8QVB31K-746 28/2 ‘771%/—9;/&'66

B e e S e
ldl ilgliltl]lalll INTEROFFICE MEMDO
T e e T e e

TO: 11/74 Paper Team DATE: 25 August 1980,
FROM: Verell Boaen / —
DEPT: D&MS Advanced-Dev.
EXT: 247-2677
LOC/MAIL STOP: TW/B@2

SUBJ: BACKGROUND FPR 11/74 PAPER

Enclosed is a copy of the 11/74 background material 1I've
finally gotten around to distributing. 1I'll try to get a meeting
scheduled to discuss how to proceed for early September. At our
last session we agreed that the classic paper format of: '

I. Abstract
II. Introduction
III. Discussion
IV. Summary

V. Bibliography & References

was probably the one to follow. Also, we felt that our audience
target should be something like the IEEE Publication on Computers.

We then kicked around several ideas on content, and felt we
ought to look over some similar papers to see what length, etc.
ought to be. You will find some typical papers enclosed. See you
soon. :

Regards,

/dmj

Kim Kinnear
Brian McCarthey
Russ Moore

Rass
{VvT intro to multiprocess{ng, part 1} T
SN
¢t &(\
(VO &%

INTRODUCTION TO.

MULTIPROCESSING

{cf8,9} Copyright 0 1979 by Digital Equipment Corporation

The material in this ihaﬁdbdék- is. - for-
informational purposes and 'is“sﬁbjéct;ﬂto

change without notice. nigital Equipment-:
Corporation assuﬁes no responsibility for any-

errors which may appear in this manual.

This book was}written and edited on DIGITAL
Word Processing Systems (319w, WT/78, and WpS
102). The finished text (on WPS floppy disks):
was input to the DECSét-SGdecdﬁpgtari@@d;
typesetting system and, via ‘a transglatar-
program, was typeset automatically without -

manual markup.
Printed in U.S.A

The following are trademarks® of Dijyital”

Equipment Corporation, Maynard, Massachuseits:.

DIGITAL DECsystem-10
DEC DECSYSTEM-20
PDP DIBOL
DECUS ~ TOPS-19
UNIBUS VAX

™S

First Edition, June 1979

{cflg,12}

MASSBUS
OMNIBUS
0s/3
RSTS
RSX

IAS

| PREFACE

Wultiprocessing is here defined as a computer system consisting of
two or more central proceSSan units, with some degree of shared
memory and shared system resources, all connectmﬂ in a certain

fashion and under the' control of a single operating system.A
Operation of the system is characterized by a high degree of
interaction at many system levels. Multiprocessing is most useful
in computer applications in which one or more of the following
criteria is the primary conszderatlon' apailability, reliability,‘

N

,extensibilxty, or data protection.

This book introduces .the concept of multiprocessing and its
applications. : It discusses multlprocessing systems in terms oE
definitions}c benefits, de51gn (hardware and' software) , and
acquisition considerations. It provides background information

for further discussions and advanced reading on the subject.

Introduction to Multiprocessing is written for the engineer,

scientist, programmer, analyst, or manager who needs or wants an
overview of multiprocessing. It presumes an understanding of the

fundamentals of computer hardware, software, and application.

ORGANIZATION OF THE BOOK
The first three chapters cover topics of interest to anyone who
wants to learn about multiprocessing. The last three chapters

focus on the problems and concerns of technical personnel and

P

managers. - In Chapter 1, multiprocessors are examlned from an
historical perspectlve. The fact that they have been marketed in
many forms by many vendors signifies that multiprocessors

constitute a maturing discipline.

Chaptet 2 introduces such'~key concepts as uniprocessor,
multiprogramming, multxcomputers, multiprocessors, and array
processors, and clarifies the contrasts between multiprocessors

and other types of multiple computer structures.

Chapter 3 explains, 1n a general sense, the primary benefits of
multiprocessing 5ystems, namely, availability, performance,

. compatible growth (extensibility), and data protection.

Chaéter 4 discussestmultiprécéssor hardware structures and is of
interest primarily éo the electrical engineer or computer
scientist. First, the major generic types of structures are
defined and explained. Next, examples of actual systems are
given. These include commercial and experimental systems from
industrial and academic environments chosen to best represent the
state of the art. Some of the trade-offs inherent in the various

types of multiple computer structures are exemplified in the last

section of Chapter 4.

The software aspects of multiprocessing are discussed in Chapter
5. This discussion encompasses the major types of operating

system organizations (master/slave and symmetric) and those

features that are essential to understanding the unique qualities'
of multiprocessor software. Included are such concepts as dynamic
load balancing,. concurrency, data protection, contention, and
deadlock. Software features that enhance availability are also

discussed.

Finally, Chépter 6‘¢ovéts factors critical to making acquisition'
decisions and evaluating cost trade-offs. This chapter includes
some insight on a quantiﬁy that is being discussed with increasing
frequency -- availability -- and a simple way to calculate the

true cost of owning a computer system.

Bob swarz

April 29, 1979

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

HISTORICAL PERSPECTIVE

DEFINITIONS AND COMPARISONS
Overview

Uniproceésors and Multiprogramming
Multicomputers

Multiprocessors

Distributed Processing and Networks
Array Processors

Conclusion

BENEFITS OF MULTIPROCESSING SYSTEMS
Overview
Who Needs Multiprocessing?
Availability

Unavailability

Fault-Tolerant Computing
Performance
Extensibility -
Data Protection

Conclusion

MULTIPROCESSING HARDWARE STRUCTURES
Quverview

Major Types of Structures

CONTENTS

sﬁated Bus
Crossbar
Multiport Memory
Voted Multiprocessors
Catnegie-Melion University Multiprocessors
C.mmp
C.vmp
cm*
pigital Equipment Corporation Multiprocessors
The PDP-11/70MP
PULSAR: A performance Range Multiprocessor System

Some Structural Trade-Offs

CHAPTER 5 MULTIPROCESSING SOFTWARE
Ovefvieﬁ
Major Types of Operating System Oorganizations
Hierarchical Systems
Ssymmetric Systems
Hierarchic vs. Symmetric -- Practical Examples
A Hierarchical Multiprocessor (Master/Slave)

A Symmetric Multiprocessor

Major Features and Capabilities
Load Balancing
Concurrency
Data Protection

System Performance Degradation

Contention

Deadlock
Availability Issues

Error Detection

Error Recovery and Reconfiguration

CHAPTER 6 TOOLS FOR MANAGEMENT DECISIONS
Overview
Performance vs. Availability Trade-Offs
System Availability Analysis
Long-Term Measurements
Short-Term Measurements
Forecasting Availability

Cost of Ownership Analysis

Further Reading

{8,91}

Figure 1. Burroughs D-825 Multiprocessor
Figure 2. IBM S/3éﬁ Model 67 Multiptqcessor
Figure 3. Peripheral Stand-Alone Multicomputer
Figuré 4, Indirectly Coupled Multicomputer
Figure 5. Directlygéoupled_M?lticomputer
Figure 6. Numbervéf Pr§cessot§ vs. Terminal Resppnse Timev
Figure 7. ﬁumbe; of Pfocessors vs. Speed-iJp Ratio
Figure 8. Triplicated Modular Redundancy (TMR)
Figure 9. C.mmp

Figure 142. C.vmp

Figure 11. Cm*

Figure 12. PDP-11/7aMP

Figure 13. PDP-11/73MP Process Assignment

Figure 14, PULSAR

Figure 15. Basic Computer

Figure 16. Basic Computer with Redundant Disk
Figure 17. Completely Rédundant Computer

Figure 18. Two Procgssor, One Bus Computer
Figure 19. Main Computer with Front-End Computer

Figure 28. Bussed Terminals Connected to Redundant

Communications Controllers

Figure 21. Duplex Switch at Each Communications Controller to

Redundant Front-End Computers or Central Processors

Figure 22. Duplex Switch to Redundant communications Controllers
Figure 23. Reliability Function

Figure 24, Typical Uptime Plot

Figure 25. Probability Density Function of Availability

Figure 25. Downtime Histogram

CHAPTER 1

HISTORICAL PERSPECTIVE

Multiprocessors are not new. They have been designed and sold
since the late 1950s. Over 58 commercial multiprocessors can be
identified to date. In this chapter, some of the important

predecessors of the modern multiprocessor are described.

One of the first multiprocessors was developed in 1958 -- the IBM
Semi-Automatic Ground Environment (SAGE) system. This system was
used for the U.S. air defense system, an application in which

reliability was essential. SAGE had two computers that

independently executed the same task. At various points in the
program execution, thé: results were compared to check their
correctness. The deqfee of resource sharing and interaction
typical of lateg multiprocessors was not present in this system,
but the important concept of redundancy for reliability

enhancement was utilized.

The next important multiprocessor, the Burroughs D-825 (Figure 1),
was introduced in 1948. It was used in military applications that

required its extra margin of performance. This system advanced

the state of the art by adding new hardware and software to
achieve a high degree of resource sharing and processor
interaction. It could support up to 4 processors, 15 memory
modules, 19 I/0 controllers, and 54 peripherals. Interconnections

among these various devices were made possible by a hardware

switch matrix known as a crossbar (Chapter 4). The operating
system (softwére); the Automatic Operating and Scheduling Program
(AOSP), was aﬁ iméortant~forerunner of modern operating systems
because it was one of the first to proyide general system support

and services. Most previous operating systems were bound to a

particular application or configuration.

In 1952, the designers of the IBM Stretch (77349) developed the
concept of an asymmetric multiprocessor in which each processor
had a separate and distinct function. One processor was used for
binary arithmetic, while the other was used for character-oriented
operations. The concept of two processors having differéht
functions was then employed in the IBM Direct Coupled System
(pCs), designed in 1963; ‘This.systemrutilized the 7G4X'system for
a communicaiions- front end and a 709X systeml as the main

processor.

The 7338 and 704X/709X were typical of multiprocessor systems that
share a communications bus. In contrast, the IBM S/348 Model 47
(Figure 2), first delivered in 1955, had two processors that
directly shared main memory modules. The system was used for
time-sharing applications that required additional performance and

I/0 channel capabilities.

From 1955 on, many other large mainframe multiprocessors were
designed and sold by Burroughs, CDC, Honeywell, IBM, Univac, and

XDS. The first DIGITAL multiprocessor desiqn was based on the

ppDP-6 (1954); PDP-10 multiprocessors have been sold from 1972 to

the present. tn addition, hundreds of PDP-11 customers have

designed their own multiprocessors based on DEC hardware. -.

For over 20 years, the multiprocessor structufe has been important
only in special-purpose applications. | However, the
characteristics that make multiprocessors'good for these special
purposes -- per formance, availability, and ease of use -- a;e, to

some degree, important to all computer users.

CHAPTER 2

DEFINITIONS AND COMPARISONS

OVERVIEW

Understanding the basic concepts of multiprocessing requires a
consistent terminology. Because an industry-standard terminoldgy
for multiprocessors does not exist, the definitions provided here

may vary from those in engineering literature and marketing copy.

The comparison‘of multiporcessors with two other types of multiple
computer systems -- distributed processors (networks) and array

processors -- clarifies their essential differences.

UNIPROCESSORS AND MULTIPROGRAMMING

A uniprocessor is a system with one computer (although dedicated

'pfocessors may exist in the peripheral devices). This single
computer may be able to process more than one task at a time
depending on the operating system. The concurrent execution of

more than one task is called multiprogramming. Many modern

operating systems have this capability.

MULTICOMPUTERS

A multicomputer is a system that has two or more computers sharing

data at the data-set level. The computers may or may not compare
results, depending primarily upon whether the system design qgoals
are for reliability or performance. Each computer communicates

with the other either as an 1/90 device or through shared mass

storage.

Multiple computers have been used almost éince the advent of the
electronic digital computer. For example, the SAGE air defense
system, built in 1958, utilized two processors, independently
" executing the séme task and éomparing results at various points in

the program to verify correct operation.
Multicomputer systems may be categorized into three major types:

peripheral Stand-Alone -- The input and output subsystems
have their own computer that either inputs or outputs
data onto magnetic tape (Figure 3). This solves the
problem of & mismatch between the slow unit-record type
I/G‘dévices.and the faster mainframe. There is no shared
resource or any direct connection between the mainframe

and subsystem computers.

Indirectly Coupled -- The computers share a high-speed
mass storage device, such as a disk or drum unit (Figure

4) .

Directly Coupled -- The computers are connected via a

high-speed communications 1link (Figure 5).

These multicomputer systems are effective, but lack several

essential characteristics of multiprocessors.

MULTIPROCESSORS
wWwhereas a uniprocessor is a single computer and a multicomputer is
more than one computer, a multiprocessor achieves a higher 1level

of system interaction.
A multiprocessor has the following characteristics:

* Multiple Computers -- The system has two or more central
processing units. 1f the processors have equal
performance and functionality, the system is referred to

as a symmetric multiprocessor; otherwise, it is an

asymmetric multiprocessor.

Shared Memory -— All of the processors are able to access
all, or at least a portion of, the main memory storage.
Tf some portion of computer memory cannot be accessed by

other processors, it is referred to as private memory.

Systems whose predominant mode of interconnection is
through shared main memory are referrad to as tightly
coupled. Systems whose predominant mode of intercon-

nection is through a shared bus are called 1loosely

cougled.

Sshared System Resources -- Nther system resources (e.g.,
mass storage, I/0, communications) are shareable by more

than one processor, but some private resources are

permissible.

One Operating System -- The portion of software that
controls the operation of the entire system is unique;
otherwise, the processor's system devices could not truly

operate in concert.

Interaction -- In the execution of a given job or mizxture
of jobs, intimate interaction at many system levels is

possible.

From an applications programmer's viewpoint, tﬁe differences
between the capabilities of a multiprogramming uniprocessor
operating system and a multiprocessor operating system may not be
readily 'apparent, but they are significant. A good operating
system is essential for the effective utilization of a

multiprocessor. Chapter 5 examines this subject more closely.

DISTRIBUTED PROCESSING AND NETWORKS

Multiple computers, shared system resources, and interaction
characterize both multiprocessing and distributed processing.
How, then, does multiprocessing differ from distributed processing

or networking? DEC's Distributed Systems Handbook* offers the

following definition:

{(cf9,18} "A distributed system is one that is

spread out over an area. For information to
be useful at a distance, formal (planned)
systems are used. Hence a distributed
information system is a mechanism that makes

information useful across an area.”

{cf8,9} *Distributed Systems Handbook (Maynard, Massachusetts:

pigital Equipment Corporation, 1978), p.l0.

{cf18,12} The essential diff;rences betweeﬁ distributed processing
and multiprocessing are location and purpose. A distributed
processing system has some geographically separated components
(i.e., not located in the same room or building) and exists as a
tool for building effective information systems. A multiprocessor
is usually located in one area and exists to enhance somé
combination of availability and performance. A distributed system
is typically used by an organization that needs to share,
effectively and eéonomically, large amounts of information over

many widely dispersed sites.

ARRAY PROCESSORS

An array processor is usually described as having a single

instruction stream and a multiple data stream. That is, two or

more identical nprocessing units, are executing the same

instruction at the same time, but on different data. The
essential difference, then, between the array processor and the
multiprocessor is this single instruction stream control of all

processors.

The best known example of Qn‘arfay processor is the TIlliac 1V
(University of Illinqis),Awhich has 256 processing elements
arranged in four groups of 54 processors each. The coéprol
processor for each group is, in itself, a large mainframe
computer. Thus, there is actually a hierarchy qf processors.
A system 1like this is usually built for some séébial complex
mathematical functions application, _such as. matrix inversion,

meteorological studies, etc.

CONCLUSION

Application, then, constitutes the essential difference between
the multiprocessor and the other types of processors discussed.
The next chapter discusses multicomputer applications and their

benefits.

CHAPTER 3

BENEFITS OF MULTIPROCESSING SYSTEMS

OVERVIEW

A true multiprocessor is not merely a system that has tﬁo or more
computers. The computers have to be connected in a' certain
fashion, communicate with each other, and share system resources.
Mul;iprocessing systems are built to achieve certain goals;
networks or multicomputer systems are built to achieve other
goals. Depending on system configuration, the significant
benefits of multiporcoessing are increased availability,

processing speed, extensibility, and data ptotectibn.

WHO NEEDS MULTIPROCESSING?

Al though muliiprocessinq is an established concept, only a very
small percentage of commercial mainframes are sold in
multiprocessor configurations. Some of the reasons €for this

follow:

The basic nature of engineering is to be conservative.
There are risks involved in building a structure that may
require a new way of programnming. This creates a
Catch-22 situation: people cannot learn how to program
multiprocessors until such systems exist, but a system
cannot be built until programs are ready. The computer

industry has to believe that the benefits are great

enough to merit the effort and expense.

s The market doesn't demand them. Another deadlock: How
_can the market demand them, if it doesn't know they exist

or understand their benefits?

~ It is felt tha£ a better special purpose uniprocessor can
‘always be built. This design philosophy stems from local
optimization of the designed object and ignores the
global costs of maintenance, downtime, and the user's
ability to adjust a configuration dynamically to the
load. In all dimensions of computer space, there is
dynamic wvariability: primary memory size, secondary
memory size, and number of tefminals. Processor

performance could be variable in the same way.

It is, therefore, natural to ask: If multiprocessor systems have
heen around for such a long time and not many installations
utilize them, can they be-of much interest or value? The answer
is yes. Different systems are good for different applications:
some systems are good for time-sharing, others for batch, others
‘for data base manipulation, and still others for complex numerical

functions. Multiprocessing offers many advantages:

® Performance -- A multiprocessor can be a cost-effective

way to obtain a high performance system.

Availability -- Downtime -- the time when a system or

part of the System is not operational -- can be highly
inconvenient or costly. For example, in some commercial
applications, the lost revenue due to system downtime is
in the range of tens of thousands of dollars per minute!

In such systems, the value of the added systems uptime

far exceeds the cost of the multiprocessor.

pata Protection -- Lost or garbled data can also be
astoundingly costly. Oone needs only to consider the

electronic funds transfer industry to appreciate this.

s Extensibility -- If current computing requirements are
relatively small but the future need for more power may
exist, a multiprocessor could provide a relatively

inexpensive and painless expansion path.

AVAILABILITY

people have various concepts of computer availability. To some,
it is the time between placing an order and actually receiving the
product (primarily a purchasing issue). To others, it is the
geographic region over which a computer system is accessible
(primariiy a netwofking issue) . The notion of availability

presented here is the percent of time that a computer system is

available and operational.

Unavailability

A computer system is complex and, despite the best engineering and

manufacturing practices, the sheer number of parts in a computer

predicates failures.

The frequency of failure and the time to repair the system when it
fails are the two components to availability. Typically, time to
repair is composed of many indepenéent components, such as
response time (the interval between the call for service and the
field enéineer's actual commencement of work), diagnosis time,

replacement time, and verification time.

with a uniprocessor, maintenance cannot be delayed and system
failure cannot be avoided. In multiprocessor systems, maintenance
delay can be acceptable because of redundant components.
Redundancy helps in two ways: (1) the system may not go down when
a single failure: occurs, and (2) some mohey can be saved on
maintenance charges because there is a lesser need for imhediate

maintenance,.

There is usually a cost associated with computer downtime, and all
computers are down some proportion of the time. These costs can

fall into several categories:

Loss of Productivity -- The function of a computer is to
perform some useful task in an industrial, business,
medical, or academic environment. when the computer is
down, this work cannot take place, inevitably incurring

some cost. Unless the computer is underutilized, the

cost is significant.

Loss'of hevenue -—— In a time-dependent application, the
computer being down can cause a loss of revenue. An
example of this situation is a billing computer for a
telephone system. while the computer is down, calls are

still being made, but there is no record of the incurred

charges.
~ Loss of Customers --— People are very frustrated by broken
computers. Consider a drug store that has its

prescription data base on line; every time the system
goes down, customers are irritated. Even in situations
where there is a viable backup system, there is a
frustration factor. A too-frequently down computer gives

a business a bad reputation.

Loss of Property or Life -- Computers are used to control
systems whose failure can have catastrophic consequences.
Consider, for example, a computer-controlled nuclear
power plant, medical applications, airport traffic

control, even weather forecasting.

Fault-Tolerant Computing

A field known as fault-tolerant computing has grown up because of

problems associated with computer downtime. An essential concept

in fault-tolerant computing is redundancy. To 1illustrate the

concept, suppose that modern jet engine technology could develop
an engine that had fouf times the thrust of the current engines.
A 747, however, would still be built with more than one engine; it
needs multiple engines for'reliability. The same concept is used
in multiprocessor systems; to build a system with reliability
above that which |is inhereﬁt in the equipment, redundant
components are used. The redundancy can be applied to any level

of integration: circuits, modules, boxes, peripherals, etc.

Redundancy can also be used to enhance maintainability (i.e, time
to repair). Fault-tolerant computer engineers have devised
various ways for cifcdit failures to be detected, isolated, and
corrected (either automatically or manually. A properly designed
multiprocessor system can be'coAfigured with enough redundancy and
self-diagnostic capabilities to increase the mean-time-between-
-failures (MTBF) and to reduce the mean-time-to-repair (MTTR),

thereby increasing the overall system availability.

PERFORMANCE

performance is a measurement of the speed with which the computer

executes some specified task or set of tasks. Computer
perfotmance analysis is concerned with measuring or predicting
time-dependent computer parameters. A typical approach is to
consider an average workload for a time-sharing computer with a
number of terminals, then measure or predict the average response
time at a terminal. A second approach is to run a "bhenchmark"

program and measure the execution time. Another performance

measurement might involve statistically determining the
instruction proportions for a given application and then
calculating how many instructions per second the computer can

execute.

It is difficult to characterize the architecture of computers so
that absolute comparisons can be made. Thus, Whetstones (a
standard benchma}k), MIPS (million instructions per second), and
average terminal response time are all coarse measurements of

computing speed.

Multiprocessing can enhance a computer system's performance.
Consider, for example, Figure 6, which shows data takeﬁ on an
experimental multiptocéssor* The horizontal axis shows the number
of terminals active. .The vertical axis shows a measure of system
performance, in this case the terminal response time. The various
curves show the results for one processor, four processors, and
eight processors on a multiprocessor that can accommodate from one
to eight processors. The system has a fixed number of terminals

running the same job mix, regardless of the number of processors.

It is evident that system performance increases for every
additional processor. There is, however, an "overhead" associated
with the management of the shared resources that causes the
so-called "speed-up ratio"™ to be non-linear and less than the
number of processors. Two processors yield a 1.9 increase in

response time over the uniprocessor case, three yield 2.8, etc.

Figure 7 shows a plot of speed-up ratio as a function of the

number of processors.

Although it may seem evident that n processors can be nearly n
times faster than one, the system design necessary to achieve this

is substantial. Speed-up is achieved by concurrency, which is the

ability to execute two or more tasks truly simultaneously; and the
achievement of efficient concurrency is a difficult task without

properly designed hardware and software.

The problems can be described as follows: How can the software be
broken up so that parallel portions of the applications program
are executing concurrently, but come together at the right time?
How can the system;s resources be allocated so that there is no
contention fof the.use bfia resource between competing parts of
the program? The solutions to these problems enable the use of
multiprocessing systems to enhance the speed with which tasks are
performed in a cost-effective manner. Refer to Chapter 5 for a

discussion of these problems.

EXTENSIBILITY

Typically, a computer application outgrows the original computer.
This may be because the application has grown with the business or
new applications have been found.

when this situation occurs, the solution is usually to buy a new

computer, For example, a PDP-11/34 may be replaced with a

pPDP-11/79. Although the software is compatible, there is a good
deal of effort involved in the expansion. First, a new computer
must be shipped in and set up -- a time-consuming procedure,

Second, the old computer has to be used elsewhere or disposed of

in some manner. Third, some software "bugs"™ may be encountered

even when moving up to a supposedly compatible system.

With an extensible multiprocessing system, all that is needed to
increase the system's performance is to add another processor.
The system stays in place and the software is completely

unchanged.

The same sort of logic holds for a user who requires increased
system availability,_ If the system currently has two processors
and the downtime is unacéeptable, the addition of a third
processor increases system availability. Again, this occurs with

minimum disruption.

DATA PROTECTION
When it is critically important to protect the data from loss or
alteration, a multiprocessor can help by providing redundant data

paths and storage locations. For example, a so-called shadow disk

can be recorded, which is simply a copy of the primary disk. 1In
the event of an error detection, the data can be recovered from

this shadow disk.

The second disk also provides the facility for detecting errors in

disk transfers. Namely, if all reads and writes are made to both

disks, a discrepancy can be noted and appropriate action taken.

Refer to Chapter 5 for an in-depth discussion of data protection

and shadow recording.

CONCLUSION

Multiprocessing has four basic benefits:
Increased availability because of duplicated components
Improved performance because of additional prodeséors

Easy extensibility by adding a processor to an existing

system rather than replacing the entire system
Increased data protection because of redundancy

Chapter 4 discusses the realization of these benefits through .

various hardware structures.

CHAPTER 4

MULTIPROCESSING HARDWARE STRUCTURES

OVERVIEW*

Multiprocessor structures are of three major types: shared bus,
crossbar, and multiport memory. A special configuration, used
"primarily for reliability enhancement, is the wvoted
multiprocessor. The examination of several exampie structures,
each realizing the same function, reveals the
cost-performance-~reliability trade-off involved in choosing a

suitable configuration; Our examples are drawn from among

Carnegie-Mellon University, Burroughs, and DIGITAL
multiprocessors.

{cfs,9} *Many of the concepts presented in this chapter were
extracted from Computer Engineering -- A DEC view of Hardware

Systems NDesign (C. Gordon Bell, J. Craig Mudge, John E. McNamara

(Bedford, Massachusetts: Digital Equipment Corporation, Digital
press, 1978)]1, which further develops multiprocessing hardware

structures.

{cf13,12} MAJOR TYPES OF STRUCTURES
Shared Bus
The time-shared common bus scheme is one of the simplest and least

costly multiprocessor structures. Many uniprocessor bus designs

(such as the UNIBUS) readily lend themselves to this sort of
organization because 1ittle or no special hardware is needed.
processors and memories are attached on the bus which is time-

multiplexed.

There are, of course, some penaities for the simplicity of this
structure. First, writinq software for the system's operation is
a complex task. second, bus bandwidth or contention fqr the»use
of the bus may limit systeﬁ per formance. Third, it is §ifficu1t
to diégnose failures; especially in situations where the failed
devicé prevents any further bus operation. Fourth, there |is
little "fire-walling”® possible; that is, it 1is difficult ¢to
-contain a failure to a particular functional unit. Most failures

that affect the bus are catastrophic to the whole system.

Crossbar

A crossbar switch is a hardware device that can connect any
circuit a; (i =1, 2, 3, o« « ¢ n) to any circuit bj (3 =1, 2, 3,
. « o, n) by use of the appropriate control signals. The most
frequent use of this device in a multiprocessor structure is with
memories on the a, lines and processors on the bj lines.
Carnegie-Mellon University's C.mmp and the Burroughs D825 (Figure

1) are such multiprocessors.

A crossbar system is more expensive than the shared bus structure,
but retains almost all the flexibility in adding processors and

memories as desired. The bandwidth, diagnosis, and fire-walling

problems are ameliorated. 1In contrast to the shared bus system, a
crossbar multiprocessor can support concurrent transfers between

all the possible processor-memory pairs.

The individual device interfaces are staightforward to design
since they do not have to direct any traffic or resolve any
contentious situations. on the other hand, the design of the
crossbar switch i;self and the associated software is complex.
Each switch point must be able to resolve multiple requests and

switch parallel buses in a very short time.

Multiport Memory
The multiport memory type of multiprocessor is usually known as

tightly coupled, meaning that the connection between processors is

through the primary memory. Each module of main memory can be
accessed through any of n ports, giving rise to an n-processor

multiprocessor.

This type of structure has more expensive memory units than the
shared bus or crossbar structure. Its interconnection system is
cheaper and simpler than the crossbar system, although still more
expensive than the shared bus scheme. It has less flexibility
than either the shared bus or crossbar, but more potential for
performance enhancement. With caréful design, its maintainability

and diagnosability are high.

Voted Multiprocessors

This type of structure is used strictly for high reliability
applications. It uses a voter, a device that accepts a number of
inputs (anything from a single bit to a bus) and outputs that
input value upon which the majority of inputs agree. The most
common voter has three inputs and one output, and thus is a
2-out-o0f-3 voter. It is also possible to have 3-out-of-5,
4-out-o0f-7, etc., voters. Figure 8 shows a multiprocessor with
three computers feeding a single main memory through a voter.

This is known as triplicated modular redundancy (TMR}.

The voted scheme providés the highest availability because errors
are maéked, that is, they are completely transparent to the user.
with proper hardware design, repair of a failed module may be
accomplished on line, causing no downtime whatsoever. Many high
availability schemes that do not mask errofs require a certain'
recovery time after an error is detected. Even though the system
does not go down (a crash is avefted without human intervention),
there is a time (and therefore performance) penalty associated

with the failure.

Voting is a scheme that has historically been associated only with
aerospace-type applications. Wwith the continuing decrease in
hardware costs, however, it now seems to be a viable idea in the
commercial marketplace. An LSI-11 based voted microprocessor,

c.vmp, is discussed in the next section.

CARNEGIE-MELLON UNIVERSITY MULTIPROCESSORS

Three experimental multiprocessors constructed at Carnegie-Mellon
university are C.mmp, C.vmp, and Cm*. These systems are ongoing
projects about which extensive amounts of performance data is

available.

C.mmp

c.mmp (Figure 9) is a l6-processor system with 2.5 million words
of shared primary memorye. It is a crossbar structure) using
pDP-11/2@ and PDP-11/40 processors. It was built to investigate
the programming (and resulting performance) questions associated
with using a large number of érocessors. The development of C.mmp
was motivated by the need for more computiné power to solve speech
recognition and signal processing problems, and to understand the

problems inherent in designing multiprocessor software.

As the number of memory modules and processors becomes very large,
the theoretical performance (as measuréd by the number of accesses
to the memory by the processors) approaches half the memory
bandwidth. Thus, there is no maximum limit on performance (with
an infinite number of processors), provided all processors are not

contending for the same memorye.

Contention for shared resources in a multiprocessor occurs at
several levels. At the lowest level, there is contention between
processors at the crossbar switch for memory. On a higher level,
there is contention for shared data in the operating system

kernel; processes contend for I/9 devices and for software

processes (e.g., for memory management) . At the user level, there

is further contention implied by shared data.

From a systems software point of view, there are three basic

approaches to the effective application of multiprocessors:

System level workload decomposition -- If a workload
contains a lot of inherently independent activities,
e.g., compilation, editing, file processing, and

numerical computation, it will naturally decompose.

~ Program decbmposition by a programmer -- Intimate
knowledge. of the application is required for this

- time-consuming approach.

Program decomposition by the compiler -- This 1is the
ideal approach; however, results to date have not been

especially noteworthy.

c.mmp was predicated on the first two approaches, ALGOL 58, a
language with facilities for expressing parallelism in programs,
has been 1implemented. Tt has assisted greatly with program

decomposition and looks like a promising general approach.

C.vmp
c.vmp is a triplicated, voting multiprocessor that was designed in

order to determine if standard, off-the-shelf LSI-11ls could be

configured to pfovide greatly increaséd reliability. Increased
reliability'is~important because maintenance costs for all systems
are increasing, systems are becoming more complex, and
applications are becoming more critical. The project was

initiated in 1975 with the following goals:

- Permanent and Transient >Fault Survival -- A permanent
fault is one in which a physical failure ig a piece of
hardware is permanent and irreversible. A transient
fault is a failure in hardware or software that occurs
only occasionally, either purely randomly or as a
function of timing or environment. The system should be
able to continue correct operation in the presence of

either type of fault.

Softwafe'?ranspatency to the User -- The programmer of
the system should not be required to use any special
techniques or have any knowledge of the system structure
above a programmer's basic understanding of the LSI-11

architecture,

Real-Time Operation Capability -- Fault detection and
appropriate recovery should take place quickly enough

that system operation is unaffected.

Modular Design to Reduce Down-Time -- When a system

component is identified as permanently failed, the repair

should be straightforward (i.e., Dby the simple

replacement of a module).

- Off-the-Shelf Components -- The system should be built
from substantially unmodified LSI-11ls, memories, and

controllers.

~ Dynamic Performance/Reliability Trade-0ffs -- The
hardware and operating system should be constructed to.
allow the operator or program to trade reliability for

performance at will.

The actual system configuration (Figure 1¢) uses voting at the bus
level. The processors are on one side of the voter and the
memories and peripherals on the other side. The wvoting is
bidirectional (that is why there are six lines on the voter). The
actual voter design is capable of operatim;bin three different
modes. Besides the voting mode, there is a broadcast mode, in
which one processor can send the same signals to the three

peripheral buses, and an independent mode, in which the system can

function as three independent computers. The peripheral buses

have links between them in order to synchronize mode changes.

Oonly a few minor modifications are necessary to the off-the-shelf
hardware. The voter does, however, have a fairly high parts count
since it has to switch 56 lines and implement® several operating

modes. Although it does not presently create a reliability

"bottleneck," if that situation should arise, the voter could be
triplicated. Because the disks are not rotationally synchronized,

there is some loss of performance in disk transfers.

Because the processor registers are on the same side of the voter
as the processors, an interesting situation occurs when there is
some processor-to-processor register disagreement (e.g., due to a
transient error). In order for the processor to get back in
*sync,"” it must be updated from the memory. Traces of many actual

programs indicate that

Each general purpose register is updated every 24

instructions, on the average.

A subroutine call is made on the average of every 49
instructions, thus effectively updating the program

counter,

s The stack pointer is not normally updated through the
voter; therefore, a negligible amount of special
programming must be included to provide fault tolerance

on this register.

A major goal in the design of C.mmp was software and hardware
transparency. This turned out to be easier to attain than
expected due to an idiosyncrasy of the floppy disk controller.

Because the controller effects a word-at-a-time bus transfer from

a;'one-sector} buffer, voting can Be carried out at a very low
level. It is unclear how the system would have been designed
without this type of controller. At a minimum, some part of the
software transparency goal would not have been met, and a

significant controller modification would have been necessary.

cm*

As depicted in Figure 11, Cm* has a shared bus structure. The
fundamental unit of Cm* is a computer module (Cm). Each Cm
consists of a procéssing‘ element, local memory, input/output
devices, and a 1local swi‘tch (S.local) which provides a simple
interface between the Cm and the rest of the system., The primary
memory of the éystem consists exclusively of the 1océi memory of

the Cas.

A processor may directly reference any location in the main
memory. The S.local uses simple mapping tables to decide on a
reference-by-reference basis whether the physical address being
referred to 1is in the 1local memory. If it is, the S.local
performs a simple mapping function and the reference proceeds very
quickly. If it is not, the S.local passes the reference to a
mapping controller (X.map). The K.maps, which comprisé a
distributed processor/memory switch, communicate with each other
and the S.locals of the system to perform non-local references for
processors. The fact that a memory reference is non—loéal is
completely transparent to the processor. While the reference is

being performed by the K.maps and S.locals, the processor waits

just 3s if the reference were local. The duration of this wait
varies sharply with the electrical distance the reference‘xnust'
travel to reach the addressed memory. It is, however, fundamental
to Cm* that the addressing mechanism at the processor level be
exactly the same no matter where the physical memory being

addressed is located.

DIGITAL EQUIPMENT CORPORATION MULTIPROCESSORS

The PDP-11/79MP

The PDP-11/70MP was built with the goal of extending the
reliability, availability, maintainability, and performance range
of the PDP-11 family. It uses PDP-11/78 processor hardware and

the RSX-11M software as basic building blocks.

The system can have up to four processors which have access to
common central memories (Figure 12). Each central memory contains
255 Xbytes to 1 Mbyte of storage and a port by which up to four
processors may access it. 1In this configuration, a failed memory
may be isolated for repair without affecting the oéher memories.
Usually two processors share (have access to) each of the 1/0

devices through a UNIBUS switch or dual-ported disk memories.

Failure of a high speed mass storage bus controller, a processor,
or one port of a device does not preclude use of that device
through the other port. These devices also can be isolated from
their respective buses so that failure of a device does not

preclude access to other devices.

mach of the processor units has a write-through cache memory.
During normal operation, data within these local caches may become
inconsistent with data elsewhere in the system. To handle this
problem, the operating system and the hardware components have

been modified. The RSX-11M system either clears the cache of

inconsistent data or avoids using the cache for specific
situations. The software to manipulate the cache is contained in

the executive and is transparent to user programs.

. . 2 .
An Interprocessor Interrupt and Sanity Timer (I7ST) provides the
executive software with a mechanism to interrupt processors for

e T T 2 . : i

rescheduling. The I“ST includes a timer for each processor which
is periodically refreshed by the software after execution of
diagnostic check routines. 1If the refresh commands do not occur

2

within a prescribed interval, the I"ST issues an interprocessor

interrupt to inform the other processors of faulty operation. The
IZST also contains a mechanism for initially loading the

multiprocessor systenm.

The PDP-11/79MP design results in . an extension to the PDP-11
family that yields increases in performance over the single-
processor PDP-11/79 system, yet is transparent to user programs.
This performance increase is due to the choice of a symmetric
multiprocessor design, which permits any process to access nearly
any resource with minimum overhead. Moreover, dynamic assignment

of processes to specific computer systems (Figure 13) can be made.

The system has been designed to increase availability through the
use of multiple redundant components. A failed element can be
isolated for repair, the system is easily reconfigured so that
system operation can be resumed, and the failed component is

repaired off line.

Extensions to the diagnostic software and hardware error-detection
mechanisms facilitate quick location of faults. User-mode
diagnostics are run concurrently with the application software;

this permits on-line maintenance of the disk and tape units.

PULSAR: A Performance Rangé Multiprocessor System

PULSAR is an experimental 15 LSI-11 multiprocessor system
for investigating the cost-effectiveness of multiple
microprocessors. It covers a performance range from a single

LSI-11 to better than a PDP-11/79 for simple instructions.

The breadboard system (Figure 14) is based on the ppP-11/773
strécture, including multiple interrupt levels and 22-bit physical
addressing. It does not implement instruction and data space or
Supervisor mode, and it lacks the floating point ﬁrocessors. The
processors communicate with eéch other, the UNIBUS interface, and

a Common Cache and Control via a high bandwidth synchronous bus.

The Common Cache and Control contains a 1ar§e (8 Kword) shared
cache, interfacing to the PDP-11/7% memory bus. The control
provides all the mapping functions for both WUNIBUS and processor
accesses to memory. The UNIBUS map registers and the process map

registers for each processor are held in a single memory.

The UNIBUS interface provides the UNIBUS control functions of a

conventional PpnDP-11. ‘Interrupts are fielded by the first enabled

processor with preferential treatment for any processor in a

*wait™ state.

The PULSAR system allocates time slots for each processor as
required. This permits a single simple arbitration mechanism,

rather than separate complex ones for each resource.

The memory subsystem, which is not a part of the resource
pipeline, has an independent arbitration mechanism. Interfacing

vetween these independent mechanisms is by means of queues.

‘Cost projections derived via PULSAR indicate that a multiprocessor
will have an increase in parts count over each possible equivalent
performance uniprocessor in the range. The cost difference is
nearly ¢ percent at the top of the range, but increases to 21
percent for a two-processor system. The 20 percent premium can be
reduced if no provision is made for expandability over the entire
range. Clearly, a separate uniprocessor structure <an be
cost—effective (since this is the LSI-1l1). The premium is based
on parts count only and excludes considerations of cost benefits
due to production 1learning, common spares and manuals, lower

engineering costs, etc.

SOME STRUCTURAL TRADE-OFFS
A comparison of various structures for a multiprocessing system
points out the cost-availability trade-off inherent in each

structure.

Assume a system consisting of a central processor and data base
with %4 outlying terminals, in various areas. The processor has
48% words (X = 1224) of main memory in 15X word modules, and the

system software and the data base reside on one disk.

Assume the following failure rates:

Terminals -- 29793 hours MTBF (mean time between failures)

for each terminal
s pisk controller -- 37,042 hours MTBF
Central processor -- 17,989 hours MTBF
Primary memory -- 53,099 hours MTBF per 15X module
s pisk -- 2592 hours MTBF

1f the most straightforward approach to configuring the system is
taken, the 54 terminals are connected to a uﬁiprocessor system via
a communications controller, as shown in Figure 15. TI€ all 54
terminals have to be up in order for the system to be operational,
the long-term steady-state system MTBF is abhout 21 hours
(280%9/54). Assume that the terminal can be repaired in a total

elapsed time of S hours. Then the system availability becomes 35%

(31/3%) if no other failures occur. Ignoring repair cosﬁs and
considering only the salary cost (assume $7 per man hour) for the
54 people who may be using the terminals, the cost for each outage
is 64 X 5 X $7 or $2244, significantly more than the cost of a
single terminal. This analysis indicates that, at a minimum, one

or two spare terminals should be provided.

For compégison, let's 1look at the reliability of the central
processor, memory, and disk in a system that does not require all
terminals to be up. Using the same failure rates, the reliability

of the system is
1/[3/53,009 + 1/17,990 + 1/37,098 + 1/2,509] = 1,843 hours

If it takes an average of 19 hours to bring a downed system back

up, the long-term steady-state availability is 99.5 percent

(1843/1853) .

Figure 15 shows a two-disk configuration. Note that the addition
of a disk increases the cost of the system and deqgrades its
performance, since all disk reads and writes are done on both
disks. The disk reliability, once the weak point of the
processor-memory-mass storage cluster, now far exceeds that of the

processor and memory. That is,

1/(3/53,033 + 1/17,739) = 3553 hours

is the MTBF of the CPU and memory.

The MTBF of the duplicated disk* is 315,099 hours. MNote, however,
that if repairs are performed only after both disks fail, the MTBF

is 3759 hours.

{cf3,9} *Martin L. Shooman, Probabilistic Reliability: An

Engineering Approach (New York: McGraw-Hill Book Company, 1958),

pPP. 341--342.

{cfl9,12} other variants of the structure might provide a similar
benefit at a reduced cost or performance penalty. A magnetic tape
subsystem would permit the disk entries to be backed up and
recreated. Alternatively, a second disk need not be an exact copy
of the Eirst, but could be updated periodically to reflect a
recent’version of information. 1In this way, disk data need not be

written continuously and the system performance is improved.

So far, the discussion has focused on terminal and disk
reliability; now let us consider the rest of the structure.
Figure 17 is a two-processor structure -- the simplest way to back
up the CPU. There is a dual-ported communications contrsller
connected to dual computer buses with (possibly but not
necessarily) dual-ported disk controllers. An alternative is to

find a way to put both computers on the same UNIBUS (Figure 19).

The UNIBUS is an asynchronous, bidirectional bus through which all

system data transfers take place. All devices on the system --
the processor, memory, and peripheral controllers -- attach to the

UNIBUS. Each device has a set of registers and an interrupt
vector with unique addresses. Each device also operates at some

discrete priorty level when requesting use of the bus.

The only thing special about the processor's interaction with the
bus is that it arbitrates the requests for control of the bus.

The device that has control over the bus is called the bus master;

other devices may request to be the next bus master. When._ the
current bus master rélinquishes control of the bus, the processor
grants control of the bus to the requesting device with the

highest priority, which becomes the next bus master.

Peripheral devices can communicate directly with one another once
one becomes the bus master. However, the processor has a higher
priority than any other device on the bus and can always

intervene, if necessary.

The only reason that two processors cannot be connected directly
to the same UNIBUS is the resulting duplication of bus request
arbitrators. There can be only one bus arbitrator. 9ne possible
solution is to disable the arbitration circuitry of all but one
orocessor and have all processors except one operate on a device
priority level. With this structure, the opportunity arises to
use less powerful CPUs than in the original design. That is, the

second CPU, introduced primarily for reliability enhancement,

could be used to take up some of the computing burden.

The addition of a front-end communications computer/controller
forms a network (Figure 19). It is apparent that this structure
is significantly less reliable than the structure of Figure 15,
sinceaanother complex component has been added in series. The
rationale for adding the front-end computer might be one or more

of the following:

A significant number of terminals reside at remote sites
so that concentrating messages remotely saves line
charges. .

The main computer is overloaded. The cost to add
capacity is very high compared to the cost of a single

functional component, the front-end computer.

Too many lines come into a single main computer,

resulting in impaired reliability.

The front-end computer can act as a switch to one of

several main computers.

Fiqures 20, 21, and 22 illustrate the problems involved in using
component redundancy to increase the likelihood that information
from the terminals will reach the main computers. A key aspect of

the front-end redundancy problem is associated with the location

of the ;erminals. For this discussion, assume that the terminals
are located at a single site (or arrive through a single telephone
exchange) because they either provide the redundancy. of multiple
communications controllers or switch a single communications

controller to one of two local computers.

In Figure 20, ab,duplicate set of communications controllers
provides an alternate path to either of fgyo computers. Each
front-end computer (or pair of central processors) has its own
independent set of commuhicationsEcontrollers. The terminal can
send information to either one of the two communications
controllers. Such a structure can be built by modifying
communications modems to feed two independent controllers. This
structure provides for the highest reliability since either
communications controller can operate ;he communications link and
there is no extraneous equipment between the 1line and the

communications controllers.

Figure 21 shows a single communications controller which |is
switched to one of several computers. Although 1logically
identical, a switching arrangement of this type (permitting a
communications line to be sent to either of the two independent
computers) can be provided in the communications subsystem (Figure
22). Here, assume that either computer uses only an active line,
and the 1lines can be distributed somehow between the two
computers. In some systems this switch is automatic, but it could

be manual, similar to a single plug-type switchboard. Note that a

switchboard is most likely used without com~lete duplicated
communications front ends and is perhaps the most realistic system
in view of the high reliability of the communications controller

and the front—-end computer.

CHAPTER 5

MULTIPROCESSING SOFTWARE

OVERVIEW

A multiprocessor's system software has the complex task of
controlling a large number and variety of physical resources. It
implements abstractions of the physical resources and various
software objects in order to provide a user environment free of
the tedium of systems programming. Despite the high internal
complexity required, a working system should provide a secure
environment with performance, availability, and extensibility

enhancements.

MAJOR TYPES OF OPERATING SYSTEM ORGANIZATIONS -

Multiprocessor systems contain two or more processors that work in
concert to provide the desired functionality. These processors
may be 1identical or dissimilar. Systems with dissimilar
processors allow for specialized function processors, but suffer
from poor load sharing since no single processor can handle all
tasks. Identical processors provide better performance where good
load sha;ing is important, but generate overhead in the
implementation of specialized applications. Multiple processors

may be arranged hierarchically (dissimilar) or symmetrically

(identical) to produce the preferred result.

Hierarchical Systems

A hierarchical system reduces complexity in system design by

introducing predefined dependencies. An example of a hierachical
system is a master/slave arrangement in which one of the
processors is considered superior to the others. In a typical
master/slave organization, the masteé may be responsible for
distributing the work load to the slave processors. For example,
the system may be programmed so thaﬁ only the master can respond
to interrupts, but the resulting work can be handled by any one of

the slave processors.

Wwith the hierarchical sy;tem, “there 1is performance degradation
since some of the assigned processors may become bottlenecks. A
hierarchical’organization may be less reliable, too. For example,
in a master/slave organization, the master is a single point of

failure. Damage to that one processor may bring the whole system

down.

Symmetric Systems

Symmetric systems treat all processors equally, execute common
operating system code, and share all devices. This requires that
the operating system be very general in organization. 1In such an
arrangement, any processor, i.e., the first available processor,
can service any interrupt. Because symmetric systems use
identical processors, they have better load sharing abilities.
They have no dependencies so any desired dependencies must bhe

simulated in software.

Symmetric systems have a reliability adv-ntage in that the failure
of any processor is unable to bring the system down (unless it
damages the ability to execute monitor code). All that occurs is

a graceful degradation in system reliability and performance.

HIERARCHICAL SYSTEMS VS. SYMMETRIC SYSTEMS - PRACTICAL EXAMPLES
DECsystem-19 based multiprocessors provide practical examples of

hierarchical and symmetric designs.

Multiprocessing was a stated development goal at DIGITAL as early
as 1953. Multiprocessing as a master/slave relationship was first
made available to DIGITAL customers with TOPS-19 release 5.7%4 (for
the XA19) and TOPS-19 releases 5.07 and 5.03 (for the KTI19). A
symmetric multiprocessor, with equal responsibility among the
‘processors, has been field-tested but is not yet commercially

available.

A Hierarchical Multiprocessor (Master/Slave)

The master/slave organization 1is dependent upon shared system
memory and 2a single copy of the TOPS-19 monitor. As noted
earlier, the slave processor is so designated because it cannot
p;rform all system duties and must rely on the master for many
services. In this relationship, the master performs both

computation and I/0, whereas the slave has no I/N devices (except

a console terminal) and is accessed only for computation.

Both CPUs execute the TNPS-19 scheduling routines looking for jobs

to run; but are prevented by a code from selecting the same job.
The slave differs from the master when the job it is running makes
a monitor call for some service (e.g., I/9) -- the slave cannot
proceed, except for some non-I/2 monitor calls. The slave marks
the job as needing the master's attention, enters the scheduler,
and selects another job to run. When the master is ready to look
for another job to run, it will find jobs marked "run-on-master”

by the slave.

The master/slave system can realize significant performance
enhancement in a compute-bound environment; hdwever, limitations

are inherent in this sort of system,. First, there |is little
performance enhancement in an I/9-bound computing environment.
Second, the master processor is a single point of failure; if it

fails, the system is inoperative.

A Symmetric Multiprocessor

A symmetric multiprocessor (SMP) system requires only new
software; the hardware is essentially unchanged. Memory is still
shared between processors and there is still a single copy of
m™OPS-1%; however, the entire monitor is reentrant (i.e., tasks can
be suspended and then reentered in mid-execution), and all monitsr
calls can be executed on either CPU., 1I/0 devices can be handled
by either CPU. A CPUJ can continue to run a job even if the job
requests [/0 on devices that are connected to a different CPU in

the system.

In SMP, the CPY running a job is called the executing CPY; the CPU

that is connected to devices requested by the job is called the

owning cP1. If a job requests I/2 to devices on the executing
CPY, the request is processed by placing it in the cpPU's 1I/90
queues. If a job requires devices on a different CPU, a request
is made by the executing CPU that causes the owning CPU to queue
the request for action. Once the request is made, the executing
CPU can resume the job and rely on the owning CPU to deal with the
I/0 transfer.

CPUs indépendently execute the scheduling routines. This
typically results in the same job being run at different times by
different CPUs throughout the coursé of 1its procéssing. This
protocol assures that I/0 requests are handled properly regardless
of which CPU executes a job or where the job's files and devices

are physically located in the system.

The inherent availability of an SMP is superior to that of the
master/slave organization. 1In SMP, all devices can be duplicated.
Disks can be dual-ported between CPUs. Failure of a CPY, channel,
or disk port does not prevent the system frdm accessing the data

base through the other path. The monitor need not be reloaded.

Dynamic reconfiguration is also possible with SMP. The operator
can change hardware confiquration dynamically, using a reconfigu-
ration dialog that allows the operator to specify what changes

should be made to the configuration. Once the components are

ready, the system 1is loaded ‘and verifies that the new
configuration corresponds to the operator's previous

specifications. The system then proceeds with normal operations.
MAJOR FEATURES AND CAPABILITIES

Load Balancing

As an example of processor load balancing, suppose that one
processor is running a high priority job composed of two tasks.
One task is chrrently executing, while the other 'is suspegded,
awaiting I/0. If the second processor is running a lower pri&fity
job, it should take over the first processors's second task when
the I/0 is complete. This is dependent upon bofh good dynamic
load balancing in the software and interprocessor communication

facility in the hardware.

when balancing the I/0 load, it is best if all the I/9 devices
reside conceptually in an anonymous pool and are dynamically
assigned to processors as required. The ability to dedicate a
peripheral to a particular process should, however, be retained.
In this case, interprocessor communication hardware again becomes

essential.

Concurrency
Multiprocessors inherently contain a number of simultaneous
activities. In general, there are multiple main processors and

multiple 1input/output processors. To deal with these

simultaneously executing activities, the software system first
implements processes which are in turn used to implement the
remainder of the software system. These facilities are also made
available for wuse in user environments. This abstraction is
developed by a scheduling and synchronizing algorithm. Some

schedulers implement priority scheduling in which there are

classgs (priorities) of processes and a guarantee that a higher
priority process, ready to execute, always executes before a lower
priority process. Processes of the same priority that are ready
are usually scheduled cyclically. The length of time that a
process is scheduled varies: some systems schedule processes for
a fixed timev inte;val, while others execute processes until a

-delay (e.g., wait for I/0) occurs.

For processes that must work concurrently, a semaphore mechanism
is usually provided to synchronize them, A semaphore is shared
among the cooperating processes; it has an associated value. If
the current semaphore value is 2zero, P primitive (one of two
primitive operations--P and V), causes the executing process to
wait. If the value is non-zero, the semaphore value is
decremented by one and the process continues to axecute. 0On the
other hand, a V primitive never wa{ts and always increments the
semaphore value by one, Careful use of these primitives allows

processes to implement critical selection in which only one

process at a time can access a data base.

Data Protection

A situation may call for the maintenance of a journal of updates
to a collection of files that form a data base. When é file
segment is updated, the previous image is recorded in. a journal
along with the new value. The journal includes a time stamp,
stable point indications, and the identity of the process that
initiaﬁed the update. In order to recover a data base, the backup
copies and the "journal are used to restore the files to a

consistent state.

The recovery process can be done either backward or forward; that

is, the data base is moved incrementally backward from the current
state, or incrementally forward from a backup point. For each
journal entry read in backward recovery, the previous journaled
image is used to restore the data base to its previous state.
This is continued until a stable pbint is reached. In forward
recovery, the backup copy is used with the journal to move the
data base forward to the last stable point before the loss or

corruption of data.

Information-retaining subsystems, such as disks, can be designed
to maintain redundant copies of records on distinct drives. This

is called shadow recording. Such a design improves the ability to

recover from disk failures. Implementations vary considerably,
depending on the amouné of hardware support available. Logically,
the scheme works as follows: The information to be recorded is
buffered and posted first to one drive (which uses a separate set

of hardware to record the information). The same information is

subsequently posted to another drive, using a different set of
hardware data paths. Because the information is posted twice,
there 1is some performance loss over . non-redundant rescording.
However; in the event of a hardware failure, the information is

recoverable from the duplicate drive.

During disk reads, some performance gain over non-redundant
recording can occur if latency reduétion techniques are used.
For example, overlapped seeks may be used so that reading takes
place from the drive whose arm is ‘closer to the desired data
cylinder. 1In many applications, file operations are predominantly

reads, in which case there is an overall gain in performance.
SYSTEM PERFORMANCE DEGRADATION

Contention

Contention occurs when two or more processes simultaneously

compete for system resources. These resources could be system
service routines, system objects, or physical devices. High
contention for devices is usually reduced by increasing the supply
of devices. Contention " for systeh routines cannot be handled
similarly because they are common to all processors. Thus there
is the potential for high contention for these routines resulting

in degraded performance.

There are two aspects to the problem of system routine contention.

First, portions of the operating system (kernel) can support only

serial processor execution; this creates the need for an

interprocessor synchronization scheme different from the

interprocess synchronization scheme. The interprocessor scheme

must be in the hardware and is normally an instruction that can
test and set a flag in one instruction interval. Such an
instruction is used to program a mutual exclusion code surrounding
the kernel. Processors attempting to enter the kernel hang in a

tight loop if the kernel is in uée.

The second aspect of the contention problem relates to the length
of time processors execute kernel code. If the length of time is
great, system contention may be high because all processors wait
longer to enter the kernel. A solution is to minimize the number
of instructions executed for each enﬁry into the ‘kernel. This can
be developed in two ways: UsevAa small kernel with short
operations, or have a kernel in which portions can bhe concurrently
executed. In the latter case, the test- and set-like instructions

are distributed throughout the kernel.

Deadlock

Neadlock is another system occurrence that can degrade
performance. It occurs when two processes are actively using a
resource that the other process requires and neither will
relinquish its own resource until it obtains use of the other,.
Thus, the processes are in a state of "deadly embrace" (deadlock)

which can never be resolved.

A deadlock over one particular resource (local deadlock) can

normally be detected by that particular resource's manager. A
deadlock that occurs from the use of a variety of resources cannot

be detected locally and is usually handled by a global deadlock

detection algorithm. nNne way to detect a deadlock is to simulate
the request/release actions of prodesses to determine if all
processes advance. Another way is to model the request/release
actions in a resource graph and to determine if there are cycles
-- the appearance of a cycle is proof of the existence of

potential deadlocks if the processes are executed.

Recovery from a'deadlock situation requires drasﬁic action. This
can be taken by involuntarily preempting resources, thereby
backing out some processes to a point from which all processes can
proceed. An even more drastic technique is to destroy processes
in a systematic manner until enough resources are available to

eliminate the deadlock.

A better way to deal with deadlocks is to prevent them and
completely avoid the detection and recovery problems. One way to
prevent deadlock is to acquire all resources needed at one time;
however, this approach of preallocation hurts performance. Evan

so,‘many systems use this approach to deadlock prevention.

Another way to deal with deadlock prevention is to allocate
resources as needed, but to change the ordering of requests and

releases to avoid deadlocks. For example, two processes sharing

two files never deadlock if they acquire the files in the same
order. This, unfortunately is a difficult approach that is not

widely used.

A third way to prevent deadlock is to assign a level number to
each resource. Deadlock will not occur if resources are locked in
ascending order. A resource with a level number equal to or less
than a resource that is already locked cannot be 1locked. The
level number is easy to detect and the restriction prevents all

deadlocks.
AVAILABILITY ISSUES

Error Detection

Error detection in a multiprocessor system requires a combination
of hardware and software checks. In general, every subsystem
should be responsible for detecting its own errors. There is a
trend toward using more diagnostic 1logic in hardware to help‘
detect errors and locate faults. This dfagnostic~process is done

during normal processing of user requests.

Singe software faults are either 1lurking design faults or
timing-dependent intermittent faults and are more difficult than
hardware faults to track down, hardware aids should be prgvided to
help in software error detection. One scheme is to keep a
register stack that retains the latest jump history of a orogram.

Another scheme is to introduce breakpoint instructions into

hardware which éssist in debugging.

Software schemes for error detection are numerous and usually
scattered throughout the entire system. A widely used scheme is
to introduce consistency checks. These checks verify certain

assertions that must hold true.

An interesting scheme for ;chieving software reliability is to use
two algorithms or versions of an algorithm to perform the same
function and then compare the results., An error shows as a
disparity between the two. This approach 1is expensive, but

locates both design faults and component failure.

Diagnostic routines used by field service normally e*ercise the
hardware thoroughly. It is becoming common for these diagnostic
routines to be executed concurrently with .user programs {in
"background" mode). This method is a good method for detecting

hardware failures, but it can degrade system performance.

A final approach is to keep a history of exceptional happenings in
the system and to print it (on demand or periodically). After a

crash, this log can be helpful in tracing the cause.

Error Recovery and Reconfiguration

Good error recovery schemes rely on both redundant components and
redundant paths. Dual redundancy is adequate for recovering from

single failures and is the cheapest to implement. The recovery

process may be initiated automatically or require operator
assistance,. The trend is to maintain some operator-assisted
reconfigquration for last resort cases, but to initiate all

recovery automatically.

Automatic instruction retries are a good way to recover from
transient faults. This technique can be used with cCpU
instructions as well as with I/0 operations. A coﬁnt of these
retries can be used as a criterion for detecting hard failures.
The software can at that time choose alternative paths to access

devices if they are available.

A technique used to recover from damage to system code is software
refresh in which portions of the operating system are rebooted to
replace the damaged coda2. Another scheme that is gaining wide use

is a checkpoint/restart facility. 1In a checkpoint/restart scheme,

the state of a process is saved at various points and used to
recover to the state of the latest checkpoint in the event of a
failure. The state can be preserved in a dormant object such as a
file, or it can be preserved in an active process. Recovery is
quicker if the checkpoint is to a backup process than if it is to

a file.

Important issues are when to issue checkpoints (i.e., at what
instruction counter wvalue), and what information is to be
checkpointed. 1If the user were allowed to specify both when and

what to checkpoint, cumbersome and perplexing programs would

result, Preferably the when and what could be implicitly aefined
by the system. For example, after a certain number of
instructions, a checkpoint is issued and the entire . state of é
process is saved. This approach has larger storage requirements
to hold the state of the process, but makes the entire recovery
mechanism transparent to the applications programmer, which is

very desirable.

CHAPTER 6

TOOLS FOR MANAGEMENT DECISIONS

OVERVIEW

This chapter outlines some of the important aspects of computer
acquisition on which management decisions are formulated. It has
been shown that a multiprocessor has primary advantages in
performance and availability, but how does the administrator
decide on possible trade-offs? The costs usuaily assoéiated with
downtime or system unavailability have been described, but how can
availability be predicted or measdred? Finally, what is the true
cost of owning a computer system, taking maintenance and
depreciation into account? These questions are addressed in the

next three sections.

PERFORMANCE VS. AVAILABILITY TRADE-OFFS

At first‘glance, it may seem that to pay twice as much for a
system that gives less than twice the performance of one computer
is foolish. However, if availability is as important as

performance, it may be a worthwhile investment.

Consider a hypothetical example. Suppose that an entire computer
system has an MTBF of 49 hours and an MTTR of 4 hours. Now
consider what happens if a two-processor multiprocessor 1is
substituted, Let's say it cost twice as much as the original

system, but only 72 percent more performance is achieved. 1€,

however, one.of the redundant componehts goes down, still, nearly
109 percent of the required computing power is on-line. ' The mean
time between system failure with the multiprocessor (i.e., until a
failure brings both processors down) is now . Clearly, the
multiprocessor is a wise investment when system uptime, as well as

performance, is important.

SYSTEM AVAILABILITY ANALYSIS

What it means to have a system "go down" is frequently a matter of
individual interpfetaticn. One or more terminals may not be
working, but the "system," as defined by some personnel, is still

-

up. A common-sense definition of availability is the probability

that a defined system or system component is performing its

function at a pafticular instant of time.

Reliability, another important system measurement, should not be

confused with availability. Reliability is the probability of a

system or component not failing over a given period of time. An
example best illustrates the distinction: suppose you want to use
- a terminal for 8 hours starting tomorrow at 3:87 A.M. The proba-
bility that the system will be up at 8:79 A, M. (or any other spec-

ific time) is the availability; the probability that the system

will remain up for 8 hours straight is the reliability.

Availability theory encompasses the element of repair making it

more complex than reliability theory, and its prediction and

measurement difficult,

Availability is becoming as important a parameter as performance,
functionality, or cost in many computer system acquisition
decisions. In some _cases, users are requestinﬁ' availability
gquarantees. from the vendor. In these cases, a more accurate
interpretation of availability is needed -- one that establishes

®"confidence limits."

Long-Term Measurements

As an example of availability measufement, considerr a single
processor non-redundant system. Assume that the time to failure
and the time to ‘repair are random, but that they ’follow an
exponential probability law. This means their failure and repair
rates are constant over time; field data sﬁow that this is a wvalid

assumption. This concept is illustrated in Figure 23.
For this system, availability can be measured by the percentage of
uptime. A typical uptime plot is shown in Figure 24, The
availability for any system is

Availability=total uptime/(total uptime + total downtime) (1)

Oor, the availability can be measured by

Availability = total uptime/measurement period T (2)

A simplified definition of availability currently in widespread

use is
Availability = MTBF/(MTBF + MTTR) (3)
where MTBF = mean (average) time between failures and MTTR = mean

(average) time to repair. Equation 3 is known as the inherent

availability and can be derived from equation 1 by taking the

1imit as the measurement period becomes very long relative to the

jndividual times between failures.

Reliability 1literature also defines a quantity known as the

observed reliability, in which such parameters as the time

required for the field engineer to respond to the call and the
time to acquire spare parts are added to the denominator of the
availability equation. Bear in mind that the calculation of the
inherent availability does not include these quantities, but in
effect assumes that a field engineer is on site, ready to work,

and has needed parts.

If a user has a number of systems and wants to calculate the
availability as an average of all these systems over a long period
of time, equation 3 is appropriate. For example, for an MTBF of
739 hours (1 month) and an MTTR of 1.5 hours, the 1inherent
availability is 737/721.5 = 99.8 percent. (Since the availability

is usually nearly 1809 percent in high availability systems,

reliability engineers usually read 99.8 percent as "two nines and
an eight,"” 99.99 percent as "four nines," etc.) Note that this

number is a long-term steady-state average.

Short-Term Meaéurements

To calculate availability for only one system it is practical to
measure it over some reasonably short period of time, say a few
months or a year. For this purpose, equation 3 is inappropriate,
beéause it represents a long-term steady-state average for a large

number of machines.

Consider a single operate-fail-repair cycle, as shown in Figure
24. The availability over this one cycle is
) (1)

availability = t /(t

operate operate + trepair

(assuming exponential operate and repair tiﬁes). The probability
that the availaﬁility over a randomly chosen cycle does not exceed
the inherent availability can be calculated. The entire
probability density function is shown in Figure 25. It turns out
to be 59 percent, i.e., there is a 58-59 chance that the inherent
availability will not be realized over any given cycle. It is
important to take this fact into account when availability is

critical to an application.

Suppose it is desired to find a lower bound to the single cycle

availability such that there is an increased degree of accuracy in
the estimate. The percent availability that is 95 percent certain
to be exceeded can be calculated from the data supplied in the
above example (738 hour MTBF, 1.5 hour MTTR, 929.8 percent inherent
availability). It is 63.7 percent. In other words, the
availability over a single operate-fail-repair cycle is less than
-53.7 percent' only 5 percent of the time. Clearly, it is
imperative to consider these so-called confidence intervals when

dealing with availability.

Forecasting Availability

A typical system may have several alternaﬁive configurations, each
with a different cost/availability ratio that must be maximized.
An effective approach to forecasting availability' for such a

system is a Monte Carlo method, which uses a large number of

randomly chosen parameters (from appropriate probability
distributions) to simulate "real 1ife."™ The system is broken down
into more manageable subsystems such as series or parallel

redundant modules.

The success of the system being modeled is based upon several
pertinent parameters, the most important two being the MTBF and
MTTR. Other parameters are the number of field engineers working,
the response and travel times, and the observation period for the
simulation. This last parameter often may be affectad by the type

of service contract being offered to the customer.

The simulation program queries.whether or not the various
subsystems are up at random time intervals throughout the
observation period. It then asks whether or not the combination

of inoperative subsystems constitutes the whole system being down.

For a large number of simulations, a graph of the probability
distribution of the system availability can be developed. Figure
25 is a typical histogram of system availability for the

assumptions listed.

Any prediction technique is only as good as the correlation
between 1its results and actual field data. "One method of
'assessing field availability is to determine the ratio of the
uptime (usually customer-defined) to the observation period

(uptime plus downtime).

A major obstacle to this verification method 1is the accurate

reporting of €field actions. First, both the system and 1its
critical components must be defined. Next, failure must be

accurately defined and reported. In some cases it is obvious that
the system is down (e.g., "CPU power supply burned up"); in other
cases it is not obvious (e.g., "monitoring system,” "intermittent
errors,"” "preventive maintenance," etc.). The proper reporting of

these activities is critical for calculating system uptime.

The same types of inputs as in a simulation would be used in this
field measurement, specifically, travel time, type of contract,.
and duty cycle. Correlations can then be made to simulated

values,

COST OF OWNERSHIP

It is well known that the cost of a computer system, that is, the
hardware and software, is not the only significant cost. Also
significant are the cost of maintaining the systenm, including
preventive and corrective maintenance, and the cost of system
unavailability. |

Certain assumptions are inherent in the model for calculating cost

of ownership:

The computer system, hardware and software, is purchased

outright.

A service contract is purchased which makes the cost of
maintenance a known periodic payment. The duplication in
a multiprocessor may allow this to be less than the sum
of the parts since some maintenance actions may be

deferred.

The system is a capital asset of a tax-paying business,

and is, therefore, depreciated over a period of years

(the double declining balance method is used).

The business's after-tax discount factor is known. This
expresses the time value of money, i.e., money to be

spent in the future has a lesser "present value."

The parameters derived from the above assumptions (unavailability,
purchase price, maintenance rate, tax rate, discount factor,
useful life of the equipment) can be put into a financial model
that determines the after-tax cost of owning a particular system

in today's dollars.
Here is how the calculation can be carried out. The purchase
price is, of course, already in today's dollars, so it is merely

added to the final results.

The annual maintenance charge is discounted to the present value.

A discount factor of 17 percent is typical. For example: If you
need to pay $1990 4 years from now, and you can get 19 percent
(after taxes) in some sort of savings account, you need only set

aside $433 today. This is because

5533 (1 + 0.1)% = s1990.

The model discounts each maintenance payment back to today's value

in the same way.

Table 1 shows the present value factors for various discount

factors for up to 17 years. The table was derived by calculating

1/{1 + (discount factor)]year

For example, the factor for a 15 percent discount factor and 8

years is given by -.
1/(1 + 3.15)°. = 1.327.

The asset is depreciated by the double declining balance

method. This means that each year a proportion of the
system's purchase price can be deducted from business income.
The proportion is determined as follows: Divide 194 percent
by the useful 1life of the product in years. Twice this
proportion of the remaining value of the asset can be deducted
each year. For example, a 351977 asset depreciated by this

method over S years has the following deductions:

First year: 47% X S1099 = $419
Second year: 47% X $ 599 = $241
Third year: 49% X $§ 247 = $144
Fourth year: $111

Fifth year: $1493

Total: $1199
Note that the residual wvalue is split evenly over the 1last 2

years. Table 2 shows the depreciatéd values for assets

depreciated over 3 to 19 years.

Most businesses pay a tax of 57 percent (in round numbers) and,
therefore the depreciation payments reduce the future tax burden
by half of the deductible amount. This must be subtracted from

the future maintenance prices before the discounting takes place.

To tie this all together, consider an example, shown in Table 3.
Suppose that the system costs $19¢,829, is depreciated over 3
years, and hés an annual maintenance charge of S14,894, The tax
rate is assumed to be 5% percent and the discount factor is 14
percent., Column 1 lists the maintenance costs ($14,099 per .year
for 8 years). Column 2 lists the depreciation (from Table 2) for
each year. The net amount is the difference between the year's
maintenance payments and the depreciation tax savings and is
shown in column 3. Column 4 is the after-tax cash flow, obtained
by multiplying column 3 by the tax rate. In column 5, the present
value factor (from Table 1) is entered. Column 5 gives the
year-by-year discounted cash flow. The total of the discounted
cash flows is added to the initial investment to yield the true

present value of owning the system.

The effect of system availability can be worked into this model

rather easily. Add another column that estimates the monetary
loss that results from system downtime, For example, if the

system availability is 99 percent, average revenue loss is

$599/hour when the system is down, and the system is in use 24
hours a day, 355 days a year (8750 hours/year). - The annual loss,

then, due to system unavailability is
(1 -- £#.99)(8750) (50%) = $43,874.

This amount should be added to each year's cost (and appropriately

discounted to the present).

Table 1. Present Value Factors

Discount Factor

Year 5% 18% 15% 20% 38% 408%

1 6.952 8.989 8.878 6.833 6.769 g.714
2 8.987 8.826 8.756 8.694 g.592 8.510
3 8.864 8.751 8.658 8.579 8.455 8.364
4 8.823 8.683 8.572 8. 482 8.350 8.260
5 8.784 8.621 8.497 .42 - 0.269 6.186
6 8.746 8.564 8.432 8.335 6.207 a};33
7 8.711 8.513 8.376 8.279 6.159 8.095
8 6.677 8.467 8.327 8.233 8.123 8.268
9 g.645 8.424 6.284 0.194 6.094 8.948
18 9.614 8.386 8.247 8.162 8.273 8.035

Table 2. Depreciated Values for Depreciated Assets

Year 3 4 5 6 7 8 9 18
1 g.667 0.5089 ﬁ;4ﬂﬂ d.333 g.286 g.258 0.222 f.2040
2 g.167 @.259 g.248 g.222 8.204 f.188 G.173 g.160
3 p.116 8.125 f.144 g.148 g.146 6.141 9.134 g.128
4 —-— #g.125 g.108 9.0699 g.104 9.185 g.185 8.192

5 - - 6.188 0.899 ©6.074 8.979 8.681 0.082
6 - - -- 0.099 ©6.093 0.059 0.063 0.066
7 - -- -- - 8.693 9.989 §.849 6.052
8 —_" - - - -- 6.689 0.887 0.042
9 - - - - - — 9.086 9.484

10 — 8.084

1.0060 1.000 l1.000 l1.000 1.000 1.000 1.000 1.000

Table 2. Depreciaﬁed Values for Depreciated Assets

Table 3. Depreciation Example

Year (1) Maintenance (2) Depreciation ($) (3) Net ($) (4) After-Tax (5

Cost ($) Cash Flow ($) - Va
1 10,000 25,000 --1,500 --,7580 8.
.2 10,000 18, 800 —-8,808 —-4,400 8.
3 10,0090 14,100 --4,100 -=2,850 8.
4 19,000 18,500 --508 —-258 8.
5 10,000 7,900 2,100 1,050 g.
6 18,000 5,900 4,100 2,058 8.
7 16,008 8,904 1,100 550 8.
8 18,000 8,900 1,100 558 5.
To

.
NOTES: a. (1) — (2) = (3) In
b. (3) X 588 = (4) In

c. (4 X (5) = (6) =

Co

Ow

Table 3. Depreciation Example

Year

fon

| W O N e W v -

Discount

5%

0.952
6.907
6.864
8.823
0.784
0.746
6.711
6.677
0.645
6.614

18%

g.9089
8.826
8.751
0.683
g.621

.8.564

8.513
0.467
0.424
g.386

15%

9.870
8.756
6.658
6.572
8.497
B.432
8.376
6.327
9.284
8.247

20%

#.833
8.694
#8.579
f.482

B.482

#.335
#.279

#.233
p.194
f.162

30%

8.769
B.592
#.455

#.350
8.269
8.207
8.159
8.123
8.094

8.073

- 40%

8.714

8.510
g.364

f.260

8.186

#.133
8.095

g.968
@.0848

#.835

FURTHER READINGS

Bell, C. Gordon, J. Craig Mudge, and John E. McNamara,

Computer Engineering -- A DEC View of Hardware Systems

Design, (Bedford, Massachusetts: Digital Equipment

Corporation, Digital Press, 1978).

Bell, C. Gordon and Allen Newell, Computer Structures:

Readings and Examples, (New York: McGraw-41i1l1l Book

Company, 1971).

Distributed Systems Handbook, (Maynard, Massachusetts:

Digital Equipment Corporation, 1978).

Enslow, pPhillip 4., Jr., Multiprocessors and Parallel

Processing, (New York: John Wiley and Sons, 1974) .

Enslow, Phillip H., Jr., "Multiprocessor Organization --

a Survey," ACM Computing Surveys 9 (March 1977):

Freeman, David N., "IBM and Multiprocessing, "Data-

mation, (March 19746): 92--179.

Shooman, Martin L., Probabilistic Reliability: an

Engineering Approach (New York: McGraw-Hill Book

10,

Company, 1958), pp. 341-342."

Siewiorek, Daniel P., Vvittal Kini, Henry Mashburn,
Stephen McConnel, and Michael Tsao, "A Case Study of
Cc.mmp, Cm*, and C.vmp: Part I -- Experiences with Fault

Tolerance in Multiprocessor Systems,"” Proceedings of the

IEEE 55 (October 1978): 1178--1199.

Siewiorek, Daniel P., Vittal Kini, Rostam Joobbani, and
Hafold Bellis, "A Case Study of C.mmp, Cm*, and C.vmp:
part II -- Preéicting and Calibrating Reliability of

Multiprocessor Systems,” Proceedings of the IEEE 55

(Dctober 1978): 1290--12249,

Turn, Rein, "Computers in the 1988s -- Trends in

Hardware Technology,"” 1Information Processing 74 (North

Holland Publishing Company, 1974): 137--144,

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	A-01
	A-02

