CISP User's Guide

EK-KE44A-UG-002

Reader's Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and useful­
ness of our publications.

What is your general reaction to this manual? In your judgement is it complete. accurate. well organized.
well written. etc? Is it easy to use? ~~~~~~~~~~~~~~~~~~~~~~~~~~~_

What faults or errors have you found In the manual? ____ ~_~_~_~~~_~~_~~_~_

Does this manual satisfy the need you think it was Intended to satisfy?_~~~~~~_~~~~~_

Does it satisfy your needs? _~_~~_~ ___ Why? __ ~ __ ~~~~_~~~~~~_~_

o Please send me the current copy of the Technical Documentation Catalog. which contains information
on the remainder of DIGITAL's technical documentation.

Name
Title _~~ ___ ~~~_~_~~_~_~~_
Company __ ~_~~ __ ~~~~~~~~ __ ~_
Department _~_~_~~~~_~~_~~~_

Additional copies of this document are available from:

Digital Equipment Corporation
Accessories and Supplies Group
Cotton Road
Nashua. N H 03060

Attention Documentation Products
Telephone 1-800-258-1710

Order No.
EK-KE44A-UG-002

Street_~~~~ _____ ~~ __ ~~~~~~_
City _~~~~~~ __ ~~~~_~~~~~_
State/Country_~_~~_~~~~~~~~_ Zip __________________________________ ___

. ___________________ Fold Here---------------------

-_______________ 00 Not Tear - Fold Here and Staple ----------------

mamaomo-

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Educational Services Development and Publishing
1925 Andover Street
Tewksbury, Massachusetts 01876

111111 No Postage
Necessary

if Mailed in the
United States

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	B-51
	B-52
	B-53
	B-54
	B-55
	B-56
	B-57
	B-58
	B-59
	B-60
	B-61
	B-62
	B-63
	B-64
	B-65
	B-66
	B-67
	B-68
	B-69
	B-70
	B-71
	B-72
	B-73
	B-74
	B-75
	B-76
	B-77
	B-78
	C-01
	D-01
	replyA
	replyB

