
THE PDP-11/60 
MICROPROGRAMMING TOOLS 

REFERENCE MANUAL 

Order No. AA-C815A-TC 



THE PDP-11/60 
MICROPROGRAMMING TOOLS 

REFERENCE MANUAL 

Order No. AA-C815A-TC 

Edition 1 

October 1977 

Digital Equipment Corporation, Maynard, Massachusetts, 01754 



THE PDP-11/60 MICROPROGRAMMING TOOLS REFERENCE MANUAL 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may only be used or copied in accordance with the terms of such 
license. 

No responsibility is assumed for the use or reliability of software on 
equipment that is not supplied by Digital or its affiliated companies. 

Copyright @ 1916 by Digital Equipment Corporation 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DECUS 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 
ASSIST-11 

DECsystem-10 
DECtape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB-8 
DECSYSTEM-20 
RTS-8 

11/77-15 

MASSBUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-10 
TYPESET-11 



CONTENTS 

Preface 

Chapters 

PART I -- INTRODUCTION 

1. Introduction 

PART II -- THE MICROPROGRAM ASSEMBLER: MICRO-11/60 

2. Introduction to MICRO-11/60 
3. Program Elements 
4. Program Structure 
5. Defini tions 
6. Actions 
7. Examples 

PART III -- THE MICROPROGRAM LOADER: MLD 

8. Microprogram Loader 

PART IV -- THE MICROPROGRAM DEBUGGING TOOL: MDT 

9. Introduction 
10. Open Commands 
11 . Br e akpo in t Command s 
12. Display Commands 
13. Control Commands 

PART V -- MICROPROGRAMMING TOOLS USER'S GUIDE 

14. Using the Assembler 
15. Using the Microprogram Loader 
16. Using the Debugger 

Appendixes 

A. Syntactic Summary of Source and Command Languages 
B. The 11/60 Predefinitions 
C. The Dispatch File and Memory Partitions 
D. Linked List Example 
E. Error Messages 

Index 

NOTE: Each of the parts is immediately preceded by 
a detailed table of contents for the part. 





PREFACE 

This manual describes the tools that are provided with the Writable 
Control Store option for the PDP-11/60. The manual gives information 
about assembling, loading, and debugging microprograms for the 11/60. 

The manual is divided into five parts. The first part introduces the 
microprogramming tools and discusses the syntax notation and other 
issues that are common to all four parts of the manual. 

The next three parts of the manual describe the three tools. Part II 
describes the MICRO-11/60 assembler; part III, the Microprogram 
Loader, MLD; and part IV, the Microprogram Debugging Tool, MDT. 

The fifth part of the manual contains information on the use of the 
tools to assemble, load, and debug a microprogram. 

Five appendices, which give reference material, are included. 
Appendix A summarizes the syntax. Appendix B gives the 11/60 
Predefinitions. Appendix C describes the dispatch file and a 
technique for partitioning the Writable Control Store. Appendix D 
provides a sample microprogram. Appendix E lists the error messages 
for each of the tools. 

Intended Audience 

This manual is directed to the experienced assembly-language 
programmer and to the hardware engineer with some programming 
experience. The user should be familiar with the basic concepts of 
the RSX-11M operating system described in Introduction to RSX11M 
(DEC-11-0M1EA-B-D) and with basic operating procedures described in 
the RSX-11M Operators's Procedures Manual (DEC-11-0MOGA-B-D). 

Related Manual 

This manual describes the microprogramming tools and their use. To 
understand the 11/60 microarchitecture, the following manual is 
provided: 

PDP-11/60 Microprogramming Specification (AA-C814A-TC) 

Reading the PDP-11/60 Microprogramming 
suggested. 

Specification first is 





CHAPTER 

1 • 1 
1 • 1 • 1 
1 • 1 • 2 
1 • 1 . 3 
1 • 1 • 4 
1 • 2 

PART I 

INTRODUCTION 

Contents 

INTRODUCTION 

THE SYNTAX NOTATION . 
Concatenation 
Disjunction . 
Replication . 
Omission 

EXAMPLES 

· . 1-2 
. 1-3 

• • 1 - 3 
· . 1-4 

. 1-5 
· . 1-6 





CHAPTER 1 

INTRODUCTION 

The Writable Control Store is a hardware option that allows users to 
microprogram the 11/60 for special applications. This manual 
describes the three tools that are provided with the Writable Control 
Store option to aid the microprogrammer in writing, loading, and 
debugging microprograms. 

After this introductory part, the next three parts of the manual 
described the tools, as follows: 

Part II - The Micro-11/60 Assembler, which converts 
source microprograms into loadable object 
modules. 

Part III - The Microprogram Loader MLD, which loads 
the object module into the Writable Control 
Store. 

Part IV - The Microprogram Debugging Tool -- MDT, which 
allows the microprogrammer to examine and 
breakpoint microprograms running in the 
Writable Control Store. 

Then, the last part of the manual describes the use of the three 
tools: 

Part V - Microprogramming Tools User's Guide, which 
describes how to invoke and execute the 
tools. 



MICROPROGRAMMING TOOLS -- INTRODUCTION Page 1-2 

Each chapter in the manual has a characteristic form. It consists of 
a sequence of sections that begin with an introduction to a feature, 
followed by a rigorous definition, followed by explanations and 
examples. The subsections that provide this information are given in 
the following list: 

SUb-section 

Syntax 

Interpretation 

Restrictions 

Defaults 

Meaning 

Defines the structure of the feature. 

Gives a succinct, but complete, statement of 
the meaning of the feature, followed by a 
detailed discussion of aspects of the feature. 

Provides any restrictions on the feature that 
are not stated in the syntax. 

Supplies the assumptions 
that are identified as 
syntax. 

made for 
optional 

any cases 
within the 

The manual is organized in this way so that it can be read initially 
as a tutorial and'then used conveniently for a reference. 

1.1 THE SYNTAX NOTATION 

The constructs of the languages used by the WCS tools are defined in a 
syntax notation. A syntactic rule defines a syntactic name in terms 
of a string of syntactic terms. The syntactic terms can be terminals 
(such as: keywords, separators, etc.), which are displayed in upper 
case, or other syntactic names, which are displayed in lower case. An 
example of a terminal is given in Section 1.1. 



MICROPROGRAMMING TOOLS -- INTRODUCTION 

Syntactic rules are displayed in boxes. The box 
left-side and a right-side by a vertical line. 
syntactic name being defined is given and, on 
string that defines the name is given. For 
following syntactic rule: 

op-code octal-digit 

Page 1-3 

is divided into a 
On the left-side, the 
the right-side, the 
example, consider the 

In the above rule, the syntactic name op-code is defined to be an 
octal-digit. 

1.1.1 Concatenation 

A concatenation is a sequence of two or more definitions strings, 
written one after another. An example of a concatenation in a 
syntactic rule is: 

field-value-definition field-value-name ::= value 

The above syntactic rule states that a field-value-definition consists 
of a field-value-name followed by the characters n::=n followed by a 
value. 

Another example of a concatenation, which includes a syntactic 
terminal and a syntactic name, is the following: 

title-line .TITLE title-string 

The above rule states that a title-string consists of the keyword 
.TITLE followed by a title-string. 

1.1.2 Disjunction 

A disjunction is a string definition that permits the choice from a 
set of possible definitions. A disjunction is written within curly 
braces, with each possibility separated from the others either by 
being on a separate line or by a vertical bar character. 



MICROPROGRAMMING TOOLS -- INTRODUCTION Page 1-4 

An example of a disjunction in which each choice is written on a 
separate line is: 

field-setting field-name I 
{

field-value-name} 

value 

The above rules states that a field-setting consists of a field-name 
followed by a "I" character followed by either a field-value-name or a 
val ue . 

An example of a disjunction in which the choices are separated by 
vertical bar characters is: 

octal-digit I {o 11 12 13 14 15 1 6 17} 

The above rule states that an octal-digit can be either the character 
0, or the character 1, or the character 2, and so on, to the character 
1 · 

1.1.3 Replication 

A replication is a string definition that can be repeated a specified 
number of times. Replication is indicated in the syntax by enclosing 
the string definition in curly braces with a subscript and 
superscript. The subscript indicates the minimum number of 
repetitions and superscript indicates the maximum number of 
repetitions. An example of replication in a syntactic rule is: 

toc-string {radiX-50-Char }~4 

The above syntactic rule states that a toc-string consists of from 1 
to 64 radix-50-chars. 



MICROPROGRAMMING TOOLS -- INTRODUCTION Page 1-5 

If the replications are 
character is given at 
following syntactic rule: 

separated by some character, then that 
the point of the curly brace as shown in the 

input-spec 
r }n 
{input-file 1 

The above syntactic rule states that an input spec consists of one or 
more input-files separated by commas. So, for example, an input-spec 
can be any of the following: 

fil e1 

file1,file2 

file1,file2,file3 

The superscript n indicates that any number of replications can be 
g i v en. 

1.1.4 Omission 

Omission is indicated by the use of the subscript 0 and the 
superscript 1, indicating that from 0 to 1 replications are possible. 
An example of omission is given in the following syntactic rule: 

I 
constraint mask low-address ] }0

1 
high-address 

The above rule states that a constraint consists of a mask, optionally 
followed by the string" [low-address high-address]" 



MICROPROGRAMMING TOOLS -- INTRODUCTION Page 1-6 

1.2 EXAMPLES 

Two kinds of examples are used in this manual, namely: abstract and 
concrete. An abstract example is written with non-mnemonic names 
(e.g. A, B, ALPHA, BETA, etc) and is used to illustrate a feature 
when the scope of the feature is such that using a concrete example 
would be distracting. A concrete example is an actual piece of a 
microprogram. When a concrete example is used, the context of that 
example is usually referenced. The manual contains three complete 
microprograms and concrete examples are drawn from these 
microprograms. 



CHAPTER 2 

2. 1 
2 • 1 • 1 
2.2 
2. 2. 1 
2.2.2 
2.2.3 
2.2.4 
2.3 
2.4 

CHAPTER 3 

3. 1 
3.2 
3.2. 1 
3.2.2 
3.3 
3. 3. 1 
3.3.2 
3.3.3 
3.4 
3.5 
3.5. 1 
3.5.2 
3.5.2.1 
3.5.2.2 

PART II 

THE MICORPROGRAM ASSEMBLER: 
MICRO-11/60 

Contents 

INTRODUCTION TO MICRO-11/60 

TRANSLATION ....... . 
The 11/60 Predefinitions 

ADDRESS ASSIGNMENT .... 
The Address Space . . . . . . . . . 
Address Assignment Algorithm 
Address Reservation . . . . . . 
Address Specification ..... 

ERROR DETECTION AND CORRECTION 
PRESENTATION ....... . 

PROGRAM ELEMENTS 

KEYWORDS . . . . . 
NAMES . . . . . . . 

Syn tax ..... 
Interpretation 

VALUES . . . . . . 
Syntax ......... . 
Restrictions And Defaults 
Interpretation . . . . . . 

2-2 
· 2-3 

· . . 2-4 
· 2-4 

2-4 
2-5 

· 2-5 
· . . . . 2-6 

· 2-6 

· . 3-2 
· . 3-3 

· . . 3-4 
· . . 3-4 
· . . 3-4 

3-4 
· . . 3-4 

3-5 
· . . . . 3-5 SEPARATORS AND DELIMITERS . 

THE PROGRAM LINE . . . . . . 3-6 
Comments .. . . . . 
Spacing ........ . 

Inter-Line Spacing 
Intra-Line Spacing 

. • • . . • • • 3 - 6 
· . . . . 3-7 

· . 3-7 
· . 3-8 



CHAPTER 4 

4. 1 
4. 1 . 1 
4. 1 . 2 
4.2 
4 . 2 . 1 
4.2.2 
4.2.3 
4.2.4 
4.3 
4 . 3 . 1 
4.3.2 
4.4 
4.4. 1 
4.4.2 
4.4.3 
4 . 4. 4 
4.5 
4.5. 1 
4.5.2 
4.5. 3 

CHAPTER 5 

5. 1 
5 . 1 • 1 
5. 1 . 2 
5. 1 . 3 
5 . 1 • 4 
5.1 .5 
5. 1 .5. 1 
5.1.5.2 
5.1.5.3 
5.1.5.4 
5 - 1 .5.5 
5.1.5.6 
5.2 
5 . 2 • 1 
5.2.2 
5.2.3 
5.2.4 
5.2. 5 
5.2.5.1 
5.2.5.2 
5.2.5.3 
5.3 
5 . 3. 1 
5.3.2 

PROGRAM STRUCTURE 

THE PROCESSING UNIT . . . . . . . 4-1 
Syn tax .. . .. ...... . . 4-2 
Interpretation . . . . . . . . . . . . . 4-2 

IDENTIFICATION PART . . . . . . . 4-3 
Syntax .. . . . . .. . ........ 4-3 
Interpretation . . . . . . . . . . . . . 4-3 
Defaults ..... 4-4 
Guidelines . . . . 4-4 

TOC-LINES . . . . . .. .. 4-4 
Syntax ....... 4-5 
Interpretation . . .. ... . 4-6 

RADIX LINES. .. ........ . . 4-6 
Syntax .. . . . . 4-7 
Interpretation . . . . . . 4-7 
Defaults . . . . .. ... .. 4-7 
Discussion . . .. ......... 4-7 

LIST KEYWORDS. . ............. 4-8 
Syn tax . . . . . . . .. ... 4-8 
Interpretation . . . . . . . . . . 4-8 
Defaults . . . . . . ...... 4-8 

DEFINITIONS 

FIELD DEFINITIONS . . . . . . . 5-2 
Syntax .... . . .. ... 5-3 
Interpretation . . . . . . . 5-4 
Restrictions . . . .. .. 5-4 
Defaul ts . . . . . ...... 5-4 
Semantics . . . . . . . . ...... 5-4 

Field-Specs . . . . . . . . . . 5-5 
Contiguous-Bit Fields ... . . 5-5 
Non-Contiguous-Bit Fields. . ..... 5-5 
Overlapping Fields . . . . . 5-6 
Def81Jl t. Tni tial ization Pattern .. 5-7 
Oversize Field Values . . . . . . . . 5-8 

MACRO DEFINITIONS . . . . . . . 5-8 
Syn tax ..... . . . . . . . 5-9 
Interpretation .... ...... . 5-9 
Restrictions ... 5-10 
Defaults . . . . . . 5-10 
Semantics .................. 5-10 

Macro Expansion. . . 5-10 
Parameters . . . . . . 5-12 
Nested Macros. . ......... 5-13 

PREDEFINITIONS .............. 5-14 
Field Predefinitions .......... 5-14 
Macro Predefinitions . . . . ... 5-15 



CHAPTER 6 

6 • 1 
6 . 1 • 1 
6. 1 • 2 
6 • 1 • 3 
6.1 .4 
6.2 
6.2. 1 
6.2.2 
6.2.3 
6 .2. 4 
6.2. 5 
6.2.5.1 
6.2.5.2 
6.2.5.3 
6.2.5.4 
6.2.6 
6.2.6.1 
6.2.6.2 
6 .2. 7 
6. 3 

CHAPTER 7 

7 . 1 
7.2 

ACTIONS 

MICROINSTRUCTIONS . . . . . . . . 6-2 
Syn tax .......... .... . 6-3 
Interpretation . 6-3 
Restrictions . . . . . ..... 6-4 
Defaul ts . . . . 6-4 

TARGET ASSIGNMENT. . . . .. ... . 6-5 
Syn tax .. . . . . . . . . . . . . . . 6-6 
Interpretation ..... 6-7 
Restrictions . . . . . .. . ... 6-7 
Defaul ts .. . . . . . . . . 6-8 
Semantics . . . . . . . . . . . . 6-8 

Mask . . .. ....... . 6-8 
The Address-Range ......... 6-10 
The Scope Of The Target Assignment . 6-11 
Case-Microinstructions ..... 6-11 

Discussion . . . . . 
Looping ...... . 
Switching ..... . 

Guidelines ..... . 
THE ENTRY POINT MECHANISM 

EXAMPLES 

· 6-12 
. . . . . . . . 6- 12 
. . . . . . . . 6 -1 3 

· 6-13 
· 6-14 

EXAMPLE 1 - THRESHOLD CHECK .......... 7-1 
EXAMPLE 2 - MATRIX ADDITION .......... 7-5 





CHAPTER 2 

INTRODUCTION TO MICRO-11/60 

The MICRO-11/60 assembler converts microprograms written in its source 
language to absolute object code. The source language of MICRO-11/60 
allows the symbolic definition of fields and macros and the use of 
these names in specifying the actions to be performed by the 
microprogram. 

The MICRO-11/60 assembler performs two logical functions: translation 
and address selection. In translating names within a microinstruction 
to the appropriate set of bits, the assembler also performs valuable 
syntax and error checking. In assigning addresses, the assembler aids 
the programmer in laying out branches and allocating storage in an 
effective manner. 



MICRO-11/60 -- INTRODUCTION Page 2-2 

2.1 TRANSLATION 

To construct an object microprogram, the assembler interprets a source 
microprogram written in a language that defines and uses names to set 
the appropriate bits in the microwords of the program. Names, called 
field-names, are defined to identify a sequence of bits within the 
microword. For example, bits 41 through 44 can be associated with the 
field-name ALU by the following field-definition: 

.FIELD ALU ::= <41:44> 

Names, called field-value-names, then can be defined to represent some 
or all of the possible field values for the field. Field-value-names 
are specified following a field definition by a series of name and 
value pairs, connected by the characters":: =". For example: 

.FIELD ALU ::= <41:44> 
NOT-A : : = 00 
A-PLUS-B-PLUS-PS[C] 
NOT-A-AND-B ::= 02 
ZERO ::= 03 

.. -.. -

A-PLUS-B-PLUS-D[C] ::= 
A-PLUS-NOT-B-PLUS-D[C] 
A-XOR-B ::= 06 
A-AND-NOT-B ::= 01 
DIVIDE ::= 10 
A-PLUS-B : : = 11 
B ::= 12 
A-AND-B ::= 13 
A-PLUS-B-PLUS-1 : : = 14 
A-MINUS-B ::= 15 
A-IOR-B ::= 16 
A ::= 17 

01 

04 
: : = 05 

Then to set bits 47 through 44 to the value 10, the microprogrammer 
can write the field-setting: 

ALU/DIVIDE 

Since microprogrammers think in terms of symbolic names rather than 
bits, the above notation is considerably more convenient for the 
writer and understandable for the reader than the equivalent: 

<41:44>/11 



MICRO-11/60 -- INTRODUCTION Page 2-3 

In addition to this basic ability to refer to fields and their values 
symbolically, macros can be defined to produce a notation in which the 
functions of the microword, not the specific field-settings, are 
given. For example, to use the shift tree, a multiplexer selection 
for each stage of the shift tree must be specified. Consider the 
following macro: 

.MACRO D-RIGHT-14 ::= AEN/CMUX,AMUX/RIGHT-8,BMUX/RIGHT-4, 
ASEL/RIGHT-2 

The function performed by this macro is the shift of the D register to 
the right 14 places. To accomplish this, four field settings are 
required; however, once this macro is defined, the microprogrammer 
can simply write: 

D-RIGHT-14 

The above macro-call within a microinstruction is equivalent to 
setting the four fields shown in the macro definition, but is, again, 
more convenient and readable. 

2.1.1 The 11/60 Predefinitions 

The MICRO-11/60 assembler is a special version of the general 
assembler MICRO-11. MICRO-11/60 has been tailored for the needs of 
the 11/60 microprogrammer by a series of predefinitions, which define 
the fields of the 11/60 microword and which provide a set of macros 
that specify the logical functions performed in executing an 11/60 
microprogram. 

For most applications, the 11/60 microprogrammer need not write any 
additional field or macro definitions, but can work entirely in terms 
of the predefinitions provided. These predefinitions have been used, 
within DIGITAL, for several large microprograms and, in the course of 
use, have been refined several times. 

The philosophy of the predefinitions is described in Section 5.3 and a 
complete listing of the predefinitions, written in MICRO-11/60 
language, is given in Appendix B. The method for incorporating the 
predefinitions in the microprogram is described in Chapter 14. 



MICRO-11/60 -- INTRODUCTION Page 2-4 

2.2 ADDRESS ASSIGNMENT 

The 11/60 uses a chained sequencing method of addressing, as described 
in the "11/60 Microprogramming Specification". Each microinstruction 
contains the address of another microinstruction. The field that 
contains this address is called the Micro Pointer Field (UPF). If the 
microinstruction specifies an unconditional branch, then control 
passes to the microinstruction whose address is found in the UPF 
field. If the microinstruction specifies a conditional branch, then 
control passes to the microinstrction whose address is formed by 
OR-ing the output of the Branch Micro Test Multiplexer (BUT MUX) with 
the UPF field. 

The assembler, in the absence of any direction from the 
microprogrammer, assigns unconditional branch addresses and, with some 
help, assigns conditional branch targets. The following sections 
describe the address space, the algorithm used by the assembler in 
assigning addresses and the ways in which the microprogrammer can 
reserve and specify addresses. 

2.2.1 The Address Space 

The PDP-11/60 Writable Control Store consists of two pages. The first 
page occupies addresses 6000 through 6777 and the second page occupies 
addresses 7000 through 7777. The first 200 locations of the first 
page, that is 6000 through 6200, are reserved for the resident section 
of the Writable Control Store. The resident section is described in 
the "PDP-11/60 Microprogramming Specification". 

2.2.2 Address Assignment Algorithm 

The assembler selects addresses for assignment from an available 
address pool that is formed by considering all the addresses that lie 
between the bounds specified either by the predefinitions-file 
(6200:7777) or, if the predefinitions-file is not included, by the 
bounds given by the .BOUNDS keyword in the user-machine-definition. 
The assembler chooses the lowest address in the available address 
pool, assigns it to the current microinstruction, and removes the 
address from the available address pool. 



MICRO-11/60 -- INTRODUCTION Page 2-5 

The assembler only uses addresses from the available address pool that 
are on the current page. The current page can only be changed by an 
explicit address assignment from the microprogrammer. Initially, the 
assembler establishes the current page as the page that contains the 
first address assigned. Suppose, for example, the address space 
starts at 6200 and ends at 7777. The assembler chooses 6200 for the 
address of the first microinstruction, and, in this way, establishes 
the first page of the WCS as the current page. The assembler 
continues assigning addresses until 6777. If the microprogrammer does 
not change the page by assigning an address on the second page either 
before or at that point, then the assembler reports an addressing 
error for every subsequent microinstruction and assigns an address 
that has already been assigned to a previous microinstruction. 

2.2.3 Address Reservation 

The microprogrammer can reserve a set of addresses and, in this way, 
remove them from the available address pool. Section 6.2 of this 
manual describes the mechanism for reserving and using reserved 
addresses, called the target assignment construct. The target 
assignment construct is used to layout the branch targets for a 
conditional branch. 

2.2.4 Address Specification 

The microprogrammer can specify addresses explicitly, by simply 
preceding the microinstruction by an address. As noted earlier, such 
an explicit assignment is necessary to change the current page. 

However, if an address is not available when it is specified, then an 
error is reported and another address selected for the 
microinstruction. To determine whether an address will be available, 
the microprogrammer must consider the number of microinstructions that 
precede the microinstruction, the bounds of the microprogram, and the 
addresses reserved by the target assignment construct. Further, any 
changes to the microprogram can affect the availability of a 
particular address. If, for example, the microprogrammer adds several 
instructions before the given microinstruction or moves a 
branch-definition to an earlier point in the program, its specified 
address may become unavailable in the next assembly. 



MICRO-11/60 -- INTRODUCTION 

2.3 ERROR DETECTION AND CORRECTION 

MICRO-11/60 detects the errors described in Appendix E. 
caused either by invalid input or by system failures. 

Page 2-6 

Errors are 

Some errors are more devastating than others. A system failure 
usually causes the processing to cease and, in such a case, no useful 
results are obtained. Some user input errors render the remainder of 
the assembly useless. Some user input errors simply render the object 
module invalid. However, although the resulting object module cannot 
be loaded and executed, the results of the assembly can be examined 
for other problems. 

The devastating errors are usually the exception. Typically, in the 
course of the assembly, MICRO-11/60 detects a few trivial errors that 
can all be corrected before the next assembly. Moreover, MICRO-11/60 
tries to continue processing and produce a useful result in all cases. 
If the microprogrammer specifies an impossible action, the assembler 
tries to counter with a possible action in the hope that the result 
will be useful. For example, if the user specifies an address for a 
microinstruction and that address has already either been reserved or 
used, then the assembler reports the error and assigns the next 
available address. 

Most of the error messages are fairly self-explanatory. One of the 
most frequently encountered errors is Number 39 -- Syntax Error. If a 
syntax error is encountered in a line, usually the entire line is 
discarded, even though some useful information occurs before the 
syntactically incorrect item. When the line is discarded, sometimes 
other errors propagate from its absence and so the user should take 
into account the affect of the absence of a line with a syntax error, 
when studying the error messages produced as a result of an assembly. 

2.4 PRESENTATION 

The discussion of the MICRO-11/60 assembler is organized to begin with 
the smallest unit, the program element, and to proceed through the 
structure and parts of the microprogram to some complete examples, as 
discussed in the following paragraphs. 

The MICRO-11/60 assembler is a line-oriented processor, which accepts 
a sequence of input lines written in MICRO-11/60 source language and 
produces an object module that can be loaded into the 11/60 WCS. The 
elements of the source language are keywords, names, numbers, and 
separators. These program elements are described in Chapter 3. 



MICRO-11/60 -- INTRODUCTION Page 2-1 

The elements of the MICRO-11/60 source language are combined to form 
the processing-unit that MICRO-11/60 assembles to form an object 
module. The object module contains the microwords that, when loaded 
in the Writable Control Store, define the processing that is 
performed. The processing-unit is described in Chapter 4. 

The MICRO-11/60 processing unit consists of two parts, namely 
Definitions and Actions. The first part contains the definitions that 
associate symbolic names with fields, values, field-value pairs and 
groups of field-value pairs, so that the actions part of the 
microprogram can be written as a sequence of logical functions. The 
second part contains the actions that are performed as a result of 
executing the microprogram. Definitions are described in Chapter 5 
and actions in Chapter 6 of this part of the manual. 

Two complete microprograms are given in Chapter 1 to illustrate the 
use of the source language in writing microprograms. 





CHAPTER 3 

PROGRAM ELEMENTS 

A MICRO-11/60 microprogram is made up of a sequence of elements. 
These elements are keywords, names, values, and separators. 

The microprogrammer writes his program in terms of these program 
elements. He uses spaces, tabs, and blank lines to arrange the 
program in a clear and readable format and he uses comments to 
describe the working of the program. When MICRO-11/60 interprets his 
program, it uses these spaces or comments only to separate the 
elements of the program. The assembler then combines the language 
elements to form language constructs and interprets these constructs 
to produce the desired microprogram. 

As an example, consider the following program excerpt, taken from the 
microprogram in Section 7.1. 

! START OF LOOP TO CHECK EVERY POINT AGAINST THRESHOLD 

SRCHLP: 
.BEGIN:0[6240:6241] 

The first three lines are comments. The elements of the excerpt are 
as follows: 

Element Type 

SRCHLP name 
separator 

.BEGIN keyword 
: separator 
0 value 
[ separator 
6240 value 

separator 
6241 value 
] separator 

This chapter explains the elements of which a MICRO-11/60 microprogram 
is built. Keywords, names, values, and separators are presented. 
Then, the program line is considered. 



MICRO-11/60 -- PROGRAM ELEMENTS Page 3-2 

3.1 KEYWORDS 

The keywords of MICRO-11/60 are given in the following list. The 
purpose of each keyword is summarized here and treated in more detail 
in later sections. 

Keyword 

.TITLE 

. IDENT 

.BOUNDS 

.RADIX 

. TOC 

.NLIST 

. LIST 

.FIELD 

. MACRO 

.CODE 

.BEGIN 

. CASE 

.ENDB 

. END 

Purpose 

Provide microprogram identification . 

Provide microprogram version number. 

Delimit the address space to be used for the 
microprogram. 

Change the default number base that is 
assumed for values written without an 
explicit radix . 

Make a table of contents entry. 

Discontinue listing of assembled program on 
the listing file . 

Resume listing of the assembled program on 
the listing file. 

Define a field name and its associated field 
values . 

Define a macro. 

Indicate the beginning of the code portion of 
the microprogram. 

Identify and initiate a target assignment 
construct for conditional branching. 

Define a conditional branch target . 

Indicate the end of a target assignment 
construct. 

Indicate the end of the microprogram . 

All MICRO-11/60 keywords begin with the character period (.). A 
keyword must be given exactly as it is shown in the above list; 
otherwise, the assembler 1S unable to recognize the keyword and 
discards the line on which it appears as syntactically incorrect. 



MICRO-11/60 -- PROGRAM ELEMENTS Page 3-3 

3.2 NAMES 

A name in MICRO-11/60 can be composed of from 1 to 32 characters from 
the set of the characters given in Section 3.2.1, the first of which 
must be an alphabetic. Five types of names are distinguished by the 
MICRO-11/60 assembler: 

Field-name 

Description 

A name that identifies a set of bits within the 
microword. 

Field-value-name A name that represents a particular value for a 
given field. 

Macro-name 

Formal 

Label 

A name that identifies a macro. 

A name that is used within a macro-body to 
indicate a formal parameter. 

A name that is associated with 
microinstruction address. 

a specific 

A name must only be unique within its type. For example, a field-name 
must be unique from all other field-names but can be the same as a 
field-value-name, macro-name, formal, or label. 

The rules for forming a MICRO-11/60 name are given in the following 
syntax. Some valid MICRO-11/60 names are: 

ALPHA 

A123 

B 

THISISASYMBOLNAME 

THIS IS A SYMBOL NAME 

A 



MICRO-11/60 -- PROGRAM ELEMENTS Page 3-4 

3.2.1 Syntax 

name alphabetic { name-char } : 1 

name-char { rad ix-50-char I I % I [ I l} -

alphabetic {A t B I ... I z} 
radix-50-char { alphabetic I digit I $ I .} 
digit {o I 1 I ... , 

9 } 

3.2.2 Interpretation 

A name begins with an alphabetic character and continues until a 
separator is encountered. Separators are described in Section 3.4. 

3.3 VALUES 

A MICRO-11/60 value consists of a sequence of one or more digits. The 
digits are interpreted according to the implicit radix, which is 
assumed initially to be 8 and which can be reset by a .RADIX keyword. 

3.3.1 Syntax 

value { digit} : 

3.3.2 Restrictions And Defaults 

The maximum value for any number is 2**16 - 1. If a value greater 
than the maximum value is given, it is truncated; however, no error 
message is printed. Signed numbers are not accepted. 

The implicit radix is assumed to be 8, but each occurence of a .RADIX 
keyword changes the implicit radix. 



MICRO-11/60 -- PROGRAM ELEMENTS Page 3-5 

3.3.3 Interpretation 

A value is interpreted according to the implicit radix and represented 
in the number of bits specified by the context. If the value cannot 
be represented in that number of bits, then the value is truncated to 
the required number of bits. 

3.4 SEPARATORS AND DELIMITERS 

Some characters have special meaning to MICRO-11/60 as 
delimiters. The following list summarizes the 
delimiters, and gives, for each, its special meaning. 

separators or 
separators and 

Separator 

@ 

= 

: : = or . -. -

I 

" 

* 

(CR) 

(period) 

(at) 

(equals) 

(slash) 

(prime) 

(quote) 

(colon) 

(asterisk) 

(comma) 

(semicolon) 

( ex cl amation 
point) 

(carriage 
return) 

Meaning 

Used to indicate a keyword. 

Used to indicate a formal parameter 
in the macro-body of a macro 
definition. 

Used to initiate a constraint-string. 

Used to associate a meaning with a 
name for field definitions, macro 
definitions, and field settings. 

Used to separate a field-name from 
its value in a microinstruction. 

Used to indicate concatenation. 

Used to begin and end a 
string. 

quoted 

Used to terminate a label and an 
address. 

Used within a constraint string. 

Used to separate field-settings in a 
microinstruction or macro-body. 

Used to terminate a microinstruction. 

Used to begin a comment. 

Used to end a program line. 



MICRO-11/60 -- PROGRAM ELEMENTS Page 3-6 

3.5 THE PROGRAM LINE 

MICRO-11/60 is a line-oriented processor. It assumes that each 
program line contains a complete and coherent piece of microprogram. 

A program line can consist of from 1 to 120 characters. If the number 
of characters on a line is greater than 120 but less than 124, then 
any error messages associated with the line are lost. If the number 
of characters on a line exceeds 123, then the rest Df the listing is 
lost. 

Some of the MICRO-11/60 constructs must be expressed on a single line, 
namely: the text following the keywords .TITLE, .IDENT, .BOUNDS, 
.ENTRY, AND .ENDB. Other constructs are intrinsically multi-lined and 
each line expresses a particular part of the construct. 

The syntax for each construct expresses its representation on program 
lines. For example, consider the syntax of the field-definition. 

field-definition .FIELD field-name field-spec 

~ field-value-name value 1: 
.J 

This syntax indicates that a field-definition begins with a line that 
contains the keyword .FIELD followed by the field-name, followed by 
either the characters "::=" or the characters ":=", followed by the 
field-spec. Following that line, a sequence of lines that define 
field-value-names can be given. 

3.5.1 Comments 

Comments can be given on separate lines or at the end of any line. A 
comment is delimited by the character "!" on the left and the carriage 
return that ends the line on the right. 

The general form of a comment is: 

comment-text 

Comment text is reproduced by the assembler on the output listing, but 
the assembler does not interpret the comment-text in any way. Comment 
text can, therefore, appear at any point in the program and can 
consist of any set of characters. 



MICRO-11/60 -- PROGRAM ELEMENTS Page 3-7 

Some examples of comments are given in the following excerpt: 

ENTRY 
MATADD: 

P 1 , 
P2-T, 
P3, 
NEXT, 

POINT FOR MATRIX ADDITION 

CLK-BA,PC-A, 
A-PLUS-B,CSPB(TWO), 
WR(AB,L,A),DATI, 
J,MAT1 

!INITIATE MEM(PC) READ: 
!INCREMENT PC. 

The use of comments increases the readability of a microprogram. 
Chapter 7 of this manual contains two microprograms that are well 
documented by the use of comments. 

3.5.2 Spacing 

Spaces can be inserted between any of the units of the microprogram. 
The characters BLANK and TAB can be used to insert space within the 
program line and the character CARRIAGE RETURN can be used to irsert 
space between program lines. 

3.5.2.1 Inter-Line Spacing - As an example of the use of blanks and 
tabs for inter-line spacing, consider the following field defini~ion. 
First, without spacing, it looks like: 

.FIELD SWITCH ::= <22) 
OFF::=O 
ON: : = 1 

Then, after the addition of some spaces, it looks like: 

.FIELD 
OFF 
ON 

SWITCH 
: : = 0 
: : = 1 

.. -.. - <22) 

The field-value-names OFF and ON are started at the first tab to 
indicate their logical dependence on the line beginning with' .FIELD'. 
Blanks are used to line up the characters "::=" and the values for 
ease of reading. 



MICRO-11/60 -- PROGRAM ELEMENTS Page 3-8 

3.5.2.2 Intra-Line Spacing - Blank lines are used to separate logical 
sections of the microprogram. If, for example, the microprogram 
contains several field-definitions, then the readability of the 
program is improved by separating each field-definition from the one 
that follows by a blank line. For example: 

.FIELD 
OFF 
ON 

SWITCH 
: : = 0 
: : = 1 

.FIELD AFIELD 
ALPHA ::= 
BETA ::= 
GAMMA ::= 

o 
1 
4 

· . -· . - <22) 

· . -· . - <30:20) 



CHAPTER 4 

PROGRAM STRUCTURE 

This section describes the structure of an 11/60 microprogram. First, 
the basic processing unit is described. Then, the identification part 
of the microprogram is considered. Finally, the keyword lines that 
can appear at any point within the microprogram are given. 

4.1 THE PROCESSING UNIT 

The processing-unit of the MICRO-11/60 assembler is a microprogram. A 
microprogram consists of the two logical parts: definitions and 
actions. In the definition part, the 11/60 predefinitions, any 
program identification, user field definitions, and user macro 
definitions are specified. In the action part, the dispatch-file and 
the user microinstructions, written in terms of the names defined in 
the definition part, determine the processing that is performed when 
the microprogram is executed. 

As an example of a complete microprogram, consider the following: 

.TITLE 

.IDENT 
REGEX 
IREGEX11 

.CASE 0 OF DISPCH 
EXCHANGE: 

EXCH2: 

EXCH 3: 

.END 

P2-T, SR A,R3-A, 
NEXT, J /E"XCH2; 

P2-T, 
P3, 
NEXT, 

P2-T, 
P3, 
NEXT, 

D A,R2-A, 
WR(AB,L,B),R3-B, 
J/EXCH3; 

D SR, 
WR(AB,L,B),R2-B, 
BUT(SUBRB) ,PAGE(O), 
J/BRA05; 

!SAVE R3 

!MOVE R2 TO R3 

!MOVE SAVED R3 TO R2 



MICRO-11/60 -- PROGRAM STRUCTURE Page 4-2 

The above microprogram exchanges registers R2 and R3. The program 
uses only predefined field and macro names and, therefore, a 
user-definition part is not present. The action part of the program 
contains the identification lines, which provide title, version, and 
bounds information. The microinstructions determine the processing in 
the microprogram. This microprogram contains three microinstructions. 
The first microinstruction, labelled EXCHANGE, saves the contents of 
R3 in the shift register (SR). The second microinstruction, labelled 
EXCH2, moves the contents of R2 to R3 in both A and B scratchpads. 
The last microinstruction, EXCH3, moves the saved contents of R3 to R2 
in both scratchpads and returns to the base machine so that the next 
PDP-11 instruction can be processed. 

4.1.1 Syntax 

processing-unit predefinitions 

{ user-definitions} : 

dispatch-part 

action-part 

4.1.2 Interpretation 

The processing-unit consists of a sequence of lines that identify the 
microprogram and the constructs to be used in it, followed by a 
sequence of microinstructions that make up the program. The assembler 
uses the definitional part of the program to label and interpret the 
action part of the program. The assembler produces an object module 
that can be loaded into the Writable Control Store and executed. 



MICRO-11/60 -- PROGRAM STRUCTURE Page 4-3 

4.2 IDENTIFICATION PART 

The identification-part of a microprogram can appear in either the 
user-definition or action-part. It contains the .TITLE and .IDENT 
keywords. The .TITLE keyword associates a name with the program and 
the .IDENT keyword designates the current version number of the 
program. 

As an example of an identification-part, consider the following: 

.TITLE MATRIX PACKAGE 

.IDENT IMPV3AI 

The .TITLE keyword associates the name MATRIX with the microprogram 
and the .IDENT keyword indicates that the current version is MPV3A. 

4.2.1 Syntax 

identification-part .TITLE title-string 

.IDENT I ident-string I 

ti tl e-string } 

ident-string 
{ radix-50-char } ~4 

4.2.2 Interpretation 

The identification-part of a microprogram is interpreted as follows: 

The .TITLE line is used to associate an identifying title with 
the microprogram. The first six characters of the title-string, 
or, if a blank occurs in the first six characters, the characters 
preceding the blank are used as the title in the page heading on 
each page of the output listing and in the object module produced 
as a result of the assembly. 

The .IDENT line is used to associate a version number with the 
microprogram. The first six characters of the ident-string or 
the characters preceding the first blank are used as the version 
number in the object module produced as a result of the assembly. 

Although the .TITLE and .IDENT keywords are normally given only once, 
as the first two lines of the microprogram, they can be given at any 
point in the definition part or action part of the microprogram and 
can be repeated any number of times. In such a case, the last 
title-string or ident-string encountered is used. 



MICRO-11/60 -- PROGRAM STRUCTURE Page 4-4 

4.2.3 Defaults 

If the .TITLE keyword is not given, then a title consisting of 6 
blanks is assumed. 

If the .IDENT keyword is not given, then an ident-string consisting of 
6 blanks is assumed. 

4.2.4 Guidelines 

The title-string and ident-string are truncated after six characters 
or at the first blank or tab, whichever comes first. These strings 
therefore, should be chosen so that the part left after truncation is 
both unique and meaningful. The ident-string should be changed each 
time the microprogram is updated, so that different versions of the 
program are easily distinguishable. 

4.3 TOC-LINES 

A toc-line is used to identify a logical segment of the microprogram, 
just as a heading is used to identify a logical segment of a document. 
The assembler collects the toc-lines and prints them at the beginning 
of the output listing and, in this way, produces a table of contents 
for the listing. 

The following program excerpt illustrates the use of toc-lines: 

.TITLE MATRIX PACKAGE 

.IDENT IMPLL271 

.ENTRY MATPAK ::= 1 

.TOC *MATRIX PACKAGE 

.TOC * INITIALIZATION 

.TOC * OPERATION DISPATCH 

.TOC * MATRIX MULTIPLY 

.TOC * MATRIX ADD 

.TOC * MATRIX INVERT 

.TOC * FINALIZATION 



MICRO-11/60 -- PROGRAM STRUCTURE Page 4-5 

In the output listing, each line is numbered starting from 0001. 
Thus, the table of contents provides a quick reference to the 
appropriate line in the microprogram. The output listing for the 
above excerpt has the following form: 

TABLE OF CONTENTS 

4 *MATRIX PACKAGE 
5 * INITIALIZATION 

22 * OPERATION DISPATCH 
30 * MATRIX MULTIPLY 
79 * MATRIX ADD 

125 * MATRIX INVERT 
220 * FINALIZATION 

1 .TITLE MATRIX PACKAGE 
2 .IDENT IMPLL271 
3 .ENTRY MATPACK ::= 1 
4 .TOC *MATRIX PACKAGE 
5 .TOC * INITIALIZATION 

22 · TOC * OPERATION DISPATCH 

30 · TOC * MATRIX MULTIPLY 

79 .TOC * MATRIX ADD 

125 .TOC * MATRIX INVERT 

220 · TOC * FINALIZATION 

Observe that an interesting table of contents is constructed if the 
toc-lines are indented to indicate subordination. 

4.3.1 Syntax 

toc-line .TOC toc-string 

toc-string 
( } 64 t name-char 1 



MICRO-11/60 -- PROGRAM STRUCTURE Page 4-6 

4.3.2 Interpretation 

For each toc-line, the assembler creates a line of the form: 

line-number toc-string 

The assembler prints the created table of contents line at the 
beginning of the output listing. The toc-string is printed exactly as 
it appears in the input, including any leading spaces or tabs. 

4.4 RADIX LINES 

A radix-line is used to change the implicit radix. The implicit radix 
is the radix that is assumed for a value that appears in the program. 
The value '22', for example, is interpreted according to the implicit 
radix and, therefore, can be interpreted as an octal 22 at one point 
in the program and as a decimal 22 at another point. 

As an example of the use of radix-lines, consider the following 
microprogram excerpt: 

.TITLE ABC 

.IDENT IABCV11 

.FIELD FIELD1 ::= <10:5> 
VAL1 ::= 20 

.RADIX 10 

.FIELD2 ::= <22:10> 
Q1 ::= 12 

. CODE 
0022: 
E 1 : 

.END 
FIELD1 IVAL 1, 

OCTAL 20 

DECIMAL 12 

OCTAL 20 

The comments in the above microprogram indicate the radix according to 
which the value on the same line is interpreted. The implicit radix 
is assumed initially to be 8. Thus, the value of VAL1 is assumed to 
be an octal 20. When FIELD1 is set to VAL, the implicit radix is 10, 
but the value of VAL1 was established to be an octal 20 in the 
definition part of the program and, therefore, an octal 20 is assigned 
to that field. 



MICRO-11/60 -- PROGRAM STRUCTURE Page 4-1 

4.4.1 Syntax 

radix-line .RADIX radix 

radix {2 I 8 I 10 } 

4.4.2 Interpretation 

A radix-line changes the implicit radix to the radix specified in the 
line. All values are interpreted according to the implicit radix 
currently in effect. An implicit radix is in effect until another 
radix-line is encountered. 

4.4.3 Defaults 

The implicit radix is assumed initially to be 8. 

4.4.4 Discussion 

Only those syntactic units that are identified as values in the syntax 
are interpreted according to the implicit radix. Other numbers, such 
as addresses and bit specifiers, are not interpreted according to the 
implicit radix. An address, for example, is always interpreted as an 
octal-value and is so identified in the syntax. Similarly, a bit 
specifier is always interpreted as a decimal number. 



MICRO-11/60 -- PROGRAM STRUCTURE Page 4-8 

4.5 LIST KEYWORDS 

The list keywords are used in pairs to suppress part of the output 
listing produced as a result of assembling a microprogram. The .NLIST 
keyword directs the assembler to suppress listing until a .LIST 
keyword is encountered. The .LIST keyword directs the assembler to 
resume listing. 

Both files supplied by DIGITAL, the predefinitions file and the 
dispatch file, contain list keywords that prevent the listing of 
contents of these files as part of each microprogram assembly. The 
predefinitions file output, obtained separately without the use of 
list keywords, is reproduced in Appendix B; the dispatch file is 
reproduced in Appendix C. 

4.5.1 Syntax 

list-keywords 
{

.NLIST} 

.LIST 

4.5.2 Interpretation 

As part of the assembly process, MICRO-11/60 creates a listing file, 
as described in Section 14.4. If the assembler encounters a .NLIST 
keyword, it stops writing the listing file. If the assembler 
encounters a .LIST keyword, it resumes writing the listing file. 

The .NLIST and .LIST keywords scope the material that is to be 
suppressed. The list-keywords essentially change the listing mode of 
the assembler. If the assembler encounters a .LIST when it is in 
listing-mode, it effectively ignores that keyword. Similarly, if the 
assembler encounters a .NLIST when it is in suppress-listing-mode, it 
ignores the keyword. 

4.5.3 Defaults 

The default mode is listing-mode. 



CHAPTER 5 

DEFINITIONS 

The definitions part of a MICRO-11/60 microprogram identifies the 
microprogram and specifies the meanings of all names that are used. 
The definitions part consists of two units: the predefinitions 
supplied by DIGITAL and any user-definitions supplied by the 
programmer. The programmer can define names for fields in the 
microword and can define macros that set one or more of these fields. 
The choice of meaningful names and the specification of macros that 
perform logical functions enhance the readability of the microprogram. 

user-definitions 

r J field-definition 

Lmacro-definition } : 
The user-definition part of the microprogram is optional. The 
MICRO-11/60 assembler obtains from the predefinitions file knowledge 
of the name of each field, its position within the microword, its 
length, default setting, truncation mode, and associated 
field-value-names. Similarly, a set of macros to perform the logical 
functions associated with microprogramming the 11/60 is also 
predefined. Most microprograms are written exclusively in terms of 
these predefined fields and macros and, therefore, do not contain any 
field or macro definitions. 

Occasionally, however, the programmer wants to define a new field or a 
new set of macros for a special application. In such a case, the 
definition part of the microprogram contains the field or macro 
definition. In processing the definition part of the microprogram, 
the assembler assimilates the information in these definitions and 
adds that information to the body of predefined information for the 
duration of the assembly. 

This section describes the definition-part of a microprogram. First, 
field definitions are described. Then, macro definitions are given. 
Finally, predefinitions are discussed. 



MICRO-11/60 -- DEFINITIONS Page 5-2 

5.1 FIELD DEFINITIONS 

A field-definition is used to assign a mnemonic name to a set of bits 
within the microword and, further, to associate with that field a set 
of names that suggest the meanings of the values that the field can 
have. For example, consider the following definition of the Bus 
ENable field, taken from the 11/60 predefinitions: 

.FIELD BEN ::= <43:42> 
BS PLO :: = 0 
BS PHI :: = 1 
CSP ::= 2 
BASCON ::= 3 

The field BEN is predefined to occupy bits 43 and 42 of the microword 
and to have associated with it four field-value-names, namely: BSPLO, 
BSPHI, CSP, BASCON. The value of the BEN field controls the source 
that is enabled onto the BUS BIN, as described in the "11/60 
Microprogramming Specification". The definition of field-value-names 
allows the programmer to write the following field-setting in a 
microinstruction: 

BEN/BASCON 

The above field-setting assigns the value 3 to bits 43 through 42 and, 
further, describes the intent of that assignment, namely: to enable 
the BASe CONstant source onto BUS BIN. 

As another example, consider the following definition of the EMIT 
field, taken from the 11/60 predefinitions: 

.FIELD EMIT::= <47:44>'<41:30> 

The field EMIT is predefined to occupy bits 47 through 44 and bits 41 
through 30 of the microword. 



MICRO-11/60 -- DEFINITIONS 

5.1.1 Syntax 

field­
definition 

field-spec 

bit-spec 

bit-range 

default 

left-bit 1 
right-bit ( 

.../ 

field-value­
definition 

field-value) 
name 

field-name 

.FIELD field-name field-spec 

{ field-value-defini tion } : 

bit-spec 
\1 

defaul t j a 

{ bit-range}; 

< left-bit { . right-bit}: > 
'--

value 

[ decimal-digit} 2 
L 1 

field-value-name 

name 

Page 5-3 



MICRO-11/60 -- DEFINITIONS Page 5-4 

5.1.2 Interpretation 

A field-definition is interpreted as follows: 

The field-spec is evaluated and the designated bits are 
associated with the field-name. If a default value is given, 
then that default value becomes part of the default 
initialization pattern. 

The field-value-definitions are then processed. Each 
field-value-name and its assigned value, truncated, if necessary, 
according to the truncation mode, are associated with the 
field-name. Once specified in this way, a field-value-name can 
be used as part of a field-value-name/field-value pair to provide 
a value for a field. 

5.1.3 Restrictions 

The maximum field size that can be specified is 16 bits. Therefore, 
the bit spec must not specify a concatenation of bits such that the 
length of the field consisting of those bits exceeds 16. 

The maximum number of bit-ranges that can be given in a bit-spec is 
16. The limit on bit-ranges derives from the field size limit. 

Left-bit and right-bit in a bit-range must satisfy the following 
inequality: 

47 >= left-bit >= right-bit >= 0 

However, within a sequence of bit-ranges, the relationship 
bit-ranges is unspecified. For example, the 
"<12:10>'<30:26>'<6:5>" is perfectly valid. 

5.1.4 Defaults 

among the 
bit-spec 

If right-bit is omitted in a bit-spec, then the left-bit and right-bit 
are assumed to be the same and a field size of 1 is assumed. 

5.1.5 Semantics 

The following sections describe the detailed semantics of the 
field-definition. First, the field-spec is discussed with special 
attentiori being given to the topics of non-contiguous and overlapping 
bit fields. Then, the default initialization pattern is described. 



MICRO-11/60 -- DEFINITIONS Page 5-5 

5.1.5.1 Field-Specs - The field-spec gives the information necessary 
to define the field. It specifies the bits occupied, and, optionally, 
any default value. A field can be specified to be either a 
contiguous-bit field or a non-contiguous-bit field. 

5.1.5.2 Contiguous-Bit Fields - A contiguous-bit 
expressed by a single bit spec, as follows: 

.FIELD field-name ::= <left-bit:right-bit> 

The field is defined to occupy the contiguous set of 
with left-bit and proceeding through right-bit. 
contiguous bit field is calculated as follows: 

field-length = left-bit - right-bit + 1 

field can be 

bits starting 
The length of a 

An example of a contiguous-bit field is given by the following 
definition of the ALU field from the 11/60 predefinitions: 

.FIELD ALU ::= <47:44> 

The field ALU is defined to occupy bits 47 through 44 of the 
microword. The length of the ALU field is 4 bits. 

5.1.5.3 Non-Contiguous-Bit Fields - A non-contiguous-bit field can be 
expressed by concatenating two or more bit-specs, as follows: 

.FIELD field-name ::= <11:r1>'<12:r2>' ... '<ln:rn> 

Such a field occupies left-bit1 (11) through right-bit1 (r1), followed 
by left-bit2 (12) through right-bit2 (r2), and so on. The length of a 
non-contiguous-bit field is calculated by adding the lengths of the 
contiguous components. 

field-length = (11-r1+1)+(12-r2+1)+ ... +(ln-rn+1) 

An example of a non-contiguous-bit field is given by the following 
definition of the EMIT field from the 11/60 predefinitions: 

.FIELD EMIT .. -.. - <47:44>'<41:30> 

The field EMIT is defined to occupy bits 47 through 44 followed by 
bits 41 through 30 of the microword. The length of the EMIT field is 
16 bits. The bits occupied by the EMIT field are indicated in the 
following diagram by X. 

4 4 3 2 1 
765432109876543210987654321098765432109876543210 

XXXX XXXXXXXXXXXX 



MICRO-11/60 -- DEFINITIONS Page 5-6 

If the field-setting 'EMIT/65432' is given in a microinstruction, then 
the bits of the EMIT field are set as shown in the following diagram: 

4 4 321 
765432109876543210987654321098765432109876543210 

10110 101100011010 

5.1.5.4 Overlapping Fields - The MICRO-11/60 assembler allows the 
definition of overlapping fields and the redefinition of fields and 
subfields. This flexibility permits, for example, the different 
structures of the 11/60 microword to be expressed. 

For example, the definitions of the ALU and EMIT fields in the 11/60 
definition, as seen in the previous section, define overlapping 
fields. The ALU field is indicated by A and the EMIT field by E in 
the following diagram: 

4 4 321 
765432109876543210987654321098765432109876543210 

I 
AAAA 

. EEEE EEEEEEEEEEEE 

When a microword is executed, bit steering within the word determines 
the meaning of fields within the word. The assembler, however, does 
not attempt to determine if a microword is either complete or 
consistent. However, if the programmer attempts to set the same bit 
more than once in a microword, the assembler reports an error. 
Consider, for example, a microinstruction that, by mistake, sets both 
the ALU and EMIT fields, as follows: 

EMIT/65432,ALU/17 

The EMIT field-setting is processed first and, as a result, the bits 
are set as shown in the previous section. Then the ALU field setting 
is processed and bits 47 through 44. An error is reported. However, 
if the inconsistent field settings do not involve overlapping fields, 
the assembler is unaware of any problem. 



MICRO-11/60 -- DEFINITIONS Page 5-7 

5.1.5.5 Default Initialization Pattern - The pattern that is used to 
initialize each word in the microprogram before the explicit 
field-settings are processed is called the default initialization 
pattern. This pattern is constructed from the defaults specified for 
field-definitions. 

The construction of the default initialization pattern starts with a 
word that consists of 48 zeros. When field-definitions are processed, 
any default values are set in the default initialization pattern. 

Since the MICRO-11/60 assembler reads the 11/60 predefinitions first, 
the default initialization pattern is the pattern that exists after 
processing the defaults in the predefinitions. The only predefined 
field that has a non-zero default is the UBF field, which is defined 
as follows: 

.FIELD UBF ::= <13,9>,30 

Therefore, the default initialization pattern after considering the 
predefinition is: 

4 4 3 2 1 
765432109876543210987654321098765432109876543210 

000000000000000000000000000000000011000000000000 

If the programmer adds a field-definition with default value, then 
this default is logically ORed with the default pattern and the result 
of that operation becomes the new default pattern. Suppose, for 
example, the programmer adds the following: 

.FIELD ALPHA ::= <2:0>,2 

.FIELD BETA ::= <47:40>,25 

Then the default initialization pattern becomes: 

4 4 3 2 1 
765432109876543210987654321098765432109876543210 

000101010000000000000000000000000011000000000010 

The default pattern, therefore, is the word formed by the logical OR 
of all defaults given. If two fields overlap, only one field should 
be assigned a default value. 

If the default value requires more bits for its representation than 
are present in the associated field, the default value is truncated 
and no error message is reported. 



MICRO-11/60 -- DEFINITIONS Page 5-8 

5.1.5.6 Oversize Field Values - When a value that requires more bits 
than are present in a field is assigned to that field, then the high 
order bits are truncated. For example, suppose the following 
field-setting is given by mistake: 

ALU/32 

As previously noted, the ALU field is 4 bits long. However, the value 
32, interpreted according to the implicit radix 8, requires 5 bits for 
its representation. The assembler truncates the high order 1 and 
assigns the value 12 to the ALU Field and no error is reported. 

5.2 MACRO DEFINITIONS 

A macro-definition is used to obtain a convenient and readable 
notation for a commonly performed operation. For example, consider 
the following macro definition, taken from the 11160 predefinitions: 

.MACRO DIVIDE .. -.. - ALU/DIVIDE 

This definition allows the programmer 
within a microinstruction instead 
ALU/DIVIDE. 

to write the string DIVIDE 
of the more lengthy string 

Often, macro definitions are written that combine the setting of 
several related fields. For example, consider the following: 

.MACRO D-RIGHT-14 .. -.. - AEN/CMUX,AMUX/RIGHT-8,BMUX/RIGHT-4, 
ASEL/RIGHT-2 

The programmer can write D-RIGHT-14 within a microinstruction to shift 
D to the right by 14. The assembler replaces the macro-call 
'D-RIGHT-14' by the macro body and the fields to accomplish that shift 
are set appropriately. 



MICRO-11/60 -- DEFINITIONS Page 5-9 

5.2.1 Syntax 

macro-definition .MACRO macro-name { ( { fOrr.1al} ~ ) }~ 

macro-body 

macro-body-part 

value-spec 

macro-call 

actual 

macro-name} 
formal . 
field-name 

5.2.2 Interpretation 

1 macro-body 

J 

{ macro-body-part } ~ 

{

field-name 

macro-call 

I value-spec L 
r~ 

.../ 

{field-value-name I value I @ formal} 

macro-name {( { actual} ~ ) 

{name I @ formal} 

name 

A macro-definition is interpreted as follows: 

The macro-body is associated with the macro-name so that when a 
macro-call is encountered, the macro-body, with any formals 
replaced by actuals, replaces the macro-call. 

A macro-call is interpreted as follows: 

The macro-body associated with the macro-name is copied, and the 
formal parameters in the macro-body are replaced by the 
actual-parameters in the macro-call, the i'th formal being 
replaced by the i'th actual. Any excess actual parameters are 
discarded. 



MICRO-11/60 -- DEFINITIONS Page 5-10 

5.2.3 Restrictions 

Macros must not be defined to be recursive. That is, the definition 
of a macro must not contain a calIon itself or a calIon another 
macro that ultimately results in a calIon itself. 

The substitution of an actual for a formal must result in a correct 
syntactic unit. For example, the actual that replaces a formal in a 
field-identifier must be a field-name. 

5.2.4 Defaults 

If an actual is not given for each formal, then sufficient actual 
parameters with the value 0 to provide for the defined formals are 
assumed to follow the explicitly given actuals. 

5.2.5 Semantics 

The detailed semantics of macro-definition and use are considered in 
the following sections. First, macro expansion is described for the 
simplest case, in which the macro-definition has no parameters. Then, 
parameters are considered. Finally, the nesting of macros is 
described. 

5.2.5.1 Macro Expansion - The replacement of a macro-call by 
macro-body associated with that macro is called macro expansion. 
the assembler encounters a macro-call within a microinstruction, 
replaces the macro-call by the macro-body and then processes 
macro-body. For example, consider the following macro-definition: 

.MACRO ALPHA ::= AFLD/10,BFLD/20 

the 
When 

it 
the 



MICRO-11/60 -- DEFINITIONS Page 5-11 

Suppose that the macro is called within a microinstruction as follows: 

L 1 : 
CFLD/10,ALPHA,DFLD/5 

The assembler first processes the field-setting CFLD/10. Then, when 
it encounters the macro-call ALPHA, it replaces the call by the 
macro-body AFLD/10,BFLD/20, processes the field· Jetting AFLD/10, then 
the field-setting BFLD/20, and finally the fiel ··setting DFLD/5. 

The text of the macro-body is not interpreted until it is expanded and 
therefore, it is understood in the context of the point at which it is 
expanded. The implicit radix is an example of the context of 
interpretation. Suppose the macro ALPHA is defined when the implicit 
radix is 8 and called first when the radix is 10 and again when the 
radix is 8 as follows: 

.RADIX 8 

.MACRO ALPHA 

.CODE 

.RADIX 10 
L2: 

ALPHA; 

.RADIX 8 
L 3: 

ALPHA; 

.. -.. - AFLD/10,BFLD/20 

Because the macro-body is not interpreted when it i3 defined, the 
implicit radix at that point is irrelevant. For microinstruction L2, 
ALPHA is expanded and interpreted when the implicit radix is 10 and 
therefore AFLD is set to a decimal 10 and BFLD to a decimal 20. For 
microinstruction L3, ALPHA is expanded and interpreted when the 
implicit radix is 8 and AFLD and BFLD are set to octal 10 and octal 20 
respectively. 



MICRO-11/60 -- DEFINITIONS Page 5-12 

5.2.5.2 Parameters - The simplest case of a macro-definition is the 
case in which no parameters are defined. In that case, the macro-call 
simply consists of the macro-name. However, when a macro is defined 
with parameters, it is possible to specify a more general and powerful 
substitution. 

The formal parameters of a macro definition are identified within 
parentheses following the macro-name and then indicated within the 
text of the macro-body by the character '@'. As an example of a 
macro-definition with parameters, consider the following: 

.MACRO BETA(X,Y) ::= AFLD/@X,BFLD/@Y 

The formal parameters of the macro definition are X and Y. The 
position of X and Y within the parentheses in the macro-definition is 
important. When a call is made on the macro, the actual parameters in 
the call are associated with the formal parameters positionally. That 
is, the first actual is associated with the first formal, the second 
actual with the second formal, and so on. Consider the following 
macro-call: 

BETA(C,D) 

The actual parameters of the call are C and D. The expansion of the 
macro-call is: 

AFLD/C,BFLD/D 

The first actual C is associated with the first formal X and the 
second actual D with the second formal Y. 

If more actuals than formals are given, then the extra actuals are 
discarded. If fewer actuals than formals are given, then the missing 
actuals are assumed to be zero. If a null actual is specified, then 
that actual is assumed to be zero. Some examples follow to illustrate 
these cases: 

Macro-Call 

BETA(C,D,E) 
BETA(D,E) 
BETA(F) 
BETA(,G) 
BETA() 
BETA 

Macro Expansion 

AFLD/C,BFLD/D 
AFLD/D,BFLD/E 
AFLD/F,BFLD/O 
AFLD/O,BFLD/G 
AFLD/O,BFLD/O 
AFLD/O,BFLD/O 



MICRO-11/60 DEFINITIONS Page 5-13 

A formal parameter is only defined within the macro-body associated 
with the macro-definition. Further, within the macro-body, the formal 
must be preceded by the character '@'. Consider the following 
microprogram excerpt: 

.FIELD F1 ::= <24:22> 
A :: = 1 
B :: = 2 

.MACRO GAMMA(A,B,C) ::= F1/A,F2/@A,F3/@B,F4/@C 

.CODE 
L1: 

GAMMA (G , H, I) ; 

.END 

The expansion of the macro GAMMA in microinstruction L1 produces the 
following string: 

F1/A,F2/G,F3/H,F4/I 

The symbol A is interpreted first as a field-value-name. Then, when 
it is preceded by an '@', it is interpreted as the first formal 
parameter. 

5.2.5.3 Nested Macros - The macro-body of a macro definition can 
contain calls on other macros. As an example, consider the following 
macro-definition from the 11/60 predefinitions: 

.MACRO ASPLO[OO] D ::= ASP(ROO),WR(A,L,A) 

.MACRO ASP(XX) ::= ASEL/@XX,RIF/@XX 

.MACRO WR(AB,HL,ADDR) ::= MOD/CLKSP,WRSP/@AB,HILOI@HL,WRSEL/@ADDR 

The macro ASPLO[OO]_D is equivalent to the following string: 

ASEL/ROO,RIF/ROO,MOD/CLKSP/WRSP/A,HILO/L,WRSEL/A 

As another example, consider the following set of macro definitions: 

.MACRO ALPHA(A) ::= FLDI@A,BETA(@A,B) 

.MACRO BETA(X,Y) ::= XYZ/@X,GAMMA(Q,R,S) 

.MACRO GAMMA(X,Y,Z)::= AFLD/@X,BFLD/@Y,CFLD/@Z 

The macro-call ALPHA(AC) is expanded as follows: 

FLD/AC,BETA(AC,B) 

XYZ/AC,GAMMA(Q,R,S) 

AFLD/Q,BFLD/R,CFLD/S 

Thus, the final string is: 

FLD/AC,XYZ/AC,AFLD/Q,BFLD/R,CFLD/S 



MICRO-11/60 -- DEFINITIONS Page 5-14 

5.3 PREDEFINITIONS 

The 11/60 predefinitions give a set of field and macro definitions 
that are sufficient for most 11/60 microprograms. The complete set of 
predefinitions, in MICRO-11/60 source, is given in Appendix B of this 
manual. The predefinitions-file is part of the input to a normal 
MICRO-11/60 assembly, as described in Chapter 14. 

5.3.1 Field Predefinitions 

The field predefinitions specify all the field names for the 11/60 
microword. In addition, for each field-name, a set of 
field-value-names is defined. These names are selected to provide 
convenient mnemonics for the value of the field. For example, 
consider the following predefinition for the ALU field: 

.FIELD ALU ::= <47:44> 
NOT-A ::= 00 
A-PLUS-B-PLUS-PS C 
NOT-A-AND-B ::= 02 
ZERO ::= 03 
A-PLUS-B-PLUS-D C 
A-PLUS-NOT-B-PLUS-D C 
A-XOR-B :: = 06 
A-AND-NOT-B ::= 07 
D I VI DE : : = 1 0 
A-PLUS-B ::= 11 
B ::= 12 

.. -.. -

A-AND-B :: = 1 3 
A-PLUS-B-PLUS-1 .. - 14 
A-MINUS-B ::= 15 
A-IOR-B ::= 16 
A ::= 17 

01 

04 
::= 05 

Note that the field-value-names correspond closely to the verbal 
definition given for the field value in Table 2-1 of the "PDP-11/60 
Microprogramming Specification". 



MICRO-11/60 -- DEFINITIONS Page 5-15 

When several choices for a field-value-name are possible, the 
predefinitions provide all the names as a convenience for the 
microprogrammer, who can then use the name that seems most logical to 
him. As an example, consider the following predefinition: 

.FIELD WRSP ::= <16:15> 
NOP::=O 
WR-A::=1 

A: : = 1 
ASP::=1 

WR-B::=2 
B: : =2 
BSP: :=2 

WR-A-AND-B: : =3 
AB: : =3 
BA: : =3 
ABSP::=3 
BASP: :=3 
BOTH: : =3 

NO ASP/BSP REWRITE 
WRITE ASP ONLY, ON P3 120-150 NS. 

WRITE BSP ONLY, ON P3 120-150 NS. 

WRITE BOTH ON P3 

To set the WRSP field so that both scratchpads are written, the 
microprogrammer can write any of the following field-settings: 

WRSP/WR-A-AND-B 
WRSP/ABSP 

WRSP/AB 
WRSP/BASP 

WRSP/BA 
WRSP/BOTH 

5.3.2 Macro Predefinitions 

The macro predefinitions provide a language for microprogramming the 
11/60. A macro is predefined for each logical function that the 
microprogrammer wants to perform. 

Macros are defined to supply a convenient name for a field-setting. 
For example: 

.MACRO CLK-SR .. -.. - CLKSR/YES 

Macros are predefined to set the several associated fields that must 
be specified to perform a logical function. For example, to write a 
scratch pad, the MOD field must be 0; the WRSP must be set to 1 to 
write A, 2 to write B, or 3 to write both; the WRSEL field must 
specify the address to be used; and HILO must specify the section of 
the scratchpad. To do this, the following macro is predefined: 

.MACRO WR(AB,HL,ADDR) ::= MOD/CLKSP, 
WRSP/@AB, 
HILO,@HL, 
WRSEL/@ADDR 



MICRO-11/60 -- DEFINITIONS Page 5-16 

A calIon this macro sets the four fields necessary. For example: 

WR(AB,L,A) 

This macro-call sets the MOD field to 0, the WRSP field to AB to write 
both scratchpads, the HILO field to L to indicate the low section, and 
the WRSEL field to specify the A address. 



CHAPTER 6 

ACTIONS 

The microcode-part contains the actions of the microprogram. The 
microcode-part of the program consists of two units: the 
dispatch-file supplied by DIGITAL and the action-part supplied by the 
programmer. These actions determine the processing that is performed 
when the microprogram is executed. 

The action-part begins with the dispatch-file, which contains the 
.CODE keyword, continues with the user-actions, and ends with the 
keyword .END. The dispatch-file is given in Appendix C; it provides 
a dispatch table to be used as an entry point mechanism. The 
user-actions are given in the following syntax. 

user-actions 

action-item 

r 

~action-item 

.END 

} 
(microinstruction 

n 

J branch-definition 

case-microinstruction 

end-definition 
~ 

The following sections describe the microinstruction, the 
target-assignment construct and the entry point mechanism. The 
branch-definition, case-microinstruction, and end-definition are parts 
of the target-assignment construct. The entry point mechanism is an 
application of the target assignment construct. 



MICRO-11/60 -- ACTIONS Page 6-2 

6.1 MICROINSTRUCTIONS 

The microinstruction is the basic unit of the microprogram. It 
contains the information necessary to set the bits in the microword. 
As an example of a microinstruction, consider the following: 

ALPHA: 
P 1 , 
P2-T, 
P3, 
NEXT, 

CLK-BA,PC-A, 
A-PLUS-B,CLK-D,CSPB(TWO) , 
WR(AB,L,A),DATI, 
J/BETA; 

As described in the previous section on "Definitions", this 
microinstruction is made up of predefined macros. When these macros 
are expanded, the instruction has the following form: 

ALPHA: 
CLKBA/YES, 
AEN/ASPLO,ASEL/R07,RIF/R07, 
ALU/A-PLUS-B,CLKD/YES,BEN/BASCON,BSEL/TWO 
MOD/CLKSP,WRSP/AB,HILO/L,WRSEL/A,BEGIN/YES, 

SELECT/BUS,BUSCODE/DATI, 
J/BETA; 

The expanded microinstruction consists of predefined field-namel 
field-value-name pairs. The field-name defines the position within 
the microword and the field-value-name gives the value to be inserted 
in that field. The assembler initializes the microword to the default 
value and then fills in the fields as indicated to form the following 
microword: 

4 4 3 2 1 
765432109876543210987654321098765432109876543210 

100111111001111 1 0110 

I I I I I I 
I I I I I I 

ALU I BSELI CLKD 
I 
I 

I 
I 

BEN 
I I 
I I 
I I 
I I 
I I 
I I 

CLKBA I 

AEN 
I 
I 

I 
I 

BEGIN 

00110 

I I I 
I I I 

I I MOD 
I I 
I I 

IWRSP 
I 
I 

WRSEL 

ASEL SELECT HILO 
I 
I 

RIF 
I 
I 

BUSCODE 

001001110 

I 
I 

J 



MICRO-11/60 -- ACTIONS Page 6-3 

6.1.1 Syntax 

microinstruction f 

:} : { address 

{ label : } ~ 
{ instruction-part} ~ , 

{ field-name / field-value} 
instruction-part 

macro-call 

field-value { field-value-name I value} 

macro-call macro-name {< { actual } ~ ) } ~ 
field-name ~ 
field-value-name 
macro-name name 
actual 
label 

address octal-value 

6.1.2 Interpretation 

A microinstruction is interpreted as follows: 

If an address is specified and the address is both valid and 
available, then it is assigned to the microinstruction. If an address 
is not specified, then the assembler selects the first available 
address within the specified bounds on the current page from the 
available address pool and assigns that address to the 
microinstruction. The address assigned either explicitly or by the 
assembler is removed from the available address pool. 

If a label is specified, the label is associated with the assigned 
address. 



MICRO-11/60 -- ACTIONS Page 6-4 

The microword is initialized to the default pattern, calculated by the 
logical ORing together of all the field defaults, as described in 
Section 5.1.5.5. 

The lines of the microinstruction are processed from left to right. 
In this processing, any macros encountered are expanded and 
field-name/field-value pairs evaluated. The specified values are set 
into the specified fields of the microword. If a microinstruction 
line ends with the',' delimiter, then another microinstruction line 
is processed as part of the current microinstruction. However, if the 
microinstruction line ends with either the ';' delimiter or a blank, 
then the current microinstruction is assumed to be complete and the 
next microinstruction line is assumed to start a new microinstruction. 

6.1.3 Restrictions 

The address specified for a microinstruction must lie within the range 
6200 through 7777. 

The field-setting 
microinstruction 
microinstruction. 

that 
'J/N' 

gives 
must 

the 
be 

jump address for the 
the last field-setting in 

next 
the 

A line within a microinstruction can contain one or more 
instruction-parts. The comma separator indicates that more 
instruction-parts for the microinstruction follow. The semicolon 
separator indicates that the line terminates the microinstruction. 

A field-value-name specified in an instruction-part must be one of the 
field-value-names defined for the field-name in a field-setting of a 
.FIELD definition. 

The maximum field size that can be specified is 16 bits. 

6.1.4 Defaults 

If a line does not end with a separator, then the separator semicolon, 
which indicates the end of the microinstruction, is assumed. 

If a macro-call contains fewer actual parameters than the number of 
formal parameters specified in the macro definition of the macro-name, 
then as many additional actual parameters as necessary, with the value 
0, are assumed to follow the given actuals in the macro-call. If a 
macro-call contains more actual parameters than the number of formals 
specified, the extra actuals are discarded. 



MICRO-11/60 -- ACTIONS Page 6-5 

6.2 TARGET ASSIGNMENT 

The MICRO-11/60 assembler provides a construct for specifying the 
targets of a conditional branch, namely: the target assignment 
construct. Conditional branching is accomplished in 11/60 
microprograms by combining the output of the Branch Micro Test 
Multiplexer (BUT MUX) with the contents of the Microbranch field (UBF) 
by a logical OR operation. 

The target assignment construct allows the programmer to specify a 
base address (the contents of the UBF field) and the offset (output of 
~BOT MUX) for each target associated with that base address. As an 
example of the use of the target assignment, consider the following 
microprogram excerpt, which expresses a four-way conditional branch. 

ALPHA: 
.BEGIN=OO 

A: 
NEXT, BUT(D14-00-EQ-0 D15), 

J/AO; 

.CASE 0 OF ALPHA 
AO: 

NEXT, JIB; 

.CASE 1 OF ALPHA 
A1: 

P2-T, D_A-PLUS-B, 
R3-A,CSPB(ONE), 

P3, WR(AB,L,A), 
NEXT, JIB; 

.CASE 2 OF ALPHA 
A2 : 

NEXT, JIB; 

.CASE 3 OF ALPHA 
A3 : 

NEXT, J/ERR; 

.ENDB ALPHA 

BRANCH ON 
POS, NEG, ZERO, NEGZERO 

POSITIVE DIFFERENCE 
NO ACTION 

NEGATIVE DIFFERENCE 
HIT COUNTER 

ZERO DIFFERENCE 
NO ACTION 

NEGATIVE ZERO 
ERROR 

In this excerpt, the four targets of the conditional branch are AO, 
A1, A2, and A3. The conditional branch instruction, labelled A, 
branches to the base address AO. The target-assignment construct 
begins with the line containing the .BEGIN construct, which 
establishes the name ALPHA, defines the offsets associated with that 
name, and allocates the target addresses. The lines containing the 
.CASE keyword then associate the possible targets of the conditional 
branch with one another and with the offset information. The 
target-assignment construct ends with the line containing the .ENDB 
keyword. 



MICRO-11/60 -- ACTIONS Page 6-6 

The information in the target-assignment construct allows the 
assembler to assign to each of the microinstructions designated as a 
branch target the address that is formed by OR-ing the base address 
with the offset indicated by the case number. For example, if the 
assembler selects the address 6140 for the base address, then the 
other targets are assigned as follows: 

Target 

AO 
A1 
A2 
A3 

Case Number 

o 
1 
2 
3 

Offset 

00 
01 
10 
11 

Address 

6140 
6141 
6142 
6143 

This address assignment accomplishes the desired conditional branch 
for microinstruction A. 

6.2.1 Syntax 

branch-definition branch-label : 

.BEGIN = constraint 

constraint mask { [ low-address : high-address 
] }: 

mask {o I 1 I * } :6 

case- .CASE case-number OF branch-label 
microinstruction 

microinstruction 

end-definition .ENDB branch-label 

low-address } 
octal-integer 

high-address 

case-number decimal-integer 

branch-label name 



MICRO-11/60 -- ACTIONS Page 6-7 

6.2.2 Interpretation 

The interpretation of a target-assignment construct starts with the 
branch-definition. The constraint string is examined to determine the 
number of possible targets and the requirements on the base-address. 
A set of targets satisfying the mask is selected from the available 
addresses on the current page. The number of characters in the mask 
specifies the number of bits that are constrained in the address. 

The assembler selects a base address that has O's in the positions 
indicated by 0, 1 's in the positions indicated by 1, and either 0 or 1 
in the positions indicated by *. CASE 0 uses the base address. The 
remaining cases systematically use bit positions indicated by 0 in the 
mask. If an address-range is specified, the set of targets is 
selected from the given range and allocated. The set of reserved 
addresses and the constraint string are associated with the 
branch-label. 

A case-microinstruction for a given branch-label 
address by using the case-number to determine 
appropriate offset and then OR-ing that offset with 
The processing of the case-microinstruction 
assignment is exactly the same as that 
microinstruction. 

is assigned an 
from the mask the 

the base- address. 
following address 
of an ordinary 

The interpretation of a target-assignment construct ends with the 
end-definition. If any of the addresses in the set of addresses 
associated with the branch-label has not been allocated as the result 
of interpreting a case-microinstruction, then the address is returned 
to the available address pool when the end-definition is processed. 

6.2.3 Restrictions 

A case-microinstruction for a given branch-label must be given 
within that branch-label's scope, which is delimited by 
branch-definition and end-definition for that label. 

The number of O's, k, in a mask must lie in the range: 

1 <= k <= 7 

only 
the 



MICRO-11/60 -- ACTIONS Page 6-8 

The case-number must lie within the range of values specified by the 
constraint given in the branch-definition for the associated 
branch-label. That is, the case-number, n, must lie in the range: 

o <= n <= 2**k - 1 

The low-address must specify an address that is a legal base address 
for the given constraint. The high-address must specify an address 
that is greater than or equal to the highest possible constraint 
address. 

An address must not be specified for a case-microinstruction. 

The base address must be defined. That is, a case-microinstruction 
for case-number 0 must always be given. 

6.2.4 Defaults 

If an end-definition is not given for a branch-label, then the scope 
of the branch-label is assumed to extend to the end of the 
microprogram. 

6.2.5 Semantics 

The detailed semantics of the constraint, the address-range, 
target-assignment scope and ease-microinstruction are discussed in the 
following sections. 

6.2.5.1 Mask - The mask specifies the set of possible bits that can 
be combined with a base-address by an OR operation to form the targets 
of a conditional branch. The number of O's, k, in the mask determines 
the total number of possible branch targets, 2**k, and the position of 
the O's within the mask determines the set of possible addresses that 
can be used for the targets. 



MICRO-11/60 -- ACTIONS Page 6-9 

For example, consider the following branch-definition: 

BETA: 
.BEGIN=010 

The mask is '010'. The mask contains two O's; consequently, four 
targets are possible. The mask contains a in the second bit 
position; consequently, any address within the program bounds on the 
current page that ends with 2 is a candidate for the base address. If 
the current page begins with 6000 and ends with 6777 and the program 
bounds are specified to be 6200 through 7777, then the following 
addresses are all potential base addresses: 

6202 6212 6222 6232 6242 6252 6262 6272 
6302 

6702 6712 6722 6732 6742 6752 6762 6772 

The assembler, in 
above addresses 
can be OR-ed with 
also unallocated. 
base address, the 

Base Address 

6242 
6242 
6242 
6242 

choosing a base address, determines which of the 
are not yet allocated and of those addresses, which 
the possible offsets to produce addresses that are 

That is, in order to select the address 6242 as the 
following target addresses must all be free: 

Offset 

010 
011 
110 
111 

Target Address 

6242 
6243 
6246 
6247 

If the assembler cannot find a set of addresses to satisfy the target 
assignment construct, then an error is reported and the assembly 
continues, but a valid load module cannot be produced. 

Each character in a mask has a specific meaning as follows: 

Character Meaning 

0 The base address should have a 0 in this position. 

The base address should have a in this position. 

* The base address can have a 0 or in this 
position. 



MICRO-11/60 -- ACTIONS Page 6-10 

The asterisk (*) character allows the programmer to indicate bits that 
are known to always be 0 in the BUT MUX output for this branch and, in 
this way, to allow the assembler more freedom in its choice of 
addresses. If, in the example just given, an asterisk rather than a 1 
is given in the branch-definition, then the number of potential base 
addresses doubles, as follows: 

6200 6210 
6202 6212 

6300 
6302 

6700 
6702 

6710 
6712 

6220 6230 
6222 6232 

6720 
6722 

6730 
6732 

6240 
6242 

6740 
6742 

6250 
6252 

6750 
6752 

6262 
6262 

6760 
6762 

6270 
6272 

6770 
6772 

6.2.5.2 The Address-Range - The address-range is used to specify the 
range of addresses from which the targets of the target-assignment 
construct are to be chosen. If the programmer wants to absolutely 
assign the targets, then he can specify the base-address as 
low-address and the target that is formed by OR-ing a string in which 
each 0 of the mask is replaced by a 1 with the base-address as 
high-address. As an example of absolute assignment, consider the 
following branch-definition. 

GAMMA: 
.BEGIN=00101[6205,6237] 

The base-address associated with GAMMA is 6105 and the targets are 
assigned as follows: 

Case Offset Address 

0 00101 6205 
1 00111 6207 
2 01101 6215 
3 01111 6217 
4 10101 6225 
5 10111 6227 
6 11101 6235 
7 11111 6237 

If any of these addresses is not free when the branch-definition given 
above is processed, then an error is reported and the assembly 
continues, but the resulting load module cannot be used. 



MICRO-11/60 -- ACTIONS Page 6-11 

6.2.5.3 The Scope Of The Target Assignment Construct - The scope of 
the target assignment construct starts with the branch-definition and 
ends either with the end-definition for the branch-label or, if an 
end-definition is not given, with the end of the microprogram. 

A case-microinstruction for a given branch-label is only valid within 
the scope of its definition. For example: 

DELTA: 
.BEGIN=0010 

.CASE 3 OF DELTA 
D3: 

.CASE 0 OF DELTA 
DO: 

.ENDB DELTA 

.CASE 2 OF DELTA 
D2: 

The case-microinstructions for D3 and DO lie within the scope of DELTA 
in the above example and are, therefore, interpreted correctly. The 
case-microinstruction for D2, however, lies outside the scope of DELTA 
and therefore, its branch-label is undefined. 

6.2.5.4 Case-Microinstructions - Within the scope of a target 
assignment construct, case-microinstructions can be given in any 
order. Further, cases that are not used can be omitted. However the 
zeroth case, which corresponds to the base-address, must always be 
given. 

When the branch-definition that starts the scope of the target 
assignment construct is processed, all the possible targets, as 
determined from the constraint, are reserved. If at the end of the 
scope, some of the reserved targets have not been allocated by a 
case-microinstruction, then they are returned to the general address 
pool and, consequently, may be allocated later for a microinstruction 
that has no relationship with the target assignment construct. 



MICRO-11/60 -- ACTIONS Page 6-12 

6.2.6 Discussion 

The use of the target-assignment construct in connection with two 
fundamental types of conditional branching is discussed in the 
following two sections. 

6.2.6.1 Looping - The repetition of a sequence of microinstructions 
based on a counter, is called looping. Looping is a special case of 
conditional branching that occurs commonly in microprogramming. The 
following microprogram excerpt, which multiplies I times J, 
illustrates the use of the target-assignment construct for looping. 
This excerpt assumes that the counter is loaded with -J. 

IJLOOP: 
.BEGIN=O 
MAT11: 

P2-T, CLK-SR,WCSB[O]-B,B, 
NEXT, BUT(COUNT-IS-377), 

J/MAT12; 
.CASE 0 OF IJLOOP 
MAT12: 

P2-T, A-PLUS-B,WCSB[O]-B, 

SR <-- 0 

SR,CLK-SR, SR <-- SR + I 
NEXT, BUT(COUNT-IS-377), LOOP ADDINT I FOR J TIMES 

J/MAT12; 
.CASE 1 OF IJLOOP 
MAT13: ! CONTINUE PROCESSING 

The target-assignment construct is used to specify the 
and MAT13. The instruction MAT12 is repeated J times. 
execution of that instruction, the output of the BUT 
control passes to the instruction MAT13. 

targets MAT12 
After the J'th 

MUX is 1 and 

The microprogram from which this excerpt is taken is reproduced in 
full in Section 7.1. 



MICRO-11/60 -- ACTIONS Page 6-13 

6.2.6.2 Switching - The choice of one of a set of targets is called 
switching. Sometimes, control separates for a single calculation and 
then returns to a common point, as illustrated in the example of 
Section 7.2. Sometimes, control separates to perform totally 
different processing, as illustrated in the following example: 

DECODE: 
.BEGIN=OOO 

DISPATCH: 
NEXT, BUT(IR 5-3 ), 

J/BRANCH 

.CASE 0 OF DECODE 
BRANCH: 

NEXT, J/MATRIX_ADD; 

.CASE 1 OF DECODE 
BRANCH1: 

NEXT, J/MATRIX_MULT; 

.CASE 2 OF DECODE 
BRANCH2: 

NEXT, J/MATRIX_INVERT; 

.CASE 3 OF DECODE 
BRANCH3: 

NEXT: J/MATRIX_DIAG; 

.CASE 4 OF DECODE 
BRANCH4: 

NEXT, J/LINK; 

ENTRY FOR XFC 0 

ENTRY FOR XFC 1 

ENTRY FOR XFC 2 

ENTRY FOR XFC 3 

ENTRY FOR XFC 4 

The target-assignment construct in the above example is used to 
specify the switch points for five separate microprograms. 

6.2.7 Guidelines 

In order to satisfy a target-assignment construct, the assembler must 
be able to select a set of addresses that have a given relationship to 
one another. Therefore, the placement of the branch-definitions is 
important. They should be placed so that the necessary addresses are 
available to the assembler; that is, close to the beginning of the 
page to which they apply. 



MICRO-11/60 -- ACTIONS Page 6-14 

6.3 THE ENTRY POINT MECHANISM 

To branch to a microprogram within the Writable Control Store, the 
programmer uses an XFC instruction in the main memory program. The 
XFC instruction can be used to branch to anyone of eight possible 
microprograms. The programmer designates an entry point within the 
microprogram by the use of the DISPCH target assignment construct, as 
follows: 

Instruction 

XFC 0 
XFC 1 

XFC 7 

Entry Point 

.CASE 0 OF DISPCH 

.CASE 1 OF DISPCH 

.CASE 7 OF DISPCH 

The branch-definition for the DISPCH target assignment construct is 
contained in the dispatch-file. Therefore, if an entry point is 
specified in a microprogram, the assembly input file list must include 
the dispatch-file before any files containing user-actions. 

For example, suppose a program has two entry points, ENTA and ENTB. 
The programmer wants to issue an XFC 0 to enter at ENTA and an XFC 1 
to enter at ENTB. He writes his user-actions as follows: 

.CASE 0 OF DISPCH 
ENTA: 

.CASE 
ENTB: 

.END 

OF DISPCH 

The dispatch-file is described in Appendix C. 



CHAPTER 7 

EXAMPLES 

This chapter gives two complete microprograms to illustrate the use of 
the MICRO-11/60 assembler and the 11/60 predefinition language. 

The first example is a threshold check program and the second example 
is a matrix addition program. These applications were chosen because 
the associated microprograms are short. Typically, microprograms are 
longer and more general than the programs reproduced here. However, 
these examples are complete microprograms; they illustrate the form 
and content of 11/60 microprograms. 

7.1 EXAMPLE 1 - THRESHOLD CHECK 

The example given in this section performs a threshold check. The 
microprogram accepts a list of positive values and produces, as its 
result, a count of the number of values in that list that exceed a 
specified threshold. The threshold check microprogram locates its 
inputs and outputs by the use of registers. 

The threshold check program is an example of a well-documented 
microprogram. The inputs and outputs of the program are given in the 
comments that precede the program. The logical sections of the 
program are separated by comments that describe the purpose of the 
section. The actions performed by each microinstruction are described 
by trailing comments on the microinstruction line. 

Two target assignment constructs are used in the threshold check 
microprogram, namely: SRCHP and THCMP. SRCHP illustrates the use of 
the target assignment construct for looping and THCMP illustrates its 
use for switching. 

The construct SRCHP is used to control the loop that processes each 
element in the input list. As long as more elements remain in that 
list, control returns to CASE 0 of that construct. When the input 
list is exausted, control passes to CASE 1, which returns to the base 
machine. 



MICRO-11/60 -- EXAMPLES Page 7-2 

The construct THCMP is used in the comparison of the value of each 
item in the input list with the threshold. The value of the input 
item determines to which of the four possible cases control passes . 

. TITLE QUANTIZE 

.IDENT IQ31 

.TOC DATA POINTS THRESHHOLD CHECK 

INPUT TO THRESHHOLD INSTRUCTION. 

RO - BASE ADDRESS OF THE LIST OF POINTS. 
ALL POINTS ARE POSITIVE NUMBERS. 

R1 - NUMBER OF POINTS IN SAMPLE. 
R2 - THRESHHOLD VALUE. 

OUTPUT AT TERMINATION OF THRESHHOLD INSTRUCTION. 

RO - USED AS WORK REGISTER. 
R1 - USED AS WORK REGISTER. 
R2 - THRESHHOLD VALUE. 
R3 - NUMBER OF POINTS OVER THRESHHOLD. 

SRCHLP: 
.BEGIN:O[6240:6241] 
THCMP: 
.BEGIN:OO[6244:6247] 

!TARGETS FOR LOOP TO SEARCH. 

!COMPARISON TARGETS WITH 
!THRESHHOLD . 

. CASE 0 
XFCTHC: 

P2-T, 
P3, 

NEXT, 

XFCT 1 : 
P2-T, 
P3, 

NEXT, 

XFCT2: 
P2, 
NEXT, 

OF DISPCH 

CLK-D,ZERO, 
WR(AB,L,A),R3-A, 

J/XFCT1 ; 

CLK-D,NOT-A,R1-A, 
WR(AB,L,A), 

J/XFCT2; 

LOAD-COUNTER,R1-A, 
J/XFCT3; 

!ENTRY POINT FOR XFC 0 

!INITIALIZE COUNT OF POINTS TO 
!ZERO. 

!R1 <-- -R1 (COMPLEMENT OF 
! LENGTH) . 

!LOOP COUNTER <-- OF POINTS. 



MICRO-11/60 -- EXAMPLES Page 7-3 

START OF LOOP TO CHECK EVERY POINT AGAINST THRESHHOLD . 

. CASE 0 OF SRCHLP 
XFCT3 : 

P 1 , 
P2-T, 
P3, 

NEXT, 

XFCT4: 
P3, 
NEXT, 

XFCT5: 
P2-T, 

NEXT, 

XFCT6 : 
NEXT, 

CLK-BA,RO-[A],DATI, 
CLK-D,A-PLUS-B,CSPB(TWO), 
WR(AB,L,A), 

J/XFCT4; 

WR-CSP,CSPB(MD), 
J/XFCT5; 

CLK-D,A-MINUS-B, 
CSPB(MD),R2-A, 
J IXFCT6; 

BUT(D14-00-EQ-OD15), 
J/XFCT7; 

!INITIATE FETCH OF (RO)+ 

!RO <-- POINTS TO NEXT DATA 
! ITEM. 

!DATA ARRIVES FROM MEMORY. 

!D <-- THRESHHOLD - DATA. 

!BRANCH ON EQUAL,GREATER,LESS. 

POSITIVE DIFFERENCE - THRESHHOLD > DATA POINT - NO OPERATION 

.CASE 0 OF THCMP 
XFCT7: 

NEXT, BUT(COUNT-IS-377), 
J/XFCT1 ; 

!LOOP BACK IF MORE NUMBERS 
!ELSE EXIT TO XFCT11 

NEGATIVE DIFFERENCE - DATA POINT > THRESHHOLD - HIT THE 
COUNTER . 

. CASE 1 OF THCMP 
XFCT8 : 

P2-T, 

P3, 
NEXT, 

CLK-D,A-PLUS-B, 
R3-[A],CSPB(ONE), 
W R ( AB , L , A) , 
BUT(COUNT-IS-377), 
J/XFCT1 ; 

!INCREMENT COUNTER BY ONE. 
!LOOP BACK IF MORE NUMBERS 
!ELSE EXIT TO XFCT11 



MICRO-11/60 -- EXAMPLES Page 7-4 

ZERO DIFFERENCE - DATA NOT OVER THRESHHOLD - NO OPERATION . 

. CASE 2 OF THCMP 
XFCT9: 

NEXT, BUT(COUNT-IS-377), 
J/XFCT1 ; 

!LOOP BACK IF MORE NUMBERS. 
!ELSE EXIT TO XFCT11 

IMPOSSIBLE DIFFERENCE - ERROR RETURN TO ERROR ROUTINE . 

. CASE 3 OF THCMP 
XFC10: 

NEXT, PAGE(O),BUT(SUBRB), 
J/OOOO; 

.CASE 1 OF SRCHLP 
XFCT11: 

NEXT, PAGE(O),BUT(SUBRB), 
J/BRA05; 

. END 

!EXIT TO ERROR POSITION. 

!END OF INSTRUCTION. 
!RETURN FOR NEXT MACRO 
!INSTRUCTION . 



MICRO-11/60 -- EXAMPLES Page 7-5 

7.2 EXAMPLE 2 - MATRIX ADDITION 

The matrix addition example adds the elements of the matrix M to the 
elements of the matrix N, on an element by element basis. That is, it 
performs the following computation: 

M(m,n) = M(m,n) + N(m,n) 

The number of elements in each row is given by I and the number of 
elements in each column by J. 

Unlike the threshold check microprogram in which the input information 
is passed through the registers, the matrix addition example contains 
the input information in its calling sequence, as shown in the 
comments at the beginning of the program. 

The matrix addition example uses two target assignment constructs. 
Both constructs are used for looping. The first, IJLOOP, is used to 
calculate the total number of elements; that is, to multiply I times 
J. The second, MNLOOP, is used to loop through each element of the 
matrix . 

. TITLE MATRIX ADDITION 

.IDENT IMP1AI 

************************** 
* XFC CODE * 
************************** 

PC --> * M * ************************** 
* N * 
************************** 
* I * J * ************************** 

.TOC START OF MATRIX ADDITION EXAMPLE. 

IJLOOP: 
.BEGIN=O 
MNLOOP: 
.BEGIN=O 

.CASE 2 
MATADD: 

P 1 , 
P2-T, 
P3, 
NEXT, 

MAT1 : 
P3, 
NEXT, 

OF DISPCH 

CLK-BA,PC-A, 
A-PLUS-B,CSPB(TWO) , 
WR(AB,L,A),DATI, 
J IMAT 1 ; 

CSPB[MD]BUSDIN, 
J/MAT2; 

!ENTRY POINT FOR XFC 2 

!INITIATE MEM(PC) READ: 
!INCREMENT PC. 

!MD<--MEMORY - M (START OF M) 



MICRO-11/60 -- EXAMPLES 

MAT2: 
P 1 , 
P2-T, 
P3, 
NEXT, 

MAT3: 
P2-T, 
P3, 

NEXT, 

MAT4: 
P 1 , 
P2-T, 
P3, 
NEXT, 

MAT5: 
P2-T, 
P3, 

NEXT, 

CLK-BA,PC-A, 
A-PLUS-B,CLK-D,CSPB(TWO), 
WR (AB, L, A) ,DATI, 
J/MAT3; 

B,CSPB(MD),CLK-D, 
WR(A,H,A),R[SRC]-A, 
CSPB[MD]BUSDIN, 
J/MAT4; 

CLK-BA,PC-A, 
A-PLUS-B,CLK-D,CSPB(TWO), 
WR(AB,L,A),DATI, 
J IMAT5; 

B,CSPB(MD),CLK-D, 
WR(A,H,A),R[DST]-A, 
CSPB[MD]BUSDIN, 
J/MAT6; 

CALCULATE I X J AND LOAD IN COUNTER. 

MAT6: 
P2-T, 

NEXT, 

MAT7: 
P2-T, 
P3, 
NEXT, 

MAT8: 
P2-T, 
NEXT, 

" 

MAT9: 
"P2-T, 
P3, 
NEXT, 

MAT10: 
P2, 

NEXT, 

MAT11: 
P2-T, 
NEXT, 

CSPB(MD),CLK-D,CLK-SR,B, 
D[C]O, 
J/MAT7; 

CLK-D,D-RIGHT-8,D[C]D[C],A, 
WR(B,H,B) ,WCSB[O]-B, 
J/MAT8; 

CLK-D,SR,A,D[C]D[C], 
J/MAT9; 

D-SIGNEXT,NOT-A,CLK-D, 
WR(B,H,B) ,WCSB[1]-B, 
J/MAT10; 

WCSB[1]-B, 
LOAD-COUNTER, 
J/MAT11; 

CLK-SR,WCSB[O]-B,B, 
BUT(COUNT-IS-377), 
J/MAT12; 

Page 7-6 

!INITIATE MEM(PC) READ. 
!INCREMENT PC. 

!WORK1<-- M 

!MD<-- MEMORY - N (START OF N) 

!INITIATE MEM(PC) READ 
!INCREMENT PC. 

!WORK2<-- N 
!MD<-- MEMORY - I:J 

!D <-- I:J , SR <-- I:J 
!D(C)<--O 

!D(C) <-- O. 
!WORK3 <-- 0:1 

!D <-- SR (I:J) 

!D <-- COMPLEMENT OF J 
!WCSB(1) <-- COMPLEMENT OF J 

!COUNTER GET -J 

!SR <-- I FROM WORK3 
!CHECK IF = 1 TARGETS MAT12,13 



MICRO-11/60 -- EXAMPLES 

.CASE 0 OF IJLOOP 
MAT12: 

P2-T, 

NEXT, 

A-PLUS-B,WCSB[O]-B, 
SR,CLK-SR, 
BUT(COUNT-IS-377), 
J/MAT12; 

.CASE 1 OF IJLOOP 
MAT13: 

P2-T, 
P3, 
NEXT, 

MAT14: 
P2, 

NEXT, 

CLK-D,SR,NOT-A, 
WR(B,H,B) ,WCSB[1 J-B, 
J/MAT14; 

WCSB[1]-B, 
LOAD-COUNTER, 
J/MAT15; 

Page 7-7 

!SR <-- SR + I 
!LOOP ADDINT I FOR J TIMES. 

!WCSB(1) GETS -I*J 

!COUNTER GETS -(I*J) 

LOOP TO ADD EACH TERM OF MATRIX M AND N 

.CASE 0 OF MNLOOP 
MAT15: 

P 1 , CLK-BA,R[SRC]-A, !INITIATE MEM(M) READ. 
DATI, !WORK1 CONTAINS N 

NEXT, J/MAT16; 

MAT16: 
P3, CSPB[MD]BUSDIN, !MD <-- MEM(M) 
NEXT, J/MAT17; 

MAT17: 
P 1 , CLK-BA,R[DST]-A, !INITIATE MEM(N) READ. 
P2-T, A-PLUS-B,CSPB(TWO), !INCREMENT N 
P3, WR(A,H,A),DATI, 
NEXT, J/MAT18; 

MAT18: 
P2-T, CLK-SR,B,CSPB(MD), !SR <-- MEM (M) 
P3, CSPB[MD]BUSDIN, !MD <-- MEM (N ) 
NEXT, J/MAT19; 

MAT19: 
P2-T, CLK-D,A-PLUS-B,SR, !D <-- MEM(M) + MEM(N) 

CSPB(MD) , 
NEXT, J/MAT20; 



MICRO-11/60 -- EXAMPLES 

MAT20: 
P 1 , 

NEXT, 

MAT21 : 
NEXT, 

MAT22: 
P2-T, 

P3, 
NEXT, 

CLK-BA,R[SRC]-A, 
DATO, 
J/MAT21; 

J/MAT22; 

A-PLUS-B,R[SRC]-A, 
CSPB(TWO),CLK-D, 
WR(A,H,A), 
BUT(COUNT-IS-311), 
J/MAT15; 

.CASE 1 OF MNLOOP 
MAT23: 

NEXT, PAGE(O),BUT(SUBRB), 
J/BRA05; 

. END 

Page 1-8 

!INITIATE MEM(M) WRITE. 

!DATA IS WRITTEN FROM D TO 
!MEMORY. 

!INCREMENT M 

!LOOP UNTIL ALL TERMS HAVE 
!BEEN SUMMED. (TARGETS 
!MAT15,23) 

!RETURN TO BASE MACHINE FOR 
!NEXT INSTRUCTION . 



CHAPTER 8 

8. 1 
8 . 1 • 1 
8 • 1 . 2 
8 . 1 • 3 
8.2 
8.2. 1 

PART III 

THE MICROPROGRAM LOADER: 
MLD 

Contents 

MICROPROGRAM LOADER 

LOADER FUNCTIONS 
Initialization ...... . 
Loading The Resident Section 
Loading The Microprogram 

THE MICROPROGRAM OBJECT MODULE 

. . 8-1 
. . . . . 8-2 

8-2 
. . . . 8-3 

. . . . . . . . 8-3 
Microprogram Object Module Format . . .. 8-3 





CHAPTER 8 

MICROPROGRAM LOADER 

This chapter describes MLD, the Microprogram LoaDer. MLD is a program 
that loads the 11/60 Writable Control Store. 

The functions of the loader are described in the following section. 
Then, the loader input, the microprogram object module, is discussed 
and illustrated. 

8.1 LOADER FUNCTIONS 

MLD performs three-functions in loading the Writable Control Store, 
namely: 

o The initialization of the Writable Control Store to a 
special pattern. 

o The loading of the resident section of the Writable Control 
Store. 

o The loading of the set of object modules that make up the 
microprogram. 

The following sections describe each of these activities. 



MLD -- MICROPROGRAM LOADER Page 8-2 

8.1.1 Initialization 

Before loading any information, MLD initializes the entire Writable 
Control Store, starting at location 6000 and continuing through 
location 7777, to the default initialization pattern. Any programs 
previously loaded into the Writable Control Store are destroyed by 
this initialization process. 

The default initialization pattern is the following microword: 

4 4 3 2 1 
765432109876543210987654321098765432109876543210 

000000000000000110000000000000000011100000001110 

After the execution of the loader, any microaddress that is not 
explicitly loaded contains this pattern. 

If control passes to a word that contains the default initialization 
pattern, then the execution of that word causes a transfer to the 
resident section address 6016, which begins an error routine. This 
error routine handles the case in which a wild branch sends control to 
an illegal address. The user can provide an error routine for this 
case or can rely on the default handling, which exits to the console 
as if a halt instruction was encountered. 

8.1.2 Loading The Resident Section 

After initialization, MLD loads the resident section specified by the 
programmer. Usually, the standard resident section MICPAK is 
specified. 

The contents of the standard resident section MICPAK supplied by 
DIGITAL are described in Appendix D of the "PDP-11/60 Microprogramming 
Specification." 



MLD -- MICROPROGRAM LOADER Page 8-3 

8.1.3 Loading The Microprogram 

After loading the resident section, MLD loads the microprograms 
specified by the user. MLD can load any number of object modules and 
these object modules can coexist in the Writable Control Store as long 
as the address space occupied by each module is consistent with the 
address space occupied by the other modules. The address space 
occupied by an object module is determined by the bounds given with 
the .BOUNDS keyword at the time the microprogram is assembled. 

In loading the Writable Control Store, MLD constructs the address to 
be loaded from the lower bound and the offset and then loads the bits 
associated with that offset into the calculated Writable Control Store 
location. If an object module uses the same location as used in an 
object module loaded earlier in the load sequence, then the location 
is reloaded with the contents given in the later object module. 

The fact that MLD permits words of the Writable Control Store to be 
rewritten is convenient for updating programs. However, the 
programmer must be careful, in that case, to specify the object 
modules in the correct order, so that the last word loaded into the 
given address is the expected one. 

8.2 THE MICROPROGRAM OBJECT MODULE 

The microprogram object module has a format that is compatible with 
the standard macro object module produced by the translators operating 
in the RSX-11M system. However, the microprogram object module is not 
as general as a macro object module. 

8.2.1 Microprogram Object Module Format 

An 11/60 microprogram object module is made up of a sequence of 
records. Five different types of records are used) namely: GSD, RLD, 
TXT, end-GSD, and end-module. The meaning and format of each of these 
record types are described in Appendix B of the "RSX-11M Task Builder 
Reference Manual" CDEC-11-0MTBA-A-D). 



MLD -- MICROPROGRAM LOADER Page 8-4 

The following d"iagram shows the format of the microprogram object 
module for the RSX-11M system. The first word is a count of the 
number of bytes that follow in the record. The second word indicates 
the type of record. The type of record determines the meaning of the 
words that follow. 

The diagram shows the words on the horizontal axis and the record 
riumber on the vertical axis. The data is displayed as it appears in a 
dump. 

------ ------ ---2--r--3-- ------ ... ------
word----> 0 4 5 

------ ------ ------ ------ ------ ------
record 0 count 000001 module-name 000000 000000 

------ ------ ------------- ------ ------
I count 000001 version-name 000006 000000 I 
I 
I ------ ------ ------------- ------ ------
V 2 count 000001 WC$DSP 000440 

------ ------ ------------- ------
3 count 000001 WC$ARY 000440 

------ ------ ------------- ------
4 count 000001 WC$001 000440 

------ ------ ------------- ------

~~~~~~] 5 count 000004 000007 WC$DSP 
------ ------ ------

------r-----6 count 000003 000000 lowbnd 
------ ------ ------ ------

7 count 000003 000002 hi-bnd 
------ ------ ------ ------

8 count 000003 000004 
------ ------ ------

9 count 000003 000020 
------ ------ ------

10 count 000004 000007 WC$ARY 1000000 
------ ------ ------ ------------- ------

1 1 count 000003 offset microword (48 bits) 
------ ------ ------ ---------------------

1:~~~~~I~~~~~~l 



MLD -- MICROPROGRAM LOADER Page 8-5 

The microprogram object module begins with the four GSD (type 1) 
records shown. The first record contains the program title, as 
extracted from the title-string supplied with the .TITLE keyword. The 
second record contains the version identification, given with the 
.IDENT keyword in the source microprogram. The third and fourth 
records declare the section names WC$DSP, for the WC$DSP area, and 
WC$ARY, for the Writable Control Store array storage. 

Following these four standard records, a GSD record is given for the 
microprogram. The partition-name has the form WC$OOO. 

After the GSD records, an RLD (type 4) record for the dispatch area is 
given. The text (type 3) records following that RLD give the lower 
and upper bound for the program and the dispatch table. 

Following the RLD and TXT records for the section WC$DSP, an RLD 
record for the section WC$ARY is given. The TXT records following 
give the offset, relative to the lower bound, at which the 
microinstruction is to be loaded and the contents of the 
microinstruction. The offset is given in bytes and since each 
microinstruction occupies 6 bytes, the microinstruction address is 
calculated by the following formula: 

microinstruction-address = lower-bound + offset/6 

The microprogram object module concludes with an end-GSD (type 2) 
record and an end-module (type 6) record. 



MLD -- MICROPROGRAM LOADER Page 8-6 

The object module for the sample program REGEX given in Section 
14.4.9, is as follows: 

------ ------ ------r----- ------ ------
word----> 0 1 2 3 4 5 

------ ------ ------ ------ ------ ------
record 0 000012 000001 REGEX 000000 000000 

------ ------ ------------- ------ ------
I 1 000012 000001 R1V1 000006 000000 I 
I 
I ------ ------ ------------- ------ ------
V 2 000012 000001 WC$DSP 000040 000000 

------ ------ ------------- ------ ------
3 000012 000001 WC$ARY 100040 000000 

------ ------ ------------- ------ ------
4 000012 000001 WC$OOO 100040 length 

------ ------ ------ ------ ------ ------
5 000012 000004 000007 WC$DSP 000000 

------ ------ ------ ------ ------ ------
6 000006 000003 000000 014000 

------ ------ ------ ------
7 000006 000003 000002 017377 

------ ------ ------ ------
8 000006 000003 000004 000061 

------ ------ ------ ------ -----------------
9 000034 000003 000020 dispatch information 

------- ------ ------ ------------- ------
10 000012 000004 000007 WC$ARY 000000 

------ ------ ------ ------------- ------
1 1 000012 000003 000220 170232 004000 030200 

------ ------ ------ ------ ------ ------
12 000012 000003 001400 171612 010003 130201 

------ ------ ------ ------ ------ ------
13 000012 000003 001406 171012 010003 134003 

------ ------ ------ ------ ------ ------
14 000002 000002 

------ -------
1 5 000002 000006 

------ ------



CHAPTER 

CHAPTER 

PART IV 

THE MICROPROGRAM DEBUGGING TOOL: 

9 

9 . 1 
9 . 1 . 1 
9.1 .2 
9.2 
9.3 
9.3. 1 

MDT 

Contents 

INTRODUCTION 

THE MACHINE STATE 
The Microstate Table 
Restoring The Machine State 

A DEBUGGING SESSION . 
THE COMMAND LINE . . . . 

· 9-1 
· 9-1 

. . 9-3 
· . . . . 9- 3 

· . . .. . 9-3 
. . . . 9-4 

9.3.2 
Command s . . . . 
The Address-Spec 
The Qualifier . 
Integer Field 
Examples 

. . . . . . . . . . . 9-5 
9.3.3 
9.3.4 
9.3.5 

10 OPEN COMMANDS 

10.1 THE OPEN-BITS COMMAND 
10.1.1 Syntax 
10.1.2 Interpretation 
10.1.3 Restrictions 
10.1.4 Defaults .... 
10.1.4.1 The Macro-Address-Spec 
10.1.4.2 The Micro-Address-Spec 

· . . . . 9-6 
· . . . . 9-6 

· . . . . . . . 9-6 

· 10-2 
· 10-3 

10-4 
. . . . . . 10-5 

· 10-6 
· . .. . 10-6 

· . . . . 10-7 
10.1.4.3 The Register-Address-Spec · . .. . 10-8 
10.1.4.4 New-Values 
10.1.4.5 Line Terminators 
10.2 THE OPEN-BYTE COMMAND .. . 
10.2.1 Syntax ........ . 
10.2.2 Interpretation .... . 
10.3 THE OPEN-CHARACTER COMMAND 
10.3.1 Syntax ....... . 
10.3.2 Interpretation .... . 

· . . . . 10-9 
· . . . . . . . 10-9 

10-11 
· . . . . 10-11 

. . . . . . . . . . 10-11 
· . .. . 10-12 
· ...... 10-13 

. . . . . . . 10-13 



CHAPTER 11 

11 . 1 
11.1.1 
11.1.2 
11.1.2.1 
11.1.2.2 
11.1.3 
11 . 2 
11.2.1 
11.2.2 
11 . 3 
11.3.1 
11.3.2 
11.3.3 
11 . 4 
11.4.1 
11.4.2 

CHAPTER 12 

12 . 1 
12.1.1 
12.1.2 
12. 2 
12.2.1 
12.2.2 
12.2.3 
12. 3 
12.3.1 
12.3.2 

CHAPTER 13 

1 3 . 1 
13.1.1 
13.1.2 
13.1.3 
13. 2 
13.2.1 
13.2.2 
13. 3 
13.3.1 
13.3.2 

BREAKPOINT COMMANDS 

THE SET-BREAK-COMMAND .......... 11-4 
Syntax. . . . . . . ......... 11-4 
Interpretation .......... 11-5 

Including Breakpoint In Breakpoint List .. 11-5 
Planting The Subroutine Call . 11-5 

Restrictions. . . . . . . .... 11-5 
THE PROCEED-FROM-BREAK-COMMAND ...... 11-6 

Syntax ................... 11-6 
Interpretation .. . . . . .... 11-7 

THE DELETE-BREAK-COMMAND . 11-7 
Syntax .. . . . .. ....... . 11-8 
Interpretation . .. . 11-8 
Restriction. . . . . . .. 11-8 

THE LIST-BREAK-COMMAND . . . . . . . .. . 11-9 
Syntax. . . . . . . . .11-9 
Interpretation . . . . . . . . 11-9 

DISPLAY COMMANDS 

THE SET-DISPLAY-COMMAND 
Syntax ...... . 
Interpretation 

THE DELETE-DIS PLAY-COMMAND 
Syn tax ..... . . . . 
Interpretation ... . . 
Restriction ...... . 

THE LIST-DISPLAY-COMMAND 
Syntax .... 
Interpretation 

CONTROL COMMANDS 

THE GO-COMMAND 
Syntax 
Interpretation 
Restrictions 

THE LOAD COMMAND 
Syntax .... 
Interpretation 

THE RESET COMMAND . 
Syn tax .. . . . 
Interpretation 

· . . . . . 12-2 
· . . . . 12-3 

. . . .. . 12-3 
. . . . . . . 12-4 

· 12-4 
. . . . . . . 12-5 

· 12-5 
. . . . . . . . . 12-5 

· . . . . . . . . . 12-6 
· 12-6 

· 13-1 
· 13-2 
· 13-2 

. . . 13 - 3 
· 13-3 
· 13-4 

. • . • • . • . • 1 3 - 4 
. . . . . . 13-4 

· 13-4 
. . . 13-4 



CHAPTER 9 

INTRODUCTION 

The MicroDebugging Tool MDT is a stand-alone program that provides an 
efficient- tool for debugging 11/60 microprograms. Using MDT, the 
programmer can monitor the execution of his microprogram. He can set 
breakpoints, examine and change data or instructions in main or micro 
memory, and alter the control of the program. 

MDT is intended for debugging microprograms. Usually, the program to 
be debugged consists of a small main memory program and a 
microprogram. The main memory program's purpose is to call the 
microprogram and, in some cases, provide data for the microprogram to 
manipulate. MDT takes over the machine and controls all IIO vectors 
and, consequently, all the interrupts. Therefore, the processing that 
can be done by the main memory program is limited. It cannot, for 
example, perform any input or output unless the programmer makes 
special provisions for handling I/O. 

Because MDT is used to debug microprograms, it must save the state of 
the machine. The following section describes the saving of the 

-machine state. After that discussion, an MDT session is considered 
and some general remarks are made on the MDT command line. 

9.1 THE MACHINE STATE 

Whenever a breakpoint occurs, MDT saves the state of the machine so 
that it can restore the state before continuing the execution of the 
program under test. The machine state is saved in a table called the 
microstate table. 

9.1.1 The Microstate Table 

The microstate table has two logical sections. The first section 
contains the datapath registers and the second section contains the 
PDP-11 registers. 



MDT -- INTRODUCTION Page 9-2 

In the following table, the name of each register, the number of bits 
occupied by that register, and a brief description of the meaning of 
the register are given. 

TABLE 9-1 
Microstate Table 

---------------------------------------------------------------------
Datapath Registers 

Register-name Bits 

$D 16 
$DC 1 
$SR 16 
$An 16 

$Bn 16 

$Cn 16 

$BA 16 
$IR 16 
$CNT 6 
$FLAG 8 
$UCON 17 
$RES 4 
$RET 16 

Register-name Bits 

$n 16 

$PSW 16 
$PC 16 
$ACn 32 

$RLn 16 

$FPS 16 
$FEC 16 
$FEA 16 

Description 

D register 
D(C) register 
Shift register 
A scratchpad registers 

n is an octal integer starting 
with 0 and continuing through 37 

B scratchpad registers 
n is an octal integer starting 
with 0 and continuing through 37 

C scratchpad 
n is an octal integer starting 
with 17 and continuing through 0 

Bus address register 
Instruction register 
Count register 
Flag register 
UCON control register 
Residual control register 
Return register 

PDP-11 Registers 

Description 

General registers 
n is an integer starting 
with 0 and continuing through 7 

Program Status Word 
Program Counter 
Floating point registers 

n is an integer starting with 
o and continuing through 5 

Relocation registers 
n is an integer starting with 
o and continuing through 7 

Floating point status word 
Floating point error code 
Floating point error address 



MDT -- INTRODUCTION Page 9-3 

9.1.2 Restoring The Machine State 

The type of breakpoint determines the amount of the machine that 
be restored before execution of the program under test can resume. 
a main memory breakpoint, MDT restores the PDP-11 registers from 
microstate table. At a microprogram breakpoint, MDT restores 
datapath registers, as well as the PDP-11 registers. 

must 
At 

the 
the 

Three datapath registers cannot be preserved by MDT. These registers 
are $UCON, $RES, and $RET. The contents of the microstate table for 
these three registers is the default value used by MDT when restoring 
the state of the machine. 

If the programmer wants to change the default value for any of these 
unpreserved registers, he can do so by the open-bits command. Since 
MDT. never writes into the unpreserved locations, the default value is 
not changed. Then, each time that execution of the program is 
resumed, that default value is copied into the register in question. 

9.2 A DEBUGGING SESSION 

A debugging session consists of a number of interactions between MDT 
and the programmer, in which the programmer observes, and sometimes 
changes, the characteristics of the program under test. 

MDT prompts for a command by typing: 

MDT) 

In response to this prompt, the programmer types a command line. The 
following section considers some general properties of the command 
line. 

9.3 THE COMMAND LINE 

An MDT command line can contain four possible items, as shown in the 
following diagram: 

{qUalifier } ~ {integer}: command { address-spec } : 

The command must always be present in a command line, but the 
presence, or absence, of the other three items depends on the command. 
At most, two, out of the three optional items, are required for any 
command. 



MDT -- INTRODUCTION Page 9-4 

The permissable syntax and the meaning of that syntax are given for 
each type of command in the following chapters. Some general remarks 
about the form of the command, however, can be made here. 

The following sections discuss the four items of the command line, 
starting with the command and continuing with the address-spec, the 
qualifier, and the integer. 

9. 3. 1 Command s 

The command mnemonics recognized by MDT are summarized in the 
each command mnemonic, a brief description is following list. For 

given. 

Command Description 

o Used to open, examine, and 
contents of bits in main 
Control Store. 

possibly change, the 
memory or the Writable 

OB Used to open, examine, and possibly change, a byte in 
main memory. 

OC 

B 

P 

D 

G 

R 

L 

Used to open, examine, and possibly change, 
character in main memory. 

a 

Used to set a breakpoint; or, with the qualifier 
to delete a breakpoint; or, with the qualifier 

'?', to list the current breakpoints. 

Used to proceed after a breakpoint has 
ex ecution . 

halted 

Used to add an item to a display list; or, with the 
qualifier ',to delete an item from the display 
list; or, with the qualifier '?', to list the 
current display items on the display list. 

Used to start the execution of the program under 
test. 

Used to reset all breakpoints and clear the display 
list. 

Used to reload the microprograms into the Writable 
Control Store. 

The first three commands (0, 
"The Open Commands". The 
Cha pter 11, "The Br eakpo in t 
described in Chapter 12, 
commands (G, R, and L) are 
Comm and s" . 

OB, and OC) are described in Chapter 10, 
next two commands (B and P) are given in 
Commands". The next command (D) is 

"The Display Commands". The last three 
described in Chapter 13, "The Control 



MDT -- INTRODUCTION Page 9-5 

9.3.2 The Address-Spec 

An address-spec in an MDT command locates a sequence of bits in 
memory. The form of the address-spec is: 

address {bit-range } ~ {, relocation-register} ~ 
The address part of an address-spec can designate a main memory 
location, a micro memory location, or a register, depending on the 
first character of the address as indicated in the following list: 

Address Meaning 

#n A main memory address. The address n must lie in the 
range 0 <= n <= 17777. 

n A micro memory address. The address n must lie in the 
range 6000 <= n <= 7777 for a microinstruction or in 
the range 0 <n n <n 5777 for a data (local store) item. 

$x A register. The register named x can be any of the 
names recognized by MDT, as indicated in the table of 
Sec tion 9. 1 . 1 . 

The bit range indicates the bits within the designated location in 
memory. A bit-range is expressed in the following way: 

< left-bit right-bit ) 

If a bit-range is not given, then the full word is assumed, namely: 

<15:0) 

<47:0) 

<15:0) 

<n:O) 

For a main memory address 

For a micro memory instruction address 

For a micro memory data address 

For a register, where n is the value of bits, from the 
table in Section 9.1.1, minus 1. 

The relocation-register can be anyone of the eight 
relocation-registers, namely $RLO, $RL 1, $RL 7. A 
relocation-register can only be used with a main memory address. If a 
relocation-register is present in an address-spec, the contents of 
that register is added to the specified address to determine the 
actual address. 

The form of the address-spec that is permitted depends on the command. 
The most general address-spec is allowed in an open-bits command. 
Other commands, however, are more restrictive. For example, the 
open-byte and open-character commands only accept main memory byte 
addresses and the go-command only accepts a word address. The syntax 
of each command indicates the form of the address-spec that can be 
given. 



MDT -- INTRODUCTION Page 9-6 

9.3.3 The Qualifier 

The qualifier changes the meaning of the command mnemonic. Two 
qualifiers can be used in MDT, as indicated in the following list: 

Qualifier 

? 

Meaning 

Negate the meaning of the breakpoint or display 
mnemonic, so that instead of setting a breakpoint 
or display, a breakpoint or display is deleted. 

List the breakpoints or displays currently set. 

A qualifier can only be used with the breakpoint command (B) or the 
display command (D). 

9.3.4 Integer Field 

The integer field is used as an alternative to the address-spec. When 
a breakpoint or display is set, it is associated with an 
identification number. This identification number can be explicitly 
assigned by the programmer. More often, however, it is assigned by 
MDT. To delete a breakpoint or display, the programmer can give 
either the identification number or the address-spec. Some 
programmers find the identification number more convenient because it 
usually involves less typing. 

9.3.5 Examples 

Some examples of MDT command lines are given in the following list. 
For each command line, a brief description is given. 

Command Line 

0#46000 <5:2) 

86200 

?D 

-20 

G#47010 

Description 

Open bits 5 through 2 of main memory address 
46000. 

Set a breakpoint at micro memory address 
6200. 

List the display items currently on the 
display list. 

Delete display item 
number 2. 

with identification 

Start execution at main memory address 47010. 

The following chapters describe the MDT commands in detail. 



CHAPTER 10 

OPEN COMMANDS 

Three open-commands are provided to examine, and possibly change, the 
contents of locations within main memory or the Writable Control Store 
(micro memory). The open-commands are given in the following syntax: 

r 

I 

open-bits-command 1 
~ open-byte-command 

Lopen-Character-command
J 

open-command 

The open-bits command is the most general open-command. It can be 
used to look at a specified number of bits in main memory, in micro 
memory, or in the machine registers. The other two open-commands are 
special purpose commands that can be used to access either a byte or a 
character in main memory. 

The following sections describe each of the open-commands. 



MDT -- OPEN COMMANDS Page 10-2 

10.1 THE OPEN-BITS COMMAND 

The open-bits command can be used to open a main memory address, a 
microinstruction address, or a machine register. The programmer types 
the character "0" followed by an address-spec to open and display the 
contents of an address. The address-spec identifies the type of 
address, the address, and, optionally, the bits within the word 
addressed. For example: 

MDT>01l2034 

The character "II" identifies the address 2034 as a main memory 
address. Since no bit-range is given, MDT assumes the full word is to 
be displayed. MDT repeats the address-spec and then types the 
contents of the bits specified in the address-spec, as follows: 

112034<15:0> 14332 (pause) 

The (pause) on the above line indicates that MDT is waiting for the 
programmer's instructions after typing the address-spec and value. 
The programmer can at this point enter a new value. For example, to 
change bit 3 to a 0, the programmer types the new value 14322 as 
follows: 

112034<15:0> 14332 14322 (separator) 

The separator in the above line tells MDT whether the programmer wants 
to open another address or to return to MDT command level for another 
command. If the programmer types carriage' return (cr) for the 
separator, then MDT considers the command finished and prompts for 
another command. The sequence, in this case, is: 

MDT>01l2034 
112034<15:0> 14332 14333 
MDT> 

If the programmer types a line feed (If), then MDT continues the 
current command by opening the next consecutive address. The sequence 
is: 

MDT>01l2034 
112034<15:0> 
112036<15:0> 
112040<15:0> 
MDT> 

(cr) 
14332 
1010 
23322 

14333 
( If) 
(cr) 

(I f) 



MDT -- OPEN COMMANDS Page 10-3 

10.1.1 Syntax 

o address-spec open-bits­
command 

{address-spec value { new-value}: term}: 

address-spec value { new-value}: 

r 
macro-address-spec 

address-spec micro-address-spec 

register-address-spec 
J 

ma~~~~address- macro-address {bit-range} : { relocation-register} ~ 

micro-address- micro-address 
spec 

register-
address- register-name 

spec 

bit-range < left-bit 

{ 

bi t-range I 1 

field-indicator r 0 
J 

{ bit-range 11 
...J 0 

{ : right-bi t } ~ > 

left-bit 1 
right-bi t J dec imal-number 

field­
indicator 

term 

< field-name > 

{ Of) 



MDT -- OPEN COMMANDS Page 10-4 

The valid register-names are given in the microstate table in Section 
9.1.1 and the valid field-names are given in Section 10.1.4.2. 

10.1.2 Interpretation 

MDT interprets an open-bits-command in the following way: 

The address-spec is used to determine the bits to be opened. If the 
address begins with the character "II", it is interpreted as a main 
memory address. If the address begins with a "$", it is interpreted 
as a register-address. Otherwise, it is interpreted as a 
micro-address. 

If a bit-range is specified, then those bits within the specified 
address are designated. If a bit-range is not specified, then the 
bit-range is constructed from the highest and lowest bit of the 
address, as follows: 

Address 

macro-address 

micro-address 
instruction 
data 

register-name 

Default Bit-Range 

<15:0> 

<41:0> 
<15:0> 

register dependent 
(see table in Section 9.1.1.) 

If a field-indicator is given in a micro-address-spec, then the 
bit-range associated with the field-name in the table of Section 
10.1.4.2 is used to designate the bits to be opened. 

The designated bits are displayed as an octal number, in which leading 
zeros are suppressed and right-bit is the zeroth bit. 

If the programmer types a new-value, that value is interpreted as an 
octal number with leading zeros suppressed, converted to a bit 
sequence of the proper length, and used to replace the designated 
bits. 



MDT -- OPEN COMMANDS Page 10-5 

If a separator is given, then MDT opens an address according to the 
separator used, as indicated in the following list: 

Separator 

( If) 

@ 

Action 

Open the next consecutive address: The next address is 
determined for a macro address by adding 2 to the 
current address; for a micro address by adding 1 to 
the current address; for a register by taking the next 
consecutive register in the table of Section 9.1.1. 

Open the previous location. The previous macro address 
is determined by subtracting 2 from the current 
address; for a micro address by subtracting 1 from the 
current address; for a register address by taking the 
entry just before the current register in the register 
name table of Section 9.1.1. 

Open the address indicated in the memory address 
currently open (indirect addressing). This address is 
formed for a macro address by taking the 16 bit 
contents of the current address; for a micro address 
by taking bits <8:0> of the contents of the current 
address; for a register address, by taking the 
contents of the register and interpreting it as a 
macro-address. 

If the register contains more than 16 bits, the extra bits are 
truncated. If the register contains less than 16 bits, leading O's 
are supplied. 

A carriage return following a displayed value or a 
terminates the command. 

10.1.3 Restrictions 

new-value 

If a new-value is given, it must fit, after truncating any leading 
zeros, in the bits designated by the address-spec. 

A micro-address for an instruction must lie in the range 6000 through 
7777. A micro-address for a data (local store) item must lie in the 
range 0 through 5777. 

A macro-add ress must be an even address in the range 0 through 177777. 

The left-bit and right-bit must lie in the valid bit range for the 
address type, as follows: 

macro-address 15 >= left-bit > right-bit >= 0 

micro-address 
instruction 47 >= left-bi t > right-bit >= 0 
data 15 >= left-bit > right-bit >= 0 



MDT -- OPEN COMMANDS Page 10-6 

10.1.4 Defaults 

If a right-bit is not given, then the right-bit is assumed to be the 
same as the left-bit and a single bit field is assumed. 

If no bit-range is given, the full word is assumed. 

If a new-value is not given, then the value displayed is not changed. 

10.1.4.1 The Macro-Address-Spec - The macro-address-spec describes 
the bits to be opened in a main memory location. A main memory word 
consists of 16 bits, as indicated in the following diagram: 

1 1 
5432109876543210 

address [~~~~~~~~~~~~~~~~J 
Suppose the main memory address 10234 contains the following bits: 

1 1 
5432109876543210 

10234 [----------------] 1011011101111011 
----------------

To examine the entire word, the programmer types the character "II" to 
indicate a macro-address and the main memory address in response to 
the MDT prompt, as follows: 

MDT>01l10234 
1110234<15:0> 133573 

To examine a set of bits within the word, he types the character "fI", 
followed by the address, followed by a bit-range. 

MDT>OIl10234<8:5> 
1110234<8:5> 13 

To change a set of bits within the word, he gives a new-value, as 
follows: 

MDT>O#10234<2:0> 
1110234<2:0> 3 0 

After the above interaction the contents of main memory location 10234 
contains the following bits: 

10234 

1 1 0 
5432109876543210 

[~~~~~~~~~~~~~~~~J 



MDT -- OPEN COMMANDS Page 10-7 

10.1.4.2 The Micro-Address-Spec - The micro-address-spec describes 
the bits to be opened in the Writable Control Store. A Writable 
Control Store location consists of 48 bits, as indicated in the 
following diagram: 

4 4 321 
76543210987654321098765432109876543210987654321 

address [~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J 
Suppose the Writable Control Store location 6436 contains the 
following bits: 

4 4 321 
765432109876543210987664321098765432109876543210 

6436 [~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J 
To display the entire word, the programmer types the address without a 
bit range, as follows: 

MDT>06436 
6436<47:0> 15777605167 

To display a set of bits within the word, the programmer types the 
address followed by a bit-range: 

MDT>06436<12:7> 
6436<12:7> 24 

To display a predefined microinstruction field within the word, the 
programmer types the address followed by a field-indicator: 

MDT>06436<UPF> 
6436<8:0> 163 

To change a set of bits, he types a new-value, as follows: 

MDT>06436<UPF> 
UPF<8:0> 163 172 

After the above interaction, location 6436 contains the following 
bits: 

4 4 321 0 
765432109876543210987654321098765432109876543210 

6436 [~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J 



MDT -- OPEN COMMANDS Page 10-8 

The field-names that can be given in a micro-address-spec are given in 
the following table. For each field-name, the associated bit-range 
and a brief description are given. 

Field-Name 

ALU 
BEN 
BSEL 
AEN 
ASEL 
XMUX 
CMUX 
RIF 
COUT 
WHEN 
CLKD 
CLKSR 
CLKBA 
SCC 
BGB 
BUSBOX 
BMUX 
BC 
AMUX 
WRCSP 
HILO 
WRSEL 
WRSP 
MOD 
CLKCOUNT 
CLKRES 
UBF 
UPF 

Bit-Range 

<47:44> 
<43:42> 
<41:40> 
<39:38> 
<37:36> 
<36> 
<37:36> 
<35:33> 
<32:30> 
<29> 
<28> 
<27> 
<26> 
<25> 
<24> 
<23> 
<24> 
<22:20> 
<22:20> 
<19> 
<18> 
<17> 
<16: 15> 
<14> 
<16> 
<18> 
<13:9> 
<8:0> 

Meaning 

ALU function field 
B scratchpad enable field 
B scratchpad select field 
A scratchpad enable field 
A scratchpad select field 
XMUX select field 
CMUX select field 
Register immediate field 
Carry select field 
Time to clock select field 
Clock D register 
Clock SR register 
Clock BA register 
Set condition codes 
BGB field 
Bus or Box field 
BMUX select field 
BC field 
AMUX select field 
Write C scratchpad from DIN 
High/Low select field 
A/B write select field 
Rewrite select field 
Field select 
Clock count register field 
Clock RES register field 
UBF field 
Next address field 

10.1.4.3 The Register-Address-Spec - The register-address-spec 
describes the bits to be opened either in a datapath register or a 
PDP-11 register. The register-names recognized by MDT are given in 
the Microstate Table in Section 9.1.1. 



MDT -- OPEN COMMANDS Page 10-9 

10.1.4.4 New-Values - The programmer can make a temporary change in a 
program by supplying a new-value in an open-command. The new-value 
replaces the bits designated in the address-spec. However, if the 
program is reloaded, the old values are restored. 

New-values can be entered without leading zeros. MDT supplies 
sufficient leading zeros to fill out the new value to the number of 
bits specified by the address-spec and then replaces those bits within 
the address. If the programmer gives a new-value that contains more 
bits than given by the address-spec, then the value is truncated to 
fit the bits and no error is reported. 

10.1.4.5 
to MDT 
which is 
carriage 
complete 
types a 
address. 

Line Terminators - The line terminator (term) communicates 
whether or not the programmer wants to open another address, 
related to the current address. If the programmer types the 
return line terminator, then MDT considers the open-command 

and prompts for the next command. However, if the programmer 
line feed, circumflex ("'), or n@", then MDT opens another 

To open the next consecutive address, the programmer types the line 
feed line terminator, as follows: 

MDT>6240 
6240<47:0> 334564 (If) 
6241<47:0> 110200004007 (If) 
6242<47:0> 104 (cr) 

To open the previous address in memory, the programmer types the 
circumflex terminator, as follows: 

MDT>10234<10:8> 
4110234<10:8> 2 
4110232<10:8> 0 
4110230<10:8> 1 (cr) 

Observe that the bits designated in the bit range are used for each 
address opened. 



MDT -- OPEN COMMANDS Page 10-10 

To open the indirect address, the programmer types the "@" line 
terminator, as follows: 

MDT>6240 
6240<47:0> 
6564<47:0> 
6344<47:0> 

334564 @ 
4457030344 @ 
202000 (cr) 

MDT>#10236 
10236<15:0> 
4430<15:0> 
4436<15:0> 

4430 
4436 
10234 

@ 
@ 

(cr) 

The line terminators can be mixed in an open-command sequence. 
Consider the case in which the programmer has a linked list of word 
pairs. The first word of a pair contains the value and the second 
word contains the link. To examine the list, he begins by opening the 
first word of the first word pair, then the second word, then using 
the link in that word, the next pair in the list, as follows: 

MDT>#4000 
#4000<15:0> 0 (If) 
#4002<15:0> 4016 @ 
#4016<15:0> 3 (If) 
#4020<15:0> 4110 @ 
#4110<15:0> 2 (If) 

When the address-spec gives a register address, then the line feed and 
circumflex line terminators can be used to display the other registers 
in the microstate table. If a line feed terminator is used, then the 
next register in the microstate table is opened and if a circumflex is 
used, then the previous register in the microstate table is opened. 
An example of the use of the line feed terminator with a register 
address is as follows: 

MDT>$BA 
$BA<15:0> 
$IR<15:0> 
$CNT<5:0> 
$FLAG<7:0> 

12 
3 
2 
o 

( If) 
( If) 
(I f) 



MDT -- OPEN COMMANDS Page 10-11 

10.2 THE OPEN-BYTE COMMAND 

The open-byte command is used to open a byte of main memory. Suppose, 
for example, that the programmer wants to examine main memory 
locations 7002 through 7012 on a byte-by-byte basis and change the 
first zero byte to the value 33. He opens the first location with an 
open-byte-command and then, to locate and change the first byte with 
value 0, uses the line feed line terminator to examine the following 
bytes, as follows: 

MDT)OBII7002 
117002 302 (If) 
117003 111 (If) 
117004 123 (If) 
117005 0 33 (cr) 

The open-byte command can be used to open an odd address. For 
example: 

MDT)OBII3345 
113345 22 

10.2.1 Syntax 

open-byte­
command relocation-register} : 

value { new-value}: {~f} } : 
{ OB II address 

{"address 

lIadd ress value {new-value} : 

10.2.2 Interpretation 

MDT interprets the open-byte-command in the following way: 

The address locates the main memory byte to be opened. The contents 
of that byte are displayed as an octal number, with leading zeros 
suppressed. 



MDT -- OPEN COMMANDS Page 10-12 

If a new-value is given, that value is interpreted as an octal number 
with leading zeros suppressed and is used to replace the contents of 
the designated byte in memory. 

If a line feed is used to terminate a line, then the next consecutive 
byte in memory is displayed. If a circumflex is used to terminate a 
line, then the previous byte is opened. If a carriage return is used, 
then the command is terminated. 

10.3 THE OPEN-CHARACTER COMMAND 

The open-character command is used to open a character in main memory. 
The open-character command accepts a byte address and displays the 
contents of that byte as an ASCII character. 

As an example of the use of the open-character-command, consider a 
table of names in main memory. Each name consists of a sequence of 
ASCII characters terminated by the special symbol ":". Once the 
programmer gets a pointer to the beginning of a string in the table, 
he can use the open-character-command to examine the characters in the 
name, as follows: 

MDT)OC1I12340 
1112340 A (If) 
1112341 L (If) 
1112342 P (If) 
1112343 H (If) 
1112344 A (If) 
1112345 (cr) 

Suppose he wants to change that entry in the table from ALPHA to 
ALPH1, he opens the appropriate character and changes it as follows: 

MDT)OC1I12344 
1112344 A 1 (cr) 



MDT -- OPEN COMMANDS Page 10-13 

10.3.1 Syntax 

open-char­
command OC II address {, relocation-register}: 

{tladdress char {new-char}: {~f} }: 
tladdress char {neW-Char}: 

10.3.2 Interpretation 

MDT interprets the open-char-command as follows: 

The address locates a byte in main memory to be opened. The contents 
of that byte are displayed as an ASCII character. If the contents of 
the byte is not a printable character, a blank space is printed. 

If a new-char is given, that character replaces the contents of the 
designated byte. 

If a line feed is used to terminate a line, then the next consecutive 
byte in memory is displayed as an ASCII character. If a circumflex is 
used to terminate a line, then the previous byte is displayed as an 
ASCII character. If a carriage return is used, the command is 
terminated. 





CHAPTER 11 

BREAKPOINT COMMANDS 

The breakpoint commands allow the user to set breakpoints in main 
memory or in the Writable Control Store, to continue execution after a 
breakpoint occurs, to selectively delete breakpoints, and to list the 
breakpoints currently set in the program. 

The breakpoint commands are given in the following syntax: 

breakpoint­
command 

r 1 

j
' set-break-command I 

proceed-from-break-command ~ 

delete-break-command 

list-break-command 
'- J 

Two items of information are maintained for active breakpoints, 
namely: the break-address and the repeat-count. The break-address is 
supplied by the set-break-command; it determines the address at which 
the breakpoint is taken. The repeat-count is supplied by the 
proceed-from-break-command; it determines the number of times the 
breakpoint must occur before execution halts at that breakpoint. 

MDT keeps this information in the breakpoint list. The breakpoint 
list contains 16 entries, one for each possible breakpoint. The 
number of entries in this list limits the number of breakpoints that 
can be active at anyone time. The break-id is the index into the 
breakpoint list. The break-id can be given in a set-break-command. 
However, if it is not supplied, MDT assigns the lowest available 
break-ide 



MDT -- BREAKPOINT COMMANDS Page 11-2 

Initially the breakpoint list is empty. Each time a set-break-command 
is executed, an entry is made in the breakpoint list. Suppose the 
programmer types the following two set-break-commands: 

MDT)B#10200 
MDT)2B6430 

In the first set-break-command, no break-id is given and, therefore, 
MDT assigns the first available break-id, 0, to that breakpoint. In 
the second set-break-command, the break-id 2 is given. After the 
execution of these two commands, the breakpoint list looks as follows: 

Break-Id 

o 
1 
2 
3 

15 

Break-Address Repeat-Count 

#10200 o 

6430 o 

When a breakpoint occurs, MDT examines the repeat-count associated 
with that breakpoint. If the repeat-count is 0, then MDT prints the 
breakpoint message and halts. Suppose control passes first to the 
main memory address 10200. Then, the following message is printed: 

BREAKPOINT NUMBER 0 AT ADDRESS #10200 

To continue the execution of his program, the programmer types a 
proceed-from-break-command, which can contain a repeat-count. Suppose 
the programmer wants to ignore the next four occurrences of the 
breakpoint at 10200. To do this, he types the following command: 

MDT)4P 

MDT updates the repeat-count associated with that breakpoint in the 
breakpoint list. After the execution of the 
proceed-from-break-command, the breakpoint list looks as follows: 

Break-Id 

o 
1 
2 
3 

15 

Break-Address 

#10200 

6430 

Repeat-Count 

4 

o 



MDT -- BREAKPOINT COMMANDS Page 11-3 

~uppose control passes again to 10200 in main memory and then to 6430 
ln the Writable Control Store. When control passes to 10200, the 
repeat-count is decreased by 1, but no message is printed and no halt 
occurs. When control passes to 6430, a message is printed and 
execution stops. The programmer can, at that point, print the 
breakpoint list by typing a list-break-command, as follows: 

BREAKPOINT NUMBER 2 AT ADDRESS 16430 
MDT>?B 

MDT, in response to this command, types the breakpoint list: 

BREAKPOINT NUMBER 0 IS SET AT ADDRESS 10200 
THE CURRENT REPEAT COUNT IS 3 

BREAKPOINT NUMBER 2 IS SET AT ADDRESS 6430 
THE CURRENT REPEAT COUNT IS 0 

By examining the breakpoint list, the programmer learns the current 
breakpoints that are set and the state of the repeat-count associated 
with each breakpoint. Suppose that, on the basis of this information, 
the programmer decides to delete the breakpoint at main memory 
location 10200 and then continue execution. He types the following 
commands: 

MDT>-B#10200 
MDT>P 

The breakpoint list then looks as follows: 

Break-Id 

o 
1 
2 

15 

Break-Address 

6430 

o 

Repeat-Count 

o 

o 

The following sections discuss each of the breakpoint commands in 
detail. 



MDT -- BREAKPOINT COMMANDS Page 11-4 

11.1 THE SET-BREAK-COMMAND 

The set-break-command is used to indicate the address at which a 
breakpoint is to be taken. When control passes to that address, MDT 
examines the repeat-count associated with the address in the 
breakpoint list. If the repeat-count is not zero, it is decremented 
by 1 and execution continues. If the repeat-count is zero, MDT prints 
a message identifying the breakpoint plus the contents of any 
display-items on the display list, and halts. 

The display list and the MDT commands that add and delete entries from 
the display list are described in the next chapter. In this chapter, 
the display list is assumed to be empty. 

As an example of the use of breakpoints, consider a program that 
dispatches, on a calculated value, to one of three possible paths. 
The programmer wants to examine some locations the first time control 
passes through each path. To do this, he sets a breakpoint at the 
beginning of each path, as follows: 

MDT)B6500 
MDT)B6720 
MDT)B6400 

Then, he starts the execution of his program. Suppose the first time 
control passes through the dispatch point it is sent to the path that 
begins with the microinstruction 6720. MDT prints the following 
message and halts. 

BREAKPOINT NUMBER 1 AT ADDRESS 6720 

The programmer can, at this point, open addresses to examine the state 
of the program, make temporary changes, set or delete breakpoints, or 
perform any of the other MDT commands. 

11 . 1 . 1 Syn tax 

set-break-
[ break-id } 1 command B break-address 
L 0 

break-id {o I 1 I 2 t ... \ 15 } 

{ 11000000 
, 1100002 t ... I 1117776 } 

break-address 

I I 6000 1 6001 ... 7777 



MDT -- BREAKPOINT COMMANDS Page 11-5 

11.1.2 Interpretation 

In response to a set-break-command, MDT performs two actions, namely: 
including the breakpoint in the breakpoint list and altering the 
contents of the break-address so that MDT can handle the breakpoint. 
The following sections discuss these two actions. 

11.1.2.1 Including The Breakpoint In The Breakpoint List - MDT enters 
the break-address given in the set-break-command with a repeat-count 
of 0 in the breakpoint list entry specified by the break-ide 

If a break-id is given in the set-break-command, MDT uses that 
break-id as an index into the breakpoint list. If the entry indicated 
by the break-id has an associated break-address, indicating that it is 
a currently active breakpoint, then MDT deletes the old breakpoint 
address in the table and replaces that address by the break-address 
given in the set-break-command. 

If a break-id is not given, MDT assigns the first available break-ide 
If no break-id is available, indicating that 16 breakpoints are 
active, MDT reports an error and rejects the command. 

11.1.2.2 Planting The Subroutine Call - To set a breakpoint, MDT 
alters the contents of the break-address. It removes and saves the 
current contents and replaces the contents with a call to an MDT 
subroutine. When control passes to the break-address, the MDT 
subroutine is executed. 

The MDT subroutine examines the repeat-count associated with the 
break-address in the breakpoint list. If the repeat-count is not 
zero, the subroutine decrements the repeat-count and execution 
proceeds. If the repeat-count is zero, the subroutine prints a 
message identifying the breakpoint, then prints the contents of any 
display-items on the display list, halts the execution of the program 
and prompts for the next MDT command. 

11.1.3 Restrictions 

Observe that, since MDT alters the contents of the break-address, an 
instruction that is dynamically modified by the program must not be 
given as a break-address. 

Further, since certain operations in the 11/60 (such as reading from 
memory) take two cycles to complete, an MDT breakpoint should not be 
placed on the second microword of a microword pair. 



MDT -- BREAKPOINT COMMANDS Page 11-6 

11.2 THE PROCEED-FROM-BREAK-COMMAND 

The proceed-from-break-command is used to resume program execution 
after a breakpoint. Execution stops just before the instructon at the 
break-address is executed. The proceed-from-break-command causes 
execution to resume at the instruction given in the set-break-command. 
Execution then continues until another breakpoint is reached or until 
the program halts for some other reasons. 

In some cases, the programmer does not want to stop at every 
occurrence of a breakpoint. The proceed-from-break-command allows the 
programmer to give a repeat-count, which directs MDT to pass through n 
occurrences of the breakpoint but to halt at the n+1th occurrence. 

Suppose, for example, the programmer is debugging a program with a 
loop that executes approximately 200 times. The programmer plants a 
breakpoint within the loop. He wants the breakpoint to halt execution 
the first time the loop is executed and again as the loop is about to 
terminate. The first time the loop is executed, MDT prints the 
breakpoint message and halts, waiting for a command. The programmer 
types the following proceed-from-break-command: 

BREAKPOINT NUMBER 0 AT ADDRESS 6436 
MDT> 200P 

The proceed-from-break-command instructs MDT to ignore the next 200 
occurrences of the breakpoint. At the 201st occurrence of the 
breakpoint, MDT prints the following message and halts: 

BREAKPOINT NUMBER 0 AT ADDRESS 6436 

If the programmer wants to halt the 202nd occurrence, he types the 
following proceed-from-break-command: 

MDT> P 

If a repeat-count is not given, it is assumed to be O. The above 
command, therefore, instructs MDT to stop at the next, in this case 
202nd, occurrence of the breakpoint. 

11.2.1 Syntax 

proceed-from-break-command {repeat-count} : P 

repeat-count {o , 1 I 2 I ... I 511 } 



MDT -- BREAKPOINT COMMANDS Page 11-7 

11.2.2 Interpretation 

In response to a proceed-from-break-command, MDT performs two actions, 
as follows: 

MDT enters the repeat-count in the breakpoint list for the 
breakpoint that has halted execution. If no repeat-count is 
given in the proceed-from-break-command, MDT enters the 
repeat-count O. 

MDT causes the execution of the program to resume at the 
instruction that was contained in the break-address before the 
set-break-command. 

11.3 THE DELETE-BREAK-COMMAND 

The delete-break-command is used to remove a breakpoint that was set 
by a set-break-command. 

As an example of the use of the delete-break-command, consider the 
case in which the programmer has set breakpoints in his program at 
addresses #10200, #12331, #16050, and #14443. 

During the debugging, the programmer finds that control passes through 
the breakpoint #12331 in the expected way and, therefore, the 
breakpoint is no longer necessary. The programmer deletes that 
breakpoint as follows: 

MDT>-B#12331 

Later in the debugging session, the program~er wants to concentrate on 
a particular section of the program. He dispenses with all the 
existing breakpoints by the following command: 

MDT>-B 

The above command clears all breakpoints 
program. The programmer can then add 
special interest. 

currently active in the 
breakpoints in the area of 



MDT -- BREAKPOINT COMMANDS Page 11-8 

11.3.1 Syntax 

ldelete-break­
command 

{ break-id } : B { break-address}: 

11.3.2 Interpretation 

In response to a delete-break-command, MDT deletes a breakpoint. That 
is, it removes the subroutine call placed in the breakpoint location 
by the set-break-command and restores the original contents of that 
location. 

The form of the delete-break-command determines the breakpoint to be 
deleted. 

If neither a break-id nor break-address is given, then MDT 
deletes all breakpoints currently set in the breakpoint list. 

If only a break-id is given, then MDT deletes the breakpoint for 
the address associated with that break-id in the breakpoint list. 
If no address is currently associated with the break-id, then an 
error is reported and the command is rejected. 

If only a break-address is given, then MDT searches the 
breakpoint list. If the specified break-address is found in the 
breakpoint list, that breakpoint is deleted. If it is not found, 
then an error is reported and the command is rejected. 

11.3.3 Restriction 

Either a break-id or a break-address 
delete-break-command, but not both. 

can be given in a 



MDT -- BREAKPOINT COMMANDS Page 11-9 

11.4 THE LIST-BREAK-COMMAND 

The list-break-command is used to print the breakpoint list, which 
contains all the breakpoints that are currently active in the program. 
The programmer types: 

MDT)?B 

In response to this list-break-command, MDT types the breakpoint list 
in the format shown in the following example: 

BREAKPOINT NUMBER 0 IS SET AT ADDRESS #6436 
THE CURRENT REPEAT COUNT IS 0 

BREAKPOINT NUMBER 1 IS SET AT ADDRESS #12231 
THE CURRENT REPEAT COUNT IS 12 

. BREAKPOINT NUMBER 3 IS SET AT ADDRESS 6557 
THE CURRENT REPEAT COUNT IS 1 

11.4.1 Syntax 

~ist-break-command ? B 

11.4.2 Interpretation 

In response to the list-break-command, MDT types the breakpoint list, 
glvlng the break-id, break-address, and repeat-count for each active 
breakpoint in the following format: 

BREAKPOINT NUMBER break-id IS SET AT ADDRESS break-address 
REPEAT COUNT IS repeat-count 





CHAPTER 12 

DISPLAY COMMANDS 

The display commands allow the user to add address-specs and 
selectively delete them from the display list. The display list 
contains the set of address-specs whose contents are printed by MDT 
each time a breakpoint with a repeat-count of 0 occurs. 

The display-commands are given in the following syntax: 

I 
I 

display-command f set-diSPlay-COmmand 1 
~ delete-display-command 

l!ist-diSPlay-COmmand J 

The display list is very similar to the breakpoint list. Like the 
breakpoint list, it contains 16 entries, one for each possible display 
and the number of entries in the list limits the number of displays 
that can be active. The display-id is the index into the display list 
just as the break-id is the index into the breakpoint list and it is 
assigned either explicitly in a set-display-command or by MDT in a 
similar fashion. 

Each entry in the display list contains the address 
printed. The display list is empty 
set-display-command adds an entry to the 
delete-display-command deletes an entry. 

The following sections describe the display commands. 

and bits to be 
initially. The 
list and the 



MDT -- DISPLAY COMMANDS Page 12-2 

12.1 THE SET-DISPLAY-COMMAND 

The set-display-command is used to add an address-spec to the display 
list. After the execution of a set-display-command, the address-spec 
given in the command is printed, as part of the display list, each 
time a breakpoint with repeat-count 0 occurs. 

As an example of the use of the set-display-command, consider the case 
in which the programmer wants to examine, at each breakpoint, the 
contents of registers 2 and 7, the program status word, and the ALU 
field of microinstruction 6430. The programmer adds the address-specs 
that define his display needs to the display list by the following 
sequence of commands: 

MDT>D$7 
MDT>D$2 
MDT>D$PSW 
MDT>D6430<ALU> 

When a breakpoint occurs, the display list is printed as follows: 

BREAKPOINT NUMBER 0 AT ADDRESS #10010 
DISPLAY 
$7<15:0> 1012 
$2<15:0> 54321 
$PSW<15:0> 340 
6430<ALU> 12 
END OF DISPLAY 

The address-specs are given in the display output according to their 
display-ide No display-id was given when the address-specs were added 
to the display list; consequently, the display-ids were assigned by 
MDT. The first address-spec entered was assigned the first available 
display-id 0; the second address-spec was assigned the display-id 1; 
and so on. 



MDT -- DISPLAY COMMANDS Page 12-3 

12.1.1 Syntax 

r 

set-display-
{ display-id }: command D address-spec 

display-id {a r 
1 I 2 I . . . I 15 } 

12.1.2 Interpretation 

In response to a set-display-command, MDT adds the address-spec to the 
display list entry specified by the display-ide 

If a display-id is given, then the address-spec is entered into the 
display list at that position. If the display-id indicates a display 
list entry that has an address-spec, indicating that an active display 
is associated with that display-id, MDT overwrites the address-spec in 
the display list with the new address-spec from the 
set-display-command. 

If a display-id is not given, MDT assigns the first available 
display-ide If no display-id is available, then MDT reports an error 
and rejects the command. 

The address-spec is saved in the display list so that it can be used 
to locate the bits to be printed when the display list is output. The 
address-spec is described in connection with the open-bits-command in 
Section 9.1. Adding an address-spec to the display list directs MDT 
to perform the open-bits-command for that address-spec automatically 
each time a breakpoint is honored. 



MDT -- DISPLAY COMMANDS Page 12-4 

12.2 THE DELETE-DISPLAY-COMMAND 

The delete-display-command is used to delete an address-spec from the 
display list. The delete-display-command can be used to clear the 
display list or to selectively remove address-specs from the display 
list. 

Suppose that, as in Section 12.1, the programmer has added registers 2 
and 7, the program status word, and the ALU field of microinstruction 
6430 to the display list. After taking a few breakpoints, he finds 
that he is no longer interested in the contents of register 2. He can 
delete that display by the following delete-display-command: 

MDT >-D$2 

Subsequent breakpoints, then, no longer include register 2 in the 
display list. At the next breakpoint, the following display list is 
printed: 

BREAKPOINT NUMBER 0 AT ADDRESS #1001 
DISPLAY 
$7(15:0> = 1012 
$PSW(15:0> = 343 
6430<ALU> 11 
END OF DISPLAY 

To delete all the address-specs, the programmer types the following 
delete-display-command: 

MDT>-D 

At the next breakpoint, the display list is empty and therefore, no 
display is printed. The MDT simply reports the breakpoint as follows: 

BREAKPOINT NUMBER 0 AT ADDRESS #1001 

12.2.1 Syntax 

delete-display­
command 

r }1 
{disPlaY-id 0 D { address-spec } ~ 



MDT -- DISPLAY CnMMANDS Page 12-5 

12.2.2 Interpretation 

MDT interprets a delete-display-command as follows: 

If neither a display-id nor an address-spec is given in a 
delete-display-command, then MDT deletes all address-specs in the 
display list to return the display list to its initial empty state. 

If a display-id is given, then MDT deletes the address-spec associated 
with that display-ide If no address-spec is associated with the 
display-id, then an error is reported and the command is rejected. 

If an address-spec is given, then MDT searches the display list to 
find a display-id associated with that address-spec and deletes the 
address-spec. If MDT does not find the address-spec on the current 
display list, then an error is reported and the command is rejected. 

12.2.3 Restriction 

Either a display-id or an address-spec can be given, but not both. 

12.3 THE LIST-DISPLAY-COMMAND 

The list-display-command is used to print the address-specs that are 
currently on the display list. 

To examine the contents of the display list, the programmer types the 
following command: 

MDT)?D 

MDT responds by typing the display list in the format shown in the 
following example: 

DISPLAY LISTING 
NUMBER ADDRESS FIELD 

0 $0 <15:0) 
1 1121210 <7: 0) 
3 6430 <22:20) 

This listing indicates that three displays are current, with 
display-ids 0, 1 , and 3. 



MDT -- DISPLAY COMMANDS Page 12-6 

12.3.1 Syntax 

list-display-command ? D 

12.3.2 Interpretation 

In response to the list-display-command, MDT types the display list, 
giving the display-id and address-spec for each active display in the 
following format: 

DISPLAY LISTING 
NUMBER ADDRESS 
display-id address 

FIELD 
bit-range 

If a display-id is not currently in use, it is not printed as part of 
the display listing. 



CHAPTER 13 

CONTROL COMMANDS 

Three control commands are provided in MDT. These commands can be 
used to start the execution of the program to be tested in the 
debugging environment, to reload the Writable Control Store, and to 
reset the state of MDT by deleting all breakpoints and displays. 

The control commands are given in the following syntax: 

control-command 

r go-command 

~ load-command 

Lreset-command ..../ 

The following sections describe each of the control commands. 

13.1 THE GO-COMMAND 

The go-command is used to start the execution of the program being 
tested. The address part of the go-command informs MDT where to start 
execution. For example: 

MDT >G /I 46 1 00 

This go-command instructs MDT to begin execution at the main memory 
address 46100. If the relocation register $RLO contains the base 
address 46000, then the following go-command also starts execution at 
main memory address 46000: 

MDT >G /I 1 00 , 0 



MDT -- CONTROL COMMANDS Page 13-2 

The go-command can be used to change the control sequence of the 
execution after a breakpoint. For example, suppose that the program 
execution halts at a breakpoint on one branch of a target assignment 
construct and that the programmer wants to test out another branch. 
He can enter a go-command after the breakpoint as indicated in the 
following sequence: 

MDT)B6420 
MDT)B6430 
MDT)G #461 00 

BREAKPOINT NUMBER 0 AT ADDRESS 6420 
MDT)P 

BREAKPOINT NUMBER 0 AT ADDRESS 6420 
MDT)G6430 

13.1.1 Syntax 

go-command G transfer-address 

{ # macro-address } {, relocation-register } : transfer-
address micro-address 

13.1.2 Interpretation 

MDT interprets a go-command in the following way: 

MDT computes the transfer address. If a relocation-register is 
present, the contents of that register are added to the address. If 
the address begins with the character "#", then MDT interprets it as a 
main memory address; otherwise, MDT interprets the address as a micro 
memory address. 

MDT restores the state of the machine from the microstate table. If 
the transfer address is to main memory, then the PDP-11 registers are 
restored. If the transfer address is to micro memory, then the 
datapath registers, as well as the PDP-11 registers are restored from 
the microstate table. 

MDT starts the execution of the program under test at the transfer 
address. 



MDT -- CONTROL COMMANDS Page 13-3 

13.1.3 Restrictions 

The transfer address in the go-command must not be a micro address 
unless either a micro breakpoint has occurred or the programmer has 
manually set up the datapath registers in the microstate table by a 
sequence of open-bits commands. 

A relocation-register must not be specified with a micro address. 

13.2 THE LOAD COMMAND 

The load command is used to restore the Writable Control Store to its 
initial loaded state. As part of its initialization sequence, MDT 
copies the contents of the Writable Control Store into an unused 
portion of main memory. If, after the program has been executing for 
a time, the programmer wants to restore the contents of the Writable 
Control Store, he uses the load-command. In response to this command, 
MDT restores the saved copy of the contents of the Writable Control 
Store. 

This command is useful in the case in which the contents of the 
Writable Control Store has been altered either intentionally or 
accidentally while the contents of main memory have not been 
disturbed. An example of such a case occurs when the programmer has 
been making modifications to the microprogram in the Writable Control 
Store by the use of open-commands. 

As a simple example, consider the case in which the programmer begins 
the debugging session by changing the contents of the ALU field of 
locations 6200, 6201, and 6203. He mistakenly opens 6000 and makes 
his modifications, as follows: 

MDT>06000(ALU> 
6000(47:44> 10 11 (If) 
6001(47:44> 7 6 (If) 
6002(47:44> 10 11 

At this point, he realizes his mistake. He can either restore the 
contents of 6000-6002 by the use of the open-command or he can reload 
the Writable Control Store to restore it to its initial state. In 
this case, since no other changes were made to the Writable Control 
Store, the use of the load-command is clearly simpler. He continues 
by typing the load-command and then entering the correct changes, as 
follows: 

MDT>L 
MDT>06200(ALU> 
6200(47:44> 2 11 (If) 
6201(47:44> 3 6 (If) 
6202(47:44> 1 11 



MDT -- CONTROL COMMANDS Page 13-4 

13.2.1 Syntax 

~oad-command L 

13.2.2 Interpretation 

MDT interprets a load-command in the following way: 

The saved copy of the Writable Control Store, which MDT copied into 
main memory as part of its initialization sequence, is restored to the 
Writable Control Store. 

13.3 THE RESET COMMAND 

The reset-command is used to reset the MDT 
directs MDT to remove all breakpoints 
tables. The reset command consists of 
indicated in the following command-line: 

MDT>R 

tables. A reset-command 
and display-items from its 
the reset mnemonic, as 

The above line is equivalent to the following two command-lines: 

MDT>-B 
MDT>-D 

The reset-command does not supply any addi~ional functionality but is 
provided in the MDT command language as a convenience. 

13.3.1 Syntax 

~eset-command R 

13.3.2 Interpretation 

MDT interprets a reset-command in the following way: 

All breakpoints are removed from the program under test and all 
display-items are removed from the display list. 



CHAPTER 14 

1 4 • 1 
14.1.1 
14. 1 . 2 
14.1.3 
14 . 1 . 4 
14.2 
14.2. 1 
14.2.2 
14.2.3 
14.2.4 
14.3 
14.3. 1 
14.3.2 
14.3.3 
14.4 
14.4. 1 
14.4.2 
14.4.3 
14.4.4 
14.4.5 
14.4.6 
14.4.7 
14.4.8 
14.4.9 

PART V 

MICROPROGRAMMING TOOLS USER'S GUIDE 

Contents 

USING THE ASSEMBLER 

THE INDIRECT FILE METHOD . . . . . . 14-1 
Syn tax .... . . . . 14-2 
Interpretation .......... 14-2 
Restrictions . . . . .. .. 14-2 
Default . . . . . . . . . . .. 14-2 

THE DIRECT METHOD . . . . .. . .. 14-3 
Syntax .... . . . . . 14-4 
Interpretation . . . . .. .. 14-4 
Defaul ts . . . . . . . . . . . . 14-5 
Guidelines .......... 14-6 

ASSEMBLER INPUT. . . . . . . . 14-6 
Preparing The Input . . ......... 14-6 
Formatting The Microprogram .. 14-7 
A Sample Input Listing .... 14-9 

THE OUTPUT LISTING ........ 14-10 
The Table Of Contents .......... 14-10 
Line Numbers .. .. . ......... 14-11 
Page Headings. . .. .... . 14-11 
The Microword Line . . . . . .. . 14-12 
Error Messages . . . . . 14-12 
Macro Expansions . . . . .. .. 14-13 
The Bit Map. . . . . .. . ... 14-14 
The Summary. . . . . . . . . 14-14 
A Sample Output Listing. . . 14-15 



CHAPTER 15 

15 . 1 
15.1.1 
15.1.2 
15.1.3 
15.1.4 
15.2 
15.2.1 
15.2.2 _ 
15.2.3 
15.3 
15.4 
15. 5 
15.5.1 
15.6 

CHAPTER 16 

16 . 1 
16.1.1 
16.1.2 
16.1.3 
16.2 
16.2.1 
16.2.2 
16.2.3 
16. j 
16.3.1 
16.4 

USING THE MICROPROGRAM LOADER 

THE INDIRECT FILE METHOD ........... 15-2 
Syntax ............ . .. 15-2 
Interpretation ....... 15-3 
Restrictions . . . .. . ..... 15-3 
Defaults .......... 15-3 

THE DIRECT METHOD .... 15-4 
Syntax ........ . ....... 15-4 
Interpretation . . . . . . ... 15-4 
Defaults . . . . . .. 15-5 

ENABLING THE WCS . . . . . . . .. . ... 15-5 
LOADER INPUT . . . . . . 15-5 
LOADER OUTPUT . . . . . . . . . . . . 15-6 

Error Messages ............ 15-6 
EXAMPLE . . . . . . .......... 15-1 

USING THE DEBUGGER 

RUNNING MDT . . . . . . . . . . . 16-2 
Syntax .... 
Interpretation 
Restrictions 

. . .. ...... 16-3 
• • • • • • • • • • • • 1 6 - 3 

. . . . . . . . . 16-4 
THE DEBUG SESSION . 

Interrupting Program Execution 
Restarting The Debugger . 
Terminating A Session . . . . . . 

DEBUGGER ERRORS . . . . . . . . . . 
A Special Error . . . . . 

AN EXAMPLE . .. ..... 

· . . . . . 16-4 
. . . . . 16-4 

· . . . . . 16-5 
· . . . . . 16-5 

• • -j 6-6 
16-6 

. . 16-1 



CHAPTER 14 

USING THE ASSEMBLER 

This section describes using the assembler. First, the two methods of 
assembling a microprogram are considered; then the input to the 
assembler is described; next, the assembler output is given; and 
finally, an example of the use of the assembler is presented. 

14.1 THE INDIRECT FILE METHOD 

The indirect file method of assembling a microprogram assumes that the 
programmer has written the program entirely in terms of the 11/60 
predefinitions. Further, it assumes an object module file and, 
optionally, a listing file are wanted as a result of the assembly. As 
an example of the use of the indirect file method, consider the 
following interaction: 

>@MIC 
>; MIC.CMD \ASSEMBLE WCS MICROPROGRAM 
> ; 
>* ENTER MICROPROGRAM SOURCE FILE SPECIFICATION [S]: LNKLST 
>* LIST? [Y/N]:Y 
>MIC LNKLST,LNKLST=PREDEF,DSPTCH,LNKLST 

VERSION 1= 12-AUG-77 

ERRORS DETECTED: 0 
NUMBER OF LINES PROCESSED: 2745 

The system requests the programmer to enter the name of the source 
file that contains the action-part of the microprogram. The 
programmer responds with the name of the file, in this case LNKLST. 
Then, the system asks if the programmer wants a listing file. He 
responds Y (yes) and the assembly is initiated. The assembly produces 
the object module file LNKLST.OBJ and the listing file LNKLST.LST. At 
the end of the assembly, a summary is printed. In this case, the 
summary shows that no errors were encountered in the assembly and that 
the number of lines processed was 2745. The lines of the 
predefinitions and dispatch files are counted in this summary although 
the contents of these files is not reproduced in the list file, due to 
the fact that these files contain .NLIST keyword to suppress listing. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-2 

; 

14. 1 . 1 Syn tax 

in- >@MIC --direct-
method >* ENTER MICROPROGRAM SOURCE FILE SPECIFICATION[SJ: in-spec 

r Y 1 >* LIST? [Y IN J : ~ -

L N j -

in-spec { in-file } ~ 

The text typed by the user is underlined in the above syntax. 

14.1.2 Interpretation 

The in-spec given in response to the system question 
"ENTER MICROPROGRAM SOURCE FILE SPECIFICATION[SJ:" is assumed to 
contain the action-part written in terms of the 11/60 predefinitions. 

The response given to the question "LIST? [Y/NJ" determines whether or 
not a listing file is created. 

An assembly command line is constructed using the name of the input 
file and the names of the files supplied by Digital. 

If the assembler is not installed, the actions necessary to install it 
are taken. 

14.1.3 Restrictions 

The maximum number of characters that can be given in an in-spec is 
16. 

14.1.4 Default 

If the extension is omitted for a file-spec in the in-spec, the 
default extension .MIC is assumed. 



USER'S GUIDE -- USING THE ASSEMBLER 

14.2 THE DIRECT METHOD 

The direct method of assembling a microprogram allows the 
specify the files that make up the program in a general way. 
for example, extend or replace the 11/60 predefinitions. 

Page 14-3 

user to 
He can, 

Suppose, for example, that the programmer wants to add a few of his 
own definitions to the 11/60 predefinitions. To do this, he invokes 
the assembler in the following way for the files LNKLST and MYDEF: 

>MIC LNKLST,LNKLST=PREDEF,MYDEF,DSPTCH,LNKLST 

The user-definitions are included in the file MYDEF. 

If the MICRO-11/60 assembler is installed, it is invoked by typing its 
three letter abbreviation, MIC, followed by the assembly-command-line 
at the command level in response to an operating system prompt. If it 
is not installed, the RUN command must be used. The 
assembly-command-line gives the output and input files in the RSX-11M 
standard notation. The output files are given on the left-hand-side 
and the input files are given on the right-hand-side of the '=' 
character in the assembly command line. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-4 

14.2.1 Syntax 

assembly 

assembly-command­
line 

output-spec 

input-spec 

object-file l 
list-file J 
input-file 

file-spec 

switch 

)MIC assembly-command-line 

output-spec = input-spec 

{Ob j ect-file }: {, list-file}: 

{ input-file } ~ 

file-spec { / swi tch } : 

i:dev:}: {[ppnJ}: file-name {.ext}: 

The text typed by the user is underlined in the syntax for assembly. 

14.2.2 Interpretation 

An assembly interaction consists of the invocation of the assembler, 
followed by an assembly-command-line. 

The assembly-command-line informs the assembler of the names of the 
files to be used for output and input. The position of the file 
within the assembly-command-line indicates its intended use. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-5 

Both the output files are optional. If both output files are omitted, 
then the assembler validity checks the input and reports any errors on 
the terminal. If more than one input file is given, the assembler 
reads the microprogram from the specified input files in the order 
given in the assembly-command-line. The first input file is read and, 
if an .END is not encountered before the end of that file is reached, 
then that file is closed and the second file opened. Processing 
continues with the second input file, again until either an .END, 
signifying the end of the microprogram, or an end-of-file, indicating 
the end of input on that file, is read. Processing continues in this 
way, moving from file to file, until an .END is encountered. The .END 
determines the end of the microprogram. If it is read before all the 
files specified in the assembly-command-line are processed, then the 
information after the .END is discarded. 

The assembler produces the object module on the object-file and that 
file can 
loader MLD 
produced. 
8 • 2. 1 

be subsequently given as an input file for the microprogram 
If an object-file is not specified, no object module is 

The format of the object module is described in Section 

The assembler produces the output listing on the list-file. If a 
list-file is not specified, then no output listing is produced and any 
errors detected in the assembly are reported at the terminal. The 
output listing is described in Section 14.4. 

The switches can be given following any file in the 
assembly-command-line. The switch MX directs the assembler to include 
macro expansions for all input files in the output listing and the 
switch BT directs the assembler to add a bit map at the end of the 
output listing. The result of adding the MX switch is described in 
Section 14.4.6 and the result of the BT switch in Section 14.4.7 

14.2.3 Defaults 

If the file extension (.ext) is omitted in a file-spec, the following 
extensions are assumed: 

File 

input 
object 
list 

Default Extension 

.MIC 

.OBJ 

.LST 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-6 

14.2.4 Guidelines 

Omitting the object-file increases the speed of the assembly. 
Sometimes several assemblies of a microprogram are necessary before 
the microprogram is ready to be loaded and tested. In early 
assemblies, therefore, omitting the object module saves time. 

More often, however, the microprogrammer 
assembly may be useful for testing and 
assembly can produce a number of errors 
module that can be executed and, 
microprogrammer can obtain information 
microprogram. 

feels that the results of the 
includes the object-file. An 
and still yield an object 

from whose execution, the 
about the validity of the 

In the absence of a strong conviction about the usefulness of either 
of the output files, the microprogrammer should include both in the 
assembly-command-line. The time saved by omitting the object-file is 
minor compared to the time required to rerun the assembly simply to 
obtain an object module and when an object-file is produced, a 
list-file should be produced. If an object-file does not have an 
associated list-file, then troublesome questions about its contents 
are apt to arise. 

14.3 ASSEMBLER INPUT 

The input to the assembler is a microprogram. The microprogram 
consists of a sequence of lines, written in MICRO-11/60 source and 
conforming to the syntactic rules of that language. The input can be 
prepared using any available editor. 

This section discusses preparing the input, suggests some formatting 
rules, and gives an example of assembler input. 

14.3.1 Preparing The Input 

The first step in preparing the input is writing the microprogram. To 
write a microprogram, the programmer must be familiar with the 
internal details of the 11/60 processor, as described in the "11/60 
Microprogramming Specification" and with the 11/60 predefinitions, 
given in Appendix B of this manual. 

Representing an algorithm as a microprogram often involves rethinking 
the logic of the algorithm. The example given in Appendix D 
illustrates this process, showing first three macro programs for 
manipulating a linked list and then giving the restructured algorithms 
for the corresponding microprograms. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-1 

Once the logic of an algorithm is determined, the microprogram is 
written using the 11/60 predefinition language, which defines the 
fields of the 11/60 microword and provides a macro language that is 
oriented toward the logical operations performed in a microprogram. 

Then, the microprogram source is entered using any available editor. 
From the assembler's point of view, the microprogram consists of a 
sequence of lines beginning at the start of the first input file and 
continuing until an .END is encountered. Within those limits, the 
microprogram must have the expected structure. The first part must 
give the definitional information and the second part must give the 
actions to be performed when the microprogram is executed. 

The assembler detects and reports errors, as described in Section 
14.4.5. In response to these errors, the microprogrammer edits the 
input to obtain a valid microprogram. This process continues until 
either no errors are present or until the microprogrammer is convinced 
that the messages produced do not affect the validity of the 
microprogram. 

14.3.2 Formatting The Microprogram 

Using a standard formatting scheme increases the readability of the 
microprogram. A standard format for 11/60 microprograms has been 
developed at DIGITAL and is given here for the information of Writable 
Control Store users. 

If a microprogram has any definitions, it begins with the .TITLE and 
.IDENT lines and continues with field definitions, followed by 
macro-definitions, as follows: 

.TITLE title 

.IDENT /version/ 

.FIELD field-name ::= field-spec 
field-value-name ::= value 

.MACRO macro-name ::= 
instruction-part, ... 

The action-part of a microprogram consists of a 
microinstructions, as follows: 

microinstruction 

.END 

sequence of 



USER'S GUIDE -- USING THE ASSEMBLER 

The standard format for a microinstruction is as follows: 

comment 

comment 

address: 

label: 

time-state, instruction-part, 
instruction-part, 

NEXT, instruction-part, 
J/next-address 

comment 
comment 

comment 

Page 14-8 

The rules for formatting a microinstruction are summarized as follows: 

1. Precede the microinstruction by any general comments. 

2. If the microinstruction has an explicit address, give that 
address at the left-margin and do not include any other 
information on that line. 

3. If the microinstruction has a label, give that label at the 
left margin and do not include any other information on that 
line. 

4. Begin the 
Time-states 
9 ) • 

microinstruction with the first time-state. 
are given at the first tab position. (column 

5. Include as many instruction-parts, separated by commas, as 
will fit in the columns starting at the second tab (column 
17) and continuing to column 38. 

6. Place any line-specific comments at the fifth tab (column 
41). In order to maintain the microprogram in a bindable 
form (8 1/2 x 11), do not continue the comment past column 
70. 

7. If more instruction-parts are specified for a time-state 
than can fit on a single line, continue at the second tab 
(column 17) of the next line through column 38. 

8. Give the NEXT time-state as the last time-state of the 
microinstruction and conclude the instruction-part of the 
NEXT time-state with a branch to the next-address. 

9. Separate each microinstruction from the remainder of the 
microprogram by one or more blank lines. 

All the microprograms in this manual are written in the standard 
format. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-9 

14.3.3 A Sample Input Listing 

The input listing for the microprogram given in Chapter 4 of the first 
part of this manual is reproduced here. The register exchange 
microprogram is chosen because its size, although untypically small 
for a microprogram, is convenient for inclusion in a manual. A more 
typical microprogram is given in Appendix D . 

The 

. TITLE REGEX 

.IDENT IR1V11 
! REGISTER EXCHANGE PROGRAM 

.CASE 0 OF DISPCH 
EXCHANGE: 

EXCH2: 

EXCH3 : 

P2-T, SR A,R3-A, 
NEXT, J /E'XCH2; 

P2-T, D_A,R2-A, 
P 3, WR(AB,L,B) ,R3-B, 
NEXT, J/EXCH3; 

P2-T, D_SR, 
P3, WR(AB,L,B),R2-B, 
NEXT, BUT(SUBRB) ,PAGE(O), 

J/BRA05; 
.END 

output listing for this sample is given 

SAVE R3 

MOVE R2 TO R3 

MOVE SAVED R3 TO R2 

in Section 14.4.9. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-10 

14.4 THE OUTPUT LISTING 

The output listing of a microprogram corresponds to the input listing, 
except that the assembler prints some additional information, namely: 

o A table of contents, formed by listing each .TOC line with 
its assigned line number at the beginning of the output 
listing. 

o A line number at the beginning of each line. 

o Page headings at the top of each page. 

o Microword lines, giving the address and bits for each 
microinstruction in the microprogram. 

o Error messages, if any errors are detected. 

o Macro expansions, if requested by the MX switch. 

o A bit map, if requested by the BT switch. 

o An error summary. 

A brief description of each of the above items is given in the 
following sections. 

14.4.1 The Table Of Contents 

The table of contents is constructed by collecting the .TOC lines to 
the beginning of the listing. Judicial placement of .TOC lines within 
the listing results in a useful table of contents, by which the 
microprogrammer can quickly reference any logical section of the 
microprogram. 

As the size of a microprogram increases, the value of the table of 
contents increases. However, the assembler always prints a table of 
contents page, even when the microprogram does not contain any .TOC 
lines and the table of contents is, accordingly, empty. Therefore, 
including some .TOC lines in even the shortest microprogram is 
advisable . 

. TOC lines and the construction of the table of contents are described 
in detail in Chapter 4, "Program Structure". A good example of the 
use of .TOC lines to produce a comprehensive table of contents can be 
found in Appendix B, in which the 11/60 predefinitions are given. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-11 

14.4.2 Line Numbers 

Each input line is numbered, by the assembler. The line number is a 
four digit decimal number, which starts at 0001 and continues, in 
increments of 0001, through 9999. If a microprogram contains more 
than 9999 lines, then the string '****' is used instead of a line 
number for every line after 9999. 

Since blank lines and comments are assigned line numbers, it is not 
unusual for a small microprogram to occupy several thousand lines. 
However, the line limit of 9999 is seldom exceeded. If it is 
exceeded, the resulting assembly is still valid and the only 
inconvenience is that the table of contents does not locate the 
position of .TOC lines that occur after the 9999th line. 

14.4.3 Page Headings 

The assembler divides the output listing into pages. Each page 
contains a heading line and 54 lines of the microprogram. The page 
heading gives the following items of information: 

o The program title, as derived from the first six characters 
of the last .TITLE line. 

o The name and version number of the MICRO-11/60 assembler 
used in assembling the microprogram. 

o The date and time of the assembly. 

o The page number. 

If a .TITLE line is not given in the microprogram, then the title part 
of the heading is left blank. 

An example of a heading line is: 

LNKLST MICRO VOOA-1 11:20:02 10-SEP-77 PAGE 2 

The heading line, as part of an output listing, is given in Section 
14.4.9. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-12 

14.4.4 The Microword Line 

The microword line contains the address and bits of the microword, in 
the following format: 

nnnn b bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb 
I 
I 

47 
I 
I 

39 

I 
I 

31 
I 
I 

23 
I 
I 

15 
I 
I 

7 

I 
I 

o 

The address, nnnn, identifies the location to which the microword is 
assigned. The bits, b, identify the value of the bits in the 
microword. The bits are displayed as shown above, in groups of eight. 
The first single bit is not part of the microword and should be 
ignored. It is present because of a technique used in the 
predefinition language. 

The microword line is illustrated in Section 14.4.9. 

14.4.5 Error Messages 

If an error is detected in a microprogram line, then an error message 
is printed by the assembler following that line. Error messages are 
easy to find within the listing because, instead of a line number, 
error messages begin with the string '****', followed by the error 
number. The error message also contains a short description of the 
error and, if possible, a piece of the input line to show the point at 
which the error was detected. 

If the assembler detects an error in a line, then the information on 
that line is not fully interpreted in the assembly process. The fact 
that the information is not interpreted sometimes causes additional 
errors later. Usually, when the first error is corrected, the other 
errors disappear. For example, suppose the microprogrammer makes the 
syntactic error of using a hyphen rather than a colon in a field 
definition as follows: 

.FIELD ALPHA ::= <44-40> 

The assembler detects that error: 

2345 .FIELD ALPHA ::= <44-40> 
****39 SYNTAX ERROR 

Because the assembler rejects the definition of ALPHA, any uses of the 
field ALPHA within subsequent microinstructions also produce error 
messages as follows: 

4567 
****24 

ALPHA/1 
MICROINSTRUCTION ILLEGAL ALPHA 

Appendix E lists all of the assembler error messages. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-13 

14.4.6 Macro Expansions 

If the microprogrammer specifies the MX switch in the 
assembly-command-line, then the macros used in each microinstruction 
are expanded and printed in the output listing. 

The expansion of each macro is shown on a separate line. The 
expansion line begins with the string '+ 'instead of a line number. 

As an example of a listing that includes macro expansions, consider 
the following output listing excerpt produced from the assembly of the 
matrix addition example given in Section 7.2. 

2129 6200: 
2130 MATADD: 
2131 P1, CLK-BA,PC-A, !INITIATE MEM(PC) READ: 

+ N/O 
+ CLKBA/YES 
+ AEN/ASPLO,ASEL/R07,RIF/R07 

2132 P2-T, A-PLUS-B,CSPB(TWO) , !INCREMENT pc. 
+ WHEN/AT-P2-T 
+ ALU/A-PLUS-B 
+ BEN/BASCON,BSEL/TWO 

2133 P3, WR(AB,L,A),DATI, 
+ N/O 
+ MODICLKSP,WRSP/AB,HILO/L,WRSEL/A 
+ BEGIN/YES,SELECT/BUS,BUSCODE/DATI 

2134 NEXT, J/MAT1; 
+ N/O 

6200 0 10011111 10011110 00000101 01100001 10110000 00000000 

The first macro in the first microinstruction line, 'P1', expands to 
the string 'N/O'. The second macro 'CLK-BA' expands to the string 
'CLKBA/YES'. The third macro 'PC-A' expands to the string 
'AEN/ASPLO,ASEL/R07,RIF/R07'. The first macro in the second 
microinstruction line, 'P2-T', expands to the string 'WHEN/AT-P2-T', 
and so on. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-14 

14.4.7 The Bit Map 

If the microprogrammer specifies the BT switch on the 
assembly-command-line, a bit map is produced at the end of the output 
listing. The bit map indicates the addresses that are used by the 
assembly. 

The bit map consists of a matrix of binary digits. The digit 1 
indicates that an address is used and the digit 0 indicates that an 
address is not used. 

As an example of a bit map, consider the following: 

6576 1 1 0 0 0 0 1 0 1 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 

6636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6776 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7036 0 0 

The bit map displays all the addresses within the 
The above bit map was produced by a microprogram 
microinstructions and the bounds 6576:7037. As can 
map, the assembler used locations 6576, 6577, 6600, 
that program. 

14.4.8 The Summary 

specified bounds. 
that contains five 
be seen from the 
6605, and 6607 for 

At the end of the input listing, MICRO-11/60 summarizes all the errors 
detected as a result of the assembly and gives the total number of 
lines processed. The number of lines includes the lines from the 
predefinitions and dispatch-files, if those files are included as part 
of the assembly. 



USER'S GUIDE -- USING THE ASSEMBLER Page 14-15 

14.4.9 A Sample Output Listing 

The output listing for the sample input program given in Section 
14.3.3 is shown below. 

MICRO VOOA-1 10:11:08 06-JUL-11 

TABLE OF CONTENTS 

REGEX MICRO VOOA-1 10:11:08 06-JUL-11 

1 . TITLE REGEX 
2 .IDENT IR1V11 
3 ! REGISTER EXCHANGE PROGRAM 
4 .CASE 0 OF DISPCH 
5 EXCHANGE: 
6 P2-T, SR A,R3-A, 
1 NEXT, J/EXCH2; 

! SAVE R3 

PAGE 1 

PAGE 2 

6030 0 11110000 10011010 00001000 00000000 00110000 10000000 

8 
9 EXCH2: 

10 
1 1 
12 

P2-T, 
P 3, 
NEXT, 

D A,R2-A, 
WR(AB,L,B),R3-B, 
J/EXCH3; 

MOVE R2 TO R3 

6200 0 11110011 10001010 00010000 00000011 10110000 10000001 

13 
14 EXCH3: 
15 
16 
11 
18 

P2-T, 
P 3, 
NEXT, 

D SR, 
WR(AB,L,B),R2-B, 
BUT(SUBRB) ,PAGE(O), 
J/BRA05; 

MOVE SAVED R3 TO R2 

6201 0 11110010 00001010 00010000 00000011 10111000 0011 

19 . END 

MIC ERRORS DETECTED: 0 
MIC -- NUMBER OF LINES PROCESSED: 2382 





CHAPTER 15 

USING THE MICROPROGRAM LOADER 

Before a program that uses a microprogram can be executed, the 11/60 
Writable Control Store must be loaded and enabled. Loading and 
enabling requires the use of the Microprogram Loader, MLD, and two 
small stand-alone programs, MSTART and MSTOP. The program MSTART 
enables the Writable Control Store and MSTOP disables it. 

All three of these programs are intended to be privileged programs 
under RSX-11M to be accessed only by users with that status. The 
execution of a microprogram in the WCS essentially modifies the 
machine dynamically, and, tnerefore, the use of the WCS should be 
restricted to the programmer who is aware of his responsibility to the 
other programmers on the system. Until the error-free operation of a 
microprogram is assured, any testing of that microprogram should be 
done in a single-user (stand-alone) mode. 

To run a program that contains both macro and micro code, several 
steps are necessary. First, the macro code must be linked and loaded 
into main memory. Then, the micro code must be loaded into micro 
memory (the WCS). Finally, the WCS must be enabled. An indirect 
command file, @MLD, is provided to assist the programmer in loading 
and enabling the WCS. 

The steps necessary to link and load macro memory are not discussed 
here. Information on loading macro memory can be found in the RSX-11M 
Task Builder Reference Manual (DEC-11-0MTBA-A-D). 

The following sections describe the two methods for invoking the 
loader and the enabling programs. Then, the inputs and outputs of the 
loader are discussed. Finally, an example of the use of the loader is 
given. 



USER'S GUIDE -- USING THE MICROPROGRAM LOADER Page 15-2 

15.1 THE INDIRECT FILE METHOD 

In the indirect file method of loading the Writable Control Store, the 
user invokes the loader by typing the loader indirect command file, 
@MLD, at command level. The system then asks if the WCS is to be 
enabled and requests the name of the file that contains microprograms 
to be loaded. An example of an interaction is: 

>@MLD 
>; MLD.CMD\LOAD WCS 
>; 
>* ENABLE WCS?[Y/N]:Y 
>* ENTER MICROPROGRAM OBJECT FILE SPECIFICATIQN[S]:LNKLST 
>MLD WCS=MICPAK,LNKLST 
>RUN MSTART !MSTOP SHOULD BE RUN WHEN FINISHED 
>@<EOF> 

In response to the system's request for information, the user types 
'Y' and the file LNKLST, which contains an object module for that 
program. 

15.1.1 Syntax 

in 
direct­

load 

obj­
spec 

>@MLD { 

* ENABLE WCS?[Y/N]: ! Jr 
* ENTER MICROPROGRAM OBJECT FILE SPECIFICATION[S]: obj-spec 

{ file-spec } ~ 

The text typed by the user is underlined in the syntax for load. 



USER'S GUIDE -- USING THE MICROPROGRAM LOADER 

15.1.2 Interpretation 

A load interaction consists of the invocation of the loader, 
by an indication whether or not to enable the WCS, 
specification of the file for the microprograms to be loaded. 

Page 15-3 

followed 
by the 

If the user answers 'Y' to the question 'ENABLE WCS?', the program 
MSTART is executed to enable the WCS after the microprograms are 
loaded. If the user types 'N' or simply carriage return, then MSTART 
is not executed. Any other response is an error. 

The resident section supplied by DIGITAL, MICPAK, is loaded followed 
by the specified microprogram object files. 

The loader does not report an error message if, in the course of 
loading a set of object modules, a word in the WCS is reloaded. If 
the programmer specifies more than one object module, he must be 
responsible for the address compatibility of the modules. Object 
modules can be assembled into different parts of the WCS by the use of 
the .BOUNDS keyword, as described in "Parti tioning the WCS" in 
Appendix C. 

The fact that the loader allows addresses to be reloaded can be 
convenient. It allows the user to patch an existing object module. 

15.1.3 Restrictions 

The maximum number of characters that can be given in an obj-spec that 
is part of an @MLD sequence is 16. 

15.1.4 Defaults 

If any of the file-specs given in response to the 
MICROPROGRAM OBJECT FILE SPECIFICATION[SJ:' does 
extension, the extension' .OBJ' is assumed. 

request 'ENTER 
not contain an 

If no file-spec is given, only the resident section is loaded into the 
WCS. 



USER'S GUIDE -- USING THE MICROPROGRAM LOADER Page 15-4 

15.2 THE DIRECT METHOD 

The indirect command file @MLD is an aid supplied for the programmer. 
He can invoke the loader directly by typing MLD, followed by the 
loader command line, in response to the operating system prompt, as 
follows: 

>MLD WCS=MICPAK,LNKLST 

The loader command line gives the programs to be loaded, which, in 
this case, are MICPAK, the resident section supplied by DIGITAL, and 
LNKLST, the user's object module file. 

If the user wants to load more than one object module, he can specify 
the object modules when invoking MLD directly as follows: 

>MLD WCS=MICPAK,LNKLST,MATPAK 

Or, if he wants to supply his own resident section, he can do 
follows: 

>MLD WCS=MYRES,MYMIC 

15~2~ 1 Syntax 

direct­
load )MLD { WCS }: = {MICPAK ,}: {file-spec} ~ 

15.2.2 Interpretation 

( 

so, as 

The loader loads the specified files starting with the first and 
continuing through the last file into the WCS. 

Following the use of the loader, the programmer should run the program 
MSTART to enable the WCS. 



USER'S GUIDE -- USING THE MICROPROGRAM LOADER Page 15-5 

15.2.3 Defaults 

The default file extension is .OBJ for files specified in a calIon 
the loader. 

15.3 ENABLING THE WCS 

The execution of MSTART enables the WCS. The user can then execute a 
program in the WCS. 

When the user is finished with the program that uses the WCS, he 
should disable the WCS by running the disabling program MSTOP, as 
follows: 

>RUN MSTOP 

MSTART sets a bit in the WHAMI register that permits the use of the 
WCS; and, MSTOP resets that bit. Therefore, the successful execution 
of these programs is usually assumed. However, if the user wants to 
verify that the programs executed properly, he reads the console 
lights. The successful completion of these programs is indicated by 
the following pattern in the console lights: 

Program Console Lights 

MSTART 000222 

MSTOP 000333 

Once the WCS is enabled, any XFC instruction executed, whether 
intentionally or intentionally, causes the execution of microcode. 
Therefore, the WCS should be disabled as soon as the programmer is 
finished executing his microprogram. 

15.4 LOADER INPUT 

The loader input consists of the object module for the resident 
section and the object modules that make up the microprogram to be 
executed. The object module is described and illustrated in Section 
8.2.1. 

When more than one object module is to be loaded into the WCS, the 
user must ensure that the addresses occupied by the different modules 
do not conflict. He can cause the object modules to occupy different 
address spaces by the use of the .BOUNDS keyword, as described in the 
section on "Partitioning the WCS" in Appendix C. 



USER'S GUIDE -- USING THE MICROPROGRAM LOADER Page 15-6 

15.5 LOADER OUTPUT 

After executing, the loader prints a message indicating whether or not 
its execution was successfully completed. 

When the loading process is successful, MLD prints the message: 

WCS LOAD COMPLETED 

The user can assume, if that message is printed and no warnings are 
issued, that the WCS is properly loaded. He can then proceed to 
enable the WCS and run his program. 

When the loading process is unsuccessful, MLD prints the message: 

ABNORMAL PROGRAM TERMINATON 

This message is usually preceded by one or more error messages, which 
indicate the reasons for the failure of the loading process. 

15.5.1 Error Messages 

The microprogrammer who uses the predefinitions and dispatch files as 
part of his assembly is likely to encounter only two errors in loading 
the resulting object module. 

BAD RECORD IN OBJECT FILE 

The loader reports this error if the format of the object module is 
not correct. In response to this message, the user should check all 
the input files to ensure that they contain valid object modules. 

The other error is: 

WRITE TO WCS FAILED AT MICROINSTRUCTION ADDRESS: micro-address 

The loader writes an instruction into a WCS location and then reads 
back the contents of that location to compare it with the value 
written. If the value read does agree with the value written, then 
the above error is reported. In response to this message, the 
microprogrammer can try again. However, if he receives the same 
message, he should assume that a hardware problem is likely to exist. 

If the microprogrammer changes the bounds for the assembler, as 
described in connection with the .BOUNDS keyword at the beginning of 
Appendix B, he may encounter the following error message: 

MLD WARNING: INVALID 11/60 MICROINSTRUCTION ADDRESS: address 

Moreover, this message is issued if the loader receives an address in 
the range 0000:5777. The loader loads the first 16 bits in the local 
store address specified and then reports the message given above. 



USER'S GUIDE -- USING THE MICROPROGRAM LOADER Page 15-7 

15.6 EXAMPLE 

As an example of the procedure used to load and enable the Writable 
Control Store prior to execution, consider the case in which the 
program to be run consists of two FORTRAN programs, ANALYZR and PARSE, 
a MACRO 11 program, INTRFC, and two microprograms LNKLST and MATPAK. 

The user begins by building the task for the main memory programs. On 
a system with OTS in SYSLIB, the task build is: 

>TKB AWCSYS=ANALYZR,PARSE,INTRFC 

Then, he creates a microprogram file that contains the object modules 
for LNKLST and MATPAK loads the WCS, as follows: 

>@MLD 
>; MLD.CMD\LOAD WCS 
>; 
>* ENABLE WCS?[Y/N]:Y 
>* ENTER MICROPROGRAM OBJECT FILE SPECIFICATION[S]:LNKLST,MATPAK 
>MLD WCS=MICPAK,LNKLST,MATPAK 
>RUN MSTART !MSTOP SHOULD BE RUN WHEN FINISHED 
>@<EOF> 

Then, he runs his program, as follows: 

>RUN AWCSYS 

After the execution of the task is complete, the user disables the WCS 
by running MSTOP. 





CHAPTER 16 

USING THE DEBUGGER 

The MicroDebugging Tool MDT operates as a stand-alone tool for 
debugging- programs that use the Writable Control Store of the 11/60. 
To use MDT, he invokes the MDT indirect command file. This command 
file shuts down the operating system and interacts with the programmer 
to run the program under test in a single-user mode. 



USER'S GUIDE -- USING THE DEBUGGER Page 16-2 

16.1 RUNNING MDT 

To initiate MDT from RSX-11M, the user enters the debugger indirect 
command file, @MDT, at command level. The system then requests the 
name of the microprogram to be loaded into the WCS, runs the RSX-11M 
shutdown program, and brings up MDT. An example of an interaction is: 

>@MDT 
>; MDT.CMD \LOAD WCS AND START MDT (FROM PRIVILEGED UIC) 
> ; 
>; SHU T S R S X DOW N 
> ; 
>* ENTER MICROPROGRAM OBJECT FILE SPECIFICATION [S]: MATADD 
>MLD WCS=MDTMIC,MATADD 
>RUN MSTART !ENABLES WCS (SHOULD RUN MSTOP AS SOON AS RSX BACK UP) 
>; (SUGGEST PUTTING MSTOP IN STARTUP.CMD FILE) 
>RUN SHUTUP 

RSX11M SHUT DOWN PROGRAM 

> 
ENTER MINUTES TO WAIT BEFORE SHUTDOWN: 
a 
") 
ENTER MINUTES BETWEEN MESSAGES: 
a 
") 

ALL FURTHER LOGINS ARE DISABLED 

a1-SEP-17 11:53 PLEASE FINISH UP, a MINUTES BEFORE SHUTDOWN 
; TYPE "RES AT." WHEN SHUTDOWN COMPLETED 
> 
AT. -- PAUSING. TO CONTINUE TYPE "RES ... AT." 

> 
>RES AT. 
Ar:--=-CONTINUING 
> 
> 

DMO DBa: 

>* HAVE YOU PROTECTED EVERYTHING YOU WANT PROTECTED? [Y/N]:Y 
>BOOT MDT T HIS T A K E S R S X DOW N -
MICRO DEBUGGING TOOL. VERSION #1.0 

MDT> 

In response to the system's request for information, the user types 
the name of the microprogram 'MATADD', the shutdown parameters '0' and 
'0', 'RES AT', and the answer 'Y' to the question about write 
protection. 



USER'S GUIDE -- USING THE DEBUGGER Page 16-3 

The general form of the interaction is given in the following syntax. 
In this syntax, the commentary printed by the system is omitted. 

16.1.1 Syntax 

mdt- >@MDT 
call >~NTER MICROPROGRAM OBJECT FILE SPECIFICATION[S]:obj-spec 

ENTER MINUTES TO WAIT BEFORE SHUTDOWN: 
minutes 
ENTER MINUTES BETWEEN MESSAGES: 
minutes 
AT: -- PAUSING. TO CONTINUE TYPE 'RES ... AT.' 
>RES AT. 

>~AVE YOU PROTECTED EVERYTHING YOU WANT PROTECTED? ~ !~1 
MDT> !! J 0 

The text typed by the user is underlined in the above syntax. 

16.1.2 Interpretation 

The resident section for MDT and the obj-spec given by the user in 
response to the request 'ENTER MICROPROGRAM OBJECT FILE 
SPECIFICATION[S]:' are loaded into the WCS by MLD. The obj-spec can 
consist of one or more files, each of which contains one or more 
object modules. The object modules are loaded by MLD, starting with 
the first, and continuing until the end of the last object module is 
reached. 

The minutes until shutdown and the minutes between messages given by 
the user are used in the shutdown procedure. If the system is 
operating in stand-alone mode, then a response of 0 minutes in both 
cases is indicated. If the system is operating in multi-user mode, 
then an appropriate delay before shutdown should be given. 

When the shutdown is complete, the system types the message: 
'AT. -- PAUSING. TO CONTINUE TYPE 'RES ... AT.'. The response 
'RES AT.' directs the system to continue. The user must not type 
'RES AT.' until the shutdown is complete. In the example given above, 
the shutdown is complete when the system types 'DMO DBO:' 



USER'S GUIDE -- USING THE DEBUGGER Page 16-4 

Before bringing up MDT, the system asks if all the devices are 
properly protected. At this point, if the user needs to write protect 
some devices, he can type 'N' or not respond. If he types 'N', the 
system repeats the question. When the devices are protected, he types 
'Y' and MDT is brought up. MDT identifies itself and prompts for the 
first command in the debug session. 

16.1.3 Restrictions 

The maximum number of characters that can be given in an obj-spec that 
is part of an @MLD sequence is 16. 

16.2 THE DEBUG SESSION 

Following the prompt from MDT, the debug session begins. The user can 
enter any number of MDT commands to set breakpoints, to examine and 
change locations in main or micro memory, and to execute the program 
under test. The commands that can be given in response to the MDT 
prompt are described in Chapters 9 through 13 of this manual: 

16.2.1 Interrupting Program Execution 

The programmer can interrupt the execution of either MDT or the 
program under test by typing two control-C characters. 

If the double control-C is typed during the input of a command line, 
all the input entered is erased. The programmer can use the double 
control-C to delete an incorrect command line. For example, suppose 
the programmer forgets the '#' character in the transfer address of a 
go-command. If he notices the error before hitting the carriage 
return that terminates the command, he can type two control-C (AC) 
characters and start the command again, as follows: 

MDT)G6612 ACAC 
G#6612 

If the double control-C is typed during the execution of the program 
under test, then the execution of the program is aborted and control 
is returned to MDT. MDT prompts for another command. The state of 
the machine is not saved when the program execution is interrupted 
and, therefore, the contents of the registers are not meaningful. 
Program execution can be resumed after interruption by the use of a 
go-command to a main memory address. 

An exception to this procedure for interrupting execution occurs when 
the microprogram is in an infinite loop and not checking for service. 
In this case, only an INIT signal from the console can interrupt 
execution. The INIT signal is produced by simultaneously pressing the 
HALT and START buttons. 



USER'S GUIDE -- USING THE DEBUGGER Page 16-5 

16.2.2 Restarting The Debugger 

In some cases, it may be necessary to restart the debugger. An entry 
point $DEBUG is provided for this purpose. If the programmer loads 
the address associated with this entry point into the switch register 
and starts the processor, then MDT is restarted with the state of the 
system as it was before the operation that caused the problem. 

16.2.3 Terminating A Session 

When the programmer is finished with the debugger, he brings up the 
operating system as if a system crash occurred as described in the 
RSX-11M Operator Procedures Manual. 

However, since the use of MDT enables the WCS as part of its 
initialization procedure, the operating system restart should call the 
program MSTOP to disable the WCS. The inclusion of the calIon MSTOP 
as part of the STARTUP command file is recommended. An example of a 
system restart with MSTOP as part of the STARTUP file is as follows: 

MDT> 

RSX-11M V03 BL18 124K MAPPED 
>RED DBO:=SYO: 
>MOU DBO:RSX11MBL18 
>@[1,2JSTARTUP 
>RUN [1,54JMSTOP 
>INS [1,54J PIP 
>INS [1,54J CRF 
>INS [1,54J EDI 
>INS [1,54J TEC 
>INS [1,54J TEC/TASK= ... MAK 
>INS [1,54J PRT/PAR=SPLPAR/CKP=NO 
>INS [1,54J BIGTKB/PAR=GEN 
>INS [1,54J BIGMAC/PAR=GEN 
>INS [1,54J BRO 
>INS [1,54J RMDEMO 
>INS [1,54 J SHUTUP 
>INS [1,54J F4P/INC=5120. 
>INS [1,54J HEL 
> INS [1, 54 J BYE 
>LOA DK: 
>LOA LP: 
>* PLEASE ENTER TIME AND DATE (HH:MM MM/DD/YY) [SJ: 11:569/1/77 
>TIM 11:56 9/1/77 
>* PLEASE ENTER OPERATOR UIC AS #,# [SJ: 2,100 
>SET /UIC=[2,100J 
>BRO @[2,1JONTHEAIR,TXT 

01-SEP-77 11:56 



USER'S GUIDE -- USING THE DEBUGGER Page 16-6 

16.3 DEBUGGER ERRORS 

MDT examines the command strings it receives from the programmer for 
validity. If MDT detects an error in a command, it prints a message, 
rejects the command, and prompts for another command. The programmer 
can then reenter the command with the appropriate syntax. 

The error messages printed by MDT 
messages are self-explanatory. 
interaction: 

are given in Appendix E. Most 
For example, consider the following 

MDT)O#46002 
#46002(15:0) 
OPEN ROUTINE: 
MDT)O#47020 

32 0#47020 
UNKNOWN TERMINATOR 

In the above interaction, the programmer forgets to type the carriage 
return to terminate the open-bits-command. MDT responds with the 
error message shown above. The programmer can then enter the command 
again. 

The least specific MDT error message occurs in the 
interaction: 

MDT)D6016 
MDT)D6017 
MDT)6060 
COMMAND PARSER: SYNTAX ERROR 
MDT)D6060 

following 

The programmer is entering a sequence of display-items. In the third 
line, he forgets the D command mnemonic. MDT cannot guess his intent 
and responds with the message shown above. The programmer, in 
response to this message, examines the preceeding line, finds his 
error, and reenters the command. 

16.3.1 A Special Error 

One error detected by MDT requires special attention. If, in typing a 
command to MDT, the programmer fills up the 64 character input buffer, 
MDT rings the bell each time a character is typed and rejects the 
additional characters. The only way to escape from this error 
condition is to type either a control-C or control-U character. These 
control characters delete all the information in the input buffer and 
reset it to an empty condition. 



USER'S GUIDE -- USING THE DEBUGGER Page 16-7 

16.4 AN EXAMPLE 

As an example of the use of MDT, in which a main memory program is 
used to call the microprogram, consider the debugging of the 
microprogram for matrix addition given in Section 7.2. As the first 
step in the debugging process, the programmer writes a simple macro 
program to call the microprogram, as follows: 

.TITLE MATEST 
MATA: . BLKW 100 
MATB: .BLKW 100 
START: .WORD 076700 

.WORD MATA 

.WORD MATB 

.BYTE 4 

.BYTE 4 

.HALT 

.END START 

The programmer assembles the macro program and links the resulting 
object module with the MDT object modules, as follows: 

>TKB MATEST=@MDTBLD,MATEST 

The load map produced as a result of linking the object modules can be 
used to locate the object module MATEST in memory. Suppose it begins 
at 46000. 

Next, the programmer invokes MDT by typing the indirect file @MDT. 

>@MDT 
>; MDT.CMD \LOAD WCS AND START MDT (FROM PRIVILEGED UIC) 
> ; 
>; SHU T S R S X DOW N 
>; 
>* ENTER MICROPROGRAM OBJECT FILE SPECIFICATION[S]: MATADD 
>SET IMAIN=WCS:7600:200:DEV 
>INS [1,1 ]WCS 
>INS MLD/TASK= ... MLD 
>MLD WCS=MDTMIC,MATADD 
>RUN MSTART !ENABLES WCS (SHOULD RUN MSTOP AS SOON AS RSX BACK UP) 
>; (SUGGEST PUTTING MSTOP IN STARTUP.CMD FILE) 
>RUN SHUTUP 

RSX11M SHUT DOWN PROGRAM 

> 
ENTER MINUTES TO WAIT BEFORE SHUTDOWN: 
o 
ENTER MINUTES BETWEEN MESSAGES: 
o 
ALL FURTHER LOGINS ARE DISABLED 
> 



USER'S GUIDE -- USING THE DEBUGGER 

01-SEP-77 11:56 PLEASE FINISH UP, 0 MINUTES BEFORE SHUTDOWN 
: TYPE "RES AT." WHEN SHUTDOWN COMPLETED 
) 

AT. -- PAUSING. TO CONTINUE TYPE "RES ... AT." 

) 

)RES AT. 
Ar:--=-CONTINUING 
) 

) 

DMO DBO: 

)* HAVE YOU PROTECTED EVERYTHING YOU WANT PROTECTED? [Y/N]:Y 
)BOOT MDT T HIS T A K E S R S X DOW N -
MICRO DEBUGGING TOOL. VERSION #1.0 

MDT) 

Page 16-8 

Observe that this dialogue is different from the dialogue given at the 
beginning of this chapter in that it installs MLD and sets up the WCS 
1/0 page common. 

Next, the programmer uses MDT to set some data values into the blocks 
reserved in the main memory test program, as follows: 

MDT)0#46000 
#46000<15:0) 0 1 (1 f) 
#46002<15:0) 0 2 (1 f) 
#46004<15:0) 0 3 ( If) 
#46006<15:0) 0 4 
MDT )0#4 6100 
#46200<15:0) 0 5 (I f) 
1146202<15:0) 0 6 (I f) 
#46204<15:0) 0 7 (1 f) 
1146206<15:0) 0 10 

Then, he sets breakpoints at the beginning and end of the microprogram 
and starts the execution of the program, as follows: 

MDT)B6200 
MDT)B6224 
MDT)G 1147200 



USER'S GUIDE USING THE DEBUGGER Page 16-9 

When the program execution halts at the breakpoint at the end of the 
program, the programmer can use the open-bits command to check the 
results of the matrix addition, as follows: 

MDT >01146 000 
1146000<15:0> 6 (If) 
1146002<15:0> 10 (If) 
1146004<15:0> 12 (If) 
1146006<15:0> 14 

The programmer can then change the dimensions of the array and try 
again, as follows: 

MDT >OB1I46 406 
1146406<7:0> 4 6 (If) 
1146407<7:0> 4 6 





APPENDIX A 

A. 1 
A . 1 . 1 
A. 1 .2 
A. 1 . 3 
A. 1 .4 
A. 1 .5 
A. 1 .6 
A.2 
A. 2.1 
A.2.2 
A.2.3 
A.2.4 
A.2.5 
A.2.6 
A.3 
A. 3.1 
A.3.2 
A.3.3 

APPENDIX B 

B. 1 

APPENDIX C 

C . 1 
C.2 

APPENDIX D 

APPENDIX E 

E. 1 
E.2 
E.3 

APPENDIXES 

Contents 

SYNTACTIC SUMMARY OF SOURCE AND ~OMMAND LANGUAGES 

MICRO-11/60 SOURCE SYNTAX. 
Processing-Unit. 
Field-Definition 
Macro Definition 
Microinstruction ......... . 
Target Assignment Construct . . .. . 
MICRO-11/60 Elements 

MDT COMMAND SYNTAX . . . . . . . . . . . . 
MDT-Session . . . . . 
Open-Command 
Breakpoint-Command ... . 
Display-Command .. . 
Control Command . . 
MDT Elements 

COMMAND LANGUAGE SYNTAX ..... . 
MICRO-11/60 Command Syntax 
MLD Command Syntax 
MDT Command Syntax 

THE 11/60 PREDEFINITIONS 

· . A-2 
A-2 
A-3 

· . A-4 
A-5 

· . A-6 
A-7 

· . A-8 
A-8 

· . A-9 
A-10 

· . A-11 
· . A-12 
· . A-13 
· . A-14 
· . A-14 
· . A-15 
· . A-16 

PREDEFINITIONS SOURCE LISTING . . . B-2 

THE DISPATCH FILE AND MEMORY PARTITIONING 

THE DISPATCH FILE .. .... . . C-1 
PARTITIONING THE WRITABLE CONTROL STORE . . . . C-1 

LINKED LIST EXAMPLE 

ERROR MESSAGES 

MICRO-11/60 ERROR MESSAGES 
MDT ERROR MESSAGES . . . . 
COMMAND LANGUAGE ERROR MESSAGES . 

E-2 
· . E-6 
· . E-7 





APPENDIX A 

SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES 

This appendix contains a syntactic summary for the source and command 
languages used by each of the microprogramming tools. The MICRO-11/60 
source is summarized first. Next, the MDT commands are listed. Then, 
the command language syntax is given for MICRO-11/60, MLD, and MDT. 

The syntax is presented here in a concise format for quick reference. 
Some of the tutorial metasyntactic names used in the syntax within the 
manual are omitted so that the syntax can be given in a minimum amount 
of space. 

All the syntactic terms used in the syntax sections of the manual and 
in this appendix are listed in the index. If the programmer wishes 
more information on a syntactic term, he can obtain the page in the 
manual that discusses that term by looking in the index. 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-2 

A.1 MICRO-11/60 SOURCE SYNTAX 

A.1.1 Processing-Unit 

processing-unit { predefinitions-file } 

"- user-machine-defini tions 
,,-

.TITLE title-string -.. n 

.IDENT I ident-string I 

.RADIX radix 
-< 

.TOC toc-string 

field-definition 

macro-definition 0 

( dispatch-file ~ 

~ . CODE 
'- _/ 

.TITLE title-string n 

.IDENT I ident-string I 

.RADIX radix 

.TOC toc-string 

microinstruction 

branch-definition 

case-microinstruction 

end-definition 1 

.END 

user-machine- .WIDTH 49R 
definition .BOUNDS [ lower-bound : upper-bound ] 

.ADDRESS J: : = <8: 0 > 

.OBJECT <47:32>'<31:16>'<15:0> 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-3 

A.1.2 Field-Definition 

field-definition .FIELD field-name {.:: } field-spec 
.. -

~field_value-name { ·-l .: ~ J .. - value} : 

field-spec {< {: right-bit }: > } ; left-bit 

{. defaul t } : 

Examples: 

.FIELD ALPHA · . - <40:30> · . -

.FIELD BETA · . - <10:5>'<20:17>,22 · . -

.FIELD GAMMA · . - <26> · . -
ON · . - 0 
OFF · . - 1 · . -

.FIELD DELTA · . - <33:22> · . -
D1 · . - 0 · . -
D2 · . - 2 · . -
D3 · . - 4 · . -
D4 · . - 6 · . -



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-4 

A.1.3 Macro Definition 

macro­
definition 

• MACRO macro-name { ( { formal} ~ ) }: 

{: ::} { macrO-bOdy-part} ~ 

r field-value-name 

1 

field-name I value 
macro-body-

part @ formal 

macro-name { { 1 n 
actual 

l J 1 

Examples: 

.MACRO ALPHA ::= A/B,C/D 

.MACRO BETA(B1,B2) 

.MACRO GAMMA(X,Y,Z) .. -.. -
A/@B1,C/@B2,D/@B1 

BETA(@X,CT1),ALPHA,C42/20 

) }: J 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES 

A.1.4 Microinstruction 

micro­
instruction 

Examples: 

6200: 
ALPHA: 

BETA: 

GAMMA: 

6412: 

I {address} : 

{label} : 
field-name 

macro-name 

-

AlB; 

A/B,C/D,E/F, 
G/H; 

MC1(X,Y), 
AlB, 
C, DIE; 

MC2, 
X/2; 

A/B1, 
J/GAMMA; 

I 
{

value 

field-value-name 
>- , 

{ actual } ~ ) }: J 1 

Page A-5 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES 

A.1.5 Target Assignment Construct 

target­
assignment 

branch-definition 

{ case-microinstruction } ~ 

{ end-defini tion } : 

branch-label: 

Page A-6 

branch­
definition 

· BEGIN = r 0 'J n { l' 1L ~ 1 addreSS-range~ 0 

case-
micro­

instruction 

end-definition 

Example: 

ALPHA: 
.BEGIN=O 

.CASE case-number OF branch-label 

microinstruction 

.ENDB branch-label 

BETA: 
.BEGIN=10*10[6240:6277J 

.CASE 0 OF ALPHA 
AO: AlB, 

JIB 1 ; 

.CASE 1 OF ALPHA 
A 1 : CID, 

J/B1; 

.ENDB ALPHA 

.CASE 0 OF BETA 
01: AIB,CID, 

JIG 1 ; 

.CASE 2 OF BETA 
02: X/4 

J IG2 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-7 

A.1.6 MICRO-11/60 Elements 

I 
ti tle-string } 

{radiX-50-Char }:4 ident-string 
toc-string 

radix-50-char { alphabetic I digit I $ , .} 
alphabetic [A I B I ... I z } 

l 

digit 
I 

{o I 1 I ... , 9 } 
! 

] address-range l [ low-address : high-address 
I 
1 

label "\ 

I field-name 

{ name-Char}:1 
field-value-name 
macro-name alphabetic 
formal 
actual 
entry-label 

...) 

op-code octal-digit 

lower-bound 
upper-bound 
low-address 
high-address 
address octal-integer 
defaul t-value 
value 

left-bit } 
decimal-integer 

right-bit 

name-char { rad ix-50-char 1 t % , [ I J} -



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-8 

A.2 MDT COMMAND SYNTAX 

A.2.1 MDT-Session 

r open-command 
! 

mdt-session MDT) 
~ breakpo int- command 

l 
displ ay-command 

control-command 

Example: 

MDT)01l46000 

1146000<15:0) 
1146002<15:0) 
ii46004<-j 5: 0) 
MDT)01l46100 
1146100<15:0) 
1146102<15:0) 
1146104<15:0) 
MDT)B6200 

MDT)G1I46200 

0 
0 
0 

0 
0 
0 

2 
4 
6 

1 
3 
5 

( If) 
( If) 

( If) 
( If) 

BREAKPOINT NUMBER 0 AT ADDRESS 6200 
MDT)O$O 
$0<15:0) 12 
MDT)P 
BREAKPOINT NUMBER 0 AT ADDRESS 6200 
MDT)B1I46210 

MDT)P 
BREAKPOINT NUMBER 1 AT ADDRESS 46210 
MDT)01l46000 

1146000<15:0) 
1146002<15:0) 
1146004<15:0) 

3 (I f) 
7 (If) 
1 3 

Open main memory address 
46000 
Set values 

Open memory address 46100 
Set values 

Set micro memory 
breakpoint at 6200 
Start execution at main 
memory address 46200 

Examine register 0 

Proceed from breakpoint 

Set main memory 
breakpoint at 46210 
Proceed from breakpoint 

Examine main memory 
address 46000-46004 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-9 

A.2.2 Open-Command 

open-command J
I""- 0 

" OB 

loc 
address-spec 

{address-spec value { new-value} : {~f} } 
address-spec value {new-value} : 

Restrictions: 

The address-spec used with an OB or OC command must be a main memory 
byte address. 

The terminator @ must not be used with an address-spec that is a 
register or that has a bit range,or with the commands OB or OC. 

Examples: 

MDT)06200<40:38) 

6200<40:38) 0 1 (If) 
6201<40:38) 1 

MDT )0#46000 
#46000<15:0) 
#46300<15:0) 
#46520<15:0) 
#46516<15:0) 

MDT)OB#46701 

#46701<7:0) 

MDT)OC#46703 

#46703<7:0) 

MDT)O$PSW 
$PSW<15:0) 

$7<15:0) 0 
$6<15:0) 7 

46300 
46520 
o 
2234 

71 

G 

223 

123 

@ 
@ 
,.. 

Open bits 40 through 38 of 
microaddress 6200 
Look at same bits of next address 

Open main memory address 46000 
Look at the address pointed to 
Again 
Look at the previous word 

Open the main memory byte location 
46701 

Open the character at main memory 
byte location 46703 

Open the register $PSW 
Look at previous register in 
microstate table 
Again 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-10 

A.2.3 Breakpoint-Command 

breakpoint­
command 

Restrictions: 

f{ -}1 ( Jl 1 
, ? 0 l break-id 0 

l {repeat-count }: p 

B [II macro-address}", 

L micro-address 

If the qualifier '_I is given, then either a break-id or a 
break-address can be given, but not both. 

If the qualifier '?' is given, then neither a 
break-address can be given. 

break-id nor 

Examples: 

MDT>Btl46000 

MDT>4B6400 

MDT>?B 

MDT>-Btl46000 

MDT>-4B 

MDT>2P 

MDT>-B 

Set breakpoint at main memory address 
46000. 

Set a breakpoint with id 4 at micro 
address 6400. 

List the breakpoints that are set. 

Delete the breakpoint at main memory 
address 46000. 

Delete the breakpoint with id 4. 

Proceed from the current breakpoint and 
pass through 2 breakpoints at that 
address before halting. 

Delete all breakpoints. 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-11 

A.2.4 Display-Command 

display­
command 

[ - l 1 { } 1 

] 
displ ay-id D 

L? 0 0 
{ address-spec} : 

Restrictions: 

If the qualifier '-' is given, then either a display-id or an 
address-spec can be given, but not both. 

If the qualifier '?' is given, then neither a display-id nor an 
address-spec can be given. 

If no qualifier is given, then the address-spec must be given. 

Examples: 

MDT>D$PSW 

MDT>D6400<ALU> 

MDT>?D 

MDT>-D$PSW 

MDT>-1 D 

MDT>-D 

Add $PSW to the display list. 

Add the ALU field of microinstruction 
6400 to the display list. 

Print out the display list. 

Delete $PSW from the display list. 

Delete the display-item with id 
the display list. 

from 

Clear the display list by deleting all 
displays. 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-12 

A.2.5 Control Command 

control-command 

Examples: 

GII46000 

L 

R 

r {II macro-address}-'" 
: G 

micro-address 

L 

R 

Start execution at main memory 46000. 

Reload the Writable Control Store. 

Reset the debugger by 
breakpoints and displays. 

del eting all 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-13 

A.2.6 MDT Elements 

1 
r 
I 
I 
i ru macro-address ~bit-range~~ ~, relocation-reg~ ~~ 

{ 

bit-range } 1 

spec ~ 

I 

address-
! 

! $ i 

l 

macro-address 

micro-address 

bit-range 

value } 

new-value 

break 
display-id 
repeat-count 
left-bit 
right-bit 

micro-address 
<field-name> 0 

register-name { bit-range} : 

{ 0 , 2 t 4 
J 

... I 17776 } 

{6000 I 6001 I . . . I 7777 } 

< left-bit { : right-bit }: > 

octal-integer 

decimal-integer 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES 

A.3 COMMAND LANGUAGE SYNTAX 

A.3.1 MICRO-11/60 Command Syntax 

in­
direct­

method 

>@MIC 

Page A-14 

>* ENTER MICROPROGRAM SOURCE FILE SPECIFICATION[S]: in-spec 

>* LIST? [Y IN] : 
{ 

-_Y

N

} 

direct­
assembly 

assembly­
command­

line 

output-spec 

in-spec 

Object-file} 
list-file 
in-file 

file-spec 

switch 

>MIC assembly-command-line 

i output-spec = in-spec 

{Object-file}: {; list-file}: 

{ in-file }: 
file-spec {I SWitCh} : 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-15 

A.3.2 MLD Command Syntax 

IN- i>@MLD 
DIRECT-

LOAD Iyl 
* ENABLE WCS?[Y/N]: L ~ J 
* ENTER MICROPROGRAM OBJECT FILE SPECIFICATION[S]: obj-spec 

obj­
spec {file-spec} : 

di~~~~- >MLD WCS= {MICPAK ,} : {file-spec}: 

Example: 

>@MLD 
>; MLD.CMD\LOAD WCS 
> ; 
>* ENABLE WCS[Y/N]:Y 
>* ENTER MICROPROGRAM OBJECT FILE SPECIFICATION[S]:MPROG.OBJ 
>MLD WCS=MICPAK,MPROG 
>RUN MSTART !MSTOP SHOULD BE RUN WHEN FINISHED 
>@<EOF> 

>MLD WCS=MICPAK,LNKLST,MATPAK 



SYNTACTIC SUMMARY OF SOURCE AND COMMAND LANGUAGES Page A-16 

A.3.3 MDT Command Syntax 

mdt- >@MDT 
call >~TER MICROPROGRAM OBJECT FILE SPECIFICATION[S]:file-spec 

ENTER MINUTES TO WAIT BEFORE SHUTDOWN: 
minutes 
ENTER MINUTES BETWEEN MESSAGES: 
minutes 
AT: -- PAUSING. TO CONTINUE TYPE 'RES ... AT.' 
>RES AT. 

>~AVE YOU PROTECTED EVERYTHING YOU WANT PROTECTED? { ~}: 
MDT> 

Example: 

>@MDT 
>; MDT.CMD \LOAD WCS AND START MDT (FROM PRIVILEGED UIC) 
> ; 
>; SHU T S R S X DOW N 
>; 
>* ENTER MICROPROGRAM OBJECT FILE SPECIFICATION[S]: MATADD 
>SET IMAIN=WCS:7600:200:DEV 
>INS [1,1 ]WCS 
>INS MLD/TASK= ... MLD 
>MLD WCS=MICPAK,MDTMIC,SMKMIC 
>RUN MSTART !ENABLES WCS (SHOULD RUN MSTOP AS SOON AS RSX BACK 
UP) 
>; (SUGGEST PUTTING MSTOP IN STARTUP.CMD FILE) 
>RUN SHUTUP 
RSX11M SHUT DOWN PROGRAM 
> 
ENTER MINUTES TO WAIT BEFORE SHUTDOWN: 
o 
ENTER MINUTES BETWEEN MESSAGES: 
o 
ALL FURTHER LOGINS ARE DISABLED 
> 
01-SEP-77 11:56 PLEASE FINISH UP, 0 MINUTES BEFORE SHUTDOWN 
: TYPE "RES AT." WHEN SHUTDOWN COMPLETED 
> 
AT. -- PAUSING. TO CONTINUE TYPE "RES ... AT." 

> 
>RES AT. 
Ar:--=-CONTINUING 
> 
> 
>* HAVE YOU PROTECTED 
>BOOT MDT ! T HIS 
MICRO DEBUGGING TOOL. 
MDT> 

DMO DBO: 

EVERYTHING YOU WANT PROTECTED? [Y/N]:l 
T A K E S R S X DOW N 
VERSION #0 



APPENDIX B 

THE 11/60 PREDEFINITIONS 

The 11/60 predefinitions define the 11/60 architecture, specify the fields of the 
11/60 microword and supply a set of field-value-names and macro-names that are useful 
in writing microprograms for the 11/60 WCS. 

The predefinitions are given here as an output listing from MICRO-11/60 assembler. 
The- microprogrammer can, by reading this listing, familiarize himself with all the 
predefined names that can be used in a microprogram. The table-of-contents at the 
beginning of this listing is useful for finding a particular field or macro name. 

The programmer specifies the predefinitions file as the first input file in an 
assembly. The MICRO-11/60 assembler, therefore, reads this file first and 
incorporates all the names defined in this file into its internal tables. 

In some advanced applications, the programmer may wish to assemble without the 
predefinitions file. In such a case, the following lines, which define the 11/60 
architecture, must be supplied: 

. WIDTH 49R 

. BOUNDS [6000: 7777 J 

. OBJECT <47:32)'<31:16)'<15:0) 

. ADDRESS J ::= <8:0) 

The .WIDTH keyword specifies the number of bits and the ordering (right-to-Ieft) of 
bits within the microword. The .BOUNDS keyword defines the legal address limits for 
the program. The .OBJECT keyword defines the order of the bits within the object 
module. The .ADDRESS keyword locates the bits within the microword used for the 
address field. 



THE 11/60 PREDEFINITIONS Page B-2 

B. 1 PREDEFINITIONS SOURCE LISTING 

TABLE OF CONTENTS 

61 -- * IDENTIFICATION 
67 -- * REVISION HISTORY 
77 -- * MICROWORD FIELD DEFINITIONS 
91 -- * MICROWORD BIT LAYOUT 

202 -- * MICROWORD FIELD SPECIFICATION 
207 -- * MICROWORD FIELD FORMAT 
220 -- * NULL FIELD/MACRO SPECIFICATION 
227 -- * ALU AND INTERNAL DATA BUS CONTROL 
231 -- * <ALU>-ALU FUNCTION CONTROL BITS 
256 -- * <~EN>-B-BUS DATA SOURCE 
267 -- * <BSEL>-B-BUS SOURCE SELECTION CONTROL 
304 -- * <AEN>-A-BUS DATA SOURCE 
314 -- * <ASEL>-A-BUS SOURCE SELECTION CONTROL 
351 ,-- * <RIF>-ASP, BSP REGISTER IMMEDIATE FIELD 
380 -- * <COUT>-CARRY OUT BIT MUX SELECTION 
397 -- * CLOCKS 
401 -- * <WHEN>-D/SR WHEN TO CLOCK 
409 -- * <CLKD>-ENABLE D-REGISTER CLOCKING 
417 -- * <CLKSR>-ENABLE SR-REGISTER CLOCKING 
425 -- * <CLKBA>-ENABLE CLOCKING OF BA-REGISTER 
433 -- * <SCC>-ENABLE SETTING OF PS CONDITION CODES 
445 -- * BUS/UCON & CSP-ADDRESS & SHIFT-TREE CONTROL 
449 -- * BUS/UCON CONTROL 
452 -- * <BEGIN>-BEGIN BUS/UCON OPERATION 
460 -- * <SELECT>-SELECT BUS OR UCON 
468 -- * BUS CONTROL 
471 -- * <BUSCODE>-BUS CODE ACTION FIELD 
488 -- * UCON CONTROL 
492 -- * <FLPGO>-START HOT FLOATING POINT 
501 -- * <UCON-XFER>-UCON OPERATION 
509 -- * <UCON-LOAD>-LOAD UCON REGISTER 
517 -- * CSP ADDRESS SPECIFICATION 
520 -- * <CSPADDR>-CSP IMMEDIATE ADDRESS 
541 -- * SHIFT CONTROL 
544 -- * <BMUX>-SECOND LEVEL OF SHIFT TREE 
552 -- * <AMUX>-FIRST LEVEL OF SHIFT TREE 
569 -- * SP REWRITE & REGISTER CLOCKS 
573 -- * <WRCSP>-WRITE TO CSP 
581 -- * <MOD>-MODE CONTROL OF FOLLOWING BITS 
590 -- * SP REWRITE [A,B] CONTROL 
594 -- * <HILO>-SP HI/LO SELECT 
604 -- * <WRSEL>-REWRITE ADDRESS SELECT 
614 -- * <WRSP>-REWRITE A/B SELECT 



THE 11/60 PREDEFINITIONS Page B-3 

633 -- * REGISTER LOADING 
637 -- * <LOADRES)-LOAD RESIDUAL CONTROL REGISTER 
647 -- * <LOADCOUNT)-LOAD COUNTER 
657 -- * SEQUENCING FIELD 
661 -- * <UBF)-BUT MICROBRANCH FIELD 
666 -- * NO BUT 
670 -- * ACTIVE ONLY 
691 -- * INACTIVE ONLY 
763 -- * BOl'H ACTIVE AND INAcrlVE 
786 -- * <UPF)-MICRO POINTER FIELD 
812 -- * MISCELLANEOUS FIELDS 
816 -- * <NEXT-PAGE)-NEW PAGE ADDRESS WADED DURING BUT[SUBROUTlNE] 
822 -- * <MULTIPLE)-SELECT CODE FOR BUT [MULTIPLE] 
837 -- * EMIT FIELD - IMMEDIATE DATA FROM MICROWORD 
864 -- * RETURN ADDRESS - FOR MICROSUBROurlNE CALLS 
870 -- * UCON SELECTION AND CONTROL FIELDS 
873 -- * SELEcrION 
892 -- * CONTROL (ALSO TMS ROurINES) 
967 -- * IDCAL STORE FIELDS 
990 -- * MACRO DEFINITIONS 
993 -- * PRIMITIVE OPERATIONS 
996 -- * TIMING 

1032 -- * WRITING THE A AND B SCRATCH PADS 
1059 -- * ASP AND BSP PHYSICAL REGISTER ADDRESSES 
1091 -- * ASP AND BSP BASE MACHINE FUNCTIONAL REGISTER ADDRESSES 
1165 -- * ASP AND BSP INDIRECT REGISTER ADDRESSES 
1191 -- * ASP, BSP INDIRECT ADDRESSING 
1206 -- * WRITING THE C SCRATCH PAD 
1215 -- * CSP IMPLIED ADDRESSING 
1228 -- * CSP DIRECT ADDRESSING 
1243 -- * SHIFT TREE SPECIFICATION 
1247 -- * ENABLED ONTO BUS A 
1310 -- * FIRST 'n\O LEVELS ONLY [AMUX, 
1320 -- * ALU FUNCTIONS 
1341 -- * cour GENERATION 
1356 -- * CIDeKS 
1360 -- * BASIC REGISTER CIDeKS [D, SR, BA, CC] 
1375 -- * REDEFINED FROM SP REWRITE FIELD [RES, COUNTER] 
1383 -- * RES REGISTER CONTROL VALUES [FROM EMIT] 



THE 11/60 PREDEFINITIONS Page B-4 

1405 -- * CC CONTROL [FROM EMIT] 
1414 -- * BUS CONTROL MACROS 
1434 -- * ueON CONTROL MACROS 
1442 -- * PRJeESSOR UCON CONTROL SETUP 
1464 * CACHE/KT UCON CONTROL 
1498 -- * I/O UCON CONTROL 
1503 -- * BUS CONTROL 
1524 -- * CONSOLE 1-0 
1551 -- * REMOTE CONSOLE INTERFACE 
1562 -- * MICROBRANCH FIELD MACROS 
1580 -- * MISCELlANEOUS 
1582 -- * OTHER SOURCES ENABLED FOR A-BUS 
1588 -- * PAGING, RETURN REGISTER 
1605 -- * ADVANCED OPERATIONS 
1609 -- * DATA INK> CSP, AT P3 ONLY 
1661 -- * DATA INK> ASP, BSP, AT P2-T * P3 
1873 -- * D AND SR < - (BUS-A FCN BUS-B), AT P2-T OR P3-T 
1916 -- * D[C] GETS SET 
1936 -- * D-REGISTER <- [BBUS = ABUS], BITWISE, AT P2-T OR P3-T 
1973 -- * D-REGISTER < - D-REGISTER THRU SHIFT-TREE 
2007 -- * D <-WHATEVER I S LEFT, AT P2-T OR P3-T 
2055 * SR <- DATA, AT P2 T OR P3 T 
2087 -- * RES-REG OPERATION MACROS 
2096 -- * BASE MACHINE COUNTER 
2104 -- * ENABLE ON BUS-A/B ONLY 
2130 -- * TA~n~T~ ~~ O~~TC~~O 

.&....I'tJ1.~..L.~.""' .L...'L.l. ~'\.L.I'-'..L.....,.a..I...I"''\. 

2143 -- * D AND SR TOGETHER 
2151 * UCON FUNCTIONS 
2155 -- * PROCESSOR UCON FUNCTIONS 
2191 -- * CACHE/KT UCON FUNCTIONS 
2237 -- * 1-0 UCON FUNCTIONS 
2266 -- * CONSOLE UCON FUNCTIONS 
2290 -- * DBUF UCON FUNCTIONS 
2300 -- * MULTIPLE UCON FUNCTIONS 
2311 -- * WCS FUNCTIONS 
2325 -- * JAM UPP LOG MACROS 



THE 11/60 PREDEFINITIONS Page B-5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

IDE N T I F I CAT ION 

PRODUCT CODE: 

PRODUCT NAME: PDP 11/60 DEFINITION FILE 

MAINTAINER: 11/60 ENGINEERING 

AurHOR: 11/60 ENGINEERING 

DATE CREATED: 18-JANUARY-1977 

LAST REVISION: 18-JANUARY-1977 

COPYRIGHT (C) 

23-MAY-1977 
28-JUL-1977 

1977; DIGITAL EQUIPMENT CORPORATION 
146 MAIN STREET 
MAYNARD, MASSACHUSETrS, USA 
01754 617-897-5111 

THIS SOFTWARE IS FURNISHED TO THE PURCHASER UNDER A LICENSE FOR 
USE ON A SINGLE COMPUTER SYSTEM, AND CAN BE COPIED (WITH INCLU­
SION OF DIGITAL'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, 
EXCEPT AS MAY OTHERWISE BE PROVIDED IN WRITING BY DIGITAL. 

THE INFORMATION IN THIS OOCUMENT IS SUBJEcr TO CHANGE WITHOUT 
NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL 
EQUIPMENT CORPORATION. DIGITAL EQUIPMENT CORPORATION ASSUMES NO 
RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR IN THIS OOCUMENT. 

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF 
ITS SOFTWARE ON EQUIPMENT NOT SUPPLIED BY DIGITAL. 



THE 11/60 PREDEFINITIONS Page B-6 

56 
57 
58 
59 
60 

!======================================================================= 

61 .TOe 
62 

* IDENTIFICATION 

63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

• TITLE PDP 11/60 DEFAULT MACROS 

1======================================================================= 

• TOe * REVISION HISTORY 

.IDENT /V01/ 

1======================================================================= 

• TOe * MICROWORD FIELD DEFINITIONS 

oorE: THE FOLIDWING ARE THE ASSIGNED RANGES OF THE 
MICROWORD FIELD BIT DEFINITIONS USED IN THIS 
SOURCE LISTING: 

BITS [NUMBER] WHERE HELD 

[47: 00] WCS CONTROL STORE 

1======================================================================= 



THE 11/60 PREDEFINITIONS Page B-7 

90 
91 • TOe * MICROOORD BIT IAYour 
92 J3..Z\SE I-EMIT 6-RETURN 
93 MACHINE 2-SHIFT-TREE 4-UCON-DATA 7-PAGING 
94 CONTROL 3-RESIDUAL-cTL 5-CSP-ADDRESS 8-UCON-CONTROL 
95 ------- -------------- ------------- --------------
96 !U47 ALU3 l-EMITH15 4-UCONLI0 
97 !U46 ALU2 l-EMITH14 4-UCON-I/O-SEL 6-RETRll 
98 !U45 ALUI l-EMITH13 4-UCON-WCS-SEL 6-RETRlO 
99 !U44 ALUO l-EMITH12 4-UCON-KT-SEL 6-RETR09 

100 !U43 BENI 
101 !U42 BENO 4-UCONL09 
102 !U41 BSELI l-EMITMll 4-UCONL08 6-RETR08 
103 !U40 BSELO l-EMITMI0 4-UCONL07 6-RETR07 
104 !U39 AENI l-EMITM09 4-UCONL06 6-RETR06 
105 !U38 AENO l-EMITM08 4-UCONL05 6-RETR05 
106 !U37 ASELI l-EMITL07 6-RETR04 
107 !U36 ASELO l-EMITL06 4-UCON-PROC-SEL 6-RETR03 
108 !U35 RIF2 l-EMITL05 4-UCONM12 6-RETR02 
109 !U34 RIFI 
110 !U33 RIFO l-EMITL03 4-UCON-FP-SEL 6-RETROO 
III !U32 COur2 l-EMITL02 4-UCONH15 7-NEXT-PAGE2 
112 !U31 COurl l-EMITLOI 4-UCONH14 7-NEXT-PAGEI 
113 !U30 COUTO l-EMITLOO 4-UCONH13 7-NEXT-PAGEO 
114 !U29 * WHEN 
115 !U28 * CLK-D 
116 !U27 * CLK-SR 
117 !U26 * CLK-BA 
118 !U25 * SET-CC 
119 !U24 * BEGIN 
120 !U23 SELECT (=0) 2-BMUX 5-CSPADR3 8-SELECT (=1) 
121 lU22 BUSCOD2 2-AMUX2 5-CSPADR2 8-FLPGO 
122 lU21 BUSCODI 2-AMUXI 5-CSPADRl 8-UCON-XFER 
123 lU20 BUSCODO 2-AMUXO 5-CSPADRO 8-UCON-WAD 
124 lU19 * WRCSP 
125 lU18 HI/LO 3-LOAD-RES 
126 lU17 WRSEL 
127 lU16 WRB 3-IDAD-CQUNT 
128 !U15 WRA 

129 lU14 * MOD (=0) 3-MOD (=1) 
130 lU13 * UBF4 
131 lU12 * UBF3 
132 lUll * UBF2 
133 !UI0 * UBFl 
134 lU09 * UBFO 
135 !U08 * UPF8 
136 lU07 * UPF7 
137 lU06 * UPF6 
138 lU05 * UPF5 
139 !U04 * UPF4 
140 lU03 * UPF3 
141 lU02 * UPF2 
142 lUOl * UPFI 
143 lUOO * UPFO ( * = DEDICATED TO THE CORRESPONDING SINGLE FUNCTION) 



THE 11/60 PREDEFINITIONS Page B-8 

144 
145 
146 BASE LOCAL UCON 
147 MACHINE 9-RES-BITS STORE PROCESSOR 
148 CONTROL 10-MULTIPLE DEFINITION CONTROL 
149 ------- ----------- ---------- ---------
150 lU47 ALU3 COLZER015 PS<3:0>-CLK 
151 lU46 ALU2 9-HISMUXSELL COLZER014 
152 lU45 ALU1 9-SRS1-L COLZER013 
153 lU44 ALUO 9-SRSO-L COLZER012 
154 lU43 BEN1 COLZER011 
155 lU42 BEN 0 COLZER010 UBREAK-CLK 
156 lU41 BSELl 9-GUARD-EN-H COLZ ERO 0 9 <NO> 
157 lU40 BSELO COLZER008 <NO> 
158 lU39 AEN1 COLZER007 SEL-HBMUX1L 
159 lU38 AENO COLZER006 SEL-HBMUXOL 
160 lU37 ASELl COLZER005 
161 lU36 ASELO COLZER004 
162 lU35 RIF2 COLZER003 FPS<7:4>-CLK 
163 lU34 RIF1 COLZER002 PS<7:4>-CLK 
164 lU33 RIFO COLZER001 
165 lU32 cour2 10-MULT-SEL2 COLZEROOO IR-CWCK 
166 lU31 cour1 1 O-MULT-SEL1 COIDNE15 PS<15:12>-CLK 
167 lU30 couro 10-MULT-SELO COIDNE14 FIAG<8:0>-CLK 
168 lU29 * WHEN COIDNE13 
169 lU28 * CLK-D COIDNE12 
170 lU27 * CLK-SR COIDNE11 
171 lU26 * CLK-BA COIDNE10 
172 lU25 * SET-CC COIDNE09 
173 lU24 * BEGIN COIDNE08 
174 lU23 SELECT (=0) COLONE07 
175 lU22 BUSCOD2 COIDNE06 
176 lU21 BUSCOD1 COWNE05 
177 lU20 BUSCODO COIDNE04 
178 lU19 * WRCSP COWNE03 
179 lU18 HI/W COWNE02 
180 lU17 WRSEL COIDNEOl 
181 lU16 WRB COWNEOO 
182 lUIS WRA COLThU15 
183 lU14 * MOD (=0) COLThU14 
184 lU13 * UBF4 COLThU13 
185 lU12 * UBF3 COL'Im12 
186 lUll * UBF2 COLThU11 
187 lU10 * UBF1 COLThU10 
188 lU09 * UBFO COLThU09 
189 lU08 * UPF8 COLTW008 
190 lU07 * UPF7 COLW007 
191 lU06 * UPF6 COL'IW006 
192 lU05 * UPF5 COLThU05 
193 lU04 * UPF4 COLThU04 
194 lU03 * UPF3 COLThU03 
195 lU02 * UPF2 COLTW002 
196 lU01 * UPF1 COLThU01 
197 lUOO * UPFO COLTWOOO 
198 



THE 11/60 PREDEFINITIONS Page B-9 

199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 

!======================================================================= 

.TOe * MICROWORD FIELD SPECIFICATION 

!-----------------------------------------------------------------------
• 'IOC * MICROWORD FIELD FORMAT 

• RADIX 8 ! ALL NUMBERS ARE OCTAL, UNLESS orHERWISE NorED 

• WIDTH 49R ! MICROWORD IS 4810 BITS WIDE, BIT <00> IS 
! RIGHTMOST BIT. BIT 48 USED FOR NULL FIELD. 

• BOUNDS [6000:7777] ADDRESSES ARE 12 BITS, ON PAGES 6: 7 

.OBJECT <47:32>1<31:16>1<15:00> OUTPUT FORMAT (DEFAULT SPEC) 

!-----------------------------------------------------------------------
.'IOC * NULL FIELD/MACRO SPECIFICATION 

.FIELD N::=<48> 

.MACRO NULL: :=N/O 

• 'IOC * ALU AND INTERNAL DATA BUS CONTROL 

.'IOC * <ALU>-ALU FUNCTION CONTROL BITS 
!SPECIFIES ALU FUNCTION CODE AND CINMUX SELECT. ALWAYS IN EFFECT. 
.FIELD ALU::=<47:44> 

---FUNcrION--- LOG/AR ALUS<3:0> H CINMUX L 
roT-A: :=00 ! COMPLEMENT A, L 0000 -1 
A-PLUS-B-PLUS-PS[C]::=Ol !ADD, A 1001 -PS[C] 
roT-A-AND-B::=02 !AND, L 0010 -PS[C] 
ZERO: :=03 !ZERO, L 0011 -PS[C] 
A-PLUS-B-PLUS-D[C]::=04 !PLUS, A 1001 -D[C] 
A-PLUS-NOT-B-PLUS-D[C]::=05 !PLUS, A 0110 -D[C] 
A-XOR-B::=06 !XOR, L 0110 -D[C] 
A-AND-Nor-B::=07 !AND, L 0111 -D[C] 
DIVIDE: :=10 !DIVIDE STEP, 

!SUB, IF D[C]H=l A 0110 -D[C]=-l 
!ADD, IF D[C]H=O A 1001 -D[C] =-0 

A-PLUS-B::=ll !PLUS, A 1001 -0 
B: :=12 !SELECT B, L 1010 -0 
A-AND-B: : = 13 !AND, L 1011 -0 
A-PLUS-B-PLUS-l::=14 !PLUS, A 1001 -1 
A-MINUS-B: : =15 !MINUS, A 0110 -1 
A-IOR-B: :=16 !IOR, L 1110 -1 
A: :=17 !SELECT A, L 1111 -1 



THE 11/60 PREDEFINITIONS 

254 
255 
256.TOe * <BEN>-B-BUS DATA SOURCE 
257 !SPECIFIES GATING OF DATA ONTO B-BUS. ALWAYS IN EFFECT. 
258 .FIELD BEN::=<43:42> 
259 BSPLO::=O !DIRECT BSP LOCATIONS 00-17 
260 BSPHI::=1 !DIRECT BSP LOCATIONS 20-37 

Page B-I0 

261 CSP::=2 !USE <CSPADDR> [SIC] AS ADDRESS (4 BIT) 
262 BASCON::=3 !1 OF 4 BASE CONSTANTS IN CSP17 TO 
263 !CSPI4 (2 BIT) 
264 
265 
266 
267 . TOe * <BSEL>-B-BUS SOURCE SELECTION CONTROL 
268 ! SPECIFIES CONTROL OF INDIVIDUAL B-BUS SOURCES. ALWAYS IN EFFECT. 
269 .FIELD BSEL::=<41:40> 
270 ! THIS FIELD NOT USED WHEN BEN/CSP IS SPECIFIED 
271 !CSPI7 TO CSP14 IMMEDIATE ADDRESS WHEN BEN/BASCON 
272 BI7::=0 
273 BI6::=1 
274 BI5::=2 
275 BI4::=3 
276 ONE::=O !ONE CONSTANT 
277 ZERO::=1 !ZERO CONSTANT 
278 MD: :=2 !MEMORY DATA 
279 '!WO: :=3 !'IWO CONSTANT 
280 !USED IN CONJUNCTION WITH <RIF> FOR SP ADDRESS WHEN 
281 !BEN/BSPLO OR BEN/BSPHI 
282 DF: :=0 !DESTINATION FIELD 
283 SF::=1 !80URCE FIELD 
284 IMMEDO::=2 !DIRECT ADDRESS, LOW BIT=O 
285 ROO::=2 'FOR JOINT USE W/ RIF FIELD 
286 R02::=2 
287 R04::=2 
288 R06::=2 
289 RI0::=2 
290 Rl2::=2 
291 Rl4::=2 
292 Rl6::=2 
293 IMMEDl::=3 .DIRECT ADDRESS, LOW BIT=1 
294 ROl::=3 'FOR JOINT USE W/ RIF FIELD 
295 R03::=3 
296 R05::=3 
297 R07::=3 
298 Rll::=3 
299 Rl3::=3 
300 Rl5::=3 
301 Rl7::=3 
302 



THE 11/60 PREDEFINITIONS 

303 
304.TOe * <AEN>-A-BUS DATA SOURCE 
305 !SPECIFIES GATING OF DATA ONTO A-BUS. ALWAYS IN EFFECT. 
306 .FIELD AEN::=<39:38> 
307 XMUX: :=0 !XMUX=SR OR FLTPT ASSEMBLE 
308 CMUX::=1 !SHIFT TREE 
309 ASPLO::=2 !DIRECT ASP LOCATIONS 00-17 
310 ASPHI::=3 !DIRECT ASP LOCATIONS 20-37 
311 
312 
313 
314 . 'IDC * <ASEL>-A-BUS SOURCE SELECTION CONTROL 
315 !SPECIFIES CONTROL OF INDIVIDUAL A-BUS SOURCES. ALWAYS IN EFFECT. 
316 .FIELD ASELO::=<36> 
317 !XMUX CONTROL WHEN AEN/XMUX [USES ASELO ONLY] 
318 SR:.:=O !SR OUTPur ONTO BUS-A 
319 FLTPT::=1 !FLTPT-ASSEMBLE ONTO BUS-A 
320 .FIELD ASEL::=<37:36> 
321 !CMUX CONTROL WHEN AEN/CMUX. SHIFTS CMUX INPUT APPROPRIATE AMOUNT 
322 LEFT-I: :=0 !LOW BIT GETS SENDMUX OUTPUT 
323 DIRECT::=1 !OUTPUT=INPUT 
324 RIGHT-l::=2 !HIGH BIT GETS D[C] 
325 RIGHT-2::=3 !HIGH BITS BOTH GET D[C] 
326 !USED IN CONJUNCTION WITH <RIF> FOR SP ADDRESS WHEN 
327 !AEN/ASPLO OR AEN/ASPHI 
328 IMMEDO: : =0 ! DIRECT ADDRESS, LOW BIT=O 
329 ROO::=O 'FOR JOINT USE W/ RIF FIELD 
330 R02::=0 
331 R04::=0 
332 R06::=0 
333 RI0::=0 
334 RI2::=0 
335 Rl4::=0 
336 Rl6::=0 
337 IMMEDl: : =1 .DIRECT ADDRESS, LOW BIT=1 
338 ROl::=1 !FOR JOINT USE W/ RIF FIELD 
339 R03::=1 
340 R05::=1 
341 R07::=1 
342 Rll::=1 
343 RI3::=1 
344 RI5::=1 
345 RI7::=1 
346 DF::=2 !DESTINATION FIELD 
347 SF: :=3 !SOURCE FIELD 
348 

Page B-ll 



THE 11/60 PREDEFINITIONS 

349 
350 
351 • 'rOC * <RIF>-ASP, BSP REGISTER IMMEDIATE FIELD 
352 ! SPECIFIES ADDRESSES WITH ASP, BSP ALONG WITH AEN, ASEL & BEN, BSEL 
353 .FIELD RIF::=<35:33> 
354 ROO-oR-Ol::=4 !LOW BIT IS 0/1, SPECIFIED BY 
355 ROO::=4 
356 ROl::=4 
357 R02-oR-03::=5 IUSING EITHER IMMEDO/IMMEDI MODES 
358 R02::=5 
359 R03::=5 
360 R04-oR-05::=6 
361 R04::=6 
362 R05::=6 
363 R06-oR-07::=7 
364 R06::=7 
365 R07::=7 
366 RlO-oR-l1::=0 
367 RlO::=O 
368 Rll::=O 

Page B-12 

369 Rl2-oR-13::=1 !ADDR<3:0>H = -RIF<2>H # RIF<1:0>H # A/BSEL<O>H 
370 Rl2::=1 
371 Rl3::=1 
372 Rl4-oR-15::=2 
373 Rl4::=2 
374 Rl5::=2 
375 Rl6-oR-17::=3 
376 R16::=3 
377 Rl7::=3 
378 
379 
380.'rOC * <CQUT>-CARRY OUT BIT MUX SELECTION 
381 !SPECIFY INPUT TO D [C] REGISTER, LOADED WHEN D REGISTER LOADED. 
382 !THIS IS ALWAYS IN EFFECT. 
383 .FIELD COUT::=<32:30> 
384 CIN::=O !OUTPUT OF CINMUX [SIC] 
385 PS[C]::=l IPS C-BIT 
386 ALUOO::=2 !ALU OUTPUT BIT 00 
387 ALU07::=3 !ALU OUTPUT BIT 07 
388 ALU15: : =4 !ALU OUTPUT BIT 15 
389 COUT07::=5 !BYTE CARRY BIT 
390 COur15: :=6 !WORD CARRY BIT 
391 D[C]::=7 !PROPOGATE [SAVE] LAST D[C] 
392 
393 !-----------------------------------------------------------------------
394 



THE 11/60 PREDEFINITIONS Page B-13 

395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 

.TOe * CLOCKS 

• TOe * <WHEN>-D/SR WHEN TO CLOCK 
!SPECIFY CLOCK D/SR REGISTERS AT P2 T OR P3 T. ALWAYS IN EFFECT. 
.FIELD WHEN::=<29>,0 

AT-P2-T: :=0 !CLOCK D AND/OR SR AT P2 T [100 NS] • 
AT-P3-T: :=1 !CIDCK D AND/OR SR AT P3 T [150 NS]. 

.TOe * <CLKD>-ENABLE D-REGISTER CLOCKING 
!ENABLES CLOCKING OF D-REGISTER. ALWAYS IN EFFECT. 
.FIELD CLKD::=<28>,0 

NO: :=0 !NOP 
YES: :=1 !CIDCK D [C], D-REGISTER AT <WHEN> 

.TOe * <CLKSR>-ENABLE SR-REGISTER CLOCKING 
!ENABLES CLOCKING OF SR-REGISTER. ALWAYS IN EFFECT. 
.FIELD CLKSR::=<27>,0 

NO: :=0 !NOP 
YES: : =1 ! CIDCK SR-REGISTER AT <WHEN> 

• TOe * <CLKBA>-ENABLE CLOCKING OF BA-REGISTER 
! ENABLES CLOCKING OF BA-REGISTER AT PI T [60 NS]. ALWAYS IN EFFECT. 
.FIELD CLKBA::=<26>,0 

NO: :=0 !NOP 
YES::=l !CIDCK BA-REGISTER AT PI T[60 NS]. 

.TOe * <SCC>-ENABLE SETTING OF PS CONDITION CODES 
!ENABLE CLOCKING OF PS CONDITION CODES AT P2 T [100 NS] OF NEXT UOORD. 
!D MUST BE CLOCKED AT P2 T OR EARLIER OF PREVIOUS MICROWORD. 
! THIS IS ALWAYS IN EFFECT. 
.FIELD SCC::=<25>,0 

NO: :=0 !NOP 
YES: : = 1 ! ENABLE CLOCKING IN NEXT UWORD 

!-----------------------------------------------------------------------



THE 11/60 PREOEFINITIONS Page B-14 

443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 

.TOe * BUS/UCON & CSP-ADDRESS & SHIFT~REE CONTROL 

.TOe * BUS/DCON CONTROL 

.TOe * <BEGIN>-BEGIN BUS/UCON OPERATION 
!INITIATE BUS XOR UCON OPERATION. AUiJAYS IN EFFECT. 
.FIELD BEGIN: :=<24> ,0 

NO::=O !NOP FOR BUS AND UCON OPERATIONS 
YES::=1 !BEGIN OPERATION SPECIFIED 

.TOe * <SELECT>-SELECT BUS OR UCON 
!SELECT BUS XOR UCON. ONLY USED IF BEGIN/YES. 
.FIELD SELECT::=<23> 

BUS::=O !SELECT BUS 
UCON::=1 !SELECT UCON 

• TOe * BUS CONTROL 

.TOe * <BUSCODE>-BUS CODE ACTION FIELD 
!BUS ACTION CODES. ONLY USED IF BEGIN/YES & SELECT/BUS. 
.FIELD BUSOODE::=<22:20> 

• TOe 

DATI-CLKIR: :=0 
DATI-NOINT::=1 
DA'ID: :=2 
DATIB: :=3 
DATIB [P] : : =3 

DATIP: :=4 
DA'IDB: :=5 
DATI: :=6 
DATI [P] : : =6 
INVALIDATE: : =7 

* UCON CONTROL 

! DATA IN, WAD IR 
! DATA IN, NO INTERNAL ADDRESS 
!DATA our 
! DATA IN, ALLOW: ODD ADDRESS 
! DATA IN, ALLOW: ODD ADDRESS, 
!FORCE 'ID PAUSE. 
! DATA IN, NO CACHE, WCK BUS 
!DATA our, ALLOW: ODD ADDRESS 
!DATA IN 
! DATA IN, ALLOW: FORCE TO PAUSE 
!INVALIDATE CACHE LOCATION FUNCTION 

• 'IDC * <FLPGO>-STARr Har FLOATING POINT 
! INITIATES Har FLOATING POINT FUNCTION. ONLY USED IF BEGIN/yES 
!AND SELECT/UCON. 
.FIELD FLPGO::=<22> 

NO: :=0 !NOP 
YES::=1 !YELL GO 



THE 11/60 PREDEFINITIONS 

499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 

.TOe * <UCON-XFER>-UCON OPERATION 
!EXECUTE A UCON FUNCTION. ONLY USEO IF BEGIN/YES & SELECT/UCON. 
.FIELD UCON-XFER::=<21> 

NO: :=0 !NOP 
YES::=l !START UCON OPERATION 

.TOe * <UCON-LOAD>-1OAD UCON REGISTER 
!1OAD UCON CONTROL REGISTER. ONLY USED IF BEGIN/YES & SELECT/UCON. 
.FIELD UCON-1OAD::=<20> 

NO::=O !NOP 
YES: :=1 !1OAD UCON CONTROL REGISTER 

• TOe * CSP ADDRESS SPECIFICATION 

.TOe * <CSPADDR>-CSP IMMEDIATE ADORESS 
!SPECIFY CSP 4 BIT ADDRESS. ONLY USEO IF BEN/CSP. 
.FIELD CSPADDR::=<23:20> 

000::=17 'NOTE INVERSION 
DOl: :=16 
002::=15 
003::=14 
D04: :=13 
D05: :=12 
006: :=11 
D07:: =10 
DI0: :=07 
011: :=06 
D12: :=05 
013: :=04 
014: :=03 
D15: :=02 
D16: :=01 
D17: :=00 

• TOe * SHIFT CONTROL 

. roc * <BMUX>-SECOND LEVEL OF SHIFT TREE 
! BMUX CONTROLS SHIFT RIGHT OF 0 OR 4. ALWAYS IN EFFECT. 
.FIELD BMUX::=<23> 

DIRECT::=O !AMUX<15:00> 
RIGHT-4::=1 !4*0[C] # AMUX <15:04> 

Page B-15 



THE 11/60 PREDEFINITIONS 

. roc * <AMUX>-FIRST LEVEL OF SHIFT TREE 
!AMUX CONl'ROLS INPUT OF D-REG/COUNl'ER TO TREE. ALWAYS IN EFFECT. 
.FIELD AMUX::=(22:20> 

DIRECT: :=0 
D[W]#D[W]::=l 
SIGNEXT: : =2 
COUNTER#D[W]::=3 
COUNTER: : =3 
D[HI]#D[HI]::=4 
SWAB: :=5 
RIGHT-8 : : =6 
COUNTER#D[HI]::=7 

!D(HI> # D(W> 
!D(W> # D(W> 
!8*D[C] # D(W> 
!COUNTER # D(W> 
!SAME 
!D(HI> # D(HI> 
!D(W> # D(HI> 
!8*D[C] # D(HI> 
!COUNTER # D(HI> 

Page B-16 

550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 

!-----------------------------------------------------------------------

.roc * SP REWRITE & REGISTER ClOCKS 

.roc * <WRCSP>-WRITE TO CSP 
!WRITE CSP FROM DMUX [BUSDIN/CACHE]. ALWAYS IN EFFECT. 
.FIELD WRCSP::=(19),0 

NO: :=0 !NOP 
YES::=l ION P3, 120-150 NS. 

.roc * (MOD>-MODE CONTROL OF FOLLOWING BITS 
!CONTROLS REDEFINITION OF SP REWRITE/REGISTER ClOCK BITS. 
!THIS IS ALWAYS IN EFFECT. 
.FIELD MOD::=(14),0 

CLKSP: :=0 
WADREG: : =1 

! CONTROL ASP /BSP ClOCKING 
! CONTROL RES-REG/COUNl'ER WADING 

.roc * SP REWRITE [A,B] CONTROL 
!WHEN MOD/CLKSP 

.roc * (HIW>-SP HI/W SELECT 
!WHICH HALF OF SP'S TO REWRITE. ONLY IF MOD/CLKSP. 
.FIELD HIW::=(18) 

W: :=0 !REWRITE ENABLE A/B SP W [00-17] 
L: :=0 

HI: :=1 !REWRITE ENABLE A/B SP HI [20-37] 
H: :=1 



THE 11/60 PREDEFINITIONS Page B-17 

603 
604 • '!DC * <WRSEL>-REWRITE ADDRESS SELECT 
605 lWHICH WRITE ADDRESS TO USE ON REWRITE. ONLY IF MOD/CLKSP. 
606 .FIELD WRSEL::=<17> 
607 A-ADDR: :=0 !USE A ADDRESS ON REWRITE 
608 A::=O 
609 B-ADDR::=l lUSE B ADDRESS ON REWRITE 
610 B::=l 
611 
612 
613 
614.'!DC * <WRSP>-REWRITE A/B SELECT 
615 !ENABLE REWRITE OF SPECIFIC SP'S. ONLY IF MOD/CLKSP. 
616 .FIELD WRSP::=<16:15> 
617 NOP: : =0 1m ASP /BSP REWRITE 
618 WR-A: :=1 lWRITE ASP ONLY, ON P3 120-150 NS. 
619 A::=l 
620 ASP::=l 
621 WR-B::=2 lWRITE BSP ONLY, ON P3 120-150 NS. 
622 B::=2 
623 BSP::=2 
624 WR-A-AND-B: :=3 lWRITE BOTH ON P3 
625 AB::=3 
626 BA::=3 
627 ABSP::=3 
628 BASP::=3 
629 BOTH::=3 
630 
631 
632 
633 • '!DC * REGISTER LOADING 
634 lWHEN MOD/LOADREG 
635 
636 
637 • '!DC * <IDADRES>-WAD RESIDUAL CONTROL REGISTER 
638 !ENABLE WAD OF RESIDUAL CONTROL REGISTER FROM B-BUS. 
639 ITHIS IS ONLY IF MOD/LOADREG. 
640 .FIELD LOADRES::=<18> 
641 NO::=O !NOP 
642 YES::=l !LOAD RES WITH B-BUS<14:11> 
643 !AT P2 T [100 NS], B-BUS<14> COMPLEMENTED 
644 
645 
646 
647.'!DC * <LOADCOUNT>-WAD COUNTER 
648 lENABLE WAD OF COUNTER FROM B-BUS <7:0>. ONLY IF MOD/LOADREG. 
649 .FIELD WADCOUNT: : =<16> 
650 NO::=O lOOP 
651 YES: :=1 !LOAD COUNTER AT P2 T [100 NS] • 
652 

653 1-----------------------------------------------------------------------
654 



THE 11/60 PREDEFINITIONS Page B-18 

655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 

.TOe * SEQUENCING FIELD 

.TOe * <UBF>-BUT MICROBRANCH FIELD 
1SPECIFIES CONDITIONS TO MODIFY <UPF>/<J> FIELD DURING BRANCH. 
1 THIS IS ALWAYS IN EFFECT. 
.FIELD UBF::=<13:9>,30 

• TOe * NO BUT 
NULL: :=30 

• TOe * ACTIVE ONLY 

1SPECIFY NO MODIFICATION 
!(DEFAULT CONDlTON). 

1 PURELY ACTIVE BUTS GENERATE SIDE AFFECTS; THEY 00 Nor MODIFY THE <UPF> 
1FIELD BY THE "OR-ING"-IN-QF-CONDITIONS METHOD. THEY MAY MODIFY 
1 EXPLICITLY THE ENTIRE <UPF> FIELD, AS IN BUT (RETURN) 

R-QR-1: : =22 1 FORM R [SF] - IOR-"001 
CUA-TRACK: : =31 1RESUME/RESTARr CUA TRACKING 
CLR-FLAG-RES-UCON::=32 1CLEAR FLAGS<2:0>, EX-FLAG<l>, 

DIAGNOSE::=33 
SUBRB: :=34 

SUBR-B: : =34 
GOI'O: :=34 
GO-TO: :=34 

SUBRA: :=35 

SUBR-A: :=35 
B#36: :=36 
RETURN: :=37 

• TOe * INACTIVE ONLY 

1 RES-REGISTER, UCON-REGISTER 
1SPECIAL DIAGNOSTIC BUT 
!RETURN <- EMIT<14:03>, 
!PAGE <- EMIT<02:00> 
! SYNONYMS ARE: 

!RETURN <- D<14:03>, 
1PAGE <- EMIT<02:00> 
1 SYNONYM 
1TBD 
1PAGE <- RETURN<ll: 09>, 
1NUA <- RETURN<08:00> 

1 INACTIVE BUTS ONLY CAUSE MODIFICATION OF THE <UPF> FIELD BY THE 
! II OR-ING"-IN-QF-CONDITIONS METHOD. 

SR3-0::=00 
CASE: :=00 
SR03: :=00 
SR02: :=00 
SR01: :=00 
SROO: :=00 

IRl5-12::=01 
OOP: :=01 

INSTR5: :=02 
INSTR-5: : =02 

IR11#FLTPT3-0::=03 
IR11-A: :=03 

IR9-6::=04 
SOP: :=04 

1----UPF MASK-----
1876 543 210 OCTAL 
1*=NOT AFFECTED 
!*** **0 000 (OOO) 
1 
!*** **0 III (007) 
!*** **1 011 (013) 
1*** **1 101 (OlS) 
1*** **1 110 (016) 
1*** **0 000 (OOO) 
! 
*** *00 000 (OOO) 

*** *00 000 (OOO) 
*** *01 III (017) 
*** **0 000 (000) 



THE 11/60 PREDEFINITIONS Page B-19 

711 MOV-DR7#IR5-3::=05 !*** **0 000 (000) 
712 MOV-DR7::=05 !*** **0 III (007) 
713 IR5-3: :=05 !*** **1 000 (010) 
714 BGSERV-FPSERV#D[C]#FPRET::=07 !*** **0 000 (000) 
715 BGSERV-FPSERV::=07 !*** **0 III (007) 
716 D[C]-C::=07 !*** **1 011 (013) 
717 FPRETI-0::=07 !*** **1 100 (014) 
718 COUT07#DOUT07#FPS05::=10 !*** *** 000 (000) 
719 COur07::=10 !*** *** 011 (003) 
720 DOUT07::=10 !*** *** 101 (005) 
721 COUT07#DOUT07::=10 !*** *** 001 (001) 
722 FPS05::=10 !*** *** 110 (006) 
723 DMO#SMO#BYTE::=ll !*** *** 000 (000) 
724 DMO: :=11 !*** *** 011 (003) 
725 SMO::=11 !*** *** 101 (005) 
726 BYTE::=ll !*** *** 110 (006) 
727 GD3-2: :=12 !*** *** *00 (000) 
728 BG-SERVCE-L#MFSS#MULTIPLE::=14 !*** *** 000 (000) 
729 BG-SERVCE-L: :=14 !*** *** 011 (003) 
730 MFSS: :=14 !*** *** 101 (005) 
731 MULTIPLE: :=14 *** *** 110 (006) 
732 MASKED-PS[T]::=14 
733 DOO: :=14 
734 PS[N]::=14 
735 FLAG7: :=14 
736 EXFLAGl: :=14 
737 FLTPrS: :=14 
738 EXFIAG2: : =14 
739 INIT-JAM: :=14 
740 D14-00EQO#D15::=15 !*** *** *00 (000) 
741 D14-00-EQ-0#D15::=15 ! 
742 D14-00-EQ-0::=15 !*** *** *01 (001) 
743 D15::=15 !*** *** *10 (002) 
744 IRll#PS15::=16 !*** *** *00 (000) 
745 IRI1-B: :=16 !*** *** *01 (001) 
746 PS15: :=16 !*** *** *10 (002) 
747 VECTOR-LOAD#DR6-7L::=21 !*** *** *00 (000) 
748 VECTOR-LOAD::=21 !*** *** *01 (001) 
749 DR6-7L: : =21 !*** *** *10 (002) 
750 D[C]#BAOO::=23 !*** *** *00 (000) 
751 D[C]-B::=23 !*** *** *01 (001) 
752 BAOO: :=23 !*** *** *10 (002) 
753 OTHER-JAM#FP-PROC::=24 !*** *** *00 (000) 
754 OTHER-JAM: : =24 !*** *** *01 (001) 
755 FP-PROC: : =24 !*** *** *10 (002) 
756 INTR-HIGH#INSTR-BRANCH-L::=26 !*** *** *00 (000) 
757 INTR-HIGH: :=26 !*** *** *01 (001) 
758 INSTR-BRANCH-L::=26 !*** *** *10 (002) 
759 PREFETCH-JAM#FP-FD::=27 !*** *** *00 (000) 
760 PREFETCH-JAM::=27 !*** *** *01 (001) 
761 FP-FD: :=27 !*** *** *10 (002) 
762 



THE 11/60 PREDEFINITIONS Page B-20 

763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 

.1OC * BOrH ACTIVE AND INACTIVE 
1 THESE BUTS HAVE BOTH ACTIVE AND INACTIVE EFFECTS 

1----UPF MASK-----
1876 543 210 OCTAL 
1*=NOT AFFECTED 

INSTRl::=06 1*00 000 000 (000) BUS CONTROL, 
1SP REWRITE DEFEAT 

INSTR-1: :=06 
SR1-0#COUNT-IS-377::=13 

SRl-O: :=13 
COUNT-IS-377-A::=13 

COUNT-IS-377#D[C]::=17 
COUNT-IS-377-B::=17 
D[C]-A: :=17 

COUNT-IS-377::=25 
PREFETCH-L#SERVICE::=20 

PREFETCH-L::=20 
SERVICE: : =20 
LAST: :=20 

.1OC * <UPF>-MICRO POINTER FIELD 

1 
1*** *** 000 (000) 
1*** *** 001 (001) 
1*** *** 110 (006) 
1*** *** *00 (000) 
1*** *** *01 (001) 
1*** *** *10 (002) 
1*** *** **0 (000) 
1*** *** *00 (000) 
1*** *** *01 (001) 
1*** *** *10 (002) 
1*** *** *11 (003) 

BUMP COUNTER 
BUMP COUNTER 
BUMP COUNTER 
BUMP COUNTER 
BUMP COUNTER 
BUMP COUNTER 
BUMP COUNTER 
TIMING 
TIMING 
TIMING 
TIMING 

1SPECIFIES EITHER NEXT MICROINSTRUCTION ADDRESS OR BASE TARGET 
1ADDRESS TO BE USED "UNDER" THE BUT-CODE IN <UBF>. 
• FIELD UPF: :=<8:0> ,000 1ACTUAL MICRCMORD POINTER FIELD 
• ADDRESS J: : =<8: 0> 1THIS FIELD ALSO HAS 

1MICROADDRESS QUALITIES 

1BASE MACHINE MICROCODE ENTRY POINTS: 

!THESE ENTRY POINTS HAVE BEEN FIXED AS OF 31-AUGUST-1976. 
INIT01 ::= 0412 1INITIALIZATION SUBROUTINE (3412). 
CON99 ::= 0040 1FORCE "CONSOLE-MODE HALT" (1040). 
FETOl : : = 0702 1 INSTR FETCH, NO OVERLAP 
FET03 ::= 0700 !INSTR FETCH, OVERLAP 
SER01 : : = 0701 ! SERVICE ENTRY, OVERLAP 
SER02 : : = 0703 1 SERVICE ENTRY, NO OVERLAP 
TRPOO ::= 0127 
TRP07 ::= 0631 
BRA05 ::= 0003 
EOS1A ::= 0460 

1 (4631). 
1CHECK SERVICE WITH FET01 AS TARGET. 
lEND OF SERVICE ROUTINE. (1460) • 

1-----------------------------------------------------------------------



THE 11/60 PREDEFINITIONS Page B-21 

811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 
844 
845 
846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 

.TOe * MISCELLANEOUS FIELDS 

• 'rOC * <NEXT-PAGE>-NEW PAGE ADDRESS WADED DURING BUT [SUBROUTINE] 
!THESE 3 BITS ARE CLOCKED INTO PAGE REGISTER DURING A BUT[SUBRA] OR 
! Bur [SUBRB]. ONLY USED WHEN UBF IBur [SUBRA] OR UBF IBur [SUBRB] • 
.FIELD NEXT-PAGE::=<32:30> 

.'rOC * <MULTIPLE>-SELECT CODE FOR BUT [MULTIPLE] 
!MUST BE SET IN BOrH PREVIOUS AND CURRENT MIC~RDS WHEN BUT [MULTIPLE] 
! IS ill BE EMPWYED. 
.FIELD MULTIPLE::=<32:30> 

MASKED-PS[T]::=O 
000: :=1 
PS [N] : :=2 
FLAG7::=3 
EXFLAG1: : =4 
FLTPl'S: : =5 
EXFLAG2: : =6 
INIT-JAM: : =7 

. roc * EMIT FIELD - IMMEDIATE DATA FROM MICRCMORD 
!USED WHENEVER WADING IMMEDIATE DATA FROM MICRONORD 
• FIELD 
• FIELD 
.FIELD 
• FIELD 
• FIELD 
• FIELD 
.FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
.FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
.FIELD 
• FIELD 
• FIELD 
• FIELD 

EMIT::=<47:44>'<41:30> 
EMITH: :=<47:44> 
EMITM: :=<41:38> 
EMITL::=<37:30> 
EMITML::=<41:30> 
EMIT9-6::=<39:36> 
EMIT15::=<47> 
EMIT14::=<46> 
EMIT13::=<45> 
EMIT12::=<44> 
EMIT11::=<41> 
EMIT10::=<40> 
EMIT09::=<39> 
EMIT08::=<38> 
EMIT07::=<37> 
EMIT06::=<36> 
EMIT05::=<35> 
EMIT04::=<34> 
EMIT03: : =<33> 
EMIT02::=<32> 
EMIT01: : =<31> 
EMITOO:: =<30> 



THE 11/60 PREDEFINITIONS 

863 
864 
865 
866 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 
878 
879 
880 
881 
882 
883 
884 
885 
886 
887 
888 
889 
890 

• 'IOC * RETURN ADDRESS - FOR MICROSUBROurlNE CALIS 
lUSED WITH Bur [SUBRS] AND Bur [SUBRA] 
• FIELD RETURN::=<46:44>'<41:33> lPAGE # D.I.P. 

.'IOC * UCON SELECTION AND CONTROL FIELDS 

.TOe * SELECTION 

.FIELD UCON-SEL-I~::=<46> 

NO: :=0 
YES: :=1 

.FIELD UCON-SEL-WCS::=<45> 
NO: :=0 
YES: :=1 

.FIELD UCON-SEL-CACHEKT::=<44> 
NO: :=0 
YES: :=1 

.FIELD UCON-SEL-PROC::=<36> 
NO: :=0 
YES: :=1 

.FIELD UCON-SEL-FLTPT::=<33> 
NO: :=0 
YES: :=1 

1 SELECT I ~ [BUS] CONTROL 

lSELECT WCS/ECS/DCS 

lSELECT CACHE/KT 

1 SELECT PROCESSOR CONTROL 

1 SELECT Har FLOATING POINT 

Page B-22 



THE 11/60 PREDEFINITIONS Page B-23 

891 
892.'IOC * CONTROL (ALSO TMS ROllINES) 
893 !AFTER UCON [S] SELEcrED FROM ABOVE, CONTROL COMES FROM HERE. 
894 .FIELD UCON::=<32:30>'<35:34>'<47>'<42:38> 
895 
896 !WHEN INVOKING TMS ROUTINES TO TALK TO IDeAL STORE THEN USE THE 
897 !FOLLOWING NAMES AS FORMAL PARAMETERS IN THE SUBSTITUTION MACRO 
898 TMSPTR (XX). THESE ARE THE ONLY LEGAL VALUES THAT WILL 
899 !WORK IN THE MACRO. FURlliER EXPLANATION OF THESE ROUTINES 
900 !CAN BE OBTAINED IN THE LISTING OF THE TMS ROM. 
901 
902 
903 
904 
905 
906 
907 
908 
909 
910 
911 
912 
913 
914 
915 
916 
917 
918 
919 
920 
921 
922 
923 
924 
925 
926 
927 
928 
929 
930 
931 
932 
933 
934 
935 
936 
937 
938 
939 

READ 
READANDINC 
WADANDREAD 
WADREADINC 

WRITE 
WRITEANDINC 
WADANrmRITE 
WADWRITEINC 

INCANDREAD 
WADADDRESS 

WADGRS 

STOREGRS 

WADFP 
STOREFP 
WADCSP 
STORECSP 
Wru:mCSAB 
STOREWCSAB 
SETWAD 
SETSTORE 
ASPADWAD 
ASPADSTORE 
BSPADWAD 
BSPADSTORE 
ALLCSPWAD 
ALLCSPSTORE 
WADREAIJIW) 
INCREAIJIW) 

WADWRITE1W 
WRITE1W 

: :=0064 
: :=0050 
: :=0040 
: :=0070 

: :=0030 
: :=0010 
: :=0020 
: :=0002 

: :=0012 
: :=0100 

: :=0104 

: :=0140 

: :=0174 
: :=0266 
: :=0360 
: :=0420 
: :=0462 
: :=0502 
: :=0522 
: :=0530 
: :=0534 
: :=0646 
: :=0756 
: :=1070 
: :=1202 
: :=1252 
: :=1324 
: :=1334 

: :=1342 
: :=1352 

!READ DATA. 
! READ DATA TO MD, INCREMENT ADDR. 
! WAD ADDRESS AND THEN READ DATA. 
! WAD ADDRESS, READ DATA, 
! INCREMENT ADDRESS. 
!WRITE DATA. 
!WRITE DATA AND THEN INCREMENT ADDRESS. 
! WAD ADDRESS AND THEN WRITE DATA 
! WAD ADDRESS, WRITE DATA, 
! INCREMENT ADDRESS. 
! INCREMENT ADDRESS AND THEN READ DATA. 
! WAD ADDRESS 

! WAD GR' S FROM 
! IDeAL STORE 
!SAVE GR'S INTO 
! IDeAL STORE 
! WAD FP REGISTERS FROM lOCAL STORE 
!SAVE FP REGISTERS INTO lOCAL STORE 
!WAD CSP[00-13] INTO lOCAL STORE. 
!SAVE CSP[00-13] INTO IDeAL STORE. 
!WAD WCS WORK REGISTERS FROM IDeAL STORE 
!SAVE WCS WORK REGISTERS INTO LOCAL STORE. 
! SAME AS LOADREADINC. 
! SAME AS LOAD ADDRESS. 
! WAD ASP [00-37] FROM lOCAL STORE 
!SAVE ASP[00-37] INTO lOCAL STORE 
! WAD BSP [00-37] FROM lOCAL STORE. 
!SAVE BSP[00-37] INTO IDeAL STORE. 
! WAD CSP [00-1 7] FROM LOCAL STORE. 
!SAVE CSP[00-17] INTO IDeAL STORE. 
! WAD ADDRESS AND READ 'lID DATA ITEMS 
! INCREMENT ADDRESS AND READ 
! 'lWO DATA ITEMS 
! WAD ADDRESS AND WRITE 'lID DATA ITEMS. 
! INCREMENI' ADDRESS AND WRITE 
! 'IWO DATA ITEMS. 



THE 11/60 PREDEFINITIONS Page B-24 

940 
941 
942 
943 
944 
945 
946 
947 
948 
949 
950 
951 
952 
953 
954 
955 
956 
957 
958 
959 
960 
961 
962 
963 
964 
965 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 
976 
977 
978 
979 
980 
981 
982 
983 
984 
985 
986 

.FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
• FIELD 
.FIELD 

.'lOC 

READ INDIRECT 
WRITE INDIRECT 
LOADFPOl 
LOADFP23 
LOADFP45 
STOREFPOI 
STOREFP23 
STOREFP45 
IDADTEMP 
STORETEMP 

::=1362 !READ DATA ITEM INDIRECTLY. 
: :=1376 !WRITE DATA ITEM INDIRECTLY. 
: :=1412 !IDAD FPO AND FPl FROM LOCAL STORE. 
: :=1444 !IDAD FP2 AND FP3 FROM LOCAL STORE. 
: :=1476 !LOAD FP4 AND FP5 FROM LOCAL STORE. 
: :=1530 !SAVE FPO AND FPl INTO LOCAL STORE. 
: :=1562 !SAVE FP2 AND FP3 INTO LOCAL STORE. 
: :=1~14 !SAVE FP4 AND FP5 INTO LOCAL STORE. 
: :=1646 !LOAD TEMPS FROM LOCAL STORE. 
: : =1700 ! SAVE TEMPS INTO LOCAL STORE. 

UCONH::=<32:30> 
UCONM::=<35:34> 
UCONL::=<47>'<42:38> 
UCON15::=<32> 
UCON14::=<31> 
UCON13::=<30> 
UCON12::=<35> 
UCONll::=<34> 
UCONI0::=<47> 
UCON09::=<42> 
UCON08: : =<41> 
UCON07 : : =<40 > 
UCON06:: =<39> 
UCON05::=<38> 

* IDCAL STORE FIELDS 

!EACH 48 BIT WORD IS DIVIDED INTO 3 SIXTEEN BIT FIELDS. 
!BITS <15-00> ARE LSADR'S 0000-1777. (COLUMN ZERO) 
!BITS <31-16> ARE LSADR'S 2000-3777. (COLUMN ONE) 
!BITS <47-32> ARE LSADR'S 4000-5777. (COLUMN TWO) 

• FIELD 
• FIELD 
• FIELD 

COLTWO: : =<47: 32> 
COLONE::=<31:16> 
COLZERO::=<15:00> 

!-----------------------------------------------------------------------

!-----------------------------------------------------------------------
!END OF MICRDWORD FIELD DEFINITIONS. 
!-----------------------------------------------------------------------



THE 11/60 PREDEFINITIONS Page B-25 

987 
988 !======================================================================= 
989 
990 
991 
992 
993 
994 
995 
996 
997 
998 
999 

1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 
1011 
1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 

• IDe 

• IDe 

• '!DC 
• MACRO 

• MACRO 
• MACRO 
• MACRO 

• MACRO 
• MACRO 
• MACRO 
• MACRO 

• MACRO 
• MACRO 
• MACRO 
• MACRO 

• MACRO 

• MACRO 

• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 

* MACRO DEFINITIONS 

* PRIMITIVE OPERATIONS 

* TIMING 
PO : : = NULL 10 NS., UP3 VIEWED AS THE STARr OF A 

IMICROCYCLE 

P1 :: = NULL 160 NS., AT P1 
P1-L : := NULL 130 NS., AT P1 LEADING EDGE 
P1-T : := NULL 160 NS., AT P1 TRAILING EDGE 

P2 :: = NULL 1100 NS., AT P2 
P2-L : := NULL 170 NS., AT P2 LEADING EDGE 
P2-T : : = WHEN/AT-P2-T 1100 NS., AT P2 TRAILING EDGE 
P2-U : := NULL 1 UNSUPPRESSED P2, CLOCK CONTINUOUSLY 

P3 : : = NULL 1150 NS., 120-150 NS., AT P3 
P3-L ::= NULL 1120 NS., AT P3 LEADING EDGE 
P3-T : := WHEN/AT-P3-T 1150 NS., AT P3 TRAILING EDGE 
P3-U : := NULL 1 UNSUPPRESSED P3, CLOCK CONTINUOUSLY 

UP3 : : = NULL 1 P3 DELAYED BY 5 NS., PO VIEWED AS THE 
lEND OF A MICROCYCLE. LATCHES NEW 
!MICROINSTRUCTION INTO THE 
IMICROWORD BUFFER REGISTER. 

DEFER : := NULL 1 CONTROL IS ISSUED AT THIS TIME, 
1 ANY REQUIRED CLOCKING OCCURS LATER 

NEXT : := NULL lWHERE TO GO NEXT, CLOCKED AT UP3 
SETUP : := NULL !SETUP DATA/CONTROL 
SELEcr : := NULL lMAKE A Har-BOX SELEcrION 
ISSUE : := NULL 1 SET/CLEAR Har-BOX FLAG 
ENABLE : : = NULL ! DITrO 
EMITC : := NULL ISPECIFY AN EMIT-CONSTANT VALUE 

1030 1======================================================================= 
1031 



THE 11/60 PREDEFINITIONS Page B-26 

1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1044 
1045 
1046 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 
1058 
1059 
1060 
1061 
1062 
1063 
1064 
1065 
1066 
1067 
1068 
1069 
1070 
1071 
1072 
1073 
1074 
1075 
1076 
1077 
1078 
1079 
1080 
1081 
1082 
1083 
1084 
1085 
1086 
1087 

• 'rOC * WRITING THE A AND B SCRATCH PADS 

WRITING THE APPROPRIATE SCRATCH PADS: 

(NOP ) 
(A L A) 

WR (B ,H ,B) 
(AB ) 

/1\ /1\ /1\ 

ASP, BSP, BOTH, NEITHER----------
10[00-17], OR HI [20-37]--------------
USE "A" SIDE OR "B" SIDE ADDRESS----------

WRITES CONTENTS OF D-REGISTER INTO ADDRESSED SCRATCH PADS [SEE 
BELOW] DURING P3 

.MACRO WR(AB,HL,ADDR) ::= MOD/CLKSP, 
WRSP/@AB, 

HI1O/@HL, 
WRSEL/@ADDR 

lCIDCK SP MODE 
lNOP, A, ASP, B, BSP, 
lAB, ABSP, BA, BASP, 
lBOTH ARE CHOICES 
lHI, DO, H, L ARE CHOICES 
lA, B, A-ADDR, B-ADDR 
lARE CHOICES. 

• 'rOC * ~BP AND BSP PHYSICAL REGISTER ADDRESSES 

! ENABLE INPUT/OUTPUT [FOR READ AND/OR WRITE] OF THE APPROPRIATE 
! SCRATCH PAD ONTO EITHER BUS-A OR BUS-B VIA EXACT PHYSICAL ADDRESS 

• MACRO ASP10 (XX) : := AEN/ASPLO, !SELECT 
ASEL/@XX, lREGISTER & 
RIF/@XX lENABLE ON BUS-A 

.MACRO ASPHI(XX) : : = AEN/ASPHI, 1 SELECT 
ASEL/@XX, !REGISTER & 
RIF/@XX !ENABLE ON BUS-A 

.MACRO ASP (XX) : : = ASEL/@XX, !SELECT REGISTER, 
RIF/@XX lNO ENABLE 

• MACRO BSP10 (XX) : : = BEN/BSPLO, 1 SELECT 
BSEL/@XX, lREGISTER & 
RIF/@XX ! ENABLE ON BUS-B 

.MACRO BSPHI(XX) : : = BEN/BSPHI, !SELECT 
BSEL/@XX, !REGISTER & 
RIF/@XX lENABLE ON BUS-B 

.MACRO BSP (XX) : := BSEL/@XX, !SELECT REGISTER, 
RIF/@XX !ID ENABLE 



THE 11/60 PREDEFINITIONS Page B-27 

1088 
1089 
1090 
1091 .TOC * ASP AND BSP BASE MACHINE FUNCTIONAL REGISTER ADDRESSES 
1092 
1093 ENABLE INPur/OUTPur [FOR READ AND/OR WRITE] OF THE APPROPRIATE 
1094 ! SCRATCH PAD ONTO EITHER BUS-A "-A" OR BUS-B "-B" VIA FUNCTIONAL 
1095 ! REGISTER DESIGNATION 
1096 
1097 • MACRO RO-A : := ASPLO (ROO) 
1098 • MACRO RO-B : := BSPLO(ROO) 
1099 • MACRO Rl-A : : = ASPLO (ROl) 
1100 • MACRO Rl-B : := BSPLO(ROl) 
1101 • MACRO R2-A : := ASPLO (R02) 
1102 • MACRO R2-B : := BSPLO (R02) 
1103 • MACRO R3-A : := ASPID(R03) 
1104 • MACRO R3-B : := BSPLO(R03) 
1105 • MACRO R4-A : := ASPLO (R04) 
1106 • MACRO R4-B : : = BSPLO(R04) 
1107 • MACRO R5-A : := ASPLO (R05) 
1108 • MACRO R5-B : := BSPID(R05) 
1109 • MACRO SP-A : : = ASPLO (R06) 
1110 • MACRO SP-B : : = BSPLO(R06) 
1111 • MACRO PC-A : := ASPLO (R07) 
1112 • MACRO PC-B : : = BSPLO(R07) 
1113 • MACRO FACA[O]-B : := BSPHI(RlO) 
1114 • MACRO FACB[O]-A : := ASPHI (RlO) 
1115 • MACRO FACC[O]-B : := BSPLO (RlO) 
1116 • MACRO FACD[O]-A : : = ASPID(RlO) 
1117 • MACRO FACA[l]-B : : = BSPHI (Rll) 
1118 • MACRO FACB[l]-A : := ASPHI (Rll) 
1119 • MACRO FACC[l]-B : := BSPID(Rll) 
1120 • MACRO FACD[l]-A : := ASPLO (Rll) 
1121 • MACRO FACA[2]-B : : = BSPHI (Rl2) 
1122 • MACRO FACB[2]-A : : = ASPHI (Rl2) 
1123 • MACRO FACC[2]-B : : = BSPLO(Rl2) 
1124 • MACRO FACD[2]-A : := ASPLO(Rl2) 
1125 • MACRO FACA[3]-B : : = BSPHI(Rl3) 
1126 • MACRO FACB[3]-A : := ASPHI (Rl3) 
1127 • MACRO FACC[3]-B : : = BSPLO(Rl3) 
1128 • MACRO FACD[3]-A : := ASPLO (Rl3) 
1129 • MACRO FACA[4]-B : : = BSPHI(Rl4) 
1130 • MACRO FACB[4]-A : : = ASPHI (Rl4) 
1131 • MACRO FACC[4]-B : := BSPLO (Rl4) 
1132 • MACRO FACD[4]-A : := ASPLO (Rl4) 
1133 • MACRO FACA[5]-B : := BSPHI (Rl5) 
1134 • MACRO FACB[5]-A : : = ASPHI (Rl5) 
1135 • MACRO FACC[5]-B : : = BSPLO (Rl5) 
1136 • MACRO FACD[5]-A : := ASPID (Rl5) 
1137 • MACRO FDSTA-B : : = BSPHI(Rl7) 
1138 • MACRO FDSTB-A : : = ASPHI (Rl7) 
1139 • MACRO FDSTC-B : : = BSPID(Rl7) 
1140 • MACRO FDSTD-A : : = ASPLO(Rl7) 
1141 • MACRO FPSHI#FEC-A : : = ASPHI (Rl6) 
1142 • MACRO FEA-B : : = BSPHI (Rl6) 
1143 • MACRO USER-SP-A : : = ASPID (Rl6) 



THE 11/60 PREDEFINITIONS Page B-28 

1144 
1145 
1146 
1147 
1148 
1149 
1150 
1151 
1152 
1153 
1154 
1155 
1156 
1157 
1158 
1159 
1160 
1161 
1162 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
1171 
1172 
1173 
1174 
1175 
1176 
1177 
1178 
1179 
1180 
1181 
1182 
1183 
1184 
1185 
1186 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 
1198 
1199 

• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 

• '!DC 

USER-SP-B 
WHAM I-A 
R[ZERO]-B 
R[IR]-A 
R[SRC]-B 
R[SRC]-A 
R[DST]-B 
R[DST]-A 
R[VECT]-B 
WCSB[O]-B 
WCSB[l]-B 
WCSA[O]-A 
WCSADR 
FPA-B 
CNSL-cNTL-B 
CNSL-CADR-A 
CNSL-SW-A 
CNSL-TMPSW-A 

: : = BSPID (Rl6) 
: : = ASPHI (R02) 
::= BSPHI (R03) 
: : = ASPHI (Rl7) 
: : = BSPHI (R04) 
::= ASPHI (R04) 
::= BSPHI (R05) 
: : = ASPHI (R05) 
: : = BSPHI (R02) 
: : = BSPHI (ROO) 
: : = BSPHI (ROl) 
: : = ASPHI (ROO) 
: : = ASPHI (ROl) 
: : = BSPHI (R06) 
: : = BSPHI (R07) 
: : = ASPHI (R07) 
: : = ASPHI (R06 ) 
: : = ASPHI (R03 ) 

* ASP AND BSP INDIRECT REGISTER ADDRESSES 

ENABLE INPur/OurPUT [FOR READ AND/OR WRITE] OF THE APPROPRIATE 
SCRATCH PAD ON BUS-A [A] OR BUS-B USING INDIRECT ADDRESSING 
WITH THE IR, WHERE : 

• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 

• 'IDe 

• MACRO 
• MACRO 
• MACRO 
• MACRO 

SF<3:0>H = [FLPADR H + KTSRCADRS3 H] # [FLTPl' L * IR8 H] # 
[IR7 H] # [IR6 H + RORl H] 

DF<3:0>H = [FLPADR H + KTDSTADRS3 H] # [IR2 H] # [IRI H] # [IRO H] 

R[SF]-LO-A 
R[SF]~LO-B 
R[SF]-HI-A 
R[SF]-HI-B 
R[DF]-LO-A 
R[DF]-LO-B 
R[DF]-HI-A 
R[DF]-HI-B 
R[SF]-A 
R[SF]-B 
R[DF]-A 
R[DF]-B 

::= AEN/ASPLO,ASEL/SF 
::= BEN/BSPLO,BSEL/SF 
: : = AEN/ASPHI,ASEL/SF 
::= BEN/BSPHI,BSEL/SF 
::= AEN/ASPLO,ASEL/DF 
::= BEN/BSPLO,BSEL/DF 
: : = AEN/ASPHI,ASEL/DF 
: : = BEN/BSPHI ,BSEL/DF 
::= R[SF] -LO-A 
: : = R [SF] -LO-B 
: : = R [DF] -ID-A 
::= R[DF] -OO-B 

* ASP, BSP INDIRECT ADDRESSING 

THESE MACROS ONLY SELECT THE ADDRESS MODE FOR THE ASP AND BSP; 
THE SELECTED SP IS NOT ENABLED ONTO THE BUS 

ASP-ADDRS-R [DF] :: = ASEL/DF 
ASP-ADDRS-R[SF] ::= ASEL/SF 
BSP-ADDRS-R[DF] ::= BSEL/DF 
BSP-ADDRS-R[SF] ::= BSEL/SF 



THE 11/60 PREDEFINITIONS Page B-29 

1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 

!======================================================================= 

• 'roC * WRITING THE C SCRATCH PAD 

! WRITE DATA ON BUSDIN [ACTUALLY DMUX OUTPUT] INTO ADDRESSED CSP 
! LOCATION [SEE BEDOW] DURING P3 

.MACRO WR-CSP : : = WRCSP /YES 

'roC * CSP IMPLIED ADDRESSING 

ENABLE FOR INPUT/OUTPur [READ AND/OR WRITE] ONTO BUS-B ONLY A 
SPECIFIC CSP LOCATION, WHERE THE ADDRESS IS DETERMINED 
AS FOLIDWS: 

CSPADDR<3:0>H = -[ 0 # 0 # BSEL<1>H # BSEL<O>H ] 

• MACRO CSPB (XX) : : = BEN/BAS CON , 
BSEL/@XX 

'roC * CSP DIRECT ADDRESSING 

!USE IMMEDIATE MODE 
!WHICH ONE 

ENABLE FOR INPur/OUTPOT [READ AND/OR WRITE] ONTO BUS-B ONLY A 
SPECIFIC CSP LOCATION, WHERE THE ADDRESS IS DETERMINED 
AS FOLLOWS: 

CSPADDR<3:0>H = -DWORD<23:20> H 

• MACRO CSPD(XX) : : = BEN/CSP, 
CSPADDR/@XX 

!USE CSP-ADDR MODE 
!WHICH ONE 



THE 11/60 PREDEFINITIONS Page B-30 

1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
1268 
1269 
1270 
1271 
1272 
1273 
1274 
1275 
1276 
1277 
1278 
1279 
1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 
1288 
1289 
1290 
1291 
1292 
1293 
1294 
1295 

1======================================================================= 

.TOe * SHIFT TREE SPECIFICATION 
IN.B. MAY REQUIRE PRIOR SEWP OF RES-REGISTER FOR SHIFT END MUX 
1 SELECTION CONTROL (E. G., WHEN ASEL/LEFT-A IS USED). 

• TOe 
• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 
• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

* ENABLED ONTO BUS A 
D-RIGHT-14 ::= 

D-RIGHT-13 ::= 

D-RIGHT-12 ::= 

D-RIGHT-ll ::= 

D-RIGHT-IO ::= 

D-RIGHT-9 ::= 

D-RIGHT-8 ::= 

D-RIGHT-7 ::= 

D-RIGHT-6 ::= 

D-RIGHT-S ::= 

D-RIGHT-4 ::= 

D-RIGHT-3 ::= 

D-RIGHT-2 ::= 

D-RIGHT-l ::= 

D-NO-SHIFT ::= 

D-DIRECT : : = 
D-LEFT-l ::= 

D-SWAB ::= 

D-SWAB-RIGHT-3 ::= 

D-SWAB-LEFT-l ::= 

D-SIGNEXT ::= 

D-SIGNEXT-RIGHT-1 ::= 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/RIGHT-4,ASEL/RIGHT-2 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/RIGHT-4,ASEL/RIGHT-l 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/RIGHT-4,ASEL/DIRECT 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/RIGHT-4,ASEL/LEFT-l 
1 SENDMUX SETUP 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/DIRECT,ASEL/RIGHT-2 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/DIRECT,ASEL/RIGHT-l 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/DIRECT,ASEL/DIRECT 

AEN/CMUX,AMUX/RIGHT-8, 
BMUX/DIRECT,ASEL/LEFT-l 
1 SENDMUX SETUP 

AEN/CMUX,AMUX/DIRECT, 
BMUX/RIGHT-4,ASEL/RIGHT-2 

AEN/CMUX,AMUX/DIRECT, 
BMUX/RIGHT-4,ASEL/RIGHT-l 

AEN/CMUX,AMUX/DIRECT, 
BMUX/RIGHT-4,ASEL/DIRECT 

AEN/CMUX,AMUX/DIRECT, 
BMUX/RIGHT-4,ASEL/LEFT-l 
1 SENDMUX SEWP 

AEN/CMUX,AMUX/DIRECT, 
BMUX/DIRECT,ASEL/RIGHT-2 

AEN/CMUX,AMUX/DIRECT, 
BMUX/DIRECT,ASEL/RIGHT-l 

AEN/CMUX,AMUX/DIRECT, 
BMUX/DIRECT,ASEL/DIRECT 

D-NO-SHIFT 
AEN/CMUX ,AMUX/DIRECT , 

BMUX/DIRECT,ASEL/LEFT-l 
ISENDMUX SETUP 

AEN/CMUX ,AMUX/SWAB, 
BMUX/DIRECT,ASEL/DIRECT 

AEN/CMUX,AMUX/SWAB, 
BMUX/RIGHT-4,ASEL/LEFT-l 
1 SENDMUX SETUP 

AEN/(}1UX,~ruX/SWAB, 
BMUX/DIRECT,ASEL/LEFT-l 
1 SENDMUX SETUP 

AEN/CMUX,AMUX/SIGNEXT, 
BMUX/DIRECT,ASEL/DIRECT 

AEN/CMUX,AMUX/SIGNEXT, 



THE 11/60 PREDEFINITIONS 

• MACRO D-SIGNEXT-LEFT-l 

• MACRO NO-SHIFT 

• MACRO DIRECT 
.MACRO COUNT#D[HI] 

• MACRO COUNT#D [10] 

BMUX/DIRECT,ASEL/RIGHT-l 
::= AEN/CMUX,AMUX/SIGNEXT, 

BMUX/DIRECT,ASEL/LEFT-l 
! SENDMUX SETUP 

::= AEN/CMUX, 
BMUX/DIRECT,ASEL/DIRECT 

: : = NO-SHIFT 
::= AEN/CMUX,AMUX/COUNTER#D[HI] , 

BMUX/DIRECT,ASEL/DIRECT 
::= AEN/CMUX,AMUX/COUNTER#D[1O] , 

BMUX/DIRECT ,ASEL/DIRECT 

• roc * FIRST TVl) LEVELS ONLY [AMUX, 
BMUX] 

!N.B.: FOR USE WHEN SHIFTING SR RIGHT, SR<IS> <- BMUX<OO> 
.MACRO D-DIRECT[BMUX] ::= AMUX/DIRECT, 

BMUX/DIRECT 

Page B-31 

1296 
1297 
1298 
1299 
1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 
1313 
1314 
1315 
1316 
1317 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
1351 

!======================================================================= 

.roc * ALU FUNCTIONS 
! [SEE FIELD DESCRIPTION OF "ALU" FOR FULL DESCRIPTION] 
.MACRO ZERO ::= ALU/ZERO 
.MACRO A-XOR-B : : = ALU/A-XOR-B 
.MACRO B ::= ALU/B 
.MACRO A-AND-B : : = ALU/A-AND-B 
.MACRO A-IOR-B ::= ALU/A-IOR-B 
• MACRO A :: = ALU/A 
• MACRO NOT-A : : = ALU /NOr-A 
• MACRO NOT-A-AND-B ::= ALU/NOT-A-AND-B 
.MACRO A-AND-NOT-B ::= ALU/A-AND-NOT-B 

• MACRO DIVIDE : := ALU/DIVIDE 
• MACRO A-PLUS-B : : = ALU/A-PLUS-B 
• MACRO A-MINUS-B : := ALU/A-MINUS-B 
• MACRO A-PLUS-B-PLUS-PS[C] : : = ALU/A-PLUS-B-PLUS-PS[C] 
• MACRO A-PLUS-B-PLUS-D[C] : := ALU/A-PLUS-B-PLUS-D[C] 
• MACRO A-PLUS-NOT-B-PLUS-D[C] : : = ALU/A-PLUS-NOT-B-PLUS-D[C] 
• MACRO A-PLUS-B-PLUS-l : : = ALU/A-PLUS-B-PLUS-l 

• roc * COUT GENERATION 
! [SEE FIELD DESCRIPTION OF "COUT" FOR FULL DESCRIPTION] 
.MACRO COUT CIN : : = COUT/CIN 
.MACRO cour-ps [C] ::= COUT/PS [C] 
• MACRO COOT-ALUOO ::= COUT/ALUOO 
.MACRO cOur-ALU07 ::= COUT/ALU07 
.MACRO COOT-ALUIS ::= COUT/ALUIS 
• MACRO COureoUT07 ::= COUT/COUT07 
.MACRO COUT-COUTI5 ::= COUT/COUTI5 
.MACRO COUT=D [C] ::= COUT/D [C] 



THE 11/60 PREDEFINITIONS Page B-32 

1352 
1353 
1354 
1355 
1356 
1357 
1358 
1359 
1360 
1361 
1362 
1363 
1364 
1365 
1366 
1367 
1368 
1369 
1370 
1371 
1372 
1373 
1374 
1375 
1376 
1377 
1378 
1379 
1380 
1381 
1382 
1383 
1384 
1385 
1386 
1387 
1388 
1389 
1390 
1391 
1392 
1393 
1394 
1395 
1396 
1397 
1398 
1399 
1400 
1401 
1402 
1403 

!======================================================================= 

• '!DC 

• '!DC 
• MACRO 

• MACRO 

• MACRO 

• MACRO 

• MACRO 

* CIOCKS 

* 
CLK-D 

CLK-SR 

CLK-BA 

SET-CC 

CLK-CC 

BASIC REGISTER CLOCKS [D, SR, BA, CC] 
: : = CLKD/YES 
!MUST SPECIFY P2 T OR P3 T 
: : = CLKSR/YES 
!MUST SPECIFY P2 T OR P3 T 
: : = CLKBA/YES 
!AT PI T ONLY 
::= SCC/YES 
! SETUP HERE, CLOCKED AT P2 T 
! **OF NE}ff UWJRD** ONLY 
::= NULL 
! IN NEXT UWJRD, FOR IX:x:UMENTATION 

• 'lOC * REDEFINED FROM SP REWRITE FIELD [RES, COUNTER] 
.MACRO LOAD-RES ::= MOD/LOADREG,LOADRES/YES 

!AT P2 T ONLY, FROM B-BUS<14:11> 
• MACRO LOAD-COUNTER : : = MOD/IDADREG, IDADCOUNT/yES 

!DURING ENTIRE UWJRD, FROM B-BUS<7:0> 

.'lOC * RES REGISTER CONTROL VALUES [FROM EMIT] 

!IDADED VIA: EMIT<14:11> -> CSP[XX]<14:11> -> B-BUS<14:11> -> RES<3:0> 
.MACRO SENDMUX-0123-SEL ::= EMIT14/1 

! FOR SHIFT TREE 
.MACRO SENDMUX-4567-SEL ::= EMITI4/0 

! FOR SHIFT TREE 
.MACRO SR-IDAD ::= EMITI3/0,EMITI2/0 

! FOR SR/GUARD 
• MACRO SR-LEFT ::= EMITI3/0,EMITI2/1 

! FOR SR/GUARD 
.MACRO SR-RIGHT ::= EMITI3/1,EMITI2/0 

! FOR SR/GUARD 
• MACRO SR-NOP ::= EMITI3/1,EMITI2/1 

! FOR SR/GUARD 
.MACRO GUARD-EN ::= EMIT11/1 

! FOR SR/GUARD 
• MACRO GUARD-DIS ::= EMITll/0 !FOR SR/GUARD 



THE 11/60 PREDEFINITIONS Page B-33 

1404 
1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 
1415 
1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 
1426 
1427 
1428 
1429 
1430 
1431 
1432 
1433 
1434 
1435 
1436 
1437 
1438 
1439 
1440 

• TOe * CC CONTROL [FROM EMIT] 
!USED VIA: BUS-U37-H -) EMIT07-H -) MODIFY-V(I)-H 
.MACRO MODIFY-VB IT ::= EMIT07/1 
.MACRO NOT-MODI FY-VBIT ::= EMIT07/0 

!======================================================================= 

• TOe * BUS CONTROL MACROS 
• MACRO DATI-CLKIR : := BEGIN/YES,SELECT/BUS,BUSCODE/DATI-CLKIR 
• MACRO DATI-NOINT : := BEGIN/YES,SELECT/BUS,BUSCODE/DATI-NOINT 
• MACRO DATI : := BEGIN/¥ES,SELECT/BUS,BUSCODE/DATI 
• MACRO DATI[P] :: = BEGIN/YES,SELECT/BUS,BUSCODE/DATI[P] 

!WITH ALTER/ALLOWED 
• MACRO DATO : := BEGIN/YES,SELECT/BUS,BUSCODE/DATO 
• MACRO DATIB : : = BEGIN/YES,SELECT/BUS,BUSCODE/DATIB 
• MACRO DATIB[P] : : = BEGIN/YES,SELECT/BUS,BUSCODE/DATIB[P] 

!WITH ALTER/ALLOWED 
• MACRO DATIP : := BEGIN/YES,SELECT/BUS,BUSCODE/DATIP 
• MACRO DATOB : := BEGIN/YES,SELECT/BUS,BUSCODE/DATOB 
• MACRO INVALIDATE : := BEGIN/YES,SELECT/BUS,BUSCODE/INVALIDATE 

!======================================================================= 

• TOe 
• MACRO 

• MACRO 

* UCON CONTROL MACROS 
SET-UCON-CQNTROL ::= 

UCON-oPE RAT ION : := 

BEGIN/YES,SELECT/UCON,UCON-LOAD/YES 
! WAD UCON CONTROL REGISTER AT PO 

BEGIN/YES,SELECT/UCON,UCON-XFER/YES 
!PERFORM UCON OPERATION 



THE 11/60 PREDEFINITIONS Page B-34 

1441 
1442 .'!DC 
1443 .MACRO 
1444 
1445 • MACRO 
1446 
1447 .MACRO 
1448 .MACRO 
1449 .MACRO 
1450 .MACRO 
1451 .MACRO 
1452 .MACRO 
1453 
1454 .MACRO 
1455 .MACRO 
1456 • MACRO 
1457 .MACRO 
1458 
1459 
1460 
1461 
1462 
1463 
1464 .'!DC 
1465 .MACRO 
1466 
1467 
1468 .MACRO 
1469 
1470 .MACRO 
1471 
1472 .MACRO 
1473 
1474 .MACRO 
1475 
1476 .MACRO 
1477 
1478 .MACRO 
1479 
1480 .MACRO 
1481 
1482 .MACRO 
1483 
1484 .MACRO 
1485 
1486 .MACRO 
1487 
1488 .MACRO 
1489 
1490 .MACRO 
1491 
1492 .MACRO 
1493 
1494 
1495 
1496 

* PROCESSOR UCON CONTROL SETUP 
UCON-PROC ::= UCON-SEL-PROC/YES 

!SELECT PROCESSOR 
EN-CLK-IR[15-00] ::= UCONI5/1 

!ENABLE OPERATIONS 
EN-CLK-PS[15-12] ::= UCONI4/1 
EN-CLK-FLAG[8-0] ::= UCONI3/1 
EN-CLK-FPS[7-4] ::= UCONI2/1 
EN-CLK-PS[7-4] ::= UCONll/l 
EN-CLK-PS[3-0] ::= UCONI0/l 
EN-CLK-UBREAK [11-00] ::= UCON09/1 
!UCON<8:7> ARE NOT USED IN PROCESSOR CONTROL 
BUSDIN EMIT[15-00] ::= UCON06/0,UCON05/0 !HBMUX SELECT 
BUSDIN-CUA[14-03] ::= UCON06/0,UCON05/1 
BUSDIN-PS[15-00] ::= UCON06/1,UCON05/0 
BUSDIN=FLAG[8-0]#FPS[7-0] ::= UCON06/1,UCON05/1 

* CACHE/KT UCON CONTROL 
UCON-cACHE-KT ::= UCON-SEL-CACHEKT/YES 

!SELECT CACHE / KT UCON FUNCTION 
!UCON<IS> NOT USED HERE 
EN-KT-NO-REIDCATE : : = UCONI4/1 

! INHIBIT KT FROM ANY RELOCATION OF BA - > PBA 
BUSDIN_BUS-INTERNAL-ADDR[15-00] ::= UCONI3/0,UCONI2/1 

! FROM INTERNAL ADDR ROM 
BUSDIN CPU-INTERNAL-ADDR[15-00] ::= UCONI3/1,UCONI2/1 

- ! DITID ••• 
BUSDIN_MMR2[15-00] ::= UCONll/l,UCON09/0 

!VIRTUAL PC 
BUSDIN_CACHE-STATUS[15-00] ::= UCONll/l,UCON09/1 

BUSDIN KT-SEL 

KT-wRITE-HIGH 

KT-WRITE-IDW 

KT-WRITE 

KT-SEL-SLR#CCR 

KT-SEL-MMRO 

KT-SEL-PDR 

KT-SEL-PAR 

!CACHE INFO 
::= UCONI0/l 

!FOR PAR-S, PDR-S ETC 
::= UCON08/1 

!WRITE REGISTER <15:08> 
:: = UCON07/1 

!WRITE REGISTER <07:00> 
::= UCON08/1,UCON07/1 

!WRITE REGISTER <15:00> 
::= UCON06/0,UCON05/0 

!SELECT KT-MUX OUTPUT 
::= UCON06/0,UCON05/1 

::= UCON06/1,UCON05/0 

::= UCON06/1,UCON05/1 



THE 11/60 PREDEFINITIONS Page B-35 

1497 
1498 .~ 
1499 .MACRO 
1500 
1501 
1502 
1503 .IDC 
1504 • MACRO 
1505 .MACRO 
1506 .MACRO 
1507 
1508 .MACRO 
1509 .MACRO 
1510 .MACRO 
1511 .MACRO 
1512 .MACRO 
1513 
1514 • MACRO 
1515 • MACRO 
1516 .MACRO 
1517 .MACRO 
1518 .MACRO 
1519 .MACRO 
1520 • MACRO 
1521 
1522 
1523 
1524 .~ 

1525 .MACRO 
1526 
1527 
1528 
1529 .MACRO 
1530 
1531 .MACRO 
1532 
1533 .MACRO 
1534 
1535 .MACRO 
1536 
1537 .MACRO 
1538 
1539 .MACRO 
1540 
1541 • MACRO 
1542 
1543 .MACRO 
1544 
1545 .MACRO 
1546 
1547 
1548 
1549 

* I/O UCON CONTROL 
UCON-I-o ::= UCON-SEL-I-o/YES !SELECT 1-0 CONTROL 

* BUS CONTROL 
EN-LOAD-DBUF [15-00] ::= UCON15/1 !EN LOAD DBUF AT P3 
BUSDIN DBUF [15-00] ::= UCON15/1 !DBUF ON BUSDIN 
EN-STATUS-MUX ::= UCON15/0 !STATUS-MUX ENABLE ON BUSDIN 
!UCON<14:11> ARE NOT USED IN UCON BUS CONTROL 
BUSDIN SERVICE[15-00] ::= UCONIO/0,UCON09/1 
BUSDIN-JAM[15-00] ::= UCON10/1,UCON09/0 
BUSDIN-PBA[15-00] ::= UCON10/1,UCON09/1 
DMUX CACHEDATA[15-00] ::= UCONOS/l 
EN-BC-FCN-O ::= UCON07/0,UCON06/0,UCON05/0 

EN-STARr-DEIAY 
EN-CLR-JAM-ERRORS 
EN-CLR-NPR~IMEOUT 

EN-CLR-PWR-FAIL 
EN-CLR-YE LLOW-Z ONE 
EN-ALLOW-BG[l]H 
EN-BUS-INIT-UCON 

* CONSOLE 1-0 

! SELEcr BUS CONTROL FUNCTION 
::= UCON07/0,UCON06/0,UCON05/1 
::= UCON07/0,UCON06/1,UCON05/0 
::= UCON07/0,UCON06/1,UCON05/1 
::= UCON07/1,UCON06/0,UCON05/0 
::= UCON07/1,UCON06/0,UCON05/1 
::= UCON07/1,UCON06/1,UCON05/0 
::= UCON07/1,UCON06/1,UCON05/1 

EN-CONSOLE-COMMAND ::= UCON15/0,UCON14/0 
!SETS UP UCON 1-0 BITS FOR CONSOLE COMMANDS 

!ALSO SELECTS STATUS-MUX ON BUSDIN 
EN-cNSL-NOP ::= UCON13/0,UCON12/0,UCON11/0 

!ENABLE CONSOLE NO OPERATION 
EN-CLR-COUNTR ::= UCON13/0,UCON12/0,UCONll/1 

!ENABLE CLEAR DIGIT PAIR COUNTER 
EN-INCR-COUNTR ::= UCON13/0,UCON12/1,UCON11/0 

! ENABLE BUMP TO NEXT DIGIT PAIR 
EN-CLR-CNSL-SRVC ::= UCON13/0,UCON12/1,UCON11/1 

! ENABLE CLEAR CONSOLE SERVICE RQST FLOP 
EN-STRB-DISP ::= UCON13/1,UCON12/0,UCON11/0 

!ENABLE WRITE DIGIT PAIR TO DISPIAY LATCH 
EN-CLR-cNSL ::= UCON13/1,UCON12/0,UCONll/1 

! ENABLE CLEAR CONSOLE LED 
EN-SET-cNSL ::= UCON13/1,UCON12/1,UCON11/0 

!ENABLE SET CONSOLE LED 
EN-SET-DP ::= UCON13/1,UCON12/1,UCON11/1 

! ENABLE SET ALL DP LEOS 
BUSDIN_CONSOLE[06-00] ::= UCON10/0,UCON09/0 

! srATUS-MUX SELEcr 
!UCON<8:5> ARE NOT USED IN UCON CONSOLE CONTROL 



THE 11/60 PREDEFINITIONS Page B-36 

1550 
1551 
1552 
1553 
1554 
1555 
1556 
1557 
1558 
1559 
1560 
1561 
1562 
1563 
1564 
1565 
1566 
1567 
1568 
1569 
1570 
1571 
1572 
1573 
1574 
1575 
1576 
1577 
1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588 
1589 
1590 
1591 
1592 
1593 
1594 
1595 
1596 
1597 
1598 
1599 
1600 
1601 
1602 

• TOe 
IN.B. : 
• MACRO 
• MACRO 
• MACRO 

* REMOTE CONSOLE INTERFACE 
"EN CONSOLE COMMAND" OOES Nar APPLY TO REMarE CONSOLE 
EN-REMSTRB ::= UCONI4/1 lEN REMmE CONSOLE STROBE 
EN-REMCODEI ::= UCONI2/1 lEN SPECIAL CODE 1 
EN-REMOODEO ::= UCONll/l lEN SPECIAL CODE 0 

1======================================================================= 

.TOe * MICROBRANCH FIELD MACROS 
1 [SEE <UBF> FIELD DESCRIPrION FOR FULL INFO] 

• MACRO BUT (XX) ::= UBF/@XX 1 INACTIVE, FULL WIDrH 
• MACRO BUTR(XX) :: = UBF/@XX 1 INAcrIVE, RESTRICTED WIDrH 

• MACRO BUTA(XX) : := UBF/@XX lAcrIVE, FULL WIDrH 
• MACRO BUTRA(XX) : : = UBF/@XX 1 AcrIVE , RESTRICTED WIDTH 

• MACRO TEST (XX) :: = MULTIPLE/@XX 
1 FOR BUTR (MULTIPLE) SETUP 

• MACRO BUTM(XX) : : = MULTIPLE/@XX,UBF/@XX 
lA MULTIPLE BUTR 

1======================================================================= 

• '!DC * MISCELLANEOUS 

• '!DC * OTHER SOURCES ENABLED FOR A-BUS 
• MACRO SR ::= AEN/XMUX,ASELO/SR 
• MACRO FLTPT ::= AEN/XMUX,ASELO/FLTPT 

• TOe * PAGING, RETURN REGISTER 

IPAGE FIELD ONLY: 
.MACRO PAGE (X) ::= NEXT-PAGE/@X 

IPAGE FIELD AND BUT [SUBR B] : 
.MACRO GOTO-PAGE(X) ::= NEXT-PAGE/@X,UBF/SUBR-B 

lRETURN REGISTER <- D<14:03>, PAGE <- EMIT<02:00> ON BUTA(SUBR-A) 
• MACRO RETURN_D[14-03] ::= UBF/SUBR-A 

ISUBROUTINE CALL (PAGE MUST ALSO BE SPECIFIED) 
.MACRO CALL(SUB,RETURN)::= BUT(SUBRA),J/@SUB,RETURN/@RETURN 



THE 11/60 PREOEFINITIONS Page B-37 

1603 !======================================================================= 
1604 
1605 .'lOC * ADVANCED OPERATIONS 
1606 
1607 
1608 
1609 .'lOC * DATA INl'O CSP, AT P3 ONLY 
1610 
1611 !N.B. : BUSDIN IS ANY BUT EMIT [OVERLAPS BSEL<1:0>] 
1612 • MACRO CSPB[14] BUSDIN : := CSPB(B14),WR-CSP 
1613 • MACRO CSPB[15]-BUSDIN : := CSPB(B15),WR-CSP 
1614 • MACRO CSPB[16]-BUSDIN : := CSPB(B16) ,WR-CSP 
1615 • MACRO CSPB[17]-BUSDIN : := CSPB(B17),WR-CSP 
1616 • MACRO CSPB[MD]=BUSDIN : := CSPB (MD) ,WR-CSP 
1617 
1618 !N .B. : GETS WHATEVER IS ON BUSDIN 
1619 • MACRO CSPD[OO] BUSDIN : := CSPD(DOO) ,WR-CSP 
1620 • MACRO CSPD[Ol]-BUSDIN : := CSPD(DOl),WR-CSP 
1621 • MACRO CSPD[02]-BUSDIN : := CSPD(D02),WR-CSP 
1622 • MACRO CSPD [03] - BUSDIN : := CSPD(D03),WR-CSP 
1623 • MACRO CSPD[04]-BUSDIN : := CSPD(D04),WR-CSP 
1624 • MACRO CSPD[05]-BUSDIN : := CSPD(D05),WR-CSP 
1625 • MACRO CSPD[06]-BUSDIN : := CSPD(D06),WR-CSP 
1626 • MACRO CSPD[07]-BUSDIN : := CSPD(D07) ,WR-CSP 
1627 • MACRO CSPD[10]-BUSDIN : := CSPD(DI0),WR-CSP 
1628 • MACRO CSPD[ll]-BUSDIN : := CSPD(Dll),WR-CSP 
1629 • MACRO CSPD[12]-BUSDIN : := CSPD(D12),WR-CSP 
1630 • MACRO CSPD[13]-BUSDIN : := CSPD(D13) ,WR-CSP 
1631 • MACRO CSPD[14]-BUSDIN : := CSPD(D14),WR-CSP 
1632 • MACRO CSPD[15]-BUSDIN : := CSPD(D15) ,WR-CSP 
1633 • MACRO CSPD[16]-BUSDIN : := CSPD(D16),WR-CSP 
1634 • MACRO CSPD[17]-BUSDIN : := CSPD(D17),WR-CSP 
1635 • MACRO CSPD[MD]=BUSDIN : := CSPD(D15),WR-CSP 
1636 
1637 !N.B.: REQUIRED THAT BUSDIN EMIT[15-00] PREVIOUSLY SET UP 
1638 • MACRO CSPD [00] EMIT : : = -CSPD(DOO),WR-CSP 
1639 • MACRO CSPD [01] -EMIT : : = CSPD(DOl) ,WR-CSP 
1640 • MACRO CSPD [02]-EMIT : := CSPD(D02),WR-CSP 
1641 • MACRO CSPD [03 ]-EMIT : := CSPD(D03),WR-CSP 
1642 • MACRO CSPD[04]-EMIT : := CSPD(D04) ,WR-CSP 
1643 • MACRO CSPD [05] -EMIT : := CSPD(D05),WR-CSP 
1644 • MACRO CSPD[06]-EMIT : := CSPD(D06),WR-CSP 
1645 • MACRO CSPD [07] - EMIT : := CSPD(D07) ,WR-CSP 
1646 • MACRO CSPD[10]-EMIT : := CSPD(DI0) ,WR-CSP 
1647 • MACRO CSPD[ll]-EMIT : := CSPO (Dll)· , WR-CSP 
1648 • MACRO CSPD [12]-EMIT : := CSPD(D12) ,WR-CSP 
1649 • MACRO CSPD[13]-EMIT : := CSPD(D13),WR-CSP 
1650 • MACRO CSPD[14]-EMIT : := CSPO(D14),WR-CSP 
1651 • MACRO CSPD[15]-EMIT : := CSPD(D15),WR-CSP 
1652 • MACRO CSPD[16]-EMIT : := CSPD(D16),WR-CSP 
1653 • MACRO CSPD[17]-EMIT : := CSPO(D17),WR-CSP 
1654 • MACRO CSPD[MD]=EMIT(XX) : := CSPO(D15),WR-CSP,EMIT/@XX 
1655 
1656 
1657 
1658 
1659 



THE 11/60 PREDEFINITIONS Page B-38 

1660 
1661 • '!DC * D~~A INrO ASP, BSP, AT P2-T * P3 
1662 
1663 • MACRO ASPLO[17]_CSPB(XX) : : = B,ASPLO(Rl7),CSPB(@XX), 
1664 CLK-D,P2-T,WR(A,L,A) 
1665 • MACRO ASPLO[17]_CSPD(XX) : : = B,ASPLO(Rl7) ,CSPD(@XX), 
1666 CLK-D,P2-T,WR(A,L,A) 
1667 • MACRO PCD : : = PC-A,WR(AB,L,A) 
1668 • MACRO R5-D : : = R5-A,WR(AB,L,A) 
1669 
1670 • MACRO ASPLO[OO] D : := ASP(ROO),WR(A,L,A) 
1671 • MACRO ASPLO [OI]-D : := ASP(ROl),WR(A,L,A) 
1672 • MACRO ASPLO [02]-D : := ASP (R02) ,WR(A,L,A) 
1673 • MACRO ASPLO [03]-D : : = ASP(R03),WR(A,L,A) 
1674 • MACRO ASPLO [04]-D : := ASP(R04),WR(A,L,A) 
1675 • MACRO ASPLO[05]-D : : = ASP(R05),WR(A,L,A) 
1676 • MACRO ASPLO [06]-D : : = ASP(R06),WR(A,L,A) 
1677 • MACRO ASPLO [07]-D : : = ASP(R07),WR(A,L,A) 
1678 • MACRO ASPLO[10]-D : := ASP(RlO),WR(A,L,A) 
1679 • MACRO ASPLO [11] -D : := ASP(Rll),WR(A,L,A) 
1680 • MACRO ASPLO[12]-D : := ASP(Rl2),WR(A,L,A) 
1681 • MACRO ASPLO [13]-D : : = ASP(Rl3),WR(A,L,A) 
1682 • MACRO ASPLO[14]-D : := ASP(Rl4),WR(A,L,A) 
1683 • MACRO ASPLO [15]-D : := ASP(Rl5),WR(A,L,A) 
1684 • MACRO ASPLO[16]-D : := ASP(Rl6),WR(A,L,A) 
1685 • MACRO ASPLO[17]=D : := ASP(Rl7),WR(A,L,A) 
1686 
1687 • MACRO ASPHI [00] D : := ASP (ROO) ,WR(A,H,A) 
1688 • MACRO ASPHI [OI]-D : := ASP(ROl),WR(A,H,A) 
1689 • MACRO ASPHI [02]-D : := ASP(R02),WR(A,H,A) 
1690 • MACRO ASPHI [03]-D : := ASP(R03),WR(A,H,A) 
1691 • MACRO ASPHI [04]-D : := ASP(R04),WR(A,H,A) 
1692 • MACRO ASPHI [05]-D : := ASP (R05) ,WR(A,H,A) 
1693 • MACRO ASPHI[06]D : := ASP(R06),WR(A,H,A) 
1694 • MACRO ASPHI [07]-D : := ASP(R07),WR(A,H,A) 
1695 • MACRO ASPHI [10]=D : := ASP(RlO),WR(A,H,A) 
1696 • MACRO ASPHI[11] D : := ASP(Rll),WR(A,H,A) 
1697 • MACRO ASPHI [12]-D : := ASP(Rl2),WR(A,H,A) 
1698 • MACRO ASPHI [13]-D : := ASP(Rl3),WR(A,H,A) 
1699 • MACRO ASPHI [14]-D : := ASP(Rl4),WR(A,H,A) 
1700 • MACRO ASPHI [15]-D : := ASP(Rl5),WR(A,H,A) 
1701 • MACRO ASPHI [16]-D : := ASP(Rl6),WR(A,H,A) 
1702 • MACRO ASPHI [17]=D : := ASP(Rl7),WR(A,H,A) 
1703 
1704 • MACRO BSPLO[OO] D : := BSP(ROO),WR(B,L,B) 
1705 • MACRO BSPLO[Ol]-D : := BSP(ROl),WR(B,L,B) 
1706 • MACRO BSPLO[02]-D : := BSP(R02),WR(B,L,B) 
1707 • MACRO BSPLO [03]-D : := BSP(R03),WR(B,L,B) 
1708 • MACRO BSPLO [04]-D : := BSP(R04),WR(B,L,B) 
1709 • MACRO BSPLO [05]-D : := BSP(R05),WR(B,L,B) 
1710 .t-1ACRO BSPLO [06]-D : := BSP(R06),WR(B,L,B) 
1711 • MACRO BSPLO [07]-D : := BSP(R07),WR(B,L,B) 
1712 • MACRO BSPLO [10]-D : := BSP(RlO),WR(B,L,B) 
1713 • MACRO BSPLO[II]-D : := BSP(Rll),WR(B,L,B) 
1714 • MACRO BSPLO [12]-D : := BSP(Rl2),WR(B,L,B) 
1715 • MACRO BSPLO[13]=D : := BSP(Rl3) ,WR(B,L,B) 



THE 11/60 PREDEFINITIONS Page B-39 

1716 • MACRO BSPID[14] D : := BSP(Rl4) ,WR(B,L,B) 
1717 • MACRO BSPID [15]-D : := BSP(Rl5),WR(B,L,B) 
1718 • MACRO BSPID[16]-D : := BSP(Rl6) ,WR(B,L,B) 
1719 • MACRO BSPID[17]=D : := BSP(Rl7),WR(B,L,B) 
1720 
1721 • MACRO BSPHI[OO] D : := BSP(ROO) ,WR(B,H,B) 
1722 • MACRO BSPHI [Ol]-D ::= BSP(R01) ,WR(B,H,B) 
1723 • MACRO BSPHI [02]-D : := BSP(R02),WR(B,H,B) 
1724 • MACRO BSPHI [03]-D : := BSP(R03) ,WR(B,H,B) 
1725 • MACRO BSPHI [04]-D : := BSP(R04) ,WR(B,H,B) 
1726 • MACRO BSPHI [05]-D : := BSP(R05),WR(B,H,B) 
1727 • MACRO BSPHI [06]-D : := BSP(R06) ,WR(B,H,B) 
1728 • MACRO BSPHI [07]-D : := BSP(R07),WR(B,H,B) 
1729 • MACRO BSPHI[10]-D : := BSP(RlO) ,WR(B,H,B) 
1730 • MACRO BSPHI [ll]-D : := BSP(Rl1),WR(B,H,B) 
1731 • MACRO BSPHI [12]-D : := BSP(Rl2),WR(B,H,B) 
1732 • MACRO BSPHI [13]-D : := BSP(Rl3) ,WR(B,H,B) 
1733 • MACRO BSPHI [14]-D : := BSP(Rl4) ,WR(B,H,B) 
1734 • MACRO BSPHI [15]-D : := BSP(Rl5),WR(B,H,B) 
1735 • MACRO BSPHI [16] - D : := BSP(Rl6),WR(B,H,B) 
1736 • MACRO BSPHI[17]Y : := BSP(Rl7),WR(B,H,B) 
1737 
1738 • MACRO A#BSPLO[OO] D : := ASP(ROO),BSP(ROO) ,WR(AB,L,A) 
1739 • MACRO A#BSPLO[Ol]-D : := ASP(R01),BSP(R01) ,WR(AB,L,A) 
1740 • MACRO A#BSPLO[02]-D : := ASP(R02),BSP(R02),WR(AB,L,A) 
1741 • MACRO A#BSPLO[03]-D : := ASP (R03) ,BSP(R03) ,WR(AB,L,A) 
1742 • MACRO A#BSPLO[04]-D : := ASP(R04),BSP(R04) ,WR(AB,L,A) 
1743 • MACRO A#BSPLO[05]-D : := ASP (R05) ,BSP(R05) ,WR(AB,L,A) 
1744 • MACRO A#BSPLO[06]-D : := ASP (R06) ,BSP(R06) ,WR(AB,L,A) 
1745 • MACRO A#BSPLO [07]-D : := ASP (R07) ,BSP(R07) ,WR(AB,L,A) 
1746 • MACRO A#BSPLO[10]-D : := ASP (RlO) ,BSP(RlO) ,WR(AB,L,A) 
1747 • MACRO A#BSPLO[ll]-D : := ASP(Rl1),BSP(Rl1) ,WR(AB,L,A) 
1748 • MACRO A#BSPLO[12]-D : := ASP (Rl2) ,BSP(Rl2) ,WR(AB,L,A) 
1749 • MACRO A#BSPLO[13]-D : := ASP (Rl3) ,BSP(Rl3) ,WR(AB,L,A) 
1750 • MACRO A#BSPLO[14]-D : := ASP (Rl4) ,BSP (Rl4) ,WR(AB,L,A) 
1751 • MACRO A#BSPLO[15]-D : := ASP (Rl5) ,BSP(Rl5) ,WR(AB,L,A) 
1752 • MACRO A#BSPID[16]-D : := ASP(Rl6),BSP(Rl6),WR(AB,L,A) 
1753 • MACRO A#BSPLO[17]:=D : := ASP (Rl7) ,BSP(Rl7) ,WR(AB,L,A) 
1754 
1755 • MACRO A#BSPHI[OO] D : := ASP (ROO) ,BSP(ROO) ,WR(AB,H,A) 
1756 • MACRO A#BSPHI [Ol]-D ::= ASP (R01) ,BSP(R01) ,WR(AB,H,A) 
1757 • MACRO A#BSPHI [02]-D : := ASP(R02),BSP(R02),WR(AB,H,A) 
1758 • MACRO A#BSPHI[03]-D : := ASP(R03),BSP(R03) ,WR(AB,H,A) 
1759 • MACRO A#BSPHI[04]-D : := ASP(R04),BSP(R04) ,WR(AB,H,A) 
1760 • MACRO A#BSPHI [05]-D : := ASP(R05),BSP(R05),WR(AB,H,A) 
1761 • MACRO A#BSPHI [06]-D : := ASP(R06),BSP(R06),WR(AB,H,A) 
1762 • MACRO A#BSPHI [07] - D : := ASP (R07) ,BSP (R07) ,WR (AB, H, A) 
1763 • MACRO A#BSPHI [10]-D : := ASP (RlO) ,BSP(RlO) ,WR(AB,H,A) 
1764 • MACRO A#BSPHI [ll]-D : := ASP (Rl1) ,BSP(Rl1),WR(AB,H,A) 
1765 • MACRO A#BSPHI[12]-D : := ASP (Rl2) ,BSP(Rl2) ,WR(AB,H,A) 
1766 • MACRO A#BSPHI [13 ]=D : := ASP (Rl3) ,BSP(Rl3) ,WR(AB,H,A) 
1767 • MACRO A#BSPHI[14] D : := ASP (Rl4) ,BSP(Rl4) ,WR(AB,H,A) 
1768 • MACRO A#BSPHI [15]-D : := ASP (Rl5) ,BSP (RlS) ,WR(AB,H,A) 
1769 • MACRO A#BSPHI[16]-D : := ASP(Rl6),BSP(Rl6),WR(AB,H,A) 
1770 • MACRO A#BSPHI [17]:=D : := ASP(Rl7),BSP(Rl7),WR(AB,H,A) 
1771 



THE 11/60 PREDEFINITIONS Page B-40 

1772 • MACRO A#BSPLO[OO] n-[A] : := ASP(ROO),WR(AB,L,A) 
1773 • MACRO A#BSPLO[Ol]-D-[A] :: = ASP (R01) ,WR(AB,L,A) 
1774 • MACRO A#BSPLO[02]-D-[A] : : = ASP(R02),WR(AB,L,A) 
1775 • MACRO A#BSPLO[03]-n-[A] :: = ASP(R03),WR(AB,L,A) 
1776 • MACRO A#BSPLO[04]-n-[A] : : = ASP(R04),WR(AB,L,A) 
1777 • MACRO A#BSPLO[05]-n-[A] :: = ASP(R05),WR(AB,L,A) 
1778 • MACRO A#BSPLO[06]-D-[A] : : = ASP(R06),WR(AB,L,A) 
1779 • MACRO A#BSPLO[07]-D-[A] : : = ASP(R07),WR(AB,L,A) 
1780 • MACRO A#BSPLO[10]-D-[A] : := ASP (RlO) ,WR(AB,L,A) 
1781 • MACRO A#BSPLO[ll]-D-[A] : := ASP (Rll) ,WR(AB,L,A) 
1782 • MACRO A#BSPLO[12]-D-[A] : : = ASP(Rl2),WR(AB,L,A) 
1783 • MACRO A#BSPLO[13]-n-[A] : : = ASP(Rl3),WR(AB,L,A) 
1784 • MACRO A#BSPLO[14]-D-[A] : : = ASP(Rl4),WR(AB,L,A) 
1785 • MACRO A#BSPLO[15]-D-[A] : := ASP (Rl5) ,WR(AB,L,A) 
1786 • MACRO A#BSPLO[16]-n-[A] : : = ASP (Rl6) ,WR(AB,L,A) 
1787 • MACRO A#BSPLO[17]=D-[A] : := ASP(Rl7),WR(AB,L,A) 
1788 
1789 • MACRO A#BSPHI[OO] D-[A] : : = ASP(ROO),WR(AB,H,A) 
1790 • MACRO A#BSPHI[Ol]-n-[A] : := ASP (ROl) ,WR(AB,H,A) 
1791 • MACRO A#BSPHI[02]-D-[A] : := ASP(R02),WR(AB,H,A) 
1792 • MACRO A#BSPHI[03]-D-[A] : := ASP(R03),WR(AB,H,A) 
1793 • MACRO A#BSPHI[04]-n-[A] : : = ASP (R04) ,WR(AB,H,A) 
1794 • MACRO A#BSPHI[05]-n-[A] : : = ASP(R05),WR(AB,H,A) 
1795 • MACRO A#BSPHI[06]-D-[A] : : = ASP(R06),WR(AB,H,A) 
1796 • MACRO A#BSPHI[07]-n-[A] : := ASP(R07),WR(AB,H,A) 
1797 • MACRO A#BSPHI[10]-D-[A] : := ASP(RlO),WR(AB,H,A) 
1798 • MACRO A#BSPHI[ll]-D-[A] :: = ASP(Rll),WR(AB,H,A) 
1799 • MACRO A#BSPHI[12]-D-[A] : : = ASP(Rl2),WR(AB,H,A) 
1800 • MACRO A#BSPHI[13]-D-[A] : := ASP(Rl3),WR(AB,H,A) 
1801 • MACRO A#BSPHI[14]-n-[A] : : = ASP(Rl4),WR(AB,H,A) 
1802 • MACRO A#BSPHI[15]-n-[A] : := ASP(Rl5),WR(AB,H,A) 
1803 • MACRO A#BSPHI[16]-D-[A] : : = ASP (Rl6) ,WR(AB,H,A) 
1804 • MACRO A#BSPHI[17]=D-[A] : := ASP (Rl7) ,WR(AB,H,A) 
1805 
1806 • MACRO A#BSPLO[OO] n-[B] : := BSP(ROO),WR(AB,L,B) 
1807 • MACRO A#BSPLO[Ol]-D-[B] : : = BSP(R01),WR(AB,L,B) 
1808 • MACRO A#BSPLO[02]-n-[B] : : = BSP(R02),WR(AB,L,B) 
1809 • MACRO A#BSPLO[03]-D-[B] : := BSP(R03),WR(AB,L,B) 
1810 • MACRO A#BSPLO[04]-n-[B] : := BSP(R04),WR(AB,L,B) 
1811 • MACRO A#BSPLO[05]-n-[B] : := BSP(R05),WR(AB,L,B) 
1812 • MACRO A#BSPLO[06]-D-[B] : : = BSP(R06),WR(AB,L,B) 
1813 • MACRO A#BSPLO[07]-D-[B] :: = BSP(R07),WR(AB,L,B) 
1814 • MACRO A#BSPLO[10]-D-[B] : : = BSP (RlO) ,WR(AB,L,B) 
1815 • MACRO A#BSPLO[11]-n-[B] : := BSP (Rll) ,WR(AB,L,B) 
1816 • MACRO A#BSPLO[12]-n-[B] : : = BSP(Rl2),WR(AB,L,B) 
1817 • MACRO A#BSPLO[13]-o-[B] : := BSP(Rl3),WR(AB,L,B) 
1818 • MACRO A#BSPLO[14]-n-[B] : := BSP(Rl4),WR(AB,L,B) 
1819 • MACRO A#BSPLO[15]-n-[B] : := BSP(Rl5),WR(AB,L,B) 
1820 • MACRO A#BSPLO[16]-n-[B] : := BSP(Rl6),WR(AB,L,B) 
1821 • MACRO A#BSPLO[17]=n-[B] :: = BSP(Rl7),WR(AB,L,B) 
1822 



THE 11/60 PREDEFINITIONS Page B-41 

1823 • MACRO A#BSPHI[OO] D-[B] : : = BSP(ROO),WR(AB,H,B) 
1824 • MACRO A#BSPHI[Ol]-D-[B] : : = BSP(ROl) ,WR(AB,H,B) 
1825 • MACRO A#BSPHI[02]-D-[B] : := BSP(R02) ,WR(AB,H,B) 
1826 • MACRO A#BSPHI[03]-D-[B] : : = BSP(R03),WR(AB,H,B) 
1827 • MACRO A#BSPHI[04]-D-[B] : : = BSP(R04) ,WR(AB,H,B) 
1828 • MACRO A#BSPHI[05]-D-[B] : : = BSP(R05) ,WR(AB,H,B) 
1829 • MACRO A#BSPHI[06]-D-[B] : : = BSP(R06),WR(AB,H,B) 
1830 • MACRO A#BSPHI[07]-D-[B] : : = BSP(R07),WR(AB,H,B) 
1831 • MACRO A#BSPHI[10]-D-[B] : : = BSP(RlO),WR(AB,H,B) 
1832 • MACRO A#BSPHI[ll]-D-[B] : : = BSP(Rll),WR(AB,H,B) 
1833 • MACRO A#BSPHI[12]-D-[B] : : = BSP(Rl2) ,WR(AB,H,B) 
1834 • MACRO A#BSPHI[13]-D-[B] : : = BSP(Rl3) ,WR(AB,H,B) 
1835 • MACRO A#BSPHI[14]-D-[B] : : = BSP (Rl4) ,WR(AB,H,B) 
1836 • MACRO A#BSPHI[15]-D-[B] : : = BSP(Rl5) ,WR(AB,H,B) 
1837 • MACRO A#BSPHI[16]-D-[B] : : = BSP(Rl6) ,WR(AB,H,B) 
1838 • MACRO A#BSPHI[17]=D-[B] : : = BSP(Rl7),WR(AB,H,B) 
1839 
1840 • MACRO ASPLO[DF]_D : := ASP-ADDRS-R[DF],WR(A,L,A) 
1841 • MACRO ASPHI[DF] D : := ASP-ADDRS-R[DF],WR(A,H,A) 
1842 • MACRO BSPLO[DF]-D : := BSP-ADDRS-R[DF],WR(B,L,B) 
1843 • MACRO BSPHI[DF]=D : := BSP-ADDRS-R[DF],WR(B,H,B) 
1844 
1845 • MACRO ASPLO [SF] D : := ASP-ADDRS-R[SF],WR(A,L,A) 
1846 • MACRO ASPHI[SF]-D : := ASP-ADDRS-R[SF] ,WR(A,H,A) 
1847 • MACRO BSPLO[SF]-D ::= BSP-ADDRS-R[SF],WR(B,L,B) 
1848 • MACRO BSPHI [SF]=D : := BSP-ADDRS-R[SF],WR(B,H,B) 
1849 
1850 • MACRO A#BSPLO[DF] D-[A] : : = ASP-ADDRS-R[DF],WR(AB,L,A) 
1851 • MACRO A#BSPHI[DF]-D-[A] :: = ASP-ADDRS-R[DF],WR(AB,H,A) 
1852 • MACRO A#BSPLO[DF]-D-[B] : := BSP-ADDRS-R[DF],WR(AB,L,B) 
1853 • MACRO A#BSPHI[DF]=D-[B] : : = BSP-ADDRS-R[DF],WR(AB,H,B) 
1854 
1855 • MACRO A#BSPLO[SF] D-[A] : : = ASP-ADDRS-R[SF],WR(AB,L,A) 
1856 • MACRO A#BSPHI[SF]-D-[A] : : = ASP-ADDRS-R[SF] ,WR(AB,H,A) 
1857 • MACRO A#BSPLO[SF]-D-[B] : := BSP-ADDRS-R[SF],WR(AB,L,B) 
1858 • MACRO A#BSPHI[SF]=D-[B] : : = BSP-ADDRS-R[SF] ,WR(AB,H,B) 
1859 
1860 • MACRO A#BSPLO[SF]_D : := ASP-ADDRS-R[SF] , 
1861 BSP-ADDRS-R[SF],WR(AB,L,A) 
1862 • MACRO A#BSPLO[DF]_D : := ASP-ADDRS-R [DF] , 
1863 BSP-ADDRS-R[DF],WR(AB,L,A) 
1864 • MACRO A#BSPHI[SF]_D : := ASP-ADDRS-R[SF] , 
1865 BSP-ADDRS-R[SF],WR(AB,H,A) 
1866 • MACRO A#BSPHI[DF]_D : := ASP-ADDRS-R [DF] , 
1867 BSP-ADDRS-R[DF],WR(AB,H,A) 
1868 
1869 
1870 



THE 11/60 PREDEFINITIONS Page B-42 

1871 
1873 
1874 
1875 
1876 
1877 
1878 
1879 
1880 
1881 
1882 
1883 
1884 
1885 
1886 
1887 
1888 
1889 
1890 
1891 
1892 
1893 
1894 
1895 
1896 
1897 
1898 
1899 
1900 
1901 
1902 
1903 
1904 
1905 
1906 
1907 
1908 
1909 
1910 
1911 
1915 
1916 
1917 
1918 
1919 
1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
1930 

!======================================================================= 
.'IOC 

• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 

• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 

.'IOC 

• MACRO 
• MACRO 

• MACRO 

• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 

* D AND SR <- (BUS-A FCN BUS-B), AT P2-T OR P3-T 

!LOGIC FUNCTIONS: 
SR ZERO 
SR A-XOR-B 
SR B 
SRA-AND-B 
SR-A-IOR-B 
SR A 
SR-NOT-A 
SR-NOT-A-AND-B 
SR A-AND-NOT-B 
D ZERO 
D A-XOR-B 
D B 
D A-AND-B 
D A-IOR-B 
DA 
D-NOT-A 
D Nar-A-AND-B 
D-A-AND-NOT-B 

!ARITH FUNCTIONS: 
D DIVIDE-STEP 
D A-PLUS-B 
D-A-PLUS-B-PLUS-O 
D A-MINUS-B 
DA-PLUS-B-PLUS-PS[C] 
D-A-PLUS-B-PLUS-D[C] 
D-A-PLUS-NOT-B-PLUS-D[C] 
D-A-PLUS~B-PLUS-l 
SR DIVIDE-STEP 

::= ZERO,CLK-SR 
::= A-XOR-B,CLK-SR 
::= B,CLK-SR 
::= A-AND-B,CLK-SR 
::= A-IOR-B,CLK-SR 
: := A,CLK-SR 

::= NOT-A,CLK-SR 
::= NOT-A-AND-B,CLK-SR 
::= A-AND-NOT-B,CLK-SR 
::= ZERO,CLK-D 
::= A-XOR-B,CLK-D 
::= B,CLK-D 
::= A-AND-B,CLK-D 
::= A-IOR-B,CLK-D 
::= A,CLK-D 
::= NOT-A,CLK-D 
::= NOT-A-AND-B,CLK-D 
::= A-AND-NOT-B,CLK-D 

::= DIVIDE ,CLK-D 
::= A-PLUS-B,CLK-D 
::= A-PLUS-B,CLK-D 
::= A-MINUS-B,CLK-D 
::= A-PLUS-B-PLUS-PS[C],CLK-D 
::= A-PLUS-B-PLUS-D[C],CLK-D 
::= A-PLUS-NOT-B-PLUS-D[C] ,CLK-D 
::= A-PLUS-B-PLUS-1,CLK-D 
::= DIVIDE,CLK-SR 

SR A-PLUS-B 
SR-A-PLUS-B-PLUS-O 
SR-A-MINUS-B 
SR-A-PLUS-B-PLUS-PS[C] 
SR-A-PLUS-B-PLUS-D[C] 
S~A-PLUS-NOT-B-PLUS-D[C] 
SR-A-PLUS-B-PLUS-l 

::= A-PLUS-B,CLK-SR 
::= A-PLUS-B,CLK-SR 
::= A-MINUS-B,CLK-SR 
::= A-PLUS-B-PLUS-PS[C],CLK-SR 
::= A-PLUS-B-PLUS-D[C],CLK-SR 
::= A-PLUS-NOT-B-PLUS-D[C] ,CLK-SR 
::= A-PLUS-B-PLUS-l,CLK-SR 

* D[C] GETS SET 

D[C] CINMUX 
D[Cl=l 

D[C]_O 

D [C] PS [C] 
D[C]-ALUOO 
D[C]-ALU07 
D[C]-ALU15 
D[C]-COUT07 
D[C]-COUT15 
D[C]-D[C] 
SAVE=D[C] 

::= CLK-D,COUT_CIN 
::= CLK-D,COUT cm 

!NEEDS SPECIFIC ALU/--­
: : = CLK-D ,COUT cm 

!NEEDS SPECIFIC ALU/--­
::= CLK-D,COUT PS[C] 
::= CLK-D,COUT-ALUOO 
::= CLK-D,COUT-ALU07 
::= CLK-D,COUT-ALU15 
::= CLK-D,COUT-COUT07 
: : = CLK -D , COUT - COUT15 
::= CLK-D,COUT-D[C] 
::= CLK-D,COUT=D[C] 



THE 11/60 PREDEFINITIONS Page B-43 

1931 
1932 
1933 
1934 
1935 
1936 • TOe 
1937 
1938 
1939 • MACRO 
1940 • MACRO 
1941 
1942 • MACRO 
1943 • MACRO 
1944 • MACRO 
1945 
1946 • MACRO 
1947 • MACRO 
1948 • MACRO 
1949 
1950 • MACRO 
1951 • MACRO 
1952 • MACRO 
1953 
1954 • MACRO 
1955 • MACRO 
1956 
1957 • MACRO 
1958 • MACRO 
1959 
1960 • MACRO 
1961 • MACRO 
1962 • MACRO 
1963 • MACRO 
1964 • MACRO 
1965 
1966 • MACRO 
1967 • MACRO 
1968 • MACRO 
1969 • MACRO 
1970 
1971 
1972 

* D-REGISTER <- [BBUS = ABUS] , BI'lWISE, AT P2-T OR P3-T 

! N • B. : SHIFT TREE ENABLED SEPARATELY 
D D-SHIFTED-XOR-CSPB(XX)::=" A-XOR-B,CSPB(@XX),CLK-D 
D~-SHIFTED-XOR-BSPHI(XX)::= A-XOR-B,BSPHI(@XX),CLK-D 

D_FLTPT-XOR-CSPB(XX) 
D_FLTPT-XOR-CSPD(XX) 
D_F LTPT-XOR-BS PH I (XX) 

D~R-XOR-CSPB(XX) 
o SR-XOR-CSPD(XX) 
D=SR-XOR-BSPHI(XX) 

::= A-XOR-B,FLTPT,CSPB(@XX),CLK-D 
::= A-XOR-B,FLTPT,CSPD(@XX) ,CLK-D 
::= A-XOR-B,FLTPT,BSPHI(@XX),CLK-D 

::= A-XOR-B,SR,CSPB(@XX),CLK-D 
::= A-XOR-B,SR,CSPD(@XX) ,CLK-D 
::= A-XOR-B,SR,BSPHI(@XX) ,CLK-D 

o ASPLO[17]-XOR-CSPD(XX)::= A-XOR-B,ASPLO(Rl7),CSPD(@XX),CLK-D 
D-ASPLO[07]-XOR-BSPHI(XX)::= A-XOR-B,ASPLO(R07),BSPHI(@XX),CLK-D 
D=ASPLO[05]-XOR-BSPHI(XX)::= A-XOR-B,ASPLO(R05),BSPHI(@XX),CLK-D 

° SR-XOR-BSPLO[SF] 
D~R-XOR-BSPHI[DF] 

::= A-XOR-B,SR,R[SF]-LO-B,CLK-D 
::= A-XOR-B,SR,R[DF]-HI-B,CLK-D 

o ASPLO[DF]-XOR-BSPHI[SF]::= A-XOR-B,R[DF]-LO-A,R[SF]-HI-B,CLK-D 
D=ASPHI[SF]-XOR-BSPLO[DF]::= A-XOR-B,R[SF]-HI-A,R[DF]-LO-B,CLK-D 

o CSPD[05]-XOR-ASPLO(XX)::= A-XOR-B,CSPD(D05) ,ASPLO(@XX),CLK-D 
D-CSPD[05]-XOR-ASPHI(XX)::= A-XOR-B,CSPD(D05) ,ASPHI(@XX),CLK-D 
D-CSPD[06]-XOR-ASPLO(XX)::= A-XOR-B,CSPD(D06) ,ASPLO(@XX)iCLK-D 
D-CSPD[06]-XOR-ASPHI(XX)::= A-XOR-B,CSPD(D06) ,ASPHI(@XX),CLK-D 
D=CSPD[17]-XOR-ASPHI(XX)::= A-XOR-B,CSPD(D17),ASPHI(@XX),CLK-D 

o ASPLO[02]-XOR-BSPLO(XX)::= A-XOR-B,ASPLO(R02),BSPLO(@XX),CLK-D 
D-ASPLO[03]-XOR-BSPLO(XX)::= A-XOR-B,ASPLO(R03) ,BSPLO(@XX),CLK-D 
D-ASPLO[04]-XOR-BSPLO(XX)::= A-XOR-B,ASPLO(R04),BSPLO(@XX),CLK-D 
D=ASPLO[05]-XOR-BSPLO(XX)::= A-XOR-B,ASPLO(R05),BSPLO(@XX),CLK-D 



THE 11/60 PREDEFINITIONS Page B-44 

1973 .'IOC * D-REGISTER < - D-REGISTER THRU SHIFT-TREE 
1974 
1975 • MACRO D D-RIGHT-14 : : = A,D-RIGHT-14,CLK-D 
1976 • MACRO D-D-RIGHT-13 : := A,D-RIGHT-13,CLK-D 
1977 • MACRO D-D-RIGHT-12 : := A,D-RIGHT-12,CLK-D 
1978 • MACRO D-D-RIGHT-ll : : = A,D-RIGHT-ll,CLK-D 
1979 • MACRO DD-RIGHT-I0 : : = A,D-RIGHT-I0,CLK-D 
1980 • MACRO D-D-RIGHT-9 : : = A,D-RIGHT-9,CLK-D 
1981 • MACRO D-D-RIGHT-8 : := A,D-RIGHT-8,CLK-D 
1982 • MACRO D D-RIGHT-7 : := A,D-RIGHT-7,CLK-D 
1983 • MACRO D D-RIGHT-6 : := A,D-RIGHT-6,CLK-D 
1984 • MACRO D-D-RIGHT-5 : := A,D-RIGHT-5,CLK-D 
1985 • MACRO D-D-RIGHT-4 : : = A,D-RIGHT-4,CLK-D 
1986 • MACRO D-D-RIGHT-3 : := A,D-RIGHT-3,CLK-D 
1987 • MACRO DD-RIGHT-2 : := A,D-RIGHT-2,CLK-D 
1988 • MACRO D D-RIGHT-l : : = A,D-RIGHT-l,CLK-D 
1989 • MACRO D D-NO-SHIFT : : = A,D-NO-SHIFT,CLK-D 
1990 • MACRO D D-DIRECT : : = A,D-DIRECT,CLK-D 
1991 • MACRO D D : : = A,D-DIRECT,CLK-D 
1992 • MACRO SAVE-D : := A,D-DIRECT,CLK-D 
1993 • MACRO D D-LEFT-l : : = A,D-LEFT-l,CLK-D 
1994 • MACRO D D-SWAB : := A, D-SWAB ,CLK-D 
1995 • MACRO D-D-SWAB-RIGHT-3 : : = A,D-SWAB-RIGHT-3,CLK-D 
1996 • MACRO D-D-SWAB-LEFI'-1 : : = A,D-SWAB-LEFT-l,CLK-D 
1997 • MACRO D D-SIGNEXT : := A,D-SIGNEXT,CLK-D 
1998 • MACRO D-D-SIGNEXT-RIGHT-l : : = A,D-SIGNEXT-RIGHT-l,CLK-D 
1999 • MACRO D-D-SIGNEXT-LEFT-l : := A,D-SIGNEXT-LEFT-l,CLK-D 
2000 • MACRO D NO-SHIFT : : = A,NO-SHIFT,CLK-D 
2001 • MACRO D DIRECT : := A,DIRECT,CLK-D 
2002 • MACRO D-COUNT#D [HI] : : = A,COUNT#D[HI],CLK-D 
2003 • MACRO D = COUNT#D [ID] : := A,COUNT#D[ID],CLK-D 
2004 
2005 
2006 



THE 11/60 PREOEFINITIONS Page B-45 

2007 .TOC * D <-WHATEVER'S LEFT, AT P2-T OR P3-T 
2008 
2009 • MACRO D NOr-ASPHI (XX) : : = NOT-A,ASPHI (@XX) ,CLK-D 
2010 • MACRO D = NOr-ASPID (XX) : : = NOr-A,ASPLO(@XX) ,CLK-D 
2011 
2012 • MACRO D CSPD(XX) : : = B,CSPD(@XX) ,CLK-D 
2013 • MACRO D=CSPB(XX) : : = B,CSPB(@XX) ,CLK-D 
2014 
2015 • MACRO D BSPHI (XX) : : = B,BSPHI(@XX),CLK-D 
2016 • MACRO D=BSPID(XX) : : = B,BSPID(@XX) ,CLK-D 
2017 • MACRO D ASPHI (XX) : : = A,ASPHI (@XX) ,CLK-D 
2018 • MACRO D=ASPID (XX) :: = A,ASPLO(@XX),CLK-D 
2019 
2020 • MACRO D ASPLO[DF] :: = A,R[DF]-ID-A,CLK-D 
2021 • MACRO D - ASPHI [DF] : : = A,R[DF]-HI-A,CLK-D 
2022 • MACRO D-BSPLO[DF] :: = B,R[DF]-ID-B,CLK-D 
2023 • MACRO D-BSPHI[DF] : := B,R[DF]-HI-B,CLK-D 
2024 • MACRO D - ASPID [SF] : := A,R[SF]-ID-A,CLK-D 
2025 • MACRO D - ASPHI [SF] : : = A,R[SF]-HI-A,CLK-D 
2026 • MACRO O-BSPLO[SF] : := B,R[SF]-ID-B,CLK-D 
2027 • MACRO D=BSPHI[SF] :: = B,R[SF]-HI-B,CLK-D 
2028 
2029 • MACRO D CSPD[14]-AND-ASPHI(XX)::= A-AND-B,CSPD(DI4),ASPHI(@XX),CLK-D 
2030 • MACRO D=CSPD[15]-AND-ASPHI(XX)::= A-AND-B, 
2031 CSPD(DI5),ASPHI(@XX),CLK-D 
2032 
2033 • MACRO SR_ASPHI[17]-AND-007700 :: = A-AND-B,ASPHI(Rl7) , 
2034 CSPB(BI7),CLK-SR 
2035 • MACRO D SR-IOR-170000 : := A-IOR-B,SR, 
2036 CSPB(BI6),CLK-D 
2037 • MACRO SR_ASPHI[17]-AND-000077 :: = A-AND-B,ASPHI(Rl7) , 
2038 CSPB(BI5),CLK-SR 
2039 • MACRO D SR-IOR-000I00 : := A-IOR-B,SR, 
2040 CSPB(BI4),CLK-D 
2041 
2042 • MACRO D_ASPLO[17]-AND-CSPD(XX) : : = A-AND-B,ASPID(Rl7) , 
2043 CSPD (@XX) ,CLK-D 
2044 • MACRO D_ASPHI[OO]-IOR-CSPD(XX) : : = A-IOR-B,ASPHI(ROO), 
2045 CSPD (@XX) ,CLK-D 
2046 • MACRO D_ASPHI[OO]-IOR-CSPB(XX)::= A-IOR-B,ASPHI(ROO) ,CSPB(@XX),CLK-D 
2047 
2048 • MACRO D SR : := A,SR,CLK-D 
2049 • MACRO D JUNK : := ZERO,CLK-D 
2050 
2051 
2052 



THE 11/60 PREDEFINITIONS Page B-46 

2053 
2054 
2055 
2056 
2057 
2058 
2059 
2060 
2061 
2062 
2063 
2064 
2065 
2066 
2067 
2068 
2069 
2070 
2071 
2072 
2073 
2074 
2075 
2076 
2077 
2078 
2079 
2080 
2081 
2082 
2083 
2084 
2085 
2086 
2087 
2088 
2089 
2090 
2091 
2092 
2093 
2094 
2095 
2096 
2097 
2098 
2099 
2100 
2101 
2102 
2103 

!======================================================================= 

• '!DC 

• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 
• MACRO 

.'IDC 

* SR (- DATA, AT P2 T OR P3 T 

!N • B. : THE PARrICULAR FUNCTION SELECTED REQUIRES THE RESIDUAL 
CONTROL REGISTER ("RES-REG") TO HAVE THE APPROPRIATE 
FUNCTION SETUP FOR THE SR OPERATION. 

POSSIBLE FUNCTIONS: LOAD, LEFr, RIGHT, NOP 

SR ASPHI (XX) : : = A,ASPHI (@XX) ,CLK-SR 
SR-Nar-ASPHI (XX) : := NOT-A,ASPHI(@XX),CLK-SR 
SR-CSPB(XX) : := B,CSPB(@XX) ,CLK-SR 
SR-CSPD(XX) : : = B,CSPD(@XX),CLK-SR 
SR-BSPHI (XX) : := B,BSPHI(@XX) ,CLK-SR 
SR-SR-PLUS-1 : : = A-PLUS-B,COOOO01-B,SR,CLK-SR 
SR ALL-GNES : := A,C177777-A,CLK-SR 
SR-SR-RIGHT-1 : : = D-DIRECT[BMUX],CLK-SR 
SR SR-LEFT-1 : := CLK-SR 
SR JUNK : := ZERO,CLK-SR 
SR D : : = A,D-DIRECT,CLK-SR 
SR AsPLO [DF] : : = A,R[DF]-LO-A,CLK-SR 
SR - ASPHI [DF] : := A,R[DF]-HI-A,CLK-SR 
SR-BSPLO[DF] : := B,R[DF]-LO-B,CLK-SR 
SR-BSPHI [DF] : : = B,R[DF]-HI-B,CLK-SR 
SR - ASPLO [SF] : := A,R[SF]-LO-A,CLK-SR 
SR-ASPHI [SF] : := A,R[SF]-HI-A,CLK-SR 
SR-BSPLO[SF] : : = B,R[SF]-LO-B,CLK-SR 
SR=BSPHI [SF] : : = B,R[SF]-HI-B,CLK-SR 

* RES-REG OPERATION MACROS 

• MACRO RES CSPD (XX) 
.MACRO RES=CSPB (XX) 

: : = CSPD (@XX) ,LOAD-RES 
: : = CSPB (@XX) ,WAD-RES 

• TOe * BASE MACHINE COUNTER 

• MACRO COUNTER_CSPD(XX) 
• MACRO COUNTER_BSPHI(XX) 

::= LOAD-COUNTER,CSPD(@XX) 
::= LOAD-COUNTER,BSPHI (@XX) 



THE 11/60 PREDEFINITIONS Page B-47 

2104 
2105 
2106 
2107 
2108 
2109 
2110 
2111 
2112 
2113 
2114 
2115 
2116 
2117 
2118 
2119 
2120 
2121 
2122 
2123 
2124 
2125 
2126 
2127 
2128 
2129 
2130 
2131 
2132 
2133 
2134 
2135 
2136 
2137 
2138 
2139 
2140 
2141 
2142 
2143 
2144 
2145 
2146 
2147 

• 'rOC * ENABLE ON BUS-AlB ONLY 

• MACRO BUS-A ASPLO [SF] : : = R[SF]-LO-A 
• MACRO BUS-A-ASPID [DF] : : = R[DF]-LO-A 
• MACRO BU S-A-ASPH I [SF] : : = R[SF]-HI-A 
• MACRO BUS-A=ASPHI [DF] : : = R[DF]-HI-A 
• MACRO BUS-A : := NULL 
• MACRO BUS-A ASPLO (XX) : : = ASPID (@XX) 
• MACRO BUS-A= ASPHI (XX) : : = ASPHI (@XX) 
• MACRO BUS-A SR : : = SR 
• MACRO BUS-A FLTPT : : = FLTPr 

• MACRO BUS-B BSPID[SF] : : = R[SF]-LO-B 
• MACRO BUS-B-BSPLO[DF] : : = R[DF]-LO-B 
• MACRO BUS-B-BSPHI[SF] : : = R[SF]-HI-B 
• MACRO BUS-B ]3SPHI [DF] : : = R[DF]-HI-B 
• MACRO BUS-B : : = NULL 
• MACRO BUS-B BSPID (XX) : : = BSPID(@XX) 
• MACRO BUS-B=BSPHI(XX) : : = BSPHI(@XX) 
• MACRO BUS-B CSPD(XX) : : = CSPD(@XX) 
• MACRO BUS-B=CSPB(XX) : := CSPB(@XX) 

.'rOC * IDADING BA REGISTER 
!LOADED AT P1-T ONLY, FROM BUS-B<01:00>#BUS-A<15:00> -> BA<17:00> 

• MACRO BA BSPLO (XX) : : = CLK-BA,BSPID(@XX) 
• MACRO BA=BSPHI (XX) : := CLK-BA,BSPHI(@XX) 
• MACRO BA SR : := CLK-BA,SR 
• MACRO BA-ASPLO(XX) : : = CLK-BA,ASPLO (@XX) 
• MACRO BA=ASPHI (XX) : := CLK-BA,ASPHI (@XX) 

.'IOC * D AND SR TOGETHER 

.MACRO SR#D_SR-PLUS-CSPD(XX) ::= A-PLUS-B,SR,CSPD(@XX) ,CLK-D,CLK-SR 



THE 11/60 PREDEFINITIONS Page B-48 

2148 
2149 
2150 
2151 
2152 
2153 
2154 
2155 
2156 
2157 
2158 
2159 
2160 
2161 
2162 
2163 
2164 
2165 
2166 
2167 
2168 
2169 
2170 
2171 
2172 
2173 
2174 
2175 
2176 
2177 
2178 
2179 
2180 
2181 
2182 
2183 
2184 
2185 
2186 
2187 
2188 
2189 

1======================================================================= 

• 'rOC * UCON FUNCTIONS 

• 'rOC * PROCESSOR UCON FUNCTIONS 

1PREVIOUSLY SET UP [UCON-PROC, SET-UCON-CONTROL, EN "FUNcrION"] 
• MACRO IR EMIT : := UCON-oPERATION 
• MACRO PS[15-12] D[15#13] : : = UCON-oPE RAT ION 
• MACRO FLAG [8-0]-D [15-8] : : = UCON-oPERATION 
• MACRO FPS [7-4] 0[7-4] : : = UCON-oPE RAT ION 
• MACRO PS [7-4] 0[7-4] : : = UCON-oPE RAT ION 
• MACRO PS [3-0(p [3-0] :: = UCON-oPERATION 
• MACRO PS D : : = UCON-oPERATION 
• MACRO UBREAK_BUSDIN[11-00] : := UCON-oPEAAI' ION 

lSETUP ueON AND EXECUTE IN 1 MICROWORD: 
.MACRO PS[15-12] D[15#13]-[I] ::= UCON-PROC,SET-UCON-CONTROL, 

- ueON-OPERATION,EN-CLK-PS[15-12] 
.MACRO FLAG[8-0]_D[15-8]-[I] ::= UCON-PROC,SET-UCON-CONTROL, 

UCON-oPERATION,EN-CLK-FLAG[8-0] 
.MACRO FPS[7-4]_D[7-4]-[I] ::= UCON-PROC,SET-UCON-CONTROL, 

ueON-OPERATION,EN-CLK-FPS[7-4] 
.MACRO PS[7-4]_D[7-4]-[I] ::= UCON-PROC,SET-UCON-CDNTROL, 

UODN-oPERATION,EN-CLK-PS[7-4] 
.MACRO PS[3-0]_D[3-0]-[I] ::= UCON-PROC,SET-UCON-CONTROL, 

UCON-oPERATION,EN-CLK-PS[3-0] 
• MACRO PS D- [I] ::= UCON-PROC,SET-UCON-CONTROL, 

UCON-oPERATION,EN-CLK-PS[15-12],EN-CLK-PS[7-4],EN-CLK-PS[3-0] 
.MACRO BUSDIN eUA-[I] ::= UCON-PROC,SET-UCON-CONTROL, 

- BUSDIN_CUA[14-03] 
• MACRO BUSDIN_FLAGS#FPS-[I] ::= UCON-PROC,SET-UCON-CDNTROL, 

BUSDIN_FLAG[8-0]#FPS[7-0] 
.MACRO BUSDIN_PS-[I] ::= UCON-PROC,SET-UCON-CONTROL, 

BUSDIN PS[15-00] 
.MACRO BUSDIN_EMIT-[I] ::= UCON-PROC~SET-UCON-CONTROL, 

BUSDIN_EMIT[15-00] 



THE 11/60 PREOEFINITIONS Page B-49 

2190 
2191 • 'ICC 
2192 
2193 
2194 • MACRO 
2195 
2196 • MACRO 
2197 
2198 • MACRO 
2199 
2200 • MACRO 
2201 
2202 • MACRO 
2203 
2204 • MACRO 
2205 
2206 • MACRO 
2207 
2208 • MACRO 
2209 
2210 • MACRO 
2211 
2212 • MACRO 
2213 
2214 • MACRO 
2215 
2216 • MACRO 
2217 
2218 • MACRO 
2219 
2220 • MACRO 
2221 
2222 • MACRO 
2223 
2224 • MACRO 
2225 
2226 • MACRO 
2227 
2228 • MACRO 
2229 
2230 • MACRO 
2231 
2232 • MACRO 
2233 
2234 
2235 
2236 

* CACHE/KT UCON FUNCTIONS 

! SETUP, EXECUTE IN 1 MIC~RD 
KT-NO-RELOCATE-[I] ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,EN-KT-NO-RELOCATE 
BUSOIN BUS-INTERNAL-ADOR-[I] ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,BUSOIN BUS-INTERNAL-ADOR[15-00] 
BUSOIN CPU-INTERNAL-ADOR-[I] ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,BUSOIN CPU-INTERNAL-ADOR[15-00] 
BUSOIN MMR2-[I] - ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,BUSOIN MMR2[15-00] 
BUSOIN CACHE-STATUS-[I]- ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,BUSOIN CACHE-STATUS[15-00] 
BUSOIN SLR#CCR-[I] - ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,BUSOIN KT-SEL,KT-SEL-SLR#CCR 
BUSOIN MMRO-[I] - ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,BUSOIN KT-SEL,KT-SEL-MMRO 
BUSOIN_POR-[I] - ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,BUSOIN KT-SEL,KT-SEL-POR 
BUSOIN _PAR- [I] - : : = UCON-CACHE-KT , 
SET-UCON-CONTROL,BUSOIN KT-SEL,KT-SEL-PAR 
SLR[15-08] 0[15-08]-[1]- ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-SLR#CCR,KT-WRITE-HIGH 
CCR[07-02] 0[07-02]-[1] ::= UCON-CACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-SLR#CCR,KT-WRlTE-DOW 
MMRO 0-[1] ::= UCON-CACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-MMRO,KT-WRITE 
MMRO[OO] 0[00]-[1] ::= UCON-cACHE-KT, 
SET-UCON=tONTROL,UCON-oPERATION,KT-SEL-MMRO,KT-WRITE-DOW 
MMRO[15-01] 0[15-01]-[1] ::= UCON-CACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-MMRO,KT-WRITE-HIGH 
POR_D-[I] ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-POR,KT-WRITE 
POR[03-01] 0[03-01]-[1] ::= UCON-CACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-POR,KT-WRITE-LOW 
POR[14-08] 0[14-08]-[1] ::= UCON-CACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-POR,KT-WRITE-HIGH 
PAR 0-[1] ::= UCON-cACHE-KT, 
SET=UCON-CONTROL,UCON-oPERATION,KT-SEL-PAR,KT-WRITE 
PAR [07-00] 0[07-00]-[1] ::= UCON-CACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-PAR,KT-WRlTE-LOW 
PAR[II-08]_0[11-08]-[I] ::= UCON-cACHE-KT, 
SET-UCON-CONTROL,UCON-oPERATION,KT-SEL-PAR,KT-WRITE-HIGH 



THE 11/60 PREDEFINITIONS Page B-50 

2237 .TOe 
2238 
2239 
2240 .MACRO 
2241 
2242 .MACRO 
2243 
2244 .MACRO 
2245 
2246 .MACRO 
2247 
2248 • MACRO 
2249 
2250 • MACRO 
2251 
2252 .MACRO 
2253 
2254 .MACRO 
2255 
2256 .MACRO 
2257 
2258 .MACRO 
2259 
2260 .MACRO 
2261 
2262 
2263 
2264 
2265 
2266 .'rOC 
2267 
2268 
2269 .MACRO 
2270 
2271 .MACRO 
2272 
2273 .MACRO 
2274 
2275 .MACRO 
2276 
2277 .MACRO 
2278 
2279 .MACRO 
2280 
2281 .MACRO 
2282 
2283 .MACRO 
2284 
2285 .MACRO 
2286 
2287 
2288 
2289 

* 1-0 UCON FUNCTIONS 

!N.B.: SETUP IN 1 MICID\ORD 
BUSDIN JAM-[I] ::= UCON-I-o,EN-STATUS-MUX, 

- SET-UCON-CONTROL,BUSDIN_JAM[15-00] 
BUSDIN_SERVICE-[I] ::= UCON-I-o,EN-STATUS-MUX, 

SET-UCON-CONTROL,BUSDINyERVICE [15-00] 
BUSDIN_PBA-[I] ::= UCON-I-o,EN-STATUS-MUX, 

SET-UCON-CONTROL,BUSDIN_PBA[15-00] 
BC-FCN-O-[I] ::= UCON-I-o,SET-UCON-CONTROL, 

UCON-oPERATION,EN-BC-FCN-O 
START-DELAY-[I] ::= UCON-I-o,SET-UCON-CDNTROL, 

UCON-oPERATION,EN-START-DELAY 
CLR-JAM-ERRORS-[I] ::= UCON-I-o,SET-UCON-CONTROL, 

UCON-oPERATION,EN-CLR-JAM-ERRORS 
CLR-NPR~IMEOUT-[I] ::= UCON-I-o,SET-UCON-CONTROL, 

UCON-oPERATION,EN-CLR-NPR~IMEOUT 

CLR-PWR-FAIL-[I] ::= UCON-I-o,SET-UCON-CONTROL, 
UCON-oPERATION,EN-CLR-PWR-FAIL 

CLR-YELLOW-ZONE- [I] : : = UCON-1-0, SET-UCON-CDNTROL, 
UCON-oPERATION , EN-CLR-YELDOW-ZONE 

ALIDW-BG [1] H- [I] : : = UCON-1-0, SET-UCON-CDNTROL , 
UCON-OPE~rION,EN-ALLOW-BG[I]H 

BUS-INIT-UCON-[I] ::= UCON-I-o,SET-UCON-CONTROL, 
UCON-oPERATION,EN-BUS-INIT-UCON 

* CONSOLE UCON FUNCTIONS 

!SETS UP AND PERFORMS INDICATED OPERATION IN 1 MICROWORD 
CONSOLE-NOP : : = UCON-1-0, 
EN-CDNSOLE-COMMAND,SET-UCON-CONTROL,UCON-oPERATION,EN-cNSL-NOP 
CLEAR-CONSOLE-CDUNTER ::= UCON-I-o, 
EN-CONSOLE-COMMAND,SET-UCON-CONTROL,UCON-oPERATION,EN-CLR-COUNTR 
INCREMENT-CDNSOLE-COUNTER ::= UCON-I-o, 
EN-CDNSOLE-aoMMAND, SET-UCON-CONTROL,UCON-oPERATION ,EN-INCR-COUNTR 
CLEAR-CONSOLE-SERVICE ::= UCON-I-o, 
EN-CONSOLE-COMMAND,SET-UCON-CONTROL,UCON-oPERATION,EN-CLR-cNSL-SRVC 
STROBE-CONSOLE-DISPLAY ::= UCON-I-o, 
EN-CDNSOLE-COMMAND, SET-UCON-CONTROL,UCON-oPERATION ,EN-STRB-DISP 
CLEAR-CONSOLE-LED ::= UCON-I-o, 
EN-CONSOLE-COMMAND,SET-UCON-CONTROL,UCON-oPERATION,EN-CLR-CNSL 
SET-CONSOLE-LED ::= UCON-I-o, 
EN-CDNSOLE-COMMAND,SET-UCON-CONTROL,UCON-oPERATION,EN-SET-cNSL 
SET-CONSOLE-DP-LEDS ::= UCON-I-o, 
EN-CDNSOLE-COMMAND, SET-UCON-CONTROL,UCON-oPERATION , EN-SET-DP 
BUSDIN CONSOLE-[I] ::= UCON-I-o, 
EN-STATUS-MUX,SET-UCON-CONTROL,BUSDIN_CONSOLE[06-00] 



THE 11/60 PREDEFINITIONS Page B-51 

2290 
2291 
2292 
2293 
2294 
2295 
2296 
2297 
2298 
2299 
2300 
2301 
2302 
2303 
2304 
2305 
2306 
2307 
2308 
2309 
2310 
2311 
2312 
2313 
2314 
2315 
2316 
2317 
2318 
2319 
2320 
2321 
2322 
2323 
2324 
2325 
2326 
2327 
2328 
2329 
2330 
2331 
2332 
2333 
2334 
2335 
2336 
2337 
2338 
2339 

• '!DC * DBUF UCON FUNCTIONS 

1 PREVIOUSLY SETUP UCON-1-0, EN LOAD DBUF 
.MACRO DBUF D ::= UCON~PERATION 

lSETUP AND EXECUTE IN 1 MICROWORD: 
• MACRO DBUF D-[I] ::= UCON-I-o,SET-UCON-CONTROL, 

- UCON-oPERATION,EN-LOAD-DBUF[15-00] 

• '!DC * MULTIPLE UCON FUNCTIONS 

1THESE ARE FUNCTIONS OF MORE THAN 1 UCON ENABLED SIMULTANEOUSLY 

1PREVIOUSLY SETUP: 
.MACRO IR DBUF : : = UCON~PERATION 

lSETUP AND EXECUTE IN 1 MICRCMORD: 
.MACRO IR DBUF-[I] ::= UCON-PROC,UCON-I-o,SET-UCON-CONTROL, 

- UCON-oPERATION,EN-CLK-IR[lS-00],BUSDIN_DBUF[15-00] 

.'IOC * WCS FUNCTIONS 

1 INVOKE A TMS ROmINE TO USE LOCAL STORE • 
• MACRO TMSPI'R (XX) ::= BEGIN/YES,SELEcr/UCON, 

- UCON-XFER/YES,UCON-LOAD/YES,UCON/@XX, 
UCON-SEL-WCS/YES 

1======================================================================= 

1======================================================================= 

.'IOC 

• MACRO 
• MACRO 
• MACRO 

* JAM UPP LOG MACROS 

1MACROS CONCERNED WITH CSP LOG AFTER UNEXPEcrED JAMUPP 
1MACROS REQUIRE APPROPRIATE REGISTER ENABLED ON BUSDIN 

CSPD[OO]_LOG-CUA 
CSPD[Ol] LOG-SERVICE 
CSPD[02]=LOG-JAM 

::= CSPD(DOO},WR-CSP 
::= CSPD(D01},WR-CSP 
::= CSPD(D02},WR-CSP 

1***** END OF MACRO DEFINITIONS ***** 





APPENDIX C 

THE DISPATCH FILE AND MEMORY PARTITIONING 

This appendix discusses the dispatch file, which is normally included 
in every microprogram assembly. Then, a technique for partitioning 
the Writable Control Store so that several separately assembled 
microprograms can be loaded together and executed is described. 

C.1 THE DISPATCH FILE 

The dispatch file, DSPTCH, serves two purposes in an 11/60 
microprogram assembly. First, it provides for the reservation of the 
first two hundred words of the Writable Control Store, so that the 
assembler does not overwrite the words required for the resident 
section. Second, it provides an entry point mechanism, so that the 
microprogrammer can designate entry points within the microprogram for 
anyone or more of the eight possible XFCs. 

The contents of the dispatch file is as follows: 

2345 
2346 
2347 
2348 
2349 
2350 
2351 
2352 
2353 
2354 
2355 
2356 
2357 
2358 
2359 
2360 

2361 
2362 

2363 

.NLIST 

.CODE 

AAA: 
.BEGIN:10[6002:6003J 
.BEGIN:100[6004:6007J 
.BEGIN:1000[6010:6017J 
.BEGIN:000[6020:6027J 
DISPCH: 
.BEGIN:1000[6030:6037J 
.BEGIN:100000[6040:6077J 
.BEGIN:1000000[6100:6177J 

6000 
P3, 
NEXT, 
6001 
.LIST 

PAGE(1),BUT(SUBRB) ,J/CON99 
o 00000000 00000000 01000000 

CSPD[MDJ.EMIT(0010), 
BUT(SUBRB),PAGE(O),J/TRPOO 

o 00001000 00000010 00000000 

00000000 00111000 00100000 

00101000 00111000 01010111 



THE DISPATCH FILE AND MEMORY PARTITIONING Page C-2 

C.2 PARTITIONING THE WRITABLE CONTROL STORE 

If the programmer wants to have several separately assembled 
microprograms operating in the Writable Control Store, he must 
partition the WCS by the following set of actions: 

1. Divide the microprograms into a main program with one or more 
subordinate microprograms. 

2. Determine the address ranges to be associated with the 
microprograms. 

3. Assemble the main program with the dispatch file and with 
entry points for that program and all the subordinate 
programs. 

4. Assemble the subordinate programs without the dispatch file, 
but with the appropriate .BOUNDS keyword line followed by a 
.CODE keyword line. 

Suppose, for example, the programmer has three programs: LOOKUP, 
SORT, and MATPAK. The programmer decides that LOOKUP will be the main 
program (assembled at 6200) and that SORT (assembled at 7000) and 
MATPAK (assembled at 7400) will be the subordinate programs. He 
begins by adding the following information to the source for LOOKUP: 

.CASE 1 OF DISPCH 
SORTENTRY: 

J/7000; 
.CASE 2 OF DISPCH 
MATPAKENTRY: 

J/7400; 
.CASE 0 OF DISPCH 
LOOKUP: 

Then, he adds the following to the SORT source: 

.BOUNDS[7000:7377J 

.CODE 

And the following to the MATPAK source: 

.BOUNDS[7400:7777J 

.CODE 



THE DISPATCH FILE AND MEMORY PARTITIONING 

He can then assemble and load the three programs as follows: 

)MIC LOOKUP,LOOKUP=PREDEF,DISPTCH,LOOKUP 
)MIC SORT,SORT=PREDEF,SORT 
)MIC MATPAK,MATPAK=PREDEF,MATPAK 
)MLD WCS=MICPAK,LOOKUP,SORT,MATPAK 

Page C-3 

The .BOUNDS keyword can be used, in separate assemblies, to partition 
the WCS for several users or for several logical functions for a 
single user. If the assembler cannot find the required addresses 
within the specified bounds, then the assembly fails. In specifying 
the .BOUNDS keyword, the programmer should take into account any 
future expansions or corrections for the microprogram and allocate 
some additional space, since discontinuous bounds cannot be specified. 





APPENDIX D 

LINKED LIST EXAMPLE 

The example given in this section is a microprogram that implements 
three subroutines for handling a linked list. The linked list is kept 
in the local store portion of the WCS. It is assumed to have been 
initialized. 

The microprogram is written in the standard format, which is described 
in Section 14.3.2. The program documentation is included in the 
listing as comments. 

The three subroutines are: 

INSERr 

APPEND 

Insert element pointed to by R2 before the element in 
the list pointed to by Rl. 

Remove the entry pointed to by Rl from the linked list. 

Add the entry pointed to by Rl to the end of the list. 



LINKED LIST EXAMPLE Page D-2 

TABLE OF CONTENTS 

1 
2422 
2423 
2424 
2425 
2426 
2427 
2428 
2429 
2430 
2431 
2432 
2433 
2434 
2435 
2436 
2437 
2438 
2439 
4040 
2441 
2442 
2443 
2444 
2445 
2446 
2447 
2448 
2449 
2450 
2451 
2452 
2453 
2454 
2455 
2456 
2457 
2458 
2459 
2460 
2461 

.NLIST 

.NLIST 

***** FORWARD ***** 
* *--------------------------------------------~* * 
* * Rl ----~* * 
* *~--------------------------------------------* * 
***** BACKWARD ***** 

***** FORWARD 
* *----------------~? 

R2 ----~* * 
? ~--------------* * 

BACKWARD ***** 

THE ABOVE DL~GRAM IS AN ATrEMPr TO DESCRIBE THE INPUT CONDITIONS 
WHICH EXIST AT THE START OF THE INSERT XFC INSTRUCTION. THE 
REGIS'rERS CONTAIN THE FOLLOWING INFORMATION: 
Rl- POINTS '.1'0 THE ENTRY TO BE INSERrED IN FRONT OF. 
R2- POINTS TO THE ENTRY TO BE INSERTED. 

***** FORWARD ***** 
* *--------- ---------------~* * 
* * Rl ----~* * 
* *~---- -------------* * 
***** BACKWARD ***** 

FORWARD ***** 
----------7* *---

R2 ----~* * 
--------------* *~-----

BACKWARD ***** 

THE ABOVE DIAGRAM ATTEMPTS TO OOCUMENT THE POINTERS AND THE 
WAY THEY IOOK AFTER THE INSERr ISTRUCTION HAS COMPLETED ITS EXECUTION. 



LINKED LIST EXAMPLE Page 0-3 

2462 
2463 
2464 
2465 
2466 
2467 
2468 
2469 
2470 
2471 
2472 
2473 
2474 
2475 
2476 
2477 
2478 
2479 
2480 
2481 
2482 
2483 
2484 
2485 
2486 
2487 
2488 
2489 
2490 
2491 
2492 
2493 
2494 
2495 

THE FOLLOWING REPRESENTATION IS A MACRO CODE 
VERSION OF THE LINKED LIST ALGORITHM: 

INSERr: MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

R3 , - (SP) i INSERT ELEMENT POINTED TO BY R2. 
Rl,FLINK(R2) iBEFORE ELEMENT POINTED TO BY Rl. 
BLINK(Rl),BLINK(R2) 
BLINK (Rl) ,R3 
R2,FLINK(R3) 
R2 ,BLINK (Rl) 
(SP) +,R3 

THE INSERT INSTRUCTION HAS ONE BIG DIFFERENCE THAN THE MACRO 
CODE VERSION IN THAT THE LINKED LIST DATA STRUCTURE IS IN 
LOCAL STORE RATHER THAN MAIN MEMORY. UNDERSTANDING LOCAL STORE 
AND THE ADDRESSING MODES REQUIRED WE CAN REWRITE THE ABOVE 
ALGORITH AS THE FOLIDWING EXPRESSIONS: 

GRAB BLINK (Rl) 
MOV R2,BLINK(Rl) 
MOV Rl ,FLINK (R2) 
MOV GRABBED,BLINK(R2) 
rt{JV R2, (GRABBED) 

THE LATrER ALGORITHM ALTHOUGH Nor AS CLEAR AS THE FIRST ONE 
OOES HAVE THE FOLLOWING PROPERTY THAT THE ADDRESS REGISTER ON 
THE WCS BOARD NEEDS TO BE WADED ONLY THREE TIMES WHEREAS 
IMPLEMENTING THE FIRST METHOD WOULD REQUIRE WADING THE 
ADDRESS REGISTER SIX TIMES. ALSO IMPLEMENTING THE 
LINKED LIST IN LQCAL STORE SHOULD SHOW SOME IMPROVEMENT 
OVER THE MAIN MEMORY VERSION ALTHOUGH THE DATA TO 
SUBSTANTIATE THIS HAS Nor BEEN COLLECTED YET. 

2496 INSERr: 
2497 P2-T, D_A-PLUS-B,Rl-A,CSPB(ONE), !D<--BLINK(Rl) ADDRESS. 
2498 NEXT, J/INS1 

6200 0 10011100 10011000 00010000 00000000 00110000 10000001 
2499 
2500 INS1: 
2501 
2502 

P3 , TMSPTR (WADANDREAD), 
NEXT, J /INS2-

! INITIATE WADANDREAD. 

6201 0 10100000 00000000 00000001 10110000 00110000 10000010 
2503 
2504 INS2: 
2505 NEXT, J/INS3 !NULL WORD ONE. 

6202 0 00000000 00000000 00000000 00000000 00110000 10000011 
2506 
2507 INS3: 
2508 
2509 

P3, CSPB[MD] BUSDIN, 
NEXT, J/INS4-

! BLINK (Rl) ARRIVES FROM LOCAL STORE. 

6203 0 00001110 00000000 00000000 00001000 00110000 10000100 
2510 



LINKED LIST EXAMPLE Page D-4 

2511 INS4: 
2512 P2-T, D_A,R2-A, 1D<-- R2 FOR WRITE INTO BLINK(Rl) 
2513 NEXT, J/INS5 

6204 0 11110000 10001010 00010000 00000000 00110000 10000101 
2514 
2515 INS5: 
2516 P3, TMSPrR_(WRITE), 1INITIATE MOV R2,BLINK(Rl) 
2517 NEXT, J/INS6 

6205 0 00100110 00000000 00000001 10110000 00110000 10000110 
2518 
2519 INS6: 
2520 NEXT, J/INS7 1NULL IDRD ONE. 

6206 0 00000000 00000000 00000000 00000000 00110000 10000111 
2521 
2522 INS7: 
2523 P2-T, D_A,R2-A, 1D<-- FLINK(R2) ~DRESS 
2524 NEXT, J/INS8 

6207 0 11110000 10001010 00010000 00000000 00110000 10001000 
2525 
2526 INS8: 
2527 P3, TMSPrR_(IDADWRITEINC), 1INITIATE WAD, WRITE AND INC 
2528 NEXT, J/INS9 

6210 0 00100000 10000000 00000001 10110000 00110000 10001001 
2529 
2530 INS9: 
2531 P2-T, D_A,Rl-A, 1D<-- R1 DATA FOR MOV Rl,FLINK(R2) 
2532 NEXT, J/INS10 

6211 0 11110000 10011000 00010000 00000000 00110000 10001010 
2533 
2534 INS10: 
2535 NEXT, J/INS11 1NULL IDRD TWO. 

6212 0 00000000 00000000 00000000 00000000 00110000 10001011 
2536 
2537 INS11: 
2538 P2-T, D_B,CSPB(MD), 1D<-- BLINK(Rl) FETCHED EARLIER. 
2539 NEXT, J/INS12 

6213 a 10101110 00000000 00010000 00000000 00110000 10001100 
2540 
2541 INS12: 
2542 P3, TMSPrR_(WRITE), 1INITIATE MOV BLINK(Rl) ,BLINK(R2) 
2543 NEXT, J /INS13 

6214 0 00100110 00000000 00000001 10110000 00110000 10001101 
2544 
2545 INS13: 
2546 NEXT, J/INS14 1NULL IDRD ONE. 

6215 0 00000000 00000000 00000000 00000000 00110000 10001110 
2547 
2548 INS14: 
2549 NEXT, J/INS15 1NULL IDRD TVD. 

6216 0 00000000 00000000 00000000 00000000 00110000 10001111 
2550 



LINKED LIST EXAMPLE Page 0-5 

2551 INS15: 
2552 P3, TMSPTR_(IDADANIMRITE), !INITIATE MOV R2,BLINK(Rl) 
2553 NEXT, J/INS16 !D REGISTER STILL OKAY. 

6217 a 00100100 00000000 00000001 10110000 00110000 10010000 
2554 
2555 INS16: 
2556 P2-T, D_A,R2-A, !D<-- R2 FOR WRITE. 
2557 NEXT, J/INS17 

6220 a 11110000 10001010 00010000 00000000 00110000 10010001 
2558 
2559 INS17: 
2560 NEXT, J/INS18 !NULL WORD TWO. 

6221 a 00000000 00000000 00000000 00000000 00110000 10010010 
2561 
2562 INS18: 
2563 NEXT, BUT (SUBRB) ,PAGE (0) ,J/BRA05 !RETURN TO GET NEXT INSTRUCTION. 

2564 
2565 
2566 
2567 

6222 a 00000000 00000000 00000000 00000000 00111000 00000011 

2568 THE REMOVE INSTRUCTION TAKES AN ENTRY OUT OF THE LINKED LIST. 
2569 THE INPur REGISrERS CONSIST OF: 
2570 Rl- POINTER TO THE ENTRY TO BE DELETED. 
2571 THE ALOORITHM USED TO REMOVE THE ENTRY FROM THE OOUBLY LINKED 
2572 LIST IS EXPRESSED IN THE FOLDOWING MACRO CODE: 
2573 
2574 
2575 
2576 
2577 
2578 
2579 
2580 
2581 
2582 
2583 
2584 

REMOVE: MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
CLR 
CLR 
MOV 
MOV 

R2,-(SP) 
R3,- (SP) 
BLINK (Rl) , R3 
FLINK (Rl) , R2 
R2,FLINK(R3) 
R3 , BLINK (R2) 
FLINK(Rl) 
BLINK(Rl) 
(SP) +,R3 
(SP) +,R2 

2585 HERE AGAIN ANALYZING THE ALOORITHM AND KNONING WE ARE IN IDeAL 
2586 STORE AND THAT WE HAVE SUCH FUNCTIONS AS READ TWO VALUES AT A 
2587 TIME WE GET THE FOLLOWING AIillRITH IN A SHORrHAND NOrATION: 
2588 
2589 GRAB FLINK AND BLINK (Rl) 
2590 MOV R2,FLINK(BLINK(Rl)) 
2591 MOV FLINK(Rl) ,BLINK(FLINK(Rl)) 
2592 CLR FLINK AND BLINK (Rl) 
2593 
2594 IN THIS METHOD WE ONLY REFERENCE IDeAL STORE FOUR TIMES WHEREAS 
2595 USING THE ABOVE MElmOD WE 00 FIVE REFERENCES. 
2596 
2597 



LINKED LIST EXAMPLE Page 0-6 

2598 REMOVE: 
2599 P2-T, D_A,Rl-A, !D<-- ADDRESS OF ENTRY. 
2600 NEXT, J/REMI 

6223 0 11110000 10011000 00010000 00000000 00110000 10010100 
2601 
2602 REMl: 
2603 P3, TMSPrR_(IDADREAIJIW)) , !INITIATE READ OF FLINK AND BLINK. 
2604 NEXT, J/REM2 

6224 0 00100101 00001100 10000001 10110000 00110000 10010101 
2605 
2606 REM2: 
2607 NEXT, J/REM3 !FIRST NULL WORD. 

6225 0 00000000 00000000 00000000 00000000 00110000 10010110 
2608 
2609 REM3: 
2610 P3, CSPB[MD]_BUSDIN, !FIRST DATA ITEM INTO MD. 
2611 NEXT, J/REM4 

6226 0 00001110 00000000 00000000 00001000 00110000 10010111 
2612 
2613 ! D HAS FLINK(Rl) 
2614 ! MD HAS BLINK (Rl) 
2615 
2616 
2617 
2618 

REM4: 
P2-T, SR_A,D-NO-SHIFT, 
NEXT, J /REM5 

!SAVE FLINK (Rl) INTO SR. 

6227 0 11110000 01010000 00001000 00000000 00110000 10011000 
2619 
2620 
2621 
2622 

REM5: 
P2-T, D_B,CSPB(MD), 
NEXT, J/REM6 

! D< -- ADDRESS OF BACK FLINK. 

6230 0 10101110 00000000 00010000 00000000 00110000 10011001 
2623 
2624 REM6: 
2625 P3, TMSPTR_(WRITE), !INITIATE WRITE. 
2626 NEXT, J /REM7 

6231 0 00100110 00000000 00000001 10110000 00110000 10011010 
2627 
2628 REM7: !FIRST NULL WORD. 
2629 P2-T, D_A,SR, !DATA TO CHANGE BACK FLINK 
2630 NEXT, J/REM8 

6232 0 11110000 00000000 00010000 00000000 00110000 10011011 
2631 
2632 REM8: !DATA WRITTEN IN THIS CYCLE. 
2633 P2-T, D_A-PWS-B,SR,CSPB(ONE), !POINT TO FLINK OF FORWARD ENTRY. 
2634 NEXT, J /REM9 

6233 0 10011100 00000000 00010000 00000000 00110000 10011100 
2635 



LINKED LIST Exru~LE Page 0-7 

2636 REM9: 
2637 P3, TMSPTR_(LOADANlMRITE), !INITIATE WRITE. 
2638 NEXT, J/REM10 

6234 0 00100100 00000000 00000001 10110000 00110000 10011101 
2639 
2640 REM10: 
2641 P2-T, D _B,CSPB (MD) , !DATA TO CHANGE FORWARD BLINK. 
2642 NEXT, J /REM11 

6235 0 10101110 00000000 00010000 00000000 00110000 10011110 
2643 
2644 REMl1: 
2645 P2-T, D~,Rl-A, !D<-- ADDRESS OF ENTRY REMOVED. 
2646 NEXT, J/REM12 

6236 0 11110000 10011000 00010000 00000000 00110000 10011111 
2647 
2648 REM12: 
2649 P3, TMSPTR _ (LOAImRITETVl:» , ! INITIATE CLEAR OF FLINK AND BLINK. 
2650 NEXT, J/REM13 

6237 0 10100000 10001100 10000001 10110000 00110000 10100000 
2651 
2652 REM13: 
2653 J?2-T, D _ZERO, ! ZERO DATA FOR FORWARD LINK. 
2654 NEXT, J/REM14 

6240 0 00110000 00000000 00010000 00000000 00110000 10100001 
2655 
2656 REM14: 
2657 P2-T, D_ZERO, !ZERO DATA FOR BACKWARD LINK. 
2658 NEXT, J/REM1S 

6241 0 00110000 00000000 00010000 00000000 00110000 10100010 
2659 
2660 REMIS: 
2661 NEXT, sur (SUBRB) ,PAGE (0) ,J /BRA05 !RETURN TO GET NEXT INS'rRUCTION. 

6242 0 00000000 00000000 00000000 00000000 00111000 00000011 
2662 
2663 
2664 



LINKED LIST EXAMPLE Page 0-8 

2665 
2666 
2667 
2668 
2669 
2670 
2671 
2672 
2673 
2674 
2675 
2676 
2677 
2678 
2679 
2680 
2681 
2682 
2683 
2684 
2685 
2686 
2687 
2688 
2689 
2690 
2691 
2692 
2693 
2694 
2695 
2696 
2697 
2698 
2699 

THE APPEND INSTRUCTION IS USED TO ADD AN ENTRY ONTO THE POINT 
WANTED. THIS INSTRUCTION CAN BE USED IN '!W) WAYS. (1) TO ADD 
THE ENTRY ONTO THE FRONT OF A QUEUE DIREcrLY AFTER THE HEAD 
ELEMENT AND ALSO TO ADD THE ELEMENT ONTO THE LAST POSITION OF 
A LIST. THE FOLLOWING INPtJr CONDITIONS OCCUR: 
Rl- POINTS TO HEAD OF LINKED LIST. 
R2- POINTS TO ENTRY TO BE APPENDED TO THE LINKED LIST. 

, THE ALGORITHM CAN BE REPRESENTED IN THE FOLI1:MING MACRO FORM: 

APPEND: MOV R3,- (SP) 
MOV FLINK (Rl) ,FLINK (R2) 
MOV FLINK (Rl) ,R3 
MOV R2,FLINK (Rl) 
MOV BLINK (R3) ,BLINK (R2) 
MOV R2, BLINK (R3 ) 
MOV (SP) +,R3 

ANALYZING THE ALGORITHM AGAINST THE CONSTRAINTS AND THE 
POWERS OF USING A LOCAL STORE REPRESENTATION OF THE LINKED 
LIST THE FOLLCMING SHORl'HAND NOTATION ALGORITHM IS DEVEIDPED.: 

GRAB FLINK (Rl) 
MOV R2,FLINK(Rl) 
GRAB BLINK(FLINK(Rl)) 
MOV R2,BLINK(FLINK(Rl)) 
MOV FLINK(Rl) ,FLINK(R2) 
MOV BLINK(FLINK(Rl)) ,BLINK(R2) 

USING THIS REPRESENTATION THE WCS ADDRESS REGISTER IS LOADED ONLY 
FOUR TIMES COMPARED TO THE SEVEN OR SO TIMES FOR THE FIRST 
METHOD. 

2700 APPEND: 
2701 P2-T, D_A,Rl-A, !D< -- ADDRESS OF APPEND PT. 
2702 NEXT, J/APP1 

6243 0 11110000 10011000 00010000 00000000 00110000 10100100 
2703 
2704 APP1: 
2705 P3, TMSPTR_(READ) , !INITIATE READ OF FLINK(Rl). 
2706 NEXT, J/APP2 

6244 0 10100101 00000000 00000001 10110000 00110000 10100101 
2707 
2708 APP2: 
2709 NEXT, J/APP3 !NULL WORD ONE. 

6245 0 00000000 00000000 00000000 00000000 00110000 10100110 
2710 



LINKED LIST EXAMPLE Page 0-9 

2711 APP3: 
2712 P2-T, D A,R2-A, !PUT R2 INTO D FOR WRITE. 
2713 P3, CSPB [MD]_BUSDIN, ! INPUT FLINK (Rl) . 
2714 NEXT, J/APP4 

6246 0 11111110 10001010 00010000 00001000 00110000 10100111 
2715 
2716 APP4: 
2717 P3 , TMSPrR _ (WRITE) , ! INITIATE MOV R2, FLINK (Rl) • 
2718 NEXT, J /APP5 

6247 0 00100110 00000000 00000001 10110000 00110000 10101000 
2719 
2720 APP5: 
2721 P2-T, SR_B,CSPB(MD) , !SR GETS FLINK(Rl) 
2722 NEXT, J/APP6 !NULL WORD ONE. 

6250 0 10101110 00000000 00001000 00000000 00110000 10101001 
2723 
2724 APP6: 
2725 P2-T, D_A-PLUS-B,SR,CSPB(ONE), !CALCULATE BLINK(FLINK(Rl». 
2726 NEXT, J /APP7 

6251 0 10011100 00000000 00010000 00000000 00110000 10101010 
2727 
2728 APP7: 
2729 P3, TMSPrR_(IDADANDREAD) , !INITIATE READ OF BLINK(FLINK(Rl». 
2730 NEXT, J/APP8 

6252 0 10100000 00000000 00000001 10110000 00110000 10101011 
2731 
2732 APP8: 
2733 NEXT, J /APP9 ! NULL WORD ONE. 

6253 0 00000000 00000000 00000000 00000000 00110000 10101100 
2734 
2735 APP9: 
2736 P2-T, D A,R2-A, !PUT R2 INl'O D FOR WRITE. 
2737 P3, CSPB[MD]_BUSDIN, !INPUT BLINK(FLINK(Rl». 
2738 NEXT, J/APP10 

6254 0 11111110 10001010 00010000 00001000 00110000 10101101 
2739 
2740 APP10: 
2741 P3 , TMSPrR _ (WRITE) , ! INITIATE MOV R2, BLINK (FLINK (Rl) ) 
2742 NEXT, J/APP11 

6255 0 00100110 00000000 00000001 10110000 00110000 10101110 
2743 
2744 APPll: 
2745 NEXT, J/APP12 !NULL WORD ONE. 

6256 0 00000000 00000000 00000000 00000000 00110000 10101111 
2746 
2747 APP12: 
2748 P2-T, D A,R2-A, !D<-- ADDRESS OF FLINK(R2). 
2749 NEXT, J7APP13 

6257 0 11110000 10001010 00010000 00000000 00110000 10110000 
2750 



LINKED LIST EXAMPLE Page 0-10 

2751 APP13: 
2752 P3, TMSPrR_{LOADWRITEINC) , ! INITATE MOV FLINK (Rl) ,FLINK (R2) 
2753 NEXT, J/APP14 

6260 0 00100000 10000000 00000001 10110000 00110000 10110001 
2754 
2755 APP14: 
2756 P2-T, D_A,SR, !FLINK(Rl) IN'ID 00 FOR WRITE. 
2757 NEXT, J/APP15 

6261 0 11110000 00000000 00010000 00000000 00110000 10110010 
2758 
2759 APP15: 
2760 P2-T, D_B,CSPB(MD), !BLINK(FLINK(Rl» INTO D FOR wrnITTE. 
2761 ! (DATA ABOVE WRITI'EN AND THEN INCREMENT 
2762 NEXT, J/APP16 !ADDRESS REGISTER TO POINT TO BLINK) 

6262 0 10101110 00000000 00010000 00000000 00110000 10110011 
2763 
2764 APP16: 
2765 P3, TMSPrR_(WRITE), !MOV BLINK(FLINK(Rl» ,BLINK(R2) 
2766 NEXT, J/APP17 

6263 0 00100110 00000000 00000001 10110000 00110000 10110100 
2767 
2768 APP17: 
2769 NEXT, J/APP18 !NULL WORD ONE. 

6264 0 00000000 00000000 00000000 00000000 00110000 10110101 
2770 
2771 APP18: 
2772 NEXT, J/APP19 !NULL WORD Tvl). 

6265 0 00000000 00000000 00000000 00000000 00110000 10110110 
2773 
2774 APP19: 
2775 NEXT, Bur (SUBRB) ,PAGE (0) ,J/BRA05 !RETURN TO GET NEXT INSTRUCTION. 

6266 0 00000000 00000000 00000000 00000000 00111000 00000011 

MIC -- ERRORS DETECTED: 0 
MIC -- NUMBER OF LINES PROCESSED: 2775 



APPENDIX E 

ERROR MESSAGES 

This appendix contains the error messages for the microprogramming 
tools. Error messages are given first for the assembler, then for the 
debugger, and finally for the command language interpreter. 

In addition to the error messages listed here, additional error 
messages can arise from any of the following sources: 

o Operating System. An operating system error message has the 
form. 

FCS number file-name error message 

For an explanation of operating system error messages the 
programmer is referred to: 

FORTRAN IV PLUS User's Guide (DEC-11-LFPUA-BD), 
Appendix C, Section C.2.3 

o FORTRAN Run-Time System. A FORTRAN error message has the 
form: 

FCS number file-name error message 

For an explanation of FORTRAN error messages, the programmer 
is referred to: 

FORTRAN IV PLUS User's Guide (DEC-11-LFPUA-BD), 
Appendix C, Section C.2.2 

o Program Errors. Error messages that are reported as a 
result of the failure of consistency checks within the 
microprogramming tools have the following form: 

PROGRAM ERROR - error-message 

These errors are described within the program documentation. 
The occurence of such an error indicates a malfunction that 
is outside the programmer's control. 



ERROR MESSAGES Page E-2 

E.1 MICRO-11/60 ERROR MESSAGES 

The following error messages are produced by the assembler. The first 
nine errors are fatal errors. These errors indicate a problem with 
the hardware or software support for the MICRO-11/60 assembler 
program. For each of these errors a suggested procedure is indicated. 

1. WRITE ERROR IN WORK FILE 

Suggested procedure: Try again. 

2. INTERNAL BUFFER ERROR 

Suggested procedure: Try again in a less active 
environment. 

3. (reserved) 

4. WORK FILE TOO BIG 

Suggested procedure: Try to break down the microprogram 
either by dividing into modules or 
by removing comments. 

5. READ ERROR IN WORK FILE 

Suggested procedure: Check disk. Try again in a less 
active environment. 

6. INTERNAL INITIALIZATION ERROR 

Suggested procedure: Try running in a different spot in 
memory. 

7. END OF OBJECT FILE ERROR 

Suggested procedure: Try again. 

8. WRITE ERROR IN OBJECT FILE 

Suggested procedure: Try again. 

9. (reserved) 

The remaining errors are non-fatal. After the detection of an error, 
the assembly continues. For each of these errors, a Probable cause is 
indicated. 

10. ILLEGAL NUMERIC LABEL 

Probable cause: A label outside the legal limits 
of the program. 



ERROR MESSAGES 

11. BEGIN BLOCK ALREADY ENDED 

Probable cause: A case-microinstruction or an end­
definition seen for a branch-label 
that has already been ended by an 
end-definition. 

12. CASE NUMBER TOO LARGE 

Probable cause: A case number larger than the number 
calculated by taking 2**k, where k is 
the number of O's in the mask 
associated with the branch-label. 

13. THIS CASE ALREADY HANDLED 

Probable cause: A case number for a given branch-label 
is given more than once in the 
microprogram. 

14. DATA SET ERROR 

Probable cause: The internal stack is too big. 

15. ILLEGAL RANGE 

Probable cause: The address range given with a branch­
definition is in the wrong order or is 
outside the legal limits of the program. 

16. (reserved) 

17. ILLEGAL USE OF SYMBOL 

Probable cause: A symbol given in a place where only 
a numeric value is acceptable. 

18. ILLEGAL CONDITION BEFORE .CODE 

Probable cause: A language construct that can only be 
given in the action-part of the program 
appears in the definition part. 

19. ILLEGAL VALUE 

Probable cause: A value outside the legal range or 
a signed value. 

20. PAGE BOUNDS ERROR IN DEFAULT ADDRESS 

Page E-3 



ERROR MESSAGES Page E-4 

21. NO .ADDRESS KEYWORD 

Note: This error can occur only if this predefinitions file 
is not used. 

Probable cause: The .ADDRESS keyword, as described in Appendix 
B, is not present. 

22. ILLEGAL STATEMENT AFTER .CODE 

Probable cause: A language construct that can be given 
only in the definition part of the 
program is used in the action part. 

23. MACRO EXPANSION ERROR 

Probable cause: The arguments of the macro-call created 
a problem in the expansion of the macro­
body. 

24. MICRO-INSTRUCTION ILLEGAL 

Probable cause: A name given in the microinstruction 
is undefined. This error sometimes 
indicates a problem with the definition 
of the name. 

25. INTERNAL STACK OVERFLOW 

Probable cause: The stack associated with macro expansion 
has too many entries. This error can be 
caused by nesting macros too deeply or 
by supplying too many arguments for a 
macro. 

26. ATTEMPT TO REWRITE BIT IN MICROWORD 

Probable cause: A field-setting is given that sets a bit 
already set in the microword by another 
field-setting. 

27. CONSTRAINT FIELD PARAMETER ILLEGAL 

Probable cause: The number of O's in a mask is either 
less than 1 or greater than the allowable 
number (7). 



ERROR MESSAGES 

28. CANNOT SATISFY CONSTRAINT REQUEST 

Probable cause: A set of addresses to satisfy the 
constraint request cannot be found. 

Suggested procedure: Move the branch-definition to the 
beginning of the program so that the 
necessary addresses can be reserved. 

29. ADDRESS ALREADY SEEN 

Probable cause: The address has already been either 
explicitly allocated by the programmer 

Page E-5 

or selected by the assembler for allocation. 

30. ALREADY DEFINED 
Probable cause: The name has already been defined for the same 

name type. 

31. ILLEGAL FIELD MODE 

32. ILLEGAL PASS 2 OPERATION 

Probable cause: System or hardware failure. 

33. BAD INITIALIZATION 

Probable cause: System or hardware failure. 

34. (reserved) 

35. ERROR ROUTINE FAILURE 

Probable cause: System or hardware failure. 

36. SYMBOL ALREADY USED AS A LABEL 

Probable cause: Symbol has been already been defined by 
its use as a label. 

37. (reserved) 

38. PRE-SCAN ERROR 

Probable cause: System or hardware failure. 

39. SYNTAX ERROR 

Probable cause: The source line does not have the 
correct syntax. 



ERROR MESSAGES Page E-6 

E.2 MDT ERROR MESSAGES 

The debugger error messages and the error source are listed below. 

Error 

ADDRESS ERROR AT address 

ATTEMPT TO EXECUTE AN ILLEGAL INSTRUCTION 
AT address 

ILLEGAL BREAKPOINT INSTRUCTION AT address 

UNKNOWN TRAP OCCURRED AT address 

ATTEMPT TO LOAD A CODE SEGMENT FAILED AT 
ADDRESS address 

BREAKPOINT NUMBER breakpoint-id IS NOT SET 

BREAKPOINT TABLE FULL 

DID NOT FIND ADDRESS 

DISPLAY POINT NUMBER display-id IS NOT SET 

ILLEGAL 

INCORRECT 

INPUT ERROR 

ADDRESS 
ADDRESS TYPE 
BIT NUMBER 
BREAK COMMAND 
BREAKPOINT NUMBER 
NUMBER, TOO LARGE 
TERMINATION 

BIT FIELD NAME 
STATE VARIABLE NAME 

LEGAL BREAKPOINT DID NOT OCCUR 

NO FREE ENTRIES IN DISPLAY TABLE 

ODD MACRO ADDRESS 

SYNTAX ERROR 

UNABLE TO LOAD DISPATCH TABLE 
READ SPECIFIED LOCATION 
WRITE SPECIFIED LOCATION 

UNKNOWN TERMINATOR 

Source 

Run-time 

Run-time 

Run-time 

Run-time 

Load 

Breakpoint 

Breakpoint 

Breakpoint 

Display 

Proceed, Go, Open 
Breakpoint 
Open 
Breakpoint 
Breakpoint 
Display Point 
(all) 

(all) 
(all) 

(all) 

Proceed, Go 

Display 

Breakpoint 

(all) 

Load 
Open 
Open 

Open 



ERROR MESSAGES Page E-7 

E.3 COMMAND LANGUAGE ERROR MESSAGES 

The following error messages are command language interpreter error 
messages. These error messages may be encountered when trying to use 
the MICRO-11/60 assembler. 

1. COMMAND LINE SYNTAX ERROR rest-of-line 

If the command language interpreter detects an error in 
the command line, it prints this message and the part 
of the line after the point at which the error was 
detected. 

2. COMMAND SWITCH ERROR 
where: n = 1 implies the object module file 

n = 2 implies the list file 
n = 4 implies the first input file 

The command language interpreter found an illegal 
switch on the indicated file. 





INDEX 

· BEGIN . . . . . 
• CASE • . • •• .•••• 
.FIELD .. . 
.IDENT . . .. . 
. MACRO . . . ... 
· RADIX . . . . . . . . . . . . 
.TITLE ........ . 
· TOC . . . . 

@MDT . 

Action-item* . 
Actions . . . . . . . . 
Actual parameters 
Actual* ....... . 
Address 

assignment 
assignment algorithm. 
main memory 
micro memory . . 
reservation 
space . . . . . 
specification 

Address range 
of target assignment . 

Address* . . . . . . . . . . . 
Address-spec* . . . 
Alphabetic* . . . . . . . 
Assembler 

error messages . ... . 
input listing .... . ... . 
output listing 
sample output listing 
switches . . . . . . . 

Assembly* ........... . 
Assembly-command-line* . 

Base address . 
Bit map 
Bit-range* 
Bit-spec* 
Bits 

map 
of microword 

Branch-definition 
Branch-definition* . 
Branch-label* . . . 
Break-address* . . . 

6-6 
6-6 
5-3 
4-3 
5-9 
4-6 
4-3 
4-4 

16-2 

6-1 
6-1 
5-12 
5-9 

2-4 
2-4 
9-5 
9-5 
2-5 
2-4 
2-5 

6-10 
6-3 
9-5, 10-3 
3-4 

14-12 
14-9 
14-10 
14-15 
14-5 
14-4 
14-4 

6-5 
14-14 
5-3, 10-3 
5-3 

14-14 
14-12 
6-1 
6-6 
6-6 
11-4 

Page Index-1 



Break-id* 
Breakpoint 

planting the call 
Breakpoint list 
Breakpoint-command* 

Case-microinstruction 
Case-microinstruction* 
Case-number* . . 
Command language 

debugger . . . . . . . 
Command line 

MDT • • • • 
Comments . . . 
Constraint* . . . . 
Contiguous bit fields 
Control-command* . 

D * . . . . . . . . 
Datapath registers 
Debugger 

command language 
interrupting 
restarting . . 
terminating 

Debugger errors ... . 
Default* ....... . 
Definitions 

field 
macro . . . 
predefinitions ... 

Delete-break-command* 
Delete-display-command* 
Digit* ..... . 
Disabling WCS . . . 
Display 

lis t . . . . 
Display-command* . 
Display-id* 

Enabling WCS . 
End-definition .. 
End-definition* 
Error messages 

assembler 
debugger . . . . 
load er . . . . . 

Errors 
detection and correction 

Expansion 
macros 

Field 

Page Index-2 

11-4 

11-5 
11 -1 , 11-5 
11-1 

6-7, 6-11 
6-6 
6-6 

16-2 

9-3 
3-6 
6-6 
5-5 
13-1 

11 -1 , 12-1 
9-1 

16-2 
16-4 
16-5 
16-5 
16-6 
5-3 
5-1 
5-2 
5-8 
5-14 
11-8 
12-4 
3-4 
15-5 

12-1 , 12-5 
12-1 
12-3 

15-5 
6-7 
6-6 

14-12 
16-6 
15-6 

2-6 

5-10 

5-2 



Field-definition* 
Field-indicator* .. 
Field-name 

in MDT . . . . . . . 
Field-name* . . . 
Field-spec* ... . 
Field-value* .. . 
Field-value-definition* 
Fields 

contiguous-bit .. 
maximum size ... 
non-contiguous-bit . 
overlapping . . . 
oversize values 
predefined . . . 

File-spec* . . . . . 
Formal parameters 
Formal* 
Format 

microprogram object module 
of microprogram 

G * . . . . . . 
Go-command* 

Heading 
High-address* 

Ident-string* . . . . . . . • 
Identification . . . . . . . . . . 
Identification-part* .. 
Implicit radix ... 
Indirect command file 

@MDT . . . . . . . . 
Initialization pattern 

loader . 
Input 

load er 
Input listing 
Input preparation 
Input-file* .... 
Input-spec* . . . 
Instruction-part* 
Interrupting 

debugger . . . . . 

Keyword 
.BEGIN . 
.CASE ... 
.FIELD . 
.IDENT . 
.LIST ... 
.MACRO . 

5-3 
10-3 

10-8 
5-9 
5-3 
6-3 
5-3 

5-5 
5-4 
5-5 
5-6 
5-8 
5-14 
14-4 
5-12 
5-9 

8-3 
14-7 

13-2 
13-2 

14-11 
6-6 

4-3 
4-3 
4-3 
4-6 

16-2 
5-7 
8-2 

15-5 
14-9 
14-6 
14-4 
14-4 
6-3 

16-4 

6-6 
6-6 
5-3 
4-3 
4-8 
5-9 

Page Index-3 



.NLIST . 

.RADIX . 

.TITLE . 

. Toe • . 
Keywords 

L * . . . 
Label* . . . .. 
Left-bit* 
Line 

program 
Line numbers 
Line terminator 

in open-command 
List 

breakpoint . . . . 
display .. . . . 

List keywords 
List-break-command* 
List-display-command* 
List-file* .... 
Listing 

assembler output 
sample assembler input 

Listing mode .. 
Load-command* 
Loader 

error messages 
functions 
initialization pattern 
input 
output . . . . . 

Loading 
microprograms 

Loading the WCS 
Low-address* . . 

Machine state 
restoring 

Macro ..... 
Macro expansions 

in listing .. 
Macro-address-spec . 
Macro-address-spec* 
Macro-body* 
Macro-body-part* . . 
Macro-call .... . 
Macro-call* ... . 
Macro-definition* .. . 
Macro-name* 
Macros 

expansion 
nested . ... 

Page Index-4 

4-8 
4-6 
4-3 
4-4 
3-2 

13-4 
6-3 
5-3, 10-3 

3-6 
14 -11 

10-5, 10-9 

11-1 
12 -1 , 12-5 
4-8 
11-9 
12-6 
14-4 

14-10 
14-9 
4-8 
13-4 

15-6 
8-1 
8-2 
15-5 
15-6 

8-3 
15-2 
6-6 

9-1 
9-3 
5-8 

14-13 
10-6 
10-3 
5-9 
5-9 
5-9 
6-3 
5-9 
5-9 

5-10 
5-13 



parameters . 
predefined 

Main memory 
address 

Mas k . . . . . 
character 

Mask* .... 
MDT 

. . . . . . . . . 

command language 
field-name . . 
interrupting 
restarting . . . . . 
terminating 

MDT command 
breakpoint . . . . . 
control ......... . 
delete-break ....... . 
delete-display .... . 
display ..... . 
go . . . . . 
list-break . . . . . 
list-display . 
10 ad . . . . . . . . 
ope n . . • . . . . . . . . . 
open-bits ..... . 
open-byte . . . . . . . 
open-character . .... 
proceed-from-break . . . . . . . 
reset . . . . . . . . 
set-break . . . . 
set-display . . . . . . . . 

MDT command line ..... 
MDT commands 

summary 
Mdt-call* 
Micro memory 

address 

. . . . . . . . 

Micro-address-spec 
Micro-address-spec* ..... 
Microcode .. . . . . . . 
Microinstruction* 
Microinstructions 
Microprogram 

format . . . . . 
id en ti fic ation 
structure ...... . 

Microprogram object module 
Microprograms 

loading .... 
Microstate table . 
Microword 

initialization . 
Microword line . . . . . . . . 

5-12 
5-15 

9-5 
6-8 
6-9 
6-6 

16-2 
10-8 
16-4 
16-5 
16-5 

11 -1 
13-1 
11-8 
12-4 
12-1 
13-2 
11-9 
12-6 
13-4 
10-1 
10-3 
10-11 
10-13 
11-6 
13-4 
11-4 
12-3 
9-3 

9-4 
16-3 

9-5 
10-7 
10-3 
6-1 
6-3 
6-2 

14-7 
4-3 
4-1 
8-3 

8-3 
9-1 

5-7 
14-12 

Page Index-5 



MSTART . 
MSTOP 

. . . . . . . 

N ame* .. 
Name-char* . 
Names . . . 
Nested macros 
New values 

in MDT . . . . 
Non-contiguous-bit 

0* . . . . . . 
OB* ..... 
Object module 

format . . . . 
microprogram 

Object-file* .. 
OC * ..... 

fields 

Offset . . . . . 
Open-bits-command* . 
Open-byte-command* 
Open-character-command* 
Open-command* 
Output 

loader . . . 
Output listing 

sample assembler 
Output-spec* . . . 
Overlapping fields 
Oversize field values 

Page heading ... 
Parameters . . 
PDP-11 registers. 
Predefinitions . 

field .... 
macro . . . . 

Preparing input 
Privileged status 

loader . . . . . 
Proceed-from-break-command* 
Processing unit .... 
Processing-unit* . . ...•. 
Program line .•..... 

Qualifier 

R * . . . . 
Radix* .... 
Radix-50-char* 
Radix-line* 
Register-address-spec 
Register-address-spec* . 

Page Index-6 

15-5 
15-5 

3-4 
3-4 
3-3 
5-13 

10-9 
5-5 

10-3 
10-11 

8-3 
8-3 
14-4 
10-13 
6-5 
10-3 
10-11 
10-13 
10-1 

15-6 
14-10 
14-15 
14-4 
5-6 
5-8 

14 -11 
5-12 
9-1 
2-3, 5-14 
5-14 
5-15 
14-6 

15-1 
11-6 
4-1 
4-2 
3-6 

9-6 

13-4 
4-7 
3-4 
4-7 
10-8 
10-3 



Relocation-register 
Repeat-count* . . . 
Reset-command* •... 
Resident section . . . . . . . 
Restoring machine state 
Right-bit* .....•. 

Scope 
of target assignment 

Separators . . . . . . 
Set-break-command* . 
Set-display-command* . . 
Spac ing . . . . . . . . . . . 
State 

of the machine . . . . . . . . . 
Switch* 
Switches ..... 

Table of contents 
Target assignment 

address range 
case . 
mas k . . . . . . . 
scope . . . . . . . . . . . . . 

Target-assignment construct 
Term* ..... ...... . 
Threshold check . . . . . . . 
Title-string* ... 
Toc-line* . . . . . . . . . 
Toc-string* 
Transfer-address* 

Uniqueness 
of names 

User-actions* 

Value* .... 
Value-spec* 
Values .... 

WCS 
disabling 
enabling .. 
loading 

WHAMI register 

Page Index-7 

9-5 
11-6 
13-4 
8-2 
9-3 
5-3, 10-3 

6-11 
3-5 
11-4 
12-3 
3-7 

9-1 
14-4 
14-5 

4-4, 14-10 

6-10 
6-11 
6-8 
6-11 
6-5 
10-3, 10-5 
7-1 
4-3 
4-5 
4-5 
13-2 

3-3 
6-1 

3-4 
5-9 
3-4 

15-5 
15-5 
15-2 
15-5 





The PDP-ll/60 Microprogramming 
Tools Reference Manual 
AA-C8l5A-TC 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ __ 

Organization ______________________________________________________________ ___ 

Street ____________________________________________________________________ _ 

City ____________________________ State ______________ Zip Code ______________ _ 

or 
Country 



-------------------------------------------------------------Fold lIere------------------------------------------------------------

------------------------------------------------ Do Not Tear - Fold lIere and Staple -----------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Documentation 
146 Main Street ML5-5/E39 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 






