
KDJII-E CPU Module

User Guide

Order Number: EK-KDJ1 E-UG-001

KDJ11-E CPU Module User Guide
Order Number EK-KDJ1 E-UG-001

Revision/Update Information: This is a new manual.

Digital Equipment Corporation

January 1991

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U. S. (rl)vernment is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Copyright © Digital Equipment Corporation 1991

All Rights Reserved.
Printed in U.S.A.

The follOWing are trademarks of Digital Equipment Corporation: DEC system, PDp, PDP-lI, PDP-1lJ03,
PDP-1lJ05, PDP-1lJ10, PDP-lI/15, PDP-UI20, PDP-1l/23, PDP-1lJ23+, PDP-ll/24, PDP-1lJ35, PDP-11140,
PDP-1lJ44, PDP-lI/45, PDP-11150, PDP-11153, PDP-1l/60, PDP-11170, PDP-1lJ73, PDP-1lJ83, PPP-1lJ84,
PDP-1lJ93, PDP-11194, Q-bus, Q22-bus, RSX-ll, RSX-llM, RT-ll, UNIBUS, VT100, VT220, VT330, and
the DIGITAL logo.

This document was prepared and published by Educational Services Development and Publishing, Digital
Equipment Corporation.

Contents

About This Manual XIX

1 Architecture
1 . .1 KDJ11-E CPU Module Description . 1-1

1.2 DCJ11-A Microprocessor Features 1-2
1.2.1 Stack-Limit Protection ~ . . 1-4
1.2.2 Kernel Protection .. 1-4
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8

1.3

General Registers .
Stack Pointer
Program Counter
Processor Status Word (17777776)
CPU Error Register (17777766)
Program Interrupt Request Register (17777772)

Interrupts .

1-4
1-4
1-5
1-5
1-7
1-7

1-8
1.3.1 Sunset Loops. .. 1-10
1.3.2 Red Stack Aborts 1-11
1.3.3 Addressing Errors. .. 1-11
1.3.4 Bus Timeout Errors 1-11
1.3.5 Interrupt Vector Timeouts. .. 1-11
1.3.6 No SACK Timeouts .. 1-11

1.4 Memory Management .. 1-11
1.4.1 Memory Mapping .. 1-12
1.4.1.1 16-Bit Mapping. 1-12
1.4.1.2 18-Bit Mapping. .. 1-13
1.4.1.3 22-Bit Mapping. .. 1-13
1.4.2 Compatibility. 1-14
1.4.2.1 Virtual Addressing .. 1-14
1.4.3 Interrupts Under Memory Management. .. 1-15
1.4.3.1 Construction of a Physical Address. .. 1-15
1.4.4 Memory Management Registers.. .. 1-17
1.4.4.1 Page Address Register (PAR) 1-20
1.4.4.2 Page Descripfur Register (PDR) 1-21
1.4.5 Fault Recovery Registers 1-22
1.4.5.1 Memory Management Register 0 (17777572) 1-22

iii

iv Contents

1.4.6
1.4.6.1
1.4.6.2
1.4.6.3
1.4.6.4
1.4.6.5
1.4.7
1.4.7.1
1.4.7.2
1.4.7.3
1.4.8

Memory Management Register 1 (17777574) 1-23
Memory Management Register 2 (17777576) 1-24
Memory Management Register 3 (17772516) 1-24
Instruction Back-Up and Restart Recovery. 1-24
Clearing Status Registers Following Abort 1-25
Multiple Faults. .. 1-25

Common Usage Examples. .. 1-25
Typical Memory Page. 1-25
Nonconsecutive Memory Pages. 1-27
Stack Memory Pages. 1-28

Transparency .. 1-29

1.5
1.5.1
1.5.2'
1.5.3
1.5.4

KDJII-E Memory System Implementation. .. 1-29
Memory System Error Register (17777744) ~ 1-29
Cache Control Register (17777746) .. 1-30
HitJMiss Register (17777752) 1-31
Parity CSR Register (17772100) .. 1-31

1.6
1.6.1

Private Memory Interconnect .. 1-32

1.6.1.1
1.6.1.2
1.6.2
1.6.2.1
1.6.2.2

PMI Protocol. .. 1-32
Bus Device NPR .. 1-32
Bus Device Interrupt ~ 1-32

PMI Data Transfers 1-32
Data In/Data In Pause 1-33
Block Data In .. 1-33
Data OutJData Out Byte .. 1-33 1..6.2.3

1.7
1.7.1
1.7.2
1.7.2.1
1. 7.2.2

KDJ11-E Serial Line Units 1-33

1. 7.2.3
1.7.2.4
1.7.3

1.8
1.8.1
1.8.2
1.8.3
1.8.4

Silo Buffer Length ,,' 1-34
Serial Line Unit Registers 1-36

Receiver Status Register (1777xxxO) .. 1-36
Receiver Data Buffer Register (1777xxx2) 1-37
Transmitter Status Register (1777xxx4) 1-38
Transmitter Data Buffer Register (1777xxx6) 1-39

Break Response .. .

Boot and Diagnostic Register Set
Control/Status Register (17777520)
Page Control Register (17777522)
Configuration and Display Register (17777524)
Additional Status Register (17777526)

1-41

1-41
1-42
1-44
1-45
1-46

1.9 Line Frequency Clock and Status Register (17777546) 1-47
1.9.1 Maintenance Register (17777750) 1-48

1.10 Time of Year Clock (TOY Clock) '. 1-49
1.10.1 Programming Information. .. 1-50
1.10.1.1 Clear the Comparison Register Pointer. 1-50
1.10.1.2 Establish the Pattern Recognition. .. 1-50
1.10.1.3 Updating Information in the TOY Clock 1-50

Contents v

2 Configuration
2.1

2.2
2.2.1
2.2.2

Introduction .. .

Module Configuration "
Jumpers For +5 V Power Source Selection
Switchpack -..................... .

2-1

2-2
2-3
2-3

2.2.2.1 Baud Rate Selection .. 2-6
2.2.2.2 " Force Dialog Mode 2-6
2.2.2.3 ROM Mode . 2-6
2.2.2.4 Console/SLU Enable - Disable. 2-7

2.3 EEPROM Configuration Parameters. 2-7

2.4
2.4.1
2.4.2
2.4.3

2.5

System Installation ..
LSI-II Based Systems.
Restricted LSI-II Systems
UNIBUS Based Systems

Module Contact Finger Identification

2-7
2-8
2-8
2-9

2-9

2.6 Module Installation Procedure 2-16

2.7 Specifications : .. 2-17

3 Console On-Line Debugging Technique (ODT)
3.1
3.1.1

3.2

3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8

3.4
3.4.1
3.4.2 -.

3.4.3
3.4.4
3.4.5

Introduction
Terminal Interface

Console ODT Entry Conditions

Console ODT Command Set
Slash (/) Command (ASCII 057) ~"
Carriage Return «CR» Command (ASCII 15)
Line Feed «LF» Command (ASCII 12)
Internal Register Designator ($) (ASCII 044) or (R) (ASCII 122) .. .
Processor Status Word Designator (S) (ASCII 123)
Go (G) Command (ASCII 107)
Proceed (P) Command (ASCII 120)
Binary Dump «CTRL> <SHIFT> S) Command (ASCII 23)

ODT Address Specification
Processor 110 Addresses
Stack Pointer Selection
Entering Octal Digits
ODT Timeout
General Registers .

3-1
3-1

3-1

3-2
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-6

3-6
3-6
3-7
3-7
3-7
3-7

vi Contents

4 Boot ROMs and Diagnostics
4.1 Operation Overview 4-1

4.2 Hard Copy Terminal Support . 4-2
4.2.1 Boot Command . 4--3
4.2.1.1 Transferring Control to Non-Digital Boot Modules (UNIBUS

System Implementation) 4-4
4.2.1.2 Transferring Control to Non-Digital Boot Modules (Q-bus System

Implementation). 4-4
4.2.1.3 Error Detection During the Boot Command 4-5
4.2.2 Diagnostic Command 4-5
4.2.3 Help Command . 4--8
4.2.4 List Command ... 4-9
4.2.5 Map Command .. 4-10
4.2.6 Setup Command 4--11
4.2.6.1 Setup Mode Command 1 - Exit 4-12
4.2.6.2 Setup Mode Command 2 - Select Configuration Parameters. 4--12
4.2.6.3 Setup Mode Command 3 - Select Diagnostic Configuration. 4--21
4.2.6.4 Setup Mode Command 4 - Select Serial Line Parameters. 4-23
4.2.6.5 Setup Mode Command 5 - Select Boot Parameters 4-25
4.2.6.6 Setup Mode Command 6 - List Available Boot Programs (for

UNIBUS System) 4-27
4".2.6.7 Setup Mode Command 6 - List Available Boot Programs (Q-bus

System) .. 4-29
4.2.6.8 Setup Mode Command 7 - Factory Setting 4-29
4.2.6.9 Setup Mode Command 8 - Save the Setup Table in the EEPROM 4--30
4.2.6.10 Setup Mode Command 9 - Load EEPROM Data into the Setup

4.2.6.11

4.2.6.12

4.2.6.13
4.2.6.14

4.2.6.15

Table. 4-30
Setup Mode Command 10 - Load EEPROM Boot Program into
Memory
Setup Mode Command 11 - Edit or Create EEPROM Boot
Program
Setup Mode Command 12 - Save" a Boot Program in the EEPROM
Setup Mode Command 13 - Delete a Saved EEPROM Boot
Program
Setup Mode Command 14 - Enter ROM ODT

TOY Command .. .

4--31

4-31
4--33

4-34
4-34
4-35 4.2.7

4.3
4.3.1
4.3.2

Video Terminal Support 4-35
4--36
4-36
4--36
4-42

"4.3.3
4.3.4
4.3.4.1
4.3.4.2
4.3.4.3
4.3.5
4.3.6

4.4

Moving Through Menus
Types of Function Fields - Video Terminal
Setup Menu .. .
Self-Test Menu .. .

Selecting or Deselecting Tests Executed Upon Power-Up" 4-42
Selecting and Executing an Individual Test 4-43
Selecting and Executing a Group of Tests (Test 30) 4-43

User Boot Menu .. 4-43
Map Menu. .. 4-45

Diagnostic Programs .. 4-45

4.4.1
4.4.1.1
4.4.1.2
4.4.2

Contents vii

KDJ11-E Self-Test. .. 4-46
Video Terminal Mode 4-47
Hard Copy Terminal Mode .. 4-48

KDJ11-E CPU Module Fault Isolation. .. 4-63

5 Extended LSI-11 Bus
5.1 Introduction. .. 5-1

5.2 Bus Signal Nomenclature 5-2

5.3 Data Transfer Bus Cycles ; 5-3
5.3.1 Bus Cycle Protocol 5-4
5.3.1.1 Device Addressing. 5-4
5.3.1.2 DATI. 5-5
5.3.1.3 DATO(B) .. 5-7
5.3.1.4 DATIO(B) .. 5-10

5.4 Direct Memory Access ~ .. 5-13

5.5 Interrupts. 5-16
5.5.1
5.5.2
5.5.3

Device Priority ... 5-17
Interrupt Protocol .. 5-17
4-Level Interrupt Configurations 5-20

5.6
5.6.1
5.6.2
5.6.3

Control Functions .. 5-22

5.6.3.1
5.6.3.2
5.6.3.3
5.6.3.4

Halt .. 5-22
Initialization .. 5-22
Power Status. .. 5-22

BDCOK H .. 5-22
BPOKH .. 5-22
Power-Up ... 5-23
Power-Down .. 5-23

BEVNT L .. 5-23 5.6.4

5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7

Bus Electrical Characteristics . ~ .. 5-23
Signal Level Specification .. 5-24

5.7.7.1
5.7.7.2
5.7.7.3
5.7.7.4
5.7.7.5

5.8
5.8.1
5.8.2

AC Bus Load Definition 5-24
DC Bus Load Definition 5-24
120 (J LSI-11 Bus. .. 5-24
Bus Drivers. 5-25
Bus Receivers .. 5-25
Bus Termination 5-25

Bus Interconnection Wiring 5-26
Backplane Wiring .. 5-26
Intrabackplane Bus Wiring. .. 5-27
Power and Ground 5-27
Maintenance and Spare Pins 5-27

System Configurations 5-28
Rules for Configuring Single-Backplane Systems. 5-29
Rules for Configuring Multiple-Backplane Systems 5-29

viii Contents

5.8.3 Power Supply Loading. 5-31

6 Private Memory Interconnect Bus
6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4

Description ~ 6--1

6--1
6--1
6--1
6-1
6-2

PMI Interface
PMI Bus Master Signals
PMI Slave Signals
PMI UNIBUS Adapter Signals
LSI Bus Signals

6.3

6.4
6.4.1

PMI Operation in an LSI-11 System 6-5

6-5
6--6

PMI Operation in a UNIBUS System
Bus Device NPR or DMA

6.4.2 PMI Bus Device Interrupt. 6-7

6.5 PMI Data 'rransfers 6-8
6.5.1 PMI Data In/Data In Pause 6-8
6.5.2 PMI Block Data In .. 6-9
6.5.3 PMI Data Out/Data Out Byte. .. 6-11

6.6 PMI Interrupt Protocol. .. 6-13

6.7 PMI Power-Up/Power-Down .. 6--13

7 Addressing Modes
7.1 Introduction. 7-1

7.2 Addressing Modes. 7-1
7.2.1 Single-Operand Addressing. 7-2
7.2.2 Double-Operand Addressing. 7-3
7.2.3 Direct Addressing. 7-4
7.2.3.1 Register Mode. 7-5
7.2.3.2 Autoincrement Mode [OPR (Rn)+J. 7-7
7.2.3.3 Autodecrement Mode [OPR -(Rn)] . 7-9
7.2.3.4 Index Mode [OPR X(Rn)]. .. 7-11
7.2.4
7.2.5
7.2.5.1
7.2.5.2
7.2.5.3
7.2.5.4
7.2.6

Deferred (Indirect) Addressing .. 7-13
Use of the PC as a General Purpose Register. 7-17

Immediate Mode [OPR#n,DD] .. 7-17
Absolute Mode [OPR @#A] 7-18
Relative Addressing Mode [OPR A or OPR X(PC)] 7-19
Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] .. 7-20

Use of the General Purpose Registers as a Stack Pointer. 7-21

Contents ix

8 Base Instruction Set
8.1

8.2

8.3

8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5

8.5
8.5.1
8.5.2

Instruction Set ..

Instruction Formats

Byte Instructions

List of Instructions
Single-Operand .. .
Double-Operand
Program Control .. .
Miscellaneous
Condition Code Operators

Single-Operand Instructions ..
General .. .
Shifts and Rotates.

8-1

8-4

8-8

8-8
8-9

8-10
8-10
8-12
8-12

8~13

8-13
8-19

8.5.3 Multiple-Precision. .. 8-24
8.5.4 PSW Operators .. 8-28

8.6 Double-Operand Instructions 8-30
8.6.1 General .. 8-30
8.6.2 Logical. .. 8-37

8.7 Program Control Instructions. .. 8-41
8.7.1 Branches. .. 8-41
8.7.2 Signed Conditional Branches 8-47
8.7.3 Unsigned Conditional Branches 8-50
8.7.4 Jump and Subroutine Instructions .. 8-52
8.7.5 Traps. .. 8-56
8.7.5.1
8.7.6

Miscellaneous Program Controls. .. 8-61
Reserved Instruction Traps. .. 8-63
Trace Trap. .. 8-64 8.7.7

8.8 Miscellaneous Instructions .. 8-65

8.9 Condition Code Operators .. 8-69

9 Floating-Point Arithmetic
9.1

9.2
9.2.1
9.2.2
9.2.3
9.2.4

9.3

9.4

9.5

9.6

Introduction .. .

Floating-Point Data Formats
Nonvanishing Floating-Point Numbers
Floating-Point Zero
Undefined Variables
Floating-Point Data

Floating-Point Status Register (FPS)

Floating Exception Code and Address Registers

Floating-Point Instruction Addressing

Accuracy ~ .

9-1

9-1
9-1
9-2
9-2
9-2

9-2

9-6

9-7

9-8

x Contents

9.7 Floating-Point Instructions. • 9~9

9.7.1 Terms Used in Instruction Definitions 9-10

10 Programming Techniques
10.1 Introduction... 10-1

10.2 Position-Independent Code (PIC) 10-1
10.2.1 Use of Addressing Modes in the Construction of

Position-Independent Code. .. 10-1
10.2.2 Comparison of Position-Dependent and Position-Independent Code. 10-3

10.3 Stacks.. 10-5
10.3.1 Pushing onto a Stack 10-5
10.3.2 Popping from a Stack .. 10-6
10.3.3 Deleting Items from a Stack ~ .. 10-7
10.3.4 Stack Uses .. 10-8
10.3.5 Stack Use Examples .. 10-9
10.3.6 Subroutine Linkage. 10-11
10.3.6.1 Return from a Subroutine. 10-11
10.3.6.2 Subroutine Advantages 10-12
10.3.7 Interrupts ... 10-12
10.3.7.1 Interrupt Service Routines ~ 10-12
10.3.7.2 Nesting ... 10-13
10.3.8 Reentrancy .. 10-13
10.3.8.1 Reentrant Code 10-14
10.3.8.2 Writing Reentrant Code 10-15
10.3.9 Coroutines ... 10-13
10.3.9.1 Coroutine Calls 10-16
10.3.9.2 Coroutines Versus Subroutines 10-16
10.3.9.3 Using Coroutines•. 10-17
10.3.10 Recursion ... 10-19
10.3.11 Processor Traps ... 10-21
10.3.11.1 Trap Instructions ,'. 10-22
10.3.11.2 Use of Macro Calls 10-23
10.3.12 Conversion Routines .. . 10-24

lOA Programming the Processor Status Word . 10-28

10.5 Programming Peripherals . 10-28

10.6 PDP-11 Programming Examples 10-29

. 10.7 Looping Techniques .. 10-37

Contents xi

A Setup Parameters Worksheet
A1

A2

A3

A.4

Index

Original Setup Menu Worksheet - Video Terminal Support

New Setup Menu Worksheet - Video Terminal Support

Original Worksheet - Hard Copy Printer Support

New Worksheet - Hard Copy Printer Support

Examples

A-2
A-3

A-4

A-5

4-1 Main Menu 0 0 0 0 0 •• 0 0 0 4-2
4-2 Boot Command 0 0 0 0 0 0 0 • 0 0 • 0 0 0 •• 0 0 0 0 4-5
4-3 Diagnostic Command .. 0 0 .' 0 0 0 • 0 0 •• 0 • 0 0 0 0 • 0 0 0 0 • • • • • • • • • • • • • • 4-7
4-4 Help Command. 4-8
4-5 List Command (Q-bus System) 0 •• 0 •• 0 0 0 0 0 0 0 0 0 • • • • • • • 4-9
4-6 Map Command 0 • 0 • 0 • 0 0 0 0 0 •• 0 0 0 0 0 • 0 •• 0 0 0 • • • • • • •• 4-10
4-7 Setup Command o ••••••••••• 0 0 0 ••••• 0 • 0 0 ••• 0.00 0" • 0 • 0 •••• 0 4-11
4-8 Setup Mode Command 1 0 ••••••••••••••••••••• 4-12
4-9 Setup Mode Command 2 0 0 0 0 • 0 0 • 0 • 0 00 0 0 •• 0 0 0 •• 0 0 0 • • • •• 4-13
4-10 Setup Mode Command 3 - Select Diagnostic Configuration 0 0 •••• 0 • •• 4-22
4-11 Setup Mode Command 4 ... 0 0 • 0 •••• 0. 0 ••••• 0 0 0 •• 0 0 • 0 • 0 •• 00 •• 4-24
4-12 Setup Mode Command 5 - Boot Parameters Menu ... 0 •• 0 • • • • • • • •• 4-25
4-13 Setup Mode Command 6 (UNIBUS System) .. 00000.00 ••• 0 •••••• 0 4-28
4-14 Setup Mode Command 6 (Q-bus System) 0000. 0 0 0 0 0 0 0 •• 000 ••••• 0 4-29
4-15 Setup Mode Command 7 00' ••••••••• 0 ••••• 0 0 •••• 0 0 •••••••••• 4-30
4-16 Setup Mode Command 8 0 0 • 0 • 0 0 0 0 0 •• 0 •• 0 • • • • • • •• 4-30
4-17 Setup Mode Command 9 0 0 ••••• 0 • 0 0 •••••• 0 0 • 0 0 0 0 0 0 ••• 0 ••••• 0 4-31
4-18 Setup Mode Command 10 .. 0 ••••• 0 •• 0 •••• 000 •• 0.000 ••••• o •• 0 4-31
4-19 Setup Mode Command 11 .. 0 ••• 0 ••• 0 0 0 ••• 0 •••• 0 ••• 0 • 0 0 • • • • •• 4-32
4-20 Setup Mode Command 12 - Save a Boot Program in the EEPROM ... 4-34
4-21 Setup Mode Command 13 .. 0 0 0 • 0 0 ••••• 0 ••• 0 • • • • • • • • • • • • • • • •• 4-34
4-22 Setup Mode Command 14 .. 4-35
4-23 TOY Command 0 ••••• 0 0 ••• 0 •• 0 ••• 0 • 0 • • • • • • •• 4-35
4-24 Setup Menu 00 ••••• 0 •• 00 •• 0 ••• 0 •• 0 0 0 0 ••••••• 4-37
4-25 Resident-Supported Boot Devices 0 • • • • • • • • • • •• 4-38
4-26 Self-Test Menu 0 • 0 ••••••••••••• 0 •••• 0 0 •• 0 • •• 4-42
4-27 User Boot Menu 0 ••••• 0 0 •••••••••• 0 '0' •• 0 • 0 ••••••• 4-44
4-28 Map Menu 0 •••••••• 0 ••• 0 •••••• 0 • • • • • •• 4-45
4-29 Self-Test Menu 0 ••••••• 0 0 ••••••• 0 • 0 • • • • • •• 4-48
4-30 Self-Test Menu 0 •••• 0 ••••••••••• 0 •• 00 ••••• 4-49
4-31 Setup Menu 0 ••• 0 ••••••••••••••••••• 0 ••• 0 • •• 4-50
4-32 Selecting Individual Tests . . . 0 • • •• 0 •••••••• 0 • • • 0 ••• 0 0 0 • • 0 ••• 0 4-51

xii Contents

Figures
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31

1-32
1-33
1-34
1-35
2-1
2-2
2-3
2-4
4-1
5-1
5-2
5-3
5-4

Programming Model , '.' ' ~
Processor Status Word Register ~ ... ~
CPU Error Register
Program Interrupt Request Register (17777772) ~
16-Bit Mapping '.'
18-Bit Mapping .. .
22-Bit Mapping .. .
Virtual Address Mapping into Physical Address
Interpretation of a Virtual Address
Displacement Field of a Virtual Address
Construction of a Physical Address ~
Active Page Register
Page Address Register
Page Descriptor Register '.' '.'
Memory Management Register 0 (Ml'4RO)•................
Memory Management Register 1 (MMRl) ... " .. '.'
Memory Management Register 3 Format (17772516)
Typical Memory Page (17772516),'
Nonconsecutive Memory Pages '.'
Typical Stack ~emory Page ... '. '.' '.'
Memory System Error Register Format (17777744)
Cache Control Register For~at (17777746) ... ','•.. '.' .. .
Parity CSR Register (17772100) •.............................
KDJII-E Jumper and PIP Switch Locations
Receiver Status Register Format (1777xxxO)
Receiver Data Buffer Register Format (177.7xxx2)
Transmitter Status Register Format (1777xxx4)
Transmitter Data Buffer Register Format (1777xxx6)•.......
Control/Status Register Format (17777520)
Page' Control Register Format (17777522)•... ~
Boot and Diagnostic Configuration Register Format (17777524 -
Read-Only) '.' '.'
Boot and Diagnostic Display Register Format (17777524 ~ Write-Only)
Additional Status Register (17777526)
Clock Status Register Format (17777546)
Maintenance Register Format (17777750)
KDJII-E Jumper and DIP Switch Locations
KDJI1-E Switch Configuration
Switch Connections for Connector J2
KDJI1-E Module Contacts
KDJII-E CPU Module Layout
DATI Bus Cycle '.' . ~
DATI Bus Cycle Timing
DATO or DATO(B) Bus Cycle
DATO or DATO(B) Bus Cycle Timing

1-3
1-5
1-7
1-8

1-13
1-13
1-14
1-15
1-16
l-16
1-17
1-18
1-20
1-21
1-22
1-23
1-24
1-26
1-28
1-29
1-30
1-30
1-31
1-35
1-37
1-37
1-38
1-39
1-42
1-45

1-45
1-46
1-46
1-47
1-48
2-2
2-4
2-5

2-10
4-63
5-5
5-6
5-8
5-9

5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28

Contents - xiii

DATIO or DATIO(B) Bus Cycle
DATIO or DATIO(B) Bus Cycle Timing
DMA RequestJGrant Sequence '.'
DMA RequestJGrant Bus Cycle Timing
Interrupt RequestiAcknowledge Sequence
Interrupt Protocol Timing
Position-Independent Configuration
Position-Dependent Configuration
Bus Line Termination
Single-Backplane Configuration
Multiple-Backplane Configuration
Single-Operand Addressing
Double-Operand Addressing
Mode 0, Register
Mode 2, Autoincrement
Mode 4, Autodecrement
Mode 6, Index
INC R3 .. .
ADD R2,R4 .. .
COMBR4
CLR (R5)+ ;
CLRB (R5)+ .. .
ADD(R2)+,R4
INC -(RO) .. .
INCB -(RO)
ADD -(R3),RO .. .
CLR 200(R4) .. .
COMB 200(R1) .. .
ADD 30(R2),20(R5) '
Mode 1, Register-Deferred '.'
Mode 3, Autoincrement-Deferred
Mode 5, Autodecrement-Deferred
Mode 7, Index-Deferred
CLR@R5 .. .
INC @(R2)+ .. .
COM @-(RO) .. .
ADD @1000(R2),R1
ADD #10,RO .. .
CLR @#1100 .. .

5-11
5-12
5-14
5-15
5-18
5-19
5-21
5-21
5-26
5-29
5-30

7-3
7-3
7-4
7-5
7-5
7-5
7-6
7-7
7-7
7-8
7-8
7-9
7-9

7-10
7-10
7-11
7-12
7-12
7-13
7-13
7-14
7-14
7-15
7-15
7-16
7-16
7-18
7-18

7-29 ADD @#2000 .. 7-19
7-30 INC A ... 7-20
7-31 CLR @A .. 7-21
8-1 Single-Operand Group 8-4
8-2 Double-Operand Group 1 8-4
8-3 Double-Operand Group 2 8-5
8-4 Program Control Group Branch 8-5

xiv Contents

8-5 Program Control Group JMP " ... c •• ; ••••••••••••••••• c' • • • • 8-5
8-6 Program Control Group JSR 0 ~ •• 0 •• 0 0 • 0 0 • 0 0 0 • • 8-5
8-7 Program Control Group RTS ... 0 •• 0 •• 0 0 0 • 0 • 0 0 •••• 0 0 •• 0 0 0 • 0 0 0 • 8-6
8-8 Program Control Group Traps .. c •••••• o ••• 0 • 0 ••• 0 0 •• 0 • 0 0 0 0 0 0 0 • 8-6
8-9 Program Control Group Subtract .. 0 • 0 0 '0 • 0 • 0 0 0 • 0 0 0 0 0 • 0 0 0 ••• 0 • 8-6
8-10 Mark 0 •• 0 •••••• 00 0 ~"o 0 0 • 0 0 0 • 00000.00.00.00 8-6
8-11 Call to Supervisor Mode 00.0 ••••• 00 •• 0 0 00 0 0 0 •• '0 0 0 0 0 0 • 0 0 0 0 o. 8-6
8-12 Set Priority Level ... 0 0 0 0 • 0 0 0 0 • 0 0 •••• 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 8-7
8-13 Operate Group. 0 •••• 0 0 0 0 0 • 0 0 • 0 0 •• 0 0 0 00.0 •• 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 8-7
8-14 Condition Group .. 0 ••• 0 0 0 0 ••••• 0 0 • 0 0 0 0 •• ~ 0 • 0 • 0 0 ••• 0 0 0 0 0 0 0 0 &-7
8-15 Move To and From Previous Instruction/Data Space Group . 0 • 0 • 0 0 0 0 8-7
8-16 Byte Instructions 0 0 • 0 • 0 ••• 0 0 •••• 0 ••••• 0 0 0 0 0 0 ••• 0 0 0 • 0 0 • 0 0 0 0 8-8
8-17 Clear Destination 0 •• 0 •••• 0 0 •••••• 0 • 0 0 0 0 • 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 0 o. 8-13
8-18 Complement Destination 00 •••• 0 ••• 0 0 •• 0 • 0 0 0 00.0 ••• 0 0 0 00 • 0 • 0 0 8-14
8-19 Increment Destination . 0 ••••••• 0 •• 0 •• ~ 0 0 0 0 • 0 • 0 0 0 0 0 0 0 • 0 ••• o. 8-15
8-20 Decrement Destination 00 •••• 0 ••••• 0 •• 0 • 0 • 0 0 • 0 • 0 •• 0 • 000.0.0. 8-15
8-21 Negate Destination ... 0 0 •••••••• 0 • 0 0 0 0 • 0 .0000.0000 0 0 '0' •• o. 8-16
8-22 Test Destination 0 ••• 0 ••••• 0 •• 00 0 • 0 0 0 0 ••• 0 • 0 0 • 0 • 0 •• 0 0 0 8-17
8-23 ReadILock Destination, WritelUnlock RO into Destination o. 0 0 0 0 0 • o. 8-18
8-24 Test Destination and Set Low Bit .. 0 0 0 0 • 0 • 0 • 0 ••••• 0 0 0 • 0 0 0 0 0 • 0 0 8-18
8-25 Arithmetic Shift Right . 0 • 0 0 •••• 0 •• 0 0 • 0 • 0 0 0 0 0 • 0 • 0 0 0 • o. 0 0 0 0 0 0 8-19
8-26 Example: Arithmetic Shift Right 0 •••••• 0.000 0 • 0 0 ••• 0 ••• 0 0 • • •• 8-19
8-27 Arithmetic Shift Left. 0 ••••••• 0 •• 0 ••••• 0 • 0 ••••••• 0 0 ••••••• o. 8-20
8-28 Example: Arithmetic Shift Left .. 0 •••••••••••• 0 •• 0 0 • 0 0 • 0 ••• 0 0 8-20
8-29 Rotate Right 0 0 •••• 0 0 •• 0 ••• 0 0 "0 • 0 0 ••••• 0 0 •• 0 •• 0 0 •• 8-21
8-30 Example: Rotate Right o ••• 0 •• 0 • 0 0 •••••••• 0 0 • 0 •••••••• 0 0 • ~ •• 8-21
8-31 Rotate Left 0 • 0 •• 0 0 ••••• 0 •• 0 •••••••• 0 •• 0 0 0 •••• 0 0 0 0 0 8-22
8-32 Example: Rotate Left . 0 • 0 • 0 0 0 0 •• " 0 0 •• 0 0 • 0 0 •• 0 ••••• 0 • 0 0 0 • • • •• 8-22
8-33 Swap Bytes .. 0 •••••••••••• 0 • 0 •••• 0 • 0 • 0 ' •••• 0 •••••• 0 0 0 • • • •• 8-23
8-34 Multiple-Precision ... 0 0 0 • 0 •••• 0 0 0 0 •••••••••• 0 •••••••••• 0 • •• 8-24
8-35 Add Carry ... 0 •••••• 0 ••• 0 ••• 0 • 0 0 0c 0 • 0 •••••••• 0 0 0 0 •••• 0 • 0 0 0 &-25
8-36 Subtract Carry 0 ••••••••• cO 0 ••• -0 •••••• 0 •••••••••••• 0 • •• 8-26
8-37 Sign Extend c •••• 0 • 0 •••••• 0 •••••• 0 8-27
8-38 Move Byte from Processor Status Word 0 0 0 • • • • •• • • • • • • • • •• 8-28
8-39 Move Byte to Processor Status Word 0 •••• 0 •• 0 • 0 •• 0 •••• 0 8-29
8-40 Move Source to Destination 0 ••• 0 ••••• 0 ••• 0 0 0 • 0 ••• 0 •• 0 0 • • • • •• 8-30
8-41 Compare SRC c to Destination 0 0 ••••••••• 0 ••••••• 0 • • • • •• 8-31
8-42 Add SRC to Destination 0 0 • 0 ••••••••• 0 •••••• 0 • • • • • • • • • •• 8-32
8-43 Subtract SRC from DST .. 0 •••••••••••••• 0 ••• 0 0 •••••••••• 0 •• 8-33
8-44 Arithmetic Shift 0 •••••••••••••• 0 • • • •• 8-34
8-45 Arithmetic Shift Combined 0 ••••• 0 ••••••••••• 0 •• 8-35
8-46 Multiply 0 ••••••••• 0 ••• 0 •• 0 • •• 8-36
8-47 Divide 0 ••••••• 0 ••• 0 0 •••• " •• 0 •••••••••••••• 0 8-36
8-48 Bit Test 0 0 ••••••••••••••••• 0 ••• 0 • 0 0 • • • • •• 8-37
8-49 Bit Clear 0 • 0 0 ••••• 0 • • • • • • • • • • • • • • • • • • •• 8-38
8-50 Bit Set 00 ••••••••• 00' 'c' ••• 0 • • • • • • • • • • •• 8-39

Contents xv

8--51 Exclusive .OR 00 ••••• 000.0 ••• 0 •• 8-40
8-52 Branch (Unconditional) . 0 • 0 0 0 0 0 0 • 0 •• 0 0 • 0 • 0 • 0 0 0 0 • 0 0 0 • 0 •••• 0 o. 8-42
8--53 Branch if Not Equal (to Zero) 0 •• 8-43
8-54 Branch if Equal (to Zero) 00......... 8-44
8-55 Branch if Plus 0 •••••••••••••••• 0 •• 0 0 ••••••• 0 0 • 0 0 ••• 0 0 8-44
8-56 Branch if Minus 0 •••••• 0 0 0 0 0 •••••• 0 ••••• 0 0 •••• 0 • •• 8-45
8-57 Branch if Overflow is Clear. .. 8-45
8--58 Branch if Overflow is Set 0 • 0 ••••• 0 0 • 0 • • • • • • • •• 8-46
8-59 Branch if Carry is Clear 0 • 0 ••• 0 0 • 0 •• 0 • 0 •• 0 • 0 8-46
8-60 Branch if Carry is Set 0 0 •• 0 •••••••• 0 •• 8-46
8-61 Branch if Greater Than or Equal (to Zero) .. 8-48
8-62 Branch if Less Than (Zero) 0 •••• 0.000. 0 •• 0 0 0 0 0 0 0 •••• 0 0 0 • 0 0 •• 0 8-48
8-63 Branch if Greater Than Zero. 0 0 0 •• 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 •• 0 0 0 0 8-49
8-64 Branch if Less Than or Equal (to Zero) 00000. 0 • 0 0 0 0 0 0 • 0 0 0 0 0 • 0000 8-49
8-65 Branch if Higher 0 ••••••••••••••••••••• 0 •• 0 • • •• 8-50
8-66 Branch if Lower or Same 0 •••••••••••••••••• 0 ••• 0 • 0 0 • •• 8--50
8-67 Branch if Higher or Same ... 0 •• 0 •• 0 •••••• 0 0 0 •••• 0 • 0 •• 0 •• 0 • o. 8-51
8-68 Branch if Lower 0 •••••••• 0 0 0 • 0 •• 0 • 0 • 0 0 • 0 • 0 0 0 •• 8--51
8-69 Jump 0 0 •••••••••• 0 0 • • • • •• 8--52
8-70 Jump to Subroutine 0 ••••• 0 •••• 0 ••• 0 •• 8--53
8-71 Example: Jump to Subroutine 0 0 •• 0 •• 0 •••• 0 0 •• 8-54
8-72 Return from Subroutine 0 ••••••••••••••• 0 •••• 0 0 • 0 • 0 •• 8-55
8-73 Example: RTS R5 0 0 • 0 •••• 0 ••• 0 0 0 • 0 •• 0 ••• 0 0 •• 8--55
8-74 Subtract One and Branch 0 •••••••••••••••••• 0 ••• 0 • • • •• 8--56
8-75 Emulator Trap 0 •••• 0 •••••• 0 0 0 •••• 0 0 •• 0 0 0 • 0 • 0 0 0 8--57
8-76 Example: Emulator Trap. 0 0 0 0 0 • 0 •••••• 0 ••••••••• 00' •• 0 ••••• 8--57
8-77 Trap 0.000 •• 0. 0 •••••• 00 •••••• 0 ••• 8-58
8-78 Breakpoint Trap 0 • 0 ••• 0 ••••• 0 •••••• 0 0 •• 8--58
8-79 Input/Output Trap 0 • 0 • 0 •••••••••• 0. • •• 8--59
8-80 Return from Interrupt 0 •••••••••• 0 • 0 • • • •• 8-59
8-81 Return from Trap 8-60
8-82 Mark 0 •• 0 0 0 •• 0 • 0 • • • • • •• 8-61
8-83 Example: Mark 0 ••••••••••••••••• 0 ••• 0 0 • • • •• 8-61
8-84 Set Priority Level 0 0 0 •• 0 •• 0 ••• 0 • • • • • • • • • •• 8-62
8-85 Call to Supervisor Mode 0 0 0 • • • • • • • • • • • • • • • • • •• 8-63
8-86 Halt ... 0 0 • • • • • • • •• 8-65
8-87 Wait for Interrupt 0 •• 8-66
8-88 Reset External Bus 0 • • • • • • • • • • • • •• 8-66
8-89 Move from Processor Type Word 0 ••• 0 ••••• 0 • • • • • • • •• 8-67
8-90 Move to Previous Data Space (Bit 15 = 1)
Move to Previous Instruction Space (Bit 15 = 0) 8-67
8-91 Move from Previous Data Space (Bit 15 = 1)
Move from Previous Instruction Space (Bit 15 = 0) 0 • • • • • • • • •• 8-68
8-92 Condition Code Operators. .. 8-69
9-1 Single-Precision Format 0 • • • • • • • • • • 9-3
9-2 Double-Precision Format 0 • • • • • • • • • • • • • • • •• 9-3
9-3 2's Complement Format 0 ••••••••• 0 ••••••• 0 • • • • • • • • • • 9-4

xvi Contents

9-4 Floating-Point Status Register. 9-4
9-5 Floating-Point Addressing Modes. 9-9
9-6 Make Absolute FloatingIDouble 9-11
9-7 Add FloatinglDouble .. 9-12
9-8 Copy Floating Condition Codes. .. 9-13
9-9 Clear Floating/Double. 9-13
9-10 Compare Floating/Double. .. 9-14
9-11 Divide FloatinglDouble 9-15
9-12 Load and Convert From Double-To-Floating
and from Floating-to-Double 9-16
9-13 Load and Convert Integer or Long Inte,ger
to Floating or Double-Precision 9-17
9-14 Load Exponent, '.' .. 9-18
9-15 Load FloatingIDouble '. 9-19
9-16 Load Floating-Point Program Status 9-19
9-17 Multiply and Separate Integer and Fraction FloatingIDouble 9-20
9-18 Multiply FloatinglDouble 9-22
9-19 Negate Floating/Double 9-23
9-20 Set Floating Double mode 9-23
9-21 Set Floating Mode. 9-24
9-22 Set Integer Mode. .. 9-24
9-23 Set Long Integer Mode. 9-24
9-24 Store and Convert from Floating-To-Double and from

Double-To-Floating ' .. 9-25
9-25 Store and Convert from Floating-to-Double To Integer Or Long Integer 9-26
9-26 Store Exponent .. 9-27
9-27 Store Floating/Double .. 9-27
9-28 Store Floating-Point Program Status. .. 9-28
9-29 Store FPP's Status .. 9-28
9-30 Subtract Floating/Double 9-29
9-31 Test Floating/Double 9-30
10-1 Word and Byte Stacks. .. 10-6
10-2 Push and Pop Operations. .. 10-7
10-3 Byte Stack Used as a Character Buffer. 10-11
10-4 JSR Stack Condition Example 10-11
10-5 Nested Interrupt Service Routines and Subroutines 10-13
1.0-6 Reentrant Routines .. 10-14
10-7 Sharing Control of a Routine 10-15
10-8 Coroutine Example .. 10-16
10-9 Coroutines Versus Subroutines 10-17
10-10 Coroutine Path ... 10-18
10-11 Coroutine Interaction 10-19
10-12 Recursive Routine Flow 10-20

Contents -xvii

Tables
1-1 General Purpose Registers. 1-3
1-2 Stack Pointer (PSW <15:14 or <13:12» 1-5
1-3 Processor Status Word Bit Description. 1-5
1-4 CPU Error Register Bit Descriptions 1-7
1-5 Program Interrupt Register Bit Descriptions 1-8
1-6 KDJ11-E Interrupts 1-9
1-7 KDJ11-E Compatibility. .. 1-14
1-8 Memory Management Register Address. .. 1-18
1-9 Page Descriptor Register Bit Description ". .. 1-21
1-10 MMRO Bit Description 0 •• 1-23
1-11 Memory Management Register 3 Bit Descriptions 1-24
1-12 Memory System Error Register Bit Descriptions 1-30
1-13 Cache Control Register Bit Descriptions. 0 •••••••• 0 • • • • • • • • • • • •• 1-31
1-14 Parity CSR Register (17772100) 0 •••••••••••••••••••••• 1-31
1-15 ConsolelSLU Panel - SLU 8 0 ••• 0 •••••• 0 •••• 0 • • • • • • • • •• 1-33
1-16 Receiver Status Register Bit Descriptions 0 •• 1-37
1-17 Receiver Data Buffer Register Bit Descriptions 0 •• 1-37
1-18 Transmitter Status Register Bit Descriptions .. 0 •••••• 0 ••••• 0 • 0.' 1-38
1-19 Transmitter Data Buffer Register Bit Descriptions. 1-39
1-20 ConsolelSLU Register Settings - Base Address 176500 0 • • • • • •• 1-39
1-21 ConsolelSLU Register Settings - Base Address 176600 0 •• 1-40
1-22 Control/Status Register Bit Descriptions. 0 •••••••••••• 0 •••• 0 • • •• 1-42
1-23 Page Control Register Bit Descriptions .. o. • . . • • . . . •• 1-45
1-24 Display Register Bit Descriptions '0 •••••••••••••••••••• o. 1-46
1-25 Additional Status Register 0 •••••••••••••• 0 ••••• 0 • • • • • • • • • • •• 1-46
1-26 Clock Status Register Bit Descriptions .. o. •• 1-48
1-27 Maintenance Register Bit Descriptions 0 0 ••••••• o. 1-49
1-28 Recognition Pattern 0 ••••••• 0 ••• o ••••• 0 • • • • • • • • • • • • • • •• 1-50
2-1 Baud Rate Selections o ••••••••••••••• 0 • • • • • • 2-6
2-2 ROM Mode Switch Settings 0 • • • • • • • • • • • • • 2-6
2-3 KDJ11-E Module and LSI-11 Bus Signals 0 • • • • • • • • • • • • • • •• 2-10
2-4 Module PMI Signal Assignments 0 • • • • • • • • • • • • • • • • •• 2-12
2-5 J1, Connector Pin Assignments 0 •••••••••• 0 • • • • • • • • • • • • • • • • • •• 2-13
2-6 J2, Connector Pin Assignments 0 ••••• 0 • • • • • • • • •• 2-14
2-7 J3, Connector Pin Assignment~ 0 •••••••••••••• 0 ••••••• 0 o. 2-16
3-1 Console ODT Commands 0 ••••••••••••••• 0 • 0 •••••• o. • • • • 3-2
4-1 ROM Code Interpretation of User Input 0 ••••••••••• 0,0 4-4
4-2 Boot Command Errors .. 0 ••••••••••••••••••••• 0 0 ••••• 0 • • • • • 4-5
4-3 Memory Intern Parameter Variations 0 • 0 •••••• 0 • • • •• 4-14
4-4 ROM on 173000 Parameter Variations 0 •• 0 • 0 • • • • • • • • • • • • •• 4-14
4-5 ROM on 165000 Parameter Variations .. o ••••• 0 ••• 0 • 0 • • • • • • • • •• 4-14
4-6 ROM Mode Switch Settings 0 •••••••••••••••• 0 ••••• 0 4-16
4-7 Power-On Self-Tests Parameter Variations 0 ••• 0 •••• 0 • • • • • •• 4-16
4-8 Alternate Boot Block Parameter Variations .. 0 ••••• 0 • • • • • • • • • • •• 4-17
4-9 LTC Register Parameter Variations 4-17

xviii Contents

4-10 Force Clock Interrupt Parameter Variations 00 0 0 0000000000000 0 0 0 0 4-18
4-11 Clock Frequency Parameter Variations 000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 4-18
4-12 Halt-on-Break Parameter Variations 00 0000000000000000000000000 4-18
4-13 Trap-oil-Halt Parameter Variations 00000000000000000000 00000000 4-19
4-14 Ignore Battery Parameter Variations 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 0 0 0 0 0 4-19
4-15 Lines On Parameter Variations 0 0 0 0 0 0 0 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 00 0 0 0 0 • 0 0 4-20
4-16 Disable UBA ROM Parameter Variations 00000000000000.0.000. 0 0 4-21
4-17 Enable UBA 18-Bit Mode Parameter Variations 0 • 0 0 • • • • • • • • • • • • •• 4-21
4-18 Default Boot Programs ... 0 •• 4-26
4-19 ROM Mode 0 • 0 0 • 0 ••• 0 • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• 4-27
4-20 ROM ODT Commands . 0 •••• 0 ••• 0 • 0 • 0 •••••••••••••••••• 0 • •• 4-33
4-21 Moving Through Menus 0 0 0 0 0 0 • 0 0 0 • 0 •• 0 •• 0 0 0 0 ••••• o. 4-36
4-22 Types of Function Fields . 0 • 0 • 0 0 • 0 0 0 •••• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 4-36
4-23 Setup Menu Configuration Parameters 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 • 0 • 0 0 0 • 0 0 4-38
4-24 Diagnostic Programs 00 0 0 0 0 0 0 • 0 0 0 0 0 •• 0 4-46
4-25 LED Display Messages and Descriptions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • • • • • •• 4-52
4-26 Error Messages . 0 0 • 0 0 0 0 0 • 0 •••••• ' ••• 0 •• 0 •••••••••••••• 0 ••• 0 4-60
4-27 CPU Troubleshooting 0 • • •• • • • • • • • • • • • • • • • • •• 4-64
5-1 Summary Of Signal Line Functions . 0 •• 0 ••••••••••••• 0 0 •••• 0 • 0 5-1
5-2 Data Transfer Bus Cycles . 0 0 0 0 • 0 • 0 • 0 0 0 •• 0 • 0 •••• 0 • 0 • 0 • 0 0 0 0 • 0 0 5-3
5-3 Data Transfer Bus Signals 0 0 0 0 0 ••• 0 0" 0 •• 0 ••••• 0 • 0 •• 0 • 0 0 0 0 • o. 5-4
5-4 Position-Independent, Multilevel Device Requirements 0 0 0 0 0 0 0 0 •• 0 0 5-20
6-1 PMI Bus Master Signals 0 •• 0 • 0 •• 0 0 0 0 • 0 • 0 • 0 • 0 0 •••• 0 • • • • • 6-2
6-2 PMI Slave Signals. 0 ••••• 0 •• 0 0 0 ••••• 0 • 0 0 • 0 • 0 • 0 • 0 0 0 0 • 0 • 0 •• 0 0 6-2
6-3 PMI UNIBUS Adapter Signals 0 ••••••• 0 • 0 0 • 0 • 0 • 0 • • • • • • • • • • • • • 6-3
6-4 LSI Bus Signals . 0 •• 0 • 0 •• 0 • 0 0 •••••.• 0 00 0 • 0 0 0 • 0 0 •• 0 0 0 0 0 • 0 • 0 0 6-4
7-1 Sample KDJ11-E Instructions 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 7-3
8-1 Instruction Set . 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 • 0 • 0 • 0 0 0 0 • 00 0 0 0 • 0 0 • 0 0 8-1
9-1 FPS Register Bit Descriptions 0000000 0 • 0 0 0 0 0 0 0 0 • 0 0 • 0 0000000000 9-5

About This Manual

This user guide contains descriptions of the KDJ11-E CPU module architecture,
configuration, system requirements, and programming.

Audience

This manual is intended for Digital Customer Services, self-maintenance, and Original
Equipment Manufacturing (OEM) personnel.

Organization

This manual contains ten chapters, an appendix, and an index.

• Chapter 1, Architecture, describes the KDJ11-E CPU module architecture.

• Chapter 2, Configuration, describes the configuration requirements when configuring
and installing the KDJII-E CPU module into an LSI-1I based system.

• Chapter 3, Console On-Line Debugging Technique (ODT), describes ODT.

o Chapter 4, Boot ROMs and Diagnostics, describes diagnostics that test the CPU, UBA
and memory; the chapter also includes hard copy ROM commands.

• Chapter 5, Extended LSI-1I Bus, describes the LSI-1I bus.

• Chapter 6, Private Memory Interconnect Bus, describes PMI protocol, and PMI bus
signals.

• Chapter 7, Addressing Modes, describes the addressing modes.

• Chapter 8, Base Instruction Set, describes the KDJ1I-E instruction set.

• Chapter 9, Floating-Point Arithmetic, describes floating-point instructions.

• Chapter 10, Programming Techniques, describes utilizing the combination of the
instruction set, addressing mode and programming techniques to develop new
software or to utilize old programs effectively.

• Appendix A, Setup Parameters Worksheet, contains two worksheets for each mode
(video terminal or hardcopy) to record the original setup parameter selections and the
new setup parameters selections contained in the EEPROM of the KDJI1-E module.

COnventions

The following conventions are used in this manual:

Convention Meaning

Caution Contains information to prevent damage to equipment

xix

xx About This Manual

Convention

Note

<x:y>

RIW

R

RO

Meaning

Contains general information

Represents a bit field, a set of lines, or a set of signals, ranging from
x through y. For example, RO <7:4> indicates bits 7 through 4 in a
general-purpose register RO.

ReadlWrite

Read

Read-only

1
Architecture

1.1 KDJ11·E CPU Module Description
The KDJII-E is a quad-height processor module for LSI-II bus systems. It is designed
for use in high-speed, real-time applications, and multiuser, multitasking environments.
The module can also operate as a CPU in PDP-II UNIBUS systems, when used in
conjunction with the KTJII-B UNIBUS adapter module.

The module interfaces to the standard 22-bit LSI bus and has the additional control
signals necessary for communication using the Private Memory Interconnect (PMI). The
PMI protocol uses the CID interconnect bus and allows high-speed data transfers across
the bus, including double-word reads. The LSI bus can address up to 4 Mbytes of main
memory .. Block mode direct memory access (DMA) transfers (allowed. on the extended
bus) aresu,pported by the KDJII-E module.

The KDJII-E module executes the complete PDP-I1J70 base instruction set, including
the. extended instruction set (EIS) and the MTPS, MFPS,. MFPT, CSM, TSTSET, and
WRTLCK instructions. ·It also supports the FPII floating-point instruction set that is
compatible with FPII-A, -C, -E, and -F floating-point processors. Full 22-bit memory
management is provided for both instruction references and data references in three
protection modes: kernel, supervisor, and user.

The three protection modes provide the ability to implement layered software protection.
Memory management separately manages the three modes, allowing each one to ,access
different sections of main memory. Each section can also have different access protection
rights. Each mode uses a separate system stack. pointer that offers an additional degree
of isolation. The protection modes are organized so that a higher protection mode
can always enter a lower protection mode, while a lower protection mode can never
accidentally enter a higher protection mode. Kernel mode has full privileges and can
execute all instructions~ . Supervisor mode and user mode, the two lower-privileged
modes, cannot execute certain instructioJ;ls.

Features

The KDJI1;.Esystem module is a high performance CPU module with the following
features:

• DCJll microprocessor

• Floating-point accelerator (FPJll)

• 22-bit memory management

• Programmable line frequency clock

• Console serial line unit

1-1

1-2 Architecture

• Seven serial line units (SLU s)

• Boot and diagnostic ROMs

• Time of Year (TOY) clock

• Two or four Mbytes onboard parity memory

• Console programmable setup features

• Comprehensive self-test capability

• LED status indicator

The boot and diagnostic ROM features include:

• Booting of the user's software on various devices

• Memory size display

• Time and date of TOY clock

• Boot device selection

• Ability to define parameters for SLU s

• Self-test selection

• User boot area on EEPROM

• Support for hard copy terminals and video display terminals

Self-diagnostic display LEDs are provided on the KDJ11.;E module. They indicate the
status of the module and system when the module is powered up. The LEDs aid in
troubleshooting module failures.

Figure 1-1· shows the user-addressable registers, classified as general purpose, system
control, memory system, floating-point and Memory Management Registers (MMRs).

The KDJ11-E module supports console emulation (micro-ODT). This allows users to
interrogate and write main memory and CPU registers as if a console switch panel and
display lights were available.

1.2 DCJ11-A Microprocessor Features
The DCJ11-A microprocessor operates in three modes: kernel, supervisor, and user.
A program operating in the kernel mode has complete control of the system and
incorporates protection mechanisms against any external interferences. Programs
operating in the supervisor and user modes can be inhibited from executing certain
instructions and can be denied direct access to the system peripherals. This feature
provides complete executive protection in a multiprogram environment.

There are 16 general purpose registers (Table 1-1), but only 8 are addressable to the
user at any given time. The general-purpose registers provide a stack pointer (SP)
for each of the three operating modes and a program counter. (PC). The remaining 12
registers are divided into two groups of general purpose registers, RO-R5 and RO'-R5'.
All of these registers can be used as accumulators, deferred addresses, index references,
autoincrement registers, autodecrement registers, and stack pointers.

Architecture 1-3

General Purpose System Control Memory System SLU

RO RO' KSP PSW II Une Clock I Memory CSR I I RCSR 1-8

R1 R1' SSP

R2 R2' USP PIRQ II Maint __ 11 Cache Ctrl II RBUF 1-8

R3 R3'

R4 R4' GJ I CPU Error Mem Sys Err I XCSR 1-8

R5 R5'

Hit/Miss II XBUF 1-8

Floating Point Memory Management

~~~ I MMRO I I MMR1 II MMR211 MMR31 

Accumulators (64-Bit) 

Kemal (00) 

PAR PDR 

Figure 1-1 Programming Model 

Table 1-1 General Purpose Registers 

Register 
Number Designation 

0 RO RO' 

1 Rl Rl' 

2 R2 R2' 

3 Ra Ra' 

4 R4 R4' 

5 R5 R5' 

6 KSP. SSP USP 
7 PC 

Page Registers (32-Bit) 

Supervisor (01 ) 

PAR PDR 

User (11) 

Boot and Diagnostics 

I ControVStatus I 

PAR PDR I Page control I 

I Cont and Disp I 
Additional 
Status Reg 

LJ-00154-TIO 

The system control registers are the processor status word (PSW), program interrupt 
request (PIRQ), and CPU error register. 



1-4 Architecture 

1.2.1 Stack-Limit Protection 
The DCJ11 monitors the kernel stack references against the fixed lim~t of 400. A yellow 
stack trap occurs. at the end of the current instruction when the aqdress of the stack 
reference is less than 400. A yellow stack trap can only occur in the kernel mode during 
a stack reference. This is defined as a mode 4 or 5 reference through R6, a JSR trap, or 
an interrupt stack push. 

The microprocessor also checks for kernel stack aborts during interrupts, traps, and abort 
sequences .. When a kernel stack push causes an abort during one of these conditions, a 
red stack trap occurs. This type of stack trap sets bit 2 in the CPU error register and 
loads virtual address 4 into the kernel stack pointer (R6). A trap through location 4 in 
the kernel space now occurs and the old PC and PSW are saved in locations 0 and 2, 
respectively, of the kernel space. 

1.2.2 Kernel Protection 
The following mechanisms are used to protect· the kernel operating system against 
external interference: 

• In kernel mode, the HALT,RESET, and SPL instructions are executed as specified. 
In supervisor or user mode, the HALT instruction causes a trap through location 4, 
but the RESET and SPL instructions are treated as NOPs. 

• In kernel mode, the RTI and RTr instructions can freely change bits <15:11> and 
<7:5> of the PSW register. In supervisor or user mode, these instructions can change 
only bits <15:11> of the PSW register. 

• In kernel mode, the MTPS instruction can change bits <7:5> of the PSW register. In 
supervisor or user mode, the MTPS instruction cannot change bits <7:5> of the PSW 
register. 

• All the trap and interrupt vector addresses are classified as kernel space addresses, 
no matter what memory management mode the system is using or what the contents 
of the PSW are at the time the interrupt or trap occurs. 

• Kernel stack references are checked for stack overflow, but supervisor and user stack 
references are not checked. 

1.2.3 General Registers 
There are two groups of six registers, designated RO-R5 and RO'-R5'. The group 
currently in use is selected by bit 11 in the PSW. When bit 11 is set (1), the RO'-R5' 
group is selected. When bit 11 is cleared (0), the RO-R5 group is selected. 

1.2.4 Stack Pointer 
Register six (R6) is designated as the system stack pointer. There are three stack 
pointers available, one for each corresponding protection mode. However, only one is 
visible to the user at a given time. Processor status bits 14 and 15 select the active stack 
pointer used for all instructions except MFPI, MFPD, MTPI, and MTPD. When these 
instructions select R6 as the destination register, bits 12 and 13 of the PSW select the 
active stack pointer. In both cases, the 2-bit selection codes described in Table 1-2 are 
used to select the active register. 



Architecture -1-5 

Table 1-2 Stack Pointer (PSW <15:14 or <13:12» 

Code 

00 

01 

10 

11 

Selected R6 

Kernel stack pointer (KSP) 

Supervisor stack pointer (SSP) 

illegal-User stack pointer selected 

User stack pointer (USP) 

1.2.5 Program Counter 
The program counter (PC) contains the 16-bit address of the next instruction to be 
accessed. It is designated as R7 and controls the sequencing of instructions. The PC is 
directly addressable by 'single- and double-operand instructions and is a general purpose 
register, although normally it is not used as an accumulator. 

1.2.6 Processor Status Word (17777776) 

The processor status word (PSW) provides the current and previous operational modes, 
the general purpose register group being used, the current priority level, the condition 
code status, and the trace trap bit used for program debugging. The PSW is initialized 
at power-up and is cleared with a console start. Figure 1-2 shows the PSW register. 
Table 1-3 describes the PSW bits. 

15 14 13 12 11 10 09 07 05 04 03 02 01 00 

z v c 

LJ-00148-TIO 

Figure 1-2 Processor Status Word Register 

Table 1-3 Processor Status Word Bft Description 

Bits Name Status 

<15:14> Current mode RJW 

Function 

Indicates the current operating mode and is 
coded as follows: 

Bit 
15 14 Mode 

0 0 Kernel 

0 1 Supervisor 

1 0 illegal 

1 1 User 



1-6 Architecture 

, Table 1-3 (Cont.) Processor Status Word Bit Description 

Bits Name Status 

<i3:12> Previous RIW 
mode 

11 Register set RIW 

<10:9> Unused R 

B Suspended RIW 
information 

<7:5> Priority RIW 

4 RIW 

3 Negative RIW 

2 Zero RIW 

1 Overfiow RIW 

o Carry RIW 

Function 

Indicates the previous operating mode and 
is coded the same as bits <15:14>. 

Selects the group of general purpose 
registers being used. When the bit is 
set, the RO'-R5' group is selected and when 
cleared, the RO-R5 group is selected. 

Read as Os. 

Reserved. 

Indicates the current priority level of the 
processor and is coded as follows: 

Bit Priority 

" 6 5 Level 

1 1 1 7 

1 0 0 6 

1 0 1 5 

1 0 0 4 

0 1 1 3 

0 1 0 2 

0 0 1 1 

0 0 0 0 

The trap bit is inactive when it is cleared. 
When set, the processor traps to location 14 
at the end of the current instruction. It is 
useful for debugging programs and setting 
breakpoints. 

Condition code N is set when the previous 
operation result was negative. 

Condition code Z is set when the previous 
operation result was O. 

Condition code V is set when the previous 
operation resulted in an arithmetic 
overflow. 

Condition code C is set when the previous 
operation caused a carry out. 

lThe T-bit cannot be set by explicitly writing to the PSW; it can only be changed by the RTIIRTT instructions. 



Architecture 1-7 

1.2.7 CPU Error. Register (17777766) 
The error register, at address 17777766, identifies the source of any abort or trap that 
caused a trap through location 4. The CPU error register is cleared when it is written. It 
is also cleared at power-up or by console start. The CPU error register is unaffected by a 
RESET instruction. Figure 1--3 shows the register format. Table 1-4 provides the CPU 
error register bit descriptions. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Address Error 
Nonexisitent Memory 

110 Bus Timeout-----"" 
Yellow Stack Violation ----...... 

Red Stack Violation ---------.1 
LJ-00149-TIO 

Figure 1-3 CPU Error Register 

Table 1-4 CPU Error Register Bit Descriptions 

Bits Name Status Function 

7 Dlegal HALT RO Set when execution of a HALT instruction 
is attempted in user or supervisor mode. 

6 Address Error RO Set when word access to an odd byte 
address or an instruction fetch from an 
internal register is attempted. 

5 Nonexistent RO Set when a reference to main memory times 
Memory out. 

4 I/O Bus RO Set when a reference to the I/O page times 
Timeout out. 

3. Yellow Stack RO Set on a yellow zone stack overflow trap. 
Violation 

2 Red Stack RO Set on a red zone stack overflow trap. 
Violation 

1.2.8 Program Interrupt Request Register (177/1172) 

The program interrupt request register (PIRQ), at location 17777772, implements a 
software interrupt facility. When a program interrupt request is granted, the processor 
traps through location 240. It is the responsibility of the interrupt service routines 
to clear the appropriate bit in PffiQ before exiting. PIRQ is cleared at power-up by a 
console start and by the RESET instruction. Figure 1-4 shows the register. Table 1-5 
provides the program interrupt register bit descriptions. 



1-8 Architecture 

15 14 13 12 11 10 09 08 

PIR7 

PIR6 

PIR5 

PIR4 ------' 

PIR3 ------' 

PIR2 --------' 

Priority Encoded Priority Encpded 
Value of Bits <15.9> Value of Bits <15.9> 

PIR1 ---------' 

LJ.OOUIOo TIO 

Figure 1-4 Program Interrupt Request Register (1n77772) 

Table 1-5 Program Interrupt Register Bit Descriptions 

Bits Name Function 

<15:09> PIR 7-1 Each bit, when set, provides one of seven levels of 
software interrupt, corresponding to interrupt priority 
levels 7 through 1. 

08 Unused Read as O. 

<07:05> Priority encoded These three bits are set by the CPU to the encoded value 
value of bits <15:09> of the highest pending interrupt request (bits <15:09». 

04 Unused Read as O. 

<03:01> Priority encoded The function of these bits is identical to bits <07:05>. 
value of bits <15:09> 

1.3 Interrupts 
The KDJII-E module uses a variety of trap, hardware, and software interrupts. 
Table 1-6 lists the KDJII-E interrupts in order of their priority. Four interrupt request 
lines allow external hardware to interrupt the processor on four interrupt levels using 
an externally supplied vector. Seven levels of software interrupt requests are supported 
through use of the PIRQ register. A variety of internally vectored traps are provided to 
flag error conditions, and certain instructions result in a trap condition. 

Interrupts and traps are requests that cause the KDJII-E to temporarily suspend the 
execution of the current program, and service the· device or condition that caused the 
interrupt or trap. The KDJII-E has eight levels of interrupt priority and the current 
priority level is defined by bits <07:05> of the processor status register. Therefore, only 
interrupts with a higher priority than the current priority can interrupt the current 
program. The only exception to this is the nonmaskable interrupt or trap that occurs 
independently of the processor priority. These nonmaskable interrupts have their own 
priority structure (Table 1-6). 



Architecture -1-9 

Table 1-6 KDJ 11·E Interrupts 

Internal Vector 
Interrupt !External Address Priority Level 

Red stack trap Internal 4 NMI 
(CPU error register, bit 2) 

Address error Internal 4 NM 
(CPU error register, bit 6) 

Memory management violation Internal 250 NM 
(MMRO, bits <13:15» 

Timeout/nonexistent memory Internal 4 NM 
(CPU error register, bits <4:5» 

Parity error (PARITY, ABORT) Internal 114 NM 

Trace (T-bit) trap (PSW, bit 4) Internal 14 NM 

Yellow stack trap Internal 4 NM 
(CPU error register, bit 3) 

Power fail (PWRF) External 24 NM 

FP exception (FPE) External 244 NM 

PIR 7 (PIRQ, bit 15) Internal 240 7 

IRQ 7 External User- 7 
defined 

PIR 6 (PIRQ, bit 14) Internal 240 7 

BEVNT(LTC) External 100 6 

IRQ 6 External User- 6 
defined 

PIR 5 (PIRQ, bit 13) Internal 240 5 

IRQ 5 External User- 5 
defined 

PIR 4 (PIRQ, bit 12) Internal 240 4 

IRQ 4 External User- 4 
defined 

SLU 1, receive Internal 300/400 4 

SLU 2, receive Internal 310/410 4 

SLU 3, receive Internal 320/420 4 

SLU 4, receive Internal 330/430 4 

SLU 5, receive Internal 340/440 4 

SLU 6, receive Internal 350/450 4 

SLU 7, receive Internal 360/460 4 

SLU 8, receive(Console) Internal 60 4 

SLU 1, transmit Internal 3041404 4 

SLU 2, transmit Internal 3141414 4 

SLU 3, transmit Internal 3241424 4 

INM = Nonmaskable 



1-10 Architecture 

. Table 1-6 (Cont.) KDJ11-E Interrupts 

Interrupt 

SLU 4, transmit 

SLU 5, transmit 

SLU 6, transmit 

SLU 7, transmit 

SLU 8, transmit(Console) 

PIR 3 (PIRQ, bit 11) 

PIR 2 (PIRQ, bit 10) 

PIR 1 (PIRQ, bit 9) 

Halt line (HALT~ 

FP instruction exception 

TRAP (trap instruction) 

EMT (emulator trap instruction) 

lOT (110 trap instruction) 

BPT (breakpoint trap instruction) 

CSM (call to supervisor mode 
instruction) 

HALT instruction 

Internal 
!External 

Internal 

Internal 

Internal 

Internal 

Internal 

Internal 

Internal 

Internal 

External 

Vector 
Address Priority Level 

3341434 4 

3441444 4 

3541454 4 

3641464 4 

64 4 

240 3 

240 2 

240 1 

None 

244 

34 

30 

20 

14 

10 

4 

WAIT (wait-for-interrupt 
instruction) 

Does not trap, but frees the bus when waiting for external 
interrupt. 

2The halt line usually has the lowest priority. However, it has the highest priority during vector reads. This 
allows the user to break out of potential infinite loops called sunset loops. A sunset loop could occur if a vector 
has not been properly mapped during memory management operations. 

1.3.1 Sunset Loops 
A sunset loop is an infinite loop caused by illegally mapped vectors. The following sunset 
loops can be exited by asserting the BHALT input: 
Interrupts Cause 

Parity Bad parity in the parity vector 
error 

Trace trap Trace vector has T-bit set 

All PIRQs PIRQ vector priority level does not block that level 

Aborts Any abort that occurs during a service routine such as reading the vector or pushing 
onto the stack. These include nonexistent memory, 110 timeouts, MMU aborts, 
parity aborts, and odd address aborts. 

Sunset loops that cannot be exited are caused by external inputs that are not being reset 
or cleared. These can be MPWRF L, MFPE L, MIRQ <3:0> H, and MEVNT L. 



Architecture 1-11 

1.3.2 Red Stac~ Aborts 
A red stack abort happens when an abort sequence occurs while pushing the PC and 
PSW onto the kernel stack while in the process of servicing an interrupt, an abort, or 
a trap routine. This type of abort sets bit 2 of the CPU error register, loads the kernel 
stack pointer (R6) with virtual address 4, and then traps through location 4 in the kernel 
space. The old PC and PSW are saved in locations 0 and 2 of the kernel space. 

The service routine to clear bit 2 of the CPU error register reads the vector at virtual 
address 4 in the kernel space. An emergency stack is then set up in the new mode at 
virtual address 4 and executes a trap through virtual address 4. This ensures that the 
old PC and PSW are saved in kernel space locations 0 and 2. 

1.3.3 Addressing Errors 

An addressing error occurs when an odd address is used with a word reference (odd 
address error), or an instruction stream fetch attempts to access an internal processor 
register. The internal processor registers are the PDRs, PARs, CPU error, PSW, PIRQ, 
MMRO-MMR3, HitJMiss, and CCR. When an addressing error happens, it sets bit 6 of 
the CPU error register and traps through virtual address 4 of the kernel data space. 

1.3.4 Bus Timeout Errors 
A bus timeout error occurs if the BRPLY L bus signal is not asserted within 12.8l'seconds 
after the KDJ11-E asserts the BDIN Lor BnOUT L signals. The 110 page timeout 
error sets bit 4 of the CPU error register if the address references the 110 page. The 
nonexistent memory timeout error sets bit 5 of the CPU error register for all other 
address errors. As a result of the error condition, the KDJ11-E traps through virtual 
address 4 of the kernel space. In a UNIBUS system, the KDJ11-E does not time out, but 
relies on the UNIBUS adapter module to assert the PMI timeout signal. 

1.3.5 Interrupt Vector Timeouts 
An interrupt vector timeout occurs if the BRPLY L bus signal is not asserted within 
12.8 I'seconds after the KDJI1-E acknowledges an interrupt by asserting the BIAK L 
bus signal. The timeout is ignored by the KDJ11-E and it continues as if the interrupt 
request did not occur. In a UNIBUS system, the KDJ11-E does not time out, but relies 
on the UNIBUS adapter module to assert the PMI timeout signal. 

1.3.6 No SACK Timeouts 
The no SACK (selection acknowledge) timeout occurs when the BSACK L bus signal is 
not asserted within 12.8 ,",seconds after the KDJ11-E grants a DMA request by asserting 
BDMG L. The timeou.t is ignored by the KDJI1-E and it continues as if the DMA request 
did not occur. 

1.4 Memory Management 
KDJII-E memory inanagement provides the hardware for complete memory management 
and protection. It is designed to be a memory management facility for accessing all of the 
physical memory and for multiuser, multiprogramming systems where memory protection 
and relocation facilities are necessary. 



1-12 Architecture 

In multiprogramming environments, several user programs are resident in memory at 
any given time. The supervisory program includes the following tasks: 

• Control the execution of the various user programs 

• Manage the allocation of memory and peripheral device resources 

• Safeguard the integrity of the system as a whole by controlling each user program 

In a multiprogramming system, memory management provides the means for assigning 
memory pages to a user program and for preventing that user from making any 
unauthorized access to pages outside his assigned area. Thus, a user can effectively 
be prevented from accidental or willful destruction of any other user program or of the 
system executive program. 

The following are the basic characteristics of KDJII-E memory management: 

• 16 user mode memory pages 

• 16 supervisor mode memory pages 

• 16 kernel mode memory pages 

• 8 pages in each mode for instructions 

• 8 pages in each mode for data 

• Page lengths from 64 to 8192 bytes 

• Each page has full protection and relocation 

• Transparent operation 

• 3 modes of memory access control 

• Memory access to 4 Mbytes 

1.4.1 Memory Mapping 
The processor can perform 16-, 18-, or 22-bit address mapping. The· 110 page, which is 
the uppermost 4K words of memory, always uses the physical address locations 17760000 
to 17777777. 

1.4.1.1 16·81t Mapping 
There is a direct mapping relocation from virtual to physical addresses. The lowest 28K 
virtual addresses are the same corresponding physical addresses. The 110 page physical 
addresses are in the upper 4K block (Figure 1-5). 



17n77 

160000 

Virtual 
(16 Bits) 

17777777 
4K 

1n60000' 

001577n 

28K 

Architecture 1-13 

OO~O O~OOOO ..... _____ ~ _______ ... 10..... _____ _..1 

Incoming Address Physical Address 

Space (22 Bits) 

Figure 1-5 16-81t Mapping 

1.4.1.2 18-81t Mapping 

U-00161-TIO 

Each of the three modes: kernel, supervisor, and user, are allocated 32K addresses 
that are mapped into 128K words of physical address space. The lowest 124K words of 
physical memory, or the 110 page, can be seen in Figure 1-6. 

1.4.1.3 22-81t Mapping 
This mode uses the full 22-bit address to access all of the physical memory. The upper 
4K block is still the 110 page (Figure 1-7). 

1n777 

Virtual 
(16 Bits) 

000000 

Mem 
Mgmt 

17777777 
4K 

17760000 

00757777 

124K 

00000000 
..... _____ --a. - - - - - - - - ~ _____ ....... 

Incoming Address Physical Address 

Space (22 Bits) 

LJ-00162-TIO 

Figure 1-6 18-811 Mapping 



1-14 Architecture 

177777 

Virtual 
(16 Bits) 

000000 

Mem 
1--...... 

Mgmt 

17n7777 
4K 

17760000 

1n5nn 

2044K 

00000000 '-------.... - - - - - - - - ...... _---_ .. 
Incoming Address Physical Address 

Space (22 Bits) 

LJ-00153-TIO 

Figure 1-7 2~-Blt Mapping 

1.4.2 Compatibility 
The operation of 16-, 18-, and 22-bit mapping can be used to provide compatibility among 
other PDP-II computers. This means that software written and developed for any 
PDP-11 computer can be run on the KDJ11-E (Table 1-7). 

Table 1-7 KDJ11-E Compatibility 

Mapping 

16-Bit 

IS-Bit 

22-Bit 

Memory 
Mauagement 

Off 

On 

On 

1.4.2.1 Vlnual Addressing 

System 

PDP-11105, -11110, -11115, -11120, -11103 

PDP-11135, -11140, -11145, -11150, -11160, -11123 

PDP-11194, -11184, -11no, -11144, -11124, 
PDP-11193, -1118S, -lInS, -1115S, -1112S+ 

When memory management is operating, the normal 16-bit address is no longer 
interpreted as a direct physical address, but as a virtual address containing information 
to be used in constructing a new 22-bit physical address. The information contained in 
the virtual address is combined with relocation inforIllation contained in the page address 
register to yield a 22-bit physical address (Figure 1-8). Using memory management, 
memory can be dynamically allocated in pages, each composed of 1 to 128 integral blocks 
of 64 bytes. 

The starting physical address for each page is an integral multiple of 64 bytes, and each 
page has a maximum size of 8192 bytes. Pages may be located anywhere within the 
physical address space. The determination of which set of 16 page registers is used to 
form a physical address is made by the current mode of operation (kemel, supervisor, or 
user mode) and by whether the reference is for instructions or data. 



32K 

o 

Virtual Instruction/Data 
Address Space 

Virtual Address 
(16 Bits) 

-
-
-
... 

4 

PAR 7 

PAR 6 

PAR 5 

PAR 4 

~ PAR 3 

PAR 2 

PAR 1 

PAR 0 0 

Page Address Registers 

PAR:: Page Address Register 

Figure 1-8 Vlnual Address Mapping Into Physical Address 

1.4.3 Interrupts Under Memory Management 

Architecture 1-15 

Physical Address 
Registers 

Page 5 

Page 6 

Page 7 

Page 4 

Physical Address 
(22 Bits) 

LJ.00155·TIO 

Memory management relocates all addresses. When it is enabled, all traps, aborts, and 
interrupt vectors are mapped using the data-space mapping registers in kernel mode. 
Therefore, when a vectored transfer occurs, the new PC and PSW are obtained from 
two consecutive words physically located at the trap vector, and are mapped using the 
data-space registers in kernel mode. 

The stack used for the push of the current PC and PSW is specified by bits <15:14> of 
the new PSw. The PSW mode bits also determine the new mapping register set. This 
allows the kernel mode program to have complete control over servicing all traps, aborts, 
or interrupts. The kernel program may assign the service of some of these conditions to a 
supervisor or user mode program by simply setting the- mode bits of the new PSW in the 
vector to return control to the appropriate mode. 

1.4.3.1 Construction of a Physical Address 
All addresses with memory relocation enabled either reference information in instruction 
(I) space or data (D) space. 1 space is used for all instruction fetches, index words, 
absolute addresses, and immediate operands; D space is used for all other references. 
1 space and D space each have eight page address registers (PARs) in each mode of 
CPU operation (kernel, supervisor, and user). MMR3 can disable D space and map all 
references (instructions and data) through 1 space, or can enable D space and map all 
references through both I and D space. 

The basic information needed for the construction of a physical address comes from the 
virtual address (Figure 1-9), and the a~propriate PAR set. 



1-16 Architecture 

The virtual address (VA) consists of the following fields: 

• The active page field (APF). This 3-bit field determines which of the eight page 
address registers from the set PARO-PAR7 is used to form the physical address. 

• The displacement field. This 13-bit field contains an address relative to the beginning 
of a page. The longest page length is 8 Kbytes as determined by the 13 bits. The 
displacement field is further subdivided into two fields (Figure 1-10). 

15 14 13 12 00 

I :APF : I : : : : : : OF: : : : : : I 
~ ~\~ __________________ ------------------J 
~ y 

Active Page Displacement Field 
Field 

W·OC)156· TIO 

Figure 1-9 Interpretation of a Virtual Address 

12 06 05 00 

I : : :BN: : : I : : + : : I 
"-______ y_-----...,J"-----_y_----J 

Block Number Displacement in Block 

Figure 1-10 Displacement Field of a Virtual Address 

The displacement field consists of the following: 

W.oo157·TlO 

• 'rhe block number. This 7 -bit field is interpreted as the block number within the 
current page. 

• The displacement in block. This 6-bit field contains the displacement within the block 
referred to by the block number. 

The remainder of the information needed to construct the physical address comes from 
the contents of the PAR referenced by the page address field (PAF). This 16-bit register 
specifies the starting address of the memory page. The PAF is actually a block number in 
the physical memory. For instance, if PAF is 3 it indicates a starting address of 96 (3 x 
32 words in physical memory). 

Figure 1-11 illustrates the construction of the physical address (PA). The logical sequence 
involved in constructing a PA is as follows: 

1. The APF of the VA selects one of eight page address registers (PARO-PAR7) from 
the appropriate set. The set used depends on the space being referenced and the 
protection mode being used. 

2. The PAF of the selected PAR contains the starting address of the currently active 
page as a block number in physical memory. 

3. The block number from the VA is added to the PAF to yield the number of the block 
in physical memory. These are bits <21:6> of the PA being constructed. 



Architecture 1-17 

4. The displacement in block from the displacement field of the VA is joined to the 
physical block number to yield a true 22-bit PA 

15 00 

v~ual __ 1 : : : : : : : : : : :: : : : I 

Select PAR 

Offset Into 
Page (VA) 

+PAF 

15 13 

I : : I 
12 00 

I : : : : : : : : : : : : I 
15 14 13 05 04 03 02 01 00 

I : : ~S: : : : : : I 
21 00 

PbysblAdd __ 1 : : :5 ~ : : : : : : : : : : : I 
W-00158·TIO 

Figure 1-11 Construction of a Physical Address 

1.4.4 Memory Management Registers 
Memory management implements three sets of thirty-two 16-bit registers (Figure 1-12). 
One set of registers is used in kernel mode, another in supervisor mode, 8l)d the other in 
user mode. The protection mode in use determines which set is to be used. Each set is 
subdivided into two groups of 16 registers. One group is used for references to instruction 
(I) space, and one to data (D) space. 

The I space group is used for all instruction fetches, index words, absolute addresses, 
and immediate operands. The D space group is used for all other references, providing 
it has not been disabled by MMR3. Each group is further subdivided into two parts of 
eight registers. One part is the PAR whose function is described in the following section. 
The other part is the page descriptor register (PDR). PARs and PDRs are always selected 
in pairs by the top three bits of the virtual address. A PARJPDR pair contains all the 
information needed to describe and locate a currently active memory page. 

The MMRs are in the uppermost 8 Kbytes of physical address space, which is designated 
as the 110 page. Table 1--8 lists the addresses allocated to the MMRs. 



1-18 Architecture 

15 114 

Kernel (00) Supervisor (01) User (11) 

PAR PDR PAR PDR PAR PDR 

H " " 
, 

PAR PDR PAR PDR PAR PDR 

If 'If f , . , , 

Figure 1-12 Active Page Register 

Table 1-8 Memory Management Register Address 

Register 

Memory management register 0 (MMRO) 

Memory management register 1 (MMR1) 

Memory management register 2 (MMR2) 

Memory management register 3 (MMR3) 

User I space descriptor register (UISDRO) 

Address 

17777572 

17777574 

17777576 

17772516 

17777600 

I Space 

o Space 

LJ·OO159-110 



Table 1-8 (Cont.) Memory Management Register Address 

Register 

User I space descriptor register (UISDR7) 

User D space descriptor register (UDSDRO) 

User D space descriptor register (UDSDR7) 

User I space address register (UISARO) 

User I space address register (UISAR7) 

User D space address register (UDSARO) 

User D space address register (UDSAR7) 

Supervisor I space descriptor register (SISDRO) 

Supervisor I space descriptor register (SISDR7) 

Supervisor D space descriptor register (SDSDRO) 

Supervisor D space descriptor register (SDSDR7) 

Supervisor I space address register (SISARO) 

Supervisor I space address register (SISAR7) 

Supervisor D space address register (SDSARO) 

Address 

17777616 

17777620 

17777636 

17777640 

17777656 

17777660 

17777676 

17772200 

17772216 

17772220 

17772236 

17772240 

17772256 

17772260 

Architecture 1-19 



1-20 Architecture 

Table 1-8 (Cont.) Memory Management Register Address 

Register 

Supervisor D space address register (SDSAR7) 

Kernel I space descriptor register (KISDRO) 

Kernel I space descriptor register (KISDR7) 

Kernel D space descriptor register (KDSDRO) 

Kernel D space descriptor register (KDSDR7) 

Kernel I space address register (KISARO) 

Kernel I space address register (KISAR7) 

Kernel D space address register (KDSARO) 

Kernel D space address register (KDSAR7) 

1.4.4.1 Page Address Register (PAR) 

Address 

17772276 

17772300 

17772816 

17772320 

17772336 

17772340 

17772356 

17772360 

17772376 

The PAR contains the PAF, a 16-bit field that specifies the starting address of the page as 
a block number in physical memory. 

The PAR (Figure 1-13) contains the PAF that, may be alternatively thought of as a 
relocation register containing a relocation constant, or as a base register containing a 
base address. These registers are not changed by either console starts or by the RESET 
instruction. They are undefined at power-up .. 

15 00 

I : : : : : : : +: : : : : : : I 
LJ·0018Q. TIO 

Figure 1-13 Page Address Register 



Architecture 1-21 

1.4.4.2 Page Descriptor Register (PDR) 
The PDR contains information relative to page expansion, page length, and access 
control. Figure 1-14 shows the page descriptor register. Table 1-9 describes the bits. 

15 14 

Bypass 
Cache 

y 
Page Length Field 

Figure 1-14 Page Descriptor Register 

08 07 06 05 04 03 02 01 00 

Page Written 

Expansion 
Direction 

LJ-001S1-TIO 

Table 1-9 Page Descriptor Register Bit Description 

Bit 

15 

<14:8> 

7 

6 

<5:4> 

3 

Name 

Bypass cache 

Page length field 

Unused 

Page written 

Unused 

Expansion 
direction 

Status 

RJW 

RJW 

RO 

RO 

RO 

RJW 

Function 

This bit implements a conditional cache bypass 
mechanism. If the PDR accessed during 
a relocation operation has this bit set, the 
reference goes directly to main memory. Read 
or write hits result in invalidation of the 
accessed cache location. 

This field specifies the block number that 
defines the page boundary. The block number 
of the virtual address is compared against the 
page length field to detect length errors. An 
error occurs when expanding upwards, if the 
block number is greater than the page length 
field, and when expanding downwards, if the 
block number is less than the-page field. 

Read as o. 
The written into bit (W-bit) indicates whether 
the page has been written into since it was 
loaded in memory. When this bit is set, 
it indicates a modified page. The W-bit is 
automatically cleared when the PAR of that 
page is written. 

Read as O. 

This bit specifies the direction in which the 
page expands. If it equals 0, the page expands 
upward from block number 0 to include blocks 
with higher addresses; if it equals 1, the page 
expands downward from block number 127 to 
include blocks with lower addresses. 



1-22 Architecture 

, Table 1-9 (COnt.) Page Descriptor Register Bit Description 

Bit 

o 

Name 

Access control 
field 

Unused 

Status 

R/W 

RO 

1.4.5 Fault Recovery Registers 

Function 

This field contains the access code for this 
particular page. The access code specifies 
the manner in which a page may be accessed 
and whether or not a given access should 
result in an abort of the current operation. 
Implemented codes are as follows: 

00 Nonresident - abort all accesses 
01 Read only - abort on write 
10 Not used - abort all accesses 
11 Read/write access 

Read as O. 

Aborts generated by the memory management hardware are vectored through kernel 
virtual location 250. MMRs 0, 1, 2, and 3 are used to determine why the abort occurred 
and to allow for program restarting. 

NOTE 
An abort to a location which is itself an invalid address causes another abort. 
Thus, the kernel program must ensure that kernel virtual address 250 is 
mapped into a valid address. Otherwise, a loop requiring console intervention 
occurs. 

1.4.5.1 Memory Management Register 0 (17777572) 
MMRO provides control and records memory management unit status. The register 
contains abort and status flags (Figure 1-15). Table 1-10 describes the bits. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

I I I 0 1 00 
0 

L Abort Read-Only 
Access Violation 

"--__ Abort Page 
Length Error 

Abort 
"------ Non-Resident 

o 0 
I 

J 

~ 
Page Mode 

I I 

1 J 

'----y---J 
Page Number 

Page Address 
Space 110 

Enable Relocation 

LJ-00162-TIO 

Flgurt 1-15 Memory Management Register 0 (MMRO) 



Table 1-10 MMRO Bit Descriptio., 

Bit 

<12:7> 

<6:5> 

4 

<3:1> 

0 

Name Status 

Nonresident RJW 
abort 

Page RJW 
length 
abort 

Read only RJW 
abort 

Not used RO 

Processor RO 
mode 

Page space RO 

Page RO 
number 

Enable RJW 
relocation 

Architecture 1-23 

Function 

Bit 15 is set by attempting to access a page with 
an access control field key equal to 0 or 2. It is also 
set by attempting to use memory relocation with a 
processor mode (PSW <15:14» of 2. 

Bit 14 is set by attempting to access a location in 
a page with a block number (virtual address bits 
<12:6» that is outside the area authorized by the 
page length field of the PDR for that page. 

Bit 13 is set by attempting to write in a read-only 
page. Read-only pages have access keys of 1. 

Read as Os. 

Bits <6:5> indicate the processor (kernel, supervisor, 
user, illegal) associated with the page causing the 
abort (kernel = 00, supervisor = 01, user = 11, illegal 
= 10). If the illegal mode is specified, an abort is 
generated and bit 15 is set. 

Bit 4 indicates the address space (lor D) associated 
with the page causing the abort (0 = I space, 1 = D 
space). 

Bits <3:1> contain the page number of the page 
causing the abort. 

Bit 0 enables relocation. When it is set to 1, all 
addresses are relocated. When it is set to 0, memory 
management is inoperative and addresses are not 
relocated. 

IBits <15:13> can be set by an explicit write. However, such an action does not cause an abort. Whether set 
explicitly or by an abort, setting any bit in bits <15:13> causes memory management to freeze the contents of 
MMRO <6:1>, MMR1, and MMR2. The status registers remain frozen until MMRO <15:13> is cleared by an 
explicit write. 

1.4.6 Memory Management Register 1 (17777574) 

MMR1 records any autoincrement or autodecrement of a general purpose register, 
including explicit references through the PC. The increment or decrement amount by 
which the register was modified is stored in 2's complement notation. The lower byte is 
used for all source operand instructions and the destination operand may be stored in 
either byte, depending on the mode and instruction type. The register is cleared at the 
beginning of each instruction fetch. The register is defined in Figure 1-16. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

LJ-00163-TIO 

Figure 1-16 Memory Management Register 1 (MMR1) 



1-24 Architecture 

1.4.6.1 Memory Management Register 2 (17777576) 
MMR2 is loaded with the program counter of the current instruction and is frozen when 
any abort condition is posted in MMRO. 

1.4.6.2 Memory Management Register 3 (17772516) 
Memory management register 3 (MMR3) at address 17772516 enables or disables D 
space, 22-bit mapping, the Call Supervisor Mode (CSM) instruction, and the IJO map 
(when applicable). MMR3 is cleared at power-up by a console start and by a RESET 
instruction. Figure 1-17 shows the register format. Table 1-11 provides memory 
management register 3 bit descriptions. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

000 

Enable CSM Instruction ---------' 
Enable Kernal Data Space ________ ....J 

Enable Supervisor Data Space ________ --1 

Enable User Data Space ------------...... 

LJ·00164·TIO 

Figure 1-17 Memory Management Register 3 Format (17772516) 

Table 1-11 Memory Management Register 3 Bit Descriptions 

Bits 

<15:06> 

05 

04 

03 

<2:0> 

Name 

Unused 

Enable UNIBUS 
Map 

Enable 22-bit 
mapping 

Enable CSM 
instruction 

Enable data space 

Status 

RJW 

RJW 

RJW 

RJW 

Function 

Read as Os. 

This bit enables the 110 map for the UNmUS 
adapter (UNmUS systems only). -

This bit, when set, selects 22-bit memory 
addressing. When this bit is clear, 18-bit 
addressing is selected. (Only when MMRO 
bit <0> is set is 18- or 22-bit addressing actually 
enabled.) 

This bit enables recognition of the Call 
Supervisor Mode (CSM) instruction. 

These three bits enable data space mapping for 
kernel, supervisor, and user mode, respectively. 

1.4.6.3 Instruction Back-Up and Restart Recovery 
The process of backing up and restarting a partially completed instruction involves the 
following steps: 

1. Performing the appropriate memory management tasks to alleviate the cause of the 
abort (for example, loading a missing page). 

2. Restoring the general purpose registers indicated in MMRI to their contents at the 
start of the instruction, by subtracting the modify value specified in MMRI. 



Architecture 1-25 

3. Restoring the PC to the abort-time PC by loading R7 with the contents of MMR2, 
which contains the value of the virtual PC at the time the "abort-generating" 
instruction was fetched. 

Note that this back-up and restart procedure assumes that the general-purpose register 
used in the program segment will not be used by the abort recovery routine. This is 
automatically the case if the recovery program uses a different general-purpose register 
set. 

1.4.6.4 Clearing Status Reg Isters Following Abort 
At the end of a fault service routine, bits <15:13> of MMRO must be cleared (set to 0) to 
resume error checking. On the next memory reference following the clearing of these bits, 
the various registers resume monitoring the status of the addressing operations. MMR2 
is then loaded with the next instruction address, MMRI stores the register change 
information, and MMR~ logs the memory management status information. 

1.4.6.5 Multiple FauHs 
After an abort occurs, any subsequent errors occurring while the memory management 
registers are still frozen do not change MMRO, MMRl, or MMR2. The information saved 
in MMRO to MMR2 always refers to the first abort that it detected. 

1.4.7 Common Usage Examples 
The memory management provides a general-purpose memory management tool. It can 
be used in a manner as simple or as complex as desired. It can be anything from a simple 
memory expansion device to a complete memory management facility. 

The versatility offered by the memory management means that both single-user 
and multiprogramming systems have complete freedom to make whatever memory 
management decisions best suit their individual needs. Though there are more common 
methods of using the memory management, there is no limit to the ways to use these 
facilities can be used. 

In typical applications, the control over the actual memory page assignments and their 
protection resides in a supervisory program that operates in kernel mode.- This program 
sets access keys in such a way as to protect itself from willful or accidental destruction by 
other supervisor or user mode programs. The facilities are also provided in such a way 
that the kernel mode program can dynamically assign memory pages of varying sizes in 
response to system needs. 

1.4.7.1 Typical Memory Page 
When the memory management is enabled, kernel, supervisor, and user mode programs 
each have eight active pages described by the appropriate PARs and PDRs for data and 
eight pages for instructions. Each segment is made up of 1 to 128 blocks and is pointed 
to by the PAF of the corresponding PAR (Figure 1-18). 



1-26 Architecture 

The memory segment in Figure 1-18 has the following attributes: 

• Page length: 40 blocks 

• Virtual address range: 140000-144777 

• Physical address range: 312000-316777 

• Nothing has been modified (that is, written) in the page 

• Read-only protection 

• Upward expansion 

These attributes were determined according to the following scheme: 

1. The page address register (PAR6) and page descriptor register (PDR6) were selected 
by the APF of the VA (Bits <15:13> of the VA = 6.) 

VA 157777 PA331777 

VA 144777 
Block 47

8
(39

10
) 

Block 1 

Block 0 PA 312000 

PAR6 3120 

VA 140000 PAF 

PoR6 ~ 47
8 ~o f?}A10\1 I 

PLF W ED ACF 

LJ·OO185· TlO 

Figure 1-18 Typical Memory Page (1m2516) 



Architecture 1-27 

2. The initial address of the page was determined from the PAF of PAR6 (312000 = 
31208 blocks 40 (3210) words per block 2 bytes per word). 

NOTE 
The PAR that contains the PAF constitutes what is often referred to as a 
base register containing a base address or a relocation register containing a 
relocation constant. 

a. The page length (47 + 1 = 4010 blocks) was determined from the page length field 
(PLF) contained in PDR6. Any attempt to reference beyond the 4010 blocks in this 
page causes a page length error, which results in an abort, vectored through kernel 
virtual address 250. 

4. The PAs were constructed according to the scheme shown in Figure 1-11. 

5. The W-bit indicates that no locations in this page have been modified (that is, 
written). If an attempt is made to modify any location in this particular page, an 
access control violation abort occurs. If the page is involved in a disk swapping or 
memory overlay scheme, the W-bit is used to determine whether the page has been 
modified and therefore requires saving before overlay. 

6. The page is read-only protected (that is, no locations in the page may be modified). 
The mode of protection was specified by the access control field of PDR6. 

7. The expansion direction is upward (ED bit set to 0). If more blocks are required in 
this segment, they must be added by assigning blocks with higher relative addresses. 

The attributes that describe the page shown in Figure 1-48 are determined under 
software control. The parameters describing the page are loaded into the appropriate 
PAR and PDR under program control. In a normal application, the page, which itself 
contains these registers, is assigned to the control of a kernel mode program. 

1.4.7.2 Nonconsecutive Memory Pages 
Higher virtual addresses do not necessarily map to higher physical addresses. It is 
possible to set up the PAFs of the PARs so that higher virtual address blocks may be 
located in lower physical address blocks as in Figure 1-19. 

Although a single memory page must consist of a block of contiguous locations, 
consecutive virtual memory pages do not have to be located in consecutive physical 
address locations. The assignment of memory pages is not limited to consecutive 
nonoverlapping physical address locations. 



1-28 Architecture 

PAR 7 

PAR 1 

PAR 0 

PAF 

PAF 

PAF 

VA 037777 

VA 020000 

VA 017777 

- VA 000000 

Flgure1-19 Nonconsecutive Memory Page. 

1.4.7.3 Stack Memory Pages 

PA467777 

· I 
I 
I · 

PA 460000 

PA 560777 

· I 
I 
I 

PA 541000 

LJ·00188·TIO 

When constructing programs, it is often desirable to isolate all program variables from 
pure code (that is, program instructions) by placing them on a register indexed stack. 
These variables can then be pushed or popped from the stack area as needed. Since 
stacks expand by adding locations with lower addresses, when a memory page containing 
"stacked" variables needs more room, it must expand down by adding blocks with lower 
relative addresses to the current page. This mode of expansion is specified by s.etting the 
expansion direction bit of the appropriate PDR to a 1. Figure 1-20 shows a typical stack 
memory page and has the following parameters: 

PAR6: PAF = 3120 
PDR6: PLF = 1758 or 12510 (12810-3) 
ED = 1 
W = 0 or 1 
ACF = nnn (to be determined by the programmer as necessary) 

In this case the stack begins 128 blocks above the relative origin of the memory page and 
extends downward for a length of three blocks: A page length error abort is generated by 
the hardware whenever an attempt is made to reference any location below the assigned 
area (i.e., when the block number from the VA is less than the PLF of the appropriate 
PDR). 

NOTE 
The W-bit is set by hardware. 



VA 157777 Block 177
8

(127
10

) PA 331777 

Block 175
8 

(125
10

) 
....,.........."....,......"....,......"....,.....,....,....,....,....,....,....,....,....,....,...,....,........... PA 331500 

VA 140000 Block 0 PA 312000 

PAR6 ~ PAF 

PAR 6 SLF l81W~E~ 
ACF 

LJ-00167-TIO 

Figure 1-20 Typical Stack Memory Page 

1.4.8 Transparency 

Architecture 1-29 

In a multiprogramming application, it is possible for memory pages to be allocated so that 
a program appears to have a complete 64 Kbyte memory configuration. Using relocation, 
a kernel mode supervisory-type program can perform all memory management tasks 
which are entirely transparent to a supervisor or user mode program. In effect, a system 
can use its resources to provide maximum throughput and response to a number of users. 

1.5 KDJ11-E Memory System Implementation 
Technological advances implemented on the KDJII-E allow the onboard memory to 
perform at cache-like speeds, eliminating the need for cache. The KDJ11-E cache register 
set has been implemented for compatibility purposes only and all bits should remain 
cleared at all times. 

1.5.1 Memory System Error Register (17777744) 

The memory system error register (MSER), at address 17777744, reflects the status 
of cache and main memory parity errors. Figure 1-21 shows the register format. 
Table 1-12 provides memory system error register bit descriptions. 



1-30 Architecture 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

I;~~I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 
MA·0330·90.DG 

Figure 1-21 Memory System Error Register Format (177m44) 

Table 1-12 Memory System Error Register Bit Descriptions 

Bits Name 

15 CPU abort 

<14:00> Unused 

Status 

RO 

Function 

This bit is set if a main memory parity error 
results in an instruction abort (only during the 
demand read cycle). Main memory parity errors 
always cause an abort. 

Read as Os. 

Main memory parity errors always cause the CPU to abort the current instruction, set 
MSER <15>, and trap through vector location 114. 

1.5.2 Cache Control Register (17777746) 

The cache control register (CCR) is at address 17777746. This register is used 
for compatibility with former designs only. All bits should be cleared at all times. 
Figure 1-22 shows the register format. Table 1-13 describes the cache control register 
bits. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

1 0
1

0 
1

0 
1

0 
1

0 IMVIMVI IMVIMVIMVIMVI I IAAVIMVI 
FO~CE I 
MISS 

FORCE 
MISS 

MA·0329·90.DG 

Figure 1-22 Cache Control Register Format (17777746) 

NOTE 
During normal operations all bits should be cleared at all times. 



Architecture 1-31 

Table 1-13 Cache Control Register Bit Descriptions 

Bits Name 

<3:2> Force Miss 

<14:00> Unused 

Function 

When either bit is set, all CPU memory references go 
directly to main memory. The cache tag and data stores 
are not changed. The parity is not checked. When set (1), 
these bits remove the cache memory from the system. 

Read as Os. 

1.5.3 Hit/Miss Register (17777752) 

This register, at address 17777752, is for compatibility purposes only. 

1.5.4 Parity CSR Register (17772100) 

The parity control status register (CSR) is used to control parity checking. Parity 
checking should only be enabled after the entire memory has been written to and the 
right parity has been generated. Wrong parity can also be written for test purposes 
(WWPAR). Figure 1-23 shows the register format. Table 1-14 describes the parity CSR 
register (17772100). 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

I:~:I 0 I 0 I 0 1 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 1;::1 0 Ip:NRI 

Figure 1-23 Parity CSR Register (17772100) 

Table 1-14 Parity CSR Register (17772100) 

Bits 

15 

<14:03> 

02 

01 

00 

Name 

PARER 

Unused 

WWPAR 

Unused 

PAREN 

Status 

RJW 

RJW 

RJW 

MA-0339-90.0G 

Function 

Parity error. Bit 15 is set when a parity 
error is detected in the main memory. Bit 
15 is reset by a power-up, !NIT command. 
This bit can also be written. 

Read as O. 

Write wrong parity. When set, "wrong" 
parity bits are written in to the main 
memory with each write access made. This 
provokes a parity error with each read 
access that follows. 

Read as O. 

Parity checking enable. When set, parity 
checking is enabled. When enabled, parity 
errors detected will cause a parity trap. 
This bit is reset by a power-up or INIT 
command. 



1-32 Architecture 

1.6 Private Memory Interconnect 
The private memory interconnect (PMI) is a unique Q22-bus protocol that provides a high 
performance data path between the KDJII-E module and KTJII-B·(UNIBUS adapter 
module) in UNIBUS systems. The PMI protocol functions in a UNIBUS system by using 
the KTJII-B UNIBUS adapter module designed to interface with a PMI system. The 
PMI interface consists of 14 control signals used on the C/D interface, 6 Q22-bus control 
signals, the bank 7 select signal (BBS7) and the 22 data/address lines (BDAL <22:0». A 
complete description of the PMI operation is provided in Chapter 6. 

1.6.1 PMI Protocol 

In a Q22-bus system, the KDJ11-E CPU is the default Q22-bus master and PMI master. 
Any device on the Q22-bus that has the capability to be a bus master can take control 
of the bus and execute normal data transfers over the Q22-bus. However, it does not 
become the PMI master. 

In a UNIBUS system, the KDJ11-E CPU is the default PMI master and the KTJ11-
B UNIBUS adapter is the default UNIBUS master. When the CPU, as PMI master, 
references an I/O page address on the UNIBUS, the UNIBUS adapter responds as the 
slave on the PMI and controls the UNIBUS side of the transaction as the UNIBUS 
master. 

The UNIBUS adapter can become the PMI master when the CPU issues a DMA grant 
or performs an interrupt transaction. The DMA or interrupt grant is accepted by the 
UNIBUS adapter and it becomes the PMI master and the UNIBUS slave. It also passes 
the DMA or interrupt grant onto a UNIBUS device, which then becomes the UNIBUS 
master. In UNIBUS systems, the bus master and PMI master can be requested by a 
Nonprocessor Request (NPR) or interrupt request from a UNIBUS device, or by a DMA 
or interrupt request. 

1.6.1.1 Bus Device NPR 
Any UNIBUS device that is capable of being a bus master can issue an NPR request 
and become the bus master to control data transfers. During these data transfers, the 
UNIBUS adapter is the PMI master and responds as a slave if the device accesses the 
memory, the PMI 110 page, or the UNIBUS adapter 110 page. 

1.6.1.2 Bus Device Interrupt 
Any UNIBUS device that is capable of being a bus master can issue a BR7 through 
BR4 request and become the bus master to control data or interrupt vector transfers. 
In both cases, the UNIBUS adapter is the PMI master and responds as a slave if the 
device performs an interrupt vector transaction or accesses memory, the PMI 110 page or 
UNIBUS adapter 110 page. 

1.6.2 PMI Data Transfers 

There are three general categories for the PMI data transfer cycles: 

• Data In/Data In Pause (DATIIDATIP) 

• Block Data In (DATBI) 

• Data OutlData Out Byte (DATO/DATOB) 

These three cycles are described in the following paragraphs. 



Architecture 1-33 

On the Q22-bus, the bus master can perform a read-modify-write cycle that transmits 
an address, reads a data word or byte and then writes the data word or byte. The PMI 
read-modify-write is performed by a DATIP cycle that is followed by a DATOIDATOB 
cycle. The PMI bus master has the responsibility to control the-bus for the duration of 
both cycles. 

1.6.2.1 Data In/Data In Pause 
The DATI and DATIP cycles are used to read one or two words when the PMI bus master 
accesses the memory. When the PMI bus master accesses the I/O page it can only read 
one word. 

The PMI DATIP is identical to the DATI cycle except that TPBYT is asserted with 
TADDR to indicate that the cycle immediately following the current cycle is going to be a 
DATO cycle to the same address. 

1.6.2.2 Block Data In 
The DATBI cycle is used to read up to 16 words of data when the PMI bus master 
accesses the memory. The PMI bus master cannot use the DATBI cycle when accessing 
the I/O page. 

The PMI bus master can only start DATBI transfers on even word boundaries. This 
means that address bits <1:0> must be equal to Os. The PMI bus master cannot use the 
DATBI cycle to transfer across 16-word address boundaries. This means that the PMI 
bus master must terminate DATBI data transfers when it reaches a memory location 
where the address bits <4:1> are all equal to Is. 

1.6.2.3 Data Out/Data Out Byte 
The DATO and DATOB cycles are used by the PMI bus master to transfer a single word 
or byte to a PMI slave. 

1.7 KDJ11-E Serial Line Units 
The KDJ11-E has eight serial line units (SLUs). As a factory setting, SLU 8 is configured 
as the console port, with a base addresslvector of 177560/60. Optionally, SLU 8 can follow 
in ascending order after SLU s 1 - 7 as the eighth SLU or it can be set independently from 
the other seven SLUs as the console/SLU. 

NOTE 
Modem control is not available. 

Table 1-15 describes SLU 8. 

Table 1-15 Console/SLU Panel - SLU 8 

Switch 1 
Setting Function Address Vector 

Off Console 177560 60 
enabled 

On Console 176570 (176670) 370 (470) 
disabled 

NOTE 
Console SLU 8 has fixed parameters of eight data bits, no parity, and one stop 
bit. The baud rate is determined by switches 6, 7, and 8. 



1-34 Architecture 

SLU lines 1-7 can be set independently from each other. See Chapter 4 for information 
, on using the setup menu. 

1-.7.1 Silo Buffer Length 

The serial interfaces located on the KDJ11-E are "DL" type interfaces. Each line on 
the KDJ11-E has a five-character silo. The silos were implemented on the KDJ11-E to 
prevent overrun problems from occurring on heavily loaded systems. Serial characters 
that are not picked by the operating systems under peak loading, are stored in these silo 
buffers. If the operating system does not get around to these characters the silo buffer 
will slowly be filled as other characters are being rec·eived. 

The serial line interfaces are controlled by a dedicated processor and each line has a 
five-character silo. This is a compromise between overrun protection'and operating 
transparency. It is possible, however, to change the silo size on each line individually to 
any value between two and 65 characters by modifying the firmware on the K.DJ11-E. 

NOTE 
It is explicitly emphasized that Digital Equipment Corporation does not support 
any modules in which the original code in the EPROMs is modified. Therefore, 
this modification should be performed by appropriately trained personnel only. 

To modify the firmware on the KDJ11-E, the following is needed: 

• An EPROM programming device with the capability of editing individual bytes. 

• An empty EPROM that is the same type (27128) as the one on the module. 

For each individual channel, there are three locations within the SLU EPROM that 
contain the data that determines the buffer size. All three locations for each channel 
must contain the same data. (For the location of the SLU EPROM see Figure 1-24). 



W1 

D 

F1 

)'11111111 
0001 000 

POWER Ioco~ 
(VEL) I (GRN) I 

DIAGNOSTIC 
(RED) 

KDJ11-E 

Architecture 1-35 

W2 TOV BATTERV 

EEPROM 

BOOT 
EPROM 

~ ____ ~-r==,-~SLU D EPROM 

J2 

ON ~~~liUil~~~ 
OFF 1 2 3 4 5 • 7 • 

SWITCHPACK 
MA·0325·90.DG 

Figure 1-24 KDJ11·E Jumper and DIP Switch Locations 

Example for Channel 1: 

Reference Field 

Address I Data 

070H: 

072H: 

074H: 

CD 02 = 

E602 = 

4906 = 

Pointer 

Address 

02CDH = 
02E6H = 

0649H = 

Actual Parameter 

Address I Data 

02CDH: 

02E6H: 

0649H: 

08 

08 

08. 

The addresses 70H, 72H, 74H point to where in the EEPROM the parameters are located, 
and this location is where the new values are to be entered. A similar procedure is used 
for the other seven channels. The fixed reference fields have the following addresses: 



1-36 Architecture 

Reference Field Channel 

070H, 072H, 074H 1 

078H, 07 AH, 07CH 2 

080H, 082H, 084H 3 

088H, 08AH, 08CH 4 

090H, 092H, 094H 5 

098H, 09AH, 09CH 6 

OAOH, OA2H, OA4H 7 

08AH, OAAH, EACH 8 

All addresses are specified in a hexadecimal format. To determine from the parameter 
data what the silo buffer size equals, use the following formula: 

(Parameter data/2) + 1 = Silo Buffer Length 

For example, if the Parameter data equals 8 (factory setting) then the silo buffer size 
equals five. 

8 divided by 2 equals 4, plus 1 equals 5. 

To determine what the parameter should be, insert the desired silo buffer size into the 
following formula: 

(Silo Buffer Length - 1) x 2 = Parameter data 

For example, if the desired buffer size equals 65, then the parameter data equals 128 
decimal (80H). 

65 minus 1 equals 64, times 2 equals 128 

The valid range of parameters lies between 2 and 80H (128 decimal)·which corresponds 
to effective buffer lengths of 2 to 65 characters. All three parameters per channel spread 
throughout the EEPROM must be of the same value. 

1.7.2 Serial Line Unit Registers 
Each serial line unit has four registers: 

• Receiver status register 

• Receiver data buffer register 

• Transmitter status register 

• Transmitter data buffer register 

These registers are described in the following sections. 

1.7.2.1 Receiver Status Register (1777xxxO) 
Figure 1-25 shows the Receiver Status Register (RCSR) format at address 1777xxxO. 
Table 1-16 provides the receiver status register bit descriptions. 



Architecture 1-37 

MA-0334-90.0G 

Figure 1-25 Receiver Status Register Format (1777xxxO) 

Table 1-16 Receiver Status Register Bit Descriptions 

Bits 

<15:08> 

07 

06 

<05:00> 

Name 

Unused, 

RXDONE 

RX IE 

Unused 

Status 

RO 

RJW 

Function 

Read as Os. 

Receiver Done. This bit is set when an 
entire character has been received and is 
ready to be read from the RBUF register. 
This bit is automatically cleared when 
RBUF is read. It is also cleared by power­
up. 

Receiver Interrupt Enable. Thls bit is 
cleared by power-up and bus initialization. 
If both RCVR DONE and RCVR INT ENB 
are set, a program interrupt is requested. 

Read as Os. 

1.7.2.2 Receiver Data Buffer Register (1777xxx2) 
Figure 1-26 shows the receiver data buffer register (RBUF) format at address 1777xxx2. 
Table 1-17 provides the receiver data buffer register bit descriptions. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

IERRI~*=~I~~~I 0 I 0 I 0 I 0 II I I I I I 1- I 
\. 

y 
Received Data Bits 

J 

MA·0335·90.DG 

Figure 1-26 Receiver Data Buffer Register Format (1777xxx2) 

Table 1-17 Receiver Data Buffer Register Bit Descriptions 

Bits Name 

15 ERR 

Status 

RO 

Function 

Error. This bit is set if RBUF 14 or 13 is 
set. ERR is cleared if these two bits are 
cleared. This bit cannot generate a program 
interrupt. 



1-38 Architecture 

. Table 1-17 (Cont.) Receiver Data Buffer Register Bit Descriptions 

Bits Name 

14 OVRERR 

13 FRMERR 

NOTE 

Status 

RO 

RO 

Function 

Overrun Error. This bit is set if a 
previously received character is not read 
before being overwritten by the present 
character. 

Framing Error. This bit is set if the present 
character has no valid stop bit. This bit is 
used to detect a break. 

Error conditions remain present until the next character is received. At that point, the 
error bits are updated. The error bits are not necessarily cleared by power-up. 

12 

<11:08> 

<07:00> 

Receiver 
Parity Error 

Unused 

Received 
Data Bits 

RO 

1.7.2.3 Transmitter Status Register (1777xxx4) 

This bit is set when the parity received does 
not match the parity expected. 

Read as Os. 

These read-only bits contain the received 
character. 

Figure 1-27 shows the transmitter status register (XCSR) format at address 1777xxx4. 
Table 1-18 provides the transmitter status register hit descriptions. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I R~YI7: I 0 I 0 I 0 I 0 I 0 I~~ 
MA·0338·90.DG 

Figure 1-27 Transmitter Status Register Format (1777xxx4) 

Table 1-18 TransmHter Status Register BH Descriptions 

Bits 

<15:08> 

07 

06 

<05:01> 

00 

Name 

Unused 

TXRDY 

TXIE 

Unused 

XMITBRK 

Status 

RO 

RJW 

RJW 

Function 

Read as Os. 

Transmitter Ready. This bit is cleared when 
XBUF is loaded. The bit sets when XBUF 
can receive another character. XMT RDY is 
set by power-up and by bus initialization. 

Transmitter Interrupt Enable. This 
bit is cleared by power-up and by bus 
initialization. If both TX RDY and TX IE 
are set, a program interrupt is requested. 

Read as Os. 

Transmit Break. When this bit is set, 
the serial output is forced to the space 
condition. XMIT BRK is cleared by power­
up and by bus initialization. 



Architecture 1-39 

1.7.2.4 Transml~er Data B,ufferReglster (1777xxx6) 
Figure 1-28 shows "the transmitter data buffer register (XBUF) format at address 
1777xxx6. Table 1-19 contains the bit descriptions. 

15 14 13 12 11 1009 08 07 06 05 04 03 02 01 00 

I 0 1 0 1
0 

1 0 1 0 1
0 

1 0 1 0 I I I I I I I I I 
\-----------y-----------) 

XBUF 
W·OO168-TIO 

Figure 1-28 Transmitter Data Buffer Register Format (1777xxx6) 

Table 1-19 Transmitter Data Buffer Register Bit Descriptions 

Bits 

<15:08> 

<07:00> 

Name 

Unused 

XBUF 

Status Function 

Read as Os. 

wo These eight bits are used to load the transmitted 
" character. " 

Table 1-20 describes the consolelSLU register settings for a data base address set at 
176500. 

Table 1-20 Console/SLU RegiSter Settings· Base Address 176500 

SLU Address Register Vector 

1 176500 RCSRI 300 

17650~ RBUFI 

176504 XCSRI 304 

176506 XBUFI 

2 176510 RCSR2 310 

176512 RBUF2 

176514 XCSR2 314 

176516 XBUF2 

3 176520 RCSR3 320 

176522 RBUF3 

176524 XCSRS 324 

176526 XBUF3 

4 176530 RCSR4 330 

176532 RBUF4 

176534 XCSR4 334 

176536 XBUF4 

5 176540 RCSR5 340 



1-40 Architecture 

Table 1-20 (Cont.) Console/SLU Register Settings • Base Address 176500 

SLU Address Register Vector 

176542 RBUF5 

176544 XCSRS 344 

176546 XBUF5 

6 176550 RCSR6 350 

176552 RBUF6 

176554 XCSR6 354 

176556 XBUF6 

7 176560 RCSR7 360 

176562 RBUF7 

176564 XCSR7 364 

176566 XBUF7 

8 177560 RCSR8 60 

177562 RBUF8 

177564 XCSRS 64 

177566 XBUF8 

Table 1-21 describes the consolelSLU register settings for a data base address set at 
176600. 

Table 1-21 Console/SLU Register Settings· Base Address 176600 

SLU Address Register Vector 

1 176600 RCSR1 400 

176602 RBUF1 

176604 XCSR1 404 

176606 XBUF1 

2 176610 RCSR2 410 

176612 RBUF2 

176614 XCSR2 414 

176616 ~UF2 

3 176620 RCSR3 420 

176622 RBUF3 

176624 XCSR3 424 

176626 XBUF3 

4 176630 RCSR4 430 

176632 RBUF4 

176634 XCSR4 434 



Architecture 1-41 

Table 1-21 (Cont.) Console/SLU Register Settings· Base Address 176600 

SLU Address Register Vector 

176636 XBUF4 

5 176640 RCSR5 440 

176642 RBUF5 

176644 XCSR5 444 

176646 XBUF5 

6 176650 RCSR6 450 

176652 RBUF6 

176654 XCSR6 454 

176656 XBUF6 

7 176660 RCSR7 460 

176662 RBUF7 

176664 XCSR7 464 

176666 XBUF7 

8 177560 RCSR8 60 

177562 RBUF8 

177564 XCSRS 64 

177566 XBUF8 

1.7.3 Break Response 
The KDJI1-E console serial line unit may be configured either to perform a halt operation 
or to have no response when a break condition is received. A halt operation will cause 
the processor to halt and enter the octal debugging technique (ODT) microcode. The 
halt-on-break option is selected using the halt-on-break parameter in the setup menu. 

1.8 Boot and Diagnostic Register Set 
The following registers are used by the KDJI1-E ROM code: 

• Control/status register 

• Page control register 

• Configuration and display register 

• Additional status register 

• Maintenance register 

These registers are described in the following paragraphs. 



1-42 Architecture 

1.8.1 Control/Statu~ Register (17777520) 
The control/status register (CSR), at address 17777520, is both word and byte 
addressable. Figure 1-29 shows the register fonnat. The CSR allows the boot and 
diagnostic ROM programs to test battery backup status, to set parameters for the line 
clock, to enable the console halt-on-break feature, and to enter or exit from standalone 
mode . 

.. 
The CSR also allows these programs to selectively disable the response of the boot and 
diagnostic ROMs at addresses 17765000 through 17765776 or at addresses 17773000 
through 17773776, or both, and to control read/write access to the EEPROM memory. 

Programs that access the 110 page can use the CSR to alter the line clock parameters, 
to enable or disable the halt-on-break feature, and to control access to the EPROM and 
EEPROM memories. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Q-Bus 

Only 

DIS DIS RS365 
73 65 

o 

LJ-00218-TIO 

Figure 1-29 Control/Status Register Format (17777520) 

Table 1-22 provides the control/status register bit descriptions. 

Table 1-22 Control/Status Register Bit Descriptions 

Bits 

15 

14 

Name 

BBRBE 

RBTPLS 
Q-bus only 

Status Function 

Battery Backup Reboot Enable. When set, 
this bit indicates that battery backup failed 
to maintain voltages to the memory system 
during the previous power failure. When 
this bit is clear, it indicates that the system 
does not feature battery backup, or that 
battery backup maintained voltages during 
the previous power failure. This signal 
is received from backplane pin BHl and 
latched when DC OK is asserted. 

Reboot Pulse. This read-only bit is set (1) 
when the DCOK input is pulsed by the 
control panel switch or by a special Q22-
bus device. This bit is cleared (0) by the 
negation of the POK input. A similar bit for 
UNIBUS systems is used in the KTJII-B 
CSR. 



Architecture 1-43 

Table 1-22 (Cont.) ControliStatus Register Bit Descriptions 

Bits 

13 

12 

11 
10 

09 

08 

07 

Name 

FRCLCIE 

DISLKS 

CLKSELI 
CLKSELO 

ENBHOB 

Unused 

DIS 73 

Status 

BJW 

BJW 

Function 

Force Line Clock Interrupt Enable. If 
this bit is set, assertion of the signal 
selected by CSR <11:10> and <1:0> will 
unconditionally request interrupts. If FRC 
LCIE is clear, assertion of the selected 
signal will request interrupts only if the 
line clock status register bit 6 (LCIE) is 
set under program control. FRC LCIE is 
cleared by the negation of DCOK. 

Line Clock Status Register Disable. If this 
bit is set, the line clock status register 
(LKS) is disabled. If this bit is clear, LKS 
is enabled and responds to bus address 
17777546. LKS DIS is cleared by the 
negation of DCOK. 

Clock Select Bits 1 and o. These two bits 
select the source of the line clock interrupt 
request: 

CLK SELl CLK SELO Source 
of Interrupt 

o 0 Power 
supply 

o 1 On-
board 50 Hz 

1 0 On-
board 60 Hz 

1 1 On-
board 800 Hz 

Both bits are cleared by the negation of 
DCOK. 

Enable Halt-on-Break. When this bit is 
set, the console serial line unit halt-on­
break feature is enabled. When this bit is· 
clear, the feature is disabled. ENB HOB is 
cleared by the negation of DCOK. 

Read as o. 
Disable 17773000. When this bit is set, 
response of the 16-bit ROM memory to 
addresses 17773000 through 17773776 
is disabled, allowing the operation of an 
external ROM that uses those addresses. 
When DIS 73 is clear, the 16-bit ROMs 
respond to those addresses, using the high 
byte of the page control register as the most 
significant address bits. DIS 73 is cleared 
by the negation of DCOK. 



1-44 Architecture 

Table 1-22 (Cont.) Control/Status Register Bit Descriptions 

Bits Name Status 

06 DIS 65 RJW 

05 RS365 

04 RS3WE 

<03:00> Unused 

1.8.2 Page Control Register (17n7522) 

Function 

Disable 17765000. When this bit is set, 
response of the boot and diagnostic 16-
bit and 8-bit ROM memory to addresses 
17765000 to 17765776 is disabled; this 
allows the operation of external ROM which 
uses those addresses. When DIS 65 is clear, 
the ROM memory selected by CSR bit 5 
responds to those addresses, using the low 
byte of the page control register as the most 
significant address bits. DIS 65 is cleared 
by the negation of DCOK.. 

When this read/write bit is set (1), the 
EEPROM responds to addresses between 
17765000 and 17765776, provided that bit 
6 of the CSR is reset. When this bit 5 is 
reset (0), then the ROM at these addresses 
is selected instead. In both cases, the high 
byte of the ROM address is made up of 
the low byte of the PCR. The bit is reset 
through the negation of the DCOK inputs. 

When this read/write bit is set and the 
CSR bit 5 is set with the CSR bit 6 reset, 
then the program is able to write into 
the EEPROM. This bit is reset through 
power-up and initialization routines. 

Read as Os. 

The page control register (PCR) is a read/write register that can be addressed by words 
and bytes. Only the bits <15:9> and <7:1> can be used. The remaining bits will always 
be read as Os. This register is reset through the negation of the nCOK input. 

The PCR bits <15:9> become the ROM address bits <15:9> for the address area from 
17773000 to 17773776 and together with the current address bits <8:0>, they make up a 
16-bit address for the boot EPROM . The PCR bits <7: 1> becomes the EEPROM address 
bits <15:9> for the addresses from 17765000 TO 17765766 and together with the current 
address bits <8:0> they make up a 16-bit address for the EEPROM. 

The control/status register (CSR) bits <7:4> control the access to the boot EPROM and 
EEPROM. 

Figure 1-30 shows the register format. Table 1-23 describes the page control register 
bits. 



Architecture 1-45 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

I I I I I I I I I I I II I I I I 
~~----------y-----------) 

Upper address 
173XXX 

~~------------------------) y 

Upper address 
165 XXX 

MA-Q333-90.0G 

Figure 1-30 Page Control Register Format (17777522) 

Table 1-23 Page Control Register Bit Descriptions 

Bits Name Function 

<15:09> Upper address Used for address area 17773000 to 17773776. 
173xxx 

08 Unused Read as O. 

<07:00> Upper address Used for address area 17765000 to 17766766. 
165xxx 

1.8.3 Configuration and Display Register (17777524) 

The configuration and display register (CDR) consists of two independent registers which 
are pointed to by the same address: 

NOTE 
Switch in the offposition is read as 1. 

• Read-only boot and diagnostic configuration register. 

The read-only boot and diagnostic configuration register specifies the -status of the 
configuration switches (8 to 1) that are located on the module. When· switches 8 to 
1 on the KDJII-E are set to the off position, the state of the register bits can be 
controlled using external switches. Figure 1-31 shows the register format. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

\ I 
Y 

X=Unused 8-Bit 

Switch Pack 

LJ-00169-TIO 

Figure 1-31 Boot and Diagnostic Configuration Register Format (177n524 • Read· 
Only) 



1-46 Architecture 

• Write-only boot and diagnostic display register. 

The write-only boot and diagnostic display register (BDR), at address 17777524, 
allows the boot diagnostic programs to light the LEDs on the KDJ11-E module. 
These display bits are also available on external connector J02. Bits <05:00> are 
cleared on power-up (all LEDs on) by the negation of DCOK Figure 1-32 shows the 
register format. . 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Ixlxl xl xlxl xlxlxlxlxl I I I I I I 
\. J 

Y 

X=Unused LED 

LJ-OO 170-TIO 

Figure 1-32 Boot and Diagnostic Display Register Format (17777524· Write-Only) 

Table 1-24 describes the display register bits. 

Table 1-24 Display Register Bit Descriptions 

Bits Name Function 

Read as Os. <15:06> 

<05:00> 

Unused 

LED 5-0 These bits enable the boot and diagnostic programs to 
light the LEDs located at the top of the CPU module. 
Clearing any of these bits lights the corresponding LED. 

1.8.4 Additional Status Register (17777526) 

The additional status register controls board-intemal functional units such as memory 
and interfaces. It is used by the boot and test firmware for testing and configuration 
purposes. Basic processor functions are performed here. Figure 1-33 shows the register 
format. 

15 14 13 12 11 10 9 8 7 6 

Figure 1-33 Additional Status Register (17777526) 

Table 1-25 describes the additional status register. 

Table 1-25 Additional Status Register 

Bits Status Function 

<15:14> Unused Read as Os. 

5 4 3 2 o 

MA·0338·90.DG 



Architecture 1-47 

Table 1-25 (Cont.) ·Addltlonal Status Register 

Bits 

<13:12> 

<11:09> 

8 

<07:06> 

<05:04> 

<03:02> 

1 

o 

Status 

RJW 

Unused 

RJW 

Unused 

RJW 

Unused 

RJW 

Unused 

Function 

Selects interfaces internally as follows: 

SERSEL SEREN Serial lines address/vector 

13 12 

0 1 SLUs on 176500/300 

1 1 SLUs on 176600/400 

0 0 No serial lines selected. 

Read as Os. 

This bit is used for serial communication to the TOY. 

Read as Os. 

Selects internal memory as follows: 

MEMSEL 

o 
o 
1 

Read as Os. 

MEMSEN 

o 
1 

1 

Function 

Disabled 

0-2 Mbyte memory 

0-4 Mbyte memory 

Flag for PMI-Cycle (set by system). 

Read as o. 

1.9 Line Frequency Clock and Status Register (17777546) 
The line clock provides the system with timing information at fixed intervals determined 
by the LTC line (BEVENT) OJ," by one of the on-board KDJI1-E frequency signals. The 
signals are programmed by boot and diagnostic controller status register bits <11:10>. 
Typically, LTC cycles at the AC line frequency, producing intervals of 16.7 ms (60 Hz line) 
or 20.0 ms (50 Hz line). The three on-board frequencies are 50 Hz, 60 Hz and 800 Hz. 

The LKS, at address 17777546, allows line clock interrupts to be enabled and disabled 
under program control. Alternatively, line clock interrupts can be unconditionally enabled 
by setting CSR <13> (FRC LCIE). Program recognition of the clock status register can be 
disabled by setting CSR <12> (LKS DIS). 

The normal KDJ11-E configuration is FRC LCIE and LKS DIS both clear. These bits are 
set up by the boot and diagnostic ROM programs from the KDJ11-E configuration data. 
Figure 1-34 shows the clock status register format. Table 1-26 describes the clock status 
register bits. 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

0 0 0 0 0 0 0 0 I 0 0 01 0 0 0 

I 
I LJ-00249-TIO 

LCM 
LCIE 

Figure 1-34 Clock Status Register Format (17777546) 



1-48 Architecture 

Table 1-26 Clock Status Register Bit Descriptions 

Bits 

<15:08> 

07 

06 

<05:00> 

Name 

Unused 

LCM 

LCIE 

Unused 

Status 

RJW 

RJW 

1.9.1 Maintenance Register (17777750) 

Function 

Read as Os. 

Line Clock Monitor. This bit is set by 
the leading edge of the external BEVENT 
line (or of one of the three on-board clock 
frequencies), and by bus initialization. 
LCM is cleared automatically on processor 
interrupts acknowledge. It is also cleared 
by writes to the LKS with bit 7 = o. 
Line Clock Interrupt Enable. This bit, 
when set, causes the set condition of LCM 
(LKS bit 7) to initiate a program interrupt 
request at a priority level of 6. When LCIE 
is clear, line clock interrupts are disabled. 
LCIE is cleared by power-up and by bus 
initialization. LCIE is held set INIT. LCIE 
is held set when CSR bit 13 (FRC LCIE) is 
set. 

Read as Os. 

The DCJ11 microcode addresses the maintenance register at address 17777750 and 
reads BPOK H, the power-up option code, and the halt/trap option hit. Other bits in the 
maintenance register, not used by DCJ11 microcode, contain infonnation on the module 
type and system parameters which is useful to operating system and diagnostic software. 
Figure 1-35 shows the register format. 

15 14 13 12 11 10 09 08 

00000 

Reserved FPA 
Available 

UNIBUS 
System 

Module Type 
(Fixed) 

Figure 1-35 Maintenance Register Format (17777750) 

03 01 00 

o 

Power-Up 
Option (Fixed) 

HaltlTrap 
Option 

BPOK 
H 

MA..()331·90.DG 

The power-up option code is hard-wired for standard bootstrap operation (code 2). The 
PSW is set to 340, and the processor begins program execution at address 173000. The 
boot and diagnostic code, which starts at address 173000, configures the KDJ11-E. The 
code runs standalone diagnostics before acting on the user-specified power-up option 
stored as part of the EEPROM configuration data. Table 1-27 describes the maintenance 
register bits. 



Architecture 1-49 

Table 1-27 Maintenance Register Bit Descriptions 

Bits 

<15:11> 

10 

09 

08 

<07:04> 

03 

<02:01> 

00 

Name 

Unused 

Unused 

Status 

UNffiUS RO 
System 

FPA Available RO 

Module Type 

Haltl'1.rap R/W 

Power-up 
code 

BPOKH 

Function 

Reserved for future use. Read as Os. 

Reserved for future use. Read as o. 
This bit reflects the status of the externally 
applied UNIBUS adapter line. A 1 
indicates that the system includes a 
UNIBUS adapter. 

Read as 1. 

This 4-bit code is hard-wired as a 5, 
indicating a KDJII-E module. 

This read/write bit determines the response 
of a processor to a kernel mode halt 
instruction. Setting the bit selects the 
trap option, causing the CPU to trap to 
location 4. Clearing the bit selects the halt 
option, causing the CPU to halt and enter 
ODT. This bit is cleared by the negation of 
DCOK and is set by the boot and diagnostic 
ROM code if the trap option is selected by 
a bit in the configuration RAM. The trap 
option is not intended for normal use and is 
reserved for controller applications. 

This 2-bit code is hard-wired as a 2. At 
power-up, the processor sets the PC 
to 173000 and sets the PSW to 340. It 
then starts program execution at location 
173000, which is the starting location for 
the KDJll-E boot and diagnostic ROM 
program. These programs test the KDJII-E 
module and then implement the user­
selected power-up option specified in the 
configuration data. 

This bit is set (1) if the PMI bus signal 
BPOK H is asserted, indicating that AC 
power is acceptable. 

1.10 Time of Year Clock (TOY Clock) 
The TOY clock is used to establish the time and date after a power down. It is not used 
during normal operation. (Normal timekeeping for the KDJII-E is performed with the 
Line Time clock.) The TOY clock uses 24-hour mode. 

In the absence of power, battery backup is derived from an on -board lithium battery. 

The TOY clock provides: 

• Hundredths of seconds 

• Seconds 

• Minutes 

• Hours 

• Day of week 



1-50 Architecture 

• Month 

• Year 

Aruustments for months with less than 31 days and leap year are automatic. The time 
and date can be read and set from dialog mode or by programming the time chip. 

1.10.1 Programming Information 
Communication between the KDJII-E module and the TOY clock is through bit 8 of the 
additional status register (17777526). 

Communication between the KDJII-E module and TOY clock is established by pattern 
recognition of a unique serial bit stream of 64 bits (Bits 0 - 63). 

Table 1-28 shows the recognition pattern. 

Table 1-28 Recognition Pattern 

Character 
Recognition 

11 14 18 12 11 10 987 654 S 2 1 0 Word 

0 0 1 1 1 0 101 100 010 1 085805 1 Bits 0-15 

0 1 0 1 1 1 o 0/ 1 010 001 1 056248 2 Bits 16-81 

0 0 1 1 1 0 101 100 o 1 0 1 085805 8 Bits 32-47 

0 1 0 1 1 1 001 010 001 1 056248 4 Bits 48-68 

1.10.1.1 Clear the Comparison Register Pointer 
Prior to sending the recognition pattern to the TOY clock, the comparison register pointer 
must be cleared. To clear the pointer read the additional status register (17777526). 

1.10.1.2 Establish the Pattern Recognition 
The communication with the Time Chip is established by pattern recognition of a serial 
bit stream of 64 bits (Table 1-28), which must be matched by executing 64 consecutive 
write cycles containing the proper data. 

All information must shift one bit at a time through bit 8 of the additional status register 
(177526). 

Writing starts with bit 0 of the first word and ends with bit 15 of the last word. 

1.10.1.3 Updating Information In the TOY Clock 
Information for the TOY clock can be read or updated after the recognition pattern 
sequence has been established. When the first write cycle is executed, it is compared to 
bit 1 of the 64-bit comparison register. If a match is found, the pointer increments to 
the next location of the comparison register. If a match is not found, the pointer does 
not advance and all subsequent write cycles are ignored. If a read cycle occurs at any 
time during pattern recognition, the present sequence is aborted and the comparison 
register pointer is reset. On the KDJII-E module the port to the Time Chip is bit 8 of 
the additional status register (177526). Writing starts with bit 0 of the first word and 
ends with bit 15 of the last word (Table 1-28). After recognition is established, the next 
64 read or write cycles either extract or update data in the Time Chip. 



Architecture 1-51 

The Time Chip information is contained in eight registers of eight bits each, which are 
sequentially accessed one bit at a time after the 64-bit pattern recognition sequence 
has been completed. When updating the Time Chip registers, each must be handled in 
groups of eight bits. Writing and reading individual bits within a register could produce 
erroneous results. The read/write registers are defined in the following tables. Reading 
and writing the registers is always accomplished by stepping through all eight registers, 
starting with bit 0 of register 0 and ending with bit 7 of register 7. 

Here is the format of the eight 8-bit registers. 

Register 0 

Byte Number 0 
Range 00-99 
Function: Hundredths of Seconds 

7 654 

0.1 Sec 

Digit 

A 

Range 0-9 

Register 1 

Byte Number 1 
Range: 00-59 
Function: Seconds 

7 6 5 4 

0 10 Sec 

Digit 

A 

Range 0-5 

321 0 

0.01 Sec 

3 

Digit 

B 

Range 0-9 

2 1 

Sec 

Digit 

B 

Range 0-9 

0 



1-52 Architecture 

Register 2 

Byte Number 2 
Range: 00-59 
Function: Minutes 

765 4 

o 10 Min 

Digit 

A 

Range 0-5 

Register 3 

Byte Number 3 
Range: 00-23 
Function: Hours 

7 6 6 4 

0 0 10 Drs 

Digit 

A 

Range 0-2 

Register 4 

Byte Number 4 
Range: 01-07 

3 2 1 0 

Min 

3 

Digit 

B 

Range 0-9 

2 1 

Hours 

Digit 

B 

Range 0-9 

0 

Function: Day Of Week 

7 6 5 4 

000 0 

Note: 

Digit 

A 

Range 0-0 

3 2 1 0 

o Day 

Digit 

B 

Range 1-7 

The KDJ11-E ROM Code assigns day 1 as Monday. 



Register 5 

Byte Number 5 
Range: 01-31 
Function: Day in Month 

7 6 5 4 3 

0 0 10 DATE 

Digit 

A 

Range 0-3 

NOTE 

Architecture 1-53 

2 1 0 

DATE 

Digit 

B 

Range 0-9 

The last date of the month is automatically adjusted for months with less than 
31 days, including leap years. 

RegisterS 

Byte Number 6 
Range: 01-12 
Function: Month 

765 4 

000 

Digit 

A 

Range 1-1 

Register 7 

Byte Number 7 
Range: 00-99 
Function: Year 

7 6 5 4 

10 Year 

Digit 

A 

Range 0-9 

3 2 1 0 

Month 

Digit 

B 

Range 0-9 

321 0 

Year 

Digit 

B 

Range 0-9 





2 
Configuration 

2.1 Introduction 
This chapter discusses the configuration requirements and other factors to consider when 
configuring the KDJ11-E module and installing it into an LSI-11 system. The module 
must be installed in a backplane that has the extended LSI-11 bus in the AlB rows and 
the interconnecting bus in the em rows. A 22-bit LSI bus utilizes the full capability of 
the module and the interconnecting bus is required because of the PMI feature of the 
module. 

The H9278-A backplane is designed to accommodate the module in LSI-11 based systems. 
The H9277 -AlB backplane is designed to accommodate the module and adapt it to a 
UNIBUS based system. The UNIBUS Adapter module (UBA) provides the interface 
requirements necessary to interface UNIBUS modules with the LSI-11 bus. 

The user must consider the following items to determine the configuration requirements 
for the module. If the module is installed in a prepackaged system, the user should be 
aware of the system components and their intended use. 

1. Select the features controlled by the jumpers and switches located on the module. 

2. Define the type of system and the mass storage devices being supported. 

3. Select the desired configuration parameters available in the EEPROM. 

4. Determine the bootstrap programs necessary to support the system. 

5. Understand the system differences if an existing system is being upgraded. 

2-1 



2-2 Configuration 

2.2 Module Configuration 
The KDJII-E module has two jumpers and eight switches mounted in a switchpack on 
the module as shown in Figure 2-1. 

W1 

D 

F1 

)'11111111 0°°1°00 
POWER IoCO~ 
(YEL) I (GRN) I 

DIAGNOSTIC 
(RED) 

KOJ11-E 

W2 TOY BATTERY 

EEPROM 

BOOT 
EPROM 

~----~-r=='-1-SLU o EPROM 

J2 

ON ~~~~~~~~ 
OFF 1 t , 4 I • 7 • 

SWITCHPACK 
MA·0325·tO.OG 

Figure 2-1 KDJ11·E Jumper and DIP Switch Locations 



Configuration 2-3 

2.2.1 Jumpers For +5 V Power Source Selection 

The KDJ11-E CPU module has two jumpers (W1 and W2), which will select the +5 V 
power source. The +5 V power source for the KDJ11-E can be obtained from one of the 
following two sources: 

• Module pins AA2, BA2, CA2, DA2 (W1 & W2 installed) 

• Connector J3 (W1 & W2 removed) 

NOTE 
Only one source may be selected. 

The two jumpers, W1 and W2, connect the +5 V power source from backplane pins AA2, 
BA2, CA2 and DA2 to the +5 V logic on the KDJI1-E CPU module. 

The KDJ11-E CPU mo~ule uses either connector J3 or backplane pins AA2, BA2, CA2, 
and DA2 as its source for +5 V power. 

CAUTION 
H connector J3 is used as the source for +5 V, jumpers WI and W2 must be 
removed. Otherwise the two +5 V sources will be shorted together which can 
result in damage to the power supply. 

2.2.2 Switch pack 

The switchpack contains eight individual switches that provide the following functions 
(Figure 2-2): 

• Console baud rate - selected by switches 6, 7 and 8. 

• ROM mode - selected by switches 2, 3, and 4. 

• Force dialog mode - selected by switch 5. 

• Console SLU enable/disable - condition determined by switch 1. 

The switches are wired to connector J2. The functions provided by these switches can 
be controlled remotely by an external switchpack connected to J2. When using an 
external switchpack, switches 1 through 8 on the KDJ11-E should be placed in the off 
position. A switch placed in the ON position on the CPU will override the selection of 
the corresponding switch located on the rear SLU I/O panel. Then the user can remotely 
turn a switch on by grounding the corresponding pin on the connector cabling. The 
switch connections for connector J2 are shown in Figure 2-3. The functions controlled by 
the switches are described in the paragraphs that follow. 



2-4 Configuration 

oc::Jo 

WI 

1001 

SWitch 1: ON • Disable Console SLU 
SWitch 1: OFF - Enable Console SLU 

SWITCHES 

8o0t <2> <3> 
AUTO ON ON 
1 ON ON 
2 ON OFF 
3 ON OFf 
4 OFF ON 
5 OFF ON 
8 OFF OFF 
AUTO OFF OFF 

<4> 
ON 
OFF 
ON 
OFF 
ON 
OFF 
ON 
OFF 

Figure 2-2 KDJ11-E Switch Configuration 

EEPROM 

BOOT 
EPROM 

8 

ON 
ON 
ON 
ON 
OFF 
OFF 
OFF 
OFF 

7 

ON 
ON 
OFF 
OFF 
ON 
ON 
OFF 
OFF 

SWitch 
Baudrate of 

8 ConsoleSLU 

ON 38400 Baud 
OFF 19200 Baud 
ON 9800 Baud 
OFF 4800 Baud 
ON 2400 Baud 
OFF 1200 Baud 
ON 800 Baud 
OFF 300 Baud 

W·OOt73-11O 



Configuration 2-5 

J02 

F03 

+5V~--n 

2 Bit 5 

SW6 Bit 6 

SW7 3 4 Bit 7 

SW8 Bit 0 

SW1 5 6 Bit 4 

SW5 Bit 1 

SW.2 7 8 Bit 2 

SW3 

9 10 

LEOOa 

11 
+5V~---,----------~~"~4---------------~-<Y 

12 LED 05 

LED 04 

13 14 

LED 03 

15 

16 LED 02 

LED 01 

17 18 

SW4 19 20 Blt3 
0 .L -

Pins 21 Through 38 
Not Shown 

~ o 0 

U-00174-TlO 

Figure 2-3 Switch Connections for Connector J2 



2-6 Configuration 

2.2.2.1 Baud Rate Selection 
The baud rate for the console SLU is selected by switches 6, 7 and 8. The baud rate 
selections and the switch conditions are listed in Table 2-1. 

Table 2-1 Baud Rate Selections 

Switches 
8 7 8 Baud Rate 

On On On 38,400 

On On Off 19,290 

On Off On 9600 

On Off Off 4800 

Off On On 2400 

Off On Off 1200 

Off Off On 600 

Off Off Off 300 

2.2.2.2 Force Dialog Mode 
Force dialog mode allows the user to establish a dialog with the system via the console 
terminal by using the dialog commands that are described in Chapter 4. 

If the force dialog switch (85 on the switch pack) is on, the ROM code enters dialog mode 
at power-up or restart regardless of the selections in the EEPROM. 

With switch 5 in the off position, (force dialog disabled) the action at power-up or restart 
is predetermined by the set-up in the ROM code. 

2.2.2.3 ROM Mode 
ROM Mode is a special automatic boot mode that is entered as a power-up/restart option 
to boot specific devices when one or more of switches 2 through 4 on the KDJ11-E CPU 
module are set to the ON position. 

When switches 2 through 4 are set to one of the six combinations shown in Table 2-2 
and force dialog mode is not selected, ROM mode is entered. The mode attempts to boot 
only the one device selected by this command. If the boot is unsuccessful, the ROM code 
prints out the normal error message and enters dialog mode. 

Table 2-2 ROM Mode Switch Settings 

Switches Settings Description 

2 3 4 off off off Normal Automatic Boot Mode. 

2 3 4 on on off Device 1 in list/change boot parameters. 

2 3 4 on off on Device 2 in list/change boot parameters. 

2 3 4 on off off Device 3 in list/change boot parameters. 

2 3 4 off on on Device 4 in list/change boot parameters. 

2 3 4 off on off Device 5 in list/change boot parameters. 

2 3 4 off off on Device 6 in list/change boot parameters. 

2 3 4 on on on Normal Auto Boot Mode 



Configuration - 2-7 

2.2.2.4 Console/SLU Enable - Disable 
The console/SLU is enabled by setting switch 1 to the off position. If the switch is in the 
ON position, the system consolelSLU is disabled. 

2.3 EEPROM Configuration Parameters 
The general configuration parameters are stored in the EEPROM and can be modified or 
changed by the user to meet the necessary requirements. 

The CPU contains EEPROMs which store the programs (ROM code) that 
comprehensively test the CPU, UBA and memory at power-up. The ROM code: 

• Boots the user's software on various devices 

• Provides memory size display 

• Provides time and date of TOY clock 

• Provides boot device selection 

e Provides the ability to define parameters for SLUs 

• Provides self-test selection 

• Provides user boot area on EEPROM 

• Provides support for: 

Hard copy terminals 

Video display terminals 

The CPU automatically starts the ROM code each time you power up the system or 
restart it with the Restart/Run/Halt switch on the front panel. The action the ROM 
code takes is determined by the parameters stored in the EEPROM. 

The parameters in the EEPROM determine the tests to be run, the general mode entered 
after testing is complete, and the final configuration of certain registers on the CPU and 
UBA module (UNIBUS systems only) before the system software is started. Parameters 
in the EEPROM can easily be changed through a program in the ROM code called 
Setup Mode without removing the CPU module. The EEPROM can also store customer 
bootstrap programs. 

The ROM code runs tests selected by parameters in the EEPROM. After testing is 
complete, parameters in the EEPROM determine what action is to be taken next by the 
ROM code. Typically, the ROM code will automatically load and start a program from the 
user's disk or tape. This is commonly referred to as booting a program or automatic boot 
mode. 

For a detailed description of EEPROM c<?nfiguration parameters, refer to Chapter 4. 

2.4 System Installation 
The KDJII-E module can be used in any system that incorporates a backplane with the 
extended LSI-II bus in rows A and B, and the interconnecting bus in rows C and D. 



2-8 Configuration 

. 2.4.1 LSI-11 Based Systems 

An LSI-II based system can be custom designed using the KDJ11-E module and 
compatible LSI-II components. 

NOTE 
It is recommended that the ac and dc loading for the final configuration 
be checked for conformance to the LSI·11 bus loading rules. It is also 
recommended that you check for overloading on the +5 V and +12 V power 
supplies. 

When building a custom LSI-II system in a BA2S enclosure, the following rules apply: 

1. Slot 1 is reserved for the KDJ11-E. 

2. Slots 2 and S can accept one dual or one quad Q-bus option. 

S. Slots 4 through 8 can accept one quad or two dual Q-bus options. 

4. All open A and B rows in slots 2 through 8 and all open C and D rows in slots 4 
through 8 must be filled with a grant card if any modules follow in the backplane. 

5. The terminating resistors on the backplane should be removed when using an 
extended backplane system. 

2.4.2 Restricted LSI-11 Systems 

There are many LSI-II options that are not compatible because they were designed 
primarily for 16- and 18-bit systems or for a particular application. The LSI-II options 
which are not compatible are backplanes, memories, or I/O devices that are not capable 
of 22-bit addressing. They may generate or decode erroneous addresses if used in 
systems that implement 22-bit addressing. Memory and memory addressing devices 
that implement only 16- or 18-bit addressing may be used in a 22-bit backplane, but the 
size of the system memory must be restricted to the address range of these devices (64 
Kbytes for systems with a 16-bit device, 256 Kbytes for systems with an 18-bit device). 
Consider the following rules when adding restricted LSI-II options to the system: 

1. The option must not use pins BC1, BD1, BEl, or BF1 except as the required BDAL 
18-21 connections. Some early LSI-II options were allowed to use these pins as test 
points or for user provided interconnections. 

2. If the option is a DMA device, it must support the full 22-bit addressing requirement. 

S. If the option responds to non-I/O page addresses, it must also decode the BDAL 18-21 
address lines as part of the address. 

4. The power requirements for each option must be considered to avoid overloading the 
power supply. 

5. The switching and electrical parameters of the option must conform to the LSI-II 
specification of DEC STD 160. 

NOTE 
DMA devices having 18 bits can potentially work in a 22·bit system by buffering 
110 in the 18·bit address space. 



Configuration 2-9 

2.4.3 UNIBUS Based Systems 

A UNIBUS based system can be custom designed by using the KDJ11-E CPU module, 
the KTJ11-B UBA and compatible UNIBUS components. This type of system must be 
installed in the H9277-A or H9277-B backplane. 

The following requirements must be considered when adding a UNIBUS option to the 
system: 

1. The timing and electrical parameters of the option must conform to the UNIBUS 
specification of DEC STD 158. 

2. The ac and dc loading of the UNIBUS must be within the allowable specifications. 

3. The power requirements must not exceed the ratings of the power supply and 
hardware. The speed differences between UNIBUS processors, diagnostics, and 
operating systems may cause problems. 

2.5 Module Contact Finger Identification 
The LSI-11 type modules, including the KDJ11-E, all use the same contact (pin) 
identification system. The contacts used on a quad-height module are identified in 
Figure 2--4. The LSI-11 bus signals are assigned to rows A and B, each with 18 contacts 
on the component side and the solder side. The KDJ11-E bus signals are identified along 
with the LSI-11 bus signals in Table 2-3 and the pins are identified as follows: 

AV2 A = Row identifier side (Row A) 
V = Pin identifier (Pin V) 
2 = 1 = component side/2 = solder side 

The positioning notch between the two rows of pins mates with a protrusion on the 
connector block for correct module positioning. A complete description of the backplane 
and bus operation is provided in Chapter 5. 



2-10 Configuration 

Row A 

RowB 

RowC 

Row 0 

Side' 
Component Side Solder Side 

U·GD111i·lIII 

Figure 2-4 KDJ11·E Module Contacts 

Table 2-3 KDJ11·E Module and LSI·11 Bus Signals 

Component side Solder Side 

Pin LSI·II Bus KDJII·E Pin LSI·II Bus KDJII·E 

AA1 BffiQ5L BffiQ5L AA2 +5V +5V 

AB1 BffiQ6L BffiQ6L AB2 12V Not used 

AC1 BDAL 16 L BDAL 16 L AC2 GND GND 

AD1 BDAL 17 L BDAL 17 L AD2 +12 V Not used 

AE1 SSPARE 1 Not used AE2 BDOUTL BDOUTL 

AF1 SSPARE 2 SRUNLI AF2 BRPLYL BRPLYL 

AH1 SSPARE 3 Not used AH2 BDINL BDINL 

AJ1 GND GND AJ2 BSYNCL BSYNC L 

AK1 MSPAREA Not used AK2 BWTBTL BWTBTL 

ALI MSPAREA Not used AL2 BffiQ4L BIRQ4L 

AM! GND GND AM2 BIAKI L Not used 

ANI BDMRL BDMRL AN2 BIALO L BIAKL 

API BHALTL BHALT L AP2 BBS7L BBS7L 

IThe SRUN L signal is primarily used to drive a run light indicator. It is used for BAll-N and later systems. 
It indicates that the processor is executing instructions. 



Configuration -2-11 

Table 2-3 (Cont.) KDJ11-E Module and LSI-11 Bus Signals 

Component side Solder Side 

Pin LSI·II Bus IIDJII·E Pin LSI·II Bus KDJII·E 

AR1 BREFL Not used AR2 BDMGI L· Not used 

AS1 +12V Not used AS2 BDMGO L BDMGO L 

AT1 GND GND AT2 BOOT L BINIT L 

AU1 PSPARE 1 Not used AU2 BDALO L BDALO L 

AV1 +5V +5V AV2 BDAL 1 L BDAL 1 L 

BA1 BDCOKH BDCOKH BA2 +5 V +5V 

BB1 BPOKH BPOKH BB2 12V Not used 

BC1 SSPARE4 BDAL 18 L BC2 GND GND 

BD1 SSPARE 5 BDAL 19 L BD2 +12V Not used 

BEl SSPARE6 BDAL20 L BE2 BDAL2 L BDAL2 L 

BF1 SSPARE 7 BDAL21 L BF2 BDAL3 L BDAL3 L 

BH1 SSPARE 8 Not used BH2 BDAL4 L BDAL4 L 

BJ1 GND GND BJ2 BDAL5 L BDAL5 L 

BK1 MSPARE B Not used BK2 BDAL6 L BDAL6 L 

BL1 MSPAREB Not used BL2 BDAL7 L BDAL7 L 

BM1 GND GND BM2 BDAL8 L BDAL8 L 

BN1 BSACK L BSACKL BN2 BDAL9 L BDAL9 L 

BP1 BIRQ7L BIRQ7L BP2 BDAL 10 L BDAL 10 L 

BR1 BEVNTL BEVNTL BR2 BDAL 11 L BDAL 11 L 

BS1 PSPARE4 Not used BS2 BDAL 12 L BDAL 12 L 

BTl GND GND BT2 BDAL 13 L BDAL 13 L 

BU1 PSPARE 2 Not used BU2 BDAL 14 L BDAL 14 L 

BV1 +5V +5V BV2 BDAL 15 L BDAL 15 L 

The KDJII-E module also uses rows C and D in the backplane for the PMI feature. The 
C and D rows provide an interconnection between modules placed in adjacent slots. The 
signals assigned to the C and D rows are identical for the KDJII-E CPU module and the 
KTJII-B UBA The module signals are identified in Table 2-4. 

Also refer to Table 2-5 through Table 2-7 for reference information concerning the 
KDJII-E connector pin assignments Jl through J3. 



2-12 Configuration 

. Table 2-4 Module PMI Signal Assignments 

Component Side Solder Side 

Pin KDJll·E Pin KDJll·E 

CAl Not used CA2 +5V 

CBI PSSELL CB2 Not used 

CCI SRUNL CC2 GND 

CDI PUBMEML CD2 Not used 

CEI PBCYCL CE2 Not used 

CFI PUBSYSL CF2 Not used 

CHI PHBPARL CH2 Not used 

CJI PSBFULL CJ2 Not used 

CKI PLBPARL CK2 Not used 

eLl Not used CL2 Not used 

CMl PRDSTB CM2 Not used 

CNI Not used CN2 Not used 

CPl PBLKML CP2 Not used 

CRI PBSYL CR2 Not used 

CSI Not used CS2 Not used 

CTI GND CT2 Not used 

CUI Not used CU2 Not used 

CVl PUBTMOL CV2 Not used 

DAI Not used DA2 +5V 

DBI PWTSTBL DB2 Not used 

DCl PBYTL DC2 GND 

DDI PMAPEL DD2 Not used 

DEI Not used DE2 Not used 

DFI Not used DF2 Not used 

DHI Not used DH2 Not used 

DJl Not used 002 Not used 

DKI Not used DK2 Not used 

DLI Not used DL2 Not used 

DMI Not used DM2 Not used 

DNI CNSLLOCKL DN2 Not used 

DPI Not used DP2 Not used 

DRI Not used DR2 Not used 

DSI Not used DS2 Not used 

DTI GND DT2 Not used 



Configuration 2-13 

Table 2-4 (Cont.) Module PMI Signal Assignments 

Component Side Solder Side 

Pin KDJll·E Pin KDJll·E 

DUI Not used DU2 Not used 

DVI Not used DV2 Not used 

Table 2-5 J1, Connector Pin Assignments 

Pin Signal Used For 

JOI pin 1 N/C Serial Line Unit 5 

JOI pin 2 GND Serial Line Unit 5 

JOI pin 3 TX Serial Line Unit 5 

JOI pin 4 GND Serial Line Unit 5 

JOI pin 5 GND Serial Line Unit 5 

JOI pin 6 N/C Serial Line Unit 5 

JOI pin 7 RX- Serial Line Unit 5 

JOI pin 8 RX+ Serial Line Unit 5 

JOI pin 9 GND Serial Line Unit 5 

JOI pin 10 + 12VF2 Serial Line Unit 5 

JOI pin 11 N/C Serial Line Unit 6 

JOI pin 12 GND Serial Line Unit 6 

JOI pin 13 TX Serial Line Unit 6 

JOI pin 14 GND Serial Line Unit 6 

JOI pin 15 GND Serial Line Unit 6 

JOI pin 16 N/C Serial Line Unit 6 

JOI pin 17 RX- Serial Line Unit 6 

JOI pin 18 RX+ Serial Line Unit 6 

JOI pin 19 GND Serial Line Unit 6 

JOI pin 20 + 12VF2 Serial Line Unit 6 

JOl pin 21 N/C Serial Line Unit 7 

JOI pin 22 GND Serial Line Unit 7 

JOI pin 23 TX Serial Line Unit 7 

JOI pin 24 GND Serial Line Unit 7 

JOt pin 25 GND Serial Line Unit 7 

JOI pin 26 N/C Serial Line Unit 7 

JOI pin 27 RX- Serial Line Unit 7 

JOI pin 28 RX+ Serial Line Unit 7 

JOI pin 29 GND Serial Line Unit 7 



2-14 Configuration 

Table 2-5 (Cont.) J1, Connector Pin Assignments 

Pin Signal Used For 

J01 pin 30 + 12VF2 Serial Line Unit 7 

J01 pin 31 N/C Serial Line Unit 8/Console 

J01 pin 32 GND Serial Line Unit 8/Console 

J01 pin 33 (-'" TX Serial Line Unit 8/Console 

J01 pin 34 GND Serial Line Unit 81Console 

J01 pin 35 GND Serial Line Unit 8/Console 

J01 pin 36 N/C Serial Line Unit 8/Console 

J01 pin 37 ""- RX- Serial Line Unit 8/Console 

J01 pin 38 - RX+ Serial Line Unit 81Console 

J01 pin 39 GND Serial Line Unit 8/Console 

J01 pin 40 + 12VF2 Serial Line Unit 8/Console 

Table 2-6 J2, Connector Pin Assignments 

pin Signal Used For 

J02 pin 1 +5V +5 Volts for Console/SLU Panel 

J02 pin 2 Switch 6 Remote Console/SLU Connection 

J02 pin 3 Switch 7 Remote ConsolelSLU Connection 

J02 pin 4 Switch 8 Remote Console/SLU Connection 

J02 pin 5 Switch 1 Remote ConsolelSLU Connection 

J02 pin 6 Switch 5 Remote Console/SLU Connection 

J02 pin 7 Switch 2 Remote Console/SLU Connection 

J02 pin 8 Switch 3 Remote Console/SLU Connection 

J02 pin 9 GND Remote Console/SLU Connection 

J02 pin 10 GND Remote Console/SLU Connection 

J02 pin 11 Led 06 Remote ConsolelSLU Connection 

J02 pin 12 Led 05 Remote Console/SLU Connection 

J02 pin 13 Led 04 Remote Console/SLU Connection 

J02 pin 14 GND Remote Console/SLU Connection 

J02 pin 15 Led 03 Remote Console/SLU Connection 

J02 pin 16 Led 02 Remote Console/SLU Connection 

J02 pin 17 Led 01 Remote Console/SLU Connection 

J02 pin 18 GND Remote Console/SLU Connection 

J02 pin 19 Switch 4 Remote Console/SLU Connection 

J02 pin 20 GND Remote Console/SLU Connection 

J02 pin 21 N/C Serial Line Unit 1 



Configuration 2-15 

Table 2-6 (Cont.) J2, Connector Pin Assignments 

pin Signal Used For 

J02 pin 22 GND Serial Line Unit 1 

J02 pin 23 TX Serial Line Unit 1 

J02 pin 24 GND Serial Line Unit 1 

J02 pin 25 GND Serial Line Unit 1 

J02 pin 26 N/C Serial Line Unit 1 

J02 pin 27 RX- Serial Line Unit 1 

J02 pin 28 RX+ Serial Line Unit 1 

J02 pin 29 GND Serial Line Unit 1 

J02 pin 30 + 12VFl Serial Line Unit 1 

J02 pin 31 N/C Serial Line Unit 2 

J02 pin 32 GND Serial Line Unit 2 

J02 pin 33 TX Serial Line Unit 2 

J02 pin 34 GND Serial Line Unit 2 

J02 pin 35 GND Serial Line Unit 2 

J02 pin 36 N/C Serial Line Unit 2 

J02 pin 37 RX- Serial Line Unit 2 

J02 pin 38 RX+ Serial Line Unit 2 

J02 pin 39 GND Serial Line Unit 2 

J02 pin 40 +12VFl Serial Line Unit 2 

J02 pin 41 N/C Serial Line Unit 3 

J02 pin 42 GND Serial Line Unit 3 

J02 pin 43 TX Serial Line Unit 3 

J02 pin 44 GND Serial Line Unit 3 

J02 pin 45 GND Serial Line Unit 3 

J02 pin 46 N/C Serial Line Unit 3 

J02 pin 47 RX- Serial Line Unit 3 

J02 pin 48 RX+ Serial Line Unit 3 

J02 pin 49 GND Serial Line Unit 3 

J02 pin 50 +12VFl Serial Line Unit 3 

J02 pin 51 N/C Serial Line Unit 4 

J02 pin 52 GND Serial Line Unit 3 

J02 pin 53 TX Serial Line Unit 3 

J02 pin 54 GND Serial Line Unit 3 

J02 pin 55 GND Serial Line Unit 3 

J02 pin 56 N/C Serial Line Unit 3 

J02 pin 57 RX- Serial Line Unit 3 



2-16 Configuration 

Table 2-6 (Cont.) J2, Connector Pin Assignments 

pin 

J02 pin 58 

J02 pin 59 

J02 pin 60 

Signal 

RX+ 

GND 
+l2VFl 

Table 2-7 J3, Connector Pin Assignments 

pin Signal 

JOl pin 1 +5V 

J02 pin 2 +5V 

J03 pin 2 +5V 

J04 pin 2 +5V 

2.6 Module Installation Procedure 

Used For 

Serial Line Unit 3 

Serial Line Unit 3 

Serial Line Unit 3 

Used For 

Power 

Power 

Power 

Power 

To install or replace the KDJ11-E module or any LSI-11 option used in the system, follow 
these procedures. 

1. Ensure that no power is applied to the backplane when removing or inserting the 
module. 

2. Verify that the configuration of the module jumpers is correct. 

3. Insert the KDJ11-E module into the backplane with the component side facing up. 

4. Ensure that either the module or the selected system components provide the power­
up protocol. 

5. Use a single switch to apply all power to the system. 



Configuration 2-17 

2.7 Specifications 
Identification 

Size 

Dimensions 

Power Consumption 

AC Bus Loads 

DC Bus Loads 

Environmental: 

Storage 

Operating 

M8981 

Quad 

26.5 em x 22.8 em (10.5 in x 8.9 in) 

+5 V ±5% at 4.5 A (maximum) 
+12 V ±5% at 0.6 A (maximum) 

1 unit load 

1 unit load 

-40°C to +65°C (-40°F to 150°F), 10% to 90% relative humidity, 
noncondensing 

For ambient temperatures above +55°C, sufficient air flow must be 
provided to limit the module temperature to less than +65°C. For inlet 
temperatures below +55°C, air flow must be provided to limit temperature 
rise across the module to +10°C. 

Derate maximum temperature by 1°C (1.8°F) for each 305 m (1000 ft) 
above 2440 m (8000 ft). 





3 
Console On-Line Debugging Technique (ODT) 

3.1 Introduction 
The console on-line debugging technique (console ODT), allows the KDJ11-E to respond 
to commands and information entered via a console terminal connected to the module. 
The console interface uses addresses 17777560 through 17777566 to communicate with 
the DCJ11 microprocessor. The addresses of the console terminal are generated in the 
microcode and cannot be changed. Communication between the microprocessor and the 
user is a stream of ASCII characters interpreted as console commands. These commands 
are a subset of the commands used in the ODT-11 software for microcomputers. 

This feature (ODT) is called the microcode on-line debugging technique, or micro-ODT. 
The KDJ11-E micro-ODT accepts 22-bit addresses, allowing it to access 4088 Kbytesof 
memory, plus the 8 Kbyte 110 page. Micro-ODT provides a more sophisticated range of 
debugging techniques, including access to memory locations by virtual address. 

3.1.1 Terminal Interface 

The KDJI1-E provides a console serial line interface unit (SLU) on the module. This 
allows the console to communicate with the KDJ11-E. The console SLU uses four 
registers designated as the RCSR, RBUF, XCSR and XBUF. These registers are described 
in Chapter 1. 

Console ODT uses bit 7 of the RCSR and the XCSR registers and the low bytes of th~ 
RBUF and XBUF registers. The other bits used by these registers are ignored with the 
following exceptions: 

• The XMIT break bit 0 must be cleared in order for the console ODT to function. 

• The interrupt enable bits 6 of the XCSR and RCSR registers have no effect during 
console 0 DT. 

3.2 Console ODT Entry Conditions 
The console ODT mode can be entered in the following ways: 

• During execution of a HALT instruction in kernel mode, provided the trap option is 
not selected in the maintenance register (address 17777750, bit 3). The trap option is 
reset by the negation of DCOK 

• During assertion of the BHALT signal on the bus. Note that the signal must be 
asserted long enough to be seen at the end of a macroinstruction by the service state 
in the processor. BHALT is asserted if the halt-on-break feature is enabled by setting 
BCSR bit 9 to a 1, then the SLU console receives a break character. 

3-1 



3-2 Console On-Line Debugging Technique (ODT) 

• At power-up when the power-up option is selected or at power-up and restart if the 
halt switch is depressed. 

ODT causes the following conditions upon entry: 

1. Performs a DATI from RBUF (input data buffer at 17777562) and then ignores the 
character present in the buffer. This operation prevents the ODT from interpreting 
erroneous characters or user program characters as a command. 

2. Prints a carriage return <CR> and a line feed <LF> the console terminal. 

3. Prints the contents of the PC (program counter R7) in six digits. 

4. Prints a <CR> and <LF>. 

5. Prints the prompt character @. 

6. Enters a wait loop for the console terminal input. The DONE flag (bit 7) in the RCSR 
at 17777560 is constantly being tested for a 1 by a DATI by the processor. If bit 7 is 
a 0, the processor keeps testing. 

3.3 Console ODT Command Set 
The console ODT commands are a subset of the commands used in the ODT-11 software 
and the same command characters are used. ODT has 10 internal states; each state 
recognizes certain characters as valid input and responds with a question mark (?) to all 
others. 

The parity bit (bit 7) on all input characters is ignored (that is, not stripped) by the 
console ODT, and if the input character is echoed, the state of the parity bit is copied to 
the output buffer (XBUF). Output characters internally generated by ODT (for example, 
<CR» have the parity bit equal to o. All commands are echoed except for <LF>. 

The following descriptions of the console ODT commands include examples of what is 
displayed on the console terminal in response to the commands entered by the user. 

NOTE 
For the novice user, these paragraphs should be scanned first for familiarization 
and then reread for detail. The word "location," used in the following 
paragraphs, refers to a bus address, processor register, or PSW. 

Table 3-1 lists the console ODT commands. 

Table 3-1 Console OOT Commands 

Command Symbol 

Slash I 

Carriage return <CR> 

Line feed <LF> 

Internal register $ orR 
designator 

PSW S 

Go G 

Proceed P 

Binary dump <CTRL><SHIFT>S 

Function 

Prints the contents of a specified location 

Closes an open location 

Closes an open location and then opens the next 
contiguous location 

Opens a specific processor register 

Opens the PSW; must follow an S or R command 

Starts execution of a program 

Resumes execution of a program 

Manufacturing use only 



Console On-Line Debugging Technique (COT) 3-3 

NOTE 
<CTRL> J serves 8S line feed <LF> on some terminals. 

3.3.1 Slash (I) Command (ASCII 057) 

The slash (/) command is used to open a bus address, processor register, or PSW and 
is normally preceded by other characters that specify a location. In response to a slash 
(/), ODT prints the contents of the location (six characters) and then a space (ASCII 40). 
After the printing is complete, ODT waits for either new data for that location or a valid 
close co~mand. The space character is issued so that the contents of the location and 
possible new contents entered by the ,user are legible on the terminal. 

Example: 

Where: 

@00001000/012525 

@ = ODT prompt 
character 

00001000 

I 

012525 

= octal location in the Q22-bus address 
space desired by the user (leading Os are not 
required) 

= command to open and print contents of 
location 

= contents of octal location 1000 

The slash (I) command can be used without a location specifier to verify the data just 
entered into a previously opened location. The slash produces this result only if it is 
entered immediately after a prompt character that follows a location previously closed 
by a carriage return «CR». A slash issued immediately after the processor enters ODT 
mode causes? <CR> <LF> to be printed because a location has not yet been opened. 

Example: 

Where: 

@1000/012525 1234 <CR> 
@/001234<SPACE> 

first line 

second line 

= new data of 1234 entered into location 
1000 and location closed with <CR>. 

= a I entered without a location specifier 
opens the previous location to reveal the new 
contents. 

3.3.2 Carriage Return «CR» Command (ASCII 15) 

The carriage return «CR» command is used to close an open location. If the contents of 
a location are to be changed, the user must precede the carriage return «CR» with the 
new data. If no change is desired, a carriage return «CR» closes the location without 
altering its contents. 



3-4 Console On-Line Debugging Technique (ODT) 

Example: @Rl/004321 <CR> <LF> 
@ 

Processor register RI was opened and no change was desired, so the user issued a 
carriage return «CR». 

Example: @Rl/004321 1234 <CR> <LF> 
@ 

In this case, the user desired to change Rl. The new data, 1234, was entered before the 
carriage return «CR». ODT deposited the new data into the open location. 

3.3.3 Line Feed «LF» Command (ASCII 12) 

The line feed «LF» command is used to close an open location and then open the next 
contiguous location. Bus addresses and processor registers are incremented by two and 
one, respectively. If the PSW is open when an line feed «LF» is issued, it is then closed, 
<CR> <LF>@ is printed, and no new location is opened. If the open location contents is 
to be changed, the new data must precede the line feed «LF». If no data is entered, the 
location is closed without being altered. 

NOTE 
<CTRL> J serves as line feed «LF» on some terminals. 

Example: @R2I123456 <LF> 
@RS/OM321 

In this case, the user entered a line feed «LF» with no data preceding it. In response, 
ODT closed R2, then opened R3. When a user has the last register, R7, open, and issues 
a line feed «LF», ODT rolls over to the first register, RO. ODT opens location 0 if the 
last location in the 110 page (17777776) is open and the user issues a line feed «LF». 

3.3.4 Internal Register Designator ($) (ASCII 044) or (R) (ASCII 122) 

The internal register designator ($ or R), when followed by a register number (0 to 7) 
or PSW designator (S), opens the processor register specified. The dollar sign ($) is 
recognized to be compatible with ODT-Il. The R character was introduced as a one-key­
exit stroke representation of its function. Lower case r (ASCII 162) is treated the same 
as an uppercase R. 

Examples: @$O/OOOI23 

@R7/000123 <LF> 
@RO/054321 

If more than one character (digit or S) follows the R or dollar sign ($), ODT uses the last 
character as the register designator. However, an exception is that if the last three digits 
are either 077 or 477, ODT opens the PSW rather than R7. 

3.3.5 Processor Status Word Designator (S) (ASCII 123) 

This designator is for opening the PSW and must be used after the user has entered an 
R or dollar sign ($) register designator. A lower case s (ASCII 163) is treated the same as 
an uppercase S. 



Console On-Line Debugging Technique (ODT) -3-5 

Example: @RSll00377 0 
@/OOOOIO 

Note that the trace bit (bit 4) of the PSW cannot be modified by the user. This is to 
prevent the PDP-II program debugging utilities (for example, ODT-ll) that use the T-bit 
for single-stepping from being accidentally harmed by the user. If the user issues a line 
feed «LF» while the PSW is open, the word is closed and ODT prints an at sign (@). No 
new location is opened. 

3.3.6 Go (G) Command (ASCII 107) 

The go (G) command is used to start program execution at a location entered immediately 
before the G. This function is equivalent to the Load Address and Start switch sequence 
on other PDP-II consoles. 

Example: @200 G 

The ODT sequence for a G, after echoing the command character, is as follows: 

1. Print two nulls (ASCII 0) so the bus initialize that follows does not flush the G 
character. 

2. Load R7 (PC) with the entered data. If no data is entered, 0 is used. (In the 
preceding example, R7 equals 200 and that is where program execution begins.) 

3. The floating-point status register (FPS) and the PSW are cleared to o. 

4. The LSI-II bus is initialized by the processor asserting BINIT L for 12.6 micro­
seconds, negating BINIT L, and then waiting for 110 micro-seconds. 

5. The service state is entered by the processor. Anything to be serviced is processed. 
If the BHALT L bus signal is asserted, the processor reenters the console ODT state. 
This feature is used to initialize a system without starting a program (R7 is altered). 
If the user wants to single-step a program, the user issues a G and then successive P 
commands, all with the BHALT L bus signal asserted. 

3.3.7 Proceed (P) Command (ASCII 120) 

The proceed (P) command is used to resume execution of a program and it corresponds 
to the Continue switch on other PDP-II consoles. No machine state visible to the 
programmer is altered using this command. 

Example: @P 

Program execution resumes at the place pointed to by R7. After the P is echoed, the ODT 
state is left and the processor immediately enters the state to fetch the next instruction. 
If a halt request is asserted, it is recognized at the end of the instruction (during the 
service state) and the processor then reenters ODT. Upon entry, the contents of the PC 
(R7) are printed. In this fashion, a user can single-step through a program and get a PC 
trace displayed on the terminal. 



3-6 Console On-Line Debugging Technique (ODT) 

. 3.3.8 Binary Dump «CTRL> <SHIFT> S) Command (ASCII 23) 

The binary dump «CTRL> <SHIFl'> S) command is used for test purposes by 
manufacturing and is not a normal user command. The command is normally received 
from another computer and not the system console. It is recommended that this 
command not be issued from the terminal because the console ODT echoes back the 
ASCII 23 code, and this may cause the keyboard to lock up, and prevent data from being 
displayed on the screen. There is no reason to issue this command from a terminal 
because it then dumps the binary data. The terminal is intended to receive ASCII 
data. The binary dump command is intended to more efficiently display a portion of 
the memory, as compared to the slash (I) and line feed «LF» commands. 

The binary dump command can accidentally be entered on many terminals by typing 
<CTRL> S, <CTRL> s, <CTRL> 3, or in many cases by pressing <NO SCROLL>, since 
all these conditions normally generate the ASCII 23 code. If the user accidentally enters 
this command, the user should reset the terminal and type an "a" at least three times to 
ensure that console ODT· is ready to accept commands again. The command protocol is as 
follows: 

1. Mter a prompt character, ODT receives a binary dump «CTRL> <SHIFl'> S) 
command and echoes it. 

2. The host system at the other end of the serial line must then send two 8-bit bytes, 
which ODT interprets as a starting address. These two bytes are not echoed. The 
first byte specifies starting address <15:08>, and the second byte specifies starting 
address <07:00>. Bus address bits <21:16> are always forced to 0; the dump 
command is restricted to the first 32K words of address space. The starting address 
may be even or odd. 

3. After the second address byte is received, ODT outputs 10 bytes to the serial line, 
starting at the address previously specified. When the output is finished, ODT prints 
an at sign (@). 

3.4 ODT Address Specification 
The KDJ11-E micro-ODT accepts 22-bit addresses, allowing it to access 4088 Kbytes of 
memory, plus the 8 Kbyte I/O page. All I/O page addresses must be entered by users 
with the full 22 bits specified. For example, to open the RCSR of the SLU , the user must 
enter 17777560, not 177560 or 777560. 

3.4.1 Processor I/O Addresses 

Certain processor and memory management registers have 110 addresses assigned to 
them for programming purposes. If referenced in ODT, the PSW responds to its bus 
address, 17777776. Processor registers RO through R7 do not respond (that is, timeout 
occurs) to bus addresses 17777700 through 17777707 if referenced in ODT. 

The MMRs and PARlPDR pairs can be accessed from ODT by entering their bus address. 
Example: @177775721000001 

In this case, MMRO is opened to show the memory management enable bit set. 

The FP11 accumulators cannot be accessed from ODT. Only FP11 instructions can access 
these registers. 



Console On-Une Debugging Technique (ODT) 3-7 

3.4.2 Stack Pointer Selection 
Accessing kernel, superVisor, and user stack pointer registers is accomplished in the 
following way. Whenever R6 is referenced in ODT, it accesses the SP specified by the 
PSW current mode bits (PSW <15:14». If a program operating in kemel mode (PSW 
<15:14> equals 00) is halted and R6 is open, the KSP is accessed. 

Similarly, if a program is operating in user mode (PSW <15:14> equals 11), the R6 
command accesses the USP. If a different SP is desired, PSW <15:14> must be set by the 
user to the appropriate value, and then the R6 command can be used. If an operating 
program has been halted, the original value of PSW <15:14> must be restored in order to 
continue 'execution. 

Example: PS = 140000 
@R6/1234G6 

USP has been opened. 
@RSl140000 O<CR> <CR> <LF> 

@R6/123456 <CR> 

@RSlOOOOOO 140000 <CR> <LF> 

@P 

In this case, the KSP was desired. The PSW was opened and PSW <15:14> was set to 00 
(kernel mode). Then R6 was examined and closed. The original value of PSW <15:14> 
was restored, and then the program was continued using the P command. 

3.4.3 Entering Octal Digits 
When the user is specifying an address, the console ODT uses the last eight digits if more 
than eight digits have been entered. When the user is specifying data, the console ODT 
uses the last six octal digits if more than six were entered. The user does not need to 
enter leading Os for either address or data; the console ODT forces Os as the default. If 
an odd address is entered, the console ODT responds to the error by printing a question 
mark (?) followed by an at sign (@). 

3.4.4 ODT Timeout 
If the user specifies a nonexistent address or causes a parity error, ODT responds to the 
bus timeout by printing a question mark (?) followed by an at sign (@). 

3.4.5 General Registers 
Whenever RO through R5 are referenced in the console ODT, they access the general 
register set currently specified by PSW bit 11. If a program is operating in general 
register set 0 (PSW bit 11 set to 0), the program is halted. A general register is opened 
and register set 0 is accessed. Similarly, if a program is operating in register set 1, 
references to RO through R5 access register set 1. 



3-8 Console On-Line Debugging Technique (ODT) 

If a specific register set is desired, PSW bit 11 must be set by the user to the appropriate 
value, and then the RO through R5 commands can be used. If an operating program 
has been halted, the original value of PSW hit 11 must be restored in order to continue 
execution. . 

Example: PSW = 000000 

@R4I062526 <CR> 

R4 in register set 0 has been opened. 
@RS/OOOOOO 4000 <CR> 

@R4I177777 <CR> 

@RS/004000 0 <CR> 

@P 

In this case, R4 in register set 1 was desired. The PSW was opened and PSW bit 11 was 
set to 1 (selecting register set 1). Then R4 was examined and closed. The original value 
of PSW bit 11 was restored and the program was continued by using the P command. 



4 
Boot ROMs and Diagnostics 

4.1 Operation Overview 
NOTE 
All reference to KTJII-B or UBA through out this chapter shall refer only to 
UNIBUS systems. 

NOTE 
All reference to UNIBUS systems shown in example printouts through out this 
chapter are displayed for UNIBUS systems and are omitted for Q-bus systems. 

The CPU contains EEPROMs which store the programs (ROM code) that 
comprehensively test the CPU, UBA and memory at power-up. The ROM code also: 

• Boots the user's software on various devices 

• Provides memory size display 

• Provides time and date from TOY clock 

• Provides boot device selection 

• Provides the ability to define parameters for SLUs 

• Provides self-test selection 

• Provides user boot area on EEPROM 

• Provides support for: 

- Hard copy terminals 

- Video display terminals 

The CPU automatically starts the ROM code each time the system is powered up or 
restarted with the Restart switch on the 'front panel. The action the ROM code takes is 
determined by the parameters stored in the EEPROM. 

The parameters in the EEPROM determine the tests to be run, the general mode entered 
after testing is complete, and the final configuration of certain registers on the CPU 
and UBA module before the system software is started. Parameters in the EEPROM 
can easily be changed through a program in the ROM code called Setup Mode without 
removing the CPU or UBA modules. The EEPROM can also store customer bootstrap 
programs. 

4-1 



4-2 Boot ROMs and Diagnostics 

The ROM code runs tests selected by parameters in the EEPROM. After testing is 
. complete, parameters in the EEPROM determine what action is to be taken next by 

the ROM code. Typically, the ROM code will automatically load and start a program from 
t~e user's disk or tape. This is commonly referred to as booting a program or automatic 
boot mode. 

After the software is started, the ROM code is not entered again until the system is 
powered up or restarted. In some cases, after testing is complete, the ROM code enters 
Dialog Mode which allows you to select the actions entered through keyboard commands 
using the console terminal. 

Dialog mode allows you to: 

• Boot a device 

• List the boot programs available 

• Run ROM resident tests 

• List a map of the 110 page locations 

• Enter setup mode to list or change all parameters in the EEPROM 

• Modify time and date in TOY clock 

Section 4.2 describes hard copy terminal support. 

Section 4.3 describes video terminal support. 

4.2 Hard Copy Terminal Support 
This section describes the hard copy ROM commands. 

When dialog mode is entered, the ROM code displays the main menu at the console 
terminal and waits for you to select a command. 

Example 4-1 shows an example of the main menu . 

• KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
Unibus Syste. 
Memory 2048 Kwtt 
EEprom 4 Kwtt 
Time 15:44:37 30-May-90 Wed" 

• Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: 

Example 4-1 'Main Menu 

The ROM code heading contains: 

• Version number of the ROM code and date created 

• Indicates UNIBUS system 

• Memory size in Kilowords 

• EEPROM area for USERBOOT programs 

• Time and date from TOY Clock 



Boot ROMs and Diagnostics 4-3 

• Command line for selecting one of the seven hard copy ROM commands: 
Boot 

Diagnostic 

Help 

List 

Map 

Setup 

TOY 

These commands are described in the following sections. 

4.2.1 Boot Command 
The boot command allows a device to be booted. The primary boot program normally 
reads 256 words from the device into memory starting at location o. If the secondary 
bootstrap "block 0" is loaded without errors, then the ROM code transfers control to 
location 0 with the MMU off, RO equal to the unit number of the device booted and R1 
equal to the base address of the device CSR. For some devices, R1 is the base address 
plus an offset. 

The format for the boot command is: 

B XXN 

Where: 

B 

XX 

N 

Is the boot command. 

Is the two letter mnemonic representing the device to be booted. The device 
name must be alpha ch~ters. 

Is the unit number to be booted. 

When the ROM code has a device name, it searches for the first boot program with the 
same device name. The ROM code looks for matches from these sources in the following 
sequence: 

1. CPU EEPROM (user boot) 

2. CPU EPROM 

3. UBA module (UNIBUS system only) 

4. M9312 module (UNIBUS system only) 

There are two optional switches that can be used with the boot command: 

Switch 

/U 

fA 

Description 

'Thlls the ROM code to search for the boot program in the UBA ROMs 
first, then the M9312 (if present). This overrides the standard sequence 
of searching first in the EEPROM, then the CPU EPROM. 

Overrides the default address and allows you to enter a new address. 

Table 4-1 provides examples of how the ROM code interprets user input. 



4-4 Boot ROMs and Diagnostics 

Table 4-1 ROM Code Interpretation of User Input 

User Input 

BDL1 

BDU7 

BB 

BfA 160100 DKO 

BDUO 

BDUO 

NOTE 

ROM Code Action 

Boots DLI. 

Boots DU unit 7. 

Transfers control to an external boot module. 

Boots RK05 with a eSR address of 160100. 

Invalid format. No space allowed in the device name DU. 

Invalid format. There must be a space between the boot command and 
the device name. 

For a complete list of all the boot programs, execute the list command from the 
main menu. 

4.2.1.1 Transferring Control to Non-Digital Boot Modules (UNIBUS System 
Implementation) 

The single-letter device name B implements a method of supporting non-Digital boot 
devices on the UNIBUS. 

B causes the ROM code to transfer control to the address contained in location 17773024 
of a ROM on the UNIBUS (if any) as long as the value in location 17773024 is not odd. 

When the CPU ROM passes control: 

• The CPU ROMs and the UBA ROMs are disabled. 

• RO contains a unit number. 

• R1 contains O. 

The ROM code types out an invalid device message if: 

• The address in location 17773024 on the UNIBUS is odd. 

• The boot module does not respond to all addresses from 17773000 to 17773776. 

Typically the single-letter device name B is used when you have a module which has a 
switch pack that responds at address 17773024 similar to a M9312 module. Usually the 
start address of the program desired is set in the switch pack on the module. 

4.2.1.2 Transferring Control to Non-DlgHal Boot Modules (Q.bus System 
Implementation) 

The single-letter device name B implements a method of supporting non-Digital boot 
devices on the Q-bus. 

On Q-bus systems, the letter B causes ROM to disable the CPU ROM and check location 
17773000 for the existence of a ROM on the Q-bus. If a ROM is present and location 
17773000 of the ROM is not 0 (HALT instruction), ROM will pass control to address 
17773000 with MMU oft' and MMR3 set to O. 



Boot ROMs and Diagnostics -4-5 

4.2.1.3 Error Detection During the Boot Command 
The ROM code boot programs attempt to detect errors during the boot process and take 
the appropriate action. Table 4-2 lists the possible errors that the ROM code tries to 
detect. Not all errors are applicable for all boot programs. 

Table 4-2 Boot Command Errors 

LED Code 

21 

20 

17 

16 

15 

14 

13 

12 

11 

10 

07 

NOTE 

Description 

Drive error 

Controller error 

Boot device selection was invalid 

Invalid unit number selected 

Non-existent drive 

Non-existent controller 

No tape 

No disk 

Invalid boot block 

Drive not ready 

No bootable device found (while in Auto Boot Mode) 

After successful completion of the loading of a secondary bootstrap, the display 
is set to 00. Before transferring control to the secondary boot, the ROM code 
prints out Starting System. At this time, parameters saved in the ROMs are 
loaded into the CPU registers. 

The following is an example of a boot command: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
Unibus System 
Memory 2048 KW 
EEprom 4 KW 
Time 15:41:52 16-May-90 Wed 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: B DLO 

Trying 
Starting System 

Example 4-2 Boot Command 

4.2.2 Diagnostic Command 
The diagnostic command allows you to test the CPU, the on-board memory SLU s, and 
the KTJII-B (UNIBUS system only). Tests can be run individually or as a group (Test 
30, All Selected Tests). 

To execute the Diagnostic Command: 

1. At the command line on the Main Menu, type D. 

2. Press Return. 



4-6 Boot ROMs and Diagnostics 

You are then prompted for the following information: 

Prompt 

Test Number 

Repeat Counter 

Action 

Select a test from the list displayed on the terminal 

'Thst 30) All Selected 'lests) runs all tests selected in Setup Mode 
Command 3. See Section 4.2.6.3 for more information. 

'Thst 32) Serial line Unit Loopback 'Thst requires that loopback connectors 
be installed on all SLUs on the KDJll-E. 

Type the number of desired iterations in decimal) or type 0 to run the 
test(s) continuously. 

Testing starts after you select the test number and number of iterations. The ROM code 
displays the test number, description of the test, error count, and iteration number. 

If continuous testing is selected, no information is printed except errors. This allows the 
Diagnostic Command to run for extended periods of time without requiring additional 
printer paper. 

To· terminate testing, type CtrllC or CtrllP. 



Boot ROMs and Diagnostics 4-7 

In the following example, test 67 is selected to be run once. 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
Unibus System 
Memory 2048 KW 
EEprom 4 KW 
Time 15:44:37 30-May-90 Wed 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: D 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Single diagnostic test repeat 

67 CPU Test 
66 MMU Test 
65 Pre-Console Test 
64 MSER Test 
63 CCR r/w Test 
62 HIT/MISS-Reg Test 
61 LTC Speed Test 
60 Add-Stat-Reg Test 
57 CPU-Err-Reg Test 
55 UBA reg. resp. Testtt 
54 Address 0 Test 
53 Pre-Memory (0-4KW) Test 
52 FPA Register Test 
51 FPA Function Test 
50 Int Mem Address Test 
47 Int Mem Data Test 
46 PIRQ-Reg Test 
45 LTC Int Test 
44 Lines Config. Test 
43 Serial Lines Test 
40 Memory parity Test 
37 UBA map reg Test" 
36 UBA NPR Cycle Test" 
32 Loopback SLU Test 
31 Extended Memory Test 
30 All Selected Tests 

Type CTRL Z to exit 

Test number = 67 New - 67 

Type 0 for endless loop; break loop with CTRL C 

Repeat counter = 000001 New - 1 

67 CPU Test No Errors found 

Example 4-3 Diagnostic Command 

• Selected tests intended for UNIBUS systems only 

NOTE 
If the repeat counter is set to 0, to run continuously, only errors will be printed. 



4-8 Boot· ROMs and Diagnostics 

4.2.3 Help Command 
The help command prints out a brief description of all the commands. At the end of this 
command, you are returned to the main menu. 

To execute the help command: 

1. At the command line on the main menu, type H. 

2. Press Return. 

The following is an example of the help command: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
Unibus system 
Memory 2048 KW 
EEprom 4. KW 
Time 15:44:37 30-May-90 Wed 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: H 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Command 

Help 
Boot 
Diagnostic 
List 
Map 
Setup 
Toy 

Description 

Type this message 
Load and start a program from a device 
Execute a self-test single or repetitive 
List boot programs 
Map memory and I/O page 
Enter Setup mode 
Set time and date 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: 

Example 4-4 Help Command 



Boot ROMs and Diagnostics - 4-9 

4.2.4 List Command 
The list command prints out a list of all available boot programs found in the CPU 
EPROM, the CPU EEPROM (user boot), ROM sockets on the .UNIBUS adapter (if 
present), or an M9312 (if present). 

To execute the list command: 

1. At the command line on the main menu, type L. 

2. Press Return. 

The following is an example of the List Command (for Q-bus system): 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Memory 2048 KW 
EEPROM 4 KW 
Time 15:44:37 30-May-90 Wed 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: L 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
o • 
Device Unit • 8 
Name Numbers Source Device Type 

AB 0 USR 
TT 0 USR 
DD 0- 1 ROM TU58 
DK 0- 7 ROM RK05 
MS 0- 1 ROM TK25, TS04/05/11, TU80 
NE 0- 15 ROM DECNET DLV11-E 
NF 0- 15 ROM DECNET DLV11-F 
NU 0- 15 ROM DECNET DUV11 
DU 0-255 ROM MSCP (RAxx, RDxx, RX50 , RC25 , ...) 
DL 0- 3 ROM RL01/RL02 
DX 0- 1 ROM RX01 
DY 0- 3 ROM RX02 
MU 0-255 ROM TMSCP (TK50, TU81, ... ) 
Press RETURN key when ready to continue 

Example 4-5 List Command (Q-bus System) 

• Device Name is a two-letter mnemonic. The device name must be alpha characters. 
At input, ROM converts all lowercase letters to uppercase letters. 

.. Unit Numbers range is the allowable range of unit numbers valid for a particular 
boot program. 

.. Source lists where the actual boot program is located: 

Physical Location of Boot 
Program 

CPU EPROM 

ROM Sockets on the UNIBUS 
adapter module 

Source 

ROM 

UBA (UNmUS system only) 



4-10 Boot ROMs and Diagnostics 

. Physical Location of Boot 
Program Source 

M9312 

User Boot Area 

M93 (UNIBUS system only) 

USR 

e Device Type is a description of the device to be booted. 

At the completion of the list command, you are returned to the main menu. 

4.2.5 Map Command 
The map command prints out all addresses in the 110. page that respond. The 110 page 
starts at address 17760000. 

In addition, all addresses that are on the CPU or on the UBA that respond, are briefly 
described. There is no description for optional device addresses that respond. At 
completion of the map command, you are returned to the main menu. 

To execute the map command: 

1. At the command line on the main menu, type M. 

2. Press Return. 

The following is an example of the Map Command: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
Unibus System 
Memory 2048 KW 
EEprom 4 KW 
Time 15:44:37 30-May-90 Wed 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: M 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

I/O page Map 
Starting Ending 
Address address 

17765000 17765776 CPU ROM or EEPROM 
17772100 Memory CSR 
17772200 17772276 Supervisor I and D PDR/PAR's 
17772300 17772376 Kernel I and D PDR/PAR's 
17772516 MMR3 
17773000 17773776 CPU ROM 
17776500 17776566 SLU's 
17777200 17777376 UBA map REG',s 
17777520 17777526 CSR, PCR, BCR/BDR ASR 
17777546 Clock CSR 
17777560 17777566 Console SLU 
17777572 17777576 MMRO,1,2 
17777600 17777676 User I and D PDR/PAR's 

Press RETURN key when ready to continue 

Example 4-6 Map Command 



Boot ROMs and Diagnostics 4-11 

4.2.6 Setup Command 

The setup command has fourteen commands (Example 4-7). These commands allow you 
to list, change, or list and change all parameters stored in the EEPROM. Setup also 
allows you to create or edit USERBOOT programs stored in the EEPROM. 

The EEPROM contains information needed by the ROM code to configure the KDJll­
E (CPU) and the KTJII-B (UBA) and to determine the boot device, diagnostic test 
selections, and restart modes. 

NOTE 
Changes made under setup mode are ignored unless they are saved in EEPROM 
using setup mode command 8. 

To execute the setup command: 

1. At the command line on the main menu, type S. 

2. Press Return. 

The following is an example of the setup command: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
Unibus System 
Memory 2048 KW 
EEprom 4 KW 
Time 15:44:37 30-May-90 Wed 

Commands are: [Boot, Diagnostic~ Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: S 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Setup Mode Commands 

1 Exit 
2 Select configuration parameters 
3 Select diagnostic configuration 
4 Select serial line parameters 
5 Select boot parameters 
6 List available boot programs 
7 Factory setting 
8 Save the setup table in the EEPROM 
9 Load EEPROM data into the setup table 
10 Load EEPROM boot program into memory 
11 Edit or create EEPROM boot program 
12 Save a boot program in the EEPROM 
13 Delete a saved EEPROM boot program 
14 Enter ROM ODT 

Commands are: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] 
Type a command then press the RETURN key: 

Example 4-7 Setup Command 



4-12 Boot ROMs and Diagnostics 

4.2.6.1 Setup Mode Command 1 • exit 
Setup mode command 1 exits setup mode and returns to the main menu. You can also 
retum to the main menu by pressing CtrllC. 

To execute the setup mode command 1: 

1. At the command line on the setup menu, type 1. 

2. Press Return. 

The following is an example of setup mode command 1: 

KDJ11-E Monitor Version 1.0630-Jul-1990 
(C) Digital Equipment Corporation 1990 
Unibus System 
Memory 2048 KW 
EEprom 4 KW 
Time 15:44:37 16-May-90 Wed 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: 

Example 4-8 Setup Mode Command 1 

4.2.6.2 Setup Mode Command 2 • Select Configuration Parameters 
The setup mode command 2 prints out the current status of various parameters and 
allows you to change them. 

When setup mode command 2 is executed, the ROM code prints out the current status of 
all parameters, repeats the first parameter,then waits for your input. 

There are two methods you can use to position the program at the parameter you want to 
change: 

• Press Return until you are positioned at the parameter to be changed. 

• To go directly to the parameter to be changed, enter the letter to the left of the 
parameter. 

To change a parameter, enter the new value and press Return. The ROM code proceeds 
to the next parameter. 

NOTE 
Changes made under setup mode are ignored unless they are saved in the 
EEPROM using setup mode command 8 (Section 4.2.8.9). 

To execute setup mode command 2: 

1. At the command line on the setup menu, type 2. 

2. Press Return. 

The following is an example of setup mode command 2: 



Boot ROMs and Diagnostics 4-13 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

A Memory Intern (0) = 2MB (1) 

B Rom on 173000 (0) = No (1 ) 

C Rom on 165000 (0) = No (1 ) 

D Power-up Mode (0) Dialog 
(1) = Odt 
(2) Trap24 
(3) = Auto 

E Restart Mode (0) = Dialog 
(1) Odt 
(2) Trap24 
(3) Auto 

F Power-on Self-tests (0) == No (1) 

G Alternate Boot Block (0) No (1) 

H LTC Register (0) No (1) 

I Force Clock Interrupt (0) No (1) 

J Clock Frequency (0) Pis 
(1) 50Hz 
(2) 60Hz 
(3) 800Hz 

K Halt on Break (O) No (1) 

L Trap on Halt (O) No (1) 

M Ignore Battery (0) No (1) 

N Lines on (O) DIS 
(1) 176500 
(2) 176600 

0 Disable UBA ROMtt (0) No (1) 

P Enable UBA 18-Bit Mode8 (0) No (1) 

Type CTRL Z to exit or press Return key to proceed 

Example 4-9 Setup Mode Command 2 

o UNIBUS system only 

- 4MB = 1 

== Yes = 1 

Yes 0 

0 

0 

Yes 1 

Yes 0 

Yes 1 

Yes 0 

2 

Yes 0 

Yes 0 

Yes 0 

= 1 

Yes 1 

Yes 0 

A description of each parameter that can be changed using setup code command 2 follows: 

A - Memory Intern 

The KDJII-E CPU module contains the following on-board memory: 
KDJII-EA Contains 2 Mbyte of on-board memory. 

KDJII-EB Contains 4 Mbyte of on-board memory. 

If the amount of memory selected does not match the memory on-board, the message 
Mem mismatch prints. This parameter has no effect on the KDJII-EA 

The KDJII-EB contains 4 Mbyte of on-board memory. For some applications it may be 
desirable to disable the top 2 Mbyte of memory. 



4-14 Boot ROMs and Diagnostics 

Table 4-3 describes the variations of the memory intern parameter. 

Table 4-3 Memory Intern Parameter Variations 

settin, 
o 
1 

Description 

2Mbyte 

4Mbyte 

B • ROM on 173000 

This parameter sets/resets bit 7 of the eSR at address 17777520. 

The KDJ11-E ROM code responds to the addresses from 17773000 through 17773777. 
This address range is automatically enabled at power up or after the restart switch is 
enabled regardless of the setting of this parameter. 

Table 4-4 describes the variations of the ROM on 173000 parameter. 

Table 4-4 ROM on 173000 Parameter Variations 

Value Description 

o KDJ11-E ROM code disabled. 

1 KDJ11-E responds to addresses 17773000 - 17773777. Factory settin,. 

C - ROM on 165000 

This parameter allows you to disable the ROM. It sets/resets bit 6 of the eSR at address 
17777520. 

Table 4-5 describes the variations of this parameter. 

Table 4-5 ROM on 165000 Parameter Variations 

Value Description 

o The KDJ11-E does not respond to addresses 17765000 - 17765777. Factory 
settin,. 

1 Enables internal EEPROM or the boot EPROM to respond to addresses 
17765000 - 17765777. 

o . Power-up Mode and E • Restart Mode 

There' are four mode choices for either the power-up mode or the restart mode: 

• Dialog mode 

• ODTmode 

• Trap 24 mode 

• Automatic boot mode 



Boot ROMs and Diagnostics 4-15 

When the ROM code is started, it checks a status bit to determine if the unit is powering 
up or if the restart switch was activated. The ROM code then uses the appropriate mode 
selected. You can define the action taken by the ROM code at power-up or restart to be 
the same or different. 

• Dialog mode 

In dialog mode, all selected tests are executed at power-up unless power-up self-tests 
are disabled. Dialog mode allows you to: 

- Boot a device 

- List boot programs available 

- Run ROM resident tests 

- Print a map of all 110 page locations 

- Enter setup mode to list and change all parameters in the EEPROM. 

- Enter time and date for TOY clock. 

• ODT mode 

At completion of a very limited set of tests, the ROM code executes a halt instruction 
and passes control to Jll micro-ODT. This mode is used in debug environments. 
The ROM code does not change any locations in memory before entering ODT mode 
(Chapter 3). 

• Trap 24 Mode 

At the completion of a limited set of tests, the ROM code loads the PSW with the 
content~ of location 26 and then transfers control to the address in location 24. This 
mode is used when power fail recovery is desired. 

• Automatic boot mode 

In automatic boot mode, all selected tests are executed at power-up unless power-up 
self-tests are disabled. 

NOTE 
If the force dialog switch (85 on the KDJll·E CPU 'module> is on, the ROM 
code enters dialog Mode at power-up or restart regardless of the selections 
in the EEPROM. 

The ROM code enters an automatic boot routine that tries to boot a previously 
selected device or devices. The list of devices can be from one to six devices long. 
Each device is tried sequentially until a successful boot occurs or the end of the boot 
table is reached. 

ROM mode is a special automatic boot mode that is entered as a power-up/restart 
option to boot specific devices when one or more of switches 2 through 4 on the 
KDJII-E CPU module are set. 

When switches 2 through 4 of the KDJII-E CPU module are set to one of the six 
combinations shown in Table 4-6 and force dialog mode is not selected, ROM mode 
is entered. The mode attempts to boot only the one device selected by this command. 
If the boot is unsuccessful, the ROM code prints out the normal error message and 
enters dialog mode. 



4-16 Boot ROMs and Diagnostics 

Table 4-6 ROM Mode Switch Settings 

Switches Settings Description 

2 3 4 off off off Normal Automatic Boot Mode. (Does not enter ROM mode.) 

2 3 4 on on off Device 1 in list/change boot parameters. 

2 3 4 on off on Device 2 in list/change boot parameters. 

2 3 4 on off off Device 3 in list/change boot parameters. 

2 3 4 off on on Device 4 in list/change boot parameters. 

2 3 4 off on off Device 5 in list/change boot parameters. 

2 3 4 off off on Device 6 in list/change boot parameters. 

NOTE 
See Section 4.2.6.5 to add or delete devices from the boot device block. 

F - Power-on Self-tests 
Mer a power-up sequence, the diagnostic tests contained in the ROM code are executed. 
Control is passed to the ROM code and a comprehensive set of diagnostic tests check the 
KDJII-E and UNIBUS adapter. Upon completion of the on-board diagnostics, control is 
passed to the previously selected power-up mode option. 

NOTE 
The force dialog switch (86) on the KDJII-E CPU module must be off. 

Table 4-7 describes. the variations of the power-on self-tests parameter. 

Table 4-7 Power-On Self-Tests Parameter Variations 

Value 

o 
1 

NOTE 

Description 

No self-tests performed after a power-up. 

Self-tests performed after a power-up. Factory setting. 

Power-on self-tests are not executed if: 

• If power-up mode is set to Trap 24. 

• If power-up mode is set to ODT. 

• If ROM code is entered by depressing the RESTART switch on the front 
panel. . 

G - Alternate Boot Block 

When you attempt to boot a device, the ROM code does not transfer control to the booted 
device unless the device looks boatable. 

Some poking around is done by the ROM code to ensure control is never passed to 
unbootable media. For example, a blank pack may have been mounted in a disk drive by 
mistake. 



Boot ROMs and Diagnostics 4-17 

The boot block on all bootable PDP-11 software distributed by Digital Equipment 
Corporation has the following format: 

• Location 0 can range from 240 to 277. Normally this locatio~ contains a no operation 
command (240). 

• Location 2 can range from 400 to 777. This is an unconditional branch instruction. 

Table 4-8 describes the variations of the alternate boot block parameter. 

Table 4-8 Alternate Boot Block Parameter Variations 

Value 

o 

1 

NOTE 

Description 

Standard format bootblock. Factory setting. If this parameter is set to 0, 
the ROM code looks for memory location 0 to be a value of 240 to 277 and for 
memory, location 2 to be 400 to 777. If the data found is within those ranges, 
the ROM code assumes that bootable media is present. At this point, the ROM 
code passes control to the secondary boot program starting at memory address 
o. If the data in memory location 0 or 2 is not within the range specified above, 
the ROM code will type out an error message indicating that the media is not 
bootable. (Boot block error) 

Nonstandard format for the boot block. No poking around is done by the ROM 
code to determine if the media is bootable. All the ROM code does is verify that 
memory location 0 does not contain a halt instruction (000000). 

When this parameter is set to 1 the ROM code looks for location 0 of the boot 
block to be any nonzero number. If a nonzero number is found, control is passed 
unconditionally to the secondary boot starting at memory location O. 

This allows you to boot media that is in nonstandard format. 

The ROM code checks location 0 or 2 after the boot block (normally block 0) is 
loaded into memory. 

NOTE 
USERBOOT programs are not checked to see if they are bootable. 

H· LTC Register 

Table 4-9 describes the variatio'ns of the LTC register parameter. 

Table 4-9 LTC Register Parameter Variations 

Value 

o 

1 

Description 

Disables the KDJII-E line time clock register to allow you to place a customer 
time clock at this address. 

Enables the KDJII-E line time clock register. Factory setting. 



4-18 Boot ROMs and Diagnostics 

I - Force Clock Interrupt 

Table 4-10 describes the variations of the force clock interrupt parameter. 

Table 4-10 Force Clock Interrupt Parameter Variations 

Value 

o 

1 

NOTE 

Description 

Factory setting. The clock can request interrupts only if: 

• The clock CSR is enabled, parameter H LTC Register = 1 

• The interrupt enable bit, CSR bit 6, is set at address 17777546. 

• The processor priority is 5 or less. 

The clock unconditionally requests interrupts when the processor priority is 5 or 
less. 

If the force clock interrupt is selected, always disable the clock eSB, because 
the eSB has no control over the clock. 

J - Clock Frequency 

The clock frequency parameter determines the source of the clock to be used. 

Table 4-11 describes the variations of this parameter. 

Table 4-11 Clock Frequency Parameter Variations 

Value 

o 

1 

2 

3 

Source 

Clock sourced from power supply, at backplane pin BRI. The power supply 
drives this signal at 50 or 60 Hz. Factory settin •• 

Clock sourced internally at 50 Hz from KDJII-E. 

Clock sourced internally at 60 Hz from KDJII-E. 

Clock sourced internally at 800 Hz from KDJII-E. 

K - Halt-on-Break 

Table 4-12 describes the variations of the halt-on-break parameter. 

Table 4-12 Halt-on-Break Parameter Variations 

Value 

o 
1 

Description 

Console breaks are ignored from the Break key on terminal. Factory settin •• 

Enables the processor to halt if the console SLU detects a break condition from 
the Break key on terminal. 



Boot ROMs and Diagnostics 4-19 

L - Trap on Halt 

Table 4-13 describes the variations of the trap-on-halt parameter. 

Table 4-13 Trap-on-Halt Parameter Variations 

Value 

o 

1 

Description 

Factory setting. The processor enters Jll micro-ODT if a haIt instruction is 
executed in kernel mode. 

The processor traps to location 4 if a halt instruction is executed in kernel mode. 

M- Ignore Battery 

The ignore battery parameter is used only when the current power up or restart mode is 
set to 24 (3). 

Table 4-14 describes the variations of this parameter. 

Table 4-14 Ignore Battery Parameter Variations 

Value 

o 

1 

N - Lines On 

Description 

Factory setting. The battery OK signal (BOK) must be present to execute Trap 
24. Battery OK indicates that the memory contents were not corrupted as a 
result of a power failure. If BOK is not set, Trap 24 mode is not executed and 
dialog mode is entered. 

Trap 24 mode is executed regardless of the status of the battery OK bit. This 
mode is used if you have custom battery back-up hardware. In this case, the 
battery OK bit may not reflect the actual state of the memory on the KDJII-E. 

The lines on parameter allows you to select the starting address/vector of serial lines 1 
through 7. The priority level is set to 4 and cannot be changed. 

To select other parameters for SLUs 1 through 7 (such as baud rate, number of data bits, 
stop bits or pality), use setup mode command 4 (Section 4.2.6.4). 

Table 4-15 describes the variations of the lines on parameter. 

NOTE 
Mter selecting and saving the desired starting address/vector for this 
parameter, the system must be powered down and then rebooted for the change 
to occur. 



4-20 Boot ROMs and Diagnostics 

Table 4-15 Lines On Parameter Variations 

Value Description 

o Disables SLUs 1 through 7. SLUs do not respond to any address and cannot be accessed. 

1 SLUs respond to the following addresses/vectors: 

UNIBUS 
Address 

176500 

176510 

176520 

176530 

176540 

176550 

176560 

176670 

Vector 

300 

310 

320 

330 

340 

350 

360 

370 

SLUNumber 

1 

2 

3 

4 

5 

6 

7 

8 

Line 8 is included in the list only if the KDJII-E is 
disabled. The KDJI1-E is disabled if switch 1, disable 
console serial line unit, located on the KDJI1-E is set to 
the on position.· In this case a console SLU, a DLll for 
example, must be provided by the user. 

2 SLUs respond to the following addresses/vectors: 

UNIBUS 
Address 

176600 

176610 

176620 

176630 

176640 

176650 

176660 

176670 

Vector 

400 

410 

420 

430 

440 

450 

460 

470 

SLUNumber 

1 

2 

3 

4 

5 

6 

7 

8 

Line 8 is included in the list only if the console/SLU is 
disabled. The consoleiSLU is disabled if switch 1, disable 
console serial line unit, located on the KDJII-E, is set to 
the on position. In this case a console SLU, a DLll for 
example, must be provided by the user. 



Boot ROMs and Diagnostics -4-21 

o . Disable UBA ROM (UNIBUS Systems Only) 
Table 4-16 describes the variations of the disable UBA ROM parameter. 

Table 4-16 Disable UBA ROM Parameter Variations 

Value Description 

o Enables the UBA ROMs. Factory setting. 

1 Disables the UBA ROMs. This allows other ROM boards on the UNmUS to 
show up in the UBA ROM address range of 17773000 to 17773776. 

NOTE 
If the ROM code is booting directly from an M9312 type boot ROM located on 
the M9312 module, the ROM code automatically disables the CPU ROM in the 
17773nnn address range and the ROMs on the UBA module and uses the ROMs 
on the M9312 module. This action is taken regardless of the status of the disable 
UBA ROM parameter and the disable ROM parameter. 

P • Enable UBA 18-BIt Mode (UNIBUS system Only) 
Table 4-17 describes the variations of the enable UBA IS-bit mode parameter. 

Table 4-17 Enable UBA 18·BII Mode Parameter Variations 

Value Description 

o Selects 22-bit addressing. Factory setting. 

1 Selects 1S-bit addressing. 

4.2.6.3 Setup Mode Command 3 • Select Diagnostic Configuration 
This command allows you to select or deselect individual tests (Example 4-10). The 
tests selected here are run when power-on self-tests (Section 4.2.6.2) and the diagnostic 
command (Section 4.2.2) are enabled. 

NOTE 
To run the diagnostic command, changes to the self-test menu do not need to be 
saved. 

To execute setup mode command 3: 

1. At the command line on the Setup Menu, type 3. 

2. Press Return. 

The following is an example of Setup Mode Command 3: 



4-22 Boot ROMs and Diagnostics 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

A Nr. 67 CPU Test (0) = No (1) .. Yes - 1 

B Nr. 66 MMU Test (0) - No (1) - Yes - 1 
C Nr. 65 Pre-Console Test (0) - No (1) - Yes - 1 

D Nr. 64 MSER Test (0) - No (1) - Yes - 1 

E Nr. 63 CCR r/w Test (0) - No (1) - Yes - 1 

F Nr. 62 HIT/MISS-Reg Test (0) - No (1) - Yes - 1 

G Nr. 61 LTC Speed Test (0) - No (1) - Yes - 1 

H Nr. 60 Add-Stat-Reg Test (0) - No (1) - Yes - 1 

I Nr. 57 CPU-Err-Reg Test (0) - No (1) - Yes - 1 

J Nr. 55 USA reg. resp. Teste (0) - No (1) - Yes - 1 

K Nr. 54 Address 0 Test (0) - No (1) - Yes - 1 

L Nr. 53 Pre-Memory (0-4KW) Test (0) - No (1) - Yes - 1 

M Nr. 52 FPA Register Test (0) - No (1) - Yes - 1 

N Nr. 51 FPA Function Test (0) - No (1) - Yes - 1 

0 Nr. 50 Int Mem Address Test (0) - No (1) - Yes 
- 1 

P Nr. 47 Int Mem Data Test (0) - No (1) - Yes - 1 

Q Nr. 46 PIRQ-Reg Test (0) - No (1) - Yes - 1 

R Nr. 45 LTC Int Test (0) - No (1) - Yes - 1 

S Nr. 44 Lines Config. Test (0) - No (1) - Yes - 1 

T Nr. 43 Serial Lines Test (0) - No (1) - Yes - 1 

U Nr. 40 Memory parity Test (0) - No (1) - Yes - 1 

V Nr. 37 USA map reg Test. (0) - No (1) - Yes - 1 

W Nr. 36 USA NPR Cycle Test (0) - No (1) - Yes - 1 

X Nr. 32 Loopback SLU Test (0) - No (1) - Yes - 0 

Y Nr. 31 Extended Memory Test (0) - No (1) - Yes - 0 

Z Nr. 30 All Selected Tests (0) - No (1) - Yes - 0 
Type CTRL Z to exit or press Return key to proceed 

Example 4-10 Setup Mode Command 3 • Select Diagnostic Configuration 

• UNIBUS system only 



Boot ROMs and Diagnostics 4-23 

4.2.6.4 Setup Mode Command 4 • SeleCt Serial Line Parameters 
This command prints out the current status of selectable parameters for SLUs 1 through 
7 and then allows you to change them if desired. 

The following parameters can be modified for SLUs 1 through 7: 

Parameter 

Baud rate 

Number of data bits 

Number of stop bits 

Parity 

NOTE 

Values 

300,600, 1200,2400,4800,9600, 19,200, 38,400 

7 or 8 

lor 2 

Even, odd, or disabled 

The following parameters are fixed for the console/SLU: 
Baud rate 

Number of data bits 

Number of stop bits 

Parity 

Set by using switches 6, 7, 8 on the KDcJ11-E. 

8 

1 

None 

To execute the setup mode command 4: 

1. At the command line on the setup menu, type 4. 

2. Press Return. 



4-24 Boot ROMs and Diagnostics 

The following is an example of Setup Mode Command 4: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

A Line 1 Baudrate 

Line 1 Data bits 

Line 1 Stop bits 

Line 1 Parity 

G Line 7 Baudrate 

Line 7 Data bits 

Line 7 Stop bits 

Line 7 Parity 

(0) - 300 
(1) - 600 
(2) - 1200 
(3) - 2400 
(4) - 4800 
(5) - 9600 
(6) - 19200 
(7) - 38400 

(0) - 8 

(0) - 2 

(0) - Even 
(1) - Odd 
(2) - Dis 

(0) - 300 
(1) - 600 
(2) - 1200 
(3) - 2400 
(4) - 4800 
(5) - 9600 
(6) - 19200 
(7) - 38400 

(0) - 8 

(0) - 2 

(0) - Even 
(1) - Odd 
(2) - Dis 

(1) -

(1) -

(1) -

(1) -

Type <CTRL> Z to exit or press Return key to proceed 

Example 4-11 setup Mode Command 4 

- 5 

7 - 0 

1 - 1 

- 2 

- 5 

7 - 0 

1 - 1 

- 2 



Boot ROMs and Diagnostics 4-25 

3. If you do not want to change any parameters, enter CtrllZ to return to the setup 
menu. 

4. If you want to change parameters, there are two methods you can use to position the 
program at the parameter you want to change: 

a. Press Return until positioned at the parameter to be changed. 

b. Type one of the following letters: 
A '1b change parameters for line 1 

B '1b change parameters for line 2 

C '1b change parameters for line '3 

D '1b change parameters for line 4 

E '1b change parameters for line 5 

F '1b change parameters for line 6 

G '1b change parameters for line 7 

5. Press Return. The ROM code proceeds to the next parameter. 

4.2.6.5 Setup Mode Command 5· Select Boot Parameters 
This command allows you to list current boot parameters for the power-up/restart mode 
of Autoboot and to modify the Autoboot table. 

To execute the setup mode command 5: 

1. At the command line on the setup menu, type 5. 

2. Press Return. 

The following is an example of setup mode command 5: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

List/change boot parameter 
Device Unit Address 

Boot 1 : Switches 2,3,4 on on off = OM ROM 0 Default 
Boot 2: Switches 2,3,4 on off on = DL ROM 0 Default 
Boot 3: Switches 2,3,4 on off off = TT USR 0 000000 
Boot 4 : Switches 2,3,4 off on on = DL UBA 0 Default 
Boot 5: Switches 2,3,4 off on off = blank 
Boot 6: Switches 2,3,4 off off on = blank 

Type CTRL Z to exit or press Return key to proceed 

Example 4-12 Setup Mode Command 5 • Boot Parameters Menu 

3. If you want to return to the setup menu, enter CtrllZ. 

4. To proceed, press Return. 

The following is an example: 

Boot 1: Switches 2,3,4 on on off = OM ROM 0 Default 
80evice name 
ttBoot location (0) = USR (1) = ROM (2) = UBA(UNIBUS system only) 

(3) = M93(UNIBUS system only) = 1 
tlunit number = 0 
.Address 

Boot 2: Switches 2,3,4 on off on 
Device name 

DL ROM 0 Default 



4-26 Boot ROMs and Diagnostics 

• Device Name 

The ROM code prompts you for a device name. The previous mnemonic is displayed. 
You can change the device by typing a new two-letter mnemonic associated with the 
device to be selected. Pressing Return leaves the parameter unchanged. 

Table 4-18 lists the default boot programs in the CPU ROM. Your system may 
contain boot programs that are not on this list. 

Table 4-18 Default Boot Programs 

Device Unit 
Name Numbers Source Device Type 

DU 

DL 

DX 

DY 

MS 

MT 

MU 

NE 

NF 

NU 

XlI 

0-255 ROM MSCP (RAn, RDxx, RX50, RC25, ... ) 

0-3 ROM RL011RL02 

0-1 ROM RX01 

0-3 ROM RX02 

0-1 ROM TK.25, TS04l05/11, TU80 (Q-bus only) 

0-1 ROM TU10, TE10, TS03 (UNmUS only) 

0-255 ROM TMSCP (TK50, TU81, ..• ) 

0-15 ROM DECNET DLV11-E (Q-bus only) 

0-15 ROM DECNET DLV11-F (Q-bus only) 

0-15 ROM DECNET DUV11 (Q-bus only) 

0 ROM ETHERNET (Q-bus only) 

NOTE 
To print a complete list of all avaUable bootstraps and associated 
mnemonics, use the list commAnd. 

• Boot Location 

The ROM code requires you to enter the location of the boot code. The default is the 
the standard on-board ROM. 
Where: 

USR User previously created a User Boot. Boot code is located in the User Boot 
area. 

Standard default area. 

M9312-type ROMs located in the ROM sockets of the UNIBUS Adapter 
Module. 

M9312-type ROMs located in the ROM sockets of the optional M9312 module 
on the UNIBUS. 

1 lJNIBUS system only 

• Unit Number 

The ROM code prompts for the unit number. Type in the unit number of the device 
to be booted. . 



Boot ROMs and Diagnostics 4-27 

• Address 

To select the default address press Return. 

Enter an address if the device CSR is set at a nonstandard or floating address. 

The ROM code continues to prompt for all six boot entries shown in Example 4-12. 

If you do not want to change any items in Example 4-12, press CtrllZ to return to the 
setup command menu. You can also skip any entry by pressing Return for each entry you 
want to skip. 

The ROM code continues to prompt for all six entries in Example 4-12. 

Autoboot Mode 
Autoboot mode allows you to select the devices to be tried in the automatic boot sequence. 
You can create a list that defines the devices and the order in which they are tried. One 
entry is needed to define a device and its unit number. If the same device is used more 
than once with different unit numbers, then one entry is needed for each unit number. 
The ROM code attempts to boot the devices you have defined in Example 4-12, starting 
with boot 1. If the autoboot is unsuccessful, an error message is printed and the ROM 
code enters dialog mode. 

ROM Mode 
ROM Mode is entered when Autoboot is selected as a power-up/restart option and one or 
more of switches 2 through 4 of the KDJ11-E CPU module are set. 

When switches 2 through 4 of the KDJ11-E are set to one of the six combinations shown 
in Table 4-19 and force dialog mode is not selected, the ROM code enters a special 
autoboot mode called ROM mode. ROM mode attempts to boot only the one device 
selected by this command. If the boot is unsuccessful, the ROM code prints out the 
normal error message and enters dialog mode. 

Table 4-19 ROM Mode 

Switches Settings Description 

2 3 4 off off off Normal Automatic Boot Mode. 

2 3 4 on on off Device 1 in list/change boot parameters. 

2 3 4 on off on Device 2 in list/change boot parameters. 

2 3 4 on off off Device 3 in list/change boot parameters. 

2 3 4 off on on Device 4 in list/change boot parameters. 

2 3 4 off on off Device 5 in list/chapge boot parameters. 

2 3 4 off off on Device 6 in list/change boot-parameters. 

2 3 4 on on on Normal Automatic Boot Mode 

4.2.6.6 Setup Mode Command 6 • List Available Boot Programs (for UNIBUS System) 
To execute the setup mode command 6: 

1. At the command line on the setup menu, type 6. 

2. Press Return. 



4-28 Boot ROMs and Diagnostics 

The following is an example of setup mode command 6: (UNIBUS System) 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 • • Device Unit tt tt 
Name Numbers Source Device Type 

o USR AB 
TT 
DU 
DL 
DX 
DY 
MT 
MU 
DL 

o USR 
0-255 ROM 
0- 3 ROM 
0- 1 ROM 
0- 3 ROM 
0- 1 ROM 
0-255 ROM 
0- 3 USA 

MSCP (RAxx, RDxx, RX50, RC25, ..• ) 
RL01/RL02 
RXOl 
RX02 
TU10, TE10, TS03 
TMSCP (TK50, TU81, ••• ) 
RL01/RL02 

Press RETURN key when ready to continue 

Example 4-13 Setup Mode Command 6 (UNIBUS System) 

• Device name is a two-letter mnemonic. The device name must be alpha characters. 
At input, the ROM code converts all lowercase letters to uppercase letters. 

• Unit numbers is the allowable range of unit numbers that is valid for a particular 
boot program. The range varies from 0 to 255, depending on the device. If the unit 
numbers range information is blank, the ROM code assumes the range limit is 0 to 
255. 

• Source lists where the actual boot program is located: 

Physical Location of Boot ROM 

User boot area 

CPU EPROM 

ROM sockets on the UNmUS adapter 
module1 

M93121 

1 UNIBUS system only 

Source 

USR 

ROM 

UBA 

M93 

• Device Type is a description of the device to be booted. It is the name on the outside of 
the device to be booted. For example, the description for a device name DL is RL02, 
which is the name on the outside of the physical device. 

The mnemonic for each ROM found on either the UBA or the M9312 is checked against 
the list of mnemonics in the ROM code. If the mnemonic matches an item in this list, the 
ROM code prints out a description of that device. If no match is found, the description is 
left blank for that mnemonic. 



Boot ROMs and Diagnostics 4-29 

4.2.6.7 Setup Mode Command 6 - List Available Boot Programs (Q-bus System) 
To execute the setup mode command 6: 

1. At the command line on the setup menu, type 6. 

2. Press Return. 

The following is an example of setup mode command 6: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

• • Device Unit • • Name Numbers Source Device Type 

AB 0 USR 
TT 0 USR 
DO 0- 1 ROM TU58 
OK 0- 7 ROM RK05 
MS 0- 1 ROM TK25, TS04/05/11, TU80 
NE 0- 15 ROM DECNET DLV11-E 
NF 0- 15 ROM DECNET DLV11-F 
NU 0- 15 ROM DECNET DUV11 
DU 0-255 ROM MSCP (RAxx, RDxx, RX50, RC25, ... ) 
DL 0- 3 ROM RL01/RL02 
OX 0- 1 ROM RX01 
DY 0- 3 ROM RX02 
MU 0-255 ROM TMSCP (TK50, TU81, ... ) 
Press RETURN key when ready to continue 

Example 4-14 Setup Mode Command 6 (Q-bus System) 

• Device Name is a two-letter mnemonic. The device name must be alpha characters. 
At input, ROM converts all lowercase letters to uppercase letters. 

• Unit Numbers is the allowable range of unit numbers that is valid for a particular 
boot program. The range varies from 0 to 255, depending on the device. If the unit 
numbers range information is blank, ROM assumes the range limit is 0 to 255. 

• Source lists where the actual boot program is located: 

Physical Location of Boot ROM 

CPU EPROM 

USERBOOT area 

Source 

ROM 

USR 

• Device 'IYpe is a description of the dev.ice to be booted. It is the name on the outside of 
the device to be booted. For example, the description for a device name DL is RL02, 
which is the name on the outside of the physical device. 

4.2.6.8 Setup Mode Command 7· Factory Setting 
This command initializes the current contents of the values in the setup menu table to 
the default factory settings. 

To execute the setup mode command 7: 

1. At the command line on the setup menu, type 7. 

2. Press Return. 



4-30 Boot ROMs and Diagnostics 

The following is an example of setup mode command 7: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Factory setting 

Example 4-15 Setup Mode Command 7 

3. Execute setup mode command 8, if you want to save the values in the setup table 
into the EEPROM. 

4.2.6.9 Setup' Mode Command 8 • Save the Setup Table In the EEPROM 
NOTE 
All changes made in setup mode will be lost if setup mode command 8 is 
executed. 

This command permanently saves the current parameters of the setup table in the 
EEPROM. 

To execute the setup mode command 8: 

1. At the command line on the setup menu, type 8. 

2. Press Retum. 

The following is an example of setup mode command 8: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Saving setup table in the EEPROM, please wait 

Example 4-16 Setup Mode Command 8 

4.2.6.10 Setup Mode Command 9· Load EEPROM Data Into the Setup Table 
This command restores the setup table in memory with the values stored in the EEPROM 
during the last save. You can also restore the setup table after making temporary 
changes. 

To execute the setup mode command 9: 

1. At the command line on the setup menu, type 9. 

2. Press Retum. 

The following is an example of setup mode command 9: 



KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Load EEPROM data into the setup table 

Example 4-17 Setup Mode Command 9 

Boot ROMs and Diagnostics 4-31 

4.2.6.11 Setup Mode Command 10· Load EEPROM Boot Program Into Memory 
When this command is executed, the ROM code loads a previously created user boot 
program. The ROM code asks for the device name of an EEPROM boot to be loaded in 
memory. 

To execute setup mode command 10: 

1. At the command line on the setup menu, type 10. 

2. Press Return. 

3. Enter the two-letter mnemonic of the boot program to load: 

Device name New - TT 

The following is an example of setup mode command 10: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Loading EEprom boot program 

Type CTRL Z to exit or press Return key to proceed 

Example 4-18 Setup Mode Command 10 

NOTE 
Setup mode command 10 only loads the program. To examine or edit the 
user boot program, use setup mode command 11. 

4.2.6.12 Setup Mode Command 11 • Edit or Create EEPROM Boot Program 
This command is used to either create a new EEPROM boot program or to edit a program 
previously loaded using setup mode command 10. 

You can change or enter the: 

• Device name 

• Beginning address of the user boot program 

• Ending address of the user boot program 

• Start address 

~ Highest unit number 

• Device description 

When these changes are complete, the ROM code enters ROM ODT which is a RO~ code 
version of Jll micro-ODT. When this command is first entered, it lists the available space 
in the EEPROM for boots. 

CAUTION 
To ensure the new or edited user boot program is not lost, you must save it 
using setup mode command 12. 



4-32 Boot ROMs and Diagnostics 

To execute setup mode command 11: 

1. At the command line on the setup menu, type 11. 

2. Press Return. 

The following is an example of setup mode command 11: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

User boot editor 

Type CTRL Z to exit or press Return key to proceed 

11630 Bytes free in the EEPROM 

Ooevice name 

tlBeginning address 

ttLast byte address 

estart address 

tlHighest unit number 

tIoevice description 

.nter ROM ODT 

- TT 

- 01000 

- 01010 

- 01000 

- 000 

xxxxxx/ - open word location xxxxxx if address even; byte if odd 
RETURN - close location 
• or LF - close location and open next 

- close location and open previous 

ROM OOT > 

Example 4-19 Setup Mode Command 11 

New -

New -

New -

New -

New -

New - test 

• Device name is a two-letter mnemonic for the boot program to be created. 

• Beginning address is the first location of the program in memory. The address range 
is 1000 to 17544. 

The ROM code prints out the old starting address and prompts you for a new starting 
address. Type in a new address or press Retum to accept the old starting address. 

• Last byte address is the address of the last byte of code used in memory. If in doubt, 
use the last address of data + 2 for this value. Do not use a much larger number to 
avoid wasting EEPROM space. 

The ROM code prints out the old ending address and prompts you for a new ending 
address. Type in a new address or press ~tum to accept the old ending address. 

• Start address is the address that the ROM code passes control to. The start address 
does not have to be the same as the beginning address but it must be even and a 
value in the range defined by the beginning and ending addresses. 

• Highest unit number defines the allowable range of valid unit numbers for this device. 
If the value is set to 3, the allowable range is 0 to 3. If a unit number is typed in at 
boot time and it is not in range, an invalid unit number error occurs. 

• Device description is an optional but recommended description of the device name. 
The name should be the name that is physically marked on the outside of the device 
(for example, RA.82). 



Boot ROMs and Diagnostics ·4-33 

NOTE 
After entering the device description, ROM ODT is automatically entered • 

• Enter ROM ODT - At this time, a new program can be entered or an existing 
program can be edited/examined using ROM ODT. ROM OnT uses the commands 
in Table 4-20. 

CAUTION 
After creating or editing a user boot program, use setup mode command 12 to 
save it. If you do not save the program, it is lost. 

To exit ROM ODT mode, press Ctr1lZ. 

Table 4-20 ROM ODT Commands 

Command Symbol Description 

Slash / Prints contents of specified location or if no address is defined, 
then the contents of the last location that was opened prints. 
If the location opened is an odd number, then only the 
contents of the byte prints. If location is even, the mode is 
word. If location is odd, the mode is byte. Leading zero's are 
assumed. Only bits 15 through zero of the address are used. 

Return <CR> Closes an open location. 

Line Feed <LF> Closes an open location and opens the next location. If the 
mode is word, the address is incremented by 2. If the mode is 
bytes, the address is incremented by 1. 

Period Alternate character for line feed. This command is useful 
when the terminal is a VT2xx senes terminal. It is also 
convenient to use with the keypad. 

Minus Alternate character for the up arrow on the cursor control 
keypad. This command is useful when the terminal is a 
VT2xx series terminal. It is also convenient to use with the 
keypad. 

Delete DELETE Deletes the previously typed character. 

CTRLZ AZ Exits ROM ODT and returns to Setup mode. 

4.2.6.13 Setup Mode Command 12· Save a Boot Program In the EEPROM 
This command allows you to save the user boot program created or edited in setup mode 
command 11 into the EEPROM. This is the only command that actually writes a boot 
into the EEPROM. 

When saving a boot program into memory, the device name of the program must not 
match the name of an existing program in the EEPROM. If the program name already 
exists, you must delete that program first or change the name of the program to be saved. 

NOTE 
The save procedure can take up to two minutes at the full length of 8 Kbytes. 

To execute the setup mode command 12: 

1. At the command line on the setup menu, type 12. 

2. Press Return. 



4-34 Boot ROMs and Diagnostics 

Example 4-20 shows the setup mode command 12: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Saving boot program 

Are you sure YIN? Y 

Saving Boot,wait-

Example 4-20 Setup Mode Command 12 • Save a Boot Program In the EEPROM 

4.2.6.14 Setup Mode Command 13· Delete a Saved EEPROM Boot Program 
This command allows you to delete an EEPROM boot. If this command is executed the 
ROM code asks for the device name of the EEPROM boot to be deleted. After the device 
name is input, the ROM code looks for the first boot program in the EEPROM. If it finds 
the boot program, the ROM code deletes it. 

To execute setup mode command 13: 

1. At the command line on the setup menu, type 13. 

2. Press Return. 

The following is an example of setup mode command 13: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Del saved boot 

Type CTRL Z to exit or press Return key to proceed 

Device name == TT New - JP 

Example 4-21 Setup Mode Command 13 

3. Press Return. The following is displayed: 

Are you sure? Y!N? 

4.2.6.15 Setup Mode Command 14· Enter ROM ODT 
This command enters ROM ODT. The ROM code opens up the address defined by the 
beginning address of the program. ROM ODT is not the same as J11 micro-ODT. The 
only purpose of ROM ODT is to allow the user to create or edit a small bootstrap program 
to be stored in the EEPROM. 

In ROM ODT, the only allowable addresses that can be examined are the addresses of 
memory from 0-28 KW (0-00157776). Any other addresses and any attempt to access the 
110 page or any registers are not allowed. 

Rom ODT uses the commands listed in Table 4-20. 

To execute setup mode command 14: 

1. At the command line on the setup menu, type 14. 

2. Press Return. 



Boot ROMs and Diagnostics 4-35 

The following is an example of setup mode command 14: 

KDJII-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 19~0 

Enter ROM ODT 

xxxxxx/ = open word location xxxxxx if address even; byte if odd 
RETURN - close location 
. or LF = close location and open next 

= close location and open previous 

ROM COT > 

Example 4-22 Setup Mode Command 14 

3. To exit ROM ODT mode and retum to the setup menu, press CtrllZ. 

4.2.7 TOY Command 

The TOY command allows you to change the time and date of the TOY clock. The time is 
in 24-hour format. 

To execute the TOY command: 

1. Enter T. 

2. Press Retum. 

The following is an example of the TOY command: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 
UNIBUS System 
Memory 2048 KW 
EEprom 4 KW 
Time 15:44:37 30-May-90 Wed 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy] 
Type a command then press the RETURN key: T 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Set time and date 

Use following format: 
For time: HH:MM:SS 

Time: 15:45:20 
Input: 
Date: 16-May-90 
Input: 

For date: DD-MMM-YY 

Commands are: [Boot, Diagnostic, Help, List, Map, Setup, Toy) 
Type a command then press the RETURN key: 

Example 4-23 TOY Command 

4.3 Video Terminal suppon 
This section describes how to operate the KDJI1-E ROM code using video terminal 
support. 



4-36 Boot ROMs and Diagnostics 

4.3.1 Moving Through Menus 

Table 4-21 describes how to move through or execute instructions in the menus. 

Table 4-21 Moving Through Menus 

Key 

Return 

Space bar 

Backspace 

Tab 

t 
1 

H 

CtrllC or CtrllP 

Function 

Executes a Do or an Edit. 

Selects the next value for a parameter. 

Selects the previous value for a parameter. 

In setup menu, moves the cursor to the Save parameter. 1b save changes, 
press Return. 

In the self-test Menu, moves the cursor to the Monitor parameter. 1b 
return to setup menu, press Return. 

In the user boot menu, moves the cursor to the Exit parameter. 1b return 
to the setup menu, press Return. 

In the Map Menu, returns you to the setup menu. 

Moves the cursor up to the next parameter. 

Moves the cursor down to the next parameter. 

Moves the cursor to t1:ae next parameter on the right. 

Moves the cursor to the next parameter on the left. 

Displays a list of all boot programs while in the boot device block. 

Ends self-test and returns you to the setup menu. 

4.3.2 Types of Function Fields • Video Terminal 
Each menu contains function fields which allow you to perform a specific operation. 
There are three types of function fields which are described in Table 4-22. 

Table 4-22 Types of Function Fields 

Field 

Edit 

Do 

Addresses 

4.3.3 Setup Menu 

Function 

This is an executable function. When entered, Edit brings you to 
a submenu such as Self-test, User Boot, or Map. You can make 
modifications through the submenu. Not all fields can be edited. 

This is an executable function. When selected, Do executes a specific 
operation after pressing Return. 

Allows you to enter addresses directly in an octal format. 

The setup menu lists all the parameters in the EEPROM including boot parameters. Use 
the setup menu to modify these parameters. Example 4-24 shows a setup menu. 



Boot ROMs and Diagnostics 4-37 

• KDJ11-E Monitor Version 1.06 30-Jul-1990 Disable UBA ROM1 No 
(C) Digital Equipment Corporation 1990 Enable UB~ 18-Bit Model No 
UNIBUS System Memory Intern 4MB 
Memory 2044 KW Rom on 173000 Yes 
EEprom 4 KW Rom on 165000 No 
&Time 16:17:45 18-May-90 Fri Power-up Mode Dialog 

Restart Mode Dialog 
8Nr Device Unit Address Power-on Self-tests Yes 

1 DU ROM 0 Default Do Select Self-tests Edit 
2 DL ROM 0 Default Do User Boot Edit 
3 TT USR 0 000000 Do Alternate Boot Block No 
4 Do LTC Register Yes 
5 Do Force Clock Interrupt No 
6 Do Clock Frequency PIS 

Halt on Break No 
ltLines Address/Vec Baud Data Stop Par Trap on Halt No 
Line 1 176500/300 9600 8 1 Dis Ignore Battery No 
Line 2 176510/310 9600 8 1 Dis Lines on 176500 
Line 3 176520/320 9600 8 1 Dis 
Line 4 176530/330 9600 8 1 Dis 
Line 5 176540/340 9600 8 1 Dis Map Do 
Line 6 176550/350 9600 8 1 Dis Factory Setting Do 
Line 7 176560/360 9600 8 1 Dis Save Do 

Example 4-24 Setup Menu 

• The time and date from the TOY clock is displayed here. To change the time and 
date: 

1. Move the cursor to the Time field and press Return. 

2. Enter the new time and date in the following format: 

NOTE 
Use the right arrow key to move from the time field to the date field. 

HH:MM:SS DD-MMM-YY 

3. Press Return. The day is automatically entered. 

• The boot device block contains six lines which are divided into five sections: 
Nr 

Dev 

Unit 

Address 

Do 

Represents the sequence number. 

A two letter mnemonic which represents a boot program and its location. 

represents the unit number to be booted from. The space bar moves you to 
the next unit number. 

Default is the standard address. If the device is set at a nonstandard 
address, enter a new address. 

Executes the boot for that line. 

Each line of this boot device block provides you with 12 different boot devices with 
corresponding units and the source where the actual boot program is located. As a 
default setting, three boot devices have been set at the factory. To change the boot 
device, move the cursor to the device and press the space bar to display a different 
device. 

1 UNffiUS system only 



4-38 Boot ROMs and Diagnostics 

A list of resident-supported boot devices can be displayed by positioning the cursor 
anywhere within the boot device block and pressing the H key. An example follows: 

KDJ11-E .Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Device Unit 
Name Numbers Source Device Type 

AB 0 USR 
DU 0-255 ROM MSCP (RAxx, RDxx, RX50, RC25, 
DL 0- 3 ROM RL01/RL02 
OX 0- 1 ROM RX01 
DY 0- . 3 ROM RX02 
MS 0- 1 ROM TK25, TS04/05/11, TU80 
MT 0- 1 ROM TU10, TE10, TS03 
MU 0-255 ROM TMSCP (TK50, TU81, ... ) 
XH 0 ROM ETHERNET 
DL 0- 3 USA RL01/RL02 

Press RETURN key when ready to continue 

Example 4-25 Resldent-Supponec:t Boot Devices 

... ) 

• The SLU setup block individually sets the baud rate and character format for each 
channel as follows: 
Baud rate 300-38400 
range 

Data bits 

Stop bits 

Parity 

t Default setting 

NOTE 

Eight bitst 
Seven Bits 

Two stop bits 
One stop bitt 

Even 
Odd 
No parityt 

The status of the setup is only read during power-up or during an 
initialization (INIT). Changes in the SLU settings are not implemented until 
completion of a successful boot. 

• Configuration parameters allow you to enable or disable various functions or change 
the values of others. Table 4-23 describes each parameter. 

Table 4-23 Setup Menu Configuration Parameters 

Parameter 

Disable UBA 
ROMI 

Description 

Controls the ROMs 
located on the UBA. 

I UNIBUS systems only 

Values 

Yes disables the four ROM sockets. 
No (factory setting) enables the UBA ROMs. It is 
ignored when you try to boot the UBA or the M9312 
boot ROMs. 



Boot ROMs and Diagnostics 4-39 

Table 4-23 (Cont.) . Setup Menu Configuration Parameters 

Parameter 

Enable UBA 
18-bit model 

Memory 
intern 

ROM on 
173000 

Rom on 
165000 

Power-up 
Mode 

Description 

Selects 18- or 22-bit 
addressing modes. 
Its status is copied 
into bit 5 of the UBA 
KTJ11 Memory 
Configuration 
Register (KMCR). 

Allows you to disable 
the top 2 Mbyte 
of memory on a 
4 Mbyte board. 
If the amount of 
memory selected 
does not match the 
memory onboard, 
the message Mem 
mismatch displays. 
This parameter has 
no effect on a 2 
Mbyte board. 

Enables or disables 
the CPU ROM code 
at address 1730000. 

Enables or disables 
the CPU ROM code 
at address 165000. 

When the ROM 
code is started, it. 
checks a status bit 
to determine if the 
unit is powering 
up or if the front 
panel RESTART 
switch was activated. 
The ROM code then 
uses the appropriate 
mode selected. There 
are four power-up 
modes which you can 
select. 

I UNIBUS systems only 

Values 

Yes enables the memory to use 18-bit mode. 
No (factory setting) enables the memory to use 22-bit 
mode. 

2Mbyte 
4Mbyte 

Yes (factory setting) enables the internal boot 
EPROM on the KDJ11-E. When enabled, the boot 
EPROM occupies the address area from 173000 
to 173777. This area consists of 512 words which 
represents one page out of the EPROM. This parameter 
sets/resets bit 7 of the CSR at address 17777520 just 
before transferring control to another boot program. 
The page number can be selected through the bits 15-9 
of the PCR register. 
No disables the internal boot EPROM on the KDJ11-E. 

Yes enables the internal EEPROM or boot EPROM 
depending on bit 6 of the CSR register (17777520). The 
ROM code uses an address area from 165000 to 165776 
for EEPROM or for the boot EPROM, depending on bit 
6 of the CSR register. 
No (factory setting) disables the internal EEPROM. 

Dialog Mode (factory setting) - Force dialog must 
be disabled (85 oft). The setup menu is entered when 
dialog mode is selected. 



4-40 Boot ROMs and Diagnostics 

Table 4-23 (Coni.) Setup Menu Configuration Parameters 

Parameter 

Restart mode 

Power-on 
self-tests 

Select self­
tests 

User boot 

Alternate 
boot block 

Description 

See power-up mode. 

Enables or disables 
power-on self-tests. 

Allows you to enter 
the self-tests menu. 

Allows you to enter 
the user boot menu. 

After the boot block 
of a device is loaded 
into memory, the 
ROM code looks at 
word locations 0 and 
2 to see if the device 
looks bootable. If the 
data is not correct, 
the ROM code types 
out an error message 
indicating that 
the media is not 
bootable. 

Values 

Auto Mode - At the completion of the diagnostics the 
ROM code enters an automatic boot routine that tries 
to boot a previously selected device' or devices. The list 
of devices can be from 1 to 6 devices long. Each device 
is tried sequentially until a successful boot occurs or 
the end of the boot table is reached. 

ROM Mode is a special automatic boot mode that is 
entered as a power-upl restart option to boot specific 
devices when one or more of switches 2 through 4 on 
the KDJII-E are set. 

When switches 2 through 4 of the KDJII-E are set 
to one of the six combinations shown in Table 4-6 and 
force dialog mode is not selected, ROM mode is entered. 
The mode attempts to boot only the one device selected 
by this command. If the boot is unsuccessful, the ROM 
code prints out the normal error message and enters 
dialog mode. See Table 4-6 for switch settings. 

ODT Mode - At completion of a very limited set of 
tests, the ROM code executes a halt instruction and 
passes control to Jll micro-ODT. This mode is used in 
debug environments. The ROM code does not change 
any locations in memory before entering ODT mode. 

Trap 24 Mode - The ROM code loads the PSW with 
the contents of locate 26 and then transfers control 
to the address located in location 24. This mode is 
used when power-fail recovery is desired. The ROM 
code does not change any locations in memory before 
executing mode 24. 

See power-up mode. 

Yes (factory setting) executes all self-tests during a 
power-on. The force dialog switch (85) must be set to 
off. During a restart the self-tests are not performed. 
No disables all self-tests. 

Edit 

Edit 

Yes sets the ROM code to expect location 0 to be any 
nonzero number. 
No (factory setting) 1J8ts the ROM code to look for 
location 0 to be a value of 240 to 277 and for location 2 
to be 400 to 777. 



Boot ROMs and Diagnostics 4-41 

Table 4-23 (Cont.) Setup Menu Configuration Parameters 

Parameter 

LTC register 

Force clock 
interrupt 

Clock 
frequency 

Halt-on-break 

Trap-on-halt 

Ignore 
battery 

Lines on 

Map 

Factory 
setting 

Save 

Description 

Enables/disables the 
LTC register. 

Allows you to 
unconditionally 
force LTC interrupts. 

Determines the 
source of the clock to 
be used. 

Enables the 
processor to halt 
when the break key 
is pressed. 

Enables or disables a 
trap-on-halt. 

This is used only 
when the current 
power-up or restart 
mode is set to 24. 

Changes the 
addresses of the 
serial interfaces 1-7 
from 176500-176560 
to 176600-176660. 

Maps all locations in 
the 110 page. 

Resets all 
parameters to their 
factory settings. 

Saves all 
modifications made 
to the setup menu. 

Values 

Yes (factory setting) enables the clock CSR at 
address 17777546. 
No disables the clock CSR at address 17777546. 

Yes enables the clock to unconditionally request 
interrupts when the processor priority is 5 or less. 
No (factory setting) enables the clock to request 
interrupts only if the clock CSR is enabled, clock CSR 
bit 6 is 1, and the processor priority is 5 or less. 

PS determines the source of the clock to be from 
backplane pin BRI. The power supply normally drives 
this signal at 50 or 60 Hz. 
50 Hz (factory setting) determines the source of the 
clock to be from the KDJII-E at 50 Hz. 
60 Hz determines the source of the clock to be from the 
KDJII-E at 60 Hz. 
800 Hz determines the source of the clock to be from 
the KDJII-E at 800 Hz. 

Yes halts the processor when the break key is pressed. 
No (factory setting) tells the processor to ignore any 
break request. 

Yes - If a halt instruction is executed in kernel mode, 
the processor traps to location 4 if a halt. 
No (factory setting) - If a halt instruction is executed 
in kernel mode, the processor enters Jll micro-ODT. 

Yes executes mode 24 regardless of the status of the 
battery. 
No (factory setting) - The battery OK signal must be 
present to execute mode 24. Battery OK indicates that 
the memory contents were not corrupted as a result 
of a power failure. If BOK is set, Trap 24 mode is not 
executed and dialog mode is entered. 

176500 (factory setting) selects address 176500, 
vector 300. 
176600 selects address 176600, vector 400. 
DIS disables all SLUs. 

NOTE 
After selecting and saving the desired starting 
address, the system must be powered down and 
then rebooted for the change to occur. 

Tn execute the map parameter, move the cursor to Do 
and press Return. Upon execution, the map menu is 
displayed (Example 4--28). After the valid 110 page 
addresses are displayed, the setup menu is displayed. 

Move the cursor to Do and press Return to execute the 
factory setting parameter. 

Press the Thb key to move the cursor to Do. Press 
Return to execute Save. You are prompted "Are you 
sure? YIN'. Enter Y to save the modifications. Enter 
N if you do not want to save the modifications. 



4-42 Boot ROMs and Diagnostics 

NOTE 
If you want to save all function modifications, you must execute Save before leaving the 
setup menu. 

4.3.4 Self-Test Menu 

When you execute Select Self-tests on the setup menu, the self-test menu is displayed 
(Example 4-26). This menu is used to determine which tests are executed on power-up 
and also allows individual tests to be selected and executed. The factory settings are 
shown in the following example: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

67 CPU Test Yes 44 Lines Config. Test 
66 MMU Test Yes 43 Serial Lines Test 
65 Pre-Console Test Yes 40 Memory parity Test 
64 MSER Test Yes 37 UBA Map Reg Teste 
63 CCR r/w Test Yes 36 UBA NPR Cycles Test" 
62 HIT/MISS-Reg Test Yes 
61 LTC Speed Test Yes 
60 Add-Stat-Reg Test Yes 32 Loopback SLU Test 
57 CPU-Err-Reg Test Yes 31 Extended Memory Test 
55 UBA Reg. Resp. Test" Yes 
54 Address 0 Test Yes 
53 Pre-Memory (0-4KW) Test Yes 
52 FPA Register Test Yes 
51 FPA Function Test Yes 
50 Int Mem Address Test Yes 
47 Int Mem Data Test Yes 
46 PIRQ-Reg Test Yes 
45 LTC Int Test Yes 30 All Selected Tests 

Monitor Do Test 00 Repeat 00000 

Example 4-26 Self-Test Menu 

• UNIBUS system only 

NOTE 

Yes 
Yes 
Yes 
Yes 
Yes 

No 
No 

No 

Do 

Test 30, All Selected Tests, runs all tests selected (parameter. Yes) as a group. 

Test 32, Loopback SLU Test, requires loopback connectors installed on all SLUs 
on the KDJll·E. 

4.3.4.1 Selecting or Deselecting Teats Executed Upon Power-Up 
To select or deselect tests that are executed upon power-up: 

1. Move the cursor to the test to be changed. 

2. Press Retum to select Yes or No. 

3. Press Tab to select the Monitor field. 

4. Press Retum to retum to the setup menu. 

5. Press Tab to select the Save field. 

6. Press Retum to save the self-test parameters. 



4.3.4.2 Selecting and Executing an Individual Test 
To select and execute an individual test: 

1. Move the cursor to the Test field. 

2. Type in the test number of the test to be run. 

3. Move the cursor to the Repeat field. 

Boot ROMs and Diagnostics 4-43 

4. Type in the number of iterations to run the test or enter 0 to run the tests 
continuously. 

5. Move the cursor to Do. 

6. Press Retum to execute testing. 

NOTE 
CtrVC terminates testing. 

4.3.4.3 Selecting and Executing a Group of Tests (Test 30) 
To select and execute a group of tests using Test 30: 

1. Move the cursor to each test to be changed. 

2. Press Retum to select Yes or No. 

3. Move the cursor to the Test field. 

4. Enter 30 to select Test 30, All Selected Tests. 

5. Move the cursor to the Repeat field. 

6. Type in the number of iterations to run the tests or enter 0 to run the tests 
continuously. 

7. Move the cursor to Do. 

B. Press Retum to execute testing. 

NOTE 
CtrVC terminates testing. 

4.3.5 User Boot Menu 
Example 4-27 shows a sample user boot menu. The addressing scheme shown is for 
clarity only. Normally the boot routine resides here. 



4-44 Boot ROMs and Diagnostics 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

ttExit Do 
tIoevice name DK tleeginning addr 
tIoev Description RK05 ttLast byte addr 

1000 ttsave boot Do 

tlHighest Unit 7 4istart addr 
1016 ttLoad saved boot Do 
1000 ttnel saved boot Do 

Addrs. 
001000 
001020 
001040 
001060 
001100 
001120 
001140 
001160 
001200 
001220 
001240 
001260 
001300 
001320 
001340 
001360 

000000 
012737 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 

000002 000004 000006 000010 000012 
000005 177404 105737 177404 100375 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 
000000 000000 000000 000000 000000 

Example 4-27 User Boot Menu 

000014 
000774 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 

• Device name is a two-letter mnemonic name for the boot program. 

000016. 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 

• Beginning addr refers to the the first address of the boot routine. The address range 
is 1000-17544. The ROM code prints out the old beginning address and prompts you 
for the new beginning address. Type in a new address or press Return to accept the 
old beginning address. 

• Exit returns you to the Setup Menu. 

• Save boot saves the boot program in the EEPROM. This function can take up to two 
minutes for the full length of 8 Kbytes. 

• Dev Description is an optional but recommended description of the device name. The 
name is usually the name that is physically marked on the outside of the device (for 
example, RA82). 

• Last byte addr is the address of the last byte of code used in memory. 

• Load saved boot reloads previously saved boot program. This allows additional 
changes to be made to the boot routine. 

• Highest Unit defines the allowable range· of valid unit numbers for this device. If the 
value is set to 3, the allowable range is 0 to 3. If a unit number is typed in at boot 
time and it is not in range, an invalid unit number error occurs. 

• Start addr is the address that the ROM code passes control to. 

• Del saved boot deletes the boot program from the EEPROM. 

NOTE 
The beginning address and last byte address refer to physical addresses in 
memory for the program. Permitted values are between 1000 and 1'7544. 

Pressing Return closes a location. To select a different address, use the cursor control 
arrows. 



Boot ROMs and Diagnostics 4-45 

4.3.6 Map Menu 

The map menu displays all addresses in the I/O page that respond. The 110 page is from 
addresses 17760000 through 17777776. In addition, all addresses on the CPU or the 
UBA that respond, are described. There is no description for optional device addresses 
that respond. 

The setup menu is displayed at the completion of the Map function. The ROM code waits 
for you to press Return rather than scrolling data forward on video screen terminals. The 
ROM code always assumes the terminal can display at least 24 lines of 80-column data. 

A sample map menu is shown in Example 4-28. 

KDJ11-E Monitor Version 1.06 30~Jul-1990 
(C) Digital Equipment Corporation 1990 

I/O page Map 
Starting Ending 
Address address 

17765000 17765776 CPU ROM or EEPROM 
17772100 Memory CSR 
17772200 17772276 Supervisor I and D PDR/PAR's 
17772300 17772376 Kernel I and D PDR/PAR's 
17772516 MMR3 
17773000 17773776 CPU ROM 
17776500 17776566 SLU's 
17777200 17777376 UBA map REG's 
17777520 17777526 CSR, PCR, BCR/BDR ASR 
17777546 Clock CSR 
17777560 17777566 Console SLU 
17777572 17777576 MMRO,1,2 
17777600 17777676 User I and D PDR/PAR's 

Press RETURN key when ready to continue 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

I/O page Map 
Starting Ending 
Address address 

17777730 
17777744 
17777766 
17777772 
17777776 

17777736 DCSR, DDR, KMCR 
17777752 MSER, CCR, MREG, Hit/Miss 

CPU Error 
PIRQ 
PSW 

Press RETURN key when ready to continue 

Example 4-28 Map Menu 

4.4 Diagnostic Programs 
The KDJ11-E supports two types of diagnostic programs. Table 4-24 describes these 
programs. 



4-46 Boot ROMs and Diagnostics 

. Table 4-24 DlagnostlcPrograms 

Diagnostic Program 

OECXll 

Read-only memory (ROM) 
resident diagnostics 

Function 

DECXll is a system level exerciser. DECXll tests all parts of the 
KDJII-E CPU module. The following DECXll modules should be 
configured for a basic system: 

MONE 

MONQ 

KWA 

CPA 

CPB 

FPB 

DLA 

Monitor E supports the memory management 
unit and mapping in UNmUS systems. 

Monitor Q supports the memory management 
unit in Q-bus systems. 

Line time clock. 

KDJII-E instruction set. 

KDJII-E extended instruction set. 

Floating point unit. 

Serial line units. 

CPU ROM resident startup diagnostics test various functions 
specific to the CPU and UBA modules. 

A comprehensive set of diagnostics can be executed during a system power-up by selecting 
the Power-On Self-Test on the setup menu. A failure during diagnostic execution halts 
the testing and displays one of the following: 

• If tests 30-67 fail, an error code and an error message on the console terminal (if 
connected). 

• A test number in the KDJ11-E CPU module diagnostic LEDs. 

4.4.1 KDJ11-E Self-Test 

The KDJ11-E self-test allows you to comprehensively test: 

• CPU 

• Memory management 

• On-board memory 

• Serial line units 

• Console/SLU bulkhead (if equipped) 

• UNIBUS signals 

• KTJII-B 

The self-test menu allows you to select and execute tests individually or as a group using 
either video terminal mode or hard copy terminal mode. 

• To select and execute self-tests using the video terminal mode, proceed to 
Section 4.4.1.1. 

• To select and execute self-tests using the hard copy terminal mode, proceed to 
Section 4.4.1.2. 



4.4.1.1 Video Terminal Mode 
NOTE 

Boot ROMs and Diagnostics 4-47 

Test 30, All Selected Tests, runs all tests selected (parameter. Yes) as a group. 

Test 32, Loopback SLU Test, requires loopback connectors installed on all SLUs 
on the console/SLU panel (if equipped). 

Selecting or Deselecting Tests Executed Upon Power-Up 
To. select or deselect tests that are executed upon power-up: 

1. Move the cursor to the test to be changed. 

2. Press Return to select Yes or No. 

a. Press Tab to select the Monitor field. 

4. Press Return to return to the setup menu. 

5. Press Tab to select the Save field. 

6. Press Return to save the self-test parameters. 

Selecting and Executing Individual Tests 
To select and execute an individual test: 

1. Move the cursor to the Test field. 

2. Type in the test number of the test to be run. 

a. Move the cursor to the Repeat field. 

4. Type in the number of iterations to run the test or enter 0 to run the tests 
continuously. 

5. Move the cursor to Do. 

6. Press Return to execute testing. 

NOTE 
Ctr1JC terminates testing. To return to the setup menu, move the cursor to the 
Monitor field and press Return. 

Selecting and Executing a Group of Tests 
To select and execute a group of tests using test ao: 
1. Move the cursor to each test to be changed. 

2. Press Return to select Yes or No. 

a. Move the cursor to the Test field. 

4. Enter ao to select test ao, All Selected Tests. 

5. Move the cursor to the Repeat field. 

6. Type in the number of iterations to run the tests or enter 0 to run the tests 
continuously. 

7. Move the cursor to Do. 

8. Press Return to execute testing. 

NOTE 
CtrllC terminates testing. To return to the setup menu, move the cursor to the 
Monitor field and press Return. 



4-48 Boot ROMs and Diagnostics 

An example of the self-test menu follows: 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

67 CPU Test 
66 MMU Test 
65 Pre-Console Test 
64 MSER Test 
63 CCR r/w Test 
62 HIT/MISS-Reg Test 
61 LTC Speed Test 
60 Add-Stat-Reg Test 
57 CPU-Err-Reg Test 
55 UBA reg. resp. Test" 
54 Address 0 Test 
53 Pre-Memory (0-4KW) Test 
52 FPA Register Test 
51 FPA Function Test 
50 Int Mem Address Test 
47 Int Mem Data Test 
46 PIRQ-Reg Test 
45 LTC Int Test 

Monitor Do 

Example 4-29 Self-Test Menu 

o UNIBUS systems only 

Test 

4.4.1.2 Hard Copy Terminal Mode 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

00 

Selecting and Executing Individual Tests 
To select and execute an individual test: 

1. Enter D on the main menu,. 

44 Lines CQnfig. Test 
43 Serial Lines Test 
40 Memory parity Test 
37 USA map reg Teste 
36 USA NPR cycles Test" 

32 Loopback SLU Test 
31 Extended Memory Test 

30 All Selected Tests 

Repeat 00000 

Yes 
Yes 
Yes 
Yes 
Yes 

No 
No 

No 

Do 

2. Press Return to execute the diagnostic command. The self-test menu is displayed 
(Example 4-30). 



KDJ11-E Monitor Version 1.06 30-Jul-1990 
Licensed to Digital Equipment Corporation • 67 CPU Test 
66 MMU Test 
65 Pre-console Test 
64 MSER Test 
63 CCR r/w Test 
62 HIT/MISS-Reg Test 
61 LTC Speed Test 
60 Add-Stat-Reg Test 
57 CPU-Err-Reg Test 
55 UBA Reg. Resp. Test1 
54 Address 0 Test , 
53 Pre-Memory (0-4KW) Test 
52 FPA Register Test 
51 FPA Function Test 
50 Int Mem Address Test 
47 Int Mem Data Test 
46 PIRQ-Reg Test 
45 LTC Int Test 
44 Lines Config. Test 
43 Serial Lines Test 
40 Memory parity Test 
37 UBA Map Reg Test1 
36 UBA NPR Cycle Test1 
32 Loopback SLU Test tt 
30 All Selected Tests 

Test number = 67~ New =tt 
Repeat counter = 000000 tt New =at 

Example 4-30 Self-Test Menu 

• List of tests that can be selected. 

Boot ROMs and Diagnostics 4-49 

• 32 Loopback SLU Test requires that turnarounds are installed on the SLU's 
(1-7). 

~ Test number lists the currently selected test. 

e New allows you to change the currently selected test by entering a new test 
number. 

• Repeat counter lists the currently selected number of times to repeat a test. 

e New allows you to change the currently selected number of times to repeat a test 
by entering a new number. 

3. Enter the number of the new test to be run. 

4. Enter the number of the times the new test is to be repeated. Enter 0 if you want the 
test to run continuously. 

5. Press Return to start the testing. 

1 UNIBUS systems only 



4-50 Boot ROMs and Diagnostics 

During the testing, the test number, description of the test, error count and repeat 
number are displayed and printed. If continuous testing is selected, no information 
will be printed except for errors to allow the Diagnostic Command to run for an 
extended period of time. 

6. Press CtrllC or CtrllP to stop the testing. 

Selecting and Executing a Group of Tests 
To select and execute a group of tests: 

1. Type S on the command line on the main menu. 

2. Press Return to execute the Setup command. The setup menu is displayed 
(Example 4-31). 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

Setup Mode Commands 

1 Exit 
2 Select configuration parameters 
3 Select diagnostic configuration 
4 Select serial line parameters 
5 Select boot parameters 
6 List available boot programs 
7 Factory setting 
8 Save the setup table in the EEPROM 
9 Load EEPROM data into the setup table 
10 Load EEPROM boot program into memory 
11 Edit or create EEPROM boot program 
12 Save a boot program in the EEPROM 
13 Delete a saved EEPROM boot program 
14 Enter ROM ODT 
Commands are: [1, 2, 3, 4, 5, 6, 7,8 ,9 10, 11, 12, 13, 14] 
type a command then press the RETURN key: 

Example 4-31 Setup Menu 

3. Type 3 on the command line of the setup menu. 

4. Press Return to execute the setup mode command 3. The following list is displayed: 



Boot ROMs and Diagnostics 4-51 

KDJ11-E Monitor Version 1.06 30-Jul-1990 
(C) Digital Equipment Corporation 1990 

A Nr. 67 CPU Test 

B Nr. 66 MMU Test 

C Nr. 65 Pre-Console Test 

D Nr. 64 MSER Test 

E Nr. 63 CCR r/w Test 

F Nr. 62 HIT/MISS-Reg Test 

G Nr. 61 LTC Speed Test 

H Nr. 60 Add-Stat_Reg Test 

I Nr. 57 CPU-Err-Reg Test 

J Nr. 55 UBA Reg. Resp. Testt» 

K Nr. 54 Address 0 Test 

L Nr. 53 Pre-Memory (O-4KW) Test 

M Nr. 52 FPA Register Test 

N Nr. 51 FPA Function Test 

o Nr. 50 Int Mem Address Test 

P Nr. 47 Int Mem Data Test 

Q Nr. 46 PIRQ-Reg Test 

R Nr. 45 LTC Int Test 

S Nr. 44 Lines Config. Test 

T Nr. 43 Serial Lines Test 

U Nr. 40 Memory parity Test 

V Nr. 37 UBA Map Reg Testt» 

W Nr. 36 UBA NPR Cycle Testt» 

X Nr. 32 Loopback SLU Test 

Y Nr. 31 Extended Memory Test 

Z Nr. 30 All Selected Tests 

(0) .. No 

(0) - No 

(0) == No 

(0) ::z No 

(0) - No 

(0) "" No 

(0) - No 

(0) - No 

(1) - Yes - 1 

(1) - Yes - 1 

(1) ::I Yes - 1 

(1) == Yes - 1 

(1) - Yes ... 1 

(1) - Yes - 1 

(1) - Yes - 1 

(1) - Yes - 1 

(0) - No (1) - Yes - 1 

(0) "" No (1) - Yes ,.. 1 

(0) - No 

(0) == No 

(0) == No 

(0) "" No 

(0) - No 

(0) -No 

(0) - No 

(0) - No 

(0) == No 

(1) - Yes ... 1 

(1) == Yes == 1 

(1) - Yes - 1 

(1) - Yes - 1 

(1) - Yes - 1 

(1) == Yes - 1 

(1) - Yes == 1 

(1) == Yes 1 

(1) == Yes - 1 

(0) == No (1) == Yes - 1 

(0) - No (1) - Yes == 1 

(0) - No (1) == Yes == 1 

(0) == No 

(0) = No 

(0) == No 

(0) = No 

(1) - Yes - 1 

(1) == Yes == 1 

(1) == Yes == 1 

(1) == Yes 1 

Type CTRL\Z to exit or press Return key to proceed 

Example 4-32 Selecting Individual Tests 

t» UNIBUS systems only 

5. To deselect a test, enter 0 at the appropriate test number. 

6. To select a test, enter 1 at the appropriate test number. 

7. Press Return to return to the main menu. 

8. Enter D on the main menu to select and execute the diagnostic command. The 
self-test menu is displayed (Example 4-30). 

9. Enter 30 as the number of the new test to be run. Test 30 runs the group of tests 
previously selected in setup command 3. 



4-52 Boot ROMs and Diagnostics 

10. Enter the number of the times test 30 is to be repeated. Enter 0 if you want test 30 
to run continuously. 

11. Press Return to start the testing. 

During the testing, the test number, description of the test, error count, and repeat 
number are displayed and printed. If continuous testing is selected, no information 
will be printed except for errors to allow the diagnostic command to run for an 
extended period of time. 

12. Ctr1lC or Ctr1lP stops the testing. 

Table 4-25 describes the test numbers, status display numbers, and boot error numbers. 

Table 4-26 provides recommendations to correct any errors that can occur during 
testing. 

Table 4-25 LED Display Messages and Descriptions 

Number Function 

77 Test 

76 Test 

75 Test 

74 Test 

Description 

CPU or halt switch. When the CPU is powered up or restarted the 
DCOK signal causes the display to be set to 77. If the CPU hangs with 
the display set to 77 then either the halt switch is on or the CPU does 
not have enough logic functioning to execute an instruction out of the 
ROM. 

CPU and MMU. Set the LED display to 76 to indicate the first 
instruction has been executed without hanging up the processor. Enter 
standalone mode, set PSW to priority 7 and tum off MMU. Clear PCU 
and set up SP. Jump to the high page of the ROM if not already there 
(173xxx). 

Execute a few simple CPU tests. General register writes and reads, 
branch instructions, and a simple JSR instruction. 

CPU ROM Checksum and Page Control Register (17777522). Use the 
user PAR for stack operations and enable upper and lower page of 
EPROM so that page 0 can be accessed on 173xxx and 165xxx. Test the 
function of the PCR register. The following steps are performed: 

• Disable 173xxx and jump to 165xxx 

• Enable 173xxx, disable 165xxx, and jump back to higher page 

• Enable 165xxx and jump to lower page 

• Increment PCR high and compare the page number on 173774 

• Jump back to higher page and use lower page for comparison 

Tum on MMU, run CPU and MMU. Test all MMU registers: 

• Test all PARs using a floating 0 and 1 pattern 

• Check with this pattern all R/W bits of PDR <14:8, 3:1> 

• Write PAR address into PAR registers to verify address uniqueness 

• Compare content of MMR2 with the PC of current instruction 

• Check RIW bits of MMR3 <5:0> 

Enable the memory management unit. 



Boot ROMs and Diagnostics -4-53 

Table 4-25 (Cont.) LED Display Messages and Descriptions 

Number Function 

73 

72 

71 

Test 

Test 

Status 
Display 

Description 

Determine if system is restarting or powering up. Determine if the 
ROM code has started by the CPU being powered up or restarted, by 
use of the Restart switch on the front panel. 

**UNmus Systems** 
Test the state of bit 7, Reboot Pulse, of the Memory Configuration 
Register. (17777734) 
Bit 7 = 1 System is being started by use of the Restart switch on the 
front panel. 
Bit 7 = 0 System is being powered up. 

**Q-bus Systems** 
Test the state of bit 14, Reboot Pulse, of the Control/Status Register 

, (17777520). 
Bit 14 = 1 System is being started by use of the Restart switch on the 
front panel. 
Bit 14 = 0 System is being powered up. 

EEPROM Checksum. This test will verify EEPROM checksum. If a 
checksum error is found dialog mode is entered. The user should do a 
factory setting to write a good EEPROM checksum. 

The ROM code will branch in the following way: 

A Check the state of the Force Dialog switch. If switch 5 is in the ON 
position go to Dialog Mode no matter what the Restart or Power up 
option was set to. 

B. Compare EEPROM Checksum, on error jump to Dialog Mode. 

C. If '!rap 24 was selected as a Power-up or Restart Option go to Test 
70. 

D. If ODT was selected as a Power-up or Restart Option go to Test 71. 

E. Determine what diagnostic selections previously selected. 

This is not a test. It is the display that indicates that the selected 
Power-uplRestart mode is ODT. A limited set of diagnostics is run and 
the ROM code executes a HALT instruction and passes control to the 
micro-ODT code. The EEPROM parameter are installed and the MMU 
is disabled. 

If the operator proceeds from ODT without changing any registers the 
ROM code will continue to run selected tests and enter dialog mode 
when complete. 



4-54 Boot ROMs and Diagnostics 

, Table 4-25 (Cont.) LED Display Messages and Descriptions 

Number Function 

70 Status 
Display 

Description 

System Start Mode Trap 24. This is not a test. If the selected startup 
Irestart mode is 24126 then check the status of the ignore battery status 
parameter in the EEPROM. 

*** Ignore Battery parameter = No. 

If the Battery Backup Reboot Enable Bit in the Control Status Register 
(177777520 bit 15) is cleared indicating that the battery backup 
maintained voltages during the previous power fail. The ROM code 
loads the contents of location 26 into the PSW and then transfers 
control to the address specified by the contents of location 24. The 
EEPROM parameters are installed and the MMU mapping is disabled. 
If BBRE is set, Battery Backup failed to maintain memory voltages, go 
to Dialog Mode. 

*** Ignore Battery parameter = Yes. 

Unconditionally the ROM code loads the contents of location 26 into the 
PSW and then transfers control to the address specified by the contents 
of location 24. The EEPROM parameters are installed and the MMU 
mapping is disabled. 



Boot ROMs and Diagnostics 4-55 

Table 4-25 (Cont.) . LED Display Messages and Descriptions 

Number Function 

67 Test 

Description 

Miscellaneous CPU. There are 10 CPU diagnostics implemented to test 
the CPU instruction set: 

Test A Branch instruction test 

BEQ, BNE, BMI, BPL, BVS, BVC, BCS, BCC, BLT, BGT, BLE, 
BGE, BLOS, BHI, BR 

Test B Single operand instruction destination mode 0 

CLR, COM, NEG, ROR, ROL, ADC, SBC, ASR, ASL, INC, DEC, 
TST 

Test C Byte single operand instruction destination mode 0 

CLRB,COMB,NEGB,SVVAB,RORB,ROLB,ADCB,SBCB, 
ASRB,ASLB,INCB,DECB,TSTB 

Test D Double operand word instruction all source modes 
destination mode o. 

MOV, CMP, ADD, SUB, BIC, BIS, BIT, XOR 

Source mode 0 
Source mode 1 
Source mode 2 
Source mode 3 
Source mode 4 
Source mode 5 
Source mode 6 
Source.mode 7 

Test E Jump instruction destination modes 1, 3, 6 

JMP 

Mode 1 
Mode 3 
Mode 6 

Test F TSTB and TST destination mode 1, 2, 4, PC reI addr 

TST, TSTB 

Mode 1 
Mode 2 
Mode 4 
PC relative addr 



4-56 Boot ROMs and Diagnostics 

Table 4-25 (Cont.) LED Display Messages and Descriptions 

Number Function 

66 Test 

65 Pre-console 

64 Test 

63 Test 

62 Test 

61 Test 

60 Test 

Description 

Test G Byte double operand instruction destination mode 0 

BICB, BITB, BISB, MOVB, CMPB 

Source mode 1 
Source mode 2 
Source mode 4 
PC relative addr 

Test H Single and Double Operand Instructions Mode 1-7 

ADC, ADD, ASL, ASR, BIC, BIS, BIT, CLR, CMP, COM, DEC, 
INC, MOV, NEG, ROL, ROR, SUB, TST 

Test Ii Byte instruction destination modes 1-7 

CLRB,COMB,SBCB,INCB,NEGB,DECB,SWAB,ASLB, 
RORB, ASRB, ROLB, ADCB, CMPB, BISB, BICB, BITB 

Test J JSR instruction destination mode 7 

MMU Modes and Aborts. 'Thst the memory management unit in kernel, 
supervisor and user mode. All three modes are read and write with 
byte/word access. 'Thst memory management violation and error bits. 
'Thst that the protection bits in the PDRs will cause aborts when the 
conditions are violated. Verify that abort occurs through virtual address 
250. Verify that MMR1 properly records changes in the general purpose 
registers affected by the abort. 

Test the console transmitter ready bit. Send a nonprinting character to 
console and wait in a time-out loop for the ready bit. 

Identify the terminal type... Hardcopy of Video 'Thrminal. 

The ROM code supports a VT100, VT220, VT330. All other terminal 
types will be set up as hard copy. 

From now on, a message including test number and a short description 
will be displayed for the next tests on the terminal. 

MSER Test read/write access of the Memory. System Errror Register 
(17777744). 

CCR RJWfl'imeout. Rotate pattern through the Cache Control Register 
(17777746) to check RIW bits. 

HitlMiss Register. 'Thst force miss condition. Produce a stream of MISS 
cycles to check the function of the HitlMiss Register (17777752). 

LTC Speed. Test the Line Time Clock. Test the On-board 50HZ, 60HZ 
and 800HZ clock source. A internal software loop is used to verify clock 
speeds. The interrupt logic is not tested here. 

Additional Status Register 'Thst (17777526). Tests the functionality of 
ASR bits 12 and 13, serial line address/vector selection logic. Test the 
functionality of ASR bits 4 and 5, internal memory address encoding. 



Boot ROMs and Diagnostics 4-57 

Table 4-25 (Cont.) LED Display Messages and Descriptions 

Number Function 

57 

56 

55 

54 

53 

52 

51 

'Thst 

'Thst 

'Thst 

'Thst 

'Thst 

'Thst 

'Thst 

Description 

CPU Error Conditions (CPU Error Register). 'Thst the CPU Error 
Register (17777766). Verify the error detection logic is functioning. 
Error conditions will be created to test error detection logic. 

The following errors will be tested: 

• Bit 6: word access to an odd byte address 

• Bit 5: access to a nonexistent memory address 

• Bit 4: access to a nonexistent 110 address 

NOTE: Address 1776600 is used for a timeout address. If 1776600 exists 
,on the system this test will fail. 

Verify bits 3 •. 0 are read only. 

Reserved 

UBA register response test ***UNIBUS Systems Only*** 
Test that the DCSR, KMCR and DDR respond properly on the UBA. 
Test the KMCR with a data pattern. 

Enable UBA diagnostic mode and read the following UNIBUS lines. 

UNmUS Address Lines 
UNmUS Data Lines 15:00 
UNmUS Control Lines: CO, Cl, PB, SSYN, MSYN 

Verify that memory exists at location O. Rotate pattern through memory 
location O. 'Thst read/modify/write with bus lock. 

Test memory from 0 to 4 KW. This test fully checks out the first 4 KW of 
memory before the main memory tests are loaded and run. 

The following steps are performed: 

• Write pattern (101010 .. ) in ascending order into memory to verify 
data 

• Complement, read, and compare data in descending order 

• Write physical address as data into memory in ascending order to 
verify address uniqueness 

• Compare memory address data in descending order 

FPA Register. Check the bits of the floating-point register. Rotate a bit 
through the register ACO-AC5 and execute instructions in double­
precision mode. The results are stored in memory and compared 
with the pattern. An error will occur if no floating-point accelerator 
is available. 

FPA Function. Clear ACO-AC5 and memory space, set double precision 
mode. 'Thst the following instructions. 

LDFPS, STFPS, SETD, CLRD, STD, LDD, LDCID, ADDD, DIVD, MOD, 
SUBD, STCDI, CFCC 



4-58 Boot ROMs and Diagnostics 

. Table 4-25 (Cont.) LED Display Messages and Descriptions 

Number Function 

50 Test 

47 Test 

46 Test 

45 Test 

44 Test 

Description 

Internal Memory Address Test. This test verifies the address 
uniqueness of the whole internal memory. The segment address is 
written as data on each segment address of internal memory, starting 
from physical 0 to the end of internal memory. The data is compared in 
descending order. During the whole test parity abort is enabled. 

Internal Memory Data Test. This test will verify all of memory with 
data patterns. 

Write pattern in ascending order into memory. 
Compare all data in descending order. 
Complement all data in ascending order. 
Compare complemented data in descending order. 
Parity is enabled for this test. 

If a memory error occurs the following information will be printed: 
The memory address 
Expected pattern 
Pattern read 

PIRQ Interrupt Level Test. This test checks the software interrupt 
facility of the CPU. A trap table is installed in RAM to detect 
unexpected interrupts. 

PSW 
pmQ Interrupt Expect Interrupt 
Level Level Vector 

1 0 240 

2 1 240 

3 2 240 

4 3 240 

5 4 240 

6 5 240 

7 6 240 

Next test sets PIRQ and PSW intelTUpt to the same level. Interrupt 
should only occur after decrementing PSW level by one step. Repeat 
with all interrupt levels. 

Last tests starts with the lowest PSW interupt level, enable all PIRQ 
interrupt, count and compare interrupt events. Repeat the loop with all 
PSW interrupt levels. 

LTC Interrupt Test. Test the line time clock interrupt facility for the 
50, 60, 800 Hz clock source. Test the ability of the clock to interrupt to 
location 100 and that it can interrupt at the correct BR Level. On an 
interrupt, once the. clock is in sync, check that bit 7 (LCM) is cleared on 
an interrupt. 

SLU Configuration. Check transmitter ready bit and look for correct 
configuration of all Serial Lines Units. 



Boot ROMs and Diagnostics 4-59 

Table 4-25 (Cont.) . LED Display Messages and Descriptions 

Number Function Description 

43 Test SLU Function. 'Thst the receiver and transmitter interrupt ability of all 
the Serial Line Units. Show received characters with corresponding port 
number if turnaround connectors installed. 

42 Test Reserved 

41 Test Reserved 

40 Test Memory Parity. Memory Parity Error bit is tested by creating parity 
errors. Memory is tested in 4 KW segments. 

37 Test UBA Mapping Registers Test ***UNmUS Systems Only*** 
Test all 32 UNmUS Map Register pairs with a rotating 1s and Os 
pattern and an address uniqueness pattern. All 32 register pairs are 
tested. 

36 Test UBA NPR ReadlWrite Cycles ***UNmUS Systems Only*** 
With mapping disabled execute a floating 1s and Os test through a 
floating address pattern using diagnostic Data In and Out cycles for 
124K words of memory if present. 

With mapping enabled, execute a floating 1s and Os test through a 
floating address pattern using diagnostic Data In and Out cycles for up 
to 2044K words of memory if present. This test floats a 1 and 0 across 
both inputs to the UBA address adder. 

This tests that the UNmUS can write and read alIOs and 1s. 

35 Test Not Used 

34 Test Not Used 

32 Test Serial Line Unit 'Thst **Install 1Urnaround Connectors** 

This test assumes all lines have turnaround connectors installed. This 
test uses the EEPROM Configuration Parameter (Baudrate, Data Bits, 
Stop Bits, Parity) to check the data rate of the serial lines. It calculates 
first a counter value dependent on the EEPROM parameter. Then it 
checks the port to see whether all loop back connectors are installed. 
The routine installs the RX vectors for the receiver interrupt routine and 
starts to transmit a fixed number of characters. The transmitter time is 
compared with the calculated data rate. An LTC counter is running in 
the background, to stop the test if no RX interrupt happens in a defined 
time. All data received is compared with the data transmitted and the 
error bits are monitored. 

27 Not Used 

26 Not Used 

25 Reserved for the MDM in "A" series enclosures only. 

Not used by ROM code. This code is driven by the MDM module on 
UNIBUS systems. Blower under/over speed. This is for "A" Series 
UNIBUS systems only. 

24 Not Used 

23 Not Used 

22 Not Used 

21 Boot Error Drive error 

20 Boot Error Controller error 



4-60 Boot ROMs and Diagnostics 

Table 4-25 (Cont.) LED Display Messages and Descriptions 

Number Function ~scription 

17 

16 

15 

14 

13 

12 

11 

10 

07 

06 

05 

04 

03 

02 

01 

00 

Boot Error 

Boot Error 

Boot Error 

Boot Error 

Boot Error 

Boot Error 

Boot Error 

Boot Error 

Boot Error 

Status 
Display 

Status 
Display 

Status 
Display 

Status 
Display 

Status 
Display 

Boot device selection was invalid 

Invalid unit number selected 

Nonexistent drive 

Nonexistent controller 

No tape 

No disk 

Invalid boot block 

Drive not ready 

No bootable device found while in Auto Boot Mode 

Not used 

Not used 

Dialog mode 

UBA ROM boot in progress 

EEPROM boot in progress 

CPU ROM boot in progress 

Boot successful 

Control transferred from ROM code to booted device. The message 
"Starting System" is displayed. The display blanks when it receives a 
code of 00. 

Table 4-26 Error Messages 

LED Display 

77 

76 

75 

74 

73 

72 

70 

67 

Probable Cause 

1. Halt switch/button in 
halt position. 
2. CPU module failure. 
3. UNIBUS failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

1. UBA module failure. 
2. CPU module failure. 

CPU module failure. 

1. UBA failure. 
2. CPU module failure. 

CPU module failure. 

Recommended Action 

1. Check runlhalt switch. 
2. Replace the CPU module. 
3. Replace UBA; verify devices on UNIBUS. 

Replace the CPU module. 

'Replace the CPU module. 

Replace the CPU module. 

1. Replace the UBA. 
2. Replace the CPU module. 

Replace the CPU module. 

1. Replace the UBA. 
2. Replace the CPU module. 

Replace the CPU module. 



Table 4-26 (Cont.) Error Messages 

LED Display 

66 

65 

64 

63 

62 

61 

57 

55 

54 

53 

52 

51 

50 

47 

46 

45 

44 

43 

21 

20 

1 If equipped 

Probable Cause 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

Line Time Clock failure. 

CPU module failure. 

1. UBA failure. 
2. CPU'module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

CPU module failure. 

1. CPU module failure. 
2. SLU panel failure.1 

3. Cables from SLU to 
CPU. l 

CPU module failure. 

UBA failure. 

UBA failure. 

1. CPU module failure. 
2. 'lUrnarounds. 
3. Cables from SLU to CPU. 

CPU module failure. 

1. KDJll-E: Blower 
assembly. 
2. KDJ11-E: Fan assembly. 

Boot error indicating that 
the media you are trying to 
to boot from is not bootable. 

Boot error. 

2UNIBUS systems only 

Boot ROMs and Diagnostics 4-61 

Recommended Action 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

1. Replace the UBA. 
2. Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

Replace the CPU module. 

1. Replace the CPU module. 
2. Replace the SLU panel. 
3. Check the cables from SLU to CPU. 

Replace the CPU module. 

Replace the UBA. 

Replace the UBA. 

1. Replace CPU module. 
2. Check turnarounds. 
3. Check cables from SLU to CPU. 

Replace CPU module. 

1. KDJl1-E: replace blower assembly. 
2. KDJl1-E: replace fan assembly. 

Reboot from another media. 

Make sure that the NPG jumper (UNIBUS 
system only) was removed if the device is 
a direct memory access (DMA) controller. 
Consult the device's technical manual for more 
information. 



4-62 Boot ROMs and Diagnostics 

Table 4-26 (Cont.) Error Messages 

LED Display 

17 

16 

15 

14 

13 

12 

11 

10 

7 

CAUTION 

Probable Cause 

Boot error indicating that 
the mnemonic typed in 
for the boot device is 
either incorrect or the 
boot ROM for that device is 
not installed. 

Boot error indicating 
an invalid unit number 
selection. 

Boot error indicating a 
nonexistent drive. 

Boot error indicating a 
nonexistent controller. 

Boot error indicating that 
no tape is installed in the 
drive. 

Boot error indicating that 
no media is in the drive or 
the drive LOAD button is 
not in. 

Boot error indicating that 
the bootstrap data from the 
device does not conform to 
the boot block specifications. 

Boot error indicating no 
media is present in the 
drive or the disk drive has 
not completed its spinup 
function. 

Boot error indicating no 
bootable device is found in 
automatic boot mode. 

Recommended Action 

Enter dialog mode and list the valid devices. 

The unit number after the mnemonic is not 
within the acceptable range for that device. See 
that device's technical manual for help. 

The drive number you are trying to boot from is 
not on the system. Enter a drive number that is 
on the system. 

The controller for the device you are trying to 
boot from is not on the UNIBUS or is addressed 
incorrectly. 

Install a tape. 

Boot from a drive in which media is installed. 
Push the drive LOAD button in. 

Make sure that media is bootable. Change 
setup mode to accept nonstandard boot blocks. 

Boot from a drive in which media is installed. 
Wait until the disk drive has completed its 
spinup function. 

Check devices in auto boot list. 

Do not bypass errors unless all user software has been removed or write protected. 



Boot ROMs and Diagnostics 4-63 

4.4.2 KOJ11-E CPU Module Fault Isolation 

The KDJll-E module contains: 
One green power OK LED 

One yellow LED 

Six red LEDs 

Indicates DCOK status 

Indicates that dc power to the CPU module is present 

Corresponds to the status display shown in Figure 4-1 

If the CPU module is the suspected problem, before replacing the module: 

• Ensure that jumpers Wl and W2 are configured correctly (Figure 4-1) . 

W1 

D 
00 

F1 

)11111111 vvvrvvv 

POWER loco':! 
(YEl) I (GRN) I 

DIAGNOSTIC 
(RED) 

KOJ11-E 

Figure 4-1 KDJ11-E CPU Module Layout 

W2 TOY BATTERY 

EEPROM 

BOOT 
EPROM 

L-----~-r==,-1_SlU o EPROM 

J2 

ON ~~~~liHHiI~ 
OFF 1 2 3 4 5 8 7 • 

SWITCHPACK 
MA-0325-90.0G 

• Ensure that the dual in-line package (DIP) switches are configured correctly 
(Figure 4-1). 

• The three 1A fuses (F01, F02 and F03). F01 and F02 protect +12 V on the connectors 
J01 (pins 30, 40, 50, and 60) and J02 (pins 10,20, 30, and 40). F03 protects +5 V on 
J02 (pin 1). 



4-64 Boot ROMs and Diagnostics 

Table 4-27 describes some CPU failure symptoms, the probable causes, and corrective 
actions. 

Table 4-27 CPU Troubleshooting 

Symptom Possible Cause Corrective Action . 

TOY fails. Defective battery. Replace battery. 

SLU ports 1-4 fail. Defective fuse. Replace F2. 

SLU ports 5-8 fail. Defective fuse. Replace Fl. 

No +5V on J02 pin 1. Defective fuse. Replace Fa. 

Power LED is not lit. No +5 V present on VerifY the presence of +5 V and ensure 
the CPU module. that WI & W2 are configured correctly. 



5 
Extended LSI-11 Bus 

5.1 Introduction 
The processor, memory and 110 devices communicate through signal lines that constitute 
the extended LSI-II bus. The extended LSI-II bus contains 4 extra address lines (BDAL 
<21:18» in addition to the 38 original LSI-II bus lines. The four additional address 
lines extend the 256-Kbyte physical address space of the LSI-II bus to 4 Mbytes. 
Addresses, 8-bit bytes or 16-bit data words, bus synchronization, and control signals 
are sent along these 42 lines. Addresses may be 16-, 18-, or 22-bits wide, depending on 
the addressing capability of the processor installed in the system. The 16-bit data and 
the first 16 address bits are time-multiplexed over the same 16 data/address lines. Two 
additional address bits «17:16» and the memory parity bits are also time-multiplexed 
over two signal lines. The signal lines are functionally divided as listed in Table 5-1 . 
See Chapter 2 for a list of the extended LSI-II bus signals. 
The LSI-II bus lines are treated as transmission lines that are terminated in their 
characteristic impedance (ZO) at both the near and far ends of the bus. The near end of 
the bus is defined as the first bus interface slot in the backplane; the far end is the last 
bus interface slot. 

Table 5-1 Summary Of Signal Line Functions 

Quality Function Bus Signal Mnemonic 

16 Data/address lines BDAL <15:00> 

2 Memory parity BDAL <17:16> 
laddress lines 

4 Address lines BDAL <21:18> 

6 Address and data BSYNC, BDIN, BDOUT, BWTBT, BBS7, BRPLY 
transfer control lines 

3 DMA control lines BDMR, BDMG, BSACK 

5 Interrupt control BIRQ4, BIRQ5, BIRQ6, BIRQ7, BIAK 
lines 

6 System control lines BPOK, BDCOK, BINIT, BHALT, BREF, BEVNT 

Most LSI-II bus signals are bidirectional and use a terminating resistor network 
connected between +5 V and ground to provide a negated (high) signal level. Devices 
may be connected to any point along the bus to receive signals from the near or far end 
of the bus through high-impedance bus receivers, or to transmit signals to the near or far 
end through gated open -collector bus drivers. A bus driver asserts a signal by causing 
the line to go from a high level (approximately 3.4 V) to a low level (approximately 

5-1 



5-2 Extended LSI-11 Bus 

0.5 V). The electrically bidirectional lines sometimes carry signals that are functionally 
unidirectional. These functionally unidirectional lines carry signals that are required to 
travel in only one direction. For example, when a device asserts a bus request signal 
(~IRQ), the signal always travels from the requesting device to the processor and never 
in the reverse direction. 

The interrupt acknowledge (BIAK) and DMA grant (BDMG) signals are physically 
unidirectional signals that are wired to each LSI-11 bus slot in a daisy-chain scheme. 
These signals are generated by the processor in response to interrupt and DMA requests 
and are transmitted to the bus by output signal pins. Each of the output signals (BIAKO 
or BDMGO) is received on a device input pin (BIAKI or BDMGI) and is conditionally 
retransmitted by a device output pin (BIAKO or BDMGO). These signals are received 
from higher-priority devices and are retransmitted to lower-priority devices on the bus. 

Bus master/slave relationship communication between devices on the bus is 
asynchronous. A master/slave relationship exists throughout each bus transaction. At 
any time, there is one device that has control of the bus. This controlling device is termed 
the bus master. The master device controls the bus when communicating with another 
device on the bus, termed the slave. The bus master (typically the KDJI1-E processor or 
a DMA device) initiates a bus transaction. The slave device responds by acknowledging 
the transaction in progress and by receiving data from, or transmitting data to, the 
bus master. The extended LSI-11 bus control signals transmitted or received by the 
bus master or bus slave device must complete the sequence according to the protocol 
established for transferring address and data information. The processor controls bus 
arbitration (that is, it decides which device is to be bus master at any given time). 

A typical example of a master/slave relationship is the processor, as master, fetching an 
instruction from memory, which is always a slave. Another example is a disk drive, as 
master, transferring data to memory, again as the slave. Any device except the processor 
can be master or slave depending on the circumstances. Communication on the extended 
LSI-11 bus is interlocked; for each control signal issued by the master device, there must 
be a response from the slave in order to complete the transfer. It is the master/slave 
signal protocol that makes the extended LSI-11 bus asynchronous. The asynchronous 
operation allows both fast and slow devices to use the bus and eliminates the need for 
synchronizing clock pulses between the bus master and slave device. 

Since bus cycle completion by the bus master requires response from the slave device, 
each bus master must include a timeout error circuit that aborts the bus cycle if the slave 
device does not respond to the bus transaction within 12.8 p,s. The KDJ11-E has a bus 
timer that restarts the clock when no device responds to BDIN L or BDOUT L within 
12.8 p,s. An immediate trap to location 4 occurs. The slowest peripheral or memory 
device must respond in less than 12.8 p,s to prevent a bus timeout error. 

5.2 Bus Signal Nomenclature 
Throughout the following protocol specifications, bus signals are referred to in several 
different ways. 

1. In general discussions where timing, polarity, and physical location are unimportant, 
the base signal name without any prefixes or suffixes is used. For example: 



Extended LSI-11 Bus 5-3 

SYNC, WTBT, BS7, DAL <21:00> or the DAL lines 

2. Most signals on the backplane etch are asserted low and are referred to with a prefix 
character B, and a suffix (space) L. For example: 

BSYNC L, BWTBT L, BBS7 L, BDAL <21:00> L 

BPOK Hand BDCOK H are asserted high. 

3. Receivers and drivers are considered to be part of the bus. Signal inputs to drivers 
are referred to with a prefix character T, for transmit. For example: 

T8YNC, TWTBT, TBS7, TDAL <21:00> 

4. Signal outputs of receivers are referred to with the prefix character R, for receive. 
For example: 

RSYNC, RWTBT, RBS7, RDAL <21:00> 

Whenever timing is important, the designations in items 3 and 4, listed previously, are 
used to reference timing to a receiver output or driver input. For example, after receipt of 
the negation of RDIN, the slave negates its TRPLY (0 ns minimum, 8000 ns maximum). 
It must maintain data valid on its TDAL lines until 0 ns (minimum) after the negation 
of RDIN, and must negate its TDAL lines 100 ns (maximum) after the negation of its 
TRPLY. 

5.3 Data Transfer Bus Cycles 
Data is transferred between a bus master and slave device to accomplish various 
functions. Table 5-2 describes the data transfer bus cycles and their functions. 

These bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to 
or from slave devices. The data to be written in the destination byte during byte output 
operations is valid on the appropriate BDAL lines. For example, BDAL < 15:8> contains 
the high byte, and BDAL <7:0> contains the low byte. Table 5-3 describes the bus signals 
used in a data transfer operation. 

Data transfer bus cycles can be reduced to three basic types: DATI, DATO(B) and 
DATIO(B). These transactions occur between the bus master and one slave device 
selected during the addressing portion of the bus cycle. 

Table 5-2 Data Transfer Bus Cycles 

Bus Cycle 
Mnemonic 

DATI 

DATO 

DATOB 

DATIO 

DATIOB 

Description Function (with Respect to the Bus Master) 

Data word input Read 

Data word output Write 

Data byte output Write byte 

Data word input Read-modify-write 
/output 

Data word inputlbyte Read-modify-write byte 
output 



5-4 Extended LSI-11 Bus 

Table 5-3 Data Transfer Bus Signals 

Mnemonic Description Function 

BDAL <21:00> L 22 data/address lines BDAL <21:18> L are used for 22-bit extended 
addressing; BDAL <17:16> L are used for 18-bit 
extended addressing, memory parity error, and 
memory parity error enable functions; BDAL <15:0> 
L are used for 16-bit addressing, word and byte 
transfers. 

BSYNCL Synchronize Strobe signals 

BDINL Data input strobe 

BDOUTL Data output strobe 

BRPLYL Reply 

BWTBTL Write/byte control Control signals 

BBS7L Bank 7 select 

5.3.1 Bus Cycle Protocol 
Before initiating a bus cycle, the previous bus transaction must be complete (BSYNC 
L negated) and the device must become bus master. The bus cycle is divided into 
two parts-an addressing portion, and a data transfer portion. During the addressing 
portion, the bus master outputs the address for the desired slave device (memory location 
or device register). The selected slave device responds by latching the address bits and 
holding this condition for the duration of the bus cycle (until BSYNC L becomes negated). 
During the data transfer portion of the bus cycle, the operations which are performed 
vary slightly, depending on the type of data transfer desired. 

5.3.1.1 Device Addressing 
The device addressing portion of a data transfer bus cycle comprises an address setup 
Ideskew time and an address hold/deskew time. During the address setup/deskew time, 
the bus master does the following: 

1. It asserts TDAL <21:00> with the desired slave device address bits. 

2. It asserts TBS7 if a device in the I/O page is being addressed. 

3. It asserts TWTBT if the cycle is a DATO(B) bus cycle. 

4. It asserts TSYNC 150 ns (minimum) after gating TDAL, TBS7, and TWTBT onto the 
bus. . 

During this time the address, RBS7, and RWTBT signals are asserted at the slave bus 
receiver for at least 75 ns before RSYNC becomes active. Devices in the I/O page ignore 
the 9 high-order address bits RDAL <21:13> and, instead, decode RBS7 along with the 
13 low-order address bits. An active RWTBT signal indicates that a DATO(B) operation 
follows, while an inactive RWTBT indicates a DATI or DATIO(B) operation. 

The address hold/deskew time begins after RSYNC is asserted. The slave device uses 
the active RSYNC to clock RDAL address bits, RBS7 and RWTBT, into its internal logic. 
RDAL <21:00>, RBS7, and RWTBT remain active for 25 ns (minimum) after RSYNC 
becomes active. RSYNC remains active for the duration of the bus cycle. 



Extended LSI-11 Bus - 5-5 

Memory and peripheral devices are addressed similarly, except for the way they respond 
to RBS7. Addressed peripheral devices must not decode address bits on RDAL <17:13>. 
Addressed peripheral devices may respond to a bus cycle only when RBS7 is asserted 
during the addressing portion of the cycle. When asserted, RBS7 indicates that the 
device address resides in the 110 page (the upper 8-Kbyte address space). Memory 
devices generally do not respond to addresses in the 110 page. However, some system 
applications may permit memory to reside in the I/O page for use as DMA buffers, ROM 
bootstraps, diagnostics, etc. 

5.3.1.2 DATI 
The DATI bus cycle is a read operation that inputs data from the slave device to the bus 
master. Figure 5-1 shows the operations performed by the bus master and slave device 
during a DATI bus cycle. Figure 5-2 shows the DATI bus cycle timing. Data consists 
of 16-bit word transfers over the bus. During the data transfer portion of the DATI bus 
cycle, the bus master asserts TDIN 100 ns (minimum) after it asserts TSYNC. The slave 
device responds to RDIN active by asserting: 

1. TRPLY after receiving RDIN, and 125 ns (maximum) before TDAL bus driver data 
bits are valid 

2. TDAL <17:0> L with the addressed data and error information 

Bus Master 
(Processor or Device) 

Address Device or Memory 

• Asserts BDAL <21 :00> with 

address and 

• Asserts BBS7 if the address 
is in the 110 page 

• Asserts BSYNC L - -- ---

Slave 
Memory Device 

- - - - -. Decode Address 

• Store "Device Selected" 

Request Data 

• Remove the address from 

BDAL <21 :00> Land 

Negate BBS7 L 

• Assert BDIN L 

Terminate Input Transfer 

• Accept data and respond 
by negating BDIN L 

Terminate Bus Cycle 

• Negate BSYNC L 

Figure 5-1 DATI Bus Cycle 

- -­
~-------

--- --------. 

operation 

Input Data 

• Place data on BDAL <15:00> L 
• Assert BRPL Y L 

--.Jc -

-..... Operation Completed 
~ _ _ _ _ _ _ _ _ _ _ • Negate BRPL Y L 

LJ-00176-TIO 



5-6 Extended LSI-11 Bus 

TR DAL ~ TACDR 'X (4) RCata X (4) 

~100NS 
Minimum 

TSYNC 

100 NS Minimum t;= 
T DIN 

8 .. S Maximum 

R RPLY 

150 NS 

!;:nlmum 1;::100 NS Minimum 

TBS7 ~ __ ~~~-_-_-_-_-~~}(~ ______________________ (~ __________________________ ___ 

T~BT :J\ ________ J)(~ __________________ (_4) ______________________ ___ 

TIMING AT MASTER DEVICE 

RfT DAL TData 

125 NS Maximum 

RSYNC 

R DIN 

TRPLY 

R BS7 (4) 

R~BT ~ ______ -J)(~ __________________ ~_) __________________________ ___ 

TIMING AT SLAVE DEVICE 

NOTES: 

1 . Timing shown at requesting device bus driver 
inputs and bus receiver outputs. 

2. Signal name prefixes are defined below 
T =Bus Driver Input 
R=Bus Receiver Output 

Figure 5-2 DATI Bus Cycle Timing 

3. Bus driver output and bus receiver input 
signal names include a "B" prefix. 

4. Don't care condition. 

LJ-00177-TIO 



Extended LSI-11 Bus 5-7 

When the bus master receives RRPLY, it does the following: 

1. It waits at least 200 ns deskew time and then accepts input data at RDAL <15:00> 
bus receivers. RDAL < 17: 16> are monitored for a possible parity error indication. 

2. It negates TDIN 150 ns (minimum) after RRPLY becomes active. 

The slave device responds to RDIN negation by negating TRPLY and removing read data 
from TDAL bus drivers. TRPLY must be negated 100 ns (maximum) prior to removal of 
read data. The bus master responds to the negated RRPLY by negating TSYNC. 

Conditions for the next TSYNC assertion are as follows: 

1. TSYNC must remain negated for 200 ns (minimum). 

2. TSYNC must not become asserted within 300 ns of the previous RRPLY negation. 

5.3.1.3DATO(B) 
DATO(B) is a write operation. Data is transferred in 16-bit words (DATO) or 8-bit bytes 
(DATOB) from the bus master to the slave device. The data transfer output can occur 
after the addressing portion of a bus cycle when TWTBT has been asserted by the 
bus master, or immediately following an input transfer part of a DATIO(B) bus cycle. 
Figure 5-3 shows the operations performed by the bus master and slave device during a 
DATO(B) bus cycle. Figure 5-4 shows the DATO(B) bus cycle timing. 

The data transfer portion of a DATO(B) bus cycle comprises a data setup/deskew time 
and a data hold/deskew time. During the data setup/deskew time, the bus master outputs 
the data on TDAL <15:00> 100 ns (minimum) after TSYNC is asserted. If it is a word 
transfer, the bus master negates TWTBT while gating data onto the bus. If the transfer 
is a byte transfer, the bus master asserts TWTBT while gating data onto the bus. During 
a byte transfer, the condition of BDAL 00 L during the address cycle selects the high or 
low byte. If asserted, the high byte (BDAL < 15:08> L) is selected. Otherwise, the low 
byte (BDAL <07:00> L) is selected. An asserted BDAL 16 L at data transfer time forces 
a parity error to be written into memory (if the memory is parity memory). BDAL 17 L 
is not used for write operations. The bus master asserts TDOUT L 100 ns (minimum) 
after the TDAL and TWTBT bus driver inputs are stable. The slave device responds to 
RDOUT by accepting the input data and asserting TRPLY (8 p,s maximum to avoid bus 
timeout). This completes the data setup/deskew time. 

During the data hold/deskew time the bus master negates TDOUT 150 ns (minimum) 
after the assertion of RRPLY. TDAL <21:00> bus drivers remain stable for at least 100 
ns after TDOUT negation. The bus master then negates TDAL inputs. The slave device 
senses RDOUT negation and negates TRPLY. The bus master responds by negating 
TSYNC. The processor, however, does not negate TSYNC for at least 175 ns after 
negating TDOUT. This completes the DATO(B) bus cycle. Before the next cycle, TSYNC 
must remain unasserted for at least 200 ns. Also, TSYNC may not be asserted until 300 
ns (minimum) after RRPLY is negated. 



5-8 Extended LSI-11 Bus 

Bus Master 
(Processor or Device) 

Address devicelmemory 
• Assert BDAL <21 :00> L with 

address and 
• Assert BBS7 L if address is 

in the 1/0 Page 

• Assert BWTBT L (write cycle) 
.• Assert BSYNC L 

Output Data 
• Remove the address from 

BDAL <21 :00> L and negat~ BB7 L 
• Negate BWTBT L unless DATOB 
• Place data on BDAL <15:00> L 
• Assert BDOUT L 

Terminate Output Transfer 

• Negate BDOUT L (and BWTBT L 
if a DATOB bus cycle) 

--- ---

Slave 
(Memory or Device) 

- - - - ...... Decode Address 
• Store -Device Selected-

- --­... ------ operation 

--- --- - - - - ...... Take Data 
• Receive data from BDAL lines 

__ " • Assert BRPL Y L ------4l1li:--

• Remove data from BDAL <15:00> L _ 

-- -- - - - ~ Operation Completed 
Terminate Bus Cycle 

• Negate BSYNC L 

.. _ _ _ _ _ _ _ _ _ _ • Negate BRPL Y L 

Figure 5-3 DATO or DATO(B) Bus Cycle 

LJ·00178· TIO 



TDAL 

TSYNC 

TDOUT 

R RPLY 

TBS7 

TWTBT 

RIT DAL 

RSYNC 

R DIN 

TRPLY 

R BS7 

RWTBT 

150NS 
Minimum 

81'S 
Maximum 

100 NS Minimum 

Extended LSI-11 Bus - 5-9 

(4) 

_ I 100 NS 1'-­
--., Minimum I---

ONS Minimum 

(4) 

(4) 

TIMING AT MASTER DEVICE 

TIMING AT SLAVE DEVICE 

NOTES: 

1. Timing shown at requesting device bus driver 
inputs and bus receiver outputs. 

2. Signal name prefixes are defined below 
T =Bus Driver Input 
R=Bus Receiver Output 

3. Bus driver output and bus receiver input 
signal names include a "B" prefix. 

4. Don't care condition. 

LJ-00179-110 

Figure 5-4 DATO or DATO(B) Bus Cycle Timing 



5-10 Extended LSI-11 Bus 

5.3.1.4 DAlIO(B) 
The protocol for a DATIO(B) bus cycle is identical to the addressing and data transfer 
portions of the DATI and DATO(B) bus cycles. After addressing the device, a DATI cycle 
i~ performed as explained in Section 5.3.1.2, except TSYNC is not negated. TSYNC 
remains active for an output word or byte transfer DATO(B). The bus master maintains 
at least 200 ns between RRPLY negation during the DATI cycle and TDOUT assertion. 
The cycle is terminated when the bus master negates TSYNC, which follows the same 
protocol as described for DATO(B). ~gure 5-5 shows the operations performed by the bus 
master and slave device during a DATIO or DATIO(B) bus cycle. Figure fH) shows the 
DATIO and DATIO(B) bus cycle timing. 



Bus Master 

(Processor or Device) 

Address device memory 

• Assert BDAL <21 :00> L with 
address 

• Assert BBS7 L if the 
address is in the I/O page 

• Assert BSYNC L --- ---

Extended LSI-11 Bus 5-11 

Slave 

(Memory or Device) 

- - - -.... Decode Address 

• Store -Device Selected" 

- -- operation 

Request Data ...------ ---
• Remove the address from 

BDAL <21 :00> L 

• Assert BDIN L - --
-------~ Input Data 

• Place data on BDAL <15:00> L 

Terminate Input Transfer 

• Accept data and respond by 
terminating BDIN L 

Output Data 

-- --- -- • Assert BRPL Y L 

~- --
---

-------~ 
Complete Input Transfer 

• Remove data 

• Negate BRPL Y L -------...-----
• Place output data on BDAL <15:00> L 

• Assert BWTBT L if an output 

byte transfer 

• Assert BDOUT L ---- ---
- - -~ Take Data 

...----------
• Receive data from BDAL lines 

_ _ • Assert BRPL Y L 

Terminate Output Transfer 

• Remove data from BDAL lines 

• Negate BDOUT L --- ------- ..... 

Terminate Bus Cycle 

• Negate BSYNC L 
(and BWTBT L if N 

A DATIOB bus cycle) 

...------

Figure 5-5 DATIO or DATIO(B) Bus Cycle 

--- - --
Operation Completed 

• Negate BRPL Y L 

W·00180·TIO 



5-12 Extended LSI-11 Bus 

RIT DAL 

TSYNC 

TDOUT 

TDIN 

R RPLY 

TBS7 

TWTBT 

Figure~ 

TIMING AT MASTER DEVICE 

TIMING AT SLAVE DEVICE 
NOTES: 

1. Timing shown at requesting device bus driver' 
inputs and bus receiver outputs. 

3. Bus driver output and bus receiver input 
Signal names Include a -B- prefix. 

2. Signal name prefixes are defined below 
T -Bus Driver Input 
R-Bus Receiver Output 

4. Don't care condition. 

DATIO or DATIO(B) Bus Cycle nmlng 

LJ·00181·TIO 



Extended LSI-11 Bus 5-13 

5.4 Direct Memory Access 
Direct Memory Access (DMA) capability allows direct data transfers between 110 devices 
and memory. This is useful when using mass storage devices (for example, disk drives) 
that move large blocks of data to and from memory. A DMA device only needs to know 
the starting address in memory, the starting address in mass storage, the length of the 
transfer, and whether the operation is read or write. When this information is available, 
the DMA device can transfer data directly to or from memory. Since most DMA devices 
must perform data transfers in rapid succession or lose data, DMA requests are assigned 
the highest priority level. 

DMA is accomplished after the processor (normally bus master) has passed bus 
mastership to the highest-priority DMA device that is requesting the bus. The processor 
arbitrates all requests and grants the bus to the DMA device located closest (electrically) 
to the processor. A DMA device remains bus master until it relinquishes its mastership. 
The following control signals are used during bus arbitration. 

Signal 

BDMGIL 

BDMGOL 

BDMRL 

BSACKL 

Name 

DMA grant input 

DMA grant output 

DMA request line 

Bus grant acknowledge 

A DMA transaction is divided into three phases: the bus mastership acquisition phase, 
the data transfer phase, and the bus mastership relinquish phase. Figure 5-7 shows the 
operations performed by the processor and bus master during the DMA request/grant 
sequence. Figure 5-8 shows the DMA request/grant bus cycle timing. 



5-14 Extended LSI-11 Bus 

KOJ11-E Processor 
(Memory is Slave) 

Grant Bus Control 
• Near the end of the 

current bus cycle 
(BRPL Y L is negated) . 
. Assert BOMGO Land 
inhibit new processor 
generated BSYNC L for 
the duration of the 
OMA operation. 

Terminate Grant 
Sequence 
• Negate BOMGO Land 

wait for OMA operation 
to be completed. 

• Monitor the transaction to 
invalidate cache if 
cache hit. 

Resume Processor 
Operation 
.Enable processor­
generated BSYNC L 
(processor is bus 
master) or issl,Je 
another grant if BOMR 
L is asserted. 

--_ .. 
~------

- -- ---- ... --- ........ 

--- - --
...... -- --

-.... ........ -........ --- .... 

--- -- ---
...... --

Figure 5-7 DMA Request/Grant Sequence 

Bus Master 
(Controller) 

Request Bus 
• Assert BOMR L 

Acknowledge Bus 
Mastership 
• Receive BOMG 
• Wait for negation of 

BSYNC Land BRPL Y L 
• Assert BSACK L 
• Negate BOM R L 

Execute a DMA Data 
Transfer 
• Address memory and 

transfer up to 4 words 
of data as described 
for DATI or DATO base 
cycles. 

• Release the bus by 
terminating BSACK L 
(no sooner than 
negation of last BRPL Y L) 
and BSYNC L 

I 
Wait 4 JLS or until 
another FIFO transfer 
is pending before 
requesting bus again. 

LJ-00182·TIO 

During the bus mastership acquisition phase, a DMA device requests the bus by asserting 
TDMR. The processor arbitrates the request and initiates the transfer of bus mastership 
by asserting TDMG. The maximum time between BDMR L assertion by the DMA device 
and BDMGO L assertion by the processor is DMA latency. This time is processor­
dependent. The KDJI1-E asserts TDMG 1.4 p.s (maximum) after the assertion of RDMR. 



Extended LSI-11 Bus 5-15 

BDMGO UBDMGI L is one of two signals that are daisy-chained through each module 
in the backplane. The signal is driven out of the processor on the BDMGO L pin, enters 
each module on the BDMGI L pin and exits on the BDMGO L pin. This signal passes 
through the modules in descending order of priority until it is stopped by the requesting 
device. The requesting device blocks the output of BDMGO L and asserts TSACK. If no 
device responds to the DMA grant, the processor clears the grant and rearbitrates the 
bus. 

NOTE 
The KDJl1·E uses a no SACK timer that clears BDMGO L if BSACK L is not 
received from the DMA device within 12.8 ",seconds. 

During the data transfer phase, the DMA device continues asserting BSACK L. If 
multiple data transfers are performed during this phase, consideration must be given 
to the use of the bus for other system functions, such as memory refresh (if required). 
The actual data transfer is performed in the same manner as the data transfer portion of 
DATI, DATO(B) and DATIO(B) bus cycles. 

TDMR 

RDMG 

TSACK 

RIT SYNC 

RIT RPLY 

r---- 0 NS Minimum 

I I I 
I I I 

I I I 
I I I 

~O NS Minimum ,... _______ ~ 

TDAL 

(ALSOBS7 

WTBT,REF) 

ADDR 

NOTES: 

1. Timing shown at requesting device bus driver 
inputs and bus receiver outputs. 

2. Signal name prefixes are defined below 
T =Bus Driver Input 
R=Bus Receiver Output 

Figure 5-8 DMA Request/Grant Bus Cycle Timing 

Data 

3. Bus driver output and bus receiver input 
signal names include a "B" prefix. 

4. Don't care condition. 

W·00183·TIO 

The DMA device can assert TSYNC L for a data transfer 0 ns (minimum) after it receives 
RDMGI L, 250 ns (minimum) after RSYNC is negated, and 300 ns (minimum) after 
RRPLY is negated. 



5-16 Extended LSI-11 Bus 

During the bus mastership relinquish phase, the DMA device relinquishes the bus by 
negating TSACK. This occurs after the last data transfer cycle (RRPLY negated) is 
completed (or aborted). TSACK may be negated up to 300 ns (maximum) before negating 
TSYNC. 

5.5 Interrupts 
The interrupt capability of the LSI-1! bus allows any 110 device to temporarily suspend 
(interrupt) current program execution and divert processor operation for service of the 
requesting device. The processor inputs a vector from the device to start the service 
routine (handler). As with a device register address, the hardware fixes the device vector 
at locations within a designated range of addresses between 000 and 777. The vector 
indicates the first of a pair of addresses. The content of the first address is read by the 
processor; it is the starting address of the interrupt handler. The content of the second 
address is a new PSW. PSW bits <07:05> can be programmed to a priority level from 0 
to 7. Only interrupts on a level higher than the number in the PSW priority level field 
are serviced by the processor. If the interrupt priority level of the new PSW is higher 
than that of the original PSW, the new PSW raises the interrupt priority level and thus 
prevents lower-level interrupts from breaking into the current interrupt service routine. 
Control is returned to the interrupted program when the interrupt service routine is 
complete. 

The original (interrupted) program address (PC) and its associated PSW are stored on 
a stack. The original PC and PSW are restored by a return from interrupt instruction 
(RTI or RTT) at the end of the service routine. The use of the stack and the LSI-11 bus 
interrupt scheme can allow interrupts to occur within interrupts (nested interrupts) if 
the requesting interrupt has a higher priority level than the interrupt currently being 
serviced. 

Interrupts can be caused by LSI-11 bus options and can also originate in the processor. 
Interrupts originating in the processor are called traps and are caused by programming 
errors, hardware errors, special instructions, and maintenance features. The LSI-11 bus 
signals used in interrupt transactions are listed here. 

Signal 

BIRQ4 L 

BIRQ5 L 

BIRQ6 L 

BIRQ7 L 

BIAKI L 

BIAKOL 

BDAL <15:00> L 

BDINL 

BRPLYL 

Name 

Interrupt request priority level 4 

Interrupt request priority level 5 

Interrupt request priority level 6 

Interrupt request priority level 7 

Interrupt acknowledge input 

Interrupt acknowledge output 

Data/address lines 

Data input strobe 

Reply 



Extended LSI·11 Bus 5-17 

5.5.1 Device Priority 
The LSI·11 bus supports the following two methods of determining device priority: 

• Distributed arbitration - Priority levels are implemented on the hardware. When 
devices of equal priority level request an interrupt, priority is given to the device 
electrically closest to the processor. 

• Position·defined arbitration - Priority is determined solely by electrical position on 
the bus. The device closest to the processor has the highest priority, while the device 
at the far end of the bus has the lowest priority. 

The KDJ11·E uses both methods-distributed arbitration, with four levels of priority, 
and position·defined arbitration within each level. Interrupts on these priority levels 
are enabled/disabled by bits in the processor status word (PSW <07:05». Single-level 
interrupt (position-defined) devices that interrupt on BIRQ4 can also be used in KDJ11·E 
systems, but must be placed in a bus slot following the last bus slot in which a position­
independent device is installed. 

5.5.2 Interrupt Protocol 
Interrupt protocol has three phases: the interrupt request phase, the interrupt 
acknowledge and priority arbitration phase, and the interrupt vector transfer phase. 
Figure 5-9 shows the operations performed by the processor and interrupting device. 
Figure 5-10 shows the interrupt protocol timing. 



5-18 Extended LSI-11 Bus 

Processor" 

Strobe Interrupts 
• Assert BOIN L 

I 
I 
I 

t 
Grant Request 
• Pause and assert BIAKO L 

Receive Vector and 
Terminate Request 
• Input vector address 

---­
~------

---

Device 

Iniate Request 
• Assert BIRQ L 

--- - - - -.... Receive BOIN L 

--

JIIIII:- --

---

• Store -Interrupt Sending­
in device. 

- ~ Receive BIAKI L 
• Receive BIAKI L and inhibit 

BIAKOL 
• Place vector on BOAL <15:00> L 
• Assert BRPL Y L 

--- --- -- • Negate BIRQ L 

• Negate BOIN L and BIAKO L 

Process the Interrupt 
• Save interrupted program 

PC and PS on stack 
• Load new PC and PS from 

vector address location 
• Execute interrupt service 

routine for the device 

--- --- ---- .... 
-----------.. ----

Complete· Vector Transfer 
• Remove vector from BOAL bus 
• Negate BRPL Y L 

W"()()184·T10 

Figure 5-9 Interrupt Request/Acknowledge Sequence 



TIRQ 

RDIN 

R 1AKI 

T RPlY 

TDAl 

RSYNC 

RBS7 

=~e~~~me 

(4) 

(UnalSened) 

(Unassened) 

NOTES: 

1. Timing shown at requesting device bus driver 
inputs and bus receiver outputs. 

2. Signal name prefixes are defined below 
T =Bus Driver Input 
R=Bus Receiver Output 

Extended LSI-11 Bus 5-19 

3. Bus driver output and bus receiver Input 
signal names Include a -B- prefix. 

4. Don't care condition. 

W·OO185·TIO 

Figure 5-10 Interrupt Protocol Timing 

The interrupt request phase begins when a device meets its specific conditions for 
interrupt requests (for example, when the device is ready, done, or when an error has 
occurred). The interrupt enable hit in a device status register must be set. The device 
then initiates the interrupt by asserting the interrupt request line(s). BIRQ4 L is the 
lowest hardware priority level and is asserted for all interrupt requests for compatibility 
with previous LSI-11 processors. The level at which a device is configured must also be 
asserted. (A special case exists for level 7 devices that must also assert level 6.) The 
interrupt request line remains asserted until the request is acknowledged. 

Interrupt 
Level 

4 

5 

6 

7 

Lines Asserted By Device 

BffiQ4L 

BIRQ4 L, BffiQ5 L 

BIRQ4 L, BffiQ6 L 

BffiQ4 L, BffiQ6 L, BffiQ7 L 



5-20 Extended LSI-11 Bus 

During the interrupt acknowledge and priority arbitration phase, the KDJ11-E 
acknowledges interrupts under the following conditions: 

1. The device interrupt priority is higher than the current priority level stored in PSW 
<07:05>. 

2. The processor has completed instruction execution and no additional bus cycles are 
pending. 

The processor acknowledges the interrupt request by asserting TDIN and, 225 ns 
(minimum) later, by asserting TIAKO. The device electrically closest to the processor 
receives the acknowledgment on its RIAKI bus receiver. 

On the leading edge of RDIN, each bus option capable of requesting interrupts decides 
whether to accept or to pass on the RIAKI signal. A device that does not support position­
independent, multilevel interrupts accepts RIAKI if it is requesting an interrupt when 
RDIN asserts. A device that does support position-independent, multilevel interrupts 
accepts RIAKI if it is requesting an interrupt and if there is no higher-priority request 
pending when RDIN asserts. This decision must be clocked into a flip-flop, which settles 
within 150 ns ofTDIN. 

Devices that support position-independent, multilevel interrupts assert from one to 
three interrupt request lines when requesting an interrupt. Table 5-4 presents the 
Interrupt Request (IRQ) lines that a device at each level must assert in order to request 
an interrupt. Table 5-4 also lists the lines it must monitor to determine whether a 
higher-priority device is requesting an interrupt. 

During the interrupt vector transfer phase, the responding interrupt device receives 
RIAKI and then asserts TRPLY. The vector address must be stable at TDAL <8:2> 125 ns 
(maximum) after TRPLY is asserted. The processor receives the assertion of RRPLY and, 
200 ns (minimum) later, it inputs the vector address and negates both TDIN and TIAKI. 
The interrupting device negates TRPLY after the negation of RIAKI, and removes the 
vector address from TDAL <8:2> 100 ns (maximum) after TRPLY negates. Since vector 
addresses are constrained between 000 and 774, none of the remaining TDAL lines are 
used. 

Table 5-4 Position-Independent, Multilevel Device Requirements 

Interrupt IRQ Lines 
Level Asserted IRQ Lines Monitored 

4 TIRQ4 RIRQ5, RIRQ6 

5 TIRQ4, TIRQ5 RIRQ6 

6 TIRQ4, TIRQ6 RIRQ7 

7 TIRQ4, TIRQ6, 
TIRQ7 

5.5.3 4-Level Interrupt Configurations 
Users having high-speed peripherals and desiring better software performance can 
use the 4-level interrupt scheme. Both position-independent and position-dependent 
configurations can be used with the 4-level interrupt scheme. 



Extended LSI-11 Bus 5-21 

Figure 5-11 shows the position-independent configuration. This configuration allows 
peripheral devices that use the 4-level interrupt scheme to be placed in the backplane 
in any order. These devices must send out interrupt requests and monitor higher-level 
request lines, as described in Section 5.5.2. The level 4 request is always asserted by a 
requesting device, regardless of priority, to allow compatibility if an LSI-II or LSI-1112 
processor is in the same system. If two or more devices of equally high priority request 
an interrupt, the device physically closest to the processor wins arbitration. Devices that 
use the single-level interrupt scheme must be modified or be placed at the end of the bus 
for arbitration to function properly. 

Figure 5-12 shows the position-dependent configuration. This configuration is simpler to 
implement, but has the following constraint: peripheral devices must be ordered so that 
the highest-priority device is located closest to the processor, with the remaining devices 
placed in the backplane in decreasing order of priority. 

With the position-dependent configuration, each device must assert only its own level and 
level 4 (for compatibility with an LSI-II or LSI-1112). Monitoring higher-level request 
lines is unnecessary. Arbitration is achieved through the physical positioning of each 
device on the bus. Single-level interrupt devices on level 4 must be positioned last on the 
bus. 

BIAK (Interrupt Acknowledge) Level 4 BIAK Level 6 
BIAK 

Level 5 
BIAI< 

Level 7 
KDJ11 ... r---- ~ r-----Device Device Device Device 

'!,U t BIRO 4 (Level 4 Interrupt Request) + ' " ! ~ 

+ 
, 

+ 
BIRO 5 (Level 5 Interrupt Request) ~ if 

BIRO 6 (Level 6 Interrupt Request) " f 

BIRO 7 (Level 7 Interrupt Request) 

LJ-00186-TIO 

Figure 5-11 Position-Independent Configuration 

BIAK (Interrupt Acknowledge) 
Level 7 BIAK Level 6 BIAK 

Level 5 
BIAI< 

Level 4 
KDJ11 .. ----... r----. -----~ 

Device Device Device Device 

, , ~ , ~ f BIRO 4 (Level 4 Interrupt Request) ~ + + + 
BIRO 5 (Level 5 Interrupt Request) f 

BIRO 6 (Level 6 Interrupt Request) f 

BIRO 7 (Level 7 Interrupt Request) ~ 

LJ-00187-TIO 

Figure 5-12 Position-Dependent Configuration 



5-22 Extended LSI-11 Bus 

5.6 Control Functions 
The following LSI-11 bus signals provide system control functions: 

Signal 

BREFL 

BHALTL 

BINIT L 

BPOKH 

BDCOKH 

BEVNTL 

5.6.1 Halt 

Name 

Memory refresh 

Processor halt 

Initialize 

Power OK 

DC power OK 

External event interrupt request 

The assertion of BHALT L stops program execution and forces the processor 
unconditionally into console ODT mode. The processor does not assert the BHALT L 
bus line when it comes to a programmed halt. 
5.6.2 Initialization 
Devices along the bus are initialized when BINIT L is asserted. The processor asserts 
the BINIT L signal under the following conditions: 

1. During a power-down sequence 

2. During a power-up sequence 

3. During the execution of a RESET instruction 

4. After detection of a G character in ODT mode (if the processor features an ODT mode 
and a G command within it), and before execution ~f the code starting at the address 
that preceded the G command 

5.6.3 Power Status 
Power status protocol is controlled by two signals, BDCOK H and BPOK H. These signals 
are driven by an external device (usually the power supply) and are defined in the 
following sections: 

5.6.3.1 BDeOK H 
The assertion of this line indicates that dc power has been stable for at least 3 ms. Once 
asserted this line remains asserted until the power fails. 

5.6.3.2 BPOK H 
The assertion of this line indicates that there is at least an 8 ms reserve of dc power and 
that BDCOK H has been asserted for at least 70 ms. Once BPOK H has been asserted, it 
must remain asserted for at least 3 ms. 

The negation of this line indicates that power is failing and that only 4 ms of dc power 
reserve remains. The negation of this line during processor operation initiates a power­
fail trap sequence. 



Extended LSI-11 Bus 5-23 

5.6.3.3 Power-Up 
The following events occur during a power-up sequence: 

1. Logic associated with the power supply negates BDCOK H during power-up and 
asserts BDCOK H 3 ms (minimum) after dc power is restored to voltages within 
specification. 

2. The processor asserts BINIT L after receiving nominal power and negates BINIT L 0 
ns (minimum) after the assertion of BDCOK H. 

3. Logic associated with the power supply negates BPOK H during power-up and asserts 
BPOK H 70 ms (minimum) after the assertion of BDCOK H. If power does not remain 
stable for 70 ms, BDCOK H is negated. Therefore, devices must suspend critical 
actions until BPOK H is asserted. 

4. BPOK H must remain asserted for a minimum of 3 ms. BDCOK H must remain 
asserted 4 ms (minimum) after the negation of BPOK H. 

5.6.3.4 Power-Down 
The following events occur during a power-down sequence: 

1. If the ac voltage to a power supply drops below 75% of the nominal voltage for one 
full line cycle (15 to 24 ms), BPOK H is negated by the power supply. Once BPOK H 
is negated, the entire power-down sequence must be completed. 

A device that requested bus mastership before the power failure that has not become 
bus master must maintain the request until BINIT L is asserted or the request is 
acknowledged (in which case regular bus protocol is followed). 

2. Processor software must execute a RESET instruction 3 ms (minimum) after the 
negation of BPOK H. This asserts BINIT L for 8 to 20 JJS. Processor software executes 
a HALT instruction immediately following the RESET instruction. 

3. BDCOK H must be negated a minimum of 4 ms after the negation of BPOK H. This 
4 ms allows mass storage and similar devices to protect themselves against erasures 
and erroneous writes during a power failure. 

4. The processor asserts BINIT L 1 JJS (minimum) after the negation of BDCOK H. 

5. The dc power must remain stable for a minimum of 5 JJS after the negation of BDCOK 
H. 

6. BDCOK H must remain negated for a minimum of 3 ms. 

5.6.4 BEVNT l 
The BEVNT L signal is an external line clock interrupt request to the processor. When 
BEVNT L is asserted, the processor internally assigns location 100 as the vector address 
for the BEVNT service routine. Because the vector is internally assigned, the processor 
does not execute the protocol for reading in the interrupt vector address (as is the case 
for other external interrupt requests). 

5.7 Bus Electrical Characteristics 
This paragraph contains information about the electrical characteristics of the LSI-1! 
bus. 



5-24 Extended LSI-11 Bus 

5.7.1 Signal Level Specification 

Input Logic Levels 

TTL logical low: 

TTL logical high: 

Output Logic 
Levels 

TIL logical low: 

TTL logical high: 

0.8 Vdc (maximum) 

2.0 Vdc (minimum) 

0.4 V de (maximum) 

2.4 Vdc (minimum) 

5.7.2 AC Bus Load Definition 

The amount of capacitance a module presents to a bus signal line is the ac bus load. This 
capacitance is measured between each module signal line and ground, and is expressed 
in ac unit loads, where each unit load is defined as 9.35 pF. 

5.7.3 DC Bus Load Definition 

The amount of leakage current a module presents to a bus signal line is the dc bus load. 
A dc unit load is defined as 105 pA flowing into a module device when the signal line is 
in the unasserted (high) state. 

5.7.4 120 n LSI·11 Bus 

The electrical conductors interconnecting the bus device slots are treated as transmission 
lines. A uniform transmission line, terminated in its characteristic impedance, 
propagates an electrical signal without reflections. Because bus drivers, receivers, 
and wiring connected to the bus have finite resistance and nonzero reactance, the 
transmission line impedance becomes nonuniform, and therefore introduces distortions 
into pulses propagated along it. Passive components of the LSI-11 bus (such as wiring, 
cabling, and etched signal conductors) are designed to have a nominal characteristic 
impedance of 120 n . 
The maximum length of the interconnecting cable in multiple-backplane systems 
(excluding wiring within the backplane) is limited to 4.88 m (16 ft). 

NOTE 
The KDJ11-E processor (as well as all standard Digital-supplied LSI-11 
interfaces) connects to the bus via special drivers and receivers des·~ribed in 
Section 5.7.5 and Section 5.7.6. 

The KDJ11-E processor provides resistive (250 n) pull-up on all bussed lines to 
3.4 V dc for this wired-OR interconnecting scheme. 



Extended LSI-11 Bus -5-25 

5.7.5 Bus Drivers 
Devices driving the 120 n LSI -11 bus must have open collector outputs and meet the 
specifications that follow. 

DC Specifications l 

• Vcc may vary from 4.75 V to 5.25 V. 

• Output low voltage when sinking 70 rnA of current: 0.7 V (maximum). 

• Output high leakage current when connected to 3.8 V dc: 25 p.A (even if no power is 
applied to them, except for BDeOK H and BPOK H). 

AC Specifications 

• Bus driver output pin capacitance load: not to exceed 10 pF. 

• Propagation delay: not to exceed 35 ns. 

• Driver skew (difference in propagation time between slowest and fastest bus driver): 
not to exceed 25 ns. 

• Rise/fall times: transition time from 10% to 90% for positive transition, and from 90% 
to 10% for negative transition, must be no faster then 5 ns. 

5.7.6 Bus Receivers 
Devices that receive signals from the 120 n LSI-11 bus must meet the following 
requirements. 

DC Specifications2 

• Vcc may vary from 4.75 V to 5.25 V. 

• Input low voltage: 1.3 V (maximum). 

• Input high voltage: 1.7 V (minimum). 

• Maximum input leakage current when connected to 3.8 Vdc: 80 p.A with Vcc between 
0.0 V and 5.25 V. 

AC Specifications 

• Bus receiver input pin capacitance load: not to exceed 10 pF. 

• Propagation delay: not to exceed 35 ns. 

• Receiver skew (difference in propagation time between slowest and fastest receiver): 
not to exceed 25 ns. 

5.7.7 Bus Termination 
The 120 n LSI-11 bus should be terminated at each end by an appropriate resistive 
termination. A pair of resistors in series from +5.0 V to ground is used to establish a 
voltage for each bidirectional1ine when that line is not being driven (negated). The 
parallel impedance of this pair of resistors is 250 n. Figure 5-13 shows the terminating 
resistors. The KDJ11-E contains terminating resistor networks which provide the 120 n 
(terminations for the data/address, synchronization, and control lines) at the processor 
end of the bus. 

1 These conditions must be met at worst-case supply voltage, temperature, and input signal levels 
2 These conditions must be met at worst-case supply voltage, temperature, and output signal levels 



5-26 Extended LSI-11 Bus 

Some system configurations do not require terminating resistors at the far end of the bus. 
If the system configuration does require such termination, it is typically provided by an 
M9404-YA cable connector module. 

5.7.7.1 Bus Interconnection Wiring 
The bus interface for the module connectors is provided by one, two, or three backplanes, 
depending on the system configuration. 

5.7.7.2 Backplane Wiring 
The wiring that interconnects all device interface slots on the LSI-11 bus must meet the 
following specifications: 

1. The conductors must be arranged so that each line exhibits a characteristic 
impedance of 120 n (measured with respect to the bus common return). 

2. Crosstalk from a pulse-driven line to an undriven line to which a constant 5 V is 
applied must be less than 5% of the 5 V. Note that worst-case crosstalk is manifested 
by simultaneously driving all but one signal line and measuring the effect on the 
undriven line. 

3. The dc resistance of a bus segment signal path, as measured between the near-end 
terminator and far-end terminator modules (including all intervening connectors, 
cables, backplane wiring, connector-module etch, and so on), must not exceed 2 n . 

4. The dc resistance of a bus segment common return path, as measured between 
the near-end terminator and far-end terminator modules (including all intervening 
connectors, cables, backplane wiring, connector-module etch, etc.), must not exceed 
an equivalent of 2 n per signal path. Thus, the composite signal return path dc 
resistance must not exceed 2 n divided by 40 bus lines, or 50 Mil. Note that 
although this common return path is nominally at ground potential, the conductance 
must be part of the bus wiring; the specified low-impedance return path must be 
provided by the bus wiring as distinguished from common system or power ground 
path. 

+5 V 

178 n 

383n 
1% 

120n 
Bus Line 
Termination 

Figure 5-13 Bus Line Termination 

+5V 

330n 

680n 

250n 
Bus Line 
Termination 

LJ·00188-TIO 



Extended LSI-11 Bus 5-27 

5.7.7.3 Intrabackplane Bus Wiring 
The wiring that interconnects the bus connector slots within one contiguous backplane is 
part of the overall bus transmission line. Due to implementation constraints, the nominal 
characteristic impedance of 120 n may not be achievable. Distributed wiring capacitance 
in excess of the amount required to achieve the nominal 120 n impedance may not exceed 
60 pF per signal line per backplane. 

5.7.7.4 Power and Ground 
Each bus interface slot has connector pins assigned for the following dc voltages. 

Voltage 

+5Vdc 

+12 Vdc 

Ground 

Number of pins 

Three pins, 4.5 A (maximum) per bus device slot 

'l\vo pins, 3.0 A (maximum) per bus device slot 

Eight pins, shared by power return and signal return 

The maximum allowable current per pin is 1.5 A The +5 V dc must be regulated to +5% 
and the maximum ripple should not exceed 100 mV peak-to-peak. The +12 Vdc must be 
regulated to +3% and the maximum ripple should not exceed 200 m V peak-to-peak. 

NOTE 
Power is not bussed between backplanes on any interconnecting LSI-tt bus 
cables. 

5.7.7.5 Maintenance and Spare Pins 
There are four M SPARE pins per bus device slot assigned to maintenance (AK1, ALl, 
BK1, BL1). The maintenance pins on the basic LSI-11 system are not bussed from 
module to module. Instead, at each bus device slot, the maintenance pins are shorted 
together as pairs. These pins must be shorted together for some modules to operate. 
This allows a module to use these pins during initial testing as two separate points. This 
feature is used by Digital for manufacturing tests only. Spare pins are allocated on the 
backplane as follows: 

S SPARES - Four pins: AE1, AH1, BH1, AF1 (with the exception of AF1 in slot 
1), are reserved for the particular use of a module or set of modules. They may be 
used as test points or for intermodule connection. Appropriate wires must be added 
for intermodule communication since these pins are not connected in any way. The 
processor uses AF1 in slot 1 as an output pin for the SRUN signal. S SPARE lines 
cannot be used as bus connections. 

P SPARES - Two pins: AU1 and BU1, are similar to the S SPARE pins except that 
they are located in a manner that causes dc voltages to appear on them if a module is 
inserted backwards. Use of these pins is not recommended. 



5-28 Extended LSI-11 Bus 

5.8 System Configurations 
LSI-II bus systems can be divided into two types. The first type comprises those systems 
that use only one backplane; the second type comprises those systems that use multiple 
backplanes. Two sets of configuration rules are necessary to accommodate the different 
electrical characteristics of the two types of systems. 

Three characteristics of each component in an LSI-II bus system must be known before 
configuring any system. 

• Power consumption - The total amount of current drawn from the +5 V dc and + 12 
V dc power supplies by all modules in the system. 

• AC bus loading - The amount of capacitance a module presents to a bus signal line. 
AC loading is expressed in ac unit loads, where one ac unit load equals 9.35 pF of 
capacitance. 

• DC bus loading - The amount of dc leakage current a module presents to a bus 
signal when the line is high (undriven). DC loading is expressed in terms of dc unit 
loads, where one dc unit load equals 105 pA (nomina}). 

Power consumption, ac loading, and dc loading specifications for each module are included 
in the Microcomputer Interfaces Handbook. 

NOTE 
The ac and dc loads and the power consumption of the processor module, 
terminator module, and backplane must be included in determining the total 
bus loading of a backplane. 



Extended LSI-11 Bus -5-29 

5.8.1 Rules for Configuring Single-Backplane Systems 
The following rules apply only to single-backplane systems. Any extension of the bus 
off the backplane is considered a multiple-backplane system and must be configured 
accordingly. Figure 5-14 shows a configuration diagram for a single-backplane. 

1. The bus can accommodate modules that have up to 35 ac loads (total) before the 
termination is required. The processor has on-board termination for one end of 
the bus. If more than 20 ac loads are included, the other end of the bus must be 
terminated. 

2. A 120 n terminated bus can accommodate modules comprising up to 45 ac loads 
(total). 

3. The bus' can accommodate modules up to 20 dc loads (total). 

4. The bus signalline~ on the backplane can be up to 35.6 cm (14 in) long. 

5. It is recommended that the far end of the bus be terminated with 240 n . 

I~ 

KDJ11-B 

Processor 

, 

One 

Unit 

Load 

Backplane Wire 

35.6 CM (14 IN) Maximum 

One 

Unit 

Load 

y 

} WKhTenn 
35 AC Loads 

20 DC Loads 

Figure 5-14 Single-Backplane Configuration 

~I 

One 

Unit 

Load 

) 

--

Optional 

3.4V 

Term 

W·00189-TIO 

5.8.2 Rules for Configuring Multiple-Backplane Systems 
Multiple-backplane systems can contain a maximum of three backplanes. Figure 5-15 
shows a configuration diagram for a multiple-backplane system. 

1. The signal lines on each backplane can be up to 25.4 cm (10 in) long. 

2. Each backplane can accommodate modules that have up to 20 ac loads (total). 
Unused ac loads from one backplane may not be added to another backplane if the 
second backplane loading will then exceed 20 ac loads. Loading backplanes equally is 
recommended. 



5-30 Extended LSI-11 Bus 

3. The dc loading of all modules in all backplanes cannot exceed 30 loads (total). 

3.4 V 

KOJ11-B 
Processor 

I" 

2400 
3AV 

\. 

\. 

Backplane Wire 
35.6 eM (14 IN) Maximum 

I 
I 

One One 
Unit Unit 
Load Load 

Y 
20 AC Lo ads Max 

Backplane Wire 
25.4 CM (10 IN) Maximum 

One 
Unit 
Load 

t , 

y 

t , 

One 
Unit 
Load 

20 AC Loads Max 

Figure 5-15 Multiple-Backplane Configuration 

J 

) 

Cable ~ 

~I 

2400 
3,4A 

LJ-002SD-TIO 

4. The first backplane must have an impedance of 120 n (obtained via the processor 
module). The second backplane is terminated by 240 n resistor networks contained 
on the backplane. 

5. The cables connecting the backplanes must observe the following conditions. 

a. The cables connecting the two backplanes must be 61 cm (2 ft) or greater in 
length. 

b. The length of the cables must not exceed 4.88 m (16 ft). 

c. The cables used must have a characteristic impedance of 120 n . 



Extended LSI-11 Bus 5-31 

5.8.3 Power Supply Loading 
Total power requirements for each backplane can be determined by obtaining the 
total power requirements for each module in the backplane. Obtain separate totals 
for +5 V and + 12 V power. Power requirements for each module are specified in the 
Microcomputer Interfaces Handbook. 

no not attempt to distribute power via the LSI-II bus cables in multiple-backplane 
systems. Provide separate, appropriate power wiring from each power supply to each 
backplane. Each power supply should be capable of asserting BPOK H and BneOK 
H signals according to bus protocol. This is required if automatic power-fail/restart 
programs are implemented or if specific peripherals require an orderly power-down 
halt sequence. The proper use of the BPOK H and BneOK H signals is strongly 
recommended. 





6 
Private Memory Interconnect Bus 

6.1 Description' 
The PMI bus provides a high performance communications path between the KDJII-E 
CPU module and the KTJ11-B UBA The PMI bus consists of 14 signals that support 
the PMI protocol and the additional LSI bus signals that are shared with the LSI bus 
protocol. The address and data information is multiplexed using the same LSI bus data 
laddress lines. The PMI protocol is designed for LSI systems and unique LSI-controlled 
UNIBUS systems that use the UBA 

6.2 PMllnterface 
The PMI interface signals are defined as the PMI bus master signals, the PMI slave 
signals, and the PMI UNIBUS adapter signals. These interface signals are assigned 
to the C and D rows of the backplane and are defined as the interconnect bus. The 
PMI interface signals on the C/D bus are normally assigned two pins to provide an 
interconnection between the slots. The LSI bus signals that are used with the PMI 
protocol use the A and B rows of the backplane defined as the LSI bus. 

6.2.1 PMI Bus Master Signals 

The PMI bus master controls the PMI bus cycles by using the nonmultiplexed control 
signals described in Table 6-1. These signals are asserted low and negated high. 

6.2.2 PMI Slave Signals 

The PMI slave responds to the bus master by the nonmultiplexed signals listed in 
Table 6-2. These signals are asserted low and negated high by any device that is capable 
of being a slave. 

6.2.3 PMI UNIBUS Adapter Signals 

The UBA is used exclusively for UNIBUS systems. The PMI incorporates a special group 
of signals to establish communications between the KDJ11-E and the UBA These signals 
are nonmultiplexed as described in Table 6-3 and are not used in any LSI based system. 

6-1 



6-2 Private Memory Interconnect Bus 

. 6.2.4 LSI Bus Sign~ls 
The PMI protocol uses some of the standard LSI bus signals in conjunction with the PMI 
high speed control signals. These LSI bus signals may not be used exactly as they are 
used in an LSI bus operation. The LSI bus signals used with the PMI are listed with 
their PMI functions in Table 6-4. 

Table 6-1 PMI Bus Master Signals 

Pin Mnemonic 

DC1 PBYTL 

CEl PBCYCL 

CP1 PBLKML 

DB1 PWTSTBL 

Function 

PMI Byte PBYT L 
is asserted or negated in conjunction with the BWTBT L LSI bus 
signal to select the type of bus cycle as follows: 

BWTBT L PBYT L Bus Cycle 

H 

H 

L 

L 

H 

L 

H 

L 

PMI Bus Cycle 

DATI or DATBI 

DATIP 

DATO 

DATOB 

The PMI bus master starts a PMI cycle by asserting PBCYC L and 
ends a PMI cycle by negating PBCYC L. 

PMI Block Mode 
1b read more than two words, the PMI bus master uses PBLKM 
L and PBCYC L to control the timing of the DATBI cycle. Both 
PBLKM L and PBCYC L are asserted at the start of the DATBI 
cycle, and after reading two words PBLKM L is negated. If there 
are more than two words that remain to be read, PBLKM L is 
asserted and negated every time two words are read (except for the 
last two words, where it remains negated). After reading the last 
two words, PBCYC is also negated. 

PMI Write Strobe 
After the bus master gates the data onto the bus, PWTSTB is 
asserted to latch the data into the write buffer of the PMI slave. 

Table 6-2 PMI Slave Signals 

Pin Mnemonic 

CB1 PSSELL 

CH1 PHBPARL 

CK1 PLBPARL 

Function 

PMI Slave Selected 
Whenever a slave is addressed by the BDAL bus lines, it responds 
by asserting PSSEL L. The UBA does not assert this signal. 

PMI High Byte Data Parity 
This signal is generated by the selected PMI memory module during 
DATI and DATBI cycles. It provides an odd parity bit for the high 
data byte transmitted on BDAL <15:8>. 

PMI Low Byte Data Parity 
This signal is generated by the selected PMI memory module during 
DATI and DATBI cycles. It provides an even parity bit for the low 
data byte transmitted on BDAL <7:0>. 



Private Memory Interconnect Bus 6-3 

Table 6-2 (Cont.) PMI Slave Signals 

Pin Mnemonic 

CMl PRDSTBL 

CJl PSBFULL 

Function 

PMI Read Strobe 
This signal is asserted and negated by the selected PMI memory 
module to control data transfers during DATI and DATBI cycles. 
The bus master uses the negating edge of PRDSTB L to latch the 
first data word. The second data word is latched at a specified time 
after PRDSTB L is negated. 

PMI Slave Buffer Full 
The selected PMI slave asserts PSBFUL L during DATO and 
DATBO cycles to indicate that its write buffer is full and, 
consequently, it cannot respond to another cycle request. The bus 
master may output another address while PSBFUL L is asserted, 
but it must not assert PBCYC L until PSBFUL L is negated. 

Table 6-3 PMI UNIBUS Adapter Signals 

Pin Mnemonic 

DDI PMAPEL 

CFl PUBSYSL 

CDI PUBMEML 

CVI PUBTMOL 

Function 

PMI UNIBUS Map Enable 
The KDJll-E asserts this signal when bit 5 of MMR3 is set. The 
signal is negated when bit 5 is cleared or reset. The UBA enables 
the UNmUS map when PMAPE L is asserted and disables the 
UNmUS map when PMAPE L is negated. The memory modules do 
not use this signal. 

PMI UNIBUS System 
In a UNIBUS system, PUBSYS L is asserted by the UBA to direct 
the KDJll-E to follow PMI protocol for all data transfers, whether 
PSSEL L is asserted or not. LSI-II bus protocol is disabledJor all 
PMI devices when PUBSYS L is asserted. 

In an LSI-II system, PUBSYS L is always negated. IfPSSEL L is 
negated, the KDJII-E follows LSI-II protocol and the PMI memory 
then responds to the LSI-II protocol by the LSI DMA devices. 

PMI UNIBUS Memory 
The UBA asserts PUBMEM L to indicate that UNIBUS memory 
space is being addressed. The signal is latched when PBCYC L is 
asserted. When a PMI slave is addressed, it asserts PSSEL L, but 
it must not respond to the PMI control signals if PUBMEM L is 
asserted. The KDJII-E ignores the PSSEL L signal ifPUBMEM L 
is asserted. 

PM! UNIBUS Timeout 
The UBA asserts PUBTMO L in response to any of the following 
conditions: 

• When an NXM timeout occurs and the KDJII-E addresses the 
UNmUS 

• When a SACK timeout occurs during an interrupt cycle 

• When a UNmUS interrupting device was granted bus 
mastership, but fails to execute an interrupt transaction 



6-4 Private Memory Interconnect Bus 

Table 6-3 (Cont.) PMI UNIBUS Adapter Signals 

Pin Mnemonic 

CRI PBSYL 

Function 

PMIBusy 
This signal is asserted by the PMI bus master (KDJII-E or UBA) 
when it gains control of the PMI bus. The PMI bus master negates 
this signal when it relinquishes PMI mastership. 

The KDJII-E is the bus master at power-up and when the bus is 
idle. 

Table 6-4 LSI Bus Signals 

Pin Mnemonic 

AK2 BWTBTL 

AF2 BRPLYL 

NOTE 

Function 

Write Byte (PMI Write Indication) 
In a PMI system, BWTBT L is used in conjunction with PBYT L to 
define the data transfer cycle. BWTBT L and PBYT L are asserted 
for this purpose when the bus master gates the address onto the 
BDAL lines. 
BWTBT L PBY'!' L Bus Cycle 

H 

H 

L 

L 

H 

L 

H 

L 

DATI or DATBI 

DATIP 

DATO 

DATOB 

Reply 
During PMI cycles, BRPLY L is asserted by the KDJII-E and the 
PMI slave to prevent the next bus master from gaining control of 
the bus too soon. In a UNIBUS system, BRPLY L is asserted by 
the UBA as a slave response during the PMI DATOB cycle and 
interrupt vector DATI cycle. 

The PM! memory slave modules in a UNIBUS system must have BRPLY L disabled at aU 
times. 

AH2 

AM2 
AN2 

BDINL 

BIAKIL 
BIAKOL 

Data Input 
The BDIN L signal is only used in PMI UNffiUS systems during 
interrupt grant cycles. The KDJII-E asserts BDIN L after it gates 
the interrupt priority, BDAL bits <3:0>, onto the bus. The UBA 
then latches the interrupt priority data using the leading edge of 
BDIN L. 

Interrupt Acknowledge In 
Interrupt Acknowledge Out 
These signals are only used in PMI UNffiUS systems during the 
interrupt grant cycles. The KDJII-E asserts the BIAKI L signal 
and the UBA acknowledges it by asserting one of the UNffiUS bus 
grant signals. 



Private Memory Interconnect Bus - 6-5 

Table 6-4 (Cont.) LSI Bus Signals 

Pin Mnemonic 

BBl BPOKH 

Function 

Power OK 
This signal is only used in PMI UNffiUS systems for the UNffiUS 
power-uplpower-down protocol. This signal is asserted and negated 
by the UBA in response to the UNffiUS AC LO signal. The 
assertion of AC LO may be prolonged by the UNIBUS devices 
or the PMI memory during power-up. 

6.3 PMI Operation in an LSI-11 System 
The KDJ11-E is the default bus master in an LSI-11 system. Any bus device that has 
the appropriate circuits can become the bus master and can control data transfers over 
the LSI-11 bus. The KDJ11-E relinquishes control of the bus by acknowledging a DMA 
request from a DMA device which then becomes bus master. During the time that a 
DMA device is bus master, there is no PMI master. The standard LSI-11 bus operations 
are described in Chapter 5. 

If the KDJ11-E receives a DMA request while performing a PMI cycle or while gating an 
address onto the bus, it must also perform the following relationships: 

1. If the KDJ11-E has gated an address onto the bus for a PMI cycle or an LSI bus cycle 
and wants to abort the cycle, it removes the address and control signals from the bus 
and asserts the BDMG L signal. 

2. In a PMI data transfer cycle, the KDJ11-E asserts the BDMG L signal after it asserts 
the BRPLY L signal. 

3. In a PMI DATIP cycle, the KDJ11-E negates the BRPLY L signal before the PMI 
slave removes the data from the bus. 

4. In a PMI DATOB cycle, the KDJ11-E negates the BRPLY L signal before it removes 
the data from the bus. 

5. In a PMI DATOB cycle, the PMI slave negates the BRPLY L signal before it is ready 
to receive the BSYNC L signal from a DMA device. 

The KDJ11-E can regain bus mastership only after BSYNC Land BSACK L have been 
negated by the DMA device. 

6.4 PMI Operation in a UNIBUS System 
In a UNIBUS system the KDJII-E CPU is the default PMI master and the KTJ11-
B UBA is the default UNIBUS master. When the CPU as the PMI master addresses 
the 110 page, the UBA responds as a PMI slave while simultaneously controlling the 
UNIBUS side of the transaction as the bus master. 

The UBA can become .the PMI master when the CPU issues a DMA grant or performs 
an interrupt transaction. The DMA or interrupt grant is accepted by the UBA and 
passes the DMA or interrupt grant onto a UNIBUS device, which would then become the 
UNIBUS master. 

In UNIBUS systems, the bus master and PMI master can be requested by an NPR or 
interrupt request from a bus device, or a DMA or interrupt request from the UBA 



6-6 Private Memory Interconnect Bus 

6.4.1 Bus Device NPR or DMA 

Any UNIBUS device that is capable of being a UNIBUS master can issue an NPR or 
DMA request to become bus master and control data transfers. When a UNIBUS device 
becomes the bus master through an NPR or DMA request, it can perform UNIBUS 
DATI, DATIP, DATO, and DATOB cycles. The UBA responds as a UNIBUS slave when 
accessing PMI memory, the PMI 110 page, or a UBA 110 page location on behalf of a 
UNIBUS master. During the same cycle, the UBA also acts as the PMI bus master to 
control the PMI portion of the data transfer for accesses to PMI memory or the PMI 110 
page. 

The KDJII-E and the UBA use the following protocol to arbitrate an NPR: 

1. The UBA asserts the DMA request (DMR) after receipt of a UNIBUS NPR or when it 
is ready to transfer data to or from memory. 

2. The KDJII-E bus arbitrator asserts the DMA grant (DMGO) after receiving the DMR 
input and after the negation of BSACK by the UBA 

3. The UBA enters the DMA cycle if it is the highest requesting priority or it asserts 
the nonprocessor grant (NPG) to the UNIBUS after receiving the DMG from the 
KDJII-E. 

4. Since the UBA does not have the required priority it cannot be the next bus master. 
Instead, it negates bus busy (BBSY) after the assertion of DMR and clears the 
UNIBUS. 

5. The device with the highest priority asserts selection acknowledge (SACK) to the 
UBA and negates the NPR after the UBA asserts NPG. 

6. This device is now master of the UNIBUS and asserts BBSY and SACK when the 
previous bus master relinquishes the bus by negating BBSY. The new bus master 
may then initiate data transfer cycles. 

7. The UBA asserts BSACK to the KDJI1-E after receiving UNIBUS SACK or because 
of a timeout occurring 10 JlS after it asserts NPG. If UNIBUS SACK is not received 
within 10 JlS after the assertion of NPG, the UBA automatically asserts BSACK. 

8. The UBA asserts transmitted PMI busy (PBSY) after it is negated by the PMI bus 
master. The UBA is now the PMI bus master and can initiate PMI data transfer 
cycles. 

9. The KDJ11-E bus arbitrator negates DMGO after BSACK is asserted. Since the 
UBA provides the timeout function, the KDJ11-E maintains DMGO until it receives 
BSACK. 

10. The UBA negates NPG after the KDJ11-E negates DMGO. 

11. The device that is the current bus master negates SACK after it asserts BBSY and 
receives the negation of NPG. 

12. The UBA negates BSACK after the UNIBUS SACK is negated and after BBSY is 
asserted. The KDJII-E bus arbitrator continues arbitration for 75 ns after BSACK is 
negated. 

13. The bus master negates BBSY after it has cleared the bus. 

14. If the KDJ11-E is the next PMI bus master, the UBA or the current bus master clears 
the bus. The PMI control data negates PBSY to relinquish control of the PMI bus. 



Private Memory Interconnect Bus 6-7 

6.4.2 PMI Bus Device Interrupt 

Any UNIBUS device that is capable of being a bus master can issue a BR7 through BR4 
request and become the bus master to control data or interrupt vector transfers. In both 
cases, the UBA is the PMI master and responds as a slave if the device performs an 
interrupt vector transaction or accesses the PMI memory, the PMI I/O page, or the UBA 
I/O page. When a UNIBUS device becomes the bus master through an interrupt request, 
it can perform the same UNIBUS data transfers described for the NPR. 

The KDJ11-E and the UBA use the following protocol to arbitrate an interrupt request: 

1. In response to a UNIBUS device, the UBA asserts an interrupt request on BIRQ 
<7:4>~ 

2. The KDJ11-E bus arbitrator responds as follows: 

a. Asserts interrupt level on BDAL <3:0>. 

b. Asserts BDIN 150 ns after gating BDAL <3:0>. 

c. Asserts the interrupt acknowledge grant (BIAKO) 250 ns after asserting BDIN. 

3. The UBA latches BDAL <3:0> when BDIN is asserted and asserts the UNIBUS 
interrupt level BG <7 :4> after BIAKO is asserted. 

4. Since the UBA does not have the highest priority, it negates BBSY after it asserts BG 
<7:4> and clears the UNIBUS. 

5. The UNIBUS device with the highest priority asserts select acknowledge (SACK) 
after it receives BG <7:4> and negates its interrupt request. 

6. The UBA asserts BSACK to the KDJ11-E after the device asserts SACK. 

NOTE 
The UBA asserts PUBTMO to indicate a timeout if SACK is not received within 
10 JlS after the assertion ofBG <7:4>. The KDJII-E cancels the interrupt cycle 
and becomes the PMI bus master by receiving PUBTMO. 

7. The UBA asserts PBSY after it asserts BSACK and after the pr~vious PMI bus 
master negates PBSY. The UBA now has control of the PMI and)may initiate PMI 
data transfer or interrupt cycles after PBSY is asserted. 

8. The UBA negates BG <7:4> after BSACK is asserted and negates BDGMO if BSACK 
is not asserted within the 10 JIS timeout period. 

9. The new UNIBUS master asserts BBSY after it asserts SACK and the previous bus 
master negates BBSY. 

10. The bus master negates SACK after the negation of BG <7:4> and after the assertion 
ofBBSY. 

11. The UBA negates BSACK to the KDJ11-E after the negation of SACK and the 
assertion of PBSY. 

12. The KDJ11-E resumes NPR arbitration for 75 ns after the negation of BSACK, 
but does not resume BIRQ arbitration until the interrupt request is aborted by the 
assertion of PUBTMO or the completion of the interrupt operation. 

13. If a UNIBUS device responds to BG <7:4> with one or more DMA transfers, the UBA 
responds as it would to a device that received bus mastership by an NPR request. 
The assertion of BDIN and BIAKO by the KDJ11-E has no effect on the PMI protocol. 



6-8 Private Memory Interconnect Bus 

14. If the UNIBUS master relinquishes control without sending the interrupt vector, the 
UBA asserts PUBTMO, indicating a timeout to the KDJ11-E, and the interrupt cycle 
is aborted. 

15. The UNIBUS master negates BBSY after it clears the UNIBUS. 

6.5 PMI Data Transfers 
There are three general categories of PMI data transfer cycles. They are the 
DATIIDATIP, DATBI, and DATOIDATOB cycles. They are briefly described below. 

On the Q22-bus, the bus master can perform a read-modify-write (DATIO or DATIOB) 
cycle that transmits an address, reads a data word or byte, and then writes the data 
word or byte to the same address. The PMI read-modify-write is performed by a DATIP 
cycle followed by a DATO or DATOB cycle. The PMI bus master has the responsibility of 
controlling the bus for the duration of both cycles. 

6.5.1 PMI Data InlData In Pause 

The DATI and the DATIP cycles are used to read one or two words when the PMI bus 
master accesses the memory. The PMI bus master detects an I/O page reference by the 
assertion of TBS7. 

The PMI DATIP cycle is identical to the DATI cycle except that TPBYT is asserted with 
TADDR to indicate that the cycle immediately following the current cycle will be a DATO 
cycle to the same address. The protocol used by the DATI and DATIP cycles is as follows: 

1. When the PMI master assumes control of the bus, the BDAL <21:0> lines are 
addressed, BBS7 is asserted, and PBYT is asserted for DATIP cycles. 

2. Each PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL 
<21:0> and BBS7 signals, if necessary. 

3. The UBA asserts PUBMEM within 100 ns after it receives the asserted BDAL <21:0> 
and BBS7 signals, if necessary. 

4. The PMI master receives PSSEL within 130 ns after gating the asserted BDAL 
<21:0> and BBS7 signals. 

5. The PMI master receives PUBMEM within 120 ns after gating the asserted BDAL 
<21:0>. and BBS7 signals. 

6. If PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows. 

a. The PMI master asserts PBCYC within 130 ns after gating the BDAL <21:0>, 
BBS7, and PBYT signals and only after PSBFUL is negated. 

b. The PMI master continues to assert the BDAL <21:0>, BBS7, and PBYT signals 
for a minimum of 40 ns and a maximum of 100 ns after asserting PBCYC. 

c. The UBA latches PUBMEM when PBCYC is asserted. 

d. The PMI slave receives stable BDAL <21:0>, BBS7, and PBYT signals for 65 ns 
(minimum) before PBCYC is asserted and for 30 ns after PBCYC is asserted. 

e. The PMI slave receives a valid PUBMEM from 10 ns (minimum) before the 
assertion of PBCYC and until 10 ns before PBCYC is negated. 

7. If PSSEL is negated and the KDJ11-E is the PMI master, then PMI cycles are 
performed with the UBA responding as a slave, and follow the routine listed in 
steps 1 through 6. 



Private Memory Interconnect Bus - 6-9 

8. If PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it 
aborts the PMI cycle and does not respond as a UNIBUS slave. 

9. The assertion of BRPLY by the PMI slave is optional in LB. systems. Its protocol is 
as follows: 

a. The PMI slave asserts BRPLY after PBCYC is asserted. 

b. The PMI slave negates BRPLY within 100 ns after the negation of PRDSTB. 

10. The PMI slave gates the data onto the bus within 125 ns after the assertion of 
PBCYC. 

11. The PMI slave gates PHBPAR and PLBPAR parity bits after the assertion of PBCYC. 
These parity bits are generated only for the memory locations being cached on the 
KDJ11-E from the main memory. 

12. The PMI slave asserts PRDSTB after the assertion of PBCYC. 

13. The PMI slave negates PRDSTB within 150 ns after the assertion of PBCYC. It is 
negated within 75 ns after the first data word is gated on the bus and 55 DS after the 
PHBPAR and PLBPAR bits are gated for the first word. 

14. The PMI slave maintains the data word, PHBPAR and PLBPAR for 30 DS after 
negating PRDSTB. 

15. The PMI master receives the first data word from 10 ns before PRDSTB is negated 
and until 20 ns after PRDSTB is negated. 

16. The PMI master receives PHBPAR and PLBPAR from 35 ns before PRDSTB is 
negated and until 10 ns after PRDSTB is negated. 

17. If the PMI master is executing a single word read, it negates PBCYC after PRDSTB 
is negated and latches the data before PRDSTB is negated. The following process is 
used only with double-word reads: 

a. The PMI slave gates the second word data onto the bus after PRDSTB is negated. 

b. The PMI slave gates the second word PHBPAR and PLBPAR bits onto the bus 
within 100 ns after PRDSTB is negated. 

c. The PMI master receives the second data word within 145 ns after PRDSTB is 
negated. 

d. The PMI master receives the second word PHBPAR and PLBPAR bits within 120 
ns after PRDSTB is negated. 

e. If the PMI master is reading two words, it negates PBCYC after latching the 
second word. 

f. The PMI slave removes the second word data from the bus within 50 ns after 
PBCYC is negated. 

6.5.2 PM. Block Data In 

The DATBI cycle is used to read up to 16 words of data when the PMI bus master 
accesses the PMI memory. The PMI bus master cannot use the DATBI cycle when 
accessing the 110 page. The PMI bus master detects an 110 page reference by the 
assertion of TBS7. 



6-10 Private Memory Interconnect Bus 

The PMI bus master can only start DATBI transfers on even word boundaries. This 
means that address bitS <1:0> must be equal to Os. The PMI bus master cannot use the 
DATBI cycle to transfer across 16 word address boundaries. This means that the PMI 
bus master must terminate DATBI data transfers when it reaches a memory location 
where the address bits <4: 1> are all equal to 1s. The protocol used by the DATBI cycle is 
as follows: 

1. When the PMI master assumes control of the bus, the BDAL <21:0> lines are 
addressed and BBS7 is asserted. 

2. Each PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL 
<21:0> and BBS7 signals, if necessary. 

3. The UBA asserts PUBMEM within 100 ns after it receives the asserted BDAL <21:0> 
and BBS7 signals, if necessary. 

4. The PMI master receives PSSEL within 130 ns after gating the asserted BDAL 
<21:0> and BBS7 signals. 

5. The PMI master receives PUBMEM within 120 ns after gating the asserted BDAL 
<21:0> and BBS7 signals. 

6. If PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows: 

a. The PMI master asserts PBCYC within 130 ns after gating the BDAL <21:0>, 
BBS7, BWTBT, and PBYT signals, and after PSBFUL is negated. 

b. The PMI master continues to assert the BDAL <21:0>, BBS7, BWTBT and PBYT 
signals for a minimum of 40 ns and a maximum of 100 ns after it asserts PBCYC. 

c. The UBA latches PUBMEM when PBCYC is asserted. 

d. The PMI slave receives stable BDAL <21:0>, BBS7, BWTBT and PBYT signals 
for 65 ns (minimum) before PBCYC is asserted and for 30 ns after PBCYC is 
asserted. 

e. The PMI slave receives a valid PUBMEM from 10 ns (minimum) before the 
assertion of PBCYC and until 10 ns before PBCYC is negated. 

7. If PSSEL is negated and the KDJ11-E is the PMI master, the PMI cycles are 
performed with the UBA responding as a slave, and follow the routine listed in 
steps 1 through 6. 

8. If PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it 
aborts the PMI cycle and does not respond as a UNIBUS slave. 

9. The PMI master asserts PBLKM: within 50 ns after PBCYC is asserted. 

10. The assertion of BRPLY by the PMI slave is optional in LSI systems. Its protocol is 
as follows: 

a. The PMI slave asserts BRPLY after PBCYC is asserted. 

b. The PMI slave negates BRPLY within 100 ns after the negation of PRDSTB. 

11. The PMI slave gates the data onto the bus within 125 ns after the assertion of 
PBCYC. 

12. The PMI slave gates PHBPAR and PLBPAR parity bits after the assertion of PBCYC. 
These parity bits are generated only for the memory locations being cached on the 
KDJ11-E from the main memory. 

13. The PMI slave asserts PRDSTB after the assertion of PBCYC. 



Private Memory Interconned Bus 6-11 

14. The PMI slave negates PRDSTB within 150 ns after the assertion of PBCYC. It is 
negated within 75 ns after the first data word is gated on the bus and 55 ns after the 
PHBPAR and PLBPAR bits are gated for the first word. 

15. The PMI slave maintains the data word, PHBPAR and PLBPAR for 30 ns after 
negating PRDSTB. 

16. The PMI master receives the first data word from 10 ns before PRDSTB is negated 
and until 20 ns after PRDSTB is negated. 

17. The PMI master receives PHBPAR and PLBPAR from 35 ns before PRDSTB is 
negated and until 10 ns after PRDSTB is negated. 

18. The PMI slave gates the second word data onto the bus within 80 ns after PRDSTB 
is negated. 

19. The PMI slave gates the second word PHBPAR and PLBPAR bits onto the bus within 
100 ns after PRDSTB is negated. 

20. The PMI master receives the second data word within 145 ns after PRDSTB is 
negated. 

21. The PMI master receives the second word PHBPAR and PLBPAR bits within 120 ns 
after PRDSTB is negated. 

22. If four or more data words are to be transmitted, the sequence proceeds as follows: 

a. The bus master negates PBLKM within 240 ns after the negation of PRDSTB and 
after latching the second word data. 

b. The PMI slave removes the second word data when PBLKM is negated. 

c. The PMI slave asserts PRDSTB after the negation of PBLKM. 

d. The PMI master asserts PBLKM 40 to 70 ns after negating it. 

e. Return to step 13. 

If two more data words are to be transmitted, the sequence proceeds as follows: 

a. The bus master negates PBLKM within 240 ns after the negation of PRDSTB and 
after latching the second word data. 

b. The PMI slave removes the second word data when PBLKM is negated. 

c. The PMI slave asserts PRDSTB after the negation of PBLKM. 

d. Return to step 13. 

If the last data word is to be transmitted, the sequence proceeds as follows: 

a. The bus master negates PBCYC after latching the last word data. 

b. The PMI slave ren10ves the last word data from bus within 50 DS after PBCYC is 
negated. 

6.5.3 PM. Data Out/Data Out Byte 
The DATO and DATOB cycles are used by the PMI bus master to transfer a single word 
or byte to a PMI slave. The protocol used by the DATO and DATOB cycles is as follows: 

1. When the PMI master assumes control of the bus, the BDAL <21:0> lines are 
addressed, and BBS7 and BWTBT are asserted for DATO cycles. In addition, PBYT 
is asserted for DATOB cycles. 



6-12 Private Memory Interconnect Bus 

2. Each PMI slave assertS PSSEL within 45 ns after it receives the asserted BDAL 
<21:0> and BBS7 signals, if necessary. 

3. The UBA asserts PUBMEM within 100 ns after it receives the asserted BDAL <21:0> 
and BBS7 signals, if necessary. . 

4. The PMI master receives PSSEL within 130 ns after gating the asserted BDAL 
<21:0> and BBS7 signals. 

5. The PM! master receives PUBMEM within 120 ns after gating the asserted BDAL 
<21:0> and BBS7 signals. 

6. If PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows: 

a. The PMI master asserts PBCYC within 130 ns after gating the BDAL <21:0>, 
BBS7, BWTBT, and PBYT signals, and after PSBFUL is negated. 

b. The PMI master continues to assert the BDAL <21:0>, BBS7, BWTBT, and PBYT 
signals for a minimum of 40 ns and a maximum of 100 ns after it asserts PBCYC. 

c. The UBA latches PUBMEM when PBCYC is asserted. 

d. The PMI slave receives stable BDAL <21:0>, BBS7, BWTBT, and PBYT signals 
for 65 ns (minimum) before PBCYC is asserted and for 30 ns after PBCYC is 
asserted. 

e. The PMI slave receives a valid PUBMEM from 10 ns (minimum) before the 
assertion of PBCYC and until 10 ns before PBCYC is negated. 

7. If PSSEL is negated and the KDJ11-E is the PMI master, the PMI cycles are 
performed with the UBA responding as a slave, and follow the routine listed in 
steps 1 through 6. 

B. If PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it 
aborts the PMI cycle and does not respond as a UNIBUS slave. 

9. The PMI slave asserts BRPLY within 50 ns after the assertion of PBCYC (LSI bus 
systems only). 

10. The PMI master gates the data onto the bus within BO ns after the assertion of 
PBCYC. 

11. The PMI master asserts PWTSTB within 75 ns after the data is placed on the bus. 

12. The PMI maintains the data on the bus for 30 ns after it asserts PWTSTB. 

13. The PMI slave receives the data from within 10 ns before the assertion of PWTSTB 
and until 20 ns after the assertion of PWTSTB. 

14. The PMI slave asserts PSBFUL within 50 ns after the assertion of PWTSTB. 

15. The PMI master negates PWTSTB 40 ns' after asserting it. 

16. The PMI master negates PBCYC after negating PWTSTB. 

17. The PMI slave negates BRPLY within 300 ns (LSI systems) and cannot perform 
another PMI or LSI bus cycle during this period. 



Private Memory Interconnect Bus -6-13 

6.6 PMllnterrupt Protocol 
The PMI interrupt protocol consists of the interrupt request, granting the interrupt 
and fetching the interrupt vector to service the interrupt. The LSI requirements for an 
interrupt are defined in Chapter 5. The UNIBUS requirements for the request and grant 
are described in Section 6.4.2. The transfer of the interrupt vector from the requesting 
UNIBUS device to the KDJ11-E requires a combination of the UNIBUS and LSI bus 
protocols as follows: 

1. Once the requesting device is the bus master, it places the interrupt vector on the 
UNIBUS after it asserts BBSY. 

2. The requesting device asserts INTR after the vector data is on the UNIBUS. 

3. The UBA is the PMI bus master and asserts BRPLY after it receives INTR on the 
UNIBUS. 

4. The UBA receives the interrupt vector and places it on the BDAL data lines within 
75 ns after BRPLY is asserted. 

5. The UBA latches the interrupt vector within 75 os after INTR is asserted and then 
asserts SSYN on the UNIBUS. 

6. The requesting device is the bus master and it removes the vector after it receives 
SSYN. It also negates INTR at this time. 

7. The requesting device negates BBSY after negating INTR to relinquish bus 
mastership. 

8. The KDJ11-E latches the vector data within 200 os after the UBA-asserted BRPLY. 

9. The KDJ11-E negates BDIN and BIAKO after it latches the vector data. 

10. The UBA negates BRPLY after BIAKO is negated. 

6.7 PMI Power-Up/Power-Down 
The power-up/power-down protocol for the PMI bus in an LSI system is described in 
Chapter 5. The protocol used in a UNIBUS system is similar to that of the LSI system. 
The primary difference is that in an LSI system, the BPOK signal is negated by the 
power supply 3 ms after it is asserted, and in the UNIBUS system, the KDJ11-E must 
ignore the assertion of AC LO for a minimum of 2 ms after it is asserted. These delays 
allow the system software enough time to prepare for a power-down before the KDJ11-E 
can execute the power-down sequence. 

In the UNIBUS system, the KDJ11-E receives DC LO as the DCOK signal, and the 
BPOK signal is isolated from AC LO by the UBA When a UNIBUS device asserts AC 
LO to the UBA, it asserts BPOK for a minimum of 2 ms before it allows AC LO to negate 
BPOK. 





7 
Addressing Modes 

7.1 Introduction 
The KDJ11-E uses the six addressing modes described here with the base instruction set 
to control or program the operations executed by the microprocessor. Included in this 
chapter are specific examples of how these addressing modes are used. 

• Single-Operand Addressing - One part of the instruction word specifies the registers; 
the other part provides information for locating the operand. 

• Double-Operand Addressing - One part of the instruction word specifies the registers; 
the remaining parts provide information for locating two operands. 

• Direct Addressing - The operand is the content of the selected register. 

• Deferred (Indirect) Addressing - The contents of the selected register is the address of 
the operand. 

• Use of the Program Counter (PC) as a general purpose register - The PC is different 
from other general purpose registers in one important respect. Whenever the 
processor retrieves an instruction, it automatically advances the PC by two. By 
combining this automatic advancement of the PC with four of the basic addressing 
modes, the four special PC modes:immediate, absolute, relative, and relative-deferred, 
are created. 

• Use of the general purpose registers as a stack pointer (SP) - General purpose 
registers can be used for stack operations. 

7.2 Addressing Modes 
Data stored in memory must be accessed and manipulated. Data handling is specified by 
a KDJ11-E instruction (MOV, ADD, and so on), and usually includes the following: 

• The function to be performed (operation code) 

• The general purpose register to be used when locating the source operand, or 
destination operand (where required), or both. 

• The addressing mode, which specifies how the selected registers are to be used 

A large portion of the data handled by a computer is structured (character strings, arrays, 
lists, etc.) The KDJ11-E addressing modes provide for efficient and flexible handling of 
structured data. 

A general purpose register may be used with an instruction in any of the following ways: 

1. As an accumulator - The data to be manipulated resides in the register. 

7-1 



7-2 Addressing Modes 

2. As a pointer - The contents of the register is the address of an operand, rather than 
the operand itself. 

3. As a pointer that automatically steps through memory location~ - Automatically 
stepping forward through consecutive locations is known as autoincrement 
addressing; automatically stepping backward is known as autodecrement addressing. 
These modes are particularly useful for processing tabular or array data. 

4. As an index register - In this instance, the contents of the register and the word 
following the instruction are summed to produce the address of the operand. This 
allows easy access to variable entries in a list. 

An important KDJII-E feature that should be considered with the addressing modes is 
the following register arrangement: 

• Two sets of six general purpose registers (RO - R5 and RO' - R5') 

• A hardware SP register' (R6) for each processor mode (kernel, supervisor, user) 

• A PC register (R7) 

Registers RO - R5 and RO' - R5' are not dedicated to any specific function. Their uses are 
determined by decoded instructions and include the following: 

• They can be used for operand storage. For example, the contents of two registers can 
be added and stored in another register. 

• They can contain the address of an operand or serve as pointers to the address of an 
operand. 

• They can be used for the autoincrement or autodecrement features. 

• They can be used as index registers for convenient data and program access. 

KDJII-E also has instruction addressing mode combinations that facilitate temporary 
data storage structures. These can be used for convenient handling of data that must be 
accessed frequently. This is known as stack manipulation. The register that keeps track 
of stack manipulation is called the stack pointer (SP). Any register can be used as an SP 
under program control. However, certain instructions associated with subroutine linkage 
and interrupt service automatically use R6 as a hardware stack pointer. For this reason, 
R6 is frequently referred to as the SP. The SP functions include the following: 

• The SP keeps track of the latest entry on the stack. 

• The SP moves down as items are added to the stack and moves up as items are 
removed. Therefore, the SP always points to the top of the stack. 

• The hardware stack is used during trap or interrupt handling to store information, 
allowing an orderly retum to the interrupted program. 

R7 is used by the processor as its PC. It is recommended that R7 not be used as an SP or 
accumulator. Whenever an instruction is fetched from memory, the PC is automatically 
incremented by two to point to the next instruction word. 

7.2.1 Single-Operand Addressing 
The instruction format for all single-operand instructions (such as CLR, INC, TST) is 
shown in Figure 7-1. Bits <15:6> specify the operation code that defines the type of 
instruction to be executed. Bits <5:0> form a 6-bit field called the destination address 
field. The destination address field consists of two subfields, as follows: 



Addressing Modes - 7-3 

• Bits <5:3> specify the destination mode. Bit 3 is set to indicate (indirect) deferred 
addressing. 

• Bits <2:0> specify which of the eight general purpose regis~rs is to be referenced by 
this instruction word. 

15 06 05 03 02 01 00 

I : : : : : : : : : I :Mode: I : R'; I 
\ A J Y y 

OP Code Destination Address 

MA-1152-90.DG 

Figure 7-1 Single-Operand Addressing 

7.2.2 Double-Operand Addressing 
Operations that employ two operands (such as ADD, SUB, MOV, and CMP) are handled 
by instructions that specify two addresses. The first operand is called the source 
operand; the second is called the destination operand. Bit assignments in the source and 
destination address fields may specify different modes and different registers. Figure 7-2 
shows the instruction format for the double-operand instruction . 

The source address field is used to select the source operand (the first operand). The 
destination is used similarly, and locates the second operand and the result. For example; 
the instruction ADD A, B adds the contents (source operand) of location A to the contents 
(destination operand) of location B. After execution, B contains the result of the addition 
and the contents of A is unchanged. 

Examples throughout this chapter use the sample KDJ11-E instructions given in 
Table 7-1. (A complete list of KDJ11-E instructions appears in Chapter 8 Table 8-1. 

15 12 11 09 08 06 05 03 02 00 

I : OP ~Od< I :Mode: I : Rn : I :Mode: I >.: I 
\ A ) 

Y Y 
Source Address Destination Address 

Figure 7-2 Double-Operand Addressing 

Table 7-1 Sample KDJ11·E Instructions 

Mnemonic Description 

CLR Clear - Zero the specified destination. 

CLRB Clear byte - Zero the byte in the specified 
destination. 

1 DD = Destination field (six bits) 
SS = Source field (six bits) 

Octal Code! 

0050DD 

l050DD 

MA-1153-90.DG 



7-4 Addressing Modes 

Table 7-1 (Cont.) Sample KDJ11·E Instructions 

Mnemonic Description 

INC Increment - Add one to the contents of the 
destination. 

INCB Increment byte - Add one to the contents 
of the destination byte. 

COM Complement - Replace the contents of 
the destination by its logical complement; 
each 0 bit is set and each 1 bit is cleared. 

COMB Complement byte - Replace the contents 
of the destination byte by its logical 
complement; each 0 bit is set and each 1 
bit is cleared. 

ADD Add - Add the source operand to the 
destination operand and store the result 
at the destination address. 

Inn = Destination field (six bits) 
SS = Source field (six bits) 

7.2.3 Direct Addressing 
There are four basic modes used with· direct addressing: 

• Register mode (mode 0) 

• Autoincrement mode (mode 2) 

• Autodecrement mode (mode 4) 

• Index mode (mode 6) 

Octal Codel 

0052DD 

l052DD 

0051DD 

l051DD 

06SSDD 

These direct modes are illustrated in Figure 7-3 through Figure 7-6, and are 
summarized in the following paragraphs. 

Assembler 
Mode Name Syntas Fu.notion 

o Register Rn Register is operand. 

~_In_s_tr_ua_io_n __ ~--~~~~I ___ o_~ __ ~_nd __ ~ 
MA·1164·8Q 

Figure 7-3 Mode 0, Register 

Mode Name 

2 Autoincrement 

Assembler 
Syntax Function 

(Rn+) Register is used as a pointer to sequential 
data and then is incremented 



Addressing Modes 7-5 

I Instruction I •• Address 1 _I 
Operand I "'1 I "'1 

,~ 

+2 for Word . I---

+1 for Byte 

MA·1155·90 

Figure 7-4 Mode 2, Autolncrement 

Mode Name 

4 Autodecrement 

Instruction 

Assembler 
Syntax Function 

-(Rn) Register is decremented and then used as a 
pointer 

+2 for Word 
+1 for Byte 

Operand 

MA-1156·go 

Figure 7-5 Mode 4, Autodecrement 

Mode Name 

6 Index 

Instruction 

x 

Assembler 
Syntax Function 

X(Rn) Value X is added to (Rn) to produce address of 
operand. Neither X nor (Rn) is modified 

Address Operand 

MA·1157·90 

Figure 7-6 Mode 6, Index 

7.2.3.1 Register Mode 
With register mode (mode 0) any of the general registers may be used as simple 
accumulators with the operand contained in the selected register. Since they are 
hardware registers (within the processor), the general registers operate at high speeds 
and provide speed advantages when used for operating on frequently accessed variables. 
The assembler interprets and assembles instructions of the form OPR Rn as register 
mode operations. Rn represents a general register name or number and OPR is used to 



7-6 Addressing Modes 

represent a general instruction mnemonic. Assembler syntax requires a general register 
be defined as follows: 

RO = %0 (% sign indicates register definition) 
RI=%1 
R2 = %2, and so on. 

Registers are typically referred to by names as RO, RI, R2, Ra, R4, R5, R6 and R7. 
However, R6 and R7 are also referred to as SP and PC, respectively. Three register mode 
operations are illustrated in Figure 7-7 through Figure 7-9. 

Register Mode Examples: 

Symbolic 

INCR3 

Octal 
Code 

005203 

Instruction Name 

Increment 

Operation: Add one to the contents of R3. 

15 08 05 04 03 02 00 Select 

1«°:<,:0;<°>;01':°1°1< ;'~"ag~ 
~~ ____________ ~ ____________ A~ ______ ~ _______ J I 
- y - y 

OP code (INC(0052» Destination Field I 

RO 

R1 

R2 

R3 

R4 

RS 

RS (SP) 

R7(PC) 

4-

I 
I 
I 

MA-11I1-tO.DO 

Figure 7-7 INC R3 

SymboUc 

ADDR2,R4 

Octal 
Code 

060204 

m8traction Name 

Add 

Operation: Add the contents of R2 to the contents of R4. 



Figure 7-8 ADD R2,R4 

Symbolic 

COMBR4 

Octal 
Code 

105104 

Before 

R21 000002 

R41 000004 

Instruction Name 

Complement byte 

Addressing Modes - 7-7 

After 

000002 

000006 

MA-1159-90.DG 

Operation: 1's complement <7:0>(byte) in R4. When general registers are used, byte 
instructions (with the exception of MOVB) operate only on bits <7:0>, that is, byte 0 
of the register. MOVB to a register, unique for byte instructions, extends the most 
significant bit of the low-order byte (sign-extension) into the high byte of the selected 
register. Otherwise, MOVB operates on bytes the same way MOV operates on words. 

Before 

R41 022222 

Figure 7-9 COMB R4 

7.2.3.2 Autolncrement Mode [OPR (Rn)+] 

After 

R41 022155 

MA-1160-90.DG 

The autoincrement mode (mode 2) provides for automatic stepping of a pointer through 
sequential elements of a table of operands. It assumes that the contents of the selected 
general purpose register is the address of the operand. Contents of registers are stepped 
(by one for byte instructions, by two for word instructions, always two for R6 and R7) 
to address the next sequential location. The autoincrement mode is especially useful for 
array processing and stack processing. It accesses an element of a table and then steps 
the pointer to address the next operand in the table. Although autoincrement mode is 
most useful for table handling, it is completely general and may be used for a variety of 
purposes. Three autoincrement mode operations are illustrated in Figure 7-10 through 
Figure 7-12. 

Autoincrement Mode Examples: 

Symbolic 

CLR (R5)+ 

Octal 
Code 

005025 

Instruction Name 

Clear 

Operation: Use the contents R5 as the address of the operand. Clear the selected 
operand and then increment the contents of R5 by two. 



7-8 Addressing Modes 

Address Space 

20000 I 005025 I 
. Before 

R5 

Address Space 

20000 I 005025 I 
After 

Register 

R51 030002 

Operation: Use the contents R5 as the address of the operand. Clear the selected byte 
operand and then increment the contents of R5 by one. 

Before 

Address Space 

20000 I 105025 I R5 

Figure 7-11 CLRB (R5)+ 

Symbolic 

ADD (R2)+,R4 

Octal 
Code 

062204 

Address Space 

20000 I 105025 I 

30000 1111 ! 000 I 

Instruction Name 

Add 

After 

Register 

R51 030001 

MA-1182-90.DG 

Operation: The contents of R2 is used as the address of the operand, which is added to 
the contents of R4. R2 is then incremented by two. 



Before 

Address Space 

10000 I 062204 I 

1000021 010000 

Figure 7-12 ADD(R2)+,R4 

R2 

R41 010000 

7.2.3.3 Autodecrement Mode [OPR -(Rn)] 

Address Space 

10000 I 062204 I 

1000021 010000 

Addressing Modes 7-9 

After 

Register 

R21 100004 

R41 020000 

MA·1163·90.DG 

The autodecrement mode (mode 4) is useful for processing data in a list in reverse 
direction. The contents of the selected general purpose register is decremented (by one 
for byte instructions, by two for word instructions) and then used as the address of the 
operand. The postincrement and predecrement features on the KDJ11-E are intended 
to facilitate hardware/software operations. Three autodecrement mode operations are 

- illustrated in Figure 7-13 through Figure 7-15. 

Autodecrement Mode Examples: 

Symbolic 

INC -(RO) 

Octal 
Code 

005240 

Instruction Name 

Increment 

Operation: The contents of RO is decremented by two and used as the address of the 
operand. The operand is incremented by one. 

Address Space 

1000 I 005240 I 

1n74 1 000000 

Figure 7-13 INC -(RG) 

Before 

Register 

ROI 100002 

Address Space 

1000 I 005240 I 

17774 I 000001 

After 

RO 

MA·1164·90.DG 



7-10 Addressing Modes 

Octal 
Symbolic Code Instruction Name 

!NCB -(RO) 105240 Increment byte 

Operation: The contents of RO is decremented by one and then used as the address of 
the operand. The ope~d byte is increased by one. 

Before 

Address Space 

1000 I 105240 

17774~ 
17776 CL:J 

Figura 7-14 INCB -(RO) 

Symbolic 

ADD --(R3),RO 

Octal 
Code 

064300 

Register 

RO I 017776 

Address Space 

1000 I 105240 

17774 001 I 000 

17776 

Instruction Name 

Add 

After 

Register 

RO 

MA·1185·90.DG 

Operation: The contents of R3 is decremented by two and then used as a pointer to an 
operand (source), which is added to the contents of RO (destination operand). 

Address Space 

10020 064300 

77774~ 
7n76 c===l 

Before 

ROI 

R31 

Figure 7-15 ADD -(R3),RO 

Register 

000020 

Onn6 

Address Space 

10020 I 064300 

7n74~. 050 

n776 c===l 

After 

Register 

RO I 0000070 

R3 

MA·1186·90.0G 



Addressing Modes -7-11 

7.2.3.4 Index Mode [OPR X(Rn)] 
In the index mode (mode 6), the contents of the selected general purpose register and 
an index word following the instruction word are summed to form the address of the 
operand. The contents of the selected register maybe used as a base for calculating a 
series of addresses, thus allowing random access to elements of data structures. The 
selected register can then be modified by a program to access data in the table. Index 
addressing instructions are of the form OPR X(Rn), where X is the indexed word located 
in the memory location following the instruction word, and Rn is the selected general 
purpose register. Three index mode operations are illustrated in Figure 7-16 through 
Figure 7-18. 

Index Mode Examples: 

Symbolic 

CLR 200(R4) 

Octal 
Code 

005064 
000200 

Instruction Name 

Clear 

Operation: The address of the operand is determined by adding 200 to the contents of 
R4. The operand location is then cleared. 

Before 

Address Space Register Address Space 

1020 005064 R41 001000 1020 005064 

1022 000200 
t-------f 

1024 

'B" 
1200 177777 

1202 

Figure 7-16 ClR 200(R4) 

Symbolic 

COMB 200(R1) 

Octal 
Code 

105161 
000200 

1000 

+200 

1200 

1022 

1024 

Instruction Name 

Complement byte 

000200 

After 

Register 

R41 001000 

MA-1167-90.DG 

Operation: The contents of a location, determined by adding 200 to R1, is replaced by 
its logical 1's complement. Each 0 bit is set and each 1 bit is cleared. 



7-12 Addressing Modes 

Before 

Address Space 

1020 105161 R11 

1022 000200 

20176 000 

20200 

Figure 7-17 COMB 200(R1) 

SymboHc 

ADD 80(R2),20(R5) 

Octal 
Code 

066265 
000080 
000020 

After 

Register Address Space Register 

017777 1020 105161 R41 017777 

1022 000200 

017777 
+200 

020177 

20176ffi 
20200 

MA·1188-90.DG 

IDstruction Name 

Add 

Operation: The contents of a location determined by adding 30 to the contents of R2 is 
added to the contents of a location determined by adding 20 to the contents of R5. The 
result is stored at the destination address, that is 20(R5). 

Before After 

Address Space Register Address Space Register 

1020 066265 R21 001100 1020 066265 R21 001100 

1022 000030 1022 000030 

1024 000020 R51 002000 1024 000020 R5
1 

002000 

1130 I 000001 1130 I 000001 

·2020 I 000001 2020 I 000002 

1100 2000 
+30 +20 

1130 2020 
MA·1169·90.DG 

Figure 7-18 ADD 3O(R2),20(R5) 



Addressing Modes 7-13 

7.2.4 Deferred (Indirect) Addressing 

The four basic modes may also be used with deferred addressing. While in register mode 
the operand is the contents of the selected register; in register-deferred mode the contents 
of the selected register is the address of the operand. 

In the other three deferred modes, the contents of the register selects the address of the 
operand rather than the operand itself. These modes are therefore used when a table 
consists of addresses rather than operands. The assembler syntax for indicating deferred 
addressing is an at sign (@), or parentheses (). 

The following section summarizes the deferred versions of the basic modes. These 
deferred modes are illustrated in Figure 7-19 through Figure 7-22. 

Mode 

1 

Name 

Register­
deferred 

Assembler 
Syntax 

@Rn or (Rn) 

Instruction 1-1 --i~~1 Register 

Figure 7-19 Mode 1, Register-Deferred 

mode 

3 

Name 

Autoincrement­
deferred 

Assembler 
Syntax 

@(Rn)+ 

Figure 7-20 Mode 3, Autolncrement·Deferrec:l 

Function 

Register contains the address of the 
operand 

I-----I~ ... I Operand 

MA-1170-90.DG 

Function 

Register is used as a pointer to a word 
containing the address of the operand, and 
then is incremented (always by two, even 
for byte instructions) 

MA-1171-90.DG 



7-14 Addressing Modes 

Mode 

5 

Name 

Autodecrement­
defetTed 

Assembler 
Syntax 

@-(Rn) 

Figure 7-21 Mode 5. Autodecrement-Deferred 

Mode Name 

7 Index-deferred 

Instruction 

x 

Assembler 
Syntax 

@X(Rn) 

Register 

Figure 7-22 Mode 7. Index-Deferred 

Function 

Register is decremented (always by two, 
even for byte instructions) and then used 
as a pointer to a word containing the 
address of the operand. 

MA·1172·90.DG 

Function 

Value X (stored in a word following the 
instruction) and (Rn) are added. The sum 
is used as a pointer to a word containing 
the address of the operand. Neither X nor 
(Rn) is modified. 

Address Operand 

MA-1173-90 

The following examples shows in Figure 7-23 through Figure 7-26, further illustrate use 
of the deferred modes. 

Register-Deferred Mode Example: 

Symbolic 

CLR@R5 

Octal 
Code 

005015 

Instruction 

Clear 

Operation: The contents of a location specified in R5 is cleared. 



Addressing Modes -7-15 

Address Space 

1676[=:=J 

1700~ 

Before 

Register 

RS 1 001700 

Figure 7-23 CLR @R5 

Autoincrement-Deferred Mode Example: 

Address Space 

1676 [=:=J 

1700~ 

Symbolic 
Octal 
Code Instruction Name 

INC @(R2)+ 005232 Increment 

After 

Register 

Rsl 001700 

MA-1174-90.0G 

Operation: The contents of R2 is used as the address of the operand. The operand is 
increased by one; the contents of R2 is incremented by two. 

Address Space 

1010g 

1012 0 

Before 

R2 

Figure 7-24 INC @(R2)+ 

Autodecrement-Deferred Mode Example: 

Symbolic 

COM @-(RO) 

Octal 
Code 

005150 

Instruction Name 

Complement 

Address Space 

1010g 

1012 0 

After 

Register 

R21 010302 

MA-1175-90.0G 

Operation: The contents of RO is decremented by two and then used as the address 
of the address of the operand. The operand is 1's complemented, that is, logically 
complemented. 



7-16 Addressing Modes 

Address Space 

10100 ~.345 
10102 c==J 

10774~ 
10776 c==J 

Before 

Register 

RO I 010776 

Figure 7-25 COM @-(RO) 

Index-Deferred Mode Example: 

SymboUc 

ADD @10000(R2),R1 

Octal 
Code 

067201 
001000 

Address Space 

10100~ 
10102 c==J 

10774~ 
10776 c==J 

Instruction Name 

Add 

After 

RO 

MA·1178·90.DG 

Operation: Location 1000 and the contents of R2 are summed to produce the address of 
the address of the source operand, the contents of which are added to the contents of Rl. 
The result is stored in Rl. 

Before After 

Address Space Register Address Space Register 

1020 067201 R11 001234 1020 067201 001236 

1022 001000 1022 001000 

1024 R21 000100 1024 000100 

1~~ 
" 

I 
1100 I 001050 

t I 1000 

+100 
1100 

ll00t=j 
MA·1177·90.DG 

Figure 7-26 ADD @1000(R2),R1 



Addressing Modes 7-17 

7.2.5 Use of the. PC as a General Purpose Register 
Although R7 is a general purpose register, it doubles in function as the PC for the 
KDJ11-E. Whenever the processor uses the PC to acquire a word from memory, the 
PC is automatically incremented by two to point to the address of the next word of the 
instruction being executed or the' address of the next instruction· to be executed. (When 
the program uses the PC to locate byte data, the PC is incremented by two.) 

The PC responds to all the standard KDJ11-E addressing modes. However, with four 
of these modes the PC can provide advantages for handling Position-Independent Code 
(PIC) and unstructured data. When utilizing the PC, these modes are termed immediate, 
absolute (or immediate-deferred), relative, and relative-deferred. They are summarized 
in the following chart. 

Assembler 
Mode Name Syntax Function 

2 Immediate #n Operand follows instruction 

3 Absolute @#A Absolute address of the operand follows instruction 

6 Relative A Relative address (index value) follows the 
instruction 

7 Relative- @A Index value (stored in the word after the instruction) 
deferred is the relative address for the address of the operand 

When a standard program is available for different users, it is often helpful to be able 
to load it into different areas of memory and run it in those areas. The KDJ11-E can 
accomplish the relocation of a program very efficiently through the the use of the PIC, 
which is written by using the PC addressing modes. If an instruction and its operands 
are moved in such a way that the relative distance between them is not altered, the 
same offset relative to the PC can be used in all positions in memory. Thus, PIC usually 
references locations relative to the current location. 

The PC also greatly facilitates the handling of unstructured data. This is particularly 
true of the immediate and relative modes. . 

7.2.5.1 Immediate Mode [OPR#n,DD] 
With the PC, immediate mode (mode 2) is equivalent in use to the autoincrement 
mode. It provides speed improvements for accessing constant operands by including the 
constant in the memory location immediately following the instruction word. Figure 7-27 
illustrates an immediate mode operation. 

Immediate Mode Example: 

Symbolic 

ADD#10,RO 

Octal 
Code 

062700 
000010 

Instruction Name 

ADD 

Operation: The value 10 is located in the second word of the instruction and is added 
to the contents of RO. Just before this instruction is fetched and executed, the PC points 
to the first word of the instruction. The processor fetches the first word and increments 
the PC by two. The source operand mode is 27 (autoincrement the PC). Thus, the PC is 
used as a pointer to fetch the operand (the second word of the instruction) before it is 
incremented by two to the next instruction. 



7-18 Addressing Modes 

Before After 

Address Space Register Address Space Register 

1020 062700 ROI 000020 1020 062700 RO I 000030 

1022 000010 
PC 

1022 000010 

1024 1024 
PC 

MA-1178-90.DG 

Figure 7-27 ADD #10,RO 

7.2.5.2 Absolute Mode [OPR @tAl 
Using the PC, the absolute mode (mode 3) is the equivalent of the immediate-deferred or 
autoincrement-deferred modes. The contents of the location following the instruction are 
taken as the address of the operand. Immediate data is interpreted as an absolute 
address, that is an address that remains constant no matter where in memory the 
assembled instruction occurs. Figure 7-28 and Figure 7-29 illustrate two absolute mode 
operations. 

Absolute Mode Eumples: 

Octal 
SymlboHc Code Instruction Name 

CLR @'1100 005037 Clear 
001100 

Operation: Clear the contents of location 1100. 

20 

22 

24 

Before 

Address Space 

005037 

001100 

1100~ 
1102 c=J 

PC 

20 

22 

24 

After 

Address Space 

005037 

001100 

~ 

1100~ 
.1102c=J 

PC 

MA-1179-90.DG 

Figure 7-28 CLR @t1100 



Symbolic 

Add @#2000,Ra 

Octal 
Code 

063703 
002000 

Instruction Name 

Add 

Operation: Add the contents of location 2000 to Ra. 

Before 

Address Space Register Address Space 

20 063703 R3
1 

000500 20 063703 

22 002000 
PC 

22 002000 

24 24 

2000Ej 

Figure 7-29 ADD @#2000 

7.2.5.3 Relative Addressing Mode [OPR A or OPR X(PC)] 

Addressing Modes -7-19 

After 

Register 

R31 000030 I 001000 

PC 

MA-1180-90.DG 

Using R7, the relative addressing mode (mode 6) is assembled as index mode. The 
base of the address calculation, which is stored in the second or third word of the 
instruction, is not the address of the operand, but the number which, when added to 
the PC, becomes the address of the operand. This mode is useful for writing PIC since 
the location referenced is always fixed relative to the PC. When instruction OPR X(PC) is 
interpreted, ''X is the location of A relative to the PC". Figure 7-30 illustrates a relative 
mode operation. 

Relative Addressing Mode Example: 

Symbolic 

INCA 

Octal 
Code 

005267 
000054 

Instruction 

Increment 

Operation: To increment location A, the contents of the memory location immediately 
following the instruction word is added to the PC to produce address A The contents of A 
is increased by one. 



7-20 Addressing Modes 

Before 

Address Space 

1020 005267 

~ 1022 000054 

1024 

1026 

1020 

PC 1022 

1024 

1026 

After 

Address Space 

005267 

000054 

~ PC 

1100 I 000000 1024 1100 I 000001 

t ~ 
L..._ ------1100 

MA·1181·90 

Figure 7-30 INC A 

7.2.5.4 Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] 
The relative-deferred addressing mode (mode 7) is similar to relative mode, except that 
the second word of the instruction, when added to the PC, contains the address of the 
address of the operand, rather than the address of the operand. The instruction OPR 
@X(PC) is interpreted as I'X is the location containing the address of A, relative to the 
PC." Figure 7-31 illustrates a relative-deferred mode operation. 

Relative-Deferred Addressing Mode Example: 

SymboHc 

CLR@A 

Octal 
Code 

005077 
000020 

Instruction Name 

Clear 

Operation: Add second word of instruction to the updated PC to produce the address of 
the address of the operand. Clear the operand. 



Addressing Modes 7-21 

Before After 

Address Space Address Space 

(PC=1020) 1020 005077 1020 005077 

1022 000020 PC 
1022 000020 

1024 1024 1024 
+20 PC 
1044 

1044 010100 

10100 I 100001 10100 I 000000 

MA·1182·90.DG 

Figure 7-31 CLR @A 

7.2.6 Use of the General Purpose Registers as a Stack Pointer 

The processor SP (R6) is, in most cases, the general purpose register used for the stack 
operations related to program nesting. Autodecrement using R6 "pushes" data onto the 
stack, and autoincrementing using R6 "pops" data off the stack. Since the SP is used 
by the processor for interrupt handling, it has a special attribute: Autoincrements and 
autodecrements are always done in steps of two. Byte operations using the SP in this 
way leave odd addresses (upper bytes) unmodified. 





8 
Base Instruction Set 

8.1 Instruction 'Set 
This chapter describes the KDJ11-E base instruction set. The chapter includes an 
explanation of each instruction mnemonic, octal code, binary code, a diagram showing 
the format of the instruction, a symbolic notation describing its execution and effect on 
the condition codes, a description, special comments, and examples. Each explanation 
is headed by its mnemonic. When the word instruction has a byte equivalent, the byte 
mnemonic also appears. 

The instruction set is listed by functional groups in Section 8.4, and an alphabetical list 
is provided in Table B-1. 

Table 8-1 Instruction Set 

Mnemonic Instruction Op Code 

ADC(B) Add carry ~55DD 
ADD Add source to destination 06SSDD 

ASH Arithmetic shift 072RSS 

ASHC Arithmetic shift combined 073RSS 

ASL(B) Arithmetic shift left ~63DD 
ASR(B) Arithmetic shift right ~62DD 

BCC Branch if carry is clear 103000 

BCS Branch if carry is set 103400 

BEQ Branch if equal (to zero) 001400 

BGE Branch if greater than or equal (to zero) 002000 

BGT Branch if greater than (zero) 003000 

BHI Branch if higher 101000 

BHIS Branch if higher or same 103000 

BIC(B) Bit clear ~SSDD 
BIS(B) Bit set ~SSDD 
BIT(B) Bit test ~SSDD 
BLE Branch if less than or equal (to zero) 003400 

8-1 



8-2 Base Instruction Set 

Table 8-1 (Cont.) Instruction Set 

Mnemonic Instruction Op Code 

BLO Branch if lower 103400 

BLOB Branch if lower or same 103400 

BLT Branch if less than (zero) 101400 

BMI Branch if minus 100400 

BNE Branch if not equal (to zero) 001000 

BPL Branch if plus 100000 

BPT Breakpoint trap 000003 

BR Branch (unconditional) 000400 

BVC Branch if overflow is clear 102000 

BV8 Branch if overflow is set 102400 

CCC Clear all CC bits 000257 

CLC Clear C 000241 

CLN Clear N 000250 

CLR(B) Clear destination ~50DD 
CLV Clear V 000242 

CLZ Clear Z 000244 

CMP(B) Compare source to destination ~SSDD 
COM(B) Complement destination ~51DD 
C8M Call to supervisor mode 0070DD 

DEC(B) Decrement destination ~53DD 
DIV Divide 071RSS 

EMT Emulator trap 104000-104377 

HALT Halt 000000 

lOT InputJoutput trap 000004 

INC(B) Increment destination ~52DD 
JMP Jump 0001DD 

J8R Jump to subroutine 004RDD 

MARK Mark 0064NN 

MFPD Move from previous data space 006588 

MFPI Move from previous instruction space 106588 

MFPS Move byte from PS 1067DD 

MFPT Move processor type 000007 

MOV(B) Move source to destination ~SSDD 



Base Instruction Set 8-3 

Table 8-1 (Cont.) Instruction Set 

Mnemonic Instruction Op Code 

MTPD Move to previous data space 106688 

MTPI Move to previous instruction space 006688 

MTP8 Move byte to P8 106488 

MUL Multiply 070RSS 

NEG(B) Negate destination ~54DD 
NOP No operation 000240 

RESET Reset external bus 000005 

ROL(B) Rotate left ~61DD 
ROR(B) Rotate right ~60DD 
RTI Return from interrupt 000002 

RTS Return from subroutine 00020R 

RTT Return from interrupt 000006 

SBC(B) Subtract carry ~56DD 
SCC Set all CC bits 000277 

SEC Set C 000261 

SEN SetN 000270 

SEV Set V 000262 

SEZ SetZ 000264 

SOB Subtract one and branch (if::F 0) 077R00 

SPL Set priority level 00023N 

SUB Subtract source from destination 16SSDD 

SWAB Swap bytes 0003DD 

SXT Sigh extend 0067DD 

TRAP Trap 104400-104777 

TST(B) 'Thst destination ~57DD 
TSTSET 'Thst destination, set low bit 00720D 

WAIT Wait for interrupt 000001 

WRTLCK Write interlocked 0073DD 

XOR Exclusive OR o 74RDD 

The diagram that accompanies each instruction shows the octal op code, and bit 
assignments. 

NOTE 
In byte instructions, the most significant bit (bit 15) is always a 1. 



8-4 Base Instruction Set 

Symbols: 

( ) = contents of 

SS or src = source address 

DD or DST = destination address 

loe = location 

+-- = becomes 

t = "is popped from stack" 

l == "is pushed onto stack" 

" • Boolean AND 

8.2 Instruction Formats 

v = Boolean OR 

V = exclusive OR 

IV == Boolean not 

REG or R = register 

B == byte 

~ = 0 for word, 1 for byte 

, .. concatenated 

The following formats include all instructions used in the KDJ11-E. Refer to individual 
instructions for more detailed information. 

1. Single-Operand Group: CLR, CLRB, COM, COMB, INC, INCB, 
DEC, DECB, NEG, NEGB, ADC, ADCB, 
SBC, SBCB, TST, TSTB, ROR, RORB 
ROL, ROLB, ASR, ASRB, ASL, ASLB, 
JMp, SWAB, MFPS, MTPS, SXT, 
TSTSET, WRTLCK 

15 06 05 00 

I : : : : OPf- : : : : I : 
MA-1183-80.DG 

Figure 8-1 Single-Operand Group 

2. Double-Operand Groups: 

a. Group 1: BIT, BITB, BIC, BICB, BIS, BISB 
ADD, SUB, MOV, MOVB, CMp, CMPB 

15 12 11 06 05 00 

I :opr-: I : : + :" : I : : + : : I 
MA·1184·80.DG 

Figure 8-2 Double-Operand Group 1 



Base Instruction Set- 8-5 

h. Group 2: ASH, ASHC, DIV, MUL, XOR 

15 09 08 06 05 00 

: 1 
MA-1185-90.0G 

Figure 8-3 Double-Operand Group 2 

3. Program Control Groups: 

a. Branch (all branch instructions) 

15 

1 : : 
MA-1186-90.0G 

Figure 8-4 Program Control Group Branch 

b. Jump (JMP) 

15 06 00 

1< :< : >: »11 : : 
MA-1187-90.0G 

Figure 8-5 Program Control Group JMP 

c. Jump to Subroutine (JSR) 

15 09 08 06 05 00 

1< >: : >: I :R: I : : 0:0 : : 1 
MA-1188-90.0G 

Figure 8-6 Program Control Group JSR 



8-6 Base Instruction Set 

d. Subroutine Return (RTS) 

15 00 

1< :< : >: : >: : :a: : >: I 
Figure 8-7 Program Control Group RTS 

e. Traps (breakpoint, lOT, EMT, TRAP, BPT) 

15 

MA-1189-90.DG 

00 

I : : : : : : : : : : : : I 
MA-1190-90.DG 

Figure 8-8 Program Control Group Traps 

f. Subtract 1 and Branch (if = 0) (SOB) 
15 09 08 06 05 00 

1< :< : :< I :< I : : 
MA-1191-90.DG 

Figure 8-9 Program Control Group Subtract 

g. Mark 
15 06 05 00 

1< :< : >: : :< I : : + : : I 
MA-1192-90.DG 

Figure 8-10 Mark 

h. Call to Supervisor Mode (CSM) 

. 15 06 05 03 02 00 

1< >: : >: : :< I : : ~D : : I 
MA-1193-90.DG 

Figure 8-11 Can to Supervisor Mode 



Base Instruction Set 8-7 

i. Set PrioritY.Level (SPL) 

15 03 02 00 

1< >: : >: : :< : :< I >: 1 

Figure 8-12 Set Priority Level 

4. Operate Group: 

15 08 07 

MA·1194-90.DG 

HALT, WAIT, RTI, RESET, RTT, 
NOP,MFPl' 

00 

10; : 0; : >: : I : : : : I 
MA·1196-90.DG 

Figure 8-13 Operate Group 

5. Condition Code Operators: (all condition code instructions) 

MA·1198-90.DG 

Figure 8-14 Condition Group 

6. Move To and From Previous InstructionlData Space Group: MTPD, MTPl 
MFPD, MFPI 

MA·1197·90.DG 

Figure 8-15 Move To and From Previous Instruction/Data Space Group 



8-8 Base Instruction Set 

8.3 Byte Instructions 
The KDJ11-E includes a full complement of instructions that manipulate byte operands. 
Since all KDJ11-E addressing is byte-oriented, byte manipulation -addressing is 
straightforward. Byte instructions with autoincrement or autodecrement direct 
addressing cause the specified register to be modified by one to point to the next byte of 
data. Byte operations in register mode access the low-order byte of the specified register. 
These provisions enable the KDJ11-E to perform as either a word or byte processor. 
Figure·8-16 shows the numbering scheme for word and byte addresses in memory. 

The most significant bit (bit 15) of the instruction word is set to indicate a byte 
instruction. 

Example: 

Symbolic Octal Code Instruction Name 

CLR 
CLRB 

0050DD 

l050DD 

Clear word 

Clear byte 

High Byte 
Address 

002001 

002003 

Byte 1 

Byte 3 

Figure 8-16 Byte Instructions 

8.4 List of Instructions 

Byte 0 

Byte 2 

Word or Byte 
Address 

002000 

002002 

MA-1198-90.OG 

The following section provides a functionalli~t of the KDJ11-E instruction set. 



8.4.1 Single-Operand 
General 

Mnemonic Instruction 

CLR(B) Clear destination 

COM(B) Complement destination 

INC(B) Increment destination 

DEC(B) Decrement destination 

NEG(B) Negate destination 

TST(B) Test Destination 

WRTLCK Readllock destination, write 
lunlock RO into destination 

TSTSET Test destination, set low bit 

Shift and Rotate 

Mnemonic 

ASR(B) 

ASL(B) 

ROR(B) 

ROL(B) 

SWAB 

Instruction 

Arithmetic shift right 

Arithmetic shift left 

Rotate right 

Rotate left 

Swap bytes 

Multiple-Precision 

Mnemonic Instruction 

ADC(B) Add carry 

SBC(B) Subtract carry 

SXT Sign extend 

PSW Operators 

Mnemonic Instruction 

MFPS Move byte from PSW 

MTPS Move byte to PSW 

Op Code 

~50DD 
~51DD 

~52DD 
~53DD 

~54DD 
~57DD 
00 73DD 

0072DD 

Op Code 

~62DD 
~63DD 
~60DD 
~61DD 
0003DD 

Op Code 

~55DD 
~56DD 
0067DD 

Op Code 

1067DD 

1064S8 

Base Instruction Set . 8-9 



8-10 Base Instruction Set 

8.4.2 Double-Operand 
General 

Mnemonic Instruction Op Code 

MOVE(B) Move source to destination ~SSDD 
CMP(B) Compare source to ~SSDD 

destination 

ADD Add source to destination 06SSDD 

SUB Subtract source from 16SSDD 
destination 

ASH Arithmetic shift 072RSS 

ASHC Arithmetic shift combined 073RSS 

MUL Multiply 070RSS 

DIV Divide 071RSS 

Logical 

Mnemonic Instruction Op Code 

BIT(B) Bit test I§iSSDD 

BIC(B) Bit clear I§iSSDD 

BIS(B) Bit set ~SSDD 
XOR Exclusive OR 074RDD 

8.4.3 Program Control 
Mnemonic Instruction Op Code or Base Code 

Branch 

BR Branch (unconditional) 000400 

BNE Branch if not equal (to zero) 001000 

BEQ Branch if equal (to zero) 001400 

BPL Branch if plus 100000 

BMI Branch if minus 100400 

BVC Branch if overflow is clear 102000 

BVS Branch if overflow is set 102400 

BCC Branch if carry is clear 103000 

BCS Branch if carry is set 103400 



Signed Conditional Branch 

Mnemonic Instruction 

BGE Branch if greater than or 
equal (to zero) 

BLT Branch if less than (zero) 

BGT Branch if greater than 
(zero) 

BLE Branch if less than or equal 
(to zero) 

Unsigned Conditional Branch 

Mnemonic Instruction 

BHI Branch if higher 

BLOS Branch if lower OT same 

BHIS Branch if higher or same 

BLO Branch if lower 

Jump and Subroutine 

Mnemonic Instruction 

JMP Jump 

JSR Jump to subroutine 

RTS Return from. subroutine 

SOB Subtract one and branch (if 
#=)0 

Trap and Interrupt 

Mnemonic Instruction 

EMT Emulator trap 

TRAP Trap 

BPT Breakpoint trap 

lOT Input/output trap 

RTI Return from interrupt 

RTT Return from interrupt 

Base Instruction Set 8-11 

Op Code or Base Code 

002000 

002400 

003000 

003400 

Op Code or Base Code 

101000 

101400 

103000 

103400 

Op Code or Base Code 

0001DD 

0045DD 

00020R 

077RDD 

Op Code or Base Code 

104000-104377 

104400-104777 

000003 

000004 

000002 

000006 



8-12 Base I nstruction Set 

Miscellaneous Program Control 

Mnemonic Instruction 

CSM Call to supervisor mode 

MARK Mark 

SPL Set priority level 

8.4.4 Miscellaneous 

Mnemonic Instruction 

HALT Halt 

WAIT Wait for interrupt 

RESET Reset external bus 

MFPT Move processor type 

MTPD Move to previous data space 

MTPI Move to previous instruction 
space 

MFPD Move from previous data 
space 

MFPI Move from previous 
instruction space 

8.4.5 Condition Code Operators 

Mnemonic Instruction 

CLC Clear C 

CLV Clear V 

CLZ Clear Z 

CLN Clear N 

CCC Clear all CC bits 

SEC Set C 

SEV Set V 

SEZ Set Z 

SEN SetN 

sec Set all ec bits 

NOP No operation 

Op Code or Base Code 

0070DD 

0064NN 

00023N 

Op Code or Base Code 

000000 

000001 

000005 

000007 

1066DD 

0066DD 

1065SS 

0065SS 

Op Code or Base Code 

000241 

000242 

000244 

000250 

000257 

000261 

000262 

000264 

000270 

000277 

000240 



Base instruction Set 8-13 

8.5 Single-Operand Instructions 
The KDJII-E instructions that involve only one operand are described in the paragraphs 
that follow. 

8.5.1 General 

CLR 
CLRB 

Clear Destination [B) 05000 

00 

MA-1199-90.DG 

Figure 8-17 Clear Destination 
Operation: (DST) +-- 0 

Condition Codes: 

Description: 

Example: 

N: cleared 
Z: set 
V: cleared 
C: cleared 

Word: The contents of the specified destination are replaced with Os. 
Byte: Same 

CLRR1 

Before After 

(R1) = 177777 (R1) = 000000 

NZVC NZVC 

1111 0100 



8-14 Base Instruction Set 

COM 
COMB 

Complement DST 

15 06 05 

[B) 05100 

00 

Figure 8-18 
Operation: 

Complement Destination 
(DST) +- "-J (DST) 

MA·1200·90.DG 

Condition Codes: N: set if most significant bit of result 
is set; cleared otherwise 

Description: 

Example: 

Z: set if result is 0; cleared otherwise 
V: cleared 
C: set 

Word: Replace the contents of the destination address by its logical 
complement. Each bit equal to 0 is set and each bit equal to 1 is 
cleared. 

Byte: Same 

COMR 

Before After 

(R) = 013333 (R) = 164444 

NZVC NZVC 

0110 1001 



Base Instruction Set 8-15 

INC 
INCB 

Increment DST 

15 06 05 

Figure 8-19 Increment Destination 
Operation: (DST) +- (DST) + 1 

Condition Codes: 

Description: 

Example: 

Decrement DST 

N: set if result is -< 0: cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if (DST) held 077777; cleared otherwise 
C: not affected 

Word: Add 1 to the contents of the destination. 

Byte: Same 

INCR2 

Before 

(R2) = 000333 

NZVC 
0000 

After 

(R2) = 000334 

NZVC 
0000 

15 06 05 

Figure 8-20 Decrement Destination 
Operation: 

Condition Codes: 

(DST) +- (DST) - 1 

N: set if result is -< 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if (DST) was 100000; cleared otherwise 
C: not affected 

[8] 05200 

00 

MA·1201·90.DG 

(8)05300 

00 

MA·1202·90.DG 

Description: Word: Subtract 1 from the contents of the destination. 

Byte: Same 

Example: DECR5 

Before 

(R5) = 000001 

NZVC 
1000 

After 

(R5) = 000000 

NZVC 
0100 



8-16 Base Instruction Set 

NEG 
NEGB 

Negate OST 

15 ~ ~ 

[8]05400 

00 

~D: : I 
MA-1203-90.0G 

Figure 8-21 Negate Destination 
Operation: 

Condition Codes: 

Description: 

Example: 

(DST) +- - (DST) 

N: set if result is -< 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: set if (DST) was 100000; cleared otherwise 
C: cleared if result is 0; set otherwise 

Word: Replaces the contents of the destination address by its 
2's complement. Note that 100000 is replaced by itself. In 2's 
complement notation the most negative number has no positive 
counterpart. 

Byte: Same 

NEGR 

Before After 

(R) = 000010 (R) = 177770 

NZVC NZVC 

0000 1001 



TST 
TSTB 

Base Instruction Set "8-17 

Test OST 

15 06 05 

[8]05700 

00 

: : I 
MA-1204-90.0G 

Figure 8-22 Test Destination 
Operation: 

Condition Codes: 

Description: 

Example: 

(DST) +- (DST) 

N: set if result is -< 0; cleared otherwise 
Z: set if result is 0; cleared otherwise 
V: cleared 
C: cleared 

Word: Sets the condition codes N and Z according to the contents of 
the destination address; the contents of DST remain unmodified. 

Byte: Same. 

TST Rl 

Before After 

(Rl) = 012340 (Rl) = 012340 

NZVC NZVC 

0011 0000 



8-18 Base Instruction Set 

WRTLCK 
ReadILock Destination 
Write/Unlock R 0 into Destination 

15 06 05 
007300 

00 

MA-12OS-SlO.DG 

Figure 8-23 Read/Lock Destination, Write/Unlock RO Into Destination 
Operation: (DST) .- (R) 

Condition Codes: N: set ifR -< 0 
Z: set ifR = 0 
V: cleared 
C: unchanged 

Description: Writes contents of R into destination using bus lock. If mode is 0, 
traps to 10. 

TSTSET 
Test Destination and Set Low Bit 

15 06 05 

1«« : : >: >1 : : 
Figure 8-24 Test Destination and Set Low an 
Operation: (R) .- (DST),(DST) .- (DST) V 000001 (octal) 

Condition Codes: N: set ifR -< 0 
Z: set ifR = 0 
V: cleared 
C: gets contents of old destination bit o. 

007200 

00 

MA-1206-90.DG 

Description: Readsllocks destination word and stores it in R. Writes/unlocks (R) V 
1 into destination. If mode is 0, traps to 10. 



Base Instruction Set 8-19 

8.5.2 Shifts and Rotates 
Scaling data by factors of two is accomplished by the shift instructions: 

ASR-Arithmetic shift right 
ASL-Arithmetic shift left 

The sign bit (bit 15) of the operand is reproduced in shifts to the right. The low-order 
bit is filled with Os in shifts to the left. Bits shifted out of the C-bit, as shown in the 
following instructions, are lost. 

The rotate instructions operate on the destination word and the C-bit as though they 
formed a 17 -bit "circular buffer." These instructions facilitate sequential bit testing and 
detailed bit manipulation. 

ASK 
ASRB 

Arithmetic Shift Right 

15 06 05 

.06200 

00 

MA-1207-90.0G 

Figure 8-25 Arithmetic Shift Right 
Operation: (DST) ~ (DST) shifted one place to the right 

Condition Codes: 

Description: 

Word: 

N: set if high-order bit of result is set (result < 0); cleared otherwise 
Z: set if result =·0; cleared otherwise 
V: loaded from exclusive OR of N -bit and C-bit (as set by the 
completion of the shift operation) 
C: loaded from low-order bit of destination 

Word: Shifts all bits of the destination right one place. Bit 15 is 
reproduced. The C-bit is loaded from bit 0 of the destination. ASR 
performs signed division of the destination by 2. 

Byte: Same. 

~5 00 

~-~~:~:~: ~: :~:~:~:~:~:~:-:~: ~: HG-
Byte: 

D 5 Odd_.... 08 r::7 EvenAddres. 00 

~: : : : : : : Hj~: : : : : : : t-G 
MA-1208-90.DG 

Figure 8-26 Example: Arithmetic Shift Right 



8-20 Base Instruction Set 

ASL 
ASLB 

Arithmetic Shift Left 

15 07 06 

[B) 06300 

00 

+: : I 
MA·1209·90.DG 

Figure 8-27 ArnhmetlcShlft Left 

Operation: (DST) +- (DST) shifted one place to the left 

Condition Codes: 

Description: 

N: set if high-order bit of result is set (result < 0); cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: loaded with exclusive OR of N-bit and C-bit (as set by the 
completion of the shift operation) 
C: loaded with high-order bit of destination 

Word: Shifts all bits of the destination left one place. Bit 0 is loaded 
with a o. The C-bit of the PSW is loaded from the most significant 
bit of the destination. ASL performs a signed multiplication of the 
destination by 2 with overflow indication. 

Byte: Same. 

Word: 15 00 

&1::::::::::::::: I 
~ 15 Odd Add...... rrT e..n Addr... 00 

C ::::::: r-0c:H : : : : : : : r-o 
MA-1210·to.DG 

Figure 8-28 Example: Arithmetic Shift Left 



ROR 
RORB 

Rotate Right 

Base Instruction Set -8-21 

15 06 05 
06000 

00 

MA·1213·90.0G 

Figure 8-29 Rotate Right 

Operation: (DST) 4- (DST) rotate one place to the right 

Condition Codes: 

Description: 

Word: 

Byte: 

+ 
15 

I : : : 

N: set if high-order bit of result is set (result < 0); cleared otherwise 
Z: set if all bits of result = 0; cleared otherwise 
V: loaded with exclusive OR of N-bit and C-bit (as set by the 
completion of the rotate operation) 
C: loaded with low-order bit of destination 

Word: Rotates all bits of the destination right one place. Bit 0 is 
loaded into the C-bit and the previous contents of the C-bit are 
loaded into bit 15 of the destination. 

Byte: Same, except the C-bit is loaded into MSB 7 or 15. 

G I + G I 
08 07 00 

+ : : : I I : : : E7- : : : I 
MA·1214·90.0G 

Figure 8-30 Example: Rotate Right 



8-22 Base InstrudionSet 

ROL 
ROLB 

Rotate Left 

15 06 05 

(8)06100 

00 

Figure. 8-31 Rotate Left 

Operation: 

Condition Codes: 

Description: 

Word: 

MA·1215-90.DG 

(DST) +- (DST) rotate one place to the left 

N: set if high-order bit of result word is set (result < 0); cleared 
otherwise 
Z: set if all bits of result word = 0; cleared otherwise 
V: loaded with exclusive OR of the N-bit and C-bit (as set by the 
completion of the rotate operation) 
C: loaded with high-order bit of destination 

Word: Rotates all bits of the destination left one place. Bit 15 is 
loaded into the C-bit of the PSW and the previous contents of the 
C-bit are loaded into bit 0 of the destination. 

Byte: Same, except the C-bit is loaded into LSB 8 or O. 

Byte: 

I TII----, I TII---------"', 
15 08 07 00 

I : : : +: : : 1 """""'1 :~: --r-: --"-~n --r-: ..,..-: .,...---.: 1 

MA-121S·90.DG 

Figure 8-32 Example: Rotate Left 



Base Instruction Set 8-23 

SWAB 

Swap Bytes 

15 06 05 

·000300 

00 

MA-1217-90.DG 

Figure ~33 Swap Bytes 

Operation: 

Condition Codes: 

Description: 

Example: 

byte 1lbyte O+-byte Olbyte 1 

N: set if high-order bit of low-order byte (bit 7) of the result is set; 
cleared otherwise 
Z: set if low-order byte of result = 0; cleared otherwise 
V: cleared 
C: cleared 

Exchanges high-order byte and low-order byte of the destination 
word. The destination must be a word address. 

SWABR1 

Before 

(R1)= 077777 

NZVC 

1111 

After 

(R1) = 177577 

NZVC 

0000 



8-24 Base Instruction Set 

8.5.3 Multiple-Precision 

It is sometimes necessary to do arithmetic operations on operands considered as multiple 
words or bytes. The KDJ11-E makes special provision for such operations with the 
instructions ADC (add carry) and SBC (subtract carry) and their byte equivalents. 

For example, two 16-bit words may be combined into a 32-bit double-precision word and 
added or subtracted as shown below. 

32-BitWord 

r __ ------------------.oo------~A~-----------------------------------~, 
31 16 15 00 

Operand 
-------A-1------~11 ~ ------A-O------~ 

,~---------------------------A--------------------------~, 
31 16 15 00 

Operand 
~-----B1------~11 ~ ---------oo------------~ 

31 16 15 00 

Result I I 
MA-1218-eO.DG 

Figure 8-34 Multiple-Precision 



Base . Instruction Set -8-25 

Example: 

The addition of -1 and -1 could be performed as follows. 

-1 = 37777777777 
(R1) = 177777 (R2) = 177777 (Ra) = 177777 (R4) = 177777 
ADDR1,R2 
ADCR3 
ADD R4,Ra 

1. After (R1) and (R2) are added, 1 is loaded into the C-bit. 

2. The ADC instruction adds the C-bit to (Ra); (Ra) = O. 

3. (R3) and (R4) are added. 

4. The result is 37777777776, or-2 

ADC 
ADCB 

Add Carry 

15 ~ ~ 

[8105500 

00 

Figure 8-35 Add carry 

Operation: 

Condition Codes: 

Description: 

Example: 

(DST)+-(DST) + (C-bit) 

N: set if result< 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 

MA-1219-90.00 

V: set if (DST) was 077777 and (C) was 1; cleared otherwise 
C: set if (DST) was 177777 and (C) was 1; cleared otherwise 

Word: Adds the contents of the C-bit to the destination. This permits 
the carry from the addition of the low-order words to be carried to the 
high-order result. 

Byte: Same 

Double-precision addition may be done with the following instruction 
sequence: 

ADD 

ADC 

ADD 

AO,BO 

Bl 

Al,Bl 

;add low-order parts 

;add carry into high-order 

;add high-order parts 



8-26 Base Instruction Set 

SBC 
SBCB 

Subtract Carry 

15 06 05 
[8]05600 

00 

MA·1220·90.DG 

Figure 8-36' Subtract carry 

Operation: 

Condition Codes: 

Description: 

Example: 

(DST)+-(DSTHC) 

N: set if result< 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if (DST) was 100000; cleared otherwise 
C: set if (DST) was 0 and C was 1; cleared otherwise 

Word: Subtracts the contents of the C-bit from the destination. This 
permits the carry from the subtraction of two low-order wordS to be 
subtracted from the high-order part of the result. 

Byte: Same 

Double-precision subtraction may be done with the following 
instruction sequence: 

SUB 
SBC 

SUB 

AO,BO 

Bl 

Al,Bl 



Base Instruction Set 8-27 

SXT 
Sign Extend 

15 06 05 

.006700 

00 

MA-1221-90.0G 

Figure ~7 Sign Extend 
Operation: (DST)~O if N-bit is clear 

(DST) ~ 1 ifN-bit is set 

Condition Codes: 

Description: 

Example: 

N: not affected 
Z: set if N-bit is clear 
V: cleared 
C: not affected 

If the condition code bit N is set, a -1 is placed in the destination 
operand; if the N -bit is clear, a 0 is placed in the destination operand. 
This instruction is particularly useful in multiple-precision arithmetic 
because it permits the sign to be extended through multiple words. 

SXTA 
Before 

(A)= 012345 

NZVC 

1000 

After 

(A)= 177777 

NZVC 

1000 



8-28 Base Instruction Set 

8.5.4 PSW Operators . 

The MFPS and MTPS are op codes used directly with the processor status word. 

MFPS 

Move Byte from Processor Status Word 106700 

00 15 06 05 

I »»: :< : : I : : 
MA-1222-90.0G 

Figure 8-38 Move Byte from Processor Status Word 

Operation: 

Condition Codes: 

Description: 

Example: 

(DST)+- PSW DST lower 8 bits 

N: set if PSW bit 7 = 1; cleared otherwise 
Z: set ifPSW<7:0>= 0; cleared otherwise 
V: cleared 
C: not affected 

The 8·bit contents of the PSW are moved to the effective destination. 
If the destination is mode 0, PSW bit 7 is sign-extended through the 
upper byte of the register. The destination operand address is treated 
as a byte address. 

MFPSR 

Before 

(R)= 0 

(PSW)= 000014 

After 

(R)= 000014 

(PSW)= 000000 



Base Instruction Set -8-29 

MTPS 

Move Byte to Processor Status Word 1064SS 

00 15 06 05 

: : I 
MA-1223-90.0G 

Figure 8-39 Move Byte to Processor Status Word 

Operation: 

Condition Codes: 

Description: 

Example: 

PSW +- (src) 

Set according to effective SRC operand bits <3:0> 

The eight bits of the effective operand replace the current contents of 
the lower byte of the PSW. The source operand address is treated as 
a byte address. Note: The T-bit (PSW bit 4) cannot be set with this 
instruction. The SRC operand remains unchanged. This instruction 
can be used to change the priority bits (PSW <7:5» in the PSWonly 
in kernel mode. If not in kernel mode, PSW <7:5> cannot be changed. 

MTPS R1 

Before After 

(R1)= 000777 (R1)= 000777 

(PSW)= XXXOOO (PSW)= XXX357 

NZVC NZVC 

0000 1111 



8-30 Base Instruction Set 

8.6 Double-Operand Instructions 
Double-operand instructions· save instructions (and time), since they eliminate the need 
for load and save sequences such as those used in accumulator-oriented machines. 

8.6.1 General 
MOV 
MOVB 

Move Source to Destination [BJ1SSDD 

15 12 11 06 05 00 

MA·1224·90.DG 

Figure 8-40 Move Source to Destination 
Operation: (DST) +- (arc) 

Condition Codes: 

Description: 

Example: 

N: set if (arc) < 0; cleared otherwise 
Z: set if (src) = 0; cleared otherwise 
V: cleared 
C: not affected 

Word: Moves the source operand to the destination location. The 
previous contents of the destination are lost. Contents of the source 
address are not affected. 

Byte: Same as MOV. The MOVB to a register (unique among byte 
instructions) extends the most significant bit of the low-order byte 
(sign extension). Otherwise, MOVB operates on bytes exactly as 
MOV operates on words. 

MOVxxx,R1 ;loads register 1 with the contents of 
memory location; xxx represents a 
programmer defined mnemonic used to 
represent a memory location 

MOV '20,R ;loads the number 20 into register 0; 
# indicates that the value 20 is the 
operand 

MOV @20,-{R6) ;pushes the operand contained in 
location 20 onto the stack 

MOV (R6)+,@177566 ;pops the operand off a stack and 
moves it into memory location 177566 
(terminal print buffer) 

MOV R1,Ha ;performs an inter-register transfer 

MOVB @177562,@177566 ;moves a character from the terminal 
keyboard buffer to the terminal printer 
buffer 



CMP 
CMPB 

Compare SRC to DST 

Base Instruction Set 8-31 

15 12 11 06 05 

[B]2SSDD 

00 

MA-1225-90.DG 

Figure 8-41 Compare SRC to Destination 
Operation: 

Condition Codes: 

Description: 

(srcHDST) 

N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow; that is, operands were of 
opposite signs and the sign of the destination was the same as the 
sign of the result; cleared otherwise 
C: cleared if there was a carry from the most significant bit of the 
result; set otherwise 

Compares the source and destination operands and sets the condition 
codes, which may then be used for arithmetic and logical conditional 
branches. Both operands are not affected. The only action is to 
set the condition codes. The compare is customarily followed by 
a conditional branch instruction. Notice that unlike the subtract 
instruction, the order of operation is (arc) - (DST), not (DST) -
(src) 



8-32 Base Instruction Set 

ADD 

Add SAC to OST 
15 12 11 06 05 

06SS00 
00 

10; : ;0 I : : 
MA-1227-90.DG 

Figure 8-42 Add SRC to Destination 
Operation: (DST) ~ (src) + (DST) 

Condition Codes: 

Description: 

Example: 

N: set if result <0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V; set if there was arithmetic overflow as a result of the operation, 
that is, both operands were of the same sign and the result was of 
the opposite sign; cleared otherwise 
C: set if there was a carry from the most significant bit of the result; 
cleared otherwise 

Adds the source operand to the destination operand and stores 
the result at the destination address. The original contents of the 
destination are lost. The contents of the source are not affected. 2's 
complement addition is performed. Notice that there is no equivalent 
byte mode. 

Add to register: 

Add to memory: 

Add register to register: 

Add memory to memory: 

ADD #20,R 

ADDR1,xxx 

ADDR1,R2 

ADD @ 17750)00{ 

(XXX is a programmer-defined mnemonic for a memory location.) 



Base Instruction Set 8-33 

SUB 

Subtract SRC from DST 

15 12 11 06 05 

16SSDD 

00 

I : : > I : : + 
MA-1226-90.0G 

Figure 8-43 Subtract SRC from DST 

Operation: 

Condition Codes: 

Description: 

Example: 

(DST) +- (DST) - (src) 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if there was arithmetic overflow as a result of the operation, 
that is, if operands were of opposite signs and the sign of the source 
was the same as the sign of the result; cleared otherwise 
C: cleared if there was a carry from the most significant bit of the 
result; set otherwise 

Subtracts the source operand from the destination operand and 
leaves the result at the destination address. The original contents of 
the destination are lost. The contents of the source are not affected. 
In double-precision arithmetic the C-bit, when set, indicates a 
"borrow." Notice that there is no equivalent byte mode. 

SUB R1,R2 

Before After 

(R1) = 011111 (R1) = 011111 

(R2) = 012345 (R2) = 001234 

NZVC NZVC 

1111 0000 



8-34 Base Instruction Set 

ASH 

Arithmetic Shift 072RSS 

15 09 08 06 05 00 

1
0

: : : :< >1 :< 1 : : + : : I 
MA-1228-90.0G 

Figure~ 

Operation: 

Arfthmetlc Shift 

Condition Codes: 

Description: 

NOTE 

R +- R shifted arithmetically NN places to the right or left where 
NN = (src) 

N: set if result < 0 
Z: set if result = 0 
V: set if sign of register changed during shift 
C: loaded from last bit shifted out of register 

The contents of the register are shifted right or left the number of 
times specified by the source operand. The shift count is taken as the 
low-order six bits of the source operand. This number ranges from 
-32 to +31. Negative is a right shift and positive (less than +31) is a 
left shift. 

A shift count of +31 shifts the contents of the register to the right 31 times. 



Base Instruction Set 8-35 

ASHe 

Arithmetic Shift Combined [B]073RSS 

00 15 09 08 06 05 

10; : : : < : I : < I : : 
MA-1229-90.DG 

Figure 8-45 Arithmetic Shift Combined 

Operation: R, R V 1~ R, Rv 1 

Condition Codes: 

Description: 

NOTE 

The double word is shifted NN places to the right or left where NN = 
(src) 

N: set if result < 0 
Z: set if result = 0 
V: set if sign bit changes during shift 
C: loaded with high-order bit when left shift; loaded with low-order 
bit when right shift (loaded with the last bit shifted out of the 32-bit 
operand) 

The contents of the register and the register ORed with 1 are treated 
as one 32-bit word. Rv 1 (bits <15:0» and R (bits <31:16» are 
shifted right or left the number of times specified by the shift count. 
The shift count is taken as the low-order 6 bits of the source operand; 
the upper 11 bits of the source operand must be O. This number 
ranges from -32 to +31. Negative is a right shift and positive is a left 
shift. 

When the register chosen is an odd number, the register and the 
register ORed with 1 are the same. In this case, the right shift 
becomes a rotate. The 16-bit word is rotated right the number of 
times specified by the shift count. 

Bits <5:0> shift count. Bits <15:6> must be o. 



8-36 Base Instruction Set 

MUL 

Multiply 

15 09 08 06 05 

070RSS 

00 

1< : : »>1 :< 1 : : +: : I 
Figure 8-46 Multiply 

Operation: 

Condition Codes: 

Description: 

DIY 

R, R V I+-R x (src) 

~: set if product < 0 
Z: set if product = 0 
V: cleared 

MA·1230·90.DG 

C: set if the result is less than -2 ** 15 or greater than or equal to 2 
**15 -1. 

The contents of the destination register and source taken as 2's 
complement integers are multiplied and stored in the destination 
register and the succeeding register, if R is even. If R is odd, only the 
low-order product is stored. Assembler syntax is: MUL S,R. Notice 
that the actual destination is R,R V 1, which reduces to just R when 
Ris odd. 

Divide 171 RSS 

15 09 08 06 05 00 

10; : : :a:a: 1 >: 1 : : + : : 1 

Figure 8-47 Divide 

Operation: 

Condition Codes: 

Description: 

R, R V I+- R, R V lI(src) 

N: set if quotient < 0 
Z: set if quotient = 0 

MA·1231·91.DG 

V: set if source = 0 or if the absolute value of the register is larger 
than the absolute value of the instruction in the source. (In this case 
the instruction is a~rted because the quotient would exceed 15 bits.) 
C: set if divide by zero is attempted. 

The 32-bit 2's complement integer in R and R V 1 is divided by the 
source operand. The quotient is left in R; the remainder is of the 
same sign as the dividend. R must be even. 



Base Instruction Set -8-37 

8.6.2 Logical 
These instructions have the same format as those in the double-operand 
arithmetic group. They permit operations on data at the bit le-vel. 

BIT 
BITB 

Bit Test 

15 12 11 06 05 

(B]3SSDD 

00 

Figure 8-48 Bit Test 

Operation: 

Condition Codes: 

Description: 

Example: 

MA-1232-90.0G 

(src) " (DST) 

N: set if high-order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

Performs logical AND comparison of the source and destination 
operands and modifies condition codes accordingly. Neither the 
source nor the destination is affected. The BIT instruction may 
be used to test whether any of the corresponding bits set in the 
destination are also set in the source, or whether all corresponding 
bits set in the destination are clear in the source. 

BIT #30,R3 

R3 = 0000000000011 
000 

Before 

NZVC 

1111 

;test bits three and four of R3 to see if 
both are off. 

After 

NZVC 

0001 



8-38 Base Instruction Set 

BIC 
BICB 

Bit Clear 

15 12 11 06 05 

[B)4SSDD 

00 

Figure 8-49 Bit Clear 
Operation: 

Condition Codes: 

Description: 

Example: 

(DST)+-IV (src)A (DST) 

N: set if high-order bit of result set; cleared 
otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

MA-1233-90.0G 

Clears each bit in the destination that corresponds to a set bit in 
the source. The original contents of the destination are lost. The 
contents of the source are not affected. 

BIC RS,R4 

Before After 

(RS) = 001234 (RS) = 001234 

(R4) = 001111 (R4) = 000101 

NZVC NZVC 

1111 0001 

Before: (RS) = 0 000 001 010 011 100 

(R4) = 0 000 001 001 001 001 

After: (R4) = 0 000 000 001 000 001 



DIS 
DISD 

Base Instruction Set 8-39 

Bit Set 

15 12 11 06 05 

[B]5SSDD 

00 

MA-1234-90.DG 

Figure 8-50 Bit Set 
Operation: (DBT)~ (src) V (DST) 

Condition Codes: 

Description: 

Example: 

N: set if high-order bit of result set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

Performs an inclusive OR operation between the source and 
destination operands and leaves the result at the destination address, 
that is, corresponding bits set in the source are set in the destination. 
The contents of the destination are lost 

BIB R,Rl 

Before After 

(R) = 001234 (R) = 001234 

(R1) = 001111 (Rl) = 001335 

NZVC NZVC 
0000 0000 

Before: (R) = 0 000 001 010 011 100 

(Rl) = 0 000 001 001 001 001 

After: (Rl) = 0 000 001 011 011 101 



8-40 Base Instruction Set 

XOR 

Exclusive OR 

15 09 08 06 05 

[B]074RDD 

00 

1< : : : »1 >: I : : 0;0 : : I 
MA-1235-90.0G 

Figure 8-51 Exclusive OR 
Operation: 

Condition Codes: 

Description: 

Example: 

(DST) +-(reg) V (DST) 

N: set if result V 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

The exclusive OR of the register and destination operand is stored in 
the destination address. The contents of the register are not affected. 
The assembler format is XOR R,D. 

XORR,R2 

Before 

(R) = 001234 

(R2) = 001111 

NZVC 

1111 

Before: 

After: 

After 

(R) = 001234 

(R2) = 000325 

NZVC 

0001 

(R) = 0 000 001 010 011 100 

(R2) = 0 000 001 001 001 001 

(R2) = 0 000 000 011 010 101 



Base Instruction Set -&-41 

8.7 Program Control Instructions 
The following paragraphs describe the KDJ11-E instructions that affect program control. 

8.7.1 Branches 

Program control instructions cause a branch to a location defined by the sum of the offset 
(multiplied by 2) and the current contents of the program counter if: 

1. The branch instruction is unconditional. 

2. The branch instruction is conditional and the conditions are met after testing the 
condition codes (N Z V C). 

The offset is the number of words from the current contents of the PC, forward or 
backward. Note that the current contents of the PC point to the word following the 
branch instruction. 

Although the offset expresses a byte address, the PC is expressed in words. The offset 
is automatically multiplied by 2 and sign-extended to express words before it is added to 
the PC. Bit 7 is the sign of the offset. If it is set, the offset is negative and the branch 
is done in the backward direction. If it is not set, the offset is positive and the branch is 
done in the forward direction. 

The a-bit offset allows branching in the backward direction by 200 octal words (400 octal 
bytes) from the current PC, and in the forward direction by 177 octal words (376 octal 
bytes) from the current PC. 

The KDJ11-E assembler typically handles address arithmetic for the user and computes 
and assembles the proper offset field for branch instructions in the following format: 

Bxx loc 

Bxx is the branch instruction and loc is the address where the branch is to be made. The 
assembler gives an error indication in the instruction if the permissible branch range 
is exceeded. Branch instructions have no effect on condition codes. Conditional branch 
instructions where the branch condition is not met are treated as NOPs. 



8-42 Base Instruction Set 

BR 

Branch (Unconditional) 000400 Plus Offset 

15 08 07 00 

1«««< I: : :~M: : : 1 
MA-1238-90.DG 

Figure 8-52 . Branch (Unconditional) 

Operation: 

Condition Codes: 

Description: 

Example: 

New PC Address 

474 

476 

500 

502 

504 

506 

PC+- PC + (2 x offset) 

Not affected 

Provides a way of transferring program control within a range of -128 to +127 
words with a one word instruction. 

New PC address = updated PC + (2 x offset) 

Updated PC = address of branch instruction +2 

With the branch instruction at location 500, the following offsets apply: 

Offset Code Offset (decimal) 

875 --S 

876 -2 

377 -1 

000 0 

001 +1 

002 +2 



Base Instruction Set 8--43 

BNE 

Branch if Not Equal (to Zero) 0001000 Plus Offset 

00 15 08 07 1«««< I : : : 
MA-1237 -90.0G 

Figure 8-:-53 Branch If Not Equal (to Zero) 

Operation: 

Condition Codes: 

Description: 

Example: 

PC+- PC + (2x offset) if Z = 0 

Not affected 

'Thsts the state of the Z-bit and causes a branch if the Z-bit is clear. BNE 
is the complementary operation of BEQ. It is used to test: (1) inequality 
following a CMP, (2) that some bits set in the destination were also in the 
source following a BIT operation,and (3) generally, that the result of the 
previous operation was not o. 
Branch to C if A ;:f: B 

CMPA,B 

BNEC 

Branch to C if 
A+B;:f:O 

ADDA,B 

BNEC 

;compare A and B 

;branch if they are not equal 

;addAtoB 

;branch if the result is not equal to 0 



8-44 Base Instruction Set 

BEQ 

Branch if Equal (to Zero) 001400 Plus Offset 

15 08 07 00 

1««« : I : : :+<: : I 
MA-1238-90.DG 

Figure 8-54 Branch If Equal (to Zero) 

Operation: 

Condition Codes: 

Description: 

Example: 

BPL 

Branch if Plus 

PC+- PC + (2x offset) if Z = 1 

Not affected 

'Thsts the state of the Z-bit and causes a branch if Z is set. It is used to test: 
(1) equality following a CMPoperation, (2) that no bits set in the destination 
were also set in the source following a BIT operation, and (3) generally, that 
the result of the previous operation was o. 
Branch to C if A = B 
CMPA,B 

BEQC 

Branch to C if 
A+B=O 

ADDA,B 

BEQC 

;compare A and B 

;branch if they are equal 

;add A to B 

;branch if the result = 0 

100000 Plus Offset 

MA-1239-90.DG 

Figure 8-55 Branch If Plus 

Operation: 

Condition Codes: 

Description: 

PC+- PC + (2 x offset) if N = 0 

Not affected 

'Thsts the state of the N-bit and causes a branch if N is clear (positive result). 
BPL is the complementary operation of BMI. 



Base Instruction Set -8-45 

BMI 

Branch if Minus 100400 Plus Offset 

15 08 07 00 

1>:««< 1 : : >+1: : : I 
MA-124o-90.DG 

Figure 8-56 Branch If Minus 

Operation: PC ~ PC + (2 x offset) if N = 1 

Condition Codes: 

Description: 

Bve 

Not affected 

'Thsts the state of the N -bit and causes a branch if N is set. It is used to 
test the sign (most significant bit) of the result of the previous operation, 
branching if negative. BMI is the complementary function of BPL. 

Branch if Overflow is Clear 102000 Plus Offset 

15 08 07 00 

1»»»>1: : :+< : : I 
MA-1241-91.DG 

Figure 8-57 Branch If Overflow Is Clear 

Operation: PC ~ PC· + (2 x offset) if V = 0 

Condition Codes: 

Description: 

Not affected 

'Thsts the state of the V-bit and causes a branch if the V-bit is clear. BVC is 
the complementary operation of BVS. 



8-46 Base Instruction Set 

BVS 

Branch if Overflow is Set 102400 Plus Offset 

MA-1242-91.0G 

Figure 8-58 Branch If Overflow Is Set 
Operation: PC +- PC + (2 x offset) if V = 1 

Condition Codes: Not affected 

Description: 'Thsts the state of the V-bit (overflow) and causes a branch if V is set. BVS is 
used to detect arithmetic overflow in the previous operation. 

Bee 
Branch if Carry is Clear 103000 Plus Offset 

15 08 07 00 

I»»: : >1 : : :0+< : : I 
MA-1243-91.0G 

Figure 8-59 Branch If Carry Is Clear 
Operation: 

Condition Codes: 

Description: 

Des 

PC +- PC + (2 x offset) ifC = 0 

Not affected 

'Thsts the state of the C-bit and causes a branch if C is clear. BCC is the 
complementary operation of BeS. 

Branch if Carry Is Set 103400 Plus Offset 

15 08 07 00 

I »;0:< : : 1 : : :c+< : : I 
MA-1244-91.0G 

Figure 8-60 Branch If Carry Is Set 
Operation: PC +- PC + (2 X offset) if C = 1 

Condition Codes: 

Description: 

Not affected 

'Thsts the state of the C-bit and causes a branch if C is set. It is used to test 
for a carry in the result of a previous operation. 



Base Instrudion Set 8-47 

8.7.2 Signed Conditional Branches 
Particular combinations of the condition code hits are tested with the signed conditional 
branches. These instructions are used to test the results of instructions in which the 
operands were considered as signed (2's complement) values. 

Note that the sense of signed comparisons differs from that of unsigned comparisons in 
that in signed, 16-hit, 2's complement arithmetic, the sequence of values is as follows: 

largest 

positive 

smallest 

negative 

077777 

077776 

000001 

000000 

177777 

177776 

100001 

100000 

Whereas, in unsigned, 16-bit arithmetic, the sequence is considered to be: 
lrighest 177777 

lowest 

000002 

000001 

000000 



8-48 Base Instruction Set 

BGE 

Branch if Greater Than or Equal (to Zero) 002000 Plus Offset 

MA-1245-91.DG 

Figure 8-61 Branch If Greater Than or Equal (to Zero) 

Operation: 

Condition Codes: 

Description: 

BLT 

PC +- PC + (2 x offset) if N V V = 0 

Not affected 

Causes a branch if N and V are either both clear or both set. BGE is the 
complementary operation of BLT. Thus, BGE will always cause a branch 
when it follows an operation that caused addition of two positive numbers. 
BGE will also cause a branch on a 0 result. 

Branch is Less Than (Zero) 002400 Plus Offset 

15 08 07 00 

1««0; :< I: : :+< : : I 
MA-1246-91.DG 

Figure 8-62 Branch If Less Than (Zero) 

Operation: PC +- PC + (2 x offset) if N V V = 1 

Condition Codes: 

Description: 

Not affected 

Causes a branch if the exclusive OR of the N- and V-bits is 1. Thus, BLT 
will always branch following an operation that added two negative numbers, 
even if overflow occurred. In particular, BLT will always cause a branch if 
it follows a CMP instruction operating on a negative source and a positive 
destination (even if overflow occurred). Further, BLT will never cause a 
branch when it follows a CMP instruction operating on a positive source and 
negative destination. BLT will not cause a branch if the result of the previous 
operation was 0 (without overflow). 



Base Instrudion Set 8-49 

BGT 

Branch is Greater Than (Zero) 003000 Plus Offset 

MA-1247-91.DG 

Figure 8-63 Branch If Greater Than Zero 

Operation: PC 4-- PC + (2 x offset) if Z (N V v) = 0 

Condition Codes: Not ~ected 

Description: Operation of BGT is similar to BGE, except that BGT will not cause a branch 
on a 0 result. 

BLE 

Branch if Less Than or Equal (to Zero) 003400 Plus Offset 

15 08 07 00 

I 0; 0; 0; 0; 0; : : I : : : +: : :1 
MA-1248-91.DG 

Figure 8-64 Branch If Less Than or Equal (to Zero) 

Operation: PC 4-- PC + (2 x offset) if Z v (N V V) = 1 

Condition Codes: 

Description: 

Not affected 

Operation is similar to BLT, but in addition will cause a branch if the result 
of the previous operation was o. 



8-50 Base Instruction Set 

8.7.3 Unsigned Conditional Branches 
The unsigned conditional branches provide a means for testing the result of comparison 
operations in which the operands are considered to be unsigned values. 

BBI 

Branch if Higher 101000 Plus Offset 

00 15 08 07 

+: : : I 
MA·1249-91.DG 

Figure 8-65 Branch H Higher 

Operation: 

Condition Codes: 

Description: 

BLOS 

PC +- PC + (2 x offset) if C = 0 and Z = 0 

Not affected 

Causes a branch if the previous operation caused neither a carry nor a 0 
result. This wi]] happen in comparison (CMP) operations as long as the 
source has a higher unsigned value than the destination. 

Branch if Lower or Same 101400 Plus Offset 

15 08 07 00 

I :««< : I : : :+< : : I 
MA·1250-91.OG 

Figure 8-66 Branch If Lower or Same 

Operation: PC +- PC + (2 x offset) if C V Z = 1 

Condition Codes: 

Description: 

Not affected 

Causes a branch if the previous operation caused either a carry or a 0 result. 
BLOB is the complementary operation of BHI. The branch will occur in 
comparison operations as long as the source is equal to or has a lower 
unsigned value than the destination. 



Base instruction Set 8-51 

BBIS 

Branch if Higher or Same 103000 Plus Offset 

15 08 07 00 I»»: : >1 : : :+: : : I 
MA-1251-91.DG 

Figure ~7 Branch If Higher or Same 

Operation: PC +- PC + (2 x offset) if C = 0 

Condition Codes: Not affected 

Description: BHIS is the same instruction as BCC. This mnemonic is included for 
convenience only. 

BLO 

Branch if Lower 103400 Plus Offset 

15 08 07 00 I»»: : : 1 : : :+: : : I 
MA-1252-91.DG 

Figure 8-68 Branch If Lower 

Operation: PC +- PC + (2 x offset) if C = 1 

Condition Codes: Not affected 

Description: BLO is the same instruction as BCS. This mnemonic is included for 
convenience only. 



8-52 Base Instruction Set 

8.7.4 Jump and Subroutine Instructions 
The subroutine call in the KDJII-E provides for automatic nesting of subroutines, 
reentrancy, and multiple entry points. Subroutines may call other $ubroutines (or indeed 
themselves) to any level of nesting without making special provision for storage of return 
addresses at each level of subroutine call. The subroutine calling mechanism does not 
modify any fixed location in memory, and thus provides for reentrancy. This allows one 
copy of a subroutine to be shared among several interrupting processes. 

JMP 

Jump 

15 06 05 

000100 

00 

MA-1253-90.DG 

Figure 8-69 Jump 
Operation: 

Condition Codes: 

Description: 

Example: 

PC +- (DST) 

Not affected 

JMP provides more flexible program branching than the branch instructions 
do. Control may be transferred to any location in memory (no range 
limitation) and can be accomplished with the full flexibility of the addressing 
modes, with the exception of register mode o. Execution of a jump with 
mode 0 will cause an illegal instruction condition, and will cause the CPU 
to trap to vector address 4. (Program control cannot be transferred to a 
register.) Register-deferred mode is legal and will cause program control to be 
transferred to the address held in the specified register. Note that instructions 
are word data and must therefore be fetched from an even-numbered address. 

Deferred-index mode JMP instructions permit transfer of control to the 
address contained in a selectable element of a table of dispatch vectors. 

First: 
JMP FIRST ;transfers to FIRST 

JMP@LIST 

List: 

FIRST 

JMP@(SP)+ 

;transfers to location pointed to at LIST 

;pointer to FIRST 

;transfer to location pointed to by the top of the stack, 
and remove the pointer from the stack 



JSR 

Jump To Subroutine 

15 09 08 06 05 

Base Instruction Set -8-53 

004RDD 

00 

. MA·1254·90.DG 

Figure &-70 Jump to Subroutine 
Operation: (tmp) +- (DST) (tmp is an internal processor register) 

Description: 

NOTE 

! (SP) reg (pushes register contents onto processor stack) 

reg +- PC (PC holds location following JSR-this address now put in 
register) 

PC +- (DST) (PC now points to subroutine destination) 

In execution of the JSR, the old contents of the specified register (the linkage 
pointer) are automatically pushed onto the processor stack and new linkage 
information is placed in the register. Thus, subroutines nested within 
subroutines to any depth may all be called with the same linkage register. 
There is no need either to plan the maximum depth at which any particular 
subroutine will be called or to include instructions in each routine to save 
and restore the linkage pointer. Further, since all linkages are saved in a 
reentrant manner on the processor stack, execution of a subroutine may be 
interrupted. The same subroutine may be reentered and executed by an 
interrupt serVice routine. Execution of the initial subroutine can then be 
resumed when other requests are satisfied. This process (called nesting) can 
proceed to any level. . 

A subroutine called with a JSR reg,DST instruction can access the arguments 
following the call with either autoincrement addressing, (reg) +, if arguments 
are accessed sequentially; or by indexed addressing, X(reg), if accessed in 
random order. These addressing modes may also be deferred, @(reg)+ and 
@X(reg), if the parameters are operand addresses rather than the operands 
themselves. 

JSR PC, DST is a special case of the KDJII-E subroutine call suitable for 
subroutine calls that transmit parameters through the general registers. The 
SP and the PC are the only registers that may be modified by this call. 

Another special case of the JSR instruction is JSR PC,@(SP) +, which 
exchanges the top element of the processor stack with the contents of the 
program counter. This instruction allows two routines to swap program 
control and resume operation from where they left off when they are recalled. 
Such routines are called coroutines. 

Return from a subroutine is done by the (RTS) instruction. (RTS) reg loads 
the contents of reg into the PC and pops the top element of the processor 
stack into the specified register. 

JSR with register mode destination 0 is illegal and traps to 10. 



8-54 Base Instruction Set 

Example: 

SBCALL: 

SBCALL+4: 

JSRRS,SBR 

ARGI 

ARG2 

SBCALL+2+2M: ARG M 

CONT: Next Instruction 

SBR: MOV (R5)+,DST 1 

MOV (R5)+,DST 2 

RS 

#1 

#1 

SBCALL+4 

MOV (R5)+,DST M SBCALL+2+2M 

Other Instructions CONT 

EXIT: RTSRS CONT 

JSR RS,SBR 

Before: (PC) R71 PC 

(SP) R6 I n I .... 
I -

RS I #1 I 

After: R7 I SBR I 

I n-2 I ... 
I -R6 

Rsl PC+2 

Figure 8-71 Example: Jump to Subroutine 

R6 

n 

n 

n-2 

n-2 

R7 

SBCALL 

CONT 

SBR 

EXIT 

Stack 

DATA 0 

DATA 0 

#1 

MA-1255-90 



Base Instrudion Set 8-55 

RT8 

Return from Subroutine . 00020R 

15 03 02 00 

1
0

:
0 »»>:< »»1 :< I 

MA-1258-80.DG 

Figure 8:-72 Return from Subroutine 
Operation: PC +- (reg) 

(reg) +- (SP) t 
Description: Loads the contents of the register into the PC and pops the top element of the 

processor stack into the specified register. 

Return from a nonreentrant subroutine is typically made through the same 
register that was used in its call. Thus, a subroutine called with a JSR PC, 
DST exits with an RTS PC, and a subroutine called with a JSR R5, DST may 
pick up parameters with addressing modes (R5) +, X(R5), or @X(R5), and 
finally exits with an RTS R5. 

Example: RTS R5 

RTSR5 Stack 

Before: (PC) R7 I SBR I 
DATA 0 

(SP) R6 I n I ~ .1 
I 

ASI PC 

After: R71 ...... _-..... PC 

R6 I n+2 I -"" DATA 0 I -

R5 I .1 I 
MA-1257-90 

Figure 8-73 Example: RTS RS 



8-56 Base I nstruction Set 

SOB 

Subtract One and Branch (IF::/:O) 

15 

077RNN 

1< : : : : : I :< I : : +< : I 
MA-1258-90.DG 

Figure ~74 Subtract One and Branch 

Operation: (R) ~ (R}-l; if this result '1= 0, then PC ~ PC-(2 x offset); if (R) = 0 then 
PC~PC 

Condition Codes: 

Description: 

8.7.5 Traps 

Not affected 

The register is decremented. If the contents does not equal 0, twice the offset 
is subtracted from the PC (now pointing to the following word). The offset 
is interpreted as a 6-bit positive number. This instruction provides a fast, 
efficient method of loop control. The assembler syntax is SOB R,A where A is 
the address to which transfer is to be made if the decremented R is not equal 
to 0. Notice that the SOB instruction cannot be used to transfer control in the 
forward direction. 

Trap instructions provide for calls to emulators, 110 monitors, debugging packages, and 
user-defined interpreters. A trap is effectively an interrupt generated by software. When 
a trap occurs, the contents of the current PC and PSW are pushed onto the processor 
stack and are replaced by the contents of a 2-word trap vector containing a new PC and 
new PSW.The return sequence from a trap involves executing an RTI or RTT instruction, 
which restores the old PC and old PSW by popping them from the stack. Trap instruction 
vectors are located at permanently assigned fixed addresses. 



Base Instruction Set 8-57 

EMT 

Emulator Trap 104000-104377 

15 08 07 00 

I »:0: >;0>1 : : : : : : : I 
Figure 8-75 Emulator Trap 
Operation: ! (SP)+- PSW 

! (SP)+- PC 
PC+- (30) 
PSW+- (32) 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

MA·12S9-91.DG 

Description: All operation codes from 104000 to 104377 are EMT instructions and may 

NOTE 

be used to transmit information to the emulating routine (for example, the 
function to be performed). The trap vector for EMT is at address 30. The new 
PC is taken from the word at address 30; the new PSW is taken from the 
word at address 32. 

EMT is used frequently by Digital system software and is therefore not 
recommended for general use. 

Before: PS 1 
Stack 

PC I PC 1 I ... DATA 1 I -

n SP ... I __ .... 

After: PS I (32) 

PC I (30) I DATA 1 

PS 1 

I n-4 I ... PC 1 I -SP 

MA-126Q.90 

Figure 8-76 Example: Emulator Trap 



8-58 Base Instruction Set 

TRAP 

104400-104n7 Trap 

15 00 ~ 00 

:0;0; I : : : +: : : I 
Figure 8-77 Trap 
Operation: ! (SP)+- PSW 

! (SP)+- PC 
PC+- (34) 
PSW+- (36) 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

MA-1261-91.DG 

Description: Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and 
EMTs are identical in operation, except that the trap vector for TRAP is at 
address 34. 

NOTE 
Since Digital software makes frequent use of EMT, the TRAP instruction is 
recommended for general use. 

BPr 

Breakpoint Trap 000003 

15 00 

I 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0: : 1 I 

Figure 8-78 Breakpoint Trap 
Operation: ! (SP)+- PSW 

! (SP)+- PC 
PC+- (14) 
PSW+- (16) 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

MA-1262-90.DG 

Description: Performs a trap sequence with a trap vector address of 14. Used to call 
debugging aids. The user is cautioned against employing code 000003 in 
programs run under these debugging aids. (No information is transmitted in 
the low byte.) 



Base Instrudion Set 8-59 

lOT 

Input/Output Trap 000004 

15 00 

I 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0: : 0 : 0 I 
MA-1263-90.OG 

Figure ~79 Input/Output Trap 
Operation: ! (SP)~ PSW 

!(SP)~ PC 
PC~ (20) 
PSW~(22) 

Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

Description: Performs a trap sequence with a trap vector address of 20. (No information is 
transmitted in the low byte.) 

RTI 

Return from Interrupt 000002 

15 00 

I 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0: : 0 I 
MA-1264-90.OG 

Figure 8-80 Return from Interrupt 
Operation: PC~ (SP)t 

PSW~ (SP) t 
Condition Codes: 

Description: 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

Used to exit from an intelTUpt or TRAP service routine. The PC and PSW are 
restored (popped) from the processor stack. If the RTI sets the T-bit in the 
PSW, a trace trap will occur prior to execution of the next instruction. 

When executing in kernel mode, any legal mode can be stored in PSW <15:14, 
13:12>. When executing in supervisor mode, only supervisor or user mode can 
be stored, and in user mode, only the user mode can be stored . 

• 
When executing in kernel mode, either a 1 or a 0 can be stored in PSW bit 11. 
When executing in supervisor mode, a stored 0 can be changed to a 1, but a 
stored 1 cannot be changed to a O. 



8-60 Base Instruction Set 

RTT 

Return from Trap 000006 

15 00 

1°;0»»»:««< : >1 
MA·1285-90.DG 

Figure 8-81 Return from Trap 

Operation: PC+- (SP)t 
PSW+- (SP)t 

Condition Codes: 

Description: 

N: loaded' from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

Operation is the same as RTI except that it inhibits a trace trap, whereas RTI 
permits a trace trap. If the new PSW has the T-bit set, a trap will occur after 
execution of the instruction following RTT. 

When executing in kernel mode, any legal mode can be stored in PSW 
<15:14,13:12>. When executing in supervisor mode, only supervisor or user 
mode can be stored, and in user mode, only the user mode can be stored. 

When executing in kernel mode, either a 1 or a 0 can be stored in PSW bit 1t. 
When executing in supervisor mode, a stored 0 can be changed to a 1, but a 
stored 1 cannot be changed to a O. 



8.7.5.1 Miscellaneous Program Controls 

MARK 

Mark 

Base Instrudion Set -8-61 

15 ~ ~ 

0064NN 

00 

Figure 8-82 Mark 
Operation: SP +- PC + 2 X NN 

PC +-RS 

Condition Codes: 

RS +- (SP)+ 

(NN = number of parameters) 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

+ : : I 
MA-1287-90.0G 

Description: Used as part of the standard subroutine return convention. MARK 
facilitates the stack clean-up procedures involved in subroutine exit. 
Assembler fonnat is: MARK N. 

Example: MOV RS,-{SP) 

MOV Pl,-{SP) 

MOV P2,-{SP) 

MOV PN,-{SP) 

MOV MARKN,-{SP) 

MOVSp,RS 

JSRPC,SUB 

At this point the stack is as follows: 

Figure 8-83 Example: Mark 

OlOR5 

P1 

PN 

MARKN 

Olope 

MA-1266-90.0G 

;place old RS on stack 

;place N parameters on 

;the stack to be used 
;there by the subroutine 

;place the instruction 
;MARK N on the stack 

;set up address at MARK N 
;instruction 

;jump to subroutine 



8-62 Base Instruction Set 

. The program is at the address SUB, which is the beginning of the subroutine. 
SUB: ;execution of the 

;subroutine itself 

RTSRS 

NOTE 

;the return begins: 
;this causes the contents 
;of R5 to be placed in the 
;pC which then results in 
;the execution of the 
;instruction MARK N. The 
;contents of the old PC 
;are placed in RS. 

If memory management is in use, the stack must be mapped through both I and 
D space to execute the MARK instruction. 

SPL 

Set Priority Level 0OO23N 

MA·1268·90.DG 

Figure 8-84 Set Priority Level 

Operation: PSW bits <7:5> +- priority 
(priority = N) 

Condition Codes: 

Description: 

N: unaffected 
Z: unaffected 
V: unaffected 
C: unaffected 

In kernel mode, the least significant three bits of the instruction are 
loaded into PSW bits <7:5>, thus causing a changed priority. The 
old priority is lost. In user or supervisor modes, SPL executes as an 
NOP. 

Assembler syntax is: SPL N 



Base Instruction Set 8-63 

CSM 

Call to Supervisor Mode 007000 

00 15 06 05 

MA-1269-90.0G 

Figure 8-85 call to Supervisor Mode 
Operation: 

Condition Codes: 

Description: 

If MMR3 bit 3 = I, and current mode = kernel, then supervisor SP+-- current 
mode SP temp <15:4>+-- PSW <15:4> temp <3:0>+- 0 
PSW <13:12>+-- PSW <15:14> 
PSW <15:14>+-- 1 
PSW 4+-- 0 
-(SP)+-- temp 
-(SP)+-- PC 
-(SP)+-- (DST) 
-PC+-- (10); 
otherwise, traps to 10 in kernel mode. 

N: unaffected 
Z:unafTected 
V: unaffected 
C: unaffected 

CSM may be executed in user or supervisor mode, but is an illegal instruction 
in kernel mode. CSM copies the current SP to the supervisor mode, switches 
to supervisor mode, stacks three words on the supervisor stack (the PSW with 
the condition codes cleared, the PC, and the argument word addressed by the 
operand), and sets the PC to the contents of location 10 (in supervisor space). 
The called program in supervisor space may return to the calling program by 
popping the argument word from the stack. and executing RTI. On return, the 
condition codes are determined by the PSW on the stack. Hence, the called 
program in supervisor space may control the condition code values following 
return. 

8.7.6 Reserved Instruction Traps 
Reserved instruction traps are caused by attempts to execute instruction codes reserved 
for future processor expansion (reserved instructions) or instructions with illegal 
addressing modes (illegal instructions). Order codes not corresponding to any of the 
instructions described are considered to be reserved instructions. JMP and JSR with 
register mode destinations are illegal instructions; they trap to virtual address 10 in 
kernel data space. Reserved instructions trap to vector address 10 in kernel data space. 



8-64 Base Instruction Set 

8.7.7 Trace Trap 

Trace trap is enabled by bit 4 of the PSW and causes processor traps at the end of 
instruction execution. The instruction that is executed after the instruction that sets the 
T-bit proceeds to completion and then traps through the trap vector at address 14. The 
trace trap is a system debugging aid and is transparent to the general programmer. 

NOTE 
Bit 4 of the PSW can only be set indirectly by executing an RTI or RTT 
instruction with the desired PSW on the stack. 

NOTE 
The traced instruction is the instruction after the one that sets the T·bit. 

The following are special cases of the T-bit: 

1. An instruction that clears the T-bit-Upon fetching the traced instruction, an internal 
flag-the trace flag-is set. The trap still occurs at the end of this instruction. The 
PSW on the stack, however, has a clear T-bit. 

2. An instruction that sets the T-bit-Since the T-bit is already set, setting it again has 
no effect. The trap still occurs. 

3. An instruction that causes an instruction trap-The instruction trap is performed 
and the entire routine for the service trap is executed. If the service routine exits 
with an RTI, or in any other way restores the stacked PSW, the T-bit is set again, the 
instruction following the traced instruction is executed, and, unless it is one of the 
special cases noted previously, a trace trap occurs. 

4. An instruction that causes a stack overflow -The instruction completes execution as 
usual. The stack overflow does not cause a trap. The trace trap vector is loaded into 
the PC and PSW and the old PC and PSW are pushed onto the stack. Stack overflow 
occurs again, and this time the trap is made. 

5. An interrupt between setting the T-bit and fetching the traced instruction - The 
entire interrupt service routine is executed and then the T-bit is set again by 
the exiting RTI. The traced instruction is executed (if there have been no other 
interrupts), and, unless it is a special case noted in steps 1 through 4, a trace trap 
occurs. 

6. Interrupt trap priorities-See Table 1-6. 



Base Instruction Set -8-65 

8.8 Miscellaneous Instructions 
HALT 

Halt 000000 

15 00 

10:0;0:0:0:0;0;0;0:0;0;0:«0:01 

Figure 8-86 Halt 
Operation: 

Condition Codes: 

Description: 

NOTE 

! (SP)+- PSW 
l (SP)+- PC 
PC~ restart address 
PSW+- 340 

Not affected 

MA·1270·90.0G 

The effect of HALT depends upon the CPU operating mode and the state of 
the trap-on-halt option (bit 3) in the maintenance register. Execution of the 
HALT instruction in kernel mode with the trap-on-halt option cleared causes 
the CPU to end the execution of instructions after the current instruction 
and enter the DCJll micro-ODT mode. Execution of the HALT instruction in 
kernel mode with the halt-on-trap option set, or at any time in supervisor or 
user modes, causes a trap through virtual address 4 and also sets bit 7 of the 
CPU error register. 

DMA activity may continue whne the CPU is halted, even if the Halt switch is 
on. 

NOTE 
The state of the halt-on-trap option has no effect on the operation of the Halt 
switch located on the operator console panel. 



8-66 Base Instruction Set 

WAIT 

Wait For Interrupt 000001 

15 00 

1°»»»;0:°;0»»:< I 
MA·1271·90.DG 

Figure 8-87 . Walt for Interrupt 

Condition Codes: 

Description: 

RESET 

Not affected 

The WAIT instruction allows the processor to relinquish the bus while it 
waits for an interrupt. During this time the processor does not compete for 
instructions or operands from memory. This may permit higher transfer rates 
between devices and memory, since there are no processor induced latencies 
by requests from the devices. 

In WAIT, as in all instructions, the PC points to the next instruction following 
the WAIT instruction. Thus, when an interrupt causes the PC and PSW to be 
pushed onto the processor stack, the address of the next instruction following 
the WAIT is saved. The exit from the interrupt routine causes resumption 
of the interrupted process at the instruction following the WAIT. The WAIT 
instruction executes as an NOP in supervisor and user modes. 

Reset External Bus 000005 

15 00 

I ° : ° : ° : ° : ° : ° : ° : ° : ° : ° : ° : ° : 0: : 0: I 
MA·1272·90.DG 

Figure 8-88 Reset External Bus 

Condition Codes: 

Description: 

Not affected 

The following sequence of events occurs: (1) a general purpose write cycle is 
performed and a general purpose code of 014 is generated; (2) operation is 
delayed for 69 microcycles; (3) a general purpose write is performed and a 
general purpose code of 214 is generated; and (4) operation is delayed for 600 
microcycies. If not in kernel mode, RESET operates as an NOP. 



MFPT 

Move from Processor Type Word 

15 

Figure 8-89 Move from Processor 'TYpe Word 

Operation: R+-5 

Condition Codes: Not affected 

Base Instrudion Set 8-67 

·000007 

00 

MA-1273-90.DG 

Description: The number 5 is placed in R, indicating to the operating system software that 
the processor type is a KDJ11-E. 

MTPDIMTPI 

Move to Previous Data Space (Bit 15=1) 
Move to Previous Instruction Space (Bit 15=0) [B)066DD 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

MA-1274-90.DG 

Figure &-90 Move to Previous Data Space (Bit 15 = 1) 
Move to Previous Instruction Space (Bit 15 = 0) 

Operation: 

Condition Codes: 

Description: 

(temp)+- (SP)+ 

(DST)+- (temp) 

N: set if the source < 0 
Z: set if the source = 0 
V: cleared 
Z: unaffected 

The instruction pops a word off the current stack determined by PSW <15:14> 
and stores that word in an address in the previous space (PSW <13:12». The 
destination address is computed using the current registers and memory map. 



8-68 Base Instruction Set 

MFPDIMFPI 

Move From Previous Data Space (Bit 15=1) 
Move From Previous Instruction Space (Bit 15=0) 

15 06 05 

Figure 8-91 Move from Previous Data Space (Bit 15 = 1) 
Move from Previous Instruction Space (Bit 15 = 0) 

Operation: 

Condition Codes: 

(temp)+- (src) 

-(SP)+- (temp) 

N: set if the source < 0 
Z: set if the source = 0 
V: cleared 
Z: unaffected 

[B]065SS 

00 

MA·1275-90.DG 

Description: Pushes a word onto the current stack from an address in the previous 
space determined by PSW <13:12>. The source address is computed using 
the current registers and memory map. When MFPI is executed and both 
previous mode and current mode are user, the instruction functions as though 
it were MFPD. 



Base Instruction Set -8-69 

8.9 Condition Code Operators 
The op codes that can be used to set/clear condition codes, either independently or ORed 
together, are as follows: 

Condition Code Operators 002XX 

MA·1278·90.DG 

Figure 8-92 Condition Code Operators 
Description: Set and clear condition code bits. Selectable combinations of these bits may 

be cleared or set together. Condition code bits corresponding to bits in the 
condition code operator (bits <3:0» are modified according to the sense of bit 
4, the set/clear bit of the operator. That is, set the bit specified by bit 0, 1, 2, 
or 3, if bit 4 = 1. Clear corresponding bits if bit 4 = o. 

Mnemonic Operation Op Code 

CLC Clear C 000241 

CLV Clear V 000242 

CLZ Clear Z 000244 

CLN Clear N 000250 

SEC SetC 000261 

SEV Set V 000262 

SEZ SetZ 000264 

SEN SetN 000270 

SCC Set all CCs 000277 

CCC Clear all CCs 000257 

Clear V and C 000243 

NOP No operation 000240 

Combinations of the above set and clear operations may be ORed together to form 
combined instructions. 





9 
Floating-Point Arithmetic 

9.1 Introduction 
The KDJ11-E executes 46 floating-point instructions. The floating-point instruction set 
is compatible with the FP11 instruction set for PDP-11 computers. Both single- and 
double-precision floating-point capabilities are available with other features, including 
f1oating-to-integer and integer-to-f1oating conversion. 

9.2 Floating-Point Data Formats 
Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, 
where K is an integer and f is a fraction. For a nonvanishing number, K and fare 
uniquely determined by imposing the condition 112 < f < 1. The fractional part (f) of the 
number is then said to be normalized. For the number 0, f is assigned the value 0, and 
the value of K is indeterminate. 

The floating-point data formats are derived from this mathematical representation for 
floating-point numbers. Two types of floating-point data are provided. In single-precision, 
or floating mode, the data is 32 bits long. In double-precision, or double mode, the data is 
64 bits long. Sign magnitude notation is used. 

9.2.1 Nonvanishing Floating-Point Numbers 
The fractional part (f) is assumed to be normalized, so that its most significant bit 
must be 1. This 1 is the hidden bit. It is not stored explicitly in the data word, but 
the microcode restores it before carrying out arithmetic operations. The floating and 
double modes reserve 23 and 55 bits, respectively, for f. These bits, with the hidden bit, 
imply effective word lengths of 24 bits and 56 bits. 

Eight bits are reserved for storage of the exponent K in excess 200 notation (that is, 
as K + 200 octal), giving a biased exponent. Thus, exponents from -128 to +127 may 
be represented by 0 to 377 (base 8), or 0 to 255 (base 10). For reasons described in the 
following section, a biased exponent of 0 (the true exponent of -200 octal) is reserved for 
floating-point O. Therefore, exponents are restricted to the range -127 to +127 inclusive 
(-177 to +177 octal) or, in excess 200 notation, 1 to 377. 

The remaining bit of the floating-point word is the sign bit. The number is negative if the 
sign bit is a 1. 

9-1 



9-2 Floating-Point Arithmetic 

9.2.2 Floating-Point Zero 

Because of the hidden bit, the fractional part is not available to distinguish between 0 
and nonvanishing numbers whose fractional part is exactly 112. Th.erefore, the KDJ11-E 
reserves a biased exponent of 0 for this purpose, and any floating-point number with 
a biased exponent of 0 either traps or is treated as if it were an exact 0 in arithmetic 
operations. An exact or clean 0 is represented by a word whose bits are all Os. A dirty 0 
is a floating-point number with a biased exponent of 0 and a nonzero fractional part. 
An arithmetic operation for which the resulting true exponent exceeds 177 octal is 
regarded as producing a floating overflow; if the true exponent is less than -177 octal, the 
operation is regarded as producing a floating underflow. A biased exponent of 0 can thus 
arise from arithmetic operations as a special case of overflow (true exponent = 200 octal). 
(Recall that only eight bits are reserved for the biased exponent.) The fractional part of 
results obtained from such overflow and underflow is correct. 

9.2.3 Undefined Variables 

An undefined variable is any bit pattern with a sign bit of 1 and a biased exponent of 
O. The term undefined variable is used, for historical reasons, to indicate that these bit 
patterns are not assigned a corresponding floating-point arithmetic value. Note that the 
undefined variable is frequently referred to as -0 elsewhere in this chapter. 

A design objective was to ensure that the undefined variable would not be stored as the 
result of any floating-point operation in a program run with the overflow and underflow 
interrupts disabled. This is achieved by storing an exact 0 on overflow and underflow if 
the corresponding interrupt is disabled. This feature, together with an ability to detect 
reference to the undefined variable (implemented by the FIUV bit discussed later), is 
intended to provide the user with a debugging aid: if -0 occurs, it did not result from a 
previous floating-point arithmetic instruction. 

9.2.4 Floating-Point Data 

Floating-point data is stored in words of memory as illustrated in Figure 9-1 and 
Figure 9-2. 

The KDJ11-E provides for conversion of floating-point to integer format and vice versa. 
The processor recognizes single-precision integer (I) and double-precision integer long (L) 
numbers, which are stored in standard 2's complement form (Figure 9--3). 

9.3 Floating-Point Status Register (FPS) 
The floating-point status register (FPS) provides mode and interrupt control for the 
currently executing floating-point instruction and also reflects conditions resulting from 
the execution of the previous instruction (Figure 9-4). In this discussion a set bit = 1 and 
a reset bit = O. Three bits of the FPS register control the modes of operation as follows: 

Single/Double -Floating-point numbers can be either single- or double-precision. 

Long/Short-Integer numbers can be 16 bits or 32 bits. 

Chop/Round -The result of a floating-point operation can be either chopped or rounded. 
The term chop is used instead of truncate to avoid confusion with truncation of series 
used in approximations for function subroutines. 

The FPS register contains an error flag and four condition codes (5 bits): carry, overflow, 
zero, and negative, which are analogous to the CPU condition codes. 



Floating-Point Arithmetic - 9-3 

F Format, Floating-Point Single Precision 

15 00 

: : : : : : I 
15 14 07 06 

: : : I : 

Figure 9-1 Single-Precision Format 

o Format, Floating-Point Double Precision 

15 

00 

: I 
MA-1277-90.0G 

00 

I : : : : : : ~~+15:~ : : : : : : I 
15 00 

I : : : : : : Fr~:<31+ : : : : : : I 
15 00 

: : : : : : I 
15 14 07 06 

S.Sign of fraction 

Exp=Exponent in excess 200 notation, restricted to 1 to 377 octal 
for nonvanishing numbers. 

Fraction=23 bits in F format, 55 bits in 0 format plus one hidden 
bit(normalization). The binary radix point is to the left. 

Figure 9-2 Double-Precision Fonnat 

00 

MA-1278-90.00 



9-4 Floating-Point Arithmetic 

I Format, Short-Integer Double Precision 

15 14 00 

I I : : : : : +b+1S+ : : : :: : I 
L Format, Long-Integer Double Precision 

15 00 

: : : : : : I 
15 14 07 06 00 

S=Sign of number 
Number=15bits in I format, 31 bits in L format 

MA-1279-90.DG 

Figure 9-3 2's Complement Format 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

FIV FIC FD FL FT FN FZ FV FC 

Reserved 
MA-1280-90.DG 

Figure 9-4 Floating-Point Status Register 

The KDJ11-E recognizes the following six floating-point exceptions: 

• Detection of the presence of the undefined variable in memory 

• Floating overflow 

• Floating underflow 

• Failure of floating-to-integer conversion 

• Attempt to divide by 0 

• Illegal floating op code 

For the first four of these exceptions, bits in the FPS register are available to individually 
enable and disable interrupts. An interrupt on the occurrence of either of the last two 
exceptions can be disabled only by setting a bit that disables interrupts on all six of the 
exceptions as a group. 

Of the 13 FPS bits, 5 are set as part of the output of a floating-point instruction: the 
error flag and condition codes. Any of the mode and interrupt control bits may be set by 
the user; the LDFPS instruction is available for this purpose. These 13 bits are stored in 
the FPS register (Figure 9-4). Table 9-1 describes the FPS register bits. 



Floating-Point Arithmetic 9-5 

Table 9-1 FPS Register Bit Descriptions 

Bit Name 

15 FER 

14 FID 

NOTE 

Function 

The floating error (FER) bit is set by the DCJ11 if: 

1. Division by zero occurs 

2. An illegal op code occurs 

3. Anyone of the remaining floating-point exceptions occurs and 
the corresponding interrupt is enabled 

Note that the above action is independent of whether the FID bit is 
set or clear. 

Note also that the DCJ11 never resets the FER bit. Once the 
FER bit is set by the DCJ11, it can be cleared only by an LDFPS 
instruction. (The RESET instruction does not clear the FER bit.) 
This means that the FER bit is up to date only if the most recent 
floating-point instruction produced a floating-point exception. 

If the FID bit is set, all floating-point interrupts are disabled 

The FlO bit is primarily a maintenance feature. It is normally clear and must be clear if 
you want to ensure that storage of -0 by the DCJll is accompanied by an interrupt. 

Throughout the rest of this chapter, assume that the FID bit is clear in all discussions 
involving overftow, underflow, occurrence of -0, and integer conversion errors. 

13 

12 

11 

10 

9 

Reserved 

Reserved 

FIUV 

FlU 

FIV 

Reserved for future use. 

Reserved for future use. 

An interrupt occurs if FIUV is set and a --0 is obtained from memory 
as an operand of ADD, SUB, MUL, DIv,. CMP, MOD, NEG, ABS, 
TST, or any LOAD instructions. When FIUV is reset, --0 can be 
loaded and used in any floating-point operation. 

Note that the interrupt is not activated by the presence of --0 in an 
accumulator operand of an arithmetic instruction. In particular, 
trap on -0 never occurs in mode O. A result of --0 is not stored 
without the simultaneous occurrence of an interrupt. 

When the FlU bit is set, floating underflow causes an interrupt. The 
fractional part of the result of the operation causing the interrupt 
is correct. The biased exponent is too large by 400, except for the 
special case of 0, which is correct. A special case is discussed later 
in the description of the LDEXP instruction. 

When the FIV bit is set, floating overflow causes an interrupt. The 
fractional part of the result of the operation causing the overflow is 
correct. The biased exponent is too small by 400. 

If the FIV bit is reset and overflow occurs, there is no interrupt. 
The DCJ11 returns exact O. 

Special cases of overflow are discussed later in the detailed 
descriptions of the MOD and LDEXP instructions. 



9-6 Floating-Point Arithmetic 

Table 9-1 (Cont.) FPS Register Bit Descriptions 

Bit 

8 

7 

6 

5 

4 

3 

2 

1 

o 

Name 

FIe 

FD 

FL 

FT 

Reserved 

FN 

FZ 

FV 

Fe 

Function 

When the FIe bit is set and a conversion to integer instruction fails, 
an interrupt occurs. When the interrupt occurs, destination is set to 
o and all other registers are left untouched. 

If the FIe bit is reset, the result of the operation is the same as that 
detailed previously, but no interrupt occurs. 

The conversion instruction fails ifit generates an integer with more 
bits than can fit in the short or long integer word specified by the 
FL bit. 

The FD bit determines the precision that is used for floating-point 
calculations. When set, double-precision is assumed. When reset, 
single-precision is used. 

The FL bit is active in conversion between integer and floating-point 
formats. When set, the integer format assumed is doubled-precision 
2's complement (32 bits). When reset, the integer format assumed 
is single-precision 2's complement (16 bits). 

When the FT bit is set, the result of any arithmetic operation is 
chopped (truncated). When reset, the result is rounded. 

Reserved for future use. 

FN is set if the previous floating-point operation result was 
negative; otherwise it is reset. 

FZ is set if the previous floating-point operation was 0; otherwise it 
is reset. 

FV is set if the previous floating-point operation in an exponent 
overflow; otherwise it is reset. 

Fe is set if the previous floating-point operation resulted in a carry 
of the most significant bit. 

9.4 Floating Exception Code and Address Registers 
One interrupt vector is assigned to take care of all floating-point exceptions (location 244). 
The six possible errors are coded in the 4-bit Floating Exception Code (FEe) register as 
follows: 

Code Exception 

2 Floating op code error 

4 Floating divide by zero error 

6 Floating-to-integer or double-to-integer conversion error 

8 Floating overflow error 

10 Floating underflow error 

12 Floating undefined variable error 



Floating-Point Arithmetic - 9-7 

The address of the instruction producing the exception is stored in the Floating Exception 
Address (FEA) register. 

The FEC and FEA registers are updated only when one of the following occurs. 

• Division by zero 

• Illegal op code 

• Any of the other four exceptions with the corresponding interrupt enabled 

This implies that the FEe and FEA registers are updated only when the FER bit is set. 

NOTE 
1. If one of the last four exceptions occurs with the corresponding interrupt 
disabled, the FEe and FEA are not updated. 

2. If an exception occurs, inhibition of interrupts by the FID bit does not inhibit 
updating of the FEe and FEA. 

3. The FEe and FEA are not updated if no exception occurs. This means that 
the store status (STST) instruction returns current information only if the most 
recent floating-point instruction produced an exception. 

4. Unlike the FPS, no instructions are provided for storage into the FEe and 
FEA registers. 

9.5 Floating-Point Instruction Addressing 
Floating-point instructions use the same type of addressing as the central processor 
instructions. A source or destination operand is specified by designating one of eight 
addressing modes and one of eight central processor general registers to be used in the 
specified mode. The modes of addressing are the same as those of the central processor, 
except in mode O. In mode 0, the operand is located in the designated floating-point 
processor accumulator rather than in a central processor general register. The modes of 
addressing are as follows: 

o = Floating-point accumulator 
1 = Deferred 
2 = Autoincrement 
3 = Autoincrement-deferred 
4 = Autodecrement 
5 = Autodecrement-deferred 
6 = Index 
7 = Index-deferred 

Autoincrement and autodecrement operate on increments and decrements of 4 for F 
format, and 10 (octal) for D format. 

In mode 0, all six floating-point accumulators (ACO-AC5) may be used as source or 
destination. Specifying floating-point accumulators AC6 or AC7 results in an illegal 
op code trap. In all other modes, which involve transfer of data to or from memory or 
the general registers, users are restricted to the first four floating-point accumulators 
(ACO-AC3). When reading or writing a floating-point number to or from memory, the low 
memory word contains the most significant word of the floating-point number, and the 
high memory word contains the least significant word. 



9-8 Floating-Point· Arithmetic 

9.6 Accuracy 
General comments on the accuracy of the KDJI1-E floating-point instructions are 
presented here. The descriptions of the individual instructions include the accuracy 
at which they operate. An instruction or operation is regarded as exact if the result is 
identical to an infinite precision calculation involving the same operands. The accuracy of 
the operands is thus ignored. All arithmetic instructions treat an operand whose biased 
exponent is 0 as an exact 0 (unless FIUV is enabled and the operand is -0, in which 
case an interrupt occurs). For all arithmetic operations except DIY, a 0 operand implies 
that the instruction is exact. The same statement holds for DIV if the 0 operand is the 
dividend. But if it is the divisor, division is undefined and an interrupt occurs. 

For nonvanishing floating-point operands, the fractional part is binary normalized. It 
contains 24 bits or 56 bits for floating mode and double mode, respectively. For ADD, 
SUB, MUL, and DIV, two guard bits are necessary and sufficient for the general case. 
This guarantees return of a chopped or rounded result, identical to the corresponding 
infinite precision operation (chopped or rounded), to the specified word length. Thus, 
with two guard bits, a chopped result has an error bound of one Least Significant Bit 
(LSB); a rounded result has an error bound of 1/2 LSB. These error bounds are realized 
by the KDJII-E for all instructions. 

In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits 
would be lost by chopping. The first bit lost in chopping is referred to as the rounding 
bit. The value of a rounded result is related to the chopped result as follows: 

1. If the rounding bit is 1, the rounded result is the chopped result incremented by a 
LSB. 

2. If the rounding bit is 0, the rounded and chopped results are identical. 

It follows that if the result is exact: 

Rounded value = chopped value = exact value. 

If the result is not exact, its magnitude is 

• always decreased by chopping 

• decreased by rounding if the rounding bit is 0 

• increased by rounding if the rounding bit is 1 

Occurrence of floating-point overflow and underflow is an error condition; the result 
of the calculation cannot be correctly stored because the exponent is too large to fit 
into the eight bits reserved for it. However, the internal hardware has produced the 
correct answer. In the case of underflow, replacement of the correct answer with 0 is a 
reasonable resolution of the problem for many applications. This is done by the KDJ11-E 
if the underflow interrupt is disabled. The error incurred by this action is an absolute 
rather than a relative error; it is bounded (in absolute value) by 2 ** -128. There is no 
such -simple resolution for the case of overflow. The action taken, if the overflow interrupt 
is disabled, is described under FIV (bit 09) in Table 9-1. 



Floating-Point Arithmetic 9-9 

The FIV and FlU bits (of the floating-point status word) provide users with an 
opportunity to implement their own correction of an overflow or underflow condition. If 
such a condition occurs and the corresponding interrupt is enabled, the microcode stores 
the fractional part and the low eight bits of the biased exponent. When the interrupt 
takes place, users can identify the cause by examination of the floating overflow (FV) bit 
or the FEC. The reader can readily verify that (for the standard arithmetic operations 
ADD, SUB, MUL, and DIV) the biased exponent returned by the instruction bears the 
following relation to the correct exponent: 

• On overflow, it is too small by 400 (octal). 

• On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 
0, it is too large by 400 (octal). 

Thus, with the interrupt enable, enough information is available to determine the correct 
answer. Users may, for example, rescale their variables (by using STEXP and LDEXP) to 
continue a calculation. Note that the accuracy of the fractional part is unaffected by the 
occurrence of underflow or overflow. 

9.7 Floating-Point Instructions 
Each instruction that references a floating-point number can operate on either single- or 
double-precision numbers, depending on the state of the FD mode bit. Similarly, there is 
an FL mode bit that determines whether a 32-bit integer (FL = 1) or a 16-bit integer (FL 
= 0) is used in conve~sion between integer and floating-point representations. FSRC and 
FDST operands use floating-point addressing modes (Figure 9-5); SRC and DST operands 
use CPU addressing modes. 

Double-Operand Addressing 

15 12 11 

Single-Operand Addressing 

15 12 11 06 05 00 

I : + : I : : +: : I +C'fDST;SRC,:DS< 
OC",Opcode= 17 
FOC=Floating opcode 
AC=Floating point accumulator (ACO, AC3) 
FSAC and DST use CPU addressing modes 
SAC and DST use CPU addressing modes 

Figure 9-5 Floating-Point Addressing Modes 

MA-1281-90.DG 



9-10 Floating-Point Arithmetic 

9.7.1 Terms Used in Instruction Definitions 
The following paragraphs provide a list of the tenns used in instruction definitions, as 
well as explanations of and figures for each instruction. 
Thrms 
Used in 
Instruction 
Definitions 

Boolean 
Symbols 

OC = op code = 17 

FOC = floating op code 

AC = contents of accumulator, as specified by AC field of instruction 

FSRC = address of floating-point source operand 

FDST = address of floating-point destination operand 

f = fraction ' 

XL = largest fraction that can be represented: 

1 - 2 ** ( -24), FD = 0; single-precision 

1 - 2 ** ( -56), FD = 1; double-precision 

XLL = smallest number that is not identical to zero = 
2 ** (-128) 

XUL = largest number that can be represented = 

2 ** (127) * XL 

JL = largest integer that can be represented: 

2 ** (15) - 1; FL = 0; short integer 

2 ** (31) - 1; FL = 1; long integer 

ABS (address) = absolute value of (address) 

EXP (address) = biased exponent of (address) 

.LT. = less than 

.LE. = less than or equal to 

.GT. = greater than 

.GE. = greater than or equal to 

LSB = least significant bit 

,,= AND 

V = inclusive OR 

'V = exclusive OR 

'" = NOT 



Floating-Point Arithmetic -9-11 

ABSF/ABSD 

Make Absolute Floating/Double 

15 12 11 06 05 

I : : : 1«< : >1 : : 
Figure 9-6 Make Absolute Floating/Double 

Format: ABSF FDST 

Operation: If (FDST) < O,(FDST) +- - (FDST). 

Condition Codes: 

Description: 

If EXP(FDST) = 0, (FDST) +- exact O. 

For all other cases, (FDST) +- (FDST). 

FC+-O 
FV+-O 
FZ +- 1 if (FDST) = 0, else FZ +- 0 
FN+-O 

Set the contents of FDST to its absolute value. 

1706 FOST 

00 

MA·1282·90.DG 

Interrupts: If FIUV is enabled, trap on -0 occurs before execution. Overflow and 
underflow cannot occur. 

Accuracy: These instructions are exact. 



9-12. Floating-Point Arithmetic 

ADDF/ADDD 

Add Floating/Double 172(AC)FSRC 

15 12 11 08 07 06 05 00 

I : : : I 0 : : 
0 : 0 I + I : : F~RC : : I 

MA·1283·90.DG 

Figure 9-7 Add Floating/Double 

Format: ADDF FSRC,A.C 

Operation: Let SUM = (AC) + (FSRC). 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

If underflow occurs and FlU is not enabled, AC +-- exact o. 
If overflow occurs and FIV is not enabled, AC +-- exact o. 
For all others cases, AC +-- SUM. 

FC +-- 0 
FV +-- 1 if overflow occurs, else FV +-- 0 
FZ +-- 1 if (AC) = 0, else FZ +-- 0 
FN +-- 1 if (AC) < 0, else FN +-- 0 

Add the contents of FSRC to the contents of AC. The addition is 
carried out in single- or double-precision and is rounded or chopped 
in accordance with the values of the FD and FT bits in the FPS 
register. The result is stored in AC except for: 

Overflow with interrupt disabled 
Underflow with interrupt disabled 

For these exceptional cases, an exact 0 is stored in AC. 

If FIUV is enabled, trap on --0 in FSRC occurs before execution. If 
overflow or underflow occurs, and if the corresponding interrupt is 
enabled, the trap occurs with the faulty result in AC. The fractional 
parts are correctly stored. The exponent part is too small by 400 for 
overflow. It is too large by 400 for underflow, except for the special 
case of 0, which is correct. 

Errors due to overflow and underflow are described above. If neither 
occurs, then for oppositely signed operands with exponent difference 
of 0 or 1, the answer returned is exact if a loss of significance of one 
or more bits can occur. Note that these are the only cases for which 
loss of significance of more than one bit can occur. For all other cases 
the result is inexact with error bounds of: 

LSB in chopping mode with either single- or double-precision 
1/2 LSB in rounding mode with either single- or double-precision 

The undefined variable 0 can occur only in conjunction with overflow 
or underflow. It is stored in AC only if the corresponding interrupt is 
enabled. 



Floating-Point Arithmetic 9-13 

CFCC 

Copy Floating Condition Codes 170000 

15 12 11 00 

I : : : 1°;0;0»:««<0;°1 
Figure 9-8 Copy Floating Condition Codes 

Format: CFCC 

Operation: C +- FC 

V+-FV 

Z+-FZ 

N+-FN 

MA-1284-90.DG 

Description: Copy the floating-point condition codes into the CPU condition codes. 

CLRF/CLRD 

Clear Floating/Double 

15 .12 11 06 05 

1704 FDST 

00 

MA-1285-90.DG 

Figure 9-9 Clear Floating/Double 

Format: CLRF FDST 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

(FDST) +- exact 0 

FC+-O 

FV+-O 

FZ +--1 

FN+-O 

Set FDST to O. Set FZ condition code and clear other condition code 
bits. 

No interrupts occur. Overflow and underflow cannot occur. 

These instructions are exact. 



9-14 Floating-Point Arithmetic 

CMPF/CMPD 

Compare Floating/Double 173(AC+4)FSRC 

15 12 11 08 07 06 05 00 

I : : : I 0 : : : I + I : : F~ : : I 
MA-1288-90.DG 

Figure 9-10 Compare Floating/Double 

Fonnat: CMPF FSRC,AC 

Operation: (FSRC) - (AC) 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

FC+-O 
FV+-O 
FZ +- 1 if (FSRC) = 0, else FZ +- 0 
FN +- 1 if (FSRC) < 0, else FN +- 0 

Compare the contents of FSRC with the accumulator. Set 
the appropriate floating-point condition codes. FSRC and the 
accumulator are left unchanged except as noted later. 

If FIUV is enabled, trap on -0 occurs before execution. 

These instructions are exact. 

An operand that has a biased exponent of 0 is treated as if it were an 
exact O. In this case, where both operands are 0, the KDJI1-E stores 
an exact 0 in AC. 



Floating-Point Arithmetic ·9-15 

DIVFIDIVD 

Divide Floating/Double 

15 12 11 08 07 06 05 

174(AC+4)FSRC 

00 

I : : : I ;0: 0; I + I : : 
MA-1287-90.0G 

Figure 9-11 Divide Floating/Double 

Format: DIVF FSRC,AC 

Operation: If EXP(FSRC) = 0, (AC) +- (AC) and the instruction is aborted. 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

If EXP(AC) = 0, (AC) +- exact O. 

For all other cases, let QUOT = (AC)I(FSRC). 

If underflow occurs and FlU is not enabled, AC +- exact O. 

If overflow occurs and FIV is not enabled, AC +- exact O. 

For all others cases, AC +- QUOT. 

FC+-O 
FV +- 1 if overflow occurs, else FV +- 0 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (AC) < 0, else FN +- 0 

If either operand has a biased exponent of 0, it is treated as an 
exact O. For FSRC this would imply division by 0; in this case, the 
instruction is aborted, the FEC register is set to 4, and an interrupt 
occurs. Otherwise, the quotient is developed to single- or double­
precision with two guard bits for correct rounding. The quotient is 
rounded or chopped in accordance with the values of the FD and FT 
bits in the FPS register. The result is stored in the AC except for 

Overflow with interrupt disabled 
Underflow with interrupt disabled 

For these exceptional cases, an exact 0 is stored in AC. 

If FIUV is enabled, trap on 0 in FSRC occurs before execution. If 
(FSRC) = 0, interrupt traps occur on an attempt to divide by O. If 
overflow or underflow occurs, and if the corresponding interrupt is 
enabled, the trap occurs with the faulty result in AC. The fractional 
parts are correctly stored. The exponent part is too small by 400 for 
overflow. It is too large by 400 for underflow, except for the special 
case of 0, which is correct. 

Errors due to overflow and underflow are described previously. If 
no underflow or overflow errors occur, the error in the quotient is 
bounded by 1 LSB in chopping mode and by 112 LSB in rounding 
mode. 

The undefined variable -0 can occur only in conjunction with overflow 
or underflow. It is stored in AC only if the corresponding interrupt is 
enabled. 



9-16 Floating-Point Arithmetic 

LDCDFILDCFD 

Load and Convert from Double-to-Floatlng 
and from Floatlng-to-Double 177(AC+4)FSRC 

(5 :' : : 12111 > > : 08
1 

07 + 06
1 

05 : : +< : 00 I 
MA·128a·80.DG 

Figure 9-12 Load and Convert From Double-To-Floating 
and from Floatlng-to-Double 

Format: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

LDCDF FSRC,AC 

If EXP(FSRC) = 0, AC +- exact o. 
If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, AC +­
exact O. 

In all other cases, AC +- Cx:y(FSRC), where Cxy specifies conversion 
from floating mode x to floating mode y. 

x = D, y = F if FD = 0 (single) LDCDF 
y = F, y = D if FD = 1 (double) LDCFD 

FC+-O 
FV +- 1 if conversion produces overflow, else 
FV+-O 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (Ae) < 0, else FN +- 0 

If the current mode is floating mode (FD = 0), the source is assumed 
to be a double-precision number and is converted to single-precision. 
If the floating chop bit (FT) is set, the number is chopped; otherwise, 
the number is rounded. 

If the current mode is double mode (FD = 1), the source is assumed 
to be a single-precision number and is loaded left-justified in AC. The 
lower half of AC is cleared. 

If FIUV is enabled, trap on -0 occurs before execution. Overflow 
cannot occur for LDCFD. 

A trap occurs if FIV is enabled and if rounding with LDCDF causes 
overflow. AC +- overflowed result. This result must be +0 or -0. 
Underflow cannot occur. 

LDCFD is an exact instruction. Except for overflow (see above), 
LDCDF incurs an error bounded by 1 LSB in chopping mode and by 
1/2 LSB in rounding mode. 



Floating-Point Arithmetic 9-17 

LDCIFILDCIDILDCLFILDCLD 

load and Convert Integer or Long Integer 
to Floating or Double-Precision 

15 12 11 08 07 06 05 

177(AC)SRC 

00 

sF: : I 
MA·12811·90.DG 

Figure 9-13 Load and Convert Integer or Long Integer 
to Floating or Double-Precision 

Fonnat: 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

LDCIF SRC,AC 

AC +-- Cjx(SRC), where Cjx specifies conversion from integer mode j 
to floating mode x. 

j = I if FL = 0, j = L if FL = 1 
x = F if FD = 0, x = D if FD = 1 

FC +-- 0 
FV +-- 0 
FZ +-- 1 if (AC) = 0, else FZ +-- 0 
FN +-- 1 if (AC) < 0, else FN +-- 0 

Conversion is perfonned on the contents of SRC from a 2's 
complement integer with precision j to a floating-point number of 
precision x. Note that j and x are determined by the state of the 
mode bits FL and FD. 

If a 82-bit integer is specified (L mode) and (SRC) has an addressing 
mode of 0 or immediate addressing mode is specified, the 16 bits of 
the source register are left-justified and the remaining 16 bits are 
loaded with Os before conversion. 

In the case of LDCLF, the fractional part of the floating-point 
representation is chopped or rounded to 24 bits for FT = 1 or 0, 
respectively. 

None. SRC is not floating-point, so trap on -0 cannot occur. 

LDCIF, LDCID, and LDCLD are exact instructions. The error 
incurred by LDCLF is bounded by 1 LSB in chopping mode and 
by 1/2 LSB in rounding mode. 



9-18 Floating-Point Arithmetic 

LDEXP 

Load Exponent 176(AC+4)SRC 

15 12 11 08 07 06 05 00 

I : : : I : : 0 : I + I : : s~c : : I 
MA-129D-90.DG 

Figure 9-14 Load Exponent 

Format: LDEXP SRC,AR 

Operation: (Note that 177 and 200, appearing throughout this instruction 
definition, are octal numbers.) 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

If -200 < SRC < 200, EXP +- (AC) SRC + 200 and the rest of AC is 
unchanged. 

If (SRC) > 177 and FIV is enabled, EXP(AC) +- [(SRC) + 200]<7:0>. 

If (SRC) > 177 and FIV is disabled, AC +- exact O. 

If (SRC) < 177 and FlU is enabled, EXP(AC) +- [(SRC) + 200]<7:0>. 

If (SRC) < 177 and FlU is disabled, AC +- exact o. 
FC +-0 
FV +- 1 if (SRC) > 177, else FV +- 0 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (AC) < 0, else FN +- 0 

Change AC so that its unbiased exponent = (SRC). That is, convert 
(SRC) from 2's complement to excess 200 notation and insert it into 
the EXP field of AC. This is a meaningful operation only if ABS(SRC) 
LE 177. 

If SRC > 177, the result is treated as overflow. If SRC < -177, the 
result is treated as underflow. 

No trap on -0 in AC occurs, even if FIUV is enabled. If SRC > 177 
and FIV is enabled, trap on overflow occurs. If SRC <-177 and FlU 
is enabled, trap on underflow occurs. 

Errors due to overflow and underflow are described previously. If 
EXP(AC) = 0 and (SRC) = -200, AC changes from a floating-point 
number treated as 0 by all floating arithmetic operations to a nonzero 
number. This happens because the insertion of the hidden bit in the 
microcode implementation of arithmetic instructions is triggered by a 
nonvanishing value of EXP. 

For all other cases, DDEXP implements exactly the transformation 
of a floating-point number (2 ** K) * f into (2 ** (SRC» * f where 112 
.LE. ABS(f) .LT. 1. 



Floating-Point Arithmetic -9-19 

LDFILDD 

Load Floating/Double 

15 12 11 08 07 06 05 

172(AC+4)FSRC 

00 

I : : : 1< >: 1 + 1 : : +< : I 

Figure 9-15 Load Floating/Double 

Fonnat: LDF FSRC,AC 

Operation: 

Condition Codes: 

Description: 

AC +- (FSRC) 

FC +-0 
FV+-O 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (AC) < 0, else FN +- 0 

Load single- or double-precision number into AC. 

MA·1291·91.DG 

Interrupts: If FIUV is enabled, trap on -0 occurs before AC is loaded. Overflow 
and underflow cannot occur. 

Accuracy: These instructions are exact. 

Special Comment: These instructions permit use of 0 in a subsequent floating-point 
instruction if FIUV is not enabled and (FSRC) = -0. 

LDFPS 

Load Floating-Point Program Status 

15 12 11 06 05 

I : : : 1««< I : : 
Figure 9-16 Load Floating-Point Program Status 

Fonnat: LDFPS SRC 

Operation: FPS +- (SRC) 

Description: Load fioating-PQint status register from SRC. 

1701 SRC 

00 

MA·1292·90.DG 

Special Comment: Users are cautioned not to use bits 13, 12, and 4 for their own 
purposes, since these bits are not recoverable by the STFPS 
instruction. 



9-20 Floating-Point Arithmetic 

MODFIMODD 

Multiply and Separate Integer 
and Fraction Floating/Double 

15 12 11 08 07 06 05 

I : : : 1
0 >: : I + I : : 

171 (AC+4) FSRC 

00 

+c; : I 
MA·1203·03.DG 

Figure 9-17 Multiply and Separate Integer and Fraction Floating/Double 

Format: 

Description and 
Operation: 

MODF FSRC,AC 

This instruction generates the product of its two floating-point 
operands, separates the product into integer and fractional parts, 
and then stores one or both parts as floating-point numbers. 

Let PROD = (AC) * (FSRC) so that in 

Floating-point: ABS(PROD) = (2 ** K) * f, where 

112 .LE. f .LT. 1, and EXP(PROD) = (200 + K). 

Fixed-point binary: PROD = N + g, where 

N = INT(PROD) = integer part of PROD, and 

g = PROD INT(PROD) = fractional.p&rt of 
PROD with 0 .LE. g .LT. 1. 

Both N and g have the same sign as PROD. They are returned as 
follows. 

If AC is an even-numbered accumulator (0 or 2), N is stored in AC + 
1 (lor 3), and g is stored in AC. 

If AC is an odd-numbered accumulator, N is not stored and g is 
stored in AC. 

These two statements can be combined as: 

N is returned to AC V 1 and g is returned to AC. 

Five special cases occur, as indicated in the following formal 
description with L = 24 for floating mode and L = 56 for double 
mode. 

1. If PROD overflows and FIV is enabled, AC v+- 1 N, chopped to 
L bits, AC +- exact O. 

Note that EXP(N) is too small by 400 and that -0 can be stored in 
AC V 1. 

If FIV is not enabled, AC vI+- exact 0, AC +- exact 0, and -0 
will never be stored. 

2. If 2 ** L .LE. ABS(PROD) and no overflow, AC VI+- N, chopped 
to L bits, AC +- exact O. 

The sign and EXPof N are correct, but low-order bit information is 
lost. 



Condition Codes: 

Interrupts: 

Accuracy: 

Applicatioi1s~ 

Initialize: 

While: 

Begin: 

End. 

Floating-Point Arithmetic 9-21 

3. If 1 .LE. ABS(PROD) .LT. 2 ** L, AC VI+- N, AC g. 

The integer part N is exact. The fractional part g is nonnalized and 
chopped or rounded in accordance with FT. Rounding may cause a 
return of + unity for the fractional part. For L = 24, the error in g 
is bounded by 1 LSB in chopping mode and by 112 LSB in rounding 
mode. For L = 56, the error in g increases from the limits above 
as ABS(N) increases above 8, because only 59 bits of PROD are 
generated. 

If 2 ** P .LE. ABS(N) .LT. 2 ** (p + 1), with p > 2, the low order p -2 
bits of g may be in error. 

4. If ABS(PROD) .LT. 1 and no underflow, AC VI+- exact 0 and 
AC +-g. 

There is no error in the integer part. The error in the fractional part 
is bounded by 1 LSB in chopping mode and 1/2 LSB in rounding 
mode. Rounding may cause a return of + unity for the fractional 
part. 

5. If PROD underflows and FlU is enabled, AC Vi+- exact 0 and 
AC +-g. 

Errors are as in case 4, except that EXP(AC) is too large by 4008 (if 
EXP = 0, it is correct). Interrupt occurs and -0 can be stored in AC. 

If FlU is not enabled, AC VI+- exact 0 and AC exact +- O. 

For this case the error in the fractional part is less than 2 ** ( -128). 

FC +-0 
FV +- 1 if PROD overflows, else FV +- 0 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (AC) < 0, else FN +- 0 

If FIUV is enabled, trap on 0 in FSRC occurs before execution. 
Overflow and underflow are described previously. 

Described previously. 

1. Binary-to-decimal conversion of a proper fraction. The following 
algorithm, using MOD, generates decimal digits D(1), D(2). . . from 
left to right. 

1+-0; 
X +- number to be converted; 
ABSex) < 1; 

X#O 
PROD +- X * 10; 
I +- 1+ 1; 
D(I) +- INT(PROD); 
X +- PROD INT(PROD); 

This algorithrIl is exact. It is case 3 in the description because the number of 
nonvanishing bits in the fractional part of PROD never exceeds L, and hence neither 
chopping nor rounding can introduce error. 

2. 1b reduce the argument of a trigonometric function. 

ARG * 2IPI = N + g. The two low bits of N identify the quadrant, and 
g is the argument reduced to the first quadrant. The accuracy of N + 
g is limited to L bits because of the factor 2IPI. The accuracy of the 
reduced argument thus depends on the size of N. 



9-22 Floating-Point ~rithmetic 

MULF/MULD 

Multiply Floating/Double 

15 12 

I : : : I 

3. '1b evaluate the exponential function e ** x, obtain x * (log e base 
2) = N + g, then e ** x = (2 ** N) * (e ** (g * In 2» 

The reduced argument is g * ln2 < 1 and the' factor 2 ** N is an exact 
power of 2, which may be scaled in at the end via STEXP, ADD N to 
EXP and LDEXP. The accuracy of N + g is limited to L bits because 
of the factor (log e base 2). The accuracy of the reduced argument 
thus depends on the size of N. 

171 (AC )FSRC 

11 08 07 06 05 00 

0 
: 

0 
: : 0 

I + I : : FiRe : : I 
MA-1294-94.DG 

Figure 9-18 Multiply Floating/Double 

Format: MULF FSRC,AC 

Operation: Let PROD = (AC) * (FSRC). 

Condition Codes~ 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

If underflow occurs and FlU is not enabled, AC +- exact o. 
If overflow occurs and FIV is not enabled, AC +- exact o. 
For all others cases, AC +- PROD. 

FC+-O 
FV +- 1 if overflow occurs, else FV +- 0 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (AC) < 0, else FN +- 0 

If the biased exponent of either operand is 0, (AC) +- exact o. For 
all other cases PROD is generated to 48 bits for floating mode and 59 
bits for double mode. The product is rounded or chopped for FT = 0 
or 1, respectively, and is stored in AC except for: 

Overflow with interrupt disabled 
Underflow with interrupt disabled 

For these exceptional cases, an exact 0 is stored in AC. 

If FIUV is enabled, trap on 0 in FSRC occurs before execution. If 
overflow or underflow occurs, and if the corresponding interrupt is 
enabled, the trap occurs with the faulty result in AC. The fractional 
parts are correctly stored. The exponent part is too small by 400 for 
overflow. It is too large by 400 for underflow, except for the special 
case of 0, which is correct. 

Errors due to overflow and underflow are described above. If neither 
occurs, the error incurred is bounded by 1 LSB in chopping mode and 
1/2 LSB in rounding mode. 

The undefined variable --0 can occur only in conjunction with overflow 
or underflow. It is stored in AC only if the corresponding interrupt is 
enabled. 



Floating-Point Arithmetic 9-23 

NEGFINEGD 

Negate Floating/Double 

15 12 11 06 05 

I : : : I a: 0; a: : : I : : 

Figure 9-19 Negate Floating/Double 

Format: NEGF FDST 

1707 FDST 

00 

MA-1295-90.DG 

Operation: 

Condition Codes: 

(FDST) +- - (FDST) if (FDST) = 0 , else (FDST) +- exact O. 

FC+-O 
FV+-O 
FZ +- 1 if (FDST) = 0, else FZ +- 0 
FN +- 1 if (FDST) < 0, else FN +- 0 

Description: Negate the single- or double-precision number and store result in 
same location (FDST). 

Interrupts: If FIUV is enabled, trap on -0 occurs before execution. Overflow and 
underflow cannot occur. 

Accuracy: These instructions are exact. 

SETD 

Set Floating Double Mode 170011 

MA-1296-90.DG 

Figure 9-20 Set Floating Double mode 

Format: SETD 

Operation: FD +- 1 

Description: Set the KDJII-E in double-precision mode. 



9-24 Floating-Point Arithmetic 

SETF 

Set Floating Mode 170001 

15 12 11 00 

1 : : : 1°»»:«<°:« I 
MA-1297-90.DG 

Figure 9-21 Set Floating Mode 
Fonnat: SETF 

Operation: FD +-- 0 

Description: Set the KDJII-E in single-precision mode. 

SETI 

Set Integer Mode 170002 

15 12 11 00 

1< : : 1«««««<°1 
MA-1298-90.DG 

Figure 9-22 Set Integer Mode 
Fonnat: SETI 

Operation: FL +-- 0 

Description: Set the KDJII-E for short-integer data. 

SETL 

Set Long-Integer Mode 170012 

15 12 11 00 

MA-1299-90.DG 

Figure 9-23 Set long Integer Mode 

Fonnat: SETL 

Operation: FL +- 1 

Description: Set the KDJI1-E for long-integer data. 



Floating-Point Arithmetic 9-25 

STCFD/STCDF 

Store and Convert from Floatlng-to-Double 
and from Double-to-Floatlng 176(AC)FDST 

15 12 11 08 07 06 05 00 

I : : : I : ;0>1 + I : >+< : 1 
MA-1300-90.0G 

Figure 9-24 Store and Convert from Floating-To-Double and from Double-To-Floating 

Format: STCFD AC, FDST 

Operation: If (AC) = 0, (FDST) exact +- o. 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

If FD = 1, Fr = 0, FIV = 0 and rounding causes overflow, (FDST) +­
exact o. 
In all other cases, (FDST) +- Cxy(AC), where Cxy specifies 
conversion from floating mode x to floating mode y. 

x = F, y = D if FD = 0 (single) STCFD 
x = D, y = F if FD = 1 (double) STCDF 

FC+-O 
FV +- 1 if conversion produces overflow, else 
FV+-O 
FZ +- 1 if (AC) = 0, else FZ +- 0 
FN +- 1 if (AC) < 0, else FN +- 0 

If the current mode is single-precision, the accumulator is stored 
left-justified in FDST and the lower half is cleared. 

If the current mode is double-precision, the contents of the 
accumulator are converted to single-precision, chopped or rounded 
depending on the state of FT, and stored in FDST. 

Trap on -0 does not occur even if FIUV is enabled because FSRC is 
an accumulator. Underflow cannot occur. Overflow cannot occur for 
STCFD. 

A trap occurs if FIV is enabled and if rounding with STCDF causes 
overflow. (FDST) +- overflowed result. This result must be +0 or -0. 

STCFD is an exact instruction. Except for overflow (see above), 
STCDF incurs an error bounded by 1 LSB in chopping mode and by 
1/2 LSB in rounding mode. 



9-26 FIQ~ting-Point Arithmetic 

STCFVSTCFLSTCDUSTCDL 

Store and Convert from Floating or Double 
to Integer or Long Integer 175(AC+4 )DST 

00 15 12 11 08 07 06 05 

I : : : I ;0: : I I : : +r:: I 
LJ·00431· TIO 

Figure 9-25 Store and Convert from Floatlng-to-Double To Integer Or Long Integer 

Fonnat: STCFI AC,DST 

Operation: (DST) +- CJd(AC) if-JL - 1 < Cxj(AC) < JL + 1, else (DST) +- 0, 
where Cjx specifies conversion from floating mode j to integer mode x. 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

j = I if FL = 0, j = L if FL = 1 
x = F if FD = 0, x = D if FD = 1 

JL is the largest integer. 

2 ** 15 -1 for FL = 0 
2 ** 32 -1 for FL = 1 

C, FC +- 0 if -JL -1 < CJd(AC) < JL + 1, else 
C, FC +--1 
V,FV+-O 
Z, FZ +- 1 if (DST) = 0, else Z, FZ +-- 0 
N, FN +- 1 if (DST) < 0, else N, +- FN +-- 0 

Conversion is perfonned from a floating-point representation of the 
data in the accumulator to an integer representation. 

If the conversion is to a 32-bit word (L mode), and an addressing 
mode of 0 or immediate addressing mode is specified, only the most 
significant 16 bits are stored in the destination register. 

If the operation is out of the integer range selected by FL, FC is set 
to 1 and the contents of the nST are set to O. 

N umbers to be converted are always chopped (rather than rounded) 
before they are converted. This is true even when chop mode bit FT 
is cleared in the FPS register. 

These instructions do not interrupt if FIUV is enabled, because the 
-0 (if present) is in AC, not in memory. If FIC is enabled, trap on 
conversion failure occurs. 

These instructions store the integer part of the floating-point 
operand, which may not be the integer most closely approximating 
the operand. They are exact if the integer part is within the range 
implied by FL. 



Floating-Point Arithmetic 9-27 

STEXP 

Store Exponent 

15 12 11 08 07 06 05 

175(AC)DST 

00 

I : : : 1 ;0: >1 + 1 : : + : : I 
MA-1302-90.0G 

Figure 9-26 Store Exponent 
Format: STEXP AC,DST 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

STF/STD 

Store Floating/Double 

(DST) +- EXP(AC) -200. 

C,+-FCO 
V,FV+-O 
Z, FZ +- 1 if (DST) = 0, else Z, FZ +- 0 
N, FN +- 1 if (DST) < 0, else N, FN +- 0 

Convert the AC exponent from excess 200 notation to 2's complement 
and store the result in DST. 

This instruction does not trap on O. Overflow and underflow cannot 
occur. 

This instruction is exact. 

15 12 11 08 07 06 05 

174(AC)FDST 

00 

I : : : 1 >:a > I I : : +< : I 
MA-1303-90.0G 

Figure 9-27 Store Floating/Double 
Format: STF AC,FDST 

Operation: (FDST) +- AC 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

Special Comment: 

FC +-FC 
FV+-FV 
FZ +- FZ 
FN +- FN 

Store single- or double-precision number from AC. 

These instructions do not interrupt if FIUV is enabled, because the 
-0 (if present) is in AC, not in memory. Overflow and underflow 
cannot occur. 

These instructions are exact. 

These instructions permit storage of a -0 in memory from AC. 
There are two conditions in which -0 can be stored in an AC of the 
KDJII-E. One occurs when underflow or overflow is present and the 
corresponding interrupt is enabled. A second occurs when an LDF or 
LDD instruction is executed and the FIUV bit is disabled. 



9-28 Floating-Point Arithmetic 

STFPS 

Store Floating-Point Program Status 

15 12 11 06 05 

Figure 9-28 Store Floating-Point Program Status 

Format: STFPS DST 

Operation: (DST) .-. FPS 

Description: Store the floating-point status register in DST. 

1702DST 

00 

: : I 
MA-1304-90,OG 

Special Comment: Bits 13, 12, and 4 are loaded with o. All other bits are the 
corresponding bits in the FPS. 

STST 

Store FPP's Status 1703DST 

15 12 11 06 05 00 

I : : : 10;«< : 1 : : +: : I 
MA-1305-90,OG 

Figure 9-29 Store FPP's Status 

Format: STST DST 

Operation: (DST) .-. FEC (DST + 2) .-. FEA. 

Description: Store the FEe and FEA in DST and DST + 2. Note the following. 

If the destination mode specifies a general register or immediate 
addressing, only the FEC is saved. 

The information in these registers is current only if the most recently 
executed floating-point instruction caused a floating-point exception. 



Floating-Point Arithmetic 9-29 

SUBF/SUBD 

Subtract Floating/Double 173(AC)FSRC 

15 12 11 08 07 06 05 00 

I : : : 1< : >1 
MA-1306-90.0G 

Figure g.,...ao Subtract Floating/Double 

Format: SUBF FSRC,AC 

Operation: Let DIFF = (AC) - (FSRC). 

Condition Codes: 

Description: 

Intenupts: 

Accuracy: 

-Special Comment: 

If underflow occurs and FlU is not enabled, AC exact +-- o. 
If overflow occurs and FIV is not enabled, AC exact +-- o. 
For all others cases, AC DIFF. 

FC +-- 0 FV +-- 1 if overflow occurs, else FV +-- 0 
FZ +--·1 if (AC) = 0, else FZ +-- 0 
FN +-- 1 if (AC) < 0, else 
FN +-- 0 

Subtract the contents of FSRC from the contents of AC. The 
subtraction is carried out in single- or double-precision and is 
rounded or chopped in accordance with the values of the FD and 
FT bits in the FPS register. The result is stored in AC except for: 

Overflow with interrupt disabled 

Underflow with intenupt disabled 

For these exceptional cases, an exact 0 is stored in AC. 

If FIUV is enabled, trap on -0 in FSRC occurs before execution. If 
overflow or underflow occurs, and if the corresponding intenupt is 
enabled, the trap occurs with the faulty result in AC. The fractional 
parts are correctly stored. The exponent part is too small by 400 for 
overflow. It is too large by 400 for underflow, except for the special 
case of 0, which is correct. 

Errors due to overflow and underflow are described above. If neither 
occurs, then for like-signed operands with exponent difference of 0 or 
1, the answer returned is exact if a loss of significance of one or more 
bits can occur. Note that these are the only cases for which loss of 
significance of more than one bit can occur. For all other cases the 
result is inexact with error bounds of: 

LSB in chopping mode with either single- or double-precision 

112 LSB in rounding mode with either single- or double-precision 

The undefined variable -0 can occur only in conjunction with overflow 
or underflow. It is stored in AC only if the corresponding interrupt is 
enabled. 



9-30 Floating-Point Arithmetic 

TSTFtrSTD 

Test Floating/Double 1702FDST 

15 12 11 06 05 00 

I: : : 1«< >: I : :F+r: : I 
MA·1307·90.DG 

Figure 9-31 Test Floating/Double 
Format: TSTF FDST 

Operation: 

Condition Codes: 

Description: 

Interrupts: 

Accuracy: 

(FDST) 

FC+- 0 
FV+-O 
FZ +- 1 if (FDST) = 0, else FZ +- 0 
FN +- 1 if (FDST) < 0, else FN +- 0 

Set the floating-point condition codes according to the contents of 
FDST. 

If FIUV is set, trap on 0 occurs before execution. Overflow and 
underflow cannot occur. 

These instructions are exact. 



10 
Programming Techniques 

10.1 Introduction 
The KDJII-E offers a great deal of programming flexibility and power. Using the 
combination of the instruction set, the addressing modes, and the programming 
techniques, it is possible to develop new software or to use old programs effectively. 
The programming techniques in this chapter show the capabilities of the KDJII-E. The 
techniques discussed involve PIC, stacks, subroutines, interrupts, reentrancy, coroutines, 
recursion, processor traps, programming peripherals, and conversion. 

10.2 Position-Independent Code (PIC) 
The output of a MACRO-II assembly is a relocatable object module. The task builder 
or linker binds one or more modules together to create an executable task image. Once 
built, a task can only be loaded and executed at the virtual address specified at link 
time. This is because the linker has had to modify some instructions to reflect the 
memory locations in which the program is to run. Such a body of code is considered 
position-dependent (that is, dependent on the virtual address to which it is bound). 

The KDJII-E processor offers addressing modes that make it possible to write 
instructions that do not depend on the virtual addresses to which they are bound. This 
type of code is termed position-independent and can be loaded and executed at any 
virtual address. PIC can improve system efficiency, both in use of virtual address space 
and in conservation of physical memory. 

In multiprogramming systems like RSX-IIM , it is important that many tasks be able 
to share a single physical copy of common code (for example, a library routine). To make 
optimum use of the virtual address space of a task, shared code should be position­
independent. Code that is not position-independent can also be shared, but it must 
appear in the same virtual locations in every task using it. This restricts the placement 
of such code by the task builder and can result in the loss of virtual addressing space. 

10.2.1 Use of Addressing Modes in the Construct jon of 
Position-Independent Code 

The construction of PIC is closely linked to the proper use of addressing modes . The 
remainder of this explanation assumes the reader is familiar with the addressing modes 
described in Chapter 7. 

10-1 



10-2 Programming Techniques 

The following addressing modes, which involve only register references, are position­
independent: 

R 

(R) 

(R)+ 

@(R)+ 

-(R) 

@-(R) 

Register mode 

Register-deferred mode 

Autoincrement mode 

Autoincrement-deferred mode 

Autodecrement mode 

Autodecrement-deferred mode 

When employing these addressing modes, the user is guaranteed position independence, 
providing the contents of the registers are supplied independently of a particular virtual 
memory location. 

The following two relative addressing modes are position-independent when a relocatable 
address is referenced from a relocatable instruction: 

A 

@A 

Relative mode 

Relative-deferred mode 

Relative modes are not position-independent when an absolute address (that is, a 
nonrelocatable address) is referenced from a relocatable instruction. In such a case, 
absolute addressing (@#A) may be employed to make the reference position-independent. 

Index modes can be either position-independent or position-dependent, according to their 
use in the program. 

X(R) 

. @X(R) 

Index mode 

Index-deferred mode 

If the base,X, is an absolute value (for example, a control block offset), the reference is 
position-independent. The following is an example: 

MOV 2(SP),RO ;POSITION-INDEPENDENT 

N=4 
MOV N(SP),RO ;POSITION-INDEPENDENT 

If, however, X is a relocatable address, the reference is position-dependent, as the 
following example shows: 

CLR ADDR(Rl) ;POSITION-DEPENDENT 

Immediate mode can be either position-independent or not, according to its use. 
Immediate mode references are formatted as follows: 

IN Immediate mode 

When an absolute expression defines the value of N, the code is position-independent. 
When a relocatable expression defines N, the code is position-dependent. That is, 
immediate mode references are position-independent only when N is an absolute value. 



Programming Techniques 1 Q-3 

Absolute mode addressing is position-independent only in those cases where an absolute 
virtual location is being referenced. Absolute mode addressing references are formatted 
as follows: 

@#A Absolute mode 

An example of a position-independent absolute reference is a reference to the PSW from 
a relocatable instruction, as in this example: 

MOV @#PSW,RO ;RETRIEVE STATUS AND PLACE IN REGISTER 

1 O.2~2 Comparison of Position-Dependent and Position-Independent 
Code 

The RSX-ll library routine, PWRUP, is a FORTRAN-callable subroutine for establishing 
or removing a user power failure, Asynchronous System Trap (AST) entry point address. 
Embedded within the routine is the actual AST entry point that saves all registers, 
effects a call to the user-specified entry point, restores all registers on return, and 
executes an AST exit directive; The following examples are excerpts from this routine. 
The first example is modified to illustrate position-dependent references. The second 
example is the position-independent version. 

Position-Dependent Code 

PWRUP:: 

CLR -{SP) ;ASSUME SUCCESS 

CALL ~X.PAA ;PUSH (SAVE) 
;ARGUMENT ADDRESSES 
;ONTOSTACK 

WORD 1.,$PSW ;CLEAR PSw, ANP 
;SET R1=R2 SP 

MOV $OTSV,R4 ;GET OTS IMPURE 
;AREA POINTER 

MOV (SP)+,R2 ;GET AST ENTRY 
;POINT ADDRESS 

BNE 10$ ;IF NONE SPECIFIED, 
;SPECIFY NO POWER 

CLR -{SP) ;RECOVERY AST SERVICE 

BR 20$ 

10$: 

MOV R2,F.PF(R4) ;SET AST ENTRY POINT 

MOV #BA, -{SP) ;PUSH AST SERVICE 
;ADDRESS 

20$: 

CALL . X.EXT ;ISSUE DIRECTIVE, EXIT . 



10-4 Programming T~chniques 

BA: 

.BYTE 109.,2. 

MOV 

MOV 

MOV 

RO, -(SP) 

R1, -(SP) 

R2, -(SP) 

Position-Independent Code 

PWRUP:: 

CLR -(SP) 

CALL .x.PAA 

.WORD 1.,$PSW 

MOV @ $OTSY,R4 

MOV (SP)+,R2 

BNE 10$ 

CLR -(SP) 

BR 20$ 

10$: 

MOV R2,F.PF(R4) 

MOV PC, -(SP) 

ADD BA- .,(SP) 

20$: 

CALL .x.EXT 

. BYTE 109.,2. 

;PUSH (SAVE) RO 

;PUSH (SAVE) R1 

;PUSH (SAVE) R2 

;ASSUME SUCCESS 

;PUSH ARGUMENT 
;ADDRESSES ONTO 
;STACK 

;CLEAR PSw, AND 
;SET Rl=R2 SP. 

;GET OTS IMPURE 
;AREA POINTER 

;GET AST ENTRY 
;POINT ADDRESS 

;IF NONE SPECIFIED, 
;SPECIFY NO POWER 

;RECOVERY AST SERVICE 

;SET AST ENTRY POINT 

;PUSH CURRENT LOCATION 

;COMPUTE ACTUAL LOCATION 
;OF AST 

;ISSUE DIRECTIVE, EXIT. 

;ACTUAL AST SERVICE ROUTINE: 

; 1) SAVE REGISTERS 

; 2) EFFECT A CALL TO SPECIFIED 
SUBROUTINE 

3) RESTORE REGISTERS 

; 4) ISSUE AST EXIT DIRECTIVE 



BA: MOV 

MOV 

MOV 

RO, -(SP) 

Rl, -(SP) 

R2, -(SP) 

Programming Techniques "10-5 

;PUSH (SAVE) RO 

;PUSH (SAVE) Rl 

;PUSH (SAVE) R2 

The position-dependent version of the subroutine contains a relative reference to an 
absolute symbol ($OTSV) and a literal reference to a relocatable symbol (BA). Both 
references are bound by the task builder to fixed memory locations. Therefore, the 
routine does not execute properly as part of a resident library, if its location in virtual 
memory is not the same as the location specified at link time. 

In the position-independent version, the reference to $OTSV has been changed to an 
absolute reference. In addition, the necessary code has been added to compute the virtual 
location of BA based upon the value of the PC. In this case, the value is obtained by 
adding the value of the PC to the fixed displacement between the current location and 
the specified symbol. Thus, execution of the modified routine is not affected by its location 
in the virtual address space of the image. 

10.3 Stacks 
The stack is part of the basic design architecture of the KDJ11-E. It is an area of memory 
set aside by the programmer or the operating system for temporary storage and linkage. 
It is handled on a Last In, First Out (LIFO) basis, where items are retrieved in reverse of 
the order in which they were stored. A stack starts at the highest location reserved for it 
and expands linearly downward to lower addresses as items are added. 

It is not necessary to keep track of the actual locations into which data is being stacked. 
This is done automatically through an SP. To keep track of the last item added to the 
stack, a general register is used to store the memory address of the last item in the stack. 
Any register except R7 (the PC) may be used as an SP under program control; however, 
instructions associated with subroutine linkage and interrupt service automatically use 
R6 as a hardware stack pointer. For this reason, R6 is frequently referred to as the 
system SPa Stacks may be maintained in either full-word or byte units. This is true for a 
stack pointed to by any register except R6, which must be organized in full-word units. 
Byte stacks (Figure 10-1) "require instructions capable of operating on bytes rather than 
full words. 

10.3.1 Pushing onto a Stack 
Items are added to a stack using the autodecrement addressing mode. Adding items to 
the stack is called pushing, and is accomplished by the following instructions: 

MOV Source, -(SP) 

MOVB Source, -(SP) 

;MOV CONTENTS OF SOURCE WORD 
;ONTO THE STACK 

OR 

;MOVB SOURCE BYTE ONTO 
;THESTACK 



10-6 Programming Techniques 

007100 

007076 

007074 

007072 

007070 

007066 

007064 

007100 

007077 

007076 

007075 

Word Stack 

Item #1 

Item #2 

Item #3 

Item #4 .......-

Byte Stack 

Item #1 

Item #2 

Item #3 

Item #4 ~ 

Note: 
Bytes are arranged In 
words as follows: 

\ 

Byte 3 Byte 2 

Byte 1 Byte 0 

y 
Word 

) 

SP I 007072 

SP I 007075 

MA-1308-90.DG 

Figure 10-1 Word and Byte Stacks 

10.3.2 Popping from a Stack 
Removing data ttom the stack is called popping. This operation is accomplished u$ing 
the autoincrement mode. 

MOV 

MOVB 

(SP)+,Destination ;MOV DESTINATION WORD 
jOFF THE STACK 

OR 

(SP)+,Destination ;MOVB DESTINATION BYTE 
;OFF THE STACK 



Programming Techniques 10-7 

After an item has been popped, its stack location is considered free and available for 
other use. The SP points to the last-used location, implying that the next lower location 
is free. Thus, a stack may represent a pool of shareable temporary storage locations. 
Figure 10-2 illustrates the push and pop operations. 

High Memory 

Low Memory 

+- SP 

} Stack 
Area 

1 An empty stack area 

EO 

E1 

E2 r+- SP 

+ t--__ EO __ -ti'4-SP 

2 Pushing a datum 
onto the stack 

EO 

E1 

;IE 2 

4-- SP 

EO 

E1 

3 Pushing another 
datum onto the 
stacks 

EO 

E1 

~ SP 

E3 ~ + SP 

4 Another push 5 Pop 6 Push 

EO 

E1 

7 Pop 

MA-1309-90.DG 

Figure 10-2 Push and Pop Operations 

10.3.3 Deleting Items from a Stack 
The following techniques may be used to delete items from a stack: 

To delete one item from a byte stack: 
INC SP or TSTB(SP)+ 

To delete two items from a word stack: 
ADD#2,SP or TST(SP)+ 

To delete 50 items from a word stack: 
ADD#100.,SP 



10-8 Programming Techniques 

10.3.4 Stack Uses 
A stack is used in the following ways: 

1. Often, one of the general-purpose registers must be used in a subroutine or interrupt 
service routine and then be returned to its original value. The stack can be used to 
store the contents of the registers in~olved. 

2. The stack is used in storing linkage information between a subroutine and its calling 
program. The JSR instruction, used in calling a subroutine, requires the specification 
of a linkage register along with the entry address of the subroutine. The content 
of this linkage register is stored on the stack, so as not to be lost, and the return 
address is moved from the PC to the linkage register. This provides a pointer back 
to the calling program so that successive arguments may be transmitted easily to the 
subroutine. 

S. If no arguments need to be passed by stacking them after the JSR instruction, the PC 
may be used as the linkage register. In this case, the result of the JSR is to move the 
return address in the calling program from the PC onto the stack and replace it with 
the entry address of the. called subroutine. 

4. In many cases, the operations performed by the subroutine can be applied directly to 
the data located on or pointed to by a stack without the need to move the data into 
the subroutine area. 

Example: 

MOVSP,Rl 

JSRPC,SUBR 

ADD (Rl)+,(Rl) 

;CALLING PROGRAM 

;Rl IS USED AS THE STACK 

;POINTER HERE. 

;SUBROUTINE 

;ADD ITEM '1 TO '2, PLACE 
;RESULT IN ITEM #2, 
;Rl POINTS TO 
;ITEM'2NOW 

Since arguments. may be obtained from the stack by using some form of register­
indexed addressing, it is sometimes useful to save a temporary copy of R6 in some 
other register that has been saved at the beginning of a subroutine. If R6 is saved 
in R5 at the beginning of the subroutine, R5 may be used to index the arguments. 
During this time, R6 is free to be incremented and decremented while being used 
as the SP. If R6 is used directly as the base for indexing and is not copied, it may 
be difficult to keep track of its position in the argument list, since the base of the 
stack changes with every autoincremeptJdecrement. 

However, if the contents of R6 (SP) are saved in R5 before any arguments are 
pushed onto the stack, the position relative to R5 remains constant. 

Return from a subroutine also involves the stack, as the return instruction, RTS, 
must retrieve information stored there by the JSR. 



Programming Techniques -10-9 

When a subroutine returns, it is necessary to clean up the stack by eliminating 
or skipping over the subroutine arguments. One way this can be done is to insist 
that the subroutine keep the number of arguments as its first stack item. Returns 
from subroutines then involve calculating the amount by which to reset the SP, 
resetting the SP, and then storing the original contents of the register that was 
used as the SP copy. 

5. Stack storage is used in trap and interrupt linkage. The PC and the PSW of the 
executing program are pushed on the stack. 

6. When the system stack is being used, nesting of subroutines, interrupts, and traps to 
any level can occur until the stack overflows its legal limits. 

7. The stack method is also available for temporary storage of any kind of data. It may 
be used as a LIFO list for storing inputs, intermediate results, and so on. 

10.3.5 Stack Use Examples 
As an example of stack use, consider this situation. A subroutine (SUBR) wants to use 
registers 1 and 2, but these registers must be returned to the calling program with their 
contents unchanged. The subroutine could be written as follows: 

Not Using the Stack 

Assembler 
Address Octal Code Syntax Comments 

076322 010167 MOV R1,TEMP1 ;SAVE R1 
SUBR: 

076324 000074 *1 

076326 010267 MOV R2,TEMP2 ;SAVE R2 

076330 000072 *1 

076410 016701 MOV TEMP1,R1 ;RESTORE R1 

076412 000006 *1 

076414 016702 MOV TEMP2,R2 ;RESTORER2 

076416 000004 *1 

076420 000207 RTSPC 

076422 000000 TEMP1:0 

076424 000000 TEMP2:0 

1 Index constants 



10-10 Programming Techniques 

Using the Stack 

Note that in this case, R3 is being used as an SP ~d has been previously set to point to 
the end of an unused block of memory. 

Address 

010020 

010022 

010130 

010132 

010134 

OetalCode 

010143 
SUBR: 

010243 

012302 

012301 

000207 

Assembler 
Syntax 

MOV Rl, (RS) 

MOVR2, (RS) 

MOV (RS)+,R2 

MOV (RS)+,Rl 

RTSPC 

Comments 

;PUSHRI 

;PUSHR2 

;POPR2 

;POPRI 

The second routine uses four fewer words of instruction code and two words of temporary 
stack storage. Another routine may use the same stack space at some later point. Thus, 
the ability to share temporary storage in the form of a stack is a way to save on memory 
usage. 

As another example of stack use, consider the task of managing an input buffer from 
a terminal. As characters come in, the user may wish to delete characters from the 
line. This is accomplished very easily by maintaining a byte stack containing the input 
characters. Whenever a backspace is received, a character is popped off the stack and 
eliminated from consideration. In this example, popping characters to be eliminated can 
be done by using either the MOVB (move byte) or INC (increment) instructions. 

Note that in this case the INC instruction is preferable to MOVB, since it accomplishes 
the task of eliminating the unwanted character from the stack by readjusting the SP 
without the need for a destination location. Note also, that the SP used in this example 
cannot be the system SP (R6) because R6 may point only to word (even) locations. See 
Figure 10-3. 



001011 

001010 

001007 

001006 

001005 

001004 

001003 

001002 

001001 

C 

U 

S 

T 

0 

M 

E 

R 

Z ~ 

Programming Techniques 10-11 

C 

U 

S 

INCR3 T 

0 

M 

E 

R !4- R3 .. 1 __ 0_01_00_2_ ..... 

R31~_00_100_1 ___ 

LJ-00253-TIO 

Figure 10-3 Byte Stack Used as a Character Buffer 

10.3.6 Subroutine Linkage 
The contents of the linkage register are saved on the system stack when a JSR is 
executed. The effect is the same as executing a MOV reg, -(R6). Following the JSR 
instruction, the same register is loaded with the memory address (the contents of the 
current PC) and a jump is made to the entry location specified. Figure 10-4 shows the 
conditions before and after the subroutine instruction JSR R5, 1064 is executed. 
Because hardware already uses general purpose register 6 to point to a stack for saving 
and restoring PC and PSW information, it is convenient to use that stack to save and 
restore intermediate results and to transmit arguments to and from subroutines. Using 
R6 this way permits nesting subroutines and interrupt service routines. 

002000 

001776 

BEFORE 

(RS) = 000132 
(R6) = 001776 

(PC) = (R7) = 001000 

nnnnn 

mmmmmm 4-- SP 
1-------1 

001774 

001772 

001776 

Figure 1 Q-4 JSR Stack Condition Example 

10.3.6.1 Return from a Subroutine 

002000 

001776 

001774 

001772 

AFTER 

(RS) "" 001004 
(R4) ... 001774 

(PC) - (R7) - 001064 

nnnnn 

mmmmmm 

000132 ---- SP 001774 

An RTS instruction provides for a retum from the subroutine to the calling program. 
The RTS instruction must specify the same register the JSR instruction used in the 
subroutine call. When the RTS is executed, the register specified is moved to the PC, and 
the top of the stack is placed in the register specified. Thus, an RTS PC has the effect of 
retuming to the address specified on the top of the stack. 



10-12 Programming Techniques 

10.3.6.2 Subroutine Advantages 
The JSR instruction provides several advantages to the subroutine ~alling procedure. 

1. Arguments can be passed quickly between the calling program and the subroutine. 

2. If there are no arguments, or the arguments are in a general register or on the stack, 
the JSR PC,DST mode can be used so that none of the general purpose registers need 
to be used for linkage. 

3. Many JSRs can be executed without the need to provide any saving procedure for 
the linkage information, since all linkage information is automatically pushed onto 
the stack in sequential order. Returns can be made by automatically popping this 
information from the stack in the order opposite to the JSRs. 

This linkage address bookkeeping is called automatic nesting of subroutine calls. This 
feature enables construction' of fast, efficient linkages in a simple, flexible manner. It also 
permits a routine to call itself. 

10.3.7 Interrupts 
An interrupt is similar to a subroutine call, except that it is initiated by the hardware 
rather than by the software. An interrupt can occur after the execution of an instruction. 

Interrupt-driven techniques are used to reduce CPU waiting time. In direct program data 
transfer, the CPU loops to check the state of the done/ready flag (bit 7) in the peripheral 
interface. Using interrupts, the CPU can handle other functions until the peripheral 
initiates service by setting the done bit in its CSR. The CPU completes the instruction 
being executed, then acknowledges the interrupt, and vectors to an interrupt service 
routine. The service routine transfers the data and may perform calculations with it. 
After the interrupt service routine is complete, the computer resumes the program that 
was interrupted by the high-priority request. 

10.3.7.1 Interrupt Service Routines 
With interrupt service routines, linkage information is passed so that a return to the 
main program can be made. More information is necessary for an interrupt sequence 
than for a subroutine call because of the random nature of interrupts. The complete 
machine state of the program immediately prior to the occurrence of the interrupt must 
be preserved in order to return to the program without any noticeable effects. This 
information is stored in the PSW. Upon interrupt, the contents of the PC (address of next 
instruction) and the PSW are automatically pushed onto the R6 system stack. The effect 
is the same as executing: 

MOV PS,-(SP) 

MOV PC,-(SP) 

;PUSHPSW 

;PUSHPC 

The new contents of the PC and PSW are loaded from two preassigned consecutive 
memory locations called vector addresses. The first word contains the interrupt service 
routine entry address (the address of the service routine program sequence). The 
second word contains the new PSW that will determine the machine status, including 
the operational mode and. register set to be used by the interrupt service routine. The 
contents of the vector address is set under program control. 



Programming Techniques 10-13 

After the interrupt service routine is complete, an RTI is performed. The top two words 
of the stack are automatically popped and placed in the PC and PSW, respectively, thus 
resuming the interrupted program. Interrupt service programming is intimately involved 
with the concept of CPU and device priority levels. 

10.3.7.2 Nesting 
Interrupts can be nested in much the same manner that subroutines are nested 
(Figure 10--5). It is possible to nest any arbitrary mixture of subroutines and interrupts 
with out any confusion. When the respective RTI and RTS instructions are used, the 
proper returns are automatic. 

1. Process 0 Is running; SP Is 
pointing to location PO. 

2. Interrupt stops process 0 with 
PC.PCO,and status.PSO, starts 
process 1. 

3. Process 1 uses stack for temporary 
storage (TEO,TE1). 

SP 

PO 

... 
0 

4. Process 1 Interrupted with PC.PCl PO 
and status-PS1; process 21s started. 

SP .... 

o 

5. Process 2 Is running and does a JSR PO 
R7, A to subroutine A with PC.PC2. 

SP .... 

o 

6. Subroutine A is running and uses PO 

stack for temporary storage. 

SP .... 

o 

PSO 
PCO 
TEO 
TEl 

PSO 
PCO 
TEO 
TEl 
PSl 
PCl 

PSO 
PCO 
TEO 
11:1 
PSl 
PCl 
PC2 

PSO 
PCO 
TEO 
TEl 
PSl 
PCl 
PC2 
TAl 
TA2 

7. Subroutine A releases the temporary 
storage holding TAl and T A2. 

8. Subroutine A returns control to 
process 2 with an RTS R7; PC Is 
reset to PC2. 

9. Process 2 completes with an RTI 
Instruction (dismiss Interrupt); 
PC Is reset to PCl and status 
PC Is reset to PCl and status 
Is reset to PSl and status. 

10. Process 1 releases the 

temporary storage holding TEO 
and TEl. 

PO 
PSO 
PCO 
TEO 
11:1 
1"51 
PCl 

SP -. PC2 

0 

PO 
P50 
PCO 
TEO 
TEl 
PSl 

SP .... PCl 

o 

PO~ PSO 
PCO 

SP-: ~ 

PO~ PSO 
SP .... 

o 

11. Process 1 completes Its operation SP .... POo I 
with an RTI, PC Is reset to 1-_ -----'I 
pca, and F status Is reset to PSO. ....._-_ ....... 

MA·1310·90.DG 

Figure 10-5 Nested Interrupt Service Routines and Subroutines 

10.3.8 Reentrancy 
Other advantages of the KDJII-E stack organization occur in programming systems 
that handle several tasks. Multitask program environments range from simple single­
user applications that manage a mixture of I/O interrupt service and background data 
processing (as in RT-ll), to complex multiprogramming systems that manage an intricate 
mixture of executive and multiuser programming situations (as in RSX-ll). 



10-14 Programming Techniques 

In all these situations, using the stack as a programming. technique provides flexibility 
and time/memory economy by allowing many tasks to use a single copy of the same 
routine with a simple straightforward way of keeping track of complex program linkages. 

The ability to share a single copy of a program among users or among tasks is called 
reentrancy. Reentrant program routines differ from ordinary subroutines in that it is not 
necessary for reentrant routines to finish processing a given task before they can be used 
by another task. At any time, tasks can exist in various stages of completion in the same 
routine. Thus, the situation shown in Figure 10-6 may occur. 

Memory Memory 

Program 1 Program 1 Subroutine A Subroutine A 
Program 2 Subroutine A 
Program 31--____ --1 

Program 2 Subroutine A Subroutine A 

Program 3 Subroutine A Subroutine A 

Conventional Approach KDJ 11-E Approach 

Programs 1,2, and 3 can 
share subroutine A. 

A separate copy of subroutine A must 
be provided for each program. 

Figure 10-6 Reentrant Routines 

10.3.8.1 Reentrant Code 

MA·1311·QO.DG 

Reentrant routines must be written in pure code (that is, any code that consists 
exclusively of instructions and constants). The value of using pure code whenever 
possible is that the resulting code has the following characteristics: 

• It is generally considered easier to debug than standard code. 

• It can be kept in read-only memory (is read-only protected). 

Using reentrant code, control of a routine can be shared as follows (Figure 10-7). 

1. Task A requests processing by reentrant routine Q. 

2. Task A temporarily gives up control of reentrant routine Q before it completes 
processing. 

3. Task B starts processing the same copy of reentrant routine Q. 

4. Task B completes processing by reentrant routine Q. 

5. Task A regains use of reentrant routine Q and resumes where it stopped. 



Figure 10-7 Sharing Control of a Routine 

10.3.8.2 Writing Reentrant· Code 

Programming Techniques 10-15 

Reentrant 
Routine G 

MA-1312-90.DG 

In an operating system environment, when one task is executing and is interrupted· to 
allow another task to run, a context switch occurs in which the PSW and current contents 
of the general purpose registers are saved and replaced by the appropriate values for the 
task being entered. Therefore, reentrant code must use the general purpose registers and 
the stack for any counters, pointers, or data to be modified or manipulated in the routine. 

The context switch occurs whenever a new task is allowed to execute. It causes all of the 
general purpose registers, the PSw, and often, other task-related information to be saved 
in an impure area. It then reloads these registers and locations with the appropriate 
data for the task being entered. Notice that one consequence of this is that a new SP 
value is loaded into R6, thereby causing a new area to be used as the stack when the 
second task is entered. 

The following guidelines should be followed when writing reentrant code: 

1. All data should be in or pointed to by one of the general purpose registers. 

2. A stack can be used for temporary storage of data or pointers to impure areas within 
the task space. The pointer to such a stack would be stored in a general purpose 
register. 

3. Parameter addresses should be used by indexing and indirect reference rather than 
by putting them into instructions within the code. 

4. When temporary storage is accessed within the program, it should be by indexed 
addresses, which can be set by the calling task in order to handle any possible 
recursion. 

10.3.9 Coroutines 

In some programming situations, several program segments or routines are highly 
interactive. Control is passed back and forth between the routines, each going through 
a period of suspension before being resumed. Since the routines maintain a symmetric 
relationship with each other, they are called coroutines. 

Coroutines are two program sections, either one subordinate to the call of the other. The 
nature of the call is, "I have processed all I can for now, so you can execute until you 
are ready to stop, then I will continue." The coroutine call and return are identical, each 
being a jump to subroutine instruction with the destination address on top of the stack 
and the PC serving as the linkage register, as follows: 



10-16 Programming Techniques 

JSR PC,@(R6)+ 

10.3.9.1 Coroutine calls 
The coding of coroutine calls is made simple by the stack feature. Initially, the entry 
address of the coroutine is placed on the stack, and from that point the JSR PC,@(R6)+ 
instruction is used for both the call and the return statements. This JSR instruction 
results in an exchange of the contents of the PC and the top element of the stack, 
permitting the two routines to swap control and resume operation where each was 
terminated by the previous swap. An example is shown in Figure 10-8. Notice that the 
coroutine linkage cleans up the stack with each control transfer. 

ROUTINE A STACK RounNEB 

MeV 'lOC-(SP) lOC -SP 

lOC: 
JSR Pc.@(SP)+ PCO -SP 
(PCO) 

JSR PC.@(SP)+ 
PC1 SP (PC1) 

Figure 10-8 Coroutine Example 

10.3.9.2 Coroutlnes Versus Subroutines 

COMMENTS 

lOC Is pushed onto the stack 
to prepare for the coroutIne call. 

When the callIs executed the PC 
from routIne A Is pushed on the 
stack and executIon contInues 
atlOC. 

RoutIne B can return control to 
routIne A by another coroutIne call. 
PCO Is popped from the atack and 
executIon resumes In routIne A 
Just after the call to routIne B. 
(that Is. at PCO). PC11s saved on the 
stack for a later return to 
routIne B. 

MA·1348·to.DG 

Coroutines can be compared to subroutines in the following ways: 

• A subroutine is considered subordinate to the main or calling routine, but a coroutine 
is considered to be on the same level, as each coroutine calls the other when it has 
completed current processing. 

• When called, a subroutine executes to the end of its code. When called again, the 
same code will execute before returning. A coroutine executes from the point after 
the last call of the other coroutine. Therefore, the same code will not be executed 
each time the coroutine is called. An example is shown in Figure 10-9. 

• The call and return instructions for coroutines are the same. 

JSR PC,@(SP)+ 

• This one instruction also cleans up the stack with each call. The last coroutine call 
leaves an address on the stack that must be popped if no further calls are to be made. 
See Section 10.3.6.1 for information on the return from subroutine instruction. 



Programming Techniques 1-0-17 

• Each coroutine call returns to the coroutine code at the point after the last exit with 
no need for a specific entry point label, as would be required with subroutines. 

COROUTINES MAIN PROGRAMS SUBROUTINES 

A B 

! 
j /ISIWC 

JSR PC,@ (SP)+ .. 

"" /JSRPC.@ (SP)+ 

JSR PC,@ (SP)+ 

"" JSR PC.@ (SP)+ 

JSR Rn, LOC 

Figure 10-9 Coroutlnes Versus Subroutines 

10.3.9.3 Using Coroutlnes 
Coroutines should be used in the following situations: 

RTS 

MA-1313-90.0G 

• Whenever two tasks must be coordinated in their execution without obscuring the 
basic structure of the program. For example, in decoding a line of assembly language 
code, the results at anyone position might indicate the next process to be entered. A 
detected label must be processed. If no label is present, the operator must be located, 
and so on. 

• To add clarity to the process being performed, to ease in the debugging phase, and so 
on. 

An assembler must perform a lexicographic scan of each assembly language statement 
during pass 1 of the assembly process. The various steps in such a scan should 
be separated from the main program flow to add to program clarity and to aid in 
debugging by isolating details. Subroutines are not satisfactory in this case, as too much 
information has to be passed to the subroutine each time it is called. Coroutines could 
be effectively used, with one routine performing as the assembly pass 1 routine and the 
other extracting one item at a time from the current input line. Figure 10-10 illustrates 
this example. 

Coroutines can be utilized in 110 processing. Figure 10-10 shows coroutines used in 
double-buffered 110 using lOX. The flow of events may be described as follows: 



10-18 Programming Techniques 

Write 01 

Read 11 concurrently, 

Process 12 

then 

Write 02 

Read 12 concurrently, 

Process 11 

Figure 10-11 illustrates a coroutine swapping interaction. 

ROUTINE A 

Start and Skip 
Blanks 

Nonblank 

Read Name 

Process Mnemonics 

, 

Read Address 

Semicolon 

Skip Comment 

Figure 10-10 Coroutine Path 

ROUTINE B 

.. Process Name 

Skip Blanks 

-- Read Mnemonics 

Line Terminator 

, 

End 

MA·1314·90.DG 



Routine #1 is operating, it then 
executes: 

MOV #PC2,-(R6) 
JSR PC,@(R6)+ 

with the following results: 

1. PC2 is popped from the stack 

and the SP is autoincremented. 

2. SP is autodecremented and 
the old PC (PC 1) is pushed. 

3. Control is transferred to the 

location PC2 (routine #2). 

Routine #2 is operating, it then 
executes: 

JSR PC,@(R6)+ 

with the result that PC2 is 

exchanged for PC 1 on the 

stack and control is 

transferred back to routine #1. 

Figure 10-11 Coroutine Interaction 

When routine 1 is operating, it executes 

MOV #PC2, (R6) 

JSR PC,@(R6)+ 

with the following results: 

Programming Techniques 10-19 

SP ----. PC2 

,f 

SP ----. PC1 ! 
MA-1315-90.DG 

1. PC2 is popped from the stack and the SP is autoincremented. 

2. SP is autodecremented and the old PC (PC1) is·pushed. 

3. Control is transferred to the location PC2 (routine 2). 

When routine 2 is operating, it executes 
JSR PC,@(R6)+ 

with the result that PC2 is exchanged for PC1 on the stack and control is transferred 
back to routine 1. 

10.3.10 Recursion 
An interesting aspect of a stack facility, other than its providing for automatic handling of 
nested subroutines and interrupts, is that a program may call on itself as a subroutine­
just as it can call on any other routine. Each new call causes the return linkage to 
be placed on the stack, which (as it is a LIFO queue) sets up a natural unraveling to 
each routine just after the point of departure. Figure 10-12 shows a typical flow for a 
recursive routine. 



10-20 Programming Techniques 

Main Program 

Sub 1 

Sub 2 

Sub 2 

MA·1316·90.DG 

Figure 10-12 Recursive Routine Flow 

The main program calls function 1, SUB 1, which calls function 2, SUB 2, which recurses 
once before returning. 

Example: 
DNCF: 

1$ 

BEQl$ 

JSR 
R5,DNCF 

RTSR5 

;TO EXIT RECURSIVE LOOP 

;RECURSE 

;RETURN TO 1$ FOR 
jEACH CALL, THEN TO 
;MAIN PROGRAM 

The routine DNCF calls itself until the variable tested becomes equal to O. Then it exits 
to 1$, where the RTS instruction is executed, returning to the 1$ once for each recursive 
call and a final time to return to the main program. 

In general, recursion techniques lead to slower programs than the corresponding 
interactive techniques, but recursion does produce shorter programs, and thus saves 
memory space. Both the brevity and clarity produced by recursion are important in 
assembly language programs. 

Uses of Recursion-Recursion can be used in any routine in which the same process is 
required several times. For example, a function to be integrated may contain another 
function to be integrated, as in solving for XM, where 



Programming Techniques 10-21 

SM = 1 + F(X) 

and 
F(X) = G(X). 

Another use for a recursive function could be in calculating a factorial function, because 

FACT(N) = FACT(N 1) * N. 

Recursion should terminate when N = 1. 

The macroprocessor within MACRO-II is itself recursive, since it can process nested 
macrodefinitions and calls. For example, within a macrodefinition, other macros can be 
called. When a macro call is encountered within definition, the processor must work 
recursively (that is, it n:tust process one macro before it is finished with another and then 
continue with the previous one). The stack is used for a separate storage area for the 
variables associated with each call to the procedure. 

&; long as nested definitions of macros are available, it is possible for a macro to call 
itself. However, unless conditionals are used to terminate this expansion, an infinite loop 
may be generated. 

10.3.11 Processor Traps 

Certain errors and programming conditions cause the KDJII-E processor to enter the 
service state and trap to a fixed location. A trap is an interrupt generated by hardware. 
Pending conditions are arbitrated according to a priority. The following list describes the 
priority from highest to lowest. 

Condition 

Memory management 
violation1(MMUERR) 

Timeout error 1 (BUSERR) 

Parity error1 (PARERR) 

Trace (T) bit1 

Stack overflow 1 (STKOVF) 

Description 

A memory management 
violation causes an abort 
and traps to location 2508. 

No response from a bus device during 
a bus transaction causes an abort 
and traps to location 48. 

A parity error signal received by the 
processor during a bus transaction 
causes an abort and traps to location 
1148. , 

If PSW bit 4 is set at the end of instruction 
execution, the processor traps to location 148. 

If the KSP was pushed below 4008 
during instruction execution, the 
processor traps to location 48 at 
the end of the instruction. 

1 Nonmaskable software cannot inhibit the condition. MMUERR, BUSERR PARERR are mutually exclusive 
when the processor is executing a program. 



10-22 Programming Techniques 

Condition 

Power fail l (PFAIL) 

IntelTUpt level 7 (BIRQ7) 
IntelTUpt level 6 (BIRQ6) 
Interrupt level 5 (BIRQ5) 
Interrupt level 4 (BIRQ4) 

Halt line 

Description 

If the power OK bus signal (BPOK H) was 
negated during instruction execution) the 
processor traps to location 248 at the 
end of the instruction. 

If device interrupt requests are 
asserted and PSW <7:5> are properly 
set, the processor at the end of the 
present instruction execution 
initiates an interrupt vector 
sequence on the bus. These inputs 
are maskable by PSW <7:5>. 

PSW <'711> Levels Inhibited 

7 All 

6 6,5,4 

5 5)4 

4 4 

0-3 None 

If the BHALT L bus signal is asserted during the 
service state, the processor enters ODT mode. 

INonmaskable software cannot inhibit the condition. MMUERR, BUSERR PARERR are mutually exclusive 
when the processor is executing a program. 

10.3.11.1 Trap Instructions 
Trap instructions provide for calls to emulators, 110 monitors, debugging packages, and 
user-defined interpreters. When a trap occurs, the contents of the current PC and PSW 
are pushed onto the processor stack and are replaced by the contents of a 2-word trap 
vector containing a new PC and new PSw. The return sequence from a trap involves 
executing an RTI or RT!' instruction, which restores the old PC and old PSW by popping 
them from the stack. Trap vectors are located at permanently assigned fixed addresses. 

The EMT (trap emulator) and TRAP instructions do not use the low-order byte of the 
word in their machine language representation. This allows user information to be 
transferred in the low-order byte. The new value of the PC, loaded from the vector 
address of the TRAP or EMT instructions, is typically the starting address of a routine to 
access and interpret this information. This routine is called a trap handler. 

A trap handler must accomplish several tasks. It must save and restore all necessary 
general purpose registers, interpret the low byte of the trap instruction and call the 
indicated routine, serve as an interface between the calling program and this routine by 
handling any data that needs to be passed between them, and finally, cause the return to 
the main routine. 



Programming Techniques 10-23 

A trap handler can be useful as a patching technique. Jumping out to a patch area is 
often difficult because a 2-word jump must be performed. However, the 1-word TRAP 
instruction may be used to dispatch to patch· areas. A sufficient number of slots for 
patching should first be reserved in the dispatch table of the trap handler. The jump 
can then be accomplished by placing the address of the patch area into the table and 
inserting the proper TRAP instruction where the patch is to be made. 

10.3.11.2 Use of Macro calls 
The trap handler can be used in a program to dispatch execution to anyone of several 
routines. Macros may be defined to cause the proper expansion of a call to one of these 
routines, as in the following example: 

.MACRO SUB2 ARG 

MOV ARG,RO 

TRAP +1 

.ENDM 

When expanded, this macro sets up the one argument required by the routine in RO, and 
then causes the trap instruction with the number 1 in the lower byte. The trap handler 
should be written so that it recognizes a 1 as a call to SUB2. Notice that ARG here is 
being transmitted to SUB2 from the calling program. It may be data required by the 
routine or it may be a pointer to a longer list of arguments. 

In an operating system environment like RT-ll, the EMT instruction is used to call the 
system or monitor routines from a user program. The monitor of an operating system 
necessarily contains coding for many functions, such as 110, file manipulation, and so 
on. This coding is made accessible to the program through a series of macro calls that 
expand into EMT instructions with low bytes, indicating the routine or group of routines 
to which the desired routine belongs. Often a general purpose register is designated to be 
used to pass an identification code to further indicate to the trap handler which routine 
is desired. For example, the macro expansion for a resume execution command in RT-11 
is as follows: 

.MACRO .RSUM 

CM3,2 . 

. ENDM 

CM3 is defined: 
.MACRO CM3 CHAN, CODE 

MOV CODE *400,RO 

.IIF NB CHAN,BISB CHAN,RO 

EMT374 

.ENDM 

Note that the EMT low byte is 374. This is interpreted by the EMT handler to indicate a 
group of routines. Then the contents of RO (high byte) is tested by the handler to identify 
exactly which routine within the group is being requested .,.....in this case routine number 
2. (The CM3 call of the .RSUM is set up to pass the identification code.) 



10-24 Programming Techniques 

10.3.12 Conversion Routines 
Almost all assembly language programs require the translation of data or results from 
one form to another. Code that performs such a transformation is called a conversion 
routine. Several commonly used conversion routines follow. 

Almost all assembly language programs involve some type of conversion routine. Octal­
to-ASCII, octal-to-decimal, and decimal-to-ASCII are a few of the most widely used. 

Arithmetic multiply and divide routines are fundamental to many conversion routines. 
Division is typically approached in one of two ways. 

1. The division can be accomplished through a combination of rotates and subtractions. 

Example: 

The following example uses a 3-bit word: 

DIV: MOV .a, (SP) ;SET UP DIGIT COUNTER 

CLR (SP) ;CLEAR RESULT 

1$ ASL (SP) 

ASLR1 

ROLRO 

CMPRO,RS 

BLT2$ 

2$ 

SUBRS,RO 

INC (SP) 

DEC 2 (SP) 

BNE$l 

Therefore, to divide 7 by 2: 

RO = 000 

R1 = 111 

R3 = 010 

C bit =0 

Stack 

;RO CONTAINS REMAINDER 

;INCREMENT RESULT 

;DECREMENT COUNTER 

remainder 

7 (multiplicand) 

2 (multiplier) 

011 counter 

000 quotient 

Following through the coding, the quotient, remainder, and dividend all shift left, 
manipulating the most significant digit first, and so on. 

At the conclusion of the routine: 



RO = 001 

Rl = 000 

R3 = 010 

Stack 

000 

011 

remainder 

counter 

quotient 

Programming Techniques 10-25 

2. The second method of division works by repeated subtraction of the powers of the divisor, 
keeping a count of the number of subtractions at each level. 

Example: 

'1b divide 22110 by 10, first try to subtract powers of 10 until a nonnegative value is 
obtained, counting the number of subtractions of each power. 

221 

-1000 

Negative, so go to the next lower power, and count for 103 = o. 

221 

-100 

121 count for 1()2 = 1 
-100 

21 count 
-100 

=2 

Negative, so reduce power, and count for 1()2 = 2. 

21 
-10 

-11 count for 101 = 1 

11 
-10 

1 count = 2 

-10 

Negative, so count for 101 = 2. 



10-26 Programming Techniques 

No lower power, so remainder is 1. 

Answer = 022, remainder 1. 

Multiplication is also approached in one of two ways. 

1. Multiplication can be done with a combination of rotates and additions. 

Example: 

The following example uses a 3-bit word: 

ADD 

CLRRO 

MOV#3,CNT 

MOV 
R1,MULT; 

MORE: 

NOW; 

MULT: 

CNT: 

;HIGH HALF OF ANSWER 

;SET UP COUNTER 

;MULTIPLICAND 

RORR2 
BCCNOW 
ADD MULT,RO 
;IF INDICATED, 

;MULTIPLICAND 

RORRO 
R04R1 
DECCNT 
BNEMORE 

o 
o 

The following conditions exist for 6 X 3. 

RO = 000 

R1 = 110 

R3 = 011 

After the routine is executed: 

RO = 010 

R1 = 010 

R2 = 100 

CNT=O 

high-order half of result 

multiplicand' 

multiplier 

high-order half of result 

low-order half of result 



2. The 
sec­
ond 
method 
of 
mul-
ti-
pli-
ca-
tion 
is 
repet­
i-
tive 
ad-
di­
tion. 

Example: 

·MULT= 110 

Multiplication of RO by 508(101000). 

If RO contains 7: 

After execution: 

MUL50: 

RO = 111 

RO = 
100011000 

Programming Techniques 10-27 

MOV RO, -(SP) 
ASLRO 
ASLRO 
ADD (SP)+,RO 
ASLRO 
ASLRO 
ASLRO 
RETURN 

(78 * 50s = 430s) 

ASCII Conversions- The conversion of ASCII characters to the internal representation 
of a number, as well as the conversion of an internal number to ASCII in 110 operations, 
presents a challenge. The following routine takes the 16-bit word in Rl and stores the 
corresponding 6 ASCII characters in the buffer addressed by R2. 

OUT: MOV #5,RO ;LOOP COUNT 

LOOP: MOV Rl,-(SP) ;COpy WORD INTO STACK 

BIC #177770,@SP ;ONE OCTAL VALUE 

ADD #'O,@SP ;CONVERT TO ASCII 

MOVB (SP)+, -(R2) ;STORE IN BUFFER 

ASR R1 ;SHIFT 

ASR R1 ;RIGHT 



10-28 Programming Techniques 

ASR R1 ;THREE 

DEC RO ;TEST IF DONE 

BNE LOOP ;NO, DO IT AGAIN 

BIC '177776,R1 ;GET LAST BIT 

ADD 1f0,R1 ;CONVERT TO ASCII 

MOVB R5, -{R2) ;STORE IN BUFFER 

RTS PC ;DONE, RETURN 

10.4 Programming the Processor Status Word 
The current processor status can be read and written using several programming 
techniques on the PSw. The PSW has an 110 address of 17777776. The KDJ11-E 
and other PDP-II processots implement this address, whereas LSI-II and LSI-1li2 
processors do not. One technique is to use the 110 address as a source or destination 
address with any instruction. 

CLR @'17777776 
MOV @'17777776, RO 

The first instruction clears the PSW and the second instruction moves the contents of the 
PSW to general register o. 

The PSW explicit address (17 777 776) can be accessed on a word or byte basis. The 
KDJ11-E recognizes the PSW odd address (17 777 777) and the access result is identical 
to an odd memory address reference. 

Another technique is to use the two dedicated PSW instructions, MTPS and MFPS. These 
instructions only reference the even byte. If memory management is enabled, certain 
PSW bits are protected. 

10.5 Programming Peripherals 
Programming LSI-II bus compatible modules (devices) is simple. A special class of 
instructions that deals with 110 operations is unnecessary. The bus structure permits 
a unified addressing structure in which control, status, and data registers for devices 
are directly addressed as memory locations. Therefore, all operations on these registers 
(such as information transfer and data manipulation) are performed by normal memory 
reference instructions. 

The use of all memory reference instructions on device registers greatly increases the 
flexibility of 110 programming. For example, information in a device register can be 
compared directly with a value and a branch made on the result. 

CMP RBUF, .101 
BEQSERVICE 

In this case, the program looks for 101 in the DLV11 receiver data buffer register 
(RBUF) and branches if it finds it. There is no need to transfer the information into 
an intermediate register for comparison. 



Programming Techniques 10-29 

When the character is of interest, a memory reference instruction can transfer 
the character into a user buffer in memory or to another peripheral device. The 
instruction MOV DRINBUF LOC transfers a character from the DRV11 data input 
buffer (DRINBUF) into a user-defined location. 

All arithmetic operations can be performed on a peripheral device register. For example, 
the instruction ADD #10, DROUT BUF adds 10 to the DRV11 output buffer. All read 
/write device registers can be treated as accumulators. There is no need to funnel all 
data transfers, arithmetic operations, and comparisons through one or a small number of 
accumulator registers. 

10.6 PDP-11 Programming Examples 
The programming examples that follow show how the instruction set, addressing modes, 
and programming techniques can be used to solve some simple problems. The format 
used is MACR0-11. 

Program Program Op 
Address Counter Label Code Operand Comments 

;PROGRAMMING EXAMPLE 
;SUBTRACT CONTENTS OF LOCS 700-
710 
;FROM CONTENTS OF LOCS 1000-1010 

000000 RO=%O 

000001 Rl=%l 

000002 R2=%2 

000003 R3=%3 

000004 R4=%4 

000005 R5=%5 

000006 SP=%6 

000007 PC=%7 

000500 .=500 

000500 012706 START: MOV .#.,SP ;INIT STACK POINTER 

000500 

000504 012701 MOV #700,Rl 

000700 

000510 012702 MOV #712,R2 

000712 

000514 012703 MOV #1000,R3 

001000 



10-30 Programming Techniques 

. Program Program Op 
Address Counter Label Code Operand Comments 

OQ0520 012704 MOV #1012,R4 

001012 

000524 005000 CLR RO 

000526 005005 CLR R5 

000430 062105 SUM1: ADD (R1)+,R5 ;START ADDING 

000532 020102 CMP R1,R2 ;FINISHED ADDING? 

000534 001375 BNE SUM 1 ;IF NOT BRANCH BACK 

000536 062300 SUM2: ADD (R3)+,RO ;START ADDING 

000540 020304 CMP RS,R4 ;FINISHED ADDING? 

000542 001375 BNE SUM2 ;IF NOT BRANCH BACK 

000544 160500 DIFF: SUB R5,RO ;SUBTRACT RESULTS 

000546 000000 HALT ;THAT'S ALL FOLKS 

000700 .=700 

000700 000001 WORD 1,2,3,4,5 

000702 000002 

000704 000003 

000706 000004 

000710 000005 

001000 .=1000 

001000 000004 WORD 4,5,6,7,8 

001002 000005 

001004 000006 

001006 000007 

001010 000010 

000500 END 



Programming Techniques 10-31 

Program. Program Op 
Address Counter Label Code Operand Comments 

START: 

CHECK: 

BPL 
NEXT 

INC 
RO 

NEXm 

BNE 
CHECK 

HALT 

VALUES:O 

.END 

RO=%O 
Rl=%l 
R2=%2 
SP=%6 
PC=%7 

.=500 

MOV'.,SP 

MOV .VALUE,Rl 

MOV 
'VALUES+40.,R2 

CLRRO 

TST(Rl)+ 

CMP Rl,R2 

;PROGRAM TO COUNT NEGATIVE 
NUMBERS 
;IN A TABLE 
;20. SIGNED WORDS 
;BEGINNING AT LOC VALUES 
;COUNT HOW MANY ARE NEGATIVE 
INRO 

;SET UP STACK 

;SET UP POINTER 

;SET UP COUNTER 

;TEST NUMBER 

;POSITIVE? 

;NO, INCREMENT 
;COUNTER 

;YES, FINISHED? 

;NO, GO BACK 

;YES, STOP 



10-32 Programming Techniques 

Program. Program Op 
Address Counter Label Code Operand Comments 

START: 

CHECK: 

NO: 

RO=9bO 
Rl=,*,l 
R2=9b2 
RS.9bS 
SP.tH 
PC-9b7 

.-500 

MOV'.,SP 

MOV'16.,R1 

MOV 
'SCORES,R2 

MOV 
'AVERAGE,RS 

CLRRO 

CMP (R2)+,(RS) 

BLENO 

INCRO 

DECR1 

BNECHECK 

HALT 

AVERAGE:65. 

;PROGRAM TO COUNT ABOVE 
AVERAGE QUIZ SCORES 
;LIST OF 16. QUIZ SCORES 
;BEGINNING AT LOC SCORES 
;KNOWN AVERAGE IN LOC AVERAGE 
;COUNT IN RO SCORES ABOVE 
AVERAGE 

;SET UP STACK 

;SET UP COUNTER 

;SET UP POINTER 

;COMPARE SCORE AND AVERAGE 

;LESS THAN OR EQUAL 
;TO AVERAGE? 

;NO, COUNT 

;YES, DECREMENT COUNTER 

;FINISHED? NO, CHECK 

;YES, STOP 

SCORES· 25.,70.,100.,60.,80.,80.,40. 

55.,75.,100.,65.,90.,70.,65.,70 . 

. END 



Program Program 
Address Counter Label 

START: 

MOV 

MOV 

IN: 

ECHO: 

BPL 

MOVB 

MOVB 

DEC 

BNE 

MOV 

Programming Techniques 1 Q-33 

Op 
Code Operand Comments 

RO=%O 
Rl=%1 
SP=%6 
CR=15 
LF=12 
TKS=177560 

TKB=TKS+2 

TPS=TKB+2 

TPB=TPS+2 

.TITLE 
ECHO 

.=1000 

MOV #.,SP 

#SAVE+2,RO 

#20.,Rl 

TSTB @#TKS 
BPL 

IN 

TSTB @#TPS 

ECHO 

@#TKB,@#TPB 

@#TKB,(RO)+ 

Rl 

IN 

#SAVE,RO 

;PROGRAMMING EXAMPLE 
;ACCEPT (IMMEDIATE ECHO) AND 
;STORE 20. CHARS 
;FROM THE KEYBOARD, OUTPUT CR 
&LF 
;ECHO ENTIRE STRING FROM 
STORAGE 

;INITIALIZE STACK POINTER 

;SA OF BUFFER 
;BEYOND CR & LF 

;CHARACTER COUNT 

;CHAR IN BUFFER? 
;IF NOT BRANCH BACK 
;ANDWAIT 

;CHECK TELEPRINTER 
;READY STATUS 

;ECHO CHARACTER 

;STORE CHARACTER AWAY 

;FINISHED INPUTTING? 

;SA OF BUFFER INCLUDING 
;CR&LF 



10-34 Programming Techniques 

. Program Program Op 
Address Counter Label Code Operand Comments 

MOV 122.,Rl ;COUNTER OF BUFFER 
;INCLUDING CR & LF 

OUT: TSTB @#TPS ;CHECK TELEPRINTER 
;READY STATUS 

BPL OUT 

MOVB (RO)+,@lTPB ;OUTPUT CHARACTER 

DEC Rl 

BNE OUT ;FINISHED OUTPUTTING? 

HALT 

SAVE: .BYTE CR,LF 

.=.+20, 

.END 

Program Program 
Address Counter Label 

Op 
Code Operand Comment. 

INPUT: MOV 

IN: 

OUT: 

IBUFFER,RO 

MOV I -lO.,Rl 

TSTB@#TKS 

BPLIN 

TSTB@#TPS 

BPLOUT 

MOVB 
@#TKB,@ITPB 

MOVB 
@#TKB,(RO)+ 

INCRl 

BNEIN 

RTSPC 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO INPUT TEN VALUES 

;SETUPSAOF 
;STORAGE BUFFER 

;SET UP COUNTER 

;TEST KYBD READY STATUS 

;TEST TOO READY STATUS 

;ECHO CHARACTER 

;STORE CHARACTER 

;INC COUNTER 

;EXIT 



Programming Techniques 10-35 

Op Program Program. 
Address Counter Label Code Ope~d Comments 

SORT: MOV , -10.,R4 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO SORT TEN VALUES 

NEXT: MOV COUNT,R3 

MOV 'BUFFER+9.,RO 

ADDR3,RO 

MOVB (RO)+,R1 

LOOP: CMPB (RO)+,R1 

BGEGT 

LT: MOVB -{RO),R2 

MOVB R1,(RO)+ 

MOVR2,R1 

GT: INC R3 

BNELOOP 

INSERT: MOVB R1,BUFFER+10.(R4) 

INCR4 

INC COUNT 

BNENEXT 

MOV'-
9.,COUNT 

RTSPC 

COUNT: .WORD -9. 

;RESTORE LOCATION COUNT 

;EXIT 

LINE1: .ANCIIIINPUT ANY TEN SINGLE-DIGIT VALUES (0-9);PW 
.ASCIYSORT AND OUTPUT THEM INI 

LINE2: .ASCIYSMALLEST TO LARGEST ORDER) 

BUFFER: .=.+10. 

.ENDINITSP ;FINISHED!!! 

Program Program 
Address Counter Label 

Op 
Code Operand Comments 

;PROGRAMMING EXAMPLE 
;SUBROUTINE EXAMPLE 
;INPUT TEN VALUES, SORT, AND 
;OUTPUT THEM IN SMALLEST TO 
LARGEST ORDER 



10-36 Programming Techniques 

Program Propam 
Address Counter Label 

INITSP: 

Program Propam 
Address Counter Label 

Op 
Code Operand Comments 

RO=~O 
R1~1 
R2=~2 
RS.~3 
R4=9b4 
RS=~5 
SP=%6 
PC=~7 
TKS=177560 
(address oftenninal control status register) 
TKB=TKS+2 - (terminal data buffer register) 
TPS=TKB+2 - (terminal output control and status registers) 
TPB=TPS+2 - (terminal output data buffer) 

.=3000 

MOVt.,SP ;INITIALIZE STACK POINTER 

JSRPC,CRLF ;00 TO CRLF SUBROUTINE 

JSR RS, OUTPUT ;00 TO OUTPUT SUBROUTINE 

LINE 1 ;SA OF LINE 1 BUFFER 

69. ;NUMBER OF OUTPUTS 

JSRPC,CRLF ;00 TO CRLF SUBROUTINE 

JSR R5,OUTPUT ;00 TO OUTPUT SUBROUTINE 

LINE2 ;SA OF LINE 2 BUFFER 

26. ;NUMBER OF OUTPUTS 

JSRPC,CRLF ;00 TO CRLF SUBROUTINE 

JSR PC,INPUT ;00 TO INPUT SUBROUTINE 

JSRPC,SORT ;00 TO SORT SUBROUTINE 

JSRPC,CRLF ;00 TO CRLF SUBROUTINE 

JSR R5,OUTPUT ;00 TO OUTPUT SUBROUTINE 

BUFFER ;INPUT BUFFER AREA 

10. ;NUMBER OF OUTPUTS 

JSRPC,CRLF 

HALT ;THE END!!! 

Op 
Code Operand Comment!! 

;PROGRAMMING EXAMPLE 
;SUBROUTINE TO OUTPUT A CR " LF 

CRLF: TSTB @#TPS 

BPLCRLF 

;TEST TOO READY STATUS 



Programming Techniques 10-37 

Program Program 
Address Counter Label 

Op 
Code Operand Comments 

MOVB 
#15,@#TPB 

LNFD: TSTB @#TPS 

BPLLNFD 

MOVB 
#12,@#TPB 

RTSPC 

OUTPUT: MOV (R5)+,RO 

MOV (R5)+,R1 

NEGR1 

AGAIN: TSTB @#TPS 

BPLAGAIN 

MOVB (RO)+,@#TPB 

INCR1 

BNEAGAIN 

RTSR5 

;OUTPUT CARRIAGE RETURN 

;TEST TTO READY STATUS 

;OUTPUT LINE FEED 

;EXIT 

;SUBROUTINE TO OUTPUT A 
;VARIABLE LENGTH MESSAGE 

;PICK UP SA OF DATA BLOCK 

;PICK UP NUMBER OF OUTPUTS 

;NEGATE IT 

;TEST TTO READY STATUS 

;OUTPUT CHARACTER 

;BUMP COUNTER 

10.7 Looping Techniques 
Looping techniques are illustrated in the program segments that follow. The segments 
are used to clear a 50-word table. 

LOOP: 

1. Autoincrement (pointer address in general purpose register) 

2. 

RO=%O 
MOVE #TBL,RO 

CLR(RO)+ 
CMP RO,#TBL+100. 
BNELOOP 

Autodecrement (pointer and limit values in general purpose register) 



10-38 Programming Techniques 

LOOP: 

3. 

LOOP: 

4. 

LOOP: 

5. 

LOOP: 

6. 

LOOP: 

RO=%O 
Rl=%l 
MOV#TBL,RO 
MOV #TBL+lOO.,Rl 

CLR-(Rl) 
CMPRl,RO 
BNELOOP 

Counter (decrementing a general purpose register containing count) 

RO=%O 
Rl=%l 
MOV#TBL,RO 
MOV#50.,Rl 

CLR(RO)+ 
DEeRl 
BNELOOP 

Index Register Modification (indexed mode, modifying index value) 

RO=%O 
CLRRO 

CLRTBL(RO) 
ADD#2,RO 
CMP RO,#100. 
BNELOOP 

Faster Index Register Modification (storing values in general purpose register) 

RO=%O 
Rl=%l 
R2=%2 
MOV#2,Rl 
MOV #100.,R2 
CLRRO 

CLRTBL (RO) 
ADD Rl,RO 
CMPRO,R2 
BNE LOOP 

Address Modification (indexed mode, modifying base address) 

RO=%O 
MOV#TBL,RO 

CLR'O(RO) 
ADD #2,LOOP+2 
eMP LOOP+2,#100. 
BNELOOP 



A 
Setup Parameters Worksheet 

Two worksheets for each mode (video terminal or hardcopy) are provided for you to 
record the original setup parameter selections and the new setup parameters selections 
contained in the EEPROM of the KDJII-E CPU module: 

• Fill out the original worksheet when you install a KDJII-E CPU module. 

• Fill out the new worksheet when you change the parameter selections. 

The information on these worksheets is used for programming any future replacement 
KDJII-E CPU module. 

Leave the worksheets with the system for future use. 

Refer to Chapter 4 for more information on setup. 

A-1 



A-2 Setup Parameters Worksheet 

A.1 Original Setup Menu Worksheet - Video Terminal suppon 

KDJ11-E Monitor Version 1.06 

Licensed to Digital Equipment 
Corporation 

Unibus System 

Memory 

EEprom 

Time 

Boot Dev. Unit Address 

1 

2 

3 

4 

5 

6 

Lines Address / Vec Baud 

Line 1 / 

Line 2 / 

Line 3 / 

Line 4 / 

Line 5 / 

Line 6 / 

Line 7 / 

Disable UBA ROM .Yes/No 

Enable USA lS-Bit Mode Yes/No 

Memory Intern 

Rom on 173000 

Rom on 165000 

Power up Mode 

Restart Mode 

Power-on Self-tests 

Do not change 

Yes/No 

Yes/No 

Rom/Auto/ODT/Trap 24 

Rom/Auto/ODT/Trap 24 

Yes/No 

Select Self-tests Edit 

User Boot Edit 

Alternate Boot Block Yes/No 

LTC Register Yes/No 

Force Clock Interrupt Yes/No 

Clock Frequency PS/50Hz/60Hz/SOOHz 

Halt on Break Yes/No 

Trap on Halt Yes/No 

Ignore Battery Yes/No 

Lines on 176500/176600/DIS 

Data Stop Par 



Setup Parameters Worksheet A-3 

A.2 New Setup Menu Worksheet - Video Terminal Support 
KDJ11-E Monitor Version 1.06 

Licensed to Digital Equipment 
Corporation 

Unibus System 

Memory 

EEprom 

Time 

Boot Dev. Unit Address 

1 

2 

3 

4 

5 

6 

Lines Address / Vee Baud 

Line 1 / 

Line 2 / 

Line 3 / 

Line 4 / 

Line 5 / 

Line 6 / 

Line 7 / 

Disable UBA ROM 

Enable UBA 18-Bit Mode 

Memory Intern 

Rom on 173000 

Rom on 165000 

Power up Mode 

Restart Mode 

Power-on Self-tests 

Select Self-tests 

User Boot 

Alternate Boot Block 

LTC Register 

Force Clock Interrupt 

Clock Frequency 

Halt on Break 

Trap on Halt 

Ignore Battery 

Lines on 

Data Stop Par 

Yes/No 

Yes/No 

Do not change 

Yes/No 

Yes/No 

Rom/Auto/ODT/Trap 

Rom/Auto/ODT/Trap 

Yes/No 

Edit 

Edit 

Yes/No 

Yes/No 

Yes/No 

PS/50Hz/60Hz/800Hz 

Yes/No 

Yes/No 

Yes/No 

176500/176600/DIS 

24 

24 



A-4 Setup Parameters Worksheet 

A.3 Original Worksheet - Hard Copy Printer suppon 
KDJ11-E Monitor Version 1.06 30-July-1990 
(C) Digital Equipment Corporation 1990 

A Memory Intern (0) - 2MB (1) - 4MB 

B Rom on 173000 (0) - No (1) - Yes 

C Rom on 165000 (0) - No (1) - Yes 

D Power-up Mode (0) - Dialog 
(1) - Odt 
(2) - Trap24 
(3) - Auto 

E Restart Mode (0) - Dialog 
(1) - Odt 
(2) - Trap24 
(3) - Auto 

F Power-on Self-tests (0) - No (1) - Yes 

G Alternate Boot Block (0) - No (1) - Yes 

H LTC Register (0) - No (1) - Yes 

I Force Clock Interrupt (0) - No (1) - Yes 

J Clock Frequency (0) - PIS 
(1) - 50Hz 
(2) - 60Hz 
(3) - 800Hz 

K Halt on Break (0) - No (1) - Yes 

L Trap on Halt (0) - No (1) - Yes 

M Ignore Battery (0) - No (1) - Yes 

N Lines on (0) - DIS 
(1) - 176500 
(2) - 176600 

0 Disable USA ,ROM (0) - No (1) - Yes 

P Enable USA la-Bit Mode (0) - No (1) - Yes 



Setup Parameters Worksheet A-5 

A.4 New Worksheet - Hard Copy Printer Support 
KDJ11-E Monitor Version 1.06 30-July-1990 
(C) Digital Equipment Corporation 1990 

A Memory Intern 

B Rom on 173000 

C Rom on 165000 

D Power-up Mode 

E Restart Mode 

F Power-on Self-tests 

G Alternate Boot Block 

H LTC Register 

I Force Clock Interrupt 

J Clock Frequency 

K Halt on Break 

L Trap on Halt 

M Ignore Battery 

N Lines on 

0 Disable USA ROM 

P Enable USA 18-Bit Mode 

(0) - 2MB 

(0) - No 

(0) - No 

(0) - Dialoq 
(1) - Odt 
(2) - Trap24 
(3) - Auto 

(0) - Dialoq 
(1) - Odt 
(2) - Trap24 
(3) - Auto 

(0) - No 

(0) - No 

(0) - No 

(0) - No 

(0) - PIS 
(1) - 50Hz 
(2) - 60Hz 
(3) - 800Hz 

(0) - No 

(0) - No 

(0) - No 

(0) - DIS 
(1) - 176500 
(2) - 176600 

(0) - No 

(0) - No 

(1) - 4MB 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 

(1) - Yes 





A 
ABSF instruction, 9-11 
Absolute addressing mode, 7-18 
AC bus loads definition, 5-24 
ADC instruction, 8-25 
ADDF instruction, 9-12 
ADD instruction, 8-32 
Addressing errors, 1-11 
Addressing modes, 7-1 
Address specification 

entering octal digits, 3-7 
KDJ11-E, 3--6 
ODT timeout, 3-7 
processor 110 addresses, 3-6 
stack pointer selection, 3-7 

ASHe instruction, 8--35 
ASH instruction, 8-34 
ASL instruction, 8-19 
ASR instruction, 8-19 
Autodecrement-deferred, 7-13 
Autodecrement mode, 7-9 
Autoincrement-deferred, 7-13 
Autoincrement mode, 7-7 

B 
Baud rate selection, 2-6 
BCC instruction, 8--46 
BCS instruction, 8--46 
BEQ instruction, .8-44 
BGE instruction, 8-48 
BGT instruction, 8-49 
BHI instruction, 8-50 
BHIS instruction, 8-51 
BIC instruction, 8-38 
BIS instruction, 8--39 
BIT instruction, 8--37 
BLE instruction, 8--49 
BLO instruction, 8-51 
BLOS instruction, 8--50 
BLT instruction, 8--48 
BMI instruction, 8--45 
BNE instruction, 8--43 
Boolean symbols, 9-10 
Boot and diagnostic register set, 1-41 
Boot command, 4-3 

BPL instruction, 8-44 
BPT instruction, 8-58 
Branches, 8-41 
BR instruction, 8-42 
Bus cycle 

DATI, 5-5 
DATIO(B), 5-9 
DATO(B), 5-7 
PMI block data in, 6-9 

Index 

PMI data in/data in pause, 6-8 
PMI data out/data out byte, 6-11 
protocol, 5-4 

Bus cycles 
data transfer, 5-3 

Bus device interrupt, 1-32 
Bus device NPR, 1-32 
Bus master, 5-2 
Bus termination - KDJll-E, 5-25 
Bus timeout errors, 1-11 
BVC instruction, 8-45 
Byte instructions, 8--8 

C 
CFCC instruction, 9-13 
Clearing status registers following abort, 

1-25 
CLRF instruction, 9-13 
CLR instruction, 8-13 
CMPF instruction, 9-14 
CMP instruction, 8-31 
code 

Position independent, 10-1 
Use of addressing modes in 

the construction of position 
independent code, 10-1 

Code 
Comparison of position dependent and 

position independent code, 10-3 
COM instruction, 8-14 
Command 

diagnostic, 4-5 
help, 4-8 
list, 4-9 
map, 4-10 
setup, 4-11 

Commands 
TOY (hard copy), 4-35 

Index 1 



2 Index 

Conditional branches (signed), 8-47 
Conditional branches (unsigned), 8-50 
Condi tion code operators, 8-69 
Configuring multiple-backplane systems, 

. 5-29 
Configuring single-backplane systems, 

5-29 
Console ODT, 3-1 

/ (ANSI 057)-slash, 3-3 
$ (ASCII 044) or R (ASCII 122), 3-4 
command set, 3-2 
<CR> (ASCII 15)--carriage return, 3-3 
<CTRL><SHIFT>S(ASCII 23)-binary 

dump, 3-6 
G (ASCII 107)-go, 3-5 
<LF> (ASCII 12)-line feed, 3-4 
P (ASCII 120)- proceed, 3-5 
S (ASCII 123)-processor status word 

designator, 3-4 
ConsoleiSLU enable - disable, 2-7 
Construction of a physical address 1-15 
Control; functions ' 

external event interrupt request 5-23 
Control functions ' 

DC power OK, 5-22 
Initialization, 5-22 
power-ok, 5-22 
power status, 5-22 
processor halt, 5-22 

Conversion routines, 10-24 
Coroutine 

coroutine calls, 10--16 
coroutines versus subroutines. 10--16 
using coroutines, 10--17 

Coroutines, 10--15 
CPU error register, 1-7 
CPU module 

troubleshooting, 4-63 
CSM instruction, 8-63 

D 
DATI bus cycle, 5-5 
DC bus load definition, 5-24 
DCJII-A microprocessor features 1-2 
Decrement instruction, 8-15 ' 
DECXll, 4-46 
Deferred (indirect)addressing 7-13 
Destination operand, 7-2 ' 
Device priority, 5-17 
Diagnostic programs, 4--45 
Direct addressing, 7-4 
DIVF instruction, 9-15 
DIV instruction, 8-36 
DMA 

Direct Memory Access 
Direct Memory Access 'lransaction, 

5-12 
double-operand addressing, 7-3 
Double-operand instruction 

format 
ADD, 8-32 

Double-operand instruction 
format (Cont.) 

ASH, 8-34 
ASHC, 8-35 
BIC,BICB, 8-38 
BIS,BISB, 8-39 
BIT,BITB, 8-37 
CMP,CMPB, 8-31 
DIV, 8-36 
MOV,MOVB,8-30 
MUL,8-36 
SUB, 8-33 
XOR, 8-40 

Double-operand instruction set 
list 

E 

condition code operators, 8-12 
general, 8-10 
jump and subroutine, 8-11 
logical, 8-10 
miscellaneous instruction set 8-12 
miscellaneous program contr~l, 

8-12 
program control, 8-10 
signed conditional branch, 8-11 
trap and interrupt, 8-11 
unsigned conditional branch, 8-11 

EEPROM configuration parameters 2-7 
EMT instruction, 8-57 • 
Error detection 

during boot command, 4-5 
Error messages. 4-60 

console terminal, 4-46 

F 
Floating exception code and addressing 

registers, 9-6 
Floating-point data, 9-2 
Floating-point data formats, 9-1 

formats 
Floating-point data, 9-2 
Floating-point data formats, 9-1 
Floating point zero, 9-1 
Nonvanishing floating-point 

numbers, 9-1 
Undefined variables, 9-2 

Floating-point instruction 
Format 

ABSF/ABSD, 9-11 
ADDF/ADDD, 9-12 
CFCC, 9-13 
CLRF/CLRD, 9-13 
CMPF/CMPD, 9-14 
DIVFIDIVD, 9-15 
LDCDFILDCFD, 9-16 
LDCIFILDCIDILDCLFILDCLD, 

9-17 
LDEXP, 9--18 
LDFILDD, 9-19 



Floating-point instruction 
Fonnat (Cont.) 

LDFPS, 9-19 
MODFIMODD, 9-20 
MULFIMULD, 9-22 
NEGFINEGD, 9-23 
SETD, 9-23 
SETF, 9-24 
SETI, 9-24 
SETL, 9-24 
STCFD/STCDF, 9-25 
STCFIISTCFUSTCDIISTCDL, 

. 9-26 
STEXP, 9-27 
STFPS, 9-28 
STF/STD, 9-27 
STST, 9-28 
SUBF/SUBD, 9-29 
TSTFITSTD, 9-30 

Float~ng-po~nt instruction addressing, 9-7 
FloatIng-pOInt status register (FPS) 9-2 
Floating-point zero, 9-1 ' 
Force dialog mode, 2-6 
Formats 

types of 
Floating-point data formats, 9-1 

to 9-2 
FPJ11, 1-1 

G 
General registers, 1-4 

H 
HALT instruction, 8-65 
Hard copy commands 

TOY, 4-35 
Hard copy tenninal support, 4-2 

Immediate mode, 7-17 
INC instruction, 8-15 
Index-deferred, 7-14 
Index-mode, 7-11 
Instruction fonnats, 8-4 
Instructions 

types of 
double-operand, 8-30 to 8-40 
Floating point, 9-9 to 9-30 
miscellaneous, 8-65 to 8-68 
Program control, 8-41 to 8-63 
single-operand, 8-13 to 8-29 

Instruction set 
functional list of 

double-operand, 8-10 to 8-12 
single-operand, 8-9 

Instruction set list, 8-1 
Interrupt 

nesting, 10-13 

Index 3 

Interrupt (Cont.) 
service routines, 10-12 

Interrupt protocol, 5-17 
Interrupts, 1-8, 5-16, 10-12 
Interrupts under memory management, 

1-15 
Interrupt vector timeouts 1-11 
lOT instruction, 8-59 ' 

J 
JMP instruction, 8-52 
JSR instruction, 8-53 
Jump and subroutine instructions, 8-52 
Jumpers for +5 V power source selection 

2-3 ' 

K 
KDJ11-E 

troubleshooting, 4-63 
KDJ11-E CPU Module 

troubleshooting, 4-63 
KDJ11-E module features, 1-1 
KDJ11-E serial line units, 1-33 
Kernel protection, 1-4 

L 
LDCDF instruction, 9-16 
LDCIF instruction, 9-17 
LDEXP instruction, 9-18 
LDF instruction, 9-19 
LDFPS instruction, 9-19 
Looping techniques, 10-37 
LSI-II based systems, 2-8 
LSI-II bus, 5-1 
LSI bus signals, 6-2 

M 
Mapping, 16-bit, 1-12 
Mapping, 18-Bit, 1-13 
Mapping, 22-hit, 1-13 
MARK instruction, 8-61 
Memory management, 1-11 

types of 
registers, 1-17 to 1-24 

Memory management register 
Memory management register 0, 1-22 
Memory management register 1, 1-23 
Memory management register 2, 1-24 
Memory management register 3, 1-24 
Memory management registers, 1-17 
Page address register, 1-20 
Page descriptor register, 1-21 

Memory mapping, 1-12 
Memory pages - nonconsecutive, 1-27 
Memory pages - stack, 1-28 
Memory page - typical, 1-25 
Menu 



4 Index 

Menu (Cont.) 
map) 4-45 
self-test) 4-42 
setup) 4-36 
user boot) 4-43 

MFPD instruction) 8-68 
MFPS instruction, 8-28 
MFPl' instruction, 8-67 
MODF instruction, 9-20 
Module finger identificatioDt 2-9 
Module installation procedure, 2-16 
MOV instruction, 8-30 
MTPD instruction, 8-67 
MTPS instruction) 8-29 
MULF instruction, 9-22 
MUL instruction, 8-36 
Multiple faults, 1-25 
Multiple-precision, 8-24 

N 
NEGF instruction) 9-23 
NEG instruction, 8-16 
Nonvanishing floating-point numbers, 9-1 
No SACK timeouts, 1-11 

o 
ODT 

console command set, 3-2 
entry conditions, 3-1 
timeout, 3-7 

Operation overview, 4-1 

P 
PMI 

bus master signals) 6-1 
interface, 6-1 
interrupt protocol, 6-13 
power-uplpower-down, 6-13 
slave signals, 6-1 
UNffiUS adapter signals) 6-1 

PMI data transfers, 1-32, 6-8 
PMI operation 

in an LSI-II system, 6-5 
in a UNffiUS system, 6-5 

PMI protocol, 1-32 
Position-independent, 7-17 
Power supply loading, 5-31 
Private memory interconnect, 1-32 
Processor status word, 1-5 
Processor traps, 10-21 

trap instructions) 10-22 
use of macro calls, 10-23 

Program control instruction 
format 

BCC,8-46 
BCS, 8-46 
BEQ, 8-44 
BGE, 8-48 

Program control instruction 
format (Cont.) 

BOT, 8-49 
BBI, 8-50· 
BBIS, 8-51 
BLE, 8-49 
BLO, 8-51 
BLOS,8-50 
BLT, 8-48 
BMI) 8-45 
BNE,8-43 
BPL) 8-44 
BPl',8-58 
B~ 8-42 
BVC, 8-45 
CSM, 8-63 
EMT, 8-57 
HALT) 8-65 
lOT) 8-59 
JMP,8-52 
JS~ 8-53 
MARK, 8-61 
MFPD,MFPI, 8-68 
MFPl') 8-67 
MTPD,MTPI, 8-67 
RESET, 8-66 
RTI, 8-59 
RTS, 8-55 
RTT) 8-60 
SOB, 8-56 
SPL, 8-62 
Trap, 8-58 
WAIT, 8-66 

Program controls (miscellaneous), 8-61 
Program counter) 1-5 
Program interrupt request register, 1-7 
Programming 

PDP-II examples, 10-29 
peripherals, 10-28 
the processor status word, 10-28 

PSWoperators, 8-28 

R 
Recursion) 10-19 
Red stack aborts, 1-11 
Reentrancy, 10-13 
Reentrant 

reentrant code, 10-14 
writing reentrant code, 10-15 

Register - additional status (17777526), 
1-46 

Register - cache control (17777746), 1-30 
Register - configuration and display 

(17777524), 1-45 . 
Register - control/status (17777520), 1-42 
Register-deferred, 7-13 
Register - hit/miss (17777752), 1-31 
Register - line frequency clock and status 

(17777546), 1-47 • 
Register - Maintenance (17777750), 1-48 



Register - memory system error 
(17777744), 1-29 

Register-mode, 7-5 
Register - page address, 1-20 
Register - page control (17777522), 1-44 
Register - parity CSR (17772100), 1-31 
Register - receiver data buffer (1777xxx2), 

1--37 
Register - receiver status register 

(1777xxxO), 1--36 
Register - transmitter data buffer 

(177xxx6), 1--39 
Register - transmitter status (1777xxx4), 

1--38 
Relative-addressing mode, 7-19 
Relative-deferred addressing mode, 7-20 
RESET instruction, 8-66' 
Restricted LSI-II systems, 2-8 
ROL instruction, 8-22 
ROM, 4-1 
ROM mode, 2-6 
ROR instruction, 8-21 
RTI instruction, 8-59 
RTS instruction, 8-55 
RTT instruction, 8-60 

S 
SBC instruction, 8-26 
Self-test 

KDJl1-E, 4-46 
SETD instruction, 9-23 
SETF instruction, 9-24 
SETI instruction, 9-24 
SETL instruction, 9-24 
Setup 

worksheet, A-I 
Setup mode 

command 10 - load EEPROM boot 
program into memory, 4-31 

command 11 - edit or create EEPROM 
boot program, 4-31 

command 12 - save a boot program in 
the EEPROM, 4-33 

command 13 - delete a saved EEPROM 
boot program, 4-34 

command 14 - enter ROM ODT, 4-34 
command 1 - exit, 4-12 
command 2 - select configuration 

parameters, 4-12 
command 3 - select diagnostic 

configuration, 4-21 
command 4 - select serial line 

parameters, 4-23 
command 5 - select boot parameters, 

4-25 
command 6 - list available boot 

programs, 4-27 
command 7 - factory setting, 4-29 
command 8 - save the setup table in 

the EEPROM, 4-30 

Index 5 

Setup mode (Cont.) 
command 9 - load EEPROM data into 

the setup table, 4-30 
Shifts and rotates, 8-19 
Single-operand addressing, 7-2 
Single-operand instruction 

format 
ADC,ADCB, 8-25 
ASL,ASLB, 8-19 
ASR,ASRB, 8-19 
CLR,CLRB, 8-13 
COM, COMB, 8-14 
DEC,DECB, 8-15 
INC,INCB, 8-15 
MFPS, 8-28 
MTPS, 8-29 
NEG,NEGB, 8-16 
ROL,ROLB, 8-22 
ROR,RORB, 8-21 
SBC,SBCB, 8-26 
SWAB, 8-23 
SXT, 8-27 
TST,TSTB, 8-17 
TSTSET, 8-18 
WRTLCK, 8-18 

Single-operand instruction set 
list 

general, 8-9 
multiple-precision, 8-9 
PSW operators, 8-9 
shift and rotate, ~ 

SOB instruction, 8-56 
Source-operand, 7-3 
Specification 

signal level, 5-24 
SPL instruction, 8-62 
Stack 

deleting items from a stack, 10-7 
popping from a stack, 10-6 
pushing onto a stack, 10-5 
return from a subroutine, 10-11 
stack use (examples), 10-9 
stack uses, 10-8 
subroutine linkage, 10-11 

Stack limit protection, 1-4 
Stack pointer, 1-4 
Stacks, 10-5 
STCFD instruction, 9-25 
STCFI instruction, 9-26 
STEXP instruction, 9-27 
STF instruction, 9-27 
STFPS instruction, 9-28 
STST instruction, 9-28 
SUBF instruction, 9-29 
SUB instruction, 8-33 
Sunset loops, 1-10 
SWAB instruction, 8-23 
Switchpack, 2-3 
SXT instruction, 8-27 



6 Index 

T 
~rminal interface, 3-1 
'Thrms used in instruction definitions, 

9-10 
TOY Clock 

programming information, 1-50 
Time of Year, 1-49 

TOY command 
hard copy, 4-35 

Transfer - bloclt data in, 1-33 
Transfer - Data inlData in pause, 1-33 
Transfer - data out/data out byte, 1-33 
Transfening control to non-digital boot 

modules (Q-bus), 4-4 
Transfening control to non-digital boot 

modules (UNIBUS), 4-4 
Trap instruction, 8-58 
Traps, 8-56 

Reserved Instruction traps 
trace traps, 8-63 

Troubleshooting 
CPU module, 4-63 

TSTF instruction, 9-30 
TST instruction, 8-17 
TSTSET instruction, 8-18 

U 
Undefined variables, 9-2 
UNIBUS based systems, 2-9 

V 
Virtual addressing, 1-14 

W 
WAIT instruction, 8-66 
WRTLCK instruction, 8-18 

X 
XOR instruction, 8-40 


