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PREFACE 

This user's guide is intended to familiarize the reader with the operation of the FPII-E Floating-Point 
Processor. It contains information relating to the FPII-E's hardware and software and can thus be 
used as a reference by both programmers and technicians. The manual is divided into the following 
chapters. 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

General characteristics of the FPII-E 

Basics of floating-point numbers and floating-point arithmetic 

Formats in which data must enter and leave the FPII-E 

FPII-E instruction set 

Relationship and interaction between the FPII-E and the PDP-ll/60 CPU 

Data paths and components that manipulate data in the FPII-E 

Operation of the FPI1-E control logic 

FPII-E installation information 

It is emphasized that this user's guide is intended only as an overview of the FPII-E. For more detailed 
information (primarily for the use of maintenance personnel), refer to the FPII-E Floating-Point 
Processor Technical Manual. 

The following documents should be used in conjunction with this manual: 

Title 

PD P-ll /60 Processor Handbook 
FPII-E Microcode Listing 

Document No. 

EB06498 
DQMCB-A-D 
DQMCB-A-FA 

vii 

Media 

Hard copy only 
Hard copy 
Microfiche 





1.1 GENERAL 

CHAPTER 1 
INTRODUCTION 

The FPII-E Floating-Point Processor is a hardware option used with the PDP-ll/60 central proces­
sor. The FPII-E, which is an extension of the CPU data paths, allows rapid execution of floating-point 
instructions. 

The primary advantage of the FPII-E is speed. Although a floating-point instruction set is an integral 
part of the PDP-ll/60 CPU (contained in the CPU's firmware), the FPII-E can execute the same 
instructions at much greater speed. Furthermore, the operation of the CPU and the FPII-E overlap; 
some floating-point instructions allow the CPU to proceed to other tasks while the FPII-E completes 
the instruction execution. This increases system efficiency by reducing CPU idle time. 

1.2 FEATURES 
The following paragraphs summarize the features of the PDP-ll/60 floating-point instruction set and 
the FPII-E. 

1.2.1 Floating-Point Instruction Set Features 

• 32-bit (single-precision) and 64-bit (double-precision) data modes 

• Addressing modes compatible with existing PDP-II addressing modes 

• Special instructions that can improve input/output routines and mathematical subroutines 

• Allows execution of in-line code (i.e., floating-point instructions and other instructions can 
appear in any sequence desired) 

• Multiple accumulators for ease of data handling 

• Can convert 32- or 64-bit floating-point numbers to 16- or 32-bit integers during the Store class 
of instructions 

• Can convert 32-bit floating-point numbers to 64-bit floating-point numbers and vice-versa 
during the Load or Store class of instructions. 
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1.2.2 FPII-E Features 

• Performs high-speed, floating-point operations on single- and double-precision data 

• Has 17 (decimal) digit accuracy 

• Performs overlapped operation with CPU 

• Contains its own microprogrammed control store 

• Contains six 64-bit floating-point accumulators 

• Contains error recovery aids 

• Responds to maintenance instructions for ease of maintenance. (Refer to FPII-E Floating­
Point Processor Technical Manual.) 

1.3 FPII-E PHYSICAL DESCRIPTION 
The FPII-E is used with the PDP-l 1/60 CPU (KDll-K) and consists of four multilayer hex modules 
(Table 1-1). These modules are circuit boards which are plugged into slots 8, 9, 10, and 11 of the 
prewired KD ll-K backpanel. Since the modules are hex modules, they occupy rows A through F in all 
four slots (Figure 1-1). 

The FPII-E is powered solely by its own power supply. This supply provides the FPII-E with +5 Vdc 
and is mounted in the rear of the PDP-ll/60 chassis (Chapter 8). 

Table 1-1 FPII-E Modules 

Module No. Module Name Slot Rows 

M7881 FALU 11 A-F 
M7880 MULNET 10 A-F 
M7879 EXPONENT 9 A-F 
M7878 FNUA 8 A-F 
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2.1 INTRODUCTION 

CHAPTER 2 
REVIEW OF FLOATING-POINT NUMBERS 

This chapter briefly outlines some fundamentals of floating-point arithmetic. It provides useful back­
ground for more advanced topics in later chapters. The reader already familiar with floating-point 
numbers and arithmetic may skip to Chapter 3 for a discussion of FPII-E data formats. 

2.2 INTEGERS 
All data within a computer system could be represented in integer form. The numbers that could be 
represented in a 16-bit machine range in magnitude from 0000008 to 1777778 (or from 010 to 65,536 10). 
However, there would be problems with integer representation. A number between 1 and 2 (for ex­
ample) could not be represented. Thus, integer representation imposes an accuracy limitation. Further­
more, numbers greater than 65,53610 could not be represented. This imposes a range limitation. 

These limitations are imposed by the stationary position of the radix point (e.g., the decimal point in 
base 10 notation or the binary point in base 2 notation). An integer's radix point is usually omitted in 
integer representation because it always marks the integer's least significant place. That is, there are 
never any digits to the right of an integer's radix point. For this reason, an integer is sometimes called a 
fixed-point number. 

Integer notation, however, can be modified to overcome the range and accuracy limitations imposed 
by the fixed radix point. This is done through the use of floating-point notation. 

2.3 FLOATING-POINT NUMBERS 
Floating-point numbers, unlike integers, have no position restrictions imposed on their radix points. A 
popular type of floating-point representation is called scientific notation. With scientific notation, a 
floating-point number is represented by some basic value multiplied by the radix raised to some power. 

Example 

basic 
value 

J 
exponent 

I 
1,000,00010 = 1. X 106 

'd· ra IX 
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There are many ways to represent the same n umber in scientific notation, as shown in the example 
below. 

512. = 51200. X 10-2 

= 5120. X 10-1 

= 512. X 100 

= 51.2 X 101 

= 5.12 X 102 

= .512X 103 

The convention chosen for representing floating-point numbers with scientific notation in the FP11-E 
requires the radix point to always be to the left of the most significant digit in the basic value (e.g., .512 
X 103 in the above example). This modified basic value is called a fraction. 

More examples of scientific notation are shown below. 

Decimal Decimal Octal Binary 
No. Scient. No. Scient. No. Scient. No. 

64 0.64 X 102 0.1 X 83 0.1 X 27 
33 0.33 X 102 0.41 X 82 0.100001 X 26 

1/2 0.5 X 100 0.4 X 80 0.1 X 2° 
1/16 0.625 X 10-1 0.4 X 8-1 0.1 X 23 

Note that in each of the examples above, only significant digits are retained in the final result and the 
radix point is always (by convention) to the left of the most significant digit. Establishing the radix 
point in a number whose basic value is greater than (or equal to) 1 is accomplished by shifting the 
number to the right until the most significant digit is to the right of the radix point. Each right shift 
causes the exponent to be incremented by 1. Similarly, establishing the radix point in a number whose 
basic value is between 1 and 0 (Le., a fraction) is accomplished by shifting the number to the left until 
all leading Os are eliminated. Each left shift causes the exponent to be decremented by 1. 

To summarize, the value of the number remains constant if its exponent is incremented for each right 
shift of the basic value and decremented for each left shift. The representation for floating-point 
fractions in the PDP-l1/60 is one in which all nonsignificant leading zeros have been removed. The 
process used to obtain this representation is called normalization, which is explained in more detail in 
Paragraph 2.4. 

2.4 NORMALIZATION 
In digital computers, the number of bits in a fraction is limited. Retention of nonsignificant leading 
zeros decreases accuracy by taking places which could be filled by significant digits. For this reason, a 
process called normalization is used in the FP11-E. The normalization process consists of testing the 
fraction for leading zeros and left-shifting it until it is in the form 0.1 .... The exponent is accordingly 
decremented by the number of left shifts of the fraction. This ensures that the normalized number 
retains equivalence with the original number. Since digits to the right of the binary point are weighted 
with inverse powers of two (Le., 1/2, 1/4, 1/8 ... ), the smallest normalized fraction is 1/2 (0.10000 ... ). 
The largest normalized fraction is 0.11111 .... Figure 2-1 shows an unnormalized fraction which must 
be left-shifted six places to be normalized. The exponent is decremented by six to maintain equivalence 
with the original number. 
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EXPONENT FRACTION 

UNNORMALIZED 00 100 011 I I O. 000 000 111 111 001 

NORMALIZED 00 011 101 I I O. 111 111 001 000 000 I 
DECREASE EXPONENT BY SIX LEFT SHIFT FRACTION SIX PLACES 

MA-0285 

Figure 2-1 Normalization 

Problem A - Represent the number 7510 as a binary normalized floating-point number. 

I. Integer conversion 
7510 = 100101 h 

2. Convert to floating-point form 
1001011.0 X 20 = 0.1001011 X 27 

Fraction = 0.1001011 
Exponent = III 

Problem B - Represent the number 0.2510 as a binary normalized floating-point number. 

I. Integer conversion 
0.2510 = O.Oh 

2. Convert to floating-point form 
0.01 X 20 = 0.1 X 2-1 

Fraction = 0.1 
Exponent = -I 

2.5 FLOATING-POINT ADDITION AND SUBTRACTION 
In order to perform floating-point addition or subtraction, the exponents of the two floating-point 
numbers involved must be aligned or equal. If they are not aligned, the fraction with the smaller 
exponent is shifted right until they are. Each shift to the right is accompanied by an incrementation of 
the associated exponent. When the exponents are aligned or equal, the fractions can then be added or 
subtracted. The exponent value indicates the number of places the binary point is to be moved to 
obtain the integer representation of the number. 

In the example below, the number 710 is added to the number 4010 using floating-point representation. 
Note that the exponents are first aligned and then the fractions are added; the exponent value dictates 
the final location of the binary points. 

0.101 000 000 000 000 X 26 = 508 = 4010 

+0.111 000000 000 000 X 23 = 78 = 710 
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1. To align exponents, shift the fraction with one smaller exponent three places to the right and 
increment the exponent by 3, and then add the two fractions . 

. -

0.101 000 000 000 000 X 26 = 508 = 4010 
+0.000 111 000 000 000 X 26 = 78 = 710 

0.101 111 000 000 000 X 26 = 578 = 4710 

2. To find the integer value of the answer, move the binary point six places to the right. 

5 7 -- --0.101 111.000 000 000 
~ 

2.6 FLOATING-POINT MULTIPLICATION AND DIVISION 
In floating-point multiplication, the fractions are multiplied and the exponents are added. For float­
ing-point division, the fractions are divided and the exponents are subtracted. 

There is no requirement to align the binary point in the floating-point mUltiplication or division. 

Example: 
Multiply 710 by 4010. 

1. 0.1110000 X 23 = 78 = 710 
X0.1010000 X 26 = 508 = 4010 

111 
0000 

11100 

.10001100000000 X 29 (Result already in normalized form.) 

2. Move the binary point nine places to the right. 

430 ------.100011000.00000 = 4308 = 28010 
\ I 

Example: 
Divide 1510 by 510. 

1. .1111000 X 24 

.1010000 X 23 

1.010000 }.IIIIOO0 = 

1.100000 

1010000 )1111000.000000 
1010000 

101000 
101000 

o 
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2. Exponent: 4 - 3 = 1 

3. Result: 1.100000 X 2 

Normalized Result/oooOO X 2'_______. 

Normalized Fraction Normalized Exponent 

Move binary point two places to the right. 

.11.00000 = 38 = 310 
U 
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3.1 INTRODUCTION 

CHAPTER 3 
DATA FORMATS 

The FPII-E requires its input data (operands) to be formatted. Formatting allows the FPII-E to 
process operands in a meaningful way and produce correct results. There are four different formats for 
operands input to the FPII-E: short integer format (I), long integer format (L), single-precision format 
(F), and double-precision format (D). 

Output data from the FPII-E is also formatted. This output data is in the form of: 

1. FPII-E status information and FP11-E exception information required by the CPU 

2. Data sent to memory (via the CPU). Data sent to memory must be in I, L, F, or D format. 

This chapter describes the FPII-E data formats. It is assumed that the reader is familiar with 2's 
complement notation. 

3.2 FPII-E INTEGER FORMATS 
There are two integer formats, short (I) and long (L). The short integer format is 16 bits long and the 
long integer format is 32 bits long. Data words (operands) in integer format are represented in 2's 
complement notation. In both I and L formats, the most significant bit of the data word is the sign bit. 
Figure 3-1 shows the integers 5 and -5 in both I and L formats. 

Figure 3-1 illustrates the formats in which integers are arranged in memory. Integers sent to memory 
must be in one of these formats. Integers received by the FPII-E are arranged and manipulated ac­
cording to the type of instruction being executed. Refer to Paragraphs 4.3.11 and 4.3.12 for descrip­
tions of the ways in which incoming integers are manipulated during the Load Exponent and Load 
Convert Integer-to-Floating instructions, respectively. 

3.3 FPII-E FLOATING-POINT FORMATS 
There are two floating-point formats, single-precision (F) and double-precision (D). The single-preci­
sion format is 32 bits long and the double-precision format is 64 bits long. Referring to Figure 3-2, it 
can be seen that the most sigriificant bit is the sign of the fraction (and the floating-point number being 
represented). The next 8 bits contain the value of the exponent, expressed in excess 200 notation 
(Paragraph 3.3.1.2). The remaining bits (23 for single-precision, 55 for double-precision) contain the 
fraction. The fraction and its associated sign bit are expressed in sign and magnitude notation (Para­
graph 3.3.1.1). 
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SHORT INTEGER (I) 

WORD 1 
lONG INTEGER(l) 

INTEGER=-5 
"1---- WORD 1 

SHORT INTEGER(I) 

lONG INTEGER(Ll 

Figure 3-1 Integer Formats 

I-
MEMORY 
WORD 1 

31 30 2322 
SINGlE~ PRECISION 

Is I I 
FLOATING-POINT (F) EXP 

FORMAT 

I-
MEMORY 
WORD1 

63 62 55 54 
DOUBLE-PRECISION lsi I 
FLOATING-POINT (0) EXP 

FORMAT 

S = Sign 
EXP = Exponent in excess 200 notation (refer to paragraph 3.3.1.2.)', 
Fraction = 23 or 55 bit fraction in sign and magnitude 
format. 

·1 I-
MEMORY 
WORD 2 ·1 

16 . 15 0 

I I I 
FRACTION 

MEMORY MEMORY MEMORY 
I-WORD 2-1 I-WORD 3-1 \4-WORD 4-1 

" FRACTION 

MA-0280 

Figure 3-2 Floating-Point Data Formats 
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3.3.1 FP11-E Floating-Point Data Word 
Figure 3-2 illustrates the formats in which floating-point numbers are arranged in memory. Floating­
point numbers sent to memory must be in one of these formats. Floating-point numbers received by 
the FPII-E are arranged as illustrated in Figure 3-3. 

The sign bit, exponent bits, and fraction bits in the FPII-E data word have the same values as the data 
word in memory. Note, however, that the FPII-E data word has more bits than its counterpart in 
memory. This is because the FPII-E has provisions for generating an overflow bit and a "hidden" bit; 
for double-precision data words, there are guard bits. 

SINGLE-PRECISION 

MEMORY WORD 
(SINGLE PRECISION) 

FRACTION 

15 14 76 0 15 0 ,....--r-I s I -EXP ~I ---'1 r--I ----,1 
, ; " ..... \ \ 

/ /' / " '" \ 

/ /1 / " " \ " 

FP11-E WORD 

II / I / " '~ \ 

G1 t~]' ~I I ~'I ~I -----;1 

DOUBLE-PRECISION 

MEMORY WORD 
(DOUBLE PRECISION) 

o 7 0 59 58 57 

FRACTION OVERFLOW BIT J t 
HIDDEN BIT ~ 

(EXP ~O.BIT 58=1) 

5150 35 

~--------~~~--------~ 
FRACTION 

FRACTION 

15 14 76 o 15 0 15 0 

\ 

\ I 
\ I / 
\ I I I 

\ I I I 
\ I I I 
\ I I I 
,I 

~I S I _EXP ~I -----,I I':----~ 
I ~ I' " 
I 1\ \ " ',\ 
I 1\ \ 1\ " 

I 1\ \', " 
I I \ I , " ' 
I I \ \ , ',\ 
I I \ \ , ,\ 

I 

15 0 

I 1 
I / 

I 
/ 

/ 
I 

I 
I 

I 
1/ I 

,I II I 

I I I I I I FPll-E WORD 

I I \ , " 

~ B I~I-T-'I --;-'I----T---+------r---r~ 
59 58 57 51 50 

FRACTION OVERFLOW BIT ~ f 
HIDDEN BIT ~ 

(EXP~O.BIT 58=1) 

3534 19 18 

FRACTION 

Figure 3-3 FPII-E Floating-Point Data Words 
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For purposes of discussion, the FP11-E data word can be thought of as being divided into two major 
parts: 

1. A fraction, with its associated sign bit, hidden bit, overflow bit, and (for double-precision) 
guard bits 

2. An exponent. 

3.3.1.1 Floating-Point Fraction - The fraction is expressed in sign and magnitude notation. The fol­
lowing simple example illustrates the idea behind sign and magnitude notation. 

2's Complement Notation Sign and Magnitude Notation 

+2 000010 000010 
Sign ___ ..;r. Lc'r....-____ Magnitude 

-2 111110 100010 
Sign ----1+ Lv-:'r....--___ Magnitude 

Only a change of sign bit is required to change the sign of a number in sign and magnitude notation. 
Note that a positive n umber is the same in both notations. 

Unnormalized floating-point fractions have a range from approximately 0 through 2 as shown in 
Figure 3-4. The FP11-E, however, normalizes all unnormalized fractions. That is, the fractions are 
adjusted such that there is a 0 to the left of the binary point (bit 59) and a 1 to the right of the binary 
point (bit 58). Thus, normalized fractions range in magnitude from 0.1000 ... to 0.1111 or from 1/2 to 
approximately 1. 

~~~LZL::~ NUMBER I :.1 : 1
5

: I : 1 : : I: I : I 0 1 : I APPROXIMATELY 0 

~~G;;~o NUMBER 17.171 :7 1 :6 1 : : I: I : 1 ' I ~ I APPROXIMATELY 2 

11-3967 

Figure 3-4 Unnormalized Floating-Point Fraction 

The fraction overflow bit (bit 59) is set during certain arithmetic operations. For example, during 
addition, certain sums will produce an overflow such as 0.1000 ... + 0.100 ... which yields 1.000 .... 
This result must be normalized, so the FP11-E right-shifts the fraction one place and increases the 
exponent by one. 
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Bit 58 is called the hidden bit. Recall that since fractions are normalized by the FPII-E, the bit 
immediately to the right of the binary point (bit 58) is always a 1. This bit is dropped when a fraction is 
sent to memory and appended when a fraction is received from memory. This procedure allows one 
extra bit of significance in floating-point fraction representation. 

The guard bits serve three functions. 

1. They allow rounding of a double-precision fraction. 

2. They maintain the accuracy of a double-precision fraction that has been shifted right as 
many as three places. 

3. They allow storage of a 59-bit constant during a MOD instruction. 

Guard bits are discussed in more detail in the FPII-E Floating-Point Processor Technical Manual. 

3.3.1.2 Floating-Point Exponent - The 8-bit floating-point exponent is expressed in excess 200 nota­
tion. The chart below illustrates the relationship between exponents in 2's complement notation and 
exponents in excess 200 notation. 

Positive 
Exponents 

Negative 
Exponents 

2's Complement 

177 Most positive exponent 

a Least positive exponent 

377 Least negative exponent 

200 Most negative exponent 

Positive 
Exponents 

Negative 
Exponents 

Excess 200 

377 Most positive exponent 

200 Least positive exponent 

1 77 Least negative exponent 

a Most negative exponent 

Note that an exponent in excess 200 notation is obtained by simply adding 200 to the exponent in 2's 
complement notation. Thus, 8-bit exponents in excess 200 notation range from 0 to 377 (or from -200 
to + 177). A number with an exponent in excess of -200 is treated by the FPII-E as O. 

For example, the number O.b is actually 0.1 X 2°, and the exponent is represented as 10 000 0002 

because 2008 represents an exponent of zero. Figure 3-5 illustrates the range of floating-point numbers 
that can be handled by the FPII-E. For simplicity, a fraction length of only three bits is shown. 
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-0.1112 X2177S 

~-1 X2127 

MOST 
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NUMBER 

-0.100'2 X2-177S 

"'" _.5X2- 127 

ZERO 

"" .5X2- 127 

Figure 3-5 Floating-Point Range 

"" 1X2127 

MOST 
POSITIVE 
NUMBER 

MA-0273 

A number with an exponent of less than 0 causes an underflow condition, which means that the 
number is too small to be represented. A number with an exponent of more than 3778 causes an 
overflow condition, which means that the number is too large to be represented. 

3.3.2 Interpretation of a Floating-Point Number 
Floating-point operands or arguments stored in memory are assumed normalized and in sign and 
magnitude format. 

Figure 3-6 shows the decimal number 32 represented in memory in sign and magnitude format. The 
FPII-E interprets the number as a floating-point number with sign, exponent, and fraction. Only one 
memory word is shown, which contains the sign, exponent, and upper bits of the fraction. An addi­
tional word from memory would be transferred to bits 50 through 35 for single-precision mode. For 
double-precision mode, two additional words from memory would be transferred to bits 34 through 19 
and bits 28 through 03. 

The lower half of Figure 3-6 represents the decimal number 7/16 in memory and how it is interpreted 
by the FPII-E. 

3.4 FPII-ESTATUS FORMAT 
The CPU contains the FPII-E's status register. This register contains FPII-E condition codes (carry, 
overflow, zero, and negative) that can be copied into the CPU's status register. Specifically, FC, FV, 
FZ, and FN can be copied into C, V, Z, and N, respectively. The FPII-E status register also contains 
four mode bits and additional bits to enable various interrupt conditions. Figure 3-7 illustrates the 
organization of the FPII-E status register and Table 3-1 describes each bit. 

3.5 FLOATING-POINT EXCEPTION FORMAT 
A total of seven possible interrupts (exceptions) can occur. The interrupt vector used to handle all 
floating-point exceptions is in location 2448• When they occur, exceptions are encoded in the FPII-E 
exception code (FEC) register located in the CPU. The interrupt exception codes represent an offset 
into a dispatch table, which routes the program to the correct error handling routine. The dispatch 
table is determined by the software. The code for each exception is shown in Table 3-2, with a brief 
description. 
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FP11 

S 

SIGN. ,r _____ E_X_PO"N_E_N_T ____ .....,,,r_----F-RA ..... C ..... TI-O-N----, 

15 14 13 12 11 10 9 8 7 6 5 3 

MEMORY NUMBER 32 REPRESENTED 
IN SIGN AND MAGNITUDE 
FORMAT (NUMBER ASSUMED 

NORMALIZED) 

4 3 
,....--'-------' 

EXPONENT FRACTION 

HIDDEN 
EXPONENT = 206 - 200 = 6 = ~ BIT FRACTION = 1/2 (INSERTION OF HIDDEN BIT) 

FLOATING POINT NUMBER = 2!' X 1/2= 32 

EXPONENT FRACTION 
~-----~------~\,r_-----~-----~ 

14 13 12 11 10 

MEMORY 

NORMALIZED) 

o 

r--""T"'--r-":"""';"'~"""';:"""-"';""""';"'~ ... - - - - ~ l--, 
o I ADDITIONAL I 

'---'_-'---'_ ..... -.J_ ...... _.L-..... ~. _ - ~~~l:" _.J 
~ ~ ~ ~ ~ M ~ ~ M 21 0 

EXPONENT t FRACTION 

HIDDEN 

EXPONENT = 177 - 200 = -1 = 2-1 BIT FRACTION = 1/2 + 1/4 + 1/8 = 7/8 (INSERTION OF HIDDEN BIT) 

FLOATING POINT NUMBER = 2-1 X 7/8 = 7/16 

Figure 3-6 Interpretation of Floating-Point Numbers 

INTERRUPT ENABLES MODE BITS CONDITION CODES 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

I 
FER 

I I I I I I I I I I I 
I I I I I I I I I ~~Eb FIUV FIV FD FT 

FlO NOT FlU FIC FL 
USED 

I I 

Figure 3-7 FPII-E Status Register Format 
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Bit 

FER 

FID 

FIUV 

FlU 

FIV 

FIC 

FD 

FL 

FT 

FMM 

FC, FV,FZ, 
and FN 

Table 3-1 FPII-E Status Register 

Function 

This bit indicates an error condition of the FPll-E. 

Floating Interrupt Disable - All interrupts by the FPll-E are disabled when 
this bit is on. Primarily for maintenance use. Normally clear. 

Floating Interrupt on Undefined Variable - When this bit is set and a -0 is 
obtained from memory, an interrupt occurs. If the bit is not set, -0 can be 
loaded and stored; however, any arithmetic operation treats it as if it were a 
positive o. 

Floating Interrupt on Underflow - When this bit is set, an underflow condi­
tion causes a floating underflow interrupt. The result of the operation caus­
ing the interrupt is correct except for the exponent, which is off by 4008• If the 
FlU is not set and underflow occurs, the result is set to zero. 

Floating Interrupt on Overflow - When this bit is set, floating overflow 
causes an interrupt. The result of the operation causing the interrupt is cor­
rect except for the exponent, which is off by 4008 • If the FIV bit is not set, the 
result of the operation is the same; the only difference is that the interrupt 
does not occur. 

Floating Interrupt on Integer Conversion Error - When this bit is set and the 
Store Convert Floating-to-Integer instruction causes FC to be set (indicating 
a conversion error), an interrupt occurs. When a conversion occurs, the des­
tination register is cleared and the source register is untouched. When FIC is 
reset, the result of the operation is the same; however, no interrupt occurs. 

Double-Precision Mode Bit - This bit, when set, specifies double-precision 
format and, when reset, specifies single-precision format. 

Long Precision Integer Mode Bit - This bit is employed during conversion 
between integer and floating-point format. If set, double-precision 2's com­
plement integer format of 32 bits is specified; if reset, single-precision 2's 
complement integer format of 16 bits is specified. 

Truncate Bit - This bit, when set, causes the result of any floating-point oper­
ation to be truncated rather than rounded. 

Maintenance Mode Bit - This bit is used to enable special maintenance logic 
and is described in the FPll-E Floating-Point Processor Technical Manual. 

These bits are the four floating-point condition codes, which can be loaded in 
the CPU's C, V, Z, and N condition codes, respectively. This is accomplished 
by the Copy Floating Condition Codes (CFCC) instruction. To determine 
how each instruction affects the condition codes, refer to Table 4-1. 

For the Store Convert Floating-to-Integer instruction (which converts a 
floating-point number to an integer), the FC bit is set if the resulting integer 
is too large to be stored in the specified register. 
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Table 3-2 FP11-E Exception Codes 

FP11-E 
Exception 
Code Definition 

2 Floating Op Code Error - The FPII-E causes an interrupt for 
an erroneous op code 

4 Floating Divide by Zero - Division by zero causes an interrupt 
if FID is not set 

6 Floating (or Double) Integer Conversion Error 

10 Floating Overflow 

12 Floating Underflow 

14 Floating U ndefined Variable 

16 Maintenance Trap 

NOTE 
The traps for exception codes 6, 10, 12, 14, and 16 
can be enabled in the FP11-E program status regis­
ter. All traps are disabled if FID is set. 

Refer to the PDP-II/60 Processor Handbook for further details concerning FPII-E exceptions. 

In addition to the FEC register, the CPU contains a 16-bit floating exception ·address (FEA) register, 
which stores the address of the last floating-point instruction that caused a floating-point exception. 
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CHAPTER 4 
FLOATING-POINT INSTRUCTIONS 

4.1 FLOATING-POINT ACCUMULATORS 
The FPII-E contains six accumulators (ACO-AC5). These accumulators are 64-bit read/write scratch­
pad memories with non-destructive readout. 

Each accumulator is interpreted as being either 64 or 32 bits long, depending on the instruction and the 
FPII-E status (Chapter 3). If an accumulator is interpreted as being 64 bits long, 64 bits of data occupy 
the entire accumulator. If an accumulator is interpreted as being 32 bits long, 32 bits of data occupy 
only the leftmost 32 bits of an accumulator as shown in Figure 4-1. 

The floating-point accumulators are used in numeric calculations and interaccumulator data transfers. 
ACO-AC3 are used for all data transfers between the FPII-E and the CPU or memory. 

ACCUMULATORS 

o 

2 

3 

4 

64 BIT ACCUMULATOR 

32 BIT ACCUMULATOR 
! 

. 

~--------------------------~----------------------~ 
~--------------------------~------------~--------~ 

5~----------------------~------------------~ 

MSB LSB 

MA-0277 

Figure 4-1 Floating-Point Accumulators 

4.2 INSTRUCTION FORMATS 
An FPII-E instruction must be in one of five formats. These formats are summarized in Figure 4-2. 

The 2-bit AC field (bits 6 and 7) allows selection of scratchpad accumulators 0 through 3 only. 

If address mode 0 is specified with formats Fl or F2, bits 2 through 0 are used to select a floating-point 
accumulator. Only accumulators 5 through 0 can be specified in mode O. If 6 or 7 is specified in bits 2 
through 0 in mode 0, the FPII-E traps if floating-point interrupts are enabled (FID = 0). The FEC will 
indicate an illegal op code error (exception code 2). 
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15 12 11 87 6 5 0 

F 1 OC : 17 

1 
FOC 

1 
AC 

1 
FSRC/FDST I 

15 12 11 6 5 0 

F21 OC = 17 

1 
FOC 

I 
FDST 

1 

15 12 11 8 7 65 0 

F31 OC = 17 FOC 

I 
AC 

I 
SRC/DST 

1 

15 12 11 6 5 0 

F41 OC = 17 FOC 

I 
SRC/DST 

1 

15 12 11 0 

F51 OC = 1 7 

I 
FOC I 

11-3730 

Figure 4-2 Instruction Formats 

The fields of the various instruction formats (as summarized in Table 4-1) are interpreted as follows: 

Mnemonic 

OC 

FOC 

SRC 

DST 

FSRC 

FDST 

AC 

Description 

Operation Code - All floating-point instructions are designated by a 4-bit op 
code of 178• 

Floating Operating Code - The number of bits in this field varies with the 
format; the code is used to specify the actual floating-point operation. 

Source - A 6-bit source field identical to that in the PDP-II instruction. 

Destination - A 6-bit destination field identical to that in a PDP-II instruc­
tion. 

Floating Source - A 6-bit field used only in format Fl. It is identical to SRC, 
except in mode 0 when it references a floating-point accumulator rather than 
a CPU general register. 

Floating Destination - A 6-bit field used in formats FI and F2. It is identical 
to DST, except in mode 0 when it references a floating-point accumulator 
instead of a CPU general register. 

Accumulator - A 2-bit field used in formats FI and F3 to specify FPII-E 
scratchpad accumulators 0 through 3. 

4-2 



Table 4-1 Format of FPII-E Instructions 

Instruction 
Format Instruction Mnemonic 

F2 ABSOLUTE ABSFFDST 
ABSDFDST 

FI ADD ADDF FSRC, AC 
ADDD FSRC, AC 

F2 CLEAR CLRFFDST 
CLRDFDST 

FI COMPARE CMPF FSRC, AC 
CMPD FSRC, AC 

F5 COpy FLOATING CONDITION CODES CFCC 
FI DIVIDE DIVF FSRC, AC 

DIVD FSRC, AC 
FI LOAD LDFFSRC,AC 

LDDFSRC,AC 
FI LOAD CONVERT LDCFD FSRC, AC 

FDCDF FSRC, AC 
F3 LOAD CONVERT INTEGER TO LDCIF SRC, AC 

FLOATING LDCID SRC, AC 
LDCLF SRC, AC 
LDCLD SRC, AC 

F3 LOAD EXPONENT LDEXP SRC, AC 
F4 LOAD FPII'SPROGRAM STATUS LDFPSSRC 
FI MODULO MODF FSRC, AC 

MODD FSRC, AC 
FI MULTIPLY MULF FSRC, AC 

MULD FSRC, AC 
F2 NEGATE NEGFFDST 

. NEGD FDST 
F5 SET DOUBLE MODE SETD 
F5 SET FLOATING MODE SETF 
F5 SET INTEGER MODE SETI 
F5 SET LONG INTEGER MODE SETL 
FI STORE STFAC,FDST 

STDAC,FDST 
FI STORE CONVERT STCFD AC, FDST 

STCDF AC, FDST 
F3 STORE CONVERT STCFI AC, DST 

FLOA TING TO INTEGER STCFL AC, DST 
STCDI AC, DST 
STCDL AC, DST 

F3 STORE EXPONENT STEXPAC, DST 
F4 STORE FPII'S PROGRAM STATUS STFPSDST 
F4 STORE FPII'S STATUS STSTDST 
FI SUBTRACT SUBF FSRC, AC 

SUBD FSRC, AC 
F2 TEST TSTFFDST 

TSTDFDST 
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4.3 INSTRUCTION SET 
Table 4-2 contains the instruction set of the FPI1-E. Some of the symbology may not be familiar. 
Therefore, a brief description follows. 

1. A floating-point flip-flop, designated FO, determines whether single- or double-precision 
floating-point format is specified. If the flip-flop is cleared, single-precision is specified and 
is designated by F. If the flip-flop is set, double-precision is specified and is designated by O. 
Examples are NEGF, NEGO, and SUBO. 

2. An integer flip-flop, designated FL, determines whether short integer or long integer format 
is specified. If the flip-flop is cleared, short integer format is specified and is designated by I. 
If the flip-flop is set, long integer format is specified and is designated by L. Examples are( 
SETI and SETL. 

3. Several convert type instructions use the symbology defined below. 

CIL,PD - Convert integer to floating 

CPD,IL - Convert floating to integer 

Cp D or CD P - Convert single-floating to double-floating or convert double-floating to 
single-floating 

4. UPLIM is defined as the largest possible number that can be represented in floating-point 
format. This number has an exponent of 377 (excess 200 notation) and a fraction of allIs. 
Note the UPLIM is dependent on the format specified. LOLIM is defined as the smallest 
possible number that is not identically zero. This number has an exponent of 001 and a 
fraction of all Os except for the hidden bit. 

5. The following conventions are used when referring to address locations. 

(xxxx) = the contents of the location specified by xxxx 
ABS (address) = absolute value of (address) 
EXP (address) = exponent of (address) in excess 200 notation 

6. Some of the octal codes listed in Table 4-2 are in the form of mathematical expressions. 
These octal codes can be calculated as shown in the following examples. 

Example 1: LDFPS Instruction 

Mode 3, register 7 specified (F instruction format). 

170100 + SRC 
SRC field is equal to 37 
Basic op code is 170100 
SRC and basic op code are added to yield 170137. 
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Example 2: LD F Instruction 

AC2, mode 2, and register 6 specified (Fl instruction format). 

172400 + C * 100 + FSRC 

AC = 2 

2 * 100 = 200 

172400 + 200 = 172600 
FSRC is equal to 26 

172600 + 26 + 172626 

7. AC v 1 means that the accumulator field (bits 6 and 7 in formats F 1 and F3) is logically 
ORed with 01. 

Example: 

Accumulator field = bits 6 and 7 = AC2 = 10. AC v 1 = 11. 

The information in Table 4-2 is expressed in symbolic notation to provide the reader with a quick 
reference to the function of each instruction. The following paragraphs supplement the information in 
Table 4-2. 

Mnemonic 

ABSF FOST 
ABSO FOST 

AOOF FSRC, AC 
AOOO FSRC, AC 

Table 4-2 FPII-E Instruction Set 

Instruction Description Octal Code 

Absolute 170600+ FOST 
FOST +- minus (FOST) if FOST ~ 0; other- F2 Format 
wise FOST +- (FOST) 
FC +-0 
FV +-0 
FZ +- 1 if exp (FOST) = 0; otherwise FZ +- 0 
FN +-0 

Floating Add 172000+AC*100+FSRC 
AC +- (AC) + (FSRC) if I AC I + (FSRC) Fl Format 
~ LOLIM; otherwise A C+-O 

FC +-0 
FV +-1 if I AC I ~ UPLIM; otherwise FV +- 0 
FZ +- if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 
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Table 4-2 FPII-E Instruction (Cont) 

Mnemonic Instruction Description Octal Code 

CLRF FDST Clear 170400+ FDST 
CLRD FDST FDST +- 0 F2 Format 

FC +-0 
FV +-0 
FZ +- 1 
FN +-0 

CMPF FSRC, AC Floating Compare 173400+ A C* 100+ FSRC 
CMPD FSRC, AC FC +-0 Fl Format 

FV +-0 
FZ +- 1 if (FSRC) - (AC) = 0; otherwise 

FZ +- 0 
FN +- 1 if (FSRC) - (AC) < 0; otherwise 

FN +-0 

CFCC Copy Floating Condition Codes 170000 
C +- FC F5 Format 
V+- FV 
Z +- FZ 
N+- FN 

DIVF FSRC, AC Floating Divide 174400+AC*100+FSRC 
DIVD FSRC, AC AC +- (AC)/(FSRC) if I (AC)/(FSRC) I Fl Format 

~ LOLIM; otherwise AC +- 0 
FC +-0 
FV +- 1 if I AC I ~ UPLIM; otherwise FV +- 0 
FZ +- 1 if EXP (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

LDF FSRC, AC Floating Load 172400+AC*100+ FSRC 
or AC +- (FSRC) Fl Format 
LDD FSRC, AC FC +- 0 

FV +-0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 
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Mnemonic 

LDCDF FSRC, AC 
LDCFD FSRC, AC 

LDCIF SRC, AC 
LDCID SRC, AC 
LDCLF SRC, AD 
LDCLD SRC, AC 

LDCIF = Single Integer 
to Single Float 
LDCID = Single Integer 
to Double Float 
LDCLF = Long Integer 
to Single Float 
LDCLD = Long Integer 
to Double Float 

Table 4-2 FPII-E Instruction (Cont) 

Instruction Description 

Load Convert Double-to-Floating or 
Floating-to-Double 
AC +- CF,D or CD,F (FSRC) 
FC +- 0 
FV +- 1 if I AC I ~ UPLIM; otherwise 
FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (A C) < 0; otherwise FN +- 0 

If the current format is single-precision float­
ing-point (FD = 0), the source is assumed to 
be a double-precision number and is con­
verted to single-precision. If the floating trun­
cate bit is set, the number is truncated; 
otherwise, it is rounded. If the current format 
is double-:-precision (FD = 1), the source is as­
sumed to be a single-precision number and 
loaded left-justified in the AC. The lower half 
of the AC is cleared. 

Load and Convert from Integer to Floating 
AC +- CIL,FD (SRC) 
FC +- 0 
FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 
CIL,FD specifies conversion from a 2's com­
plement integer with precision I or L to a 
floating-point number of precision F or D. If 
integer flip-flop IL = 0, a 16-bit integer (I) is 
double specified, and if IL = 1, a 32-bit in­
teger (L) is specified. If floating-point flip-flop 
FD = 0, a 32-bit floating-point number (F) is 
specified, and if FD = 1, a 64-bit floating 
point number (D) is specified. If a 32-bit in­
teger is specified and addressing mode 0 or 
immediate mode is used, the 16 bits of the 
source register are left justified, and the re­
maining 16 bits are zeroed before the con­
version. 
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Octal Code 

177400+ AC* 100+ FSRC 
Fl Format 
F, D-single-precision to 
double-precision floating 
D, F -double-precision to 
single-precision floating 

177000+AC*100+SRC 
F3 Format 



Mnemonic 

LDEXPSRC,AC 

LDFPS SRC 

MODF FSRC, AC 
MODD FSRC, AC 

MULF FSRC, AC 
MULD FSRC, AC 

NEGF FDST 
NEGD FDST 

Table 4-2 FPII-E Instruction (Cont) 

Instruction Description Octal Code 

Load Exponent 176400+AC*100+SRC 
AC SIGN +- (AC SIGN) F3 Format 
AC EXP +- (SRC) + 200 only if ABS (SRC) 

< 177 
AC FRACTION +- (AC FRACTION) 
FC +- 0 
FV +- 1 if (SRC) > 177; otherwise FV +- 0 
FZ +- 1 if EXP (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (A C) < 0; otherwise FN +- 0 

Load FPII-E's Program Status Word 170100+SRC 
FPS +- (SRC) F4 Format 

Floating Modulo 171400+AC*100+FSRC 
AC vI+- integer part of (AC) * (FSRC) Fl Format 
AC +- fractional part of (AC) * (FSRC) 

- (AC v 1) if' (AC) * (FSRC)' 
~ LOLIM or FlU = 1; otherwise AC +- 0 

FC +-0 
FV +- 1 if' AC , ~ UPLIM; otherwise FV +- 0 
FZ +- 1 if (A C) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

The product of (AC) and (FSRC) is 48 bits in 
single-precision floating-point format or 59 
bits in double-precision floating-point format. 
The integer part of the product [(A C) * 
(FSRC)] is found and stored in AC v 1. The 
fractional part is then obtained and stored in 
AC. Note that multiplication by 10 can be 
done with zero error, allowing decimal digits 
to be stripped off with no loss in precision. 

Floating Multiply 171000+AC*100FSRC 
AC +- (AC) * (FSRC) if' (AC) * (FSRC) , Fl Format 
~ LOLIM; otherwise AC +- 0 

FC +-0 
FV +- 1 if' AC , ~ UPLIM; otherwise FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +-0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

Negate 170700+FDST 
FDST +-minus (FDST) ifEXP (FDST) #- 0; F2 Format 

otherwise FDST +- 0 
FC +-0 
FV +-0 
FZ +- 1 if if EXP (FDST) = 0; otherwise FZ 

+-0 
FN +- 1 if (FDST) < 0; otherwise FN +- 0 
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Mnemonic 

SETD 

SETF 

SETI 

SETL 

STF AC, FDST 
STD AC, FDST 

STCFD AC, FDST 
STCDF AC, FDST 

STCFI AC, DST 
STCFL AC, DST 
STCDI AC, DST 
STCDL AC, DST 

STCFI = Single Float to 
Single Integer 
STCFL = Single Float to 
Long Integer 
STCDI = Double Float 
to Single Integer 
STCDL = Double Float 
to Long Integer 

Table 4-2 FPII-E Instruction (Cont) 

Instruction Description 

Set Floating Double Mode 
FD +-- 1 

Set Floating Mode 
FD +-- 0 

Set Integer Mode 
FL +-- 0 

Set Long Integer Mode 
FL +-- 1 

Floating Store 
FDST +-- (AC) 
FC +-- FC 
FV +-- FV 
FZ +-- FZ 
FN +-- FN 

Store convert from Floating to Double or 
Double to Floating 
FDST +-- Cp,D or CD,P (AC) 
FC +-- 0 
FV +--1 if/ AC / ~ UPLIM; otherwise FV +--0 
FZ +-- 1 if (AC) = 0; otherwise FZ +-- 0 
FN +-- 1 if (AC) < 0; otherwise FN +-- 0 

Store Convert from Floating to Integer 
Destination receives converted AC if the re­
sulting integer number can be represented in 
16 bits (short integer) or 32 bits (long integer). 
Otherwise, destination is zeroed and C bit is 
seL 

FV +-- 0 
FZ +-- 1 if (DST) = 0; otherwise FZ +-- 0 
FN +-- 1 if (DST) < 0; otherwise FN +-- 0 
C +-- FC 
V +-- FV 
Z +-- FZ 
N +-- FN 

When the conversion is to long integer (32 
bits) and address mode 0 or immediate mode 
is specified, only the most significant 16 bits 
are stored in the destination register. 
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Octal Code 

170011 
F5 Format 

170001 
F5 Format 

170002 
F5 Format 

170012 
F5 Format 

174000+ A C* 100+ FDST 
Fl Format 

176000+AC* 100+ FDST 
Fl Format 
F, D-single-precision to 
double-precision floating 
D, F-double-precision to 
single-precision floating 

175400+AC*100+DST 
F3 Format 



Table 4-2 FPll-E Instruction (Cont) 

Mnemonic Instruction Description Octal Code 

STEXP AC, DST Store Exponent 175000+C*I00+ DST 
DST +- AC EXPONENT - 2008 F3 Format 
FC +-0 
FV +-0 
FZ +- 1 if (DST) = 0; otherwise FZ +- 0 
FN +- 1 if (DST) < 0; otherwise FN +- 0 
C +- FC 
V+- FV 
Z +- FZ 
N +-FN 

STFPS DST Store FPII-E's Program Status Word 170200+DST 
DST +- (FPS) F4 Format 

STST DST Store FPII-E's Status 170300+DST 
DST +- (FEC) F4 Format 
DST + 2 +- (FEA) if not mode 0 or not imme-
diate mode 

SUBF FSRC, AC Floating Subtract 173000+ AC* 100+ FSRC 
SUBD FSRC, AC AC +- (A C) - (FSRC) if I (AC) - (FSRC) I Fl Format 

~ LOLIM; otherwise AC +- 0 
FC +-0 
FV +- 1 if AC UPLIM; otherwise FV +- 0 
FZ +- 1 if (AC) = 0; otherwise FZ +- 0 
FN +- 1 if (AC) < 0; otherwise FN +- 0 

TSTF FDST Test 170500+ FDST 
TSTD FDST FDST +- (FDST) F2 Format 

FC +-0 
FV +-0 
FZ +- 1 if EXP (FDST) = 0; otherwise FZ +- 0 
FN +- 1 if (FDST) < 0; otherwise FN +- 0 

4.3.1 Arithmetic Instructions 
The arithmetic instructions (Add, Subtract, Multiply, Divide) require one operand in a source (a 
floating-point accumulator in mode 0, a memory location otherwise) and one operand in a destination 
accumulator. The instruction is executed by the FPII-E and the result is stored in the destination 
accumulator. 

The Compare instruction also requires one operand in a source and one operand in a destination 
accumulator. However, the two operands remain in their respective locations after the instruction is 
executed by the FPII-E, and there is no transfer of the result. 
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4.3.2 . Floating Modulo Instruction 
The Floating Modulo (MOD) instruction causes the FPII-E to mUltiply two floating-point operands, 
separate the product into integer and fractional parts, and store one or both parts as floating-point 
numbers. The whole number portion goes into an odd-numbered accumulator and the fraction goes 
into an even-numbered accumulator. 

The whole number portion of the number, when expressed as a floating-point number, contains an 
exponent greater than 201,inexcess 200 notation, which means that the whole number has a decimal 
value of some number greater than one and less than UPLIM, where UPLIM is the greatest possible 
number that can be represented by the FPl1-E. 

The fractional portion of the number, when expressed as a floating-point number, contains an expo­
nent less than or equal to 201 in excess 200 notation. This means that the fraction has a value less than 
one and greater .than LOLIM, where LOLIM is the smallest possible number that can be represented 
by the FPII-E. 

4.3.3 Load Instruction 
The Load instruction causes the FPII-E (and the CPU, if not in mode 0) to take an operand from a 
source and copy it into a destination accumulator. The source is a floating-point accumulator in mode 
o and a memory location otherwise. 

4.3.4 Store Instruction 
The Store instruction causes the FPII-E (and the CPU, if not in mode 0) to take an operand from a 
source accumulator and transfer it to a destination. This destination is a floating-point accumulator in 
mode 0 and a memory location otherwise. 

4.3.5 Load Convert (Double-to-Floating, Floating-to-Double) Instructions 
The Load Convert Double-to-Floating (LDCDF) instruction causes the FPII-E to assume that the 
source specifies a double-precision floating-point number. The FPll-E then converts that number to 
single-precision, and places this result in the destination accumulator. If the floating truncate status bit 
(FT) is set, the number is truncated. If FT is not set, the number is rounded by adding a 1 to the single­
precision segment if the MSB of the double-precision segment is ai, as shown in Figure 4-3. If the 
MSB of the double-precision segment is 0, the single-precision word remains unchanged after round­
ing. 

SINGLE PRECISION 
SEGMENT 

DOUBLE PRECISION 
SEGMENT 

Figure 4-3 Double-to-Single Precision Rounding 

MA-0288 

The Load Convert Floating-to-Double (LDCFD) instruction causes the FPI1-E to assume that the 
source specifies a single-precision number. The FPII-E then converts that number to double-precision 
by appending 32 zeros to the single-precision word, and places this result in the destination accumula­
tor. 
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Note that for both Load Convert instructions, the number to be converted is originally in the source (a 
floating-point accumulator in mode 0, a memory location otherwise) and is transferred to the destina­
tion accumulator after conversion. 

4.3.6 Store Convert (Double-to-Floating, Floating-to-Double) Instructions 
The Store Convert Double-to-Floating (STCDF) instruction causes the FPII-E to convert a double­
precision number located in the source accumulator to a single-precision number. The FPII-E then 
transfers this result to the specified destination. If the floating truncate (FT) bit is set, the floating­
point number is truncated. If FT is not set, the number is rounded. If the MSB (bit 31) of the double­
precision segment of the word is ai, 1 is added to the single-precision segment of the word (Figure 
4-3); otherwise, the single-precision segment remains unchanged. 

The Store Convert Floating-to-Double (STCFD) instruction causes the FPII-E to convert a single­
precision number located in the source accumulator to a double-precision number. The FPII-E then 
transfers this result to the specified destination. The single-to-double precision is obtained by append­
ing zeros equivalent to the double-precision segment of the word as shown in Figure 4-4. 

Note that for both Store Convert instructions, the number to be converted is originally in the source 
accumulator and is transferred to the destination (a floating-point accumulator in mode 0, a memory 
location otherwise) after conversion. 

63 62 48 

lsi : 
~--------__ v~--------~ 

SINGLE PRECISION 
SEGMENT 

31 16 

~ 
15 0 

EJ 
~--------~--------~ 

DOUBLE PRECISION 
SEGMENT 

11- 3728 

Figure 4-4 Single-to-Double Precision Appending 

4.3.7 Clear Instruction 
The Clear instruction causes the CPU (or the FPII-E, in mode 0) to clear a floating-point number by 
setting all its bits to O. If in mode 0, the FPII-E microcode writes zeros into the source accumulator, 
which is then transferred to a floating-point accumulator. If not in mode 0, the CPU writes Os into the 
source accumulator, which is then transferred to a memory location. 

4.3.8 Test Instruction 
The Test instruction causes the CPU (or the FPII-E, in mode 0) to test the sign and exponent of a 
floating-point number and update the FPII-E status accordingly. The number tested is obtained from 
the destination (a floating-point accumulator in mode 0, a memory location otherwise). The FC and 
FV bits are cleared. The FN bit is set only if the destination is negative. The FZ bit is set only if the 
exponent of the destination is zero. If the FIUV status bit is set, a trap occurs (after the test instruction 
is executed) if a minus zero is encountered. 
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4.3.9 Absolute Instruction 
The Absolute instruction causes the CPU (or the FPII-E, in mode 0) to take the absolute value of a 
floating-point number by forcing its sign bit to o. If mode 0 is specified, the sign of the number in the 
floating-point destination accumulator is forced to O. The exponent of the number is tested, and if it is 
0, zeros are written into the accumulator. If the exponent is non-zero, the accumulator is unaffected. 

If mode 0 is not specified, the sign bit of the specified data word in memory is zeroed. This word is then 
transferred from memory to a floating-point accumulator. The exponent of this word is tested, and ifit 
is 0, the entire data word is zeroed and transferred back to memory. If the exponent is non-zero, the 
original fraction and exponent are restored to memory. 

Absolute and Negate instructions are the only instructions that can read and write a memory location. 

4.3.10 Negate Instruction 
The Negate instruction causes the CPU (or the FPII-E, in mode 0) to complement the sign of an 
operand. If mode 0 is specified, the sign of the number in the floating-point destination accumulator is 
complemented. The exponent of the number is tested, and if it is 0, zeros are written into the accumula­
tor. If the exponent is non-zero, the accumulator is unaffected. 

If mode 0 is not specified, the sign bit of the specified data word in memory is complemented. This 
word is then transferred from memory to a floating-point accumulator. The exponent of this word is 
tested, and if it is 0, the entire data word is zeroed and transferred back to memory. If the exponent is 
non-zero, the original fraction and exponent are restored to memory. 

4.3.11 Load Exponent Instruction 
The Load Exponent instruction causes the CPU to load an exponent from the source (a floating-point 
accumulator in mode 0, a memory location otherwise) into the exponent field of the destination accu­
mulator. In order to do this, the 16-bit, 2's complement exponent from the source must be converted 
(by the CPU) to an 8-bit number in excess 200 notation. This process is described further below. 

Assume that the 16-bit, 2's complement exponent is coming from memory. The possible legal range of 
16-bit numbers in memory is from 000000 to 1777778 • On the other hand, the possible legal range of 
exponents in the FPll-E falls into two classes: 

1. Positive exponents (0 through 177) - When 200 is added to any of these numbers, the sum 
stays within the legal 8-bit exponent field (i.e., from 200 through 377). 

2. Negative exponents (177601 through 177777) - When 200 is added to any of these numbers, 
the sum stays within the legal 8-bit exponent field (i.e., from 1 through 177). 

Notice that all legal positive exponents coming from memory have something in common: their nine 
high-order bits are all Os. Similarly, all legal negative exponents from memory have their nine high­
order bits equal to 1. Therefore, to detect a legal exponent, only the nine high-order bits need be 
examined for all Is or all Os. 

Any number from memory outside these ranges is illegal and will result in either an overflow or an 
underflow trap condition. 

4-13 



Example 1: LDEXP 000034 

Exponentof34 
200 

00000000 
+ 

00011100 
10000000 

10011100 

234 

The upper nine bits all equal 0, so this is a legal positive exponent. The number 234 is sent to the 
8-bit exponent field of the specified accumulator. 

Example 2: LDEXP 201 

Exponentof201 
200 

00000000 
+ 0 

1 

Overflow 

2 0 1 

10000001 
10000000 

00000001 

This is an illegal positive exponent. Notice that when 200 is added to the exponent, an overflow 
occurs. 

Example 3 :LDEXP 100200 

Exponent of 100200 
200 

200 
,..--+"-----'- --'-

10000000 10000000 
+ 10000000 

1 
......::"" 

Underflow 

00000000 

This is an illegal negative exponent. Notice that when 200 is added to the exponent, a result is 
produced that is more negative than can be expressed by the 8-bit exponent field. Thus, an under­
flow occurs. 

Example 4: Special Case - Exponent of 0: LDEXP 177600 

Exponent of 177600 11111111 
+ 0 

00000000 

10000000 
10000000 

00000000 

This is the one case where the nine high-order bits are all equal, but the exponent is illegal. This is 
because 177600 represents an exponent of O. This exponent causes an underflow condition to 
exist; that is, it is treated as an illegal negative exponent. 
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4.3.12 Load Convert Integer-to-Floating Instruction 
The Load Convert Integer-to-Floating instruction causes the FPII-E to take a.2's complement integer 
from a source and convert it to a floating-point number. If short integer mode is specified, the number 
from the source is 16 bits and is converted to a 24-bit fraction (single-precision) or a 56-bit fraction 
(double-precision), depending on whether floating- or double-precision mode is specified. If long in­
teger mode is specified, the humber from the source is 32 bits and is converted to a single-precision or 
double-precision number, depending on whether floating or double mode is specified. 

The integer is loaded into FPII-E bits 34 through 19 if short integer mode is specified or into FPII-E 
bits 34 through 03 if long integer mode is specified (Figure 4-5). The other bits of the FPII-E word are 
loaded with zeros. 

59 34 19 

FP11-E WORD ... 1 "'-I ____________ .... ~ ..... ~~~· .-.... ............. ~ ........ ________ ......I 

\.. ..... _-_""" ___ ,..,1 

SHORT INTEGER 

59 34 3 

FP11-E WORD I ... "'-I ____________ ..a_~ ....... ~. ~~.~~ ................. ~.-.... ........... ~~·.-....~I...II 
~ ..... ____________ ~,,~------------__ JI 

LONG INTEGER 

MA-0282 

Figure 4-5 Integer Loading 

The most significant bit (MSB) of the integer (bit 34) is examined. If the MSB is zero, the integer is 
either positive or zero. To determine if the integer equals zero, the 2's complement of bits 59 through 
19 (short) or 59 through 03 (long) is taken. If bit 59 is zero as a result of this operation, the integer was 
zero (since the 2's complement of any other positive integer will yield a negative result, setting bit 59) 
and zero is stored in the specified accumulator. If the (uncomplemented) integer is positive, 2508 

(short) or 2708 (long) is temporarily assigned as the integer's exponent. The integer is then normalized 
by shifting it left until bit 59 = 0 and bit 58 = 1. The exponent is decreased by the number of left shifts. 
A simple example illustrates this process. 
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Example: Integer of 1 (short) 

t 

Shift integer 39 places to the left to normalize. 

Bit 59 = 0.; bit 58 = 1. 

Decrease temporary exponent by 3910 = 478. 

250.8 
- 478 

2Qls 

SHORT INTEGER = 1 

------------~~,-------------

MA-0283 

The integer has been converted to a floating-point number with a fraction ofQ. h and an exponent 
of 2.0.18 (exc·e~s 20.0. notation). The sign has already been determined; it is positive. 

If the MSB is one, the integer is negative. The integer is shifted 25 places left so that its MSB is bit 59. 
The 2's complement of the integer is taken and 2178 (short) or 2368 (long) is temporarily assigned as the 
integer's exponent. The integer is normalized and its temporary exponent is decreased by the number 
of left shifts. 
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Example: Integer of -16 (Long) 

NOTE 
Long integer of -16 has already been shifted 25 
places and 2's complemented. 

~~ ~ ~ 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I + I 0 I 0 I 0 10 I 0 I 0 I + I 0 I 0 10 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I, I 0 I 0 I 0 I o! 
t I 

Shift integer 26 places to the left to normalize. 

Bit 59 = 0; bit 58 = 1 

Decrease temporary exponent by 2620 = 328• 

2378 

- 328 

2058 

MA-0284 

The integer has been converted to a floating-point number with a fraction of 0.12 and an exponent 
of 2058 (excess 200 notation). The sign has already been determined; it is negative. 
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4.3.13 Store Exponent Instruction 
The Store Exponent (STEXP) instruction causes the CPU to access a floating-point number in the 
FPII-E, extract the 8-bit exponent field from this number, and subtract a constant of 200 (since the 
exponent is expressed in excess 200 notation). The exponent is then stored in the destination as a 16-
bit, 2's complement, right-justified number with the sign of the exponent (bit 07) extended through the 
eight high-order bits. 

The legal range of exponents is from 0 to 377, expressed in excess 200 notation. This means that the 
number stored ranges from -200 to 177 after the constant of 200 has been subtracted. The subtraction 
of 200 is accomplished by taking the 2's complement of 200 and adding it to the exponent field. 

Two examples that illustrate the process follow: one using an exponent greater than 200 and the next 
using an exponent less than 200. 

Example 1: Exponent = 207 

Exponentof207 
2's Complement of 200 

Result = 7 

15 

FLOATING POINT I 
NUMBER IN FP11-E S I 

EXPONENT 
TRANSFERRED 
TO MEMORY 0 

(OR ACCUMULATOR) 
15 

14 

1 

0 

14 

13 12 11 10 9 

EXPONENT (8 BITS) 
0 0 0 0 

SIGN EXTENSION 

0 0 0 0 

13 12 11 10 
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10000111 
+10000000 

00000111 

Sign Bit /'" -:; 

8 7 6 5 4 3 2 

FRACTION 

0 0 0 

5 4 3 2 

BIT 7 IS EXTENDED TO 
THE 8 HIGH ORDER BITS. 

0 

0 
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Example 2: Exponent = 42 

Exponentof42 
2's Complement of 200 

Result = ~42 

00100010 
+10000000 

10100010 

~ ----
Sign Bit 4 2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

FLOATING·POINT. I EXPONENT (8 BITS) 
FRACTION S 0 0 1 0 0 0 0 NUMBER IN FP11-E 

SIGN EXTENSION 

EXPONENT 
TRANSFERRED 
TO MEMORY 0 0 0 

(OR ACCUMULATOR) 
15 14 13 12 11 10 6 4 3 2 

BIT 7 IS EXTENDED TO 
THE 8 HIGH ORDER BITS. 

4.3.14 Store Convert Floating-to-Integer Instruction 

0 

0 

0 

MA-0286 

The Store Convert Floating-to-Integer instruction causes the CPU to take a floating-point number and 
convert it to an integer for transfer to a destination. 

The four classes of this . instruction are: 

1. STCFI - Convert single-precision, 24-bit fraction to a 16-bit integer (short integer mode). 
2. STCFL - Convert single-precision, 24-bit fraction to a 32-bit integer (long integer mode). 
3. STCDI - Convert double-precision, 56-bit fraction to a 16-bit integer (short integer mode). 
4. STCDL - Convert double-precision, 56-bit fraction to a 32-bit integer (long integer mode). 

The (normalized) floating-point number to be converted is transferred to the CPU. The CPU works 
with the sign bit and one of the following. 

1. The 15 MSBs of the fraction for F-to-I and D-to-I conversion 
2. The 31 MSBs of the fraction for D-to-L conversion 
3. The entire fraction for F-to-L conversion. 
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The CPU subtracts 201 from the exponent to determine if the floating-point number is a fraction. If 
the result of the subtraction is negative, the exponent is less than 201, and the' absolute value of the 
floating-point number is less than 1. When converted to an integer, the value of this number is 0; a 
conversion error occurs, the FZbit is set, and Os are sent to the destination. If the result of the 
subtraction is positive (or zero), it indicates that the exponent is greater than (or equal to) 201, and the 
floating-point number can be converted to a non-zero integer. 

A second test is made by the CPU to determine if the floating-point number to be converted is within ' 
the range of numbers which can be represented by a 16-bit integer (I format) or 32-bit integer (L 
format). 

Consider the range of integers that can be represented in I and L formats and their floating-point 
equivalents. 

I Format Floating-Point LFormat Floating-Point 
(16 bits) Equivalent (32 bits) Equivalent 

Most Positive 077777 +.1111 ... X21s 17777777777 +.1111 ... X231 
Integer 

Least Positive 000001 +.100 ... X21 00000000001 +.100 ... X21 
Integer 

Least Negative 177777 - .1111 ... X216 37777777777 - .1111 ... X232 
Integer 
Most Negative 100000 - .1000 ... X2 16 20000000000 -.100 ... X2 32 
Integer 

NOTE 
MSB of integer = sign of integer. 

Thus, the exponent of a positive floating-point number to be converted must be less than 1610 (220 in 
excess 200 notation) to convert to I format or 3210 (240 in excess 200 notation) to convert to L format. 
The exponent of a negative number to be converted must be less than or equal to 1610 or 3210 to convert 
to I or L formats, respectively. 

The CPU tests whether the floating-point number to be converted is within the range of integers that 
can be represented in I or L format by subtracting a constant of 208 (for 'short integers) or 408 (for long 
integers) from the result of the first test (result of first test = biased exponent - 201 8 = unbiased 
exponent - 1). If the result of the subtraction is positive or zero, it indicates that the floating-point 
number is too large to,be represented as an integer. In that case, a conversion error occurs and Os are 
sent to the destination. If the result of the subtraction is a negative number other than -1, the floating­
point number can be represented as an integer without causing an overflow condition. If the result of 
the subtraction is -1, the exponent of the floating-point number is either 220 (short) or 240 (long), and 
conversion proceeds. However, the floating-point number is within range only if its sign is negative 
and its fraction is .100 ... (i.e., if it is the most negative integer; see table above). If, in this case, the 
number is not the most negative integer, it will be detected by a third conversion error test (see below) 
after conversion. 



To convert the fraction to an integer, the CPU shifts it right a number of places as specified by the 
following algorithms: 

Short integer: 

Long integer: 

No. of right shifts = 20s + 201s - biased exponent-l 

No. of right shifts = 40s + 201 s - biased exponent - 1 

Regardless of the condition of the FT bit, the fractional part of the number is always truncated during 
this shifting process. 

If the floating-point number is positive, the integer conversion is complete after shifting, and the 
number is transferred to the appropriate destination. If, however, the floating-point number is nega­
tive, the integer must be 2's complemented before being sent to its destination. 

After conversion, the CPU performs a third test for a conversion error by comparing the MSB of the 
(converted) integer with the sign bit of the original (unconverted) number. If these signs are not equal, 
there has been a conversion error and the CPU traps if the FIC bit is set. This test is performed to 
detect a floatin.g-point number with an exponent of 220 (short) or 240 (long) that has not been con­
verted to the most negative integer. 

Example 1: Store Convert Floating-to-Integer (STCFI) 

Exponent = 203 
Sign = 0 

Fraction (24 bits) = .1,000000000000,00000000000 
15 MSBs of fraction = .100000000000000 

203 (excess 200) = 2 
Fraction = 1/2 Integer to be stored = 1/2 X 2 = 4 

1. Test 1: Is the number to be converted a fraction? 

. Exponent: 

No 

203s 
-2,01 

2 
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Since this result is. positive, the given floating­
point number is not a fraction and conversion 
may proceed without error. 



2. Test 2: Is the floating-point number to be converted within range? (We are working with a 
positive short integer.) 

Result of Test 1: 

Yes 

2 
-20 

-16 

How many right shifts? Use algorithm: 

Indicates that the number to be converted is 
within range and can be represented as a 16-
bit integer. No conversion error occurs. 

208 + 201 8 - 2038 -1 = 208 - 38 = 158 = 1310 

= 13 right shifts 

BEFORE SHIFTING \, I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 

AFTER SHIFTING 
13 PLACES 0 0 0 0 0 0 I 0 0 I 0 I 0 0 0 0 0 0 

t \ I 'V' 

4 

MSB. 

MA-0287 

This example involved a positive number, so conversion is complete after 13 right shifts. If 
the number had been negative, the integer would have been 2's complemented. 

3. Test 3: TheMSB of the converted integer and the sign bit of the original floating-point 
number are compared. Since they·· are equal, no conversion error occurs, 

4-22 



Example 2: Store Convert Floating-to-Integer (STCDL) 

Exponent = 2408 
Sign = 0 

31 MSBs of fraction = .1000000000000000000000000000000 

1. Test 1: Is the number to be converted a fraction? 

Exponent: 

No 

2408 
-201 

378 Since this result is positive, the given floating­
point nurnber is not a fraction, and con­
version may proceed (Le., no conversion error 
occurs). 

2. Test 2:' Is the floating-point number to be converted within range? (We are working with a 
positive long integer.) 

Result of Test 1: 37 
-40 

-1 We know the number is out of range by exam-
ining the sign bit (in-fact, this number is one 
greater than the most positive integer that can 
be represented). However, the CPU does not 
know this yet, and conversion proceeds with­
out error at this point. 

How many right shifts? Use algorithm: 

408 + 2018 - 2408 --1 = 0 

= no right shifts 

Converted· 32-bit integer = 200000000008 

Since the number is positive, conversion is now complete (i.e., no need for 2's com­
plementing). 

3. Test 3: The most significant bit of the converted integer (which is 1) and the sign bit of the 
original floating-point number (which is 0) are compared. Since they are not equal, a con­
version error occurs, which we predicted in Step 2. 
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4.3.15 Load FPll's Program Status 
This instruction causes the CPU to transfer 16 bits from the location specified by the source to the 
floating-point status (FPS) register. These 16 bits contain status information for use by the FPII-E in 
order to enable and disable interrupts, set and clear mode bits, and set condition codes (Paragraph 
3.4). 

4.3.16 Store FPll's Program Status 
This instruction causes the CPU to transfer the 16 bits of the FPS register to the specified destination 
(a floating-point accumulator in mode 0, a memory location otherwise). 

4.3.17 Store FPll's Status 
The Store FPll 's Status (STST) instruction causes the CPU to read the contents of the floating excep­
tion code (FEC) and floating exception address (FEA) registers when a floating-point exception (error) 
occurs. 

If mode 0 addressing is enabled, only the FEC is sent to the destination accumulator. If mode 0 
addressing is not enabled, the FEC is stored in memory followed by the FEA. In memory, the FEC 
data occupies all 16 bits of its memory location, while the FEA data occupies only the lower four bits 
of its location. 

When an error occurs and the interrupt trap in the CPU is enabled, the CPU traps to interrupt vector 
244 and issues the STST instruction to determine the type of error. 

NOTE 
The STST instruction should be used only after an 
error . has occurred, since in all other cases the in­
struction contains irrelevant data or contains the 
conditions that occurred after the last error. 

4.3.18 Copy Floating Condition Codes 
The Copy Floating Condition Codes (CFCC) instruction causes the CPU to copy the four floating 
condition codes (FC, FZ, FV, FN) into the CPU condition codes (C, Z, V, N). 

4.3.19 Set Floating Mode 
The Set Floating Mode (SETF) instruction causes the CPU to clear the FD bit (bit 07 of the FPS 
register) and indicate single-precision operation. 

4.3.20 Set Double Mode 
The Set Double Mode (SETD) instruction causes the CPU to set the FD bit (bit 07 of the FPS register) 
and indicate double-precision operation. 

4.3.21 Set Integer Mode 
The Set Integer Mode ,(SETI) instruction causes the CPU to clear the IL bit (bit 06 of the FPS) and 
indicate that short integer mode (16 bits) is specified. 

4.3.22 Set Long Integer Mode 
The Set Long Integer Mode (SETL) instruction causes the CPU to set the IL bit (bit 06 of the FPS) and 
indicate that long integer mode (32 bits) is specified. 

4.4 FPII-E PROGRAMMING EXAMPLES 
This section contains two programming examples using the FPII-E instruction set. In example 1, A is 
added to B, D is subtracted from C, the quantity (A + B) is multiplied by (C - D), and the product of 
this mUltiplication is divided by X and the result stored. Example 2 calculates DX3 + CX2 + BX + A, 
which involves a 3-pass loop. 
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Example 1 [(A + B) * (C - D)] * X 

LDF 
ADDF 
LDF 
SUBF 
MULF 
DIVF 
STF 

A,ACO 
B,ACO 
C,ACl 
D,ACl 
ACl,ACO 
X,ACO 
ACO,Y 

;LOAD ACO FROM A 
;ACO HAS (A + B) 
;LOAD ACl FROM C 
;ACl HAS (C - D) 
;ACO HAS (A + D)*(C - D) 
;ACO HAS (A + D)*(C - D)/X 
;STORE (A + D)*(C - D)/X IN Y 

Example 2: DX3 + CXl + BX + A 

Loop 2 ___ A __ _ 

ACO =" [(D * X+C) * x+Bi'* X + A 
'-v-' 
Loop 1 

\ y 
Loop 3 

I 

ACO = [DX2 + CX + B] * X + A 

ACO = DX3 + CX2 + BX + A 

MOV #3,%0 
MOV#D+4,%l 
LDF (6)+,ACl 
CLRFACO 

LOOP; ADDF -(4),ACO 

MULF ACl,ACO 
SOB%O,LOOP 
ADDF -(4),ACO 
STF ACO,-(6) 
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;SET UP LOOP COUNTER 
;SET UP POINTER TO COEFFICIENTS 
;POPX FROM STACK 
;CLEAR OUT ACO 
;ADD NEXT COEFFICIENT 
;TO PARTIAL RESULT 
;MULTIPLY,PARTIAL RESULT BY X 
;DO LOOP 3 TIMES 
;ADD X TO GET RESULT 
;PUSH RESULT ON STACK 





5.1 INTRODUCTION 

CHAPTER 5 
FPII-E/CPU RELATIONSHIP 

As shown in Figure 5-1, the CPU and FP11-Ecommunicate with each other via data lines and control 
lines. Since the FP11-E connects directly to the PDP-11/60 CPU and not to the Unibus, the FP11-E 
uses the CPU's Unibus control facility (for Unibus data transfers) and memory management facilities. 

The FP11-E depends on the CPU to fetch instructions and data via the CPU-to-FP11-E data lines. The 
FP11-E can also supply data to the CPU via the FP11-E-to-CPU data lines. 

The CPU controls the operation of the FP11-E via the CPU-to-FP11-E control lines and monitors the 
operation of the FP11-E via the FP11-E-to-CPU control lines. The control lines are also used to ensure 
that the CPU and FP11-E are synchronized with each other at the proper time when floating-point 
instructions are being performed. 

FP11-E-TO-CPU DATA ~ 
,11-

FP11-E CPU-TO-FP11-E DATA 
FLOATING " 11/60 CPU 

POINT 

~ PROCESSOR FP11-E-TO-CPU CONTROL 

/'- CPU-TO-FP11-E CONTROL 

'r 
MA-0276 

Figure 5-1 FP11-E/CPU Relationship 

5.2 FPII-EjCPU SIGNALS 
The signals via which the FP11-E and the CPU communicate are shown in Figure 5-2 and described in 
Table 5-1. 
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I\. 
BUSDIN <15:00> H ) 

y 

( DMUX <15:00> H 

."'11 

·Vi 
N DOUT <15:00> H 

P2 H 

P3 (OPT) H 

UNP2 H 

INH UCON (BUS XFER) L .. 

U CONf.L TPT H 

/'- UCON <15:12> H 

FP11-E N , :, , 

FLOATING 

/l POINT 11/60 CpU 

PROCESSOR FPS <07:04> H 
. 

'r 
. 

. .. 

ENB FPS CC L 

FL TPT CC (V) H 

FLTPT CC (Z) H 

FLTPT CC (N) H 

FLTPT GO H 

FLTPT ACKN H 

FLTPT ATTN H 

FLTPT SERVICE L 

.. FLAG 5 H 

ENB CLK IR L 

JAM L ". 

MA-0275 

Figure 5-2 FPII-E/CPU Signals 
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Signal Name 

Data Signals 

BUSDIN (15:00) H 

DMUX (15:00) H 

DOUT (15:00) H 

Clocks 

P2 H 
P3 (OPT) H 
UNP2 H 

Microcontrol Signals 

INH UCON (BUS 
XFER)L 

UCON FLTPT H 

UCON12H 

UCON13H 

Table 5-1 FPll-E/CPU Signals 

Direction 

FPII-E to CPU 

CPU to FPII-E 

CPU to FPII-E 

CPU to FPII-E 
CPU to FPII-E 
CPU to FPII-E 

CPU to FPII-E 

CPU to FPll-E 

CPU to FPII-E 

CPU to FPII-E 
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Description 

Sixteen lines that the FPll-E uses to send data 
to the CPU. 

Sixteen lines over which the CPU sends instruc­
tions and operands to the FPII-E. 

Sixteen lines that the CPU uses to send data to 
the FPll-E. 

P2 and P3 (OPT) are suppressed clocks, while 
UNP2 is an unsuppressed clock. A suppressed 
clock can be "frozen" by the CPU at certain 
times. 

Disables FPII-E input to BUSDIN. Allows data 
from memory to enter CPU via BUSDIN. 

Selects the FPII-E for the purpose of transfer­
ring data or control. It causes the FPII-E output 
MUX (through which all FPII-E output data is 
routed) to route data to BUSDIN if INH 
UCON is not asserted; allows a service request 
to be granted in conjunction with UCON 12; can 
abort execution of a floating-point instruction in 
conjunctiori with UCON 13; allows the CPU to 
determine whether or not the FPII-E is installed 
in conjunction with UCON 14, if INH UCON is 
not asserted; and initializes the FPII-E in con­
junction with UCON 15. 

Issued in response to an FPll-E service request. 
In order for the request to be granted, UCON 
FLTPT must also be asserted at this time. 

Issued by the CPU if it terminates a floating­
point instruction to honor a service request be­
fore the CPU has completed its interfacing oper­
ation with that of the FPII-E. Executed if 
UCON FLTPT is asserted. 



Signal Name 

Microcontrol Signals (Cont) 

UCON14H 

UCON15H 

Status Signals 

FPS (07:04) H 

ENB FPS CC L 

Condition Codes from FPll-E 

FL TPT CC(V) H 

FLTPT CC(Z) H 

FL TPT CC(N) H 

Synchronization 

FLTPT GO H 

FLTPT ACKN H 

FLTPT ATT H 

TableS-l FPll-E/CPU Signals 

Direction 

CPU to FPII-E 

CPU to FPII-E 

CPU to FPII-E 

FPII-E to CPU 

FPII-E to CPU 

FPII-E to CPU 

FPII-E to CPU 

CPU to FPII-E 

FPl1-E to CPU 

FPII-E to CPU 
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Description 

Asserted by the CPU during its power-up se­
quence. If UCON FLTPT is asserted and INH 
UCON is not asserted at this time, the FPII-E 
will assert BUSDIN (14). This informs the CPU 
that the FPII-E is installed. 

Initializes the FPII-E if UCON FLTPT is as­
serted. 

FPII-E status bits from the FPS register located 
in the CPU. Refer to Paragraph 3.4 for a de­
scription of the significance of these bits. 

Enable which allows condition codes from the 
FPII-E to be clocked into the FPS register. 

Indicates that the result of the last FP 11-E oper­
ation resulted in an arithmetic overflow. 

Indicates that the result of the FPll-E operation 
was zero. 

Indicates that the result of the last FPII-E oper­
ation was negative. 

Initiates synchronization of the operation of the 
FPII-E with that of the CPU. 

FPII-E's response to FLTPT GO. Issued when 
the FPII-E and the CPU are in synchronization. 

FPII-E ready to proceed. At certain times, the 
CPU will not perform further operations until it 
has received this signal. 



Signal Name 

Other Signals 

FLTPT SERVICEL 

FLAG 5 H 

ENB CLK IR L 

JAML 

Table 5-1 FPII-E/~PU Signals 

Direction 

FPII-E to CPU 

CPU to FPII-E 

CPU to FPll-E 

CPU to FPII-E 

, ,. 

Description 

FPII-E's request for service. 

Issued by the CPU to enable the FPII-E when 
the FPII-E is present in the system. 

Allows an instruction to be loaded into the float­
ing-point instruction register (FIRA) by the 
unsuppressed clock signal UNP2. 

Can abort the current FPII-E instruction when 
certain error conditions (Le., illegal address, 
stack overflow, MM abort, parity error, micro­
break) are detected. 

5.3 FPII-E/CPU INTERACTION 
Figure 5-3 illustrates the relationship between the FPII-E and the CPU in more detail. 

The CPU fetches an instruction from main memory (via BUSDIN and DMUX) or from cache mem­
ory (via DMUX) and loads it into both its own instruction register (IR) and an instruction register in 
the FPII-E (FIRA). 

The CPU then decodes the instruction. If the four high-order bits are set, the instruction has an op 
code of 17xxxx and is a floating-point instruction. The CPU then executes microinstructions associ­
ated with the operation of the FPII-E. 

NOTE 
The CPU verifies the presence of the FPII-E by 
monitoring the signal FLAG 5. If FLAG 5 is as­
serted, the CPU assumes that the FPll-E is present 
in the system and executes microinstructions associ­
ated with the operation of the FPII-E. If FLAG 5 is 
not asserted, the CPU executes microinstructions as­
sociated with the integral floating-point instruction 
set contained in its control store. 

The FP 11-E also decodes the instruction. At the beginning of floating-point instruction execution, the 
contents of FIRA are loaded into FIRB (by the FPII-E). The contents of FIRB are then decoded to 
determine the type of floating-point instruction to be executed. 

NOTE 
The FIRB contains the instruction that the FPII-E 
is currently executing, while the FIRA contains the 
instruction most recently fetched by the CPU. 
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If the instruction to be executed is a Load class instruction, the FPII-E goes into an idle state while the 
CPU fetches the required operands. After calculating the addresses of the operands, the CPU loads (or 
loads and converts) the operands and transfers them to the FPII-E. Once the operands have, been 
received by the FPl1-E (via DOUT) and loaded via INBUFA and/or INBUFB, the FPII-E can 
complete execution of the instruction. Meanwhile, the CPU fetches the next instruction and loads it 
into the IR andFIRA. If this instruction is a floating-point instruction, it cannot be executed until the 
FPII-E is finished with its current operation. If this instruction is not a floating-point instruction, the 
CPU executes it immediately. 

If the instruction' to be executed is a Store class instruction, the FPII-E decodes the instruction and 
begins executing it. The CPU calculates the addresses of the operands and waits until the FPII-E is 
completed with its instruction execution. The FPII-E then passes its result to the CPU via BUSDIN 
which stores (or converts and stores) this result. After this, the CPU is free to fetch another instruction. 
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DOUT 

DMUX 

FP11-E CPU r:--r=-- --1 rcA~- - -=;O;----':=T="= 1 FALU, MULNET EXP, FNUA DATA 

I 
PATH 
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BUSDIN 

MA-0274 

Figure 5-3 FPII-E/CPU Interconnection 
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6.1 INTRODUCTION 

CHAPTER 6 
FPII-E DATA MANIPULATION COMPONENTS 

With the aid of Figure 6-1, this chapter briefly describes the functions and organization of the com­
ponents that manipulate data in the FPII-E. The block diagram is partitioned into four sections 
(FNUA, FALU, EXPONENT, MULNET), each of which represents an FPII-E circuit board. The 
following descriptions of the FPII-E data manipulation components are also grouped in this way. 

6.2 FNUA BOARD 
The main purpose of the FNUA circuit board is to determine the (micro) address of the next micro­
instruction to be executed. This is necessary because execution of FPII-E floating-point instructions 
involves addressing sequences of microinstructions. However, the FNUA board also contains com­
ponents that receive and manipulate instructions and data. These components are the FPINMUX, 
FIRA, FIRB, INBUFA, and INBUFB. 

6.2.1 FPINMUX 
All input data to the FPII-E is routed through the FPINMUX. The FPINMUX selects either the 
DMUX lines (which carry instructions and operands) or the DOUT lines (which carry status informa­
tion and other data from the CPU) for input into the FPll-E. 

6.2.2 FIRA and FIRB 
All instructions which are loaded into the CPU's instruction register (lR) are also loaded into the 
FPll-E's FIRA. After an instruction has been loaded into FIRA, the FPII-E microcode will load it 
into FIRB only if the FPII-E has completed executing another instruction and the CPU has not 
decided to abort the instruction. If the FPll-E has completed executing another instruction, the load­
ing of FIRB is inhibited until the FPII-E is done. If the CPU aborts the instruction, itmust be fetched 
again and reloaded into the FIRA. 

Once FIRB is loaded, the FPII-E determines whether or not FIRB contains a floating-point instruc­
tion. If it does, a sequence of microinstructions is executed; the sequence depends on the type of 
floating-point instruction in FIRB. 
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Figure 6-1 FPll-E Data 
Manipulation Components 
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6.2.3 INBUF A and INBUFB 
INBUFA and INBUFB are input buffers for operand shift registers entering the FPII-E in D, F, L, or 
I format and also serve as shift registers for the accumulation of the quotient during a Divide instruc­
tion. INBUFB can also be loaded with the high byte of the floating-point status (FPS) word from the 
CPU. 

If the operand to be loaded into the FPll-E is in D format, INBUFA and INBUFB are affected as 
follows. The first word (word A), which contains the sign bit, the exponent, and the high-order seven 
bits of the fraction, is fetched and loaded into INBUFA. Meanwhile, the second word (word B), which 
contains the next 16 most significant bits of the fraction, is being fetched for loading into INBUFB. At 
the time INBUFB is loaded, the sign and exponent in INBUF A are sent to appropriate parts of the 
FPII-E [i.e., the sign is clocked into the SD flip-flop and the exponent is clocked into the exponent 
register (ER)]. The upper 23 bits of the fraction, now contained in INBUFA and INBUFB, are then 
clocked into bits 57-35 of an FPII-E data word register contained in the fraction scratchpad 
(FSPAD). The next word (word C), which contains the next 16 bits of the fraction, is fetched and 
loaded into INBUF A, followed by the fetching and loading of the final word (word D), which contains 
the least significant 16 bits of the fraction, into INBUFB. The lower 32 bits of the fraction, now 
contained in INBUFA and INBUFB, are then clocked into bits 34-03 of the register in FSPAD (via 
the FALU data path). Loading of the double-precision operand into the FPII-E is then complete. 

An operand in F format (two words) is loaded into the FPII-E in exactly the same way that the first 
two words of an operand in D format are loaded. 

If the operand to be loaded into the FPII-E is in L format, the first word, which contains the high­
order 16 bits of the integer, is loaded into INBUFA. Then the second word, which contains the low­
order 16 bits of the integer, is loaded into INBUFB. The 32-bit operand is then loaded into bits 34-03 
of a register in FSPAD (via the MULNET and FALU data paths). 

An operand in I format is loaded into INBUFA and sent to bits 34-19 of a register in FSPAD (via the 
MULNET and FALU data paths). 

During a Divide instruction, the quotient is serially left-shifted into INBUF A and INBUFB. After the 
left-shifting is completed, the quotient is sent to a floating-point accumulator. 

As mentioned before, INBUFB can also be loaded with the high byte of the floating-point status (FPS) 
word. The FPS word is right-justified in INBUFB, with Os occupying the upper byte of INBUFB. 

6.3 FALU BOARD 
The FALU components FSPAD, MUXA and MUXB, ASHFTR and BSHFTR, FALU, 
FALUMUX, AR, and NORMK are shown in Figure 6-1. The main purpose of these components is to 
process' floating-point fractions, integers,and MULNET partial products during floating-point in­
structions. Operands and constants are input to the FALU board (and to the MULNET board) via a 
56-bit tristate data bus internal to the FPII-E called FBUSA. FBUSA also carries data out of the 
FALU board to the FPOUTMUX on the MULNET board. 

This section briefly describes the functions of the FALU components and describes the sources and 
destinations of FBUSA. 

6.3.1 FSPAD 
FSPAD is a scratchpad consisting of sixteen 60-bit registers. The FSPAD receives data from AR 
(34:00) and from the outputs of MUXA and MUXB and produces a 60-bit output, FSPAD (59:00). 

Each 60-bit register in FSPAD is partitioned into six fields: bit 59 = overflow bit field; bits 58-51 = A 
field; bits 50-35 = B field; bits 34-19 = C field; bits 18-03 = D field; bits 03-00 = guard bit field. 
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The 16 registers are numbered 0-178. Only registers 0-5 are accessible to the user~ These six registers 
can contain floating-point fractions or integers. 

NOTE 
The six floating-point accumulators referred to in 
Paragraph 4.1 consist of: twelve (effectively six) 1-
bit sign registers contained in the· sign scratchpads 
SSPADA and SSP ADB (numbered 0-5 in both 
scratchpads); twelve (effectively six) 8-bit exponent 
registers· contained in the exponent scratchpads· ES­
PADA and ESPADB (numbered 0-5 in both 
scratchpads); and the six fraction registers contained 
in FSPAD (numbered 0-5) just mentioned. For ex­
ample, floating-point accumulator A C2 has its sign 
bit in SSPADA 2 and SSPADB 2, its exponent in 
ESPADA 2 and ESPADB[2], and its fraction in 
FSPAD 2. The other registers in FSPAD are related 
to the sign and exponent scratchpads in the same 
way. 

FSPAD register 6 contains the fraction or integer that has been most recently fetched. Register 7 
contains only the FEC (Paragraph 3.5) in its B field. Registers 108-168 aresimply general-purpose 
registers for the FPII-E's internal use during floating-point operations. Registers 168 and 178 contain 
all zeros. 

The various fields of FSPAD can be read and written as follows. 

Read Write 

1. A and B or 1. A and B or 
2. C and D or 2. CandDor 
3. A, B, C, andD or 3. A,B,C,andD 
4. C(L) and D 

where C(L) = the lower 4 bits of C 

For example, numbers 1 or 3 above are selected when a single- or double-precision floating-point word 
(respectively) is read or written. Number 2 is selected when an integer is read or written. Number 2 or 4 
is selected for reading when FSPAD[17] must be driven onto FBUSA (Paragraph 6.3.8). 

6.3.2 MUXA and MUXB 
MUXA and MUXB are two 2: 1 multiplexers that input either INBUFA and INBUFB (respectively) 
or AR (59:35) to the upper 25 bits (i.e., the overflow bit, A, and B fields) of a selected register in 
FSPAD. 

MUXA and MUXB select INBUFA and INBUFB for input to FSPAD when a single- or double­
precision floating-point operand enters the FPII-E (Paragraph 6.2.3). When INBUFA is selected as an 
input to MUXA, the overflow bit field is set to zero, the hidden bit is inserted in the most significant 
bit of the A field, and the upper seven bits of the floating-point operand are routed to the remainder of 
the A field. Simultaneously, INBUFB is selected as an input to MUXB and is routed to the B field. 

At all other times, MUXA and MUXB select AR (59:35) for input to FSPAD. 
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6.3.3 ASHFTR and BSHFTR 
The ASHFTR and BSHFTR are two series-connected 4: 1 multiplexers that, as a unit, behave like a 
shifter. In one pass, the ASHFTR/BSHFTR combination can perform as many as 4 left shifts or as 
many as 11 right shifts on the contents of AR (59:00). The shifted version of the AR is then sent to the 
"B" input of the FALV. 

NOTE 
It is emphasized that ASHFTR and BSHFTR are 
considered as a unit. ASHFTR alone does not right­
or left-shift AR (59:00). That is, the relationship be­
tween the input and output of the ASHFTR is not 
one of a shifter. The same is true for BSHFTR. If 
considered collectively, however, it is seen that shift­
ing does occur between the ASHFTR input and the 
BSHFTR output. 

The most common applications of the ASHFTR and BSHFTR are shifting the contents of the AR left, 
during normalization; right, during fraction alignment (as in floating-point addition or subtraction); 
and right, for correct alignment of partial products during floating-point multiplications. 

6.3.4 FALU 
The F ALV performs arithmetic and logical operations on its two 60-bit inputs and produces a 60-bit 
result for loading into the AR. One input to the FALU (the "B" input) is the output of the 
ASHFTR/BSHFTR combination, BSHFTR (59:00). FALU's other input (the "A" input) consists of 
FSPAD 59 (the overflow bit), MNETALV (58:27), FBVSA (26:03), and FALU MVX (02:00). 

The FALU can also pass data unaltered from one input to its output. 

6.3.5 AR 
The AR is a 60-bit register that, when clocked, temporarily holds the output of the FALV. The output 
of the AR can be shifted by the ASHFTR and BSHFTR or it can be clocked into a register in FSPAD. 
The six most significant bits of the AR drive the NORMK component. 

6.3.6 NORMK 
NORMK is an encoder used during fraction normalization. It has a6-bit input [AR (59:54)] and a 4-
bit output [NORMK OVFLW, NORMK (02:00)]. 

During fraction normalization, the contents of the AR may require left or right shifting. As mentioned 
previously, this function is performed by the ASHFTR/BSHFTR combination. NORMK produces a 
code which causes ASHFTR/BSHFTR to shift the AR either one place right or as many as four places 
left at a time. If more than four left shifts must be performed, NORMK OVFLW is asserted, four 
leftshifts are performed, and the current microstate is repeated until the number of remaining left shifts 
is less than four. 

The EXPONENT components also rely on information from NORMK. NORMK provides its code to 
EADJ, which then produces a constant that is input to the EALV. This constant is added to or 
subtracted from the exponent associated with the unnormalized fraction (Paragraph 6.4.4). 
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6.3.7 FALU MUX 
The F ALU MUX is a 2: 1 mUltiplexer which routes one of its 3-bit inputs [FSPAD (02:00) or 
DROUND, 0, 0] to its 3-bit output [FALU MUX (02:00)] for use by the FALU. 

The F ALU MUX usually routes the value of DROUND and two Os to the F ALU. If a double­
precision fraction is to be rounded, DROUND = 1 and thus FALU MUX (02:00) = 100. The fraction 
to be rounded is first normalized in the FALU data path. Rounding is then accomplished by adding 
F ALU's A input (which contains 57 zeros in bits 59-03 and 100 in bits 02-00) with its B input (which 
contains the normalized fraction). If the normalized fraction contains a 1 in bit 02, adding DROUND 
will produce a carry-out and will increment bit 03. If the normalized fraction contains a 0 in bit 02, 
adding DROUND will have no effect on bit 03. If the normalized fraction is allIs, adding DROUND 
will cause a fraction overflow. In this one special case, the fraction must be normalized a second time. 
IfDROUND = 0, FALU MUX (02:00) = 000, and no rounding occurs. Bits 59-00 of the normalized 
double-precision fraction are unchanged and, in fact, bits 02-00 are later effectively truncated. 

6.3.8 FBUSA - Sources and Destinations 
As mentioned before, FBUSA is a 56-bit tristate internal data bus. FBUSA carries data from one of 
four sources (FSPAD, FPEMITF, MNETSUM, INBUF) to one or more of five destinations 
(MAND, MIER, FALU, FPOUTMUX, MNETALU). 

Figure 6-2 and Table 6-1 define which parts of FBUSA the various sources drive. Figure 6-3 and Table 
6-2 define the parts of FBUSA from which the various destinations receive data. 

FBUSA 
61 60 36.34 19 18 3 

SOURCE 1 - FSPAD FSPAD FSPAD FSPAD FSPAD 
A FIELD B FIELD C FIELD D FIELD 

FBUSA 
68 1918 3 

SOURCE 2 - FPEMITF FPEMITF FSPAD (17) FSPAD (17) 
C FIELD D FIELD 

FBUSA 
68 23 2~ 19 18 3 

SOURCE3- MNETSUM; MNETSUM I I FSPAD (17) I D FIELD 

FBUSA ~ FSPAD (17) C (L) FIELD 

68 3534 19 18 3 

SOURCE 4 -'Nau> I I INBUFA I INBUFB 

MA-0432 

Figure 6-2 Sources of FBUSA 
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Source 

FSPAD 

FPEMITF 

MNETSUM 

INBUF 

Table 6-1 Sources of FBUSA 

Description 

All or part of a register in FSPAD can be read from FSPAD (Paragraph 6.3.1) 
and driven onto FBUSA. If a single-precision fraction is read from FSPAD, the C 
and D fields of FSPAD 17 are also read to ensure that the 32 lower bits of FBUSA 
are zeros. 

FPEMITF is a 24-bit source that generates all constants required by the fraction 
data path. When it is selected for reading onto FBUSA, it drives bits 58-35, while 
the remainder of FBUSA is driven with zeros from FSPAD 17. 

MNETSUM (Paragraph 6.5.3.1) generates a 36-bit number which, when read 
onto FBUSA, drives bits 58-23. The remainder of FBUSA is driven with zeros 
from FSPAD 17. 

INBUF A and INBUFB, when read, drive bits 34-03 of FBUSA, while FBUSA 
bits 58-35 are left floating and are not used. 

FBUSA 

68 31 30 3 

DESTINATION1-MANDI
L 
~~~~~T_O_M_A_N_D_HI~~~~~~~~~~~_TO_M_A_N_D_LO~~~~~_ 

58 FBUSA 3 

FBUSA 
58 2726 3 

D~nNU~N3-~wl~~~~~~~~~~~~~~~~~~~T_O_F_A_W~<2_6_:3_>_.'_~_"_IN_PU_T~_I 
57 

TO FPOUTMUX 
DESTINATION 4 - FPOUTMUX 7 81TS OF 

A INPUT 
TO FPOUTMUX 

8 INPUT 

FBUSA 

TO FPOUTMUX 
CINPUT 

FBUSA 

TO FPOUTNUX 
DINPUT 

3 

DESTINATION6-MNETALU 1~68~~~~~~_'T_O_M_~_ET_A_L_U~~~~~~2~1~16~~~~~~~~~~~1 
MA-0433 

Figure 6-3 Destinations of FBUS-A 
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Destination 

MAND and 
MIER 

FALU 

MNETALU 

FPOUTMUX 

Table 6-2 Destinations of FBUSA 

Description 

The MAND and MIER are mUltiplicand and multiplier registers (respectively) 
used during multiplication instructions. When these registers load data from 
FBUSA, FBUSA is being driven by either the FPEMITF or FSPAD sources. 

When F ALU receives data from FBUSA (26:03), FBUSA (26:03) are being driven 
by the lower 24 bits of the MNETSUM source, bits 26-03 of the INBUF source, 
the lower 24 bits of the FSPAD source, or the lower 24 bits of the FPEMITF 
source. 

When the MNETALU (Paragraph 6.5.3.2) receives data from FBUSA (58:27), 
FBUSA (58:27) are being driven by the upper 32 bits of the MNETSUM source, 
bits 34-27 of the INBUF source, the upper 32 bits of the FSPAD source, or the 
upper 32 bits of the FPEMITF source. 

NOTE 
The FALU-MNETALU combination can receive 
any of the four sources of FBUSA in its entirety. 

The FPOUTMUX routes data from FBUSA to BUSDIN, 16 bits at a time. It . 
performs this function when either the FSPAD source or FPEMITF (50:35) are 
driving FBUSA. 

6.4 EXPONENT BOARD 
The main purpose of the EXPONENT components shown in Figure 6-1 (i.e., the EALU, the ER 
register, and the ESPADA and ESPADB scratchpads) is to process the exponents of floating-point 
numbers during floating-point instructions. These exponents and other data are input to the EXPO­
NENT board via a 10-bit tristate data bus internal to the FPll-E called FBUSE. (FBUSE also carries 
exponents out of the EXPONENT board to the FPOUTMUX on the MULNET board.) 

NOTE 
Although the EXPONENT components accom­
modate lO-bit data words and are interconnected 
with lO-bit data lines, only the lower eight bits of 
EXPONENT's data path are used by the exponents 
themselves. The upper two bits of EXPONENT's 
data path occasionally provide information for the 
FPll-E control logic relating to overflow and under­
flow as the result of an operation performed by the 
EALU on two exponents. A complete description of 
these two upper bits is found in the FPll-E Floating­
Point Processor Technical Manual. For the purposes 
of this manual, however, it is convenient to think of 
the EXPONENT data path as being 8 bits wide and 
to think of the EXPONENT components as accom­
modating 8-bit exponents. 

This section briefly describes the functions of the EXPONENT components and describes the sources 
of FBUSE, from which EXPONENT receives input. 
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6.4.1 EALU 
The EALU performs arithmetic and logical operations on its two inputs, FBUSE and ESPADA, and 
produces a result for loading into the ER. For example, during a floating-point multiplication, EALU 
adds two exponents. In this case, one exponent would be retrieved from ESPADA and one exponent 
from ESPADB (a source of FBUSE). 

The EALU can also pass data from one input directly to its output, for eventual storage in the expo­
nent scratchpads. 

6.4.2 ER 
The ER is a register that, when clocked, temporarily holds the output of the EALU. The output of the 
ER is subsequently loaded into ESPADA and ESPADB. 

6.4.3 ESPADA and ESPADB 
ESPADA and ESPADB are the exponent scratchpads. They are loaded with data from the ER. 
ESPADA feeds one input to the EALU, while ESPADB feeds the other input to the EALU, via 
FBUSE. 

Each scratchpad contains 16 registers, numbered 0-178. If the register specified for writing is in the 
range 0-7, both ESPADA and ESPADB are loaded simultaneously. If the register specified for writing 
is in the range 108-138. ESPADA and ESPADB are loaded either simultaneously or individually. For 
example1 if register 3 is specified, both ESPADA 3 and ESPADB 3 are loaded with the contents of the 
ER. If register 108 is specified, however, ESPADA 10 or ESPADB 10 or both ESPADA 10 and 
ESPADB 10 can be loaded with the contents of the ER. 

Both ESPADA and ESPADB registers 148-178 contain the constants 0, 1,200, and 201, respectively. 
Also, ESPADB 12 and ESPADB 13 contain 231 and 271, respectively. These constants are loaded into 
the scratchpads once, during the FPII-E power-up sequence, from the FPEMITE input (Paragraph 
6.4.4). 

6.4.4 FBUSE and Its Sources 
As mentioned before, FBUSE is a 10-bit (effectively 8-bit) tristate internal data bus that carries data 
from one of four sources (lNBUFA, EADJ, FPEMITE, or ESPADB) for use by the EALU (or alter­
natively by the FPOUTMUX, if the source is ESPADB). Only one source at a time can be enabled 
onto FBUSE. 

INBUFA (14:07) is used as a source when the first word of a floating-point operand is loaded into the 
FPII-E. [INBUF (14:07) contains the exponent of the operand.] After passing through the EALU, this 
exponent is loaded into ESPADA and ESPADB via the ER. 

EADJ is used as a source when it is necessary to increase or decrease an exponent as a result of a 
fraction normalization that has occurred in the F ALU data path. EADJ specifies a constant, generated 
on the basis of data from the FALU data path, which indicates the number of times a fraction in the 
AR has been shifted left or right to be normalized. This constant is applied to one input of the EAL U 
and is added or subtracted from the exponent (retrieved from ESPADA) associated with the normal­
ized fraction. 

FPEMITE is used as a source when a constant must be loaded into the exponent scratchpads. 
FPEMITE specifies a constant which is passed through the EALU and is loaded into ESPADA 
and/ or ESPADB, via the ER. 
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ESPADB is used as a source when an operation must be performed on an exponent contained in 
ESPADB and an exponent contained in ESPADA. The EALU performs the operation and the result is 
loaded into ESPADA and ESPADB via the ER. ESPADB is also used as a source ofFBUSE when an 
exponent must be retrieved from the EXPONENT board. In that case, the FPOUTMUX receives the 
exponent rather than the EALU. 

6.5 MULNET BOARD 
The MULNET components (Figure 6-1) multiply the fractions of two single- or double-precision 
floating-point numbers. Recall that both fractions are either 24 bits (single-precision) or 56 bits 
(double-precision). 

NOTE 
Fraction multiplication requires the use of both the 
MULNET and FALU data paths. 

6.5.1 Single-Precision Multiplication 
To multiply two single-precision fractions, the FPII-E performs. the steps outlined in Figure 6-4. At 
the time this fraction calculation is occurring, the two exponents of the floating-point numbers are 
being added in the EXPONENT data path and the sign of the result is being determined by the control 
logic. The fraction obtained by step 3 must be normalized. If the fraction is shifted to the left, the 
exponent must be decreased accordingly. 

To see how steps 1, 2, and 3 in Figure 6-4 produce the correct result, refer to Figure 6-5. To see how 
this is implemented in the FPII-E, refer to Figure 6-1. . 

17\ MULTIPLY THE LOW 8 BITS OR MIER (Xo) WITH 
\:..J THE 24 BIT MULTIPLICAND (Y). o MULTIPLY THE MIDDLE 8 BITS OFTHE MIER 

28 BITS (EFFECTIVELY 24 BITS) r------..... ----, I ... ___ Y ____ I.: §_I MULTIPLICAND (MAN D) 

I X2 x, I Xo I MULTIPLIER IMlER) 

~ 
8 BITS x 

32 BITS 

F~-----~-------' 
8 -=I XoY I 

(X,) WITH Y AND ADD THISTO THE RESULT -I. 
OBTAINED·tN <D SHIFTEDRIGHT8 -8 __ 

. PLACES. Ir----L.--)(z-Y----.-----I 

o MULTIPLYTHE.HIGH 8 BITS OF THE MIER (X
2

) 
WITH Y AND ADD THISTO THE RESULT 
OBTAINED IN ® SHIFTED RIGHT 8 
PLACES. 

ROUNDED OR TRUNCATED TO A 

MA·0431 

Figure 6-4 FP11-E Single-Precision Multiplication 
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EXAMPLE: 

34210 
X 65710 

2 3 9 4 

STEP 1:7 x 342 = 2394 

STEP 2: 

STEP 3: 

5X342=1710 
2 3 9 4 I 

ADD 1710 TO THE RESULT OBTAINED IN STEP 1 
(2394) SHIFTED RIGHT ONE PLACE. 

+ 7 0 

I 1 9 4 9 4 

I 1 I 9 I 4 I 9 4 
6 X 342 = 2052 

ADD 2052 TO THE RESULT OBTAINED IN STEP 2 
(19494) SHIFTED RIGHT ONE PLACE. 

+ 2 0 I 5 I 2 

2 2 4 6 9 I 4 1...- ANSWER 

WHAT WE ARE DOING IS REMINISCENT OF WHAT WE USUALLY DO IN LONG M,ULTIPLICATION. HOWEVER. 
INSTEAD OF SHIFTING PARTIAL PRODUCTS LEFT WITH RESPECT TO THE LEAST SIGNIFICANT POSITION 
AND ADDING. WE SHIFT PARTIAL PRODUCTS RIGHT WITH RESPECT TO THE MOST SIGNIFICANT 
POSITION AND ADD. EITHER WAY. WE GET THE SAME RESULT. 

NOTE: 

THE ILLUSTRATION ABOVE IS AN ANALOGY. THE READER'S FAMILIARITY WITH DECIMAL LONG 
MULTIPLICATION IS EXPLOITED TO CLARIFY THE SHIFT-AND-ADD CONCEPT. HOWEVER, OCTAL NUMBERS 
COULD HAVE BEEN USED JUST AS EASILY. IN STEP 2, FOR EXAMPLE, THE RESULT OF THE DECIMAL 
MULTIPLICATION IN STEP 1 IS SHIFTED ONE DECIMAL PLACE RIGHT AND ADDED. THIS IS EXACTLY 
ANALOGOUS TO SHIFTING THE RESULT OF AN OCTAL MULTIPLICATION ONE PLACE RIGHT O.E. AN a-BIT 
SHIFT) AND ADDING. 

Figure 6-5 Example of Single-Precision Multiplication 
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The upper half of a 56-bit register called MAND (MANDHI) is loaded with the mUltiplicand. For a 
single-precision multiplication, the 24-bit mUltiplicand fraction is loaded into MAND (55:32), while Os 
are loaded into MAND (31 :28). The upper half of MAND is then swapped with the lower half. Thus, 
after the swap, the fraction is contained in MAND (27:04), while Os occupy MAND (03:00). 

NOTE 
In the block diagram, the components labeled MUL­
NET, MNETCARRY, MNETSUM, and 
MNETALU are all contained in a 2-input, I-output 
box labeled "partial product components." More de­
tails about these components are given in Paragraph 
6.5.3. In this case, they simply multiply an 8-bit por­
tion of MIER (see below) with the 28-bit (effectively 
24-bit) MAND and produce a 36-bit (effectively 32-
bit) partial product for input to the F AL U. 

A 56-bit register called MIER is then loaded with the multiplier. For a single-precision multiplication, 
the multiplier fraction is loaded into the upper 24 bits of MIER [MIER (55:32)]. A mUltiplexer called 
MIERMUX routes MIER (39:32) to the partial product components. 

Let's go through the steps again. 

1. MIER (39:32), which contain the low eight bits of the multiplier, and MAND (27:00), which 
contain the multiplicand, are multiplied by the partial product components. The resultant 
partial product is passed through F AL U (unaffected) and stored in the upper 32 bits of a 60-
bit register called the AR. 

2. The MIER is right-shifted eight places. MIER (39:32) now contain the middle ~ight bits of 
the multiplier and are multiplied with MAND. The partial product obtained by this multi­
plication is input to the F ALU. The partial product obtained in step 1 (in the AR) is right­
shifted eight places (by ASHFTR and BSHFTR) and is also applied to the FALU. The 
FALU adds its 2 inputs and the result is stored in the upper 40 bits of the AR. 

3. The MIER is right-shifted eight places; MIER (39:32) now contain the high eigl\t bits of the 
multiplier and are multiplied with MAND. The partial product obtained by this multi­
plication is input to the F ALU. The partial product obtained in step 2 (in the AR) is right­
shifted eight places (by ASHFTR and BSHFTR) and is also applied to the FALU. The 
FALU adds its two inputs, and the result is stored in the upper 48 bits of the AR. This 
fraction is then normalized. Note that the resultant product occupies the upper 48 bits of the 
AR and must be rounded or truncated before being stored in a destination accumulator in 
FSPAD. 

6.5.2 Double-Precision Multiplication 
Multiplication of two double-precision fractions is accomplished in 14 steps, as illustrated in Figure 
6-6. At the time this fraction calculation is occurring, the two exponents of the floating-point numbers 
are being added in the EXPONENT data path and the sign of the result is being determined. The 
fraction obtained by step 14 must be normalized. If the fraction is shifted to the left, the exponent must 
be decreased accordingly. 
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28 BITS 

r~---------~---------" 
y, I Yo I MULTIPLICAND 

~ __________________ ~. __________________ ~. (MAN D) 

x 
XI I Xo I MULTIPLIER IMlER} 

~--~----~--~----~--~----~~---~~ 
881TS 

X6 

36 BITS 

r-----------~------------
Xo Yo (2) MUL TIPL V THE LOW 8 BITS OF MIER (Xo ) WITH THE LOW 28 BITS OF THE MAND IV 01-o MULTIPLY X, WITH Vo AND ADD IT TO THE RESULT OF STEP (2) SHIFTED RIGHT 8 PLACES. 8 r---..... -'--X-,-Y-o------..---~ 

o MULTIPLY X2 WITH Yo AND ADD IT TO THE RESULT OF 0 SHIFTED RIGHT 8 PLACES. 8 o MULTIPLYX3WITH VoANDADD ITTOTHE RESULTOF 0 SHIFTED RIGHT8PLACES. 4 r---....... ---Xa- Y- o-------,-----' o MULTIPLY Xo WITH Y, AND ADD IT TO THE RESULT OF 8 SHIFTED RIGHT 4 PLACES. 4 o MULTIPLYX4WITHVoANDADDITTOTHERESULTOF 0 SHIFTEDRIGHT4PLACES. 4 .-------X-4-Y-O---------o MULTIPLY X, WITH y, AND ADD IT TO THE RESULT OF 0 SHIFTED RIGHT 4 PLACES. 4 o MULTIPLYX6WITHYoANDADD ITTOTHE RESULTOF 0 SHIFTED RIGHT 4 PLACES. 4 .--........ ----X-6-Y-o---------o MULTIPLYX2WITH VI ANDADD ITTOTHE RESULTOF 0SHIFTED RIGHT 4 PLACES. 4 e MULTIPLYX,WITH YoAND ADD ITTOTHE RESULT OF 0 SHIFTED RIGHT 4 PLACES. 4 r-........ ----X- 8- Y- O--------r--..J 

X2 Yo 

XoY, 

X2Y' 

8 X3Y' 0 MULTlPLVX, Vl.ITHV, ANDADDITTOTHERESULTOF e SHIFTEDRIGHT4PLACES. 

@ MULTIPLY X. WITH V, AND ADD IT TO THE RESULT OF G SHIFTED RIGHT 8 PLACES. 

r-__ ........ ______ X_5_V_' ___ -r-.,..~e MULTIPLV Xs WITHYI AND ADD ITTOTHE RESULT OF B SHIFTED RIGHT8PLACES. 

MULTIPLV X6 WITH VI AND ADD IT TO THE RESULT OF e SHIFTED RIGHT 8 PLACES. X8Y' 

~------6-0--B-IT-P-R-0-D-U-C-T-G-E-N-E-R-A-T-E-D--------,I~ 
__ --L---------------------------ROUNDEDORTRUNCAHDTOA 

oc:::::::::: 56-BIT PRODUCT 

MA-0430 

Figure 6-6 FPII-E Double-Precision 
Multiplication 
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A brief summary of the behavior of the FP11-E components during the 14 steps of a double-precision 
multiplication is given below. 

1. 

2-4 

5. 

6,8, 10 

7, 9, 11 

12-14 

Load MIER and MAND with the multiplier and multiplicand, respectively. Multi­
ply the lower eight bits of the MIER with MANDCO (via the partial product com­
ponents) and store the result in the upper 36 bits of the AR. 

Shift the MIER right eight places and multiply byte 0 of the MIER [MIER (07:00)] 
with MANDLO (via the partial product components). Shift the contents of the AR 
eight places right and add the partial product just obtained. 

Reload the MIER with the multiplier. Swap the MAND. Multiply byte 0 of the 
MIER with MANDLO (which now contains the contents of MANDHI because of 
the swap). Shift the contents of the AR right four places and add the partial product 
just obtained. 

Swap the MAND and multiply the 4th byte of the MIER [MIER (39:32)] with 
MANDLO. Shift the contents of the AR right four places and add the partial prod­
uct just obtained. 

Swap the MAND and shift the MIER eight places right. MUltiply byte 0 of the 
MIER with MANDLO (which now contains the contents of MANDHI because of 
the swap). Shift the contents of the AR right four places and add the partial product 
just obtained. After step 11, swap the MAND again. 

Shift the MIER eight places right and multiply byte 0 of the MIER with MANDLO 
(which contains the contents of MANDHI because of the swap in step 11). Shift the 
contents of the AR right eight places and add the partial product just obtained. 

After step 14, the fraction must be normalized. Note that the resultant product occupies all 60 bits of 
the AR and must be rounded or truncated before being stored in a destination accumulator in FSPAD. 

It may not be immediately obvious how the FP11-E obtained the correct final product from the 
sequence in which the partial products were calculated a:nd summed. However, we can arrange the 
partial products in any order as long as they are aligned correctly. By doing this, a more familiar 
arrangement of partial products is obtained (Figure 6-7). By comparing Figures 6-6 and 6-7, it can be 
seen that the two arrangements are equivalent. 

6.5.3 Partial Product Components 
From the previous paragraphs, it is evident that we do not directly multiply two 24-bit fractions during 
a single-precision multiplication, nor do we directly multiply two 56-bit fractions during a double­
precision multiplication. Instead, we break up the multiplier fraction (and the multiplicand fraction, in 
double-precision multiplication) into pieces and multiply these pieces together to produce a number of 
partial products. These partial products are subsequently aligned and summed by components on the 
F ALU board to produce our final product. 
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Figure 6-7 Rearrangement of Partial 
Products, Alignment Maintained 
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X2 I X, Xo I MULTIPLIER 

I 
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The components that produce the partial products are called the partial product components and are 
labeled MULNET ROM, MNETCARRY, MNETSUM, and MNETALU in Figure 6-1. Specifically, 
the components multiply an 8-bit piece of the multiplier with a 28-bit piece of the mUltiplicand to 
produce a 36-bit partial product that is input to the FALU board for further processing. This is 
accomplished in two steps. 

1. MULNET ROM multiplies the 8-bit piece of the mUltiplier with the 28-bit piece of the 
multiplicand and produces 36 "sum" bits (which are loaded into the MNETSUM register) 
and 28 "carry" bits (which are loaded into the MNETCARR Y register). 

2. The lower four bits of MNETSUM are directly input to the FALU as the lower four bits of 
the 36-bit partial product. The other 32 bits of the partial product are obtained by adding 
the upper 32 bits of MNETSUM with the (aligned) contents of MNETCARRY, via the 
MNETALU. 

The following paragraphs describe the operation of the partial product components in more detail. 
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6.S.3.1 MULNET ROM, MNETSUM, and MNETCARRY - The box labeled MULNET ROM 
consists of 28 ROMs. Fourteen of these ROMs (called ."multiplier" ROMs) mUltiply an 8-bit piece of 
the multiplier with a 28-bit piece of the multiplicand. Consider the following illustration. 

4BITS 

~ 

.. I b> I b, I b, I b, 12.-SIT MULTIPLICAND 

x I a, I a, I.-SIT MULTIPLIER 

. MA·0422 

Notice that the multiplicand and multiplier are broken up into 4-hit segments. This is because each 
ROM has two 4-bit inputs. For example, ao and ho are applied to the two 4-bit inputs to one of the 
ROMs. This ROM (which has already been programmed with all the possible products of two 4-bit 
numbers) produces the 8-bit product of ao X ho. Similarly, there is a ROM dedicated to finding the 
product of ao and bl, a ROM dedicated to finding the product of ao and b2, and so on. Note again that 
there are 14 multiplier ROMs in all. 

N ow that we have all these a and b products, we align .and sum them in a special way to give us a 
number of "sum" and "carry" bits. The 14 other ROMs in MULNET ROM (called "counter" or 
"adder" ROMs) are used for this purpose. Figure 6-8 shows the proper alignment of the a and b 
products. 

Figure 6-8 also shows the aligned a and b products divided into fourteen 2-bit central columns and two 
4-bit columns at either end. The purpose of the adder ROMs -is to sum the contents of each 2-bit 
central column. 

NOTE 
The two 4-bit columns are the upper four bits of a l b6 

and the lower four. bits of aobo• These bypass the 
adder ROMs and are sent directly to the upper four 
bits and lower four bits of theMNETSUM register, 
respectively. 

Each 2-bit column has an adder ROM dedicated to it. Each ROM sums the contents of its column and 
produces two "sum" bits and two "carry" bits. 

For example, examine column 14 in Figure 6-8. The two least significant bits of mho are summed with 
the two least significant bits of aobl and the second most significant 2-bit piece of aoho. The ROM 
which performs this summation produces two sum bits which are sent to the 5th and 6th least signifi­
cant bits of the MNETSUM register. (Recall that the four least significant bits of MNETSUM are 
being fed directly with the four least significant bits of aoho.) This ROM also produces two carry bits 
which are sent to the two least significant bits of the MNETCARR Y register. 

In all, the 14 adder ROMs produce 28 sum bits (sent to the central 28 bits of MNETSUM) and 28 
carry bits (sent to the MNETCARR Y register). 
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Figure 6-8 Division of Aligned A and B Products into Columns 
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6.5.3.2 MNETALU - The MNETALU aligns and adds the 32 most significant bits of MNETSUM 
with the 28 MNETCARRY bits. It produces a 32-bit output as illustrated in Figure 6-9. 

The four least significant bits of MNETSUM are appended to the low end of this result to yield our 
final 36-bit partial product. This partial product is then input to the FALU board for further manipu­
lation. 

It should be realized that to produce our final partial product, we effectively added together all of the a 
and b products produced by the multiplier ROMs in MULNET ROM. 

The MNET ALU also acts as a gate for the FBUSA bus. When required, it allows data on FBUSA 
(58:27) to be routed to the FALU . 

. UPPER 32 BITS OF MNETSUM 
4 SUM BITS FROM 

----------~~~----------THE UPPER 4 BITS OF 81 be f '\ 
I ~1-.~!----28-S-U-M-B-I-TS-F-R-O-M------~ 

. 1 ADDER ROMS 

UPPER 2 BITS = 0 
(FOR ALIGNMENT PURPOSES) MNETCARRY 

~VM ..... o~r~~~~~_2-8~C~A~R~:: __ B-I_T-S~F~R_O~M~~~~'""",~~~ LOWER 2 BITS = 0 ~ ADDER ROMS ~- (FOR ALIGNMENT PURPOSES) 

1

-- .., LEAST SIGNIFICANT 4 BITS .l.-- OF MNETSUM APPENDEDTO 
I MNETALU RESULTTO YEILD 

... ,------------------------...... -~ FINAL 36-BIT PARTIAL PRODUCT. 

32-BI1' OUTPUT OF MNETALU 

-------------,,--------------
36·81T PARTIAL PRODUCT 

MA-0423 

Figure 6-9 MNET ALU Operation and Final Partial Product 

6.5.3.3 MIER - The MIER is a 56-bit shift register which loads and shifts the multiplier during 
floating-point multiplication instructions. It has one data input (FBUSA) and two data outputs 
[MIER (39:32) and MIER (07:00)]. The MIER receives its contents via FBUSA from a register con­
tained in FSPAD. 

During a single-precision multiplication, the multiplier is loaded into the upper 24 bits of the MIER. 
During a double-precision multiplication, the multiplier is loaded into the entire 56 bits of the MIER. 

The inputs to the MIER are wired such that an 8-bit right shift (or left shift) can occur in one jump 
when the register is clocked. Furthermore, the MIER is a rotative shift register, i.e., MIER's least 
significant bit and most significant bit are linked (Figure 6-10). 

Specifics of MIER's operation are found in the paragraphs describing single- and double-precision 
multiplication. 
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Figure 6-10 MIER - Right Shift 

6.5.3.4 MIERMUX - The MIERMUX is a 2: 1 multiplexer that performs one of two functions. It 
either routes MIER (39:32) to the MULNET ROMs during a single-precision multiplication or routes 
MIER (07:00) to the MULNET ROMs during a double-precision mUltiplication. 

6.5.3.5 MAND - The MAND is a 56-bit shift register which loads and shifts the multiplicand during 
floating-point multiplication instructions. It has two data inputs from FBUSA. One data input 
[FBUSA (58:31)] is fed to the upper half of the MAND (called MANDHI) and the other data input 
[FBUSA (30:37)] is fed to the lower half of the MAND (called MANDLO). The MAND has one 28-
bit output [MAND (27:00)] which transfers the contents of MANDLO to the MULNET ROMs. 

The inputs to the MAND are wired such that a 28-bit right shift (or "swap") can occur in one jump 
when the register is clocked. Like the MIER, the MAND is also a rotative shifter. Thus, when the 
MAND performs a right shift, the net effect is that MANDHI is swapped with MANDLO (Figure 
6-11). 

(ROTATIVE SHIFTER) 

,---------------, 
I I 
I MANDHI MANDLO I 

L-~ 0 t ..... dBEFORESWAP 

MANDHI MANDLO 

~ __ o _________ 1 MAND AFTER SWAP 

MA-0458 

Figure 6-11 MAND - Swap (28-Bit Right Shift) 
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6.5.3.6 FPOUTMUX - The FPOUTMUX is a 4:1 multiplexer located on the MULNET board. The 
FPOUTMUX routes one of its four 16-bit data inputs to BUSDIN,'for use by the CPU. As shown in 
Figure 6-1, these four inputs are: SSPADB, FBUSE (07:00) and PBUSA (57:51); FBUSA (50:35); 
FBUSA (34:19); and FBUSA (18:03). ' ',' ',' " 

Formatted data words leaving the FPII-E are routed through FPOUTMUX 16 bits at a time. The 
most significant 16 bits of the data word are routed out fl .. st, followed b,y the next 16 significant bits, 
and so on. Note that for a floating-point data word, the 16 most significant bits also include the sign 
bit (SSPADB) and an 8-bit exponent [FBUSE (07:00)]~ 

Floating exception code (FEC) information, which appears on FBUSA (34:19), is also routed to BUS­
DIN and the CPU via the FPOUTMUX. 
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CHAPTER 7 
FPII-E MICROINSTRUCTION 

This chapter presents an introduction to the operation of the FPII-E control logic by examining the 
fields of an 88-bit FPII-E microinstruction. 

As mentioned in Chapter 6, the FPI1-E performs floating-point instructions and other operations by 
addressing sequences of microinstructions. These microinstructions are contained in a part of the 
FPII-E control logic called the ROM control store. In general, these microinstructions: 

1. Control the operation of the FPll-E data manipUlation components (see Chapter 6 for 
background information) 

2. Help coordinate the operation of the FPII-E with the operation of the CPU (see Chapter 5 
for background information) 

3. Control the operation of parts of the FPII-E control logic (see FPll-E Floating-Point 
Processor Technical Manual for more detailed information). 

As shown in Figure 7-1, an FPI1-E microinstruction is divided into a number of fields (called micro­
fields), each of which performs unique functions. Table 7-1 describes the functions of these microfields. 
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Figure 7-1 FPII-E Microinstruction 
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Field 

87:84 

83 

82:81 

80 

79:78 

77 

76 

75 

74 

73 

Table 7-1 FPII-E Microfield Description 

Mnemonic 

FALVC 

FALVC MVX (Not the same as 
F AL V MVX, mentioned in 
Chapter 6). 

ENB FBUSA 

CLK FIRB 

SHFTR 

WRT FSPAD AB 

WRT FSPAD CD 

WRT ESPADA 

WRT ESPADB 

SPARE 1 

Function 

Specifies the function of the FALV. 

0000 
0101 
0110 
1001 
1010 

",A 
",B 

A minusB 
AplusB 
B 

1011 
1110 
1111 
0011 

A·B 
A+B 
A 
o 

When set, causes the FALU to receive its function 
control from a "prep 2 table" (FPll-E Floating­
Point Processor Technical Manual), rather than 
from the FALVC microfield. 

Specifies the source of FBVSA. 

00 
01 

FSPAD 
FPEMITF 

10 
11 

MNETREG 
INBVF 

When set, enables clocking of FIRB. 

Specifies the source of function control for the 
ASHFTR/BSHFTR combination. 

00 Shifter receives its function control from 
SHFTR RIF microfield. 

01 Shifter receives its function control from 
PRESHFK logic. (This logic produces an out­
put based on the difference between the two 
exponents of a floating-point addition or sub­
traction.) Used for prealignment of fractions. 

10 Shifter receives its function control from 
NORMK. 

When set, enables the writing of data into the A 
and B fields of a selected register in FSPAD. 

When set, enables the writing of data into the C 
and D fields of a selected register in FSP AD. 

When set, enables the writing of data into ES­
PADA. 

When set, enables the writing of data into ES­
PADB. 

Reserved for future use. 
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Field 

72 

71 

70 

69:68 

67 

66 

65 

64 

63 

62 

61:60 

Table 7-1 FPII-E Microfield Description (Cont) 

Mnemonic 

LOADMAND 

SHFT MAND 

LOAD·MIER 

SHFT MIER 

CLKMNETREG 

MALUC 

ENB RND 

CONY SP 

FADRS DIV 

OVLP 

ENB FBUSE 

Function 

When set, enables loading of the MAND register. 

When set, enables swapping of upper half of 
MAND with lower half of MAND. 

When set, enables loading of the MIER register. 

When set, enables MIER shifting. 

01 Right shift MIER 
10 Left shift MIER 

When set, enables clocking of the MNETSUM and 
MNETCARR Y registers. 

Specifies the function of the MNETALU. 

o A plus B 
1 A 

When set, enables single- or double-precision frac­
tion rounding. Used in conjunction with the 
CONY SP microfield, FD, and FT. 

When set, enables reinterpretation of the FD bit. If 
the FD bit is set when CONY SP is set, the FPII-E 
can behave as if it were in F mode. If the FD bit is 
cleared when CONY SP is set, the FPII-E can be .. 
have as if it were in D mode. 

When set, enables FALU 59 control over FSPAD 
address. If F ALU 59 is cleared when F ADRS DIV 
is set, the least significant bit of the FRIF field is 
set. This allows access to either the actual or 2's 
complement divisor during Divide instructions. 

When set, the operation of the last micro­
instruction of the current (macro) instruction is 
overlapped with the first microinstruction of the 
next (macro) instruction, thus saving one micro­
instruction. 

Specifies source of FBUSE. 

00 
01 

7-6 

ESPADB 
INBUFA 

10 
11 

FPEMTTP 
EADJ 



Field 

59:58 

57:56 

55:52 

51 

50 

49:48 

47 

Table 7-1 FPII-E Microfield Description (Cont) 

Mnemonic 

ESPADA ADRS 

ESPADB ADRS 

ERIF 

SPARE 2 

FSPAD MUX 

FADRS 

MIER MUX 

Function 

Specifies source of ESPADA address. 

00 DF - Destination field - FIRB (07:06) or 
FIRA (07:06) 

01 SF - Source field - FIRB (02:00) or FIRA 
(02:00) 

10 RIF - ERIF field 
11 DF v 1 - Destination field with its LSB forced 

to 1 

Specifies source of ESPADB address. 

00 SF - Source field - FIRB (02:00) or FIRA 
(02:00) 

10 RIF - ERIF field 
11 DF - Destination field - FIRB (07:06) or 

FIRA (07:06) 

Specifies exponent and sign scratchpad registers. 
These registers are numbered from 0 to 17. Used in 
conjunction with the ESPADA ADRS and ES­
PADB ADRS microfields. 

Reserved for future use. 

Selects source of data to be written into the A and 
B fields of FSP AD. 

00 AR 
01 INBUF 

Specifies the source of FSPAD address. 

00 DF - Destination field - FIRB (07:06) 
01 SF - Source field - FIRB (02:00) or FIRA 

(02:00) 
10 RIF - FRIF field 
11 DF v 1 - Destination field with its LSB forced 

to 1. 

Specifies the MIER byte that is input to MULNET 
ROM. 

00 BYTE 0 - MIER (07:00) 
01 BYTE 4 - MIER (39:32) 
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Field 

46:44 

43:40 

39:36 

35:33 

32 

31 

30 

29 

Table 7-1 FPII-E Microfield Description (Cont) 

Mnemonic 

EALUC 

FRIF 

SHFTR RIF 

SIGN MUX 

SELECT AR EXTSN 

CLKAR 

CLKER 

CLK ECR 

Function 

Specifies the function of the EAL U. 

001A 
010A 

plus B 
minus B 

110 
111 

A+B 
B 

Specifies a fraction scratchpad register. These reg­
isters are numbered from 0 to 178 • Used in con­
junction with the FADRS microfield. 

Specifies the number of shifts (and the shift direc­
tion) that the ASHFTR/BSHFTR combination 
must perform in one pass. 

0000 Left 4 1000 Right 4 
0001 Left 3 1001 Right 5 
0010 Left 2 1010 Right 6 
0011 Left 1 1011 Right 7 
0100 No shift 1100 Right 8 
0101 Right 1 1101 Right 9 
0110 Right 2 1110 Right 10 
0111 Right 3 1111 Right 11 

Specifies the value of the SD (destination sign) bit. 
The SS (source sign) bit is affected by the SIGN 
MUX field only when (35:33) = 111. 

000 SD4-SD 
001 SD 4- "'SD 
010 SD4-SS 
011 SD 4- "'SS 

100 SD 4- SS XOR SD 
101 SD4-INBUFA 15 
110 SD 4-0 
111 SD 4- SSPADA 

SSSSPADB 

This field controls the F ALU MUX mentioned in 
Chapter 6. If set, FSPAD (02:00) (containing the 
guard bits) are routed to FALU MUX (02:00). If 
cleared, DROUND, 0, 0 are routed to F ALU­
MUX (02:00). 

When set, enables clocking of AR. 

When set, enables clocking of ER. 

When set, enables clocking of the ECR, a register 
on the EXPONENT board which indicates various 
conditions of the EXPONENT data path. The 
ECR is used in FP 11-E microinstruction branch­
ing. 
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Field 

28 

27 

26 

25:21 

20 

19 

18 

17 

16 

Table 7-1 FPII-E Microfield Description (Cont) 

Mnemonic 

CLK FCCR 

LOADCNTR 

CNTR MUX 

UBF 

PAUSE 

INH PAUSE 

ABORT 

FLTPT SERVICE 

FLTPT ATT 

Function 

When set, enables clocking of the FCCR, a register 
on the EXPONENT board which indicates 
whether the EALU has performed an operation 
that has resulted in an overflow, a negative num­
ber, or zero. 

When set, enables loading of counter. This counter 
is loaded with a 4-bit constant and is incremented 
by one each time it is enabled and clocked. 

This field determines the source of the counter's 4-
bit input. 

o CNTR FPEMIT field (see end of section) 
1 PRESFHK quotient field (FPll-E Floating­

Point Processor Technical Manual 

Microbranch field. This field, in conjunction with 
the UPF (micropointer field) determines the 
FNU A, or next FP 11-E microaddress. Each UPF 
combination specifies from one to three conditions 
that may cause the FNUA board to specify an 
FPII-E micro address other than the one specified 
by the UPF as the next microaddress (FPll-E 
Floating-Point Processor Technical Manual). There 
is also a "null" UBF combination that uncon­
ditionally allows the UPF field to specify the 
FNUA. 

When set, disables further sequencing of the 
FNU A logic until FLTPT GO (Chapter 5) is re­
ceived from the CPU. 

When set in the current microinstruction, the 
PA USE micro field of the next microinstruction 
will be treated as if it were cleared. 

When set, enables the CPU to abort the current 
FPII-E instruction for a variety of abort condi­
tions (Chapter 5). 

When set, is a request to the CPU for FPII-E ser­
vice (Chapter 5). 

When set, informs the CPU that the FPI1-E is 
ready to proceed with an operation. This allows the 
CPU to leave an idle state and resume its activity. 
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Field 

15 

14 

13:12 

11:09 

08:00 

Table 7-1 FPII-E.Microfield Description (Cont) 

Mnemonic Function 

IFORK MUX Selects the input to a piece of FPII-E control logic 
called the IFORKMUX. Refer to the FPII-E 
Floating-Point Processor Technical Manual. 

FPINPUT MUX Selects source of data input to the FPI1-E. 

o DMUX 
1 DOUT 

FPOUTPUT MUX Selects source of data output from FPII-E. 

00 SD, FBUSE (07:00), FBUSA (57:51) 
01 FBUSA (50:35) 
10 FBUSA (34: 19) 
11 FBUSA (18:03) 

INREG CNTL Specifies operations of INBUFA, INBUFB, and a 
register called the microbreak register. 

UPF 

001 Enables loading of INBUF A 
010 Enables loading of INBUFB at time P2 

(FPl1-E Floating-Point Processor Technical 
Manual) 

011 Enables loading of INBUFB at time P3 
(FPII-E Floating-Point Processor Technical 
Manual) 

100 Left-shifts INBUF A and INBUFB (for stor­
age of quotient during Divide instruction) 

101 Enables loading of microbreak register 
(FPII-E Floating-Point Processor Technical 
Manual) 

Micropointer field. A 9-bit address which, in con­
junction with the UBF field, is used by the FNUA 
board to determine the next microaddress. 

NOTE 
Four fields of a microinstruction can be interpreted 
as constants when so specified by the micro­
instruction. These fields are (59:36) (also called the 
FPEMITF field), (43:36) (also called the FPEMITE 
field), (60:52) (also called the JREG FPEMIT field), 
and (55:52) (also called the CNTR FPEMIT field). 

The FPEMITF and FPEMITE fields are discussed 
in Chapter 6. The JREG FPEMIT and CNTR FPE­
MIT fields are associated with the FPII-E control 
logic and are explained in the FPII-E Floating­
Point Processor Technical Manual. 
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CHAPTER 8 
FPII-E INSTALLATION PROCEDURE 

1. Swing open the doors on the back of the PDP-ll/60 cabinet. 

2. Disconnect primary power from the PDP-ll/60 by switching main power breakers (located 
on the back of the power controller box) to their 0 FF position. 

3. Secure the FPII-E power supply box (H7421A) to rails with four screws as shown in Figure 
8-1. As viewed from the back of the PDP-II /60, these rails are located on either side of the 
PDP-II/60's lower right quadrant. When mounted, the top of the power supply box should 
be close to the top of the quadrant. 

SECURING 
SCREWS 

J 0 

FP11-E POWER SUPPLY 
BOX (H7412A) 

~--~ SECURING SCREWS 

DDDI] I I~O ~ 
o 0 

POWER CONTROLLER BOX MAIN POWER BREAKERS 

Figure 8-1 PDP-ll/60 Chassis (Rear View) 

8-1 

LOWER RIGHT HAND 
QUADRANT OF CHASSIS 

AC POWER CORD FOR 
THE FP11-E POWER SUPPLY' 

MA-0426 



4. Insert the ac power cord of the FPll-E's power supply into a socket labeled PHASE 2 
SWITCHED located on the front of the power controller box as shown in Figure 8-2. 

(-t.~) (~.J,) (,1~) 

C~.0 (~.J-) (t.\:) 
C:w)C~~)C~~) 

~.0 @.!) G!.~)@.~) 

AC POWER CORD FOR FP11-E POWER SUPPLY PLUGGED 

IN HERE (RECOMMENDED) 

Figure 8-2 Power Controller Box (Front View) 

5. Remove the front cover of the PDP-l 1/60 cabinet. 

MA-0427 

6. Swing the BAll-PA box out of the cabinet. This box contains circuit boards and, when 
viewing the PDP-11/60 from the front, is located in the PDP-II/60's lower left quadrant 
(Figure 8-3). 

7. Remove the top cover of the BAll-PA box by removing Jour screws, as shown in Figure 8-3. 

8. Locate socket J4 on the power distribution board inside the BAll-PA box. 

9. Connect the +5 Vdc cable from the FPll-E power supply to socket J4 (Figure 8-4). 

10. Switch main power breakers ON and turn the console rotary switch to POWER position. 

11. Test for +5 Vdc at backpanel pins A8A2, A9A2, AI0A2, and AlIA2. 

12. After ensuring that +5 Vdc is present at all four pins, disconnect primary power by switch­
ing main power breakers 0 FF. 

13. Replace top cover of the BAII-PA box by replacing the four screws. 

14. Swing BA11-PA box back into cabinet. 

15. Install the F AL U board (M 7881) into slot 11 of the BA 11-P A box. 

16. Install the MULNET board (M7880) into slot 10 of the BAll-PA box. 
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~I!~ 
r------t-_._ ~===!! 

BA 11-PA BOX COVER 

LOWER 
LEFT-HAND 

QUADRANTOF___________ "I ~ 
CHASSIS I --------+W-J 

~I ____ --'........!!,.!..':..__===~ BOX COVER 
SCREWS 

BA11-PA BOX 
(SWUNG OUT OF CHASSIS) 

BACKPANEL 

(WITH BACKPANEL PINS) 
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Figure 8-3 PDP-ll/60 Chassis (Front View) 
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r;:J i--'I 

,~c) ~~ 

POWER DISTRIBUTION BOARD 

SUPPLY BOX 

Figure 8-4 Top of BAII-PA Box 
(Cover Off) 

17. Install the EXPONENT board (M7879) into slot 9 of the BAII-PA box. 

18. Install the FNUA board (M7878) into slot 8 of the BAII-PA box. 

19. Replace front of PDP-I 1/60 cabinet. 

20. Switch main power breakers ON. 

21. Close doors in the back of the PDP-II /60 cabinet. 

22. Run the following FPII-E diagnostics to ensure correct FPII-E operation. 

MD-II-DQFPA-B 
MD-II-DQFPB-B 
MD-II-DQFPC-B 
MD-II-DQFPD-B 
MD-II-DQFPE-A 
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