
#130-005-002-00

,,;mmnamn. INTEROFFICE MEMORANDUM

SUBJECT· DATE: August 13, 1970

TO:

techniques, cute ideas, and programming t~icks for the PDP-11.

PDP-11 List C
The Buffer

FROM: D. Knight

DEPARTMENT: Programming

The following is a collection of items concerning all sorts of odds
and ends about programming the PDP-11.

1. One of the features of the PDP-11 is the ability to trap
on various conditions such as illegal instructions, re­
served instructions, power fa1lure, etc. However, if
~ the trap vectors are not loaded with meaningful

information, the occurrence of an~ PC,~these traps will
cause unpredictable results. By ,.t:i119 the following,
it is possible to avoid these problems as well as gain
meaningful information about any unexpected traps W:ftiehTAaf
ma§ (ana will) occur. This technique, which makes it
easy to identify the source of a trap) is to load each
unused trap vector with:

• = trapaddress
• WORD . + 2 I f6

This will load the first word of the vector with the
address of the second&~ord~f the vector (which contains
a hAll_). Thus, for :i.m;(~6, a halt at location 6 imp 1

• sart~f&1/r~~
a ~through the vector at-location 4 has occurred. The
old PC and status may be examined by looking at the stack ·
pointed to by register 6.

The trap vectors of interest are:

Vector location

4

1/6

14

halt at

6

12

16

vector meaning ·

jbus error, illegal i~ruction,
/stack overflow, non-existent

memory, non-existent device,
word at odd address, etc.

~teebreserved instruction

trace trap instruction (f6.f6!6Jf63)
executed or T-bit set in status
word (used by ODT)

(\

\I

- 2 - August 13, 1970
techniques, cute ideas,
and programming tricks
for the PDP-11.

(Cont'd)
Vector location halt at vector meaning

2~ 22 IOT executed (used by IOX)

24 26 Power failure or restoration

3- 32 EMT executed (used by FPP-11)

34 36 TRAP executed

2. Cute instructions and tricks·

Note: REG refers to a register in general.

a. TST (REG)+

Add two to a register. Use with care since condition
codes are clobbered, the register's contents must be
even, and the value cannot be outside addressable
memory.

b. TST -(REG)

Subtract two from a register. Same cautions as (a).

c. CMP (REG)+,(RE~)+

Add four to a register. Same cautions as (a).

d. CMP -(REG),-(REG)

Subtract four from a register. Same cautions as (a).

e. JSR REG,XXX
BNE ABC

XXX: SEZ
RTS PC

This is a very useful tool, in other words, use the
condition codes to pass two valued parameters or flags
upon subroutine returns.

·)

techniques, cute ideas,
and programming tricks
for the PDP-11.

f. MOV COUNT I (R6) +

- 3 - August 13, 1970

Pop an undesired item from the stack and set condition
codes relative to count. Similar in operation to:

TST (R6)+
TST COUNT

g. MOV @R7 ,REG
CLR REG

;Pop stack
;test count

Move a one word instruction to a register and then
execute it. (It might be useful somewhere.)

h. JMP and MOV instructions are similar in effect in
certain cases. The major difference is that JMP
doesn't affect the condition codes while MOV does.
The following is a table of equivalences:

JMP
JMP
JMP

none

xxx
@R6
@(R6)+

MOV
MOV
MOV
MOV

XXX,R7
R6,R7
(R6)+,R7
@(R6)+,R7

Notice that the MOV instruction as used above will
allow one level of deferral deeper than a JMP.
Possible applications include tables of jump
addresses which may be indexed through.

3. A trap handler.

The following trap handler simulates a two word JSR
using a one word trap. The low order byte of the trap
instruction determines the table position where the jump
address is found. The subroutine return should be an
RTS R7.

;TRAP HANDLER (LOC 34)
TRAP34: MOV @R6,2(R6) ;DESTROY TRAP STATUS

;WITH RETURN ADDRESS
SUB #2 ,@R6 ; CALCULATE TRAP POSITION
MOV @(R6)+,-(R6) ;GET TRAP INSTRUCTION PROPER
ADD #TABLE--1~44~~ 1 @R6 ;CALCULATE JUMP TABLE ENTRY
MOV @(R6)+,R7 ;JUMP TO ROUTINE

;
TABLE: XYZ ;THIS TABLE CONTAINS THE

;ADDRESS OF EVERY ROUTINE
;TO BE CALLED IN THIS MANNER.

techniques, cute ideas,
and programming tricks
for the PDP-11.

4. An example of recursion.

- 4 - August 13, 1970

This problem is to scan through a string of characters
containing parenthesis nesting to find matching paren­
theses.

E.G. - find the right paren in the following
string which matches the first occur­
rence of a left paren.

B=A(EXP(A+B(l5,12l),)

Recursive form:

A:
B:

JSR
MOVB
£Ml>B
BEQ
CMPB
BNE
RTS

R7,@R7
(REG)+,R,S
#I (,R,0
A
#I) I R,0
B
R7

;CALL B RECURSIVELY
;PICK UP NEXT CHARACTER
;IS IT A"("?
;YES,.TRY AGAIN
;IS IT A")"?
;NO, RELOOP
;DO A POP JUMP

To use the above, B is entered with REG pointing to the
character following the first open parenthesis. B is
called with a JSR R7,B. The recursive form is 9 words
long.

A non-recursive equivalent is:

B:
Bl:

B2:

CLR
MOVB
CMPB
BNE
INC
CMPB
BNE
DEC
TST
BGE
RTS

Rl
(REG) + I R,0
#I (I R,S
i32
Rl
I) I R,0
Bl
Rl.
Rl
Bl
R7

The non-recursive example is 13 words long.

techniques, cute ideas,
and programming tricks
for the PDP·-1i.

5. Another cute trick

INCB @.(Rl)
TSTB @(Rl)

(and)

- 5 -

INCB @(Rl)+
TSTB @-(Rl)

August 13, 1970

are equivalent except that the first is four words long
and the second is two words long.

6. Pseudo-assembly options

The following example shows hm~ ·to make assembly options
available or an assembler not having explicit optional
assembly pseudo-ops. This neat nasty depends on the fact
that when two pieces of code are loaded in the same place,
the ·1ast one (usually!) takes prscedcncc.

· ..
Assume the e}:istence of t· .. :.:.; shcrt !)l~broutincs !\ ur:d P.

A: INCB @Rl E. J • INC RS

~
TSTB @Rl l'~O\TB SP, R,(J

i BPL ·-4 RTS ~5
MOVB @R0,R2
RTS RS

Assume that subroutine B is to be made optional. 'l1hc~ prour.:1m
may be arranged thus:

OPT = -1
,TMP =
B: INC RS . MOVB SP, P,0

~' ~ RTS RS
LG ·.-TM~. • =

·~ '

= LG & OPT +TMP
A: INCB @Rl

TSTB- @Rl
' BPL ·-4

MOVB @R~,P.2
RTS RS

techniques, cute i.deas,
and programming tricks
for the PDP-11.

- 6 -

6. Pseudo-assembly options (Cont•d)

August 13, 1970

If OPT is.set to -1, subprogran B will be assembled normallj,
If OPT is set to 0, B will be ov,2rlaid by A..

Cautions:

1) This is not a true cond:~ tional assembly thus s·ymbol
redefinition may not be done (i.e. two suhpro~; carn~:5
named B) without some effort .

. For example:

OPT = -1
B: ; lab·2l definition
TMP =.

= xx & -OPT +THP2
INC RS
EOVB ,S?, R,0,
RTS

:•'

LG = •. -TJ'"lP

= LG & OPT+TBP
INCB Rl

The actual amount of code to be loaded will not chnnge,
only ~ocation where it ~ill be loaded.

- 7 - August 13, 1970
techniques, cute ideas,
and programming tricks
for the PDP-11.

7. I/O buffering with IOX.

This is a relatively obscure method to double buffer
input and output. There are two input buffers (Il, I2)
and two output buffers (01, 02). This is a process
which processes an input buff er and in the process
loads an output buffer. The process uses pointers to
the buffers and buffer headers which are set by the I/O
routines. Thus the process does not know (or care)
which buffer is being worked upon.

PC=%7
BEGIN:

B:

;

(do I/O resets, inits, etc.)

IOT
.WORD Il
.BYTE READ,INSLOT

MOV #A~-(6)
JSR PC,,@ (6) +

I '

,.

;read into Il

;initialize stack
;do I/O

Perform processing.

BR B ;do it again, etc.

;END OF MAIN LOOP
;
;I/O CO-ROUTINES

A: IOT ;read into I2
.WORD I2
.BYTE READ,INSLOT

JS~
IOT.
.WORD
.BYTE
!OT
.WORD
.BYTE

set parameters to process I2,0l.

PC,@(6)+ ;return to.process
;write from 01

01
WRITE,OUTSLOT

Il
READ,INSLOT

;read into Il

set parameters to process I2, 02.

- 8 - August 13, 1970
techniques, cute ideas,
and programming tricks
for the PDP-11.

JSR _PC I @ { 6) +
IOT,
.WORD 02

;return to process
;output from 02

.BYTE WRITE,OUTSLOT
BR. A ; go read into I2

The above is a good example of the usage of the co-routine
call form of JSR:

JSR PC,@(6)+

which does a jump to the address specifi.ed on top of the
stack and replaces that address with the new return address.

8. More cute tricks

a. CMPB (R6) +I (REG)+

will increment R6 by two and increment REG by
This can be extended to:

JDOP l! c,1()

CMPB (R6)+,-(REG) /!JO:J. 377
CMPB -(R6),(REG)+ ! ov -~ '-' ~ 0
CMPB -(R6),-(REG) 7 7-7 37-,

This trick depends on the fact that the stack
register is always incremented or decremented
by two in auto-increment/decrement mode. The
same cautions as in section 2a apply. Also,
REG is in the range ~-5 only.

one.

b. The above can be generalized slightly.

CMPB (REG1)+,(REG2)+
CMP (REG1)+,(REG2)+ , ad nauseum

This allows two separate registers to be incre­
mented (or decremented, e.g. CMP (REG1)+,-(REG2))
at the same time by the same value in one instruc­
tion. This is sometimes useful in table scanning
algorithms, etc. The same cautions apply as in
section 2a.

