CAPS-11 USER’S GUIDE
DEC-11-OTUGA-A-D

dlilgliltlall

-
St
n
-
-

-e "

CAPS-11 USER’'S GUIDE
DEC-11-OTUGA-A-D

digital equipment corporation - maynard, massachusetts

First Printing, Cctober, 1973

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Eguipment
Corporation. Digital Egquipment Corporation assumes no responsibility
for any errors that may appesar in this manual,

The software described in this document is furnished to the purchaser
under a license fcr use on a single computer system and can be copled
{with inclusion of DIGITAL's copyright notice) only for use in such
system, erxcept as may otherwise be provided in writing by DIGITAL,

Digital Fguipment Corporation assumes no responsibility for the use

or reliabillity of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1573 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's ¢ritical evaluation, All comments
received will be considered when subsequent documents are prepared.

The following are trademarks of Digital Eguipment Corporation:

CDF GISGITAL INDAC P5/8

COMPUTER LAB DNC KAl{) QUICKFOQINT

COMSYST EDGRIN LAB-8 RAD-8

COMTEX EDOSYBTEM LAB~8/e RSTE

noT PLIFP CHIP LaB-K REX

DEC FOCAL OMNIBUS RTHM

DECCOM GLC-8 C8/8 RT-11

DECTAPE IDAC PDP SABR

DIBCL IDACS PHA TYPESET B
UNIBUS

12/76-15

CONTENTS

Page
CHAPTER 1 THE CAPS~11 PROGRAMMING SYSTEM
1.1 SYSTEM CONFIGURATION 1-2
1.1,1 Hardware Components 1-2
1.,1.2 Software Components 1=-2
1.2 WHAT IS A CAPS-1l CASSETTE? 1=3
1.2.1 The Format of a Cassette 1-4
1.2.2 The Sentinel Pile 1=5
1.3 THE SYSTEM CASSETTE 1-5
1.4 MOIMITING AND DISMOUNTING A CASSETTE 1-5
1.5 CONSBOLE OPERATION 1-7
1.5.,1 PDOP~11/10 PROGRAMMER'S CONSOLE 1-7
1.5.2 OPERATING 'THE CONSOLE TERMINAL (IA30 DECwriter) 1-10
1.5.3 Operating the LS511 Line Printer 1-12
CHAPTER 2 PROGRAMMING THE PDP-11
2.1 GENERAMAL SYSTEM STRUCTURE 2-1
2.1 Status Register Format 2-3
2.1.2 UNIBUS 2=3
2.1.3 Device Interrupts 2=3
2.1.4 Instruction Set 2-4
2.1.5 Addressing 2-4
2.2 INSTRUCTION CAPABILITY 2-5
2.3 PROCESSOR USE OF BETACKS 2-9
2.3.1 Subroutines 2-9
2,3.2 Interrupts 2-10
2.3.3 Traps 2-10
CHAPTER 3 USING THE CAPS~11 MONITOR
3.1 LOADING INSTRUCTIONS 3-1
3.2 SYSTEH QONVENTIONS 3~3
3.2.1 Pile Formats 3=3
3,2,2 Input/0utput bevices 3-4
3,2,3 Filenames and Extensions 3-4
3.2.4 Entering I/0 Information 3=6
3.2.5 Special Characters and Commands 3-8
3.2.6 Error Message Format 3=10
3.3 KEYBGARD MONTITOR COMMANDS 3-11
3.3.2 LOAD Command 3-13
2.3.3 START Command 3-13
3.3.4 DATE Command 3-14

Joubn
i
-

CHAPTER

CHAPTER

L) » * K

L I I I

L R A b Ga ad

P R TN T
-l W AN Bl B e

L L% Lo L b L R Gl L LY [7% IE WS VL FE
- - L]
53 174

[#
M
-~

=~

b e
. & & e
. o+ e
A W

¥
*

B D N o D e B e o
o = & w4 & B 2 B B 8 @ *

o 5] B B i el PN P e [f b bed pd ped
= ADLD g U e L) N e

LI I N 2 2 I R N e]

E-3
[

-3
L]

DIRECTORY Command
ZERD Command
SENTINEL Command
VERSION Commandg

KEYBOARD MONITOR SECTIONS

Casgette Bootstrap (CBOOT)

Resident Monitor {RESMON)

Cassette Loader for CAPS-11 {(CLODL1}
Command String Interpreter {CSI)
Cassette Absolute Loader (CABLDR)
Keyboard Listener (KBL)

System Communication (SYSCOM)

USER PROGRAM LOADING PROCESS
NOTES ON DEVICE HANDLERS

KEYBOARD MONITOR ERROR MESSAGES

EDITING THE SOURCE PROGRAM

CALLING AND USING THE EDITOR
Editor Options

Input and Output Specifications
kestarting the Editor

MODES OF QPERATION
SPECIAL KEY COMMANDS
COMMAND STRUCTURE
Arguments

Command Strings
The Current Location Pointer

Character and Line Oriented Command Properties

Pepetitive Execution

Input and Cutput Commands
Pointer Relocation Commands
Search Commands

Text Modification Commands
Utility Commands

ERROR MESSAGES

EXAMPLE USING THE EDITOR

ASSEMBLING THE SOURCE PROGRAM
CALLING AND USTRNG THE ASSEMBLER
Assembler Options

Input and Output Specifications
Reastarting the Assembler

CHARACTER SBET

iv

Page

3-14
3-15
3-15
3-16

d-16
3-17
3-17
3-18
3-18
3~18
3-18
3-18

3-21
3wd3
324

o

wmaamwminn

& &k & # =

L R LN I L R RN R R IR R I RN I K | o O WO W en e A e e e s L2 Ll b L W

L N A

N b L B

® K a4 % A

L] L] L] [
B) N

o LA LN e LR L U
[T T S T R)
¢ & & % =
Uk (9 B

[LEVURUNGRERERERURUET N R R R N
% F B OB & B N B OB 4 N N S &

el ancl o B ol o Y=~ - RO IR R IR WS X Y

W= O

&« ® & L L] [LI L] . ¥ &+ B

ot ot b =t WD OO] AN ST AW G N

Wk o

- . 4 = " = % ¥ [] LI »

AL N A D $O 000000000000 00 ND 0N 000000

. & & @ [IR B B) L LI

WA W win AL AAN LA LA N R AR AN

a4 % 9 LI

. ® o« L]
B L R et

Page

STATEMENTS Bud

Labels Swd

Operators 5-5

Operands 5=6

Comments 5-6

Pormat Control 5«6

SYMBOLS G2

Permanent Symbols 5«17

User-Defined Symbgols 5-7

Directly Assigning Values to Symbols S-8

Register Symbols Sm9

EXPRESSTIONS 5~10
Arithmetic and Logical Operators 5-11
Humbers 5-11
ASCII Conversion 512
Assembly Location Counter 5=12
Modes of Expressions 5=14
RELOCATION AND LINKING 5-1%
ADDRESSING MODES 5«16
Register Mode 5«16
Deferred Register Mode 5«17
Autoincrement Mode 5=17
Deferred Autoincrement Mode 5«18
Autodecrement Mode 5-18
Deferrred Autodecrement Mode 5-18
Index Moxde 5~19
Peferred Index Mode 5«19
Immediate Mode 5-~19
Absolute Mode 5-20
Relative Mode 5-20
Deferred Relative Mode 5=21
Table of Mode Forms and Codes 5~21
Instruction PForms Bwd3
ASSEMBLER DIRECTIVES 5=24
JTITLE o~24
LGILOBL 5~25
Program Section Directives 5~25
«E{?‘f 5"26
.EVEN =26
+EHD 5«27
<WORD 5=27
+BYTE 5=28
LASCII 5«28
+RADSD 5=-29
~LIMIT 5«30
Listing Control Directives 5=30
Conditional Assembly Directives 5~30
WRITING POSITION INDEPENDENT OODE (PIC) 5=32
Position Independent Modes 5=32
Absolute Modes 5-33
Writing Automatic PIC 5-34
Writing non-Automatic PIC 5«35

v

Page

5.10 LOADING UNUSED TRAP VECTORS 5-36
5.11 CODING TECHNIQUES 5-137
5.11.1 Altering Register Contents 5=-37
5.11.2 Subroutines 5-38
5.12 ASSEMBLY DIALOGUE 5~44
5.13 ASSEMBLY LISTING 5-45
5.14 OBJECT MODULE OUTPUT 5-46
5.14.1 Global Symbol Directory 5-46
5.14.2 Text Blocks 5-46
5.14.3 Relocation Directory 5-46
5.15 ERROR CODES 5-47
CHAPTER 6 LINKING ASSEMBLED PROGRAMS
6.1 CALLING AND USING THE LINKER 6=2
6.1,1 Linker Options 6=2
6,1,2 Input and OCutput Specifications 6-5
6.1.3 Restarting the Linker 6-5
6.2 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS 6-6
6,2.1 Named and Unnamed Control Sections 6-6
6.3 GLOBAL SYMBOLS 6-7
6.4 INPUT AND OUTPUT 6=7
6.4.1 Object Modules 6-7
6.4,2 Load Module 6-7
6.4,3 Load Map 6-8
6.5 ERROR MESS5AGES 6-9
6.5.1 Non-Fatal Errors 6-9
6.5.2 Fatal Errors 6-11
6.6 EXAMPLE USING THE LINKER 6-13
CHAPTER 7 DEBUGGING THE OBECT PROGRAM
7.1 CALLING AND USING ODT 7-1
7.1.1 ODT Options 7=2
7.1.2 Input/Output Specifications 7=2
7.1.3 Restarting ODT 7=2
7.2 REILOCATION 7-2
7.2.1 Relocatable Expressions 7=3
7.3 COMMANDS AND FUNCTIONS 7-4
7.3.1 Printout Formats 1=4
7.3.2 Opening, Changing, and Closing Locations 7-5
7.3.3 Accessing General Registers (-7 7-8
7.3.4 Accessing Internal Registers 7-8
7.3.5 Radix 50 Mode, X 7-9
7.3.6 Breakpoints 7-11

vi

FPage

7.3.7 Running the Program 7-11
7.3.8 8ingle-Instruction Mode 7=13
7.3.9 Searches 7-14
7.3.10 The Constant Ba2gister F15
7.3.11 Memory Block Initialization T=15
7.3.,12 <Calculating Offsets 7=-16
7.3.13 Relocation Register Commands 717
7.3.14 The Relccation Calculators 7-18
7.3.15 ODT's Priority Level 7-18
7.3.16 ASCII Input and Output 7-19
7.4 PROGRAMMING CONSIDERATIONS T-20
7.4.1 Punctional Organization T=20
7.4.2 Breakpoints 7=-20
7.4.3 Sgarches 7=-25
7.5 ERROR DETECTION F=26
7.6 EXAMPLE USING OpT =26
CHAPTER 8 PERIPHERAL INTERCHANGE PROGRAM
8.1 CALLING ARD USIRG PIPD 8-~1
8.1.1 PIP Options 8~1
8,1.2 Input and Output Specifications g2
8.1.3 Restarting PIP §~5
8.2 ERROR MESSAGES 8-5
CHAPTER & INPUT/OUTPUT PROGRAMMING
5.1 COMAUNICATING WITH RESMON 9-1
9.2 DEVICE ASSIGHMENTS 9-3
3.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS =3
5.3.1 Formatted/Unformatted I/0 {(excluding Cassette) §-3
9,3.2 Unformatted Cassette Gow'7
9.4 MODES Gl
5,4,1 Formatted ASCIT 9-8
9.4,.2 Unformatted ASCII 9-11
9,.4.3 Formatted Binary G111
3.4.4 Unformatted Binary 912
9.5 HOR=-DATA TRANSFER COMMANDS 912
2.5.1 KESET 9-13
9,5.2 REETART 9-13
9,5.3 CHTRLO 9-13
9.6 CASSETTE FILE I/0 COMMANDS Qw14
9.6.1 SEEK Gw14
9.6.3 ENTER 9~-16
9.6.4 CLOSE 9~-18
8.7 DATA TRANSFER COMMANDS 9-19
4,7.1 READ 919

vil

APPENDIX

APPENDIX

APPENDIX

4 WRITE

3 Bevice Conflicts in Data Transfer Commands
4 WAITR (Wait, Return)

o5 Single Buffer Transfer on (me Device

. bouble Buffering

»8 CASSETTE 1/0 PRIMITIVES
9.9 ERROR MESSAGES
9.10 EXAMPLE OF PROGRAM USING RESMON

APPENDICES
A ARCITI CHARACTER CODES
A, 1 KEYBOARD DIFFERENCES
R.2 CHARACTER CODES
B ASSEMBLY LANGUAGE SUMMARY
B.1 TERMINATORS
B.2 ADDRESS MODE SYNTAX
B.3 INSTRUCTIONS
B.3.1 Douhle Operand Instructions
B.3.2 Single Operand Instructions
B.3.3 Rotate/Shift
B.3.4 Operation Instructions
B.3.5 Branch Instructions
B,3.6 Suhroutine Call
B.3.7 Subroutine Return
B.4 ASSEMBLER DIRECTIVES
BE.4.1 Conditional Directives
c COMMAND AND ERROR MESSAGE SUMMARIES
c.1l KEYBOARD MONITOR
C.2 EDITOR
C.3 ASSEMBLER
C.d LINKER
.5 o
C.6 PIP
C.7 RESMON

viii

Page
9=-20
=21
9=22
Q22
9=23
9-24
9-25

9-26

A~1

A2

B~1
B-2
B=3
B=4
B=4
B=5
B=f
Bw?
B~8
B-3

B9
Bw10

Cc-1

C-8

C-12
C-16
c-19
Cw2d

Page

APPENDIX D SYSTEM DEMONSTRATION
D1 SY¥STEM START-UP D]
D.2 S¥YSTEM DEMONSTRATION D2
APPFENDIX E CAPS=11 SOFTWARE SUPPORT INFORMATION
E.1l CAPS-11 KEYBOARD MONITOR LOADING PROCESS E=1
E.1l.1 Cagssette Bootstrap (CBOOT) E~-1
E. 1.2 Cassette Loader (CTLOAD, 8YS) E-2
£.1.3 Cassette Monitor (CAPS11.S5YSB) E-6
E.2 BUILDING MEMORY CONFIGURATIONS E-11l
E,2.1 Reconfiguring the Monitor E-l2
E.2.2 Reconfiguring PAL E-14
E.2.3 Reconfiguring LINK E~14
B.2.4 Reconfiguring QDT E~15
E.2.5 rReconfiguring PIP and ERIT E~15
E.2.6 Creating a New System Cassette E-15
APPENDIX F CASSETTE STANDARDS
F.1 INTRODUCTION Fwd
F.2 DEFINITIONS Pul
F.3 THE FULL STANDARD Pw2
F.3.1 Applicability -2
F,3,2 The Header Record F=3
F.3.3 Logical End of Tape F-5
P.4 THE RESTRICTED STANDARD Fwb
F.4,1 Applicability Pt
F.4.2 rRestrictions P~8
F.4.3 Inclusions Fmg
F.5 SUPPORT FOR MULTI=-VOLUME FILES Fwb
APPENDIX G CAPS~-11 ASSEMBLY INSTRUCTIONS
G.l GENERAL INSTRUCTIONS G=1
G,2 ASSEMBLY COMMAND LINES Gm2
G.2.1 ¥evboard Listener ({XBL} G2
Gela2 CABLDR G2
G.2,3 Command String Interpreter (CSI) G=3
G.2,4 CLOD11 G 3
G.2,5 RESMON G=3
G.2.6 CBOOT G-3
Ge2.7 PIP G=3
G.2.8 C8INBYP G4
Gedod EDIT . G4
G,2,10 LINK G4
G.2.11 CSITAC Gm4q
G.2.12 QT Gwb

ix

Number

1-1
1-2

2=1

3=-1
3-2
3-3
34
3-5
k147
I
3=8

4=1
4m2
4-3

el
5-2
S5=3
Smq
b

&=l
6-2

Tl
-2
T3

H

i

i
WA e AT el B I3 ot

mm
1114
o 4 i

b
E
[

3 PAL

4 PBSYM (8K PAL Symbol Table)

5 Pl2SYM (12K PAL Symbol Tabhle)
6 Pl6SYM (16K PAL Symbol Table)

TRBLES

PIP-11/10 Control Switches
1511 (perator Panel Functions

Addressing Modes

CBOOT (QCROOTY Instructions
Permanent Device Names

CapPsS-11 Default Extensions

CS8I Options

Special Characters/Commands
General Locations

Special Locations

Keyboard Monitor Error Messages

EDRIT RKey Commands
Command Arguments
EDIT Error Messages

PAL Options

Mode Forms and Codes
Instruction Operand Fields
Trap Vectors

Assembler Error Codes

Linker Options
Linker Hon=Fatal Error Messages
Linker Fatal Error Messages

Forms of Relocatable Expressions
Internal Registers
Radix 50 Terminators

PIF Options
PIP Error Messages

Device Assignments

RESMON Non-Fatal Error Codes
Device Conflicts

Casgsette 170 Functions
RESMON Error Messages

Absolute Binary Load Block Format
CABLDR Switch Reqgister Settings
CABLDR Halts

Monitor /H Option Responses

Linker and ODT /H Option Responses
System Cassette Labeling Responses

Standard File Types

Page

Gm 3
G=5
G-5
Gw b

Page

1~9
1~13

32
3-4
33
3-7
3-9
3=~19
3~20
3-24

4-4
4-26

-2

5-22
5«23
5-37
G473

f-3
6-9
6-11

73
=9
7=10

8=-2
8-35

9w 3
3=5
9«21
H-24
Y25

Ew3
E-4
E-q
E~13
E-15
Ewld

Fwg

%

h

Number

1-~1
1=-2
1-3
1-4
1~5
1-6
17
1-8
1-3

2w}
2m2
Z=3
2—4

3-1

G2

Ewl
E=2
E-13
E=4
E~5

Pwl

FIGURES

CAPE~11 Programming System
CAPS~11 Casgette

Mounting a Cassstte

The PDP-11/10 Console

LAJO DECwriter {Serial)

LA30 DECwriter (Serial) Xeyboard
LA30 DECwriter {Parallel)

L8ll Line Printer

L&l]l Operator Panel

System Diagram

Processory Status Register

Illustration of Push and Pop Operations
Hested Device Servicing

CAPS~1l Memory Map

Mode Byte
ftatus Byte

CTLOAD . 8YS

CAPS)) . BY8

CAPS~1l Loading Process
CBOOT

OUCBOOT

File header Record Format

xi

E-6
E=7
E-8
E-10

F-3

[

%

PREFACE

This manual describes the TI'NP=11 Cassette Prograrming System and
provides all the information necessary for normal usage. It requires
no prior experience on a PDP-11 computer, but does agssume some
exposure to assembly language proorarming and computer systems in
general. Upon receiving his syastem, the user should first read
through the entire CAPS~1l manual, then reconfigure his system (if
necesgary) according to the instructions provided in Appendix F;
lastly, he should trv the dermonstration pregram yun in Appendix ID.

Frequent referenge is made to two supplerentary handbooks which the
nger should alse receive with his system. These are: THE PDP-11
PERIPHERALS AND INTERFACING HANDRODK and THE POP=-11 PROCESSOR
HANDDCOK. The latter handbook may be any one of several Processor
Handbooks, each geared to a particular PDP«11 Processor {11/20/15/R20,
11/45, etc.):; the handbhook received with a CAPS~11 System depends upon
the processor purchased.

If the user intends to write his own cassette handler or if he will
use Monitor cassette prinitives, he should familiarize himself with
the TAll CASSETTE INTERFACE SYSTEM manual (DEC~1l1-BTACA-A~D), the TU&LD
TASSETTE TAPE TRAHSPORT MAINTEHARCE MANUAL (DEC-00-TUG0-DA), and the
Cassette Standard {(Appendiyx F of this manual).

Several different configurations are possible with the Cassette
Frogramming System, For documentation purposes, the following
configuration is assuned: PDP=-11/10 processor, LA30 DECwriter, LS11
line printer.

Documentation conventions include the followineg:

1. Actual computer output is used in examples whersver possible,
Then necesgsary, corputer printout is underlined +to
differentiate it from user responses,

2., To avoid confusion, a line feed is represented in the text as
| : a carriage return is represented by 3 . Unless
otherwvise indicated, all commands and command ™ strings are
terminated by a carriage return,

3. Terminal, conscle terminal, and teleprinter are general terms
ugsed throughout the docurmentation to represent any one of the
followino: LA30 DECwriter, VTO05 Display, LT33 or 35 Teletype.

4, Several characters used in system cormmands are produced by a
corbination of two keys typed at the same time. Generally,
the cormbinations are SHIFT and some other key (such as SHIFT
and N to produce the uparrow character on an LT33 or 35} or
CTRL and another key {for example, CTRL and O produces a
command which causes suppression of teleprinter ocutput},
These key combinations are documented as SHIPT/N, OTRL/0O,
etc., respectively.

xiii

Portions of command strings which are enclosed in sguare
krackets are optional--the user may type them or not as he
chooses without chanaing the intention of the cornmand.,

Certain keyboard variances prevail among teleprinters which
may be used as the console terminal in a CAPR-1l System;
these concern labeling of keyvboard keys and characters output
upon receipt of particular ASCIT character codes. Refer to
Appendix A for a list of possible differences,.

®xiv

CHAPTER 1

THE CAPS-11 PROGRAMMING SYSTEM

The PDP-11 cCassette Prograrmming Svstem (CAPS=-11) is a small
programming system for the PDP=11 computer designed around the use of
cassettes for program and data storage. CAPS=11 provides the user
with the capability of performing all file +transfers, program
development, loadina, and storage wvia cassette, The system also
provides minimal support for using paper tape by allowina the user who
has paper tape programs to transfer these programs to cassette and
vice versa.

CAPS-11 provides the user with a Keybhoard Monitor, I/0 facilities at
the Monitor 1level, and a 1librarv of svstem proaorams, including a
machine language assembler, an editor, and a debuoginag program.

Figure 1-1 CAPS=11 Programming System

1.1 SYSTEM CONFIGURATION

A CaP3~l1l minimal system confiquration consists of the following
hardware and software components, Optional memory and peripheral
devices may be added as desired,

1.1.1 Hardware Components

The PpP-11 Cassette Prograrming System is built around any PRP-11
processor with one (only) TAll controller, a conscle terminal {(LA3D
DECwriter, LT33 or LT35 Teletype, or VI(E DECterminal), and 8K (or as
much as 28K) of memory. A line printer ({(LPll or L8111} is optional. A
nigh«speed paper tape reader and punch are also optional and may be
used by PIP,

Section 1.5 describes operational procedures for the PDE~11/10
processor, LA30 DECwriter, and LS1ll line printer, as these devices are
considered representative of a standard CAPS~1l System configuration.

1.,1,2 Software Components

CAPS=11 software is provided on three cassettes--two OBJ Cassettes and
a System Cassette, The OBJ Cassettes are used exclusively for
changing and building system configurations and are explained in
Appendix E. A brief description of the software package stored on the
System Cassette follows. Each program is discussed in greater detail
later in the manual.

1. Monitor = The Xeyboard Monitor provides cormunication between
the user and the Cassette System executive routines by
accepting commands from the console terminal kevboard, The
commands allow the user to run system and user programs, load
and start programs using maximum memory space, and ohtain
directories of cassettes,

2. 8ymbolic Bditor ~ The Editor allows the user to modify or
create source files for use as input to the Assenmbler. “The
Editor contains powerful text manipulation commands for quick
and easy editing.

3. PAL Assemhler - The Assermbler {(Program 2Assembly lLanguage)
accepts source files in the PAL machine language and
generates binary object modules {and/or assembly listings) as
output. These obiect modules can then be linked, loaded and
executed,

4, Linker - The Linker converts relocatable object modules
produced by the Assembler intoc absolute load modules for
program loading and execufion. The Linker also produces a
load map which displays the assiqned absolute addresses.

5, ODT = The ODT (On-Line Debugging Technique} program aids the
programmer in debugging his object program by allowing him to
examine, change, and run any portion of his program on=line
using giople commands typed on the console terminal.

6. RESHOM - The Input/Output package (RPSMON} provides routines
far all input/output prograrming in the CAPS-~11 System, Uger
pPrograms can communicate with RESHON (via 10T instructions
which utilize RESMON} to create cassette files and perform
all consele terminal and line printer I/0,

7. PIP ~ PIP (Peripheral Interchanae Program} allows the user to
transfer files from one cassette to another or to the console
terminal or line printer and to delete files from cassette,
PIF also provides minimal support for paper tape usage by
allowing programs to be transferred Ffrom cassette to the
high-speed paper tape punch and from the high~speed paper
tape reader to cassette,

1.2 WHAT IS A CAPS-11 CASSLTTE?

A CAPS~11 cassette iz a magnetic tape device much like that used in a
cassette tape recorder, The tape itself and the reels it is wound on
are enclosed inside a rectancular plastic case {see Ploure 1-2),
making handling, storage, and care of the cassette c¢onvenient for the
user,

On either end of one side of the cassette are twe flexihle plastic
tabs called write-protect tabs (see A in Fioure 1-2}. There is one
tak for each end of the tape; since data should only be written in one
direction, the user will need to be concerned with only the tab
specifically marked on the cassette lahel, Depending upon the
pogition of this tab the user is able teo protect his tape against
accidental writing and destruction of data. Vhen the tah is pulled in
toward the middle of the cassette s¢ that the hole is uncovered, the
tape is write-locked; data cannot be written on it and any attempt to
do S0 will result in an error message, When the tab is pushed toward
the outside of the cassette so that the hole is covered, the tape is
write—enabled and data can be written onto it. bData can be read from
the cassette with the tab in either position,

The bottonm of the cassette (B in Figure 1-2} provides an opening vhere
the magnetic tape is expnsed. The cagsette is locked into position on
a cassette unit drive so that the tape c¢comes in c¢ontact with the
read/write head through this opening.

Both ends of the magnetic tape in a cassette consist of clear plastic
leader/trailer tape; this section of the tape is not used for
information storage purposes, but as a safeouard in handling and
storing the casgette itgelf. Since magnetic tape is susceptable to
dust and fingerprints, a cassette should always be rewound sco that the
leader/trailer tape is the only part of the tape exposed whenever the
cassette is not on a drive.

THES SR

I EITTEeE o el e

Figure 1-2 CAPS=11 Cassette

l.2.1 The Format of a Cassette

A cassette is formatted so that it consists of a sequence of one or
more files. Files on cassette are sequential, and each file is
preceded and followed by a file gap. (A gap in this sense is a fixed
length of bhlank tape.) All cassettes must start with a file gap;
information preceding the initial file gap is unreliahble.

A file consists of a sequence of one or more data records separated
from one another by a record gap. The records of any agiven file must
follow one another in succession, as there is no provision for record
linking. The first record of a file is called the header record and
contains information concerning the name of the file, 1its type,
length, and 8o on. (The Cassette Standard mav be referenced in
Appendix F.) There are approximately 600 records per cassette tape.
CAPS-11 recognizes an end-of-file by the presence of either a file gap
or clear leader following a data record.

Data records in the CAPS=11 System consist of 128 (decimal) cassette
bytes; a byte 1in turn consists of eight bits each representing a
binary zero or one. Characters and numbers are stored in bytes using
the standard ASCII character codes (sce Appendix A) and binary
notation.

The number of records of information on a cassectte tape may be
estimated by the user. On the outside of the cassette case is a clear
plastic window (C in Fiqure 1-2). Along the bottom of this window is
a series of marks; each mark represents about 50 inches of maanetic
tape. inowing that approximately 2 records fit on an inch of tape,
the user 1is able to make a reasonable quess as to the length of tape
and number of records available for use. By simply glancing at the
width of the tape reel showing in the window, the user can tell

quickly if he is very c¢lose to the end., Since he is given no advance
warning of a full tape condition, the user must wvisually keep track of
the length of tape he has available, Should the tape become full
before his file +transfer has completed, another cassette may be
substituted and the transfeyr or cutput operation repeated, or the /0O
overflow option may be used te allow continuocus transfer (see Section
3.2.4 in Chapter 3),.

1.2,.2 7he Sentinel Pile

The last file on a cassette tape is called the sentinel file. This
file consists of only a 32 {decimal) byte header record and represents
the leogical endwof-tape {CAP5=1]1 alsc recognizes c¢lear trailer as
legical end—-of-tape). A sentinel file is identified by a null
character {(ASCII=000) as the first name character in the header
record. A zeroed or blank cassette tape is cne consisting of only the
sentinel file,

1.3 THE SYSTEH CASBETTE

The software discussed in Hection 1.1.2 is provided to the ugser on a
single cassette called the Systen Cassette. This is the cassette on
which the entire CAPS-1]1 System resides and which is utilized for all
normal system functions, When in wuse, the System Cassette should
alwvays be nmounted on drive 0 {the drive on the left of the TAll
controllerj; drive 0 scrves as the default device when the user fails
to specify another,

The write-~protect tal on the System Cassette should usually be in the
write«locked position so that data will not accidently be written on
it; it is suggested that the user make several copies of this cassette
as protection against loss or accidental destruction.

1.4 MOUNTING AND DISMOUNTING A CASSETTE

To mount a tape on a drive, hold the tape sc that the open part of the
cassette is to the left and the full reel ig at the top. Set the top
write~-protect tab to the desired position depending upon whether data
is to bhe written on the tape.

Open the locking bar on the cassette drive by pushing it to the right,
away Ffrom the drive {sec A in Figure 1-3}, Next hold the tape up to
the cassette drive at approximately a 45-degree angle and inscrt the
tape into the drive by applying a leftward pressure while
gimultaneously pushing the cassette onto the drive sprockets. This
bringe the tape into position against the read/write head. W%When the
cassette is properly mounted, the locking bar will automatically close
over the cassette back edge, Pigure 1-3 illustrates this procedure,

Press the rewind button on the cassette unit (see B in Pigure 1-3;
there is a rewind button for each drive), This causes the cassette to
rewind to the beginning of its leader/trailer tape, {Preasing the
rewind button a sccond time causes the cassette to rewind to the end

of the leader/trailer tape and tp the physical end-of-tape. The
cassette unit will click: this sound is almost inandible and the user

may not hear it unless he is listenina carefully, Normal usage
requires that the uger press the rewind button only once whenever he
wishes to rewind a cassctte). Even though tapes which are nnt

actively being wused on a drive should already be positioned at the
beginning, the wuser should develop the habhit of auntomatically

rewinding a cassette.

NOTE

Rewinding a cassctte 1is particularly
important since certain functions (such
as space reverse file and space reverse
block), initiated on a newly mounted
cassette prior to the use of any other
function, could cause the cassette
controller to function improperlv. This
condition is remedied whenever the START
ey is depreassed, or when a hardware
RESET instruction is executed.

then the tape has finished winding, the cassette will stop moving.
The cassette is now in place and ready for transfer operations.

Figure 1-3 Mounting a Cassette

Before removing a cassette from a drive, the tape should always be
rewound to its beginninag by pressina the rewind button on the cassette
unit, Rewinding a tape cnsures that the clear leader/trailer tape
will be the only tape exposaed at the onen part of the cassette., To
remove a cassette from the cassette drive, open the locking bar and
the cassette will pop out, When cassettes are not heing actively used
on a cassette drive, they can be stored in the small plastic boxes
provided for this purpose hv the manufacturer.

MNOTE

Before using a new cassette, or prior to
usina a cassette that has just been
shipped or accidently dropped, mount the
cassette on a drive so that the Digital
label faces the inside of the wunit and
perform a revind operation. Remove the
cassette, turn it over, and perform
another rewind operation, This packs
the tape neatlv in the cassette and
places the full tape reel at the proper
tension.

1.5 CONSOLE OPERATION

The operation of the computer console and console terminal, using the
POP=11/10 processor, ILA30 DECyriter, and LS11 1line printer as
examples, follows.

1.5.1 ©rDr-11/10 Prograrmer's Console

The PDP-11/10 console is designed to provide convenient manual control
of the systen. Using switches and keys located on the console,
programs and information can be directly inserted into memcry and
modified. The ©PDP-11/10 console is shown in Figure 1l-4, and each
switch and key is exnlained in the paraagraphs following the figure.

[Eﬂanan digital equipment corporation - magnard. massachusett s]

NEL LOCK
— | Imnnss;mm_[nsu Vo ;
[sJuwloJuloJe]slafrTelse[r][22 m‘ﬂq] o

[sT«] I [T {
HREEEENEEEEEEEEEREEEEEER H

Figure 1-4 The PDP~11/10 Console

Elements of the Console
The consnle has the following indicators and switches:

1. A R lamp which, if lit, indicates that the processor
is running

2, A lé=-bit Address and Data Register display
3. A 1l6-bit Switch Register
4, The following control switches:

a} LOAD ADRS

b} EXaM

<) CONT

d) ENABLE/HALT

e} START

£} DEP

The programmer's consonle has one 16-bit register display used for
displaying both addresses and data. When displaying the contents of
the Address Register this display register is tied directly to the
output of a 16-bit flip~flop register called the Bus Address Register
and displays the address of any data examined or deposited, It may
also be used to display the contents of the Data Register by
displaying data in any memorv location or the results of program
execution,

The programmer nmay reference l6~bit addresses by manipulating the
Switch Register. A switch in the up position is considered to have a
1 value; a switch in the down position is considered to have a G
valuea. Thus, the address indicated by the gwitch setting can then be
lsaded into the Address Register or data can be loaded into any memory
location by using the appropriate control switches as follows {when
the system is executing a proaram, the LOAD ADRS, EXMM, and DEPasit
functions are disabled to prevent any disruption of the running
program) :

Table 1-1
rpp-11/10 Control Switches

Switch Action
LORD ADRS Transfer the contents of the 16~hit
fwitch Reqgister inte the Address
Reagister,
EXAM Display in the l6-hit register

diasplay the contents of the
location stored in the Address
Ragister.

DEP Deposgit the contents of the 16-bit
Switch Reglster into the address
stored in the Address Register,
{This switch is actuated by raising
it.)

ENABLE /HALT Allew or prevent program execution,
To allow a program to run, the
gwitch must ke in the EMABLE
position {up}, Placing the switch
in the HALT oposition {(fown} will
halt the system at the end of the
current instruction,

START Begin execution of a program (the
EMABLE /HALT switch must be in the
EMABLE position). When the START
switch is depressed, it asserts a
system initialization s¢ignal and
actually starts the system when it
is released, The processor will
begin execution at the address
vhich was last loaded using the
LOAD ADRS switch,

CONT Allow the c¢omputer to continue
without initialization from
vhatever state it is in after
halting,

Operating the Control Switches

After the progessor has halted at the end of an instruction, it is
possible to examine and undate the contents of locations, To examine
a specific location, set the Switch Register to correspond to the
location's address, and press LOAD ADRS:; this transfers the contents
of the Switch Register into the Address Register. The location of the
address to Dbe examined is displaved in the lé6-bit register displav.
The user can then depress LXAM, and the data in that location will
appear in the register display,

HOTE

If the user attempts to examine data
from or deposit data into a nonexistent
memory location, an error will occur and
the register display will raflect the
contents of location 000004 (the trap
location for references to nonexistent
logations). To verify that this trap
has ocourred, deposit some numher other
than four in the location. If four is
still indicated, either nothing is
assioned to that location or whatever is
aseianed is not workina properly,

By depressing EXAM again, the Address Register will be incremented by
two to the next word address, and the contents of this next location
may bz examined.

The examine function operates such that if LOAD ADRE is depressed and
then EXAM, the Address BRBegister will not be incremented, However,
successive use of the FMAM switch increrments the Address Begister by
two for each depression,

If the user finds an incorrect entry in the Data Begister, he can
change it by setting the correct data in the Switch Reqgister and
raising the NEP switch, The Address Register will not increment when
this data is deposited, Therefore, by pressing the EXAM switch the
user can examine (verify) the data just deposited, Pressing IXAM a
second tire will increment the register to the next word address,

when performing consecutive examines or deposits as previously
mentioned, the address will increment by two ©0 successive word
lecationas. However, when examnining the general~purpose registers
{rO-R7), the system will only imcrement by one.

To start a program after it is loaded into memory, =met the starting
address of the program in the Switch Register and press LOAD ADRS, Be
sure that the FRABLE/HALT switch is in the ENABIE position: depress
START. The program should beqgin executing as seon as the START switch
is released,

while in the halt mode, the user may execute a sinagle instruction hy
pressing CONT, When COMYT is pressed, the console momentarily passes
control to the processor, allowing it to execute one instruction
before regaining oontrol, Fach time the CONT switch is pressed the
computer will execute one instruction.

To gstart the program again, place the ENABLF/HALT switch in the EMNABLE
pesition and press CONT,

1.5.2 Operating the Console Terminal (LA30 DECwriter)

The LA DECuriter congists of a printer and keyboard, and is
illustrated in Pigure 1-5.

1-18

decwritar |

Figure 1-5 LA30 DnCwriter (Serial)

The printer provides a typed copy of input and output at 30 characters
per second, maximum, Keyhoard functions such as TAP and RETURN and
all characters, including N\, [and], have a distinct key associated
with them (unlike the LT33 and 35 keyhoards which must use key

combinations to produce these and other characters and functions).
The keyboard is illustrated in Figure 1-6.

I0DDONEOENEEEE0
HEEEOERANEOEREEE ~
NODEENEERRODDE AR

ERDAHNCOMNENENEOCDENBD =

E s |

Figure 1-6 LA30 DECwriter (Serial) Keyhoard

On the back of the LA30 consnle stand is a switch which is used to
turn the terminal on and off, When the switch is raised, the READY
indicator larmp on the kevbpard panel 1lights to designate that the
terminal 4is ready for use, The DECwriter is shut off by pushing the
switch down.

Below the READY lamp is a key labeled LOCAL LINE FEED; while this key
is pressed, paper is advanced from the printer. The MNDE key next to
it should he set to LIME for all on-line operations; the baud rate is
generally fixed at 300 and the BAUD RATE key should he set to this
figure., Random characters will be generated if this key is not set to
match the baud rate, The remaining keys on the keyhnard are used for
producing tvped copy and are similar to those found on a typewriter
keyboard,

o B

A parallel LA30 DECwriter varies in appearence slichtly from a serial
LA2) and is pictured in Figure 1-7; the user does not have to set a

BAUD RATE or LINE key; all other operations are the same.

Am—

Picure 1-7 TLA3D DECwriter (Parallel)

1.5.3 Operating the LS11 Line Printer

The LS11 line printer may be used to output listings at a rate of
characters per scecond with as many as 132 characters per line.
unit is very compact and can sit on a small tahle.

165
The

Figure 1-8 L8111 Line Printer

The operator panel is illustrated in Fiaure 1-9 and provides the
with the fonllowing functions:

user

Table 1-2

1.511 Operator Panel Functions

Key Action
OH/OFF Pushing the key once turns the
printer on and lights the switch;
pushina the key a second tirme shuts
the printer off.
SRLECT Pushing the SELECT key enables the

TOP OF FORM

FORMS OVERRIDE

SINGLE LINE ADVANCE

Indicator

HARDWARE ALARM

printer for use.

Pushing this key causes the paper
to advance vertically allowing
manual form control,

Pushing this key allows the user tn
complete the form being printed if
the paper neaeds to be replenished
{i.e., it overrides a paper-out
condition).

Pushing this key allows the ussr to
vertically advance the paper by one
line.

Meaning

Lights to indicate a hardware
error,

PAPER OUT Lights to indicate an out-of-paper
or paper~handiing malfunction.
|- SINGLE
ON/OEF tme
SELECT AREWARE
QP QF ALARM
EON
PAPER
FORMS
OVERIf
our
Fiqure 1-~3 L5111 Operator Panel

1-13

o

.

CHAPTER 2

PROGRAMMING THE POP-11

The PDP~l1ll processor is a 1l6=bit, generalwpurvose, parallel-logic
computer using two's conplement arithmetic. Programmers can directly
address 32,768 1l6-bit words, or 65,536 8~-bhit bytes. All communication
between system components 1is done on a single high-speed bus called
the UNIBUS. Standard features of the syatem include eight
general~purpose registers which can be used as accumulators, index
registers, or address pointers; and a maulti-level automatic priority
interrupt system. A simplified hlock diagram of the PDP-11 System isg
presented in Pigure 2-=1.

this chapter gives the PDP-ll programmer an overview of system
architecture, points out wunigue hardware features, and presents
programming concepts basic to its use., Reference should also be made

to the appropriate PpP~11 PROCESSCR HANDBOOK and the PDP-11
PERIPHERALS AND INTERFACING HANDBOOK,

2.1 GENERAL 5YSTEM STRUCTURE

The architecture of a PDP~1l system and the design of its central
processor provides

gingle and double operand addressing
Full word and byte addressing

Simplified list and stack processing through auto-address
stepping [(autoincrementing and autodecrementing}

Eight programmable general~purpose registers
bata manipulation directly within external device registers

Addressing of device reglsters using normal memory reference
inastructions

Agynchronous operation of memory, processor and I/0 devices

o §

A hardware interrupt

priority structure (multi-line,

malti-level) for peripheral devices

Automatic interrupt identification without device polling

Cycle stealing direct memory access for high-speed data
transfer devices

pirect addressing of 32X words (64K bytes), including the 4K
external page

STATUS REGISTER

1]]
PRICR rinlz]v]c
1 1
7 5 4 4 3 ¥4 1
ONTEIS poe
CONTROL ARITHMETIC GENERAL
PRICRITY UNIT PURPCSE
ARBITRATION REGISTERS

N

CENTRAL PROCESSOR

UNIBUS >—
b

QTrER PAPER LINE
DEVICES TAPE PRINTER

CONSOLE | [READ/WRITE| |READ/ONLY
CASSETTE | | [ERMINAL | | MEMORY | | MEMORY

Figure 2-1 System Diagram

Two design features of the central processor serve to increase gystem
throughputs

I.I

The eight programmable general-purpose registers within the
central processor can be used to store data and intermediate
results during the execution of a sequence of instructions.
Register~to~register addressing provides reduced execution
time for most instructions.

The ability to code two addresses within a single instruction
allows operations on data within memory. This eliminates the
need to load processor registers prior to data operations,
and greatly reduces fetch and store operations,

22

P

2.1.1 Status Register Format

7he Central Processor Status Register (PSS} contains information on the
current priority of the processeor, the result of previous operations,
and an indicator for detecting the execution of an instruction to be
trapped during debugging, The priority of the central processcr can
be set under program control to any one of eight levels. This
information is held in bits 5, 6, and 7 of the P5. Four bhits are
assigned to monitor the results of a previous instruction, These bits
are set as follows:
Bit Set

2 =-w if the regult was zero
N == if the result was negative

C -~ if the operation resulted in a
carry from the most significant bit

V -~ iF the operation resulted in an
arithmetic overflow

The T bit is usged in program debugging and can be set or cleared under
program control. If this bit i3 set when an instruction is fetched
from memory, a processor trap will ocour at the completion of the
instruction's execution.

15 & 7 5 4 3 2 1
PROCESSOR
UMUSED PRIORITY T N rd ¥

. Il L3 & i A

Pigure 2-2 Processor Status Reglster

2.1.2 UNIBUS

The UNIBUS is a key component of the PDP-1l's unigque architecture,
The wcentral processor, memory, and all peripheral devices share the
same buz, This means that device registers c¢an be addreassed as
memory, and data transfers from input to cutput devices can by-pass
the processor, No special input/output instructions exist; all PDP-11
instructions are available for I/0 operations.

2.1.3 Device Interrupts
Interrupt request lines provide for device interrupts at processor

priority levels 4 through 7. Attachments of a device to a specific
line determines the device's hardware priority, Since multiple

2~3

devices can be attached to a specific line, the priority for each is
determined by position; devices closer to the central processor have
higher priority.

Peripheral device interrupts are linked to gpecific memory locations
called "interrupt vectors®™ in such a way that device polling is
eliminated, Wwhen an interrupt occurs, the interrupt wvector supplies a
new Processor Status word (i.e,, new contents for the Processor Status
register) and a new value for the Program Counter, The new PC value
causes execution to start at the proper handler at the priority level
indjcated by the priority bits of the new Status Register,

2.1.4 Instruction Set

The instruction set (explained fully in the PDP-11 PROCESSOR HANDBOOK
and summarized in Appendix B of this manual) provides operations that
act upon 8~bit bytes and lé-bit words. Coupled with varying address
modes (Ralative, Index, Immediate, Register, Autoincremeant, or
Autodecrement, each of which ¢an be deferred) more than 400 unique
instructions are avallable. Instruction length is variable {from one
to three lé-bit words) depending upon the addressing mode(s) used,

2.1.5 Addressing

Every byte has its own unigque address. It is the instruction which
determines whether 8~bit hytes or 1l6-bit words are being referenced,
Words are addressed by their low-order (even-numbered} byte, Although
byte addressing can be to odd or even numbered addresses, referencing
words at odd numbered addresses is illegal, Bits are numbered fraom 0O
at the lowast-order bit (2{0)) , to 15 (for a word) or 7 (for a byte)
at the highest-ordexr bit (2{15) or 2(7}}.

Most data in programs is gtructured in some way, often by means of
tables consisting of the data itself or of addresses which point to
the data, The PDP-1l handles common data structures with operand
addressing modes specifically designed for each kind of access. In
addition, addressing for unstructured data permits direct random
access to all of memory. The actual formats of the modes are
described in Chapter 5, concerning the Assembler.

Registers

Addressing in the PDP=11 is done through the general registers. These
registers can be specified by preceding a number in the range 0 to 7
by &2 % sign, However, it is common practice to assign register
identities to saymbols; often RO=%0, Rl=%1l, etc. (see Chapter 5,
Section 5.4.4). Throughout this manual, reference to RO, Rl,...R7, as
well as to SP and PC, assumes such prior direct asmsignment. All eight
general registers are accessible to the programmer, but twoe of these
have additional specialized functions: R6 is the processor Stack
Pointer (SP}, and R7 iz the Program Counter (PC}. Both are discussed
in more detail later in this chapter.

24

RN

To make use of a register as an accumulator, index register, or
sequential address pointer, data needs to be transferable to and from
the register. This is accomplished using Register Mode, which
specifies that the instruction is to operate on the contents of the
indicated register itself., For example:

CLR R3 3CLEAR REGISTER 3 OF ITS CONTENTS

Address Pointers

The instruction can be made to interpret the register contents as the
address of the data to be operated on by specifying that Register Mode
be deferred. For example, if register 3 contains 1000, either
instruction:

CLR ®#R3
CLR (RM

will clear the address 1000. Moreover, if it is desired to perform
the instruction successively upon data at sequential addresses (i.e.,
in a table), Autoincrement Mode can be selected, This will
automatically increment the contents of the register after its use as
a pointer to the next seguential byte or word address. Note that
Autoincrement Mode {as well as Autodecrement Mode) is automatically
deferred one level to cause the register contents to function as a
pointer.

When it is specified that Autoincrement Mode be deferred, it 1is
deferred two levels so that the instruction interprets the
avtoincremented sequential locations as a table of addresses rather
than as a table of data, as in nondeferred Autoincrement Mode. The
instruction then operates upon the data at the addresses specified by
the table entries.

Each execution of each of the following ADD instructions increments
the value of the register contents by two to the next word address
{always an even number).

ACCUM: ADD (R®)+,(R1)+ JIF RB INITIALLY CONTAINS 1008
JAND R1 INITIALLY CONTAINS 1458,

. JTHE VALUES AT LOCATIONS 1820,
. 31802, ETC., ARE ADDED TO THOSE AT
. JLOCATIONS 1458, 1452, ETC., AND
. JTHE RESULT STORED AT 1450, ETC.
JMP ACCUM

ACCUM: ADD @CR3)+,R2 31IF R3 INITIALLY CONTAINS 10898
. 3AND LOCATION 1990 CONTAINS 3428,
. 3THE VALUE AT LOCATION 3420 IS
. JADDED TQO THE CONTENTS OF R2 AND
. JTHE RESULT IS STORED THERE. AT
. JTHE NEXT EXECUTION OF THE
. JINSTRUCTI ON», R3=1082.
JYMP ACCUM

Byte instructions such as 7T857B ({R2)+ {using Autcincrement Mode;
increment the register contents by one.

In addition to this capability of incrementing a register's contents
after their use as a pointer, an address mode complementary to this
axists, Autodecrement Mode decrements the contents of the specified
register before the contents are used as a pointer. This mode, too,
can be deferred an additional level if the table contains addresses
rather than data.

Stack Operations

Both Autoincrement and Autcdecrement Modes are used in stack
operationg. Stacks, also called push~down or last—-in-first-out lists,
are important for temporarily saving values which might otherwise be
altered, Their characteristic is that the most recent pilece of data
saved is the first to be restored. The PDP~11 processor makes use of
gtack structure &0 sgave and restore the state of the machine on
interrupts, traps, ané subroutines. To save, data is "pushed® onto a
stack by autodecrementing the contents of a register {e.g., MOV
R3I,~{R6}); to restore, data is *popped® from a atack by
autoincerementing (e.g., MOV (R6}+,R3}, The register being used as the
Stack Pointer always points to the top word of the stack.

EC £}
MEMORY O
1. AN EMPTY 2. PUSHING A 3. PUSHING ANCTHER
5TACK DATUM ONTO DATUM ONTO THE
THE STACK STACK
e; 2 /E 2 / . /i 3
E? £l £1 £l
EO EOQ EQ EC
4, ANOTHER 5 POP & PUSH 7 POP
BUSH

Pigure 2=3 Illustration of Push and Pop Operations

Random Access of Tables

Direct access to an entry in the nmiddle of a stack, or in any kind of
table, is accomplished through Index Mode. The contents of a register
are added to a base (fetched from the word or second word following
the instruction} to calculate an address. wWith this facility a
fixed=order element of several tables, or several elements of a gsingle
table, may be accessed,

26

14

e W

Table of Words Addresses if R3
of entries contains: Operand code is:

TABL: +PBL1 0 M
+TRL1+2 2
“TRLI+4 -4 TBLI{R3A) in
+TBL1+6 6 > each case
+PRIL1+16C 19

ot

when deferred Index Mode im apecified {i.e., ATBL1{R3)), the
calculated address contains a pointer to the data, rather than
containing the data itself. Byte tables are discussed in Section 2.2,

Address Modes

Rddressing modes may be summarized as follows and are discussed in
detail in Chapter 5,

Table 2~1
Addressing Modes
Non-deferred Modes
Asgsembler
Syntax Hode Typical Use
Rn Register Accunulator
{Rn]+ Autoincerement Sequential pointer te data in
a table;y popping data off a
stack
- {Rn) Auntodecrement Sequential pointer to data in
a table; pushing data on a
stack
A{Rn} Index Random access to stack or
table entry
Deferred Modes
Assembler
Syntax Mode Typical Use
€rn or {(Bn) peferred Pointer to an address
Register

{Continued on next page)

27

Table 2-1 {Cont.)
Addressing Modes

Assembler
Syntax Mode Typical Use
@{Rn)+ Deferred Sequential pointer to ad-
Autoincrement dresses in a table; popping
address pointers off a stack
g (En} Deferred Sequential pointer to ad-~
Autodecrement dresses in a table; pushing
address pointers on a stack
85 (En) Deferred Index Random access o table of
address pointers

2ccessing Unstructured Data

Addressing of unstructured data becomes greatly facilitated through
the use of the Program Counter (R7?7} as the specified register in these
modes., This is particularly true of Autoincrement and Index Modes,
which are meantioned below, but discussed more fully in Chapter 5.

Autoincrement Mode using R7 is the way immediate data 1is assembled.
This mode causes the operand itself to be fetched from the word (or
second word) following the instruction, It is designated by preceding
a numeric or symbolic wvalue with #, and is known as Immediate Mode,
The instruction:

aDD #3P.R3

causes the value 50 {octal) to be added to the contents of register 3,
If the 4 1is preceded by @, the immediate data is interpreted as an
absolute address; i.e., an address that remains constant no matter
where in memory the asserbled instruction is executed,

Index Mode using R7 is the normal way memory addresses are assembled,
This iz relative addressing because the number of byte locations
between the Program Counter {(which contains the address of the current
word+2} and the data referenced ({(destination address minus PC) is
placed in the word {or second word} following the instruction, It is
this value that is indexed by R7--the Program Counter--as follows:

{Destination~-PC)+PC=Destination

Relative Mode ig designated by specifying a memory location either
numerically or symbolically (e.g., TST 100 oxr TST A). If a memory
address specification is preceded by @, it is in deferred Relative
Mode and the contents of the location are interpreted by the
instruction as a pointer to the address of the data,

s

2,2 INSTRUCTION CAPABILITY

The twelve ways of specifying an operand demonstrate the flexibility
of the PDP=-1ll in accessing data according to how it ig structured, and
even if it is not structured, Bach instruction adds to this
versatility by acting on an operand in a way particularly suited to
its task. Por example, the task of adding, moving, or comparing
implies the use of two operands in any of the twelve addressing forms;
whereas the task of clearing, testing, or negating implies only one
operand. Exanmpless

ADD 212,GROUP{R2}
MOV MEMI,MEMZ
CMP (Rar+,Vai UE
CLR R3

TST 3UM

NEG @-({R35)

Some instructions have counterparts which operate on byte data rather
than on full words., These byte instructions are easily recognized by
the suffixing of the letter B to the word instruction, MOV is one
such word dinstruction; e.g., MOVE $12,GRCUP{R2} would move an 8-bit
value of 12{octal) to the 8~bit byte at the address specified. One
implication of byte instructions is that when using Autoincrement or
Autodecrement Mode, a table of bytes is being scanned, The
Autoincrement or Autcdecrement therefore goes by one in byte
instructions, rather than by two, However, because of their
specialized processor functions, R6 and R7 in these modes always
increment or decrement by two.

Forms other than single or double operand instructions include operate
ingtructions such as HALT and RESET which take no operands, branch
instructions which transfer program control under specified conditions
{see Chapter 5§}, subroutine calls and returns, and trap inatructions
{see Appendix B for the complete instruction set}.

2.3 PROCESSOR USE OF STACKS

Because of the nature of last~in-first-out data structures, the same
stack can be used to nest multiple levels of interrupts, traps, and
subroutines (see Figure 2-4).

2.3.1 Subroutines

In subroutine calls (JSR Register,Destination) the contents of the
specified register are saved on the stack (the processor always uses
Rt as its Stack Pointer) and the wvalvuve of the P (return address
following subroutine execution) becomes the new wvalue of the register,
This allows any arguments following the call to be referenced via the
register. The command RIS Register causes the return from the
subroutine by moving the register wvalue into the PC, It then pops the
saved register contents back into the register, {Return from a
subroutine is made through the Bame register that was used in its
call.)

29

2.3.2 Interrupts

When the processor acknowledges a device interrupt request, the device
gsends an interrupt vector address to the processor, The procsssor
then pushes the current Status (PS) and PC onto the stack and picks up
a new PS5 and PC {the interrupt vector) from the address specified by
the device, Another acknowledged interrupt before dismissal will
gause the PS and PC of the running device service routine to be pushed
ontoe the stack and the address and status of the new service routine
tes be loaded into the PC and PS5, A process c¢an be resumed by popping
the old PC and PS from the stack into the current PC and PS with the
ReTurn fram Interrupt {RTI] instruction.

2.3.3 Traps

Traps are processor generated interrupts, Error conditions, certain
ingtructions, and the completion of an instruction fetched while the T
bit was set all cause traps. As in interrupts, the current PC and
Status are saved on the stack and a new PC and Status are loaded from
the appropriate trap vector. The instruction RTI provides for a
return from an interrupt or trap by popping the top two words of the
stack back into the PC and PS.

i} 1 PROCESS 0 15 ¢} 1. PROCERS 1
RUNNING STaCX INTERRUPTED
400 POINTER {5P) &30 Witk PCrBCy
POINTING TG Arul3 SEATLS sbS;
LOCANMON PO 15
STARTED,
5F PG
PROGRAM & PO
13
18}
FEQ
bl 2. INTERRUPT SFOPS
PROCESS 0 Witk PCO
405 PC=Plgy AND
STATUS 2PSp 4213
START PROCESS | -
Pl PCG
& 3. MRQUESS
PS g COMPUETES wiTH
4 £00 AN RTE INSTRUCTION
PROGRAM. {DISMISSES
« INTERRLFT}
PLOSRERET TO R
AT BTAEDS &
43 1 RESEY TO 7%
PROCESS 2 RESNES
TED
b+ 3 PROCESS 1 LSES
STACX POR fants]
406 TEMPORARY
STORAGE {TEp Ty} Ps0
P0] ROGREM
SPummmi TER
B 4 PROKESS @ RELEASES
TEG THE TEMSCRARY
300 FORaLE nOLnE
#CO TG ANG TE:
PS5O
?g o
PROGRAM L
£30
s | FRGTRAM
o 7 PROCESS | COMEETRS
75 OPERATHON WATH
aD8 &71,

PC IS RESET TOQ POp
AND ETRTUS 15 RESEY
0 PROCEES

*® PROGRAN 0 RERAPES

Figure 2-4 Nested Device Servicing

2-10

4

CHAPTER 3

USING THE CAPS«1l MONITOR

The Cassette Programming System is stored on a single cassette, called
the System Cassette, which contains all the programs nscessary for
lvading the Keyboard Monitor intoe memory and creating and running
system and wuser programs, {(The System Cassette supplied to the user
is configured for an BK system, BRefer to Appendix E for instructions
concerning building a System Cassette for any size configuration.)} The
directory of the System Cassette is as follows:

LT.0AD SYS
CAPS11 38K
PIP SRU
EDIT Aae
LENK 5Ru
obT 5LG
PAL SRU
DEMOQ PAL

The Monitor is loaded into memory from the System Cassette by means of
a short bootstrap program, tnce in memory, the Monitor accepts
commands from the console terminal keyboard which allow +the user to
run system and user programsa, and create, assemble, load, execute, and
debug programs, utilizing cassettes for all data storage.

3.1 LOADING INSTRUCTIONS

The first operation in using the CAPS~1l System involves loading the
Monitor into memory from the System Cassette. The loading process may
be accomplished by following steps 1 throungh 4 below:

l. Ensure that the computer and c¢onsole terminal are
Ol'i"lineo

2. Place the System Cassgette (write-locked to protect data)
onto cassette drive 0 (facing the computer, drive 0 is
to the left of the cassette unit).

3, Press and raise the HALT key {leaving it in the ENABLE
position}.

-1

Load and start the system bootstrap loader {(called
CBODYT}, This can be done in one of two ways:

a)

b}

If the system has a hardware bootstrap, set 173300
in the Switch Register, press LOAD ADRS and START
{part b may be ignored),

If no hardware bootstrap is availahle, CBOOT must be
manually Joaded and started by the user, Two
versions of CBOOT are provided, The standard
version is the version used in the hardware
bootstrap and consists of the 28 words listed in
Tahle 3-1l, A complete listing and more information
concerning CBOOT is provided in Appendix E.

A shorter (20 word} wversion called OQCBOOT may
opticnally be loaded by the user. This version does
not provide some of the error checking and handling
which the Jlonger CBOOT does, but allows a faster
means of manually booting the system, A complete
listing of CBOOT is also provided in Appendix E;
the binary instructions are listed in the following
table:

Tahle 3-1
CROOT {QCBOOT) Instructions
CBOOT QCBOOT
Location Contents Contents
001000 012700 612760
Q01992 177500 177560
001004 005016 805010
G01006 0107061 010701
00l6l10 062701 62701
061012 Gono52 060034
001014 612702 112162
001016 Go037% 112110
001020 112303 032710
001022 112110 100240
001024 100413 001775
n0lo02e 130310 100001
001030 001776 005007
001032 105202 005202
001034 100772 1007740
001036 116012 116012
0019040 000002 600002
001042 120337 000765
901044 060004 G1777s8
001048 001767 002415
001050 Q00000
601482 000755
G31054 005710
001056 106774
001060 aes007
001062 017640
001064 002415
001066 112024

3-2

ft

oy

e

After the bootstrap has been manually locaded (using
the Switch Register, LOAD ADRS, and DEP keys), set
001000 in the switches, press LOAD ADRS and START,

At this point the RUN lamp should be 1lit and the System Cassette
should begin to move. The bootstrap loader {CBOOT or QCBOOT) calls
the first program on the System Cassette (CTLOAD.SYS) which in turn
loads the Keyboard Monitor (CAPS11.5YS) into memory. If an error
occurs during the loading process {an error may be caused by the
cassette being improperly mounted, by a missing file on the tape, or
by the occurrence of an I/0 error) no error message will inform the
user, Instead, the System Cassette may stop moving and the computer
will halt. If this condition occurs and the reason for the halt is
not immediately apparent, consult Appendix E, which provides more
information concerning errors during the loading process,

Once the Monitor has been loaded, the System Cassette stops moving and
a dot is typed at the left margin of the console terminal page. A
Monitor identification line may also be typed; however, this line will
be output only if the Monitor is being loaded for the first time, or
if a previously loaded CAPS-11 system has been completely deleted from
memory. The total time involved in the loading process (i.e., from
the bootstrap initialization on a rewound cassette to the appearance
of the dot) is approximately 30 seconds. The dot instructs the user
that the Monitor is now in memory and ready to accept input cormmands.

3.2 SYSTEM GONVENTIONS

File naming procedures, special character commands, error formats, and
other conventions which are standard for the CAPS-11 System are
presented next. The user should be familiar with these conventions
before using the system,

3.2.1 File Formats

The Cassette Programming System makes use of two types of file
formats--ASCII and binary.

Files in ASCII format conform to the American National Standard Code
for Information Interchange in which alphanumeric characters are
represented by an 8-bit code. A chart containing ASCII character
codes is provided in Appendix A. Files in ASCIT format are generally
those created using the Editor.

Files in binary format consist of 8-bit bytes representing data and
PNP-11 machine language code. Binary files contain addresses and
machine instructions and may be read directly into memory for
immediate execution, System programs and object programs the user has
created using the Assembler and Linker are in binary format.

3.2.2 Input/Output Devices

There are four categories of input/output devices in the CaAPS-1l
System; thesge are the conscle terminal keyboard and printer, cassette
drives 0 and 1, an optional line printer, and an optional high-speed
paper tape reader and punch (which may be used only by PIF as
discussad in chapter 8}, Each device 1s referenced by means of a
standard permanent device name which is recognized by the CAPS-1l
System when encountered in an X/0 command string. These names are
listed in Table 3~2:

Table 3=-2
Permanent Device Names

Name Cevice

CTO {or G} Casgette Drive §
Tl {or 1} Cassette Drive 1

PP High—-speed Paper Tape
Panch

PR High-speed Paper Tape
Reader

LB Line Printer (LPll or
LS11)

it o Console Terminal (1733
or LT35 Teletype, VTO5
pPisplay, or LA30
DECwriter)

3,2,3 Filenames and Extensions

System and user files are referenced symbolically by a name of as many
as six alphabetic characters {A-Z} or digits (0-9), followed by a
period and an optional extension of from 1 to 3 alphabetic characters
or digits; the extension is generally used as an aid in remembering
the format of a file., The following are examples of legal and illegal
filenames:

Legal) Illegal
1TY¥YPE, PAL g5TOW., PAL
ABCDEF,OBJ FO HM
DATA PROGRAM, DAT
PEO,21ER LOAD, 34AN

FILE {extension assumed)

Although the user may call his files by any mnemonic fillename and
extengion he chooses, in most cases, he will want to conform to the
standard extensions established for CAPS=11 and listed in Table 3-3,
There are two reasons why the standard extensions should be used:

——

a} If an extension is not specified for an input file (for
example, FILE in the preceding list of legal
filenames), certain system programs and Monitor
commands will perform a search for the filename and an
assumed default extension; the Monitor RUN command is
one example of a aystem routine which assumes an
extension if no other is indicated.

b} If an extension is not specified for an output file,
some system programs will append standard extensions
during the output operation; for example, the Assembler
will append the extension .LST for the output listing
file unless the user designates another.

Standard extensions save the user time in typing the command line and
provide consistency in filenaming procedures; the following table
lists the default extensions; oreater detail is presented in the
indiwidual chapters.

—
Table 3=3
CarsS~11 Default Extensions
Extension Meaning

LLDA Lirnker binary output load module

+LST Assembler listing output file
A~

MAP Linker load map output

« OBJ Relocatable binary object module
{(Assembler output, Linker input)

« PAL Assembler scurce file (BEditor input and
cutput, Assembler input)

NOTE
The next three extensions are
o default extensions for the
Monitor RUN cormand., See
Section 3.3.1 for destails.

«SLO Absolute binary obiject £file ({default
extension for RUN command, causing an
automatic load and overlay of the
Monitor as necessary up to CABLDR)

.5LG Absolute binary object file ({default
extension for RUN command, causing an
automatic Load and Go)

) +«SRU Absolute binary object file {normal
default extension for the RUN command)
CAPS11.8Y5: the extension is reserved
o~ ' for these two files}

3.2,4 Entering I/0 Information

As soon as the Monitor has been completely loaded intoe memory, it
responds by printing a dot (.] at the left margin of the console
terminal page indicating that it is ready to accept & Ccommand from the
user, A part of the Monitor called the Keyboard Listener (KBL) is
responsible for printing the dot. There are sight commands which the
user may type in response to this dot: DATE, ZERD, SENTINEL,
DIRECTORY, RUN, LOAD, BTART, and VERSION, The XBL interprets these
commankis and in most cases executes them: however, since the Monitor
RUN command requires more information from the user, another important
part of the Monitor--the Command Btring Interpreter--must be involved.

The Command String Interpreter (CSI) allows the user te enter command
strings which provide necessary information concerning input and
output files and devices, file formats to be used in I/0 operations,
and any other important information needed for the I/0C process. The
CSI prints an asterisk {*} at the left maryin of the console terminal
page as soon as it is ready to accept this information.

HOTE

The user may enter his I/0 command
string as soon as the asterisk is
printed even though program loading (as
a result of using the RUN command) may
be occurring at the same time. The user
should be careful not to manually rewind
or dismount the System Cassette while
leoading is continuing, After loading is
conplete, the System Cassette will
automatically rewind.

The command string which the user enters in response to the asterisk
contains all input and output specifications in the following general
format s

*PEV:QUTPUT , EXT/OPT=DEV INPUT , EXT /OPT

DEV represents one of the permanent device names listed in Table 3-1,.
If a cassette is the device, only the drive number need be entered
separated from the filename by a colon, OUTPUT,.EXT and INPUT, EXT
represent filenames and extensions, as explained in Section 3,2.3,
/OPT represents an option letter from the list described briefly in
Table 3-4. Options are separated from the rest of the command line
and from one another by a slash character (/) and are indicated in the
command string only when the wuser wishes the associated action to
ocour, Option usage varies according to the program being used:; refer
to individual chapters to learn which options are used by each CAP3S-11
system program,

Table 3-4
CS8I Cptions

Option

Meaning

/A

/C

/D
/P

/P

/8

/T

/%

/2

ASCII; the file type is set to ASCII {used during
a PIP file transfer).

Bottom; links the user program with its lowest
location at n {(used by Linker}.

Continuation; indicates that the cormand string is
to be broken intc one or more lines, The /C
option mist be used at the end of each line that
is to be continued.

Delete; indicates file deletion (used by PIP),

Forward; indicates that the cassette need not be
rewound before searching for the file {i.e., the
filename preceding the option 1is in a forward
direction in regard to the tape's current position
on the drive). The RN command assumes this
option.

Highj; links the wuser program with its highest
location at n {used by the Linker},

Querflow: used after an gutput filename,
indicating that the file preceding the option is
to be created and used only for output overflow
conditions, If no filename is indicated, the
overflow file will be created under the same hame
as the most recently opened output file,

Prompt; requests that the system prompt the user
to change ocassettes on an indicated drive before
attempting to access a file. The system prints:

a7

where # represents the number of the appropriate
drive M

Several; used after a Linker input filename to
indicate that this filename contalins more than one
input object module. {Several object modules may
be combined under one filename using PIP.}

Transfer address; used after a Linker input
filename (object module} to indicate that the
transfer address of this chiject module is to be
used as the transfer address of the final load
module.

Extended; suppresses extended binary ocutput in an
assembly listing {used by PAL).

Zaro; causes all output cassettes indicated in the
command line to be zeroed, or completely daleted
of files (used by PIP).

3-7

The general form of the command line as shown previously consisted of
only one input and one output file indicated on a single line.
However, from 0 to an unlimited number of filenames may be entered
depending upon the system program in use, and the command string can
be broken into two or more lires by using the special option character
/C. A separator always divides the input specifications from the
output specifications and may be any one of the following:

= equal sign
€ left angle hracket
+ bhack arrow

The user may omit indicating a permanent device name entirely in a
command string if he is aware of how his command line will be
interpreted by the Monitor. C(onsider the following command string:

*CTBIFIRS T PALLLPTSCT iz TASK, 1s CTLE TASL. 2, CTBr TASK . 37C

This command string contains two 'lists' of device designations--the
output 'list’ contains CT0 and LP; the input 'list' is made up of CT1,
Crl, €10, and CT0, Unless the user designates otherwise, the Monitor
will always assume that the first device in any 'list' (input or
output) is cassette drive 0; all immediately following default
{(unnamed} devices in this 'list' will also refer to drive 0. This
continues wuntil the user specifies a different device usging a
permanent device name from Tahle 3-2, Thereafter, all immediate
defavlt devices will reflect the most recent user-indicated device.
If the first device in a 'list' is not drive 0 (i.e., the user has
specified another permanent device name as in the input 'list’ above),
all default devices will reflect this user-indicated device until a
different device is specified, and so on. Thus, the above command
line oould have been written:

ﬁFiRﬁ?x?ﬁ&;L?3=§:?QSK.i;TQSK-2;Q:T&S{«3;?&S<aﬁ

The Command String Interpreter scans the user's command string and
constructs a table containing all the input and cutput mformation
which has been entered. Details concerning this table and more
information regarding both the KBL and CSI is provided later in the
chapter and in Appendix E.

3.2.5 Special Characters and Cormands

The following special characters and c¢ormmands c¢an be used by the
programmer to control execution and correct command lines; these
commands may be used while under control of any of the system
programs,

.

Table 3-5
Special Characters/Commands

Character/Cormand Meaning

CTRL/C Control can be returned to the Xeyboard
Monitor while running any of the svstem
programs by typing a CTRL/C (produced by
helding down the CTRL key and simultaneously
presasing the C kev}, A CTRL/C causes &
complete rebootstrap ({if necessary} of the
Keyboard Monitor by reading the appropriate
files from the System Cassette on drive 0,
The system prints:

LRV

which prompts the user to mount the System
Casaette on drive 0 (in the event that it may
not already be mounted}; typing any character
will continue execution of the rebeoot, If
the Monitor is still dintact in memory, no
reboot is necessary and typing a CTRL/C will
echc only *C and cause an immediate return to
the KBL. When it is ready to accept input,
the KBL types a dot at the left margin of the
teleprinter page.

CTRL/C Teleprinter output can be surpressed by
typing a CIrRL/0 {produced by holding down the
CTRL key and simultaneocusly pressing the O
key). This allows execution of the program
to continue but stops all console printout,
Typing a second CTRL/O will resume printout
again. Unless cgutput is extremely lengthy,
or unless the program is waiting for input
from the user, processing of a program after
an initial CTRL/O has been typed will usually
be completed before the user is able to type
a second CTRL/0., Printout will automatically
resume when control is returned to the
Keybeoard Listener (indicated by a dot at the
left margin).

NOTE

CTRL/0 does not suppress line
printer outpud, and does hot
prevent certain important error
Kessages from printing on the
console terminal.

CTRL/0O is treated samewhat
differently when using the CAPS~1l1
Linker to produce a load map.
Refer to Chapter 6§ for details,

(Continued on next page)

Table 3-5 (Cont,}
Special Characters/Commands

Character/Command Meaning

CTRL/P A CTRL/P (produced by typing the CTRL and P
keys simultaneously)} during the initiating of
a Monitor command echoes P and causes
control to return to the Keyboard Listener,
indicated by a dot at the left marxgin.

A CTRL/P typed during the initiating of a CSI
command string echoes +t+P and causes &
re~initjalization of the Command String
Interpreter, indicated by an asterisk at the
left margin.

During execution of a user program, a restart
address may have been specified by the user
within his program so that a CTRL/P will
cause a restart of that program rather than
of the Monitor, Refer to the CTRL/P RESTART
IOT {(Chapter 9, Section %.4.1} for details.

CTRL/U A line currently being entered (whether as
part of a command or as text} may be ignored
by typing a CTRL/U {(produced by typing the
CIRL and U keys simultaneously}. A 1tU is
echoed followed by a carriage return/line
feed {when wusing the Editor, an asterisk is
alse printed):; the user may enter a new line.
{This command produces the same results as
typing RUBOUTs back to the beginning of a
line.}

RUBOUT A RUBOUT (produced by pressing the RUBOUT
key) causes a deletion of the most recently
typed character and echoes the deleted
character on the terminal. Fach successive
RUBOUT deletes and echoes one more character
{fup to the preceding carriage return/line
feed, after which successive RUBOUTs will not
echo nor delete any characters}.

3.2.0 Error Message Formatb

Error messages are printed whenever the Xeyboard Monitor is used
incorrectly, or when an I1/0 error occurs while using Monitor cormands
and system programs, or upon occurrence of a hardware error, The
appropriate message is printed on the console terminal at the time the
error occurs; the message is preceeded by either a guestion mark or a
percent sign to indicate one of the following:

3-10

% Fatal error; execution of the command cannot
be continued further and control returns to
the KBL., A dot is printed at the left margin
of the teleprinter page when the Monitor is
ready to accept another command.

? Non-fatal error; if possible, execution of
the command will continue after the error
message is printed on the console terminal;
if further execution is not possible, control
will return to the CSI and the user may enter
ancother command string.

A list of Monitor error messages is provided in Section 3.7,

3.3 KEYBOARD MONITOR COMMANDS

There are eight Kevboard Monitor cormands which may be typed in
response to the dot printed by the Xevboard Listener; they are entered
when the RETURN key is pressed. Any error made while utilizing these
commands will result in a message informing the user, After
occurrence of an error, control returns to the KBL and the command
must be retyped. Monitor c¢ommands generally require only a single
cormand line which apecifies the device, filename(s), and switch{es)
in the following format:

«COMMAND/SW DEV:FILENA,.EXT

COMMAND represents one of the eight Monitor commands. §SW represents a
switch-~an alphabetic character separated from the command and from
another switch character by a slash {/)}; switches are similar to the
C8I options discussed in Section 3.2.4, but perform different
functions and are valid only when used with Monitor commands: switches
are discussed individually in sections concerning the commands with
which they are used. The device (DEV), if specified, will always be a
cassette, 50 the user may enter only the drive number rather than the
entire permanent device name if he wighes, With the exception of the
ZERO command, drive 0 is always assumed, 30 the user may omit the
device specification entirely if CT0 is the device, FILENA,.BXT
repregsents the file being accessed; the filename must be separated
from the drive number (if indicated) by a colon.

Throughout this section, optional entries in the command line are
enclosed in sguare brackets.

3.3.1 RUN Cormand
The RUN command is of the form:
+R{UN] [[CT]#:]FILENA[.EXT]
The RUN command instructs the Monitor to load and execute the file

specified in the cosmand line; this file must be in absolute binary
format, If the user omits the extension (as is generally the case

i-~1ll

when calling system programs), the Monitor will search the indicated
cassette for the file as the user has designated it in the command
line, However, it assumes that it will find the filename followed by
one of three extensions: .SI0, .5LG, or .SRU; the first file found
which has the indicated filename and one of these extensions willie
atccessed,

The extensions used by the RUN command are interpreted as follows:

«5LO The file is an absoalute binary object file and
will be loaded into memory overlaying as necessary
all parts of the Monitor as far as CABLDR ({see
Section 3,53; after the file is loaded, it is
automatically started, HiNning a file with this
extension iz identical to a LOAD/O of the file,
Presently, no system programs use the . SLO
extension; however, it iIs available for future
system expansion and for general use,

. SLG The file is an absolute binary object file and
will be loaded into memory to the bottom locatien
of CLODll ({see Section 3,5). Execuation is
automatic. System programs which wuse this
extension are ERIT.SLG and ODT.SLG. Using this
extension is the same as using the /G switch with
the LOAD command.

.SRU The file is an ahsolute binary object f£file and
will be loaded into memory and auwtomatically
started, ‘This is the normal default extension for
the RUN command and is used by the following
system programss PIP.LSRU, PAL.SRU, LINK,SRU,
Using this extension is similar to using the LOAD
command except that execution is automatic and
more 1/0 information must be provided by the user,
thus invelving the CSI.

For example, assume the directory of caassette drive 1 is as follows:

TABLE 1}

FORM SRU
FILELD PaL
FORM SLa

If the user types:

+R 1:FORM

The cassette on drive 1 will be searched for the first file consisting
of the name FORM and one of the three extensions; in this case the
first file meeting these reguirements is FORM,.SRU. This file is
loaded into memory and executed, After the file is loaded, the
casgette is automatically rewound; thus, if the user wishes to access
the file FORM,SLG, he must either delete the file FORM,SRU from the
cassette (see Chapter 8}, or specify the entire filename in the
command line az follows:

If a user program with no specified transfer address is loaded via
RUN, the fatal error message:

IND START ADDR

will be printed. If the file indicated in the command 1line is not
present on the cassette, the fatal error messzages

ZIFILE NOT FND

will be printed,

3.3.2 LOAD Command

The LOAD command is used to load an absolute binary file into memory
and takes the following form:

LLIOAD] [/8W] [ICTi#:1PILENAEXT

/8W represents either a2 /0 or /G switch. If neither switch is
indicated in the command line, the command allows loading only to the
bottom location of the KBL without error {see Figure 3-1 in Section
3.4)., At the completion of the load, the KBL prints a dot to indicate
that it is still intact and ready to receive another Monitor command
{typically either START or another LOAD}.

IOAD used with a /G switch directs a program load to the bottom
location of CLODLl, and then initiates a '6G0' (START] at the specified
transfer address., If this is absent, the fatal error message:

ZNG START ADDR
tC?

will be printed. Since the KBL and CSI are ‘*marked' {or assumed} as
heing overwritten when the /G switch is usged, the Monitor must be
rebooted from the System Cassette on drive (.,

LOAD used with a /0 switch allows a program to be loaded even if its
size requires overwriting the entire Monitor, Such a program must
handle its own 1/0 and other functions since no part of the Monitor
may be available to do this. This type of program is started at its
transfer address; if none has been indicated, CABLDR will halt and
expect ugser console action {information concerning a CABRLDR halt is
provided in Appendix E}.

Section 3.5 provides greater detail concerning the loading process
when RUN or any form of the LOAD command is used,

3.3.3 BSTART Command
The START command is of the form:

«STIART] [nnnnnnl

and is used to start a program which has been loaded into memory using
the LOAD command without a switch., nnnnnn is an optional absolute
starting address for the program, and if indicated, will cause program
control to be transferred to this gddress. If not indicated, the last
specified transfer address of the program(s) loaded will be used. IE
no transfer address exists, an error message is printed and control
returns to the KRL,

For example, the program LDT,SLG on cassette drive 1 is loaded and
started at location 1000 as follows:

sLOAD 1:L0T.5LG

ST 1008

3.3.4 DATE Comand
The DATE command is of the form:
+DA{TE] dd-mmm-vy

where dd, mmm, and yy represent the current day, month, and year as
entered by the user. One~ or two-digit numbers in the range 1-31 are
entered in the day portion; the first 3 characters of the month are
entered in the month portion of the command; digits in the range 0-99%
are entered in the year portion, The Xeyboard Monitor checks for the
entry of a number which 1is outside the ranges allowed and for
characters which are not the first three characters of one of the
twelve months; if any error is found, a message is printed and a bhlank
date is produced (i.e., the location in which the date is stored is
padded with nulls and dashes are printed during directory listings).

The current date as entered by the user will appear in directory
listings (ses Section 3.3.5), in Linker load maps, and in PAL assembly
listings, and the date of creation of all new files will also be in-
cluded, 1If the date command is not used, directory listings will con-
tain only filenames, extensions, and previous creation dates,

When the user enters a date, it is stored in a part of memory that is
not likely to be overwritten (and therefore destroved] by the user or
by the CAPS-11 System, The user should update his svstem from day to
day to prevent wrong dates from being assigned to files. Very
infregquently (if ever) that part of memorv holding the date may be
overwritten in such a way as to cause random characters to be printed
in place of the date, The user need only type in the current date
using the DATE command to correct this condition,

3.3.5 DIRECTORY Command
The DIRectory command is of the form:
LDI[RI/F] [[CT]#:]

and causes a directoryv listing of the cassette on the indicated drive
to be output on the congsole terminal. For example:

3-14

R

+DIR CT1:
@3-APR-73

FAD SLG _B3-APR-73
BA T 27-MAR-73

The /F switch is optional; if used, it causes a "fast" listing to be
produced by omitting current and creation dates and listing only
filenames and extensions. For example:

DIR/F 11

ABC SLG
*EMPTY
PRO LDA

If a file has been deleted from a cassette using FPIP (see Chapter 8)
its filename and extension will be replaced by the header *EMPTY in
the directory listing. To delete *EMPTY files from cassettes, the
user must first transfer all needed files to another cassette (using
PIP) and then zero the first cassette, or use the SENTINEL command,
explained in Section 3,3.7.

If no sentinel file is present on the cassette, the error message:
ZINO SENTINEL FILE

will be printed following the directory listing, (This condition
occurs when an open file on cassette has not been properly closed.)
The user should write a sentinel file on the cassette using the
SENTINEL command, While files may be read from a cassette which
contains no sentinel file, thevy may not be written.

3.3.6 ZERO Command
The ZERQO command is of the form:
+Z[ERO] [CT]#:

and causes the indicated cassette to be zeroed, or completely deleted
of files; the sentinel file is written at the beginning of the
cassette so0 that the entire tape is availabhle for use. A cassette
number must always Dbe indicated as the ZERO command does not assume
drive 0.

All new cassettes should be zeroed before they are first used. This
ensures that a sentinel file is present at the beginning of the tape.

3.3.7 SENTINEL Command

The SENTINEL command allows the user to 'zero' part of a cassette by
deleting all files following a g¢given filename, The form of the
command is:

.SE[NTINEL] [[CT]#:]FILENA,EX

This command causes the sentinel file to be written immediately
following FILENA.EXT, thereby effectively 'zeroing' the remainder of
the cassette. For example, assume the directory of the cassette on
unit drive 1 is:

S51ZE L87T
=EMPTY

BLLANK SLG
FORTY DAT

and the user types:
+SE 11 SIZE.LST
The directory of the cassette will now read:

51ZE LST

Cassette drive 0 is assured if no drive nurber is indicated in the
command line.

3.3.8 VERSION Command

The VERSION cormmand is used to find out +the wversion number of the
Monitor currently in use, Typing:

.V[ERSION]

ingtructs the Monitor to respond with the Honitor identification,
version number, and current date, PFor example:

.V

CAPS-11 val-p2
27«AUG-73

Version 01-02 is currently in use. As new versions of the Monitor are
released, this number will be updated accordingly. Any communications
with Digital Eguipment Corporation concerning the CAPS-11 Systenm
should indicate the version number of the Monitor currently in use,

3.4 KEYBOARD MONITOR SECTIONS

That part of the CAPS~1l System termed the ¥eyboard Monitor (and
stored on the System Cassette as CAPS11.58¥8) is actually composed of
several subprograms (such as CBY and KBL)} which are responsible for
various stages of system and user interaction, As already mentioned,
the first step in using +the CAPS-11 System is +to hring these
subprograms into memory and begin their execution, The user begina
the loading process when he starts the bhootstrap loader {CBOOT}. When
the Monitor has been completely loaded and is ready for use, it
resides in memory as shown in Figure 3-1:

£ BCOT X7710
RESMON
CLOD1
oy for X
1 £E
3 EK
b3 r:d
-
CABLDR 1 i
5] 4.2
ke
~ﬁﬂéwo
FREE
MEMORY
. = SYSCOM CCCUPIES LOCATIONS
264 40-57: DEVICE INTERRUST VECTORS
ARE CONTAINED IN NON-ST3COM
57 LOCATIONS 0-60, AND CERTAIN
SYSCOM 40 OTHER LOCATIONS FROM 60 - 264
0

Figure 3-1 CAPS~1l Memory Map

Each of the Monitor subsections will be discussed briefly. A detailed
description of the Monitor loading process, information concerning
loader formats, and Switech Register settings for use with Monitor
loads and error halts may be referenced in Appendix E.

3.4.)1 <Cassette Bootstrap {CROOT)

The Cassette Bootstrap is used to load and start any program which is
in 'CBOOT Loader Format' (such as CTLOAD.SYS). OBOOT has already been
mentioned in Section 3.1 as being instrumental in loading the Caps-ll
Monitor into memory. A complete listing of CROOT and most information
concerning its use in the CAPS-11 System is provided in Appendix E.

3.4,2 BPResident Monitor {(RESHMON}

Input and output operations are handled by RESMON, which contains
routines for all file-structured cassette 1/0, and all teleprinter,
kevboard, and line printer I/0 (with the exception of CABLDR which
contains the I/0 routines necessary for performing the LOAD/C command,
as described in Section 3.,4,5) Usually RESMON is never overwritten but
is always available in memory for access by the user {(again, an
exception occurs when processing the LOAD/O command). Chapter %
provides sapecific information <¢onceyxning the way RESMON works and
methods by which the programmer can utilize RESMON in his own
pragrams.

RESMON also contains the System Communication Area (8YSCOM), which
provides to the user and to various system programs information
concerning available memory and locations of iLmportant Monitor
routines (see Section 3.4.7).

3.4.3 Cassette Icader for CAPS-1l (CLOD11l)

CLOD1l is used in the execution of the RUN, LOADP, and LOAD/G Monitor
commands by directing the loading of programs when these comands are
issued., In the case of the RUN command, the user may simultaneously
interact with the CSI while program loading is occurring (i.e., he may
enter his I/0 command string even though +the program lecad is in
progress) . CLOD11l performs error checking and reports certain types
of errors to the user; these are listed in Table 3-8,

3.4.4 Command String Interpreter {(CSI)

The Command String Interpreter (CSI) is used by all system programs
(with the exception of the Editor and ODT) and may be used by any user
program which is loaded and started via the Monitor RUN command. When
the user runs a program, the CSI responds by printing an asterisk (%)
at the left margin of the console terminal page; the user responds by
entering all device and file I/O0 information needed by the program.
The CSI then constructs a table which contains the information entered
by the user, This table is described in more detail in Section 3.5.

3.4,5 Cassette Absolute Loader {CABLDR)

CABLDR is used to load programs written in 'Absolute Binary Format'
which 1is the format of all system programs and all Linker output (see
Chapter 6). CABLDR performs error checking during program loads and
halts wupon any error indication, at which time the user may set the
Switch Register to direct further action. Refer to Appendix E for
detailed information concerning user interaction with CABLDR.

3.4.6 Keyboard Listener (KBL)

The Keyboard Listener is that part of the Monitor responsible for
printing the dot at the 1left margin of the teleprinter page,
indicating to the user that he may enter any one of the eight Monitor
commands discussed in Section 3.3, The KBL is also responsible for
positioning the cassette tape for proper loading during a RUN, LOAD,
or LOAD/G command; it then passes control on to CLOD1ll, which handles
the actual loading during processing of these commands.

3.4.7 System Communication (SYSCOM)

The System Communications Area (SYSCOM) resides in absolute 1locations
40 through 57 and is loaded into memory {(as part of the RESMON source
code} as shown previously in Figure 3-1, This area provides a means
of communication between the Monitor and other programs not linked
with it, such as system and user programs.

The following information is classed into two sections--that which is
of general interest to the user, and that which is used by CAPS=-11
system programs and which may be helpful to user programs requiring

3-18

non-standard services. The user should refer to Section 3.5 in
conjunction with this information.

= SYSCOM=--General Information
During normal system use, the absolute locations listed in Table 3=6
are accessed and manipulated by the CAPS=11 System as noted:

Table 3-6
General Locations

Location Function

HIFREE Absolute location 42--this word contains the
address of the highest location available to the
user for program loading and storage which
precedes the ‘'expected' portion of the Monitor
still residing in memory. For example, after a
LOAD/G command, the user can 'expect' that all of
RESMON will remain intact, and thus HIFREE will
contain an address equal to the start of RESMON
minus two (bytes). After a RUN command, HIFREE
will wusually contain the starting location of the
CSI table minus two. After a LOAD/O command,
HIFREE will contain the address immediately
preceding the beginning of relocated CABLDR; the
user can plan to use all locations through the
location contained in HIFREE and still preserve
CABLDR.

DATPTR Absolute location 54--this word contains the
address in RESMON of the current date {as input by
the user wvia the Monitor DATE command). The six
bytes starting at this location contain, in order:

o two ASCII bytes containing the day
two ASCII bytes containing the month number
two ASCII bytes containing the year

LPSIZE Absolute location 40--this byte contains a number
which is one greater than the total number of
character columns existing on the wuser's line
printer (i.e., 133 (or 205 octal) for the standard
system; 8l (or 121 octal) for a non-standard 1line
printer).

HLTERR Absolute location 4l--this byte is examined by the
cassette interrupt handler upon every occurrence
of a controller error, If this byte has been set
to non=-zero by the user (never by the system), the
interrupt routine will halt whenever an error is
detected so that the user may examine the cassette
status register, Pressing the CONTinue key on the
processor console will cause the scftware tc con-
tinue. This byte is provided primarily as a hard-
ware debugging aid.

]

3-19

SYSCOM--Special Information

The following SYSCOM locations exist primarily for use by CAPS-11
system programs and should be accessed by the user with caution.
These locations should not be modified except as indicated.

Table 3-7
Special Locations

Location Function

KBLRES Absolute location 52--this byte is a flag
indicating the state of the non-resident portion
of the Monitor. It is initially set to =1 when
the system 1is bootstrapped to indicate that the
entire Monitor is resident; it is cleared when a
L.oAD/G, LOAD/Q, or RUN command sets HIFREE above
portions of the Monitor in order to allow maximum
loading and storage space. KBLRES is interogated
by the CTRL/C and fatal error routines to
determine whether a complete reboot is necessary
or whether the Monitor need only be restarted (if
KBLRES=Q, the Monitor may not be entirely
resident). Certain system programs (EDIT, LINK,
ODT, PIP) do not require the extra memory space
made available when the Monitor is overwritten,
Thus, even though KBLRES is cleared when these’
programs are loaded, they do not actually use any
of the memory space provided between the beginning
of the Monitor and the beginning of RESMON, In
order to prevent a CTRL/C or fatal error from
causing a complete reboot of the Monitor, these
programs each reset KBLRES to -1, User programs
may also set KBLRES to -1; the user program should
be 1linked with the program KBLRES.OBJ which is
supplied on one of the OBJ Cassettes; this process
is described in Section 3.5.

Since a START command always clears KBLRES after a
load is complete, KBLRES must be set to -1 at
run-time rather than at load-time (using the
instruction MOVE #-1,@%452) in order to ensure that
the system will assume the Monitor is intact.

CSIADR Absolute location 46-—-this word contains the
starting address of the CSI. It is used by
certain system programs to call the CSI, enabling
entry of another command string after acticn on a
previous string has been completed. HNote that the
CsI is reusable only if it has not been
over-written.

{Continued on next page)

3-20

Tabhle 3=7 {(Cont.}
Special Locations

Location Fanction

- KBLADR Absolute location b50--this word contains the
starting address of the KBL which is also the
lowest address in the Monitor, System software
restarts the Monitor at this address whenever a
CTRL/C or fatal error condition occurs providing
- the Monitor is resident ({i.e., if KBLRES is
non-zero}, Note that the user may compare the
address in HKBLADR against his use of memory to
determine whether his program must set KBLRES in
order to allow a guick restart of the Monitor.

. ZERCORE Absolute location 53==thig byte {which is
initialized to =1} 1is c¢leared by the Assembler
{PAL) to indicate that memory should be cleared
before the final section ¢of PAL is loaded, This
is necessary since the portion of PAL containing
the symbol table must be loaded into zeroced
memory. ‘This byte may be cleared by any user
program which requires use of the C5I. Such use
is not recommended without a careful reading of
the CLOD1l source listing (available from the
Software Distribution Center).

o~ CSITBST | Absolute location 44--this word holds the starting
addresa of the CSI table as it resides in memory.
It is used by system programs which make use of
the (8I, and may be utilized by any user programs
which use the CSI,

FILWRD Absolute location Sh=~this word contains
information which is used by RESMON and ODT to
handle differences in console terminals. Some
terminals {such as a serial LA30 and a VT05)
require that a certain character I(e.g., carriage
. return or line Zfeed which both take longer than
most characters to print on the terminal)l be
followed by a number of *pad' or ‘'fill’
characters, The low=-order byte of FILWRD
{absolute location 56) contains the character
which must be filled {oxr 0 if none must he
filled); the high~order byvte (absolute location
57) g¢ontains the number of "£ill' characters

" required. RESMON and ODT will type this number of
nulls {ASCI1 000) after the character specified by
byte 56,

3.5 USER PROGRAM LOADING PROCESS

The CAPS-11 Monitor attempts to provide the user at all times with
maximum loading space and maximum storage space for system and user
programs, It does this by allowing unneeded parts of the Monitor to

be overwritten and by moving necessary sections to higher positions in
memory. The SYSCOM parameter HIFREE is used at various times during
the loading process to indicate the hichest location into which user
{or system) programs may be loaded and the highest free location
gvailable for wuse which still preserves RESMON {and possibly the CSI
table). Since the goal of the =system is to maximize such areas,
HIFREE will usually be set at points above Monitor components which
are not needed for loading or 1/0, even though a user program may not
actually overwrite the Monitor. When HIFREE is to be gset to locations
above any Monitor location, the SYSCOM flag KBLRES i3 cleared to
indicate that the Monitor may not be intact. fThis has the result of
cauging a physical reboot {(requiring approximately 30 seconds} upon
cccurrence of any fatal error or CTRL/C command, instead of a simple
restart of the KBL, In order to avoid a posgible physical reboot of
the system in cases such as this, the user may link his program with
the object module XBLRES,OBJ on the Build Cassette, This program is
mersly:

s ASECT

£+ =32 JLOC. OF KBLRES I+ SYSCOw
«BYTE-1 3 AARL ABL AS RESIDENT
«END

KEBELRES,.0BJ should be the first program in the Linker input string,
Loading of this code will reset the SYSCOM KBLRES flag which is
cleared before loading.

The user who wishes to lpad and exscute a program has four methods
available to him {(reference should be made to Figure 3«1 while reading
the following):

1. Assuming the program has an extension of .JSRU or any
user-assigned extension other than ,SLG or .510, the RUN
command may be used to automatically load and start the
program. RN allows use of the €51, and RESMON is
available to handle all I/0 within the user program.
The loading procedure is as follows:

The cassette is first properly positioned for the load;
when this 1is done, the KXBL and CABLDR are no longer
needed and may be overwritten. The CSI builds a table
which contains all the I/0 information which the user
hae entered. 300 bytes are initially reserved for the
table, and once it is built and its actual size is
determined, it is moved to occupy memory Just below
CLOD1l. Thug, program loading may use all memory space
to the bottom location of the CS5I table.

wWhen loading is complete, CLODL1 is no longer needed,
In order to maximize free memory space, the CS8I table is
standardly moved up over CLODl) so as to be positioned
immediately undery RESMON, This destroys CLORL1 and
makes it necessary to reboot the system upon occurrence
of a OTRL/AC or fatal error, To avoid this action (in
cases where the user program does not need space above
the start of the Moniteor, i.e., above KBL), the user may
link EBLRES.OBJ with his program as described
previously;: the second movement of the €SI table will
thus be prevented.

3-22

r—

The 300 bytes originally reserved foy the CS8I table is a
parameter which may be changed by the user during
reassembly of the CAPS-11 Monitor,

2. The second cholce available to the user for loading and
executing a program is to use the LOAD [(and START)
command, The LOAD command allows a program to be loaded
only to the bottom location of the XBL, preserving the
entire Monitor for future use,

3. LOAD/G {and RUN used with the (8LG extension) may be
chosen to load and start a program as follows:

Before the file is loaded, the <cassette is physically
positioned before the data of the file, XBL and CARBLDR
may then be overwritten since CLODLI now directs the
program load. Program loading may occur to the bottom
location of CLOD11l. After the load, CLODll is no longer
needed, 80 the user has the entire memory below RESMON
available for storage space. RESHMON is preserved to
handle I/0 within the user's program. However, the rest
of the Monitor is not preserved and no future Monitor
commands are possible,

4. The LOAD/O command (and RUM used with a .SLO extension)
allows a program to be loaded providing maximum load and
storage space, The cassette is positioned for the data,
and CABLDR 1is moved into highest memory with CBOOT,
where it directs program leading. Loading may occur o
the bhottom location of CABLDR in its new poasition, and
after loading, the entire memory 18 available for
storage, Since no part of the Monitor is preserved, the
user program must handle its own I/0, and no further
HMonitor commands or functions are available for use.

3.8 KNOTES ON DEVICE HANDLERS

The line printer prints characters as they appear in the buffer., Tabs
are output as spaces to the next tabh stop (stops ocour every 8
character positions}. Carriage returns are ignored since a form feed
or line feed is assumed to follow causing the carriage to advance to
the beginning of the next line. If more than 132 characters in a
single line are output, +the line printer handler issues a carriage
return/line feed after the 132nd character and continues output on the
next line, {See Appendix E for instructions regarding changing the
length of the LPT line from 132 to 80 columns,)

If the console terminal is an 1§LT33 Teletype containing reader and
punch units, these may be used as input/output devices in conjunction
with the Teletype keyboard. To punch a tape, simply place +the punch
unit to ON;y to read a tape, place the reader unit to START,
Characters will be printed on the Teletvpe kevhoard as they are read
or punched,

The high=speed reader and punch may be used by PIP. Refer to Chapter
8 for details,

3,7 KEYBOARD MOHITOR ERROR MESSAGES

Pable 3-8 lists all error messages output by the system and lists the
source of each error, These messages are preceeded by one of two
symbols:

? Non-fatal error; execution continues if possgible;
otherwise control returns to the €8I after the
message is printed,

% Fatal error; control returns to the XBL (if the
Monitor 1is entirely resident, the user will see
the dot printed after the message; Lf the Monitor
is not resident, the system will type 1C? on the
line following the message: the user should ensure
that the System Cassette iz mounted on drive O,
and then type any character on the keybeard to
initiate a reboot).

Some messages may have numeric arguments which follow the nmessage
itselfr these usually indicate either the drive numher or the program
counter, Note that messages which have RESMON as thelr source are
those which the user mav see during operation of his program.

Note also that CSI error messages ending with a coleon {:) are followed
by a line containing all c¢ommand string characters entered until
detection of the character in error {(which is indicated by a ?).

Table 3-8
Kevboard Monitor Error Messages

Meesage Arg Meaning Source

107 PC Tllegal IOT: user RESMON
specified an illegal
device or data mode, or an
illegal RESMON I0T code.

N{O FILE OPER drive % | READ or WRITE with no RESMON
BEEX or ENTER

OFFLINE drive £ Cassette not mounted; if RESMON
non~£atal, execution is
automatically resumed when
the cassette is mounted (if
the user improperly mounts the
cassette, a fatal error will
probably occur)

TIMING drive #| System software did not RESMON
service an initiated
request fast enough

{Continued on next page)

Table 3-8 {Cont.)
Kevboard Monitor Error Messages

Message

Agr

Meaning

Bource

TRAP

WRT LOCK

FILE NOT PND

ILL CMD

HO SENTINEL FILE

SYNTAX ERROR

BAD TAPE

NO START ADDR

PROG TOO BIG

SFTWR CHKSM ERR

TRUNCATED FILE

PC

drive #

S5tack overflow, reference
to non-existent memory,
illegal or reserved
instruction, attempt to
reference a word on a
byte boundary; the SP at
the time. of the trap is
stored in location 44

Cassette write—locked; if
non~fatal, execution is
automaticaly resumed when

the cassette is write-enabled

Specified file not
found

Illegal command

No sentinel file is

present on the tape;

this message may occur
during use of the DIRECTORY
command at that point during
the directory listing where
the sentinel file is missing

Arguments following a
command are illegal

Hardware checksum error
{note that this error

may also be caused by
READ operations initiated
on a cassette which is
positioned after the
sentinel file}

Loaded program had no
transfer address

Program too big for the
memory limits defined by
the type of lcad used

Software checksum error
(message followed by number
of errors}

File ends before transfer
address load block is
found

RESMON

RESMON

KBL

KB1.

KBL

KBL

KBL,
CLOD11

KBL,
CLODLL

CLOD11

CLOD11

CLOD11

{Continued on next page}

3-25

Table 3«8 {Cont.)
Keyboard Monitor Error Messages

Message Arg Meaning Source
CSI TABLE Command string too big ¢8I B
OVERFLOW for the table
ILLEGAL CHAR: (C.5. Illegal character in Cs1
line) command stying
ILLEGAIL DEVICE:| {C.S. illegal device Cs1
line) spacification
ILLEGAL SYNTaX:| (C.5. Illegal syntax in CS8I
line) command string —~

326

CHAPTER 4

ERXITING THE SOURCE PROGRAM

The Text Hditor {(EDIT} is used to create and mnodify ASCIT source
files. Controlled by user commands from the Keyboard, ERIT reads
ASCII files from cassette, makes specified changes, and writes ASCII
files back to cassette or lists them on the line printer or console
terminal,

The Editor considers a file to be divided into logical units called
pages, A page of text is generally 50-60 lines long {(delimited by
form feed characters) and corresponds approximately to a physical page
of a program listing., The BEditor reads text from the input file into
two internal buffers; from these buffers text is then called, a page
at a time, into the Text Buffer where the page becomes available for
editing, FRditing commands c¢an then be used to:

Locate text to be changed
Execute and verlfy changes
Cutput a page of text to the output file

List an edited page on the line printer or console terminal

4.1 CALLING AND USING THE EDITOR
The Editor is called from the System Cassette by tvping:
+R EDIT
in response to the dot printed by the Keyboard Listener. Yhen the

Editor is in mermory and readvy to accept I/0 specifications, an
asterisk (*) is printed at the left margin of the c¢onsole terminal

page.

4,1.1 Editor optiens

None of the options previously listed in Chapter 3 are used by the
Editor. An automatic overflow feature is provided, however; if the
Editor discovers an end-of-tape c¢ondition, it prompts the user to
mpunt a new cassette and ountput is continued on this cassette under
the same output filename originally specified by the user (see Section
§.4.6).

4,1.2 Input and ODutput Specifications (Edit Read and BEdit Write)

The Edit Read command opens a file for input. The form of the command
iss

*ER& s FILENA, EXT

where § representa the unit drive number and FILNAM,EXT the file to be
opened, If no drive number is specified, the System Cassette=-drive
J=-iz assured: if no extension is indicated, L(PAL is assumed,. Any
file currently open for input is closed, Edit Read inputs enongh text
to fill its two internal input buffers; text is not read intn the Text
Buffer hawever, and the contents of the other user huffers are not
affected,

For examplet

*ER1z SAMPSS Open for input the File SAMP.PAL
on cassette drive #1 (§ represents
typing the ALTMODE kevy)

The Edit Write command sets up a new file for output {(however, no text
is output +o cgassette and the contents of the user buffers are not
affected}, Any current output files are closed and a new output file
with the specified name 1is opened on the indicated cassette drive,
The form of the command is:

*EWE: FILENA,EXT

4-2

hed

e

NOTE

A cassette which is currently open for
an output operation cannot bhe
simultaneously opened for an input
operation, If +this is attempted, the
error message:

) 70 CHAN CONFLICT?

is printed. However, a cassetta which
is currently open for input can be
opened for output; the cassette ig
repositioned to write the output file;
no further input from that cassette is
then possible until the output file is
closed,

If a file with the same name already
exists on the cassette indicated in the
Edit Write cormand, the old file will he
destroved when the user executes an EXit
or End File command,

The user may create a new file by first opening an output file (via
the EW command) and then creating the text using the Insert command
{see Section 4.4.9}; the new text will be stored on the drive under
the filename indicated in the EW command., Since a new file is being
created, no input file need be open to perform this operation.

Examples of use of these commands are:

*ERI1:TEST.LSSS Open the file TEST.LS on casrette
drive 1 for input.

H#EWFILEI.DATSS Open the file FILE1l,DAT on drive
¢ {the System Cassette) for output,

ZEWIs QUT. TXTSSE Open the file QUT,.TXT on drive 1

Xlesotextyses for output, There 1is no input file;
a new file will be created using the
Ingsert command,

4,1.3 Restarting the Editor

The Editor may be restarted at any time (while it is in memory) by
typing CTRL/P. This echoes as P on the console terminal followed by
a carriage return/line feed. The Command String Interpreter prints an
asterisk at the left margin indicating that it is ready to accept
ancther Editor cormmand. All open files are closed and all huffers are
cleared.

4.2 HODES OF OPERATION

The Editor operates in one of two different modes: Command Mode or
Text Mode. In Cormmand Mpde all input typed on the keyvhoard is
interpreted as commands instructing the EBditor to perform some
operation, Iin Text Mode all typed input 1s interpreted as text to
replace, be inserted into, or be appended to the contents of the Text
Buffer.

Immediately after being loaded into memory and started, the Editor is
in Command MNode, The special character (*} is printed at the left
margin of the console terminal pange indicating that +the Editor is
waiting for the user to type a cormmand., All commands are terminated
by pressing the ALTMODE key twice in succession. Executiecn of
commands proceeds from left teo right. Should an error be encountered
during executinn of a command string, the Editor will print an error
message followed by an {(*) at the beginning of a new line indicating
that it is still in Cormmand Mode and awaiting a legal command, The
command in error (and any succeeding commands)} are not executed and
rust be corrected and retyped.

Text mode is entered whenever the user types a cormand which must be
fellowed by a text string, These commands insert, replace, exchange,
or otherwise manipulate text; after such a command has been typed, all
succeeding characters are considered part of the text string until an
ALTMODE is typed. The ALTMODE terminates the text string and causes
the Editor to reenter Command Mode, at which point all characters are
considered commands again,

4.3 GPECIAL KEY COMMANDS

Special EDIT key commands are listed in Tahle 4<1, (Control commands
are typed by holding down the CTRL kev while typing the appropriate
character.)

Table 4-1
EBIT Rey Commands

Comnand Meaning

ALLMODE fchoes as a § character, A single
ALTMODE terminates a text string., A
double AILTMONDE executes the command
string. For example:

*GMOV A, BLS- IDSS

CTRL/C Echoes at the terminal as C, Typing
thisz command terminates axecution of
ENIT comnmands and initiates a return to
the KRL, Any open files are first
clogsed, and the contents of the Text
Buffer are lost, {see Chapter 3,
Section 3,2.5}).

(Continued on next page)

.

Tabhle 4~1 (Cont.}
EDIT Key Commands

Cormmarnl

Meaning

CTRL/C

CIRL/P

CTRL/U

CTRL/X

RupoUt

TAB

Echoes as 10, This eormand inhibdits
printing on the consnle terminal until
completion of the ocyrrent command
atring. Typing a second CTRL/O will
resums output {see Chapter 3, Section
3.2.5}).

Fchogs as 4P and restarts the Editor
{see Section 4,1.3)

BEchoes as tU. This command daletes all
the characters on the current input lins
{see Chapter 3; Section 3,2,5).

Echoes as 4X and causes the FEditor to
ignhore the entire command string
currently heing entered, The Editor
prints a carriage return/line feed and
an asterisk to indicate that the user
may enter another cormand,

The RUBGUT key 1is used to delete a
character from the current line and may
be used in both Command and Text Modes:
it echoes a backslash fellowed by the
character delsted. Each succeeding
RUBOUT typaed by the user deletes and
echoes another character. An enclosing
hackslash is printed when a key other
than RUBOUT is tvped., This erasure is
done right te left up to the last CR/LF.

Note that RUBRQUT used under control of
the Editor echoes deleted characters
somewhat differently than when using
other svstem programs,

Spaces to the next tab stop, Tah stops
are positioned every B spaces on the
terminal; tvping the TAR key causes the
carriage to advance to the next tab
position,

4.4 COMMAND STRUCTURE

Editor commands can be categorized as belonging to one of five groups:
which allow text to be input from cassette and

output to either cassette, line printer, or the console
— thozse commands which allow the character location pointer to be moved;

al those c¢ommands

¢} those cormmands which perform searches in the text for

4«5

teyminal;

specific

characters or strinugs of charackers; d) those commands which cause the
text to be modified either by insertion of new text, or deletion or
relocation of existing text; and e} a special classification of
commands called utility commands.

Tne genaral format for the EDIT cormand string is:

nctexts
or
nCs%

where n reprasents one of the legal arguments listed in Table 4~2, C
iz a one oar two letter command, and text is a string of successive
ASCIY characters, As a rmule, commatids are separated from one another
by a single ALTMODE; however, if the command requires no text, the
separating ALTMODE is not necessary, Commands are terminated by a
single ALTMODE; tvping a second AUTMODE begins execution,

4,4,1 Arguments

An argument is positioned before a cormmand letter and is used either
to specify the particular portion of text to be affected by the
command or to indicate the number of times the command should be
perfarmed, With some commands this specification is implicit and no
arguments are needed; other Editor c¢ommands require an argument,
Table 4-2 lists the formats of arguments which are used by commands of
this last type,.

Table 4-Z
Conmand Arguments

Format Meaning

n n stands for any integer in the range -16383 to
+16383 and may, except where noted, be preceded bv a
+ or =, If nn sign precedes n, it is assumed to be
a positiwve numher, Wwhenever an argument is
acceptable in a command, its absence implies an
arqument of 1 {or =1 if only the - is present).

a 0 refers to the beginning of the current line,
/ / rafers to the end of text in the current Text
Buffer,

= = is used with the J, D and € commands only and
represents -n, where n is equal to the length of the
last text argument used,

The roles of all arguments are explained more specifically in
following sections.

43

4.4,2 Command Strings

All EDIT command strings are terminated by two successive ALTMODE
characters. Spaces, carriage veturns and line feeds within a command
string are ignored {(they are not lenored if they appear within a text
string}. Commands used to insert text can contain text strings that
are several lines 1long, in which case each individual line is
terminated with a carriage return/line feed (CR/LF) and the entire
command is terminated with a double ALTMODE,

Several commands can he struno together and executed in sequence, For
example:

4BGMOY PC,RB35-ZCR1S5X{GCLA BAR25S%

NOTFE

If a command currently being entered by
the user is within 10 c¢haracters of
exceeding the space available in the
Cormand Buffer, the message:

* CB ALMOST FULL ¥

is printed {the Command Buffer holds the
command string until it iz executed: see
Section 4.4.10}, If the command can be
completed within 10 characters, the user
may finish entering the cormand;
otherwise he should type the ALTHODE kev
twice to execute that portion of the
command line already completed. The
message is printed each time a character
is entered in one of the last 10 spaces.

If the user attempts to enter more than
10 ¢haracters the message:

B FULL?

iz printed and all commands typed within
the last 10 characters are ignored. The
user again has 10 characters of
available space in which to correct the
condition.

Execution of a command string begins when the double ALTMODE is typed
and proceeds from left to right.

4.4.3 The Current Location Pointer

Most EDIT commands function with respect to a movable reference
pointer which is normally located between the most recent character
operated upon and the next character in the buffer. At any given time
during the editing procedure, the pointer c¢an be thought of as

representing the current position of the REditor in the text, Most
commands use this pointer as an implied argument; commands are
available for moving the pointer anvwhere in the text, thereby
redefining the c¢urrent location and allowing greatey facility in the
use of other commands.

4.4.4 Character and Line Oriented Command Properties

When using character oriented commands, a numeric argument specifies
the number of characters that are involved in the operation. Positive
arguments represent the number of characters in a forward direction
{in relation to the pointer), negative arguments the number of
characters in a backward direction. Carriage return and 1line feed
characters are treated as anv other character. For example, assume
the pointer is positioned as indicated in the following text:; each
line of text 1s terminated by a carriage return/line feed, indicated
here by J|:

HOV #VECT.R2)D |, Pointer is here
CLR @rz) |

The EDIT command -2J causes the Editor to move the pointer bagkwards
by 2 characters,

MOV !V&C?:RQ.) } Pointer is now here
CLR #R2) |

The command 10J advances the pointer forwvard by 10 characters and
places it bhetween the carriage return and line feed characters at the
end nf the second line.

MOV #VECT.,R2) | Pointer is now here
CLR er2 2, |

Finally, to place the pointer after the "C" in the first line, a -14J
cormmand is used,

MoV WVECT.R2) | Paointer is here
CLR eR2) |

The J (Jump] command is explained in detail in Section 4.4.7,

When using line oriented c¢ommands, the numeric argument representsz the
mumber of lines involved in the oparation. The Editor recognizes a
line as a unit when it detects a CR/LF corhination in the text, When
the user types a carriage return, the Editor automatically inserts a
line feed. Positive arguments represent the number of lines forward
{in relation to the pointer}; this is accomplished by counting CR/LF
combinations beginning at the pointer., Hence, if the pointer is at
the beginning of a 1line, a 1line oriented cormand argument of +1
represents the entire line between the c¢urrent pointer and the
terminating line feed. If the currant pointer is in the middle of the
line, an argument of +1 represents only that portion of the line
between the pointer and the terminating CR/LP. For example, assume a
buffer of:

o

mMov PCsR1 D : Peinter is here
ADD #DRIV-.,R12};
MOV #VECT,R224

CLR ®R2)

The command to advance the pointer one line {lA) causes the following
change:

MOV PCsR1D)

JADD SDRIV-..R1J3] Pointer is now here
MOV #VECI,RE)]

CLR @Rz}

The command 2A moves the pointer over 2 CR/LF combinations:

MOV PCR1D |

ADD #DRIV-.,R1)}

MOV SVECT,R2)

(LR #R2) Ppinter is now here

Negative arguments represent the numher of lines backward in relation
to the pointer, Consequently, if the pointer is at the beginning of
the line, a line argument of -1 means "the previous line" (moving
backward past the first CR/LF and up tc but not including the second
CR/LF); if the pointer is in the middle of a line, an argument of =1
means the preceding 1 1/2 lines. Por example, given the text:

MOV PCaR1) §

ADD #DRIV-.,R1)}

MOV #VECT,R2) | Pointer is here
CLR &Rr2) |

A command of ~lA moves the pointer back 1 1/2 lines,

MOV PCsR1) ¢

HADD #ORIV-.,RED Pointer is here
MOV #VECT,R2)]

CLR eR2) |

How a command of ~1a backs the pointer by only 1 line,

4.4.5% PRepetitive Execution

Portions of a cormand string may be executed more than once by
enclosing the desired portion in angle brackets (<>} and preceding the
left angle bracket with the number of iterations desired. The
structure is:

ClSC28n<C38C45> 05588

where C1,C2,..C5 represent commands and n represents an iteration
argument, Commands Cl ané €2 are each executed once, then commands C3
and C4 are executed n times. Finally, command C5 is executed once and
the command line 1is finished., The iteration argument (n)} must he a
positive number {) to 16384); if not specified, it is assumed to be 1,
If the number is negative or too large, an error message is printed.
Iteration brackets may be nested up to 20 levels. Cormand lines are

checked to make certain the brackets are correctly used and match,
For example, the following bracket structure is legal:

(Rl 4 S gl e

while these structures are considered illegal and will cause an error
meSSage -

PR

L

as an example, assume the user wishes to input a file called SAMP
{stored on cassette drive 1) and change the first four occurrences of
the instruction MOV #200,R0 on each of the first five pages to
MOV $244,R4. He enters the following command line (commands used in
this example are explained in detail later in the chapter):

*ER1: SAMPSS<RA<EGMOV #2002, RO5=J$3<G0%=Ca5>>> 3%
“ c
B

F-3

The command line contains 3 'sets’' of iteration loops (A, B, €} and is
executed as follows:

Execution initially proceeds from left to right; the file SAMP on
drive 1 is opened for input and the first page is read into memory,
The pointer is moved to the beginning of the buffer and a search is
initiated for the character string MOV §200,R0. When the string is
found, the pointer is positioned at the end of the string, but the =J
cormand moves the pointer back so that it is positioned immediately
preceding the string. At this point, execution has passed through
each of the first two ‘'sets' of lteration loops (A, B) once. The
innermost loop {C) is next executed three times, changing the O%'s to
4's, Control now moves back to pick up the second iteration of locp B
and again moves from left to right, When loop ¢ has executed three
times control again moves hack to loop B. When loop B has executed a
total of 4 times, control moves back to the second iteration of loop
A, and so forth until all iterations have bheen satisfied.

4,4,6 Input and tmtput Cormands

Input commands are used to read text into the Text Buffer where it
then becomes availahle for editing or listing. Output commands cause
text to he listed on the consonle terminal or line printer, or written
out to cassette. Some cormands are specifically designed for either
input or output functions, while a few commands searve both purposes.

If an output cassette becomes full during any output operations, the
Editor will prompt the user to mount another cassette by printing:

$2
where # represents one of the drive numbers. After the user has

mounted the new cassette the output operation continues, The files
may later be combined under one filename using PIP (see Chapter 8},

4-10

READ

The Read cormmand {R) causes a page of text to be read from the input
file (previously specified in an ER command} and appended to the
current contents, if any, of the Text Buffer, The form of the command
isz

R

No arguments are used with the R c¢ommand and the pointer is not mowved,
Text is input until one of the following conditions occurs:

1. A form feed character ({signifying the end of the page)}
is encountered, At this point, the form feed will be
the last character in the buffer; or

Z, The Text Buffer is within 500 characters of being full.
{(When this condition occurs, Read inputs up to the next
carriage return/line feed combination, then returns to
command mpde. An asterisk is printed as though the Read
ware complete, but text will not have been fully input);
or

3. An end-of~file condition is detected (the *EOF* messagse
is printed when all text in the file has been read into
remory and no more input is avallable).

The maximum number of characters which can be brought into memory
using a Read command is approximately 5,000 for an BK system, Each
additional 4K of memory allows another 5,000 characters to be dinput,
An error messadge 1is printed 1if +the Read exceeds the memory space
available, or if no input is available.

WRITE

The Write command {W; moves lines of text from the Text Buffer to the
output file (as specified in the EW command}, The formats are:

nW Write all characters beginning at the pointer and
ending at the nth CR/LF to the output file.

=pW Write all characters beginning on the «nth line
and terminating at the pointer to the output file.

6W UWrite the text from the beginning of the current
line to the pointer,

/@ Write the text from the pointer to the end of the
buffer,

The pointer is not moved and the contents of the buffer are not
affected. If the buffer is empty when the Write is executed, no
characters are outpnt.

4-11

Exanples:

*5WES Write the next 5% lines of text
starting at the pointer +to the
current output file,

#=-2WES Write the previous 2 lines of text,
ending at the pointer o the
current output file,

NEXT

The Next cormmand acts as beth an input and output command since it
performs hoth functions., Pirst it writes the current Text Buffer to
the gutput file, then clears the buffer, and finally reads in the next
page of the input file, The Next command can be repeated n times by
indicating an argument bafore the cemmand. The command format is:

nH

Hext accepts only positive arguments and leaves +the pointer at the
heginning of the buffer wpon completion of the operation, If fewer
than n pages are available in the input file, all available pages are
read in, output to the output file, and deleted; the peintar is left
positioned at the beginning of an erpty buffer, and an srror message
ig printed. {1 is emquivalent +to typing the command combination
n<B/H/DR> and provides a means of spacing forward, in page increwments,
through the input file,)

Example:
#2045 Write the contents of the current
Text Buffer to the output file,
clear the buffer and read and write
the next page of text; clear the
buffer and then read ancther page,
LIST

The List cormand prints the specified number of lines on the c¢onsgle
terminal. The format of the cormmand is:

nL Print all characters beginning at the pointer and
ending with the nth CRrR/LF,

-nl. Print all <characters beginning with the first
character on the -nth line and terminating at the
pointer,

01, Print from the beginning of the current line up to
the pointer.

/L Print from the pointer to the end of the buffer,

The pointer is not moved after the command is executed,

Lxamples:

x~2L %S Print all characters starting at
the seqcond preceding line and
ending at the pointer,

$4l. 55 Print all characters bheginning at
the pointer and terminating at the
the 4th CR/LF,

Assuming the pointer location iz as follows:

MOVE SCR1Y,@R2) |
ADD, R1,¢R2Y4+) Pointer is here

The command:s
*-1L %%
Prints the preceding 1 1/2 lines:

MOVB 3(R1),eR2) |
ADD

VERIFY
The Verify command prints the current text line (the line containing
the pointer} on the terminal, The position of the pointer within the
line has no effect and the pointer does not move., The command format
is:

v
No arquments are used. (V is equivalent to typing 0LL,)

Example:

£VSS The command causes the current line
ADD RE-(R2)+ of text to be printed.

END FILE
The End File command closes the current output £ile. This comnmand
does no input/output operations and does not move the pointer; the
buffer contents are not affected. The onutput f£ile is closed,
containing only that text previously output. The Fform of the command
iss

EF

No arguments are uled in the EF command.

4-13

EXIT

The EXit cormmand is used to terminate editing, copy the remainder of
the input file to the output file, and return control to the Keyboard
Listener {the Monitor should be entirely resident in memory so that a
reboot is unnecessary). The EXit cormmand performs consecutive Next
cormmands until the end of the input file is reached, then closes both
the input and output files. The command format iss

EX
Ho arguments are used in the EX cormand.
NOTE

Bither an EF or FX cormand is necessary
to make an output file permanent, If a
tC is typed prior to executing an EF,
the current output file will not be
saved.

An example of the contrasting uses of the EF and EX commands might be
the following: assume an input file called SAMPLE {(on cassette drive
) contains several pages of text. The user wishes to make the {first
and second pages of the file separate files called SAMl and S5aM2
respectively; the remaining pages of text will then make up the file
SAMPLE. 'This can be done using the following cormands:

*ERQ! SAMPLESS
2EWIESAMISS
ENEFSS

ZEW11 SAM25S
2NEFSS

#EW1: SAMPLESEXSS

The user might note that the FF commands are actually not necessary in
this example, since the EW cormand closes a currently open ocutput file
before opening another,

4.4,7 Pointer Relocation Cormands
Pointer relocation cormmands allow the current locaticn pointer to be

moved within the Text Buffer. Several commands are available for this
purpose.,

BEGINNING

The Beginning command moves the current Jlocation pointer to the
beginning of the Text Buffer, The command format is:

B

There are no arguments. For example, assume the buffer contains:

]

MOVB ﬁtRl);SRe)t
ADD Ri;{RZ}ﬁ)x

CLR aﬂﬁzi Peinter is here
MOVH 6¢ 1);892}‘

The B command:

*B5S

will move the pointer to the beginning of the Text Buffer:

(MOVE 3(R1Y,8RE)| Pointer is now here
ADD Rl;(Ra>ﬁ)1
CLR 8r2) |

MOVE 6CR1},8R2) |

JUMP

The Jump command moves the polinter over the specified number
characters in the Text Buffer, The form of the command is:

(+ or -ing Move the pointer {backward or forward} n
characters.

0J Move the pointer to the beginning of the current
line {equivalent to OA).

/J Move the pointer to the end of the Text Buffer
{equivalent to /A).

= Move the pointer backward n characters, where n
egquals the length of the last text argument used,

Kegative arquments move the pointer toward the beginning of
buffer, positive arguments toward the end. Jump treats CR, LF

of

the
and

form feed chavacters as any other character, c¢ounting one buffer

position for each.

Examples
*5J8% Move the pointer forward 5 characters
*-4J5% Move the pointer back 4 charactersg
*BIGABCS=J38 Move the pointer so that it irmediately
precedes the first occurrence of 'ARC'
in the buffer,
ADVANCE

The Advance command is similar te the Jump command except that

it

moves the pointer a specified number of lines (rather than sincle

characters} and leaves the pointer positioned at the beginning of
line. The form of the command is:

the

nA Advance the pointer forward n lines and position
it at the beginning of the n+l line.

~nA Move the pointer backward past n CR/L¥Fs and
position it at the beginning of the ~nth line.

0/ Advance the pointer to the beginning of the
current line (eruivalent to 0J}.

/A Advance the pointer to the end of the Text Buffer
{equivalent to /J).

Por example, assume the buffer contains:

CLR #R2) | Pointer is here

The cormands
*BASS
Moves the pointer as follows:

(LR 8REY | Pointer is now here

4.4.8 BSearch Cormmands

Search commands are used to locate specific characters or strings of
characters within the Text Buffer,

GET
The Get command is of the form:
nGtextss

and searches the currsnt Text Duffer starting at the pointer for the
nth occurrence of the text strina. If the search is successful, the
pointer is5 left immediately following the nth occurrence of the text
strindg. If the search fails, arn error message is printed and the
pointer is left at the end of the Text Buffer.

The argument must be positive and is assumed to be 1 if not otherwise
specified. The text string mav be any length and immediately follows
the § command. The search is made on the portion of the text between
the pointer and the end of the buffer,

S

Example:

Assuming the buffer contains:

MOV PC.R{
ApD #DRI V~., R
MOV #VECT,»R2

CLR #R2, Pointer is hare
MOVE S(R1),8R2

ADD RI+(R2y+

CL.R aR2

MOove HCR1)» 8R2

The command:
*BGADDSS
positions the pointer as follows:

ADD, #FDRIV-.,R1 Pointer is here

The command

*3GOR2SS

positions the pointer:

ADD Ri>(R2Y+
CLR #R2, Pointer is here

After search commands, the pointer is left immediately following the
text ohject. Using a search command in connection with =J will place
the pointer before the text object, as follows:

2G60BJ15=J%%
The pointer will now be placed immediately bhefore "OBJ1':

INC 081 Pointer is here

FIND
The form of the Find comnand is:
nFtext$s

Starting at the pointer, this command searches through the entire text
file for the nth occurrence of the character string specified in the
command, It combines the Get and Next commands such that 1f the
search 1is not successful in the current buffer, the contents of the
bhuffer are output to cassette, the buffer contents are then deleted, a
new page is read in, and the search is continued., This will proceed
until either the search string is found or until the cormplete source
text has been searched. If the search is successful, the pointer is
left immediately following the nth occurrence of the text string. If
the search fails (i.e., the end-of~file is detected for the input file
and the nth cecurrence of the text string has net been found}, an

4-17

error massage is printed and the peointey ig left at the beginning of
an empty Text Buffer. {By deliberately specifving a non-existent
search string, the user can close out his file; that is, he can copy
all remaining text from the input cassette to the output cassette.)

The ardgument must he positive and is assured to be 1 if not otherwise
gpecifiad.

Example:
¥2FMOVE &LR1)S8REBS goarch the entire input file for
the second occurrence of the text
string MOVD B{RL) Q2. Each
unsuccessfully searched buffer is
written to the output file.
POSITION

The Position cormand searches the input file for the nth occurrence of
the text string, If the text string is not found, the buffer is
cleared and a nev page is read from the input file, The format of the
corpand 1s:

nPtext$s

The arqgument must be positive, and is assumed to be 1 if not gtherwise
gpecified. When a P command is executed, the current centents of the
buffer are searched from the location of the pointer te the end of the
buffer. If the search is unsucgcessful, tho buffer is cleared and a
new page of text is read and the cycle is continned, (The difference
between the Find and Positinon cormands is that Find wvrites the
contents of the searched huffer to the output file while Position
deletes the contents of the buffer after it is searched.)

If the search is successful, the pointer is positioned after the nth
oceurrence of the text., If it is not, the pointer is left at the end
of an empty buffer.

Example:
*PADD Rl,(R2)+$$ Search the entire input file for

the string ADD R, (R2)+4, deleting
unsuccessfully searched buffers,

4,4,9 fext Modification Commands

The following commands are used to insert, releocate, and delete text
in the Text suffer,

INGERT

The Insert command causes the Lditor to enter Text Mode and allows
taxt to bhe inserted immediately following the pointer, Text is
inserted until an ALTHODEL is tvped and the pointer is positioned after
the last character of the insert., The cormand format iss

T

ITtexts

Ho arquments are used in the Insert cormand and thae text string is
limjited only by the size of the Text Buffer and the space available,
All characters except ALTMODE are legal in the text string.

EDIT automatically protects against overflowing the Text Buffer during
an Insert. If the I cormmand is the first command in a repetitive
command line, EDIT ensures that there will be encuch space for the
Insert to be executed at least once., If repetition of the command
exceeds the available memory, an error message is prirnted.

Examples
#IMOV #BUFF, R2 Insert the specified text at
MOV FLINE, R} the current location of the
MOVB ~1(R2),R0@ peinter and leave the pointer
L3 positioned at the beginning of
3 the line following RO.

DELETE

The Delete command removes a specified nurber of characters from the
Text Buffer, Characters are deleted starting at the pointer; upon
completion ¢f the command, the pointer is positioned at the f{irst
character following the deleted text. The form of the command is:

{+ or =InD Dalete n characters {forward or backward from the
pointer},

on Delete frorm beginning of current line to pointer
(equivalent to 0K} .

/D nelete from pointer to end of Text Buffer
{equivalent to /K}.

=p Delete -n characters, where n edquals the length of
the last text argument used.

Examples:

2-2DSS Delete the W characters
immediately preceding the pointer,

ARBEFMOV RisaDns Delete the text string *MOV RL,!
(= usmed in conjunction with a
search command will delete the
indicated text string)

Aszuming a buffer of:

ADD Ri,(R2)+
CLR (#R2 Pointer is here

4-19

The command:
*BDSS

leaves the buffer with:

ADD R1.(R2)+
(@R2 Pointer is here
KILL
The Kill command removes n lines from the Text Buffer. Lines are

deleted starting at the current location pointer; upon completion of
the command, the pointer is positioned at the beginning of the 1line
following the deleted text, The command format is:

nk Delete lines beginning at the pointer and ending
at the nth CR/LF.

-nK Delete lines beginning with the first character in
the -nth line and ending at the pointer,

OK Delete from the beginning of the current line to
the pointer (equivalent to 0D).

/K Delete from the pointer to the end of the Text
Buffer {equivalent to /D).

Example:

*2KSS Dalete lines starting at the
current location pointer and ending
at the 2nd CR/LF,

Assuming a buffer of:
ADD Ri,(R2)+

CLRL @R2 Pointer is here
MOVE &(R1), @R2

The command:
*/KES
Alters the contents of the buffer to:

ADD R1s,(R2)+
CLR, Pointer is here

CHANGE

The CHANGE command replaces n characters, starting at the pointer,
with the indicated text string and leaves the pointer positioned
immediately following the changed text, The format of the command is:

s

{+ or -InCtext$ Replace n characters {forward or backward
from the pointer) with the specified text,

Oftext$ Replace all characters from the beginning of
the line up to the pointer with the specified
text. (¥quivalent to 00X}

/Ctext$ Replace all characters from the pointer to
the end of the bhuffer with the specified
text, (Bguivalent to /%)

=Ctext§ Replace =n characters with the indicated text
string, where n represents the length of the
last text argument used,

The size of the text is limited only by the size of the Text Buffer
and the space available, All characters are legal except ALTMODE
which terminates the text string.

If the € command is enclosed within angle brackets so that it will be
executed more than once, and if there is enough space available so
that the command can be entered,; it will be executed at least once
(provided it is first in the command string). If repetition of the
command exceeds the availahle memory, an error message is printed,

Example:

FSCAVECTSS Replace the 5 characters to the
right of the pointer with #VRCT,

= can be used in conjunction with a search command to replace a

specific text string as follows:

#GFIFTY: $=CFIVE:$ ping the occurrence of the text
string FIFTY and replace it with
the text string FIVE,

Assuming a buffer of:

CLR eR2
MOV, SCR1), #R2 Pointer is here

he conmands:
2 BLADDEBS S
Ieaves the buffer with:

CLR #R2
ADDB, SCR1), #R2 Pointer is here

Typing nCTEXTS is equivalent to tvping -nDITEXTS.

4-21

EXCHANGE

The Fxchange command replaces n lines, beginning at the pointer, with
the indicated text string and leaves the pointer positioned after the
changed text,

The form of the cormmand is:

nXtexts Replace all characters beginning at the
pointer and ending at the nth CR/LF with the
indicated text.

-nXtext$ Replace all characters beginning with the
first character on the -nth line and ending
at the pointer with the indicated text.

0Xtexts Replace the current line from the beginning
to the pointer with the specified text.
(Ecquivalent to 0C)

/Xtexts Replace the lines from the pointer to the end
of the buffer with the specifed text,
(Fquivalent to /C}

All characters are legal in the text string except ALTMODE which
terminates the text.

For example, assuming a buffer of:

ADD RI1,(R2)+
CLR @R2 Pointer is here

The command:

*XR1,C(R3)+

replaces the text to the right of the pointer (on the current line)
with the indicated text.

If the X command is enclosed within angle brackets so that it will be
executed more than once, and if there is enough memory space available
so that the X command can be entered, it will be executed at least
once (provided it is first in the command string). If repetition of
the command exceeds available memory, an error message is printed,

4.4,10 Utility Commands

The memory area used by the Editor is divided into logical buffers as
follows:

——

MACRG BUFFER

High Memory
SAVE BUFFER

FREE MEHORY

COMMAND INPUT
BUFFER

Low lemory
TEXT BUFFER

The Text Duffer contains the current page of text being edited and
the Command Input Buffer holds the command currently being typed at
the terminal. Both of these buffers have been previously menticned,

The Save Buffer contains text stored with the Save [8) command and the
Macro Buffer contains the command string macro entered with the Macro
{M} cormand {each are explained next). The Hacro and Save Buffers are
not allioccated gpace until an M or § command is executed, Once an ¥ or
3 command is executed, a OM or 0U (Unsave}) command must be executed to
return that space to the free area.

The buffers expand and contract to accomodate the text being entered.

SAVE

The Save command copies a specified number of lines starting at the
pointer into the Save Buffer. The form of the command is:

ns

The argument {n} must he positive. The pointer position does not
change and the contents of the Text Buffer are not altered, Fach time
4 Save is execunted, the previnus contents of the Save Buffer, if any,
are destroyed, If the Save cormpmand causes an overflow of the Save
Buffer, an error message is printed,

Example:

Assuming the Text RBuffer contains the following assembly language
subroutine:

}SUBROUTINE MSGTYP

SWHEN CALLED, EXPECTS RO TO POINT TO AN
$ASCII ME3ISAGE TWAT ENDS IN A ZERO BYTE
STYPES THAT MESSAGE ON THE USER TERMINAL

+ ASECT

MSGTYP: TSTB (i SDONE?
BEQ mDONE JYES-RETUBN

MLODP: TSTB e#177564 INO=15 TERMINAL, READY?
8P MLOOP SND-WALT
MOVE (X8i+.8F177545 3YES-PRINT CHARAUTER
B8R M3GTYP 3 LOOP

MDONEY RTS PC JRETURN

The command:

+B13S8S

stores the entire subroutine in the Jave Buffer; it may then be
inserted in a program whenever needed using the U command,

IRSAVE

The Insave cormand inserts the entire contents of the Save Buffer inteo
the Text Buffer at the pointer logation and leaves the pointer
positionad following the insarted text.

The form of the command is:

(9] Insert the contents of the BSave Buffer dinte the
Text Buffer.

oy Clear the Save Buffer and reclaim the area for
text,

Zero is the only lagal argumant to the U command,

The contents of the Save Buffer are not destroyed by the U cormmand
(only by the 0U command} and may be Unsaved as wany times as desired,

If the Unsave command causes an overflow of the Text Buffer, an error
message is displayed.

MACRO

The Macro cormand inserts a cormand string inko EDIT's HMacro Buffer,
and is of the form:

MAcommand string/ Store the command string in the
Macro Buffer

oM Clear the Macro Buffer and
or M// reclaim the area for text

/ represents a delimiter character, The delimiter is always the first
character following the M cormmand and mavy be any character which does
not appear within the Macyro command string itself,

Starting with the character following the delimiter, EDIT places the
Macro command string characters into its internal Macro Buffer until
the delimiter is encountered again., A doubhle ALTHODE then returns
ERIT t¢ Command Mode, The Hacro command does not execute the Macro
string; it merely stores the cormmand string so that it can be executed
later by the Execute Macro (EM) command. HMacro doeg not affect the
contents of the Text or Save Buffers,

All characters except the delimiter are Jegal Macro command string
characters, includinyg single ALTHODE's to terminate text commands,
All commands oxcept the M and FM Comnmands are leqgal in a Macro command
string,

In addition to the OM cormand, typing the M command immediately
followed by two identical characters {assumed to be delimiters) and
two ALTMODE characters also c¢lears the Macro Buffer,

Examples:
*¥M//%% or Clear the Macro Buffer
EBMES
#M/BGRBS-C15/5% Store a Macro to change RO to Rl

EXECUTE MACRD

The nxecute Macro command executes the command string specified in the
last Macro command and is of the form:

nkM

The Macro is exeonted n times and returns control to the next command
in the original cormand string.

The argument must be positive,

Examples:

FBIOQOEMES Execute the Macro stored

74 SRCH FAIL IN MACRO& ? in the previous example.
An error message is
returnaed when the end of
buffar iz reached. (This
Macro effectively changed
all occurrences of RO in
the Text Buffer to RL.}

*IMOV PC,RISZEMICLR eR25s In a new program, insert
MOV PCL,R1, then execute
the command string in the
Macro Buffer twice hefore
inserting CLRE 8RZ.

4.5 ERROR MESBAGES

The Editor prints an error message whenever one of the error
conditions in Table 4-3 occurs. Prior to executing any commands, the
Editor first scans the entire command string for syntax errors (format
errors such as illegal arguments, illegal combhinations of commands,
ete.). If an error of this tvpe is found, an error message is printed
in the following format:

PERROR MSG?

and no commands are executed; the user must retype the command,

If the command string contains no syntax errors, execution is started;
however, errors during execution are also possible {buffer overflow,
I/0 errors, etc)., Tf an error is found at during execution, a message
of the form:

Z?*ERROR MAGE?

is printed. In this case, all commands preceding the one in error
will have heen executed; the command in error amnd those following will
not be executed., Most errors will generally be of the syntax type and
can be corrected hafore execution,

When an error occurs during execution of a Macro, the message format
is:

?*message IN MACRO*?
*

Table 4-3
EDIT Error Messages

Message Explanation
PRL>TERRY Too deep nesting or illegal use
of brackets, or unmatched
brackets.
* CB ALMOST FULL * The cormand currently being

entered by the user is within 10
characters of exceeding the space
availakle in the Cormand Buffer
{see Section 4.4.2).

PCB PULL? Command exceedad the space
allowed for a cormmand string in
the Command Buffer.

PEEOR*D Attempted a Read or Next command
and no data was available,.

P*PILE NOT FOUND*Z? Attempted t¢ open a nonexisting
file for editing.

2*HDW ERR*? A hardware error gecurred during
I/0.

?ILL ARG? The argument specified was

illegal for the command used. A
negative argument was specified
wiiere only a positive argument
was allowed, or an arqument
exceaded the range + or ~1&384,

?ILL CHD? EDIT does not recognize the
cormand spacified.

{Continued on next page)

.

s

Table 4-3 (Cont.)
EDIT Error Messages

Message

Explanation

?ILL MAC?

?*ILL NAME*?

?*I/0 CHAN CONFLICT*?

?*NO FILE*?

?*NO ROOM*?

?%¥SRCH FAIL*?

H*TAPE FULL*?

Delimiters were improperly used,
or an attempt was made to enter
an M command during execution of
a Macro, or an attempt was made
to execute an EM command while an
EM was in progress.,

The filename or device specified
in an EW or ER command 1is
illegal.

An attempt was made to open an
input file on a cassette already
open for output, or vice versa.

Attenpted to Read or Write when
no I/0 file was open.

Attempted to Insert, Save,
Unsave, Read, Next, Change or
Exchange when there was not

enough room in the appropriate
huf fer.

The text string specified in a
Get, Find or Position command was
not found in the available data.

Available space for an output
file is full {i.e., there is no
room for any part of +the output
file).

4,6 EXAMPLLE USING THE EDITOR

The following example illustrates the use of the Editor to change
program which is stored on cassette drive 0.

a

Sections of the printout

are coded by letter and corresponding explanations follow the example.

A S

(.8 EDLT

#ERZ: TEST 1. PALSS
*EWis TEST2. PALSS
(kRES
w858
$ TEST PROGRAM
PC= %7
«GLOBL MSGTYP
START: MOV #1200, %6 JENITIALIZE STACK

MOV #M5G. %8 3POILNT R® TO MESSAGE
JEBR PCsM3GTYP FJPRINT IT
HLT 3 STOP
M56e +ASCII /71T WORKS/
«BYTE 15
«BYTE 12
«BYTE &

C {*B1J5DSS

g 4

b (*spxaﬁxmsv s

3 PROGRAR

#1 TO TEST SUBROUTINE MSGTYP. TYPES
FTHE TEST PROGRAM WORKS™

0 THE COMSOMNOSMANSOLE TERMINAL

F{
{!ﬁi"a BYTE+
8

5%
*#F.AS(I1 /SBCTHE TEST PROGRAM WORKSSS

«F.BYTE 28V33
+»BYTE 8
(1

» END
$BA.5%
s PROGRAM TO TEST SUBROUTINE MSGTYP. TYPES
I"THE TEST PROGRAM WORKS®™

JON THE CONSOLE TERMINAL

1

PC=X7
+GLOBL MSGTIYP

START: MOV #1620, %6 JINITIALIZE STACK
MOV MM56, 12 JPOINT R& TO MESSAGE
JER PCHMEGTYE PPRINT 1T
HLT 3 S5TOP

MS8G1 «A5CI1 /THE TEST PROGRAM WORKSZS
«BTE 15
+BYTE 12
«BYTE @

! » ERD

*BOHL TS=CHALTSVSES
HALT 3 8TOP

¥EXSES

T

The EDRIT program is called and prints an *, The input file is
TESTL1.PAL on drive 0, and the cutput file is TEST2.PAL on drive
1l: the first page of input is read.

The buffer contents are listed.

Be sure the pointer is at the beginning of the buffer. Advance
the pointer } character (past the ;) and delete “TEST %,

Position the pointer after PROGRAM and wverify the line; the
pointer is not moved.

Text is inserted., RUBOUT is used to correct a typing error,

Search for .ASCII / and change "IT WORKS® to Y7THE YEST PROGRAM
WORES®,

CTRL/U is typed to cancel the P command., the F command is then
used to search for BYTE 0 and verify the location of the pointer
with ¥ command.

Insert text, The pointer is resturned to the beginning of the
buffer and the entire contents of the buffer are listed.

The user notices that HALT is spelled incorrectly, makes the
change and verifies it.

The input and ocutput files are closed after copying the current
Text Buffer as well as the rest of the input file into the output
file., EDIT returns control to the Monitor,

CHAPTER 5

ARSEMBLIKG TiHE SOURCE PPOGRAM

The CAPS-11 Assenbler is a two pass assermbler (with an optional third
pass) which allows the user +o create a binary object file from a
gsource progran. In the first two passes, the source program (which is
generated on-line using the FEditar} is translated into an chject
module which may c¢ontain both absolute and relocatable code.
Separately assembled object modules may reference one another using
special symbols called global symbols. Obhject modules are then
processed by the Linker, producing a load module which may be loaded
into memory and executed {the linking process is explained in Chapter
&) . During the second (or the optional third)} pass, the Assembler
produces a complete octal/syrbolic listing of the assembled program,
The listing is especially useful for dJdocumentation and debugging
pUrpases,

This chapter not onlv explains how to write PAL asserbly language
programs, but also how to assemble the source prograns inte object
modules. In explaining how to write source programs 1t is necessary,
gspecially at the beginning of the chapter, to make frequent forward
references. The user should first read through the entire chapter to
get a “"feel" for the language, and then reread the chapter, this time
referring to appropriate sections as indicated in order to gain a
thorough understanding of the lanquage and assernbling procedures,

It is assumed that the user is familiar with the PDP-11 PROCESSOR
HANDBOOK and the PIP~11 PERIPHERALS AND INTERFACING HANDBOOX, with
emphasis on those sections which fdeal with the PDP-]11 jinstruction
repertoire, formats, and timings; a thorough Knowledge of these is
vital to efficient assemhly languace prograrmming.

5.1 CALLING AND USING THE ASSEMBLER
The Assembler is called from the System Cassette by tvping:
+R PAL
in response to the dot printed by the Kevhoard Listener., The Command

8tring Interpreter responds Dby printing an asterisk (*) at the left
margin indicating that it is ready to accept input/output

gpecifications., The user may enter his command line followed by a
carriage return even though the remainder of PAL is simmltaneously
being loaded into memory.

5.1.1 Assembler Options
The options listed in Tahle 5-1 are valid for use with the Assembhler
and are indicated by the user in the I/0 specification line.

Table 5-1
PAL Options

Option Meaning
/C This option allows an I/0 specification
line t¢ be broken into several seqgments.
The option character is followed

imnediately by a carriage return and the
command string is continued on the next
line; this next line musat begin with a
cormma.

/F This option is walid only after an input
filename and apecifies that the Assembler
shonld not perform a REWIND operation but
should <oontinue searching the cassette in
a forward direction for this file, The /F
feature saves the user time when he wishes
to input several files from one cassette
and these files appear on the cassette in
the same order as they are to he
assembled, the /¥ option prevents the
Asgsembler from performing a REWIND befors
accessing each file.

/0 This option is valid only after an output
filename and 1indicates that the £file
{immediately preceding the option) is to
he created and used only if a previously
opened output file has been written to the
end of the cassette and more output
remaina., All output files should later be
combined under one name using PIP (see
Chapter B).

/P This option is used whenever a file
referenced in the 1/0 specification line
exists on a cassette which is not
currently mounted on a drive, Before
attempting to search for the file, the
Assembler instructs the user to rount the
proper cassette on the drive by printing
#? where # represents the drive number,
After the user has switched cassettes on
the drive, he may continue execution by

typing any character on the kevheoard,

{(Continued on next page}

Tanle 5-1 {Cont.}
PAL Options

Option Meaning

/X This option is valid only after an output
filename and causes extended binary output
(i.e.,, those locations and hinary contents
heyond the first binary word per source
statement} to be suppressed from the
listing,

3.1.2 Input and Output Specifications

Input and output specifications are tvped Ly the user in response to
the asterisk printed by PAL, The format «f the command siring is:

*LEVyFILE, BIN/OPT, DEV:FILE, LET/OPT=DEV INPUT. L /C
LDEVINPUT, 2 /0PT, .. DEVINPUT, n/0PT

DEV represents the device, FILF,BIN represents the binary cutput file
and FILE.LST represents the listing output £file. Null output of
either the hinary or listing file is represented hy a single comma in
tlie command line, For example:

*1:FILE.BIN,2INPUT.PAL

causes only the hinary file to be produced. Any number of input files
{1IxpPUT,1,,,INPUT.n] is permitted. OPT represents any one (or more} of
the optjions listed in Table 5-1.

If both the binary and listing oputput files are to he sent to
cassette, the Assembler will require three passes since it cannot
output these two files simultanecusly., Otherwise only two passes are
required.

Under an BK system, contrel returns to the Monitor following the
assembly process; under systems greater than 8X, oontrel returns to
the CSI, indicated by an asterisk, and the user can enter another
command line.

5.1.3 Restarting the Assermbler

The Assembler may be restarted at any time {while it is in memory) by
typing CTRL/P. This echoes as 1P on the console terminal and is
followed by a carriage return/line feed. HNote that this restarts the
Assembler but dees not always allow the user to input a new command
string. In 8K systems, the C5I has been overlaid by the Asserbler and
cannot be accessed; therefore, typing CTRL/P will restart the assembly
already in progress. In larger systems, the CSI is not destroved and
typing '4P' while PAL is running will allow the user to enter a new
cormand string.

5.2 CHARACTER BET

The faollowing ASCIT characters are used in writing a PAL source
program {see Appendix A):

1, The letters A throwgh Z. (Both upper and lower case letters
are acceptable, althouch lower case letters will be converted
to upper case letters upon input,)

2, The numbers 0 through 9,

3. The following separating or terminating aymbals:
: o= % & @ {) , ;" v 4+ - & 1
carriage return tab space line feed form feed

4, The characters . and $ are valid but are generally reserved
for use hy system software.

5.3 STATEMENTS

A PAL source prograrm is composed of a sequence of statements, each on
a single line terminated by a carriage return/line feed (CR/LF) or
carriage return/form feed comhination.

NOTE

Since the carriage return iz a required
statement terminator, the Assembler
inserts a carriage return before any
line feed or form feed not irmmediately
preceeded by one, If the CAPS=11 Bditor
is used to create the source program,
any carriage return typed by the user
antomatically generates a line feed
character,

The statement itself may be composed of as many as four flelds which
are identified by their order of appearance and by specific
terminating characters. The four fields are catagorized as:

Label: Operator Operand iComment
The label and comment fields are optional. The operator and operand

fields are interdependent; that is, either one may be onitted
depending upon the contents of the other.

5.,3.1 Lahels

A label is a symbolic name created hy the programmer (ses Section
5.4.2} to identify the location of a staterment in the program., It
always occurs first in a statement and must be terminated hv a colon,

Ty

[

It is assigned the value of the assermbly location counter (see Section
5.%.4), wnich may be either absolute (fixed in memory independently of
the position of the program) or relocatable {(not fixed in memory).
Por example, 1if the current aszsserhly location is abisolute 100({octal)},
the statenent:

ABCD: MOV AsB

will assign the value 100 to the lahel ABCD; subsequent reference to
ARCH will be to location 1860.

In the ahbove case if the assemhly location counter were relocatable,
then the final value of ABCD would he 100 {octal} plus a wvalue assigned
by the Linker when it relocates +the c¢ode, called the relocation
factor, {The final value of ARCD would therefore not be known until
link~tire. This is explained in Sections 5.6 ardd 5.8.3 of this
chapter, and in Chapter 6},

More than one label may appaar within a label field in which case each
label within the field will have the sams value, For example, if the
current location counter is 10G{octal), the statement:

ABC: 0D AT.T: MOV A B

will assiagn each of the three lahels ARC, $DD, and A7.7 the walue 100
{the characters $ and . designate that these lahels are used in
system software}.

A label may he composed of more than six characters, but only the
first six are recogqnized by the Assembler, An error code will be
genarated during assermbly if two or more labels have the same first
six characters.

5.3.2 Operators

An operator follows the label field in a statement and may be an
instruction mnemonic or an assembler directive (the instruction set 1is
discussed in the PnRP=-11 PROCESSOR NAHNDBOOK; Section 5,8 of this
chapter provides information concerning assembler directives), When
the operator is an instruction manemonic, it specifies an action to be
performed on any operand(s) which fellows it, When it is an assembler
directive, the operator specifies a vertain function or action to be
performed during the assermbly process,

An operator may be preceded only by labsls and may be followed by one
or more operands and/or a comment, An operator is legally terminated
by any of the follawling characters:

$ + - B8 { * v & 1 & , 3

line feed form feed carriage return space tab

{The use of each of these characters will be explained later in the
chapter.} For example:

JMP BEGIN FCTAB) TERMINATES OPERATOR JMP

MOVeA. B 18 TERMINATES OPERATOR MOV

When an operator is not followed hy an operand or a comment, it is
terminated by a carriage return followed hv either a line feed or form
fead character,

5.3.3 Operands

An operand is that part of the statement which is acted upon by the
operator and may be a syrbel, expression, or numher, Multiple
operands are separated from one another by a comma. For example:

LABEL: MOV REsRI JTHIS IS A COMMENT

The space between MOV and RO terminates the operator field {MOV) and
beqgins the operand field; the comma separates the operands R0 and R1,
When the operand field is not followed by a comment, it is terminated
by a carriage return followed by a line feed or form feed character,
An operand is separated from a cormment by a semi-colon.

5.3,4 Comments

The comment field is optional and may contain any ASCII character
except null or rubouty; all other characters are ignored by the
Assembler when used in the comment field.,

The comment field may be preceded by any or all of the other three
fields, or it may be on a line by itself., It must begin with a
gemicolon and end with a carriage return followed by a line feed or
form feed character. For exarple:

LABEL: CLR HERE FTHIS IS A COMMENT

Comments do not affect assembly processing or program execution, but
are useful in program listings for later analysis, checkout or
documentation purposes,

5.3.8% Format Control

The format of an assembly listing is controlled by the space and tab
characters, These characters have no effect on the assembly process
of the gource program unless they are embedded within a symbol,
number, or ASCII text, or unless they are used as the operator field
terminator. They are generally used in the sonrce program to provide
a neat readable listing. For example, a statement can be written:

LABEL:MOVCSEPY+, TAGS POP VALUE OFF STACK

This statement is correct and will assemble properly, However, using
the format control characters it can alse be written:

by

—_

LABEL: MOV (S5P)+,TAG FPOP VALUE OFF STACK
which is much easier to read.

Page size is controlled by the form feed character (CTRL/L}. A page
of n lines is created by inserting a form feed after the nth line, If
no form feed is present, the Assembler automatically terminates a page
after 56 lines of text.

5.4 SYMBOLS

A symbol is a string of alphanumeric characters and may be any length,
Rowever, the Assembler only recognines ihe first six characters: thus
gsymbols which contain the same firet six characters are considered
icdentical. There are two types of symbols, permanent and
user-defined.

5.4,1 Permanent Svmbols

The Assembler contains a table (called its permanent symbol table)
which lists the svmhols for all instruction mpemonics and assembler
directives., 7The value of a permanent symbol is unique and independent
of the program's position in memory. That is, its value is fized and
need not be redefined by the programmer. Appendix B prowvides a 1list
of all permanent svrbols in the CAPS~1l Assembler.

5.4.2 User~NDefined Symbols

Al)l symbols not already defined in the Assembler {and therefore
represented in its permanent symbol table) must be defined by the
programmer within the source program. These user-defined symbels are
those either designated as labels or created by direct assignment (as
explained in the next section), User-defined sywbols are added to the
permanent svmbol table as they are encountered during the first pass
of the assemhlv:; they may bhe composed of alphanumeric characters,
dollar signs, and pericds only {again $'s and .'s are usually reserved
for system software}, BAny other characters are illegal and, if used,
will result in an error message. The Tollowing rules also apply to
user—defined svmbols:

1. The first character must not ke a number,

2. Each svmbol must be unique within the first six characters,
A symbol may be written with more than six characters but
the geventh and subsequent characters are only checked for
legality and are not otherwise recognized by the Assembler,

3., Bpaces and tahs must not be imbedded within a symbol,

A user-defined symbol may duplicate a permanent symbol; the value
associated with it depends upon its use as follows:

l. A permanent syrmbol encountered in the operator field 1is
always assigned its pre-defined wvalue.

2. A permanent syrbol encountered in the operand field is
assigned 1its pre-defined value unless this value has been
re-defined by the user; in that case, it 1is assigned the
user-defined value.

User-defined symbols mav be of two tvpes--global or internal. Global
symbols are used to provide 1links between object modules and are
explicitly specified as global using a special assermhler directive
{see Section 5.8.2). A global symbol may be defined by the user (by
either direct assignment or as a label)}, in which case it is called an
entry symbol or entry point; such symbols may be referenced by other
assemblies or ohject modules. A glohal symbol which is not defined in
the current assembly is called an external symbol and must be defined
{as an entry symbol) in another assembly.

All other user-defined svmhols are termed internal; these symbols are
referenced only from within the current assembly.

Under an BK system, the Assembler provides space in its symbol table
for approximately 240 user-defined symbols; a 12K system has room for

approximately 880 user-defined svmbols, and a 16K {or greater) system
allows more than 2000 user-defined symbols.

5.4.3 Directly Assigning Values to Symbols
A direct assignment statement assigns a value to a symbol, The
newly-defined symbol is then added to the Assembler's permanent symbol
table; no word is reserved at the address where the definition occurs.
The format of the statement is:

SYMBOL=EXPRESSION

where the expression is another symhol, numeric value, operator, or
other expression as defined in Section 5.5.

The following conventions apply:

l. An equal sign (=) must separate the symhol from the
expression defining the symbol.

2. A direct assignment staterment may be preceded by a label and
may be followed by a comment,

3. Only one syrmbol may be defined by any one direct assignment
statement,
Examples of direct assignment staterments follow:

A=1 sTHE SYMBOL A IS EQUATED
SWITH THE VALUE 1

£y

(r

=t fe J AMASKLOW S THE SYMEOL B IS5 EQUATED WITH THE
IVALUE OF THE EXPRESSION ("A~1&MASKLOW)

4 bB=3 3THE SYMBOL D IS ESUATED WITH

E: MOV #1,ABLE ITHE VALUE 3. ¢(SINCE NO WORD 5
3 RESERVED, LABELS L AND E ARE
$BOTH EQUATED Wl TH THE NUMERICAL
}MEMORY ADDBRESS OF THE MOV COMMAND:

A syvmbol may be redefined by assioning it a new value; the new value
will replace the old walue in the permanent symbal table,

WOTE

If the defining expression is a global
syrbol, the defined svmbol will not he
global unless it has previously been
defined as such {(see Section 5.5,

Only one level of forward referencing is allowed in a direct
assignment staterment, That is, the following arrangement is illegal:

X=Y
Y=l
Z=300

In a case such as thisg, X and ¥ will both be undefined throughout pass
1 of the asserbly and will be listed as such at the end of that pass.
Y will be cdefined during pass 2, but X will remain undefined
throughout that pass and will generate an error message following the
pass,

A svmbol is relocatable or ahsolute depending upnn the mode of the
defining exprassion. Section 5.5.5 explaing how to determine the mode
of an expression.

5.4.4 Tnegister Symbols

The eight general registers of the PDP-11 are numbhered 0§ throuch 7.
The programmer may assiqan svmbolic names to these registers and
thereafter reference them as syrmbols,

A register symbol 1s defined bv means of a direct assignment statement
where the defining expression contains at least one term (that is,
symbol or numeric value) preceded by a % sign, or at least one term
{syrbol or nurmeric value} previously defined as a register symbol., In
addition, the defining expression of a register symhel must be
ahsolute, For example:

R@= %8 JDEFINE R@& AS REGISTER @

R3=R@+3 3} DEFINE R3 AS REGISTER &8 + 3

Ra=1+%3 JDEFINE R4 AS REGISTER 3 + |
THERE= %2 s BEFINE “THERE™ AS REGISTER 2

It is important to note that all register symbnls must be defined
before they may be referenced. Any reference to an undefined register
gymbol will generally cause errors,

After a register symbol has been defined, any expression containing a
& sign indicates a reference to a register; such an expression is
called a register expression, Thus, the statement:

CLR %6

indicates that register 6 will bhe cleared, while:
CLR 6

will clear the word at remory address &,

In certain cases a register can be referenced without the use of a

register symbol or register expression. Thess cases are recognized
through the context of the statement and are exnlained in Sections
5‘?.13 ar{ﬁ 5‘?‘}-4.

3.3 EXPRESSIONS

Expressions are formed by the combination of terms, Terms may be
symbols, numbers, ASCII data, or the present value of the assembly
location counter (as represented by the special character, period) and
are joined to one another by logical or arithmetic operators. A
single term may form an expression, or several terms may be combined
by operators to make up the expression. {(Bymhols have already heen
explained; the remaining terms are covered in thisg szection.)

Expressions are evaluated by the Assembler from left to right and are
assigned word locations; parenthetical grouning is not allowed. The
evaluation of an expression includes the evaluation of the mode of the
resultant expression (i.e., absolute, relocatable, or external; see
Section 5.5.5.1}

In evaluating expressions, the Assembler will interpret the following
illegal conditions as indicated:

1. A nissing term, expression or external symbol will be
interpreted as 0. For example:

A 1D 3 OPERAND MISSING
will be evaluated as A+0-100.
2, A missing operator will be interpreted as + . For example:
TAG ! LA 177777 3CPERATOR MISSING

will be evaluated as TAG ! LA+177777: an error code will be
printed,

5-10

LY

ir

iy

3, The value of an external expression (one which contains a
symbol not defined in the current program) will be the valuve
of only the absolute part of the expression; e.g., EXT+A will
have a wvalue of A. (This is later moxlified by the Linker,
after program relocation and linking is cormplete, to become
EXT+A,)

5.5.1 Arithmetic and Logical Operators
An operator is a svmbol which indicates an action {or operation) to be
performed, Twe arithmetic and two loglical operators are used by the
Caps~1l Assermbler. The arithmetic operators are:

+ indicates addition or a positive number

- indicates subtraction or a negative number
The legiecal operators are:

& indicates the logical AND operation

i indicates the logical inclusive OR operation

The logical operators cause bit by bit comparisons {(hetween two lé-bit
worda) to be performed with the following results:

AND OR
0 & 0 = 0 9 ' 0 = O
6 & 1 = 0 0 ! 1 = 1
1l & ¢ = 0 1 1 0 =1
1 & 1 =1 1 1 1 = 1

3.5,2 Humbers

A number is any sequence of digits delimited by the termination
characters discussed in Section 5.2, The Assembler accepts numbers
indicated in hoth octal and decirmal bases. Oc¢tal numbers conasist of
the digite 0 through 7 only: decimal numbers consiast of the digits 0
through 8 followed by a rdecimal peint. (If a number contains an 8 or
9 and is not followed hy a decimal point, an error code will be
printed and the number will he interpreted bv the Asserbler as
decimal,] A number wvhich is preceded by a minus siqn is interpreted as
a negative numher (thus it is not necsssary to express a negative
numher in its two's complement form); positive numbers may be preceded
by a plus sign although this is not requirec.

If a number is too large to fit into 16 bits, the number is truncated
from the left and an error code is printed in the assembly listing.
Numbers and generated data are always considered as absolute
quantities.

5.5.3 ASBCII Conversion

When preceded by an apostrophe, any ASCII character (except null,
rubout, carriage return, line feed, or form feed) is assigned its
T-bit ASCII value (see Appendix A for a chart containing ASCII codes),
For example:

A
assigns the ASCII character A the value 00010l{coctal).

When two ASCII characters are preceded by a guotation mark, {again the
characters must not be null, rubout, carriage return, line feed, or
form feed) they are both assigned their corresponding 7-bit ASCII
values; each 7-hit value is stored in an 8-bit byte and the hytes are
combinaed to form a word., For example, AR will store the ASCITI wvalue
of A in the low-order {even) byte and the value of B in the high-order
{pdd] byte, as follows:

High-0Ordexr Byte Low-Order Byte

]

B's value= 1 0 2 : 1 g 1 =A's value

i e VN s Ve WP
0 100 001 aol 200 9001
! g o p—
0 4 1 1 0 1

¥

"AR=041101

ASCITI text is always considered absolute hy the Assenbler.

5.5.4 Assembly Location Counter

As assembly proceeds, consecutive memory locations are assigned to
each byte of chiject data generated., Thus, each word of object data is
normally assigned even consscutive lecations,

The special character pariod (.} is the symbal for the assembly
location counter; when used in the operand f£ield following an
instruction, a pericd represents the address of the first word of the
instruction,
NOTE

The assembly location counter is not the

same as the Program Counter as described

in Section 5,7,

For example, assume the folleowing statement occurs at location 5023

At MOV #esRE

5-12

e,

The period refers to location 502, that is, the address of the MOV
instruction. When used in the operand field following an assenmhler
directive (see Section 5.8), the period renresents the address of the
current byte or word. Assume the following statement occurs at
lovation 450:

«BYTE 73545 ADKR
In this case, the period refers to location 451,

The Assembler clears the location counter at +the beginning of each
asserbly pass. Information 4is then normally stored in consecutive
memory locations beginninag at location 0 for relocatable sections, and
wherever the programmer indicates for absolute sections, The user may
at any time change the location where the oliject data is to be stored
by a direct assignment statement of the form:

»=EAPRESSTON

The expressicn defining the leocation counter must not contain forward
references or symbols that vary from ong pass to another,

In the following example the prograrmer uses LASECT and (CSECT
directives, which designate that code will be assigned either absolute
or relocatable locations, These directives are explained in detail in
Section 5.8.3,

« ASECT
« =500 3 SET LOCATION COUNTER TO ABSOLUTE 5080

FIRST: ™MOV .+10,COUNT 3 THE LABEL FIRST HAS THE VALUE 5908(8)
J.+1@ EQUALS 5108(8), THE CONTENTS OF
PLOCATION 51@<8) WILL BE DEPOSITED IN
JLOCATI ON COUNT.

« =520 JTHE ASSEMBLY LOCATION COWNTER NOW
$HAS A VALUE OF ABSOLUTE 328¢(8).
SECOND: MOV «,INDEX JTHE LABEL SECOND HAS THE VALUE 528(8).

JTHE CONTENTS OF LOCATION S20(8), THAT
515, THE BINARY CODE FOR THE INSTRUCTION
FITSELF, WILL BE DEPOSITED IN LOCATION

3 INDEX
« CEECT
2+ 2P 3SET LOCATION COWUNTER TO RELOCATABLE 20.
THIRD: .WORD @ 3 THE LABEL, THIRD HAS THE VALUEL OF
JRELOCATABLE 20 (DETERMINED BY THE
SLINKER) »

Storage area may be reserved by advancing the location counter. For
example, if the ocurrent value of the location counter is 1000, the
direct assignment statement:

,:.%IGB

will resarve 100(8) bvtes of storage space in the program, The next
instruction will be stored at 1100,

Similar to other symbols, the assemhbly location counter has a mode
associated with it. The mode is deternined by the mode of the section
in which it appears (abksolute or relocatahle). *This mode cannot be
changed by using a defining expression of a different mode, However,
it may be changed by chanaing the mode of the section using either the
LASECT or LCSRCT directives as explained in Sectinn 5.8.3, The mode
cannot at any time be external,

5.5.5 Modes of Expressions

Az already mentioned,; expressions consist of a term or the combination
of terms {terms being any symhol, number, ASCII data, or the valus of
the current location counter}, Just as each term of the expression
can be assigned a mode (ahsolute, relocatable, or external), the rode
of the expression itself may be determined as follows:

&n shsolute expression is defined as:

1. An absolute term preceded optionally hy a single arithmetic
operator, or

2. A relocatable expression minus a relocatable term, or

3. An abscolute expression followed by an operator followed by an
absolute expression.

A relocatable expression is defined as:
1. A relocatahle term, or

2., A relocatable expression followed by an arithmetic operator
followed by an absolute expression, or

3. An absolute expression followed by a plus operator followed
by a relocatable aexpression.

An external expression is defined as:
l. An external term, or

2, An external expression follewed by an arithmetic operator
followed by an absolute term, or

3. An absolute expression followed by a plus operator followed
by an external expression,

In the following examples ABS represents an absolute term, REL
represents a relocatable term, and EXT represents an external term,
Thus, these are valid expressions:

EXT+ABS s BEXTERNAL BXPRESSION
REL+REL~REL s RELOCATALRLE EXPRESSION
ABS+REL-RELAABRS s ABSOLUTE EXPRESSION

5-~14

P

The following are illegal expressions {and cannot be handled properly
by the Linker}:

EXTH+REL
FEL+REL
ABS-EXT

5,6 RELOCATION AND LINKING

The output of the Assembler is a relocatahle ohject module which must
be processed by the Linker before it can be leoaded and executed, The
ohject module ommtains the assermbled binary output of absolute,
relocatable, and external expressions. 3Since absolute expressions are
fixed in memory, the Linker does no manipulation. However, the values
of external or relocatahble expressions must be fixed {or made
absclute) by the Linker befrre it can create the l1cad module which
will contain the hinary data to actually be loaded and exscuted,

To enable the Linker to fix the value of an expression, the Assembler
must pass certain information concerning the expression on to the
Linker, For exarple, sach relocatahble section of code in the source
program has been asserbled sequentially with the first section
beginning at location 0 {called relocatable 0); thus each relocatable
expression is a relative number of locations from 0, {This
valuve-~-relocatable ne-and other information is passed to the Linker by
means of the Global Symbol Directory and the Relocation Directory, as
described in Section 5.14.) When the Linker relocates the section of
code, it adds the relocatable value of the expression as provided hy
the Assembler to the base (or beginning location of the section after
relocation) thereby nroducing an abzolute value for the expression.

In the case of an external oxXpression, the wvalue of +the external
svmbol in the expression is determined by the Linker {since the
external symbol must he defined in one of the other object modules
being linked} and this wvalus 1is then added +to the value of the
external expression provided by the Assembler {see Section 5.5, #3).

All instructions that are to be modified by the Linkey in this manner
will bhe marked by a single apostrophe in the assembly listing, as
illustrated in the following examples:

285063 CLR EXTERNALLS) JVALUE CF EXTERNAL SYMBol
gaoees’ 315 ASS5UMED TO BE ZERO, WILL
FBE MODIFILED BY THE LINKER
aa5965 QLR EXTERNAL+6¢5) 3 VALUE OF EXTERNAL SYMBOL
20agas" 3 (ASSUMED ZERDY + 6 WILL BE

3MODIFIED BY THE LINKER

25065 (LR RELOCATABLE(S) 31ASSUME CODE IS [N AN
paag4a’ 3 ABSOLUTE BECTION AND
3 VALUE OF RELOCATABLE SYMBOL
118 RELOCATABLE 4@

5.7 ADDRESSING MONES

The eight general registers mav be used for staring and manipulating
data. Accessing these registers is done Dby means of register
addressing modes. In order to understand heow the addressing modes
operate and how they are assembled, the action of the Program Counter
mast be understeood. The Progran Counter (register 7 of the eight
general registers) alwayvs contains the address of the next word to be
fetehed; i.e., either the address of the next instruction to Dbe
executed, or the address of the second or third word of the current
instruction. The key rule is:

Whenever the processor impliclitly uses
the Program Counter {PC) to fetch a word
from memory, the Program Counter is
automatically incrermented by two after
the fetch.

That is, when an instruction is fetched, the PC is incremented by two
s0 that it is pointing to the next word in merory.

The following conventions are used in explaining the addressing modes:
1. E represents any expression as defined in Section 5.5.

2. R represents a register expression. This is any expression
containing a term preceded by a % character or a symbol
previpusly equated to such a term, as explained in Section
5.4.4.

3. ER represents: a) a register expression as explained in 2
above, or b} an expression in the range 0 to 7 inclusive,

4., A represents a general address specification which produces a
&~hit mode adddress field {(source or destination address) as
describec in the PNP-11 PROCESSOR HANDBOOK under the sections
entitled Single Operand Addressing and Double Cperand
Addressing.

Addressing modas for general registers 0-6 will be described first and
then addressing using the Program Counter {register 7). The format
for the addressing specification, A, is explained in terms of E, R,
and ¥R as defined abhove, Rach will be illustrated with the single
operand instructicon CLR or double operand instruction MOV. (The user
may also refer to the PDP-11 PROCESSOR HANDROOK for information
concerning addressing mndes.}

5.7.1 Register Mode (Mode 0)

The register contains the operand,
Format: R
Example s

R@=ZX9 JIDEFINE R® A REGISTER 9
ClLR RB 3 CLEAR REGI STER @

5«16

R

5.7.2 Deferred Register Mode {(Mode 1)

The register contains the address of the operand,

Format: 2R or (ER)

Exarples

LR 8R1 $ CLEAR THE WORD AT THE

or

3 ADDRESS CONTAINED IN

CLR (12 $REGISTER |

5.7.3 Autoincrerent Mode {(Hode 2)

The centents of the register are increnented irmmediately after

used ag the address of the operand.

Format: {8} +

Exarmples:

Q.R (R@}+ 3 CLEAR WORDS AT ADDRESSES

CLR (Ra+2+

CLR (22« 3AND 2, AND INCREMENT THE

3CONTENTS OF EACH OF THESE
3 REGI STERS BY TWO.

HOTE

Both JI1P and JSR instructions using mode
2 increrant the register before its use
on the POP-11/20 and 11/40 {but not on
the POP=-11/05, 11/16, or 11/45).

In double oparand instructions of the
addressing form %R,(R}+ {or sR,~{R}}
where the source and destination
registers are the same, the source
onerand is evaluated as the
autoincremented {or autodecrenented)
value, hut the destination reaister, at
the time it is uscrd, still contains the
originally intended effective address,
In the following two exanples, as
oxecuted on the PRP-11/203 and 11/40, RD
originally contains 1n0.

MOV R2, (D) + JTHE QUANTITY t1@e2 15

JMOVED TO LOCATI ON 1809

MOV R2,-(@) 3THE QUANTITY 76 IS
IMOVED TO LOCATIIN 76

The PDP-11,/03, 11718, and 11/45 bhandle
these instructions as follows:

3 CONTAENED 1IN REGESTERS 8.3,

being

MOV RO, (B)+ JTHE QUANTITY @@ IS
SMOVED TO LOCATION 108

MOV R, -1 :THE QUANTITY 108 15
IMOVED TO LOCATION 76

The uze of thess forms should be avaided

as they are not compatible among PDP-11
Processors.,

5,7.4 Deferred Autoincremant Mode {mode 3}

The register is used as a pointer to the address of the operand.
contents of the register are incremented after being used,

Format: 8(ER}+
Exarnle s
LR B33+ FCONTENTS OF REGISTER 3 POINT
3TO ADDRESS OF WORD TO BE

3CLEAREDs CONTENTS OF REGI STER
33 ARE THEN INCREMENTED BY 2

5.7.5 Autcodecrement MNode {(Mode 4)

The contents of the register are decremented before being used as
address of the operand {see note in Section 5.7.3}.

Pormat: -~ (BN

Examples:

CLR -{R) 3DECREMENT CONTENTS OF REG] STERS
CLR «~{RA+3) $8, 3 AND 2 BEFORE USING CONTENTS
CLR ~(2) 3 AS ADDRESSES OF WORDS TO BE CLEARED

5.7.6 Deferred Autodecrerent Mode (Mode 5)

The contents of the register are decremented before helng used as
pointer to the address of the operand.

Pormat: €-{ER}
Example s
CLR #-C22 JDECREMENT CONTENTS OF REGISTER 2

3BEFUORE USING CONTENTS AS POINTER TO
s ADDRESS OF WORD TO BE CLEARED

5

18

The

the

a

{»

—

5.7.7 Index Mode {Mode 6)
The contents of the register (ER) and the wvalue of the expression E
are summed to form the address of the operand. The value of the
expression E is stored as the second or third word of the instruction
and is called the base. The processor uses the Program Counter to
fetch the base from memory:; the PC is then incremented by two and
points to the next word.

Format: E{ER}

Examples :

CLR X+2(R1} SEFFECTIVE ADDRESS I35 X+2 PLUS
3THE COMTENTS OF REGI STER 1

CLR ~2¢3) IEFFECTIVE ADDRESS 15 -2 PLUS
FTHE CONTENTS OF REGISTER 3

5.7.8 Deferred Index Mode {Mode 7)

The value produced when the expression and the contents of the
register are added iz a pointer to the address of the operand,

Format: QE(FR)
Example:
CLR #214a04) I1F REGISTER 4 CONTAINS 184, AND

JLOCATION 114 CONTAING 2880, LOC.
12008 15 TLEARED

ADDRESSING USING REGISTER 7 (PC)

Although Register 7 serves as the Program Counter, it may also be used
as a general purpose register. The PC responds to all the standard
Fpp=11 addressing modes; however four of these modes are especially

useful when writing Position Independent Code {explained in Section
5.9); these are summarized helow.

5.7.9 Immediate Mode (mode 2}
Immediate mode allows the operand itself to be stored as the second or
third word of the instruction, It is assembled as an autoincrement of
register 7.

Format: #E

Examplas:

MOV #1828.R3 SMOVE AN OCTAL 180 TO REGISTER J

5

13

MOV #X,R0 FMOVE THE VALUE OF SrmBOL X TO
FREGI STER @

An explanation of this mode folleows. Using the first example above,
the statement MOV #100,R3 assembles as two worddsy these are:

012703
000100

Just befere this instruction is fetched and executed, the PC points to
the first word of the instruction (012703). The processor fetches
this word and increments the PC by two. Since the source operand mode
is 27 {auntoincrement the PCj, the PC is used as a pointer to fetch the
operand {the second word of the MOV instructinn, 000106}. The PO is
then incremented by two to point to the next instruction,

5.7.10 Absolute Mode (Mods 3}
In absolute {(or deferred immediate} mode, the expression specifies an
absolute address; the second word of the instruction contains the
address of the operand, Absolute mode is asserbled as a deferred
antoincrement of register 7.

Format: @#E

Examples:

MOV 8#242,K3 SMOQVE CONTENTS OF LOCATION
}248@ TO REGISTER 3

CLR ##% JCGL.EAR THE CONTENTS OF THE
TLOCATI ON WHOSE ADDRESS [5 X

5.,7.11 Relative Mode [Mode 6}

Relative mode is assembled as index mode using register 7 and is the
nommal mode for memory refersnces.

Format: E
Examples:
CLR 1vB FCLEAR LOCATION 190
MOV X.Y PMOVE CONTENTS OF LOCATION

PX TO LOCATION ¥

The base of the address calculation, which is stored in the second or
third word of the instruction, i35 not the address of the operand,
Rather, it is the number which, when added to the PC, becomes the
address of the operand. Thus, the base is this address - PC, and is
called an offset, The operation is explained as follows:

5-20

£y

If the statement MOV 100,R3 is assembled at absolute lccation 20, then
the assembled code is:

Location 20 016703
Location 22 000654

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67 (indexed
by the PC). To pick up the base, the processor fetches the word
pointed to by the PC (location 22):; the PC is then incremented by twe
and points to location 24, To calculate the address of the source
operand, the lase is added to the updated PC. Thus,
base+PC=54+24=100, the operand address.

Since the Assembler considers the assemhbly location counter (.) as the
address of the first word of the instruction, an equivalent index mode
statement would bhe:

MOV 1P8-.-4a(PCY,R3

This mode is called relative because the the operand address is
calculated relative tro the current PC. The base is the distance or
offset {(in bytes) between the operand and the current PC, If the
operator and its operand are moved in memory so that the distance
between the cperator and data remains constant, the instruction will
ocperate correctly anywhere in memory.

5.7.12 Deferred Relative Mode (Mode 7)

Deferred relative mode is indicated when the expression is preceded by
@; the expression's wvalue 1is the pointer to the address of the
operand.

Format: Q&
Examples:

CLR @Al 3 ADD SECOND WORD OF INSTRUCTION
3TO THE PC TO OBTAIN A POINTER TO
3 THE ADDRESS OF THE OPERAND,
3 CLEAR OPERAND

MOV @x,R® $MOVE THE CONTENTS OF THE
SLOCATION WHOSE ADDRESS IS IN X
3INTO REGISTER @

5.7.13 Table of Mode Forms and Codes

Table 5-2 summarizes the addressing modes, Each instruction assembles
as at least one word. Operands of the first six forms listed below do
not increase the length of an instruction., Each operand in one of the
other modes, however, increases the instruction length by one word (n
represents the register).

Mode

Tanle 5-2
Porms and Codes

Form HMode

Meaning

R gn
BR or (ER) in
{ER) + 2n
B(ER) + 3n
~ (ER) 4n
@~ {ER) 5n

BI{ER) 6n
GE{ER) n
#E 27
Q4B 37
B &7
53 77

{Instruction length is not increased)

Register

Register deferred
Autocincremant
Autoincrement deferred
Autodecraement
atodecramant deferred

{Instruction length increased by one word)

Index
Index deferred
Immadiate

Relative

absolute memory reference

Relative deferred reference

An alternate

NOTE

form for @8R is TR},

Howewver , the form €{ER) is ecuivalent to

20(ER) .,

The form 84E differs from the form E in

that the
instruction
address

and the PC.
CLR 24100 will
1060 even if

from the point at

assembled,

second or

contains the
of the gperand rather than the
relative distance between the

third word of the
absclute

operand
Thus, the instruction
clear absclute location

the instruction is moved
which it was

The Assembler is not particular about left and right and dangling +

and =~ signs in

addresg fields,

incorrect user syntax that will assemble as shown without
indication, (¥ and Y are l&6-hit address offseots):

Form
(Y x
X {R2)
X{R2)+
+(R2)
(r2)~
@{R2IX
XER2) +Y

asserbles As:

X{R2}

X¥{R2) or X=~0(R2)
X(R2)

(R2}) +

~{R2}

AX(R2)

X+Y {R2}

5-22

The following are some examples of

any error

L

5.,7.14 Instruction Forms

Instruction mnemonics are detailed in the PDP-1]l PROCESSOR HANDBOOK
and swmmarized in Appendix B, This section defines the number and
natunre of the operand fields for these instructions. In the table
that folleows, let R, E, and ER represent expressions as defined in
Sectiong 5.5 and 5.7; let OPR represent the operator; let A be a &6-hit
address specification in one of these forms:

E &r - (ER) @=(ER)
R 28R or (R} E(ER) gE{rn)
{ER) + & {LR) + 19 24K
Tabhle 5~3
Instruction Operand Fields
Instruction Form Example
Double Operand OPR ALA MOV (R6}+,@8Y
Single Operand OPR A CLR ~{RZ}
Operate OPR HALT
Branch OPR E BR X+2
wheye =l2B<{E=,-2}/2<=127 BIO ,-4
Subroutine Call JER ER,A JSR PC,SUBR
Subroutine Return RTS ER RTS PC
LT /T RAP OPR or OPR E EMT
where 0<=E<=377(octal} BMr 31

Branch instructions are one word instructions. The high byte contains
the op code and the low byte contains an B-hit signed offset (7 bits
plus sign] which specifies the branch address relative to the PC, The
hardware c¢alculates the bhranch address as follows:

1. The sign of the offset ig extended through hits 8-15,

2., The result is maltiplied by 2; this creates a word offset
rather than a bvte offset.

3. The result is added to the PC to form the final branch
addiress,

The Assembler performs the reverse opasration to form the byte offset
from the specified address. then the offsct is added to the PC, the
PC is pointing to the word following the branch instruction, hence the
factor -2 in the calculation,

#

Byte offset (F-PC)} /2 truncated to eight bits.

Since PC=,+2, the

fivte offset (BE=.~2) /2 truncated to eight bits,

NOTE

Tt is illeqgal to branch %o a location
specified as an external svmbol, or to a
relocatable syrbol when within an
absolute section, or to an ahsnlate
gymbxol when within a relocatable
section,

The EMT and TRAF instructions do not use the low-order byvite of ths
word, This allows information to be transferred to the trap handlers
in the low-order byte., If ENT or TRAP is followed by an expression,
the valve is put into the low~order bvte of the word, However, if the
expreasion is too big (*377{octal)) it is truncatad to eight bits and
an error code is printed.

The programmer should not try to micro-program the condition code
operators {see Appendix B! as the CAPS=11l Assembler does not support
this capability. Thus:

CLCICLY
results in an error message and the statement is assermbled as CLC,
However, expressions allow logical operators and the use of

instruction mnemonics, Thus, the following words are correctly
written:

+WORD CLC! 1 OPERAND OF .WORD DIRECTIVE
(see Section 5.8.7)

+CLCICLY 1 OPERAND 0OF DEFAULT .WORD

ICLECIGLY 3 OPERAND OF DEFAULT .WORD

5.8 ASSEMBLER DIRECTIVES

Assembler directives {(sometimes called pseudo-ops) direct the assembly
process and may generate data. Directives may be preceded by a label
and may be followed by a comment, The assembler directive occupies
the operator field and only one directive may be placed in any one
staterent. A directive and its operand should be separated by a space
or other legal terminator. Operands which age used with directives
vary and are discussed individually.

5.8,1 LJTITLE

The ,TITLE directive iIs used to name the object module., The name is
assigned by the first symbol following the directive, If there is no
+TITLE statement the default name assigned is ",MAIN.". Thus:

+TITLE
FILEls MOV #NAME,R@

assigns the name FILEL to the current object module.

W

e

5.8.2 LGLOBL

The GLOAL directive is used to declare a symbol as being global. A
global symbol is generally referenced by more than one ohiject module.
It may be an entry symbol, in which case it is defined in the current
program, or it may be an external symbol, in which case it is defined
in another program which will be linked with the ourrant program by
the Linker, The form of the ,GLOBL directive is:

LGLORL. NAMA,NAMB, ... NAMN

where symbols NAMA NAMER,...NAMN are all defined as g¢global symbols.

ROTE

A syrmbhol cannot be declared glehal by
defining it as a global expression in a
direct assignment statement,

If an illegal character is detected in the coperand field of a ,GLOBL
statement an error message 1s not generated but the Assembler may
lanore the remainder of the gtatement. Thus:

+GLOBL AsB.8CsD
assembles without error as:

«GLOBL A.B

5.8.3 Program Section Directives {,ASECT and .CSECT}

The relocatahle Assermhler provides two directives enabling the
programmer to specify that parts of his program be assembled in
absolute sections and other parts in relocatable sections, The scope
of each directive extends until a directive to the contrary is given,
The Assembler initially starts in a relocatable section; to enter an
ahsolute section, the J(ASECT directive is indicated., Thus, if the
first statement of a program is:

Al + ASECT

the label "A" would be a relocatable symbol which iz assigned the
value of relocatahle zerao, The Linker will later calculate the
absolute value of A by adding the value of the bhase of the relocatable
section, For example:

« ASECT F ASSEMBLER IN ABSOLUTE SECTION
«21088 JPC=1088 ABSOLUTE
A CLR X 3 A- 1088 ABSOLUTE
« CSECT JASSEMBLE 14 RELOCATABLE SECTION
Xt JMP A 3X=@ RELOCATABLE
« END

The prograrmer may alternate between relocatable and ahsolute sections
as follows:

5-25

« CRECT

+WORD 8,1, 1 ASSEMBLED AT RELOCATABLE 8. 2, AND 4
« ASECT

«WORD B8,1.2, 3} ASSEMBLEDR AT ABSOLUTE ¢, 2, AND 4

« GSECT

«WORD @ 3 ASSEMBLED AT RELQCATABLE &

« END

If a label is defined twice, first in an absolute section and then in
a relocatable section, the symbol will be relocatable but its value
will be as defined in the ahsclute section.

Chapter 6 provides details concerning how the Linker handles absolute
and relocatable program sections at link-time,

NOTE

The CAPE~1l Assembler provides the (EOT
directive far the user who may wish to
writé a program for execution under
anather system allowing the use of paper
tape. For that reason, it is described
here, although the average CAPS~11 user
will have no need to reference it and
the CAPR~11 Assembler will ignore it,
The following djiscussion of the LEOT
directive details its use as it pertains
to the Papertape Software System,

The .EOT directive indicates the physical End Of Tape though not the
logical end of the program, If the ,EOT is followed by a single line
feed or form fesd, the Assembler will still read to the end of the
tape, but will not process anything past the EOT directive, TIf ,.EOT
is followed by at least two line feeds or form feeds, +the Assembler
will stop before the end of the tape, Either case is proper; even
though it may appear as though the Assembler has read too far, it
actually has not,

If LEOT is enmbedded in a tape, and more information to be assembled
follows it, LBOT must be immediately followed by at least two lirne
feeds or form feeds. Otherwise, the first Iine following the .EBOT
will be lost,

Any operands following a JEOT directive will be ignored, The .EOT
directive allows several physicallv separate tapes i be assembled as
one program. The last tape should be terminated by a LJEND directive
{see Section 5,8.6) but may be terminated with ,EOT,

5.8.5 L.EVEN

The ,EBVEN dirsctive ensures that the assenbly location counter is even
by adding one if it is odd. Any operands following a .EVEN directive
will be ignored,

5-26

5.8.6 L.END

The LEND directive indicates the logical and physical end of the
gource program, The JEND directive may be followed by only one
operand-~an expression indicating the program's transfer address, At
lead time, the load moxdule will be loaded and program execution will
begin at the transfer address indicated by the .ENI directive., If the
address 1is not specified and a RUN or LOAD/G command is used, a fatal
error message will be printed; if a LOAD/O cormmand is used, CABLDR
will halt and expect wuser console action (see Appendix E); a LOAD
command in conjuction with the START command allows the user to
indicate an opticnal starting address for the program,

If there is no END directive in the user's program, the Assembler
will issue the ressage:

WO END STeT

at the end of the last input file and will continue as if there had
heen an JEND statement there.

5.8.7 JWORD

The .WORD asszemhler directive mav he followed hy a space and one or
more onerands separated by commas and instructs the Assembler to store
each operand in successive words of the object program. the operands
may be any legally formed expression. For example:

A28

SaL =@

+HWORD 177535,.+4, 5AL $STORED InN WORDS 1428, 1422
3AND 1424 WILL BE 177535,
3 1426 AND &

Values excesding 16 bits will be truncated from the left to word
length,

A LJWORD directive followed by one or more void operands separated by
cormas will store zerons for these operands. For example:

o=] 438 $ZERO, FIVE, AND ZERO ARE 5STORED
+HORD 25, 3IN WORDS 1438, 1432, AND 1434

If a statement contains no operater, this field will be interpreted as
a LHOGRD directive providing the operand field contains one or more
expresgsions, The first term of the first expression in the operand
field must not be an instruction mnemonic or assembler directive
unless preceded by a + or -. or one of the logical operators, | or &.
For example:

» = A48 5 THE OP=-CODE FOR MOV (@10848)
LABEL: +MOV,LABEL $I5 STORED IN LOCATION 448.
544 15 STORED InN LOCATION 442

Note that the default WORD directive will occur whenever there is a
leading arithmetic or logical eperator, or whenever a leading symbol
is encountered in the operator or operand field which is not
recognized as an ienstruction mnermonic or assemhler directive,
Theraefore, if an instroction mnemonic or assembler diractive is
misspelled, the ,[WORD directive is assumed and errors will result.
Assume that MOV is spelled incorrectly as 1INR:

MOR A.8

This will result in two errors caused by: a}l an expression operator
missing between MOR and A, and b} MOR being undefined. Two words will
be generated; one for MOR A and cne for B,

5.8.8 LBYTE

The .BYTE directive may be followed by a space and one or mnore
operands separated bv cormas and instructs the Assermbler to store each
operand in a bvte of the objeact pronram. If multiple operands are
specified, they are stored in suceessive hytes., The operands may be
any legally formed expression with a result of 8 bits or less. For
example;

SAM= G FSTORED IN LOCATI(ON 41¢ WiLL BE
=418 3048 (THE OCTAL EQUIVALENT OF 48).
«BYTE 48.,56M IIN a4t} WILL BE 943

Since the expression is evaluated as a word expression, if it is found
to have a result of more than & bits, it will be truncated to its
low=order 8 bits and an error will be flagged. If an operand after
the ,BYTE directive is left void, it will be interpreted as zero. For
example:

=420 JZERG WilLL BE STORED IN
«BYTE » » FBYTES 424, 421 AND 422.

If the expression is relocatahle, a warning will be printed,

5,8,9 _ASCII

The (ASCII directive translates strings of ASCIT characters {with the
exception of null, rubout, carriage return, line feed, and form feed)
inte their 7-bit ASCII codes. The text to be translated mpust be
enclogsed hy a delimiting character which may be any printing ASCII
character except colon and equal sign and those characters used in the
text string itself, The 7~bit ASCII code generated for each character
will be stored in successive bytes of the object program. For
example;

+«= 508 3THE ASCI] CODE FORY Y WiLlL BE
«ASCIY sYES/ JSTORED IN 588, THWE CODE FOR E
3IN 581, THE CODE FOR 8 [N 582.

i

cASCII /5+3/727 3THE DELIMITING CHARACTER OCCURS
1 BETWEEN THE ODPERANDS. THUS THE ASCII
$CODES FOR 5, +» AND 3 ARE STORED
3IN BYTES 583, 584, AND 585. 27 I3
$3NOT ASSEMBLED.

The .ASCII directive may be terminated by any legal terminator ({(as
listed in Section 5.2 #3}) except = and :. Hote that if the text
delimiter is also a lagal terminator, it may serve a douhle function,
terminating the directive and delimiting the text, For example:

~ASCII /ABCD/ 3 THE SPACE IS REGUI RED
3 BECAUSE 7 15 NOT A LEGAL
$ TERMINATOR.

+ ASCLI +ABCD+ $NO SPACE IS REDUIRED
IS8INCE + IS A TERMINATOR.

5.8.10 LJHADSO

PHP=11 system programs often handle symbols in a specially coded form
valled "RADIX 50" {sometimes also referred to as “"MOD4G"). This form
allows 3 characters to be packed into 16 bits; therefore, any symbol
can be held in two words. The form of the directive is:

~RADSE sL0CC/

‘"he single operand is entered in the form fCCC/ where +the delimiter
{in this c¢ase, slash) can be any printable character except = and :
and those characters used in the operand. Characters which may be
converted are A through 2, 0 throuch 9, dollar (§}, dot (.} and space
{ }. 1If there are fewsr than 3 characters they are left-justified and
trailing spaces are assumed. Any characters following the enclosing
delimiter are ignored and no error results. For example:

+RADSE /ABC/ $ PACK ABC INTQ ONE WORD

+RALSY /ABS 3PACK AB (3SPACESY INTO OME WORD

+RADSS 77 FPACK 3 SPACES INTO ONE WORD
The packing algorithm is as follows:

1. Fach <character is first translated intc its RADIX 50
equivalent as follows:

Character RADIX 50 Ecuivalent (octal}
{SPACE) &

Am2 I=-32

$ 33

' 34

3-8 36-47

Note that another character can be defined for code 35,

5-29

2., The RANIX 50 equivalents for the three characters {(Cl, (2,
C3} are then combined as follows:

RESULT={{C1*50)+C2} *5C+C3

and the result is stored in the word. PFor example, the RADIX
50 walue of ABC is 3223,

5.8.11 .LIMIT

The .LIMIT directive generates two words into which the Linker puts
the low and high addresses of the relocated code. The low address
{stored in the first word} is the address of the first byte of
relocated code; the high address is the address of the first free byte
following the relocated code. Thoese addresses will always bhe even
since all relocatable sections are loaded at even addresses; 1f a
relocatable section consists of an odd number of bytes the Linker adds
one to the size to make it even,

5,8.12 Listing Contrel Directives {,.LIST and .NLIST]

The .LIST and LHNLIST directives allow the user to choose which
sections of his program will appear in the assembly listing, The
LHLIST directive suppresses the asgembly listing and the L(LIST
directive reinitiates it. Thus if the user is developing a program
and has a large section of code which does not change from one edit to
the next, he c¢an insert a ,NLIST directive at the beginning of that
code and a LLIST at the end. That code will not appear in the
assembly listing,

If the . NLIST directive is in control when the symbol table is ready
to bhe output, the ,NLIST directive will he terminated so that the
symbol table can be listed.

5.8.13 Conditicnal Assembly Directives

Conditional assembly directives provide the programmer with the
capability of conditionally including or not including portions of his
source code in the assembly process,. In the explanation which
follows, E denotes an expressicon. The conditional directives are:

Directive Expression Result
LIF2 hid Assemble if E=0
. IFNZ B Assemble if E#0
+«IFL E Assemhle if E<(
. TPLE E Agsemnble if BEdws=(
IPG B Assemble iF E>0
« LFGHE B Assemble if E=>0

If the condition is met, all statements following the c¢onditional
directive are assembled until a special delimiting directive, .ENDC,
is encountered, If the condition of the directive is not met, these

5-30

]

|

LS

statements are ignored. When the L(ENDC dirvective is detected,
assenbly continues as usual.

T™wo more conditional directives are used; these take the following
form:

. IFDF (1) [1,8] 5(2) [1,8) 0. il,8]18(K)
JIFNDF S(1)} [1,8) sS(2} (1,5} ,... (Y ,&)}8({N}

where S5(1)} though S(N) represent symbols, ! represents the logical OR
operation, and & represents the loglcal AND operation, JIFDF and
.IFNDF mean "if defined" and "if undefined® respectively, The scan is
from left to right, no parentheses permitted, HNesting is permitted up
to a depth of 127{decimal}., For exarple:

L1FDF SIT&U Assemhle the following code {until
detection of LENN) if either 8 or
T is defined and U is defined

LIFNDF TEU!'S Assemhle the following code {until
detection of ,ENDC) if both T and U
are undefined or if 5 is undefined

General remarks concerning conditional directives include the
following:

1. A null expression or an expression in error use the default
value 0 for purposes of the conditional test,

2. An error in syntax, e.g., a terminator other than ; ! & or
CR results in the undefined situation for ,IFDF and , IFNDF,
as does a null syrbol or syrmbol in error,

3. BAll conditionals must end with the ,ENRC directive. Anything
in the operand field of .ENDC is ignored.

4, Labels are permitted in statements containing conditional
directives; however, since the scan is purely from left to
right, in the following example:

JIFZ 1}
CLR X
A +ENDC

the label A will be iqgnored (as the Asserbler ignores all
code between the conditional directive and the LENDC
directive)}, while in this example:

Az O{?g 1
CLER X
» ENDC
A is entered in the syrhel table.
5. If an .END directive is encountered while inside a satisfied

conditional, an error will be flagged; however, the ,END
directive will still he processed normally,

5-31

6., If more than one LJEIDC directive is encountered (per
conditional directive), errors are flagged on those in
excess.

5.9 WRITING POSITION INDEPENDENT CODE (PIC)

When a standard program is available for use by other programs, it is
often heneficial to be abhle to load and execute the program in
different areas of memory., There are several ways to do this:

1. Reassemhle the program at the desired location,

2. Use a relocating loader which accepts specially coded binary
ohject modules from the Assembler,

3. Have the program relocate itself after it is loaded.
4, Write code which is position independent.

on small machines, reassembly is often performed; however, the CAPS-11
System has a relocating leoader (Linker; see Chapter 6), and this is
preferable. Since it generally is not economical to have a program
relocate itself (as hundreds or thousands of addresses may need
adjustment) , writing position independent code is another method of
producing a relocatable program,

PIC is achieved on the PDP-11 by correct usage of those addressing
maodes which form an effective memory address relative to the Program
Counter (PC). Thus, if an instruction and its object({s) are moved in
such a way that the relative distance hetween them is not altered, the
same offset relative to the PC can be used in all positions in memory.
PIC wusually references locations relative to the current location,
although ahsolute references may be made as long as the locations
referenced remain stationary while the PIC is relocated. For example,
references to interrupt and +trap vectors are absolute, as are
references to device registers in the "external page" (28K to 32K),
and direct references to the general registers.

5.9.1 Position Independent Modes
There are three position independent modes, or forms of instructions:

l, Branches--the conditional branches, as well as the
unconditional branch, BR, are position independent since the
branch address is computed as an offset to the PC (see
Section 5.7.11).

2. Relative Memory References--any relative memory reference of
the form:

CLR X
MOV M, Y
JMP X

T

is position independent because the Assembler assembles the
reference as an offset indexed by the PC, The offsct is the
difference between the referenced location and the PC, For
example, assume the instruction CLR 200 is at address 100:

188 Qesas7 3FI{RST WORD OF CLR Z2e@9
1%e @2oedr4 JOFFSETYT = 208-184

The offset is added to the updated BC, (The updated PC has
been incremented by two and contains 104, i.e,, the address
of the word following the offset).

Although the form CLR X is position independent, the form
CLR 8X is neot, <Consider the following:

St CLR &X s CLEAR LOCATION A
Xz +WORD A 3 POINTER TO A
Al «WORD 2

The contents of location X are used as the address of the
operand in the location labeled A, Thus, if all of the code
is relocated, the contents of location ¥ must be altered to
raeflect the new address of A, However, if A was the name
associated with some fixed location (e.g., a trap vector or a
device register), then statements 8 and X would be relocated
and A would remain fixed. The following code is position

independent:
A= 36 $ ADDRESS OF SECOND WORD
$ OF TRAP VECTOR
St CLR @&x JCLEAR LOCATION &
x: +WORD A FOINTER TO A

3. Immediate Operands--The Assenhler addressing form 4B
specifies immediate data, that is, the operand is part of the
instruoction (see Section 5.7.9}). Thus, immediate data is
position independent and 1is moved with the instruction,
Immediate data is fetched using the PC in the autoincrement
mede,

Ag with direct memory references, the addressing form @#E is
not position independent since the final effective address is

absolute and peints to a £ixed location not relative to the
PC.

5.9.2 Absolute Modes

Any time a memory location or register is used as a pointer to data,
the reference is ahsolute. If the referenced data is fixed in memory

5~33

independent of the position of the PIC (e,qg., trap=interrupt vectors
or device registers), absolute mnmodes must be ased, {When the
prograrmer is not writing position independent c¢ode, references to
fixed locations may be performed using either the absolnte or relative
form,) If the data referenced is relative to the PIC, abhsolute modes
must not be used unless the pointers involved are modified. The
absolute modes are:

@E Location E is a pointer

@¢E The immediate word is a
pointer

(R) The register is a pointer

(R}+ and =~ (R} The register is a pointer

@(R)+ and @-(R) The register points to a
pointer

F{R} R=6 or 7 The kase, E, modified by (R)
is the address of the operand

EE{R}) The base, meiified by (R}, is

a pointer

The non-deferred index modes and stack operations reguire a little
clarification. As described in Sections 5.7.11 and 5.,9.1, the form
E{7} is the normal mode to reference memory and is a relative mode.
Index mode, using a stack pointer (82 or other register) is also a
relative mode and may be used conveniently in PIC, Basically, the
stack pointer points to a dynamic storage area and index mode is used
to access data relative to the pointer, The stack pointer may be
initially set up by a position independent program as shown in Section
5.9.4. Once the pointer is set up, all data on the stack is
referenced relative to the pointer, It should also be noted that
since the form 0{(8P) is considered a relative mode, so is its
equivalent @8P. In addition, the forms (SP}+ and ={(5P) are required
for stack pops and pushes,

5.9.3 Writing Auntomatic PIC

Automatic PIC is code which regquires no alteration of addresses or
pointers. Thus, memory references are limited to relative modes
unless the location referenced is fixed (trap and interrupt veciors,
etc,). In addition to requirements already mentionsd, the following
must be observed:

1, Start the program with .=0 to allow easy relocation using
CABLDR (see Appendix E},

2, All location setting staterments must be of the form .=.+X or
.= function of tags within the PIC; for example, .=A+10 where
A is a local label,

3, There must not be any absclute location setting statements,
This means that a block of PIC cannot set up trap and/for
interrupt vectors at load time with statements such as:

« 534
«WORD TRAPH, 348 s TRAP VECTOR

i@

CARLLDR, when it is relocating PIC, relocates all data by the
load bias {see Appendix E}., Thus, the data for this vector
would be relocated to some other location, Vectors may be
set at execution time (as discussed next}.

5.,9.4 Writing Non-Automatic FIC

Often it is not possible or econcmical to write totslly automated PIC;
in these cases, some relocation may be easily perforrmed at execution
time, Some of the methods of solution are presented below.
Basically, the metheds operate by examining the PC to determine where
the PIC is actually located; a relocation factor can then be easily
computed, In all examples, it is assumed that the code is assembled
at zero and has been loaded somewhere else by CARLDR.

Setting up the Stack Pointer - Often the first task of a program is to
set the stack pointer (SP). This mav be done as follows:

ey SBEG IS5 THE FIRST [NSTRUCTION
1 0F THE PROGRAM.
BEG: MOV PC:SP 3 SP=ADDRESS BEG+2

TST ~(5P) SDECHEMENT SF BY 2.
FA PUSH ONTO THE STACK WILL STORE
s THE DATA AT BEG-Z2.

Setting up a Trap or Interrunt Vector - Assume the first word of the
vector will point to location INT which is in PIC,.

x: MOV PC, RO 1 R@= ADDRESE X+2
ADD #INT-X-2,R8 3 ADD OFFSET
MOV RO, B#VECT 3JMOVE POINTER TO VECTOR

The offset INTw-X~2 is equivalent to INT-(X+2}; X+2 is the value of the
PC moved by statement X, If PC(0) is the PC that was assumed for the
program when loaded at 0 and if PC(n} is the current real PC, then the
calculation is:

HE=PC{A) +PC{N) =INT+ (PCIn}~PC(0) }

Thus, the relocation factor, PC{n}-PC{0), is added to the assembled
value of INT to produce the relocated wvalue of INT.

Relocating Pointers =~ If pointers must be used, they may be relocated
as shown above., For example, assume a list of data is to be accessed
with the instruction:

ADD (RBY+,R]

The pointer to the list, list L, may be calculated at execution time
ag follows:

5-33

b H MOV PCsR2 JGET CURRENT PC
ADD #L-w-2,R@) ADD OFFSET

Anotheyr variation is to gather all peointers into a table, The
relocation factor mavy he calculataed oence and then applied to all
pointers in the table using a loop:

X MOV PC.R8 JRELOCATE AL)L ENTRIES IN PTRTBL
5UB #X+2,R0 3 CALCULATE REL OCATION FACTOR
MOV #PTRTBL..R1 IGET ANDG RELOCATE A FOINTER
ADD RB.R1 sTO PTRYEL
MOV #TBLLEN,R2 5GET LENGTH DF TABLE

LOOP: ADD R@,(R1)»+ 5 RELOCATE AN ENTRY
DEC R2 3 COUNT
BGE LOOP JBRANTCH IF NOT DORE

Care must be exerciszed wvhen restarting a prooran which relocates a
table of pointers, The restart procednre must not include the
relocation, i.e., the table must be relncated exactly orice after each
load,

5,10 LOADING UNUSED TRAP VECTORS

One of the features of the PDP-1l is the ahility to trap on various
conditions such as illegal instructions, reserved instructions, power
failure, etc. lowever, if the trap vectors are not lIpaded with
meaningful information, the ococurrence of any of these traps will
cause unpredictable results, By Ioading the vectors as indicated
helow it is possible to avold these problems as well as gain
meaningful information ahout any unexpected traps that ooour. This
technique, which makes it easv to identify the source of a trap, is to
load each unusedd tran wvector with:

=trap address
LHORD 42 HALT

This will load the first word of the vector with the address of the
second word of the vector {which contains a HALT). Thus, for example,
a halt at location 6 means that a trap through the vector at location
4 has ocourred. The old PC and status mav bhe examined hv looking at
the stack vointed te by register &.

Trap vectors of interest are listed in Table 5-4.

5-36

N

Tal:le 5-4
Trap Vectors

Yector Halt At Meanina
Location Location

4 6 Bug Error; illegal instruction;
Stack Overflov: Nonaxistent Merory:
Nonexistent Davice; ¥Word Eeferenced

at 0d4d Adidress {Loaded by
RES M=-=caunes Monitor TRAP error
moes sage)

10 1z Reserved Instruction (Loaded by
RESMON=~causens lMonitoy TRAP arrvoy
massaAoes}

14 14 Trace Trap Instruction {(0N0003) or

T-hit Bet in Status Word (used by
ONnT: leadod with a HALT by RAESNONG

20 22 I0T Exacubed (used by RESHON)

24 26 Power Failure or Restoration
{loaded with a HALT bv RESMON)

3n 32 BT Executed [(leaded with a HALT by
RESHMOLIT)
34 36 Trap BExecuted {(Loaded with a HALT

bv RESHOM)

5,11 CODING TECHHNTGURS

Because of the great flexibility in PNP-11 coding, time-saving and
space~-saving ways of perforring operations may not be immediately
apparent, Some special ceding technicgques are presented in this
saction,

5,11,1 Altering Peqgister Contents

The techniques described in this section take advantage of the
automatic stepping feature of autoincrement and autodecrement modes
when used especially in TST and CHMP instructions. These Instructions
do not alter operands. -

HOTE

These alternative ways of altering
register contents affect the condition
codes differently. Register goontents
must be even when stepning by 2.

5.11.2

Adding 2 to a register might be accomplished by ADD #2,R0.
However, this uses two words, whereas CMPB (RO)+,(RO)+ (which
alse adds 2 to a register}, uses only one word,

Similarly, subtracting 2 from a register can be done by the
complementary instructions SUR #2,RD or CMPB =({R0O),-(R0O)},

Two may be added or subtracted from tuo different registers,
or 4 from the same register, in one single-word instruction
-as follows:

CMP (RE)Y+,(RO)+ 3ADD 4 TO RO

CMP =(R1),-¢(RI) 3 SUBTRACT 4 FROM R1

CMP (RDY+,~(R1) 3ADD 2 TO RO, SUBTRACT 2 FROM R1
CMP -¢R3>,-CR1) 3 SUBTRACT 2 FROM BOTH R3 AND R1
CMP (R3)+,(RM)+ 3ADD 2 TO BOTH R3 AND R@

Variations of the examples ahove can be employed if the
instructions onerate on bytes and one of the registers is the
Stack Pointer. fThese examples depend on the fact that the
Stack Pointer (as well as the PC) is alwavs autoincremented
or autodecremented hy 2, whereas registers RO-R5 step by 1 in
hvte instructions.

CMPB (SP)+, (R3)+ JADD 2 TO SP AND 1 TO R3
CMPB -(R3),-(SP) $ SUBTRACT 1 FROM R3 & 2 FROM SP
CMPB (R3) +,-(5P) 3JADD 1 TO R3, SUBTRACT 2 FROM SP

Popping an unwanted word off the processor stack (adding 2 to
register 6) and testing ancother value can be two separate
instructions or one combined instruction:

TST C(SP>+ 3 POP WORD

TST COUNT 3SET CONDITION CODES FOR COUNT
or

MOV COUNT,(SP»+ 3POP WORD & SET CODES FOR COUNT

The differences are that TST instructions use three words and
clear the Carrxy bit, while the MOV instruction uses two words
and does not affect the Carry bit.

Subreoutines

Condition codes set within a subroutine can be used to conditionally
branch
does not affect condition codes.

upon return to the calling program, since the RTS instruction

JSR PC,X 3 CALL SUBROUTINE X
BNE ABC SBRANCH ON CONDITION SET
. 3IN SUBROUTINE X
X: 3 SUBROUTINE ENTRY

CHMP R, DEF
RTS PC

JTEST CONDITION
FRETURN TO CALLING PROGRAM

When the register in the first operand of a JSR instruction is not the
PC, data stored following a subroutine call can be accessed within the
subroutine by referencing the register. {The reaister containg the

return address.} For example:

JSR RS5.Y
» WORD HIGH
«WORD LOW

-

Y MOV (R53+:R2
MOV (R33+,R4a

»

RTS RS

Another possibility is:

JSR R3,.5UB
BR PSTARG

+ WORD A
«WORD B
+WORD C
*
P3TARG:

-

suUB: MOVE @RS5,COUNT

MOV @14(RS) ,R2
MOV #6(R5),R1

-

RTS RS

FLATEST RS VALUE WILL POINT HERE

FVALUE OF HIGH ACCESSED
3 VALUE OF 1.0¥ ACCES3ED

FRETURN TO LOCATION
sCONTAINED 1IN RS

JLOW-ORDER BYTE 15 OFFSET TO
FRETURN ADDRESS, WHICH EQUALS NO.
3 OF ARGS.

1 ADDRESS OF ARG A

$ ADDRESS OF ARG B

$ ADDRESS OF ARG ¢

3 RETURN ADORESS

FGET NO» OF ARGS FROM LOW BYTE
JOF BR CIF DESIRED)

JE+Ges GET 6TH ARGUMENT

FGET THIRE ARGUMENT

JRETURNS TO BRANCH WHICH JUMPS PAST
1ARG LIST TO REAL RETURN ADDRESS.

In the example above, the branch instruction contributes two main

advantages:

1, If RS is unaltered when

the RIS is executed, return will

always be to the branch instruction. This ensures a return
to the proper location even if the length of the argument
list is shorter or longer than expected.

5-39

2. The operand of the branch, being an offset past the argument
list, provides the number of argquments in the list,

Arguments can be made sharable by separating the data £from the main
code, This is easily accomplished by treating the J5R and its return
as a subroutine itself:

CaLL:

JSR PC, ARGL ST

ARGLST: JSR RS, 5UB
B8R PS5TARE
» HORD A

-

The examples above all demonstrate the calling of subroutines from a
non-reentrant program. The called subroutine can be either reentrant
or non-reentrant in each case, The following example illustrates a
method of allowing calling programs to be reentrant. The arguments
and linkage are first placed on the stack, simulating a JSR R5,SUB, so
that arguments are accessed from the subroutine via X(R5}, Return to
the calling program is aexecuted from the stack.

CALL:
MOV RS, ~(SP) 3 3AVE RS ON STALX
MOV JSBR,~(5P3 JPUSH INSTRUCTION JSR Ré, 8RS W
- 3 8TACK. PUSH ADDRESSES OF
- 3ARGUMENTS N STACK IN REVERSE
. 3 ORDER (SEE BEL G2
MOV BBEN,«~{S5P) 3 PUSH BRANCH INSTRUCTIOY O8 STACK
X2 MOV SP. RS IMOVE ADDRESS OF BRANCH TO RS
JSR PC, SUB 1CALL. S5UB AND SAVE RETURM 04 STACK
RET: MOV (SPI+,RS 1RESTORE QLD RS UFON RETURN.
- 1 BATA AREA OF PROGRAM

JSBR: J 3R Rés AR5
BRN 1 BR + #N+N+2 JBRANCH PAST N WORD ARGUMENTS

The address of an argument can be pushed on the stack in several ways,
Three are shown below,

1. "The argquments A, B, and C are read-only constants which are
in memory (not on the stack):

MOV #0,«(3P) 3 PUSH ADDRESS OF C
MOV #B. - (5P2 3 PUSH ADDRESS OF B
MOV #A,~(3P 3 PUSH ADDRESS OF A

2. Arguments A, B, and C have their addresses on the stack at
the Lth, Mth, and Nth bytes from the top of the stack,

MOV NISP),~(3P) 31 PUSH ADDRESS OF C
MOV M+2(3P),~-(5P) 3sPUSH ADDRESS OF B
MOV L+4(5FP),~{SP? 3PUSH ADDRESS QF A

Hote that the displacerments from the top of the stack are
adjusted by two for each previous push because the top of the
stack is being moved on each push.

3, Arguments A, B, and C are on the stack at the Lth, Mth, and
Hth hytes from the top but their addresses are not,

MOV M+ 2. - (5P FPUSH DISPLACEMENT TO ARGUMENT
ADD 5P, 85P 3 CALCULATE aCTUAL ADDRESS OF C
MOV M+ 4, =L 5P

ADD 5P, eSP # ADDRESS OF B

MOV FL+6,~(SP)

ADD SP, 43P s ADDRESS OF A

When subreutine SUB is entered, the stack appears as follows:

RET
BR , +N+1+2
A
B

JSR REG @8R5 :BRANCH 1§ TO HERRD
Nld RS

Subroutine SUB returns by means of an RTS RS, which places R5 into the
PC and pops the return address from the stack into RS. This causes
the execution of the branch since RS has been loaded at location X
with the address of the bhranch, The J8R branched to then returns
gontrol to the calling program, and in so doing, moves the gurrent PC
value into the 5P, thereby removing evervthing above the old RS from
the stack. Upon return at RET this too is popped, restoring the
original RS and SP values,

The next exarple invelves a recursive subroutine (one that <calls
itself}, TIts function is to look for a matching right parenthesis for
every left parenthesis encountered, The subroutine is called by JSR
vhenever a left parenthesis ig encountered (RZ points to the character
following i%). ¥When a right parenthesis is found, an RIS PC is
executed and if the right parenthesis is not the last legal one,
another is searched for, Whan the final matching parenthesis is
found, the RTS returns control to the main program.

At MOVB (R2)+,RE }GET SUCCESSIVE CHARACTERS
CMP #°{.,R@ $LOOK FOR LEFT PARENTHESIS
BNE B FFOUND?
JSR P A 3LEFT PAREN FOUND, CALL SELF
BR A 160 LOOK AT NEXT CHARACTER

B CMPB #°),RP ILEFT PAREN NOT FOUND, LOOK FOR
JRIGHT PAREN
BNE A IFOUWND? IF NOT, GO TO A
RTS PC FJRETURN PAREN FOWNDs IF NOT LAST,
JGO TO B, IF LAST. GO TO MAIN
3 PROGRAM

The example below illustrates the uge of co-routines, called by
J8R PC,8{5P]+. The program uses double buffering on both input and
output, parforming as follows:

Writa Ol Write 02
Read Il } concurrently Read Iz } concurrently
Process Il Process Il

JSR PC,8(8P}+ always performs a jump to the address specified on top
of the stack and replaces that address with the new return address.
Zach time the JSR at B is executed, it jumps to a different location;
initially to A and thereafter to the location following the JSR
executed pricr to the one at B, All other JSR's jump to B2,

PC= X7
BEGIN: * 3BO 170 RESETS, IMITS., ETC.
1oT 3READ INTO I1 TO START PROCESS
«BYTE READ,[NSLOT
+WORD It
MOV #A, ~{ 6) JINITIALIZE STACK FOR FIRST JSR
B: JSR PCs0C6Y4+ 3DO I/0 FOR 01 AND [1 OR 02
. $AND 2
. 5} PERFORM PROCESSING
BR B FIMORE 140

FTEND OF MAIN LOOP
11 /0 CO«ROUTINES

A io7 $READ INTO 12

«BYTE READ,INSLOT

« WORD [2
. 3 S5ET PARAMETERS TO PROCESS
* pLl. 01

JS5R PCsa{ 63+ JRETURN TO PROCESS AT Beg

107 JIWRITE FROM Ot

»BYTE WRITE,QUTSLOT

«WORD 01

107 EREAD INTO I}

«BYTE READ,INSLOT

«WORD 11
N 1 SET PARAMETERS TQ PROCESS
» 312, 02

JER PC, #c 6+ FRETURN TO FROCESS B+2

107 IWRITE FROM 02

«BYTE WRITE,OQUTSLOT

« WORD 02

BR A 3 READ INTO 12

5-42

i

P

The trap handler below simulates a two-word JSR instruction with a
one-word TRAP instructicn., In this example, all TRAP instructions in
the program take an operand and trap to the handler address at
location 34, The tahle of subroutine addresses (e.qg., A, B, ...) can
be constructed as follews:

TABLE?
CALA=.~«TABLE
« NORD A JCALLER BY: TRAP CALA
{AL.B=, -TABLE
«WORD B JCALLED BY: TRAP CALB

L
-

-

Another way to construct the tahle:

TABLE:
CALA=»~TABLE+TRAP
+WORD A JCALLED BY: CALA

*

The trap handley for either of the above methods follows:

TRAP34: MOV 5P, 2(SP) s REPLACE STACKED PS5 WL TH PC*
SUB 22, 8SP JGET POINTER TO TRAP
JINSTRUCTI ON
MOV 8(5P)+,-(5P) s REPLACE ADDRESS OF TRAP WITH

JTRAP INSTRUCTION ITSELF
ADD #TABLE-TRAP,#5P CALCULATE SUBROUTINE ADDR.
MOV @(S5P)+.,PC 3JUMP TO SUBROUTINE

*Renlacing the saved PS loses the T-bit status, If
a hreakpoint has been set on the TRAP instruction,
DT will not gain control again teo reinsexrt the
breakpoints because the T=-bit trap will not ocour,

In the sxample above, if the third instruction had been written
MOV B8(8P},{8P) it would have used an extra word since £{3P) is in
Index Mode and asserbles as 80(5P). In the final instruction, a Jjump
was executed by a MOV 2(8P}+,PC, becuase no egquivalent JMP instruction
exists,

Pollowing are some JHP and MOV equivalences (note that JMP does not
affect condition codes).

JMP (R4) = MoV R4,PC

JHP BL{R4) = MOV (R4),PBC
{2 words} {1 Word}

Hone e MOV @ {Rr4) ,PC

JMP - {R4) = Hone

JMP a{R4)+ = MoV {(R4)+,PC

JHP @3- {14} = MOV ~ (R4} ,PC

None = MOV @(R4}+,PC

Hone e MYV A= {34} ,PC

JME X = MOV 3X,PC

JUP @x = MOV X,PC

None = MOV @Xx,PC

The trap handler can alsc be umeful as a pakching technique. Jumping
out to a patch area is often difficult because a two-word jump must be
performed., Howvever, the one-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching
should first be reserved in the dispatch table of the trap handler,
The jump can then he accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to bLe nmade.

5.12 ASSEMBLY DIALOGIR

During assembly, the Assembler will pause to print on the console
terminal various messages tr indicate that some response mist be made
by the user before the assermhly process can continue, CTRL/F may be
typed at any time to stop the asserbly process and restart the initial
dialogue, as mentioned in Section 5.1.3.

If the specified assembly listing output device is the Line Printer
and it is out of papér, the Assembhler prints on the terminal:

EOM?

and waits for paper to he placed in the device., Typing the RETURN key
will continue assembly.

Other conditions which may cause the EOM? message for the line printer
are: a) no power, b) printer drum gate open, and ¢} too hot,

There is no B0OM if the line printer is switched off-line, although
characters may ke lost for this condition as well as for an EOH,

If the end-nf-tape is reached during cassette ocutput and the user has
not indicated an overflow file using the /0 option, the Assermbler will
print:

EO%?
RETRY?

The user must mount a different output cassette and then type any
character on the keyhnard:; the Assemhler will retry the same assembly
using the new output cassette., Alternatively, the user can type 1L
and return to the XBL, (In systemns greater than than 8¥, the user may
also type tP, which returns control to the CS5I, enabling another
command string to be entered.)

5-44

.

If a hard read error is detected on one of the input f£files, the
Assembler will print:

RBAD TAPE
RETRY ?

Typing 1C will return control to the KDL, Typing *tP or any other
character will cause the Assembler to retry the same asserbly., ({In
gystems larger than 8K, the Assembler will return to the C8I and allow
the user to input a new cormand,)

If the last file does not have a .BND, the Assembler will print;
WO END STHMT

and will erulate a ,END agsembler directive, HNote that when LEND is
emilated in this manner the error counter is incremented by one,

5.13 ASSEMBLY LISTING

The CAPS=1l Assembler produces a side~by-side assembly listing of
symbolic source statements, their octal equivalents, assigned
addresses, and error codes, as follows:

CCABARAA OONOOO' 888, caeral B
OGOO00G
OO0000

The C's represent the error code field; error codes (listed in Tabls
5-4) are flagged 1in this field. The A's represent the &-bit occtal
address, while the 0's represent the object data in octal, The 5's
represent the source statement, and ' represents a single apostrophe
which will be printed whenever either the second, third or both words
of the instruction will be nodified by the Linker., The Assembler
accepts on input 72Z{decimal) characters per line, Any additional
characters on the line will be ignored and the Assembler will generate
an 'L!' error code.

If an instruction requnires two or three words, the second and third
words of the statement are listed under the command word, No
addresses precede the second or third words since the address order is
sequential, The second and third words can bhe eliminated from the
assembly listing by means of the /X switch,

The obiect data field of a .BYTF directive is assemblad as three octal
digits,

The value of the defining expression in a direct assignment statement

is given in the obiect c¢ode field although it is not actually part of
the code of the object progranm,.

The .ASECT and .CRECT directives cause the current wvalue of the
appropriate location counter (absolute or relocatable} ta bhe printed,

545

Each page of the listing is headesd by a PAL identification line and a
page nurber {octall,

Ain example of an assembly listing is shown in Chapter 7, Section 7.6,

5.14 OBJECT MODULE OUTPUT

The output of the assembler during the binary object pass is an object
module which is meaningful only to the Linker. An overview of what
this object module contains and at what stage each part of it 1is
produced follows.,

The binary cbject module consists of tihiree main types of data bleck:
1. Global Svrbol Directory (GSD}

2. Text blocks {TXT)
3. Relocation Directory (RLD)

5.14,1 Glokal 3Syrbol Directory

As the name suggests, the GSD contains a list of all the globhal
symhols together with the name of the object module. Each symbol is
in Radix 50 form and contains information regarding its mode and value
whanesvey known.,

The G8D is created at the start of the binary object pass.

5.14,2 Text Blocks

The text blocks consist entirely of the binary object data as shown in
the listing. Operands are in the unmodified form.

5,14,3 Relocation Directory

The RLD blocks consist of directives to the Linker which may reference
the text blocks wpreceding the RLD, These directives control the
relocation and linking process.

Taxt and RLD hlocks are constructed during the binary object pass.
Outputting of each hlock is done whenever either the TXT or RLD buffer
is full and whenever the location counter needs to be modified,

i

TN

5.15 ERROR (CODES
The error codes printed heside the octal and symbnlic code in

assembly listing have the following meanings:

Table 5-5
Assemblar Error Codes

Error Code Meaning

A Addressing error. An address within the
instruction is incorrect; may also
indiecate a releocation error.

o~ B Bounding error. Instructions ar word
memory data are being assembled at an
odd address in mernory. The location
counter is updated by +1.

D Doublv-defined symbol raferenced.
Raference was made to a symbol which is
defined more than once,

1 Illegal character detected, Illegal
characters which are also non-printing
are replaced by a ? on the listing,

L Line buffer overflow. Extra characters
on a line (more than 72{(decimal}) are
ignored.

M Multiple definition of a lahel, A label
was encountered which was eguivalent {in
the first six characters} to a
previopusly encountered labal.

H Numbher ¢ontaining 8 or 9 has decimal
point missing, The number is assembled
as a decimal number.

P Phase error, A lahel's definition or
value varies from one pass to ancther.

G Questionable syntax. There are missing
arqurmentsg, the instruction scanwas not
- completed, or a carriage return was not
immediately followed by a line feed or
form feed,

R ragister-type error. An invalid use of
= or reference to a register has been
made,

the

{Continued on next page)

547

Table 5-~3 {Cont.}
Assemhler Error Codes

Exrror Cods Meaning

s Symbol tahls overflow, When the
quantity of user~defined symbols exceeds
the allocated space available in the
symbal table, the Assembler outputs the
current source line with the § error
code, then returns to the Monitor {or to
the CS8I in systems larger than BK).

"

T Truneation error. 2 number geherated
more than 16 bits of significance, or an

expression generated more than 8 hits of —
significance during the use of the ,BYTE
directive.
u Undefined syrhol. An undefined symbol

was encountered during the evalunation of
an expression, Relative to the
expression, the undefined symbeol is
assigned a value of zero,

In addition to the error codes listed above, the following messages "

may also ocecur (error messages which are followed by a question mark
allow the user to type a CTRL/C to return to the KBL or a OCFRL/F to
retry the operation):

Table 5~
Assembler Brror Messages

Message Meaning
$BAD CMD STRING one of the following errors has o
occur red in the user's command
string:

Ho output was specified;

No input was specified;

Input and output were sgpecified
an the same drive;

Input was specified from a device
other than cassetteg

Binary output was specified to a
device other than cassette,

?BAD TAPE? A checksum or other hard error
occurred during a file lookup or
entar cormand. Tyning any

character will cause the Assembler
to retry the operation,.

{Continued on next page)

Tahle 5=6

Assembler EBrror Messages

Message

1

Meaning

SBADR TAPE
RETRY?

EOom?

EOM?
RETRY?

FILE ROT PHD?

NG END STMP

PEWITCH ERROR:'x* 7?2

FTAPE FULLY?

A hard read error was detected on
one of the input files:; tvping any
character (except CTRLAC) will
cause the Assembler +to retrv the
samg assembly (in systems larger
than 8K, the Assemhler will return
to the CPI and allow the umser to
input a new cormand),

The line printer is out of paper cr
is not powered up; the drum gate is
open; or the printer is teoo hobt,

The end of the tape was reached
durineg cassette ocutput and ne
overflow f£ile was specified, The
user may mount ancther cassette and
then type any kevhoard character to
instruct the Assembler to retrv the
assemhly using the new output
cassette,

The Asserbler could not £ind one of
the input files, The user may
mount another cassette and type anv
character on tha keyhoard to
instruct the Assenbler to retry the
lookup on the same drive. Typing a
CPRL/P will restart the Assenmhler
{(if the system is 8K the same
agsembly will he restarted,
otherwise control will return to
the €s1,)

The file deoes not contain an LEND
directive; the Asserhler assumes an
«ERD statement.

An undefined option character ({x}
was found in the command string.
Typing any character on the
keyhoard will cause the Assemhler
to ignore the option and continue,

The specified output cassette is
completely full, Mounting a
different cassette on the same unit
and tvping any character instructs
the Assembler to attempt to open
the file on a new cassette.

CHAPTER 6

LINKING ASSEMBLED PROGRAMS

The CAPS~11l Linker converts object modules produced by the Assembler
into a format suitable for loading and execution. This allows the
user to assemble a large program in several small subprograms or to
separately assemble a main program and each of its subroutines without
assigning an absolute load address at assembly time, Object modules
are processed by the Linker to:

Relocate each object module and assign absolute addresses,

Link the modules by correlating global symbols defined in
one module and referenced in ancther module,

Print a load wmap which displays the asasigned absolute
addresses ,

Cutput a load module which can subsequently be loaded and
executed,

Advantages of using the CAPS~1l Assembler and the Linker include the
following:

1. A program is divided into segments (usually subroutines)
which are assembled separately. If an error is discovered in
one segment, only that sgegment need be edited and
reassembled. The new object module is then linked with the
other object modules,

2. Absolute addresses need not be assigned at assembly time as
the Linker automatically assigns absolute addresses, This
keeps programs from overlapping each other and also allows
aubroutines to change size without influencing the contents
of other routines,

3. Separate assemblies allow the total number of sgymbols to
exceed the number allowed in a single asgembly.

&1

4, B8ince global symbols are usually referenced from more than
one object module, the programmer must be sure that his nanmes
for such symbols are unigque between obiect modules, However,
this does not apply when the symbol is internal; since an
internal symbol is referenced only from within the current
assembly, the same sgymbol names may be used in several
different modules,

5. Subroutines may be provided for general use in object module
form to be linked into the user's program.

6.1 CALLING AND USING THE LINKER
The Linker is called from the System Cassette by typing:
2R OLINK

In response to the dot printed by the Keyboard Listener. The Command
String Interpreter responds by printing an asterisk (*) at the left
margin of the teleprinter paper, The user may respond with his I/0
specifications as soon as the asterisk appears even though the
remainder of the Linker is being loaded into memory simultaneously.

The Linker requires twec passes over the input obiject modules. During
the £irst pass any undefined globals are listed on the console
teyminal, and a global symbol table is constructed which includes all
the control section names and glchal symbols in the input modules, On
the second pass, the Linker reads the object modules, performs most of
the functions listed 1in the introductory description and produces a
load module which can be loaded {using the Monitor LOAD command} and
executed, The load module is output in binary image format.

After execution, control returns to the €8I, indicated by an asterisk
at the left margin:; the user may enter another command string.

6.1.,1 Linker Options

The options listed in Table 6~1 are available for use by the Linker
and are designated by the user in the I/0 specification line:

&2

13

e

Table &6-1
Linker Options

Option Meaning

FiH This option allows the I/0 specification
line to be broken intc ssveral segnents,
The option character is followad
immediately by a carriage return and the
1/0 specification is continued on the
next line: this line rmust begin with a
comma.

Vi This option is valid only after an input
filename and indicates that the Linker
should not perform a REWIND operation
but should continue searching the
casgsette in a forward direction for this
file. This feature saves the user time
when he wishes to input several files
from one cassette and these files appear
on that cassette in the same order as
they are to be linked. The /P option
prevents the Linker from performing a
REWIND before accessing each £ile,

/0 This option is valid only after an
output filename and indicates that the
file {(immediately preceding the option}
is to be created and used only if a
previously opened output file has been
written to the end of a cassette and
more output remains, All output files
can later be combined under one name
using PIP {see Chapter 8).

/P This option is used whenever a file
referenced in an I/0 specification line
iz on a cassette which is not c¢urrently
mounted on the unit drive. Before
attempting to search for the file, the
Linker instructs the user to mount the
proper cassette on the drive by printing
§7 where # represents the drive number.
After the user has switched cassettes on
the drive, he may continue execution by
typing any character on the keyboard.

/8 This option is walid only after an input
filename and indicates that two or more
ohiject modules have been combined {using
PIP) under the single filename. The
option instructs the Linker not to skip
to the next input filename until it has
obtained all necessary information for
the files included in the first.

(Continued on next page)

63

Table 6-1 (Cont,)
Linker Options

Option Meaning

/T The /T option ims wvalid only after an
input filename and indicates that the
transfer address of this particular
object module is to be used as the
transfer address of the final load
module, If more than one /T option is
indicated in the 1/0 gpecification line,
only the last one is significant.

/B:n The program is to be linked with its
lowest location at n. If n is not
specified, the Lirker assumes location
660, {The Monitor uses locations
400-600 for stack space while loading is
in progress, so the user should not
attempt to link any data for leading
into that area,)}

/Han The program is to be linked with its
highest location at =n. If n is not
specified, the Linker assumes that the
last location of the user program will
go just under CLOD1l (see Chapter 3,
Figure 3=1). The usger can then use the
LOAD/G command to run his file,

NOTE

If neither the /B or /H options are
indicated {or if both are indicated),
the Linker will load the program with
its highest location just below the XKBL,
so that the entire CAPS~11 Monitor will
be preserved.

The Linker does not give a warning if a
program is linked in memory in such a
way that its lowest address falls below
address 0, BREowever, this condition can
be easily recognized by examining the
iow and high 1limits which are always
printed in the load map.

If the user wishes to link his program for an overlay load {via the
LOAD/Q command), he can link it using the /B gwitch with no value.
The lower limit is set to 600 and the Linker will set the high limit
te allow just encsugh memory for CABLDR and CBOOT (which the user needs
to load his program and to re-boot the CAPS~11 System}. The LLIMIT
assembler directive (see Chapter 5) can be used to instruct the Linker
to load the value of the high limit into the user-program, If the
usar wants to link his program at the top of memory, he should use the

/H switch designating a wvalue which is 1214 (octal) bytes less than the
number of bytes in his machine. For an 8K system this would be
40000-1214 or 36564 (octal); the program would then be 1linked using
/H:36564.

(

i

6.1.2 Input and Output Specifications

The Linker allows two output specifications, one for binary output and
one for the load map output, Inserting only a comma for either output
specification instructs the Linker that no output of this type 1is to
be produced. Any number of input files are acceptable. The format of
the I/0 specification line is:

*DEV:FILENA,LDA/OPT,DEV:FILENA ,MAP/OPT=DEV: INPUT1,0BJ/C
, DEV: INPUT2,0BJ/OPT, ., .DEV:INPUTn,OBJ/OPT

DEV represents one of the CAPS-1l1 I/0 devices; OPT represents any of
the options 1listed in Table 6=1. Unless otherwise indicated, the
Linker assumes the extension .LDA for the binary output file, .MAP for
the lcad map output, and .0OBJ for the relocatable binary object module
input files.

For example, consider the following I/0 specification lines:

<R LINK
2CT 11 PROGsLPt 281 RESs TYPE. 3RN /F, B: SI GN/P/C
» TABLE. DAT/F/H: 2020

This command line causes the Linker to output the load module
(PROG.LDA) on cassette drive 1, and the load map on the line printer;
the input files are RES.0BJ and TYPE.3RN, both on cassette drive 0
(the /F option indicates that TYPE,3RN fcllows RES.OBJ on the cassette
and that no rewind is necessary); the next input file (SIGN.OBJ) is on
a cassette which 13 not currently mounted, so the user asks to be
prompted {via the /P option) when the file is needed; the c¢ommand
string is continued on the next line, and the final input file is
TABLE,DAT which is in a forward direction (in relation to SIGN,OBJ) on
the cassette now mounted on drive 0. The program (PROG.LDA} is linked
80 that its highest address is at location 2000.

=R LINK
2, TT:=ACE. 1, BAK. OBJ

In this example, no output load module is created; the 1load map 1is
output to the console terminal; the input files are ACE,l1 and BAK,OBRJ,
both on cassette drive 0, The cassette is rewound before BAK.OBJ is
accessed. Since no linking address is specified in the command line,
the program is linked so that its highest 1location will 1load just
below the KBL, preserving the entire CAPS-11 Monitor.

6.1.3 Restarting the Linker
The Linker may be restarted at any time (while it is memory) by typing

CTRL/P. This echoes as 1P followed by a carriage return/line feed,
Control is passed back to the Command String Interpreter and the user

&5

may input a new command string. {An exception cccurs when typing tP
while the load map is being output-~this canses the Linker to
terminate the map irmediately and start Pass 2,)

6.2 ABSCLUTE aND RELOCATABLE PROGRAM SECTIONS

As explained in Chapter 5, the programmer may designate sections of
his program as absolute or relocatable by means of the .ASECT and
LCEECT assembler directives., (The Linker assumes LCSECT if neither
directive iz indicated.} In an absolute section, a direct assignment
statement of the form .=EXPRESSION initially assigns an absolute
address to an instruction; succeeding instructions and data in the
absolute section are then assigned absolute addresses in accordance
with the assembly location ¢ounter.

Instructions and data encountered in relocatable sections are assigned
absolute addresses by the Linker, These addresses are normally
assigned such that the relocatable sections are locaded just below the
lowest location of the KBL {(although the user can control this with
the Linker /8B and /H options), All instructions and data which the
programmer has designated in a relocatable section {called a control
section and indicated by a LCSECT directive) are modified
appropriately and as necessary by the Linker to account for their
relocation,

6.2,1 Named and Unnamed Contrcl Sections

The Linker has the capability of handling named and unnamed control
sections, {Assigning names to Ccontrol sections is a feature not
supported by the CAPS~11 Assembler, although the programmer may have
occasion &0 use other assemblers which do allow this feature.) An
wnnamed control section {which is actvally assigned a special default
name of 6 blanks, i.e., .CSECT } is internal to each object
module and is treated independently from any other unnamed control
section, The Linker assigns each uynnamed section an absolute address
such that it occupies an exclusive area of menmory. Named control
sections, on the other hand, are treated globally. That is, if
different object modules have control sections with the same name,
(for example, .CSECT DATA), they are all assigned the same absolute
load address and the size of the area reserved for Jloading of the
gsection is that of the largest, Thus, named control sections allow
for the sharing of data and/or instructions among cbiject modules. A
restriction is that the name of a control section must not be the sanme
as the name of a global entry symbol as this will result in multiple
definition errors,

The absolute section is always assigned the special name .ABS {i.e.,
+ASECT,ABS) by the Linker,

66

i»

[

6,3 GLOBAL SYMBOLS

Global symbols provide the links, or communication, between object
modules, Glcbal symbols are created with the .GLOBL assembler
directive {as described in Chapter 5}. Symbols which are not global
are o¢alled internal symbols., If the global symbol is defined in an
shiject module {as a label or direct assignment] it is called an
entry symbol and other object modules can reference it. If the global
symbol is not defined in the object module, it is an external symbol
and is assumed to be defined {(as an entry symbol) in some other cbiject
module,

As the Linker reads the object modules it keeps track of all glcbal
symbol definitions and references, It then modifies the instructions
and/or data which reference the global symbols. Undefined globals are
printed on the console terminal during pass 1.

6,4 INPFUT AND OUTPUT

Linker input and ocutput is in the form of modules; one or more input
modules (object modules produced by the Assembler) are used to produce
a single output {(load) module,

6.4.1 CObject Modules

Chiject files, consisting of one or more object modules, are used as
input to the Linker: these object modules have heen previocusly created
by the Assembler, and more than one object module may have been
combined using PIP to form a single object file. The Linker reads
each object module twice; that is, it is a two-pass processor. During
the first pass, each object module is read so that absolute addresses
can be assigned to all relocatable sections and all globals can be
assigned absolute wvalues, The information the Linker needs for this
process is contained in the glcbal symbel directory (G8D), located at
the beginning of each object module. Unless the /8 switch has been
indicated in the command line, during the first pass the Linker reads
only the 65D at the beginning of the object file.

n the second pass, the Linker reads the object modules, 1links angd
relocates the modules, and outputs the load module. During this pass
it uses a block of information ocutput by the Assembler in the object
file which is called the Relocation Directory (BLD}.

€.,4.2 Load Mpdule

The primary output of the Linker is the load module which may be
loaded and yun wunder the CAPS~1]1 Keyboard Monitor., The load module
consists of formatted binary blocks holding absoclute load addresses
and object data, The first few words of data will be the
communications directory (COMD) which will have an absolute load
address equal to the lowest relocated address of the program, CABLDR
or CLOD1]l will load the COMD at the specified address but the COMD
will then be overlayed by the program. The end of the module will be

&7

indicated by a TRA blocks that is, a block containing only a load (or
transfer) address. The byte count in the formatted binary block will
be 6 on this block:; on all other blocks the byte count will be larger
than &, The TRA is normally selected by the lLinker to be the first
even transfer address seen., Thus, if four object modules are linked
together and if the First and second had an END statement, the third
had a .END A and the fourth had a .END B, the transfer address would
be A of module three, However, the user can specify directly which
transfer address is to be used by the Linker via the /T option as
described in Table 6-1.

NOTE

The overlaying of the COMD by the
relocated program is a method which
allows CABLDR +o handle 1lcad modules
with a COMD. However, a problem arises
if a load module is to be loaded by
CABLDRE and either of the following
conditions is5 true:

1. The c¢biect modules used to
construct the lcad module
contained no relocatable codep
or

2. The total size of the
relocatable c¢ode is less than
32{16) bytes {the size of the
COMDY .

In either case, there is not enocugh
relocatable code to overlay the COMD
which means the COMP will load into
parts of memory not intended o be
altered by the user. The COMD's load
addreas, selected by the Linker in the
above casmes, is 400(cctal). Thia area
ig reserved for the Monitor stack while
loading is in progress, so no user data
should be destroyed when the COMD is
loaded there.

6.4.3 Load Map

The load map provides several types of information concerning the load
module's make-up. The map begins with an indication of the low and
high limits of the relocatable code and the transfer address., Then a
section of the map is allocated for each cbject module included in the
linking process, FEach of these sections begins with the module's name
followad by a 1list of the control sections and the entry points for
each control section, The base o¢f each control section ({its low
address} and its gize ({in bytes} is printed to the right of the
section name ({enclosed in angle brackets). Pollowing each section
name printout is a list of entry points and their addresses. After
all information has been printed for each object module, any undefined

5-8

symbols are listed. KRote that modules are loaded such that if modules
A, B and C are linked together, A is lowsest and € ig highest in

memory .

The format iy self-explanatory and is illustrated in Section 6.6,

-

NOTE

A CTRL/0 typed during output of the
Linker load map is treated somewhat
differently than during normal CTRL/O
usage, If the wuser does not wish to
list all entry points when the map is
being output on the console terminal,
typing +0 will suppress output of the
locad map until the beginning of the
section for the next medule; the Linker
will then automatically restart the load
map output for this module,

6.5 ERROR MESSAGES

The following messages are printed by the Linker whenever it detects
an error during the 1linking process. Two types of errors may

oceur~~Ffatal and non-fatal.

6.5.1 Non-Fatal Errors

Table 6-2 lists errors which can occur without causing an interruption

in the linking process,

Table 6=2

Linker Non-Fatal Error Messages

Mogsage

Meaning

BAD TAPE?

2RYTE RELOC ERROR AT
ABS ADDRESS xuxzuax

A& checksum o©r other hard ervor
ccourraed during a file LOOKUP or
ENTER command. Typing any
character will cause the Linker to
retry the operation.

This message designates a byte
reloccation error, The Linker will
try to relocate and link byte
quantities; however, relocation
will usually fail and linking may
fail, (Failure is defined as the

{Continued onh next page}

=9

Table 6-2 {(Cont.}

Linker WNon-Fatal Error Messages

Message

Meaning

?FILE MOT FND?

TMAP DEVICE EOM?

FMDDULE NAME XXXXXX

NOT UNIQUE

ZSWITCH ERROR: 'x'?

PIAPE FOLL?

high byte of the relocated wvalue or
the 1linked wvalue not being zero.)
In such a caze, the wvalue is
truncated to B bits and the error
message is printed to inform the
user, The Linker then
automatically continues.

The Linker could not find one of
the input files. This is generally
caused when the wrong cassette is
mounted on a drive. Upon
ocourrence of the message, the user
may mount the correct cassette;
typing any character on the
kevboard will cause the Linker to
retry the LOOKUP on the same drive,
Typing a CTRL/P will restart the
Linker; typing a CTRL/C will cause
a return to the Monitor.

The Load Map device EOM error
allows the user an option to fix
the device and continue or abort
the map listing, Typing a carriage
return (or any other character)
causas the Linker to continue (if
the map device was cassette, the
map listing is continued on the
console terminal): a P will cause
the map to be aborted.

This error is detected during pass
1 and results from a non-unigue
obiject module name. The module is
rejected and the lLinker will then
ask for more input,

An undefined option c¢haracter ({x)
was found in the command string.
Typing any character on the
keyboard will cause the Linker to
ignore the option and continue.

The spacified output cassette is
full, Mounting a different
cassette on the same unit and
typing any character instructs the
Linker to attempt to open the file
on the new cassette,

{Continued on next page)

6~10

»

Table 6-2 {Cont.,)}

Linker Non-Patal Error Messages

Message

Meaning

Taxscxwxy MULTIPLY DEFINED
BY MODULE xxxxxx

This message results during pass 1
if globals have been defined more
than once. The second definition
is ignored and the Linker
continues,

6.5.,2 Fatal Errore

The following errors are fatal and cause control to return to

Monitor.

Table 6-3

Linker Patal Error Messages

Masgage

Meaning

$BAD CMD STRIKG

$CAS., CHECKESLM

$0DD ADDRESS

$8YMBOL TABLE OVERFLOW-
MODULE xxxxxx, SYMBOL
XXREXE

One of the following errors has
occurred in the user's oommand
string:

No output was specified;
No input was specified;

Input and output were specified
on the same drive;

Input was specified from a
device other than cassette;

Binary output was specified to a
device othar than cassettae,

A checksum error was detected while
reading a cassette block.

An odd address was specified wusing
the /B or /H optiona in the command
string,

A symbol table overflow has
accurred {the 8K Linker has room
for approximately 225 {decimal)

symbols) .

{Continuad on next page)

11

Table 6=-3 (Cont.,)}
Linker Fatal Error Messages

Megsage

Meaning

TSYSTEM ERROR xx

01

a2

03

04

05

06

07

08

09

1o

11

12

A system error has occurred; xx
represents an lidentifying number
from the following list:

Unrecognized aymbol table
entry found.

A relocation directory
references a global name which
cannot be found in the symbol
table.

A relecation directory
contains a location counter
modification command which is
not last.

Object mxinle does not start
with a G5D,

The first entry in the GSD is
not the module name,

A Relocation Directory {RLD)
references a section name
which cannot be found,

The transfer address (TRA)
specification references a
non-existent module name.

The transfer address {TRA}
specification references a
non=-existent section name,

An internal HJump table index
is out of range.

A checksum error occourred on
the object module,

An obiject module binary block
is too Dbig {more than
64 (decimal) words of data).

A device error occurred on the
load module output device,

All system errorg except number 12 indicate a program failure e
in the Linkex or the program which generated the object module.
05 can occur if a file is read which is not an obiject module,

§-12

ither
Error

T

6.6 EXAMPLE USING THE LINKER

The following example demonstrates how the wuser can 1link the PAL
Assembler for an 8K system. A load map is produced on the console
terminal, and the load module is output to cassette drive 1 as
PALS.SRU. {Refer to Appendix E for complete instructions on how to
build systems for any configuration,)

«R LINK

+ 11 PALB.SRU,TT: =PAL 115, PALEKS/F,CSI TAC/F /B1 480

CAPS-11 LINK V@1
LOAD MAP

TRANSFER ADDRESS: 202754
LOW LIMIT: 0002400
HIGH LIMIT: @3@544

ERRREERE
PAL

SECTION ADDRESS SIZE

<. ABS.> 020000 0POPALA

COLLID 090159 RESREG 1904124 SAVERE 194122 STSIZE @01312
< > 29040@ Q28222

ASCI I Q971864 ASECT PP6232 BYTE ge12p2 CSECT 2A6146
END 218974 ENDC PP&B76 EOT 086566 EVEN BRE6T6
GLOBL PA&324 |[FDF pB5712 [IFG PB5616 [FGE 0a5629
IFL PRs5622 IFLE PB5624 [FNDF PB5T16 IFNZ BB5614
I1FZ 05632 LIMIT PeTBA2 LIST PP6130 NLIST PA6136
RADS@ 287842 TITLE 306520 WORD adr112

T TIT L

PAL SYM

SECTION ADDRESS SIZE

< > 920622 0PR4T703
CHAR13 P20622 CHARA46 022134 DOTFLG 025323 FLAGS B2 4760
IDOT P24354 SVALUE 023445

TTITYT Y

CSITAC

SECTION ADDRESS SIZE

< > B25526 PP3B16

BADEXI 0226468 CSITAC 925532 ERRCOM 926350 HDRBUF 827504
IGNRFU 825526 INOUT B25554 MESOUT 927214 MESRES 027210
NMBUF@ 026662 SWMSFL 0260864 TYPERO 026673 TYPEB1 026733
PASS 2

*x

6-13

1)

CHAPTER 7

DEBUGGING THE OBJECT PROGRAM

OOT (On-line Debugging Technique) aids the ugser in debugging asserbled
and linked object programs, Using the console terminal keyboard, the
user interacts with ODT and his object program to:

Print the contents of any location for examination
or alteration

Run all or any portion of the object program using
the breakpoint feature

Search the object program for specific hit patterns

Search the ohject program for words which reference
a specific word

Caleulate offsets for relative addresses

Fill a block of words or bytes with a designated
value

During a dehugging session, the user should have at the conscle
terminal an assembly listing of the program to be debugged. Minor
corrections to this program can be made on~line and the program may
then be run under control of ODT to wverify any change made, However,
major corrections such as a missing subrontine should be noted on the
assembly listing and incorporated in a subseguent updated program
agsembly.,

7.1 CALLING AND USING ODT

ODT is supplied as a relocatable object moxiule and is also stored on
the B8System Cagsette, It is linked s0o as to be loaded just under the
KBL (refer to Appendix E}: the procedure for lcading O and the user
program iss

2LOAD FILENA.EXT
.R 0DT

These commands load the user-program to be debugged into memory and
call and start the debugger. This is the most common form of ODT use,
ag it is expected that user programs will start in low memoryv and that
the standard Jlocation of ODT will suffice. However, the user may
alternatively relink ODT using the CAPS~ll Linker, or link ODT along
with his program.

7.1.1 OD? Options

The only options allowed are those used by the LOAD command when the
user program is loaded into memory, ODT jtself does not utilize the
CS8I.

7,1.2 InputfQutput Specifications

The input file iz indicated in the LOAD command. No output file
specifications are allowed. ODF is an on-line utility program which
aids the user in determining corrections and modifications to his
program; these corrections may then be implemented using the Editor
and Assembler,

7.1,3 PRestarting 0ODT

If ODT is in control, typing CTRL/P will restart ODT (indicated by an
asterisk at the left margin), removing all breakpoints and clsaring
all relocation registers., If the user program is in control and no
breakpoint or HALT instruction is encountered to stop program
execution, then ODT may be restarted by following one of the
technigues described in Section 7.4.%.

7.2 RELOCATION

The Assembler produces a binary relocatable object module; the base
address of this module is assumed to be location G006G00 and the
addresses of all program location® as shown in the assembly listing
are indicated relative +to this base address, After the module is
linked by the Linker, many values within the program and all the
addresses of locations will he incremented by a constant whose value
is the actual absolute base address of the module after it has been
relocated, This constant is called the relocation bias for the
module,

A linked program may contain several relocated modules each with its
own relocation bias: since, in the process of debugging, these biases
will have to be subtracted from ahsolute addresses continually in
order to relate relocated code to assembly listings, ODT provides an
automatic relocation facility.

The basis of the relocation facility lies in eight relocation
registers nunbered 0 throuch 7 {these should not be confused with
general registers (0~7) which may be set to the wvalues of the
relocation bhiases at any given time during debugging (this procedure
is explained in Section 7,3.13}., Relocation biases are obtained by
consulting the memory map produted by the Linker, nce set, a
relncation register is used by ODT to relate relocatable code to
relocated code, The relocation registeys are initialized by 0DT to
=1. (For more information on the exact nature of the relocation
process, consult Chapter 6.)

7.2.1 PRelocatable Expressions

A relocatable expression is evaluated by ODT as a 1lé6~bit (6 octal
digit) number and may be typed in any one of the three forms presented
in Table 7«l. In this table, n represents an integer in the range 0
to 7 inclusive and k stands for an octal number of up to six digits in
length with a maximum walue of 177777. If more than six digits are
typed, ODT uses the last s8ix digits truncated to the low-order 16
bits. k may be preceded by a minus sign, in which case its wvalue is
the two's complement of the number typed. For example:

k (number tvoed) Value

1 060001
) 1377
400 G00400
-177730 00005¢
1234587 034567
Tahle 7-1

Forms of Relocatable Expressions (r)

r Value of r

ajl k The value of r is simply the
value of k.,

¢} n,k The value of r is the value af
k plus the contents of
relocation register n. If the
n part of this expression is
greater than %, ODT uses only
the last octal digit of n,

c} ¢ or Whenever the letter is
C;k or typed, ODT replaces C with the
n,C or contents of a special register
o,.c called the Constant Register.

This value has the same role
as the k or n that it replaces
{i.e., when used in place of n
it designates a relocation
register). The Constant
Register is accessed by typing
the symbol S§SC and may be set
tn any wvalue, (See Section
7.3.10.)

Fw3

In the following examples, assume that relocation register 3 contains
003400 and that the Constant Register contains 000003

xr Value of r
5 0400405
~17 177761
3,0 0034040
3,158 003550
3,~-1 0603377
fod 0046003
3,C 043403
c,o ga34d00
C,1¢ 003410
C,C 003403
NOTE

For simplicity's sake, most examples in
this section use form a; all three forms
of r are equally acceptable, however.

7.3 COMMANDS AND PUNCTIONS

Afrer ODT is loaded and started it indicates its readiness to accept
commands by printing an asterisk {*) at the left margin of the consocle
terminal paper. Most ODT gommands are issued in response to the
asterisk and are composed of the characters and symhols shown in this
section,. By using ODT a word can be examined and changed, the obiect
program can be run in its entirety or in segments, and memory can be
searched for certain words or references to these words. Each command
is explained in detail here; a command surmary is provided in Appendix
C

7.3.1 Printout Formats

Normally, when ODT prints addresses it attempts +to print ther in
relative form {form b in Tahle 7-1}. ODT assumes the user has set the
relocation registers with the relocation biases and checks for the
register whose value is closest but less than or equal to the address
to be printed. It then represents this address relative to the
contents of the relocation register, However, if no relocation
register fits the requirement (that is, the user has not entered the
relocation biases for his object modules}, the address is printed in
absolute form (form a in Table 7=1). 8ince the relocation registers
are initialized to -1 {the highest number) the addresses are initially
printed in ahsolute form. If anv relocation register subseguently has
its contents changed, it may then, depending on the command, gualify
for relative form.

"

For example, suppose relocation registers 1 and 2 contain 1000 and
1004 respectively, and zall other relocation registers contain numbers
much higher, Then the following sequence might occur {the slash
command cauges the contents of the location to be printed; the line
feed command {{} accesses the next sequential location]:

=77 a/880008}

00B776 /008008 |

1,000880 /808088} (absolute location 1000)
{,200082 /808288} {absolute location 1002)
2,5000808 roe0e0d {absolute location 1004}

The printout format is controlled by a special register c¢alled the
Format Register. Initially, this register is get o § which instructs
ODT to print addresses relatively whenever possible, However, thsa
user may access the Format Register by typing $F, thus allowing the
register to be modified. By changing the contents to any non-zero
value, the user instructs ODT to print all addresses in absolute form,

7.3.2 Opening, Changing, and Closing Locations

An open leocation is one whose contents ODT has printed for
examination, making those contents available for change:; a closed
location is one whose contents are no longer available for change,
several commands are used for opening and closing locations,

Any cormand used to open a location when another location is already
open first causes the currently open location to be closed, The
contents of an open location may be changed by typing the new contents
followed by a single character command which requires no argument
(i-@.g ‘p +, RETUI{N’, +; @' >’ <).

The slash, /

A location is opened by typing its address followed by a slash, oDT
responds by printing the contents of the location; for example:

»1800/012746
Location 1000 is open for examination and is available for change.

If the contents of an open location are not to be changed, typing the
RETURN key causes the location to be closed; ODT prints an asterisk
and waits for anocther command,

To change the contents of a location, the location must first be
opened, the new contents are then entered, and finally a command is
given to close the location,

*1208/912746 B12345)
*

In the example above, location 1000 now contains 012345, The location
is c¢losed since the RETURN key was typed after entering the new
contents.

Used alone, the slash reopens the last location opened., For example:

*1P88/P12245 2348)
» /7302340

ObT changed the contents of location 1000 to 002340; the RETURN key
instructed ©ODI to close the location before printing the *, The
single slash command reopened the last location opened, allowing the
user to verify that the word 002340 was correctly stored in location
1000,

Note that if an odd numbered address is specified using a slash, ODT
opens the leocation as a byte, and subseguently hehaves as though a
backslash had been typed, as explained next.

The Backslash,

in addition to operating on words, ODT may operate on bytes. One way
to open a byte is to type the address of the byte followed by a
backslash, {% is printed by typing a SHIFT/L if using an LT3} or 35).
O not only causes the byte value at the specified address to be
printed, but also interprets the value as ASCII code and prints the
corresponding character (if possible} on the terminal, For example:

x1BB1I%181 =4

A backslash typed alone reopens the last byte opened. If a word was
previously open, the backslash reopens its even byte,

*1902/099004 \004 =

The LINE FEED Key

If the LINE FEED key is typed when a location is open, ODT closes the
open location and opens the next sequential location:

=1600/,202340 | (| denotes typing the LINE
921822 70127 48 FEED key)

In this example, the LINE FEED key caused OIFf' to print the address of
the next location along with its contents, and to wait for further
instructions. Location 1000 is automaticaly closed by ODT and 1002 is
opened. The open location may be modified by typing new contents,

If a byte location is open, typing the LINE FEED key opens the next
byte location,

The Up~Arrow, tor A

If an up-arrow {or circumflex} symbol is tvped when a location is open
{an up-arrow is produced by typing a SHIFT/N on an LT33 or 35%), op?
closes the open location and opens the previous location. To continue
from the example above:

T

£001002/012740 1
0210800 /PPL34@

How location 1002 is c¢losed and 1000 is open. The opan location may
be modified by entering new contents.

If a byte location is open, then up-arrow opens the previous byte,

The Back-Arrow,t or

If the back-arrow {(or underline] symbol {produced by typing SHIFT/0O on
a LT33 or 35) is typed when a locaticon is open, ODT interprets the
contents of the currently open word as an address indexed by the
Program Counter {PC)} and opens the location so addressed:

»1006/0000086 «
@61816 /100485

Notice in this example that the open location, 1008, was indexed by
the PC as if it were the operand of an instruction with address mode
&7 as explained in Chapter 5.

Modification to the opened location may be made before either a line
feed, up~arrow, or back—arrow is typed. Aalso, the new contents of the
location will be used for address calculations when using the
back~arrow command., For example:

*180,899222 4} {modify to 4 and open next location)
paR102 000111 & {(modify to 6 and open pravious location)
2BR183 /00804 199~ (change to 100 and open the location
P00202 /lcontents) indexed by PC)

Open the Addressed Location, @

The symbol 8 (SHIFT/P on an LT33 or 35) may be used to optionally
modify a location, close it, and then use its contents as the address
of the lovation to open next,

*10246,021824 @ (open location 1024 next)
ga18249 rod8502

21866/001024 21088 {modify to 2100 and open
pp218@ 71717774 location 2100}

Relative Branch 0Offset, >

The right angle bracket {2} allows the user to optionally modify a
location, olose 4it, and then use its low-order byte as a relative
branch offset to the next word to be opened. For example:

+1832/828407 3@1> {modify to 301 and interpret as a
pAasls sDBD01C relative branch)

Note that 301 is a negative offset (=77). The offset is doubled
before it is added toc the PC; therefore, 1034+{-176)=636.

Return to Previous Sedquence, <

The left angle bracket (<) allows the user +to optiocnally modify a
location, c¢lose it, and then open the next locaticn of a previcus
sequence which was interrupted when either a back—-arrow, & sign, or
right angle bracket command was used. (As already mentioned,+ , 8,
and > each cause a sequence change determined by the contents of the
open location, If a sequence change has not ocourred, the left angle
bracket simply opens the next locaticn as though using a 1line feed).
This command operates on both words and bytes, For example:

+1032/8204027 361> (> causes a sequence change)
298636 /9280149 « {return tec original sequence)
221934 /2P1040 @ (@ causes a sequence change)
01040 /@09485 \005 = < {< now operates on byte)
291835 \@B2 = < (< acts like |)

281036 \0B4 =

7.3.3 Accessing General Registers 0-7

The program's gensral registers 0-7 are opened using the following
command formats

*sn/
where n is an integer in the range 0 through 7 and represents the

degired register. When opened, these registers can be examined or
changed in the same manner as any addressable location. FPor example:

*83/2002033) [RO was examined and closed)

*

*«54/BP04TA 464) (R4 was opened, changed, closed,)
*/D0B464 (and verified)

The | ,* ,* , or @ commands may be used whenever a register is open.

7T.3.4 Accessing Internal Registars

The program's Status Register contains the condition codes of the most
recent operational results and the interrupt priority level of the
object program. The address of this register is accessed by typing
$5. For example:

*55/890311

7-8

wf

T

ey

In response to $5/ in the example ahove, ODT printed the lé~bit word
of which only the low-order 8 bits are meaningful: Bits 0-3 indicate
whether a carry, overflow, zero, or negative (in that order} value has
resulted, and bits 5-7 indicate the interrupt priority level (in the
range 0-7} of the object program. {Refer to the PDP-ll PROCESSOR
HANDBOOK for the Status Register format.)

Table 7-2 lists internal registers which may be opened using the §
format.

Table 7-2
Internal Registers

Register Function

5B Location of the first word of the breakpoint
tanle {see Section 7.3.6).

5H Mask location for specifying which bits are
toe be examined during a bit pattern search
{see Zection 7.3.9).

) o Location defining the operating priority of
OnT {see Section 7.3,.15).

$8 Location containing the condition codes (bits
(=3) and interrupt priority level (bits 5-7};
{explained above),

1 Location o©of the Constant Register (see
Bection 7.3.10).

3R Location of Relocation Register 0, the base
of the Relocation Register Table {see Section
7.3.13}).

§F Location of Format Register ({explained in

Section 7.3.1:.

7.3.5 BRadix 50 Mode, X

The Radizx 50 mode of packing certain ASCII characters three to a word
is employed by many DEC~-supplied PDP=1l system programs and may be
employed by any programmer using the CAPS~ll Assembler's ,RADSQ
directive, ODT allows a method for examining and changing memory
words packed in this way by providing the X command. If the X command
is +typed when a 1location is open, ODT converts the contents of the
opened word to its 3-character Radix 50 equivalent and prints these
characters on the terminal, One of the responses in Table 7-3 may
then he typed:

Pable 7~3
Radix 50 Terminators

Response Effect
RETURN key Close the currently open
location
LINE FEED key Close the currently open

location and open the next one
in sequence

Up~3Arrow key Close the currently opern
location and open the previous
one in sequence

Any three Convert the three specified
characters whose characters into packed Radix
octal code is 040 50 format

{space} or greater

Legal Radix 50 characters for this last responge are:

. 5 Space 0-9 A-Z

If any other character is typed, +the resulting binary number is
unspecified {(that 1is, no error message is printed and the presult is
unpredictable}, Exactly three characters must be typed before O0DT
resumes its normal mode of operation., After the third character is
typed, the resulting binary number may be stored in the opened
location by closing the 1location in any one of the ways listed in
Table 7-3, For example:

£1908/042431 X=KBL CBA)
*1008,811421 X=CBA

WARNING

After ODT has converted the three
characters to binary, the binary number
can be interpreted in one of many
different ways depending on the command
which follows., For example:

#1234/863337 X=PRO XIT/B04G84

Since the Radix 50 eguivalent of XIT is
113574, the final slash in the example
causes ODT to open location 113574 and
type out its contents if it is a legal
address. {Refer to Sections 7.4 and 7.5
for a discussion of command legality and
detection of errors.)

7.3.6 Breakpoints

The breakpoint feature allows the user to monitor the progress of
program execution, A breakpoint may be set at any instruction which
is not referenced by the program for data. When a breakpoint is set,
ODT replaces the contents of the breakpoint location with a trap
instruction so that program execution is suspended when the breakpoint
is encountered., The original contents of the breakpoint location are
then restored and ODT regains control.

As many as eight breakpoints numbered 0 through 7 can be set at any
one time. A breakpoint is set by typing the address of the desired
location of the breakpoint followed by ;B. Thus n;B will set the next
available breakpoint (from 0-7) at address n. Specific breakpoints
may be set or changed by the nymB command where m is the number of the
breakpoint., For example:

*1029 B (set breakpoint 0 at address 1020)

» 183 B (set breakpoint 1 at address 1030)

* 1043 B (set breakpoint 2 at address 1040)
*1832) 1B (reset breakpoint 1 at address 1032)
x®

The ;B command without an argument removes all breakpoints, The ;mB
command is used to remove only one of the breakpoints, where m is the
number of the breakpoint. For example:

*32B (remove breakpoint 2)
*

A table of breakpoints is kept by ODT and may be accessed by the user,
The $B/ command opens the location containing the address of
breakpoint 0. The next seven locations (represented as nhnnnnn)
contain the addresses of the other breakpoints in order, and can be
sequentially opened by using the LINE FEED key. For example:

*5$B/201020 |
nnnnnn/ﬂBlBSB‘
nnnnnn /{address internal to 0ODT)

In this example breakpoint 2 is not set, The contents printed by ODT
represents an internal address and can be determined by checking the
Linker Load Map ({see Chapter 6).

7.3.7 Running the Program

Program execution is under control of ODT. There are two commands for
running the program: n:;G and n;P. The n;G command is used to start
execution (Go) and n;P to continue execution (Proceed) after halting
at a breakpoint. For example:

* 10023 G

This causes execution to start at location 1000. The program will .run
until a breakpoint is encountered or until program completion. If the
program enters an infinite loop, it must be either restarted or
reentered as explained in Section 7.4.2.

7-11

Upon execution of either the n;G or n:P cormmand, the general registers
0=6 are set to the values in the locations specified as §0~3%6 and the
processor Status Register is set to the wvalue in the location
specified as $8,.

When a breakpoint is encountered, execution stops and OPT prints Bnj;
{where n represents the breakpoint numher} followed by the address of
the breakpoint. Locations can then be examined for expected data.
For example:

*12193 3B {breakpoint 3 is set at locatien 1010}
*18083 G {execution is started at leocation 1000)
g3:0801019 {execution is stopped at location 1010}
*

To continue program execution from the breakpoint, type (P in response
to ODT's last (%),

wWnen a breakpoint is set in a loop, it may be desirable to allow the
program to execute a certain number of times through the loop before
recognizing the breakpoint. This is done by setting a proceed count
using the n;P cormand, This command allows the user to specify the
number of times the breakpoint is to be encountersd before progran
execution is suspended {execution will be suspended on the nth
encounter} . The count, n, refers only to the numbered breakpoint
which most recently occurred. A different proceed count may be
specified for the breakpoint when it is encountered, For example:

BaropIp1Ie {execution halted at breakpoint 3)
*1250) B {reset breakpoint 3 at location 1250}
*43 P (set proceed count to 4 and continue
Bl patase execution; loop through breakpoint
* three times and halt on fourth

occurrence of the breakpoint}

Proceed counts for other breakpoints may be reset by accessing the
table of proceed counts, explained next,

Following the table of breakpoints {as explained in Section 7,3.6) is
a table of the proceed command repeat counts for each breakpoint.
These repeat counts can be inspected by typing $B/ followed by typing
nine LINE FEED's, The repeat count for breakpoint 0 is printed {the
first seven line feeds cause the table of breakpoints to bs printed:
the eighth types the Singlew~instruction mode, explained in the next
section, and the ninth line feed bhegins the tahle of proceed command
repeat countsi, The repeat counts for breakpoints 1 through 7 and the
repeat count for the single instruction trap follow in sequence (see
Section 7,3.8}. Before a proceed count is assigned a value by the
user, it is set to 0: after the gount has been executed, it is set to
-1, Opening any one of these locations provides an alternate way of
changing the count, as the location, once open, can have its contents
modified in the usual manner {(hy typing the new contents and then the
RETURM key}. For example:

7-12

I

i

nnnnnn/AB1836 4 {address of breakpoint 7)

nnnnnn/nnnnnn 4 {(single instruction address)

nnnnnn/090000 15§ (count for breakpoint 0 is
changed to 15)

nnnnnn/gEPEEE | {count for breakpoint 1)
nnnnnn/@EPEPE 4 | (count for breakpoint 7)
nnnnnn /Znnnnnn (repeat count for single

instruction mode. The
single instruction address
will be an address internal
to the user program if
single instruction mode

is used.)

The address indicated as the single-instruction address and the repeat
count for single instruction mode are explained next,

7.3.8 Single-Instruction Mode

Using this mode the programmer can specify the number of instructions
to bhe executed bhefore suspension of the program run. The Proceed
command, instead of specifying a repeat count for a breakpoint
encounter, specifies the number of succeeding instructions to be
executed. Breakpoints are disabled when single~instruction mode 1is
operative.

Commands for single-instruction mode are:

1ns Enable single-instruction mode (n can
have any value and serves only to
distinguish this form from the form ;S).
Breakpoints are disabled.

n;Pp Proceed with program run for next n
instructions before reentering CDT {if n
is missing, it is assumed to be 1, Trap
instructions and associated handlers can
affect the Proceed repeat count, See
section 7.4.2).

15 Disable single-instruction mode.

When the repeat count for single-instruction mode is exhausted and the
program suspends execution, ODT prints:

B8;n
*

where n is the address of the next instruction to be executed. The $B
breakpoint table contains this address following that of breakpoint 7.
However, wunlike the table entries for breakpoints 0-7, direct
modification has no effect,

8imilarly, following the repeat (proceed) c¢ount for breakpoint 7 is
the repeat count for single~instruction mode. This table entry may be
directly modified, and thus is an alternative way of setting the
single-instruction mode repeat count, In such a case, ;P implies the
argument set in the $B repeat count table rather than assuming 1.

7.3.9 Bearches

With ODT all or any specified ?crtion of memory can be searched for a
specific bit pattern or for references to a specific location.

Word Search, n;W

Be fore initiating a word search, the mask and search limits must be
gpecified, The location represented by $M iz used to specify the mask
of the search. 3M/ opens the mask register. The next two seqguential
locations (opened by line feeds}) contain the lower and upper limits of
the search. Bits set to 1 in the mask are examined during the searchi
other bits are ignored. Then the search obiect and the initiating
command are given using the n;W command where n is the search cobject.
When a match is found {i.e., each bit set to 1 in the search obiect is
set to 1 in the word being searched over the mask range), the matching
word is printed. For examples

* M/ 200880 1774004 {test high-order eight bits)
;ununangﬂﬁﬁﬁ%mjmaﬁl {set low address limit)
nnnnnn /00@AdE 1048) {(set high address limit)

* 4083 W {initiate word search)

BeiGle /000778
FAigaa /000404

*

In the above example, nnnnnn is an address internal to ODT; this
location varies and is meaningful only for reference purposes., In the
firgt line above, the slash was used to open SM which now contains
177400; the line feeds opened the next two seguential locations which
now contain the upper and lower limits of the search.

In the search process an exclusive OR [XOR) is performed with the word
currently beirng examined and the search obidect, and the result is
AiDed to the mask. If this result is zero, a mateh has been found and
iz reported on the terminal. Note that if the mask is zero, all
locations within the limits are printed,

Typing CTRL/U during a search printout terminates the search.

Effective Address Search, r;E

oDT provides a command to search for words which address a specified
location, The mask register is opened only to gain access to the low
and high limit registers. After specifving the search limits (as
e¥plained previously), the command n;E is typed (where n is the
effective address) and the search is initiated,

Words which are either an absolute address {argument n itself), a
relative address offgset, or a relative branch to the effective
address, are printed after their addresses, For example:

5$M/17?ﬂ33‘ {open mask register only to gain

ANnnin//8010880 1218 | access to search limits)

annnnn//801048 19862)
* 14345 E {(initiating sgearch)

BAIO16 /DR10D6 (relative branch)

o8insa /pp2767 (relative branch)

* B2 E {initiating a new search)
oRIR22 Z1TT7T4 . {relative address offset)
AgLada /01020 {absolute address})

*

;e

Particular attention should be given to the reported references to the
effective address, since a word may have the specifled bit pattemrn of
an effective address without actnally being so used, ODT reports all
possible references whether they are actually used as such or not.

Typing CTRL/U during a search printout terminates the search.

7.3.10 The Constant Register

It is often desirable to convert a relocatable address into its value
after relocation or to convert a number into its two's complement, and
then to store the converted value in one or more places in a program,
The Constant Register provides a means of accomplishing this and other
useful functions.

wWhen niC is typed, the relocatable expression n is evaluated to its
six-digit octal wvalue and is both printed on the terminal and stored
in the Constant Register, The contents of the Constant Register may
e called in subsequent relocatable expressions by typing the letter
C. Examples are:

*e44323 C= 173346 {The two's complement of 4432 is

* placed in the Constant Reqister)
*1000/001008 C {The contents of the Constant

* Reqgister are stored in location 1000)
* 10083 IR {relocation register 1 is set to

* 1000)

*1, 4272)C=@R5272 {Relative location 4272 is reprinted
* as an ahsolute location and stored

in the Constant Reqgister)

7.3.11 Memory Block Initialization

The Constant Register can be used in conjunction with the commands F
and I to set a block of memory to a given wvalue, While the most
common value required i3 zero, other possibilities are plus one, minus
one, ASCII space, etco,

When the command ;P is typed, ODT stores the contents pf the Constant
Register in successive memory words starting at the menory word
atddress specified in the lower search limit and ending with the
address speciiied in the upper search limit,

when the command ;I is tvped, the low-order 8 bits in the Constant
Register are stored in successive bytes of memory starting at the byte
address specified in the lower search limit and ending with the byte
address specified in the upper search limit.

For example, assume relocation register 1 contains 1000, 2 contains
2000, and 3 contains 3000, The following sequernce sets word locations
1600~1776 to zero, and byte locations 2000-2777 to ASCII spaces,

*sM/geenes) . {Open mask register to gain
access to search limits)

nnnnnn 2000068 1,0} {Set lower limit to 1000}

hrinnnn 700GP8e 2, -2) {Set upper limit to 1776)

gesﬁmaeae@a {Constant Register set to zero)

3 F {Locations 1000~1776 set to zero)

™

«SM/ 000000 |

“nNNAnnh /an1000 2, 6 (Set lower limit to 2000)

POINON 7BB1TTE da=10 (Set upper limit to 2777)

w40 C=00R040 {Constant Register set to 40--

-4 S ASCII space)

* {(Byte locations 2000«2777 are set

to value in low-order 8 bhits of
Constant Register)

7.3.12 Calculating Offsets

Relative addressing and branching involve the use of an offset--the
number of words or bytes forward or backward from the current location
to the effective address, During the debuaging session it may be
necessary to change a relative address or branch reference by
replacing one instruction offset with another, obT calculates the
offsets in response to the n:d command.

The compand n;0 causes ODT to print the 16~bhit and E-bit offsets from
the zurrently open location to address n. For examples

x346/000034 41430 POOGA4 022 22)
* 720022 -

In the example, location 346 iz opened and the offsets from that
location to location 414 are calculated and printed. The contents of
location 346 are then changed to 22 {(the 8-hit offset) and verified on
the next line,

The B-bit offset is printed only if it is in the range 128 {decimal)
to 127 (decimal) and the l6-bit offset is even, as was the case above,
For example, the offset of a relative branch is calculated and
modified as follows:

$1034/)103421 183430 177776 377 \@21 = 377)
/100177

Note that the modified low-order byte 377 must be combined with the
unmodified high=order byte,

7.3.13 Relocation Register Commands

The use of the relocation reqisters has been defined in Section 7,2,
At the beginning of a debugging session it is desirable to preset the
registers to the relocation biases of those relocatable modules which
will be receiving the most attention.

This can be done by tvping the relocation bias followed by a semicolon
and the specification of relocation registers, as follows:

r:nR

r may be any relocatable expression and n is an integer from 0 to 7.
If n is omitted it is assumed to be 8., As an example:

* 12883 5R {Set relocation register 5 to 1000)
x5, 1881 5R (Add 100 to the contents of
* relocation register 35}

In certain uses programz may be relocated to an address bhelow that at
which they were assembled, This could ococur with PIC coding which is
moved without the use of the Linker., In this case the appropriate
relocation bhias would be the 2°'s complement of the actual downward
displacement, One method for easily evaluating the bias and entering
it in the relocation register is jllustrated in the following example.

Assume the program was asserbled at location 5000 and was moved to
location 1000, Then the sequence:

*1008s 1R
£1,-50007 IR
5,

enters the 2's complement of 4900 in relocation register 1, as
desired.

Relocation registers are initialized to ~1, so that unwanted
relocation registers never enter into the selection process when QDT
searches for the most appropriate register.

To set a relocation register to =1, type nR. To set all relocation
registers to -1, type ;:R.

ODT maintains a table of relocation registers, beginning at the
address specified by $R. Opening $R ($R/) opens relocation register
1. Successively typing the LINE FEED key opens the other relocation
registers in sequence. When a relocation register is opened in this
way, it may be modified just as any other memory location.

T-17

7.3.14 The Relocation Calculators

when a location has been opened, it is often desirable to relate the
relocated address and the contents of the location back to their
relocatable values. To calculate the relocatable address of the
opened location relative to a particular relocation bias, type nt,
where n specifies the relocation register. This calculator works with
both opened bytes and words., If n is omitted, the relocation register
whose contents are closest but less than or equal to the opened
location 1is selected automatically by ODT. In the following example,
assume that these conditions are fulfilled by relocation register 2,
which contains 2000, To find the most likely module that a given
opened byte is in, the user types:

*2500N\811 = 1=2,860540

Typing nR after opening a word causes ODT to print the octal number
which equals the value of the contents of the opened location minus
the contents of relocation register n, If n is omitted, ODT selects
the relocation register whose contents are cleosest but less than or
egqual to the contents of the opened location. For example, assume the
relocation bias stored in relocation register 1 1s 001234; then:

*1:508/024558 1R=1,023314

The value 23314 is the contents of 1,500, relative to the base 1234,
An example of the use of both commands follows,

Assuming relocation register 1 contains 1000 and relocation register 2
contains 2000, then to calculate the relocatahle address of location
3000 and its contents relative to 1000 and 2000, the following can be
performed:

*3000/005670 11i=1, 0029040 2!1=2,001080 1R=1,004670 2R=2, 883670

7.3.15 ODT's Priority lavel

5P represents a location in ODT which contains the priority level at
which ODT operates. TIf SP c¢ontains the walue 13177, ODT operates at the
priority level of the processor at the time ODT is entered. Otherwise
$P may contain a wvalue between 0 and 7 corresponding to the fixed
priority at which ONT will operate,

To set ODT to the desired priority lewvel, open $P. ODT prints the
present contents, which may then be changed:

*SP/000886 377)

£

If 3P is not specified, its value will be seven,

Breakpoints may be set in routines at different priority levels, Por
example, a program running at a low pricority level may use a device
service routine which operates at a higher priority level, If a
breakpoint occurs from a low priority routine, if ODT cperates at a
low priority, and if an interrupt occurs from a high priority routine,
then the breakpoints in the high priority routine will not be executed

7-18

i

Lx

aince
ocourred,

they hawve been

in which ODT is running will occcur and any breakpoints

recognized,

For example:

*1280: B
*2000; 8B
%5001
BEI 1080
*

removed when the low priority breakpoint
That is, interrupts set at a priority higher than the one

will not be

If a higher level interrupt occurs while ODT is waiting for input, the
interrupt will be serviced and no breakpoints will be recognized,

NOTE

If the user is debugging a program which

utilizes

double=buffered

cassette I/0

{especially in formatted modes), he may

find
5, This will allow
interrupt ODT but wi
printer, kevboard,
interrupts.

it useful to set ODT's priority to

cassette flags to
11 lock out terminal
and line printey

if this is not done and a

breakpoint is encountered while cassette

1/0 is
OOONT,

OCCUrYing ,

7.3.16 ASCII Input and output

timing errors will

ASCIT text may bhe lnspected and changed using the command:

¥ina

where » is a relocatable expressicon and n is a character count.

is omitted it is assumed to be 1,

If =n
ONT prints n characters starting at

location r, followed hy a carriage return/line feed, Cne of the
following may then be typed:

RETURN ODT outputs a carriage return/line
feed and an asterisk and waits for
another command.

LINE FEED OPT opens the byte following the
last byte ocutput,

up ton QDT inserts the text into memory

charac— starting at location r, If less

ters of than n characters are tvped, ter-
text minate the command by typing
CTRL/U, causing a carriage

return/line feed and an asterisk to

be output as for RETURN, However,
if exactly n characters are typed,
oDnT responds with a c¢arriage

7-19

return/line feed, the address of
the next available byte and a
carriage return/line feed/asterisk.

NMote that n may actually be expressed as a relocatable expression and
could accidently be gquite large. There is no safeguard against this
in opT,

7.4 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
obpT, However, it does prowvide a better understanding of how 0ODT
performs some of its functions; in certain difficult debugging
situations, this understanding is necessary.

7.4.1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: command decoding, command execution, and wvarious
utility routines.

The command decoder interprets the individual commands, checks for
command errors, saves input parametsers for use in command execution,
and sends control to the appropriate command execution routine,

The command execution routines take parareters saved by the ¢ommand
decoder and uses the utility routines to execute the specified
command. Command execution routines exit either to the object program
or back to the command decoder.

The utility routines are common routines such as SAVE-RESTORE and I/0,
They are used by both the command decoder and the comrand executers.

7.4.2 DBreakpoints

The function of a breakpoint is to give control to ODT whenever the
user program tries to execute the instruction at the selected address,
Upeon encountering a breakpoint, all of the 00T commands ¢an be used to
examine and modify the program.

When a breakpoint is executed, ODT removes all breakpolint ingtructions
from the user's c¢ode sc¢ that the locations may be examined and/for
altered. OCOT then tynes a mesgage on the console terminal in the form
Bm;n where n is the breakpoint address {and m is the breakpoint
number). The breakpoints are automaticallv restored when execution is
resumed.

One restriction in the use of breakpoints follows: the word where a
breakpoint has been set must not be referenced by the program in any
way since ODT has altered the word. Also, no breakpoint ghould be set
at the location eof any instruction that clears the T=bit., For
exanple:

MOV #2408, 177776 JSET PRIORITY TO LEVEL 5

720

3

1

|

HOTE

Instructions that cause or return from
traps {(e.g., EMP, RTI} are likely to
tlear the T=hit, since a new word from
the trap vector or the stack will be
loadad into the Status Register.

* A breakpoint occurs when a trace trap instruction {placed in the user
program by ODT} is executed. When a breakpeoint occurs, the following
steps are taken:

1, Set processor priority to seven ({(automatically set by
trap instruction},

A
2. Bave registers and set up stack,
3., If internal T-bit trap flag is set, go to step 13,
4. Pemove breakpoints,
5. Reset processor priority to ODI's priority or user's
priority.
€. Make sure a breakpoint or single~instruction mode caused
Pan the interrupt.
7. If the breakpoint did not cause the interrunt, go to
step 15.
8. Decrement repeat count,
9., Go to step 18 if non-zero; otherwise reset count to one.
10, Save conscle terminal status {refer to the sgection
entitled fProcedure for Saving and Restoring Console
Terminal Status' below),
AT
11, Type message about the breakpoint or single-instruction
mode interrupt.
12, Go to cormand decoder,
13. Clear T-bit in stack and internal T=bit flag.
14, Jump to the Go processor.
15. Save console terminal status.
. 16, Type BE {Bagd Entry) followed by the address,
17. Clear the T-hit, if set, in the user status and proceed
to the command decoder.
18, Go to the Proceed processor, bypassing the console
—— teyrminal restore routine,

Note that steps 1-5 inclusive take approximately 100 microseconds
during which time interrupts are not permitted to occur DT is
running at level 7}.

wWhen a proceed (;P) command is given, the following occurs:

L.

2.

The
The
The

The

proceed is checked for legality.
processor priority is set to seven,
T-bit flags {(internal and user status} are set,

user registers, status, and Program Counter are

restored.

Control is returned to the user.

when the T~bit trap occurs, steps 1, 2, 3, 13, and 14 of

the

breakpoint sequence are executed, breakpoints are

restored, and program execution resumes normally.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction
causing a trap, the following occurs:

l-

2‘

When the breakpoint occurs as described above, ODT is
gentered,

when ;P is typed, the T-bit is set and an 107, EMT,
TRAP, or other trapping instruction is executed.

This causges the current PC and status {(with the T=bit
included} to be pushed on the stack.

The new BC and status (no T«bit set) are obtained from

the

regspactive trap vector.

The whole trap service routine is executed without any
breakpoints.

¥When an RTI is executed, the saved PC and PS {including

the

T-bit) are restored. The instruction following the

trap-causing instruction is executed, If thisg
instruction is not another trap-causing instruction, the
T-bit trap occurs, <causing the breakpoints to be
reinserted in the user program, or the
single~instruction mode repeat count to be decremented.

1£

the following instruction is a trap-causing

instruction, this sequence is repeated starting at step

3.

NOTE

Exit from the trap handler must be via
the RTI instruction, otherwise the T-hit
ig Jost., ODT cannot gain control again
since the breakpoints have not yet heen
reinserted.

L 3]

B

Note that the ;P command is illegal if a breakpoint has not occurred
(CDT responds with ?); ;P 4is legal, however, after any trace trap
entry.

The internal breakpoint status words have the following format:

1., The first eight words contain the breakpoint addresses
for hreakpoints 0-7, (The ninth word contains the
address of the next instruction to be executed in
single-instruction mode.)

2. The next eight words contain the respective repeat
counts, The following word contains the repeat count
for single-instruction mode,)}

These words may be changed at will, either by using the breakpoint
cormands or by direct manipulation with $B,

When program runaway occurs {that is, when the program is no longer
under ODT contrel, perhaps executing an unexpected part of the program
where a breakpoint has not been placed} ODT mav be given control as
follows:

1. Press the HALT key to stop the computer.

2. 1f ODT was linked with the user's program, start ODT at
any one of these addresses:

al Its entry address {(contents of locations where
breakpoints were set are not restored to their
original contents}.

b} 1Its entry address + 2 {contents of locations where
breakpoints were set are restored; all breakpoints
are remcoved and all relocation registers are
cleared).

©] Its entry address + 4 {simulates a breakpoint]},

3. If ODT wam not linked with the user's program, hut the
user executed a LOAD/G ODT or a .R OD7T, the entry
address of QDT in an 8K system is 148600, One of the
restart addresses in 2 above may then be used,

QDT prints an (*) indicating that it is ready to accept a cormand,

If the program bheing debugged uses the teleprinter for 4input or
entput, the program may interact with ODT to cause an error since ODT
uses the teleprinter as well, This interactive error will not occur
when the program being debugged is run without ODT,

1, If the teleprinter interrupt is enabled upon entry to
the ODT break routine and no output interrupt is pending
when ODRT is entered, ODT generates an unexpected
interrupt when returning control to the program,

1f the interrupt of the teleprinter reader {the
keyboard] is enabled upon entry to the ODT bresk routine
and the program is expecting to receive an interrupt to
input a c¢haracter, both the expected interrupt and the
character are lost.

If the teleprinter reader (keyboard) has Jjust read a
character into the reader data buffer when the ODT break
routine is entered, the expected character in the reader

data buffer is lost,

Procedure for Saving and Restoring
Console Terminal Status

Upon entering the console terminal SAVE routine, the following occurs:

1.

2.
3.

#‘

Save the console terminal kevhboard status register
{TKS) .

Clear interrupt enable and maintenance bits in the TKS,
Save the console terminal printer status register (1P5).

Clear interrupt enable and maintenance bits in the TPS,

To restore the consocle terminal status s

1.
2‘.
3.

Wait for completion of any 1/0 from ODT,
Restore the TEKS,
Restore the TPS,

WARNINGS

If the console teyminal printer
interrupt 1is enabled upon entry to the
OnT break routine, the following may
ocecury

1. If no output interrupt is
pending when ODT is entered, an
additional interrupt always
pgeccurs when ODF returns control
to the user.

2, If an output interrupt is
pending upon entry, the
expected interrupt occurs when
the user regains control.

If the teleprinter keyvbocard is busy or
done, the expected character in the
reader data buffer is lost.

If the teleprinter kevboard interrupt is
enabled upon entxry te the ODUT break
rontine, and a character is pending, the
intirrupt fas well as the character}) is
ost,

724

%

7.4.3 Searches

The word search allows the user to search for bit patterns in
specified sections of memory. Using the SM/ cormand, the user
specifies a mask, a lower search limit (§M+2), and an upper search
limit (5SM+4). The search object is specified in the search command
itself,

The word search compares selected bits {where ones appear in the mask)
in the word and search object., If all of the selected bits are equal,
the unnmasked word is printed.

The search algorithm is:
1, Fetch a word at the current address,
2, XOR (exclusive QR} the word and search object.
3. BAND the result of step 2 with the mask.

4, If the result of step 3 is zero, type the address of the
unmasked word and its contents., Otherwise, proceed to
step 5.

5. Add two to the current address. If the current address
is greater than the upper limit, type * and return to
the command decoder, otherwise go to step 1.

Note that if the mask is zero, ODT prints every word between the
limits, since a match occours every time (i.e., the result of step 3 is
always zero).

In the effective address search, ODT interprets every word in the
search range as an instruction which is interrogated for a possible
direct relationship to the search obiject. The mask register is opened
only to gain access to the search limit registers.

The algorithm for the effective address search {where X denotes the
contents of X, and K denotes the search object} is:

1. Fetch a word at the current address X,

2. If (X)=K [direct referencel, print contents and go to
step 5.

3. If {Xy+X+2=X {[indexed by BC], print contents and go to
step 5.

4, If {X} is a relative branch to K, print contents,

5. Add two to the current address, If the current address
is greater than the upper limit, perform a carriage
return/line feed and return ¢to the command decoder:

otherwise, go to step 1.

7.5 ERROR DETECTION

ODT detects two types of error: illegal or unrecognizable command and
bad breakpoint entry. ODT does not check for the legality of an
address when commanded to open a location for examination or
modification. Thus the command:

17771747

references nonexistent memory, thereby causing a trap through the
vector at location 4. RESMON sets location 4 to produce the message:

$TRAP nnnnnn

However, if the user program modifies location 4 or 6, the results of
such a trap are unpredictable,

Similarly, a command such as:

$20/

which references an address eight times the value represented by §2,
may cause an illegal (nonexistent) memory reference,

Typing something other than a legal command causes ODT to ignore the
command, print:

(echoes illegal command) ?
*

and wait for another cormand. Therefore, to cause ODT to ignore a
command Jjust typed, type any illegal character (such as 9 or RUBOUT)
and the command will be treated as an error and ignored.

ODT suspends program execution whenever it encounters a breakpoint by
trapping to its breakpoint routine. If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BEQQ 1542

*
and waits for another command. In the example above, BED01542 denotes
Bad Entry from location 001542, A bad entry may be caused by an
illegal trace trap instruction, setting the T-bit in the status
register, or by a jump to the middle of ODT.,

7.6 EXAMPLE USING ODT

The user has a program which he has assembled with PAL to produce a
listing. He wishes to run the program under ODT to demonstrate the
use of breakpoints:

3}

CAPS11 PAL V81 95/25/73 PAGE

fa31000
231084
ag1a10

gp1aia
ee1e1s
pa1gz2a
gainz2
ani1gz4
gR1BEe6
281830

peeacel
boegez
pagane
298023
gredos
eoRaes
as1290
212706
puascee
212783
wagaee
212708
202268
285981
V85201
eas3en
ag13i5
gasaez
paiadrpe
800000
ga1eee

§

eel

s PROGRAM TO DEMONSTRATE ODT

i
Riz%1
R2=%2
R@=2%0
R3=%3
5P=26
« ASECT
«-= 1000
START:

LOOP2:

L.OOP1:

MOV
4oy
MoV

CLR
NG
DEC
BNE
BEC
BNE
HALT
+ END

CAPS11 PAL ¥@1 @25/,25/73 PAGE

LOOP1
R1
b1 o4

pegden £

pBidis

= 2002801
=Z0000856

RRORS

1. COP2
R2
START

#5680, SP J 5ET STACK PTR

#2:R3
F220, RO
R

R1

R@
LOQOP1
R2

L ogpe
START
a6z

pRI218

=ID3EEH2

p2120@

3 SET LARGE LOOP COUNTER

JINCREMENT RY FROM @ 7O 202
}DECREMENT R@ FROM 208 TO ©
JNOT DONE SMALL LOOP YET
PRESTART SMALL LOOP

311F R3 NOT ZERQ YET

R@ =ZBBE00A
R3 =%000083
. = Pe1e32

The program is stored on cassette drive 1 as TESODT.LDA, and is loaded
into memory using the LOAD command:

«L [:TESODT.LEBA

ODT is then called.

an address internal to ODT).

ontT vag

A

» 10223 9B

* 1824 B

rxSB/621082
NNNNHN /081924

The debugging process follows (NNNNNN represents

B S NNNNNN /117776

- B8

7

paiaze

*56/000600
=33 /000682

Cixsas 000177

]

L

/8300 1

=$Bs0010822

NEHHNN 7117776
vk 13083 G

Fw27

NNENNN /pRie24
% 1@ P
BO: 901022
*$3/880002
«SB/060a77
=51/60818}
*$B/0R1822
VHHNHEN spa1p24
[« 763 P
BO: 2010622
E {#$3/08¢0302
*51/000177
L+ 50/226081
rai P
BO; @21822
F I =s0/080000

» 51 /890288
*53/7828002
L# 1024/,005382 53083

ri} P

Hligolaza

*x$3/800002

G esBrOR1022

WNNRNH /821024

102403 8

»S$EsRQ1R22

NNNNEN /DD1024

NHNNNNN /2810246

LNHHNNN 111176

* 557000694

“3P

BEI 031028

*53/,000081

x$E /000800

» 53 /800000

L+ 51 /200202

*3 P

BRI BBI822

J{x82/008117

* $1/7200001
«33/000801

22003 P

213001824

K J *50/000800
*51/7820200

* 537000801

L.« £$578808004

(%3P

B2; 801024

LysssS/n00004

*$3/0200620

L% 1036;: B

Fe3 P

23310081839

M ‘ wtl

w

L'

Set breakpoint ¢ within the sgmall 1loop; set the next
available hreakpoint (1} within the large loop.

Examine 0ODT's breakpecint table -~ 0 and 1 are properly
assigned: start the program.

Breskpoint 0 is encountered; reqgisters 3 and 6 are exanined,
an illegal cormmand (#} is typed, which OUT answers with a 7.
Registers 0 and 1 and the ODT breakpoint table are examined.

Proceed through 100{octal) occurrences of Lreakpoint 0;
examine the registers~=3 ig wunchanged, ¢ and 1 are
decremaenting and incrementing properly,

Proceed through 76 more occurrences of Dbreakpoint 0; the
registers are examined and seerm correckt,

Proceed from breakpoint 0. The small loop has finished, but
the instruction at location 1024 is incerrect (it should be
BEC R3I): it is corrected.

Execution proceeds; breakpoint 1 is encountered

The next available breakpoint (which is breakpoint 2) is set
as location 1026, the user status 2 bit has heen get,

Breakpoint 2 is encountered; register 3 has been decremented;
the % bit ig¢ clear so the branch to loop 2 will be taken,

Breakpoint 0 is encountered; registers 0 and 1 have been
reset,

Continua through all iterations of the small loop.
Breakpoint 1 is encountered. Register 3 contains 1; the user
status Z bit is set,

Breakpoint 2 is encountered; the 2 bit is still set and
register 3 contains 0; program execution will fall through
the branch. A breakpoint is set at the HALT instruction,

The breakpoint at the HALT is encountered. A +C is typed to
return to the Kevboard Monitor.

L}

T

CHAPTER 8

PERIPHERAL INTERCHANGE PROGRAM

The Peripheral Interchange Program {(PIP} provides the user with a
means of transfering files between any of the permanent devices which
are avallable on his system {as listed in Table 3-2) including the
high-speed reader and punch. In addition, PIP provides the capibility
for deleting files from a cassette, Zeroing a cassette, and making
multiple copies of a cassette,

8,1 CALLING AND USING PIP
PIP is called from the System Cassette by typing:

+R PIP
in response to the dot printed by the Keyboard Listener, The Command
String Interpreter responds by printing an asterisk (*) when it is
ready to accept input/output specifications. The user may enter his
compmand string even though the remainder of PIP is being loaded into
memory simultanecusly,

Control is returned to PIP after each execution of an 1/0 command
string.

8.1.1 PIP Options

The options listed in Table 8-1 may be used by PIP with the following
results:

8-1

Table 8-1
PIP Options

Option Maaning

/A Used with an output filename to designate
that the header bit be set to ASCII {the file
type is otherwise assumed to be binary}. if
a file 4is transfered from +the paper tape
reader to cassette using the /A option, a +Z

character {designating end=of=-£file) is
automatically appended to the end of the
file.

/C Allows the command string to be broken into
one or more lines,

/D Causes the filenamed{s) indicated in the
command line to he deleted from the specified
cassette,

/P Regquests that the system prompt the user to

change cassettes on the indicated drive
before an attempt is made to access the file,
The system prints:

47

where §# represents the number of the
appropriate drive. When the user has mounted
the proper cassette, he may typea any
character on the keyboard to continue
execution,

72 Indicates that all cassettes on the unit
drives specified in the command line are to
be zerced,

PIP does not support the /0 overflow option., File transfers must not
exceed a single cassette,

8.1.2 Input and Output Specifications

PIP allows four basic operations: cassette zero, file deletion,
cassette copy, and file transfer, No default extensions are assumed
by PIP, so the user must be sure to always indicate extensions in his
command line,

CASSETTE ZERO

The cassette zerc function is provided in FIP to allow a user who is
performing a series of PIP commands the option of zeroing a cassette
without returning to the Keyhoard Monitor (to use the %ERC command),

g-2

1 3]

The form of the command is:
*[CT]#z/2/0pT, ... [CF] #: /0PT [=]

The device, if specified, must be cassette, so only the drive number
need be entered; unit 0 is assumed if no number is indicated. Any
numbey of cassettes may be indicated in the command 1line; the /2
option is necessary only once after the first cassette specification.
The /C and /P options are optional, as is the I/0 separator (=, <, or
+3}. The input field must be empty if a separator is used.

An example of use of the PIP zero function might be the following case
in which the user wishes to zero several cassettes:

:ﬂl/Zrii}ﬁt/?all;ﬂ!f?:ftw

/% indicates that the PIP zero function is requested; the cassettes on
units 0 and 1 are zeroed; the user is then prompted (via /P} to change
cassettes; he mounts different cassettes on drives 0 and 1 and then
types any character on the console ferminal kevboard to continue
exrecution. The newly mounted cassettes are also zerped; again he is
prompted to change cassettes, and so0 on.

FILE DELETION
File deletion is performed using a command line in the following forms:
“ICT]#:FILEL,EXT/0PT, [OT) #:FILE2 . EXT/OPT,. ... [=]

Cassette drives § and 1 are the only legal devices and drive 0 is the
default device, Filenames are indicated only on the output (left)
portion of the cormand line; the input portion of the command 1line
must remain empty. Options allowed are /D, /C and /P; the /D option
is necessary only once after the first file specification,

Any number of files may be indicated in the c¢ommand string. Those
files specified are then deleted from the cassette directory and are
replaced by an *EMPTY header in the directory listing. If PIP detects
that the sentinel file immediately follows an *EMPTY file, it will
also delete that *EMPTY file from the directory. For exarmple, assume
the directory of cassette drive £ ig:

Zi~MAR~TJ

COPSO LDA 0)1-DEC-72

BLANKS DAT 21-MAR-T3

SORT LST 21~MAR-T3

TORN ASC 19=-MAR-T3
and the userxr types:

:BLQNKS.DAT/B:?GQN.ASCa

These two files will be deleted leaving the directory as follows:

2i~MAR~T3

COPSO LDA BI-DEC-72
*EMPTY -
S0RT LST 21«-MAR-T73

If more than one file exists on a cassette under the same filename,
all files under that name will he deleted.

CASSETTE COPY

The PIP copy function is wused to ‘clean wup' cassettes containing
*EMPTY headers and to make multiple copies of a cassette. The form of
the command string isz

*[CT) #:=[CT1#: /OPT

Since cassettes are the only legal devices, only the cassette number
need be specified; cassette drive 0 is the default device. The only
option allowsd in the copy function is /C and only one input and one
output devive specification may he indicated, For example:

*CTis=g:

The cassette on drive 1 iz first zeroed, and the santire contents of
cassette drive 0 are then coplied to the cassette on drive 1, producing
an exact copy of cassette (. Dates are copied as they appear on the
original cassette. This copy function of PIP is particularly useful
in making multiple copies of the System Cassette,

FILE TRANSFER

A file transfer using PIP is initiated by a command in one of the
following formatss

*DEV:FILENA,.EXT/OPT=DEV:FILEL, EXT/OPT, ... DEV:FILEn ,EXT/OPT
or

*DEV :OUT1,EXT/OPT, . . .DEV:OUTn . EXT /OPT=DEV: INL , EXT/OPT, ... /C

(DEV:IRn, EXT/OPT

DEV represents any of the legal permanent devices (listed in ‘Table
J-23, Any number of input specifications are allowed. If only one
output specification is indicated, all input files will be combined
under the filename and/or device designated in the output field; the
input files will be combined in the order in which they are listed in
the command string. Otherwise, each input file must have a
corrasponding output filename andfor device, and transfers will be
performad on a2 one-for-one basis, Options allowsd in the output
portion of the command line are /P, /A, and /C. Optiong allowed in
the input portion are /P, /F and /C.

For examplet

3&?%*laABC.EAT:SSFIRSToﬁ$C;1:FINT.BAT/P

84

o

e

A listing is to be output on the line printer. Pirst the file ABC.DAT
on cassette drive 1 is output, then without interruption FIRST.ASC on
drive 0, and finally FINT.DAT. Before FINT,.DAT is output, the system
pauses and prints:

17
The user should make sure the correct cassette is mounted on drive 1
and then type any character on the keyboard, The listing will
continue,

After each execution of a PIP cormand string, control returns to PIP;
the Command String Interpreter prints an asterisk to indicate that it
is ready to accept another PIP command string. The user might next
enter a command line such as the following:

«LPt,1: AFT. DAT, SIGNA. PAL /A=01 AFT.DAT, AFT.DAT, 531 GNA. PAL

This command transfers the file AFT.DAT to both the line printer and
cassette drive 1, and then transfers SIGNA,PAL in ASCII mode to
cagsette drive 1, If the number of input files is not egual to the
number of output specifications (providing there is more than one
output specification), an error message is printed.

To return to the Monitor, type +C.

8.1.3 Restarting PIF

PIP is automatically restarted after each execution of a command line;
the CS5I prints an asterisk indicatng that the user can enter a new
command., A CTRL/P typed during execution of a command will cause the
current output file to be closed and control will be returned to the
Ccs1.

8.2 ERROR MESSAGES
The following error messages can occur during incorrect usage of PIP:

Table B-2
PIP Errof Messages

Message Meaning
7BAD TAPE
?BAD TAPE? Hardware checksum error (may alsc be

caused by READ operations initiated on
a cassette which is positioned after
the sentinel file); a question mark
following the message indicates that
the errocr is not fatal: the user may
mount another ¢assette and type any
character on the Xeyhoard to continue
execution,

{Continued on next page)

Table 8~2 {(Cont.}
PIP? Error Messages

Message

Meaning

F7EOM

7EXCESS INPUT FILES

FEXCESS CUTPUT FILES

PPILE NOT FHD?

PILLEGAL DEVICE

PILLEGAL INPUT LIST

PILLEGAL OQUTPUT LIST

PL/C CHAN CONFLICT

?NQ FILE NAME

POFFLINE x

PSWITCH ERROR 'x'7?

Indicates an out-of-paper condition
for the line printer, conscle
terminal, or paper tape punch,

The number of input files exceeds the
numher of output files {providing the
numher of output files is greater than
one); this error occurs during use of
the file transfer function.

The number of ocutput files exceeds the
number of input files; this error
occurs during use of the file transfer
function,

The specified file was not found on
the cassette indicated; the user may
mount ancther cassette and type any
character on the keyhoard to continue
the search,

An illeqgal device was indicated for
the PIP function used.

An input list was indicated where not
allowed {as when using the zero,
delete, and copy functions), or an
illegal command was entered,

An output list was indicated where not
allowed {as when using the copy
function}.

An attempt was made to open an input
file on a cassette alresady open for
output, or vice versa,

A filename was not indicated in a
command line which required one,

The cassette is not properly mounted
on drive x, The user should correctly
mount the cassetie s0 that execution
can continue,

An illegal switch was indicated in the
command line, where 'x* represents the
switch in error. The check is made
for as many as 10 illegal switches in
any one command line, Typing any
character on the keyboard will cause
PIP to ignore the switch and continue
execution.

Continued on next page}

B-£&

§*

Table 8=2 ({Cont.}
PIP Error Messages

Message Meaning
2TAPE FULL ;
?TAPE FULL? Available space for an cutput file 1is

full, 2 question mark following the
message indicates that the error is
not fatal; the user may mouht another
cassette and type any character on the
kevboard to continue execution.

PWRT LOCK x The cassette is write-locked; X
represents the drive number, The user
should dismount the cassette {the

OFFLINE error message will then be
printed), write-enable the cassette,
and remount it. Execution will
continue,

CHAPTER 9

INPUT /QUTPUT PROGRAMMING

The majority of I/0 in the CAPS-11 System is done using RESMON, the
part of the Monitor which contains routines o handle all file
structured cassette I/0 and all teleprinter, keyboard and line printer
input and cutput.

RESMON is brought into memory by bootstrapping the system or by typing
a CTRL/C (1) while running another system program, RESMON loads the
following interrupt and trap vectors: console terminal keyboard and
printer, line printer, cassette, timeout, breakpoint, illegal memory
reference, stack overflow, power fail, EMT, TRAP and IOT. 'fThe RESMON
I/0 handlers remain in memory unless the user does an overlay load
(using the Monitor LOAD command; see Chapter 3).

Simple 1/0 requests can be made by specifying devices and data forms
for interrupt-controlied data transfers. These requests can be
occurring concurrently with the execution of a running user program;
multiple I/0 devices may be running single or double buffered I1/0
processing simultanecusly.

9,1 COMMUNICATING WITH RESMDON
RESMON commands can be divided into two categories:

1. Those cohcerned with establishing necessary conditions
for performing input and output, and

2. Those cohcerned directly with the transfer of data.

when transfer of data is occurring, RESMON is operating at the
priority level of the device, The calling program runs at its own
priority level, either concurrently with the data transfer, or
sequentially. Before using data transfer commands, note the
following:

1. Device specifications are made by referencing device
numbers. Devices and their corresponding numhers are
listed in Table 9-1,

2. The huffer, whose address is specified in the code, in

most

cases

data,

In non-data transfer commands where an address or device
numb:er should he set to zero; the address is
Addresses or

not apply,

the device

ignored by RESMON and may be any number.
specified symbolically.

Cormmunication with RESMON is accomplished by 10T
instructions in the user's program,

consisting of cne of the RESMON c¢ommands
following format:

107

+BYTE {command code), (device £}

« WORD

As an example, the following program segment
input-process-output sequence,
buffer, a formatted ASCII READ into the bhuffer, a wait for
of the READ, processing of data just read, and a WRITE command from
{RESMON commands used in this example

the buffer,
detail later

208099
agoaaz
gesass
aepeo4

PPABHE
fp2ale
gage1t
pegaiz

gooota
29aa1s
gees1?

vovsze

gagiz2z
geoiza
deeiz2s
2OD1I26

28a138
gga13z
222134

{address)

in the chapter.}

peeeo!t
gRaRBs
22epa3
2000804

PBB#B4 START:
pai
Ba9
aaa00n

282304 KREAD:
Bgs
883
ape13s"

aRaeda WAIT:
283
023

geeoi 4"

RESET= |
READ=S
WAITR=3
WRITE=4

107
«BYTE RESET,Q

«WORD 2

[OT
»BYTE READ,3

« WORD BUFFER

10T
+BYTE WAL TR,3

«WORD HAIT

{process buffer)

noesa
Ra4
aaz2

pag13e’

288188 BUFFER:
popvee
Bo20e
gegeas

gogoga

10T
«BYTE WRITE.2

» WORD BUFFER
iga

B

B

+Za+ 1 DG

- EMD 3TART

3-2

mist be set up with information about the

numbeyr does

godes may be

{Input/Output Prap)

Each I0T is Ffollowed by two words

and 1its operands in the

illustrates a simple

It includes the setting up of a single

completion

are explained in

JASSIGN RESMON COMMAND
J CODES

JISSUE RESET 10T

s TRAP TO RESMON
2 SPECIFY BUFFER AND READ

JFROM KBD (DEVICE 3) UNTIL
JLINE FEED OR FORM FEED

$ TRAP TO RESMON
JWALT FOR «KBD (DEVICE 3»

FTOQ FINISH
$BUSY RETURN ADDRESS WHILE
IWALTING FOR KBD TO FINISH

s TRAP TO RESMON
JWRITE TD TELEPRINTER
JCDEVICE 2), SPECIFY BUFFER
3 BUFFER SIZE IN BYTES

S CODE FOR FORMATTED ASCIf
3MODE, RESMON WILL SET HERE
s THE NUMBER OF BYTES READ

3 STORAGE RESERVED FOR 109
$BYTES

{1

In more complex programming it is likely that more than one buffer
will be set up for the transfer of data, so that data processing can
oacur concurrently rather than sequentially, as here.

9.2 DEVICE ASSIGNMENTS

I1/0 devices in the CAPS-]11 BSystem are fixed. The programmer
references them by using RESMON and specifying a device number from
Table 9«1, The device assignment numhers are:

Table §~1
Device Assignments

Device Number

Cassette Drive 0

Cassette Drive 1

Consgole Terminal Printer
Console Terminal Keyboard
Line Printer

Lo P v

Thus, in the following example:

107
«BYTE READs)
«WORD STORE

data is read from device 1, which is cassette drive 1,

$.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS

Use of the data transfer commands {READ and WRITE} reguires the
setting up of at least one buffer, This buffer is used not only to
store data for processing, but %to hold information regarding the
gquantity, form, and status o©of the data. All formatted I/0 and all
unformatted I/0 {excluding unformatted cassette I/0) use one type of
buffer; unformatted cassette 1/0 regquires a special buffer,

9,3.1 Buffer Arrangement for Formatted I/0
and Unformatted I/0 (Excluding Cassette)

The buffer area for all I/0 except unformatted cassette consists of
two sections: the buffer header and the buffer itself, The non-data
portion of the buffer is called the buffer header and precedes the
data portion. In data transfer commands, the address of the first
word of the buffer header is specified in the second word after the
10T ¢ommand.

NCTE

RESMON uses the buffer header while
transferring data, The user's program
must not change or reference it (other
than to check status bits).

The arrangement of the buffer is as follows:

BUFFER 3IZE (in Bytes)

S8TATUS MGDE

BYTE COUNT

DATA

Buffer Size

The first word of the buffer contains the maximum size (in bytes] of
the data portion of the buffer and is specified by the user as an
unsigned integer. RESHON will not store more than this many data
bytes on input. Buffer size has no meaning on output,

Mode Byte

The low-order byte of the second word holds information concerning the
mode of transfer. A cholice of four modes exists:

Mode Coded as:
Formatted ASCII 000 {or 200 to suppress echo}

Formatted Binary 00l
Unformatted ASCIIT ooz for 202 to suppress echo}

Unformatted Binary D003

The term aecho applies only to the console terminal keyboard. Data
transfers from other devices never invelve an echo. A diagram
illustrates the format of the Mode Byte:

4 1 L)
i B} EOMG]

B2 LIMBLRMATTER
B FORMBTTED

1= NARY
DEASCH

*NO ECHO 56T FOR KEYBOARD ONLY

Figure $%-1 Mode Byte

Modes are further discussed in Section 9.4,

9-4

L1

Status Byte

The high-order byte of the second word of the buffer header contains

. information set by RESMON on the status of the data transfer as
follows:
Bits 0«4 Contain the non-fatal error codes (coded
octally; see Table 9=2)
- Bit & 1 = End~0f-File has occurred {(attempt at
reading data after an End-0f-pMedium)
Bit & 1 = End=of-Medium has occurred
. Bit 7 1 = Done (Data Transfer complete)

Thus, this byte ig set up as follows:

4 3 2 1 o

¥ 1 L

5
I S L SEE CODES
DONEl EOM [£OF | SEECODES

o N ’

NON-FATAL ERRORS [CODED OCTALLY} —T

7 &

Figure 9-2 Status Byte

Non-fatal error codes for the Status Byte are described in Table 9-2,

o Tahle 9-2
RESMON Hon-Fatal Error Codes

Errvor Code Meaning
1 = block check error A block check error c¢an ocour on
- any caszette read (hard error;
RESHMON cannot read the block},
2 = checksum error A checksum error can occur only on

a formatted binary READ: ({see
Section 9.4.3}).

{(Continued on next page)

Tahle 9-2 (Cont.)
RESMON Non~Fatal Error Codes

Error Code Meaning
3 = truncation of Truncation of a long line can ocour
a long line on either a formatted binary or

formatted ASCII READ {(sse Section
9.4.1). This error ocours wvhen the
- binary block or ASCIY line is
bigger than the huffer size
specified in the buffer header. In
both cases, RESMON continues
reading characters into the last
bvte in the buffer until the end of
the binary block or ASCII line is
encountered.,

4 = improper mode An improper mode can ooccur only on
a formatted binary READ. Such
occurrence means that the first
non-null character encountered was
not the proper starting character
for a formatted binary block (see
Section 9,.4,3),

wWhen the data transfer to or from the buffer ie complete, the Done Bit
{(bit 7} is set by HESMON.

The following conditions cause the EOM Bit (bit &) to he set in the
Buffer Status byte, {(An EOM occurrence also sets the Done Hit.)

Line Printer Cassette
No paper +Z detected during
No power formatted ASCII input

Printer drum gate open
Overxtemperature condition

An End-0f-Medium condition occurring during use of the line printer is
cleared by a manual operation such as putting paper in the line
printer. RESMON does not retain any record of an EOM,

When an End-Of-Medium has occurred during a READ from cassette, there
may he data in the buffer, If an EOM has occurred during a WRITE to
the printer, there is no way of knowing how much of the buffer was
written.

The following conditions cause the ECF Bit {(bit 5) and the Done Bit to
bhe set in the Buffer S5tatus byte:

1. File gap or c¢lear trailer encountered durxing a EREAD from
cagsette,

2. Clear trailer encountered during a WRITE to cassette.

i

Wnen an End-0f-«File occurs during a READ, the byte g¢ount is set to
reflect the amount of data actually read. When an EOF occurs during a
WRITE, there is no way of determining how much of +the buffer was
actually written,

Byte Count

The third word of the buffer header contains the Byte Count determined
as follows:

Type of Transfer aAction
Input: During unformatted transfers from the

keyboard, RESMON reads as many data bytes as
the user has specified, puring formatted
transfers from cassette or kevhoard, RESMON
inserts in this location the number of data
bytes availlable in the buffer. During
formatted ASCII mode Ffrom cassette, if an BOM
or EOF occurs, RESMOHN will set the Byie Count
equal to the number of bytes actually read.
See Section 9.3.2 for information concerning
unformatted cassette input.

Output: The Byte Count determines the number of bytes
output for all modes, A 1line printer
out-of-paper condition will also terminate
output and EOM will be set in the Status
Byte, RESMON does not modify the Byte Count
on ocutput.

9.3.2 Bpuffer Arrangement for Unformatted Cassette

The distinction between formatted and unformatted cassette 170 is made
at the time a cassette file is opened for input or output {at SEEK or
ENTER time--see Sections 9.&6.1 and 9.6.3), The mode specified at that
time governs the way subseguent READS or WHITEs are interpreted for
the opened file., In the special case of unformatted 170 to or from
cassette, the bhuffer pointer in the HEAD or WRITE I0T command is
assured to point to a 128 byte buffer without a buffer header, and not
to a buffer as previously described., The buffer specifications for
unformatied cassette I/0 made at SEEK or ENTER time are ignored.
During an uwnformatted READ from cassette, a 128 byte data block is
read directly into the buffer indicated by the second word of the
parameter block. {(see Sections 9.7.1 and 8.7.2 for a description of
the parameter block). During an unformatted WRITE to cassette, 128
bytes of data are taken directly from the buffer indicated and
transferred to cassette.

9.4 MODES

Modes have already been mentioned in Section 9.3; following is a
detailed description of each type,

9,4.1 TFormatted ASCIX

& formatted ASCII RBAD transfers 7-hit characters (bit 8 is zero)
until a line feed or form feed is encountered. RESMON sets the Byte
Count word in the buffer header to indicate the number of characters
in the buffer. If the 1line is too long, characters are read and
overlaid into the last byte of the buffer until an EOM or an
end-of«line (indicated by a line feed or form feed) is detected,
Thus, if there is no error, the buffer will always contain a line feed
ar form feed,

A formatted ASCIYI WRITE transfers the number of 7-bit characters
specified by the buffer Byte Count. Bit 8 will always be output as
Zero.

Device-dependent functions for the console terminal kevboard and
printer, line printer, and cassette follow.

Console Terminal Keyboard

Seven-bit characters read from the kevbhoard are entered in the buffer
and are echoed on the console terminal with the following exceptions:

Hall = Temored, This character is not echoed or
transferred to the buffer,

Tab « Echoes as spaces up to the next tab stop.

(CTRL/TAB *stops™ are located at every 8th carriage

keys) position,

RUBOUT = Deletes the previous character on the current

line and echoes the character deleted, 1If
there are no characters to delete, RUBOUT ia
ignored.

CTRL/U

Deletes the current line and echoes as +U
followed by a carriage return/line feed.

Carriage = Echoes as a carriage return followed by a
Return line feed. Both characters enter the buffer,
{RETURN key}

CTRL/AC -~ Behoes as 40 followed by a carriage
return/line feed and a "7, The user should
make sure that the System Cassette is mounted
on drive 0; typing any character in response
to the *7?" will rehoot the system, {If the
syatem is intact in memory, no "2 is printed
since no reboot 1is necessary-=the XBL is
merely restarted.)

CTRL/0 Echoes as 10 followed by a CR/LF. Console

terminal output is supressed until either:

l, 40 is typed again, which causes
teleprinter output to be resumed;

9-8

w

]

it

2. The program which is executing
requests kevboard inputs

3. The program executes the CTRL/O
RESET IOT (IOTF #0):

4, 1C is typed.

%, The program axecutez the RESET IOT
{I0T #1).

6. The program executes a prompted
SEEK, SEEKF, or ENTER command
{Section 9.6.3). RESMON enables
teleprinter output so the prompt
message will be seen.

If +0 is typed during a keyboard input
command, it will be echoed but will not be
passed to the buffer; kevboard input will
continue to be echoed as usual.

CTRL/F - Bchoes as +P and causes a iump to the restart
address, 1if a non-zero restart address was
specified via the RESTART IOT (IOT #2: see
Section 2.5.2).

Lower Case

ABCII = The ASCII codes 141~172 {lower case a=-z} are
converted to the ¢odes 101-132 (upper case
A~Z} on input and are echoed and stored in
the buffer as such.

The scho may be suppressed by setting bit 7 of the buffer header Mode
Byte -

If the buffer overflows, only the characters which fit into the buffer
are echoed, Characters which are deleted by RUBOUT or CTRL/U do not
read into the buffer even though they are echoed, If a carriage
return causes an overflow, or if a carriage return is typed after an
overflow has occurred, a carriage return/line feed will be echoed but
only the line feed will enter the buffer.

In the following formatted ASCII examples, assume there 1is room for
five characters in the buffer,) indicates typing a carriage return,
| represents typing a line feed, RUBOUT represents typing the RUBOUT

key, and OTRL/U indicates that the CTRL/U combination has been typed.

User Echoed on ASCII Code

Typed: Console Terminal: Entered into Buffer:
ABC) ARC)| ABC)|
ABCD) ABCD)| ABCD |
ABCDEF) ABCD) | ABCD |
ABCDEF RUB ABCDD) | ABC)|
ouT
i Y >
ABCDEF RUB RUB) ABCDDC) | aB) |
oUT OUT
ABCDEF RUB RUB RUB X j ABCDDCBX) | AX) |

OuUT OUT OoUT

Console Terminal Printer
Characters are printed from the buffer as they appear except that

nulls are ignored and tabs are output as spaces up to the next tab
stop.

Line Printer

Characters are printed from the buffer as they appear except as
follows:

Nulls - Ignored,

Tab - Output as spaces up to the next tab stop.
Carriage - Ignored. It is assumed that a line feed or
Return form feed follows. These characters cause

the line printer "carriage™ to advance.
All characters beyond the 132nd (or 80th if the optional line printer

is wused) are printed on the next line; RESMON issues a CR/LP and
continues output.

Cassette Input

Nulls - Ignored,

Rubout - Ignored,

CTRL/Z = Sets Done Bit and EOM Bit (bit €) in Buffer Status
byte.

9-10

P

Cassette Output

Characters are transferred from the buffer as they appear, when a
formatted ASCII cassette file ig clogzed, the Monitor writes a 4% into
the output block and pads the unused portion of the block with nulls,

9,4.2 Imformatted ASCII

Unformatted ASCIX READs and WRITEs transfer the number of 7-bit
characters specified by the header Byte Count. {See Section 9.3.2 for
information on unformatted transfers using cassetts,)

Device-dependent functions include only the keyhoard. Characters are
read and echoed except as follows:

Tab -~ Echoes as spaces up to the next tab stop.
CTRL/P - Bame as formatted ASCII.
CTRL/C ~ Same as formatted ASCIT,

CTRL/O

Same as formatted ASCIY,

Lower Case
ASCIX - Same as formatted ASCII,

9.4.3 Formatted Binary

Formatted binary is used to transfer checksurmed binary data (8-bit
characters} in blocks., & formatted binary block appears as follows:

Byte f{octal} Meaning

001 - Start of block {output automatically by
RESMON} .

000 -~ Always null {output auvtamatically by
RESMON) .

XXX - Block Byte Count (low-order followed by

XXX high-~order). Count includes data and
preceding four bytes {output

automatically by RESMON) .

9-11

. - Data bytes (from user's buffer).

cee « Checksum. Negation of the sum of all
preceding bytes in the block {output
avtomatically by RESMON}.

RESMON creates the block during output from the buffer and buffer
header. The Byte Count word in the buffer header specifies the number
of data bytes which are to be output. Note that the number of bytes
ocutput is four larger than the header Byte Count., As the block is
ocutput, RESMON calculates the checksum which iz output following the
last data byte.

On formatted binary READs, RESMON ignores null characters until the
first non-null character is read. If this character is a 001, a
formatted binary block is assumed to follow and is read f£from the
device under control of the Byte Count wvalue. If the first non-null
character is not 001, the READ is immediately terminated and error
code 4 (see Table 9-2) is set in the Status Byte. As the block is
read a checksum is caleculated and compared to the c¢hecksum following
the block, If the checksum is incorrect, error code 2 is set in the
Status Byte of the buffer header. If the binarv block is too large
{i.e., [Byte Count=-4] larger than the buffer size specified in the
header}, the last byte of the buffer is overlajid until the last data
byte has been read; error code 3 is set jin the Status Byte,

Device dependent functions do not apply to formatted binary READs and
WRITEs. Eight~-bit data characters are transferred to and from the
device and buffer exactly as they appsear.

9.4.4 Unformatted Binary

This moede transfers 8~bit characters with no formatting or character
conversions of any Xind. For both input and output, the buffer header
Byte Count determines the number of characters transferred, {See
Section 9.3.2 for information on unformatted transfers using
cassette.)

Device dependent functions do not apply.

9.5 NON~DATA TRANSFER COMMANDS

The following commands are needed for initialization before any I/D
transfers can take place.

W

2.5.1 RESET

The RESET ceommand must be the first RESMON command issued by a user
program and takes the form:

10T
.BYTE 1,0
.WORD 0

It initializes many of RESMON's internal flags, resets all devices to
their state at power-up {a hardware RESET instruction is issued)
enables kevboard interrupts, c¢lears the 10 flag, and clears the P
RESTART address {get by the RESTART 10T}, This IOT is normally issued
only at the start of a user's program, It takes a significant amount
of time to complete since RESMON goes into a timing loop and then
igsues a hardware RESET instruction. If this were not done, the last
characters printed on the console teyminal could be garbled.

9,5.2 RESTART

The RESTARYT command designates an address at which to restart a
program., The format of the command is:

IoT
LBYTE 2,0
LWORD [(address to restart)

After this command has been issued, typing CTRL/P on the keyboard will
transfer program control to the restart address. If the restart
address is designated as 0O, the CTRL/F restart capability is disabled.

The RESTART command cancels keyboard interrupts. It is the program's
respeonsibility to clean up any I/0 in progress and to ensure that the
Btack Pointer is reset,

It is a good programming practice for the code at the restart .address
to check if any cassette output files were open when P was typed and
to clese them before actually restarting normal program execution, It
is also advisable to issue a REBET I0T after a tP restart and bhefore
any RESMON data transfer commands are issued.

9.5.3 CNTRLO

The CNTRLC cormand resets the RESMON to flag, thus enabling future
console terminal cutput, The format is:

10T
.BYTE 0,0
WORD 0

The *0 flag {which suppresses console terminal output) is set by the
user typing *+0 on the keyboard, The flag iz cleared {thus enabling
teleprintar eoutput to continue) when one of the following occurs:

10 is typed again.

The program running in memory requests keyboard input.

WMo | and
-

+C is typed.
4. The prouram running issves CNTRLO IOT,
5. The program running issues RESET IQT.

&, The program running jissuves a prompted SEEK, SEEKF, or
ENTER IOT {see Section 9.,6.3, User Prompting).

9.6 CASSETIE FILE I/0 COMMANDS

N

The following RESMON commands are used for setting up I1/0 transfers,
2.6,.1 SEEK
The SEEK command iz for cassette only and is used to open a cassette
file for input. SFEK sets wp infornation which RESMON uses in
subsequent READ's from the specified unit. The format of the SEEK
comnand is:

107 o

.BYTE 16, {device §--device 0 or 1 only)
+WORD {pointer to list of arguments for SEEK)

The list of arquments for the SEEK command appears as:
«BYTE Status/Frror, (Mode)

«WORE {address of 128 byte buffer for use when reading
cassette blocks 1f formatted mode is spegified:
otherwise 0)

LHWORD (address of a second 128 byte buffer if double
buffered input is desired; otherwise 0)

+WORD [{address of 32 byte buffer for storage of
file headers while SFEKing)

LHWORD {address of filename to SEEK]
LHORD {address to return to if error detetted)

The 32 byte buffer for file headers is the area into which RESMON will

read file headers as it is lIooking for the specified file, This

buffer is a scratch area and will generally be the same for every SEEK -
command the user has in his program, The address of the filename to

SEEK is a peinter to an area containing the filename and extension

properly padded to nine bytes (if necessary), which is to bhe locked

for on the specified cassette unit., For formatted 1I/0, the address of

the 128 byte buffer tells RESMON where to read cassette data blocks

ongce the specified file has been found., ERESMON reads blocks into this o

9-14

buffer from cassette and then takes data from this buffer and moves it
to the user's line buffer to fulfill a READ 10T, If the user
specifies a second 128 byte buffer, HESMON will use it to implement a
double buffered input scheme for subsequent READ's on that device.
For unformatted I1/0, the buffer specifications are ignored.

RESMON sets the Status/Error Byte in the list of SEEK arguments to
reflect errors, as follows:

Bit met Brror
? Brror detected
6 ¥ile not found
5 Hard error
4 Conflict (e.g. output file was open}
3 Ho I/0 buffer specified for formatted 170

on detection of an error, RESMON sets bit 7 and one other bhit in the
error byte and transfers control to the error address specified in the
list of arguments,

If no error was detected, SEEK returns with the header of the desired
file in the user-gpecified scratch area and with the cassette
positioned to READ the first data block of the file, No data blocks
are read as a result of a SEEK, The SEEK command alwavs rewinds the
specified cagsette before doing a SEEK (sequential search).

NOTE

If the first byte of an extension specified by the
user 4in a SEEE or SEEKF command is 000, RESMON
will not attempt to match the extension, but
rather will look for the first file which has the
same filename,

If the first byte of a filename specified by the
uger in a SEEK or SEEKF command is 000, RESMON
will not compare filepames at all, but rather will
position the cassette so as to read the first file
encountered, For SEEK, this is always the first
file on the cassette, since the tape is always
rewound first, For S£EEKF, this is the first file
ancounterad spacing forward from the current
position.

3.6.2 SEEKF

The SEEKF (SEEK Forward) command is identical in format and operation
to the SEEK command, except SEEKF does not perform a rewind before
searching for the specified file, The format of the command is:

I07T
«BYTE 11, {device #)
HORD (pointer to list of arguments for SEERF)

The list of arguments is the gsame as for SEEK and c¢an be found in
Ssection %.6,1.

§-15

9.6.3 ENTER

The ENTER command is for cassette only, and is used to create a new
file on cassette {(at the logical end of cassette). The format of the
command is:

1]

1oT
LBYTE 7, {device §#}
LJHORD {pointer to list of ENTFER arguments}

The list of arquments for the ENTER command is similar to the list of
arguments for the SEEK commands:

LHYTE Btatus/Error, {Mode}

JHORD {address of 128 byte buffer for use in writing
cagsette blocks in formatted mode; otherwise ()

HWORD {address of second 128 byte buffer if double
buffered output is desired; otherwise 0)

+HWORD {address of 32 byte buffer for storage of
file headers)

LHORD {address of filename to be ENTERed)
LHWORD {address te return to 1f error detected)

JWORD {address of overflow subroutine to be called if a
formatted file hits end-of-tape bhefore it is
closed; otherwise §)

The ENTER command rewinds the specified cassette unit and does a SEEK
for the filename supplied by the user, {ENTER assumes that the
filename address supplied by the user is the beginning of a 32 byte
header to bhe written out as the header bhlock of the file being
ENTERed, BSee Appendix F for a complete description of the cassette
file header,} If the file is found, it is deleted by overwriting the
existing header with an “*EMPTY" header. The ENTER command then moves
down to the logical end of cassette and replaces the end of cassette
marker with the header specified by the user. The cassette is left
positioned to write the first data block of the new file, Before
writing the new header, RESMON performs several operations: the
sequence and continuation bytes of the user-specified header are set
to zero; the length is set to 128 bytes per data record: if the first
two byvtes of the date are zeroc {or spaces~~ASCII 240}, RESMON will
suppiy the current date {if the user specified a date with the Monitor
DATE command) .

For formatted I/0, the 128 byte buffer in the list of ENTER arguments
is an intermediate buffer which RESMCON uses in writing data blocks of
the ENTERed file, ‘The user normally issues a WRITE IOT specifyving a

L7

line buffer; RESMON takes data from the line buffer and moves it to -

the user-specified 128 byte buffer; when this 128 byte buffer is full,
it is written out to cassette. If the user supplies the address of a
gecond 128 bvte buffer, RESMON will double buffer cassette ocutput for
this file, Buffer information from the ENTER iz stored by RESMON for
reference during I/0 to the specified unit. For unformatted I/0 the
buffer specifications are ignored,

9

16

The Mode Byte in the list of arguments is similar to the Mode Byte in
the SEEK command=--it indicates how the user intends to write the file
being ENTERed and is stored by RESMON for reference during I/0, It
can have only the values listed in Section 9.3.1 under "Mode Byte".
The Status/Error Byte in the list of ENTER arguments is set by RESMON
to reflect errors detected during the ENTER function; following is a
list of the error bits:

Bit Set Error
7 Error detected
6 Full tape (clear leader found)
5 Hard error
4 Conflict (output file was
open)
3 No I/0 buffer specified for

formatted I/0

If an error is detected, RESMON sets bit 7 and one other bit and
transfers control to the error address specified in the list of
arguments,

The last item in the list of ENTER arguments is an overflow subroutine
to be called in case the user ENTERs a formatted file and the WRITE
processor encounters the end of cassette before the file is CLOSEd.
If an overflow subroutine was specified when the file was ENTERed, the
WRITE processor will call it wvia a JSR PC,SUBR. The user's subroutine
should tell the wuser to mount a new cassette on the same drive that
the file which overflowed was mounted on. It should then ENTER a file
on that new cassette (using the same internal buffers as the original
ENTER command) and then return to RESMON's WRITE processor via an
RTS PC, The WRITE processor will continue writing onto the new file:
the two files should then be combined with PIP before being used
further, RESMON saves registers 0-~5 before calling the wuser
subroutine, so the user need not worry about destroying the contents
of these registers, However, the user should be careful not to
destroy the stack pointer (Register 6).

User Prompting

The commands SEEK, SEEKF, and ENTER have an additional feature which
can aid the user who has his files on many different cassettes, 1If,
on entry to these commands, the Status/Error byte in the 1list of
arguments is equal to 377 (octal} RESMON will prompt the user to mount
a new cassette on the unit specified for the command. RESMON will

type:
#?

where "#* is the unit number on which RESMON expects a new cassette to
be mounted, RESMON then waits for the user to type any character on
the keyboard. When the user has done this, RESMON assumes that the
proper cassette has been mounted and initiates the command.

Chapter 3 provides more details concerning user prompting.

Non~Fatal Off-Line and Write-Lock Errors

SEEK, BEEKF, and ENTER have the ability to detect write~lock and
off=1ine (no cassectte mounted} errors and allow the user to correct
them without aborting the command in progress. When one of these
commands is initiated, if there is no cassette mounted on the
specified unit, the message:

ZOFFLINE n

will be generated, The user should mount on unit n the c¢assette
containing the file he wishes to SEEK or the cassette on which he
wishes a new file ENTERed. RESMON will automatically proceed with the
specified command. Na action e¢ther than mounting the cassette is
necassary.

Likewise, when an ENTER command iz initiated, if the cassette mounted
on the specified unit is write-locked, RESMON will generate the
rmessage:s

TWRT LOCK n

The user should dismount the cassette, write-enable it, and yemount
it, RESMON will continue with the specified ENTER c¢ormmand
avtomatically.

NOTE

Whan the uaser dismounts the cassette, he
will also see the "2?0FFLINE n"™ message
described above,

%.6.4 CLOSE

The CLOSE command is for cassette only and specifies that a certain
file presently open for output is to be closed and not referenced
further.

HOTE

CLOSE may be issued for any device, but
it dis ignored for the conscle terminal
keyhoard and printer, and line printer,
It is also ignored if no output file is
open on the specified unit,

The format of the command is:

IoT
BYTE 6, {device #)
HWORD (address for transfer if error detected)

CLOSE freaes the unit so that it may be opened again via a SEEK, SEEKF,
or ENTER, If CLOSE is issued for a unit which is open for input, no
error will occur but control will return immediately to the user.

an—

In the case of unformatted ASCII and binary files, CLOSE wailts until
the last WRITE initiated is completed, then writes an end-of-tape
marker and rewinds the cassette, If the user initiates an unformatted
WRITE and then immediately does a CLOSE, the CLOSE processor has to
wait until the WRITE is completed before it can start to write an
end~ocf~tape marker. The error return is never taken for unformatted
CLOGES.

If a formatted output file is open, CLOSE must write out the last
portion of RESMON's internal buffer (if there is any data in it),
write an end~of-file on the cassette, and rewind the cassette.
Control is returned to the user once the rewind has been initiated.

In the case of a formatted ASCII file open for output, CILOSE will
supply a %2 (ASCII 32) as logical end-of-file, pad the rest of the
last data block with nulls, write out the last data block, write the
end-of-tape marker, and rewind the cassette,

In the casze of formatted binary files, CLOSE writes out the last data
block with any unused portion of it padded with nulls, writes the
end-of-tape marker, and rewinds the cassette,

The only possible error which may occur during a formatted CLGSE is
clear leader or full tape; this error is detected when RESMON writes
out the last portion of the internal buffer, If this WRITE is not
successful, the error return is taken. If clear leader ia detected
when writing the end-of-tape marker, it is ignored.

9,7 DATA TRANSFER COMMANDS

The following I0OT's are used to transfer data between devices.

3.7.1 READ

The READ command causes RESMON to read from the device associated with
the specified device number according to the information found in the
buffer header, The format of the command is:

Ede sy
LBYTE 5, {device #)
LHORD (address of first word of the buffer header)
or
JHORD (address of parameter block)--for unformatted
cassette REARDs

For unformatted cassette READs, the parameter block has the following
form:

JBYTE Status/Error,D
THWORD {(address of 128 byte buffer for READs)

RESMON initiates the transfer of data, clears the Status Byte, and
returns control to the calling program. If the device on the selected
channel is busy, or if a conflicting device ({(see Section 9,7.3) is
busy, RESMON retains control until the data transfer can be initiated,

Upon campletion of the READ, the appropriate bits in the Status Byte
are set by RESMON and the Byte Count word indicates the number of
bytes in the data buffer,

For formatted cassette READs the flow of execution is as follows:

RESMON reads a data block into an intermediate cassette buffer
{specified by the user at SEEK time). From that buffer, RESMON pulls
characters one at a time and uses them to fill the buffer specified by
the user in the READ command, The user buffer is filled exactly as if
the characters were coming directly from the c¢assette and the process
is governed as described in Section 9,3.1, 1If, at SEEK time, the user
specified a second intermediate buffer, the cassette I/0 1is double
buffered, thus minimizing the amount of time the user program must
wait for physical I/0 transfers. Note that the user can implement his
own double buffering scheme by using unformatted cassette 1/0, since
in that case the location of cassette buffers is not fixzed at SEEX or
ENTER time, but c¢an be varied with every READ {or WRITE) command
simply by changing the buffer pointer in the cormmand (see Section
9.3.27.

Por formatted cassette READS, RESMON will set the Status Byte in the
buffer header to reflect the status of the data transfer as described
in section 9,3.1, Status Byte, For unformatted cassette READs the
Status Byte in the parameter block is set to reflect the status of the
operation as described in the section on Cassette I/0 Primitives
{section %.,8). For formatted cassette READs, the Done Bit will be set
when the user's buffer has been filled, even though there may be some
physical I/70 =still in progress. With regard to formatted cassette
I1/0, as a result of the intermediate buffering scheme the user's
buffer will always be full when he regqains control following a READ
gommand g8ince the data is coming from a memory buffer. If the user
tries to do & READ from cassette before doing a SEEK or SEEKF, the
Monitor will give a "NO FPILE OPEN n® message, where n is either 0 or 1
{for drive 0 or 1}.

%.7.2 WRITE

RESMON writes on the device associated with +the specified device
number according to the information found in the buffer header, The
format of the command is:

ioT
+BYTE ‘g; {dﬂv.ice #}
LAORD [address of first word of the buffer header)
or
JHORD {address of parameter block)=--for unformatted
cassette WRITEs

For unformatted cassette WRITEs, the parameter block has the form:

+BYTE Status/Error,(
+WORD {address of 128-byvte buffer to WRITE)

Transfer of data occurs in the amount specified by the Byte Count
{Buffer+4). RESMON returns control to the calling program as soon as
the transfer has been initiated. If the selected device is busy or a

t

r—

conflicting device is busy, RESMON retains control until the transfer
can be initiated. Upon completion of the WRITE, RESMON will set the
Status DPyte to the latest conditions, If a WRITE causes an EOM
condition, the user has no way of determining how much of his buffer
has been written (the Byte Count remains the same).

The WRITE command behaves the same way as the READ command with regard
to formatted and unformatted cassette 1/0. When contrel is returned
to the user after a formatted cassette WRITE, his line buffer is
available, The status bytes for formatted and unformatted cassette
WRITEs are interpreted like those for cassette READs,

If a WRITE is issued without first doing an ENTER (gee Section 9.6,3}
the Monitor will respond by typing a "NO FILE OPEN n" message, where n
is the drive number,

9,7.3 Device Conflicts in Data Transfer Commands

Because there iz a physical association between the printer and
kevboard on the console terminal, certain devices cannot be in use at
the same time, when a data transfer cormand is given, RESMON
gimultaneously checks for two conditions before executing the command:

1. Is the device requested already in use?

2. 1Is there some other device in use that would result in
an operational conflict?

RESMON resolves both conflict situations by waiting wuntil the first
device is no longer busy before allowing the requested device to start
functioning. {This iz an automatic WAITR command; see the next
section,} For example, if the conscle terminal is in use, and seither a
KBD request or a second request for the terminal itself is made,
RESMON will wait until the current output operation has besen completed
hefore returning control to the calling program,

Pable 9«3 lists the devices: corresponding to each device on the left
is a list of devices (or the echc operation) which would conflict with
it in operation.

Table 9.3
bPevice Conflicts

All Possible Conflicting

Device Devices or Operations
Terminal Keyboard {KBD) Echeo, KBD, TTY
Printer (T7TY)

Cassette (CTO or CT1) CTd, CTl
Line Printer (LP) Lp

5-21

9,7.4 WAITR {Waii, Return)

The WAITR cormand is used to test the status of the specified device,
The format of the command is:

ioT
<BYTE 3, (device #)
<HORD (busy return address}

If the device {or any possible conflicting device) is not transferring
data, control is returned to the instruction following the WAITR
command. Otherwige, control is transferred to the busy return
address.

Note that a not busy return from WATITR nosmally means the device is
available, However, in the case of a WRITE to the console terminal or
line printer, this means only that the last character has been output
to the device. The device is still in the process of printing the
character, Thus, care must be exercised when performing a hardware
BESET or HALT after a WRITE-WAITR sequence, since these mav prevent
the last character from being physically output,

WAITR ve, Testing the Buffer Done Bit

WAITR tests the status not only of the device it specifies, but also
of all possible conflicting devices, This means that when WAITR
indicates that the device is not busy, the data transfer on the device
of interest may have been completed for some time. Depending on the
program and what devices are being used for a given run, the WAITR
could have been waiting an additional amount of time for a conflicting
device to become free {i.e., waiting for the KBD when the TTY is to be
used, or waiting for CT0 when CT1 is to be used), Where this
poasibility exista and buffer availability is the main concern,
testing the Done Bit of the Status Byte (set when the buffer tranzfer
iz complete) would be preferable to WAITR; alternately, WAITR would be
preferable if device availability is the main interést.

In unformatted transfers to and from cassette, WAITR is equivalent to
checking the Done Bit for the last READ or WRITE command.

In formatted transfers to and from cassette, a WAITR is egquivalent to
checking whether there is any physical I/0Q occurring on the specified
unit. The user is not generally concerned with this--normally he only
wants t0 Know when his line buffer ig free if he ig doing formatted
I1/0. Note that in this case even though no physical 1/0 is going on
when the not busy return 1is taken, there may still be data in the
ugser's intermediate cassette buffer (as specified in the SEEK or ENTER
command] . WAITR would generally not be used when the programmer is
writing/reading a cassette file in formatted mode,

9,7.5 Single Buffer Transfer on One Device

The program segment below includes a WAITR which goes to a busy return
address that is its own IOT, continuously testing device 3 for
availability:; in this casge, only a single device and a single buffer

are involved. A done condition in the buffer 1 Status Byte can be
inferred from the availasbilty of device 3. This knowledge ensures
that all data requested for Buffer 1 is available for processing.

At 10T s TRAP TO RESWMON
« BYTE READ.3 3 SPECIFY BUFFER AND
« WORD BUF1 3 READ FROM DEVICE 3

3INTO BUFFER

BUSY: ot i TRAP TO RESMON
+BYTE WAITR-3 FWAIT FOR DBEVICE 3
« WORD BUSY 3 SPECIFY BUSY RETURN
* # ADDRESS TO FINISH
. FREADING

{Process Buffer 1}

JAP A

Testing the Done Bit of Buffer 1 might have been used instead, but was
not necessary with only one device operating.

9.7.68 Double Buffering

The example below illustrates a time~saving double buffer scheme
whereby data is processed in Buffer 1 at the same time that new data
is being read into Buffer 2; sequentially, éata is processed in Buffer
2 at the same time that new data is being read into Buffex 1.

1o7r 3 TRAP TO RESMON
« BY TE READ, 3 3SPECILFY BUFFER 1|
« WORD BUF1 3 READ FROM DEVICE
33 INTO BUFFER 1
A [or $TRAFP TO RESMON
+»BYTE READS 3 3 SPECIFY BUFFER 2
« WORD BUFZ $ READ FROM DEVICE

» 33 [NTO BUFFER 2
{process BUF1l concurrently with READ into BUF2)

B 1or FTRAP TO RESMON
+BYTE READ»3 3 SPECIFY BUFFER 1
«WORD BUF1 3 READ FROM DEVICE
* 33 INTO BUFFER 1

L4

{process BUF2 concurrently with READ into BUF1)

.

JMP A

Because RESMON ensures that the requested device is free before
initiating the command, the subsequent return of control from the I0T
at A implies that the READ prior to A is complete; that is, that
Buffer 1 is avallable for processing. Similarly, the return of

control from the 10T at B implies that Buffer 2 is available. WAITR's
are not required because RESMON has automatically ensured the device's
availability before initiating each READ,

5.8 CASSETTE 1/0 PRIMITIVES

RESMON also allows the sophisticated user to agcess the basic routines
necessary for doing cassette I/0. This is done by means of I0T7's with
the following format:

ior
LBYTE function, {device #)
+WORD (pointer to argument list)

These I0T's can access only cassette, if.e., device nurbers 0 and 1.
The functions listed in Table 9=4 are valid.

Table 9-4
Cassette 1/0 Punctions

Function # Meaning

12 WRITE file gap

13 WRITE {(see below)

14 READ {see below)

15 Space reverse file

16 Space reverse block

17 Space forward file

20 Spage forward block

21 Rewind

For READ and WRITE, the list of arguments is as follows:

LBYTE Status/Error,0
LWORD (buffer address)
LWORD {(byte count)

For functions other than READ and WRITE the list of arguments is only:
LBYTE Status/Error,0
Errors are reported in the Status/Error byte as follows:
Bit set Meaning

Error bDetected

Block Checksum {on READ)
Clear Leader

{not used}

File Gap Detected

{not uased}

{not used)

Done

[=R T RS - LR

Qw24

1

e

RESMON sets bit 7 and one {or more) other bits if an error is
detected, Write-~lock, off-line, and timing errors cause a fatal error
mesgsage and return to RESMON,

RESMON stores the high order byte of the cassette status and command
yegister in the user's status error byte when an error is detected.
The user should check error bits in the following order:

1. Clear leader
2, Pile Gap
3, Block Checksum

Because of the nature of the cassette hardware, more than one of these
bits may be set, The abhove order should be used when checking the
bits; only the Ffirst bit detected is significant.

Bit 0 of the Status/Frror byte is set to 1 when the function is
complete; contral is returned to the user as soon as the function is
initiated. If physical cassette I/0 is in procoress when one of these
functions is called, RESMON will wait until the I/0 is complete,
initiate the desired function, and then return to the user,

2.2 ERROR MESSAGES
The following error messages are detected in RESMON (refer to Section
3.7 of Chapter 3):

Table 9~5
RESMON Error Messages

Message Arg Meaning

IoT B An IOT was issued at the indicated
location which referenced either an
illegal RESMON cormand, illeqal
device, or illegal data mode,

O FILE OPER drive # Ugser issued a cassette READ or
WRITE without deoing a SEERK or
ENTER.

OFFLINE drive # User attempted to access a cassette
which was not mounted: execution is
automatically resumed when the
cassette is mounted,

TIMING drive # | A timing error occurred on the
drive indicated (RESHON tries the
operation 3 times,)

(Continued on next page)

Tahle 9-% {Cont.,}
RESMON Error Messages

Megsage Arg Heaning

TRAP BC A stack ovarflow, attempt te
reference & word on a byte
houndary, or illegal memoxy
reference trap occuryed at the
location indicated, The stack
peinter (R6) at time of error is
saved in location 44.

WRT LOCK drive # User attempted to WRITE on a
write-locked cassette; execution is
automatically resumed when the
cassette is write-enabled.

9.186 EXAMPLE OF PROGRAM USING RESMON

An example of the use of RESMON by both the CAPS~11 System and
within a user program is presented in Appendix D.

9-2¢%

from

APPENDIX A

ASCII CHARACTER CODES

A.l1 KEYBOARD DIFFFRENCES

Certain conscle terminals vary concerning labeling of keyboard keys
and characters output wupon receipt of particular ASCII character
codes. The following list should be referenced to determine possible
differences:

Keys Which Perform Represent
the Same Function the ASCII Code
1 136

+ 137

RUBOUT DELETE 177

ESCAPE ALTMODE 176 175
SHIFT I \ 134

CTRL I TAB 211

SHIFT K [133

SHIFT M 1 135

A.2 CHARACTER CODES

The following is a list of the 7-hit octal ASCII character codes.
(ASCII is an abbreviation for American Standard Code for Information
Interchange.)

7-Bit 7-Bit 7-Bit 7-Bit

Octal Character Octal Character Octal Character Octal Character
000 NUL 040 sp 100 8 140 space
001 SOH 041 ! 101 A 141 a
002 STX 042 " 102 B 142 b
003 ETX(+C} | 043 # 103 ¢ 143 c
004 EOT 044] 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F l46 £
007 BEL 047 ' 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 I 151 i
012 LF 052 * 112 J 152 3
013 VT 053 + 113 K 153 k
014 FF 054 . 114 L 154 1
015 CR 055 - 115 M 155 m
ole S0 056 . 116 N 156 n
017 SI{+0) 057 / 117 0 157 o
020 DLE(+P) | 060] ‘120 P 160 p
021 pcl 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 8
024 DC4d 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 v 166 v
027 ETB 067 7 127 W 167 W
030 CAN 070 :] 130 X 170 x
031 EM 071] 131 Y 171 Y
032 SUB(+3) | 072 : 132 Z 172 z
033 ESC 073 ; 133 [173 [
034 FS 074 < 134 N 174)
035 G5 075 = 135 | 175 1)
036 RS 076 > 136) 176 {~)
037 Us 077 ? 137 “(2) 177 DEL

TERMINATORS
Character
CTRL/FORM
LINE FEED
RETURR

H

%

TAB

BLANK or
SPACE

APPENDIX B

ASSEMBLY LANGUAGE SUMMARY

Function
Source line terminator
Source line terminator
Source line terminator
Label terminator
Direct assignment delineator
Zegigter term delineator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression field indicator
Defarred addressing indicator
Initial register field indicator
Terminal register field indicator
Operand field separator

Comments field delimiter

Arithmetic addition operator

Arithmetic subtraction operator

Character

Function

Iogical AND gperator

Logical OR operator

Double ASCII text indieator

Single ASCII text indicator

B.2 ADDRESS MODE SYNTAX

In the following syntax table, n represents an integer between ¢ and
iz a register expression:
reprasents either a register expression or an absglute expression in
the range of 0 to 7.

7 R

Addresas
Mode address
Number Mode Nane
on Fegister
in Deferred Register
2n Autoincrement
Deferrad
3in Auvtoincrament
4n Autodecrement
Deferred
5n Autodecrement
Index by the
Register
én Specified

Symbaol

in

Cperand

Field

R

2R or

(ER}+

4(ER) +

~{ER}

@~ (ER)

E(ER)

{R]

E represents any expressiony ER

Meaning

Register R contains the operand.
R is a register expression.

Hegister R contains the operand
address,

The contents of the register
specified by ER are incremented
after bheing used as the address
of the operand,

ER containg a pointer to the
address of the operand. ERE is
incremented after use,

The contents of register ER are
decremented before being used as
the address of the operand.

The contents of register ER are
decremented before heling used as
a pointer to the address of the
operand,

The value obtained when E is
combined with the c¢ontents of
the reglsgter specified {ER} is
the address of the operand,

pr—

Address Symbol in
Mode Address Operand
Number Mode Name Field Meaning

Deferred index
by the Register
7n Specified 2E(ER) E added to ER producssgs a pointer
to the address of the operand.

27 Immediate Operand &E E is the operand.
37 Absolute address a§E E is the operand address.
67 Relative address E E is the address of the operand,
77 Deferred relative
address 2E E is a pointer to the address of

the operand.

B.3 INSTRUCTIONS

The tables of instructions which follow are grouped according to the
operands they take and according to the bit patterns of their
op=codes.

In the representation of op-codes, the following symbols are used:

ss Source operand Specified by a 6=-bit
address mode

DD Destination Specified by a 6-bit
operand address mode

XX 8-bit offset to a Branch instructions
location

R Integer between 0O Represents a general
and 7 register

Symbols used in the description of instruction operations are:

SE Source effective address

DE Destination effective address
() Contents of

- Becomes

The condition codes in the processor status word (PS) are affected by
the instructions; these condition codes are represented as follows:

N Negative bit: Set if the result is negative
z Zero bit: Set if the result is zero
v Overflow bit: Set if the result had an
. overflow
Cc Carry bit: Set if the result had a carry

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

To set

* Conditionally set
- Not affected
Q Cleared

1l Set

conditionally meang to wuse the instruction'’s
deternine the state of the code.

Logical operators are represented by the following symbols:

!

®

Inclusive OR
Exclusive OR
AND

Used over a symbol to represent
the 1's complement of the symbol

result to

B,3.1 Double Operand Instructions {OP A,A)

Condition Codes
Op=-code Mnemonic Stands for Opexation N &2 V ¢
01sspo MOV MOVe {SE)~+{(DE} *# * 0 =
11s8DD MOVE MOVe Byte
028800 CHP CoMPare (SE)~{DE) LA
1288DD CMPB CoMPare Byte
G3ISSDD BIT BIt Test {8B) & {DE} ol T ¢ B
1385DD BITHB BIt Test Byte
0458DD BIC BIt Clear {SE} & (DE)»(DE} * * 0 =
1455DD BICB BIt Clear Byte
05580DD BIS BIt Set {SE} | (DE}Y*(DE) * * (0 =
I58SDD BISH BIt Set Byte
0655DD ADD ADD {SE) + {DE}=(DE) * % % 4
1655DD suB SUBtract {(DE) « {SE)}~(DE) * * * &
B,.3.2 Single Operand Instructions (0P A)

Condition Codes
Op-code Mnemonic Stands for Qperation R 2 VvV C
Q05000 CLR CLeaR 0+ (DE) 0 1 0 ¢
10508 CLRB Ci.eaR Byte
0051DD coM COMplement (DE) -+ (DE} * *x 0 1
1051pD CoMB COMplement Byte

o,

Condition Codes

Op-code Mnemonic Stands for Operation N 2 Vv C
005200 INC INCrement {DE) + 1+(DE} LA S |
1652pD INCE IHNCrement Byte
0053pD DEC DECrement {DE) = 1+{DE} * A A .
10463DD DECB DECrement Byte
0054DD NEG NEGate (DE) + 1+(DE) LA B
1054DD HEGB NEGate Ryte
0055DD ADC ADd Carry {(DE}) + (C)=(DE) * * * %
1055DD ADCH ADd Carry Byte
00S6DD SBC SuBtract Carry (DE) - (C)~(DE) * * % «
105600 SBCB BuBtract Carry
Byte
gos7pD TST TesST {DE} ~ 0-+(DE) * % g 0
105700 TSTH TeST Byte
B.3.3 Rotate/Shift
0060DD ROR Rotate Right HF——0 v ® * & 4%
106100 RORB ROtate Right [olleseno g & & & &
8}'%’-& g M E——E"‘ _____ —
0061DD ROL Rotate Left Bl o] = « & =x
l161pD RGLB Rotate Left WH: SR i B S
Byte L a— | o
0062DD ASR Arithmetic e - ¥ *F %
shift Right ’
1062DD ASRB Arithmetic ol
Shift Right e T tmme—
Byte
8063DD ASL Arithmetic -, UL A
shift Left i g
1063DD ASLB Arithmetic ok ok ok
Shift Left o aae ot
Byte
0001DD JHE JuMp DE - (PC) - - = -
0003DD SWAB §Wap Bytes [.. * % g 90

The following 3 instructions are available on the PDP=-11/40, 45 only:

006588 HMFPI ¥ove From (SE] -+ {TEMP} * k9w
Previous {EP) -2+ {8p}
Instruction {TEMP)+{ (8P} u
space
0066DD MTPI Move To { (8P} 1~ {TEME) LA S ¢ B
Frevious {8p+2+ (85}
Instruction {TEME}+ (DE)}
space z
Q06700 SXT Sign eXTend 0 DE if N - .
bit is clear
-1 DE 4f N
hit is set o~

B,3.4 Operation Instructions {OP)

Condition Codes

Op~Code Mnemonic Stands for Qperation N Z ¥ C
0030000 HALT HALT The computer stops = = = =
all functions,
000001 WAIT WAIT The computer stops -~ = = = ’”\
and waits for an
interrupt,
000002 RTI ReTurn from The PC and &7 are ol S
Interrupt popped off the 5P
atack:
L (8P})+ {PC])

(SP) +2+(8P)
({8P})+ (58T}

(SEY+2~ (5P}
000003 000003 Breakpoint Trap to location A B
Trap 14. Thisa is used
ta call opT,
500004 10T Input/Output Trap to location * A A W
Trap 20, This is used

to call RESMON,

H
1
i
¥

9000056 RESBET RESET Returns all 1/0
device handlers to
power~on state,

The following instruction is available on the PpP-11/40, 45 only:

00G00s R ReTurn from Same as RTI LA
Interrupt instruction but
inhibits trace
trap.

Trapping OP or OF E where 0{=E{=337 {octal)

164000~ EMT EMulator Trap to location *

104377 Trap 30. This is used
to call system
programs.

104400~ TRAP TRAP Trap to location *

104777 34, This is used
to call any routine
desired by the pro-
grammer.

CONDITION CODE QOPERATES

Op~code Mnemonic Stands for

000241 CLC Ciear CArry Bit in PS,

000261 SEC SEt Carry bit.

000252 cLv CLear oVerflow hit.

000262 SEV SEt oVerflow bit.

Jo0 244 CLZ ClLear Zerxo bit,

800264 ERZ 8Et Zero bit,

00G250 CLN CLear Negative bit,

aQaz27o 8EN SEt Negative bit,

000254 CNZ CLear Negative and Zero bits.

J00257 oo CLear all Condition Codes.

goaz3? 8CC Set all Condition Codes.

00G2440 NOP No-operation.

B.3.5 Branch Instructions OPR E
where =128 {decimal) ¢{E~.~-2)/2<127 {decimal)

Condition to be
met if branch is

Dp-Code Mnemonic Etands for to ocour
0004XX BR BRanch always

0010XX BNE Branch if Not Egual {(tec zerog)

0014XX BEQ Branch if EQual (to zero)

Z=0

g=)

Condition to be
met 1f branch is

Gp-Code Mnemonic Stands for to occur

0020Xx BGE Branch if Greater than or N@ Va(
Equal {to zero) -

0024XX BLY Branch if Less Than (zero) R@V =1

G030XX BGT Branch if Greater Than Z1 {N@ V) =0
{zero}

0034XX BLE Branch if Less than or 2t (N(D V)=l ’
Equal (to zero)

1000XX BFL Branch if PLus N=0

1004XX BMI Branch if MInus N=1

1010XX BHI Branch if HIgher c (@ z=0

1014x%x% BLOS Branch if LOwer or Same Cti=1

1020X% BVC Branch if oVerflow Clear V=0

1024XX BVS Branch if oVerflow Set V=1

1030%x% BECC (or Branch if Carry Clear

BHIS) {or Branch if HIgh or Same) C=0
1034Xx% BCS {or Branch if Carry Set {or
BIC} Branch if LOw} C=1

B.3.6 Subroutine Call (JSR ER,A)

Cp-code Mnemonic Stands for Cperation

QO04RDD JSR Jump to Sub- Push register on the SP stack,

routine

put the PC in the register:

DE~ (TEMF)

{5P} =2 (8P}
{REG) > {(8P}))
{PC) +m+ (RER)

(TEMP) + (PC}

A temporary
storage register
internal to the
processor

M depends upon
the address mode

B.3.7 Subroutine Return

Op-code

Mnemonic

Stands for

00020R

RTS

ReTurn from

Subroutine

B.4 ASSEMBLER DIRECTIVES

Mnemcnic Operand Stands for
.EQT nane End Of Tape
« EVEN none EVEN
. END E END

{E op~

tional)
« WORD E, E,... WORD

E, E,... (the void

operator)
«BYTE E,E;.c. BYTE
«ASCII /XXX...X/ ASCII
.TITLE NAME TITLE
+ASECT none ASECT
+CSECT none CSECT
«LIMIT none LIMIT
« GLOBL NAME ,NAME, ...
GLOBaL

+« RADS0 Vg.*$.94 RADix 50
+LIST none LIST
+NLIST none No LIST

Qperation

Put register contents in PC
and pop old contents from SP
stack into register.

Ogeration

Indicates the physical end of
the source input medium,

Ensures that the assembly
location counter is ewven by
adding 1 if it is odd.

Indicates the physical and
logical end of the program and
optionally specifies the entry
point (E).

Generates words of data.

Generates bytes of data.

Generates 7-bit ASCII char-
acters for text enclosed by
delimiters.

Generates a name for the
cbject module,

Initiates the Absolute
section.,
Initiates the Relocatable

Controeol section.

Generates two words containing
the low and high limits of the
relocatable section.,

Specifjes each name to be a
glcbal symbol.

Generates the RADIX 56 repre-
sentation of the ASCII
character in delimiters.

Enables assembly 1listing (if
it was off),

Disables assembly listing (if
it was on).

B.4.1 Conditional Directives

Mnemonic Operand Stande for

«IFZ E IF E=0

+IFNZ E IF E#0

. E IF E<

JIFLE E IF EC{=0

<IFG B IF E>Q

« IFGE E IF E=»0

« IFDF NAME IF NAME
defined

« IFNDF NAME IF NAMFE
unde fined

~ENDC none End of
Conditional

Operation

Assemble what follows up to
the terminating LENDC if the
expression E is 0.

Asgsemble what follows up to
the terminating .ENDC, if the
expression E is not 0.

Assemble what follows up to
the terminating ,ENIDX, if the
expression E is less than 0.

Assemble what feollows up to
the terminating ENIX, if the
expression E is less than or
egqual te 0.

Assemble what follows up to
the terminating .ERDC, if the
expression E is greater than
G.

Asgemble what follows up to
the terminating .ENDC, if the
expression E is greater than
or equal to 0.

Assemble what follows uwp to
the terminating .ENDC 4if the
symbol NAME is defined.

Assemble what follows up to
the terminating LENDC if the
symbol NAME is undefined,

Terminates the range of a
conditional directive.

B-10

APPENDIX C

COMMAND AND ERROR MESSAGE SUMMARIES

The following surmmaries are provided for the user's convenience and
are grouped in chronilogical order according to the system program to
which they refer. As these are only summaries, the user is referred
to the appropriate chapter for details.

C.l KEYBOARD MONITOR (Chapter 3)

Command Summary *

Command Explanation
DATE Allows the user to enter the day, month, and

year. This date is then represented in
directory listings.

DIRECTORY Causes a directory listing of the cassette
specified in the command line,

DIRECTORY/F Causes a "fast"™ directory listing by omitting
— current and creation dates and listing only
filenames and extensions.

LOAD Instructs the Monitor to 1load the file
specified in the command line,

LOAD/G Instructs the Monitor to load and start the
- file specified in the command line.

LOAD/O Instructs the Monitor to 1load the file
- = specified in the command line, overlaying the
Monitor as necessary.

RUN Instructs the Monitor to load and execute the
file specified in the command line.

*only those characters underlined need be entered.

XKEYBOARD MONITOR {Cont.)

Command Explanation
SENTINEL Causes a sentinel file Lo be written

irmediately followving the file specified in
the command line,

START nnnnn Instructs the Monitor to begin execution of a
loaded file at the specified (nnnnn) address,
or at the transfer address if nnnnn is not

indicated,

VERSIOR Causes the version number of the Monitor
currently in use to be printed on the console
terminal.

ZERD Causes deletion of all files on the cassette;

a sentinel file is written at the beginning
of the cassette,

Error lessage Summary

Monitor error messages are preceeded by one of two symbols indicating
the type of error which occurred:

? Non-fatal error; execution continues if possible,
otherwise control returns +o the C8I after the
message is printed,

] Fatal error; control returns to the Kbl after the
nessage is printed.

Message Arg Meaning Source
Ior BC Illegal IOT RESMON
NO FILE OPFN drive 4 READ or WRITE with no RESMON

SEFEK or ENTER

OFFLINE drive # Cassette not rmounted; if RESMON
non~fatal, execution is
automatically resumed
when the cassette Is mounted
(if the user inproperly mounts
the cassette, a fatal error
will probably occur)

TIMING drive ¢ System software did not RESMON
service an initiated
request f£ast enough

KEYBOARD MONITOR (Cont.)

Message Arqg
TRAP B
WRT LOCK drive #

FILE NOT FND
TLL, CHD

NQ SENTINEL FILE

SYRTAX ERROR

BAD TAPE

HO ETART ADDR

PROG TOO BIG

SPTWR CHKBM ERR

TRUNCATED FILE

Meaning

Btack cocverflow, reference
to non=-existent memory,
illegal or reserved
instruction, attempt teo
reference a word on a
byte boundary; the SP at
the time of the trap is
stored in lecation 44
Cassette write-locked; if
aon~fatal, exscution is
automatically resumed when

the cassette is writewenabled

Specified file not found
Illegal cormand

No sentinel file is

present on the tape;

this message occurs during
use of the DIRECTORY

command at that point during
the directory listing where
the sentinel file is missing

Arguments following a
command are jillegal

Hardware checksum error
{note that this error
may alsc be caused by
READ operations initiated
on a cassette which is
positicned after the
sentinel file}

Loaded program had no
transfer address

Program too bilg for the
memory limits defined by
the type of load used

Software checksum error
{message followed by numbery
of errcors)

File ends before transfer
address load block is
found

Bource

RESMON

RESMON

KBL,
CLOD11

KBL,
CLOD11

CLODR11

CLoDll

CrLopll

KEYBOARD MONITOR {Cont.}

{the line containing the
pointer} on the console
terminal.

Massage Arg Meaning Source
CEI TARLE Command string too big CSI
OVERFLOW for the table
TLIEGAL CHAR: {C.5. Illegal character in C81
linel command string .
ILLEGAL DBEVICE: (C.5. Illegal device gpecification ¢8I
line)
ILLEGAL SYNTAX: (C.S. Illegal syntax in command 81
line} string TN
C.2 EDITQR {Chapter 4)
Command Summary
Input and Output Commands
Command Form Meaning -
EDIT READ ER#filnam,exts$ Cpen a file for input,
EDIT WRITE EW#filnam,ext$ Open a file for output,
READ] Read a page of text from the
input file and append it to
the contents of the buffer,
WRITE n¥W Output a specified number of
-n¥ lines of text from the Text R
ow Buffer to the output file.
W
NEXT nh output the contents of the
Text Buffer to the output
file, clear the buffer, and
read in the next page of the
input file.
LIST nkL Print a specified number of
-nL lines on the console terw
oL minal,
L
VERIFY v Print the current text line

U

EDITOR (Cont.)

Command

END FLLE

EXIT

Pointer Relocation
Command

BEGINNING

JUMP

ADVANCE

Search Commands

Command

GET

PIND

Form

EX

Commandsg

Form

nJ
-n.J
0

nA

OA

Porm

nGtexts

nFtext$

Meaning

Close the current output
file without performing any
further input/output
operations.

Output the remainder of the
input file to the output
file and return control to
the Monitor,

Meaning

Move the c¢urrent location
pointer +to the beginning of
the line,

Move the pointer over a
specified number of char=
acters in the Text Buffer,

Move the pointer over a
specifisd numher of lines
in the fText Buffer, The
pointer is positioned at the
beginning of the line.

Meaning

Search the contents of the
Text Buffer, beginning at
the current locaticon
pointer, for the next
Qcourrance of the taxt
string,

Beginning at the current
location pointer, search the
entire text file for the nth
occurrence of the specified
character string. Pages of
text are input, seayched,
and then output to the
output file until the text
string is found.

EDITCR (Cont.)

Text

Command

POSITION

Form

nPtexts

Modification Cormands

Cormand

INSERT

DELETE

KILL

CHANGE

EXCHANGE

Utility Commands

Command

SAVE

ONSBAVE

Form

Itexts

np
=n D
oo

nk
-nk
0K
K

nC
-1
oC
C

nXtexts
~-nXtexts
Oxtexts
Atexts

Form

ns

Meaning

Search the dinput f£file for
the nth occurrence of the
text string: if the text
string is not found, the
buffer is cleared and a new
page 1is read from the input
file,

Meaning
Insert text immediately
following the current

location pointer; an ALTMODE
terminates the text.

Remove a specified number
of characters from the
Text DBuffer, beginning at
the current location
pointer.

Remove n lines from the Text
Buffer, beginning at the
current location pointer,

Replace n characters, bhe-
ginning at the pointer, with
the indicated text string,

Replace n lires, beginning
at the pointer, with the
indicated text strineg,

Meaning

Copy the specified number of
lines, beginning at the
pointer, into the Save
Buffer,

Insert the entire contents
of the Save Buffer into the
Text Buffer at the position
of the current locatlon
pointer,

3

.

EDITOR {Cont.)

Cormmand Form Meaning
ou Clear the Save Buffer and
r reclaim the area for text,
MACRD M/command string/ .
Insert a command string into
EDITY*s Macro Buffer
* oM Clear the Macro Buffer and

EXECUTE MACRD nEM

Error Message Summary
Mesgage

27<>" ERR?

* CB ALMOST FULL *

?CB FULL?2
REEOF*?
PA*FILE NOT FOUND*?

F*HDW ERR*?

2ILL ARGY

?ILL CMDb?

d P2ILL MAC?

reclaim the area for text.

Execute the command string
specified in the last macro
command,

Explanation

Too deep nesting, or illegal use of
bhrackets, or unmatched brackets.

The command currently being entered by
the wuser 1is within 10 characters of
exceeding the space available in the
Command Buiffer,

Command exceeds the space allowed for a
cormand string in the Command Buffer.

Attempted a Read or Next command and no
data was available,

Attempted to open a nonexistineg file for
editing,

A hardware error occurred during I/0,

The argument specified was illegal for
the command used, a negative argument
wag specified where only a positive
argument was allowed, or an argument
exceeded the range + or -16384,

ERIT does not zrecognize the command
specified,

Delimiters were improperly used, or an
attempt was made to enter an M cormand
during execution of a Macro, or an
attempt was made to execute an EM
cormmand while an EM was already in
progress,

EDITOR (Cont,}

Mﬁssaga

PRILL NAME®?

P*L/0 CHAN CONFLICT*?

PENG FILE*?

N0 ROOM*?

?¥SRCH FARIL*?

?*TAPE PFULL*?

Explanation

The filename or device specified in an
E¥ or ER comnmand is illegal.

An attempt was made to open an input
file on a cassette already open for
output, or vice versa,

An attempt was made to Read or Write
when no file was open.

An attempt wags made to execute an
Inzsert, Save, Unsave, Read, Next,
Change, or Exchange command when there
was not enough room in the appropriate
huffer.

The text string specified in a Get, PFind
or Position command was naot found in the
available data.

Available space for an output file is
full d{i.e., there is no room for any
part of the file),

C.3 ASSEMBLER (Chapter 5}

Language Summary

Reference may be made to Appendix B for the CAPS~ll PAL assembly

language surmary.

Option Surmary

Option Meaning
/C This option allows an I/C specification line
to be broken into several segments.
/F This option is wvalid only after an input

filename and specifies that the Assembler
should not perform a REWIND operation but
should continue searching the cassette in a
forward direction for the file.

L

ASSEMBLER (Cont.)

Option
/0

/P

/X

Meaning

This option is wvalid only after an output
filenare and indicates that the file
{immediately preceding the option} is to be
created and used only if a previously opened
output file has been written to the end of
the cassette and more output remains.

This option is used whenever a file
referenced in the I/0 specification line
exists on a cassette which is not currently
mounted on a drive, Before attempting to
search for the file, the Assembler instructs
the user to mount the proper cassette on the
drive by printing #? where # represents the
drive number, After the user has switched
cassettes on the drive, he may continue
execution by typing any character on the
keyhoard.

This option is valid only after an output
filename and causes extended binary output
(i.e., those locations and binary contents
beyond the first binary word per source
statement) to be suppressed from the listing.

Error Message Summary

Error Code

A

Explanation

Addressing error., An address within the
instruction is incorrect; may also
indicate a relocation error.

Instructions or word
being assembled at an
location

Bounding error,
memory data are
odd address in memory. The
counter is updated by +1.

Doubly-defined symbol referenced.
Reference was made to a symbol which is
defined more than once.

Illeqal character detected. Illegal
characters which are also non-printing
are replaced by a ? on the listing.

Line buffer overflow. Extra characters
on a line {(more then 72(decimal)) are
iqnored.

ASSEMALER {Cont.}

Error Code

M

H

Explanation

Multiple definition of a label. A label
was encountered which was equivalent (in
the first six characters) to a
previously encountered label.

Number containing 8 or 9 has decimal
point missing, The number is assembled
as a decimal number.

Phase error, A label's definition or
value varies from one pass to another,

Questionabhle syntax, Missing arguments,
the instruction scan was not completed,
or a carriage return was not inmediately
followaed by a line feed or form feed.

Register-type error,. An invalid use of
or reference to a register has besen
natie.

Symbol table overflow, When the
quantity of user=defined symbols exceeds
the allocated space available in the
symhol table, the Agsembler outputs the
current source line with the & error
code, then returns to the idinitial
dialogue.

Truncation error. 2 number generated
more than 16 hits of significance, or an
expression generated more than B8 bits of
significance during the use of the ,BYTE
directive,

Undefined svmbol, An undefined symbol
was encountered during the evaluation of
an expression. Relative to the
expression, the undefined symbol is
assigned a value of zero.

i

L%

In addition to the error codes listed ahove, the fonllowing mesgages
may also occur (error messages which are followed by a question mark
allow the user to type a CTRL/C to return to the XBL, or a CTRL/P to
retry the operation):

c-16

ASSEMBLER (Cont.}

Message

$BAD CMD STRING

—
?BAD TAPE?
RBAD TAPE
RETRY?
1/.-“ N
EOM?
. EOM?
RETRY ?
PFILE NOT ¥ND?
o

Meaning

tne of the following errcrs has
occurred in the user's command
string:

No cutput was specified;

No input was specified;

Input and output were specified
on the same drive;

Input was specified from a device
other than cassette;

Binary output was specified to a
device other than cassette,

& checksum or other hard arror
occurred during a file loockup or
enter command. Typing any
character will cause the Aggembler
to retry the operation.

A hard read error was detected on
one of the input files; typing any
character {(other than *0) will
cause the Assembler to retry the
same assembly (in systems larger
than 8K, the Assambler will return
to the CSI and allow the user to
input a new command),

The line printer is out of paper or
is not powered up; the drum gate is
open; or the printer is too hot,

The end of the tape was reached
during cassette output and no
overflow file was specified. The
user may mount another cassette and
then type any kevboard character to
instruct the Assembler to retry the
assembly using the new output
cansetle.

The Assembler could not find one of
the input files, The user may
mount another cassette and type any
character on the kevyboard to
instruct the Assembler to retry the
lookup on the same drive. Typing a
CTRL/P will restart the Assaembler
{if the system is greater than BX).

c-11

ASSEMBLER (Cont.)

Message

?NO END STMT

?SWITCH ERROR:'x'?

?TAPE FULL?

C.4 LINKER (Chapter 6)

Option Surmmary
Option

/C

/F

/0

Meaning

The file does not contain an LEND
directive; the Assembler assumes an
+END statement,

An undefined option character (x)
was found in the command string,
Typing any character on the
keyhoard will cause the Assembler
to ignore the option and continue.

The specified output cassette is
completely full. Mounting a
different cassette on the same unit
and typing any character instructs
the Assembler to attempt to open
the file on a new cassette,

Meaning

This option allows the I/0 specification
line to be broken into several segments.

This option is valid only after an input
filename and indicates that the Linker
should not perform a REWIND operation
but should continue searching the
cassette in a forward direction for the
file.

This option is wvalid only after an
output filename and indicates that the
file (immediately preceding the option)
is to be <created and used only if a
previously opened output file has bLeen
written to the end of a cassette and
more output remains.

This option is used whenever a file
referenced in an I/0 specification line
is on a cassette which is not currently
mounted on the unit drive. Before
attempting to search for the file, the
Linker instructs the user to mount the
proper cassette on the drive by printing
#? where # represents the drive number,

LINKER (Cont.)

Option

/8

/T

Error Message Summary

Non—-Fatal Errvors

Hessage

?BAD TAPE?

Meaning

After the user has switched cassettes on
the drive, he mav continue execution by
typing any character on the keyhoard,

This option is wvalid only after an input
filename and indicates that two or more
object modules have been combined {using
PIP} under the sinqgle filename, The
option instructs the Linker not te skip
to the next input filename until it has
obtained al]l necessary information for
the files included in the first,

The /T option is wvalid only after an
input filename and indicates that the
transfer address of this particular
obbiect module is to be used as the
transfer address of the final lead
module. If more than one /T option is
indicated in the I/0 specification line,
only the last one is significant.

The program is to be linked with its
lowest location at n. If n is not
specified, the Linker assumes location
600,

The program is to be linked with its
highest location at n. If n is not
specified, the Linker assumes that the
last location of the user program will
g0 just under CLOD1l; the user can then
use the LOAD/G command te run his file,

Meaning

A checksum or other hard error
oeeurred during a file LOORUP or
ENTER command. Typing any keyboard
character instructs the Linker to
retry the operation,

LINKER {Cont.}

Message

?BYTE RELOC ERROR AT
ABS ADDRESE XxuXxX

FFILE NOT FND?

?MAP DEVICE ROM7

PMODULE NBME sxmxxx NOT
UNIQUE

ZEWITCH ERROR:'x'?

?TAPE FULL?

Trxxxxx MULTIPLY DFFINED
BY MODULE MMXXX¥

Meaning

This message designates a byte
relocation error. The Linker has
tried and failed t¢ relocate and
1ink byte quantities; the value is
truncated to 8 bits, the message is
printed, and the Linker
automatically continues.

The Linker could not find one of
the input files. Typing any
keyboard character instructs the
Linker to retry the operation.

The Load Map device ECM error
allows the wuser an option to fix
the device and czontinue by typing
any response terminated bv a <CR>
or <LF>, or to ahort the mag
listing by typing a tP,

This error results from a
non-unique object module name
during Pass 1. The module is

rejected and the Linker will then
ask for more input,

An undefined option character was
found in the ceemand string.
Teping any character instructs the
Linker to ignore the character and
continue,

The specified output cassette is
full. A different cassette may be
mounted on the same drive; typing
any keyhoard character then
instructs the Linker to attempt to
open the file on the new cassette,

This message results during Pass 1
if globals have been defined more
than once, The second definition
iz ignored and the Linker
continues,

Cc~14

LINKER {Cont.}

Fatal Brrors

Hegsage
$BAD CMD STRING

~ LCAS. CHECKSUM

$0DD ADDRESS

$SYMROL TABLE OVERFLOW=-
MODULE xorxxx, SYMBOL

KRKEKKK

r— SSYSTEM ERROR xx

Meaning

One of the following occurred in
the command string: no output or no
input specification; input mnd
output were specified on the same
drive; input was specified from a
device g¢ther than cassette; binary
output was specified to a device
other than cassette,

2 checksum error occurred while
reading a cassette hlnck,

An odd address was specified using
the /B or /B options.

A svmhol table overflow has
occurred,

A systen error has occurred where
XX represents an identifying number
from the following list:

gL Unrecocgnized symbol table
entry found,

a2 A relocation directory
references a global name which
cannot be found in the aymbol
table,

a3 A ralocation directory
containg a locaticon counter
modification command which is
not last,

04 Object module does not start
with a G5D.

05 The first entry in the G8I is
nct the module name.

06 A relocation directory
referanceas a gection name
which cannot be found.

07 The transfer address

specification refarences a’

nonexistent rmodule name,

C-1i5

LINKER {Cont.}

Hessage Heaning

038 The transfer address
spacification references a
nonexistent section narme,

a9 An internal jump tabls indax
is out of range.

10 A checksum error occurred on
the object module.

11 An ohiject module binary block
is too big {more than
64 {decimal) words of data).

12 A device error occurred on the
load module outpnt device,

All system errors except number 12 indicate a program failure either
in the Linker or the program which generated the cbject module. FError
05 can ocecur if a file is read which is not an object module,

C.5 OoDT (Chapter 7)

Command Swmwary

Command Meaning
r/ Open the word at location r.
7 kReopen the last opened location.
IN(SHIPT/L) Onen the byte at location r.
\ Reopan the last opened byte.
nR After a word has heen opened, retype the

contents of the word relative to
relocation register n. If n is omitted,
anT selects the relocation register
whose contents are closest but less than
or erqual to the contents of the opened
location,

n! After a word or byte has Dbeen opened,
print the address of the opened location
relative to relocation register n. If n
is omitted, ODT selects the relocation
register whose contents are closest, hut
less than or equal to the address of the
opened location.

c-16

by

opT (Cont.)

Command

) (LINE FEED
key)

~

tor

RETURN

sn/
Y/

Meaning

Open next sequential location.

Open previous location. (The
circumflex, ~ o, appears on some
keyboards and prints in place of the
up=-arrow,)

Close open location and accept the next
command.

Take contents of opened location,
indexed by contents of PC, and open that
location. (The underline, .., appears
on some keyboards and prints in place of
the back-arrow,

Take contents of opened location as
absolute address and open that location.

Take contents of opened 1location n as
relative branch instruction and open
referanced location.

Return to sequence prior to last @, >,
or + command and open succeeding
location.

Perform a Radix 50 unpack of the binary
contents of the current opened word;
then permit the storage of a new Radix
50 binary number in the same location,

Calculate offset from currently open
location to r,

Open general register n (0-7).

Open special register Y, where Y may be
one of the following letters:

S Status register (saved by
ODT after a breakpoint)

M Mask register

B First word of the

breakpoint table

P Priority register

ODT (Cont.}

Command

-

Meaning
C Constant register
R First relocation register

{reaister 0)
F Format register

Pill merory words with the contents of
the constant reqgister,

Fill memory bvtes with the contents of
the low-order 8 bits of the constant
register,

Separate commands from command arguments
{(used with alphabetic commands below);
separate a relocation register specifier
from an addend.

Remove all Breakpoints.

Set Breakpoint at location r.

Bet Breakpoint n at location r.

Remove nth Breakpoint.

Search for instructions that reference
effective address r.

Search for Words with bit patterns which
match r,

Enable single-instruction mode {n c¢an
have any value and is not significant):
disable breakpnints,

Pisable single-instruction mode 3
reenahle breakpoints,

Go to location n and start program run.
Proceed with program execution from
breakpoint: stop when next breakpoint is
encountered or at end of program.

In single~instruction mode only, proceed
to execute next instruction only,

Proceed with program execotion from

breakpoint; stop after encountering the
breakpeint k times.

c-18

)

S

J—

ODT {Cont.}

Command Meaning

In single-instruction mode only, proceed
to execute next k instructions.

$R Set all relocation registers to -1
(highest address value).

inR Set relocation register n to -1.

r;nR Set relocation register n to the wvalue
of r. If n is omitted, it is assumed to
be G.

r;c Print the value of r and store it in the

constant register.

£ina Print n bytes in their ASCII format
starting at 1location y; then allow n
bvtes to be typed, starting at location
r.

CTRL/C Return to Monitor and accept a command
from the kevhoard.

Error Message Surmary

No error messages occur under ODT as illegal cormands are ignored; ODT
prints ? and the user may enter another command,

C.6 PIP {(Chapter 8}

Option Surmary

Option Meaning
/A Used with an output £filename to designate

that the header bit be gset to ASCIY (the file
type is otherwise assumed to be binarv).

/C Allows the command string to be broken into
one or more lines.

/D Causes the filename({s) indicated in the
command line to be deleted from the specified
cassette,

PIF {Cont.}

aOption

/B

/2

Meaning

Requests that the system prompt the user to
change cassettes on the indicated drive
before an attempt iz made to access the file,
The system printa:

#?

where # represents the number of the
appropriate drive, When the user has mounted
the proper cassette, he may type any
charactery on the kevhboard to continue
execution.

Indicates that all cassettes on the uanit
drives specified in the command line are to
be zeroead,.

Error Message Sumnary

Message

?BAD TAPE
?BAD TAPE?

FECH

Meaning

Hardware checksum error {(may also be
caugsed by READ operations initiated on
a cassette which {8 positioned after
the sentinel file); a guestion mark
following the message indicates that
the error is not fatal; the user may
mount another cassette and type any
character on the keyhoard te continue
execution,

Indicates an ouat-of=-paper condition
for the line printer, console
terminal, or paper tape punch,

FEXCESS INPUT PILES The number of input files exceeds the

number of output files {providing the
number of output files is greater than
one}; this error occurs during use of
the file transfer function.

PEXCESS OUTPUT FILEE f“The number of output files exceeds the

?FILE NOT FHND?

numher of input files; this error
gocurs during use of the file transfer
function.

The specified file was not found on
the cassette indicated:; the user may
mount another cassette and tvpe any
character on the kevhoard to continue

the search,

iz

PIF (Cont,)

Massage
FILLEGAL DEVICE

FILLEGAL INPUT LIST

FILLEGAL QUTPUT LIST

2170 CHAN CONFLICT

#NC FILE NAME

POFFLINE x

PEWITCH ERROR 'x'?

?TAPE FULL
?TAPE FULL?

TWRT LOCK x

Meaning

An illegal device was indicated for
the PIP function used.

An input list was indicated where not
allowed {as when wusing the zero,
delete, and copy functions}, or an
illegal command was entered,

An output list was indicated where not
allowed {as when using the copy
function}.

An attempt was made to open an input
file on a cassette already open for
output, or vice versa.

A filename was not indicated in a
command line which required one,

The cassette is not properly mounted
on drive x. The user should correctly
mount the cassette so that execution
can continue,

An illegal switch was indicated in the
command line, where *x' represents the
switch in error. The c¢heck 1is made
for as many as 10 illegal switches in
any one command line. Typing any
character on the keyboard will cause
PIP to ignore the switch and continue
execution,

Available space for an cutput file is
full, A question mark following the
message indicates that the error is
not fatal; the user may mount another
cassette and type any character on the
keyhoard to continue execution.

The cassette is write«locked; x
represents the drive number. The user
should dismount the cassette {the
QFFLINE error message will then be
printed), write—enable the cassette,
and remount it. Execution will then
continue.

C-21

C.7 RESMON (Chapter 9)

Error Message Surmary

RESMON error messages are summarized in Section C,l under the Keyhoard =
Monitor error message summarv,

c-22

APPERDIX D

SYSTEM DEMONSTRATION

The following is a brief demonstration of the CAPS~1l system software,
Before proceeding with this demonstration, the user should read the
regt of the CAPS5=1l manual and become familiar with the CAPS-11 system
programs and conventions, He should pay particular attention to the
second half of Appendix E, which describes reconfiquring the CAPS-l]
Monitor for non-standard /0 devices and different menmory
configurations, In particular, if the user's system contains a
non—-standard console terminal (either LT33 or LT35, parallel LA30
DECwriter, or VI05 display), he should use his reconfigured Syatem
Cassette for this demonstration.

Before starting, the user should have ready the proper CAPS-11 System
Cassette and two scratch casacttes. The first step of the
demonstration is te copy the System Cassette, The demonstration
should then be continued using this newly created copy.

In general, the user should always keep at least one geod copy of the
System Cassette in a safe place in the event that he should accidently
destroy his 'working copy', Note that this demonstration uses the
System Cassette when it is write-enahled, The purpoge is to gimplify
the demonstratjon; under normal gperation, the user should always use
the System Cassette write-locked,

Please read through the entire system demonstration before attempting
to enter any of the command lines.

D.1l SYSTEM START-UP

Write-lock the CAPS-11 System Cassette by setting the hinged red tabs
80 that +they are pointed toward the center of the cassette, exposing
the write-protect holes; mount the cassette on drive 0 (the drive to
the left of the unit}. Bootstrap the CAPS-11 Monitor into memory
using the procedure described in Chapter 3, Section 3.1. When loaded,
the Monitor will type an identification line and a dot at the left
margin of the console terminal page (subsequent loads w111 cause only
the dot to be printed):

CAPS-11 VBi-B2

If this does not occur, check that the terminal is turned on and that
the cassette is mounted properly and retry the bootstrap procedure,

D.2 SYSTEM DEMONSTRATION

This section deronstrates briefly how to use the CAPS-11 system
programs by presenting them in the context of a simple exercise. The
user will copy the System Cassette, and then edit, assemble, 1link,
load, and run a simple demonstration program, In the fellowing
digcussion, computer output is underlined when necessary to
differentiate it from user imput; a) is used to indicate typing the
RETURN key and § indicates typing the ALT MODE kevy. Mistakes made
while entering command strings may be corrected by typing the RUBOUT
key,

Once the CAPS~1l Monitor has been bootstraped inte memory and has
typed a dot, enter the current date by typing a command of the form:

<0A 27-AUG-T3)

substituting the current date in place of 27-AUG-T3, The HMonitor
indicates that it is ready to accept another command by printing a dot
at the left margin of the page, when this dot appears, enter the
following command:

V2

The Version command causes the Monitor to print out the version number
of the Monitor in use, The Monitor shnuld respond by printings

CAPS-11 Vol1-82
27-AUG~-73

After the user has verified that the wversion he is using is the
correct one, he should next copy the System Cassette {or his
reconfigured System Cassette) using PIP, Mount a scratch cassette on
unit 1, write-enabled, and type:

«R PIPQ

The Command String Interpreter {CSI) will print an asterisk at the
left margin of the page when it is ready to accept a command line,
rype the following command to copy the System Cassette to the scratch
cassette on drive 1 {the command may be entered as soon as the
asterisk is printed even though program locading may be occuring
simultanecusly) :

®te=01)

This command causes the output cassette (on drive 1) to be zeroed, and
then copies the entire cassette from drive 0 to drive 1. When the
copy function is complete, the CSI will type another asterisk. Now
type CTRL/C to return to the CAPS~-1l Monitor, which will print a dot:

i

*tC)

Dismount the System Cassette on unit 0 and put it away. From now on,
the copy of the System Cassette just created should be used in the
demonstration. Dismount this copy from unit 1 and mount it,
write-enbaled, on unit 0, then type:

=DI)

The Monitor will list the directory of the copy Jjust produced--a
typical directorv will appear as follows:

27~-AUG-T 3

CTLOAD SYS B8-AUG-73
CAPS11 SBK 89-AUG-73
PIP____ SRU 89-AUG-73
EDIT _ SLG B9-AUG-73

LINK __SRU @9-AUG-73

oDT SLG #9-AUG-T73
PAL SRU @9-AUG-73

DEMO PAL 29-AUG-T73

Attach this directory listing to the System Cassette on unit 0. Now
mount another scratch cassette on unit 1, write-enabled, and zero it

by typing:

_O_Z 13)

Again, the Monitor will print a dot when ready for the next command.
Type in response to this dot:

+R PAL)

This command loads and starts the CAPS-11 Assembler. When the
Assembler is found on the System Cassette, the CS5I will print an
asterisk at the left margin of the conscle terminal page. When the
asterisk appears, type the following line:

!-_:DEMO)

The command instructs the Assembler to assemble the demonstration
program stored on unit 0 (DEMO,PAL) and print any errors on the
console terminal. The following error message is printed, indicating
that there is an illegal character in the demonstration source file
which must be corrected hefore the file can be assembled properly:

PASS 2
1 200026 £2BB16T" JHAP K BLADR 3 BACY TO CAPS-11 MONITOR

EEELL

228831 ERRORS

tC2)

In 8K systems, the CAPS-11 Assembler overlavs par:t of the Monitor so
that the system must be re-bootstrapped after an assembly has beaeen
completed, The assembler signals the user that it is done and ready
to re~bootstrap the syvstem by typing:

+ £7?

The user should ensure that the System Cassette is still mounted on
unit 0 and then type any character on the conscle keyboard--the mtire
CAPS Monitor will be bootstrapped into memory and will print a dot
when it is ready for a command.

If the user is running with a 12K or 1larger CAPS=-11 Monitor, the
assembler will not overlay the Monitor; thus when the assembly of the
demo program is complete, the assemhler will transfer control to the
Command String Interpreter which will print an asterisk. In this
case, return to the CAPS~1l Monitor by typing:

x1C)
Again, the Monitor will print a dot when ready for a command.

To correct the error detected in the assemhly Jjust performed, the
CAPS~-1]1 Editor must be called from unit 0. Type:

2R EDIT)

This command loads and starts the CAPS-11 Editor. The Editor will
print an asterisk when it is ready to accept a command. HNow enter the
following line (5 represents tvping the ALTMOBE kev):

*ERP: DEMOSS

There will be a pause before the next asterisk is printed since the
Editor 1s searching the System Cassette for the £ile DEMO,PAL. When
the asterisk appears, tvpe:

#EW13 DEMO1S$S

This command instructs the Editor to open an coutput file on wunit 1;
when another asterisk appears, type the command:

2RGEEVES

This will read text into the Text Buffer from the input £file, search
the buffer for a line containing an * and leave the pointer positioned
immediately following the *, The Editor should type:

o

—

JMP *KBLADR 3 BACK TO CAPS-11 MONLITOR

This line of text contains an error which must be corrected. Type 1in
response to the asterisk:

*-COSVS$

This deletes the *, replaces it with @ and verifies the line, The
Editor should now type:

JMP @K BLADR 3 BACK TO CAPS-11 MONITOR

Close the ocutput file by typing:
1EK$$

When control has returned to the CAPS5-11 Monitor, a dot will be
printed., Next, run the Assembler by typing:

2R PAL)

When the Assembler is found on the System Cassette, the CSI will print
an asterisk. Type the following command to assemble the edited file,
putting the object module on the System Cassette and printing the
listing on the console terminal (the command may be entered as soon as
the asterisk appears; the Assembler will be simultaneously loaded into
RMEMOYY) 3

*DEMO1, TT2=1:DEMO1)

If the user's system includes a line printer, 'LP': may be substituted
for 'TT: in the ahove command to cause the asserbly listing to be
printed on the line printer rather than the console terminal.

The assembler will type 'PASS 2' and then print the 1listing as
follows:

PASS 2
CAPS11 PAL V@1 98/27/73 PAGE 901

+« TITLE CAFS5-1) DEMO PROGRAM
3
5 CAPS-11 DEMONSTRATI ON PROGRAM
]
3 DEC-11-0TDMA-A-LA
JCOPYRIGHT 1973 DIGITAL EQUIPMENT CORPORATION
JMAYNARD, MASSACHUSETTS 01754
3DEC ASSUMES NO RESPFONSIBILITY FOR THE USE OR
JRELIABILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT
3 SUPPLIED BY DEC.
3
3
«GLOBL START
H
3 ADDRESS OF CAPS-11 XBL 1S5 [N LOCATION 5P
H

#ase0p

QBRe04
208286
péaega7
REPaIo
p@gpeie
ABLa1 4
20015
gage1s
ea2028
gaovgee
o823
gogaza
genR2s

pagpi2
aRBI 4
eoBe3s

2aeRds
pRBN AR
gednal
povgaz
gooe4ad
BaBe44
BBe64s5
PRBB 45
aDDGAT
30e050
a20e051
faans2
aeoevs3
pavAS4
BBo0%5
pRBaAsE
@e0as7
gopBse

dpeese
688615
aapa1g
B1E7 86
ABRs28
000B04
Bo1
ol
oaoeed
pogLos
284
aa2
esesaz2’
pagoe4
283
goe
gevaze’
pes177
RBABsSY

282100
209
2o

20BR54
Bis
iz
193
181
120
123
955
g61
861
249
184
185
115
116
117
123
124

START:

WAI Tx

MSGBUF:

¥ BL ADR= 5@

CR=1%

LF=12

MoV P2, 26 3 SET STACK POINTER

1ar 3 RESET CAFS-11

«BYTE 1Y

» WORD o

107 FTYPE MESSAGE ON CONSOLE .

«BYTE 4; 2

« WORD MSGBUF

107 JWALT FOR IT TO FINISH

+BYTE e
-,

« WORD WALT

Jup 8K BL ADR PBACK T0O CAPS-11 MONITOR

« WORD 98 pMpX . S1ZE OF BUFFER

+BYTE ¢, 8 FMODE 1S5 FORMATTED ASCIE

FSTATUS BYTE IS @

« 4 ORD MSGEND-MSGBUF«S 3 BYTE COUNT

«BYTE CR:LF

«HB5CI1 /sCAPS« 11 DEMNOSTRATION / T
—

Baz

CAPS511 PAL V&1 08/27/72 PAGE

Be2p6 !
o062
poaded
gBessa
208065
20g8646
2oB2s7
pa6e? &
PooeT1
ovear 2
20007 3
0007 4
B8p075
apavi é

122
181
124
111
117
116
dag
120
122
117
187
122
121
115

» ASCIE

/PROGRAM COMPLETE. /s

gepa?y vag
ggdi1ee 123
200101 117
ped1az 115
g20123 §24°
6a184 114
aopies 185
g@as1ads 124
god 147 185
dpatia A56
aa0111 a15 «BYTE CR.,LF

gagirz a12
gpae113 @12 MSGEND: «BYTE LF
@30000 » END START

CAPSiT PAL V81 98/27/73 PAGE 223

CR = PRd1s KBLADR = 020850 LF = gReai2
M 5GBUF BBeR32R MSGEND gee113R START 2O BORG
WAalT BBRA2aR . * = PEAL14R

ggad0e ERRORS

g

-
™

Again, in 8K systems, the system must be re-bootstrapped after an
assembly has been completed, thus the assemhler Signals the user that
it is done and ready to re-bootstrap the system by typing:

t 7

Ensure that the System Cassette is still mounted on unit ¢ and then
type any character on the console keyhoard to re~boot the system,

If the user is running with a 12K or larger CAPS-11 Monitor, the
assembler will not overlay the Moniteor; in this case, return £o the
CAPS~1l Monitor by typing:

arc)
The Monitor will print a dot when ready for a command,

The assembler's output must be linked before it c¢an be loaded and
started, BRun the Linker by typing:

2R LINK)

When the Linker is found on the System Cassette, the Command String
Interpreter will print an asterisk, Type the following command to
link the assembler output file, outputting the load module (DEMO.LDA)
to the scratch cassette on unit 1 and printing a load map on the
console; as with the assembler, 'LP:' may be substituted for *TT:' 1if
the system containg a line printer:

* 15 DEMOi, TTs=DEMOE /B)

CAPS-11 LINK V81 @98 /27/73
LOAD MAP

TRAMSFER ADDRESS: 000660
LW LIMIT: 0B0608
HIGH LIMIT: 200714

EEEERERE

CAPS

SECTYION ADDRESS SIZE
«» ABD.* epdppe 2eeees
< » 220600 22114

START 2e2602

PASS 2

wWhen the Linker has finished, it will transfer control back to the
¢8I, which will print an asterisk. Type CTRL/C to return control to
the CAPS~11 Monitor:

£1C)

»
-

Now type the following command to load the demonstration program into
memory t

.LOAD 1:DEMO1.,LDA)

Once the program has been loaded, the Monitar will print a dot. Next
run the debugging program, ODT, by typing:

sR 00T)
When 0DT has been loaded into memorv, it will type:
pDT vl

*

=

From the load map printed by the Linker, notice that the lowest memory
address ocoupied by the program is 600 {octal}. Therafore, set
ralocation register zero to 600 by typing:

26085 0R J

Next, use ODT to correct a spelling error in the output 1line; this
correction is made only in memory and not permanently in the source
file, (In the following example, data +typed by ODT is underlined;
note that) indicates typing a carriage return; ™\ is typed on an LT33
or LT35 by pressing the SHIFT and L keys simultanecusly):

20,55\ 116 =N 1170
*0.56M\117 =0 116)

x

Start the program using the 'Go' command in ODT; the demo program will
type a message and then return to the CAPS-11 Monitor, which prints a
dot:

*600)G.)
CAPS-11 DEMONSTRATI ON PROGRAM COMPLETE.

ik

APPENDIX E

CAPS=11 SOFTWARE SUPPORT INFORMATION

E.1 <aps=-1l KEYBOARD MONITOR LOADING PROCESS

The CAPS=11 Monitor loading process is initiated when the wuser loads
the bootstrap loader (CBOOT) into memory either through uwse of the
hardware bootstrap or manually via the Switch Register. CBOOT calls
the first program on the System Cassette, CTLOAD.SYS, and from there,
as far as the user is concerned, system loading is automatic. A
detailed description of this loading process follows,

E.l.l Cassette Bootstrap {(CBOOT)

The Cassette Bootstrap is used to load and start any program which is
written in "CBOOT Loader Format™ and is contained entirely in a 128
{decimal} byte record; this record must be the firat data record of
the first file on a cassette,

"CBOOT Loader Format" programs are defined to be those of length leas
than or eqgual to 128 {decimal) bytes which are linked so as to be
lcaded in memory beginning at location 0. A program 4in this format

?&gina execution at its first instruction, which must be HOP
=0300240) .

CBOOT verifies that the first byte in the program contains 240 as a
method of detecting accidental attempts to boot a program in the wrong
format, If this occurs, or upon occurrence of any I/C error, CBROOT
halts at location CBOOT+50; at this time the user may exanmine either
location { {which will contain the first byte of the program being
loaded) or the cassette control and status register (TACE=777500) to
determine the cause of the error. The user may restart CBOOT by
presaing the CONTinue switch on the computer console,

CBOOT may be axecuted using an optional hardware bootstrap or it may
be manually loaded by the user, Although CBOQT may be loaded anywhere
in memory {with the exception of locations 0~177}, it is normally
loaded at location 1000, and references in this appendix will use that
address.

Memory Map #l in Pigure E-3 illustrates a map of PDP-11 memory
following leading of CBOOT. CBOOT is normally used to load PRELDR,
which is the first record of the first file on the CAPS-11 System
Cassette, {Listings of CBOOT and QCROOT are provided in FPigures E-4

E.l.2 Cassette Loader (CTLOAD.SYS)

The first file on the System Cassette is CI'LOAD,SYS, which consists of
a data record called PRELDR followed by succeeding data records making
up the program CABLDR {which ends with a copy of CBOOT), as follows:

RECORDS} ' 2 3 late}
1 1

mm! CABLDR cma€
Ll 1

Figure B-1 CTLOAD,SYS

Ag seen in Figure E~l, PRELDR is the first record of the first file on
the System Cassette, This cassette pre-loader is actually a small
program written in "CBOOT Loader Format®™ which is powerful enough to
determine memory size and load succeeding programs into highest
memory, It is linked, loaded, and started automatically by CBOOT at
location G. A map of CAPE~]1]l memory now appears as shown in Memory
Map 42 of Figure E-3.

The program lcoaded by PRELDR may be of any size, but it must exist as
data in l128({decimal] byte records immediately following the record
containing PRELDR, and it must be written in "PRELDR Pormat®. BPRELDR
format data consists of two bytes (low-order, then high-order)
containing the byte count for the rest of the data {¢=77777), followed
by a4 memory image {i.e., data only) of the program written so as to
begin at its first location.

PRELDR firat determines memory size, then leads this object program
inte highest memory (thus, the program must either be linked into
highest memory or written in position independent code)., If an error
{gensrally a hardware error) occurs during leading, PRELDR halts with
the contents of the cassette control and status register in Register
4. To restart the PRELDR loading process, the user should press the
CONTinue key on the computer console.

The programs lcoaded by PRELDR are CABLDR and CBOOT, which are loaded
into memory as illustrated in Memory Map #3 (Figure E-3).

1

.

e

NOTE

Information provided thus far assumes
the wuser is specifically loading the
CAPS~11 Keyboard Monitor from the System
Cassette mounted on drive 0. In order
to allow booting from cassette drive #1
or from a secondary controller, PRELDR
agssumes that Register 0 contains the
address of the desired controller and
that the appropriate drive has been
selected, This should be done manually
by the user before booting (it iz done
automatically by CBOOT during nommal
loading} .

The main data portion of the file CTLOAD.SYS is CABLDR, +the Cassette
Absolute Loader. This program is used to load programs written in
*absolute Binary Format”, which is the format of all system programs
and all Linker output, Absolute binary format consists of a number of
*load blocks' of memory image load data with associated header
information; such a load block has the following general form:

Table E=1
Ahbsglute Binary Load Block Format

Byte # Contents

001

000
Byte Count-low order
Byte Count-hiah order
Load Address~low order
Load Address-high order
Memory Image Data

o0 owon O LN b L) B

last byte Checksunm

If the byte count of a locad block is greater than 6, data iz loaded
into memory. If the byte count of a load block is egual to 6§, the
load address specified in the load block will be considered to be the
desired transfer, or starting, address of the program; if this address
is odd, CABLDR will halt. (It is not possible for the byte count of a
load block to be less than 6.}

Immediately after being loaded into highest memory, CABLDR is started
and checks the contents of the Switch Begister, which must have been
previously set by the user for one of the conditions listed in Table
E=2:

Table E=-2
CABLDR Switch Register Settings

Switch Register Action

Bit #0=0

Bit #15=]

Bit #0=1 and

Bit #0=1 and
Bit #15=0 and
Bits #l=14=0

Bit #0=1 and
Bit #15=0 and files are skipped and the program is
Bits #1=-14=n

Normal load; use loading and starting
addresses as specified in load blocks.
{his is the switch metting used during
the CAPS~11 system load,)

Relocating load; CABLDR halts s8¢ that
the user can set the Switch Register to
the address at which the program is to
be relocated {called the load bias; the
program must bLe position independent).
Bit @& of this Switch Register setting is
ignored. The user begins the load by
pressing CONTinue on the computer
console.,

Contiguous releocating load; the program
is loaded immediately following the last
byte of a previcusly loaded program,

Non-contiguous relocating load; n-1

positioned before the nth file: CABLDR
halts for further user action,

Data will be loaded in standard cassette files with a fixed record
CABLDR checks the continuation byte in the file
header record {see the Cassette Standard in Appendix P}, and allows
for an additional header record if this byte contains 1. Record size

size (128 bytes).

is determined from the proper header locations.

If CABLDR halts during operation, the user may examine the contents of

Register 4 to determine the reason for the halt as follows:

Table E-3
CARBLDRE Halts

R4 Contents Meaning
1 File skip complete; the user should reget the
Switch Register for the next desired action
{sse Table E~2)} and then press CONTinue to
load,
2 Command to relocate noted; the user should

set the relocation address in the Switch
Register and press CONTinue to begin the
load,

{Continved on next page)

£

ey

Table E=-3 {(Cont.}
CABLDR Haltis

R4 Contents Meaning

3 File has no fixed record length; since CABLDR
cannot handle this type of file, the user
should press CONTinue to cause CABLDR to skip
to the next file.

4 No trangfer address was found in the last
load block; the user should set the address
in the Switch Register and press CONTinue to
go to the next file,

IxxanK Hardware error; The contents of the cassette
and <ontrol status register are displayed in
Register 4. Three bagic types of hardvare
Errors may occur:

Error action
off-lLine, Write~Lock Press CONT to retry
function,

Clear Leader, File Gap Pile is not in legal
LDA format and is
ignored. Set the
switch register
{(refer to Table E-=2}
to indicate which
file to skip to, or

insert another
cassette, and press
CONT.

Timing and Block Check Retry function 3
times before halting
again, Pressing
CONTinue cauges
CABLDR to skip the
current file and try
the next.

Software checkgum errors are noted but do not affect the loading
pProcess. At the termination of loading, the last location in CABLDR
{SFTCHR} will contain the number of software checksum errors
encountered,

NOTE

In order. to allew booting from cassette
drive 1 or from a secondary TAllL
controller, CAPLDR assumes {on entry)
that Register 0 contains the desired
controller address with the appropriate
drive selected. This is ordinarily done

by CBOOT, or manually by the user before
booting.

Once in memory, CABLDR may be started
manually as follows:

1. Select appropriate drive in desired
control and status register;

2. Depcsit that controller address
into RO;

3. Start CABLDR at location %6570
where x corresponds to memory size
as follows:

X Memory Size
1 4K
3 BK
5 12K
7 16X
11 20%
13 24X
15 28K

To load from drive § of the cassette
control and status register (=777508)
without setting up R0, start CABLDR at
location %6572,

E.l.3 Cassette Monitor (CAPS1l1,SYS)
In the Monitor leoading process, the file loaded by CABLDR |is

CAPS11.8YS, which jig made up of two programs, CSYSLD.LDA and
CAPS11.LOA, as follows:

CSSLD, LDA CAPSRIL, LDA

Pigure E~2 CAPS11.8YS

CSYLD.LDA is loaded first by CABLDR at location 1100 (refer to Memory
Map #4 of Pigqure E,3) and is simply a special version of CABLDR
modified to load a program consisting of 128 byte records; the load
begins with the byte immediately following CSYSLD,LDA; this is the
first byte of the second file comprising CAPS11.SYS~~CAPS11.LDA. Part
of this leoad owverlays the normal CABLDR originally stored in high
memory, and part is loaded into low memory, overlaying PRELDR., A map
of memory now exists as shown in Memory Map #5 (Figqure E-3),

The CAPS=11 System is now fully loaded into memory.

‘i

C BOGY

MEMORY MAT 1

C ACOT

o s vy o o T i o . s s o

CABLDR

PRELDR

X770

X570

Wro
1000

200

MEMORY MAP 3

BS Twumio— |
3
ES

a0
000

CSYELD.LDA

C BOOT

[o e e s e e~ 17()

e

X570

1100
160

e

C 80CT
mmmmmmmmm d1aoo
200
BRELOR
o
MEMORY MAF 7
e —— BQOT X270
CAPEIL DA
1] 1500
s o aw
CHYSLD. LDA
T T L] L7 s
¢ Boot
o o e e e e e o] 0D
264
LCAPSTE:, LDA
0

MEMOEY MAaP # 5

Pigure BE~3 CAPS~1l Loading Process

CAPSI1 PAL V81

CarS13 PAL Va1l

820000

BAGASD
298pa1
gagpa2
292003
pogae7
177500

fee e e e e M R e e e U W W W e e e W ten e Ter des Bk M e bk e e e e e e e s

3

PAGE 281
»TITLE CBOOT (CAPS~11) VBI~26 5/20/73
PDP«11 CASSETTE BOOTSTRAP

COPYRIGHT 1973 DIGITAL EQUIPMENT CORPORATL ON,
MATNARDs MA.

DEC-11-0TCBA~A~LA
BY: P. JANSON

CBOQT WILL LOAD AND SUCCESSFULLY START

ARY PRUOGRAM WHICH 5 WRITTEN IN *CBOOT
LOADER FORMAT® AND [5 CONTAINED ENTIRELY

IN A 128« (DECIMAL) BYTE RECORD WHICH [5 THE
FIRST DATA RECORD OF THE FIRST FILE

OF A CASSETTEs

CBOOT IS POSITION INDEPENDENT.

TO BOOT FROM UNIT #1 OR FR(M SOME OTHER
CHTROLLER, SET UP RS WITH THE DESIRED
CONTROLLER ADDRESS AND SET THE UNIT SELECT
BIT AS DESIRED, THEN START THE BOOTSTRAP
AT THE THIRD INSTRUCTION. PRELDR AND
CABLDR WILL USE R AS SET-UP AT BOOTSTRAP
TIME TO CONTINUE LOADING FROM THE

SELECTED UNIT.

CBOOT DOES A REWIND: S5PACES FORWARD

A RECDRD (TQ SKIPF VER HEADER OF FIRST
FILE})», AND S5TARTS READING TAE NEXT RECORD.

A CRC CHECK IS5 MADE AT THE END OF THE RECORD.

SIZE = 28. WORDS

PAGE paz2

«GLOBL CBOOT

+CEECT

R« 24
Ri=%1
RE= L2
Ra=%3
FC= X7
TACS= 77500 3TA~-11 CONTROL AND STATWS REG.

3

Pigure E-4 CBOOT

i 1

agagne
280284

BoBees
gaggie

280214

ga2eze

gogezz
gogac4

BRA326
PR3y

paeai2
Bo2834

Q8ap36

fepBa2

200046

220850
88052

2oaes4
B00956
g08269

peeas2

2BBpsa

=Juszin 3

@12788
177588
RB3G1Q
gig7 a8}
0&2781
208852

a1z2ve2
pagars

112183

112118
182413

1383180
BB1776

185262
1ea? 72

116212
2eggee
122337
gaoeee
@217 67

aae0a
20a7 55

285718
188774
pasvaT

217 642

aazats

112824

geaanl

CBOOT:

RESTRT:

]
LOOPIE

1, 00OP2:

STOP:

DONE:

TABLE:

Moy #TACS, R
CLR (R&)

MOV PCsR1

ADD #TABLE~.sRI
MOy #3753, RE
Move (RIY+,R3
MOvVRB {R1Y$, (R
BMI DONE

BITH R3. (RBY
BEG 1. OOPZ
iNCH RZ

BMIL LOGR)

MOovB 2CRE + CR2Y
CMPB R3. @v0
BEQ L O0OP2
HALT

BR RESTRT
TST (RB)

BMI 3TOP

CLR FC

« WORD 17649

+ WORD 2415

+ WORD 112824
«END

Yigure E~4

JSELECT WNIT #2
3 USE FOR PIC
3} RI HOLDS ADBDR. OF

FCOMMAND TABLE
IMEMORY PTR. AND

31 DATA FLAG
3 TEST BITS

31 COMMAND FROM TABLE
3TO TACS. WHEN COMMAND
3CODE NEG.s GSUHT

$ TEST READY AMND T-RELEG.
IBITS 1M TaCs

3L O0P 'TILL SOMETHAING
JCOMES UP

I ADVANCE MEMORY
F1IF MINUS, TRY
3 COMMAND

JREAD DATA INTO MEMORY

PTH.
NEXT

3 FIRST BYTE READ

JSHOULD BE '248°

3IF OsKes GO READ

3 ANOTHER BYTE

JHALT ON ERROR
JRESTART ON CONTINUE

3CHECK FOR ERROR
IHALT OM ERROR
3= UMP @’

$-BYTE 248

3 READY+ T~ REG.

$1.BYTE 373

1L BS+READY+ GO

3+OYTE 15 SFE+GO
1.BYTE 51 READ+GO
3.BYTE 241 READ+ILBS
3.BYTE 224:
JREAD+ILBS«E. 0. TABLE

CBOOT {(Cont,}

CAPS11 PAL ¥@1 06/05/73 PAGE gal

e e e M Yer WA e me W e e e W TR W W Y Y

gl gl

]
22r000 Ré=
002881 Rl=x
208802 R2=
¢289807 PCs
177588 TACS=

i

02280 E 012786 QCBOOT:
177588

0004 285618

podess 21270}

peea1e @¢82701
230034

poBgi4 112182

288816 112118 FC:

280920 032716 LOOP:
180248

289824 881775
2229226 100201
2829030 PRSEA7
Ae0832 885282 GOON:
2O0R34 1289770
282036 1146012

doeee2
2042 DOET 66

o244 B17TTS TABLE:

fet046 BR2415

]
égaeael

+ TITLE

LOADS (ME RECORD UNTIL ERROR.
DOES REWIND AND SKIPS FIRST RECORD OF FIRST FILE.
STARTS LOADED PROGRAM AT 2.

THE CODE IS POSITION INDEPEMDENT.

S1ZE = 28+ WORDS

« CSECT

%0

%4

k47

b4 4

171500

MOV ¥TACS, R8
CLR R

Mov PCs R

ADD #TABLE~ 4, R1
MOVB CRIY#+,R2
MOVB (RIY+2(RE)
BIT M PB240, (R
BEQ LO0P

BPL GRON

CLR PC

INC R2

Bal FunNg

MOVE 2{(RO)» (R2)

BR L.oop

s WORD 17775

» WORD 2415

«END
Figqure B~5 OCBDOT

E~14

QCBOOT VAI1-85 5/28/73
FDP-11 QUICK CASSETTE BOOTSTRAP
COPYRIGHT 1973 BY DIGITAL EQUIFMENT CORP..»

MAYNARD:, MA.
BY: ROY FOLK

LOADS AT 8.

T0 BOOT FROM DIFFERENT UNIT OR CONTROLLER., SET
UF R@ AND CORRESFONDING TACS REQISTER AS DESIRED
MANUALLY AND START AT THIRD INSTRUCTION OF BOOT.

3TA-11 CONTROL anND STATUS REGISTER

PSELECT UNIT »2
3L.0AD HEAD OF TABLE
JINTO REG. PIC'LY

3w MOV #17T7715,R2*
FSELECT FUNCTION AND
3 GO TEST ERROR, READY»

31 TREG.

JLOOFP '"TILL SOMETHING
SHAPFPEN S« v

INO ERROR - GO ON

3 START PROG. 0N FIRST
3 ERROR COWTER AnD
IMEMORY ADDR.

1 D0 REWIND, 5FB, READS
3y THEN GET BYTES
1ACTUAL LOAD

JWAIT, THEN GET MORE
$LNTIL ERROR

3+BYTE 375 FOR

IRZ COWNTER

3.BYTE 3T
JREWIND+ILBS+GO
FeBY i 1D SFB+ GO
§+BYTE 53 READ+GO

i

E.2 BUILDING MEMORY CONFIGURATIONS FOR THE CAPS~11 SYSTEM

A CAP5-11 System configqured for 8K is stored on the System Cassette
included in the CAPS~1l1 software package. Upon first receiving the
system, the user should read the documentation to familiarize himself
with caps-11,

If his hardware includes additional memory or a non-standard terminal
or line printer, the user will want to reconfiqgure his CAPS=11 system
to take advantage of this hardware, The Linker stored on the B8K
System Cassette is used for the reconfiguration process, In addition,
the user should have ready two blank cassettes and the two O0OBJ
Cassettes containing the following directories:

OBJ Cassette §#1 OBJ Cassette #2
CSYSLD LDA KBLRES OBJ
KBLRES OBJ PAL OBJ
KBL 0BJ P1l2SYM OBJ
CABLDR OBJ Pl6SYM OBJ
CSI 0BJ LINK OBJ
CLOD11 OBJ CSITAC OBJ
RESMON OBJ PBSYM OBJ
CBOOT OBJ
LA30OP OBJ
VT05 OBJ
LP8O 0OBJ
opT OBJ
PIP OBJ
CSINBF OBJ
EDIT OBJ

Ensure that the 8K System Cassette and the two OBJ Cassettes are
write-locked; write-enable +the two blank cassettes. Mount the 8K
System Cassette on drive 0 and bootstrap the CAPS-11 System (refer to
Chapter 3).

To reconfigure the Monitor files, the user must first consider which
hardware options are present on his system, Standard hardware devices
include serial LA30 and l32-column line printer. Non-standard devices
include parallel LA30, LT33 or LT35 Teletype, VT05 and 80=-column line
printer, If reconfiguration is necessary because of non-standard
devicea, the wuser will find it helpful at this point to patch the
Monitor so that the non-standard devices (in this case, specifically
the console terminal) can be used more efficiently during the
reconfiguration process itself, To make the patch, follow the
procedure listed below:

1. After the BK CAPS-11 Monitor has typed the versicon message on
the terminal, set the ENABLE/HALT switch to HALT

2, Set the Switch Register to 000056
3. Depress LOAD ADDRESS
4, If the conscle terminal is a:

a. LT33 or LT35 Teletype or parallel LA30, set the Switch
Register to 000000; go to step 5

b. VT05, set the Switch Register to 002012; go to step §

E-11

5. Raise the DEPosit switch
6. Set the ENABLE/HALT switch to ENABIE
7. Depress the CONTinue key

HOTE

The user is advised to read through the
remainder of this section before
entering any of the following command
lines. All command lines are terminated
by a carriage return ().

After the pateh has been made , continue with the gystem
reconfiguration by mounting one of the blank cassettes on drive 1;
enter the current date and zero the blank cassette using the commands:

+ DA dd-mrm-yy)} {day-month-year)

:‘“Z l%)

Hext run the BK System Linker and enter the command line and a
carriage return as shown below; the command line may be entered as
soon as the asterisk is printed even though the Linker is being
simultaneously loaded into memory.

+R LINK)
121 CAPSE1,TT:2KBL 7Ps CABLDR /F, CS1 /F, CLOD1 1/F2 RESMON/F/C)

Bacause of the fé option, the Linker will not initiate action until
the second half of the command line is typed; see Section E.2.1,
following.

NOTE

If the system includes a line printer,
the output device specification LF: may
be gsubstituted for ™: in all command
lines described in this section, 1If the
user does not desire a listing of the
load map, he may omit the listing output
specification entirely from all command
lines.

E,2.1 BReconfiguring the Monitor

o reconfigure the Monitor files for a standard system (i.,e,, one that
includesg the standard devices—-gerial LA30 and 132-column line
printer} continue the previously sntered command line by entering the
following:

E~-12

i

» CBOOT #F /2 XXXXXR)

The response for the /H option depends upon the size of the system to

be reconfigured as follows:

Table E-4

Monitor /H Option Responses
Memory Size XXKKX K
12K 60000
16K 100000
20K 120000
24K 140000
28% (or larger} 160000

To allow reconfiguration for non-standard devices, modifications must

be made to the continued portion of the command line.
choose the command line which corresponds to
configuoration from the descriptions which follow,

PARALLEL LA30 OR TELETYPE

If the conscle terminal is a parallel LA30 or LT33 or
the gsecond line of the command string must be entered

» CBODT/F, LAJDP /F /HIXXXXXX)

The response for /H is taken from Table E-4,

PARALLEL LA30 OR TELETYPE AND 80~COLUMN LINE PRINTER

The user should
his hardware

IT35 fTeletype,
as follows:

If, in addition to a parallel LA30, LT33 or LT35 Teletype, the system
includes an 80-column line printer, the second line of the command

string becomes:
s CBOOT/F,LAJBP/F, LPRB/F /s XXXXXX 2}

Again, the response for /H is taken from Tahle E-4,

VTOos

If the conscle terminal is a VI05, the second line
string is the following:

» CBOQT /7F, VT @5 /F /HI XXXXXX)

The response for /H is taken from Table E-4,

E~-13

0f the command

VIO5 AND 80~COLUMN LINE PRINTER

If the syatem includes a V05 and an $&U-column line printer, the
command line must be entered as follows:

»CBOOT/F, VTB5/F, L P3O /F /HEXRKXXX D
The response for /H is again chosen from Table E-4,

Thus, for example, if the system includes a VT05 and an 80 column line
printer and is to be reconfigured for 16K, the entire command line
would be entered as:

113CﬁPSli;LF:=KBLZP;CQBhQR!F;CSI/F;CLOQIi!F;RESHG&IFXGJ
;EBGGT!F;?T@SXF:LPQ%/?!&:lﬁﬁ%ﬂﬁ)

When the entire cormand line has been entered followed by a carriage
return, a prompt message will occur {07); mount 0BJ Cassette #1
{containing the files XBL.OBJ, CABLDR,OBJ, etc.) on unit 0 and type
any character on the keyboard to continue execution. wWhen the prompt
message occurs for pass 2, again respond by typing any character on
the keyboard. After the command has been executed, control returns to
the Linker which prints an asterisk indicating that it iz ready to
receive ancother command. If the system includes 8X of merory and the
user is reconfiguring the Monitor only +to take advantage of a
non-standard device, his reconfiguration is complete and he should
skip to Section E.Z,6 to create his new System Cassette, If the
gystem includes more than 8K, continue the reconfiguration process as
described below.

E.2,2 Reconfiguring PAL

Rewind OBJ Cassette #1 and then mount OBJ Cassette #2 {containing
PAL.OBJ, etc,} on drive 0 and enter the following:

E13PAL. SRU, TTs =K BLRES. PAL /F/C)
s P128YM/Flor P16SYM/F1, CSITAC/F/B: aD8)

The file P125¥M is used for reconflguring PAL for a 12K system; PL6SYM
is used for all systems which are 16K or more.

B.2.3 PReconfiguring LINK

The 8K Linker contains room for approximately 225 {decimal) symbols; if
the user needs more, he can next reconfigure LINK as follows:

2 1ILINK . SRUs TTt sLENK, C51 TAC/F H EXXXXXX 2

where xxxxxx represents one of the following:

E~14

Table E-5
Linker and ODT /H Option Responses

Memory Size EXXXKK
12K 41500
16K 61500
20K 101500
24K 121500
28K {or larger} 141500

¥£.2.4 Reconfiguring QDT

Hewind OBJ Cassette #2,. ODT is next reconfigured by mounting OBJ
Cassette #1 on unit 0 and entering the following command line:

2120DT. SLG»TT3 = KBLRES, ODT /F /L XXKKKX 2

The value for sxxxxxx is alsoc chosen fram Table E-5.

¥.2.5 Reconfiguring PIP and EDIT

There is no need to relink PIP or the Editor since these programs use
the same amount of memory in any size system.

The user iz now ready to create the new System Cassette,

E.2.6 Creating a New System Cassette
Return to the Monitor by typing:

L)
Rewind OBJ Cassette #1 and mount the 8K System Cassette on unit 03
obtain a directory listing of the cassette on unit 1 {which contains
all the newly reconfigured files) by typing:

DL 12)
wWhen the directory has finished listing, remove the cassette from unit
1, write-protect it, and attach the directory listing to it. The
second blank cassette should next be mounted on unit 1 and zerced,
Then run PFIP and type the command line as shown below:

:2 !3)

LH ?{P)

§§:C?L9AD-SYS=C?LGAD.SYS‘)

The command line may be entered as soon as the asterisk appears,
Contrel remains in PIP, so when this trensfer is complete, mount OBJ

E-15

Cassette #1 (containing CSYSLD.LDA, etc.) on unit 0 and enter the next
command

:l:CAPSl1-SnnﬁCSYSLUsLDA.CAPSlI-LDA/P)

The valuers for nn are taken fyom the follewing list; this c¢auses the
file to be labeled =m0 as to correspond with the memory size of the
syatem:

Table E-6
System Cassette Labeling Responses
Memory Size nn
8K BK
12K 12
16K 16
20K 20
ett... ete, .,

When the prompt message occurs, the user should rewind OBJ Cassette #1
and dismount it frem unit 0; mount the casaette containing the
reconfigured files (i.e., the new version of CAPSll} and type any
keyhoard character to continue execution.

When PIP returns an asterisk indicating that the transfer is finished,
the user can copy PIP and the Editor from the 8K System Cassette using
the command:

#13PLP. SRU, EDI T. SLG=PI P, SRU, EDI T. SLG)

The remaining files comprising the CAPS~1l1 saystem should next be
copied to the new System Cassette using any order desired, The
recommended order of files is:

CTLOAD 873
CAPSIY 88K
i SRy
EDIT 8.6
LINK 3RU
ooT SLG
PAL 5RU
DEMO PAL

If the user hag reconfigured LINK, ODT, or PAL, he should copy these
programa from +he ¢agsette containing the reconfigured versions,
Otherwige, he should copy them from the original BK System Cassette,
The DEMO program on the 8X System Cassette should be the last program
copied,

The PIP commands to perform these transfers are as follows:

Mount the cassette containing the proper version of LINK on wunit 0,
write-locked, and type:

£ 1:LINK. SRU=LINK. 5RU)

E-16

Mount the cassette containing the proper version of ODT on unit 0,
write-locked, and type:

#1:0DT,SLG=0ODT. 5LG)

Mount the cassette containing the proper version of PAL on unit 0,
write-locked, and type:

#*13 PAL+ SRU=PAL. SRU 2

Lastly, mount the BK System Cassette on unit 0, write-locked, and
type:

*1:DEMO. PAL=DEMOC. PAL)

A directory listing of the new System Cassette should be obtained when
all transfers are complete and compared to the directory listing above
to ensure that all files are present. Several copies of this cassette
should next be made {using the PIP copy function).

The user is now ready to try the demonstration program in Appendix D.

h

—,

APPENDIX F
CASSETTE STANDARDS

The information in this document is subject to
change without notice and should not be construed
as a commitment by Pigital Equipment Corporation.
Digital Equipment Corporation assumes no
respongibility for any errors that may appear in
this document.

The software described in this document is
furnished to the purchaser under a license for use
on a single computer system and c¢an be copied
{with dinclusion of DIGITAL's copyright notice}
only for use in sduch gystem, except as may
otherwise be provided in writing by DIGITAL.

Bigital Equipment Corporation assumes no
responsibility for the use or reliability of its
software on equipment that is not supplied by
DBIGITAL.

F.1l INTRODUCTION

Following is a description of the format and labeling conventions for
files and records written on Digital Egquipment Corporation TUGO
cassettes and specifically for those written under the CAPS~11l aystem.
This standard must be followed when reading and writing cassettes
intended for interchange between systems; it is recommended for other
cassettes,

The gtandard describes provisions for file header records which
contain information on filename, creation date, record length and data
format, There is room in the standard header record for twelve bytes
of additional information which can vary from system to systen. There
is also provision for an extra header record if twelve bytes are not
sufficient for additional file information.

The subset of the gtandard (described in Section F.4) details the
minimum requirements that any cassette system should support. This
restricted standard includes header record labels, fixed-length,
128~byte records, and date. No support is regquired for
variable-length records, mylti-volume files, or expanded information
in a second header record.

F.2 PDEFINITIONS

A cassette consists of a seguence of one or more files, separated from
each other by a single file gap., The first file on the cassette must
be preceded by a file gap; the last file must be followed by a file
gapi and a sentinel file ({[refer to paragraph F.3.3}, or by clear
trailer.

Each file consists of a sequence of a header record plus zero or more
data records separated from each other by record gaps. The first
record of a file is called the file header record, or file label,

A record consists of a sequence of from one up to 216'1 cassette
bytes followed by a two-byte cyclic redundancy check. (This is a
logical limit; there is no physical limit, except for the Ilength of
the tape.)

A cassettie byte is eight bits. A bit is a binary zeroc {0} or one {(1).
A character is a byte interpreted wvia the ASCII <character codes.

Parity is not required and CAPS~11 ignores the high-order bit of ASCII
data.

F.3 THE PULL STANDARD

F.3.1 Applicability

This standard is intended to allow full utilization of the
capabilities of cassettes.

r”;

-,

F.3.2 The Header Record

THE FILE NAME

Each file must begin with a 32 (decimal) byte file header record,
Pigure F=1 illustrates the format of the header recoxd., The name and
the date are in seven-bit ASCII,

LENGTH N BYTESIDECIMAL)Y g 1 4 I -] | ¥4
FILEMAME DATE UNUSED 55 |
i 3 L 1 i I i §y L i i i L 1 i i. 3 b L i i §
BYTES NUMBER ¢ 5 10 5 70
{DECIMAL) ? i i
TYPE |
RECORD LENGTH
SEQUENCE
CONTINUED

Figure F~1 File Header Record Format

The first nine bytes of a header record contain the file's name. File
names are divided into a six-character "name” and a three character
*extengsion®., File names and extensions may consist of letters,
numerals and blanks. The firat character may not be blank: there can
he no imbedded blanks within name or extension; name or extension may
be padded on the right with blanks.

NOTE

When a file is deleted, the current
systems change the name to begin with an
asteyisk (*}, in addition to setting the
type bit {(described next} to 14,

THE FILE TYPE

Byte nine in the header record contains the "File Type'. The File
Type defines the mode in which data was recorded in that file, Table
F=1 lists the file type codes and gives the meanings associated with
them {(CAPS~-11 uases file type codes 1, 2, and 14},

Table F-1
Standard File Types

Type bescription
1 ASCIY (seven bhits per character-««high-order bit
unde fined)
2 Paper Tape Image (non-ASCII}: one frame per byte

(operating system dependent)

3 Core Image Format &1
One 36=-bit computer word in five bytes (wastes
low-order four bits of the fifth byte)

4 Core Image Format #2
One 12=bit computer word in two bytes {(only the
low~order six bits of each byte is used}

5 Core Image Pormat #3
One 18~bit word in three bytes {wantes
low-order s8ix bits of the last byte)

5 Core Image Format #4
One 36-bit computer word in six bytea {only the
low~order six bits of each byte is used)

7 Core Image Format #5
One 1s~bit computer word in two bytes
10 Core Image Format #6 {05/8 character packing}
Three bytes for +two l2-bit words, as shown
below:
H H
: 1
11 Core Image Format #7
Two 36-hit words in nine bytes,
12 Core Image Format #8
Four 18-bit words in nine bytes.
13 Bootstrap File
14 Bad Pile

FILE RECORD LENGTIH

Bytes 10 and 1l of the Pile Header Record contain the flle record
length (the file record length is fixed at 128 bytes per record).

o

11

NOTE

Byte 10 contains the high-order bits.
Thus, record length = 256*contents of
byte 10 plus ¢ontents of byte 11,

FILE SEQUENCE NUMBER

Byte 12 contains the sequence number for multi-volume files, It is
normally zero, otherwise, It is used for information that is split up
among files of the same nane. Successive continuation flles on
different casgettes should be numbered 1, 2, 3, ... etec. in this
field, (CAPS-11 does not support multivolume files,)

HEADER CONTINUATION BYTE

Byte 13, when non~zero, specifies the number of bytes in an auxiliary
header record, which immediately follows this record., If it is zero,
data begins immediately with the next record. The format of auxiliary
header records is not specified at this time., ({CAPS~1ll does not use
auxiliary header records.)

FILE CREATION DATE

The file creation date is contained in the six bytes starting at byte
l4. when gpecified, this date ghall consist of six seven-bit ASCII
digits specifying the day number {01~31}, the month number (01-12},
and the last two digits of the year number, in the order ddmmyy. If
not used, the first byvte should be zero (null), or blank (ASCII=40},

UNUSEDR BYTES

The twelve bytes starting at byte 20 are not currently specified,

F.3.3 Logical End of Tape

Logical end of tape is signified by clear trailer or a sentinel file,
The sentinel file consists of a aingle header record whose file name
begins with a zero (null).

¥.4 THE RESTRICTED STANDARD

F.4.1 Applicability

CAPS=~11 supports a subset of the cassette standard described
previcusly. Features supported amd not supported are listed below,

F.4.2 Restrictions

RECORD LERGTH

Recorda shall be 128 bytes long.

NG CONTINUATION HEADER RECORD

The second record in a file must be a data record,

HO SUPPORT FOR MULTI-VOLUME FILES

¥o gupport for malti~volume files is required.

F.4.3 Inclusions

The restriéted standard {as implemented wunder CAPS«1ll} regquires
support for the following items described in the full standard:

The FPile Name
e Iogical End of Tape
& Read the (first) header record

s File Creation Date {may be blanks}

F.5 SUPPORT FOR MULTI-VOLUME FILES

The fellowing information should act as a guideline to users who wish
to implement multi-volume cassette support in their system, ‘The
easiest way to support multi=volume files is the “fall off the tape"
method. Whenaver the end of a tape is reached before a file has been
closed, the syatem should type out a message to that effect and allow
the user to mount another tape, if necessary.

%

1.
2.

3.

5.

READ, the system should:
Type out the message;

If the user indicates that the end of file has been
reached, the system should react as suchj;

1f the user indicates that end of file has not been
reached, the system should allow the user to mount
another tape, indicate the controller, and tell the
system to continue processing;

The sgystem should verify that there is a file on the tape
with the same name and the next hicher volume number as
the previcus file;

If that is the case, the system should continue
processing the file,

WRITE, the system should:
Erase any partially-written record by backspacing two and
forward-spacing one, and writing an EOP to the end of the
tape;*
TYpe out the message;
Allow the uger to mount a new tape;
The syatem may either assume a blank tape, or space to
logical end of tape; then write a file gap followed by a
header record(s) with the proper name and volume number;

Continue processing.

The other method involves using the sentinel file, as outlined in the

standard.
» On

1.

2,

The procedure is as follows:

READ, the svstem should:

Examine the next header record whenever it encounters a
file wgap; when there is noe sentinel file at end of tape,
assume end of file;

If the header represents a sentinel file and the sequence
byte ims one greater than that of the file just being
read, the system should request the user to mount annther
tape; if not, the msystem should report end of file:

If a sentinel file indicates more volumes exist, the
system should allow the user to {1} mount another
cassette, (2} indicate where it is, and (3} tell the
system to continue processing:

*When using

12B-byte records, the hardware will never mistake the

inter~record gap plus the erased tape for a £file gap, This is
— possible when using larger records, Systems using such records should
’ consider the second method for supporting multi~volume files,

4.

5.

1,

2.

3.

4.

6,

7.

The system should verify that there is a file on the tape
with the same name and the next higher volume number as
the previous file;

If that is the <case, the system should continue
processing,

WRITE, when the system reaches the end of tape, it should:

Erase enough records to allow a file gap anéd a sentinel
file to be written (this involves double buffering in the
case of large records, and triple or even quadruple
buffering, in the case of small records);

Write out a file gap, and request the operator to mount
another cassette;

If the operator indicates there will be no extra
cassette, the system should {1] write out a sentinel file
with a null sequence byte, and (2) tell the operator he
can dismount the cassette {(clearly, the operator loses
gsome data if he does not mount another cassette);

If the operator indicates he wishes to mount another
cagsette, the gystem should (1) write out a gentinel file
with sequence byte equal to the current files sequence
number plus one, and {2} tell the oparator he can
dismount the cassette;

The system should allow the operator to (1) mount another
tape, {2} indicate the controller and drive numbey that
holds the tape, and {3} tell +the system %0 continue
processing;

The system should space to logical end of tape, then
write a file gap followed by a header record(s) with the
proper name and volume nurber, followed by the records
erased from the previous cassette; and

Continue processing,

When processing cassettes that may have been written on the other
gystems, it may be wise for systems that support the full method for
multi«volume files to support the "fall off the tape" method, too.

“

£

A

APPENDIX G

CAPS=~11 ASSEMBLY INSTRUCTIONS

G.1 GENERAL INSTRUCTIONS

Listed below are assemhly instructions for the CAPS~11 Monitor and
system programs. Due to syrbol table size, note that some of the
system components cannot be assembled under the standard B8K CAPS~11
assembler, but require at least the 12K version of PAL,

The following general instructions apply to all assemblies in this
appendix:

1. Mount the System Cassette write~locked on unit 0 and
bootstrap the CAPS~-11l Monitor.

2. #when the Monitor is loaded and responds with a det,
type:

=R PAL

3. Mount the proper source cassette {cobtained from the
Software Distribution <Center} on unit 1, write-locked
{this will be the cassette containing the first file in
the input field of the command line}.

4, When the Command String Interpreter types an asterisk,
enter the appropriate command string followed by a
carriage return.

5. When the prompt message (0?) is typed during the second
pass of the assembly, dismount and the System Cassette
from unit 8 and mount an cutput cassette {on which the
binary OBJ files will be stored} write-enabled on the
unit; type any character to continue execution.

NOTE

If the user's CAPS=-1ll system is 12K or
more, the /P (prompt option] is
nacessary only on the first assembly.
Since the system dges not need to he
rehooted between assemblies, the user

may mount onhe cassette on unit ¢ and
output as many OBJ files as will fit
before mounting a new cassette.

G-1

When the assembly is complete, PAL will type the
message: 000000 ERRORS (with the exception of the
Editor, in which there are several line buffer overflow
errors; extra characters on a 1line greater than 72
characters in length are ignored and are indicated on
the listing by an 'L message.) In an BK system PAL will
next respond by typing 4C?; the user should dismount the
cassette on unit f, remount the System Cassette,and type
any character on the console terminal to reboot the sys-
tem. After this is done, return to step 2 above.

NOTE

If the system is 12K or larger, control
will return to the CSI, which prints an
asterisk. No rehoot is necessary, and
the user may proceed with the next
assembly (step 4 above).

Whenever a prompt message for unit 1 occurs, mount the
source cagsette containing the proper file (in
parentheses) on unit 1 write-locked, and type any
keyboard character.

In all command lines, TT: may be specified in place of
LP:; however, several output listings will be extremely
long and the use of the console terminal as the listing
output device is not recommended,

G.2 ASSEMBLY COMMAND LINES

Keyboard Listener (KBL)

*xKBL /PsLP:=1:KBL.235
PASS 2

p? see Step 5

CABLDR

* CABLDR/P,LP:=1: CABLDR.B22
PASS 2

a7 see Step 5

r

"

G.2.5

Command String Interpreter {{SI)

*CBL AP» LP1= 11 C81. 814
Pass 2

az see Step S5

CIobLl

*OLODIL /P LPr=1sCLODI L B24

PASS 2

Az see Step 5

RESMON*

*REﬁMGNKP.LP::I:RESMON.aés

PASS 2

@? see Step 5

CBOQT

*UBQOT AP LPE= 12 CBOOT. 2027

PASS 2

oz ges Step 5

PIP*
2PIP AP LP:= 11PLP. 028
PASS 2

@z ges Step 5

*Requires ninimom 12X PAL assembler

G.2.8 CSIHBF
s CSINBF /P LP1= 11NOBUFF. PAR/P: CEI TAC, 832/F

1?7 see Step 7 {NOBUFF.PAR)
1? see Step 7 {CSITAC,G32)
PASS 2

n? see Step 5

1% see Step 7 (NOBUFF.PAR)
172 see Step 7 (CSITAC.032)

G.2.9 EDIT*

*EDIT/PaLPt= |t CAPS11.PAR/P,EDIT. Q23 /P

17 gsee Step 7 (CAFS1l.PAR)
1? see Step 7 (EDIT,023)
PASS 2

ar see Step 5

17 see Step 7 {(CAPS11.PAR)
1? see Step 7 (EDIT.023)

5.2.10 LINK*

*LINK 7/F2LPr=2)L INK. B2@
PASS 2

e? ses Step 5

¢.2,11 CSITAC

*CEITAC/P,LPr= 11 U8l TAC, 832
PASS 2

ar sea Btep 5

*Requires minimum 12K PAL assemblerx

k4

Ge2.12 OpT
* QDT /PsLPs= 12 ODT. 215
FASS 2

@2 see Step 5

G.2.13 PAL*

*PAL /PsLPt= 12 PAL L. 827 /P2 PAL2. B2T/P, PAL 3 B2T/P

1? see Step 7 (PALL1.027)
1? gsee Step 7 {PAL2.027)
17 sea Step 7 (PAL3.027)
PASS 2

3% see Step 5

17 see Step 7 (PAL1.027}
17 gea Step 7 (PAL2.027)
17 see Step 7 (PAL3,027)

G.2,14 PBSYM (BK PAL Symbol Table)
*PEESYMAP: LP= 12 PRSYHM
PasSS 2

B see Step 5

G.2.15 Pl2syM {12K PAL Symbol Table)
*P125YMAPLPI= 1t PI2SYM
PASSE 2

a7 see Step 5

*Regquires minimum 12K PAL asgsembler

G.2.16 P165YM {16K PAL Svmbol Table)
Pl 6SYM/PLPI= 12 PI&STH
PASS 2

@z see Step 5

¥

Absolute, 55
binary format, 3-~18, E~5
binary load block
format, E-3
mode, 5-20
program sections, 6-6
Accessing unstructured data,
2-8
Address mode syntax, B2
modes, 2-7
npointers, 2-5
register display, 1-8
Addressing, 2-4
Addressing modes, 5-16é
absolute, 5-20
autodecrenent,, 5=18
autoincrement, S5-17

deferred autodecrement, 5—18
deferred autoincrement, 5-18

deferred index, 5-19
deferred register, 5-17
deferyred relative, 5-21
index, 5«19
register, 5=16
relative, 5-20
Addressing using PC, 5~19
Altering register contents,
5~37
Arithmetic operators, 5-11
ASCII,
character codes, A-2
conversion, 5-12
input and output, 7-19
Assembler, PAL, 1-2, 5«1
addressing modes, 5-16
calling and using, 5-1
coding techniques, 5=37
directives, 5~24, B-9
conditional, B~10
error codes, 5«47
error messages, 5-48, (-9
example listing, 5-46
expressions, 5-10
I/0 specifications, 5-3
language summary, Bel
object module output, 5-46
options, 5-2
regtarting, 5-3
statements, 5-4
symbols, 5=7
Assembling the source
program, 51
Assembly,
command lines, G-~2
dialogue, 5-44
instructions, G=1
listing, 5~45, 5-46
leocation counter, 5«12

Assembly language summary, B-1l

instructions, B=3
terminators, Bw]

INDEX

Assigning values to symbols,

5=

Autodecrement mode, 2-5,
5=18

Autoincrement mode, 2-5,
2-8, 5=17

Auxiliary header record,
Fuh

Base address, 7-2
Bits, 1-4
Hlank cassette, 1-5
Blocks, Text, 5-46
Breakpoint status words,
T~23
Breakpoints, 7-20
Buffer arrangement,
transfer commands, 9-3
unformatted cassette, 9-7
Buffer size, 9=4
Building memory
configurationa, E-11
Byte count, 9=7
Byte count word, 9-12
Bytes, 1-4, F=2
Unused, F-5

CABLDR, E~2, E=~3

halts, E-4

switch register settings, E~4
CaPs~1l lpading process, Ew?
CAPS-11 memory map, 3-17
CAPS11.LDA, E~&
CAPS11.8¥Y5, E~6
Cassette, 1-3, P2

Absolute Loadey {(CABLDR), 3~18

biai’ik, l.""s

Bogtstrap (CROOT), 3-17, E~1

dismounting a, 1-5

format, 1-4

Loader (CLODL11), 3-18, E=2

Monitor, E~6

mounting a, 1-5

OBJ, 1=2

removing a, l-6

Standards, F«~1

System, 1-2, 1-5
Cassette file 1/0 commands, 9~14

CLOSE, 9-1i8

ENTER, 8-16

SEEK, 9-14

SEEKP, 9=15
Cassette 1/0 functions, 9-24
Cassette 1/0 primitives, 9-24
cpoor, 3-2, E=1, E-8

loader format, E~l, E-2
Character, F-2

null, 1~-8

get, 5«4

Index~1l

Checksum, 9-12

Clear trailer, F=5

Command and error message
summaries, -1

Command input buffer (EDIT),
4=23
Command mode (ERITY, 4-4
Command String Interpreter
{C81}, 3~6, 3-18

Command summaries,

Editor, C-4

Monitor, C-=1

a0pT, C-16
Comments, 5-6
Communications directory,

67

Components,

Hardware, 1-2

Software, 1-2
Condition code operates, B-7
Condition codes, B-3
Conditional directives, B=10
Console,

elements, 1-8

operation, 1-7

terminal operation, 1-10
Constant register, 7«15
Contigucus relocating load,

E~4
Control sections,
Named, 6-6

Unamed, 6-6
Control switches,

PDP-11/10, 1~-9
Copying cassettes, B-4
Creating a new system

cassette, E=-15

C8I options, 3~7
CBYSLD.LDA, E~6
CI'LOARD, S¥YS, E=~2

Data record, 1-4, Fe2
bata register display, 1-8
Data transfer commands, 9«19
READ, 9-19
WAITR, 9=-22
WRITE, 9-20
Debugging the object
program (see QODT)
Default extensiona, 3«5
Deferred,
autodecrement mode, 5«18
avtoincrement mode, 5«18
index, 5~19
modes, 2-7
register mode, 5-17
relative mode, 5-21
bevice,
assignments, 9-3
conflicts, 9-21
dependent functions, 9-9
9-~12
interrupts, 2-3

Directives,
LJASCII, 5-28
conditional assembly, 5«30
<END, 5-27
EOT, 5-26
+EVEN, 5-2&
+GLOBL, 5-25
« LIMIT, 5-30
listing control, 5~30
program sections, 5~25
+RADSD, 5-29
~TITLE, 5-24
HWORD, 5=27
Dismounting a cassette, 1-5
Display,
Address register, 1l=8
Data register, 1-8
Done bit, 9-6
Double buffering, 9-23, F«8

EDIT (Text Editor), 4-1
calling and using, 4=1
character command

properties, 4-3
closing files, 4-14
command arguments, 4-6
command string format, 4~6
¢ommand strings, 4-7
command structure, 4-5
command summary, C-4
current location

pointer, 4-7
error messages, 4=-25, C-»7
example of use, 4-27
1/0 specifications, 4=2
input and output

compands, 4-10
key commands, 4-4
line oriented commang

properties, 4-8
modes of operation, 4=4
options, 4-2
restarting, 4-3
search commands, 4-16
text modification

commands, 4-18
utility commands, 4-22

Editing the source program
{see EDIT}

Elements of the console,
1-3

EMPTY header, 3-15, 9-~16

End of tape, F=5

Entering I/0 information,
3~6

Entry symbol, 5-8

EOF bit, 96

EOM bit, 9-6

Error message format, 3=10

Index~2

Error message summaries,
Assemhler, C-9
Monitor, C-2
opr, c-19
PEP; C—20
RESMON, €22

Expressions, 5~10
modeg, 5~14
terms, 5-10
Extensions,
Default, 3-5
Filenames and, 3-4

File, l-4
creation date, F-5
deletion, 8-3
formats, 3-3
ASCII, 3-3
Binary, 3-3
gap, l-4, F=2
Sentinel, 1-5
type, F=~3
Filenames and extensions,
-4
Piles, sequential, l1-4
Fommat,
Cassetta, 1-4
control, 5~6
Header record, F-3
Formatted,
ASCII, 9-9
Binary, 9-11
casaatte I1/0, 97
Full standard, P=2
Functional organization
{ODT} , 7~20

General assembly
instructions, G~1
Global Symbol Directory
(Gspy , 5=-15, 5-46, &~7
Global symbols, 67

Hardware components, l-2
Header continuation hyvte,
F~5
Header record, 1-4, F-2, ¥F-1
Auxiliary, F-5
format., F=-3

1/0 buffer area, 9=3
Immediate mode, 5~19
Index mode, 2~-6, 2-8, 5~-1%
Input//output,
devices, 3-4
programing, 9-1

Instruction,
capability, 2~9
forms, 5«23
set, 2«4

Instructions,
aggsembly, G-l
branch, B=7
double operand, B4
operation, B-6
rotate/ahift, B-5
single operamnd, B-4
subroutine call, 3-8
subroutine return, B~9

Internal registers, 7-9
Internal symbols, &-7
Interrupt vectors, 2-4
Interrupts, 2-10

IOT instructions, 9-2
lteration brackets, 4~9

Keyboard,
differences, A=l
LA3) DECwriter, l1l-11
Listener (XBL), 3-18
¥Monitor loading process,
3-1, E~]
Monitor sections, 3~16

1A30 DECwriter,
keyboard, 1-11
parallel, 1-12
gerial, 1-1l
Labels, 5-4
leader/trailer tape, 1-3
Linker, 6-1
calling and using, 6-2
errer message summary, C-13
example of use, 6-13
fatal errors, 6-10
imput and output, 6~7
input and ocutput
spacifications, 6-5
non=fatal errors, 6-9
options, 6=-2
reatarting, 6=-5
Linking,
Ralocation and, S5=~15
Loagd map, 6=5, 6-8
Load module, 6=5, E6~7
Loading unused trap vectors,
5-36
Locking bar, 1-5
Logical operators, 5«11
LS11l line printer operation,
1-12
L5811 operator panel, 1~12

Index~3

Macro buffer (EDIT}, 4~23
Mask register, limits, 7-14
Mgmory block initialization,
T=15
Memory map, CAPS=11, 3-17
Minimal system
configuration, 1-2
Mode ,
Autodecrement, 2-5
Autoincrement, 2-5, 2-8
Index, 2-6, 2-8
Radix~50, 7=9
Register, 2-5
Relative, 2Z-8
single-instruction, 7~13
Mode (EDITY,
command, 4-4
text, 4=4
Mode byte, 9-4, 9~17

Modes, 9-7
address, 2-7
deferred, 2Z-7
formatted ASCII, 9-9
formatted binary, 9-11
non=~defferred, 2«7
unformatted ASCII, 9-11
unformatted binary, 9-12
Modes of expressions, 5-14
abgolute, 5«14
external, 5-14
relocatable, 5-14
Monitor, l-2
commands, 3-11, C-1
DATE, 3-14
DIRECTORY, 3-14
1I0AD, 3-13
SENTINEL, 3-15
START, 3-13
VERBION, 3=16
ZERD, 3~15
|Brror messages, 3-24
loading instructions, 3-1
reconfiguring, B-12
sections, 3«16
CABLDR, 3~18
cpoQr, 3I-17
Cronll, 3-18
€81, 3-18
KBL, 3-18
RESMON, 3-17
8YSCOM, 3-18
Mounting a cassette, 1~-5
Malti-volume files, P-6

Named control sections, 6=6

Nested device servicing, 2-10

Non-contiguous relocating
lcad, E~4

Non—-data transfer commands,

G-12
CNTRLOQ, 9-~13
RESET, 9«13

RESTART, 9-13
Non~defferred modes, 2«7
Non~fatal off-«line and

write-lock errors, 9~18
Normal load, E-4
Notes on device handlers,
3-23
Null characters, 1-5, 8-12
Numbers, 5-11
decimal, 5-11
octal, 5«11

OBJ cassettes, 1-2, BE~-11
Obiect module output, 5-46
Object medules, 67

opr, 1-2, 7-1
accessing general
registers, 7-8
accessing internal
registers, 7-8
breakpoints, 7-11
calculating offgets, 7-16
calling and using, 7-1
changing locations, 7=5
closing locations, 7=5
commands and functions,
Twd, C=16
error detection, 7-26
error message summary, C=19
example of use, 7-26
170 specifications, 7-2
mask register, 7-14
opening locations, 7-5
options, 7-2
printout formats, 74
priority level, 7-18
program execution, 7-11
relocation reqister
commands, 7-17
restarting, 7=2
restoring terminal
status, =24
searchag, T=14, 7=25
trace trap instruction,
=21
Operands, 56
Operation, <Console, 1-7
Operator panel, LS11, 1-12
Operators, 5«5
Arithmetic, 5«11
Iogical, 5«11
Option summary,
Assembler, (-8B
Linkey, C-12
PIp, C-149
Qverlay load, 6-4

Index~4

Packing algorithm, 5-29
Page size, 5=7

PAL asgembler, (see Assembler)

PDP-11/10 control switches,
1-9
PDP-11/10 programmer's
console, 1-7
Peripheral Interchange
Program, [(see PIP)
Permanent device names, 3-4
Permanent symbol table, 5-7
PIC coding, 5-32
PIP, 1~3
Calling and using, B8~1
Error megssages, 8«5, C=-20
1/0 specifications, B8-2
Options, B8=1
Regtarting, 8-5
Pointer relocation commands,
4=~14

Position independent modes,
5m32
absolute, 5-33
branches, 5-32
immediate operands, 5-33
relative memory references,
S=32
PRELDR, E=2
Processor stack pointer,
2-4
Processor status register,
2=3
Processor use of stacks,
2-9
Frogram counter, Z-4, 2-8
Brogram runaway, 7=23
Program sections,
Absolute, B~6
Relocatable, 6~6
Prograrmer's console
{PDP~11 710} , 1~7
Programming considerations,
T~20
Programming the POP-l11, 2~1
Push and pop operations,
26
Push~down lists, 2-6

oCBOOT, 3~2, E-9

Radix 50 mode, 7~9

Radix 50 terminators, 7-10

Random access of tables,
2wb

Reconfiguring system programs,

Ewl3 = E~15
Reconfiquring the Monitor,
E-12

Record,

Data, 1-4

gaps, l1l-4, F=-2

Header, 14

length, F=4, Fwp
Recursive subroutines, 5-4)
Register Switch, 1-8
Register display,

Address, 1-8

Bata, 1-8
Register, 2«4

mode, 2-5, 5~16

symbols, 5-9
Relative branch offset, 7-7
Relative mode, 2-8, 5-20
Relocatahle, 5%

expressions, 7-3

forms, 7=3

object modules, 5~15, 7-2

program sections, 6-6
Relocating load, E-4
Relocating pointers, 5«35

Relocation, 7-2
and linking, 5-15
biasg, 7=-2, 7«17
calculators, 7-18
factor, 5-5
regigters, 7-3
Relocation Directory {(RLD),
5«15, 5«46, 6=7
Removing a cassette, l=6
Repeat (proceed) count,
7-14
Repetitive execution (EDIT),
4-9
Resident Monitor {(RESMON),
1-3, 3-17
communicating with, 9~1
error messages, 9-25, C-22
example, %-2, 9-26
non-fatal error codes, 95
Restricted cassette
standard, F=&
Rewind button, 1-5

Save buffer (EDIT), 4-23

Sentinel file, 1«5, F=2,
F=5

Sequence number, F«5

Sequential files, 1~4

Serial LA30 DECwriter, 1~1l

Setting up the stack
pointer, 5-~35

setting up trap for
interrupt vectors,
535

Single buffer transfer on
one device, 9-22

Single-instruction mode,
7=-13

Index-5

Software components, 12
Software support
information, E~1
special characters and
commands, 3-8
CTRL/0O, 3-8
CTRL/P, 3~10
CTRL/U, 3=10
RUBOUT, 3-10
Stack operations, 2-6
Standard (Cassette)}, F-1
Full, F-2
Restricted, P-6
Standard hardware devices,
E~-11
Starting a program, 1-10
Statements, 5-4
comments, 5-6
labels, 5-4
operands, 5-&
operators, 5-5
status byte, 9~5
Status register format, 2-3
Status/error byte, 9-17,
Qw24
Subroutines, 2-9, 5-38
Recurgive, 5-41
Summaries,
Cormand and error message,
C=-1
Switech register, 1-8
Symbols, 5-7
permanent, 5=7
registey, S~9
user=-defined, 5-7

SYSCoM, 3-17

general locations, 3-19
special locations, 320

System,

cassette, 1-2, 1-5, 31
directory, 3=1

communication (SYSCOM), 3~18
configuration, minimal, lw2
conventions, 3-3
demonstration, Ikl1l, ID~2
diagram, 2-=2
start-up, D=1
structure, 2~1

Tab stops, 3-23 /
Table of breakpoints, 7=11
Table of mode forms and
codes, 5-21
Table of proceed counts,
F=12
Table of relocation
registers, 7=17
Text blocks, 5~46
Text buffer {(EDIT), 4-10,

423
Text Bditor (see EDIT)
Text mode (EDIT), 4«4 -

TRA block, 6-8

Transfer mode, 9-4

Transferring files, B8-4

Trap vectors, 5«37

Traps, 2-10 ——~
Two pass assembler, 5-1

Unamed control sections,
=6
unformatted,
ASCII, 9-11
Binary, 9-12
Casgette 1/0, 9«7
UNIBUS, 2=-3
Unused bytes, F=5
User program loading
process, 3~21 Y
User prompting, 9-17
User-defined symbols, 5~-7
global, 5-8
internal, 5-8
Using the CAPS=11 Monitor,
3-1

WAITR vs. testing buffer
done bit, 9«22
WRITE, P=7

Write-protect tabs, 1-3 {*“
Writing,
automatic PIC, 5-34
non-autematic PIC, 5-3%
position independent
code (PIC), 5-32

Zeroing a cassette, 8=-2

Index—6

i
i
|
|
|
i
N 1
T i
|
H
£
i
i
]
|
- 9
i
i
i
i
- 1
|
1
f
t
k
S |
i
{
1
|
i
§!
g
i
loﬁ
=
4
VA £
2
i 3
| &
1§
&
I
H
H
i
H
e t
|
H
i
|
|
i
f
i
1
{
H
}
- |
1
H
i
i
]
o 1
{
L
1
]
i
i
f
|

|
|
L

CAPS~11-USER'S GUIDE
DEC~11-0TUGA~A-D

READER'S COMMENTS

NOTE: 7This form is for decument comments only. Problems
with software should be reported on a Software
Froblem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manval understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on assoclated system programs
required for use of the scftware described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmeyr

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non=-prograrmer interested in computer concepts and capabilities

0000

Name Date
Organization
Street
City State Zip Code
or
Country
If you require a written reply, please check here. [:]

oy

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS,

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Eguipment Corporation
sSoftware Communications

P.0, Box F

Mavnard, Mass. 01754

\--r’

	Front Cover

	Contents

	Preface

	Chapter 1 - The CAPS-11 Programming System

	Chapter 2 - Programming the PDP-11

	Chapter 3 - Using the CAPS-11 Monitor

	Chapter 4 - Editing the Source Program

	Chapter 5 - Assembling the Source Program

	Chapter 6 - Linking Assembled Programs

	Chapter 7 - Debugging the Object Program

	Chapter 8 - Peripheral Interchange Program

	Chapter 9 - Input/Output Programming

	Appendix A - ASCII Character Codes

	Appendix B - Assembly Language Summary

	Appendix C - Command and Error Message Summaries

	Appendix C1 - Keyboard Monitor

	Appendix C2 - Editor

	Appendix C3 - Assembler

	Appendix C4 - Linker

	Appendix C5 - ODT

	Appendix C6 - PIP

	Appendix C7 - RESMON

	Appendix D - System Demonstration

	Appendix D1 - System Start-Up

	Appendix D2 - System Demonstration

	Appendix E - CAPS-11 Software Support Information

	Appendix E1 - CAPS-11 Keyboard Monitor Loading Process

	Appendix E2 - Building Memory Configurations for the CAPS-11 System

	Appendix F - Cassette Standards

	Appendix F1 - Introduction

	Appendix F2 - Definitions

	Appendix F3 - The Full Standard

	Appendix F4 - The Restricted Standard

	Appendix G - CAPS-11 Assembly Instructions

	Index

